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Résumé

Cette thèse est organisée en 8 chapitres, résumés ci-dessous.

Dans le chapitre 1, nous discutons de l’intérêt des modèles visuels de langage, des objectifs
précis des modèles développés et des défis qu’ils doivent surmonter, comme résumé ci-dessous.
Les humains sont des êtres multi-modaux, percevant le monde à travers leurs sens visuels com-
plexes, tout en communicant à travers le langage naturel. Cette intégration harmonieuse de
la perception visuelle et du langage naturel forme la base de l’expérience humaine. Contraire-
ment aux humains, les modèles d’apprentissage automatique sont généralement unimodaux,
formés pour des tâches spécifiques en vision par ordinateur ou en traitement du langage na-
turel. Traditionnellement, ces modèles sont supervisés et dépendent d’annotations manuelles
pour l’apprentissage. En revanche, les humains apprennent de manière auto-supervisée à partir
de multiples modalités, ce qui inspire l’approche de cette thèse axée sur les modèles multi-
modaux et l’apprentissage croisé de modalités. La thèse se concentre sur le développement de
modèles multi-modaux, en particulier les modèles de langage visuel, capables de traiter con-
jointement des entrées visuelles et linguistiques et de générer des sorties linguistiques. Ces
modèles pourraient combler le fossé entre les modèles d’apprentissage profond et les capacités
humaines, en exploitant des données multi-modales à grande échelle via l’apprentissage croisé
de modalités. Plus spécifiquement, la thèse explore le domaine de la compréhension vidéo, où
les modèles visuels de langage peuvent extraire des informations sémantiques riches à partir de
vidéos, y compris les métadonnées textuelles associées. Ces modèles offrent un potentiel consid-
érable pour améliorer les interactions homme-machine, en comprenant le monde par la vision
et en communiquant à travers le langage naturel. Les applications couvrent un large éventail
de tâches vidéo, par exemple la recherche de vidéo à partir de requête en langage naturel, la
génération de résumé textuel de vidéo, la génération de chapitres vidéo, les systèmes de recom-
mandation vidéo, l’édition vidéo automatisée, la surveillance vidéo, la surveillance médicale, la
réalité virtuelle, l’éducation, ou encore la modération de contenu.

L’objectif principal de cette thèse est de faire progresser le développement de modèles de
langage visuel qui démontrent une compréhension approfondie du contenu vidéo en exploitant
efficacement les indices visuels et linguistiques. Cela nécessite la conception d’architectures pro-
fondes et de techniques d’apprentissage appropriées, et leur application à des ensembles de don-
nées d’entraînement soigneusement sélectionnés. Pour évaluer l’efficacité des capacités détaillées
de compréhension vidéo de nos modèles, nous nous concentrons sur plusieurs tâches importantes,
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notamment la question-réponse vidéo, le repérage vidéo spatio-temporel et la description vidéo
dense. La tâche de question-réponse vidéo est essentielle pour évaluer les capacités de com-
préhension vidéo détaillée des modèles de langage visuel. Elle consiste à générer une réponse en
langage naturel à une question sur une vidéo, permettant d’évaluer la capacité des modèles à
répondre de manière précise à des questions variées sur le contenu des vidéos. Nous explorons
également la tâche de repérage vidéo spatio-temporel pour approfondir la compréhension fine de
la vision et du langage. Cette tâche vise à localiser dans une vidéo non coupée un tube spatio-
temporel correspondant à une requête linguistique, nécessitant une compréhension précise de
l’espace et du temps. En outre, nous nous concentrons sur la tâche de description vidéo dense,
qui implique de générer des descriptions en langage naturel localisées temporellement pour tous
les événements se produisant dans une vidéo non coupée de plusieurs minutes. Cela nécessite
une combinaison d’une compréhension précise des actions de bas niveau et d’une compréhen-
sion globale du récit de la vidéo. Enfin, nous abordons la tâche connexe de la génération de
chapitres vidéo, qui consiste à segmenter temporellement la vidéo et à générer un chapitre en
langage naturel pour chaque segment. Cette tâche a une application pratique en permettant aux
utilisateurs de naviguer rapidement vers l’information qui les intéresse. En abordant ces tâches
spécifiques, notre objectif est de faire progresser le développement de modèles de langage visuel
capables d’une compréhension polyvalente du contenu vidéo, de traiter des tâches complexes de
raisonnement et de générer des descriptions précises et contextuellement pertinentes.

Le développement de modèles de langage visuel capables de comprendre en détail le con-
tenu des vidéos et de relever efficacement les défis présentés par les tâches précédemment ex-
posées soulève plusieurs problématiques en termes de conception d’architecture neuronale et
d’entraînement, comme décrit ci-dessous. Un premier défi consiste à connecter les modèles de
vision et de langage. Les modalités visuelle et linguistique ont des formats différents : les im-
ages sont généralement représentées comme des signaux continus avec des pixels, tandis que le
langage est symbolique et est représenté avec un vocabulaire fixe de jetons. De plus, la vision et
le langage ont des structures et des sémantiques intrinsèquement différentes. Fusionner ces deux
modalités dans un seul modèle nécessite la conception d’architectures appropriées et de tech-
niques pour combler l’écart entre l’information visuelle et textuelle. Pour relever ce défi, nous
développons des architectures de fusion médiane basées sur l’attention, permettant d’apprendre
des représentations croisées détaillées en représentant à la fois les caractéristiques visuelles et le
texte sous forme de jetons. Nous concevons également des techniques d’entraînement appropriées
basées sur le gel des poids du modèle de langage pour préserver ses connaissances, ainsi que des
approches de pré-entraînement multi-modal utilisant des jeux de données à grande échelle de
vidéos Web. Un deuxième défi concerne la modélisation vidéo. Les vidéos contiennent beaucoup
plus d’informations par rapport aux images, et une redondance significative d’informations entre
les différentes images d’une même vidéo. Les tâches abordées dans cette thèse nécessitent de
traiter des vidéos non coupées de plusieurs minutes, ce qui peut représenter des milliers d’images
différentes. Nous devons donc concevoir des représentations vidéo efficaces qui capturent des in-
formations sémantiques de haut niveau utiles sur le contenu de la vidéo. Nous visons également
à développer des architectures qui peuvent représenter des vidéos non coupées et effectuer des
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prédictions sur différentes périodes, afin de réaliser un repérage vidéo spatio-temporel et une de-
scription vidéo dense. Pour relever ces défis, nous proposons des architectures unifiées inspirées
de travaux récents en vision par ordinateur, visant à être entraînables de bout en bout et à
généraliser à diverses tâches vidéo. Un troisième défi concerne l’apprentissage à partir de vidéos
Web. La collecte d’annotations pour les ensembles de données vidéo est coûteuse et chronophage.
Pour surmonter cela, des travaux récents ont exploité des données vidéo disponibles sur le Web
pour construire des ensembles de données vidéo-langage. Ces ensembles de données comprennent
des vidéos narrées avec une transcription, ou des vidéos courtes accompagnées de descriptions.
L’avantage de ces données est qu’elles peuvent être collectées automatiquement à grande échelle,
capturant ainsi la diversité des vidéos du monde réel. Nous développons des techniques avancées
pour tirer parti de ces vidéos Web dans l’entraînement de modèles de langage visuel pour des
tâches complexes, telles que la réponse aux questions vidéo et la description vidéo dense. Ces
techniques impliquent la génération de données avec des modèles de langage pré-entraînés, le gel
des poids du modèle de langage, ou l’utilisation explicite des horodatages associés à la parole
transcrite. Nous explorons également d’autres sources d’annotations à grande échelle sur le Web,
telles que les chapitres annotés par les utilisateurs.

Dans le chapitre 2, nous présentons une revue de la littérature sur les travaux liés à cette
thèse. Le chapitre est divisé en trois sections principales : (i) Modèles visuels, (ii) Modèles de
langage et enfin (iii) Modèles de langage visuel.

Les chapitres 3 à 7 décrivent les 5 principales contributions de cette thèse. Dans les chapitres 3
et 4, nous présentons deux approches évolutives pour développer des modèles de réponses aux
questions vidéo sans avoir recours à une annotation manuelle coûteuse. Dans le chapitre 5, nous
expliquons TubeDETR, notre architecture basée sur un transformateur conçue pour la tâche de
repérage vidéo spatio-temporel. Dans les chapitres 6 et 7, nous décrivons un nouveau modèle de
langage visuel et un nouvel ensemble de données pour une description vidéo dense. Les détails
sont donnés ensuite.

Dans le chapitre 3, nous proposons une approche pour générer automatiquement des don-
nées d’entraînement à grande échelle pour la question-réponse vidéo, évitant ainsi une annotation
manuelle coûteuse. Nous utilisons la supervision croisée et appliquons des modèles de génération
de questions basés uniquement sur le texte à la parole transcrite dans les vidéos narrées. À partir
du jeu de données HowTo100M [Miech, 2019], nous générons le jeu de données HowToVQA69M
avec 69 millions de triplets question-réponse-vidéo. Nous montrons qu’un transformateur de
vidéo-question entraîné de manière contrastive avec un transformateur de réponse sur les en-
sembles de données générés est capable de répondre à des questions visuelles de manière zéro-shot
(sans entraînement sur une seule image ou vidéo annotée manuellement) mieux que des références
appropriées. De plus, notre méthode obtient des résultats compétitifs sur quatre jeux de données
d’évaluation existants pour la question-réponse vidéo. Nous étendons également notre approche
à des paires vidéo-description du Web pour générer le WebVidVQA3M avec 3 millions de triplets
question-réponse vidéo à partir du jeu de données WebVid2M [Bain, 2021]. Pour une évaluation
détaillée, nous introduisons également iVQA, un nouveau jeu de données de question-réponse
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vidéo avec des biais linguistiques réduits et des annotations manuelles redondantes de haute
qualité.

Dans le chapitre 4, nous proposons FrozenBiLM, une approche pour la question-réponse
vidéo zéro-shot qui exploite directement des modèles de langage bidirectionnels gelés (BiLM) sans
procédure de génération de données. En particulier, (i) nous combinons les entrées visuelles avec
le BiLM gelé en utilisant des modules d’entraînement légers, (ii) nous entraînons de tels modules
à l’aide de données multi-modales extraites du Web, et enfin (iii) nous effectuons l’inférence de
question-réponse vidéo zéro-shot grâce à la modélisation de langage masqué, où le texte masqué
est la réponse à une question donnée. Notre approche surpasse les méthodes autoregressives
antérieures [Tsimpoukelli, 2021] tout en étant moins coûteuse, et améliore largement l’état de
l’art antérieur en question-réponse vidéo zéro-shot sur huit ensembles de données variés.

Dans le chapitre 5, nous abordons le problème de la localisation d’un tube spatio-temporel
dans une vidéo correspondant à une requête textuelle donnée. Nous proposons TubeDETR,
une architecture basée sur un transformateur qui peut être entraîné de bout en bout pour le
repérage vidéo spatio-temporel. Notre modèle comprend notamment : (i) un encodeur vidéo et
texte efficace qui modélise les interactions multi-modales spatiales sur des images échantillonnées
de manière clairsemée et (ii) un décodeur espace-temps qui effectue conjointement la localisation
spatio-temporelle. Nous démontrons l’avantage de nos composants proposés grâce à une étude
experimentale approfondie. Avec un pré-entraînement image-texte [Kamath, 2021], TubeDETR
améliore l’état de l’art antérieur sur les jeux de données d’évaluation exigeants VidSTG [Zhang,
2020d] et HC-STVG [Tang, 2021].

Dans le chapitre 6, nous abordons le problème de la génération de descriptions temporelle-
ment localisées pour tous les événements dans une vidéo non coupée. Nous proposons Vid2Seq,
un modèle de langage visuel qui peut décrire de manière dense une vidéo en générant une seule
séquence de jetons. L’architecture Vid2Seq augmente un modèle de langage avec des jetons de
temps spéciaux, lui permettant de prédire de manière fluide les limites des événements et les
descriptions textuelles dans la même séquence de sortie. Un tel modèle unifié nécessite des don-
nées d’entraînement à grande échelle, qui ne sont pas disponibles dans les ensembles de données
annotés actuels. Nous montrons qu’il est possible de tirer parti de vidéos narrées non annotées
pour la description dense de vidéos, en reformulant l’horodatage des phrases de la parole tran-
scrite comme des limites de pseudo-événements et en utilisant les phrases de la parole transcrite
comme des descriptions de pseudo-événements. Le modèle Vid2Seq résultant pré-entraîné sur
l’ensemble de données YT-Temporal-1B [Zellers, 2022] améliore l’état de l’art antérieur sur une
variété de jeux de données d’évaluation de description vidéo dense, tels que YouCook2 [Zhou,
2018a], ViTT [Huang, 2020b] et ActivityNet Captions [Krishna, 2017]. Vid2Seq généralise égale-
ment bien aux tâches de description de paragraphes vidéo et de description de clips vidéo, ainsi
qu’aux paramètres d’entraînement avec peu de données.

Dans le chapitre 7, nous proposons VidChapters-7M, un ensemble de données à grande échelle
de vidéos annotées par des utilisateurs. VidChapters-7M est créé automatiquement à partir de
vidéos en ligne de manière automatique en extrayant des chapitres annotés par les utilisateurs,
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sans annotation manuelle supplémentaire. Nous introduisons les trois tâches suivantes basées
sur ces données. Premièrement, la tâche de génération de chapitres vidéo consiste à segmenter
temporellement la vidéo et à générer un titre de chapitre pour chaque segment. Pour disséquer
davantage le problème, nous définissons également deux variantes de cette tâche: la génération
de chapitres vidéo sachant les limites temporelles, qui nécessite de générer un titre de chapitre
à partir d’un segment vidéo annoté, et le repérage de chapitres vidéo, qui nécessite de localiser
temporellement un chapitre donné son titre annoté. Nous évaluons à la fois des approches simples
et des modèles multi-modaux de l’état de l’art, y compris Vid2Seq, sur ces trois tâches. Nous
montrons également que le pré-entraînement de Vid2Seq sur VidChapters-7M se transfère bien
aux tâches de description vidéo dense, tant dans les paramètres de zéro-shot que de finetuning,
améliorant largement l’état de l’art sur les jeux de données d’évaluation YouCook2 et ViTT.

Enfin, dans le chapitre 8, nous fournissons un résumé des contributions et discutons des pistes
de recherche futures, telles que le développement de modèles capables de dialoguer précisément
sur des entités spécifiques dans la vidéo, les modèles vidéos unifiés, le traitement de vidéos
longues, l’annotation de jeux de données vidéos assistée par des modèles profonds, et les modèles
de génération multi-modaux.
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Abstract

As humans, we communicate with natural language and perceive the world through vision.
Therefore, the goal of this thesis is to build and train machine learning models that combine the
power of natural language processing with visual understanding, enabling a comprehensive and
detailed comprehension of the content within videos. In particular, we develop visual language
models capable of (i) answering natural language questions about videos (ii) localizing natural
language queries spatially and temporally in untrimmed videos, and (iii) generating temporally-
grounded natural language descriptions of all events in untrimmed videos.

First, we propose two scalable approaches to develop video question answering models with-
out the need for costly manual annotation. This is unlike most current video question answering
systems which are trained on large manually annotated datasets. We automatically generate
video question answering data from narrated videos using text-only question-generation models.
We then show that a multi-modal transformer trained contrastively on the generated data can
answer visual questions in a zero-shot manner. In order to bypass the data generation procedure,
we present an alternative approach, dubbed FrozenBiLM, that directly leverages bidirectional
masked language models. This is done by adding light modules to incorporate vision into the
language model, and training these modules on Web-scrapped video-caption pairs while keeping
the language model weights frozen to preserve its textual knowledge.

Second, we develop TubeDETR, a transformer model that can spatially and temporally
localize a natural language query in an untrimmed video. Unlike prior spatio-temporal grounding
approaches, TubeDETR can be effectively trained end-to-end on untrimmed videos, as it includes
an efficient video and text encoder that models spatial multi-modal interactions over sparsely
sampled frames and a space-time decoder that jointly performs spatio-temporal localization.

Third, we present a new model and a new dataset for multi-event understanding in untrimmed
videos. We introduce the Vid2Seq model which generates dense natural language descriptions
and corresponding temporal boundaries for all events in an untrimmed video by predicting a
single sequence of tokens. Special time tokens interleave the text sentences to temporally ground
them in the video. Moreover, Vid2Seq can be effectively pretrained on narrated videos at scale
using transcribed speech as pseudo-supervision. Finally, we introduce VidChapters-7M, a large-
scale dataset of user-chaptered videos. Based on this dataset, we evaluate state-of-the-art models
on three tasks including video chapter generation. We also show that video chapter generation
models transfer well to dense video captioning in both zero-shot and finetuning settings.
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Chapter 1
Introduction

Humans perceive the world through their complex visual senses, encompassing the discernment
of shapes, colors, depth, and motion, intricately weaving a vibrant tapestry of their surround-
ings. Simultaneously, humans communicate and convey their thoughts, emotions, and ideas
through the versatile medium of natural language, employing a vast range of intricate linguistic
structures, grammar, and vocabulary. This seamless integration of visual perception and natu-
ral language forms the foundation of human experience, enabling comprehension, interpretation,
and effective communication.

However, machine learning models are traditionally trained to solve tasks within specific
domains such as computer vision and natural language processing. State-of-the-art models in
these fields typically apply modern deep learning techniques [LeCun, 2015] using large unimodal
datasets like ImageNet [Russakovsky, 2015] in computer vision and BooksCorpus [Zhu, 2015] in
natural language processing. These techniques learn the parameters of the model by backprop-
agating the error measured by an appropriate loss function with respect to the data.

Moreover, the traditional approach to develop effective deep learning models relies heavily
on the laborious process of manually curating annotations linked to the raw data. This in-
volves tasks such as categorizing images, as exemplified by the ImageNet dataset [Russakovsky,
2015], or writing question-answer pairs for textual corpora, as demonstrated by the SQuAD
dataset [Rajpurkar, 2016]. These annotations are then integrated into the model’s loss function,
enhancing its ability to learn and generalize from the data.

In contrast, humans inherently learn visual and world knowledge from multiple modalities
without need for an explicit teacher [Barlow, 1989]. In developmental psychology, this phe-
nomenon is evidenced by the concept of re-entry [Edelman, 1987], where one modality triggers
the memory of another.

Therefore, while building on the deep learning approaches mentioned above, this thesis aims
at building and training multi-modal models that can use multiple modalities (for instance, vision
and language). Such models could potentially bridge the gap between deep learning models and
humans, by learning from Web-scale multi-modal data via cross-modal learning [Radford, 2021],
where one modality serves as a supervision for the other.
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ASR: Hi friends! Today I 
am going to show you 
how to make the famous 
Montessori Gobbi 
Mobile.

ASR: You’re also going 
to need a pencil, scissors, 
ruler, and tape.

ASR: Ok so we’re going 
to take a needle and pull 
it through the hole in the 
center.

ASR: Now hold it in 
place with your finger.

(a) Example of a narrated video from the HowTo100M dataset [Miech, 2019]. For readability, we only
show a few video frames with their associated segments of speech transcripts (ASR).

Web-sourced text description: Snorkelers swimming in a calm blue sea with 3 windmills in the background.

Web-sourced text description: Runners feet in a sneakers close up. realistic three dimensional animation.

(b) Examples of video-caption pairs from the WebVid10M dataset [Bain, 2021].

Figure 1.1: Examples of web videos with their associated textual metadata. In this
thesis, we train visual language models for video understanding using such readily-available
sources of data which can be automatically collected at scale (see Chapters 3, 4, 6 and 7).

In particular, in this thesis, we focus on developing visual language models that can jointly
process visual and language inputs, and generate language output. Such models have the po-
tential to enhance human-computer interactions by perceiving the world through vision and
communicating through natural language. They are also general as various video tasks and
applications can be formulated with visual and language inputs and language output.

Specifically, we develop visual language models in the context of video understanding. As
illustrated in Figure 1.1, videos on the web are often associated with various sources of textual
metadata, such as titles, descriptions, tags, chapters (contiguous, non-overlapping segments
associated with a short text description and completely partitioning a video), texts displayed
during the video or transcribed speech spoken during the video [Miech, 2019]. Therefore visual
language models offer the potential to unlock rich semantics and contextual information from
video content. Indeed, such models can not only understand the video content but also the
various sources of metadata that are associated with the video. In the next section, we describe
the wide range of applications that could be enabled by the development of successful visual
language models for video understanding.
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1.1. Motivation

Figure 1.2: Automatic video chapter generation is an example of application of video
understanding systems that enables users to quickly navigate to areas of interest and easily
replay different parts of a video. We study this task in detail in Chapter 7.

1.1 Motivation

In recent times, digital video content has witnessed a remarkable upsurge, revolutionizing the
way we consume and share information. Online platforms such as YouTube, Facebook, In-
stagram, and TikTok have become hubs for hosting vast amounts of video data, catering to
billions of users worldwide. This explosion in video content has created a pressing need for
efficient methods to analyze, interpret, and understand these videos at scale. Therefore video
understanding systems have a wide range of applications across various domains and industries.

One crucial application of automatic video understanding systems is video search and re-
trieval. With the exponential growth of video data, the efficient localization of specific video
clips most relevant to a user has become increasingly important to minimize the time and effort
expended on manually navigating through vast video libraries.

Video summarization is another important application of automatic video understanding
systems. Generating concise and informative video summaries in the form of textual or visual
highlights that capture the essence of the video content can provide a quick overview of the video
and facilitate content browsing, enabling users to determine whether a video is worth their time
or to review important information without watching the entire video.

A related application is video chapter generation (see Figure 1.2), which consists in tempo-
rally segmenting the video into chapters and generating a chapter title for each segment. This
application enables users to quickly navigate to areas of interest and easily replay different parts
of a video.

Video recommendation systems can also benefit from automatic video understanding to
deliver personalized and engaging content to users that best align with their interests. This
improves user satisfaction, discovery of new content, and engagement with video platforms.

Moreover, automatic video understanding also has profound implications for video edit-
ing and production workflows. Video understanding systems can assist in automating various
aspects of video editing, such as identifying potential flaws or errors in videos, suggesting im-
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Video question answering

0:00

Output times 
and captions

0:05

0:16

1:16

The man is 
running.

Bike riding

Spatio-temporal video grounding Dense video captioning

Input video

What is the man doing?
Input question

Output answer
Input video

What does the adult 
ride in the playground?

Input query

Output spatio-
temporal tube

Input video

The man 
is riding a 
bike.

1:32
1:40

The man 
is falling.

Figure 1.3: Illustration of three representative tasks we tackle in this thesis: video
question answering (left, see Chapters 3 and 4), spatio-temporal video grounding (middle, see
Chapter 5), dense video captioning (right, see Chapters 6 and 7).

provements, or automatically generating captions or subtitles for accessibility purposes. These
systems can streamline the video production process, making it more efficient and cost-effective.

In addition, in video surveillance, video understanding systems can automatically analyze
and interpret video streams, detecting and recognizing objects, activities, and anomalies in
real time, thus enhancing public safety and security. They could also be used to assist in
healthcare monitoring by analyzing video data to monitor patient activities, detect falls, assess
rehabilitation progress, or track vital signs. Hence these systems have applications in elderly
care, hospital settings, and remote patient monitoring, providing valuable insights for healthcare
professionals and improving patient outcomes.

Furthermore, in domains such as virtual reality and education, video understanding systems
are instrumental in unlocking new possibilities. In virtual reality applications, video understand-
ing systems enable immersive experiences by analyzing and interpreting the user’s surroundings,
enabling interaction and engagement within the virtual environment. In education, video un-
derstanding systems can facilitate multimedia learning experiences by automatically extracting
relevant content, generating quizzes, or providing interactive annotations.

Finally, video understanding systems play a crucial role in content moderation on online
platforms. They can automatically detect and flag inappropriate or harmful content, including
explicit or violent scenes, hate speech, or copyright infringement. Therefore these systems help
ensure user safety, maintain platform guidelines, and create a healthier online environment.

Note that these are a few examples of the diverse applications of video understanding systems.
As technology advances and research progresses, the potential for video understanding to impact
various fields and industries continues to expand, offering new opportunities for innovation and
problem-solving.

1.2 Goal

Our primary objective is to advance the development of visual language models that exhibit a
comprehensive understanding of video content by effectively leveraging both visual and language
cues. This notably requires designing appropriate deep architectures and learning techniques,
and applying them to well curated training datasets. To evaluate the efficacy of our models’
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detailed video understanding capabilities, we focus on several important downstream tasks, in-
cluding video question answering, spatio-temporal video grounding and dense video description,
as described next in detail and illustrated in Figure 1.3. In particular, we strive to design models
which could be used for various applications beyond the studied tasks. Therefore by addressing
these specific tasks, our goal is to make advances in the development of visual language models
that achieve a versatile understanding of video content, handle complex reasoning tasks, and
generate accurate and contextually relevant descriptions.

An essential benchmark for evaluating the detailed video understanding capabilities of vi-
sual language models is the video question answering task [Jang, 2017; Lei, 2018a; Xu, 2017].
Given a natural language question about a video, this task requires to generate an appropriate
natural language answer. Hence this task allows us to gauge their proficiency in accurately
answering questions related to various aspects of the content of videos, going beyond video clas-
sification [Carreira, 2017]. In particular, questions involve recognizing objects, places, actions,
colors, counting, understanding spatial relations, temporal dynamics and joint multi-modal rea-
soning over transcribed speech, visual and question inputs. By virtue of its open-ended nature,
the video question answering task can be thought as a simple form of visual dialog [Das, 2017]
about videos, hence can serve as an excellent testbed for visual language models. In comparison
with more complex text generation tasks, this task also presents the advantage that it can be
evaluated reliably with an interpretable accuracy metric, which evaluates the predicted answer
and the ground-truth answer by string matching.

In addition, we explore the spatio-temporal video grounding task [Zhang, 2020d] to delve
into fine-grained vision and language understanding. Given a natural language query and an
untrimmed video that can span several minutes, this task aims at localizing in the video a spatio-
temporal tube that refers to the language query. While video question answering predominantly
involves learning representations at the video level, spatio-temporal video grounding requires
precise spatial and temporal understanding. This task not only enables us to evaluate the fine-
grained vision and language understanding but also may help develop visual language models
that can better determine the relevant parts of a video that address the queried information in
video question answering and other video-language tasks.

Furthermore, our aim is to develop visual language models capable of reasoning over multiple
events in long videos. Such ability goes beyond image-level understanding which has been shown
successful in many other video tasks [Buch, 2022]. To evaluate this ability, we focus on the dense
video captioning task [Krishna, 2017], illustrated in Figure 1.4. This task involves generating
temporally localized natural language descriptions for all events occurring within untrimmed
videos lasting several minutes. Events have various temporal granularity, covering human ac-
tivities or steps in instructional videos [Zhou, 2018a]. Hence dense video captioning requires a
combination of accurate low-level action understanding and global story understanding. Finally,
we consider the related task of video chapter generation, which requires temporally segmenting
the video and generating a natural language chapter for each segment (see Figure 1.2). Therefore
this task has a concrete practical application, as it can enable users to quickly navigate to the
information of their interest. Compared with dense video captioning, the start of the chapter
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Dense
captions

ASR

An athlete is seen standing ready before a large track. The woman throws a javelin off into the distance and is shown again 
afterwards. She throws her hands up to 

cheer and wraps herself in a 
flag.

Next Oh is Christina Oh Beck full most consistent off the top women javelin throwers 
around at the moment.

Well, that's 
another 
very fine.

She's got over the years know what 
major gold medals until now.

Christina Oh beg for 
what a wonderful record.…

Frames

ASR

Frames

Dense 
captions

Cut the chicken. Pound the 
chicken.

Whisk the eggs. Mix bread 
crumbs 
and 
parmesan 
cheese 
together.

Coat the 
chicken in the 
flour mixture 
the egg 
mixture and 
then the bread 
crumbs.

Add 
oil to 
a pan.

Fry the 
chicken 
in the 
pan.

Add marinara 
sauce and 
cheese on top 
of the chicken.

Bake the 
chicken in 
an oven.

I'm going 
to start 
off with 
two 
boneless 
skinless 
chicken 
breasts 
here.

I'm just 
going to 
trim off 
the grisly 
parts and 
the 
excess 
fat 
maybe 
some of 
the skin 
that's left 
over on 
there.

I've got a piece 
of wax paper 
here and I put 
that onto my 
cutting board 
[…] and I'm 
going to pound 
out my breast 
halves until 
they are about 
1/2 an inch 
thicker.

… …

The 
first 
thing 
I'm 
going 
to 
need is 
an egg 
wash.

So I'm 
going to 
take two 
large eggs 
and crack 
those into 
a bowl 
and if you 
get any 
shells in 
there, be 
sure to get 
those […] 

…

Now, I'm 
using my 
homema
de Italian 
bread 
crumbs 
here.

…

I'm just 
going to 
mix this 
together 
and now 
we can 
start 
breading 
our 
chicken.

Now, 
the 
breading 
process 
is really 
simple 
on this 
you just 
want to 
take one 
of your 
[…] 

…

I've got my small 
cast-iron skillet on 
medium-high heat 
here and I'm going to 
put in about a quarter 
of an inch or so of 
extra virgin olive oil 
into the bottom of 
that and I'm going to 
let that come up to 
temperature and then 
I'm going to start 
frying up my chicken 
pieces.

…
We're 
going to 
be baking 
these and 
that will 
finish 
cooking 
them.

…

And if you'd 
like to 
follow me 
on Google 
Plus 
Facebook 
and/or 
Pinterest all 
my links 
will be in 
the 
description 
box.

Mix 
flour 
salt and 
pepper 
together
.

Place 
the 
chicken 
in a 
baking 
dish.

Figure 1.4: Examples of untrimmed video with annotated dense captions from Activ-
ityNet Captions [Krishna, 2017] (top) and YouCook2 [Zhou, 2018a] (bottom). The
horizontal span represents the temporal span of the events in the video. In this thesis, we build
visual language models that have a detailed understanding of the different events happening at
different times in the video (see Chapters 6 and 7).

of a given chapter is the end of previous one, the chapters cover the full video, and often have
titles that are concise and substantially shorter than dense video captions.

1.3 Challenges

Developing visual language models that have a detailed understanding of the content of videos
and that can effectively tackle the previously presented tasks presents several challenges in terms
of neural architecture design and training, as described next.

Connecting vision models and language models. The visual and language modalities
have different formats: images are typically represented as continuous signals with pixels, while
language is symbolic and is represented with a fixed vocabulary of tokens. Moreover, vision and
language have inherently different structures and semantics. While images are rich in spatial
information, languages are structured with grammar and syntax. These differences in terms
of data representations and semantics have historically resulted in different models being de-
veloped in computer vision and natural language processing, for instance, convolutional neural
networks [Krizhevsky, 2012] for the former and recurrent neural networks [Sutskever, 2011] for
the latter. Therefore fusing both modalities into a single model requires designing appropriate
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architectures and techniques for bridging the gap between visual and textual information. In
particular, the late fusion of visual and text features commonly used in joint embedding mod-
els [Radford, 2021] might not be suited to develop visual language models that have a detailed
cross-modal understanding.

To address this challenge, we develop mid-fusion attention-based [Vaswani, 2017] architec-
tures that enable learning detailed cross-modal representations by representing both visual fea-
tures and text as tokens. To further bridge the modality gap, we design appropriate train-
ing techniques based on freezing the language model weights to preserve its knowledge (see
Chapter 4) or multi-modal pretraining with contrastive [Radford, 2021] (see Chapter 3) and
generative [Raffel, 2020] (see Chapter 6) approaches using large-scale datasets of web videos.

Video modeling. Compared to images, videos contain a lot more information and a signifi-
cant redundancy of information between the different frames. For instance, in the last example
of Figure 1.1, only a few pixels corresponding to the snorkelers swimming and the windmills
movement change between the different frames. In particular, in this thesis, we consider multiple
tasks that require processing untrimmed videos that can last over several minutes, potentially
catering to thousands of video frames including various entities, scenes and actions, as illus-
trated in Figure 1.4. Hence we need to design efficient video representations that can capture
useful high-level semantic information about the video content. Moreover, we wish to design
architectures that can represent untrimmed videos and make predictions across different times,
to perform spatio-temporal video grounding and dense video description. In contrast with prior
video models that resort to two-stage approaches [Zhang, 2020d] or contain task-specific com-
ponents [Wang, 2021d], we aim at developing end-to-end trainable unified models that can
generalize to various video tasks.

To tackle these challenges, we propose unified architectures inspired by recent work in com-
puter vision such as DETR [Carion, 2020] and Pix2Seq [Chen, 2022a]. The considered architec-
tures represent videos with a few latent vectors (see Chapter 5), or tokenize time jointly with
text (see Chapter 6). For compute efficiency, we either freeze the spatial branch of the visual
backbone, or backpropagate gradients to this branch only on a few sampled frames (see Chap-
ter 5). We also develop scalable techniques to train these architectures, leveraging image-text
data (see Chapter 5) or web videos (see Chapters 3, 4, 6 and 7).

Learning from web videos. Deep learning models are typically trained on manually anno-
tated datasets. Collecting natural language annotations for video datasets, however, is cumber-
some, time consuming, expensive and therefore not scalable. This issue is compounded when
collecting annotations for untrimmed videos that can last over several minutes. To address this
issue, recent works have collected video-language datasets built on video data readily-available
from the Web, as illustrated in Figure 1.1. Such data include narrated videos that contain tran-
scribed speech [Miech, 2019], or short videos accompanied with their alt-text description [Bain,
2021]. The advantage of such data is that it can be collected automatically at scale, enabling to
build video-text datasets that capture the diversity of real-world videos. These datasets enabled
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to train joint video-text embedding spaces for text-video retrieval that achieve state-of-the-art
results in zero-shot mode, where the pretrained model is directly applied to retrieval tasks,
and fully-supervised settings, where the pretrained model is finetuned on manually annotated
datasets.

In this thesis, we develop advanced techniques to leverage such web videos to train visual
language models for complex tasks such as video question answering (see Chapters 3 and 4) or
dense video description (see Chapters 6 and 7). These techniques involve generating data with
pretrained language models (see Chapter 3), freezing the language model weights (see Chapter 4),
or explicitly using the timestamps associated with the transcribed speech (see Chapter 6). We
also explore other scalable sources of supervision from the Web, such as user-annotated chapters
(see Chapter 7).

1.4 Contributions

In the following, we list the publications contributions, as well as the software and dataset
releases that were performed during the course of this thesis. We will detail the contributions
within five of the publications in Chapters 3 to 7.

1.4.1 Publications

The work done during this PhD led to the following publications:

• Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid. Just Ask: Learn-
ing to Answer Questions from Millions of Narrated Videos. In ICCV 2021 (Oral). [Yang,
2021b] (Chapter 3).

• Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid. Learning to
Answer Visual Questions from Web Videos. In TPAMI Special Issue on the Best Papers
of ICCV 2021 (journal extension of the ICCV 2021 paper). [Yang, 2022c] (Chapter 3).

• Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid. Zero-Shot Video
Question Answering via Frozen Bidirectional Language Models. In NeurIPS 2022. [Yang,
2022e] (Chapter 4).

• Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid. TubeDETR:
Spatio-Temporal Video Grounding with Transformers. In CVPR 2022 (Oral). [Yang,
2022d] (Chapter 5).

• Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset,
Ivan Laptev, Josef Sivic, Cordelia Schmid. Vid2Seq: Large-Scale Pretraining of a Visual
Language Model for Dense Video Captioning. In CVPR 2023. [Yang, 2023d] (Chapter 6).

• Antoine Yang, Arsha Nagrani, Ivan Laptev, Josef Sivic, Cordelia Schmid. VidChapters-7M:
Video Chapters at Scale. In NeurIPS 2023 Track on Datasets and Benchmarks. [Yang,
2023c] (Chapter 7).
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• Lucas Ventura, Antoine Yang, Cordelia Schmid, Gül Varol. CoVR: Learning Composed
Video Retrieval from Web Video Captions. Work in progress. [Ventura, 2023] (https:
//arxiv.org/abs/2308.14746).

1.4.2 Software and dataset contributions

Software. The code for the five contribution chapters of this thesis is publicly released:

• Just Ask: The code for generating video question answering data, training and evaluating
video question answering models, and pretrained models, are released as part of the project
presented in [Yang, 2021b; Yang, 2022c] (Chapter 3). https://github.com/antoyang/

just-ask. In addition, an online demo of zero-shot video question answering with the
developed model is hosted at http://videoqa.paris.inria.fr/.

• FrozenBiLM: The code for training and evaluating video question answering models, and
pretrained models, are released as part of the project presented in [Yang, 2022e] (Chap-
ter 4). https://github.com/antoyang/FrozenBiLM.

• TubeDETR: The code for training and evaluating spatio-temporal video grounding models,
and pretrained models, are released as part of the project presented in [Yang, 2022d]
(Chapter 5). https://github.com/antoyang/TubeDETR. In addition, an online demo of
spatio-temporal video grounding with the developed model is hosted at http://stvg.

paris.inria.fr/.

• Vid2Seq: The code for training and evaluating dense video captioning models, and pre-
trained models, are released as part of the project presented in [Yang, 2023d] (Chap-
ter 6), in collaboration with Google. https://github.com/google-research/scenic/

tree/main/scenic/projects/vid2seq.

• VidChapters-7M: The code for training and evaluating video chapter generation models,
and pretrained models, are released as part of the project presented in [Yang, 2023c]
(Chapter 7). https://github.com/antoyang/VidChapters.

iVQA dataset. We have publicly released the iVQA dataset (https://antoyang.github.
io/just-ask.html#ivqa) with the publication of [Yang, 2021b] (Chapter 3). The name stands
for Instructional Video Question Answering. The dataset contains 10K instructional videos
and is designed for training and evaluating video question answering models. Each video is
manually annotated with a question and five corresponding ground-truth answers to provide a
well-defined evaluation. We also made efforts to avoid questions which can be answered without
watching the video.

HowToVQA69M dataset. We have publicly released the HowToVQA69M dataset (https:
//antoyang.github.io/just-ask.html#howtovqa) with the publication of [Yang, 2021b] (Chap-
ter 3). The dataset is automatically generated from the HowTo100M dataset [Miech, 2019] us-
ing question generation language models. HowToVQA69M contains 1M videos, 69M question-
answers, and is designed to train video question answering models.

9

https://arxiv.org/abs/2308.14746
https://arxiv.org/abs/2308.14746
https://github.com/antoyang/just-ask
https://github.com/antoyang/just-ask
http://videoqa.paris.inria.fr/
https://github.com/antoyang/FrozenBiLM
https://github.com/antoyang/TubeDETR
http://stvg.paris.inria.fr/
http://stvg.paris.inria.fr/
https://github.com/google-research/scenic/tree/main/scenic/projects/vid2seq
https://github.com/google-research/scenic/tree/main/scenic/projects/vid2seq
https://github.com/antoyang/VidChapters
https://antoyang.github.io/just-ask.html#ivqa
https://antoyang.github.io/just-ask.html#ivqa
https://antoyang.github.io/just-ask.html#howtovqa
https://antoyang.github.io/just-ask.html#howtovqa


Chapter 1. Introduction

WebVidVQA3M dataset. We have publicly released theWebVidVQA3M dataset (https:
//antoyang.github.io/just-ask.html#webvidvqa) with the publication of [Yang, 2022c] (Chap-
ter 3). The dataset is automatically generated from the WebVid2M dataset [Bain, 2021] us-
ing question generation language models. WebVidVQA3M contains 2M videos, 3M question-
answers, and is designed to train video question answering models.

VidChapters-7M dataset. We have publicly released the VidChapters-7M dataset (https:
//antoyang.github.io/vidchapters.html#data) with the publication of [Yang, 2023c] (Chap-
ter 7). VidChapters-7M includes 817K user-chaptered videos including 7M chapters in total.
The dataset is automatically created from videos online in a scalable manner by scraping user-
annotated chapters and hence without any additional manual annotation. It is designed to train
and evaluate video chapter generation models, and to pretrain video-language models.

1.5 Outline

This thesis is organized into 8 chapters, including this introduction (Chapter 1).
Chapter 2 is a literature review of work related to this thesis. The chapter is divided into

three main sections: (i) Visual models, (ii) Language models and finally (iii) Visual language
models.

Chapters 3 to 7 describe the 5 main contributions of this thesis. In Chapters 3 and 4, we
present two scalable approaches to develop video question answering models without the need
for costly manual annotation. In Chapter 5, we explain TubeDETR, our transformer-based
architecture designed for spatio-temporal video grounding. In Chapters 6 and 7, we describe
a new visual language model and a new dataset for dense video description. Details are given
next.

In Chapter 3, we propose an approach to automatically generate large-scale video ques-
tion answering training data, avoiding expensive manual annotation. For this, we make use
of cross-modal supervision and apply text-only question generation models to the transcribed
speech in narrated videos. Starting from HowTo100M dataset [Miech, 2019], we generate the
HowToVQA69M with 69M video question answering triplets. We show that a video-question
transformer trained contrastively with an answer transformer on the generated datasets is ca-
pable of answering visual questions in a zero-shot manner (without training on a single man-
ually annotated image or video) better than appropriate baselines. Furthermore, our method
achieves competitive results on four existing video question answering benchmarks. Moreover,
we extend our approach to web video-caption pairs and generate the WebVidVQA3M with 3M
video question answering triplets starting from the WebVid2M dataset [Bain, 2021]. For a de-
tailed evaluation, we also introduce iVQA, a new video question answering dataset with reduced
language biases and high-quality redundant manual annotations.

In Chapter 4, we propose FrozenBiLM, an approach to zero-shot video question answering
that directly leverages frozen bidirectional language models (BiLM) without data generation
procedure. In particular, (i) we combine visual inputs with the frozen BiLM using light trainable
modules, (ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we
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1.5. Outline

perform zero-shot video question answering inference through masked language modeling, where
the masked text is the answer to a given question. Our approach outperforms prior autoregressive
methods [Tsimpoukelli, 2021] while being lighter, and largely improves over the prior state of the
art in zero-shot video question answering on a variety of eight video question answering datasets.
It also demonstrates competitive performance in the few-shot and fully-supervised setting.

In Chapter 5, we consider the problem of localizing a spatio-temporal tube in a video cor-
responding to a given text query. We propose TubeDETR, an end-to-end transformer-based
architecture for spatio-temporal video grounding. Our model notably includes: (i) an effi-
cient video and text encoder that models spatial multi-modal interactions over sparsely sampled
frames and (ii) a space-time decoder that jointly performs spatio-temporal localization. We
demonstrate the advantage of our proposed components through an extensive ablation study.
With image-text pretraining [Kamath, 2021], TubeDETR improves over the prior state of the
art on the challenging VidSTG [Zhang, 2020d] and HC-STVG [Tang, 2021] benchmarks.

In Chapter 6, we consider the problem of generating temporally localized descriptions for
all events in an untrimmed video. We propose Vid2Seq, a visual language model that can
densely caption a video by generating a single sequence of tokens. The Vid2Seq architecture
augments a language model with special time tokens, allowing it to seamlessly predict event
boundaries and textual descriptions in the same output sequence. Such a unified model requires
large-scale training data, which is not available in current annotated datasets. We show that
it is possible to leverage unlabeled narrated videos for dense video captioning, by reformulating
sentence boundaries of transcribed speech as pseudo event boundaries, and using the transcribed
speech sentences as pseudo event captions. The resulting Vid2Seq model pretrained on the
YT-Temporal-1B dataset [Zellers, 2022] improves over prior state of the art on a variety of
dense video captioning benchmarks including YouCook2 [Zhou, 2018a], ViTT [Huang, 2020b]
and ActivityNet Captions [Krishna, 2017]. Vid2Seq also generalizes well to the tasks of video
paragraph captioning and video clip captioning, and to few-shot settings.

In Chapter 7, we propose VidChapters-7M, a large-scale dataset of user-chaptered videos.
VidChapters-7M is automatically created from videos online in a scalable manner by scraping
user-annotated chapters and hence without any additional manual annotation. We introduce
the following three tasks based on this data. First, the video chapter generation task consists
of temporally segmenting the video and generating a chapter title for each segment. To further
dissect the problem, we also define two variants of this task: video chapter generation given
ground-truth boundaries, which requires generating a chapter title given an annotated video
segment, and video chapter grounding, which requires temporally localizing a chapter given its
annotated title. We benchmark both simple baselines as well as state-of-the-art video-language
models, including Vid2Seq, on these three tasks. We also show that pretraining Vid2Seq on
VidChapters-7M transfers well to dense video captioning tasks both in the zero-shot and fine-
tuning settings, largely improving the state of the art on the YouCook2 and ViTT benchmarks.

Finally, in Chapter 8, we provide a summary of contributions, discuss open problems, and
point out promising future work directions.
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Chapter 2
Related Work

In this chapter, we review the literature closely related to this thesis. The chapter is divided
into three sections. We start first by presenting foundational work on language modeling in
Section 2.1. Next, we study works related to learning visual representations in Section 2.2.
Finally, we discuss works that learn joint vision and language models in Section 2.3.

2.1 Language models

We here describe related work that focuses on learning language models, on which we build
to design visual language models in this thesis. We discuss word embeddings in Section 2.1.1,
recurrent neural networks in Section 2.1.2 and transformers in Section 2.1.3.

2.1.1 Word embeddings

Unlike visual inputs, text data is discrete. To enable machines to understand and process
natural language more effectively, text data is often represented with word embeddings. Word
embeddings are distributed representations of words in a continuous vector space. They capture
semantic and syntactic relationships between words. Several word embedding models have been
proposed in the literature. Word2Vec [Mikolov, 2013] is a popular word embedding model
that combines two approaches: Continuous Bag-of-Words (CBOW) and Skip-Gram. CBOW
predicts a target word based on its context words, while Skip-Gram predicts context words
given a target word. FastText [Bojanowski, 2016] is an extension of Word2Vec that introduces
subword information into word embeddings. Instead of treating words as atomic units, FastText
represents words as bags of character n-grams. This approach allows FastText to handle out-of-
vocabulary words and capture morphological similarities. GloVe [Pennington, 2014] is another
widely used word embedding model. GloVe embeddings are computed based on aggregated
global word-word co-occurrence statistics from a corpus.

12
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Figure 2.1: The transformer architecture. Illustration from [Vaswani, 2017].

2.1.2 Recurrent neural networks

Due to the sequential nature of text data, recurrent neural networks (RNNs) [Rumelhart, 1987]
are a popular choice for modeling sequences of text. The vanilla RNN is characterized by recur-
rent connections that allow information to be processed across sequential data. However, Vanilla
RNNs suffer from the vanishing/exploding gradient problem, where gradients either diminish
or explode over time, making it difficult to capture long-term dependencies. Long-short term
memory network (LSTM) [Hochreiter, 1997] is a type of RNN architecture that addresses the
vanishing gradient problem by introducing a memory cell. LSTM has a more complex structure
compared to Vanilla RNN, with three main components: input gate, forget gate, and output
gate. These gates control the flow of information, allowing LSTMs to selectively update and
output information from the memory cell. ELMo [Peters, 2018] showed the benefits of using
contextualized word representations learnt with a bidirectional LSTM on a variety of natural
language processing tasks including question answering, textual entailment and sentiment anal-
ysis. Gated Recurrent Unit (GRU) [Cho, 2014] is another variant of RNN that aims to simplify
the LSTM architecture while maintaining its effectiveness. GRUs include a forget gate but no
output gate, hence have fewer parameters than LSTMs.
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Figure 2.2: BERT: pretraining is done with masked language modeling and next sentence pre-
diction on a large text corpus (left); the pretrained model can be simply finetuned on downstream
tasks by adding a light output layer to the model (right). Illustration from [Devlin, 2019].

2.1.3 Transformers

The transformer architecture. The attention mechanism is a key concept used in modern
deep learning models that process sequential data. [Bahdanau, 2015] showed the benefit of
learning to attend to parts of a source sentence that are relevant to predict a target word
in neural machine translation. [Vaswani, 2017] then showed that machine translation can be
tackled without recurrent connection, exclusively relying on attention. This paper proposes the
transformer architecture, which is an encoder-decoder model, as illustrated in Figure 2.1. With
the transformer model, the text is transformed into a sequence of discrete tokens and mapped
to an embedding space with a learnable token embedding layer. The token embeddings are then
added with positional embeddings. The encoder embeds the source sequence and consists of
blocks that interleave multi-head self-attention operations and feed-forward layers. The decoder
predicts the output sequence and consists of blocks that interleave multi-head self-attention
with appropriate masking to avoid future information to be used for previous predictions, cross-
attention to the encoder outputs, and feed-forward layers. Layer normalizations [Ba, 2016]
and residual connections [He, 2016] are used throughout the network. One advantage of the
transformer architecture is that it models the context between every token and all other tokens
in a unified way. The visual language models that we design in this thesis largely rely on the
transformer architecture.

Pretraining. The transformer architecture motivated a variety of follow-up works, that no-
tably demonstrated the benefit of pretraining transformers on web text corpora and finetuning
them on the target tasks. Notably, BERT [Devlin, 2019] showed the benefits of pretraining
transformer encoder on large-scale text data (namely, BookCorpus [Zhu, 2015] and Wikipedia),
notably by using a masked language modeling objective that aims at predicting randomly masked
tokens. For various natural language processing tasks such as question answering and language

14



2.1. Language models

"translate English to German: That is good."

"cola sentence: The 
course is jumping well."

"summarize: state authorities 
dispatched emergency crews tuesday to 
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of severe weather in mississippi…"
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on the grass. sentence2: A rhino 
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T5
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Figure 2.3: The T5 text-to-text framework. Illustration from [Raffel, 2020].

inference, the pretrained BERT model can be finetuned simply by adding a light output layer,
see Figure 2.2. Encoder-only variants of the BERT architecture include DistilBERT [Sanh,
2019], SpanBERT [Joshi, 2020], RoBERTa [Liu, 2019b] and DeBERTa [He, 2021b]. Notably,
RoBERTa improves the performance of BERT by training on more text data up to 160GB of
uncompressed text. Furthermore, [Raffel, 2020] observe that all natural language processing
tasks can be formulated as text-to-text (see Figure 2.3), and tackled with an encoder-decoder
transformer, dubbed T5, via pretraining-finetuning. T5 is pretrained on the large C4 text cor-
pus by encoding a corrupted sequence where some spans are randomly masked, and predicting
the masked spans in the decoder. Moreover, FLAN [Wei, 2022a] exhibits the benefits of multi-
task finetuning T5 on a variety of manually annotated natural language processing datasets to
improve the zero-shot performance on unseen tasks.

Scaling. Another paradigm explored with transformer models pretrained on web text is zero-
shot and few-shot learning. GPT-2 [Radford, 2019], which is a 1.5B parameter decoder-only
transformer, can perform several natural language processing tasks like such as question an-
swering, machine translation, reading comprehension, and summarization, without any explicit
supervision when trained on large-scale text data with the language modeling objective. By scal-
ing up to 175B parameters, GPT-3 [Brown, 2020] further exhibits emerging few-shot prompting
learning abilities on many natural language processing tasks, where a few examples of the target
task are provided to the language model as a prompt. Importantly, few-shot prompting does
not require weight update or expensive manually annotated datasets. These results motivated
several works to train large language models like the 280B-parameter Gopher [Rae, 2021] and
the 540B-parameter PaLM [Chowdhery, 2022]. Chinchilla [Hoffmann, 2022] then showed that
prior large language models are significantly undertrained, and that training the 70B-parameter
Chinchilla model on 4 times more data than the 280B-parameter Gopher results in a stronger
language model with the same training compute. [Hoffmann, 2022] also recommend to scale
the training data and the language model size equally to obtain the best performance with a
given amount of compute. However in many cases training longer a smaller language model
is beneficial as it is faster at inference than larger ones. While the weights for GPT-3 and
Chinchilla are not released, the LLaMa model [Touvron, 2023] was trained on publicly available
datasets and publicly released, and its 65B-parameter variant achieves competitive performance
compared to GPT-3 and Chinchilla by training longer compared to the Chinchilla scaling laws.
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Moreover, InstructGPT [Ouyang, 2022] showed that finetuning GPT-3 with human feedback
using reinforcement learning enables to improve its ability to follow instructions. For this, hu-
mans rank multiple outputs generated by the language model for various input prompts. This
technique has notably been used to develop the popular ChatGPT application [OpenAI, 2023a].
The success of these language models also raised interest in prompt engineering, as evidenced
by chain-of-thought prompting [Wei, 2022b] which encourages the language model to provide a
series of intermediate reasoning steps.

2.2 Visual models

We here describe related work that focuses on learning visual backbones, on which we build to
design visual language models in this thesis. We discuss image models in Section 2.2.1 and video
models in Section 2.2.2.

2.2.1 Image models

Image classification models. A popular approach to learn visual representations consists
in training deep convolutional networks for image classification on the large-scale ImageNet
dataset [Russakovsky, 2015]. With their properties of translation equivariance and their weight
sharing mechanism, these models are particularly suited to efficiently process images. A pi-
oneering work in this domain is LeNet [Lecun, 1998], which was applied by several banks to
recognise hand-written numbers on checks. With a deeper architecture, AlexNet [Krizhevsky,
2012] set new standards in ImageNet classification accuracy. GoogLeNet, also named Inception
v1 [Szegedy, 2015] further improved over these results using small convolutions in parallel to make
the network deeper and wider at a given compute budget and using batch normalization [Ioffe,
2015]. VGGNet [Simonyan, 2015] adopted an uniform architecture similar to AlexNet, based on
3x3 convolutions. By incorporating skip connections, ResNet [He, 2016] further scaled up to 152
layers while still having lower complexity than VGGNet, resulting in improved ImageNet clas-
sification accuracy, making it an appealing choice to extract visual features. Finally, following
their success in natural language processing, recent works have shown that vision transformers
(ViT) [Dosovitskiy, 2021] can also perform very well for image classification, especially when
pretrained on large amount of data. These models apply the attention mechanism [Vaswani,
2017] to non-overlapping patches of the image.

Object detection models. Beyond image classification models, popular visual representa-
tions include object detection models typically trained on datasets like MS COCO [Chen, 2015]
and Visual Genome [Krishna, 2016]. The development of modern object detection models also
relies on deep convolutional neural networks. Notably, R-CNN [Girshick, 2014] extracts region
proposals or regions of interest using an algorithm such as selective search and uses a convo-
lutional neural network to classify the region proposals. Fast R-CNN [Girshick, 2015] further
speeds up this process by feeding the image only once to the convolutional neural network
and using ROI projection to project the region proposals into the feature space and classify
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Figure 2.4: DETR: object detection is viewed as a set prediction task and tackled with a
transformer encoder-decoder architecture. Illustration from [Carion, 2020].

them. Faster R-CNN [Ren, 2015b] bypasses the usage of region proposal extraction algorithm
by proposing a Region Proposal Network (RPN), which shares full-image convolutional features
with the detection network. Following a fundamentally different approach, the YOLO family
of models [Redmon, 2016] achieve compelling speed and accuracy by dividing an image into a
grid and detecting objects from anchors of the grid. While these methods originally make use
of a convolutional backbones, vision transformers such as Swin Transformer [Liu, 2021b] have
also shown to be competitive backbones for object detection. Finally, DETR [Carion, 2020] has
showed the possibility of tackling object detection as a set prediction task with a transformer
model that self-attends to learnable object queries and cross-attends to visual features, see Fig-
ure 2.4. Importantly, DETR achieves competitive performance without using task-specific tricks
like non-maximum suppression procedure or anchor generation used in prior methods.

Self-supervised image models. In contrast with previously discussed supervised learning
setups, various works have explored self-supervised settings which aim at learning visual repre-
sentations directly from raw images without using manual annotations. Popular approaches can
be divided into 4 categories: deep metric learning, self-distillation, canonical correlation anal-
ysis, and masked image modeling. Deep metric learning consists in encouraging semantically
transformed versions of an input to have similar embeddings. For instance, SimCLR [Chen,
2020a] learns visual representations by encouraging similarity between two augmented views
of an image. The transformed versions are referred to as positives, in contrast with negative
instances that are samples we wish to make dissimilar to the positive ones. A popular objective
for such contrastive learning setup is the InfoNCE loss [Oord, 2018]. Self-distillation methods
such as BYOL [Grill, 2020], SimSIAM [Chen, 2021e], DINO [Caron, 2021] consist in feeding two
different views to two encoders, and mapping one to the other with a predictor. These methods
employ various techniques to avoid the encoders to collapse and predict a constant for every
input, for instance, updating one of the two encoder weights with a running average of the other
encoder’s weights. Canonical correlation analysis methods like SwAV [Caron, 2020], Barlow
Twins [Zbontar, 2021] and VICReg [Bardes, 2022] infer the relationship between two variables
by analyzing their cross-covariance matrix. Finally, masked image modeling approaches such as
BEiT [Bao, 2021], MAE [He, 2022] and SimMIM [Xie, 2022] mask out portions of an image and
teach a model to inpaint them.

17



Chapter 2. Related Work

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder

I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 2.5: CLIP: during training, image embeddings are encouraged to be close to their
corresponding text embeddings (left); the resulting joint-embedding model can be used to tackle
various classification tasks by using textual labels (right). Illustration from [Radford, 2021].

Text-supervised image models. With the abundant number of image-text data available
on the web, recent works have explored learning visual backbones from natural language super-
vision. Publicly available datasets of image-text pairs include SBU [Ordonez, 2011], Conceptual
Captions [Sharma, 2018], Conceptual-12M [Changpinyo, 2021], RedCaps [Desai, 2021b] and
LAION-5B [Schuhmann, 2022]. VirTex [Desai, 2021a] uses manually annotated captions from
MS COCO [Chen, 2015] to learn a visual encoder, by attaching a text decoder head and training
to generate the caption given the visual features. CLIP [Radford, 2021] trains an image encoder
contrastively with a text encoder using the InfoNCE loss. The model can then transfer in a zero-
shot manner to a variety of tasks like image classification, by encoding the image class as a text,
as shown in Figure 2.5. After training on a large dataset of 400 million image-text pairs, CLIP
demonstrates competitive results compared with fully-supervised approaches. In this thesis,
several visual language models that we build rely on the CLIP visual encoder due to its strong
ability to extract rich visual features. The CLIP approach has been followed by numerous works,
like SLIP [Mu, 2022] which adds a self-supervised learning objective, or FLIP [Li, 2023d] which
randomly masks out and removes a large portion of image patches to fasten CLIP training.

2.2.2 Video models

Action recognition models. Popular visual representations for video models include deep
models pretrained for action recognition, for instance on the large Kinetics dataset [Carreira,
2017]. For this task, one way to represent videos is to see it as a time series of images and
perform temporal fusion of image representations late in the network architecture, for instance
using recurrent neural networks [Donahue, 2015]. Another way to represent videos for action
recognition consists in modeling it as a 3D volume of pixels and using 3D convolutions, as done
in C3D [Tran, 2015] and I3D [Carreira, 2017]. In particular, the I3D model inflates the filters
and kernels of 2D convolutions from a pretrained ImageNet model and processes raw frames and
optical flow in parallel, fusing their information late in the network. A major challenge with
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Figure 2.6: HowTo100M: a dataset of 1.2M narrated videos. Illustration from [Miech, 2019].

such 3D models is their expensive computational cost. R(2+1D) [Tran, 2018] and S3D [Xie,
2018] tackle this issue by using a mix of 2D spatial convolutions and 1D temporal convolutions.
SlowFast [Feichtenhofer, 2019] achieves compelling compute-performance trade-off by combin-
ing a slow pathway operating at low frame rate and a fast pathway operating at high frame
rate. Finally, following their success in image classification, vision transformers have also been
successfully applied to videos. In contrast with their convolutional counterparts, these models
typically operate at a much lower frame rate, which make them suitable for end-to-end learning
or fast feature extraction. For instance, ViViT [Arnab, 2021] shows that combining a spatial
transformer with a temporal transformer achieves strong compute-accuracy trade-off compared
to using a transformer on 3D tubelets. TimeSformer [Bertasius, 2021] consists of blocks that
interleave spatial attention, temporal attention and feed-forward layers. Variants of these two
architectures that incorporate more inductive bias include Video Swin Transformer [Liu, 2022b]
and Multiscale Vision Transformer [Fan, 2021].

Self-supervised video models. Similar to the image domain, various works have explored
self-supervised settings which aim at learning visual representations directly from raw videos
without using manual annotations. To achieve this, popular objectives include temporal order
verification [Misra, 2016; Xu, 2019], encouraging feature persistency over time [Feichtenhofer,
2021], contrastive learning [Dave, 2022; Han, 2020], predicting future representations [Han, 2019]
or masked pixels [Tong, 2022].

Text-supervised video models. Similar to the image domain, recent works have explored
learning video backbones from natural language supervision relying on web videos and their
readily-available textual metadata. Publicly available datasets for this purpose are largely com-
posed of short videos paired with captions, e.g. WebVid-10M [Bain, 2021] and VideoCC [Nagrani,
2022], or narrated videos with speech transcripts aligned over time (ASR), e.g. HowTo100M [Miech,
2019] (see Figure 2.6), YT-Temporal-1B [Zellers, 2021; Zellers, 2022] and HD-VILA-100M [Xue,
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2022]. The speech transcripts are typically obtained using the YouTube API speech recognition
service, although nowadays open-source models like Whisper [Radford, 2023] achieve state-of-
the-art speech recognition performance. For instance, MIL-NCE [Miech, 2020] learns a visual
backbone from the HowTo100M dataset via contrastive learning, using multiple positives per
video to alleviate the weak temporal alignment between the narration and the visual content
in narrated videos, and sampling multiple clips from the same video to obtain hard negative
samples. TAN [Han, 2022] predicts the alignment between the narration and the video frames
in a self-supervised fashion, and shows that this learnt alignment can help learning stronger
backbones. LaViLa [Zhao, 2023] generates new narrations and paraphrases existing narrations
to obtain additional training data that also enables learning stronger backbones.

Modeling long videos. While the previously described visual backbones typically process
short videos that span several seconds, a wide range of works have explored video tasks that
require modeling minutes-long videos, such as temporal action localization which requires tempo-
rally localizing and recognizing actions in untrimmed videos. Commonly used datasets for tem-
poral action localization include ActivityNet-1.3 [Caba Heilbron, 2015] and THUMOS’14 [Idrees,
2017]. Due to finite GPU memory constraints, approaches for this task typically use pre-
extracted video features [Bai, 2020; Chao, 2018; Lin, 2018; Lin, 2019; Long, 2019; Tan, 2021;
Xu, 2020; Zhao, 2017a; Zhao, 2021], or operate at low spatial resolution [Lin, 2021a]. Moreover,
most temporal action localization methods can be categorized into two groups: (i) single-stage
detectors [Cheng, 2022a; Lin, 2017; Liu, 2020b; Zhang, 2018a; Zhang, 2022a], and (ii) two-stage
detectors that require external action recognition classifiers [Bai, 2020; Lin, 2018; Lin, 2019;
Lin, 2021a; Liu, 2019c; Qing, 2021; Shou, 2017; Xu, 2020; Zhao, 2017a; Zeng, 2019].

Another task that requires processing long videos is temporal action segmentation, which
consists in predicting an action for each frame in an untrimmed video. Popular datasets for
this task include Breakfast [Kuehne, 2014], 50Salads [Stein, 2013] and GTEA [Fathi, 2011].
Approaches for this task typically use pre-extracted features to capture local motion informa-
tion. To capture long-range temporal patterns, the features are then refined by segmentation
models like RNNs [Kuehne, 2018; Richard, 2016; Singh, 2016] or temporal convolutional neural
networks [Ding, 2018; Farha, 2019; Gao, 2021; Lea, 2017; Lei, 2018b; Li, 2020c; Wang, 2020e].

2.3 Visual language models

We here describe related work that focuses on learning visual language models, building on the
two previous sections. We discuss image-language models in Section 2.3.1 and video-language
models in Section 2.3.2.

2.3.1 Image-language models

Image-text tasks. There is a long research history of connecting visual perception and lin-
guistic comprehension. Various tasks have been proposed, including text-image retrieval [Chen,
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2015] which requires retrieving an image most relevant to a text query in a database of im-
ages, visual question answering [Antol, 2015; Goyal, 2017] which requires answering natural
language questions about an image, image captioning [Vinyals, 2015] which requires describing
an image in natural language and visual reasoning [Suhr, 2019; Zellers, 2019] which requires
determining whether a sentence is true about an image. To solve these tasks, early works devel-
oped task-specific models. For instance, for the visual question answering task, early successful
models [Yang, 2016; Anderson, 2018] typically include a text encoder, an image feature ex-
tractor, a multi-modal fusion module with attention and an answer classifier over all possible
answers. For the image-text retrieval task, a standard approach [Chowdhury, 2018; Wu, 2017]
consists in learning a joint embedding space where image and textual inputs are close in that
space if and only if they are semantically similar. For the image captioning task, a common
approach [Karpathy, 2015] encodes an image and decodes this representation in textual form
autoregressively.

Encoder-only models. The development of pretrained transformer encoders like BERT [De-
vlin, 2019] that can be simply finetuned for different tasks in natural language processing inspired
research in developing similar models for vision and language. Processing vision and language
inputs with a transformer requires decomposing the image representation into tokens. A popular
way to achieve this consists in pre-extracting object embeddings, as done in VisualBERT [Li,
2019a], ViLBERT [Lu, 2019], VL-BERT [Su, 2019], Oscar [Li, 2020d], UNITER [Chen, 2020b],
VILLA [Gan, 2020] and VinVL [Zhang, 2021a]. Another way is to use grid or patch features, as
done in PixelBERT [Huang, 2020c], SOHO [Huang, 2021b], ALBEF [Li, 2021a], METER [Dou,
2022b] and FLAVA [Singh, 2022]. Patch features notably enable end-to-end training of the
model with the visual backbone without relying on datasets manually annotated with object
regions, as done in ALBEF for instance. We can further divide these architectures into two
types: self-attentional ones like VisualBERT use self-attention over visual and text embeddings,
and cross-attentional ones like ViLBERT make use of cross-attention between a text tower and
an image tower to model multi-modal interactions. These models are typically pretrained on
large datasets of image-text pairs scrapped from the web like Conceptual Captions [Sharma,
2018], with objectives like masked language modeling and image-text matching. Finetuning for
downstream tasks can then be done by adding light layers on top of the transformer encoder,
for instance a linear classifier for visual question answering.

Encoder-decoder and decoder-only models. Following the success of transformer encoder-
decoder or decoder-only text generation models like T5 [Raffel, 2020] or GPT-3 [Brown, 2020], a
plethora of works explored extending these models to vision and language inputs. This includes
VL-T5 [Cho, 2021], which unifies visual question answering, visual grounding and image-text
matching as text generation. For pretraining, VL-T5 uses a T5-style span unmasking objec-
tive, an image-text matching objective and a visual question answering objective, on the MS
COCO [Chen, 2015] and Visual Genome [Krishna, 2016] datasets. While VL-T5 relies on man-
ual annotations for pretraining, SimVLM [Wang, 2022f] shows that a single prefix language
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Figure 2.7: Examples of multi-modal few-shot learning with frozen language models.
Illustration from [Tsimpoukelli, 2021].

modeling objective can be effectively used to pretrain an encoder-decoder vision-language trans-
former on large-scale image-text data. Unlike most of these architectures that include a text
encoder, GIT [Wang, 2022a] shows that simply using an image encoder and a text decoder
can be sufficient. CoCa [Yu, 2022a] further unifies generative architectures like SimVLM and
contrastive architectures like CLIP by combining an image encoder, a text-only decoder and a
multi-modal decoder. BLIP [Li, 2022c] shows that model-generated captions can be used as data
augmentation to improve the pretraining of the visual language model on datasets of image-text
pairs.

Scaling. The benefits of scaling the size of language models have also been transferred to
vision and language tasks. A popular technique to achieve this is to freeze a large language
model to preserve its knowledge and incorporate vision inputs as a prefix [Tsimpoukelli, 2021].
In particular, Frozen [Tsimpoukelli, 2021] demonstrates that this enables the emergence of few-
shot learning ability in vision-language tasks, as shown in Figure 2.7. To increase the learning
ability of the model, light adapter layers can be inserted inside the transformers [Eichenberg,
2021]. The FrozenBiLM model we present in Chapter 4 does fall in the family of visual language
models built on top of frozen language models using light adapter layers. Also relying on a frozen
language model, Flamingo [Alayrac, 2022] demonstrates impressive few-shot prompting ability
on multi-modal tasks by training on webpages that contain interleaved images and texts. The
Flamingo architecture is built on the Chinchilla language model and an image backbone trained
similarly as CLIP, both components being connected via cross-attention. While Flamingo is
only trained with the language modeling objective, BLIP-2 [Li, 2023a] uses a two-stage training
strategy with a multi-objective representation learning stage to improve the relevance of the
visual prefix. Furthermore, PaLI [Chen, 2023b] exhibits the benefits of scaling the size of the
visual backbone for the performance on vision and language tasks.

Spatially-grounded tasks. Spatially-grounded tasks that require localizing entities men-
tioned in text are a key challenge for image-text transformers that do not rely on object features,
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Figure 2.8: MDETR: given an input image and an input text, the model outputs boxes together
with their alignment in the text. Illustration from [Kamath, 2021].
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Figure 2.9: Pix2seq: object detection is viewed as a language modeling problem, where tokens
represent spatial coordinates or class labels. Illustration from [Chen, 2022a].

as they cannot be simply formulated as text generation or classifying a global multi-modal rep-
resentation. This includes phrase grounding which consists in grounding each entity mentioned
by a noun phrase in the caption to a region in the image, and referring expression comprehen-
sion which consists in localizing a target object in an image described by a referring expression
phrased in natural language. Following the success of DETR [Carion, 2020] in object detec-
tion, [Kamath, 2021] develop MDETR, an end-to-end transformer that detects objects in an
image conditioned on a raw text query (see Figure 2.8). MDETR is pretrained with box pre-
diction losses, a soft-token prediction loss, and a contrastive alignment loss, on 1.3M image-text
pairs manually annotated with region-text alignment, comprising MS COCO [Chen, 2015], Vi-
sual Genome [Krishna, 2016] and Flickr30k [Plummer, 2015]. FIBER [Dou, 2022a] then shows
that a single model can tackle image-level tasks like visual question answering and region-level
tasks like phrase grounding, by first training on large-scale image-text data then on datasets
of image-text pairs annotated with region-text alignment. Moreover, GLIP [Li, 2022f] lever-
ages large-scale image-text data for pretraining by generating bounding boxes in a self-training
fashion, and unifies object detection and phrase grounding. GLIPv2 [Zhang, 2022b] further ex-
tends GLIP to support image-level understanding tasks as well. However, these models require
specific heads for localization. A promising approach to unify text outputs and box outputs is
Pix2seq [Chen, 2022a], which tackles object detection by generating a single sequence of tokens
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Figure 2.10: MERLOT: a vision encoder and a multi-modal transformer encoder are trained
from scratch on narrated videos. Illustration from [Zellers, 2021].

comprising tokens that represent spatial coordinates and tokens that represent labels. Following
Pix2seq, UniTAB [Yang, 2021e] and OFA [Wang, 2022c] both consist of image-text models that
can output text and spatial coordinates. This is done by combining text tokens and tokens
representing spatial coordinates. These models can leverage both large datasets of image-text
pairs and smaller datasets of image-text pairs manually annotated with region-text alignment.

2.3.2 Video-language models

Global video-text tasks. In analogy with the image domain, various video and language
tasks such as text-to-video retrieval [Xu, 2015], video question answering [Tapaswi, 2016; Xu,
2017] and video captioning [Venugopalan, 2015] have been proposed. Models developed for
these tasks are similar to their image counterparts, although there are a few differences in the
visual encoding and the fusion of the visual representation with language. For instance, early
successful video question answering works [Xu, 2017; Jang, 2017] combine a visual encoder
which includes appearance and motion features, a text encoder, a multi-modal fusion module
reasoning over spatially pooled features and an answer classifier. Popular datasets for this task
include MSRVTT-QA [Xu, 2017], MSVD-QA [Xu, 2017], ActivityNet-QA [Yu, 2019], TGIF-
QA [Jang, 2017], How2QA [Li, 2020b], TVQA [Lei, 2018a] and LSMDC-FiB [Maharaj, 2017].
Additionally, early video captioning efforts [Pan, 2016; Yu, 2016] use a convolutional video
encoder and a recurrent text decoder reasoning over spatially pooled features.

Video-language models. Recent works have focused on developing unified models for video-
text tasks. For instance, VideoBERT [Sun, 2019b] learns a video-language transformer encoder
where the video is tokenized via vector quantization. VideoBERT is pretrained on narrated
videos with a masked token modeling objective and a video-text matching loss, and can be
finetuned for various tasks like video captioning by adding a simple head on top of the trans-
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Declarative Sentence: A	little	boy with a	Christmas	hat	is	catching a yellow	toy.
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Figure 2.11: Spatio-temporal video grounding: the goal is to localize a spatio-temporal
tube referred by a text query in an untrimmed video. Illustration from [Zhang, 2020d].

former. ActBERT [Zhu, 2020] also relies on a transformer encoder but represents the video with
action features and object features. In contrast with these flat transformer encoder architec-
tures, HERO [Li, 2020b] proposes a hierarchical model with a local visual-linguistic transformer
and a global temporal transformer. With the success of vision transformers and end-to-end
image-text transformers, a few works have explored end-to-end learning a video-language trans-
former encoder, notably using narrated videos. For instance, MERLOT [Zellers, 2021] pretrains
a joint video-language transformer encoder only from scratch only on narrated videos, as seen
in Figure 2.10. MERLOT shows the benefits of diversifying and scaling up the dataset of nar-
rated videos used for pretraining, up to 5M videos, which is 5 times bigger than HowTo100M.
Other efforts to pretrain video-language transformers from scratch include Frozen [Bain, 2021]
and BridgeFormer [Ge, 2022], which focus on the retrieval task. While these architectures
are discriminative, video models capable of generating text have also been developed, such as
VX2TEXT [Lin, 2021b] which represents a video by textual labels derived from off-the-shelf
video models, MV-GPT [Seo, 2022] which is pretrained to predict narration given previously
spoken narration, and Flamingo [Alayrac, 2022] which can be also been applied to videos.

Multi-modality. A specificity of videos is their multi-modal nature – videos may contain au-
dio, and transcribed speech in the audio channel often give cues to solve video and language tasks.
This is specifically the case in video datasets of instructional videos such as How2QA [Li, 2020b],
YouCook2 [Zhou, 2018b], ViTT [Huang, 2020b], the iVQA dataset we present in Chapter 3, or
video datasets of TV shows like TVQA [Lei, 2018a], VIOLIN [Liu, 2020a] or VLEP [Lei, 2020d],
or datasets designed for multi-modal understanding such as MUSIC-AVQA [Li, 2022b]. Raw
audio cues beyond speech transcripts may also be useful to solve these tasks. Similar to vision
and language, there is a long history of research in fusing vision and audio modalities [Chen,
1998; Kazakos, 2019; Nagrani, 2021; Ramachandram, 2017; Xiao, 2020]. In addition, multiple
works have pretrained video-language-audio encoders, for instance VATT [Akbari, 2021] and
MERLOT Reserve [Zellers, 2022]. Notably, MERLOT Reserve pretraining consists in jointly
predicting text and audio given visual inputs, and uses the YT-Temporal-1B dataset that in-
cludes 18M narrated videos.

Temporally-grounded tasks. Another specificity of videos compared with images is their
temporal aspect. Multiple tasks have been studied to further understand this aspect. The tempo-
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ral language grounding task consists in temporally localizing a language query in an untrimmed
video. Popular methods for this task include anchor-based methods, regression-based methods
and span-based methods. An example of anchor-based method is 2D-TAN [Zhang, 2020c], which
models the temporal relations between video moments by a two-dimensional map, where one
dimension indicates the starting time of a moment and the other indicates the end time. An
example of regression-based method are DRN [Zeng, 2020], which uses the distances between the
frame within the ground truth and the starting/ending frame as dense supervisions. An example
of span-based method is VSLNet [Zhang, 2020a], which predicts the probability of each video
frame being the start and end positions of the target moment. In contrast with the standard
Charades-STA [Gao, 2017a], ActivityNet Captions [Krishna, 2017] and TACoS [Rohrbach, 2014]
datasets, the QVHighlights dataset [Lei, 2021a] includes multiple relevant moments per video.
[Lei, 2021a] also propose Moment-DETR, a model that can detect multiple moments in a video
by tackling this task as a set prediction problem similar to DETR. A variant of the temporal
language grounding task consists in retrieving a moment in a small set of moments, as proposed
in DiDeMo [Hendricks, 2018].

Another variant consists in localizing both spatially and temporally the language query, as
done in spatio-temporal video grounding [Zhang, 2020d], see Figure 2.11. This task was originally
tackled with two-stage approaches building on pre-extracted object or tube proposals [Zhang,
2020d; Tang, 2021]. Recent methods, including STVGBert [Su, 2021] and the TubeDETR model
presented in Chapter 5, consist of a single stage as they perform spatio-temporal video grounding
without relying on pre-extracted proposals.

Another interesting task that requires processing untrimmed videos is dense video cap-
tioning [Krishna, 2017], which involves temporally localizing and captioning all events in an
untrimmed video as illustrated in Figure 1.4. The majority of existing methods for dense video
captioning [Krishna, 2017; Iashin, 2020a; Iashin, 2020b; Wang, 2018b; Wang, 2020c] consist
of a temporal localization stage followed by an event captioning stage. To enrich inter-task
interactions, recent works jointly train the captioning and localization modules. This includes
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PDVC [Wang, 2021d] which follows a DETR-style design (see Figure 2.12), the Vid2Seq archi-
tecture presented in Chapter 6, as well as various other methods [Chadha, 2021; Chen, 2021b;
Deng, 2021a; Li, 2018a; Mun, 2019; Rahman, 2019; Shen, 2017; Shi, 2019a; Wang, 2018b; Zhou,
2018c].

Large-scale video datasets. We previously discussed datasets of short video-caption pairs [Bain,
2021] or narrated videos [Miech, 2019]. In Chapter 3, we also present an approach to leverage
these datasets to automatically generate video question answering training data. A handful of
works have explored learning video models from other scalable sources of annotations for videos.
This includes movie scripts [Laptev, 2008] which describe how the scenes should look like before
shooting them, audio narration [Rohrbach, 2015] describing the visual cues and actions in a
movie for the visually impaired, and TV subtitles [Lei, 2020c] which describe the plot of the TV
show hence do not necessarily describe visual elements but are more widely available than movie
scripts and audio narration. Moreover, the YFCC100M dataset [Thomee, 2016] includes web
metadata like titles, descriptions and tags. In addition, [Hanu, 2022] show that text-video re-
trieval can be improved using user-comments. Moreover, in the egocentric video understanding
literature, due to the unavailability of large-scale video data available online, manual annotation
has been largely scaled up with the Epic-Kitchens dataset [Damen, 2018] and more recently the
Ego4D dataset [Grauman, 2022]. In Chapter 7, we explore another scalable source of annotations
for videos which consists of user-annotated chapters.
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Chapter 3
Learning to Answer Visual Questions from
Web Videos

Recent methods for visual question answering rely on large-scale annotated datasets. Manual
annotation of questions and answers for videos, however, is tedious, expensive and prevents
scalability. In this chapter, we propose to avoid manual annotation and generate a large-scale
training dataset for video question answering making use of automatic cross-modal supervision.
We leverage a question generation transformer trained on text data and use it to generate
question-answer pairs from transcribed video narrations (see Figure 3.1). Given narrated videos,
we then automatically generate the HowToVQA69M dataset with 69M video-question-answer
triplets. To handle the open vocabulary of diverse answers in this dataset, we propose a training
procedure based on a contrastive loss between a video-question multi-modal transformer and an
answer transformer. We introduce the zero-shot VideoQA task and the VideoQA feature probe
evaluation setting and show excellent results, in particular for rare answers. Furthermore, our
method achieves competitive results on MSRVTT-QA [Xu, 2017], ActivityNet-QA [Yu, 2019],
MSVD-QA [Xu, 2017] and How2QA [Li, 2020b]. We also use our method to generate the
WebVidVQA3M dataset from the WebVid dataset, i.e. videos with alt-text annotations, and
show its benefits for training VideoQA models. Finally, for a detailed evaluation we introduce
iVQA, a new VideoQA dataset with reduced language bias and high-quality manual annotations.
Code, datasets and trained models are available on our project webpage [Yang, 2021a].

Alt-Text: Runner in sportswear 
running at stadium.

Speech: Fold them in half again, to 
make a triangle.

Generated Question: 
Where is a runner in 
sportswear running?
Generated Answer: 
Stadium

Generated Question: 
How do you make a 
triangle?
Generated Answer: 
Fold them in half again

Figure 3.1: Given videos with transcribed speech (left) or “alt-text" annotations (right), we
leverage language models and cross-modal supervision to obtain large-scale VideoQA data.
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3.1 Introduction

Answering questions about videos requires a detailed understanding of the visual content and its
association with the natural language. Indeed, given the large diversity of questions, methods for
Video Question Answering (VideoQA) should reason about scenes, objects and human actions
as well as their complex temporal interactions.

Current approaches to VideoQA rely on deep fully-supervised models trained on manually
annotated datasets with question and answer pairs [Fan, 2019b; Huang, 2020a; Jiang, 2020a;
Jiang, 2020b; Le, 2020a; Lei, 2021b; Li, 2019b]. Collecting and annotating VideoQA datasets,
however, is cumbersome, time consuming, expensive and therefore not scalable. As a result,
current VideoQA datasets are relatively small (see Figure 3.2). This limitation hinders the
progress in the field as state-of-the-art VideoQA models often require a large amount of training
data.

In this work, we address the scale issue with a new approach for automatically generating
VideoQA datasets as illustrated in Figure 3.1. The idea is to leverage cross-modal supervision to-
gether with text-only tools for question generation and to automatically annotate VideoQA data
from a large amount of videos with readily-available text annotations in the form of transcribed
narrations or “alt-text" annotations available with the video on the Internet. Inspired by the
recent progress in language generation using transformer-based language models [Brown, 2020],
we leverage transformers trained on a question-answering text corpus to generate a diverse set
of non-scripted questions and corresponding open-vocabulary answers from text. By applying
these transformers to speech transcripts of narrated videos from the large-scale HowTo100M
dataset [Miech, 2019] we create HowToVQA69M, an open-ended VideoQA dataset with 69 mil-
lion video-question-answer triplets and a diverse set of more than 16M unique answers (see
Figure 3.3). We also extend our approach to web videos with readily-available alt-text descrip-
tions and generate the WebVidVQA3M dataset from the WebVid2M dataset [Bain, 2021]. As
shown in Figure 3.2, our HowToVQA69M and WebVidVQA3M datasets are orders of magnitude
larger compared to prior VideoQA datasets.

Given the limited diversity of existing datasets, current methods typically reduce VideoQA
to a classification problem, where frequent answers are assigned to unique classes. Typically,
up to 5K unique possible answers are considered. Such an approach, however, does not scale to
the open vocabulary of 16M different answers in HowToVQA69M. To address this problem and
to enable video question answering with highly diverse questions and answers, we introduce a
training procedure based on contrastive learning between a video-question multi-modal trans-
former and an answer transformer that can handle free-form answers. This bypasses the need
to define a discrete set of answer classes.

The goal of our work is to advance truly open-ended and generic solutions to VideoQA.
To evaluate generalization, we propose a new zero-shot VideoQA task where we prohibit any
manual supervision of visual data during training, and a new VideoQA feature probe evaluation
setting where only the final projection layers of the network are finetuned on the target dataset.
Our VideoQA model, trained on HowToVQA69M, demonstrates excellent zero-shot results on
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multiple existing datasets, especially for rare answers. Additionally, we find that our VideoQA
model exhibits strong performance in the VideoQA feature probe evaluation setting. Moreover,
when finetuned on target datasets, our model achieves competitive results on MSRVTT-QA [Xu,
2017], ActivityNet-QA [Yu, 2019], MSVD-QA [Xu, 2017] and How2QA [Li, 2020b]. We further
show the generalizability of our approach by showing the benefits of WebVidVQA3M for training
VideoQA models.

Initial experiments have shown that existing benchmarks for open-ended VideoQA [Xu,
2017; Yu, 2019] contain a language bias [Goyal, 2017], i.e. their questions can often be answered
without looking at the video. To better evaluate the impact of visual information in VideoQA,
we introduce a new open-ended VideoQA dataset (iVQA) with manually collected questions
and answers, where we exclude questions that could be answered without watching the video.
Moreover, to account for multiple possible answers, iVQA contains five independently collected
answers for each question.

In summary, our work makes the following three contributions:

(i) We introduce an approach to automatically generate a large-scale VideoQA dataset, How-
ToVQA69M. Relying on cross-modal supervision, we use transformers trained on an exist-
ing text-only question-answering corpus and generate video-question-answer triplets from
videos and transcribed narrations. We also apply our method to video alt-text pairs and
generate the WebVidVQA3M dataset.

(ii) We train a VideoQA model on the automatically generated data via contrastive learning
between a multi-modal video-question transformer and an answer transformer. We show
the efficiency of our model for the new zero-shot VideoQA task and the new VideoQA
feature probe task. Our model achieves competitive results in four existing VideoQA
benchmarks.

(iii) Finally, we introduce a new manually annotated open-ended VideoQA benchmark iVQA
that excludes non-visual questions and contains multiple possible answers for each question.

3.2 Related Work

Visual Question Answering (VQA). VQA is typically tackled by classifying the image-
question (or video-question) representation into a fixed vocabulary of answers. Various ap-
proaches to combine spatial image representations and sequential question representations have
been proposed [Anderson, 2018; Ben-Younes, 2017; Fukui, 2016; Lu, 2016; Xiong, 2016; Xu,
2016a; Yang, 2016]. More specifically to the video domain (VideoQA), spatio-temporal video
representations in terms of motion and appearance have been used in [Dang, 2021; Fan, 2019b;
Gao, 2018; Huang, 2020a; Jang, 2017; Jiang, 2020a; Jiang, 2020b; Le, 2020a; Le, 2020b; Lei,
2021b; Li, 2019b; Park, 2021; Seo, 2021a; Xu, 2017; Xue, 2018; Yu, 2021; Zha, 2019; Zhuang,
2020].

Methods above are limited to pre-defined vocabularies of answers and are difficult to apply
outside of specific datasets. To address this problem, [Hu, 2018] propose a joint embedding where
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Figure 3.2: Comparison of our large-scale HowToVQA69M and WebVidVQA3M datasets with
existing VideoQA datasets.

image-question representations can be matched with free-form answers. Our VideoQA model
follows this idea, but instead of relying on manually annotated datasets of limited scale, we train
it on a large-scale VideoQA dataset that we automatically generate. In contrast to some previous
works using additional video features such as subtitles [Chadha, 2021; Kim, 2020a; Kim, 2020b;
Kim, 2021a; Lei, 2018a; Lei, 2020b; Li, 2020b; Lin, 2021b; Tapaswi, 2016; Winterbottom, 2020;
Yang, 2020a], our video representation is exclusively based on visual information, as we focus
on the detailed visual understanding of videos.

To evaluate the generalization of VQA models, Teney and Hengel [Teney, 2016] define zero-
shot VQA by answering previously unseen questions, which is a related but less challenging
task compared to the zero-shot VQA task we propose in Section 3.6.2. Vatashsky and Ull-
man [Vatashsky, 2020] address VQA using MS COCO image annotations [Lin, 2014], while our
zero-shot model is trained with no manual annotations. Our proposed zero-shot VQA task is
analogous to zero-shot video retrieval [Miech, 2020] or zero-shot action recognition [Radford,
2021]. We further propose a VQA feature probe evaluation setting where only the final heads
of the network are finetuned on the downstream dataset while all other pretrained weights are
kept frozen. This setting is analogous to the linear probe evaluation setting commonly used
in self-supervised image recognition [Caron, 2020; Caron, 2021; Chen, 2021f] or self-supervised
action recognition [Radford, 2021] but with multiple layers in the head rather than just a single
(linear) layer. Visual question generation (VQG) has been introduced in [Mostafazadeh, 2016].
The methods in [Li, 2018b] and [Shah, 2019] propose to jointly learn VQG and VQA to improve
the image VQA task. However, these works do not generate questions to obtain additional
training data, but use visual data annotation for VQG as an additional loss.

VideoQA datasets. Manually collecting and annotating video-question-answer triplets is
cumbersome, costly and difficult to scale. As a result, current VideoQA datasets [Castro, 2020;
Choi, 2021; Colas, 2020; Fan, 2019a; Garcia, 2020; Jang, 2017; Kim, 2017; Lei, 2018a; Li,
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2020b; Mun, 2017; Sadhu, 2021; Song, 2018; Tapaswi, 2016; Xiao, 2021; Xu, 2017; Ye, 2017;
Yu, 2019; Zadeh, 2019; Zeng, 2017] are limited in size, as the largest, TGIF-QA [Jang, 2017],
contains only 72K annotated clips (see Figure 3.2 for more details). To address this issue, sev-
eral works have explored leveraging manually annotated video descriptions [Jang, 2017; Wang,
2020d; Xu, 2017; Zeng, 2017; Zhao, 2020; Zhao, 2017b; Zhao, 2018] for automatic generation
of VideoQA datasets, using rule-based [Heilman, 2010; Ren, 2015a] approaches. Similarly, in
the image domain, [Banerjee, 2021] has recently proposed to use annotated image captions from
COCO [Chen, 2015] to generate question-answer pairs using a template-based approach [Ren,
2015a].

Instead, we propose to use video annotations in the form of transcribed narrations or alt-text
descriptions that are available at large-scale with no manual supervision. Moreover, rule-based
generation requires the manual creation of rules by experts which is expensive, and has also
been recently outperformed by neural question generation [Du, 2017; Yao, 2018; Zhou, 2017] as
used in our approach.

Large-scale pretraining for vision and language. Several recent methods [Alberti, 2019b;
Chen, 2020b; Desai, 2021a; Huang, 2020c; Huang, 2021b; Li, 2020a; Li, 2019a; Li, 2020d;
Lu, 2019; Lu, 2020; Su, 2019; Tan, 2019; Zhou, 2020] pretrain multi-modal vision-language
representations, such as transformers, using datasets with image captions, e.g. COCO [Chen,
2015], Conceptual Captions [Sharma, 2018] and Visual Genome [Krishna, 2016]. These methods
are often optimized using generic objectives such as masked language losses and losses for text-
image matching and image caption generation. In our work, we pretrain models using large
amounts of narrated videos. In contrast to task-agnostic pretraining in the previous work, we
show the benefits of task-specific pretraining for our target VideoQA task.

Learning from web videos. In this work, we exploit noisy correlations between videos and
readily-available text annotations in unlabeled web videos from the recent HowTo100M [Miech,
2019] and WebVid2M [Bain, 2021] datasets. Methods using such readily-available data have
shown significant improvements on several tasks including video retrieval [Bain, 2021; Gabeur,
2020], action localization [Miech, 2019], action recognition [Miech, 2020] and video caption-
ing [Luo, 2020b; Sun, 2019a; Sun, 2019b; Zhu, 2020], sometimes outperforming fully-supervised
baselines. Others have used videos with readily available text annotations for the VideoQA task.
In detail, [Amrani, 2021] propose a text-video pretraining approach and finetune their model
for VideoQA. [Li, 2020b] propose HERO, a pretraining approach restricted to multiple-choice
VideoQA, for which questions and answers are treated as a single text stream. [Seo, 2021b]
propose a pretraining approach based on next utterance prediction and finetune their model
for VideoQA. [Seo, 2021b] propose a pretraining approach based on a mix of frame-level and
video-level objectives and finetune for VideoQA. Differently to these methods with task-agnostic
pretraining, we propose a pretraining approach specifically dedicated for VideoQA using auto-
matically generated question and answer pairs from readily available text annotations, and show
in Section 3.6 the benefits of our approach.
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Figure 3.3: Our automatic approach for large-scale generation of video-question-
answer triplets from narrated (subtitled) videos. First, at the language-only train-
ing phase (left), the transformer-based answer extractor Ta and question generator Tq are
trained [Raffel, 2020] on a manually annotated text-only question-answer corpus. Then video-
question-answer triplets are automatically generated from narrated videos (right). Individual
sentences are extracted from the ASR-transcribed narration using a punctuator p. Each ex-
tracted sentence is analyzed with an answer extractor Ta and a question generator Tq to pro-
duce answer a and question q. The timestamps of the narration are used to obtain a video
clip v temporarily aligned to the extracted sentence to form the output video-question-answer
triplet (v, q, a).

3.3 Large-scale generation of VideoQA data

This section presents our approach to generate large-scale VideoQA datasets from videos with
readily available text annotations. We illustrate the proposed approach on instructional videos
with text annotations in the form of transcribed narrations, which in many cases describe the
content of the videos. Section 3.3.1 presents our proposed generation procedures. Section 3.3.2,
then, describes the resulting HowToVQA69M dataset. Our approach can be easily adapted to
other type of content, for example, shorter web-videos with with readily text annotations in the
form of alt-text, as will be shown in the result section (Section 3.6.4).

3.3.1 Generating video-question-answer triplets

We tackle the task of generating video-question-answer triplets from a large-scale instructional
video dataset with transcribed spoken narration [Miech, 2019]. This is a challenging task because
of transcription errors and lack of punctuation. We also wish to obtain highly diverse data. To
address these issues, we propose to leverage powerful language models trained on text data. Our
approach is illustrated in Figure 3.3 and details are given next.

We first present details about the generation procedure. Let s be the transcribed speech data
obtained with automatic speech recognition (ASR). First, we use a recurrent neural network p,
to infer punctuation in the transcribed speech data. We denote the punctuated transcript as
p(s). We extract video clips v temporally aligned with the inferred sentences p(s) using the ASR
timestamps. We found that the generation works significantly better when applied to sentences
rather than the original sentence fragments from the HowTo100M dataset, see Table 3.1. Second,
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ASR: Add some of your 
favorite sprinkles give it a mix.
Question: What can you add 
to the mix?
Answer: Sprinkles

ASR: ...I'm going to show you 
how to unlock your ipod touch.
Question: What will I show 
you?
Answer: How to unlock your 
ipod touch

ASR: Ideally, you would want 
a medium spread collar...
Question: What type of collar 
would you want?
Answer: Medium spread 
collar

ASR: So you bring it to a 
point and we'll, just cut it off 
at the bottom.
Question: What do we do at 
the bottom?
Answer: Cut it off

ASR: So I've got nine blobs of 
dough here a little bit sticky.
Question: How many blobs of 
dough are there?
Answer: Nine

ASR: …do it on the other side, 
and you've peeled your orange
Question: What color did you 
peel on the other side?
Answer: Orange

ASR: For children, give one 
breath every 3 to 5 seconds.
Question: How long does it 
take for a child to take a 
breath?
Answer: 3 to 5 seconds

ASR: ...thai airbus, 340 - 600 
arrived from bangkok ...
Question: What is the 
average size of an airbus from 
bangkok?
Answer: 340 - 600

ASR: The onions are chopped 
pretty much the same size.
Question: What are chopped 
pretty much the same size as 
the other vegetables?
Answer: The onions

ASR: Just let them do 
whatever they want and it’ll 
still look pretty cool.
Question: What's the best 
way to make it look cool?
Answer: Let them do 
whatever they wants

ASR: ...I’ve had over a 
hundred emails.
Question: How many emails 
have I had?
Answer: Over a hundred

ASR: I I you know, I I think 
this mod is really really 
awesome.
Question: I think this mod is 
what?
Answer: Really really 
awesome

ASR: Let me explain to you 
guys.
Question: What do I say to 
you guys?
Answer: Let me explain to 
you guys

ASR: You can’t miss this..
Question: What can’t you do?
Answer: Miss

ASR: And I will put it in a 
400 degree oven for 15 
minutes.
Question: How many minutes 
will peppers be in the 400 
degree oven?
Answer: 15

Figure 3.4: Examples of video-question-answer triplets generated from narrated videos in our
HowToVQA69M dataset. The green color (first row) indicates relevant examples, the orange
color (second row) indicates a failure of the question-answer generation, and the red color (third
row) indicates that the generated question-answer is unrelated to the visual content.

for each sentence, we apply a transformer Ta, to extract a set of potential answers: a = Ta(p(s)).
Third, we use another transformer Tq to generate a question given each transcript sentence and
each extracted answer such that: q = Tq(a, p(s)). The output is a set of video-question-answer
triplets (v, q, a).

We now explain details of the language models and their training procedure. For ASR,
we follow [Miech, 2019] and use the readily-available ASR data provided by YouTube. For
punctuation p, we use the BRNN model from [Tilk, 2016] and the weights available at [Tilk,
2017] trained on IWSLT2011 [Federico, 2012]. For Ta and Tq, we use the transformer-based T5-
small and T5-base models [Raffel, 2020], respectively. We follow [Alberti, 2019a; Chan, 2019;
Lopez, 2020] and use the weights available at [Patil, 2020] trained for answer span extraction and
answer-aware question generation, respectively, on SQuADv1 [Rajpurkar, 2016]. SQuADv1 is a
text-only question-answering dataset consisting of questions for which the answer is a segment
of text extracted from a paragraph.

3.3.2 HowToVQA69M: a large-scale VideoQA dataset

We have applied the previously described procedure to all 1.2M original videos from the HowTo100M
dataset [Miech, 2019]. The result is HowToVQA69M, a dataset of 69,270,581 video clip, question
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Figure 3.5: Statistics of the HowToVQA69M dataset. (a) Distribution of length of ques-
tions and answers. (b) Distribution of video clip duration in seconds.

(a) Answers

(b) Questions

Figure 3.6: Word clouds extracted from the HowToVQA69M dataset showing its diverse vocab-
ulary and the words characteristic to speech such as okay, right, or oh.

and answer triplets (v, q, a). HowToVQA69M is two orders of magnitude larger than any of the
currently available VideoQA datasets (see Figure 3.2). On average, each original video results
in 43 video clips, where each clip is associated to 1.2 question-answer pairs. HowToVQA69M
is highly diverse and contains over 16M unique answers, where over 2M unique answers appear
more than once and over 300K unique answers appear more than ten times. Examples of (v, q, a)
triplets from the HowToVQA69M dataset are illustrated in Figure 3.4, showing the diversity
and the noise in the automatically obtained annotations in HowToVQA69M.

Statistical analysis of HowToVQA69M. Figure 3.5 shows the statistics of the How-
ToVQA69M dataset in terms of the question length, answer length and video clip duration.
Questions and answers contain 8.7 and 2.4 words on average respectively. Overall, How-
ToVQA69M contains longer answers than downstream VideoQA datasets like MSRVTT-QA,

35



Chapter 3. Learning to Answer Visual Questions from Web Videos

Punctuation Generation method Correct
Samples

QA Generation
Failure

QA unrelated
to video

3 [Heilman, 2010] 17 54 29
7 Ours 23 49 28
3 Ours 30 31 39

Table 3.1: Manual evaluation of our generation method (with and without punctuation) on a
random sample of 100 examples compared with a rule-based question-answer generation of [Heil-
man, 2010]. Numbers are obtained with majority voting between 5 annotators.

Question
Type Total Correct

Samples (%)
QA Generation
Failure (%)

QA unrelated
to video (%)

Attribute 25 28 32 40
Object 17 41 24 35
Action 16 69 19 13
Counting 13 23 15 62
Place 7 0 86 14
People 7 0 43 57
Other 15 13 27 60

Table 3.2: Manual evaluation of our generation method on 100 randomly chosen generated
examples split by question type. Results are obtained by majority voting among 5 annotators.

MSVD-QA or ActivityNet-QA, for which answers are on average shorter than 2 words. Each
clip lasts 12.1 seconds on average. The distribution of clip duration has a peak at around
seven seconds with a long tail of longer clips. These statistics demonstrate the diversity of our
HowToVQA69M dataset, in terms of videos, questions and answers.

Word clouds1 for questions and answers in HowToVQA69M are shown in Figure 3.6 and
illustrate the diverse vocabulary in HowToVQA69M as well as the presence of speech-related
words such as as okay, right, oh.

Manual evaluation of HowToVQA69M. As shown in Figure 3.4, HowToVQA69M anno-
tations are noisy, which can be attributed to: (i) errors in speech transcription, (ii) speech not
describing the video content, or (iii) errors in question-answer generation. We manually eval-
uate the quality of 100 randomly sampled (v, q, a) triplets in HowToVQA69M by collecting 5
different annotations for each triplet to reduce variance and report results in Table 3.1. Among
100 triplets generated by our method we find 30 to be correctly generated and matching well to
the video content, 31 are incorrectly generated and 39 are correctly generated but unrelated to
the video content. To demonstrate the influence of the different components of our automatic
question-answer generation procedure, we compare our results with (i) a variant of our approach
that does not split transcribed narrations into sentences using a punctuator, and (ii) a rule-based
approach [Heilman, 2010] for question-answer generation. Table 3.1 confirms the importance
of punctuation and demonstrates the superior performance of our generation method compared

1Word clouds were generated using https://github.com/amueller/word_cloud.
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to [Heilman, 2010]. Further comparison with [Heilman, 2010] is given in Section 3.6.6. In terms
of inter-rater agreement, for the 300 generated video-question-answer triplets (100 for each gen-
eration method), 94 were in an agreement of all 5 annotators, 198 in an agreement of at least 4
annotators, and 299 in an agreement of at least 3 annotators. This high agreement of annotators
demonstrates the reliability of the results in Table 3.1.

We further manually classify the 100 video-question-answer triplets obtained with our method
by the question type (“Attribute", “Object", “Action", “Counting", “Place", “People", or “Other"),
evaluate the quality of generated triplets for different question types and report results in Ta-
ble 3.2. Out of the 6 most common categories, we observe that questions related to “Action"
lead to the best annotations, “Counting" questions lead to the highest number of QAs unrelated
to the video content, and questions related to “Place" lead to the highest number of QA gener-
ation errors. Qualitatively, we found that actions are often depicted in the video, while counted
quantities (e.g. time, weight, length) mentioned in the speech are hard to guess from the video
only. We describe next how we use HowToVQA69M to train our VideoQA model.

3.4 VideoQA model and training procedure

This section presents our VideoQA model (Section 3.4.1) and describes the training procedure
(Section 3.4.2). Figure 3.7 gives an overview of the model.

3.4.1 VideoQA model

As illustrated in Figure 3.7, our VideoQA model is composed of two branches: (i) a video-
question module f based on a transformer [Vaswani, 2017] and a mapping from the CLS token
with a linear function. It takes a pair of video v and question q as input, models the multi-modal
temporal interactions between v and q and then outputs an embedding vector f(v, q) ∈ Rd. (ii)
The second branch is a text encoder g that embeds an answer a as g(a) ∈ Rd. We will denote
our model as VQA-T, standing for VideoQA-Transformer. Note that using the joint (video,
question) and answer embeddings allows us to deal with a large open vocabulary of answers
present in our new HowToVQA69M dataset as the model can measure similarity between the
input video-question embedding and the embedding of any answer. This is in contrast to using
a classification answer module [Huang, 2020a; Jiang, 2020a; Jiang, 2020b; Le, 2020a; Zhuang,
2020] that can choose only from a fixed predefined vocabulary of answers. Our embedding can
be also easily finetuned on the different downstream VideoQA datasets, which may contain new
answers that have not been seen at training. In contrast, the classification answer module has
to be retrained when the vocabulary of answers changes. Next, we give details of the language
and video representations, and of the video-question multi-modal transformer and the answer
transformer.

Word representation. The question and answer are separately tokenized with the Word-
Pieces embedding [Wu, 2016] and fed to DistilBERT [Sanh, 2019]. DistilBERT is a light version
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Figure 3.7: Overview of our VideoQA training architecture. Our model is composed of
a video-question module f based on a multi-modal transformer (top) and an answer module g
based on DistilBERT [Sanh, 2019] encoder (bottom). For pretraining, we use a contrastive loss
and a masked language modeling loss (right).

of BERT [Devlin, 2019] pretrained in a self-supervised fashion on English Wikipedia and the
Toronto Book Corpus [Zhu, 2015].

Video representation. We use a frozen S3D [Xie, 2018] pretrained on HowTo100M [Miech,
2019] using MIL-NCE [Miech, 2020]. This model is pretrained from scratch on HowTo100M
only.

Video-question multi-modal transformer. The input video representation, obtained from
a fixed S3D model [Xie, 2018], is composed of t features denoted v = [v1, ..., vt] ∈ Rdv×t where dv
is the dimension of the video features, and t is the number of extracted features, one per second.
The contextualized representation of the question, provided by the DistilBERT model [Sanh,
2019], is composed of l token embeddings denoted as q = [q1, ..., ql] ∈ Rdq×l where dq is the
dimension of the DistilBERT embedding and l is the number of tokens in the question. The
inputs to our video-question multi-modal transformer are then defined as a concatenation of
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question token embeddings and video features

u(v, q) =
[∼
q1, ...,

∼
q l,
∼
v1, ...,

∼
vt

]
∈ Rd×(l+t), (3.1)

with
∼
qs = dp (σ (Wqqs + bq) + poss +modq) , (3.2)

and
∼
vs = dp(σ(Wvvs + bv) + poss +modv), (3.3)

where Wq ∈ Rdq×d, bq ∈ Rd, Wv ∈ Rdv×d, bv ∈ Rd and learnable parameters, modq ∈
Rd and modv ∈ Rd are learnt modality encodings for video and question, respectively, and
[pos1, ..., posl+t] ∈ Rd×(l+t) are fixed sinusoidal positional encodings. σ is a Gaussian Error
Linear Unit [Hendrycks, 2016] followed by a Layer Normalization [Ba, 2016] and dp refers to
Dropout [Srivastava, 2014].

The multi-modal transformer is a transformer with N layers, h heads, dropout probability
pd, and hidden dimension dh. The outputs of the multi-modal transformer [Q1, ...Ql, V1...Vt] ∈
Rd×(l+t) are contextualized representations over tokens in the question and temporal video rep-
resentations. Finally, the fused video-question embedding f(v, q) is obtained as

F (Q1) = Wvqdp(Q1) + bvq, (3.4)

where Wvq ∈ Rd×d, bvq ∈ Rd are learnable parameters and Q1 is the multi-modal contextualized
embedding of the [CLS] token in the question, as shown in Figure 3.7.

Answer transformer. The contextualized representation of the answer, provided by the Dis-
tilBERT model [Sanh, 2019], is composed of m token embeddings denoted as a = [a1, ..., am] ∈
Rda×m where da is the dimension of the DistilBERT embedding and m is the number of tokens
in the answer. Our answer embedding g(a) is then obtained as

G(a1) = Waa1 + ba, (3.5)

where Wa ∈ Rda×d, ba ∈ Rd are learnable parameters and a1 is the contextualized embedding of
the [CLS] token in the answer, as shown in Figure 3.7.

3.4.2 Training procedure

This section describes the training of our VideoQA model on the HowToVQA69M dataset and
its finetuning on downstream VideoQA datasets.

Training on HowToVQA69M. We wish to make a pair of video and question (v, q) close to
its correct answer a measured by the dot product of their embeddings, f(v, q)>g(a). In contrast,
the incorrect answers should be far, i.e. the dot product with their embeddings should be small.
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This can be done by maximizing the following contrastive objective:

max
f,g

n∑
i=1

log

 ef(vi,qi)>g(ai)

ef(vi,qi)>g(ai) +
∑

(v′,q′,a′)∼Ni

ef(v′,q′)>g(a′)

 , (3.6)

where (vi, qi, ai) represents a generated triplet (video clip, question, answer) from HowToVQA69M.
Given a specific positive triplet (vi, qi, ai), we construct the set Ni of negative triplets by con-
catenating incorrect answers aj within the training batch to the video-question pair (vi, qi) as:
(vi, qi, aj) with aj 6= ai. In particular, if the same negative answer aj is present multiple times
in a batch, we only count it once. We found that sampling the same negative answer multiple
times leads to worse results (see Section 3.6.9), which we believe is due to different distributions
of answers in the pretraining and downstream datasets. Removing duplicate negatives helps to
mitigate this difference.

Finetuning on downstream VideoQA datasets. We leverage the model pretrained on
HowToVQA69M and finetune it on a downstream VideoQA dataset that typically has a smaller
vocabulary of answers V (e.g. |V | ∼ 4000). To this end, we adapt the training objective in (3.6)
by constructing the negative set Ni from all incorrect answers in V . Note that in such setting
(3.6) becomes equivalent to optimizing the standard cross-entropy objective. In the specific
case of multiple-choice VideoQA, the set of negatives Ni is the set of incorrect answers for each
sample.

Masked Language Modeling (MLM). In addition to the contrastive loss (3.6) we apply
the masking loss [Devlin, 2019] to question tokens during both pretraining and finetuning. We
found this to have a positive regularization effect when finetuning the DistilBERT weights (see
Section 3.6.9).

3.5 iVQA: a new VideoQA evaluation dataset

In this section we present our Instructional VQA dataset (iVQA). We start from a subset
of HowTo100M videos and manually annotate video clips with questions and answers. We aim
(i) to provide a well-defined evaluation by including five correct answer annotations per question
and (ii) to avoid questions which can be answered without watching the video. The dataset is
described below.

iVQA Data Collection. iVQA videos are obtained by randomly sampling 7-30 sec. video
clips from the HowTo100M dataset [Miech, 2019]. We avoid overlap between datasets and make
sure iVQA and HowToVQA69M have no videos in common. Each clip is manually annotated
with one question and 5 answers on Amazon Mechanical Turk. We ask workers to annotate
questions about objects and scenes in the video and remove videos that could not be annotated.
The correctness of annotations is manually verified by the authors. Moreover, we manually
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Figure 3.8: Statistics of the iVQA dataset. (a) Distribution of length of questions and
answers. (b) Distribution of video clip duration in seconds. (c) Distribution of video clip
relative start time in the original video. (d) Distribution of question types.

reduce the language bias by excluding questions that could be answered without watching the
video. To increase diversity, each question is answered by 5 different workers. The answers
are restricted to 4 words and are complemented by a confidence level. Questions that receive
multiple answers with low confidence are removed. We further describe our data collection
interfaces in [Yang, 2021b] (Appendix C.1.).

Statistical analysis of iVQA. iVQA contains 10,000 video clips with one question and five
corresponding answers per clip. We split the dataset into 60%/20%/20% train/validation/test
subsets. Figure 3.8 shows the distributions of question length, answer length, clip duration,
clip relative start time in the original video and question types. The average duration of video
clips is 18.6 seconds. Clip duration and start time distributions are almost uniform because we
randomly sampled both the duration and the start time to obtain the clips, which results in a
high video content diversity. Most questions are about objects (What questions make up 91% of
the data), while some are about places (Where questions make up 5% of the data) and people
(Who questions make up 1% of the data). On average, questions and answers contain 7.6 and
1.1 words, respectively. Answers are in great majority one or two words, which is a result of our
collection procedure.

The majority of questions have a consensus between at least 2 annotators, i.e. at least 2
annotators providing the same answer. In detail, we observe that 27.0% of questions lead to
a perfect consensus among the five answer annotators, 48.4% of questions lead to a consensus
among at least four annotators, and 77.3% lead to a consensus among at least three annotators.
All but six questions lead to a consensus between at least two annotators. Additionally, 27.5%
of questions have two different answers that had a consensus between at least two annotators.
Similarly to [Antol, 2015], this motivates us to define the following accuracy measure for a given
answer a: acc(a) = min(#ground truth answers = a

2 , 1). This metric assigns 100% accuracy to answers
confirmed by at least 2 annotators, 50% accuracy to answers confirmed by only 1 annotator and
0% otherwise. Note that this definition is specific to our set-up where we have multiple ground
truth answers per question.
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(a) Answers

(b) Questions

Figure 3.9: Word clouds for questions and answers in our iVQA dataset. The frequent occurrence
of location and time-specific words (behind, front, right, left, first, end, beginning) indicates the
presence of the spatial and temporal context within iVQA questions. We can also observe the
task-specific vocabulary in iVQA answers related to the domains of cooking, hand crafting and
gardening.

Word clouds for questions and answers in the iVQA dataset in Figure 3.9 demonstrate
the relation of iVQA to the domains of cooking, hand crafting and gardening. These word
clouds also indicate that questions in iVQA often require spatial reasoning (behind, front, right,
left) and temporal understanding (first, end, left, beginning) of the video. The most frequent
answer (spoon) in iVQA corresponds to 2% of all answers in the dataset. In contrast, the most
frequent answers in other existing VideoQA datasets account for more than 9% of all answers
in these datasets (we have verified this for MSRVTT-QA, MSVD-QA and ActivityNet-QA).
As a consequence, the most frequent answer baseline is significantly lower for our iVQA dataset
compared to other VideoQA datasets. We further evaluate the language bias in iVQA in Section
3.6.8.

3.6 Experiments

This section demonstrates the benefits of training using our generated HowToVQA69M dataset
and compares our method to the state of the art. We first outline the used datasets, baseline
methods and implementation details in Section 3.6.1. We then present results for the novel
zero-shot VideoQA task in Section 3.6.2. Next we present results for the novel VideoQA feature
probe evaluation setting in Section 3.6.3. The comparison to the state of the art in VideoQA
and alternative training strategies is given in Section 3.6.4. Section 3.6.5 presents results for rare
answers and split per question type. Then we compare our VideoQA generation approach to
previous methods in Section 3.6.6. We also apply our approach to another video-text datasets in
Section 3.6.7. Finally, we show the importance of the visual modality in iVQA in Section 3.6.8
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and present ablation studies in Section 3.6.9.

3.6.1 Evaluation Protocol

Datasets. We use three datasets for training and five datasets for evaluation as described
below. We follow previous evaluation protocols for open-ended settings [Le, 2020a] and use a
fixed vocabulary of training answers. Unless stated otherwise, we report top-1 test accuracy and
use original splits for training, validation and test.

For training we use our new HowToVQA69M dataset introduced in Section 3.3.2 with
90% and 10% videos in training and validation subsets. For comparison, we also train our
model using a large-scale text-video dataset, HowTo100M [Miech, 2019], that contains videos
with transcribed narrations but no video-question-answer triplets. Test and validation videos
of downstream datasets are excluded from HowTo100M and HowToVQA69M. To evaluate the
general applicability of our approach, we generate another automatic VQA dataset based on
WebVid2M [Bain, 2021], which consists of 2.5M video-text pairs scraped from the web where
video captions are obtained from readily-available alt-text descriptions, see Section 3.6.7.

We evaluate results on four open-ended VideoQA downstream datasets: MSRVTT-QA [Xu,
2017], MSVD-QA [Xu, 2017], ActivityNet-QA [Yu, 2019] and our new iVQA dataset (see
Section 3.5). We also evaluate on a multiple-choice VideoQA dataset How2QA [Li, 2020b]
where each question is associated with one correct and three incorrect answers. For MSRVTT-
QA and MSVD-QA, we follow [Le, 2020a] and use a vocabulary of the top 4000 training answers
for MSRVTT-QA, and all 1852 training answers for MSVD-QA. For our iVQA dataset and
ActivityNet-QA, we consider all answers that appear at least twice in the training set, resulting
in 2348 answers for iVQA and 1654 answers for ActivityNet-QA.

Baselines. To evaluate the contribution of the visual modality, we compare our VQA-T model
with its language-only variant QA-T. QA-T does not use video input, i.e. we set the input v
of the video-question transformer to zero during both training and testing (see Figure 3.7). To
evaluate our generated dataset, we also compare VQA-T trained on HowToVQA69M and on
HowTo100M. Since HowTo100M has no (v, q, a) triplets, we only train the f branch of VQA-T
on HowTo100M using the standard masking and cross-modal matching losses [Chen, 2020b; Li,
2020b; Lu, 2019; Sun, 2019b; Zhu, 2020]. In the zero-shot setting we evaluate VQA-T trained
on HowTo100M by computing f(v, [q, a]) for concatenated pairs of questions and answers [q, a].
During finetuning we also initialize the g branch of VQA-T with parameters of the text encoding
obtained from f .

Implementation details. For the VideoQA generation, the input sequence to the answer
extractor and question generation transformers are truncated and padded up to a maximum of
32 tokens. The question decoding is done with beam search keeping track of the 4 most probable
states at each level of the search tree. We have used the original captions (including stop words)
from the HowTo100M dataset [Miech, 2019] and removed word repetitions from adjacent clips.
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Method Pretraining Data iVQA MSRVTT-QA MSVD-QA ActivityNet-QA How2QA
Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1 Top-10 Top-1

Random ∅ 0.09 0.9 0.02 0.2 0.05 0.5 0.05 0.5 25.0
QA-T HowToVQA69M 4.4 23.2 2.5 6.5 4.8 15.0 11.6 45.8 38.4
VQA-T HowTo100M 1.9 11.9 0.3 3.4 1.4 10.4 0.3 1.9 46.2
VQA-T (Ours) HowToVQA69M 12.2 43.3 2.9 8.8 7.5 22.4 12.2 46.5 51.1

Table 3.3: Comparison with baselines for zero-shot VideoQA. Top-1 and top-10 (for open-ended
datasets) accuracy are reported.

For the VideoQA model, we use the following hyperparameters: l = 20, t = 20, m = 10,
d = 512, dh = 2048, N = 2, H = 8, pd = 0.1, dq = da = 768, dv = 1024. The video features
are sampled at equally spaced timestamps, and padded to length t. Sequences of question and
answer tokens are truncated and padded to length l and m, respectively. Attention is computed
only on non-padded sequential video and question features.

For the training on HowToVQA69M, we use the Adam optimizer [Kingma, 2015] and mini-
batches with 4096 video clips sampled from 128 random videos. We use a cosine annealing
learning rate schedule with initial value of 5 × 10−5. The optimization over 10 epochs lasts 2
days on 8 Tesla V100 GPUs. For finetuning, we use a cosine annealing learning rate schedule
with initial value of 1 × 10−5, a batch size of 256 and training runs for 20 epochs. The final
model is selected by the best performance on the validation set.

For the masked language modeling objective, a token is corrupted with a probability 15%,
and replaced 80% of the time with [MASK], 10% of the time with the same token and 10% of the
time with a randomly sampled token. To guess which token is masked, each sequential question
output Qi of the multi-modal transformer is classified in a vocabulary of 30,522 tokens, and we
use a cross-entropy loss.

For the variant VQA-T trained directly on HowTo100M, in the video-text cross-modal
matching objective, we sample one video negative and one text negative per (positive) video-text
pair, and use a binary cross-entropy loss. The cross-modal matching module is used to perform
zero-shot VideoQA for this variant, by computing scores for f(v, [q, a]) for all possible answers
a, for each video-question pair (v, q).

3.6.2 Zero-shot VideoQA

In this section, we address the zero-shot VideoQA task where we prohibit any manual supervision
of visual data during training. We explore this setup to evaluate the generalization of VQA-
T trained on HowToVQA69M to unseen downstream datasets. For consistency, we use the
vocabulary of answers from downstream datasets during testing (see Section 3.6.1).

Zero-shot results are presented in Table 3.3. We first observe that the use of visual cues
by VQA-T outperforms QA-T when both models are trained on HowToVQA69M. This demon-
strates the importance of the cross-modality in HowToVQA69M despite the VideoQA annotation
being exclusively generated from text-only methods. Since HowToVQA69M has been generated
using no manual annotation of visual data, our approach is scalable and can lead to further
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Question: What design are they 
making?
GT Answer: rose (4), rose flower (1)
QA-T (HowToVQA69M): pinwheel
VQA-T (HowTo100M): piping bag
VQA-T (HowToVQA69M): rose

Question: What is in the man's hand?
GT Answer: shovel (3), spade (2)
QA-T (HowToVQA69M): coin
VQA-T (HowTo100M): planting
VQA-T (HowToVQA69M): shovel

Question: What type of material is the 
man touching?
GT Answer: wood (5)
QA-T (HowToVQA69M): brick
VQA-T (HowTo100M): electric saw
VQA-T (HowToVQA69M): wood

Question: What is the woman 
decorating?
GT Answer: cake (5)
QA-T (HowToVQA69M): cupcakes
VQA-T (HowTo100M): raspberries
VQA-T (HowToVQA69M): cake

Question: What fruit is shown at the 
end?
GT Answer: watermelon (5)
QA-T (HowToVQA69M): pineapple
VQA-T (HowTo100M): slotted spoon
VQA-T (HowToVQA69M):  
watermelon

Question: What object is seen on the 
left, at the beginning of the video?
GT Answer: teapot (4), pot (1)
QA-T (HowToVQA69M): mirror
VQA-T (HowTo100M): espresso
VQA-T (HowToVQA69M): teapot

Question: What type of animal do we 
see in this video?
GT Answer: shark (3), fish (2)
QA-T (HowToVQA69M): stuffed 
animal
VQA-T (HowTo100M): filter
VQA-T (HowToVQA69M): fish

Question: What tool is being used?
GT Answer: crochet hook (2), needle 
(2), hook (1)
QA-T (HowToVQA69M): chisel
VQA-T (HowTo100M): crocheting
VQA-T (HowToVQA69M): crochet 
hook

Question: In which room does this 
scene take place?
GT Answer: kitchen (5)
QA-T (HowToVQA69M): bedroom
VQA-T (HowTo100M): tablespoon
VQA-T (HowToVQA69M): dining 
room

Question: What is the person holding?
GT Answer: phone (4), smartphone 
(1)
QA-T (HowToVQA69M): camera
VQA-T (HowTo100M): keyboard
VQA-T (HowToVQA69M): tablet

Question: Where is this video being 
shot?
GT Answer: garage (5)
QA-T (HowToVQA69M): studio
VQA-T (HowTo100M): lawnmower
VQA-T (HowToVQA69M): garage

Question: What is the largest object 
to the right of the man?
GT Answer: wheelbarrow (4), 
wheelbarrel (1)
QA-T (HowToVQA69M): statue
VQA-T (HowTo100M): trowel
VQA-T (HowToVQA69M): 
wheelbarrow

Figure 3.10: Zero-shot VideoQA on iVQA. The top 4 rows illustrate successful predictions
of our model, while the bottom-most row displays failure cases. The values next to the ground
truth (GT) answers indicate the number of annotators that gave the answer. We show more
examples on our webpage [Yang, 2021a].

improvements by increasing the dataset size, as we discuss in Section 3.6.9.
Training on HowToVQA69M significantly outperforms the training on HowTo100M and the

random baseline. This confirms the advantage of our HowToVQA69M dataset for the VideoQA
task over other generic text-video datasets that do not contain video-question-answer triplets.
We emphasize that our training does not use any information about target VideoQA datasets.
Qualitative results for zero-shot VideoQA are presented for our approach and compared with
baselines in Figure 3.10. We observe that QA-T (trained on HowToVQA69M) provides plausi-
ble but video-unrelated answers to the questions. Moreover, VQA-T (trained on HowTo100M)
is able to reply with answers related to the visual content, but doesn’t take into account the
question. Our VQA-T model trained on HowToVQA69M, on the other hand, correctly under-
stands questions and uses information in the video to provide correct answers, confirming results
in Table 3.3. We also illustrate some failure cases in Figure 3.10, showing that our zero-shot
VQA-T model can fail to understand fine variations in the video or the language, confusing a
kitchen with a dining room or a phone with a tablet.
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Method Pretraining data iVQAMSRVTT
QA

MSVD
QA

ActivityNet
QA How2QA

VQA-T ∅ 3.8 23.2 21.8 22.9 55.3
QA-T HowToVQA69M 11.4 27.0 29.5 27.6 64.7
VQA-T HowTo100M 13.8 27.0 32.9 24.7 63.9
VQA-T HowToVQA69M 24.5 32.9 39.0 30.6 72.9

Table 3.4: Probe evaluation of different pretraining strategies. In each case, only the last
projection layers in the model were finetuned on the downstream VideoQA datasets. Top-1
accuracy is reported.

Pretraining data iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA How2QA

∅ 23.0 39.6 41.2 36.8 80.8
HowTo100M 28.1 40.4 43.5 38.1 81.9

HowToVQA69M 35.4 41.5 46.3 38.9 84.4

Table 3.5: Benefits of pretraining our VQA-T model on our new HowToVQA69M dataset (last
row) compared to no pretraining (first row) or pretraining on HowTo100M (second row). In
each case our VQA-T model was then finetuned on the downstream VideoQA datasets. Top-1
accuracy is reported.

3.6.3 VideoQA feature probe evaluation

In this section we further evaluate the generalization capabilities of the multi-modal represen-
tation learnt by our pretrained model. To this end, we analyze the effect of VQA-T pretraining
followed by the finetuning of the final projection layers on the target datasets. More precisely,
only the final MLP in the video-question module and the final linear layer in the answer module
are finetuned. All other weights in the model (notably the video, question, answer representa-
tions and the multi-modal transformer) are kept frozen after the large-scale pre-training.

Results for VideoQA feature probe evaluation are reported in Table 3.4. Similarly as for the
zero-shot setting, we observe that the use of visual cues in VQA-T outperforms QA-T when
both models are pretrained on HowToVQA69M. Additionally, pretraining on HowToVQA69M
significantly outperforms the pretraining on HowTo100M and the probe baseline trained from
scratch. Note that the probe baseline trained from scratch, despite having notably randomly
initialized frozen multi-modal transformer weights, achieves reasonable absolute results as it
can exploit dataset biases, which are further ablated in Section 3.6.8. Interestingly, we find
that on the iVQA dataset, the probe evaluation of our model pretrained on HowToVQA69M
(24.5% accuracy, first line in Table 3.4) outperforms the fully supervised model trained from
scratch (23.0% accuracy, first line in Table 3.5). These results further confirms the quality of
our multi-modal representation learnt from HowToVQA69M.

3.6.4 Benefits of HowToVQA69M pretraining

This section evaluates the effect of VQA-T pretraining in combination with finetuning on tar-
get datasets. As shown in Table 3.5, pretraining on HowToVQA69M provides consistent and
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Method Pretraining data MSRVTT
QA

MSVD
QA

E-SA [Xu, 2017] 29.3 27.6
ST-TP [Jang, 2017] 30.9 31.3
AMU [Xu, 2017] 32.5 32.0
Co-mem [Gao, 2018] 32.0 31.7
HME [Fan, 2019b] 33.0 33.7
LAGCN [Huang, 2020a] — 34.3
HGA [Jiang, 2020b] 35.5 34.7
QueST [Jiang, 2020a] 34.6 36.1
HCRN [Le, 2020a] 35.6 36.1
MASN [Seo, 2021a] 35.2 38.0
Bridge to Answer [Park, 2021] 36.9 37.2
OCRL+LOGNet [Dang, 2021] 36.0 38.2

ClipBERT [Lei, 2021b] COCO +
Visual Genome 37.4 —

[Jin, 2021] Conceptual Captions 37.6 38.2
SSML [Amrani, 2021] HowTo100M 35.1 35.1
CoMVT [Seo, 2021b] HowTo100M 39.5 42.6

SiaSamRea [Yu, 2021] COCO +
Visual Genome 41.6 45.5

MERLOT [Zellers, 2021] YT-Temporal-180M 43.1 —
VQA-T ∅ 39.6 41.2
VQA-T HowToVQA69M 41.5 46.3

VQA-T HowToVQA69M+
WebVidVQA3M 41.8 47.5

Table 3.6: Comparison with state of the art on MSRVTT-QA and MSVD-QA (top-1 accuracy).

Pretraining data ActivityNet
QA How2QA

E-SA [Yu, 2019] 31.8 —
MAR-VQA [Zhuang, 2020] 34.6 —

HERO [Li, 2020b] HowTo100M +
TV Dataset — 74.1

CoMVT [Seo, 2021b] HowTo100M 38.8 82.3

SiaSamRea [Yu, 2021] COCO +
Visual Genome 39.8 84.1

MERLOT [Zellers, 2021] YT-Temporal-180M 41.4 —
VQA-T ∅ 36.8 80.8
VQA-T HowToVQA69M 38.9 84.4

VQA-T HowToVQA69M+
WebVidVQA3M 39.0 85.3

Table 3.7: Comparison with state of the art on ActivityNet-QA and the public val set of How2QA
(top-1 accuracy).

significant improvements for all datasets when compared to pretraining on HowTo100M and no
pretraining. In particular, we observe the largest improvement for our new iVQA dataset which
comes from the same domain as HowToVQA69M. Hence, the automatic generation of training
data for other domains using our method can lead to further improvements on other datasets.

We compare our pretrained model to the state-of-the-art in VideoQA in Tables 3.6-3.7. No-
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Pretraining Data Finetuning iVQA MSRVTT-QA MSVD-QA ActivityNet-QA
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

∅ 3 38.4 16.7 5.9 2.6 68.4 44.1 32.9 8.1 71.2 53.7 28.9 8.8 65.6 49.0 25.7 3.9
HowTo100M 3 46.7 22.0 8.6 3.6 65.2 46.4 34.9 10.6 74.8 58.8 30.6 10.5 67.5 53.3 25.9 4.1

HowToVQA69M 7 9.0 8.0 9.5 7.7 0.2 6.4 2.4 3.0 9.3 9.0 6.9 4.8 36.3 5.7 3.7 1.5
HowToVQA69M 3 47.9 28.1 15.6 8.5 66.9 46.9 36.0 11.5 74.7 59.0 35.0 14.1 66.3 53.0 28.0 5.0

Table 3.8: Results of our VQA-T model with different training strategies, on subsets of iVQA,
MSRVTT-QA, MSVD-QA and ActivityNet-QA, corresponding to four quartiles with Q1 and Q4
corresponding to samples with the most frequent and the least frequent answers, respectively.

Pretraining Data Finetuning MSRVTT-QA MSVD-QA
What Who Number Color When Where What Who Number Color When Where

∅ 3 33.4 49.8 83.1 50.5 78.5 40.2 31.5 54.9 82.7 50.0 74.1 46.4
HowTo100M 3 34.3 50.2 82.7 51.8 80.0 41.5 34.3 58.6 82.4 62.5 77.6 50.0

HowToVQA69M 7 1.8 0.7 66.3 0.6 0.6 4.5 7.8 1.7 74.3 18.8 3.5 0.0
HowToVQA69M 3 35.5 51.1 83.3 49.2 81.0 43.5 37.9 58.0 80.8 62.5 77.6 46.4

Table 3.9: Effect of our pretraining per question type on MSRVTT-QA and MSVD-QA.

Pretraining Data Finetuning Motion Spatial Temporal Yes-No Color Object Location Number Other
∅ 3 23.4 16.1 3.8 65.6 31.3 26.4 33.7 48.0 33.6

HowTo100M 3 26.6 17.7 3.5 67.5 32.8 25.3 34.0 50.5 35.8
HowToVQA69M 7 2.3 1.1 0.3 36.3 11.3 4.1 6.5 0.2 4.7
HowToVQA69M 3 28.0 17.5 4.9 66.3 34.3 26.7 35.8 50.2 36.8

Table 3.10: Effect of our pretraining per question type on ActivityNet-QA.

tably, VQA-T pretrained on HowToVQA69M outperforms previous methods using comparable
pretraining data on all tested datasets. In particular, our method improves over CoMVT [Seo,
2021b] that has been pretrained on HowTo100M. We note that the recent SiaSamRea ap-
proach [Yu, 2021] improves over our method on MSRVTT-QA (+0.1%) and ActivityNet-QA
(+0.9%), but achieves lower results on MSVD-QA (-0.8%) and How2QA (-0.3%). However,
SiaSamRea leverages manually annotated visual data for pretraining (COCO [Chen, 2015] and
Visual Genome [Krishna, 2016]). We also note that MERLOT [Zellers, 2021] improves over our
method on MSRVTT-QA and ActivityNet-QA, but uses the YT-Temporal-180M dataset for
pretraining. This dataset includes HowTo100M but is significantly larger and more diverse (6
millions YouTube videos instead of 1 million).

3.6.5 Analysis of rare answers and question types

Results for rare answers. Training on downstream VideoQA datasets typically leads to
particularly large improvements for questions with most frequent answers. As shown in Table
3.8, our approach brings significant improvements both for common and rare answers compared
to models trained from scratch or pretrained on HowTo100M. We also find that our pretrained
model, in the zero-shot setting, performs similarly across the different quartiles, with the excep-
tion of ActivityNet-QA, which includes in its most common answers yes, no. Interestingly, for
the most rare answers in iVQA (Q3 and Q4) our model without finetuning (zero-shot mode) out-
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ASR: And then just squeeze it through like that.
Question (Heilman et al): What do then just squeeze 
through like that? 
Answer (Heilman et al): it
Question (ours): How do you do it? 
Answer (ours): squeeze it through

ASR: It is a staple in a lot of asian kitchens.
Question (Heilman et al): What is it?
Answer (Heilman et al): a staple in a lot of asian 
kitchens
Question (ours): In what type of kitchens is it a 
staple? 
Answer (ours): asian kitchens

ASR: This is classic premium chicken, grilled 
sandwich.
Question (Heilman et al): What is classic premium 
chicken, grilled sandwich?
Answer (Heilman et al): this
Question (ours): What type of sandwich is this?
Answer (ours): classic premium chicken, grilled 
sandwich

ASR: And you want it over a very low heat.
Question (Heilman et al): What do you want it over?
Answer (Heilman et al): over a very low heat
Question (ours): What kind of heat do you want it to 
be over?
Answer (ours): low heat

ASR: But why do that when you can enjoy the plant 
for about three months, it'll, keep producing because 
the leaves grow from the center
Question (Heilman et al): What leaves?
Answer (Heilman et al): the
Question (ours): What part of the plant grows from 
the center?
Answer (ours): leaves

ASR: Next add half a cup of powdered milk and a 
little shake a quarter teaspoon of salt, which I know, 
sounds really weird.
Question (Heilman et al): What do I know the 
quarter teaspoon of?
Answer (Heilman et al): of salt
Question (ours): What is a quarter teaspoon of?
Answer (ours): salt

Figure 3.11: Qualitative examples of video-question-answer triplets generated with our trained
language models compared to [Heilman, 2010], illustrating the higher quality and diversity of
triplets obtained with our generation method.

Generation
Method Zero-shot Finetune

iVQA ActivityNet
QA How2QA iVQA ActivityNet

QA How2QA

[Heilman, 2010] 7.4 1.1 41.7 31.4 38.5 83.0
Ours 12.2 12.2 51.1 35.4 38.9 84.4

Table 3.11: Comparison of our question-answer generation approach with [Heilman, 2010], eval-
uated by downstream performance of the model trained on the generated VideoQA data.

performs finetuned models that have not been pretrained on HowToVQA69M. We conclude that
VideoQA specific pretraining on additional large-scale, diverse data helps improve generalization
of VideoQA models.

Note that in order to have a consistent evaluation with other experiments, we keep the same
train vocabulary at test time. This implies that a significant part of answers in the test set is
considered wrong because the answer is not in the vocabulary. This represents 16% of answers in
iVQA, 3% of answers in MSRVTT-QA, 6% for MSVD-QA and 19% for ActivityNet-QA. Note,
however, that our joint embedding framework could allow for different vocabularies to be used
at the training and test time.

Results split per question type. We also present results per question type for MSRVTT-
QA, MSVD-QA and ActivityNet-QA in Tables 3.9 and 3.10. Compared to the model trained
from scratch or the model pretrained on HowTo100M, we observe consistent improvements by
our model for most categories.
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Pretraining Data Zero-shot Finetune

iVQA MSRVTT
QA

ActivityNet
QA How2QA iVQA MSRVTT

QA
ActivityNet

QA How2QA

∅ — — — — 23.0 39.6 36.8 80.8
MSRVTT-QA 8.6 — 1.7 42.5 25.2 — 37.5 80.0
ActivityNet-QA 5.5 2.7 — 40.8 24.0 39.9 — 80.7
HowToVQA69M 12.2 2.9 12.2 51.1 35.4 41.5 38.9 84.4

Table 3.12: Comparison of our training on HowToVQA69M with cross-dataset transfer using
the previously largest open-ended VideoQA dataset (MSRVTT-QA) and the largest manually
annotated open-ended VideoQA dataset (ActivityNet-QA).

3.6.6 Comparison of VideoQA generation methods and VideoQA training
datasets

Comparison of VideoQA generation methods. We compare our question-answer gener-
ation approach to [Heilman, 2010], that was notably used in [Xu, 2017; Zeng, 2017; Zhao, 2020;
Zhao, 2017b; Zhao, 2018] to generate VideoQA data from video descriptions. We run the method
of [Heilman, 2010] on sentences extracted from HowTo100M, apply our pretraining method on
the generated data and show results in Table 3.11. Note that we do not choose MSRVTT-
QA and MSVD-QA as downstream datasets for this comparison because their evaluation sets
were automatically generated using [Heilman, 2010]. We find that our generation method leads
to significantly better performance both in zero-shot and finetuning settings. We supplement
this quantitative comparison with a qualitative comparison shown in Figure 3.11. We found
that compared to [Heilman, 2010] our generation method provides higher quality as well as
higher diversity of question-answer pairs when applied to the uncurated sentences extracted
from speech in narrated videos. This further demonstrates the benefit of our transformer-based
question-answer generation approach compared to previous rule-based methods.

Comparison of VideoQA training datasets. We also evaluate the importance of our gen-
erated HowToVQA69M dataset by comparing our results to cross-dataset transfer using ex-
isting VideoQA datasets. We define cross-dataset transfer as a procedure where we pretrain
our VideoQA model on a VideoQA dataset and then finetune and test it on another VideoQA
dataset. The training follows the procedure described for finetuning in Section 3.4.2. We report
results for cross-dataset transfer in Table 3.12. Note that we do not use MSVD-QA as down-
stream dataset as its test set has been automatically generated with the same method [Heilman,
2010] as MSRVTT-QA. As can be observed, our approach with pretraining on HowToVQA69M
significantly outperforms cross-dataset transfer models using the previously largest VideoQA
dataset (MSRVTT-QA), or the largest manually annotated VideoQA dataset (ActivityNet-
QA), both for the zero-shot and finetuning settings, on all four downstream datasets. We
emphasize that our dataset is generated relying on text-only annotations, while MSRVTT-QA
was generated using manually annotated video descriptions and ActivityNet-QA was manually
collected. These results further demonstrate the benefit of our HowToVQA69M dataset for
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Alt-Text: Male athlete jogging 
in the morning. runner man 
running on park path exercising 
on beautiful summer day...
Question: What activity does a 
male athlete do in the morning?
Answer: Jogging

Alt-Text: Two girls walk along 
the sandy beach in northern 
ireland on a chilly day in autumn.
Question: How many girls walk 
along the beach in northern 
ireland in autumn?
Answer: 2

Alt-Text: Black cat sitting on 
floor.
Question: What type of cat is 
sitting on floor?
Answer: Black cat

Alt-Text: Lion in masai mara 
reserve.
Question: What animal is in 
the masai mara reserve?
Answer: Lion

Alt-Text: Snow mountain top 
fly over at sunrise. cool blue 
clear sky.
Question: What color is the 
sky at sunrise?
Answer: Cool blue

Alt-Text: Code editor interface. 
programming software screen 
with syntax highlighting. code 
writing process.
Question: What is the process 
of writing code?
Answer: Code writing process

Alt-Text: Timelapse of clouds 
passing over mountain with 
reflection in lake.
Question: Where are 
reflections of clouds seen?
Answer: Lake

Alt-Text: Time lapse 
illuminated oriental pearl 
tower huangpu river shanghai.
Question: What is the term for 
the illuminated oriental pearl 
tower?
Answer: Time lapse

Alt-Text: Sliding across a 
christmas tree from blur into 
focus.
Question: What is the effect of 
sliding across a christmas tree?
Answer: Blur

Alt-Text: The big sea turtle 
swims slowly along the coral 
reef, red sea, egypt. full hd 
underwater footage.
Question: What is the coral reef 
in Egypt called?
Answer: Red sea

Caption: Sport man jogging. 
black
Question: What color is a 
sport man wearing when 
jogging?
Answer: Black

Alt-Text: Aerial michigan 
detroit july 2017 sunset 4k 
inspire 2.
Question: How many people 
saw the sunset in michigan 
detroit in july?
Answer: 2

Alt-Text: 1930s: helen wills 
moody plays at and wins 
wimbledon in the 1930s.
Question: In what decade did 
helen wills moody win 
wimbledon?
Answer: 1930s

Alt-Text: Stock 4k: evening 
time lapse of district 7 
riverside view of ho chi minh 
city or saigon, vietnam.
Question: What is another 
name for Ho Chi Minh City?
Answer: Saigon

Alt-Text: Smog upon a city, 
dirty city, industry, pollution of 
environment, winter cityscape.
Question: What is one of the 
causes of smog upon a city?
Answer: Pollution of 
environment

Alt-Text: Portrait of an adult 
furry lazy cat who is resting 
lying.
Question: Where is the cat 
resting?
Answer: Lying

Figure 3.12: Examples of questions-answers generated from video alt-text pairs from the Web-
Vid2M dataset [Bain, 2021]. The green color (first row) indicates relevant examples, the orange
color (second row) indicates a failure of the question-answer generation, and the red color (third
row) indicates that the generated question-answer is unrelated to the visual content.

Pretraining Data Zero-shot Finetune

iVQAMSRVTT
QA

MSVD
QA

ActivityNet
QA How2QA iVQAMSRVTT

QA
MSVD
QA

ActivityNet
QA How2QA

∅ — — — — — 23.0 39.6 41.2 36.8 80.8
WebVidVQA3M 7.3 5.3 12.3 6.2 49.8 28.1 41.2 45.4 38.1 82.4
HowToVQA69M 12.2 2.9 7.5 12.2 51.1 35.4 41.5 46.3 38.9 84.4

HowToVQA69M +
WebVidVQA3M 13.3 5.6 13.5 12.3 53.1 35.2 41.8 47.5 39.0 85.3

Table 3.13: Comparison of our VideoQA training datasets generated with different video-text
data source, evaluated by downstream performance of the model pretrained on the generated
data in zero-shot mode and after finetuning.

training VideoQA models.

3.6.7 Generalization to other video-text datasets

In this section, we show that our VideoQA generation approach can be generalized to other
sources of non-manually annotated video-text paired data. For this, we extend and apply our
generation pipeline presented in Section 3.3.1 to videos with alt-text description, i.e. alt-text
HTML attribute associated with videos, from the WebVid2M dataset [Bain, 2021].
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Method iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA How2QA

QA-T 14.1 32.8 32.6 30.4 76.6
VQA-T 23.0 39.6 41.2 36.8 80.8

Table 3.14: Comparison of QA-T and VQA-T models trained from scratch (without pretraining)
on downstream datasets.

WebVidVQA3M dataset. We first explain how we adapt our generation pipeline detailed
in Section 3.3.1 to video alt-text pairs. As captions in WebVid2M are relatively short, we do not
apply the punctuation model but directly apply the question-answer generation models on the
captions. Captions in WebVid2M are also not temporally localized, so the generated question-
answers are not temporally localized either. They instead refer to the whole videos, which are
typically short (4 seconds on average). Applying our generation pipeline to WebVid2M [Bain,
2021], we generate WebVidVQA3M, a dataset of 3,476,610 question-answers associated with
2,404,871 videos. Examples of generated samples are illustrated in Figure 3.12. These examples
show that despite a substantial visual-linguistic domain difference compared to HowTo100M,
our approach is able to generate relevant VideoQA data. We believe that qualitatively, the
generated QA data from WebVidVQA3M are of better quality than the generated QA data
from HowToVQA69M (see Section 3.3.2). We argue that WebVid2M [Bain, 2021] has a better
visual-linguistic correlation and a higher quality of text data compared to HowTo100M [Miech,
2019], which facilitates the VideoQA generation.

Benefits of training on WebVidVQA3M. We next apply our pretraining method on the
generated data and show results in Table 3.13. We also explore combining both datasets with
a simple curriculum learning strategy, where our model initially pretrained on HowToVQA69M
is further trained on WebVidVQA3M. We find that training only on WebVidVQA3M gives
competitive performance both in the zero-shot setting and the finetuning setting. Notably, it
significantly improves over the variant trained from scratch in the finetuning setting. This shows
that our approach can be generalized to other sources of video and text data. Additionally, we
find that combining the two datasets for pretraining results in additional improvements both for
zero-shot and finetuning. Therefore the difference with previous methods is also increased (see
Tables 3.6-3.7). Note that as WebVidVQA3M is significantly smaller than HowToVQA69M, our
training runs faster on this dataset (20 GPUH instead of 350 GPUH), which gives a practical
advantage to WebVidVQA3M. We have open-sourced WebVidVQA3M annotations to facilitate
future research.

3.6.8 Importance of the visual modality in iVQA

We show in Table 3.14 that QA-T is a strong baseline compared to VQA-T on existing VideoQA
datasets, when both are trained from scratch. However, on iVQA, VQA-T improves even more
over QA-T than with other datasets, as measured by absolute improvement in top-1 accuracy.
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MLM Sampling without
answer repetition Zero-shot Finetune

iVQA MSVD-QA iVQA MSVD-QA
7 7 11.1 6.1 34.7 45.6
7 3 12.1 7.0 34.3 45.0
3 7 10.9 6.4 34.3 45.1
3 3 12.2 7.5 35.4 46.3

Table 3.15: Effect of MLM loss and our negative sampling strategy on HowToVQA69M training.

Pretraining data size Zero-shot Finetune
iVQA MSVD-QA iVQA MSVD-QA

0% — — 23.0 41.2
1% 4.5 3.6 24.2 42.8
10% 9.1 6.2 29.2 44.4
20% 9.5 6.8 31.3 44.8
50% 11.3 7.3 32.8 45.5
100% 12.2 7.5 35.4 46.3

Table 3.16: Effect of the training size of HowToVQA69M.

This suggests that the visual modality is more important in iVQA than in other VideoQA
datasets.

3.6.9 Ablation studies

Pretraining losses. As shown in Table 3.15, removing duplicate negative answers in our
contrastive loss, as discussed in Section 3.4.2, is beneficial notably in the zero-shot setting.
Moreover, adding the MLM loss during pretraining improves the downstream results for both
zero-shot and finetuning when used in combination with our contrastive learning strategy. These
results motivate our proposed pretraining approach.

Importance of scale. Results of our method after pretraining on different fractions of How-
ToVQA69M are shown in Table 3.16. We construct these subsets such that larger subsets
include the smaller ones. These results suggest that the scale is an important factor and that
we can expect further improvements with additional pretraining data, both in the zero-shot and
finetuning settings.

3.7 Conclusion

We propose a novel and scalable approach for training VideoQA models without manually anno-
tated visual data. We automatically generate HowToVQA69M – a large-scale VideoQA training
dataset generated from narrated videos with readily-available speech transcripts, significantly
exceeding existing datasets by size and diversity. We demonstrate several benefits of pretraining
on HowToVQA69M. We are the first to demonstrate zero-shot VideoQA results while using
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no manually annotated images or videos for training. We also introduce the VideoQA feature
probe evaluation setting and show strong generalization capabilities of the multi-modal represen-
tation learnt by our pretrained model. Furthermore, finetuning our HowToVQA69M pretrained
model on downstream tasks achieves competitive performance on MSRVTT-QA, ActivityNet-
QA, MSVD-QA and How2QA. Moreover, we show that our approach generalizes to other sources
of web videos by generating the WebVidVQA3M from video alt-text pairs and showing its ben-
efits for VideoQA training. We further validate our approach on our new manually-collected
iVQA benchmark.

Limitations Generating question answering data at scale is computationally expensive (the
cost is about 10K GPUH for the HowToVQA69M dataset). Moreover, our generation method re-
lies on text-only question-answering manual annotations from the SQuADv1 dataset [Rajpurkar,
2016] to train the question generation models. Furthermore, our VideoQA model cannot make
use of the speech modality: if we would train it with transcribed speech input, it would simply
learn shortcuts between the transcribed speech, the question and the answer as the question-
answer pair is generated from the transcribed speech. We propose an alternative solution to
the zero-shot VideoQA problem that alleviates the aforementioned limitations in the following
chapter.
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Chapter 4
Zero-Shot Video Question Answering via
Frozen Bidirectional Language Models

In the previous chapter, we address the video question answering task (VideoQA) in the zero-
shot setting, with no manual annotation of visual question-answer. However, the previous
approach requires an expensive data generation procedure. An alternative approach adapts
frozen autoregressive language models pretrained on web-scale text-only data to multi-modal
inputs. In contrast, in this chapter, we build on frozen bidirectional language models (BiLM) and
show that such an approach provides a stronger and cheaper alternative for zero-shot VideoQA.
In particular, (i) we combine visual inputs with the frozen BiLM using light trainable modules,
(ii) we train such modules using Web-scraped multi-modal data, and finally (iii) we perform
zero-shot VideoQA inference through masked language modeling, where the masked text is the
answer to a given question (see Figure 4.1). Our proposed approach, FrozenBiLM, outperforms
the prior state of the art in zero-shot VideoQA by a significant margin on a variety of datasets,
including LSMDC-FiB [Maharaj, 2017], iVQA [Yang, 2021b], MSRVTT-QA [Xu, 2017], MSVD-
QA [Xu, 2017], ActivityNet-QA [Yu, 2019], TGIF-FrameQA [Jang, 2017], How2QA [Li, 2020b]
and TVQA [Lei, 2018a]. It also demonstrates competitive performance in the few-shot and
fully-supervised setting. Our code and models are publicly available at [Yang, 2022a].

Little cute toy poodle dog 
running fast on the beach.

Zero-Shot VideoQA

What is the dog doing?

FrozenBiLM
Pretrained

BiLM

Test 
data:

Video

Question
+

Answer:  Running

FrozenBiLM
Pretrained

BiLM

Training 
data:
Web-

scraped
Video +
Caption

Cross-modal Training

Figure 4.1: Our model FrozenBiLM builds on a pretrained and frozen bidirectional language
model (BiLM), and is trained from web-scraped video-caption pairs. FrozenBiLM excels in
the zero-shot video question answering task without using any explicit visual question-answer
supervision.
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4.1 Introduction

Video question answering (VideoQA) is a challenging task that requires fine-grained multi-modal
understanding. State-of-the-art approaches to VideoQA [Le, 2020a; Yu, 2021; Zellers, 2021] rely
on large video datasets manually annotated with question-answer pairs. Yet, collecting such
annotations is time consuming, expensive and therefore not scalable. This has motivated the
development of zero-shot VideoQA approaches [Yang, 2021b; Yang, 2022c; Zellers, 2022], that
use no visual question-answer annotation for training, see Figure 4.1.

Recently, a promising line of work builds on frozen large autoregressive language mod-
els [Eichenberg, 2021; Mokady, 2021; Tsimpoukelli, 2021; Wang, 2022e; Yang, 2021f; Zeng, 2023]
for zero-shot visual question answering. This has been motivated by the findings from GPT-
3 [Brown, 2020] which exhibits strong zero-shot text-only question answering abilities from large
autoregressive language models. Such models [Brown, 2020; Raffel, 2020; So, 2021; Vaswani,
2017] can predict an arbitrarily long sequence of text, one token at each step from left to right.
However, they usually require billion parameters to work well, making them computationally
expensive to train, and challenging to deploy in practice.

In contrast, recent work in natural language [Mahabadi, 2022; Schick, 2021a; Schick, 2021b;
Tam, 2021] demonstrates strong zero-shot performance for lighter bidirectional language models
(BiLM). Such models [Devlin, 2019; He, 2021b; Joshi, 2020; Lan, 2020; Liu, 2019b; Sanh, 2019]
can predict a few masked tokens in an input sequence given left and right context in a single
forward pass. These works cast downstream tasks in cloze form1 [Taylor, 1953], similar to the
masked language modeling task (MLM) [Devlin, 2019] solved by these models at pretraining.
This motivates us to tackle diverse zero-shot multi-modal tasks (open-ended VideoQA [Xu, 2017],
multiple-choice VideoQA [Lei, 2018a] and fill-in-the-blank [Maharaj, 2017]) by formulating them
in cloze form and leveraging the text-only knowledge of pretrained BiLM.

To adapt a pretrained BiLM to multi-modal inputs, we combine it with a frozen pretrained
visual backbone and a set of lightweight additional modules including adapters [Houlsby, 2019].
We train these modules on Web-scraped video-text data using a simple visually-conditioned
MLM loss. We preserve the uni-modal knowledge of a BiLM by freezing its weights. To our
knowledge, our approach is the first to explore the zero-shot visual-linguistic capabilities of
frozen non-autoregressive language models.

We show that our approach largely improves over the prior state of the art on various zero-
shot VideoQA benchmarks. Furthermore, we demonstrate that frozen bidirectional language
models perform better while being cheaper to train than frozen autoregressive language mod-
els [Tsimpoukelli, 2021]. Moreover, our ablation studies show (i) the ability of our model to
effectively perform zero-shot multi-modal reasoning using both visual cues and speech tran-
scripts, (ii) the importance of adapters combined with frozen pretrained language models, (iii)
the impact of multi-modal data scale, (iv) the impact of the language model size and of bidi-
rectional modeling. Our approach also performs competitively in the fully-supervised setting.
Indeed, we show the benefits of freezing the weights of a BiLM when using VideoQA training

1“Cloze test" is an exercise test where certain portions of text are occluded or masked and need to be filled-in.
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data, while updating considerably less parameters compared to alternative methods. Finally, we
introduce a new few-shot VideoQA task in which we finetune our pretrained model on a small
fraction of the downstream training dataset, and show promising results in this setting.

In summary, our contributions are three-fold:

(i) We present FrozenBiLM, a framework that handles multi-modal inputs using frozen bidi-
rectional language models and enables zero-shot VideoQA through masked language mod-
eling.

(ii) We provide an extensive ablation study and demonstrate the superior performance of our
framework in the zero-shot setting when compared to previous autoregressive models.

(iii) Our approach improves over the prior state of the art in zero-shot VideoQA by a significant
margin. FrozenBiLM also demonstrates competitive performance in the fully-supervised
setting and shows strong results in the few-shot VideoQA setting which we introduce.

4.2 Related Work

Zero-shot VideoQA. A vast majority of VideoQA approaches rely on relatively small, man-
ually annotated VideoQA datasets [Amrani, 2021; Castro, 2020; Chadha, 2021; Choi, 2021;
Colas, 2020; Dang, 2021; Fan, 2019b; Gao, 2018; Garcia, 2020; Huang, 2020a; Jiang, 2020a;
Jiang, 2020b; Kim, 2020a; Kim, 2020b; Kim, 2017; Kim, 2021a; Le, 2020a; Le, 2020b; Lei,
2020b; Li, 2019b; Lin, 2021b; Mun, 2017; Park, 2021; Sadhu, 2021; Seo, 2021b; Seo, 2022;
Song, 2018; Tapaswi, 2016; Xiao, 2021; Xue, 2018; Yang, 2020a; Ye, 2017; Zha, 2019; Zhuang,
2020]. Recently, a few work [Yang, 2021b; Zellers, 2022] have explored zero-shot approaches for
VideoQA, where models are only trained on automatically mined video clips with short text
descriptions. In contrast to VideoQA annotations, such video-text pairs are readily-available at
scale on the Web [Bain, 2021; Miech, 2019; Zellers, 2021]. In particular, Yang et al. [Yang, 2021b]
automatically generate VideoQA training data using language models [Raffel, 2020] pretrained
on a manually annotated text-only question-answer corpus [Rajpurkar, 2016]. Reserve [Zellers,
2022] uses GPT-3 [Brown, 2020] to rephrase questions into sentences completed by a multi-
modal model. In contrast to these prior works [Yang, 2021b; Zellers, 2022], our method does
not require any kind of explicitly annotated language dataset or the use of data generation
pipelines for zero-shot VideoQA. Note that BLIP [Li, 2022c] studies a related setting where a
model trained on manually annotated image-question-answer triplets is transferred to VideoQA,
which is a less challenging task. Also note that VideoCLIP [Xu, 2021] considers a related zero-
shot multiple-choice video-to-text retrieval task as VideoQA, but in this setting the model is
not provided with natural language questions.

Visual language models. As language models require large amounts of training data to
perform well [Hoffmann, 2022], recent works have studied transferring pretrained language
models [Brown, 2020; Wang, 2021a] to image-text tasks. VisualGPT [Chen, 2021a] and VC-
GPT [Luo, 2022] showed the benefit of initializing the weights of an image captioning model with
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a pretrained autoregressive language-only model. Recent work pushed this idea further by freez-
ing the weights of a pretrained autoregressive language model for tackling vision and language
tasks [Alayrac, 2022; Eichenberg, 2021; Mokady, 2021; Tsimpoukelli, 2021; Wang, 2022e; Yang,
2021f; Zeng, 2023]. Our approach also leverages a frozen pretrained language model. Similar to
MAGMA [Eichenberg, 2021], we also use adapter layers [Houlsby, 2019; Hu, 2022a]. However,
we differ from these approaches as we propose to instead use lighter bidirectional masked lan-
guage models, instead of autoregressive ones, and rely on a masked language modeling objective
(MLM) instead of an autoregressive one. Moreover, our model is specifically designed for videos,
for which high-quality visual question answering annotation is even more scarce compared to
still images [Eichenberg, 2021; Mokady, 2021; Tsimpoukelli, 2021; Yang, 2021f]. We also ex-
plore the use of the speech modality, and tackle tasks which are challenging for autoregressive
language models such as video-conditioned fill-in-the-blank [Maharaj, 2017]. Finally we show
in Section 4.4.3 the superior performance of frozen bidirectional language models in comparison
with autoregressive ones [Tsimpoukelli, 2021].

Masked Language Modeling in vision and language. The MLM objective was initially
introduced in natural language [Devlin, 2019; Lan, 2020; Liu, 2019b] to pretrain bidirectional
transformers and learn generic representations. This approach achieved state-of-the-art results
in many language tasks after finetuning on downstream datasets. Its success inspired numerous
works to adapt it to train multi-modal transformer models on paired visual-linguistic data [Chen,
2020b; Fu, 2021; Gan, 2020; Hendricks, 2021; Huang, 2020c; Kim, 2021b; Lei, 2021b; Li, 2020a;
Li, 2019a; Li, 2020b; Li, 2020d; Li, 2021a; Li, 2022a; Lu, 2019; Lu, 2020; Shen, 2021; Singh,
2022; Su, 2019; Sun, 2019b; Tan, 2019; Wang, 2023; Wang, 2021b; Yu, 2020; Zellers, 2021;
Zhou, 2020; Zhu, 2020]. However, these works typically use it to learn generic visual-linguistic
representations by updating the transformer weights, and then use expensive manual supervision
to train randomly initialized task-specific answer classifiers for VQA [Chen, 2020b; Gan, 2020;
Li, 2020a; Li, 2021a; Li, 2020d; Lu, 2019; Shen, 2021; Singh, 2022; Su, 2019; Tan, 2019;
Wang, 2021b; Yu, 2020] or VideoQA [Fu, 2021; Lei, 2021b; Li, 2022a; Wang, 2023; Zellers,
2021]. In contrast, we tackle zero-shot VideoQA, i.e. without using any manual annotation.
Moreover, we do not update the transformer weights during cross-modal training, but instead
exhibit the benefits of freezing these weights after text-only pretraining, for both zero-shot and
fully-supervised VideoQA (see Sections 4.4.2 and 4.4.5).

4.3 Method

This section presents our approach to tackle zero-shot video question answering. Here, zero-shot
means that we do not use any visual question answering annotation and only rely on scalable
data from the Web. Our approach starts with two strong pretrained components: (i) a text-only
bidirectional masked language model (BiLM) pretrained on data from the Internet, which has
the capability of zero-shot question answering but is not capable of visual reasoning, and (ii) a
vision encoder pretrained to map images to text descriptions, but which does not have the ability
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Figure 4.2: Our training architecture consists of a large frozen bidirectional language
model (BiLM) and a frozen pretrained visual encoder (in blue), complemented with additional
lightweight trainable modules (in orange): (1) a visual-to-text projection module P (on the
left), which maps the frozen visual features to the joint visual-text embedding space and (2) a
set of small adapter modules A (on the right) in between the frozen transformer blocks. The
pretrained normalization layers in the BiLM (on the right) are also finetuned.

to perform visual question answering. We aim at connecting these two components while keeping
the language component frozen to avoid catastrophic forgetting [De Lange, 2021], where the large
language model would specialize to a new task while forgetting its initial capabilities. The end-
goal is to design a unified model having the best of both worlds: visual understanding capabilities
of a powerful visual encoder and question answering capabilities of a powerful language model.
This requires several technical innovations, which are described in the rest of this section. First,
we explain in Section 4.3.1 how we augment a frozen pretrained bidirectional masked language
model with new layers to enable joint video and language reasoning, see Figure 4.2. Second, we
present in Section 4.3.2 how we train these layers on video-text data scraped from the Web [Bain,
2021]. Finally, we describe in Section 4.3.3 how we enable zero-shot predictions for several video-
language downstream tasks, including open-ended VideoQA, by casting them in a cloze form,
similar to the masked language modeling task solved during training.

4.3.1 Architecture

The proposed architecture, illustrated in Figure 4.2, brings together a powerful frozen pretrained
bidirectional language model with a strong visual encoder. The difficulty lies in enabling multi-
modal reasoning while keeping the large language model frozen. To address this challenge,
we unify these two models via a visual-to-text projection module together with small adapter
modules inserted within the frozen language model. Next, we describe in more detail the three
main components of the architecture: (i) the frozen pretrained bidirectional language model,
(ii) the pretrained video encoder and (iii) the lightweight modules that seamlessly connect the
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two components.

Frozen Bidirectional Masked Language Model. Our method starts from a pretrained
bidirectional language model based on a Transformer encoder [Vaswani, 2017]. The input text
is decomposed into a sequence of tokens x = {xi}L1 ∈ [1, V ]L by a tokenizer of a vocabulary
size V . The language model, parameterized by θ, makes use of an embedding function gθ

which independently transforms each token into a D-dimensional continuous embedding t =
{ti}L1 := {gθ(xi)}L1 ∈ RL×D, a Transformer encoder fθ which computes interactions between
all input tokens and outputs contextualized representations t′ = {t′i}L1 , and a masked language
modeling (MLM) classifier head mθ which independently maps the D-dimensional continuous
embedding for each token t′i to a vector of logits parameterizing a categorical distribution over
the vocabulary V . This distribution is referred to by log pθ(x) := {mθ(t′i)}L1 ∈ RL×V . We
assume that the language model is pretrained, i.e. θ has been optimised with a standard MLM
objective [Devlin, 2019] on a large dataset of text from the Web. We show in Section 4.4.2 that
this text-only pretraining has a crucial importance for zero-shot VideoQA.

Pretrained Video Encoder. The video is represented by a sequence of frames y = {yi}T1 .
Each frame is forwarded separately through a visual backbone hφ, which outputs one feature
vector per frame u = {ui}T1 := {hφ(yi)}T1 ∈ RT×Du . In detail, the visual backbone is CLIP
ViT-L/14 [Dosovitskiy, 2021; Radford, 2021] at resolution 224 × 224 pixels, pretrained to map
images to text descriptions with a contrastive loss on 400M Web-scraped image-text pairs. The
backbone is kept frozen throughout our experiments. Note that a CLIP-baseline for zero-shot
VideoQA results in poor performance, see Section 4.4.4.

Connecting the Frozen Language and Frozen Vision components. The video fea-
tures are incorporated into the language model as a prompt [Lester, 2021; Li, 2021c; Zhou,
2022] v of length T (Figure 4.2, left). This prompt is obtained by linearly mapping the vi-
sual features u to the text token embedding space via a visual-to-text projection P ∈ RDu×D,
i.e. v = {vi}T1 := {P (ui)}T1 . The prompt is then concatenated with the text embeddings
before being forwarded to the transformer encoder that models joint visual-linguistic inter-
actions. We show in Section 4.4.2 that incorporating the input video considerably improves
zero-shot VideoQA results. In addition, to learn powerful multi-modal interactions while keep-
ing the transformer encoder weights frozen, we equip the transformer encoder with lightweight
adapter modules A [Houlsby, 2019] (Figure 4.2, right). We use an adapter which transforms
the hidden state z with a multi-layer perceptron transformation and a residual connection,
i.e. A(z) = z + W upψ(W downz) with W down ∈ RD×Dh , W up ∈ RDh×D, D the hidden dimen-
sion of the transformer, Dh the bottleneck dimension, and ψ a ReLU activation function. Dh

is typically set to be smaller than D such that the adapters are lightweight. In detail, we
add an adapter module before the layer normalization, after each self-attention layer and each
feed-forward layer of the transformer encoder.
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4.3.2 Cross-modal training

We wish to train the newly added modules introduced in the previous section (shown in orange
in Figure 4.2) for the VideoQA task. This is hard because we assume that no explicit manual
annotation for the VideoQA task is available, such annotations being expensive and therefore
hard to obtain at scale. Instead we train our architecture using only readily-available video-
caption pairs scraped from the Web. Such data is easy to obtain [Bain, 2021; Miech, 2019;
Zellers, 2021], ensuring the scalability of our approach.

During training, we keep the weights of the pretrained BiLM and pretrained visual backbone
frozen as previously explained. We train from scratch the parameters of (i) the visual-to-text
projection module P and (ii) the adapter modules A. We show in Section 4.4.2 the impor-
tance of freezing the BiLM weights combined with training the adapter modules. Note that all
normalization layers [Ba, 2016] of the pretrained BiLM are also updated to adjust to the new
distribution of the training data. We denote all the trainable parameters of our model by the
subscript µ. In practice, they sum up to about 5% of the BiLM parameters, hence the training
of our model is computationally efficient.

We use a visually-conditioned masked language modeling objective (MLM), in which some
text tokens {xm} are randomly masked and the model has to predict these tokens based on the
surrounding text tokens and the video input. Formally, we minimize the following loss:

Lµ(x, y) = − 1
M

∑
m

log pµ(x̃, y)xm
m , (4.1)

where x̃ is the corrupted text sequence, y is the sequence of video frames, pµ(x̃, y)xm
m is the

probability for the (masked) m-th token in x̃ to be xm, and M is the number of masks in the
sequence x̃. In detail, we follow [Devlin, 2019] and corrupt 15% of text tokens, replacing them
80% of the time with a mask token, 10% of the time with the same token and 10% of the time
with a randomly sampled token.

4.3.3 Adapting to downstream tasks

After training, our model is able to fill gaps in the input text given an input video together with
left and right textual context as part of the input text. We wish to apply our model out-of-the-box
to predict an answer given a question about a video. The video can optionally come with textual
subtitles obtained using automatic speech recognition. To avoid using manual supervision, we
formulate the downstream tasks in cloze form [Schick, 2021a; Taylor, 1953], i.e. such that the
model only has to fill-in a mask token in the input prompt similarly to the MLM objective
optimized during training. The adaptation to the downstream tasks brings several challenges,
as described next. First, we describe how we formulate the input text prompts for several
downstream tasks. Then, we explain how we map the mask token from the input text prompt
to an answer via a frozen answer embedding module. Finally, we present how we finetune our
architecture in a supervised setting.
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Input prompt engineering. We describe how we design the input text prompts for several
downstream video-language tasks. Each downstream task is formulated as a masked language
modeling problem. This allows us to apply FrozenBiLM out-of-the-box. A [CLS] token and a
[SEP] token are respectively inserted at the start and the end of each sequence following [Devlin,
2019].
Open-ended VideoQA. Given a question and a video, the task is to find the correct answer in a
large vocabulary A of about 1K answers. Answers are concise, i.e. the great majority of answers
consist of one word [Jang, 2017; Xu, 2017; Yang, 2021b; Yu, 2019]. We design the following
prompt:
“[CLS] Question: <Question>? Answer: [MASK]. Subtitles: <Subtitles> [SEP]”

Multiple-choice VideoQA. Given a question and a video, the task is to find the correct answer
in a small number of candidates C, typically up to 5 choices [Lei, 2018a; Li, 2020b]. We set the
vocabulary to A = [Yes,No] and compute a confidence score for each candidate by using the
following prompt:
“[CLS] Question: <Question>? Is it ’<Answer Candidate>’? [MASK]. Subtitles:

<Subtitles> [SEP]”

We choose the best option by selecting the candidate with the highest Yes logit value.
Video-conditioned fill-in-the-blank task. Given a video and a sentence with a blank space, the
task is to fill in the blank with the correct word from a vocabulary A of about 1K answers. We
replace the blank in the sentence with a mask token, and design the following prompt:
“[CLS] <Sentence with a [MASK] token>. Subtitles: <Subtitles> [SEP]”

Note that all prompts are prepended with the video prompt (see Section 4.3.1) before being
forwarded to the transformer encoder.

Answer embedding module. For each downstream task, we wish to map the mask token
in the input text prompt to an actual answer prediction in the set of possible answers A,
as described above. For this we use the frozen MLM classifier head mθ. However, mθ ∈
RV×D covers V different tokens where V >> N and N ≈ 1, 000 is the size of A. Therefore,
we introduce a task-specific answer classification head l which linearly maps a contextualized
mask representation t′i to a vector of logits parameterizing a categorical distribution over the
vocabulary A, i.e. l ∈ RN×D. We set the weights of this answer module l with the corresponding
weights of the pretrained MLM classifier mθ for one-token answers. In the case of multi-token
answers, we average the weights of their different tokens. We, hence, enable zero-shot inference
at test time. We also discuss other alternative strategies to handle multi-token answers in
Appendix Section 4.4.2.

Fully-supervised training. To evaluate our approach on fully-supervised benchmarks, we
also explore finetuning of our model on datasets that provide manual annotations for the target
task. To this end, we train the same parameters as explained in Section 4.3.2, while keeping the
transformer weights and the answer embedding module frozen. For open-ended VideoQA and
video-conditioned fill-in-the-blank, we use a cross-entropy loss on the task-specific vocabulary
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A. For multiple-choice VideoQA, we use a binary cross-entropy loss applied to each answer
candidate. We show in Section 4.4.5 the benefit of freezing the language model weights during
fully-supervised training.

4.4 Experiments

This section demonstrates the benefits of our FrozenBiLM framework and compares our method
to the state of the art. We first outline our experimental setup in Section 4.4.1. We then
present ablation studies in Section 4.4.2. Next we compare our bidirectional framework to its
autoregressive variant in Section 4.4.3. The comparison to the state of the art in zero-shot
VideoQA and qualitative results are presented in Section 4.4.4. We then finetune our model on
the VideoQA task in Section 4.4.5, where we show few-shot and fully-supervised results. Finally,
we provide an analysis of the frozen self-attention patterns in FrozenBiLM in Section 4.4.6.

4.4.1 Experimental setup

Frozen bidirectional language model. We use a tokenizer based on SentencePiece [Kudo,
2018] with V = 128, 000, and a bidirectional language model with 900M parameters, DeBERTa-
V2-XLarge [He, 2021b], trained with the MLM objective on a corpus of 160G text data. We
also show how our approach generalizes to other MLM-pretrained bidirectional language models
such as BERT [Devlin, 2019] in Section 4.4.2.

Datasets. For training we use the publicly availableWebVid10M dataset [Bain, 2021], which
consists of 10 million of video-text pairs scraped from the Shutterstock website where video cap-
tions are obtained from readily-available alt-text descriptions. We evaluate results on eight down-
stream datasets covering a wide range of textual and video domains (e.g. GIFs, YouTube videos,
TV shows, movies), and multiple VideoQA paradigms: open-ended VideoQA (iVQA [Yang,
2021b], MSRVTT-QA [Xu, 2017], MSVD-QA [Xu, 2017], ActivityNet-QA [Yu, 2019]
and TGIF-QA FrameQA [Jang, 2017]), multiple-choice VideoQA (How2QA [Li, 2020b] and
TVQA [Lei, 2018a]) and video-conditioned fill-in-the-blank (LSMDC-Fill-in-the-blank [Ma-
haraj, 2017]). Unless stated otherwise, we report top-1 test accuracy using the original splits
for training, validation and test. Below we describe the downstream datasets in more detail.
LSMDC-FiB [Maharaj, 2017] is an open-ended video-conditioned fill-in-the-blank task which
consists in predicting masked words in sentences that describe short movie clips [Rohrbach, 2015;
Rohrbach, 2017]. It contains 119K video clips and 349K sentences, split into 297K/22K/30K
for training/validation/testing.
iVQA [Yang, 2021b] is a recently introduced open-ended VideoQA dataset, focused on objects,
scenes and people in instructional videos [Miech, 2019]. It excludes non-visual questions, and
contains 5 possible correct answers for each question for a detailed evaluation. It contains 10K
video clips and 10K questions, split into 6K/2K/2K for training/validation/testing.
MSRVTT-QA [Xu, 2017], MSVD-QA [Xu, 2017] and TGIF-FrameQA [Jang, 2017] are
popular open-ended VideoQA benchmarks automatically generated from video descriptions [Chen,
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2011; Li, 2016; Xu, 2016b]. Questions are of five types for MSRVTT-QA and MSVD-QA:
what, who, how, when and where; and four types for TGIF-QA: object, number, color and
location. MSRVTT-QA contains 10K video clips and 243K question-answer pairs, split into
158K/12K/73K for training/validation/testing. MSVD-QA contains 1.8K video clips and 51K
question-answer pairs, split into 32K/6K/13K for training/validation/testing. TGIF-QA con-
tains 46K GIFs and 53K question-answer pairs, split into 39K/13K for training/testing.
ActivityNet-QA [Yu, 2019] is an open-ended VideoQA dataset consisting of long videos [Caba
Heilbron, 2015] (3 minutes long on average), and covering 9 question types (motion, spatial,
temporal, yes-no, color, object, location, number and other). It contains 5.8K videos and 58K
question-answer pairs, split into 32K/18K/8K for training/validation/testing.
How2QA [Li, 2020b] is a multiple-choice VideoQA dataset focused on instructional videos [Miech,
2019]. Each question is associated with one correct and three incorrect answers. It contains 28K
video clips and 38K questions, split into 35K/3K for training/validation. We report results on
the public validation set for comparison with prior work [Seo, 2021b; Yang, 2021b; Yu, 2021].
TVQA [Lei, 2018a] is a multiple-choice VideoQA dataset focused on popular TV shows. Each
question is associated with one correct and four incorrect answers. It contains 22K video clips
and 153K questions, split into 122K/15K/15K for training/validation/testing. The test set is
hidden and only accessible a limited number of times via an online leaderboard. We report results
on the validation set for the ablation studies and on the hidden test set for the comparison to
the state of the art.

Implementation Details. As for the architecture hyperparameters, we truncate text se-
quences up to L = 256 tokens. Video features are extracted by sampling T = 10 frames, each
resized at 224 × 224 pixels, from the video. These frames are sampled at temporally equal
distance, with a minimum distance of 1 second. For videos shorter than T seconds, we pad the
video prompt up to T tokens. The dimension of the visual features from ViT-L/14 [Dosovit-
skiy, 2021] is Df = 768. The transformer encoder from DeBERTa-V2-XLarge [He, 2021b] has
24 layers, 24 attention heads, a hidden dimension of D = 1536 and an intermediate dimension in
the feed-forward layers of 6144. For the adapters [Houlsby, 2019], we use a bottleneck dimension
of Dh = D

8 = 192.
For training, we use the Adam optimizer [Kingma, 2015] with β = (0.9, 0.95) and no weight

decay. We use Dropout [Srivastava, 2014] with probability 0.1 in the adapters and in the
transformer encoder. When finetuning the language model weights, we divide the batch size by
a factor 2 so to accommodate with the GPU memory constraints.

For cross-modal training on WebVid10M, we use a total batch size of 128 video-caption pairs
split in 8 NVIDIA Tesla V100 GPUs. The training for 2 epochs on WebVid10M lasts 20 hours
on 8 Tesla V100 GPUs. We use a fixed learning rate of 3e−5 for the variant with adapters. We
find that the variant without adapters that freezes the language model weights prefers a higher
learning rate of 3e−4, and that the variant UnfrozenBiLM that finetunes the language model
weights prefers a lower one of 1e−5.

To finetune our model on downstream datasets, we use a total batch size of 32 video-question-
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LM Frozen Adapters Fill-in-the-blank Open-ended Multiple-choice

Pretraining LM LSMDC iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QA TVQA

1. 7 7 7 0.5 0.3 0.1 0.0 0.5 0.0 32.4 20.7
2. 3 7 7 37.1 21.0 17.6 31.9 20.7 30.7 45.7 45.6
3. 3 3 7 50.7 27.3 16.8 32.2 24.7 41.0 53.5 53.4
4. 3 3 3 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 4.1: The effect of initializing and training various parts of our model evaluated on zero-
shot VideoQA. All models are trained on WebVid10M and use multi-modal inputs (video, speech
and question) at inference.

answer triplets (respectively 32 video-sentence pairs) split in 4 NVIDIA Tesla V100 GPUs for
open-ended VideoQA datasets (respectively video-conditioned fill-in-the-blank datasets) and 16
video-question pairs split in 8 NVIDIA Tesla V100 GPUs for multiple-choice VideoQA datasets.
We train for 20 epochs for all downstream datasets except LSMDC-FiB for which we find that
training for 5 epochs leads to similar validation results. We warm up the learning rate linearly
for the first 10% of iterations, followed by a linear decay of the learning rate (down to 0) for the
remaining 90%. On each dataset, we run a random search and select the learning rate based
on the best validation results. We search over 10 learning rates in the range [1e−5, 1e−4] for
variants that freeze the language model weights, and [5e−6, 5e−5] for the variant UnfrozenBiLM
that finetunes the language model weights.

In the zero-shot open-ended VideoQA setting, we use an answer vocabulary composed of
the top 1, 000 answers in the corresponding training dataset, following [Zellers, 2021]. In the
fully-supervised setting, we experiment both with the vocabulary composed of the top 1, 000
answers and the vocabulary composed of all answers appearing at least twice in the corresponding
training dataset and choose the one leading to best validation results. Following [Zellers, 2021],
questions with out-of-vocabulary answer are not used for finetuning, and are automatically
considered as incorrect during evaluation.

4.4.2 Ablation studies

In this section, we evaluate the zero-shot performance of different variants of our method. By
default, we use the frozen pretrained DeBERTa-V2-XLarge language model and train the visual-
to-text-projection layer together with adapters for 2 epochs on WebVid10M. We refer to this
default model as FrozenBiLM . This model uses three input modalities in terms of video,
question, and speech, the prompts and the inference strategy described in Section 4.3.3, T = 10
video frames, Dh = 192 hidden dimension in the adapters, and the ViT-L/14 CLIP visual
backbone.

Ablation of the model training. We ablate the effect of initializing parameters of the
language model, freezing its weights and training adapters in Table 4.1. We observe that the
language model pretraining is crucial. Indeed, a model with randomly initialized language
weights (row 1) performs poorly compared to models initialized with language pretrained weights
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Visual Speech Fill-in-the-blank Open-ended Multiple-choice

LSMDC iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QA TVQA

1. 7 7 47.9 11.0 6.4 11.3 22.6 32.3 29.6 23.2
2. 7 3 49.8 13.2 6.5 11.7 23.1 32.3 45.9 44.1
3. 3 7 50.9 26.2 16.9 33.7 25.9 41.9 41.9 29.7
4. 3 3 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 4.2: Impact of the visual and speech modalities on zero-shot VideoQA. Rows 1 and 2
report results for a pretrained language model without any visual input. Rows 3 and 4 give
results for a FrozenBiLM model pretrained on WebVid10M.

(rows 2 to 4). Moreover, the model which updates the language model weights (row 2) during
cross-modal training performs considerably worse compared to variants that freeze them (rows
3 and 4). This shows the benefit of freezing the language model for zero-shot VideoQA. We also
notice the benefit of the adapter layers by comparing rows 3 and 4, especially for multiple-choice
datasets. Finally, we note that training variants with the frozen language model is twice faster
compared to updating all parameters, as there is a significantly lower number of parameters to
be trained.

Impact of modalities. Table 4.2 shows the impact of the visual and speech modalities on
the zero-shot performance of our model. First, we evaluate the text-only performance of our
model using neither visual input nor speech input in row 1. We can observe that adding speech
(row 2) marginally improves the results and that the importance of speech highly depends on the
dataset. When adding vision (rows 3 and 4), the performance increases significantly, e.g. +13.6%
accuracy on iVQA and +22.1% on MSVD-QA between rows 4 and 2. Finally, the model with
vision also benefits from the speech, e.g. +16.5% accuracy on How2QA and +29.5% accuracy
on TVQA (compare rows 3 and 4).

Note that in practice, speech is missing for many videos, as we obtain the speech directly
from the YouTube API and many videos are no longer available. Exceptions are How2QA and
TVQA for which the authors [Lei, 2018a; Li, 2021b] provide speech for all videos. Consequently,
we have speech data for only 44.3%, 14.2%, 8.2%, 7.1% and 25.3% of test samples in LSMDC-
FiB, iVQA, MSRVTT-QA, MSVD-QA and ActivityNet-QA respectively. GIFs in TGIF-QA do
not contain speech.

Training Data MSVD-QA How2QA
1. WebVid1K 13.6 53.0
2. WebVid10K 22.7 54.9
3. WebVid200K 27.8 56.0
4. WebVid2M 30.1 57.4
5. WebVid10M 33.8 58.4

Table 4.3: Dependency on the size of the train-
ing set. Zero-shot results are presented for dif-
ferent fractions of the WebVid10M dataset used
for training.

Size of the cross-modal training dataset.
Zero-shot results of FrozenBiLM after train-
ing for a fixed number of iterations on dif-
ferent fractions of WebVid10M are shown in
Table 4.3. We construct these subsets such
that larger subsets include the smaller ones.
We find that performance increases monoton-
ically with more multi-modal training data.

66



4.4. Experiments

Template iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA

1. “[CLS] Question: <Question>? Answer: [MASK].
Subtitles: <Subtitles> [SEP]“

26.8 16.7 33.8 25.9 41.9

2. “[CLS] Q: <Question>? A: [MASK].
S: <Subtitles> [SEP]“

27.4 16.2 32.5 25.5 41.9

3. “[CLS] <Question>? [MASK]. <Subtitles> [SEP]“ 23.1 13.6 28.0 21.6 25.2

Table 4.4: Impact of the prompt on the zero-shot open-ended VideoQA performance.

Template How2QA TVQA

1. “[CLS] Question: <Question>? Is it ”<Answer Candidate>”? [MASK].
Subtitles: <Subtitles> [SEP]

58.4 59.7

2. “[CLS] Q: <Question>? Is it ”<Answer Candidate>”? [MASK].
S: <Subtitles> [SEP]

57.7 58.2

3. “[CLS] <Question>? <Answer Candidate>? [MASK]. <Subtitles> [SEP]“ 47.6 55.0

Table 4.5: Impact of the prompt on the zero-shot multiple-choice VideoQA performance.

Size of the language model. In Table 4.9, we ablate the importance of the language model
size for the zero-shot performance. Note that when comparing different language models, we
use no adapters to avoid biases related to the choice of the bottleneck dimension hyperparam-
eter [Houlsby, 2019]. We find that using the 900M-parameter DeBERTA-V2-XLarge (row 6)
outperforms the 300M-parameter BERT-Large (row 5) which also improves over the 100M-
parameter BERT-Base (row 4).

Prompt design. Our text input prompts include a suffix just to the right of the mask token
which consists in a point and an end-of-sentence token for the variant without speech (or a
point followed by the speech subtitles for the variant with speech). We found that removing
this suffix leads to a considerable drop of performance (e.g. the test accuracy on MSVD-QA in
the row 3 of Table 4.2 drops from 33.7% to 2.8%). Note that we do not observe such a large
drop in performance when removing the [CLS] token, e.g. the accuracy on MSVD-QA drops
only from 33.8% to 33.2%. This shows that the bidirectional nature of our framework is a key
factor for the performance. Intuitively, this suffix forces the model to provide a concise answer.
Such a hard constraint cannot be given to unidirectional autoregressive models compared next
in Section 4.4.3.

We also ablate the importance of the prompt design on the zero-shot VideoQA performance.
We report results with alternative prompts in Tables 4.4 and 4.5. We find that replacing the
words “Question”, “Answer” and “Subtitles” by “Q”, “A” and “S”, respectively, in the templates
described in Section 4.3.3 does not impact the zero-shot VideoQA accuracy (compare rows 2
and 1 in Tables 4.4 and 4.5). However, completely removing “Question”, “Answer”, “Subtitles”
and “is it” in the templates results in a significant drop of performance (compare rows 3 and 1
in Tables 4.4 and 4.5). We conclude that it is important to have tokens that link the different
textual inputs.
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Method Fill-in-the-blank Open-ended Multiple-choice

LSMDC iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QA TVQA

FrozenBiLM (Ours) 51.5±0.1 28.3±0.9 14.4±1.4 30.0±2.2 25.4±0.7 39.7±2.1 57.9±0.6 57.9±1.2

Table 4.6: Impact of the random seed for zero-shot VideoQA, reporting mean and standard
deviation over 5 cross-modal training runs with different random seeds.

Inference Strategy Fill-in-the-blank Open-ended

LSMDC iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA

1. Average token embeddings 51.5 26.8 16.7 33.8 25.9 41.9
2. Multiple mask tokens 51.0 27.0 17.1 34.4 26.1 42.0

Table 4.7: Impact of the inference strategy on the zero-shot open-ended VideoQA performance.

Impact of the random seed. To verify the robustness of our approach with respect to the
random seed, we run cross-modal training for FrozenBiLM with 5 different random seeds. We
report the mean and standard deviation of zero-shot accuracy in Table 4.6. We observe that
the random seed does not affect the comparison to prior work done in Section 4.4.4, which is
reported with a single run for fair comparison with prior work.

Multi-token inference strategy. For multi-token answers in the open-ended VideoQA set-
ting, our FrozenBiLM simply averages the weights of different answer tokens. However, such
simple scheme does not preserve the semantic structure of the answer. Hence we here inves-
tigate and compare another possible inference strategy in the zero-shot setting and discuss
potential sources of improvement. We take inspiration from [Jiang, 2020c] and performs zero-
shot VideoQA inference by using multiple mask tokens decoded in parallel. Then, for each
video-question pair, we do one forward pass through the model per possible number of mask
tokens (typically, 1 to 5) in order to score all possible answers in vocabulary A. The score of a
given answer is then obtained by multiplying the probability of its individual tokens, possibly
normalized by its number of tokens. As shown in Table 4.7, we observe that such a decoding
strategy (row 2) does not significantly improve the accuracy of our model over the one used in
FrozenBiLM (row 1). We hypothesize that this is due to the fact that the current open-ended
VideoQA datasets [Jang, 2017; Xu, 2017; Yang, 2021b; Yu, 2019] contain a great majority of
short answers, e.g. 99% of the answers in the MSRVTT-QA test set are one-token long with
our tokenizer [Kudo, 2018]. Additionally, a possible solution to further improve the decoding
in this alternative scheme is to increase the length of the masked spans at pretraining, as in
[Joshi, 2020]. [Salazar, 2020] provides another potential solution to score multi-token answers
in our framework, by masking tokens one by one and computing pseudo-likelihood scores.

Number of frames, adapters hidden dimension, and size and pretraining of the visual
backbone. In Table 4.8, we analyze the impact of the number of frames T used by the model,
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T Dh Visual Fill-in-the-blank Open-ended Multiple-choice

Backbone LSMDC iVQAMSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QATVQA

1. 1 192 ViT-L/14 (CLIP) 50.4 24.8 12.4 28.3 24.9 41.5 54.3 54.6
2. 10 96 ViT-L/14 (CLIP) 52.4 28.6 13.7 29.0 25.1 42.3 59.3 58.0
3. 10 384 ViT-L/14 (CLIP) 51.4 27.5 15.6 31.2 23.9 41.8 58.0 57.8
4. 10 192ViT-B/16 (ImageNet) 49.4 23.8 13.3 25.7 25.1 36.8 56.5 57.2
5. 10 192 ViT-B/16 (CLIP) 50.8 25.5 14.6 30.3 25.6 41.0 57.6 58.2
6. 10 192 ViT-L/14 (CLIP) 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 4.8: Impact of the number of frames T used by the model, the hidden dimension Dh in
the adapters and the visual backbone on the zero-shot VideoQA results. All models are trained
on WebVid10M and use multi-modal inputs (video, speech and question) at inference.

Method Language Model # LM paramsTrain time
(GPUH) iVQAMSRVTT

QA
MSVD
QA

ActivityNet
QA

TGIF
QA

Autoregressive
1. GPT-Neo-1.3B 1.3B 200 6.6 4.2 10.1 17.8 14.4
2. GPT-Neo-2.7B 2.7B 360 9.1 7.7 17.8 17.4 20.1
3. GPT-J-6B 6B 820 21.4 9.6 26.7 24.5 37.3

Bidirectional
4. BERT-Base 110M 24 12.4 6.4 11.7 16.7 23.1
5. BERT-Large 340M 60 12.9 7.1 13.0 19.0 21.5
6. DeBERTa-V2-XLarge 890M 160 27.3 16.8 32.2 24.7 41.0

Table 4.9: Comparison of autoregressive language models (top) and bidirectional language mod-
els (bottom) for zero-shot VideoQA. All variants are trained onWebVid10M for the same number
of epochs.

the hidden dimension in the adapters Dh and the size and pretraining of the visual backbone.
We first observe that using 10 frames significantly improves over using a single frame (compare
rows 1 and 5). Next we note that using a hidden dimension of 96 or 384 in the adapters instead
of 192 does not change the results significantly (see rows 2, 3 and 6). Moreover, we find that
scaling up the size of the visual backbone is beneficial, as using ViT-L/14 instead of ViT-B/16,
both being trained on CLIP [Radford, 2021], slightly improves the results (compare rows 4 and
6). Furthermore, we observe that the pretraining of the visual backbone is crucial, as using
ViT-B/16 pretrained on 400M image-text pairs from CLIP significantly improves over using
ViT-B/16 pretrained on ImageNet-21K, i.e. 22M image-label pairs (compare rows 4 and 5).

4.4.3 Comparison with frozen autoregressive models

In this section, we compare our bidirectional framework using language models of various sizes
to the larger, autoregressive GPT-based counterparts recently used for zero-shot image ques-
tion answering [Tsimpoukelli, 2021; Yang, 2021f]. For fair comparison, we adapt autoregressive
models to video and language inputs similarly as our bidirectional models. In detail, autoregres-
sive variants train a similar visual-to-text projection by using a left-to-right language modeling
loss [Tsimpoukelli, 2021]. All models in our comparison are trained on WebVid10M for the same
number of epochs. At inference, autoregressive variants use the same template as [Tsimpoukelli,

69



Chapter 4. Zero-Shot Video Question Answering via Frozen Bidirectional Language Models

Method Training Data T Fill-in-the-blank Open-ended Multiple-choice

LSMDC iVQAMSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QATVQA

Random — — 0.1 0.1 0.1 0.1 0.1 0.1 25 20
CLIP ViT-L/14 [Radford, 2021] 400M image-texts 7 1.2 9.2 2.1 7.2 1.2 3.6 47.7 26.1

Just Ask [Yang, 2022c] HowToVQA69M +
WebVidVQA3M 7 — 13.3 5.6 13.5 12.3 — 53.1 —

Reserve [Zellers, 2022] YT-Temporal-1B 7 31.0 — 5.8 — — — — —
FrozenBiLM (Ours) WebVid10M 7 50.9 26.2 16.9 33.7 25.9 41.9 41.9 29.7
FrozenBiLM (Ours) WebVid10M 3 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.7

Table 4.10: Comparison with the state of the art for zero-shot VideoQA. T denotes Transcribed
Speech.

Method Motion Spatial Temporal Yes-No Color Object Location Number Other
Just Ask [Yang, 2021b] 2.3 1.1 0.3 36.3 11.3 4.1 6.5 0.2 4.7
FrozenBiLM (Ours) 12.7 6.8 1.6 53.2 16.5 17.9 18.1 26.2 25.8

Table 4.11: Zero-shot VideoQA results segmented per question type on the ActivityNet-QA
dataset, compared with Just Ask [Yang, 2021b].

Method MSRVTT-QA MSVD-QA
What Who Number Color When Where What Who Number Color When Where

Just Ask [Yang, 2021b] 1.8 0.7 66.3 0.6 0.6 4.5 7.8 1.7 74.3 18.8 3.5 0.0
FrozenBiLM (Ours) 10.7 28.7 55.0 11.4 9.2 9.3 26.0 45.0 69.9 56.3 5.2 17.9

Table 4.12: Zero-shot VideoQA results segmented per question type on the MSRVTT-QA
dataset (left) and the MSVD-QA dataset (right), compared with Just Ask [Yang, 2021b].

2021] to which we prepend speech subtitles, greedily decode sequences as [Tsimpoukelli, 2021],
and use the same answer vocabulary as bidirectional models. Autoregressive variants select the
top answer that maximizes the log-likelihood when appended to the question prompt. Here also,
we use no adapters for all models, such that the architecture of autoregressive models closely
follows [Tsimpoukelli, 2021]. This is to avoid biases related to the tuning of the bottleneck
reduction hyperparameter in the adapters [Houlsby, 2019].

We compare autoregressive and bidirectional language models in terms of accuracy and
efficiency in Table 4.9. We observe that our bidirectional framework (rows 4-6) achieves sig-
nificantly better zero-shot performance-efficiency trade-off compared to its autoregressive coun-
terpart (rows 1-3). For instance, our framework with BERT-Base [Devlin, 2019] (row 4) out-
performs the autoregressive variant based on GPT-Neo-1.3B [Black, 2021] (row 1) which uses
12 times more parameters and 8 times more training time. Likewise, our framework with
DeBERTa-V2-XLarge [He, 2021b] (row 6) improves over the autoregressive variant based on
GPT-J-6B [Wang, 2021a] (row 3) that has 7 times more parameters and requires 5 times more
training time, showing the efficiency of our bidirectional framework for zero-shot VideoQA.
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(a) Zero-Shot open-ended VideoQA on the iVQA and ActivityNet-QA datasets.

Question: Which category of 
sports does this sport belong to? 
GT Answer: surfing
Just Ask: second
UnFrozenBiLM: swimming
FrozenBiLM (text-only): 1
FrozenBiLM (ours): surfing

Question: What did the man with 
the backpack walk into?
GT Answer: bakery, bake shop
Just Ask: stores
UnFrozenBiLM: wall
FrozenBiLM (text-only): water
FrozenBiLM (ours): restaurant

Question: What are the men 
standing in front of?
GT Answer: fireplace
Just Ask: cabinets
UnFrozenBiLM: kitchen
FrozenBiLM (text-only): building
FrozenBiLM (ours): fireplace

Question: Is there green grass on 
the roof?
GT Answer: yes
Just Ask: no
UnFrozenBiLM: no
FrozenBiLM (text-only): no
FrozenBiLM (ours): yes

Question: How many people are there in the video?
GT Answer: 1
Just Ask: 2
UnFrozenBiLM: 4
FrozenBiLM (text-only): 2
FrozenBiLM (ours): 1

Question: What organism is shown at the end of the video?
GT Answer: bird
Just Ask: worms
UnFrozenBiLM: beef
FrozenBiLM (text-only): octopus
FrozenBiLM (ours): chicken

Question: What is the person 
changing on the phone? 
GT Answer: settings
Just Ask: colors
UnFrozenBiLM: camera
FrozenBiLM (text-only): phone
FrozenBiLM (ours): wallpaper

Question: What is the silver object 
behind the woman on counter?
GT Answer: toaster
Just Ask: mirror
UnFrozenBiLM: salt
FrozenBiLM (text-only): coin
FrozenBiLM (ours): spoon

Question: What is the sitting 
man doing? 
GT Answer: knit sweater
Just Ask: tie cow 
UnFrozenBiLM: swimming
FrozenBiLM (text-only): eating
FrozenBiLM (ours): knit sweater

Question: What item hanging on 
the wall features a tree?
GT Answer: quilt
Just Ask: christmas sock
UnFrozenBiLM: fabric
FrozenBiLM (text-only): tree
FrozenBiLM (ours): quilt

Question: What is the color of the 
cabinet door in the video?
GT Answer: red
Just Ask: dresser
UnFrozenBiLM: blue
FrozenBiLM (text-only): black
FrozenBiLM (ours): red

Question: Where is the woman 
sitting on?
GT Answer: camel
Just Ask: horse yard
UnFrozenBiLM: desert
FrozenBiLM (text-only): chair
FrozenBiLM (ours): camel

Question: What is the man 
holding at the start of the video?
GT Answer: guitar, electric guitar
Just Ask: typewriter 
UnFrozenBiLM: beer
FrozenBiLM (text-only): scissors
FrozenBiLM (ours): guitar

(b) Zero-shot video-conditioned fill-in-the-blank on the LSMDC FiB dataset.

Sentence: Someone ____ him to 
the truck and across the street.
GT Answer: chases
UnFrozenBiLM: follow
FrozenBiLM (text-only): drags
FrozenBiLM (ours): chases

Sentence: Each singer in the 
front row ____ a huge toad.
GT Answer: holds
UnFrozenBiLM: plays
FrozenBiLM (text-only): wears
FrozenBiLM (ours): holds

Sentence: A woman wraps food in newspapers and brings it over to 
their ____. 
GT Answer: table
UnFrozenBiLM: man
FrozenBiLM (text-only): home
FrozenBiLM (ours): table

Sentence: He hurries up the ____ 
walkway to his house and enters.
GT Answer: front
UnFrozenBiLM: screen
FrozenBiLM (text-only): wooden
FrozenBiLM (ours): front

(c) Zero-shot multiple-choice VideoQA on the How2QA and TVQA datasets.

Question: Where is the man with 
glasses after Dr Lisa Cuddy leaves 
the room?
A0: Leaning against the bookcase
A1: Sitting on a white chair
A2: Standing behind Dr House
A3: Laying on the floor next to 
the desk
A4: Sitting in a wheel chair
GT Answer: A1
UnFrozenBiLM: A0
FrozenBiLM (text-only): A3
FrozenBiLM (ours): A1

Question: What adjustement does 
Beckett do before going to talk with 
Mr caraway?
A0: She puts on lipstick
A1: She puts on glasses
A2: She ties back her hair
A3: She changes into a skirt
A4: She zips up her jacket
GT Answer: A4
UnFrozenBiLM: A2
FrozenBiLM (text-only): A2
FrozenBiLM (ours): A4

Question: What color was the bowl 
beside the stove when Robin was 
making crepes?
A0: Orange
A1: Red
A2: White
A3: Blue
A4: Green
GT Answer: A4
UnFrozenBiLM: A0
FrozenBiLM (text-only): A3
FrozenBiLM (ours): A4

Question: What did Raj do after he discovered the wine bottle was 
empty?
A0: Raj laughed out loud
A1: Raj called Howard on the phone
A2: Raj put the bottle down and got cake to eat from the 
refrigerator
A3: Raj ran in a circle
A4: Raj went to the bathroom
GT Answer: A2
UnFrozenBiLM: A1
FrozenBiLM (text-only): A3
FrozenBiLM (ours): A2

Question: What is the man doing 
to the branches?
A0: He is burning them.
A1: He is burying them.
A2: He is throwing them in water.
A3: He’s painting them.
GT Answer: A0
UnFrozenBiLM: A3
FrozenBiLM (text-only): A2
FrozenBiLM (ours): A0

Question: When did the chef flipped over the layer of rice and 
seaweed?
A0: after she sprinkled sesame
A1: after she added cucumber
A2: after she added fish
A3: after she cut the cucumbers
GT Answer: A0
UnFrozenBiLM: A3
FrozenBiLM (text-only): A1
FrozenBiLM (ours): A0

Question: Why did the speaker 
opened a folder on his computer?
A0: to show pictures of digital 
numbers
A1: to show photographs he has 
taken
A2: to show desktop wallpapers
A3: to show programs he 
downloaded
GT Answer: A0
UnFrozenBiLM: A2
FrozenBiLM (text-only): A1
FrozenBiLM (ours): A0

Question: Where is the person 
in the clip most likely located?
A0: home
A1: corporate office
A2: sports stadium
A3: emergency room
GT Answer: A0
UnFrozenBiLM: A3
FrozenBiLM (text-only): A2
FrozenBiLM (ours): A0

Figure 4.3: Zero-Shot VideoQA results. We show more examples at [Yang, 2022a].

71



Chapter 4. Zero-Shot Video Question Answering via Frozen Bidirectional Language Models

Method Pretraining Data Finetuning Data iVQAMSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA

BLIP [Li, 2022c] 129M image-text pairs VQA — 19.2 35.2 — —
FrozenBiLM (no image-VQA training)WebVid10M ∅ 26.8 16.7 33.8 25.9 41.9
FrozenBiLM (no cross-modal training) ∅ VQA 14.6 6.9 12.6 22.6 33.3
FrozenBiLM (Ours) WebVid10M VQA 34.6 22.2 39.0 33.1 43.4

Table 4.13: Results of our model after cross-modal training, finetuning on the open-ended image-
VQA dataset [Antol, 2015] and directly evaluating on open-ended VideoQA without using any
VideoQA supervision, as in BLIP [Li, 2022c].

4.4.4 Comparison to the state of the art for zero-shot VideoQA

Zero-shot VideoQA. Table 4.10 presents results of our method in comparison to the state
of the art in zero-shot VideoQA settings [Yang, 2021b], i.e. when using no manually annotated
visual data for training. Our approach outperforms previous methods by a significant margin on
all 8 datasets. In particular, FrozenBiLM outperforms Reserve [Zellers, 2022], which is trained on
one billion YouTube video clips jointly with vision, language and sound, Just Ask [Yang, 2022c],
which uses large-scale automatically generated VideoQA data, and a CLIP baseline [Radford,
2021] matching the text concatenating question and answer to the middle frame of the video.
Note that FrozenBiLM performs competitively even when using no speech input. We also provide
results segmented per question type for ActivityNet-QA in Table 4.11, and for MSRVTT-QA and
MSVD-QA in Table 4.12. Compared to Just Ask [Yang, 2021b], we observe large and consistent
improvements over all question categories, except for the number category on MSRVTT-QA and
MSVD-QA. These results show that our approach is efficient in the diverse question categories
of zero-shot VideoQA. In summary, our evaluation shows the excellent performance of our model
in the challenging zero-shot setup.

Comparison with BLIP. In addition to the previously described zero-shot results, we here
investigate a different but related zero-shot setting defined in BLIP [Li, 2022c], where a network
trained on manually annotated image-VQA annotations is evaluated directly on open-ended
VideoQA datasets. In detail, BLIP uses the open-ended image-VQA dataset [Antol, 2015]
for finetuning after pretraining on 129M image-text pairs, including MS COCO [Chen, 2015]
and Visual Genome [Krishna, 2016] which are manually annotated. To adapt our model to
this setting, we finetune our model FrozenBiLM pretrained on WebVid10M on the image-VQA
dataset using the same procedure as for finetuning on VideoQA datasets (see Section 4.3.3),
i.e. notably with a frozen language model. In particular, we finetune on VQA for 10 epochs
with an initial learning rate of 1e−5 which is warmed up for the first 10% iterations, and linearly
decayed to 0 for the remaining 90% iterations. Table 4.13 shows that the resulting model not
only improves over our model without image-VQA finetuning (i.e. in zero-shot mode as defined
in Section 4.1) or our model trained on VQA only (i.e. without cross-modal training), but also
substantially outperforms BLIP on both MSRVTT-QA and MSVD-QA. These results further
demonstrate the strong capabilities of FrozenBiLM in settings where no VideoQA annotation is
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available.

Zero-shot image-VQA. We next evaluate our pretrained model on the VQAv2 [Antol, 2015]
validation set in the zero-shot setting, i.e. without any supervision of visual questions and
answers. Frozen [Tsimpoukelli, 2021] achieves 29.5% accuracy in this setting using an autore-
gressive language model. In comparison, our FrozenBiLM model is 7 times smaller than Frozen
and achieves 45.0% accuracy. We conclude that our model can perform competitively on the
image-VQA tasks despite being tailored for videos.

Qualitative zero-shot VideoQA results. Figure 4.3 illustrates qualitative results of zero-
shot VideoQA for our FrozenBiLM model and compares them to Just Ask [Yang, 2022c], as well
as to variants of our approach that do not freeze the language model (UnFrozenBiLM) and use no
visual modality (text-only), as evaluated in Section 4.4.2. We observe that the unfrozen variant
can predict answers that lack text-only commonsense reasoning, e.g. in the third example of
Figure 4.3a, it is unlikely that a sitting man is swimming; in the first example of Figure 4.3b, the
word follow is grammatically incorrect; in the second example of Figure 4.3b, it is unlikely that a
singer plays a toad. The text-only variant does have strong language understanding, but makes
visually-unrelated predictions. In contrast, consistently with our quantitative results, our model
FrozenBiLM is able to correctly answer various questions in the diverse VideoQA paradigms
(open-ended VideoQA, video-conditioned fill-in-the-blank, multiple-choice VideoQA), showing
both a strong textual commonsense reasoning and a complex multi-modal understanding.

However, our zero-shot model still underperforms compared to VideoQA-supervised models
(see Table 4.15) and we analyze its failure cases in the last row of Figure 4.3a. Qualitatively,
we find that the zero-shot model can fail on examples requiring complex temporal or spatial
understanding e.g. in the third example, the model does not detect a toaster behind the woman;
in the second example, it gets confused as the person browses through many different tabs from
their phone. It can also be semantically inaccurate, as in the first example, the model confuses
a restaurant with a bakery; in the fourth example, it confuses a chicken with another kind of
bird.

4.4.5 Freezing the BiLM is also beneficial in supervised settings

Fully-supervised VideoQA. We next present an evaluation in a supervised setup where we
finetune FrozenBiLM on a downstream VideoQA task. We emphasize that we also keep our
pretrained language model weights frozen all throughout finetuning. As shown in Table 4.14,
our approach improves the state of the art on LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA,
ActivityNet-QA and How2QA. In particular, FrozenBiLM outperforms strong recent baselines
such as All-in-one [Wang, 2023] on 2/3 datasets, VIOLET [Fu, 2021] on 3/4 datasets and MER-
LOT [Zellers, 2021] on 4/5 datasets. Our approach has significantly less trainable parameters
compared to the state of the art [Fu, 2021; Wang, 2023; Zellers, 2021] as we freeze the weights of
the pretrained language model. We ablate this major difference in Table 4.14, and find that our
FrozenBiLM with the frozen language model performs better and trains twice faster compared
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Method # Trained Fill-in-the-blank Open-ended Multiple-choice

Params LSMDC iVQAMSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QATVQA

HCRN [Le, 2021] 44M — — 35.4 36.8 — 57.9 — 71.4∗
HERO [Li, 2020b] 119M — — — — — — 74.1∗ 73.6∗
ClipBERT [Lei, 2021b] 114M — — 37.4 — — 60.3 — —
Just Ask [Yang, 2022c] 157M — 35.4 41.8 47.5 39.0 — 85.3 —
SiaSamRea [Yu, 2021] — — — 41.6 45.5 39.8 60.2 84.1 —
MERLOT [Zellers, 2021] 223M 52.9 — 43.1 — 41.4 69.5 — 78.7∗
Reserve [Zellers, 2022] 644M — — — — — — — 86.1∗
VIOLET [Fu, 2021] 198M 53.7 — 43.9 47.9 — 68.9 — —
All-in-one [Wang, 2023] 110M — — 46.8 48.3 — 66.3 — —
UnFrozenBiLM (Ours) 890M 58.9∗ 37.7∗ 45.0∗ 53.9∗ 43.2∗ 66.9 87.5∗ 79.6∗
FrozenBiLM w/o adapters 1M 60.4∗ 38.2∗ 43.2∗ 51.7∗ 38.3∗ 66.5 79.3∗ —
FrozenBiLM w/o CM training 30M 57.1∗ 34.3∗ 46.2∗ 51.9∗ 41.8∗ 67.4 75.8∗ —
FrozenBiLM w/o speech (Ours) 30M 58.6 39.7 47.0 54.4 43.2 68.6 81.5 57.5
FrozenBiLM (Ours) 30M 63.5∗ 39.6∗ 47.0∗ 54.8∗ 43.2∗ 68.6 86.7∗ 82.0∗

Table 4.14: Comparison with the state of the art, and the variant UnFrozenBiLM which does not
freeze the language model weight, on fully-supervised benchmarks. * denotes results obtained
with speech input. CM training denotes Cross-Modal training. Results of FrozenBiLM w/o
adapters and FrozenBiLM w/o CM training on TVQA are not reported given that the hidden
test set used here can only be accessed a limited number of times.

Variant Supervision Fill-in-the-blank Open-ended Multiple-choice

LSMDC iVQA MSRVTT
QA

MSVD
QA

ActivityNet
QA

TGIF
QA How2QA TVQA

1. UnFrozenBiLM 0% (zero-shot) 37.1 21.0 17.6 31.9 20.7 30.7 45.7 29.7
2. FrozenBiLM 0% (zero-shot) 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.7
3. UnFrozenBiLM 1% (few-shot) 46.2 23.5 33.4 43.7 31.6 51.7 68.0 —
4. FrozenBiLM 1% (few-shot) 56.9 31.1 36.0 46.5 33.2 55.1 71.7 72.5
5. UnFrozenBiLM 10% (few-shot) 52.6 29.5 38.9 49.8 36.5 57.8 73.2 —
6. FrozenBiLM 10% (few-shot) 59.9 35.3 41.7 51.0 37.4 61.2 75.8 77.6
7. UnFrozenBiLM100% (fully-supervised) 58.9 37.7 45.0 53.9 43.2 66.9 87.5 —
8. FrozenBiLM 100% (fully-supervised) 63.5 39.6 47.0 79.6 54.8 43.2 68.6 86.7 82.0

Table 4.15: Few-shot results, by finetuning FrozenBiLM using a small fraction of the down-
stream training dataset, compared with the variant UnFrozenBiLM which does not freeze the
language model weights. Few-shot results of UnFrozenBiLM on TVQA are not reported given
that the hidden test set used here can only be accessed a limited number of times.

to UnFrozenBiLM where we update the language model during training. This shows that freez-
ing the language model is not only beneficial for zero-shot but also in fully-supervised settings,
therefore suggesting that our FrozenBiLM framework also provides a parameter-efficient solu-
tion for VideoQA training. We also note that FrozenBiLM performs competitively even without
speech input, although speech helps significantly for the performance on LSMDC, How2QA and
TVQA. Additionally, we find that cross-modal training is significantly beneficial in this setting.
Finally, we note that training adapters has a considerable importance on the performance in
this setting.
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Figure 4.4: FrozenBiLM self-attention visualization for zero-shot VideoQA. Visualiza-
tion of the attention weights between the different visual tokens from the video prompt and the
textual tokens from the text embedder, for the second example of the second row in Figure 4.3a.
A column corresponds to the weights of the different visual and text tokens for the given token.
These attention weights are averaged across all 24 heads, and renormalized by the maximum
weight for each token (i.e. each column) for the purpose of visualization. Lighter colors corre-
spond to higher attention weights (see the colorbar on the right). Note that the self-attention
weights are frozen after text-only pretraining.

Few-shot VideoQA. The low number of trainable parameters when training FrozenBiLM
makes it particularly well-suited in the low data regime. To verify this, we explore a few-shot
VideoQA setting where we finetune our pretrained model using varying fractions of VideoQA
training data. From Table 4.15 we observe significant improvements over zero-shot when us-
ing only 1% of training data. Moreover, consistently with results in the zero-shot and fully-
supervised settings, we find that freezing the language model combined with training adapters
outperforms finetuning the language model (compare rows 3 and 4, or rows 5 and 6). Interest-
ingly, the difference is larger when using 1% of the downstream training dataset (rows 3 and 4)
compared to using 10% (rows 5 and 6) or 100% (rows 7 and 8). These results demonstrate that
our approach is particularly efficient in settings where VideoQA annotations are scarce.
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4.4.6 Qualitative analysis of the frozen self-attention patterns in Frozen-
BiLM

We show in Section 4.4.2 that the visual modality is crucial for the zero-shot VideoQA perfor-
mance. Here we further analyze qualitatively how, for zero-shot VideoQA, our model makes use
of the visual modality through self-attention layers which are frozen after text-only pretrain-
ing. Figure 4.4 illustrates the self-attention patterns in FrozenBiLM for the second example in
the first row of Figure 4.3a. Despite the freezing, we observe that these layers actually enable
visual-linguistic interactions. Indeed, in the first layer (Figure 4.4, left), the [CLS], [MASK]
and [SEP] tokens significantly attend to the visual tokens. Moreover, we observe substantially
different patterns in the last layer (Figure 4.4, right): while the [MASK] token still attends
to visual tokens, the different visual tokens at different timesteps attend between each other
and the [CLS] and [SEP] tokens mainly attend to other text tokens. Consistently with results
presented in Section 4.4.2, this qualitative analysis suggests that the frozen self-attention layers
in FrozenBiLM do enable visual-linguistic interactions.

4.5 Conclusion

We present FrozenBiLM, a framework that extends frozen bidirectional language models to
multi-modal inputs by training additional modules on web-scraped data, and that tackles
zero-shot VideoQA through masked language modeling. We provide extensive ablation stud-
ies and show the efficiency of our framework compared to its autoregressive variant. Frozen-
BiLM improves over the prior state-of-the-art zero-shot VideoQA on the LSMDC-FiB, iVQA,
MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA and TVQA datasets,
performs competitively in fully-supervised settings and exhibits strong performance in the few-
shot VideoQA setting we newly introduce.

Limitations. Promising directions not explored in this work include scaling the size of a
bidirectional language model to several billion parameters, and additional training on large
datasets of YouTube videos with accompanying speech transcripts and/or audio [Zellers, 2022].
Also, our model cannot be applied out-of-the-box to complex multi-modal text generation tasks
such as video captioning [Alayrac, 2022].
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Chapter 5
TubeDETR: Spatio-Temporal Video
Grounding with Transformers

We consider the problem of localizing a spatio-temporal tube in a video corresponding to a
given text query (see Figure 5.1). This is a challenging task that requires the joint and efficient
modeling of temporal, spatial and multi-modal interactions. To address this task, we propose
TubeDETR, a transformer-based architecture inspired by the recent success of such models
for text-conditioned object detection. Our model notably includes: (i) an efficient video and
text encoder that models spatial multi-modal interactions over sparsely sampled frames and (ii)
a space-time decoder that jointly performs spatio-temporal localization. We demonstrate the
advantage of our proposed components through an extensive ablation study. We also evaluate
our full approach on the spatio-temporal video grounding task and demonstrate improvements
over prior state of the art on the challenging VidSTG [Zhang, 2020d] and HC-STVG [Tang, 2021]
benchmarks. Our code and models are publicly available at [Yang, 2022b].

Input text query: What does the adult ride in the playground?

... ...

tstart tend

...

Output spatio-temporal tube:

Figure 5.1: Spatio-temporal video grounding requires reasoning about space, time, and language.
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5.1 Introduction

Grounding natural language in visual content is a fundamental skill to build powerful and
explainable vision and language models. In particular, understanding the association of language
with spatial regions and temporal boundaries in videos is particularly important to analyze and
improve multi-modal video models. This goes beyond associating a global visual representation
with a textual representation [Radford, 2021; Miech, 2020], as it requires to reason about detailed
spatio-temporal visual representations and their association with natural language, as illustrated
in Figure 5.1.

Spatio-temporal video grounding, recently introduced in [Zhang, 2020d], is an interesting
and challenging task that lies at the intersection of visual grounding [Hu, 2016; Nagaraja, 2016;
Vasudevan, 2018] and temporal localization [Hendricks, 2017; Gao, 2017a; Chen, 2018]. Given
an untrimmed video and a textual description of an object, spatio-temporal video grounding
aims at localizing a spatio-temporal tube (i.e. a sequence of bounding boxes) for the target
object described by the input text. This task is particularly challenging as videos are highly
diverse and often present challenging scenarios where different entities have similar appearance
or perform similar actions within one scene.

The success of attention-based models in natural language processing [Vaswani, 2017; Devlin,
2019] has recently inspired approaches to integrate transformers into computer vision tasks, such
as image classification [Dosovitskiy, 2021], object detection [Carion, 2020], semantic segmenta-
tion [Liu, 2021b] or action recognition [Arnab, 2021; Bertasius, 2021; Zhang, 2021b; Patrick,
2021]. Notably, with DETR [Carion, 2020], transformers have shown competitive performance
on object detection while removing the need of multiple hand-designed components encoding
a prior knowledge about this task. More recently, MDETR [Kamath, 2021] has extended this
framework for various text-conditioned object detection tasks in the image domain, such as
phrase grounding, referring expression comprehension and segmentation.

Inspired by these works, and the fact that attention-based architectures are an intuitive
choice for modelling multi-modal and spatio-temporal contextual relationships in videos, we de-
velop a transformer encoder-decoder model for spatio-temporal video grounding, as illustrated
in Figure 5.2. While existing approaches for this task rely on pre-extracted object propos-
als [Zhang, 2020d], tube proposals [Tang, 2021] or upsampling layers [Su, 2021], our architecture
simply reasons about abstractions called time queries to jointly perform temporal localization
and visual grounding. Our framework enables to use the same representations for both subtasks
in order to learn powerful contextualized representations.

More specifically, our architecture includes key components to jointly model temporal, spatial
and multi-modal interactions. Our video-text encoder efficiently encodes spatial and multi-
modal interactions by computing these interactions over sparsely sampled frames, and separately
recovers temporally local information with a lightweight fast branch. Our space-time decoder
models temporal interactions with temporal self-attention layers, and spatial and multi-modal
interactions with time-aligned cross-attention layers. Spatio-temporal video grounding is then
tackled with multiple heads on top of the decoder outputs, which predict the object boxes and
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temporal start and end probabilities. We conduct various ablation studies, where we notably
show the benefit of our video-text encoder in terms of performance-memory trade-off, and the
efficiency of our space-time decoder in terms of spatio-temporal grounding results. Finally,
we show that our method significantly improves over prior state-of-the-art methods on two
benchmarks, VidSTG [Zhang, 2020d] and HC-STVG [Tang, 2021].

In summary, our contributions are three-fold:

(i) We propose a novel architecture for spatio-temporal video grounding that performs this
task with a space-time transformer decoder.

(ii) We propose a dual-stream encoder that efficiently encodes spatial and multi-modal inter-
actions, based on a slow multi-modal stream and a lightweight fast visual stream.

(iii) We conduct comprehensive experiments on two benchmarks, VidSTG and HC-STVG,
showing the effectiveness of our framework for the spatio-temporal video grounding task.
Our approach, referred to as TubeDETR, outperforms all prior state-of-the-art methods
by a large margin.

5.2 Related Work

Spatio-temporal video grounding. Visual grounding consists in spatially localizing an ob-
ject given a referring expression, and has been an active area of research both in the image
domain [Deng, 2018; Hu, 2016; Hu, 2017; Liu, 2021a; Nagaraja, 2016; Wang, 2021c; Xiao, 2017;
Yu, 2017; Zhang, 2018b; Zhuang, 2018] and the video domain [Huang, 2018; Shi, 2019b; Vasude-
van, 2018]. A standard paradigm consists in using pre-extracted object proposals [Liu, 2017;
Liu, 2019a; Wang, 2019a; Yamaguchi, 2017; Yang, 2019a; Yang, 2019b; Yu, 2018], while some
recent works [Deng, 2021b; Huang, 2021a; Kamath, 2021; Liao, 2020; Luo, 2020a; Yang, 2019c;
Yang, 2020b] have proposed one-stage approaches which do not rely on such proposals. Our work
follows the one-stage framework of MDETR [Kamath, 2021], but extends it to spatio-temporal
video grounding with temporal localization losses (see Equation 5.1), slow-fast encoding (see
Figure 5.3), and space-time decoding (see Figure 5.4).

A separate line of work focuses on temporally localizing moments in a video given a natural
language query [Chen, 2018; Chen, 2019a; Chen, 2019b; Gao, 2017a; He, 2019; Hendricks, 2017;
Hendricks, 2018; Lin, 2020b; Mithun, 2019; Rodriguez, 2020; Wang, 2019b; Wang, 2020a; Yuan,
2019; Zhang, 2019b; Zhang, 2019a; Zhang, 2020a; Zhang, 2020c; Zeng, 2020]. These works
build architectures that reason about time but do not preserve spatial information. Spatio-
temporal video grounding lies at the intersection of temporal localization and visual grounding.
While some approaches [Chen, 2019c; Tang, 2021; Yamaguchi, 2017] rely on pre-extracted tube
proposals, or object proposals [Zhang, 2020d], our method does not require any pre-extracted
proposals. A recent work [Su, 2021] proposes STVGBert, a one-stage approach that extends
the VilBERT model [Lu, 2019] pretrained on Conceptual Captions [Sharma, 2018] to this task.
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STVGBert uses deconvolutions to perform visual grounding, and symmetrically models tem-
poral and spatial interactions. In contrast, our architecture performs visual grounding with a
transformer decoder, and separately reasons about the temporal and spatial dimensions.

Temporal modeling for video understanding. The rise of powerful models for image
understanding such as ViT [Dosovitskiy, 2021] or DETR [Carion, 2020] has fostered research
extending these models to the video domain [Arnab, 2021; Bertasius, 2021; He, 2021a; Lei,
2021a; Patrick, 2021; Zhang, 2021b]. In particular, [Lei, 2021a] propose an architecture that
views moment retrieval as a direct set prediction problem, but is unsuitable to visual ground-
ing as it does not preserve spatial information. [He, 2021a] extend the DETR framework to
videos, and propose an architecture built with sequentially added modules on top of Deformable
DETR [Zhu, 2021], while ours is built on inner modifications of a pretrained encoder and de-
coder and also reasons about language. Our dual-branch encoder is also related to SlowFast
networks [Feichtenhofer, 2019; Xiao, 2020] which combine fast and slow video streams. In con-
trast, in our case, both streams operate on features extracted from the same backbone, and our
dual-stream architecture is motivated by the computational complexity related to multi-modal
modeling.

Vision and language. Transformer-based architectures have become ubiquitous in various
vision and language tasks [Chen, 2020b; Chen, 2021d; Cornia, 2020; Desai, 2021a; Huang,
2020c; Kim, 2021b; Li, 2020a; Li, 2020d; Lu, 2019; Lu, 2020; Su, 2019; Tan, 2019; Zhou,
2020]. Most video-text transformers rely either on pre-extracted object features [Zhu, 2020],
or spatially pooled features [Gabeur, 2020; Ging, 2020; Li, 2020b; Sun, 2019b; Yang, 2021b;
Zhou, 2018c], which do not preserve detailed spatial information. In contrast, our architecture
is designed to preserve spatial information to perform visual grounding. Some recent works
propose transformer-based architectures reasoning on videos and text that do preserve spatial
information [Akbari, 2021; Bain, 2021; Lei, 2021b; Zellers, 2021]. However, these works typically
aim to learn global video representations to tackle video-level prediction tasks, while we focus on
learning detailed frame-level representations to address a dense prediction task requiring spatial
and temporal localization.

5.3 Method

We first give an overview of our model in Section 5.3.1. Next, we describe in detail the two main
components of our model, the video-text encoder (Section 5.3.2) and the space-time decoder
(Section 5.3.3). Then in Section 5.3.4 we explain the loss used to train our model. Finally in
Section 5.3.5 we present how we initialize our model weights.

5.3.1 Overview

Our objective is, given a video and a language query, to output a spatio-temporal tube, i.e. a se-
quence of bounding boxes with temporal boundaries, grounding the language query in the video.
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Figure 5.2: TubeDETR model overview. All input video frames vt and the sentence s are
first processed with a Visual Backbone and a Text Encoder. The resulting text and video features
y0(s) and x0(v) are then jointly encoded with a Video-Text Encoder that computes spatial and
multi-modal interactions forM short clips of k frames (about 1 second). The resulting video-text
features F (v, s) are then decoded into the output spatio-temporal tube b̂ using a Space-Time
Decoder that jointly reasons about time, space and text over the entire video.

This is challenging as it requires modelling long-range spatial and temporal interactions between
the language query and the video where the video may have hundreds of frames represented
by tens of thousands spatio-temporal video features. Hence efficiency is a major challenge. To
address this issue we design an encoder-decoder architecture, illustrated in Figure 5.2, that en-
ables accurate yet efficient modelling of video-language spatial and temporal interactions across
the entire video. In particular, our two-stream video-text encoder (Section 5.3.2) models video-
language interactions only over short clips of about one second but allows for detailed spatial
localization. Our space-time decoder (Section 5.3.3) then models long-range temporal interac-
tion over the entire video to produce a temporally consistent output and accurate predictions
of the start and end times of the output spatio-temporal tube.

5.3.2 Video-Text Encoder

Our encoder is illustrated in Figure 5.3 and described next. Its objective is to model spatial
and multi-modal interactions between the language query and the video to accurately spatially
ground the query in each frame. To achieve this, we leverage the ability of the self-attention
layers to jointly model spatial and visual-linguistic interactions [Kamath, 2021; Lei, 2021b;
Huang, 2020c]. However, computing self-attention between visual features and textual features
for every frame is computationally expensive. For this reason, we propose to compute spatial
and multi-modal interactions only for every k-th frame. We denote the resulting stream as slow
multi-modal branch. We use a separate lightweight fast visual-only branch that preserves the
original frame rate and allows us to recover some of the high frequency spatio-temporal details
lost by the sparse sampling in the slow branch.

Formally, our encoder takes as input a set of 2D flattened image features x0(v) ∈ RT×HW×d
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Figure 5.3: Video-Text Encoder takes as input a set of 2D flattened image features x0(v)
together with a set of text features y0(s) from the query sentence, and outputs a set of video-
text features F (v, s), one for each frame. Top: the Slow multi-modal branch first samples video
features xpm, one from every k frames. Then it computes multi-modal interactions between the
sampled features xpm and text features y0 using a transformer encoder. The temporal sampling
reduces the number of video features in order to efficiently compute the attention-based inter-
actions. Bottom: lightweight “Fast visual-only" branch f processes features from all frames
but without any attention layers for increased efficiency. Features from both branches are then
combined in module g into the final set of per-frame features F (v, s).

from the visual backbone for all T frames of the input video together with a set of L text
features y0(s) ∈ RL×d extracted by the text encoder from the query sentence, and outputs a set
of video-text features F (v, s) ∈ RT×(HW+L)×d, one for each frame. Next we give the details of
the Slow and Fast branches, and the final feature aggregation module.

Slow multi-modal branch. The goal of this branch (see top of Figure 5.3) is to model
interactions between visual and textual representations. This branch first samples features
from one frame for a short clip of k consecutive frames. A typical clip length is one second,
i.e. k = 5 with a standard frame rate of 5 frames per second [Zhang, 2020d]. Formally, the
resulting feature map is written as xp ∈ RM×HW×d where M = dTk e is the number of clips, k
is the length of the clip and T is the length of the entire video. We then concatenate, for each
clip m, its visual features xpm with text features y0(s) and forward it to a N-layer transformer
encoder. The outputs are contextualized visual-text representations hp(v, s) ∈ RM×(HW+L)×d,
which effectively combine information from the input video v and the query sentence s.

Fast visual-only branch. The previously explained temporal sparse sampling scheme reduces
significantly the memory requirements of the video-text encoder but results in a loss of spatio-
temporal details which are important for spatio-temporal video grounding. To alleviate this
issue, we introduce module f (see bottom of Figure 5.3) which operates on 2D flattened image
features for all frames. Formally, given feature map x0(v), this module outputs visual features
f(v) ∈ RT×HW×d. This fast branch preserves the spatial and temporal resolution of the features
but is computationally light as it does not compute any multi-modal or spatial interactions. For
additional efficiency, at training time, this branch does not back-propagate gradients to the
visual backbone. Furthermore, we show in Section 5.4.2 that it is able, when combined with
the temporally sparse features obtained from the slow branch, to recover some of the temporal
information lost during the temporal sampling.
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Figure 5.4: Space-Time Decoder. The decoder is composed of N repeated blocks. In each
block, time queries qt successively attend to each other via temporal self-attention and to their
respective time-aligned video-text features F (v, s) via time-aligned cross-attention. The cross-
attention mask (bottom) indicates the non-zero weights (white) between the input HW + L
video-language features for each of the T input frames (x-axis) and T time queries (y-axis). The
cross-attention mask ensures that each time query qt only cross-attends to video-text features
F (v, s) at the corresponding frame t, which significantly increases efficiency of the decoder and
enables decoding entire videos of T frames. The temporal modelling over the entire length of
the video is ensured by the temporal self-attention layers.

Slow-Fast feature aggregation. We now describe the slow and fast branches aggregation
module (see Figure 5.3, right), which fuses information from both branches and outputs final
video-text features. To match the temporal dimension of the output from the fast branch f(v),
the output of the slow multi-modal branch hp(v, s) is temporally replicated k times for each clip
resulting in video-text encodings h(v, s) ∈ RT×(HW+L)×d. These encodings are a concatenation
of text-contextualized visual encodings hv(v, s) ∈ RT×HW×d and visually-contextualized textual
encodings hs(v, s) ∈ RT×L×d. The text-contextualized visual encodings hv(v, s) are combined
with the outputs of the fast branch with an additional aggregation module g and a residual
connection, resulting in aggregated visual encodings Fv(v, s) = g(hv(v, s), f(v)) + hv(v, s). The
final output of our video-text encoder is obtained by concatenating these aggregated visual
encodings with the visually-contextualized textual encodings, i.e. F (v, s) = [Fv(v, s), hs(v, s)] ∈
RT×(HW+L)×d. In detail, the module g is implemented as a sum followed by a linear layer,
i.e. g(hv(v, s), f(v)) = Linear(hv(v, s) + f(v)).

5.3.3 Space-Time Decoder

Our decoder is illustrated in Figure 5.4 and detailed next. Its objective is to model the temporal
interactions within the entire video of T frames and decode the multi-modal features from the
encoder into a temporally coherent output tube with accurate start and end times. This is
achieved by an efficient decoder architecture that alternates (i) temporal self-attention layers,
which model temporal interactions across the entire video, with (ii) time-aligned cross attention
layers, which efficiently incorporate the video-text features for individual frames obtained from
the encoder. In detail, the decoder operates on T positional encodings {qt}Tt=1, one per frame,
referred to as time queries. The initial encoding of each time query is obtained by summing
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a learnt object encoding common to all frames, and a frozen sinusoidal time encoding. The
decoder also takes as input T × (HW + L) video-language embeddings F (v, s) output from the
video-text encoder. The decoder is a succession of N decoder blocks. Each block is composed of
temporal self-attention, time-aligned cross-attention, and feed-forward layers, interleaved with
normalization [Ba, 2016], as shown in Figure 5.4. The decoder outputs refined time queries
{Qt}Tt=1, which are contextualized across all frames in the video together with video-text features
produced by the encoder. The refined time queries are then jointly used for outputting the
spatio-temporal video tube that grounds the input sentence in the video. The individual layers
are described in detail next.

Temporal self-attention. The T input time queries qt attend to each other using the tem-
poral self-attention layer. This layer is in each of the N blocks of the decoder and is responsible
for modelling the long-range temporal interactions in the entire video. This is possible because
of the relatively low complexity of this layer, which does not depend on the spatial resolution of
the input video.

Time-aligned cross-attention. Allowing each time query to cross-attend to all T × (HW + L)
video-text features can be highly computationally expensive due to the large number of video
frames T and a large spatial resolution HW of the video features. Instead, in our cross-attention
module, each time query qt only cross-attends to its temporally corresponding multi-modal fea-
tures F (v, s)[t] at frame t. Note that with our time-aligned cross-attention formulation, the time
encoding and the temporal self-attention layers are all the more important, as they are respon-
sible for the temporal modelling across the entire video. Without them, our decoder would be
decoding each frame independently. Their importance is ablated in Section 5.4.2.

Prediction heads. The output of the decoder is a set of refined time queries {Qt}Tt=1. They
are jointly used for visual grounding and temporal localization to simultaneously obtain predic-
tions for all frames of the video. In detail, normalized coordinates of all bounding boxes (2D
center and size) b̂ ∈ [0, 1]T×4 are predicted with a 3-layer MLP. Probabilities of the start and the
end of the output video tube, τ̂s ∈ [0, 1]T and τ̂e ∈ [0, 1]T , respectively, are predicted with 2-layer
MLPs. At inference time, the start and end times of the output tube, t̂s and t̂e, are computed by
choosing the maximum of the joint start and end probability distribution (τ̂s, τ̂e) ∈ [0, 1]T×T with
invalid combinations where t̂e ≤ t̂s masked out. The predicted spatio-temporal tube {b̂t}t̂et=t̂s is
composed from bounding boxes b̂t predicted within the chosen start and end times t̂s and t̂e.

5.3.4 Training loss

The input training data is in the form of a set of videos, where each video is annotated with a
query sentence s and the corresponding video tube b composed of a set of bounding boxes and
corresponding start and end times, ts and te. Inspired by [Rodriguez, 2020], we construct a tar-
get start (respectively end) distribution τs ∈ [0, 1]T (respectively τe) which follows a quantized
Gaussian centered at ts ∈ [0, T − 1] (respectively te) with standard deviation 1. We train our
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architecture with a linear combination of four losses

L = λL1LL1(b̂, b) + λgIoULgIoU (b̂, b)

+λKLLKL(τ̂s, τ̂e, τs, τe) + λattLatt(A) (5.1)

where b ∈ [0, 1]4(te−ts+1) denotes the normalized ground truth box coordinates and b̂ the pre-
dicted bounding boxes and A ∈ [0, 1]T×T denotes the temporal self-attention matrix. Finally,
different λ• are scalar weights of the individual losses. LL1 is a L1 loss on bounding box coor-
dinates. LgIoU is a generalized “intersection over union" (IoU) loss [Rezatofighi, 2019] on the
bounding boxes. Both L1 and LgIoU are used for spatial grounding. LKL(τ̂s, τ̂e, τs, τe) is the
Kullback-Leibler divergence loss measuring the distance between the predicted and the target
start distribution as well as the distance between the predicted and the target end distribu-
tion [Rodriguez, 2020]. Latt(A) is a guided attention loss [Rodriguez, 2020] that encourages
weights corresponding to time queries outside of the temporal boundaries to be lower than the
weights inside these boundaries. LKL and Latt(A) are both used for temporal grounding. Losses
are computed at each layer of the decoder following [Carion, 2020].

5.3.5 Weight initialization

We initialize our architecture with weights fromMDETR [Kamath, 2021] pretrained on Flickr30k
[Plummer, 2015], MS COCO [Chen, 2015] and Visual Genome [Krishna, 2016]. In detail, weights
of our video-text encoder are initialized from the MDETR multi-modal encoder, except for the
fast and aggregation modules. We also use the weights from the MDETR single-image multi-
object decoder to initialize our multi-frame single-object space-time decoder, except for the
temporal localization head. We show the benefit of this initialization notably by comparing it to
an ImageNet initialization, i.e. using a visual backbone pretrained on ImageNet with a randomly
initialized transformer, in Section 5.4.2. We also evaluate a MDETR-equivalent baseline in
Section 5.4.2.

5.4 Experiments

This section demonstrates the effectiveness of our architecture and compares our method to the
state of the art. We first introduce the datasets, evaluation metrics and implementation details
in Section 5.4.1. We then present ablation studies in Section 5.4.2. The comparison to the state
of the art in spatio-temporal video grounding is given in Section 5.4.3. Next we show qualitative
results in Section 5.4.4. Finally we present a visualization of space, time and language attention
patterns in the decoder in Section 5.4.5.

5.4.1 Experimental setup

Datasets. We evaluate our approach on the VidSTG [Zhang, 2020d] and HC-STVG [Tang,
2021] datasets. Both are annotated with spatio-temporal tubes corresponding to text queries.
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VidSTG consists of 99,943 sentence descriptions with 44,808 declarative sentences and 55,135
interrogative sentences describing 79 types of objects appearing in 10,303 different videos. The
dataset is divided into training, validation and test subsets with 80,684, 8,956 and 10,303 distinct
sentences respectively, and 5,436, 602 and 732 distinct videos respectively. HC-STVG consists
of videos in multi-person scenes, each annotated with one sentence referring to a person. For
ablation, we use the second improved version of the dataset HC-STVG2.0 which is divided
into training and validation subsets with 10,131 and 2,000 video-sentence pairs, respectively.
The test set is not publicly available at the time of writing. To compare with prior work, we
use the first version of the dataset HC-STVG1 which is divided into training and test subsets
with 4,500 and 1,160 video-sentence pairs, respectively.

Evaluation metrics. We follow [Zhang, 2020d] and define vIoU as vIoU = 1
|Su|

∑
t∈Si

IoU(b̂t, bt)
where Su (respectively Si) is the set of frames in the union (respectively intersection) between
the ground truth (GT) and the predicted timestamps. b̂t (respectively bt) are the predicted (re-
spectively GT) boxes at time t. To evaluate spatio-temporal video grounding, we use m_vIoU ,
which is the average of vIoU . We also use vIoU@R, the proportion of samples for which
vIoU > R. To isolate the evaluation of temporal localization, we use m_tIoU which is the av-
erage of temporal IoU between the GT start and end and the predicted start and end. Likewise,
to evaluate spatial grounding only, we use m_sIoU , which is computed by using the GT start
and end times. We also report peak GPU memory usage during training (Mem.) to measure
the memory footprint of alternative models.

Implementation details. The visual backbone is ResNet-101 [He, 2016], the text encoder is
RoBERTa [Liu, 2019b] and the fast module f is a linear layer. Following [Zhang, 2020d], we
sample 5 frames per second for videos, and for videos with more than 200 sampled frames we
uniformly sample 200 frames. We use hyper-parameters T = 200, N = 6, d = 256, λL1 = 5,
λgiou = 2, λKL = 10 and λatt = 1. We train our networks for 10, 20 and 40 epochs on VidSTG,
HC-STVG2.0 and HC-STVG1, respectively. The final model is selected based on the best spatio-
temporal video grounding performance on the validation set. For the largest dataset VidSTG,
the optimization takes 2 days on 16 Tesla V100 GPUs.

In our transformer, the number of heads is 8 and the hidden dimension of the feed-forward
layers is 2048. We set the initial learning rates to 1e−5 for the visual backbone, and 5e−5 for
the rest of the network. The learning rate follows a linear schedule with warm-up for the text
encoder and the learning rate is constant for the rest of the network. We use the AdamW
optimizer [Loshchilov, 2019] and weight-decay 1e−4. Video data augmentation includes spatial
random resizing, spatial random cropping preserving box annotations, and temporal random
cropping preserving the annotated time interval. Dropout [Srivastava, 2014] with probability
0.1 is applied in our transformer layers, and dropout with probability 0.5 is applied in the
temporal localization head. We use exponential moving average with a decay rate of 0.9998,
and an effective batch size of 16 videos. For temporal stride k = 1 the fast and aggregation
modules in the encoder are not active, as their goal is to recover local spatial and temporal
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Time
Encoding

Self
Attention

Declarative Sentences Interrogative Sentences

m_tIoU m_vIoU vIoU
@0.3

vIoU
@0.5 m_sIoU m_tIoU m_vIoU vIoU

@0.3
vIoU
@0.5 m_sIoU

1. 7 - 24.4 13.6 17.8 7.3 51.9 23.5 11.1 13.3 5.2 43.1
2. 7 Temporal 25.3 14.1 18.6 7.3 52.3 25.0 12.1 15.4 5.9 43.3
3. 3 - 42.1 23.2 31.8 19.5 51.3 41.5 19.7 26.2 15.8 42.5
4. 3 Temporal 46.4 26.6 36.1 24.7 52.8 45.6 22.5 30.8 19.8 43.6

Table 5.1: Effect of the time encoding and the temporal self-attention in our space-time decoder
on the VidSTG validation set.

Pre-
Training

Decoder Self-
Attention Transfer

Declarative Sentences Interrogative Sentences

m_tIoU m_vIoU vIoU
@0.3

vIoU
@0.5 m_sIoU m_tIoU m_vIoU vIoU

@0.3
vIoU
@0.5 m_sIoU

1. 7 7 42.9 19.8 26.7 16.8 41.1 42.8 18.0 23.9 14.6 36.5
2. 3 7 44.0 24.5 32.9 21.5 51.5 43.6 20.8 27.5 17.2 42.6
3. 3 3 46.4 26.6 36.1 24.7 52.8 45.6 22.5 30.8 19.8 43.6

Table 5.2: Effect of the weight initialization for our model on the VidSTG validation set.

information when k > 1.

5.4.2 Ablation studies

In this section, we ablate the hyper-parameters of our model and evaluate alternative design
choices of the encoder and decoder. Unless stated otherwise, we use spatial frame resolution of
224 pixels and temporal stride k = 5.

Space-time decoder. We first ablate the design choices of the proposed space-time decoder.
We compare our full decoder model with variants without time encoding, without temporal
self-attention and without both. The variant without both corresponds to a space-only decoder,
similar to MDETR [Kamath, 2021] applied independently to every frame. Table 5.1 shows that
there is a substantial improvement over the space-only decoder when using both time encoding
and temporal self-attention (+18.3% on vIoU@0.3 for declarative sentences and +17.5% on
vIoU@0.3 for interrogative sentences between rows 1 and 4). The gain comes mostly from the
temporal localization (+22.0% onm_tIoU for declarative sentences and +22.1% onm_tIoU for
interrogative sentences), while the spatial grounding moderately increases (+0.9% in m_sIoU
for declarative sentences and +0.5% in m_sIoU for interrogative sentences). Furthermore,
we can observe that the time encoding brings most of the gain (+14.0% on vIoU@0.3 for
declarative sentences and +12.9% on vIoU@0.3 for interrogatives sentences between rows 1
and 3). Finally, the temporal self-attention results in an additional improvement (+4.3% on
vIoU@0.3 for declarative sentences and +4.6% on vIoU@0.3 for interrogative sentences between
rows 3 and 4) over using time encoding only.
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Fast Res.Temp.
Stride

Declarative Sentences Interrogative Sentences Mem.
(GB)m_tIoUm_vIoU vIoU@0.3 vIoU@0.5 m_sIoU m_tIoUm_vIoU vIoU@0.3 vIoU@0.5 m_sIoU

1.— 224 1 46.9 27.6 37.7 25.7 54.2 46.1 23.3 31.3 20.8 44.9 23.9
2.3 224 2 46.6 27.4 38.0 25.7 54.3 45.5 23.0 31.3 20.7 44.7 16.2
3.3 224 5 46.4 26.6 36.1 24.7 52.8 45.6 22.5 30.8 19.8 43.6 11.8
4.3 288 2 47.0 28.2 38.3 26.3 55.7 46.0 24.1 32.4 22.0 46.3 23.7
5.3 320 3 46.9 28.3 39.2 26.4 56.0 45.9 24.0 32.8 21.5 46.4 23.6
6.3 352 4 47.2 28.7 39.6 27.1 56.4 46.6 24.2 33.2 21.7 46.2 24.4
7. 7 352 4 47.1 27.1 37.4 24.1 53.7 46.2 22.9 31.3 19.6 44.0 18.1
8.3 384 5 47.4 28.4 38.9 27.0 55.3 46.4 24.0 32.8 21.7 45.6 26.1

Table 5.3: Comparison of performance-memory trade-off with various temporal strides k, frame
spatial resolutions (Res.), with or without the fast branch in our video-text encoder, on the
VidSTG validation set.

Fast Res. Temp.
Stride m_tIoU m_vIoU vIoU@0.3 vIoU@0.5 m_sIoU Mem.

(GB)
1. — 224 1 52.8 35.0 55.3 28.3 63.9 14.3
2. 3 224 2 53.7 35.8 56.7 29.6 64.3 10.2
3. 3 224 5 53.2 35.0 54.5 29.0 63.2 8.0
4. 3 288 2 53.9 36.4 58.1 30.7 65.4 13.9
5. 3 320 3 53.6 36.2 57.5 30.4 65.2 13.8
6. 3 352 4 53.9 36.4 58.8 30.6 64.9 14.3
7. 7 352 4 53.1 34.7 55.9 27.4 63.0 11.3
8. 3 384 5 53.6 36.3 57.5 30.4 65.3 15.2

Table 5.4: Comparison of performance-memory trade-off with various temporal strides k, spatial
resolutions (Res.), with or without the fast branch in our video-text encoder, on the HC-STVG2.0
validation set.

Initialization. We now ablate the importance of initializing our model with pretrained MDETR
[Kamath, 2021] weights. In Table 5.2, we compare this initialization to ImageNet initialization,
and a variant that does not transfer the spatial self-attention weights from MDETR decoder to
the temporal self-attention in our space-time decoder. At pretraining time, this self-attention
was used to model spatial relationships between different objects in the same image, while the
temporal self-attention in our decoder models temporal relationships between the same object in
different frames of a video. We find that pretraining is highly beneficial (+9.4% on vIoU@0.3 for
declarative sentences and +6.9% on vIoU@0.3 for interrogative sentences between rows 1 and
3), especially for the spatial grounding performance (+11.7% on m_sIoU for declarative sen-
tences and +7.1% on m_sIoU for interrogative sentences). Additionally, we observe the benefit
of using the spatial self-attention weights from the MDETR decoder to initialize the tempo-
ral self-attention in our decoder (+3.2% on vIoU@0.3 for declarative sentences and +3.3% on
vIoU@0.3 for interrogative sentences between rows 2 and 3).

Impact of spatial resolution and temporal stride k. In this section, we analyze the
impact of the frame resolution and the temporal stride k. In Tables 5.3 and 5.4, we show
that increasing the resolution is an important factor of performance for spatio-temporal video
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Slow Spatial
Pool. f g Declarative Sentences Interrogative Sentences

m_tIoUm_vIoU vIoU@0.3 vIoU@0.5 m_sIoU m_tIoUm_vIoU vIoU@0.3 vIoU@0.5 m_sIoU
1. 7 7 Linear Sum + Linear 42.7 18.6 25.0 14.8 39.6 42.5 16.9 22.0 12.9 35.1
2.3 - 0 0 46.2 24.9 34.4 21.8 49.7 45.1 20.9 28.3 17.9 40.5
3.3 3 Linear Sum + Linear 45.8 25.0 34.7 22.1 50.2 44.9 21.1 29.2 17.8 40.9
4.3 7 Linear Product + σ 46.2 26.2 36.0 23.9 52.0 45.4 22.1 30.1 18.8 43.0
5.3 7 Transformer Sum + Linear 46.4 26.4 36.4 23.8 52.8 45.3 22.2 30.2 19.6 43.3
6.3 7 Linear Sum + Linear 46.4 26.6 36.1 24.7 52.8 45.6 22.5 30.8 19.8 43.6

Table 5.5: Comparison of designs for the video-text encoder, with or without the slow branch,
with or without spatial pooling in the fast branch, with variants of the fast module f and
aggregation module g, on the VidSTG validation set.

grounding, on both the VidSTG and HC-STVG2.0 datasets (see rows 2 and 4). However, it
also results in significantly higher memory usage (16.2GB vs 23.7GB). As a consequence, the
variant using temporal stride k = 1 is challenging to train on VidSTG with a resolution higher
than 224 on a Tesla V100 32GB GPU. At a fixed 224 resolution, increasing the temporal stride
k to 2 or 5 reduces the peak memory usage by 7.7GB or 12.1GB, respectively (see row 1 vs 2
or 3, respectively). Our proposed video-text encoder enables us to train on higher resolutions
at a given memory usage. This leads to a better performance-memory trade-off (rows 4, 5, 6,
8) than the baseline variant with temporal stride k = 1 (row 1). In particular, the best spatio-
temporal video grounding results (m_vIoU and vIoU@R) over the two datasets are obtained
with temporal stride k = 4 and resolution 352 (row 6).

We note that as the resolution increases, performance gains obtained by its further increase
are expected to be lower as they are limited by the original video resolution. For instance, the
average video pixel height in VidSTG and HCSTVG2.0 is 440 and 490 pixels, respectively.

Impact of the fast branch. Finally, we validate the importance of our fast branch by com-
paring, for the best variant, temporal stride k = 4 and resolution 352, our slow-fast video-text
encoder to a slow-only variant that corresponds to f = 0 and g = 0. In this case the video-text
features are the slow video-text features. By comparing rows 6 and 7 in Tables 5.3 and 5.4,
our fast branch significantly improves the spatio-temporal video grounding performance (+2.2%
vIoU@0.3 for declarative sentences on VidSTG, and +1.9% vIoU@0.3 for interrogative sen-
tences on VidSTG, and +2.9% vIoU@0.3 on HC-STVG2.0) with low computational memory
overhead. This shows that the fast branch recovers useful spatio-temporal details lost by the
temporal sampling operation in the slow branch.

Design of the fast and aggregation modules. Here we further ablate the fast and aggre-
gation modules f and g used in our dual-branch encoder. We report results in Table 5.5. The
comparison between our slow-fast design (row 6) and the slow-only variant (row 2) is discussed
in the previous paragraph. Likewise, we compare our slow-fast design to a fast-only variant (row
1). The fast-only variant does not use the slow multi-modal branch, in which case the video-text
features are the fast visual-only features concatenated with the text features. As shown in Table
5.5, our slow-fast design outperforms the fast-only variant, showing the importance of the slow
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Method Pretraining
Data

VidSTG HC-STVG1
Declarative Sentences Interrogative Sentences

m_tIoUm_vIoU vIoU@0.3 vIoU@0.5m_tIoUm_vIoU vIoU@0.3 vIoU@0.5m_vIoU vIoU@0.3 vIoU@0.5
1. STGRN [Zhang, 2020d] VG 48.5 19.8 25.8 14.6 47.0 18.3 21.1 12.8 — — —
2. STGVT [Tang, 2021] VG + CC — 21.6 29.8 18.9 — — — — 18.2 26.8 9.5

3. STVGBert [Su, 2021] IN + VG +
CC — 24.0 30.9 18.4 — 22.5 26.0 16.0 20.4 29.4 11.3

4. TubeDETR (Ours) IN 43.1 22.0 29.7 18.1 42.3 19.6 26.1 14.9 21.2 31.6 12.2

5. TubeDETR (Ours) IN + VG +
F + C 48.1 30.4 42.5 28.2 46.9 25.7 35.7 23.2 32.4 49.8 23.5

Table 5.6: Comparison to the state of the art on the VidSTG test set and the HC-STVG1 test
set. IN: ImageNet, VG: Visual Genome, CC: Conceptual Captions, F: Flickr, C: MS COCO.

multi-modal branch. We further compare the design of our fast and aggregation modules f and
g (row 6) to other alternatives: row 3, a variant with the same primitives f and g but with f
operating on features pooled over the spatial dimension; row 4, a variant which uses the same
fast module f but a gating aggregation module g(hv(v, t), f(v)) = σ(hv(v, t) ∗ f(v)) where σ
is the sigmoid function; row 5, a variant that uses the same aggregation module g but a fast
temporal transformer module f , which models temporal interactions between spatially-detailed
features. As shown in Table 5.5, our design outperforms row 3, showing that preserving spatial
information for each frame is crucial for the effectiveness of the fast branch. Additionally, our
design slightly improves over row 4, indicating that further forcing the network to use the slow
branch is not helpful. Finally, our design slightly improves over row 5, suggesting that additional
modeling of temporal interactions in our encoder is not necessarily helpful.

5.4.3 Comparison to the state of the art

In this section, we compare our approach to state-of-the-art methods in spatio-temporal video
grounding. We report results for the model achieving the best validation results in the previous
ablation studies, i.e. our space-time decoder with time encoding and temporal self-attention,
temporal stride k = 4 and resolution 352. The focus of our work is on the spatio-temporal video
grounding metrics (m_vIoU and vIoU@R). As shown in Table 5.6, only using ImageNet to
initialize the visual backbone (row 4), our TubeDETR performs competitively despite using less
annotations. Furthermore, if we use MDETR initialization (row 5), our TubeDETR outperforms
by a large margin all previous methods (rows 1, 2 and 3) on both datasets. STGRN [Zhang,
2020d] achieves similar m_tIoU (measuring only temporal localization), but it defines a hand-
crafted set of possible window widths to tackle temporal localization, while we consider all
possible windows, i.e. any starting frame i and ending frame j with i < j. These results demon-
strate the excellent performance of our architecture for spatio-temporal video grounding.

5.4.4 Qualitative examples

We show qualitative examples of our predictions on the VidSTG test set in Figure 5.5. These
examples show that our model is able to predict meaningful and accurate spatio-temporal tubes
associated with the input text queries. In particular, in the first example, our model correctly
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Query: What bites the adult on the ground?

GT

Query: An adult grabs a sports ball outdoors.

GT

Query: What is beneath the adult in the snow?

GT

Query: There is a ball/sports ball next to the little child.

GT
TubeDETR

TubeDETR

TubeDETR

TubeDETR

Figure 5.5: Qualitative examples of spatio-temporal tubes predicted by our model (light yellow),
compared with ground truth (light green), on the VidSTG test set. The first three examples
illustrate successful predictions of our method. In the last example the method confuses the small
sports ball in the background with a balloon. We show more examples on our webpage [Yang,
2022b].

detects the temporal moment corresponding to the cat biting the adult. In the second example,
our model localizes the spatio-temporal tube corresponding to a man quickly grabbing a very
small sports ball and in the third example it is able to localize the skis under the adult while
skiing. However, as shown in the last example, it may fail to understand fine details in the
query and the video. Note that the balloon and the ball are visually and semantically similar.
A careful analysis is required to understand the difference.

5.4.5 Visualization of space, time and language attention patterns in the
decoder

This section illustrates attention mechanisms of our space-time decoder over space, language
and time for the spatio-temporal video grounding example presented in Figure 5.7. For this
example the time-aligned cross-attention for the visual modality is also shown in Figure 5.7.
We note that spatially, attention at each timestep is particularly focused on humans that are
receiving the sports ball and gesturing. Additionally, the time-aligned cross-attention for the
textual modality is illustrated in Figure 5.6. We observe that the words adult and grabs are
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�̂�𝑠
�̂�𝑒

Figure 5.6: Time-aligned cross-attention visualization (textual modality). Visualiza-
tion of the attention weights between the time query (y-axis) and its time-aligned visually-
contextualized text features (x-axis) at different times in our space-time decoder. These atten-
tion weights are averaged across all 8 heads and all 6 layers, and renormalized by the maximum
weight at each timestep (i.e. each row) for the purpose of visualization. Lighter colors correspond
to higher attention weights (see the colorbar on the right).

the most attended overall, and that attention weights on the different words (e.g. sports and
ball) vary over time. t̂s and t̂e in Figure 5.6 denote the predicted start and end times of the
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Query: An adult grabs a sports ball outdoors.

time

time

time

time

Figure 5.7: Time-aligned cross-attention visualization (visual modality). Top rows: In-
put frames with the predicted (yellow) and ground truth (green) spatio-temporal tubes overlaid.
Bottom rows: Visualization of the attention weights between the time query and its time-aligned
text-contextualized visual features at different times in our space-time decoder. These attention
weights are averaged across all 8 heads and all 6 layers, and renormalized by the maximum
weight at each timestep for the purpose of visualization. Attention at each timestep is particu-
larly focused on humans that are receiving the sports ball and gesturing.
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�̂�𝑠
�̂�𝑒

�̂�𝑠 �̂�𝑒
Figure 5.8: Temporal self-attention visualization. Visualization of the attention weights
between the different time queries in our space-time decoder. The column t corresponds to the
weights of the different time queries for the time query at time t. These attention weights are
averaged across all 8 heads and all 6 layers, and renormalized by the maximum weight at each
timestep (i.e. each column) for the purpose of visualization. t̂s and t̂e denote the predicted start
and end times of the output tube. Lighter colors correspond to higher attention weights (see
the colorbar on the right).

output tube. Next, the temporal self-attention is illustrated in Figure 5.8. We notice long-range
temporal interactions: a certain number of time queries attend to various temporally distant
time queries, e.g. time queries located around the start of the video between the eighth and
sixteenth frames.
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5.5 Conclusion

We propose TubeDETR, a novel transformer-based architecture for spatio-temporal video ground-
ing. TubeDETR tackles this task with a space-time transformer decoder combined with a video-
text encoder that efficiently encodes spatial and multi-modal interactions. We demonstrate the
effectiveness of our space-time decoder, and the benefits of our video-text encoder in terms of
performance-memory trade-off. Finally, our approach outperforms prior state-of-the-art meth-
ods on two benchmarks, VidSTG and HC-STVG.

Limitations. Our architecture is limited to detecting a single spatio-temporal tube for a
given natural language query. Therefore future work could extend our space-time decoder to
detect multiple objects per frame or multiple events per video. Moreover, TubeDETR is built
using vanilla self-attention which has quadratic complexity with respect to the number of input
tokens. Hence investigating more efficient alternatives to self-attention, such as the ones studied
for natural language [Beltagy, 2020; Choromanski, 2021; Kitaev, 2020; Tay, 2021; Wang, 2020b;
Wu, 2020; Zaheer, 2020], is another promising direction for future research in developing efficient
end-to-end video-language models. Finally, this work focuses on the spatio-temporal video
grounding task itself. It would be interesting to study if such systems can be integrated into
video question answering systems to improve them.
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Chapter 6
Vid2Seq: Large-Scale Pretraining of a Visual
Language Model for Dense Video Captioning

In this chapter, we introduce Vid2Seq, a multi-modal single-stage dense event captioning model
pretrained on narrated videos which are readily-available at scale. The Vid2Seq architecture
augments a language model with special time tokens, allowing it to seamlessly predict event
boundaries and textual descriptions in the same output sequence (see Figure 6.1). Such a
unified model requires large-scale training data, which is not available in current annotated
datasets. We show that it is possible to leverage unlabeled narrated videos for dense video cap-
tioning, by reformulating sentence boundaries of transcribed speech as pseudo event boundaries,
and using the transcribed speech sentences as pseudo event captions. The resulting Vid2Seq
model pretrained on the YT-Temporal-1B dataset [Zellers, 2022] improves over the prior state
of the art on a variety of dense video captioning benchmarks including YouCook2 [Zhou, 2018a],
ViTT [Huang, 2020b] and ActivityNet Captions [Krishna, 2017]. Vid2Seq also generalizes well
to the tasks of video paragraph captioning and video clip captioning, and to few-shot settings.
Our code and models are publicly available at [Yang, 2023a].

Large-scale pretraining from narrated videos Dense video captioning

Hey guys today I am going 
to teach you how to ski The kids make it look easy First slope, congratz!

Vid2Seq

<1s><8s>The man is fastening the dog. <20s><50s>The dogs are pulling the sled. <45s><49s>The man is saying hello.

Figure 6.1: Vid2Seq is a visual language model that predicts dense event captions together
with their temporal grounding in the video by generating a single sequence of tokens (right).
This ability is enabled by large-scale pretraining on unlabeled narrated videos (left).
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6.1 Introduction

Dense video captioning requires the temporal localization and captioning of all events in an
untrimmed video [Krishna, 2017; Wang, 2021d; Zhou, 2018c]. This differs from standard video
captioning [Lin, 2022b; Luo, 2020b; Seo, 2022], where the goal is to produce a single caption
for a given short video clip. Dense captioning is significantly more difficult, as it raises the
additional complexity of localizing the events in minutes-long videos. However, it also benefits
from long-range video information. This task is potentially highly useful in applications such as
large-scale video search and indexing, where the video content is not segmented into clips.

Existing methods mostly resort to two-stage approaches [Krishna, 2017; Wang, 2018b; Iashin,
2020a], where events are first localized and then captioned. To further enhance the inter-task
interaction between event localization and captioning, some approaches have introduced models
that jointly solve the two tasks [Deng, 2021a; Wang, 2021d; Zhou, 2018c]. However, often
these approaches still require task-specific components such as event counters [Wang, 2021d].
Furthermore, they exclusively train on manually annotated datasets of limited size [Huang,
2020b; Krishna, 2017; Zhou, 2018b], which makes it difficult to effectively solve the task. To
address these issues, we take inspiration from recent sequence-to-sequence models pretrained on
Web data which have been successful on a wide range of vision and language tasks [Chen, 2022a;
Yang, 2021d; Chen, 2023b; Alayrac, 2022; Wang, 2022f].

First, we propose a video language model, called Vid2Seq. We start from a language model
trained on Web text [Raffel, 2020] and augment it with special time tokens that represent
timestamps in the video. Given video frames and transcribed speech inputs, the resulting model
jointly predicts all event captions and their corresponding temporal boundaries by generating a
single sequence of discrete tokens, as illustrated in Figure 6.1 (right). Such a model therefore
has the potential to learn multi-modal dependencies between the different events in the video
via attention [Vaswani, 2017]. However this requires large-scale training data, which is not
available in current dense video captioning datasets [Huang, 2020b; Krishna, 2017; Zhou, 2018b].
Moreover, collecting manual annotations of dense captions for videos is expensive and prohibitive
at scale.

Hence we propose to pretrain Vid2Seq by leveraging unlabeled narrated videos which are
readily-available at scale. To do this, we reformulate sentence boundaries of transcribed speech
as pseudo event boundaries, and use the transcribed speech sentences as pseudo event captions.
We then pretrain Vid2Seq with a generative objective, that requires predicting the transcribed
speech given visual inputs, and a denoising objective, which masks spans of transcribed speech.
Note that transcribed speech may not describe the video content faithfully, and is often tempo-
rally misaligned with the visual stream [Han, 2022; Ko, 2022; Miech, 2020]. For instance, from
the example in Figure 6.1 (left), one can understand that the grey skier has descended a slope
from the last speech sentence which is said after he actually descended the slope. Intuitively,
Vid2Seq is particularly suited for learning from such noisy supervision as it jointly models all
narrations and the corresponding timestamps in the video.

We demonstrate the effectiveness of our pretrained model through extensive experiments. We
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show the importance of pretraining on untrimmed narrated videos, the ability of Vid2Seq to use
both the visual and speech modalities, the importance of the pretraining objectives, the benefit
of joint caption generation and localization, as well as the importance of the language model
size and the scale of the pretraining dataset. The pretrained Vid2Seq model achieves state-
of-the-art performance on various dense video captioning benchmarks [Huang, 2020b; Krishna,
2017; Zhou, 2018b]. Our model also excels at generating paragraphs of text describing the video:
without using ground-truth event proposals at inference time, our model outperforms all prior
approaches including those that rely on such proposals [Lei, 2020a; Zhou, 2019; Park, 2019].
Moreover, Vid2Seq generalizes well to the standard task of video clip captioning [Chen, 2011;
Xu, 2016b]. Finally, we introduce a new few-shot dense video captioning setting in which we
finetune our pretrained model on a small fraction of the downstream training dataset and show
benefits of Vid2Seq in this setting.

In summary, we make the following contributions:

(i) We introduce Vid2Seq for dense video captioning. Given multi-modal inputs (transcribed
speech and video), Vid2Seq predicts a single sequence of discrete tokens that includes
caption tokens interleaved with special time tokens that represent event timestamps.

(ii) We show that transcribed speech and corresponding timestamps in unlabeled narrated
videos can be effectively used as a source of weak supervision for dense video captioning.

(iii) Finally, our pretrained Vid2Seq model improves over the prior state of the art on three
dense video captioning datasets (YouCook2, ViTT, ActivityNet Captions), two video para-
graph captioning benchmarks (YouCook2, ActivityNet Captions) and two video clip cap-
tioning datasets (MSR-VTT, MSVD), and also generalizes well to few-shot settings.

6.2 Related Work

Dense video captioning. Dense video captioning lies at the intersection of event localiza-
tion [Heilbron, 2016; Escorcia, 2016; Gao, 2017b; Lin, 2018; Lin, 2019; Lin, 2020a; Shou, 2016;
Zhao, 2017a] and event captioning [Gao, 2017c; Lin, 2022b; Pan, 2017; Wang, 2018c; Wang,
2018a]. The majority of existing methods for dense video captioning [Krishna, 2017; Iashin,
2020a; Iashin, 2020b; Wang, 2018b; Wang, 2020c] consist of a temporal localization stage fol-
lowed by an event captioning stage. To enrich inter-task interactions, recent works [Chadha,
2021; Chen, 2021b; Deng, 2021a; Li, 2018a; Mun, 2019; Rahman, 2019; Shen, 2017; Shi, 2019a;
Wang, 2018b; Wang, 2021d; Zhou, 2018c] jointly train the captioning and localization modules.
In particular, [Wang, 2021d] propose to view dense video captioning as a set prediction task,
and jointly perform event localization and captioning for each event in parallel. In contrast, our
model generates event boundaries and captions conditioned on the previously generated events.
[Deng, 2021a] propose to first generate a paragraph and then ground each sentence in the video.
We also generate all captions as a single output sequence, however our output already includes
event timestamps. [Zhang, 2022c] propose to generate event boundaries sequentially, but sepa-
rately perform event localization and single event captioning, and only use visual input. Most
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related to our work, [Zhu, 2022b] also perform dense video captioning by generating a single
output sequence. Their method, however, infers event locations directly from the timestamps
of transcribed speech and, hence, can only detect events that closely follow the speech. In con-
trast, our model generates event timestamps as special tokens and can produce dense captions
for videos with limited speech, as we demonstrate on the ActivityNet Captions dataset.

Video and language pretraining. Following the success of image-text pretraining [Singh,
2022; Yu, 2022a; Hu, 2022b; Chen, 2020b; Dou, 2022b; Dou, 2022a; Gan, 2020; Huang, 2021b;
Jia, 2021; Kamath, 2021; Kim, 2021b; Li, 2020a; Li, 2020d; Li, 2021a; Li, 2022c; Li, 2022d;
Lu, 2019; Lu, 2020; Su, 2019; Tan, 2019; Tsimpoukelli, 2021; Desai, 2021b; Wang, 2021b; Yu,
2020; Yuan, 2021; Zhang, 2022b; Zhou, 2020], recent works have explored video-text pretrain-
ing [Wang, 2022b; Akbari, 2021; Alayrac, 2022; Bain, 2021; Fu, 2021; Ge, 2022; Han, 2022; Ko,
2022; Lei, 2021b; Li, 2020b; Li, 2022a; Miech, 2019; Miech, 2020; Nagrani, 2022; Seo, 2021b; Seo,
2022; Sun, 2019b; Xue, 2022; Xu, 2021; Wang, 2023; Yang, 2021b; Yang, 2022c; Yang, 2022e;
Yang, 2022d; Zellers, 2021; Zellers, 2022; Xue, 2022]. These methods show strong improvements
on various tasks such as text-video retrieval [Bain, 2021; Miech, 2020], video question answer-
ing [Yang, 2021b; Zellers, 2021] and video clip captioning [Alayrac, 2022; Seo, 2022]. While these
works mostly learn global video representations to tackle video-level prediction tasks, we here
focus on learning detailed representations to address a dense prediction task requiring reasoning
over multiple events in untrimmed videos. Several works have explored long-form video-text
pretraining [Sun, 2022] and video-text pretraining for temporal localization tasks [Cao, 2022a;
Lei, 2021a; Lin, 2022a; Wang, 2022g; Xu, 2022; Yang, 2021c]. However these works focus on
video understanding tasks while our pretraining approach is tailored for a generative task that
not only requires the model to reason over multiple events in the video, but also to describe
them by natural language.

A few works explore pretraining for dense video captioning. [Zhang, 2022c] pretrain on
ActivityNet Captions to improve the downstream performance on the same dataset. In contrast,
we propose a pretraining method that does not rely on any manual annotation, and show its
benefits on multiple downstream datasets. [Huang, 2020b] explore pretraining on narrated
instructional videos, but only consider event captioning using ground truth proposals as their
model does not handle localization. Finally, [Huang, 2020b; Zhu, 2022b] explore pretraining on
a domain specific text-only dataset [Koupaee, 2018]. In contrast, we propose to pretrain on a
generic video corpus [Zellers, 2022] and show benefits on various domains.

Unifying tasks as language modeling. Recent works [Chen, 2022a; Chen, 2022b; Chen,
2022c; Chen, 2023b; Cho, 2021; Kolesnikov, 2022; Li, 2022e; Wang, 2022c; Yang, 2021d; Zhu,
2022a] have shown that it is possible to cast various computer vision problems as a language
modeling task, addressing object detection [Chen, 2022a], grounded image captioning [Yang,
2021d] or visual grounding [Zhu, 2022a]. In this work we also cast visual localization as a
language modeling task. However, unlike prior work focused on image-level spatial localization,
we address the different problem of event localization in time, in untrimmed videos.
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Figure 6.2: Vid2Seq model overview. We formulate dense event captioning as a sequence-
to-sequence problem, using special time tokens to allow the model to seamlessly understand
and generate sequences of tokens containing both textual semantic information and temporal
localization information grounding each text sentence in the video. In detail, all input video
frames x and the transcribed speech sequence y are first processed with a Visual Encoder f (a
frozen Spatial Encoder fs followed by a Temporal Encoder f t) and a Text Encoder g (a Token
Embedder gs followed by a Transformer Encoder gt), respectively. Then the Text Decoder h
(composed of a Token Embedder hs, a Transformer Encoder ht and a Language Modeling Head
hl) autoregressively generates the output event sequence z by cross-attending to the visual and
speech embeddings xt and yt.

6.3 Method

The goal of dense video captioning is to temporally localize and describe with natural language
all events in an untrimmed input video. Therefore a key challenge is to effectively model the
relationships between the different events in the video, as for example, it is easier to predict that
the dogs are pulling the sled if we know that the man has just fastened a dog (see Figure 6.1
(right)). Furthermore, due to the dense nature of the task, there can be many events in a long
video and the requirement is to output a natural language caption for each event. Hence, another
key challenge is that the manual collection of annotations for this task is particularly expensive.
To tackle these challenges, we first develop a unified multi-modal model that jointly predicts
event boundaries and captions as a single sequence of tokens, as explained in Section 6.3.1
and Figure 6.2. Second, we design a pretraining strategy that effectively leverages cross-modal
supervision in the form of transcribed speech from unlabeled narrated videos by reformulating
sentence boundaries as pseudo event boundaries, as presented in Section 6.3.2 and Figure 6.3.

6.3.1 Model

We wish to design a model for dense video captioning that can capture relationships between
events using visual and (transcribed) speech cues in order to effectively localize and describe
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these events in untrimmed minutes-long videos. To tackle this challenge, we cast dense video
captioning as a sequence-to-sequence problem where the input and output sequences contain
both the semantic information about the event in the form of natural language descriptions and
the temporal localization of the events in the form of temporal timestamps. In addition, to
best leverage both the visual and the language signal, we develop an appropriate multi-modal
encoder-decoder architecture. As illustrated in Figure 6.2, our architecture takes as input video
frames x = {xi}Fi=1 together with the transcribed speech sequence y = {yj}Sj=1. The output
of our model is an event sequence z = {zk}Lk=1, where each event contains both its textual
description and timestamps corresponding to the temporal event locations in the video. Below
we explain the structure of the transcribed speech and event sequences constructed for our model
as well as details of our model architecture.

6.3.1.1 Sequence construction.

To model inter-event relationships in dense event captioning annotations (or the readily-available
transcribed narration, see Section 6.3.2), we cast dense video captioning as predicting a single
output sequence of tokens z. This output event sequence is constructed by leveraging a text
tokenizer augmented with special time tokens. Furthermore, we enable our architecture to
jointly reason about the semantic and temporal information provided in the transcript of the
input narration by constructing the input transcript sequence y in a similar manner as the event
sequence z. Details are given next.

Time tokenization. We start from a text tokenizer with a vocabulary size V , and augment
it with N additional time tokens, resulting in a tokenizer with V +N tokens. The time tokens
represent relative timestamps in a video, as we quantize a video of duration T into N equally-
spaced timestamps. In detail, we use the SentencePiece tokenizer [Kudo, 2018] with vocabulary
size V = 32, 128 and N = 100.

Event sequence. Our introduced tokenizer enables us to construct sequences that contain
both video timestamps and text video descriptions. We next explain how we construct the
output event sequence z. Note that videos have a variable number of events in standard dense
video captioning datasets [Huang, 2020b; Krishna, 2017; Zhou, 2018b]. Each event k is char-
acterized by a text segment, a start time and an end time. We first construct for each event
k a sequence by concatenating its start time token tstartk , its end time token tendk

and its text
tokens [zk1 , ..., zklk

]. Then we order all these sequences in increasing order of their start times
and concatenate them. In practice, each text segment ends with a dot symbol indicating the
separation between different events. Finally, the event sequence is obtained by prepending and
appending a BOS and an EOS tokens to indicate the start and the end of sequence, respectively,
i.e., z = [BOS, tstart1 , tend1 , z11 , ..., z1l1

, tstart2 , ..., EOS].
1https://cloud.google.com/speech-to-text/docs/automatic-punctuation.
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Transcribed speech sequence. To enable the model to use both the transcribed speech
and its corresponding timestamps, we convert the speech transcript into a speech sequence y
similarly as the input training dense event captions z. This is done by segmenting the raw
speech transcript into sentences with the Google Cloud API1, and using each transcribed speech
sentence with its corresponding timestamps analogously as an event in the previously explained
process.

6.3.1.2 Architecture.

We wish to design an architecture that can effectively model relationships between different
events in untrimmed minutes-long videos. To tackle this challenge, we propose a multi-modal
encoder-decoder architecture, illustrated in Figure 6.2, that gradually refines and outputs the
event sequence described above. In detail, given an untrimmed minutes-long video, the visual
encoder f embeds its frames while the text encoder g embeds transcribed speech and the corre-
sponding timestamps. Then a text decoder h predicts event boundaries and text captions using
the visual and transcribed speech embeddings. The individual modules are described next.

Visual encoder. The visual encoder operates on a sequence of F frames x ∈ RF×H×W×C

where H, W and C are the height, width and the number of channels of each frame. A visual
backbone fs first encodes each frame separately and outputs frame embeddings xs = fs(x) ∈
RF×d, where d is the embedding dimension. Then a transformer encoder [Vaswani, 2017] f t

models temporal interactions between the different frames, and outputs F contextualized visual
embeddings xt = f t(xs + xp) ∈ RF×d, where xp ∈ RF×d are learnt temporal positional em-
beddings, which communicate time information from visual inputs to the model. In detail, the
visual backbone is CLIP ViT-L/14 [Dosovitskiy, 2021; Radford, 2021] at resolution 224 × 224
pixels, pretrained to map images to text descriptions with a contrastive loss on Web-scraped
image-text pairs. We keep the backbone frozen for efficiency.

Text encoder. The text encoder operates on a transcribed speech sequence of S tokens y ∈
{1, ..., V +N}S , where V is the text vocabulary size, N is the size of the vocabulary of time tokens
and S is the number of tokens in the transcribed speech sequence. Note that the transcribed
speech sequence includes time tokens to input the temporal information from the transcribed
speech into the model. An embedding layer gs ∈ R(V+N)×d embeds each token independently
and outputs semantic embeddings ys = gs(y) ∈ RS×d. Then a transformer encoder gt computes
interactions in the transcribed speech sequence and outputs S contextualized speech embeddings
yt = gt(ys) ∈ RS×d.

Text decoder. The text decoder generates the event sequence z by using the encoder em-
beddings, which are obtained by concatenating the visual and speech embeddings xt and yt.
The text decoder is based on a causal transformer decoder ht that cross-attends to the encoder
outputs, and at each autoregressive step k, self-attends to the previously generated tokens ẑt<k
to output a contextualized representation ztk = ht(hs(ẑt<k), xt, yt) ∈ Rd where hs ∈ R(V+N)×d is
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Corrupted transcribed speech 
sequence
<3><5> Hey guys today I am 
going to [X] … <93> [Y] congratz!

Input video frames

[X] teach you how to ski [Y] 
<96> First slope [Z]

Recovered transcribed
speech sequence

Transcribed speech sequence
<3><5> Hey guys today I am 
going to teach you how to… 
<93><96> First slope, congratz!

Generative Task

Denoising Task

Vid2Seq

Vid2Seq

Figure 6.3: Pretraining tasks. To train Vid2Seq on unlabeled narrated videos, we design
two pretraining objectives. Top: generative objective, given visual inputs x only, the task is to
generate the transcribed speech sequence y. Bottom: denoising objective, given visual inputs
x and the corrupted speech sequence ỹ, the task is to generate the sequence of recovered speech
segments ȳ.

the decoder token embedding layer. Then a language modeling head hl ∈ Rd×(V+N) predicts a
probability distribution over the joint vocabulary of text and time tokens in order to predict the
next token in the event sequence, i.e., zlk = hl(ztk) ∈ RV+N .

Text initialization. We initialize the text encoder and the text decoder with T5-Base [Raffel,
2020] which has been pretrained on Web text corpora with a denoising loss. Therefore their
implementation and parameters also closely follow T5-Base, e.g. they use relative positional
embeddings and share their token embedding layer gs = hs ∈ R(V+N)×d.

6.3.2 Training

In this Section, we describe how we leverage a large amount of unlabeled narrated videos to train
the previously described dense event captioning model. We first present the pretraining method
used to effectively train Vid2Seq using cross-modal supervision in readily-available narrated
videos in Section 6.3.2.1 and Figure 6.3. Then we explain how we finetune our architecture for
various downstream tasks including dense event captioning in Section 6.3.2.2.

6.3.2.1 Pretraining on untrimmed narrated videos

We wish to leverage narrated videos for pretraining as they are easily available at scale [Miech,
2019; Zellers, 2022]. However these videos do not contain dense event captioning annotations.
Therefore we use as supervisory signal the transcribed speech sentences and their corresponding
timestamps. As speech transcripts are not always visually grounded and often temporally mis-
aligned [Han, 2022; Ko, 2022; Miech, 2020], we note that they only provide weak supervision.
Furthermore, speech transcripts drastically differ from dense event captioning annotations. For
instance, in the YT-Temporal-1B dataset [Zellers, 2022], a video contains 120 speech sentences
on average which is an order of magnitude more than the number of events in standard dense
video captioning datasets [Zhou, 2018b; Huang, 2020b; Krishna, 2017]. Our Vid2Seq model
is particularly suitable for using such weak supervision as it constructs the speech sequence
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similarly as a manually annotated event sequence, and jointly contextualizes the speech bound-
aries and semantic information on the level of potentially minutes-long videos (see Section 6.3.1)
rather than at a shorter clip-level, enabling our model to learn long-term relationships between
the different speech segments: in experiments we show that pretraining on entire minutes-long
videos is highly beneficial.

We next describe the two proposed training objectives, which are both based on a maximum
likelihood objective. Formally, given visual inputs x, encoder text sequence y and a decoder
target text sequence z, both objectives are based on minimizing the following loss:

Lθ(x, y, z) = − 1∑L−1
k=1 wk

L−1∑
k=1

wk log pθ(zk+1|x, y, z1:k), (6.1)

where L is the length of the decoder target sequence, wk is the weight for k-th token in the
sequence, which we set to wk = 1 ∀k in practice, θ denotes the trainable parameters in the
model and pθ is the output probability distribution over the vocabulary of text and time tokens.

Generative objective. This objective uses the transcribed speech as a (pseudo-)supervisory
signal to teach the decoder to predict a sequence of events given visual inputs. Given video frames
x, which are fed to the encoder, the decoder has to predict the transcribed speech sequence y
(see Figure 6.3), which serves as a proxy dense event captioning annotation. Note that no text
input is given to the encoder for this task as using transcribed speech both as input and target
would lead the model to learn text-only shortcuts.

Denoising objective. As no text input is given to the encoder for the generative proxy task,
the generative objective only trains the visual encoder and the text decoder, but not the text
encoder. However when our model is used for dense video captioning, the text encoder has a
significant importance as it encodes speech transcripts. Hence we introduce a denoising objective
that aims at jointly aligning the visual encoder, the text encoder and the text decoder. Inspired
by T5 [Raffel, 2020] in the text domain, we randomly mask spans of (text and time) tokens
in the transcribed speech sequence with a probability P and an average span length M . The
encoder input is composed of the video frames x together with the corrupted speech sequence
ỹ, which contains sentinel tokens that uniquely identify the masked spans. The decoder then
has to predict a sequence ȳ constructed with the corresponding masked spans for each sentinel
token, based on visual inputs x and speech context ỹ (see Figure 6.3).

6.3.2.2 Downstream task adaptation

Our architecture and task formulation enables us to tackle dense video captioning with a generic
language modeling training objective and inference procedure. Note that as a by-product of our
generic architecture, our model can also be used to generate paragraphs about entire videos by
simply removing the time tokens from the output sequence, and can also be easily adapted to
video clip captioning with the same finetuning and inference recipe.
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Finetuning. To finetune our model for dense video captioning, we use a maximum likelihood
objective based on the event sequence (see Equation 6.1). Given video frames x and speech
transcripts y, the decoder has to predict the event sequence z.

Inference. The text decoder autoregressively generates the event sequence by sampling from
the model likelihood. In practice, we use beam search as we find that it improves the captioning
quality compared with argmax sampling or nucleus sampling. Finally, the event sequence is
converted into a set of event predictions by simply reversing the sequence construction process.

6.4 Experiments

This section demonstrates the effectiveness of our pretrained Vid2Seq model and compares our
method to the state of the art. We first outline our experimental setup in Section 6.4.1. We then
present ablation studies in Section 6.4.2. The comparison to the state of the art in dense video
captioning, video paragraph captioning and video clip captioning is presented in Section 6.4.3.
Next, we present results in a new few-shot dense video captioning setting in Section 6.4.4.
Finally, we show qualitative results in Section 6.4.5.

6.4.1 Experimental setup

Datasets. For pretraining, following prior work showing the benefits of pretraining on a diverse
and large dataset [Zellers, 2021], we use the YT-Temporal-1B dataset [Zellers, 2022], which
includes 18 million narrated videos collected from YouTube. We evaluate Vid2Seq on three
downstream dense video captioning datasets: YouCook2 [Zhou, 2018b], ViTT [Huang, 2020b]
and ActivityNet Captions [Krishna, 2017]. For video clip captioning, we use two standard
benchmarks, MSR-VTT [Xu, 2016b] and MSVD [Chen, 2011]. For all datasets, we follow the
standard splits for training, validation and testing. Note that we only use videos available on
YouTube at the time of the work, resulting in 10 to 20% less videos than in the original datasets.
We describe below the downstream datasets in more detail.
YouCook2 has 2K untrimmed videos of cooking procedures. On average, each video lasts 320s
and is annotated with 7.7 temporally-localized sentences. The dataset is split into 1,333 videos
for training and 457 videos for validation.
ViTT consists of 8K untrimmed instructional videos. On average, each video lasts 250s and is
annotated with 7.1 temporally-localized short tags. The dataset is split into 5,476, 1,102 and
1,094 videos for training, validation and testing, respectively. Videos in the validation and test
sets are provided with multiple sets of dense event captioning annotations. Following [Huang,
2020b], we treat each set of annotations as a single example during evaluation and discard videos
with more than 3 sets of annotations.
ActivityNet Captions contains 14,934 untrimmed videos of various human activities. On
average, each video lasts 120s and is annotated with 3.7 temporally-localized sentences. Different
from YouCook2 and ViTT where most videos contain transcribed speech content, we find that
68% of videos in ActivityNet Captions do not have transcribed narration. On average, each
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video lasts 120s and is annotated with 3.7 temporally-localized sentences. The dataset is split
into 10,009 and 4,925 videos for training and validation, respectively. Videos in the validation set
are provided with two sets of dense video captioning annotations. Following prior work [Wang,
2021d], we use both sets of annotations for evaluation, by computing the average of the scores
over each set for SODA_c and by using the standard evaluation tool [Krishna, 2017] for all
other dense event captioning metrics. For video paragraph captioning, we follow [Wang, 2021d]
and report results on the ’val-ae’ split that includes 2,460 videos [Zhou, 2019; Lei, 2020a].
MSR-VTT [Xu, 2016b] consists of 10,000 open domain video clips. The duration of each video
clip is between 10 and 30 seconds. 20 natural language descriptions are manually annotated
for each clip. The dataset is split into 6,513, 497 and 2,990 videos for training, validation and
testing, respectively.
MSVD [Chen, 2011] consists of 1,970 open domain video clips. The duration of each video clip
is between 10 and 30 seconds. Each video clip has roughly 40 manually annotated captions. The
dataset is split into 1,200, 100 and 670 videos for training, validation and testing, respectively.

Implementation details. Our code is implemented in Jax and based on the Scenic li-
brary [Dehghani, 2022]. We extract video frames at 1FPS, and subsample or pad the sequence
of frames to F frames where we set F = 100. The text encoder and decoder sequence are
truncated or padded to L = S = 1000 tokens. The visual temporal transformer encoder f t, the
text encoder gt and the text decoder ht all have 12 layers, 12 heads, embedding dimension 768,
and MLP hidden dimension of 2048. The text encoder and decoder sequences are truncated or
padded to L = S = 1000 tokens during pretraining, and S = 1000 and L = 256 tokens during
finetuning. At inference, we use beam search decoding where we track the top 4 sequences and
apply a length normalization of 0.6. Our model has 314M trainable parameters.

For training, we use the Adam optimizer [Kingma, 2015] with β = (0.9, 0.999) and no weight
decay. We pretrain our model for 200,000 iterations with a batch size of 512 videos split on
64 TPU v4 chips, which lasts a day. We sum both pretraining objectives with equal weighting
to get our final pretraining loss. During pretraining, we use a learning rate of 1e−4, warming
it up linearly (from 0) for the first 1000 iterations, and keeping it constant for the remaining
iterations. During finetuning, we use a learning rate of 3e−4, warming it up linearly (from 0) for
the first 10% of iterations, followed by a cosine decay (down to 0) for the remaining 90%. During
finetuning, we use a batch size of 32 videos split on 16 TPU v4 chips. We finetune for 40 epochs on
YouCook2, 20 epochs on ActivityNet Captions and ViTT, 5 epochs on MSR-VTT and 10 epochs
on MSVD. We clip the maximum norm of the gradient to 0.1 during pretraining, and 1 during
finetuning. For data augmentation, we use random temporal cropping. For regularization, we use
label smoothing [Szegedy, 2016] with value 0.1 and dropout [Srivastava, 2014] with probability
0.1.

Evaluation metrics. For captioning, we use CIDEr [Vedantam, 2015] (C) and METEOR [Baner-
jee, 2005] (M). For dense video captioning, we follow the commonly used evaluation tool [Kr-
ishna, 2017] which calculates matched pairs between generated events and the ground truth

106



6.4. Experiments

Pretraining input YouCook2 ActivityNet
Untrimmed Time tokens S C F1 S C F1

1. No pretraining 4.0 18.0 18.1 5.4 18.8 49.2
2. 7 7 5.5 27.8 20.5 5.5 26.5 52.1
3. 3 7 6.7 35.0 23.3 5.6 27.4 52.2
4. 3 3 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.1: Ablation showing the impact of using untrimmed videos and adding time
tokens during pretraining. When we use untrimmed video-speech inputs, time information
from transcribed speech sentence boundaries is integrated via time tokens.

Max number
of narrations

YouCook2 ActivityNet
S C F1 S C F1

1. No pretraining 4.0 18.0 18.1 5.4 18.8 49.2
2. 1 6.0 32.1 22.1 5.1 22.9 48.1
3. 10 6.5 34.6 23.6 5.4 27.1 50.3
4. ∞ 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.2: Ablation showing the importance of pretraining on long narrated videos,
by varying the maximum number of narration sentences that a randomly cropped video can
cover. ∞ means the cropping is unrestricted and can sample arbitrarily long videos.

across IoU thresholds of {0.3, 0.5, 0.7, 0.9}, and compute captioning metrics over the matched
pairs. However, these metrics do not take into account the story of the video. Therefore we
also use SODA_c [Fujita, 2020] (S) for an overall dense video captioning evaluation. To further
isolate the evaluation of event localization, we report the average precision and average recall
across IoU thresholds of {0.3, 0.5, 0.7, 0.9} and their harmonic mean, the F1 Score.

6.4.2 Ablation studies

The default Vid2Seq model predicts both text and time tokens, uses both visual frames and
transcribed speech as input, builds on the T5-Base language model and the CLIP ViT-L/14
visual backbone, and is pretrained on untrimmed videos from YT-Temporal-1B with both the
generative and denoising losses. Below we ablate the importance of each of these factors on
the downstream dense video captioning performance by reporting results on YouCook2 and
ActivityNet Captions validation sets.

Pretraining on untrimmed narrated videos by exploiting transcribed speech sen-
tence boundaries. In Table 6.1, we evaluate the effectiveness of our pretraining task for-
mulation that uses untrimmed videos and integrates sentence boundaries of transcribed speech
via time tokens. In contrast, most video clip captioning pretraining methods [Huang, 2020b;
Luo, 2020b; Seo, 2022] use short, trimmed, video-speech segments for pretraining. We adapt this
strategy in our model and find that it indeed yields significant performance improvements over
the baseline that uses no video-text pretraining (row 2 vs row 1). However, larger improvements
are obtained by using untrimmed video-speech inputs (row 3 vs row 2). Moreover, using time
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Finetuning Input Pretraining loss YouCook2 ActivityNet
Visual Speech Generative Denoising S C F1 S C F1

1. 3 7 No pretraining 3.0 15.6 15.4 5.4 14.2 46.5
2. 3 3 No pretraining 4.0 18.0 18.1 5.4 18.8 49.2
3. 3 7 3 7 5.7 25.3 23.5 5.9 30.2 51.8
4. 3 3 3 7 2.5 10.3 15.9 4.8 17.0 48.8
5. 3 3 3 3 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.3: Effect of input modalities and pretraining losses.

Captioning Pretraining YouCook2 ActivityNet
Recall Precision F1 Recall Precision F1

1. 7 7 17.8 19.4 17.7 47.3 57.9 52.0
2. 3 7 17.2 20.6 18.1 42.5 64.1 49.2
3. 7 3 25.7 21.4 22.8 52.5 53.0 51.1
4. 3 3 27.9 27.8 27.3 52.7 53.9 52.4

Table 6.4: Effect of joint captioning and localization on the localization performance.
The variant that does not caption corresponds to a localization-only variant that only predicts
time tokens.

tokens to integrate time information from transcribed speech drastically improves performance
(row 4 vs row 3). This shows the benefits of exploiting sentence boundaries of transcribed speech
via time tokens and of using untrimmed videos during pretraining.

Pretraining on long narrated videos. In Table 6.2, we further evaluate the importance
of sampling long narrated videos during pretraining. By default, at each training iteration, we
randomly temporally crop each narrated video without constraints, resulting in a video that can
span over hundreds of transcribed speech sentences. We here evaluate a baseline that constrains
this cropping process such that the cropped video only spans over a given maximum number of
narration sentences. Even with a maximum of 10 narration sentences, this baseline significantly
underperforms our model trained in default settings where we sample longer untrimmed narrated
videos (rows 1, 2 and 3). This demonstrates that our model benefits from pretraining on long
narrated videos.

Input modalities and pretraining objectives. In Table 6.3, we analyze the importance of
input modalities and pretraining tasks on the downstream dense video captioning performance.
The model with visual inputs only (no transcribed speech as input) benefits significantly from
pretraining with the generative objective (row 3 vs row 1). This shows the effectiveness of using
the transcribed speech as a proxy annotation for dense video captioning pretraining. However,
this model is pretrained with visual inputs only and its performance largely drops when it is
finetuned with both visual and transcribed speech inputs (row 4 vs row 3). With both modalities,
adding the denoising loss strongly benefits our model (row 5 vs rows 4 and 2). We conclude that
the denoising objective benefits multi-modal reasoning.
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Language
Model

Pretraining YouCook2 ActivityNet
# Videos Dataset S C F1 S C F1

1. T5-Small 15M YTT 6.1 31.1 24.3 5.5 26.5 52.2
2. T5-Base ∅ ∅ 4.0 18.0 18.1 5.4 18.8 49.2
3. T5-Base 15K YTT 6.3 35.0 24.4 5.1 24.4 49.9
4. T5-Base 150K YTT 7.3 40.1 26.7 5.4 27.2 51.3
5. T5-Base 1M5 YTT 7.8 45.5 26.8 5.6 28.7 52.2
6. T5-Base 1M HTM 8.3 48.3 26.6 5.8 28.8 53.1
7. T5-Base 15M YTT 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.5: Effect of language model size and pretraining data. HTM:
HowTo100M [Miech, 2019], YTT: YT-Temporal-1B [Zellers, 2022].

Pretraining Data Model YouCook2 ActivityNet
S C F1 S C F1

1. ImageNet ViT-B/16 6.6 40.2 24.3 4.5 17.2 49.3
2. CLIP ViT-B/16 7.7 46.3 26.5 5.6 28.4 51.7
3. CLIP ViT-L/14 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.6: Ablation on the pretraining data and model size of the visual backbone
f s.

Effect of captioning on localization. In Table 6.4, we compare the event localization per-
formance of our model with a localization-only variant that only predicts event boundaries.
We find that the model that jointly predicts event boundaries and captions localizes better
and benefits more from pretraining than the localization-only baseline (row 4 vs row 3), which
demonstrates the importance of contextualizing the noisy timestamps of the transcribed speech
with the speech semantic content during pretraining.

Model size and pretraining data. In Table 6.5, we show that the language model size has
a great importance on the performance, as the model with T5-Base outperforms its variant with
T5-Small (row 7 vs row 1). We also evaluate the importance of the size of the pretraining dataset
of narrated videos by constructing subsets such that larger subsets include the smaller ones. We
find that scaling up the size of the pretraining dataset is beneficial, and that our pretraining
method yields important benefits when only using 150K narrated videos for pretraining (row 4).
We further show that our pretraining method generalizes well to the HowTo100M dataset [Miech,
2019]. The model pretrained on HowTo100M (row 6) actually achieves best results on YouCook2,
as these datasets are from a similar domain.

Visual features. In Table 6.6, we further analyze the importance of the pretraining dataset
and size of the visual backbone fs. We find that CLIP pretraining [Radford, 2021] considerably
improves over ImageNet pretraining [Steiner, 2022] with the same ViT-B/16 visual backbone
model (row 2 vs 1). Furthermore, scaling up the visual backbone size from ViT-B/16 to ViT-
L/14 brings additional improvements (row 3 vs 2).
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Language Model
Initialization

Video-text
Pretraining

YouCook2 ActivityNet
S C F1 S C F1

1. 7 7 0.9 4.2 7.6 4.3 23.7 41.2
2. 3 7 4.0 18.0 18.1 5.4 18.8 49.2
3. 7 3 8.8 51.3 28.4 5.7 28.7 51.2
4. 3 3 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.7: Ablation on language model initialization and pretraining.

Tokenization N
YouCook2 ActivityNet

S C F1 S C F1
1. Absolute 20 0.3 0.2 0.9 3.2 23.0 23.1
2. Absolute 100 3.5 25.7 12.0 4.8 25.5 41.5
3. Absolute 500 7.9 39.8 24.3 5.4 28.1 48.6
4. Relative 20 7.2 39.6 23.7 5.6 29.0 49.4
5. Relative 100 7.9 47.1 27.3 5.8 30.1 52.4
6. Relative 500 7.2 40.0 25.0 5.7 28.6 52.5

Table 6.8: Ablation on time tokenization (relative or absolute) and the number of
time tokens N .

Language model initialization and pretraining. In Table 6.7, we further investigate the
importance of initializing the language model from weights pretrained on Web text. Without
pretraining on narrated videos, we find that text-only initialization is helpful (rows 1 and 2).
Interestingly, after pretraining on narrated videos, we find that text-only initialization has little
importance (rows 3 and 4), as it slightly improves the performance on ActivityNet Captions while
resulting in a slight drop of performance on YouCook2. We believe that this may be because of
the domain gap between Web text and the imperative-style dense captions in YouCook2, which
are more similar to transcribed speech in YT-Temporal-1B.

Time tokenization and number of time tokens. In Table 6.8, we ablate the time tokeniza-
tion process presented in Section 6.3.1. Our default time tokens represent relative timestamps in
a video, as we quantize a video of duration T into N equally-spaced timestamps. Another possi-
bility is to use time tokens that represent absolute timestamps in the video, i.e., the k-th token
represents the k-th second in the video. For both these variants, we vary the number of time
tokens N . For the relative time tokens, increasing N makes the quantization more fine-grained
but also spreads the data into more time tokens. On the other hand, for the absolute time
tokens, increasing N increases the video duration that the time tokens can cover. We find that
the best dense video captioning results are obtained with the relative time tokens and N = 100
time tokens (row 5).

Sequence construction. In Table 6.9, we further ablate the sequence construction process
presented in Section 6.3.1. Our default sequence inserts the start and end time tokens of each
segment before its corresponding text sentence. Another possibility is to insert time tokens after
each corresponding text sentence. We find that both variants achieve similar results (rows 2 and
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Dot symbol
between segments

Time tokens
Position

YouCook2 ActivityNet
S C F1 S C F1

1. 7 After text 7.9 48.3 26.7 5.6 29.8 51.1
2. 3 After text 8.3 50.9 26.2 5.7 30.4 51.8
3. 7 Before text 8.0 50.0 27.3 5.6 28.2 50.7
4. 3 Before text 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.9: Ablation on the sequence construction process.

Temporal
embeddings

YouCook2 ActivityNet
S C F1 S C F1

1. 7 6.8 42.0 24.9 5.3 27.0 50.6
2. 3 7.9 47.1 27.3 5.8 30.1 52.4

Table 6.10: Ablation on the temporal positional embeddings.

4), with the default sequence (row 4) resulting in slightly higher event localization performance
(F1 Score) but slightly lower dense captioning results overall. Furthermore, we observe that the
dot symbols indicating the separation between different events have low importance (rows 1 and
2, rows 3 and 4).

Temporal positional embeddings. In Table 6.1, we show that time tokens in the speech
sequence provide temporal information about the speech transcript to our model. In Table 6.10,
we also evaluate the importance of the temporal positional embeddings which communicate tem-
poral information from the visual stream to our model. We find that these temporal embeddings
are beneficial (row 2 vs 1).

6.4.3 Comparison to the state of the art

Dense video captioning. In Table 6.11, we compare our approach to state-of-the-art dense
video captioning methods using cross-entropy training 1 on the YouCook2, ViTT and Activi-
tyNet Captions datasets. Vid2Seq sets new state of the art on all three datasets. In particular,
our method improves the CIDEr metric by 18.2 and 0.8 points on YouCook2 and ActivityNet
Captions over PDVC. Our method also outperforms E2ESG [Zhu, 2022b] which uses in-domain
text-only pretraining on Wikihow. These results demonstrate the strong dense event captioning
ability of our pretrained Vid2Seq model.

Event localization. In Table 6.12, we evaluate the event localization performance of our
dense video captioning model in comparison with prior work. On both YouCook2 and ViTT,
Vid2Seq outperforms prior work [Zhu, 2022b] tackling dense video captioning as a single sequence
generation task. However, our model underperforms compared to PDVC [Wang, 2021d] and
UEDVC [Wang, 2021d] on ActivityNet Captions. We emphasize that our approach integrates
less prior knowledge about temporal localization than both these approaches, which include task

1We do not include methods directly optimizing the test metric [Deng, 2021a; Mun, 2019].

111



Chapter 6. Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video
Captioning

Method Backbone YouCook2 (val) ViTT (test) ActivityNet (val)
S C M S C M S C M

MT [Zhou, 2018c] TSN — 6.1 3.2 — — — — 9.3 5.0
ECHR [Wang, 2020c] C3D — — 3.8 — — — 3.2 14.7 7.2
PDVC [Wang, 2021d] TSN 4.4 22.7 4.7 — — — 5.4 29.0 8.0
PDVC [Wang, 2021d]† CLIP 4.9 28.9 5.7 — — — 6.0 29.3 7.6
UEDVC [Zhang, 2022c] TSN — — — — — — 5.5 — —
E2ESG [Zhu, 2022b] C3D — 25.0* 3.5 — 25.0 8.1 — — —-
Vid2Seq (Ours) CLIP 7.9 47.1 9.3 13.5 43.5 8.5 5.8 30.1 8.5

Table 6.11: Comparison to the state of the art for dense video captioning. * Results provided
by the authors. † Results of our experiments using the official codebase.

Method Backbone YouCook2 (val) ViTT (test) ActivityNet (val)
Recall Precision Recall Precision Recall Precision

PDVC [Wang, 2021d] TSN — — — — 55.4 58.1
PDVC [Wang, 2021d]† CLIP — — — — 53.2 54.7
UEDVC [Zhang, 2022c] TSN — — — — 59.0 60.3
E2ESG [Zhu, 2022b] C3D 20.7* 20.6* 32.2* 32.1* — —
Vid2Seq (Ours) CLIP 27.9 27.8 42.6 46.2 52.7 53.9

Table 6.12: Comparison to the state of the art for event localization. * Results provided by the
authors. † Results of our experiments using the official codebase.

specific components such as event counters [Wang, 2021d] or separately train a model for the
localization subtask [Zhang, 2022c].

Video paragraph captioning. In Table 6.13, we compare our approach to state-of-the-
art video paragraph captioning methods on the YouCook2 and ActivityNet Captions datasets.
Vid2Seq outperforms all prior methods on both datasets, including the ones using ground-truth
event boundary proposals at inference time [Dai, 2019; Lei, 2020a; Zhou, 2018c; Zhou, 2019;
Wang, 2021d; Park, 2019], showing strong video paragraph captioning ability.

Video clip captioning. In Table 6.14, we compare our approach to state-of-the-art video
clip captioning methods on the MSR-VTT and MSVD datasets. Vid2Seq improves over prior
methods in their respective pretraining data setting while using a comparable number of trained
parameters. We conclude that our pretrained Vid2Seq model generalizes well to the standard
video clip captioning setting.

6.4.4 Few-shot dense video captioning

To further evaluate the generalization capabilities of our pretrained Vid2Seq model, we propose
a new few-shot dense video captioning setting where we finetune Vid2Seq using only a fraction
of the downstream training dataset. From Table 6.15, we observe important improvements when
using 10% compared to 1% of training data (row 3 vs 1). We further find that pretraining is
essential in the few-shot setting (see row 2 vs 1 for instance).
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Method Backbone YouCook2 (val) ActivityNet (val-ae)
C M C M

With GT Proposals
VTransformer [Zhou, 2018c] V (ResNet-200) + F 32.3 15.7 22.2 15.6
Transformer-XL [Dai, 2019] V (ResNet-200) + F 26.4 14.8 21.7 15.1
MART [Lei, 2020a] V (ResNet-200) + F 35.7 15.9 23.4 15.7
GVDSup [Zhou, 2019] V (ResNet-101) + F + O — — 22.9 16.4
AdvInf [Park, 2019] V (ResNet-101) + F + O — — 21.0 16.6
PDVC [Wang, 2021d] V + F (TSN) — — 27.3 15.9
With Learnt Proposals
MFT [Xiong, 2018] V + F (TSN) — — 19.1 14.7
PDVC [Wang, 2021d] V + F (TSN) — — 20.5 15.8
PDVC [Wang, 2021d]† V (CLIP) — — 23.6 15.9
Vid2Seq (Ours) V (CLIP) 50.1 24.0 28.0 17.0

Table 6.13: Comparison to the SoTA for video paragraph captioning. † Results of our experi-
ments using the official codebase. V/F/O refers to visual/flow/object features.

Method Trained
Parameters

Pretraining
Data

MSR-VTT (test) MSVD (test)
C M C M

ORG-TRL [Zhang, 2020e] — ∅ 50.9 28.8 95.2 36.4
SwinBERT [Lin, 2022b] 229M ∅ 53.8 29.9 120.6 41.3
Vid2Seq (Ours) 314M ∅ 57.2 30.0 120.3 41.4
MV-GPT [Seo, 2022] 354M HowTo100M 60.0 29.9∗ — —
Vid2Seq (Ours) 314M HowTo100M 61.5 30.4 140.6 44.5
Vid2Seq (Ours) 314M YT-Temporal-1B 64.6 30.8 146.2 45.3

Table 6.14: Comparison to the SoTA for video clip captioning. * indicates results re-evaluated
by the same evaluation toolkit.

Data Pretrain YouCook2 ViTT ActivityNet
S C M S C M S C M

1. 1% 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
2. 1% 3 2.4 10.1 3.3 2.0 7.4 1.9 2.2 6.2 3.2
3. 10% 7 0.1 0.0 0.2 3.3 0.4 3.3 3.4 11.9 4.6
4. 10% 3 3.8 18.4 5.2 10.7 28.6 6.0 4.3 20.0 6.1
5. 50% 7 1.8 8.5 2.4 6.5 18.7 3.9 4.6 13.1 6.3
6. 50% 3 6.2 32.1 7.6 12.5 38.8 7.8 5.4 27.5 7.8
7. 100% 7 4.0 18.0 4.6 7.9 21.2 6.2 5.4 18.8 7.1
8. 100% 3 7.9 47.1 9.3 13.5 43.5 8.5 5.8 30.1 8.5

Table 6.15: Few-shot dense video captioning, by finetuning FrozenBiLM using a small
fraction of the downstream training dataset, compared with a non-pretrained variant.

6.4.5 Qualitative examples

In Figures 6.4 and 6.5, we show examples of dense event captioning predictions from Vid2Seq
on ActivityNet Captions and YouCook2, respectively. These results show that Vid2Seq can
predict meaningful dense captions and event boundaries in diverse scenarios, with or without
transcribed speech input, e.g., series of instructions in cooking recipes (Figure 6.5) or actions
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A weightlifter is 
standing on a 
stage.

He lifts the barbell before dropping it. He jumps up and down in excitement.

A very strong 
man is shown in a 
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He lifts a very heavy weight over his head. He then drops the weight to the ground before shaking 
his hands.

Ø
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Input
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Vid2Seq
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A group of children are seen 
swimming in a pool. The kids hit a ball back and forth in the water.

A picture of a sky is shown and leads into a 
group of boys playing a game of water polo.

The camera pans around a small group of kids playing and then a man 
chases a ball around.

The boys continue playing and one man hats off to the 
camera.

Ø Ø Ø Ø Ø Ø Ø Ø
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Vid2Seq

GT A man walks up 
to parallel bars 
while spectators, 
competitors, and 
officials are in the 
background.

The man performs a routine on the parallel bars. The man finishes his routine and dismounts.

A man walks up to a 
set of uneven bars.

He mounts the bars, then spins himself around. He does a handstand, then dismounts.

Input
Frames

They fight over the ball, trying to get it into the goal.

Ø Ø Ø Ø Ø Ø Ø Ø
Input 

Speech

Vid2Seq

GT A man is seen looking at the camera and leads into 
him playing a poker game with others. One man deals cards and chips while 

speaking to one another.
They continue playing and speaking to one another.

A man is sitting behind a table playing 
poker.

He deals cards to the people, then he puts them on the table. The man puts the 
cards on the table, 
and puts the chips 
in the middle.

Input
Frames

Vid2Seq

GT

Input 
Speech

An athlete is seen standing ready before a large track. The woman throws a javelin off into the distance and is shown again 
afterwards. She throws her hands up to 

cheer and wraps herself in a 
flag.

A woman runs with a javelin. She throws it onto the field. She throws a second javelin. She waves to 
the crowd and 
holds up a flag.

Next Oh is Christina Oh Beck full most consistent off the top women javelin throwers 
around at the moment.

Well, that's 
another 
very fine.

She's got over the years know what 
major gold medals until now.

Christina Oh beg for 
what a wonderful record.…

Input
Frames

Figure 6.4: Examples of dense event captioning predictions of Vid2Seq on ActivityNet Captions vali-
dation set, compared with ground-truth. The first four examples show successful predictions, while the
last example illustrates a failure case where the model hallucinates events that are not visually grounded
(‘one man hats off to the camera‘).
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Whisk the eggs.

Trim off the 
excess fat of 
chicken breast and 
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it into small pieces.
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cabbage and mix.
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hands before 
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that's 
that's 
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Figure 6.5: Examples of dense event captioning predictions of Vid2Seq on the validation set of YouCook2,
compared with ground-truth. We show more examples on our webpage [Yang, 2023a].

in human sports or leisure activities (first four examples in Figure 6.4). The last example in
Figure 6.4 illustrates a failure case where the model hallucinates events that are not visually
grounded such as ‘one man hats off to the camera‘. Moreover, we observe that the predicted
captions and boundaries differ considerably from the transcribed speech input (showing the
importance of the visual tokens in the input).

6.5 Conclusion

We introduce Vid2Seq, a visual language model that performs dense video captioning by gen-
erating a single sequence of tokens including both text and time tokens given multi-modal
inputs. We show that Vid2Seq benefits from large-scale pretraining on unlabeled untrimmed
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narrated videos by leveraging transcribed speech sentences and corresponding temporal bound-
aries. Vid2Seq achieves state-of-the-art results on various dense event captioning datasets, as
well as multiple video paragraph captioning and standard video clip captioning benchmarks.

Limitations. Vid2Seq can only process 100 video frames at a time, and is not trained end-
to-end as it relies on a frozen visual feature extractor. In addition, Vid2Seq cannot make use of
raw audio inputs. Moreover, this work mainly focuses on video captioning tasks. However, we
believe the sequence-to-sequence design of Vid2Seq has the potential to be extended to a wide
range of other video tasks such as temporally-grounded video question answering [Lei, 2018a;
Li, 2021b; Li, 2020b] or temporal action localization [Liu, 2022a; Zhang, 2022a; Cheng, 2022a].
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Chapter 7
VidChapters-7M: Video Chapters at Scale

Segmenting long videos into chapters enables users to quickly navigate to the information of their
interest (see Figure 7.1). This important topic has been understudied due to the lack of publicly
released datasets. To address this issue, we present VidChapters-7M, a dataset of 817K user-
chaptered videos including 7M chapters in total. VidChapters-7M is automatically created from
videos online in a scalable manner by scraping user-annotated chapters and hence without any
additional manual annotation. We introduce the following three tasks based on this data. First,
the video chapter generation task consists of temporally segmenting the video and generating
a chapter title for each segment. To further dissect the problem, we also define two variants of
this task: video chapter generation given ground-truth boundaries, which requires generating a
chapter title given an annotated video segment, and video chapter grounding, which requires
temporally localizing a chapter given its annotated title. We benchmark both simple baselines
and state-of-the-art video-language models, including the previously presented Vid2Seq model,
for these three tasks. We also show that pretraining Vid2Seq on VidChapters-7M transfers well
to dense video captioning tasks in both zero-shot and finetuning settings, largely improving over
the prior state of the art on the YouCook2 [Zhou, 2018a] and ViTT [Huang, 2020b] benchmarks.
Finally, our experiments reveal that downstream performance scales well with the size of the
pretraining dataset. Our dataset, code, and models are publicly available at [Yang, 2023b].

Intro and new 
shoes

Hiking Low Tatras 
todays plan

Beautifull ascent 
Low Tatras

New shoes, la 
Sportiva x4 Back to the campervan Outro and 

many thanks
…

0:420:00 1:46 2:26 9:58 12:10

Figure 7.1: A video with user-annotated chapters in VidChapters-7M: the video is
temporally segmented into chapters, which are annotated with a chapter title in free-form natural
language.
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7.1 Introduction

As online media consumption grows, the volume of video content available is increasing rapidly.
While searching for specific videos is already a challenging problem, searching within a long video
is an even less explored task. Manual navigation can often be time consuming, particularly for
long videos. A compelling solution for organizing content online is to segment long videos
into chapters (see Figure 7.1). Chapters are contiguous, non-overlapping segments, completely
partitioning a video. Each chapter is also labeled with a short description of the chapter content,
enabling users to quickly navigate to areas of interest and easily replay different parts of a
video. Chapters also give structure to a video, which is useful for long videos that contain
inherently listed content, such as listicles [Vijgen, 2014], instructional videos [Miech, 2019],
music compilations and so on.

Given the plethora of content already online, our goal is to explore automatic solutions
related to video chaptering - generating chapters automatically, and grounding chapter titles
temporally in long videos. While the benefits of automatically chaptering videos are obvious,
data for this task is scarce. Video captioning datasets (such as WebVid-10M [Bain, 2021] and
VideoCC [Nagrani, 2022]) consist of short videos (10s in length), and hence are unsuitable. Web
datasets consisting of longer videos (HowTo100M [Miech, 2019], YT-Temporal-1B [Zellers, 2022])
come with aligned speech transcripts (ASR), which are only weakly related to visual content,
and if used as chapter titles would tend to over-segment videos. Moment retrieval [Gao, 2017a;
Hendricks, 2017] or dense video captioning [Krishna, 2017; Zhou, 2018a] datasets are perhaps
the most useful, but do not focus on creating explicit structure, and instead describe low-level
actions comprehensively. Such datasets are also manually annotated, and hence not scalable
and small in size (see Table 7.1).

To remedy this, we curate VidChapters-7M, a large-scale dataset of user-annotated video
chapters automatically scraped from the Web. Our dataset consists of 7M chapters for over
817K videos. Compared to existing datasets, videos in VidChapters-7M are long (23 minutes
on average) and contain rich chapter annotations consisting of a starting timestamp and a title
per chapter. Our dataset is also diverse, with 12 different video categories having at least 20K
videos each, which itself is the size of existing dense video captioning datasets [Grauman, 2022;
Huang, 2020b; Krishna, 2017; Zhou, 2018a]. On top of this dataset we also define 3 video tasks
(see Figure 7.2): (i) video chapter generation which requires temporally segmenting the video
and generating a chapter title for each segment; (ii) video chapter generation given ground-truth
boundaries , which requires generating a chapter title given an annotated video segment; and
(iii) video chapter grounding , which requires temporally localizing a chapter given the chapter
title. All three tasks involve parsing and understanding long videos, and multi-modal reasoning
(video and text), and hence are valuable steps towards story understanding.

For all three tasks, we implement simple baselines as well as recent, state-of-the-art video-
text methods [Lei, 2021a; Wang, 2021d; Yang, 2023d]. We find that the tasks are far from being
solved, demonstrating the value of this problem. Interestingly, we also show that our video
chapter generation models trained on VidChapters-7M transfer well to dense video captioning
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Figure 7.2: Illustration of the three tasks defined for VidChapters-7M.

tasks in both zero-shot and finetuning settings, largely improving over the prior state of the art
on the YouCook2 [Zhou, 2018a] and ViTT benchmarks [Huang, 2020b]. Moreover, we show that
pretraining using both speech transcripts and chapter annotations significantly outperforms the
widely used pretraining method based only on speech transcripts [Miech, 2020; Yang, 2023d;
Zellers, 2022]. This demonstrates the additional value of our dataset as a generic video-language
pretraining set. Interestingly, we also find that the transfer performance scales with the size of
the chapter dataset.

In summary, our contributions are:

(i) We present VidChapters-7M, a large-scale dataset of user-annotated video chapters ob-
tained from the Web consisting of 817K videos and 7M chapters.

(ii) Based on this dataset, we evaluate a range of simple baselines and state-of-the-art video-
language models on the tasks of video chapter generation with and without ground-truth
boundaries, and video chapter grounding.

(iii) We show that video chapter generation models trained on VidChapters-7M transfer well
to dense video captioning tasks in both zero-shot and finetuning settings, largely im-
proving over the prior state of the art on the YouCook2 [Zhou, 2018a] and ViTT bench-
marks [Huang, 2020b], outperforming prior pretraining methods based on narrated videos [Yang,
2023d], and showing promising scaling behavior.

7.2 Related Work

Large-scale vision-language datasets. The development of powerful multi-modal mod-
els [Alayrac, 2022; Chen, 2020b; Gan, 2020; Hu, 2022b; Huang, 2021b; Jia, 2021; Lei, 2021b;
Li, 2020a; Li, 2021a; Li, 2022c; Li, 2020d; Lu, 2019; Lu, 2020; Radford, 2021; Singh, 2022;
Su, 2019; Tan, 2019; Tsimpoukelli, 2021; Wang, 2022f; Wang, 2022a; Yu, 2020; Yuan, 2021;
Zhou, 2020] has been made possible by pretraining on large-scale image-caption datasets scraped
from the Web such as SBU [Ordonez, 2011], Conceptual Captions [Sharma, 2018], Conceptual-
12M [Changpinyo, 2021], LAIT [Qi, 2020], Wikipedia-ImageText [Srinivasan, 2021], RedCaps [De-
sai, 2021b] and LAION-5B [Schuhmann, 2022]. Similarly, many strong video-language mod-
els [Akbari, 2021; Ge, 2022; Han, 2022; Ko, 2022; Lei, 2021a; Li, 2022a; Li, 2020b; Li, 2023c;
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Dataset Number of
videos

Video
duration (min)

Number of
descriptions Annotations

HowTo100M [Miech, 2019] 1M 7 136M Speech transcripts
YT-Temporal-1B [Zellers, 2022] 19M 6 ∼ 900M Speech transcripts
HD-VILA-100M [Xue, 2022] 3M 7 103M Speech transcripts
ActivityNet Captions [Krishna, 2017] 20K 3 100K Dense Captions
YouCook2 [Zhou, 2018a] 2K 6 15K Dense Captions
ViTT [Huang, 2020b] 8K 4 56K Dense Captions
Ego4D [Grauman, 2022] 10K 23 4M Dense Captions

VidChapters-7M (Ours) 817K 23 7M Speech transcripts +
User-annotated Chapters

Table 7.1: Comparison of VidChapters-7M with existing datasets. We consider open-
sourced video datasets that contain dense natural language descriptions aligned over time.
VidChapters-7M is much larger than current dense video captioning datasets. Compared to
datasets with ASR (top 3 rows), it is smaller in the total number of videos but contains longer
videos with richer annotations (chapters).

Lin, 2022a; Miech, 2020; Seo, 2021b; Seo, 2022; Sun, 2019b; Sun, 2022; Tang, 2022; Wang,
2023; Wang, 2022b; Xu, 2021; Yang, 2021b; Yang, 2022c; Yang, 2022e; Zhao, 2023] have been
pretrained on Web-scraped video-text datasets. These datasets are largely composed of short
videos paired with captions, e.g. WebVid-10M [Bain, 2021] and VideoCC [Nagrani, 2022], or
narrated videos with speech transcripts aligned over time (ASR), e.g. HowTo100M [Miech,
2019], YT-Temporal-1B [Zellers, 2021; Zellers, 2022] and HD-VILA-100M [Xue, 2022]. Our pro-
posed VidChapters-7M dataset is also downloaded from the Web, via a scalable pipeline without
the need for expensive manual annotation. Unlike these datasets, VidChapters-7M consists of
long videos with user-annotated chapters aligned over time (see Table 7.1), which significantly
differ from ASR (see Section 7.3.3). Furthermore, most videos in VidChapters-7M also contain
ASR. Finally, VidChapters-7M is also related to the recent ChapterGen dataset [Cao, 2022b],
which also consists of user-annotated chapters. However, ChapterGen is several orders of mag-
nitude smaller than VidChapters-7M (10K vs 817K videos) and is not open-sourced at the time
of writing.

Video tasks. The video chapter generation task requires temporally segmenting the video
into chapters, hence is related to video shot detection [Rasheed, 2003; Rui, 1998; Sidiropoulos,
2011], movie scene segmentation [Chen, 2021c; Rao, 2020], temporal action localization [Chao,
2018; Cheng, 2022a; Liu, 2022a; Shou, 2016; Zhang, 2022a; Zeng, 2019] and temporal action
segmentation [Behrmann, 2022; Farha, 2019; Gao, 2021; Lea, 2017; Li, 2021d; Wang, 2020e].
However, unlike these tasks, video chapter generation also requires generating a free-form natural
language chapter title for each segment. Hence this task is also related to video captioning [Gao,
2017c; Lin, 2022b; Luo, 2020b; Pan, 2017; Wang, 2018a; Wang, 2018c; Zhang, 2020e], video title
generation [Amirian, 2021; Zeng, 2016; Zhang, 2020b], generic event boundary captioning [Wang,
2022d] and dense video captioning [Krishna, 2017; Wang, 2021d; Zhou, 2018c]. Most related
to video chapter generation, the dense video captioning task requires temporally localizing and
captioning all events in an untrimmed video. In contrast, video chapter generation requires
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temporally segmenting the video (i.e. the start of the chapter i+ 1 is the end of chapter i, and
the chapters cover the full video), and involves generating a chapter title that is substantially
shorter than a video caption. We study in more detail the transfer learning between these two
tasks in Section 7.4.4. Finally, the video chapter grounding task is related to temporal language
grounding [Hendricks, 2017; Hendricks, 2018; Lei, 2020c; Lei, 2021a; Nan, 2021; Yang, 2022d;
Zhang, 2020a; Zhang, 2020c]. However, we here focus on localizing a chapter starting point and
not a start-end window. Furthermore, most temporal language grounding methods represent
the video only with visual inputs, while we also exhibit the benefits of using speech inputs for
localizing chapters in videos (see Section 7.4.3).

7.3 VidChapters-7M: a large-scale dataset of user-chaptered videos

Our goal is to build a large and diverse set of videos annotated with temporarily localized chapter
information, consisting of chapter titles and chapter start times. In detail, chapters are contigu-
ous, non-overlapping segments, completely partitioning a video. However manual annotation of
chapters is time consuming and expensive and therefore hard to scale. Hence we automatically
scrape chapter information from videos available online, as explained in Section 7.3.1. Then, we
perform several processing steps on this data, e.g., to extract speech transcripts, as described
in Section 7.3.2. The outcome is VidChapters-7M, a dataset of 817K videos with 7M chapter
annotations provided by real users online. Finally, we analyze VidChapters-7M in Section 7.3.3.
Details are given next.

7.3.1 Data collection

Since early 2020, YouTube users can create chapters for uploaded videos by annotating them
in the YouTube description. The YouTube API, however, currently does not enable explicit
search for user-chaptered videos. Hence, our data collection procedure consists of: (i) Collect-
ing a large and diverse set of video candidates (characterized by their 11-character YouTube
video ID), which do not necessarily contain user-annotated chapters; (ii) For all video candi-
dates, downloading the video description, automatically selecting videos with user-annotated
chapters, extracting video chapters and downloading corresponding videos. We next describe
the individual steps in more detail.

Video candidates. We start from a large pool of video candidates built from the YT-
Temporal-180M dataset [Zellers, 2021], which was constructed to be more diverse than prior
large video datasets such as HowTo100M [Miech, 2019]. Note that while the released YT-
Temporal-180M dataset consists of only 5M videos, the authors collected a larger set of candi-
dates by using YouTube’s recommendation algorithm to suggest related videos. We obtained
this extended list of 92 million video IDs directly from the authors.

Extracting chapters from descriptions. In the description, chapters typically constitute a
block with consecutive lines following the format “<Timestamp>: <Chapter Title>” or “<Chapter
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Title>: <Timestamp>”, where the chapter title is written in free-form natural language and its
corresponding start timestamp is written in MM:SS format. The video should contain at least
two timestamps listed in ascending order. Hence we download the descriptions for all video
candidates and use standard regular expression operations to verify whether a given description
contains user-annotated chapters and extract them if so. Note that some videos contain chapters
that are automatically generated by YouTube algorithms, however, these generated chapters do
not appear in the descriptions and, hence, are excluded by our procedure for data collection. Also
note that the video content is only downloaded for user-chaptered videos, which is convenient
for both the downloading speed and storage constraints. Finally, we obtain 817K user-chaptered
videos, making up 0.9% of all video candidates.

7.3.2 Data processing

We describe below how we process the previously obtained user-chaptered videos to facilitate
building efficient video chapter generation models. For reproducibility, we publicly release the
resulting speech transcripts and the code for extracting visual features.

ASR extraction. We observed that most user-chaptered videos contain speech. Hence,
for all videos, we extract speech transcripts aligned in time with the video content (ASR)
by applying the Whisper-Large-V2 model [Radford, 2023] on the audio track, using faster-
whisper [Klein, 2023] backend for computational efficiency. We found that the Whisper model
provides higher-quality ASR compared to the YouTube API ASR service on several data sam-
ples from VidChapters-7M. We further use WhisperX [Bain, 2023] to derive accurate word-level
timestamps which we use to segment the speech transcript into sentences. For example, the
Whisper-Large-V2 model extracts speech segments like “Right, we’re gonna do the Synthetics
Dirty Race. No we’re not. [...] So we’re gonna put two t-shirts and two pairs of jeans in the”
with timestamps 20.478s and 50.465s, and the corresponding first sentence output by WhisperX
is “Right, we’re gonna do the Synthetics Dirty Race.” with timestamps 20.538s and 29.26s.

Visual feature extraction. Training end-to-end deep learning models from RGB inputs on
minutes-long videos is computationally expensive. Hence we extract visual features with CLIP
ViT-L/14 backbone [Dosovitskiy, 2021; Radford, 2021] at resolution 224×224 pixels and 1 FPS.
This model has been trained to map images to text descriptions with a contrastive loss on 400M
Web-scraped image-text pairs.

7.3.3 Data analysis

The result of the previously described pipeline is VidChapters-7M, a dataset of 817,076 user-
chaptered videos containing 6,813,732 chapters in total. We randomly split VidChapters-7M in
training, validation, and testing splits with 801K, 8.2K, and 8.2K videos, respectively. We ana-
lyze VidChapters-7M below and provide a datasheet [Gebru, 2021] at [Yang, 2023c] (Appendix
F).
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Figure 7.3: Statistics of the VidChapters-7M dataset.

Statistics. VidChapters-7M is highly diverse and contains 4,894,855 distinct chapter titles.
On average, a video contains 8.3 chapters, start times of adjacent chapters are separated by
142.0s seconds, a chapter title contains 5.4 words and a video lasts 1354 seconds. The most
represented video category (in YouTube’s glossary) is HowTo & Style, making up 17.0% of total
videos. The distributions for the number of chapters per video, the video chapter duration, the
length of the chapter title, and the video category are illustrated in Figure 7.3, and further show
the diversity of VidChapters-7M, e.g., there are 12 different video categories with at least 20K
videos in VidChapters-7M.

In Figure 7.4, we also show a histogram of the most common chapter titles and word clouds1

of the chapters titles and ASR content in VidChapters-7M. A few generic chapter titles that
outline the structure of the video (e.g., Intro, Introduction, Outro, Conclusion and Start) appear
more than 10K times. Besides, we notice that many videos include chapters about Unboxing,
Review, or Tips. This is consistent with the fact that there are many vlogs and ’Howto’ videos
in VidChapters-7M.

To further measure the text-video alignment in the VidChapters-7M dataset, we compute
the CLIP cosine similarity between chapter titles and their corresponding video frames and plot
the resulting distribution in Figure 7.5. The average similarity score is 54.6%, and less than 1%
of the chapters have a visual-text similarity score below 30%. These statistics demonstrate a

1To generate the word clouds, we used https://github.com/amueller/word_cloud.
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Figure 7.4: Additional statistics of the VidChapters-7M dataset.
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Figure 7.5: Average visual-text similarity between chapter titles and the corresponding video
frames as measured by CLIP cosine similarity (rescaled between 0 and 100) in VidChapters-7M.

good video-text alignment in the VidChapters-7M dataset.

Examples of user-chaptered videos. In Figure 7.6, we provide additional examples that
complement Figure 7.1. These examples illustrate the diversity of the data in VidChapters-7M,
e.g., our dataset includes review videos, cooking videos, clothing fitting videos, ASMR videos,
and videos of conversations. These examples also show the multi-modal nature of the chapter
data. Indeed, chapters depict visual events (e.g., the mini chicken burgers that appear in the
second video), conversations (see the last video), or events in the raw audio (e.g., the sound of
the crinkly plastic bag in the penultimate video) in various scenarios.

ASR vs Chapters. 97.3% of videos in VidChapters-7M contain speech transcripts (ASR).
However, user-annotated chapters significantly differ from speech transcripts: on average, a
video with ASR contains 269.8 speech sentences (vs 8.3 chapter titles), a speech sentence lasts
3.9 seconds (vs 142.0 seconds for chapters) in the video and contains 11.5 words (vs 5.4 words
for chapters). In Figure 7.4, we also observe that the most common words in the ASR largely
differ from the most common words in the chapter titles, which further shows the difference
between these two types of data.

Biases. Using the langdetect [Danilák, 2021] language detection tool, we find that 92.9%/93.9%
of total videos in VidChapters-7M have their chapter titles/ASR in English. However, as shown
in Figure 7.3 (bottom right), the distribution of chapter languages includes a long tail of lan-
guages, e.g., 13 languages appear in more than 1K videos of VidChapters-7M. We also use
GenBit [Sengupta, 2021] to measure gender bias in the chapters and ASR. We observe that the
percentage of female/male/non-binary gendered words is 19.7%/39.7%/40.7% for the chapters,
and 11.6%/35.6%/52.8% for the ASR.

Ethical considerations. We employ several techniques to identify harmful visual or language
content. We use a classifier [Schuhmann, 2022] built on top of the previously extracted CLIP
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Figure 7.6: Additional examples of videos with user-annotated chapters in
VidChapters-7M: Chapters depict visual events (e.g., the mini chicken burgers that appear in
the second video), conversations (see the last video), or events in the raw audio (e.g., the sound
of the crinkly plastic bag in the penultimate video) in various scenarios.
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Type of chapter titles Percentage
Speech and visual 49
Audio and visual 2
Speech-only 26
Visual-only 3
Audio-only 3
Structure-only 14
Unrelated 3

Table 7.2: Manual assessment of the informativeness of chapter titles in the
VidChapters-7M dataset over a random sample of 100 videos. Video chapter titles
can be based on speech and vision; audio and vision; vision, audio or speech alone; or only on
the structure of the video (e.g. "step 1", "step 2" etc). In a small number of cases, video chapters
are unrelated to the video content.

features to detect not-safe-for-work (NSFW) visual content (such as pornographic and sexualized
content). In detail, we compute the NSFW score at every frame (at 1 FPS) and tag videos with
an average score above 0.5. Moreover, we use a language model [Hanu, 2020] to detect toxic
content in chapter titles and speech transcripts. In detail, we compute the toxicity score at
every chapter title / ASR sentence and tag videos where the chapter titles / ASR have an
average toxicity score above 0.5. These processes flag 5,716 (0.70%) visually NSFW videos, 355
(0.04%) videos with toxic chapter titles and 1,368 (0.17%) videos with toxic ASR. We assume
the relatively low number of flagged videos is due to the regulations performed by the Web
platform used to collect our dataset. Following [Schuhmann, 2022], we refrain from removing
these samples to encourage research in fields such as dataset curation and tag them instead.
Note that these automated filtering techniques are not perfect and that harmful content may
pass.

Manual assessment of the quality of annotations. While chapter titles are manually
written and uploaded by real users, sometimes chapter titles are not informative about the
content of the video at the corresponding timestamps. To assess the quality of chapter title
annotations in our dataset, we inspected a random sample of 100 videos in VidChapters-7M.
For each video, we checked if the titles are related to the content of the video chapter and if so
which video modalities (ASR, visual or raw audio) they are related to, or if they only refer to
the structure of the video (e.g. chapter titles like "step 1", "step 2" etc). Results are presented
in Table 7.2, and show that 83% of videos have chapters related to one or multiple modalities
of the video, 14% of videos have chapters only referring to the structure of the video, and 3% of
videos have chapters unrelated to the video content.

7.4 Experiments

In this Section, we present the results of models on VidChapters-7M for the full video chapter
generation task in Section 7.4.1, the task of video chapter generation given ground-truth bound-
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aries in Section 7.4.2 and the video chapter grounding task in Section 7.4.3. Finally, we study
transfer learning from video chapter generation to dense video captioning tasks in Section 7.4.4.

Evaluation metrics. To evaluate the quality of the generated chapter titles (without their
positions), we use standard metrics used for visual captioning: BLEU [Papineni, 2002] (B),
CIDEr [Vedantam, 2015] (C), METEOR [Banerjee, 2005] (M) and ROUGE-L [Lin, 2004] (RL).
To evaluate video chapter generation as a whole, including the locations of the generated chap-
ters, we follow standard protocols used for dense video captioning, given the similar nature of
the two tasks. We use the standard evaluation tool [Krishna, 2017] which calculates matched
pairs between generated events and the ground truth across IoU thresholds of {0.3, 0.5, 0.7, 0.9},
and compute captioning metrics over the matched pairs. However, these metrics do not take
into account the story of the video and give high scores to methods generating many redundant
chapters. Hence for an overall evaluation, we also use SODA_c [Fujita, 2020] (S) which first
tries to find a temporally optimal matching between generated and reference chapters to capture
the story of a video, then computes METEOR scores for the matching and derives F-measure
scores from the METEOR scores to penalize redundant chapters. To separately evaluate chapter
localization, we report the recall (R@Ks, R@K) and the precision (P@Ks, P@K) across various
thresholds in terms of the distance to the ground-truth start time or IoU with the ground-truth
start-end window. We also report the average recall (R) and average precision (P) across IoU
thresholds of {0.3, 0.5, 0.7, 0.9}.

Implementation details. Unless stated otherwise, for all models, we use the speech tran-
scripts (ASR) and visual features extracted as explained in Section 7.3.2. By default, each model
is taken from the corresponding official implementation, and all model hyper-parameters are set
according to the original papers. We use the Adam optimizer [Kingma, 2015] for training and
select the final model based on the best validation performance. Our experiments are run on 8
NVIDIA A100 80GB GPUs.

7.4.1 Video chapter generation

In this Section, we study the task of video chapter generation that requires temporally segment-
ing the video and generating a chapter title for each segment.

Models. For the video chapter segmentation subtask, we evaluate two zero-shot approaches
(i.e., that are not trained on VidChapters-7M): speech text tiling [Hearst, 1997], which de-
tects subtopic shifts based on the analysis of lexical co-occurrence patterns, and a visual scene
change detection algorithm [Tomar, 2006] based on the sum of absolute differences. To derive
zero-shot baselines for the full video chapter generation task, we combine text tiling and shot
detection with various alternatives that can generate text given text or visual input: a ran-
dom baseline that predicts a random speech sentence spoken inside the predicted boundaries,
LLaMA-7B [Touvron, 2023] (prompted to summarize the speech transcript spoken inside the
predicted boundaries) and BLIP-2 [Li, 2023a] (prompted to describe the middle video frame of
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Method Modalities Pretraining
Data Finetuned S B1 B2 B3 B4 C M RL

Text tiling [Hearst, 1997] + Random T ∅ 7 0.4 0.6 0.2 0.1 0.0 0.8 0.7 0.6
Text tiling [Hearst, 1997] + LLaMA [Touvron, 2023] T Text mixture 7 0.2 0.4 0.1 0.1 0.0 0.5 0.3 0.4
Shot detect [Tomar, 2006] + BLIP-2 [Li, 2023a] V 129M img-txt 7 0.6 0.7 0.3 0.1 0.1 0.2 0.6 0.8
Vid2Seq [Yang, 2023d] T+V C4 + HTM 7 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1
PDVC [Wang, 2021d] V ∅ 3 6.8 9.4 3.7 1.4 0.9 35.8 9.4 11.4
Vid2Seq [Yang, 2023d] T C4 3 10.2 9.5 6.7 4.0 2.7 48.8 8.5 11.0
Vid2Seq [Yang, 2023d] T C4 + HTM 3 10.5 9.9 7.0 4.2 2.9 50.7 8.7 11.4
Vid2Seq [Yang, 2023d] V C4 3 3.1 2.3 1.5 0.6 0.5 10.9 2.2 2.9
Vid2Seq [Yang, 2023d] V C4 + HTM 3 5.5 4.5 2.8 1.2 0.9 21.1 4.1 5.5
Vid2Seq [Yang, 2023d] T+V C4 3 10.6 9.9 7.0 4.2 2.8 51.3 8.8 11.6
Vid2Seq [Yang, 2023d] T+V C4 + HTM 3 11.4 10.9 7.7 4.6 3.1 55.7 9.5 12.6

Table 7.3: Video chapter generation (global metrics) on VidChapters-7M test set.
Here, finetuned refers to finetuning on the VidChapters-7M train set. T: Transcribed speech, V:
Visual, HTM: HowTo100M [Miech, 2019].

Method Modalities Pretraining Data Finetuned R@5sR@3sR@0.5 R@0.7 P@5s P@3s P@0.5 P@0.7
Text tiling [Hearst, 1997] T ∅ 7 9.4 5.8 23.6 8.9 12.6 7.9 26.0 8.8
Shot detect [Tomar, 2006] V ∅ 7 31.2 27.4 24.9 12.5 33.2 29.7 18.0 8.7
Vid2Seq [Yang, 2023d] T+V C4 + HTM 7 10.7 9.5 5.8 0.2 23.3 18.5 1.9 0.8
PDVC [Wang, 2021d] V ∅ 3 21.1 17.8 31.2 22.5 45.3 40.2 47.2 26.9
Vid2Seq [Yang, 2023d] T C4 3 37.8 29.5 44.6 26.1 29.0 23.0 38.0 23.4
Vid2Seq [Yang, 2023d] T C4 + HTM 3 36.7 28.9 46.5 27.2 29.5 23.3 40.4 24.8
Vid2Seq [Yang, 2023d] V C4 3 35.3 26.4 23.6 8.7 17.9 13.6 17.2 7.1
Vid2Seq [Yang, 2023d] V C4 + HTM 3 33.5 25.0 33.0 14.5 19.5 14.7 26.2 12.5
Vid2Seq [Yang, 2023d] T+V C4 3 36.3 28.6 45.8 26.9 29.9 23.8 40.9 24.9
Vid2Seq [Yang, 2023d] T+V C4 + HTM 3 36.4 28.5 48.2 28.5 30.3 24.0 43.1 26.4

Table 7.4: Video chapter generation (segmentation metrics) on VidChapters-7M test
set. Here, finetuned refers to finetuning on the VidChapters-7M train set. T: Transcribed
speech, V: Visual, HTM: HowTo100M [Miech, 2019].

the predicted segment). Finally, we also train and evaluate two state-of-the-art end-to-end dense
video captioning models on VidChapters-7M: PDVC [Wang, 2021d] which consists of a visual-
only DETR-style [Carion, 2020] architecture and Vid2Seq [Yang, 2023d] which is a multi-modal
sequence-to-sequence model pretrained on the C4 text corpus [Raffel, 2020] and on narrated
videos with ASR (e.g., YT-Temporal-1B [Zellers, 2022]). For Vid2Seq, we also report zero-shot
results after pretraining on narrated videos without finetuning on VidChapters-7M.

Implementation details. We use the text tiling implementation from the NLTK library [Bird,
2009] which tokenizes the text into pseudosentences of size 50. We use the shot detection
software from the FFMPEG library [Tomar, 2006] with a confidence threshold of 0.7. For
LLaMA, we use the following prompt: Summarize the following speech transcript in a

chapter title. Transcript: <ASR> Chapter title: where the ASR is the concatenation
of all speech sentences spoken during a given video segment. For BLIP-2, we use the 3.4B-
parameter variant with FLAN-T5-XL [Wei, 2022a] and CLIP ViT-L/14 [Radford, 2021; Doso-
vitskiy, 2021], and use the following prompt: Summarize the image in a chapter title.

Chapter title:, and use the middle frame of the predicted video segment.
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PDVC. We use PDVC’s official codebase. PDVC includes a caption decoder that relies on
dataset-specific word vocabularies. To adapt PDVC to VidChapters-7M, we construct a vocab-
ulary made with all words that appear at least 50 times in the dataset (33,598 words). We
subsample or pad the sequence of frames to 100 frames. We use 100 queries and train with a
constant learning rate of 5e−5, weight decay 1e−4 and batch size 1 on an NVIDIA V100 32GB
(as the official codebase is not compatible with higher batch sizes or multi-gpu training) . We
train on VidChapters-7M for 5 epochs. The training on VidChapters-7M lasts about a week.
Vid2Seq. We reimplement Vid2Seq (originally released in Jax) in PyTorch. For initialization,
we use the T5-Base language model pretrained on the C4 text corpus [Raffel, 2020]. Vid2Seq
is originally pretrained on YT-Temporal-1B [Zellers, 2022] using a generative and denoising
objective in the speech sequence. Due to computational limitations, we instead pretrain Vid2Seq
on the smaller HowTo100M dataset [Miech, 2019] with the same objectives. Then we train
Vid2Seq on VidChapters-7M with the next token prediction objective in the chapter sequence
and the denoising objective in the speech sequence. We subsample or zero-pad the sequence
of frames to 100 frames. The text encoder and decoder sequence are truncated or padded to
1000 and 256 tokens, respectively. For all datasets, we use a learning rate of 3e−4 warmed up
linearly (from 0) for the first 10% of iterations and following a cosine decay (down to 0) for the
remaining 90%. We train for 6/10 epochs on HowTo100M/VidChapters-7M. We use a batch
size of 64 videos split on 8 NVIDIA A100 80GB for HowTo100M/VidChapters-7M. The training
on HowTo100M or VidChapters-7M takes about 2 days.

Results. We report the results for video chapter generation using global metrics and localization-
only metrics in Tables 7.3 and 7.4, respectively. We observe that models trained on VidChapters-
7M outperform zero-shot baselines, demonstrating the effectiveness of training on VidChapters-
7M. In particular, PDVC [Wang, 2021d] has the best precision and Vid2Seq [Yang, 2023d]
achieves the best results in terms of overall generation and recall. We also find that Vid2Seq’s
speech-only mode outperforms its visual-only mode and that using both speech and visual in-
puts leads to the best performance. This demonstrates that video chapter generation is a
multi-modal task. Finally, we observe that pretraining using ASR in narrated videos from
HowTo100M [Miech, 2019] improves the video chapter generation performance of the Vid2Seq
model. Specifically, pretraining on HowTo100M is more beneficial for vision-aware models than
for the speech-only model.

Results split by language. We report video chapter generation results on the VidChapters-
7M dataset split by language for both English and German in Tables 7.5 and 7.6, respectively. We
find that training on VidChapters-7M is beneficial for both languages. Interestingly, pretraining
on HowTo100M (which is a dataset in English) improves results on English as well as German.
We also observe that the quantitative results in German are lower than in English. Finally, we
report results of the Vid2Seq model with the multi-lingual language model mT5 [Xue, 2021]
pretrained on the multi-lingual dataset mC4 [Xue, 2021]. We find that this variant performs a
bit worse on English but slightly better on German compared to the Vid2Seq variant based on
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Method Modalities Pretraining
Data Finetuned S B1 B2 B3 B4 C M RL

Text tiling [Hearst, 1997] + Random T ∅ 7 0.5 0.8 0.2 0.1 0.0 0.9 0.8 0.7
Text tiling [Hearst, 1997] + LLaMA [Touvron, 2023] T Text mixture 7 0.3 0.5 0.2 0.1 0.0 0.5 0.4 0.4
Shot detect [Tomar, 2006] + BLIP-2 [Li, 2023a] V 129M img-txt 7 1.3 1.5 0.7 0.4 0.2 4.7 1.4 1.6
PDVC [Wang, 2021d] V ∅ 3 6.6 9.0 3.8 1.5 1.0 36.0 9.1 11.0
Vid2Seq [Yang, 2023d] T+V C4 3 10.8 10.3 7.6 4.9 3.4 54.8 9.1 11.9
Vid2Seq [Yang, 2023d] w/ mT5 T+V mC4 3 10.4 9.9 7.2 4.7 3.3 52.0 8.7 11.3
Vid2Seq [Yang, 2023d] T+V C4 + HTM 3 11.5 11.1 8.1 5.1 3.6 58.8 9.7 12.8

Table 7.5: Video chapter generation (global metrics) on the VidChapters-7M test
set restricted to videos with English chapter titles and ASR. Here, finetuned refers
to finetuning on the VidChapters-7M train set. T: Transcribed speech, V: Visual, HTM:
HowTo100M [Miech, 2019].

Method Modalities Pretraining
Data Finetuned S B1 B2 B3 B4 C M RL

Text tiling [Hearst, 1997] + Random T ∅ 7 0.6 1.7 1.3 1.3 1.1 12.8 1.5 1.6
Text tiling [Hearst, 1997] + LLaMA [Touvron, 2023] T Text mixture 7 0.1 0.3 0.2 0.0 0.0 0.0 0.2 0.2
Shot detect [Tomar, 2006] + BLIP-2 [Li, 2023a] V 129M img-txt 7 0.6 0.4 0.2 0.0 0.0 1.3 0.6 0.5
PDVC [Wang, 2021d] V ∅ 3 5.4 11.6 0.0 0.0 0.0 29.4 12.4 14.9
Vid2Seq [Yang, 2023d] T+V C4 3 9.1 8.4 5.2 1.0 0.9 34.1 6.1 10.1
Vid2Seq [Yang, 2023d] w/ mT5 T+V mC4 3 8.8 8.1 5.9 1.7 1.8 38.4 6.1 10.1
Vid2Seq [Yang, 2023d] T+V C4 + HTM 3 10.9 9.6 5.4 1.7 1.7 43.2 8.1 8.1

Table 7.6: Video chapter generation (global metrics) on the VidChapters-7M test
set restricted to videos with German chapter titles and ASR. Here, finetuned refers
to finetuning on the VidChapters-7M train set. T: Transcribed speech, V: Visual, HTM:
HowTo100M [Miech, 2019].

T5 pretrained on the C4 corpus.

Qualitative examples. We present qualitative results for video chapter generation in Fig-
ures 7.7. Compared with the speech-only model, a key advantage of the speech+visual video
chapter generation model is that it can generalize to videos that do not have ASR input, as
shown in the first example of Figure 7.7. Compared with the visual-only variant, the multi-
modal model can also benefit from speech cues, as seen in the second example in Figure 7.7.

7.4.2 Video chapter generation given ground-truth boundaries

In this Section, we study the task of generating chapter titles provided correct temporal bound-
aries of video chapters. This task is a simplification of the previously studied task where we
assume perfect temporal segmentation.

Models and implementation details. We adopt the same models and implementation de-
tails as previously introduced in Section 7.4.1, except for a few differences described next. To
adapt the Vid2Seq model pretrained on HowTo100M (see Section 7.4.1) to video chapter gen-
eration with ground-truth boundaries, we remove the model weights corresponding to the time
tokens (in the token embedding layers and the token prediction layer). We train for 20 epochs
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the best Nike running 
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collection you have got 
to see.

Number 1. Most 
Popular. Zoom 
Pegasus Turbo 2.  A 
souped-up, speed-
oriented version of the 
Pegasus, the Peg 
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winning combo of 
Zoomex and React 
foams found in the 
first version.

Unfortunately, the new 
thin mesh upper has 
issues. Its minimal heel 
support means you 
have to cinch the laces 
down for a secure fit, 
but the tongue isn't 
thick or long enough to 
prevent the laces from 
causing irritation.

Number 2. Nike Men's 
Running Shoes.  The 
new trend in stability 
shoes is less 
interference, and the 
Infinity Run follows 
that principle by 
providing comfort, 
support, and a smooth 
ride without messing 
up your natural 
movement. […]

Number 3. On 
Women's CloudFlyer 
Running Shoes. 
Provide your foot with 
the cushion it deserves 
with the On 
CloudFlyer. Utilizing 
plush clouds built from 
zero-gravity foam and 
a wider CloudTek 
platform, this daily 
trainer provides 
supreme cushioning in 
a more stable package. 

In order to reduce over 
pronation, the shoe 
features firmer medial 
elements that redirect 
force to the lateral side 
of the runner's foot. 
Paired with an even 
stiffer speed board, the 
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quicker heel-to-toe 
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the runner through 
their pronated phase.

Number 5. Nike Men's 
Trail Running Shoes.  
Made of a breathable 
mesh upper and a 
sturdy EVA sole, these 
Quest running shoes 
from Nike should 
pretty much be a staple 
in every man's shoe 
closet. Fly-wire cables 
offer your feet a secure 
fit, while the soft yet 
responsive foam is 
supportive […]

Number 4. Nike 
Downshifter Men's 7 
Running Shoe. The 
Downshifter 7 
Running Shoes from 
Nike are designed to 
be lightweight, sturdy 
and durable, all the 
while providing you 
with optimum 
performance, making 
them a worthy 
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Figure 7.7: Examples of video chapter generation using the Vid2Seq model with dif-
ferent input modalities compared with ground-truth on the test set of VidChapters-
7M. The first example shows that the Vid2Seq variant with both speech and visual modalities
"Vid2Seq (HTM+VC)" can predict the structure of the input video without the ASR input,
unlike the Vid2Seq speech-only variant "Vid2Seq (HTM+VC, no vision)". The second example
shows that the Vid2Seq variant with both speech and visual modalities "Vid2Seq (HTM +VC)"
can effectively leverage speech cues to detect the names of the depicted and discussed shoes,
unlike the Vid2Seq visual-only variant "Vid2Seq (HTM+VC, no speech)".
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Method Modalities Pretraining Data Finetuned B1 B2 B3 B4 C M RL
Random Speech ∅ 7 2.4 1.3 0.9 0.7 10.4 2.2 4.4
LLaMA [Touvron, 2023] Speech Text mixture 7 0.0 0.0 0.0 0.0 0.0 0.1 0.2
BLIP-2 [Li, 2023a] Visual 129M image-texts 7 3.1 1.5 0.9 0.7 12.4 2.2 4.5
Vid2Seq [Yang, 2023d] Speech+Visual C4 + HowTo100M 7 2.0 1.2 0.9 0.6 0.9 0.3 0.6
Vid2Seq [Yang, 2023d] Speech C4 + HowTo100M 3 21.0 15.5 12.1 10.0 105.3 11.5 24.5
Vid2Seq [Yang, 2023d] Visual C4 + HowTo100M 3 10.1 5.6 3.5 2.4 47.1 5.1 14.7
Vid2Seq [Yang, 2023d] Speech+Visual C4 3 21.6 15.7 12.3 10.0 110.8 11.5 26.0
Vid2Seq [Yang, 2023d] Speech+Visual C4 + HowTo100M 3 23.5 17.2 13.4 11.0 120.5 12.6 28.3

Table 7.7: Chapter title generation given ground-truth boundaries on VidChapters-
7M test set. Here, finetuned refers to finetuning on the VidChapters-7M train set, and speech
refers to transcribed speech.

on VidChapters-7M using the next token prediction objective in the sequence of tokens corre-
sponding to a single chapter title. We construct training batches by sampling a chapter title
with its associated video clip at each iteration (i.e., an epoch corresponds to seeing one chapter
title for all videos). The text encoder and decoder sequence are truncated or padded to 256 and
32 tokens, respectively. We use a learning rate of 3e−4 warmed up linearly (from 0) for the first
10% of iterations and following a cosine decay (down to 0) for the remaining 90%. We use a
batch size of 512 videos split on 8 NVIDIA A100 80GB for VidChapters-7M. The training takes
about a day.

Results. We report results for video chapter generation given ground-truth boundaries in Ta-
ble 7.7. Similar to the full video chapter generation task, we observe that solving the task without
training on VidChapters-7M is hard. Indeed, LLaMA [Touvron, 2023] struggles to summarize
the speech content into a chapter title and underperforms the random baseline. Furthermore,
BLIP-2 [Li, 2023a] slightly improves over the random baseline. In addition, Vid2Seq [Yang,
2023d] in zero-shot mode underperforms the random baseline due to the large domain gap be-
tween ASR and chapter titles (see Section 7.3.3). In comparison, the performance of models
trained on VidChapters-7M is significantly higher. Moreover, Vid2Seq’s speech-only mode out-
performs its visual-only mode, and using both speech and visual inputs is beneficial, confirming
the benefit of multi-modal reasoning for the task of generating chapter titles. Finally, pretraining
on narrated videos from HowTo100M [Miech, 2019] improves the performance of the Vid2Seq
model on VidChapters-7M.

7.4.3 Video chapter grounding

In this Section, we study the task of video chapter grounding that requires a model to temporally
localize a chapter start time (or start-end window) given an annotated chapter title (query).
Hence, compared to the video chapter generation task, we here assume chapter titles to be given
and focus on the temporal chapter localization only.

Models. We evaluate three zero-shot alternatives: a random baseline that randomly picks the
timestamps of a speech sentence in the video, a BERT [Devlin, 2019] baseline that picks the
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Method Modalities Pretraining
Data Finetuned R@10s R@5sR@3sR@1sR@0.3 R@0.5 R@0.7 R@0.9

Random T ∅ 7 3.1 1.8 1.2 0.6 0.7 0.3 0.1 0.0

BERT [Devlin, 2019] T BookCorpus +
Wikipedia 7 9.0 6.8 5.4 2.9 0.6 0.3 0.1 0.0

CLIP [Radford, 2021] V 400M img-txt 7 8.1 5.2 3.7 1.4 10.7 5.2 2.3 0.5

Moment-DETR [Lei, 2021a] V 5.4K narrated
videos [Lei, 2021a] 7 3.2 1.6 1.1 0.5 11.3 3.6 0.8 0.1

Moment-DETR [Lei, 2021a] V ∅ 3 21.8 15.5 12.4 8.3 37.4 27.3 17.6 6.4

Table 7.8: Video chapter grounding on VidChapters-7M test set. Here, finetuned refers
to finetuning on the VidChapters-7M train set. T: Transcribed speech, V: Visual.

timestamps of the speech sentence that has the closest text embedding with the queried chapter
title, and a CLIP [Radford, 2021] baseline picking the frames where the query-frame similarity
score drops from the highest scoring frame by a certain threshold ε. We also train and evaluate
on VidChapters-7M a state-of-the-art end-to-end video grounding model: Moment-DETR [Lei,
2021a] which is designed for moment retrieval based on visual inputs. Furthermore, we report
zero-shot performance of Moment-DETR obtained with the model checkpoint from Lei et al.
[Lei, 2021a] pretrained on 5.4K narrated videos with ASR from the QVHighlights dataset [Lei,
2021a].

Implementation details. We use the [CLS] token sequence embedding for the BERT baseline
and a threshold of ε = 0.05 for the CLIP baseline. Moment-DETR. We use Moment-DETR’s
official codebase. We train with the AdamW optimizer [Loshchilov, 2019], a constant learning
rate of 3e−4, and a batch size of 256 videos split on 8 NVIDIA A100 80GB. We use a FPS of
1/3 and subsample or zero-pad the sequence of frames to 1200 frames. We use a maximum
number of text query tokens of 77. We train for 50 epochs on VidChapters-7M, where an epoch
corresponds to seeing one chapter title for all videos, which takes about 2 days.

Results. We report results for the video chapter grounding task in Table 7.8. We first observe
that the simple zero-shot baselines based on ASR can decently find start times, but struggle to
predict start-end windows due to the important domain gap between ASR and video chapters
(see Section 7.3.3). The CLIP [Radford, 2021] baseline slightly underperforms the BERT base-
line [Devlin, 2019] at retrieving start times, but is much better at finding start-end windows.
Furthermore, the Moment-DETR model [Lei, 2021a] trained on VidChapters-7M outperform
the zero-shot baselines for both localization of start times and start-end windows, which further
demonstrates the effectiveness of training on VidChapters-7M. Finally, we note that Moment-
DETR cannot handle speech inputs, but hope that our results showing the benefit of this
modality on other tasks in VidChapters-7M will foster research in the localization of language
queries in untrimmed videos using multi-modal inputs (vision and speech transcripts).
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Method Modalities Pretraining Data YouCook2 (val) ViTT (test)
S C M R P S C M R P

PDVC [Wang, 2021d] V ∅ 4.4 22.7 4.7 — — — — — — —
E2ESG [Zhu, 2022b] T+V C4 + WikiHow — 25.0 3.5 20.7 20.6 — 25.0 8.1 32.2 32.1
Vid2Seq [Yang, 2023d] T+V C4 + HTM 8.3 48.3 9.5 27.1 27.0 — — — — —
Vid2Seq [Yang, 2023d] T+V C4 + YT-Temporal-1B 7.9 47.1 9.3 27.9 27.8 13.5 43.5 8.5 42.6 46.2
PDVC† V ∅ 4.8 28.8 5.8 22.6 33.1 9.4 40.6 16.5 19.2 37.4
PDVC† V VC (Chap.) 5.9 34.7 7.5 28.8 36.4 10.1 41.5 16.1 21.3 37.2
Vid2Seq† T+V C4 + HTM 8.6 53.2 10.5 29.2 26.2 14.1 44.8 8.7 43.8 44.5
Vid2Seq† T+V C4 + VC (ASR+Chap.) 9.8 62.9 11.7 32.5 30.1 15.1 50.9 9.6 45.1 46.7
Vid2Seq† T+V C4 + HTM + VC (ASR) 8.4 50.1 10.3 29.7 26.3 14.3 45.6 8.8 43.7 44.9
Vid2Seq† T+V C4 + HTM + 1% of VC (ASR+Chap) 8.8 52.7 10.4 29.3 27.6 13.5 41.6 8.2 44.7 42.1
Vid2Seq† T+V C4 + HTM + 10% of VC (ASR+Chap.) 9.9 63.9 12.1 32.4 31.4 14.5 47.4 9.2 45.3 45.9
Vid2Seq† T+V C4 + HTM + VC (ASR+Chap.) 10.3 67.2 12.3 34.0 31.2 15.0 50.0 9.5 45.5 46.9

Table 7.9: Comparison with the state of the art on the YouCook2 and ViTT dense
video captioning benchmarks. T: Transcribed speech, V: Visual, HTM: HowTo100M [Miech,
2019], VC: VidChapters-7M, Chap.: Chapters. † denote results of our experiments.

Method Modalities Pretraining Data YouCook2 (val) ViTT (test)
S C M R P S C M R P

Text tiling [Hearst, 1997] + Random T ∅ 0.3 0.9 0.3 3.8 6.6 0.3 0.6 0.6 11.6 24.4
Text tiling [Hearst, 1997] + LLaMA [Touvron, 2023] T Text mixture 0.2 0.6 0.2 3.8 6.6 0.2 0.6 0.5 11.6 24.4
Shot detect [Tomar, 2006] + BLIP-2 [Li, 2023a] V 129M image-texts 0.6 1.0 0.5 8.9 5.5 0.2 0.1 0.2 3.1 13.7
Vid2Seq [Yang, 2023d] V C4 + VC (ASR) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8
Vid2Seq [Yang, 2023d] V C4 + VC (Chap.) 0.7 1.1 0.5 21.3 8.6 1.5 1.9 0.6 18.9 10.4
Vid2Seq [Yang, 2023d] T+V C4 + HTM 0.0 0.1 0.0 0.5 0.6 0.0 0.0 0.0 0.5 1.0
Vid2Seq [Yang, 2023d] T+V C4 + VC (ASR) 0.1 0.1 0.0 1.1 0.9 0.0 0.0 0.0 0.7 0.6
Vid2Seq [Yang, 2023d] T+V C4 + VC (Chap.) 0.1 0.2 0.1 0.7 1.4 0.7 1.1 0.3 14.3 12.8
Vid2Seq [Yang, 2023d] T+V C4 + VC (ASR+Chap.) 3.2 10.2 2.9 20.6 19.7 9.1 30.2 6.7 33.8 40.8
Vid2Seq [Yang, 2023d] T+V C4 + HTM + VC (ASR) 0.0 0.1 0.0 1.2 0.9 0.0 0.0 0.0 0.8 0.7
Vid2Seq [Yang, 2023d] T+V C4 + HTM + 1% of VC (ASR+Chap.) 2.7 7.2 2.1 18.1 17.3 5.5 15.5 4.3 31.3 37.1
Vid2Seq [Yang, 2023d] T+V C4 + HTM + 10% of VC (ASR+Chap.) 3.2 11.5 3.0 19.4 19.2 6.4 21.6 5.3 31.0 38.2
Vid2Seq [Yang, 2023d] T+V C4 + HTM + VC (ASR+Chap.) 3.9 13.3 3.4 22.3 20.1 9.0 28.0 6.5 33.7 40.1

Table 7.10: Zero-shot dense video captioning on the YouCook2 and ViTT bench-
marks. T: Transcribed speech, V: Visual, HTM: HowTo100M [Miech, 2019], VC: VidChapters-
7M, Chap.: Chapters.

7.4.4 Transfer learning on dense video captioning

In this Section, we investigate the pretraining of video-language models on our new VidChapters-
7M. To this end, we adopt video chapter generation models trained on VidChapters-7M (see
Section 7.4.1) to the tasks of dense video captioning with or without finetuning.

Datasets. We use two dense video captioning datasets. YouCook2 [Zhou, 2018a] has 2K
untrimmed videos of cooking procedures. On average, each video lasts 320s and is annotated
with 7.7 temporally-localized sentences. ViTT [Huang, 2020b] was created to better reflect
the distribution of instructional videos in the wild compared to YouCook2, and consists of 8K
untrimmed instructional videos. On average, each video lasts 250s and is annotated with 7.1
temporally-localized short tags. For both datasets, we extract speech transcripts and visual
features as described in Section 7.3.2, and follow the standard splits for training, validation and
testing. Note that we only use videos available on YouTube at the time of the work, resulting
in 10 to 20% less videos than in the original datasets.
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Implementation details. We adopt the same models and implementation details as previ-
ously introduced in Section 7.4.1, except for a few differences described next.
PDVC. To adapt PDVC to YouCook2/ViTT, we construct a vocabulary made with all words
that appear at least 2/3 times in the dataset (3,815/1,607 words). For transfer learning from
VidChapters-7M to YouCook2/ViTT, we initialize the downstream dataset-specific word em-
bedding layer with the weights of the corresponding word embedding in the pretrained model.
We train on YouCook2/ViTT for 30 epochs.
Vid2Seq. Finetuning on YouCook2/ViTT is done with the next token prediction objective in
the dense video captioning sequence and the denoising objective in the speech sequence. We
train for 40/20 epochs on YouCook2/ViTT. We use a batch size of 16 videos split on 8 NVIDIA
V100 32GB for YouCook2/ViTT.

Results after finetuning. In Table 7.9, we show that pretraining for video chapter generation
on VidChapters-7M greatly improves the downstream dense video captioning performance com-
pared to training from scratch or pretraining only with ASR data as done in previous work [Yang,
2023d]. We also find that pretraining both on HowTo100M [Miech, 2019] and VidChapters-7M
results in the best overall performance. In particular, the Vid2Seq model pretrained on both
HowTo100M and VidChapters-7M largely improves the state of the art on both the YouCook2
and ViTT benchmarks. In detail, on the YouCook2 benchmark, in the setting with C4 +
HowTo100M pretraining, we observe that a boost of about 4.9 points in CIDEr is obtained with
our reimplementation of Vid2Seq, and that 14.0 additional points in CIDEr are obtained by
pretraining on VidChapters-7M. Finally, we report the results of the Vid2Seq model after pre-
training on different fractions of VidChapters-7M for a fixed number of iterations. We construct
these subsets such that larger subsets include the smaller ones. These results suggest that the
scale of the chapter dataset is an important factor in the downstream dense video captioning
performance. We conclude that VidChapters-7M opens a promising avenue for multi-modal
pretraining. We further show qualitative examples of dense video captioning in Figure 7.8. We
observe that the dense video captioning model pretrained on VidChapters-7M is more accurate
and hallucinates less than the variant not pretrained on VidChapters-7M.

Zero-shot dense video captioning. In Table 7.10, we report results obtained by directly
applying video chapter generation models trained on VidChapters-7M for dense video captioning
without finetuning for this task. As far as we know, our work is the first to explore this
challenging zero-shot setting where no manual annotation of dense video captions is used for
training. The Vid2Seq model trained only using ASR data underperforms the random baseline,
due to the large domain difference between speech transcripts and dense captions [Yang, 2023d].
In the visual-only setting, the variant trained on chapter annotations is better than the variant
trained on ASR annotations. In the visual+speech settings, only using chapter annotations
does not perform well, as training only on chapters (i.e., without speech) does not enable the
model to learn how to use the input speech modality at inference. However, using both ASR
and chapter annotations results in a largely better zero-shot dense video captioning performance
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is that these sweet 
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When you're making 
mashed potatoes, if 
you're using the wrong 
potato and you're 
throwing them in a food 
processor, you're doing 
it all wrong. The first 
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make is they pick the 
wrong potato. […]

Next you want to peel, 
rinse, and most 
important, cut your 
potatoes into nice, 
even chunks. That way 
they'll all cook at the 
same rate, and you 
won't get any weird 
little nasty hard bits in 
your potato.

Next comes a crucial 
step. You want to cook 
these potatoes until 
they are falling apart. 
Next comes a crucial 
step. You want to cook 
these potatoes until 
they are falling apart 
more than if you just 
put them in boiling 
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the potatoes too. But 
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cook those potatoes 
about 25 minutes.

After you bring them 
to a boil, let them 
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until the edges start to 
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stick a knife in the 
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that hot pot and start to 
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white on the edges and 
practically turning into 
mashed potatoes right 
then and there in the 
pot. To finish the job, 
you can use a hand 
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smooth, silky potatoes.
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you use lots. […]
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white onions in a pan 
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Cook with lid 
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sweet potatoes.
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and black pepper.
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-Truth
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Put in cold 
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Figure 7.8: Examples of dense event captioning of the Vid2Seq model pretrained
on VidChapters-7M (vs. not pre-trained), compared with ground-truth, on the
validation set of YouCook2. We find that the model pretrained on VidChapters-7M "Vid2Seq
(HTM+VC)" is more accurate and less prone to hallucination. For instance, in the first example
(top), the non-VC-pretrained model "Vid2Seq (HTM)" predicts "Add red pepper sweet potatoes
and water to the pan." before the sweet potatoes are actually thrown into the pan. In the
second example (bottom), the non-VC-pretrained model "Vid2Seq (HTM)" predicts the event
"Boil the potatoes in water." twice and predicts the event "Add chives parsley and butter to
the potatoes." before it actually happens. The VC-pretrained model "Vid2Seq (HTM+VC)"
produces more accurate predictions.

and outperforms all baselines not trained on VidChapters-7M, demonstrating the complementary
nature of the ASR and chapters annotations. Finally, we also observe the benefits of increasing
the size of the pretraining dataset of chapters in this setting.
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7.5 Conclusion

In this work, we present VidChapters-7M, a large-scale dataset of user-chaptered videos. Fur-
thermore, we evaluate a variety of baselines on the tasks of video chapter generation with and
without ground-truth boundaries and video chapter grounding. Finally, we investigate the po-
tential of VidChapters-7M for pretraining video-language models and demonstrate improved
performance on the dense video captioning tasks. VidChapters-7M thus provides a new re-
source to the research community that can be used both as a benchmark for the video chapter
generation tasks and as a powerful means for pretraining generic video-language models.

Limitations. As it is derived from YT-Temporal-180M [Zellers, 2021], VidChapters-7M in-
herits the biases in the distribution of video categories reflected in this dataset. Moreover, the
state-of-the-art models [Lei, 2021a; Wang, 2021d; Yang, 2023d] evaluated in this work are orig-
inally designed for other tasks. It is possible that models specifically designed for chaptering
tasks may perform better.
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Chapter 8
Conclusions

In this chapter, we provide a summary of contributions in Section 8.1 and discuss future work
in Section 8.2.

8.1 Contributions

We provide below a summary of the contributions presented in this thesis.

1. Automatic generation of video question answering data (Just Ask). In Chap-
ter 3, we propose an automatic pipeline that leverages text-only models for generating
video question answering triplets from narrated videos. We show that a video-question
transformer trained contrastively with an answer transformer on the generated data is
capable of answering visual questions in a zero-shot manner (without training on a sin-
gle manually annotated image or video) better than appropriate baselines. Furthermore,
our method achieves competitive results on four existing video question answering bench-
marks. Moreover, we extend our data generation approach to web video-caption pairs. For
a detailed evaluation, we also introduce iVQA, a new video question answering benchmark
with reduced language biases and high-quality redundant manual annotations.

2. Frozen bidirectional language models for video question answering (Frozen-
BiLM). In Chapter 4, we propose the FrozenBiLM model based on frozen bidirectional
language models (BiLM) for zero-shot video question answering. Our method consists
in: (i) combining visual inputs with the frozen BiLM using light trainable modules, (ii)
training such modules using web-scraped multi-modal data, and finally (iii) performing
zero-shot video question answering inference through masked language modeling, where
the masked text is the answer to a given question. FrozenBiLM outperforms prior autore-
gressive models and the prior state of the art for zero-shot video question answering on
eight video question answering datasets. It also demonstrates competitive performance in
the few-shot and fully-supervised settings.
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3. Transformers for spatio-temporal video grounding (TubeDETR). In Chapter 5,
we propose TubeDETR, an end-to-end transformer-based architecture for spatio-temporal
video grounding. Its key components are: (i) an efficient video and text encoder that
models spatial multi-modal interactions over sparsely sampled frames and (ii) a space-time
decoder that jointly performs spatio-temporal localization. We demonstrate the advan-
tage of our proposed components through an extensive ablation study. With image-text
pretraining [Kamath, 2021], TubeDETR improves over the prior state of the art on the
challenging VidSTG and HC-STVG benchmarks.

4. Pretraining a visual language model for dense video captioning (Vid2Seq).
In Chapter 6, we propose Vid2Seq, a visual language model that can densely caption a
video by generating a single sequence of tokens. The Vid2Seq architecture augments a
language model with special time tokens, allowing it to seamlessly predict event bound-
aries and textual descriptions in the same output sequence. Vid2Seq can be effectively
pretrained on unlabeled narrated videos at scale, by reformulating sentence boundaries of
transcribed speech as pseudo event boundaries, and using the transcribed speech sentences
as pseudo event captions. The resulting Vid2Seq model pretrained on the YT-Temporal-
1B dataset [Zellers, 2022] improves over the prior state of the art on the YouCook2, ViTT
and ActivityNet Captions dense video captioning benchmarks. Vid2Seq also generalizes
well to the tasks of video paragraph captioning and video clip captioning, and to few-shot
settings.

5. VidChapters7M: a large-scale dataset of user-chaptered videos. In Chapter 7, we
propose VidChapters-7M, a large-scale dataset of user-chaptered videos. VidChapters-7M
is automatically created from videos online in a scalable manner by scraping user-annotated
chapters and hence without any additional manual annotation. We introduce the tasks
of video chapter generation with or without ground-truth boundaries and video chapter
grounding. We benchmark both simple baselines as well as state-of-the-art video-language
models, including Vid2Seq, on these tasks. We also show that pretraining Vid2Seq on
VidChapters-7M transfers well to dense video captioning tasks both in the zero-shot and
finetuning settings, largely improving the state of the art on the YouCook2 and ViTT
benchmarks. Finally, our experiments reveal that downstream performance scales well
with the size of the pretraining dataset.

8.2 Future work

We here discuss several promising future direction for future work related to this thesis.

8.2.1 Localized video dialog

In Chapter 6, we presented a model capable of grounding the captions it generates temporally
in the video. However this model cannot be prompted with specific textual instructions as it is
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Figure 8.1: Video models are still highly specialized. Can we build a video model that uni-
fies spatially-grounded tasks (left), global video tasks (middle) and temporally-grounded tasks
(right) all together?

trained specifically for dense video captioning. Therefore this model cannot be used for dialog
applications either, as such applications require understanding past textual context. It would be
interesting to develop alternative models that can be prompted, for instance to focus more on
specific events in a video (such as sporting events, social events), which may also enable them
to be potentially used for dialog applications as well.

From another side, a recent work [Zhou, 2023] has studied the new task of dense video object
captioning – detecting, tracking, and captioning trajectories of all objects in a video. The model
designed in this work can spatially localize the text it generates, but is not capable of temporal
localization. A natural question emerges: can we build a visual language model that can ground
the text it generates both spatially and temporally in the video?

All in all, pursuing these research directions may enable to build flexible visual language mod-
els capable of dialog while referring to precise spatio-temporal locations in a video. This is unlike
most current visual language models which are focused on global visual understanding [Alayrac,
2022; Li, 2023a; Liu, 2023]. Moreover, the consistency between the predicted spatio-temporal
locations and the generated text may be used to correct model hallucinations [Alayrac, 2022;
Ji, 2023], which is becoming an increasingly important research direction as language models
are being more widely used.

8.2.2 Unified video model

Lately, image models have known a great unification. For instance, models like FIBER [Dou,
2022a] and GLIPv2 [Zhang, 2022b] are capable of serving both localization tasks like object
detection and vision-language understanding tasks like VQA and image captioning. Moreover,
with one suite of parameters, X-Decoder [Zou, 2023] supports all types of image segmenta-
tion tasks ranging from open-vocabulary instance/semantic/panoptic segmentation to referring
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segmentation, and vision-language tasks including image-text retrieval, and image captioning.
In comparison, video models are still highly specialized. Actually, recent unified video frame-

works [Li, 2023c; Wang, 2023; Zellers, 2022] only integrate global video-language tasks like ques-
tion answering and captioning. Meanwhile, different models [Zhang, 2020a; Zhang, 2020c; Zeng,
2020] are being developed for temporally-grounded tasks like temporal language grounding. Fur-
thermore, no model is capable of doing both temporal action localization [Caba Heilbron, 2015]
and dense video captioning [Krishna, 2017] despite the similarities between the two tasks which
both require temporal localization.

Therefore an interesting direction consists in designing unified video models that can flex-
ibly handle both localization and understanding tasks, see Figure 8.1. To achieve this, we
would certainly need advances in the scalable training of video models and to discover a video
representation that is both efficient and compressed.

8.2.3 Processing long videos

Designing unified video models notably requires being able to process videos with varying du-
ration. The standard approach to video modeling - which we use for all models developed in
this thesis - consists in sampling temporally equally spaced video frames covering the full video.
However, such an approach may miss important details especially when applied to long videos.
Recent works have proposed promising alternatives. For instance, [Kim, 2023] apply a video
language model to a subset of frames selected with a non-parametric frame retriever conditioned
on video features and a text query. [Yu, 2023] use a similar scheme, but the subset of frames is
selected using a model specifically trained for this. However, these approaches have mostly been
evaluated on video question answering tasks using relatively short videos (several minutes at
most). It remains unclear if these approaches would work when tackling other video tasks such
as those depicted in Figure 8.1, or processing longer videos like movies. Another promising ap-
proach is the concept of memory [Cheng, 2022b; Wu, 2022], which could effectively encode long
sequences of video frames. However, there is still work to be done to have a unified framework
that works well across tasks.

8.2.4 Model-assisted annotation of video datasets

A key challenge in training video models is to collect the data required to train video mod-
els that can generalize well. Additionally, the annotation burden is compounded in the case
of long videos. In Chapter 6, we presented an approach that uses language models to gener-
ate video question answering training data. The recent improvements in language models like
GPT-4 [OpenAI, 2023b] open new possibilities in using language models to generate training
data [Peng, 2023]. For instance, [Liu, 2023] generate conversations, detailed descriptions and
complex reasoning texts about images using GPT-4. This is done by representing an image as
a text that contains human-annotated captions and bounding boxes. A few other works have
explored using similar generating similar type of data for visual instruction tuning [Zhang, 2023;
Zhu, 2023]. Moreover, recent works [Chen, 2023a; Gao, 2023; Li, 2023b; Yang, 2023e] have also
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Figure 8.2: This thesis focuses on building models that can take as input video frames and text
and output text. Building models that can efficiently generate various output modalities given
diverse input modalities is still an open problem. Illustration from [Tang, 2023].

studied the new multi-modal abilities unlocked by large language models, like multi-image under-
standing or multi-hop document understanding [Yang, 2023e]. From another side, the large-scale
collection of segmentation masks in Segment Anything [Kirillov, 2023] has largely been made
possible by model-assisted annotation interfaces. Another possibility is to pseudo-label large-
scale data using multi-modal models pretrained on small manually annotated datasets, as done
in [Ashutosh, 2023]. Therefore future work may leverage large language models or other tools
to facilitate or automate partially or entirely the collection of annotations for videos.

8.2.5 Multi-modal generation

The models developed in this thesis cannot take raw audio inputs, and only generate text
output. Lately, models generating visual outputs have seen great growth [Chang, 2023; Gafni,
2022; Li, 2023e; Ramesh, 2021; Ramesh, 2022; Saharia, 2022; Singer, 2022; Yu, 2022b]. Hence an
interesting research direction consists in building models that can both generate both text and
visual outputs, see Figure 8.2. A promising approach in this direction is GILL [Koh, 2023], which
is based on a visual language model based on a frozen language model capable of visual dialog
and image generation. GILL is trained with a captioning loss to learn to process images, and
losses for image retrieval and image generation to learn to produce images. Another promising
approach is CoDI [Tang, 2023], a generative model capable of generating any combination of
output modalities, such as language, image, video, or audio, from any combination of input
modalities. This is achieved despite the absence of training datasets for many combinations of
modalities, by training to align modalities in both input and output spaces. However, there is
still progress to be done to have a unified model that can generate text and other modalities
well.

8.2.6 Ethical considerations

The potential positive or negative impacts of visual language models depend on the application.
Many exciting applications have been described in Section 1.1. However, such models may also be
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used for video surveillance and hence lead to questionable use. Moreover, visual language models
may also reflect biases present in their training data. All models and datasets developped during
this thesis have been open-sourced with permissible licenses for research-based use to foster
future research in the field. We believe that the open-sourcing of these models and datasets
will not only help develop better models, but also help deepen our understanding of their biases
and limitations. We acknowledge that the ethical implications and potential societal impacts
of such models must be carefully considered and addressed through responsible development
and deployment practices. Therefore future work should focus on developing ethical guidelines,
mitigating biases, and ensuring fairness and transparency in the use of these models to prevent
potential negative consequences.

In addition, more than 500,000 V100 GPU hours have been used during this thesis, con-
suming roughly 100 MW/h. Given the carbon intensity of France of 70 gCO2/KWh, the used
electricity has produced roughly 30 tCO2eq. However, we expect that the public release of the
developed models and datasets can further amortize this cost. We have also strived to develop
efficient learning techniques, for instance computing multi-modal interactions only on a few
sampled frames (see Chapter 5) or freezing the language model weights (see Chapter 4). We
hope that this inspires future work to consider compute-efficient methods. Finally, we advocate
for research institutions and companies to invest in renewable energy sources and implement
sustainable practices to mitigate the environmental impact of AI model development and de-
ployment.
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MOTS CLÉS

apprentissage automatique, vision par ordinateur, intelligence artificielle, traitement du langage naturel, com-

préhension de vidéos, apprentissage profond

RÉSUMÉ

L’objectif de cette thèse est de construire et de former des modèles d’apprentissage automatique combinant la puissance

du traitement du langage naturel avec la compréhension visuelle, permettant une compréhension complète et détaillée du

contenu des vidéos. Premièrement, nous proposons deux nouvelles méthodes pour développer des modèles de réponses

aux questions sur des vidéos sans avoir recours à une annotation manuelle coûteuse. Nous générons automatiquement

des données de réponses aux questions sur des vidéos à partir de vidéos commentées à l’aide de modèles de génération

de questions utilisant uniquement du texte. Nous montrons ensuite qu’un transformateur multi-modal entraîné de manière

contrastée sur les données générées peut répondre aux questions visuelles sans entraînement supplémentaire. Afin de

contourner la procédure de génération de données, nous présentons une approche alternative, nommée FrozenBiLM, qui

exploite directement des modèles de langage masqué bidirectionnels. Deuxièmement, nous développons TubeDETR, un

modèle de transformateur capable de localiser spatialement et temporellement une requête en langage naturel dans une

vidéo non découpée. Contrairement aux approches spatio-temporelles antérieures, TubeDETR peut être efficacement

entraîné de bout en bout sur des vidéos non rognées. Troisièmement, nous présentons un nouveau modèle et un nouvel

ensemble de données pour la compréhension de multiple évènements dans les vidéos non découpées. Nous introduisons

le modèle Vid2Seq qui génère des descriptions denses en langage naturel et les limites temporelles correspondantes

pour tous les événements dans une vidéo non découpée en prédisant une seule séquence de jetons. De plus, Vid2Seq

peut être efficacement pré-entraîné sur des vidéos commentées à grande échelle en utilisant les transcriptions de paroles

comme pseudo-supervision. Enfin, nous présentons VidChapters-7M, un ensemble de données à grande échelle de

vidéos chapitrées par les utilisateurs. Sur la base de cet ensemble de données, nous évaluons des modèles de pointe

sur trois tâches, dont la génération de chapitres vidéo. Nous montrons également que les modèles de génération de

chapitres vidéo se transfèrent bien au sous-titrage vidéo dense.

ABSTRACT

The goal of this thesis is to build and train machine learning models that combine the power of natural language processing
with visual understanding, enabling a comprehensive and detailed comprehension of the content within videos. First, we
propose two scalable approaches to develop video question answering models without the need for costly manual annota-
tion. We automatically generate video question answering data from narrated videos using text-only question-generation
models. We then show that a multi-modal transformer trained contrastively on the generated data can answer visual
questions in a zero-shot manner. In order to bypass the data generation procedure, we present an alternative approach,
dubbed FrozenBiLM, that directly leverages bidirectional masked language models. Second, we develop TubeDETR, a
transformer model that can spatially and temporally localize a natural language query in an untrimmed video. Unlike prior
spatio-temporal grounding approaches, TubeDETR can be effectively trained end-to-end on untrimmed videos. Third, we
present a new model and a new dataset for multi-event understanding in untrimmed videos. We introduce the Vid2Seq
model which generates dense natural language descriptions and corresponding temporal boundaries for all events in an
untrimmed video by predicting a single sequence of tokens. Moreover, Vid2Seq can be effectively pretrained on narrated
videos at scale using transcribed speech as pseudo-supervision. Finally, we introduce VidChapters-7M, a large-scale
dataset of user-chaptered videos. Based on this dataset, we evaluate state-of-the-art models on three tasks including
video chapter generation. We also show that video chapter generation models transfer well to dense video captioning in
both zero-shot and finetuning settings.

KEYWORDS

machine learning, computer vision, artificial intelligence, natural language processing, video understanding,

deep learning
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