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By 
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July 2023 
 

Chair  : Jean-Marc RODA, PhD  
Institute : Tropical Forestry and Forest Product 
 

Lignocellulosic biomass is one of the renewable resources to help carbon emissions 
mitigation and delay peak oil events and transition fossil energy reliance to alternative 
sustainable energy. In tropical region with high primary productivity, biofuel 
development was motivated by its abundance of biomass. However, biofuel 
sustainability is challenged by the context of resource fragmentation and complex 
landscape structure, this is compromising the feasibility and competitiveness of 
biorefineries. Hence, this study aims to assess the costs and quantities of feasible biofuel 
potentials in Peninsular Malaysia while considering the impact of spatial fragmentation 
as a significant challenge. This involves determining cost and quantity of lignocellulosic 
biomass wastes in Peninsular Malaysia, identifying ideal location(s) for a biorefinery 
(biorefineries) and assess the cost and quantity of biofuels that could potentially be 
produced in Peninsular Malaysia at an optimum scale. Furthermore, the impact of spatial 
fragmentation on the feasibility of biofuels production is also examine.  
 

Using GRASS GIS, this study simulates the biomass transportation in Peninsular 
Malaysia and extend the costs and supply into biorefineries using the order of magnitude 
estimation method. As a result, we obtained biofuel transportation cost curves, least-cost 
locations, biorefinery cost curves, biorefinery optimal costs and scales based on ten 
major biomasses and multi-biomass scenarios in Peninsular Malaysia. Quantification of 
impacts from significant factors were also demonstrated.  
 

Biomass transport costs increases by more than 4 USD/tonne at basis of 1 million tonnes 
feedstock for every added unit of edge density (fragmentation index). It also increases 
by more than 6 USD/tonne for every added 100km of average transport distance. 
Average truck size has a strong nonlinear negative relation with 84 USD/tonne reduction 
when changing from 3- to 26-tonne trucks. Biorefinery optimal costs also strongly linked 
to spatial fragmentation, it increases 42 USD/tonne for each unit of edge density. Every 
10% increase of moisture content increase optimal cost by 12 USD/tonne. Conversion 
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technology is as important as fragmentation, parameter-a (represent investment cost and 
conversion efficiency) at interval of 250 increases optimal cost by 42 USD/tonne. To the 
author’s knowledge, this is the first work that simultaneously address effects of 
fragmentation with other classical logistical factors to biomass and biorefinery 
economics in tropical country like Malaysia. It has strong implications for policymakers: 
the importance of the landscape structure makes a seemingly abundant biomass not 
viable for biorefineries if too fragmented compared to a much less abundant one, but 
more concentrated. This is illustrated by the identified feasibility of rice straw and palm 
pressed fiber (PPF) in contrast of more discussed resources such as empty fruit bunch 
and oil palm frond. The fermented biofuels produced from rice straw or from PPF are 
the only biomass source to be systematically cheaper than 97.5% of the crude oil price 
variability (below 191 USD/tonne).  
 

The total potentials from the two biomasses are between 0.96 to 1.38 million tonnes of 
annual liquid biofuel which represents 5 to 7% tonne of oil equivalent of Malaysia petrol 
consumption in a year. This also implies that in tropical countries where the landscape is 
typically very fragmented, more holistic approach that include landscape variations is 
needed in selection of supply zone and location, as well as consideration of multi-
feedstock for sustainable biorefineries. 
 

Keywords: bioenergy, biomass, biorefinery, feedstock, landscape fragmentation, 
lignocellulose, residues, supply cost, transport cost, biofuel cost, wastes 
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Oleh 
 

ONG CHU LEE 
 

Julai 2023 
 

Pengerusi : Jean-Marc RODA, PhD   
Institut  : Perhutannan Tropika dan Produk Hutan  
 

Biojisim lignoselulosa ialah salah satu sumber yang boleh diperbaharui untuk membantu 
pengurangan pelepasan karbon dan menangguhkan kemelesetan punca tenaga fosil dan 
mengalihkan pergantungan tenaga fosil kepada tenaga lestari alternatif. Di rantauan 
tropika, dengan produktiviti primer yang tinggi, pembangunan tenaga-bio didorong oleh 
kesuburan biojisimnya. Walau bagaimanapun, kemampanan tenaga-bio dicabari oleh 
struktur kepingan sumber-sumber dan struktur geografi yang kompleks, ini menjejaskan 
kebolehlaksanaan dan daya saing produksi tenaga-bio. Ini merangkumi penentuan kos 
dan kuantiti sisa biomassa lignoselulosa di Semenanjung Malaysia, mengenal pasti 
lokasi yang ideal untuk satu atau lebih biorefineri, dan menilai kos dan kuantiti biofuel 
yang berpotensi dihasilkan di Semenanjung Malaysia pada skala optimum. Selain itu, 
kesan pecah bahagian ruang terhadap kelayakan pengeluaran biofuel juga dikaji.  
 

Dengan menggunakan GRASS GIS, kajian ini mensimulasikan pengangkutan biomassa 
di Semenanjung Malaysia dan meluaskan kos dan bekalan ke biorefineri menggunakan 
kaedah anggaran kadar besaran. Akibatnya, kami memperoleh lengkung kos 
pengangkutan biofuel, lokasi kos terendah, lengkung kos biorefineri, kos optimum dan 
skala biorefineri berdasarkan sepuluh biomassa utama dan skenario biomassa pelbagai 
dalam Semenanjung Malaysia. Kuantifikasi kesan daripada faktor-faktor penting telah 
ditunjukkan.  
 

Kos pengangkutan biojisim meningkat lebih daripada 4 USD/tan pada asas 1 juta tan 
bahan mentah untuk setiap unit tambahan ‘kepadatan tepi’ (indeks kepingan geografi). 
Ia juga meningkat lebih daripada 6 USD/tan untuk setiap tambahan 100km jarak 
pengangkutan purata. Purata saiz trak mempunyai hubungan negatif tidak-linear yang 
kuat dengan pengurangan 84 USD/tan apabila menukar daripada trak 3- kepada 26 tan. 
Kos optimum kilang tenaga-bio juga berkait kuat dengan ‘kepadatan tepi’, ia meningkat 
42 USD/tan untuk setiap unit ‘kepadatan tepi’. Setiap peningkatan 10% kandungan 
lembapan meningkatkan kos optimum sebanyak 12 USD/tan. Teknologi pemprosesan 



 

iv 

tenaga adalah sama kepentingnya dengan indeks kepingan geografi, parameter-a 
(mewakili kos pelaburan dan kecekapan proses) pada selang 250 meningkatkan kos 
optimum sebanyak 42 USD/tan. Dalam penaklukan pengetahuan penulis, ini adalah 
karya pertama yang secara serentaknya menangani kesan kepingan sumber dengan faktor 
logistik klasik yang lain-lain kepada biojisim dan ekonomi kilang pemprosesan tenaga-
bio di negara tropika seperti Malaysia. Ia mempunyai implikasi yang kuat untuk 
penggubal dasar: kepentingan struktur landskap menjadikan biojisim yang kelihatan 
banyak tidak mampan untuk produksi tenaga-bio jika terlalu berpecahan berbanding 
dengan yang kurang banyak, tetapi lebih padat. Ini digambarkan oleh kebolehlaksanaan 
yang dikenal pasti bagi jerami padi dan sabut mesocarp sawit (PPF) berbanding sumber 
yang lebih banyak dibincangkan seperti tandan kosong sawit dan pelepah sawit. Tenaga-
bio yang diperolehi daripada jerami padi atau daripada PPF adalah satu-satunya sumber 
biojisim yang secara sistematik lebih murah daripada 97.5% kebolehubahan harga 
minyak mentah (di bawah 191 USD/tan).  
 

Jumlah potensi daripada kedua-dua biojisim itu adalah antara 0.96 hingga 1.38 juta tan 
tenaga-bio cecair tahunan yang mewakili 5 hingga 7% tan minyak bersamaan dengan 
penggunaan petrol Malaysia dalam setahun. Ini juga menyarankan bahawa di negara 
tropika di mana struktur geografinya sangat berpecah-belah, pendekatan yang lebih 
holistik dengan merangkumi variasi struktur geografi diperlukan dalam pemilihan zon 
bekalan dan lokasi, serta pertimbangan berbilang bahan biojisim untuk produksi tenaga-
bio yang mampan. 
 

Kata kunci: biotenaga, biojisim, biorefinery, bahan mentah, pemecahan landskap, 
lignoselulosa, sisa, kos bekalan, kos pengangkutan, kos tenaga, bahan buangan 
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 Background 
 

Climate change is posing unprecedented threats to humanity. These risks include 
biodiversity loss, global warming, and extreme weather events (OECD, 2012). 
Transitioning from fossil fuels to renewable energy is at the forefront of mitigating these 
risks among the available alternatives. However, in Malaysia the major culprit of global 
warming – carbon dioxide emissions are still on the rise (Figure 1.1); where the nation’s 
energy consumption is still heavily relying on fossil sources while biofuels and waste 
sources only composed of 1.1% in Year 2020 (Figure 1.2). 
 

 

Figure 1.1: Total CO2 emissions from energy consumption Malaysia, Year 1990 – 
2020   
(Reproduced from: IEA,2023) 
 

 

Figure 1.2: Total final energy consumption by source, Malaysia Year 1990 – 2020 
(Reproduced from: IEA,2023) 
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This suggested that there is urgency to accelerate reduction of fossil fuel reliance for 
climate change mitigation. Among others, biofuel is expected to become one of the major 
alternative energy to replace fossil energy (Mofijur, Masjuki, Kalam, Ashrafur Rahman, 
& Mahmudul, 2015). Their renewability and sustainability can insure environmental and 
sociological services such as energy security, carbon neutrality and rural areas 
development (Gheewala, Damen & Shi, 2013). 
 

1.1.1 Definitions of biofuel 
 

Biofuels are energies in the form of solid, liquid or gaseous that are derived from 
renewable sources such as biomass (Demirbas, 2009; Liew, Hassim, & Ng, 2014). 
Biofuels are classified into four types according to their sources of feedstock (Naik, Goud, 
Rout, & Dalai, 2010, Demirbas 2011).  
 

The first-generation biofuels also known as ‘conventional biofuels’ are derived from 
agricultural food crop. Sugar or starchy crops such as corn, wheat, sugar cane and cassava 
are used to produce bioethanol through microbial fermentation. Oil seed crops such as 
palm, soybean and rapeseed are used to produce biodiesel through transesterification 
process which the lipids were reacted with alcohols (Balat, 2011).  
 

The first-generation biofuels involve large scale crop cultivation that heighten 
inefficiencies and created issues such as competition of arable land and water resources 
with food crop, increased food prices, land use change and anthropogenic emission 
(Rajagopal & Zilberman, 2007; Searchinger et. al., 2008; Gehlhar et. al., 2010). This led 
to advent of newer generations of biofuel or “advanced biofuels” as describe below 
which could avoid these externalities.  
 

The second-generation biofuels are derived from non-edible plant, solid waste and 
residue materials. These feedstocks are lignocellulosic biomass from cultivation on 
marginal land (Izaurralde & Zhao,2015); agricultural residues, forestry, wood and 
industrial wastes (Balan, 2014; Mahlia, Ismail, Hossain, Silitonga, & Shamsuddin, 2019; 
Magda, Szlovák, &  Tóth, 2021). Other materials including used cooking oils and 
municipal solid waste also fall into this category (Azapagic et al., 2017).  
 

The third-generation biofuels are derived from microbes, microalgae, and seaweeds and 
furthermore the fourth-generation biofuels are derived from genetically modified 
microalgae (Agrawal, Khatri, & Rathore, 2020). 
 

The following table summarize the feedstock sources, benefits and drawbacks of each 
generation of biofuels. 
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Table 1.1: Feedstocks, benefits and drawbacks of the four generations of biofuel  
Biofuel Generation Feedstock Benefit Drawback 
First • Edible crops cultivated on arable land including, 

 
- Sugar/Starchy crops, i.e., Cassava, corn, 

wheat, barley, sugar cane, potatoes 
- Oil seeds, i.e. Rapeseed, Sunflower, Palm oil, 

Coconut, Jatropha curcas, Soybean 
- Animal fat 

• Cost efficient processing 
 

- due to well-established and simpler 
technology, does not require 
intensive pre-treatment (3, 10)  

• Intensive use on arable land and fresh water  
 

- led to competition with food resources, 
raising food price (11) 

 
• Negative in energy balance (2,11) 

Second • Non-edible crops, from waste or cultivated on non-
arable land; other organic wastes 

 
- Lignocellulosic biomass from agricultural and 

forestry residues, i.e. straw, husk, sawdust; 
wood chips 

- Grass, i.e., Kenaf, Miscanthus, Sorghum 
- Organic wastes, i.e., used cooking oil, 

municipal solid wastes, manure 

• Potentially to be positive in energy 
balance (4, 14) 

• Utilize waste sources thus avoided the 
food vs fuel conflict (circular economy) 

• Limited amounts of biomass  
• Require extensive pre-treatment, due to 

complex feedstocks (12) 

Third Microalgae, macroalgae and microbes - Fast growing organisms in water 
body utilizing photosynthesis 
process (sunlight, carbon) 

- Potentially carbon neutral and 
positive energy balance (1) 

- Does not use arable land 

- Expensive downstream process where 
intensive dewatering is required (9, 15) 

Fourth Genetically modified microalgae - Higher yield with high lipid 
containing algae due to genetic 
engineering (6) 

- Potentially carbon negative 
through creation of artificial carbon 
sinks. (5) 

- No land use change, reduced fresh 
water use 

- High initial investment but economical 
in the long run. (8) 

- Higher regulation due to safety issues 
from environmental risk in case of 
algae spills (7, 13) 

(Source: (1) Aresta, Dibenedetto & Barberio (2005) ; (2) De Souza, Pacca, De Ávila,& Borges (2010) ; (3) Eggert & Greaker (2014); (4) Eisentraut (2010); (5) El-Sheekh, El-Dalatony, 
Thakur, Zheng & Salama (2021); (6) Flynn, Mitra, Greenwell & Sui (2013); (7) Gressel, van der Vlugt & Bergmans (2013); (8) Ketzer, Skarka & Rösch (2018); (9) Lee, Cho, Chang 
& Oh (2017); (10) Naik, Goud, Rout & Dalai (2010); (11) Sims, Taylor, Saddler & Mabee (2008); (12) Sinitsyn & Sinitsyna (2021); (13) Snow & Smith (2012); (14) Wang, Han, Dunn, 
Cai & Elgowainy (2012) ; (15) Yang, Xu,  Zhang,  Hu,  Sommerfeld & Chen (2011). ) 
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1.1.2 Lignocellulosic biomass biorefinery and biofuel conversion pathways  
 

Among the feedstock choices for second-generation biofuels, lignocellulosic biomass is 
a major input source and it is an abundant resource resultant of its non-edible nature. 
Unlike crop such as grain, seeds, vegetable and fruit, lumber from forestry that has 
immediate economic and consumption value at its natural form; lignocellulosic biomass 
is treated as waste or residues with very low or no economic value unless it can fit into a 
specific value-added process.  
 

From a biorefinery standpoint, biomass is a broad term that encompasses any organic 
material with the potential to be transformed into fuels and chemicals. It is a renewable 
and non-fossil substance from living matter, created through natural or human-driven 
processes. Biomass is derived from plants, algae, and certain bacteria; which utilize 
sunlight, CO2 and water to produce carbohydrates and lipids through the process of 
photosynthesis. For a lignocellulosic biomass biorefinery, the sources of lignocellulose 
feedstock are numerous from various fibrous botanical parts ranging from straw, stalk, 
hull, husk, bagasse, coir, shell, barks, leaves, needles, twigs etc. (Nanda, Rana, Sarangi, 
Dalai & Kozinski, 2018). A prevalent lignocellulosic biomass biorefinery is pulp and 
paper mill where after production of main products (paper, fibre board) it also created 
various by-products (black liquor, saw dust, ash, sludge) and could be further valorize to 
produce higher value added fuels and chemicals. (Haile et al.,2021; Isaksson, Pettersson, 
Mahmoudkhani, Åsblad & Berntsson, 2012; Sikarwar, Zhao, Fennell, Shah & Anthony, 
2017). 
 

Lignocellulosic biomass consist of three main components, its composition usually made 
up of about 30-60% cellulose, 20-40% hemicellulose, and 15-25% lignin. The trio are 
all important components of a plant's cell wall, and they work together to provide 
structural support and protection. Cellulose is a long chain of glucose units linked 
together, forming a strong structure. Hemicellulose is a shorter chain of different sugars, 
including xylose, arabinose, mannose, glucose, galactose, and sugar acids. Lignin is a 
complex molecule that gives plants their strength and resistance to pests and microbes. 
Unlike sugary or starchy feedstock (e.g., corn, cassava, sugarcane) in first-generation 
biofuel, the presence of lignin brings up the need for pre-treatment which increases the 
processing cost and time. (Nanda, Rana, Sarangi, Dalai & Kozinski, 2018; Rosales-
Calderon & Arantes, 2019). 
 

In the pre-treatment stage, biomass undergoes a compaction and decomposition process 
via chemical (i.e., acid, alkali or ion) or mechanical process aimed at transforming it into 
an intermediate product suitable for two primary conversion pathways: thermochemical 
and biochemical technologies. The objective of the pre-treatment stage is to enhance the 
bulk density and energy density of the biomass (Yan, Acharjee, Coronella & Vasquez, 
2009). This involves implementing size reduction and milling processes to improve 
supply chain efficiency (Hamelinck, Suurs & Faaij, 2005; Lam et al., 2015; Uslu, Faaij 
& Bergman, 2008). Specifically, prior to thermochemical conversion, the pre-treatment 
stage focuses on reducing the moisture content of the biomass and enhancing its chemical 
reactivity (Acharjee, Coronella & Vasquez, 2011; Mosier et al., 2015; Yan, Acharjee, 
Coronella & Vasquez, 2009). For biochemical conversion, the pre-treatment aims to 
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delignify the feedstock and breaking down the cell wall of the biomass and release the 
internal components - cellulose and hemicellulose to latter facilitate the recovery of 
fermentable sugars (Hendriks & Zeeman, 2009; Rizal et al., 2018). 
 

In the thermochemical conversion pathway, different processes are utilized by applying 
varying levels of heat and oxygen to the biomass. At temperatures ranging from 250 to 
350°C without oxygen, the process known as torrefaction is employed. Torrefaction is 
considered a pre-treatment method for the thermochemical pathway, resulting in the 
production of biochar as its main output. Additionally, two other significant 
thermochemical processes are pyrolysis and gasification. Pyrolysis occurs at higher 
temperatures (550 to 750°C) in the absence of oxygen, yielding bio-oil as its primary 
product. Whereas, gasification takes place at even higher temperatures (750 to 1,200°C) 
with limited oxygen. The primary products of gasification are predominantly syngas, 
while biochar and bio-oils serve as by-products. (Lee & Lavoie, 2013). 
 

After the pre-treatment stage, the biochemical conversion process involves two main 
steps: enzymatic hydrolysis and fermentation. Enzymatic hydrolysis use enzymes such 
as cellulases and hemicellulases to break down chemical bond in cellulose and 
hemicellulose into simpler sugar molecules. This stage requires careful optimization of 
enzyme dosage, reaction conditions (pH, temperature), and duration to achieve efficient 
sugar conversion (Rizal et al., 2018; Zhu & Pan, 2022). In the next step, fermentation, 
microorganisms like yeast or bacteria consume these sugars and convert them into useful 
products. The main product that can be obtained from fermentation is ethanol, which can 
be used as a biofuel. Other products include organic acids and chemicals that can be used 
in various industries (Lee & Lavoie, 2013; Nanda, Rana, Sarangi, Dalai & Kozinski, 
2018). 
 

The following diagram depicts a simple schematic process of the two pathways. 
 

 

Figure 1.3: Thermochemical and biochemical biofuel conversion pathway for 
lignocellulosic biomass  
 

1.2 Problem Statement 
 

1.2.1 Spatial fragmentation hinders biomass accessibility 
 

Malaysia as part of Southeast Asia region is located in the tropical and subtropical 
climatic zone, it is one of the zones that contains global highest net primary productivity 
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(NPP) (Cramer et al., 1999). NPP is a measure of the amount of energy captured by 
plants through photosynthesis, minus the energy they consume during respiration (Del 
Gross et al., 2008). In other words, Southeast Asia is one of the regions around the globe 
that is experiencing the highest rate of biomass production by photosynthetic organisms. 
This condition led to prosperous agricultural and forestry industries (de Koninck & 
Rousseau, 2013). For example, Indonesia, Malaysia and Thailand are the world’s top 
three producers of palm oil for decades (FAOSTAT, 2021a). Major exporters of woods 
in the region are Malaysia and Myanmar (FAOSTAT, 2021b). Abundance of 
lignocellulosic residues are generated from agriculture and forestry industry (Gregg & 
Smith, 2010; Koopmans, 2005). These resources are underutilized and commonly being 
disposed through open burning and dumping in the past decades (Carlos & Ba Khang, 
2008).  
 

The availability of un-valorized lignocellulosic biomass in the region could provide 
substantial sustainable biofuel potentials. However, the nature of biofuels production is 
tied with the biomass feedstock characteristics such as its geographical spatial pattern. 
This is even more so in Malaysia. As illustrated in Figure 1.1, measures from Lesiv et. 
al. (2019) shows that half of the field size in Asia (53%) and Africa (50%) are of the 
category “very small”. In contrast, majority of field size in South America, North 
America and Australia are categorized as “large” – 44%, 45% and 56% respectively. 
While in the Europe, majority of the fields are “large” (32%) and “medium” (30%). This 
implies that the agricultural landscape structure in the region other than Asia and Africa 
are more centralized. This can provide advantage on ease of access and more efficient 
logistics for feedstock supply to achieve higher scale economy in biofuel production. 
Contrarily, the agronomic practices in Southeast Asia are highly fragmented as shown 
by the mosaic and relatively small size of croplands (Figure 1.1). This phenomenon poses 
a significant challenge for the region, including Malaysia, in harnessing the potential of 
lignocellulosic biomass for biofuel production. 
 

 

 

Figure 1.4: Global field size of agricultural area  
(Reproduced from: Lesiv et. al., 2019) 
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Differences in spatial patterns play a crucial role in determining the accessibility of 
biomass. The ease of accessing biomass resources is influenced by variations in their 
spatial density and distribution. While optimizing the location can improve access by 
reducing distances, the existing landscape structure largely dictates the overall distances 
required. For instance, in Figure 1.5, Location-I in the four theoretical spatial patterns 
aims to optimize access to the circles representing the biomass locations, resulting in 
reduced total distances. However, in Figure 1.5A, the biomass exhibits a highly 
centralized and densely clustered spatial pattern, leading to significantly lower overall 
collection distances compared to other patterns. This is further illustrated by the relative 
global field size in Figure 1.4. In Southeast Asia, including Malaysia, biomass locations 
are more dispersed and smaller in size compared to other continents. As a result of spatial 
fragmentation and varying land use practices, the accessibility of biomass in Southeast 
Asia including Malaysia varies significantly, impacting the economics of biomass 
logistics and relative supply costs. 
 

 
The circles represent locations of biomass. Location-I can access the biomass areas with lower total distance 
compared to Location-II. Location-I in quadrant-A required less total distance to access compared to other 
quadrants. 
Figure 1.5: Theoretical spatial pattern of biomass 
(Source: Rodrigue, Comtois, & Slack, 2013) 
 

1.2.2 Biomass logistics determine biorefineries’ scale economy and 
sustainability 

 

Studies on biofuel production had found that the logistic variable such as transportation, 
collection, and storage have substantial impact on its economic feasibility (Iakovou, 
Karagiannidis, Vlachos, Toka, & Malamakis, 2010). An evaluation showed that there are 
two significant factors affecting the biorefinery production cost the most, namely 
conversion efficiency and variations in biomass spatial structure and transportation 
distance (Gan & Smith, 2011). With technology advancement, conversion technology 
could reduce its cost by improving the productivity and recovery rate. However, the 
biomass landscape affects the biorefinery cost externally and have substantial impact on 
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its profitability. Due to high reliance on biomass feedstock, the major portion of the 
production cost is stemming from the biomass transportation (Caputo, Palumbo, 
Pelagagge, & Scacchia, 2005; Kudakasseril Kurian, Raveendran Nair, Hussain, & Vijaya 
Raghavan, 2013; Reeb, Hays, Venditti, Gonzalez, & Kelley, 2014). Empirically, the cost 
to deliver the biomass to its facility were ranging from 35% to 50% and it could be more 
(Allen, Browne, Hunter, Boyd, & Palmer, 1998; Kumar, Sokhansanj, & Flynn, 2006). 
 

This cost constraint presents a challenge to realized biofuel potential in Southeast Asia 
including Malaysia. On one hand, biorefinery need to expand its capacity to achieve 
economy of scale or lower unit cost. On the other, biomass transportation cost would 
increase due to increase of sourcing distance to supply more feedstock input for 
biorefinery which could lead to diseconomy of scale. Given the context of resource 
fragmentation in Southeast Asia including Malaysia, the variation in the spatial structure 
would be vital to determine ideal location, capacity and cost of sustainable biofuel 
production. 
 

1.3 Research objective and scope  
 

Based on the observations and descriptions in the previous section, the distribution of 
lignocellulosic biomass in Malaysia exhibits resource fragmentation, primarily attributed 
by the higher dispersion and smaller sizes of croplands. The objective of this thesis is to 
conduct a comprehensive assessment of the potential for second-generation biofuel 
production by examining the logistics involved in utilizing agricultural and wood 
industry waste for biofuel production. Through the analysis of unique spatial patterns 
and other relevant characteristics of biomass logistics, a deeper understanding of their 
economic impact on biofuel production can be obtained. It should be noted that due to 
limitations in time and resources, the scope of this thesis will be confined to Peninsular 
Malaysia. 
 

1.3.1 Study Area 
 

Peninsular Malaysia has 13.21 million hectares of total land area with 43.6% (5.76 
million hectares) of forested area (Forestry Department of Peninsular Malaysia, 2018). 
Another 40.3% are agricultural land consisting 5.32 million hectares in year 2012 
(Ministry of Agriculture and Food Industries Malaysia, 2016). Major commodity that 
could generate copious amount of lignocellulosic biomass includes oil palm, rubber, 
paddy, sugar cane, coconut and forest (Goh & Lee, 2011; Koopmans, 2005; Milbrandt 
& Overend, 2008). The oil palm, rubber and paddy took up majority of the cropland 
(total area in year 2018 – 4.03 million hectares); at 2.73 million hectares, 0.78 million 
hectares and 0.52 million hectares respectively. Within these three crops, the percentage 
of smallholder setting is around 31% (Department of Statistics Malaysia, 2021). 
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1.3.2 Research objectives  
 

In the context of spatial fragmentation, the accessibility and logistics associated with 
biomass can become complex. Existing studies that assess biofuel potentials in Malaysia 
without considering logistics and their economic impacts may yield over-optimistic 
results (Chuah, Wan Azlina, Robiah & Omar, 2006; Tock, Lai, Lee, Tan & Bhatia, 2010; 
Goh & Lee, 201; Tye, Lee, Wan Abdullah & Leh, 2011; Ng, Lam, Ng, Kamal & Lim, 
2012; Aditiya, Chong, Mahlia, Sebayang, Berawi & Nur, 2016). Therefore, this study 
aims to obtain a comprehensive assessment of the biofuel potential in Peninsular 
Malaysia by investigating biomass transport and logistics in the context of spatial 
fragmentation, thus providing a more accurate depiction of the biofuel potential.  
 

The main research objective of this thesis is as follows:  
 
To assess the costs and quantities of feasible biofuel potentials in Peninsular Malaysia 
while considering the impact of spatial fragmentation as a significant challenge. 
 

A set of sub-objectives were developed to obtain the details and desired findings.  
 
Objective-1: To determine the cost and quantity of lignocellulosic biomass wastes in 
Peninsular Malaysia. 
 
Objective-2: To identify the ideal location(s) for a biorefinery (biorefineries). 
 
Objective-3: To assess the cost and quantity of biofuels that could potentially be 
produced in Peninsular Malaysia at an optimum scale. 
 
Objective-4: To examine the impact of spatial fragmentation on the feasibility of biofuels 
production in Peninsular Malaysia. 
 

1.4 Theoretical framework and thesis organization 
 

A theoretical framework (Figure 1.6) was developed based on the research objectives 
mentioned above to guide the study. Figure 1.6 illustrates the theoretical framework that 
corresponds to the research objectives. 
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Figure 1.6: Theoretical framework diagram corresponding to respective research 
objectives 
 

Chapter 1 sets the context by providing an overview of lignocellulosic biomass and 
biofuels. It emphasizes the issue of spatial fragmentation in Malaysia and its potential 
impact on sustainable biofuel development. This chapter also outlines the research 
objectives, delimitations, and the significance of the study. 
 

Chapter 2 presents a review of existing studies on lignocellulosic biomass logistics and 
supply chains for biofuel production. The review categorizes the research based on 
decision-making and planning hierarchy. Additionally, it identifies the United States as 
a dominant country in this field and explores the geographical context and industrial 
practices in both the United States and Malaysia. 
 

Chapter 3 addresses Objective-1 and Objective-2. As illustrated in Figure 1.6, the 
relevant variables in the aspect of “Biomass Spatial Pattern” and “Biomass Availability” 
are gathered. Using Geographic Information System (GIS) as a tool, along with other 
variables as data inputs, a model is developed to simulate logistics operations. The model 
generates important interim results such as "Transport Distance", "Biomass Supply Cost" 
while also identifying the optimal "Biomass Sourcing Locations" for specific biomass 
types 
 

Chapter 4 focuses on Objective-4 and examines the impact of landscape fragmentation. 
It explores various relevant biomass characteristics and logistical variables to quantify 
their effects on "Biomass Supply Cost." This chapter also presents scenarios of different 
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biomass types in Malaysia in the international market of densified biomass, contributing 
to the investigation of the supply chain for viable biofuel production. 
 

Chapter 5 introduces a biorefinery cost estimation model. It demonstrates the 
computation procedures for the "CAPEX" (capital expenditure) of different conversion 
pathways. The results from Chapter 3, including "Biomass Supply Cost" and "Biomass 
Sourcing Locations," are used as scenarios for respective lignocellulosic "Biorefineries" 
in Peninsular Malaysia. These scenarios serve as the basis for "OPEX" (operating 
expenditure) calculations to determine biofuel production costs. The model also 
identifies optimal costs and capacities based on these scenarios and considers crude oil 
prices to assess feasibility and competitiveness, ultimately providing insights into the 
"Biofuel Potentials" in Peninsular Malaysia. 
 

Finally, Chapter 6 synthesizes the major findings of the study and draws conclusions. It 
also recommends directions for future research. 
 

1.5 Significance of the study 
 

The biomass landscape in Malaysia is characterized by intricate patterns and 
fragmentation, which have implications for the cost of biomass transportation, a major 
factor in feedstock supply and biorefinery operations. The economic impacts resulting 
from spatial fragmentation specific to Peninsular Malaysia remain largely unknown. 
Therefore, conducting a thorough study of biomass logistics becomes imperative in order 
to assess the variations and their significance given that there is abundance of biomass 
in the nation. By examining these variations, we can gain insights into diverse conditions 
of feedstock supply conditions and extend our analysis to energy conversion and biofuel 
production. This will enable a comprehensive assessment of biorefinery feasibility and 
to present a more accurate and nuanced portrayal of the biofuel potentials within the 
region.  
 

This research endeavour aims to identify the underlying bottlenecks that hinder the 
sustainable development of biofuels, ensuring a more robust and pragmatic 
understanding of the challenges faced. By deepening our comprehension of these factors, 
we can pave the way for advancements in the field of sustainable biofuels in Malaysia 
and beyond borders where similar phenomena exist. 
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CHAPTER 2 
 

2 LITERATURE REVIEW 
 

Chapter overview 
 
This chapter presents a description of literatures on biomass logistics studies for biofuels. 
In general, this body of research were divided into management hierarchy including 
strategic, tactical and operational levels. Next, this work also identified the pioneering 
country in biomass logistics especially in terms of crop residues – United States. 
Descriptions and comparisons were then illustrated between the subject country of this 
thesis – Malaysia and the U.S. to identify research gap and bottlenecks. 
 

2.1 Introduction  
 

Lignocellulosic biomass supply is the origin in biofuels supply chain. A supply chain is 
constituted by a network of activities for movement of materials, goods, and information 
(Lummus & Vokurka, 1999). Within the network, biomass logistical and distributional 
operations served as the major components between stages in the network.   
 

The logistics of biomass feedstock involved several stages including harvest and 
collection, transportation, storage, pre-processing and energy conversion across various 
entities and stakeholders (Figure 2.1). In each of the stages, there would be different 
factors affecting the production system. Factors such as biomass composition and bulk 
density would affect the pre-processing technology and storage method used and 
calorific value of biofuel (Allen, Browne, Hunter, Boyd & Palmer, 1998; Svanberg & 
Halldórsson, 2013). Prior to this, the high reliance on biomass feedstock that are 
geographically scattered also led to the questions on feedstock supply variations, 
collection and transport cost minimisation and facility location (Miao, Shastri, Grift, 
Hansen & Ting, 2011; Young, Zaretzki, Perdue, Guess & Liu, 2011). 
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Harvest and collection Pre-processing and storage Energy conversion 

 

Figure 2.1: Biomass supply chain 
 

The geographical and climatic conditions could led to differences in managing biomass 
resources. It is also the major challenge in biomass logistics and supply chain 
optimization when the resources are fragmented and when this contradicts with cost 
efficiency and economy of scale (Sultana & Kumar, 2012; Argo et al., 2013). Due to 
socio-economic, political and environmental reason, the geography of biomass in 
Southeast Asia are more fragmented than other continents (Fritz et al., 2015; Lesiv et al., 
2018). This situation could further complicates the biomass logistics management and 
towards sustainable biofuels.  
 

This review provides an overview of biomass logistics studies which can be categorized 
into decision hierarchy; including the strategic, tactical and operational levels. 
Furthermore, to put the geographical differences into context, this review also includes 
specificities of two countries in their development of biomass logistics for biofuel 
productions. First, the United States as the top contributor in this body of research and 
Malaysia as the typical Southeast Asian country with fragmented resources.  
 

2.2 Review  
 

2.2.1 Levels of biomass logistics studies 
 

Biomass logistics studies could be based on various biomass, localities, scale of study 
and biofuel products. However, these studies shared a common role which is to provide 
information for decision-making. Since biomass to biofuel production requires a series 
of interlinked decisions, we can distinguish the vast body of literature into levels of 
decision that encompasses strategic, tactical and operational planning. 

Farms 

Forest 

Mills 

Transportation 

Intermediate facilities 

Transportation 

Biorefinery 
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2.2.1.1 Strategic level 
 

Strategic decisions are decisions that span over long-term time horizons. In cellulosic 
based biofuels value chain, the high reliance on biomass feedstock requires decision 
makers to carefully assess the opportunities and cost of adopting the biomass and to 
capture its dynamics along with the technology and investment involved. The focus of 
these decisions is to ensure that the value chain is establish in a sustainable and 
economical way. 
 

i. Securing feedstock supply 

Before venturing into a cellulosic biofuel project, one must understand its local biomass. 
This would require knowledge about the cost and quantity of the feedstock at the desired 
locations. In this regard, biomass logistics cost assessments are keys to determine 
economic feasibility and energy potential in the area (Singh, Panesar, & Sharma, 2008; 
Kinoshita, Inoue, Iwao, Kagemoto & Yamagata, 2009; Mahmoudi, Sowlati & 
Sokhansanj, 2009; Mateos & Edeso, 2017). When presented with alternative biomass, it 
is important to recognize the differences among them and in preparing the biomass; the 
economics and associated impacts of a feedstock is pivotal to the biorefinery 
sustainability. Such studies could assist the decision maker to distinguish based on their 
priority, be it of financial or environmental performance or both. For instance, Huang, 
Ramaswamy, Al-Dajani, Tschirner & Cairncross (2009) found that the chemical 
composition of the feedstock determined the amount of ethanol production, among the 
four alternatives; aspen wood could produce highest amount of ethanol and excess 
electricity while incurring least water loss but corn stover could produce the cheapest 
ethanol; switchgrass and hybrid poplar are the in-betweens. Using mathematical 
programming model, Egbendewe-Mondzozo, Swinton, Izaurralde, Manowitz, & Zhang 
(2011) simulate the economics and environmental impacts of biomass production. They 
found that feedstocks from agri-waste have negative impacts on soil quality and increase 
GHG emissions while perennial grass although more costly they create positive 
environmental outcomes. Other similar studies also found the nuances between 
alternative biomass and their relative impact in biofuel production (Noon & Daly, 
1996; Tembo, Epplin, & Huhnke, 2003; Kumar, Cameron, & Flynn, 2005; Lu, Withers, 
Seifkar, Field, Barrett & Herzog, 2015). 
 

The spatial variations of the feedstock land cover are geographically unique. In these 
circumstances, biofuel investors need to determine the choices of supply zone while 
fulfilling their desired fuel capacity and demand. Frombo, Minciardi, Robba, Rosso & 
Sacile (2009) developed a decision support system with GIS that categorized forest 
biomass into categories of elevation in non-reserved area, account the collection cost and 
supplies variation to various plant size and investment at a designated location. These 
combinations of factors determined the suitable plant size and specified the area for 
feedstock supplies. Thomas, Bond & Hiscock (2013) estimated the amount of feedstock 
and energy potentials within 25km and 40 km to provide information to policy makers 
on renewable energy related decisions such as constraints on transportation distances, 
resource utilization and industry supports. The associated transport distance of the supply 
zone is an important insight towards sustainability of an energy value chain because it is 
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the key cost element and major source of GHG emission. Such studies often involved 
GIS application which allows inclusion and organization of related spatial features such 
as land cover types, tortuosity factor, elevations and connectivity into the simulation 
(Ghilardi, Guerrero & Masera, 2007; Rørstad, Trømborg, Bergseng & Solberg, 2010; 
Sahoo, Mani, Das & Bettinger, 2018). 

 
 
To cope with inconsistent feedstock supply such as biomass seasonality, researchers tried 
to implement multi-feedstock sourcing strategy. Several studies had found that compared 
to single feedstock supplies, the average supply distance could be reduced and has 
significant cost-saving on transportation in addition capital cost is spread thinner and 
warehousing need is also lower (Rentizelas, Tatsiopoulos & Tolis, 2009; Maung et al., 
2013; Ascenso, D’Amore, Carvalho, & Bezzo, 2018). 
 

ii. Facility location and capacity optimization 

Feedstock supply cost is the key input cost in a biorefinery. This cost component is hinge 
on the availability and geographical distribution of the biomass over the biorefinery 
lifetime of 20 to 30 years (Stephen et al., 2010).  This strategic decision is very much 
dependent on the accessibility to the input material that includes logistical operations and 
transportation to a location which the final feedstock delivered cost can be derived. The 
cost of the feedstock supplies differs according to the quantity of supplies; hence it will 
also determine the plant size and its associated capital investment. This situation requires 
cost optimization to find the balance between economy of scale from biorefinery capacity 
and diseconomy of scale from expanding sourcing distance. For instance, Noon, Zhan & 
Graham (2002) developed a GIS model to present maps of varying feedstock cost for a 
number of potential locations. This allowed decision maker to visualize the locations and 
biomass areas that are feasible for biofuel plants. A GIS tool that is commonly used in 
such studies is continuous cost surface also known as Euclidean distance, researchers 
could include the local road network and differentiate the associated transport cost on 
different kind of access (on-road and off-road) for identification of the most suitable 
plant location (Möller & Nielsen, 2007; Nepal, Contreras, Lhotka& Stainback, 2014). 
This tool operates in raster format where the map data are in pixel cells. Other approach 
in this setting includes resource density measurement, for example Laasasenaho, Lensu, 
Lauhanen & Rintala (2019) categorize the density of forest biomass to locate biofuel 
facility in the core supply zone. Vector tool such as route optimization are also applicable, 
it aims to minimize transport distances and travel time, the energy potentials and 
locations are then summarized in the form of points, lines and polygons (Khachatryan, 
Jessup & Casavant, 2009; Laasasenaho, Lensu, Lauhanen & Rintala, 2019). A similar 
study was also performed with GIS and included a decision ranking tool to rate and 
shortlist the choices of candidate locations based on biomass density, elevation and 
logistical and transportation cost (Rodríguez, Gauthier-Maradei & Escalante, 2017).  
 

More factors could be included in deciding the plant location and capacity. Among 
options of plant locations, factors that affect biomass availability are included to find the 
best biorefinery plant size. Sahoo, Mani, Das & Bettinger (2018) concerned on impacts 
of residues removal rate and developed a predictive model that includes elevation, 
weather, soil type and crop management practice of corn and wheat to find sustainable 
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capacity for numbers of biorefinery locations in Ohio, United States. Logistical 
operations would also affect feedstock cost and affect the feasible quantities of supplies 
and plant size. Stephen et al. (2010) explored the uncertainties of biomass productivity 
along with several options of logistical configuration to find optimal distance and range 
of input capacity that could mitigate this supply risk. Policy measures could also affect 
the choice of locations and capacity. In the case of Sweden, ideal plant location is 
affected due to carbon tax from the feedstock transportation altering the optimum cost 
and supplies (Leduc et al., 2010). 
 

iii. Supply chain network configuration 

Supply chain network involves decisions of multiple facilities that includes structuring 
flow of materials and configuration of distribution channel. Since supply chain risk are 
mostly associated with operational parameters (e.g. distribution and inventory 
management, supply and demand variability, transportation schedule), the tactical and 
operational planning became precursor in strategic planning (e.g. number, size and 
location of facilities) of supply chain network (Borghesi and Gaudenze, 2012; Yue, You 
& Snyder, 2014; Ho et al., 2015).  
 

Fundamentally, supply chain network configuration is to allocate and optimize resource 
use through logistic network that consists of biomass sourcing area planning, 
determining transportation mode and distance; and allocate the supplies to an optimized 
number of facilities, locations and capacity that encompass warehouses, intermediate 
processing plants and biorefineries (Gonzales & Searcy, 2017; Morato, Vaezi & Kumar, 
2019). One of the methods is to simulate and find optimal mix of feedstock via multiple 
biomass sourcing and blending technology to increase total output and minimize supply 
uncertainty and logistics cost of the supply chain network (Roni, Thompson & Hartley, 
2019). Supply chain that involved large area and scale of production often involved 
intricate distribution network from source to end users, optimization model that includes 
multi-modal transportation and availability of infrastructure could also optimize the 
supply chain by identifying cost-minimizing routes and combination of transport 
channels (EkşioğLu, Li, Zhang, Sokhansanj & Petrolia, 2010; Jeong, Karim, Sieverding 
& Stone, 2021).  
 

Other than economic sustainability, environmental sustainability is essential in designing 
biofuel supply chain. Environmental assessment is included in the network 
configurations studies to suggest improvement to the supply chain. The most used 
indicator is greenhouse gas (GHG) emissions, other indicators include impacts to the 
ecosystem such as land use change and water footprint (You & Wang, 2011; Kanzian, 
Kühmaier, & Erber, 2016; Khoo, Eufrasio-Espinosa, Koh, Sharratt & Isoni, 2019). 
Furthermore, network design also includes robustness analysis to deal with supply chain 
related uncertainties such as fluctuations of market demand, seasonal feedstock supply 
or major disruptions (You & Wang, 2011; Maheshwari, Singla & Shastri, 2017; Ascenso, 
D’Amore, Carvalho, & Bezzo, 2018; Sy, Ubando, Aviso, & Tan, 2018; Khoo, Eufrasio-
Espinosa, Koh, Sharratt & Isoni, 2019). The purpose is to minimize the negative effects 
from disruptive events through risk identification and assessment followed by measures 
to monitor and control the risks. 
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2.2.1.2 Tactical and operational level 
 

Tactical decisions focus on execution planning for medium-term deployment. 
Operational decisions focus on day-to-day tasks and problems. The common decisions 
in operational level include scheduling of biomass harvesting, collection and transport 
demand while tactical management focus on selecting processing methods and 
technologies for harvest and collection, storage, pre-treatment, transport mode, inventory 
management and coordination of these operations for production of feedstocks and 
biofuels.  
 

i. Processing method selection and scheduling for harvesting, storage and 
pre-treatment  

Other than transportation, logistic operations between biomass source to biorefinery 
includes harvest and collection, storage, and pre-treatment. Managers need to decide the 
suitable equipment, machineries and the capacity for these operations. The level of these 
decisions are between strategic and tactical planning. Some are unchanged and some 
need to be restructured according to harvesting seasons given the climatic conditions, 
weather, yield composition, suppliers feedback and other relevant info. Timing the 
harvest and collection of biomass, scheduling of workforce and subsequent operations 
are also critical to reduce dry matter loss and minimize the supply chain costs. 
 

To plan the harvesting operation, the manager can determine the demand and cost of 
harvesting equipment and storage by using yearly number of harvesting days and 
differences in days between harvesting season (McCullough & Judd, 2012; Aguayo, 
Sarin., Cundiff, Comer & Clark, 2017). To minimize the logistics cost, it is essential to 
compare between the alternative harvesting and storage method (Spinelli, Ward, & 
Owende, 2009; Yu, Larson, English, & Gao, 2011; Brue, Darr, Bergman & Webster, 
2015; Sun et al., 2017). Both of these functions can achieve cost-savings through 
densification of biomass, prevention of material loss and degradation. Furthermore, 
accounting the GHG emission is also crucial to ensure sustainability of the supply chain 
since energy demand of harvesting machinery and equipment are substantial (Zhang, 
Johnson & Wang, 2015). 
 

The pre-treatment process aims to produce standardized semi-finished feedstock with 
required quality prior to energy conversion at biorefinery. The process involved size 
reduction, densification or compaction and drying of biomass (Annevelink et al., 2017). 
The pre-treated biomass could increase cost efficiency by prolonging the biomass shelf 
life and having higher density thus increasing payload during transportation (Lin et al., 
2016). To decide between alternative pre-treatment technology, other than cost and 
technical efficiency, the manager also need to take into account other operational 
limitations such as storage capacity, weather condition and equipment maintenance to 
ensure quality and timeliness of feedstock supplies (Cundiff & Grisso, 2008; Flisberg, 
Frisk & Rönnqvist, 2012). 
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ii. Transportation planning and scheduling 

Tactical and operational decisions in biomass transportation generally involve transport 
mode selection, route optimization and scheduling. The biomass can be move by means 
of truck, train, pipeline and barge or combination of the above. The selection of 
transportation modes are subject to the availability of infrastructure. The selection 
process involve cost and carbon accounting of the transport mode, biomass demand, 
distance, weather condition or seasonality and timeliness (Kumar, Cameron, J & Flynn, 
2005; Jappinen, Korpinen & Ranta, 2013; Jäppinen, Korpinen & Ranta, 2014; Xie, 
Huang & Eksioglu, 2014; Balaman, Matopoulos, Wright & Scott, 2016; Zhang, Johnson 
& Wang, 2016).  
 

In the daily operations, large fleet of trucks is required to deliver biomass from source to 
terminal or plants. To organize this demand, the manager need to find optimal route to 
minimize transport distance and cost (Gracia, Velázquez-Martí & Estornell, 2014), 
schedule the transport demands (Han & Murphy, 2012; An, 2019) and foresee 
uncertainties like traffic congestions (Bai, Hwang, Kang & Ouyang, 2011; Jouzdani & 
Fathian, 2016). Other factors such as road conditions (Jäppinen, Korpinen & Ranta, 
2011) and tortuosity factor (Sultana & Kumar, 2014) were also examined to improve 
accuracy of the simulation for decision making support.  
 

iii. Inventory control 

Inventories in biofuel supply chain are biomass feedstock stored in facilities to ensure 
fulfilment of all year-round biofuels demand. The sufficient amount of inventory is a 
tactical decision dealing mainly with seasonal biomass availability and variations of 
biofuel demands. Since biomass feedstock can be perishable and semi-finished goods, 
the decision-making process involved determining inventory level within multi-stage 
productions with multi-period supply variations. For instance, Gharaei, Pasandideh & 
Arshadi Khamseh (2017) demonstrated a decision support model that fulfilled these 
criteria using mathematical algorithms to account the stochastic constraints and achieved 
integrated objective function. Others situation involved more specified inventory 
management scenarios. Larson, Yu, English, Jensen, Gao & Wang (2015) examined the 
factors determining storage losses for switchgrass-to-ethanol supply chain and found that 
amount of dry matter depreciated with time and delivery distance; they coped this with 
last in, first out method and coordination of delivery schedule and locations. Akhtari, 
Sowlati, Siller-Benitez & Roeser (2019) found that inventory management is also key to 
sustainability of biomass supply chain because from operational perspective it incurred 
cost and emissions from biomass preparation with machineries and transportations. They 
examined two inventory systems i.e. order-up-to-level and fixed order quantity and 
found that the first system has better cost and emissions performance. 
 

iv. Master Production Planning  

Master production planning involves simultaneously making tactical decisions for multi-
stage process in the biomass-to-biofuel supply chain. The decisions would involve 
production schedule, work force requirement, inventory level and biofuel demand 
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forecast while considering the production capacities and potential uncertainties. Dunnett, 
Adjiman & Shah (2007) using state-task-network approach to modelled the monthly 
tasks and supply variations for creation of biomass delivery operation schedule and 
anticipate inventory requirement, this led to 5 to 25% cost savings for 20MW bioenergy 
supply. Awudu & Zhang (2013) tested two simulation models to cope with biofuel 
supply chain production planning in uncertainties of biofuel demand and price, their 
scenario analysis showed that application of stochastic model generated more profit than 
the deterministic model. Sharma, Ingalls, Jones, Huhnke & Khanchi (2013) focused on 
uncertainties from weather condition to schedule field harvest operation and chose 
biomass storage method to optimize cost of biomass supply chain.  
 

2.2.2 GIS application in biomass logistics and supply chain 
 

GIS methodology plays a vital role in the field of biomass logistics and supply chain 
management. Its robust capabilities in collecting, storing, analysing, and visualizing 
spatial data make it a powerful tool for gaining insights, aiding decision-making, and 
facilitating planning processes. Within the realm of biomass logistics and supply chain, 
GIS methodology has been successfully utilized to address critical decisions, including 
assessing biomass availability, optimizing transport distances, identifying suitable 
facility locations, and managing the supply chain. 
 

Several noteworthy application examples highlight the versatility of GIS methodology, 
allowing for the incorporation of key concerns and attributes within the local context. 
For instance, Zambelli et al. (2012) conducted a study in Italy, considering different 
forest residue harvesting techniques to estimate the amount of biomass that could be 
harvested in a specific forest area. They employed open-source GIS software, such as 
GRASS, PostgreSQL, and PostGIS, utilizing the raster setting to account for important 
parameters like topography, road conditions, and wood biomass yield. Similarly, 
Gonzales and Searcy (2017) conducted a study in Texas, USA, where they examined the 
impact of biomass accessibility on the feasibility of biorefineries. Using a raster-based 
algorithm, they measured the proximity of biomass to roads and railroads, identifying 
biomass distribution centroids and estimating the number of biorefineries and hubs that 
could be located in the region.  
 

Recognizing the significance of geographical distribution and biomass variations, as well 
as the presence of constraints, some studies focused on optimizing transport and supply 
chain scenarios. Woo, Acuna, Moroni, Taskhiri & Turner (2018) integrated socio-
economic and environmental criteria into the ArcGIS software's raster setting. They 
delineated areas suitable for building biomass plants, considering factors such as 
excluding preserved areas and creating buffer zones. Additionally, they employed the p-
median location-allocation method to optimize transport routes and minimize biomass 
supply chain costs for siting biomass plants. 
 

As this review of GIS applications in the biomass logistics and supply chain field 
demonstrates, the raster setting is more commonly used compared to the vector 
alternative. The distinction between these settings lies in their data structure and 



 

20 

representation. The raster setting's suitability for handling large-scale analyses and 
incorporating diverse parameters makes it particularly advantageous in this context. 
 

Raster and vector models  
 
The difference between raster and vector settings stems from their data structures and 
the way they represent spatial information. 
 

In a raster setting, data is organized into a grid of cells or pixels, where each cell 
represents a specific area and contains a value or attribute. This data structure is well-
suited for continuous or regularly sampled phenomena, such as elevation or temperature 
data. Raster data is represented as a matrix of rows and columns, and each cell's value 
represents a measurement or characteristic of the spatial phenomenon at that location. 
This structure allows for efficient storage and analysis of large-scale data sets, as well as 
the ability to perform operations like interpolation and overlay analysis (Lloyd,2010; 
Longley, Goodchild, Maguire & Rhind, 2005). 
 

On the other hand, in a vector setting, spatial features are represented as individual points, 
lines, or polygons. Each feature has its own set of attributes, and the relationships 
between features can be defined through topology. This refers to the spatial relationships 
and connectivity between geographic features. It defines how features are related to each 
other based on their geometry and position in space. Vector data is based on geometric 
elements such as points (representing discrete locations), lines (representing linear 
features), and polygons (representing areas). This data structure is suitable for 
representing discrete or non-continuous phenomena, such as roads, buildings, or 
administrative boundaries. Vector data allows for precise spatial representation and 
analysis, including operations like buffering, intersection, and network analysis 
(Lloyd,2010; Longley, Goodchild, Maguire & Rhind, 2005). 
 

Raster data is often used when dealing with continuous phenomena that can be measured 
or sampled at regular intervals, such as elevation or satellite imagery (Bernal, Stephens, 
Collins, & Battles, 2022). Vector data, on the other hand, is commonly used for 
representing discrete objects or features with precise boundaries and attributes, such as 
road networks or land parcels.  
 

In comparison, the raster and vector data have the following advantages and 
disadvantages over one another (Lloyd,2010; Longley, Goodchild, Maguire & Rhind, 
2005; Neteler & Mitasova, 2013). 
 

Advantages of Raster Data: 
 

1. Continuous Representation: Raster data provides a continuous representation of 
spatial phenomena, allowing for the analysis of phenomena that vary smoothly 
across space, such as elevation or temperature. This makes raster data suitable 
for modeling and analyzing continuous processes. 
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2. Efficient Storage: Raster data can be stored efficiently using grid-based 
structures, where each cell contains a value. This makes it easier to handle and 
manage large datasets, especially when dealing with extensive spatial coverages 
or high-resolution imagery. 

3. Spatial Analysis: Raster data enables various spatial analysis techniques, such 
as interpolation, overlay analysis, and proximity analysis. These operations are 
well-suited for raster data because they can be performed on a cell-by-cell basis, 
allowing for the derivation of new information from the original data. 

 

Disadvantages of Raster Data: 
 

1. Loss of Detail: Raster data, by its nature, represents spatial features as a 
collection of cells. This can result in a loss of detail, particularly when 
representing complex geometric shapes or capturing fine-scale features. Raster 
data may not accurately represent sharp boundaries or intricate shapes. 

2. Large Data Size: Raster data can consume significant storage space, especially 
at high resolutions or when working with large study areas. This can pose 
challenges in terms of data storage, processing speed, and data transfer, 
particularly in resource-constrained environments. 

3. Generalization: Raster data is typically aggregated at a certain resolution or cell 
size, which requires generalization of the original spatial information. This can 
lead to a loss of precision and introduce uncertainties, especially when 
analyzing data with varying spatial scales. 

 

Advantages of Vector Data: 
 

1. Precise Representation: Vector data provides a precise representation of spatial 
features with distinct boundaries and attributes. It can accurately represent 
points, lines, and polygons, making it suitable for capturing discrete objects like 
buildings, roads, and administrative boundaries. 

2. Topological Relationships: Vector data allows for the establishment of 
topological relationships between spatial features, enabling advanced spatial 
analysis operations such as network analysis, connectivity analysis, and 
geometric operations like buffering and intersection. 

3. Compact Data Size: Vector data tends to have a smaller file size compared to 
raster data, as it only stores the geometric coordinates and attributes of 
individual features. This makes it easier to manage, transfer, and store data, 
particularly when dealing with datasets that primarily consist of discrete 
features. 
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Disadvantages of Vector Data: 
 

1. Discrete Representation: Vector data represents spatial features as individual 
points, lines, or polygons, which may not be suitable for representing 
continuous phenomena or data that varies smoothly across space. It may require 
additional processing or interpolation to analyse and model continuous 
processes accurately. 

2. Complex Geometries: Vector data can become more complex when dealing 
with intricate geometric shapes, such as irregular boundaries or overlapping 
features. Handling and processing such complex geometries can be 
computationally intensive and may require specialized algorithms or tools. 

3. Limited Analysis Techniques: Some spatial analysis techniques, such as surface 
analysis or modeling continuous phenomena, are more challenging to perform 
directly on vector data. Additional steps, such as converting vector data to raster 
format, may be required to enable certain types of analysis. 

 

When deciding between the raster and vector setting, it becomes apparent that the raster 
setting offers greater flexibility in designing algorithms that are suitable for specific 
situations, particularly when dealing with large study areas. This flexibility has been 
demonstrated in various studies focusing on biomass logistics and supply chain, where 
different algorithms and methods, such as k-medoid data mining, weighted overlay, and 
least-cost path analysis, have been employed (Kaundinya, Balachandra, Ravindranath & 
Ashok, 2013; Lozano-García, Santibañez-Aguilar, Lozano & Flores-Tlacuahuac, 2020; 
Panichelli & Gnansounou, 2008). Additionally, heuristically designed algorithms have 
been utilized, this shows that the raster model allows for customization based on specific 
criteria and situations (Gonzales & Searcy, 2017). 
 

Furthermore, a hybrid approach has been identified, where the vector sector is initially 
employed to capture map features and serve as a data layer before converting the analysis 
into the raster setting. Furthermore, higher resolution setting can be set in raster model 
to maintain the precision in representation and computations (Jappinen, Korpinen & 
Ranta, 2013). This hybrid procedure minimizes data loss while enabling analysis over 
large study areas and facilitating iterative processes, such as the continuous cost surface 
method commonly utilized in biomass supply chain studies (Fiorese & Guariso, 2010; 
Möller & Nielsen, 2007; Zhang, Johnson & Sutherland, 2011). 
 

By considering these approaches, researchers could leverage the advantages of the raster 
setting, such as its flexibility and ability to handle large spatial datasets, while also 
incorporating vector data to preserve important map features. This combination of 
techniques ensures more accurate and comprehensive analyses in the context of biomass 
logistics and supply chain management. 
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2.2.3 Geographical differences in biomass logistics study: case of U.S and 
Malaysia  

 

2.2.3.1 Genesis and development of the industrial practices in the U.S  
 

In the literatures of cellulosic biomass logistics for biofuel production, a dominating 
majority of the studies is led by the United States. The publications from the U.S. alone 
in the last four decades are more than one-third globally (Figure 2.2). This suggest that 
the epistemology of this subject area is more developed and comprehensive in the U.S. 
Hence, this section seeks to understand the development of cellulosic biomass logistics 
and supply chain for biofuel using U.S based publications. 
 

 
Notes: This bibliography collection is from SCOPUS database, based on search query in Annex A. Analytics 
tool: biblioshiny for bibliometrix (Aria & Cuccurullo, 2017). 
(In the field of cellulosic biomass logistics and supply chain for biofuel. U.S. alone consists of 39% of total 
worldwide publications.) 
 
Figure 2.2: Scientific publications by country 
(Source: This study)  
 

Due to the development of first-generation biofuel, large scale cereal crops production 
was used to produce biofuel in the U.S. This led to resource competition with food 
production and environmental issues like land use change and conservation, raising 
concerns on food security and sustainability (Pimentel et al., 2009). To cope this with 
more sustainable approach, in the late 90s biofuels’ interest started to switch to cellulosic 
based resources. This switch involved new feedstock cultivation of perennial grass and 
biomass sourcing from crop residuals.  
 

In the late 90s and 2000s, a series of effort was focusing on biomass economics by 
determining production cost and supply structure of cellulosic feedstock from various 
sources such as wood residuals, straws, corn stover and cultivation of switchgrass 
(Downing & Graham, 1993; Downing & Graham, 1996; Walshi, Ugarte, Slinsky, 
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Graham & Ray, 1998; Graham, English & Noon, 2000; Perlack & Turhollow, 2003; 
Banowetz, Boateng, Steiner, Griffith, Sethi, & El-Nashaar, 2008; Sanderson, & Adler, 
2008). Other than finding out cost of producing biomass feedstock, researchers also seek 
to understand and portrayed the variations of feedstock costs and supplies with 
geographical distribution, soil and climatic conditions, yields, availability and scale of 
processing facility in their region and subregions (Walshi, Ugarte, Slinsky, Graham & 
Ray, 1998; Noon, Zhan, & Graham, 2002; English, Ugarte, Walsh, Hellwinkel, & 
Menard, 2006; Di Virgilio, Monti, & Venturi, 2007; Walsh, 2008; Scheffran & BenDor, 
2009). A switch of resource development and application might create new externalities 
to the environment and current crop practice. Hence, assessments were performed to 
foresee the possible impacts. For example, Lal (2009) collated and compared data of crop 
residues removal and impacts on soil properties, he found that crop residuals removal 
has negative impacts on soil quality in all climates. He also concluded that cultivation of 
perennial grass on marginal and degraded soils could restore the land and that these grass 
are the better option as biofuel feedstock. Meanwhile, others studied the environmental 
impacts of crop residues extraction and explored the sustainable rate of crop residues 
removal and ecological management (Cruse & Herndl, 2009; Newman, Kaleita & Laflen, 
2010; Wilhelm et al., 2010; Meki et al., 2011; Nafziger, 2011).  
 

One of the advantage from cultivation of perennial grass is that it can overcome seasonal 
supply of other biomass (Golecha & Gan, 2016a). Other than evaluating production cost 
and quantities of perennial grass (Epplin, 1996; Turhollow & Sokhansanj, 2007; Khanna, 
Dhungana & Clifton-Brown, 2008; Larson, Yu, English, Mooney & Wang, 2010), the 
development also involved research on management of farmers’ participation such as 
their willingness to plant and contracts arrangement (Caldas et al., 2014; Golecha & Gan, 
2016b; Fewell, Bergtold & Williams, 2016). Furthermore, feedstock production 
inevitably involved harvest and collection operations as well as transportation and 
storage; this led to logistics simulation models (Kumar & Sokhansanj, 2007; Larson, Yu, 
English, Mooney & Wang, 2010; Ebadian, Sowlati, Sokhansanj, Stumborg & Townley-
Smith, 2011; Yu, Larson, English & Gao, 2011) and development of harvesting 
machinery and methods (Sanderson, Egg & Wiselogel, 1997; Thorsell, Epplin, Huhnke 
& Taliaferro, 2004; Shastri, Hansen, Rodriguez & Ting, 2010; Mathanker & 
Hansen,2013; Brue, Darr, Bergman & Webster, 2015; Tsapekos et al., 2017) that 
specifically focused on the cellulosic biomass.  
 

In the late 2000s, more focus transitioned to economic feasibility of cellulosic biofuel. 
This involved costs identification and evaluation that encompass feedstock supplies, 
capital investment, biofuel production and energy conversion efficiency (Kwiatkowski, 
McAloon, Taylor & Johnston, 2006; Morrow, 2006; Shapouri & Salassi, 2006; Perrin, 
Fretes & Sesmero, 2009). Comparisons of biofuel production were also made between 
applications of alternative feedstock (Vadas, Barnett & Undersander, 2008; Huang, 
Ramaswamy, Al-Dajani, Tschirner & Cairncross, 2009) and conversion technologies 
(Woodson & Jablonowski, 2008; Tiffany, Morey & De Kam, 2009; Anex et al., 2010), 
to find the most viable deployment settings and move towards commercialized 
production (Chandel, Singh, Chandrasekhar, Rao, & Narasu, 2010). At the same time, 
the dynamics between feedstock supplies and biorefinery scale effects, its associated 
impacts and limitations were also explored (Gallagher, Brubaker & Shapouri, 2005; Fike, 
Parrish, Alwang & Cundiff, 2007; Huang, H.-J., Ramaswamy, Al-Dajani, Tschirner & 
Cairncross, 2009).  
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In the last decade, the body of research in cellulosic biofuel logistics and supply chain 
management was proliferated. The number of publications spiked since 2011 and 
maintained more than 450 publications per year (Figure 2.3). These publications had 
evolved into industrial practices in management and operations of biomass and biofuel 
productions. In the initial stage, it involved making decisions simultaneously on 
biorefinery or facility location, and associate biomass supply with plant capacity. 
Subsequently, the focus moved towards more comprehensive supply chain planning, the 
concept of “Regional Biomass Processing Depots” (RBPDs) (Eranki, Bals & Dale, 2011) 
were introduced. This is a supply chain concept proposed to overcome limitations of 
biomass feedstock such as low bulk density, variation in composition and seasonal 
supplies. The “RBPDs” refers to the network of strategically located facilities that 
procure, densified and produce standardized intermediate biofuel products. The 
publications during this period developed more advanced simulation and programming 
methods that aimed to optimize in ways that are more refined and at the same time 
encompassing multi-level and networks in the biomass the supply chain. Burgeoning 
author’s keywords such as “artificial neural network”, multi-criteria decision making”, 
“multi-objective optimisation”, and “geographic information system” in the niche 
quadrant of the research themes between year 2011 to 2020 shows the computation 
models deployed for this development (Figure 2.4). 
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Notes: This bibliography collection is from SCOPUS database, based on search query in Annex A. Analytics tool: biblioshiny for bibliometrix (Aria & Cuccurullo, 2017) 
Figure 2.3: Annual production of publications in the field of cellulosic biomass logistics and supply chain for biofuel 
(Source: This study) 
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Notes: The bibliography used here is from author’s refined collection, targeted publications in U.S based cellulosic biomass logistics and supply chain for biofuel. The dataset is a subset 
from collection based on query in Annex A. 
Analytics tool: biblioshiny for bibliometrix (Aria & Cuccurullo, 2017). 
Interpretation: (1) Motor theme: high centrality and density, indicates developed and essential area of research; (2) Basic theme: high density but low centrality, indicates themes that 
are general; (3) Niche theme: high centrality but low density, indicates developed and specialized research field; (4) Emerging or declining theme: low centrality and density, indicates 
either new or fading research fields (Aria & Cuccurullo, 2017; Cobo, Jürgens, Herrero-Solana, Martínez & Herrera-Viedma, 2018). 
Figure 2.4: Thematic Evolution by Author’s Keyword  
(During year 2011 to 2020, various programming and simulation methods for biomass supply chain optimization were 
developed shown by the niche quadrant. This indicates that biomass supply chain models in the U.S. had become more 
sophisticated, refined and comprehensive. Source: This study) 
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2.2.3.2 Development of lignocellulosic biomass to biofuel in Malaysia 
 

Interest on biomass to biofuel had been growing in Malaysia since last decade. 
Researchers are increasing the awareness and showing potentials of biomass valorization 
in Malaysia for biofuel production (Shuit, Tan, Lee & Kamaruddin, 2009; Goh & Lee, 
2011; Asari, Suratman & Jaafar, 201; Aditiya, et al., 2016).  
 

With tropical climate and as one of the world’s top producer of palm oil, lignocellulosic 
biomass in the country has high primary productivity and with various agronomy crops; 
biomass availability here is perceived as abundance (Mekhilef, Saidur, Safari & Mustaffa, 
2011; Ratnasingam, Ramasamy, Wai, Senin & Muttiah, 2015; Shafie, 2016; Yatim, Lin, 
Lam & Choy, 2017). Majority of the attentions are surrounding on oil palm biomass as 
the most abundant resource. To date, majority of the research effort are focusing on 
developing conversion and processing technology using palm-based biomass. For 
example, identification and comparison of efficient parameters and catalysts for 
biochemical (Chin, H’ng, Wong, Tey & Paridah, 2010; Yamada et al.,2010; Chin, H’ng, 
Wong, Tey & Paridah, 2011) and thermochemical (Guangul, Sulaiman & Raghavan, 
2012; Abnisa, Arami-Niya, Daud & Sahu, 2013; Abnisa, Arami-Niya, Wan Daud, Sahu 
& Noor, 2013; Chiew & Shimada, 2013; Ayodele & Cheng, 2016; Pogaku, Hardinge, 
Vuthaluru & Amir, 2016; Chan, Quitain, Yusup, Uemura, Sasaki, & Kida, 2018) energy 
conversion pathways and various pre-treatment technology (Shamsuddin & Liew, 2009; 
Aziz, Morad, Wambeck & Shah, 2011; Chin et al., 2013a; Chin et al., 2013b; Rizal et 
al., 2018) using palm-based biomasses.  
 

The palm oil industry produced a variety of biomass wastes. Biomass generated from the 
plantations are oil palm frond (OPF) and oil palm trunk (OPT). OPF were pruned during 
harvesting and both the OPF and OPT are available during tree felling for replantation. 
Based on Loh (2017), the yield of OPF and OPT are 10.4 and 74.48 tonnes per hectare 
respectively. For the planted area in Peninsular Malaysia year 2018 - 2.73 million 
hectares (Department of Agriculture Malaysia, 2019; Department of Statistics Malaysia, 
2021), there would be 28.4 million tonnes of OPF and 203 million tonnes of OPT 
available. After deducting 50% to leave in the field for soil nutrient maintenance (Onoja, 
Chandren, Abdul Razak, Mahat, & Wahab, 2019), the total palm biomass from field 
would be 115.7 million tonnes. 
 

The harvest – fresh fruit bunch (FFB) would be processed in the palm oil refinery; it 
consists of 21% of palm oil and 7% of palm kernel. Twenty-eight percent from the FFB 
are liquid waste - palm oil mill effluent (POME). The remaining 44% are solid biomass 
wastes including 23% of empty fruit bunch (EFB), 6% of palm kernel shell (PKS) and 
15% of mesocarp or palm pressed fibre (PPF) (Husain, Zainac, & Abdullah, 2002). In 
year 2018, Peninsular Malaysia produced 47.6 milion tonnes of FFB (Department of 
Agriculture Malaysia, 2019; Department of Statistics Malaysia, 2021) and this would 
yield 20.9 million tonnes of solid oil palm biomass. Together with biomass wastes from 
the field,s for the year 2018 alone the oil palm industry produced a staggering 136.6 
million tonnes of lignocellulosic biomass wastes.  
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The existing practices of handling palm biomass in most cases are left in or return to the 
plantation for soil maintenance, mulching, and incineration for energy for the milling 
process (Khalil, Jawaid, Hassan, Paridah & Zaidon, 2012; Onoja, Chandren, Abdul 
Razak, Mahat & Wahab, 2019). With the biomasses ready on-site, palm oil refineries 
can generate energy more than what they required and sell the extra to national grid 
(Lacrosse & Shakya, 2004; Hossain & Jalil, 2017). For instance, palm mesocarp fiber 
and palm kernel shells are combusted since they are drier and smaller in size (Salleh et 
al., 2020). After these applications, the palm oil industry would still have plenty of 
biomass pending to dispose or valorize (Poh, Wu, Lam, Poon & Lim, 2020).  
 

Among which, EFB are relative more bulky with higher moisture and left behind in large 
quantities. The EFB presented disposable problems to the industry, it requires further 
processing before an intended application. For example, EFB are not favoured for 
mulching since it requires backhauling cost to plantations and also will caused nitrogen 
loss in soil while leaving it at site would lead to sludge leachate pollutions and risks of 
combustions (Poh, Wu, Lam, Poon & Lim, 2020; Salleh et al., 2020). Due to this, EFB 
is the most abundant resource and it received the most attention in biomass to biofuel 
studies. A number of works focused on application of EFB alone, including processing 
system and parameters for energy, chemical and material productions (Chiew, Iwata & 
Shimada, 2011; Langé & Pellegrini, 2013; Zahraee, Golroudbary, Shiwakoti, 
Stasinopoulos & Kraslawski, 2020; Karunakaran, Abd-Talib & Kelly Yong 2020), solid 
biofuels (Faizal, Jusoh, Rahman, Syahrullail & Latiff, 2016; Sukiran, Kheang, Bakar & 
May, 2011; Pua, Subari, Ean & Krishnan, 2020; Kamal Baharin et al., 2020) and liquid 
biofuels (Sukiran, Loh & Bakar, 2018; Lau, Muhammad Syafiq, Nasuha Yahya & Abdul 
Rasid, 2019). 
 

Other than biomass processing, biomass logistics play a pivotal role in biomass to biofuel 
supply chain. However, biomass logistics studies are very limited in Malaysia. Only a 
handful of studies address this issue. A series of rice straw logistics models were 
developed, these studies focused on the tactical and operational level (Mahlia, Masjuki 
& Chong, 2013; Shafie, Masjuki & Mahlia, 2014; Shafie, 2016). Tan et al. (2018) 
included spatial model for biomass logistic cost in biofuel production, however the 
contextual difference such as fragmented landscape in Malaysia was ignored and applied 
a distance threshold from the U.S. which is based on large field size and high centrality 
landscape. Profitable biofuel value chain design that included biomass logistics costs 
based on EFB was demonstrated by Abdulrazik, Elsholkami, Elkamel & Simon (2017) 
and Chiew, Iwata & Shimada (2011) using integrated system with palm oil refinery. 
These successful examples are encouraging however due to their specificity of study area, 
capacity and single-biomass-based, it does not paint the bigger picture whereby the high 
spatial fragmentation, unique geographical distribution and characteristics variation of 
biomasses in Malaysia would lead to high variability in feedstock cost. A number of 
research highlighted logistics as an issue to the biomass to biofuel industry, and the cost 
variability in biomass sourcing is a major challenge (Goh & Lee, 2011; Onoja, Chandren, 
Abdul Razak, Mahat & Wahab, 2019; Salleh et al., 2020). Mohd Idris, Leduc, 
Yowargana, Hashim & Kraxner (2021) included various biomasses in Malaysia with 
spatial model to also compute logistics cost for bioenergy productions, but the study 
focused only on fulfilling policy targets in amount of renewable energy and carbon credit 
without looking at economic feasibility. To the best knowledge of the author, no one 
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address the issue of landscape fragmentation in relation to strategic views in biomass 
logistics and economics. 
 

2.3 Discussion and Conclusion 
 

This literature review first categorized the biomass logistics studies into level of decision 
and management hierarchy. This is followed by chronically review studies within 
pioneering country – U.S. and the subject country of the thesis – Malaysia.  
 

We found that in the three decades of biomass logistics development in the U.S., majority 
of the focus transition from resource economics (biomass supply costs, zonings and 
categorisation of biomass supply areas), development of supply chain design and 
network to the recent burgeoning mathematical programming and simulations of 
logistics and supply chain operations and optimization. This transitions encompass first 
understanding the effects of biomass application in terms of economics and 
environmental impacts before further planning and optimization of the value chain.  
 

Malaysia development in lignocellulosic based biofuel is around one decade, majority of 
the studies were developing conversion technology and systems that could suit local 
climate and biomass. This is important as one of the foundation to biofuel development. 
The biomass logistics and economics are as important as we witnessed from the U.S., 
however the perceived resource abundance in the country led to overlook in this aspects. 
Availability does not permit accessibility, the landscape fragmentation in Malaysia 
would affect biomass supplies differently and hence impacting the feasibility of biofuel 
productions. 
 

Furthermore, we observed that other than centrality of land use in the U.S., the crop 
residues in the country are relatively homogenous in size with existing large-scale 
mechanized logistics operations. For example, switchgrass and corn stover. Although 
these biomass supplies were hampered by seasonality, the associated landscape centrality 
and highly mechanized practices could yield efficiency in biomass logistics. Conversely, 
Malaysia enjoys all year round production of biomass but we foresee bottlenecks in 
logistics operations since the flagship biomasses are from oil palm industry and the 
industry is still relying significantly on importation of labour (Crowley, 2020). 
Furthermore, the palm-based biomasses come in varieties of size and form, the needs to 
process variety of biomasses will also requires various efforts and investments in 
research and development. This further highlights the crucial need to first understand the 
local biomass economics and their feasibility for sustainable biofuel, which is viable 
through biomass logistics studies; before expanding substantive investment into diverse 
alternatives resources. 
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CHAPTER 3 
 

3 DESIGNING GIS MODEL FOR BIOMASS TRANSPORT COST IN 
PENINSULAR MALAYSIA 1,2 

 

Chapter overview: 
 
This chapter develop biomass transportation model using GRASS GIS software. The 
model consists of fine resolution raster workspace in view of landscape fragmentation in 
the study area. Ten major biomass and several multi-biomass scenarios were explored to 
illustrate their biomass transport cost curves. On top of least-cost locations identification, 
their cost and supply variations were also presented. 
 

This chapter integrates the following two articles by restructuring the content of both 
papers, removing repetition to avoid excessive length and reshaping the content to fit 
into the thesis structure.  
 
1 Ong, C. L., Babin, J., Chen, J. T., & Liew, K. (2016). Designing model for biomass 
transport cost of biofuel refinery in Malaysia. Proceeding of the Burapha University 
International Conferences 2016, 610–621. Retrieved from 
www.buuconference.buu.ac.th 
2 Ong, C., Deprés, G., Hollebecq, J.-E., Shaiffudin Hishamudin, M. O., Kamaruddin, N., 
Anugerah, A. R., … Roda, J.-M. (2020). Quantifying the effect of landscape structure on 
transport costs for biorefinery of agricultural and forestry wastes in Malaysia. GCB 
Bioenergy, 12(11), 910–922. https://doi.org/10.1111/gcbb.12740 
 

The original published article is reproduced in Appendix A and Appendix D. 
 

3.1 Introduction 
 

Biofuels is expected to become the major alternative energy to replace fossil energy 
sources (Demirbas, 2008). Their renewability and sustainability insure some 
environmental and sociological services such as energy security, rural areas development 
and a lower greenhouse gases emission. These environmental considerations added to 
the current variability of the oil price leads to an increased interest by the industries, such 
as the aviation industry.  
 

Southeast Asia including Malaysia is having the fastest growing demand for biofuel, 
although the expansion of new crops is very limited in the region (Roda et al., 2015). In 
Malaysia, there are abundance of biomass waste (Tye, 2011), it is estimated that around 
168 million tons of biomass are annually wasted (Roda et al., 2015). The availability of 
these resources can be valorize for biofuel production.  
 



 

32 

Numerous studies have highlighted the significant impact of logistic variables such as 
transportation, collection, and storage on the economic feasibility of biofuel production 
(Iakovou, Karagiannidis, Vlachos, Toka & Malamakis, 2010). The transportation of 
biomass, in particular, constitutes a major portion of the production cost due to its heavy 
reliance on feedstock (Caputo, Palumbo, Pelagagge & Scacchia, 2005; Kudakasseril 
Kurian, Raveendran Nair, Hussain & Vijaya Raghavan, 2013; Reeb, Hays, Venditti, 
Gonzalez & Kelley, 2014). Cost variations in delivering biomass to the facility are 
substantial and directly impact total cost of biofuel productions (Allen, Browne, Hunter, 
Boyd, & Palmer, 1998; Kumar, Sokhansanj & Flynn, 2006). This predicament poses a 
challenge for biofuel refineries, as the pursuit of economies of scale to reduce production 
costs necessitates larger quantities of feedstock, leading to increased transportation 
expenses (Leboreiro & Hilaly, 2011). Therefore, it is crucial to minimize transportation 
costs by strategically locating biorefineries to optimize feedstock sources in terms of cost 
and quantity. 
 

Nevertheless, in Malaysia the complexities arise and affect the accessibilities when 
spatial structure of the resources differs greatly in terms of centrality and dispersion 
(Rodrigue Comtois & Slack, 2013) as well as residues production density. To be able to 
take these factors into account, it was found that GIS (Geospatial Information System) 
modelling is pertinent to such conundrum and had been used in many related studies. 
These GIS applications were addressing subjects such as biomass availability 
assessments (Ranta, 2005; Batzias, Sidiras & Spyrou, 2005; Kinoshita, Inoue, Iwao, 
Kagemoto & Yamagata, 2009; Viana, Cohen, Lopes & Aranha, 2010), location and cost 
analysis (Panichelli & Gnansounou, 2008), biomass potentials and environmental impact 
(Fiorese & Guariso, 2010) and impact of topography features to transportation cost 
(Sultana & Kumar, 2014). Furthermore, there are spatial models specially proposed for 
processing facilities network design (Kim, Realff, Lee, Whittaker, & Furtner, 2011), 
logistics cost evaluation (Graham, English & Noon, 2000; Larson Yu, English, Mooney 
& Wang, 2010) and decision support system (Voivontas, Assimacopoulos & Koukios, 
2001) of bioenergy plant establishment. 
 

Existing studies based in Malaysia are very limited and only founded on selected 
feedstock and smaller study area (Reeb, Hays, Venditti, Gonzalez & Kelley, 2014; Shafie 
Masjuki & Mahlia, 2014). To address the lack of information and aiming at minimize 
the major cost component for biofuel industry in Malaysia, this section would assess the 
geo-location factor and availability of biomass wastes within the region to develop the 
transport cost model for biorefineries. 
 

3.2 Material and methods 
 

Peninsular Malaysia is an example of Southeast Asia landscape, with an intricate mosaic 
of land uses, and contrasted elevations. It comprises 13 million hectares of landmass. We 
used GRASS GIS (Neteler et al., 2012 & GRASS development Team, 2018) open-source 
software on a 64GB RAM and 12-core computing station. The workspace was a 10870 
by 10822 cells raster (West 99.40538; East 456.987285311424; South 
4.95295466447834; North 4.95295466447834), where a pixel is approximately 0.4 
hectare (63 x 63 meters). We obtained the land use layers from the Department of 
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Agriculture Malaysia (2010). Our work considers distances, quantities of biomass, 
landscape patterns, and costs. The procedures applied are programs in GRASS such as 
the continuous cost surface method using “r.cost” and map calculator “r.mapcalc”. 
Figure 3.1 shows the simplified steps in the simulation and computation process for 
estimations of biomass supply cost in Peninsular Malaysia. 
 

 

Figure 3.1: Simplified methodology framework for Biomass Supply Cost 
 

3.2.1 Transport network calibration 
 

Prior to the distance computation, the modelling first started with simulating the 
movement on the roads and off-roads in GRASS GIS workspace. 
 

i. Road calibration 

To account travel distance on the paved road, the distance of crossing one pixel of the 
surface was calculated. GRASS continuous cost surface procedure “r.cost” (Greenberg 
et al., 2011) tool was used to compute a “friction” coefficient. In the map workspace, 
thirty-two sets of coordinates were randomly selected to measure their distance and cell 
counts (Figure 3.2). In addition, the “knight move” option was applied to account the 
diagonal distance of crossing a pixel. This application improved the accuracy of distance 
whereby the movements were calculated in 16 directions instead of only 8 directions 
(Figure 3.3). However, the diagonal distance is longer than the straight-line distance of 
crossing one cell hence resulting error in the cell counts. To fix this, Equation 3.1 was 
applied as bias correction in the values of cell count.  
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Figure 3.2: Cumulative distance calculated between two coordinates with “r.cost” 
procedure 
 

 

Figure 3.3: Possible directions to go from one point to another  
(– diagonal, vertical or mixed of vertical and horizontal and an example of knight move 
moving from the centre to point “K”) 
 

Equation 3.1 Bias adjustment for diagonal movement 
 

𝐵𝑖𝑎𝑠 = 	 !√#$%#
%&

 =1.1     (3.1) 
 

Next, a statistical correlation was performed between the adjusted cell counts and 
distances of the coordinates. The result indicated that there are 0.0696 kilometres in one 
pixel (Figure 3.4). The coefficient of determination (R-squared) showed that the data 
fitted very well and the value of standard error is almost zero. Every pixel appeared to 
be very similar and were not distorted by the shape of the Earth. This coefficient could 
be applied to the paved road.  
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Coefficient 0.069622 
R2 0.999451 
Standard 
error 0.000502 

Coef. min 0.069120 
Coef. max 0.070123 

 

Figure 3.4: Statistical correlation of distances, function of cell counts 
 

ii. Off-road calibration  

To enter the location of cropland and forest in the reality, there are routes that are 
unpaved. Unlike the road network, these off-road cannot be treated the same because of 
its tortuosity and roughness.  
 

There were four steps taken in calibrating the off-road  
 

a. Acquire map area of a typical forest massif without roads 

b. Measure the straight-line or also known as crow-flight distance and travel 
distance from point of road to point inside the forest massif (Figure 3.5). 

 

The chosen off-road area is the biggest area of forest massif in Malaysia located in natural 
park or “Taman Negara”. The distance from a point of road (red) to a point inside the 
forest massif with forest track (blue) were collected using Google maps. Ninety-six sets 
of point were collected to have a good approximation.  
 

This approach imagined that to enter the forest massif, the driver must travel on the same 
road until the closest forest track could be found. This way of capturing the higher 
“friction” traveling on the unpaved road is a good representation of the reality. 
 

c. Perform statistical correlation between forest tracks distances of Google Map 
over the straight-line distances (Figure 3.6) 
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As shown, the standard deviation is much higher than the statistical correlation of road 
calibration previously. The reason is due to the diversity of forest tracks. For example, 
some of the tracks were newly established for luxury hotel and some are old and obsolete. 
  

d. Multiply the tortuosity coefficient with the road calibration coefficient to 
represent unpaved road “friction” (Equation 3.2) 

 

Equation 3.2 shows the distance to cross each pixel of off-road is 0.145km. This is more 
than double of the paved road coefficient. 
 

 

Figure 3.5: Forest massif of Taman Negara from Google Map  
 

 

Coefficient 2.084998 
R2 0.905326 
Standard 
error 0.939568 

Coef. min 1.145431 
Coef. max 3.024566 

 

Figure 3.6: Linear regression on forest tracks length function of straight line 
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Equation 3.2 Friction coefficient for off-road 
 

Off-road friction cost =2.85*0.07=0.145km    (3.2) 
 

3.2.2 Transport costs 
 

An effective driving network was obtained from the Malaysia-Singapore association of 
drivers (Malsingmaps, 2015) and a friction map was created using the coefficient 
calibrated previously (Figure 3.7). Any location could be a candidate site for 
biorefineries. To simplified, the possibilities was narrowed down to the vicinity of 89 
capitals of Peninsular Malaysia districts (Annex B). The transportation distance maps of 
the 89 locations was generated with “r.cost” procedure. As an example (Figure 3.8), the 
city of Kuala Lumpur was set as the destination and the remaining pixels contained 
continuous values of distance to reach the pixel of the city. 
 

 
Summary of Friction coefficient  

Friction Coefficient SE df R2 
Paved-road friction 0.07km/pixel 0.0005 31 0.9989 
Off-road tortuosity 2.085km of track/km of crow-flight 0.94 95 0.8188 
Off-road friction 2.085*0.07=0.145km/pixel 

 

 
Figure 3.7: Friction map of Peninsular Malaysia 
 

Off-road 
 

 Road 
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Figure 3.8: Distance map to Kuala Lumpur from anywhere within the peninsula 
using “r.cost” procedure 
 

Using another another GRASS procedure “r.mapcalc” (Mitasova et al., 1995), the 
Malaysian trucking costs equations were applied to the distance maps. These equations 
give the trucking cost as a function of transportation distance and tonnage of the truck 
(Table 3.1; Roda et al., 2012) which we obtained the transport cost maps as illustrated in 
Figure 3.9. In Figure 3.9, the darker colour is farther and more expensive, but the 
heterogeneity of the transport network plays a role too; where there is no transportation 
network the colour is very dark, and where there are various roads, the colour is lighter.  
 

Table 3.1: Trucking cost equation of 4 sizes in Peninsular Malaysia. 
Truck size (tonnes) Trucking cost linear equation 

1 MYR/tonne = distance (km) x 1.88657771 + 132.004442 
3 MYR/tonne = distance (km) x 0.672738734 + 69.0615618 

10 
26 

MYR/tonne = distance (km) x 0.258860505 + 49.3286760 
MYR/tonne = distance (km) x 0.193541212 + 39.5358461 

Notes: The linear equations are fitted from data collected from logistic companies in Malaysia.  
(Source: Roda et al., 2012.) 
 

 

Distance (km) 

Town/city 
(Kuala Lumpur) 
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Figure 3.9: This illustrative raster shows what would be the cost to reach any pixel 
from a given point (here cost for 1-tonne truck) 
 

3.2.3 Feedstock quantification  
 

We separated feedstocks into primary sources and secondary sources of lignocellulosic 
biomass (Seixas, 2008).  The primary sources are the harvesting biomass potentially 
available on the field. These biomasses are forest logging wastes, rubberwood logging 
wastes, oil palm fronds, oil palm trunks, and rice straw (Figure 3.9). The secondary 
sources are processing residues potentially available at mills (Figure 3.10). These 
biomasses are rice husk, sawmill and plywood mill waste, empty fruit bunches, and palm 
pressed fibre. We used the quantities of biomass published for Peninsular Malaysia 
(Roda et al., 2015, see Table 3.2). To explore the quantities of feedstock available per 
area in a raster workspace, we created a variable “biomass yield”. For the primary 
sources, the national average quantity per pixel was quantified. For the secondary sources, 
the same was applied into average quantity available per mill, or per pixel representing 
such mill. Table 3.3 shows the steps to derive these values. Malaysia is an equatorial 
country with limited seasonality. Except for rice which is harvested twice a year, all 
feedstocks are produced all year long. To simplify, we consider only annual production. 
 

Table 3.2: Biomass wastes availability in Peninsular Malaysia 

Lignocellulosic biomass wastes 
Total biomass availability (1) Local biomass yield 

Min Max Tonne/hectare/year 
(fresh) Million tonne/year (fresh) 

Primary sources   
Forest logging waste 1.83 2.65 0.44 
Oil palm frond  7.12  2.68 
Oil palm trunk  17.80  6.7 
Rice straw 2.83 4.96 16.45 
Rubberwood logging waste 0.20 0.70 0.64 
Secondary sources   Tonne/mill/year (fresh) 
Rice husk 0.51 0.67 65,555.56 
Empty fruit bunch  9.40  95,918.37 
Palm pressed fibre  5.70  58,163.27 
Plywood mill waste 0.17 2.49 2,871.75 
Saw mill waste 0.97 1.16 840.61 

(Source : Roda et.al., 2015) 
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Table 3.3: Equations used to quantify biomass waste yield to tonne/pixel/year 
 Equations Unit 

Step 1 Area per pixel 
= Total land use area of biomass / Total pixel cells of biomass ha/pixel 

Step 2 Average annual waste yield per hectare 
= Average of annual waste available / Total land use area of biomass Tonne/ha/year 

Step 3 Biomass availability 
=Average annual waste yield per area × Area of biomass per pixel Tonne/pixel/year 

 

  

  

Figure 3.10: Land cover of biomass from primary sources 
 

Forest Rubber 

Palm oil Paddy 
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Figure 3.11: Distribution of mill locations for biomass from secondary biomass 
sources 
 

3.2.4 Biomass transport simulation and least-cost location 
 

Transportation of biomass was obtained through the multiplication of transport cost maps 
with waste density maps. This procedure simulates the truck delivery of biomass 
contained in each pixel to the potential biorefinery location. Each pixel of the new map 
contained the biomass transport cost from that pixel to the biorefinery location in 
MYR/pixel. The sum of the values of each pixel under a given biomass category provides 
the total biomass transport cost to one specific location. With the GRASS procedure “r. 
report” (Mitasova et al., 1995), the total biomass transport cost of each biomass to each 
district was computed. For each biomass, the district with the lowest total transport cost 
(see Table 3.4) was identified as the best possible biorefinery mill location, and we 
named it “least-cost location”. Several biomasses coming from the same crop (such as 
rice biomasses or palm biomasses) share the same least-cost location (Figure 3.12). We 
also created different sourcing scenarios based on the least-cost locations as illustrated 
in the latter sections.  
 

Palm oil mills Plywood mills 

Rice mills Sawmills 
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Table 3.4: Total transport cost in ascending order (case of 1-tonne-truck) 
Ranking Forest logging waste Total transport cost 

(RM) Oil palm frond Total transport cost 
(RM) Oil palm trunk Total transport cost 

(RM) 
1 Gua Musang, Kelantan 1,042,514,763 Jempol, Negeri Sembilan 4,072,279,119 Jempol, Negeri Sembilan 10,180,697,799 
2 Lipis, Pahang 1,048,420,803 Bera, Pahang 4,143,731,418 Bera, Pahang 10,320,090,069 
3 Jerantut, Pahang 1,090,309,514 Temerloh, Pahang 4,186,932,473 Temerloh, Pahang 10,430,357,193 
⑊ ⑊ ⑊ ⑊ ⑊ ⑊ ⑊ 

87 Pontian, Johor 2,090,830,721 Pokok Sena, Kedah 9,402,601,341 Pokok Sena, Kedah 23,456,500,807 
88 Kota Tinggi, Johor 2,149,584,684 Padang Terap, Kedah 9,482,998,990 Padang Terap, Kedah 23,656,786,718 
89 Johor Bahru, Johor 2,165,627,892 Perlis 9,902,194,132 Perlis 24,702,372,594 

Ranking Rice straw Total transport cost 
(RM) Empty fruit bunch Total transport cost 

(RM) Palm pressed fibre Total transport cost 
(RM) 

1 Yan, Kedah_ 1,212,928,564 Jempol, Negeri Sembilan 5,373,412,589 Jempol, Negeri Sembilan 3,258,345,932 
2 Seberang Perai Utara, 

Penang 
1,227,147,677 Bera, Pahang 5,398,346,896 Bera, Pahang 3,273,465,671 

3 Pendang, Kedah 1,241,641,075 Temerloh, Pahang 5,418,060,413 Temerloh, Pahang 3,285,419,612 
⑊ ⑊ ⑊ ⑊ ⑊ ⑊ ⑊ 

87 Kulaijaya, Johor 4,479,608,814 Pokok Sena, Kedah 12,087,712,875 Pokok Sena, Kedah 7,329,783,339 
88 Johor Bahru, Johor 4,623,433,712 Padang Terap, Kedah 12,194,286,079 Padang Terap, Kedah 7,394,407,516 
89 Kota Tinggi, Johor 4,678,043,332 Perlis 12,745,053,599 Perlis 7,728,383,565 

Ranking Rice husk Total transport cost 
(RM) Plywood mill waste Total transport cost 

(RM) Saw mill waste Total transport cost 
(RM) 

1 Yan, Kedah_ 268,784,075 Kuala Lumpur, Federal 
Territories 

100,886,601 Kuala Lumpur, Federal 
Territories 

607,529,150 

2 Pendang, Kedah 271,325,716 Hulu Langat, Selangor 101,884,580 Hulu Selangor, Selangor 608,607,806 
3 Seberang Perai Utara, 

Penang 
271,732,695 Hulu Selangor, Selangor 102,057,176 Hulu Langat, Selangor 611,892,750 

⑊ ⑊ 
 

⑊ ⑊ ⑊ ⑊ 
87 Kulaijaya, Johor 783,390,741 Pokok Sena, Kedah 189,427,625 Pokok Sena, Kedah 1,067,451,840 
88 Johor Bahru, Johor 805,652,631 Padang Terap, Kedah 191,517,999 Padang Terap, Kedah 1,079,253,690 
89 Kota Tinggi, Johor 809,757,498 Perlis 201,113,455 Perlis 1,135,402,308 

Ranking Rubberwood logging 
waste Total transport cost (RM) 

   

1 Bentong, Pahang 133,034,242 
    

2 Hulu Selangor, Selangor 133,079,025 
    

3 Raub, Pahang 133,105,952 
    

⑊ ⑊ ⑊ 
    

87 Kulaijaya, Johor 226,718,869 
    

88 Johor Bahru, Johor 236,413,097 
    

89 Kota Tinggi, Johor 237,544,760 
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Figure 3.12: Land use, amount of biomass by districts and least-cost locations in 
Peninsular Malaysia 
 

3.2.5 Simulated-data extraction and computation of biomass transport cost  
 

We created zonal maps based on general transport cost maps of each least-cost location 
using the GRASS procedure “r.reclass” and each zone categorised by intervals of 
MYR50. The areas without biomass were nullified with the GRASS procedure “r.null” 

 
a 

 

b 

 
c 

 

d 

 
Fig Least-cost location for Name of district 
3.11a Forest logging waste Gua Musang, Kelantan (Black flag nb 1). 
3.11a Plywood mill waste, Saw dust Kuala Lumpur, Federal territory (Black flag nb 2). 
3.11b EFB, OPF, OPT, PPF Jempol, Negeri Sembilan (Black flag nb 3). 
3.11c Rice husk, rice straw Yan, Kedah (Black flag nb 4). 
3.11d Rubber logging waste Bentong, Pahang (Black flag nb 5). 

Maps prepared using C&D Online ARTICQUE 
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and only areas with biomass were accounted. With the GRASS procedure “r.univar” and 
the zonal map as input, we extracted the sum of biomass transport cost and the sum of 
biomass tonnage within each zone. An illustrative example of this procedure is presented 
in Figure 3.13. These data were then calculated with Equation 3.3. 
 

Equation 3.3 
 
𝐵𝑖𝑜𝑚𝑎𝑠𝑠	𝑠𝑢𝑝𝑝𝑙𝑦	𝑐𝑜𝑠𝑡	',) 	/𝑀𝑌𝑅 𝑓𝑟𝑒𝑠ℎ	𝑡𝑜𝑛𝑛𝑒8 9 = 	∑ 	(	 )*+!

*,--./0!
1
23% 	)	  (3.3) 

 
where,   
L denotes the location of the biorefinery 
B denotes the types of biomass waste 
z denotes the number of the zone 
BTC denotes biomass transport cost of each zone 
Tonnage denotes the amount of biomass waste in each zone 
 

The cost was converted from MYR into USD at the rate of 3.94 MYR/USD (Accountant 
General’s Department of Malaysia, 2016). The marginal cost curves of the best potential 
mill location for each biomass category, using 1-tonne trucks and 26-tonne trucks, are 
established and used in the discussion. 
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Figure 3.13: Illustrative example of data extraction - procedures of zonal map and 
statistical data computation 
 

3.3 Result and discussion 
 

3.3.1 Heterogeneity of lignocellulosic biomass supply cost and structure 
 

From the least cost locations identified (Figure 3.12), we also obtained the biomass 
supply cost structure. At each least-cost location, the biorefinery could maximize the 
supply quantity of the biomass and minimize the supply distance and cost. Each biomass 
has their own unique cost structure which were driven by the spatial structure and 
biomass yield. In Table 3.5, the supply costs at maximum availability were ranked in 
ascending order within categories of primary sources, secondary sources and multi-
biomass scenarios. 
 

 

 

e) Biomass transport 
cost map of forest 
biomass using 3-tonne 
truck to Gua Musang 

d) Transport cost map 
for 3-tonne truck to Gua 
Musang 
 

c) Forest biomass yield 
map  
 

Transport cost 

(MYR/tonne) 

b) Zonal map of transport cost for 3-
tonne truck to Gua Musang which 
include only forest area 

a) Reclassified transport 
cost map of 3-tonne truck 
to Gua Musang 

Gua Musang 

(i) As shown in (a), each zone has interval of 50 MYR/tonne. Each pixel contains the transport cost per 
tonne to go to the designated town/city.  
(ii) In (b), all pixels in grey were not accounted since these are not forest area. This map was used as a 
filter to extract the data from non-null cell/non-grey pixels that are relevant to collection of biomass.  
(iii) Statistic data of map (c), (d), (e) were calculated and extracted by zones in the form of .csv files. This 
is done by r.univar in GRASS. 
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Table 3.5: Supply cost to transport 100% of biomass residues in Peninsular 
Malaysia to optimal location for each truck size 

Biomass Optimal locations Average 
availability 

1 
tonne 
truck 

3 
tonne 
truck 

10 
tonne 
truck 

26 
tonne 
truck 

Primary sources Million fresh 
tonne/year USD/fresh tonne 

Rice straw Yan, Kedah 3.88 110.09 44.88 23.09 17.94 
Oil palm frond (OPF) Jempol, Negeri Sembilan 7.12 146.34 57.81 28.07 21.66 
Oil palm trunk (OPT) 17.80 146.34 57.81 28.07 21.66 
Forest logging residues Gua Musang, Kelantan 2.22 147.27 58.14 28.19 21.76 
Rubberwood logging 
residues 

Bentong, Pahang 0.45 356.76 132.85 56.94 43.25 

Secondary sources 
Rice husk Yan, Kedah 0.59 134.85 53.71 26.49 20.48 
Empty fruit bunch 
(EFB) 

Jempol, Negeri Sembilan 9.40 146.26 57.78 28.06 21.66 

Palm pressed fibre 
(PPF) 

5.70 146.26 57.78 28.06 21.66 

Plywood mill residues Kuala Lumpur, Federal 
Territory 

1.33 151.75 59.74 28.81 22.22 
Saw mill residues 1.06 160.33 62.80 29.99 23.10 
Multi-biomass scenarios 
Paddy (Rice straw & 
rice husk) 

Yan, Kedah 4.47 119.80 48.35 24.42 18.94 

Palm oil (OPF, OPT, 
EFB, PPF) 

Jempol, Negeri Sembilan 40.02 146.32 57.80 28.06 21.66 

5 primary biomasses 
(Rice straw, OPF, OPT, 
forest & rubber logging 
residues) 

Temerloh, Pahang 30.11 164.06 64.13 30.50 23.48 

 

3.3.1.1 Ample biomass supplies from only two crops 
 

It appears that in Peninsular Malaysia, there are two significant biomass for biorefinery. 
One is rice straw – it is the cheapest biomass but the supply is limited. Secondly, biomass 
from palm oil industry offer significant quantities but at moderate cost. Refer to Table 
3.5, among the primary and secondary wastes; with 1-tonne-truck, rice straw can supply 
at 110 USD/fresh tonne to Yan, Kedah but the availability is capped at 3.88 million fresh 
tonne annually. Palm-based biomass are abundant and shared the same least-cost location 
at Jempol, Negeri Sembilan. Namely the OPT, OPF, EFB and PPF cost 146 USD/fresh 
tonne at 1-tonne-truck supply at total supplies of 17.8, 7.12, 9.4 and 5.7 million fresh 
tonnes respectively. 
 

Other biomass supplies are significantly lower in quantity. Forest logging residues can 
supply about 2 million tonnes per year at cost (147 USD/fresh tonne with 1-tonne-truck) 
slightly higher than palm-based biomass to Gua Musang, Kelantan. Other resources have 
negligible availability. For example, rice husk although came with quite competitive cost 
(135 USD/fresh tonne with 1-tonne-truck) among others, the supplies is only 0.59 million 
tonne per year. Similarly for rubberwood residues with only 0.45 million fresh tonne 
annually but with very expensive cost (357 USD/fresh tonne with 1-tonne-truck) 
although to its optimal location – Bentong, Pahang; due to its highly dispersed 
geographical structure (see Figure 3.12d). In the case of plywood mill and sawmill 
residues, both have availability around 1 million tonne per year and optimal location at 
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Kuala Lumpur; but the cost (152 & 160 USD/fresh tonne with 1-tonne-truck) were 
relatively higher than biomass with significant supplies like rice straw and the oil palm 
biomasses. 
 

3.3.1.2 Multi-biomass supplies 
 

In multi-biomass scenarios, combination of rice straw and rice husk to Yan, Kedah is the 
cheapest option (120 USD/fresh tonne with 1-tonne truck) among all other scenarios 
except for rice straw supply alone (110 USD/fresh tonne with 1-tonne truck). This 
scenario is incurring higher cost than taking rice straw alone without increasing 
significant quantity at difference of only 0.59 million fresh tonne per year. Combination 
of four palm-based biomass (OPF, OPT, EFB, PPF) to Jempol, Negeri Sembilan have 
same per-tonne unit cost with sourcing of each oil palm biomasses alone. This shows a 
good sourcing strategy as it could increase the supplies to up to 40 million tonnes per 
year. It allows the biorefinery to obtained more feedstock within the same supply radius. 
In the 5-primary biomasses scenario to optimal location at Temerloh, Pahang; the supply 
cost is higher than sourcing of each biomass alone except for rubberwood logging wastes. 
Furthermore, this combination is dominant by oil palm primary wastes where 83% are 
OPF and OPT, 11% of rice straw, 6% of forest logging residues and 1% of rubberwood 
logging wastes. This suggests that the sourcing of different crop to one location in the 
peninsula is not economic efficient. However, the combined sourcing from single crop 
is feasible such as the case of palm oil biomass. 
 

3.3.1.3 Biomass supply cost structure varies according to spatial structure 
 

Figure 3.14 presents the result in the form of supply cost curves. Using 10-tonne-truck 
supply as example, the supply cost structure are significantly heterogenous. This 
indicates the effect of the biomass spatial structure. Due to the impact of spatial structure 
and variations of biomass yield, the economic viability of the biomass varies between 
each other at different level of availability. 
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Figure 3.14: Lignocellulosic biomass supply cost curves (fresh) in Peninsular 
Malaysia with 10-tonne-truck transport to least-cost locations 
 

To see the variations, we present the cost curves again with lower threshold at 5 million 
tonnes limit (Figure 3.15) and presented the cost and supplies at various availability in 
Table 3.6.  
 

 

Figure 3.15: Lignocellulosic biomass in Peninsular Malaysia with 10-tonne-truck 
supply to optimal locations at below 5 million fresh tonnes per year 
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Table 3.6: Lignocellulosic biomass availability and cost to least-cost location in Peninsular Malaysia with 10-tonne-truck 
Ranking 

(ascending) At 2 million fresh tonne/year USD/fresh 
tonne p.a. At 3 million fresh tonne/year USD/tonne 

p.a. At 5 million fresh tonne/year USD/ fresh 
tonne p.a. 

Single source 
1 Rice straw  16.16 OPT  17.12 OPT  18.64 

2 OPT  16.24 Rice straw  18.79 EFB   21.32 

3 EFB   17.49 EFB   18.87 OPF  23.66 

4 OPF  18.64 OPF  20.37 PPF  25.79 

5 PPF  19.27 PPF  21.26 Forest logging residues  N/A 

6 Forest logging residues  26.16 Forest logging residues  N/A Rice straw  N/A 

7 Rubberwood logging residues  N/A Rubberwood logging residues  N/A Rubberwood logging residues  N/A 

8 Rice husk  N/A Rice husk  N/A Rice husk  N/A 

9 Plywood mill  N/A Plywood mill  N/A Plywood mill  N/A 

10 Saw mill  N/A Saw mill  N/A Saw mill  N/A 
Multi-biomass scenario 

1  Palm oil  14.88  Palm oil  15.47  Palm oil  16.40 

2  5 biomasses  16.20  5 biomasses  16.96  5 biomasses  18.24 

3  Paddy  16.72  Paddy  18.11  Paddy  N/A 
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At annual supply of 2 million fresh tonne, rice straw is the cheapest biomass at 16.16 
USD/fresh tonne with 10-tonne-truck, contributed by its relative geographical 
concentration in the north of peninsula and high biomass yield at 16.45 fresh tonne-per-
hectare. Its supply curve increased steadily up to around 2 – 2.5 million tonnes and later 
increased steeply (see Figure 3.15). This is due to the centralised and clustered structure 
of paddy field in the region (see Figure 3.12c), after transporting rice straw in the most 
concentrated and biggest cluster of paddy fields to Yan, Kedah; the truck needed to travel 
substantially more distance to get the resources in other smaller clusters and leading to 
the cost surging steeply. This could be seen at 3 millions fresh tonne availability with 
10-tonne-truck, the rice straw supplies had move past the most optimal area and its cost 
became higher at 18.79 USD /fresh tonne compared to OPT had become the cheapest 
biomass at 17.12 USD/fresh tonne. 
 

The next economic viable resources are biomass from oil palm. At availability more than 
5 million fresh tonnes per year, only biomass from oil palm are available. All the palm-
based biomasses have the same cost curvatures where they increased gradually with 
flatter slope but at different cost level. This is because the oil palm plantations are 
markedly more ubiquitous and abundant than paddy and rubber plantations (see Figure 
3.12); and the palm biomasses also shared the same land cover or least-cost location. 
Although the forest cover is more centralised than the oil palm plantations but due to 
very low biomass yield (0.44 fresh tonne-per-hectare) and higher transport cost on the 
off-roads; the palm-based biomasses incurred less cost than the forest logging wastes. 
For example, at 2 million tonnes supplies per year with 10-tonne-truck; forest logging 
wastes cost 24 USD/fresh tonne while OPT, EFB, OPF and PPF cost only 16.2, 17.5, 
18.6 and 19.3 USD/fresh tonne respectively. Affected by the biomass yield, the cost at 
each level of availability for the four major palm-based biomass differ. The OPT seemed 
to be the cheapest due to its high fresh biomass yield (6.7 fresh tonne-per-hectare), next 
is the EFB (95,918.37 fresh tonne-per-hectare) are very copious from the palm oil mills 
and subsequently the OPF (2.68 fresh tonne-per-hectare) and PPF (58,163.27 fresh 
tonne-per-hectare).  
 

In the multi-biomass scenarios, combination of palm-based biomass appeared as the 
cheapest option compared to all other alternatives as shown in Figure 3.15 and Table 3.6. 
With 10-tonne-truck supply, the costs are 14.9, 15.5 and 16.4 USD/fresh tonne at 2 
million, 3 million and 5 million fresh tonne annual supplies respectively. The underlying 
reason could be due to. That the oil palm produces variety of biomasses and they are 
within the same vicinity. When supply of these resources was grouped, resources are 
denser within the same sourcing radius. This allows more efficient logistics management 
and economy of scale.  
 

However, the case is different with combination of paddy biomasses and 5-primary 
biomasses. From Table 3.6, at 2 million fresh tonnes supply, paddy biomasses cost 0.56 
USD/tonne higher compared to rice straw alone. The cost became cheaper at 3 million 
fresh tonnes supply where the paddy biomasses is 0.99 USD/tonne cheaper than rice 
straw. This change happened after 2.7 million tonnes supplies. It was due to 
disproportionate increase of distances over small increase of biomass supplies from the 
geographical dispersion of resources. At above 2.7 million tonnes, the supplies are from 
farther paddy fields which are smaller and more scattered. Hence, when combined with 
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quantities of rice husk after this level of supplies, it increases the quantities within same 
vicinity and resulted in cheaper cost than rice straw alone.  
 

In the 5-primary biomasses supply scenario, the cost structure is similar to OPT supplies. 
In this scenario, the supply is dominance by OPT and OPF while others resources have 
little impact on the cost structure. Given this situation in Peninsular Malaysia, this 
scenario is inconsequential and negligible compared to scenarios of combination of 
paddy biomasses and palm-based biomasses. 
 

3.4 Conclusion 
 

The study examined the heterogeneity of lignocellulosic biomass supply cost and 
structure in Peninsular Malaysia. The results showed that rice straw and biomass from 
the palm oil industry are the primary sources of biomass for biorefineries. Rice straw is 
the cheapest but has limited availability, while palm-based biomass offers significant 
quantities at a moderate cost. Other biomass sources have lower quantities and higher 
costs. Combining rice straw and rice husk is the cheapest multi-biomass option, while 
combining palm-based biomasses increases the supply without increasing the cost 
significantly. The biomass supply cost structure varies based on the spatial structure and 
biomass yield. Combined oil palm biomasses have lower costs due to their ubiquity and 
substantial quantity. Overall, combining palm-based biomasses appears promising and 
potentially cost-effective strategy. Further research and study should be conducted to 
explore the utilization of various biomass derived from oil palm for multi-feedstock 
biorefineries, aiming to achieve scale economies. However, it is important to 
acknowledge the existing technical barriers arising from differences in the chemical 
composition of these biomasses. By addressing and overcoming these challenges, we can 
unlock the full potential of palm-based biomass and establish it as a viable and efficient 
feedstock for biorefinery operations." 
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CHAPTER 4 
 

4 QUANTIFYING THE EFFECT OF LANDSCAPE STRUCTURE ON 
TRANSPORT COSTS OF AGRICULTURAL AND FORESTRY WASTES IN 

MALAYSIA1 
 

Chapter overview: 
 
This chapter measured the landscape biomass of major biomasses in Peninsular Malaysia. 
Together with other relevant variables, regression analysis was performed to quantify 
their impacts to biomass transport cost. Furthermore, the industrial implications were 
discussed by comparing the biomass transport cost to international biomass pellet price.  
 

The content of this chapter was published in the form of the following peer-reviewed 
articles in indexed Journals:  
 
1 Ong, C., Deprés, G., Hollebecq, J.-E., Shaiffudin Hishamudin, M. O., Kamaruddin, N., 
Anugerah, A. R., … Roda, J.-M. (2020). Quantifying the effect of landscape structure on 
transport costs for biorefinery of agricultural and forestry wastes in Malaysia. GCB 
Bioenergy, 12(11), 910–922. https://doi.org/10.1111/gcbb.12740 
 

The original published article is reproduced in Apendix D. 
 

4.1 Introduction 
 

In biomass resource assessment and logistics studies, an important metric used to 
measure biomass attributes is biomass yield density, typically expressed as tonnes per 
hectare (Golecha & Gan, 2016; Panichelli & Gnansounou, 2008; Van Meerbeek, Muys 
& Hermy, 2019). This metric quantifies the productivity of biomass and serves as input 
data for assessing logistics costs. Additionally, it allows for comparisons between 
choices of biomass to be made and its implication to logistics costs. Research has shown 
that higher biomass yield density is associated with higher logistics costs, while lower 
biomass yield density is associated with lower logistics costs (Maung et al., 2013). 
 

However, it is important to note that these comparisons are typically made within the 
context of homogeneous landscape settings, such as farms where the geographical 
patterns are similar. In the case of Malaysia, biomass features exhibit significant 
variation. Chapter one, Figure 1.4 on categories of global field size, it provides evidence 
that field sizes in Malaysia are predominantly categorized as small and very small, 
indicating high fragmentation. Together, the fragmentation and unique distribution result 
in the heterogeneity of biomass supply costs, as depicted in Chapter 3, Figure 3.14. 
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Furthermore, other apparent differences, such as whether the biomass originates from a 
field or a mill, production density, and the trajectory of transport distances, contribute to 
these variations. While spatial patterns do play a role in biomass supply cost variations, 
they are embedded within the map. Therefore, in this section, our aim is to explicitly 
consider landscape fragmentation as a variable, alongside other factors, in order to 
analyse the dynamics between these different factors and quantify their relationship with 
biomass supply costs. This approach will provide insights into understanding the 
underlying variations and help in managing scenarios specific to Malaysia. To the best 
of the author's knowledge, this is the first time that the metric of landscape pattern has 
been measured to comprehend biomass supply and logistics. Overall, this analysis will 
contribute to a better understanding of biomass supply costs and logistics by 
incorporating landscape fragmentation as a key variable, in addition to exploring other 
factors. 
 

4.2 Data and method 
 

4.2.1 Landscape metric as spatial fragmentation index 
 

The landscape structure is the arrangement of and relations between the parts or elements 
of the land mosaic, and can be described through landscape metrics. To investigate the 
linkages between spatial fragmentation and biomass transport cost, we needed to 
measure the spatial fragmentation (Rodrigue, Comtois & Slack, 2013) of land cover for 
biomass waste in Peninsular Malaysia. Many landscape metrics exist (Haines-Young & 
Chopping, 1996 and Cardille & Turner, 2017). Among these metrics, “edge density”, 
“patch density”, and the “aggregation index” express various aspects of the spatial 
fragmentation, respectively expressed by Equation 4.1, 4.2, and 4.3; in Table 4.1 
(GRASS Development Team, 2019 and McGarigal, 2012). The metrics for each biomass 
category was computed, see Table 4.2. 
 

Table 4.1: Equations of the selected Landscape Metrics 
Equation 4.1: Edge density 

=	
∑ 𝑒!"#
"$%
𝐴 (10000) 

Unit: meters per hectare 
k = patch type. It refers to the disjointed land areas (or patches) of a biomass category.  
n = number of edge segments of patch type k. It counts the pixels that are recognized as the border of the 
patches of a biomass category.  
eik = total edge length (m) in landscape involving patch type k. For a biomass category, k, eik is the sum of 
edge length for all the patches of k.  
A = total landscape area (m2). It refers to the land cover of the study area, in our case, Peninsular Malaysia. 
Equation 4.2 Patch density 

V=	45.678
9

 

=	
𝑁𝑝𝑎𝑡𝑐ℎ
𝐴  

 
Units: Number of patches per square kilometre 
Npatch = number of patches.  
It counts the total number of disjointed land area (or patches) for a biomass category. 
A = sampling area size.  
This refers to our study area – Peninsular Malaysia.  
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Table 4.1: Continued 
Equation 4.3 Aggregation index 
 

=	

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐺2 	−	𝑃2
1	 −	𝑃2

	𝑓𝑜𝑟	𝐺2 ≥ 𝑃2
𝐺2 	−	𝑃2
1	 −	𝑃2

	𝑓𝑜𝑟	𝐺2 < 𝑃2; 	𝑃2 ≥	 .5

𝐺2 	−	𝑃2
0	 −	𝑃2

	𝑓𝑜𝑟	𝐺2 < 𝑃2; 	𝑃2 <	 .5

		 

𝑤𝑖𝑡ℎ	𝐺2 = N
𝑔22

∑ 𝑔2:;
:	3	%

P 

 
Range: -1 ≤ Aggregation index ≤ 1. 
 
gii = number of like adjacencies between pixels of land cover type i. 
gik = number of adjacencies between pixels of land cover types i and k.  
(k = unlike cell adjacencies) 
Each pixel is referred as a function of its neighbours, with neighbour i being a pixel of land cover that 
belongs to the biomass category i, and neighbour k being a pixel of land cover that does not belong to the 
biomass category i. 
 
Pi = proportion of the landscape occupied by land cover type (class) i. 
It is the number of pixels for the land cover of the biomass category i divided by the number of pixels of 
the study area (Peninsular Malaysia). 
 
The procedure was performed in “Fragstats 4.2” software. It uses double-count method, also known 
“Clumpiness index”. 
Interpretation: 
Edge density & Patch density: a higher value indicates a more fragmented spatial structure.  
Aggregation index: The value is expressed in dimensionless unit, from -1 to 1. Approaching to -1 is when 
the land cover type increasing in disaggregation or each patch is more of an isolated pixel away from each 
other. Approaching to 1 is the most is when the land cover type increasing aggregation where the patches 
are more centralized and clustered.  

 

Table 4.2: Spatial fragmentation metrics for biomass in Peninsular Malaysia 
  Spatial fragmentation metrics 

Category of 
wastes Biomass wastes 

Edge 
density 
(m/Ha) 

Patch density  
(Nb of patches per sq 

km) 

Aggregation index 
(procedure 
“Clumpy”) 

From the Field Forest logging wastes  3.2705 0.0064 0.9804 
Oil palm frond (OPF) 6.0825 0.0610 0.9434 
Oil palm trunk (OPT) 6.0825 0.0610 0.9434 
Rice straw  1.1346 0.0341 0.9243 
Rubberwood logging 
wastes  

11.7165 2.1068 0.6407 

From Mills Empty fruit bunch 
(EFB) 

0.2822 0.0034 0.6722 

Palm pressed fibre 
(PPF) 

0.2822 0.0034 0.6722 

EFB & PPF 0.2822 0.0034 0.6722 
Plywood & Saw mill  0.3425 0.0261 0.6757 
Plywood mill  0.2990 0.0097 0.6794 
Rice husk  0.2780 0.0018 0.7169 
Saw dust  0.3364 0.0240 0.6725 

From Both OPF & OPT & EFB & 
PPF 

6.0847 0.0618 0.9434 

Rice straw & husk 1.1349 0.0342 0.9243 
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4.2.2 Regression modelling & variables included   
 

We performed a series of regression analyses to understand how to best describe biomass 
supply costs (variable: Y) at any point of the country, according to different combinations 
(linear and non-linear) of the factors. These factors are; the transportation distance in km 
(X1), the truck size in tonne (X2), the yield of biomass wastes in tonne/ha (X3), the spatial 
fragmentation under the form of edge density of the feedstock in m/ha (X4a), or its patch 
density in number of patches/km2 (X4b), or its aggregation index (X4c), and also the 
categorical origin (X5), of the agricultural or forestry wastes – from field (X5a), mill (X5b) 
or both (X5c). Nineteen models were analysed and compared (see table 4.3). Their 
replicable equations are given in methodological annex (Annex C) under the form of R 
code. These nineteen models are not predictive models which require validation. They 
are descriptive models meant to explore which structure and combination of variables 
best describe the observed biomass transportation cost in Peninsular Malaysia. The best 
way to assess these models is their Akaike information criterion (AIC) and their 
parsimony. However, in the future other research should ideally validate the generality 
of their structures by exploring their behaviour in other countries. 
 

Table 4.3: Evaluation for model selection to describe biomass supply cost 
Group 1: Y = f(X1, X2) 

  Significance Adj. R2 RSE df AIC Model: β1X1 + β2X2 β1X1 β2X2 
M1 p<0.001 p<0.001 0.641 36.95 1218 12274 

 
Group 2: Y = f(X1, ln(X2)) 

 Significance     
Model: β1X1 + β2ln(X2) β1X1 β2ln(X2) Adj. R2 RSE df AIC 
M2 p<0.001 p<0.001 0.667 35.60 1218 12183 

 
 Group 3: Y = f(X1, ln(X2), X3) 

 Significance Adj. 
R2 RSE df AIC Model:  β1X1 β2ln(X2) β3X3 

M3 β1X1 + β2ln(X2) + 
β3X3 

p<0.001 p<0.001 p<0.001 0.682 34.81 1217 12129 

 
 Group 4: Y = f(X1, ln(X2), X4) 

 Significance Adj. R2 RSE df AIC 
Model: β1X1 β2ln(X2) β4X4 
M4a β1X1 + β2ln(X2) + β4X4a p<0.001 p<0.001 p<0.001 0.698 33.89 1217 12063 
M4b β1X1 + β2ln(X2) + β4X4b p<0.001 p<0.001 p<0.001 0.677 35.08 1217 12148 
M4c β1X1 + β2ln(X2) + β4X4c p<0.001 p<0.001 p<0.001 0.856 23.44 1217 11164 

 
Group 5: Y = f(X1, ln(X2), X5) 

 Significance Adj. R2 RSE df AIC Model:  β1X1 β2ln(X2) β0X5 
M5 β0X5 + β1X1 + β2ln(X2) p<0.001 p<0.001 p<0.001 0.896 19.86 1215 10762 

 
Group 6: Y = f(X1, ln(X2), X3, X4) 

 Significance Adj. 
R2 RSE df AIC Model:  β1X1 β2ln(X2) β3X3 β4X4 

M6a β1X1 + β2ln(X2) 
+ β3X3 + β4X4a p<0.001 p<0.001 p<0.001 p<0.001 0.729 32.11 1216 11933 

M6b β1X1 + β2ln(X2) 
+ β3X3 + β4X4b p<0.001 p<0.001 p<0.001 p<0.001 0.694 34.11 1216 12080 

M6c β1X1 + β2ln(X2) 
+ β3X3 + β4X4c p<0.001 p<0.001 p<0.001 p<0.001 0.865 22.69 1216 11085 
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Table 4.3: Continued 
Group 7: Y = f(X1, ln(X2), X3, X4, X5) 

 Significance Adj. 
R2 RSE df AIC Model:  β1X1 β2ln(X2) β3X3 β4X4 β0X5 

M7a 
β0X5 + β1X1 + 

β2ln(X2) + β3X3 
+ β4X4a 

p<0.001 p<0.001 ns p<0.001 p<0.001 0.898 19.70 1213 10744 

M7b 
β0X5 + β1X1 + 

β2ln(X2) + β3X3 
β4X4b 

p<0.001 p<0.001 ns p<0.01 p<0.001 0.897 19.82 1213 10758 

M7c 
β0X5 + β1X1 + 

β2ln(X2) + β3X3 
β4X4c 

p<0.001 p<0.001 ns p<0.05 p<0.001 0.897 19.83 1213 10760 

 
  Group 8: Y = f(X1, ln(X2), ln(X3), X4, X5 ) 

 Significance Adj. 
R2 RSE df AIC Model: β1X1 β2ln(X2) β3ln(X3)    β4X4 β0X5 

M8a 

β0X5 + 
β1X1 + 

β2ln(X2) 
+ β3 

ln(X3) + 
β4X4a 

p<0.001 p<0.001 ns p<0.001 p<0.001 0.898 19.69 1213 10743 

M8b 

β0X5 + 
β1X1 + 

β2ln(X2) 
+ β3 

ln(X3) + 
β4X4b 

p<0.001 p<0.001 p<0.1 p<0.05 p<0.001 0.897 19.79 1213 10754 

M8c 

β0X5 + 
β1X1 + 

β2ln(X2) 
+ β3 

ln(X3) + 
β4X4c 

p<0.001 p<0.001 p<0.05 p<0.05 p<0.001 0.897 19.80 1213 10756 

 
  Group 9: Y = f(X1 , ln(X2)  , X4   , X5) 

 Significance Adj. 
R2 RSE df AIC Model: β1X1 β2ln(X2) β4X4 β0X5 

M9a β0X5 + β1X1 + 
β2ln(X2) + β4X4a  p<0.001 p<0.001 p<0.001 p<0.001 0.898 19.69 1214 10742 

M9b β0X5 + β1X1 + 
β2ln(X2) + β4X4b  

p<0.001 p<0.001 p<0.01 p<0.001 0.897 19.81 1214 10756 

M9c β0X5 + β1X1 + 
β2ln(X2) + β4X4c  p<0.001 p<0.001 p<0.05 p<0.001 0.897 19.83 1214 10759 

 

4.3 Result 
 

The first category of models (M1, M2, M3, M4a, M4b, M4c, M6a, M6b & M6c) presents 
low adjusted coefficients of determination below 0.87, and relative standard errors above 
22. None of them has simultaneously all the factors (distance, truck size, waste yield, 
fragmentation, and origin of wastes) in their structure. This suggests that all of these 
factors have their critical importance in the determination of the supply costs and should 
be included in the models. 
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The second category of models (M5, M7a, M7b, M7c, M8a, M8b, M8c, M9a, M9b & 
M9c) presents higher coefficients of determination and lower relative standard errors. 
But a number of them are less robust, with non-significant parameters (M7a, M7b, M7c, 
& M8a), or with less significant parameters (M8b, M8c, M9b, M9c), suggesting that 
their specific combinations of the factors are not the best representation of the reality.  
 

The two best models are M5 and M9a. M9a = f(Distance, ln(Truck), Edge density, Waste 
origin) has the highest adjusted coefficient of determination and the lowest relative 
standard error among these nineteen models. The model M5 have satisfying 
performances while not describing any aspect of the fragmentation factor: this could 
mean, according to the rule of parsimony, that this fragmentation factor is not needed to 
understand the structure of the costs. However, the AIC is lower in the case of M9a. This 
confirms that the fragmentation factor has critical importance too, and needs to be 
included and better understood. Thus, the model M9a describes best the structure of the 
biomass supply costs in Peninsular Malaysia. Table 4.4 provides its details and its 
reliability. 
 

Table 4.4: Biomass supply cost as a function of transportation distance, truck size, 
fragmentation, and waste origin 

Model M9a: USD/fresh tonne = β0X5 + β1X1 + β2ln(X2) + β4X4a 

Parameter Coefficient  
Estimate SE t-value Pr(>|t|) 

X1 : Transportation distance  0.0678 0.002915 23.274 < 2e-16 *** 
ln(X2) : ln(Truck size) -26.07 0.458950 -56.805 < 2e-16 *** 
X4a : Fragmentation (Edge density) 1.066 0.228711 4.662 0.00000348 *** 
X5a : Waste origin_field 63.06 1.974433 31.937 < 2e-16 *** 
X5b : Waste origin_mill 69.67 1.451147 48.009 < 2e-16 *** 
X5c: Waste origin_both 62.35 2.027559 30.750 < 2e-16 *** 
Significance codes:  *** 0.001;  ** 0.01; *  0.05;  • 0.1  
Residual standard error: 19.69 on 1214 degrees of freedom   
Multiple R-squared:  0.8986 Adjusted R-squared:  0.8981  
F-statistic:  1792 on 6 and 1214 DF,  p-value: < 2.2e-16  
 

We find that the base supply cost is higher for the biomass wastes originating from the 
mills (69.67 USD/tonne) than for the wastes originating from the fields (63 USD/tonne). 
This could contradict the intuition because mills produce proportionally much more 
wastes per hectare. The fact that the mills are relatively small in average, and are 
scattered all over the territory, is the reason for the counterintuitive finding.  
 

We find also that the fragmentation (edge density) of the resource is extremely costly: a 
1 million hectares feedstock would see an increase of 4.16 USD/tonne for every added 
unit of edge density. With a similar edge density as paddy fields, the field size of such a 
feedstock would be of 950 hectares in average and have a baseline supply cost of 67.16 
USD/tonne. The same feedstock with an edge density similar to palm oil plantations 
would have field size of 26 hectares in average, inducing a surplus of 20.8 USD/tonne 
for the supply cost. And with an edge density similar to rubber plantations, field size 
would be of 7.8 hectares in average, inducing another surplus of 20.8 USD/tonne for the 
supply cost compared to oil palm plantations.  
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The supply cost also increases in average by 6.78 USD/tonne for every added 100 km of 
transportation distance. Conversely and compared to a 1-tonne truck, the supply cost 
logarithmically decreases according to the tonnage, with -36 USD for a 3-tonne truck, 
and with -84 USD for a 26-tonne truck. 
 

The scattered nature of the mills increases the supply cost, despite the relatively high 
concentration of wastes in each mill. This unexpected finding raises the question of 
whether this model separates correctly the fragmentation from the biomass yield. The 
categorical variable “waste origin” implicitly contains information on the concentration 
of biomass yield per hectare since the yields are immensely more concentrated in a mill 
than in fields. It also contains information on spatial fragmentation since most of the 
mills are scattered over the territory, which makes them inherently a fragmented source 
of biomass. The examination of models M7a and M6a which differ from model M9a by 
only one variable, allows to clarify this point. Model 7a is the same as M9a plus a variable 
on describing the concentration of biomass yield per hectare. But this variable is not 
significant (see table 4.3). In model M6a, the categorical waste origin is replaced by the 
biomass yield (see table 4.5). It reinforces the apparent weight of the fragmentation, 
which is 3 times more influential on the cost structure. The truck size influence is lower 
but remains a crucial factor, and the influence of the transportation distance importance 
is more than double. The yield of biomass, although being significant, induces little 
supply cost variation. Altogether these results demonstrate that the categorical variable 
“waste origin” encapsulates relatively few information on the concentration of yield per 
hectare, and more on fragmentation. However, the regimes of fragmentation of fields and 
mills are so different, that they are not appropriately described by a single variable, as it 
is the case in model M6a. They are better described by the categorical variable “waste 
origin”. The relationships of the fragmentation to the supply costs according to the origin 
of the wastes would probably yield interesting results with non-linear models, but it is 
beyond the scope of this paper. 
 

Table 4.5: Biomass supply cost as a function of transportation distance, truck size, 
fragmentation, and biomass yield 

Model M6a: USD/fresh tonne = β1X1 + β2ln(X2) + β3X3 + β4X4a 
Parameter Coefficient Estimate SE t-value Pr(>|t|) 
X1 : Transportation distance  0.14624175 0.00376956 38.8 < 2e-16 *** 
ln(X2) : ln(Truck size) -15.54994379 0.64271174 -24.19 < 2e-16 *** 
X3 : Biomass yield 0.00038155 0.00003234 11.8 < 2e-16 *** 
X4a : Fragmentation (Edge density) 3.81978851 0.26104091 14.63 < 2e-16 *** 

Significance codes:  *** 0;  ** 0.001; *  0.01;  • 0.05 
Residual standard error: 32.11 on 1216 degrees of 
freedom 

Multiple R-squared:  0.7299, Adjusted R-
squared:  0.729 
F-statistic:  821.4 on 4 and 1216 DF, p-value: < 2.2e-
16 

 

4.4 Analysis and discussion   
 

4.4.1 Respective impacts of supply cost factors  
 

In a tropical country such as Malaysia, the biomass feedstocks are heterogeneous and 
fragmented. The increase of biomass supply cost with spatial fragmentation 
demonstrates that landscape structure can be as much critical for biorefinery economics, 
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as transport distances are (Tahvanainen & Anttila, 2011; Ghaffariyan, Acuna & Brown, 
2013, Vijay et al. 2014 and Reeb et al., 2014). Our results are the first to quantify the 
direct effect of landscape structure on the transport cost. The fragmentation amplifies the 
average transportation distance. This consequently amplifies nonlinearly the effects of 
the size of the fleet trucks. The respective impact of each factor can be measured with 
the model M9a, and can be visualised by comparing to a base scenario attainable for all 
feedstocks, of best and worst scenarios; in Table 4.6 and Figure 4.1. The baseline 
scenario is set at 1 million tonnes of biomass supply because this quantity is commonly 
available from almost all Malaysian feedstocks. We assign to it the fragmentation of the 
most common feedstock (oil palm wastes). The most common trucks used for agriculture 
and biomass transport in West Malaysia are 3-tonne trucks. 26-tonne trucks are 
uncommon because this kind of trucks cannot reach most of the fields. The best truck 
scenario is set at 10-tonne truck and the worst with 1-tonne truck. The average distances 
are computed by GIS for the baseline, best and worst scenarios for 1 million tonnes of 
supply. 
 

Table 4.6: Supply scenarios in Peninsular Malaysia 
Parameter Unit Scenarios 

Best Baseline Worst 
Transport distance km 180 300 500 
Truck size tonne 10 3 1 
Fragmentation (Edge density) meter/hectare 11.7165 6.0825 0.278 
Biomass origin categories 62.347859 63.056592 69.66853 

 

 

Figure 4.1: Impact of the main biomass supply cost factors in Peninsular Malaysia  
(The baseline scenario is centered at 0%. The cost-effectiveness increases when biomass 
supply costs decrease.) 
 

Among all the cost factors, the landscape fragmentation is a heritage of geography, 
history, and long-term agricultural policies. Biomass entrepreneurs cannot modify this 
fragmentation, but they can act on the truck size factor. For example, in the US & EU, 
the trucks used for biomass are always above 20 tonnes (Sosa, McDonnell, 2015; Laitila, 
Asikainen & Ranta, 2016 and Teter et al., 2017). In Malaysia, 98.5% of businesses are 
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very small (Department of Statistics Malaysia, 2017) and are extremely small if 
compared to European standards (Gonzales et al., 2019). In general, 48% of truck traffics 
are light weighted truck, 33% and 19% are medium and heavy-weighted truck 
respectively (see Table 4.7 and Ministry of Transport Malaysia, 2019). In the agriculture 
and forestry sector, the most common trucks are 1-tonne trucks, while 10 to 12-tonne 
trucks were used only by big mills (Roda et al., 2015).  
 

Table 4.7: Five years average (2013 - 2017) of truck traffic composition at 14 
selected stations  

Light truck Medium truck Heavy truck 
Below 2 tonnes 2 - 10 tonnes Above 10 tonnes 

48 33 19 
(Source: Ministry of Transport Malaysia, 2019) 
 

4.4.2 International competitiveness of Malaysian biomass   
 

One criterion in order to assess the feasibility of any industry willing to use Malaysian 
biomass would be to compare its local cost with the price or cost of biomass available 
on the international market. For example, we can compare with the feedstock biomass 
costs in the USA or the densified biomass costs exported by the USA on the international 
market, Free On Board cost (U.S. Energy Information Administration, 2020). We 
estimated a theoretical fresh biomass FOB price based on Mani, Sokhansanj and 
Turhollow (2006) and Mani (2005) as a benchmark for “theoretical FOB price” (FOB 
export cost – densification cost).  
 

Compared to the marginal cost curves of the best potential mill location for each biomass 
category (Figures 4.2 & 4.3; Annex D), this kind of competitiveness benchmark 
discriminates 3 groups of Malaysian feedstocks. These groups are critical for the scale 
of the possi ble biorefineries, and for the choice of biofuel technologies. Wastes from 
plywood and sawmills, forest logging, plywood mills, rubberwood logging, sawdust and 
rice husk belong to the first group. They could only supply much less than 1 million fresh 
tonne/year at 50% of the international benchmark if transported with 1-tonne trucks 
(Figure 4.2). However, they could supply the total of their available wastes if transported 
with 26-tonne trucks (Figure 4.3). In the case of the forest logging wastes, 26-tonne 
trucks access to most of the forest tracks is hypothetical in actual Malaysian logistic 
conditions. The second group is much more competitive. These wastes are Oil Palm 
Trunks (OPT), Empty Fruit Bunches (EFB), Oil Palm Fronds (OPF), Palm Pressed Fiber 
(PPF), EFB + PPF, rice straw, and rice straw + rice husk. They could supply from 1.2 to 
3.5 million fresh tonnes/year at 50% of the international benchmark with 1-tonne trucks 
(Figure 4.2), and from 5.4 to 17 million fresh tonnes/year at 15% of the international 
benchmark with 26-tonne trucks (Figure 4.3). The third group, the simultaneous 
collection of all lignocellulosic wastes from oil palm plantation or oil palm mills, is 
extremely competitive. It can supply 8.2 million fresh tonnes/year at 50% of the 
international benchmark with 1-tonne trucks (about 20% of Malaysian oil palm wastes, 
Figure 4.2), and 38 million fresh tonnes/year at 15% of the international benchmark with 
26-tonne trucks (about 97% of Malaysian oil palm wastes Figure 4.3). The specificity of 
this third group is that it mixes wastes from the fields and wastes from the mills. It implies 
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that the mills could be used as collection and pre-treatment point since they are already 
the collection points of the Fresh Fruit Bunches (FFB). In these conditions, nothing 
would prevent to add pre-treatment stages in order to dry and densify the biomass prior 
to further transportation. 
 

 

Figure 4.2: Marginal supply cost curves of Malaysian fresh feedstocks – 1-tonne 
truck, with international benchmark 
 

 

 

Figure 4.3: Marginal supply cost curves of Malaysian fresh feedstocks – 26-tonne 
truck, with international benchmark 
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4.4.3 Feasibility of consolidation, collection and pre-treatment of the biomass 
 

In the hot and humid Malaysian weather, the actual practice is to transport quickly the 
biomass in fresh matter, in order to avoid microbial degradation (Salètes, Caliman & 
Raham, 2004; Hess, Wright & Kenney, 2007; Rentizelas, Tolis & Tatsiopoulos, 2009; 
Chico-Santamarta et al., 2011 and Larson et al., 2015). The low bulk density and the high 
moisture content (see Annex E) of most of the biomass reduce the profitability of 
feedstock transportation. Since 26-tonne trucks cannot access many of the tracks within 
the field (Shafie, Masjuki & Mahlia 2014; Roda et al 2015 and Yusoff, 2019), collection 
points would be needed for their large-scale use. The exact cost of such facilities is 
beyond the scope of the present paper, but an approximation of their supply cost can be 
assessed against international benchmarks (we omit the densification cost in Malaysia). 
We use international FOB biomass pellet prices (USD162/tonne; U.S. Energy 
Information Administration, 2020) as a benchmark for the supply of dry feedstocks. We 
consider only the transportation by 26-tonne trucks that would make sense with 
densification facilities. Three different dry feedstocks emerge (see Figure 4.4). OPT and 
rubberwood logging wastes which the fresh feedstocks with the highest water content 
(Annex E). They form the first group with either very little dry matter available, or most 
of it above 40% of the international FOB price for pellets. The other oil palm wastes 
except for PPF (and OPT) form the second group, with most or all of their dry feedstock 
above 17% of the international benchmark. 
 

All the remaining wastes form the third group, with 100% (or almost) of the dry 
feedstock below 17% of the international benchmark. The most remarkable and the 
cheapest among them are the wastes from plywood and sawmills (0.2 to 0.8 million dry 
tonnes/year), and rice straw (0.8 to 3.3 million dry tonnes/year).  
 

 

Figure 4.4: Marginal supply cost curves of Malaysian dry feedstocks – 26-tonne 
truck, with international benchmark 
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4.4.4 Policy implications  
 

Altogether these considerations have strong implications for policymakers: the 
importance of the landscape structure may make a seemingly abundant biomass not 
viable for biorefineries if too fragmented, while a much less abundant one, but more 
concentrated may be viable. This first implies that with proper supply chain management 
and location optimisation, Peninsular Malaysia biomass could supply a competitive 
biofuel industry. There are enough quantities to sustain small or medium mono-feedstock 
industries if their location is carefully chosen. This also means that biomass studies in 
Malaysia and countries with similar conditions should consider the design and location 
of collection consolidation and pre-processing, and hubs to connect small and medium 
stakeholders with bigger ones. The overall results of this study have also shown that large 
multi-feedstock industries can be economically viable. This means that in Malaysia and 
other tropical countries where the landscape is typically very fragmented, multi-crops 
feedstocks could be considered for sustainable biorefineries. It poses new technological 
and economic implications, but these are beyond the scope of the present paper. 
 

4.5 Conclusion  
 

Fragmentation of the landscape is costly in tropical countries with complex mosaics of 
land uses, such as Malaysia. The feedstock cost increases by more than 4 USD/tonne for 
every added unit of edge density. In comparison, it increases by more than 6 USD/tonne, 
but by every 100 km of added average transport distance. These natural drawbacks could 
be offset by organising better logistic chains. From a fleet of 1-tonne trucks, the cost 
decreases by -36 USD/tonne if using 3-tonne trucks, and down to -84 USD/tonne if using 
26-tonne trucks. But most of the biorefinery technologies and solutions for agricultural 
and forestry wastes were developed in the rather uniform plains of North Europe and 
North America. Our results mean that these technologies and solutions cannot be just 
transferred to tropical countries with complex landscape mosaics. We demonstrated here 
how the landscape structure, through the concept of fragmentation, is a major 
determinant of biomass economics under the tropics. For policy-makers, counter-
intuitive situations may arise, such as seemingly abundant biomasses may be less 
profitable if too fragmented, while much less abundant but more concentrated biomasses 
may be more efficient. There may be other situations where multi-crop biomass 
strategies are more profitable than relying on too fragmented feedstocks. The concept of 
landscape fragmentation has been mostly used in ecology, for edge effects and other 
phenomenon. But our results suggest that fragmentation of the landscape probably 
influence the economics of many activities dealing with agriculture and forest resources, 
too. Methodologically, it would be interesting to develop fragmentation metrics 
specifically designed to capture economic aspects. Conceptually, it would also be 
interesting to explore how multifactorial dynamics, such as deforestation, are linked to 
pre-existing fragmentation and change it. 
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CHAPTER 5 
 

5 FEASIBILITY OF LIGNOCELLULOSIC BIOREFINERY IN THE CONTEXT 
OF LANDSCAPE FRAGMENTATION AND CRUDE OIL PRICE: CASE OF 

MALAYSIA 
 

Chapter overview: 
 
This chapter develop biorefinery cost estimation model in a two-stage approach. The 
order of magnitude method was adopted to compute capital expenditure of various 
conversion pathways and later incorporate with operational expenditure that consists of 
biomass transport cost and other relevant variables. The biorefinery cost curves and 
optimum cost and scale were derived. Putting into context, the impact of spatial 
fragmentation and biomass natures to optimum cost were quantified and feasibility of 
biofuels were assessed by comparing to crude oil price. 
 

5.1 Introduction  
 

The challenge of lignocellulosic biorefineries is the see-saw effect between scale of 
economy and diseconomy of scale from feedstock supplies (Kumar, Cameron & Flynn, 
2003; Larasati, Liu & Epplin,2012; Liu & Bao, 2019) due to sourcing distance and 
various biomass characteristics such as geographical distribution, moisture content, yield 
and bulk density (Caputo, Palumbo, Pelagagge & Scacchia, 2005; Huang, Ramaswamy, 
Al-Dajani, Tschirner & Cairncross, 2009). This implies that the optimum scale of 
biorefineries is unique to the biomass feedstock and that the landscape pattern of the 
biomass could be pivotal to sustainable biofuel. 
 

As a typical Southeast Asia country, Malaysia consists of very fragmented tropical 
landscape (Fritz et al., 2015; Lesiv et al., 2018).  Biomasses in the region have very 
different supply cost structure due to their heterogeneity (Ong et al., 2020), consequently 
despite abundance certain biomass might not be economical for biorefinery. Yet, the 
biofuel production costs are hinge on the choice of biomass. This raises questions on 
feasibility of biorefineries, the comparative differences among choices of biomass and 
their respective optimum cost and biofuel potentials.   
 

Lignocellulosic biomass is also one of the renewable resources to delay peak oil events 
and paves ways towards alternative fuels. As an alternative energy to fossil fuel, studies 
had found that biofuel profitability is affected by fossil fuel price (Chiu, Hsu, Ho & 
Chen,2016; Maghyereh & Sweidan, 2020). There are substitution effects between these 
two choices of commodity (Chang & Su 2010; Pacini & Silveira, 2011; Anderson, 2012). 
Hence, this could compromise cellulosic biofuel development when the profitability is 
temporal and subject to volatility of fossil fuel price (Ghoddusi 2017; Markel, Sims & 
English, 2018).   
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In this context, in addition to overcoming biomass heterogeneity; sustainable cellulosic 
biorefineries are also required to optimize their cost and scale in order to compete and 
replace conventional fossil fuel energy. In the past, most of the studies compared price 
of biofuel among choices of conversion technologies and biomass (Egbendewe-
Mondzozo, Swinton, Izaurralde, Manowitz & Zhang, 2011; Li, Larsson, Thorin, 
Dahlquist & Yu, 2015; Brigagão, de Queiroz Fernandes Araújo, de Medeiros, Mikulcic 
& Duic, 2019). Yet very limited study relates crude oil price with biorefinery profitability. 
For instance, the price of biofuels were compared with price of gasoline by Kennedy & 
Ahamad (2007) and Slade, Bauen & Shah (2009) to assess commercial feasibility of 
biofuel in their region but without taking into account the volatility of fossil fuel prices.  
 

As quoted from Kim & Dale (2015): “All biomass is local”, in spite of achieving 
biorefinery optimization; the feasibility of biorefinery would still subject to the local 
context of the biomass. Given the unique landscape patterns and natures of biomass in 
Malaysia, optimization of biomass application for biorefinery also need to be assess in 
terms of fossil fuel price. To address these issues, this chapter focuses on deriving biofuel 
production costs unique to the biomass. The design of biorefinery cost estimation model 
while simultaneously incorporate unique biomass transportation cost curves into it were 
demonstrated. Furthermore, the optimized cost and scale of biorefineries based on each 
biomass are compared with crude oil price and the impacts of relevant factors to optimum 
costs are also quantified. To the best knowledge of the author, this is the first work that 
simultaneously address biorefinery optimization in relation of landscape fragmentation, 
natures of biomass and historical crude oil price.  
 

5.2 Material and method  
 

5.2.1 Actualization of data 
 

This study assessed economic competitiveness of biorefineries in Peninsular Malaysia 
by expanding the simulation of biomass supply cost (Ong et al., 2020) to biorefinery 
production cost. We first collected data for capital expenditure (CAPEX) of commercial 
scale biorefineries (Figure 5.1a). These data were based in different years and located in 
United States Gulf Coast area. To actualize the historical data into a common year and 
locality of our study, we applied the following equations (Table 5.1) using details and 
procedures shown in Annex F and G. We actualized the data into year 2015 and locality 
of Southeast Asia. 
 

Table 5.1: Equations to actualize CAPEX data 
Equation 5.1 
Cost actualization:  𝐶𝑜𝑠𝑡	𝑖𝑛	𝑦𝑒𝑎𝑟	𝐴 = 𝐶𝑜𝑠𝑡	𝑖𝑛	𝑦𝑒𝑎𝑟	𝐵	 × 	 !"#$	&'()*	&'	+),-	.

!"#$	&'()*	+),-	/
 

Equation 5.2 
Location factor:  𝐶𝑜𝑠𝑡	𝑜𝑓	𝑝𝑙𝑎𝑛𝑡	𝑖𝑛	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛		 = 𝑐𝑜𝑠𝑡	𝑜𝑓	𝑝𝑙𝑎𝑛𝑡	𝑜𝑛	𝑈𝑆𝐺𝐶	 × 	𝐿𝐹. 
𝑤ℎ𝑒𝑟𝑒	𝐿𝐹.	 = 	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	𝑓𝑜𝑟	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝐴	𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑡𝑜	𝑈𝑆𝐺𝐶	𝑏𝑎𝑠𝑖𝑠. 

(Source: Towler & Sinnott 2013) 
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5.2.2 CAPEX Models  
 

These data were fed into a non-linear regression analysis using R software to obtains 
CAPEX models of various biofuel pathways. This method is widely applied in chemical 
industry using the equation shown in Table 5.2 known as the cost curve method or order 
of magnitude estimates (Towler & Sinnott, 2013). The models were simulated in Figure 
5.1b based on the parameters derived in Table 5.2. 
 

Table 5.2: Estimation models for capital expenditure of various conversion process 
CAPEX Model: 𝐶 = 𝑎𝑆𝑛 

Process or Variables  Coefficient 
Estimate SE t-value Pr(>|t|) 

(1) Ethanol by Ethylene Hydration 
 

a1: 585.7 23.49 24.93 1.27e-13 *** 
(2) Ethanol by Fermentation 

 

a2: 1380 24.41 56.52 < 2e-16 *** 
(3) Ethanol (fuel grade) by Corn Dry Milling 

 

a3: 639.2 22.20 28.79 1.52e-14 *** 
(4) Glucose (40% solution) by Basic Wet Corn 
Milling  

a4: 623.6 19.37 32.19 2.93e-15 *** 

(5) Biodiesel (FAME) from Vegetable Oil 
 

a5: 389.3 26.65 14.61 2.82e-10 *** 
(6) Fischer-Tropsch Process 

 

a6: 3502 22.42 156.22 < 2e-16 *** 
(7) Methanol via Steam Reforming & Synthesis  

 

a7: 588.5 6.36 92.51 < 2e-16 *** 
Correlating exponent n 0.6051 0.0081 74.86 < 2e-16 *** 
Significance codes:  *** 0;  ** 0.001; *  0.01;  • 0.05  
Number of iterations to convergence: 8  
R-squared:  0.9997245 

Residual standard error: 13.77 on 15 degrees of 
freedom 
Achieved convergence tolerance: 7.97e-07 

𝐶 : capital cost       a : coefficient of the process        S : capacity or quantity         n : correlating exponent 
 

(a) Capital Expenditure for commercial plant 
of various pathways 

(b) Actualized CAPEX and CAPEX 
cost curve simulation 

 

Figure 5.1: Capital expenditure of commercial biorefineries before and after 
actualization and estimations 
(Source: Towler & Sinnott (2013); Brown & Brown (2013); Chen, Ong & Babin (2017)) 

C
ap

ita
l C

os
t (

M
illi

on
 U

SD
)

0

200

400

600

800

1000

1200

1400

1600

Capacity (Million tonne biofuel)
0 0.5 1.0 1.5 2.0 2.5

Data Collected on Capital Cost of Commercial Biorefineries

C
ap

ta
l c

os
t (

M
illi

on
 U

SD
)

0

1000

2000

3000

4000

5000

6000

Capacity (Million tonne biofuel)
0 0.5 1.0 1.5 2.0 2.5

Actulised Data & Estimated CAPEX Curves

Ethanol by Ethylene Hydration

Ethanol by Fermentation

Ethanol (fuel grade) by Corn Dry Milling

Glucose (40% solution) by Basic Wet Corn Milling

Biodiesel (FAME) from vegetable oil

Fischer-Tropsch Process

Methanol via Steam Reforming & Synthesis



 

68 

5.2.3 Biofuel production cost simulation 
 

To derive biofuel production cost, we first assume the intended product are liquid 
biofuels and we would simulate both biochemical and thermochemical biorefinery. From 
Table 5.2, we observed that Process (2), (3) and (4) are fermented biofuel with coefficient 
estimate a2= 1380, a3=639.2 and a4=623.6. Based on these parameters, we rounded up 
to assume that values of parameter-a for fermentation processes range from a=500 to 
a=1500. We used Fischer-Tropsch process as a typical representation of thermochemical 
process. Based on the coefficient estimates a6=3502. We assumed that the values of 
parameter-a for Fischer-Tropsch process would range from a=3000 to a=4000.  
 

Based on the assumptions of CAPEX models above, we rearranged the equation of 
CAPEX estimation model to obtain the per unit CAPEX in USD/tonne of biofuel using 
interval computations. The interval value applied was 250 between the range of 
parameter-a for fermentation processes and Fischer-Tropsch process with 15 years 
biorefinery life span. This process is illustrated in Figure 5.2.  
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Figure 5.2: Illustration of procedures and equations in interval computations of 
CAPEX  
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(By varying the parameter-a representing two major conversion pathways, from a=500 
to 1500 for fermentation process and a=3000 to 4000 for Fischer-Tropsch process. The 
rearranged equations of capital expenditure yield capital cost curves in per-unit-basis – 
USD/tonne/year.) 
 

For the operation expenditures (OPEX), we assumed arbitrarily that biomass transport 
cost of 26-tonne-truck supplies to optimized location from previous study (Ong et al., 
2020) would be 80% of total OPEX to adapt to the context of resource fragmentation in 
Peninsular Malaysia. The remaining 20% of the OPEX would be other variable cost. Ten 
major lignocellulosic biomass in Peninsular Malaysia were included in this simulation, 
including empty fruit bunch (EFB), palm pressed fibre (PPF), oil palm frond (OPF), oil 
palm trunk (OPT), rice straw, rice husk, forest logging wastes, rubber logging wastes, 
plywood mill wastes and sawdust. In MS Excel, we synchronized the capacity of the 
biorefinery based on biomass in dry matter basis (Annex E) using Equation 5.3 and also 
applied the biofuel recovery rate (Annex H) corresponding to the two representative 
liquid biofuel pathways. We then applied the synchronized biorefinery capacity based 
on respective biomass availability following the interval computations procedure 
mentioned (Figure 5.2) to obtain the per unit CAPEX in USD/tonne of biofuel/year. We 
computed OPEX in USD/tonne of biofuel with Equation 5.4 and total biofuel production 
cost in USD/tonne of biofuel/year with Equation 5.5. The process of obtaining the 
biorefineries production costs in Peninsular Malaysia is simplified into a schematic 
diagram in Figure  
 

Equation 5.3 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒𝑑	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = (𝐹𝑟𝑒𝑠ℎ	𝑚𝑎𝑡𝑡𝑒𝑟	𝑠𝑢𝑝𝑝𝑙𝑦 × 	𝐷𝑀) ÷ 𝑅 
Equation 5.4 𝑂𝑃𝐸𝑋 = L

𝐵𝑇𝐶
0.8 	 ÷ 𝐷𝑀P × 	𝑅 

Equation 5.5 Biofuel production cost (USD/tonne/year) = CAPEX (USD/tonne/year) + OPEX 
(USD/tonne/year)  

OPEX: Operating expenditure (USD/tonne of biofuel/year) 
BTC*: Biomass transport cost (USD/fresh tonne/year) 
Synchronized Capacity (𝑆): Biofuel output capacity based on local biomass supplies (tonne of biofuel/year)  
Fresh matter supply*: Biomass supplies in fresh tonne/year 
DM**: Dry matter content of biomass (%) 
R***: Biofuel recovery factor – the ratio of biomass for 1 tonne of biofuel  

(*Source: Ong et al. (2020), Ong & Roda (2020)) 
** Annex E 
***Annex H 
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Figure 5.3: Schematic diagram illustrating process of biorefineries production costs 
 

5.2.4 Identification of optimal cost & scale   
 

For each biomass we produced five production cost curves for both fermentation and 
Fischer-Tropsch conversion process. We then identified the minimum per unit 
production cost along each curve. This is where the capacity of biorefinery is optimal or 
known as an economy of scale. Figure 5.4 illustrates the identification of optimum points. 
These points would be compared to the past fifteen years of historical crude oil price.  
 

 

Figure 5.4: Illustration example: economy of scale identification and optimal points 
extraction 
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5.2.5 Establishing variability of crude oil price over time using empirical rule  
 

We collected data on crude oil prices in the past fifteen years from August-2005 to July-
2020 and converted the prices into common unit of metric tonne using the specified 
conversion rate to match the measurement unit of this study (British Petroleum, n.d.; 
World Bank, 2020). We wanted to capture the variability of crude oil price over the last 
15 years. This was done by regressing the data around its mean. We made a linear model 
regressing over its intercept in R software. Based on the 68-95 empirical rule 
(Bandyopadhyay & Cherry, 2011), we computed the crude oil price limits at one and two 
standard deviation. The R code and the results were presented in Annex I. We then 
translated the percentage of probability distribution into a chart for ease of comparison 
(Figure 5.5) and renamed the limits as percentage of variability.  
 

 

Figure 5.5: Fifteen years of crude oil price variability (August-2005 to July-2020) 
and its probability distribution limits 
(e.g. a price at USD150/tonne is lower than crude oil price in 97.5% of the cases) 
(Source: BP p.l.c (n.d.); World Bank (2020)) 
 

5.3 Result and analysis  
 

5.3.1 Optimized biofuel production cost of each biomass in Peninsular 
Malaysia 

 

The biofuel production costs curves were obtained and the minimum cost along each 
curve is identified as optimum point or commonly known as economy of scale (Figure 
5.6). In Table 5.3, the values of the optimized cost and capacity are presented. These 
values present a more realistic biofuel potentials in Peninsular Malaysia where 
economics of both biomass supplies and biorefinery were taken into account.  
 

We find the biomass that could yield the largest optimized biofuel potential is palm 
pressed fiber (PPF) and followed by rice straw and empty fruit bunch (EFB) at annual 
biofuel capacity of 0.5 million tonne and above. With fermentation process, PPF 
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biorefinery optimized between 0.47 to 0.97 million tonne biofuel per year at 130 to 206 
USD/tonne. With Fischer-Tropsch process, PPF biorefinery achieved optimum at 0.73 
to 0.8 million tonne biofuel per year at 396 to 470 USD/tonne. Rice straw biorefinery of 
fermentation process has similar cost as PPF biorefinery at 123 to 208 USD/tonne but 
with lower optimized scale range between 0.49 to 0.56 million tonne biofuel per year. 
Rice straw biorefinery of Fischer-Tropsch process costs higher than the PPF biorefinery, 
it optimized at 0.45 to 0.52 million tonne biofuel per year at 418 to 505 USD/tonne. In 
case of EFB biorefinery, although it can optimized at annual potential more than 0.5 
million tonne, however its costs are approximately 20% to 60% higher than rice straw 
and PPF. With fermentation process, EFB biorefinery optimized at between 0.25 to 0.6 
million tonne biofuel per year at 196 to 287 USD/tonne and; with Fischer-Tropsch 
process optimized at between 0.55 to 0.62 million tonne per year at 531 to 613 
USD/tonne. 
 

The biomass that could yield moderate optimized biofuel potentials are forest logging 
wastes and oil palm frond (OPF). Biofuel from forest logging wastes are cheaper than 
the OPF biorefinery. It costs 140 to 233 USD/tonne for optimized scale between 0.3 to 
0.49 million tonne per year with fermentation process and; 463 to 563 USD/tonne for 
optimized scale between 0.35 to 0.36 million tonne per year with Fischer-Tropsch 
process. OPF biorefinery cost about 40% to 60% higher than forest logging wastes with 
fermentation process. It optimized at between 223 to 321 USD/tonne for 0.22 to 0.47 
million tonne biofuel per year. With Fischer-Tropsch process, OPF biorefinery costs 24% 
to 31% higher than forest logging wastes. The optimized costs are between 607 to 701 
USD/tonne for 0.38 to 0.46 million tonne biofuel per year.  
 

Biorefinery with small biofuel potential are offer by plywood mill wastes, sawdust and 
oil palm trunk (OPT). The biorefinery costs of plywood mill wastes and sawdust are very 
similar. With fermentation process, biorefinery of plywood mill wastes achieved 
optimum between 145 to 259 USD/tonne for 0.12 to 0.32 million tonne biofuel per year 
and; biorefinery of sawdust achieved optimum between 143 to 260 USD/tonne for 0.17 
to 0.3 million tonne biofuel per year. With Fischer-Tropsch process, biorefinery of 
plywood mill wastes achieved optimum between 522 to 642 USD/tonne for 0.23 million 
tonne biofuel per year and; biorefinery of sawdust achieved optimum between 530 to 
656 USD/tonne for 0.2 million tonne biofuel per year. The OPF biorefinery is relatively 
more costly compare to the plywood mill wastes and saw dust, it costs approximately 
one to two times higher with fermentation process and 74% to 92 % higher with Fischer-
Tropsch process. The OPT optimums are between 429 to 563 USD/tonne for 0.11 to 0.23 
million tonne biofuel per year using fermentation process and between 1003 to 1118 
USD/tonne for 0.24 to 0.28 million tonne biofuel per year using Fischer-Tropsch process.  
 

Biorefinery with very small potentials are from rice husk and rubber logging wastes. The 
optimum costs of rice husk biorefinery range from 148 to 300 USD/tonne for 0.09 to 
0.15 million tonne per year of fermented biofuel and 632 to 794 USD/tonne for 0.1 
million tonne per year of Fischer-Tropsch biofuel. Rubber logging wastes supply very 
expensive biofuel, it offers optimized cost of 375 to 642 USD/tonne for only 0.02 to 0.04 
million tonne per year of fermented biofuel and 1266 to 1534 USD/tonne for only 0.03 
million tonne per year of Fischer-Tropsch biofuel. 
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Figure 5.6: Production cost curves of fermentation and Fischer-Tropsch process for 10 major biomass in Peninsular Malaysia 
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Table 5.3: Biofuel production cost at optimized scale for each biomass  
Technology: Fermentation process Fischer-Tropsch process 
Parameter: a=500 a=750 a=1000 a=1250 a=1500 a=3000 a=3250 a=3500 a=3750 a=4000 

Biomass USD/tonne biofuel 
million tonne/year 

USD/tonne biofuel 
million tonne/year            

 Large biofuel potential (above 0.5 million tonne/year) 
Rice straw 123.2 

0.49 
144.5 
0.55 

165.7 
0.55 

186.8 
0.55 

207.8 
0.56 

418.1 
0.45 

440.4 
0.51 

462.1 
0.51 

483.7 
0.52 

505.4 
0.52 

PPF 130.6 
0.47 

151.5 
0.67 

170.7 
0.76 

188.9 
0.83 

206.3 
0.97 

395.9 
0.73 

414.7 
0.75 

433.3 
0.78 

451.7 
0.78 

470.0 
0.8 

EFB 195.6 
0.25 

222.2 
0.32 

245.7 
0.54 

266.9 
0.54 

287.2 
0.62 

530.9 
0.55 

552.0 
0.55 

572.7 
0.59 

593.3 
0.62 

613.4 
0.62            

 Moderate biofuel potential (below 0.5 million tonne/year) 
Forest logging wastes 139.9 

0.3 
165.0 
0.38 

188.3 
0.45 

210.9 
0.48 

233.0 
0.49 

463.0 
0.35 

488.2 
0.35 

513.3 
0.36 

538.2 
0.36 

563.0 
0.36 

OPF 222.8 
0.22 

252.8 
0.28 

279.8 
0.35 

304.6 
0.41 

328.1 
0.47 

606.7 
0.38 

630.6 
0.41 

654.3 
0.41 

677.5 
0.44 

700.6 
0.46            

 Small biofuel potential (below 0.3 million tonne/year) 
Plywood mill wastes 144.6 

0.12 
176.0 
0.23 

205.2 
0.24 

233.1 
0.31 

259.4 
0.32 

522.3 
0.23 

552.2 
0.23 

582.1 
0.23 

612.1 
0.23 

642.0 
0.23 

Sawdust 143.4 
0.17 

175.3 
0.21 

205.6 
0.23 

233.8 
0.28 

260.9 
0.3 

530.4 
0.2 

561.8 
0.2 

593.3 
0.2 

624.7 
0.2 

656.1 
0.2 

OPT 429.2 
0.11 

469.6 
0.11 

505.1 
0.17 

538.3 
0.23 

568.3 
0.23 

1003.1 
0.24 

1032.4 
0.24 

1061.7 
0.24 

1090.4 
0.28 

1117.9 
0.28            

 Very small biofuel potential (below 0.15 million tonne/year) 
Rice husk 147.9 

0.09 
190.8 

0.1 
229.4 
0.15 

264.5 
0.15 

299.6 
0.15 

631.5 
0.1 

672.2 
0.1 

712.8 
0.1 

753.4 
0.1 

794.1 
0.1 

Rubber logging wastes 374.5 
0.02 

448.7; 0.02 518.1 
0.03 

581.7 
0.04 

641.8 
0.04 

1265.9 
0.03 

1333.0 
0.03 

1400.1 
0.03 

1467.2 
0.03 

1534.3 
0.03 
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5.3.2 Feasibility of biofuel feedstock in comparison with crude oil price  
 

Putting into the context of fuel commodity market, we combined the optimal points of 
each biorefinery and crude oil price variability together (Figure 5.7). We find that 
fermented biofuels produced from rice straw or from palm pressed fibre are the only 
biomass source to be systematically cheaper than 97.5% of the crude oil price variability.  
 

The biorefinery of rice straw and palm pressed fibre (PPF) could produce liquid biofuel 
most competitively at lowest optimal cost for largest amount of output. With Fischer-
Tropsch process, optimized rice straw and PPF biorefinery produce biofuel at cost lower 
than crude oil price in 50% of the cases (less than USD541/tonne). At this possibility, 
the annual optimized are between 0.45 to 0.52 million tonne with rice straw and between 
0.73 to 0.80 million tonne with PPF. This is more efficient with the fermentation process. 
The cost is much cheaper at a level lower than crude oil price in 97.5% of the cases (less 
than USD191/tonne). At this possibility, the annual optimized biofuel output are between 
0.49 to 0.55 million tonne with rice straw and between 0.47 to 0.83 million tonne with 
PPF. 
 

The opposite extremes are biorefinery of oil palm trunk (OPT) and rubber logging wastes. 
Their optimized cost and scale are expensive and small. For Fischer-Tropsch biofuel, 
they are higher than crude oil price in 97.5% of the cases (above USD890/tonne) at 
annual output between 0.24 to 0.28 million tonne with OPT and 0.03 million tonne with 
rubber logging wastes. For fermented biofuel, they are lower than crude oil price in only 
16% of the cases (less than USD717/tonne). The optimum scale consists of annual output 
between 0.11 to 0.23 million tonne with OPT and between 0.02 to 0.04 million tonne 
with rubber logging wastes. 
 

Three biomass could optimize at significant quantity of output but at cost higher than 
biorefinery of rice straw and PPF. These biomass are oil palm frond (OPF), empty fruit 
bunch (EFB) and forest logging wastes. With Fischer-Tropsch process, biorefinery of 
OPF and EFB optimized at cost lower than crude oil price in only 16% of the cases (less 
than USD717/tonne). They optimize at annual biofuel capacity between 0.38 to 0.46 
million tonne and between 0.55 to 0.62 million tonne respectively. Forest logging wastes 
with Fischer-Tropsch process optimized at cost lower than crude oil price in 50% of the 
cases (less than USD541/tonne) with annual biofuel between 0.35 to 0.36 million tonne. 
With fermentation technology, they optimized at cost lower than crude oil price in 84% 
of the cases (less than USD364/tonne). The optimized fermented biofuel from OPF is 
between 0.22 to 0.47 million tonne, from EFB is between 0.25 to 0.62 million tonne and 
from forest logging wastes is between 0.30 to 0.49 million tonne.  
 

The remaining biomass are also between the two extremes mentioned above. The 
biorefinery of rice husk, plywood mill wastes and sawdust could only produce small 
amount of biofuel due to their limited biomass availability. With Fischer-Tropsch 
technology, rice husk biorefinery optimized at cost lower than crude oil price in only 2.5% 
of the cases (less than USD890/tonne) with annual biofuel of 0.1 million tonne only. 
Plywood mill wastes or sawdust biorefinery of Fischer-Tropsch process optimized at cost 



 

77 

lower than crude oil price in only 16% of the cases (less than USD717/tonne). They 
optimized at annual biofuel of 0.23 million tonne and 0.20 million tonne respectively. In 
case of fermentation biorefinery, they optimized at cost lower than crude oil price in 84% 
of the cases (less than USD364/tonne). The annual optimized production from rice husk 
are between 0.09 to 0.15 million tonne, from plywood mill wastes are between 0.12 to 
0.32 million tonne and from sawdust are between 0.17 to 0.30 million tonne. 
 

 

Figure 5.7: Optimal cost and scale of various biomass resources in Peninsular 
Malaysia and crude oil price variability in percentage of probability density 
 

5.3.3 Impact quantification of biomass natures on optimum biorefinery cost 
 

To examine and quantify the impacts of the biomass natures to optimal biorefinery cost, 
we ran a multiple regression analysis. The optimal biorefineries cost were regressed over 
landscape fragmentation - edge density (ED), moisture content (MC) of the biomass and 
parameter-a that represent conversion technologies (Table 5.4). 
 

Table 5.4: Multiple regression analysis of optimal biorefinery cost 
Cost of Optimal scale (USD/tonne) ~ Edge Density + Moisture Content + Parameter-a 

Variables Coefficient estimate SE t-value Pr(>|t|) 
Intercept -67.98720 35.04253 -1.940 0.0553 • 
Edge density 41.94829 5.20969 8.052 2.21e-12 *** 
Moisture content 1.22781 0.74532 1.647 0.1028 
Parameter-a 0.16807 0.01055 15.93 < 2e-16 *** 
Signif. codes:  *** 0; ** 0.001; *  0.01;  • 0.05   
Residual standard error: 137.1 on 96 degrees of freedom  
Multiple R-squared:  0.8146, Adjusted R-squared:  0.8088 
F-statistic: 140.6 on 3 and 96 DF, p-value: < 2.2e-16   
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For the 10 major biomasses types available in Malaysia, the biorefinery technology 
factor (parameter-a) is the most significant factor of the biofuel cost. All the variables 
are significant in the model except ‘moisture content’ but we interpreted that ‘moisture 
content’ is as important. This is because the optimal cost is a point in each cost curve 
where the minimum is achieved but the ‘moisture content’ exists along the entire cost 
curve.  
 

For instance, the two extremes of biorefinery costing – rice straw and PPF are the most 
competitive feedstock for biorefinery and in contrast rubber logging wastes and OPT are 
the costliest resources. These resources have opposite attributes in terms of landscape 
fragmentation and moisture content (Annex J). Rice straw has the most concentrated 
landscape pattern (ED = 1.13 metre/ha) and PPF is significantly lower in moisture 
content (28%). Contrarily, OPT has the highest moisture content (85%) and similarly for 
rubber logging wastes (68%), it also has the most fragmented spatial pattern (ED = 11.7 
meter/ha). Based on these examples, we observed that the effects of moisture content 
exists and with landscape fragmentation, their effects amplify each other creating more 
impacts on the optimum costs.  
 

Furthermore, the model also indicates a good coefficient of determination at around 80%. 
To conclude, we find that in a tropical country such as Malaysia; one unit of landscape 
fragmentation increases the biorefinery optimal cost by 42 USD/tonne, a switch of 
conversion pathway on parameter-a at interval of 250 increases the optimal cost similarly 
by 42 USD/tonne and 10% of moisture content increase the optimal cost by 12 
USD/tonne. 
 

5.4 Discussion  
 

5.4.1 Landscape fragmentation and moisture content amplify costliness of 
biorefinery 

 

We created biorefinery costing with scenarios of landscape fragmentation and moisture 
content based on the attributes of rice straw and OPF. These two resources have the same 
total annual availability of dry matter at around 2.6 million tonnes but varies in landscape 
fragmentation and moisture content. This allows us to observe the dynamics of the two 
significant biomass attributes on optimal biorefinery cost (Figure 5.8).  
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 Rice straw: ED = 1.13; MC = 33% 

OPF: ED = 6.08; MC = 64% 

Scenario-1: ED = 6.08; MC = 33% 

Scenario-2: ED = 1.13; MC = 64% 

 

☆ Optimum        ED: Edge density (meter/hectare)       MC: Moisture content 
Note: Edge density (meter/hectare) is higher when the landscape pattern is more fragmented and vice versa. 

Figure 5.8: Biorefinery costing for rice straw, OPF and pseudo-biomass 
 

Assuming that rice straw is the base line, in Figure 5.7 rice straw biorefinery achieved 
optimal cost at 123 USD/tonne and 0.49 million tonnes of biofuel per year. Scenario-1 
represents a resource with higher landscape fragmentation and same moisture content as 
rice straw. This situation increases the cost curve to a higher position due to increase in 
supply cost incurred by higher transport distance from the landscape fragmentation. This 
shifted the optimal cost to a higher cost level but lower economy of scale - 19% of 
optimal cost increment to 147 USD/tonne and 43% reduction of optimal scale to 0.28 
million tonne biofuel per year. 
 

Compared rice straw to scenario-2, landscape fragmentation remains the same but 
moisture content has increased. Within the same supply distance, the density of dry 
matter per area had reduced hence reducing the quantity supplied per unit of distance and 
increases the total distance travelled and supply cost. Subsequently, the optimal cost 
increased by 53% to 189 USD/tonne and the optimal scale reduced by 19% to 0.39 
million tonne per year. 
 

Lastly, both landscape fragmentation and moisture content are higher when comparing 
OPF with rice straw. Both effects as described above would amplify the feedstock supply 
cost. The increments of biorefinery cost expand significantly as shown by the cost curve 
shifted to the highest level. The optimal point shifted to 223 USD/tonne with 
amplification of 81% in cost increment and optimal scale reduced by 56% to 0.22 million 
tonne per year.  
 

From the point of view of industrial stakeholders and policy makers, the decision-making 
process often involve projection of a desired scale or selected technology and subject to 
one or a few feedstocks with availability (Langè & Pellegrini, 2013; Crawford et al., 
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2016; Malek, Hasanuzzaman, Rahim & Al Turki, 2017; Mustafa, Calay & Mustafa, 
2017). However, our findings suggest that feedstock selection could not rely on merely 
resource abundant. In tropical country with complex landscape pattern and high relative 
humidity, landscape fragmentation and moisture content could greatly affect 
competitiveness and feasibility of the biorefinery. It also implies that intermediary 
operations such as biomass consolidation and densification centres are needed to 
diminish the effects of landscape fragmentation and moisture content. The design of the 
intermediaries needs to adapt to the distinct groups of biomasses taking into account the 
spatial pattern, size of supply zone and location to minimize its cost. Furthermore, to 
avoid amplification effects from landscape fragmentation and moisture content, mobile 
machinery or methods that could perform preliminary drying and densification of 
biomass at source prior to transportation could significantly improve optimum 
biorefinery cost and scale.  
 

5.4.2 Abundant biomass does not permit competitive biofuels  
 

The most abundant biomass should be the main resource for a competitive and 
sustainable biorefinery (Chuah, Wan Azlina, Robiah & Omar, 2006; Shuit, Tan, Lee & 
Kamaruddin, 2009; Aditiya et al., 2016), but this is not what we found. Instead, we see 
that the most abundant biomasses, that are also the most discussed in the literature as 
candidates for biofuels in Malaysia (Goh & Lee, 2010; Derman, Abdulla, Marbawi & 
Sabullah, 2018) produce more expensive liquid biofuels. For example, EFB, OPF and 
OPT received more attention as biorefinery feedstock are more expensive than rice straw 
and PPF.  
 

Usually biofuels (especially fermentation liquid biofuels) are not expected to be 
competitive with fossil fuels (Lynd et al., 2017). From our study, in Peninsular Malaysia 
alone; a total of 0.96 to 1.38 million tonnes of liquid biofuel from rice straw and PPF 
fermentation could be very competitively produced. This represents 5 to 7% tonne of oil 
equivalent of Malaysia petrol consumption in a year (Eurostat, 2005; Suruhanjaya 
Tenaga, 2020). It would be a major step for emissions reduction in a country that 
historically was a fossil fuel producer (Muhammed, 1986; Rahim & Liwan, 2012). 
 

The quantification of biorefinery production costs, in relation to the landscape structure 
and categories of feedstock, is not only innovative, but it is also critical for tropical 
countries with high resource fragmentation such as Malaysia. In these countries less 
abundant and less fragmented resources may have more potential for sustainable and 
competitive biofuels than the flagship resources. Sustainability of biorefinery depends 
on its regional specificities (Kim & Dale, 2015), understanding the impacts of resource 
fragmentation and biomass nature are critical for the competitiveness of biofuels, it is 
also critical as supplementary incomes for the small farmers that is a characteristic of 
Southeast Asia (Gheewala, Damen & Shi, 2013). These supplementary incomes can be 
a way for them to reduce the practice of agricultural burning that often end up in 
catastrophic fires in the region (Fox, 2000; Rosmiza et al, 2014). 
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5.5 Conclusion  
 

Our work highlighted the importance of landscape structure and biomass natures in 
tropical context compared to abundance of resources. We find that fermented biofuels 
produced from rice straw or from palm pressed fibre are the only to be systematically 
cheaper than 97.5% of the crude oil price variability. Landscape fragmentation (edge 
density) and moisture content play directly on the optimum cost of biofuels, they amplify 
each other. In a tropical country such as Malaysia, one unit of landscape fragmentation 
increases the biofuel cost by 42 USD/tonne, and 10% of moisture content increase the 
biofuel cost by 12 USD/tonne. These effects are as significant as the investment or energy 
conversion pathway indicated by the effect of parameter-a, at interval of 250 it increases 
the optimal cost by 42 USD/tonne similarly to effect of landscape fragmentation. 
 

We also illustrated the dynamics of how landscape structure and biomass moisture 
content plays on optimal scale of biorefinery. This shows that resource abundance 
permits a pool of supplies but not feasibility of biomass and biorefinery. Significant 
biomass natures in tropical context such as spatial fragmentation and moisture content 
could greatly increase operating cost and diminish feasibility of biorefinery. In addition, 
technology efficiency allows more output per unit of investment. For example, our work 
demonstrated the fermentation technology with higher energy recovery rate and lower 
investment cost can achieve higher optimum scale at lower cost compared to Fischer-
Tropsch pathway. The optimums of biorefinery are mainly determined by these three 
factors.  
 

In a typical tropical country with abundant of lignocellulosic biomass, it is vital to 
address feedstock selection in a more holistic approach. This work demonstrate Malaysia 
as an example, due to landscape fragmentation, less abundant and less fragmented 
resources may have more potential for sustainable and competitive biofuels than the 
flagship resources. This also highlighted that the perceived abundance of resource led to 
overlooking of resource fragmentation. Industry players and policy makers could add a 
different perspective in developing biofuel industry, deeper understanding of the 
specifics and the dynamics of biomass within the supply zone is needed to assess 
feasibility of energy projects than merely the availability. Future study that focus on 
delineate and cluster the regional resources by geographical patterns, density and costs 
could help further clarify these obstacles in such landscape. Well planned and 
customized biomass consolidation centres, method and mobile machinery that could 
improve bulk density of biomass are also useful to overcome resource fragmentation.  



 

82 

CHAPTER 6 
 

6 SYNTHESIS AND CONCLUSION 
 

6.1 Introduction 
 

One of the motivations of biomass valorization to biofuels in Southeast Asia is driven by 
resource abundance due to their high primary productivity in the tropical climate. 
However, Malaysia as an example of such agriculture landscape consists of high resource 
fragmentation. The biomass transport cost is a major cost component for feedstock 
supply and biofuel production. However, due to spatial variability and heterogeneity of 
biomass, these resources would yield very different biomass supply costs to biorefinery. 
As a result, this would incur different impacts on economics of biorefinery and feasibility 
of biofuel production.  
 

With the context of spatial fragmentation, this dissertation studies the variations of 
biomass transport cost and expand it to biorefinery costing and optimizations. This works 
also address the impacts of spatial fragmentation, explored other variables that have 
significant impacts to feedstock supply and biofuel production and quantified them. 
Given the industrial context, scenarios were also established to assess possible 
implications.  
 

6.2 Major findings 
 

6.2.1 Biomass transport costs and least-cost locations 
 

In this work, we simulate biomass transport cost using GIS raster model with fine 
resolution at 0.4 hectare (63 x 63 meter) for each cell. The purpose is to capture field size 
that are small in the context of spatial fragmentation. Based on minimum total 
transportation cost, we narrowed down six least-cost locations for fresh biomass 
transportation in Peninsular Malaysia.  
 

These locations are Yan, Kedah for rice straw and rice husk. Gua Musang, Kelantan for 
forest logging wastes. Bentong, Pahang for rubberwood logging wastes. Jempol, Negeri 
Sembilan for palm-based biomass namely, oil palm trunk (OPT), oil palm frond (OPF), 
empty fruit bunch (EFB) and palm pressed fiber (PPF).  
 

We also identified four biomasses that could provide ample fresh supplies at more than 
5 million tonnes annually. These biomasses are from oil palm industry. With a moderate 
truck size of 10-tonne-truck supplies, from 2 to 5 million fresh tonne per year; OPT costs 
16.2 to 18.6 USD/tonne, EFB costs 17.5 to 21.3 USD/tonne, OPF costs 18.6 to 23.7 
USD/tonne and PPF costs 19.3 to 25.8 USD/tonne. If these four biomasses are combined 
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for multi-feedstock scenario the cost of 2 to 5 million fresh tonne could be reduce to 14.9 
to 16.4 USD/tonne.  
 

Two other alternatives were identified to supply significant amount at around 2 million 
fresh tonnes annually. With 10-tonne-truck supply, forest logging wastes costs 26 
USD/tonne for 2 million fresh supplies. Rice straw could supply 2 to 3 million fresh 
tonne at 16.2 to 18.8 USD/tonne.  
 

6.2.2 Biofuel potentials and costs 
 

With the order of magnitude estimation method, capital expenditure of various energy 
conversion pathways was computed and incorporated with dry matter availability, 
biomass transport cost and other variable cost to obtain biofuel production costs curves. 
The optimum costs or economy of scale where the minimum cost occurred along each 
curve are derived. 
 

Among the ten major biomasses, we find that PPF offer the most cost competitive and 
largest biofuel potential from fermentation pathway, at cost ranging from 130.6 to 206.3 
USD/tonne yielding 0.47 to 0.97 million tonnes biofuel per year. This is followed by rice 
straw, it offers fermented biofuel at cost between 123.2 to 207.8 to yield 0.49 to 0.56 
million tonnes per year. EFB could also offer fermented annual biofuel potential up to 
0.5 million tonnes and beyond, however the optimum costs are more expensive at 
varying optimum scales. At cost between 195.6 to 287.2 USD/tonne, the optimum scale 
varies between 0.25 to 0.62 million tonnes per year. 
 

Other two biomass that could offer moderate biofuel potentials are forest logging wastes 
and OPF. Forest logging wastes offer more cost-efficient fermented biofuel potentials, 
ranging from 140 to 233 USD/tonne could yield 0.3 to 0.49 million tonnes biofuel per 
year. OPF offer 0.22 to 0.47 annual fermented biofuels at cost between 223 to 328 
USD/tonne. 
 

Contrary to OPT fresh biomass supplies being the most ample and cheap, its biofuel 
potential is relatively small and expensive. Due to high moisture content (85%), OPT 
could yield only 0.11 to 0.23 million tonnes of fermented biofuel annually at costs 
between 429 to 568 USD/tonne. Other two biomass could offer similar amount of 
fermented biofuels at cheaper cost. Plywood mill wastes could offer 0.12 to 0.32 million 
tonnes per year at 145 to 259 USD/tonne and sawdust could offer 0.17 to 0.3 million 
tonnes per year at 143 to 261 USD/tonne. The remaining biomass including rice husk 
and rubber logging wastes could offer only very little biofuel production at below 0.15 
million tonnes per year.  
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6.2.3 Feasibility of feedstock supplies and biofuel productions 
 

The feasibility of biomass supplies and biofuel productions were assessed by putting into 
context of international commodity markets. In comparison to biomass pellet price, a 
theoretical fresh biomass FOB (free on board) price was established by excluding the 
estimated biomass densification cost.  Small truck transportation for example 1-tonne-
truck would make only one biomass sourcing scenario (multi-feedstock from OPF, OPT, 
EFB and PPF) supply at below 50% of theoretical fresh biomass FOB price. With 26-
tonne-truck transport, 93 % of total availability of the ten biomasses could supply fresh 
biomass at below 15% of theoretical fresh biomass FOB price. Extending the comparison, 
we converted the fresh biomass transport cost to dry matter basis (USD/dry tonne). We 
found that PPF, rice straw, rice husk, plywood mill wastes, sawdust, forest logging 
wastes and 50% of combination of PPF and EFB have competitive cost at below 17% of 
FOB biomass pellet price.  
 

The optimum biorefinery costs were also put into the context of crude oil price given 
their substitution effect. We find that fermented biofuels produced from rice straw or 
from PPF are the only biomass source to be systematically cheaper than 97.5% of the 
crude oil price variability (below 191 USD/tonne). This total potentials from the two 
biomasses are between 0.96 to 1.38 million tonnes of annual liquid biofuel which 
represents  5 to 7% tonne of oil equivalent of Malaysia petrol consumption in a year. 
Realizing this potential could significantly increase carbon neutrality of the country.  
 

From the findings above, we observed that the biomass that are less abundant i.e., PPF 
and rice straw are more feasible and competitive compared to biomasses that were 
perceived as abundant such as OPF, OPT and EFB. Furthermore, larger truck size could 
give aggregation effect to biomass supplies reducing total transport distance and increase 
their cost competitiveness.  
 

6.2.4 Impacts of spatial fragmentation and other significant factors 
 

Regression analyses were performed to quantified the impacts of spatial fragmentation 
and other relevant variables to biomass transport cost and biorefinery optimum costs. We 
find that spatial fragmentation amplifies the effect of other variables on costliness of 
biomass transportation and biorefinery optimum costs.  
 

In the case of biomass transport costs, transportation distance, truck size, spatial 
fragmentation (edge density) and waste origins significantly impact the cost. Given the 
context in Malaysia, a 1 million hectares feedstock would increase of 4.16 USD/tonne 
for every added unit of edge density. With a similar edge density as paddy fields, the 
field size of such a feedstock would be of 950 hectares in average and have a baseline 
supply cost of 67.16 USD/tonne based on its waste origin. The same feedstock with an 
edge density similar to palm oil plantations would have field size of 26 hectares in 
average, inducing a surplus of 20.8 USD/tonne for the supply cost. And with an edge 
density similar to rubber plantations, field size would be of 7.8 hectares in average, 
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inducing another surplus of 20.8 USD/tonne for the supply cost compared to oil palm 
plantations. In addition, the supply cost also increases in average by 6.78 USD/tonne for 
every added 100 km of transportation distance. Only one variables – truck size could 
decrease biomass transport cost, compared to a 1-tonne truck, the supply cost 
logarithmically decreases according to the tonnage, with -36 USD for a 3-tonne truck, 
and with -84 USD for a 26-tonne truck. 
 

In the case of biorefinery optimal costs, we find that edge density (ED), moisture content 
(MC) and parameter-a have significant impacts. one unit of edge density increases the 
biorefinery optimal cost by 42 USD/tonne, a switch of conversion pathway on parameter-
a (represent investment cost and conversion efficiency) at interval of 250 increases the 
optimal cost similarly by 42 USD/tonne and 10% of moisture content increase the 
optimal cost by 12 USD/tonne. Furthermore, a scenario of biomasses with same dry 
matter availability also demonstrated amplification effects of spatial fragmentation and 
moisture content. At baseline scenario – case of rice straw, ED=1.13 and MC=33%; a 
switch to higher ED=6.08 and MC remain the same increase optimum cost by 19% and 
reduce optimal scale by 43%. A switch to higher MC=64% and ED remain the same 
increase optimum cost by 53% with optimal scale reduced by 19%. When both of factors 
increase -   case of OPF; ED=6.08 and MC=64%, the changes drastically increase 
optimum cost by 81% and reduction in optimal scale by 56%.  
 

This implies that in tropical country with complex landscape pattern and high relative 
humidity, landscape fragmentation and moisture content could greatly affect 
competitiveness and feasibility of the biorefinery. Understanding regional specificities 
is equally important as developing efficient technology pathways, deeper understanding 
of the variations of biomass within the supply zone is needed to assess feasibility of 
energy projects than merely the availability for policy makers and industry players to 
develop sustainable biofuels.  
 

6.3 Policy implications and future studies 
 

This study had identified several constraints in biomass logistics and their implications 
for feasible sustainable biofuels. These constraints include landscape fragmentation, 
transport load size, smallholder settings, and moisture content of biomass. Landscape 
fragmentation, along with higher moisture content in biomass, amplifies the effects on 
transport distances and costs. To address this, the establishment of consolidation centers 
can help reduce overall transport distance. 
 

Future studies can focus on delineating biomass availability into zones of different 
geographical density. This approach would assist policymakers in managing resource 
utilization and competition. Zones with higher resource density could consider the 
application of conversion technology with higher scale factors, while zones with lower 
resource density may benefit from conversion technology with lower scale factors. 
Another implication pertains to the competitive use of biomass resources. As biomass 
can be utilized for various purposes, opportunity costs and trade-offs arise. When 
biomass is used for other products within an area, it reduces the availability and 
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geographical density of feedstock for biorefineries, negatively impacting their feasibility 
to achieve economies of scale. Strategic planning and incentives are therefore necessary 
to redirect biomass applications towards biofuel production. 
 

Additionally, limitations exist in increasing truck sizes due to the prevalence of 
smallholder ownership structures in the agriculture and forestry sectors. Lighter truck 
sizes are commonly use in Malaysia, leading to inefficiencies in biomass transportation. 
This situation is reminiscent of the "last mile logistics" challenges faced in the business-
to-consumer (B2C) e-commerce industry, where issues such as "fragmentation of 
deliveries" and "shipment size and homogeneity" arise (Olsson, Hellström & Pålsson, 
2019). In the case of biomass logistics, these challenges manifest at the beginning of the 
value chain, with geographical dispersion and variations in bulk density. Drawing from 
successful approaches in the B2C arena, future studies could explore digital platforms 
and sharing economy models in utilizing transportation capacity to help smallholders 
schedule and consolidate delivery demands. This could enable the use of larger truck 
sizes, ultimately reducing transport costs. 
 

6.4 Conclusion 
 

In conclusion, this study has examined the constraints and implications of biomass 
logistics for the development of sustainable biofuels. The research focused on the context 
of spatial fragmentation in Malaysia, where high resource fragmentation poses 
challenges to biomass transport costs and biofuel production feasibility. By simulating 
biomass transport costs using a GIS raster model and considering various variables, the 
study identified least-cost locations for fresh biomass transportation in Peninsular 
Malaysia. 
 

The analysis revealed that four biomasses from the oil palm industry, namely oil palm 
trunk (OPT), oil palm frond (OPF), empty fruit bunch (EFB), and palm pressed fiber 
(PPF), could provide ample supplies of biomass feedstock. Combining these four 
biomasses in a multi-feedstock scenario could potentially reduce the supply cost, 
highlighting the potential for cost optimization through biomass diversification. 
Additionally, PPF and rice straw were identified as alternative biomass sources with the 
cheapest biofuel potentials. 
 

Furthermore, the study assessed the feasibility of feedstock supplies and biofuel 
production by comparing fresh biomass transport costs to theoretical FOB prices. The 
results showed that larger truck sizes could significantly increase the cost 
competitiveness of biomass supplies. Moreover, fermented biofuels produced from rice 
straw and PPF were found to be systematically cheaper than the majority of crude oil 
price variability, offering substantial biofuel potential and contributing to the country's 
carbon neutrality goals. 
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The research also quantified the impacts of spatial fragmentation and other significant 
factors on biomass transport costs and biorefinery optimal costs. Spatial fragmentation 
was found to amplify the effect of variables on costliness, emphasizing the need to 
consider regional specificities when assessing the feasibility of bioenergy projects. 
Moreover, landscape fragmentation and moisture content were identified as crucial 
factors influencing the competitiveness and feasibility of biorefineries in tropical 
countries. 
 

Based on the findings, the study suggests several policy implications and areas for future 
research. Policy efforts should focus on managing resource utilization and competition 
by delineating biomass availability into zones of different geographical density. Strategic 
planning and incentives are necessary to redirect biomass applications towards biofuel 
production, considering the trade-offs and opportunity costs associated with competing 
uses of biomass resources. 
 

Furthermore, the study highlights the limitations of increasing truck sizes in biomass 
transportation due to the prevalence of smallholder ownership structures. Drawing on 
successful approaches in the B2C e-commerce industry, future studies could explore 
digital platforms and sharing economy models to optimize transportation capacity and 
consolidate delivery demands. Such initiatives would enable the use of larger truck sizes, 
ultimately reducing transport costs and improving the efficiency of biomass logistics. 
 

Overall, this research provides valuable insights into the constraints, opportunities, and 
policy implications of biomass logistics for the development of sustainable biofuels. By 
addressing spatial fragmentation, optimizing biomass supply chains, and considering 
regional specificities, it is possible to enhance the feasibility and competitiveness of 
biofuel production, contributing to a more sustainable and carbon-neutral energy future. 
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ANNEXES 
 

Annex A: Search query on Scopus database for biomass logistics studies 
 

Search terms:  
TITLE-ABS-KEY ( (cellulosic)  AND  (biomass  OR  feedstock)  AND 
NOT  (algae)  AND  (logistic  OR  transport)  AND  (biofuel  OR  biorefinery  OR  
bioenergy) )  AND  (EXCLUDE (SUBJAREA ,  "PHYS")  OR  EXCLUDE (SUBJ
AREA ,  "MEDI")  OR  EXCLUDE (SUBJAREA ,  "PHAR")  OR  EXCLUDE (SU
BJAREA ,  "HEAL")  OR  EXCLUDE ( SUBJAREA ,  "NEUR")  OR  EXCLUDE 
(SUBJAREA ,  "NURS")  OR  EXCLUDE (SUBJAREA ,  "VETE")  OR  EXCLU
DE ( SUBJAREA ,  "PSYC")  OR  EXCLUDE ( SUBJAREA ,  "Undefined") )  AN
D  ( EXCLUDE (PUBYEAR ,  1979)  OR  EXCLUDE ( PUBYEAR ,  1978 )  OR  
EXCLUDE (PUBYEAR ,  1977)  OR  EXCLUDE ( PUBYEAR ,  1976 )  OR  EXC
LUDE ( PUBYEAR ,  1975)  OR  EXCLUDE ( PUBYEAR ,  1974)  OR  EXCLUD
E (PUBYEAR ,  2022)  OR  EXCLUDE ( PUBYEAR ,  2021 ) )  
Database: Scopus 
Result: 6224 documents 
File: scopus_compile_1980-2020.bib 
Retrieved on: 5 Dec 2021 
Publication years = 1980 to 2020; 
Excluded Subject Areas: Medicine; Pharmacology, Toxicology and Pharmaceutics; 
Health Professions; Neuroscience; Veterinary; Nursing; Psychology; Undefined. 

 

Annex B: Coordinates for biorefinery locations using representative points of 
district in Peninsular Malaysia 
 

No States Districts Longtitude (x) Latitude (y) 
1 Johor Johor Bahru 103.741359 1.492659 
2 Johor Batu Pahat 102.928834 1.849442 
3 Johor Kluang 103.318464 2.030068 
4 Johor Kulaijaya 103.606034 1.658267 
5 Johor Muar 102.584872 2.063052 
6 Johor Kota Tinggi 103.899227 1.729375 
7 Johor Segamat 102.820754 2.50346 
8 Johor Pontian 103.387859 1.485561 
9 Johor Ledang 102.53871 2.268446 
10 Johor Mersing 103.836115 2.430917 
11 Kedah Kuala Petani (Sungai Petani) 100.372989 6.119775 
12 Kedah Kota Setar (Alor Setar) 100.353977 6.096953 
13 Kedah Kulim 100.555337 5.371742 
14 Kedah Kubang Pasu 100.40416 6.036246 
15 Kedah Baling 100.916814 5.675547 
16 Kedah Pendang 100.477339 5.993039 
17 Kedah Yan 100.372658 5.79495 
18 Kedah Sik 100.743021 5.818345 
19 Kedah Padang Terap 100.611034 6.256764 
20 Kedah Pokok Sena 100.519358 6.167317 
21 Kedah Bandar Baharu 100.495534 5.131163 
22 Kelantan Kota Bharu 102.277684 6.116785 
23 Kelantan Pasir Mas 102.142782 6.042412 
24 Kelantan Tumpat 102.169372 6.199069 
25 Kelantan Bachok 102.397185 6.069586 
26 Kelantan Tanah Merah 102.147077 5.808887 
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27 Kelantan Pasir Puteh 102.407741 5.836163 
28 Kelantan Kuala Krai 102.201851 5.530813 
29 Kelantan Machang 102.215387 5.767933 
30 Kelantan Gua Musang 101.968178 4.884279 
31 Kelantan Jeli 101.843151 5.700699 
32 Kelantan Lojing 101.433164 4.596792 
33 Melaka Melaka Tengah 102.250087 2.189594 
34 Melaka Alor Gajah 102.211561 2.382211 
35 Melaka Jasin 102.430923 2.311337 
36 Negeri Sembilan Seremban 101.937824 2.725889 
37 Negeri Sembilan Jempol 102.405454 2.896577 
38 Negeri Sembilan Port Dickson 101.796293 2.52254 
39 Negeri Sembilan Tampin 102.231194 2.472971 
40 Negeri Sembilan Kuala Pilah 102.248872 2.740474 
41 Negeri Sembilan Rembau 102.092986 2.590525 
42 Negeri Sembilan Jelebu 102.07191 2.941072 
43 Pahang Kuantan 103.220183 3.763386 
44 Pahang Temerloh 102.416348 3.448649 
45 Pahang Bentong 101.910353 3.522168 
46 Pahang Maran 102.779065 3.58338 
47 Pahang Rompin 103.486211 2.794459 
48 Pahang Pekan 103.389545 3.492095 
49 Pahang Bera 102.453864 3.270526 
50 Pahang Raub 101.857465 3.793532 
51 Pahang Jerantut 102.362038 3.937395 
52 Pahang Lipis 102.054126 4.179605 
53 Pahang Cameron Highlands 101.380144 4.47212 
54 Penang Timur Laut Pulau Pinang 100.329761 5.414921 
55 Penang Seberang Perai Tengah 100.451794 5.353468 
56 Penang Seberang Perai Utara 100.435548 5.514834 
57 Penang Barat Daya Pulau Pinang 100.235897 5.351903 
58 Penang Seberang Perai Selatan 100.49213 5.195837 
59 Perak Kinta 101.154737 4.626261 
60 Perak Larut Matang 100.674703 4.81939 
61 Perak Selama 100.69346 5.218462 
62 Perak Manjung 100.709787 4.402249 
63 Perak Hilir Perak 101.023037 4.020928 
64 Perak Kerian 100.485468 5.12605 
65 Perak Batang Padang 101.25927 4.197468 
66 Perak Kuala Kangsar 100.942045 4.773595 
67 Perak Perak Tengah 100.955429 4.363003 
68 Perak Hulu Perak 101.1238 5.429428 
69 Perak Kampar 101.153653 4.308504 
70 Perlis Perlis 100.204769 6.444913 
71 Selangor Petaling 101.535967 3.184624 
72 Selangor Hulu Langat 101.815673 3.113117 
73 Selangor Klang 101.445562 3.044917 
74 Selangor Gombak 101.560332 3.339222 
75 Selangor Kuala Langat 101.49507 2.803828 
76 Selangor Sepang 101.750527 2.691369 
77 Selangor Kuala Selangor 101.249762 3.340184 
78 Selangor Hulu Selangor 101.658312 3.560105 
79 Selangor Sabak Bernam 100.990592 3.678777 
80 Terengganu Kuala Terengganu 103.137014 5.329624 
81 Terengganu Kemaman 103.363802 4.233836 
82 Terengganu Dungun 103.415586 4.754876 
83 Terengganu Besut 102.552378 5.829012 
84 Terengganu Marang 103.204944 5.207711 
85 Terengganu Hulu Terengganu 103.008937 5.073042 
86 Terengganu Setiu 102.825218 5.443798 
87 Terengganu Kuala Nerus 103.047216 5.367864 
88 Federal Territories Kuala Lumpur 101.686855 3.139003 
89 Federal Territories Putrajaya 101.696445 2.926361 
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Annex C: Methodological annex 
 

## R code for the models M1 to M9c 
# Y = Biomass supply Y in the manuscript (USD/fresh tonne) 
# X1 = Distance (kilometre) 
# X2 = Truck (capacity of the truck in tonne) 
# X3 = Biomass yield  (fresh tonne/hectare) 
# X4a = Edge density  (metre/hectare) 
# X4b = Patch density (number of patches/square kilometre) 
# X4c = Aggregation index (ratio) 
# X5 = Waste origin (it is a categorical variable that either take the value of 
“field” – X5a, “mill” – X5b, or “both” – X5c) 
 
library(lm) 
M1 <- lm(Y ~ 0+(X1  + X2), data=Dataset)  
M2 <- lm(Y ~ 0+((X1  + log(X2)), data=Dataset)  
M3 <- lm(Y  ~ 0+(X1  + log(X2) + X3 ), data=Dataset)  
M4a <- lm(Y  ~ 0+(X1  + log(X2) + X4a), data=Dataset) 
M4b <- lm(Y  ~ 0+(X1  + log(X2) + X4b), data=Dataset)  
M4c <- lm(Y  ~ 0+(X1  + log(X2) + X4c), data=Dataset)  
M5 <- lm(Y  ~ 0+(X1  + log(X2)  + X5), data=Dataset)  
M6a <- lm(Y  ~ 0+(X1  + log(X2) + X3  + X4a), data=Dataset) 
M6b <- lm(Y  ~ 0+(X1  + log(X2) + X3  + X4b), data=Dataset)  
M6c <- lm(Y  ~ 0+(X1  + log(X2) + X3  + X4c), data=Dataset)  
M7a <- lm(Y  ~ 0+(X1  + log(X2) + X3  + X5 + X4a), data=Dataset) 
M7b <- lm(Y  ~ 0+(X1  + log(X2) + X3  + X5 + X4b), data=Dataset)  
M7c <- lm(Y  ~ 0+(X1  + log(X2) + X3  + X5 + X4c), data=Dataset) 
M8a <- lm(Y  ~ 0+(X1  + log(X2) + log(X3 ) + X5 + X4a), data=Dataset)  
M8b <- lm(Y  ~ 0+(X1  + log(X2) + log(X3 ) + X5 + X4b), data=Dataset)  
M8c <- lm(Y  ~ 0+(X1  + log(X2) + log(X3 ) + X5 + X4c), data=Dataset)  
M9a <- lm(Y  ~ 0+(X1  + log(X2)  + X5 + X4a), data=Dataset)  
M9b <- lm(Y  ~ 0+(X1  + log(X2)  + X5 + X4b), data=Dataset) 
M9c <- lm(Y  ~ 0+(X1  + log(X2) + X5 + X4c), data=Dataset)  
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Annex D: Accessibility of fresh biomass in Peninsular Malaysia 
 

Benchmarked costs: *50% of FOB price 
(USD69 /fT) 

* 15% of FOB price 
(USD21 /fT) 

 1T truck 26T truck 

Biomass wastes 
Quantity 

(million fresh 
tonne) 

% of total 
availability 

Quantity 
(million fresh 

tonne) 

% of total 
availability 

Rice straw 2.74 71 3.88 100 
Rice husk 0.36 61 0.59 100 
Rice straw + husk 2.67 60 4.47 100 
Forest logging wastes 0.35 16 2.13 96 
OPF 1.42 20 6.92 97 
OPT 3.55 20 17.00 95 
OPF + OPT + EFB + PPF 8.20 20 38.15 95 
PPF 1.22 21 5.42 95 
EFB 2.01 21 8.93 95 
EFB + PPF 3.23 21 14.35 95 
Plywood wastes 0.45 34 1.22 92 
Plywood wastes + Saw 
dust 0.74 31 2.16 90 

Saw dust 0.32 30 0.88 83 
Rubber logging wastes 0.04 8 0.34 77 

 

Annex E: Moisture content of biomass wastes 
 

Biomass Average weight of moisture content 
% 

Rice straw (1) 33.3 
Rice husk (2) 13.5 
Rice straw & rice husk (1 & 2) 33.2 
Forest logging wastes (3) 20.0 
Oil palm frond (OPF) (4) 64.0 
Oil palm trunk (OPT) (4) 85 
OPF, OPT, EFB, PPF (4) 67.3 
Palm pressed fibre (PPF) (4) 28.5 
Empty fruit bunch (EFB) (4) 60.0 
EFB & PPF (4) 48.1 
Plywood mill wastes (5) 17.0 
Plywood mill & Sawmill (5 & 6) 13.1 
Saw dust (6) 8.2 
Rubberwood logging wastes (7) 68 

(Source: (1) Chen, Pen, Yu & Hwang (2011); (2) Shafie, Mahlia, TMasjuki & Ahmad-Yazid (2012); (3) 
McKendry (2002); (4) Elbersen, Meesters, & Bakker (2013); (5) Aydin, Colakoglu, Colak, & Demirkir 
(2006); (6) Miskam, Zainal & Yusof (2009); (7) Sik, Choo, Zakaria, Ahmad, Yusoff & Chia (2010).) 
 

Annex F : Annual CEPCI indices 
 

Year Chemical Engineering Plant Cost Index (CEPCI) 
2008 575.4 
2009 521.9 
2010 550.8 
2011 585.7 
2012 584.6 
2013 567.3 
2014 576.1 
2015 556.8 

(Source: The Chemical Engineering Plant Cost Index (2018)) 
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Annex G: Data & calculation of Location factor 
 

Currency exchange rate 
Location factor Year 2003 Southeast Asia 1.12 Year 2003 3.8000 

Year 2015 3.9399 
Calculations: 
Location factor for Malaysia Year 2015 
= 1.12 × (3.9399/3.8) 
= 1.16 

(Source: Towler & Sinnott (2013); Accountant General’s Department of Malaysia (2016).) 
 

Annex H: Liquid biofuel yield based on two major conversion processes 
 

 

(Source: 
(1) Prins,Ptasinski & Janssen (2005) 
(2), (4), (6),(7) & (9)Broust, Girard, & Van de Steene (2013) 
(3)* & (8)* AMIC (2016). 
(5) Humbird et.al. (2011) 
*Ratios applied in the study.) 
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Annex I: R code to establish variability of crude oil prices 
 

> LinearModel.2 <- lm(USD.metric.tonne ~ I(Month*0), data=Dataset) 
> summary(LinearModel.2) 
Call: 
lm(formula = USD.metric.tonne ~ I(Month * 0), data = Dataset) 
Residuals: 
    Min      1Q  Median      3Q     Max  
-386.53 -137.48  -37.62  188.27  433.05  
Coefficients: (1 not defined because of singularities) 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)    540.78      13.16   41.09   <2e-16 *** 
I(Month * 0)       NA         NA      NA       NA     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
Residual standard error: 176.6 on 179 degrees of freedom 
  (24 observations deleted due to missingness) 
 
> #Calculate R-Squared LinearModel.2 
> 1-(deviance(LinearModel.2)/sum((Dataset$USD.metric.tonne-
mean(Dataset$USD.metric.tonne))^2)) 
[1] 0 
 
> predict(LinearModel.2, newdata = new.dat, interval = 'prediction', level=0.95) # 
for 95% confidence 
       fit      lwr      upr 
1 540.7792 191.3652 890.1931 
> predict(LinearModel.2, newdata = new.dat, interval = 'prediction', level=0.68) # 
for 68% confidence 
       fit      lwr      upr 
1 540.7792 364.1996 717.3587 
> #Calculate R-Squared LinearModel.2 
> 1-(deviance(LinearModel.2)/sum((Dataset$USD.metric.tonne-
mean(Dataset$USD.metric.tonne))^2)) 
[1] 0 
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Annex J: Distribution of biomass moisture content (%) and landscape 
fragmentation in edge density 
 

 
(Adapted from: Ong et al. 2020) 
 
  

RICESTRAW

PPF

FORESTPLYWOOD

SAWDUST

RICEHUSK

EFB
OPF

OPT

RUBBER

M
oi
st
ur
e
co
nt
en

t
(%

we
ig
ht

ba
sis

)

0

10

20

30

40

50

60

70

80

90

log (Edge Density)
0.2 0.5 1 2 5 10 20



 

126 

APPENDICES 
 

Appendix A 
 

 



 

127 

 

 

 

 



 

128 

 



 

129 

 

 

 



 

130 

 



 

131 

 



 

132 

 



 

133 

 
 



 

134 

 



 

135 

 



 

136 

 



 

137 

 
  



 

138 

Appendix B 

 



 

139 

 
 
 



 

140 

 
 



 

141 

 

 



 

142 



 

143 



 

144 

 

  



 

145 

Appendix C 
 

 

 

Box C- 5 Cost Estimation of Biorefinery Plant in Peninsular Malaysia 2 

 
In this case study, cost curve method is used to estimate the capital cost of a biorefinery 
plant. Location of plant is assumed to be in Yan, Kedah with paddy and oil palm trunk (OPT) 
as its respective feedstock.  
 
 
 
 
 
 
*Assumption: Feedstock cost comprised of 80% of the total operating cost 
 
With the estimation of capital cost of plant, operational cost is obtained as well as the relative 
production cost of plant. Results were plotted as shown in Figure C-1 5 below:  
 

 
 

Figure C- 14 Optimal production costs from oil pal trunk residues and paddy residues 

Capital 
cost of 
plant 

OPEX Productio
n cost 
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Initial finding suggested that paddy is highly available in Yan, Kedah as compared to OPT. 
Result above visualised the optimal production cost of biorefinery plant in single location with 
two different feedstocks. When paddy is used as the feedstock, with the capacity of plant in 
the range of optimal production cost from paddy, it gives a better promising production cost. 
This is because production cost of plant is highly dependent on the location factor. Economy 
of scale will be achieved if the biorefinery plant located at an optimal location with high 
availability of specified feedstock. It is concluded that high variability of production cost in 
Peninsular Malaysia is corresponding to the location of the biorefinery plant due to 
geographical heterogeneity of biomass feedstocks.  
 
Source: Chen, J.T., Ong, C.L, Roda, J.M., Centre of Excellence of Biomass Valorization for 
Aviation, CIRAD-UPM-AMIC (201 6)  
 
 

This report presents the economic potential using 2,000t/d forest and oil palm plantation 
biomass (OPF and OPT) as the feedstock for power generation with main focus on electricity 
production. The proposed technology is a 27MW capacity direct combustion system with a 76% 
efficiency comprising of a pre-treatment drying system, fluidised bed boilers for conversion 
of biomass to heat and steam, and generation of electricity through extraction-condensing 
turbine. The biomass feedstock with an assumed calorific value of 1 5.82MJ/kg with 1 6% 
moisture content (dry basis) (Fiseha et al., 201 2). The direct combustion technology has a 30-
year plant life with investment cost of USD900/kW and USD1 050/kW for boiler and turbine 
respectively. The process, costing and financing information are presented in Table C-1 4. The 
costing information was obtained through personal interview with a local biomass-to-power 
industry stakeholder while the financing data are adopted from NREL report (Humbird et al., 
201 2).  
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Box C- 6 Location factor for biofuel plant 

Biomass valorisation had been recognised as sources for renewable energy in recent 
decades. Aiming at utilising biomass residues can avoid food price competition and land uses 
change. Nevertheless, the major cost factor of biomass supplies lies in the transportation.  
 

The geographical heterogeneity of biomass is illustrated in Figure C-1 9. Each type of biomass 
has different spatial structure varying on the level of centrality and dispersion. Depending of 
the point of mill location, the accessibility to a particular resource will differ greatly and will 
significantly impact the transportation cost. In each diagram, Location I can access more 
biomass areas with less distances compare to Location II. The more distances are required; 
the transportation cost would be incurred.  
 

 

Figure C- 18 Spatial structure of biomass resources (Rodrigue, 201 3) 

With Euclidean distance computation and taking into account the road network in Peninsular 
Malaysia, the accessibility to forest, palm oil, paddy and rubber are shown in Figure 2. In each 
graph, the best biorefinery location is the lowest cost location to access the particular 
biomass. Contrary, the average location will require higher cost to get less biomass compare 
to the best location. The best biorefinery location can access more numbers of biomass area 
with less distances. In case of forest and palm oil, their spatial structures follow the patterns 
in Figure C-1 9 (a) and (b) respectively. The accessibility curves of both show that the number 
of biomass area are reached at accelerating rate from point of origin before its climax. For 
paddy, its structure follows Figure C-1 9 (c). Its accessibility takes a terrace-liked curve. The 
paddy area can be access at rapid rate for the first cluster and more distances are required 
prior to reach next clusters, as shown by the plateau before the subsequent slope. Lastly, the 
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spatial distribution of rubberwood residues is very scattered. Its accessibility graph always 
increases steeply, implying that every rubber area required a distinct amount of distances to 
reach. 

 

Figure C- 19  Accessibility to biomass from ideal locations and KLIA 

The geographical variability of each biomass resources will affect its supply cost structure 
very differently. This suggests that the location factor has substantial impact on viability of 
biorefinery plant. It is vital to evaluate carefully the location to establish biofuel plant. 
 
Source:  
Adapted from Chu Lee Ong, Juliette Babin, Jia Tian Chena & Jean-Marc Roda. (201 6) 
Designing model for biomass transport cost of biofuel refinery in Malaysia. Unpublished. 
 
References: 
Rodrigue, J.P., Comtois, C. and Slack, B., 201 3. The geography of transport systems. 
Routledge. pp.1 91 . 
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Figure C- 20  Map examples 
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