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Résumé Détaillé

Cette these est divisée en deux parties. La premiere partie étudie la stabilité et le risque systémique
de réseaux financiers complexes, soumis a des processus de contagion de défauts, et de ventes forcées.
Nous prouvons des théorémes limites de type loi des grands nombres et limite centrale sur la dy-
namique de contagion. Nous montrons comment quantifier le risque systémique d’un réseau financier
en présence d’une perturbation externe et sous information partielle. Nous étudions ensuite les pro-
cessus de risque multidimensionnels de Cramér-Lundberg ou les agents, situés sur un grand réseau,
subissent des pertes de la part de leurs voisins. Nous présentons enfin un cadre général abordable
pour comprendre I'impact conjoint de liquidations et de cascades de défauts sur le risque systémique
dans les réseaux financiers complexes.

La deuxiéme partie de la theése est consacrée a 1’étude et le controle de systemes interactifs de type
graphon champ moyen. Le réseau financier est ici considéré comme un grand systéme interactif, ce qui
établit un lien avec la théorie des jeux a champ moyen. La structure en champ moyen repose sur la
structure de graphe sous-jacente du réseau, appelée champ moyen graphon. Nous commencons par une
étude systématique des équations différentielles stochastiques rétrogrades (EDSR) avec sauts de type
graphon champ moyen et ses mesures de risque dynamiques associées. Nous étudions ensuite des jeux
stochastiques continus avec interactions non homogenes de type champ moyen sur de vastes réseaux
et explorons leurs limites graphon champ moyen. Nous proposons des équilibres de Nash approximés
pour les jeux finis sur les réseaux, utilisant les équilibres en champ moyen graphon associés comme
référence.

Réseaux financiers et graphes aléatoires

Les réseaux financiers désignent des systemes financiers interconnectés dans lesquels des échanges
d’informations ou des interactions financieres ont lieu entre les institutions. Lorsque deux institu-
tions financiéres sont liées, tout événement financier affectant 1’'une d’entre elles aura un impact sur
son homologue, entrainant des changements dans leurs états financiers respectifs. Ainsi, lorsqu’un
réseau financier est confronté a un choc externe, les instabilités peuvent se propager des institutions
initialement touchées vers d’autres a travers ces liens interconnectés. Cela peut entrainer des risques
importants a ’échelle du systéme. Le risque systémique fait référence au risque d’une perturbation ou
d’un effondrement généralisé et substantiel de ’ensemble d’un systéeme financier ou d’un marché, plutot
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que d’une institution ou d’un secteur spécifique. La crise financiere de 2007-2009 a illustré I'importance
des structures de réseau dans I’amplification des chocs initiaux au sein du systéme bancaire & un niveau
mondial, entralnant une récession économique. Une importante littérature sur le risque systémique et
les réseaux financiers a émergé, voir par exemple [91, 146] pour deux études récentes et les références
qui y sont mentionnées. En particulier, il a été démontré dans [7, 28, 105, 124, 179] que la topologie
du réseau joue un réle important dans la propagation des défauts dans les systémes financiers.

Graphes, degrés et structure de connectivité

Nous utiliserons quelques notions de théorie des graphes pour étudier nos réseaux financiers. Com-
mengons par introduire quelques concepts de base. Nous suivons certaines notations et définitions
issues de [139], ou vous trouverez des informations plus détaillées sur les graphes et les réseaux.

Un graphe G = (V, E') se compose d’une collection de sommets V', appelée ensemble des sommets, et
d’une collection d’arétes, appelée ensemble des arétes, . Les sommets correspondent aux institutions
financiéres que nous modélisons, les arétes indiquent les interconnexions entre les paires d’institutions.
Les graphes peuvent étre classés en deux types, non orientés et orientés. Une aréte est une paire non
ordonnée u,v € F indiquant que u et v sont directement connectés. Lorsque G est non orienté, si u est
directement connecté & v, alors v est également directement connecté & u. Ainsi, une aréte peut étre
considérée comme une paire de sommets. Dans notre contexte, nous traitons des graphes orientés, ou
les arétes sont indiquées par la paire ordonnée (u,v), ce qui signifie une aréte allant de u a v. Dans
ce cas, lorsque l'aréte (u,v) est présente, I'aréte inverse (v,u) n’a pas nécessairement besoin d’étre
présente. Dans un systéme financier, c’est en réalité le cas, car le créancier et le débiteur jouent des
roles différents dans leur relation mutuelle. Si I'institution u est exposée a l'institution v, alors il y a
une aréte dirigée de v vers u.

Dans cette these, nous considérons de grands réseaux, ou l’ensemble des sommets V' a une taille
importante n € N. Dans ce cas, nous pouvons numéroter les sommets de 1 a n et supposer que
V = [n] := 1,...,n, ce que nous ferons & partir de maintenant. Un rdle particulier est joué par
le graphe complet, ou I’ensemble des arétes est constitué de toutes les paires possibles de sommets,
c’est-a-dire £ = 14,5 : 1 <i < j <n. Le graphe complet est le graphe le plus fortement connecté sur
n sommets, et tout autre graphe peut étre considéré comme un sous-graphe de celui-ci, obtenu en
conservant certaines arétes et en supprimant le reste. Les réseaux du monde réel, non limités aux
réseaux financiers, présentent une grande diversité dans leur structure de connectivité, tels que les
réseaux en annealu, les réseaux en étoile, les réseaux en arbre, etc. Différentes structures de graphes
conduisent a des performances différentes dans différents modeles.

Une caractéristique importante des graphes est le degré, qui mesure la connectivité d’'un sommet
dans le graphe. Dans les graphes non orientés, le degré d; du sommet i € [n] est défini comme le
nombre d’arétes contenant ¢, c’est-a-dire d; = #{j € [n] : {i,j} € E}. Dans notre contexte, dans les
graphes orientés, le degré d se compose de deux parties, le degré d’entrée d* et le degré de sortie d—,
qui sont définis, par exemple pour le sommet 7,

df = #{jen]: (j,i)eE}, et d7 =#{je[n]: (i,j) e E}.

Nous appelons toutes les arétes dirigées vers i (j,i) € E : j € [n] les voisins entrants de i, et toutes les
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arétes partant de i, c’est-a-dire (i,7) € E : j € [n], les voisins sortants de i.

Nous fournirons une analyse quantitative des réseaux financiers selon différents modeles de risque.

Graphe aléatoire avec degrés de sommets donnés

Un point crucial dans la modélisation du risque systémique est la disponibilité de I'information. Si
nous disposons de toutes les informations nécessaires sur le réseau financier, y compris sa structure
de connectivité, nous pouvons le modéliser et I'analyser efficacement. Cependant, les informations
disponibles ne sont pas toujours compleétes, en particulier lorsqu’il s’agit de réseaux financiers tres
vastes. Comme le soulignent [30, 126, 144, 187, 193], seules des informations partielles sont générale-
ment disponibles pour les réseaux financiers, par exemple la taille totale des actifs et des passifs de
chaque institution. Pour faire face a une observation incomplete des connexions du systéme, nous
allons utiliser des graphes aléatoires.

Il existe différents types de graphes aléatoires, et parmi eux, nous nous concentrerons sur les graphes
avec des degrés fixes. Idéalement, nous aimerions étudier des graphes aléatoires uniformes ayant une
séquence de degrés prédéterminée, c’est-a-dire une séquence de degrés qui nous est donnée a ’avance.
En général, les informations partielles observées nous permettent de déterminer le nombre de créanciers
et de débiteurs pour presque toutes les institutions. Nous analyserons les réseaux financiers en nous
basant sur le Modéle de Configuration, qui a été initialement développé par Bender et Canfield [57]
ainsi que par Bollobds [65] comme moyen de générer un graphe aléatoire avec une séquence prescrite
de degrés de sommets. Ses premieres applications étaient dans I’étude des graphes réguliers aléatoires.

Nous étudions le modele de configuration dirigé. Sans perte de généralité, nous supposons tout
au long de cette theése que d; = 1 pour tout ¢ € [n], car lorsque d; = 0, le sommet i est isolé et
peut étre supprimé du graphe. Etant donné les séquences de degrés d;f = (df,...,d}) et d;; =
(dy,....dy) telles que X ;cr, di = 2uie[n] 4; » nous associons a chaque institution 7 deux ensembles :
H; l'ensemble des demi-arétes entrantes et H; ’ensemble des demi-arétes sortantes, avec |H; | = d
et |H; | =d; . Soit HT = J, H et H™ = [J, H; . Une configuration est un appariement entre H*
et H™. Lorsqu’une demi-aréte sortante de l'institution i est appariée avec une demi-aréte entrante de
I'institution j, une aréte dirigée de i vers j apparalt dans le graphe. Le modeéle de configuration est le
multigraphe dirigé aléatoire uniformément distribué sur toutes les configurations. Le graphe aléatoire
construit par le modele de configuration est noté G (d;", d;).

Il n’est pas toujours possible de construire un graphe simple avec une séquence de degrés donnée.
A la place, nous construisons un multigraphe, qui autorise les boucles et les arétes multiples entre
paires de sommets. Cependant, notre objectif est de modéliser les réseaux financiers comme des
graphes aléatoires simples uniformes. Comment abordons-nous cette question ? En réalité, il existe
plusieurs approches pour résoudre ce probleme. Cependant, nous n’avons pas nécessairement besoin
de générer un graphe aléatoire simple uniforme. Grace a certaines découvertes dans les graphes
aléatoires, le modele de configuration peut offrir des insights et des résultats pour notre objectif. Il
est facile de montrer que conditionné a ce que le multigraphe soit un graphe simple, nous obtenons un
graphe aléatoire uniformément distribué avec ces séquences de degrés données, noté gi’"‘) (d;},d;). En
particulier, en nous appuyant sur la proposition suivante, toute propriété qui se réalise avec une forte
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probabilité sur le modele de configuration se réalise également avec une forte probabilité sur le graphe
aléatoire simple uniforme, c’est-a-dire qu’elle se réalise également avec une forte probabilité sur nos
réseaux financiers.

Proposition 0.1 ([10]). Toute propriété qui se réalise avec une forte probabilité sur le modéle de
configuration se réalise également avec une forte probabilité sur ce graphe aléatoire simple (pour le

graphe aléatoire g{m (d;,d,;)) a condition que

lim inf P(G™(d;,d;;) simple) > 0.

n—o0

D’autre part, une condition de moment du second ordre sur la séquence de degrés Z?Zl(dj )2 +
(d;7)? = O(n) peut nous garantir que la condition ci-dessus est satisfaite, selon un résultat de Janson
[149].

Nous nous référons & [194, Chapitre 7.5] pour plus d’informations sur le modeéle de configuration.
Comme nous le verrons plus tard, sous certaines restrictions imposées a la séquence de degrés, nos
réseaux financiers satisfont toutes les conditions de la proposition mentionnée ci-dessus. Par con-
séquent, nous pouvons utiliser une approche probabiliste pour étudier diverses propriétés financiéres
dans différents modeles de risque en les associant au modeéle de configuration. Dans cette optique,
nous pouvons établir nos modeles basés sur le modele de configuration.

Propagation des défauts et ventes forcées

Pour analyser la contagion des défauts dans les réseaux financiers, il est nécessaire de définir la con-
dition de défaut pour les institutions en fonction des informations disponibles et d’examiner comment
la contagion se propage dans les réseaux.

Modele de seuil et percolation bootstrap

Comme dans [20], nous utiliserons le nombre de voisins en défaut comme critére. Chaque institution
se voit attribuer aléatoirement un seuil de défaut selon une certaine distribution, basée sur ses carac-
téristiques financieres. Lorsque le nombre de voisins en défaut atteint ou dépasse ce seuil de défaut,
Iinstitution elle-méme tombe en défaut.

Nous décrirons la dynamique de contagion des réseaux en utilisant la percolation bootstrap. La
percolation bootstrap a été introduite par Chalupa, Leath et Reich [86] en 1979 dans le contexte des
systemes magnétiques désordonnés. La percolation bootstrap est un processus de diffusion qui a été
étudié sur divers graphes, voir par exemple [9, 10, 148, 150]. Le processus de percolation bootstrap
(ainsi que de nombreuses variations de celui-ci) a une longue histoire en physique statistique et est
largement utilisé comme modele pour décrire plusieurs phénomeénes complexes dans divers domaines,
de la propagation des pandémies [153] & l'activité neuronale [11] et a la propagation des défauts dans
les systémes bancaires [20]. Dans le processus de percolation bootstrap, pour un seuil fixe 6 > 2, il
y a initialement un sous-ensemble de nceuds actifs et a chaque tour, chaque nceud inactif ayant au
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moins 0 voisins actifs devient actif et le reste indéfiniment. Récemment, la normalité asymptotique
de la percolation bootstrap a également été étudiée dans [13]. La percolation bootstrap est également
étroitement liée au probleme du k-core dans les graphes aléatoires, car elle se révele étre une méthode
puissante pour trouver le k-core, voir par exemple [151].

Dans notre contexte, nous considérons un processus de percolation bootstrap sur le graphe avec
une séquence donnée de seuils de défaut. Ce processus est déterministe et évolue par étapes. Chaque
institution dans le graphe peut étre dans I'un des deux états : solvable ou en défaut (également appelé
inactif ou actif dans certaines publications). Initialement, un sous-ensemble de sommets du graphe
représente les institutions en défaut, tandis que toutes les autres institutions sont solvables. A chaque
étape du processus, si un sommet solvable a un nombre de voisins en défaut supérieur ou égal a son
seuil, il devient également en défaut et reste dans cet état de maniére permanente. Le processus se
poursuit jusqu’a ce qu’aucune autre institution ne devienne infectée, moment ou il s’arréte.

Cascade de défauts et résultats asymptotiques

Nous abordons la construction de la contagion des défauts de maniere dynamique, ou la cascade de
défauts évolue étape par étape. La cascade de défauts peut étre considérée comme un processus de
percolation bootstrap appliqué au modele de configuration. Si la structure du graphe est connue et
que la séquence des seuils est fixée, le processus de percolation devient déterministe. Cependant, en
raison de la nature aléatoire du modele de configuration et de la variabilité de la séquence des seuils,
le processus de percolation lui-méme devient stochastique, ce qui rend son analyse complexe.

Pour résoudre ce probléme, nous proposons de classer toutes les institutions en un ensemble de
types dénombrables X en fonction de leurs caractéristiques financieres observées. Les institutions
appartenant au méme type partagent la méme distribution de seuil sur 0,1,...,d". De plus, nous
introduisons un cadre en temps continu pour la contagion de défaut. Une fois qu'une institution fait
défaut, elle subit des pertes envers ses voisins sortants apres une période de temps stochastique. En
conséquence, le processus de contagion de défaut devient un processus stochastique avec des sauts.
Notre objectif est d’étudier ses propriétés asymptotiques lorsque la taille du réseau n devient grande.
Nous obtenons & la fois des lois des grands nombres (LLN) et des théorémes centraux limites (TCL).
Nous étudions également des processus de cascade de défauts plus généraux dans des réseaux financiers
stochastiques et obtenons un résultat de LLN en utilisant une méthode de torsion temporelle pour les
processus de Markov, qui apparait, par exemple, dans ’étude du modele de pandémie SIR dans [153].

Les résultats présentés dans le chapitre 2 étendent les travaux de [20]. Nous utilisons une approche
probabiliste pour établir la loi des grands nombres pour des caractéristiques clés du réseau pendant
le processus de contagion de défaut. Ces caractéristiques comprennent (mais ne se limitent pas a) le
nombre d’institutions solvables et en défaut tout au long de la dynamique, y compris les quantités
finales apres l'arrét de la contagion. Par rapport a [20], nous fournissons des informations plus dé-
taillées sur I'état du réseau pendant la contagion de défaut. Bien que les deux études examinent la
cascade de défauts en la construisant comme un processus dynamique, notre preuve differe de celle
de [20], qui repose sur les résultats de fluides limites des équations différentielles. En revanche, nous
utilisons une méthode probabiliste. Nous considérons les quantités correspondant aux caractéristiques
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du réseau comme des processus stochastiques qui évoluent dans le temps. Nous démontrons que ces
processus, lorsqu’ils sont normalisés par la taille du réseau, convergent conjointement vers des proces-
sus gaussiens. Les fonctions de covariance de ces fluctuations gaussiennes asymptotiques sont données
explicitement. Nous prouvons que ces caractéristiques convergent conjointement vers des vecteurs
gaussiens apres l'arrét de la contagion. De plus, nous proposons des théoremes limites pour diverses
fonctions d’agrégation de richesse a 1’échelle du systéme et étudions comment le risque systémique
peut étre lié a I’hétérogénéité des réseaux financiers.

Contributions du Chapitre 2 : Théorémes limites pour la contagion de défaut et le risque
systémique

Notations. Soit {X,},en une suite de variables aléatoires réelles sur un espace de probabilité
(Q,F,P). Sic e R est une constante, nous écrivons X, 2, ¢ pour indiquer que X,, converge en
probabilité vers ¢, c’est-a-dire que pour tout € > 0, nous avons P(|X,, — ¢| > €¢) — 0 lorsque n — 0.

Nous écrivons X, 4, x pour indiquer que X,, converge en distribution vers X. Soit {a,}nen et
{bn}nen deux suites de nombres réels tendant vers l'infini lorsque n — 0o0. Nous écrivons X, = o,(ay)
si | Xnl|/an -2 0, et nous écrivons X,, = Op(ay) si P(|X,| < Cla,|) — 1 lorsque n — oo pour une
certaine constante C. Nous écrivons a, = o(b,) si a,/b, — 0, et nous écrivons a,, = O(b,) si pour
une certaine constante C, |a,| < C|b,|. Si E,, est un sous-ensemble mesurable de €2, pour tout n € N,
nous disons que la suite {E,},en se produit avec une probabilité élevée (w.h.p.) si P(E,) = 1 — o(1)
lorsque n — 0. La notation 1{E} est utilisée pour l'indicateur d’un événement E ; il vaut 1 si E se
produit et 0 sinon.

Nous classifions les institutions financieres dans un ensemble de types X', qui est dénombrable.
Sans perte de généralité, nous supposons que les institutions appartenant au méme type ont le méme
degré sortant, le méme degré entrant et la méme distribution des seuils de défaut.

Hypothéses 2.1 et 2.2

o 1l existe une classification des institutions financiéres dans un ensemble dénombrable de car-
actéristiques possibles X tel que, pour chaque n € N, les institutions de la méme classe de
caractéristiques ont la méme fonction de distribution des seuils (notée qg(cn) pour les institutions
de la classe x € X ).

e Pour un réseau de taille n, soit ufﬁ) la distribution des types et qg(ﬁn) la distribution des seuils de
défaut du type x € X. Pour certaines fonctions de distribution de probabilité i et ¢ sur l’ensemble

des caractéristiques X et indépendantes de n, nous avons ug(cn) — g et qg(gn)(ﬁ) — q,(0) lorsque

v
n — o0, pour tous les x € X et § = 0,1,...,d}. De plus, nous supposons que Zgio q:(0) =1
pour tous les x € X.

Pour étudier les résultats du TCL, nous restreignons au régime des réseaux clairsemés.

Hypothéses 2.3a-b
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(a) Nous supposons que, lorsque n — o0, les degrés moyens convergent et sont finis :

A = S db ) = Y dy Y — A= ) df g € (0,00).

zeX zeX reX

(b) Nous supposons que pour toute constante A > 1, nous avons

ZAd;r—nZu (n) and ZAdz—nZ,u O(n).

xeX zeX

Notez que 'hypothese 2.3b implique 2.3a. Les résultats du TCL ne nécessitent pas 'hypothese
2.3b. Nous ne mettons en évidence que les résultats du TCL dans cette introduction.

Pour z € [0, 1], nous définissons les fonctions:
b(d,z,¢) :=P(Bin(d,z) = () = (‘;) 241 — 2)4,

B(d, z,¢) :=P(Bin(d, z) > :i(> (1 2,

ou Bin(d, z) désigne la distribution binomiale avec les parametres d et z. Nous définissons également:

=7 qu Bldf,zdf —0+1), f5)(z) =1— f(2),
zeX
f () =AMz = 3 M, qu )B(df 2 df 0 +1),
rzeX

S0 (=) =g @) (a1 - z,E).

"Wy T

Sauf indication contraire, nous définissons toujours les fonctions sans exposant (n) en remplacant la
distribution des seuils q;g;n)(H) et la distribution des degrés uﬁ{” par leur distribution limite g, (6) et p,

respectivement. Par exemple, nous définissons :
Sz.0.0(2) 1= ,uqu(H)b(d;r, 1-— z,f).

Désignons par D, (t) et Sp(t) respectivement le nombre d’institutions en défaut et le nombre
d’institutions solvables a l'instant ¢ pour un réseau de taille n. Pour e X, 0 e Net £ =0,...,0 — 1,
nous notons S, (n 9) ,(t) le nombre d’institutions solvables de type x, avec un seuil de 6 et ¢ voisins en
défaut a llnstant t. Soit W, (t) le nombre de demi-arétes sortantes infectées et 7,7 le temps d’arrét
correspondant & l'arrét de la contagion de défaut. Remarquez que lorsque le réseau ne contient plus

de demi-arétes sortantes infectées, la contagion s’arréte.

Définissons
di
2= sup{z €[0,1] : Az — Z pady, Z qgﬁ(@),@(d;{,2,d;3Ir — 60+ 1) = 0},
zeX =1
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qui peut étre considéré comme la limite du temps d’arrét 7).
La normalité asymptotique & la fin du processus de contagion est donnée comme suit.

Théoréme 2.7 Supposons que les hypothéses 3.2 a 3.5b sont satisfaites. Soit t* = —Inz* et z, le
plus grand z € [0,1] tel que f‘g(,l)(z) = 0. Siz* € (0,1] et z* est une solution stable, c’est-d-dire
a:= fiy(z*) > 0, alors nous avons conjointement

02 (D (18) = nfy) () —5 Zp(t) — o (") Zw (tY),

nV2(Su () = nfd (2a) -5 Zs(t) — a7 fh(2T) 2w (1),

De plus, 2, 2> z* et pour tout t€ X, 0 <€ <0 <d,

—1 2/ a(n) (n) (2 d * * -1/ * *
/ (Sa0.0(Th) —m8, 5 (Zn)) — Z394(t7) — @ sy9,0(27) 2w (),
o Zp, Zg et Zyw sont des processus Gaussiens centrés avec des fonctions de covariance caractérisées
explicitement.

Nous étudions également la LCT concernant le risque systémique du réseau financier.

Richesse globale du systéme : Soit I'Y la richesse totale dans le systéme financier s’il n’y a pas
de défaut dans le systéme. Nous définissons la fonction d’agrégation a 1’échelle du systeme comme
suit :

dr 9—1
ro(t) Z LoD Z LY Z Z ES
xeX zeX 0=1/¢=1

ou Dg(cn) (t) est le nombre d’institutions de type z en défaut. Pour chaque type z € X, nous considérons
un cofit sociétal fixe borné (dépendant du type) LY pour les institutions en défaut et un cofit fixe
borné (dépendant du type d’institutions hotes) Lg pour chaque lien en défaut.

Supposons que 1;2 /n — [0 lorsque la taille du réseau n — co0. Définissons alors :

df 0-1
f<(>n)(2> =T /n - ZLQfD ZLOZ Zesxee
zeX reX 0=1/¢=1
df 9-1
folz) :=T% = YT LOfp(2) = D LI Y. D lsape(2)
zeX zeX 0=1 /(=1

Le résultat est le suivant.
Théoréme 2.8. Supposons que les hypothéses 3.2 a 3.5a sont satisfaites. Les fonctions d’agrégation

finales (a l’échelle du systéme) satisfont (sous les hypothéses 3.2 a 3.5a) :

(i) Si z* =0, alors presque toutes les institutions font défaut asymptotiquement pendant la cascade
et
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0 (r+
(it) Si z* € (0,1] et z* est une solution stable, c’est-a-dire, fiy,(z*) > 0, alors w L5 fo(2*) et,
sous l’hypothése 3.50,

n V() — n " (3) = 2,

ou Zj est une variable aléatoire gaussienne cenltrée avec une variance o}, donnée par l’équation
(2.62).

Ventes précipitées et prix d’équilibre

Comme mentionné précédemment, lorsqu’une institution en défaut affecte ses voisins sortants, cela
peut créer une pénurie de liquidités pour ces voisins. Par conséquent, lorsqu’une institution est exposée
a une institution en défaut, elle peut étre contrainte de liquider une certaine quantité d’actifs illiquides
pour maintenir ses réserves de trésorerie conformément aux contraintes réglementaires. Différents types
d’institutions utilisent différentes stratégies de liquidation. Dans le contexte d’une crise financiere, des
ventes précipitées se produisent lorsqu’une institution tente ou est forcée de vendre une quantité
importante d’actifs dans un court laps de temps.

Le chapitre 3 se concentre sur I’étude de I'impact combiné des ventes précipitées et des cascades de
défaut sur le risque systémique dans des réseaux financiers complexes lors d’une crise financiére. Nous
examinons les ventes précipitées instantanées dans les réseaux financiers, en utilisant les résultats du
chapitre 2. Le terme "ventes précipitées instantanées" fait référence a un réseau qui réagit rapidement a
un choc externe. Dés que le choc se produit, la cascade de défaut et le processus de ventes précipitées
associé sont déclenchés simultanément. Contrairement a [106], ou les prix des ventes précipitées
changent a chaque tour, dans notre étude, les prix des ventes précipitées sont déterminés au début
du choc. Les institutions sont contraintes de liquider des quantités aléatoires d’actifs illiquides pour
compenser les pertes interbancaires pendant la cascade de défauts. Le processus de contagion dépend
désormais des prix de liquidation, car le seuil de défaut est influencé par les caractéristiques financieres
de l'institution, et la valeur des actifs illiquides en fait partie. Le systéeme financier vise a atteindre
un état d’équilibre apres la survenue de la contagion de défaut et des ventes précipitées.

Le point clé est de trouver un prix d’équilibre py apres le choc. Nous adoptons une approche
conservatrice et supposons que les actifs illiquides ne peuvent étre vendus qu’a un certain prix final.
Apres toutes les ventes, le marché fixera un prix pour les actifs illiquides en fonction de la fonction de
demande inverse g. Soit I';, (7,5 (p); p) le montant total vendu a la fin. En utilisant le prix de vente p, le
prix donné par la fonction de demande inverse est g(I',, (7,5 (p); p)/n), ou 7,5 (p) est le temps d’arrét final
qui dépend également de p. Cela nous conduit & définir le prix d’équilibre de D’actif illiquide comme

Pr, = sup{p € [Pmin, o] : p < g(Cn(7 ()i p)/1)},

ou po est le prix initial sans ventes forcées et pmin est le prix minimum lorsque tous les actifs sont
vendus. Pour chaque prix de vente fixé p € [pmin, py|, nous obtenons les résultats limite, a la fois
LLN et TCL, concernant les caractéristiques des réseaux dans le processus combiné de contagion de
défaut et de ventes forcées, tels que le processus de vente des parts I'y(¢;p). De plus, sous certaines
conditions, nous obtenons également les résultats limite (& la fois LLN et TCL) pour le prix d’équilibre
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py, et pour les caractéristiques liées a la structure du réseau a I’état d’équilibre. Enfin, nous étendons
le cadre manipulable a un cadre d’actifs illiquides de types multiples.

Contribution du chapitre 3 : Ventes forcées et cascades de défauts

Nous commencons par formuler une hypothese sur la fonction de demande inverse g.

Hypotheése 3.1 Soit pmin = 0. Nous supposons que g : [0, Ymax] — [Pmin, Po] vérifie les conditions
sutvantes :

(i) g(0) = po (en labsence de liquidations, le priz est donné de maniére exogéne par pg).

(ii) g € C et est une fonction décroissante de x € [0, Ymax| (le priz décroit avec l'excédent moyen de

Uoffre x).
(”7’) g(’ymax) = Dmin = 0.

Hypotheése 3.2 [l existe une classification des institutions financiéres en un ensemble dénombrable de
classes possibles X telles que, pour chaque n € N et pour tout p € [pmin, Po], les institutions appartenant

d la méme classe ont la méme fonction de distribution du sewil (notée q;(cn) pour les institutions de la
classe x € X' ). Autrement dit, pour tout i € [n] et tout 6 € N,
PO (p) = 0) = 4\, (6;p).

x

Hypothése 3.3 Pour certaines fonctions de distribution de probabilité p et q(.;p) sur l’ensemble des

classes X (indépendamment de n), nous avons ﬂg’“ — g et q;g;n)(H;p) — q.(0;p) lorsque n — o0, pour

tousz € X, 0 =0,1,...,d} et p € [pmin,po]- Les distributions seuil empiriques satisfont qg(cn)(ﬁ;p) ecC!
5.(1)
et qz(0;p) € Ct sur p € [pmin,po]. De plus, lorsque n — o, O%‘; (0;p) converge uniformément vers

%(ﬁ;p) en tant que fonction de p pour tous x € X et  =0,1,...,d}.

Dans le chapitre 3, nous considérons également la possibilité qu’une institution ne fasse jamais
défaut, c’est-a-dire qu’elle reste solvable méme si toutes ses contreparties font défaut. Nous désignons
un tel seuil par co. Nous supposons que chaque institution liquide une quantité aléatoire d’actifs
illiquides tant qu’elle a un voisin en défaut. Nous supposons que ces liquidations sont i.i.d. et dépendent
du type z et du seuil 6. Soit 7, la valeur constante de liquidation pour chaque institution initialement
en défaut de type z.

Hypothése 3.4 - Liquidation La moyenne l%g(p) et la variance gia(p) des parts vendues pour
chaque liquidation sont toutes deux continues en fonction de p, pour tous lesx € X et0 € {0,1,...,d}}u

{o0}-

Nous définissons les fonctions suivantes, qui sont les fonctions limites des liquidations,

dy
F0 i) = uaP ) (0~ D BldE 2, 0),  fIh(zip) == (1 — 2)ulPgl™ (05 p)d;
l=df —6+1

Xi
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da
() =) (u&")%qgﬁ")(o;p) + 3 loo(0) £14 (2:0) + Ex,oo(p)f;§7o)c>(z;p)>.
zeX 0=1

Les versions transformées dans le temps des fonctions ci-dessus sont ensuite définies comme suit,

ey =15, K ) = K0 p),
et de méme pour les autres fonctions.

Soit I, (¢; p) le total des parts d’actifs illiquides vendues d’ici le temps ¢. Nous définissons

zr(p) = sup{z e [0,1]: f‘g;)(z;p) = O},

et

2*(p) = sup{z € [0,1]: fw(z;p) = O},

Nous définissons ensuite t*(p) = —In z*(p) et ¢} (p) = —Inz;(p).

Soit f1(z;p) et f2(2;p) les dérivées partielles par rapport au premier et au deuxiéme parameétre
respectivement. Nous avons le théoréme suivant concernant la normalité asymptotique du total final
des parts vendues.

Théoréme 3.15 Pour tout p fizé dans lintervalle [pmin, po), lorsque n — oo, le total final des parts
vendues satisfait :

(i) Sous Uhypothése 2.3a, si z*(p) = 0, alors asymptotiquement presque toutes les institutions font
défaut apres le choc et (lorsque n — o)

D%
8+

Tn(ms _
Ln(ip) o, D e (%cQz(O;p) +
n reX 0

20 (P)00:(651) ).
1

(ii) Sous Uhypothése 2.3b, si z*(p) € (0,1] et que z*(p) est une solution stable, c’est-a-dire a(p) :=
fI}V(Z*(p)§P) > 0, alors

n V2 (T (rp) — nf (5 (p)ip) — Z(t(0); p) — alp) ™ fA (=" (0): p) 2w (£ (0); 1),

ot Zr(t;p) et Zw(t;p) sont des processus gaussiens dépendant de p.

Nous démontrons également le théoréme limite suivant sur le prix donné par la fonction de demande
inverse rn(p) := g(I'n(7;(p); p)/1).

Théoréme 3.17 Pour tout p € [pmin, po] fixé et lorsque n — o, le prix k,(p) donné par la fonction
de demande inverse satisfait :

xii
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(i) Sous Uhypothése 2.3a, si z*(p) = 0, alors asymptotiquement presque toutes les institutions font
défaut aprés le choc et (lorsque n — o),

dy

@) > 9( 3 1o (Fata(050) + Y Lao(0)00:(03p) ).
0=1

reX

(ii) Sous Ihypothése 2.3b, si z*(p) € (0,1] et z*(p) est une solution stable, c’est-d-dire o(p) :=
fiy (2*(p);p) > 0, alors

02 (ki (p) =g (A (8, (0)s )~ o (Fr(=* (0): 9) | Z0(8 (0 D)= (p) ™ £ (=" (0); 2) 20 (£ ()i ) .

ou g désigne la premiére dérivée de g.

Nous obtenons ensuite un théoreme limite pour le prix d’équilibre apres le choc. Pour le réseau de

taille n, nous définissons
P = sup{p € [Pmin, p0] : p < (£ (2 (p)i 1)) }-
De maniere similaire, définissons son équivalent limite
p = sup{p € [Pmin. o] : p < g(fr(z*(p);p)) }- (1)

Nous disons que p est une solution de point fixe stable si s0it p = pmin, S0it P € (Pmin, Po] et qu’il
existe un € > 0 tel que p < g(fp(z*(p);p)) pour tout p € (p — €, D).

Le résultat concernant le prix d’équilibre est le suivant.
Théoréme 3.18 Lorsque n — o, le priz d’équilibre satisfait :

(i) Sous Uhypothése 2.3a, si z*(p) = 0 et p est une solution stable, alors le priz d’équilibre converge
vers py, L5 5, ot p est la plus grande solution de I’équation & points fizes

i
p= g(Z pa (T2 (05p) + ) Ex,e(p)qu(H;p)))-
zeX 0=1

(ii) Sous Uhypothése 2.3b, si z*(p) € (0,1] est une solution stable de fw(z;p) = 0, c’est-d-dire
a(p) == fi(2%;p) > 0, et p est une solution stable de (1.1), alors

n2(pt = pn) —5 —p (D) Zv (D),

p(p) = 1= g/ (fo(=* ()i ) |~ (=" )i )alo) ™ Fio (=* 0)ip) + 2= (1)),
et,

2v(p) =~ (fr(="30) | 208 (0 p) — alp) M3 0) 2w ( ()i )

est une variable aléatoire gaussienne de moyenne 0.
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Processus de risque sur les réseaux

Le chapitre 4 est consacré a I’étude des processus de risque sur les réseaux. Rappelons quelques notions
de base sur les processus de risque classiques.

Processus de risque classiques

Le processus de risque classique avec des arrivées de sinistres de type Poisson, également connu sous
le nom de modeéle de Cramér-Lundberg ([100, 171]), est largement utilisé en gestion quantitative des
risques, voir par exemple [103, 173]. Dans ce modele, le capital agrégé d’un assureur qui démarre avec
un capital initial v, un taux de prime « et des montants de sinistre (Lj) (pertes) est donné par le
processus de Poisson composé spectrale négative suivant :

N(t)

C(t)=v+at— ) Ly,
k=1

ou L,k € N, sont des variables aléatoires non négatives i.i.d. suivant une distribution F' avec une
moyenne L, et N(t) est un processus de Poisson d’intensité 3 > 0 indépendant de Ly. Le temps de
ruine pour ’assureur avec un capital initial v est défini par

7(v) :=inf{t | C(t) < 0},
(avec la convention que inf ¢ = 00) et la question centrale est de trouver la probabilité de ruine
¥(7) == P(r(7) < ).

Il est connu (voir par exemple [35, 115]) que lorsque BL > a, nous avons () = 1 pour tout v € R et
lorsque SL < a, la probabilité de ruine peut étre calculée a I'aide de la célebre formule de Pollaczek-
Khinchine donnée par

ou

et Popérateur (-)*F représente la convolution k fois.

Processus de risque en réseau

Des efforts récents ont été consacrés a ’étude des processus de risque sur les réseaux. Dans [56],
les auteurs étudient les processus de risque et les probabilités de ruine dans les réseaux bipartites.
Cependant, il s’agit plutét d’'une combinaison linéaire de plusieurs processus de risque classiques avec
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une certaine indépendance. Dans le chapitre 4, nous étudions un modele de risque plus général sur
des réseaux financiers hétérogenes, ou les institutions peuvent récupérer du capital au fil du temps,
c’est-a-dire qu’il existe une fonction croissante du temps «;(t) pour chaque agent i € [n] dans le réseau.
Soit C;(t) le capital total de 'agent i au temps ¢. Nous considérons le processus de risque stochastique
en réseau comme suit, pour chaque agent i € [n] :

Cilt) ==l — ) T ai(t) =6 — ) Lik{r; + Ty < t}, (2)

j€[n]:j—1

ou; := inf{t : C;(t) < 0} désigne le temps de ruine pour I’agent j € [n] et L;; est la perte interbancaire
aléatoire causée par j lorsqu’il fait défaut, +; est le montant d’actifs externes exposés au risque, €; est
le choc (fraction perdue des actifs externes), Tj; est le délai auquel la perte Lj; se produit pour i et
J; représente la valeur totale des créances détenues par les utilisateurs finaux sur 'agent ¢ (dépots).
Dans le chapitre 2, nous étudions la contagion de défaut sans récupération de capital, ou le seuil de
défaut dépend uniquement du profil de capital et des pertes interbancaires recues. Ainsi, dans cette
situation, pour chaque institution, le seuil de défaut a une distribution fixe. Mais ici, dans la situation
avec récupération de capital, le seuil varie au fil du temps. Nous ne pouvons plus appliquer le modeéle
de seuil. L’analyse devient plus complexe. C’est également un complément au travail précédent
(contagion avec récupération de capital) réalisé dans le chapitre 2. Dans [28], les auteurs étudient la
contagion avec récupération dans un cadre similaire, mais avec une récupération sur le seuil et d’une
forme spéciale. Ici, nous étudions un cas plus général.

Nous étudions ici la probabilité de ruine pour les processus de risque sur des réseaux a grande
échelle. Nous établissons des résultats de LGN pour les structures de réseau en utilisant une approche
probabiliste, qui repose sur des connaissances sur la classe de Glivenko-Cantelli et les théoréemes
associés. Notre étude englobe différents aspects des processus de risque en réseau et des cas spéciaux
déja abordés dans d’autres travaux. Plus précisément, nous étudions les théorémes limites liés a la
dynamique de contagion et aux probabilités de ruine en réseau pour les processus de risque dans un
cadre de réseau stochastique. Nous fournissons également des estimations des probabilités de ruine
pour des processus de risque en réseau complexes, qui impliquent a la fois des pertes provenant du
réseau et des pertes hétérogenes provenant de sources externes.

Contribution du chapitre 4 : Probabilités de ruine pour les processus de risque dans les
réseaux stochastiques

Nous considérons un processus d’intensité de révélation de pertes général, noté R, (t), pour décrire
I'intensité des révélations de pertes inter-réseaux. Plus précisément, si une perte est révélée au temps
t1 € Ry, nous attendons un temps exponentiel avec un parameétre R,,(t1) jusqu’a la prochaine révéla-
tion de perte.

Hypothése 4.1 Nous supposons que pour certaines fonctions de distribution de probabilité p sur X,
(n)

indépendantes de n, nous avons fy = — gz, lorsque n — oo, pour tout x € X.
Hypothése 4.3 Nous supposons que la fonction d’intensité de perte R, satisfait R, (t) =0 pour t >
Ty, et Ry (t) = nR(t) + op(n) pourt < 7, ot R(t) est continue, positive et |R|| 1 := SSO R(s)ds < 0.

n’
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Nous définissons

Zusz a5, 60,080, 0 =1- 13,

zeX 0=0

et

fir (1) =21 = ¢7(1) = Y pady Z b(d ),0)S36(t).

reX

ot o™ et 5?9 sont des fonctions caractérisées par les caractéristiques du réseau et R, et sont définis
dans le chapitre 4.

Le résultat principal est le suivant.

Théoreme 4.5 Sous ’hypothése 2.3a et 3.3, pour toute fonction d’intensité de perte R, satisfaisant
I’Hypothése 4.3, nous avons lorsque n — 0,

Sy (1)
sup|—"—= — pb(df, 9 (1), ) STy ()] - 0.
<} n
De plus, lorsque n — o0,
() (¢ D™ (¢
O _ o] 20, supl U gz 20
t<ry, N t<rr M
et le processus Wy, satisfait
Wi (t
sup| 220 gy 2, g
t<Tr n

Définissons

ty = inf{t €[0,1] : () = 0}.
Nous disons que t} < o0 est une solution stable de fiv(t) = 0 s’il existe un petit € > 0 tel que fi(t)
soit négatif sur l'intervalle [t%, ty + €).
Le résultat pour les défauts finaux est le suivant.

Théoreme 4.9 Sous les hypothéses 2.3a et 3.3, et pour toute fonction d’intensité de perte R, donnée
qui satisfait ’hypothése 4.3, nous avons lorsque n — o :

(i) Si ém R(s)ds = A, alors asymptotiquement tous les agents font faillite d la fin du processus de
propagation des pertes, c’est-a-dire :

DM (¥) = n — op(n).
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(i) Sith < oo est une solution stable de fi(t) = 0 et S 5 1 s)ds < A, alors la probabilité de ruine
d’un agent de type x € X converge vers :

i
J F 1—25 df, ¢ (1), 0)8(t),

n,um

et le nombre total d’agents ruinés satisfait :

D™ (7 —nZ,uxl—Z gtm + 0p(n).

zeX

(iii) Sith = 0 et |R|1 < A, alors la probabilité de ruine d’un agent de type x € X converge vers

(n)

Nfy

(n)/_* di.
De () o,y S0 (d 931 /0, 0) 8% (c0),
6=

et le nombre total d’agents ruinés est donné par :

DW(rr) =n Y pa(l - Z b(d, 1R/, 0)S2g(0)) + 0p(n),

reX

ol Sﬁe(oo) représente la limite de Sg‘:@(t) lorsque t tend vers l'infini.

Assumption 4.4 Nous supposons que, lorsque n — o0, Zie[n] (df +d;)*=0(n).

Les résultats mentionnés ont été obtenus en supposant que la fonction d’intensité de révélation
des pertes est connue. Cependant, dans le résultat suivant, nous considérons un cas particulier ou
I'intensité de révélation des pertes dépend du nombre actuel d’arétes sortantes infectées non révélées
(W, (t)) dans le réseau.

Théoréme 4.10 Soit Lyx(R") l’espace de toutes les fonctions continues positives intégrables f avec
[fli < A Supposons que lintensité de révélation des pertes satisfait Ry (t) = LWy (t) pour une
certaine constante B et que la séquence de résequz {Q(”)}neN satisfait les hypothéses 3.3 et 4.4. Alors
nouUSs GUONS :

(i) 1l existe une solution unique R* dans Ly(R") avec une valeur initiale R*(0) = 5, .y pady (1 —
qz,0) G Uéquation du point fize R = BU(R), ot U : Ly(RT) — LA(R") est lapplication.

T(R)(E) = ML= ¢7(1) = . pady Zb ), 0)Sag(t).
reX

(ii) A mesure que n tend vers l'infini, nous avons

sup 75W” (t)

n

- R (t)| 0,

t<T)
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et par conséquent,

(n) . (n)
sup ST — % (t)] 250 et sup D)

t<ry M t<ry M

- fD*(t)‘ £ 0.

Jeux en champ moyen de graphon et systemes interactifs

Risque systémique et systémes en champ moyen. Les agents dans les réseaux sont générale-
ment influencés par un groupe d’agents dans ce réseau, qui sont les "voisins" au sens spécifique selon
les modeles et les contextes. Parfois, un tel impact peut dépendre de ’ensemble de la population.
L’étude du risque systémique et de la contagion de défaut dans les réseaux financiers complexes est
de plus en plus liée a la théorie des systemes en champ moyen et des jeux en champ moyen ces
derniéres années, voir par exemple [32, 85, 136]. Parmi eux, [85] étudie un modele d’emprunt et de
prét interbancaire. Dans [32], les auteurs étudient un modele plus complexe d’emprunt et de prét
intra-et-interbancaire, qui inclut différents groupes de banques, et les impacts financiers proviennent a
la fois des banques intergroupe et des banques de différents groupes. Un modéle dynamique en champ
moyen pour 1’étude du risque systémique et de la cascade de contagion est proposé dans [136]. Les
cascades de défaut peuvent étre modélisées par un cadre alternatif. Considérez une dynamique de
diffusion pour décrire I’évolution du capital de chaque agent. Ensuite, le temps de défaut peut étre
capturé en utilisant des temps d’atteinte, par exemple le temps d’atteinte a 0 de la diffusion. On peut
établir un lien entre la proportion d’agents solvables dans de vastes réseaux financiers et la probabilité
de défaut dans I’équation de McKean-Vlasov a mesure que la taille des agents n tend vers l'infini, voir
[49, 50, 177]. En fin de compte, les systémes de particules en champ moyen sont bien adaptés pour
modéliser I’évolution des objets d’intérét dans les réseaux finis, et leurs contreparties limites lorsque
n — oo peuvent, a leur tour, fournir des informations sur les propriétés ou les comportements des
événements financiers qui nous intéressent.

L’étude des systéemes en champ moyen avec des interactions homogénes a une riche histoire, re-
montant aux travaux de Boltzmann, Vlasov, McKean et d’autres (voir par exemple [33, 154, 172]). On
peut les considérer comme des limites des systémes de particules en interaction, provenant a 1’origine
de modeles en physique statistique. Des modeles interactifs similaires ont été envisagés pour un large
éventail d’applications dans différents domaines, notamment les réseaux bancaires, la biologie, les
sciences sociales, etc. (voir par exemple [74, 135, 136]). Les Equations Différentielles Stochastiques
Rétrogrades (EDSR) de type champ moyen ont été étudiées précocement dans [72, 73]. De plus,
la théorie des jeux en champ moyen, introduite par Lasry et Lions dans [163] et Huang, Caines et
Malhamé [141, 142], a suscité une attention considérable au cours des derniéres années.

Cependant, une limitation des jeux en champ moyen est I'hypothese d’homogénéité dans les inter-
actions, qui peut ne pas capturer I’hétérogénéité observée dans les systemes du monde réel. Afin de
prendre en compte I’hétérogénéité des interactions, des systémes avec des populations multi-types ont
été proposés dans de nombreux domaines, voir par exemple [75, 178]. Plus récemment, I’étude des sys-
témes en champ moyen sur de grands réseaux a attiré une attention croissante, voir [52, 61, 97, 110, 155]
et les références qui y sont citées.

Dans de nombreux systemes du monde réel, y compris les réseaux financiers, I’hétérogénéité est
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prévalente, car différents participants ont des niveaux variables d’influence les uns sur les autres au sein
du systeme. Cette hétérogénéité découle a la fois de la structure du graphe sous-jacent du systeme et
des caractéristiques diverses des acteurs impliqués. Pour mieux modéliser les interactions hétérogenes
dans de tels systemes, ’étude sur les systémes interactifs en champ moyen avec des graphes a émergé.
Les graphes, introduits par Lovasz dans [170], servent de modéles naturels en limite continue pour
les graphes grands et denses, offrant un puissant outil pour la modélisation et I’analyse de systéemes
complexes avec des interactions hétérogenes. Le concept de systémes interactifs en champ moyen avec
graphes a été proposé et de plus en plus étudié ces dernieres années, commencant par la validité et
la convergence de grandes populations des systemes de particules vers les systéemes de graphes limites
(voir [47, 60] pour les systemes directs, et [55] pour les systémes couplés avant-arriére), jusqu’aux
bornes de concentration et la concentration des mesures des systémes de particules avec graphes (voir
[51, 54]).

Outre les diffusions interactives classiques pilotées par des mouvements browniens, les systémes
interactifs pilotés par des mesures aléatoires de Poisson sont également étudiés, par exemple dans
[3, 52]. Dans [3], 'auteur étudie les processus Hawkes multivariés sur des graphes hétérogenes et leurs
limites de graphes. L’incorporation de la structure de graphe sous-jacente dans la dynamique est
étudiée dans [52]. L’utilisation des graphes pour analyser les interactions hétérogénes dans la théorie
des jeux en champ moyen est également de plus en plus étudiée, voir [36, 82, 162]. De plus, I'utilisation
des graphes pour apprendre les jeux en champ moyen sur des réseaux hétérogenes a récemment émergé,
voir par exemple [101, 140]. Dans la deuxieéme partie de cette thése, nous nous concentrons d’abord
sur ’étude d’un systeme pur en champ moyen avec un graphe rétrograde et ses mesures de risque
associées. Ensuite, nous examinons des probléemes de controle stochastique basés sur des systemes
directs en champ moyen avec des sauts.

Graphons. Un graphon est défini comme une fonction mesurable symétrique G : I x I — I, avec
I = [0,1]. Les graphon peuvent étre considérés comme les limites des matrices d’arétes de graphes
pondérés, lorsque la taille du graphe (nombre de sommets) tend vers U'infini. En effet, en renumérotant
les sommets du graphe par i/n, i € [n] := {1,...,n}, & mesure que n devient grand, les étiquettes
i/n,i € [n] deviennent proches les unes des autres, tendant vers un continuum dans [0, 1]. Soit B(I)
I’algebre de Borel sur I. La norme de découpe d’un graphon est définie par

|Glg:= sup U G(u,v)dudv|.
A,BeB(I)'JAxB
Nous pouvons également considérer un graphe comme un opérateur de L*(I) vers L!(I), associant &
tout ¢ € L*(I):
Go(u) = J G(u,v)p(v)dv.
I

Par Lovész [170, Lemma 8.11], la norme de 'opérateur résultant s’avére équivalente & la norme de
découpe
|Gllo < [Glos1 < 4G,
avec
|Glloo—1 2= sup |G| ..
<1

<
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Ces normes seront utilisées dans 1’étude des théoremes de convergence pour les systemes de graphon
induits par une séquence de graphons. Pour étudier des résultats de convergence plus forts, nous devons
considérer une autre norme d’opérateur pour les graphons, en considérant G comme un opérateur de
L*(I) vers L*(I) avec la norme définie par

[Glloo—soo := sup |G|l
lol<1

Avec un espace métrique donné S, nous désignons par M, (S) Pensemble des mesures Borel
mesurables non négatives sur S et par M ([0,1] x S) 'ensemble des mesures Borel non négatives
sur [0,1] x S avec une premiére marge uniforme. Nous définissons la fonction a valeurs de mesure
Ap i [0,1] = M4 (S) pour tout e M . ([0,1] x S) comme suit:

Ap(u) := f G(u,v)0zp(dv, dz), (3)
[0,1]xS

ol ¢, désigne la mesure de Dirac concentrée en x. Pour toute fonction mesurable bornée ¢ : § — R,
le produit scalaire usuel est défini par

(A(u), @) = f[ g Gl IO, ).

Risque systémique sur de grands réseaux hétérogenes. Dans la Partie I, bien que nous clas-
sifiions les institutions financieres par le biais d’un ensemble de caractéristiques X, le réseau présente
une probabilité de connexion égale entre les institutions de différents types. Une extension significa-
tive consisterait a introduire une probabilité de connexion hétérogene entre les institutions, qui peut
étre modélisée par une distribution de choix, disons @Q.(-) sur 'ensemble X’ pour chaque type z € X,
c’est-a-dire que pour chaque opportunité de connexion, une institution de type x tend a choisir une
institution de type y avec une probabilité @Q,(y) de maniére indépendante. Ensuite, la probabilité de
connexion entre une paire de types (z,y) est Q. (y)Qy(x), ce qui peut étre réécrit comme une fonction
symétrique Q(z,y) sur X2. Ici, la fonction Q(x,%) joue un role similaire au graphon G, montrant
la pertinence d’introduire des graphons dans ’étude du risque systémique dans de grands réseaux
hétérogenes. Dans un tel cadre, I’étude de la percolation dans un graphe hétérogene est intéressante.
Dans [48], les auteurs étudient le probléme du k-core dans des séquences de graphes hétérogenes denses
percolés convergents au sens de la norme de découpe. Cela peut étre lié a ’étude des modeles de risque
dans de grands réseaux hétérogenes. Les travaux futurs pourraient inclure des extensions des modeles
de la Partie I impliquant des graphons. L’étude des jeux entre les institutions (par exemple, la connec-
tivité optimale, la probabilité de connexion optimale) ou des problémes d’optimisation impliquant un
régulateur extérieur (interventions ciblées) sont également des sujets intéressants a étudier. Dans la
Partie II, nous nous concentrons sur les systémes et les jeux de champ moyen de graphon. L’étude du
risque systémique dans des modeles de champ moyen de graphon complexes est réservée aux travaux
futurs.
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Equations différentielles stochastiques rétrogrades a sauts en champ moyen de
graphon

Dans le Chapitre 5, nous étudions les équations différentielles stochastiques rétrogrades a sauts en
champ moyen de graphon et les mesures de risque dynamiques associées. Nous considérons un systeme
rétrograde. Les systemes en champ moyen de graphon avant et avant-arriere sans sauts ont été étudiés
respectivement dans [47] et [55]. Nous considérons 1’équation differentielle stochastique rétrograde en
champ moyen de graphon avec sauts suivante:

et [ [ [ 0 tn o) 2u0o) tusOpyotaaras [ Zu(s)wite 4
J Jﬁus w(ds, de), wel, pour tel0,T], .

ou py := L(Xy) € P(D) et pys := L(Xy(s)) € P(R). Nous supposons que pour chaque u € I,
&, € L?(Fr) et que I'application u +— &, est mesurable.

L’interaction hétérogene est gouvernée par le terme du graphon GG. Notez que si l'interaction est
homogene, alors G(u,v) = 1 pour tous (u,v) € [0,1] x [0,1]. Dans ce cas, 'TEDSR avec sauts ci-dessus
se réduit au cas standard en champ moyen,

T

et ﬁ J (512, X,(5), Zulo). s Dptyold)dyds = [ Zu(5)aW(s)

t

JJ&LS w(ds, de), wel, pour te[0,T].

Ce cas particulier a été étudié dans [89]. Dans notre recherche, nous menons une analyse ap-
profondie des EDSR en champ moyen de graphon avec sauts. Nous établissons certains résultats
fondamentaux, notamment 'existence et I'unicité des solutions, des estimations pour les solutions et
des théoremes de comparaison. De plus, nous explorons également la propagation du chaos de ses
systemes de particules N associés. Plus précisément, nous considérons un systeme de EDSR couplé a
N, ou chaque équation est indexée par ¢ = 1,..., N, et a la forme suivante :

) T
—eN f (5, XN (s >,X5V<s>,zzv<s>,f§ﬂ<->>ds—jt 7 (5)dWWi(s)

(5)
Nz
f fﬁ Ni(ds,de), te[0,T]
XMy = ¢,
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olt W; := W sont des mouvements browniens i.i.d., et ﬁi(dt, de) = N (dt,de) sont des mesures
N N

aléatoires de Poisson indépendantes. Nous supposons que @N e L%(Fr) pour tous les i = 1,..., N.
Ici, Cl];f : N x N RJ est symétrique décrivant la force d’interaction entre la particule i et j.

Le graphon G peut étre considéré comme la limite de Ci];[ lorsque N — co0. Nous étudions les deux
types de convergence suivants pour la solution :

e Le type moyenne :

1 N T T i
LR sup [XN() - X, () + f \ZN () — Z. (1)t + f 16N 0 2t |
0

2 i
Ni= e N 0 N

e Le type maximum :

4
N

2o

maxE | sup |X7V(t) - X
i€[N] Le[o,T]‘ ©

T T i
() +J0 12N (t) — Z (t)Pdt +L e — e zdt] -

Nous introduisons les mesures de risque dynamiques en champ moyen de graphon induites par les
solutions des EDSR en champ moyen de graphon avec sauts. Nous étendons plusieurs propriétés des
mesures de risque dynamiques au cas en champ moyen de graphon, notamment la cohérence, la conti-
nuité, I’homogénéité, I'invariance par translation, la monotonie, la convexité et 'absence d’arbitrage.
Ces propriétés ont été précédemment étudiées dans le contexte des mesures de risque dynamiques sans
terme en champ moyen dans [183] et avec terme en champ moyen dans [89]. De plus, nous fournissons
une formule de représentation duale, un résultat fondamental dans la théorie des mesures de risque
convexes. Cette formule fournit une méthodologie pour le calcul des mesures de risque dynamiques
en prenant le supremum sur un ensemble d’attentes sous une famille de mesures de probabilité. Nous
établissons la formule de représentation duale pour les mesures de risque dynamiques en champ moyen
de graphon.

Jeux stochastiques avec interactions de champ moyen de graphon

Avec un intérét croissant pour les systémes interagissant avec des graphes, il y a eu une activité de
recherche croissante sur les jeux de champ moyen de graphon. Etudier les jeux stochastiques avec des
interactions hétérogenes ou les jeux sur des réseaux pose des défis substantiels, en particulier lorsqu’il
s’agit de jeux sur des réseaux impliquant un grand nombre de joueurs, car ces jeux peuvent présenter
une asymétrie significative. Cette distinction est particulierement notable dans le contexte des jeux
sur des réseaux clairsemés (par exemple, [120, 161]). L’analyse des jeux sur de grands réseaux, en
particulier ceux avec des interactions hétérogenes, repose souvent sur des modeles limites (continus)
traitables. Ces modeles fournissent une approximation pratique pour comprendre la dynamique des
jeux finis de grande envergure et offrent des informations précieuses sur les complexités des jeux
stochastiques dans les systémes interagissant de maniere hétérogene.

Le Chapitre 6 vise & développer un modele d’interaction de graphon pour résoudre les jeux sur des
graphes avec des interactions hétérogenes et des sauts, tout en maintenant une traitabilité comparable
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aux jeux de champ moyen traditionnels (MFG). Le cadre MFG traditionnel repose sur un probléeme
de point fixe décrivant la loi du processus d’état (X (t))se[o,r] d"un joueur typique. Dans le modele de
jeu de graphon, nous considérons un probléeme de point fixe pour une famille de lois (X(.))uer, qui
peut étre vue comme une loi conjointe de (U, X), ou X est le processus d’état aléatoire et la variable
aléatoire uniforme U dans I := [0, 1] est interprétée comme la variable "étiquette" (ordre du sommet
sur le réseau dans un sens limite) du joueur dans le graphique. Malgré les interactions hétérogenes,
nous incluons également des sauts dans la dynamique pour modéliser les impacts instantanés. Les
sauts sont induits par des mesures aléatoires de Poisson avec des mesures d’intensité différentes pour
différentes étiquettes, ce qui est une source d’hétérogénéité individuelle.

Nous portons notre attention sur les contréles de rétroaction markoviens. Le contréle dépend de
I’état actuel et de son étiquette. Soit A; ’ensemble des controles de graphon « définis comme une
fonction mesurable a : [0,7] x I x R — A; (t,u,x) — a(t,u,z), ou A est 'ensemble des actions. La
dynamique du systéme de graphon controlé est la suivante :

dX(s) = L JR G (u,v)b(s, Xy (8), 7, (s, u, X3, (s))) ¢ (dx)dvds
+J J G(u,v)o(s, X (s), x, as,u, X;j(s))) o (dx)dvd W, (s) (6)
1Jr

+ J (s, X3 (s), e, afs, u,Xﬁ(s)))Nu(dS, de), Xu(0) = &, uel,
E

ou py = L(X7) € P(D) et ug, = L(X](s)) € P(R). Nous supposons que § := {&u}uer €
MUL2(Fy), cest-a-dire que pour chaque u € I, &, € L?(Fr) et que I'application u — &, est mesurable.
Les coefficients b: [0,T] x RxRx A >R, 0:[0,T]xRxRxA—->Ret(:[0,T]xRxExA—->R
sont Lipschitz continus par rapport a tous les parameétres sauf t. Nous supposons également que o
est borné de 0. Notons que dans notre modele, le terme de controle est présent non seulement dans
la dérive, comme dans [82, 162], mais est également dans les termes de diffusion et de sauts. De plus,
nous avons également l'interaction de graphon dans le terme de diffusion, qui n’est pas présent dans le
modele de [82, 162]. Combinés avec les sauts et les controles, plus d’hétérogénéité est introduite dans
notre configuration, et le systéme dynamique interactif devient plus complexe par rapport a [47, 55].
Chaque joueur avec I’étiquette u € I cherche a maximiser la fonction objective suivante :

T
B[ (0 X200, A () 0t 0, XE )it + 9(XE (7). A ()]

ou f est une fonction représentant le colit en cours d’exécution et g est la fonction de coiit a I’'instant
final.

Equilibres de graphon et équilibres de Nash approximatifs

L’étude des jeux de champ moyen de graphon peut aider a étudier les jeux finis sur de grands réseaux. Il
est difficile d’étudier directement les équilibres de Nash des jeux finis avec une interaction hétérogene.
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Au lieu de cela, nous I'étudions a travers les jeux de graphon. Soit A, l’ensemble des fonctions
mesurables « : [0,7] x R — A. Le systéme de particules interagissant de maniére hétérogene que
nous considérons a la dynamique controlée suivante sous le contrdle {ai}ie[n] e A7,

ou {W;,i € [n]} sont des mouvements browniens i.i.d., {N;(dt,de),i € [n]} sont des mesures

aléatoires de Poisson indépendantes, et {fl(n),z' € [n]} sont les conditions initiales. L’idée est que
lorsque la taille de la population n est suffisamment grande, le systeme de champ moyen de graphon
contrdlé (1.7) peut étre considéré comme le systéme limite du systéme couplé contrdlé n (1.8) d’une
certaine maniere. Ainsi, I’équilibre de Nash du jeu fini devrait étre proche de I’équilibre du jeu de
graphon, et par conséquent pourrait étre approché par celui du jeu de graphon. Nous appelons un tel
équilibre du jeu de graphon 1’équilibre de graphon et en donnerons la définition détaillée. Des travaux
récents [36, 82, 162] ont étudié de tels équilibres de Nash approximatifs dans certains cas spéciaux.
Dans le Chapitre 6, nous étendons 1’étude a un cadre plus général impliquant des sauts.

Nous définissons le concept d’équilibre de graphon dans notre cadre et en établissons 1’existence en
utilisant la méthode de la compactification, une technique puissante couramment utilisée pour étudier
les équilibres dans divers types de jeux de champ moyen. Nous enquétons également sur 1'unicité
de I’équilibre de graphon sous certaines conditions de monotonie. En considérant les équilibres de
graphon comme des points de référence, nous pouvons approximer les équilibres de Nash dans les jeux
finis. Nous utilisons le contrdle d’équilibre pour les jeux de graphon comme point de référence pour
déduire le controle correspondant pour les jeux finis. En utilisant les résultats de propagation du chaos
(similaires a ceux du Chapitre 5), & mesure que la taille de la population augmente, les distributions
des processus d’état dans les jeux finis convergent vers celles des jeux de graphon selon un schéma de
correspondance spécifique entre l'ordre du joueur i € [n] et 'étiquette du graphon u € I. De maniere
intuitive, le controle d’équilibre pour chaque joueur dans le jeu fini devrait ressembler étroitement a
celui pris pour I’étiquette correspondante dans le systéeme de graphon limite. Par conséquent, il est
naturel de sélectionner le controle associé a I’étiquette % pour le joueur i-eme dans un jeu a n joueurs.
Lorsque le controle d’équilibre pour le jeu de graphon présente une continuité par rapport a u, nous
pouvons nous détendre pour considérer des contrdles associés a des étiquettes proches de % Cette
approximation suit les principes de la théorie classique des jeux de champ moyen. Cependant, en
raison de I’hétérogénéité des interactions dans notre modele, ’analyse devient plus complexe. Cette
méthode d’approximation pour 1’équilibre de Nash s’applique non seulement au cas dépendant du
modele, mais aussi au cas indépendant du modele. Elle a également trouvé des applications dans
l'apprentissage par renforcement, comme on peut le voir dans des travaux tels que [101, 134].
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Chapter 1

Introduction

This thesis is divided in two parts. The first part considers the issues of stability and systemic risk
in large complex financial networks, including the study of default contagion, fire sales and risk pro-
cesses on networks. We first prove limit theorems (law of large numbers and central limit theorem
types) for the contagion dynamics. We show how to quantify the systemic risk for a financial network
under partial information facing an outside shock. Then we present a general tractable framework for
understanding the joint impact of fire sales and default cascades on systemic risk in complex financial
networks. We finally study risk processes on large financial systems, when agents, located on a large
network, receive losses from their neighbors.

The second part of the thesis focuses on graphon mean field interacting systems with jumps and
graphon mean field games. Here, the financial network is seen as a large interacting system, with a
graphon mean field structure depending on the underlying graph structure of the network. We first
conduct a comprehensive study of graphon mean field backward stochastic differential equations (BS-
DEs) with jumps and associated global dynamic risk measures. We then study continuous stochastic
games with heterogeneous mean field interactions on large networks and investigate their graphon lim-
its. We provide approximate Nash equilibria for finite games with heterogeneous interactions, using
their graphon equilibria as benchmarks.

1.1 Financial networks and random graphs

Financial networks refer to interconnected financial systems when there are information exchanges or
financial interactions between institutions. When two financial institutions are linked, any financial
event impacting one of them will affect its counterpart, resulting in changes to their financial states.
Therefore, when a financial network faces an external shock, instabilities can propagate from the ini-
tially affected institutions to others through these interconnected links. This can give rise to significant
risks at the system level. Systemic risk refers to the risk of a widespread and substantial disruption
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or collapse of an entire financial system or market, rather than just a specific institution or sector.
The financial crisis of 2007-2009 illustrated the importance of network structures in amplifying initial
shocks within the banking system to a global level, leading to an economic recession. An important
literature on systemic risk and financial networks has emerged, see e.g. [91, 146] for two recent surveys
and references therein. In particular, it is shown in [7, 28, 105, 124, 179] that network topology plays
an important role for default propagation in financial systems.

As the world’s connection becomes more and more compact, network structures are becoming
increasingly complex. It is thus significant to develop mathematical models to study large networks
with complex (random) structures. In particular, networks do not in general appear with observable
and fixed size. In this context, limit theorems can be useful to get insights in modeling and monitoring
various contagion effects in large financial networks. The first part of this thesis focuses on studying
limit theorems in different risk models within large financial networks, encompassing results like the
law of large numbers and central limit theorem. These results can provide information regarding
systemic risk in networks, considering basic parameters and observable data. Feasibility and stability
studies are also included. Various analyses could then be conducted, such as quantifying systemic
risk, targeting interventions or optimizing investments.

1.1.1 Graphs, degrees and connectivity structure

We shall use some techniques of graph theory to study our financial networks. Let us first introduce
some basic concepts. We follow certain notations and definitions from [139], where more in-depth
information about graphs and networks can be found.

A graph G = (V| E) consists of a collection of vertices V', called the vertex set, and a collection of
edges, called the edge set, E. The vertices correspond to the financial institutions that we model, the
edges indicate the interlinkages between pairs of institutions. Graphs can be classified into two types,
undirected and directed. An edge is an unordered pair {u,v} € E indicating that u and v are directly
connected. When G is undirected, if u is directly connected to v, then v is also directly connected to
u. Thus, an edge can be seen as a pair of vertices. In our setting, we deal with directed graphs, where
edges are indicated by the ordered pair (u,v), which means an edge with direction from u to v. In
this case, when the edge (u,v) is present, the reverse edge (v,u) need not be present necessarily. In
a financial system, this is actually the case, since the creditor and debtor take different roles in their
counterpart relation. If institution u is exposed to institution v, then there is a directed edge from v
to u.

In this thesis, we consider large networks, where the vertex set V has a large size n € N. In
this case, we can number the vertices as 1,2,...,n and assume that V = [n] := {1,...,n}, which we
will do from now on. A special role is played by the complete graph, where the edge set consists of
all possible pairs of vertices, i.e., E = {{i,j} : 1 < ¢ < j < n}. The complete graph is the most
highly connected graph on n vertices, and every other graph can be considered as a subgraph of it
obtained by keeping some edges and removing the rest. The networks in real world, not restricted to
financial networks, exhibit a huge diversity in the connectivity structure, such as the ring networks,
star networks, tree networks, etc. Different graph structures lead to different performances in various




Chapter 1. Introduction 1.1. Financial networks and random graphs

models. An important characteristic in graphs is the degree, which measures the connectivity of a
vertex in the graph. In undirected graphs, the degree d; of vertex i € [n] is defined as the number of
edges containing i, i.e., d; = #{j € [n] : {i,j} € E}. For our purpose, in directed graphs, the degree d
contains two parts, the in degree d* and out degree d—, which are defined as, say for vertex i,

dr = #{jen]:(j,i)e E}, and d; = #{j € [n]: (i,j) € E}.

We call all vertices with edges to i, i.e. the set {(j,7) € E : j € [n]} incoming neighbors of i, and all
vertices with edges departing from 4, i.e. the set {(i,j) € E : j € [n]}, outgoing neighbors of i.

We shall provide quantitative analysis of financial networks under different risk models.

1.1.2 Random graph with given vertex degrees

A crucial point in systemic risk modeling is the availability of information. If all the necessary
information for the financial network, including the connectivity structure is known, we can effectively
model and analyze it. However, the available information is not always complete, particularly when
dealing with very large financial networks. As pointed out in [30, 126, 144, 187, 193], only partial
information is, in general, available for the financial networks, e.g. the total size of the assets and
liabilities for each institution. To deal with an incomplete observation of the system connections, we
will take advantage of random graphs.

There are various types of random graphs, and among them, we will focus on graphs with fixed
degrees. We investigate uniform random graphs that have a predetermined degree sequence, meaning
a degree sequence given to us in advance. Typically, the observed partial information allows us to
determine the number of creditors and debtors for almost all institutions. We will analyze the financial
networks based on the Configuration Model, which was originally developed by Bender and Canfield
[57] and Bollobés [65] as a mean for generating a random graph with a prescribed sequence of vertex
degrees. Its earliest applications were in the study of random regular graphs.

We consider the directed configuration model. Without loss of generality, we assume throughout
this thesis that d; > 1 for all ¢ € [n], since when d; = 0, vertex i is isolated and can be removed
from the graph. Given the degree sequences d;} = (df,...,d;}) and d;; = (dy,...,d,) such that
Die[n] di = 2uie[n] 4; » We associate to each institution i two sets: H; the set of in half-edges and H;

the set of out half-edges, with |H | = d; and |H; | =d; . Let H = (JI_; H; and H™ = J_; H;. A
configuration is a matching of H™ with H~. When an out half-edge of institution 4 is matched with
an in half-edge of institution j, a directed edge from i to j appears in the graph. The configuration
model is the random directed multigraph that is uniformly distributed across all configurations. The
random graph constructed by the configuration model is denoted by G (d:r,d;).

n

Note that it is not always feasible to construct a simple graph with a given degree sequence.
Instead, we construct a multigraph, which allows for self-loops and multiple edges between vertex
pairs. Our aim is to model financial networks as uniform simple random graphs. There are several
approaches to tackle this problem. We do not necessarily need to generate a uniform simple random
graph. The configuration model can offer insights and results for our purpose. It is easy to show that
conditioned on the multigraph being a simple graph, we obtain a uniformly distributed random graph
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with these given degree sequences denoted by g,ﬁ")(d; ,d;;). In particular, relying on the following
proposition, any property which holds with high probability on the configuration model also holds
with high probability on the uniform simple random graph, i.e., it also holds with high probability on

our financial networks.

Proposition 1.1 ([10]). Any event which holds with high probability on the configuration model also
holds with high probability on this random graph being simple (for the random graph gi") (dt,d;))
provided that

liminf P(G™ (d;7,d;) simple) > 0.

n—o0

On the other hand, a second moment condition on the degree sequence >, (d;)? + (d; )? = O(n)
guarantees that the above condition holds according to a result by Janson [149].

We refer to [194, Chapter 7.5] for more information on the configuration model. As we will see
later, under certain restrictions imposed on the degree sequence, our financial networks satisfy all
the conditions in the aforementioned proposition. Consequently, we can use a probabilistic approach
to study various financial properties in different risk models by mapping them to the configuration
model. With this in mind, we can establish our models based on the configuration model.

1.2 Default cascade and fire sales

To analyze the default contagion in financial networks, it is necessary to define the default condition
for institutions based on the available information and examine how the contagion spreads throughout
the networks.

1.2.1 Threshold model and bootstrap percolation

As in [20], we will use the number of defaulted neighbors as a criterion. Each institution is randomly
assigned a default threshold according to certain distribution, which is based on its financial char-
acteristics. When the number of defaulted neighbors reaches or exceeds this default threshold, the
institution itself defaults.

We describe the contagion dynamics of the networks by using bootstrap percolation. Bootstrap
percolation was introduced by Chalupa, Leath and Reich [86] in 1979 in the context of magnetic
disordered systems. Bootstrap percolation is a diffusion process that has been studied on a variety of
graphs, see e.g., [9, 10, 148, 150]. This process (as well as numerous variations of it) has a rich history
in statistical physics and in modelling complex phenomena in a diversity of areas, from pandemic
spread [153] to neuronal activity [11] and spread of defaults in banking systems [20]. In a bootstrap
percolation process, for a fixed threshold 6 > 2, there is an initially subset of active nodes and in each
round, each inactive node that has at least 6 active neighbors becomes active and remains so forever.
Recently, the asymptotic normality of bootstrap percolations has also been studied in [13]. Bootstrap
percolation is also closely related to the k-core problem in random graphs, as it shows to be a powerful
method to find the k-core, see e.g. [151].
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In our context, we consider a bootstrap percolation process on the graph with given defaulted
threshold sequence. This process is deterministic and evolves in rounds. Each institution in the
graph can be in one of two states: solvent or defaulted (also referred to as active or inactive in
some literature). Initially, a subset of vertices in the graph represents defaulted institutions, while all
other institutions are solvent. During each round of the process, if a solvent vertex has a number of
defaulted neighbors that is greater than or equal to its threshold, it also defaults and remains in this
state permanently. The process continues until no more institutions become infected, at which point
it stops.

1.2.2 Default cascade and asymptotic results

We construct the default contagion in a dynamic manner, when the default cascade evolves round by
round. The default cascade can be seen as a bootstrap percolation process applied to the configu-
ration model. If the graph structure is known and the threshold sequence is fixed, the percolation
process becomes deterministic. However, due to the random nature of the configuration model and
the variability of the threshold sequence, the percolation process itself becomes stochastic, making it
challenging to analyze.

To address this, we propose classifying all institutions into a countable type set X based on their
observed financial characteristics. Institutions belonging to the same type share the same threshold
distribution over {0, 1,...,d"}. Additionally, we introduce a continuous-time framework for the default
contagion. Once an institution defaults, it incurs losses to its outgoing neighbors after a stochastic
period of time. As a result, the default contagion process becomes a stochastic process with jumps.
Our focus lies in studying its asymptotic properties as the network size n becomes large. We obtain
both law of large numbers (LLN) and central limit theorems (CLT). We also study more general
default cascade processes in stochastic financial networks and obtain LLN result by employing the
time twist method for Markov processes, which appears e.g. in the study of pandemic models in [153].

The results presented in Chapter 2 extend the work of [20]. We use a probabilistic approach to
establish the law of large numbers for key network features during the default contagion process.
These features contain (but are not limited to) the number of solvent institutions and defaulted
institutions throughout the entire dynamics, including the final quantities after the contagion stops.
Compared to [20], we provide more detailed information about the state of the network during the
default contagion. While both studies investigate the default cascade by constructing it as a dynamical
process, our proof differs from that of [20], which relies on limit fluid results of differential equations.
In contrast, we utilise a probabilistic method. We consider the quantities that correspond to network
features as stochastic processes that evolve over time. We demonstrate that these processes, when
normalised by the network size, converge jointly to some Gaussian processes. The covariance functions
of these asymptotic Gaussian fluctuations are given explicitly. Ultimately, we prove that these features
converge jointly to Gaussian vectors after the contagion stops. Additionally, we provide limit theorems
for various system-wide wealth aggregation functions and study how systemic risk can be linked to
the heterogeneity of financial networks.

Notation. We first introduce some notation. Let {X,},en be a sequence of real-valued random
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variables on a probability space (€, F,P). If ¢ € R is a constant, we write X,, -~ ¢ to denote that
X, converges in probability to ¢ that is, for any € > 0, we have P(|X,, —¢| > €¢) - 0 as n —» . We
write X, ~4, X to denote that X, converges in distribution to X. Let {a,}neny and {b,}nen be two
sequences of real numbers going to infinity as n — 00. We write X,, = 0,(ay), if | X,|/an, — 0, and
write X,, = Op(ay) if P(|X,| < Clan|) — 1 as n — oo for some constant C. We write a,, = o(by),
if an/b, — 0, and write a,, = O(by,) if for some constant C, |an| < C|b,|. If E, is a measurable
subset of €, for any n € N, we say that the sequence {E), },en occurs with high probability (w.h.p.) if
P(E,) =1—o0(1), as n — c0. The notation 1{E} is used for the indicator of an event F; this is 1 if F
holds and 0 otherwise.

Contributions of Chapter 2 : Limit Theorems for Default Contagion and Systemic Risk

We classify the financial institutions into a type set &', which is countable. Without loss of generality,
we assume that the institutions belonging to the same type have the same out degree, the same in
degree and the same default threshold distribution.

Assumptions 2.1 and 2.2

o There exists a classification of the financial institutions into a countable set of possible charac-
teristics X such that, for each n € N, the institutions in the same characteristic class have the

same threshold distribution function (denoted by qg([;n) for institutions in class x € X ).

e For a size n network, let u(xn) be the type distribution and qén) be the default threshold distribution

of type x € X. For some probability distribution functions p and q over the set of characteristics

X and independent of n, we have ué”) — gz and qén) (0) = qz(0) as n — oo, for all x € X and

0=0,1,...,d5. Moreover, we assume that ZZ£0 qz(0) =1 forallz e X.

In order to study the CLT results, we need to restrict our attention to the sparse networks regime.

Assumption 2.3a-b

o (a) We assume that, as n — o0, the average degrees converges and is finite:

A = Z d:ug") = Z d;,ug,”) — A= Z df ps € (0, 00).
TreX TeX TeX

o (b)We assume that for every constant A > 1, we have

AT =0 Y DA = Om) and Y AT = S ) A% = O(m)
=1 xeX i=1 reX

Notice that Assumption 2.3b implies 2.3a. The LLN results don’t require Assumption 2.3b. We
only highlight the CLT results in this introduction.
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For z € [0, 1], we define the functions:
, d\ d—t
b(d,z,2) :=P(Bin(d, z) =) = NE (1—2)"",

B(d, z,¢) :=P(Bin(d, z) > i() (1—2)%,

where Bin(d, z) denotes the binomial distribution with parameters d and z. We define further

=3 qu B(df, zdf —0+1), f5)(2) =1 f(2),

reX

IEIT/L) Z—Zu d, Zq") d+,z,d;r—0+1),
zeX

sing o(2) :=u§;”)q;”)(9)b(d;, 1— 2z, E).

"Wy

Unless stated, we define the functions without upscript (n) by replacing the threshold distribution
qén) (9) and degree distribution ,u,én) by their limiting distribution ¢,(#) and pu, respectively. For

example, define
5&:,0,6(2) = MxQI(e)b(d:7 -z, Z)

Denote by D, (t) and S, (t) the number of defaulted and solvent institutions at time ¢ for size n

network, respectively. For z e X,0 e N,/ =10,...,0 — 1. We let Si?e)’e(t) denote the number of solvent
institutions with type x, threshold 6 and ¢ defaulted neighbors at time t. Let W,,(t) be the number
of infected out half-edges and 7, be the stopping time that the default contagion stops. Notice that
when there is no more infected out half-edges in the network, the contagion stops.

Let

d+
z* :=sup{z € [0,1] : )\z—Zuwd 2% B(df,z,df —6+1) =0},
zeX =1

which can be viewed as the limit of stopping time 7,;. Let Z, be the largest z € [0, 1] such that
f(z) =0
The asymptotic normality at the final time of contagion is given in the following.

Theorem 2.7 Suppose that Assumptions 2.1-2.3b hold. Let t* = —1Inz*,If z* € (0,1] and z* is a
stable solution, i.e. a:= fiy,(z*) > 0, then we have jointly

n 2Dy (18) = nf5 (22) —5 Zp(t7) — a7 (=) Zw (tY),

nV2(Su (1) = nfd () -5 Zs(t) — a7 fh (2T Ew (1),

7
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furthermore, Z, L, 2* and, forallze X, 0< (<0 <df,

—1/2 * ~ d * —1 * *
V(S0 (1) = sl 1)) =5 2o o(8) — a7Vl (=) 2w (),
where Zp, Zg, Zw are some centred Gaussian processes with covariance functions characterized ex-
plicitly.
We also study the CLT regarding the systemic risk of the financial network.

System-wide wealth : Let I'¢ denote the total wealth in the financial system if there is no
default in the system. We define the system-wide aggregation function as

di 0-1
ro(t) =T — Y IODW(t) — Y L8 S S es)
zeX zeX =1 /(=1

where D;Ecn) (t) is the number of defaulted institutions of type x. For each type z € X, we consider a
bounded fixed (type-dependent) societal cost LY for defaulted institutions and a bounded fixed (host
institutions’ type-dependent) cost LY over each defaulted links.

Assume that T'¢/n — I'" when the size of network n — . Let us define

df 0—1
£ =T = S IO () = LY sl (=)
reX reX 0=1/¢=1
B df 6—1
folz) =T = Y LQfp(2) = D LI Y D lsapu(z
zeX reX 0=1/¢=1

The result is as follows.

Theorem 2.8. Suppose that Assumptions 2.1-2.53a hold. The final (system-wide) aggregation functions
satisfy:

(i) If z* = 0 then asymptotically almost all institutions default during the cascade and

La(m) v, po _ D kL.
n reX

0(rx
(it) If z* € (0,1] and z* is a stable solution, i.e. f{,(z*) > 0, then w L5 fo(2*) and, under
Assumption 2.3b,

w200 = nfs? (3a) = 23,

where 25 is a centred Gaussian random variable with variance o7 given by (2.62).
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1.2.3 Fire sales and equilibrium price

As mentioned earlier, when a defaulted institution affects its outgoing neighbors, it may create a
currency shortage for those neighbors. Consequently, when an institution is exposed to a defaulted
one, it may be compelled to liquidate a certain amount of illiquid assets to maintain its cash reserves
according to regulator constraints. Different types of institutions employ different strategies for liqui-
dation. In the context of a financial crisis, fire sales occur when an institution attempts or is forced
to sell a substantial quantity of assets within a short period of time.

Chapter 3 focuses on investigating the combined impact of fire sales and default cascades on
systemic risk in complex financial networks during a financial crisis. We study the instantaneous fire
sales in financial networks, using the results from Chapter 2. The term "instantaneous fire sales" refers
to a network that reacts swiftly to an external shock. As soon as the shock occurs, the default cascade
and the associated fire sales process are simultaneously triggered. Unlike in [106], where the fire sale
prices change round by round, in our study, the fire sale prices are determined at the onset of the
shock. Institutions are compelled to liquidate random amounts of illiquid assets to offset interbank
losses during the default cascade. The contagion process now depends on the liquidation prices since
the default threshold is influenced by the financial characteristics of the institution, and the value of
illiquid assets is a component of those characteristics. The financial system aims to achieve a balanced
state following the occurrence of the default contagion and fire sales.

The key point is to find an equilibrium price p}, after shock. We consider a conservative approach
and assume that the illiquid assets can be sold only at certain final price. After all sales, the market
gives a price for illiquid assets according to the inverse demand function g. Let I'y (7 (p);p) be the
total sold amount in the end. Then under the sold price p, the price given by inverse demand function
is g(T'y (72 (p); p)/n), where 7,5 (p) is the final stopping time which depends also on p. This motivates
us to define the equilibrium price of the illiquid asset as

Py = Sup{p € [Pmin, po] : p < g(Ln(75(p);p)/n)},

where pg is the initial price without fire sales and ppj, is the minimum price with all assets sold.
For each fixed sold price p € [pmin,Po], we obtain the limit results, both LLN and CLT, regarding
the features of networks in the combined process of default contagion and fire sales, such as the sold
shares process I';,(¢;p). Under some conditions, we also obtain the limit results (both LLN and CLT)
for the equilibrium price p; and for the features regarding the network structure in the equilibrium
state. Finally, we extend the tractable framework to multi-type illiquid assets framework.

Contribution of Chapter 3: Fire Sales and Default Cascades

We first put an assumption on the inverse demand function g.

Assumption 3.1 Let pyin = 0. We assume that g : [0, Ymax] — [Pmin, Po]| satisfies:

(i) g(0) = po (in absence of liquidations the price is given exogenously by po).
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(ii) g € C' and it is a non-increasing function of x € [0, Ymax] (the price is non-increasing with the
average excess supply x).

(7’7'7') g(')/max) = Pmin = 0.

Assumption 3.2 There exists a classification of the financial institutions into a countable set of
possible classes X such that, for each n € N and for all p € [pmin, Po], the institutions in the same class

have the same threshold distribution function (denoted by q;g") for the institutions in class x € X ).
Namely, for all i€ [n] and all § € N,

(0" (p) = 0) = 41}, (0; ).

Assumption 3.3 For some probability distribution functions p and q(.;p) over the set of classes
X (independent of n), we have /1;(,;”) — Yy and q&")(e;p) — qz(0;p) asn — ©, for all x € X,0 =
0,1,...,d} andp € [Pmin, po]. The empirical threshold distributions satisfy q;n)(ﬁ;p) e Cl and q.(0;p) €
C! on p € [pmin, po]. Moreover, as n — o, 6%%) (0; p) converges uniformly to %(ﬁ;p) as a function of

p forallze X and 0 =0,1,...,d;.

In Chapter 3, we also consider the possibility that an institution never defaults, i.e., it remains
solvent even if all its counterparties default. We denote such threshold by co. We assume each
institution liquidates a random amount of illiquid asset as long as it has a defaulted in neighbor. We
assume these liquidation are i.i.d. and dependent on type x and threshold 6. Let 7, be the constant
value of liquidation for each initially defaulted institution with type z.

Assumption 3.4-Liquidation The mean lzp,g(p) and variance gie(p) of sold shares for each liquida-
tion are both continuous in p, for all z € X and 6 € {0,1,...,d}} U {oo}.

All assumptions above are supposed to hold in Chapter 3. We define the following functions, which
are the limit functions of liquidations,

dy
10 (i) = uaP ) (0~ D) BldE 2, 0),  fIh(zip) = (1— 2)ulPgl™ (c0; p)d;
0=d} —6+1

and,

D5
CES
|

A9 (z5p) =) (Mi”)%qi") (0;p) +

w01 (250) + Lo (0 £ (7))
xeX 0

1

The time-transformed versions for the above functions are then defined as
o) = e tp), R p) = 1 (e ),

and the same for other functions.

Let I'y,(t;p) be the total shares of illiquid assets sold by time ¢.

10
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We define
2h(p) = sup{z € [0,1] : fii (z:p) = 0},
and
*(p) == sup{z € [0,1] : fw(zp) = 0},

where f‘g[?}) (z;p) and fyw (z; p) are defined the same as in previous section but now it is price dependent.
We then let t*(p) := —Inz*(p) and ¢} (p) := —In 2z} (p).

Let f'(z;p) and f?(z;p) denote the partial derivative w.r.t. the first parameter and second pa-
rameter respectively. We have the following theorem regarding the asymptotic normality of the final
total sold shares.

Theorem 3.15 For any fized p € [Pmin, Po], as n — 00, the final total sold shares satisfy:

(i) Under Assumption 2.3a, if z*(p) = 0, then asymptotically almost all institutions default after
shock and (asn — o)

WLZM@MIO}? Zﬁxe 96]19P)>
zeX

(ii) Under Assumption 2.5b, if 2*(p) € (0,1] and 2*(p) is a stable solution, i.e., a(p) = fi (2*(p);p) >
0, then

w2 (Ca(mp) = nfi (#(0)ip) =5 2t ()i p) — alp) ™ A (0); ) 2w (8 (0): ),
where Zp(t;p) and Zw (t;p) are some Gaussian processes depending on p.

We also show the following limit theorem on the price given by inverse demand function k,(p) :=

g(Ln(7(p);p)/1).

Theorem 3.17 For any p € [pmin, Po] fized and as n — o0, the price k,(p) given by the inverse demand
function satisfies:

(i) Under Assumption 2.3a, if z*(p) = 0 then asymptotically almost all institutions default after

shock and
da
Kn(p) = 9(2 e (32 (05p) + Zx,e(pwqx(@;p)))-
xeX 0=1

(i) Under Assumption 2.5b, if 2*(p) € (0,1] and 2*(p) is a stable solution, i.e., a(p) = fi, (z*(p); p) >
0, then

02 (ke (p)—g (L (81.(p): 1)) 5 o' (fr(=*(p); p)) [Zr(t*(p);p)—a(p)_lfrl(Z*(p);p)Zw(t*(p);p)]7

where g’ denotes the first derivative of g.

11
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We next obtain limit theorem for the equilibrium price after shock. For the network of size n, we
define

P 1= Sup{p € [Pmin, po] 1 p < g( (n)(z’:;(p);p>)}'

Similarly define its limit counterpart
p = sup{p € [Pmin. o] : p < g(fr(z*(p); p)) }- (1.1)

We say that p is a stable fixed point solution if either p = ppin or, p € (Pmin, Po] and there exists
some € > 0 such that p < g(fp(z*(p);p)) for all pe (p — €, D).

The result regarding the equilibrium price is the following.

Theorem 3.18 As n — o0, the equilibrium price satisfies:

(i) Under Assumption 2.3a, if z*(p) = 0 and p is a stable solution, then the equilibrium price
converges to py, L, b, where p is the largest solution of the fized point equation

dy

p= 9(2 po (Y (00) + ) @,a(p)qu(@;p)))-
0=1

reX

(ii) Under Assumption 2.3b, if z*(p) € (0,1] is a stable solution of fw(z;p) = 0, i.e., a(p) :=
fiy(z*;p) > 0, and p is a stable solution of (1.1), then

* _ d 1, _
n2(p} — pn) == —p (D) 2v (),
where

p(p) :==1—g'(fr(*(p);p)) [—f%(z*(p);p)a(p)_lfﬁv(z*(p);p) + fﬁ(z*(p);p)],

and,

Zy(p) == —g'(fr(z*;p)) [Zr(t*(p);p) - a(p)*lfrl(Z*;p)Zw(t*(p);p)]

1s a Gaussian random variable with mean 0.

1.3 Risk processes on networks

Chapter 4 is dedicated to the study of the risk processes on networks. Let recall some background on
classical risk processes.

12
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1.3.1 Classical risk processes

The classical compound risk process with Poisson claim arrivals, or the Cramér-Lundberg model
([100, 171]) has been extensively used in quantitative risk management, see e.g., [103, 173]. In this
model, the aggregate capital of an insurer who starts with initial capital v, premium rate o and (loss)
claim sizes (L) is given by the following spectrally negative compound Poisson process

N(®)

C(t)=~+at— Z Ly,
k=1

where Ly, k € N, are i.i.d. non-negative random variable following a distribution F with mean L and
N (t) is a Poisson process with intensity 5 > 0 independent of Li. The ruin time for the insurer with
initial capital v is defined by

7(v) :=inf{t | C(t) < 0},

(with the convention that inf ¢ = c0) and the central question is to find the ruin probability

P(y) == P(r(y) < ).

It is known (see e.g. [35, 115]) that whenever BL > «, we have ¥(y) = 1 for all v € R and whenever
BL < «, the ruin probability can be computed using the famous Pollaczek—Khinchine formula as

v = (1- iL) > (if)k (1- 7).

k=0

where

o) =1 | (1= )

0

and the operator (-)** denotes the k-fold convolution.

1.3.2 Risk processes on financial networks

Recent efforts have been dedicated to the study of risk processes on networks. In [56], the authors
consider risk processes and ruin probabilities in bipartite networks. But it is more like a linear
combination of several classical risk process with certain independence. In Chapter 4, we study a
more general risk model on heterogeneous financial networks, where institutions can receive capital
recovery in time, i.e. there exists a non-decreasing function of time «;(t) for each agent i € [n] in the
network. Let C;(t) be the total capital of agent i at time ¢. We consider the stochastic networked risk
process as following, for each agent i € [n]:

Ci(t) ==yl —€&) +ai(t) =6 — >, Lyl{r + Tji < t}, (1.2)

Jjelnl:j—i

where 7; := inf{t : C}(t) < 0} denotes the ruin time for agent j € [n] and L;; is the random interbank
loss brought by j when it defaults, 7; is amount of external assets exposed to risk, ¢; is the shock

13
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(lost fraction of external assets), T}; is the time delay that the loss Lj;; happens to i and ; represents
the total value of claims held by end-users on agent i (deposits). In Chapter 2, we study the default
contagion without capital recovery, where the default threshold only depends on the capital profile
and received interbank losses. In this situation, the default threshold of each institution has a fixed
distribution. In Chapter 4, the threshold varies in time with capital recovery, and the analysis becomes
more sophisticated. In [28], the authors study the contagion with recovery in a similar setting, but
with the recovery on the threshold and being of a special form. Here we study a more general case.

We investigate the ruin probability for risk processes on large-scale networks. We establish LLN
results for network structures by using a probabilistic approach, which relies on knowledges on the
Glivenko-Cantelli class and associated theorems. Our study encompasses various aspects of networked
risk processes. Specifically, we study the limit theorems related to the contagion dynamics and the
networked ruin probabilities for risk processes within a stochastic network setting. We also provide
estimations for ruin probabilities for complex networked risk processes, which involve both losses
coming from network and heterogeneous losses originating from external sources.

Contribution of Chapter 4: Ruin probabilities for Risk Processes in Stochastic Networks

We consider a general loss reveal intensity process, denoted by R,(t), to describe the intensity of
internetwork loss reveals. Specifically, if a loss is revealed at time t; € R, we wait for an exponential
time with parameter R, (¢;) until the next loss reveal.

Assumption 4.1 We assume that for some probability distribution p over X and independent of n,

we have that u;(vn) — Uz, asn — 0, for all z € X.

Assumption 4.3 We assume that the loss intensity function R, satisfies R,(t) =0 fort > 1), and

Rn(t) = nA(t) + op(n) fort < 7 with R(t) continuous, positive and op(n) is uniform fort < 1

4
For each z € X, we denote by L, := (Lg;l), e ,L&dz )) the sequence of independent random losses

+
with distribution £}, and let £, = (Eg(cl), E;(,;Q), e ,E&dw )) be a realization of L,. For a given £, and a given

initial shock €, 75 g(€z,£;) is defined as the time threshold for default, namely if the loss happens
before this time threshold, then the agent defaults. It is formally defined as

To(€a ) = Inf{t > 01 (1 — ) + ap(t) — 55 = > €0}
=1

For a given positive density function R : Rj — RT with |R|;1 < o0, z€ X and 6 = 0,1,...,d],
we let the survival probability be (for all ¢ > 0)

Ply(t €2, £2) = P(Tr0(€a, £a) = 0,UL > 7ot (€as ), Ugpt > Tuglens £2)),

with the convention Pa??o(t, €, 8z) = P(1y0(€z,€z) = 0) for all z € X', where U(E?St, U(Q;St, e U(ggst are
the order statistics of 8 i.i.d. random variables {Uim ’t}i:L_“ﬂ with distribution
Yy
PUTM < y) = 7&2 Ae)ds,
§o R(s)ds
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The survival probability at time ¢ for any agent of type x with # incoming losses absorbed by t is
denoted by 82?9(15), and is defined as

S7e(t) := E[PJy(t, ez, Ly)] = P(ro0(n, Ly) = 0, U > Tua(€ns L), - Uy > Toglen, L)),

Let R} be the half line [0,0). For a given positive function R : Rf — R*, we define

Entn(3) R(s)ds
Ry . 0

where

toy(A) := inf{t > 0: Jt R(s)ds = A},

if ||z < A we set tyy(N) := 0. We also define

f3(t) -

Zﬂ':}czb )Sm()a fg(t)zl_f?(t)7

zeX 0=0

and
FR@) =21 = ¢ (1) = ] pady Zb df, ¢™(1),0)80(t)-
zeX

The main result is the following.

Theorem 4.5 Under Assumption 2.3a and 4.1, for any given loss intensity function R, satisfying
Assumption 4.3, we have as n — 0,

SO

sup| (A 6 (1),0)STy(H)] - 0.

t<Tx

Further, as n — o0,

St ()

(n) (¢
- 3| o, tsgg\D ()—fp(>\ 0,

t<T)
and the process W, satisfies

SupW()

t<T)

fr)] 0.

Define

ty = 1inf{t € [0,1] : fi5(t) = 0}.
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We say that 3 < o0 is a stable solution of fi(t) = 0 if there exists a small € > 0 such that fiy(¢) is
negative on [ty t5 + €).

The result for final defaults is the following. Recall that 7; is the stopping time that the loss
propagation process comes to the end.

Theorem 4.9 Under Assumption 2.3a and 4.1, and for any given loss intensity function R, satisfying
Assumption 4.3, we have as n — o0:

(i) IfS s)ds = A, then asymptotically all agents are ruined by the end of the loss propagation
process i.e.

DM (1¥) = n — op(n).

n

(i) If ty, < o0 is a stable solution of fi¥(t) =0 and S s)ds < A, then the ruin probability of an
agent of type x € X converges to

O 5, &
7" Z L0)S0 (1),

npg;

and the total number of ruined agents satisfies

i
DMy =n ) (1= ) SPg(t5)) + 0p(n).
TeX 0=0

(tit) If th = o0 and |R| 1 < A, then the ruin probability of an agent of type x € X converges to

(n)
zim p 1_25 T IR L1/, 0) 8T (),
n,ux

and the total number of ruined agents satisfies

) =n Y] na(l - Z b(dy, |R] L1/, 0) STy (0)) + 0p(n),

TeX

where 82?9(00) denotes the limit of Sig(t) ast — oo.

Assumption 4.4 We assume that, as n — o0, Zie[n](d;Ir +d;)? = O(n).

The aforementioned results were derived under the assumption that the loss reveal intensity func-
tion is known. In the following result, we consider a special case where the loss reveal intensity
is dependent on the current number of unrevealed infected outgoing half-edges (W, (t)) within the
network.

Theorem 4.10 Let Ly (R™) be the space of all continuous positive integrable functions f with ||f|1 < A
Suppose that the loss reveal intensity satisfies Ry (t) = BWy(t) for some constant B and the network
sequence {g(">}neN satisfies Assumptions 4.1 and 4.4. Then we have:
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(i) There exists a unique solution R* in Ly(RT) with an initial value R*(0) = B v Hady (1—¢z0)
to the fized point equation R = BY(R), where ¥ : Ly(RT) — Ly (R™T) is the map

T(R)(E) = A1 — ™ (1) = Y. pady Zb df, 9™ (1),0)87(t).

rzeX
(ii) As n — o0, we have
W (t .
sup| ) g (1) 2 0,
t<t) n
and consequently,
S (¢ . D™ (¢ .
()—fs (t)|i>0 and sup ()—fD(t)iLO.
t<rr M t<r

1.4 Graphon mean field games and interacting systems

Systemic risk and mean field systems. Agents in networks are usually influenced by a group
of agents in this network, who are the "neighbors" in the specific sense according to the models and
contexts. Sometimes, such impact may depend on the whole population. The study of systemic risk
and default contagion in complex financial networks has been increasingly connected to the theory
of mean field systems and mean field games in recent years, see e.g. [32, 85, 136]. Among them,
[85] studies a model of inter-bank borrowing and lending. In [32], the authors study a more complex
model of intra-and-inter-bank borrowing and lending, which includes different groups of banks, and the
financial impacts come from both the inter-group banks and the banks of different groups. A dynamic
mean field model for studying systemic risk and contagion cascade is proposed in [136]. The default
cascades can be modelled by an alternative framework. Consider a diffusion dynamic to describe the
capital evolution for each agent. Then the default time can be captured by using hitting times, e.g.
the hitting time to 0 of the diffusion. One can establish a connection between the proportion of solvent
agents in large financial networks and the probability of default in the McKean-Vlasov equation as the
size of agents n tends to infinity, see [49, 50, 177]. Overall, mean field particle systems are adapted
well to model the evolution of objects of interest in finite networks, and their limit counterparts when
n — o0 can, in turn, give insights into the properties or behaviors of the financial events that we are
interested in.

The study of mean-field systems with homogeneous interactions has a rich history, dating back
from the works of Boltzmann, Vlasov, McKean and others (see e.g., [33, 154, 172]). They can be
viewed as limits of interacting particles systems, originally coming from models in statistical physics.
Similar interacting models have been considered for a broad range of applications in different fields,
including banking networks, biology, social sciences, etc (see e.g. [74, 135, 136]). Backward Stochastic
Differential Equations (BSDEs) of mean-field type have been early studied in [72, 73]. In addition, the
theory of mean-field games, introduced by Lasry and Lions in [163] and Huang, Caines and Malhamé
[141, 142], has raised significant attention in recent years.
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However, a limitation of mean field games is the assumption of homogeneity in interactions, which
may not capture the heterogeneity observed in real-world systems. In order to capture the hetero-
geneity of interaction, systems with multi-type populations have been proposed in many domains, see
e.g. [75, 178]. More recently, the study of mean field systems on large networks have been attracted
increasing attention, see [52, 61, 97, 110, 155] and the references therein.

In many real-world systems, including financial networks, heterogeneity is prevalent, as different
participants have varying levels of influence on each other within the system. This heterogeneity
arises from both the underlying graph structure of the system and the diverse characteristics of the
players involved. To better model the heterogeneous interactions in such systems, the study on
graphon mean field interacting systems has emerged. Graphons, introduced by Lovész in [170], serve
as natural continuum limit objects for large and dense graphs, providing a powerful tool for modeling
and analyzing complex systems with heterogeneous interactions. The concept of graphon mean field
systems has been proposed and increasingly studied in recent years, starting from the well-posedness
and large population convergence from particle systems to limit graphon systems (see [47, 60] for
forward systems, and [55] for coupled forward-backward systems), to the concentration bounds and
concentration of measures of graphon particle systems (see [51, 54]).

Besides the classical interacting diffusions driven by Brownian motions, interacting systems driven
by Poisson random measures are also studied in e.g. [3, 52]. In [3], the author investigates multivariate
Hawkes processes on heterogeneous graphs and their graphon limits. Incorporating the underlying
graph structure into the dynamics is studied in [52]. The use of graphons to analyze heterogeneous
interaction in the theory of mean field games is also increasing studied, see [36, 82, 162]. Furthermore,
using graphons to learn mean field games on heterogeneous networks has emerged recently, see e.g.
[101, 140]. In the second part of this thesis, we first focus on the study of a pure backward graphon
mean field system with jumps and its associated risk measures. Then we investigate stochastic control
problems based on forward graphon mean field systems with jumps.

Graphons. A graphon is defined as a symmetric measurable function G : I x I — I, with I = [0, 1].
Graphons can be regarded as the limits of edge matrices of weighted graphs, when the size of the
graph (number of vertices) goes to infinity. Indeed, by relabelling vertices of the graph by i/n,
i € [n] :={1,...,n}, as n becomes large, the labels i/n,i € [n] become close to each other, tending
to a continuum in [0, 1]. Let B(I) be the Borel algebra on I. The so-called cut norm of a graphon is
defined by

|G|o:= sup U G(u,v)dudv|.
A,BeB(I)'JAxB

We can also view a graphon as an operator from L*(I) to L'(I), associating any ¢ € L®(I) with:

Go(u) = j G(u,v)o(v)dv.
I
By Lovasz [170, Lemma 8.11], the resulting operator norm turns out to be equivalent to the cut norm

1Glo < Gl < 4G,
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with
IGlo—1 := sup |G| 1.
[pl<1

These norms will be used in the studies of convergence theorems for the graphon systems induced by
a sequence of graphons. To study stronger convergence results, we need to consider another operator
norm for graphons, regarding G as an operator from L*(I) to L*(I) with the norm defined by

|Glloomoo := sup [G@llze.
lp<1

With a given metric space S, denote by M (S) the set of nonnegative Borel measurable measures
on § and denote by M ([0,1] x §) the set of nonnegative Borel measures on [0, 1] x & with uniform
first marginal. We define the measure-valued function Ay : [0,1] - M4 (S) for any p e M, . ([0,1] x
S) as follows:

Ap() = J G, )b, p(dv, dz), (1.3)
[0,1]xS

where 6, denotes the Dirac measure concentrated at z. For any bounded measurable function ¢ : S —
R, the usual inner product is defined by

(Aplu), 6) = j[ g Gl )o@l da).

Systemic risk on large heterogeneous networks. In Part I, even though we classify the financial
institutions through a characteristics set X, the network has equal connection probability between
institutions of different types. A significant extension would be to introduce heterogenous connection
probability between institutions, which can be modelled by a choice distribution, say @, (-) over the
set X for each type x € X, i.e. for each connection opportunity, a type x institution tends to choose a
type y institution with probability Q,(y) independently. Then the connection probability between a
pair of type (z,v) is Q. (y)Qy(z), which can be rewritten as some symmetric function Q(z,y) over X’2.
Here the function Q(z,y) plays a similar role as the graphon G, showing the relevance to introduce
graphons in the study of systemic risk in large heterogeneous networks. In such framework, the study
of percolation in heterogeneous graph is interesting. In [48], the authors study the k-core problem in
percolated dense heterogeneous graph sequences converging in the sense of cut norm. This may be
related to the study of risk models in large heterogeneous networks. Future work may include some
extensions of the models in Part I involving graphons. The study of games between institutions (e.g.
optimal connectivity, optimal connection probability) or optimization problems involving an outside
regulator (target interventions) are also interesting topics to study. In Part II, we focus on the graphon
mean field systems and games. The study of systemic risk in complex graphon mean field models is
left for future work.

1.4.1 Graphon mean field backward stochastic differential equations with jumps

Notation and setting. Let (Q,F,P) be a probability space. Let I = [0,1] and {W,, : u € I}
be a family of i.i.d. one dimensional Brownian motions defined on (2, F,P). Let {N,(dt,de) : u €
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I} be a family of independent Poisson measures defined on (2, F,P) with compensator v, (de)dt
such that v, is a o-finite measure on E := Ry, with R, := R\{0}, equipped with its Borelian
o-algebra B(E), for each u € I. Let {N,(dt,de) : u € I} be their compensator processes. Let
F = {F;,t = 0} be the natural filtration associated with {W,, : v € I} and {N,(dt,de) : u € I}.
Given a Polish space S, denote by D([0,T],S) the space of RCLL (right continuous with left lim-
its) functions from [0,7] to S, equipped with the topology of uniform convergence. Let D :=
D([0,T],R). Denote by P(S) the space of probability measures on S. For a random variable X,
L(X) denotes the law of X. Denote Unif|0, 1] the uniform measure on [0,1] and further denote
Punie([0,1] x S) the set of Borel probability measures on [0,1] x S with uniform first marginal. We
equip all spaces of measure with the topology of weak convergence. Denote by W> the Wasserstein-
2 distance. For a family of objects { Xy }uesr or a sequence of objects {X;}e[,], Wwe use X to represent

them for notation simplicity when the context is clear.

In Chapter 5, we study graphon mean field backward stochastic differential equations (BSDEs)
with jumps and the associated dynamic risk measures. We consider a backward system. Forward
and forward-backward graphon mean field systems without jumps have been studied in [47] and [55]
respectively. We consider the following graphon mean-field BSDE with jumps:

T T
Xu(t) =&, + f f J G(u,y) f(s, 2, Xu(s), Zu(s), lu,s(-)) fry,s(dx)dyds — J Z(8)dW,(s)

T
j f by s(e)Ny(ds,de), uel, for tel0,T],
t E

where p, 1= L£(X,) € P(D) and py s := L(X,(s)) € P(R). We assume that for each u € I, &, € L*(Fr)
and the map u — &, is measurable.

The heterogeneous interaction is governed by the graphon term G. Note that if the interaction is
homogeneous, then G(u,v) =1 for all (u,v) € [0,1] x [0,1]. In this case, the above BSDE with jumps
degenerates to the standard mean field case,

T

X0 =6+ ' [ [ 6 Xu6) Zulo) sttt [ Zuts)awis)

t

T
- J J ly.s(e)Ny(ds,de), uel, for tel0,T].
t JE

This particular case has been studied in [89]. In our research, we conduct a comprehensive analysis
of graphon mean field BSDEs with jumps. We establish some fundamental results, including the
existence and uniqueness of solutions, estimate for solutions, and comparison theorems. In addition,
we also explore the propagation of chaos of its associated N-particle systems. Specifically, we consider
an N-coupled BSDE system, where each equation is indexed by ¢ = 1,..., N, and has the following
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form:
e j (5, XN(5), XN (5), ZN(s), () )ds — f 2N ()dWi(s)

(1.5)
Nz
J JE st de), te[0,T]

where W; := W ioare ii.d. Brownian motions, and Ni(dt, de) = N IS (dt, de) are independent Poisson

random measures. We assume that &V e L?(Fr) for all i = 1,.. N Hereby, (N N x N~ R
symmetric describing the strength of interaction between particle 7 and j.

The graphon G can be regarded as the limit of g as N — o0. We study the following two different
types of convergence for solution:

e The average type:

N

1

NZE[ sup | XN (t) — X
i=1

T T i
OF + [ 1280 - 2, 0Fde+ | ez’N—det].
0 0

e The maximum type:

2\&

maxE [ sup XNty - X
i€[N] [tE[O,T]’ S =Xy

T T K
OF + fo ZN () — 7, (1)[2dt + JO ei’N—eth%dt].

We introduce the graphon dynamic risk measures induced by the solutions of the graphon mean
field BSDEs with jumps. We extend several properties of dynamic risk measures to the graphon mean
field case, which include the consistency, continuity, homogeneity, translation invariance, monotonicity,
convexity, and absence of arbitrage. These properties have been previously studied in the context of
dynamic risk measures without mean field term in [183] and with mean field term in [89]. Additionally,
we provide a dual representation formula, a fundamental result in the theory of convex risk measures.
This formula provides a methodology for computing dynamic risk measures by taking the supremum
over a set of expectations under a family of probability measures. Through an involved proof, we
establish the dual representation formula for the graphon dynamic risk measures.

Contribution of Chapter 5 : Graphon Mean Field BSDEs and Associated Dynamic Risk
Measures

We introduce the following sets.

e L?(F;) is the set of all Fi-measurable and square integrable random variables, for ¢ € [0, 7.
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e H? is the set of real-valued predictable processes ¢ such that
T
ol = (BL | g2 < o0

o L2 (for each u € I) is the set of all measurable functions £ : E +— R such that

1€, = ( fE 1) P ()2 < o,

Note that L?,u is a Hilbert space equipped with the scalar product
Ly, lopy, = JE G (y)a(y)vu(dy).

o H2 (for each u e I) is the set of all predictable processes ¢ such that

T
el 1= (BL| 1612, ) < e

e S? is the set of real-valued RCLL adapted processes ¢ with

|¢lls2 := (B[ sup_[¢¢[*])"/? < co.
te[0,T]

e MH? is the set of all measurable functions X from I to H?: u — X,, satisfying
T
sup | X, |72 = supE[f | X (t)]?dt] < 0.
uel uel 0

We define ML?(F;) and MS? similarly.

o MH? := (H2 )® is the set of all families ¢ := {£,},e; such that

Vuy,

T
sup(E[f 2. de)Y2 < 0.
uel 0

o L2I(F,) (fort € [0,T]) is the space of all F;-measurable family of random variables X := { X, }ues
satisfying

X o = (E[J X[2du])? < co.
I

We define further the scalar product

(X, Vs = E f X, Yodu].
I
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Definition 5.2-Graphon mean field BSDE A solution of the graphon mean-field BSDE system
with jumps (1.4) consists of a family of processes ® 1= (X, Zy, lu)uer With (Xu, Zu, ly) € S? x H? ngu
for allw in I satisfying (1.4), where X,, is a right continuous with left limit (RCLL) R-valued optional
process, and Z,, (resp. £) is a R-valued predictable process defined on Q x[0,T] (resp. Qx[0,T] x E)
such that the stochastic integral is well defined.

Assumption 5.1-Intensity measure For each w € [1,2], the function I 5 u — ®;1(w —1) e R
is measurable, where ®, denotes the cumulative distribution function of v,; we define ®;1(1) as the
essential supremum and ®,1(0) as the essential infimum.

Assumption 5.2-Lipschitz driver For each u € I,
fQx[0,T]xR¥=x L2 —-R
(w7 t? ml? x? 27 g(.)> = f(w7 t? xl? x? Z? g(.))

is P ® B(R3) ®B(L3u) measurable, and satisfies f(-,-,0,0,0,0) € H?, and f is Lipschitz-continuous
in (&' x,2,0), i.e., there exists a constant C = 0 such that dt ® dP-a.s., for each (2}, x1,21,¢1) and
(w4, 22, 22, {2), we have

|f(w7 t, $/1, L1, 215 El()) - f(wa t, x/27 L2, 22, EQ())}
<C(|zy — 25| + |1 — ma| + |21 — 22| + [ — L2]u,)-
Define the space
M:={®,eS*xH?> xH , forall ue I and satisfying |®|, < o0}
Theorem 5.4-Existence and uniqueness Let Assumption 5.1 and 5.2 are satisfied and & € ML*(Fr).

Then the graphon mean-field BSDE system with jumps (1.4) admits a unique solution ® := (X, Z,{) €
M, and I 3u— L(X,) is measurable.

Assumption 5.3 We assume that for each w € I and each (z',x,2,41,02) € R? x (L2 )2, there exists
a function ¢ﬁ/f’z’£1’z2 € L2 such that
f(ta J:/a X, Z, El) - f(tv xlv x,z, 62) = <¢qu:2x7Z7£1’€2561 - £2>I/u7
with
ﬁtf’z’zl’gz p [0,T) x Q@ x R® x (L2 )?— L2 ;
(tv W, J"/v Z, z, gla 62) — ¢5:;593,Z7£1;52 (wa )

P ® B(R3) ® B((L%)?) measurable, bounded and satisfying dP ® dt ® dv,, a.s.

d 01,0 ! 01,6
wi () = =1 and (d TR (y)] < (y),
for some 1 € L,%u.
Theorem 5.6-Comparison theorem for graphon mean-field BSDE Let ¢!, ¢2 € ML?(Fr) and
denote by (X', Z',0%) and (X2, Z2,02) the solution of the graphon mean-field BSDE with jumps (1.4)

associated to (&%, f1) and (€2, f2) respectively. Let fi and fo both satisfy Assumption 5.2, and further
assume that:
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o At least one of f1 and fa satisfies Assumption 5.3, and the other one (or at least one if both
satisfy Assumption 5.3) is non-decreasing in x';

e Foreachu e I\H with H a zero Lebesque measure subset of I, €2 > &L a.s. and fo(w,t, 2,2, 2,0) >

u
filw, t, 2’ 2,2, 0) a.s. for all (t,2',x,2,0) € R* x L?ju.

Then for all t € [0,T] and u e I\H, we have X2(t) = X(t) almost surely.
Theorem 5.7-Strict comparison for graphon mean-field BSDE Suppose the assumptions in
Theorem 5.6 hold. Further, assume that fi satisfies Assumption 5.8 with strict inequality, i.e.,

z',x,2,01,02 (y) > 1
)

u,t

and &&= €2 a.s. for each v € I\H with H a zero Lebesque measure subset of I, and fi(w,t, o', x, z,0) =
folw, t, 2 2, 2,0) a.s. for all (t,a',3,2,0) e R* x L2 . Then if X'(to) = X?(to) (i.e., X (to) = X2(to
for all w e I\H) for some to € [0,T], we have X'(-) = X2(-) a.s. on [to,T], and fo(w,t,2',z,2,)
filw,t, 2’ 2, 2,0) on [te,T] for ue I\H.

~—

We next study the convergence result of N-coupled system (1.5) to graphon system (1.4). We need
the following assumptions.

Assumption 5.4 For each u € I,

(i) u— L(&,) is continuous w.r.t. the Wy metric.

(ii) there exists a finite collection of intervals {I; : i = 1,...,N} such that I = u;I;, and for each
i€ {l,...,N}, we have G(u,v) is continuous at u for each v € I\H; for some zero Lebesque
measure set H;.

Assumption 5.5 There exists a finite collection of intervals {I; : i = 1,...,N} such that I = u;I;,
and for some constant C, we have for all ui,uz € I;, vi,v2 € I, and i,j € {1,..., N},

W2(£(§u1)7£(€u2) < C|U1 - u2‘7

and,
|G (u1,v1) — G(uz,v2)| < C(lur — ua| + [v1 — va).

Assumption 5.6-Interaction regularity For a given graphon G, we say that (N := { g}i,jE[N]
satisfies reqularity assumption with graphon G if either:

(i) ¢ = G(%. %)

(ii) Z];[ = Bernoulli(G(%, %)) independently for all 1 <i < j < N and independent of {Wy, Ny, &y
uel}.

For notation simplicity, we let all v, be a common measure v. But note that all following results
hold for different v,,. See more details in Chapter 5. The convergence results are as follows.

24



Chapter 1. Introduction 1.4. %raphon mean field games and interacting systems
AR

Theorem 5.14 Let Assumptions 5.2 and 5.5 be fullfilled. Suppose that ¢V satisfy the regularity
assumption 5.6 with graphon G, and the terminal conditions &N and & satisfy

_max E|eN \2 = O(N™).

Then the unique solutions ®V of (1.5) converge to the unique solution of (1.4) with the convergence

rate l/m and
T T K
‘max E | sup [XN(5) - Xo (6) + f ZN(6) — Z (1)[2dt + j 16N 0¥ 2a
i=1,....N tE[O,T] N 0 N
< -1 N _ ¢ 22 -1
SONT 4+ 0 max EGT — £ 7= 0NV,

for all N € N and some constant C. Furthermore, for ;' = % Z 5XN and ke = §; L(Xu(t))du,
then

sup E[(Wa(ky', k)] < CN~Y2,
te[0,T]

Theorem 5.15 Let Assumptions 5.2 and 5.5 be fullfilled. Suppose ¢V satisfies the reqularity Assump-
tion 5.6 with graphon GN. Then we have

T T B

~max E| sup ’XZN(t) - X (t)’2 + f ’ZzN(t) - L( )‘ dt + f H@N - EtN IIEdt

7,:1,...,N tE[O,T] N 0 ~
< C( max El&Y =€ [+ |G = GV|mmn + N7Y).

We introduce the graphon dynamic risk measure.

Definition 5.19 Let T > 0 be a time horizon, for a terminal condition & € ML*(Fr), we define

Pu,t(& T) = _Xu(ta 55 T)v

for each u € I, where {X,(t,&,T)}uer is the solution of the graphon mean-field BSDE system (1.4).
Then pi(§,T) := {put(&,T)}uer is called the graphon associated dynamic risk measures.

Define
Fu(w,t, L(Xt),z, 2, 0(- JJ G(u,y) f(s, 2z, 2,0(-)) py. s (dz’)dy.
For each (w,t) and each u € I, we denote by (F,)* the Fenchel-Legendre transform, defined as

(Fu)*(w,t,C(Y),Bu,a;,ai) = sup {Fy(w,t, L(X),x,2,0)
(X,2,2,0)eL> 1 (F)QR2@L2,

- <X7 Y>L2J - /Buw - 041112 - <a12u £U>Vu}

For given processes (f3,7), we define

HE;V = exp{f (By + y)dy}.
¢
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We introduce the set AL, which a set of families of processes ({7 }u.vers {Bu.t juer {au,t buel )te[o,1]
defined in §5.4.2. The dual representation formula for the graphon dynamic risk measure can be
characterized by the known features of our graphon mean field BSDE system and is giving as following.

Theorem 5.27 Suppose f satisfies Assumption 5.2 and 5.3. Moreover, suppose that f is concave with
respect to (¢',x,z,0) and non-decreasing in x'. Then we have for each t € [0,T], the expectation of
the convex risk-measure p; has the following representation : for each & € ML?(Fr),

E[L pos€T)dv] = sup | f] EQS[(L HE" du)é, ]do — L Cosr.Boon TYdv}, (16

(7,8,0)€ AL
where the function ¢, which is called penalty function, defined for each T and (v, 3, «) € .A{p by

oy 1rBoy Yy
I's™ Hy d

ul,j )Ulaﬁv,Saaqu,sva?),s('))]d‘g?
d’Ul]

T o u,v
Con(1, By, T) = j E%[( f HE™ du)(F,)* (s, (

¢ E[TS §, H):"

with QF the absolutely continuous probability measure with respect to P admitting density I'*", which
is defined by (5.28) with initial value Tt = 1. Moreover, there exists (7,3, a) € AL attaining the
supremum in (1.6). In particular, for each v e I,

Elpo(€,T)] = 2™ [—(L HP™ du)e,] — Con(3, B, @, T).

1.4.2 Stochastic games with graphon mean field interactions

With increasing interests in graphon interacting systems, there has been a growing research activity
on graphon mean field games. Studying stochastic games with heterogeneous interactions or games
on networks poses substantial challenges, especially when dealing with games on networks involving
a large number of players, since these games may exhibit significant asymmetry. This distinction
is particularly noteworthy in the context of games on sparse networks (e.g., [120, 161]). Analyzing
games on large networks, especially those with heterogeneous interactions, often relies on tractable
limiting (continuum) models. These models provide a convenient approximation for understanding
the dynamics of large finite games and offer valuable insights into the complexities of stochastic games
in heterogeneously interacting systems.

Chapter 6 aims at developping a graphon interacting model to solve graphon games with hetero-
geneous interactions and jumps, while maintaining tractability comparable to traditional mean field
games (MFGs). The traditional MFG framework is based on a fixed point problem describing the law
of the state process (X (t))se[o,7] of a typical player. In the graphon game model, we consider a fixed
point problem for a family of laws (X,(.))uer, which can be viewed as a joint law of (U, X), where X
is the randomised state process and the uniform random variable U in I := [0, 1] is interpreted as the
“label” variable (order of vertex on network in limiting sense) of the player in the graphon. Despite
the heterogeneous interactions, we also include jumps in the dynamics to model the instantaneous
impacts. The jumps are induced by Poisson random measures with different intensity measures for
different labels, which is a source of individual heterogeneity.
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We put our attention to the Markovian feedback controls. The control depends on the current
state and its label. Let A; be the set of graphon controls a defined as measurable function « :
[0,T] x I xR — A;(t,u,z) — «a(t,u,z), where A is the action set. The dynamics of the controlled
graphon system is as follows,

dX(s) = L JR G(u,v)b(s, Xy (8), T, (s, u, X3/ (8))) iy (dx)dvds
+ L JR G(u,v)o(s, X5 (s),z, a(s,u, Xﬁ(s)))ug’t(dx)dvqu(s) (1.7)
+ JE 0(s, X2 (s), e, s, u, X2(s))) Nu(ds, de), Xu(0) = &y, uel,

where pg = L(X{) € P(D) and pugy, = L(XJ(s)) € P(R). We assume that § := {{,}uer €
MUL2(Fy), that is for each u € I, &, € L?*(Fr) and the map u +— &, is measurable. The coefficients
b:[0,T]xRxRxA->R 0:[0,T]xRxRxA—->Rand¢:[0,7] x Rx E x A— R are Lipschitz
continuous with respect to all parameters except t. We also assume that o2 is bounded from 0.

Notice that in our model, the control term is present not only in the drift, as in [82, 162], but is
present also in the diffusion and jump terms. Furthermore, we also have the graphon interaction in
the diffusion term, which is not present in the model in [82, 162]. Combined with jumps and controls,
more heterogeneity is introduced into our setup, and the interacting dynamic system becomes more
complex compared to [47, 55]. Each player with label u € I seeks to maximize the following objective
function:

T
B[ (0 X200, A () 0t 0, XE0))de + 9(XE (D), A )]

where f is some function representing the running cost and g is the cost function at the ending time.

1.4.3 Graphon equilibria and approximate Nash equilibria

The study of graphon mean field games can help to study the finite games on large networks. It is
hard to study directly the Nash equilibria of finite games with heterogeneous interaction. Instead, we
study it through the graphon games. Let A,, be the set of measurable functions « : [0,7] x R™ — A.

The heterogeneous interacting particle system we consider has the following controlled dynamic under
control {a}e[n) € Ap,

4X(5) =2 3 (b, X{ (), X0 (5), s, X))
ST (os, X (5), X0 (), 0g(s, X ()W ) (1.8)

| 0(s, XM (s), e, ai(s, X () Ny(ds, de), X (0) = €™,

where {W;,i € [n]} are i.i.d. Brownian motions, {N;(dt,de),i € [n]} are independent Poisson random
measures, and {g§”),z’ € [n]} are initial conditions. The idea is that when the population size n is
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large enough, the controlled graphon mean field system (1.7) can be viewed as the limit system of n
coupled controlled system (1.8) in some sense. Thus the Nash equilibrium of the finite game should
be close to the equilibrium of the graphon game, and hence could be approximated by that of the
graphon game. We call such equilibrium of the graphon game the graphon equilibrium and will give
the detailed definition. Recent works [36, 82, 162] have studied such approximate Nash equilibria in
some special cases. In Chapter 6, we extend the study to a more general framework involving jumps.

We define the concept of graphon equilibrium in our framework and establish its existence by
using the compactification method, a powerful technique commonly employed in studying equilibria
in various types of mean field games. We also investigate the uniqueness of the graphon equilibrium
under certain monotonicity condition. By considering graphon equilibria as benchmarks, we can ap-
proximate Nash equilibria in finite games. We use the equilibrium control for graphon games as a
benchmark to infer the corresponding control for finite games. Making use of the propagation of
chaos results (similar to those in Chapter 5), as the population size grows, the distributions of state
processes in finite games converge to those of graphon games under a specific correspondence pattern
between the player order i € [n] and the graphon label u € I. Intuitively, the equilibrium control for
each player in the finite game should closely resemble that taken for the corresponding label in the
limit graphon system. Therefore, it is natural to select the control associated with the label % for
the i-th player in an n-player game. When the graphon equilibrium control exhibits continuity with
respect to u, we can relax to controls associated with labels close to % This approximation follows the
principles of classical mean field games theory. However, due to the heterogeneity of interactions in our
model, the analysis becomes more intricate. This approximate method for Nash equilibrium applies
not only to the model-dependent case but also to the model-free case. It has also found applications
in reinforcement learning, as seen in works such as [101, 134].

Contribution of Chapter 6: Stochastic Graphon Mean Field Games with Jumps and
Approximate Nash Equilibria
We use the same probabilistic set-up and notation as in Chapter 5.

Assumption 6.1

o For each (t,z,u,p) € [0,T] x R x [0,1] x M{; .([0,1] x D), there exists e € E such that the set

Kelp](t, =, u) ==
{(b(t, 2, A (), a), 02(t, z, Ape(u), a), U(t, z, e,a),2) ca€ A,z < f(t,z, Ap(u),a)} is conves.

o The map e — L(t,x,e,a) is affine for each (t,z,a) € [0,T] x R x A.

In Chapter 6, we also put the same assumption as Assumption 5.2.

Assumption 6.2 For each w € [1,2], the function I 3 u — &, (w — 1) € R is measurable, where ®,,
denotes the cumulative distribution function of v,; we define ®,1(1) as the essential supremum and

®,1(0) as the essential infimum.
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For any fixed distribution p € Py,([0, 1] x D) and graphon control a € A;, we define the following
graphon objective function:

Jo(p.a) == E| L ( jo (X0 A ()t X))t + (XS (T), ()], (L9)

where the functions f: [0,7] x R x M(R) x A — R and ¢ : R x M(R) — R are bounded continuous
w.r.t. all parameters.

Definition 6.2-Graphon equilibrium A graphon equilibrium is a distribution p € Puypnit([0, 1] x D)

such that there exists o* € Ay satisfying

Ja(p, ) = sup Ja(p, o), with p= LX)

QGA[

Any o satisfying the above is called an equilibrium control for distribution .

Theorem 6.4 and 6.6-Existence and uniqueness of graphon equilibrium Under Assumption
6.1 and 6.2, there exists at least one graphon equilibrium. Further suppose the following monotonicity
condition holds: for each a € A, and any p1, p2 € Punie([0,1] x R x A) and t € [0,T], we have

f[o HxR(Q(m, Ajiq (u)) — g(l‘,A[Lz(u))) (11 — p2)(du, dz) < 0,

and
J (f((t,x,A/Zl(u), a) — f(t,z, Afia(w), a))(ﬂ1 — p2)(du, dz, da) < 0,
[0,1]xRx A

where [ is the marginal distribution of the first two coordinates. Then there exists a unique graphon
equilibrium.

Let us define the following gap of objective function between an graphon equilibrium control a*
and the "optimal" control,

e (u) = sup Jiar @), ar ™), 80w L et (ulM) = Ji(e), (1.10)
where u(® := (ugn), . ,u%n)), ar = (a*(u(ln)), e ,a*(u&”))) and a*(ugn)) = a*(-,ugn), )), i.e., player
n)

i uses the control rule of the graphon equilibrium control of label u;

Assumption 6.3 There exists a finite collection of intervals {I; : i = 1,...,n} such that I = |, I;
and, for each i € {1,...,n}, we have:

(i) u— L(&,) is continuous a.e. on I; w.r.t. the Wy metric.
(it) For each je {1,...,n}, G(u,v) is continuous in u and v a.e. on I; x I;.

(iii) The intensity measure vy, is continuous in u for the Wasserstein distance Wa on each I;.
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Assumption 6.4 There exists a finite collection of intervals {I; : i = 1,...,n} such that I = |, I,
and for some constant C, we have for all ui,us € I;, vi,v2 € I, and i,j € {1,...,N},

W2(£(€U1)7‘C(£u2)) < C|u1 - U2|a

|G(u1,v1) — G(uz,v2)| < C(lur — uz| + |v1 — v2l),

and
Wa (Vs Vy) < Clug — ugl.

Assumption 6.5-Interaction regularity We say ¢ := {Cgl)}i’je[n] satisfies the reqularity assump-
tion with graphon G if either:

(i) ¢ = G(L, 1);

(ii) Cl.(jn) = Bernoulli<G(%, %)) independently for all 1 < i < j < n and independent of {Wy, Ny, &y
we I} and {W;, N;, & i€ [n]}.

Let | - HSQT 1= supyepo,r] El s 2. The propagation result is as follows.

Theorem 6.10-Large population convergence Let a(t,u, x) be a Lipschitz function on (u,x), and
let agn) (t,z) = aft, &, x). Let X™ and X be the solutions of (1.8) and (1.7) respectively, with initial

conditions €™ and &, controls o™ = (aﬁ”))ie[n] and . Suppose Assumption 6.4 holds with G, and
¢ satisfies the reqularity Assumption 6.5 with Gy, where {Gpn}n is a sequence of step graphons such
that |G — Gp|o — 0. Then we have the following convergence result for the empirical mean of the
neighborhood measure (defined in (6.9)):

LN f Ap(w)do,
[t I

in probability in the weak sense, where p := L(X). Furthermore, for each i € [n] and any Lipschitz
continuous bounded function h from D, we have (for some constant C' > 0)

C

E[(h M) = (b Ap(2 )] < = D B[ — €| + ClGn = Glo + ClGa = Gl + —

1
n o]

If Wi, N; and Wi, Ni are the same for each i € [n], then we have

n

1 v 2 L A () 2 1
— E 1X; — X |5 <C<f E El&™ —€i|" + |G — Grllo + >
n “ n T n “ n
i=1 =1
and moreover

) v g2 (n) . 2 N 1
o | X X%Hs;<0(?elﬁf]<E|€¢ £/ +1G = Galmso + ).

i€[n

Assumption 6.6-Concavity
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o f(t,x,p,a) is concave in x and strictly concave in a.

o Forall A€ [0,1], a1,a2 € A,

)\f(t,:z,,u, a’l) + (1 - A)f(t7‘r7/i7a2) < f(t7xuu7 C_L)\),
where ay = ay(t,x, p) is the solution to

b(t7$7,u7a)\> = )‘b(t7$7:u7a1) + (1 - )\)b(t,x,,u,, a2)'

Lemma 6.17-Stability of control Suppose that Assumptions 6.3 and 6.6 are satisfied. Then there
exists a unique optimizer o, for Sup,e.4, Jg&gu (u, ). Let o*(t,u,x) := aj(t,x). We have o*(t,u,x)
is (piecewise) continuous in (u,z), and the law of X is (piecewise) continuous in u in the weak
sense. Furthermore, if G, f,g are all Lipschitz continuous and Assumption 6.4 is satisfied, then all
the continuities become Lipschitz continuities.

For each i € [n], we define Ii(n) = (&_Ij,%] if % ¢ I, % € I;; Ii(") = (%,%] if %,% e Ij;
Ii(n) = [%,&Jj) if -~ € I; and % ¢ I;, where 0_ and 04 denote the lower and upper borders,
respectively. We call {G,}nen a sequence of step graphons if, for each n € N, G,, is a graphon and
satisfies Gy, (u,v) = G, (M M) for all (u,v) eI x I.

n '’ n

The approximate Nash equilibria results are the followings.

Theorem 6.15, 6.18 and 6.20 We have the following approximate Nash equilibria for four
different types of graphon under different conditions :

« Piecewise constant graphon. Suppose (") satisfies reqularity Assumption 6.5 with G and
Assumption 6.3 (i) holds. If

= O(n_1)7

max El¢ —¢.
i=1,..,n n

then taking uz(n) = %, we have as n — o0,

max egn) (u™) - 0.

Moreover, if the initial condition is Lipschitz, satisfying (6.10), then we have

Imax el(-n) (u™) = O(n™").

« Continuous graphon. Suppose Assumption 6.6 holds, (™) satisfies the regularity Assump-
tion 6.5 with step graphon Gn, and |G — Gplo — 0. Suppose Assumption 6.3 holds, G is

continuous, and the initial condition satisfies %2?;1 E|§En) —¢i|?2 = 0. Then we have

LS () ()
€S8 SUD, ()7 .oz 2 e (u'™) —0.
i=1
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AT
Furthermore, if |G — Gp |- — 0 and maxizl,m’nEMi(n) —£:]2 =0, then we have

(1) (4, (n)
€SS SUD ()M ... z() , T0AX €; (u'™) — 0.

Lipschitz Continuous graphon. Suppose Assumption 6.6 holds, (") satisfies the regularity
Assumption 6.5 with step graphon G, and |G—Gy|o — 0. Suppose Assumption 6.4 holds, G, f,

and g are Lipschitz continuous, and the initial condition satisfies %Z?:l E|§l(n) —¢i2=0(n1).

Then we have

L (), (n _
€S8 SUD, ()70 .o z(V Z 6§ )(u( )y =0(n™h).
i=1
Furthermore, if |G — Gy |ow—a — 0 and maxizl,.._,nE|§§n) —&i|?=0(n1), then we have

ess sup . g(m  Iax egn) (w™) =0(mn™1).

wez x. hax,
Sampling graphon. Suppose Assumption 6.6 and 6.3 hold. Let C(”) be sampled from the

continuous graphon G. If the initial condition satisfies + 37", E|§§n) —¢i 2 — 0, then we have,
for both ways of sampling defined in Section 6.5, as n — 0,

L$ ) )
€SS SUD  (m) 7 (M) ..oz 7 2 i (u'™) — 0.
i=1
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Chapter 2

Limit Theorems for Default Contagion
and Systemic Risk

This chapter is based on papers [1] and [3] in the publication list of Section 1.5.

Abstract. We consider a general tractable model for default contagion and systemic risk in a het-
erogeneous financial network, subject to an exogenous macroeconomic shock. We show that, under
some regularity assumptions, the default cascade model can be transferred to a death process problem
represented by a balls-and-bins model. We state various limit theorems regarding the final size of the
default cascade. Under suitable assumptions on the degree and threshold distributions, we prove that
the final size of default cascade has asymptotically Gaussian fluctuations. We next state limit theo-
rems for different system-wide wealth aggregation functions, which allow us to provide systemic risk
measures in relation with the structure and heterogeneity of the financial network. We finally show
how these results can be used by a social planner to optimally target interventions during a financial
crisis, with a budget constraint and under partial information of the financial network. Furthermore,
we also study the default cascade processes in stochastic networks and obtain limit theorems.

Keywords: Systemic Risk, Default Contagion, Financial Networks, Random Graphs.
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2.1 Introduction

The financial crisis 2007-2009 has illustrated the significance of network structure on the amplification
of initial shocks in the banking system to the level of the global financial system, leading to an
economic recession. An important literature on systemic risk and financial networks has emerged, see
e.g. [91, 146] for two recent surveys and references there.

Chapter 2 studies structural and dynamic models for loss propagation in the network of liabilities.
This is in contrast to the well-known systemic risk indicators such as CoVAR [192] or SES [2], which
are based on measuring losses in terms of market equity. Empirical studies on network topology of
banking systems reveal very different structures; from centralized networks as in [176] to core-periphery
structures [99, 122, 166] and scale-free structures as in [69, 93]. The main objective of this chapter is
to provide limit theorems and use them to establish a link between the (final) size of default cascade
and the structure and heterogeneity of financial networks. This chapter also studies limit theorems to
quantify the system-wide wealth and systemic risk in the financial system.

A crucial point in systemic risk modeling is the available information. As pointed out in [30, 126,
144, 187, 193], only partial information is, in general, available on the financial network, e.g., the total
size of the assets and liabilities for each institution. Our probabilistic approach allows us to deal with
an incomplete observation of the system connections. We reduce the dimension of the problem by
considering a classification of financial institutions according to different types (characteristics), in an
appropriate type space X. Our limit theorems relate the fraction of defaults to "averaged" quantities
concerning types/degrees and their propensity to default (the fraction of each type and the threshold
distribution for each type) rather than requiring knowledge of the strength of individual exposures.
The heterogeneity of exposures are encoded in the type dependent threshold distributions.

An extensive research in systemic risk and financial networks focuses on equilibrium approach, to
derive recovery rates from a fixed point equation [111, 114, 131, 185]. This relies on the assumption
that all debts are instantaneously cleared, unlikely to hold in reality. Even in a given shock scenario,
recovery rates are uncertain. For example, recovery rates after the failure of Lehman were around 8%
([175]). In this chapter, we model recovery rates as given. The model could be easily extended to a
setup with random recovery rates satisfying some cash-flow consistency conditions, see e.g. [24].

Our work is related to the literature on network structure and threshold models of contagion,
see e.g., [157, 165, 174, 200] in the context of (undirected) social networks. As shown in [7, 28, 105,
124, 179], network topology plays an important role for default propagation in financial systems. In
particular, [1] compares regular financial networks, and shows that the completely connected system
is the most stable for small shocks but the least stable for large shocks (and vice-versa for the ring
network). In [21], the authors present a more general framework to find the optimal network structure
for reducing the systemic risk. Recent papers, see e.g., [43, 116], consider the endogenous formation
of financial networks.

The primary innovations and results of this chapter are in multiple directions.

First, we generalize the default contagion model of [20] and allow for more network heterogeneity
by considering the type-dependent threshold model. These types may be calibrated to real-world
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data by using machine learning techniques for classification. We transfer the default cascade model
to a death process problem represented by a balls-and-bins model '. This allows us to provide limit
theorems for the dynamic contagion model 2.

Second and more importantly, it is the first (to the best of our knowledge), to provide central
limit theorems for default contagion and systemic risk in random financial networks. Related to our
work, [20] derives a law of large number for default contagion in configuration model and provides a
criterion for the resilience of a financial network to insolvency contagion, based on the connectivity
and the structure of contagious links (i.e., those exposures of a bank larger than its capital). Here, we
show that the final size of default cascade has asymptotically Gaussian fluctuations and state various
theorems regarding the joint asymptotic normality between different contagion parameters, including
the number of solvent banks, defaulted banks, healthy links (those initiated by solvent banks) and
infected links (those initiated by defaulted banks) at any time t. We use Monte Carlo methods
to investigate systems with finite number of institutions and compare them with our central limit
theorems. We show how our limit theorems can be used to construct confidence intervals for the size
of contagion.

Third, we provide limit theorems for system-wide wealth aggregation functions, which can be used
for measuring and quantifying systemic risk. This also provides an indicator for the health of financial
system in different stress scenarios.

Finally, we consider a social planner who seeks to optimally target interventions during a financial
crisis, under partial information of the financial network and with a budget constraint. We show how
limit theorems allow us to simplify the optimization problem. The complete information setup has
been recently studied in [125, 145].

Aside from the application to default contagion and systemic risk in financial networks, our results
contribute to the literature on diffusion processes on random graphs. Related problems are the k-core
and bootstrap percolation. The k-core of any finite graph can be found by removing nodes with degree
less than k, in any order, until no such nodes exist. The asymptotic normality of k-core has been
studied in [152]. The bootstrap percolation is a diffusion process that has been studied on a variety of
graphs, see e.g., [9, 10, 148]. In bootstrap percolation process, for a fixed threshold 6 > 2, there is an
initially subset of active nodes and in each round, each inactive node that has at least 6 active neighbors
becomes active and remains so forever. The asymptotic normality of bootstrap percolation has been
recently studied in [13]. Our results generalize those of previous studies on bootstrap percolation and
k-core in random graphs to the case of heterogeneous random directed networks with type-dependent
random thresholds.

Our proof of central limit theorem is a direct generalization of [13, 152] with significantly more
involved calculations. The key idea in the proof of [152] is to transfer the (k-core) process to a death
process problem represented by a balls-and-bins model. After that we appeal to a martingale limit

!The balls-and-bins model has been previously used in the economic literature; see e.g. [34] for a balls-and-bins model
of international trade.

2Although this chapter does not study the dynamic case, this virtual time (associated to the corresponding death
process) allows us to study the equilibrium and the final state of contagion. In Chapter 2, we show how the time-change
technique for Markov processes (see e.g., [184, III. (21.7)]) can be used to apply these limit theorems to other Markovian
dynamic default cascade processes.
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theorem from [147] to derive the limiting distributions. However, our model is more general and
new difficulties arise in treating the Markov process and proving the convergence results. For each
institution, since the interbank losses are random, the default threshold is also random. This makes
the covariances much harder to calculate and some convergence conditions become harder to verify.
Besides, our financial system is also directed and we need to divide the half-edges into two types (out
and in).

We end this introduction by the following remark. In the real world application, using limit
theorems requires some caution. For example, in order to let the asymptotic analysis to be relevant,
the financial network should be sufficiently large (see Figure 2.2). This could be true for example
at the level of a large economic zone. Moreover, financial networks may have small cycles. Most
existing literature on random networks features locally tree-like property. However, recent literature
shows that the basic configuration model can be extended to incorporate clustering; see e.g., [98,
195]. Moreover, following the recent literature on portfolio compression in financial networks (see
e.g., [21, 104, 197]), the study of default contagion and systemic risk in sparse financial networks
regime becomes significantly important, as portfolio compression removes small cycles. In light of its
tractability and interpretability, as well as its potential to be enriched with clustering, in this chapter
we use the configuration model as our base model. Note that the closed form interpretable limit
theorems that we provide could also serve as a mandate for regulators to collect data on those specific
network characteristics and assess systemic risk via more intensive computational methods.

Outline. The chapter is organized as follows. Section 2.2 introduces a model for the network of
financial counterparties and describes a mechanism for default cascade in such a network, after an
exogenous macroeconomic shock. We also describe how the default contagion model can be trans-
ferred to a death process problem represented by a balls-and-bins model. Section 2.3 gives our main
results on limit theorems for the final size of default cascade. In particular, under some regularity
assumptions, we show that different default contagion parameters have asymptotically Gaussian fluc-
tuations. Section 2.4 states limit theorems for different financial system aggregation functions, which
are used for measuring and quantifying systemic risk. Section 2.5 shows how these limit theorems can
be used by a social planner to optimally target interventions during a financial crisis, with a budget
constraint and under partial information of the financial network. Proof of main theorems are given
in Section 2.7. Section 2.9 concludes. Proof of lemmas are provided in Appendix.

Notation. Let {X,},en be a sequence of real-valued random variables on a probability space
(Q,F,P). If c € R, we write X, 2, ¢ to denote that X,, converges in probability to ¢, that is,

for any € > 0, we have P(|X,, —¢| > €) - 0 as n — 0. We write X, 9, X to denote that X,
converges in distribution to X. Let {a,}nen be a sequence of real numbers that tends to infinity as
n — . We write X,, = 0,(an), if | X,|/an > 0. If &, is a measurable subset of Q, for any n € N,
we say that the sequence {&,}neny occurs with high probability (w.h.p.) or almost surely (a.s.) if
P(&,) =1—0(1), as n — oo0. Also, we denote by Bin(k, p) a binomial distribution corresponding to the
number of successes of a sequence of k independent Bernoulli trials each having probability of success
p. We denote by D|[0, ) the standard space of right-continuous functions with left limits on [0, c0)
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equipped with the Skorokhod topology (see e.g. [147, 156]).

We suppress the dependence of parameters on the size of the network n when it is clear in the
context.

2.2 Model

2.2.1 Financial Network and Default Cascade

Consider an economy &, consisting of n interlinked financial institutions (banks) denoted by [n] :=
{1,2,...,n} that intermediate credit among end-users. Banks hold claims on each other. Interbank
liabilities are represented by a matrix of nominal liabilities (¢;;). For two financial institutions ¢, j € [n],
¢;; = 0 denotes the cash-amount that bank i owes bank j. This also represents the maximum loss
related to direct claims, incurred by bank j upon the default of bank ¢. The total nominal liabilities
of bank ¢ sum up to ¢; = Zje[n] ¢;;, while the total value of interbank assets sum up to a; = Zje[n] Lj;.
The total value of claims held by end-users on bank ¢ (deposits) is given by d;. The total value of claims
held by bank i on end-users (external assets) is denoted by e;. In a stress testing framework, we apply
a (fractional) shock ¢; to the external assets of bank i. The capital of bank 7 after the shock denoted
by ¢; = ¢i(€;) satisfies ¢; = (1 — €;)e; + a; — ; — d;, which represents the capacity of bank ¢ to absorb
losses while remaining solvent. A financial institution ¢ € [n] is said to be fundamentally insolvent if
its capital after the shock is negative, i.e. ¢; < 0. For a given shock scenario € = (€1, ...,€,) € [0,1],
we define the set of fundamental defaults Dy(e) = {i € [n] : ¢i(¢;) < 0}. Following the fundamentally
insolvent institutions Dy(€), there will be a default contagion process. Let us denote by R;; = R;;(€)
the recovery rate of the liability of i to j, and by R = (R;;) the matrix of recovery rates. Since any
bank i cannot pay more than its external assets (1 — €;)e; plus what it recovered from its debtors, the
recovery rates of ¢ should satisfy the following cash-flow consistency constraints

(1 — ei)ei + Z Rjifji = Z Rijfij + d;.
= =1

Given the shock scenario € and the matrix of recovery rates R, following the set of fundamental
default Dy, there is a default cascade that reaches the set D* in equilibrium. This represents the set
of financial institutions whose capital is insufficient to absorb losses and should satisfy the following
fixed point equation: D* = D*(e,R) = {z € [n] : ci(&) < Xjepr(1 — Rji)ﬁji}. As stated in [24], the
above fixed point default cascade set has in general multiple solutions. The smallest fixed point set

which corresponds to smallest nurnber of defaults can be obtained by starting from Dy and setting at
step k: Dy = Di(e,R) {z € [n]:ci(e) < depk 1( — Rji)ﬁji}.

The cascade ends at the first time k£ such that Dy = Dj_;. Hence in a financial network of size
n, the cascade will end after at most n — 1 steps and D,,_1 = D,_1(€, R) represents the final set of
insolvent institutions starting from the initial set of defaults Dy.
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2.2.2 Node Classification and Configuration Model

In the following, in order to reduce the dimensionality of the problem, we consider a classification
of financial institutions into a countable (finite or infinite) possible set of characteristics X. All
(observable) characteristics for institution i are encoded in z; = (d;,d; ,t;,...) € X, where d;” denotes
the in-degree (number of institutions ¢ is exposed to), d;” denotes the out-degree (number of institutions
exposed to i) and ¢; denotes any other institution’s type specific (e.g., credit rating, seniority class,
etc.). As we are interested in limit theorems, we consider a sequence of economies {&, },en, indexed
by the number of institutions. In particular, in the economy &,, the characteristic of any institution
i € [n] is denoted by x(n) (d+( n) ,d; (n),tl(n), ...) € X. Without loss of generality, the institutions in
the same class x € X are assumed to have the same number of creditors (denoted by d ), the same

number of debtors (denoted by d) and the same other features.

Under some regularity assumptions detailed below, one can show that the information regarding
assets, liabilities, capital after shocks and recovery rates could all be encoded in a single threshold
distribution function (see [20] for a similar setup). Namely, for a given shock scenario € and matrix of
recovery rates R>, we introduce, for any institution i € [n], the (random) threshold ©; = @En) which
measures the number of defaults ¢ can tolerate before becoming insolvent, if its counterparties default
in a uniformly at random order, i.e., when #’s debtors default order environment is chosen uniformly
at random among all possible permutations. Let us denote by Egn) the set of all permutations of
counterparties of institution 4, i.e. the set {j € [n][¢;; > 0}. Mathematically, in a permutation

n)

environment o; € Eg , the default threshold of institution ¢ which belongs to type x is defined as

k
01" () = minfl > Ole€) < 331 = Pl

Then with fixed liability matrix (¢;;), the probability that an type x institution admits threshold 6 is
given by

L0 (0)) = F " = 2,01 57,0 (0 (8) = 6}
R (n) 741 '
npy  dif!

For tractability, we make the following assumption on the probability threshold functions.

Assumption 2.1. We assume that there exists a classification of the financial institutions into a
countable set of possible characteristics X such that, for each n € N, the institutions in the same
characteristic class have the same threshold distribution function (denoted by qx for institutions in
class x € X ). Namely, for economy E,,i € [n] and for all § € N: ]P’(@l( n = ) = qi(z)w).

(n)

In particular, in the network of size m, ¢y ’(0) represents the proportion of initially insolvent
institutions with type x € X'. As discussed in [16, 20], this assumption is fulfilled e.g. for independent

(type-dependent) random losses. For z € X, let €, be a random variable and {Lg;k)},;‘ozl be a set of

30ur results can be extended to a framework with independent random recovery rates; see e.g. [24] for a discussion.
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i.i.d. positive continuous random variables. Let ¢ be the inter-network capital buffer aside from the
outside assets. Then the limit threshold distribution can be characterized as

qz(0) := P(ex(l —€) + c;” < 0),

0:(1) :=P(0 < ex(1 — &) + ¢ < L{Y),

and for all 6 > 2,

@ (0) = P(LY 4+ + LY < ep(1— ) + < LWV 4.+ L)),

x

Let u;(pn) denote the fraction of institutions with characteristic x € X in the economy &,,. In order
to study the asymptotics, it is natural to assume the following.

Assumption 2.2. We assume that for some probability distribution functions p and q over the set

of characteristics X and independent of n, we have ué”) — iz and qg(gn) (0) — q.(0) as n — oo, for all

xeX and 0 =0,1,...,d}. Moreover, we assume that Zgio qz(0) =1 forall z e X.

Note that, for simplicity of the computations, the threshold distributions are assumed to satisfy

Zgio gz(0) =1 for all x € X. One can define g (o0) := 1 — Zgio ¢ (0) and generalize all results with
slight changes.

Given the degree sequences d,” = (df,...,d}) and d,, = (di,...,d,) such that Dliefn] di =

» '

Zie[n] d;, we associate to each institution i two sets: H; the set of incoming half-edges and H;
the set of outgoing half-edges, with |H;| = df and |H;| = d;. Let H" = (J';H and H™ =
Uiy H; - A configuration is a matching of H* with H~. When an out-going half-edge of instituion 4
is matched with an in-coming half-edge of institution j, a directed edge from i to j appears in the graph.
The configuration model is the random directed multigraph which is uniformly distributed across all
configurations. The random graph constructed by the configuration model is denoted by G (dr,d,).
It is then easy to show that conditioned on the multigraph being a simple graph, we obtain a uniformly
distributed random graph with these given degree sequences denoted by gi”) (d;t,d;). In particular,
any property which holds with high probability on the configuration model also holds with high
probability conditioned on this random graph being simple (for the random graph g&”)(d; ,d;)))
provided liminf, ., P(G™(d;},d;) simple) > 0, see e.g. [194].

2.2.3 Death Process and Final Solvent Institutions

We consider the default contagion process in the random financial network G (d;", d;,), initiated by
the set of fundamentally insolvent institutions Dy. Recall that ©; denotes the random threshold of
institution i € [n] which measures the number of defaults i can tolerate before becoming insolvent in
the uniformly chosen i’s counterparties default order environment. By Assumption 2.1 and standard
coupling arguments, as also proved in [20], we assume that these thresholds are assigned initially to

any institution i € [n] according to the distribution q;(v?)()
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Finding the final solvent institutions. We consider the above default contagion progress in the
following way. At time 0 in the (random) graph G (d;", d;,), all institutions with threshold 0 become
defaulted. We remove all the initially defaulted institutions Dy from the network. Next, in order to
find D;, we identify the partners of Dy. Note that the out-degree and in-degree of each institution in
the network induced by [n]\Dy is less than or equal to those in the previous network. At step k € N,
the default set Dy can be identified by

Dy = {z eln]: Y 1jeDp}= @i}, (2.1)

Jij—t

where 1{£} denotes the indicator of an event &, i.e., this is 1 if £ holds and 0 otherwise. We denote the
in-degree and out-degree of each institution i after k steps evolution by d; (k) and d; (k) respectively.
Note that initially d;" (0) = d; and d; (0) = d; . At step k, we remove all institutions i € [n] with
di (k) < d} —©;. At the end of the above procedure, all the removed institutions are defaulted and
the remaining institutions are solvent.

Transferring to a death process problem represented by balls-and-bins. It is not hard to
see that the calendar time does not take any important role in the contagion process. We can define
the time interval as we want. So instead of removing institutions, we can also remove the links and
define a proper time interval between two successive removals. Namely, at each step, we only look at
one removal (interaction) between two institutions, yielding at most one default. In the following, we
simultaneously run the default contagion process and construct the configuration model. We call all
out half-edges and in half-edges that belong to a defaulted (solvent) institution the infected (healthy)
half-edges. We consider all the institutions as bins and all the (in and out) half-edges as (in and out)
balls. Consequently, the bins are called defaulted (D type) or solvent (S type) according to their
states as institutions. Similarly the balls are called infected (I type) or healthy (H type) when they
are infected or healthy as half-edges. Hence, all institutions are of two types and all balls are of four
different types. For convenience, we denote them as S (solvent), D (defaulted) bins, and further H*
(healthy in), H™ (healthy out), I (infected in) and I~ (infected out) balls, respectively.

We start from the set of fundamental defaults Dy, which gives the set of initially defaulted bins and
infected balls. At each step, we first remove a uniformly chosen ball of type I~ and then a uniformly
chosen ball from H™ U IT. In this process S bins may change to D bins and, consequently, H balls
may change to I balls. We continue the process until there is no more I~ balls. We now change the
description a little by introducing colors for the I~ balls and life for all in balls from H* U I*. We
let all I~ balls are white and all in balls from H™ U I are initially alive. We begin by recoloring one
random I~ ball red. Subsequently, in each removal step, we first kill a random in ball from H* U I
and at the same moment we also recolor a random white ball red. This is repeated until no more
white I balls remain.

We next run the above death process in continuous time. We assume that each ball from H' U
I* has an exponentially distributed random lifetime with mean one, independent of all other balls.
Namely, if there are ¢ alive in balls remaining, then we wait an exponential time with mean 1/¢ until
the next pair of interactions. We stop when we should recolor a white ball red but there is no such
ball. Let us denote by W,,(¢) the number of white I balls at time ¢. Hence, the above death process
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ends at the stopping time 7,; which is the first time when we need to recolor a white ball but there
are no white balls left. However, we pretend that we recolor a (nonexistent) white ball at time 7,7 and
write W, (7,;) = —1. The pseudocode for this default cascade death process is provided in Algorithm 1.

Algorithm 1: Default cascade death process

1. Initialize:

(a) Set up the set of fundamentally defaulted institutions Dy(€).
(b) Assign the threshold 6; to each institution i € [n], according to the distribution gy, (.).
(c) Mark all outgoing half-edges originating from Dy(€) in white.

(d) Allocate i.i.d. exponential lifetimes with a mean of one to all incoming half-edges.

2. while there exists a white outgoing half-edge in the system do

(a) Wait for the next incoming half-edge death (uniformly distributed among all alive
incoming half-edges) and remove this half-edge from the set of alive incoming half-edges.

(b) If this incoming half-edge is connected to institution i € [n]| with threshold 6; and this is
the 6;-th incoming loss to this institution, then add this institution to the set of defaulted
institutions and color all outgoing half-edges connected to this institution in white.

(c) Select a random white outgoing half-edge and color it in red.

end

We denote by I,7(t), H,f (t) and L, (t) the number of alive (in) balls in IT, H" and H* U I at
time t, respectively. For x € X, 0 e N/ =0,...,0 — 1, we let Si?g)l(t) denote the number of solvent
institutions (bins) with type x, threshold # and ¢ defaulted neighbors at time t. Further, let S, (¢)
and D, (t) be the numbers of S bins and D bins at time ¢. Hence, S, (7;;) denotes the final number
of solvent institutions. Further, D, (7)) = n — Sp(7)) = |Dn—1] is the final number of defaulted

institutions.

2.3 Limit Theorems

In this section we consider the above dynamic default contagion model (which is now transferred to a
death process problem represented by balls-and-bins) and state our main results regarding the limit
theorems in the random financial network G (d;, d;).
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We first define some functions that will be used later. Let for z € [0, 1]:

b(d,z,{) :=P(Bin(d,z) = £) = (‘;) 21— 2), (2.2)

d
B(d, z,0) :=P(Bin(d,z) > {) = <d> 2M(1—2)4T, (2.3)

r=~{ r

and Bin(d, z) denotes the binomial distribution with parameters d and z.

2.3.1 Asymptotic Magnitude of Default Contagion

We consider the random financial network G (d;},d;,) and assume that the average degrees converges
to a finite limit.

Assumption 2.3a. We assume that, as n — o0, the average degrees converges and is finite:

A = M df () = YTy — X =) df g € (0,0).

reX reX xeX

Note that the finite average degree condition is satisfied for most real-world scale-free financial
networks with a shape parameter larger than 2.

For z € [0,1], we define the functions:

2M$ZQ$ d+,Z,d;—9+1), fD<Z):1_fS<Z)7

zeX 6=1
df
fH+ ZﬂxZQx Z Eb(d;,z,ﬂ), fI+(Z):)‘Z_fH+(Z)7
reX  0=1 t=df —0+1
—Az—Z,uzd qu dﬂz,di—@—l—l).
reX

The following theorem states the law of large numbers for the number of solvent banks, defaulted
banks, healthy links, infected links and the total number of existing white balls (remaining interactions
yielding at least one default) at any time ¢ in the economy &, satisfying above regularity assumptions.

Theorem 2.1. Suppose that Assumptions 2.1-2.3a hold. Let 1, < 7, be a stopping time such that

Tni»toforsomet0>0. Then for allz e X,0 =1,...,d} and £ =0,...,0 — 1, we have
(n) ()
sup | =8t —uxqm(G)b(d;r,l—e*t,E)‘LO as n — oo.
t<Tn n
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Further, as n — o0,
S (t _ D, (t _
sup| 10 _ (et o0, sup 22 g (o)) 2o,
t<mp n t<Tn
+(t _ It(t _
sup 220 et o0, supl 2O gy o] 2
t<Tn n t<tn n
and the number of white balls satisfies
Wit _
sup| 20 () 220
t<Tn n
Proof. see Section 2.7.1. O
We consider now the stopping time 7,7 which is the first time such that W, (7)) = —1 (becomes

negative). Let us define
z* :=sup{z € [0,1] : fw(z) = 0}.

We have the following lemma.

Lemma 2.2. Suppose that Assumptions 2.1-2.3a hold. We have (as n — 0):

(i) If z* = 0 then 77 -5 0.

i) If 2* € (0,1] and z* is a stable solution, i.e. fl,(2*) >0, then 7* 2> —1In 2*.
( ) ’ ) %% ’ n
Proof. See Appendix 2.8.2. O

Remark 2.3. The stable solution of fy (t) guarantees that the process W, becomes negative when n
is large enough, by Theorem 2.1. If the solution is not stable, Wy, reaches some position close to 0,
but may not be negative. Then we can not guarantee that the default contagion stops.

As a corollary of Theorem 2.1 and Lemma 2.2, we next provide the law of large numbers for the
final state of default contagion.

Theorem 2.4. Suppose that Assumptions 2.1-2.3a hold. The final fraction of defaults satisfies:

(i) If z* = 0 then asymptotically almost all institutions default during the cascade and ‘Dn_l‘ =
n — op(n).

(ii) If 2* € (0,1] and z* is a stable solution, i.e. fiy(2*) > 0, then "L L5 fp,(2*). Further, in this
case, for allx € X,0 = 1,...,d} and £ = 0,...,0 — 1, the final fraction of solvent institutions
with type x, threshold 0 and { defaulted neighbors satisfies

L a0 (d) 1 — 2, 0)
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Proof. See Section 2.7.2. O

The above theorem (in a simpler setup) has been used in [20] to provide a resilience condition for
contagion in random financial networks. With the notation above, starting from a small fraction e
of institutions representing the fundamental defaults, i.e., >, _y (t2¢2(0) = €, the financial network is
said to be resilient if lim,_,o 2* = 1; this condition implies that the final fraction of defaults is (w.h.p.)
negligible and |D;,_1| = op(n). We refer to [12, 20] for the resilience conditions.

The law of large numbers results can be used for quantifying systemic risk in different networks.
This can be reflected by various wealth aggregation functions providing indicators for the health of
financial systems in different stress scenarios.

2.3.2 Asymptotic Normality of Default Contagion

In order to study the central limit theorems, we need to restrict our attention to the sparse networks
regime. Namely, we consider the random financial network g(")(d;,d; ) and assume that degrees
sequences satisfy the following moment condition.

Assumption 2.3b. We assume that for every constant A > 1, we have

n

M at = Y p A% = o) and iAd? =n Y A% = O(n).
=1

=1 xeX reX

Compared to Assumption 2.3a, this assumption restricts the networks to a sparse regime (e.g., a
Core-Periphery financial network or an Erdos-Rényi random graph with finite average degree).

Remark 2.5. Let (D, D;) be random variables with joint distribution

]P)(Dr—i_ = d+aD7: =d7) = Z :ugn)]l{d: = d+ad; =d"},
TeX

which is the joint distribution of in- and out- degrees for a random node in Q(”)(d;[,d;). Let also
(D*, D7) be random variables (over nonnegative integers) with joint distribution

P(D* =d". D™ =d") = ) pl{d; =d*.d; =d }.
reX

Assumption 2.3b can be rewritten as E[AD*t] = O(1) and E[AP»] = O(1) for each A > 1, which in
particular implies the uniform integrability of D, and D, so

A =N df (" = E[D}] — E[DT] = A e (0, ).
zeX

Similarly, all higher moments converge.
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By the construction of the balls-and-bins model, the independency exists between any two different
types x1 # x2, at any time ¢ before the final state is reached. Hence we study the asymptotic normality
type by type. We first show the following joint convergence theorem for all z € X,0 = 1,...,d}, ¢ =
0,...,60 —1.

Theorem 2.6. Suppose that Assumptions 2.1-2.3b hold. Let 7, < T be a stopping time such that
T — tg for some tg > 0. Forallze X,0 =1,...,d},0=0,...,0 —1 and jointly in D [0, ),

02 (890, A ) = nP g OB 1 — ™) 0)) s 2, (2 A o),

where Z; ¢ ¢(t) is a Gaussian process with mean 0 and variance o5 ¢(t) given by (2.12).

Proof. See Section 2.7.3, where we also provide the covariance between 2;1791761 and 3;27927£2, for any

two triplets (x1,01,¢1) and (x2,02,02); (see (2.11)). O

The process Sg(cflg),g is an elementary process in the network. Other processes can be regarded as

aggregated processes of Sa(:ne) , over different (z,0,¢). With the asymptotic normality of S:(Ung) s> the

asymptotic normality of other processes can be obtained.

In the following theorem, we show the joint asymptotic normality between the total number of
solvent institutions, number of defaulted institutions, number of infected and healthy links, and the
total number of white balls (controlling the default contagion stopping time) at any time ¢ before the
end of default cascade. For z € [0, 1], we define the functions:

di
£ =D N dm0)8(dk, 2 dt —0+1), f(2) =1 f57(2),
0=1

reX
dF dF
I = W S g S (dlz0), fP) = Az 10 (2),
TeX 6=1 L=df —0+1

dy
AP () =AMz = 3 udg Y g (0)8(d 2, df — 0+ 1).
zeX =1

For convenience, we set
) = £, for & e {S,D,H*, IT,W}.

Theorem 2.7. Suppose that Assumptions 2.1-2.3b hold. Let 1, < T be a stopping time such that
T =25 to for some tg > 0. Then jointly in D [0,00), as n — o0,

PRE: (.y.n(t A Ta) = nfE(E A Tn)) L, Za(t A to) (2.4)

for &€ {S,D,HT It W}, where {Zg} are continuous Gaussian processes on [0, to] with mean 0 and
covariances that satisfy, for 0 <t <ty and &, # € {S, D, HT IT W},

Cov(Za(t), Za(t)) = oaale™),
where the form of og, a(x) are given by (2.56)-(2.60) in Appendiz 2.8.7.
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Proof. See Section 2.7.4. Note that since D, (t) = n — S,(t), it is easy to transfer the result to D
by setting op p = og,g and op 4 = —og4. Further, since I,,(t) = Ly(t) — H;f (t), computing the
covariances of I is similar to H* and is omitted from the proof. We only provide the covariances for
S Mdc{S HT W} O

We have obtained asymptotic normality for all processes of interest. Note that the covariance
functions between them are obtained in explicit forms, using the observable features of the network.
This allows us to test the approximation performance in networks with size n, when n is not so large.

Our central limit theorems can be used to provide a confidence interval for the fraction of defaults
in finite financial networks. Figure 2.1 displays the 95% confidence interval for the fraction of defaults
in a 6-regular financial network (d* = d~ = 6) (plotted against z = e™!) during the default cascade
process. As expected, when the network size is larger, the interval size becomes smaller.

09r

Fraction of defaults
o o o o o o o
N [+ s (3] o ~ ©
T T

o

o

Figure 2.1: 95% confidence interval of the fraction of defaulted institutions. The blue solid line is the limit,
the green dash line is the bounds for network size n = 300, and the red dash line is the bounds for network
size n = 1500. Here, d* = d= = 6 and the threshold distribution is ¢(0) = 0.05,¢(1) = 0.05,¢(2) = 0.1,¢(3) =
0.1,¢9(4) = 0.15,¢(5) = 0.25 and ¢(6) = 0.3.

Let us define

520,0(2) 1= 112 (0)b(d5, 1 — 2,0), s\ ,(2) := pM gl (O)b(d], 1 2,10),

xT

and let Z,, be the largest z € [0, 1] such that fIE{,L) (z) = 0. As a corollary of Theorem 2.7 and Lemma 2.2,
we have the following result regarding the final state of default contagion.
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Theorem 2.8. Suppose that Assumptions 2.1-2.3b hold. Let t* = —Inz*If z* € (0,1] and z* is a
stable solution, i.e. a:= fi,(2*) > 0, then we have

0V (@ (1) = nf 0 (20)) — Za(t*) — a7 fal2) Zw (), (2.5)

for & € {S,D,H"  I" W}, where the limit distributions compose a Gaussian vector. Furthermore,
Zn — 2% and, for allz e X, 0 </ <6 <d,

n V28T (r) = ) J(Ba)) — 22y () — a7 sl g () B (1) (2.6)

T

Proof. See Section 2.7.5. |

To study the convergence of our central limit theorems numerically, we consider in Figure 2.2
networks with finite size n and simulate the final fraction of defaulted institutions by using a Monte-
Carlo method. To see how the distributions of final fraction of defaults come close to the Gaussian
distributions as n becomes large, we run 3000 times the default cascade process of Figure 2.1 in
different 6-regular networks chosen uniformly at random among all 6-regular (directed) networks. We
count how many institutions default at the end of each simulation and then produce the histograms.
Figure 2.2 displays the obtained histograms with two different network sizes n = 300 and n = 1500.

0.1

o
o
5]
Frequency of networks

Frequency of networks
g
3

o
o
2

0.02 -

10 15 20 25 30 35 40 90 100 110 120 130 140 150
Number of final defaults Number of final defaults

(a) Network size n=300 (b) Network size n=1500

Figure 2.2: Histograms of 3000 times Monte-Carlo simulation for the number of final defaults in regular
financial networks with size n = 300, 1500.

2.4 Quantifying Systemic Risk

In order to determine the health of the financial network, we consider now a systemic risk measure
applied to the (random) financial network, introduced in previous sections. These measures are de-
composed as p o' for a stand-alone risk measure (usually assumed convex) p and an aggregation
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function I' = I'(e) for losses under the stress scenario €. This was first introduced in [87, 159]; see
also [21, 118]. The following three aggregation functions have been considered in the literature. At
time ¢, for the economy &, and given shock scenario €, we let:

« Number of solvent banks: T'7(t) := S, (t) = n — Dy(t).

+ External wealth: Let TY denote the total external wealth to society if there is no default in
the financial system (small shock regime). We define the external Wealth (societal) aggregation
function as TQ(¢) :=T9 - > _, I:J?Dggn) (t), where D&n)( t) = n,ux — 3,30 éSx e)e( t) denotes
the total number of defaulted institutions with type x € X at time ¢. Note that (for simplicity)
we assume a bounded constant type-dependent societal loss E? over each defaulted institution.

« System-wide wealth : Let I'{ denote the total wealth in the financial system if there is no
default in the system. We define the system-wide aggregation function as

di 6—1
LY(t) :=T9— > LODM(t) — > LY Z Sesth) ¢
zeX TeX =1/=1

For each type x € X', we consider a bounded fixed (type-dependent) societal cost L2 for defaulted
institutions and a bounded fixed (host institutions’ type-dependent) cost LY over each defaulted
links.

For the aggregation function I'7 (t), we already stated the limit theorems in Section 2.3. Since the
societal aggregation function I O can be seen as a particular case of system-wide aggregation function
¢ (by setting LY = 0), we only state limit theorems for T'9.

To this purpose, it is natural to assume that T'O/n — T'® when the size of network n — o0. Let us
define

df -1
FPG) =T = ST IO () — Y LY Mes)
xeX xeX 0=1/¢=1
- B B df 0—1
fo(2) =T = Y LOfp(z) = D LI D" > lspou(2).
xeX reX 0=1/¢=1

Similarly we also set

Y@ = 17D, folt) = fole™).

We next consider the central limit theorems for the societal and system-wide aggregation functions.
By applying Theorem 2.1 and Theorem 2.4, the following holds.

Theorem 2.9. Suppose that Assumptions 2.1-2.3a hold. Let 1, < 7, be a stopping time such that
P
Tn — to for some tg > 0. Then, as n — o0,

()

sup ole ] 0, (2.7)

t<Tn
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and under Assumption 2.3b, jointly in D [0, 0),
n~1/?2 (Fg(t A Tn) — nfén)(t A Tn)> 4, Zy(t A to),

where Zy, is a continuous Gaussian process on [0, to] with mean 0 and variance oo (t) given by (2.61)
in Appendiz 2.8.8.

Moreover, the final (system-wide) aggregation functions satisfy (under Assumptions 2.1-2.53a):
(i) If z* = 0 then asymptotically almost all institutions default during the cascade and

Lo (7)

n

RN NS i)

n
reX

(it) If z* € (0,1] and z* is a stable solution, i.e. fy,(2*) > 0, then % L5 fo(z*) and, under
Assumption 2.30,

n 200 - nfiM(E) L 23,

where Z[ is a centered Gaussian random variable with variance o} given by (2.62).

Proof. See Section 2.7.6. O

2.4.1 Numerical analysis on heterogeneity and stability

In this section, we investigate the impact of network structure heterogeneity on the final size of the
default cascade. To simplify the analysis, we assume that the out-degree is equal to the in-degree for
all nodes. We consider the following three types of networks:

e Regular networks: These exhibit regular, symmetric linkages among nodes. All nodes, con-
sidered identical for our study, create a homogeneous, symmetric network.

o Erdos-Rényi networks: In this model, every pair of nodes (a potential directed link) inde-
pendently forms a connection with a fixed probability p, € (0, 1), such that np, — X as n — .
This differs from regular networks as each node pair has a potential edge based on a specific
probability, infusing heterogeneity into the degree distribution. In particular, the degree distri-
bution converges to a Poisson distribution with parameter A\, with the asymptotic probability
mass function of degree given by P(D = k) = e *\F/k!.

e Scale-free networks: These are prevalent in many real-world financial network systems. Scale-
free networks possess a degree distribution following a power law. This is expressed as P(D =
k) ~ ck™", where ¢ > 0 is a normalizing constant and 1 > 1 is a control parameter.
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We set the parameters A = 5 and n = 1.2. To reduce the complexity of the simulation, we assume
that the degrees are upper-bounded by dy.x = 23. These parameter choices result in both the scale-
free and Erdos-Rényi networks having an average degree very close to 5. In Figure 2.3, we compare
the final fraction of defaults in these networks to a regular network with a degree of 5. We assess the
final defaults in these three distinct networks under different initial shocks, measured as a percentage
of asset loss for each agent. Our numerical framework employs i.i.d. distributed Pareto losses.

From Figure 2.3, we note that for small shocks (less than 0.2), the performance of the three
networks is quite similar. However, as the shock size increases, the scale-free network is the first to
leap to a larger default fraction, indicating it has the smallest critical value for the shock. The ER
network follows, and the regular network displays the largest critical value. Interestingly, with larger
shocks, the regular network exhibits the highest default fraction among the three, followed by the
ER network, while the scale-free network shows the lowest. These observations lead to a conclusion:
networks with low heterogeneity are more resilient to small shocks, but their resistance to larger shocks
increases with heterogeneity.

[=b—rReguiar |
e 1

0.9 H = D= Scale-
| —B— Scale-free I.«V(’

Fraction of defaulted institutions
3
o

L L L L )
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 2.3: Final faction of defaults for regular, Erdés-Rényi (ER) and scale-free networks.

2.5 Targeting Interventions in Financial Networks

In this section we consider a planner (lender of last resort or government) who seeks to minimize the
systemic risk at the beginning of the financial contagion, after an exogenous macroeconomic shock
€, subject to a budget constraint. As discussed in Section 2.4, we assume that the systemic risk is
represented by p(I'9), for some convex function p applied to the system-wide wealth. Note that since
we study the interventions for a given shock €, the uncertainty (in stress scenario) for the risk measure
p is only on the network structure (which is assumed to be uniformly at random). The planner only
has information regarding the type of each institution and, consequently, the institutions’ threshold
distributions. Hence, the planner’ decision is only based on the type of each institution. The timeline
is as follows. At time ¢t = 0, the financial network is subject to an economic shock €. At time t = 1,

92



Chapter 2. Limit Theorems for Default Contagion and Systemic Risk 2.5. Targeting Interventions
in Financial Networks

NFR

the planer (observing the external shock €) computes the threshold distribution g,(.) for each = € X.
Then she makes decisions, under some budget constraint, on the number (fraction) of interventions
over all defaulted links leading to any institution with any type x € X. When the planner intervenes
on a defaulting bank, its threshold (distance to default) increases by 1. These interventions will be
type-dependent and at random over all defaulted links directing to the same type institutions.

(n)

For z € X, let us denote by «, ’ the planner intervention decision on the fraction of the saved

(n)

links directing to any institution of type x € X. We assume that ay ° — «, for all x € X, and some
constants «, independent of n. Let o, = {aén)} " and, let I'Y(cx,) denote the system-wide wealth
xTe

(n)

under the intervention decision a,. Further, S, (o) denotes the number of solvent banks with
type x, threshold 6 and ¢ defaulted neighbors under the intervention decision av,. Similarly, D, (a,)
denotes the total number of defaults under intervention c,.

Let C, € R* denote the cost associated to saving any defaulted link leading to an institution of
type x € X. We assume that C,, is a bounded function. We denote by ®,,(cx,,) the total cost associated
to the planner for the intervention strategy c,.

We state below a limit theorem on the number of solvent institutions, defaulted institutions, the
total aggregate wealth of the financial system and the total cost of intervention for the planner, under
the intervention decision «,,. Let us define

f( *)\z—Eug;d Eqm g+ (1 —ag)z,df —0+1),
zeX
and,
2t =sup{z € [0,1] : = 0}. (2.8)

Theorem 2.10. Suppose that Assumptions 2.1-2.3a hold. Let o, = o as n — 0. If 2}, is a stable
solution, then as n — o0:

(i) For allz e X,0 =1,...,d} and £ = 0,...,0 — 1, the final fraction of solvent institutions with
type x, threshold 6 and ¢ defaulted neighbors under intervention a., converges to

S ()

n

258 (28) = pe@e(0)b (d (1 — a) (1 — 25),0) .

(i) The total number of defaulted institutions under intervention o, converges to:

Dyp(an) » (o) . . +
— = I =1 ZwZ% Lo + (1= ag)2h,df — 0+ 1).

reX =1

(iii) The system-wide wealth under the intervention decision a, converges to

Thlan) », £ () ~ S Iy - Y LY di: 62158
" 0 reX i a reX 0=1+¢=1 IQZ
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(iv) The total cost of interventions v, for the planner converges to

D, ()

i
L2 = Z 1y Co Z 0 (df,1—25,0).
zeX (=1

Proof. See Section 2.7.7. O

We conclude that, as n — o0, the planner optimal decision problem simplifies to

df -1
max £ (24) =00 = 3 LQF5(z0) = D) L8 D 3 €59, (28),
TeX zeX =1 (=1

di
subject to  ¢(2}) := Z a0t Co 2 0 (df,1—25,0) <C,
reX (=1

for some budget constraint C' > 0 and z}, given by (2.8).

2.6 Default cascade process

In this section, we study the default cascade processes in the financial network G (d:,d;;).

We consider a nonnegative matrix (v;;) which represents the frequency of meetings between any
connected (ordered) pair of agents i,j € [n]. Assume:

 Each pair of agents i, j meet (and interact) at the jump times of a Poisson process of rate v;; > 0,
independently from all other meetings in the network.

» Each pair of agents 7, j with rate v;; = 0 never meet, which means that agents 4, j are not directly
connected to each other (there is no liability from i towards j).

This collection of Poisson processes are called the meeting process and the matrix (v;;) specifies
the meeting model.

We now introduce the default cascade process. Starting from the set of fundamentally insolvent
agents D(0) = {i € [n] : ¢; < 0} and initial capitals C(0) = (c1,...,¢n), each pair of (connected)
agents in the financial network, interacts at random times associated to the above meeting process
and update their states (solvency/default state or interbank liabilities). If, at the meeting time, the
debtor agent is solvent, the two agents continue to interact and update their states. In this case,
the capitals of these two agents are assumed to be unchanged. Otherwise, when a defaulted agent
meets its creditor agent, the creditor agent receives a random loss with distribution depending on its
characteristics and the the two agents stop meeting each other. Namely, if agent ¢ is defaulted at the
meeting time with agent j (where i — j), then it brings a random amount of loss, denoted by L;;, to
J. In this case, the capital of agent j is reduced by the loss L;;. We assume that the losses that agent
j receives from its debtors are i.i.d positive bounded, depending only on the characteristics of agent j.
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We write C(t) = (ci(t),...,cn(t)) for the time-t configuration of capitals in the above default
cascade process, with ¢;(0) = ¢; for all i € [n]. Then, it is easy to show that C(t) is a continuous-time
Markov process which at some almost surely (a.s.) finite random time 7,5, reaches some absorbing
configuration C* in which there is some random set of agents who are solvent (i.e., with positive
capital).

Under the same assumptions on the type distribution and default threshold distribution as in
previous sections, we set the following second moment condition on the degree sequence.

Assumption 2.4. We assume that (as n — ) Zie[n](df +d;)? =0(n).

We consider the default cascade process when the meeting times are i.i.d. exponential random
variables with parameter (normalized to) one. Namely, we assume that

vij = ]l{(i,j) is an edge of g(n)(d:{’d;)}_

The main result is based on studying the time-change default cascade process and using some limit
theorems from previous sections on this time-changed Markov process. The result is as following.

Theorem 2.11. Consider the default cascade process in the random network G (d;t,d;) satisfying
Assumption 2.4, when the meeting times are i.i.d. exponential random variables with parameter one.
If z* is a stable solution, then we have the following:

(i) There exists a unique continuously differentiable function v : [0,00) — (2*,1] satisfying the
differential equation

and, v(t) \ z* ast — o0.

(it) Forallze X,0 =1,...,d} and ¢ =0,...,0 —1, asn — o,

xT

Si?e),z(t)
sup|—2——=

- uqu(e)b (d;—a 1- ’U(t)7€)’ i’ 0.
t=0 n
Further, as n — o0,

Sup‘SL(t) — fs(w(®)] 20 and sup\D"—(t) — fp(v(t))| = 0.

t=0 N t=0 n

Let T, (¢) be the (random) time that the random financial network G (d;, d;-) faces its ¢-th loss
(¢-th meeting time containing at least one default). Let also L} denote the final number of losses in
network G (d:*,d;;). Then we have the following theorem.

Theorem 2.12. Consider the default cascade process in the random network G (d;}, d;)) satisfying
Assumption 2.4, when the meeting times are i.i.d. exponential random variables with parameter one.
Then, as n — o0, L* /n 2> X1 — 2*), and, for all0 < a <b<1— z*,
(n) w2, [ A
T, bA”n)—T(aA"n)—»J ——dx.
nl " 1 fw(®)
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The proof of above theorems are provided in §2.7.8.

2.7 Proof of Main Theorems

This section contains the proofs of all the theorems in previous sections. We provide in Appendix 2.8.1
proofs of lemmas and recall some useful preliminary results on death processes and martingale theory.

2.7.1 Proof of Theorem 2.1

We denote by Uiﬁ;{ () the number of bins (institutions) with type x € X, threshold ¢ and s alive (in-)
balls at time ¢. Let N agng) denote the (random) number of bins with type = and threshold 6. Let also
Nén) =2 Na%) denote the number of bins with type x. We first state the following lemma on the

convergence of U, y;) S(1).

Lemma 2.13. Let 7, < 7, be a stopping time such that T, L5t for some ty > 0. Under Assump-
tion 2.3a, for allx € X,0 =1,...,d} and £ =0,...,0 — 1, we have (as n — ©)

U t
suplix’e’e( ) — 112G (0)D (df e_t,é)‘ 25 0. (2.9)
t<Tn n
Further,
: i
sup 3 (df +d7) Y, D) [ULG.(0)/n— naas (O)b(dF e 5)] o 0. (2.10)
ST pex 0=1s5—dF —6+1
Proof. The proof is based on the death process Lemma 2.19 and provided in Section 2.8.3. O

We now continue with the proof of Theorem 2.1.

Consider Sifle),f’ the number of solvent institutions with type z, threshold § and £ = 0,...,6 — 1
defaulted neighbors at time ¢. By definition, Sz%)x(t) = Ug;)dJr_K(t). Hence, by (2.9), we obtain that

Sa(:e),ﬁ(t)
up | =

t<mp

— paqz(6)b (d;,l—e_t,€)|i>0, as n — o0.

The total number of solvent institutions at time ¢ satisfies

- da
S =>3 > vl

zeX 0=1s—gr —0+1
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which is dominated by Y _,(df + d;)Zgil Z§£d+—6+1 Uq%)s(t). Then, by Lemma 2.13 and the

== Iseh] 0.

convergence result (2.10),

XTn

Further, from D,,(t) = n—.S5,,(t), the number of defaulted institutions at time ¢ satisfies sup|

t<mp
fD(e_t)| L 0.
Observe also that the total number of healthy in links at time ¢ is given by

dr dF
SDID D WA N0

zeX 0=15—gr —0+1

which is also dominated by >, (df + d3) Zga; ZC@ ™

T 2.0.5(t) and again by Lemma 2.13, we

obtain sup|=2+ Hi (1) — fa+(e7h)] 2 0.

XTn

Moreover, the number of in balls from I at time ¢ satisfies I,} (t) = L,(t) — H,;F (¢t). By the
construction of the balls-and-bins model, it is easily seen that L, (t) is a pure death process. It follows
by Lemma 2.19 and Assumption 2.3a that supt>0‘L /n — )\e*t‘ —2,0. We therefore obtain (by

definition fr+(2) = Az — fg+(2)) sup’T — fre(e7t)] 0.
t<mp

Finally, the total number of white (out) balls at time ¢ satisfies W,,(t) = L, (t) — H,, (t), where
H, (t) denotes the total number of healthy (out) balls at time ¢, given by

dr dF
DD MR A RC)

reX 0=1 s=df —6+1

This is again dominated by >} 1 (df +d; ) 29 1 ZS 041 J(/,"@)S( t). Then Lemma 2.13 and Assump-

‘ Wn(t) _ fW(e_t

tion 2.3a imply that the number of white balls satisfies sup )’ -2, 0. This completes
t<tp

the proof of Theorem 2.1.

2.7.2 Proof of Theorem 2.4

By Theorem 2.1, it follows that S"(T = fs(e™™) + 0,(1). If z* = 0 then, by Lemma 2.2, 7 —2> 0.
So e~ 25 0 and, since fg(0) = 0, it follows by the continuity of fg that fs(e~™) —> 0. We
therefore have Sy, (7;;) = op(n). This implies that |D,—1| = n — S,(7,;) = n — op(n) and, as desired,
asymptotically almost all institutions default.

If 2* € (0,1] and fl};(2*) > 0, then by Lemma 2.2, we have e~ —» z*. Moreover, the continuity
of fp implies that fp(e~™) <> fp(z*). Hence, we have by Theorem 2.1 that

|Dn*1| _ Dn(T'r:) i) fD(Z*)-
n

n
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Now using the first statement of Theorem 2.1 and the continuity of j,q,(0)b(d},1 — 2,£) on z, we
obtain for all z € X,0 = 1,...,d} and £ = 0,...,60 — 1, the final fraction of solvent institutions with
type x, threshold 6 and ¢ defaulted neighbors satisfies

S(n)

xTM > /quyc(e)b (d;? 1 - Z*’E) ’

This completes the proof of Theorem 2.4.

2.7.3 Proof of Theorem 2.6

Recall that U:Sf@), <(t) denotes the number of bins (institutions) with type x € &, threshold 6 and s
alive (in-) balls at time t. Further, we let V(n) s(t) denote the number of bins (institutions) with type
x € X, threshold # and at least s alive balls at time ¢, so that v (¢t (t) = D= Ugg’g(t).

x,0,s
We first study the stochastic process Vx(z?s for a given x € X and integers 0, s. For all possible
triple (z, 0, s), we define
VI (0) = 0T VD0 = el (0)(d e 5)),

xz,0,s x,0,s

and
N;,(en) = n~V2(N} () —nu{Mq™(8)).

We then have the following lemma.

Lemma 2.14. Let 7, < 7, be a stopping time such that T, L5 1 for some to > 0. Under Assump-

tion 2.3b, we have that for all couple (x,0), jointly as n — o, N_ ( )

Gaussian random variables with mean 0 and covariances

_, V¥ o, where all V¥, are

Cov(y:1,917y;:2,02) = wx,91792]]‘{$1 = .’I;Q},

where Vg 00 = f2qx(0)(1 — q2(0)),  Vz0,0, := —Haz(01)qz(02) for all 61 # 6.

Further for all triple (x,0, s), jointly in D[0,0), as n — w0, V., és)(t A Tn) 4, Zy g5t Ato), where

all Z7¥ 4 ((t) are continuous Gaussian processes with mean 0 and covariances
R

Cov( 0 51(1%),2,’;2792752 (t)) =0, for all x1 # x9,
COV( 01,51 (t)7 ;,92,82 (t)) :6-1'»91792751752 (e_t)’ fO?" (l” 91 7> 02?

COV( z,0,51 (t), :,0,32 (t)) :8x,9,9751782 (e_t) + 593,6,51,32 (e_t)a

where 81}0,91792,81782 (e_t) = B(d;a e_ta Sl)ﬁ(d;v e_t7 82)w$701,927 and &:Bﬁ,shsz = 5279,82,81 with

dt . . 1
1 j—1 j—1 R
O'm ,0,s s+k( = 25+k E (S i 1) (8 + k— 1> J:U (U - y)2j 2 kv 2jd§0$,9,j(v)7
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and %:,e,j(?/) = /J,qu(e),@(d;, ya])

Moreover, the covariance between Z7 o ((t) and Yy, o, is given by

COV (2;1,01,8 (t)7 y;z,@z) = ﬁ(d;—1 ’ 6_t7 S)¢$1761702 ]I.{CC]_ = $2}‘

Proof. See Appendix 2.8.4. O

We now turn back to the proof of Theorem 2.6. For the number of solvent institutions with type
x € X, threshold § = 1,...,d —1and £ =1,...,0 — 1 defaulted neighbors at time ¢, we have

(n) (n) (n)
Sp0.(t) = Vx,e,d;—z - Vz,e,d;f—éﬂ‘
Moreover, for ¢ = 0, Sg,le),o(t) = Vx(j;? e Using the joint asymptotic normality of V;é?d);_ ' and
;én}_e“, we obtain that in D [0, c0),
_ —(trT d
n~1? <S:E:T,L€),€(t A Ty) — nplM g™ (0)b(df,1—e (tn ”),€)> — Zy0.0(t A to),
where Z, 9 = 2:797d;_z — 2:797d;_€+1 for/>1and Z,90 = Z;,e,d;“' Further, for convenience, we set
Zyps=0forall s> d; . Thus for any two triple (z1,61,¢1) and (x2, 62, f2), we have

Cov (Zﬁﬂl ,01,41 (t)’ Zfz,ez,ez (t))

—Cov(2? z: (£)) + Cov(Z] 5, at

s
1,01,d8, —1 (®), x9,02,d7, —L2 " —€1+1(t)’ ng,@g,d;g —Eg-i—l(t)) (2.11)

* * * *
= Cov(27, o at 0,027, 0,08 a1 ) = Cov(ZT 5 0 g 18,27, 4, 1, (1)
where the covariances on the right hand side can be computed by using Lemma 2.14.

In particular, the variance of Z, ¢ (t) is given by

~ —t\ o~ —t
02,0,6(t) =0, 0 at —var—e(€ ) +0pgar pi1at—er1(€)
— 25, g0t —eat—es1(€) VAL e dE — O, (2.12)

where 1399 = p26-(0)(1 — ¢»(9)) as in Lemma 2.14.

2.7.4 Proof of Theorem 2.7

We first state a lemma which holds under the moment regularity condition (i.e., Assumption 2.3b).

Lemma 2.15. The Assumption 2.3b guarantees that, as n — 0, fin)(z) — fa(2), for all & €
{S,D,HT 1", W}, together with all their derivatives, uniformly on [0,1].

Proof. See Appendix 2.8.5. O
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This lemma allows us to extend the convergence results to some infinite sums of V*(n) (t). We

denote by Xﬁ and X, the set of characteristics x € X with in-degree d;} > ¢ and out- degree d, >/,
respectively.

Lemma 2.16. Let 7, < 7 be a stopping time such that T, L5ty for some to > 0. Under Assump-
tion 2.3b and for n large enough, we have as { — o0,

dt
gl ¥ S S ol

<
t<T zex,t 0=1 s=df —0+2

Further as n — oo,

di d¥ df d
DD IR A R =3 Y S Y- P (P )] (2.13)
zeX Ay TEX +

0=1s—df 642 0=1s=df —6+2
Similarly, as n — oo,
d+

it
d ®
Z Z x9d+—9+1 (t A 7o) Z Zx9d+—9+1(t A to),
zeX 6=1 2eX 0=1

ZZ —0+1) xé”dl gy (E A T0) =5 ZE — 0+ 122 o (EAt0),

zeX 0=1 zeX 0=1
and
d+
Zd m9d+ g (LA o) — Zd o.at—o41(t A 10)-
TeX =1 reX =1

Moreover, all the above limit processes on the right hand side are continuous.
Proof. see Appendix 2.8.6. O

We come back to the proof of Theorem 2.7. Recall that L, (t) denotes the total number of alive in
balls at time t. At the initial time, L,(0) = nA( and L, (t) decreases by 1 each time a (in) ball dies.
Since the death happens after an exponential time with rate 1 independently, therefore on [0, 7],
writing in differential form, we have

AL (t) = — L (t)dt + dM,,

where M is a martingale.

Then by similar arguments as in the proof of [152, Theorem 3.1] for W,,, with obvious change of
the jump from —2 to —1, we obtain

n V2 (Lot A 7o) = La(0)) —% Zp(t Atg)  in D[0,00),

60



Chapter 2. Limit Theorems for Default ContagiO% and Systemic Risk 2.7. Proof of Main Theorems
AR

where Zj, is a continuous Gaussian process with E[Z1(¢)] = 0 and covariances
E[ZL(t)ZL(u)] = Ae™" — e ?)/2, 0<t<u<oo.
Let Ug;)ys(t) and Vx(j;?s(t) be as defined in the proof of Theorem 2.7.3. Note that
;?
X 6=1

and,

dr df dy
D) sU;;;)S =3 2 —0+1 vﬂf;[ﬁ ROEIEDY v;g>s< 1)].
xeX

0=1s—df —6+1 TeX f=1 s=df —0+2
(2.15)
Further, I,7(t) = L,(t) — H,I (t), and,
Walt Z dy Z v 9d+—0+1 (). (2.16)

reX =1

Then by Lemma 2.14, combining (2.14), (2.15), (2.16) and the convergences results for the infinite
sums in Lemma 2.16, we obtain that for & € {S, H", 1T W},

n=1/2 (&n(t A Tp) — nf(n)(t A Tn)) -2, Za(t A to),

with
d+
Zgi= > AP (2.17)
zeX 0=1
Zge = ), Z A VAP 6+1+22 Z Z2g.s (2.18)
zeX =1 zeX 0=1 g=dt _0+2
ZI+ = ZL_ZH+7 (219)
and
Zwi=2,- ). d, Z 0.t —0+1- (2.20)
relX

Hence we have proved the asymptotic normality in Theorem 2.7. The covariances between all the
processes are given by (2.55)-(2.60) in Appendix 2.8.7.
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2.7.5 Proof of Theorem 2.8

Since a > 0, for a positive constant ¢ small enough, we have fiy(z* —¢) <0 and fiy(2* +¢) > 0. By
Lemma 2.15, we have fé:}) — fw uniformly on [0, 1]. For n large enough, we also have fIEIr,L)(z* —£)<0
and fV(,l (2 4+¢) > 0. Hence for n large enough, there exists a sequence z, in (z* —¢, z* + ¢) such that

fW (z,) = 0 and fW > 0 on [2* + &,1]. Since € can be arbitrarily small, we obtain z, — z*. Define
tn —1Inz,. Consequently we also have tn — t*.

By using the Skorokhod’s representation theorem [156, Theorem 3.30], we can change the prob-
ability space so that all the random variables are well defined and all the convergence results of
Theorem 2.7 and 7, — t* (from Lemma 2.2) hold a.s..

Taking t = 7y and to = t*, we get
W, (7_*) o nf n)(T*) + nl/QZ ( * * 1/2y _ Ny 1/2 * 1/2
n\'n) = w \Un WTnAt)+0(n >_an(Tn)+n ZW(t)+O(n )7
by the continuity of Zy,. Since W, () = —1, then f(n)( ) = —n122Zy, (t*) + o(nfl/Q). Since, as

n — o, 7, — t* and t, — t* hold a.s., there exists some &, in the interval between t, and Ty such
that &, — t*. Further, by Lemma 2.15,

(A (&) = Fiv(#) = —=*a
It follows then by Mean-Value theorem that
P = B ) = B @) = () (@) (7 = ) = (= + o(1) (73 = ).

Hence we have

T;—%\nZ(

Then, by a similar argument for S, (7,;), combining the above formula and Lemma 2.15, we have a.s.
for some &, — t*,

)75 (7) = P (2w () + o(1).

2*a

028, (1) = nV2 S () + Zs(t*) + o(1)
= n!2F () + n2(FE) (€0 (7 = ) + Z(t) + 0(1)
(2.21)

=20 ) + 5 2 00 + 2600 + o)

=n'2 15" (5) — WZW@*) + Zs(t) + o(1),

where the last equality follows from the fact that (fs)’(t) = —(fs)(e et and et = 2*.

Using similar arguments, we have the other analogues in Theorem 2.8.
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2.7.6 Proof of Theorem 2.9

Using the same notation as in the proof of Theorem 2.1 (see Section 2.7.1), we have Sa(:,le) () =

U:f:z),d;fz(t)' Then we have
di -1 di 6-1
;(LO;I;@S o (t ;YLg(;;EUg;)’d;_Z(t),
and,

STLEODM (1) = 3 L (M Z Z Ul (1)

zeX rzeX 0=1s=d} —0+1

Since for all z € X, LY and LY are bounded, there exists some constant C' such that the two above
expressions are both dominated by

dF dF
nC Y@ +d)> > Ul .
reX 0=1s—df —6+1

Thus again by Lemma 3.22 and basic computations, it follows that

O
sup | Fn (t)

t<m, N

— fole )] 0.

-,

For z* = 0, by Lemma 2.2, 7 2, 0. Then we have e~ - 0 and fo(0) =T9 — erXL . By

the continuity of fy, it follows that

fole ™) =T = 3 LOus + 0p(1).

reX

We therefore have

1%
2{%) 2, Fo_ > Lo
n reX

For z* € (0,1] and f;,(z*) > 0, by Lemma 2.2, 77 -%> —Inz*. Then a similar argument as above

implies that

ro(ry
n(Tn) AN f()(Z*)‘

n

Recall that we have defined V") (t) as the number of bins (institutions) with type x € X, threshold

z,0,s
0 and at least s alive balls at time . We notice that

+

5, 900 = 3 B2 (0~ XV, 0)

reX relX =1
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and,
+

T

ZES = (60— 1)Vx(9)d+ 0+1(t)_ Z V;Z?S(t)'
s=d} —0+2

Since for all z € X, LY and L are bounded, there exists a constant C' such that LY + LY < C for all
x € X. Hence, by using similar arguments as in Appendix 2.7.4 to prove the convergence of H, , S,
and so on, Lemma 2.16 leads to the convergence of the following (infinite) sums

ZLGZ xed+—9+1 ZLQZ z,0,dS —0+1 (1),

TeX reEX
and
d d
SN M-nvI - > V)]
zeX 6=1 s=df —0+2

dy
ZLOZ DEAPEN () D Y- O]}

reX =1 s=df —0+2

Hence we have in D [0,0), as n — o0,
n~12 (Fg(t ATn) — nfén) (t A Tn)> 9, Zu(t A to), (2.22)

where Z is a continuous Gaussian process with,

dy
Zoi== ), LQZ[ DE g gn®— D Zhe ] - Y LQZ ot _psa (D). (2.23)

TeX 6=1 s=df —0+2 reX

Note that the convergence result (2.22) holds jointly with the convergence of other processes H, , S,
and so on. Hence, by a similar argument as in Section 2.7.5, we have that

n2r8(r) = w20 (5 - 25 2 00) 4 2007) + 1),

This gives
25 = Zo(t") — a7 L () 2w () = Zo(t") — A(Z") Zw (1),

Hence Z7 is a centered Gaussian random variable, which completes the proof.

2.7.7 Proof of Theorem 2.10

The proof is based on Theorem 2.1 and some arguments of [150] used to study the conditions for
existence of giant component in the percolated random (non directed) graph with given vertex degrees.
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We first remove all potential saved links by the planner from the network. Consider the type-dependent
bond percolation model where we remove each incoming link to any institution of type x € X with
probability c,. Note that this also includes extra removed links between solvent institutions that will
not play any role in the default contagion process. Next we run the death process as described in
Section 2.2.3 and Appendix 2.7.1.

Let Wan(t) and ﬁn(t) denote respectively the number of white balls and the total number of defaults
at time ¢ in the percolated random graph. The surviving probability for each ball of type x at time ¢
is a; + (1 — az)e”t and by following the same steps as for the proof of Theorem 2.1 in Section 2.7.1,
we obtain

W (¢ Dyt
Sup‘in( ) — fé?)(e’t)‘ 2,0, suplin( ) — fgl)(e’t)} 250.
t<Tn n t<Tn n
Let 7 be the first time when Wn(ﬁ:) = —1. Then, similar to the proof of Lemma 2.2 in Sec-

tion 2.8.2, we find that 7} — —In 2}, where 2}, := sup{z € [0,1] : f&;‘)(z) =0} and

dt
) =0 =Y pedy Y ao(0)B(dE, ap + (1 — ag)z,df — 6+ 1).
zeX =1

Next, by following the same steps as proof of Theorem 2.4 in Section 2.7.2, we obtain

S (o)

n

2o a2 v, )
n

which then implies (by definition) that the system-wide wealth converges to

o ) ) _dy 6-1
Dal@n) 2, ) (n) =00 = 3 LA (o)~ 2 IO D) D 4L, (23,

n reX zeX 0=1/¢=1
The total cost of interventions «, for the planner converges to

P (an)

dt
L, o(z) = Z e Co Z b (d:, 1-— z;,ﬁ) .
zeX /=1

This completes the proof of Theorem 2.10.

2.7.8 Proofs in §2.6

Proof of Theorem 2.11

The main idea of proof is to alter the speed of default cascade process by multiplying each transition

rate by a constant depending on the current state and transfer the default cascade process to its
associated death process in §2.2.3.
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Recall that all agents (at any time ¢) are of two states and all half-edges are of four different

types; these are denoted by S(t) (solvent), D(¢) (defaulted) agents, and further H* (¢) (healthy in),
H~(t) (healthy out), I (¢) (infected in) and I~ (¢) (infected out) half-edges, respectively. We also let
B (t) := H"(t) uI"(t) be the total in half-edges (balls) at time ¢. The above quantities without
bold format dontes the total number of corresponding objects at time ¢, e.g., BT (t) = [BT (¢)| denotes
the total number of remaining in half-edges at time ¢. In particular, W(¢) denotes the number of
I~ half-edges (white balls) at time ¢ and controls the stopping time of our default cascade process:
Ty = inf{t > 0: W,(t) = 0}.
Now note that to run the default cascade process in its associated death process in §2.2.3, we need
to change the transition rate. Namely, if there are xy white balls (I” half-edges) and zp in balls
(half-edges) in total, we multiply all transition rates out of such a state by xp/x;. This means that if
at time ¢, there are W (¢) white balls remaining, we do not wait an exponential time with mean W (t)
to reveal next infected link, but instead we wait an exponential time with mean B (t) for the next
reveal. Thus the new reveal rate will be determined by B7 (t) and the reveal point process is a Poisson
process with rate B*(t). Hence it will be equivalent to the death process in §2.2.3, where every in
half-edge of any type pair with a random infected out half-edge uniformly random and independently
after an exponential time with mean one, until all there are no more infected out half-edges.

We next recover the asymptotic behavior in the default cascade process from its associated death
process (Theorem 2.1) by using the following result for time changed Markov chains from [153, Lemma
A 1]; see also [184, ITI. (21.7)] for a more general result.

Lemma 2.17. Suppose (Y;)i=0 is a continuous time Markov chain with finite state space E and
infinitesimal transition rates (q(4,7))ijer. Let f : E — (0,00) be strictly positive and define the
strictly increasing process

A, =j f(Vds 70,
0

and its inverse 7(t), t = 0. Then the time-changed process (Yr()i=0 is again Markov and has in-
finitesimal rates (q(3,7)/f(@))i jeE-

Hence, in order to study the default cascade process from its associated death process, we need to

use Lemma 2.17 by setting
T D+
Al = f Buls) s 10,
0o Wi(s)

where for s > 7, we set the term in the integrand (i.e., E;{(s)/f/\[//n(s)) to 1.

Then A™ is a continuous strictly increasing function. We denote by 7,(¢) : [0,0) — [0,0) the

strictly increasing continuous inverse of A" such that A(T:)(

Hence, by Lemma 2.17, the stochastic processes in the original default cascade process could be
realized by setting (for all ¢ = 0) D, (t) = Dy ((t)), I (t) = It (7,(t)), and the same for all other
processes. Since the default cascade process stops when we reveal all infected out half-edges, we
replace 7, (t) by Th(t) := T (t) A 7.

t)ztforanyt>0.
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On the other hand, since in the time-changed process, every in half edge has an i.i.d. exponential
lifetime with parameter one, we have, by using the Glivenko-Cantelli theorem, as n — o0,
B (1)

n

—e 0. (2.24)

Moreover, by Theorem 2.1, the limit function of Wn(t) is fw(e~"). In this sense, we define the
following strictly increasing function A, by

f =] S, 0<7<-—Inz" (2.25)

(n)

which can be regarded as the limit function of Ay~ as n — oo.

We are now ready to prove point (i) of Theorem 2.11. We denote by 7(¢) the inverse of A and set
v(t) := e 7). We show that v(t) satisfies point (4).

Note that the integrand in (2.25) is strictly positive. Further, for sufficiently small € > 0, and for
all z € [2*, 2* + €], we have fiy(x) < AM(z—2z*). So when e 7 is sufficiently close to z*, A\e ™" /fyw (e™7) >
e 7/(e7" — z*), and it follows that A, " o as 7 — —Inz* (for 2* = 0, as 7 — o). Moreover, the
inverse 7 is clearly strictly increasing and continuous differentiable. By the Inverse Function Theorem,
we have 7/ (t) = fiy (e 7®)/Ae=7®), Therefore v(t) satisfies (ODE) with initial value v(0) = 1.

On the other hand, the coefficient of (ODE) is Lipschitz continuous on [0, 1] by Assumption 2.4.
Indeed, for 1 < ¢ < d— 1, we have

M0 _ g -1, 20— 1) — db(d— 1, 2,7),
0z
and ob(d, =, 0) ob(d, =, d)
z z
P St Ak R -1 PR St R/ -1 —1).
2, db(d —1, z,0), Ep db(d—1,z,d—1)
We thus have for 0 < ¢ < d,
9B(d, 2, ¢)
— 2~ =db(d—1,2,0—1).
0z ( 5 )

It follows then by Assumption 2.4,

<A+ ) pady Zqz 0)db(df, 2, df —6)

reX
\)‘J’_Zﬂz L \/\+Zux(d;+d;)2<0,
reX zeX

for some (sufficiently large) constant C. The existence and uniqueness of the solution v(t) is now
guaranteed. Note that the constant function z* is also a solution to (ODE). By the Comparison
Theorem, there exists a solution v(¢) such that v(¢) > z* for all ¢ = 0. Since v(¢) is strictly decreasing
and bounded from below by z*, it must converge to z*. The proof for point (7) is now complete.
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We now show that v(t) is the limit of e=™(®)_ for t > 0, as n — 0. First note that for some small
e >0, for all s € [0, —Inz* — €], we have from Theorem 2.1, (uniformly)

Bf(s) p e
W(s) fw(e=s)

By the definition of z*, if z* > 0, there exists some small § such that fy(e™®) = 6 > 0 for all
s € [0,—Inz* — ¢€]. It follows thus, by the Dominated Convergence Theorem,

AW B, (2.26)

T

uniformly on [0, —Inz* — €]. If z* = 0, for any fixed tg, the above convergence holds uniformly on
[0,20].

We first analyze the case where z* > 0. Let t; := A_1y,+_9.. Since A is strictly increasing, we
) . > t1. So for t < ty, it follows that w.h.p. 7,,(¢) < —Inz* —e.

have for n large enough, w.h.p. AY ..

Hence by (2.26) we have
Az ) =t = Az, (2.27)
uniformly on [0,#;]. Recall that 7/(t) = fw (e~ 7)/Ae”" < 1, which implies that 7 is uniformly contin-

uous. Combining with (2.27), we have

sup |7, (t) — 7(t)| 2> 0. (2.28)

t<ty

By Lemma 2.2, we have —Inz* — e < 7, < —Inz* + €. Then it follows that w.h.p. for t > ¢t; and n
large enough,
—Inz"—3e<7(t1) —e=Tp(t1) < 7(t) <7 < —Inz" + e

Further, for ¢t > tq,
—Inz*—2e<7(t1) <7(t) < —lnz* +e.

So, by taking ¢ — 0, we have

sup |7, (t) — 7(t)| = 0. (2.29)
t=t1
We thus obtain 7, (t) == 7(t) uniformly for all ¢ > 0, and so e~ ) 25 ¢=7() — 4(¢) uniformly for

all ¢ > 0. It therefore follows that

sup |20 _ po ()] = sup |22 D) gy
t=0 n t=0 n
< sup 122 e 0) 4 sup (e 0) — fwlo)],

which converges to 0 in probability. Indeed, the first term converges to 0 by Theorem 2.1 and the
second term converges to 0 by the uniform continuity of fg on [0,1]. The other convergence results
for D,,(t) and W, (t) follow similarly.
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We now consider the case z* = 0. We have for any fixed ¢y > 0, A(Tn) -, A, uniformly on [0, to].

By similar arguments as above, letting t; = tg — € for some small € > 0, we have

sup |7 (t) — 7(£)| = 0, (2.30)

t<tq

For small € > 0, we can choose t; large enough such that both e ™® < ¢ and e 7® < ¢ for all t > ¢,
Then we have

sup \S’;(t) — fs(v(®))] < sup| — fs(em™®)| + sup | fs(e ™ 1) — fs(v(t))]

+sup | fs(e™ ™) — fs(v(t))],

t=>t1

S (Fa(t))

which also converges to 0 in probability. The first two terms converges to 0 by the same arguments as
above. For the last term, by the uniform continuity of fg, we can take € arbitrarily small to conclude.
The other convergence results for D,,(t) and W,,(t) are similar. The proof of point (i) is now complete
and therefore, this completes the proof of Theorem 2.11.

Proof of Theorem 2.12

Note that L} = nA(M — B (7}). So, by Equation 2.24 and Assumption 2.4, as n — o0, we have
Lt /n 25 M1 —2%).

Let T,,(¢) be the (random) time that the financial network G (d:", d;) faces its (-th loss in the
time-changed death process in §2.2.3. By Equation 2.24 and using the monotonicity and continuity
of e7t on t, we have forall 0 < a < 1 — 2%,

T (aA™n) 2 —In(1 —a). (2.31)

Then T;,(aA™n) is just the corresponding time of T}, (aA™n) in the original process. Thus by the
time change rule, as in the proof of Theorem 2.11, we have

T B (o)
T, (aAMn) = AL = J 1 s
(G/\ n) T (@A (M) 0 Wn(s) ds

On the other hand, we have the following decomposition:

|JT"(GA(n)n) B*(s)ds - J e AT ds|
0 f

0 Wi (s) w(e‘S)
<’J-Tn a)\( )n) B (8)

f’n(a)\(”) ) Tn ax(n )n) Ae—$
ds —f ds\ + }f —————ds|.
0 W(s) 0 fW e~?) n(i—a) Jfw(e™*)

For n sufficiently large, we can find some (sufficiently large) constant C' such that

—In(1 —a) — C < Tp(aX™n) < —In(1 —a) + C.
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Thus the first term converges to 0 in probability by Theorem 2.1 and the fact that fiy(e™®) = € on
[0, —In(1 —a) + C] for some € > 0. Similarly, by Equation 2.31 and the boundedness of Ae™*/ fy(e™*)
on the interval between 7, w(aA™n) and —In(1 —a), the second term also converges to 0 in probability.
Hence we have

—In(1—a) —s
To(aX™n) 2> j )\efds.
0 fw(e™®)

Then through the change of variable, we have

2 ds=| —2—a
0 Fwe ) 7 e fw(e ™

which completes the proof of Theorem 2.12.

J- In(1—a) Ae—$ 1 A

2.8 Appendix

2.8.1 Proof of Lemmas

This appendix contains the proofs of all the lemmas in the main text. We start by recalling some
classical results on death processes and martingale theory, on which relies the study of default cascade
processes (as in [13, 152]).

Lemma 2.18. (The Glivenko-Cantelli Theorem) Let Ti, ..., T, be i.i.d random variables with distri-
bution function F(t) := P(T; < t). Let X,,(t) be their empirical distribution function X, (t) := #{i <
n:T; < t}/n. Then sup, |X,(t) — F(t)] 2> 0 as n — 0.

Since in the balls-and-bins model described in Section 2.2.3, every in ball dies independently after
an exponential time with parameter 1, we have a pure death process starting with some number of
balls whose lifetimes are i.i.d exp(1). As a corollary of the above lemma, we have:

Lemma 2.19. (Death Process Lemma) Let N (t) be the number of balls alive at time t and all balls
have i.i.d. lifetime exp(1), starting with initial number N™(0) = n. Then

sup [N () /n — et 250 as m— 0.
t=0

Our proof of the asymptotic normality for the default contagion is based on a martingale limit the-
orem in [147]. Let X be a martingale defined on [0,00). We denote its quadratic variation by [X, X];.
We also denote the (bilinear) covariation of two martingales X and Y by [X,Y];. In particular, if
X and Y are two martingales with path-wise finite variation, then [X,Y]; := >};_., AX(s)AY (s),
where AX(s) := X (s)— X (s—) is the jump of X at s and similarly AY (s) := Y (s)—Y (s—). Note that
in this chapter, the considered martingales are always RCLL (right continuous and with left limit) and
have only finite number of jumps. Hence, the quadratic variation is finite. We also set [X,Y]o = 0.
For two vector-valued martingales X = (X;)iL; and Y = (Y;)L;, we define [X, Y] to be the n x m
real matrix with every entry being ([X, Y]);; = [Xi, Yj].
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Theorem 2.20 (Martingale Limit Theorem [147]). Assume that for each n, M (t) = (Mgn) )
is a q-dimensional martingale on [0, 0) with M (0) = 0, and that X(t) is a (nonrandom) continuous
matriz-valued function satisfying, for every fixed t = 0,

(i) [M™, M™], 5 $(t) as n — o,

(ii) sup,, E[Mi(n),M-(n)]t <o, foralli=1,...,q.

7

Then M™ %, 7 asn — 00, in D [0,00), where Z is a continuous q-dimensional Gaussian martingale
with E[Z(t)] = 0 and covariances E[Z(t)Z'(s)] = X(t), for 0 <t < s < .

This theorem yields joint convergence of the processes {Mi(n) }gzl and can be extended to infinitely
many processes (i.e., for the case ¢ = ). Indeed, by definition, an infinite family of stochastic
processes converge jointly if every finite subfamily does. We shall use the above theorem for stopped
martingales.

2.8.2 Proof of Lemma 2.2

Recall that fiy(z) := Az — > cy tady Zgil 4(0)B(dy, 2, df — 0 + 1), and, z* := sup{z € [0,1] :
fw(z) = 0}. By the initial condition ¢;(0) > 0 for some = € X, we have fy/(1) > 0 and z* < 1. Let
us take a constant t; > 0 such that ¢; < —Inz*. By continuity of fy(z) on [0,1], it follows that
fw(z) >0 on (2*,1]. Hence, there exists some constant C; > 0 such that fiy(e™t) > C for t < t;.

Since W,,(73) = —1, if 7* < t; then W, (7*)/n — fw(e™™) < —C} for n large. But on the other
hand,

Wi (t
sup |7n( ) _
t<T) n

fw(e )| 0.

This is a contradiction. Therefore, we must have P(7); < t1) — 0, as n — 0. In the case z* = 0, we
can take arbitrary ¢;, which implies that 7 L5 .

We now consider the case z* € (0,1]. Let ¢ > 0 small enough and fix the constant ¢ €
(—Inz*,—In(z* —¢)). By using a similar argument and given the assumption fj; (2*) > 0, we can
show there exists some constant Co > 0, such that W,,(7})/n— fw(e~™) = Cy when n large if 7* > t5.

Thus P(7,, = ta) — 0 as n — 0. Since ¢; and ty are arbitrary, tending both ¢; and t3 to —In z*,

implies that 7, L, —Inz*. This completes the proof of lemma.

2.8.3 Proof of Lemma 2.13

(0) =0 for ¢ > 1. Further, from Assumption 2.2, Né”)/n —
1 and qg(ﬁn) (0) = q.(0) as n — oo, for all z € X and 6 = 0,1,...,d;. Moreover, by the strong law of

First note that U:IETQ7O(O) = NQ%) and U")

z,0,s

large numbers, foe)/NgE”) — g™ (6) as. as n — .
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Consider now the death process as described in Section 2.2.3. Let us fix x € A and integers 6, r
with 0 <7 < 6 < d. Consider the N, (n 9) bins which starts with d; alive in balls. For k =1,..., N x(n9)7
let T} be the time that the (df — r)- th ball is removed (killed) in the k-th such bin. Then we ha’ve
#{k T, <t} =>._,U QE 9) s(t). Since the number of remaining balls in any of such bins at time ¢ are

i.i.d. random varlables with distribution Bin(d},e™"), then we have P(T}, < t) = >\ _,b(df, e, s).
Hence, by using Glivenko-Cantelli theorem,

d+
1 “ P (n)
Supli(n) E xas E b(d Ls)| -0, as N, g — 0.
tSTn Nx,g s=r+1 s=r+1

Multiply the above equation by N / N (n) , and by the law of large numbers, we have

dif
;D Uyo.(t) Z b(di, et s)| 40, as N oo (2.32)
t<T Nx s= 7‘+1 s= ,,,+1

Moreover, by using Assumption 2.2,

sup|— o g\ (9) Z b(df e, s) = paqa(0 2 b(d Ls)|—0, as n— .
t20 s=r+1 s=r+1

By combining the two formulas above and multiplying (2.32) by N /n, we obtain

dy
sup|n Z U:,Sf;)ys( — Hzqz (0 Z b(d ) 2,0, as n— o (2.33)
t<Tn s=r+1 s=r+1

Hence, by using (2.33) for r; = ¢ and 7o = £ — 1, and then taking the difference, we obtain

Ut
Lé() — paqz(0)b (d;,e*t,ﬁ)‘ L,0, as n— .
t<Tn n
Note that the above equation holds for all z € X and § = 1,...,d}. Hence, the same convergence

also holds for any partial sum over x and 6. In particular,

vl (1)

sup Z Z |7$’ZS

— 112Gz (0)b(d} et s)| = 0. (2.34)
IS g Ls=d}—0+1

Let X be the set of all characteristic x € X such that d} + d, < K. Since (by Assumption 2.3a)
A € (0,00) then for arbitrary small ¢ > 0, there exists K. such that 3 cy\ v, Ha(dy +d) < €
Further, by Assumption 2.3a and dominated convergence,

O, (I N = Y (d] +dy e <e.
{L’EX\XKE (EGX\XKE
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Hence for n large enough, we have erX\XK (df +d; )Ny /n < 2¢. By (2.34), we obtain

sup Y (df +d) Z Z U (0)/n = paae(O)b(d e, 5)]

ST gex =1gs=df—0+1

<sup ) (df +dy Z Z U (/= pege(0)b(dE, e, 5)]

zeXk, =1s= d+ 6+1

+ sup Z (df +d;) Z Z Uies()/n—,u 4:(0)b(d} e, s)|

ST pe X\ Ay, =1g=dt 6+1
<op()+ D1 (dF +dy ) (NS fn+ pg) < 0p(1) + 3.
weX\XKE

Then let € — 0, it follows that (2.10) holds, which completes the proof of Lemma 2.13

2.8.4 Proof of Lemma 2.14
n) . similarly to the proof of [152, Theorem
(n)

3.1]. However, the proof will be more involved and includes more calculations. Since V', 0.5 changes by

(n)

-1 when one of the alive (in) balls in Uxﬂ?s
obtain

We proceed with the proof of asymptotic normality for V(

bins dies, and there are sU. :Ee) s(t) such balls at time ¢, we

m@s xé‘s

(t)dt + dM;,
where M’ is a martingale.
We define further ‘73,;(7;)5( t) = €StV$(7;) (t) and set the convention Vx( 9) s(t) =0 for all s > d}. Then
by Ito’s formula, for 0 < s < df
AVl (8) = etV (t)dt + etavy) (1) = se V) ()dt — se UL (t)dt + etd M,
= se TV (Ddt + dM,,

where dM; = e*td M} is also a martingale differential. Thus

t

M) () =V () SL eV iy ()dr (2.35)

is also a martingale for every 0 < s < d}. We can calculate its quadratic variation by

t
M) = 3 1AM 0F = 3 ARG, 0P = | Era-vy e, (230
o<r<t o<r<t 0
Then,
M) () =2 (M) (1) — M) (0)),
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is a martingale with initial value at 0. Denote ¢ 05(y) = p2qz(0)8(d},y,s). Then by similar
arguments as in the proof of [152, Theorem 3.1], we have

M (t A1) -5 Vegs(tat)) in D[0,00), (2.37)

z,0,s

where Y, g ¢ is a continuous Gaussian process with E[Y} ¢ s(t)] = 0 and covariance

t
E[Yios(t)Yeos(u)] = f > d(—prps(e™)), 0<t<u<om.
0

Furthermore, for s # r, we can show that VI(Z)T and Vx(?;)s never change simultaneously, almost
surely. Thus, [1\7( n A ]s = 0.

z,0,r " x,0,s1t

Hence, by Theorem 2.20 applied to the vector-valued martingale (]\7 ine) 8)820 b

4+» Which implies that the processes

the convergence

holds jointly with a diagonal covariance matrix for ( 2.0 S)
Ye00,---5Y, 4 are all independent.

s=0,...,

As for two different types-thresholds (z,6) and (2/,6"), the independence follows since for any
§s=0,...,d} and ' =0,. ..,d;’,, Vx( 9) and V(/92 , also a.s. never change simultaneously. This could
also be observed from the nature of our balls and bins representation: the balls die independently
and a.s. never die at the same moment. Hence, the death processes in bins with different types are

independent.

We now compute 1755(72?5, using the Definition-Equation (2.35) for MQET;) s(t), repeatedly. We find
that for s = df, V™ (1) = M™ _(¢), and for s = df — 1,

x797d; x797d;

t
V:B(,Té)s(t) = Mérgs( ) + SJ;) rM;ine) (3+1)( )dT

)

Then for s = d — 2, we obtain

t
VL0 =ML 0 s [ e hl o+ | F e I ) (r2)dradry
0 r2<r1<t
t
MU0+ | MG )+ f = €M ) ()
dt . ¢
n Jg—1 —r s=l—r
Mie)s(t)-i- ‘218( 5 > L(e — )J 1 Mé’g),](r)dr.
Jj=s+
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Assume that the above formula holds for s < k < d} — 1. Then for s — 1, we deduce
t
VR = MUY 10+ 5 | T, r)ar

t di . "
n _ —1 —1 _ I n
=M£,3,31<t>+<s—1>j0 M) e+ Y STl )(9 ) L (e — e e M) (r)dr

Jj=s+1 J—s §

j_l ! —r —t\j—s _—r n
_Mxes 1 +Z 5_]- (S—l) L(e — € t)j e M;e)’j(r)dr.

By induction, we obtain that

dif - t
>(n n J—1 - —tyj=s=1o=rprin
Vo =m0+ Y o0 [ ety man

j=s+1

We next define v( ) s(t) for all t > 0, as the conditional expectation of YA/x(z) () given its initial value

v (0). Namely, we have

z,0,s

dF . t
~n n n J—1 -r —t\j—s— - pr\n
o) ) == E[VS @5 0] = M5 0+ ) ( )f( — e e M) (0)dr

. S
j=s+1

Note that by definition, E[f}x(g)s(t)] = eStE[Vx(gs(t)]. Further, Vx(;?s(t) is the number of bins
with type z, threshold 6 and with at least s balls at time ¢ in the death process where balls die
independently with rate 1 (without stopping). Then at time ¢, each of such bins has the binomial
probability 3(d}, e, s) to have at least s alive balls remaining. The initial number is Vx(z) S(0) = Nina).

Consequently for all s = 0,...,d;}, we have

o) = eINT (AL e s). (2.38)

z,0,s
We further define for t < 7

V(1) = n 200 () - 3)). (2.39)

x,0, T

It is then clear that

dF . t
~(n n J—1 - —t\j—s—1 _—ryr(n
7O 6 = i 0+ Y ( )L( — ety BE) ().

. S
j=s+1

We next apply Theorem 2.20 to the above finite sum and take the limit (in distribution) under
the summation sign. It follows that

V;,Z?S(t A T”) _d’ Na&ﬁ,s(t A to), (2.40)
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in D [0, ), where

dF . t
> -1 -r —t\j—s—1_—r
Zm,&,s(t) =Y, x,0, s Z (j > f (6 — € t)] 16 Yzﬂ,j(r)dr.

Note that, although the initial V(n?S(O) is random, by the standard (multidimensional) central

(n) (n) (n)

limit theorem applied to Ny = nuy " ii.d. random variables 1{©;" = 0}, we have

*1/2(]\7( ") — nu{Mg )(0)> 4, w9y as M — 0, (2.41)

where V7 o ~ N (0, 126 (0)(1—qx(9))) and Cov(V; 5., Vi p,) = —HaGz(61)qz(02) for 61 # 02. We denote
by (for all 61, 65)

¢1'791792 = COV( ;;01’ yjeg)'
Notice that for all z1 # xo, y*l 91,));2792 are independent and Cov ()} * 5,) = 0. Then we have

z1, 1,017 V22,02

by (2.38) and (2.41) that jointly for all triple (x,0,s), in D [0,0) as n — o0,

~

n—1/2(6i’(3’ —ne® ug}n)q;n)(g)ﬁ(d;’e—t78))i> - 0s(), (2.42)

where Z; ¢ 5(t) is also a Gaussian process with mean 0 and covariance

~ ~

E[Z4,0,5(t) 200,6(u)] = T B(dS, e, 8)B(dT e 7", 8)Yr 0,0-

We now analyse the independence between Z~I7975 and ZA$7975. Let combine x and ©, as a new
type o := (z,0) in the set of all possible combination for x € X and § € N. Notice that we have

fixed proportion for the type distribution MEZ‘), x € X in the network. But the threshold ©, for all
x € X is random. Thus the proportion (denoted by ,ug,n)) for the new type o is random. It does not
satisfy Assumption 2.3b, but satisfies in probability, i.e. replacing O(n) by Op(n) in Assumption 2.3b.
In addition, ,ug;n) RN o with the limit distribution p, := pyq.(6) for o = (x,0). Further, by using
the Skorokhod’s representation theorem [156, Theorem 3.30] as also stated in [152, Lemma 8.2], we
can define all the processes on a new common probability space such that, for the type distribution,

ug,n) — 11, and Assumption 2.3b hold almost surely.

Further, note that the distribution of ZNQC,(% s do not depend on the random proportion uén), but only
on the limit distribution 1,. Hence the arguments in the above paragraph guarantee that conditioning
on the initial value Vx(j;? s (0) does not have any influence on the distribution of Z’Lg’s. Therefore 5}7973
and Z, g s are independent for all (z, 6, s).

o7 (n)

The above argument shows that V' converges to a Gaussian process. We next define

x,0,s x,0, T

V(n) ( ) n—l/? (ﬁ(g)s(t) B neStugn)q(") (Q)B(d;’ e—t’ S))
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By (2.39), (2.40) and (2.42), we obtain that V;g)s(t/\rn) 4, A:B,g,s(t/\to% where éx,gys = Am7.97s+§x’9,s
is a Gaussian process with mean 0 and covariance

~
~ ~ ~ ~

E[Zxﬁ,s(t)gxﬁ,s(u)] = E[Zmﬂ,s(t)zmﬂ,s(u)] + E[Zx,O,s(t)ZNx,Q,S(U)L

forall 0 <t < u < oo.

Next, we define for all triple (z, 6, s),

~

V*gfs) (t) := ety (t), Zios(t) = eist‘%zﬁvs(t)’

z,0,s

and
Z$7975(t) = e_Sthﬁ,S(t), Z:’(,,S(t) = e_Sthﬁg,s(t).

Then we have

x,0,s

(t A1)~ 25, (A to). (2.43)

x,0,s

We define further

~ ~

ax,ﬁlﬂz,r,s(y) = COV((ZI,Gl,r(_ In y); Zxﬂz,s(_ In y)))7

and,
5:):,9,1",5 (y) = COV(ZI,G,T<_ In y), Zx,&,s(_ In y)) .

By using all the independence and covariance formulas above, it follows that

Cov(Z} 9,5, (), 25, 5,5, (t)) =0,  forall zy # o,
COV(Z;,Gl,sl (t), Z;,92,32 (t)) =8$,91792,31752 (eit), for all 91 #* 92,
COV(Z;,G,sl (t), Z:,H,SQ (t)) =02,0,0,51,52 (eit) + 02.0,51,50 (eit%

where

8117,91792,31752 (eit) = /B(d;7 67t7 81)5(dx+5 67t7 52)1/}:&91,92)
%,9,9 = NxQx(e)(l - QJ:(G))’ ¢x,01,92 = —qux(ﬁl)qx(%) for all 07 # 05. (2.44)

Moreover, the covariance between Z:,Gh s(t) and y;‘ﬂz is given by

Cov (Z;,Gl,s(t)’ y;,@g) = Cov (B(d:c_’ e_tv S)y;ﬂl ) y:,@g) = ﬁ(d;, 6—t7 5)¢w,01,927

and for x1 # w9, again by the independence the covariance is 0.

We now compute 40,5(y). Recall that

1
Cov(Yzp,s(=ny), Yop,(~Iny)) = 1{r = S}J U™ dpy ,5(u).
y
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Then we obtain

1
Var(ZxGS( lny)) J 72Sd()0x05( )

dy

J—1 s—1 ot ([ —2)
+ 2 (w—y)y 5 Yz —y) ( v ]dnp%g’j(v))dudz
j=s+1 y<u<z<l

z

1
k

y

For r = s, we can write r = s + k for some k > 1, and deduce that

di . . 1
1 & j—1 j—1 sk —2i
Cov ( xgs( Iny), mgs+k(—lny)) 3 Z (s—l) <S+k—1>J (v —z)P 257 ky Hdps.p(v).
j=s+k Y

Hence we have

&x,9,5,5+k(y) = 928+kCOV( x,0 s( In y) x,0 s+k(_ In y))

di o P 1 2.45)
1 2 +k J—1 J—1 J 2j—2s—k, —2j (
5 E — 5 dogs (V).
(s—l s+k—1 y(v v) v #2.0.5(v)

j=s+k

This completes the proof of Lemma 2.14.

2.8.5 Proof of Lemma 2.15

We only provide the proof for f+. The proof for the case & € {S, D, I, W} follows in the same way.
For all d,y € N and z € [0, 1], let us consider the following function

d

h((d,y)iz) == >, b(d,z,0).

{=d—y+1

We define a sequence of bi-dimensional nonnegative integer valued random variables {X,} and X
with distributions P(X,, = (d,y)) = X,c 4, u; )q;(cn)( ), and P(X = (d,y)) = X,ca, Hadx(y), Where
Ag = {v € X : df = d}. Then it follows that f{)(z) = Eh(X,;2) and fy+(2) = Eh(X;z2).
By Assumption 2.3a, we have X,, — X in distribution as n — o0. Moreover, for any z € [0, 1],
0 < h((d,y);z) < d. Thus, h(X,;2) < 7(11), where X" is first dimensional component of X,,. Note
also that by Assumption 2.3b, x{Vis uniformly integrable. Hence we have (as n — o0) for all z € [0, 1],

FU(2) = BR(X0;2) — BR(X;2) = fi+ (2).

Further, an elementary calculation gives that

0

2 0(d. 2 0) = db(d — 1,z,0 = 1) — db(d — 1, z,0).
z
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Combining now with the fact that b(d, z,¢) € [0,1], we have |£b(d,z,€)] < d. In addition, using a
simple induction gives that for every j > 0, |%b(v, 2,0)| < d/. We therefore obtain that

xV

J . .
|é%;h(x¢;z)|< (XY Y < (x Py, (2.46)

This is again, by Assumption 2.3b, uniformly integrable. Hence, we also have (as n — o0)

o7 07 07 07
TS (2) = Eoh(Xus2) > E2h(X:2) = 2 fir+ (2)

for all z € [0, 1]. Moreover, (2.46) also implies all these derivatives are uniformly bounded. Thus by the

Arzela-Ascoli theorem (see e.g., [156]), as n — o0, fl(ﬁ (z2) — fu+(2) together with all its derivatives
uniformly on [0, 1]. This completes the proof for & = H* and the proof for the case & € {S, D, I, W}
follows in the same way.

2.8.6 Proof of Lemma 2.16

We use the same notations as in the proof of Lemma 2.14 and only provide the proof of (2.13).
Other convergences are simpler and could be proved by using similar arguments. First note that, for

sz() 29 1‘05() we have

~w dy =1\ [
Z zes Z s< s )L( ] s— 1—7"2 xeﬂ

j=s+1
— dF i1 +
TR0+ Y s<’ ) [ - e
k) . “ S 0 b2
Jj=s+1
where ]\7327? (t) := Zil ]\f\én@) ;(t). This is again a partial sum and Theorem 2.20 applies. We therefore
have
d+
V(8 A 1) =5 Zog(t Ato) - = Zyps(t A to),
0=1

in D [0,0). More precisely,
MMt Am) -5 Yestaty) in D[0,00),

where Y ; is a continuous Gaussian process with EY; 4(¢) = 0 and covariance

¥ ¢ t
_ 6287‘ _ e ")) = 6257‘ — s e’ ’
B[V (0as0)] = 3] fo d(=psos(e™)) j d(—pra(e™))

0
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for 0 <t<u<oand

Sows ngxOS MmB(CIHya )

We now prove that the convergence also hold for an infinite sum which is used to prove our final
result. Let

Q™ (t) := e Stn =12 (@ine)s —ne* uM g™ (0)B(dF e, s)). (2.47)

z,0,s

Then we have for all (z,0,s) and all ¢t > 0,
Var(Qy ((8) < ugl™ (9)(1 = ¢ (9)).

Recall that X and X; denote the set of characteristics which have in-degree d} > s and out-

degree d; > s respectively. Let ©, be an arbitrary subset of {1,...,d}}. By (2.42), the convergence
(n)

x,0,s

Ddh+dy) )] QHS

meX+ 0eO©,

holds for the finite sum >}, 3 v+ 2geo, @y9,5(t). We now consider the following infinite sum
¢ x

Since power function can be controlled by exponential function, there exists a constant C' > 1 such
that for all ¢t > 0,

3 (@2 + () Var( Y] QU (1) < X (4 + ()% Y, Var(QY) (1)

zeX,}t 0eO,, weX; 0O,
< ) @)l + Y (dh)?ulY
z€X7 :EEA’+
< Z Cd Z Crd
zeX, $€X+

Thus we have by Assumption 2.3b, for n large enough, as ¢ — o0,

E[sup | 2 (df +d,) EQmes (2.48)

t>0
alceX+

Then usmg the convergence of the partial sums of Q

sum of Qw 9.s» Py using e.g. [63, Theorem 4.2]. Further, the limit is also continuous. By (2.47) and
(2.42), we have in D [0, o),

Z d++d ZQIBS Z d++d ZZJJGS (249)

TeX 0O reX 0O,

20,5 We can extend the convergence to an infinite
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On the other hand, for the following infinite sum, we have

V() o= D (df +dy) >V,

zeX 0O,
= Z (d; + d Z r 6’ s

TeEX 0O,

1 , "
+ Z (df +d Z Z <‘7 ) f (e7" — eft)stfleeri 9)0( )dr
TEX 0O, j=s+1 0

_ © -1 . _

—M™(t) + Z s <J ) J (e7" — e*t)stfle*TMJ(") (r)dr,
j=s+1 5 0

where M (t) =D per(df +d )ZGe@x I 0. s(t) is a martingale with initial value 0.
n)

The quadratic variation of Mé( is calculated as the following

[ME, MM < 26%0 )1 ((d)? + (d;)) ViR (0)/n.

zeX;

Using Assumption 2.3b, for all A > 1, there exists constants Cs and Cs 4 such that

zeX; TeX, zeXF

<A™ Y W (CA)E + (CoA)E) < CsaA™*n,
reX

2t+4T

Thus for any ¢ > 0 and a fixed T, by choosing A = e we get

S S x

(M), M) <23 (d5)? + (dg))e VI (0)/n < Cyae ™.

By Doob’s L? inequality, we have (for some constant C’;T)

Efsup(M(1))*] < 4E[M{"™, MMz < C{pe™ """,
t<T

Then combining the Cauchy-Schwarz inequality, we obtain (for some constant C§’7T)

Efsup [M{" (t)]] < Clge?"™. (2.50)
t<T

ENn(t) Z <‘7 - 1) fo — ety e M (r)dr

Let us define
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Then by (2.50) and some (simple) calculations we find that

E(sug |£N7n(t)|) < s(j B 1> f (e7" — e_t)j_s_le [sup |M ( )|]dr

t< =N S 0 t<T
© j—1 ) 4 % )
< C’;’}TT Z s( . )(1 — e T)i=s=1e72T0 < C’;"TTseST Z e 217,

j=N
which implies for any fixed s and T, E(sup;<7 [{n,n(t)]) — 0 as N — 0o, uniformly in n.
(n)

Using again the convergence of the partial sums of ‘N/x o.s» again by [63, Theorem 4.2], we can extend

the convergence to some infinite sums of Vz( 9) s It follows that in D [0, 00),

Sat+d;) Y eVt am) D YA+ dy) Y] Zagslt Ato). (2.51)
reX 0O, xeX 0O,
Combining now (2.39), (2.42), (2.49) and (2.51), it then follows that jointly for any s > 0,

Zdﬂrd Z 9575/\Tn—>2d++d Z *9.s(t A to),

zeX 0O reX 0O

and the partial sum also converges for any fixed r,
T
ZZ(dI—i—d Z (,st/\Tn 22d++d Z Zyg.s(t A to). (2.52)
s=1xzeX 0cO, s=1zeX 0eO
Then notice that for any z € X, df > 0, we have that
di dy - 0
*
DIPIED IR AHCEPIPIPINE
zeX 0=1 g=g+ —9+2 s=2zeX 0O,

with taking ©, = {1,...,d; }. It remains to prove the convergence of the above infinite sum. Similarly,
we define the following infinite tail sum

Enn(t) Z PRI AE

s=N zeX 0O,

Note that when s is large, C;’ o+ can be bounded by another constant Cr only depending on 7'
Then by the same way as above and (2.50), we obtain

Eupléva(l) < 2, > (J_lﬂo (7 — e~y e E[sup | M (1) dr + Y, M (2)

t<T t<T N

0 oo J—1 .
—1 . .
<Or 2 672T3+ < CyT Z Z S<j )(1 o efT)J*Sflef2T]
S

s=N j=N+1s=N

82



Chapter 2. Limit Theorems for Default ContagiO% and Systemic Risk 2.8. Appendix
AR

which implies that for any fixed T' > 0, E(sup;<r [{nn(t)]) — 0 as N — o0, uniformly in n. Combine
with (2.48), we therefore have that for any 7' > 0 fixed, as N — oo,

d
Sl Y Y S vl

t<T
zeX,t 0=1 s=df —0+2

Hence the same argument [63, Theorem 4.2] allows us to pass the limit under the infinite sum and
with the limit being continuous. It then follows that, by using (2.52) and letting » — o0, to obtain
that in D [0, o0),

dF dF dt di
DD I I A I I S S SES- AP (T}

2eX 0=1 =g} —9+2 reX 0=1 =g} —g+2

2.8.7 Covariances in Theorem 2.7

Using the notation of Section 2.7.3 and 2.7.4, we now compute the covariances in Theorem 2.7 for the
continuous Gaussian processes Zg, Zy+, 27+ and Zyy. For convenience, we make a change of variable
y = e~ !, which decreases from 1 to 0 as t varies from 0 to oco. We use the notation

o1(y) == Var(Z(~Iny)), 079.(y) = Cov(ZL(~Iny), 254 (= Iny)).

In order to compute 059 50 We apply Theorem 2.20 to En and ]\7;719)8 forall s =df —0+1,...,d}.

xX
Observe that each time V( ") decreases by 1, also an in ball dies and thus L,, decreases by 1. Hence,

z,0,s
the quadratic covariation is
VL9 Lol = n7" 30 AMJY (NAL(r) =n" 35 AV (r)ALy(r)
0<r<t 0<r<t
t
—nh 3 AV (ALL() =07 | AV )

0<r<t

Using integration by parts as before, we obtain
¢ 1
B aly = | e dpraae™) + 01 = [ 0 dprgafu) + 0y(1).
0 e~

We can then compute all needed covariances. First, the above analysis together with Theorem 2.20,
gives that for all (z,0, s),

1

Cov(Yag.s(~ Iny), Zo(~ Iny)) = j g (),
Yy

where Y, g ¢ is defined in (2.37). For or,(y) we have

or(y) := Var(ZL(—Iny)) = Var(yZL(—Iny)) = My — y*)/2. (2.53)
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The above analysis together with Theorem 2.20, give that for all z, 0,
N 1
COV( 2:95( lny),ZL(—lny)) = f (8+1)d902:95( )-
y
On the other hand, for v < ¢, Cov(Y, g s(v ), Z1(t)) = Cov( Yz.0.s(v ), Z,(v)). Thus we have
¢

Cov(Z40.5(—Iny), Z1(—Iny)) =Cov(Yg.s(t ),iL(t))+f0(e—r—e—t)j—s—1 T Cov(Ya0.s(r), ZL(r))dr

1 di —1
= J u_(8+1)d4px,97s(u) + Z (j >fsj( );
Yy 1

j=s+

where, with a change of variable u = e™", the function f,;(y) is defined as

1 A .
fsj<y>:=f<u—y>f-s—1 j ~0tdg, . (v)du = f f )= 00D dudip, ()

Yy

1 1 i
— [ o= ),
Y

We thus obtain

dy

Cov(Zua(- ). Zu-tnp)) = X (17]) [ 0 =070 0V,

j=s

Also, Cov( 20.s(—Iny), Z Z1(—Iny)) = 0 since they are independent. Then we conclude that

oo (y) =y Cov(Z,0,5(— Iny), Z1(~ Iny))

i . 1
1 o (2.54)
= 5t Z (2 - 1> J (v —y) 50~ D dg, o 5 (v).

Y

We can write now the covariances for the processes Zg, Zg+, Z;+ and Zy by using o (y) and
059’8@) (computed above), G, 0,s(y) and 046, g5.5,.5, (given in Lemma 2.14). We only write the
covariances between Zg, Zy+ and Zyy; the covariances of Z;+ can easily be deduced from those of
Zy+. For convenience, we set m,(6) := d}f — 6+ 1. For the variances, by using (2.17)-(2.20), we have:

ow,w (y Z Z[ O 0,m0(0),m0(0) (Y) — 24, %en (9)(y)] +or(y)

zeX 0=1
- (2.55)
+ ) DT D Gty e (01)ma(02) (V)
zeX 91:1 92:1
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d
0s,5(y) = ), Z G b)) (¥) + D D Z 02,0102, (01) 72 (02) (U) (2.56)

zeX 0=1 TeEX 91 1 92 1
and,
hs da
oY) = Y ) [7732;(9)59:,9,771(9),%(9) W+2 D m(0)F0or0)s1)
zeX 0=1 s=7z(0)+1

dF dy
=+ Z Z 530,9,1”,5 (y)]

§=Tz (9)+1 r=mg(0)+1
dr df dF

+2, 2 Z[ Z D Ta(00)7a(82)5 0.0, 05 m0 (01).70 (02) ()

2€X 01=102=1 s1=m;(01)+1 so=mz(02)+1

(2.57)

dy

+ 81}0,91792,81782 (y) + 2mz(62) Z ax,t‘)h@z,snrz(@z)(y)]‘
So=Tg (92)+1

For the covariances, by using again (2.17)-(2.20), we have:

dy

US’,H"’ Z 2 [ﬂ-x O.,0,7:(0),72 () (y) + Z &xﬂﬂrw(ﬁ),s(y)]

zeX =1 s=my (0
) @ (2.58)
df

+Z Z [ (01)T 2,0, 02,70 (61),72 (62) (Y) + Z 3x,91,92,s,m(eg)(y)],

TeX 01,00=1 s=mg(01)+1

dr df

da
osw(y) = Z 2[059%(9)(9) —dy G 6,7,(6),70(6) ] Z dy Z Z T .01 02,70 (61),m2 (62) ()5 (2.59)

zeX 0=1 zeX 61=162=1

and,

orew(y) =D ). [—d;ﬂm(9)51;,97%(9),7%(9) ) + 7(0)0r g v 0y ()
zeX =1

i

+ ) (Uﬁ,e,s(y)—d;c?x,e,m(e),s(y))] (2.60)

s=mg(0)+1

di dF
- 2 d; Z [ Z &z,Ol,Gg,s,ﬂz(Gg)(y) + g (01)&%,01,92,#1 (61),72 (92)(y):| .

reX 01,02=1 s=m;(01)+1

As for the covariances of Z;+, we can deduce them from the above formulas by using (2.19).

85



2.8. Appendix Chapter 2. Limit '%heorems for Default Contagion and Systemic Risk
LY

2.8.8 Covariances in Theorem 2.9

We provide below the variances for the Gaussian processes Z¢(t) and Zj in Theorem 2.9. First, let

us define
Z L® Z z,0 d+—9+1

reX
i
Z LY Z ;,e,d;—eﬂ(t) - Z Z70s0)]
ved  0=1 s=df —0+1+1

Let 0y j(e7") := Cov(Z, z (1), Zéj)(t)), i,7 = 1,2. The variance o¢(t) is therefore

Uo(t) = 0'1’1(6_t) + 20’1’2(6_t) + 0'272(6_t), (2.61)

where 05 ;(y) (for i,j = 1,2) are calculated in the following. By using results of Section 2.8.7, we have
(recall that 7,(0) := df — 6 + 1):

di dy
o11(y) = D (L?)2<Z G e )o@ (V) + D) ax,el,eg,wz(el),m(ez))(y))7
reX =1 01,02=1
dr dF
02 Z(y) Z (LO) 2 [(9 - 1)251 0,74 (0),m4(0) (y) - 2(‘9 - 1) 2 &xﬁ,mcw),s(y)
reX =1 s=mq(0)+1
d di d d
+ Z &Z,Q,T,S(y):l + Z (Lg)Q Z [ 2 Z 81,91,92,31,82 (y)
T,S:Wx(e)-‘rl reX 01,02=1 sq :71';0(91)-‘,-1 S9=Ty (92)+1
di
+ (01— 1) (02 — )50y 00,0 (01) im0 (0) (W) — 2002 — 1) ) a—x,01,92,s,7rm(92)(y)]a
s=mg(01)+1
and,
di
o1 2 Z 2 [ - 1 Ux 0,74 (0),72 (0 )(y) - Z 5—5570,7%(9),5(24)]
zeX =1 s=mz(0)+1
df dy
+ Z Z [(91 —1)02.01 02,70 (61),72 (602) (Y) — Z 3;3,01,02,5@(02)(?/)]'
zeX 01,02=1 s=mg(61)+1

Now we compute the variance of Z7. Since it has been shown that
25 = Zo(t") — a () 2w (t) = Zo(t) — A Zw (1),
with A(z*) := o f{(2*), we have that

o 1= oo (t*) + Az oww (%) — 2A(z%) oo w(2Y). (2.62)
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We computed oy and ow, in Appendix 2.8.7. We have

o (e™t) = —Cov(Z{(t), Zw (1)) — Cov(Z) (1), Zw (1) = —afiy(e™t) — ot (e7),

where
i da
1 7 ~ = _ ~
Ué,%/[/(y) = Z L? Z O0,0,7:(6) (y) - Z Lgdm Z 0.0, (0),m(0) (y)
TeX =1 reX =1
di

- Z LOd, Z 0,01 ,09,2 (01) 72 (62) (Y)
zeX 91,92:1

and,

— (0’5975 (y) - dgzga:ﬁ,rrz (9),8(y)>:|
s=mz(0)+1
df i
n Z Egd; Z [ Z 5-%01792787%3:(92)(3/) — (91 — 1)3;5701792@36(91)77@(92)(y)].

xeX 91,92:1 s:7’rz(€1)+l

2.9 Concluding Remarks

In this chapter, we propose a general tractable framework to study default cascades and systemic risk
in a heterogeneous financial network, subject to an exogenous macroeconomic shock. We state various
limit theorems for the final state of default contagion and systemic risk depending on the network
structure and institutions’ (observable) characteristics.

Our central limit theorems can be used to provide confidence intervals for the final fraction of
defaults and systemic risk. As Figure 2.2 shows, the asymptotic normality turns out to be quite
reliable for not necessarily very large network size. Our asymptotic results could also be made of great
use in a more complex contagion model including fire sales [16].

The closed form interpretable limit theorems that we provide could also serve as a mandate for
regulators to collect data on those specific network characteristics and assess systemic risk via more
intensive computational methods.

It would be interesting to extend the optimal interventions model of Section 2.5 to a continuous-
time Markov decision process by the planner, when the links (starting from fundamental defaults) are
revealed one by one, and consequently, the planner can decide at any time to intervene or not. This
would lead to a Markov decision problem and one could solve it (under some regularity assumptions)
by using a dynamic programming approach. We refer to [26] for a similar model in a simpler setup
with a core-periphery network structure.
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Our results can also be used in a regulatory risk management framework, when a regulator imposes
capital requirements on each bank. In practice, the capital ratio constraint is the same for all banks.
However, using our heterogeneous setup, we could allow the regulator to choose optimally this capital
ratio according to the type of the banks. The regulator’s problem is then to choose the minimum
capital ratio for each institution (according to it’s type) so that the systemic risk (e.g., expected
shortfall of external wealth under some random shocks applied to capitals) is below a certain critical
value. We leave this and some related issues to a future work.
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Chapter 3

Fire Sales and Default Cascades

This chapter is based on paper [2] in the publication list of Section 1.5.

Abstract. We present a general tractable framework for understanding the joint impact of fire sales
and default cascades on systemic risk in complex financial networks. Our limit theorems quantify
how price-mediated contagion across institutions with common asset holdings can worsen cascades
of insolvencies in a heterogeneous financial network during a financial crisis. For given prices of
illiquid assets, we show that, under some regularity assumptions, the default cascade model can be
transferred to a death process problem. We model the price impact using a specified inverse demand
function. Various limit theorems concerning the total shares sold and the equilibrium price of illiquid
assets in a stylized fire sales model are stated. In particular, we show that the equilibrium prices of
illiquid assets have asymptotically Gaussian fluctuations. Our numerical studies investigate the effect
of heterogeneity in network structure and price impact function on the final size of the default cascade
and fire sales loss.

Keywords: Fire Sales, Default Contagion, Financial Networks, Systemic Risk.
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Chapter 3. Fire Sales and Default Cascades 3.1. Introduction

3.1 Introduction

Financial institutions are interconnected in various ways. The global financial crisis of 2007-2009 simul-
taneously highlighted the importance of interbank network structure and fire sales in the amplification
and transmission of initial shocks across the wider financial system.

This current chapter examines the combined impact of fire sales and default cascades on systemic
risk in complex financial networks during a financial crisis. Fire sales refer to situations in which an
institution attempts or is forced to sell a large volume of assets within a short period of time.

We consider a financial network in which institutions hold interbank liabilities, cash, and shares
of one or multiple illiquid assets. When a firm defaults, its counterparties may sell their illiquid assets
(deleveraging) in response to the losses they face due to this default, potentially triggering lower prices
for these or related assets. This may lead to contagion of losses across institutions with common asset
holdings. Indeed, marking to market of institutions’ balance sheets reinforces network contagion:
lower asset prices may force other institutions to default on their interbank liabilities. This results in
an entanglement of price-mediated contagion and interbank network-mediated contagion.

We consider a random graph approach, which is appropriate for dealing with systemic risk in
financial networks when only partial information on linkages is available, as pointed out in, for example,
[30, 76, 126, 187]. We reduce the dimension of the problem by classifying financial institutions into
different categories. This can be calibrated to real-world data using machine learning techniques for
classification. Due to its tractability and interpretability, as well as its potential to be enriched with
clustering (see, for example, [98, 195]), we use the configuration model as our base probabilistic
model. The configuration model has been previously used to model the pure default cascade process
in financial networks, as seen in [20, 27, 28].

We present a general tractable framework for understanding the joint impact of fire sales and de-
fault cascades on systemic risk in a heterogeneous financial network, subject to an exogenous macroe-
conomic shock. As demonstrated in Chapter 2, under some regularity assumptions on the network,
the pure default cascade model can be transformed into a death process problem. Since our model is
static in nature, following [22, 92, 133], we assume that all the liquidations occur simultaneously and
instantaneously. We model the price impact using a given inverse demand function.

We state various limit theorems concerning the total sold shares and the equilibrium price of
illiquid assets in a stylized fire sales model. In particular, we demonstrate that the equilibrium prices
of illiquid assets exhibit asymptotically Gaussian fluctuations. Our numerical studies explore the effect
of heterogeneity in network structure and price impact function on the final size of the default cascade
and fire sales loss.

Literature review. The literature on financial networks and systemic risk is vast; see e.g., [91, 146]
for surveys and references therein. Much research in this area focuses on an equilibrium approach to
derive recovery rates from some fixed-point equations, as seen in e.g., [111, 114, 185]. This relies
on the assumption that all debts are instantaneously cleared, which is unlikely to hold during a
financial crisis. Many studies incorporate various channels through which risk spreads in financial
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networks within the framework introduced by Eisenberg and Noe [111]. To name just a few, [131, 185]
introduce bankruptcy costs and mark-to-market losses. Following [20, 24, 93], we consider in this
chapter recovery rates as given. The model can be extended to a setup with random recovery rates
satisfying some cash-flow consistency conditions as discussed in [24].

Our work is related to the literature on the impact of network structure and heterogeneity on
default contagion and systemic risk; see e.g., [1, 7, 25, 46, 77, 87, 105, 124, 126, 132, 179, 196].
In particular, [1] compares the ring and complete network structures, finding that the completely
connected system is the most stable for small shocks but the least stable for large shocks (and vice-
versa for the ring network). In [21], the authors present a more general framework to find the optimal
network structure for reducing systemic risk and show that the optimal network compression problem
is generically NP-hard. Our work is also related to the literature on central limit theorems for credit
contagion and portfolio losses, see e.g., [129, 130]. The economics of contagious phenomena with
heterogeneous agents goes back to [121].

Price-mediated contagion and the resulting destabilizing feedback effects have been extensively
studied without the inclusion of interbank liability networks; see e.g., [70, 80, 90, 94, 96, 108]. We
refer to e.g., [95, 189] for a detailed review of the literature on fire sales. The Eisenberg-Noe model has
been recently extended to integrate fire sales loss into the cascades of defaults in interbank networks;
see e.g., [22, 62, 88, 92, 117, 132, 201]. More closely related to the content of this chapter, [106]
extends the methods developed in [20, 23] to provide a resilience condition for the financial network in
an integrated model of fire sales and default contagion in the case of inhomogeneous random graphs.

In Chapter 2, we study the pure default cascade process in the configuration model and provide
central limit theorems for the final size of the default cascade and systemic risk. The proofs rely on
a martingale limit theorem from [147] and are based on techniques developed in [152] (for the k-core
problem), by transferring the contagion process to a death process represented by the balls-and-bins
model. Note that Chapter 2 allows for different types of nodes and heterogeneous thresholds for
directed random networks, thus extending [152] and [13] (which states a central limit theorem for
bootstrap percolation in the configuration model).

Contributions and organization. To the best of our knowledge, we are the first to provide central
limit theorems in an integrated model for fire sales and default contagion in random financial networks:

e Our primary contribution is to provide central limit theorems for the size of default cascade
and fire sales loss in a stochastic heterogeneous financial network. This extends our previous
central limit theorems in Chapter 2 for the pure default cascade process (without fire sales) in
heterogeneous financial networks. We state various limit theorems for the total sold shares and
the equilibrium price of illiquid assets in a stylized fire sales model. In particular, we show that
the equilibrium prices of illiquid assets exhibit asymptotically Gaussian fluctuations.

e Moreover, by transferring the default cascade process to a death process problem, we provide
limit theorems for a continuous (virtual) time default cascade process with fire sales. Note that
although this chapter does not study the dynamic case, this virtual time (associated with the
corresponding death process) allows us to study the equilibrium and the final state of contagion.
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e Our numerical studies investigate the effect of heterogeneity in network structure and price
impact function on the final size of the default cascade and fire sales loss. We find that financial
networks with higher heterogeneity may have a smaller critical value for the shock beyond which
a large fraction of institutions default, both with and without fire sales. On the other hand, for
smaller shocks, the most heterogeneous network could be the least resilient. Surprisingly, the
fire sales loss in two financial networks with high and low connectivities are very close to each
other.

o We next use Monte Carlo methods to investigate systems with a finite number of institutions
and compare them with our central limit theorem results. In particular, we show how our limit
theorems can be used to construct confidence intervals for the size of contagion and fire sales
loss.

e We also provide the extension of our model to a financial network with multiple types of illiquid
assets and state central limit theorems in this setup.

The closed-form limit theorems that we provide in a heterogeneous financial network could also
serve as a mandate for regulators to collect data on those specific network characteristics and assess
systemic risk via more intensive computational methods.

Outline. The chapter is organized as follows. We introduce in Section 3.2 a general model for the
network of financial counterparties and describe a mechanism for default cascade in such a network,
after an exogenous macroeconomic shock. We also provide a stylized model of fire sales in a financial
network with a single illiquid asset and describe how the default cascade process can be transferred to
a death process problem. In Section 3.3 we give our main results on limit theorems for the final size
of default cascade, the total sold shares, and the equilibrium price of the illiquid asset. In particular,
we show that the equilibrium price of the illiquid asset has asymptotically Gaussian fluctuations.
Numerical case studies in Section 3.4 investigate the effect of heterogeneity in the network structure
and price impact function on the final size of default cascade and fire sales loss. Section 3.7 concludes.
Proofs of the main theorems are given in Section 3.5. Section 3.6 provides the extension of our model
to a financial network with multiple types of illiquid assets. We provide central limit theorems for
default cascade with fire sales in this setup.

Notation. Let {X,},en be a sequence of real-valued random variables on a probability space
(Q,F,P). If ¢c € R is a constant, we write X, 2, ¢ to denote that X,, converges in probability
to c that is, for any € > 0, we have P(|X,, —¢| > €) — 0 as n — 0. We write X, ~%, X to denote
that X,, converges in distribution to X. Let {a,}nen be a sequence of real numbers going to infinity
as n — 0. We write X,, = op(an), if | X,|/an 2, 0. If E, is a measurable subset of €, for any
n € N, we say that the sequence {F, },en occurs with high probability (w.h.p.) or almost surely (a.s.)
if P(E,) =1—o0(1), as n — 0. We denote by Bin(k, p) a binomial distribution corresponding to the
number of successes of a sequence of k independent Bernoulli trials each having probability of success
p. The notation 1{E} is used for the indicator of an event F; this is 1 if E holds and 0 otherwise. We
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denote by D[0, o) the standard space of right-continuous functions with left limits on [0, 0) equipped
with the Skorokhod topology (see e.g., [147, 156]). We shall suppress the dependence of parameters
on the size of the network n when it is clear from the context. We denote by Ng = N U {0} the set of
non-negative integers.

3.2 The Model

In this section, we describe the financial network and the default cascade model in Chapter 2, extended
to account for the price impact of the liquidation of illiquid assets and fire sale effects.

3.2.1 Financial network

Consider an economy &, consisting of n interlinked financial institutions (banks, companies, hedge
funds, etc.) denoted by [n] := {1,2,...,n}. Interbank liabilities are represented by a matrix of
nominal liabilities (£;;); je[n], Where, for two financial institutions 7, j € [n], £;; = 0 denotes the cash
amount that bank ¢ owes to bank j. The total nominal liabilities of bank i is ¢; = Zje[n] ¢;;, and
the total outstanding receivables sum up to a; = >’ jeln] ¢j;. In addition to these interbank assets and
liabilities, every institution holds claims on end-users (society, households, etc.) and vice versa. The
total value of claims held by end-users on bank i (deposits) is denoted by d;, while the total value of
claims held by bank ¢ on end-users (external assets) is denoted by e;. Bank i holds k; > 0 units of a
liquid asset (cash) and 7; € [0, Ymax] units of an illiquid asset. We assume that all ; (for all i € [n])
are bounded from above by ~ymax > 0. Cash has a value of one, while the illiquid asset has a positive
fundamental value pg > 0.

Compared to that in Chapter 2, the nominal balance sheet of bank ¢ is then given by:

o Assets: e; + ki + vipo + ai;
o Liabilities: d; + ¢; + nominal net worth.
In a stress testing framework, we apply a fractional shock ¢; € [0, 1] to the external assets of bank

i. Table 3.1 summarizes a stylized balance sheet of bank ¢ after the shock ¢;. The capital of bank
after the shock, denoted by ¢; = ¢;(€;;po), satisfies

c; = ki + vipo + (l—ei)ei+ai—€i—di, (3.1)
which represents the capacity of bank ¢ to absorb losses while remaining solvent.

The nominal cash balance of bank 7 is then k; + (1 — €;)e; + a; — d; — ¥;.

Price impact of liquidations. If bank ¢ has a negative nominal cash balance, it faces a liquidity
shortfall. In this case, bank ¢ sells some of its shares of the illiquid asset, which negatively impacts the
asset’s price. We model this by considering a given inverse demand function g, which determines the
equilibrium price for the illiquid asset when nx units of the asset are sold within a network of size n.
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NP
External Deposits
€; dl
€;€; - loss on assets Interbank
Interbank b = 2t bis
i = Djefn] i
Liquid Capital
kz‘ C;
Miquid
YiPo €;e; - loss on capital
Assets Liabilities

Table 3.1: Stylized balance sheet of bank ¢ after shock.

We impose the following moderate technical assumptions.!

Assumption 3.1. Let ppin = 0. We assume that g : [0, Ymax] — [Pmin, Po] satisfies:

(i) g(0) = po (in absence of liquidations the price is given exogenously by po).

(ii) g € C' and it is a non-increasing function of x € [0, Ymax] (the price is non-increasing with the
average excess supply x).

(Z”) g(’)/max) = Pmin = 0.
We conclude this section by presenting examples of price impact functions that satisfy the afore-

mentioned assumptions. These examples will be further explored in our numerical experiments in
Section 3.4.

Example 3.1 (Linear Price Impact function). For y € [0, Ymax], we set:
9" () = po — (Po — Prain) (¥/Vmax) -

Example 3.2 (Quadratic Price Impact function). For y € [0, Ymax], and a > 0, we set

1 - a(y/'VmaX)
11—« '

Q

Yo (y) =Po — (pO - pmin) (y/’Ymax)

Example 3.3 (Exponential Price Impact function). For y € [0, Ymax], and a > 0, we set

1 — e—a(y/ymax)

9 (¥) = po = (Po = Prin) ———&

1Similar to [22, 92], we assume there is an external market for this illiquid asset that can absorb the total illiquid
asset holdings of the banks at a distressed price. It is beyond the scope of this chapter to endogenize both the demand
function for the illiquid asset and the financial network payments.
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3.2.2 Default cascade

We now introduce a model to investigate the combined effects of insolvency contagion and fire sales.
Given a shock scenario € = (ey,...,€,) € [0,1]", when bank i € [n] has a negative cash balance and
the revenue generated from selling all +; units of the illiquid asset fails to cover the negative cash
balance, bank ¢ defaults on its interbank liabilities.

For a given price p € [pmin, po] of the illiquid asset, we define bank ¢ as p-fundamentally insolvent if
its capital, after the shock and considering the price p of the illiquid asset, is negative, i.e., ¢;(e;;p) < 0.
We denote the set of p-fundamental defaults as:

Do(e;p) :={i € [n] : cies;p) < 0} (3:2)

We next define the pure default cascade (excluding fire sales loss) initiated by fundamentally
insolvent institutions. It is important to note that, for a given shock scenario €, the price of the
illiquid asset can be affected by fire sales, resulting in a price p < py. This leads to a larger set of
fundamentally insolvent institutions, denoted as Dy(€;p). This, in turn, triggers the default contagion
process.

Let us fix the shock € and the price of the illiquid asset p € [pmin, po]. We denote the recovery rate
of the liability of i to j as R;; = R;j(€;p), in the event that bank ¢ defaults. The matrix of recovery
rates is represented by R = (Rij)i7j€[n]. Since any bank ¢ cannot pay more than its external assets
(1 —€;)e; plus what it has recovered from its debtors, the recovery rates of i must satisfy the following
cash-flow consistency constraints:

n n
vip + ki + (1 — ei)ei + Z Rjigji = Z Rijfij + d;.
Jj=1 Jj=1
Similarly as in [20, 24, 93], we assume fixed recovery rates in this chapter. The model can be
expanded to include random recovery rates that satisfy the above cash-flow consistency conditions,
as discussed in [24]. Note that, although not explicitly stated, the fixed recovery rates in our model
could be a function of both the initial shock and the price of the illiquid asset, under the condition
that the recovery rates satisfy the above cash-flow consistency constraints.

Given the shock scenario €, the price of the illiquid asset p, and the matrix of recovery rates R,
a default cascade is initiated by the set of p-fundamentally insolvent institutions Dy(€;p), eventually
reaching the equilibrium set D*. This set represents financial institutions whose capital is insufficient
to absorb losses and must satisfy the following fixed-point equation:

D* = D*(e, R;p) = {z e [n]:ci(esp) < Y, (1 Rji)gji}'
jeD*

As demonstrated in [24], the above fixed-point default cascade set may have multiple solutions.
The smallest fixed-point set, which corresponds to the fewest number of defaults, can be obtained by
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starting from Dy = Dy(€;p) and defining the following at step k:

'Dk = 'Dk(E,R;p) = {Z € [n] o< Z (1 - le)gﬂ} (33)
JEDk—1

The cascade ends at the first instance when k satisfies Dj, = Dj._1. Therefore, in a financial network
of size n and for a given price p of the illiquid asset, the cascade will terminate after at most n — 1
steps. The final set of insolvent institutions is represented by Dy,_1 = D,_1(€, R;p).

3.2.3 Node classification

As detailed below, under certain regularity assumptions, we can consolidate information regarding
assets (both liquid and illiquid), liabilities, post-exogenous-shock capital, and recovery rates into a
single probability threshold function (which serves as a probability mass function for the threshold
random variable); see [17, 20] for a similar setup.

For a given illiquid asset price p, shock scenario €, and matrix of recovery rates R, we introduce
the (random) threshold ©;(p) = @En) (p) for every institution ¢ € [n]. This value represents the
number of defaults that bank 7 can endure before becoming insolvent, assuming that the order of its
counterparties’ defaults is random — that is, when the order of i’s debtor defaults is chosen uniformly

at random from all possible permutations.

Next, we consider a classification of financial institutions into a countable set of possible classes
X, which could be finite or infinite. All observable classes for institution ¢ are encoded in x; =
(df,d; ,ti,...) € X, where dj denotes the in-degree (the number of institutions i is exposed to),
d; signifies the out-degree (the number of institutions exposed to i), and t¢; represents any other
institution-specific type (e.g., credit rating, seniority class, systemic importance, etc.).

To state limit theorems, we consider a sequence of economies {&,},cn, indexed by the number
of institutions. The characteristics of any institution i € [n] in the economy &, are represented as
xl(n) = (dz+ (n),d;(n),tl(n), ...) € X. Without loss of generality, we assume that institutions within the
same class z € X have the same number of creditors (denoted by d; ) and debtors (denoted by d;). For
the sake of tractability, we make the following assumption about the probability threshold functions.

Assumption 3.2. There exists a classification of the financial institutions into a countable set of
possible classes X such that, for each n € N and all p € [pmin,Po], institutions within the same class
share the same threshold distribution function (represented as qén) for institutions in class © € X ).
Specifically, for the economy Ey,i € [n] and all 0 € N,

PO (p) = 0) = 40} (0: ).

In particular, in the network of size n, qg(gn)(O; p) represents the proportion of initially insolvent

institutions of type x € X under the given illiquid asset price p.
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(n)

We denote iy’ as the fraction of institutions with characteristic x € X in the economy &,. Com-
pared to Chapter 2, to deal with the price impact, we need some smoothness assumption on the

threshold distribution qg(cn) (0;p).

Assumption 3.3. For some probability distribution functions p and q(.;p) over the set of classes X
(n)
X

(independent of n), we have pug’ — p; and qg(cn)(ﬁ;p) — qz(0;p) as n — o, for all x € X,0 =
0,1,...,d} and p € [pmin,po]- We also assume that the empirical threshold distributions satisfy

(n)
qg(cn)(ﬁ;p) e C! and q.(9;p) € C' on p € [Pmin, po]. Moreover, as n — oo, a%“; (0;p) converges uni-

formly to %(G;p) as a function of p for allx € X and 0 =0,1,...,d}.

We provide below an example of liabilities (losses) satisfying the above assumptions.

Example 3.4 (Independent random losses). Suppose the capital of each institution (post-shock) is a
constant that depends on the institution’s type and the price of the illiquid asset, i.e., ¢; = cg,(p). Let
{Lyk}i_q be a set of independent and identically distributed (i.i.d.) continuous random variables with
a common cumulative distribution function (cdf) F, and density f, for all z € X.

We then set q,(0;p) = G.. Further, we set

qgc(l;p> = (1 - (ja:)]P)(Cx(p) < Lz,l) = (1 - (.71)(1 - Fx(cm(p))v

and, for 0 =2,....d}, we set

)
q:v(g;p) = (1 - (jx)IP)(Lx,l +F Lx,G—l < Cac(p) < Lm,l + e+ Lx,@)

Cz(p)
—(1- cmfo FEW) (1 Fales(p) - v)dv,

where f** is the k-fold convolution of f. Since the capital c;(p) is smooth (in fact linear in p) for all

x € X, then the threshold distribution is C* in p for all x € X and 0. In our numerical experiments in
Section 3.4, we consider a Pareto distribution for losses, that is

f(2) = aata= 1z > 2},

for some scale and shape parameters T,,,« € R,

In this chapter, we account for the possibility that an institution never defaults, i.e., it remains
solvent even if all its counterparties default. This case is not considered in the pure default cascade
process studied in Chapter 2. For x € X’ and p € [pmin, Po], We set

da
Gu(0;p) == 1= 42 (6;p).
0=0
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3.2.4 A simple model of fire sales

In our model, we assume that each instance of a default of an incoming link (originating from a
defaulted neighbor) compels the host institution (creditor) to liquidate a portion of its asset holdings.
This mechanism is introduced to reflect the institution’s need to adhere to regulatory constraints, such
as maintaining prescribed leverage ratios. Given the structure of the default cascade death process
as outlined in Algorithm 1, we make the following assumption: each time an institution is faced
with a defaulted neighbor, the number of shares it sells off are independent random variables. The
distribution of these random variables depends on the host institution’s type, its threshold level, and
the current (equilibrium) price of the illiquid asset. We acknowledge that in reality, defaults and
subsequent fire sales might not occur instantaneously. However, for the purpose of our model, we
adopt a conservative approach, following the literature such as [22, 92, 133]. We assume that all
institutions may only sell their assets at the final equilibrium price. This assumption is meant to
capture the drastic drop in asset prices that often occurs in financial crises, thereby intensifying the
feedback loop of defaults and fire sales.

Remark 3.5. As previously discussed, institutions often need to liquidate a portion of their assets in
response to losses, driven by the obligation to comply with market regulations and constraints. These
sales are typically proportional to the ratio of loss to capital. A non-decreasing function p : [0,00) —
[0, 1] is employed in [107] to represent this proportion of liquidation. For example, an institution i € [n]
experiencing a loss L; will liquidate v;p(L;/c;) of its asset shares. Bounds are provided in [107] for
the total shares sold and equilibrium price of illiquid assets. In our context, formulating central limit
theorem results with a generic function p is complex, given the cumulative nature of fire sales. With a
generic non-decreasing function p, each loss incurred from a defaulted neighbor could lead to different
liquidation amounts, even if the received losses are equal. To simplify this issue and facilitate the
study of central limit theorems for liquidation amounts and equilibrium prices after fire sales, we opt
for a linear sales function in our model. Consequently, equivalent losses result in identical liquidation
amounts, thus enabling us to model liquidations as independent random variable, with distribution
depending on each institution’s type and threshold. Another specific case studied in [107] is the sales
function p(u) = Lyy>1y, which indicates complete liquidation at default; the total liquidation amount
then depends only on the total number of defaults. This case can be directly linked to Chapter 2, where
we study the limit theorems for default contagion without considering fire sales.

We now provide a mathematical exposition of our fire sales model, beginning by establishing some
notation summarized in Table 3.2.

For a fixed price p € [pmin, o], we use Dg(cng) (t;p) to represent the total number of defaulted insti-

tutions of type = and threshold 6 at time ¢. Consequently, the total number of defaulted institutions
of type z € X' at time t is given by D (tip) = 2 Di"o) (t;p). We also recall that Sa(sng)g(t;p) is used

to denote the number of solvent institutions of type x € X', threshold 6 € N, and with ¢ defaulted
neighbors at time t.

For x € X,p € [po, pmin] and 0 = 1,...,d}, we define

0—1
Iii?(t;p) = HD;LH)(t;p) + Z ESQ(;L(,)’Z(t;p).
/=1
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This represents the total number of liquidations for institutions of type x € X and threshold 6 up
until time ¢. The first term indicates that a defaulted institution of type x and threshold 6 > 1 will
need to liquidate 6 times. Additionally, a solvent institution with ¢ defaulted neighbors would need
to liquidate ¢ times before time ¢.

We also consider institutions that never default under such a shock scenario, even if all their
counterparties default. Let Sa(fo)o’ ,(t:p) denote the number of institutions of type x with a threshold

greater than d (thus, never defaulting), and ¢ defaulted neighbors at time ¢. We then define

Z gSa(cnooe

which represents the total number of liquidations from institutions of type x € X that never default,
up until time .

We assume that the quantity of liquidation for each institution that is initially defaulted, of type
x € X, is a constant value, represented by 7,. The symbol Dg(;g (0;p) = nqg(cn) (0;p) is used to represent
the number of initially insolvent institutions belonging to type x € X.

For every type x € X and threshold value # within the set {1,...,d}} U {0}, we define a series
{Lg)e(p)}:il. This represents a sequence of independent and identically distributed (i.i.d.) positive

bounded random variables that follow the same distribution, denoted as F; 4(.; p). Specifically, LS)Q (p)
represents the quantity of illiquid asset sold upon the i-th default occurring to institutions of tyi)e T
with threshold #. Similarly, LQ@ (p) denotes the quantity of illiquid asset sold upon the i-th default
occurring to institutions of type x that never default (those with threshold larger than d;). These
random variables, given the price p € [pmin, po] of the illiquid asset, have a mean value symbolized by
ng(p) and a variance represented by %%,9 (p), which satisfy the following assumption.

Assumption 3.4. The mean {, ¢(p) and the variance gia(p) of the shares sold for each liquidation are
continuous functions of p, and this holds for every type x € X and threshold 6 € {0,1,...,d}} U {o0}.

The total number of illiquid asset shares sold by time ¢ (for a given price p of illiquid asset) can
be expressed as

di

La(tip) i= 3 (D50m) + 3, Vi3 (thp), + V6 p)), (3.4)
zeX =1
where
1) (t:p) 17 ()
YR = Y LY%m) and Y(tp): 2 39! (3.5)

represent the total number of asset shares sold by institutions of type x with threshold # and institu-
tions of type x that never default, respectively, up to time t.

Finally, the total shares of the illiquid asset that have been sold under price p at the stopping time
7 (p) will be denoted as I',,(7;(p); p).

100



Chapter 3. Fire Sales and Default Cascades 3.3. Limit Theorems

0;p) number of initially defaulted institutions with type z € X
P number of defaulted institutions of type x with threshold 0 at time ¢

;p)
Sz?a),z(tp) number of solvent institutions of type z, threshold 6 € {1,...,d}} U
{0} and with ¢ defaulted neighbors at time ¢
1 ;E,ng) (t;p) total number of liquidations for institutions with type x and threshold
6e{l,...,df} v {0} up to time ¢
{Lizv)e(p) £ || aset of i.i.d. positive bounded random variables representing units

of illiquid asset sold at each incoming default leading to institutions
with type x and threshold 6 € {1,...,d}} U {0}

Cr0(p) the mean value of Lg(ci,)o (p)

gg’g (p) the variance of L:S;i)e (p)

Yz(z) (t;p) total shares of illiquid asset sold up to time ¢ for institutions with
type x € X and threshold 6 € {1,...,d}} U {0}

Ve the constant value of liquidation for each initially defaulted institu-
tion with type z

I (t;p) total shares of illiquid asset sold by time ¢

Kn (D) the price of the asset given by the inverse demand function g

o the equilibrium price of the illiquid asset

Table 3.2: Overview of the fire sales model notation, under price p of the illiquid asset

Given that default contagion and fire sales occur instantly in our model, we adopt a conservative
strategy. We make the assumption that the illiquid asset can only be sold at the final equilibrium
price.

We establish this price via the inverse demand function, g, defined as follows:

kin(p) == g(Tn(7;(p); ) /1)

Since 7,5 (p) is not in general continuous (this is shown in the next section), the fixed point equation
p = Knp(p) may not have a solution. This motivates us to define the equilibrium price of the illiquid
asset as

phy = sup{p € [Pmin, Po] 1 p < kn(p)}, (3.6)

that is the highest price, lower than or equal to the one given by the inverse demand function &, (p),
within the range [pmin,po]. This equilibrium price provides an optimal price for the illiquid asset
considering the constraints of the model.

3.3 Limit Theorems

In this section, we establish limit theorems for the total sold shares and equilibrium price of the

illiquid asset in the random financial network G(™ (d;r,d;;), which is defined in the same way as in
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Chapter 2. Some assumptions are the same as those in Chapter 2, and we also incorporate results
from Chapter 2 with minor adaptations to the integrated default contagion and fire sales model. For
the sake of completeness, we restate them in this chapter.

3.3.1 Asymptotic magnitude of default cascade with fire sales

We assume the following regularity condition on the average degrees.

Assumption 3.5a. We assume that as n — o0 the average degrees converges to a finite limit:

A= M df ) = Y dy Y — X = ) df e € (0,00).
zeX reX zeX

For z € [0,1] and p € [po, Pmin], We define the functions:

dt
fs(zip) =, ux[E 4(0;p)B(dy, 2, df —0+1) + qx(OO;p)], fo(zip) =1— fs(zp),  (3.7)
reX 0=1

di
fw(zp) =Xz = Y pady, [Z 0:(0;p)B(dy, 2, df — 0 +1) + qx(OO;p)]- (3.8)
zeX =1

The following lemma provides the law of large numbers for the number of solvent/defaulted insti-
tutions and the total number of existing white outgoing half-edges (controlling the contagion stopping
time) at any time ¢ in the economy &, satisfying the above regularity assumptions. The lemma extends
Theorem 2.1 in Chapter 2 by allowing that some institutions never default (the institutions with oo
threshold). This theorem is proved in Chapter 2 for fixed threshold distribution and can be applied
for a fix p € [Pmin,Po]. Note that here the limiting functions fy and fg are slightly different from
those in Chapter 2; see Section 3.5.5 for discussion.

Lemma 3.6. Let 7, < 77(p) be a stopping time such that 7, > to for some ty > 0. For all
reX,0=1,...,d} and ¢ =0,...,0 —1, we have (as n — ©)

x

s (¢ p)

sup |

t<Tp

— 120 (65 9)b (4, 1 — e 0)| 2> 0,
Moreover, as n — o0,

p

sup| 22 ER) _ g0t (e tip)| 0,

D, (t;
:p)| =0, sup!flp)

t<tp n t<Tn

and the number of white outgoing defaulted half-edges satisfies

Wi (t; p)
sup ‘ —_—
t<Tn n

— fw(e % p)| 0. (3.9)
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The lemma establishes that for a given price p of the illiquid asset, as the size of the network
n approaches infinity, key quantities that describe the state of the default cascade in the financial
network converge in probability to their expected values. This is particularly important as it outlines
the relationship between the final proportion of defaults and the structural composition of the financial
network after shocks. These structural elements include the distribution of types, thresholds, and
degrees, in conjunction with the price of the illiquid asset. Such insights are pivotal for evaluating
systemic risk within large, complex financial networks, as well as for assessing their susceptibility to
cascading defaults.

We subsequently use Lemma 3.6 to provide a limit theorem for the cumulative sold shares at price
P € [Pmin, Po] up until time ¢. To this end, we define the following functions that we demonstrate serve

as the limiting functions of Iin(,)(e_t;p)/n, Ig(cflo)o(e_t;p)/n, and ', (e7%; p)/n, respectively:

di
fa:ﬁ(z;p) = MmQx(e;p) (‘9 - Z B(d:7 Z?@)? fa:,oo(z;p) = (1 - Z)qux(OO;p)di:, (3'10)

l=df —0+1
and,
o -
fr(zp) =), (uﬂqu(o;p) + > Leo(p) fro(2ip) + fx,oo(p)fx,oo(zm))- (3.11)
reX 0=1

We have the following law of large numbers for the aggregate volume of sold shares at a particular
time ¢, given the price p € [Pmin, Po]-

Theorem 3.7. Let 7, < 7, be a stopping time such that 7, 2, to for some tg > 0. Then, asn — ®©
and for all p € [pmin, Pol,

It p
up|n(n )—

t<Tp

fre tp)| 0.
Proof. See Appendix 3.5.2. O

Recall that the stopping time 7,;(p) is defined as the first time when W, (7,;; p) becomes negative.
We introduce z*(p), which is the supremum of z values in the range [0, 1] for which fiy(z;p) (as defined
in (3.8)) equals zero:

z*(p) :==sup{z € [0,1] : fw(z;p) = 0}. (3.12)

Given that fiy(1;p) = 0 and fiy(0;p) < 0 for any p in [pmin, o], and that fy(z;p) is a continuous
function, z*(p) is well-defined. We have the following lemma from Chapter 2, which discusses the
asymptotic behavior of 7.} (p).

Lemma 3.8. For any fized p € [po, Pmin|, we have (asn — o):

(i) If z*(p) = 0 then 7, (p) 2, w.
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(i) If z*(p) € (0,1] and 2*(p) is a stable solution, i.c., fiy(z*;p) > 0, then 7*(p) > —In 2*(p).

Applying Theorem 3.7 and Lemma 3.8, we establish the following limit theorem for the final sold
shares of illiquid assets 'y, (7,55 p).

Theorem 3.9. For any fixed p € [Pmin, Po], the final number of sold shares satisfies:

(i) If z*(p) = 0 then asymptotically almost all institutions default after shock and (asn — o)

INICr))
n

D15
CRS

— 2 Mo <:Yme(0§p) +

L20(p)94:(6:D)).
reX 0

1
(it) If z*(p) € (0,1] and z*(p) is a stable solution, i.e., f{;(2*(p);p) > 0, then, as n — o0,

Ln(1h5p)

, > fr(z*(p);p).

Proof. See Appendix 3.5.3. O

The theorem essentially establishes a relationship between the final sold shares of illiquid assets
and the key characteristics of the financial network. It achieves this by detailing how the final sold
shares converge (as the network size grows to infinity) to a limiting value that is a function of the
network’s structure and the average amount of liquidation, based on the type and threshold of each
institution.

Since g is continuous according to Assumption 3.1, we can employ the continuous mapping theorem
to determine the convergence of k,,(p). This comes as a direct corollary of Theorem 3.7, thus providing
insights into the asymptotic behavior of the price k,(p), defined as g(I'y (75 (p); p)/n).

Corollary 3.10. For any fized p € [pmin, Po] and as n — oo, the price k,(p), determined by the inverse
demand function, satisfies:

(i) If z*(p) = 0 then asymptotically almost all institutions default after shock. Consequently,

D&
a4

Ko (p) — 9(2 tto (V24205 p) + !Z;,e(p)qu(@;p)))

zeX 0=1

(it) If z*(p) € (0,1] and 2*(p) is a stable solution, i.e., fiy(z*(p);p) > 0, then
rn(p) == g(fr(z*(p);p))-

We proceed by presenting a limit theorem for the equilibrium price after a shock, as defined by
Equation (3.6). Corollary 3.10 serves as the motivation for introducing the following notation:

P :=sup{p € [Pmin,po] : » < g(fr(z*(p):p))}. (3.13)

We say that pis a stable fixed point solution if it satisfies either p = ppi, or, in the case p € (Pmin, Po],
there exists an € > 0 such that p < g(fp(z*(p);p)) for all pe (p —€,p).
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Theorem 3.11. As n — o, the equilibrium price p), (as defined in (3.6)) satisfies:

(1) If z*(p) = 0 and p is a stable solution, then the equilibrium price p}, converges to p in probability.
In this case, p is the largest solution of the fixed point equation

i

p= g(Z pr (Y22 (03p) + > lzz,e(p)qu(@;p)))
0=1

TeX

(ii) If z*(p) € (0,1] is a stable solution of fw(z;p), i.e., ag;" (z*;p) > 0, and p is a stable solution of
Equation (3.13), then as n — o, we have

Proof. See Appendix 3.5.4. O

The theorem establishes a link between the equilibrium price of a liquid asset and key characteristics
of a financial network, including the post-shock type and threshold distribution and the average amount
of liquidation based on each institution’s type and threshold. This connection provides valuable
insights for regulators to evaluate the propagation of shocks and their impact on the overall stability
of the financial system. By understanding these limit theorems, regulators can identify vulnerabilities
within the network and implement measures to mitigate systemic risk effectively.

Remark 3.12. The limit theorems presented have practical implications for establishing a resilience
condition for default cascades in random financial networks. Specifically, using the notation introduced
earlier, a financial network is considered resilient if, starting from a small fraction € of institutions
representing fundamental defaults, the limit of z*(p) approaches zero as € approaches zero. This
resilience condition indicates that the network has the ability to withstand small shocks, as the impact
of initial defaults does not result in widespread propagation throughout the financial network. We refer
to [12, 20, 24, 106] for discussions on the resilience conditions for default cascades in random financial
networks.

3.3.2 Asymptotic normality of default cascade with fire sales

In order to investigate the central limit theorems, we need to restrict our attention to a category
characterized by 'more sparse’ or ’diluted’ networks. Specifically, we consider the random financial
network G (d;t, d;;) and make the assumption that the degree sequences satisfy the following moment

condition.2

Assumption 3.5b. We assume that for every constant A > 1, we have

AT =0 S WA Om) and Y AT = S A% = Ofm).
=1 xeX =1 TeX

2The finite moments condition is commonly assumed to establish the central limit theorems for diffusion processes in
random graphs, see e.g., [152] for the k-core and [? | for bootstrap percolation.

105



3.3. Limit Theorems % Chapter 3. Fire Sales and Default Cascades
AFee

In relation to the limit functions introduced in (3.7) and (3.8), for z € [0, 1] and p € [po, Pmin], We
define the functions ffgn)(z;p), fl()n)(z;p) and fé{,l)(z;p) as

= [Z o (0;p)B(df, 2 df —0+1) +Q§;”)(00;p)], I p) =1 19 (z5p),
zeX

f( )(z p) =\ )y — Z u")d [Z qy dJr z,df — 0—1—1) —i—qé")(oo;p)].
reX

For convenience and to facilitate formulation, we introduce a time transformation of the functions
J?i(n) (t; p) by the relation
F™ () = £ (et p), forie {S,D,W}.

The following lemma, drawn from Chapter 2, provides the central limit theorem for the number
of solvent institutions, the number of defaulted institutions, and the total number of existing white
outgoing half-edges, which control the contagion stopping time. This is valid at any time t in the
economy &, which satisfies the aforementioned regularity assumptions.

Lemma 3.13. Let 7, < 7(p) be a stopping time such that 1, > to for some ty > 0.
(i) Forallze X,0=1,...,d5,£=0,...,6 —1 and jointly in D [0, 0),
2 (S5 ot A i p) = naal (0:p)b(dF 1 — €T, 0)) <o 2, (8 A to:p),
where Z ¢ ¢(t;p) is a Gaussian process with mean 0 and variance O'Lg’g(t;p)g.
(ii) For allie {S,D, W}, as n — o and jointly in D [0, ),
n~1/2 <zn(t A TniD) — nﬁ(n)(t A Tn;p)) 4, Zi(t Atosp), (3.14)

where {Z;} are continuous Gaussian processes on [0,t9] with mean 0. The variance of Zw
denoted by ow (e t;p) := Var(Zw (t;p)), is given by (3.21).

The lemma demonstrates that the final size of a default cascade exhibits asymptotically Gaussian
fluctuations. Furthermore, it relates the variance of these fluctuations to the characteristics of the
financial network. In particular, it ties the variance to the post-shock type and threshold distribution.

In relation to (3.10) and (3.11), we now define the following functions which can be interpreted as

the limiting functions of 1t 9)(6 tp)/n, Ig(fo)o(e_t;p)/n and ', (e7%; p)/n, respectively:

10 (i) = uaP ) (0~ D BldE 2, 0),  fIh(zip) == (1— 2)ulPgl™ (05 p)dy
0=d} —6+1

3The explicit form of 0, ¢.(t; p) is provided in Chapter 2.
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AR
and,
i
A(zp) =) (ué”)%qé") (059) + 2. Log(p) 1) (2:0) + €x,oo(p)f§7o)o(2;p))-
reX =1

The time-transformed versions of the above functions are defined as follows:
FO ) =10t Fp) = 1),
(This transformation applies equally to any other relevant functions).

By using Lemma 3.13, we prove the following central limit theorem for the total sold shares.

Theorem 3.14. Let 7, < 7y be a stopping time such that T, L5ty for some ty > 0. Then for any
fizxed p € [Pmin, po] and t >0, as n — oo,

— d
n 1/2(Fn(t A TniP) — nAlgn)(t A Tn;P)) — Z2p(t A to; ), (3.15)
where Zp(t;p) is a Gaussian random variable with mean 0 and variance
U(t;p) := Var(Zr(t;p)),

where the form of U(t;p) is given by (3.25).
Proof. See Appendix 3.5.6. O

In order to state the central limit theorem for the final total of sold shares, we will use the following
notation for i € {I', W}:

)= L, )= L),
and,
of™ 20 of"

L(n) .\ ._ .
fi (Zap)' az (Zap)a

;(mp) = a’p (2;p)-
Remark 3.15. Under Assumption 3.3, the bivariate functions fyw(z;p), fé{})(z;p), fr(z;p), and

flgn)(z;p) all possess continuous first order partial derivatives with respect to both z and p. More-
over, for any pair (z,p) € [0,1] x [pmin, py], as n — o0, we have:

F () = flzp) and £ () - f2zD).

For a fized z, the convergence with respect to p is uniform for all fl-(n) and their p derivatives. As
indicated in Chapter 2, under Assumption 3.5b, these convergences extend to uniformity with respect to
z, along with all derivatives with respect to z, for any fixed price p. Therefore, under Assumption 3.5,
the convergences are uniform with respect to both variables z and p.

107



3.3. Limit Theorems % Chapter 3. Fire Sales and Default Cascades
AFee

In connection with (3.12), for the network of size n, we define

zr(p) = sup{z e[0,1]: f‘g(,l)(z;p) = O}. (3.16)
Subsequently, we define t*(p) := —In z*(p) and ) (p) := —In 2 (p).

Building upon Lemma 3.13 and Theorem 3.14, we present the following theorem concerning the
asymptotic normality of the final total of sold shares.

Theorem 3.16. For a fized p € [pmin,po], if 2*(p) € (0,1) is a stable solution, i.e., a(p) :=
fi(z*(p);p) > 0, then as n — oo, the final total of sold shares satisfy:

0V (T (rp) — n 8 (5 (0)ip) —5 Zr(t(p): p) — alp) ™ (=" (9): ) 2w (£ (0): p),

where Zr and Zyw represent Gaussian random variables with a mean of 0, as outlined in Theorem 3.1/
and Lemma 3.13, respectively.

Proof. See Appendix 3.5.7. O

The theorem demonstrates that the final total of sold shares exhibits asymptotically Gaussian
fluctuations. Furthermore, it associates the variance of these fluctuations with the characteristics of
the financial network. Specifically, it links the variance to both the post-shock type and threshold
distribution, and to the variability in the liquidation amounts, each of which is contingent on the
specific type and threshold of each institution.

Remark 3.17. Note that Theorem 3.16 cannot be applied in the boundary cases z*(p) = 1 or z*(p) = 0.
When z*(p) = 1, the initial shock will not trigger a default cascade in the network. The variance of
the asymptotic Gaussian in this situation arises solely from the randommness of the initial defaults,
not from any randomness introduced by the default cascade. On the other hand, if z*(p) = 0, as per
Theorem 3.9, almost all institutions default after a shock in the asymptotic limit, i.e., as n — o0,

*. d; —
CuTiD) 5, $ s (aga0ip) + S el (0:).
zeX 6=1

In this situation, the z};(p) values are always to the right of 0 for all n, meaning they cannot be
negative. Investigating a critical window for this case would be substantially more complex, and we
leave this for future work.

As a corollary of Theorem 3.16, we can derive the following theorem regarding the price as deter-
mined by the inverse demand function k,(p) := g(I'n (75 (p); p)/n).

Theorem 3.18. For any fized p € [Pmin, o], if 2*(p) € (0,1) and z*(p) is a stable solution, i.e.,
a(p) == fiy(z*(p);p) > 0, then as n — o, the price rn(p) as determined by the inverse demand
function satisfies

02 () — g (R 0)i9))) ~ 9 (o= 0)ip) | 20 (0):p) — alp) ™ FH" (0):p) 2w (1 (0)51)

where ¢’ denotes the first derivative of g.
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Proof. See Appendix 3.5.8. ]

We now present a central limit theorem for the equilibrium price post-shock, as defined by Equa-
tion (3.6). In connection to (3.13), for a network of size n, we define:

P 2= sup{p € [pmin,po] : p < g(fr" (2 (p)ip)) }- (3.17)

Recall that p is a stable fixed point solution if it satisfies either p = ppyin or, in the case p € (pmin, Po],
there exists an € > 0 such that p < g(fp(z*(p);p)) for all pe (p — €, D).

Theorem 3.19. If 2*(p) € (0,1) is a stable solution of fw (z;p) =0, i.e., a(p) := fi(z*;p) > 0, and
D is a stable solution of (3.13), then as n — o, the equilibrium price satisfies

nY2(pt — Bn) —5 —p~H(P) Zv (D),

where
p(p) = 1= g/ (fo(=* ()i ) |~ FE (=" )i )a) " Fio (=* 0)sp) + 2" (i)
and,

Zy(p) == —¢'(fr(z";p)) [Zr(t*(p);p) - a(p)_lf%(Z*;p)Zw(t*(p);p)]

is a Gaussian random variable with mean 0.
Proof. See Appendix 3.5.9. O

The theorem establishes that the final equilibrium price exhibits asymptotically Gaussian fluctu-
ations. Additionally, it establishes a connection between the variance of these fluctuations and the
characteristics of the financial network and the inverse demand function. Specifically, the variance is
linked to the post-shock type and threshold distribution, as well as the variability in the liquidation
amounts, both of which depend on the specific type and threshold of each institution. To highlight the
practical significance of central limit theorems, we proceed to numerically investigate the asymptotic
variance for fire sales loss in the following section.

3.4 Numerical Experiments

FEmpirical studies on the network topology of banking systems reveal a wide range of structures, in-
cluding centralized networks as shown in [176], core-periphery structures explored in [99, 122, 166] as
well as scale-free structures discussed in [69, 93]. In this section, we examine the impact of hetero-
geneity in network structure and price impact function on the final size of default cascades and fire
sale losses.
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3.4.1 Numerical set-up

In our numerical experiments, we make the assumption that the in-degree and out-degree of each
institution are equal, denoted as d} = d, = d, for all x € X. We normalize the price of the illiquid
asset to fall between pmi, = 1 and pg = 2. Additionally, we assume that institutions of the same type
or class share the same capital structure. To describe the capital structure of institutions with type
x € X, we employ the capital vector h,, given by (see Table 3.1)

h, =[y kitay Clo+d: e

In our stress testing framework, we make the assumption that the initial fraction of defaults is
fixed across all classes, denoted as ¢;(0;p) = € for all x € X. For the sake of illustration, we set
€; = € uniformly across all institutions, resulting in each initially solvent institution experiencing a
loss of a fraction € € [0, 1] of its external assets. When an institution defaults, its creditors face losses,
which are assumed to be i.i.d. random variables following a Pareto distribution. The scale and shape
parameters of the Pareto distribution are type-dependent and denoted as x,,, and a € R, respectively,
to be specified. The threshold distributions can then be calculated as outlined in Example 3.4.

We consider a scenario where initially defaulted institutions liquidate all of their shares of illiquid
assets. As a result, the mean liquidation fraction for institutions with the same type becomes equal
to their capital allocation parameter, i.e., 7, = ;. The mean liquidation amounts follow a linear
relationship given by

0 Vx
0, =2 for 0=1,...,d,,
o(p) o0 or

and we set £y 0(p) = s for all p € [1,2]. This specification allows us to determine the mean
liquidation amounts based on the type of institution and the price of the illiquid asset.

We shall consider three different price impact functions, each with specific forms as provided in
Examples 3.1, 3.2, and 3.3. The functions are defined as follows:

o Linear price impact (LPI): g% (y) = 2 — (y/Ymax);

o Quadratic price impact (QPI): g%(y) =2 — (Y/Ymax)%;

o ]__e*(y/’Ymax)
1—e 1

o Exponential price impact (EPI): g (y) = 2
These functions are defined for y € [0, Ypax]. It is important to note that the LPI function decreases
at a constant rate for all values of y. In contrast, the QPI function initially drops slowly (for small
y) and then decreases faster as y increases. Conversely, the EPI function decreases rapidly at the
beginning and then gradually slows down as y increases.

To quantify the extent of losses incurred by the financial system due to fire sales triggered by the
exogenous shock €, we utilize the Fire Sales Losses (FSL) indicator, defined as
po — pr(e)

FSL(e) = 5,
0
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where p(€) represents the equilibrium price of the illiquid asset following the shock e. The FSL
indicator measures the proportion of loss in the equilibrium price relative to the initial price pg. A
higher value of FSL indicates a greater impact of fire sales on the financial system, resulting in larger
losses.

3.4.2 Regular financial networks

We consider a regular network, where all institutions are of the same type and have the same degree
d, and investigate the impact of network connectivity and fire sales on the size of default cascades
and the resulting losses in the financial system during a crisis. Specifically, we compare two scenarios
with high and low network connectivity. One prominent finding in the financial network literature is
that, for regular homogeneous financial networks, when shocks are small, higher connectivity leads to
a lower risk of contagion. This has been demonstrated, for example, in [1] through a comparison of
ring and complete network structures. Our findings align with this notion, as we observe that the risk
of contagion in the two financial networks with high and low connectivity is very similar. However, we
also examine the impact of fire sales losses in these two networks and find that the resulting losses are
nearly identical, regardless of the network connectivity. This highlights the significance of considering
not only the risk of contagion but also the potential losses associated with fire sales in assessing the
overall stability and resilience of the financial system.

For a d-regular financial network, the limiting function of the white outgoing defaulted half-edges
process can be simplified as follows:

d
fw(zip) = d(z = > a(6;p)B(d, z,d — 6 + 1) — q(o0; p)).
=1

Thus, in this case, the expression for z*(p) is given by:

d
2*(p) :=sup{z € [0, 1] Z B(d,z,d— 6+ 1) + q(oo;p) }.

Similarly, the limiting function of the total liquidation process can be simplified as

d

= 2 Bld0) + 5 (1= 2)a(mp).

{=d—6+1

d
fr(z:p) = vq(0;p) + %Z

Recall that from Theorem 3.11, the equilibrium price of the illiquid asset after shock e is denoted
as p = p(e) and is given by (3.13). The limiting fire sales loss can then be expressed as

FSL(c) = po;f(e).

The final fraction of defaulted institutions under fire sales is determined by

d
fo(z*(p = Zq B(d,z,d— 0+ 1) — q(c0; D).
=1
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Furthermore, the final fraction of defaults without fire sales (with the initial price pg = 2) is
d
f(2*(2);2) =1= > a(0:2)8(d; z,d — 0+ 1) — q(o0;2).
0=1

In the financial network with low connectivity, we set the degree d;, = 2 and use the capital vector
h =[50 100 250 300]. For the network with high connectivity, we set the degree dy = 12 and,
for comparison purposes, use the same capital vector as the low connectivity network. To ensure the
same total expected interbank liabilities, we introduce a dependency between the interbank liabilities
and the degree. Specifically, the expectation of liabilities is assumed to be proportional to 1/d. For
the low connectivity network, we set x,,, = 160 and « = 2. Correspondingly, for the high connectivity
network, we set x,, = 26.7 and o = 2.

Figure 3.1a dispays the final fraction of defaulted institutions for the two regular financial net-
works with low and high connectivity, considering three price impact functions: linear (LPI) g%, fully
quadratic (QPT) gg, and exponential (EPI) g¥. As expected, we observe that the EPI function leads
to the largest fraction of defaults among the three price impact functions for both low and high con-
nectivity networks. On the other hand, the QPI function results in the smallest default cascade size.
This behavior arises because, for the same amount of sold shares, the EPI function always yields the
lowest price, while the QPI function produces the highest price. Furthermore, we note the presence of
a critical shock value (dependent on the connectivity and price impact function) where all institutions
default. Interestingly, in the low connectivity network, the default cascade size increases smoothly as
the shock magnitude increases. In contrast, the high connectivity network exhibits a sharper phase
transition at the critical point. Additionally, when the shock is smaller than the critical value, the
fraction of defaults increases slowly and remains lower than that in the low connectivity network.
However, once the shock surpasses the critical value, the fraction of defaults jumps to a higher level
than in the low connectivity network. This phenomenon aligns with existing literature on homoge-
neous financial networks, such as [1], which suggests that high connectivity networks are more resilient
to small shocks but become more susceptible to large shocks due to their greater interconnections.

Figure 3.1b showcases the fire sales loss for the two regular networks with low and high connectivity,
considering the three price impact functions. Since the fraction of defaults corresponds to the amount
of liquidations, the curves in Figure 3.1b exhibit similar trends to those in Figure 3.1a. We observe
that the EPI function consistently results in the largest fire sales loss, while the QPI function leads to
the smallest fire sales loss. Interestingly, we also notice that the fire sales losses in the two networks
with different connectivity levels are very close to each other. In fact, for small shocks (less than
0.15), the high connectivity network may even generate higher fire sales losses compared to the low
connectivity network, which contrasts with the observations in Figure 3.1a. This occurs because
in a higher connectivity network, institutions with high thresholds can still remain solvent while
liquidating a significant portion (around 80-90%) of their total illiquid assets. On the other hand, in
a lower connectivity network, the amount of liquidations among solvent institutions is much lower.
As the shock increases but remains below the critical value, the fire sales loss in the low connectivity
network may surpass that in the high connectivity network, regardless of the price impact function
employed.
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Figure 3.1: Final fraction of defaulted institutions and fire sales loss for two regular financial networks with
dr, = 2 and dy = 12, under three different price impact functions LPI, QPI and EPI.

3.4.3 Core-Periphery financial networks

Financial networks often exhibit significant asymmetries, such as the presence of a core-periphery
structure. This structural characteristic has a notable impact on the size of default cascades. In
such networks, large core institutions may be more resilient to small shocks compared to peripheral
institutions. However, when core institutions experience a large shock, their default can trigger a
substantial increase in the size of the default cascade. In our analysis, we do not impose a specific
inter-structure for the core and peripheral banks but assume a random uniform connection between
them. We consider two distinct classes of institutions, denoted as X = {C, P}, representing the core
institutions and peripheral institutions, respectively.

In our analysis, we assume a fraction of core and peripheral institutions, with uc = 0.3 representing
the core institutions and pup = 0.7 representing the peripheral institutions. For the core institutions,
we set the degree do = 12 with illiquid asset holdings vo = 160. For the peripheral type institutions,
we set the degree dp = 2 with vp = 60. Correspondingly, the capital structure vector for core
institutions is set to he = [160 320 800 960], and for peripheral institutions, it is set to hp =
[60 120 300 360]. As a result, the average degree of the financial network is given by A = 0.3 x
124+ 0.7 x 2 =5.

In our numerical experiments, we compare the core-periphery network described above to a 5-
regular financial network with the same average degree. For the 5-regular network, we set the capital
structure of all institutions to be the same as the average capital structure of the core-periphery
network, denoted as h. Thus, the capital structure for each institution in the 5-regular network is set
toh =[90 180 450 540]. To model the interbank liabilities in both networks, we assume that
they are i.i.d. with a Pareto distribution, as in Example 3.4, with the scale and the shape parameters
Ty = 65 and a = 2, respectively.
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Let go and ¢p denote the probability threshold distributions for the core type and periphery type
institutions, respectively. In this case, the limiting function fyr simplifies to

12
fw(z;p) =52 = 3.6(D qo(6;p)B(12, 2,12 — 6 + 1) + go(o0; p))
=1
2
- 1-4(2 ap(0;p)B3(2,2,2 — 0 + 1) + qp(0;p)),
=1

and the limiting function for the total liquidations simplifies to

12 48 12 24
fr(zp) =484c(0:p) + 3, —2ac(®:p)(0— 3, B(12.20) + (1 —2)ac(%ip)
=1 p (=12—0+1 p
242 2 21
+42¢p(0;p) + )| 5P (0:p) 6- > B220)+ =1 2)gc(w;p)
=1 p f=2—0+1 p

Let pep = Pep(€) given by (3.13) be the limit for the price of illiquid asset in equilibrium after shock
€, as stated in Theorem 3.11. Then the limiting fire sales loss can be written as

FSL(e) = = Perl®) _ppcp(e)
0

Y

and the final fraction of defaulted institutions under fire sales is given by

12

fD(Z*(ﬁcp);ﬁcp) =1- 0-3(2 QC(G;ﬁCp)B(12a 2,12 — 0 + 1) + QC(OOQﬁcp»
=1
2

0=1

In Figure 3.2a, we plot the final fraction of defaulted institutions for the core-periphery network
and compare it with the average regular network, in the cases without fire sales and with fire sales,
considering the linear (LPI) and exponential (EPI) price impact functions. We observe that the fire
sales make both networks more vulnerable. Without fire sales, the core-periphery network has a
critical shock value around 0.16 (beyond which all institutions default), while for the regular network,
the critical shock value is around 0.21. With fire sales, both financial networks have a smaller critical
value for the shock. As expected, the EPI function gives a smaller critical value compared to the
LPI function for both networks. Additionally, we note that the fire sales reduce the gap between the
two critical shock values (for the core-periphery and regular networks). Without fire sales, the gap
is about 0.05, but with fire sales (under both LPI and EPI functions), the gap is reduced to around
0.01. This can be interpreted by the fact that under fire sales, institutions have smaller thresholds 6
to default, since g, (0;p) (stochastically) decreases with price p.

In Figure 3.2b, we plot the fire sales loss for the core-periphery network and compare it with the
average regular network under different price impact functions (LPI, QPI, and EPI). We observe that
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Figure 3.2: Final fraction of defaulted institutions and fire sales loss for core-periphery (C-P) and (average)
regular financial networks, under three different price impact functions LPI, QPI and EPI.

under each price impact function, the regular and core-periphery networks perform very similarly when
the shock is small (less than 0.15). However, when the shock is larger, the core-periphery network
has less fire sales loss than the regular network. This occurs because a large portion of periphery
institutions in the core-periphery network liquidate less than the average level. Additionally, the
regular network has a larger critical shock value (beyond which all institutions default) compared to
the core-periphery network. The smaller critical value for the core-periphery network is influenced by
the core institutions, as their high degree makes them more likely to trigger a larger default cascade.

3.4.4 Scale-Free financial networks

Many empirically observed interbank networks have much more heterogeneity than the core-periphery
financial network studied in the previous section. In order to study the effect of heterogeneity in net-
work structure on the final size of default cascade and fire sales loss, we compare the following networks:
Regular network (without heterogeneity), Erdos-Rényi random network (with low heterogeneity where
the majority of institutions have a degree close to the average degree), and the Scale-free network (with
high heterogeneity). To facilitate a meaningful comparison, we ensure that these networks have the
same average degree \.

For the Erdos-Rényi network, denoted by ER(n;p,), each pair of nodes (a potential directed link)
is independently connected with a fixed probability p,, such that np, — A as n — oo. In this network,
the degree distribution converges to a Poisson distribution with parameter A\. That is, if we denote
the in-degree or out-degree of a randomly chosen institution by D, then the probability mass function
of D is given by

)\k
_ A
(D =k) = ¢
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On the other hand, for the scale-free network, the degree distribution follows a power law distribution,
given by
P(D =k) ~ck™",

where ¢ > 0 is a normalizing constant and 1 > 1 is a control parameter.

We set the parameters A = 5 and n = 1.2. To reduce the complexity of the simulation, we
assume that the degrees are upper-bounded by dax = 23. These parameter choices result in both the
scale-free and Erdés-Rényi networks having an average degree very close to 5. We will compare these
networks to a regular network with a degree of 5.

We also introduce heterogeneity in the interbank liabilities for all these networks. Specifically,
we consider i.i.d. Pareto-distributed liabilities, as in Example 3.4, with scale and shape parameters
Tm = 55 and a = 2. Furthermore, we allow institutions with different degrees to have different capital
structures, where the capital is proportional to the degree of each institution. For institutions with a
degree of 1, we set the capital vector h; as

h; =[50 100 250 300].
For degrees d = 2,...,23, we set the capital vector hy as
h; = [10d + 40 20d + 80 50d + 200 60d + 240].

In the case of the regular network, where all institutions have a degree of 5, the capital structure for
each institution is given by hs = [90 180 450 540], as in the previous section.
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Figure 3.3: Fire sales loss and final faction of defaults for regular, Erdés-Rényi (ER) and scale-free networks.

In Figure 3.3a, we compare the fire sales loss for the regular, Erdos-Rényi (ER) , and scale-free
networks under the quadratic price impact (QPI) and exponential price impact (EPI) functions. We
observe that for the EPI function, when the shock is small (less than 0.17, which is the critical shock

116



Chapter 3. Fire Sales and Default Cascades 3.4. Numerical Experiments

value for the scale-free network), the heterogeneity does not have a significant influence on the fire
sales loss. However, for the QPI function, when the shock is small, the fire sales loss in the scale-free
network is larger than the fire sales loss in the other two networks. For a small shock (less than 0.1),
the fire sales loss is only about 0.2% for both the ER and regular networks. This difference occurs
because choosing an e-fraction of initially defaulted institutions at random among all institutions can
lead to a small fraction of initial defaults for high-degree institutions, which in turn can result in a
considerable fraction of defaults among low-degree institutions, leading to more fire sales loss. This
effect is particularly significant under the slow-dropping price impact function.

Moreover, as we can observe in Figure 3.3a, a network with higher heterogeneity has a smaller
critical value for the shock (beyond which a large fraction of institutions default). When the shock
is larger than the critical value for the regular network (around 0.2 under EPI and 0.24 under QPI),
the regular network has the largest fire sales loss, while the scale-free network has the smallest loss.
This is reasonable because in the scale-free network, there is a larger proportion of institutions with
low degrees (such as 1 and 2), which have a higher chance of surviving for a large value of shock. This
makes the scale-free network more resilient to a large shock compared to the other two networks.

Figure 3.3b displays the final fraction of defaulted institutions for the regular, Erdos-Rényi (ER),
and scale-free networks, for the case without fire sales and with the linear price impact (LPI) fire sales.
We can observe similar results as in Figure 3.2a. When the shock is small, the fire sales do not have
a significant impact on the resilience of the networks. However, the fire sales significantly reduce the
critical values for shocks in all three networks. The critical values become closer to each other, with the
regular, ER, and scale-free networks having critical values around 0.11 under the linear price impact
function. Among the three networks, the scale-free network has the smallest critical value for the
shock, followed by the ER network, while the regular network has the largest critical value. Moreover,
the resistance to a large shock increases with heterogeneity, especially under the fire sales impact.
The scale-free network has the smallest fraction of defaults for a shock larger than 0.1. Therefore, as
observed from Figure 3.2a and Figure 3.3b, networks with higher heterogeneity tend to have smaller
critical values for shocks, beyond which a large fraction of institutions default, both with and without
fire sales. On the other hand, for small shocks, the most heterogeneous network could be the least
resilient.

3.4.5 Asymptotic normality and confidence intervals

To demonstrate the practical relevance of central limit theorems, we analyze the asymptotic variance
for the final fraction of defaults and fire sales loss. Additionally, we utilize central limit theorems to
derive confidence intervals for financial networks of finite size.

It is worth noting that the scale-free network discussed in Section 3.4.4, which exhibits infinite
variance in the degree distribution, does not satisfy Assumption 3.5b. As a result, we focus our analysis
on a regular network and a core-periphery network, both having an average degree of 5 as shown in
Figure 3.2. All parameters remain the same as in Section 3.4.3, and we specifically consider the linear
price impact function. For each institution x € X and threshold § = 1,...,d;, we set the variance of

each liquidation cig(p) equal to the mean of each liquidation, that is, gig (p) = l%g(p) for all z € X,
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Figure 3.4: Asymptotic standard deviation for the final fraction of defaulted institutions and fire sales loss in
regular and core-periphery financial networks, under linear price impact function (LPT).

In Figure 3.4a, we present the asymptotic standard deviation (Sd) of the final fraction of defaulted
institutions under different shocks. The blue line represents the standard deviation for the core-
periphery network, while the red line corresponds to the standard deviation for the regular network.
Since our central limit theorems hold when z* # 0, we terminate the standard deviation plots at
the point where z*(e) = 0, which corresponds to the critical value of the shock where almost all
institutions default (¢ = 0.16 for the regular network and e = 0.27 for the core-periphery network).
We observe that for small shocks, the standard deviation increases with the shock, indicating that
a larger number of defaults leads to higher uncertainty in the final fraction of defaulted institutions.
Furthermore, for small shocks, the standard deviation of the fraction of defaults is larger for the
regular network compared to the core-periphery network. This can be attributed to the fact that for
small shocks, most of the defaults occur among periphery institutions with a degree of 2, resulting in
less variability compared to the regular network. Surprisingly, we observe a significant jump in the
standard deviation at around € ~ 0.14, followed by a decrease with further increases in the shock. This
critical value aligns with the point of discontinuity in the fixed point solution, where the fraction of
defaults jumps to a higher level (but still smaller than 1) for the core-periphery network. In contrast,
for the regular network, the fraction of defaults jumps to 1. This observation is consistent with the
findings in Figure 3.2a, which demonstrate the sharp phase transition in the core-periphery network
compared to the smoother increase in the regular network.

Figure 3.4a displays the asymptotic standard deviation (Sd) of final fraction of defaulted institu-
tions under different shocks. The blue line is the standard deviation for the core-periphery network
and the red line is the standard deviation for the regular network. Since our central limit theorems
hold when z* # 0, we stop the standard deviation plots at the point when z*(e) = 0, which corre-
sponds to the critical value for shock such that almost all institutions default (¢ = 0.16 and € = 0.27
for the regular and core-periphery networks, respectively). We observe that when the shock is small,
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the standard deviation for both networks are increasing with shock and more defaults cause larger
standard deviation. Moreover, for small shocks, the standard deviation of fraction of defaults for
regular network is larger than that of core-periphery network. This can be justified by the fact that,
for small shocks, most defaults are periphery institutions, with small degree 2, which make less un-
certainty compare to the regular network. Surprisingly, the standard deviation exhibits a significant
jump at around € ~ 0.14 and then starts to decrease with increasing shock. As Figure 3.2a shows, this
critical value corresponds to the point where a discontinuity occurs at the fixed point solution, and
the fraction of defaults jumps to a higher level; in the core-periphery network, the fraction of defaults
does not reach 1 at this critical point, unlike the regular network where the fraction of defaults jumps
to 1.

In Figure 3.4b, we plot the asymptotic standard deviation of fire sales loss under different shocks.
As expected, the shapes of the curves exhibit similarities to those for the standard deviation of the
fraction of defaults. However, the standard deviation of fire sales loss for the core-periphery financial
network displays a downward discontinuity jump. This can be explained by considering the standard
deviation of the total amount of liquidations, which is influenced by both the standard deviation and
the mean number of liquidations. It is important to note that the fraction of defaults provides only
partial information on the number of liquidations, as some institutions may remain solvent despite
having already liquidated a portion of their holdings. After the discontinuity jump in the fraction of
defaults, the standard deviation of the number of liquidations decreases and may exhibit a downward
discontinuity jump as well, as most institutions have already liquidated all their holdings.
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Figure 3.5: 95% confidence intervals for the final fraction of defaulted institutions in regular and core-periphery
financial networks. The blue solid line is the limit; the green dash lines are the upper and lower bounds in the
case of network size n = 200; the red dash lines are the bounds for network size n = 1000.

Our central limit theorems can be used to provide confidence intervals for the final fraction of
defaults and fire sales loss in finite networks. In Figure 3.5, we plot the 95% confidence interval for the
final fraction of defaults for both regular and core-periphery financial networks under different shocks.
In both networks, when the shock is smaller than the critical value, the confidence intervals are quite
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small. Even for a small network size of n = 200, the maximum distance from the upper or lower
bounds to the limit value (the blue solid line) is approximately 0.05. As the network size increases

to n = 1000, the confidence intervals remain uniformly small for both regular and core-periphery
financial networks.

Figure 3.6 displays the 95% confidence interval for the fire sales loss in both regular and core-
periphery networks under different shocks. In the core-periphery network, the confidence intervals are
concentrated closely around the limits. As shown in Figure 3.6a and Figure 3.6b, even for a small
network size of n = 200, the upper and lower bounds are very close to the limits across the entire

shock range. When n = 1000, the upper and lower bounds almost coincide with the limits for both
regular and core-periphery networks.
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Figure 3.6: 95% confidence intervals for the fire sales loss in regular and core-periphery financial networks.
The blue solid line is the limit, the green dash lines are the bounds for network size n = 200, and the red dash
lines are the bounds for network size n = 1000.

To study the convergence of our central limit theorems numerically, we consider networks with
finite size n and simulate the final fraction of defaulted institutions using the Monte Carlo method.
For simplicity, we fix the price at p = 2 and simulate only regular networks. In order to observe the
convergence of the distribution of the final fraction of defaults to a Gaussian distribution as n becomes
large, we run 3000 simulations of the default cascade in different regular networks with a degree of
d = 5 chosen uniformly at random from all 5-regular networks. We count the number of institutions
that default at the end of each simulation and produce histograms based on these counts. Figure 3.7
displays the histograms obtained for two different network sizes, n = 500 and n = 2500. As we can
see, when n = 2500, the distribution already closely resembles a Gaussian distribution.
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Figure 3.7: Histograms for the final number of defaulted institutions in 5-regular financial networks with size
n = 500 and n = 2500, using 3000 times Monte-Carlo simulations.

3.5 Proofs

This section includes the proofs of all theorems from the previous sections. The work is a generalization
of Chapter 2 with significantly more involved computations. In Chapter 2, we investigate specific limit
theorems connected to the final state of the pure default cascade death process from Section 3.2.2,
without taking into account the price p of the illiquid asset. Here, we use these results and adapt them
to fit our framework that includes price p, without repeating the proofs. Importantly, for each fixed
P € [Pmin, Po], these results still apply. The challenge arises as the liquidations are type and threshold-
dependent i.i.d. random variables. This makes the total liquidation turn into a compound (random)
sum of random variables. These random sums are governed by counting stochastic processes that
exhibit Gaussian fluctuations in the limit. Under these conditions, proving the central limit theorems
for the total liquidation of the network becomes more complicated. After obtaining the limit results
for the liquidation, the price given by the inverse demand function can be found using the Delta
method. Lastly, for the equilibrium price - as a solution of an equation - the limit theorems are set
under stronger assumptions, demanding a more complex technical proof. Compared to Chapter 2, we
face more variation and handle more difficult convergence problems. We start the proofs by providing
some auxiliary lemmas used in the proof of the central limit theorems.

3.5.1 Auxiliary lemmas

Under certain regularity conditions, we first provide a central limit theorem for functions that can

be expressed as Y, (t) := leff(m Gi, where X, (t) is a non-decreasing stochastic process satisfying
Xn(t) = O(n) for all t > 0 and {Gi}i>1 are i.i.d. positive bounded random variables with mean ¢g and
variance o2.
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Lemma 3.20. Using the notation above and for fized t > 0, if X,,(t) := fn(t)n+Vn? with (f,,(t))>

n=1
a positive sequence converging to f(t), and V a bounded real-valued random variable, then as n — oo,

conditioned on {V = x} for some x on supp(V), we have
(Yn(t) —9Xn(t)

vnf(t)o

Proof. Conditioned on the event {V = x}, X,,(t) = fu(t)n + zn'/? which is non-random. Hence, by
standard central limit theorem (CLT), we have

Vo) —glXa®)] ., N\ a
<\/[nfn(t) + xnl/QJgW - x) — N(0,1).

Further, we have the decomposition

Ya(t) = gXn(t) _ VInful) +an'2]  Va(t) —glXa(®)]  glXn(t)] — gXn(t)

nf(t)o nf(t) ] N |nfalt) + znl2)o nf(t)o
_ n(t) — g[Xn(t)] —1/2
— 4/ 1/2) X /
1+ 0(n=12) () £ 220 +O(n="%).
It follows thus by Slutsky’s theorem that as n — oo,

<Yn(t) — gXn(t)

vnf(t)o

|V =m> ~4, N(0,1).

V= x) ~4, N(0,1).

Using the above lemma, we prove the following proposition.

Proposition 3.21. For fized t > 0, let X,,(t) := fu(t)n + V,n'/? with {fn(t)}f:l a positive sequence
converging to f(t) and V, a sequence of random wvariables which converges to a Gaussian random

variable V ~ N(0,v?) in distribution. Then we have, as n — o0,
Ya(t) — ngfn(t)

d
\/n(f(t)UQ + 02g?) — N(0,1).
Proof. Set | |
. L @ ; ex —L . M "
A(z;p) = J_oo 21/ f(t)or p{ 207 2f(t)0? }d _ (3.18)

Let a := v?¢g? + f(t)o%. Then by a change of variable y = va —92__  we obtain

ro IO onal®)
1

55 (f(t)o*u? + 220% — 2gzun? + U2g2u2)} du

%\/JI‘TWL@ exp{_2f(t)a

_ 1 @ B 1 o v2gz f(t)o?v?2? "
B 2w/ f(t)or foo P { 2f(t)o?v? (Va S )} a

00]

A(zp) =

ro f(t) ei%dy _ 1 o ;i

1 P
- 277«/f(t)0re - foo Va 2ma

122



Chapter 3. Fire Sales and Default Cascades 3.5. Proofs

We consider the function

L (g
) = g P~ 7T )

which is continuous and bounded. Since V,, - V, we have (as n — )
Ap(z;p) := E[h;(Vn)] — E[h.(V)] = A(2;p).
We denote Y. (; .
\n
and let Z(t) be a random variable with distribution Z(t) ~ N(0,02f(t)). Let u, be the probability
measure of V,, and p be that of V. Set

@, (B) = B(Z(t) - gr € B),

and
Gy, (B|z) :=P(Z,(t) € B|V,, = x).

Then for any Borel set B < R, we have
P(Z(t) € B) = P(Z,(0) € B)| =| [ @(B)dn(z) ~ | G, (Blo)dpa o)

<e+| j G (Bl (x) - f[ ey BB

+U B)dpin(z k%wmmm

where we take K large enough such that SR\ _KK] ldpn(z) < €, uniformly on n.
We have
| en@@dn@ - | eBdu@)] -0
[-K,K] [-K,K]

Indeed, since any Borel set is a continuity set of Gaussian distribution, for every x € supp(V,)
[-K,K]|, Gy, (B|r) — ®;(B) by Lemma 3.20. The result follows by the dominant convergence
theorem. Moreover, we have

| j B)dun (x fR &, (B)du(a)| < jB E[h.(Va)] - E[h.(V)]|dz
<[ 1Autaip) - AGip)ldz — o
R

Where the first inequality follows by Fubini’s theorem and the second by Scheffé’s lemma since
g An(z;p)dz = (3 A(z;p)dz = 1 and A, (z;p) — A(z;p) for every z € R.

Since we can choose € arbitrarly, we finally get for any borel set B € R,
P(Z,(t) e B) — J A(z;p)dz.
B

Since A(z;p) is the density of N (0,a) and all Borel sets are continuity set of N'(0,a), it follows that
Zn(t) AN (0,a), which is equivalent to the statement of proposition. O
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3.5.2 Proof of Theorem 3.7

By Lemma 3.6 forall z€ X, 0 =1,...,d},£=0,...,0 —1 and p € [po, Pmin], as n — 0,

Rty )

(n)
S t;
SUP‘W’Zn(p) — taa(0;p)b (dF, 1 — 7", 0)| 5 0,

t<tn
and,
Sn(t;p _ D, (t;p _
up\M — fs(e7hp)| 0, Sulo\L — fo(e™hp)| 0.
t<Tn n t<Tn n

Consider the death process as described in Chapter 2. We denote by U, (. 9) s(t;p) the number of

institutions with type z € X, threshold 6 and s alive incoming half-edges at time ¢, and by N :((:ne)( ) the
number of institutions with type x and threshold 8, under price p. Note that the number of institutions
with type x is (not random) n,uc(cn). By construction of the death process model, each incoming hal-edge
has an exponentially distributed with parameter one, i.e., exp(1), lifetime independently from others.
Using the Glivenko-Cantelli theorem, in Lemma 2.10 in Chapter 2 we show the following convergence
results of Uit;),e(m p), for all possible triple (x,6,¢) and the summation of them. To make the proof

clear, we state it again and adapt to the price dependent case.

*(p) be a stopping time such that T, — to for some to > 0. Under
Assumption 3.5a, for allz e X,0 =1,...,d} and £ =0,...,0 —1, we have (asn — )

Lemma 3.22. Let 7, < 77

(n)
U t;
sup!M — 12qe(60;)b (di €_t7€)‘ 5 0.
t<Tp n
Further,
sup Z dif +d; Z Z | 98 (t;p)/n — papqs(6; p)b(d;ﬂe*t,sﬂ 25 0.
tSTn ey 0=1s=d} —6+1

Consider now {Lg)g(p)};il which are i.i.d. positive bounded random variables with expectation
Z%g(p) and variance gie(p) under price p € [pmin,po] for the illiquid asset, for all z € X and 0 €
{1,...,d}} U {o0}. Since all the random losses are assumed to be bounded, we denote by C the
common upper bound. From Section 3.2.4, the total shares of illiquid asset sold by time ¢t can be
written as

dy
La(tip) = ) (D50(0) + Y, Y5 (tp), +Y (8 ),
zeX =1
where
179 p) I p)
v = Y L%, Y = Y L)

=1
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AR
and,
6—1 di
1) (t;p) = 0DV (85 p) + DSV (tip),  ISih(tsp) = Y. €SS (t:p).
=1 =1

By Assumption 3.3 and the dominated convergence theorem, the first term in I';,(¢; p) converges to

Z ’_YzDg(:o)(p) RN Z :Yz,uquc(o;p)'
zeX zeX

Note that by definition Sing)g(t;p) = U(n)d+_é(t;p), which implies that

x,0,d;.
dF dF
3 gmgw P =2 Dl Yy (A —s)UL)(Ep),
reX 0=1 reX 0=1 s=df —6+1
and,
i
> Z%GD -y 2%9 (Vg ) = 25 Ugu(tp).
zeX 6=1 zeX =1 s=df —6+1
So for 6 = 1,...,d;, we have
dF dt
zghﬂaw EE%MN 22 > (s—di +0U ().
TzeX =1 zeX =1 zeX =1 s=df —0+1
Notice now that
i di
D Blfets) = Y (s—di +0)b(df e s).
s=df —6+1 s=df —0+1

From the definition f; ¢(2;p) := s (0;p) (0 — Zﬁﬁiaﬂ B(df, z,0)), it follows that

di
|f Y Z Y9 (tp) = 3 Y Leofasle ™)

meXG 1 zeX 0=1
dt
<[> df Z Lo Y (US),Ep)/n = 1aau(0;p)b(d; e, 5)]
reX 0=1 s=df —0+1
s
*‘2 Z YJEZ tp m@l(e tp ’+‘2 206909]\[ /n_ZZQZx,GNmQ$(0;p)’
zeX 0=1 zeX 0=1 zeX 0=1
d
<C’Z (df +d;) Z Z | :B@s (t;p)/n — ppqs(6; p)b(d;,e_t,s)|
zeX =1ls=df—0+1
d+
7}22 xHI(Htp ‘+C|Zd+ZN:£n€( )/n_,ume(gp))‘
zeX 6=1 reX =1
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The first term of the r.h.s. of the above inequality converges to 0 as n — o0, by Lemma 3.22. For the

second term, note that for all n,x € X and ¢t < 7,, 29 1( .0 (t p) — L, 91( (,)(t p)) is a martingale.
Combining this with the independency between any two different classes in X using Cauchy-Schwarz
inequality and Doob’s L2-inequality, we have that for some constant Cy, as n — 0,

wwEZ%%p Lol (t:p 24%22@ <Ay

t<T" reX 0=1 zeX 0—1 reX

where the second inequality above follows from Zg£1 IXLG) (t;ip)/n < M;n)d;r for all t < 7,. The final
convergence holds by Assumption 3.5a. We next analyze the convergence result for the third term.
First notice that, by the law of large numbers and Assumption 3.3, N :Ene (p)/n 2> 12q0(0;p). Let Xf
be the set of all characteristic x € X such that df > K. Since by Assumption 3.5a, A € (0,00), for
arbitrary small € > 0, there exists K. such that ), _ Xr. pzd} < e. Then by dominated convergence
theorem, we obtain for n large enough,

Z d+ZNn) (p)/n > Z d+2uqu(9)< Z dfp, <e..

:EGXKs JBGXKE =1 J,’EXKE

It follows that

oy d+2 (N D) /n— metaO:p)) | < C Y d*Z]N p)/n — peqa(0;p)| + Ce = 0y(1) + Ce.
reX =1 reX\ Xk,

We conclude that

i
SuP| > Z YR t0) = D1 Lo fuole )| 2 0.
t< T reX 0=1 reX 0=1
It remains to prove the convergence for the third term (infinite sum) in I',(¢; p). First notice that
dy

Iziloo(t;p) = Z(d )Uz(noz) s(t;p)-
s=0

By using Lemma 3.22, for any type z € &', we have that

df
sup L0 (t:p)/n — > (d — 8)p1ado (005 p)b(d e, 5)] 2 0,
tSTn s=1
Moreover,
di
Z (d; - s)ﬂme(oo)b(d;:i_a e_ta S) = ,uqu(OO)(d; - Zdj[:_)
s=1

Then, by following a similar argument as above, one can show that

sup = 3 V(1) = ) Lo el )] L0,
TeX

t<Tn reX
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Putting all these convergence results together, we conclude that

Tn(t:
sup| n(tip)

t<Tn n

fre tp)| 250,

as desired. O

3.5.3 Proof of Theorem 3.9

Fix p € [pmin, po]. The theorem follows from Theorem 3.7 and Lemma 3.8. Indeed, for z*(p) = 0, by
Lemma 3.8, 7*(p) - 0. Note that z*(p) = 0 indicates that almost all institutions default during
the cascade. In this case, for all z € X', we have ¢,(0;p) = 0. Otherwise z*(p) can not be 0, since if

*

¢z (00;p) > 0 for some x € X, then fy/(0;p) < 0. So e™ ™ 5,0, and we have

D%
CES

Fo059) = 3 pe (T (050) + ) o o(p)02(65)).

zeX 0

1
It follows by the continuity of fr that

i

fr(e_T’:(p);p) = Z Mz ('_YxQz(O;}ﬁ + Z Zxﬁ(p>0qz(6§p)> + Op(l)'
zeX 0=1

We therefore have by Theorem 3.7 that

* dz
M _P, Z J <’7qu(0;]9) + Z Zx,@(p)eql"(e;p))'

n zeX =1

—T*

To prove the point (i7), again by Lemma 3.8, we have that 7" (p) == —In z*(p), so e @) L5 2*(p).
By a similar argument and applying Theorem 3.7, we conclude that

T'n(mh(p) == fr(z*(p); p).

3.5.4 Proof of Theorem 3.11

By Theorem 3.9 and Corollary 3.10, for all p € [pmin, Po],

ka(p) 2 g(fr(z*(p):p))-

Let us define
@, (p) :=p — g(Tn(ry;p)/n),
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so that for a fixed p; > p, we have

P (p1) = p1 — g(fr(z"(p1);p1)) — op(1).

From Definition (3.13) for p, it follows that, for n large enough, P(p; > p1) — 0.

Moreover, since p is a stable solution, when p = puyin, then by taking p; arbitrarily close to pmin,
we have that p&, 2> 5. When p € (0,1], there exists € > 0 such that p < g(fp(z*(p);p)) for all
p € (p —€,p). Similarly, for any p — € < py < p, we have @, (p2) < 0 with high probability, i.e., as
n — o, P(p), < p2) — 0. Then by taking p; and py arbitrarily close to p, we conclude that p}, 2, 5.

As seen above, when z*(p) = 0, then g, (c0; p) = 0. It follows that

9(fr(z"(p); ) —9(2 piz (Y22 (0; D) Zﬁxe )0q.:(6; p)))

zeX

Moreover, as shown by Lemma 3.25 in Section 3.5.9 below, the function ¢ is locally continuous at p.
It follows that p is the largest solution of the fixed point equation

d+
(Z Ha '736‘]90 0 p Z £m9 0(]96(9 p)))
reX
This completes the proof of Theorem 3.11. O

3.5.5 Discussion on Lemma 3.6 and Lemma 3.13

We will discuss here how to extend the theorems presented in Chapter 2 to account for the possibility
of an institution never defaulting, that is, an institution with an co threshold.

We only consider the proof of limit theorem for W,,(¢; p) (Equation (3.9) and (3.14) for i = W); the
proof of generalizations for S, (¢; p) and D, (t; p) are similar. We denote by L, (t;p) and H,, (¢;p) the
number of alive (not removed) outgoing half-edges at time ¢ and the number of healthy (coming from
solvent institutions) outgoing half-edges at time ¢ respectively. From the definition of white outgoing
half-edges process W, (¢;p), it is clear that W,,(¢;p) = L, (t;p) — H,, (t;p). Further,

XA Zv;’;d+ g (659) + NIL(p)).

zeX

We further denote by Wn(t;p) and fW the outgoing half-edges process and corresponding limiting
function as in Chapter 2. It is shown in Chapter 2 that

V[N/n(t?p) Z d 9d+ 9+1(t p)
zeX
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and,

f zp—)\z—z,uxd quﬁp oz dl —0+1).
zeX

We thus have

Walt;p) = Waltip) — DL dy NS and  fiv(23p) = fw(2:0) — Y. di Hata (0
xeX xeX

Further, as shown in Section 3.5.2,

ST N s Y A7 paga(0),

reX zeX

Together with Theorem 2.1 in Chapter 2, which gives

~

(tp)  ~
sup|7) — fw(e p)| 0,
<7
we obtain
W, (t; _
sup!M — fw(e %p)| 0,
t<Tn n

which shows how to generalize the limit result of W,,(¢;p) in Lemma 3.6.

We next show how to generalize the asymptotic normality of W, (¢;p), as in Lemma 3.13. We have

n~1/2 (Wn(t A Ty p) — n]ﬁp;)(t A Tn;p)) n~ 12 <W (t A Tu;p) — nf( )(t % Tnvp)>

— N dyn V(NS — (g (o).
reX

By Lemma 3.23 and following similar arguments as in the proof of Theorem 3.14, one can show
that the second term of the r.h.s. of the above formula is asymptotically Gaussian. The first term
is also asymptotically Gaussian as shown in Theorem 2.6 in Chapter 2. Moreover, they are jointly
asymptotically Gaussian. It remains to calculate the form of the variance function for oy (e™t;p) of
the limit white outgoing defaulted half-edges process. To do this, we write the limit process as

Zw ( ) ZLtp Zd 9d+ 9+1(tp)+y;;oo)
reX

where Z (t;p) is the limit process for n*1/2(Ln(t;p) — nA\Me=t). Moreover, as shown in Chapter 2,
Z1(t;p) is asymptotically Gaussian jointly with Z7 , . for all possible (z,0, s) and jointly with Yy , for
all (x,0). Further, the covariances w.r.t. Z, are also given in Chapter 2 by

or(y) == Var(Zr(—Iny)) = Ay — 4%)/2, (3.19)
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and

orsWip) = Cov(ZL<—1ny) 22y, (~Iny))
" j—1 e (i
N Z (s - 1) f — ) 0T g (vip).

Notice that Z, is independent of Yy, for all (z,6). Then combining with the covariances given in
Lemma 3.23, we conclude that

(3.20)

Z Z [ )25 10,0 (0:p) ma (0:p) (U3 ) — 2dy Uﬁ,o,wz(e;p) (y;p)] +or(y)

TeX 0=1
df  df
+ D)7 D1 D Gt pma(00)ma(0) Wi D)+ Y (dy ) c0,00(p) (3.21)
zeX 01=160>=1 xeX
dt
+2 37 3 (dy)2B(d Y, 7o (0:9)) 0,00 (P),
zeX 0=1

where 7, (0; p) := d}f —0+1, o1 (y) and Uﬁ,e,s(%p) are given by (3.19) and (3.20) respectively. Moreover,
V2.0,000 Oz,0,51,5(Y; ) and Oy 9, 6, 51,50 (¥; p) are defined in Lemma 3.23.

3.5.6 Proof of Theorem 3.14

Recall that Ua(;%), (t) denotes the number of institutions with type 2 € X, threshold # and s alive
incoming half-edges at time ¢. Further, we let Vx(;;?s(t) denote the number of institutions with type
x € X, threshold 6 and at least s alive incoming half-edges at time ¢, so that Vx(j;?s (1) = Doss Ug;)j(t).
We next define

Vi i) = n (VI (6 p) — mailal 0 )5 7)),

and
N (p) == n V2N (p) (p) — nplM g™ (6; ).

) )

(n)

We need the following result from Chapter 2, which shows the joint convergence of N ::1 g, and

v for all possible (z1,601) and (z2,02,s). We recall that in the chapter we allow the threshold

x2,02,8

to be § = o (see Section 3.5.5) and the results depend on p. But the lemma stays valid fo any fixed
pe [pminapO]-

Lemma 3.23. Let 7, < 7, be a stopping time such that T, 2, to for some tg > 0. Under Assump-
tion 3.5b and for any fixved p € [Pmin, o], we have that for all couple x € X and 6 € {1,...,d}} U {0},
jointly as n — o0,

N () -5 Y2 (0),
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where all V¥ o(p) are Gaussian random variables with mean 0 and covariance
bl

Cov(yacl 01 (p)a y:Q,GQ(p)) = ww1,91,92 (p)]l{xl = l’g},
with
Vr,00(p) = paqu(0;p)(1 — qu(05 D)),  ¥2.0,,0,(P) 1= —2qz(015P)qs(02;p)  for all 61 # O2.
Further, for all triple (z,0,s), jointly in D[0,00) and as n — o0,

d
V:,éz)(t A Tn?p) - :,67s(t A tO;p),

where all Z7 5 (t;p) are continuous Gaussian processes with mean 0 and covariances

COV( :1 01,51 (tp) 2:2,92,82 (tp)) 207 fOT’ all 1 7 x2,
COV( x,01,s1 (t p) ZIE 92,82 (t p)) :8$,91,92,81752 (€7t§p), fOT all 91 # 927
Cov (23 .6, (t0), 23,6, (t0)) =02,0.0,51,55(€"5P) + T 9,550 (€751),

with
—t

;p) = /B(d;":_v e_ta Sl)ﬂ(d;7 e_ta 52)¢1’,91792 (p)a

Oz,01,02,51,52 (e

O0z,0,s1,s2 — Ox,0,52,51 and

_ 1 2t & J—1 J—1 ! 2j—2s—k, —2;
O—IQSS-‘rk‘(y p Z s—1 _1 (U_y) v d@x,&,j(v;p)7

Pttt s+ k y

where g9, (y; ) 1= pae(0;p)B(dS Y, 7).

Moreover, the covariance between le,al,s(tSP) and Yy, 9, (D) is given by
COV( ;1,91,S(t;p)’ :z,@z(p)) ﬁ(d;}_p B 78)11}171,91792(1))]1{1’1 = $2}'

By using the above lemma, we first show the following result regarding the asymptotic normality
for I ¢(t; p), the total number of liquidations for institutions with type « € X and threshold 6 up to
time ¢ and under price p .

Lemma 3.24. Let 7, < 7, be a stopping time such that T, L5 1o for some tg > 0. Under Assump-
tion 3.5b and for any fized p € [Pmin, po], for all z € X, 0 € {1,...,d}} U {0}, we have the following
joint convergence in D [0,0) as n — o0,

_ d
n VIt A 1oy p) = nf (A Tasp)) —5> 21, , (E A to;p), (3.22)
where all Zy, ,(t;p) are Gaussian processes with mean 0 and covariances
Cov(Z1,, o, (D), Z1,, 0, (6:D)) = 02, 9, 0, (¢ "3 0) L1 = 22},

where the form of 0£791792 (y;p) is given by (3.28)-(3.31).
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For the sake of readability, we postpone the proof of lemma to the end of this section.
We next consider the total liquidations, given by

15 (t:p) 1) ()
YJSZ t;p) Z ;739 and Yx Z ;

where {Lg;i,)e (p)};.il are i.i.d. positive bounded random variables with expectation Zx,g (p) and variance
gge(p) for p € [pmin,po],x € X and 0 € {1,...,d}} U {o0}.

Note that conditioned on 1™, and I,  the processes Y(1 )91 (t;p) and y ™) (t; p) are independent

1 6’1 x2, (X 2, 02
for (z1,61) # (z2,62). In partlcular from Lemma 3.24, for x1 # xo we have that

cov(y(") (t:p), Y70 (t;p)) = 0.

1,01 x2,02
Consider now the decomposition

Y t5p) — £ (tp) = (V5 (65 9) — Los0) 10 (6:0)) + (Loo ()13 (85 p) — U9 (t:),
which implies that

Cov (Vo) (6:0), Vi) (6:9)) = Lo, (p) s (D) Cov (1175, (:9), 117, ().
and the same holds for their limit processes.

We now proceed to the proof of Theorem 3.14. The proof is based on a central limit theorem for
processes which can be written as Y, (t) := ng(t” G;, where X, (t) is a non-decreasing stochastic
process satisfying X, (t) = O(n) for all ¢ > 0 and {Gi}z‘>1 are i.i.d. positive bounded random variables.
This is provided in Section 3.5.1.

Notice that the processes I a(:ng) (

t ATrp) for all x € X, p € [pmin,po] and 6 € {1,...,d}} U {0}
satisfy the conditions for X,,(¢) in Proposition 3.21. Indeed, f;f@) (t;p) — ]?9079(15; p) uniformly on [0, 00).
Combining with the continuity of ﬁg(lﬁ;p), it follows that fgg (t A Tip) = ‘]:;79(25 A tp), as n — .
Using the Skorokhod coupling theorem [156, Theorem 3.30], we can assume that 7, — tg a.s. in a new
common probability space. It follows that a.s. fg%) (t A Toyp) — ﬁ?,g(t A tp). Thus, by Lemma 3.24,
we have that for each w outside a probability null set, for all z € X and 6 € {1,...,d}} u {0}, the
process I](,‘tla) (t A Tp; p) satisfies the conditions for X,,(¢) in Proposition 3.21, with f,(¢t) = fgg (tATh(w))
for different w, but common f(t) = ]/c;’g(t Ato) and V = Z,9(t A tp). This leads to the same limit
distribution up to a probability null set.

Let
AV (tp) = n V2 (Y (6 p) — nloafY) (D).

By Proposition 3.21, we have that for all z € X', 0 € {1,...,d}} U {00} and a fixed t > 0, as n — 0,
the following convergence holds

d
Agfe)(t A Tnsp) — Z0(t A to; D),
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where Z, 9(t; p) is Gaussian with mean 0 and variance

W 0(t;p) := ,}?a;,e(t;p)%g,e(ﬁ) + 02 5(p)at g ole ™ p). (3.23)

From the above arguments, the covariances between two different classes 1 # a2 are 0 and for 61 # 0o,
we have

Cov(Zs,0,(t:0)s 20,0, (t:P)) = L0, (P) 0,0, (P) 2 9, 9, (€73 ).
We next consider the convergence of the following infinite sum

ZZA (t A T D).

zeX 0=1

Recall that X" denotes the collection of all classes z € X’ with the in-degree d > s. Recall also

that all random variables L; )9( ) are assumed to be bounded. Then there exists some constant C' such

that L(;)e(p) < C, for all z € X,p € [pmin, o), 0 € {1,...,d}} U {0} and i € N. Thus we have for any
fixed T" > 0,

Blsup| 3, ) A)eip)]] < CElsup] 37 Y0 V21 (65) — nf e

+ E[sup| Z Z nil/Q(Yx(;) (t;p) — Zxﬁ[g(c%) t:p)|]- (3.24)

We first show that the first term of the r.h.s. inequality converges to 0 as s — oo for n large enough.
Indeed, results in Chapter 2 implies that when n is large enough, for any T > 0, as { — o,

sup‘ Z Z 2 Vxés)(t/\Tn;p)HHO.

t<T
zeX;t 0=1 s=df —0+1

Moreover, as shown in the proof of Lemma 3.24,
dF dF
Z anl/z tp)—nxg t;p)) Z ZNxe Z Z Z Vés)(tATn,p),
zeX; 0=1 zex 0=1 zeX 0=1s=df —0+1
and by Cauchy-Schwarz inequality,
E[ 2, Z NIl < 3 a (o)1 =gl (0),
meX"’ 6=1 mEX"'

which goes to 0 as ¢ — oo uniformly in n. We conclude that the first term of the r.h.s. of (3.24)
converges to 0. For the second term first note that each term of the sum inside the expectation is
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a martingale. Then, by Doob inequality, we can control its L?-norm by 4C2 )’ pext d;f u;n). Hence,

using Assumption 3.5b, the L2-bound converges to 0 as s — oo for n large enough, and the second
term converges to 0 as desired. We can then take the limit under the infinite sum, by using e.g., [64,
Theorem 4.2]. It follows that

dif
D Z AVt A Tip) —5 DTN Za(t A o).

zeX 0=1 zeX 0=1

For the second and third term of n=V/2(I',,(t A 7,;p) — nﬁn) (t A Tn;p)), by using similar arguments
as above, we obtain

STV (Y (tp) — oo fib(t A D))~ Y Zoao(t A t),
reX xeX

and,

2 %N;(on) e Z Y2z 0-

reX reX

Hence we have

r(t A to) Z ZZxQ t Aty + z:zgc,oo(t/\t(])+ Z%y:,m

reX 6=1 reX zeX

which is a centered Gaussian random variable with mean 0. By Lemma 3.23, Lemma 3.24 and above
arguments, the variance is given by

i dy dy
U(tip) = 3 (2D, oo (P)lawn(P)0h gn(e750) = 292 ) Lao(P)bnoo(p) Y, Bldfe,9))

zeX  0=1 6=1 s=d} —0+1
I
+ Z Z 1‘91 9392(])) m01,02 P 22’%8 xoo 1/)56000 Z/B
TeX 91,92 1 zeX

ds ~
+ 20D Fea(t:0)s25() + Vo oot 9) + Vatbw00(p))

zeX 0=1

dz
+2 (D 0la g (0)Vtbw0.0(P) + i a0 (P) V2t 00(D))

reX 6=1
(3.25)

where 1, g, g, is defined in Lemma 3.23, ai 0,

9, 18 given by (3.28)-(3.31) and W, ¢ is defined by (3.23).

We are left to prove Lemma 3.24.
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Proof of Lemma 3.24. Recall that V( ) denotes the number of institutions with type «, threshold 6
and with at least s incoming half—edges at time t. We have

dy

1 (tp) =ONIY () — > (s—df + ULy (t:p)
s=df —6+1

dy
=N )~ D V% (t:p).

s=df —6+1
It follows that
7
n V) (A s p) = nfUg (A ) = ONES = ST VIt A i), (3.26)
s=df —6+1
and,
n_l/z(la(foo(t A Tn;P) — nﬁg%(t ATh)) = d+N*(n 2 i 0 2 ( t A Tni D). (3.27)

By Lemma 3.23, we have the joint convergence of N_ *(n 0) and V, ™ for all possible (x1,671) and

2,02,8
(22,62, s). We therefore have for 6§ € {1,...,d}},

d
Zr,(6p) =0V — DL ZEg (tip),

s=df —6+1

and for the threshold 0 = o
Z]x,oo(t;p) = d;y;:k, Z :(;95

By using the covariance formulas in Lemma 3.23 and some basic calculations, we obtain the
following formulas for the covariance 0£791702 (e % p).

o For0; =0,=0¢{1,...,d}}:

i
U:i,@,@(y;p) :921/133,9,0(17) + Z (81,9,9,81,52 (y;p) + 51,9,31,52 (y;P))
81,82:(1;—794*1
di
- 297%6,9,9 (p) 2 B(d;7 Y, S):

s=df —0+1

(3.28)
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e For 64,0, € {1,...,d$} and 01 # 6s:
di df
U£,91,92 (y;p) =01025,0,,0,(P) + Z Z 02.01,02,1,52 (Y3 D)
s1=d} —01+1 so=d} —62+1
dt di
- 01¢$,91,92 (p) Z ,B(d;_, Y, 5) - 92¢$,01,92 (p) Z B(d;—a Y, S):
s=d;—92+1 s=d;—91+1
(3.29)
e For 6 = 6y = c0:
dif
Ui,oo,oo(y;p) :(d;)wa,O0,00(p) + Z (395,9,9,51,32 (y;p) + &x,e,sl,SQ (y;p)>
sl (3.30)
i
- 2d;¢x,00700(p) Z /B(div Y, 5)7
s=1
e Forfy =wand 6, =0€{l,...,d}}:
dr dF
0k o) =AF 0ncoo(®) + D, D) Guoobs,s(¥ip)
s1=1 go=dF —0+1
i " (3.31)
- d:wac,ooﬁ(p) Z B(d:7 Y, 8) - 91%,00,9(29) Z ﬁ(d;—a Y, 5)7
s=df —0+1 s=1
where the forms of Gy g, 05.51.50> Oz,0.51,50 a0d Vg9, g, for all 61,02 € {1,...,d}} U 0 are provided in
Lemma 3.23. This completes the proof of Lemma 3.24. O

3.5.7 Proof of Theorem 3.16

Consider z*(p) € (0,1] and 2*(p) is a stable solution, i.e., a(p) := fii (z*(p); p) > 0.

First note that the variance W(t;p) of Zr(¢;p) is continuous in ¢. Indeed, from the explicit forms
of G305, .5, and T5.0, 05.5,,5, in Lemma 3.23, we have the following inequalities,

|0m791,92,81,82‘ < P

and,

1,2

~ Yy

0'3:,9,51,52| < Z J ﬁdgpmﬁ,j(v;p) < 2d;3rﬂxQz(0;p)7
Jj=0"Y
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for all (x, 61,02, s1,s2). Thus, we obtain that for all z € X, 61,602 € {1,...,d}} U {0},

1
O-x,elﬁz < 4(d;)3#’x

By the definition of W(t;p) as in (3.23), we have that for some constant C, the infinite tail sum of the
first term in W in (3.25) satisfies that

d+
DO Wap(tip) + Vao(tp) + Votbe00(0) <C ) (df) e
m€X+ 0=1 $€X+

which goes to 0 as £ — o0 by Assumption 3.5b. One can show by a similar argument that the other
sum terms in W have the same tail convergence property. Since each single term is continuous in ¢,
again we can pass the continuity in the infinite sum. Moreover, since Zp(t;p) is a centered Gaussian
random variable, its distribution is determined by ¥(¢;p). Thus for a sequence {t,}, which converges
to t, we have that as n — oo,

Zr(ta;p) —5 Zr(t:p). (3.32)

Then we can use the Skorokhod representation theorem, which shows that one can change the prob-
ability space where all the random variables are well defined and all the convergence results of Theo-
rem 3.14, Lemma 3.13, Lemma 3.8 (77 — ¢*) and (3.32) hold almost surely. Taking ¢t = 7,y and ¢y = t*,
we obtain by Lemma 3.13 and by continuity of Zy that

W(rsp) = nfSP (72 p) + 02 Zw (15 A %5 p) + o(n'?)
— nf (725 p) + 022y (£ p) + o(nV/2).

Since W, (7,}; p) = —1, then
J?(n)( Thp) = n—l/ZZW(t*;p) +o(n_1/2).

Since, as n — o0, 7, — t* and t; — t* hold a.s., there exists some &, in the interval between ¢},
and 7, such that &, — t*. Further, as n — o0,

() (€nsp) — Fiy (%:0) = —=* (p)(p)-

It follows then by Mean-Value theorem that

F) (zasp) = (s p) — T (tsp) = (FS2) (&) (7 — £1) = (2" (p)a(p) + (1)) (75, — £1).
Hence we have
P R R () TS S R
n = tn ( 2*(p)a(p) +o(l )) (Ta;p) = Z*(p)oz(p)(ZW(t ;p) +o(1)). (3.33)

Moreover, it follows by Theorem 3.14 that

n_1/21—‘n(7-7:;p) 1/2 A(n)( n,p) + ZF(T AN t ,p) + 0(1)
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Since, as n — o, T A t* — t* a.s., we obtain that a.s. Zp(t,) — Zp(t;p). It then follows that, for
some &/, — t* as n — o, that

nTV20(hip) = nV2 R (rhp) + Zr(tip) + o(1)
= 02 F (mhp) + 0 R (€ p) (7 — 1) + Ze(t5p) + o(1).

By plugging (3.33) into the above formula and doing some simplification, it follows that

! *
* n * z ; * *
nil/QFn(Tn;p) = nl/zflg )(zn;p) — fr(a p)ZW(t ip) + Zr(t;p) + o(1).

This completes the proof of Theorem 3.16. O

3.5.8 Proof of Theorem 3.18

Consider z*(p) € (0,1] and 2*(p) is a stable solution, i.e., a(p) := f},(z*(p);p) > 0. We have by

Theorem 3.16 that I',,(7,;; p) is asymptotic normal
* n * d * — * *
P (Cu(misp)/n = 7 zip) = Ze(tp) - al)” " p) 2w (). (3.34)

Since for any fixed p € [pPmin, Po], fé{})(z; p) converges to fy(z;p) uniformly on [0, 1], we have that

*
n

zr(p) — z*(p) as n — o in probability. Moreover, by continuity of fr and flgn) for all n and the

uniformly convergence of flgn)(‘; p) to fr(-;p) for any fixed p, we can conclude that

1 Gip) = fo(z*p)
in probability for any p € [pmin, Po]-

Since the inverse demand function g is in C' by Assumption 3.1, we have
g (7 (znip) 2> ' (fr(z:p)).
By the mean-value theorem, there exists some &, between I'y,(7,;p)/n and flgn) (zx;p) such that
9(Tu(7:p)/m) = g (1" (22:p)) = 9 (€) (Culp)/m = F (z1:p)). (3.35)
Note that T, (77; p)/n =~ fr(z*;p), thus we also have
9 (&) == g (fr(z";p)).
Multiplying both side of (3.35) by n'/? gives
n!2(W(Tu (i p)/m) = gL (22 p))) = 029 (&) (Calsp)/m = A7 (235 0)).
By the asymptotic normality in (3.34) and Slutsky’s theorem we obtain

02k (p) — g(FE (22 0))) =5 o (fr (2% 0) (Zr(t55p) — o~ R (=" p) 2w (55 D).

This completes the proof of Theorem 3.18. U
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3.5.9 Proof of Theorem 3.19

We first state a lemma which is used in the proof of Theorem 3.19. Let us define

$(p) :=p—go fr(z*(p);p) and  Gu(p) == p —go [ (zh(p);p)-

Lemma 3.25. Under Assumption 3.3 and Assumption 3.4, the following holds:

(a) For any fixed p € (pmin, Do), if 2*(p) = 0 or z*(p) € (0,1) and a(p) > 0, then there exists some
small § > 0 and N large enough, such that z*(-) and all z},(-) for n > N are continuous in the
interval (p — 0,p + 9);

(b) For p € {pmin,Po}, with the same conditions as in (a), the continuities hold but on a semi-interval
[Pmin; Pmin + 6) for p = pmin and (po — 6, po] for p = po.

(c) If p is a stable fized point solution, then under the same conditions as in (a), we have that, for
N large enough, p and all {p,,n > N} are continuity points of ¢ and ¢, respectively. Moreover,
asn — o, p, — P.

For the sake of readability, we postpone the proof of lemma to the end of this section and proceed
with the proof of Theorem 3.19.

Consider now z*(p) € (0, 1] is a stable solution of fi (z;p) = 0, i.e., a(p) := fi,(2*;p) > 0, and p
is a stable solution of Equation (3.13).

By Lemma 3.25, we know that, for n large enough, p, exists and converges to p as n — 0.
Moreover, by Theorem 3.18, we have that as n — oo,

©,(p) — n(p) —L> Zv(p).

Zy(p) is a centered Gaussian random variable, and its distribution is determined uniquely by its
variance. By the analysis in the proof of Theorem 3.16, the variance function of Zr(¢; p) is continuous
in p. By similar arguments, the variance function of Zyy is also continuous in p. Then by Cauchy-
Schwarz inequality, we can control the covariance between Zr and Zy by their variances. Thus the
variance function of Zy (p) is continuous in p. We therefore have that

Zv(pn) -% Zv(p), (3.36)

for any sequence {py}, which converges to p as n — oo.

The Skorokhod representation theorem shows that one can change the probability space where all
the random variables are well defined and, all the convergence results of Theorem 3.18, the convergence
in probability p} — p and (3.36) hold a.s.. Then we can write

O, (p)) = du(py) + 122y (p}) + o(n™H?)

3.37
= dn(py) + 1~V 2y () + o(n~V/?), (337
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where the second equality follows from 2y (p)) — 2v(p) a.s.. From ®,(p},) = 0, we have

Gn(pl) = —n Y22y (p) + o(n~V?). (3.38)

Moreover, as n — o0, we have a.s. p;, — p and p, — p. Combining the continuity of flgn) and

the local continuity of z*(-), we have that both flgn) (zx(pr);pr) and fén) (zr(Pn); Pn) converge a.s. to
fr(z*(p),p). Thus, by the Mean-Value theorem, there exists some sequence {{,,} with &, — fr(z*(p); D)

a.s. in the interval between flgn) (zx(pr);pr) and fén)(z;(ﬁn);ﬁn) such that
g(F G n)ipn) — 9 (L (G Bn); n)) = & ) F GaR)iph) — F (2 Bn); Bn)). (3.39)

We next analyze ‘)"I(ﬂn)(z:Z (pr);pr) — fI(fL) (22 (Pn); Pn). By the Mean-Value theorem and Lemma 3.25,
there exists a sequence {7} and {¢P} with {7 — 2*(p) a.s and £& — p a.s. such that

P n)08) — L (o (Ba)s D) = S (€55 08) (2 (02) — 2 (D)) + 2™ (25 (5n); €8) (0 — D) (3.40)

It remains to analyze z)(p}) — z:(pn). Notice that, by definition, f&})(z,’;(p);p) = 0 for any
P € [Pmin, Po]- By using again the Mean-Value theorem, we have the following relations

AP CrBa)iph) = F5P Grn);ph) — £ G Ba)iph) = fi™ (0l p5) (5 (0%) — 25(Bn)),
and,
FP D) ph) = L2 Ba)it) — 1 (2 (B n) = F™ (25 (Pn); a2 (0 — ),

where o — 2*(p) a.s. and of — p a.s. as n — . Then by above two equations we have
* [k * [ = 2 * [ — * _
2 (h) = 2 (Bn) =~ (@i p) ™ A" (20 (Bn): o) 0 — o). (3.41)

Now combining (3.39), (3.40) and (3.41) and using Remark 3.15, we obtain

an(p:z) = ¢Tb(pn) (13 )
= pr, — Do — (¢'(fr(z"(D); B) + o) [(fr (" (B); D) + o(1))
(= (" (0);p) " fiv (2" (0);p) + o(1)) + (FR(Z"(D); ) + o(1))](pr, — Pn)
= (p+0(1))(py, — Dn)-

Using (3.38), we conclude
1 1
P =D = (=4 01))on(p) = —n"V2ZZy (D) + o(n"V/?).
(5 +o0) utr) ~20(5) + on )

This completes the proof of Theorem 3.19. O

We are only left to prove Lemma 3.25.

140



Chapter 3. Fire Sales and Default Cascades 3.5. Proofs
AR

Proof of Lemma 3.25. From the definition of the threshold distribution, qg(cn) (0; p) are (stochastically)
non-decreasing on p for every (x,0) and every n. Thus, for an increasing sequence p,, converging to
some P € [Pmin, Po], we can show that for any fixed z € [0, 1], the sequence {fw (z;pn)}n is monotone

and converges to fy(z;p). In addition, fi(z;p) and fl(/;)(z; p) are continuous in z for all n. It
therefore follows by Dini’s theorem that { fy(-; pn)}rn converges uniformly to fy(z;p) on [0,1]. Hence
the largest root z*(p,) must also converge to z*(p). The same argument for a decreasing sequence
pr gives the same uniform convergence. Thus {fw (-;pn)}n converges uniformly to fy (-;p) for any
sequence converging to p.

If z*(p) = 0 or z*(p) € (0,1) and a(p) > 0, then for some € < ¢ small enough, we have fiy(z*(p) +
e;p) > 0 and fir(2*(p) — €;p) < 0. Then for n large enough, it follows that fy (2*(p) + €pn) > 0
and fiy (z*(p) — €;pn) < 0. We therefore have z*(p,,) € (2*(p) — €, 2*(p) + €), and € can be arbitrarily
small, thus z*(p,) — z*(p) as p, — p. If z*(p) = 0, we have for some € > 0 that fi(z;p) > 0 for
all z > e. By the uniform convergence of p, to p, for n large enough, we also have fy (z;p,) > 0 for
z = e. Thus z*(py) € [0,€). Taking e arbitrarily small, we conclude that z*(p,) — 2*(p) as p, — p.
This continuity holds on a small interval (p — d,p + §) for some 0 small enough. A similar argument
gives the same conclusion for the point (b).

It is also clear that for any fixed p, f&})(z;p) converges to fyy(z;p) point wisely on z. Since for
any z € [0, 1],

da
AP (zp) < AW + 3 ué")d;[Z " (6 p) + qi”)(OO;p)}
zeX =1

by Assumption 3.4 and applying dominated convergence theorem, we have further that fIE(,L)(z;p)
converges to fiyy(z;p) uniformly on z in [0,1]. The same argument applied to fIE") gives the uniform

convergence of fé") to fr on z. By the uniform convergence of fé;}) to fy, it is obvious that we can
choose € < ¢ such that the local continuity of z*(-) and of all z;(-) hold on (p — €,p + €) for n large
enough. This completes the proof of point (a) and (b).

We next proceed with the proof of point (c) of the lemma. We first prove the local continuity of
¢ on an interval where we assume that z*(-) is continuous in p. Recall that X" is the collection of all
classes x € X with the in-degree d > s. Since all Zm’g(p) and g,(0;p) are continuous in p, we have
that for any fixed s € Z*, the partial sum

dt
0 2 leo)fro(zhip)

zeX\Xx; 0=1

is continuous in p. On the other hand, we have f; o(2*;p) < d; 112G (0;p). Let C be a common upper
bound for all £, 5. We thus have that

di
DDl fan(zhip) <C ) df

zeXxt 0=1 zeXt

which goes to zero as s — o0 by Assumption 3.4. Hence fr(z*;p) is continuous in p and combining
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with the continuity of the inverse demand function g, it follows that ¢(p) is continuous in p. The same
argument for ¢, lead to the continuity of ¢, on p, given the continuity of z}(-).

We next consider the case when p € (pmin,po) and there exists some small ¢ > 0 such that
d(p+¢€) >0 and ¢(p—€) <0. Notice that ¢, converges uniformly to ¢ since flgn)(z;;(p); p) converges
uniformly to fr(z*(p);p) on [Pmin,po]. So we have that for n large enough, ¢,(p +¢€¢) > 0 and
¢n(p —€) < 0. We can choose € < ¢ such that the local continuity of z*(-) and all z}(-) hold on
(p — €,p + €). By taking e arbitrarily small, we conclude that p, — p as n — o0. A similar argument
gives the conclusion for p = puyin. This completes the proof of Lemma 3.25. O

3.6 Extension to Multiple Illiquid Assets

In this section, we expand our model to accommodate a financial network setup featuring multiple
types of illiquid assets. We then state central limit theorems for a default cascade with fire sales within
this setup.

Model. We consider K different illiquid assets [K] := {1,2,...,K}. Every institution holds a
portfolio of illiquid assets v; = (vi1,...,%, x)7. We denote the average assets holdings by the vec-
tor ¥ = (Y1,...,79k)T. For the initial price vector pgp = (po1,--.,pox)’ of the illiquid assets and
given Pmin := (Pmin,1;- - - » Pmin, K)T < pg, we assume that there exists an exogenously given positive
continuous inverse demand function for the multiple illiquid assets

)T

g:=(91,---,9x)" : [0,9] = [Pmin, Pol,

with g : [0,7] = [Pmin,k, Po k], which satisfies Assumption 3.1, i.e.,

(i) g(0) = po (in absence of liquidations the price is given exogenously by pg).

(ii) For all k € [K],gr(x) € C! and it is a non-increasing function of x € [0,7,] (the price is non-
increasing with the average excess supply ).

(iii) g(¥) = Pmin > 0 (the price when the total illiquid asset holdings of the banks are sold is bounded
from below by pmin > 0).

Similarly, for a given shock scenario € = (e1,...,€¢,) € [0,1]" and a given price p € RE of the
illiquid asset, we say that the bank i is p-fundamentally insolvent if its capital, after the shock and
under price p of illiquid assets, is negative. We let the set of p-fundamental defaults

Do(e;p) = {i € [n] : ci(es;p) < O}

We next replace p by p for all definitions and assumptions of Section 4.2 and Section 3.3. In
particular, for a given price p, the default threshold distribution is now ¢,(0;p) for all x € X and
Oe{l,...,df} v {n}.
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For each asset k € [K], we let {Lii’)(;7k(p)}iail be ii.d. positive bounded random variables with

common distribution Fy g 1(.;p), which has expectation Zx797k(p) and variance g,ie,k(p) under price
P € [Pmin, po] for illiquid asset, for all x € X and 6 € {1,...,d}} U {o0}.

Similarly to Assumption 3.4, we assume that the mean ¢, g x(p) and variance gia (P) of sold shares
for each liquidation are both continuous in p (on each py), for all x € X and 6.

We recall that Lg)g +(P) denotes the units of k-th illiquid asset sold at i-th incoming default to

institutions with type x and threshold 6. Further, L:E:Z)OO +(P) denotes the units of k-th illiquid asset
sold at i-th incoming default to institutions with type x who never defaults.

For k € [K], the total sold shares of k-th illiquid asset at time ¢ is given by (for price p)

+
e (tp) = Y, (Fer DL () + ZY;’;k (tP), +Y,5 4(t:P) ). (3.42)
TeX 0=
where
1") () 1(”>( p)
M Z L and Y;wk Z Lmk (3.43)

The final shares of illiquid assets Wthh have been sold under price p Wlll be

T (72(p);p) = (T (77:(P); )y - -, T (m(p)ip))

where F,(cn) (17 (p); p) denotes the final sold shares of illiquid asset k£ under price p.

We next set the prices given by inverse demand function as
kn(p) := g(T" (7 (p); P)/n).
Similarly, we define the equilibrium prices of the illiquid assets as
p;, = sup{P € [Pmin; Po] : P < Kn(P)}, (3.44)

where we take the supremum according to the K-dimensional Euclidean distance from O.

Central Limit Theorems. We now discuss how the central limit theorem results from Section 3.3.2
can be extended to encompass multiple illiquid assets in the financial system. Following this, extending
the other limit theorems (the law of large numbers) should be straightforward.

For each asset k € [K] and z € [0, 1], we define

i
frr(zp) =) e (’_Yz,k%c(O; P) + . leok(P)fror(zp) + fx,oo,k(p)fm,oo,k(z;p)),
reX =1

dy
= 3 ) (ka0 0) + 3 Lk (B)FL (50) + Lo () £ (D) )

reX =1
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where
dt
feo(2P) == 1ata(050) (0 — D, B(dS,2,0), few(zp) = (1= 2)paqs(o0; p)dy ,
t=df —0+1

dt
F0p) = uaPO:p) (0 — Y B, 2, 0), () = (1 - 2)pM el (o0 p)dy.
l=df —6+1

We also set the vectors

fr(zp) = (fra(zp). ., frx(zp) and f7(zp) = (1 (=p) . A% (=)

Note that for any k € [K], the total sold shares for asset k, i.e., F,(gn), has the same shape as that of
I',, in the uni-asset case. Hence, it is not hard to generalize our limit theorem on I',, in Section 3.3.2
to the multi-type case under the same assumptions. In particular, the following two theorems hold
(under Assumption 3.5b for degree sequences), by systematically replacing p by p and considering
each asset separately.

Theorem 3.26. Let 7, < 7,(p) be a stopping time such that T, L5ty for some ty > 0. Then for

any fized k € [K]; p € [Pmin; Po] and t > 0, as n — o0,
nil/z(l“én) (t A Tn;p) — nflgnk) (t A To;P)) N Zr k(t A to; p), (3.45)
where Zr ;(t;p) is a Gaussian random variable with mean 0 and variance
Ui (t;p) := Var(Zrk(t; p)),
where the form of Ui (t;p) is given by (3.48).

We also have the following theorem for the asymptotic normality of the final total sold shares.

Theorem 3.27. Let t*(p) := —Inz*(p). For any fized p € [Pmin; Po], as n — o0, the final total sold
shares for asset k € [ K] satisfies:

(i) If z*(p) = 0 then asymptotically almost all institutions default after shock and (as n — o)

0y (75 p _ di
k(n’) — Z Ha ('Yx,kQJ:(OQ p) + Z gm,@,k(p)aqx(g; p))
zeX 0=1

(i) If z*(p) € (0,1] and 2*(p) is a stable solution, i.c., a(p) := fiy, (2*(p); p) > 0, then

n V2 () — ) (2 (0)i0) —5 Zrk(tt (D)D) — a(D) T k(" (0): ) Zw (¢ (D)),

where f%,k denotes the partial derivative of fr with respect to the first variate z.
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We next show a central limit theorem for the price &, (p) := g(T'™ (7*(p); p)/n). We denote the
vectors

Zr(tp) = (Zra(tp),. .., Zrx(t:p)’ and  fi(zp) = (F1(zD), -, fhx(zp)

Theorem 3.28. Let t*(p) := —In z*(p). For any p € [Pmin; Po] fized and as n — oo, the price k,(p)
given by the inverse demand function satisfies:

(i) If z*(p) = 0 then asymptotically almost all institutions default after shock and

kn(p) > g(T ()

where T'(p) := (Fl(p), el FK(p))T is given by setting, for all k € [K],

d+
f Z Iz ’yxkqx (0;p) + Eﬁxek )9(]a:<93P))~
reX =

(ii) If z*(p) € (0,1] and z*(p) is a stable solution, i.c., a(p) := fii(z*(p);p) > 0, then

02k (p)—g (6 (2" (P); P)) — Tg (fr (= (P): )| (¥ (B): P)—a(p) ™ £ (=" (P); P) 2w (+ (P): P) |,

where Jg is the Jacobian matriz of g.

Proof. The case z*(p) = 0 is a direct consequent of point (i) of Theorem 3.27, since for all k € [K],
gr is continuous. Consider now the case when z*(p) € (0,1] and z*(p) is a stable solution, i.e.,
a(p) = fi (2*(p); p) > 0. Since the liquidations are independent for different types of assets, we have

as a consequent of point (i7) of Theorem 3.16 that for all k € [K], F,g") (77; p) is asymptotically normal
and

nV2(C (s p) fn— F) (2 p)) 5 Z4(t7p) — @ (25 p) Zw (7 D). (3.46)

By a similar argument, we have that z;(p) — z*(p) in probability and, for all k € [K],

fI(‘TLk)( nap)_)fl—‘k( 713)7

as n — oo, for any fixed p € [Pmin, Po]. Further, since the inverse demand function g is C!, we have
for all k € [K], as n — o0,

ko f) (= p) 2 gho fra(2"ip).

Hence, using the Mean-Value theorem, we have for all k € [ K], there exists some By, ,, := (£ lilr)w cee ,(ffl))
converging to fr(z*;p) = (fr1(2*;p), ..., fr.x(2*;p)) such that
gk (0 (73:0)/n) = gk (F (235 P)) = Vou(Ern) - O (730 /n — £V (i) (347)

Multiply both side of (3.47) by n'/2, we obtain

n 2@ (72 p)/n) — gi( (255 p)) = 0PV gk(Br) - (TP (2 p)/n— £ (25 p)).
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Then by the asymptotic normality of point (i7) in theorem 3.27, we can generalize to our multidimen-

sional case. The random vector n'/?(T'(™)(p)/n — flgn)(z;;, p)) converges in distribution to a centered

Gaussian vector Z¢,q(p) := (Zérll)d(p), . ,Zg;) (p))?, where

2®)(p) := Zra(t;p) — a (25 p) Zw (£ p).

Using Slutsky’s theorem, we obtain for all k € [K], as n — o0,
w2k (B) = g (21, P))) 5 Var(f(2*:p)) - Zena(p).
O

We now state a central limit theorem for the equilibrium price after shock, defined by Equa-
tion (3.44). Define

P :=sup{p € [Pmin, Po] : P < g(fr(z*(p); P)},
and correspondingly for the network of size n, we set
By := sup{p € [Pmin, Po] : P < g (=*(p); P)},

We say that p is a stable fixed point solution if either p = puyin Or, p € (Pmin; Po] and there exists
some € > 0 such that p < g(fr(z*(p);p) for all p € (p — €; p).

Let Vf be the row vector of the gradient of f. For any function f(z;p) and k =1,..., K + 1, let
f¥(z;p) denote the partial derivative with respect to the k-th variate (z or py_1).

Theorem 3.29. As n — oo, the equilibrium price satisfies:
(i) If z*(p) = 0 and p is a stable solution, then the equilibrium price converges to p}, L, p and p

1s the largest solution of the fired point equation

p = g(T'(p)),

where T'(p) is the same vector as defined in Theorem 3.28.

(i7) If z*(p) € (0,1] is a stable solution of fw(z;p) =0, i.e., a(p) := fyy (2*(P);p) > 0, and p is a
stable fized point solution in (Pmin; Po), then

n~ Y2 (ph — bn) 5 —(Ikxix — A -B) ' Zy(p),

if the matriz I« — A - B is non-singular, where I« is the K x K identity matriz, A =
Je(fr(z*(p); p)) is the Jacobian matriz, B is also a K x K matriz with entry

Bjj i= —ft(z"(0):P)a(®) ' fiy (=" (B):B) + £ (=" () P)
for alli,j e [K], and Zv(p) := (Zv,1(P),- - ,Zv,K(f)))T with (for k € [K])
Zva(P) i= ~Vgr(Er(z* (B): P)) (Zr.a(t" () B) — a(B) ™ fh 4(=* (B): B) 2w (+(): P)

is a centered Gaussian random variable with mean 0.
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Proof. We first provide the variance function of Zr j(¢;p). Proceeding as in Section 3.5.6, one can
show that for all k € [K], Wx(¢; p) has the same structure as that in the uni-asset case. By replacing
the corresponding mean ¢, ¢, variance ggﬁ’k and 7, for each type k, we get the variance function

for Zr ,(t;p), ie

d+
\I}k(tvp)zz Z\mek ap)+\1’xook(7p)+'7:ck¢x00 Z Z O-melﬂg tap)

xeX 0=1 xeXel,GQ 1
di df i
+ 272D 0k gn(€p) 2 Wapo(P) Y, Bldf, e ) (3.48)
zeX 0=1 0=1 s=d} —0+1

di
+ D Yaoo(P) Y BldS e
s=1

reX

where for all § € {1,...,d}} u {00}

Vo0t P) = frolt; P)ﬁ,ak(l)) + @,971@(13)0;,9,9(6_'5; P)-

We now proceed with the proof of Theorem 3.29. The case z*(p) = 0 is a direct generalization of the
corresponding situation in Theorem 3.19 and can be proved by a similar argument, using Theorem 3.28.
Consider now the case when z*(p) € (0, 1] and 2*(p) is a stable solution, i.e., a(p) := fi,(2*(p); P) > 0.
First of all, Lemma 3.25 can be generalized to the multi-dimensional case and shows that p, — p.
Further, we also have that

d
Zv(pn) - Zy(p), (3.49)
for any sequence {py,}, converging to p as n — . Let us denote
3% (p) = pr — gu(T™) (22 p) /).

We use the Skorokhod representation theorem. All the convergence results of Theorem 3.28, p;, — p
and (3.49) hold a.s., by changing the probability space. Then we can write

) (p}) = 60 (B + 122y (p) + o(n~1?)
= ¢7(z (pn) +n 1/2ZV1€( ) + O( I/Z)a

where the second equality holds because we have a.s. Zyi(p;) — Zvi(p). Notice also that for all
ke K], o) (py) =0, and we have

o® (pr) = —n"V2Zy 1 (B) + o(n~V?). (3.51)

(3.50)

We proceed to approximate the difference between p}, and p,, by the Mean-Value theorem. The
arguments are similar to the uni-asset case; we thus just highlight the difference from the one asset
situation. We denote by o(1) the K-column vector of o(1). For all k € [K], we have

g (8 (25 (p2); 1) — gk (B (21 (Bn); Pa)

o 2 0 (3.52)
= (Vr(Er(=*(B): P) + (1) (1" (z1(P1): Ph) — £ (1 (Bu)i Bn))-
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Next we analyze flgn)(z;(pfl); p;) — f (n)( *(Pn); Pn). By the Mean-Value theorem, we have for all
ke [K],

£ a5 — 1 (z5(Bn); Br) =(fE(* () D) + 0(1) (z4(P%) — 21(Pn))

(3.53)
+ (V@ fi(z"(); B) + o(1)) - (P, — Pn)-

We next approximate z:(pr) — zx(Pn). Notice that f$)(z;(p);p) = 0 for any p € [Pmin, Po]-
Using again the Mean-Value theorem, we have the following two equations

P2 Gnn)i pn) = £ (2 (Ba)sph) = ™ (€2 03) (23(Ph) — 24(Bn),
and,
AP (o Bn)i ph) — £ (23 (Bn)i Br) = VO £ (2 (Bn). Gn) - (0 — Bn),
where £2 — 2*(p) a.s., ¢, — P a.s. and the notation V) is defined by setting
VOF(2;p) = (F2(2p), ..., F*(zp)),
Then by the above two equations we have
zn(Ph) = 25 (Bn) = —((fiv (2" (B); ) ™" + o) (VP fiw (z"(B); B) + o(1)) - (P}, — Bn)-  (3.54)

Now by (3.53) and (3.54), we have that for all k£ € [K],

£ 00)iph) — ) (2 (Ba)i Ba)
=—f,i< *<->--><fw<z ®):9) "'V fiw (z*(5); B) - (P}, — )
@ £, (2* (p); ) P, — Pu) +0(1) - (Ph — P)

= (Bk + 0( )" (P,
where By, is the k-th row vector of B. Hence by (3.52) and (3.55), for all k € [K], we can conclude
o (ph) = o (p}) — 61 (Bn)

= pr® — 5 — (g (8 (22 (p2); PL)) — (£ (2 (Bn); Bn)))
20— 58— (A B +0(1)")(p} — Pn)s

— pn
where Ay, is the k-th row vector of A. Combining with Equation (3.51), it follows that
$u(Py) = Ik xx = A-B = o(1xx))(P;, — Ba) = —n~(Zv(P) + o(1)).

We therefore obtain that

(3.55)

\—//\

Y

n'2(pl —bn) = —(Ixxx — A-B) ' Zy(p) + o(1),

provided that the matrix Ix«x — A - B is non-singular. O
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3.7 Concluding Remarks

We have proposed a stochastic framework for quantifying the impact of a macroeconomic shock on
the resilience of a banking network to fire sales and insolvency cascades. Our limit theorems provide
quantitative evidence for the importance of monitoring fire sales and controlling indirect contagion in
financial systems. We have quantified how price mediated contagion across institutions with common
asset holding can worsen cascades of insolvencies in a heterogeneous financial network, during a finan-
cial crisis. Under suitable assumptions on the degree and threshold distributions, we have shown that
the default cascade model can be transferred to a death process problem. This allows us to provide
the limit theorems for a dynamic default cascade process with fire sales. We have stated various
limit theorems regarding the total sold shares and the equilibrium price of illiquid assets in a stylized
fire sales model. In particular, the equilibrium prices of illiquid assets have asymptotically Gaussian
fluctuations. Additionally, we have established a link between the variance of these fluctuations and
the characteristics of the financial network, as well as the inverse demand function.

In our numerical experiments, we investigated the effect of heterogeneity in network structure and
price impact function on the final size of default cascade and fire sales loss. For a regular financial
network, we found that for a small shock, the high connectivity network is more resilient. However,
once the shock is large enough, the default propagates to a larger fraction of institutions due to its
higher connectivity. On the other hand, the fire sales loss in the two financial networks with high
and low connectivity are very close to each other. We also observed that financial networks with
higher heterogeneity may have a smaller critical value for the shock beyond which a large fraction of
institutions default, both with and without fire sales. However, for smaller shocks, the most heteroge-
neous network could be the least resilient. Additionally, we demonstrated the practical applicability of
our central limit theorems by utilizing them to construct confidence intervals for the final fraction of
defaults and fire sales loss in finite networks. These confidence intervals provide valuable insights into
the uncertainty associated with the outcomes in such networks, allowing for a more robust assessment
of systemic risk.

Our theoretical analysis provides valuable insights into financial stability and systemic risk. It
highlights the importance of ensuring that a financial network can withstand large cascades under stress
scenarios that put pressure on specific characteristics such as capital or liquidity reserves. To mitigate
the risk of phase transitions and systemic instability, regulators may consider imposing higher capital
requirements on financial institutions based on their classes. This would help prevent the occurrence
of large cascades and enhance the resilience of the overall financial system. Additionally, the limit
theorems we derived for heterogeneous financial networks offer interpretable and computationally
efficient tools for regulators to assess systemic risk. By collecting data on network characteristics
and utilizing these limit theorems, regulators can gain deeper insights into the potential risks and
vulnerabilities within the financial system. This can inform their decision-making process and enable
them to take appropriate measures to safeguard financial stability.

Several directions emerge from the current study.

e An important challenge for future research is to investigate the limitations and boundaries of
central limit theorems in capturing extreme events and tail risk in financial networks, considering
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the potential deviations from Gaussian fluctuations in such scenarios.

Another valuable area for future research lies in extending the central limit theorems to dy-
namic networks, where the network structure evolves over time, allowing for a more realistic
representation of contagion processes in evolving financial systems.

To provide a more comprehensive analysis of the interplay between market dynamics, financial
network structure, and the overall stability of the system, a challenging direction for future
research would be to endogenize the inverse demand function within the model.

Another interesting avenue for future work is to endogenize the financial network payments.
Currently, we have assumed exogenous interbank liabilities based on a specified distribution.
However, allowing for endogenous determination of interbank payments could provide a more
realistic representation of the complex dynamics within a financial network. This could involve
incorporating feedback mechanisms between the financial health of institutions, their interbank
exposures, and the resulting payment flows.

Furthermore, there are other related issues that warrant further investigation. For instance,
exploring the impact of regulatory policies and interventions on the resilience of financial net-
works and the occurrence of default cascades could provide valuable insights for policymakers.
Additionally, studying the implications of network formation and evolution over time, as well as
incorporating behavioral aspects and investor heterogeneity, can contribute to a more compre-
hensive understanding of systemic risk.

We leave these and related issues for future work.
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Chapter 4

Ruin probabilities for Risk Processes in
Stochastic Networks

This chapter is based on paper [5] in the publication list of Section 1.5.

Abstract. We study multidimensional Cramér-Lundberg risk processes where agents, located on
a large sparse network, receive losses from their neighbors. To reduce the dimensionality of the
problem, we introduce classification of agents according to an arbitrary countable set of types. The
ruin of any agent triggers losses for all of its neighbors. We consider the case where the loss arrival
process induced by the ensemble of ruined agents follows a Poisson process with general intensity
function that scales with the network size. When the size of the network goes to infinity, we provide
explicit ruin probabilities at the end of the loss propagation process for agents of any type. These
limiting probabilities depend, in addition to the agents’ types and the network structure, on the loss
distribution and the loss arrival process. For a more complex risk processes on open networks, when
in addition to the internal networked risk processes the agents receive losses from external users, we
provide bounds on ruin probabilities.

Keywords: Risk processes, Cramér-Lundberg model, Ruin probabilities, Stochastic networks.
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4.1 Introduction

The classical compound risk process with Poisson claim arrivals, or the Cramér-Lundberg model
([100, 171]) has been extensively used in quantitative risk management, see e.g., [103, 173]. In this
model, the aggregate capital of an insurer who starts with initial capital v, premium rate a and (loss)
claim sizes Ly is given by the following spectrally negative compound Poisson process

N
Ct)=y+at— ) Ly, (4.1)
k=1

where Ly, k € N, are i.i.d. non-negative random variable following a distribution F with mean L and
N(t) is a Poisson process with intensity 3 > 0 independent of Li. The ruin time for the insurer with
initial capital ~ is defined by

7(v) :=inf{t | C(t) < 0},

(with the convention that inf ¢J = c0) and the central question is to find the ruin probability

P(y) :=P(r(v) < 0).
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It is known (see e.g. [35, 115]) that whenever BL > «, we have ¢(y) = 1 for all v € R and whenever
BL < «, the ruin probability can be computed using the famous Pollaczek—Khinchine formula as

b(7) = (1 - %) i <iL>k (1 _ ﬁ*k(7)> ’ (4.2)

k=0

where

Py =1 | (1= P

0

and the operator (-)** denotes the k-fold convolution.

We consider a (stochastic) large sparse network setting that replaces the standalone jump process
in the classical model. In our model, losses of any firm do not occur via an exogenous Poisson process,
but due to the ruin of its neighboring nodes (agents).

While the classical Cramér-Lundberg model and its generalizations such as Sparre Andersen model
([31]) have been a pillar for collective risk theory for many decades, ruin problems beyond one dimen-
sion remain challenging. Even numerical approximations are only available for some distributions,
in low dimensions (see e.g., [39, 41]) and for some particular hierarchical structures. For example,
[38] consider a central branch with one subsidiary which do not admit exact solution due to their
complex dependent Sparre Andersen structure. The authors propose approximation techniques based
on replacing the underlying structure with spectrally negative Markov additive processes. In [56, 158]
the authors consider loss propagation in bipartite graphs. For exponential claims, the authors provide
Pollaczek—Khinchine formulas for the summative ruin probability of a group of agents. One should
note that this is not a model of agent interrelation, but a model in which insurers connect to ‘objects’
(external risks). As such, notions of losses that propagate from one ruined agent to another agent do
not gave a correspondence in that model.

Network based models have been used to advance risk assessment in financial systems. An initial
body of literature is concerned with economic questions such as the effects of network structure on
financial contagion [1, 24, 93, 124, 143] or with considering and integrating variations of the distress
propagation mechanism, see e.g., [58, 114, 132]. The question of control of financial contagion is
posed in [26, 27], where authors introduce a link revealing filtration and adaptive bailouts mitigate
the extent of contagion. Many of the initial models are static, in the sense that there is one snapshot
of the network and an initial wave of defaults leads to a second wave of defaults and so on. The state
of the network does not change over time. Rather, it is reassessed in rounds, in order to find a final
set of defaults. Dynamic contagion is considered for example in [81, 119], where nodes are endowed
with stochastic processes, usually jump-diffusions.

This chapter originates with the asymptotic analysis in [20]. Their results are purely static and
their focus is to provide a condition of resilience under which the contagion does not spread to a strictly
positive fraction of the agents. In Chapter 2, we provide steps for the asymptotic fraction of the ruined
agents when nodes may have special ruin dynamics without growth; Unlike [20], the analysis is not
based on the differential equation method. Instead, we generalize the law of large numbers for a model
of default cascades in the configuration model. This allows us to go beyond the static model, and
the approach could be used to provide central limit theorems. Our dynamic leads to a special case of
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loss intensity. All outgoing half-edges are assigned an exponential clock with parameter one, which
determines when losses are revealed. The loss reveal intensity function is then equal to the number of
remaining outgoing half-edges at time ¢. This model can be seen a variant of the notion of Parisian
ruin: indeed, an agent could have become ruined if the incoming loss from a ruined neighbor was
observed instantly. Instead, it is observed after an exponential time, during which the agents’ capital
increases. Therefore, it could well be that it withstands the loss at the time when it is revealed.

The closest literature to this chapter is [29]. They allow to linear growth at node level (proportional
to the number of the node’s links), while the loss reveal intensity is assumed to be constant equal to
the size of network. The key feature that allowed the asymptotic analysis was the fact that each link
carried a constant loss. This in turn, made their analysis simpler. Because losses can be arbitrary,
the risk process does not evolve according to a given grid as in the case of constant losses. When a
firm suffers a loss due to a neighbor failure it will moving to a lower level of value. Here, in presence
of general losses, all possible value levels are coupled.

The remaining open question, posed in [29], is to allow for losses that come from a general distri-
bution, as opposed to constant losses. In this chapter, we solve this open question, and in doing so
we bridge the risk literature on multi-dimensional risk processes with the financial network literature,
and use the asymptotic results of the latter to provide the approximations of the ruin probabilities.

Outline. In Section 4.2 we introduce the model of interconnected risk processes. The model is
driven by a classification of nodes according to types, whereas the interconnections occur according to
the configuration model. In Section 4.3 we state our main results, concerning the asymptotic fraction
of ruined nodes. Section 4.4 provides the proofs. In Section 4.5 we outline a complex risk process
driven by both exogenous individual external loss processes and an internal risk processes where losses
propagate in the network. Section 4.6 concludes and proposes several open questions.

Notations. Let {X,}neny be a sequence of real-valued random variables on a probability space
(Q,F,P). If c e R is a constant, we write X, 2, ¢ to denote that X, converges in probability to c.
Let {an}nen be a sequence of real numbers that tends to infinity as n — 0. We write X,, = o,(ay), if
| X | /an 2> 0. We say that an event holds w.h.p. (with high probability), if it holds with probability
tending to 1 as n — oo. For any function f defined on R* := [0, 0), ||f||z1 denotes the L! norm of f
on RT. For any event or set A, we denote by A¢ the complement of A. Bin(k,p) denotes a binomial
distribution corresponding to the number of successes of a sequence of k independent Bernoulli trials
each having probability of success p. We denote by 1{€} the indicator of an event &, his is 1 if £ holds
and 0 otherwise. Let R} denote the half line [0, 00). For a,b € R, we denote by a A b := min{a, b}.
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4.2 The Model
4.2.1 Networked risk processes
Consider a set of n agents (e.g., firms, insurers, re-insurers, business lines, ...) denoted by [n] :=
{1,2,...,n}. Agents hold contractual obligations with each other. In our networked risk processes

model, the interaction of the agents’ capital processes occurs through the network of obligations. Upon
the ruin of an agent, we consider that it will fail on their obligations and the neighboring agents will
suffer losses due to this non fulfillment. Let G,, be a directed graph on [n]. For two agents i,j € [n],
we write i« — j when there is a directed edge (link) from 4 to j in G,, modeling the fact that ¢ has
a contractual obligation to j. Similar to the classical model (4.1), each agent i is endowed with an
initial capital 7; > 0, while «;(t) is a continuous non-decreasing function describing the premium
accumulation for agent 3.

Here, we assume that the capital is affected by an initial exogenous proportional shock ¢; € [0, 1]
and 0; represents the total value of claims held by end-users on agent i (deposits). It is then possible
for an agent to fail after the exogenous shock if its initial capital is lower than the end-user claims,
ie., C;(0) := (1 —€) + @;(0) — §; < 0. The set of fundamentally ruined agents is thus

D(0) := {i € [n] : C;(0) < 0}.

Ruined agents affect their neighbors through the network of obligations. The ruin time for agent
i€ [n]is 7; := inf{t | C;(t) < 0} where we consider the following risk process for the capital of agent i
with network interactions G,,:

Cz(t) = ’)/1'(1 — 61') + ai(t) —0; — . Z Lji]l{Tj + Tﬂ < t}. (4.3)

j€[n]:g—i

Here we denote by T); the delay between firm j’s ruin and the time when a neighbor 7 processes its
losses from the unfulfilled obligations of j to i. At time 7; +T};, node j processes a loss Lj;. Similar to
the classical model, we assume that the incoming losses of each agent i € [n] are i.i.d. random variables
following some positive distribution F; (potentially depending on the agent ¢ characteristics). In order
to compare with the classical model, we will assume that T}; are i.i.d. exponentially distributed with
some parameter § > 0, i.e., Tj; ~ Exp(3) for all 4, j € [n].

Consequently, the set of ruined agents at time ¢ > 0 will be given by
D(t):={ie[n]:Ci(t) <0} ={ie[n]:n <t}

We assume that agent ¢ becomes inactive upon ruin, so that C;(t) = Ci(t A 73).

4.2.2 Node classification

We consider a classification of agents into a countable (finite or infinite) set of types X. We denote
by z; € X the type of agent i € [n].
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Let us denote by ,u;(rn) the fraction of agents in class x € X in the network G,. In order to study

the asymptotics, it is natural to assume there is a limiting distribution of types.

Assumption 4.1. We assume that for some probability distribution p over X and independent of n,
(n)

we have that pg ' — g, as n — o0, for all x € X.

Since the type space is countable, we can assume without loss of generality that all agents of same
type x (for all z € X') have the same number of outgoing links, denoted by d, and the same number
of incoming links, denoted by d.

To reduce the dimensionality of the networked risk processes problem, we further assume that all
parameters are type dependent. Namely, we assume that v; = v;, @;(.) = az(.) and §; = §, for all
agents 7 € [n] with z; = z. Note that the type space can be made sufficiently large (but countable) to
incorporate a wide variety of levels for these parameters.

In particular, shocks are assumed to be independent random variables with distribution function
(cdf) Fgﬁf) and density function fa(f) depending on the type of each agent. We then set

€ Yo + az(0) — g
(et eel0 by

which represents the (expected) fraction of initially ruined agents of type x € X.

qz,0 ‘= 11— Fx( ) (44)

The distribution of incoming losses for each agent are also assumed to be type dependent random
variables. For all agents of type x € X, the loss distribution function (cdf) is denoted by F, and the
probability density function (pdf) is f;. Thus we have F; = F, for any agent i € [n].

Remark 4.1 (From loss distribution to threshold distribution). The model, as introduced, can be
equivalent to a model of dynamic failure thresholds inferred from the loss distribution. These random
thresholds measure how many ruined neighbors can an agent withstand before being ruined due to the
incurred losses. For x € X, let €, be a random variable with distribution F;L(,e) and {L&’“’},ﬁ;l be a set
of i.i.d. positive continuous random variables with common cumulative distribution function (cdf) F.
The threshold distribution function at time t is defined as qz0(t) = qu.0,

o1 (t) = P(0 < 7 (1 — ) + au(t) — 0, < LEY),
and for all 0 = 2,
Gro(t) :=P(LY + -+ LEY < 7,(1 — &) + ap(t) — 8, < LV + - + L)

represents the probability at time t that an agent of type x is ruined after 0 neighboring ruins. Since
az(t) is a non-decreasing function of t, this threshold function will be (stochastically) non-decreasing.
Note that when a,(t) = 0 over each class x € X, the results in Chapter 2 could be applied by using the
above threshold distributions. Note that in these works, the threshold distributions are static, which
makes the model simpler to study. Here the distributions change over time because there is time-
dependent growth. The closest model is [29] which consider fixed losses and exponential inter-arrival
times with fized parameter. In this chapter, in order to study the general setup, we do not use these
threshold distributions - which are given here only for comparison. Instead, our analysis relies on a
sequence of random threshold times representing the times where thresholds hit subsequent levels.
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We consider the risk processes in random network G (d;,d;;) (the configuration model defined
in Chapter 2), satisfying the following regularity condition on the average degrees.

Assumption 4.2. We assume that, as n — o0, the first moment of degrees converges and is finite:

AW = 3 g = 3z SISy S g, € (0,00),
zeX zeX zeX

4.2.3 The loss reveal process

In order to study the risk processes in random network G (d:",d;), we construct the configuration
model simultaneously as we run the ruin propagation model. Starting from the set of initially ruined
agents, at each step, we only look at one interaction between a ruined agent and its counterparty in
the configuration model. Note that the set of ruined agents either stays the same or augments with
each such interaction. We first introduce some notations.

We denote by D™ (#) the set of ruined agents at time ¢ and set D™ (t) := [D(¢)|. Similarly,
SM(t) = [n]/D™(t) denotes the set of solvent agents at time ¢t and we set S (t) = [S(™)(¢)|. For
x € X, we denote by s{ (t) the set of all solvent agents in class x at time ¢ and set st (t) = \s&”) (t)].
Moreover, for z € X and 6 = 0,...,d], we denote by ngg (t) the set of all solvent agents in s{ (t)

s Y s

with exactly 6 ruined incoming neighbors at time ¢. Set S:(cng) (t) = \S;ne) (t)]. We define similarly the

n

sets D (t) and Dg’g (t) with corresponding sizes D (t) and wa (t). We call all outgoing half-edges
that belong to a ruined agent the ruinous half-edges.

We consider the following loss reveal process, extending the risk processes of Section 4.2.1.

In this process, losses coming from ruined agents are revealed one by one. At each loss reveal
we look at the interaction between an outgoing half-edge of a ruined agent (ruinous outgoing half-
edge) with an incoming half-edge of its counterparty. By virtue of the configuration model, this is
chosen uniformly at random among all remaining incoming half-edges. When the ruinous outgoing
half-edge is matched, the counterparty incurs a random loss, drawn from a distribution depending on
the characteristics class x € X of the counterparty. If this amount of loss is larger than the remaining
capital, this agent will become ruined and all its outgoing half-edges become ruinous. Note that the
loss reveal process stops when all ruinous outgoing half-edges have been matched. We use the notation
Wy (t) to denote the number of remaining (unrevealed) ruinous outgoing half-edges at time ¢. The
contagion thus stops at the first time when W, (t) = 0.

We consider a general loss reveal intensity process, denoted by R, (t), to describe the intensity of
loss reveal at time t. Namely, if a loss is revealed at time t; € R, then we wait an exponential time
with parameter R, (t1) for the next loss reveal. Note that R, (f) could depend on the state of risk
processes at time t. In particular, the networked risk processes of Section 4.2.1 in configuration model
would be equivalent to this loss reveal process by setting R, (t) = W, (t). Indeed, each counterparty
of a ruinous half-edge will be revealed after an exponential time with parameter 5. When there
are Wy (t) such unrevealed counterparties, the next reveal will be given by the minimum of these
exponential times.
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Our model allows for a general form of the loss reveal intensity R, (), provided that the following
condition holds. Let 7, denote the stopping time defined as the first time when the above loss reveal
process ends. This is the first time such that W, (7;;) = 0.

Assumption 4.3. We assume that the loss intensity function R, satisfies Ry (t) =0 fort > 77, and
Rn(t) = nR(t) + op(n) fort < 1 with R(t) continuous, positive and op(n) is uniform for t < 7.

By Theorem 4.5, this assumption holds for the risk processes of Section 4.2.1. In the next section
we state the limit theorems for the general loss reveal process satisfying Assumption 4.3 and then we
apply them to the particular risk processes of Section 4.2.1.

4.3 Main Theorems

4.3.1 Asymptotic analysis of the general loss reveal process

We consider the loss reveal process of Section 4.2.3 satisfying Assumption 4.3 on the random graph
G (d;t, d;,) which satisfies Assumptions 3.3-4.2. Let us denote by Z,,(t) a Cox process with intensity
R, (t) at time ¢. This represents the total number of ruinous outgoing half-edges revealed before time
t. Then Z, (o0) represents the total number of ruinous outgoing half-edges that will be revealed if the
reveal process continues forever. Since the total number of reveals is bounded from above by the total
number of links in the network, we need to stop the Cox process at Z* = T, (c0) A (nA(™), where for
a,be R, we denote by a A b := min{a, b}. We define

ty(N) :=inf{t > 0: fti)%(s)ds > AL
0

By convention, if |91 < A we set tp(\) := o0.

For z € [0, 1], denote by T,,(z) the time needed to reveal [nz] ruinous outgoing half-edges. The
following lemma gives the asymptotic results on Z,(t), Z and T),(z).

Lemma 4.2. Under Assumptions 4.1-4.2, and for any given loss intensity function R, satisfying
Assumption 4.3, we have as n — o0,

In t t/\tm()\) I*
sup‘ ®) —f %(s)d8| 2,0, and ;" LS9 1 A A (4.5)

t=0 N 0

Further, for all0 < a <b < |R[|p1 A A and as n — o0,

T, (b) — Tn(a) = taa(b) — tox(a). (4.6)

The proof of lemma is provided in Section 4.4.2.

For each x € X, we denote by L, := (L;(L«l), .. ,Léd; )) the sequence of independent random losses
+
with distribution F, and let £, = (&(51),6552), ces ,Egd“”)) be a realization of L,. For a given £, and a
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given initial shock €., define for all # = 0,1,...,d;}

0
Tu,0(€x, b)) = If{t = 0: 7, (1 =€) + g (t) — 6, = Z ég)}. (4.7)
i=1

The function 7 can be seen as the time threshold function of the loss £,. Indeed, for initial shock €
and upcoming sequence of losses £, the threshold function 7, i (e, £;) is the smallest time needed for
a firm of type x to have enough capital for absorbing these incoming k losses. Recall that a firm of
type = has a capital growth function a, and external debt d,. Note that 7, o(ez,£€5) > 0 denotes the
event that agent of type x initially becomes ruined under the shock e,.

Example 4.3. Consider the simple case where there is no recovery for agents, i.e. o, = 0 for all
x € X, and the amount of loss for each agent in the same class x € X is constant £,. Then by the
definition of 7,9, we have

. z(l—€z)—0g
_— 0 if < [rlgete),
9=\ o i 0> [elien)

This would be equivalent to type-dependent threshold contagion model which extends the bootstrap
percolation model. In bootstrap percolation model, the threshold is fized for all nodes, i.e. |vy/ly]| =6
for all x € X. We refer to [8, 10, /4] for results on bootstrap percolation in configuration model.

For a given positive density function R : Rj — R* with |R||;1 < o0, € X and § = 0,1,...,d},
we let the survival probability be (for all ¢t > 0)

Ply(t €2, £2) = P(rr0(e0, £2) = 0,U) > Toi(ens ), Uy > Tuplens £)), (4.8)

with the convention Pfo(t,ex,ﬂm) = P(730(€z,€;) = 0) for all x € X, where U(S)Bt, U(D;t, . U(ggit are
the order statistics of 6 i.i.d. random variables {UZm ’t}izl,m’g with distribution

PUM <y) = m, y <t (4.9)
0

Knowing that a loss arrives before time ¢, the probability that it arrives before time y is given
by (4.9). Then for a fixed sequence of given losses and initial shock, Equation 4.8 represents the
probability that the firm survives at time ¢, given that there are 6 by that time (It must then be that
the ordered losses arrived after the successive threshold times).

Remark 4.4. The joint probability density of the order statistics U(gist, U(D;jt, ceey U(Dgit s given by

+ 7]
fomt pme pma(u, ug, ... ug) = 0!([ R(s)ds)™? Hﬂ‘i(ul),
@ Yy Vi) 0 1

for all uy, ..., ug € [0,t].
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By integrating the conditional survival probability in Equation (4.8) with respect to the probability
density function of €, and £,, we obtain the survival probability at time t for any agent of type x with
0 incoming losses absorbed by ¢, denoted by Sie(t). This is defined by S;K,O(t) i=1—¢.0 and

STy(t) = f PRy (t, €0, £0) £ (ex) fu (€0) fu (€2 -+ fo (08 depdt (D de? - - - del?),

for = 1,...,d}. It can be equally written as

STo(t) = PTy(t, ez, Ly)] = E[B(r0(ea, Le) = 0, UG > Toa(en, La), -, Uy > Twp(eas Ly)), (4.10)

"
where L, := (Lg}), e L;(,;d” )) is a sequence of independent random losses with distribution F, and e,

is an independent random variable with distribution Fw(e).
For a given positive function R : Rf — RT, we define

t/\tm(/\) %(S)ds

P (t) = 20 3 , (4.11)

so that the binomial probability b(d;, ¢”(t), ) represents the probability an agent of type x suffers 6
losses prior to time t.

For ¢ = 0 and given R, we define the following functions which will be shown to be the limiting
fractions of surviving and defaulted agents, respectively:

Zusz di %), 08Ty (1), SR =1 f3(0). (4.12)

reX 6=0

We further define the following function which will be shown to be fraction of remaining (unre-
vealed) ruinous outgoing half-edges at time ¢ (characterizing the contagion stopping time):

(@) =21 =™ (@t) = > pady Zb ), 0)Sy(t). (4.13)

zeX

Now we can state the following limit theorem regarding the fraction of solvent and defaulted agents
at time ¢. Recall that 7,7 is the stopping time at which the ruin propagation stops, i.e., this is the first
time such that W, (7;) = 0.

Theorem 4.5. Under Assumptions 4.1-4.2, and for any given loss intensity function R, satisfying
Assumption 4.3, we have as n — o0,

SION

n

2b(dF, 07 (), 0)ST ()| > 0.

sup

t<T)
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Further, as n — o0,

S(n) (¢ D™ (¢
O _ o) 20, supl2Y — 30| 20,
t<7} n t<T n
and the process Wy, satisfies
Wi (t
Walt) _ oy 2,0,
i< n

The proof of theorem is provided in Section 4.4.3.

Remark 4.6. The above theorem generalizes the results of [29] to the case of a general loss reveal
intensity function Ry (t) satisfying Assumption 4.3. In contrast, in [29], the reveal intensity is assumed
to be constant equal to the size of network n and the recovery rate is proportional to the agent’s
connectivity df , for each type x € X (the type is simply the degrees of each agent in [29]). Namely,
Rn(t) = n and a,(t) = adf /At for all x € X. In this case, R(t) = 1 for t € [0,\] and R(t) = 0 for
t > X\. Thus ¢7(t) = t/\ and for 0 = 1,...,d}, U(m)t U(g;)t, .. .,Ué)gjt become the order statistics of 0
i.5.d. uniform random variables on [0, \]. Also, the time threshold T, 1 does not have a dependence on
the loss £, as in our definition (4.7). It simplifies to

Tz 1= inf{t > 0: 0, + atd} /\ = 60},

where © is the random initial default threshold P(©, = k) = g 1 as defined in Remark 4.1. In this
case, we can regard the default threshold as the number of losses each agent could absorb and we could
recover the results of [29].

In the case when there is no growth in the network and «,(t) = 0, it is more convenient to
characterize the above limit functions through the threshold distribution functions g, ¢ and ¢, which
could be defined as (similar to Remark 4.1)

Qo) =P(LY + -+ LD <7, (1 - €) + au(t) — 6, < LY + - + L),
for® =1,...,d}, and

(jm::P(L;(zcl)+"'+ (d)<7(1_€x)+ax( _1_2%[:6

For ¢ > 0, we define the functions (which are the simplified versions of those in (4.12) and respec-
tively (4.13))

PR = ] queﬂ (df, 1= 6™().df —0+1) + ], D) =1— &),

zeX

Fv@®) =21 = ¢"(1) = . pad; queﬁd+,1—¢m(t)ad$—9+1)+dx]-

zeX

As a corollary of Theorem 4.5, we have the following theorem.
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Theorem 4.7. Suppose there is no growth in the network, i.e., ay = 0 for all x € X. Under
Assumptions 4.1-4.2, and for any given loss intensity function R, satisfying Assumption 4.3, we have
as n — o0,

U (@) &
sup |~ — pzb(df, 67 (),0)( D] oo + )| >0
tem T 5=0+1
forallze X and 0 = 1,...,d}. Further, as n — o0,
S (¢t DM (¢
sup‘A—f?(t)‘LO, sup} ()—fg(t)’LO,
t<Tn n t<mn n

Wh(t
sup{:L() - f%}(t)‘ 250.
The proof of above theorem is provided in Section 4.4.4.

Theorem 4.7 generalizes the limit theorem of [20] to the dynamic case. It also generalizes the law
of large numbers result in Chapter 2, where the authors consider default cascades in configuration
model such that all outgoing half-edges are assigned with an exponential clock with parameter one,
leading to a loss reveal intensity function equal to the number of remaining outgoing half-edges at
time ¢ > 0 and satisfying R,,(t) = nAe™" + op(n).

In order to determine the ruin probabilities, we need to study the stopping time 7,7 when there
are no more ruinous outgoing links in the system. Since from Theorem 4.5, the fraction of remaining
ruinous outgoing half-edges converges to fa",(t), we define

ty :=inf{t € [0,1] : fiy(t) = 0}. (4.14)
We say that t}, < o0 is a stable solution of fi(t) = 0 if there exists a small € > 0 such that f{(2)
is negative on [t, 5 + €). We have the following lemma.

Lemma 4.8. Under Assumptions 4.1-4.2, and for any given loss intensity function R, satisfying
Assumption 4.3, we have as n — 00:

o Ift3 < 0 is a stable solution of fiH(t) =0, then 71 > th.
o Ifty = oo, then 7 - 0.

The proof of lemma is provided in Section 4.4.5.

We are now ready to provide the limit theorem about the final ruin probabilities. As a corollary
of Theorem 4.5 and Lemma 4.8 the following holds.

Theorem 4.9. Under Assumptions 4.1-4.2, and for any given loss intensity function R, satisfying
Assumption 4.3, we have as n — o0:
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(i) IfS s)ds = A, then asymptotically all agents are ruined by the end of the loss propagation
process i.e.

DM (7Y = n — op(n).

n

(it) If ty < o0 is a stable solution of X)) =0 and S s)ds < A, then the ruin probability of an
agent of type x € X converges to
D:E:n) (Tn N R ox
—— 1= Zb 0)ST0 (),
n,um

and the total number of ruined agents satisfies

D7 —nzuml—Z ) + 0p(n).

reX

(iii) If t = o0 and |R|p1 < A, then the ruin probability of an agent of type x € X converges to

(n)
Dy
D) e, Z b(d, 1R 1/, 6) ST (),

nuw

and the total number of ruined agents satisfies

DM(rh) =n ). pa(l - Z b(dy, [R] L1 /X, 0)S2g(0)) + op(n),

zeX

where Sgg(oo) denotes the limit of ng@(t) ast — 0.

The proof of theorem is provided in Section 4.4.6.

4.3.2 Ruin probabilities for the networked risk processes

We consider the networked risk processes of Section 4.2.1 on the random graph G (d;,d;). In
this case the loss reveal intensity function is totally determined by the number of ruinous outgoing
half-edges, namely R, (t) = SW,(¢).

In the previous section we have assumed that the loss intensity function R, has a limit function
R which satisfies Assumption 4.3. We will now show that for the networked risk processes of Sec-
tion 4.2.1, Assumption 4.3 holds and there exists a unique limit function R*. We will take advantage
of Theorem 4.9 to show that $R* can be characterized as a fixed point solution, representing the limit
of remaining ruinous links.

To obtain this existence and uniqueness result for i*, we need to consider a second moment
condition for the degrees of the random graph G (d;}, d;).
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Assumption 4.4. We assume that, as n — o, Zie[n](dj +d; )% = O(n).

In particular, the above assumption implies (by uniform integrability) Assmption 4.2 and A )
as n — o0, In this case, since liminf, ., P(G"™(d},d; ) simple) > 0, our limit theorems could be
transferred to the uniformly distributed random graph with these degree sequences g,ﬁ")(d;; ,d;)), see
e.g., [194].

We have the following theorem.

Theorem 4.10. Let Ly(R™) be the space of all continuous positive integrable functions f with | f]1 <
. Suppose that the loss reveal intensity satisfies Ry, (t) = LW, (t) and the network sequence {Gp}nen
satisfies Assumptions 4.1 and 4.4. Then we have:

(i) There exists a unique solution R* in Ly(R™) with an initial value R*(0) = B, c v Hady (1—¢z0)
to the fized point equation R = Y (R), where W : Ly (R+) — Lx(R™) is the map

W(R)(E) = A1 =67 (1) = ] pady Zb ,0)S35(t)-

zeX
(i) As n — oo, we have
BW,(t N
ap [P0 g ) 2,
t<T) n
and consequently,
S(n) + . D(n) t *
A—fs ()] 250 and sup ()—fp ()] = 0.
t<ry M tsm 1

The proof of the theorem is provided in Section 4.4.7.
We also have the following lemma which guarantees that 7, 2, o in this model.

Lemma 4.11. Let all assumptions in Theorem 4.10 hold and R*(0) = B cx Hady (1 — gz o) > 0.
Then we have 1) > (1 — €) logn with high probability for any € > 0.

As a direct consequence of Theorem 4.9 and Proposition 4.11, we have 7} 2, wasn — o, and thus
the final state belongs to point (i) in Theorem 4.10. In this case, Ry (t) = SWp(t) = nR* + o0p(n).
If |R*||z1 = A, then asymptotically all agents become ruined during the cascade. Otherwise, if

[R*| 1 < A, for any type x € X, the ruin probability of agent of type x is

D(")( ) . -
—E — 1 Z b(dyf, 9 11/, 0)ST5(0) + 0,(1),
n,um

and the total number of ruined agents satisfies

) =n ) el - Z b(dy . |R* [ 1/A, 0)S7(e0)) + 0p(n).

reX
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4.4 Proofs

Before proving our main theorems, we will introduce some preliminary definitions and lemmas.

4.4.1 Some preliminary results

We begin by asserting the following claim. The proof is straightforward and we omit it.

Claim 4.12. Let U} = (Ugl,...,U?dQ be a vector of df i.i.d. random wvariables with common
distribution (similiar to Equation 4.9 replacing t by tx(X\))
§o R(s)ds

7 Sém(/\) R(s)ds
forallz e X. Then U(ijt, U?;;t, R U(Dzat have the same distribution as that of the first k order statistics

of UX conditioned on t € [Ug‘(k), Ug?(kﬂ)), where Ug(l) < Ug@) < ...Ug?(d;)

of elements of UY. Thus the probability measure of U(D]:’)t, for all k = 1,...,d} and t = 0, can be
generated by the vector UX.

are the order statistics

Let L, be a vector of d} i.i.d. random losses to an agent of type x and L, ;. be the subvector of
first k positions. From (4.10), Sﬁe(t) can be regarded as P, H, ¢+, where Hy g4 : [0,400) X (Rﬂd; X

[0, +0)% > R is a measurable function defined as

Hypi(ex, ey us) = Wugy <t < uger) U7z oler, £e) = 0,u) > 7o 1(€x, L)y - - Ug) > Tr (€, a)},s
where u(1), u(a); - - - S U is the order statistics of u, and P, is the probability measure on [0, +o0) x
(R*)d; x [0, 4—oo)d;6r generated by (e, Ly, UX).

Let us define the class of functions H, ¢ as the collection of H,g; for all ¢t € R, ie., Hyp :=
{H; 0.t = 0}. We will show that for each z € X and 0 < d, the class H, ¢ is a Glivenko-Cantelli
class with respect to P, defined as follows.

Definition 4.13. A class of functions (or sets) H is called a strong Glivenko-Cantelli class with
respect to a probability measure P if

sup [P, H — PH| =50, as n — oo,
HeH

where P, is the empirical measure of P.

We also need to introduce the following definitions.

For a collection of subsets of 2, denoted by H, with 2 being a space (usually a sample space), the
n-th shattering coefficient of H is defined by

Su(n) = max card{{zi,...,zpn} " A, A€ H},

T, Tn€Q
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where card{.} denotes the cardinality of the set. Then the Vapnik-Chervonenkis dimension (or VC
dimension) of H is defined as

VC(H) := max{n > 1: Sy(n) = 2"}.
We need the following Glivenko-Cantelli theorem for finite VC classes; see e.g. [109] for more details.

Theorem 4.14 (Glivenko-Cantelli theorem for finite VC classes). Let P be a probability measure
on a Polish space Q and H be a collection of subsets of Q with VC(H) < oo. Then H is a strong
Glivenko-Cantelli class with respect to P.

As a result of above theorem, we have the following lemma.

Lemma 4.15. For each x € X and § = 0,1,...,d}, Hap is a strong Glivenko-Cantelli class with
respect to IP.

Proof. For each x € X and § = 0,1,...,d;, it can be deduced from Claim 4.12 that P, is a probability

measure generated by (e, L, U2'), and is defined on a Polish space. It can be verified that VC(H, 9) =
2, making it a finite VC class. The lemma follows then from Theorem 4.14. O

We will also use the following well known result, see e.g. [186] for a proof, which offers us a way
to convert the loss reveal process into a death process with an initial number 7 and i.i.d. lifetimes.

Lemma 4.16. Let {N(t) : t = 0} be an inhomogeneous Poisson process with an intensity function R(t)
and arrival times {og, k = 1}. Given any fized t > 0 and conditional on m arrivals before time t, the
random vector (01,02, ...,0m) has the same distribution as the random vector (Y(1),Y(2),-- -, Y(m)),
where Y(;) is the i-th order statistic of m i.i.d. random wvariables with probability density function

$) (5 R(u)du) ™

We are now ready to present the proofs of our main theorems.

4.4.2 Proof of Lemma 4.2

We first prove that for any ¢t > 0, as n — o0,

B0 2, 5%,

Let As be a small time interval and let m = [¢/As] represent the number of time intervals between
[0,t]. Notice that, as n — o,

ElZ.(®)] % 2 L (iA8) — Tu((i — DAS)] = 3 As(R(iAs) + C6) + o(1),
=1 =1
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where 0 := SUpy (0,4, ju—v|<as [R(w) — R(v)], is a small error and C is some constant. Hence for
t < tw(A) as As — 0, by the continuity of R, we have

E[I;;(t)] - fot R(s)ds.

On the other hand, by the law of total variance, we have

Var[Z,(iAs) — Z,((i — 1)As)]
= Var[E[Z,(iAs) — Z,((i — 1)As)|R,]]| + E[Var[Z, (iAs) — Z,,((i — 1)As)|Rx]]
1As 1As
= Var[f(ilms R (w)du] + ]E[f(il)As R (w)du].

It therefore follows that for ¢ < tr()),

Zn 1 t t
Var( n@) = L (Var| fo R ()] + E[L Ro(u)du])
_! Jt R(u)du + o(1) = o(1)
n 0 ’
Recall the definition of ¢™,
t/\tm()\)
(e) = 2O

Then by Chebysev’s inequality we have, as n — oo, for any t = 0,

I"n“) 25 a™ (1), (4.15)

As a consequence, by letting ¢ — o0, the final fraction of revealed ruinous outgoing half-edges
converges to || ;1 in probability, i.e.,

 »

I LY 4.16
: (4.16)
Let T'(x) be defined as the inverse of Ay, with A; := Sé R(s)ds, and Ap(,) = x. Suppose that for some
d > 0 and n large, T,(z) = T(x) + 6 or Tp,(x) < T(xz) — 0. Then by (4.15), one can show that, for
some small € > 0 and n large enough, with high probability

v m;:(x)) > AN (T(2)) = @ + ¢,
or (respectively)

v I(Tn@)) L X" (Tn(z)) <z —c.
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By contradiction, we conclude that with high probability (for large n)
T(x)— 6 <Ty(x) < T(x)+0.

It therefore follows that, by taking & arbitrarily small, T}, (z) - T(x) as n — co. Thus we can
conclude that for 0 < a <b < A,

T (b) — To(a) -2 to(b) — tx(a).

Now, we proceed to prove (4.5). Note that the limit of the total fraction of revealed ruinous
half-edges in the end is equal to |R||;1 A A\. Then, using Lemma 4.16, we can transform the reveal
process into a death process with an initial number of balls Z and i.i.d. lifetimes. Conditioned on
7}, the moments of revealing are simply the order statistics of Z i.i.d. random variables with density
function

Rn(t) _ RO
IRl A (RAM) R[]0 A A

F () = +op(1), (4.17)

for t < tyy(N\). By using dominated convergence theorem, the above equation implies that

t/\tm () d )\ ” »
" _— t)] — 0. 4.18
) s s s

By the above analysis, it is clear that Y ( ) is a pure death process with an initial number
of balls Z* and i.i.d. lifetimes with density £ (t), defined by (4.17). Thus, it follows from the
Glivenko-Cantelli Theorem that

(n) tatom (M)
sup’Y *(t) - J f(")(s)ds‘ 250. (4.19)
t=0 In 0

Combining (4.16), (4.18) and (4.19), we obtain that

1 Y™ (¢) tAtor(N)
- R(s)d
Stgg“mﬂy A )\| n fo (s)ds|
y(n) (t) y(n) (t) y(n) (t) tAatm ()
) - - ") (s)d 4.20
ii%"n(\%lp A )\) A | tgg| I J fU (s)ds| (4.20)
t/\tm
""SUP‘J (s)ds — @™ (t) | 250,
=0
which implies that
(n) t Aty (N)
sup —f R(s)ds|, (4.21)
t=0 N 0

as desired.

168



Chapter 4. Ruin probabilities for Risk Processes %n Stochastic Networks 4.4. Proofs
AR

4.4.3 Proof of Theorem 4.5

Recall that Z,,(t) represents the number of revealed ruined outgoing half-edges at time ¢ before the
stopping time 7,;. According to the construction of the configuration model, all pairs of outgoing and
incoming half-edges are chosen uniformly at random. Even if the contagion stops before all half-edges
are revealed, we continue the reveal process until the end for the sake of our analysis. This will not
change the process before 7, and hence will not affect our results.

Based on Lemma 4.16, conditioned on the total number of final revealed ruinous outgoing half-
edges, Z~, we can consider the contagion process as follows: There are 7 ruinous half-edges in total,
each incoming half-edge pairs with a ruinous outgoing half-edge with probability Z /n)\(") indepen-
dently (see Remark 4.17 below). If it pairs, this occurs after a random time from the start, with
density £ (t), defined in (4.17).

Remark 4.17. Note that the following two events are not generally equivalent:

(i) Each incoming half-edge is paired with a ruinous outgoing half-edge with probability I;L/n)\(”)
independently;

(ii) All pairs of incoming and outgoing half-edges are matched uniformly at random, with a total of
L) ruinous outgoing half-edges.

However, asn grows, the number of ruinous half-edges in (i) will approach I}, with high probability, due
to the strong law of large numbers. The total number of ruinous half-edges in (i) would be I} + o,(n).
This slight deviation does not affect the limit results.

Let us define

"
tg()?)()\) =inf{t >0: rlzJ;) Rn(s)ds = A}

Denote P? as the probability measure generated by the vectors L, and U? ’(n), where U}KR ) g
defined similarly as U2 in Claim 4.12 with the distribution

YR (s)d .
IP’(UE‘Z?(") <y) = (E?/\(S)S, for y < <t )()\).
7 Ra(s)ds

(n

Note that P? is a random measure since it depends on R,,. Let Ny ) denote the number of type x
agents in G (d;t,d;;). By the analysis at the beginning of the proof, we know that, uniformly for all
incoming half-edges, the probability of pairing with a ruinous half-edge before time ¢ is

tAt A)
i ds
op(e) = Tk T Fnle)e,
nA(m) Som Rn(s)ds
and the probability of never pairing with a ruinous half-edge is %
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Under the probability measure P}, the probability of there being 6 loss arrivals before time ¢ is
given by b(d;, ¢ (t),0). Given @ loss arrivals before time ¢, the probability of a type x agent being
solvent at time t is

PZ (Tac,O(fxy Lac) =0, U(f);t,(n) > Tw,l(exv La:)a U(E);Su(n) > Tﬂ?,Q(eJ}a Lz)a ceey U£3t7(n) > Tx,G(fxy Lac))y

where U(Diit’(n), U(D;t’(n), cen U?g;t’(n) are the order statistics of # i.i.d. random variable (U?’t’(n))le
with distribution ” p
Rn
]:P(Umvt7(n) < y) — M’ y < t
SO Rn(s)ds

We define Szb(n) (t) as following:

Se™ () o= Pa(rao(er, La) = 0,U ™ > 7oi(en, L), Uy ™™ > 7 g(ex, La).

By Claim 4.12, for any ¢t > 0, € X and 0 < 6 < d, the fraction of solvent agents with exactly
0 losses absorbed before time t, namely Sg%) (t)/Ng(;n) is the mapping IF’ZH%M with respect to the

empirical measure of P, denoted by }INDQ By Lemma 4.15, we have for any stopping time 7,, < 77

sS4 ()
sup |
t<mn Nggn)

—b(d}, ¢2(1), )T ()] L 0. (4.22)

z,

Combine the above analysis, clearly we have PP H, g, = b(d, ¢ (t), (9)83’9(”) (t). Notice that, as
n — o0, we have for any t > 0,

AN (n) AN
L Y Re(s)ds 5o Y 9(s)ds

) = o"(t),

o (t)

(n)
nA(™) Sé“ ) Ry (s)ds
and
A —Tx oy A= (|R]r AN
nA(m) A
Combining with dominated convergence theorem, the above two equations give that

sup [Py Ho g, — PoHy o] = 0. (4.23)

t=0

Hence by (4.22) and (4.23), we obtain

S5 )
sup| =75 — b(dy L 67 (1), 0)ST(1)| L 0.
<t N

Note that by Assumption 4.1, Né")/n —> p, as n —> oo, for all x € X', so we have

Nm(n) R R
Sup |T'Sz,9(t) - :U’JJS:):,H(t)‘ — 0.

t<Tn
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Combine the two equations above, we obtain our first assertion

(n)
\sz(t)— b(d,, ¢ (1), 0)STy(t)] - 0. (4.24)

t<'rn

Let Xk be the set of all characteristic € X such that df + d, < K. Since (by Assumption 4.2)
A € (0,90), for arbitrary small € > 0, there exists K. such that 3} .\ x, #a(dy +d) <e. Further,
by Assumption 4.2 and dominated convergence,

dodf +d )N/ — Y (df +dy)pa <e

JEEX\XKE JEEX\XKE

Hence for n large enough, we have ZzeX\XK (df +d; )Nz /n < 2e. By (4.24), we obtain

dy o)
t
supE (df +d) Z 9() 2b(dy ¢m() )Sm()‘
ISTn ey 9=0
df o)
< sup }Q (di +d3) }3 9“> DS, 67 (1), 0)S3 ()]
tSTn TeX K =0
& S
+ sup Z Z| mn ¢m( t),0) g?e(t)|
t<Tn :ceX\XKE 6=0
<o)+ D) (df +d) (NP /n+ ) < op(1) + 3e.
:BEX\XKE
By taking e arbitrarily small, it follows that
St
sup Y (df +d )| @ _ (AT, 67(1), )87y (1) - 0. (4.25)
t<Tn reX n 7

Note that the total number of solvent agents at time ¢ satisfies
i
n
aDIPITHIC
zeX 6=0

which is dominated by >, (df + d3) ZZ{_’ 0 Sg(cng) (t). Then, by the convergence results (4.24) and
(4.25), we obtain

Further, from D (t) = n — S™(t), the number of ruined agents at time ¢ also satisfies

D™ (t)

— fo(t)] 0.

sup ’
t<mn
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Finally, the total number of remaining ruinous outgoing half-edges at time t is given by

W(t) = nA™ — 2265 ) (t)

zeX 0=0
The same argument and (4.20) imply that
Wi (t) _
sup| n fw( t)| 2,0
t<mn n

This completes the proof of Theorem 4.5.

4.4.4 Proof of Theorem 4.7
Similar to Example 4.3, for any « € X and a realization of loss sequence £, and shock €., we get

Plo(t €2, £2) = P(7p0(e0, £2) = 0,U > 7o (en, ), Upyt

@ > Tu,0(€x,€y)) = 1{0 < 0z (€x,4)},

where 0y(€,£€5) = Inf{6 = 0,...,d} : 7.(1 —€) — 6z < lg1 + -+ + Ly 9} (by convention we set
0z (€, £5) := o0 if there is not such a threshold #). Hence, from the definition of the default threshold
distribution g g, Sf’@(t) simplifies to

di
Z qz,5 + qz-

6=0+1

By applying Theorem 4.5, the first claim is established. Observing that

b(d;ra ¢m(t)7 6) = b(difa 1- ¢m(t)7 d; - 6)7

we can rearrange the order of the sums to obtain

dr dr
DIb(ds, 07 (1), 007 (t) = Y[ Z Qs + Qo |b(df, 1 — o™ (t), df — )
0=1

0=1 6=0+1

dz
=G+ Y, aooB(df 1= 0™ (1), df —0+1).

This leads to the conclusion for the limit function for fgﬁ(t) Through similar arguments and calcula-
tion, the limit functions for the other cases can also be derived.
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4.4.5 Proof of Lemma 4.8

Recall that

fir () = A1 = 7 (1) = Y pady Zb ,0)S7g(t).

reX

Consider a constant t; € (0,%%). Due to the continuity of fi+(¢) on the interval [0, 00), it follows that
fX(t) > 0 on [0,¢1). Thus, there exists a constant C; > 0 such that fi-(t) = C; for all t <

Since Wy, (73}) = 0, if 7 < t1, then we have W, (7;})/n — fiy(7}) < —Ci. But on the other hand,
according to Theorem 4.5, we have

Wall) o) 2,0,

sup |
t<T)

This is a contradiction. Hence, it must be the case that P(7; < t;) — 0, as n — o0. In the case
where t5; = 00, we can choose any finite ¢; arbitrarily large, which implies that 7, L, .

We now consider the other scenario. Fix a constant ty € (t5,t5 + ¢). Using a similar argument
as above we can show that there exists some constant Cy > 0 such that W,,(7})/n — fir (7)) = Oy if
Ty = to. Therefore, P(7; > t2) — 0 as n —> 00. As t; and ty are arbitrary, letting both ¢; and t2
tend to t3;, we have 7 £, L5y

4.4.6 Proof of Theorem 4.9

By using Lemma 4.8, we have that the stopping time 7,; converges to t3 in probability. In combination
with the continuity of 3?,9 (t) in t and Theorem 4.5,

b
n

sup

t<t}

dFr
Z df, 6% (), 0)87(t)] = 0,

as n — 00. Besides, If S(t)m |PR(s)|ds = A, that means at the stopping time 7,7, we have revealed almost
all the outgoing half-edges. Thus the number of defaults must be n —o0,(n). Moreover, by Lemma 4.8,
we have 7* -2 o0, Notice that 82?9 (t) is non-increasing and can not be smaller than zero. Thus there

exists a limit for ng@(t) when ¢ — 0. Note also that, if [R]|;1 < A, ¢ (t) — |R|1/A as t — 0. Then
the theorem follows by Lemma 4.8 and Theorem 4.5.

4.4.7 Proof of Theorem 4.10

Proof of (i). The proof of (i) will be divided into two parts.

Lipschitz continuity. Let |-|; denote the truncated L' norm up to t, i.e., for a function f defined
on RY | f]: = S(t) |f(s)|ds. The first step is to prove that ¥ has some special Lipschitz continuity with
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respect to the first parameter. To be precise, for two different Ry, R € Ly(R™) and all ¢ > 0, there
exists a constant Cy, such that

[W(R1)(t) — ¥ (R2) ()] < Col|R1 — Ral- (4.26)
For the first term, it is clear that

A% () — 672 (1) < jo 9%, (s) — Pa(s)|ds.

We now analyze the difference |S§é (t) — Sg‘:z (t)]. Let us recall the definitions of

Plo(t €2, £2) = P(rr0(e0, £2) = 0,U) > Toi(ens ), Uyt > Tuglens £r)),

and

Spo(t) = P(roo(er, L) = 0, UG > ol La), - Uy’ > Tuplex, Ly))-

For each realization of loss sequence £, and shock €, let A, g(e, £;) be the set of all (uq,ug, ..., ug)
such that the rearranged sequence (u(1), (), - - -, U(g)) in increasing order satisfies

ur)y > Te 1€z, )y 5wy > Tro(€x, £a).
Let R!(s) = R(s)/|R]:- We have
J Ry (s1) - R (sg)dsy - - - dsg — J RE(s1) - Rh(sg)dsy - - - dsg
Ax,0(€z7£ ) Aac,@(ez)
<[ R0 R (s0) - Rho0) R s
AI,G(ZCL‘)
<[ 1) ) = 90ton) )l
0.t
By adding and subtracting terms, it is easy to show that
J P00 s0) 1) s sy < 0198 1
0,

Notice that there exists a constant C; large enough such that

9%1 9‘{2 9%2 9{2
IRT — Rl <|| - e + || - It
b BT RS S R T
19R1 — Ralle | [NRalls — 19
< + IR
(usyp [9R1 [l |R2 e
<Ci|R — Ra:-
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Therefore, for any realization of loss sequence £, and shock e, we have
P(700(€0:€a) = 0,UL > Tai(€a, ), U > Taglen £)) < C1O]R1 — N1
It therefore follows that

P(Tx,o(em Lx) =0, U(E)iit > Tz, (Eza La:)a ERER) U?;St > Txﬁ(ema Lx)) < 019H5R1 - 9{2”7% (4'27)

On the other hand, by elementary calculation for the derivative of b(d},y,0) with respect to v,

+
and ob(d+ ob(d*,y, dt

For each y € [0,1], there exists a threshold éy such that ob(d},y,0)/0y < 0 for § < éy and
ob(dy,y,0)/0y = 0 for 0 > 0,. Therefore we have for all x € X,

d+

@ azeb(dl,y,0 7]
529_0‘1; (5, 9) < 2d3b(df —1,y,0,) < 2dF
Yy

T

(4.28)

if agp is a constant coefficient satisfying 0 < a, ¢ <1 for all (z, ).

Then by adding and subtracting terms and combining (4.27) and (4.28), we conclude that there
exists a constant Cy such that for each x € X,

12 587 (0),0)STh () — b(d 7 (0),0)8T% (1)

Z b(dy . ¢™2(1), 0)(C10) R — Relle + 2d |67 (1) — 672 (1)

d+
<2b L @72 (), 0)Crdf | R — Rolle + 2[R = Rally < Cody R — NRofs.

It therefore follows from Assumption 4.4 that there exists a constant Cy such that

D teedy !2 (ST4(t) = ST5(1)] < C1 Y paedy df |R1 — Ralr < Col R — R,
zeX zeX

and hence (4.26) holds.

Existence and uniqueness. We show existence using a standard iterative procedure. To prove
the existence and uniqueness on the non-negative real numbers R*, it is sufficient to prove them on
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the interval [0,T] for any arbitrary T' > 0. Specifically, let h(O(t) = 83 s pzdy (1 — gz o) — t, and
define

h(t) = pU (R D)(1). (4.29)
By (4.26), we have (for v e Ry)

|1 (0) = "D (0)] < BCo[AT ™D — RO,

Integrating the above formula from v = 0 to v = t gives us

t
1) KD, < 5o [ A — b2 do. (4.30)
0
Clearly |h() — h©) | < C for some constant C. Then by iterating the above formula (4.30), we have
C
n) _pn-1)), « __~ n—1,n—1

Moreover, for some constant C'(3, K,T) depending on 3, K and T, the infinite sum satisfies
[oe}
Z IR — =D < C(B, Cy, T)eCPCo ),
n=1

Therefore the series h(™(t) converges in the L([0,T]) space to a limit F(t). Due to the continuity of
the limit, we can conclude the existence of a solution.

To prove uniqueness, suppose there exists two different solutions hq(t) and ho(t) satisfying the
fixed point equation. We have

lh1 — hall7 < Jllhl ha|vdv.

Since the function |h; — hal¢ is bounded on [0,7"] and positive, the Gronwall Lemma implies that
|h1 — ho|t = 0 on [0,T]. Since T is arbitrary and the solution is continuous, uniqueness follows.

Proof of (ii). By the construction of our networked risk processes, the loss reveal function R, (t)
is equal to the SW,(t). Suppose that the limit process of W, (t) exists and satisfies the conditions
outlined in Theorem 4.5. From the definition of f3 (¢), we have

O _ g ) = a7 (1 = pady Zb A, o™ (1),0)8) (1)

=Jw
ﬁ zeX
The existence and uniqueness of the solution to this fixed point equation were proved in point (7). As
a result, by Theorem 4.5, the unique solution R* of the fixed point equation in (7) is the limit process
of W, (t) and we have
Wa(t)  R*(1)

| 0.
t<ry N B

The remaining limit results follow directly from Theorem 4.5.

The proof of Theorem 4.9 is now complete.
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4.4.8 Proof of Lemma 4.11

Let oy denote the number of initially ruined outgoing half-edges. Note that, since ’*(0) = 5> 4 pady (1—
¢z,0) > 0, we have liminf, o, > 0. Let A, denote the time required to reveal all the a,n initially
ruined outgoing half-edges without incurring any new ruined agents, i.e.

Ap =T + 17" 44 T

anpn

where T,gn) is the time duration of the k-th reveal and is an exponential random variable with parameter

apn—k+1, and they are independent. If no new ruins incurred at each step, 7,; will attain the smallest
possible value stochastically, namely 7 > A,,. It is therefore sufficient to prove that A,, > (1—¢)logn
with high probability for any € > 0. By Markov’s inequality we have

ann
P(Ap, < (1 —€)logn) = P(e ™ > ¢~ (179 logn) < p(l=€)logn H Re 7%

k=1
Since Ee~ T+ = (ann — k 4+ 1)/(apn — k), we have
ann 1
P(A, < (1 —€)logn) <exp{(l —e)logn — Z log(1 + E)}
k=1

By applying Taylor expansion to log(1 + 1/k), it follows that

P(A, < (1 —¢€)logn) <exp{(1l —¢€)logn — log(a,n) — o(logn)}
<exp{(1 —¢€)logn —logn — loga,, —o(logn) = O(n™°).

We thus have A,, > (1 — €) logn with high probability for any e > 0. The proof is complete.

4.5 Complex Networked Risk Processes

So far we have assumed that the external debt is a constant function for each agent. It will be
interesting to extend the model by considering a dynamics for this external debt that is itself like in
the classical Cramér-Lundberg model. Namely, we assume that the external debt for agent i € [n]

follows 6;(t) = Z;-V:"(lt) CZ-(j ), where N;(t) is a Poisson process with intensity (; and the claim sizes
{CZ-(j ) ;?0:1 are i.i.d. distributed random variables with distribution G; with finite positive mean and

variance.

The risk process for the capital of agent i € [n] with network interactions G, follows

Ni(t)
Ci(t) == vl — &) + oui(t) = ] ¢ — D Ll + Ty < t}, (4.31)
j=1 j€[n]:g—1

where, similar to (4.3) we assume that Tj; ~ Exp(f) are i.i.d. exponentially distributed with some
parameter 8 > 0 for all i, j € [n].
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Consider the node classification of Section 4.2.2 and assume that for all agents of the same type
x € X, the associated external risk process has the same features. Therefore, agents of type x have
the same claim distribution, denoted by G, and external claim arrival intensity denoted by f,.

Let us define the external risk process for an agent ¢ of type x € X with initial capital u by

Nz(t)

CPX(uyt) == u + au(t) = ) ¢,

j=1

where N;(t) is a Poisson process with intensity [, and the claim sizes {(z(] )};-O:l are i.i.d. distributed
random variables with distribution G, and mean C_m > 0. Similarly, for the network G, and initial
type-dependent capital vector u = (u,,z € X), we define the internal risk process for agent i by

CIN(u, ) := uy + ag(t) — Z Lj1{rj + Tj < t},
j€[n]:g—1
where losses L;; are i.i.d. random variables with distribution F,, and Tj; ~ Exp(f) are i.i.d. exponen-
tially distributed.
For simplicity we assume that €, is a constant and «,(t) = «,t in this section.

Let us denote by

VEX (u,t) = P(CEX(u, s) < 0, for some s < t)
and
N(u,t) = P(CN(u, s) <0, for some s < t),

the ruin probabilities for the external and respectively internal risk processes of an agent of type x.
The ruin probability for the external process is a well studied problem whose solution we review below.
The ruin probability for the internal process is given by Theorem 4.10 in the limit when n is large and
converges to

ut—l—Zb L7 (1),0)S75(0) + 0p(1).

Note that the parameters (and in particular the fraction of initial ruined agents) depend on the initial
capital levels u, which reflect any initial shock and external debt of our baseline process in Section
4.3.2. We will use these ruin probabilities to provide an upper bound and lower bound on the ruin
probability for agent ¢ of type = given by

Pz(t) :=P(Cy(s) <0, for some s < t),

where
No(t)
Cu(t) =72 (1 —€z) + agt — Z Ci(J) _ Z Lil{r; + Tji < t}.
J=1 jelnl:j—i
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It is known (see e.g. 35, 115]) that whenever BeCe > gz, we have EX(u, 00) = 1 for all u € R and
whenever 5,(; < g, the final ruin probability can be computed using the famous Pollaczek—Khinchine
formula as

Pl = (1-2) 3 (ﬁcf)k (1-62+). (4.32)

k=0

where L o
Gy(u) = foo (1 — Ga(u))du,

and the operator (-)** denotes the k-fold convolution.

Furthermore, for the finite time horizon ruin probability 15X (u,t), we have the Seal-type formula,
see e.g. [164, Proposition 3.4], for any ¢ > 0 and any z € X,

u+1 u+t
EX(Bmu, t) =1— e Pat _ J fi(z)dz + J eiﬁz(t“‘*z)fz_u(z)dz
0 u

u+t u—+t t _|__ U — y
+ L fomu(2) (L mft-&-u—z(y — z)dy)dz,

where f(-) denotes the density of Z;Vil(t) Ci(j ) /B on (0,00).

The following theorem provides upper and lower bounds for the complex ruin probability 1, (t)
by utilizing YN and ¥EX. We define 7, ¢ similarly to 7,9 in Equation (4.7), but with a, and 7,
replaced by «,/2 and ~,/2, respectively. Furthermore, for any R € Ly(R"), we define gﬁg(t) in the
same manner as nge (t), but with 7, ¢ replaced by 7, .

Theorem 4.18. Let R* be the unique solution of thNe fizxed point equation in Theorem 4.10 with an
initial value W*(0) = B cx tady (1 — gz ), and let R* be the unique solution of

R () = A1 — ™ () — Y pady Zb £),0)3%5(t),
zeX

with an initial value R*(0) = e bady (1 — qup). Also, let PEX(t) := vEX(1(1 — €;),t) and let
JEX(t) be the ruin probability for the external risk process at time t staring with half the initial value
Y2 (1 —€)/2 and half the capital growth rate c/2. Under Assumption 4.1 and Assumption 4.4, for all
x € X and for any t > 0, when n is large enough, we have

bo(t) =1 (1 Zb L0 (1), 0)S (1),

and

Uat) <1— (1—9F%(p) Zb L% (1), 00875 ().
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Proof. We write all the quantities in their limit forms, since this theorem states the bounds when n
is large enough. We define the events

= {CEX(s) > 0, for all 5 < t},

= {C™N(s) > 0, for all s <t with an initial fraction of ruinous half-edges Z pady (1 —gz0)}
reX

and,

Dy := {Cy(s) > 0,for all s <t with an initial fraction of ruinous half-edges Z pady (1 —gz0)}-
reX

Then by the independence of external and internal risk processes, we have
P(Dy) < P(A; 0 By) = P(Ay) - P(By) = Z b(dyf, o™ (t),0)ST(t).

Since 9, (t) = P(Dy), then we obtain the lower bound in the theorem. To prove the upper bound,
we define the following events

N;(¢) ) ~ (S)
= E \J Jo | Qw <
{j 1CZ < 5 + 5 ,for all s < t},

éT,t ={Ljl{r; +Tj; <t} < % Qo 2( 2) for all s <t with the loss reveal intenstiy R*}.
Then we have

P(Dy) > P(A, ~ Bry) = P(A,) - P(Bry) = Z b, o™ (1), 008 (1).

Since 95 (t) = P(Dy), the upper bound in theorem follows.
O

The general setup of Section 4.3.1 for the internal risk process can be considered where the limit
function for the loss reveal intensity function is a given function R that satisfies Assumption 4.3. In
this case, both the upper and lower bounds in the theorem above still hold, with R* and R* being
replaced by RR. The question of finding exact (asymptotic) ruin probabilities in this complex networked
risk processes is left for future research.

4.6 Concluding Remarks

We have extended and solved an open problem posed in our prior work [29], namely a multi-dimensional
extension to the Cramér-Lundberg risk processes with network-driven losses. We called this the
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(internal) networked risk processes. In this general case, the losses from the ruined neighbors can have
any given distribution. There is a general arrival process which drives the losses stemming from the
ruined agents. This model opens the way to integrating two streams of literature, one being on risk
models that have outside exogenous losses and one where losses are internal and interconnected.

This is one step forward to study dynamic financial network models and at the same time bringing
tractability to multi-dimensional Cramér-Lundberg risk processes. We leave to the future the study of
further generalizations. Here we mention only a few of them. In Section 4.5 we introduced a model that
allows for exogenous individual external risk processes in addition to the internal networked one. We
have provided lower and upper bounds for the ruin probabilities. Finding the exact ruin probabilities
in this case is left for future research. Instead of a sparse network structure that underlies the internal
loss propagation model, we could consider risk processes in a dense network. In particular, since our
results are asymptotic in nature, it seems promising to consider graphons. These have been developed
by Lovéasz et al., see e.g. [67, 68, 170], as a natural continuum limit object for large dense graphs. It
would also be interesting to optimize the underlying graphon structure given the profile of external
losses. When these external losses follow a general risk process, we can expect to have various types
of adaptive graphons that minimize the loss contagion.

The model we consider is flexible enough to incorporate multiple channels of contagion. For exam-
ple fire sales have been incorporated when the process does not have growth in Chapter 3. Incorporat-
ing firesales or other indirect contagion mechanisms adds another fixed point to the analysis, driven
for example by the price dynamics of an illiquid asset. In the context with growth, the entire path
of the endogenous price process would have to be consistent with the time threshold functions (4.7),
which in turn are price dependent.

Finally, key research questions revolve around the optimal dividend distributions. In the Cramér
Lundberg setting, this problem has been studied extensively in the literature, see e.g., [42, 128, 188].
For spectrally negative Lévy processes, the optimal dividend distribution have been shown to be of
constant barrier type, see e.g., [40, 169]. The study of optimal dividend distributions in the presence
of network risk remains an open problem. One may replace ruin time by a ruin time observed with
Poissonian frequency, see for example [4, 5], which is equivalent to a Parisian ruin time with exponential
grace period. Instead of dividend distribution towards outside entities, an alternative setup would be
that of bail-ins. In such settings, agents would divert part of their growth to other agents with the
goal of preventing their ruin. The optimal rate of contribution towards bailing in other nodes in the
networks has been treated in the simple case of one firm and one subsidiary in [37]. In the multi-
dimensional setup one can consider a central node that covers the shortfall of the other nodes with
the pool of capital to which all agents contribute, these are "bail-ins" (a term coined in 2010 as the
opposite of bailouts). The bail-in amounts are the necessary funds to “reflect" the risk processes back
to an optimal positive level. Consequently, the central node risk process is a marked point process
in which the inter-arrival times are the first passage times of the members capital process, and the
jump sizes are the bail-in amounts. This process has thus a non-trivial dependence structure between
interarrival times and jump sizes, that we leave for future research.
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Chapter 5

Graphon Mean Field Backward
Stochastic Differential Equations and
Associated Dynamic Risk Measures

This chapter is based on paper [4] in the publication list of Section 1.5.

Abstract. We study graphon mean-field backward stochastic differential equations (BSDEs) with
jumps and associated dynamic risk measures. We establish the existence, uniqueness and measurability
of solutions under some regularity assumptions and provide some estimates for the solutions. We
moreover prove the stability with respect to an interacting graphon particle systems, and obtain
the convergence of an interacting mean-field particle system with inhomogeneous interactions to the
graphon mean-field BSDE. We then provide some comparison theorems for the graphon mean-field
BSDEs. As an application, we introduce the graphon dynamic risk measure induced by the solution of
a graphon mean-field BSDE system and study its properties. We finally provide a dual representation
theorem for the graphon dynamic risk measure in the convex case.

Keywords: Graphon mean field, BSDEs with jumps, inhomogeneous interacting system, dynamic
risk measures.
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5.1 Introduction

The study of mean-field systems with homogeneous interaction goes back to Boltzmann, Vlasov,
McKean and others (see e.g. [33, 154, 172]). Backward Stochastic Differential Equations (BSDEs)
of mean-field type have been early studied in [72, 73] and since then, nonlinear mean-field BSDEs
with jumps have been intensively investigated, see e.g., [137, 167, 168]. Moreover, the theory of mean-
field games, introduced by Lasry and Lions in [163] and Huang, Caines and Malhamé [141, 142], has
raised a lot of attention these last years; see in particular the recent book [83] and references therein.
Motivated by applications in various domains, mean-field systems and mean-field games on large
networks have been explored for different random graph models, including Erdés-Rényi graph [102] and
inhomogeneous random graphs [181]. Recently, the use of graphons has emerged in order to analyze
heterogeneous interaction in mean-field systems and game theory, see in particular [47, 78, 79, 82].
Graphons have been developed by Lovéasz et al., see e.g. [67, 68, 170], as a natural continuum limit
object for large dense graphs. Essentially, a graphon is a symmetric measurable function G : I? —
I, with I := [0,1] indexing a continuum of possible positions for nodes in the graph and G(u,v)
representing the edge density between nodes placed at u and v.

Bayraktar et al. consider in [47] heterogeneously interacting diffusive particle systems and their
large population limit, which is a forward graphon SDE system. In [55], Bayraktar et al. study
the forward-backward SDEs with graphon interactions depending on the forward component, and the
propagation of chaos of the corresponding interacting particle system. In [162], Lacker and Soret study
stochastic graphon games and use the graphon equilibrium to approximate the Nash equilibrium for
corresponding large finite games on any graph which converges in cut norm.

In this chapter, we are interested in the general study of graphon mean-field BSDEs with jumps,
and their associated dynamic risk measures, defined, similarly as in the classic case, (see e.g. [45, 89,
123, 183]) as the opposite of solutions of graphon mean-field BSDEs with jumps.

We extend [89], which studies the mean-field BSDE with jumps, by introducing the graphon inter-
action in the drift to capture the heterogeneous interactions. We establish the existence, uniqueness
and measurability of solutions and prove the stability with respect to the interacting graphons. We
prove convergence results of finite interacting particle systems to graphon mean-field BSDEs. Com-
pared to [55] where the interactions are described by the forward components, our graphon system is
fully backward coupled with jumps.

The chapter is organized as follows. In Section 5.2, we introduce the notation and the definition of
graphon mean-field BSDEs with jumps. We establish the existence, uniqueness and measurability of
the solution, and provide comparison theorems under a monotone condition. We also study the conti-
nuity of solution on the label index and the stability with respect to different graphons. In Section 5.3,
we show the convergence result for an interacting mean-field particle system with heterogeneous in-
teractions to the graphon mean-field BSDEs with jumps. Section 5.4 concentrates on the associated
graphon dynamic risk measures and its properties. In Section 5.4.2, we provide a dual representation
theorem for graphon mean-field BSDEs in the convex case. Section 5.5 concludes.
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5.2 Graphon mean-field BSDEs with jumps

5.2.1 Notation and definitions

Let (2, F,P) be a probability space. Let I = [0,1] and {W, : u € I} be a family of i.i.d. m-
dimensional Brownian motions defined on (2, F,P). Let {N,(dt,de) : u € I} be a family of independent
Poisson measures defined on (€2, F,P) with compensator v, (de)dt such that v, is a o-finite measure
on E := R}, with R, := R\{0}, equipped with its Borelian o-algebra B(FE), for each u € I. Let
{Nu(dt,de) : u € I} be their compensator processes. Let F = {F;,t > 0} be the natural filtration
associated with {W,, : w € I} and {N,(dt,de) : u e I}.

Let T > 0 be a fixed time horizon. Denote by P the predictable o-algebra on [0,T] x Q.

Given a Polish space S, denote by D([0,T],S) the space of RCLL (right continuous with left
limits) functions from [0,7] to S, equipped with the Skorokhod topology. Let Dy, := D([0,T],R™).
Denote by P(S) the space of probability measure on S. For a random variable X, £(X) denotes the
law of X.

We use the following notation.

e L2(F;) is the set of all F;-measurable and square integrable random variables, for ¢ € [0, 7.

e H? is the set of real-valued predictable processes ¢ such that
g 2 1,1\1/2
ol i (B ¢Fae)* < .
0

o L2 (for each u € I) is the set of all measurable functions ¢ : E +— R such that

€, = ( jE 10(y) P (d)) 2 < oo

Note that L,%u is a Hilbert space equipped with the scalar product
bt = | @),

e H2 (for each u € I) is the set of all predictable processes ¢ such that

T
I f 62, di])V? < oo,

e S? is the set of real-valued RCLL adapted processes ¢ with

|¢ls> == (E[ sup |[*])"/* < co.
te[0,T]
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e MH? is the set of all measurable functions X from I to H?: u — X, satisfying
T
sup | X, |72 = supE[f | X, (t)2dt] < 0.
uel uel 0
For X € MH?, we define the norm

T
IM@Fww@JIKﬁWMW?
uel 0

We define ML?(F;) and MS? similarly.

o MH? := (H2 )®! is the set of all families £ := {£, },es such that

T
sw@qlhﬁﬂmm<w
uel 0

For X € MS?, we define the norm

| X2 := sup(E[ sup_|Xu(t)*)"?,
uel te[0,T]

and, for £ € MH?2,
T
Xl i= sup(EL| 160, dt)'.
uel 0
Sometimes we denote £y, 1= ({y.t)1=0-

o L2I(F,) (for t € [0,T1]) is the space of all F-measurable family of random variables X := { X, }uer
satisfying

X o = (E[J X, [2du]) 2 < o,
I

We define further the scalar product

(X, Y )20 := E[J XY dul.
1

5.2.2 Graphons

A graphon is defined as a symmetric measurable function G : I x I — I, with I = [0,1]. Graphons
can be regarded as the limits of edge matrices of weighted graphs, when the size of the graph (number
of vertices) goes to infinity. Indeed, by relabelling vertices of the graph by i/n, i € [n] := {1,...,n},
as n becomes large, the labels i/n, i € [n] become close to each other, tending to a continuum in [0, 1].
Let B(I) be the Borel algebra on I. The so-called cut norm of a graphon is defined by

|Glo = sup | G(u,v)dudv|.
A,BeB(I) JAxB

186



Chapter 5. Graphon Mean Field Backward Stochastic Differential Equations and Associated

Dynamic Risk Measures 3 5.2. Graphon mean-field BSDEs with jumps
NG

We can also view a graphon as an operator from L*(I) to L'(I), defined for any ¢ € L®(I) as:

Go(u) := J G(u,v)p(v)dv.
I
By Lovész [170, Lemma 8.11], the resulting operator norm turns out to be equivalent to the cut norm:

1Gllo < |Gl < 4]G]o,

with
|Gllocs1 == sup |G|z
lp|<1
These norms will be used to study convergence issues when the graphon system is induced by a sequence

of graphons. To get stronger convergence results, we shall need to introduce another operator norm
for graphons, and consider G as an operator from L®(I) to L*(I), with the norm

|Glloo—sco := sup |G oo
lol<1
We are now ready to introduce the graphon mean-field BSDE with jumps:

T T
Xo(t) = u + f j f G(u,y>f<s,x,Xu<s>,Zu<s>,eu,s<->>uy,s<dx>dyds—j Zu(5) AW (5)

T
—J J ly.s(e)Ny(ds,de), uel, for te][0,T],
t JE
where p, = L(Xy) € P(Dp) and pys = L(Xy(s)) € P(R™). We assume that & := {{u}uer €
MUL2(Fr), that is for each u € I, &, € L*(Fr) and the map u > &, is measurable.
We define the space

M= {D = {(Xu, Zu, lu(-)) € S* x H? x H?,u}ue], such that

T T
]t = sup(E[ sup |Xu(t)?] + E[ f \Zu(0)?dt + B[ j a2, di]) "2 < o0},
uel te[0,T] 0 0

We consider the following Wasserstein distances between two probability measures p and v:
Wa(p, v) := (inf{E[| X1 — Xo|?] : £(X1) = p, L(X2) = v}))V2, for p,ve PR™),

War(p,v) = (inf{ sup E[Xi(t) = Xo()* : £L(X1) = p, L(Xa) = v})?, for  p,v € P(Dp).
te[0,T]
Further, for two families of probability measures p = {1, }uer and v = {vy }yer, we set

Wi (11, v) == sup Wa(piy, V), for p,v e P(ML(F)) for all t € [0,T],

uel

and
W (,v) 1= sup War (s ), for p,v € P(MS?).

uel
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Remark 5.1. For each fized T > 0, we have

Wa(uv) = sup| | f(o)u(da) = | fl)(da)|, pveP@™),
f R™ R™

War(s,v) > sup| f f@ur(dz) - [ f@vr), pePDn),
f Rm Rm

and

) M?VEMSZ7

Wh(1,)) > supsup| f F (@) (de) — f F(@)var(dz)
uel f Rm™ R™

where the supremum over f is taken over all Lipschitz continuous functions f : R™ — R with Lipschitz
constant 1 such that the integral exists.

For notation simplicity, we restrict ourselves to the case m = 1. The proofs can be easily generalized
tom > 1.

5.2.3 Existence and uniqueness results

In this section, we prove existence and uniqueness of solutions to the graphon mean-field BSDE system
with jumps (5.1).

Definition 5.2. A solution of the graphon mean-field BSDE system with jumps (5.1) consists of a
family of processes ® = (Xu, Zy, lu)ucr with (Xu, Zy,4y) € S? x H? x H?,u for all uw in I satisfying
(5.1), where X,, is a RCLL R-valued optional process, and Z, (resp. £,) is a R-valued predictable
process defined on 2 x [0,T] (resp. 2 x [0,T] x E) such that the stochastic integral is well defined.

Canonical coupling. Note that in the graphon system, the solution for each label u can be influenced
only by the law of the first component of the solution for other labels. Thus, when we couple the
Brownian motions and Poisson random measures in (5.1), the law of the state for each label, £(X,),
remains unchanged, as proved in [55, Lemma 2.1] for the coupled graphon FBSDE system. To study
the solution of the graphon BSDE system, we must require some form of measurability for u — X,
such as weak-sense measurability for the law of £(X,). However, through a suitable coupling, we can
achieve strong measurability for X in the space MS? and transform the original graphon system into
a fully coupled system defined in the canonical space. We refer to this as the canonical coupling, which
simplifies some convergence analysis. We make the following assumption:

Assumption 5.1 (Intensity measure). For each w € [1,2], the function I 3 u — ® ' (w —1) € R,
is measurable, where ®,, denotes the cumulative distribution function of v,. We define ®,1(1) as the
essential supremum and ®,1(0) as the essential infimum.

Define the canonical filtered probability space (Q, F,F,P), where F = {F;,t > 0} is the completed
natural filtration and P is the probability measure, both generated by a canonical one-dimensional
Brownian motion W and a Poisson random measure N (dt,de) with compensator v(de)dt. Here, the
measure v is uniform on [1,2], and is called the canonical measure. The idea is to use a common
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Poisson random measure to generate different random measures N, for all u € I through the mapping
®, 1 ueI. Notethat @' is monotone and deterministic, it preserve the properties of Poisson random
measure. N (dt,®, (e — 1)de) is a Poisson random measure with intensity v, (de)dt. The canonically
coupled graphon system is now written as follows:

T B _ T _
=@+JJJGWMﬂ& Xu(5), Zuls), I mwwM@@—LZ$WW@ -
J f (e — 1))N(ds, de), uel, for te[0,T].

Note that £(X, Z,0) = L(X, Z,£). We now give the Lipschitz conditions on the driver f:

Assumption 5.2. For each ue I,

fOx[0,T]xR*x L —R

((JJ,t,LU/,.%,Z,K(')) — f(w7t7x/7$727£('))
is PR B(R?) ® B(L,%u) measurable, and satisfies f(-,-,0,0,0,0) € H?, and f is Lipschitz-continuous
in (2,2, 2,0), i.e., there exists a constant C' = 0 such that dt ® dP-a.s., for each (x},x1,21,¢1) and

(xh, x2, 29, 02), we have

|f(w,t,m'1,a:1, 21761(')) - f(wa taxéam% 22762('))’
<C(|zy — 25| + |o1 — za| + |21 — 22 + [ — L2]u,)-

To prove the existence and uniqueness, we need the following lemma.

Lemma 5.3. For a given T € MS?, let fy.s = L(Ty(s)), and suppose Assumption 5.1 and 5.2 are
satisfied. Then there exists a unique solution (X, Zy, ly)uer € M to the following graphon BSDE with
Jumps,

X (t jffauysxxmz<wwmwmmw5

_L f Jzus e — 1)N(ds,de), te[0,T),

Moreover, X belong to MS?.

Proof. Define the following iterating equations (for n > 1):
sujjf (1,9) (5,0, X0 ), 207 (9), 605 () () s

_L Jf e —1))N(ds,de), te[0,T),
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where for n = 0 we set ®) = (0,0,0) for all u € I. For each n > 1, the driver

(s, - jfeuyf@xxnw>znwx%;omwum@

does not depend on ®" := (X!, Z 07)e1, for each uw e I. Thus X is given by

u»u

T/\
Xﬁw=mmwwj;ﬁwwmal (5.4)

By the martingale representation theorem for locally square integrable martingales, see e.g. [191],

(Z7, ) is the unique pair of predictable processes satisfying

T _ t t N
EhAﬂ+j;ﬁ@J%Uﬂ=wA®+LZH$MW$+LJ;%AQR@—UVW%Ad

By our assumptions, u — ,, is measurable, u — @, 1(w—1) is measurable and, for all (u, s) € I x[0,T],
f”( -) is Lipschitz-continuous in . Suppose (u, 3) — X'1(s) e L2(Q, F,P) is measurable. By using
[55, Lemma A.3 and A4], [ 5 u — Sgﬁl(s,-)ds € L?(Fr) is measurable. Note that by Jensen’s
inequality, for Y e L?(Fr),

Y —» E[Y|F], te[0,T],

is a contraction and therefore is continuous. Hence we have that for any ¢ € [0,T], u — X]!(t) is
measurable. It follows by [55, Lemma A.2] that u — X7 is measurable for n > 1. Clearly u — X0
is measurable, thus for all n > 1, X! is measurable in u. Then by classic existence and uniqueness
results for BSDEs with jumps (cf. [183, Proposition A.2]), for each u € I, ®] converges to some limit
®, € S? x H? x H2, and since u — X is measurable, the limit u — X, is measurable and thus
X e MS2 O

We are now ready to prove the following existence and uniqueness theorem.

Theorem 5.4. We suppose Assumption 5.1 and 5.2 are satisfied and & € MLQ(}"T) Then the coupled
system (5.2) admits a unique solution ® := (X,Z,0) € M such that X € MS?. Furthermore, the
graphon mean-field BSDE system with jumps (5.1) also admits a unique solution ® := (X, Z,{) € M,
and I 3 uw— L(X,) is measurable.

Proof. The measurability issue has been addressed in Lemma 5.3. We prove the existence and unique-
ness results by fixed point theorem arguments. With a slight abuse of notation, we couple the system
by the canonic way introduced before without changing the form of (5.1). We establish a Picard itera-
tion sequence and proceed by proving the contraction property. We first define the following iterating
equation:

g+ jjf () (5, 2, X2(5), Z2(5), €0, ()i (da)dyds

__~£ J‘ J‘ J(ds,de), tel[0,T],
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where i := L(X}}), and for n = 0 we set ®% = (0,0,0) for all uw € I. By Lemma 5.3, there exists a
unique solution to the above equation, for each n > 1. Let ®" := (X", Z",£"(-)) be the solution of the
above iterating BSDE with jumps with X € MS? for n > 1. We define the mapping ¥(®" 1) = ¢,

—>n

We now show that W is a contraction in M. Let X, (t) := X™(t)—=X""1(t), Z..(t) := ZM(t)—Z""(t)
and 7, wt = lus —luy L. For r > 0, applying Itd’s formula to €| X, (s)|> between 0 and T, n > 1, we
obtain

T

T T
(X202 + 7 f e (X (5))2ds + f em<zz<s>>2ds+f T 2 ds
0 0

0

=2 [ o) [ ([ Gl o X210, 200, 2Dz

0
- JR G(u,y) f(s,2, X5 (s), Zy ™ (), 65 () * (da))dyds

T =<-N ——5n T rs =<-Nn -n ~
) J X (5)Z7 (5)AWi(s) — 2 L ; JEXU(S—)eM(e)Nu(ds,de).

0

Taking expectation, noting that X™ and X"~! belong to S?, all local martingales of the right hand
side in the above inequality are martingales. We thus get

T

E[r JT s (X7 (s))2ds +f

T
(2" (5))2ds + f "7 2. ds]
0 0 0

<E[2f X [ ([, Gl fls.0, X300, 220 2 ()
- || Gl s X0 (9, 2760 05T O ) s
Let
- | Gl s, X360, 2209, €Dy o)

- fRGw, 9 (5,2, X21(s), 201 (s), €051l s2(d).

The Lipschitz property of the driver f and boundedness of the graphon G imply that for some constant
Coy, we have

A? <2 JR Gu,y)[f (5,2, Pi(s)) — f(s,2, @47 () ]y s (da)]®

T2 jR G, y) f (5, @2 (8)) 5t — ps2) (d) 2
<Co(IX()P + (22 + T 2.) + CoWalu s ul32)2,

where the last inequality uses Remark 5.1. Then for any ¢ > 0, by using the inequality 2ab <
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a?/e? + &2b?, we have

T T T
E[r f e (X0 (s))%ds + J eTS(zz(s))2ds+L e[ 65 |2ds]

0 0

T
<C§62E[f0 (I Xu ()P + 12, () + 1usl7, + L(Wz(uZ;l, Hys)) dy)ds)

+ g f " s X7 (s 2ds]
52 0 w
T

<C§52E[J

XL+ ZU) R + [T s+ | j Waluys* ) dsdy]

1 T rs| 2
+ SE[| €7[X,(s)["ds]
€ 0

T T
rs /1IN n -n rsi~n—1
<CEHEL| e (XUP + [Z0F + T2, )ds] + supBL | (%) (9P ds))
Y

1 (.
+€2E[j &K (5) P ds].
0

By choosing appropriate r and ¢ such that r — C2e? — 5% > C2c? and 1 — C2e? > 0, we obtain the

contraction inequality with certain constant o < 1:

T T
supE[f X 4 (2 4 | i)ds]@supl&[f (X 2 4 T, )]
uel 0 uel 0

We further get the contraction inequality in M,

T
1 1
ool [ (T 4+ 77 + [Z12,)ds) < asup B[ (X7 + (277 4 7272, sl
ue

which implies that the map ¥ is a contraction in M. It thus has a unique fixed point, denoted as
¢ := (X, Z,¢). Now taking the limit in the iterating equation (5.3), we conclude that ® is the unique
solution of (5.1). Since u — X! is measurable for each n > 1, the limit u — X, is also measurable in
u.

We have proved the existence and uniqueness of a solution for the coupled system (5.2). The
existence and uniqueness of a solution with the same law of the first component for the original
graphon system (5.1) follows. The measurability for the map u — L£(X,) is a direct consequence
since the weak topology is weaker than the topology induced by the running supremum of square
expectation. The proof is then complete. O

Let [E; denote the conditional expectation given F;. We have the following estimate for the solution
of the graphon mean-field BSDE .

Proposition 5.5. Suppose Assumption 5.2 holds and let (X, Z, ) be the solution of the graphon mean-
field BSDE (5.1) with terminal value ¢ € ML?*(Fr). Denote by Cr the Lipschitz constant of f. Let
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n,7 > 0 be some constants such that n < 1/(4C%). If r —2/n = 2, we have

T
f E[e X, (1) Jdu < f E[T |, du + 4n f f G2(u, ) (5, 0,0,0,0)dyds,
I I t I

and for each uwe I,

E[e"|Xu ()] < (1+4CE(T — 1)

~—

T

(4nf e”f G*(u,y)£*(s,0,0,0,0)dyds)
t I

+4nCE(T —t) | E[e™|€u]?]du + E[e"[&,[].

I

Furthermore, we get the following estimate without the expectation:

T
e X, (1)) < (1 + 4nC3 (T — t)) (4nJ e’ J G%(u,y)f*(s,0,0,0, O)dyds)
t I

+4nCL(T —t) L Ei[e™ |€ul*]du + Ei[e™ |€u?].

Proof. For any u € I, by applying Itd’s formula to €| X, (s)|? between [t,T] and taking conditional
expectation given JF;, we obtain

T T

e’"s|Zu(s)|2ds] + Et[f ey
¢

T
e Xy (1) + rIEt[f €| Xu(s)Pds] + Et[f 2 ds

¢
< 2K [J

T
) ||| Gl Xo(6), 2u(0), ()] + Bl T XUT P,
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By using the inequality 2ab < a?/e% + £2b? and the Lipschitz property of f, we have

T

|

T T
e”Xu(t)|2+rIEt[J e”\Xu(s)]?ds]—i—Et[f ers\Zu(s)\st]—l—Et[J € 0|2 ds
t t t

T T
<om[ f €7 Xu(s)[Pds + & f e”\“RGw,y)f(s,x,xu<s>,Zu<s>,eu,s<->>uy,s<dw>dy!2ds]
+ By T|Xu(T) ]

1 T
<[ j €731 X, (s)Pds] + B[ X, ()]
T
+52Et[£ ers|L JR G, 9)1(5,0,0,0,0) + Cr (2] + [Xu(5)] + 1 Za()] + Vs o) ptys (d)dy|ds]
1 T
< 2Et[€—2 J ™| Xy (s)2ds] + Ee[e"T | X (T) ]
t

2 )’My,S(dx)dde]

T
+ 552Et[£ e”LJR G?(u,)(£%(5,0,0,0,0) + CL(|2* + [Xu(s)]* + | Zu(s)* + |u,

1 T T
< 2Et[62£ "5 Xy (s)[*ds| + Ei[e"| Xo(T)[*] + 552£ e’ L G?*(u, y) f%(5,0,0,0,0)dyds

T

T
+ 5520%Et[J e (IXu(8)” + | Zu(8)|? + [€us]2,))ds] + 56201%f eTSL]E|Xy(s)2dyds.
t

t

Taking expectation with respect to F and integrating for all v € I, we get

T

T T
f{E[e”|XU(t)|2]+r]E[ f eTS|Xu(s)|2ds]+E[f eTS|Zu(s)|2ds]+E[J ¢ 0 t|2. ds}du
I t t t

1 (T T
< 2J E[? J e”]Xu(s)Fds]du + J E[eT| X (T)*]du + 52 f e’ f G?(u,y)£%(5,0,0,0,0)dyds
I t I t I

T T
+5g2chE[L &5 (|Xu(5)2 + | Zu(s)]2 + eu,su,%u))ds]dumg?cgﬁ eTSLE\Xy(s)deds.
(5.7)

Taking ¢ and 7 which satisfy 2/¢2 + 106201% < r and 10520% < 1 at the same time, i.e., satisfying the
conditions in the proposition with change of variable n = 2, it follows that

T
f E[e"| X () 2ldu < f E[e"T|€.[2]du + 41 f s f G2(u,9)f2(5,0,0,0,0)dyds.  (5.8)
I I t I
Now, inserting the above result into (5.6), we obtain for each u € I,
Ele"| X, (t)|*] < (1 + 5e*CE(T — 1)) (5e J J G*(u,y)*(s,0,0,0,0)dyds)

+5e2C(T JE [e"T|&u*]du + B[ |2
I

194



Chapter 5. Graphon Mean Field Backward Stochastic Differential Equations and Associated

Dynamic Risk Measures 3 5.2. Graphon mean-field BSDEs with jumps
NG

Finally, by using equation (5.8) in the last line of (5.6), we obtain the last assertion. The proof is now
complete. ]

5.2.4 Comparison theorems

For convenience, let F;, denote the drift driver of the © component in the graphon mean-field system
(5.1), i.e.

Fu(w, t, £X0), 2, 2, 0()) m LJR Glu ) f(t, 2, 2, 6() )y o (da )y,

In order to compare the first components of the solutions of two graphon mean-filed BSDEs, we
need the following additional assumption.

Assumption 5.3. We assume that for each w € I and each (x',x,z,01,02) € R3 x (L2 )2, there exists

Vuy
. / l1,¢
a function ¢y ;7 € L2 such that

f(ta J;/a X, z, gl) - f(tv xla Z,z, 62) = <¢ﬁ:iz727£17£27£1 - £2>l/u7
with

qﬁm/f’z’fl’ez . [0,T] x Q x R3 x (Lgu)2 — L?/u;

u,

z',x,2,01,02 (
u,t

(t7w7x17x727£17£2) = O.),')

P ® B(R*) ® B((L%,)?) measurable, bounded and satisfying dP ® dt ® dv,, a.s.

/7 ’ 7£ 7Z l’ k) 72 7€
Gui R (y) = =1 and  [@y, 77T ()] < ¥ (y),

2
for some ¢ € L;, .

We have the following comparison theorems.

Theorem 5.6 (Comparison theorem for graphon mean-field BSDE). Let ¢, &2 € ML?(Fr) and
denote by (X', 721, 0Y) and (X2, 22, 02) the solution of graphon mean-field BSDE with jumps (5.1)
associated to (&%, f1) and (€2, f2) respectively. Let fi and fo both satisfy Assumption 5.2, and further
assume that:

o At least one of f1 and fo satisfies Assumption 5.3, and the other one (or at least one if both
satisfy Assumption 5.3) is non-decreasing in x';

e Foreachu e I\H with H a zero Lebesque measure subset of I, €2 > ¢l a.s. and fo(w,t, ', 2z, 2,0) >

filw, t, 2’ x, 2, 0) a.s. for all (t,a',x,2,0) e R* x L?,u.

Then for all t € [0,T] and uw e I\H, we have X2(t) = X1(t) almost surely.
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Proof. Without loss of generality, assume that f; satisfies Assumption 5.3 and f> is non-decreasing in
2. For each u € I and i = 1,2, we denote by (X5", Zb™ (4™ the solution of the following iterating
BSDE with jumps,

Xin(t) = € + f”euyﬂsxw”(m"( ), £ ()i (d)dyds

—f Zim($)dW (s J‘J‘ﬁ” )N (ds,de), te[0,T],
t

for n > 1, where v := L(X}™), and for n = 0 we set (X.°, Z.% ¢5°) = (0,0,0) for all u € I. For
i=1,2, let

Fi(w, s, L(Xs), 2,2, 0(-) JJGuyfz(sx z, 2, 0()) py,s (dz’)dy.
By our assumptions, we have

f f Gl y) fi(s, 2, X1O(5), Z10(s), €50 ()0 (d)dy
I JR
< f j G, y) fals, 2, X20(s), 229(s), 20())20(d)dy.
I JR

Moreover, since fi satisfies Assumption 5.3, the graphon mean-field driver Fl(s, L(X}0),z, 2,¢)
satisfies the conditions in [183, Theorem 4.2], and from that comparison theorem for BSDE with
jumps, we have for t € [0,7] and u € I\H,

XLty < X241 a.s.
Then, since fo is non-decreasing in x’, we have for u € I\H,
Fl(s, L(XIY) 2, 2,0) < F2(s, L(XPY), 2,2, 0) < F2(s, L(X2Y), 2, 2,0).
Again by the classic comparison theorem, we obtain
XAt < X2 (1) a.s.
Proceeding by the same argument as above, we iteratively obtain that, for ¢t € [0,T] and v € I\H,

X"t < X2"(t) a.s., for n>1.

From the proof of the existence and uniqueness result, Theorem 5.4, we know that for i = 1,2,
(Xin Zin gin) converges to the unique solution associated to f; respectively, denoted by (X, Z¢, ¢%).
It thus follows that for all u € I\H and t € [0,7T], a.s. X}(t) < X2(t), as desired. O

Theorem 5.7. (Strict comparison for graphon mean-field BSDE) Suppose the assumptz'ons in Theo-
rem 5.6 hold. Further, assume that fi satisfies Assumption 5.3 with strict inequality, i.e., ¢, y) >
—1, and &} = €2 a.s. for eachu € I\H with H a zero Lebesgue measure subset of I, and f1 (w,t,x x,z,0) =
folw, t, 2 2, 2,0) a.s. for all (t,a',3,2,0) e R* x L2 . Then if X'(to) = X?(to) (i.e. Xl(to) X2(to)
for all w e I\H) for some to € [0,T], we have X'(-) = X2() a.s. on [tg,T], and fg(w t,a x,z,0) =
filw,t, 2’ 2, 2,0) on [to, T] forue I\H.

x’ 1,2751,52(
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Proof. For each u € I\H, let X, (t) := XL(t) — X2(t), Zu(t) := ZL(t) — Z2(t) and ly.(") = E}L,t(') —
02 +(-). Denote

Fu(t) = F&(t,ﬁ(th),Xé,Zl l, ()) - F3<t7‘c(Xt2)7X3722 e ())

w? vu,t wr tu,t
First note that from Assumption 5.3, we have by adding and subtracting terms that
Fu(t) ZFJ(tv E(th)a ng ZZ? K%,t()) - Fg(ta E(XtQ)> Xq%: ZZ? Ei,t())
+ 5u,tyu (t) + 7ru(l‘s)zu (t) + <¢u,tazu,t>7

where 1 1 1 1 p1 1 1 2 1 p1
5= Fu (t? E(Xt )v Xu’ Zu’ éu,t(')) B Fu (tv ‘C(Xt )v Xu7 Zua Zu,t(')) 1~
u,t += Yu(t) {Xu(t)#0}
T = F& (t7 E(th), Xg? Z&,E,b’t()) - FJ (t7 E(th), XS, Zg7&i,t()) 1

Xou(t) {Zu(t)=0}’

and ¢, is as given in Assumption 5.3, and is bounded. By the Lipschitz property of f on (z, z), d,
and , are also bounded and predictable. For each to € [0, T, let (I'f; ;)ie[t,,7) be the unique solution
of the SDE

dly =T 4 [5u,tdt + Tt AW (t) + JE ¢u,t(e)]\~fu(dt, de)], i =1

Then by the classic comparison theorem for linear BSDE (cf. [183, Lemma 4.1]), we have for each
ueI\H and to <t <T,

T
Xu(to) > E[TE (6] — €2) + j TY G sl Fo). (5.9)
to

where

au,t = F&(t7£(X1€1)aX37Z2 62

w? “u,t

()) - Fg(t7 E(XtQ)’ XS? Zg?£i,t())

By Theorem 5.6, for each u € I\H, we have a.s. X} > X2. By our assumptions and the non-decreasing
property of one of the two functions f; and fo, we have

$u,t = Fi(t7£(X7€1)aXi7ZQ 62

ur u,t

()) - FS(t,ﬁ(XtQ), XZ? Zg’gi,t(')) = 0.

Since for each u € I\H, m,+(e) > 1 dP ® dt ® dvy-a.s., it follows by [183, Corollary 3.5] that I'} , > 0
for all tg <t < T. Hence, by using Equation (5.9), we conclude that X!(¢) = X2(¢) for all u € I\H,
a.s. on [tg, T], and fo(w,t,2’,x,2,0) = fi(w,t,2',x,2,¢) on [ty, T]. O

5.2.5 Continuity and stability results

We study below the continuity and stability of our graphon mean-field BSDE system (5.1).

We need the following assumption:
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Assumption 5.4. For each ue I,

(i) uw— L(&,) is continuous w.r.t. the Wa metric.

(ii) there exists a finite collection of intervals {I; : i = 1,..., N} such that I = u;I;, and for each
i€ {l,...,N}, we have G(u,v) is continuous at u for each v € I\H; for some zero Lebesque
measure set H;.

For Lipschitz continuity, we need a stronger assumption.

Assumption 5.5. There exists a finite collection of intervals {I; : i =1,..., N} such that I = u;1;,
and for some constant C, we have for all ui,us € I;, vi,v2 € I, and i,j € {1,...,N},

WQ(‘C(gUl)v[’(guz)) < C|u1 - U2‘7

and,
|G (u1,v1) — G(uz,v2)| < C(lur — ua| + |v1 — va).

To study the continuity of solutions with respect to the label u, we need to measure how close two
solutions become in the usual norm for the solution of a BSDE with jumps as two labels uj,us € T
get progressively closer. We will proceed by estimating the distance between two solutions through
canonical coupling, which will then allow us to establish the continuity of solutions in the Wasserstein
L? distance.

The following proposition gives the continuity and Lipschitz continuity of the graphon mean-field
BSDE system (5.1).

Proposition 5.8. Suppose that Assumption 5.2 holds and the measures {vy }yer are a common measure
v. We have the following:

(i) (Distance estimation) For each i € {1,...,N} and for all uy,us € I;, under the canonical cou-
pling, we have (for some constant C')

T T

Zun (5) — Zug (5)|2d3] + E[ fo ot — ]

E[ sup X, (t) — Xoy (0]2] + E[ f 2 0s]

te[0,T7] 0

< CE[Xy, (T) = Xuo (T)]* + CL (G (u1,y) = G(uz, y)|*dy.
(ii) (Continuity) Under Assumption 5.4, for each i € {1,...,N}, the map I; 3 u — L(X,) is
continuous w.r.t. the Wy r metric.

(iii) (Lipschitz continuity) Under Assumption 5.5, for each i € {1,...,N}, the map I; 3 u — L(X,,)
is Lipschitz continuous.

198



Chapter 5. Graphon Mean Field Backward Stochastic Differential Equations and Associated

Dynamic Risk Measures 3 5.2. Graphon mean-field BSDEs with jumps
NG

Proof. We omit some details since the proof is similar to that of Theorem 5.14. Fix uj,uo € I and

€ [0,T]. Similar as in the proof of [47, Theorem 2.1], couple X,,, and X,, with the same Brownian
motion Wy, = Wy, = W and the same Poisson measure N,, (dt,de) = N,,(dt,de) = N(dt,de). By
applying It6’s formula to | Xy, (t) — X, (¢)| and taking conditional expectation given F;, denoted by
E¢, we have

T

T
Eel X () — Xun(6)? + Et[ﬁ Zun(5) — Zuy(s)Pdls] + B f T

vds]

T
<2Et[ (Xul (S) _Xuz(s)) ( G(ulvy)f(savam(S)?Zul (5)7£U1,S('))M?J,S(d$)
t I JR

- J;R G(u27 y)f(s, x, Xu2 (S)’ Zu2 (S)v guz,s(')):uy,s(dx))dyds] + Et’Xm (T) - Xu2 (T)|2'

By adding and subtracting terms and the inequality 2ab < a?/c? + £2b%, we have that

T T
X, (1) — Xy () + B[ f 120, (8) — Zu(5)Pds] + By f 000 — Ly | 2d5]
T
<O [ B [ 1600 X0 (50, 2k (90, b)) = F52 . X0n (5. Zu(5) () Py () ] s
t I JR

T
#50 [EL 1] 7600050060, 200 (9, ) Gl01,) — Gl )Py s

+ Et|XU1 (T) - XU2 (T)‘2 + 520]Et[J;T |XU1 (S) - XUZ (8)‘2d8].

Using the Lipschitz property of driver f and the solution ® = (X, Z,¢(-)) € M, we have

T
Jt o JI jR (522 Xy (5), Zuy (), s 5 () — F(5 2 Koy (8), Zu (5), Cup () Pty ] s
T

T T
<E f Xor (5) — X (5)[2ds] + B[ f | Zun () — Zug (5)|2ds] + Et[ﬁ [t — unsl 23],

t
a.

nd
. [ I‘JR f(sa w7Xu1 (8), ZU1 (S>7€u1,8(')>uy78(dx)‘ ’G(uhy) - G(u2ay)’ dy]ds

< Cf (1+supEX,(t) + EX7 (5) + El[lu, o + EZ; (s f 1G(u1,y) — G(us,y)|*dy)ds
yel

C'f J|G uy,y) — Gug, y)|*dyds.

By taking appropriate €, we can have for some constant C,

T T
E[ sup |Xu, (£) — Xuy (0) ]+E[f 120y (5) — Zog <>Pds]+E[f st — | 2d5]
te[0,T]

< CE| Xy, (T) — Xy, ( |2+CJ J\G u1,y) — G(ug,y)| dyds—kCJ E| Xy, () — Xu,(s)|%ds.
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By noticing that for any s € [0, 7],

T

BJ X (5) — Xua(5) <EL sup Xy (1) = Xa (0] + EL | 1Z0(5) = Zua(s) s
te[0,T7] 0
T
B s — sl
0

It then follows by Gronwall inequality that for some new constant C,

T T

| Zuy (8) = Zuy (5)]7ds] + E[f s = lug. sl 5]

B[ sup X, (8) ~ X (O] + EL | 0

te[0,T7] 0

< CE|Xy, (T) = Xuo (T)* + CL |G (ur,y) — Gluz,y)*dy.

Thus point (i) is proved. Taking the infimum over all random variables X, (T') and X,,(T") such that
L(Xy,(T)) = L(&,) and L(Xy, (T')) = L(u,), and combining this with the definition of Wa 7 (fty, s flu, ),
Assumption 5.4 and Assumption 5.5, we obtain continuity and Lipschitz continuity, respectively. [

Remark 5.9. Note that even when the intensity measures v,,u € I are different, the (Lipschitz)
continuity results in Proposition 5.8 remain true. The continuity assumption on terminal conditions
guarantees the continuity of the third component of solution. Under the canonical coupling, by pro-
ceeding as in the above proof, we get

T

T
E[ sup [ Xu, (£) = Xu ()]2] + E[ f \Zun (5) — Zuy (5)|2ds] + B f [ 0 ®1 — 0 0 B3 2ds
te[0,77] 0 0

< CE|[X (T) - Xup(T)P + C L G lur, ) — Glus, )y,

where the measure v is the canonical measure defined in the canonical coupling. We can regard £ o ®~!
as the third component of the solution.

We now study the stability of our graphon mean-field BSDE. That is, for a sequence of graphons
G, converging to some limit graphon G, in the sense of cut norm |G, — G||g — 0, we prove that
the corresponding solution of the graphon mean-field BSDE converges in some sense (specified in
the following theorem), and the law of the X component also converges in an integral sense of the
Wasserstein distance W on 1.

Theorem 5.10. Let (X, Z,¢) and (X™, Z™, ") be the solutions of (5.1) associated with graphons G
and G, terminal condition £ and ", respectively. Suppose that [ satisfies Assumption 5.2. Then we
have

T T
B[ (sup [X2(0) - Xu(0F + | 1Z20) ~ ZuO)Pdt + |16, ~ url?, de) ]
I te[0,T) 0 0 (5.10)
<[] Ble. - €2Pdu+ 16 - Gulo)
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If |Gn — Go — 0 and E[§; [&, — &1*du] — 0 as n — o, it follows that
T T
B[ (sup X0 - X0 + | 1220~ ZuOPde+ | 165~ tusl )]0, (511)
I te[0,T] 0 0

and consequently
[ wartee. cx) — o (5.19)
I

Proof. Let py o be the law of Xj/(s). Similarly as in the proof of Proposition 5.8, for any u € I,
applying Itd’s formula to | X, (t) — X7 (¢)| and taking conditional expectation, we get
T T
Ee| Xu () — X3 ()] + Et[f |Zu(s) — Z3j(s)Pds] + Et[j [ue = €5 s

t
T

<2 (Xu(6) = X2 [ ([ G050, X06) 20, LDty
- jR Gt 9) £ (5,3, XI(5), Z2(5), €0, (D) o)) dyds] + B Xo(T) — X2(T)[2.
By adding and subtracting terms, we obtain
T T
X (8) = XD + By j 1Zu(s) — Z2(s) 2ds] + Et[ﬁ 00 — 2 |2ds
T
<€1QCJ Et[f ‘f f(s,z, X (), Zu(s),Eu’s(-))uyﬁ(dm)!Q]G(u,y) - Gn(u,y)|2dy]ds
t I JR
1 r g n n n 2
50 | B[ [ 17600 X060, Zu(0).00) = 51, X20), Z205) £ )P G2 )t )y s
50 | B[ [ 7600 X000, 2260 L))t = s ) de) ]
+E| X (T) — Xo(T)|? + £2CE;, [fT | Xu(5) — Xu(s)[2ds].

t
(5.13)

Denote the first three terms on the right hand side by Z7}(t), Zj; o(t) and Zj; 3(t) respectively. By
using the Lipschitz property of f, the property of (X, Z,¢) € M, we have for all u € I,

T
¢ f E[\f F(8,2, Xu(8), Zu(8), bus(-) ) p1ys (d) ]

2cf 1+ [Xu()2 + 12X ()2 + 1 Zu() + 2]
T T
< 20T + CsupE[ sup | X, (t)]* + J | Z(5)|?ds + J 1€u.s]2. ds] = O(1).
uel  te[0,T] 0 0
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From the above inequality, we infer for all u € I,

T24(0) < 5C | (Glun) = Gulu.) s

By the equivalence between the cut norm and the L' operator norm of a graphon, we have

1 1
| i< 50| [ (G - Gulw) dyin < 5C1G - Gl

Then again by the Lipschitz property of f and Remark 5.1, we have

1 T
| Zhatdu< 50 [ @IX) = XEOP +12u06) = ZEGP + [us — €3,)2,]) duds,
1 t JI
and
n 1 g ny\\2
J u3(t)du < QCJ J(WQ,S(:U'wMy)) dy.
I = t JI

Similarly, by taking an appropriate ¢ and applying Gronwall inequality, we get with some new constant

C

| BLsup 1,0 - X3 (0P 1du <C[ | BIXAT) - X3(T)Pau
I te[o,T] I

T
£ 1C = Gulo + fo f (W (s ) 2dyds).

Now by inserting the above inequality to (5.13) and finding another appropriate e, we can obtain

T T
B[ (sup [X2(0) ~ Xu(0F + | 1Z20) ~ Zu0)Pdt + |16, = url?, de) )
I te[0,T] 0 0 (5.14)

T
< Of [ BIXAT) - XU Pdu+ 16— Gulot [ [ Wi ) dus]

Notice that by the definition of Wh , it is clear that
| ¥ty <

T T
B[ (sup X2~ Xu0F + | 1Z20) — Zu(0)Pdt + | 165, ~ url?, de) ]
I te[0,T] 0 0

Hence again by Gronwall inequality and our assumptions, we can conclude that

T T
B[ (sup 1X2(0) ~ Xu(0F + | 1Z00) ~ Zu0)Pdt + |16, = url?, de) ]
I te[0,T] 0 0

< C[| BIX.(T) - X2(T)Pdu-+ ]G - Gulal,
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Thus Inequality (5.10) is proved. Results (5.11) and (5.12) follow from the convergence assumptions
|Gr. — Gllo — 0 and E[§, |&, — £[*du] — 0 as n — co. For the last result, since the laws of £ and £"
are given, we can use the coupling arguments as in the proof of Proposition 5.8. Taking the infimum
over &, and & with £(&,) = A, and L£(&]!) = A}, for each u € I, it follows that

L War(£(X,), LX) < C[ L (Wa(Au, AT))2du + |G — Golr]

The proof is complete. O

We next provide an example where the convergence of graphons, i.e., |G, — G|g — 0 as n — o0,
is well known and Theorem 5.10 can be applied.

Example 5.11. For a size n adjacency matriz A, we define the associated step graphon G 4 as:
Ga(u,v) = A;j, for (u,v) e ' x I,
where I' := ((i — 1)/n,i/n], for i = 2,...,n and I{" := [0,1/n]. Let " be the adjacency matriz of

an Erdos-Rényi random graph G(n,py). If p, = p is fized as n — oo, then it is well known that, as
n — 0, the associated graphon G¢n converges in cut norm to the constant graphon G = p.

We now provide another stability result which provides the convergence of graphon mean-field
BSDEs in the space M.

Proposition 5.12. With the same notation and under the same assumptions as in Theorem 5.10, we

have
T T
supE[ sup [X7() — X, (8)[2 + f Z0(8) — Zu(D)2dt + f 100, — ]2, df]
uel  te[0,T] 0 0
< C[suII)E|§u — &P + |G = Gpllowseo| — 0.
ue
Consequently,

WIL(L(X), L(X™)) — 0.

Furthermore, given the law of terminal conditions L£(&,) = Ay and L(&)}) = Al for each u € I, we
have explicitly

WT(L(X), £(X™) < C[WE(A,A™)? + |G — Gllowan]-

Proof. The proof is similar as the proof of Theorem 5.10. We highlight only the difference. By
definition, we have

n 1 1
u,1(0) < gCL(G(Ua y) — Gn(u,y))dy < ?CHG - Gn”OO—»OO‘
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We then take the supremum of each term of the right hand side of (5.14), so that for all u € I,

T T
E[ sup |[X7(t) — X (t) + f 20 (t) — Zu(b)2dt + f 100, — ]2, df]
0 0

te[0,T7]
T
< ClspEIX(T) = XU(T)P + |G = Caloroon + L SUp(Wh sy 1) s
ue uel

Thus we can put the supremum on the left hand side, that is

]

T
< C[supE|Xy(T) — X2(T)|* + |G — Gulowow + J SuIID(WZS(’U'y"U/Z))QdS]'
0 wue

uel

T T
supE[ sup [X2(0) ~ Xu(OF + | 1Z00) ~ Zu®Pat + | 168, Curll e
uel  t€[0,T] 0 0

Then everything follows similarly as in the proof of Theorem 5.10. O

5.3 Convergence of interacting particle systems to graphon mean-
field BSDEs

Consider a sequence of N particle graphon interacting systems with N € N. We prove that under
proper assumptions, the sequence of particle systems converges to the graphon BSDE system, and the
convergence rate is also precised.

We define the corresponding N-coupled BSDE system (for ¢ = 1,..., N):
Xw=+ [ & 2 G 6 X9 X060, 209, 04 Os — [ 2 ()it
t

JJKNZ Ni(ds,de), te0,T] (5.15)

xN(T) =g,

(2

where W; := W i are ii.d. Brownian motions, and ]/\\Q(dt,de) =N (dt de) are independent Poisson

random measures. We assume that &V € L?(Fr) for all i = 1,.. N Hereby, QN N x N — R{ is
symmetric, describing the strength of interaction between partlcle i and j. The graphon G can be
regarded as the limit of Ci];f as N — 0.

Similarly as before, we define the space

M {q)N {(Xl’ Zi, b ( )) € SQ X H2 X Hig\/}ﬁl, such that

T

1/2

|8 |y == max_(E[ sup [ Xi(6)[%] + E[ f |Zi<t>|2dt+E[f 6:012.081) 72 < o0},
i=L..N" “efo,1) 0 0
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AFRe
where v;" = v;/y. ¥

We first provide a uniqueness theorem for the N-coupled BSDE system (5.15).

Theorem 5.13. Let f satisfy Assumption 5.2. Then the N-coupled BSDE system (5.15) admits a
unique solution ®N e M.

Proof. The proof is similar to that of the corresponding mean-field BSDE. We first establish the
contraction property and the convergence of Picard iterative sequence. Here for notation convenience,
we drop the superscript N for the system. We set ®° = {<I>0}N 1 with (IDO (0,0,0) for all z =1,..., N,
and define the iterative map ®"*1 := ¥(®") at step n € N, where @” = {(XP, ZP )Y s deﬁned
by the solution of the following iterative equation:

T
=&+ j ZQJ 5, X7 H(s), XT'(s), 2] (s )J%())ds—ﬁ Z{(s)dWi(s)

J f 07 (e)Nj(ds,de), te[0,T], (5.16)
&i-

Xp(T) =

Note that at each iteration step n > 1 and for each i < N, the existence and uniqueness of
(XP, 720 00) e S? x H? x ]HIIQ/N is established by classical results since the driver is Lipschitz, see

[183)].

It is sufficient to prove that (5.15) admits a unique solution in MN . For convenience, denote
|- :==1-|,~. We show that ¥ is a contraction in MY. As before, let X; () := XP(t) — X" (t),

N

Z!(t) :== ZM(t) — ZPL(t) and Zm = " — 2" For r > 0, applying Itd’s formula to €"%| X (s)|?
between 0 and 7', n > 1 and taking expectation, it follows that,

T

T T
Bl | e”(fﬁs))?dwf 2P+ | T

0 . ﬂ 0
<E[2 jo X Zcm 5, XN (s), XP(5), Z(), €74(1)
—f(s,X]’-‘ 2(5),X{” 1(5),Z{lil(s),é’;*’i(-)))ds].
Similarly let

N
R e 3 G5 X771, 805) — (5, X720, 87 (5).
j=1

The Lipschitzness of the driver f and boundedness of ¢;; imply that for some constant Cj,

ZCO ()1 + X5 ()1 + 127 (s)1% + 125 1).
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Then by Cauchy-Schwarz inequality, we have for any € > 0,

T

T T
Blr [ e (X7 (9)Pds + f AT RS

0 0

<C3E] f e Z ()2 + (X7 + [Z0()2 + [77)2)ds]

1 T TS|yt 2
+ SE[| €7[X;(s)["ds]
€ 0

T A T
<002€2{E[L e (IX7 ()" + [Z3 () + 16, ) ds +SupE[J X7 (o) ds])

0

1 T TS|yt 2
+;2E[ e X; (s)|“ds].

0

By choosing r and € such that r — C3e% — 5 > C3e? and 1 — C2e? > 0 at the same time, we obtain
the contraction inequality with certain constant a<1:

T .
max ]E[f (TR 4 (22 + [0
0

i=1,..,N

T
B)ds] < asupBl| (X4 27 4 [P Bl

We get further the contraction inequality in MY,

T .
max E[f (X2 + 2" + |7
0

i=1,...,N

T
r%>ds]<asup1a[j (XL (277 + 7 2)ds).
uel 0

Therefore the map ¥ is a contraction in M” and it has a unique fixed point, which is denoted by ®V.

Now by taking a limit in the iterating equation (5.3), we conclude that ®" is the unique solution of
(5.15). O

N

With a mild regularity assumption on the terminal value and the interaction terms ¢;;, we have

the following convergence result.

Assumption 5.6. For a given graphon G, we say that ¢V := {Cg}i,je[N] satisfies the regularity
assumption with graphon G if either:

(i) ¢ = G, %)

(ii) Cg = Bernoulli(G(%, %)) independently for all 1 < i < j < N and independent of {Wy, Ny, &y :
uel}.

For notation simplicity, we let all v, be a common measure v. But notice that all following results
hold for different v,,.
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Theorem 5.14. Let Assumptions 5.2 and 5.5%’§ﬁllﬁlled, Suppose that (* satisfies the regularity
assumption 5.6 with graphon G, G is Lipschitz continuous and the terminal conditions &N and & satisfy

N 12 —1
max BlgY — ¢ P = O(N ).

1=

Then the unique solution ®N of (5.15) converges to the unique solution of (5.1) with the convergence

rate 1/\/N and

L
N

T
‘max_ E | sup \XZN(t) —Xi(t)\Q +f ’ZzN(t)
i=1,..,N t[0,7 N 0

<CN! El¢N —¢.?=0(N"!
CN™ +C max EIg" — ¢ 7= O(NT),

T i
()] dt+J0 | —eF IIEdt]

(5.17)

for all N € N and some constant C. Furthermore, for ;' = % Z 5XN and ke = §; L(Xu(t))du,
we have

sup E[(Wa(kl, ke))?] < ONTV2 (5.18)
te[0,T7]

Proof. For convenience, we denote by X;(t) := XN(t) — X% (t), Zi(t) := ZN(t) — Z.i (t), ﬂ() =

N s

EiN() - Etﬁ() and §; := &N — ¢, . By applying Ito’s formula to | X |2 on [t, T], we have
N

T T .
X;(t)? Zi(s)%d 0|2
<t>+ft (s) s+f 7 |2ds
~ 1 y N N N
=X,(T) +2JX Nngst ), N (s))

[ [ ot 0 O etaninias 2 [ ToZusyam,

—2 f f X, (s—)7.(e)N(ds, de)

<[y 2< Fs. XN 0 0) = | | Gl (5. (5D ) s

(5.19)

T T
aZJ; Xi(s)%ds + & — 2L X ZsdWs — 2£ L X, l,(e)N(ds,de).

We now put attention on the driver difference term. We will analyze the integrand for fixed
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[t, T]. Taking conditional expectation given F;, and adding and subtracting terms, we get

wz o foth

(5,2, P ( ))uy,s(da:)dy’2

<3| 2 G (£ (5. X (), B (5)) = £ (5. X1 (5), <1>%<s>>>|2
1 & N 2
T SNCHEEABENE )= | Gl D@ (g ()
1 1 g
+3Et’N;JRG(N Vf(s,2,®i(s))pn; (dx —LJG ) f(s,z, @ ()),uysdxdy’

For the first term Z{¥(s), by Lipschitz continuity of f and boundedness of U , we have

I (s) < ol max_E[Xi(s)P] + BLF() +[Zils)? + [T 12D) (5.:20)
For the second term ZJ'(s), we first analyse E[ZJ' (s)]. By the independence of {Cg }and {X.},
we have "
E P G L d
[ 2 S N2 Zk CZ] (5)7 %(S)) - R (N> E)f(saxa %(8))#%#@[1’))
Aij,
P
(G (X (), @15 = | Gl L) f (5,2, @1 () g (d2))] (5-21)
< W‘Ai’j’k‘co S;;I;E[Xu(s) ] < N

where A; ;1 is the set of triplets {i,j,k} in [n]? such that j = k # 4, and its cardinality is of order

O(N). The last inequality follows from the uniform boundedness of the second moment of X, on
[0,T1].

We now estimate the expectation of the third term E[Z}'(s)]. By adding and subtracting terms
we get

Yo < 28] | f [G(ﬁ“fﬁ) —G(%,y)]f(sv%q’l(S))ums(dx)dy!2
+2E’ff 8 z, D ( )) [Ny] dx dy JJ (s,2,® ( ))My,s(da?)dy‘z

N
]\727

(5.22)
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where the last inequality comes from the Lipsc@:fiﬁé'\’ property of f, the uniform boundedness of the
second moments of X, (s) for all u € I, the property of ® € M, Remark 5.1 and Proposition 5.8 (iii).

Coming back to (5.19) and taking conditional expectation given F;, denoted by E;, we have

T T X
TP + | BZiGs)as + f E, (|7 2]ds

t

T T R
< Ef[E] + 3a2Co j B[ max[Xi(9)]?lds + 3a°Co j EL(Z:(s)? + [C2)0ds  (5.23)
t t

i=1,...,

T T

E[| X3 (s)|%]ds + f (Iév(s) + Iév(s))ds.

1
2 R
+(3a00+a2)f t

t

By choosing a? < 1/(3Cy), we obtain
T

— 1 — T _
2 2 2 N N 2
Jmax [XG (0] < (6a°Co + —5)Ed] t max [Xi(s)["ds] +£ (Lo () + I3 (s))ds + max Ee[g;[7].
(5.24)

We then apply Gronwall’s inequality to get that

T
max (K0P < C [ (@(s) + T (9)ds + C max Ei[[EL)
i=1,..., t 1=15eens
for all t € [0,T]. So we have further
T
‘max E[ sup |X;(t)[*] <C | E[ZY(s) + I (s)]ds + C max_F4[|&;*]
Z:L...,N tE[O,T] 0 Z:L...,N

C _
<y + O, max B[]

Inserting the above equation into (5.23) and choosing again a? < 1/(3Cp), we have in turn
T T = C .
Et[f Zi(s)*ds] + Et[J [Clds] < < + €, max Eu[g ).
t ¢ i=1,....N

Combining the above two formulas we obtain (5.17).

We now show (5.25). Denote &)Y = + vazl dx , (1) By (5.17), it is easily seen than
N

_ C
sup E[Wa(s, AY))) < -
te[0,T7]
Then notice that the jump diffusion of each X, is influenced only by the laws of others, which can be
regarded as independent. Using the uniform second moment bound of X, for all u € I on [0,T], we
can apply [53, Lemma A.1], and get

sup E[(Wa(R), ER))?] <
te[0,T7]

ER
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Finally, since the graphon G is Lipschitz continuous, by Proposition 5.8, the Lipschitz continuity
property of the law of X,, on v in the Wasserstein L? distance guarantees that

sup E[(Wa(ERY, k)] < <.
te[0,T] N

Combining the above three estimations, we obtain (5.25). The proof is now complete. O
In a relaxed case where ¢V is related to a sequence of graphons GV instead of a fixed graphon G,

we can also have similar convergence result and obtain the convergence rate.

Theorem 5.15. Let Assumptions 5.2 and 5.5 be fullfilled. Suppose ¢V satisfies the reqularity As-
sumption 5.6 with graphon G . Then we have

T T ' N
max E | sup [ XN (t) - X (5 + f 1ZN(t) — Z: (t))dt + f [N — e¥ |2dt
i=1,....N tE[O,T] N 0 Y 0

< C( max El& — &5 2+ ]G = GV |opmo + N71).

Proof. Let (XN, ZN, ZN) be the solution of (5.1) induced by the step graphon G obtained from G,
iN.e. GN(u,v) = G(%, UX,U]), and terminal value &Y := &V for u € (%,ﬁ], 1= 1,2,...,£V and
&Y = &N, Notice that for each N € N, the regularity assumption for ¢V with GV and with GV are
equivalent. By Theorem 5.14, we have

T T ) i
‘max E| sup [XN(t)— XV@)P + f |Z£V<t>zf¥<t>|2dt+j 1N N 2ay
i=1...N" 1 te[0,T] N 0 N 0

<SCN '+ C max E[¢N —&Y)P<ConN,
i=1,....N N

Since now every GN is a step graphon, we have a uniformly bounded constant C' for the sequence
{GN}. On the other hand, by Proposition 5.12, we have

T T i
E XN () = X (1) ZN) -z, ) w2
e ELsup (KX (0) = X 00 + | 1230 = 2 @+ |5 g gz a
< ClsupBIEY — &ul* + |G = GNoocc )
uel
Combining the above two formulas and the definition of EN , we obtain the desired result. OJ

The following is a direct corollary of Theorem 5.15 under some Lipschitz conditions.

Corollary 5.16. Suppose (N satisfies the regularity Assumption 5.6 with graphon GV with |G —

Gn|o < %, where GN (u,v) := GN(%, [N—]\;)]) is a step graphon. Let Assumptions 5.2 be fullfilled.
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Suppose the graphon G is Lipschitz continuous, ﬁ”:’i'?u s Lipschitz continuous with respect to L*(Fr),
and the terminal condition &N satisfies
N 2 -1
max ElEY — ¢ [P = OV

1=

Then we have |G — G |0 < $ and thus

T
max E | sup |XiN(t)—X-(t)|2+J |ZN(t) — N()| dt+f ||£;N ENH dt] %
0

i=1.N | 4efo1] ~
and
sup E[(Wa(wl, me))?] < ONTV2, (5.25)
t€[0,T]
where kY = NZ ) and ke = §; L(X

We end this section by some remarks.

Remark 5.17. In the case of a sequence of random graphons which converge in probability in cut norm,
we can show that Theorem 5.15 can still be applied. In particular, consider the following example taken
from [162]. LetUy,...,Un be i.i.d. uniform random variables on [0,1] and Uy, ..., Uy be their order
statistics. For a given graphon G, if i # j, then connect vertices (i, j) with probability G(U ), U;))-
Denoting the underlying adjacency matriz by ¢V, we have that the graphons G~ associated to ¢V
(defined as in Example 5.11) converge in probability in cut norm to G. Notice that by the boundedness
of the graphon, E|G¢~x — G|o — 0, and for each realisation of Uy,...,Un, ¢ satisfies the regularity
assumption 5.6. Thus if the measures {vy}yer are a common measure v, the graphon G is continuous,
u — &, s continuous with respect to L? (Fr), and the terminal condition §N satisfies max;—1,. . N E|§ZN—
§%|2 — 0. In this case, Theorem 5.15 still applies.

Remark 5.18. Note that with the following weaker terminal conditions on &V and &,

N
1 N 12 -1
N LEE" - = o,

we can obtain similar convergence results of the average type:

T T i
N )12 Nepy o (2 O“N N2
NZE[sup X0 =X OF + | 1270 -z (Pd+ | 167 -4 th]

te[0,T

<CN- +0NZE|£ —&P=0W),

=1
similar as in Theorem 5.14. Also similar as in Theorem 5.15, we can show that

ZE[sup XN () - Xz-<t>|2+fT|Z£V<t>— z<>12dt+fwz‘”—eé,%dt]
N 0 N

t[0,T7]
1
L[ B el 16 -6V s N
iz1 ]

for some constant C'.
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5.4 Graphon dynamic risk measures

5.4.1 Definition and properties

In this section, we introduce the graphon dynamic risk measures induced by the solution of a graphon
mean-field BSDE system (5.1) and study its properties. Similar to [183], for T" > 0 representing a
given maturity and ¢ a financial position at time T, we interpret p, (£, T) := —X,,(t,£,T), as the risk
measure of £ at time ¢ and position u € I.

Definition 5.19. Let T > 0 be a time horizon, for a terminal condition & € ML?(Fr), we define

pu,t(€7 T) = _Xu(t7 57 T)?

for each u € I, where {X,(t,&,T)}uecr is the solution of the graphon mean-field BSDE system (5.1).
Then pe(§,T) := {put(&,T)}uer is called the graphon associated dynamic risk measure.

We now provide some properties of the above dynamic risk measures, under Assumption 5.2. Let
7o be the set of all stopping times 7 such that 7 € [0,7"] almost surely.

(i) Consistency: Let 7 € Ty be a stopping time. Then for each time ¢ smaller than 7, the
risk measure associated with terminal value & at maturity 7T coincides with the risk-measure
associated with maturity 7 and terminal value —p(§,T) = X, (£, T), that is for all ¢t € [0, 7], a.s.
pe(&,T) = p(—p-(&§,T), 7). This property is guaranteed by the uniqueness result of the graphon
mean-field BSDE system (Theorem 5.4).

(ii) Continuity: Let {7%, a € R} be a family of stopping times in 7y converging a.s. to a stopping
time 790 € Ty as a — «p. Let {£%, a € R} be a sequence of random families such that for each
a € R, €Y is Fra-measurable and E[ess sup,, (€%)?] < c0. Suppose also that £ converges a.s. to a
Frag-measurable random variable £ as « tends to ag. Then for each stopping time T < 7%, a € R,
the random variables pz (£%,7%) — pz(£,7%) a.s. and the processes p(£%,7Y) — p(&, 7%0) in MS?
when o — «g.
This property follows from [183, Proposition A.6]. Indeed, for each u € I, by making some
modifications in the proof of [183, Proposition A.6], we can show that p,(§%,7%) — pu(&, 7°)
in S? when o — .

(iii) Homogeneity: If f is positively homogeneous with respect to (2/,x,z,¢), ie., for a > 0,
f(t,ax’ ax,az,al) = af(t,a’,x,2,£), then the risk measure p is positively homogeneous with
respect to &, that is, for all A > 0, t € [0,T] and & € ML?(Fr), we have p;(\6,T) = A\ps(€,T).

(iv) Translation invariance: If f depends only on (¢,2’ — x, 2, {), that is f(t,2/,z,2,£) = h(t,2’ —
x, z,{) for some function h, then the risk measure satisfies the translation invariance property:

for any £ € ML?(Fr),to € [0,T] and & € ML?*(Fy,),

pe(E+E,T) = p(€,T) = ¢ forallte0,T].
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Proof. Suppose £ € ML?(F,) and recall that s is the law of Xy (s). Let {Xy, Zu, lu}uer be
the solution of (for each u € I)

Tt J JJ G(u,y) f (5,2, Xu(s), Zu(s), bus () ay,s(d)dyds
_L f j us(e)Ny(ds,de), te [to,T], (5.26)

Then by assumption, we have for each pair (u,v) € I?,

fRG(u,wf(s,x,Xu<s>,Zu<s>,eu,s<->>uy,s<dw> _ fRG(u,y>f<s,:c,xu<s>+s;,Zu<s>,£u,s<->>u;,s<da:>,

where M;,s is the law of X, (s) + g;, Hence we have
Ot b= J JJ () f (5,2, X (8) + & Zu(8), bus ()1 s (dv)dyds

_L Zu( JJ ws(€)Ny(ds,de) + &, + €., te [to, T,
Xu(T) + &, =6u + &,

which implies that {X, + &, Zy, y}v is the solution of the (5.26) with terminal value &, + &,.
Hence, for all u € I, we have

pu,t(fu + f:u T) = Pu,t(fua T) - é.z/u
as desired. O

From now on, we assume that f satisfies Assumption 5.3 and is non-decreasing on z’.

(v) Monotonicity: The risk measure is non-increasing with respect to the terminal value &, i.e., for
each T > 0 and each ¢!,£2 € ML?(Fr), if €' > €2 as., then a.s. py(€1,7T) < pe(€2,T),0 <t < T.
This property follows directly by the comparison Theorem 5.6.

(vi) Convexity: If f is concave with respect to (z, z,1), then the dynamic risk measure is convex,
that is for any \ € [0,1] and &%, 62 € ML?(Fr), we have

pt(>‘§1 + (1 - )‘)527T) < Apt(fl)T) + (1 - )‘)pt(§27T)‘

Proof. By our assumption, it is clear that for each u € I, F, (¢, L(.), x, z,{) is concave on (z, z, ().
But it is also concave in £. For two family of measures ', u? € P(MS?), we have

AFy (o) + (1= VE, f f Gi(u, ) F () Ol + (1= ) (dr) o

)‘:u + ( )‘)/'627')'
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Let {X.}, ZL 01}, and {X2, Z2, ¢2}, be the solutions of the graphon mean-field BSDE system (5.1)

u’ ™ u u? ur ™~ u
with terminal values ¢! and &2, respectively. For a given A € [0,1] and each u € I, denote

Xu = AXE+ (1= NX2, Z, = AZL+ (1 = N)Z2, 0y := ML + (1 — A)f2. Then we have
AFu(t, L(X]), Xy Ziy ) + (1= N (L L(XD), X2, Z3, €2)

<E (L ALX)) + (1= NL(XP), Xu, Zu, L)

Let {Xy, Zy, lu}u be the solution of (5.1) with terminal value X! + (1 — A)€2. Thus it follows
by comparison Theorem 5.6 that for all w € I and ¢ € [0, 77,

Xu = AXE 4+ (1-NX2,
which implies the desired result. O
(vii) No Arbitrage: Suppose now that the strict inequality holds in Assumption 5.3, so that we
can apply the strict comparison Theorem 5.7. It follows easily that the dynamic risk measure

satisfies that for each T > 0 and each &1, &2 € ML2(Fr), if €1 = €2 as. and p (€4, T) = pi (€2, T)
a.s. on an event A € F, then &' = €2 a.s. on A.

Example 5.20. We consider the following examples for the integrand function f:
(i) Let f(t,x',x,2,0) = 2’ —x. It is non-decreasing in =’ and concave in x. In addition, it is

Lipschitz in both «' and x, positively homogeneous in (z', ) and satisfies Assumption 5.53. Thus
the associated risk measure satisfies all the properties above.

(ii) Let f(t,2',x,2,0) = ' +x. It is not a function of ' — x, thus the risk measure does not satisfies
the translation invariance property.

(iii) Let f(t,x',x,2,0) = e 1*' =% The risk measure only satisfies properties (i), (ii) and (iv).

5.4.2 Dual representation
We provide a dual representation for the expectation of the global dynamic risk measure induced by
the graphon mean-field BSDE, when the interaction f is concave on (2, z, 2, £).

We first introduce some notation. For convenience, let F,, denote the driver of u component in the
graphon mean-field system (5.1), i.e.,

Fu(w,t, L(Xt),z,2,0(-)) = f f G(u,y) f(s, @' 2, 2,0(-)) py.s (dz")dy.
1 JR
For each (w,t) and each u € I, we denote by (Fy)* the Fenchel-Legendre transform (see e.g., [112]),
defined as

(Fu)*(w, t, L(Y), Bu, oy, ) 1= sup {Fu(w,t, L(X),z, 2,0)
(X,z,2,0)e L2 (F1)QR2QL2, (5.27)

—{X,Y ) 20 — Byx — aiz — <ai, Cuu, }-
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For given processes (f3,7), we define
B S
Hf;,;;y = exp{f (By + vy)dy}-
t

For each u € I and given predictable process a, = (al,a?), we let Q% denote the probability

absolutely continuous with respect to P, which admits I'“»7 as density, where I'** is the solution of

drowt = Tt (b dW, (1) + J a2, (e)dN,(dt,de)), Tow0 =1. (5.28)
E

Let D, r be the set of predictable processes a, such that

. S()T(ozi7s)2ds + Sg laz |2, ds is bounded;

o O‘%,t(y) > —1 v (dy)-a.s. for all ¢t € [0,T].

Define D% to be the set of all family of processes o := {cv, }uer such that for each u € I, a, € Dy, 7. By
[183, Proposition 3.1, 3.2], we know that for any o € DL, I'*wt > 0 a.s. on [0,7] and (T*)sefo.1] € S?,
for each u € I.

In the following, we denote by v := (7" )uwves for all t € [0,T]. Let AL be the set of fami-
lies of processes (Vt, B, t)sefo, 7], Where (B¢, au)iejo,r) are predictable and (7y¢)sejo,r) is progressively
measurable, such that

o ()se[o,r) belongs to Df;

e For each (u,v) € I, (Fitesé ﬁ'vdy)te[o,;p] belong to H?;

v,v
Qv 51}1 YL v,v]
Ty HO,t Vi

71,0
E[T2v §, H@W dv1]

e For each v e I, {(F,)*(t, ( )vlel, Buts @ 1 @2 1)) beejo,r) belongs to H2.

We first provide some technical lemmas which will be used for the main duality theorem .

Lemma 5.21. Suppose that [ satisfies Assumption 5.3 and is non-decreasing in x’. Then for each
(s,w) and each u € I, the effective domain of (Fy,)* such that

(F)*(s, L(Y), Bu,al a?) < +0
is included in the closed set U, < R? x Lgu of all elements (By, al, a?) satisfying the following:

(i) Bu and o are bounded by some constant C1.

(ii) o2 > —1 and |o2(y)| < Cy vu(dy) a.s. for some constant Cs.

Proof. By our assumptions, for each u € I, the function F, satisfies the same assumptions as in the
classical case studied in [183, Lemma 5.4], thus the results follow by similar arguments. O
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For each t € [0,T], a given random variable X in L>!(F;) and each u € I, we denote by (&,)* the
Fenchel-Legendre transform of F, (-, £(X),-), defined as

(Bu)5 o (t,X) = sup (Fu(t,L(X),z,2,0) — Buz — alz — (a2, 0)}.

B ’a
o (z,2,0)eR2x L2,

Further, we denote by (&,)5* , (t,Y) the Fenchel-Legendre transform of (&,)% ,. (¢, X), that is

(Gu)fra,(tY) = sup  {(Bu)g, a, (t:X) = (X, Y)p2r}
X€L271(.7:T)

Lemma 5.22. For each u € I, each (w,t) and any given (Y, By, o) € L1 (Fy) ® R2 @ L2, belonging
to the effective domain of (Fy,)*, we have

()5 0, (1Y) = (Fu)* (@, t, LY ), Bus 0y, 7).
Proof. Obviously, one has

(Bu)57 a0, (1Y) < (Fu)"(w,t, L(Y), Bus o, ).
Suppose that (X7, 1, 21, ¢1) attains the supremum of

Fu(t,L(X),z,2,0) — Bux — alz — (a2, 0).
Then we have
Fu(t,L(X1), 1,21, 01) — Buz1 — a2y — (a2, 0) < (& w) By e (B X1).
Thus it follows that
Fu(t, £(X1), 21,21, 01) — (X1, Y ) o — Bumt — a1 — {0y, 1), < (B0)5 4, (1Y),

which implies that
()t 0, (1Y) = (Fu) (@, t, L(Y), Bus 0.

Hence we get the desired equality. O

Lemma 5.23. Assume that f is non-decreasing in x’. Then for any given (3, ) e RO« RO (L?,U)®I
for each t € [0, T] and each u € I, the effective domain of (&y)5" , (t,Yu), i.

(Y, e LY (F) : (85 ., (s,Y) < 400},

Bu o

satisfies that 0 < Y, < C, for some positive constant C, dP®d\ a.s. where A is the Lebesgue measure
on R.
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Proof. First note that since f is non-decreasing, we have that for all v € I, F}, is also non-decreasing
and thus (&)}, ,, (s, Xs) is non-decreasing for each u € I and any (8,a) € R®T x RO x (L2 )®1.

Thus we can drop the subscript u. For simplicity, we write (&,)5* , as &* and (&)}, ,, as 6.

We prove by contradiction. For each s € [0,T], suppose that dP ® dX a.s. 0 <Y < C, for some
positive constant C, is not true. Denote by A := {w x v : Y, (w) < 0} and B := {w x v : Y, (w) > C}.
By the definition of &*, for each X € L?!(F;) we have

B*(s,Y) = &(s, X) —(X,Y) = &(s, X) — E[L X, Y,dv].

We can take X)'(w) := —nY,l4(w). Clearly X™ < 0 dP ® dX a.s., by the non-decreasing property of
® we have

B*(s,Y) = 6(s,0) — ]E[L XY, dv] = &(s,0) + nL [V, (w)|?d(P x £)(w,v).

Letting n — o0, we get 8*(s,Y) = +00, which gives the contradiction.

Notice that by the Lipschitz and non-decreasing property of & and boundedness of the graphon,
we have for some positive constant C',

(s, X) > 6(s,0) + C]E[L Xydv].
Thus by taking X'(w) := —nY,1p(w), similarly we have,
&*(5,Y) 26(s,0) + CE[L X"dv] — B[ L X"V, do]
- 8(5.0) +1 | Yi(w)(Y(w) ~ CP@N) w10).

Letting n — o0, we get the desired contradiction again. O

Example 5.24. If f takes the form as in Example 5.20(i), that is f(t,2',x,2,0) = &' — x, then one
can show that for each u € I,

(©.)5,(0.%) = | Glup)ELY,Jdy,
I
and
(Fa)*(t,L(Y), B) = 0.

Indeed, by similar arguments as in the proof of Lemma 5.23, the effective domain is (1, §, G(u, y)E[X,]dy),
where 1 is the set of all random variables Y in L>!(Fr) satisfying Y = 1 dP @ d\ a.s.. It is easily
seen that F,, and (F,)* satisfy the conjugacy relation (see e.g., [112]) and

F.(t,L(X),x) = (Fu)*(t, L(X), ).
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Lemma 5.25. Let (al,a2(:))s=t belong to DL, (U%V(8))uwer and (hy)uer be progressively measurable
and bounded. Let t € [0,T]. Then the following SDE system admits a solution (V") ver uniformly
in S?:

AV (s) =V (s) [ (AW, (s) + JE a2 ,(e)dN,(ds, de)]

+ Uu,v(s)E[f VUU(s)hy sdvlds, t<s<T,
I
Ver(t) =1.

Proof. This equation is a graphon mean field forward SDE system. Set Vj(s) = 1 for s € [t,T] and
define the following iteration sequence for n > 1,

VI (s) = VI (1) + f VT ()d My + j U (s)E[ L VU () B ydo]dy,
t t

where dM, , = oy (AW, (s) + 5 a%,s(r)dﬁv(ds, de).

Since (al,a?(-))sst belong to DL, the quadratic variation in [t,7T] is bounded. By Doob L2-

inequality and Cauchy-Schwarz inequality, we have for some constant C,

T
E[ sup |[V;1(s) = Vi (s)]P] < CE[L Vit (s) = V") (5)Pds]

t<s<T
T
+ CE[J J V0 () — V2 (5) Pduds].
t I

Hence, we have further

T
Dys1:=E[ sup [V (s) = V" (s)]] < CE[J sup [Va"¥(s) — V7 (s)|ds].
(u,w)el? t (up)el?
t<s<T t<s<T
We thus get, for any n > 1,
DCc*T"™

Dn+1 < |
n.

Then consequently we have
e}
Z (Dn)l/ 2 <o,
n=1

which implies that uniformly in (u,v), (V,»*),>0 admits a uniform limit on [¢,T], which is a right-
continuous process V*v. The family of processes (V*"), yer solves the SDEs system and they are

uniformly in S2. O

We provide now a dual representation theorem for the expectation of the integral of the graphon
dynamic risk measure. We need the following lemma.
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Lemma 5.26. Let f be concave with respect to (', x,z,¢) and non-decreasing in x'. Then given a
family of processes (X, Bg, Qs)s>¢ with X progressive, 3 bounded and & € Déﬂ, there exists a family
of progressively measurable processes 7, = (Y4 )uwer such that for each u,v € I, (ngests T,
belongs to H? and satisfies the following for each v e I,

v,vq
1) FO‘”H T v X (s
(S X )_J [ tS ’Ul( )]dl]l
I

SI Hﬁv"y v d’Ul]

)

*
ﬁu,svavys

Fa“1H v 7 —’U,’Ul
= ©05 (0 (o s T )
R SI Ht By 71 dvl]

where (+)y, means the family of random variables with vy € I, and T'*v is defined by (5.28) with initial
value Tt = 1.

Proof. For simplicity of notation, we drop the bar symbol over the processes. For any (s,w) € Qx[0,T],
f is Lipschitz, concave in (2, z, z,¢), we can deduce easily that for any (s,w) € Q x [0,T] and any
u € I, F, is Lipschitz and concave in (L(X),z,z,¢). Indeed, F), is Lipschitz and concave in (z, z, ),
and it suffices to prove the Lipschitzness and concavity in the first parameter. By Remark 5.1, we
have

FA(L(X). ) — Fu(L(X2), )] = f | fRG@,u)f(m Wk — v2)(da)|du
<JC(E|X$—X;|2)1/2CJU
I
< | X1 — Xof 2.

For any A € [0,1], we have that

NE(L(X1),) + (1= N F, ff G, 1) f(2, ) (W + (1 — \2) (dr)du
_ BOL(XD) + (1 — NE(Xa), ).

We can easily deduce that, for all uw € I, (&,)% _

Bv,ya’vys

L*1(F,). Therefore it follows that for each s and u € I, there exists Y, s € L?!(F;) such that

(s, Xs) is concave and Lipschitz continuous in

(B2 (s, X,) JX (5)Y2dv] = (B,)5* _ (s, Yas).

u
Bu,g?au,s ﬂy,saav,s

We next consider a dense countable subset I := {0=a1 < - <a;<aj41 <---<1}of I and let
YU = (1) for all v € [a;, a;+1), where we choose YUFQ — Y for certain v* € [a;,a;41) such that
Ysuvv* € L2 (Fs). Note that the maximizer Y, s is not unique and we choose Yy, s = >}, 114, a,, 1) (V) u(lg
Since (L2(]-"S))®IN e L>1(F,) is a separable Hilbert space, by using the measurable selection theorem
(see e.g., [199]), there exists a family of processes Y, for each u € I, such that Y% : [t,T] — L?(Fr) is
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measurable for each v € I. Then by similar arguments as in [89, Lemma 3.4], we obtain the progressive
measurability for Y*%? when u € I fixed.

Since f is non-decreasing, we have that for all v € I, F,, is also non-decreasing and thus (&,,)% (s, Xs)

5u,s7auy5

is non-decreasing for each u € I and any (8,a) € R® x R®! x (L2 )®/. By Lemma 5.23, we have
Yus 20dP®d) as. and Y, s < C dP®dA a.s. Let

U™¥(s) = Y2 exp{— f Buydy},
t

and,
hu,s = eXP{J ﬁu,ydy}-
t

Then by applying It6’s formula to V%V (I'*)~! we obtain
AV (Do), = (Dav) el Auudyyuvp| f VU (s)dvel Frvdds,
1

Let V®? := Vu¥(I'*) =L Since changes in a null measured set in I do not change the | - ;2. norm
of Y, s, we can assume that for all (u,v) € I?, 0 < Y»¥ < C (dP a.s.). Therefore we have for all
(u,v) € I2, V%¥ > 0 a.s.. Thus we can choose for each (s,w) € [t,T] x Q, v%¥(w) = %(log Vv (w),
which is well-defined. Then 7" satisfies el " % — YN/S“’“. We obtain that

NEeSe W W g = (Do) Lo St Buwdyy wUR [P o.s J ¥t el Buwdy gy s,
I

Hence we have g, v
a v,V U,V
Fsth,s Vs’

S u,v

ﬁu ,Yv,u = Y ) a'87
E[Dews §, Hy*""" dv]

s

and clearly ngesf Ty = V%2 (s) belongs to H2. Note that the progressive measurability for Y%V
when u € [ fixed, implies the progressive measurability of v*¥. The proof is now complete. O

We are now ready to provide the dual representation theorem.

Theorem 5.27 (Dual representation). Suppose f satisfies Assumption 5.2 and 5.3. Moreover, suppose
that f is concave with respect to (x',x,z,¢) and non-decreasing in x'. Then, for each t € [0,T], the
expectation of the convex risk-measure p; has the following representation : for each & € ML*(Fr),

| L P — LEQ f HE" du)e, dv—fcvt vBaT)dv),  (5.29)

(7,8,)e AL,

where the function ¢, which is called the penalty function, is defined for each T' and (v, 3, «) € ACIF by

Favl Hﬁvl 7’7”’ FY;) ,V1
E[TS" SI Hﬂv,’y 1Y dvr]

T
Gt B, T) = | B L HE ™ du) (F)* (s, ( ) Buss 02, () ]ds,
t
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with QY the absolutely continuous probability measure with respect to P admitting density I'*v, which
is defined by (5.28) with initial value Tt = 1. Moreover, there exists (7, 3,a) € AL attaining the
supremum in (5.29). In particular, for each v e I,

Elpos(6.7)] = E™ [( L HIT" du)e,] - Gop(7, .0, T).

Proof. For each family of predictable processes (7, 5, a) € A%, we apply Ité’s formula to

f f HP " X, (s)dvdu
Jr v

between t and T'. We obtain
u,v T u,v
J X, (t)dv = J f Hf”T7 " €pdudu —J J f H,f?j;’7 " Zy(8)dW,(s)dvdu
I 1Jr 1JrJt

T
—J f J J HP "0, ((e)N,y(ds, de)dvdu
Jrde Jg 7

T u,v
+ L LLHQ;’” [—Buo,sXo(s) — 7o' X () + Fo(s, L(X), Xo(8), Zu(8), Lo,s(-)) | dvduds
T
- Jt L(L HY du)[~Bos Xo(5) — ab Zo(s) = (a2, losy + Ful(s, LX), Xo(5), Zu(5), Lus(-))]dvds

T T
- j j f HP T A0 X, (s)dududs + f j HP™ gydvdu — J J dM <% (s)dv,
t I1JI 1JI t I

where we recall that ()¢ is the absolutely continuous probability measure with respect to P admitting
density I'*, which is defined by (5.28) with initial value I'*»* = 1, and

AME (5) = ( f HP" du) Z,(s) AW (s) + f ( f HE™ du)t, o(e) N2 (ds, de),
I E I

with dW,2* (s) = dWy(s) — o ,ds is a Brownian motion under Qf, and N (ds,de) = Ny(ds,de) —

v
0‘1217 s(e)vy(de)ds is the Qf-compensated Poisson random measure N,(-,-).

Then notice that
T @ u,v
J JjEQv [Htﬁgﬁy " Y X, (s)]dvduds
¢ Jrdr

T o o El[Tov Hﬁv/}’”’” u,vXU
= f j ESu [(j Hﬁg”‘/ dv)(f [ s - t,s /B’YS’Y%“ (5)] dv)]duds]
¢ Jr I 1 E[rs§, H 27 dv]

T N BT Hy o X, (s
= J J ]EQ’U [(J Hﬁ;ﬁ du) (J [ at7 o 1( )] dvl)]dvds].
t Jr I 1 B[O S, HYY O do]
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For each v € I, we compute the expectation under Q)§. Then by taking expectation on both sides,
we get

B[ X,(0ao] = | B[ 1w

T
i f f E% [( f HE™ du) [~ B Xo(s) — b Zo(s)
t I I

) E[TS" Hyy 7 0 Xy, (5)]
- <afu7s’ gv,s> - o Bo, 170
PRI )

dvy + Fy(s, L(X), Xo(s), Zo(5), lv,s(-))] ] dvds.

By the definition of Fenchel-Legendre transform and Lemma 5.26, we have that

v D1 s U,Ul
B[S H) T v X, ()]
E[TS" §, Hf” " dvy)
TS Hp T e

E[Tg” §, HY: "™ doy]

(Bu)i, . au, (5 Xs) — J dvy
I

< (F)*(s, (

)Ulaﬁv,s’ O‘ll),sv O‘g,s('))'

Then we obtain

B[ (0] < ot | B[ my awe o
I I I

v.8,a)e AL

5.30
T T (5:30)

E[TS" §, H"™ dun]

T
+ f J B [(f Hfzﬁu’vdu)(Fv)*(s, ( )vl,Bv,s7 all)’s, ag’s('))]dvds.
t JI 1

Let U, be the set defined in Lemma 5.21. For any given law £(Xj), since F;, is concave in (z, z, {)
for all v € I, we have the following conjugacy relation for all v € I,

Fy(s, L(Xs),m,2,0) = » ing " {(@v)gv oo (8, Xs) + Box + a}}z + <a12), D}
v,V )eUy ’
= (8% _ (5,X,) + Bpz +arz + (@2, D).

By 50

(5.31)

The set U, is strongly closed and convex in R? x L?jv. Moreover U, is bounded, thus it is compact.
By some similar arguments as those in the proof of step 1 of [183, Lemma 5.5], we can conclude that

there exists some (3, @,) € U, satisfying (5.31).

Let U, be the set of all triplets (v", 3y, @) such that (3,,,) are predictable and take values in
Uy, and «" is progressively measurable and satisfies that, for all u € I, (Fo‘"est Ty’ dy)s> , belongs to

HZ2. Since R? x L?,v is Polish, we can apply the measurable selection theorem as in [183, Lemma 5.5],

to assert that there exist predictable processes (B, ,, @b 4, @2 ¢ )s>t € Uy such that a.s.

Fy(s, L(Xs), Xo(s), Zu(8), bo,s) = (&) a (s, Xs) + Bv,sXU(S) + aqu,sZ’U(s) + <azz)v£v,8>- (5.32)

ﬁ’v,s7 v,s
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Clearly for any (fs,as)s>¢ and v € I, (Q5U)EU o s

L*1(Q). Therefore by Lemma 5.26 we have that for the processes (X, 5, @s)s>¢ and all v € I, there
exists a family of progressively measurable processes 7, = (7%")yver satisfying

is also Lipschitz and concave on the space

;U]
’U1 7’7

(B4)5 7 ,3(87X5)_

E[Te™ H 701 X, (8)]
f dUl
I

E[r3, |, Hfgﬁ”’”dv ]
Favl Ht 01’7 71},1)1

- @5 5, (0 )o)
B A

Notice that by Lemma 5.22

a1 vl,’Y o
'S H g yorvt

(®0)5] . (5 ) o)
VB, o ils SI Ht By 7l1? d’Ul] 1
—» /B 7717 U .
Ta IH vl ,yv,vl .
= (F’U)*(Sa . b2 )m?Bv,s’a}),s’ag,s('))'

Yo% Bv)i’ul’v
E[Fg,s SI Ht,s ? dvl]
Let U be the set U := UP!. Together with (5.30), we finally obtain that

o j por(€ o] = sup | j E% [ ( j HE™ du)é,Jdv
1 (v.B.e0etd I 4 (5.33)

T - Favl Hﬁvl Rolaae! 7()71)1
_ ESY JHB”’A{yd E)* > V,8) US’ Ay s dvd
Jo LB e o (s ) B ks ) s}

k

Then notice that by (5.32), as a sum of processes in H2., the process (6”)@,5,5@,3 (s, Xs) belongs to HZ

for all v € I. Thus (7, 8,@) € AL, which implies that the equality in (5.33) holds with ¢ replaced by
A%. The proof is now complete. OJ

5.5 Concluding remarks

We have extended the standard framework of mean-field BSDEs with jumps to the graphon mean-field
framework in order to capture heterogeneous interactions. We have studied the existence, uniqueness,
and measurability of the solutions. We have proven that an interacting mean-field particle system
with heterogeneous interactions converges to the graphon mean-field BSDEs system in a certain sense.
Furthermore, we have provided comparison theorems for the graphon mean-field BSDEs with jumps.
Analogous to the standard case, we introduced graphon dynamic risk measures, which are induced by
the solution of a graphon mean-field BSDE system, and have explored some of their properties. We
have also proven a dual representation theorem for the graphon dynamic risk measure in the convex
case.
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Future work will include a generalization of the driver f. We could allow it to depend on the
law of the entire solution processes (X, Zy, ¢y )uer, not only on the law of X,,. More ambitiously, we
may anticipate that the interacting driver could take different forms for different pairs of interactions.
For example, we could consider a blockwise model where I = Ufi 1 I; for some finite K. For a pair
(u,v) € I; x I}, the interaction between X,, and X, could be specified by f;; = fj;, where for each pair
(i,7), fij satisfies the assumptions of this paper. The formal formulation of this blockwise graphon
mean-field BSDE system could then be given by:

b Zf f f G, y) fig (5,2 Xu(5), Zu(5), L)1y (d)dyds

—J JJ us(€)Ny(ds,de), for te[0,T] and wel.
t

More generally, the driver f can even differ from pair to pair. Another interesting aspect is to
attempt to make the heterogeneous interaction depend on the underlying network structure. A key
assumption in this paper is that we can capture interaction through the labels. However, in some cases,
heterogeneous interactions between pairs may depend on other network parameters, e.g., distances
between pairs, node centrality, etc. Moreover, the underlying graph can be considered in various
spaces, not limited to R%. Another direction is to try to obtain more accurate approximation for the
solutions of particle systems around those of the limit graphon systems, in particular, to investigate the
CLT results in the graphon mean field setting, extending those in the classical mean field setting [72].
Moreover getting some concentration bounds and concentration measures for the backward particle
systems with jumps as those in [51, 54] for forward systems is left for future works.
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Chapter 6

Stochastic Graphon Mean Field Games
with Jumps and Approximate Nash
Equilibria

This chapter is based on paper [6] in the publication list of Section 1.5.

Abstract. We study continuous stochastic games with inhomogeneous mean field interactions on
large networks and explore their graphon limits. We consider a model with a continuum of players,
where each player’s dynamics involve not only mean field interactions but also individual jumps induced
by a Poisson random measure. We examine the case of controlled dynamics, with control terms present
in the drift, diffusion, and jump components. We introduce the graphon game model based on a
graphon controlled stochastic differential equation (SDE) system with jumps, which can be regarded
as the limiting case of a finite game’s dynamic system as the number of players goes to infinity. Under
some general assumptions, we establish the existence and uniqueness of Markovian graphon equilibria.
We then provide convergence results on the state trajectories and their laws, transitioning from finite
game systems to graphon systems. We also study approximate equilibria for finite games on large
networks, using the graphon equilibrium as a benchmark. The rates of convergence are analyzed
under various underlying graphon models and regularity assumptions.

Keywords: Graphon mean field games, Jump measures, Heterogenous interactions, Controlled dy-
namics, Approximate Nash equilbria.
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6.1 Introduction

The study of mean field systems with homogeneous interaction dates back to the work of Boltzmann,
Vlasov, McKean, and others (see e.g., [33, 154, 172]). The theory of mean field games (MFG),
introduced by Lasry and Lions in [163] and Huang, Caines, and Malhamé [141, 142], has attracted
considerable attention and been extensively studied in recent decades; see, in particular, the recent
book [83] and references therein. As both large n player and limiting models are quite tractable,
the MFG theory has developed a diverse and broad range of applications. However, despite some
MFG models incorporating heterogeneity in individual characteristics, the framework for MFG theory
remains largely confined to games with homogeneous interactions, where all players are symmetrically
exchangeable.

The study of stochastic games on large networks presents significant challenges, as various n player
networks may yield different limits when n approaches infinity, particularly in the context of games
on sparse networks (see, for example, [120, 161]). Analyzing games on large networks or those with
heterogeneous interactions often relies on a tractable limiting (continuum) model, which can, in turn,
offer insights into large finite games.

Recently, the use of graphons has emerged as a model to analyse heterogeneous interaction in
mean field systems and heterogeneous game theory, see in particular [60, 78, 79]. Graphons have
been developed by Lovasz et al., see e.g. [67, 68, 170], as a natural continuum limit object for large
dense graphs. Essentially, a graphon is a symmetric measurable function G : I? — I, with I := [0, 1]
indexing a continuum of possible positions for nodes in the graph and G(u,v) representing the edge
density between nodes placed at v and wv.

We refer to a recent series of papers by Bayraktar et al. [47, 55] for developments in the the-
ory of graphon systems of interacting diffusions, the corresponding graphon-based limit theory, and
propagation of chaos. These results are also applicable to graphon games on the underlying networks.
Graphon static games have been studied in [82, 182]. For dynamic games, we refer to [101] for discrete
time models and [36, 127, 162] for continuous time models. The chapter is closely related to [162],
which uses the concept of graphon equilibrium to construct approximate equilibria for large finite
games on any weighted, directed graph that converges in cut norm. However, unlike our work, [162]
does not consider direct interactions in the dynamics, and the inhomogeneous interactions are only
present in the reward function.

This chapter aims to develop a graphon interacting model to solve graphon games with hetero-
geneous interactions and jumps, while maintaining tractability comparable to traditional MFG. The
traditional MFG framework is based on a fixed point problem describing the law of the state process
(X (t))¢e[o,] of a typical player. In the graphon game model, we consider a fixed point problem for a
family of laws (Xy(.))uer, which can be also viewed as the joint law of (U, X), where X is the state
process and the uniform random variable U in I := [0, 1] is interpreted as the “label” (order of vertex
on network in limiting sense) of the player in the graphon. Despite the heterogeneous interactions,
we also include jumps in the dynamics to model the instantaneous impacts. The jumps are induced
by Poisson random measures with different intensity measures for different labels, which is a source
of individual heterogeneity.
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The graphon mean field model with jumps is quite useful in many fields, especially in finance and
biology. For instance, consider a financial network consisting of banks or investment firms with internal
links and external investments. The internal links within the network, such as shared liabilities, credit
exposures, or interbank lending, could be represented by the graphon interaction, while the external
investments made by each entity introduce outside risks. These external risks could be influenced
by various factors, such as market fluctuations or global events, and are modeled by the Poisson
random measures. This way, the model captures the complex interactions and risk exposures that
characterize real-world financial networks. In addition, we incorporate control "intensively"'. The
control term is present not only in the drift, as in [82, 162], but also in the diffusion and jump terms.
Furthermore, we also have the graphon interaction in the diffusion term, which is not present in the
model in [82, 162]. Combined with jumps and controls, more heterogeneity is introduced into our
setup, and the interacting dynamic system becomes more complex compared to [47, 55]. Thus, the
analysis becomes more involved when we try to construct the connection between finite games and
graphon games. Chapter 5 provides a systemic study of graphon mean field BSDE with jumps and
the associated limit theory. Although it is a system in backward form, some results on propagation
of chaos can be useful here for the analysis of our graphon games.

Working directly with a continuum of players, driven by a continuum of independent Brownian
motions and independent Poisson random measures, raises significant technical difficulties since neither
the map I 3w — W, nor I 3 u— N, is measurable. Noting that the value function is determined by
the law of state processes £(X,),u € I, we handle this issue by arguing that the laws £(X,) depend
measurably on u, similarly to [47, 55] but extended to a jump framework. The different intensity
measures of the jump processes also increase the difficulty for measurability. We employ the canonical
coupling that is present in Chapter 5, which allows us to obtain measurability in a stronger topology
for the state processes X,. Such a coupling has no influence on the graphon game, and leads to a
straightforward way to investigate the connection between graphon games and finite games.

The chapter is structured as follows. In Section 6.2, we introduce the probabilistic set-up, necessary
notations, and background for graphons. Section 6.3 is devoted to the main results on graphon game
models with jumps and the associated graphon equilibrium issues. In Section 6.4, we study large finite
networked games with heterogeneous interactions and their limit characteristics when the interaction
matrix converges to a given graphon. In Section 6.5, we investigate the approximate Nash equilibria
of finite games. The proofs of the main results are presented in Section 6.6.

6.2 Probabilistic set-up and notations

We introduce the probabilistic setting where we work and some notations in this section. For the
knowledges on graphons and Wasserstein distance, we refer to §5.2.2 in Chapter 5. Let T > 0 be a
fixed time horizon. Given a Polish space S, denote by D([0,T],S) the space of RCLL (right continuous
with left limits) functions from [0,7] to S, equipped with the topology of uniform convergence. Let
D := D([0,T],R). Denote by P(S) the space of probability measures on S and M (S) the set of
nonnegative Borel measurable measures on S. For a random variable X, £(X) denotes the law of X.
Denote Unif[0, 1] the uniform measure on [0, 1] and further denote Py,([0, 1] x S) the set of Borel
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probability measures on [0, 1] x S with uniform first marginal. Denote by M{ ([0,1] x S) the set of
nonnegative Borel measures on [0, 1] x S with uniform first marginal. We equip all spaces of measure
with the topology of weak convergence. For a sequence {X,},en of real-valued random variables
on a probability space (€2, F,P) and a sequence of real numbers {ay,}nen, we write X,, = Op(ay,) if
P(|X,| < Clan|) — 1 as n — oo for some constant C, and write a,, = o(1) if a,, — 0 as n — .

Let (2, F,P) be a probability space. Let I = [0,1] and {W),, : u € I} be a family of i.i.d. Brownian
motions defined on (2, F,P). Let {N,(dt,de) : u € I} be a family of independent Poisson measures
defined on (€2, F,P) with compensator v,(de)dt such that v, is a o-finite measure on E := R, with
R, := R\{0}, equipped with its Borelian o-algebra B(E), for each u € I. Let {N,(dt,de) : u e I} be
their compensator processes. Let F = {F;,t > 0} be the natural filtration associated with {W,, : v € I'}
and {N,(dt,de) : u e I}.

Let T > 0 be a fixed time horizon. Denote by P the predictable o algebra on [0,7] x .

We use the following notation: L?(F;) denotes the set of all F;-measurable and square integrable
random variables, for ¢ € [0, T]; S% denotes the set of real-valued RCLL adapted processes ¢ with

Iolsy = ([ sup 1) < o

H?p denotes the set of real-valued adapted processes ¢ with

ol o= (B[ [ o))" < o

and MS2 denotes the set of all measurable functions X from I to S%: u — X, satisfying

sup | X, |2 = supE[ sup |Xu(t)|2] < .
uel T wel  Lef0,1)

For X € MS2., we define the norm

1/2
XL = sup(E| sup |Xu(t)]? .
X1 = sup(E sup 1%, (0)))

We define ML?(F;), and MH?. similarly.

With a given metric space S, we define the measure-valued function Ay : [0, 1] — M (S) for any
pe M ([0,1] x S) as follows:

Ap(u) = f G, v)0,u(dv, dz), (6.1)
[0,1]xS

where ¢, denotes the Dirac measure concentrated at z.

For any bounded measurable function ¢ : S — R, the usual inner product is defined by

(M), 8 = j[ g Gl IO, ).
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Further, for two family of probability measures = {fy uer and v = {vy }yer, we set

Wit (11, v) == sup Wa (i, v4), for p,v e P(MLY(F)) for all t € [0,T7],

uel
WQAT(,u, v) = Su}[) Wa.r(p, V), for p,v e P(MS3),
ue
and note that
W%(u, v)) = suII) Sl;p | jR f(@)pu(dz) — JR f(a:)uu7t(dx)|, W,V € MS2T, (6.2)
ue

where the supremum is taken over all Lipschitz continuous functions f : R — R with Lipschitz constant
1 such that the integral exists.

6.3 Graphon mean field games with jumps

This section is dedicated to the main results on graphon games model with jumps and associated
graphon equilibrium issues.

An admissible control rule is an adapted control process ar := (au(t))efo,r)uer € MH?. We
restrict ourselves to Markovian feedback controls. Let A; be the set of graphon controls « defined
as measurable function « : [0,T] x I x R — A; (t,u,x) — «(t,u,x), where A is a compact metric
space. We restrict ourselves to the one-dimensional case, but our results can be generalized to the
multi-dimensional set-up.

The dynamics of the controlled graphon system is as follows,
AX3(5) = [ | Gl o)bls Xa(6). sy, X3 (5)) i ) dods
IJR
+ f f G(u,v)o(s, X (s), z,a(s, u, Xy (s)))py (dx)dvdWy(s) (6.3)
IJR

+J 0(s, X2(s), e, s, u, X2(s))) Nu(ds, de), X, (0) = &, wel,
E

where p8 = L(X$) € P(D) and pg, := L(X§(s)) € P(R). We assume that & := {&,}uer € ML*(Fp),
that is for each u € I, &, € L?(Fr) and the map u — &, is measurable. The coefficients b : [0,77] x
RxRxA—->R,0:[0,T]xRxRxA—Rand¢:[0,7] xR x E x A— R are Lipschitz continuous
with respect to all parameters except t. We also assume that o2 is bounded from below from 0. We
assume moreover the following.

Assumption 6.1.

o For each (t,z,u,p) € [0,T] x R x [0,1] x M{;;¢([0,1] x D), there exists e € E such that the set
Ke[p](t,z,u) =
{(b(t, 2, A (), a), 02(t, z, Ape(u), a), U(t, z, e,a),2) ca€ A,z < f(t,z, Ap(u),a)} is conves.
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o The map e — U(t,x,e,a) is affine for each (t,x,a) € [0,T] x R x A.

Remark 6.1. From the second point of Assumption 6.1, it follows that for each fized (t,z) € [0,T] xR
and any two different ey, es € E, the functions a — ((t,x,e1,a) and a — L(t,x,e2,a) have the same
convezity (i.e. the same shape of curvature). This, in turn, implies that if K.[p](t,z,u) is convex for
some e € E, then K¢[u](t,z,u) is convex for all e € E.

Using the definition of Ay given in (6.1), (6.3) can be rewritten in a more general form
dX(s) = JR b(s, X5 (s), x, a(s,u, X (s)))Aud(u)(dr)ds
+ JR o(s, X3 (s), x, s, u, X (5))) A (u)(dz)dWy(s) (6.4)
+ JE (s, X (s),e, a(s,u,Xﬁ‘(s)))Nu(ds,de), Xu(0) =&, uel,

where p® := L£(X®) € Punit([0,1] x D) and p? := L(XT) € Punie([0,1] x R). When the context is
clear or in the proofs, we omit the upscript of the control for notation simplicity.

For any fixed distribution p € Py,i([0, 1] x D) and graphon control a € A;, we define the following
graphon objective function:

() = B[ [ ([ 700500, At ot X0+ (X3, A )]s 69

where the functions f: [0,7] x R x M(R) x A > R and g : R x M(R) — R are bounded continuous
w.r.t. all parameters.

Definition 6.2 (Graphon equilibrium). A graphon equilibrium is a distribution p € Py,.([0,1] x D)
such that there exists a* € Ay satisfying

Ja(p,a*) = sup Jo(p, @),  with p= LX)

O!E.A[

Any o* satisfying the above is called an equilibrium control for distribution .

Canonical coupling and measurability. Notice that in the graphon game, the state dynamic of
each label can only be influenced by the law of other labels. Thus when we couple the Brownian
motions and Poisson random measures in (6.4), the law of the state for each label £(X,) does not
change. In addition, the graphon objective function Jg is also decided only by £(X). Therefore, we
can study the dynamic through some coupling, under which the law of the trajectories for each label
keep the same and consequently the graphon equilibrium remain the same. In order to study the state
processes of the interacting system with controls, we need the measurability of u — £(X,,). If there is
no jump included, we can simply take a common Brownian motion for all label as in [55, Lemma 2.1],
but due to the presence of jumps here, we need additional care for it. To address the measurability
problem, we need the same assumption on the intensity measure v, as in Chapter 5.
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Assumption 6.2. For each w € [1,2], the function I 3 u > ®;'(w — 1) € R is measurable, where ®,
denotes the cumulative distribution function of v,; we define ®,1(1) as the essential supremum and
®,1(0) as the essential infimum.

Through suitable coupling called "canonical" coupling, we can obtain strong measurability of X in
the space MS?2 and transform the original graphon system to a fully coupled system defined on the
canonical space.

Define the canonical filtered probability space (Q,]:" ,IF‘,]F), where F = {f},t > 0} and P are
the completed natural filtration and probability measure generated by a canonical one dimensional
Brownian motion W and a Poisson random measure N (dt,de) with compensator v(de)dt, where v is
uniform on [1,2]. Now, the canonically coupled graphon system X, = X%, u € I is written as:

dX,(s) = JR b(s, Xu(s), z, a(s,u, Xy(s)))Aps(u)(dz)ds

+ jR o(s, Xu(s),z, s, u, Xyu(8)))Aps(u)(dz)dW (s) (6.6)

+ JEK(S,XU(S), o, (e — 1), s, u, Xou(s)))N(ds, de), Xu(0) =&, uel.

Taking advantage of the above canonical coupling, we obtain the following existence and uniqueness
results for the controlled state processes, which are the solutions of the SDE system with jumps (6.4).

Lemma 6.3 (Controlled state processes). Under any control o € Ay, there exists a unique solution
X to the coupling system (6.6) such that X € MSQT. Moreover, there exists a unique solution X to
the original system (6.4) such that I 3 u — L(X,) is measurable. Furthermore, the above assertions
hold for any admissible control o := (v (t))se[o,1],uer € MH?.

Proof. For a fixed law p € Pu,e([0, 1] x D) such that u — p, € P(D) is measurable, let us first define
the map pu — ®(p) by ®(p) := (L(XF) : uw e I), where X* satisfies (6.6) with fixed p. By a standard
contraction argument, we can prove that there exists a unique fixed point i € Pu,([0, 1] x D) such
that o = ®(u). Combining the pathwise uniqueness, we can get the uniqueness of the solution X
of (6.6). We omit the details, as the proof is similar to those in [47] and in Chapter 5, despite the
presence of the control term. We need to ensure the measurability of X* for each fixed measurable
p, ie., X* € MS%. By the preservation of measurability for the limit fixed point, we shall be able
to conclude that the controlled state process X belongs to the space MS%. To do so, we define the
iterative equation

X)) =XD(0 f . ps XD 0)s, XE 05 A ) ) s
+f |, ot X0 05) 2,050, X () ) )W (5
0 JR
+ f J 0(s, X D(s), @ e — 1), als, u, XV (s)))N(ds, de),  wel,
0JE
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with X0(¢) = X,,(0) for ¢ € [0,7] and all u € I. Now suppose u > X"V is measurable. Then u —
a(-,u,-) is also measurable by its definition. By the measurability of graphon G(u,v), the map u —
Sz (s, @, x,a)Aps(u)(dx) is measurable for any (s, ', a). Hence, (u,s,2’,a) — {5 b(s, ', z, a) Aps(u)(dx)
is measurable. Moreover since b is Lipschitz continuous, we have that (s,u,z’,a) — b(s,2',x,a) is
measurable. Now, we have that uniformly for (s,z) € [0,T] x R, b(s, ', x,a) is continuous and grows
at most linearly in (2/,a), and the same holds for

Sz (s, 2, x,a)Aps(u)(dz) uniformly for (s,u) € [0,T] x [0,1]. It follows by [55, Lemma A.4] that

Isu— J J b(s,X&”—l)(S),x,a(s,u’ Xén_l)(s)))AMs(Uﬂdl‘)ds c S%
0 JR

is measurable. By similar arguments, we also obtain measurability with respect to the diffusion and
jumps, since they are now driven by a common Brownian motion and a common Poisson random
measure. This completes the proof that X € MS% for the coupling system (6.6), and consequently
we have u — L(X,) is measurable for the original graphon system (6.4). Finally, note that for any
measurable control process ag := (v, )uer € MH?Z, all the arguments above go through. O

We are now ready to give our main results regarding the graphon equilibria.

Theorem 6.4 (Existence of equilibrium). There exists at least one graphon equilibrium.

Proof. See Section 6.6.1. O

Remark 6.5. Note that [162] studies the graphon equilibrium for kernels in L ([0,1]?), which are
not necessarily symmetric and bounded. We can also generalize our results to this case. More details
are given in the next section.

Under some additional monotonicity assumptions adapted from the classical Lasry-Lions condi-
tion [163], we can obtain the uniqueness for the graphon equilibrium.

Theorem 6.6 (Uniqueness of equilibrium). Suppose the following monotonicity condition holds: for
each a € A, and any p1, o € Punie([0,1] x R x A) and t € [0,T], we have

f[o 1]XR<9(””’ Afir(u)) — g(x,Aﬁg(u))> (i1 — fi2)(du,dz) < 0,

and

J[o xExA (f((t, x, Afir(u), a) — f(t,z, Aa(u), a)) (11 — p2)(du, dx, da) < 0,

where [ is the marginal distribution of the first two coordinates. Then there exists a unique graphon
equilibrium.

Proof. Suppose there are two equilibria i1 and jie. Let p1 be the joint distribution of ji; and its
corresponding equilibrium control, same for puo. Then by the definition of equilibrium, we have

| (2. Ajis (), @) (s dr, da) > | F((t 2, Ajis (), @)pua(du, d, da)
[0,1]xRx A [0,1]xRx A
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and

f f((t,x,AﬂQ(u),a),ug(du, dxada) = f f((t,x,A[LQ(U),CL),U,l(dU,, dxvda)‘
[0,1]xRx A [0,1]xRx A

The above two formulas lead to
j <f<(t7 z, Alal (U), a) - f(ta z, A/]Q(u)7 CL)) (Ml - /-1'2)(du7 dl’, da) = 07
[0,1]xRx A
and the same for g, which is a contradiction to our assumptions. O

Let Jg’g“ be the marginal value function of graphon equilibrium defined as

T
TG (ns ) = EUO f(, X (8), Ap(u), at, X (2)))dt + g(X(T), AM(U))]> (6.7)
with the dynamics of X = X< being

dX(s) = JR b(s, X(s),z,a(s, X(s)))Aus(u)(dx)ds

+ J o(s, X (s),z,a(s, X(s)))Aus(u)(dz)dW (s)
R

+J U(s, X (s), e, (s, X ()))N(ds,de),  X(0) = &
E

The following proposition tell us that when the population distribution is given, the optimal
Markovian feedback control for each label u € I is also the optimal control in the set A; of measurable
functions [0,7] x R — A. Since we fix the population distribution, it can be viewed as if there were
no interaction in the dynamics. This proposition is an analogue to [162, Lemma 4].

Proposition 6.7 (Marginal supremum). Given pu € Py,,([0,1] x D), if o* € A attains the supremum
of Ja(p, ) defined in (6.5) over all o in Ay, then for a.e. u € I, we have

7§u (

TSy al) = sup JEt (p, ),

acA;

with o (t,x) := a*(t,u, x), where Jg;g“ (1, ) is defined in (6.7).

We omit the proof which follows the arguments of the proof of [162, Lemma 4] and can easily be
adapted to our set-up.

6.4 Finite networked games with heterogenous interactions

In this section, we study large finite networked games with heterogeneous interactions and analyze
their limiting characteristics as the number of players n approaches infinity, with the interaction matrix
converging to a given graphon.
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6.4.1 Finite game with jumps

Let n € N be the size of the network. We consider an inhomogeneous interacting particle system
X = x (.2 with controlled dynamics

30 (s, X ), X0(s), (s, X0 ()W) (6.8)

)

*f (s, XM (s), e, a(s, X () Ni(ds,de), X (0) = €™,
E

where {W;,i € [n]} are i.i.d. Brownian motions, and {N;(dt,de),i € [n]} are independent Poisson
random measures with compensator v;(de)dt defined on a probability space (2, F,P) , such that v;
is a o-finite measure on E := R,, with R, := R\{0}, equipped with its Borelian o-algebra B(E).
Let {N;(dt,de) : u € I} be the compensator processes. Let F = {F;,t > 0} be the natural filtration
associated with W; and Ni(dt, de), i =1,...,n. We assume that fz-(n) € L2(Fy) foralli=1,...,n

Here, ¢(™ := (Ci(f)),-j is an n x n symmetric matrix with nonnegative entries, called the interaction

matrix. It describes the strength of interaction between players i and j. Usually ¢(™ is the weights
between edges, but it can also be defined as the probability that an edge is present between the
vertices.

The controls « are in Markovian feedback form, i.e., they are in the set A,, of measurable functions
from [0,7] x R™ — A, where A is a compact metric space representing the set of actions. We denote
by A" the set of vectors a = (aq, ..., ay), with a; € A,,.

We assume that the coefficients b : [0,7] x RxR x A > R, 0:[0,7] x RxR x A - R, and
£:[0,T] x Rx E'x A — R are Lipschitz continuous w.r.t. all parameters except t. We further assume
that o2 is bounded from below.

For each player i € [n], we define the neighborhood empirical measure as
1 n
= Z . X(n) e P(D), (6.9)
and the neighborhood empirical measure at time s,
(n) 1N
’I’L
M ﬁ Z l] X(n) P(R)
Each player i € [n] seeks to optimize its own objective function with respect to the control a:

(2

Ji(@) := E[LTf@, XM (e), MM (), a(t, X (8))dt + g(x (1), M (1)),

where the functions f and g are bounded continuous w.r.t. all parameters.
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6.4.2 Propagation of chaos for controlled graphon system

To approximate Nash equilibria for finite games on a network, we must establish a connection between
the finite system and the graphon system, specifically the relationship between their laws of state
processes. In this section, we present the results of the propagation of chaos. As previously mentioned,
the canonical coupling significantly simplifies the analysis, and sometimes we study under canonical
coupling.

First, we provide a result to measure the distance between the state processes induced by different
graphons.

Theorem 6.8 (Stability of graphon). Let X® and X be the solutions of (6.3) associated with
graphon G and Gy, initial conditions & and €™ respectively and both under control . Suppose that
for each uwe I, a(t,u,x) is Lipschitz in x. Then, we have (for some constant C' > 0)

EU sup | XV (t) = X2 (8)Pdu| < c(f El¢, — &0 + |G — Gnlo).
I te[0,T] I

Moreover, we have

sup | X[ (1) = X5 (1) < C(supBIE — €uf? + G — Calloon).
ue

uel

Proof. See Section 6.6.2. OJ

The above stability result illustrates the difference between two systems. In particular, if |G, —
Glo — 0 and B[S, |¢, — &7 |du] — 0 as n — o, it follows that

E[J sup | X{Me(t) — X{f(t)|2du] — 0.
T te[0,T]

Under certain continuity assumptions on the graphon and initial condition, we can achieve conti-
nuity concerning the state processes.

Assumption 6.3. There exists a finite collection of intervals {I; : i = 1,...,n} such that I =, I;
and, for each i€ {1,...,n}, we have:

(i) uw— L(&,) is continuous a.e. on I; w.r.t. the Wy metric.
(i1) For each j e {1,...,n}, G(u,v) is continuous in u and v a.e. on I x I;.
(iii) The intensity measure vy, is continuous in u for the Wasserstein distance Wa on each I;.

Assumption 6.4. There exists a finite collection of intervals {I; : i = 1,...,n} such that I =, I,
and for some constant C, we have for all ui,ug € I;, vi,v2 € I, and i,j € {1,..., N},

W2(£(£u1)a£(£u2)) < C|’LL1 - u2|7 (6'10)

236



Chapter 6. Stochastic Graphon Mean Field Games with Jumps and Approximate Nash Equilibria

6.4. Fini%e networked games with heterogenous interactions
AFoe

|G (u1,v1) = G(ug, v2)| < C(lur — ua| + |v1 — v2l),

and
WQ(Vul)V'U,Q) < C|U1 — u2|.

We then have the following result regarding the difference between labels within the same system.

Lemma 6.9. We have the following:

(i) (Continuity) Suppose Assumption 6.3 holds. Furthermore, assume that for each {I;,i =1,...,n},
the control a(t,u, ) is continuous in u on each I; and continuous in x. Then the map I; 5 u —
L(XT) is continuous w.r.t. the Wa r distance for each I;.

(ii) (Lipschitz continuity) Suppose Assumption 6.4 holds. Furthermore, assume that for each {I;,i =
1,...,n}, the control a(t,u,x) is Lipschitz continuous in u on each I; and Lipschitz continuous
in x. Then the map I; > u — L(X,) is also Lipschitz continuous w.r.t. the Wa r distance for
each I;.

Proof. See Section 6.6.3. O

To examine the relationship between the finite system and the graphon system, we require the
following regularity assumption on the strength of interaction ¢, similarly as in Chapter 5.

Assumption 6.5 (Interaction regularity). We say (™ := {ngﬁ)}i’je[n] satisfies the regularity assump-
tion with graphon G if either:

(i) ) = Gl 2
(ii) CZ-(;l) = Bernoulli (G(%, %)) independently for all 1 < i < j < n and independent of {Wy, Ny, &, :
ue I} and {W;, N;, & : i€ [n]}.

We call {G),}nen a sequence of step graphonsa sequence of step graphons if, for each n € N, G, is
[nu] [nv]

a graphon and satisfies Gy, (u,v) = G, (T’ T) for all (u,v) € I x I. With the above two results, we
obtain the following convergence results from the finite controlled system to the graphon controlled

System:

Theorem 6.10 (Large population convergence). Let o(t,u, ) be a Lipschitz function on (u,x), and
(n) B ; . . R
"(t,x) = alt, L,z). Let X™ and X be the solutions of (6.8) and (6.3) respectively, with initial
conditions €™ and &, controls o™ = (agn))ie[n] and o. Suppose Assumption 6.4 holds with G, and
¢ satisfies the reqularity Assumption 6.5 with Gy, where {Gn}n is a sequence of step graphons such

that |G — Gp|o — 0. Then we have the following convergence result for the empirical mean of the
neighborhood measure (defined in (6.9)):

1 & n
-~ Z Mi( ) J Ap(v)dv,
i I

let o
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in probability in the weak sense, where p := L(X). Furthermore, for each i € [n] and any Lipschitz
continuous bounded function h from D, we have (for some constant C' > 0)

B[, M) — (h Au(Lp)] < i;E‘QW &5 + 16— Gl + G~ Glloran +
If W;, N; and W%-, N% are the same for each i € [n], then we have
IS xz <o(E B P16 - Gl + L),
nia nor "o " "
and moreover
max | X[ = X, [ < O(max I €. + 16 = Galoooo + 7).
Proof. See Section 6.6.4. OJ

Remark 6.11. Notice that for any t € [0,T], S 5 X — X; € R is continuous. Thus, for any bounded
Lipschitz continuous function H : R — R, we have that (H, Mi(n) (1)) — (H,Ap(L)) with the same
convergence rate as {h, Mi(n)> — (h, Ap(L)), under the conditions in Theorem 6.10.

When the graphon is not necessarily continuous, we can still obtain similar convergence results.
To this end, we introduce the following definition.

Definition 6.12 (Continuous modification set). Let (X, d;) and (Y,d,) be two metric spaces, and let
f: X =Y be measurable. We say that a point x € X is in the continuous modification set of f if x
belongs to some A € B(X) such that the restriction of f on A is continuous.

As a corollary of Theorem 6.10, we have the following convergence result for general graphons.

Corollary 6.13 (Convergence for general graphon). Let a(t,u,x) be a Lipchitz function in (u,x), and
(n)

let o 7 (t, ) = aft, %,:p) Let X™ and X be the solutions of (6.8) and (6.3), respectively, with initial
conditions €™ and &, controls &™) and o. Suppose that for each n € N, {(%, L)i,j=1,...,n} is in

the continuous modification set of G. Suppose Assumption 6.3 (a) holds, ¢ satisfies the regularity
Assumption 6.5 with G, and {Gp}n is a sequence of step graphons such that |G — Gyllo — 0, for any
G. Then we have

1 n
LM | Ao,
[t I

in probability in the weak sense, where p 1= L(X). Furthermore, if |Gy, — G|ao—w — 0, then for all
i€ [n], Mi(n) — Ap(L). If Wi, N; and Wi, N are the same for each i € [n], then we have

1 ¢ n
~ 3 IX — Xilg — 0,
=1

and if |[Gn — Gloonoo — 0, then maxepy,) HXZ-(n) - X%Hé% — 0.
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Proof. See Section 6.6.5 ]

We end this section by the following example of a graphon which is nowhere continuous but satisfy
the conditions of Corollary 6.13.

Example 6.14 (Dirichlet graphon). Consider the graphon G defined by G(u,v) = 1 if u,v € Qn [0, 1],
and G(u,v) = 0 otherwise. Although G is nowhere continuous, all rational points belong to the
continuous modification set of G, and thus the results of Corollary 6.13 apply to this graphon.

6.5 Approximate Nash equilibria of finite games

For € = (€1,...,€,) € [0,00)", the e-Nash equilibrium is defined as any o = (a,,...,ap) € Al
satisfying for all i € [n],

Jz(a) = sup Ji(ala s ,Cki_l,/B, ity 7a7’l) — &
BeAn

For any € > 0, a global e-Nash equilibrium is defined as any a € A” satisfying for all i € [n],

Jz(a) = sup Ji(Oél, .. "ai71757al’+1’ . 'aan) — €
BeAn

We use the equilibrium control for graphon games as a benchmark to infer the equilibrium for
finite games. With the propagation of chaos results, as the population size grows, the distributions of
state processes of finite games and graphon games become closer. Intuitively, the equilibrium control
for each player in the finite game should be very close to that taken for the corresponding label in the
limit graphon system. It is natural to choose the control associated to label % for the i-th player in
an n-player game. When the graphon equilibrium control has some continuity with respect to u, we
could just consider controls associated with labels close to %

Let us define

egn)(u(”)) = ;123 Ji(a*(ugn)), .. ,oz*(ul@l),ﬁ, a*(ugi)l) el oz*(u%”))) — Ji(a®), (6.11)
eAn
where u(® = (ugn), e ,u%")), and ugn) is such that oz*(u(-n)) = oz*(~,ul(-n), -), i.e., player i uses the

(3
control rule of the graphon equilibrium control of label ugn).
The accuracy and complexity of the approximate equilibria for finite games depend on the under-

lying graphon and on the way in which the network converges to its graphon.
We start with the simplest case of a piecewise constant graphon.

Piecewise constant graphon. We call a graphon piecewise constant if there exists a collection of
intervals {I;,i = 1,...,k} for some k € N such that I = Ule I; and for all uy,us € I;, vi,v2 € I, and
i,j€{1,...,k}, we have G(u1,v1) = G(u2,v2) and G(uy,v2) = G(ug2,v1). Such a graphon corresponds
to the stochastic block model and can be thought of as a model of multi-type mean field games.
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Theorem 6.15 (Piecewise constant graphon). Suppose G is a piecewise constant graphon and ¢ (n)
satisfies reqularity Assumption 6.5 with G. Suppose also that Assumption 6.3 (i) holds. If

max E!fgn) — & 2 _ O(nil),

2
’L=1,...,’I’L n

then taking ugn) = %, we have as n — o0,

max egn) (u™) - 0.

Moreover, if the initial condition is Lipschitz, satisfying (6.10), then we have

max e(n)(u(”)) =0(n™).

. )
i=1,...,n

Proof. We omit the proof since it follows the same arguments as the proof of the Lipschitz case below,
but are simpler. O

(Lipschitz) Continuous graphon. We call a graphon G(u,v) continuous if there exists a collection

of intervals {I;,i = 1,...,k}, for some k € N, such that I = [ J, I;, and G is piecewise continuous with
respect to w and v in all intervals I;,7 = 1,..., k. Furthermore, we call it Lipschitz continuous if for
all uy,ug € I;, v1,v2 € I;, and 7,5 € 1,...,k, there exists a constant C such that

|G(U1,U1) — G(’LLQ,’UQ)| < C(\ul — ’LL2| + |U1 — U2|).

To study continuous graphons, we need to assume continuity of graphon equilibrium control with
respect to the label. We introduce the following concavity assumption.

Assumption 6.6 (Concavity).
o f(t,z,p,a) is concave in x and strictly concave in a.
o Forall A€ [0,1], a1,a2 € A,
Af(t @, ar) + (L= N f(Ex, p,a2) < f(E 2, 1, 00),
where ay = ay(t,x, n) is the solution to
b(t,z, u,ay) = Ab(t,x, u,a1) + (1 — N)b(t, x, p, az).

Remark 6.16. This assumption is satisfied in particular when the drift b is affine in a, as assumed
in [162, Theorem 3J.

Under the above assumption, we can obtain the following stability lemma for graphon equilibrium
control.
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Lemma 6.17 (Stability of control). Suppose that Assumptions 6.3 and 6.6 are satisfied. Then there
exists a unique optimizer o, for Sup,e . Jg’gu (u, ). Let o*(t,u,x) := a(t,x). We have o*(t,u,x)
is (piecewise) continuous in (u,x), and the law of X< is (piecewise) continuous in u in the weak
sense. Furthermore, if G, f,g are all Lipschitz continuous and Assumption 6.4 is satisfied, then all
the continuities become Lipschitz continuities.

Proof. See Section 6.6.6. O

Using this lemma, we obtain the following approximate result. For each i € [n], we define Ii(n) =
(0_I;,iit =l g 1, ie; T = iif izl ie 7™ = [ 0, 1) if L e I; and ZL ¢ Ij,

I’ n ( n’'n
where 0_ and 04 denote the lower and upper borders, respectively.

Theorem 6.18. Suppose Assumption 6.6 holds, (™ satisfies the reqularity Assumption 6.5 with step
graphon G, and |G — G,|o — 0.

(i) (Continuous graphon). Suppose Assumption 6.3 holds, G is continuous, and the initial condition

satisfies L 37 | E|¢; () f |2 — 0. Then we have

1 & (
- n)
€58 SUD, ) pn) 70 nZ ;

Furthermore, if |G — Gplloo—o — 0 and maxl-:l,,._’nlEEi(n) —¢i|?2 =0, then we have

. (n)
€S8 SUP, (1) 7(n) .z, TAX € (u™) - 0.

(ii) (Lipschitz Continuous graphon). Suppose Assumption 6.4 holds, G, f, and g are Lipschitz
continuous, and the initial condition satisfies 3" lE|§Z(n) —¢&i? =0(n™1). Then we have
L5 )
n —
€88 SUD, (1) 7 ... 7(M) - Z € (u™) = O0(n™).

i=1

Furthermore, if |G — Gplloo—o — 0 and maxi:Lm,nlEEi(n) —¢:2 =0(n™1), then we have

€SS SUD, (1) e7(m) ... 7 , 108X e( )(u(”)) =0(n™h).

=1,...,n
Proof. See Section 6.6.7 O

For a non-continuous graphon, we obtain a slightly weaker result.

241



6.6. Proofs Chapter 6. Stochastic Graphon Mean Field Games with Jumps and Approximate Nash
Equilibria

NFRe

Proposition 6.19 (General graphon). Suppose Assumption 6.6 holds and for eachn € N, {(%, %)i,j €
[n]} is in the continuous modification set of G (see Definition 6.12 ). Suppose moreover that ¢
satisfies the regularity Assumption 6.5 with step graphon G, and |G — Gn|o — 0. If the initial

condition satisfies %22;1 E|§§n) — €112 =0, then taking ul(-n) = %', we have, as n — 0,
1 n
=3 e ™) - 0.
i3
Proof. The proof follows, similarly to the proof of Theorem 6.18, using Corollary 6.13. O

Sampling graphon. Let Uy, ..., U, bei.i.d. uniform random variables on [0, 1], and let Uy, ..., Uy,
be their order statistics. We say that ¢(™ is sampled with weights from the graphon G if Ci(jm =
G(Ugpy, U(j)). We say that ¢ is sampled with probabilities from the graphon G if

gz(j") = Bernoulli(G(U;), Uyj)))-

It is clear that if the strength of interactions ( (") is sampled from a graphon, it will introduce
more randomness into the system and, hence, hinder our analysis. However, as the number of players
n becomes very large, the randomness can be reduced and does not interfere with the approximation
for equilibrium.

Theorem 6.20 (Sampling graphon). Suppose Assumption 6.6 and 6.3 hold. Let (™ be sampled from
the continuous graphon G. If the initial condition satisfies %ZLIEMEH) —&i|? — 0, then we have,

for both ways of sampling above, as n — 0,

L ), ()
€SS SUD, (1) 70 ... () 7 Z g (u')—0.
i=1

Proof. See Section 6.6.7. O

6.6 Proofs

6.6.1 Existence of graphon equilibrium: Proof of Theorem 6.4

We first prove the existence of a relaxed equilibrium and then show how to construct a strict control.

A relaxed control rule is a measure on [0,7] x A with the first marginal equal to the Lebesgue
measure. Denote V as the set of relaxed controls. Since A is assumed to be compact, V is also compact,
equipped with the weak topology. For each m € V, we have m(dt, da) = dtm(da) with m; measurable
and unique up to almost everywhere (a.e.) equality.

A strict control is a specific control rule which involves no measure on A, that is of the form
m¢ = d4(p) for a.e. t with measurable a : [0,7] — A. Under some appropriate conditions, we will show
how to construct strict controls based on relaxed controls.
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Existence of a relaxed equilibrium

For all ¢ € CP(R) and each u € I, let H, be an integro-differential operator associated with label u
of the following form

0 2 02
O )+ T a0 S5 @)

+ JR <qb(a: Ut e a)) — d(x) — Utz e, a)?i(m))yu(de).

Hoyod(t, z, puya) :=b(t, z, u,a)

Definition 6.21 (Controlled graphon martingale problem). For a fized 1 € Pupnit([0,1] x D) and
Ao € Punit([0, 1] x R), let R(u) be the set of P e P(Qyy,), Qi :=V x [0,1] x D such that:

(i) Po (U, X(0))~" = Xo;
(ii) for each ¢ € CP(R) (the set of C* functions with compact support), the following process

(Mt“’qs)te[o’T] is a P-martingale,

M[L’¢(m, u, ) = ¢p(xy) — f Houd (s, 25, Apis(u), a)m(ds, da), t e [0,T7].
[0,¢]x A

Let TH(m,u,x) : R(1) — R be defined as

P (m, u, ) = f[ sy T Al @)t de) + 9, A ().

Let Rg be the set of P € Py,i([0,1] x D) such that:

(i) Po (U, X(0))7! = Ao.
(ii) For some constant M, sup,.; IE||X||§2 <M.
T

(iii) For each nonnegative ¢ € C(R), ¢(X;) + C(¢)t is a P-submartingale, where C(¢) is the supre-
mum of |H,¢| over [0,1] x [0,T] x R x M4 (R) x A.

It is easy to see that R( is nonempty, convex and closed. The first marginal is compact. Since b, ¢
and ¢ are bounded, by the tightness criterion of Stroock and Varadhan [190, Theorem 1.4.6], (i) and
(iii) imply that the third marginal of Ry is tight. Condition (ii) guarantees it is relatively compact in
P(D), see [198, Theorem 7.12]. Thus Ry is compact.

With u € Puaie([0, 1] x D) given, define the set

R*(p) := I, P5.
(1) argpreggé)< P

Define further the set-valued map ® () : Punie([0, 1] x D) — 2Punit((0,11xD) 1,y

O(p) ;== {Po (X,U)"L :PeR (1)}
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We proceed to prove the existence by using Kakutani-Fan-Glicksberg fixed point theorem for set-
valued functions. This is a powerful tool for equilibrium analysis in MFGs, as shown in previous
works such as [84, 160, 162]. While the basic logic and procedures are similar to those in standard
MFGs, there are additional considerations needed due to the presence of the label variable U in our
model. We refer to [6, Chapter 17] for the necessary knowledge on set-valued analysis.

We introduce the definition of the continuity of set-valued functions and some basic results. For
two metric spaces A and B, a set valued function f : A — 28 is lower hemicontinuous if, whenever
z, — x in A and y € f(z), there exists y,, € f(zp,) such that y,, — y. If f(z) is closed for each
x € A, we say that f is upper hemicontinuous if whenever x,, — z and y, € f(x,) for each n, the
sequence (y,) has a limit point in f(x). Moreover, f is said continuous if it is both upper and lower
hemicontinuous. If B is compact, then the graph {(z,y) : z € A,y € f(x)} of f is closed if and only
if f(x) is closed for each x € A and f is upper hemicontinuous. To prove that the set of solutions
of the set-valued fixed point equation p = ®(u) is nonempty, we have to verify the following three
conditions:

(i) ®(u) < Ry for each u € Ry.
(ii) ®(u) is nonempty and convex for each p € Ry.

(iii) the graph {(u,p’) : p € Ro, ' € ®(u)} is closed.

For any P € Ry, let u = Po (U, X)~!. Clearly the image set ®(u) satisfies properties (i) and (iii)
of Ry. By the boundedness of b,0,¢, letting ¢ be the identity function, we also have property (ii).
Thus, ®(u) € Ro. Furthermore, taking a converging sequence (P,,) in R(x) with limiting measure P,
we have P is also in R(u) since ¢ and H,¢ are bounded for each ¢ € CP(R) and any u € I. Hence,
R(w) is closed for each p € Ry. Therefore, R(p) is nonempty and compact.

Continuity of R(x). We now analyze the continuity of the map u — R(u).

Upper hemicontinuity: Since R(u) is closed for each u € Ry, it suffices to show that its graph is
closed. Suppose p, — p in Pyni([0,1] x D) and P,, — P in P(Q). Note that for each t € [0,T], Hyo
is jointly continuous in (x,a). Combining this with the boundedness assumption, by [160, Corollary

A.5], we have for each (u,u), (m,x) — Mt“’d)(m,u,:n) is continuous. Further, since for each (t,x,a),
Hyd(t, z, 2’ a) is continuous in z’, and for each ¢ € [0,T] and a.e. w € [0,1], us — Ap is also
continuous by [162, Lemma 4.2]. We have for a.e. u € [0,1], (m,z, p) — M{"¢(m,u,x) is continuous.
It follows that for any bounded continuous Fs-measurable function h and all 0 < s <t < T,

<P7 (Méu’(z)(ma u, .1') - Mg’¢(mv u, .’L'))h> = nh_r)%OGP)na (Mium(b(mv U, J}) - M£n7¢(m> u, x))h>)

which shows that ]\ﬂ"q5 is a P-martingale, and thus P € R(u). The graph of p+— R(u) is closed.

Lower hemicontinuity: By [113, Theorem 8.6], we can find a measurable function o : [0,7] x R x
P(R) x P(A) — R such that (¢, x, u, q) is continuous for each ¢,

(o) = | ot a)a(da),
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and o(t,x, 1, 0q) = o(t,z, pu,a). Further, we can find a filtered probability space (Q;, F1,F1,P;) that
supports a family of independent Brownian motions W,,, v € I, a family of independent random Poisson
measures NV, (dt,de) : u e I and a family of P(A)-valued processes m,, : u € I such that

X (s) = L b(s, Xu(s), Aty (1), @) o(da)ds

+ 0 (s, Xu(s), Aps(u), a)my, s(da)dW,(s) (6.12)
J J U5, Xu(s), €, 0)mus(da) Nu(ds, de),  Xu(0) = €0 uel,

with P = P o (dtmy ¢(da), du, X,,)~!. Then on the same probability space, we can write

dxﬁ”w>—J;b@,X£><>Aun4 ), @) (da)ds

+ (5, XM (8), Aptn,s (1), )y s (da)dW, (s)
+ f f U(s, X (s), e, a)my s (da) Ny(ds, de), XM0)=¢  uel,
EJA

With p and p,, known, the above SDE system has a unique solution thanks to the Lipschitz assumption
on b,o, and ¢, see e.g., [180]. Then by applying the Burkholder-Davis-Gundy inequality and the
boundedness and Lipschitz continuity of b, o, and ¢, we have for each u € [0, 1], EFt [supyepo, [Xu(t) —

xim (t)]?] — 0, which implies that P, — P in P(£2). We can conclude by using Itd’s formula to check
that P, € R(un). Hence, p+— R(u) is lower hemicontinuous.

Analysis of R*(u). By similar arguments as above, it can be verified that I'*(m, u, ) is continuous
in (m,x) for each u € I, due to the continuity of f and g in (z,a). Moreover, for each t € [0,T],
the weak limit p; of p1,,; satisfies that the weak limit of A, is Apy. Hence, the expected functional
(1, P) — (I'*P) is continuous. By applying the famous Berge’s Maximum Theorem, the set-valued
function R*(u) is upper hemicontinuous. Then, by the continuity of (I'*,P) and the closedness of
R(p), R*(u) is also closed for each p. It therefore follows that the graph of R* is closed.

Convexity of ®. Since the map P — (I'*,P) is linear in P and the set R(u) is convex, by the above
analysis, we can easily conclude that R*(u) is convex for each p. Additionally, using the linearity of
P+ Po (U, X)" !, we can also see that ®(u) is convex.

Now we have verified all the conditions needed to apply Kakutani-Fan-Glicksberg fixed point
theorem. Then by the theorem, the set of fixed points of ® is nonempty and thus there exists at least
one graphon equilibrium.

Construction of a strict control

Following the strategy for constructing the Markovian control as in the proof of [162, Theorem 3.2],
by using [113, Theorem 8.6], we may find a measurable function & : [0,7] x R x P(R) x A — R such
that o(t,x, u, q) is continuous for each ¢,

#(tama) = | ot pa)a(da),
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and o (t,x,p,0q) = o(t,x,u,a) for each (t,x,p,a). Further, we can find a filtered probability space
(Qq, F1,F1,P1) that supports a family of independent Brownian motions {W; ,,u € I}, a family of
independent random Poisson measures {Ni ,(dt,de) : v € I} and a family of P(A)-valued processes
{mu¢ : u e I} such that

dXiu(s) = JA b(s, X1,u(s), Aps(u), a)my, s(da)ds
+ (s, X1,u(s), Aps(w), my s )dW 4 (s) (6.13)
J f 0(s, X1 (s )mu75(da)]v17u(ds,de), Xu(0) =&, uel,

and Q1 = Py o (dtmy,¢(da), du, Xl,u)*

Following the idea in the proof of [160, Theorem 3.7], where the result is shown by using the
Mimicking theorem from [71], we can mimic the marginal distribution of the above jump diffusion
by using the Markovian projection results for jump diffusion. To do this, we introduce the following
combined 2-dimensional process (Ui (s), X1(s))se[o,r] under canonical coupling,

4X1(5) = | Hs, X2 A1), @) ol da) s
+ 7 (s, X1(s), Aus(Ur(s)), my, (s),s)AW1(5),
f f (s, X1(5), B (€ — 1), a)muo(da) i (ds, de)
dU; (s) =0ds + 0dW (s) + ; 0N (ds, de),
Let B, & and 7 be defined as

8(57 X(S)v U(S)) =K JA b(s’ X(S)7 AMS(U(S))a a)mU(s),s(da)KU(S)’ X(S))] )

7 X(5). V() = Ba[ | 0% X (), Ausw(s»,a)mU(s),sua)\(U(s),X(s))],

2(37X(S)7U(8)76) = J E S, X ( )(6 - 1) ) (s),s(da)‘(U(S)ﬂX(S))}

and

Fls, X(9),U(5)) 5= Ba | 5, X(0): (U 5))s a0 (U 5), X ).

Then, by [59, Theorem 2], there exists another filtered probability space (€22, Fa, Fa,P2) that supports
a Brownian motion W5, a Poisson random measure N5(dt, de) with the compensator N2, such that

dXs(s) =3(s, Xo(s),Ua(s))ds + (s, Xa(s),Ua(s))dWs(s),
+ L U(s, Xo(s), Ua(s), ) Na(ds, de), (6.14)

dUs(s) =0ds + 0dWs(s) + f 0N (ds, de),
E
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and (X2, Us) 4 (X1,0U1).

Recall that according to Assumption 6.1, for all (¢, z,u, u) € [0,T] x R x [0,1] x M{;,¢([0,1] x R),
there exists some e* € E such that the set Ko« |[p](t,z,u) is convex. This set is also closed since
we have assumed that b,0,¢ and f are all continuous in a. Note thAatAif U — I, iS measurable,
then u +— Ap(u) is also measurable, and by definition, we have (b,52,¢, f) € Kqx[u](t, z,u) for each
(t,z,u, ). By applying a measurable selection result [138, Theorem A.9], there exists a measurable
function o* : [0,7] x R x [0,1] — A such that for all (¢,z,u) € [0,T] x R x [0, 1], we have

b(t, z,u) =b(t, z, Ay (u), a’(t, z,u)),
G2 (t, x, u) =02 (t, z, Ay (u), af(t, z,u)),
Ut u,e®) =U(t, 2, u, €, aj (t, z,u)),

and R

ft,zu) < f(t,x, A (u), a7 (t, z,u)).
Notice by the second point of Assumption 6.1 and Remark 6.1, K.[u](¢,2,u) is convex for all e € E.
We can apply [138, Theorem A.9] to the set K.[u](t,z,u) for all e € E. Besides, £(t,x,e,a) is affine
in e also guarantee for all e € F,

@(t, x,u,e) = L(t,x,u e ar(t,z,u)).

We can then rewrite (6.14) as
X5 (s) =b(s, X5 (s), Aus(Uz(s)), @" (s, X5 (5), Un(s)))ds
+ (s, X5 (5), Ao (Ua(5)), 0" (5, X5 (), U (5)))dWas),

f U(s, XS (), Ua(s), e, " (s, X5 (5), Ua(s)) ) Na(ds, de), (6.15)
dUsy(s) =0ds + 0dWa(s) + J 0N, (ds, de).
E

Now, a* € A7, and we have (X§", Us) 4 (X?2,U?) by the weak uniqueness of (6.14).

Define Q2 := Py o (dtda» (¢, x,(t),02(1)) (da), Uz, X2)~!. Then Q2 € R(11). Let p? be the joint law of
(Ua, X3), and we have

Ja(p, ) = I*, Qz)

- T
= By L £t Xa(t), Apue(Ua(1)), @ (1, X (), Ua(t)))dt + g(Xo(T), Apir (Ua(T))|

- rT
= B[ | (0 Xa(0) A (U2(0). 0" (1 Xa(0) Ua(e)t + 9(Xa(T), Ayt (Ua(T)) |

- rT
> B[ | (0 Xa(0) Uale))dt + g(Xa(T). A (0 (7)

T
=K [L L (s, X1(5), Apus(Ur(s)), a)muy, (5),5(da)dt + g(X1(T), Apr (UL (T)))]
= (T* Q1).
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Notice that for any Q1 € R*(n), (I'*, Q1) = (I'*, Q) for any @ € R(u). This leads to the conclusion

Ja(p, o) = I, Q1) = sup Ja(p,m) = sup Ja(p, o),
me

aEA]

with p chosen to be the solution of the fixed point equation ®(u) = u, which means p is the law of
X" under the strict control a*. O

6.6.2 Stability of graphon: Proof of Theorem 6.8

We will utilize similar techniques for estimates as those in [47] and in Chapter 5. Define «,(t) :=
a(t,u, Xy (t)) and al” (t) := a(t,u, x{ (t)). By Burkholder-Davis-Gundy inequality, we have

X - X2
<0 [ B[ [ Gntuoo X060, oD
~ f J G(u,v)b(s,Xu(s)jx,au(s))uw(d:p)dvfds
I JR
T
(n) () (5)) (")
e jo E| L jﬂ%am,v)a(svxu (s), 2, () ()1 (d) o
_f J G(u,v)a(s,Xu(s),x,au(s))uv,s(dm‘)dvrds
I JR
T 2
+C]Ef f‘e(s,xms),e,agﬂ)(s))—e(s,Xu(s),e,au(s))] N, (ds, de) + CE|EM — &2, (6.16)
0 JE

We calculate the first term; by adding and subtracting terms, we obtain:

LT E‘L JR Gn(u,v)b(s, X&”)(s), 1:7O‘Q(Ln)(5))uq(,?s)(dx)dv
—f f G(“:U)b(S,Xu(S),J:,au(s)),uus(dx)dvrds
- I JR 2
< CL EHL(JRb(s,Xu(s),x,au(s))uw(dx))(a(u,v) ~ Gl 0o ]s 61
‘2

+C JOTIE[L JR’b(s, Xu(8), x, ay(s)) — b(s, qu”)(s), x, a&")(s)) G2 (u, v),uv,s(d:n)dv]ds

+C L TIE[ L | fR b(s, X (), 2, 00 ()G (1, 0) 0. — ngg](dx)fdv]ds.

Denote the three terms on the right-hand side of inequality (6.17) as L(Ln)’l, Iqsn)’Q, and Iqsn) 3 respec-

tively. By utilizing the Lipschitz property of f and «, the property of X € M, we obtain the following
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for all w e I:

o [ B[ o6 Xutoh . cntmstan) |
T
< ch ]E[l + ] Xu(s)? + | Xu(s)* + \Zu(8)|2]
0

< C’supE[ sup |Xu(t)|2] <C.
uel te[0,T]

Hence, by applying Fubini’s theorem, we obtain the following for all v € I:

2
7 < C'f (G(u,v) - Gn(u,v)> dv

I

According to the equivalence between the cut norm and the L' operator norm of a graphon, we have
f Tl du < C|G - Gylo.
I

Then, by employing the Lipschitz property of f and « and using inequality (6.2), we obtain

f 24y < CJJ 1 X,(s) — XM (s)] ]duds
J ”>3du<cf fwwsv,uw dv<CJJ X, (5) — X (s)| ]dv

We can address the second term of (6.16) in the same manner. Now, for the third term of (6.16), by
utilizing the Lipschitz property of £, we have

and

2 T
"N (ds. de) < © f E|X()(s) — X (s)[2ds.
0
(6.18)

E L ' fE\z(s,Xgn>(s), e, (5)) — (s, Xu(s), €, au(s))

By combining all the results above and integrating over I, we obtain:

LE[ sup | X (1) — Xu(t)yQ]du <CU E[¢™) — ¢, [2du

te[0,T]

+1G - Gulo+ j j sup [X{)(8) X, (0)*Jduds]

te[0,s]

Applying Gronwall’s Lemma, we conclude that

L E[ sup [X(() - X, (1) |du < €| f[ EJ¢(") — &uf*du + |G — Galo].

te[0,T]
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Taking the supremum over [ instead of integrating for (6.16), we can first obtain

supZM! < C| J (G(u, v) — Gp(u, ’U))dU < C|G = Gplloo—oo-
I

uel

Then, using similar arguments as above, we have

sup [ X{(8) = Xu (1)1 < C[supEIEl — &uf? + |G = Gulonio].

uel

as desired. OJ

6.6.3 Proof of Lemma 6.9

We proceed with the proof similarly to the continuity arguments presented in [47] and Chapter 5.
Here, we employ a different method to couple the system. By coupling X,, and X,, with a common
Brownian motion W and allowing N,, and N,, to jump simultaneously with jump sizes determined
by a joint distribution vy, 4,, we have:

10— Xl
< CJOTEUI fR Gi(ut1, )b(5, Xy (), 2 (5, 1, Xy () () s
_ L JRG(UQ,U)b(s,Xuz(s),:L‘,oz(s,uQ,XUQ(s))MU,S(dx)dU'ZdS

" CLTEUJR G(ur, 0)0 (5, Xuy (5), @, (s, ur, Xu, (5)) itws (d)do
_ L JRG(UQ,U)J(S,Xuz(s),x,a(s,uQ,XW(s))MU’S(dx)dvrds

T 2
+ CEJ f ’g(stu1(3>a e1,a(s,ur, Xy, () — (s, Xuy (), €2, a(s, u2, Xu,(s))| N(ds,d(ey,e2))
0o JE

+ CE’&u - £u2‘2’

where N(ds,d(e1,e2)) is a random Poisson measure with compensator dtvy, ., (d(e1,e2)) and vy, u,
represents the coupled measure of v, and v,,. We allow the coupled measure v, ,, to be coupled in
such a way as to achieve the infimum of E,,, , [X1 — Xo|? with £(x1) = vy, and L(X3) = vy,. Then,
for the first two terms on the right-hand side, we can easily estimate them using a similar approach as
in the proof of Theorem 6.8, by employing the Lipschitz continuity of the control «(t,u,z) in (u,x).
Denote by Z the sum of the first two terms in the right-hand side of the above equation; we have

T
Z< C’f E| Xy, (5) — Xu,(s)|?ds + C’Tf |G (u1,v) — G(uz,v)|dv + CT|us — ug|.
0 I
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For the third term, we have

T 2
E J J s, X, (5). €1, 00, (5)) — €5, X (5). €2, 005 (5))| N(ds. (e, e2))
0 FE

T
< C’f E| Xy, (5) = Xu, (5)2ds + CTWa(vuy, v,))? + CT|ug — usl.
0
It follows by Gronwall lemma that
]EHXM - Xu2 “g% < CE|§U1 - £u2|2 + CTf |G(U1, U) - G(U27 U)’dv + CT(W2(Vu17Vuz))2'
I

Now, by taking the infimum over random variables &,, and &,, and combining the corresponding
assumptions, we can conclude point (i) and (ii) under the respective continuity conditions and Lipschitz
conditions. g

6.6.4 Large population convergence: Proof of Theorem 6.10

Denote a™ (1) := a(t, 2, X (), au(t) = alt,u, Xu(t)), and & () := a(t,u, XSV (t)). First, we
estimate the difference between X (™ and X where X is the solution of (6.3) with graphon G,
and initial condition £(™. By the Burkholder-Davis-Gundy inequality, we have (for some C' > 0):

; ~ 2
| [ s R (). (5) ()
I JR

n n n

) ~ 2
| [ 0o, R (), (5) ()
I JR

L
n n n

~ 2
—0(s, X\ (s), 6,5 (s))| Ni(ds,de) + CE[¢™ — &, |2,

i i
n n n

Let’s compute the difference between the first term in the right-hand side of the above equation,
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where X is the solution of (6.3) with graphon Gy, control «, and initial condition ¢, and am (t) :=
a(t,u, X (t)), and (™ := E()?(”)). We follow, by using the law of large numbers, similar arguments
as in the proof of [47, Lemma 6.1] and combine the Lipschitz property of a(t,u,x) on z. For the first
two terms in the right hand side of the above equation, we have

2

)

1 & n), 1 & (n) ~
nézg)lgcn;mxi (s) — Xi(s)

Sl

and Zs(n)’2 < %

In addition, since « is Lipschitz continuous, we have, by Lemma 6.9, that ,U,vns) is Lipschitz contin-

uous in Wasserstein-2 distance for any s € [0,7"]. It follows that
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For the jump term, we have similarly as in (6.18)

2
(s))| Ny(ds,de)

K3 2
n n

1 & T . . N
ZEJ J ’E(S,XZ.( )(s),e,ag )(8))—€(S,X'(S),e,a~
nia 0 JE

K
n

T n
1 n
< Cf = NEIX (s) - X (s)|%ds.
U
Arguing similarly as in the proof of Theorem 6.8, we have

%. (6.19)

L)

N
UK - R, <
=1

Noticing that in fact, 2 3" | E[X™i(s) — X 1(s)|? < MaXe[n] E[X™i(s) — X £(s)[2, by repeating the
above analysis and taking the maximum for i € [n] instead of the sum, we can obtain even

N C
max [ X" — X, % < =
i€[n] n °T n

On the other hand, by Theorem 6.8, we have
| 1% - Xl du < o] | Bl - P au+ 16 - Gulo] (6.20
I I
Combining the above two results (6.19) and (6.20), we have

n . 1
[ 1t~ Xt au < o] [ me — P+ 16 - Gulo + 1)
I r I n

By Lemma 6.9, if G is Lipschitz continuous, £(X,,) is also Lipschitz continuous in Wy r; if in
addition, £(&,) is Lipschitz continuous in W, 7. We thus have, under continuity conditions,

LS xm _ x, 2 Lmm g _
2 2 1 = X1 < O[7 2B €, +1G = Gula] + o)

and
() _ x |2 (n) _ ¢ 12 _
max | X1 = X2 |2, < O[maxBIE™ — €. 4G~ Gulloan | + 0(1)

Further under Lipschitz condition,
LSy 2 LS g _ e g2 1
=S - Xuf < C[2 D EIE — €4+ 16 - Galo+ -,
nia nor nia " n
and also the maximum type estimate as in Theorem 6.8,

() _ x o 2 M _ e 241G 1
o | X[~ X, |3 < ClmaxBIe” — €4 P 4G = Gullon + - |
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Let’s define ]\,\4;" = %Z?:l Ci(?)‘;Xl and X;L:L = %Z?:l G(L, %),ul. Now suppose G and L(&,)

are Lipschitz continuous. Let Ci(jn ) satisfy the Regularity assumption for graphon . For any bounded
Lipschitz continuous function h on D, we have again by Lemma 6.9 (ii),

b RS — <hAM ;i ' <hug> JGv<h/~tv>dv %
Moreover, we have
E| (. M) — b, A | 2
iz
_ % zn: E[(Z(}I)h(X%) G-, i)Eh(Xi)]
j=1
S el - D ) oy ot o)
J=1kj
e

where the last inequality comes from the boundedness of A and the independence of CZ(]n ). On the other
hand, by previous result, we have

n 2 c S n
E|(h, M{™) = (b, M| < = 371X — X[
j=1
Combine the above three results, we can conclude that for any i € [n],
(n) 2 .05 xm™_x. 2, 4 C
B[, M)~ A=) < & 2,157 Xl 4

Notice that in the assumptions of the theorem, ¢(™ satisfies regularity Assumption 6.5 with interme-

diate step graphon Gy, not for G. Recall the definition of i’ which was defined before. We have for
any i € [n],

z 9 C
[<h My =, AT () ] Z )Xl +

Finally, by the stability of graphon in Theorem 6.8, we have

(=) —<h, Au( )

[t nin s = [ G e
I n I n

(hy A

N 3\*

? l
< (6ul0) = G(E0))dv + €16, — Gl
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Hence, we finally arrive at the conclusion that for any i € [n],
n ? 2 C - n
E|¢h, M{™) = (b Ap(=))| <= B — €4 + C1Gw — Gl

j=1

+cf@:ﬂvy4mimyw+c (6.21)

I n n7 n7 n * *

If |Gp— Gl = O(n~1) and %Z?:I E[{;n) —&;1? = O(n™1), by Markov’s inequality, we can conclude

that for all i € [n], as n — o, Mi(n) — Ap(L) in probability in the weak sense. Moreover, we have
(n) i -1
Chy M) = <hy Au(2)) = Op(n2).
Finally, by the Lipschitz continuity of the law of X, in u (Lemma 6.9 (ii)) and the Lipschitz continuity
of graphon G, we have that u +— Ap(u) is also Lipschitz continuous. Hence, we have

1

LS~ [ anepo = 0,0,
i=1 I

The corresponding results under continuity assumptions follow from the above analysis. Thus, the
proof is complete. O

6.6.5 Convergence for general graphon: Proof of Corollary 6.13

We only highlight here the necessary changes from the continuous case (Theorem 6.10) to the general
case. We will keep the same notation as in the proof of Theorem 6.10. By our assumptions, (%, %)l jeln]
is in the continuous modification set of G. By Lusin’s Theorem, we can approximate G by a continuous
graphon G such that G(<, %) = G(L, %) and |G — G|z = 0. Let X be the solution of (6.3) associated
with control o and graphon G. By Theorem 6.8, {, Wa 1 (ftu, fiu)du = 0 and by Lemma 6.9, fi, :=
L(X,) is continuous in Wasserstein-2 distance. Thus we have

1¢s 2 = 2 = 2
K =Xyl = [ 1K — Xy du < [ 15— Xl dut o).
Notice that the last inequality comes from the assumption that (%, %)i,je[n] is in the continuous
modification set of G, which means that p: is continuous on a subset of I with Lebesgue measure 1.
On the other hand, by the results of Theorem 6.10, we have

LS x®™ - 2,2, <o LS e — e v G- 1

nZH i %HS%\ nz [$ fﬁ‘ -+ nlaf +o(1).

i=1 i=1

Combining the above two formulas, we obtain

Ly x®™ - x, 2 Ipem o2 _
”;HXi Xillsz < C[n;Elfi &P +G Gn”lj] +o(1).
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Furthermore, using a similar idea to the graphon GG, we can extend the convergence of the empirical
neighborhood measure for non-continuous graphons G by arguing similarly as in the proof of [47,
Theorem 3.1] by using a sequence of step graphons G, to approximate G. Indeed, by the assumption
that (%, %)i,jE[n] is in the continuous modification set of (G, we can find a sequence of step graphons
G, such that

|G — Glo < C(m),
and for all ¢ € [n],

Con( L, 0) — (L, 0) ) dv < Cr(m).
J (Gt -6m)

Denote by p™ the law of solution of (6.3) with graphon G,, and the same initial condition and control
as X. Then all the analysis above still applies with each G,,, and we similarly have

Chy A () — Chy Apa(u))y < CL(GWQ, 0) = G(E,0))dv + ClG ~ Gl

Combine (6.21) for graphon G,,, we have for each i € [n],

n i 12 C < n
E[(h, M) = (D] < 2 D BIE™ €52 + ClGr = Gmllo + ClGi = Gmllooae
j=1 (6.22)
+C+CJ<G (L) =60+ €6 — G
n ; m na na m 0.

Hence we can conclude by first letting n tend to oo, and then letting m tend to co. ([l

6.6.6 Stability of control: Proof of Lemma 6.17

We will argue via Jensen’s inequality and the Markovian projection for our controlled jump diffusion.
Recall the definition of R(x) in 6.21 and denote its u-marginal by R, (u). We first prove that an
optimizer for

{(TH Py PeRy(n)}

must be of the form P = L£(dtdq; xe)(da), 6u, dx=). For two different functions ay : [0,T] xR — A
and ag : [0,T] x R — A, and arbitrary X € (0, 1), define the A-averaged control as

ax(t,z) == Aai(t,z) + (1 — Naa(t, z).

Denote for short by X the state dynamic governed by the relaxed control 6y defined by

OA(t, X) = Mgy (,x) + (1 = X)dast,x)-

Define also Py, := L(dtdz, ¢+, xary(da), 6u, 6 xay) and Py := L(dtdx(t, X)(da),8,,0x). It then suffices to
prove

<FM7 IFD)\> > <I"N’ ﬁ/D/\>
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Let X be the Markovian projection process of X which has the same law as X. Notice that, by the
analysis in how we construct a strict control under our standing assumption, there exists such a strict
control @&y such that X is the driven state process under &, which satisfies

b(t, X (£), Apa (), @ (£, X (1)) =Ab(L, X (1), Ae (), (£, X (1))

(1= Nb(t X (8), Apr(w), as(t, X (1)),
o (6, X (8), Apug(u), ax(t, X (1)) =Aa(t, X (£), Apre(u), cu (t, X (1))

(1= No(t, X (8), Ap(u), as(t, X (1)),

and for any e € F,

0(t, X (t),e,ax(t,X(t))) =\(t, X (t),e,ar(t, X(t)))
+ (1= X)l(t, X (t),e,aa(t, X(t))),

From concavity Assumption 6.6, we have

S X (), Apg(u), ax(t, X (1)) = f(E, X (£), A (), ax(t, X (2))).

By Jensen’s inequality, we have

- rT
(T, Py)=E f Af (8 X (1), At (u), e (8, X (1)) + (1= A f (&, X (8), Ape (w), ez (t, X (2)))

0
+ g(X(T), Apr(u) |

T -
<E J Ft, X (t), Apg(u), ax(t, X (1)) + g(XT,ApT(u))i

<E f 76X (0), Apa(), (1 X (0) + 9(Xr, Apr(w))]

—EJ FEX (1), A (), & (t,Y(t)))Jrg(YT,AMT(U)):

~

= JG fu lu’a CK)\)

It is also easy to see that the optimizer is unique. Suppose we have two different optimizer controls,
a1 and as. By our assumption and using Jensen’s inequality, we can find a better control, a*, which
is distinct from both a7 and as, by arguing in a similar manner as above.

Now, denote «; as the unique optimal control corresponding to Jg’g“‘ (u, @y) with a given p* €

Punie([0,1] x D). Following similar arguments as in the proof of [162, Lemma 5.2], we can establish
the continuity of £(X%w&) with respect to u. Due to the assumed continuity of G, Auj(u) is also
continuous in u for any ¢ € [0,T] in the weak sense. Define

V(. a) fftx Ape(), at, X (0))dt + (X (T), Aper(w) ).
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with X admitting the law ). Recall that o*(t,u,x) := «a},(t,x). We now prove that a*(¢,u,z) is
continuous in u. Indeed, observing the continuity of 7, ; and Auj(u) in u for any ¢ € [0,7], and by
the uniqueness of «, for arbitrarily small £; and &9, there exist d1(¢1) > 0, d2(¢1) > 0 which tend to
0 as €1 tends to 0, and d3(¢2) > 0 which tends to 0 as €5 tends to 0, such that for uy € (u —e1,u+ 1)
and a ¢ (o}, — €9, a;, + £2), we have

Vet (W a) SVE(R", o) + d1(e1) — d3(e2),
VC%(N*?O‘;) <Vclf(ﬂ*70421) + 52(51)7 and?
Vet at) ZVE G al) - i) (6.23)

From the first two inequalities mentioned above, we can obtain

VEt(p*, o) S VE (", o) + d2(e1) + 61(e1) — d3(e2). (6.24)
Comparing (6.23) and (6.24) and letting e; — 0, we must have oy, € (o, — €2,a} + €2). Then, as
g2 — 0, we obtain o, (t,2) — a;(t,z) a.e. for (¢,z).

To prove the continuity of z — «a*(t,u, z) for each u € I, we proceed by contradiction. If a* (¢, u, )
is not continuous in z, then the coefficients in the dynamics of X" are not continuous, it then
suffices to prove that £(X @u€u) is not continuous in u. Suppose z* is a discontinuous point of a*. If
Xa2(t) = x* for some t € [0, 7], then for some small € > 0 and Xu.2(t) € (z* — €,2* + €) but not
equal to z*, we must have, in a small time interval [¢,t + At], for some 7 > 0 not depending on € such

*

that [ (s, u1, Xo (s)) — @* (s, uz, Xus?(s))| > n,

t+At a* ar ar
f f f G (uur, 0)b(s, X0 (5), 2, @ (s, w1, X ()t (da)duds
t I JR

*

t+At o* o* a
—f f J G, )b, X2 (), 2, 0 (5, 1z, X0 ()12 (dr)dvds
t I JR
> Cn.

This shows that at each discontinuous point, the drift amplifies a significant difference. If we take
the diffusion and jumps into consider*ation, t*he difference will become even larger. By Burkholder-
Davis-Gundy inequality, we have HXSI“ t— Xf;“ 2 HSzT > 1/ for some constant 7" not depending on w1, us.
Since the support of Brownian motion is on the whole R, we have a set O < Q with P(O) > 0 such

that for some u € I, Xﬁt‘ (w) passes through the discontinuous points of a*. Then by Skorokhod
Representation Theorem, it follows that £(X ) cannot be continuous in u.

Using the same arguments and combining the Lipschitz continuity of f(¢,z,u,a) in (x, u,a), the
Lipschitz continuity of g(z, 1) in (x, 1), and the Lipschitz continuity of £(X¢) and Ap(u) with respect
to u, we can conclude the Lipschitz continuity under the corresponding assumptions. O
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6.6.7 Proof of Theorem 6.18 and Theorem 6.20
We consider the following decomposition:

el(-n) (u(”)) < sup Ag")’l(a,u(”)) + sup Agn)’2(a,u(")) + Agn)’3(u(")),

acAy, acAy,

where the three A;s are defined as follows:

3 7

A (o, u™) = [ f FE X7 @0, M @), al®)dt + g(xX (D), M (D)

j X0, A ), et + 9O @), Ay )],

Ao, =B [0, a0+ oK M )|

‘EL P X (0 Mg (™). 02 ()t + 9(X 0y (7), Aar (™) .

Z
n

and

T
Ao ul®) =B | 030 (0. i), 3 () + 9 (7). Apr )]

l
n

k| f 78 X0 (1), M (1), 2 ()t -+ a(X (), M (1))

Here, X (%~ denotes the state vector of the n-player interacting system with the i-th player choosing
control « and the other players keeping the control a*; X™*® ™% is the state family of the limit graphon
system with the label > choosing control « and the others keeping the control o*; M (n),= jg the
—i.

empirical neighborhood measure induced by X (™-®~% and A,ua’*% is the graphon measure induced

by X0

Lipschitz graphon We concentrate on proving the theorems for Lipschitz continuous graphon.
Then, by following similar arguments, the results for continuous graphon are straightforward.

For the Lipschitz graphon, under the conditions assumed in Theorem 6.18, by Lemma 6.17, we
first have the equilibrium control a*(¢,u,x) that is Lipschitz continuous in (u,z). Then, by choosing
ugn) = %, we have the following estimate for the difference between the empirical neighborhood measure
and the graphon neighborhood measure in the weak convergence sense, for ¢ € [0, 7] and any bounded

Lipschitz continuous function h on R,

(M () = (hy Apn (= ) = Op(n~ ).
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Furthermore, we can assume that W;, N;, and Wi, N, are the same for each i € [n], since such a

correspondence does not change the law of both snyste?ns and will not influence our approximation.
We have

BN (n),* * 2 RS (n) 2 1
- Y E| X" - X <Cl= D) El&Y — ¢, -G, =
n; Be sl C[n; € — €4 +1G = Galo + - |

In the rest of the proof, we will always establish such a correspondence between the finite system and
the graphon system. Since f(t,z, u,a) and g(x, u) are Lipschitz continuous in  and p, we have

L5188 0 ut) < - ZEIé“ &P+ 16 - Galo + - .

=1

For the first term Agn)’l(a, u(")), notice that when n is large, the change in the dynamics of player
7 will not have a significant impact on the distributions of trajectories of other players, which is also
true for the limit graphon system. Hence, for j # i, one can easily show that

", C
xme—t _xmxy X
H J J |ST = n7
and moreover, for u # -, a.s.
~*7a7_i v %
X, =X,

Combining the previous result, we have for j # i,

7Z”X i e n”2\ [1iE|§(n)_€i|2_’_1]
% St nizl t n n7

J#i

where X*%~% is the state family of the limit graphon system induced by the step graphon G,,, with
label i/n choosing control a and the others keeping the control a*.

Now we will study the behavior of player ¢ under control «. By similar arguments as in the proof
of Lemma 6.17 and some calculations, we can show that the following inequality holds:

_ - C
HSZ\ ZEHX”) D G A

J#z E g n

(et X
(2

n

By using the stability of graphon Theorem 6.8 again, we have

| e xR du < o [ Bl - 6uPdu+ 16 - Galo)]
1 I

Moreover, we have for all u € I,

IR = Xa™ TG < OBl - &l + | f (G, v) = Go(u,v) ) dol]
r I
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Finally, by combining the above three results, we obtain:

X - XTI <0

n

1< n 1 N
SNEEY — €2+ = +EIE - €4
ni: n n

+ | L(G(u,v) — Gn(u,v)>dvl].

Hence, we can similarly obtain

n

LA™y u®y <ol L SR 624 o - 1
2 2 A ) <O| 2 2B — €4 P+ 16~ Gullo+ 7

=1

and further for each i € [n],
(M1 (0, 4™ ™) _g, 2 Ly -t 1
A (@ ul) <C B — ¢ | +]L<G(n,v) Gl 0) )] + — .
Therefore,

n n 1
max A (a, u(™) <c[max1a|g§ ) €2+ ]G = Gnloo + E]'

ie[n] i€[n]

For Aﬁn)’z(a, u(")), it is apparently non positive by the marginal supreme Proposition 6.7. Com-
bining the above three estimates, we can conclude that

LS <ot S e 10— Gl + 1)
i=1 =1

and for the maximum

(n) Ele®™ ¢, j —at 1
maxe(”) < OlmaxBIE" 6.+ 1 | (G 0) =Gl o) Jdvlo + |

i€[n]

(n)

We have proven the results for u;, ' = % It is then easy to generalize the above estimates for all
choices u(™ in Ifn) X oeee X L(ln). Since a*(t,u, ) is Lipschitz in u, we have for some constant C' and

any ul(»") € Ii(n), for each i,

(™ z) = ar(t, L 1
o™ (t,u; ,:c)—a(t,n,x)—i—C'n.

1

Thus following similar arguments as in the proof of Theorem 6.10, we can recover the results in
(n)

Theorem 6.10 with control o, (¢, z) = a*(t,ugn),x). Hence all analysis above can apply. The proof

is complete now.
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Sampling graphon We now proceed with the proof of Theorem 6.20.
Let G,(U™) be the step graphon generated by the sampling graphon G, i.e

" (n) (n)
G (U™)(u,0) = GU UML)

Let XU ™) be the solution of (6.3) with graphon G,,(U™), control a and initial condition &™)
Let 041(»") () == alt, = X(n)( t)) and a(n) (t) == a(t,u, X (t)). It is obvious that for each realization
u™ of u™ Cz(Jn )(u(”)) satisfies regularity Assumption 6.5 with G, (u(™). Then, by an intermediate
product in the proof of Theorem 6.10, we have

—me - XV @) —o.
By Theorem 6.8, we have for each u™,
| BIREO @) - Xl do < O | Bl - 6o + 16 - Gulw™)o]
I I

Thus, we can recover the results in Theorem 6.10 with a stochastic version of Gy, (u(™).

We condition on the sampled sequence of step graphon G, (U™)(u,v). Let Agn)’l(a,u(”)) be
defined as following

A (o, u™) —ijftxwazwwﬂ“%w alt))dt + g(x " (D), M) [u™ ]

B[ [ 10RO AT W) a0+ o0 AT )

and similarly define Agn)’g(a, u(")). We have similarly as in the continuous graphon case,

n

2 A 0, <[ DB < 64 416 = GaU )l |+ o),

i=1

and
fEAW (0 u®) <C [ ZEK — & + G = GuU ) o] + (1),
=1

Further, by [66, Theorem 2.14], G, (u™) converges to G in probability in cut norm. Notice that
Gn(u™) is bounded, so we have
E|G - Gn(U™)|5 — 0.

Combining the above two results, we can conclude the proof of Theorem 6.20. O

262



Chapter 6. Stochastic Graphon Mean Field Games with Jumps and Approximate Nash Equilibria
6.7. Concluding remarks

NFR

6.7 Concluding remarks

We study stochastic graphon mean field games with jumps in the Markovian framework and approxi-
mate the Nash equilibria of finite games with heterogeneous interactions using the graphon equilibria
as benchmarks. Notice that we are not able to solve the graphon equilibrium yet in the general case,
although in some very specific cases we can. For classical mean field games, the solution can be
characterized from either the PDE viewpoint, leading to a coupled Hamilton-Jacobi-Bellman equation
and Kolmogorov-Fokker-Plank equation, or from a probabilistic point of view. The extensions to the
graphon mean field framework will be very interesting and challenging.

The study of games based on more complex systems could be a direction for future work. As
mentioned in the conclusion of Chapter 5, incorporating heterogeneous interactions that depend on
the underlying network structure would be very interesting. The generalization to the non-Markovian
framework is also valuable. In this work, we restrict the study to Markovian feedback controls. Usually,
the type of control varies from model to model. An important extension can be related to controls
with more general forms, particularly, the optimal stopping problems for graphon mean field games,
which would absolutely attract a lot of attention. Another interesting direction would be generalise the
strength of interactions (", and consider it evolves over time. We could associate it with a (controlled)
process, similar as that in [61] or include it in the dynamics of the controlled state process as in [52].
The study of concentration results regarding the equilibrium approximation would also have significant
application interest.
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RESUME

Cette these est divisée en deux parties. La premiére partie étudie la stabilité et le risque systémique de réseaux financiers
complexes, soumis a des processus de contagion de défauts, et de ventes forcées. Nous prouvons des théorémes limites de
type loi des grands nombres et limite centrale sur la dynamique de contagion. Nous montrons comment quantifier le risque
systémique d’un réseau financier en présence d’une perturbation externe et sous information partielle. Nous étudions ensuite
les processus de risque multidimensionnels de Cramér-Lundberg ou les agents, situés sur un grand réseau, subissent des
pertes de la part de leurs voisins. Nous présentons enfin un cadre général abordable pour comprendre I'impact conjoint de
liquidations et de cascades de défauts sur le risque systémique dans les réseaux financiers complexes. La deuxiéme partie
de la these est consacrée a I'étude et le contrble de systémes interactifs de type graphon champ moyen. Le réseau financier
est ici considéré comme un grand systéme interactif, ce qui établit un lien avec la théorie des jeux a champ moyen. La
structure en champ moyen repose sur la structure de graphe sous-jacente du réseau, appelée champ moyen graphon. Nous
commengons par une étude systématique des équations différentielles stochastiques rétrogrades (EDSR) avec sauts de
type graphon champ moyen et ses mesures de risque dynamiques associées. Nous étudions ensuite des jeux stochastiques
continus avec interactions non homogénes de type champ moyen sur de vastes réseaux et explorons leurs limites graphon
champ moyen. Nous proposons des équilibres de Nash approximés pour les jeux finis sur les réseaux, utilisant les équilibres
en champ moyen graphon associés comme référence.

MOTS CLES

Réseaux financiers, Contagion des défauts, Ventes forcées, Processus de risque, Théorémes limites, Graphon
champ moyen, Systémes interactifs, Jeux stochastiques.

ABSTRACT

This thesis is divided in two parts. The first part considers the issues of stability and systemic risk in large complex financial
networks, including the study of default contagion, fire sales and risk processes on networks. We first prove limit theorems
(law of large numbers and central limit theorem types) for the contagion dynamics. We show how to quantify the systemic
risk for a financial network under partial information facing an outside shock. Then we present a general tractable framework
for understanding the joint impact of fire sales and default cascades on systemic risk in complex financial networks. We
finally study risk processes on large financial systems, when agents, located on a large network, receive losses from their
neighbors. The second part of the thesis focuses on graphon mean field interacting systems with jumps and graphon
mean field games. Here, the financial network is seen as a large interacting system, with a graphon mean field structure
depending on the underlying graph structure of the network. We first conduct a comprehensive study of graphon mean
field backward stochastic differential equations (BSDEs) with jumps and associated global dynamic risk measures. We
then study continuous stochastic games with heterogeneous mean field interactions on large networks and investigate their
graphon limits. We provide approximate Nash equilibria for finite games with heterogeneous interactions, using their graphon
equilibria as benchmarks.

KEYWORDS

Financial networks, Default contagion, Fire sales, Risk processes, Limit Theorems, Graphon mean field, Inter-
acting systems, Stochastic games
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