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Introduction

General context
This work is rooted in the field of numerical simulation of fluid dynamics, applied to aero-

nautics, defense, and space industries. This field gathers many industrial actors (the French
Direction Générale de l’Armement, ArianeGroup, Safran, Airbus, etc) as well as academics (ON-
ERA, CERFACS, DLR, VKI, universities, etc). It is interested in how to simulate a fluid flow
with a computer, trying to represent faithfully the physical reality. The various actors in this
field need to be able to access certain physical quantities associated with specific phenomena
and operating regimes. These regimes are often not feasible on our scale, due to material or
financial limitations. Examples include the study of icing on the wing of an aircraft, which is
experimentally feasible but represents an imposing budget for the aircraft manufacturer, or the
study of heat transfer in an atmospheric reentry capsule, which is much more difficult to achieve
experimentally. To overcome these limitations, numerical simulation is the best option, as it
allows such a case study to be modelled by the execution of a computer program, and to obtain
a large set of data that will be analysed afterwards to answer the desired questions.

The analysis of physics usually produces a set of equations, often partial differential equations,
representing the real system that one wishes to study. Algorithms are then required to determine
the fluid flow from these equations, in the working domain, as a function of time. Thus, to obtain
the desired quantities, the physical system is integrated using mathematical algorithms to obtain
its evolution in time. Often, the expected result is not the complete temporal evolution of the
system, but only its equilibrium state. This is called a steady numerical simulation or steady
computation. Steady computations are opposed to unsteady computations that aim to accurately
describe the system’s temporal evolution.

For all computational fluid dynamics users, the most crucial issue is to achieve a satisfying
compromise between computational cost and the accuracy of the results. Indeed, a quick and
inexpensive computation tends to be not very faithful to physics, while an accurate computation
tends to use more computational resources and time. For steady computations, speed corresponds
to getting the final steady state at a low time cost, for both computational time and the time
it actually took to a user. It results in a compromise between methods that are expensive in
terms of computational resources and take a long time but give accurate results that are close
to the physical reality, and faster methods that save resources but give lesser quality results.
A software developer working on a numerical simulation tool needs to choose methods and
algorithms to obtain a compromise that is considered satisfactory. The final interest for a player
in computational fluid dynamics is therefore to have a result that is sufficiently precise and
inexpensive enough to obtain. An accurate result is needed to answer the questions that required
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2 INTRODUCTION

the simulation. The search for a result that is inexpensive to obtain is motivated by questions of
savings in computational cost. This cost is applied to the user, while he waits for the simulation
to end, and to the company through the cost of computer resources, electricity, investments in
more efficient machines, etc.

Depending on the problem to be solved, there are more or less suitable algorithms and meth-
ods. Performant methods were originally developed to answer the needs of the aerodynamics
community. In the case of energetics and multiphysics problems, the methods issued from the
more traditional aerodynamics are limited by the coupling between the different physics which
have their distinct characteristic times. Thus, the algorithms used for the numerical simulation
of classical fluid dynamics are focused on the resolution of the Navier–Stokes equations, and are
not necessarily the most adapted to a simulation in the field of energetics. The involvement of
several distinct physical phenomena imposes constraints on the choice and use of algorithms.
Consequently, it would be advisable to adapt or replace the algorithms involved in the time
integration for multiphysics problems.

Context of this thesis
This thesis was conducted at ONERA, the French Aerospace Lab, in the multiphysics for

energetics department. Although numerical simulation has been greatly developed in the aero-
nautical field, it has not been so well adapted to the multiphysics field, and many industrial
codes are content to reuse the same algorithms. This is the example of the software system
CEDRE, developed at ONERA by the multiphysics for energetics department [1]. This software
system constitutes a platform grouping several solvers to integrate several physics: each solver
is dedicated to its physical model. There is a solver for the resolution of compressible, multi-
fluid, reactive, and turbulent flows, two solvers for the calculation of dispersed phase (drops,
crystals, particles) in the Eulerian and Lagrangian approach respectively, a solver dedicated to
the calculation of liquid films, a solver dedicated to radiation, etc. Thus, CEDRE is in fact a
global platform adapted to multiphysics problems. Older work has been done to set up a time
integration adapted to the problems solved by CEDRE [2]. Work on time integration has led
to the development of implicit integration methods for the integration of steady problems, and
to the development of a GMRES method for the solution of linear systems. Users can choose
from a panel of integration methods to obtain methods adapted to their problems. However,
the weak coupling between solvers hampers the convergence to the steady state and the choice
in integration methods is limited, compared to what can be found in the literature. This is at
least the opinion of the actors of the CEDRE code, i.e. its developers and users, who would
like more robust methods to use CEDRE on steeper problems and converge faster to save on
computational costs.

On the research side, however, many efforts have been made in the direction of multiphysics,
but have not yet left the academic framework. This is for example the case of [3], who were
interested in the temporal integration of coupled equations. They designed an integration method
adapted to coupled equations, which is an evolution of a fixed point method with the addition
of a step of a Newton method. They then compared this method to the standard fixed point
method, which is more commonly used for coupled computations. By implementing their method
on two simple coupling problems, they finally showed the value of their method compared to the
more standard method. If this method is well fitted for their calculations, it is however only
implemented for simple problems, less complex than the multiphysics problems that CEDRE
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wishes to solve. Moreover, the tests carried out are on problems on an academic scale, and not
on an industrial scale. The same issue concerns [4], in which authors used relaxation techniques
to transform the original equation into a simpler one. Furthermore, this seems to be specific to a
fluid model, and would not scale well in CEDRE where many different models coexist. A similar
idea uses splitting of the multiphysics parts to use IMplicit-Explicit methods [5]. It seems well
fitted for out multiphysics applications, however we assumed that having a better implicit solver
was a priority.

At the same time, tools used in aerodynamic simulation could prove interesting for multiphysics
problems. The Jacobian-Free Newton–Krylov method, or JFNK, is already well used in the
numerical simulation of the Navier–Stokes equations. In [6], a time integration mechanism is
implemented around a JFNK formulation. A physics-based preconditioning is developed to solve
the linear problem more precisely. This time integration is then tested on a thermally driven
cavity problem. However, this work is only concerned with the Navier–Stokes equations and is
not extended to more general energetics problems. Finally, it is only tested on a two-dimensional
academic problem. In [7], it was also used on academic problems for the turbulent Navier–
Stokes equations. The Jacobian-Free Newton–Krylov method seems to be well fitted to problems
that couple multiple physics. It was used in [8] on applications coupling radiative transfer with
hydrodynamics. It could prove interesting as a time integration method for CEDRE multiphysics
problems.

This thesis was co-funded by ONERA and AID, the French agency for innovation and defence.

General overview and motivations
It can therefore be seen that numerical methods are already available to solve computational

fluid dynamics problems. In particular, there are already solvers capable of solving steady mul-
tiphysics problems of industrial scales. However, such solver use methods inherited from the
aerodynamic context, that are not always adapted to handle the difficulties arising from the
multiphysics properties of our problems. It is at least the case for our solver CEDRE. On the
other hand, other methods developed in an academic context have shown their interest in sim-
ple multiphysics problems. It would now seem interesting to adapt these new methods for the
resolution of multiphysics problems in an industrial code. This is the reason for this study.
It consists in improving the convergence, speed and robustness of the time integration of the
CEDRE platform on steady multiphysics problems by adding numerical methods not used in
industrial numerical simulation. The aim of this work is to improve the current performances of
our solver by using such more recent methods.



4 INTRODUCTION

Outline

This document is divided into two parts. The first part, consisting of Chapters 1, 2, and 3,
describes the work we did with the solver CEDRE, around the Jacobian-Free Newton–Krylov
method. Some of it was presented at the 2022 Aviation Forum [9]. The second part, consisting
of Chapters 4 and 5, focuses on exponential time integration methods, initially investigated in
CEDRE and then in another solver: JAGUAR. The exponential time integrator shares many
ingredients with the JFNK method but is dedicated to unsteady flows. The novelty of the present
part is the association of exponential integration and an advanced discretization technique called
the Spectral Difference method. We plan to submit an article just after the defense on this
research line.

The objective of Chapter 1 is to identify, from the literature, methods that we think can
improve CEDRE performances, meaning speed, accuracy and robustness. We will introduce
time integration methods and the mathematical tools we need to analyse them. We will go
into more detail about implicit time integration methods by describing each step involved in
its implementation. Those details will lead us from the differential equation to the algebraic
solver used to solve linear systems. This chapter also describes what already existed in CEDRE
before this thesis. It shows the strengths and the weaknesses of the traditional time integration
methodology. The idea is then to work on those weaknesses by using previously identified
methods. Indeed, we will look at the literature and choose new methods to implement that
go well with what we want to keep, in place of what we want to discard. At this stage, we will
have identified methods that we hope will improve our solver performances.

Chapter 2 aims to present the implementation of the new methods in CEDRE. To do so, we
will briefly describe the structure of the solver and its different parts. We will then go into more
detail and explain some implementation choices. Finally, we will justify those choices and show
they are indeed valid to accomplish what set out to do. After this, we have a method that we
need to test to see if it improves our solver performances.

The goal of Chapter 3 is to evaluate the robustness, accuracy and speed of the previously
implemented method, and compare those performances to those of previously existing methods.
The idea is to select representative test cases, that correspond to typical CEDRE applications.
We will present at first simple aerodynamic test cases, and we will increase the complexity of the
physical model as we go. For each of those test cases, we will compare the newly implemented
method to the older one. This will justify the choices made in Chapter 1 and their implementation
in Chapter 2. Finally, we will use the newly implemented method on an also newly implemented
fluid model and show that this lead to some benefits for the solver users.

In Chapter 4, we will step out of the context of steady problems and extend our work to
unsteady computations that use larger time steps. The objective of this chapter is to introduce
a new category of time integration methods and give some of their characteristics. Then, we
will show on a simple analytic test case why those new methods may be of interest to our
computational fluid dynamics applications. We will also see that we need to use another solver
to study properly those methods.
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Chapter 5 aims to show the potential of this new class of time integration methods in our field.
To do so, we use another solver, as was recommended in the previous chapter. After introducing
the novelties of this other solver, we will define a set of methods we want to compare to one
another, made of previously existing and newly added methods. Then, we describe several test
cases to characterise and compare those methods.

Finally, we will conclude this thesis and give perspectives that can continue this work further.





Part I

Solving efficiently multiphysics
steady problems
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Chapter 1

Analysis of existing methods

Résumé du chapitre : Analyse des méthodes existantes

Le but de ce chapitre est d’identifier les méthodes qui serviront pour la suite.
Le contexte mathématique et ses notations sont introduits en premier. L’objectif est

de donner les étapes permettant de passer d’une équation aux dérivées partielles, issue
du modèle physique, à une équation différentielle ordinaire, purement numérique. Pour
fermer le système d’équations, les méthodes de discrétisation spatiale sont brièvement
introduites et en particulier les deux principales du solveur CEDRE. Grâce à ces méthodes
de discrétisation appliquées à un maillage, l’équation différentielle ordinaire finale est donc
obtenue et il faut alors l’intégrer avec des méthodes d’intégration temporelle.
La stabilité et la notion d’ordre sont les deux principales caractéristiques nécessaires à

de telles méthodes. Puis, les méthodes d’intégration que l’on trouve classiquement dans
la littérature sont rappelées, en soulignant la dichotomie explicite/implicite.
Après avoir détaillé les raisons qui nous poussent à analyser les méthodes d’intégration

implicite, plusieurs éléments interviennent dans la mise en place : le solveur non-linéaire,
le solveur linéaire, et en particulier le passage de l’un à l’autre. Ce passage étant jugé
insatisfaisant pour notre solveur, nous présentons la méthode JFNK, ou plus généralement
une formulation sans matrice, qui s’appuie sur des parties déjà présentes de CEDRE et
corrige, a priori, ce défaut.

As we aim to enhance the performances of the solver CEDRE on steady problems, we first
have to define some notions. In particular, we need to explain what performance means. In this
chapter, we will introduce the general problem, and the tools used to solve it. We will confirm
some choices already made in the solver, and identify the features we would like to modify or
replace.

9



10 CHAPTER 1. ANALYSIS OF EXISTING METHODS

1.1 Problem setup
In order to set the mathematical framework for this study, let us start with a partial differential

equation arising from the physical model, in the form of

∂ξ

∂t
+ F (ξ) = 0 (1.1)

where the function F uses some space derivatives of the state variable ξ. This equation then
describes the temporal evolution of the state variables ξ.

A particular class of such partial differential equations are conservative equations. They cor-
respond to the case where the function F can be written as a divergence term. Finally, with a
source term S, those equations look like:

∂ξ

∂t
+∇ · f (ξ) = S . (1.2)

One might notice that equation (1.2) is indeed a particularisation of equation (1.1), with F (ξ) =
∇ · f (ξ) − S. Those conservative equations are the ones we will focus on in this study, as they
describe the physical systems we are interested in.

In this work, attention is paid to computational fluid dynamics and in particular to solving
the Navier–Stokes equation and its variants: the reactive Navier–Stokes equation, the Reynold-
averaged Navier–Stokes equation, etc. A simple form of this equation can be:

∂t (ρ) +∇ · (ρu) = 0
∂t (ρu) +∇ ·

(
ρu⊗ u+ pId

)
= ∇ · τ

∂t (ρE) +∇ · ((ρE + p)u) = ∇ ·
(
τ · u− q

) (1.3)

with the closing relation ρE = p
γ−1 + ρ

u·u
2 . This relation is quite simple, as it is the one that

corresponds to ideal gas with constant heat capacity. In the solver CEDRE, this relation is
usually more complex as we are working with multifluid flows and with variable heat capacities.
The deviatoric stress tensor τ accounts for the fluid’s viscosity, and its computation depends
on the model used. The heat flux term q enables heat exchange in the fluid, through the heat
diffusivity, and it is generally related to the temperature gradient. Without those last two terms,
one recovers the Euler equations. To this simple form can be added source terms from the
reactive model, source terms from the turbulence model, divergence terms from a molecular
diffusion model, etc. Yet it is clear that with a bit of rewriting, it is possible to get back to the
starting form (1.1) and even the conservative form with source terms (1.2). The quantity ξ is no
longer a scalar but a vector with the density ρ, each component of the momentum ρu and the
energy ρE as its components. Apart from this small change, the idea is the same.

When solving equations like (1.1) numerically, the domain of interest is first bounded since the
infinite domain cannot be represented by a discrete set of variables. Let D be this computational
domain. For numerical computation, the different quantities, such as the state variable ξ, are
represented discretely over the domain D and are stored in the memory of a computer. To do
so, the domain D is split into a finite number of cells, or elements, associated with the degrees of
freedom of the solution: this is the mesh. Those cells are small disjoints volumes in 3D, faces in
the two-dimensional space or segments in 1D, such as their union recovers the original domain.
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Interest quantities, such as the fluid velocity, density, . . . , are then stored at each node, averaged
at the center of each cell or sometimes in a more complex fashion depending on the method.
They are no longer mathematically represented by a function of the continuous physical domain
ξ : D → R but by a finite-sized vector Ξ gathering all the information across the discretised
domain. For some simple discretisation methods, this vector consists of the quantity evaluated
at the mesh nodes or averaged at the center of the cells. For more complex methods, this vector
consists of information used to construct the solution over the domain: polynomial coefficients,
spectral decomposition coefficients, etc. Anyway, a discretised domain is used rather than D, the
continuous one.

The partial differential equation (1.1) transforms then into an ordinary differential equation:

dΞ
dt −G (Ξ) = 0. (1.4)

The difference here is that the function G is a function of a discrete vector whereas F was
a function of continuous state variables that are in turn functions of the space variable, and
therefore G does not use any spatial derivatives. The negative sign is here so that this new
equation is similar to the original partial differential equation (1.1) and the new equation can be
written in the form that corresponds to most of the literature:

dΞ
dt = G (Ξ) . (1.5)

Thanks to the spatial discretisation method, the only derivative remaining is with regard to time.
The rest is then up to the temporal integration method, which is the main topic of this thesis.
This integration method will works on equation (1.5) no matter where the function G comes
from, but sometimes understanding the origin of this function can help so we will now introduce
the spatial discretisation method used in our solver.

1.2 Brief introduction to the spatial integration schemes
A spatial discretisation method is what tells how to represent a quantity over a discretised

domain, and how to compute the spatial derivative of this quantity from this representation.
Indeed, before solving equation (1.1), one must decide how to transform the continuous model
into a discretised one. We also have to look at how the spatial derivatives arising from equation
(1.1) translate in the discretised model.

1.2.1 The Finite Volume method
The spatial discretisation method used in the fluid solver CHARME is called the Finite Volume

method [10, 11]. This method is particularly well fitted for conservative equations such as
equation (1.2). A such equation has the property that the quantity ξ is conserved: without
source terms, the variation of the total quantity ξ over the domain D is equal to the flux f (ξ)
coming through the boundary ∂D. In the case of the Navier–Stokes equations (1.3), the density,
the momentum and the energy are conserved throughout time, apart from fluxes going through
domain boundaries. In a close domain where nothing comes in or out, they are indeed conserved.
The main interest of the Finite Volume method is that this property stays true through the spatial
discretisation step.
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The Finite Volume method consists in integrating the partial differential equation over each
cell of the mesh. Writing Vi the volume of the ith cell:∫

Vi

∂ξ

∂t
dv +

∫
Vi

∇ · f (ξ) dv =
∫
Vi

S dv. (1.6)

Then the Green–Ostrogradski theorem transforms the flux divergence into a surface integral:

d
dt

∫
Vi

ξdv +
∮
∂Vi

f (ξ) · ds =
∫
Vi

S dv. (1.7)

By writing �i = 1
‖Vi‖

∫
Vi

�dv the average in the ith cell, it comes:

dξi
dt + 1

‖Vi‖

∮
∂Vi

f (ξ) · ds = Si . (1.8)

As stated before, the spatial discretisation method does transform the partial differential
equation into an ordinary differential equation. It tells to store quantities as their averaged
values represented at the center of gravity of each cell as the vector Ξ. An important aspect
concerns the transformation of the divergence from equation (1.2) into a flux surface average,
and the flux computation is still here an open question. The mesh cells are supposed to be
polyhedrons and they have a finite number of planar faces. The integral over the boundary of
the cell can be decomposed by the faces, to get the approximation:∮

∂Vi

f (ξ) · ds ≈
∑

j neighbor of i
fij · sij (1.9)

where sij is the product of the face area and the unit normal vector directed outwards volume i
and fij · sij is an approximation of the flux going through the face between cells i and j. This
approximation is a key element of the Finite Volume method and will be discussed later. The
function G from equation (1.5) can now be computed: for each face of the mesh, one computes
fij · sij , adds this value to the ith component and removes it from the jth component of the
new vector. Then, after adding the source terms, this yields the vector containing the result of
G (Ξ). As can be seen, every contribution of the flux added in a cell is removed from another,
and therefore this spatial discretisation method preserves the conservation of the underlying
equation.

1.2.2 The Riemann problem
The last remaining problem with this presentation of the Finite Volume method is how to

compute the flux going through cell interfaces. On the interfaces between two cells, the left
and right quantities ξL and ξR are known and are used to compute the corresponding flux. It
is possible here to use a reconstruction method to get a better approximation of the quantities
at the left and right sides of the interface, and therefore the left and right quantities at the
face ξ∗L and ξ∗R are used, rather than the quantities at the cell center. The idea is now to
compute the flux going through the face as a function of ξ∗L, ξ∗R and the surface vector s. From
the interface point of view, there are two possible different states, one from each side: this is
what is called a Riemann problem. A Riemann problem is an initial value problem applied to
a conservation equation, where the initial solution is piecewise constant with a single possible
discontinuity. By working with the equation and deriving the jump condition, it is possible to
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compute the quantity from a possibly discontinuous state at the interface. Then it is possible
to evaluate the flux associated with this state going through the surface. This approach can be
called the exact Riemann solver as it uses the exact solution of the Riemann problem. But the
drawback of this approach usually is the computational cost required to find this exact solution
and people generally revert to approximate Riemann solvers, compromising between speed and
accuracy. Several approximate Riemann solvers are available to the user in our solver, such as
the well-known Roe, HLLC or AUSM+ schemes [12, 13].

1.2.3 Gradient reconstruction methods
The standard Finite Volume method represents quantities with the averaged value in each

cell. This corresponds to a first-order discretisation method. Simply put, it means that it can
represent quantities exactly as 0-order polynomials locally to each cell. There are ways to achieve
higher-order representation such as with the MUSCL approach [14]. It consists in handling the
surface flux evaluation as explained in the Riemann problem part on one hand and deciding
what left and right quantities to feed to this flux computation on the other hand. In our solver,
there are two ways to construct high-order states to give to the flux computation method. They
are described in the following parts. For both of them, the idea is to use neighbouring data to
enhance the order of the local representation.

The k-exact method

The first method used to reconstruct high-order quantities is called the k-exact method with
successive corrections. The idea is to construct iteratively an order k representation of the
quantity using the neighbouring order k−1 representation [15]. This method is often employed to
achieve a second-order reconstruction, as choose most users, but it can also achieve higher-order
reconstructions [16, 17, 18]. At each step, while increasing the order of the representation, it is
important not to create a local maximum or minimum. This might happen close to discontinuities
in the solution, or near rapidly varying spots. It is indeed common, when interpolating, to create
local overshoot or undershoot. One might think here about Gibbs or Runge’s phenomena, and
despite the problem here being a different one, the idea is the same. Creating local extrema in the
solution can be troublesome, and so the k-exact method includes limiters to limit reconstructed
data.

The Multislope method

The second method used to reconstruct high-order quantities is called the Multislope method.
This method is a direct adaptation of the structured directional method to unstructured grids. It
consists in defining local directions for the interpolation of the unknown on the face. For a given
cell and one of its faces, one can draw the line from their centers. Information is interpolated on
this line using neighbouring cells to get the local slope. The mechanism to define the slopes and
the geometric treatment is quite complex and it won’t be discussed here. The details are provided
in [19]. Finally, the Multislope method gives a second-order reconstruction. Once again, this
reconstruction might create local maxima or minima, and therefore it uses slope limiters [20, 21]
to prevent it.

We briefly explained the spatial discretisation method used in our solver, as it might help the
analysis of the time integration part. The Finite Volume method averages the partial differential
equation over each cell of the mesh, which transforms the flux divergence into a flux surface
average. A reconstruction method, the k-exact method or the Multislope method, is then used
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to get a higher-order representation of the solution so that the surface flux can be computed at
each face. Slope limiters are used to prevent the formation of local extrema, which can be harmful
to the computation. The choices made for the spatial discretisation methods are motivated by
the fact that CEDRE and in particular the fluid solver CHARME aim to work with general
unstructured meshes. It restricts the choices of algorithms, as handling general unstructured
meshes can prove difficult for simple spatial discretisation methods. It means that the methods
must be more robust, which often means less precise.

1.3 Introduction to time integration methods

With the help of a spatial discretisation method, the equation to solve is now an ordinary
differential equation. The main objective of this thesis is focused on the resolution of steady
problems. The steady solution of equation (1.5) is given by G (Ξ) = 0. To get the solution, one
might then try to find a root of the function G. Unfortunately, with our typical applications,
this function G has got bad mathematical properties, such as its stiffness, arising from the
nonlinearities of the underlying equations. Therefore, algorithms that try to find a root of G
struggle and usually fail. Another approach is to take an initial value Ξ0, and to solve the
equation (1.5) for this initial value. After a long enough time, one hopes that Ξ will reach the
desired steady solution.

The idea is now to solve the temporal evolution of Ξ to get the solution after a long time
when it approaches the steady solution. The equation is solved numerically, which means the
next solution is computed iteratively after a given time step, knowing the current one. It is also
possible to modify the equation, as the interest is in the final state, not in the transient one. It is
possible, for example, to use local time-stepping, which consists in having each cell of the mesh
move forward in time with its own time step. The resulting transient states do not make sense
from a physical point of view, as the equation solved is not the initial one, but it converges to
the same steady solution. Therefore, it is alright to change the equation as long as it gives the
same steady solution. Finally, this way of finding a converged steady solution is what is called a
Pseudo-Transient Continuation method [22].

After deciding on an initial value, the equation to solve is:
dΞ
dt = G (Ξ)

Ξ (t0) = Ξ0.
(1.10)

A time integration method is going to produce a succession of solutions: starting from Ξ0, it
produces Ξ1 at t1, then Ξ2 at t2, and Ξn at tn, etc. Let ∆tn be the time step tn+1 − tn. The
following is related to a single step of the time integration method, so the subscript on the time
step can be dropped as it is not meaningful. For a steady problem, the evolution of the solution
has no interest and it seems reasonable to want to "go fast" to the steady state, meaning to use
as large a time step as possible. Unfortunately, not every time integration method allows large
time steps due to the well-known Courant–Friedrichs–Lewy condition [23]. Some tools must be
defined in order to help decide on the method to use.
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1.3.1 Analysis of time integration methods
Consistency and order

A time integration method must respect some properties to be "well-behaved". For instance, it
has to be consistent. To define the consistency, let us look at equation (1.10). After one step, a
numerical method gives a value Ξ1, believed to be near the exact value Ξ (t0 + ∆t). A numerical
time integration method is said to be consistent if:

lim
∆t→0

Ξ1 − Ξ (t0 + ∆t)
∆t = 0. (1.11)

Also, the method is of order p if the local error is in ∆tp+1 [24]:

Ξ1 − Ξ (t0 + ∆t) = O
(
∆tp+1) . (1.12)

This means a p-order method can recover exactly a solution that is a polynomial function of time
with an order less or equal to p.

Note: The order of a time integration method reflects its "local" behaviour, meaning on a
single given time step, provided it is small enough. In the field of spatial discretisation of partial
differential equations, the order p of a method is such as:

‖Ξ− Ξexact‖ = O (hp) (1.13)

where h is the spatial discretisation parameter. There is a difference between the two definitions:
the error order of magnitude is p + 1 for the temporal method and p for the spatial one. This
is due to the fact that the error in the spatial case is global: it sums the error over the whole
domain. It would correspond to counting the error on each step for the temporal integration. To
convince oneself, one could say that when solving the differential equation on an interval [0, T ]
with a fixed T , the global error of a p-order method would behave as O (∆tp) as it amounts
to summing T/∆t local errors of O

(
∆tp+1). The coherency with the definition of the order

for spatial discretisation methods is now clear. If this trick can help understand the difference
between the two definitions, this is indeed just a mental trick and not a rigorous mathematical
proof. To get this proof, more hypotheses on the method are required [24].

Stability

A meaningful criterion in the choice of a time integration method is stability. Depending on
the application, different levels of stability are expected in order to avoid a numerically induced
divergence of the computation.

The stability of a time integration method is usually analysed on the ordinary differential
equation with a linear right-hand side [25]. The reason is that if Ξ̃ is solution of equation (1.10),
G can be linearised in Ξ̃. With y = Ξ− Ξ̃ and J = ∂G

∂Ξ
(
Ξ̃
)
, assumed constant, it comes:

dy
dt = Jy. (1.14)

This new equation used to analyse the stability of time integration methods is the one called the
Dahlquist test equation. This equation is studied in C, so that eigenvalues and eigenvectors of
the matrix J exist.
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Note: When looking at a method applied to the Dahlquist test equation (1.14), it is assumed
that the real parts of the eigenvalues of J are all negative. This choice may seem arbitrary but
can be understood with the following example. Let us work in C2, with:

J =
(
−1 0
0 103

)
, y0 =

(
1
0

)
. (1.15)

The solution of the equation is then:

y (t) =
(
e−t

0

)
. (1.16)

As the equation is solved numerically, the floating point representation introduces some roundoff
error. The initial condition may then be

y′0 =
(

1
ε

)
(1.17)

instead of the exact one y0, with a typical ε = 10−15 for double precision. Let us suppose that we
have an exact time integration method that gives the exact solution at each time step tn = n∆t.
The solution computed by this method will be:

yn =
(
e−n∆t

εe103n∆t

)
(1.18)

that gives an error of εe103n∆t. For the numerical values suggested here, this amount to an error
as large as 106 for n = 5 and 1028 for n = 10. The explosion of the error comes from the fact
that the positive eigenvalue of J amplifies the roundoff error. This phenomenon has nothing to
do with the time integration scheme, but with the equation. Finally, this is why equation (1.14)
is studied assuming the eigenvalues of J are negative.

Single-step methods To compute the solution at the next time step, some methods need
only to know the current solution. Such methods are called single-step methods. A single-step
method applied to the Dahlquist test equation (1.14) leads to the following relationship between
the current solution and the next one:

yn+1 = g (∆tJ) yn. (1.19)

For most time integration methods, g is an analytic function. The initial value y0 can be de-
composed on a basis of eigenvectors of J , v1, . . . , vN , associated with the eigenvalues α1, . . . , αN :
y0 =

∑N
i=1 λivi. Because g is an analytic function, it comes immediately:

yn =
N∑
i=1

λig (∆tαi)n vi. (1.20)

It is now straightforward to deduce a stability condition for the single-step method: if for any
i there is |g (∆tαi)| < 1, then yn converges to 0. This is how the stability region of a time
integration method is defined:

{ z ∈ C | |g (z)| < 1 } . (1.21)

When each eigenvalue of ∆tJ falls in the stability region, then the method is stable.
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If an eigenvalue is not in the stability region, the associated eigendirection will be amplified
and a numerical instability will lead to the divergence of the computation. We can see that the
argument of the function g is not J but ∆tJ . This means that stability can be achieved by
choosing wisely the time step: with a small enough ∆t one can ensure that each eigenvalue falls
into the stability region. Unfortunately, this often forces the user to set a relatively small time
step, which is an issue for steady computations.

Multistep methods Some methods do not fall into the previous framework. The multistep
methods, in particular, cannot be written under the form of equation (1.19). These methods
use not only yn to find yn+1, but the k previous steps. Applied to equation (1.14), they can be
written in the form:

yn+1 =
k∑
i=1

gk−i (∆tJ) yn+1−i. (1.22)

When looking for yi under the form yi ∝ µi, one has:

µk =
k∑
i=1

gk−i (∆tJ)µk−i (1.23)

which leads to identifying the polynomial g∆tJ (µ) = µk −
∑k−1
i=0 gi (∆tJ)µi. If each root of this

polynomial is of modulus less than 1, the solution converges to 0. This is how the stability region
for multistep methods is defined [25]:

{
z ∈ C | all roots of Xk −

∑k−1
i=0 gi (z)Xi are of modulus less or

equal to 1, strictly less to 1 for roots with multiplicity

}
. (1.24)

Once again, if all eigenvalue of ∆tJ falls in the stability region, then the method is stable.

The key property resulting in the stability analysis of time integration methods is the A-
stability [26]. A time integration method is A-stable if its stability region contains the left half
complex plane. Simply put, a method is A-stable if it converges to 0 when it should, and does
not diverge due to numerical errors. The A-stability is interesting, as an A-stable method is
also said to be unconditionally stable, whereas a method that is not is conditionally stable. This
other characterisation comes from the fact that a non-A-stable method needs to respect some
additional criteria to be stable, on the time step it uses for example, whereas an A-stable method
is stable no matter the time step. As we said before, we would like to use large time steps to
quickly find the steady state of our applications, and that is why we look for A-stability in our
methods.

Having defined the concepts of stability and order of time integration methods, we are now
equipped to analyse them. We see from the literature that time integration methods are usually
split into two groups: explicit and implicit methods. We can now look at methods from this
literature, starting with the simpler explicit methods.
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1.3.2 Explicit methods
Explicit methods are called this way because, at each step, the computation of the next

solution is straightforward: they give it explicitly as a function of currently available data. They
are largely used in unsteady computational fluid dynamics simulations. Their strength comes
from the fact that they are usually simple and therefore easy to implement in a solver, and
computationally inexpensive compared to non-explicit methods.

Explicit Euler method

The explicit Euler method is the most simple time integration method. It consists in integrating
equation (1.10) between tn and tn+1 assuming the function G stays constant, equal to G (Ξn).
Equivalently, it consists in replacing the time derivative dΞ

dt by a finite difference Ξn+1−Ξn

∆t and
evaluating G in Ξn. Then, the method gives:

Ξn+1 = Ξn + ∆tG (Ξn) . (1.25)

After verifying that this is a first-order method, a quick stability analysis gives a stability
region equal to the open unity disk centred in -1. Practically, this stability region is often
deemed unsatisfactory as it forces the use of small time steps. Yet this method is a classic that
must be introduced before talking about more complex methods.

Runge–Kutta methods

Instead of making one step forward in time as the explicit Euler method, a Runge–Kutta
method will make a set of intermediate steps, and find the final solution as a combination of
those intermediate steps. It starts from the value of Ξn known in tn and given intermediates
steps tn,i = tn + ci∆t for 1 ≤ i ≤ k, with a fixed k. An exact integration between tn and tn,i of
equation (1.10) leads to:

Ξ (tn,i) = Ξn + ∆t
∫ tn,i

tn

G (Ξ (t)) dt. (1.26)

The integral on the right-hand side is then approximated with a quadrature using the previously
computed intermediate steps:∫ tn,i

tn

G (Ξ (t)) dt ≈
i−1∑
j=1

aij G (Ξ (tn,j)) . (1.27)

Once each intermediate step is known, equation (1.10) is integrated between tn and tn+1 and
the resulting integral is approximated using the intermediate steps.

To sum up, a Runge–Kutta method iterates in the following way:
Ξn+1 = Ξn + ∆t

k∑
i=1

bi G (Ξn,i)

with Ξn,i = Ξn + ∆t
i−1∑
j=1

aij G (Ξn,j) .
(1.28)
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0
1

0
1/2 1/2

0 1

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

RK1 RK2 RK4

Table 1.1: Butcher tableau for the explicit Euler, Midpoint and RK4 methods.

A Runge–Kutta method is characterised by its size k and by the quadrature coefficients:
aij,1≤j<i≤k, bi,1≤i≤k and ci,1≤i≤k. There are as many Runge–Kutta methods as there are choices
in the quadrature coefficients, but not all choices give good methods. There are criteria that the
coefficients must follow to ensure the consistency of the method, and then criteria with more
complexity as the order increases. The quadrature coefficients are often arranged in the Butcher
tableau:

c A

bT
=

0
c2 a21
c3 a31 a32
...

... . . .
ck ak1 ak2 . . . ak,k−1

b1 b2 . . . bk−1 bk

. (1.29)

The Butcher tableau of some well-known Runge–Kutta methods are shown in table 1.1. The
RK1 method is in fact equivalent to the explicit Euler method. The RK2 method is one of the 2
steps second-order Runge–Kutta method. This one is also called the Midpoint method. The RK4
method is a fourth-order method with 4 steps. This is the most famous Runge–Kutta method,
vastly used for explicit time integration of ordinary differential equations.

We note that the coefficients ci do not appear in the definition from equation (1.28). It is
because the differential equation (1.5) is autonomous: the function G does not depend explicitly
on the time. If it did, the equation would then be non-autonomous, and G would be a function
of two variables: the state vector Ξ and the time t. Equation (1.28) becomes then:

Ξn+1 = Ξn + ∆t
k∑
i=1

bi G (Ξn,i , tn + ci∆t)

with Ξn,i = Ξn + ∆t
i−1∑
j=1

aij G (Ξn,j , tn + cj∆t) .
(1.30)

It can be shown that the order p of the method is less or equal to the number of steps k. Up to
4 steps, it is possible to choose the quadrature coefficients to have p = k. Above that, getting a
lower bound on the order depending on the number of steps is still an open problem as of today.
For a Runge–Kutta method of order p, the corresponding function used for the stability analysis
is [25]:

g (z) = 1 + z + z2

2 + · · ·+ zp

p! +O
(
zp+1) . (1.31)
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Figure 1.1: Stability regions (in colour) of the first fourth-orders Runge–Kutta methods.

When p = k, the last term O
(
zp+1) is in fact null. Figure 1.1 shows the stability region of the

Runge–Kutta methods of orders up to 4.

We can see that Runge–Kutta methods are not A-stable, and they do not have a large stability
region. Increasing the order of the method does increase the stability region, but not enough
for our applications. Practically, this imposes the use of small time steps, which is agreeable
for unsteady computations but not for our steady ones. If one iteration of the method is inex-
pensive, the total number of iterations needed to reach the steady solution will make the overall
computation too costly.

Adams–Bashforth methods

We could try to use other explicit methods, such as multistep Adams–Bashforth methods. The
kth order Adams–Bashforth method uses the last k computed steps to find the next one. One
can indeed check that the index k designating the method also corresponds to its order [27].

The idea is to apply a Lagrange interpolation of the function G from equation (1.10) in the
k last computed points, and then replace G with the interpolation polynomial when integrating
from tn to tn+1. Contrary to the Runge–Kutta methods, as this method reuses previous infor-
mation, a single G evaluation is required at each step. Because of that, the cost of one iteration
of the Adams–Bashforth method is quite inexpensive. The stability analysis for such methods
is a bit more complex [27, 25], and so the result obtained numerically is shown in figure 1.2
without giving the details. The conclusion is even worse than with Runge–Kutta methods, as
the stability region decreases as the order increases. The Adams–Bashforth methods can reach
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Figure 1.2: Stability regions (in colour) of the first four Adams–Bashforth methods.

a high order of accuracy while staying computationally inexpensive, but they drastically lack
stability, and that is why they are often not used in computational fluid dynamics computations.
More generally, an explicit multistep method cannot be A-stable [26].

1.3.3 Implicit methods
We explained in the previous section why explicit time integration methods are not suited

for our applications. It is then natural to look at implicit methods. Contrary to the explicit
methods, implicit methods do not give the looked-for solution right away, but as the solution of
a specific equation. The name is appropriate: the next state is not given explicitly but implicitly.

Implicit Euler method

The implicit Euler method is the equivalent of the explicit Euler method but on the implicit
side. It is quite similar, as it consists in integrating equation (1.10) assuming the function G is
constant, but this time equal to G (Ξn+1):

Ξn+1 = Ξn + ∆tG (Ξn+1)
⇔ Ξn+1 − Ξn −∆tG (Ξn+1) = 0

(1.32)

and the next state Ξn+1 is given as the solution of a nonlinear problem, the root of a nonlinear
function.

After checking that this is a first-order method, the stability analysis gives the corresponding
function g (z) = (1− z)−1, which gives a stability region equal to the whole complex plane minus
the closed unity disk centered in 1. Therefore this method is A-stable.
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Implicit Runge–Kutta methods

Runge–Kutta methods can also be implicit methods. This happens when the quadratures use
points that have not already been computed. In other words, this corresponds to a full A matrix
in the Butcher tableau, where it is strictly lower triangular for explicit Runge–Kutta methods.
This also means that any step of the Runge–Kutta method may be used in any other step, and
therefore one may have to simultaneously solve an implicit system of equations. This may lead
to awfully expensive methods, and therefore users tend to restrict themselves to some particular
methods.

Despite their cost, implicit Runge–Kutta methods can be appealing. The main reason is
that they can easily achieve a high order of accuracy. For example, the methods based on
Gauss–Legendre quadratures achieve an order 2k with k steps, and they are all A-stable [24].
Theoretically, this means that an arbitrarily high order can be achieved while keeping the stability
quality with these methods. However, users usually stop at the 3-stage 6th order method, as the
computational cost tends to be too much for higher order methods.

When applying the stability analysis to a Runge–Kutta method, one can get the function g
using the matrix A and the array b:

g (z) = 1 + zbT (Id−zA)−1 (1, . . . , 1)T . (1.33)

We will not try to show the corresponding stability regions as there are too many methods
possible. Instead, we will review some of the most frequent from the literature.

Diagonally Implicit Runge–Kutta methods The Diagonally Implicit Runge–Kutta meth-
ods [28], or DIRK methods, are Runge–Kutta methods with a lower triangular matrix A. Then,
each step is given as an implicit problem using the already known steps and the next one. The
difference is that instead of solving a full implicit system, one just needs to solve each implicit
step successively. This help drastically reduces the cost of the method. Furthermore, if all
quadrature coefficient aii are all equals, as each step requires the inversion of the matrix

Id−aii∆t
d G
dΞ (Ξn) , (1.34)

this can help solve the linear problem. This variant is called Singly Diagonally Implicit Runge–
Kutta methods (SDIRK) [25].

Rosenbrock methods Rosenbrock methods are also called linearly implicit Runge–Kutta
methods [29]. They start from the recurrence relation of a DIRK method:

Ξn,i = Ξn + ∆t
i−1∑
j=1

aij G (Ξn,j) + ∆taii G (Ξn,i) (1.35)

and then take its image by G. Instead of solving this nonlinear equation with a nonlinear solver
as the DIRK method would do, they linearize the result:

Gn,i = G

Ξn + ∆t
i−1∑
j=1

aij Gn,j

+ ∆taii
d G
dΞ

Ξn + ∆t
i−1∑
j=1

aij Gn,j

Gn,i (1.36)
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by noting Gn,j = G (Ξn,i). The recurrence equation for the integration scheme is no longer on the
intermediate states but on the intermediate slopes. Usually, the Jacobian matrix is kept constant
throughout the stages, equal to the Jacobian matrix evaluated in Ξn. Additional parameters γij
are often to add more flexibility to the method [30]. It gives the Rosenbrock–Wanner method:

Ξn+1 = Ξn + ∆t
k∑
i=1

bi Gn,i

with Gn,i = G

Ξn + ∆t
i−1∑
j=1

aij Gn,j

+ ∆td G
dΞ (Ξn)

i∑
j=1

γij Gn,j .

(1.37)

This corresponds to classical Rosenbrock methods when all γij are null, except for γii that
correspond to the aii. However, the distinction is not made very often, and Rosenbrock–Wanner
methods are simply called Rosenbrock methods. The method is defined by the coefficients
aij,1≤j<i≤k, bi,1≤i≤k and γij,1≤j≤i≤k. If the problem is non-autonomous, the method is then:

Ξn+1 = Ξn + ∆t
k∑
i=1

bi Gn,i

with Gn,i = G

Ξn + ∆t
i−1∑
j=1

aij Gn,j , tn + ci∆t


+ ∆t∂G

∂Ξ (Ξn, tn)
i∑

j=1
γij Gn,j

+ ∆t∂G
∂t

(Ξn, tn)
i∑

j=1
γij

(1.38)

with ci =
∑i−1
j=1 aij as for other Runge–Kutta methods. If one takes all the γii equals to one

another, then the matrix to invert at each step of the Rosenbrock method is the same. This
can help reduce the cost of the method by doing a single matrix inversion, or by recycling
information between Krylov subspace methods [31]. Overall, even if they can achieve high-order
and A-stability, Rosenbrock methods are still computationally expensive.

Backward differentiation formula

As explicit Runge–Kutta methods are extended to implicit methods, Adams–Bashforth meth-
ods also have their implicit counterparts. The idea is to still compute the Lagrange interpolation
of the function G but with one additional point: the point at the next time step. This new method
is called the Adams–Moulton method. However, the stability region of Adams–Moulton is quite
narrow, as they were originally not made for stiff equations [24]. This is why the Backward Differ-
entiation Formula methods, or BDF methods, were introduced. Contrary to Adams–Bashforth
and Adams–Moulton methods, they use the Lagrange interpolation of the solution Ξ instead of
the interpolation of the function G. Then, the time derivative of the solution can be replaced
by the time derivative of the interpolating polynomial, and the resulting equality is evaluated
at the next time step tn+1. This gives an implicit equation that is solved to get Ξn+1. The
name of those methods comes from the fact that if it uses a constant time step between itera-
tions, this equation can be written using the differentiating operator defined by ∇0�i = �i and
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Figure 1.3: Stability regions (in colour) of the BDF methods. Zoom is not constant between
plots.

∇j+1�i = ∇j�i −∇j�i−1:
k∑
i=1

1
i
∇iΞn+1 = ∆tG (Ξn+1) . (1.39)

The order of the method is equal to the index of the method, corresponding to the number
of previous states needed to compute the next one. These methods allow for an arbitrarily
high order without increasing the cost, as the implicit equation is not harder to solve as the
order increases. However, the stability analysis limits the higher order achievable. The stability
analysis of the BDF methods can be done numerically. At this stage, one can note that the
first-order BDF method is in fact the implicit Euler method. Also, methods of order 7 or higher
are unstable, so we can limit our analysis to methods with orders from 1 to 6. The corresponding
stability regions are satisfying, as can be seen in figure 1.3. Particularly, the first and second
methods are A-stable. We see when looking at the scales in figure 1.3 that the complement of
the stability region grows with the index of the method. More generally, there are no A-stable
multistep methods with orders higher than 2 [26, 25].

This introduction to the classic time integration methods helps us to decide what to do for our
solver. As we said earlier, we want to solve an ordinary differential equation in order to recover
the steady solution, reached after a long time. Then, explicit methods that constrain the time
step are not well fitted. Even if they cost more, algorithmically speaking, implicit methods are
indeed the best choice for stiff equations. It is often better to do a single expensive iteration
over a large time step with an implicit method than make a lot of inexpensive iterations over
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small time steps with an explicit method. This is finally why we will continue working with the
A-stable implicit Euler method. This method is already used in our solver as the base implicit
method, for the same reasons we want to use it. Furthermore, it is at the base of all other implicit
methods, as they can be seen as small variations of the implicit Euler methods. Choosing it is
also smart as updating it into another implicit time integration method will not require too much
work.

1.4 Implicit methods framework
1.4.1 Methodology of the implicit time integration
As we explained in the previous section, implicit time integration methods give the next state

as the solution of a nonlinear equation or a system of nonlinear equations. If we want to use
implicit methods, we then need to be able to solve a nonlinear problem. We will continue our
discussion using the implicit Euler method, but everything can easily be adapted for any other
implicit method. For Diagonally Implicit Runge–Kutta methods, we apply the nonlinear solver
successively for each step. For BDF methods, we apply the nonlinear solver to a slightly different
equation.

From a nonlinear problem . . .

Newton’s method can be used to solve a nonlinear problem of the form:

f̃ (Ξn+1) = 0. (1.40)

Equivalently, as it works for a single n at a time, this equation can be expressed in terms of the
increment x = Ξn+1 − Ξn without writing the subscript:

f (x) = 0. (1.41)

Newton’s method starts from an initial guess x0. This initial guess is often equal to zero, as it is
equivalent to taking Ξn as an initial guess for Ξn+1. The method will then iterate to approximate
the solution of equation (1.41).

At each step of Newton’s method, the problem is linearised in the current estimation xi and
the new equation is evaluated at the next iteration xi+1:

f (xi+1) ≈ f (xi) + f ′ (xi) (xi+1 − xi) = 0 (1.42)

This gives a linear problem in which xi+1 is the solution.

. . . to a linear one

Equation (1.42) can be rewritten into the classic linear problem:

Ax = b (1.43)

where A = f ′ (xi), b = −f (xi) and x = (xi+1 − xi). The x notation is reused as it is often used
in the literature to name the unknown in linear problems. Such linear problems are found during
the iterations of Newton’s method, but each is solved for a given iteration number so there is no
ambiguity in this notation. A lot of methods were conceived to solve such linear problems, and
we will explain later how to handle them.
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Figure 1.4: Procedure used to find the solution of steady problems.

To sum up, we started from the partial differential equation (1.1) arising from the physical
model. With a spatial discretisation method, and after choosing an initial value, this transforms
into an ordinary differential equation (1.10). For stability reasons, we decided to use implicit
time integration methods. Iteratively, such methods are going to produce one or several nonlinear
problems in the form of equation (1.41). Newton’s method used to solve such problems is going
to produce a succession of linear problems in the form of equation (1.43). This complicated
sequence of operations describes the time integration procedure used in our solver to find the
solution to steady problems. It is schematised in figure 1.4, where the blue circles correspond to
the problems being solved, while green circles correspond to the methods used to solve them. In
this thesis, we are interested in the non-hatched parts.

1.4.2 Nonlinear solver
As we said, we solve the nonlinear problem with Newton’s method. What was done in our

solver was in fact a single step of Newton’s method, which means a single linearization of the
nonlinear problem. Since we could benefit from an actual Newton’s method, it was implemented.
Contrary to the single linearisation that was done before, several linear problems need to be solved
during one single time step, so several Jacobian matrices are needed.

The issue when using Newton’s method is that it should be accompanied by a Line Search
algorithm to determine the step size α so that the next iterate of the method is:

xi+1 = xi − αf ′ (xi)−1
f (xi) . (1.44)

During this thesis, we did some work towards using a complete Newton’s method, but we did
not have time to develop a Line Search algorithm, so we ended up using the standard method
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(a) GT01R: 2D inviscid flow in
the inter-blade channel of a lin-
ear cascade turbine.

(b) HV15R: 3D RANS simula-
tion of an engine fan.

(c) RM07R: 3D viscous flow in
a jet engine compressor.

Figure 1.5: Matrices from various CFD simulations [33] using a Finite Volume method. Coloured
points correspond to nonzero values.

from our solver: a single linearization of the nonlinear problem.

1.4.3 Linear solver
We want to be able to solve efficiently linear systems like (1.43). We additionally assume that

A is an invertible matrix. Let us note the size of the linear system N . This size is quite large
in our typical applications, but the linear system is sparse. This means that the coefficients
of the matrix A are mostly zeros. This is because a coefficient in the matrix A corresponds
to a link between two degrees of freedom. For the considered spatial discretisation methods, a
cell only depends on a small number of neighbouring cells, and therefore a degree of freedom is
not linked with most of the others. In practice, the stencil is generally reduced to the current
cell and those that share a face with the current cell. This transcribes into lots of zeros in the
matrix, and therefore its sparsity. Such sparse matrices can be seen in figure 1.5. Using the
sparsity of the matrix is essential, as it would not be possible to store it as a dense matrix in the
memory of a computer. Instead, some clever formats are used, such as the Compressed Sparse
Row format [32]. Some operations such as matrix-vector products are more efficiently done using
such formats.

Many methods exist to solve linear problems. Some are even taught in school, such as the
Gaussian elimination. Such methods are called direct methods, as they first do some work and
then find directly the exact solution to the problem. But for problems with huge sizes such
as the ones encountered in computational fluid dynamics, the amount of work is too much to
be computed with today’s means. It would take too much time as well as too much memory.
Instead, one can use iterative methods [34]. An iterative method starts from an initial guess x0
and produces as it iterates a supposedly better estimation of the solution xn. The subscript n
has nothing to do with the subscript used to identify the iterates of the time integration method:
this happens at a given fixed time step. We can then decide when to stop the method, whether
the solution estimate is good enough or the resolution is taking too much time. Iterative methods
are the most well-fitted to solve large sparse linear problems, and they are the preferred solution
in computational fluid dynamics.
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Among the iterative methods are what could be called the "classic" methods, or relaxation.
They are the Jacobi, Gauss–Seidel or Successive Over Relaxation methods. They decompose the
matrix into A = M − N with M a matrix easily invertible. The choice of M depends on the
method. Then, starting from a given x0, each step computes xn+1 = M−1 (Nxn + b). Those
methods are often deemed not efficient enough for computational fluid dynamics applications.
They are often used, however, as preconditioning methods, as we will see later.

Another class of iterative methods is becoming the standard for computational fluid dynamics:
the Krylov subspace methods. A Krylov subspace method projects the linear problem (1.43) on
a smaller linear subspace called Krylov subspace. The obtained smaller system is then solved,
much more easily. The cleverness resides in the fact that those Krylov subspaces are nested, and
each iteration reuses the information obtained in the previous ones.

In the following, we note at iteration n the residual rn = b−Axn. Practically, we keep n� N
so that the cost of the method stays reasonable, but this does not change the following. The
corresponding Krylov subspaces are defined as:

Kn (A, r0) = Vect
(
r0, Ar0, . . . , A

n−1r0
)
. (1.45)

Then, the next iterate in Kn must satisfy a Petrov–Galerkin condition [35]:

xn ∈ x0 +Kn (A, r0) such as rn ⊥ Ln (1.46)

where Ln is a linear subspace with dimension n. For example, Ln = Kn corresponds to a Galerkin
condition, and Ln = AKn is a minimum residual condition.

To construct the growing Krylov subspace, one can use the Arnoldi iteration [36]. As a result,
the matrix A is only used through matrix-vector products. Indeed, Krylov subspace methods
do not require the matrix A to solve the linear system (1.43), just to know how to compute
matrix-vector products. We will use this property later on.

There are many Krylov subspace methods that can solve a linear problem, characterised by the
choice of Ln. The minimal residual condition gives the Generalized Minimal Residual method
or GMRES [37], vastly used in computational fluid dynamics [38] and other fields of numerical
simulations [39, 40]. Its main advantage is that even if its iterations may be slightly more
expensive than other methods such as the Bi-CGSTAB method [41, 36], the residual norm is
minimised and the error is then decreasing as the method iterates. This allows for some control
of the residual norm. With the Bi-CGSTAB method for example, also available in our solver,
the residual norms do not have to be decreasing, which can lead to chaotic convergence. The
GMRES method already exists in our solver and is often used. Because it is discussed a lot in
the literature, many variants and enhancements were developed [42, 43, 44]. For those reasons,
we decided to keep the GMRES method as the base of our linear solver.

The convergence of Krylov subspace methods, and more generally of iterative methods, de-
pends on the linear system matrix. It is common knowledge that the convergence is linked to the
condition number of the matrix [45]. The condition number of an invertible matrix A is defined
as:

κ (A) = ‖A‖
∥∥A−1∥∥ (1.47)
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and so it depends on the chosen norm. A problem is said to be well-conditioned when κ = O (1),
and ill-conditioned when κ� 1. For the Euclidean norm ‖·‖2,

κ (A) = σmax

σmin
(1.48)

where σmin and σmax are the smallest and largest singular values of the matrix A. As a reminder,
the singular values of A are the eigenvalues of A∗A where A∗ notes the conjugate transpose of
A. The relation (1.48) is often simplified as

κ (A) = |λmax|
|λmin|

(1.49)

with λmin and λmax the eigenvalue of A with the smallest and largest modulus. If this helps
picture what the condition number stands for, this is only true for normal matrices: matrices
that commute with their conjugate transpose. However, the matrices we face in our field have
no reasons to be normal matrices. An intriguing result is found in [46]. For a given decreasing
convergence curve and a given spectrum, it is possible to construct a linear problem such as
the convergence of GMRES follows the given curve and the matrix has the given spectrum. In
other words, there are ill-conditioned matrices for which GMRES converges quickly and well-
conditioned matrices for which GMRES will be slow. In particular, one can find a matrix with
the best condition number possible, meaning 1, on which GMRES will make no progress until
the last iteration. This is because of the nonnormality of the matrix [47, 46]. To handle it in the
analysis of the convergence, one must not look at the spectrum but the pseudospectrum [48, 49].
This analysis is quite complex and is mostly done in an analytical context, not an industrial one.
Using Krylov subspace methods with nonnormal matrices and the study of their convergence
is no simple task [50, 51]. As the matrices we encounter in our computational fluid dynamics
problems are arbitrary, meaning mostly nonnormal, we decided not to study finely the spectrum
of the operator.

Even if we will not look deeply into the spectrum of the matrix, we still help the linear
solver with preconditioning. Preconditioning consists in multiplying the equation (1.43) with a
preconditioning operator P to the left for left preconditioning:

PAx = Pb (1.50)

and to the right for right preconditioning:{
APx′ = b

Px′ = x.
(1.51)

The idea is to transform A into a matrix that is more easily invertible. The matrix to invert is now
PA for left preconditioning and AP for right preconditioning. If the preconditioning operator is
close to A−1 and is cheap to compute, this new matrix is close to Id and so is easily invertible. If
P is too close to A−1, computing the preconditioning will be as expensive as solving the original
linear problem. If P is too easy to compute, meaning close to Id, the preconditioning will be
useless. Choosing a preconditioner means making a compromise between those two extrema.

Just as Krylov subspace methods only need to compute matrix-vector products, and not to
know the matrix, we do not need to know the preconditioning matrix, but only to know how to
apply it on any given vector.
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Figure 1.6: Spectrum of A in blue and Apre = AD−1 in orange (left). GMRES convergence for
those matrices (right).

To better understand how preconditioning works, let us take an example, inspired by example
35.2 of [36]. We take a square matrix of size 200 by 200, which is the sum of a diagonal part and
a random perturbations part:

A = Adiag + 1
2
√
N
Arand

where Adiag,k = 2 sin
(

2kπ
N − 1

)
− 1 + i cos

(
2kπ
N − 1

)
and Arand ↪→ N (0, 1) .

(1.52)

The vector b is a vector of ones. The spectrum of A is displayed in figure 1.6 in blue. It is spread
out around the origin. When we apply the Jacobi preconditioning, meaning the preconditioning
matrix is the invert of the diagonal part, the spectrum is gathered around 1. This helps a lot
GMRES, as can be seen in figure 1.6: it struggles to reduce the residual norm on the standard
problem but does it easily on the preconditioned problem. This is only a dummy example, but
it helps visualise the importance of preconditioning.

We need to use preconditioners when solving the linear system (1.43) with GMRES. One of
the less sophisticated preconditioners is the Jacobi one. It is the one used in the example above:
the preconditioning matrix is the invert of the diagonal part of A. Its advantage resides in its
simplicity. It is inexpensive and easily scalable. On the other hand, it lacks efficiency, and that is
why many preconditioners were developed in the literature. A slight variation consists in taking
the diagonal blocs instead of the diagonal elements. This makes sense for our matrices, as they
can be divided into blocs, each block corresponding to the degrees of freedom in a cell. The
resulting preconditioner, called Block Jacobi, already exists in our solver and is often used as the
standard preconditioner.

Others preconditioners exist in our solver. One consists in using the invert of the cell volumes
as a diagonal matrix: the preconditioning matrix is a diagonal matrix, where each diagonal
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element is the inverse of the corresponding mesh cell volume. This was originally conceived to
preserve the conservative properties through the GMRES solver. Indeed, as GMRES produces
an approximation of the linear problem solution, the overall scheme may not be conservative.
This preconditioner makes sure it is. More explanations on this statement can be found in
appendix A. As it is even simpler than the Jacobi preconditioner, it shows poor performance.
Some work was done towards Polynomial preconditioning: the preconditioning matrix P is equal
to the partial Neumann series of Id−A, as it approximates A−1 [52]. Its major drawback is its
computational cost, as it requires multiple matrix-vector products. For this reason, we decided
not to look into it.

We were at first interested in some other preconditioners found in the literature, such as the
Incomplete LU preconditioner. When taking the LU factorisation of the sparse matrix A, the
triangular matrices L and U lose the sparsity pattern of A. This is troublesome as it is not possible
to store dense matrices of the size of A. The Incomplete LU preconditioner, characterised by
its index k, computes only the coefficients of the triangular factors that belong to the sparsity
pattern of Ak+1. This way, the factorisation is incomplete in the sense that it does not recreate
A, but it is still sparse and can be used as a preconditioner. The Incomplete LU factorisation
is often used in computational fluid dynamics [53, 54], but it was not a good fit for our solver,
due to the difficulty in developing the method in an industrial-size solver, and because it relies
directly on the matrix. Indeed, the matrix available to us is not precise, as we will explain later,
so using it as a preconditioner may not work as well as expected.

As the preconditioning matrix P is not explicitly needed, and its effect should be near A−1,
one could take as a preconditioning procedure another Krylov subspace method: to apply the
preconditioning to any vector v would mean solving Ax = v with a Krylov subspace method.
However, applying a Krylov subspace method is not a linear operator. To handle this case, the
GMRES algorithm must be modified into the Flexible Generalized minimal residual method, or
FGMRES [55, 56]. GMRES can be preconditioned with an inner GMRES, and as GMRES was
already written in our solver this idea was simple to implement. This preconditioning does not
need more information on the matrix A than the outer GMRES does: in particular it does not
require knowing the matrix coefficients. This is interesting for some reasons that are discussed
later. Finally, this method interests many scientists [42, 43] and has shown promising results in
numerical simulation [57]. For all those reasons, we decided to add this method to our solver.

The GMRES method is often used with restarting: instead of keeping on iterating the method,
one could stop it and start again. This is the Restarted GMRES method. The cost of one
iteration increases as the method iterates. Restarting allows for some control of the Krylov
subspace dimension, and therefore on computational cost and memory usage. The issue with
restarting is that it can be harmful to the convergence. When the Krylov subspace generated
on the restart is too close to the previously generated Krylov subspace, the residual norm may
stagnate [58]. A solution to this problem would be to reuse information between restarts. This
is done with the Loose GMRES method [59] or with Augmentation or Deflation techniques
[60, 61, 62]. Augmentation and Deflation give in fact equivalent results [42]. Their idea is to
recycle the spectral information acquired at the end of the cycle onto the next cycle. Recycling
spectral information could even be done throughout multiple linear solve, during a nonlinear
solve for example [31]. Those techniques look promising but we did not have time to try them
in our solver, as we focused on other points.
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1.4.4 Evaluating the Jacobian matrices
If we can solve precisely linear problems, but the problem is not the one the nonlinear solver

wants, it may hurt the nonlinear solver convergence. We then need to be able to get the right
linear problem from the nonlinear one. At this point, we know how to evaluate the function f
from equation (1.41), which is often expressed as a linear combination of previous states and
G evaluations, where G is the function introduced in equation (1.10), the function from the
starting ordinary differential equation. On the other hand, computing its derivative with regard
to x is a different story. As this derivative is the matrix used when solving the linear problem,
it is crucial to have a good representation of it. This derivative f ′ (x) uses the Jacobian matrix
of the function G. As the function G comes from the spatial discretisation method applied to
the original partial differential equations (1.1), it is quite complex to evaluate this Jacobian.
The underlying algorithm is hard to fully understand and write, and the numerical evaluation is
usually expensive. Furthermore, our software keeps evolving, and models are constantly added
and modified. It would require constant work to maintain the Jacobian matrix computation.
Computing by hand the exact Jacobian matrix would amount to too much work in our industrial
software. We must use other alternatives to get the Jacobian matrix we need for Newton’s
method.

An idea would be to use Automatic Differentiation [63]. This means to give the source code
of the G function to some software [64], which gives in return a way to compute its Jacobian
matrix. One advantage of this method is that the cost of derivating the function is done only
once, at software compilation. After that, computing the Jacobian matrix amount to calling a
function. Another advantage is that the given Jacobian is supposedly exact, contrary to some
alternatives we will discuss later. For those reasons, Automatic Differentiation is today being
used in actual computational fluid dynamics software [65, 66]. In our software, using Automatic
Differentiation did seem too hard and therefore we looked at other methods instead.

A possible idea is to use an approximation of the Jacobian matrix that is inexpensive to
compute. We said that the function G comes from the second-order or higher-order Finite
Volume method used as the spatial discretisation method. One can then take the function G1
given by the first-order corresponding method, and use its Jacobian matrix instead. Indeed,
computing G1 is inexpensive in comparison to G, and the same goes for the corresponding
Jacobian matrices. Going further, one could also approximate the Jacobian matrix of G1: when
G uses some complex models such as turbulence models, it is often decided to not include those
models’ contributions to the Jacobian matrix, for complexity and stability reasons [7]. This is
what is done originally in our in-house solver: using a cheap low-order approximation of the
Jacobian matrix.

When we decided to use Krylov subspace methods as our linear solver, we highlighted the fact
that they only need to know how to compute matrix-vector products. Using this, and the fact
that the matrix is a Jacobian matrix, one could approximate the matrix-vector product of f ′ (x)
with a vector v by:

f ′ (x) v ≈ f (x+ εv)− f (x)
ε

(1.53)

with a scalar parameter ε discussed below. This is the finite difference approximation of the
Jacobian matrix-vector product. A quick analysis shows that the error on this approximation is
o (ε). Usually, the value of f (x) is previously computed, so one evaluation of f is required for
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one matrix-vector product. One could also use the centered finite difference approximation:

f ′ (x) v ≈ f (x+ εv)− f (x− εv)
2ε (1.54)

that gives a smaller error of o
(
ε2), but it requires two f evaluations, so it is twice as expensive

as the first-order approximation. Therefore, we will use the first-order approximation.

Using this approximation, it is possible to recover the full Jacobian matrix. If the approxima-
tion (1.53) is applied to each vector of the canonical basis as the vector v, one can gather each
column of the Jacobian matrix. This gives what is often called the finite difference Jacobian
matrix. Instead of computing a matrix-vector product for each direction, a technique consists
of computing independent directions beforehand to get a colouring of the matrix: two directions
are of the same colour if they are independent through the matrix. Then, a smaller number of
matrix-vector product approximations are required: as many as there are colours. This is often
called the finite difference Jacobian matrix with colouring [67]. Those techniques are still not
well fitted for our solver. As we work with large dimensions, computing the Jacobian matrix
takes time. Furthermore, we explained that we do not need to know explicitly the matrix. That
is why we will use the approximation (1.53) each time we need a matrix-vector product instead
of computing the Jacobian matrix first.

We still have not talked about the parameter ε introduced in equation (1.53). As it represents
the size of the step made to approximate a derivative, it should be small. But taking it too small
leads to roundoff errors so it must be chosen carefully [68]. We decided to look at some strategies
in the choice of ε, and this work will be presented in a later part.

Now the choices we made for our nonlinear and linear solve strategies are starting to make
sense. Working with different Jacobian matrices is not an issue, as they are not computed. The
Krylov subspace method GMRES does not need the Jacobian matrix, only to compute matrix-
vector products, contrary to other iterative methods such as the Gauss–Seidel method. The
flexible preconditioning also does not need the Jacobian matrix for the same reason, contrary to
other types of preconditioners such as ILU preconditioners.

Overall, using Newton’s method to solve the nonlinear problem and a Krylov subspace method
to solve the linear problem while using a matrix-free method is known as the Jacobian-Free
Newton–Krylov method, or JFNK. This methods and its variants are as of today still discussed
[69, 8] and used on actual computational fluid dynamics solvers [53, 38]. We are interested in the
JFNK method as we hope it will give a better representation of the Jacobian matrix than the
low-order one already in use in our solver. We hope that a better Jacobian matrix will lead to a
better convergence, in particular when some models are ignored in the classic Jacobian matrix,
such as turbulence models.

Furthermore, CEDRE works with multiple distinct solvers. When a computation uses multiple
solvers, two, for example, the function f from equation (1.41) is in fact (f1, f2) and x is (x1, x2).
The Jacobian matrix is then:

f ′ (x) =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 . (1.55)
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The cross-term Jacobian matrices, ∂fi

∂xj
with i 6= j, are usually hard to compute, both analytically

and computationally, and are the main obstacle to a fully implicit solver. Instead, in CEDRE,
each solver iterates independently to the others, with some exchanges between iterations. Using
the matrix-free approximation and the JFNK method, those cross-solver terms are taken into
account. This choice is then perfectly aligned with the direction our solver is aiming: towards a
better implicit cross-solver mechanism.

Some specific situations are known to be troublesome for the JFNK method, such as shocks,
reaction fronts or discontinuities arising from high-order advection schemes [68]. Unfortunately,
those features are precisely at the center of our solver. We are hoping that the difficulties of the
method will be overbalanced by its advantages: getting a better convergence, allowing a fully
coupled implicit solve and allowing an implicit integration method for new models. It means that
we do not expect the method to enhance the robustness of the solver, but we hope that because
it uses a better Jacobian matrix than the one already in use it will help the convergence. And
once again, the second advantage is that the matrix-free method would allow us to do coupled
implicit time integration. We will come back to the third advantage later in the application’s
part.

In this section, we described how an implicit method operates: the method itself produces one
or several nonlinear problems at each time step. Those problems are solved with a nonlinear
solver that uses linearisation to transform them into linear systems, which are then solved with a
linear solver like a preconditioned GMRES method in the case of our solver. We explained that
this linearisation in CEDRE is done by using Jacobian matrices that are poorly approximated.
It means that we do not solve the correct linear systems, which hinders the nonlinear resolution
and the time integration method ends up finding an incorrect increment. The Jacobian-Free
Newton–Krylov method, which is compatible with other algorithms already available in CEDRE
such as the GMRES method, should rectify this issue. For this reason, we will continue this
work with this method for our time integration method.







Chapter 2

Description of the development
workflow in CEDRE

Résumé du chapitre : Description des développements dans CEDRE

Le but de ce chapitre est de décrire les développements réalisés dans CEDRE afin
d’implémenter le mécanisme "sans matrice" de la méthode JFNK. Il s’agit de développer
astucieusement ce mécanisme afin d’obtenir la méthode souhaitée tout en garantissant
l’efficacité et la portabilité du code produit.
Dans ce chapitre, nous décrivons un peu plus en détail les différentes briques qui com-

posent CEDRE. Nous donnons ensuite les idées utilisées afin de réaliser les développe-
ments de la manière la plus générique possible. La nécessité de donner ces détails vient
du fait que CEDRE est un code particulièrement massif, qui se prête mal aux développe-
ments. Afin d’obtenir le résultat souhaité, nous avons donc utilisé des notions modernes
du langage Fortran que nous détaillons dans ce chapitre. Nous précisons ensuite un point
précis de l’implémentation de la méthode JFNK, qui est le choix du paramètre de dif-
férenciation ε, en apportant une correction par rapport aux choix principalement utilisés
par le reste de la communauté. Nous montrons enfin comment ces nouveaux développe-
ments s’articulent autour des mécanismes déjà existants, pour vérifier la compatibilité de
l’ensemble des méthodes.

In this brief chapter, we will discuss the details of how we implemented selected methods in
CEDRE. This does not constitute research work, but it ended up being a large part of the work
done during this thesis. It is also not without interest, as we sometimes used advanced features
in order to implement what we set out to do.

37
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2.1 General description of CEDRE
The software system CEDRE gather several solvers to solve problems in the field of multi-

physics [1]. Each solver is dedicated to a given model. As of today, there are seven solvers
embedded in CEDRE:

• CHARME, the fluid solver, for compressible multifluid and reactive flow, with RANS or
LES turbulence models

• SPIREE, the dispersed phase solver using an Eulerian framework

• SPARTE, the dispersed phase solver using a Lagrangian framework

• ASTRE, the radiation solver using a Monte Carlo method

• REA, the radiation solver using a discrete ordinates method

• FILM, for shallow water equations, used to model ice accretion

• ACACIA, the conduction solver, for heat transfer in solids.
Combining different solvers, CEDRE is able to simulate multiphysics phenomena numerically.
Using those solvers, CEDRE applications go from aerodynamics to aeroacoustics, aerothermo-
dynamics, combustion, icing, etc. The solver is coupled either through boundary conditions for
example in a thermal interaction at a fluid-structure contact or inside the computational domain
for example in the case of mass and energy transfer between dispersed phases and the main
flow. The coupling can either be one-way or two-way, depending on the user’s choice. Each
solver is integrated in time separately, and the coupling consists of some data exchange between
iterations: it is an explicit coupling.

Some functionalities common to multiple solvers exist outside the solver in helper libraries.
For instance:

• ASSEMBLAGE acts as the conductor by handling the overall simulation, telling the solvers
what to do and when to do it, when to exchange data and with which other coupled solver

• BIBCEDRE contains tools for geometrical operations, linear algebra methods, mesh han-
dling, parallel communications and other general functionalities

• THERMOLIB is used to compute the different thermophysical properties such as heat
capacities or to compute the closure relations that can be complex in our applications.

Those libraries are the main engines of the solver. CEDRE does a computation with CHARME,
it is in fact ASSEMBLAGE that tells CHARME when to initialise itself, to do a step of the time
integration method, etc. When CHARME needs to compute the ordinary differential equation
function, it is BIBCEDRE that does the higher-order polynomial reconstruction of the solution
so that the Riemann solver can compute the interface flux. When CHARME needs to compute
the primitive variables such as the pressure and temperature from the conservative variables, it
is THERMOLIB that solves a nonlinear problem with Newton’s method to compute the result.

Now that we defined the existing framework for the software system CEDRE, we can develop
new functionalities. Despite allowing some flexibility in the programming language, most of
CEDRE is written in Fortran. We decided to keep working with Fortran to help with the
integration of our work. As CEDRE is used by industrial clients, and as they rely on their
own supercomputers, we need to limit ourselves to Fortran 2003 standards, so as to ensure
compatibility.
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2.2 Implementation details
In this thesis, we focused on the most used solver: CHARME. Indeed, not only is it the most

used, but other solvers use it as a base for many applications. For example, when simulating
ice accretion around a wing profile, a standard methodology with CEDRE is to first get the
base aerodynamic flow with CHARME and then compute the ice particles with SPIREE or
SPARTE. Working with the solver CHARME was the way to benefit the most from our work.
Even if during this thesis we only worked on CHARME, we always kept in mind that the finality
was multiphysics simulations using multiple solvers. That is why we tried to develop generic
functionalities so that they could be easily imported to other solvers, provided the developers of
said solvers wanted to use them. The same reason was also used as a criterium in our choices,
as was explained previously. Choosing the Jacobian-Free Newton–Krylov method goes towards
fully implicit coupling between solvers, instead of the explicit coupling existing today.

2.2.1 FGMRES
In order for our work to be usable in every other solver, we had to work on the common library

BIBCEDRE. When the implicit Euler method of CHARME needs to solve a linear problem, it
uses BIBCEDRE. It contains everything needed to solve linear problems, such as GMRES and
preconditioners. A linear problem is stored in BIBCEDRE as the Fortran derived type type_sys.
In order to add Flexible preconditioning to the existing GMRES, we added a pointer to an inner
instance of type_sys inside of type_sys, so that the linear system and its corresponding solver
may use an inner solver for an inner problem:

type type_sys
! Inner linear system and solver
type(type_sys), pointer :: sys_int => null()

... ! Additional data
end type type_sys

This way, when we need to apply the preconditioner during a GMRES iteration, we can use the
inner type_sys instance to call the inner GMRES. Furthermore, having a pointer to an inner
instance allows for more freedom for the inner solver. One could for instance use multiple depths
of preconditioning and have the inner GMRES also be an FGMRES method, preconditioned by
another GMRES, etc.

2.2.2 Matrix-free
Sparse matrices are stored in an in-house format, using an array for the diagonal blocks,

another one for the extra-diagonal blocks and a third one to index the extra-diagonal blocks.
Matrix-vector products are made inside BIBCEDRE to handle this matrix format, with the
routine:

subroutine gmvec(sys, i_p, i_ap)
type(type_sys), intent(inout) :: sys
integer, intent(in) :: i_p
integer, intent(in) :: i_ap

that takes three arguments: the type_sys instance, an index identifying the vector to multiply
and an index identifying the vector where to put the result. As we explained when we introduced
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Krylov subspace methods, GMRES uses the linear system matrix through this matrix-vector
product routine. Classically, a client solver such as CHARME fills the matrix coefficients and
then lets BIBCEDRE solve the linear system. In order to use the matrix-free approximation
from equation (1.53), one only needs to replace this routine with a new one that computes the
approximation. Unfortunately, the approximation uses a function that belongs to the client
solver. The library BIBCEDRE does not know this function and how to compute it, as it is
part of CHARME or any other client solver. As we said, we want to write generic solutions, so
merging the library BIBCEDRE with the solver CHARME is not a good way to proceed. What
we need here is to allow BIBCEDRE to use a callback from the client solver. We did that using
the Fortran 2003 feature: polymorphism. The Fortran 2003 standard is almost twenty years
old today, and many may consider that the functionalities added to the previous Fortran 95
standard are therefore not that innovative. But in the context of a project as large as CEDRE,
developed by researchers and used by industrial partners, even the Fortran 2003 standard and
polymorphism in particular are innovative. Without going into too much detail, we added a
member to the type type_sys that contains the context to evaluate a matrix-vector product:

type type_sys
! Matrix-vector product context
class(type_gmvec_ctx), pointer :: gmvec_ctx => null()

... ! Additional data
end type type_sys

with:

type type_gmvec_ctx
procedure(interface_gmvec), pointer, nopass :: gmvec

... ! Additional data
end type type_gmvec_ctx

This way, when the client solver creates an instance sys of type_sys, it can choose how to
evaluate matrix-vector products by setting the procedure pointer sys%gmvec_ctx%gmvec. It can
for example point to the already existing routine to use the classical matrix-vector product, but
it also can use a custom routine that implements the approximation (1.53). Furthermore, the
client solver can use polymorphism and create an extended type of type_gmvec_ctx in order
to store additional data in the context. This is what is done by the solver CHARME, as it
does need additional data to approximate the Jacobian matrix-vector product. Finally, with this
implementation, any solver that wants to use the approximation (1.53) just needs to write the
corresponding routine and set the context accordingly. Then, a user can choose at execution
time whether to use the standard Jacobian matrix or the matrix-free method.

The computational cost of the matrix-vector approximation is approximately the cost of one
function evaluation. It requires some additional operations, such as vector subtractions, and
vector scaling, but those operations are way less expensive. Using a matrix-free algorithm is
clearly less expensive in terms of memory, as the matrix does not need to be stored at all. Some
even claim that it can lead to a less expensive method in terms of time [69]. This happens when
the alternative, which is computing the Jacobian matrix, is an expensive task. In CHARME,
the Jacobian matrix that is traditionally used is inexpensive to compute, with a cost similar to
a function evaluation. The issue is that the function evaluation itself is expensive in our solver.
This is troublesome, and the issue is currently addressed by the team of developers in charge
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of the solver. In the meantime, it means that the cost of the matrix-free approximation will
suffer even more. Practically, using it increases the computational time of one iteration. We
now hope that as it will not improve the iteration speed, it will improve the convergence of our
solver. Also, as we said the team responsible for CEDRE is working to improve the speed of the
function evaluation. If they succeed, our method will then benefit greatly from their work.

2.2.3 Strategy for the choice of ε

When we introduced the approximation (1.53) it introduced a new parameter ε. It is easy
to check that the truncation error on this approximation decreases linearly with regard to ε.
It is natural to take a small value for ε. But unfortunately, when working with floating-point
arithmetic, dividing by a small ε introduces roundoff errors [70]. This parameter needs to balance
truncation and roundoff errors. We need to decide on a strategy for the choice of epsilon. One
could take for example ε = √εmach where εmach is the machine epsilon: around 10−6 for single
precision and 10−15 for double precision. This choice is often discarded as it is deemed too
simplistic. Instead, works from the literature tend to use the same few options [6, 53, 71] that
come from [72] and [73]. Those options are well described in [68]. In particular, the one that we
encounter the most is the one from [72]:

εwp =
√
ε0 (1 + ‖x‖2)
‖v‖2

(2.1)

using the same x and v as in equation (1.53). Here ε0 is the estimated relative error in function
evaluation. A reason this choice is so popular is that apart from this ε0 value, it does not require
any user input. Furthermore, ε0 is often simply set to machine epsilon εmach.

To analyse this strategy in the choice of ε, we do the following numerical experiment. We
consider the one-dimensional Burgers’ equation over a regular periodic mesh made of 10 cells (or
segments in the one-dimensional space). The function f is taken as the right-hand side of equation
(1.5) when solving the Burgers’ equation, using a first-order Finite Volume method as the spatial
discretisation method, itself using an exact Riemann solver (Godunov’s scheme). This function
was chosen because it is a nonlinear conservative equation, often viewed in computational fluid
dynamics as a simplified version of Euler equations and it contains most aspects of nonlinear
hyperbolic equations. The vectors x and v are 10 + r1 and 0.1 (2r2 − 1) where r1 and r2 are
random vectors following a uniform distribution on [0, 1[, obtained with the Python package
NumPy: numpy.random.random.

The experiment result can be seen in figure 2.1. The relative error in the approximation
is shown as a function of ε with small grey crosses. On the right part of the figure, the error
decreases linearly with regard to ε. This corresponds to a truncation error-dominated region. On
the left part, the error increases as ε decreases. This corresponds to a roundoff error-dominated
region. Also, this increase is not smooth as the linear decrease, because roundoff errors tend to
produce more chaotic results. The choice of ε from [72] is also shown in the figure, as the large
blue dot. As can be seen, it falls into a low error region, not too much on the left, not too much
on the right.

The issue we noticed is the following. Some references in the literature do not specify the
norm used in equation (2.1). As it is most of the time the Euclidian norm ‖ · ‖2, or 2-norm, we
can assume that it is also the case when it is not specified. However, this means that in our
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Figure 2.1: Error in the Jacobian matrix-vector product approximation as a function of ε, and
in particular for the most popular choice εwp. The function is the right-hand side of equation
(1.5) from a Finite Volume method using an exact Riemann solver for Burgers’ equation, over a
10-cell one-dimensional regular mesh.

example the value of εwp will depend on the vector size. With our example, if one increases the
number of cells in the mesh the typical size of the vector components stays roughly the same,
so the shape of the error as a function of ε should not change much from the one in figure 2.1.
But if the vector components size stays the same, the 2-norm does increases with the vector
dimension. One can even see that when the dimension is N � 1, εwp ∼ N−1/4. Having ε to
depend on N did not make sense to us, as we are working with possibly large vectors in our
industrial applications. That is why we decided to use a variation from what is currently found
in the literature: we will use the norm ‖ · ‖2 /

√
N that can be seen as a scaled 2-norm. We then

get a new strategy for the choice of ε that we note εwp,N :

εwp,N =

√
ε0

(
1 + ‖x‖2 /

√
N
)

‖v‖2 /
√
N

. (2.2)

We compared the two strategies on the same test case while increasing the number of cells
from 10 to 100, 1000, ..., up to 107. Figure 2.2 shows the result of this experiment. On the
left, we see that the shape of the relative error as a function of ε when N = 107 is similar to
when N = 10, albeit the roundoff error-dominated region is more regular. In particular, the
ideal trade-off between the two error types did not move a lot. The value of εwp decreases as
expected: this translates as the fact that the blue dot moved to the left. When looking at the
error as a function of the dimension N , one can even recover the −1/4 expected slope. In the
right figure, there is in fact a 1/4 slope but the error is inversely proportional to the value of ε
so if the error behaves as N1/4, then εwp behaves as N−1/4. Because of the shape of the error
as a function of ε, if εwp changes with N it will eventually end up increasing the error. This is
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Figure 2.2: Error in the Jacobian matrix-vector product approximation as a function of ε (left)
and of the dimension N (right). On the left figure, coloured cross markers correspond to the
values computed on a mesh of 101, 102, ... cells, and circle markers to the last value with 107

cells. Grey cross markers on the left figure correspond to a mesh of 107 cells.

an undesired feature. Our new choice εwp,N on the other hand does not change a lot when N
increases. Therefore, the error level stays the same no matter the dimension.

The same numerical experiment was made on a more complex case: the one-dimensional Euler
equations. Here, the function f corresponds to the right-hand side of equation (1.5) given by a
centred Finite Volume method used as the spatial discretisation method, in which the interface
flux is defined as an average of left and right fluxes. This means the Riemann solver just
averages the left and right fluxes. This spatial method is known for its instability when used in
an actual solver, but it is useful in this experiment as the analytic Jacobian matrix is easy to
derive, contrary to methods using more complex Riemann solvers. This physical model assigns
3 degrees of freedom in each cell. We will use primitive variables. The vector x corresponds to a
uniform density of 1kg m−3, a velocity equal to a sine making one period over the mesh and of
amplitude 10m s−1, and uniform pressure of 105Pa. The vector v is a random vector in [0, 1] as
before, where the first component is scaled by 10−3, the second by 10−2, and the third by 102,
in order to impose 10−3 relative perturbations.

Figure 2.3 shows the corresponding results. As for the previous experiment, εwp depends on
the dimension N , and then the associated error ends up increasing as N grows. Our correction
εwp,N does not exhibit the same drawback. Even if it does not fall at the bottom of the error
curve, it at least does not lead to a larger error.

In this last case, we see that at the beginning the two errors were close with εwp,N being better
than εwp. In the first one, their starting positions were a bit different and this time εwp was the
better one. This is largely due to the randomness of this analysis: the one used to construct
the x and v vectors. In fact, it would be unwise to draw a conclusion from the position of the
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Figure 2.3: Error in the Jacobian matrix-vector product approximation as a function on ε (left)
and of the dimensionN (right). The function is the right-hand side of equation (1.5) from a Finite
Volume method using a centred scheme for the Euler equations over a regular one-dimensional
mesh. On the left figure, coloured cross markers correspond to the values computed on a mesh
of 101, 102, ... cells, and circle markers to the last value with 107 cells. Grey cross markers on
the left figure correspond to a mesh of 107 cells.

points in figures 2.2 and 2.3. Changing the choice of vectors, of the function f , or even the
randomness in the vectors is enough to modify their position. For example, we can not conclude
anything from the fact that εwp,N is almost at the bottom of the error curve in figure 2.2. It
may as well be a bit more on the side like in figure 2.3. What we can use from this analysis,
however, is the tendencies that choices of ε show. The main conclusion is then that with our
strategy we removed a dependency of the relative error on the dimension, which makes sense as
this dependency is not expected a priori.

The issue with this analysis is that it relies on extremely simple examples. The function f
in our actual applications is in fact much more complicated than the two we used here. But
in order to do this analysis we need to be able to compute the relative error, and this means
we need to be able to compute a Jacobian matrix-vector product analytically. Unfortunately,
this is not possible for our applications. If it was, we would not even need to introduce the
approximation (1.53) and therefore do this analysis. Using one-dimensional Burgers’ equation
and one-dimensional Euler equations with a simple Riemann solver was then a good compromise.
Those equations share similarities with the ones we work with in our solver, as they are nonlinear
hyperbolic equations, but they are still simple enough so that they can be used here.
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2.2.4 Linear system normalisation
An available option in BIBCEDRE for the linear solver is normalisation. It consists in taking

an invertible diagonal matrix N and rewriting the linear system (1.43) as:

Ãx̃ = b̃ with Ã = N−1AN , x̃ = N−1x and b̃ = N−1b (2.3)

One can check that it is equivalent to the original linear system. The diagonal coefficients of the
matrix N are estimates of the order of magnitude of the corresponding degrees of freedom. This
estimation can be computed at each time step depending on the current state, or can simply be
constant, equal to some reference values, depending on the choice of the user. When working
with Euler equations, for example, the numerical values corresponding to the energy degrees of
freedom are usually many orders of magnitudes over other degrees of freedom. The goal of this
normalisation is to bring back each vector component at the same level in the linear system. It
can also be seen as a combination of a left preconditioning by N−1 and a right preconditioning by
N . This normalisation is often used by our solver’s users, so we need to ensure compatibility with
our matrix-free method. We can adapt the approximation (1.53) to account for the normalisation
as: (

N−1f ′ (x)N
)
v ≈ N−1 f (x+ εN v)− f (x)

ε
. (2.4)

We also need to adapt our strategy for the choice of ε. With the normalisation, we see that εN
sort of plays the role of ε. It then makes sense to take ‖εN‖ equal to the original choice of ε,
and therefore we take:

ε =
√
ε0 (1 + ‖x‖)
‖N‖ ‖v‖

. (2.5)

We take as a matrix norm the one induced by the vector norm. This means that:

‖N‖ = sup
v 6=0

‖N v‖
‖v‖

. (2.6)

When using the 2-norm, the corresponding norm is ‖N‖ = maxNii as N is diagonal with
strictly positive coefficients. When using the scaled 2-norm discussed in the previous part, the
corresponding norm is also the same. This is nice because whatever strategy we use in the choice
of ε, it does not interfere with the handling of normalisation.

2.2.5 Preconditioning
Our matrix-free implementation also needs to be compatible with the already existing precon-

ditioning from BIBCEDRE. There are two ways to precondition the linear system in BIBCEDRE.

• The outer left preconditioning is applied once before the linear solve. It changes the
numerical values of the matrix coefficients and the right-hand side. Once it is applied, the
resolution can continue as if nothing had happened.

• The inner right preconditioning is applied before each matrix-vector product, and once
more at the end of the solve.

Handling the inner preconditioning with our matrix-free implementation is easy as those two
operations are independent of each other. The outer preconditioning relies on the fact that the
preconditioners available are simple, and therefore it is inexpensive to apply it to the whole
matrix, and less expensive than applying after each matrix-vector product. This advantage is
lost with the matrix-free method. The left preconditioning is still applied once to the right-hand
side before the solve, but it is also applied after each matrix-vector approximation.
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2.2.6 Local time-stepping

We said earlier that local time-stepping is used in CEDRE to accelerate the convergence on
steady problems. What it does is that each cell of the mesh moves forward in time with its own
time step, independently of other cells. This local time step is expressed as a fraction of the global
time step. There are several options a user can choose from to set the time-stepping strategy. It
can use a CFL number based option and compute the corresponding local time step so that the
CFL number local to the cell is not too large. The preferred and default option is based on the
explicit increment and some reference values. It first estimates what the solution increment will
be by using the explicit increment and possibly the reference values, depending on the choice of
method, and compute a local time step so that the increment local to the cell is not too large.
This local time-stepping strategy adds various parameters that need to be tuned, in the form of
scalar coefficients, whether or not to apply the local time-stepping to the boundaries, whether
to use conservative or primitive variables, etc. In the end, what local time-stepping methods do
is artificially modify the volume of the cells: increasing a cell volume corresponds to increasing
its inertia, and therefore scaling the time step down. The volumes of the cells appear in the
linear system matrix, in the form of a diagonal "mass" matrix. By using the scaled mass matrix,
the matrix-free approximation does account for local time-stepping. With this last feature, we
ensured that the matrix-free approximation is compatible with the already existing methods.

This chapter explained in a simplified manner some implementation detail of our solver. It is
important to remind oneself that CEDRE is an industrial-sized software system, compared to
smaller solvers developed for academic purposes. The scale of the solver was a limiting factor
in this thesis. We often wanted to try some new scientific idea but were faced with many
troubles that are inherent to the solver size. At some point at the early stage of this thesis, for
example, we wanted to improve the quality of the linear solve by using advanced solvers and
preconditioners, with the help of the PETSc library [74, 75, 76]. Using the library in CEDRE
ended up being impractical, or at least would have taken too much time that we could not afford,
and so we had to change direction. In the end, a solver of this size is not an ideal sandbox to try
methods that are too innovative. A good amount of experience is required to master the various
models and methods, an amount I did not have at the beginning of this thesis. For example,
the spatial discretisation methods come with a lot of parameters: the kind of method, the slope
limiter, the Riemann solver, and many more that are specific to CEDRE. The same goes for the
time integration with for instance the local time-stepping or the linear system normalisation.
A single parameter may be deterministic in the success of a computation. This forces us to
allocate a quite large amount of time to every computation. Moreover, because of the large
number of developers that are working on the solver, and the fact that many developments
are small tweaks from occasional developers such as interns and PhD students, fixing bugs also
took a decent amount of time. Overall, this explains why we decided to implement the solutions
previously discussed. They are already well known from the literature and feel like a natural step
up from the already existing methods of CEDRE. It is good to mention that many difficulties
arise from the solver, and are inherent to it, mostly due to its overall size. We would probably
have taken a different route if we had worked with a different solver.
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Without getting into too much detail, this chapter explained how the selected methods and
modifications were implemented into the solver CEDRE. Besides some minor developments,
the main feature is the matrix-free implementation. As it was explained, this implementation is
generic so that it can be used with any solver that wants to solve a linear problem with the library
BIBCEDRE. The idea was also that if multiple solvers use this implementation, it becomes easy
to do a coupled implicit solve. Without it, because of the structure of CEDRE with the library
ASSEMBLAGE conducting the solvers, a coupled implicit solve is not possible without reworking
the basic structure of CEDRE. During this thesis, however, because we were limited in the time
allowed to us, the implementation was only used for the reactive Navier–Stokes solver CHARME.
This is why we had to compromise and develop only for the CHARME solver but in a generic
way.





Chapter 3

Analysis of the JFNK method in
CEDRE

Résumé du chapitre : Analyse de la méthode JFNK dans CEDRE

Le but de ce chapitre est de vérifier les gains apportés par l’ajout de la méthode JFNK
dans le solveur CEDRE. Il s’agit de comparer les performances de cette nouvelle méthode
avec les méthodes préexistantes en matière de stabilité, robustesse et rapidité. Nous
adaptons pour cela le point de vue d’un utilisateur, en considérant ce qui l’intéresse
lorsqu’il réalise une simulation stationnaire.
Pour cela, nous comparons tout d’abord la méthode JFNK avec la méthode utilisant

explicitement la Jacobienne. Cette comparaison se traduit principalement par la com-
paraison de la convergence des deux méthodes à travers la norme des résidus. Ainsi, nous
réalisons cette comparaison sur une succession de cas tests, de complexité croissante,
sélectionnés car ils représentent différentes facettes du solveur.
Nous commençons par un calcul purement aérodynamique d’un profil d’aile en deux

dimensions dans un écoulement turbulent, qui utilise une modélisation des effets turbu-
lents de la couche limite. Puis, nous utilisons le même profil mais cette fois en incidence,
avec un maillage bien plus fin qui capture les effets de couche limite turbulente, plutôt
que de la modéliser.
Nous regardons ensuite un cas de rentrée atmosphérique avec une sphère placée dans

un écoulement à haute énergie. Cela se traduit par un très fort choc, ainsi qu’une
zone de déséquilibre thermodynamique où ont lieu d’intenses réactions chimiques. Dans
un premier temps, nous regardons comme précédemment les deux méthodes pour com-
parer leur convergence. Pour finir, nous utilisons un modèle de fluide récemment ajouté
au solveur afin de représenter plus finement le déséquilibre thermodynamique en car-
actérisant l’écoulement par plusieurs températures distinctes. Avec les développements
réalisés actuellement sur ce nouveau modèle, il n’est pas possible d’utiliser la méthode
implicite préexistante, et les utilisateurs sont forcés d’employer des méthodes explicites.
Nous montrons donc que la méthode JFNK peut elle être utilisée en l’état, sans nécessiter
de développements supplémentaires, et permet d’accélérer les calculs ainsi que d’obtenir
une meilleure convergence.

49
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In a previous chapter, we identified some methods from the literature that we wanted to use
in our solver CEDRE, and some others from CEDRE that we wanted to improve. In another
chapter, we discussed the practical implementation of said methods in the solver. The goal of
this chapter is now to test those methods on several applications to comment on the choices we
made. We need to define test cases that represent well enough target applications so we can
comment on the performances of our choices.

3.1 Comparison between matrix-free formulation and Ja-
cobian matrix approximation

From the previous analysis and implementation, the main addition to the solver is the Jacobian-
Free Newton–Krylov method, and in particular the matrix-free approach. In this part, the new
method that uses the matrix-free approach will be compared with the implicit Euler method as
the interest is focused on implicit time integration schemes. The traditional method linearises the
equation that the implicit Euler method produces, approximates the Jacobian matrix using the
Jacobian matrix of the corresponding first-order scheme, and then solves the linear system with
the Krylov subspace method GMRES. In order to understand the impact of a better Jacobian
matrix, the only difference is how the Jacobian matrix is handled. The new method will then
work in a similar way, except the matrix used in the linear solver is not actually computed, but
the matrix-vector products are approximated using equation (1.53).

3.1.1 Turbulent transonic airfoil

Definition of the test case

The first application is a typical aerodynamics test case. It is a two-dimensional simulation
of the flow around an RAE 2822 wing profile. The fluid is standard air assumed to be a perfect
gas. The Mach number is taken equal to 0.75, the chord is equal to 1m, the angle of attack is
0° and we use the atmospheric conditions at 10km. This gives a laminar Reynolds number of
6.5× 106.

This first test case is chosen for multiple reasons. Firstly, it is a simple case in the field of
computational fluid dynamics. It is a standard aerodynamics case, with a small mesh in com-
parison to many other three-dimensional cases. This allows testing our methods inexpensively.
Secondly, this case belongs to the tutorial suite of our solver. It means that it is already well
mastered by the team. Thirdly, even if it is only a standard aerodynamics case it still has some
stiff features, such as turbulence modelling and a shock. Finally, it is a standard test case for
turbulence modelling validation. Therefore there are many references in the literature using this
case.

The mesh used for this simulation is an unstructured hybrid mesh made of triangles and
quadrangles. Parts of it can be seen in figure 3.1. Cell sizes range from 2.5m far from the airfoil
and 100µm at the wall. At the wall, there is a C-shaped layer of regular cells. This helps better
capture boundary layer effects near the profile and the wake. Also, under those conditions, a
shock is expected to develop on the upper part. Special treatment such as refinement was applied
to the mesh at the expected shock location.
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Figure 3.1: Mesh for the RAE 2822 test case. Close up on the leading edge and on the expected
shock location.

The model used is the Reynolds Averaged Navier–Stokes equations, or RANS. Simply put,
every scale of the turbulence is modelled. The Spalart–Allmaras turbulence model is chosen to
close the RANS equation. It is well known for being one of the simplest turbulence models, which
is fine to set up a simple first test case. Figure 3.1 shows that the mesh near the wall boundary
is not particularly fine, and therefore it is not fine enough to compute the boundary layer. It is
indeed because this computation uses a turbulence wall model that replaces the standard no-slip
boundary condition with a more complex relationship between the variables and their derivatives.
The physics of the boundary layer is introduced in the model, which limits the stiffness of the
system. Such models are known to be troublesome with some more complex turbulence models
such as the k − ε model but are used with others such as the one we use here. Turbulence wall
modelling may be nonconventional in aerodynamic simulations but it is a commonly used feature
of our solver, so it is interesting to see how our new method behaves on such test cases. The
spatial discretisation method is a second-order Finite Volume method, using the HLLC Riemann
solver and Multislope method [19] with a Van–Leer slope limiter. Local time-stepping is used to
speed up the convergence.

Analysis of the results

We are now going to compare the results from the two different simulations. It is first worth
noting that before trying the JFNK method, the computation needs to start using the traditional
method. As explained before, the matrix-free approximation is not ideal to handle discontinuities
such as shocks, and a shock is indeed present in this computation. Only some iterations are
needed, just to start the development of the boundary layer and approximately place the shock.
After that, the computation can be continued, with the traditional method on one side and with
the new method on the other.

The global flow is shown in figure 3.2 through the pressure field near the airfoil. The shock
is clearly seen on the upper part. The two computations give similar results: they are indistin-
guishable by just looking at the pressure field. This is to be expected as the traditional method
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Figure 3.2: Pressure around the RAE 2822 airfoil and sonic Ma = 1 contour.

Figure 3.3: Pressure coefficient around the airfoil for the traditional method (blue) and the JFNK
method (orange).
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Figure 3.4: Aerodynamic coefficients (lift and drag) for the profile throughout the computation.

Figure 3.5: Residual 1-norms for the two momentum components, turbulent viscosity and energy
throughout the computation for the turbulent transonic airfoil case. Values are normalised by
the initial residual.
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gives already satisfying results on such applications. The pressure coefficient around the airfoil
is given in figure 3.3. Once again, the two curves are indistinguishable. Finally, the aerody-
namic coefficients, the drag and lift coefficients, are given throughout the simulation in figure
3.4. This time, the JFNK method gives an improvement: the coefficients are much more stable,
which means the convergence is better. The blue curve corresponding to the traditional method
struggles to converge and seems to oscillate periodically. In comparison, the oscillation of the
orange curve is dampened: this corresponds to convergence. The scale of the oscillation seen
in figure 3.4 is not significant physically speaking, as it is negligible. It shows an issue with
the traditional implicit method of the solver CEDRE: it fails to reach proper convergence but
it oscillates around the solution. The new JFNK method however achieves proper convergence.
Even if the figure shows an advantage of the new method, the result is almost meaningless as
the oscillation of the blue curve is numerically insignificant. Looking at other data is necessary
to properly conclude on the convergence of the two methods.

The residual is the best way to measure if a method can help the convergence of the solver. To
define the residuals, let us use the partial differential equation (1.1). The residual is in fact the
value of the function F from this equation. The name is quite adequate: for steady problems, the
residual is what is left and still needs to be removed to find a steady solution. To decide on the
convergence of a steady simulation, this residual norm is measured throughout the computational
domain D. More precisely, this residual is analysed component by component. For example, the
residual 1-norm associated with the ith component is:

‖Fi‖1 =
∫
D
|Fi|dv (3.1)

and the ∞-norm is:

‖Fi‖∞ = max
D
|Fi| . (3.2)

In this fluid dynamics application, the residual norm is associated with the conservative variables:
the density, the momentum components, the energy and the turbulent eddy viscosity νt. With
the Spalart–Allmaras compressible model, the conservative variable is in fact the product of the
density and the Spalart–Allmaras variable ρν̃.

Figure 3.5 shows the residual norms from both computations. The gain from using the JFNK
method appears clearly. The final residual norm is much smaller for each and every conservative
component. This means that the Jacobian-Free Newton–Krylov method is able to reach a better
convergence level than the traditional method. In other words, the better Jacobian matrix
approximation leads to a better convergence than the older poor approximation.

In this first test case, we looked at the residual norms as the fields computed by both methods
were almost identical. Moreover, our method was even able to reach better convergence levels.
This validates our method on a first simple case, albeit with turbulence modelling and a shock.
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Figure 3.6: Finer mesh for the RAE 2822 test case. Close up on the leading and trailing edges.

3.1.2 Turbulent transonic airfoil with boundary layer resolution
Definition of the test case

The previous case uses a mesh that is too coarse to resolve the boundary layer but instead uses a
turbulent wall model. It is representative of CEDRE applications, but not of actual applications
from the aerodynamic community. The RAE 2822 airfoil is often used for turbulence model
validations, but computations in the field prefer to use a finer mesh to resolve the boundary
layer. This is what we present next. The new mesh, shown in figure 3.6 is clearly different. It is
a three-dimensional mesh, which is in fact a two-dimensional mesh that was extruded on 6 cells
in the y direction. Periodicity is set between the two parallel sides of the domain. The mesh is
made of 198 144 cells whereas the previous RAE 2822 mesh was only made of 36 541 cells. With
these additional cells, this mesh is able to be fine on the wall boundary condition as seen in
figure 3.6. This means that the use of the turbulent wall model is no longer necessary, unlike in
the previous test case. Turbulence closure is still provided by the Spalart–Allmaras one equation
turbulence model. The scale of the mesh is the same: the chord is still equal to 1m.

The flight conditions are also modified to match some existing experimental conditions: the
AGARD-AR-138 experimental database. The Mach number is then 0.734 and the angle of attack
is 2.54°, with a Reynolds number of 6.5× 106. This corresponds to Case 9 from the experimental
conditions. The parameters are not exactly the same as they are corrected to account for the
effects of the wind tunnel [77].

Analysis of the results

As before, the computation starts from an initial state constant in the domain. Then the
computation is continued for a few more iterations with the traditional implicit Euler method.
This is to reach a state close enough to the steady solution more quickly before analysing the
convergence of our methods. After that, the computations are restarted, with the traditional
method on one side and the matrix-free method on the other. The residuals are given in figures
3.7 and 3.8. Overall, it takes much more iterations to decrease residual norms for this test case
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Figure 3.7: Residual 1-norms for the horizontal and vertical momentum components, turbu-
lent viscosity and energy throughout the computation for the turbulent transonic airfoil with
boundary layer resolution case. Values are normalised by the initial residual.

compared to the previous one. It is due to the larger number of cells, and the presence of small
flattened cells in the boundary layer.

Figure 3.7 shows that the reduction in residual 1-norms with the standard method is not
satisfying. Users usually expect the solver to reduce the order of magnitude of the residuals by
4 or 5, which is more than what our solver does. In contrast, the matrix-free method reduces
residual norms much more efficiently and converges to a more precise solution. The quality of
the solution computed by the matrix-free method is then better.

The ∞-norm of the residual is given in figure 3.8 for the same simulations. This time, the
traditional method is not able at all to reduce residual norms. It means there are some cells in
the computational domain for which the method is not able to reduce the local residual. The
JFNK method in orange does not have this issue and converges to a better solution. The width
of the curve is only due to data noise, as all lines use the same width.

The value of the turbulent variable ν̃ in the first cell above the wing profile is provided for
both computations in figure 3.9. The top views show the upper part of the airfoil, and the
discontinuity due to the shock is visible, as expected. The bottom views show the lower part
of the airfoil. The views on the right correspond to the JFNK computation, whereas the ones
on the left to the computation with the traditional method. This traditional method using an
approximated Jacobian matrix produces a solution of lower quality, as the pattern is not physical.
In particular, there are cells for which ν̃ is null in the computational domain, which should not
happen with the standard Spalart–Allmaras model. Figure 3.8 shows that the ∞-norm of the
residual on the conservative variable ρν̃ normalised by the initial residual is near 100, so figure 3.9
highlights cells for which the residual is higher than 10−0.1. Those cells correspond to the ones
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Figure 3.8: Residual ∞-norms for the horizontal and vertical momentum components, turbu-
lent viscosity and energy throughout the computation for the turbulent transonic airfoil with
boundary layer resolution case. Values are normalised by the initial residual.

for which ν̃ = 0. It shows a flaw in the standard time integration method, as it has non-physical
features in the solution that prevent residual convergence. In contrast, it shows the quality of
the JFNK method on this application.

3.1.3 Hypersonic reactive sphere

The second application we selected to compare the Jacobian-Free Newton–Krylov with the
traditional one is the computation of the flow around a hypersonic solid sphere. Because of the
high energy of the surrounding flow, the air molecules can separate and even form a plasma.
The hypersonic reactive sphere is a well-known case, for both experimental [78] and numerical
studies [79]. This is a simple yet representative test case of CEDRE applications. It then makes
a lot of sense to analyse our new method on it.

Definition of the test case

The two-dimensional mesh is shown in figure 3.10. It is a regular mesh made of quadrangles,
with refinement in the radial direction at the wall boundary and the expected shock location.
The refinement at the wall boundary helps to compute more precisely the physical phenomena
that happen at said boundary. The refinement at the shock is a requirement of the spatial
discretisation methods. In order to get a clean and slim shock, the cells near the shock must
have a high aspect ratio. The mesh takes this into account and is made according to CEDRE
best practices. This expected shock location is obtained from a previous computation, made
with a coarser mesh. This mesh is used in a two-dimensional axisymmetric computation to get
the flow around a three-dimensional solid sphere.
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Figure 3.9: Spalart–Allmaras variable ν̃ on the RAE 2822 wing profile for the traditional method
(left) and the JFNK method (right). The top views show the profile from above, and the bottom
views from below. The highlighted region in green corresponds to cells where the absolute value
of the residual on ρν̃ is higher than 10−0.1.

The solid sphere is modelled by an isothermal wall boundary condition. This is a representative
choice as well, as the heat flux going through the wall is one of the main interests of such
computation. Moreover, as it depends on the derivatives of the flow variables, it is usually
harder to get a correct value for the heat transfer. A better convergence will lead to better
derivatives, which will lead to better physical results for such case users. No turbulence model
is used, as the flow is mostly laminar.

The main feature of this test case is that it simulates a hypersonic flow. At the left, the input
boundary condition feeds air at Mach 15. This will induce a strong shock, meaning a strong
discontinuity in the flow. It is indeed seen in figure 3.10 on the pressure and temperature. As
this is a typical application of our solver, it is of importance to us that the new method behaves
well with such flow features. When going through a strong shock, the temperature of the flow
will increase a lot. The flow is made of air, or a mixture of 77% N2 and 23% O2. At the high
temperature they reach after the shock, the molecules can decompose into N, O, and NO. They
can even get ionised. The choosen model uses 11 possible species: N2, O2, N, O and NO, the
corresponding cations N2

+, O2
+, N+, O+ and NO+ and the electrons e– .

We argued previously that our solver is quite complex and that it makes it hard to do correct
computations for non-experimented users. This hypersonic reactive sphere is a perfect example
of this statement. Even if this case looks simplistic, it should not be taken lightly. When using
unfit spatial discretisation methods, we ended up with a well-known problem of a such simulation
called carbuncle [80]. This phenomenon does not come from physics but is solely due to numerical
methods. It is shown in figure 3.11 from some earlier computations that were using a different
mesh. Simply put, it creates a recirculation bubble downstream of the shock, near the stagnation
point. This bubble tends to push the shock farther from the sphere, and modify greatly the heat
flux at this location. The choice of the Riemann solver ended up being the key element to
getting rid of this undesirable effect: there is no recirculation with the AUSM+ scheme. There
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Figure 3.10: Mesh along with final pressure, temperature, and NO and e mass fractions for the
hypersonic reactive sphere test case.
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Figure 3.11: Streamlines near the stagnation point for two Riemann solvers.

are other pitfalls regarding this test case in CEDRE. For example, the user can choose whether
to interpolate the mass fraction yi for the species at the cell interfaces for the MUSCL scheme
or the mass concentration ρyi. Choosing the default option leads to nonconverging residuals no
matter the time integration method. Indeed, this default option is recommended when running
simulations with multiple phases, with significant variations in the density. Because CEDRE
is made to solve a large variety of problems, it has a lot of methods that come with a lot of
parameters, so even a simple simulation such as this one requires a lot of knowledge if a good
convergence is required.

This test case is a typical application of CEDRE, as opposed to the previous one which focuses
more on the aerodynamic properties. Indeed CEDRE does not try to be a pure aerodynamic
solver but a multiphysics one, equipped to solve high-energy problems. Reentry phenomena
are therefore in the scope of our solver. Any improvements coming from our method on such
applications would benefit a lot of CEDRE users on their applications.

Analysis of the results

Once again, a first computation is done using the more robust traditional method. Indeed,
the flow in the first cell against the sphere and the symmetry axis is initialised with a Mach
number of 15 going straight into the wall. The matrix-free approximation struggles with such
stiff initialisations, which is why the computation must start with another method, just until
the shock has started to detach from the wall. Practically this amount to just a few iterations,
compared to the number required to achieve convergence.

We first look at the different fields from the two computations. Once again they are similar
and the residual norms are used to compare them, and this shows the simulation accounts for the
features of interest. In figure 3.10, we see that the shock is present and that it falls as expected in
the refined region. We see in the same figure the mass fraction of the various species downstream
of the shock, which means the simulation is actively computing the chemical features of the flow,
as expected.
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To analyse the result from this case, one might once again look at the residuals. The first
result corresponds to a computation without a reactive model. This simplification makes sense
as the case to better understand the behaviour of the methods on an easier problem in terms of
numerical complexity. It also means a different mesh is used, as not accounting for ionisation
means the shock location is slightly different, but the two meshes are built the same way. The
residual 1-norms are shown in figure 3.12. It shows that the new method gives a better conver-
gence. The difference between the traditional method and the new one is that the traditional
method uses the Jacobian matrix of the first-order spatial discretisation method, whereas the
new one approximates the true Jacobian matrix using the approximation (1.53). This can in-
deed be verified. Because this simulation does not use complex models, the poor approximation
used in the traditional model should use the Jacobian matrix of the first-order scheme. If the
approximation (1.53) uses the first-order evaluation of f , then it should approximate this same
Jacobian matrix. The evolutions of the residual norms from this method match the ones from the
traditional method in figure 3.12. It first validates the development of the matrix-free approxi-
mation, and that the unbridle method should then use the actual second-order Jacobian matrix.
It also confirms that the traditional method uses the Jacobian matrix of the first-order spatial
discretisation method. Finally, it validates the choice of ε and the matrix-free approximation, as
it is able to give the same result as when we use the Jacobian matrix.

With the new method, using the true function f with a second-order lead to much smaller
residual norms. The only difference between this method and the previously existing one is that
the latter uses the Jacobian matrix of the first-order spatial discretisation method, but the JFNK
method takes into account the MUSCL reconstruction when using the Jacobian matrix. Because
it uses a better Jacobian matrix in the linear problem, it gives a better solution to the nonlinear
solver, which gives in turn a better time integration. It confirms that using a better Jacobian
matrix helps the overall convergence when solving steady problems and validates the choice of
the Jacobian-Free Newton–Krylov method.

When adding the reactive model, the conclusion is not in favour of the JFNK method anymore.
The evolution of the residual norms is shown in figure 3.13. This time, the JFNK method does not
longer find smaller residuals than the traditional method. In fact, when comparing figures 3.12
and 3.13, it appears that the traditional method converges better, enough so that it converges
better than the JFNK method. This appears to happen because the mesh quality is better in
this computation, compared to the mesh used without a reactive model. However, understanding
the mesh quality is hard even on this simple test case for the reconstruction methods used in
CEDRE. This is under current investigation by the responsible team. Still, the difference in the
convergence of both methods is relatively small. A possible interpretation of this result is that
when the mesh is not ideal for the spatial discretisation methods, using the JFNK method leads
to a better convergence as it uses more precise Jacobian matrices for the linear system. When
the mesh quality is better, the JFNK method is slightly less converged. Overall, it is still an
improvement in the convergence on such test cases.

In a previous part, we suggested that the poor quality of the Jacobian matrix used in our solver
was an obstacle to achieving good convergence. We then proposed an improvement: the Jacobian-
Free Newton–Krylov method using the matrix-free approximation (1.53). We compared this new
method with the traditional one on simple yet representative applications of our solver. This
comparison showed that indeed, using a better Jacobian matrix leads to a lower residual norm.
The new method can be useful when looking at quantities that require precise convergence, for
instance, the derivatives of the flow variables. However, the main drawback of this new method
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Figure 3.12: Residual 1-norms for the horizontal and vertical momentum components, N2 volumic
mass and energy throughout the computation for the hypersonic non-reactive sphere case. Values
are normalised by the initial residual.

Figure 3.13: Residual 1-norms for the horizontal and vertical momentum components, N2 volumic
mass and energy throughout the computation for the hypersonic reactive sphere case. Values
are normalised by the initial residual.
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is its computational cost. This cost is not inherent to the method but comes from our solver
properties as was discussed previously. The recommended usage is then to start a computation
using the inexpensive traditional method, and then achieve better convergence using the more
precise yet more expensive new method.

3.2 Using the matrix-free formulation with a new fluid
model

In the previous section, the new Jacobian-Free Newton–Krylov method was compared to the
traditional method that uses the first-order Jacobian matrix. This first-order matrix is easily
computed for the usual Navier–Stokes equations. But as CEDRE is under constant development,
new models are added in order to handle more finely various multiphysics phenomena. For
example, a new model was recently added to better handle multiphasic flows [81]. Another
model that we will investigate in the following was added to better account for thermodynamic
disequilibriums. Adding a new model amount to writing the function F from equation (1.1), or
equivalently G from equation (1.5). Usually, the development of this function is straightforward
as it is given explicitly from the equations. However, the development of the Jacobian matrix is
much more difficult. This is why the new models can not yet compute Jacobian matrices, and
therefore can not use implicit methods as of today. The Jacobian-Free Newton–Krylov method
is then a nice way to use implicit methods as it does not require the Jacobian matrix. Because
the matrix-free approximation is written in a generic fashion, it can be used on any fluid model.
In the following, we will use the JFNK method on a new fluid model that does not have an
available Jacobian matrix and therefore can not use traditional implicit methods.

3.2.1 Multi-TEmperature model

The new model we will use is called the Multi-TEmperature model, or MTE. Its difference
from the traditional Navier–Stokes model is that it allows for a thermodynamic non-equilibrium
of some flow components. A particle has multiple degrees of freedom: translation, rotation and
vibration. In more traditional models, it is assumed that all modes are at equilibrium, and
they are grouped in what we call energy. One can define a time constant for each energy mode
that corresponds to the number of collisions that are required to get to the equilibrium. A few
collisions are required for translation modes, and about ten for rotation modes. This gives a
small time constant of order 10−9s. For vibration modes, however, up to 20 000 collisions are
required. The corresponding time constant is significantly larger, and there may be regions
where there can be a disequilibrium between vibrational energy on one side and translation and
rotation energy on the other. The energy of such components can no longer be described with a
single temperature. As electrons are much lighter, they move more than the other heavier flow
components. Their transitional energy and the transitional energy of other components can not
be described with the same temperature. With the new Multi-TEmperature model, the flow
components may be divided into three classes:

• the ones that always are at the equilibrium

• the ones that may be at vibrational disequilibrium

• the electrons that are handled separately from the other heavy component.



64 CHAPTER 3. ANALYSIS OF THE JFNK METHOD IN CEDRE

To account for the disequilibrium, the Navier–Stokes equations (1.3) are modified into the
following:
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ρDs∇ys

)
+ ω̇s

∂t (ρu) +∇ ·
(
ρu⊗ u+ (p+ pe) Id

)
= ∇ ·

(
µ
(
∇u+∇uT

)
− 2

3µ (∇ · u) Id
)

∂t (ρmev,m) +∇ · (ρmev,mu) = ∇ ·
(
λv,m∇Tv,m + ρev,mDm∇ym

)
+ Sv−tm + Sv−vm + Sv−em + ω̇mev,m

∂t (ρeee) +∇ · ((ρeee + pe)u) = ∇ ·
(
λe∇Te + ρheDe∇ye

)
+ u · ∇pe

+ Se−t + Se−r + Se−v + ω̇eee

∂t (ρE) +∇ · ((ρE + p+ pe)u) = ∇ ·
(
λeq∇T +

∑
m

λm∇Tm + λe∇Te

+ µ
(
∇u+∇uT

)
u− 2

3µ (∇ · u)u

+ ρ
∑
s

hsDs∇ys

)

(3.3)

The first noticeable feature is that the equations of this physical model are more complex com-
pared to the standard Navier–Stokes equations. Furthermore, there are multiple energies corre-
sponding to the multiple temperatures: ee the energy of the electronic gas, ev,m the vibrational
energy for each flow component that may be at disequilibrium, and E the total energy. It in-
creases the number of conservative variables. The variables y correspond to the mass fraction of
the different flow components. The source terms ω correspond to chemical production or decay.
The source terms S correspond to the energy transfers between the different energy modes. The
details of those terms can be complex and are not discussed here as it is not the subject of this
thesis, but can be found in [82]. A noticeable feature of this model is the presence of a noncon-
servative term in the conservation equation of the electrons’ energy: u ·∇pe. This term is due to
the effect of the electric field. This is a known issue of this model, as the Finite Volume method
handles better conservative terms. There are two ways of handling this issue. The first one uses
electronic entropy instead of energy as a conservative variable [83]. To do so, it makes some
simplifications concerning electronic dissipation terms. However, this simplification can lead to
inaccuracy in the physical result, and it appears that using the nonconservative formulation is
necessary to get physically accurate results [82, 84]. The other approach is the one used in our
model, which handles the nonconservative term from equation (3.3). Not to go into too much
detail, such models that account for thermodynamic disequilibrium are still under discussion as
of today [85].

The Multi-TEmperature model allows for non-equilibrium between the vibrational mode of the
flow components, the electronic energy and the total energy. Taking this non-equilibrium into
account helps to compute more precisely physical quantities such as the electronic density, which
can be useful for magnetohydrodynamics applications for example. It gives a better prediction
of shock layer radiation with a better representation of the population of energy states which
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helps the simulation of radiation cooling or the computation of wall heat fluxes. This model is
most interesting on reentry problems, as there is indeed some non-equilibrium downstream of the
strong shocks that appear on such problems. Taking the non-equilibrium into account can change
the flow downstream of the shock and on the solid wall, and give more precise temperatures and
chemical compositions. Generally speaking, the Multi-TEmperature model gives more precise
results than the standard Navier–Stokes model on fast flow with low relative density where there
may be some thermodynamic non-equilibrium, such as reentry problems or problems with the
strong expansion of a plume.

3.2.2 Hypersonic reactive sphere

The hypersonic sphere test case is a perfect fit for the Multi-TEmperature model. There
is some thermodynamic non-equilibrium in the region downstream of the shock, because of its
intensity. Unfortunately, the Jacobian matrix for the new MTE model is not currently available.
This limits the MTE model users to explicit time integration methods, and therefore small time
steps for stability reasons. As they deemed explicit time integration too slow, they wanted to
use the newly implemented Jacobian-Free Newton–Krylov method for their simulations. We will
show in the following another interest of the matrix-free approximation: it allows for implicit
time integration methods despite having no Jacobian matrix. The goal here is to be able to
get a steady solution to the problem as fast as possible for the user. Initially, the MTE model
users were using a second-order Runge–Kutta method: the Midpoint method. We will compare
the JFNK method to this reference method, and we will look in particular at how much time is
required from the user to get to a physically satisfying result.

Full reactive model

For the first step of our analysis, we will use the most complete physical model. We use the
same 11 flow components as before: N2, O2, N, O and NO, the corresponding cations N2

+,
O2

+, N+, O+ and NO+ and the electrons e– . We of course use the Multi-TEmperature model,
and we consider that N2 and O2 may be at vibrational disequilibrium. Other components may
in fact also be at disequilibrium and we could take them into account but the computational
cost increase is not worth it. As they are less present, and they quickly get to the equilibrium
relatively to N2 and O2, accounting for their disequilibrium would not be significant in the results
[86]. This amount to having four temperatures to describe the flow: Te for the electrons, Tv,N2

and Tv,O2 for the vibration modes of N2 and O2, and T for the total energy.

As before, the Jacobian-Free Newton–Krylov method needs some help at the beginning. This
is why the computation starts with some iterations of the Midpoint method and uses the first-
order Finite Volume method. Then, it continues with the JFNK method, still using the first-order
Finite Volume method, to quickly get a good enough approximation of the expected solution.
Finally, to get a finer result, the simulation switches the second-order spatial discretisation
method. Local time-stepping based on the CFL number is used with the implicit simulation using
the JFNK method. The GMRES method can not use preconditioners that require the matrix,
so the only one available is the diagonal preconditioner based on the cell volumes. It is not ideal
as it is extremely simple, and some physics-based preconditioner would be preferable [68] but
none were available to us at the time. The spatial discretisation method used is the Multislope
method, as it appears more robust than the k-exact method with the Multi-TEmperature model.
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Figure 3.14: Temperature on the symmetry axis for the Multi-TEmperature model.

The goal of this thesis is not the physical analysis of this test case so it will be left out, but
according to the MTE model users, the results are in agreement with the literature. Figure
3.14 the various temperatures along the symmetry axis. This justifies the use of the Multi-
Temperature model: the region downstream of the shock is indeed in a thermodynamic non-
equilibrium state.

We will also look at the residuals for this analysis. But this time, using the number of iterations
as the x-axis would be unfair to the explicit method. Indeed the cost of one iteration is a lot
smaller for the explicit method than for the implicit JFNK one. What matters to us and a
typical user is not the number of iterations but the time spent waiting for the result. It is called
the elapsed real time or wall-clock time. As the computations run each time in the same parallel
environment, with a fixed number of CPU cores, the elapsed time is proportional to the CPU
time. The x-axis will then be the elapsed real time: the actual time it took to get to the current
residual.

Figure 3.15 shows the residual norms for the two computations. The leftmost black curve
corresponds to the initialisation: a few iterations of the explicit time integration method. From
then the computation can continue with the Midpoint method on one side and the Jacobian-Free
Newton–Krylov method on the other. We see that the residual norm obtained with the JFNK
method is lower than its explicit counterpart. Indeed, the explicit method is limited to small
time steps because of the shock and the stiff reactive model. The implicit method however is not.
The fact that the implicit method can use larger time steps is not new, but with this specific
model, it was impossible to use implicit methods until the matrix-free approximation was added.
The JFNK method even ends up being cheaper in terms of CPU time. This means that for a
user, it is faster to use the newly implemented Jacobian-Free Newton–Krylov method than to
use explicit methods. Our method gives a better alternative to users working on problems with
the Multi-TEmperature model.
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Figure 3.15: Residual 1-norms for the electron mass fraction, vertical momentum, N2 vibrational
energy and total energy throughout the computation for the hypersonic reactive sphere case
using the Multi-TEmperature model. Values are normalised by the initial residual.

Simplified reactive model

The equations concerning electrons in the Multi-TEmperature model bring a lot of issues. It
is because the quantity of free electrons is usually relatively small when compared to other flow
components. It can lead to numerical instabilities or cause other problems. As the equations
hold everywhere in the numerical domain, they hold in particular in areas without free electrons,
upstream of the shock in our hypersonic sphere for example. The question one must ask is then
how to compute quantities such as the electronic temperature Te where there are no free electrons.
We will not go into such implementation details as it goes beyond the scope of this work, but the
point is that having electrons is quite troublesome for numerical methods. According to users
that work on such reentry applications, it is not always useful to compute fluid ionisation. We
explained why it might be crucial for some simulations, but the impact of ionisation on other
quantities is almost negligible when the interest is not on the electrons. Sometimes, disregarding
degrees of freedom corresponding to the electrons leads to simpler yet meaningful computations.
The corresponding computation is drastically simplified as the contribution of the electrons
is difficult to handle. The result however still gives interesting information, when one is not
interested in the effects of ionisation. It is done by considering only the chemical components
N2, O2, N, O and NO.

We decided to do the same comparison as before but this time with the simplified reactive
model. The computation starts once again with a few iterations of the Midpoint method. Then,
we compare the explicit method with the Jacobian-Free Newton–Krylov method. We show the
corresponding residual norms in figure 3.16, while still using the elapsed real time as the x-
axis. The result is similar to the previous one, except it is even more in favour of the JFNK
method. The implicit method reaches much lower residual norms than the explicit one. With
the full reactive model, the limiting factor for the implicit method came from the stiffness due
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Figure 3.16: Residual 1-norms for the electron mass fraction, vertical momentum, N2 vibrational
energy and total energy throughout the computation for the hypersonic reactive sphere case
using the Multi-TEmperature model without ionisation. Values are normalised by the initial
residual.

to the electrons. Here, the term stiffness corresponds to both stiffness from the equation and
difficulties arising from the implementation, that uses tools such as min/max functions that add
non-differentiability. Without them, the convergence is significantly faster. However, the time
step for the explicit method is under the same limitations with both reactive models. The gain
in CPU time is then huge, in favour of the JFNK method.

Conclusion
This chapter compared the performances of the Jacobian-Free Newton–Krylov method with

already existing methods of CEDRE on typical applications. When compared to the traditional
implicit method on turbulent RANS computations, it showed that the JFNK achieves better con-
vergence in the residual norms, when the convergence of the traditional method is unsatisfactory.
The conclusion is similar when working with typical reentry applications. When the traditional
method can converge well, however, the result is no longer in favour of the JFNK method, al-
though the difference between the two methods is not significant. Finally, the matrix-free method
was used with a newly implemented fluid model that does not give access to a Jacobian matrix
yet. For this reason, using the JFNK method is the only way of using an implicit method. It was
compared to the explicit Midpoint method that is currently used for computations with this fluid
model. The results are once again in favour of the JFNK method, both in terms of convergence
and speed. The superiority of the matrix-free method depends on the model’s complexity level:
the required time to reach the same convergence in residual norms is divided by 2 with the full
model, and by 4 without ionisation.
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Unsteady time integration using
large time steps
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Chapter 4

Introduction to exponential
integration methods

Résumé du chapitre : Introduction aux méthodes d’intégration exponentielles

Le but de ce chapitre est de d’introduire un nouveau type de méthodes d’intégration
temporelle.
Les méthodes classiquement utilisées dans la résolution des problèmes stationnaires sont

souvent réutilisées après être adaptées dans la résolution de problèmes instationnaires inté-
grés avec de grands pas de temps pour s’affranchir des critères de stabilité de l’intégration
explicite. Nous présentons dans ce chapitre le principe des méthodes d’intégration expo-
nentielles, qui sortent de la dichotomie explicite/implicite. Nous décrivons ensuite plus
en détail la famille des méthodes Rosenbrock exponentielles, qui seront utilisées par la
suite. Nous réalisons également une brève analyse théorique de ces méthodes.
Comme leur nom l’indique, ces méthodes reposent sur l’exponentielle. Leur difficulté

vient du fait qu’elles nécessitent de calculer des exponentielles de matrices, de très grande
taille dans nos applications. Nous détaillons donc comment ce calcul est réalisé en utilisant
des sous-espaces de Krylov.
Finalement, nous essayons une méthode exponentielle développée dans CEDRE sur un

cas analytique simple. Nous montrons alors la pertinence de cette nouvelle méthode au
vu de ses performances sur ce cas.

In this thesis, we were interested in finding solutions to steady problems. As we explained
in the previous part, we use implicit time integration methods to efficiently get solutions to
such problems. This is a pretty standard choice: most computational fluid dynamics solvers use
implicit time integration methods to solve steady problems. The reason is that they can use
larger time steps than their explicit counterparts. Because of this advantage, they are also often
used when solving unsteady problems but with large time steps. Indeed, solving an unsteady
problem with large time steps is similar to solving a steady problem. Most of what is done
towards solving the steady problem can therefore be reused for unsteady problems with large
time steps.

73
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Even if implicit time integration methods are quite standard when solving problems with large
time steps, there are other less conventional methods we could choose from. We could step out
from the explicit implicit dichotomy, and decide to use IMplicit-EXplicit, or IMEX, methods.
They split the function from the ordinary differential equation (1.5) into two parts: the stiff part
that is integrated by an implicit method, because of its stiffness, and the other part that can just
be integrated with an explicit method. The Additive Semi-Implicit Runge–Kutta methods, or
ASIRK methods, are such methods [87]. They are already in use in computational fluid dynamics
problems, such as fluid-structure interaction problems [88]. Previous work already implemented
ASIRK methods in our solver CEDRE for specific multiphysics applications. Some methods are
even less common and correspond to a total paradigm shift: the parallel time integration methods
[89, 90]. Just as we classically split the computational domain over processes and compute the
spatial discretisation method in parallel, parallel time integration methods decompose the time
integration interval into subintervals. They then solve the ordinary differential equation on each
interval concurrently then ensure the continuity between the subintervals. They then iterate with
Newton’s method to find the solution over the whole time integration interval. As a result, they
can approximate accurately the solution at a later time without knowing accurately the solution
at a previous time. Despite being nontraditional, they were successfully used to solve fluid-
structure interaction problems or Navier–Stokes problems [91]. They were even more recently
used to solve simple turbulent flow problems [92]. They can even be used in a more convoluted
way, with for instance exponential methods [93]. Just as parallel time integration is inspired
by parallel spatial discretisation, some other time integration methods are inspired by spectral
discretisation methods. Time spectral methods, that were originally used for fluid dynamic
time-periodic problems [94, 95], are now used on non-periodic problems [96]. But as both time
parallel integration methods and time spectral methods are considered highly unconventional
they require a major refactoring of the solver, which should be avoided for large-scale industrial
solvers. In this part, however, we prefer to focus on another class of time integration methods.

4.1 Exponential integration methods
Let us focus on methods known as exponential methods. Despite being known for a long time

[97], they were not widely used in computational fluid dynamics, because of some difficulties that
are explained later, but still interested some scientists [98]. They started to come back in the
literature [99, 100] and are now being used on applications similar to ours [101, 102]. They are
still actively studied [103, 104].

The ordinary differential equation
dy
dt = f (y) (4.1)

is the same as the ordinary differential equation (1.5) from the previous part but with different
notations. The main idea of exponential integration methods is to start from the ordinary
differential equation (4.1) and split the function f into a linear part and a nonlinear part:

dy
dt = Ly +N (y) . (4.2)

This decomposition is sometimes natural for some particular equations, but in the more general
case it is always possible: it consists in choosing a linear part L and then setting the nonlinear
part N (y) = f(y) − Ly. There are then an infinite number of decompositions, but we will see
later that some are more interesting.
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To define the time integration step, we start from the current estimate of the solution yn that
we assume to be exact: yn = y (tn). We note ∆t = tn+1− tn as we work here with a fixed n. We
can integrate equation (4.1) using the variation of constants formula to get:

y (tn+1) = e∆tLyn +
∫ tn+1

tn

e(tn+1−t)LN (y (t)) dt. (4.3)

The exponential integration methods then approximate the integral to compute the next value
yn+1. What defines the method is how it approximates this integral. For instances, methods
that use the Taylor expansion of the nonlinear term are called exponential Taylor methods [105].
Here we focus on methods that use Runge-Kutta like quadratures. As we can see in equation
(4.3), the linear part is treated exactly and the nonlinear one is approximated. If there is no
nonlinear part, with N = 0, then the solution yn+1 is exact. If there is no linear part, with
L = 0, then equation (4.3) transforms into

y (tn+1) = yn +
∫ tn+1

tn

N (y (t)) dt (4.4)

and the exponential integration method behaves like a standard time integration method. This
is the advantage of exponential integration methods: at best they are exact methods, and at
worst, they are equivalent to traditional methods.

Similarly to classic methods, there are explicit [102] and implicit [101] exponential integration
methods. It depends on whether it uses yn+1 or not to compute the integral from equation (4.3).

Before continuing, let us define some functions that are going to be convenient later on. Let
the functions ϕk be defined by:

ϕ0 : z 7→ ez

∀k ∈ N∗, ϕk : z 7→
∫ 1

0
e(1−θ)z θk−1

(k − 1)!dθ.
(4.5)

They could also be defined using the recurrence relation:
ϕ0 : z 7→ ez

∀k ∈ N, ϕk+1 : z 7→ ϕk (z)− ϕk (0)
z

,
(4.6)

or directly using their analytic formula:

∀k ∈ N, ϕk : z 7→
+∞∑
i=0

zi

(i+ k)! . (4.7)

This analytic formula ensures it is well-defined for squared matrices.
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4.2 Exponential Rosenbrock–Euler method

4.2.1 Definition of the exponential Rosenbrock–Euler method
The exponential Euler method is the most basic one, and it can be used to understand ex-

ponential integration methods. Just as the Euler method assumes that N (y) is constant and
equal to N (yn) in equation (4.4), its exponential counterpart makes the same assumption but
in equation (4.3). It then gives:

yn+1 = e∆tLyn + ∆tϕ1 (∆tL)N (yn) (4.8)

using the ϕ1 function defined above, and finally:

yn+1 = yn + ∆tϕ1 (∆tL) f (yn) . (4.9)

Note the difference with the corresponding standard Euler method, for which the ϕ1 function is
replaced with the identity function. If there is no linear part in the decomposition, with L = 0,
then nothing is treated differently by the exponential method, and the standard explicit Euler
method is recovered.

In this method, the linearisation L = f ′ (yn) is assumed. Because of this choice, the method
is called the exponential Rosenbrock–Euler method. We will discuss the nomenclature below.
This choice feels natural and minimises the error of the method as is shown in the following.
This choice is frequent among exponential integration methods, despite some methods using a
fixed linearisation L = f ′ (y0). The difference is that a new Jacobian matrix is required at each
iteration of the time integration method, but it is something we are used to with our traditional
implicit methods. It is worth noting that we might want to try the implicit equivalent of this
method by taking N (y) = N (yn+1) in equation (4.3). However, because we took L = f ′ (yn),
N ′ (y) = 0 and after a linearisation the two variants are equivalent.

4.2.2 Analysis of the exponential Rosenbrock–Euler method
From the definition of the method and equation (4.3), we have that the error made after one

step is:

y (tn+1)− yn+1 =
∫ tn+1

tn

e(tn+1−t)LN (y (t)) dt−∆tϕ1 (∆tL)N (yn)

=
∫ tn+1

tn

e(tn+1−t)L (N (y (t))−N (yn))
(4.10)

We take the Taylor series of the nonlinear part:

N (y) =
+∞∑
i=0

N (i) (yn)
i! (y − yn)i (4.11)

and in particular, using the fact that

y (t) = yn + y′ (tn) (t− tn) +O
(

(t− tn)2
)

= yn + f (yn) (t− tn) +O
(

(t− tn)2
) (4.12)



4.3. EXPONENTIAL RUNGE–KUTTA AND ROSENBROCK METHODS 77

the partial series of order 2 is:

N (y (t)) = N (yn) +N ′ (yn) f (yn) (t− tn) +O
(

(t− tn)2
)
. (4.13)

The error of the method is then:

y (tn+1)− yn+1 =
∫ tn+1

tn

e(tn+1−t)L
(
N ′ (yn) f (yn) (t− tn) +O

(
(t− tn)2

))
dt

= ∆t2ϕ2 (∆tL)N ′ (yn) f (yn) +O
(
∆t3

)
.

(4.14)

The decomposition chosen earlier is now justified: if L = f ′ (yn) and therefore N ′ (yn) = 0 then
y (tn+1) − yn+1 = O

(
∆t3

)
and the method is of order 2. This is a noticeable property of this

method: despite being a single-step method it has a second-order of accuracy. A more rigorous
analysis can be found in [106].

It is much harder to analyse the stability of this method, and more generally of exponential
methods. Indeed, the stability analysis is done on the Dahlquist test equation (1.14). But as
this equation is linear, exponential methods can solve them exactly no matter the time step size.
We can still write the single step equation (1.19) yn+1 = g (∆tJ) yn with g (z) = ez, and get
the corresponding stability region which is the left half complex plane. We could then conclude
that the method is A-stable. The issue with exponential methods is that the standard stability
analysis is no longer pertinent. We tried to do a better stability analysis for simple exponential
methods such as the exponential Rosenbrock–Euler method, but we did not succeed. Some work
in the literature does define some stability notions for exponential methods [107], but usually
takes a linear N . It goes against the idea that all the linear part of f is in L and N is purely
nonlinear. We did not find a stability analysis that was satisfying to us.

4.3 Exponential Runge–Kutta and Rosenbrock methods
When we introduced explicit methods, we used more convoluted approximations than the

explicit Euler methods for the integral in equation (4.4). This gave the Runge–Kutta methods.
The same can be done for the integral in equation (4.3) to get exponential Runge–Kutta methods.
The difference with a standard Runge–Kutta method is that the quadrature coefficients are now
functions of the matrix L:

yn+1 = e∆tLyn + ∆t
k∑
i=1

bi (∆tL)N (yn,i)

with yn,i = eci∆tLyn + ∆t
i−1∑
j=1

aij (∆tL)N (yn,j) .
(4.15)

The Butcher tableau that we used to represent the Runge–Kutta methods is also used to represent
the exponential Runge–Kutta methods. For instance, the Butcher tableau of the exponential
Rosenbrock–Euler method, which is a special simple case of exponential Runge–Kutta methods,
is shown in table 4.1.

Until now, we have not been exact when naming the methods we constructed here. From the
literature, exponential Runge–Kutta methods are defined just as we did above, except they use
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a fixed linearisation: L = f ′ (y0) [99]. It is because they were developed for semilinear parabolic
problems:

dy
dt +Ay = r (y) . (4.16)

They are used when the remainder r is small or at least bounded in terms of A. This is not the
case in our applications, and in many others so that is why another type of exponential method
was introduced: exponential Rosenbrock methods [108]. They can be seen as a variation of the
exponential Runge–Kutta methods where the linearisation is done at each time step. The issue
is that a new Jacobian matrix is needed at each iteration, but once again we are used to this
with implicit methods.

The nomenclature is a bit blurry to us, as the distinction between exponential Runge–Kutta
and exponential Rosenbrock methods is not the same as the one between Runge–Kutta meth-
ods and Rosenbrock methods. First of all, the exponential Rosenbrock method is not implicit
contrary to its standard counterpart. Furthermore, it would make sense to us to name an ex-
ponential integration method base on the underlying method used to approximate the integral
from equation (4.3), and exponential Rosenbrock methods do not use Rosenbrock methods to
do it. The only parallel we found was that the Rosenbrock methods do a linearisation at each
inner stage, and the exponential Rosenbrock methods do a linearisation at each step of the time
integration. It just seems that in the literature, the term Rosenbrock indicates that the lineari-
sation is computed at each step instead of once at the beginning, with no apparent link with
Rosenbrock methods.

Just as the Runge–Kutta method has order conditions for its quadrature coefficients, the expo-
nential Rosenbrock method quadrature functions must follow some rules to ensure the expected
order. To be consistent, it must have:

k∑
i=1

bi = ϕ1. (4.17)

It is reasonable to want multiple-stage methods to have a higher order than the single-stage
exponential Euler method, and therefore it must also have

i−1∑
j=1

aij = z 7→ ciϕ1 (ciz) , 1 ≤ i ≤ k (4.18)

to achieve a second order. Using these two conditions, exponential Rosenbrock methods can be
written in the form:

yn+1 = yn + ∆tϕ1 (∆tL) f (yn) + ∆t
k∑
i=2

bi (∆tL)Dn,i

with yn,i = yn + ci∆tϕ1 (ci∆tL) f (yn) + ∆t
i−1∑
j=2

aij (∆tL)Dn,j

(4.19)

using Dn,i = N (yn,i)−N (yn). This form shows that exponential Rosenbrock methods are vari-
ations of the exponential Euler method. The defects Dn,i are small in size, so less computational
effort can be spent when computing their contribution.
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0
ϕ1

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

0
3
4

3
4ϕ1

( 3
4 ·
)

ϕ1 − 32
9 ϕ3

32
9 ϕ3

Exponential
Rosenbrock–Euler ExpRB32 ExpRB42

Table 4.1: Butcher tableau for some exponential Rosenbrock integration methods

Among exponential Rosenbrock methods, we looked at the ExpRB32 method from [106] and
ExpRB42 methods from [109]. They were developed as adaptive methods, but we will use them
without the error estimate as standard methods. They are both 2-stage exponential Rosenbrock
methods and achieve respectively a third and fourth order of accuracy. This shows the quality of
exponential Rosenbrock methods. Their Butcher tableaux are in table 4.1. For both methods,
the coefficient that is the hardest to get is b1, however equation (4.19) tells us that it will not
be computed. We decided to work with those two methods, along with the Rosenbrock–Euler
method, as they are simple among exponential methods and are supposedly well suited for our
problems. They give us methods with orders of accuracy from 2 to 4. But what is interesting to
us is that on linear problems those methods are exact, or with an infinite order of accuracy. As
our problems are not purely linear, it means that the linear part will be solved exactly while the
nonlinear part will be solved with a still good order of accuracy.

4.4 Evaluating matrix functions
At first glance, exponential methods may seem too good to be true. Indeed, they give explicit

methods with few stages but high order of accuracy, and they have the formidable quality that
they solve exactly the linear part of the ordinary differential equation. In other words, the
exponential Euler method should be able to get the solution of Poisson’s equation after any time
with a single step. Indeed, Poisson’s equation gives often a linear ordinary differential equation
after the spatial discretisation, with the Finite Volume method on a regular mesh for example.
The exponential Rosenbrock–Euler method can solve this linear differential equation exactly, for
any time step, as large as it may be.

The reason why exponential methods are not that good is the reason why they were not used for
a long time after being introduced. It is because evaluating matrix exponential, or more generally
evaluating the ϕ-functions on matrices, is not trivial. Indeed, the power series definition of the
matrix exponential is not well suited for numerical evaluations. In particular, in our context,
computing the powers of the matrix is completely out of the question. The dimension of our
matrices can get large, and the powers of the matrices would lose the sparsity. In fact, any
approximation working directly with the matrix would not be satisfying. The question of how
to evaluate ϕ-functions in the context of exponential methods is a subject of active research,
as in this extremely recent reference [104]. We will however use more standard well-established
algorithms.

The other issue with exponential methods is the question of the Jacobian matrix. Exponential
Runge–Kutta reuse the same matrix throughout the computation but it is not a good idea in
our applications since the nonlinear part can change. Exponential Rosenbrock methods were
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introduced for this reason but they require the computation of a new Jacobian matrix at each
iteration.

4.4.1 Evaluating matrix functions with Krylov subspace methods
The solution for both issues is the same: Krylov subspace methods. The Cayley–Hamilton

theorem ensure that the exponential of a matrix is a polynomial of degree less or equal to N
where N is the dimension of the matrix. Instead of looking for the matrix exponential as an
infinite series, we can look for an N -order polynomial. Moreover, exponential methods do not
need to evaluate the exponential or the ϕ-functions of the matrix, but their effect when applied
to a vector. For instance, the exponential Rosenbrock–Euler method from equation (4.9) does
not need to compute ϕ1 (∆tL) but ϕ1 (∆tL) f (yn). It means we do not need to evaluate a given
function h on the matrix A, but to compute the effect of h (A) on the vector b. For exponential
methods, h is a linear combination of ϕ-functions, and is therefore analytic. The idea, originally
developed to approximate eigenvalues of a large sparse matrix, is to use a Krylov subspace method
to approximate h (A) b [110, 111]. In fact, it is similar to using a Krylov subspace method to
solve the linear system Ax = b: it means taking h = z 7→ z−1. With the Arnoldi iteration, the
Krylov subspace method produces at the m-th iteration the relation:

AVm = Vm+1H̃m = VmHm + hm+1,mvm+1e
T
m. (4.20)

The columns of Vm, v1, . . . , vm, form an orthonormal basis of the Krylov subspace:

Km (A, b) = Vect
(
b, Ab, . . . , Am−1b

)
(4.21)

with v1 = b/ ‖b‖2. The matrix H̃m is a Hessenberg matrix and Hm is the square matrix equal
to H̃m without its last line:

H̃m =


h1,1 h1,2 · · · h1,m
h2,1 h2,2 · · · h2,m
... . . . . . . ...
0 · · · hm,m−1 hm,m
0 · · · 0 hm+1,m

 , Hm =


h1,1 h1,2 · · · h1,m
h2,1 h2,2 · · · h2,m
... . . . . . . ...
0 · · · hm,m−1 hm,m

 (4.22)

The vector vm+1 is the last column vector of Vm+1, added to the column vectors of Vm to get an
orthonormal basis of Km+1 (A, b), and em is the m-th canonical vector (0, . . . , 0, 1)T . Since Hm

represent the compression of A on Km (A, b) with respect to basis Vm and b = ‖b‖2 Vme1 with
e1 = (1, 0, . . . , 0), we make the approximation [112]:

h (A) b ≈ ‖b‖2 Vmh (Hm) e1. (4.23)

With this approximation, we can evaluate the function h by applying it to a smaller matrix. We
reduced the original function evaluation to the much smaller Krylov subspace. Since the method
does not need to know the matrix but only to be able to apply it as a linear operator, we can
use the matrix-free approximation (1.53) to approximate the Jacobian matrix L = f ′ (yn). This
way, having to compute a new Jacobian matrix at each iteration of the exponential Rosenbrock
method is not an issue. Just as Krylov subspace methods for solving linear problems, this
method can be restarted to limit the size of the Krylov subspace and therefore control the memory
consumption of the algorithm. It is even possible to define an error estimate in the approximation
to dynamically control the number of iterations needed to reach a given tolerance, albeit it is
more convoluted than the residual used for solving linear systems with Krylov subspace methods
[112].
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Note: Since the matrix used to evaluate the quadrature functions of the exponential Rosen-
brock methods is always the same, L, only one Arnoldi iteration is required for one step of the
method. This could lead to a great cost reduction, however, we did not try it in our develop-
ments. Indeed, our work on exponential integration methods was more to demonstrate their
feasibility in our applications, but it would be interesting to use this idea for future performance
enhancements.

4.4.2 Evaluating matrix exponentials

With the Krylov subspace method just described, the next step is the computation of the
exponential of the smaller Hessenberg matrix Hm. Attention is now paid to how to compute
the exponential of relatively small dense matrices. Many methods use special properties of the
matrices but our matrices do not share the same properties. Instead of using a truncated Taylor
series, using the Padé approximant seems to be the best option [113]. The exponential function
is approximated by the [k/m] Padé approximant:

ez ≈ rk,m (z) = pk,m (z)
qk,m (z) with


pk,m =

k∑
i=0

(k +m− i)!k!
(k +m)! (k − i)!

zi

i!

qk,m =
m∑
i=0

(k +m− i)!m!
(k +m)! (m− i)!

(−z)i

i! .

(4.24)

It is best to use diagonal approximants, with k = m, as they are more accurate [113].

The final method used to compute the exponential of a dense matrix is the Scaling and Squaring
method [114]. It computes an optimal parameter s and takes:

ez ≈ rm,m (z/2s)2s

. (4.25)

The goal is to choose s such as the error on the computation of the exponential is bounded, with
minimal cost. It then decides on an optimal order m for the Padé approximant. The matrix is
scaled by 2s, the Padé approximant is used to compute the exponential, and the result is then
squared back to the original scale. It is what gives its name to the method.
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4.4.3 Evaluating the ϕ-functions
The exponential time integration methods do not only use matrix exponential, the ϕ0 function,

but may use any ϕk function. There is a nice relation that helps compute those functions. We
first define the augmented squared Hessenberg matrix:

H̄m+p =



Hm c 0 · · · 0

0 1 . . . ...

0 . . . 0
. . . 1

0 0


(4.26)

with a vector c of dimension m. Then, the following relation holds [111]:

exp
(
τH̄m+p

)
=



exp (τHm) τϕ1 (τHm) c τ2ϕ2 (τHm) c · · · τpϕp (τHm) c

1 τ
1!

. . . τp−1

(p−1)!

1 . . . ...
. . . τ

1!

0 1


. (4.27)

The additional cost of using this augmented matrix is negligible in comparison with the cost of
the rest of the methods. Furthermore, the methods we introduced before only need to augment
with p ≤ 3. By adjusting the scalar coefficient τ and reading the result in the appropriate column,
we can finally compute the quadrature coefficients of our exponential Rosenbrock methods.

We explained how to compute one step of an exponential integration method. From what we
have seen, the computational cost of one step of an exponential method is roughly the same as
the cost of one step of an equivalent implicit method. For example, the computational cost of
the exponential Rosenbrock–Euler method is the cost of one Jacobian matrix computation, one
Arnoldi decomposition and then one function evaluation on the Hessenberg matrix. The implicit
Euler method, which is also a one-stage method, also computes a Jacobian matrix and does an
Arnoldi decomposition. It then inverts the Hessenberg matrix with a QR decomposition which
is equivalent to applying a function to the Hessenberg matrix. This is why the computational
costs of the implicit Euler method and the exponential Rosenbrock–Euler method are similar.

When we wrote the general formula for exponential Rosenbrock methods in equation (4.19),
we used the defects Dn,i. The point of this formulation is to write the exponential Rosenbrock
methods as corrections of the Rosenbrock–Euler method. Because the defects are usually small
in size, we can spend less computational power to compute their contribution to the final step.
Practically, it means we can use smaller Krylov subspaces to account for the defects. It means
shorter Arnoldi iterations, which means smaller Hessenberg matrices, and overall a much smaller
computational cost. We explained why the one-stage exponential method cost is equivalent to
the one-stage implicit method cost. Because we use the formulation (4.19) and the fact that
the defects are small, adding more stages to the exponential method will be less expensive than
adding stages to the implicit method.
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4.5 First developments in CEDRE
We first tried exponential methods in the solver CEDRE. The development was fast as it

reuses a lot of existing parts from the implicit time integration: principally the Krylov subspace
methods tools. The matrix used in the decomposition (4.2) can either be the traditional low-
order Jacobian matrix or can use the matrix-free approximation (1.53). It shows that this work
about exponential integration methods is compatible with our work about the Jacobian matrix,
presented before. The Arnoldi decomposition (4.20) is computed by the same routines as the ones
used for the GMRES algorithm. We only had to develop the Scaling and Squaring algorithm, with
the computation of the Padé approximant to be able to use exponential Rosenbrock methods.
Because it only required this development we decided to deviate from the original framework of
this thesis and try this new type of time integration method. Now that everything was accessible,
we started with the exponential Rosenbrock–Euler method, as it is the basic one.

To test the method, we decided to use a simple academic test case, adapted from the one
proposed at the International Workshop on High Order CFD Methods (HiOCFD). It is a two-
dimensional inviscid isentropic vortex that is convected in a periodic box. This vortex is a
known exact solution of the unsteady Euler equations and is generally considered a good test
case to analyse the accuracy of both spatial discretisation and time integration methods. It is
a non-dimensionalised computation, and the mesh is regular over a square of length L = 20,
with 1002 cells. The vortex is convected in a flow at a Mach number of Ma = 0.5, with the
dimensioning parameters P∞ = 1 and T∞ = 1. The undisturbed velocity is then U∞ex with
U∞ = Ma

√
γrgasT∞ and the vortex is defined using the polar coordinates system (er, eθ):

u = U∞ex + βU∞
r

R0
e−r

2/2R2
0 eθ

T = T∞ − β2U2
∞
γ − 1
2γrgas

e−r
2/R2

0

P = P∞

(
1− β2U2

∞
T∞

γ − 1
2γrgas

e−r
2/R2

0

)γ/(γ−1)

.

(4.28)

The heat capacity ratio γ is equal to 1.4, and the specific gas constant is rgas = 1. The vortex
is defined by its characteristic radius R0 = 1 and its intensity β = 0.2. This initial condition
is shown in figure 4.1. As we solve inviscid Navier–Stokes equations, or Euler equations, the
vortex moves in the ex direction undisturbed, and as the domain is periodic the solution after
one period ∆T = L/U∞ = 33.8 is the same as the initial solution.

We compare the exponential Rosenbrock–Euler method to the standard implicit Euler method
and the classic fourth-order explicit Runge–Kutta method. Both the implicit and the exponential
methods need to compute Jacobian matrices. To reduce the number of variables in this com-
parison, both will use the traditional Jacobian matrices which is the low-order approximation.
We then end up with two equivalent methods in terms of computational cost. We simulate the
vortex advection throughout one period ∆T . The solution for each method is shown in figure 4.1.
We first look at the bottom center and right simulations. We see that the explicit Runge–Kutta
method preserves well enough the vortex compared to the implicit method. It is because the RK4
method is a fourth-order method whereas the implicit method is a first-order method. However,
the simulations are made at a CFL number of 0.9. With a higher CFL number of 1.5, the explicit
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Figure 4.1: Initial solution (top left) and solution after one period for the exponential
Rosenbrock–Euler method (top right), the implicit Euler method (bottom left and center) and
the explicit RK4 method (bottom right). The first two simulations correspond to a CFL number
of 1.5 whereas the last two to a CFL number of 0.9.
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method is unstable and the computation fails. The implicit method is able to handle higher CFL
numbers, of course as it is the reason implicit methods are used. But unsurprisingly we see in
the bottom left figure that the solution is even worse. Finally, the exponential method is able
to handle the higher CFL number and preserve the vortex well enough. It has the robustness of
the implicit method and the precision of the higher-order explicit method.

The analysis of this simple test case is quite rudimentary. Indeed, we did not look finely at
the error introduced by the time integration methods, but we visually compared the results.
This work showed that at the cost of very few developments we have a method that could
prove interesting for time integration with large time steps. Its purpose was not to precisely
analyse exponential methods but to see their feasibility in our solver. Now that this preliminary
test showed the quality of exponential time integration methods, we need to perform an actual
analysis.

We see in figure 4.1 that even the methods that preserve the vortex, the exponential and the
RK4 methods, do introduce some error. Indeed, the vortex after one period is not exactly the
same as at the beginning, as it should be. We see that it loses in intensity, and the contour lines
are not exactly concentric. Those symptoms are seen in both computations with the exponential
and the higher-order explicit methods. Furthermore, the error in the result of those simulations
looks similar. It is because this error does not come from the time integration method but from
the spatial discretisation method. Indeed, the spatial discretisation method induces some error
when evaluating the right-hand side of equation (4.1). This error is accumulated throughout the
simulation, and because of it, we could not get the exact result no matter the time integration
method. What we can do, however, is take a spatial discretisation method such as the error it
adds is small compared to the error from the time integration scheme. This way, the error we
get at the end of the computation is mostly due to the time integration method, and it allows us
to compare methods. Here the spatial discretisation method used in CEDRE is a second-order
method. We need to use a higher-order spatial discretisation method to perform the analysis of
exponential time integration methods.





Chapter 5

Analysis of exponential
integration methods in JAGUAR

Résumé du chapitre : Analyse des méthodes d’intégration exponentielles dans JAGUAR

Le but de ce chapitre est de comparer les méthodes exponentielles aux méthodes
d’intégration classiques de JAGUAR pour valider leur intérêt.
Nous avons montré dans le chapitre précédent que CEDRE n’était pas le contexte idéal

afin d’analyser des méthodes d’intégration temporelles très précises comme celles qui nous
intéressent. Nous utilisons donc le solveur JAGUAR, basé sur la méthode des Differences
Spectrales, que nous présentons au début de ce chapitre.
Nous analysons ensuite les méthodes exponentielles ajoutées à JAGUAR grâce à

l’utilisation de la librairie SLEPc sur un cas simple, afin de constater l’ordre de ces
méthodes à travers l’erreur globale en fin de simulation. Sur un autre cas académique,
nous comparons ensuite notre ensemble de méthodes en regardant le temps d’exécution
qu’il leur est nécessaire afin de réaliser une même simulation. Pour finir, nous utilisons
les méthodes exponentielles sur un cas plus significatif car proche d’une application réelle
du solveur: une aube de turbine.

We want to analyse time exponential integration methods in a framework that gives us access
to high-order spatial discretisation methods. It is possible to use high-order Finite Volume
methods, but this means using larger stencils which hurts parallelism. In CEDRE, users often
stop at second-order methods, so we need to use another solver. As the spatial discretisation
method does not play a direct role in the time integration and the work done in this thesis, we
can step out from the Finite Volume framework. Furthermore, using a less complex solver will
also help us try and develop new methods more easily than we already did with CEDRE. This
is why we decided to accomplish our analysis of exponential time integration methods with the
solver JAGUAR.

87
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5.1 JAGUAR: a Spectral Difference solver

JAGUAR means proJect of an Aerodynamic solver using General Unstructured grids And
high ordeR schemes. It is a reactive Navier–Stokes solver originally developed at CERFACS and
has been jointly owned by ONERA and CERFACS for four years. It is made for unstructured
grids and uses a Large Eddy Simulation model to solve unsteady turbulence effects. It means
that the large turbulence scales are computed explicitly while the smaller ones are modelled. Its
particularity is that it uses a spectral method as a spatial discretisation scheme: the Spectral
Difference method. The Spectral Difference method follows some principles of the Discontinuous
Galerkin formulation, in the sense that both are families of schemes of arbitrary order using
polynomial approximations, but their mathematical foundations differ.

5.1.1 The Spectral Difference method

With the Spectral Difference method, the solution is represented by a polynomial of degree p
inside each cell. It means that in the partial differential equation

∂u

∂t
+∇ · F (u) = 0, (5.1)

u is a p-degree polynomial of the coordinate variables, where the polynomial coefficients are
functions of time. Then F (u) has to be a p+1-order polynomial of the coordinate variables in
order to have a p-order polynomial of the flux divergence. The key to the Spectral Difference
method is how to compute a p+ 1-order F (u) from a p-order u. This method uses key elements
that were first mentioned by [115], and were later developed by [116].

Because the solution is represented in each cell by a polynomial, there is no reason for the
solution to be continuous throughout cell interfaces. Indeed, the Spectral Difference method
uses a piecewise representation of the solution. For example, let us consider the two-dimensional
regular mesh, made of 2 × 2 cells over [0, 2]2. The exact analytical function u over the mesh in
the left part of figure 5.1:

u : [0, 2]2 → R
(x, y) 7→ cos (5x) tanh (5 (1− y))

(5.2)

cannot be represented by polynomial exactly and the right picture of figure 5.1 represents the
solution associated with the Spectral Difference method. The colour mapping corresponds to
the output of the function but is not given as this function is of no particular interest: it is a
rough example only. This function is interpolated with a second-order method using Lagrange
polynomials over each cell. The result is shown in the right part of figure 5.1, where each
colour corresponds to one cell. There are discontinuities at the cell interfaces, which shows a
specificity of the Spectral Difference methods. If the function on the left part of figure 5.1 was
used as an initial condition for a simulation, the Spectral Difference method would in fact use
the polynomial interpolation on the right part. However, to respect the underlying conservation
property of equation (5.1), it is necessary for F to be continuous over the whole computational
domain. The Spectral Difference method will then make sure that the polynomial representations
of the flux density are continuous throughout cell interfaces.
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Figure 5.1: Continuous function (left) and discontinuous representation made by the Spectral
Difference method (right).

To better understand how this method works, let us take a one-dimensional cell: the segment
[0, 1]. Because the following is done at a fixed time, the dependency on the time is dropped, but
the solution and the coefficients are in reality functions of the time, not scalars. The solution u
inside this segment is then u (x) =

∑p
i=0 aix

i. Using Lagrange interpolation polynomials, it is
equivalent to use the set of the p+ 1 coefficients ai or the set of the p+ 1 values u (xi) computed
at the distinct points xi ∈ [0, 1] called solution points. The solution as a p-order polynomial
is represented by either one of those two sets. As the flux density F must be a p+ 1-order
polynomial, it can also be represented by its values in the p + 2 distinct flux points. To ensure
that F is continuous at the segment end points, we take 0 and 1 as flux points. The choice of the
rest of the flux points will be discussed later, but let us say for now that they are staggered with
the solution points: each flux point, apart from the segment end points, is between two solution
points and vice versa.

Figure 5.2 shows the steps the Spectral Difference make to compute the flux divergence∇·F (u)
from the solution u, with the specific choice p = 2.

0. At first, the solution is represented with a red line by its value in the p+ 1 solution points.
The solution points are marked by red dots. Parts of the solution from the left and right
neighbouring cells can be seen. As the figure shows, the piecewise local solutions inside
each cell may be discontinuous at the mesh interface. This is the starting point of the
Spectral Difference method and will be called the 0-th step.

1. In the first step, the method computes the value of the solution in the p + 2 flux points,
marked by blue dots. As the polynomial representing the solution is known, this step just
consists in evaluating it at flux points.
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Figure 5.2: Steps of the Spectral Difference methods with p = 2.

2. In the second step, the method evaluates the flux density F (u) in each flux point. This
is possible because the solution was computed in those points in the previous step. The
values of the flux density are marked by blue squares in the figure. However, segment end
points are flux points for the two neighbouring cells, and therefore the figure shows a full
black square for the flux at 0 from the left neighbouring cell and an empty black square
for the flux at 1 from the right neighbouring cell to highlight this discontinuity.

3. Because there are different values of the flux density at the segment end points, the method
would not preserve the conservative property of the partial differential equation. This is
why in the third step, the method computes a unique interface flux density for both cells
at each segment end point. The problem is to find the interface flux at the discontinuity of
a piecewise solution. In other words, this is a Riemann problem. Once again, this is solved
with a Riemann solver, exact or approximate, to get in the end a single value for the left
and right parts of the discontinuity.

4. An interpolation from the value of the flux density at the p+ 2 flux points using Lagrange
polynomials enables to get a p+1-order F as expected in the fourth step, represented with
a blue line in the figure. Therefore, one can end up with a continuous representation of F ,
differentiable everywhere except at cell interfaces.

5. In the last step, the representation of F is differentiated to get the flux divergence, repre-
sented by a green line in the figure. Finally, a time integration method can use a p-order
representation of ∇ · F to compute the solution at the next time step.

To work with any segment, not only [0, 1], an isoparametric transformation is introduced to
get back to this unity segment. It is the same when working with multiple dimensions, where
the isoparametric transformation gets the cell back to the tensor powers of this segment. The
placement of the solution points does not seem to matter much, but the placement of the flux
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Figure 5.3: Solution points and flux points in the [0, 1] segment used in the Spectral Difference
method for 0 ≤ p ≤ 11.

points does [117]. The p + 1 solution points we will use are defined in the [0, 1] segment as the
Chebyshev roots:

xi = 1
2

(
1− cos

(
2i+ 1
2p+ 2π

))
, 0 ≤ i ≤ p. (5.3)

They are traditionally defined inside the [−1, 1] segment but are scaled into [0, 1]. They are the
roots of the Chebyshev polynomials of the first kind and are often used in polynomial interpola-
tion as they tend to minimise Runge’s phenomenon. The p+ 2 flux points are the p roots of the
p-th Legendre polynomials to which are added the two segment end points. This choice has the
property that there is a flux point between each contiguous solution point. There is no explicit
formula for the Legendre polynomial roots as there is one for the Chebyshev polynomial roots.
They are also defined in the [−1, 1] segment and are scaled into [0, 1]. Finally, the solution and
flux points can be seen in figure 5.3.

As a side note, the Spectral Difference method with p = 0 corresponds roughly to the first-
order Finite Volume method. Indeed, the solution is assumed constant in the cell, represented
by the value at its barycenter. The flux balance is made at the cell interfaces with a Riemann
solver. This corresponds to the placement of the solution and flux points in figure 5.3 when
p = 0. For any polynomial degree p of the solution, the proposed Spectral Difference method
is naturally of order p + 1. Indeed, the method can represent exactly any polynomial of degree
p and, as a consequence, the error term is of order p + 1. In JAGUAR, the polynomial order p
ranges from 2 to 10, but 2 ≤ p ≤ 6 for practical applications.

The demonstration of accuracy of the Spectral Difference method is proposed in a reference
paper published recently [118]. JAGUAR was optimised to be efficient for parallel computations
[119, 120, 121]. To perform Large Eddy Simulation, it is of paramount importance to implement
an unsteady characteristic boundary condition: Navier–Stokes Characteristic Boundary Condi-
tion, or NSCBC. The initial formulation [122] was extended to deal with acoustic conditions
and liner optimisation [123]. Recently, the solver was extended to handle h− p adaptation [124]
and the schemes were extended to triangles and tetrahedrons [125, 126]. Another improvement
concerns the treatment of combustion, with a PhD thesis funded by Safran [127]. Finally, the
last extension concerns the treatment of shocks [128]. This review shows the strong involvement
of researchers in the solver.
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5.1.2 Exponential integration methods in JAGUAR
Using a high-order spatial discretisation method and a refined mesh is the best-suited situation

to test high-order time integration methods: the resulting error will come mostly from the time
integration and not the spatial discretisation. The development of an exponential time integra-
tion method was inexpensive within CEDRE as the method reuses lots of already existing parts.
For JAGUAR which only has explicit methods, the Arnoldi iteration and the exponential compu-
tation functions must be implemented to use exponential methods. They could be developed as
internal stand-alone routines to produce a finely tuned method for JAGUAR. However, since the
goal is to analyse exponential methods scientifically, it was decided to rely on the SLEPc library
[129]. The Scalable Library for Eigenvalue Problem Computation, or SLEPc, is an extension
of the software library PETSc [74, 75, 76]. Instead of rewriting the needed algorithms, it was
chosen to use their SLEPc implementation. In particular, SLEPc handles what it calls Matrix
Function objects or MFN:

"Given a matrix A and a vector b, the call MFNSolve(mfn, b, x) computes
x = f (A) b, where f is a function such as the exponential."

This is precisely what is needed to develop exponential methods: as it handles the previously
introduced ϕ-functions with its MFN objects, SLEPc is then an obvious choice of a library for
implementing exponential integration methods. Furthermore, because it relies on PETSc, it is
efficiently scalable to fit our multiprocessing needs.

Exponential methods are based on a decomposition of the ordinary differential equation such as
equation (4.2). However, JAGUAR uses only explicit time integration methods, so no Jacobian
matrix is available. Computing analytically the Jacobian matrix would prove challenging as any
ingredient should be differentiated, such as the Spectral Difference scheme, the Riemann solvers,
the diffusion scheme, etc. It is not insurmountable but would amount to more work than what
could be afforded during this thesis. It was decided instead to reuse the work from the previous
part: the Jacobian matrix will not be formed, but its effect will be computed by a finite difference
approximation. Another reason to work with the SLEPc library is that using a finite difference
approximation is easy with it. More precisely, it is PETSc that handles this approximation. To
sum up, to compute ϕk (L) b that is required for the exponential methods with L = f ′ (y), L is
created with the appropriate PETSc data type. As it is a Jacobian matrix of a function, PETSc
only needs to know the function to compute matrix-vector products. Then, after setting the
MFN object of SLEPc, the library can compute the desired result. The Arnoldi iteration, the
Scaling and Squaring algorithm and the exponential evaluation are all handled internally by the
library. Overall, this procedure is extremely simple from our perspective and requires only a few
lines of code to implement. This highlights the relevance of using the SLEPc library to easily
test procedures and acquire the associated knowledge.

Other people that also work with JAGUAR did develop implicit time integration methods
using PETSc. To continue in this direction, it was decided to add a time integration method
based on the generic PETSc Time Stepper [71]. This way, a user may use most methods from
PETSc in JAGUAR with no additional developments. It includes any explicit and implicit
time integration methods, but also nonlinear solvers such as Newton’s methods with various
line search algorithms, linear solvers with various Krylov subspace methods and finally various
preconditioning. However, this generic PETSc Time Stepper method was added on the side of
this thesis, and therefore will not be discussed here, along with the previous work on implicit
methods.
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In the end, the high-order spatial discretisation method called the Spectral Difference method
allows us to analyse and compare exponential methods that are available through the SLEPc
library. In the following, attention is mainly focused on the three methods that were presented
earlier in table 4.1: the Rosenbrock–Euler, ExpRB32 and ExpRB42 methods.

5.2 Analysis of exponential time integration methods
There are in JAGUAR all the tools necessary to analyse exponential time integration methods

and several test cases must be chosen. During the analysis, the exponential methods and explicit
Runge–Kutta methods will be compared, as the latest ones are the only available methods in
JAGUAR and represent the state-of-the-art. Those methods are:

• RK2, the Midpoint method

• RK4, the classical four-stage fourth-order method

• RKo6s, a low-storage, low-dissipation and low-dispersion six-stage second-order method
from [130] dedicated to unsteady computations

• TVDRK(3, 3), a three-stage third-order TVD method from [131, 132]

• SSPRK(5, 4), an optimal SSP five-stage fourth-order method from [133].

Low-storage methods are Runge–Kutta methods for which the matrix A in their Butcher tableau
is lower diagonal, or in other words all aij are null except when j = i − 1. Also, all bi are null
except the last one that is equal to 1. It means that the final stage and all intermediate ones
use only the previous stage. Therefore, there is no need to keep track of intermediate stages
in memory, only to update the current value, which gives the name low-storage method. The
last two methods are Runge–Kutta methods with an additional property originally called TVD
[132] and more recently SSP [134]. Without going into too much detail, it means that they are
methods that are convex combinations of explicit Euler steps so that their stability is guaranteed
for sufficiently small time steps. To us, it means they are defined differently than other methods,
using the coefficients α0<i≤k,0≤j<i and β0<i≤k,0≤j<i as:

yn+1 = y(k)

with y(i) =
i−1∑
j=0

αijy
(j) + ∆tβijf

(
y(j)
)
, 1 ≤ i ≤ k

and y(0) = yn.

(5.4)

However, they are equivalent to traditional Runge–Kutta methods in the sense that they can be
represented by the standard Butcher tableau, with:

aij =
i−1∑
l=j+1

αi−1,l−1al,j + βi−1,j−1

bi =
k∑

l=i+1
αk,l−1al,i + βk,i−1.

(5.5)

We can finally say that we are indeed working with explicit Runge–Kutta methods, as they were
introduced initially.
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5.2.1 Order analysis: convected inviscid isentropic vortex
This first case is designed to analyse the order of accuracy of the proposed methods and to

validate their implementation. It is the simple case of the two-dimensional inviscid isentropic
vortex, the same as the one considered with CEDRE. The case is still described by equation
4.28, but the numerical values are different. The convective flow Mach number is still 0.5,
but this time P∞ = 1× 105Pa and T∞ = 300K. The heat capacity ratio is γ = 1.4 and the
specific gas constant is rgas = 287.058J kg−1 K−1. Those values correspond to standard values
for dry air. The mesh represent the two-dimensional box [0, L]2 with L = 0.1m, and is made of
N × N cells. The vortex is defined by its characteristic radius R0 = 0.005m and its intensity
β = 0.2. It corresponds in fact to the same vortex as the one used with CEDRE, in size and in
intensity, but it has been scaled down into a smaller box and dimensioned to some given pressure
and temperature. The present choice is in agreement with the prescription of the International
Workshop on High Order CFD Methods. For this application, the Spectral difference method
uses the approximated Riemann solver of Roe.

The period for those numerical values is T = L/U∞ = 5.760× 10−4s. After 20 periods,
the vortex should recover the initial position and the 2-norm of the error between initial and
computed solutions can be defined for any scalar variable u (x, t):

err (u) =
(∫

[0,L]2
(u (x, 20T )− u (x, 0))2 dx

)1/2

. (5.6)

Once the vortex moves in the domain, the numerical solution is subject to two schemes and errors
are a consequence of both. Once the spatial scheme is defined, the mesh is sufficiently refined in
order to transport the vortex accurately and the goal is to have a much lower influence of the
spatial scheme than of the time integration scheme on the total error. The order of our time
integration methods can be determined by looking at this error as a function of the time step.

The error at the end of the simulation is the global truncation error: the error the method
makes while getting to a fixed time, no matter how many iterations it took. However, the order
of a time integration method was previously defined using the local truncation error: the error
it makes after a single small step. There is a link between global and local truncation errors for
our single-step methods. Let us call τn the local truncation error and en the global truncation
error at step n. Because single-step methods can be written as:

yn+1 = yn + ∆tng (yn,∆tn) , (5.7)

with an increment function g that is K-Lipschitz continuous in the y variable, the global trun-
cation error is bounded [135]:

|en| ≤
max1≤i≤n |τi|

K∆tn

(
eK(tn−t0) − 1

)
. (5.8)

A method is a p-order method if τn = O
(
∆tp+1). Therefore, a p-order method verify en =

O (∆tp). However, the reciprocal is not true: observing a global truncation error en = O (∆tp)
does not mean the order of the method is p. As a consequence, attention is focused on the
expected order for the global truncation error at the end of the computation, as it is the error
users look at. The proof of the order for a method is analytical, by writing the partial Taylor
series of the exact solution, as we did earlier for the exponential Rosenbrock–Euler method.
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Figure 5.4: Global truncation error for the RK2 Midpoint method.

The point of this analysis is to see how the global truncation error depends on the time step ∆t
that is kept constant throughout the computations. Because some methods are more accurate
than others, several computations with different mesh resolutions and Spectral Difference method
orders were made. Let us start with the Midpoint method, associated with the order of the spatial
discretisation method p = 4. The computation is stopped after 20 periods and the L2 error for
the pressure is analysed for different time steps. Results are shown using the CFL number as it
is proportional to the time step:

NCFL =
N (p+ 1) (1 + Ma)

√
γrgasT

L
∆t. (5.9)

Using the CFL number instead of the time step allows comparing results with different N or even
p. It can be seen here as a nondimensional time. Computations are made for multiple values of
N : 16, 32 and 64, and the corresponding results are shown in figure 5.4. The 16× 16 mesh does
not allow for a good analysis: the error due to the spatial discretisation method is too important
and prevents seeing the expected dependency between the global truncation error and the time
step. The two other meshes however show the expected relation: err = O

(
∆t2

)
.

This analysis is repeated for other methods, and we look now at the RK4 method. However,
figure 5.5 shows that the error is constant no matter the value of N . It is because the error due
to the RK4 method is so small that it is dominated by the error due to the spatial discretisation
scheme. It is useless to do the same for lower time steps, as the error would not change, therefore
the RK4 error lines are continued by black dashed lines. As the time step decreases, the curves
from the Midpoint scheme tend to the same dashed lines: this is proof that this lower bound for
the error corresponds to the error of the spatial discretisation method. It shows once again that
a spatial discretisation method with small errors is necessary in order to analyse time integration
methods.
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Figure 5.5: Global truncation error for the RK2 and RK4 method.

Increasing N up to 128 and then 256 was unsuccessful: the error was still constant. Instead of
refining the mesh, an analysis playing with the Spectral Difference method can be performed by
increasing the spatial discretisation order. As the theory behind this analysis does not directly
depend on N and p, we can adjust them to better fit the method we want to analyse. This
is done in figure 5.6 where the global truncation error is shown as a function of the time step,
or CFL number, for the RK4, RKo6s and TVDRK(3, 3) methods. The expected slopes for the
second and third-order methods are obtained but the result is more subtle for the fourth-order
method. The error is once again dominated by the error of the spatial discretisation scheme.
On the right part of the curve, one can guess the correct slope but it is necessary to plot the
error for larger time step values to see it more clearly. However, those larger time step values are
outside the stability domain of the method. In fact, all curves end on the right at the largest time
step for which the computation did not fail. It means from figure 5.6 that the RKo6s method is
more stable than both the RK4 and TVDRK(3, 3) methods. This is the issue with this analysis:
for too small time steps, the error from the spatial discretisation method is dominant and the
expected slope is not recovered. On the other hand, with too large time steps, computations fall
outside the stability region of the method. The difficulty is to find the correct window that allows
us to observe the desired slope by choosing suitable values for p and N . Because the error of the
SSPRK(5, 4) is particularly small, it was not possible to find reasonable values below p = 8 and
N = 64. Above those values, the computations get rather long so we skipped this method.

The analysis of traditional explicit Runge–Kutta methods can now be applied to the newly
added exponential Rosenbrock methods. Their corresponding error curves are shown in figure 5.7.
As expected, the respective slope values are 2, 3 and 4. Furthermore, by looking at the abscissa
ranges, they work correctly with higher CFL numbers than all the explicit methods that were
tested. The goal of this first analysis of the exponential integration methods is not to analyse their
robustness, but it already seems better than with explicit methods. What is interesting from this
analysis is that one can use higher-order methods with fewer Runge–Kutta stages. Furthermore,
the additional computational cost of the additional stages is low. As discussed earlier, exponential
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Figure 5.6: Global truncation error for the RK4, RKo6s and TVDRK(3, 3) methods.
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Figure 5.7: Global truncation error for the exponential Rosenbrock–Euler, ExpRB32 and Ex-
pRB42 methods.

Rosenbrock methods can be reformulated as in equation (4.19) using the defects Dn,i. The first
stage of an exponential Rosenbrock method is then an exponential Rosenbrock–Euler method,
for which the contribution of the "full" right-hand side f (yn) is used. Here, this is done with the
algorithms previously described, using a Krylov subspace of dimension 20. Then, because the
defects are relatively smaller, the other stages compute their contribution with only 5 Krylov
basis vectors. The two exponential Rosenbrock methods with two stages are not a lot more
expensive than the Rosenbrock–Euler method. In comparison, a 2-stage explicit Runge–Kutta
method will be twice as computationally expensive as the Euler method. This analysis was also
performed with larger Krylov subspace methods. In this other configuration, the first stage uses
40 Krylov basis vectors for all three exponential methods, and the second stage uses 10 Krylov
basis vectors for the ExpRB32 and ExpRB42 methods. However, using a larger subspace did not
have any impact on the result of this analysis. For all (N, p) configurations, the error curve as
a function of the time step was almost the same as with smaller Krylov subspace, such as they
were almost indistinguishable when plotted in figures like figure 5.7.

We choose this first test case as it is widespread in the computational fluid dynamics commu-
nity, as a tool to analyse the order of integration schemes. It often concerns spatial discretisation
methods, but it can be considered for the time integration method as it gives access to the global
truncation error, which is the error that interests the solver users. First, this analysis recovers
the correct slope on the error curve as a function of the time step for the already existing explicit
Runge–Kutta integration methods. Indeed, the error converges, as the time step decreases, to a
minimum error value that comes from the spatial discretisation scheme. By refining the mesh
and using higher-order spatial discretisation methods, we are able to reduce this minimal error
and observe the expected curve for almost all methods. The same analysis but with the newly
implemented exponential Rosenbrock methods showed the expected order. It also showed that
the additional cost of using more stages with exponential methods is relatively small compared to
the same additional cost for explicit Runge–Kutta methods. Finally, for this convected inviscid
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isentropic vortex case, the exponential Rosenbrock methods were much more robust, as they
work with higher CFL numbers. The analysis of their stability is the topic of the next section.

5.2.2 Robustness analysis: Taylor–Green vortex
The Taylor–Green vortex consists in following the evolution of a set of vortices in a periodic

domain. It is a three-dimensional case, solution of the Navier–Stokes equations in a periodic box
of length 2πL centered around the origin. The initial flow is given by:

u = Ma
√
γrgasT∞
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(5.10)

over the domain (x, y, z) ∈ [−πL, πL]3, as seen in figure 5.8. Even if uz = 0 at the initialisation,
it becomes non-null afterwards and the problem is fully three-dimensional. The initial flow
transitions to turbulence: the initial large scales decay into smaller ones, that end up dissipated.
Figure 5.8 shows contours for which the second invariant of the velocity gradient, also called Q-
criterion, is equal to 0.1. This was chosen as it roughly indicates the sizes of turbulent structures.

The numerical values are non dimensionalised: L = 1, Ma = 0.1, rgas = 71.4284, T∞ = 1
and P∞ = 71.4288. The goal is to recover the Reynolds number Re = ρ∞U∞L/µ = 1600
with the associated constant fluid viscosity is µ = 6.25× 10−4. The Prandtl number, the ratio
of momentum diffusivity to thermal diffusivity, is equal to 0.71. Using the convective time
tc = L/U∞, it is known that the maximum dissipation happens around 8tc, and after 15tc the
flow is fully turbulent without any trace of the initial structures. The definition of the test case
is part of the International Workshop on High-Order CFD Methods. A reference solution is also
provided by the workshop, obtained using a spectral solver on a very refined mesh. The Spectral
difference method uses the approximated Riemann solver of Roe.

The values of interest for this test case are the temporal evolution of the mean turbulent kinetic
energy over the computational domain Ω:

Ek = 1
ρ∞ |Ω|

∫
Ω
ρ
‖u‖2

2 dΩ, (5.11)

the mean enstrophy, defined by

E = 1
ρ∞ |Ω|

∫
Ω
ρ
‖∇ × u‖2

2 dΩ. (5.12)

Those values computed by the present simulation are compared with the reference values.
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Figure 5.8: Isocontour (0.1) of the Q-criterion coloured by velocity norm of the Taylor–Green
vortex at various times.



5.2. ANALYSIS OF EXPONENTIAL TIME INTEGRATION METHODS 101

Method NCFL Niterations Time / iteration (s) Total time (hh:mm:ss)
RKo6s 0.28 50000 1.588 22:03:20

TVDRK(3, 3) 0.14 100000 0.833 23:08:20
SSPRK(5, 4) 0.28 50000 1.497 20:47:30
ExpEuler(10) 1.4 10000 3.803 10:33:50
ExpEuler(20) 2.8 5000 8.144 11:18:40
ExpEuler(40) 5.6 2500 19.491 13:32:08
ExpEuler(80) 11.2 1250 52.792 18:19:50
ExpRB32 2.8 5000 10.391 14:25:55
ExpRB42 2.8 5000 19.787 27:28:55

Table 5.1: Statistics for various time integration methods. The time corresponds to elapsed
real time, or wall-clock time. A computation corresponds to the simulation of the Taylor–Green
vortex from equation (5.10) on time interval [0, 20tc].

The mesh used here is the same for all computations: a regular Cartesian mesh made of 803

cells. This choice is not natural from the workshop but previous experiments have led to the
conclusion that such a mesh gives the best solution at the lowest CPU cost, for the Spectral
Difference method with the order p = 4. Each computation is run on 308 CPU cores. The
goal is to see if the result from the simulation matches reference data up to 20tc, and how
much CPU time the computation took. The RKo6s, TVDRK(3, 3) and SSPRK(5, 4) methods
are the already existing reference methods, and the exponential Rosenbrock–Euler, ExpRB32
and ExpRB42 methods are the newly implemented methods. For the exponential Rosenbrock
methods, Krylov subspaces of dimension 20 are used for the first stage, and dimension 5 for
the additional stages for the ExpRB32 and ExpRB42 methods. The time step is constant in a
simulation, and some effort was done to use the highest time step compatible with each method.
Above this upper bound on the time step, either the computation fails or the quality of the
solution is not satisfying anymore. However, this higher time step can be increased for exponential
methods by increasing the dimension of the Krylov subspaces used to compute ϕ-functions. By
doing so, the computational cost of a single iteration is higher, but it reduces the error in the
ϕ-functions evaluations. Symmetrically, it was also tried to reduce the dimension of the Krylov
subspaces. It means that the method can not work with the same time step as before as it is
now too high, but this reduces the cost of the iteration. This is to see if making more iterations
that are cheaper, or in the opposite less that are more expensive can be a good idea. From now
on, ExpEuler(d) method refers to the exponential Rosenbrock–Euler method that uses a Krylov
subspace of dimension d.

The result of all simulations is shown in figure 5.9. As a simulation corresponds to the com-
putation with the largest time step for which the results are satisfying, this figure does not give
much information. At first sight, all methods produce results that are close to reference data.
When looking more closely, there are some differences with the reference, but all JAGUAR com-
putations are almost indistinguishable from one another. As a consequence, one can argue that
the error from the spatial discretisation method is the origin of the difference between the ref-
erence and JAGUAR computations. It is then reasonable to assume that all curves correspond
to valid computations. They all give the same result, which is taken as the reference solution
for the considered mesh and the set of parameters of the study. Finally, as those methods give
similar physical results, the correct way to compare them is to analse their statistics.
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Figure 5.9: Kinetic energy and enstrophy for various time integration methods compared to
reference data.
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Statistics for each time integration method are provided in table 5.1. As the cost of the
algorithms used in the time integration methods does not change between iterations, it makes
sense to compute the average elapsed real time per iteration. Among the explicit methods, we
see that the RKo6s and SSPRK(5, 4) methods run at a higher CFL number than the TVDRK(3,
3) method. However, they have more stages per iteration so each iteration takes longer, and the
total elapsed real time is rather similar between all three methods. We note that the cost of one
step of an explicit Runge–Kutta method is not proportional to the number of stages. Indeed,
the implementation of the RKo6s method uses the fact that it is a low storage method to reduce
the computational cost in terms of both time and memory. Nevertheless, the cost of an iteration
of those explicit methods is much less than exponential methods. As expected, the cost of the
exponential Rosenbrock–Euler method is similar to d2 where d is the dimension of the Krylov
subspace used for the Arnoldi iteration. As explained, the ExpRB32 method does not cost a lot
more than the exponential Rosenbrock–Euler method that uses Krylov subspace with the same
dimension. This is because the second stage uses only a small Krylov subspace, and this is what
is seen from the results in table 5.1. We can draw two important conclusions from this analysis.
First, we see that the exponential Rosenbrock methods are faster than the explicit Runge–Kutta
methods available in JAGUAR. For some of them, they are almost twice as fast. Secondly, we
see that the exponential Rosenbrock–Euler method can accurately simulate the Taylor–Green
vortex at high CFL numbers. Accurate explicit methods would not work with such high CFL
numbers, and even if implicit methods could they would not be accurate enough to capture and
preserve the small scales of the flow. To reach high CFL numbers, we have to use larger Krylov
subspaces, which makes the method a lot slower. The method used here should not be used
for actual applications: the goal was just to show feasibility. It seems that with exponential
methods, the robustness can be increased by paying the price in terms of the Krylov subspace
dimension. We can think of ways to compute more accurately the ϕ-functions less expensively:
by using restarted methods, for instance, we can control the maximal dimension of the Krylov
subspace. However, this was not tried during this thesis.

This unsteady test case shows that exponential methods are interesting for our applications.
We found a method that halves the elapsed real time, which is a great improvement for an
unsteady simulation. We also showed that we could accurately simulate this flow while using
high CFL numbers. It means that we have added more robust methods than the already existing
ones. They could prove useful in applications where we are limited by the lack of stability of the
explicit Runge–Kutta methods.

5.2.3 Industrial application: LS89
We decided to try exponential methods on a final test case. Contrary to the previous two,

we stepped out of the academic context with an industrial application. It is a simulation of the
flow inside the LS89 turbine blade cascade that was studied experimentally by the von Karman
Institute [136]. We choose this test case as it has already been done with several solvers, including
JAGUAR recently [137]. The computation uses a two-dimensional unstructured mesh, made of
2374 cells, that was extruded over 20 cells for a length of 0.15c with c the chord of the turbine
blade. The final three-dimensional mesh made of 47 480 cells is shown in figure 5.10. The mesh is
periodic in the extruded direction and the vertical direction. The boundary condition at the wall
is isothermal, with Twall = 297.75K. At inlet, the stagnation conditions are P0 = 184 900Pa and
T0 = 409.2K. The outlet pressure is set to 116 487Pa. The upper and lower boundaries, as well
as the front and rear planes, correspond to periodic boundary conditions. The Spectral difference
method uses the HLLC approximate Riemann solver. This is an unsteady LES simulation: the



104 CHAPTER 5. ANALYSIS OF EXPONENTIAL METHODS IN JAGUAR

Figure 5.10: Mesh for the LS89 turbine blade. Close up on the leading and trailing edges.

interest lies in the time average values after a long simulation time.

From the previous results, we decide to use the exponential Rosenbrock–Euler method for the
time integration. Indeed, it seems to be the quickest method, and we wish here to reduce the
computational time. The other exponential methods would improve the accuracy of the physical
results, so we keep only the Rosenbrock–Euler method to simplify the analysis.

The reason why we decided to use exponential methods for this numerical application is that in
previous works, the explicit time step was limited by the viscous effect that prevails in the small
cells of the boundary layer. Indeed, this test case was used to compare several solvers, but as
JAGUAR only had explicit methods it took longer to find a solution [137]. Because exponential
methods handle well the linear part of equations, and viscous effects are mostly linear, we thought
that exponential methods would allow JAGUAR to break free from the constraint on the time
step, and improve the overall speed of the solver. In figure 5.11, the Mach number is shown at
the end of the computation. It is in line with what is expected, and this proves the capacity of
exponential methods to work as time integration schemes for such applications.

The physical value investigated in [137] is the heat transfer coefficient. The reader is invited
to look at this reference for the interpretation of the physical results. Here, we assume that
JAGUAR produces a satisfying solution with its classical explicit TVD(3, 3) method, and we
compare it with the exponential Rosenbrock–Euler method. The heat transfer coefficient is shown
in figure 5.12, and we see that the results are indistinguishable between the two methods. In this
figure, the origin of the curvilinear abscissa corresponds to the leftmost point on the blade, and
positive (respectively negative) abscissa corresponds to the upper (respectively lower) part of the
blade. This result validates the capability of exponential methods to be used as time integration
methods in computational fluid dynamics.



5.2. ANALYSIS OF EXPONENTIAL TIME INTEGRATION METHODS 105

Figure 5.11: Mach number in the LS89 turbine blade cascade.

Figure 5.12: Heat transfer coefficient from the TVDRK(3, 3) and exponetial Rosenbrock–Euler
methods. Negative abscissa corresponds to the lower part of the blade and positive abscissa to
the upper part.
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Our logic was that if the time step for this application is limited by viscous effects, and viscous
effects are mainly linear, exponential methods would accept higher time steps, and in the end,
the computation would be faster. However, our initial hypothesis was wrong: the time step
is limited by advection and not diffusion. It was originally true at the time of some previous
investigations [137], but as the diffusive scheme was recently greatly improved [138], it is not true
anymore. This is why in the end, there are no significant improvements in terms of computational
speed when using exponential integration methods. Even if we did not find the improvements we
were originally looking for, this numerical experiment did show that exponential time integration
methods can be used in actual computational fluid applications.

Conclusion
The work made towards exponential methods during this thesis shows their interest in the

time integration of computational fluid dynamics problems. It is now clear that they are precise
methods, and using them makes a lot of sense when the spatial discretisation method is accurate
as well, with high-order methods for instance. Then, some numerical experiments with the
JAGUAR solver showed their quality. For one application, they were particularly quicker and
more stable than classical explicit integration methods. For the last application, they did not
improve the solver performances as expected, but it could be argued that we expected too much
because of some wrong hypothesis on our part. Overall, this work showed that exponential
methods are worth investigating.







Conclusion and perspectives

Jacobian-Free Newton–Krylov for implicit time integration
This thesis was interested in solving efficiently steady problems for multiphysics applications.

It means improving the convergence, stability and speed of already existing methods, particularly
for the software system CEDRE. A preliminary analysis of existing methods within CEDRE and
the literature focussed our effort on improving the nonlinear and linear resolutions required
by implicit time integration methods. In particular, the Jacobian-Free Newton–Krylov method
caught our interest. This is first because it reuses many algorithms that were already available
in CEDRE. The other reason is that it is a better alternative to what was currently done, which
is using a poor approximation of the Jacobian matrix. Indeed, using the JFNK method amounts
to using a full Jacobian matrix that accounts for all numerical models. We hoped that using a
more accurate matrix for the linear problem would improve the quality of the nonlinear solution,
which would in turn improve the overall quality of the implicit time integration method. With a
careful implementation, it was added to the software system to ensure compatibility with other
solvers and existing algorithms.

To check the quality of the Jacobian-Free Newton–Krylov method, it was tested on several
applications. Those applications were chosen to represent typical CEDRE computations, to eval-
uate if the method is interesting for the solver. The first application was the simulation of the
turbulent flow around a wing profile in two dimensions. When compared with the traditional
method, the new one that is matrix-free gives similar results when looking at flow data. The
improvement is solely on the convergence, as the JFNK method converges. The second appli-
cation is the same wing profile, but this time using a much finer mesh to finely represent the
boundary layer. This time, the traditional method lacks the ability to converge satisfyingly when
the JFNK method, however, does. It shows that the JFNK method improves the convergence of
the solver on such applications.

As CEDRE aims to solve problems in the field of multiphysics, it is not enough to test the new
method on aerodynamics test cases. This is why the next chosen application was the simulation
of the hypersonic reactive flow around a solid sphere. It is a simplified typical reentry application.
Similar results are found when looking at the non-reactive equivalent of this test case: the JFNK
method convergence is better. However, when using a fine mesh with the reactive model, the
conclusion is no longer in favour of the matrix-free method as the older method converges better.
Still, the difference in the convergence between the two methods is small compared to the same
difference in the non-reactive case. A possible conclusion is that in the best-case scenario, when
the traditional method converges well, the JFNK does not improve the quality of the solution.
When the traditional method struggles to find a steady solution, however, the JFNK method
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becomes interesting.

Finally, the Jacobian-Free Newton–Krylov method was tested on a newly implemented fluid
model. Indeed, as CEDRE is under current development, new fluid models are sometimes added
to represent flow features with higher fidelity. For instance, the new model used here accounts
more precisely for thermodynamic disequilibrium. A newly implemented model often does not
give access to their Jacobian matrices, as it would require much more work from developers and
is not a priority. It means that users must restrict themselves to using explicit time integration
methods. As the JFNK method does not require Jacobian matrices, it is a good candidate to
be used as a time integration method with such models. It was then compared with the explicit
Midpoint method. In the end, the JFNK method converges better than the explicit method and
is also quicker in terms of CPU time. The result is even more in favour of the implicit method
when using a simplified version of the reactive model that disregards ionisation.

One key argument of the Jacobian-Free Newton–Krylov method is the possibility to handle the
Jacobian matrix approximation in the same order of accuracy as the spatial discretization. We
showed that accuracy can lead to improved convergence. Rough approximations of the Jacobian
matrices should be avoided in the future, or considered only for tests or as preconditioners. If the
choice of CEDRE developers is finally to revert to a Jacobian matrix-based formulation, we can
assume that the computation of the Jacobian matrix will be a key ingredient. Doing this by hand
is time-consuming and can lead to implementation issues. An alternative could be considering
code differentiation. But in the context of CEDRE, it means revisiting the full structure of the
whole set of solvers.

The downfall of the Jacobian-Free Newton–Krylov method is its slowness. Indeed, it requires
multiple right-hand side evaluations, and such evaluations are quite expensive in our solver. It
means that for a user, there is no interest to use the JFNK methods on problems for which the
traditional method gives satisfying results and convergence. It is still useful to achieve precise
convergence when the traditional method fails to do so. However, improving the efficiency of
right-hand side evaluations is an active research topic within the team in charge of the solver.
Such improvement will benefit the JFNK method a lot more than it will benefit the traditional
method, so the interest in the JFNK method should increase.

In light of this work, it seems natural to want to try the Jacobian-Free Newton–Krylov method
with other fluid models that also do not have yet an available Jacobian matrix. Such models
already exist in CEDRE, and they are restricted to the explicit time integration method, as
was the model detailed in this thesis before it used the matrix-free method. It is reasonable to
assume that the JFNK method will yield similar results, and will unlock implicit methods for
those models.

Going further, one might want to try the same method but with another solver from the
platform that is CEDRE. Indeed, this would amount to very few developments which is why this
idea is interesting. Finally, if multiple solvers use the matrix-free method, it means that CEDRE
would be able to integrate implicitly those solvers in a coupled fashion. Because of the structural
choices made in CEDRE, this is currently impossible unless refactoring a significant amount of
code.
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As the Jacobian-Free Newton–Krylov method does not use an actual matrix, it is limited in
terms of available preconditioners. More generally, preconditioners available in CEDRE are quite
simple and the linear solver would benefit from better preconditioners from the literature that
already works well in other computational fluid dynamics solvers. Physics-based preconditioner
could improve the linear solver performances which would improve robustness, convergence and
speed of the overall integration method [6, 53]. In particular, for the Multi-TEmperature model
one that was used in this thesis, a physics-based preconditioner would help handle the stiff part
corresponding to electrons and ionisation.

Exponential integration methods for unsteady time integra-
tion with large time steps
Another topic of interest in this thesis was exponential time integration methods. Indeed, such

methods reuse many parts and algorithms that are classicly used for implicit time integration.
Furthermore, methods used for implicit time integration are often adapted to solve unsteady
problems with large time steps. A preliminary analysis showed that the accuracy of exponential
methods was similar to the one of explicit methods while being able to use relatively large
time steps as implicit methods. As exponential methods are quite precise, they require spatial
discretisation methods that are at least as accurate. This is why exponential methods were then
studied with the JAGUAR solver that uses a Spectral Difference method.

A first numerical experiment showed that the newly added exponential methods had the ex-
pected order of accuracy in JAGUAR, and prove more stable than explicit methods already
available in the solver. Then, the same methods were used in another test case. It showed that
exponential methods can reduce significantly the CPU time required to fulfil the computation.
Furthermore, some methods were able to use time steps 40 times higher than explicit methods
and were still quicker to fulfil the computation. This highlight the quality of exponential meth-
ods for unsteady time integration when using large time steps. In a final test case, it was shown
that exponential methods still work fine on an actual LES computation, with fine cells in a wall
boundary condition. Our first hope was that exponential methods would prove faster, but in the
end, their performances were similar to the ones of explicit methods.

This preliminary work did demonstrate the feasibility of exponential methods in JAGUAR and
their suitability for unsteady time integration. Rewriting the exponential computation routines
within JAGUAR instead of using the external SLEPc library would improve their quickness even
more. Indeed, using a well-written library is often a good idea to benefit from its quality as its
developers are experts in their fields, but values are constantly copied back and forth between
JAGUAR and SLEPc data types with the current implementation. The solution is either to
modify the solver so that it uses SLEPc data types globally, or to rewrite SLEPc methods suited
for JAGUAR data types. The latter would also allow for specific optimisations. For instance,
we mentioned earlier that exponential methods often compute ϕ-functions of the same matrix.
One could reuse spectral information between each of those computations to speed them up and
get more accurate results.

As JAGUAR had only explicit integration methods before exponential methods were added, no
attention was paid to preconditioning. Now that there are algorithms that use Krylov subspace
methods, preconditioners could prove beneficial for the time integration [139].
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The last JAGUAR application that was presented here was originally chosen as it was limited
in the time step size by the diffusive part of the equations, which is mostly linear. Exponential
methods would have then improved the time integration as they deal efficiently with the linear
parts. However, this initial statement was not true, and therefore the gain from using exponential
methods did not appear. It would be interesting to see what would happen on a test case for
which this statement holds.

Going outside the scope of JAGUAR, exponential methods could prove to be great candidates
as time integration methods on other solvers. For instance, solvers that simulate plasmas and
arc lightning are significantly limited in the time step size by viscous effects. As such effects are
mostly linear, exponential integration methods would allow breaking free from this limitation.
The same idea applies to the field of thermic for which large physical times need to be simulated.
Exponential methods should be compatible with larger time steps, which would reduce the overall
computational time.

Exponential methods are becoming more and more active in computational fluid dynamics. For
the same reason we decided to use them along a Spectral Difference method, they are often used
with high-order spatial discretisation methods. For instance, the Discontinuous-Galerkin method
from [140] is used with an exponential Rosenbrock method described in [141, 142]. In [143],
exponential integrators are used to solve multiphysics problems. Many other recent references
from the literature use exponential methods as time integrators for similar computational fluid
dynamics problems. This shows that exponential methods are worth investigating.





Appendix A

Conservative preconditioning

Let us consider the ordinary differential equation:

M
dQ
dt = F (Q (t)) . (A.1)

This equation comes from the Finite Volume discretisation, where Q is the vector of the con-
servative variables and F a conservative right-hand side. To keep this simple, we consider that
there is a single conservative variable, so that the dimension of Q is equal to the number of cells.
This is only to simplify the notations, but everything can be adapted to use more conservative
variables. The mass matrixM is a diagonal matrix where the ith diagonal coefficient corresponds
to the volume of the ith cell. We note by S the vector of the same dimension as Q made of
ones and transposed. This way, multiplying on the left a vector by S amount to sum a vector
components. The conservation property of the equation means that S F (Q) = 0 or equivalently
that the sum of the conservative variable over the domain SMQ is constant.

When solving this equation with the explicit Euler method, we have at the nth step that:

MδQn = ∆tF (Qn) (A.2)

with δQn = Qn+1 − Qn. Is is clear that SMQn+1 = SMQn, and so the explicit Euler method
preserves the conservation property.

When using the implicit Euler method with a single linearisation, we need the Jacobian matrix
Jn of the function F evaluated in Qn. Since Jn = F′ (Qn) and S F (Qn) = 0, we have SJn = 0
also. The method gives the increment δQn as the solution of:

(M −∆tJn) δQn = ∆tF (Qn) . (A.3)

Multiplying this relation on the left by S and using that SJn = S F (Qn) = 0, we have SMδQn =
0, which means this method also preserves the conservation property.

However, we do not usually use the exact solution of the linear problem but the solution of a
subspace Krylov method. Let us consider that we use k steps of a Krylov subspace method with
a zero initial guess. Then, the increment belongs to the corresponding Krylov subspace:

δQn ∈ Vect
(

(M −∆tJn)i F (Qn)
)

0≤i<k
. (A.4)

114



115

Now, there are no reasons for SMδQn to be equal to zero. For example, the solution computed
with the smallest Krylov subspace dimension (k = 1) is parallel to F (Qn), and then SMδQn ∝
SM F (Qn) and therefore is not null.

With preconditioning however, we can recover the conservation property. If we use the invert
of the mass matrix as a preconditioner, either a left or a right one, we have that:

δQn ∈ Vect (vi)0≤i<k with vi =
(
Id−∆tM−1Jn

)i
M−1 F (Qn) . (A.5)

We can verify by recurrence that SMvi = 0:

• SMv0 = SMM−1 F (Qn) = S F (Qn) = 0

• if SMvi = 0, then SMvi+1 = SM
(
Id−∆tM−1Jn

)
vi = SMvi −∆tSJnvi = 0 as SJn = 0.

Then, we have that SMδQn = 0 which means the preconditionned method preserves the con-
servation property.
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Abstracts

Résumé de la thèse en français
Cette thèse s’intéresse aux performances de l’intégration temporelle du code CEDRE sur des

problèmes stationnaires. CEDRE est une plateforme logicielle visant la résolution des problèmes
multi-fluides pour des applications en énergétique à échelle industrielle. Elle est composée de
plusieurs solveurs, chacun dédié à un ensemble de phénomènes physiques. Plus précisément, nous
regardons comment améliorer la rapidité, robustesse et convergence de l’intégration temporelle.
Pour des raisons de stabilité nous nous intéressons à des méthodes implicites, en particulier à la
méthode d’Euler implicite. Ces méthodes nécessitent la résolution de problèmes non-linéaires,
qui nécessitent à leur tour la résolution de problèmes linéaires. Le passage de l’un à l’autre se fait
par la présence de la Jacobienne des fonctions du problème non-linéaire. Une méthode de Krylov
est déjà existante dans CEDRE pour l’inversion de systèmes linéaires: la méthode GMRES. Nous
utilisons le fait qu’elle n’a pas explicitement besoin de la matrice pour l’inverser et mettons en
place une méthode JFNK. Le but est d’améliorer la précision de la matrice Jacobienne utilisée, en
espérant que cela améliorera la précision globale de l’intégration temporelle. Ceci est justifié par le
fait qu’avant cette thèse la Jacobienne utilisée est très approximée, notamment en ce qui concerne
les modélisations fines des solveurs, comme les termes sources turbulents, et les méthodes de
reconstruction, comme les méthodes MUSCL. Une implémentation d’une méthode sans-matrice
est mise en place de manière générique de sorte que tout solveur de CEDRE puisse utiliser cette
formulation. Cela ouvre de plus la porte à une résolution implicite couplée des solveurs, chose non
permise avec la structure actuelle de CEDRE. La méthode JFNK est comparée aux méthodes
préexistantes de CEDRE sur des applications typiques de complexité croissantes choisies afin de
représenter les fonctionnalités du solveur.

Dans un second temps, nous élargissons le contexte d’étude en nous intéressant aux méthodes
d’intégration exponentielles, cette fois avec le solveur JAGUAR. Ce changement de solveur est
justifié par la plus grande précision apportée par la méthode des Différences Spectrales utilisée
comme schéma de discrétisation spatiale, précision nécessaire à l’analyse de ces nouveaux schémas
temporels très précis. Le choix de s’intéresser aux méthodes exponentielle est justifié par le fait
que ces méthodes réutilisent beaucoup des ingrédients de l’approche JFNK précédente. Nous
choisissons, implémentons et analysons un ensemble de méthodes exponentielles, en comparaison
à des méthodes déjà présentes, sur plusieurs cas pour montrer leur intérêt.
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Thesis abstract in English
This thesis focuses on the performance of the time integration of the CEDRE code on steady

problems. CEDRE is a software platform aimed at solving multi-fluid problems for industrial-
scale energetics applications. It is composed of several solvers, each dedicated to a set of physical
phenomena. More precisely, we are looking at improving speed, robustness and convergence of
the time integration. For stability reasons, we are interested in implicit methods, in particular
the implicit Euler method. These methods require solving nonlinear problems, which in turn
requires solving linear problems. The transition from one to the other corresponds to the presence
of the Jacobian matrix of functions from the non-linear problem. A Krylov method already exists
in CEDRE for the inversion of linear systems: the GMRES method. We use the fact that it
does not explicitly need the matrix to invert it and implement a JFNK method. The aim is
to improve the accuracy of the Jacobian matrix used, in hope that this will improve the overall
accuracy of the time integration. This is justified by the fact that prior to this thesis the Jacobian
matrix used is very approximate, especially with respect to many of the fine modelling features
of the solver, such as turbulent source terms, as well as reconstruction methods, such as the
MUSCL one. A formulation of the matrix-free method is generically implemented so that any
CEDRE solver can use this formulation. This also opens the door to coupled implicit solving,
something not allowed with the current CEDRE structure. The JFNK method is compared to
pre-existing CEDRE methods on typical applications of increasing complexity chosen to represent
the functionality of the solver.

In a second step, we broaden the context by looking at exponential integration methods, this
time with the JAGUAR solver. This change of solver is justified by the higher accuracy brought
by the Spectral Difference method that JAGUAR uses as a spatial discretization scheme, neces-
sary to analyze these new very accurate temporal methods. The choice to focus on exponential
methods is justified by the fact that these methods reuse many of the ingredients of the previous
JFNK approach. We select, implement and analyse a set of exponential methods, in comparison
to existing methods, on several test cases to show their interest.
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This thesis focuses on the performance of the time integration of the CEDRE code on steady problems. CEDRE is a software 
platform aimed at solving multi-fluid problems for industrial-scale energetics applications. It is composed of several solvers, each 
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change of solver is justified by the higher accuracy brought by the Spectral Difference method that JAGUAR uses as a spatial 
discretization scheme, necessary to analyze these new very accurate temporal methods. The choice to focus on exponential 
methods is justified by the fact that these methods reuse many of the ingredients of the previous JFNK approach. We select, 
implement and analyse a set of exponential methods, in comparison to existing methods, on several test cases to show their 
interest.
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