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Abstract

Residual connections are ubiquitous in deep learning, since besides
residual networks [He et al., 2016b, He et al., 2016a] and their variants,
they are also present in Transformers [Liu et al., 2021, Dosovitskiy et al.,
2021]. The dynamic view of residual networks views them as analogous
to a forward Euler scheme for an ordinary differential equation [Weinan,
2017]. We can then say that residual networks transport input points in
space, time being represented by the depth of the network. This viewpoint
has, for example, led to new architecture inspired by other numerical
schemes for differential equations [Lu et al., 2018, Haber et al., 2019]. On
the other hand, a bias of residual networks towards small perturbations of
the input has been observed [Greff et al., 2016, Hauser, 2019, Jastrzebski
et al., 2018, De and Smith, 2020, Chang et al., 2018b]. In the context of
the dynamic view of residual networks mentioned above, this means a bias
towards a small transport cost. In a first paper [Karkar et al., 2020], we
experimentally verify that this bias is beneficial and should be encouraged
and we show that forcing the network to approximate an optimal transport
map by regularizing its transport cost improves its generalization ability
and training stability. In a second paper [Karkar et al., 2023a], we show
that applying this transport regularization to successive neural modules
that don’t back-propagate to each other amounts to following a gradient
flow for minimizing the loss in distribution space, thus improving the
performance of module-wise training, which consumes a lot less memory
than end-to-end training. In a third paper [Karkar et al., 2023b], we
propose a detector of adversarial and out-of-distribution samples that is
based on the view of residual networks as discrete dynamical systems and
show that transport regularization makes adversarial detection easier.
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1 Introduction

1.1 Context
Machine learning is the prevailing current approach in the field of artificial
intelligence. It focuses on designing systems that automatically learn from
observed data [Russell and Norvig, 2020]. In the past twenty years, deep
learning, i.e. the use of deep artificial neural networks, has emerged as a crucial
advancement in machine learning [Goodfellow et al., 2016]. It has become the
state-of-the-art in nearly all tasks, from classification to generation, in the fields
of computer vision [Krizhevsky et al., 2012], natural language [Wu et al., 2016],
sound [Purwins et al., 2019], speech [Mehrish et al., 2023] and video [Sharma
et al., 2021] processing, and has been applied successfully to other tasks such as
dynamical system forecasting [de Bezenac et al., 2018], biology [Jumper et al.,
2021] and reinforcement learning [Silver et al., 2016].

In all these applications, the neural network architectures used rely on a set of
heuristics, techniques and components that are omnipresent. These components,
and especially the interactions between them, are not yet fully understood
theoretically. They include back-propagation [Rumelhart et al., 1986] and
stochastic gradient descent [Bottou, 2012, Amari, 1967], or a variant of it [Bottou
et al., 2018], for training the model, non-linear activations (ReLU [Fukushima,
1975] very often), normalization layers (most often batch normalization [Ioffe and
Szegedy, 2015] or layer normalization [Ba et al., 2016]) and the importance of a
good initialization [Saxe et al., 2014, He et al., 2015]. Among these ever-present
elements is the architectural component known as a skip (or residual) connection
[He et al., 2016b, He et al., 2016a].

Indeed, residual networks and their variants are a very popular neural network
architecture, especially in computer vision. Their main building block, the
residual connection, has become ubiquitous in state-of-the-art architectures such
as Transformers used in natural language processing.

1.2 Motivation
Many works have tried to explain the success of residual networks through both
empirical and theoretical explorations, and to propose new improvements (archi-
tectures, initializations, training procedures...) suggested by these explanations.

A point that stands out is that it is precisely their initialization as a perturbation
of the identity function that biases residual networks towards finding good
solutions to learning problems that only minimally move the inputs.

We position ourselves in this field of research that tries to explain the importance
of skip connections and then improve the performances of networks that use
them.

1



1 Introduction

1.3 Contributions
The particular point of view of the functioning of residual networks that we
consider is that of discrete dynamical systems. Indeed, residual networks can
be viewed as a discrete Euler scheme for a differential equation. We further
link this to the theory of optimal transport in its dynamical formulation. This
allows us to see residual networks as discrete transport systems that move their
input points through space in time, time being represented by the depth, to
disentangle them before they are classified by a linear classifier.

Through this understanding, we propose a regularization that is particularly
well-adapted to residual networks and that improves their training stability and
generalization ability. Indeed, from this viewpoint, the bias towards small resid-
uals means a bias towards a small transport cost. Since we verify that this bias
is beneficial, a natural idea that follows is to regularize residual networks during
training by penalizing their transport cost, which is the distance by which the
input points travel through the residual blocks, thereby reinforcing the desirable
bias towards remaining close to the identity function. This regularization forces
the solution network to be an optimal transport map in the sense of optimal
transport theory, thus giving it some regularity. In practice, this is showcased by
increased stability (less variance in the results and the ability to train without
batch normalization for example) and better accuracy at test time.

This transport regularization has other interesting properties that we exploit for
two applications: module-wise training and adversarial detection.

Firstly, the quantity we regularize is in fact a distance between probability
distributions (the Wasserstein distance). Therefore, this regularization allows to
split neural networks into modules and to train them module-wise, i.e. without
back-propagation between the modules, in a theoretically sound way and with
good performances. This type of training is interesting in practice in constrained
settings as it does without many of the back-propagated gradients of end-to-end
back-propagation, thus consuming less memory. The transport regularization
keeps the early modules from overfitting and makes the modules take small
proximal steps to minimize the loss in the Wasserstein metric. This allows the
modules to build upon each other in accuracy without back-propagation between
them, which is exactly the property desired in module-wise training.

Secondly, The transport regularization also has the particularity of having
a value for each input image. The transport statistics therefore allow us to
study the behavior of the network on a particular image. We can therefore use
these transport statistics that describe the trajectory of the input in space for
the purpose of detecting adversarial attacks. We propose a novel detector of
adversarial and out-of-distribution samples that tells clean inputs from abnormal
ones by comparing the discrete vector fields they follow throughout the network’s
layers before the final classification layer. We also show that minimizing the
transport cost gives the network more regularity only on the support of the
clean data distribution. This makes the network’s activations on clean samples

2



1 Introduction

more distinguishable from those on abnormal samples, and thus improves the
performance of adversarial detection methods that use the internal embeddings
as inputs.

1.4 Outline
In Section 2 we present the related work and necessary background on residual
networks, their dynamic interpretation and the advances that followed from it,
numerical methods for ordinary differential equations and optimal transport
theory.

In Section 3, we present the work done in [Karkar et al., 2020]. We first verify
experimentally that the bias of residual networks towards minimal transforma-
tions is beneficial, and that it means a bias of residual networks towards being
good approximators of optimal transport maps. We then formalize the idea
of encouraging small transport cost by linking this bias to optimal transport
theory in its dynamic formulation and implement it as a transport regularization.
This means that we seek to retrieve a network that solves the task at hand
while moving the input points as little as possible. We theoretically prove
that this leads to regular networks. Experimentally, our method improves the
generalization of residual-type networks, especially in small data and overfitting
regimes. It also improves training stability, allowing for example to train deep
networks without batch normalization.

In Section 4, we present the work done in [Karkar et al., 2023a], where we show
that applying this transport regularization to successive neural modules that
don’t back-propagate to each other amounts to following a gradient flow for
minimizing the loss in distribution space. This offers a new formulation and
method for greedily training neural networks module-wise, i.e. splitting the
network into modules and training these modules without back-propagation
between them. This requires less memory than standard end-to-end training
and has therefore been used in constrained settings such as training on mobile
devices. Experimentally, regularizing the transport cost of each module leads to
better performances of these networks by avoiding the problem of stagnation
or collapse in accuracy along the depth observed in greedily-trained modules,
whereby earlier modules overfit and deeper ones stop improving the test accuracy
or even degrade it.

In Section 5, we present the work done in [Karkar et al., 2023b], where we
propose a detector of adversarial and out-of-distribution samples that uses
the spatiotemporal dynamics of the inputs throughout the network to detect
abnormal inputs. We also show that the increased regularity guarantee given by
the transport regularization only on the support of the data makes detection of
adversarial attacks, that tend to lie outside the data manifold, easier.

In Section 6, we conclude and discuss future avenues of research. The main
idea for future work is to extend the analogy between neural networks and
numerical schemes for differential equations to include adaptive schemes. Indeed,

3



1 Introduction

architectures that imitate schemes that are of higher order than the Euler
method have been proposed, but the possibilities and advantages of including
adaptive methods, which rely on imbedded schemes of different orders, have
not been sufficiently explored. These possibilities include ensembling different
forward passes at test time to improve performance, and adaptively adjusting
the depth of the network during training to the complexity of the task at hand.

4



2 Background

We present in this section the background and notions that are necessary to
all the following sections. The notions that are specific only to a particular
section are presented in it, and more detailed background can be found in the
Appendix. Here, we define residual networks, stress their importance in modern
deep learning and present some interpretations of their functioning, focusing on
the iterative refinement and dynamic interpretations. We then discuss recent
advances and ideas that were inspired by these interpretations. Finally, we
present the essential notions of optimal transport theory that we will use later.

2.1 Residual Networks
Residual networks (ResNets) [He et al., 2016b, He et al., 2016a] and their
variants such as ResNeXt [Xie et al., 2017] and WideResNet [Zagoruyko and
Komodakis, 2016] have become an important architecture in deep learning,
especially for computer vision. They allowed for training very deep models: up
to 1000 layers, while training compositional (i.e. non-residual) networks deeper
than 20 layers remains challenging [Jastrzebski et al., 2018, Balduzzi et al., 2017].
Residual networks and their variants reach state-of-the-art performances on many
computer vision tasks such as image classification [Xie et al., 2017, Mahajan
et al., 2018, Wightman et al., 2021], unsupervised domain translation [Zhu
et al., 2017], image segmentation [Pohlen et al., 2017, Chen et al., 2017a] and
action recognition [Tran et al., 2018]. They have also been used with success in
speech and natural language processing applications [et al., 2016, Xiong et al.,
2017, van den Oord et al., 2016].

Furthermore, residual connections are a basic building block in many state-of-
the-art architectures such as EfficientNet [Tan and Le, 2019] and MobileNetV2
[Sandler et al., 2018], which use a so-called inverted residual block. Residual
connections have also been added to prior architectures such as Inception
to improve their performances [Szegedy et al., 2017], and are used in some
U-Net architectures [Janner et al., 2022]. If we call a residual network any
neural network whose architecture is made up of successive residual blocks
(preceded by an initial encoding, separated by pooling layers and followed by
a classification head), then vision Transformers such as Swin [Liu et al., 2021]
and ViT [Dosovitskiy et al., 2021], video Transformers such as TimeSFormer
[Bertasius et al., 2021], and natural language processing Transformers such
as GPT [Radford et al., 2018] can also be considered residual networks, with
attention and multilayer perceptrons instead of convolutions in their residual
functions.

A residual block (ResBlock) is an architectural component in a neural network
that has as input x (an embedding at a certain depth) and outputs x+ r(x).
We will call the function r associated with a residual block its residual function
(or forcing function), and r(x) the residue. Consecutive residual blocks with

5



2 Background

residual functions rm applied to an input x0 can then be written

xm+1 = xm + rm(xm) (1)

The addition of x to r(x) is called a skip connection or a residual connection.
More generally, a skip connection saves the value of the input to some layer
and uses it later in the network. The residual point of view is different from
the traditional one where the data is transformed compositionally by applying
f1◦f2◦f3◦ ...fm to the input. In a residual architecture, the input is transformed
in an additive manner by adding residues to it.

This rewriting of course does not change the representation power of the net-
work (i.e. the functions it is able to approximate). Networks with layers that
apply xm+1=fm(xm) where the input and output of fm have the same dimen-
sion can be reformulated as residual blocks by taking as residual functions
rm(xm)=fm(xm)−xm so that xm+1=xm+rm(xm). The theory and implementa-
tion developed apply therefore directly to networks with stages made up of such
layers, which includes for examples VGG networks [Simonyan and Zisserman,
2014]. The particularity of residual blocks in residual networks and Transformers
is then that they are initialized to functions of the form id + r, which confers
certain biases to the training procedure and to the solution that will be found.
It is these biases that we aim to uncover and exploit.

2.2 Residual Block Architectures
Typically the residual function of a residual block used for a vision task contains
two or three convolutions with activations and batch normalisations. The basic
residual block architecture is in Figure 1 below.

Figure 1: Basic residual block architecture proposed in [He et al., 2016a]. BN: batch normal-
ization, ReLU: x 7→ (x)+. Conv: convolution. d: number of channels.

The other common residual block architecture is called the bottleneck residual
block [He et al., 2016b, He et al., 2016a]. While the convolutions in the basic block
keep the same number of channels, the bottleneck block has three convolutions,
the first of which (a 1× 1 convolution) reduces the number of channels. The

6



2 Background

third convolution (also 1 × 1) restores it to that of the block’s input. This
structure, applied across many paths, is present in the residual block used in
the ResNeXt architecture. The bottleneck block and the ResNeXt block are
illustrated in Figure 2 below.

Figure 2: Bottleneck residual block (left) and ResNeXt block (right) architectures. From [Xie
et al., 2017]. A convolutional layer is shown as (number of input channels, filter size, number
of output channels).

Finally, we mention the inverted residual block. It was proposed initially for the
MobileNetV2 [Sandler et al., 2018] architecture for efficiency reasons and has
been used since for mobile-optimized networks. It uses an inverse structure to the
bottleneck block, as the input and output now have few channels, and the first
1× 1 convolution increases the number of channels before the third convolution
reduces it back to that of the input. It also uses a depth-wise convolution for
the second 3× 3 convolution, which reduces the number of parameters. This
architecture is compared to the bottleneck architecture in Figure 3 below.

Figure 3: Bottleneck residual block (left) and inverted residual block (right) architectures.
From [Sandler et al., 2018]. The thickness indicates the number of channels.

Residual blocks can be separated by layers that change the dimensions of the
embedding (for example pooling layers and patch merging layers). If the same
embedding dimension is kept, we call the network a single representation ResNet.

7



2 Background

If the embedding dimension changes as in the original ResNet of [He et al.,
2016a], we call each group of residual blocks that keep the same dimension
a residual stage. In Figure 4, we represent a residual stage containing three
consecutive basic residual blocks.

Figure 4: Three consecutive residual blocks.

Below in Figure 5 is the Swin Transformer architecture with 4 residual stages
separated by patch merging. We see that the typical Transformer block is made
up of two residual blocks, the first containing self-attention and the second
containing a multilayer perceptron. The Transformer block in ViT (Vision
Transformer, [Dosovitskiy et al., 2021]) is very similar.

Figure 5: Swin Transformer architecture with 4 residual stages from [Liu et al., 2021]. MLP:
multi-layer perception. LN: layer normalization. W-MSA: window multi-head self-attention.
SW-MSA: shifted window multi-head self-attention.
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2.3 Interpretations of Residual Networks
The initial intuition behind the design of the ResBlock in [He et al., 2016b] is
that adding more layers to a network should not decrease its performance, as the
deeper network contains the shallower one by simply adding identity mappings.

However, increased depth in compositional networks is observed to cause a
decrease in training accuracy. The residual block architecture was proposed as
a way of forcing deep networks to only learn perturbations from identity, as
learning the zero function is easier than learning the identity function. This also
helped with the problems of vanishing and exploding gradients (exacerbated in
deeper networks as gradients multiply).

Many perspectives try to further explain how residual connections work and
why they perform so well. Once an interesting explanation is found, it is often
possible to deduce from it new methods, architectures and improvements to
residual networks and to neural networks in general.

In [Balduzzi et al., 2017], the authors identify the problem of shattered gradients.
They show, experimentally and theoretically, that correlations between gradients
of deeper layers at initialization decay exponentially with depth in compositional
networks, making them resemble white noise. More precisely, they consider
the gradient of the network’s output with respect to a fixed neuron’s output
for different inputs. Because of the chain rule, these gradients are strongly
linked (via terms that are independent of the network’s architecture) to the
gradients with respect to the weights computed during optimization. This
decay in correlations between gradients of deeper layers makes training difficult
as it leads to averaging white-noise-like gradients across minibatches, hinders
optimization algorithms that assume gradients at nearby points are similar (e.g.
momentum-based and accelerated methods) and causes the effect of a neuron on
the output to become increasingly unstable as the depth increases. The authors
show that, in contrast, gradients in residual networks behave more like brown
noise and that the correlations between them decrease sublinearly with depth
(when batch normalization is used). From this, they propose a new initialization
that makes training deep non-residual networks easier.

In the ensemble view [Veit et al., 2016, Huang et al., 2018], residual networks
are thought to learn an exponential ensemble of shallower models. For a residual
network of depth 3, the output x3 can indeed be written

x3 = x0 + r0(x0) + r1(x0 + r0(x0)) + r2(x0 + r0(x0) + r1(x0 + r0(x0)))

The input x0 then has many paths to reach the final classification layer. If this
classification layer is linear, then its output can be seen as the sum of its outputs
on many different shallower learned representations of the input x0, starting
from x0 itself to the deepest representation r2(x0 + r0(x0) + r1(x0 + r0(x0))).
[Huang et al., 2018] combine this point of view with boosting theory [Freund
and Schapire, 1997] to propose an algorithm for sequentially training residual
networks, as we do in Section 4.
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2.4 The Iterative Refinement View of Residual Networks
A view of residual network that is of use to us is that of unrolled iterative esti-
mation, where residual blocks are thought to iteratively refine representations
instead of learning new ones [Greff et al., 2016, Liao and Poggio, 2016, Hauser,
2019, De and Smith, 2020]. This view essentially verifies that residual blocks,
especially deeper ones, do remain close to the identity function. Paper [Jas-
trzebski et al., 2018] explores this view further, calling it iterative refinement
(or iterative inference). The authors rewrite the loss L of a residual network
with M residual blocks by applying recursive Taylor expansions:

L(xM ) = L(xM−1 + rM−1(xM−1))

= L(xM−1) +∇L(xM−1) · rM−1(xM−1) +O(r2M−1(xM−1))

= L(xm) +
∑

m≤i<M

∇L(xi) · ri(xi) +O(r2i (xi))

which holds for any 0 ≤ m < M . This is a good approximation if the magnitude
of the residual functions ri is small. Thus, for these blocks, the training can be
thought of as in part minimizing the terms ∇L(xi) · ri(xi), which can be done by
making ri(xi) point in the opposite half-space to ∇L(xi). The block operations
xi + ri(xi) are therefore moving the input towards the half-space of −∇L(xi).
A residual block is then said to perform iterative refinement or inference if,
on average on the dataset, its residual function ri has a small magnitude and
satisfies ∇L(xi) · ri(xi) < 0. A residual block whose residual function has a high
magnitude is said to learn a new representation of the data, which is slowly
refined by later blocks performing iterative inference.

It is observed in [Greff et al., 2016, Hauser, 2019, Jastrzebski et al., 2018, Chang
et al., 2018b] that only few early residual blocks in each residual stage learn
a new representation and that the deeper blocks in a residual stage perform
iterative refinement according to the definition above. Figure 6 shows the ratio
∥ri(xi)∥
∥xi∥ and the cosine loss ∇L(xi)·ri(xi)

∥∇L(xi)∥∥ri(xi)∥ on CIFAR10 of 4 ResNets.

Figure 6: Ratio of residue norm to input norm (first row) and cosine loss (second row) of 4
residual architectures on CIFAR10 from [Jastrzebski et al., 2018].
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We see that the peaks in the ratio come in fact in the early residual blocks of
a residual stage, especially on the first architecture on the left. This means
that residual blocks are indeed biased towards minimally modifying their input.
Furthermore, [Zhang and Wynter, 2018, Zhang et al., 2019] add a fixed positive
weight h to the residual function, i.e. consider residual blocks of the form
x+ h r(x), and find that taking a small positive h < 1 makes residual networks
more stable. This indicates that making the residual blocks even closer to
identity is beneficial.

In [Jastrzebski et al., 2018], two suggested modifications to residual networks
follow from this finding that later residual blocks all perform similar iterative
refinement. First, they propose to unroll the last block at inference time (i.e.
apply it many times) to improve the accuracy of the model on borderline inputs,
that is, inputs that are very close to the decision boundary. Secondly, they
propose to make the later residual blocks share the same parameters to reduce
memory footprint.

The fact that residual blocks only minimally build upon each other instead of
learning new representations also explains why stochastic depth training [Huang
et al., 2016, Hayou and Ayed, 2021], i.e dropping a random subset of layers at
each training epoch and replacing them with the identity function, is particularly
effective on residual networks. It increases their test accuracy as it functions as
a regularization [Hayou and Ayed, 2021], and of courses reduces training time.
In [Huang et al., 2016], stochastic depth training allowed for training residual
networks that have more than 1200 layers on CIFAR10 while still improving
test accuracy, i.e without overfitting.

Finally, [De and Smith, 2020] also find that the bias towards small residuals is
beneficial and allows one to successfully train deeper networks. They further
show that batch normalization encourages this bias by downscaling the variance
of the residue at initialization compared to the variance of the identity branch
of the residual block. From this they develop an initialization that allows
to train deep residual networks without batch normalization. Our transport
regularization in Section 3 also allows to train deep residual networks without
batch normalization.

2.5 Numerical Methods for Differential Equations
Before introducing the dynamic interpretation of residual networks, we need to
introduce numerical schemes for ordinary differential equations (ODEs). Given
a time-dependent vector field vt : Rd → Rd, consider the initial value problem
of finding a function x : I → Rd that satisfies

x′(t) = vt(x(t)) (2)

with initial condition x(t0)=x0, where I is the interval [t0, t0+T ].
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Equivalently, the integral form of this problem is finding x that satisfies

x(t) = x0 +

∫ t

t0

vt(x(t)) dt (3)

Finding closed-formed solutions to this problem can be difficult. We wish then
to approximate the values x takes at certain time points. Given a subdivision
t0<t1<..<tN=t0+T of I, we denote the step-sizes hn:=tn+1−tn for 0≤n<N and
define hmax := maxhn. The explicit Euler method is a numerical approximation
method that approximates the values (x(tn))n through the values (xn)n given
by

xn+1 = xn + hnvtn(xn) (4)

starting from the initial condition x0. This method simply comes from a first-
order Taylor expansion of x, or from a left-hand rectangle method for approxi-
mating the integral in (3). The right-hand rectangle method for approximating
the integral in (3) leads to the implicit Euler method :

xn+1 = xn + hnvtn+1
(xn+1) (5)

A fixed-point method [Shashkin, 1991] or the Newton-Raphson method [Ypma,
1995] can be used to solve (5) for xn+1.

A numerical method converges if

max
n
∥x(tn)−xn∥ −−−−−−−−→

hmax→0
0

where maxn ∥x(tn)−xn∥ is the global error of the method. Euler’s method
converges if v is C0 and Lipschitz in x. If v is also C1 then it converges with
speed O(hmax). See Appendix A.1 for more details.

2.6 Residual Networks as Discrete Dynamical Systems
The view we consider is the dynamic view. It views residual network as an Euler
discretization of a differential equation on the interval I = [0, 1].

xm+1 = xm + rm(xm) ←→ x′(t) = vt(x(t)) (6)

where rm approximates the velocity field vt at time t = tm and we suppose that
the time-steps are learned inside rm. This observation was first made in [Weinan,
2017] and allows to draw on the rich theory of differential equations and on
the numerical methods developed to simulate them. New network architectures
were designed by considering other numerical schemes for the approximation
of differential equations such as linear multi-step methods [Lu et al., 2018],
implicit-explicit methods [Haber et al., 2019], and Runge-Kutta methods [Zhu
et al., 2022]. We present some of these architectures below.

The IMEX architecture [Haber et al., 2019] considers a parametrized differential
equation x′(t) = v(x(t); θ(t)) where v is a neural network parametrized by θ
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and discretizes it using the implicit-explicit numerical method [Ascher et al.,
1995, Ascher et al., 1997, Ascher and Petzold, 1998]. This method rewrites the
differential equation as follows x′(t) = v(x(t); θ(t)) + Ax(t) − Ax(t) where A
is a matrix to be chosen or learned. The method then uses an explicit Euler
scheme for the first part v(x(t); θ(t)) +Ax(t) and an implicit Euler scheme for
the second part Ax(t). This leads to the following numerical step and block
architecture

xn+1 = (Id+ hA)−1(xn + hAxn + hv(xn, θn)) (7)

The matrix A is a trainable group convolution and the left-multiplication by
an inverse matrix is done in the Fourier domain. According to [Haber et al.,
2019], this architecture has two advantages in theory: the increased stability of
implicit methods, and the global field of view connecting all pixels thanks to
the multiplication by (Id+ hA)−1, since this matrix is dense. Experiments on
tasks where the field of view is important such as image segmentation [Minaee
et al., 2022] and depth estimation [Masoumian et al., 2022] confirm this second
advantage over ResNets.

[Lu et al., 2018] build architectures called LM-ResNet and LM-ResNeXt that
mimic linear multi-step numerical schemes [Dahlquist, 1963], while FractalNet
[Larsson et al., 2017] and RKCNN [Zhu et al., 2022] mimic Runge-Kutta
numerical methods (see Appendix A.2 for a definition of these methods). PolyNet
[Zhang et al., 2017b] use a polynomial approximation to the implicit Euler
method (5) to design their architecture. The increased stability of implicit
methods allows them to increase the step-size and therefore to reduce the depth
of the network.

Forward passes that imitate partial differential equations were also proposed in
[Ruthotto and Haber, 2018]. The stability of the forward pass was also studied
through the lens of dynamical systems, leading to considering particular forms
of differential equations to imitate such as Hamiltonian systems [Haber and
Ruthotto, 2017], and to enforcing particular conditions on the weight matrices
[Ciccone et al., 2018].

Reversibility, which means that the dynamics of a differential equation can
also be simulated backwards in time, is an important notion in the study
of dynamic systems. The dynamic view was therefore linked to the possible
reversibility of residual networks in [Chang et al., 2018a]. The possibility of
making residual networks reversible is one of their advantages. The reversible
residual network called RevNet designed in [Gomez et al., 2017] allows to
reconstruct the activations of a layer from those of the next layer. It is then
possible to perform back-propagation without storing the activations in memory,
except for those of a handful of non-reversible layers. These residual networks
therefore have an activation storage complexity that is independent of depth and
an order of magnitude lower than that of non-reversible networks of equal size.
Reversible networks called i-RevNets [Jacobsen et al., 2018] are an extension of
these RevNets.
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Some of the architectures discussed above are illustrated in Figure 7 below.

Figure 7: Some architectures inspired by numerical schemes. From [Lu et al., 2018].

2.7 Neural Networks as Transport Systems
The dynamic view also allows one to consider that neural networks are transport-
ing their inputs in space, with depth representing time, before a linear classifier
is applied (if the task at hand is classification). Here, we discuss other works
that share this point of view.

NeuralODE [Chen et al., 2018, Ruiz-Balet and Zuazua, 2021, Yan et al., 2020]
take the continuous limit of a residual network and parameterize and learn
the velocity field of an ordinary differential equation that is then numerically
integrated to get the output. More precisely, since a residual network is analogous
to an Euler scheme, taking its limit as the step size goes to zero suggests directly
learning the continuous velocity field vt that moves the input points in space
so that they land in a configuration that solves the task. So if L is the loss,
and x0 is the input, we look for a vector field vt (in practice a neural network
parametrized by θ) such that the initial value problem x′(t) = vt(xt) on the
interval [0, 1] with initial condition x(0) = x0 has a solution curve x that ends
up at a value x(1) that has a small loss. So we minimize (through gradient
descent) in θ

L(x(1)) = L

(
x0 +

∫ 1

0

v(t, x(t); θ) dt

)
≈ L(Solver(v(., .; θ), x0)) (8)

where Solver applies a numerical solver such as Euler to the initial value
problem and returns an approximation of x(1). If the task is classification, a
linear classifier is applied to x(1) before the loss is computed and an embedding
might precede going through the numerical solver. The classifier and encoder
are then jointly learned with the dynamics network v.

Differentiating the loss (8) in θ can be done in two ways. The first is to discretize
then differentiate, i.e. to differentiate L(Solver(v(., .; θ), x0)) with respect to
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θ by simply using automatic differentiation to back-propagate through the
operations of the numerical solver (which are all differentiable). The second is to
differentiate then discretize, i.e. to use the so-called adjoint state method, which
can be thought of as an instantaneous analog of the chain rule, to differentiate
L(x0 +

∫ 1

0
v(t, x(t); θ) dt) in θ. The formula for this gradient includes an integral

that is then also discretized through a numerical solver.

In [Li et al., 2018], the parameter θ in (8) is allowed to depend on t and the
resulting problem is looked at as the optimal control problem [Athans and
Falb, 2007] of finding a control function θ(t):[0, 1]→ Θ that is going to guide
the solution curve x to the ordinary differential equation x′(t) = v(t, x(t); θ(t))
towards a ending point x(1) with a small loss. The authors then use Pontryagin’s
maximum principle (PMP, [Pontryagin, 1987]) to state the necessary optimality
conditions for this optimal control problem, and then use the method of successive
approximations (MSA, [Chernousko and Lyubushin, 1982]) to discretize and
numerically solve for these optimality conditions. This leads to an alternative
training algorithm for residual networks.

To improve adversarial robustness, [Wang et al., 2019a] add a diffusion term
to the transport/continuity equation (equation (11) in Section 2.8 below) that
a residual network approximates, which amounts to training an ensemble of
Gaussian-perturbed residual networks.

2.8 Optimal Transport Theory
We quickly introduce here the theory of optimal transport which we will use in the
following sections to analyze residual networks as transport maps. More details
are in Appendix B. Optimal transport deals with the problem of displacing
mass from one configuration to another while expending the least amount of
effort possible. This minimal effort required to move mass from one distribution
to another is actually a distance between distributions that we can equip the
space of probability distributions with to get the so-called Wasserstein space.
Let us first define the push-forward measure:

Definition 1. For a function T : X → Y and a measure µ on X, the push-
forward of µ by T is the measure T♯µ on Y defined by T♯µ(A) = µ(T−1(A)) for
every measurable set A ⊂ Y .

The metric Wasserstein space W2(Ω) := (P(Ω),W2), with Ω a convex and
compact subset of Rd, is the space P(Ω) of probability measures over Ω, equipped
with the distance W2 given by the solution to the Kantorovitch problem

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
Ω×Ω

∥x− y∥2 dγ(x, y) (9)

where Π(µ, ν) is the set of probability distribution over Ω×Ω with first marginal
equal to µ and second marginal equal to ν, i.e

Π(µ, ν) = {γ ∈ P(Ω× Ω) | π1♯γ = µ, π2♯γ = ν}
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where π1(x, y) = x and π2(x, y) = y are projections. Here, γ ∈ Π(µ, ν) is called
a transport plan between µ and ν, and γ(x, y) indicates how much mass from
position x should be sent to position y (see Figure 8 below). This problem has
a solution in our setting and W2 is a geodesic distance (see Appendix B).

Figure 8: The Kantorovitch problem from µ to ν. From [Peyre and Cuturi, 2019]. The black
dots and curve represent the transport plan γ.

If µ is absolutely continuous and ∂Ω is µ-negligible then the minimization
problem in (9) has a unique solution and is equivalent to the Monge problem

W 2
2 (µ, ν) = min

T s.t. T♯µ=ν

∫
Ω

∥T (x)− x∥2 dµ(x) (10)

In the Monge problem, mass is no longer split and all the mass in x goes to T (x)
(see Figure 9 below). A function T that satisfies T♯µ = ν is called a transport
map between µ and ν.

Figure 9: The Monge problem from µ to ν. From [Kolouri et al., 2017].
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The Monge problem has a unique solution T ⋆ linked to the solution γ⋆ of (9)
through γ⋆ = (id, T ⋆)♯µ, where (id, T ⋆) is the function x 7→ (x, T ⋆(x)). The
Monge formulation is more suitable to the classification problems we consider,
since we don’t have a specific target position y to learn a transport plan π(x, y).

Another equivalent formulation of the optimal transport problem in this setting
is the dynamical formulation [Benamou and Brenier, 2000]. Here, instead of
directly pushing samples of µ to ν using T , we can equivalently displace mass,
according to a continuous flow with velocity vt : Rd → Rd. This implies that
the density µt at time t satisfies the continuity equation

∂tµt +∇ · (µtvt) = 0 (11)

assuming that initial and final conditions are given by µ0 = µ and µ1 = ν
respectively. The continuity equation describes the evolution of a probability
distribution under a velocity field. In this case, the optimal displacement is the
one that minimizes the total action caused by the velocity field v :

W 2
2 (µ, ν) =min

v

∫ 1

0

∥vt∥2L2(µt)
dt (12)

s.t. ∂tµt +∇ · (µtvt) = 0, µ0 = µ, µ1 = ν

Instead of describing the evolution of the density through the continuity equation,
we can describe the paths ϕxt taken by particles at position x from µ when
displaced along the flow v. Here ϕxt is the position at time t of the particle
that was at x ∼ µ at time 0. The continuity equation is then equivalent to
∂tϕ

x
t = vt(ϕ

x
t ). Rewriting the conditions as necessary, Problem (12) becomes

W 2
2 (µ, ν) =min

v

∫ 1

0

∥vt∥2L2((ϕ·
t)♯µ)

dt (13)

s.t. ∂tϕxt = vt(ϕ
x
t ), ϕ

·
0 = id, (ϕ·1)♯µ = ν

and the optimal T ⋆ that solves (10) is in fact T ⋆(x) = ϕx1 for ϕ that solves
∂tϕ

x
t = v⋆t (ϕ

x
t ) together with the optimal v⋆ from (13). This formulation is

the most useful to us, as we will discretize ∂tϕxt = v⋆t (ϕ
x
t ) to get a residual

architecture.

Figure 10: Dynamic transport of µ0 to µ1 according to velocity field v (ϕx
t is ϕt(x) in the

text). From [de Bézenac et al., 2021].
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Since we will work with a discrete set of input points, this second dynamic
formulation (13) is more useful to us.

Optimal transport maps have some regularity properties under some boundedness
assumptions. We include one such result here in Theorem 1, and another we
will use in Appendix B.5, along with more background on optimal transport
theory. First let us define Hölder continuity, which is equivalent to Lipschitz
continuity when η = 1:

Definition 2. A function f is η-Hölder on a set X ⊂ Rd if ∀ a, b ∈ X, we have

∥f(a)− f(b)∥ ≤ C∥a− b∥η

for some constants C>0 and 0<η≤1. We denote this f ∈ C0,η(X). If all
derivatives of f up to the k-th order are η-Hölder on X, we write f ∈ Ck,η(X).

We can now state the following regularity theorem for optimal transport maps:

Theorem 1. Suppose there are X,Y , bounded open sets in Rd, such that the
densities of µ and ν are null in their respective complements and bounded away
from zero and infinity over them respectively.

Then, if Y is convex, there exists 0 < η ≤ 1 such that the optimal transport
map T between µ and ν is in C0,η(X).

If Y isn’t convex, there exists two relatively closed sets A in X and B in Y such
that T ∈ C0,η(X \A, Y \B), where A and B are of null Lebesgue measure.

Moreover, if the densities are Ck,η, then C0,η can be replaced by Ck+1,η in the
conclusions above. In particular, if the densities are smooth, then the transport
map is a diffeomorphism.

2.9 Optimal Transport for the Study of Neural Networks
We verify in Section 3.2.2 and Appendix F.5.1 that residual networks are indeed
good approximators of optimal transport maps. This was also confirmed in
[Gai and Zhang, 2021], which was released shortly after our first work [Karkar
et al., 2020], and which finds that residual networks are closer to being optimal
transport maps between their input and output distributions than non-residual
networks.

Also released shortly after our first work, [Finlay et al., 2020] accelerate the
NeuralODE model mentioned in Section 2.7 by adding an optimal transport
regularization to the loss. This makes the learned dynamics v well-behaved, which
means that less numerical integration steps are needed. While NeuralODE has
been tested on classification tasks, it is mainly used for generative and dynamic
modeling tasks.

Optimal transport theory was used in [Sonoda and Murata, 2019] to analyze
deep gaussian denoising autoencoders (not necessarily implemented through
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residual networks) as transport systems. In the continuous limit, they are shown
to transport the data distribution so as to decrease its entropy.

Finally, [de Bézenac et al., 2021] reformulate the unsupervised domain translation
problem tackled by CycleGAN [Zhu et al., 2017, Sim et al., 2020] as an optimal
transport problem that is solved by discretizing its dynamic formulation using
residual networks.

Wasserstein gradient flows in the data space (as in this thesis) appeared recently
in deep learning [Alvarez-Melis and Fusi, 2021, Gao et al., 2019, Liutkus et al.,
2019, Arbel et al., 2019, Ansari et al., 2021], but with a focus on transfer learning
and generation, while we focus on classification (see Section 4.3.2 for more
details). Rather unrelated to our work, [Chizat and Bach, 2018, Chizat, 2020]
used Wasserstein gradient flows in the parameter space to prove convergence of
the training of two-layer neural networks.
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3 A Least Action Principle for the Training of
Neural Networks

Abstract

Neural networks have been achieving high generalization on many tasks
despite being highly over-parameterized. Since classical statistical learning
theory struggles to explain this behavior, much effort has been focused
on uncovering the mechanisms behind it, in the hope of developing a
more adequate theoretical framework and having a better control over the
trained models. We adopt an alternative perspective, viewing the neural
network as a dynamical system displacing input particles over time. We
conduct a series of experiments and, by analyzing the network’s behavior
through its displacements, we show the presence of a low kinetic energy bias
in the transport map of the network, and link this bias with generalization
performance. From this observation, we reformulate the learning problem
as follows: find networks that solve the task while transporting the data
as efficiently as possible. This offers a novel formulation of the learning
problem which allows us to provide regularity results for the solution
network, based on Optimal Transport theory. From a practical viewpoint,
this allows us to propose a new learning algorithm, which automatically
adapts to the complexity of the task, and leads to networks with a high
generalization ability even in low data regimes. The work presented in
this section led to the following publication [Karkar et al., 2020] which
won the runner-up best student paper award at ECML 2020.

3.1 Introduction
Deep neural networks have repeatedly shown their ability to solve a wide range
of challenging tasks, while often having many more parameters than there are
training samples. Such a performance of over-parametrized models is counter-
intuitive. They seem to adapt their complexity to the given task, systematically
achieving a low training error without suffering from over-fitting as could be
expected [Belkin et al., 2019, Nakkiran et al., 2020, Zhang et al., 2017a]. This
is in contradiction with the classical statistical practice of selecting a class of
functions complex enough to represent the coherent patterns in the data, and
simple enough to avoid spurious correlations [Belkin et al., 2018, Hastie et al.,
2001]. Although this behavior has sparked much recent work towards explaining
neural networks’ success [De Palma et al., 2019, Jacot et al., 2018, Novak
et al., 2018, Rahaman et al., 2019], it still remains poorly understood. Among
the factors to consider are the implicit biases present in the choices made for
the parametrization, the architecture, the initialization and the optimization
algorithm, and that contribute all to this success. Our aim is to uncover some
of these hidden biases and highlight their link with generalization.

We will focus on residual networks and adopt the dynamical point of view dis-
cussed in Section 2.6, which allows us to leverage the theories and mathematical
tools developed to study, approximate and apply differential equations. We
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first conduct experiments to observe how neural networks displace their inputs,
seen as particles, through time. We measure a strong empirical correlation
between good test performance and neural networks with low kinetic energy
along their transport flow. From this, we reformulate the training problem as
follows: retrieve the network which solves the task using the principle of least
action, i.e. expending as little kinetic energy as possible. This problem, in its
probabilistic formulation, is tightly linked with and inspired by the well-known
problem of finding an optimal transportation map. This yields new insights into
neural networks’ generalization capabilities, and provides a novel algorithm that
automatically adapts to the complexity of the data and robustly improves the
network’s performance, including in low data regimes, without slowing down
the training. To summarize, our contributions are the following:

− We highlight a low-energy bias in ResNets.

− We formulate a Least Action Principle for the training of neural networks.

− We prove existence and regularity results for networks with minimal energy.

− We provide an algorithm for retrieving minimal energy networks that
leads to better generalization performance on different classification tasks,
without complexifying the architecture.

3.2 Empirical Analysis of Transport Dynamics in Residual
Networks

Before introducing our framework, we conduct an exploratory analysis of the
impact of the network’s inner dynamics on generalization. We present below
two experiments. The first one highlights how good generalization performance
is closely related to low transport cost for classification tasks on MNIST [LeCun
et al., 2010] and CIFAR10 [Krizhevsky, 2009]. This cost therefore appears as
a natural characterization of the complexity and disorder of a network. The
second experiment, performed on a toy 2D dataset, visualizes the transport
induced by the blocks of a ResNet.

We consider ResNets where, after encoding, a data point x0 is transported by
applying xm+1 = xm+rm(xm) for M residual blocks and then classified using F .
We measure the disorder/complexity of a network by its transport cost which is
the sum C =

∑
m ∥rm(xm)∥22 of the displacements induced by its residual blocks.

This quantity corresponds to the kinetic energy of the displacement.

3.2.1 Transport Cost and Generalization in Image Classification

In order to study the correlation between the transport cost of a residual
network and its generalization ability on image data, we train convolutional 9-
block ResNets with different initializations (orthogonal and normal with different
gains), for 10-class classification tasks MNIST and CIFAR10. In Figure 11, each
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point represents a trained network and gives the transport cost C as a function
of the test accuracy of the network.

This experiment clearly highlights the strong negative correlation between
transport cost and good generalization. This illustrates the importance of the
implicit initialization bias and motivates initialization schemes which favor a low
kinetic energy. A number of factors contribute to this low energy bias: small
initialization gains tend to bias ∥rm(xm)∥22 towards small values, and stochastic
gradient descent does not change this much.

Figure 11: Test transport cost C against test accuracy of ResNet-9 models on MNIST (left)
and CIFAR10 (right) with fitted linear regressions, where each color indicates a different
initialization (either orthogonal or normal with varying gains)

3.2.2 Visualizing Network Dynamics in 2 Dimensions

We visualize in 2 dimensions the transport dynamics inside a network. The
task is 2-class classification of a non-linearly separable dataset (two concentric
circles, from sklearn [Pedregosa et al., 2011]) that contains 1000 points with
a train-test split of 80%-20%, see Figure 12 top left. The network is a ResNet
containing 9 residual blocks, followed by a fixed linear classifier. Each residual
block contains two fully connected layers separated by a batch normalization
and a ReLU activation.

With the cross-entropy loss alone, the behavior of a well trained and carefully
initialized network achieving 100% test accuracy is illustrated in the first row
of Figure 12. With a N (0, 5) initialization, significantly bigger than a good
initialization, the test accuracy drops to 98% (average of 100 runs) and the
transport becomes chaotic (Figure 12, second row). Adding the transport cost to
the loss improves the test accuracy (99.7% on average) of this badly initialized
network and the movement becomes more controlled (third row of Figure 12).

Thus, controlling transport improves the behavior and generalization of the net-
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work. This allows to explicitly control the network whereas implicit biases such
as good initialization rely on heuristics. In Appendix F.5.2, more experiments
show that in other situations that deviate from the ideal setting where the task
is perfectly solved, e.g. when using a network which is too large or too small, or
a small training set, controlling the transport cost also improves generalization.

Figure 12: Transformed circles test set by a ResNet-9 after blocks 1, 5 and 9 after training;
first row with good initialization; second row with a N (0, 5) initialization; third row with a
N (0, 5) initialization and the transport cost added to the loss.

In 2 dimensions, we can compute the W2 distance between successive point
clouds before and after each block, and compare it, in Figure 37 in Appendix
F.5.1, to the displacement that the block causes. This confirms that ResNets are
already close to being optimal transport maps between their input and output
distributions, as the distance traveled by the points is close to the minimal
distance possible. We see that the transport regularization encourages this bias.
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3.3 Method and Theory

3.3.1 General Setting

In order to better understand the inner workings of a neural network, we adopt a
viewpoint in which the different mechanisms become apparent and are decoupled.

Decomposing a neural network. We consider the following model of a neural
network where computations are separated into the three steps, i.e. F ◦T ◦E (this
corresponds to the general structure of recent deep models or to the structure
of components of a deep model):

1. Dimensionality change: starting from an input distribution ρ on Rn, a
transformation E : Rn → Ω ⊂ Rd is applied, transforming it into µ = E♯ρ,
a distribution on Ω. This corresponds to the first few layers in most
architectures and represents a change of dimension. We call E the encoder.

2. Data transport: then µ is transformed by a mapping T : Ω→ Ω, which
we see as a transport map. Here, the dimensionality doesn’t change and, if
this part of the network is a sequence of residual blocks, T can be written
as the discretized flow of an ODE.

3. Task-specific final layers: a final function F : Rd → Y is applied to T♯µ
in order to compute the loss L associated with the task at hand, e.g. F
could be a linear classifier. Like E, F is typically made up of a few layers.

Figure 13: Decomposition of a neural network

Our focus is on analyzing the second phase, data transport, and we assume that
the encoder E is pretrained and fixed (this will be relaxed in the experiments).
To solve a complex non-linear task for which a neural network is needed, the
data has to be transformed in a non-trivial way, meaning that this is an essential
phase, for example in the case of classification, T♯µ needs to be linearly separable
if F is linear. This model is quite general, as many ResNet-like architectures [He
et al., 2016b, He et al., 2016a, Xie et al., 2017, Zagoruyko and Komodakis, 2016]
alternate modules that change the dimensionality (step 1, typically pooling or
patch merging) and transport modules that keep the dimensionality fixed (step
2) and according to [Jastrzebski et al., 2018], the transport modules have similar
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behavior. The model can then be considered as a simplified ResNet, sometimes
called a single representation ResNet. Note that [Sandler et al., 2019] finds that
networks that keep the same resolution remain competitive.

The set of admissible targets. As recent neural architectures have sys-
tematically achieved near-zero training error [Belkin et al., 2019, Belkin et al.,
2018, Jacot et al., 2018, Zhang et al., 2017a], we place ourselves in this regime,
which makes it possible to model this as a hard constraint. For some tasks, this
constraint over T is obvious: in a generative setting for example, T♯µ must be
equal to some prescribed distribution ν which is the target of the generation
process. But in general, T is less strictly constrained and the condition depends
on F and L. This leads us to define a set of admissible targets for the task:

SF,L = {ν ∈ P(Ω) | L(F, ν) = 0} (14)

In general, L is fixed while F is learned jointly with T . This set is supposed
to be non-empty for some F and, in general, it will contain many distributions.
The goal of the learning task can then be reformulated as:

Find (T, F ) such that T♯µ ∈ SF,L (15)

An important observation is that, even when SF,L is reduced to a singleton, the
problem is still strongly under-constrained and it is possible to obtain many
such (T, F ) that lead to poor generalization. One can then ask why this is not
the case in practice, as good generalization performance is usually achieved.

The case of classification. Even though our framework is general, we focus
our experiments on classification tasks, with L being the cross entropy loss. The
task consists in separating N classes. We denote µi the class distributions which
are supposed to be distributions in Rd of mutually disjoint supports, meaning
that there is no ambiguity in the class of data points, and such that µ =

∑
wiµi

with
∑
wi = 1 and wi ∈]0, 1[. We want to find a transformation T of these

distributions such that all transported distributions can be correctly classified
by a classifier F . When F is linear, SF,L is the set of distributions which have
N components that are linearly separated by F . Note that we place ourselves
in a noiseless ideal setting where perfect classification is possible. In addition
to the problem of finding T being strongly under-constrained, finding such a
mapping is difficult, especially when only few data samples are available, and
one might wonder whether some mappings are easier to calculate than others.

3.3.2 Formulation

Given the empirical observations of Section 3.2, a natural way to select a robust
model is to select, among the maps which transport µ to SF,L and thus solve the
task, one with a minimal transport cost. This gives us the following optimization
problem:

inf
T,F

C(T ) =
∫
Ω

c(x, T (x)) dµ(x)

subject to T♯µ ∈ SF,L
(16)
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We consider ground costs c(x, y) = ∥x− y∥p with p > 1, and suppose Ω compact
with negligible boundary and µ absolutely continuous. We assume that the space
of classifiers is compact, that the loss L is continuous, that the set ∪F∈FSF,L
is at a finite p-Wasserstein distance Wp from µ (in particular, it is non-empty)
and that all its bounded subsets are totally bounded (i.e. can be covered by
finitely many subsets of any fixed size). These properties depend on the choice
of the loss L and of a class of functions F for the classifier F . The equivalent
dynamical version of (16) is then, as per Section 2.8,

inf
v,F

∫ 1

0

∥vt∥pLp((ϕ·
t)♯µ)

dt

subject to ∂tϕ
x
t = vt(ϕ

x
t )

ϕ·0 = id
(ϕ·1)♯µ ∈ SF,L

(17)

where ∥vt∥pLp((ϕ·
t)♯µ)

=
∫
Rd ∥vt∥p d(ϕ·t)♯µ. The result below shows that Problems

(16) and (17) are equivalent and that the infima are realized as minima when
p = 2:

Theorem 2. The infima of (16) and (17) are finite and are realized through a
map T which is (or a velocity field v which induces) an optimal transportation
map. When c(x, y) = ∥x− y∥p, then (16) and (17) are equivalent.

Proof. From the hypothesis above, there exists ν ∈ SF,L at a finite distance
from µ. Taking any transport map between µ and ν, we see that the infima are
finite (see Appendix B.1 for existence of optimal transport maps).

Consider (16) and take a minimizing sequence (Ti, Fi)i. Set βi = (Ti)♯µ. Then
(C(Ti))i converges to the infimum which is strictly bounded by M > 0. Then, by
definition, for i large enough, W p

p (µ, νi) ≤ C(Ti) ≤M . So that (νi)i is a bounded
sequence in ∪FSF,L. By the hypothesized total boundedness of bounded subsets
and as Pp(Rd) endowed with Wp is a complete metric space (see [Bolley, 2008]
for a proof), up to an extraction, (νi)i converges to ν⋆ in the closure of ∪FSF,L.
Moreover, up to an extraction, (Fi)i also converges to F ⋆ by compactness of
the class of classifiers. Taking T ⋆ the optimal transport map between µ and ν⋆,
we then have, by continuity of L,

T ⋆♯ µ = ν⋆ ∈ SF⋆,L

and C(T ⋆) ≤ lim C(Ti) by optimality of T ⋆, which means, since (C(Ti))i is a
minimizing sequence, that C(T ⋆) minimizes (16). So (T ⋆, F ⋆) is a minimizer
and T ⋆ is an optimal transport map.

Finally, there exists, (Appendix B.4), a velocity field v⋆t inducing the optimal
transport map between µ and ν⋆ which then gives a minimizer (v⋆, F ⋆) for (17).
By the same reasoning, taking a minimizing sequence (v(i), Fi)i and the induced
maps Ti shows that both problems are equivalent.
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Note that uniqueness doesn’t hold anymore, as the constraint T♯µ ∈ SF,L in (17)
is looser than in standard OT. However, as we show in the following section, the
fact that the optimization problems are solved by OT maps will give regularity
properties for the models induced by these optimization problems.

3.3.3 Regularity

Intuitively, the fact that we minimize the energy of the transport map transform-
ing the data is akin to the idea of Occam’s razor: among all the possible networks
that correctly solve the the task, the one transforming the data in the simplest
way is selected. Moreover, it is possible to show that this optimal transformation
is regular: our formulation provides an alternate view on generalization for
modern deep learning architectures in the overparametrized regime.

Optimal maps can be as irregular as needed in order to fit the target distribution,
however in much the same way as successfully trained DNNs, optimal maps
are still surprisingly regular. In a way, they are as regular as possible given
the constraints which is exactly the type of flexibility needed. However, the
constraints in (16) and (17) are looser than in the standard definitions of Optimal
Transport. Still, supposing that the input data distribution has a nicely behaved
density, namely bounded and of compact support, with the same hypothesis as
above, we have the following, which is mainly a corollary of Theorem 2:

Proposition 1. Consider T ⋆ the OT map induced by (16) (or (17)) given by
Theorem 2. Take X, respectively Y , an open neighborhood of the support of µ,
respectively of T ⋆♯ µ, then T ⋆ is differentiable, except on a set of null µ measure.

Additionally, if X is convex and T ⋆ doesn’t have singularities, then there exists
A, respectively B, relatively closed in X, respectively Y , both of null measure,
such that T ⋆ is η-Hölder continuous from X\A to Y \B, i.e. for constants
0 < η ≤ 1 and C > 0 and ∀ x, y ∈ X \A we have

∥T (x)− T (y)∥ ≤ C∥x− y∥η

Proof. This is a consequence of Theorem 2, the hypothesis made in this section
and the regularity theorems in Appendix B.5.

Remark 3. If Y in Proposition 1 is convex then T ⋆ is η-Hölder on all of X, i.e.
T ∈ C0,η(X) (see Theorem 1).

Remark 4. If the distributions µ and ν = T ⋆♯ µ in Proposition 1 are Ck,η (i.e all
derivatives up to the k-th derivative are η-Hölder), then the optimal transport
map T is Ck+1,η (see Theorem 1). This means that the more regular the data,
the more regular the network we find.

There are two results in Proposition 1. The first gives α-a.e. differentiability.
This is already as strong as might be expected from a classifier: there are
necessarily discontinuities at the frontiers between different classes. The second
is even more interesting: it gives η-Hölder continuity over as large a domain
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as possible, and even a diffeomorphism if the data distribution is well-behaved
enough. Here η measures smoothness, the higher its value, the better. In
particular, in the case of classification, this means that the Hausdorff dimension
along the frontiers between the different classes is scaled by less than a factor of
1/η in the transported domain. If the densities are smooth, the dimension even
becomes provably smaller by this result.

Intuitively, this means that the data is transported in a way that preserves
and simplifies the patterns in the input distribution. In the following, we
propose a practical algorithm implementing these models and use it for standard
classification tasks, showing an improvement over standard models.

3.4 Practical Implementation
We propose here an algorithm for training ResNets using the least action
principle by minimizing the kinetic energy. Starting from problem (17) with
p = 2 and the Euclidean norm, we first discretize the differential equation via
a forward Euler scheme, which yields ϕxm+1 = ϕxm + rm(ϕxm). The discretized
flow rm approximates vt at time t = m/M and is parameterized by a residual
function, giving a standard residual architecture. The residual blocks, along
with a classifier F , are parametrized by θ. Next, the constraint (ϕ·1)♯µ ∈ SF,L is
rewritten as L(F, (ϕ·1)♯µ) = 0, denoted L(θ) = 0 below. Finally, as we only have
access to a finite set D of samples x from µ, we use a Monte-Carlo approximation
of the integral with respect to the distributions (ϕ·t)♯µ. This gives us

min
θ

C(θ) =
∑
x∈D

M−1∑
m=0

∥rm(ϕxm)∥p

subject to ϕxm+1 = ϕxm + rm(ϕxm) and ϕx0 = x for all x ∈ D
L(θ) = 0

(18)

Is is easy to see that the min-max problem minθmaxλ>0 C(θ)+λ L(θ) yields the
same solution as Problem 18, as the first two constraints are satisfied trivially.
If the constraint L(θ) = 0 corresponding to solving the task, which includes the
classifier F , is not verified, this will cause the second term to grow unbounded,
and the solution will thus be avoided by the minimization. This min-max
problem can be solved using an iterative approach, starting from some initial λ0
and θ0:

{
θi+1 = argmin

θ
C(θ) + λi L(θ)

λi+1 = λi + τ L(θi+1)
(19)

The minimization is done via stochastic gradient descent (SGD) for a number
of steps s, where a step means a batch, starting from the previous parameter
value θi. This algorithm is similar to Uzawa’s algorithm (also called the method
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of multipliers) used in convex optimization [Santambrogio, 2015]. In practice, it
is much more stable to divide the minimization objective in (19) by λi, yielding
the following algorithm:

Algorithm: Training with Least Action Principle (LAP-Net)
Input: Training samples, step size τ , number of steps s, initial weight λ0
Initialization: Initialize the parameters θ0 and set i = 0
while not converged do

1. Starting from θi, perform s steps of stochastic gradient descent:
1.1. θ0i+1 = θi
1.2. θli+1 = θl−1

i+1 − ϵ(∇C(θ
l−1
i+1)/λi +∇L(θ

l−1
i+1)) for l from 1 to s

1.3. θi+1 = θsi+1

2. Update the weight λi+1 = λi + τ L(θi+1) and increment i← i+ 1

Output: Learned parameters θ

While the high non-convexity makes it difficult to ensure exact optimality, we
can still have some induced regularity when reaching a good local minimum:

Proposition 2. Suppose the pair (F θ
⋆

, T θ
⋆

) is reached by the optimization
algorithm such that T θ

⋆

is an ϵ−OT map between µ and its push-forward
(meaning ∥T θ⋆ − T ⋆∥∞ ≤ ϵ where T ⋆ is the OT map). Then we have, with the
same notations as in Proposition 1,

∀x, y ∈ X \A, ∥T θ
⋆

(x)− T θ
⋆

(y)∥ ≤ O(ϵ+ ∥x− y∥η)

Proof. We simply write the decomposition:

T θ
⋆

(x)− T θ
⋆

(y) = T θ
⋆

(x)− T ⋆(x) + T ⋆(x)− T ⋆(y) + T ⋆(y)− T θ
⋆

(y)

and use the triangular inequality: the first and third terms are smaller than ϵ by
hypothesis while Hölder continuity applies for the second by Proposition 1.

This shows that minimizing the transport cost still endows the model with some
regularity, even in situations where the global minimum is not reached.

We also remark is that we can also consider a relaxation of the optimization
problem 18 by assigning a fixed weight λ to L and minimizing C(θ) + λL(θ).
This provides a simpler and quite competitive benchmark (see Appendix F.3).

3.5 Experiments

3.5.1 Generalization

MNIST Experiments. The base model is a ResNet with 9 residual blocks.
Two convolutional layers first encode the image of shape 1× 28× 28 into shape
32× 14× 14. A residual block contains two convolutional layers, each preceded
by a ReLU activation and batch normalization. The classifier is made up of two
fully connected layers separated by batch normalization and a ReLU activation.
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We use an orthogonal initialization [Saxe et al., 2014] with gain 0.01. This
and all vanilla models and their training regimes are implemented by following
closely the cited papers that first introduced them, and our method is added
over these training regimes. More implementation details are in Appendix F.1.

From the experiments in two dimensions, we suspect that adding the transport
cost helps when the training set is small. For performance comparisons, we
average the highest test accuracy achieved over 30 training epochs (over random
orthogonal weight initializations and random subsets of the complete training
set). We find that adding the transport cost improves generalization when the
training set is very small (Table 1). We see that the improvement becomes more
important as the training set becomes smaller and reaches an increase of almost
14 percentage points in the average test accuracy.

Table 1: Average highest test accuracy and 95% confidence interval of ResNet-9 over 50
instances on MNIST with training sets of different sizes (in %)

Train size ResNet LAP-ResNet

500 90.8 ± 0.4 90.9 ± 0.2
400 88.4 ± 0.5 88.4 ± 0.4
300 83.5 ± 0.5 86.2 ± 0.4
200 74.9 ± 1.0 82.0 ± 0.5
100 56.4 ± 1.5 70.0 ± 1.0

CIFAR10 Experiments. We run the same experiments on CIFAR10. The
architecture is the same except that the encoder transforms the input which
is of shape 3 × 32 × 32 into shape 100 × 16 × 16. We use λ0 = 0.1, τ = 0.1
and s = 50. We average the highest test accuracy achieved over 200 training
epochs over random orthogonal weight initializations and random subsets of the
complete train set. Here, we find that adding the transport cost helps for all
sizes of the train set (which has 50 000 images in total). The increase in average
precision becomes more important as the train set becomes smaller (Table 2).

Table 2: Average highest test accuracy and 95% confidence interval of ResNet-9 over 20
instances on CIFAR10 with training sets of different sizes (in %)

Train size ResNet LAP-ResNet

50 000 91.49 ± 0.10 91.94 ± 0.10
30 000 88.61 ± 0.14 89.41 ± 0.10
20 000 85.73 ± 0.14 86.74 ± 0.13
10 000 79.25 ± 0.25 80.90 ± 0.16
5 000 70.32 ± 0.32 72.58 ± 0.21
4 000 67.80 ± 0.26 70.12 ± 0.30
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CIFAR100 experiments. On CIFAR100 [Krizhevsky, 2009], results using
a ResNet are in Appendix F.3. We also used the ResNeXt [Xie et al., 2017]
architecture. The residual block of a ResNeXt applies x+

∑
i wi(x) with the

functions wi having the same architecture but independent weights, followed
by a ReLU activation. We used the ResNeXt-50-32×4d architecture detailed
in [Xie et al., 2017]. This is a much bigger and state-of-the-art network, as
compared with the single representation ResNets used so far. It also extends
the experimental results beyond the theoretical framework in three ways: the
embedding dimension changes between the residual blocks, a block applies
xm+1 = ReLU(xm +

∑
i wm,i(xm)) and the encoder is no longer fixed. We

found that penalizing
∑
i wm,i(xm) or the true residue xm+1 − xm is essentially

equivalent. Table 3 shows consistent accuracy gains as our method (with λ0 = 1,
τ = 0.1 and s = 5) corrects the overfitting of the bigger ResNeXt network
compared to ResNet.

Table 3: Average highest test accuracy and 95% confidence interval of ResNeXt50 over 10
instances on CIFAR100 with training sets of different sizes (in %)

Train size ResNeXt50 LAP-ResNeXt50

50 000 72.97 ± 1.18 76.11 ± 0.78
25 000 62.55 ± 2.37 64.11 ± 1.85
12 500 45.90 ± 2.74 48.23 ± 1.84

3.5.2 Transport Visualization

We verify in Appendix F.2 using a pretrained autoencoder for visualization that
the embeddings learned through LAP training on image datasets do indeed
remain closer than the embeddings learned through vanilla training to the initial
embedding that the first residual block receives.

More precisely, if we pretrain an autoencoder on an image dataset, we can use
its encoder as the encoder of the residual network and freeze it during training.
This makes it possible to visualize, in the same space as the input data (so as
images), how the embeddings evolve by decoding, using the pretrained decoder,
the outputs of the residual blocks. And indeed we find on MNIST, CIFAR10
and CIFAR100 that the decodings of the network’s embeddings remain closer to
the initial reconstruction by the autoencoder when using LAP training.

3.5.3 Stability

The stability of networks trained with our method is hinted at by the regularity
results of Propositions 1 and 2 and is also seen in the lower variance in the
performances of LAP-ResNets in Tables 1, 2 and 3 above, and in the tables
in Appendices F.5 and F.3. This is expected as the model becomes more
constrained and can be seen as an advantage, especially in cases where the
results vary more with the initialization.
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To explore this increased training stability, we try training ResNets that get
deeper without batch-normalization on CIFAR10. We see in Figure 14 that
training deep ResNets without batch-normalization is near impossible, whereas
LAP-ResNets maintain the same performance and stability without batch-
normalization for up to 50 blocks.

LAP-ResNets are also compared in this regard to the small step method of
[Zhang and Wynter, 2018, Zhang et al., 2019], which simply adds a small weight
h of around 0.1 in front of the residue function to make ResNets more stable.
The Least Action Principle has the same stable test accuracy when training
without batch-normalization in Figure 14 as this method, while also improving
the test accuracy when using batch-normalization.

Figure 14: Test accuracy of ResNets of various depths without batch-normalization on
CIFAR10.

3.5.4 Training Dynamics

We now look at the evolution of the test accuracy during training in Figure 15
below. We see that the Least Action Principle acts by speeding up training in
the first epochs and more generally when a jump in test accuracy happens.

The orange curve in Figure 15 is that of a network trained with the transport
cost simply as a regularizer. That means that instead of using the adaptive
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optimization algorithm (19), we solve L(θ) + λ C(θ) with a fixed λ. Results
using this training are in Appendix F.3. While it does not perform as well as
LAP training, it has fewer hyperparameters to tune and still leads to better test
accuracy than vanilla training.

Figure 15: Test accuracy during training of ResNeXt50 models on CIFAR100.

3.6 Discussion and Conclusion
We can summarize this section as follows. We have empirically motivated and
then formulated the following learning problem: among all the neural networks
that correctly solve the task, select the one that transforms the data with
the lowest transport cost. We have proven general results of existence and
regularity for models trained this way, studied their behavior in low-dimensional
settings when compared to vanilla models and shown their efficiency on standard
classification tasks. We also found that the training is stabilized in an adaptive
fashion without being slowed down.
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Note that even though we have only considered residual networks, this framework
can be applied to any architecture by considering the static formulation (16)
of the problem. The improved stability of LAP-Nets suggests also looking into
their robustness to adversarial attacks. Another avenue of research would be to
experiment with alternative ground transport costs.
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4 Module-wise Training via the Minimizing Move-
ment Scheme

Abstract

Greedy layer-wise or module-wise training of neural networks is com-
pelling in constrained and on-device settings where memory is limited,
as it circumvents a number of problems of end-to-end back-propagation.
However, it suffers from a stagnation problem, whereby early layers over-
fit and deeper layers stop increasing the test accuracy after a certain
depth. We propose to solve this issue by introducing a simple module-wise
regularization inspired by the minimizing movement scheme for gradient
flows in distribution space. We call the method TRGL for Transport
Regularized Greedy Learning and study it theoretically, proving that it
leads to greedy modules that are regular and that progressively solve
the task. Experimentally, we show improved accuracy of module-wise
trained networks when our regularization is added, superior to that of
other module-wise training methods and often to end-to-end training, with
as much as 60% less memory usage. The work presented in this section
has led to the following publication [Karkar et al., 2023a] at NeurIPS
2023.

4.1 Introduction
End-to-end backpropagation is the standard training method of neural nets.
But there are reasons to look for alternatives. First, it is deemed biologically
implausible [Gupta, 2020, Mostafa et al., 2018, Liao et al., 2016]. Second, it
requires loading the whole model during training which can be impossible in
constrained settings such as on mobile devices [Teng et al., 2020, Tang et al.,
2021]. Thirdly, it forces the training of systems of cooperative networks to
be sequential and synchronous, which is not flexible when the networks are
distributed between a central agent and clients that operate at different rates
[Jaderberg et al., 2017]. Fourthly, it prohibits training the layers in parallel.
These limitations follow from the locking problems [Jaderberg et al., 2017] that
end-to-end backpropagation suffers from: forward locking (each layer must wait
for the previous layers to process its input), update locking (each layer must
wait for the end of the forward pass to be updated) and backward locking (each
layer must wait for errors to backpropagate from the last layer to be updated).

Dividing the network into modules, a module being made up of one or more
layers, and greedily solving module-wise optimization problems sequentially
(i.e. one after the other fully) or in parallel (i.e. batch-wise, see Section 4.3.4),
solves update locking (and so also backward locking). When combined with
batch buffers, parallel module-wise training solves all three problems [Belilovsky
et al., 2020] and allows parallel training of the modules. Module-wise training
is appealing in memory-constrained settings as it works without storing all
activations at the same time, and when done sequentially, only requires loading
and training one module at a time.
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Despite its simplicity, module-wise training has been shown to scale well
[Belilovsky et al., 2020, Pyeon et al., 2021], outperforming more complicated
methods addressing the locking problems e.g. synthetic [Jaderberg et al.,
2017, Czarnecki et al., 2017] and delayed [Huo et al., 2018b, Huo et al., 2018a]
gradients. We can also deduce theoretical results about networks of greedily-
trained shallow modules [Belilovsky et al., 2019, Belilovsky et al., 2020, Arora
et al., 2014, Malach and Shalev-Shwartz, 2018, Huang et al., 2018] from the
existing results about the convergence of the training of shallow networks [Arora
et al., 2018, Bach, 2017, Janzamin et al., 2016, Ge et al., 2018, Du and Goel,
2018].

The typical setting of (sequential) module-wise training for minimizing a loss L,
is, given a dataset D, to solve one after the other, for 1≤k≤K, Problems

(Tk, Fk) ∈ argmin
T,F

∑
x∈D

L(F, T ◦Gk−1(x)) (20)

where Gk = Tk ◦ ... ◦ T1 for 1≤k≤K and G0=id. Here, Tk is the module (one or
many layers) and it receives the output of module Tk−1, and Fk is an auxiliary
classifier that processes the outputs of Tk so that the loss can be computed.
The inputs are x and L has access to their labels y to calculate the loss, i.e.
L(F, T ◦ Gk−1(x)) = l(F ◦ T ◦ Gk−1(x), y) where l is a machine learning loss
such as cross-entropy or mean squared error. See Figure 16 for a representation
of this training. The final network trained this way is FK ◦GK , but we can stop
the forward pass at any depth k and keep the network Fk ◦Gk for inference if it
performs better.

Figure 16: Module-wise training.

Indeed, module-wise training suffers often from a well-documented stagnation
problem [Marquez et al., 2018, Belilovsky et al., 2019, Wang et al., 2021, Pyeon
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et al., 2021], whereby greedy early modules overfit and learn more discriminative
features than end-to-end training, and deeper modules don’t improve the test
accuracy, or even degrade it. [Wang et al., 2021] verify this and also find (see
Figure 17 below) that early modules destroy too much information between the
features they learn and the inputs, and between the features and the labels.
Later in Section 4.5.6, we find a large degradation in the accuracy of deeper
modules when training on small datasets. Our methods avoids this degradation.

Figure 17: Linear separability (left), mutual information with input (center), and with output
(right) of the features at different depths learned with module-wise training with K modules.
The experiment is training a ResNet-32 on CIFAR10. K=1 is end-to-end training. K=2
means training two modules with 16 blocks each. From [Wang et al., 2021].

To solve this issue, InfoPro [Wang et al., 2021] maximizes the mutual information
that each module keeps with the input, in addition to minimizing the loss. While
this method shows good results in practice, the intuition behind it was criticized
in [Du et al., 2021]. To avoid early overfitting, we propose a different, transport-
based perspective, leveraging the analogy between ResNets and the Euler scheme
for ODEs [Weinan, 2017]. To preserve input information, we minimize the kinetic
energy of the modules along with the training loss. This has tight connections
with the theories of gradient flows in distribution space and optimal transport.
Our approach is particularly well-adapted to ResNets [He et al., 2016a, He et al.,
2016b], which remain competitive to this day [Wightman et al., 2021], and
similar models such as ResNeXts [Xie et al., 2017], Wide ResNets [Zagoruyko
and Komodakis, 2016] and vision transformers that are made up essentially of
residual connections [Liu et al., 2021, Dosovitskiy et al., 2021], but is immediately
usable on other architectures where many layers have the same input and output
dimension (which allows the computation of residues) such as VGG [Simonyan
and Zisserman, 2014]. Our contributions are the following:

− We propose a new method for module-wise training. Being a regularization,
it is easier to implement and lighter than many recent methods such as
PredSim [Nøkland and Eidnes, 2019] and InfoPro [Wang et al., 2021], that
train another auxiliary network besides the auxiliary classifier for each
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module (similarity matching loss for PredSim and reconstruction loss for
InfoPro to estimate the mutual information with the input).

− We theoretically justify our method, proving that it is a transport regular-
ization that forces the module to be an optimal transport map making it
more regular and stable. We also show that it amounts to a discretization
of the gradient flow of the loss in probability space, which means that
the modules progressively minimize the loss and explains why the method
avoids the accuracy collapse observed in module-wise training.

− Additionally, we propose multi-lap sequential training, a variant of sequen-
tial module-wise training, that for the same time and number of epochs,
and the same memory usage, performs better in many cases.

− Experimentally, we improve the test accuracy of module-wise trained
networks (ResNets, VGG and Swin Transformer), both in sequential and
parallel module-wise training, beating 8 other methods. Our method also
works when the modules are few and deep, and when they are numerous and
shallow, when many methods focus on the first setting. Our regularization
makes parallel module-wise training superior or comparable in accuracy
to end-to-end training, while consuming 10% to 60% less memory.

4.2 Related Work
Module-wise training methods. Local layer-wise training was initially
considered as an early training algorithm for unsupervised learning [Hinton et al.,
1995], as a pre-training and initialization method [Bengio et al., 2006, Marquez
et al., 2018], and as a complement to end-to-end training to avoid vanishing
gradients in the Inception architecture [Szegedy et al., 2017].

However, it was recently shown to be competitive with end-to-end training on
supervised image classification tasks [Belilovsky et al., 2019, Nøkland and Eidnes,
2019]. This has led to it being considered in practical settings with limited
resources such as embedded training on mobile devices [Teng et al., 2020, Tang
et al., 2021] and dealing with very large whole slide images in histopathology
[Zhang et al., 2022].

Many papers consider using a different auxiliary loss, instead of or in addition to
the classification loss: kernel similarity [Mandar Kulkarni, 2016], pairwise losses
[Duan et al., 2022], class separability [Lengellé and Denœux, 1996], information-
theory-inspired losses [Xu and Principe, 1999, Löwe et al., 2019, Nguyen and Choi,
2019, Ma et al., 2020, Wang et al., 2021] and biologically plausible losses [Löwe
et al., 2019, Nøkland and Eidnes, 2019, Gupta, 2020, Bernd Illing, 2020, Mostafa
et al., 2018]. Paper [Belilovsky et al., 2019] reports the best experimental results
when solving the layer-wise problems sequentially. Methods PredSim [Nøkland
and Eidnes, 2019], DGL [Belilovsky et al., 2020], Sedona [Pyeon et al., 2021] and
InfoPro [Wang et al., 2021] report the best results when solving the module-wise
problems in parallel. [Belilovsky et al., 2019, Belilovsky et al., 2020] do it simply
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through architectural considerations regarding the auxiliary networks. Sedona
[Pyeon et al., 2021] uses architecture search to chose where to split the network
into modules and what auxiliary classifier to use. We describe how some of these
methods work in Appendix D.

However, [Belilovsky et al., 2019] do not consider ResNets and PredSim state
that their method does not perform well on them. Sedona applies architecture
search to decide on where to split the network into up to 16 modules and
what auxiliary classifier to use before module-wise training. Only BoostResNet
[Huang et al., 2018] also proposes a block-wise training idea geared for ResNets.
However, their results only show better early performance on limited experiments
and end-to-end fine-tuning is required to be competitive. These methods can all
be combined with our regularization, and we use the auxiliary architecture from
[Belilovsky et al., 2019, Belilovsky et al., 2020].

In more recent developments, [Patel et al., 2022] attempts to also split the
layers width-wise into groups of neurons and [Ren et al., 2023, Fournier et al.,
2023] combine layer-wise training with forward gradient learning [Baydin et al.,
2022], another alternative to end-to-end backpropagation. Finally, we mention
that module-wise training has been extended to the training of spiking neural
networks [Guo et al., 2022b] and of neural search networks [Chen et al., 2022].

Reduced backpropagation methods. Some methods allow some backward
communication between the modules to improve performance, but therefore
limit the computational advantages of module-wise training. For example, [Guo
et al., 2022a] allow some backpropagation from a module to the last few layers
of the preceding module and [Xiong et al., 2020, Gomez et al., 2020, Laskin
et al., 2021] make the last layer in a module and the first in the next module
the same.

Delayed and predicted gradient methods. Besides module-wise training,
methods such as DNI [Jaderberg et al., 2017, Czarnecki et al., 2017], DDG [Huo
et al., 2018b], FR [Huo et al., 2018a] and ADL [Zhuang et al., 2021], solve the
update and backward locking problems with an eye towards parallelization by
using delayed or predicted gradients, or even predicted inputs to address forward
locking, which is what [Sun et al., 2021] do. But they only split networks into a
small number of sub-modules (less than five) that don’t backpropagate to each
other and observe training issues with more sub-modules [Huo et al., 2018a].
This makes them compare unfavorably to module-wise training [Belilovsky et al.,
2020]. The high dimension of the predicted gradient which scales with the size of
the network renders [Jaderberg et al., 2017, Czarnecki et al., 2017] challenging
in practice. Therefore, despite its simplicity, greedy module-wise training is
more appealing when working in a constrained setting.

Other alternatives to end-to-end backpropagation. Other similar ap-
proaches include ResIST [Dun et al., 2021] and DPA [Ni et al., 2022]. Resist
randomly assigns residual blocks to modules that are trained independently and
reassembled before another random partition. More of a distributed training
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method, it is only compared with local SGD [Stich, 2019]. DPA surrounds
modules by fixed small pre-trained layers and trains them before assembling
them. See [Duan and Príncipe, 2022] for a survey on alternatives to end-to-end
training.

Wasserstein gradient flows in the data space. Wasserstein gradient flows
operating in the data space recently appeared in deep learning. In [Alvarez-Melis
and Fusi, 2021], the focus is on functionals of measures whose first variations
are known in closed form and used, through their gradients, in the algorithm.
This limits the scope of their applications to transfer learning and similar tasks.
Likewise, [Gao et al., 2019, Liutkus et al., 2019, Arbel et al., 2019, Ansari et al.,
2021] use the continuous gradient flow of f -divergences and other distances
between measures for generation and generator refinement. In contrast, we use
the discrete minimizing movement scheme which does not require computation
of the first variation and allows to consider classification.

4.3 Method and Theory
In this section we state the module-wise optimization problems we solve and
show that successively solving these problems means following a minimizing
movement scheme in distribution space that maximizes the separability of the
embedding distributions. We then show that the solution modules exist and
have some regularity as they are optimal transport maps. Appendices B and C
give the necessary background on optimal transport and gradient flows.

4.3.1 Formulation

To keep greedily-trained modules from overfitting and destroying information
needed later, we penalize their kinetic energy to force them to preserve the
geometry of the problem. If each module is a single ResBlock (i.e. a function
T = id+r), its kinetic energy is simply the squared norm of its residue r = T−id,
which we add to the loss L in the target of the greedy problems (20). Given
τ>0 used to weight the regularization, we now solve, for 1≤k≤K, Problems

(T τk , F
τ
k ) ∈ argmin

T,F

∑
x∈D

L(F, T ◦Gτk−1(x)) +
1

2τ
∥T ◦Gτk−1(x)−Gτk−1(x)∥2 (21)

where Gτk=T
τ
k ◦..◦T τ1 for 1≤k≤K and Gτ0=id. The final network is now F τK◦GτK .

Intuitively, we can think that this biases the modules towards moving the points
as little as possible, thus at least keeping the performance of the previous module.
We focus on ResNets because they are already biased towards small displacements
and that this bias is desirable and should be encouraged [Jastrzebski et al.,
2018, Zhang et al., 2019, Hauser, 2019, De and Smith, 2020], and because
T (x)−x can always be computed as both terms have the same dimension. But
the method can be applied to any module where this quantity can be computed.

To facilitate the theoretical analysis, we rewrite the method in a more general
formulation using data distribution ρ, which can be discrete or continuous,
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and the distribution-wide loss L that arises from the point-wise loss L. Then
Problem (21) is equivalent in the discrete case to the following problem

(T τk , F
τ
k ) ∈ argmin

T,F
L(F, T♯ρτk) +

1

2τ

∫
Ω

∥T (x)− x∥2 dρτk(x) (22)

with ρτk+1=(T τk )♯ρ
τ
k and ρτ1=ρ, i.e data embedding distributions ρτk are pushed

forward by maps T τk , and L(F, T♯ρτk) =
∫
L(F, T (x)) dρτk(x) =

∫
L(F, .) dT♯ρ

τ
k.

The difference with Problem (16) in Section 3, is that now we have a regularized
problem instead of a problem with a hard constraint. But we will show in
Section 4.3.4 that this still forces the solution to be an optimal transport map.

4.3.2 Background on the Minimizing Movement Scheme

Our main result is that solving problems (22) successively means following
a minimizing movement scheme (MMS) in distribution space for minimizing
Z(µ) = minF L(F, µ), which represents the loss of the best classifier on distribu-
tion µ. If we restrict ourselves to linear classifiers, Z(ρτk) represents the linear
separability of representation ρτk at module k of the data distribution ρ. When
auxiliary networks are not necessary, for example in generative tasks where the
output and the target have the same shape, Z is simply L. When the auxiliary
network F is pre-trained and fixed, Z = L(F, µ). The MMS was introduced in
[Giorgi et al., 1980, Gianazza et al., 1994] as a metric counterpart to Euclidean
gradient descent for minimizing functionals defined on metric spaces. The task
we want to solve is minimizing Z in the Wasserstein space. We define the
minimizing movement scheme in Definition 3. See Appendix C for more details.

We work in the metric Wasserstein space W2(Ω) = (P(Ω),W2), where Ω ⊂ Rd
is a convex compact set, P(Ω) is the set of probability distributions over Ω and
W2 is the Wasserstein distance over P(Ω) derived from the optimal transport
problem with Euclidean cost:

W 2
2 (µ, ν) = min

T s.t. T♯µ=ν

∫
Ω

∥T (x)− x∥22 dµ(x) (23)

where we further assume that ∂Ω is negligible and that the distributions we are
dealing with are absolutely continous.

Definition 3. Given Z : W2(Ω)→ R, the minimizing movement scheme is a
discretized gradient flow that is well-defined in non-Euclidean metric spaces and
minimizes (under some conditions) Z starting from ρτ1 ∈ P(Ω). It is given by

ρτk+1 ∈ arg min
ρ∈P(Ω)

Z(ρ) + 1

2τ
W 2

2 (ρ, ρ
τ
k) (24)

Equation (24) can be seen as a proximal step in the Wasserstein distance for
minimizing Z. Equation (24) can also be interpreted as a non-Euclidean version
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of the implicit Euler scheme for following the gradient flow of Z. Indeed, the
Euclidean version of (24) for F : Rd → R is

xτk+1 ∈ arg min
x∈Rd

F (x) +
1

2τ
∥x− xτk∥2 (25)

And the optimality condition of problem (25) is
xτk+1 − xτk

τ
= −∇F (xτk+1) (26)

which is exactly the formula of the implicit Euler scheme (see Appendix A.1)
with step size τ for the Cauchy problem of continuous-time gradient descent:

x′(t) = −∇F (x(t)) (27)

A curve x solution to (27) is called a gradient flow of F and under convexity
assumptions on F tends to a minimizer of F as t grows. Under more conditions
on F , the minimizing movement scheme (equivalently the implicit Euler scheme
in the Euclidean case), converges as τ goes to 0 to a gradient flow x of F (i.e. to
a solution of x′(t) = −∇F (x(t))). Therefore if both sets of assumptions on F are
satisfied, xτk converges to a minimizer of F as t tens to infinity and τ tends to 0.
The advantage of the minimizing movement scheme formulation (25) compared
to the implicit Euler scheme (26) is that it does not require the computation of
a gradient and therefore can be more easily extended to non-Euclidean metric
spaces such as the Wasserstein space in (24).

In the Wasserstein case, if Z is lower-semi continuous then problems (24) always
admit a solution because P(Ω) is compact. If Z is also λ-geodesically convex
for λ>0, we have convergence of ρτk as k→∞ and τ→0 to a minimizer of Z,
potentially under more technical conditions (see Appendix C for details). Even
though a machine learning loss will usually not satisfy these conditions, this
analyses offers hints as to why our method avoids in practice the problem of
stagnation or collapse in performance of module-wise training along the depth
k, as we are making proximal local steps in Wasserstein space to minimize the
loss. This convergence discussion also suggests taking τ as small as possible and
many modules T τk in practice.

4.3.3 Link with the Minimizing Movement Scheme

So under the mentioned assumptions on Ω in the second paragraph of Section
4.3.2 and absolute continuity of the distributions, we have:

Proposition 3. The distributions ρτk+1 = (T τk )♯ρ
τ
k, where the functions T τk are

found by solving (22) and ρτ1 = ρ is the data distribution, coincide with the
minimizing movement scheme (24) for Z = minF L(F, .).

Proof. The minimizing movement scheme (24) is equivalent to taking ρτk+1 =
(T τk )♯ρ

τ
k where

T τk ∈ arg min
T :Ω→Ω

Z(T♯ρτk) +
1

2τ
W 2

2 (T♯ρ
τ
k, ρ

τ
k) (28)
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under conditions that guarantee the existence of a transport map between ρτk
and any other measure. Absolute continuity of ρτk suffices for this, and the
loss can ensure that ρτk+1 is absolutely continuous. Among the functions T τk
that solve problem (28), is the optimal transport map from ρτk to ρτk+1. To
solve specifically for this optimal transport map, we have to solve the equivalent
Problem

T τk ∈ argmin
T
Z(T♯ρτk) +

1

2τ

∫
Ω

∥T (x)− x∥2 dρτk(x) (29)

Problems (28) and (29) have the same minimum value, but the minimizer of
(29) is now an optimal transport map between ρτk and ρτk+1. This is immediate
from the definition (23) of the W2 distance. Equivalently minimizing first over
the auxiliary F in (22), and from the definition of Z, Problems (22) and (29)
are equivalent, which concludes.

Since we solve Problems (22) over neural networks, their representation power
shown by universal approximation theorems [Cybenko, 1989, Hornik et al., 1989]
is important to get close to equivalence between (24) and (22), as we need to
approximate an optimal transport map. We also know that the training of each
module, if it is shallow, converges [Arora et al., 2018, Bach, 2017, Janzamin
et al., 2016, Ge et al., 2018, Du and Goel, 2018].

4.3.4 Regularity Result

As in Section 3, we can show, by adapting the proof of Theorem 2, that Problem
(22) has a solution and that the solution module T τk is an optimal transport map
between its input and output distributions, which means that it comes with
some regularity. The difference is that we have a regularized problem instead of
a hard constraint. We assume that the minimization in F is over a compact set
F , that ρτk is absolutely continuous, that L is continuous and non-negative, that
Ω is convex and compact and that ∂Ω is negligible. We then have

Theorem 5. Problem (22) has a minimizer (T τk , F
τ
k ) such that T τk is an optimal

transport map. For any minimizer (T τk , F
τ
k ), T

τ
k is an optimal transport map.

Proof. Take a minimizing sequence (F̃i, T̃i), i.e. such that C(F̃i, T̃i) → min C,
where C ≥ 0 is the target function in (22) and denote βi = T̃i♯ρ

τ
k. Then by

compacity F̃i → F ⋆ and βi ⇀ β⋆ in duality with Cb(Ω) by Banach-Alaoglu.
There exists T ⋆ an optimal transport map between ρτk and β⋆ and we have that
C(F ⋆, T ⋆) ≤ limi→∞ C(F̃i, T̃i) = min C by continuity of L and because∫

Ω

∥T ⋆(x)− x∥2 dρτk(x) =W 2
2 (ρ

τ
k, β

⋆) = lim
i→∞

W 2
2 (ρ

τ
k, βi)

≤ lim
i→∞

∫
Ω

∥T̃i(x)− x∥2 dρτk(x)

as W2 metrizes weak convergence of measures. We take (F τk , T
τ
k )=(F ⋆, T ⋆). It is

also immediate that for any minimizing pair, the transport map is optimal.
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As in Section 3, regularity properties follow for the solution modules. Given
Theorem 1 in Appendix B and taken from [Figalli, 2017], T τk is η-Hölder con-
tinuous almost everywhere and if the optimization algorithm we use to solve
the discretized problem (21) returns an approximate solution pair (F̃ τk , T̃

τ
k ) such

that T̃ τk is an ϵ-optimal transport map, i.e. ∥T̃ τk − T τk ∥∞ ≤ ϵ, then we have
(using the triangle inequality) the following stability property of the module T̃ τk :

∥T̃ τk (x)− T̃ τk (y)∥ ≤ 2ϵ+ C∥x− y∥η (30)

for almost every x, y ∈ supp(ρτk) and a constant C > 0. As we have seen in
Section 3, these networks generalize better and overfit less in practice. Naively
composing these stability bounds on T τk and T̃ τk allows to get stability bounds
for the composition networks Gτk and G̃τk = T̃ τk ◦ .. ◦ T̃ τ1 .

To summarize Section 4.3, the transport regularization makes each module more
regular and it allows the modules to build on each other as k increases to solve
the task, which is the property we desire in module-wise training.

4.4 Practical implementation

4.4.1 Multi-block Modules

For simplicity, we presented in (21) the case where each module is a single
ResBlock. However, in practice, we often split the network into modules that
contain many ResBlocks each. We show here that regularizing the kinetic energy
of such modules still amounts to a transport regularization, which means that
Theorem 5, the regularity bound (30) and the link with gradient flows still apply.

If each module Tk is made up of M ResBlocks, i.e. applies xm+1 = xm+ rm(xm)
for 0 ≤ m < M , we have seen in Section 3 that

∑
∥rm(xm)∥2 is its discrete

kinetic energy. If ϕxm denotes the position of a point x after m ResBlocks, then
regularizing the kinetic energy of multi-block modules means solving

(T τk , F
τ
k ) ∈ argmin

T,F

∑
x∈D

(L(F, T (Gτk−1(x)) +
1

2τ

M−1∑
m=0

∥rm(ϕxm)∥2) (31)

s.t. T = (id+ rM−1) ◦ ... ◦ (id+ r0), ϕ
x
0 = Gτk−1(x)

ϕxm+1 = ϕxm + rm(ϕxm)

We also want to minimize this sum of squared residue norms instead of ∥T (x)−x∥2
(the two no longer coincide) as it works better in practice, which we assume
is because it offers a better and more localized control of the transport. As
expressed in (6), a ResNet can be seen as an Euler discretization of a differential
equation and this new Problem (31) is then the discretization of Problem

(T τk , F
τ
k ) ∈ argmin

T,F
L(F, T♯ρτk) +

1

2τ

∫ 1

0

∥vt∥2L2((ϕ·
t)♯ρ

τ
k)
dt (32)

s.t. T = ϕ·1, ∂tϕ
x
t = vt(ϕ

x
t ), ϕ

·
0 = id
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where ρτk+1 = (T τk )♯ρ
τ
k and rm is the discretization of vector field vt at time

t = m/M . Here, distributions ρτk are pushed forward through the maps T τk which
correspond to the flow ϕ at time t = 1 of the kinetically-regularized velocity field
vt. We recognize in the second term in the target of (32) the optimal transport
problem in its dynamic formulation [Benamou and Brenier, 2000], and given
the equivalence between the Monge OT problem (23) and the dynamic OT
problem (13) in Appendix B, Problem (32) is in fact equivalent to the original
continuous formulation (22), and the theoretical results in Section 4.3 follow
(Proposition 3 follows immediately and take a minimizing sequence (F̃i, ṽ

i) and
the corresponding maps T̃i as in the proof of Theorem 5 to get the result).

4.4.2 Solving the Module-wise Problems

The module-wise problems can be solved in one of two ways. In sequential module-
wise training, we completely train each module with its auxiliary classifier for
N epochs before training the next module, which receives as input the output
of the previous trained module. In parallel module-wise training, the modules
are trained synchronously batch-wise, i.e. we do a complete forward pass on
each batch but without a full backward pass, rather a backward pass that
only updates the current module T τk and its auxiliary classifier F τk , meaning
that T τk forwards its output to T τk+1 immediately after it computes it. This is
called decoupled greedy training in [Belilovsky et al., 2020], which shows that
combining it with batch buffers solves all three locking problems and allows a
linear training parallelization in the depth of the network. Since it is observed
that parallel module-wise training performs better than sequential training (see
[Wang et al., 2021] and Section 4.5.5 for example), we propose a variant of
sequential module-wise training that we call multi-lap sequential module-wise
training that introduces more synchronicity in sequential training. Here, instead
of training each module for N epochs, we train each module from the first to the
last sequentially for N/R epochs, then go back and train from the first module
to the last for N/R epochs again, and we do this for R laps. For the same total
number of epochs and training time, and the same advantages (loading and
training one module at a time) this provides a non-negligible improvement in
accuracy over normal sequential module-wise training in most cases, as shown in
Section 4.5.5. Despite our theoretical framework being that of sequential module-
wise training, our method improves the test accuracy of all three module-wise
training regimes.

4.4.3 Varying the Regularization Weight

The discussion in Section 4.3.3 suggests taking a fixed τ that is as small as
possible. However, instead of using a fixed τ , we might want to vary it along the
depth k to further constrain with a smaller τk the earlier modules to avoid that
they overfit or the later modules to maintain the accuracy of earlier modules.
We might also want to regularize the networks further in earlier epochs when
the data is more entangled.

47



4 Module-wise Training via the Minimizing Movement Scheme

To unify and formalize this varying weight τk,i across modules k and SGD
iterations i, we use a scheme inspired by the method of multipliers as in Section
3.4 to solve Problems (21) and (31). To simplify the notations, we will instead
consider the weight λk,i:=2τk,i given to the loss. We denote θk,i the parameters
of both Tk and Fk at SGD iteration i. We also denote L(θ, x) and C(θ, x)
respectively the loss and the transport regularization as functions of parameters
θ and data x. We now increase the weight λk,i of the loss every s iterations
of SGD by a value that is proportional to the current loss. Given increase
factor h>0, initial parameters θk,1, initial weights λk,1≥0, learning rates (ηi)
and batches (xi), we apply for module k and i≥1:{

θk,i+1 = θk,i − ηi∇θ(λk,i L(θk,i, xi) + C(θk,i, xi))

λk,i+1 = λk,i + hL(θk,i+1, xi+1) if i mod s = 0 else λk,i
(33)

The weights λk,i will vary along modules k even if we use the same initial weights
λk,1 = λ1 because they will evolve differently with iterations i for each k. They
will increase more slowly with i for larger k because deeper modules will have
smaller loss. This method can be seen as a method of multipliers for the problem
of minimizing the transport under the constraint of zero loss. Therefore it is
immediate by slightly adapting the proof of Theorem 5 or from Section 3 that
we are still solving a problem that admits a solution whose non-auxiliary part is
an optimal transport map with the same regularity as stated above. We use the
same initial value λ1 = λk,1 for all modules so that this method requires choosing
three hyper-parameters (h, s and λ1), and the number of hyper-parameters does
not go up as the number of modules increases.

In practice (see Section 4.5.1 and Appendix G.1), this algorithm works best in
only one experiment, but its behavior suggested the following heuristic which
we use in the other experiments: use a value τ for the first K/2 modules and
double it (i.e use 2τ) for the last K/2 modules. A single hyper-parameter has
then to be chosen.

4.5 Experiments
We test our method on classification tasks, L being cross-entropy. We call our
method TRGL for Transport-Regularized Greedy Learning. For the auxiliary
classifiers, we use the architecture from DGL [Belilovsky et al., 2019, Belilovsky
et al., 2020], that is a convolutional layer followed by an average pooling layer
and a fully connected layer. This auxiliary classifier architecture is also very
similar to that used by InfoPro [Wang et al., 2021]. The code is available
at github.com/block-wise/module-wise and implementation details are in
Appendix G.1.

We focus first on parallel module-wise training in Section 4.5.1 as it performs
better in practice and has therefore been more explored in recent works. The
methods we compare to are:
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− VanGL is simply vanilla greedy module-wise training with the same archi-
tecture but without our regularization. We include its results for ablation
study purposes.

− InfoPro [Wang et al., 2021] which maximize the mutual information each
module keeps with the input to the network in addition to the classification
loss. This therefore requires an additional auxiliary network besides the
classifier. This method has two variants, depending on whether the cross-
entropy loss (InfoPro Softmax) is used for the auxiliary classifiers, or a
contrastive loss (InfoPro Softmax) inspired by [Chen et al., 2020b, Khosla
et al., 2020, He et al., 2020].

− InfoProL [Pathak et al., 2022], which is a variant of InfoPro that maximize
the mutual information each module keeps with its own input, instead of
the input to the network. This requires slightly less memory.

− Sedona [Pyeon et al., 2021], which uses an architecture search phase
to decide where to split the network into modules and which auxiliary
classifier to use. This leads to larger early modules, reducing the memory
savings of module-wise training.

− DGL [Belilovsky et al., 2020], which only focuses on the architecture of
the auxiliary classifier, and whose auxiliary classifier we use.

− PredSim [Nøkland and Eidnes, 2019], which adds a similarity matching
loss to the loss of every module, requiring a second auxiliary network.

− DDG [Huo et al., 2018b] and FR [Huo et al., 2018a], which are delayed
gradient methods that aim to break the locking problems for parallelization
and not for saving memory.

We describe how some of these methods work in Appendix D. We find that
TRGL always has a better test accuracy than the other methods. Except on
Transformers, is has a better test accuracy than end-to-end training, with as
much as almost 60% less memory usage.

We then run experiments on sequential module-wise training in Section 4.5.5
with each module being a single residual block, which allows for the largest
memory savings, as only one block and its classifier have to be loaded at a time.
We reach comparable performances to [Belilovsky et al., 2019].

Finally, we verify in Section 4.5.6 that our method does avoid the early overfitting
and subsequent stagnation or collapse in test accuracy.

4.5.1 Parallel Module-wise Training with Few Modules

The first experiment is training in parallel 3 residual architectures and a VGG-19
[Simonyan and Zisserman, 2014] divided into 4 modules on TinyImageNet. We
compare in Table 4 below our results in this setting to three of the best recent
parallel module-wise training methods: DGL [Belilovsky et al., 2020], PredSim
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[Nøkland and Eidnes, 2019] and Sedona [Pyeon et al., 2021], from Table 2 in
[Pyeon et al., 2021]. We find that our method has a much better test accuracy
than the three other methods, especially on the smaller architectures. It also
performs better than end-to-end training on the three ResNets. Parallel TRGL
in this case with 4 modules consumes 10 to 21% less memory than end-to-end
training.

Table 4: Accuracy of Parallel TRGL with 4 modules (average and 95% confidence over 5 runs)
on TinyImageNet, compared to DGL, PredSim, Sedona and E2E from Table 2 in [Pyeon et al.,
2021], with memory saved compared to E2E as a percentage of E2E memory in red.

Dataset Architecture K Parallel VanGL Parallel TRGL (ours) PredSim DGL Sedona E2E

TinyImageNet

VGG-19 4 56.17 ± 0.29 (↓ 27%) 57.28 ± 0.20 (↓ 21%) 44.70 51.40 56.56 58.74
ResNet-50 4 58.43 ± 0.45 (↓ 26%) 60.30 ± 0.58 (↓ 20%) 47.48 53.96 54.40 58.10
ResNet-101 4 63.64 ± 0.30 (↓ 24%) 63.71 ± 0.40 (↓ 11%) 53.92 53.80 59.12 62.01
ResNet-152 4 63.87 ± 0.16 (↓ 21%) 64.23 ± 0.14 (↓ 10%) 51.76 57.64 64.10 62.32

The second experiment is training in parallel two residual architectures divided
into 2 modules on CIFAR100 [Krizhevsky, 2009]. We compare in Table 5 our
results in this setting to the two delayed gradient methods DDG [Huo et al.,
2018b] and FR [Huo et al., 2018a] from Table 2 in [Huo et al., 2018a]. Here
again, parallel TRGL has a better accuracy than the other two methods and
than end-to-end training. With only two modules, the memory gains from less
backpropagation are neutralized by the weight of the extra classifier and the
memory savings compared to end-to-end training are negligible, but TRGL has
a better accuracy by up to almost 2 percentage points.

Table 5: Accuracy of Parallel TRGL with 2 modules (average and 95% confidence over 3 runs)
on CIFAR100, compared to DDG, FR and E2E from Table 2 in [Huo et al., 2018a].

Dataset Architecture K Par VanGL Par TRGL (ours) DDG FR E2E

CIFAR100 ResNet-101 2 77.31 ± 0.27 77.87 ± 0.44 75.75 76.90 76.52
ResNet-152 2 75.40 ± 0.75 76.55 ± 1.90 73.61 76.39 74.80

The third experiment is training in parallel a ResNet-110 divided into two, four,
eight and sixteen modules on STL10 [Coate et al., 2011]. We compare in Table 6
our results in this setting to the recent methods InfoPro [Wang et al., 2021] and
DGL [Belilovsky et al., 2020] from Table 2 in [Wang et al., 2021]. Our TRGL
clearly outperforms the other methods. It also outperforms end-to-end training
in all but one case (that with 16 modules). Memory savings of parallel TRGL
compared to end-to-end training (with a batch size of 64) reach around 48% and
58.5% with 8 and 16 modules respectively, with comparable test accuracy. With
four modules, the TRGL training weighs 24% less than end-to-end-training, and
has a test accuracy that is better by 2 percentage points (see Section 4.5.3 below
for more details and comparison to the memory saving of InfoPro).
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Table 6: Accuracy of Parallel TRGL with K modules (average and 95% interval over 5 runs)
on STL10, compared to DGL, InfoPro and E2E from Table 2 in [Wang et al., 2021].

Dataset Architecture K Par VanGL Par TRGL (ours) DGL InfoPro Softmax InfoPro Contrast E2E

STL10 ResNet-110

2 79.85 ± 0.93 80.04 ± 0.85 75.03 ± 1.18 78.98 ± 0.51 79.01 ± 0.64 77.73 ± 1.61
4 77.11 ± 2.31 79.72 ± 0.81 73.23 ± 0.64 78.72 ± 0.27 77.27 ± 0.40 77.73 ± 1.61
8 75.71 ± 0.55 77.82 ± 0.73 72.67 ± 0.24 76.40 ± 0.49 74.85 ± 0.52 77.73 ± 1.61
16 73.57 ± 0.95 77.22 ± 1.20 72.27 ± 0.58 73.95 ± 0.71 73.73 ± 0.48 77.73 ± 1.61

The fourth experiment is training (from scratch) in parallel a Swin-Tiny Trans-
former [Liu et al., 2021] divided into 4 modules on three datasets. We compare
in Table 7 our results in this setting with those of InfoPro [Wang et al., 2021]
and InfoProL, a variant of InfoPro proposed in [Pathak et al., 2022], from Table
3 in [Pathak et al., 2022]. TRGL outperforms the other module-wise training
methods. It does not outperform end-to-end training in this case, but consumes
30% less memory on CIFAR10 and CIFAR100 and 50% less on STL10, compared
to 38% for InfoPro and 45% for InfoProL in [Pathak et al., 2022].

Table 7: Test accuracy of parallel TRGL with 4 modules (average and 95% confidence interval
over 5 runs) on a Swin-Tiny Transformer, compared to InfoPro, InfoProL and E2E from
Table 3 in [Pathak et al., 2022], with memory saved compared to E2E as a percentage of E2E
memory consumption in red.

Architecture Dataset K Parallel VanGL Parallel TRGL (ours) InfoPro InfoProL E2E

Swin-Tiny
STL10 4 67.00 ± 1.36 (↓ 55%) 67.92 ± 1.12 (↓ 50%) 64.61 (↓ 38%) 66.89 (↓ 45%) 72.19

CIFAR10 4 83.94 ± 0.42 (↓ 33%) 86.48 ± 0.54 (↓ 29%) 83.38 (↓ 38%) 86.28 (↓ 45%) 91.37
CIFAR100 4 69.34 ± 0.91 (↓ 33%) 74.11 ± 0.31 (↓ 29%) 68.36 (↓ 38%) 73.00 (↓ 45%) 75.03

To show that our method works well with all types of module-wise training
when using few modules, we train a ResNet-101 split in 2 modules on CIFAR100,
sequentially and multi-lap sequentially. In Table 8, we see that our idea of
multi-lap sequential training adds one percentage point of accuracy to sequential
training, and that the regularization further improves the accuracy by about
half a percentage point. As only one module has to be trained at a time, this
requires only around half the memory end-to-end training requires.

Table 8: Test accuracy of sequential (Seq) and multi-lap sequential (MLS) TRGL and VanGL
with 2 modules on CIFAR100 using ResNet-101 (average of 2 runs).

Seq VanGL Seq TRGL MLS VanGL MLS TRGL

73.31 73.61 74.34 74.78

4.5.2 Ablation Study and Sensitivity to Hyperparameter τ

We see in the Tables 4, 5 and 6 in Section 4.5.1 that the improvement in accuracy
from the regularization compared to vanilla module-wise training (VanGL) tends
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to increase as the number of modules increases and reaches almost 4 percentage
points with 16 modules. We further show in Figure 43 in Appendix G.4 that
our method is not very sensitive to the choice of τ over a large scale of values.

4.5.3 Memory Usage of Parallel TRGL

As seen above, parallel TRGL is lighter than end-to-end training by up to more
than 50%. We compare here the memory needs of our method to that of InfoPro
[Wang et al., 2021] on a ResNet-110 split into K modules trained in parallel on
STL10 with a batch size of 64 (so the same setting as in Table 6).

InfoPro [Wang et al., 2021] also proposes to split the network into K modules
that have the same weight but not necessarily the same number of layers, which
leads to even less memory usage. Indeed, the earlier layers of a neural networks
usually have more parameters and are heavier. Therefore, by counting the
number of parameters and making the earlier modules shallower than the deeper
ones we can split the network into modules that are equally heavy instead of
equally deep. InfoPro only implement this for K≤4 modules. When the modules
are even in weight and not in depth, keeping the notations of [Wang et al., 2021],
we call the training methods VanGL*, TRGL* and InfoPro*. As said above, this
leads to shallower early modules which hurts performance according to [Pyeon
et al., 2021]. We verify that this degradation is slight with our regularization in
Table 30 in Appendix G.3 (to be compared with Table 6), and that TRGL* still
outperforms VanGL*, InfoPro* and end-to-end training.

We report in Table 9 the memory saved as a percentage of the 6230 MiB memory
required by end-to-end training with the same batch size. We see in Table 9
that TRGL saves more memory than InfoPro in two out of three cases (4 and
8 modules), and about the same in the third case (16 modules), with much
better test accuracy in all cases. Likewise, TRGL* is lighter than InfoPro*, with
better accuracy. We also see that the added memory cost of the regularization
compared to vanilla greedy learning (VanGL) is small.

Table 9: Memory savings using a ResNet-110 on STL10 split into K modules trained in
parallel with a batch size of 64, as a percentage of the weight of end-to-end training. Average
test accuracy over 5 runs is between brackets. Test accuracy of end-to-end training is 77.73%.

Equally deep modules Equally heavy modules

K Par VanGL Par TRGL (ours) InfoPro Par VanGL* Par TRGL* (ours) InfoPro*

4 27% (77.11) 24% (79.72) 18% (78.72) 41% (77.14) 39% (78.94) 33 % (78.78)
8 50% (75.71) 48% (77.82) 37% (76.40)
16 61% (73.57) 58% (77.22) 59% (73.95)

We summarize in Table 31 in Appendix G.3, memory savings of parallel TRGL
with 4 modules that range between 8 and 30% of E2E memory, on the 4 networks
trained on TinyImageNet in Table 4 and a the Swin Transformer from Table
7. Note that methods DDG [Huo et al., 2018b] and FR [Huo et al., 2018a],
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being delayed gradient methods and not module-wise training methods, do
no save memory (they actually increase memory usage, see FR [Huo et al.,
2018a]). Sedona [Pyeon et al., 2021] also does not claim to save memory, as
their first module (the heaviest) is deeper than the others, but rather to speed
up computation. Finally, DGL [Belilovsky et al., 2020] is architecture-wise
essentially identical to VanGL and consumes the same amount of memory.

4.5.4 Training Time of Parallel TRGL

Since we do not implement forward unlocking with batch buffers as in DGL (i.e.
only the backward passes of the modules happen in parallel), parallel module-
wise training does slightly slow down training in this case. Epoch time increases
by 6% with 2 modules and by 16% with 16 modules compared to end-to-end
training. TRGL is only slower than VanGL by 2% for all number of modules
due to the additional regularization term. This is comparable to InfoPro which
report a time overhead between 1 and 27% compared to end-to-end training.

4.5.5 Sequential Full Block-wise Training

Full block-wise sequential training, meaning that each module is a single residual
block and that the blocks are trained sequentially, allows to load and train only
one block at a time. The memory needed is therefore divided by approximately
the number of modules. The minimal memory needed to train the model is
now the size of the heaviest module, which is the first one if the modules are
equally deep, but it is possible to make the modules equally heavy (see Section
4.5.3 above). So even though it has been less explored in recent module-wise
training methods because of its inferior accuracy compared to parallel module-
wise training, it has been used in practice in very constrained settings such as
on-device training of sensors [Teng et al., 2020, Tang et al., 2021]. We test our
regularization therefore in this section on sequential block-wise training.

We propose in this setting to use shallower and initially wider ResNets with a
downsampling and 256 filters initially and a further downsampling and doubling
of the number of filters at the midpoint, no matter the depth. In these ResNets,
we use the ResBlock from [He et al., 2016a] with two convolutional layers. If
such a network is divided in K modules of M ResBlocks each, we call the
network a K−M ResNet. These wider shallower architectures are well-adapted
to layer-wise training as seen in [Belilovsky et al., 2019].

We check in Table 24 in Appendix G that this architecture works well with
parallel module-wise training by comparing on CIFAR10 a 2-7 ResNet with
DGL, InfoPro and DDG. The 2-7 ResNet has 45 millions parameters, which is
about the same as the ResNet-110 divided in two used by the other methods,
but vanilla parallel module-wise training with this architecture already performs
better than the other methods.

We now train a 10-block ResNet block-wise on CIFAR100 (a 10-1 ResNet in
our notations). We report even the small improvements in accuracy to show
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that our method works, or at worst does not fail, in all settings (parallel or
sequential with many or few splits), which other methods so far don’t do. For
sequential training, block k is trained for 50+10k epochs where 0≤k≤10, block
0 being the encoder. This idea of increasing the number of epochs per layer
along with the depth is found in [Marquez et al., 2018]. For multi-lap sequential
training, block k is trained for 10+2k epochs, and this is repeated for 5 laps.
In block-wise training, the last block does not always perform the best and
we report the accuracy of the best block. In Table 10, we see that multi-lap
sequential (MLS) training improves the test accuracy of sequential training by
around 0.8 percentage points when the training dataset is full, but works less
well on small training sets. Of the two, the regularization mainly improves the
test accuracy of MLS training. The improvement increases as the training set
gets smaller and reaches 1 percentage point. That is also the case for parallel
module-wise training, which already performs quite close to end-to-end training
in the full data regime and much better in the small data regime.

Table 10: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10
runs on CIFAR100 with different train sizes and sequential (Seq), multi-lap sequential (MLS)
and parallel (Par) TRGL and VanGL, compared to E2E training.

Train size Seq VanGL Seq TRGL MLS VanGL MLS TRGL Par VanGL Par TRGL E2E

50000 68.74 ± 0.45 68.79 ± 0.56 69.48 ± 0.53 69.95 ± 0.50 72.59 ± 0.40 72.63 ± 0.40 75.85 ± 0.70
25000 60.48 ± 0.15 60.59 ± 0.14 61.33 ± 0.23 61.71 ± 0.32 64.84 ± 0.19 65.01 ± 0.27 65.36 ± 0.31
12500 51.64 ± 0.33 51.74 ± 0.26 51.30 ± 0.22 51.89 ± 0.30 55.13 ± 0.24 55.40 ± 0.35 52.39 ± 0.97
5000 36.37 ± 0.33 36.40 ± 0.40 33.68 ± 0.48 34.61 ± 0.59 39.45 ± 0.23 40.36 ± 0.23 36.38 ± 0.31

We report further results for block-wise training on MNIST [LeCun et al., 2010]
and CIFAR10 [Krizhevsky, 2009], but now we report the last block’s accuracy.
We see again greater improvement from the regularization as the training set
gets smaller, gaining as much as 6 percentage points (Table 11 below, and Tables
25 and 26 in Appendix G.2).

Table 11: Average last block test accuracy and 95% confidence interval of 10-1 ResNet over 10
runs on CIFAR10 with different train sizes and sequential (Seq) TRGL and VanGL.

Train Seq VanGL Seq TRGL E2E

50000 88.02 ± .18 88.20 ± .24 91.88 ± .18
25000 83.95 ± .13 84.28 ± .22 88.75 ± .27
10000 76.00 ± .39 77.18 ± .34 82.61 ± .35
5000 67.74 ± .49 69.67 ± .44 73.93 ± .67
1000 45.67 ± .88 51.34 ± .90 50.63 ± .98

The 88% accuracy of sequential training on CIFAR10 in Table 11 is the same
in table 2 of [Belilovsky et al., 2019], which is the best method for layer-
wise sequential training available, with VGG [Simonyan and Zisserman, 2014]
networks of comparable depth and width.
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The results here show a few limitations of our method, as the improvements
from the regularization are often minimal on sequential training. However, the
results show that our approach works, or at least does not hurt performance,
in all settings (parallel and sequential with many or few modules), whereas
other papers don’t test their methods in all settings, and some show problems
in different settings from the original one in subsequent papers (e.g. delayed
gradients methods when the number of modules increases [Huo et al., 2018a],
and PredSim in [Pyeon et al., 2021]).

4.5.6 Avoiding Early Overfitting

We verify that our method avoids the stagnation in test accuracy with increasing
depth. In Figure 18 below, we look at the test accuracy of each module after
module-wise training with and without the regularization.

On the left, from the experiment with parallel module-wise training with 16
modules on STL10 from Table 6 in Section 4.5.1, we see that TRGL performs
worse than vanilla module-wise training in the early modules, but surpasses
it greatly in later modules. This indicates that it does avoid early overfitting
and the subsequent stagnation in test accuracy. On the right, from experiments
with sequential block-wise training from Table 11 in Appendix G, we see a
large decline in the test accuracy of vanilla block-wise training after the first
block that adding our transport regularization completely avoids. We see similar
patterns in Figure 42 in Appendix G with parallel and multi-lap sequential
block-wise training.

Figure 18: Accuracy after each module averaged over 10 runs with 95% confidence intervals.
Left: parallel vanilla (VanGL, in blue) and regularized (TRGL, in red) module-wise training
of a ResNet-110 with 16 modules on STL10. Right: sequential vanilla (VanGL, in blue) and
regularized (TRGL, in red) block-wise training of a 10-1 ResNet on 2% of CIFAR10.
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4.6 Discussion and Conclusion
We introduced a transport regularization for module-wise training that theoret-
ically links it to gradient flows of the loss in distribution space. Our method
provably leads to more regular modules and experimentally consistently im-
proves the test accuracy of module-wise and block-wise sequential, parallel
and multi-lap sequential (a variant of sequential training that we introduce)
training. Through this simple method that does not complexify the architecture,
we aim at making module-wise training competitive with end-to-end training
while benefiting from its computational advantages: reduced memory usage and
parallelism that is complementary to model and data parallelism in the case
of parallel module-wise training, and training only one module at a time in
constrained settings such as training on mobile devices in the case of sequential
module-wise training.

The method can easily be combined with other methods of layer-wise training.
Future work can also experiment with working in Wasserstein space Wp for
p ̸= 2, i.e. regularizing with a norm ∥.∥p with p ̸= 2. One can also ask how far
the obtained composition network GK is from being an OT map itself, which
could provide a better stability bound than the one obtained by naively chaining
the stability bounds (30) that follow from each module Tk being an OT map.
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Abstract

We propose a detector of adversarial samples that is based on the view
of residual networks as discrete dynamical systems. The detector tells clean
inputs from abnormal ones by comparing the discrete vector fields they
follow throughout the network’s layers. We also show that regularizing
this vector field during training makes the network more regular on the
data distribution’s support, thus making the network’s activations on
clean samples more distinguishable from those on abnormal samples.
Experimentally, we compare our detector favorably to other detectors
using seen and unseen attacks, and show that the regularization of the
network’s dynamics improves the performance of adversarial detectors that
use the internal embeddings as inputs, while also improving the network’s
test accuracy. The work presented in this section has led to the following
publication [Karkar et al., 2023b] at ECML 2023.

5.1 Introduction
Neural networks have improved performances on many learning tasks, including
image classification. They are however vulnerable to adversarial attacks [Szegedy
et al., 2013]. These attacks modify an image in a way that is imperceptible to
the human eye but that fools the network into wrongly classifying the modified
image. These attacks can transfer to and fool other networks [Moosavi-Dezfooli
et al., 2017a], can be carried out in the physical word, for example causing
autonomous cars to misclassify road signs [Eykholt et al., 2018], and can be
generated without having access to the network [Liu et al., 2017]. Developing
networks that are robust to such attacks or accompanied by detectors that can
detect them is therefore indispensable to deploying them safely in the real word
[Amodei et al., 2016].

We focus here on the task of detecting adversarial samples. Neural networks
trained with a softmax classifier produce overconfident predictions even for
out-of-distribution and adversarial inputs [Nguyen et al., 2015]. This makes it
difficult to detect such inputs via the softmax outputs. An adversarial detector
is a system capable of predicting whether an input at test time has been
adversarially modified. Adversarial detectors are trained on a dataset made
up of clean and attacked inputs, after network training. While simply training
the detector on the inputs has been tried, using their embeddings works better
[Carlini and Wagner, 2017a]. Detection methods vary by which activations to
use and how to process them to extract the features that are fed to the classifier
that tells clean samples from attacked ones.

We make two contributions in this work. First, we propose an adversarial detector
that is based on the view of neural networks as dynamical systems that move
inputs in space, time represented by depth, to separate them before applying a
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linear classifier. Given their resemblance to the Euler scheme for ODEs, ResNets
[He et al., 2016b, He et al., 2016a, Weinan, 2017] are particularly amenable to
this analysis. But the analysis and implementation extend immediately to any
network where most layers have the same input and output dimensions. Our
detector follows the trajectory of samples in space, through time, to differentiate
clean and adversarial images. The statistics that we extract are the positions of
the internal embeddings in space approximated by their norms and cosines to
a fixed vector. This means that the extraction time and size are very low and
allows to consider all layers, when many methods have to restrict themselves to
a subset of layers.

[Wu et al., 2020] show an increased vulnerability of residual architectures to
transferable attacks, precisely because of the skip connections. Given that skip
connections are present in almost all state-of-the-art architectures, this motivates
the need for a detector that is well adapted to residual architectures.

We test our detector on adversarial samples generated by 8 attacks, on 3 datasets
and networks, comparing it favorably to the Mahalanobis [Lee et al., 2018] and
natural scene statistics [Kherchouche et al., 2020] detectors. We also show that
our detector can be used effectively for out-of-distribution detection even after
only training it on adversarial samples.

Building on this dynamical viewpoint, our second contribution is to use the
transport regularization during training proposed in Section 3 to make the
activations of adversarial samples more distinguishable from those of clean
samples, thus making adversarial detectors perform better, while also improving
generalization.

We prove that the regularization achieves this by making the network more
regular on the support of the data distribution. This does not make it more
robust to attacks, but it will make the activations of the clean samples closer to
each other and further from those of abnormal out-of-distribution samples, thus
making adversarial detection easier, since adversarial attacks tend to lie outside
the data manifold. We favorably compare the effect of our regularization in this
regard to RCE training [Pang et al., 2018].

5.2 Related Work
An adversarial attack aims at slightly modifying an input image at test time by
no more than ϵ in a certain metric (an Lp norm usually) so that the perturbation
is undetectable to the human and that the perturbed image is misclassified by
the network. More formally, given a classifier f in a multi-class classification
task and ϵ > 0, an adversarial sample y constructed from a clean sample x
is y = x + δ, such that ∥δ∥ ≤ ϵ and f(y) ̸= f(x). The maximal perturbation
size ϵ has to be so small as to be almost imperceptible to a human (see Figure
19 below). An adversarial attack is an algorithm that finds such adversarial
samples. We present below some popular adversarial attacks that are used to
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find such adversarial samples. We present in more detail how these attacks work
in Appendix E.1.

Figure 19: Example of an adversarial attack from [Goodfellow et al., 2015a].

White-box attacks are attacks where the adversary has access to the network’s
architecture, weights and gradients. The Fast Gradient Method (FGM) [Good-
fellow et al., 2015b] takes a perturbation step in the direction of the gradient
that maximizes the loss (see Figure 19 above). Projected Gradient Descent
(PGD) [Madry et al., 2018] and the Basic Iterative Method (BIM) [Kurakin
et al., 2017] are iterative versions of FGM. Auto-PGD (APGD) [Croce and Hein,
2020b] is a variant of PGD that uses an adaptive step size. Two slower but more
effective attacks are DeepFool (DF) [Moosavi-Dezfooli et al., 2016], which itera-
tively perturbs an input in the direction of the closest decision boundary, and
Carlini-Wagner (CW) [Carlini and Wagner, 2017b], which solves an optimization
problem to find the perturbation.

Black-box attacks don’t have any knowledge about the the network and can
only query it. They include the Boundary Attack (BA) [Brendel et al., 2018],
which starts from a large adversarial sample and moves towards the boundary
decision to minimize the perturbation, and Hop-Skip-Jump (HSJ) [Chen et al.,
2020a], which estimates the gradient direction at the decision boundary.

AutoAttack [Croce and Hein, 2020b] is combination of 3 white-box attacks (two
versions of Auto-PGD and the FAB attack [Croce and Hein, 2020a]), and of the
black-box Square Attack (SA) [Andriushchenko et al., 2020].

Two main defense mechanisms exist against adversarial attacks: adversarial
robustness and adversarial detection.

Adversarial robustness means training a network that is not easily fooled by
adversarial samples, for example through adversarial training (augmenting the
training set with adversarial samples [Szegedy et al., 2013, Goodfellow et al.,
2015b]), regularization [Gu and Rigazio, 2015], distillation [Papernot et al.,
2016c] and denoising [Meng and Chen, 2017]. In the context of adversarial
robustness, the view of ResNets as transport systems was used in [Wang et al.,
2019b] to relate injecting noise into residual networks and ensembling them
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to approximating the Feynman-Kac formula for convection-diffusion, which
makes the level sets more regular and the network more robust to adversarial
attacks. These robustness-enhancing defense mechanisms can generally be
avoided by newer attacks [Carlini and Wagner, 2017a], and a theoretical debate
exists over a trade-off that is observed in practice between test accuracy and
adversarial robustness [Yang et al., 2020b, Raghunathan et al., 2020, Schmidt
et al., 2018, Dohmatob, 2019].

Given these limitations of adversarial robustness, a detector capable of detecting
adversarial samples is an important addition to a neural network in deployment.
An advantage to having an adversarial detector is that it can, at least in
principle, be used to also detect out-of-distribution samples, for which the notion
of robustness does not make sense. While simply training the detector on a
dataset of clean and adversarial inputs has been tried, using their embeddings as
they go through the network works better for most detection methods [Carlini
and Wagner, 2017a]. But using all the intermediate embeddings of an input
as features to train an adversarial detector on is impossible given the huge
memory and time it would require. Detection methods therefore vary by which
activations they use and how to process them to extract the features that are
fed to the classifier that tells clean samples from attacked ones.

An early idea for adversarial detection was to use a second network [Metzen
et al., 2017]. However, this network can be adversarially attacked as easily as the
first network. More recent popular statistical approaches include LID [Ma et al.,
2018], Mahalanobis [Lee et al., 2018, Ren et al., 2021], MMD [Grosse et al., 2017]
and KD [Feinman et al., 2017]. LID trains the detector on the local intrinsic
dimensionality (LID, [Houle, 2013, Amsaleg et al., 2015, Tempczyk et al., 2022]
of activations approximated over a batch. Mahalanobis train the detector on the
Mahalanobis distances between the activations and a Gaussian fitted to them
during network training, assuming they are normally distributed. MMD employs
a statistical test that uses the maximum mean discrepancy distance (MMD,
[Gretton et al., 2012]) between shuffled inputs. KD combines kernel density (KD,
[Parzen, 1962, Rosenblatt, 1956]) estimates and Bayesian uncertainty estimates
obtained via dropout [Srivastava et al., 2014] as detection features.

Our detector is not a statistical approach and does not need batch-level statistics,
nor statistics from the training data of the network. [Carrara et al., 2019] is
the most similar approach as they monitor the evolution of the positions of
adversarial samples by comparing them to representative pivot positions of clean
points from each class. This also requires the detector to have access to the
training data of the network to compute the pivot positions as a centroid or a
medoid, and makes the extraction time and size potentially much larger as it
increases linearly with the number of classes.

Detectors trained in the Fourier domain [Harder et al., 2021] or on natural
scene statistics [Kherchouche et al., 2020, Kherchouche et al., 2022] have been
proposed. See Appendix E.2 for details and [Aldahdooh et al., 2022] for a review.
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Our second contribution is to regularize the network in a way that makes it
Hölder-continuous, but only on the input distribution’s support. Estimations of
the Lipschitz constant of a network have been used as estimates of its robustness
to adversarial samples in [Weng et al., 2018, Szegedy et al., 2013, Virmaux and
Scaman, 2018, Hein and Andriushchenko, 2017], and making the network more
Lipschitz (e.g. by penalizing an upper bound on its Lipschitz constant) has been
used to make it more robust to adversarial samples in [Hein and Andriushchenko,
2017, Cisse et al., 2017]. These regularizations [Cisse et al., 2017, Gu and Rigazio,
2015] often work directly on the weights of the neural network, therefore making
the neural network more regular on the entire input space. The main difference
with our method is that we only endue the network with regularity on the
support of the clean samples. This won’t make it more robust to adversarial
samples who lie outside the support of the data distribution, but it will make
the activations of the clean samples closer to each other and further from those
of abnormal samples, thus making adversarial detection easier.

That adversarial samples tend to lie outside the data manifold, particularly in
its co-dimensions, is a common observation and explanation for why adversarial
attacks are easy to find in high dimensions [Gilmer et al., 2018, Tanay and
Griffin, 2016, Song et al., 2018, Ma et al., 2018, Samangouei et al., 2018, Khoury
and Hadfield-Menell, 2018, Alemany and Pissinou, 2022, Feinman et al., 2017,
Chattopadhyay et al., 2019]. According to [Tanay and Griffin, 2016], adversarial
samples are easy to find in high dimensions because the decision boundary
intersects the data manifold but extends beyond it while remaining close to it
(see Figure 20 below).

Figure 20: Boundary tilting perspective of adversarial samples from [Tanay and Griffin, 2016].
Adversarial samples lie on the other side of the boundary plane in the co-dimension of the
data manifold, and not on other side of the boundary line that intersects the data manifold.

To the best of our knowledge, [Pang et al., 2018] is the only other method that
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also attempts to improve detection by encouraging the network during (normal
not adversarial) training to learn latent representations that are more different
between clean and adversarial samples. They do this by replacing the cross-
entropy loss by reverse cross-entropy (RCE) that encourages uniform softmax
outputs among the non-predicted classes. We find that our regularization leads
to better classification accuracy and adversarial detection than RCE.

5.3 Method and Theory
We take the view that a residual network moves its inputs according to a discrete
vector field to separate them. Points in each class follow similar trajectories.
Heuristically, for a successful adversarial sample that lies close to clean samples,
the vector field it follows has to be different at some step from that of the
clean samples (in its original class and in other classes), so that it can join the
trajectory of the points in another class. In Section 5.3.1, we present how to
detect adversarial attacks by looking at these trajectories. In Section 5.3.2, we
discuss the link between the regularity of neural networks and their robustness
to adversarial attacks and use the transport regularization (18) to improve
detectability of adversarial attacks.

5.3.1 Detection

Given a residual network that applies xm+1 = xm + hrm(xm) to an input x0
for 0 ≤ m<M , we consider the embeddings xm for 0<m ≤M , or the residues
rm(xm) for 0 ≤ m<M . To describe their positions in space, we take their
norms and their cosine similarities with a fixed vector as features to train our
adversarial detector on. Using only the norms already gave good detection
accuracy. Cosines to other orthogonal vectors can be added to better locate the
points at the price of increasing the number of features. We found that using
only one vector already gives state-of-the-art detection, so we only use the norms
and cosines to a fixed vector of ones. We train the detector (a random forest
in practice) on these features. The embeddings xm and the residues rm(xm)
can equivalently describe the trajectory of x0 in space through the blocks. In
practice, we use the residues rm(xm), with their norms squared and averaged.
So the feature vector given to the random forest for each x0 that goes through
a network that applies xm+1 = xm + h rm(xm) is(

1

dm
∥rm(xm)∥2, cos

(
rm(xm),1m

))M−1

m=0

(34)

and the label is 0 if x0 is clean and 1 if it is adversarial. Here cos is the cosine
similarity between two vectors and 1dm is a vector of ones of size dm where
dm is the size of rm(xm). For any non-residual architecture xm+1 = gm(xm),
the vector xm+1−xm can be used instead of rm(xm) on layers that have the
same input and output dimension, allowing to apply the method to any network
with many such layers. And we do test the detector on a ResNeXt, which
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does not fully satisfy the dynamic view, as the activation is applied after the
skip-connection, i.e. xm+1 = ReLU(xm + h rm(xm)).

The number of features is twice that of residual blocks (a norm and a cosine
per block). This is of the same order as for other popular detectors such as
Mahalanobis ([Lee et al., 2018]) and LID ([Ma et al., 2018]) that extract one
feature per residual stage (a residual stage is a group of blocks that keep the
same dimension). Even for common large architectures, twice the number of
residual blocks is still a small number of features for training a binary classifier
(ResNet152 has 50 blocks). More importantly, the features we extract (norms
and cosines) are quick to calculate, whereas those of other methods require
involved statistical computations on the activations. We include in Section
5.4.6 a favorable time comparison of our detector to the Mahalanobis detector.
Another advantage is that our detector does not have a hyper-parameter to tune
unlike the Mahalanobis and LID detectors.

5.3.2 Regularization

Regularity of neural networks (typically Lipschitz continuity) has been used as
a measure of their robustness to adversarial attacks [Weng et al., 2018, Szegedy
et al., 2013, Virmaux and Scaman, 2018, Hein and Andriushchenko, 2017, Cisse
et al., 2017]. Indeed, the smaller the Lipschitz constant L of a function f
satisfying ∥f(x) − f(y)∥ ≤ L∥x − y∥, the less f changes its output f(y) for a
perturbation (adversarial or not) y of x. Regularizing a network to make it more
Lipschitz and more robust has therefore been tried in [Hein and Andriushchenko,
2017] and [Cisse et al., 2017]. For this to work, the regularization has to apply
to adversarial points, i.e. outside the support of the clean data distribution.
Indeed, the Lipschitz continuity obtained though most of these methods and
analyses apply on the entire input space Rd as they penalize the network’s
weights directly. Likewise, choosing a small step size 0<h<1 for the residual
blocks as in [Zhang and Wynter, 2018, Zhang et al., 2019], while improving
stability, will have the same effect on all inputs, adversarial or not.

We propose an alternative approach where we regularize the network only on
the support of the input distribution, making it η-Hölder on it. Since this result
does not apply outside the input distribution’s support, particularly in the
adversarial spaces, then this regularity can serve to make adversarial samples
more distinguishable from clean ones, and therefore easier to detect. We show
experimentally that the behavior of the network will be more distinguishable
between clean and adversarial samples in practice in Section 5.4.1.

So as in Section 3.4, we train our network by solving

min
θ

C(θ) =
∑
x∈D

M−1∑
m=0

∥rm(ϕxm)∥p

subject to ϕxm+1 = ϕxm + hrm(ϕxm) and ϕx0 = x for all x ∈ D
L(θ) = 0

(35)
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which is the discretization of

inf
v,F

∫ 1

0

∥vt∥pLp((ϕ·
t)♯µ)

dt

subject to ∂tϕ
x
t = vt(ϕ

x
t )

ϕ·0 = id
(ϕ·1)♯µ ∈ SF,L

(36)

which is equivalent to

inf
T,F

C(T ) =
∫
Ω

c(x, T (x)) dµ(x)

subject to T♯µ ∈ SF,L
(37)

We solve again (35) through the method of multipliers{
θi+1 = argmin

θ
C(θ) + λi L(θ)

λi+1 = λi + τ L(θi+1)
(38)

We had a regularity result on the transport part T of the network in Section 3.4,
but we now look at individual residual blocks. We first prove a regularity result
on each residual rm that applies on the clean data points moving according to v
solution to (17).

We take Ω ⊂ Rd convex and compact and the data distribution α ∈ P(Ω)
absolutely continuous and such that δΩ is α-negligible. We suppose that there
exists an open bounded convex set X ⊂ Ω such that α is bounded away from zero
and infinity on X and is zero on its complement X∁. From Theorem 2 in Section
3.3.2, we know that (37) and (36) are equivalent and have solutions (T, F ) and
(v, F ) such that T is an optimal transport map between α and β := T♯α. We
suppose that β is absolutely continuous and that there exists an open bounded
convex set Y ⊂ Ω such that β is bounded away from zero and infinity on Y and
is zero on Y ∁. In the rest of this section, v solves (36) and we suppose that we
find a solution to the discretized problem (35) that is an ε/2-approximation of
v, i.e. ∥rm − vtm∥∞ ≤ ε/2 for all 0 ≤ m < M , with tm = m/M .

In Theorem 6, we show that the regularization makes the residual blocks of the
network η-Hölder (with an error of ε) on the support of the input distribution
as it moves according to the theoretical vector field solution v. The results hold
for all norms on Rd.

Theorem 6. For a, b ∈ support(αtm) where αt := (ϕ·t)♯α with ϕ solving (36)
along with v, we have

∥rm(a)− rm(b)∥ ≤ε+K∥a− b∥ζ1 if ∥a− b∥ ≤ 1

∥rm(a)− rm(b)∥ ≤ε+K∥a− b∥ζ2 if ∥a− b∥ > 1

for constants K > 0 and 0 < ζ1 ≤ ζ2 ≤ 1,
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Proof. A solution v to (36) exists and is linked to an optimal transport map T
that is a solution to (37) through vt = (T −id) ◦T−1

t where Tt := (1− t)id+ tT
which is invertible (see Appendix B). By Theorem 1 in Appendix B, being
an optimal transport map, T is η-Hölder on X. So for all t ∈ [0, 1[ and all
a, b ∈ support(αt), where αt = (ϕ·t)♯α = (Tt)♯α with ϕ solving (36) together
with v, we have

∥vt(a)− vt(b)∥ ≤ ∥T−1
t (a)− T−1

t (b)∥+ C∥T−1
t (a)− T−1

t (b)∥η (39)

Since (αt)
1
t=0 is a geodesic between α and β = α1 = T♯α, then (αs)

t
s=0 is a

geodesic between α and αt (modulo reparameterization to [0, 1]). And since
αs = (Ts)♯α, the map Tt is an optimal transport map between α and αt.
Therefore its inverse T−1

t is an optimal transport map (see Theorem 25 in
Appendix B) and is ηt-Hölder with 0<ηt≤1 (being a push-forward by Tt, the
support of αt satisfies the conditions of Theorem 1 in Appendix B). Therefore,
for all a, b ∈ support(αt)

∥vt(a)− vt(b)∥ ≤ Ct∥a− b∥ηt + CCηt ∥a− b∥ηηt (40)

and for all a, b ∈ support(αtm)

∥rm(a)− rm(b)∥ ≤ ε+ Ctm∥a− b∥ηtm + CCηtm∥a− b∥
ηηtm (41)

by the hypothesis on r and the triangle inequality. Let K := maxm Ctm +CCηtm ,
ζ1 := ηminm ηtm and ζ2 := maxm ηtm . Then, we have the desired result
immediately from (41).

We use Theorem 6 to now bound the distance between the residues at depth m
as a function of the distance between the network’s inputs. For inputs a0 and
b0 to the network, the intermediate embeddings are am+1 = am + hrm(am) and
bm+1 = bm+hrm(bm), and the residues used to compute features for adversarial
detection are rm(am) and rm(bm). So we want to bound ∥rm(am)− rm(bm)∥
as a function of ∥a0 − b0∥. This is usually done by multiplying the Lipschitz
constants of each block up to depth m, which leads to an overestimation [Huster
et al., 2019], or through more complex estimation algorithms [Virmaux and
Scaman, 2018, Latorre et al., 2020, Bhowmick et al., 2021]. Bound (39) allows
through T−1

t to avoid multiplying the Hölder constants of the blocks. If a0 and
b0 are on the clean data support X, we get Theorem 7, which we prove together
with Theorem 8 below.

Theorem 7. For a0, b0 ∈ X and constants C,L>0,

∥rm(am)− rm(bm)∥ ≤ ε+ ∥a0 − b0∥+ C∥a0 − b0∥η+
+ L(∥am − ϕa0tm∥+ ∥bm − ϕ

b0
tm∥)

The term µ(a0):=∥am−ϕa0tm∥ (and µ(b0):=∥bm−ϕb0tm∥) is the distance between
the point am after m residual blocks and the point ϕa0tm we get by following the
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theoretical solution vector field v up to time tm starting from a0. If a0 and b0
are not on the data support X, an extra term has to be introduced to use bound
(39). Bounding the terms µ(a0) and µ(b0) is possible under more regularity
assumptions on v. We assume then that v is C1 and Lipschitz in x, which is
not stronger than the regularity we get on v through our regularization, as it
does not give a similar result to bound (39). We have for all inputs a0 and b0,
whether they are clean or not, Theorem 8:

Theorem 8. For a0, b0∈Rd and constants R,S > 0,

∥rm(am)− rm(bm)∥ ≤ ε+ LSε+ LSRh+ ∥a0 − b0∥+ C∥a0 − b0∥η+
+ LS(dist(a0, X) + dist(b0, X))

Proof. Since T−1
t (ϕxt ) = x, we have for any a0, b0 ∈ X by the triangle inequality

∥rm(am)− rm(bm)∥ ≤ ∥rm(am)− rm(ϕa0tm)∥+ ∥rm(ϕa0tm)− vtm(ϕa0tm)∥+
+ ∥vtm(ϕa0tm)− vtm(ϕb0tm)∥+ ∥rm(ϕb0tm)− vtm(ϕb0tm)∥+
+ ∥rm(bm)− rm(ϕb0tm)∥
≤ ε+ ∥a0 − b0∥+ C∥a0 − b0∥η+
+ L(∥am − ϕa0tm∥+ ∥bm − ϕ

b0
tm∥)

where L = maxm Lm and Lm is the Lipschitz constant of rm (which is Lipschitz
being a composition of matrix multiplications and activations such as ReLU).
This the bound in Theorem 7.

In this bound, the term ∥am − ϕa0tm∥ (and likewise ∥bm − ϕb0tm∥) represents the
distance between the point am we get after m residual blocks (i.e. after m Euler
steps using approximation r of v) and the point ϕa0tm we get by following the
solution vector field v up to time tm. By the properties of the Euler scheme
(consistency and zero-stability, see Corollaries 11, 13 and 15 in Section A.1),
under more conditions on v, it is possible to bound this term. Indeed, if v is
C1 and M -Lipschitz in x (this is not stronger than the regularity we get on
v through our regularization, because we still need to use (39)), we have for
constants R,S > 0,

∥ϕa0tm − am∥ ≤ ∥ϕ
a0
tm − ãm∥+ ∥ãm − am∥ ≤ Sε+ SRh

where ãm comes from the Euler scheme with access to v (ãm+1:=ãm+hvtm(ãm)
and ã0:=a0), R is the consistency constant of the Euler method and S is its
zero-stability constant. If a0, b0 /∈ X, we need to introduce â0 := ProjX(ao) and
b̂0 := ProjX(bo) to apply (39). We now get

∥rm(am)−rm(bm)∥ ≤ ε+∥a0−b0∥+C∥a0−b0∥η+L(∥am−ϕâ0tm∥+∥bm−ϕ
b̂0
tm∥)

Bounding the terms ∥am − ϕâ0tm∥ and ∥bm − ϕb̂0tm∥ now gives

∥ϕâ0tm − am∥ ≤ ∥am − ãm∥+ ∥ãm − ϕ
â0
tm∥ ≤ S(∥a0 − â0∥+ ε) + SRh
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where ãm now comes from the Euler scheme with access to v that starts at â0
(meaning ãm+1:=ãm+hvtm(ãm) and ã0:=â0). Likewise, we get the same bound
for ∥bm − ϕb̂0tm∥.

Since ∥a0 − â0∥ = dist(a0, X) and ∥b0 − b̂0∥ = dist(b0, X), we get the bound
in Theorem 8. Note that if we use the stability of the differential equation
instead of the stability of the Euler method to bound ∥am − ϕâ0tm∥ we get the
same result. Indeed, if ãm again comes from the Euler scheme with access to
v that starts at a0 (meaning ãm+1:=ãm+hvtm(ãm) and ã0:=a0), we can write,
for some constant F > 0

∥ϕâ0tm − am∥ ≤ ∥am − ãm∥+ ∥ãm − ϕ
a0
tm∥+ ∥ϕ

a0
tm − ϕ

â0
tm∥ ≤ Sε+ SRh+

+ F∥a0 − â0∥

since

∥ϕa0tm − ϕ
â0
tm∥ ≤ ∥a0 − â0∥+

∫ tm

0

∥vs(ϕa0s )− vs(ϕâ0s )∥ds

≤ ∥a0 − â0∥+M

∫ tm

0

∥ϕa0s − ϕâ0s ∥ ds

≤ F∥a0 − â0∥

where we get the last line by Gronwall’s lemma.

The terms dist(a0, X) and dist(b0, X) in Theorem 8 show that the regularity
guarantee is increased for inputs in X. The trajectories of clean points are then
closer to each other and more different from those of abnormal samples outside
X as in Figure 22 in Section 5.4.1.

5.4 Experiments
We evaluate our method on adversarial samples found by 8 adversarial attacks.
The threat model is as follows. We use 2 popular white-box attacks that have
access to the network and to its weights and architecture but not to its training
data: FGM [Goodfellow et al., 2015b], PGD [Madry et al., 2018] (specifically the
Auto-PGD-CE (APGD) variant [Croce and Hein, 2020b]), BIM [Kurakin et al.,
2017], DF [Moosavi-Dezfooli et al., 2016], CW [Carlini and Wagner, 2017b], and
AA [Croce and Hein, 2020b], and 2 black-box attacks that can only query the
network: HSJ [Chen et al., 2020a] and BA [Brendel et al., 2018]. We assume the
attacker has no access to the detector and use the untargeted (i.e. not seeking
to direct the mistake towards a particular class) versions of the attacks.

For FGM, APGD and BIM, we use a maximal perturbation size of ϵ = 0.03. We
use the L2 norm for CW and HSJ and the L∞ norm for all the other attacks.
We use the Adversarial Robustness Toolbox (ART) Python package [Nicolae
et al., 2018] to generate the adversarial samples, except for AA for which we
use the authors’ original code [Croce and Hein, 2020b]. We use the default
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values from the ART package and the code of [Croce and Hein, 2020b] for the
hyper-parameters of the attacks that are not mentioned here. The number of
iterations is 50 for HSJ, 5000 for BA, 10 for CW and 100 for APGD and DF.

We compare our detector (which we call the Transport detector or TR in the
tables below) to the Mahalanobis detector (MH in the tables below) of [Lee
et al., 2018] and to the detector of [Kherchouche et al., 2020, Kherchouche et al.,
2022] that uses natural scene statistics (NS in the tables below). We compare
our transport regularization to reverse cross entropy (RCE) training of [Pang
et al., 2018], which is also meant to improve detection of adversarial examples.

We use three architectures and datasets for our experiments: a ResNeXt50
trained on CIFAR100, a ResNet110 trained on CIFAR10 and a WideResNet
trained on TinyImageNet. For each architecture-dataset pair, the network is
trained normally with cross entropy, with our regularization added to cross
entropy (called a LAP-network) and with reverse cross entropy instead of
cross entropy (called an RCE-network). For our regularization, we use (19)
with τ=1, s=1 and λ0=1 for all networks. These hyper-parameters are cho-
sen to improve validation accuracy during training and not adversarial detec-
tion. More training details are in Appendix H.1. The code is available at
github.com/advadvadvadvadv/adv.

We find that our detector consistently outperforms the other detectors, also
on out-of-distribution detection, and especially on generalization to unseen
attacks. LAP training mainly improves, sometimes largely, the accuracy of the
Mahalanobis detector on seen attacks, and consistently does better than RCE.

5.4.1 Preliminary Experiments

We find again that LAP training improves generalization. The vanilla ResNeXt50
has a test accuracy of 74.38% on CIFAR100 while the LAP-ResNeXt50 has an
accuracy of 77.2%. The vanilla ResNet110 has a test accuracy of 92.52% on
CIFAR10 while the LAP-ResNet110 has an accuracy of 93.52% and the RCE-
ResNet110 of 93.1%. The vanilla WideResNet has a test accuracy of 65.14% on
TinyImageNet while the LAP-WideResNet has an accuracy of 65.34%.

We see in Figure 21 below that regularizing the transport cost C through LAP
training makes it more distinguishable between clean and adversarial samples.
Indeed, the histograms of C on adversarial samples move away from the histogram
of C on clean samples when using LAP training instead of vanilla training. Simply
using the empirical quantiles of C on clean samples to reject abnormal samples
with a transport cost C that falls outside of these quantiles allows then to detect
samples from some simple attacks with near perfect recall and a chosen fixed
false positive rate, without training on or even seeing adversarial samples. In
Figure 21, using the 0.02 and 0.98 empirical quantiles of C on the clean samples
allows to detect adversarial samples from the FGM attack with big enough
maximal perturbation ϵ almost perfectly on the LAP-ResNeXt50 trained on
CIFAR100, but not on the vanilla ResNeXt50.
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Figure 21: Histogram of the transport cost C for clean and FGM-attacked test samples with
different values of ϵ on CIFAR100. The vertical lines represent the 0.02 and 0.98 empirical
quantiles of the transport cost of the clean samples. Left: ResNeXt50. Right: LAP-ResNeXt50.

We visualize this increased difference in behavior between clean and out-of-
distribution (OOD) points with LAP training in 2 dimensions in Figure 22. The
experiments is binary classification of the circles dataset from scikit-learn
[Pedregosa et al., 2011], where we add OOD points at test time.

Figure 22: Transformed circles test set from scikit-learn (red and blue) and out-of-distribution
points (green) after blocks 6 and 9 of a ResNet with 9 blocks. We use LAP training in the
second row, which makes the movements of the clean points (red and blue) more similar to
each other and more different from the movements of the green out-of-distribution points than
when using the vanilla network in the first row. In particular, without the regularization, the
green points are closer to the clean red points after blocks 6 and 9 which is undesirable.
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5.4.2 Detection of Seen Attacks

For detection training, the test set is split in 0.9/0.1 proportions into two
datasets, B1 and B2. For each image in B1 (respectively B2), an adversarial
sample is generated and a balanced detection training set (respectively detection
test set) is created. Since adversarial samples are created for a specific network,
this is done for the vanilla network and its LAP and RCE versions. We tried
augmenting the detection training dataset with a random perturbation of each
image, to be considered as clean, as in [Lee et al., 2018], but we found that this
usually does not improve detection accuracy. This dataset creation protocol
is standard and is depicted in Figure 23 below. We tried limiting the dataset
to successfully attacked images only as in [Lee et al., 2018], but did not find a
consistent improvement in detection, even only on successfully attacked images.

Figure 23: Adversarial detection dataset creation. A∪B1∪B2 is the original dataset, where A
is the training set and B1∪B2 is the test set. We create a noisy version of B1∪B2 by adding
random noise to each sample in B1∪B2 to get C1∪C2. Noisy samples are considered clean
(i.e. not attacked) in adversarial detection training. We create an attacked version of B1∪B2
by creating an attacked image from each image in B1∪B2 to get D1∪D2. In the case of
generalization to unseen attacks, Attack 2 used to create D2 from B2 is different from Attack
1 used to create D1 from B1. Otherwise, Attack 1 and Attack 2 are the same. B1∪C1∪D1 is
the adversarial detection training set and B2∪C2∪D2 is the adversarial detection test set.
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Samples in the detection training set are fed through the network and the
features of each detection method are extracted. We tried three classifiers
(logistic regression, random forest and SVM from scikit-learn [Pedregosa et al.,
2011]) trained on these features for each detection method, and kept the random
forest as it always performs best.

We tried two methods to improve all detectors: class-conditioning and ensembling.
In class-conditioning, the features are grouped by the class predicted by the
network, and a detector is trained for every class. At test time, the detector
trained on the features of the predicted class is used. A detector is also trained
on all samples regardless of the predicted class and is used in case a certain class
is never targeted by the attack. We also tried ensembling the class-conditional
detector with the general all-class detector: an input is considered an attack if
at least one detector says so. This ensemble of the class-conditional detector
and the general detector performs best for all detection methods, and is the one
we use.

We report the detection accuracy of each detector on the detection test set
for both the vanilla version of the network and its LAP version in Table 12
below. In each cell, the first number corresponds to the vanilla network and the
second to the regularized LAP-network. Since the NS detector takes the image
and not its embeddings as input, the impact of LAP and RCE training on its
performance is minimal and we report its performance on the vanilla network
only.

These results are averaged over 5 runs and the standard deviations are in Tables
32, 33 and 34 in Appendix H.2, along with results on RCE-networks. Since they
are much slower to generate, we test detection of black-box attacks HSJ and
BA only on the network-data pair of ResNet110-CIFAR10 and of the DF and
the CW attacks only on ResNet110-CIFAR10 and ResNeXt50-CIFAR100.

Results in Table 12 show two things. First, our detector performs better than
both other detectors, with or without the regularization. Second, both the
TR and MH detectors work better on the LAP-networks most times. The MH
detector benefits more from the regularization, but on all attacks, the best
detector is always the Transport detector. In Tables 32 and 33 in Appendix H.2,
RCE often improves detection accuracy in this experiment, but clearly less than
LAP training.

Results for ResNet110 on CIFAR10 are in the first row of Table 12. Our
detector outperforms the Mahalanobis detector by 8 to 16 percentage points
depending on the attack on the vanilla ResNet110, and the NS detector by
up to 5 percentage points. LAP training improves the detection accuracy of
our detector by 1.5 percentage points on average and that of the Mahalanobis
detector by a substantial 8.2 percentage points on average.

Results for ResNeXt50 on CIFAR100 are in the second row of Table 12. Our
detector outperforms the Mahalanobis detector by 1 to 5 percentage points
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depending on the attack on the vanilla ResNeXt50, and the NS detector by up
to 3 percentage points. LAP training improves the detection accuracy of both
detectors by 1 percentage point on average.

Results for a WideResNet on TinyImageNet are in the third row of Table 12.
Our detector outperforms the Mahalanobis detector by 3 to 15.5 percentage
points depending on the attack on the vanilla WideResNet, and the NS detector
slightly. LAP training improves the detection accuracy of the Mahalanobis
detector by 0.6 percentage points on average.

Detection rates of successful adversarial samples (i.e. those that fool the network)
are in Table 38 in Appendix H.4 and are higher than 95% on our detector. False
positive rates are in Table 40 in Appendix H.5 and are always less than 5%
on our detector. The AUROC is in Table 42 in Appendix H.6. On all these
metrics, our detector outperforms the other detectors, and LAP-training greatly
improves the performance of the Mahalanobis detector.

Table 12: Average detection accuracy of seen attacks on Network/LAP-Network.

Attack

Network/Data Det FGM APGD BIM AA DF CW HSJ BA

ResNet110
CIFAR10

TR 97.1/98.7 94.1/97.5 97.5/99.3 88.9/94.1 99.9/99.8 98.0/98.0 99.9/99.9 96.6/97.0
MH 87.8/95.6 82.1/90.7 86.8/95.4 80.5/90.0 91.5/96.7 85.6/93.4 85.5/94.6 80.2/89.6
NS 94.6 94.3 95.0 88.8 99.8 93.9 99.7 92.1

ResNeXt50
CIFAR100

TR 97.3/98.3 96.0/97.8 98.0/98.9 84.9/87.6 99.8/99.6 97.0/97.8
MH 95.8/96.8 93.9/94.6 96.1/97.8 83.9/86.6 97.3/97.1 95.4/96.4
NS 94.7 94.2 94.7 84.8 99.6 90.7

WideResNet
TinyImageNet

TR 95.4/95.1 95.2/95.2 95.3/95.1 81.4/81.2
MH 81.1/82.3 79.7/80.6 81.2/82.5 78.4/78.4
NS 94.9 94.9 95.0 81.3

5.4.3 Detection of Unseen Attacks

An important setting is when we don’t know which attack might be used at test
time or only have time to train on one attack. We still want our detector to
generalize well to other attacks. To test this, we use the same vanilla networks
as above but only train the detectors on the detection training set created using
the simplest and quickest attack (FGM) and test them on the detection test
sets created using the six other attacks.

Results are in Table 13 below. We see that our detection method has very
good detection generalization to unseen attacks, even those very different from
FGM, comfortably better than the Mahalanobis detector, by up to 19 percentage
points, while the NS detector only generalizes to variants of FGM (APGD and
BIM), and fails on the other attacks. These results are averaged over 5 runs
and the standard deviations are in Tables 35, 36 and 37 in Appendix H.3.
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Table 13: Average detection accuracy of unseen attacks after training on FGM.

Attack

Network/Data Detector APGD BIM AA DF CW HSJ BA

ResNet110
CIFAR10

TR 89.32 96.02 85.10 91.02 93.18 93.00 90.92
MH 77.34 77.24 72.12 80.12 79.92 79.70 79.32
NS 92.08 93.88 51.82 51.40 50.84 52.12 59.88

ResNeXt50
CIFAR100

TR 91.94 95.02 73.32 85.16 78.18 85.04 92.14
MH 90.86 93.16 73.08 82.72 76.44 82.82 84.46
NS 92.16 93.88 51.32 51.62 51.02 52.04 57.90

WideResNet
TinyImageNet

TR 93.26 94.66 77.04 90.62 91.42
MH 76.96 77.02 60.36 73.18 75.52
NS 94.06 94.62 65.60 72.82 71.96

On our detector, the detection rate of successful adversarial samples from unseen
attacks remains higher than 90% in most cases (Table 39 in Appendix H.4) and
the FPR is always lower than 10% (Table 41 in Appendix H.5). The AUROC is
in Table 43 in Appendix H.6. Our detector almost always outperforms the other
detectors on all these metrics. On the attacks that are not variants of FGM,
the NS detector almost never predicts that an input is adversarial.

However, this experiment shows that our approach has some limitations. We see
in Tables 35, 36 and 37 in Appendix H.3 that LAP training does not improve
detection accuracy as much anymore in this setting, and reduces it in some cases.
It improves it for the Mahalanobis detector on all attacks on the ResNet110-
CIFAR10 and WideResNet-TinyImageNet experiments (by up to 10 percentage
points), but not on most attacks on the ResNeXt50-CIFAR100 experiment. It
often reduces detection generalization on our detector. But it always does better
than RCE training in Tables 35 and 36 in Appendix H.3.

We claim this is because these methods reduce the variance of features extracted
during training on the seen attack, thus harming generalization to unseen attacks.
This explains why detection of PGD and BIM, which are variants of FGM, still
often improves. Fixing this could be an area of future research. That LAP
training improves detection of unseen OOD samples in some cases in the out-of-
distribution experiment in Tables 14 and 15 in Section 5.4.4 indicates that this
problem is not general.

5.4.4 Detection of Out-of-Distribution Samples

Since our analysis applies to all out-of-distribution (OOD) samples, we test
detection of OOD samples in a similar setting to the Mahalanobis paper [Lee
et al., 2018]. We use the same ResNet110 and ResNeXt50 models trained on
CIFAR10 and CIFAR100 respectively. Since the detectors need to be trained,
we are in the OOD setting where we have a first dataset for training the network
(CIFAR10 in Table 14 and CIFAR100 in Table 15) and a second dataset from
another distribution that is not the test OOD distribution to train the detector
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on. This could be another dataset (CIFAR100 in the first column of Table 14),
some images found in the wild, or a perturbation of our dataset that we generate
using an adversarial attack (CW on CIFAR10 in the second column of Table 14,
and AA and CW on CIFAR100 in Table 15). Detectors can then be used by
training them to distinguish between these first two datasets, and then testing
them on distinguishing between the first dataset and a third unseen dataset
(SVHN [Netzer et al., 2011] in both tables). Results are in Tables 14 and 15.

Table 14: Average OOD detection accuracy and standard deviation over 5 runs using ResNet110
trained on CIFAR10.

OOD Experiment 1 OOD Experiment 2

Detector CIFAR100 (seen) SVHN (unseen) CW-CIFAR10 (seen) SVHN (unseen)

VAN TR 98.30 ± 0.46 97.46 ± 0.49 97.42 ± 0.57 91.38 ± 0.95
RCE TR 98.42 ± 0.40 98.20 ± 0.39 91.54 ± 6.06 77.58 ± 6.72
LAP TR 98.30 ± 0.22 98.50 ± 0.47 97.28 ± 0.62 85.46 ± 2.64

VAN MH 86.88 ± 1.52 91.28 ± 0.92 81.80 ± 1.96 83.76 ± 1.13
RCE MH 94.82 ± 0.45 92.16 ± 0.57 76.74 ± 2.75 54.24 ± 3.46
LAP MH 94.84 ± 0.41 90.46 ± 1.45 89.68 ± 0.65 76.72 ± 1.73

Table 15: Average OOD detection accuracy and standard deviation over 5 runs using ResNeXt50
trained on CIFAR100.

OOD Experiment 1 OOD Experiment 2

Detector AA-CIFAR100 (seen) SVHN (unseen) CW-CIFAR100 (seen) SVHN (unseen)

VAN TR 84.48 ± 0.59 75.32 ± 0.62 95.82 ± 0.67 92.92 ± 1.36
RCE TR 50.04 ± 0.07 55.44 ± 5.76 76.48 ± 0.75 75.66 ± 0.68
LAP TR 87.10 ± 0.12 72.98 ± 2.72 95.94 ± 0.57 85.94 ± 2.88

VAN MH 83.44 ± 0.48 78.82 ± 0.48 94.96 ± 0.81 85.10 ± 1.50
RCE MH 50.04 ± 0.07 58.74 ± 2.36 76.20 ± 0.72 72.20 ± 1.47
LAP MH 86.04 ± 0.31 86.84 ± 0.68 94.82 ± 0.34 88.92 ± 1.26

Our detector performs very well and better than the MH detector in three of the
four experiments, and in the fourth case, the MH detector benefits from LAP
training by 8 percentage points (first experiment in Table 15).Without any extra
data available, using the CW adversarial attack allows to detect OOD samples
from an unseen distribution with more than 90% accuracy and an FPR of less
than 10% at a fixed TPR of 95%. The choice of the attack is also important, as
CW allows for much better detection of unseen samples from SVHN than AA.

The AUROC and the false positive rate at a fixed true positive rate of 95% are
in Appendix H.7, in Tables 44 and 45 for ResNet100, and in Tables 46 and 47 for
ResNeXt50. They show the same advantage for our detector and regularization
over the Mahalanobis detector and RCE training respectively.
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5.4.5 Attacking the Detector

We consider here the case where the attacker also attacks the detector (adaptive
attacks). We try two such attacks on the TR and MH detectors on ResNet110
trained on CIFAR10. Both attacks are white-box with respect to the network.
The first is black-box with respect to the detector. It only knows if an adversarial
sample has been detected or not. The second has some knowledge about the
detector. It knows what features it uses and can attack it directly to find
adversarial features. We test these attacks by looking at the percentage of
detected successful adversarial samples that they turn into undetected successful
adversarial samples that fool both the network and the detector.

The first attack proceeds as follows. A strong white-box attack (CW) is used on
the network on image x that has label y. If it finds a successful adversarial image
x̃ that fools the network into predicting ỹ ̸= y but is detected by the detector,
the attacker will attempt to modify this image x̃ so that the network and the
detector are both fooled. For this, the image x̃ is used as the initialization
for an attack (HSJ with a budget of 50 iterations and 10000 evaluations) on a
black-box Network-Detector system. The attacker considers that the Network-
Detector behaves as follows: it outputs the class prediction of the network if the
detector does not detect an attack and outputs an additional ‘detected’ class if
the detector detects an attack. The attacker attacks this Network-Detector on
image x̃ targeting the ỹ label. This way the network makes a mistake and the
‘detected’ class is avoided. On the vanilla ResNet110, this attack turns 16.5%
of 1700 detected successful adversarial samples x̃ into undetected successful
adversarial samples on our detector, compared to 25.7% on the Mahalanobis
detector. These percentages are lower on the LAP-ResNet110 as they drop to
6.8% on our detector and 12.9% on the Mahalanobis detector. This shows that
LAP training improves the robustness of both adversarial detectors to being
attacked themselves, and that the Transport detector is more robust than the
MH detector.

The second attack is very similar to the adaptive attack used in [Carlini and
Wagner, 2017a] to break the Kernel Density detector of [Feinman et al., 2017].
It proceeds as follows. A strong white-box attack (CW) is used on the network
on image x that has label y. If it finds a successful adversarial image x̃ that
fools the network but is detected by the detector, the detection features z̃ that
x̃ generates when run through the network are used as the initialization for a
black-box attack (HSJ with a budget of 50 iterations and 10000 evaluations) on
the detector. If successful adversarial detection features z∗ that fool the detector
are found, the attacker has to find an adversarial perturbation of x that still
fools the network and that generates these features z∗ (or close features that
also fool the detector) when run through the network. We do this as in [Carlini
and Wagner, 2017a] by solving the following optimization problem:

min
x∗
−L(N(x∗), y) + c1∥D(x∗)− z∗∥+ c2∥x∗ − x∥ (42)

where L is the cross-entropy loss, N is the network, and D is the (differentiable)
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function that returns the detection features of its input. This optimization
problem is differentiable and we try differentiable optimization algorithms such
as BFGS and NR to solve it. The initial detected successful adversarial image x̃
is used as initialization as in [Carlini and Wagner, 2017a]. This attack turns
14% of detected successful adversarial samples x̃ into undetected successful
adversarial samples on our detector on the LAP-ResNet110.

Given that initial detection rates of successful adversarial samples are very often
close to 100% (see Tables 38 and 39 in Appendix H.4), this shows that adaptive
attacks do not (at least not easily) circumvent the detector, as detection rates
drop to 85% at worst.

The second attack is stronger than the first one, but it can probably still be
improved by using a white-box attack that is specific to random forests for
attacking the detector such as [Kantchelian et al., 2016] or [Zhang et al., 2020],
or a different loss than cross-entropy such as the one used in the CW attack. The
choice of the differentiable term representing the detector (here ∥D(x∗)− z∗∥
in (42)) is also important. However, the difficulty of combining the attack on
the network with that on the detector remains. It is the non-differentiability
of the random forest that forces either this separate treatment of network and
detector then the use of a proxy differentiable term for the detector in (42) to
combine both, or the use of a black-box method as in the first attack.

Also, we did not consider here the ensemble of the class-conditional detector and
the general detector, which is the best performing version of the detector (see
Section 5.4.2), and should be more robust to adaptive attacks, as the attacker
will have to fool two random forest detectors at once and target a particular
label, constraining further the optimization problem he solves. This is similar to
[Eniser et al., 2020] where a random detector is selected at test time from a pool
of trained detectors to render adaptive attacks on the detector more difficult.

5.4.6 Time Comparison

With a ResNeXt50 on CIFAR100 and a Tesla V100 GPU, it takes our method
(including the time to generate FGM attacks) 66 seconds to extract its features
from both the clean and the adversarial samples, while it takes the Mahalanobis
method 110 seconds. Mahalanobis also extracts some statistics from the training
set prior to adversarial training, which takes an additional 35 seconds. Our
feature vector is of size 32, compared to 5 for the Mahalanobis detector. So our
random forest takes only 4 more seconds to train than the Mahalanobis one
(7 vs 3 seconds). Computation of the features our detector uses (norms and
cosines) is in O(MD), where M is the number of residual blocks and D is the
largest embedding dimension inside the network.

5.5 Discussion and Conclusion
To conclude, we proposed a method for detecting abnormal samples, based on
the dynamical viewpoint of neural networks. The method examines the discrete
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vector field moving the inputs to distinguish clean and adversarial samples. The
detector requires minimal processing and computation to extract the features it
needs for detection and achieves state-of-the-art detection performances on 3
different architectures and datasets, on seen and unseen attacks, and also on
out-of-distribution detection.

The low dimension of the features we extract (2 per residual block) allows to
keep the features from all blocks as opposed to other detection methods that
only experimentally select which layers to use. This could explain the superior
performance of our detector, as we closely monitor the evolution of the input’s
embeddings inside the network.

We have also used the transport regularization that was previously shown to
improve test accuracy to improve the detection accuracy of adversarial detectors.
This regularization provably makes the embeddings closer to each other on the
support of the input distribution, thus making them more distinguishable from
those of abnormal samples. The main difference with other regularizations that
make the network more Lipschitz by regularizing its weights directly is that we
only endue the network with additional regularity on the support of the data
distribution and not on the entire space.

A possible simple extension of our detection method would be to add cosines to
other orthogonal vectors as detection features. A trade-off between the accuracy
of the detector and the size and computation time of the features would then
have to be taken into account.
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6.1 Summary
Residual connections are among the workhorses that make neural networks
successful. We have expanded on interpretations of their functioning, namely,
the iterative refinement bias (i.e. the bias to remain close to the identity
function) and the discrete dynamical system interpretation. We use optimal
transport theory to theoretically analyze their functioning. In optimal transport
terms, these two interpretations are unified to show that residual connections
induce a desirable bias towards networks with low kinetic energy and transport
cost. This analysis allowed us to propose improvements to the accuracy and
stability of residual networks and applications to module-wise training that
make it competitive with end-to-end training with only a fraction of the memory
requirements and to detection of adversarial and out-of-distribution samples.

In a first work [Karkar et al., 2020] detailed in Section 3, we empirically motivated
and formulated the following learning problem: among all the networks that
solve the task, find the one that transforms the data with the lowest cost.
This amounts to regularizing the transport cost of the network. We proved
existence and regularity of models trained this way, studied their behavior in
low-dimensional settings and shown their efficiency on standard classification
tasks. Training is stabilized in an adaptive fashion without being slowed down.

In a second work [Karkar et al., 2023a] detailed in Section 4, we used this
regularization for module-wise training of neural networks without end-to-end
backpropagation, including on Transformers, saving up to 60% memory usage.
We proved that this makes every module apply a proximal step in the Wasserstein
space to maximize the separability of the data.

In a third work [Karkar et al., 2023b] detailed in Section 5, we proposed a
detector of adversarial and out-of-distribution samples based on the dynamic
viewpoint of neural networks. We also used our detector successfully on detection
of unseen out-of-distribution samples. The transport regularization provably
makes the activations of out-of-distribution samples more distinguishable from
those of clean samples, thus improving the accuracy of adversarial detectors.

6.2 Future Directions
Besides the direct possible extensions mentioned in the conclusions to Sections
3 to 5, other avenues of research follow from our analysis and point of view.

6.2.1 Adaptive Depth During Training

6.2.1.1 Introduction

The dynamical point of view of neural networks, initiated by the analogy between
residual networks and the Euler scheme, has led to new architectures [Lu et al.,
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2018, Haber et al., 2019]. While these new architectures often imitate numerical
solvers of higher order than the Euler scheme through skip connections, adaptive
solvers have only yet been explored in a few papers. We propose to use them
to adjust the step size and the depth of the network during training, possibly
reducing training cost. Given that adaptive methods are made up of multiple
imbedded schemes, this also allows to ensemble different pre-classification forward
passes at inference, without an additional training cost.

6.2.1.2 Method

This is currently a work in progress with positive results on the CIFAR100
dataset. We build a neural network that imitates the structure of an adaptive
Runge-Kutta scheme (see Appendices A.2 and A.3). The block we use contains
4 convolutional functions denoted fi and does the following computations for an
input x with a step size h:

p1 = f1(x)

yeuler = x+ hp1

p2 = f2(x+ 1
2hp1)

ymidpoint = x+ hp2

p3 = f3(x+ 3
4hp2)

yorder3 = x+ 2
9hp1 +

1
3hp2 +

4
9hp3

p4 = f4(yorder3)

yorder2 = x+ 7
24hp1 +

1
4hpn,2 +

1
3hp3 +

1
8hp4

(43)

Depending on the numerical scheme we want to use, the block forwards one
of the outputs y to the next block. Only layers f1 and f2 will be trained for
example if we want to use the midpoint scheme. This allows to compare the
efficiency of the different schemes for solving classification tasks, i.e. is it better
to train 1 block of order 3 or 3 blocks of order 1 (since the order 3 method
contains 3 functions fi)?

If all the functions fi are learned, and since all the values y approximate the
same differential equation, it makes sense to average them after the last block
before the classification layer as an ensembling method.

The depth is adaptively adjusted during training as follows. First, a tolerance
hyperparameter ε > 0 is fixed. Then, on the validation set, every S epochs,
the average error err = ∥yorder3 − yorder2∥2 for each block is computed. If it
is larger than ε then the step size is halved and the block is duplicated, i.e. a
block with the same weights is added right after it. If the error is smaller than
ε/3, then the step size is doubled and the following block is deleted.

To summarize, the contributions we aim to verify on larger datasets are:

− Using neural blocks of higher order is more efficient than using normal
Euler residual blocks, meaning that even though the blocks are larger,
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fewer are required to reach higher accuracy with less memory usage.

− Since adaptive scheme are made-up of interwoven schemes of different
order, different forward passes representing the schemes of different order
can be ensembled at test time, through averaging the final embeddings
before classification, to improve accuracy.

− Adaptively adjusting the step-sizes and depth of the network allows to
reduce, since the first training epochs, the size of a large network, while
still obtaining the same performance at the end of training.

− This architecture also benefits from LAP training as in Section 3.

6.2.1.3 Related Work

[Yang et al., 2020a] introduce a time-step controller that is an LSTM [Hochreiter
and Schmidhuber, 1997] which is dependent on the convolution weights of the
current and previous layers and that is jointly optimized with the network. In
contrast, our time-step is adjusted as in adaptive numerical schemes, therefore
requiring no extra training, and also adjusts the depth of the network during
training. [Chang et al., 2018b] use the analogy between ResNets and numerical
schemes for differential equations to accelerate training by starting the training
with a shallow network with a large step-size and then doubling the depth
and halving the step-size during training. This is not an adaptive method to
adjust the depth and step-size, as it is not dependent on the stability of the
approximated differential equation. [Zhu et al., 2022] simply implement an
architecture that imitates a Runge-Kutta scheme. However, the coefficients
are not fixed to the theoretical values of the scheme and are instead learned
inside the convolutions. The relations between them necessary to the theoretical
validity of the scheme are therefore not enforced. There is also no modification
of the step-size and depth. Likewise, [Lu et al., 2018] use an architecture that
imitates the linear multi-step numerical method and [Haber et al., 2019] imitate
the implicit-explicit method. Modifying the step-size has shown its benefits in
[Zhang et al., 2019, Zhang and Wynter, 2018], where fixing it to a small value
around 0.1 makes training more stable.

Somewhat similar to our proposed method is the adaptive computation time
method applied to residual networks [Figurnov et al., 2017], inspired by a similar
idea applied to recurrent neural networks [Graves, 2017, Fojo et al., 2018, Jernite
et al., 2017]. In these methods, secondary neural networks are trained to choose
(minimize) the number of times the state transition is applied for an input step
in a recurrent network, and the number of residual blocks applied for an input
in a residual network. The goal in [Figurnov et al., 2017] is faster computation
time and not the adjustment during training of the size of the network to the
dataset at hand, as the number of residual blocks applied is chosen for each
input (or even patch of the input), so the entire network still has to be trained.
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6.2.2 Similarity of Neural Network Representations

We propose to use the study of the dynamics inside a neural network, especially
as used in Section 5 to detect adversarial and out-of-distribution samples, to
consider the problem of measuring similarity between the representations learned
by neural networks. This area of research [Raghu et al., 2017, Kornblith et al.,
2019, Laakso and Cottrell, 2000, Li et al., 2015, Morcos et al., 2018, Wang et al.,
2018] tries to answer questions such as:

− Do different architectures learn similar representations when trained on
the same dataset?

− Does the same architecture tend to learn similar representations when
trained on similar datasets ?

− How much does changing the initialization change the learned representa-
tions?

− Can we establish correspondences between layers of different networks?

The available methods usually propose similarity measures (e.g. SVCCA [Raghu
et al., 2017] and CKA [Kornblith et al., 2019]) between activations that have
certain desirable invariances such as invariance to orthogonal transformations.

Optimal transport theory was used in [Singh and Jaggi, 2020] to establish
correspondences between the neurons of two networks, which is then useful for
fusing these networks into a network that keeps as much of the capabilities of
each network as possible. However, [Singh and Jaggi, 2020] do this only layer
by layer and not across layers, which could be an extension of their method.

6.2.3 Optimal Transport between Different Dimensions

Another avenue of investigation is to use optimal transport between distributions
that are supported in spaces of different dimensions [McCann and Pass, 2019,
Pass, 2010] to regularize pooling and embedding layers that change the dimension
of their input. This could extend the work done here to different architectures,
and could be particularly useful to regularizing generative network where we
would like to start generating in lower resolutions in the earlier layers before
upsampling to use less resources and computation time.

6.2.4 Simulating Continuity Partial Differential Equations

In Appendix C.3, the minimizing movement scheme defined in Definition 3 in
Section 4.3.2 as

ρτk+1 ∈ arg min
ρ∈P(Ω)

Z(ρ) + 1

2τ
W 2

2 (ρ, ρ
τ
k)
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for Z : W2(Ω) → R, is shown to converge, under some conditions on Z, as τ
goes to 0, to a curve ρ̃t in W2(Ω) that solves the continuity equation

∂tρt(x)−∇ · (ρt(x)∇(
δZ
δρ

(ρt))(x)) = 0

where δZ
δρ is the first variation of Z defined in Definition 20 in Appendix C.3.

For example, if Z(ρ) =
∫
g(ρ(x)) dx with g(x) = x log x, we obtain the heat

equation ∂tρt −∆ρ = 0. And if Z(ρ) =
∫
g(ρ(x)) dx +

∫
V dρ, we obtain the

Fokker-Planck equation ∂tρt −∆ρ−∇ · (ρ∇V ) = 0.

This suggests that solving the problems in the minimizing movement scheme by
approximating optimal transport maps through residual neural networks could
be a way to discretize and numerically solve such continuity partial differential
equations.

6.3 Conclusion
This principle of least action is central in physics. It can be found in classical
and relativistic mechanics, thermodynamics and quantum mechanics [García-
Morales et al., 2008, Feynman, 1942, Gray, 2009]. It states that the dynamical
trajectory of a system is one that makes a certain action locally stationary.
Since essentially all the laws of physics can be derived through some version
of this principle, this suggests that nature operates in an optimal and efficient
way. The principle of least action was therefore extended to derive laws of
mathematical economy [Kombarov, 2021] and of evolution and natural selection
[Kaila and Annila, 2008]. Neural networks that respect conservation laws have
been proposed to approximate physical systems where conservation of energy is
important [Greydanus et al., 2019].

Here, we have found that this principle is also central to finding good solutions to
machine learning problems outside of physics, and to doing so while minimizing
the resources and computations required. In particular, it explains why many
techniques such residual connections, batch normalizations and orthogonal
initialization have been so successful in deep learning, and opens the door to
new considerations when designing novel neural networks and their training
methods.
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A Background on Numerical Methods for Differ-
ential Equations

We refer to [Quarteroni et al., 2007] for this quick background on numerical
methods for solving ordinary differential equations.

Given an interval I = [t0, t0 + T ] and a function f : I × Rd → Rd, we consider
the initial value problem of finding a function x : I → Rd that satisfies

x′(t) = f(t, x(t))

with initial condition x(t0) = x0, or equivalently in integral form, a function x
that satisfies

x(t) = x0 +

∫ t

t0

f(t, x(t)) dt

It is often difficult to find closed-form solutions to initial value problems. We
wish then to approximate the values x takes at certain time points. We consider
a subdivision t0 < t1 < .. < tN = t0 + T of I. Denote the time-steps (or
step-sizes) hn := tn+1 − tn for 0 ≤ n < N and define hmax := maxhn.

A.1 The Euler Method
In a one-step method, an approximation of x(tn) is xn given iteratively starting
from a known initial condition x0 by

xn+1 − xn
hn

= ϕ(tn, xn, tn+1, xn+1, hn)

If f(xn+1) does not appear in the definition of ϕ, the method is called explicit.
Otherwise, it is called implicit, as xn+1 depends then implicitly on itself through
f and an equation needs to be solved to find it, for example, using a fixed-
point [Shashkin, 1991] or a Newton-Raphson [Ypma, 1995] method. So for
ϕ(tn, xn, tn+1, xn+1, hn) = f(tn, xn), we get the explicit Euler method:

xn+1 = xn + hnf(tn, xn)

And for ϕ(tn, xn, tn+1, xn+1, hn) = f(tn+1, xn+1), we get the implicit Euler
method

xn+1 = xn + hnf(tn+1, xn+1)

We only need the convergence analysis of explicit methods, so in the following
we will limit ourselves to methods given by

xn+1 − xn
hn

= ϕ(tn, xn, hn)
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Definition 4. For a one-step method, the consistency errors en, for 0 ≤ n < N ,
are

en :=
x(tn+1)− Φ(tn, x(tn), hn)

hn
=
x(tn+1)− x(tn)

hn
− ϕ(tn, x(tn), hn)

where x is solution. The local (truncation) errors are hnen. The method is
consistent if max |en| goes to zero as hmax goes to zero. For p ∈ N∗, the method
has order p if max |en| ≤ Chpmax for a constant C that depends on f, t0 and T .

Theorem 9. If f and ϕ are continuous, then the one-step method is consistent
if and only if ϕ(t, x, 0) = f(t, x) for all (t, x).

Theorem 10. If f is Cp and ϕ is Cp in h then the one-step method is of order
p if and only if ∂khϕ(t, x, 0) =

1
k+1f

[k](t, x) for all (t, x) and 0 ≤ k < p where
f [0] = f and f [k] = ∂tf

[k−1] + f∂xf
[k−1].

Corollary 11. If f is continuous then Euler’s method is consistent. If f is C1
then Euler’s method has order 1.

Definition 5. A one-step method is zero-stable (or stable) if ∃ S > 0 such that
for all (xn)0≤n≤N , (x̃n)0≤n≤N and (εn)0≤n<N satisfying

xn+1 − xn
hn

= ϕ(tn, xn, hn) and
x̃n+1 − x̃n

hn
= ϕ(tn, x̃n, hn) + ϵn (44)

for 0 ≤ n < N , we have maxn ∥x̃n − xn∥ ≤ S(∥x̃0 − x0∥+ T maxn |ϵn|), where
ϵn = εn/hn. The constant S is the stability constant of the method.

Theorem 12. If ϕ is uniformly L-Lipschitz in its second variable, then the
one-step method is stable with constant eLT .

Corollary 13. If f is Lipschitz in its second variable, then Euler’s method is
stable.

Definition 6. A numerical method converges if its global error maxn ∥x(tn)−xn∥
goes to zero as hmax goes to zero.

Theorem 14. If a method is consistent and stable with stability constant S,
then it converges and maxn ∥x(tn) − xn∥ ≤ ST max |en|. If the method is of
order p with constant C, then maxn ∥x(tn)− xn∥ ≤ STChpmax

Corollary 15. Euler’s method converges if f is C0 and Lipschitz in x. If f is
also C1 then it converges with speed O(hmax).

A.2 Runge-Kutta Methods
Definition 7. Given q ∈ N∗, a Runge-Kutta method with q stages generates
the estimates (xn)0≤n≤N through, for 0≤n<N ,

tn,i = tn + cihn, xn,i = xn + hn

i−1∑
j=1

ai,jpn,j , pn,i = f(tn,i, xn,i), 0 ≤ i ≤ q
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tn+1 = tn + hn, xn+1 = xn + hn

q∑
i=1

bipn,i

where ci, bi, ai,j ∈ [0, 1] for all 0 ≤ i ≤ q and 1 ≤ j < i with

c1 = 0 so that tn,1 = tn, xn,1 = xn and pn,1 = f(tn, xn) for 0 ≤ n < N

i−1∑
j=1

ai,j = ci for 0 ≤ i ≤ q and
q∑
i=1

bi = 1

This is an explicit one-step method with ϕ given by
ϕ(t, x, h) =

q∑
i=1

bif(t+ cih, xi)

xi = x+ h

i−1∑
j=1

ai,jf(t+ cjh, xj) for 1 ≤ i ≤ q
(45)

Remark 16. The conditions on (ai,j) and (bi) are so that the numerical
integration methods used are of order 1, i.e. exact on constant functions, which
is equivalent to the coefficients summing up to the length of the integration
interval.

Remark 17. For q = 1 we find Euler’s method.

Theorem 18. If f is continuous then Runge-Kutta methods are consistent.

Definition 8. The Runge-Kutta method with q = 2 stages, c2 = a2,1 = 1 and
b1 = b2 = 1/2 is called Heun’s method and is given by ϕ(t, x, h) = 1

2f(t, x) +
1
2f(t+ h, x+ hf(t, x)).

Proposition 4. If f is continuous then Heun’s method is consistent. If f is C2
then Heun’s method has order 2.

Definition 9. The Runge-Kutta method with q = 4 stages, c2 = c3 = a2,1 =
a3,2 = 1/2, c4 = a4,3 = 1, b1 = b4 = 1/6, b2 = b3 = 1/3 and all other coefficients
equal to zero is the classic RK4 method. It is given by

tn,1 = tn xn,1 = xn pn,1 = f(tn,1, xn,1)

tn,2 = tn + hn

2 xn,2 = xn + hn

2 pn,1 pn,2 = f(tn,2, xn,2)

tn,3 = tn + hn

2 xn,3 = xn + hn

2 pn,2 pn,3 = f(tn,3, xn,3)
tn,4 = tn + hn xn,4 = xn + hnpn,3 pn,4 = f(tn,4, xn,4)

And finally tn+1 = tn + hn and xn+1 = xn + hn

6 (pn,1 + 2pn,2 + 2pn,3 + pn,4)

Proposition 5. If f is continuous then the RK4 method is consistent. If f is
C4 then the RK4 method has order 4.
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Theorem 19. If f is continuous and L-Lipschitz in its second variable and the
time-steps are bounded then a Runge-Kutta method with q stages is stable with
stability constant S = eKT where

K = L

q∑
i=1

bi

i−1∑
j=0

Ljhjmax

Corollary 20. Runge-Kutta methods converge if f is C0 and Lipschitz in x.

Corollary 21. Heun’s method converges if f is C0 and Lipschitz in x. If f is
also C2 then it converges with speed O(h2max).

Corollary 22. The RK4 method converges if f is C0 and Lipschitz in x. If f is
also C4 then it converges with speed O(h4max).

A.3 Adaptive Runge-Kutta Methods
Adaptive methods [Söderlind, 2006] estimate the local truncation error of a
single Runge–Kutta step and decrease the step size if the error estimate is large
(which indicates that the differential equation is not approximated well at that
point and more conservative steps need to be taken) and increase it if it is low.
This is done by using two interwoven Runge-Kutta methods that have common
intermediate stages, meaning that their coefficients pn,i in Definition 7 are the
same but the weights bi in front of them differ. The local error is estimated by
the difference between the predictions of the two methods. This way, estimating
the error has little or negligible computational cost compared to a step of the
higher-order method which already requires the computation of the lower-order
method. For example, Heun’s method includes Euler’s method.

During the integration, the step size is adapted such that the estimated error
stays below a chosen threshold. If the estimated error is too high, a step is
repeated with a lower step size. If the estimated error is much smaller than the
threshold, the step size is increased to save time. This results in an (almost)
optimal step size, which saves computation time.

For example, a step of the adaptive Bogacki-Shampine adaptive Runge-Kutta
method starting from xn at time tn is computed as follows. The gradient
evaluation are given by


pn,1 = f(tn, xn)

pn,2 = f(tn + 1
2hn, xn + 1

2hnpn,1)

pn,3 = f(tn + 3
4hn, xn + 3

4hnpn,2)

pn,4 = f(tn + hn, xn + 2
9hnpn,1 +

1
3hnpn,2 +

4
9hnpn,3)

(46)
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And the predictions for x(tn+1) are given by
xeuler
n+1 = xn + hnpn,1

xmidpoint
n+1 = xn + hnpn,2

xorder3
n+1 = xn + 2

9hnpn,1 +
1
3hnpn,2 +

4
9hnpn,3

xorder2
n+1 = xn + 7

24hnpn,1 +
1
4hnpn,2 +

1
3hnpn3 +

1
8hnpn,4

(47)

The difference between xorder3
n+1 and xorder2

n+1 is used to adapt the step-size. Different
rules exist. They all require the user to fix a tolerance ε > 0. The simplest
[Quarteroni et al., 2007] is to simply halve the step-size if the error err =
∥xorder3

n+1 − xorder2
n+1 ∥ is larger than ε, to double it if the error is smaller than ε/K,

and to keep it as is if the error is between ε and ε/K. Usually K = 2p+1, where
p is the order of the method. Other rules [Söderlind, 2006] are

hn+1 = (
ε

err
)phn

and

err =

√√√√1

d

d∑
i=1

(
x
(Order3)
n+1,i − x(Order2)n+1

sci

)2

where
sci = ε(1 + max(|x(Order3)n+1,i |, |x(Order2)n+1,i |)

and then
hnew = hnmin(facmax,max(facmin, α(

1

err
)

1
p )

where usually facmax ∈ [1.5, 5] and α ∈ {0.8, 0.9, 0.251/3, 0.381/3}. Then, if
err ≤ 1, the step-size hn is kept as is and hn+1 is set to hnew. And if err > 1,
then hn is set to hnew and the step is redone.
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B.1 Monge and Kantorovich Problems
We follow [Santambrogio, 2015, Villani, 2008, Villani, 2021] in this overview of
optimal transport. Denote P(E) the space of probability measures on a space
E. Given probability measures µ ∈ P(X) and ν ∈ P(Y ) and a cost function
c : X × Y → [0,∞], the starting point of optimal transport is the following
problem

Definition 10. The Monge problem is

inf
T :X→Y

∫
X

c(x, T (x)) dµ(x)

subject to T#µ = ν

(48)

Here T#µ is the push-forward measure of µ through T defined by the formula
T#µ(A) := µ(T−1(A)) ∀ A measurable. For this definition and the constraint to
make sense, T has to be measurable with respect to the σ-algebras of µ and ν.
The Monge problem expresses the problem of moving mass distributed according
to µ so that it becomes distributed according to ν, while minimizing the sum (so
the integral) of efforts made to transport each point, the effort being encoded in
the cost function c, which is usually a distance between points.

An admissible T is called a transport map between µ and ν and the objective of
the problem is called the transport cost of T .

Figure 24: The Monge problem from µ to ν. From [Kolouri et al., 2017].

The Monge problem is difficult because of the constraint on T which is not
closed under weak convergence and a T satisfying it need not even exist (e.g.
when µ is a Dirac measure and ν is not). A relaxation exists
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Definition 11. The Kantorovitch problem is

inf
γ∈Π(µ,ν)

∫
X×Y

cdγ (49)

where Π(µ, ν) = {γ ∈ P(X×Y ) | (πx)#γ = µ, (πy)#γ = ν}, πx is the projection
from X × Y on X and πy is the projection from X × Y on Y .

The constraint set Π(µ, ν) of the Kantorovich problem is never empty as it
always contains µ⊗ ν. This relaxation means that instead of moving the entire
mass at x to T (x), γ(A×B) denotes the amount of mass moving from A to B,
so that two particles located at x ∈ X can move to different destination points
in Y (see Figure 25 below). An admissible γ ∈ Π(µ, ν) is called a transport plan
between µ and ν.

Figure 25: The Kantorovitch problem from µ to ν. From [Peyre and Cuturi, 2019].

The Kantorovich problem has a smaller infimum than the Monge problem, since
if T#µ = ν then γT := (id, T )#µ ∈ Π(µ, ν) and the transport costs are equal∫

X×Y
cdγT =

∫
X

c(x, T (x)) dµ(x) (50)

If γ ∈ Π(µ, ν) is concentrated on a graph in X × Y , i.e. on a set of the form
{(x, T (x)), x ∈ X}, then all the mass in x goes to T (x) and γ = (id, T )#µ.

The Kantorovich problem is a relaxation of the Monge problem in the following
sense: denote the Kantorovich objective J(γ) :=

∫
cdγ for γ ∈ Π(µ, ν). The

Monge objective can also be written as a functional K on Π(µ, ν) defined by
K(γ) := J(γ) if γ = γT for a transport map T and K(γ) := ∞ otherwise.
The Monge problem is equivalent to minimizing K over Π(µ, ν) because of
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(50). Then under some conditions the Kantorovich cost J is the largest lower
semi-continuous functional on Π(µ, ν) that is smaller than the Monge cost K.

For example, if X = Y = Ω ⊂ Rd with Ω compact and c is continuous and
µ atomless, then problems (48) and (49) have the same infimum and the set
{γT = (id, T )#µ | T#µ = ν} is dense (in a weak-∗ sense) in Π(µ, ν) so any
transport plan can be approximated by transport maps. This allows to prove
that J is a relaxation of K.

We have general existence results for the Kantorovich problem. We will prove
the following one.

Theorem 23. If X and Y are separable compact metric spaces and c is
continuous (or lower semi-continuous), then the Kantorovich problem admits a
solution.

Proof. The proof uses the direct method of calculus of variations. First, we
know by Riesz representation theorem that, for a separable locally compact
metric space E, the space of finite signed Borel measures on E is the dual of
C0(E) (the set of continuous real valued functions on E that vanish at infinity,
which is equal to the set of continous bounded functions Cb(E) and to the set of
continuous functions C(E) when E is compact). The norm of an element of the
dual is the total mass of the measure. Π(µ, ν) is then included in the dual of
C(X × Y ) and is bounded since all its elements have mass equal to 1. By the
Banach-Alaoglu theorem the unit ball of the dual space is weak-∗ compact in
duality with C(X × Y ).

Denote J(γ) :=
∫
X×Y cdγ and l the value of the infimum in (49). Take a

minimizing sequence (γn)n of problem (49), i.e. a sequence such that J(γn)→ l
and γn ∈ Π(µ, ν). By compacity, we can assume up to sub-sequencing that
γn

∗
⇀ γ. This implies for c continuous that J(γn) → J(γ) and therefore that

J(γ) = l. It remains to show that γ ∈ Π(µ, ν). First, γ is clearly a probability
measure since by taking the constant function equal to 1 everywhere we have
γ(X × Y ) =

∫
X×Y 1 dγ = lim

∫
X×Y 1 dγn = 1. Then take φ ∈ C(X). We

have
∫
X×Y φ(x) dγ(x, y) = lim

∫
X×Y φ(x) dγn(x, y) =

∫
φdµ, because γn is in

Π(µ, ν). Likewise for ψ ∈ C(Y ),
∫
X×Y ψ(y) dγ(x, y) =

∫
ψ dν.

We used that (πx)#γ = µ is equivalent to
∫
X×Y φ(x) dγ(x, y) =

∫
φdµ for all

test functions φ and that γn
∗
⇀ γ by definition means

∫
X×Y f dγn →

∫
X×Y f dγ

for all f ∈ C(X × Y ). Finally γ ∈ Π(µ, ν) and so γ is optimal.

Existence for the Kantorovich problem can be extended to the case of complete
and separable metric spaces (Polish spaces) X and Y via Prokhorov’s theorem.
For the Monge problem, we have the following result which we will need later.

Theorem 24. ConsiderX = Y = Ω ⊂ Rd with Ω compact and c(x, y) = h(x−y)
with h strictly convex. If c is continuous we have the existence of an optimal
transport plan γ. If µ is absolutely continuous with respect to the Lebesgue
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measure and ∂Ω is µ-negligible, then the optimal transport plan γ is unique and
is of the form (id, T )#µ for a transport map T , meaning that it is constructed
from a unique optimal transport map T for the Monge problem.

A final result that we mention is the following, which says that the inverse of
the optimal transport map between µ and ν is the optimal transport map from
ν to µ,

Theorem 25. If µ and ν are absolutely continuous measures supported re-
spectively on compact subsets X and Y of Rd with negligible boundaries, and
if c(x, y) = h(x− y) with h strictly convex, then there exists a unique couple
(T, S) of functions such that the five following points hold

− T : X → Y and S : Y → X

− T#µ = ν and S#ν = µ

− T is optimal for the Monge problem from µ to ν with the cost c

− S is optimal for the Monge problem from ν to µ with the cost c

− T ◦ S ν−a.s.
= id and S ◦ T µ−a.s.

= id

B.2 Duality
The Kantorovitch problem is a linear optimization problem with convex con-
straints. Duality theory was hence used to study it. We simply state here the
duality result, which will be needed to differentiate Wasserstein distances later.

The first step is to rewrite the constraint γ ∈ Π(µ, ν) as follows

sup
φ,ψ

∫
X

φdµ+

∫
Y

ψ dν −
∫
X×Y

φ(x) + ψ(y) dγ(x, y)

as this quantity is equal to 0 if γ ∈ Π(µ, ν) and to∞ otherwise. The Kantorovitch
problem can then be rewritten

inf
γ

∫
X×Y

cdγ + sup
φ,ψ

∫
X

φdµ+

∫
Y

ψ dν −
∫
X×Y

(φ(x) + ψ(y)) dγ(x, y) (51)

Interchanging the infimum and supremum in the above expression, we get

sup
φ,ψ

∫
X

φdµ+

∫
Y

ψ dν + inf
γ

∫
X×Y

(c(x, y)− φ(x)− ψ(y)) dγ(x, y) (52)

The dual of the Kantorovitch problem comes from showing that the maximum of
(52) is equal to the minimum of the Kantorovitch problem, and from rewriting
infγ

∫
X×Y (c(x, y)−φ(x)−ψ(y)) dγ(x, y) as the condition φ(x) +ψ(y) ≤ c(x, y)

first, and then as a property known as c-concavity.
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Definition 12. Given φ : X → R̄, its c-transform (c-conjugate) is φc : Y → R̄
given by

φc(y) = inf
x∈X

c(x, y)− φ(x)

Similarly, the c̄-transform of ψ : Y → R̄ is ψc : X → R̄ given by

ψc̄(x) = inf
y∈Y

c(x, y)− ψ(x)

Definition 13. A function φ : X → R̄ is said to be c-concave if there exists
ψ : Y → R̄ such that φ = ψc̄. We denote c-conc(X) the set of c-concave
functions on X.

Theorem 26. IfX and Y are separable compact metric spaces and c is uniformly
continuous and bounded, then

min
γ∈Π(µ,ν)

∫
X×Y

cdγ = max
φ∈c-conc(X)

∫
X

φdµ+

∫
Y

φc dν

The functions φ realizing the maximum in the above equation are called the
Kantorovitch potentials for the transport from µ to ν.

Theorem 27. Under the conditions of Theorem 24, the optimal transport
map between µ and ν is given by T (x) = x − (∇h)−1(∇φ(x)) where φ is a
Kantorovitch potential for the transport from µ to ν.

B.3 The Wasserstein Space

From now on, we take X = Y = Ω ⊂ Rd, with Ω complete (i.e. closed), and
c(x, y) = ∥x − y∥p for p ∈ [1,∞[ so that an optimal transport plan for the
Kantorovich problem exists (by the extension of Theorem 23 to Polish spaces).
Note that if p > 1 then c is of the form c(x, y) = h(x− y) with h strictly convex
and Theorem 24 stands if Ω is compact and µ absolutely continuous with respect
to the Lebesgue measure. Compactness is not necessary if c(x, y) = ∥x− y∥2.

A distance between probability measures can be deduced from the Kantorovich
problem. For p ∈ [1,∞[, we restrict ourselves to the set

Pp(Ω) := {µ ∈ P(Ω) |
∫
∥x∥p dµ(x) <∞} (53)

where ∥.∥ is the euclidean norm. For µ, ν ∈ Pp(Ω) we define Wp(µ, ν) to be the
p-th root of the minimal value of the Kantorovich problem between µ and ν for
the cost c(x, y) = ∥x− y∥p, i.e.

W p
p (µ, ν) := min

γ∈Π(µ,ν)

∫
Ω×Ω

∥x− y∥p dγ(x, y) (54)

It can be shown that Wp is a distance over Pp(Ω) called the Wasserstein distance.
One way to prove this is through the gluing lemma:
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Lemma 1. Let (X1, µ1), (X2, µ2) and (X3, µ3) be Polish probability spaces.
Take γ1 ∈ Π(µ1, µ2) ⊂ P(X1 ×X2) and γ2 ∈ Π(µ2, µ3) ⊂ P(X2 ×X3). Then
there exists γ ∈ P(X1 ×X2 ×X3) such that (π1,2)#γ = γ1 and (π2,3)#γ = γ2,
where πi,j is the projection from X1 ×X2 ×X3 on Xi ×Xj .

Proposition 6. Wp is a distance over Pp(Ω).

Proof. Wp is clearly positive and finite because c is positive and finite, the
constraint set is never empty and because of the restriction to Pp(Ω). Wp is
also clearly symmetric: define F (x, y) := (y, x) then F#γ ∈ Π(ν, µ) if and only
if γ ∈ Π(µ, ν) and the transport costs are the same because c is symmetric.

Taking γ = (id, id)#µ ∈ Π(µ, µ) gives Wp(µ, µ) =
∫
c(x, x) dµ(x) = 0. Con-

versely, Wp(µ, ν) = 0 implies the existence of γ ∈ Π(µ, ν) such that
∫
cdγ = 0.

This means γ has to be concentrated on c−1({0}) = {(x, y) | x = y}. This
means that γ = (id, id)#µ and that ν = id#µ = µ.

To prove the triangle inequality, consider µ1, µ2 and µ3 ∈ Pp(Ω). There exists
γ1 ∈ Π(µ1, µ2) an optimal transport plan between µ1 and µ2, and γ2 ∈ Π(µ2, µ3)
an optimal transport plan between µ2 and µ3. Then by Lemma 1, there exists
γ ∈ P(Ω3) with (π1,2)#γ = γ1 and (π2,3)#γ = γ2. In particular, this means
that (π1,3)#γ ∈ Π(µ1, µ3) because

(π1,3)#γ(A× Ω) = (π1)#γ(A) = (π1)#((π1,2)#γ)(A) = (π1)#γ1(A) = µ1(A)

where π1 denotes the projection on the first coordinate (from Ω3 or Ω2 depending
on the context) and we used the general formulas (f ◦ g)#γ = f#(g#γ) and
π1 = π1 ◦ π1,2.

Likewise (π1,3)#γ(Ω × B) = µ3(B). Since (π1,3)#γ ∈ Π(µ1, µ3) but is not
necessarily optimal we can write (denoting d(x, y) := ∥x− y∥)

Wp(µ1, µ3) ≤
(∫

d(x, z)p d(π1,3)#γ(x, z)

) 1
p

=

(∫
d(x, z)p dγ(x, y, z)

) 1
p

≤
(∫

(d(x, y) + d(y, z))p dγ(x, y, z)

) 1
p

≤
(∫

d(x, y)p dγ(x, y, z)

) 1
p

+

(∫
d(y, z)p dγ(x, y, z)

) 1
p

=

(∫
d(x, y)p dγ1(x, y)

) 1
p

+

(∫
d(y, z)p dγ2(y, z)

) 1
p

=Wp(µ1, µ2) +Wp(µ2, µ3)

where the last equality comes from the optimality of γ1 and γ2 and the third
inequality comes from the Minkowski inequality ∥f + g∥p ≤ ∥f∥p + ∥g∥p.
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We denote Wp(Ω) the metric space Pp(Ω) endowed with the distance Wp, and
call it the Wasserstein space.

Definition 14. A curve w in a metric space (E, d) is a continuous function
w : [0, 1]→ E. Its metric derivative at time t is

|w′|(t) := lim
h→0

d(w(t+ h), w(t))

|h|
(55)

provided the limit exists.

Definition 15. A curve w is absolutely continuous if there exists g ∈ L1([0, 1])
such that

d(w(t0), w(t1)) ≤
∫ t1

t0

g(s) ds ∀ t0 < t1 ∈ [0, 1] (56)

We denote AC(E) the set of absolutely continuous curves valued in E. From the
bound in (56) we see that absolutely continuous curves admit a metric derivative
at all times.

Definition 16. The length of a curve w is

Length(w) := sup

{
n−1∑
k=0

d(w(tk), w(tk+1)) | 0 = t0 < .. < tn = 1, n ≥ 1

}
(57)

From Definition 15 of absolutely continuous curves and Definition 16 of the
length of curve, we can see that every absolutely continuous curve w has finite
length, as Length(w) ≤

∫ 1

0
g(s) ds < ∞ for some g ∈ L1([0, 1]). Actually, we

have a formula for the length of an absolutely continuous curve.

Proposition 7. For w ∈ AC(E)

Length(w) =
∫ 1

0

|w′|(t) dt (58)

It is immediate from the definition of length and the triangle inequality that for
any x, y ∈ E we have d(x, y) ≤ Length(w) for every curve w connecting x to y.

Definition 17. A metric space (E, d) is called a geodesic space if ∀ x, y ∈ E

d(x, y) = min
{

Length(w) | w ∈ AC(E), w(0) = x, w(1) = y
}

(59)

which means that an absolutely continuous curve must realize the minimum
and that its length must be equal to d(x, y). Such a curve is called a geodesic
between x and y.

Definition 18. A curve w in (E, d) is called a constant-speed geodesic between
w(0) and w(1) if for all t, s ∈ [0, 1]

d(w(t), w(s)) = |t− s| d(w(0), w(1)) (60)
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If we take g(t) = d(w(0), w(1)) for all t ∈ [0, 1], it is immediate that a constant-
speed geodesic w is absolutely continuous. Its metric derivative is clearly equal
to d(w(0), w(1)) at all times. This implies via Proposition 7 that its length is
d(w(0), w(1)) and therefore that it is a geodesic between its endpoints. In fact,
we have two other equivalent definitions of constant-speed geodesics.

Proposition 8. Fix p > 1 and consider a curve w connecting x to y in a metric
space (E, d), then the following three points are equivalent

− w is a constant-speed geodesic

− w is absolutely continuous and |w′|(t) = d(w(0), w(1)) for almost every t

− w solves min{
∫ 1

0
|v′|p(t) dt | v ∈ AC(E), v(0) = x, v(1) = y}

Now we prove that Wp(Ω) is a geodesic space when Ω is convex.

Theorem 28. Wp(Ω) for Ω convex is a geodesic space, i.e. there exists a
geodesic curve between every two points in Wp(Ω).

More precisely, for t ∈ [0, 1], define πt : Ω×Ω→ Ω through πt(x, y) = (1−t)x+ty.
For any µ, ν ∈Wp(Ω), there exists by the previous section an optimal transport
plan γ ∈ Π(µ, ν) between µ and ν for the cost c(x, y) = ∥x − y∥p, i.e. γ is
optimal for the problem in (54). The curve defined by µt := (πt)#γ for t ∈ [0, 1]
is then a constant-speed geodesic between µ and ν.

Proof. Take µ, ν ∈ Pp(Ω) and γ ∈ Π(µ, ν) optimal for problem (54). Define the
curve (µt)t through µt := (πt)#γ. It is immediate that µ0 = µ and µ1 = ν. We
start by proving that for every t < s, Wp(µt, µs) ≤ |t− s| Wp(µ, ν). First, take
γst := (πt, πs)#γ. Then γst ∈ Π(µt, µs) because for every measurable set A ⊂ Ω
we have

γst (Ω×A) = γ((πt, πs)
−1(Ω×A)) = γ(π−1

s (A)) = ((πs)#γ)(A) = µs(A)

and likewise γst (B × Ω) = µt(B). Since γst is an admissible transport plan
between µt and µs but not necessarily an optimal one we can write

Wp(µt, µs) ≤
(∫
∥x− y∥p dγst (x, y)

) 1
p

=

(∫
∥πt(x, y)− πs(x, y)∥p dγ(x, y)

) 1
p

= |t− s|
(∫
∥x− y∥p dγ(x, y)

) 1
p

= |t− s|Wp(µ, ν)

The first equality comes from the definition of γst as a push-forward of γ, i.e
from the formula

∫
F (x, y) dγst (x, y) =

∫
F (πt(x, y), πs(x, y)) dγ(x, y) for any

function F . The second equality comes from the definitions of πt(x, y) and

132



B Background on Optimal Transport Theory

πs(x, y) and the relation ∥(1− t)x+ ty − (1− s)x− sy∥ = |t− s|∥x− y∥. The
third equality comes from the fact that γ is an optimal transport plan between
µ and ν.

The inequality Wp(µt, µs) ≤ |t − s| Wp(µ, ν) for t < s is actually an equality,
because if it were a strict inequality we could write

Wp(µ, ν) ≤Wp(µ, µt) +Wp(µt, µs) +Wp(µs, ν)

< Wp(µ, ν)(t+ (s− t) + (1− s))
=Wp(µ, ν)

and so we would have Wp(µ, ν) < Wp(µ, ν) which is impossible. The equality
Wp(µt, µs) = |t − s| Wp(µ, ν) for all t, s shows that (µt)t is a constant-speed
geodesic between µ and ν according to Definition 18 and concludes the proof
that Wp(Ω) for Ω convex is a geodesic space. Convexity of Ω is needed so that
πt(Ω× Ω) ⊂ Ω.

If Ω is convex and p > 1, then every constant-speed geodesic in Wp(Ω) is of the
form ((πt)#γ)t for an optimal transport plan γ.

B.4 The Dynamic Formulation of Optimal Transport
Chapter 5 of [Santambrogio, 2015] also shows a link between geodesics in Wp(Ω)
(so optimal transport plans) and solutions of the continuity equation

∂tµt +∇ · (µtvt) = 0, µ0 = µ (61)

where for every t ∈ [0, 1], µt is a probability measure on Ω and vt : Ω→ Rd is a
vector field. When looking for solutions (µt, vt)t to the continuity equation, µt
does not have to be a density as we need weak solutions where we only integrate
against µt.

More precisely, we say that (µt, vt)t solves the continuity equation in the weak
sense if for any test function ψ ∈ C1c (Ω̄), the function t 7→

∫
ψ dµt is absolutely

continuous in t and for almost every t ∈ [0, 1] we have

d

dt

∫
Ω

ψ dµt =

∫
Ω

∇ψ · vt dµt (62)

If µ is Lipschitz continuous in (t, x) and v is Lipschitz continuous in x then
being a weak solution is equivalent to being a solution almost everywhere.

If is well known that under some conditions (Ω bounded and v Lipschitz and
bounded in x uniformly in t with a flow that remains in Ω), the continuity
equation describes the evolution of the density µt of particles distributed initially
according to µ0 = µ and moving according to the velocity field vt.
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More precisely, given a time-dependent vector field v, if points x ∈ Ω are
distributed according to µ0 = µ and move tangentially to v at all times, i.e
satisfy

∂tϕt(x) = vt(ϕt(x)), ϕ0(x) = x (63)

where ϕt(x) is the position of point x at time t, then their distribution across
time ((ϕt)#µ)t solves the continuity equation (61) for the given vector field.
This is the unique solution if we restrict ourselves to distributions that are
absolutely continuous with respect to the Lebesgue measure. A solution ϕ to
(63) is called the flow of the differential equation (63) determined by v.

The link with optimal transport comes from the equivalence between absolutely
continuous curves in Wp(Ω) and solutions of the continuity equation.

Theorem 29. Take p > 1 and Ω compact.

− If (µt)t is an absolutely continuous curve in Wp(Ω), then there exists a
vector field vt ∈ Lp(Rd;µt) for every t ∈ [0, 1] such that ∂tµt+∇·(µtvt) = 0
is satisfied in a weak sense.

− Conversely, if (µt)t is a family of measure in Pp(Ω) and we have for every
t ∈ [0, 1] a vector field vt ∈ Lp(Rd;µt) with

∫ 1

0
∥vt∥Lp(µt) dt < ∞ such

that ∂tµt + ∇ · (µtvt) = 0 is satisfied in a weak sense, then (µt)t is an
absolutely continuous curve in Wp(Ω).

− Furthermore, (µt)t and (vt)t solving the continuity equation together must
satisfy ∥vt∥Lp(µt) = |µ′|(t) for almost every t.

If Ω is convex and compact and p > 1, we can combine this result with the fact
that Wp(Ω) is a geodesic space to obtain another formula for the Wasserstein
distance.

Theorem 30. On a convex and compact set Ω, for all µ, ν ∈ Pp(Ω) with p > 1
we have

W p
p (µ, ν) = min

{∫ 1

0

∥vt∥pLp(ρt)
dt | ∂tρt +∇ · (ρtvt) = 0, ρ0 = µ, ρ1 = ν

}

This is known as the Benamou-Brenier formula.

Proof. First, given Definition 17 of geodesic spaces and formula (58) for the
length of absolutely continuous curves we can write for any µ, ν ∈ Pp(Ω)

W p
p (µ, ν) =

(
min

{∫ 1

0

|ρ′|(t) dt | ρ ∈ AC(Wp(Ω)), ρ0 = µ, ρ1 = ν

})p
Since we proved the existence of constant-speed geodesics between every two
points of Wp(Ω), the minimum can be restricted to these geodesics. Given the
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second equivalent definition we gave of constant-speed geodesics when p > 1 in
Proposition 8, we can write

W p
p (µ, ν) = min

{∫ 1

0

|ρ′|p(t) dt | ρ ∈ AC(Wp(Ω)), ρ0 = µ, ρ1 = ν

}

Finally, the equivalence between absolutely continuous curves in Wp(Ω) and
solutions of the continuity equation allows us to minimize over theses solutions

W p
p (µ, ν) = min

{∫ 1

0

∥vt∥pLp(ρt)
dt | ∂tρt +∇ · (ρtvt) = 0, ρ0 = µ, ρ1 = ν

}

where we also used the relation ∥vt∥Lp(µt) = |ρ′|(t) between (ρt)t and (vt)t that
jointly solve the continuity equation.

In this dynamic formulation of the Kantorovich problem we solve for pairs
(ρt, vt)t satisfying the continuity equation with border conditions ρ0 = µ and
ρ1 = ν that minimize the energy

∫ 1

0
∥vt∥pLp(µt)

which is the integral across time
of the integral across points of the norms of the tangent vectors to the movement
of points distributed initially according to µ, so another way of expressing the
total distance traveled by all points.

From an optimal transport plan γ between µ and ν we can construct the
geodesic ((πt)#γ)t and the associated velocity field vt for t ∈]0, 1] without
solving the continuity equation. In fact, if an optimal transport map T exists,
then vt = (T − id) ◦ T−1

t , where Tt = (1− t)id + tT and is invertible. Since the
continuity equation needs to hold only weakly, mass can still be split between
different destinations.

However, we want to solve directly for (µt, vt)t. As we have mentioned above,
if we restrict ourselves to time-dependent vector fields v that are Lipschitz
and bounded in x uniformly in t and have a flow ϕ that remains in Ω and
to distributions that are absolutely continuous with respect to the Lebesgue
measure, then the continuity equation has a unique solution (µt) for a given v.
The minimization is therefore only over vector fields and we have the problem

inf
v

∫ 1

0

∥vt∥pLp(µt)
dt

subject to ∂tµt +∇ · (µtvt) = 0, µ0 = µ, µ1 = ν

(64)

Since in our machine learning setting distributions µ and ν are always discrete
samples, we prefer to use the constraint (63) on the movement of points:

inf
v

∫ 1

0

∥vt∥pLp((ϕt)#µ)
dt

subject to ∂tϕt(x) = vt(ϕt(x)) ∀x ∈ Ω, ϕ0 = id, (ϕ1)#µ = ν

(65)
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where we used the fact that ((ϕt)#µ)t with ϕ solution to (63) is a solution to
the continuity equation for a given v. Again, since in all generality we don’t
have uniqueness of ϕ solution to (63), then the optimization is actually over
(vt, ϕt)t. Since we are going to discretize the problem and use neural networks
to approximate the velocity field, we can limit ourselves to uniformly Lipschitz
velocity fields v, so that the solution ϕ exists and is unique and the problem as
expressed in (65) is well defined.

If we want (63) to hold for all t ∈ [0, 1], then this formulation is not exactly
equivalent to the first dynamic formulation (64) and to the Kantorovich problem,
as all the mass in a position x will follow the velocity field to a unique point
y = ϕ1(x). We are then back to the Monge problem, but here we look for a
velocity field that points distributed according to µ will follow so that they end
up distributed according to ν, while minimizing the total energy of this field.

Figure 26: Dynamic transport of µ0 to µ1 according to velocity field v (ϕx
t is ϕt(x) in the

text). From [de Bézenac et al., 2021].

B.5 Regularity of Optimal Transport Maps
Optimal transport maps have some regularity properties under some further
assumptions. In particular, Theorem 6.27 of [Ambrosio et al., 2005] gives a
classical almost-everywhere regularity result:

Theorem 31. If c(x, y) = ∥x−y∥p for p > 1, and µ and ν have compact supports
with d(supp(µ), supp(ν)) > 0, then the optimal transportation map T between
µ and ν is ν − a.e. differentiable and its Jacobian ∇T (x) has non-negative
eigenvalues ν-almost-surely.

More recently, results summarized below, which correspond to Theorems 4.23,
4.24 and Remark 4.25 of [Figalli, 2017], state that the optimal transportation
map has one degree of regularity more than the initial transported density:

Theorem 32. Take c(x, y) = ∥x − y∥p for p > 1. Suppose there are X,Y ,
bounded open sets, such that the densities of µ and ν are null in their respective
complements and bounded away from zero and infinity over them respectively.

Then, if Y is convex, there exists η > 0 such that the optimal transport map T

136



B Background on Optimal Transport Theory

between µ and ν is C0,η over X. If Y is not convex, there exist two relatively
closed sets A,B in X,Y respectively such that T ∈ C0,η(X \A, Y \B), where
A and B are of null Lebesgue measure.

Moreover, if the densities are in Ck,η, then C0,η can be replaced by Ck+1,η

in the conclusions above. In particular, if the densities are smooth, then the
transport map is a diffeomorphism.
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We follow [Santambrogio, 2015, Santambrogio, 2016, Ambrosio et al., 2005,
Jordan et al., 1998] for this background on Wasserstein gradient flows.

C.1 Gradient Flows in Euclidean Space

Given F : Rd → R and x0 ∈ Rd, a gradient flow is a curve x solution of the
Cauchy problem {

x′(t) = −∇F (x(t))
x(0) = x0

(66)

A solution exists and is unique if ∇F is Lipschitz or F is convex. Given τ > 0
and xτ0 = x0 define a sequence (xτk)k through the minimizing movement scheme

xτk+1 ∈ arg min
x∈Rd

F (x) +
1

2τ
∥x− xτk∥2 (67)

F lower semi-continous and F (x) ≥ C1 − C2∥x∥2 guarantees existence of a
solution of (67) for τ small enough. F λ-convex meets these conditions and also
provides uniqueness of the solution because of strict convexity of the target.

The optimality condition of problem (67) is

xτk+1 − xτk
τ

= −∇F (xτk+1) (68)

which is exactly the formula of the implicit Euler scheme (see Appendix A.1)
with step size τ .

We interpret the point xτk as the value of a curve x at time kτ . We then construct
a curve xτ as the piecewise constant interpolation of the points xτk

xτ (t) = xτk for t ∈](k − 1)τ, kτ ], k ∈ {1, ..,K} (69)

We can also construct a curve x̃τ as the affine interpolation of the points xτk

x̃τ (t) = xτk−1+(t− (k−1)τ)
xτk − xτk−1

τ
for t ∈](k−1)τ, kτ ], k ∈ {1, ..,K} (70)

If F (x0) <∞ and inf F > −∞ then xτ and x̃τ converge uniformly to the same
curve x as τ goes to zero (up to extracting a subsequence). If F is C1, then
the limit curve x is a solution of (66) (i.e. a gradient flow of F ). If F is not
differentiable then x is solution of the problem defined using the subdifferential
of F , i.e. x satisfies x′(t) ∈ −∂F (x(t)) for almost every t.

If λ > 0, then the solution to (66) converges exponentially to the unique
minimizer of F (which exists by coercivity). So by taking τ → 0 and k →∞,
we tend towards the minimizer of F .
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C.2 Gradient Flows in Metric Spaces
The advantage of the minimizing movement scheme (67) is that it can be adapted
to metric spaces. If (E, d) is a metric space, x0 ∈ E and F : E → R ∪ {∞} is
lower semi-continuous and bounded from below, we can define a sequence (xτk)k
with xτ0 = x0 and

xτk+1 ∈ argmin
x∈E

F (x) +
1

2τ
d(x, xτk)

2 (71)

If E is compact then a solution to (71) exists. We study the limit as τ goes to 0
of the piecewise constant curve xτ constructed from these points by (69). In
the euclidean setting, we had uniform convergence to a gradient flow of F .

A curve x : [0, T ]→ E is called a minimizing movement for F and x0 if there
exists a sequence of time steps (τj)j that goes to 0 such that the sequence of
piecewise constant curves (xτj )j uniformly converges to x as j →∞.

Again, if F (x0) < ∞ and inf F > −∞ then a minimizing movement exists
because we can extract a uniformly converging subsequence of curves from the
family of piecewise constant curves (xτ )τ as τ → 0.

If we add some structure to (E, d) by assuming it is a geodesic space, we can also
construct a metric counterpart of the affine interpolation (70) using geodesics

x̃τ (t) = wxτ
k−1,x

τ
k

(
t− (k − 1)τ

τ

)
for t ∈](k − 1)τ, kτ ] and k ∈ {1, ..,K} (72)

where wxτ
k−1,x

τ
k

is any constant-speed geodesic between x and y. The curve x̃τ

is continuous and locally Lipschitz (because geodesics are) and coincides with
the piecewise constant curve xτ at times kτ . If F (x0) < ∞ and inf F > −∞
then (x̃τ )τ is also compact and converges to the same minimizing movement as
xτ when τ → 0.

However, if x is a minimizing movement for F we cannot say that it is a gradient
flow of F , i.e. that it satisfies (66), because x′ = −∇F does not mean anything
in a metric space. We characterize gradient flows in a metric space by finding
equivalent conditions to x′ = −∇F in the euclidean setting that have a metric
counterpart. The first such condition is obtained through the Cauchy-Schwartz
inequality and is called the energy dissipation equality (EDE)

F (x(s))− F (x(t)) =
∫ t

s

1

2

(
∥x′(r)∥2 + ∥∇F (x(r))∥2

)
dr ∀ s < t (73)

In the metric setting, we use the metric derivative of a curve |x′|(t) and the
descending slope of a real-valued function

|∇−F |(x) := lim sup
y→x

(F (x)− F (y))+
d(x, y)

(74)
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Under some conditions on the descending slope of F (in particular lower semi-
continuity) a minimizing movement for F , i.e. the limit of an interpolation of
the minimizing movement scheme, satisfies the EDE condition (73).

If F is λ-convex, another condition which is equivalent to x′(t) ∈ −∂F (x(t)) in
the euclidean setting is the evolution variational inequality (EVI)

1

2

d

dt
∥x(t)− y∥2 ≤ F (y)− F (x(t))− λ

2
∥x(t)− y∥2 ∀ y ∈ Rd (75)

In the metric setting, we replace the euclidean distance by the distance d and
obtain a different definition of gradient flows in metric spaces. The EVI condition
leads to uniqueness and stability results for gradient flows and implies the EDE
condition, but more assumptions are needed to prove that minimizing movements
satisfy it.

C.3 Gradient Flows in the Wasserstein Space
In the geodesic metric space W2(Ω) with Ω compact and convex, for the func-
tional F : W2(Ω)→ R∪{∞} lower semi-continuous for the weak convergence of
measures in duality with C(Ω) and ρτ0 = ρ0 ∈ P(Ω), the minimizing movement
scheme (71) becomes

ρτk+1 ∈ arg min
ρ∈P2(Ω)

F (ρ) +
1

2τ
W 2

2 (ρ, ρ
τ
k) (76)

This problem has a solution because the objective is lower semi-continuous and
the minimization is over P(Ω) which is compact by Banach-Alaoglu.

We can construct a piecewise constant interpolation between the measures
ρτk as in (69), or a geodesic interpolation as in (72), where we travel along a
geodesic between ρτk−1 and ρτk in W2(Ω) (see Theorem 28 in Appendix B.3 for
how to construct geodesics in W2(Ω) from optimal transport maps). Again, if
F (x0) <∞ and inf F > −∞ then both interpolations converge uniformly to a
limit curve (ρ̃t) as τ goes to zero. If F is also λ-convex along geodesics, then we
might be able to prove the EVI condition for the minimizing movement ρ̃.

However, the space W2(Ω) allows us to consider another possible property of the
minimizing movement that can also provide uniqueness and stability. We first
need to define a notion of differentiation for functionals defined on probability
spaces.

Definition 19. Given F : P(Ω)→ R∪{∞}, we say that ρ ∈ P(Ω) is regular for
F if F ((1− ε)ρ+ ερ̂) <∞ for all ε ∈ [0, 1] and all ρ̂ ∈ P(Ω)∩L∞

c (Ω) (absolutely
continuous probability measures with densities in L∞

c (Ω)).

Definition 20. Given F : P(Ω)→ R∪ {∞} and ρ ∈ P(Ω) that is regular for F
we call the first variation of F at ρ and denote δF

δρ (ρ), any measurable function,
if it exists, such that

d

dε
F (ρ+ εχ)∣∣ε=0

=

∫
Ω

δF

δρ
(ρ) dχ (77)
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for every χ = ρ̂− ρ with ρ̂ ∈ P(Ω) ∩ L∞
c (Ω).

Remark 33. If there is a unique Kantorovitch potential φ up to additive
constants from µ to ν (see Theorem 26 in Appendix B.2), then δWp

p (.,ν)

δρ (µ) = φ.

We can now say that the minimizing movement ρ̃ may satisfy the following
continuity equation:

∂tρt(x)−∇ · (ρt(x)∇(
δF

δρ
(ρt))(x)) = 0 (78)

And we can then use the two following results. First from [Santambrogio, 2016]:

Proposition 9. If the functional F : P(Ω)→ R∪{∞} is λ−geodesically convex
and the curves ρ0 and ρ1 satisfy the continuity equation (78) then

1

2

d

dt
W 2

2 (ρ
0
t , ρ

1
t ) ≤ −

λ

2
W 2

2 (ρ
0
t , ρ

1
t )

and by Gronwall’s inequality

W 2
2 (ρ

0
t , ρ

1
t ) ≤W 2

2 (ρ
0
0, ρ

1
0)e

−λt

So we have uniqueness of the solution to (78) for the same initial condition ρ0
and stability with exponential convergence as t→∞ if λ > 0.

And from [Santambrogio, 2015]:

Proposition 10. Given a functional F : P(Ω)→ R ∪ {∞} and a probability
measure ρ⋆ that is regular for F and that minimizes it, suppose δF

δρ (ρ
⋆) exists

and let l = ess inf δFδρ (ρ
⋆) be its essential infimum with respect to the Lebesgue

measure.

Then if δF
δρ (ρ

⋆) ∈ C(Ω) then ∀x ∈ Ω, δF
δρ (ρ

⋆)(x) ≥ l and ∀x ∈ support(ρ⋆),
δF
δρ (ρ

⋆)(x) = l.

And if δFδρ (ρ
⋆) is only measurable but ρ⋆ is absolutely continuous, then for almost

every x ∈ Ω, δFδρ (ρ
⋆)(x) ≥ l and for almost every x ∈ {ρ⋆ > 0}, δFδρ (ρ

⋆)(x) = l.

Therefore if ρ⋆ minimizes F while satisfying the conditions of Proposition 10,
then the constant curve ρ̄t = ρ⋆ satisfies the continuity equation (78) in the weak
sense or almost everywhere as both terms are equal to zero. If the minimizing
movement ρ also satisfies the continuity equation (78) then by Proposition 9,
W2(ρ̃t, ρ

⋆) −−−→
t→∞

0 exponentially if F is λ-geodesically convex for λ > 0.

Why does it make sense for ρ̃ to satisfy the continuity equation (78)? By
Proposition 10 and Remark 33, the solution ρτk+1 to problem (76) satisfies the
optimality condition

δF

δρ
(ρτk+1) +

φ

τ
= const (79)
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where φ is the Kantorovich potential associated with the optimal transport S
from ρτk+1 to ρτk. By Theorem 27 in Appendix B.2 (with h being the Euclidean
norm), S(x) = x−∇φ(x), we consider the velocity v of particles moving from
ρτk to ρτk+1. According to Appendix B.4, it is given by

−v(x) = S(x)− x
τ

= −∇φ(x)
τ

= ∇(δF
δρ

(ρτk+1))(x) (80)

Therefore, as τ → 0, we can expect to get in ρ̃ a solution to the continuity
equation (78), but this has to be proven rigorously for a given F .
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The typical setting of (sequential) module-wise training for minimizing a loss L,
is, given a dataset D, to solve one after the other, for 1≤k≤K, Problems

(Tk, Fk) ∈ argmin
T,F

∑
x∈D

L(F, T (Gk−1(x))

where Gk = Tk ◦ ... ◦ T1 for 1≤k≤K and G0=id. Here, Tk is the module (one or
many layers) and it receives the output of module Tk−1, and Fk is an auxiliary
classifier that processes the outputs of Tk so the loss can be computed. The
final network trained this way is FK ◦GK , but we can stop at any depth k and
use Fk ◦Gk if it performs better.

In fact, module-wise training suffers often from a well-documented stagnation
problem observed in [Marquez et al., 2018, Belilovsky et al., 2019, Wang et al.,
2021, Pyeon et al., 2021], whereby greedy early modules overfit and learn more
discriminative features than end-to-end training, and deeper modules don’t
improve the test accuracy significantly, or even degrade it.

We present below some recent methods that aim at alleviating this problem
and improving the accuracy of module-wise training, either by adding other
terms to the loss used to train the modules, or simply through architectural
considerations.

D.1 Additional Loss Terms
InfoPro [Wang et al., 2021]. InfoPro start by verifying that vanilla module-
wise training outperforms end-to-end training in the first modules, but then
destroys too much information between the learned features and both the inputs
and the labels and stagnates and gets overtaken by end-to-end training in the
later modules. See Figure 27 below.

Figure 27: Linear separability (left), mutual information with input (center), and mutual
information with output (right) of features learned with module-wise training with K modules.
K=1 is end-to-end training. From [Wang et al., 2021].
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They then propose to train each module to maximize the mutual information
between the learned features h and both the input x and its label y. This means
minimizing

−λ1I(h, x)− λ2I(h, y)

where I is the mutual information given by I(a, b) = H(b)−H(b|a) where H
is the entropy [Shannon, 1948]. The mutual information I(h, y) with the label
is approximated using an auxiliary classifier with the cross-entropy loss or a
contrastive loss inspired by [Chen et al., 2020b, Khosla et al., 2020, He et al.,
2020]. The mutual information I(h, x) with the input is approximated using an
auxiliary decoder that tries to reconstruct x from h with a reconstruction loss
that is binary cross-entropy.

In [Pathak et al., 2022], this method is slightly modified in that the auxiliary
decoder now tries to reconstruct the previous feature (i.e the input to the module)
and not the initial input x to the network.

PredSim [Nøkland and Eidnes, 2019]. PredSim adds an auxiliary similarity
matching loss inspired by similarity losses used in neuroscience [Patel et al.,
2022]. The similarity matching loss is the distance between matrices whose
entries are meant to measure the similarity between inputs in a mini-batch. The
target for such a matrix is then the similarity matrix constructed from the labels
of the inputs, which contains 1 at position (i, j) if inputs i and j have the same
label, and 0 otherwise. More precisely, given a matrix A made up of stacked
vectors ai, we denote S(A) the adjusted cosine similarity matrix or correlation
matrix, whose entries are given by

S(A)i,j = S(A)j,i =
ã⊺i ãj

∥ãi∥2∥ãj∥2

where we mean-center vector ai into vector ãi. Given a mini-batch, we denote
Y the one-hot encoded matrix of its labels, and H the matrix of the stacked
embeddings hi of the elements of the mini-batch after the current module.
The similarity matching loss is then ∥S(Conv(H)− S(Y )∥2F , meaning that the
embeddings go through a convolutional auxiliary layer to reduce their dimension.
This loss is added to the cross-entropy classification loss for the training of every
module.

D.2 Architectural Approaches
DGL [Belilovsky et al., 2020]. DGL, and previously [Belilovsky et al., 2019],
simply consider the best auxiliary architectures for module-wise training. They
find that deeper convolutional auxiliary classifiers lead to the best performances.
However, these auxiliary classifiers are quite large which reduces the compu-
tational savings we desire from module-wise training. We, like InfoPro [Wang
et al., 2021], limit ourselves to one convolutional layer. DGL then introduce an
auxiliary architecture made up of staged resolution reduction phase before the
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linear classification layer, which they find offers a good trade-off between size
and performance.

Sedona [Pyeon et al., 2021]. Sedona design light auxiliary classifiers inspired
by the architecture of MobileNetV2 [Sandler et al., 2018] that relies on depth-wise
and point-wise convolutions and inverted residual blocks. They also introduce an
architecture search phase that chooses the best auxiliary classifier architecture
from a pool of candidates, and where exactly to insert them in the network. This
search phase however leads to a deep early module which reduces the memory
savings of module-wise training.
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E.1 Adversarial Attacks
We present here how some popular adversarial attacks on neural networks that
solve an image classification task work. We refer to [Aldahdooh et al., 2022, Li
et al., 2022] for more details.

Below, L is the classification loss (usually cross-entropy), x is a clean image, y is
its label and d its dimension as a vector, x̃ is the adversarial image found from
x, δ = x− x̃ is the perturbation, and ϵ > 0 is the maximal allowed perturbation
size in a given Lp norm. For targeted attacks, t ̸= y is the target label the attack
wants the network to predict for x̃. We denote the pre-softmax outputs of the
network Z, while f denotes the softmax outputs.

E.1.1 White-box Attacks

White-box attacks are attacks where the adversary has access to the network’s
architecture, weights and gradients. We present below three gradient-based
attacks (FGM, BIM and PGD), one optimization-based attack (CW), which
is one of the strongest and most widely used attacks, and one boundary-based
attack (DF).

FGM [Goodfellow et al., 2015b]. The Fast Gradient Method is a simple
early attack. It finds the update direction that maximizes the loss L at each
pixel of image x and takes one step in that direction. So

x̃ = x+ ϵ sign(∇xL(x, y)) such that x̃ ∈ [0, 1]d

This way ∥x̃− x∥∞ ≤ ϵ.

BIM [Kurakin et al., 2017]. The Basic Iterative Method iterates the FGM
attack k times. So for 0 ≤ i < k and x̃0 = x,

x̃i+1 = x̃i + α sign(∇xL(x̃i, y)) such that x̃i+1 ∈ [0, 1]d

where α = ϵ/k and x̃ = x̃k

PGD [Madry et al., 2018]. Projected Gradient Descent is similar to BIM but
starts from a random perturbation in an Lp ball around x. Auto-PGD [Croce
and Hein, 2020b] adds a momentum to the gradient step and adapts the step
size α across iterations.

CW [Carlini and Wagner, 2017b]. The Carlini-Wagner attack is one of the
strongest attacks available. It considers a loss

g(x) = max(max
j ̸=t

(Zj(x))− Zt(x),−c)

where c > 0 is a confidence parameter. Minimizing g finds an image with a high
softmax output the target t. So the attack then solves the optimization problem

min
δ
∥δ∥p + c g(x+ δ) such that x̃ = x+ δ ∈ [0, 1]d
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The attack also transforms the problem from a box-constrained one to an
unconstrained one by rewriting the perturbation as δ = 1

2 (tanh(w) + 1)− x.

DF [Moosavi-Dezfooli et al., 2016]. The DeepFool attack approximates the
decision regions of a neural network by polyhedrons, taking inspiration from the
case of an affine classifier. The attack then accumulates perturbations that are
the shortest projections to the boundary of the polyhedron of the correct label.
First the attack computes wj = ∇fj(x) − ∇fy(x) and dj = fj(x) − fy(x) for
all labels j that are different from the ground truth label y. It then finds the
closest boundary thus

k = argmin
j ̸=y

|dj |
∥wj∥2

The perturbation added to x is then

δ =
|dk|
∥wk∥22

wk

This process is repeated starting from x+ δ until the predicted label changes.

Among other white-box attack we mention JSMA (Jacobian Saliency Map
Attack) [Papernot et al., 2016b], UAP (Universal Adversarial Perturbation)
[Moosavi-Dezfooli et al., 2017b], FA (Feature Adversary) [Sabour et al., 2016],
ATN (Adversarial Transformation Networks) [Baluja and Fischer, 2017] and
FAB (Fast Adaptive Boundary) [Croce and Hein, 2020a].

E.1.2 Black-box Attacks

Black-box attacks don’t have any knowledge about the the network and can only
query it. We present below the substitute model family of black-box attacks, a
random search attack and an optimization-based attack.

Substitute model attacks [Papernot et al., 2016a, Papernot et al.,
2017, Hu and Tan, 2022]. These attacks simply train a network (called a
substitute model) that imitates the predictions of the targeted network. The
attacker then uses a white-box attack to find an adversarial sample for the
substitute model and feeds this sample to the targeted network.

SA [Andriushchenko et al., 2020]. The Square Attack selects via random
search local square-shaped ϵ-bounded perturbations at random positions to solve
the optimization problem

min
x̃

(
Zy(x̃)−max

j ̸=y
Zj(x̃) · Zy(x̃)

)
such that x̃ ∈ [0, 1]d and ∥x̃− x∥p ≤ ϵ

The attack has an L2 variant and an L∞ variant.

ZOO [Chen et al., 2017b]. The Zeroth Order Optimization attack estimates
the gradients of the network f using finite differences. Indeed

df(x)

dxi
≃ f(x+ hei)− f(x− hei)

2h
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and
d2f(x)

d2xi
≃ f(x+ hei)− 2f(x) + f(x− hei)

h2

where h > 0 is small and ei is the i-th standard basis vector. In one variant of
the attack, these estimations are used to perform stochastic coordinate descent
optimization methods [Bertsekas, 2016] to minimize a similar target to that of
the Carlini-Wagner attack:

g(x) = max(max
j ̸=t

(log fi(x))− log ft(x),−c)

Among other black-box attacks we mention Pixel Attacks [Su et al., 2019, Kotyan
and Vargas, 2020], ST (spatial transformation) [Engstrom et al., 2019], HSJ
(Hop-Skip-Jump) [Chen et al., 2020a] and BA (Boundary Attack) [Brendel et al.,
2018].

E.2 Adversarial Detectors
We describe here how some recent adversarial detectors operate. Generally, an
adversarial detector extracts statistics from the activations of an input going
through a network, before training a classier on these statistics.

E.2.1 Statistical Approaches

Mahalanobis [Lee et al., 2018]. The Mahalanobis detector uses Mahalanobis
distances between the activations and a Gaussian fitted to them during network
training as detection features. The means of the Gaussian distributions are
fitted for each class c thus

µ̂c,m =
1

Nc

∑
x∈Dc

hm(x)

where Dc is the set of samples x with class c, Nc = #Dc is its cardinality, and
hm is the embedding function at depth m. The covariance matrix is the same
for all classes and is fitted thus

Σ̂m =
1

N

∑
(x,y)∈D

(hm(x)− µ̂y,m)(hm(x)− µ̂y,m)⊺

where D is the dataset of sample-label pairs, and N = #D is the number of
samples. The Mahalanobis distances to these Gaussians for an input x are then
for every class c

M̂c,m(x) = −(hm(x)− µ̂c,m)⊺Σ̂−1(hm(x)− µ̂c,m)

The confidence scores for an input x to be classified as adversarial (or out-of-
distribution) or not are then

Ŝm(x) = max
c
−M̂c,m(x)
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In practice, the detector (a logistic regression) is trained on Mahalanobis scores
Ŝm(x) at five different depths m.

[Ren et al., 2021] propose an improvement over the Mahalanobis distance for out-
of-distribution detection called RMD (Relative Mahalanobis Distance). They fit
another Gaussian to all training samples, regardless of class. So the estimated
mean is now

µ̃m =
1

N

∑
(x,y)∈D

hm(x)

And the estimated covariance is now

Σ̃m =
1

N

∑
(x,y)∈D

(hm(x)− µ̃m)(hm(x)− µ̃m)⊺

Then they compute the Mahalanobis distance to this Gaussian

M̃m(x) = −(hm(x)− µ̃m)⊺Σ̃−1(hm(x)− µ̃m)

And define the relative Mahalanobis distance as follows

RMDc,m(x) = M̂c,m(x)− M̃m(x)

The confidence scores used as features for detection are now

S̃m(x) = max
c
−RMDc,m(x)

LID [Ma et al., 2018]. Given a point x sampled from a probability distribution
P , and a batch B = {xi}ki=1 of points also sampled i.i.d from P , the MLE
estimator of the local intrinsic dimensionality (LID) of P at point x is given by

L̂(x,B) = −

(
1

k

k∑
i=1

log
ri(x)

rk(x)

)−1

where ri(x) is the distance from x to its i-th nearest neighbor in B. For
adversarial detection, the features used are L̂(a,B) where a is an activation at
a certain depth from an input (clean or adversarial) going through the network,
and B is always a batch of activations of clean samples.

E.2.2 Computer Vision Approaches

NSS [Kherchouche et al., 2020]. The natural scene statistics (NSS) detector
uses image quality assessment statistics that detect distortions to detect adver-
sarial samples. It extracts 18 of these statistics from the images themselves and
not from their embeddings. We describe here how the first two statistics are
extracted.
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The mean subtracted contrast normalized (MSCN) coefficients [Mittal et al.,
2012] of an image I are given by

Î(i, j) =
I(i, j)− µ(i, j)
ϕ(i, j) + c

where c > 0 is a small constant, (i, j) is a pixel position, the local mean µ is

µ(i, j) =

3∑
k=−3

3∑
l=−3

w(k, l)I(i+ k, j + l)

and the local standard deviation ϕ is

ϕ(i, j) =

√√√√ 3∑
k=−3

3∑
l=−3

w(k, l)(I(i+ k, j + l)− µ(i, j))2

where w is a circularly-symmetric Gaussian weighting function. A generalized
Gaussian distribution (GGD) is then fitted to Î and its shape parameter and
variance are used as the first two features for detection.

Fourier detectors [Harder et al., 2021]. The discrete Fourier transform
(DFT) in 2 dimensions of an image I ∈ [0, 1]d×d is given by

F(I)(l,m) =

d∑
j,k=0

I(j, k) exp−2πi lj + km

d

for l, k ∈ {0, .., d− 1}. The magnitude of the Fourier coefficients is given by

|F(I)(l,m)| =
√

Re2(F(I)(l,m)) + Im2(F(I)(l,m))

And the phase is given by

ϕ(F(I)(l,m)) = arctan
Re(F(I)(l,m))

Im(F(I)(l,m))

[Harder et al., 2021] propose two detectors. This first is called MFS (magnitude
Fourier spectrum) and uses the magnitudes of the Fourier coefficients as detection
features. The second is called PFS (phase Fourier spectrum) and uses the phases
of the Fourier coefficients as detection features. They find it is better to extract
these features from the embeddings of the images at certain layers than from
the images themselves. But given the high dimensionality of these embeddings,
they have to heuristically select a subset of layers to consider.
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F.1 Implementation Details
These are further implementation details for the experiments in Section 3.5.
Orthogonal initialization with gain 0.01 is used for ResNet models. Kaiming
initialization is used for ResNeXt models. SGD is used for training. The
momentum is always set to 0.9 and weight decay to 0.0001. For ResNet models,
the learning rate is 0.01 and is divided by 5 at epochs 120, 160 and 200 (when
the training goes that far). For ResNeXt models, the learning rate is 0.1 and is
divided by 10 at epochs 150, 225 and 250. Batch size is 128 for all experiments.
Architectures of ResNet [He et al., 2016a] and ResNeXt [Xie et al., 2017] blocks
are standard and exactly as in the references. The ResNets used are single
representation ResNets (i.e. containing one residual stage) with 9 blocks. The
ResNeXt architecture used is the ResNeXt-50-32×4d from [Xie et al., 2017].

F.2 Transport Visualization
If we pretrain an autoencoder on MNIST, we can use its encoder as the encoder
of the ResNet and freeze it during training. This makes it possible to visualize
the transport of the data by decoding, via the pretrained decoder, the output of
each residual block (see Figure 28 below).

Figure 28: Decoding the internal representations of a network.
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We show this below on MNIST. In Figure 29, we see the decodings of a vanilla
ResNet trained to achieve 99.4% test accuracy.

Figure 29: Decodings of the internal representations (outputs of the ResBlocks) after training
a ResNet-9 on MNIST (og: original image, ae: encoding, b1: output of block 1...)

We add the transport cost with λ0=5, τ=1 and s=5. The accuracy barely drops
(99.3%) and we see in Figure 30 that the decodings change much less.

Figure 30: Decodings of the internal representations (outputs of the ResBlocks) after training
a LAP-ResNet-9 on MNIST (og: original image, ae: encoding, b1: output of block 1...)
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We do the same thing on CIFAR10, first with a vanilla ResNet-9 in Figure 31.

Figure 31: Decodings of the internal representations (outputs of the ResBlocks) after training
a ResNet-9 on CIFAR10 (og: original image, ae: encoding, b1: output of block 1...)

Then with LAP training with λ0=10, τ=0.1 and s=50 in Figure 32 below.

Figure 32: Decodings of the internal representations (outputs of the ResBlocks) after training
a LAP-ResNet-9 on CIFAR10 (og: original image, ae: encoding, b1: output of block 1...)
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Finally, on CIFAR100, the decodings without regularization are in Figure 33.

Figure 33: Decodings of the internal representations (outputs of the ResBlocks) after training
a ResNet-9 on CIFAR100 (og: original image, ae: encoding, b1: output of block 1...)

With the transport regularization, the decodings are in Figure 34.

Figure 34: Decodings of the internal representations (outputs of the ResBlocks) after training
a LAP-ResNet-9 on CIFAR100 (og: original image, ae: encoding, b1: output of block 1...)
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F.3 Experiments with Fixed λ

In this section, we show some additional experimental results with a model
where, instead of using an adaptive optimization algorithm, we simply take the
transport cost as a regularizer, thus giving us a minimization objective:

L(θ) + λ C(θ)

This is an easier and more straightforward method, simply considering a relaxed
constraint in the optimization problem (18). Aside from the advantage of
simpler implementation, it allows for easier fine-tuning of the regularization
hyper-parameter which is useful when the datasets and networks are big. The
adaptivity is lost but this still leads to better test accuracy than the non-
regularized networks. Results on the same tasks as in Section 3.5 are below.

Table 16: Average highest test accuracy and 95% confidence interval of ResNeXt50 over 10
instances on CIFAR100 with training sets of different sizes (in %)

Train size ResNeXt LAP-ResNeXt50 ResNeXt50 with λ = 0.01

50 000 72.97 ± 1.18 76.11 ± 0.78 75.96 ± 1.04
25 000 62.55 ± 2.37 64.11 ± 1.85 64.10 ± 1.74
12 500 45.90 ± 2.74 48.23 ± 1.84 47.77 ± 1.85

Table 17: Average highest test accuracy and 95% confidence interval of ResNet-9 over 10
instances on CIFAR100 with training sets of different sizes (in %)

Train size ResNet LAP-ResNet ResNet with λ ∈ {0.05, 0.2}

50 000 72.32 ± 0.24 72.43 ± 0.18 72.62 ± 0.21
25 000 64.34 ± 0.23 64.34 ± 0.23 64.76 ± 0.24
10 000 49.27 ± 0.42 50.57 ± 0.23 50.46 ± 0.27
5 000 34.74 ± 0.84 37.97 ± 0.30 38.44 ± 0.45
1 000 15.66 ± 0.43 16.42 ± 0.32 16.03 ± 0.49

Table 18: Average highest test accuracy and 95% confidence interval of ResNet-9 over 20
instances on CIFAR10 with training sets of different sizes (in %)

Train size ResNet LAP-ResNet ResNet with λ = 0.2

50 000 91.49 ± 0.09 91.94 ± 0.10 91.36 ± 0.08
30 000 88.61 ± 0.14 89.41 ± 0.09 88.50 ± 0.11
20 000 85.73 ± 0.14 86.74 ± 0.13 85.82 ± 0.11
10 000 79.25 ± 0.25 80.90 ± 0.16 80.15 ± 0.13
5 000 70.32 ± 0.32 72.58 ± 0.12 72.03 ± 0.31
4 000 67.80 ± 0.26 70.12 ± 0.30 69.64 ± 0.30
1 000 49.22 ± 0.52 51.14 ± 0.45 50.38 ± 0.45
500 41.55 ± 0.41 42.92 ± 0.37 42.30 ± 0.43
100 26.98 ± 0.99 25.34 ± 0.76 27.53 ± 0.94
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F.4 Impact on Weight Distribution of Classifier
LAP training moves the weights of the classification layers away from zero:
compare Figure 35 for a vanilla network and Figure 36 for a LAP network.

Figure 35: Weight distribution of the two fully connected layers of the classification head of a
vanilla ResNet-9 trained on CIFAR10.

Figure 36: Weight distribution of the two fully connected layers of the classification head of a
LAP-ResNet-9 trained on CIFAR10.
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F.5 Additional Experiments in 2 Dimensions

F.5.1 Comparison to Exact Wasserstein Distances

In 2 dimensions we can compute the exact W2 distance between successive point
clouds in the network before and after each block, and compare it, in Figure 37
below, to the displacement that the block causes. This confirms that residual
networks are indeed already close to being optimal transport maps, and that
LAP training encourages this bias.

Figure 37: Average residual function norm and W2 distance between successive point clouds
in a ResNet-9 trained on the circles test set. Vanilla training on the left and LAP training on
the right.

F.5.2 Comparison to Batch Normalization

We compare our method with batch normalization. We find that the two
cooperate well to improve test accuracy on the same 2-dimensional task as in
Section 3.2 when the model is too small (1 block, Table 19), too big (100 blocks,
Table 20), poorly initialized (N (0, 5) initialization, Table 22) and when the data
set is small (50 points, Table 21). LAP-ResNets use λ0 = 0.1, τ = 0.1 and s = 5.

We are interested in cases where adding the transport cost to the loss helps
with the generalization of the network. The advantage of Uzawa’s algorithm
is that fixing λ0 = 0.1, τ = 0.1 and s = 5 works well in most cases. A fixed
λ requires more tinkering, but when a good value is found, it often performs
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better than Uzawa’s algorithm with those values, and finding better values for
Uzawa requires a grid search over three parameters instead of just one. Since
the results are similar for both the circles and the moons dataset, we report
below the results on the circles dataset only.

A first case where adding C to the loss helps is when the network is small. If
the network has only two blocks, then it takes on average around 73 epochs to
achieve 100% test accuracy and keep that performance for three consecutive
epochs (on average over 100 instances of the problem, an instance being a
randomly generated circles dataset and a random initialization of the model’s
weights). If we add batch normalization to the residual blocks as in Figure 1,
then the average number of epochs is around 71. But if we add the transport
cost C with fixed weight λ = 0.01, then the average number of epochs to achieve
the same performance drops to 54. Adding both batch normalization and the
transport cost at the same time does not help, as the average number of epochs
goes up to 64.

If the network has only one block (Table 19), then it never reaches 100% test
accuracy. The highest test accuracy it reaches after 100 epochs is on average
76.6%. With batch normalization, this figure drops to 75.4%, but with Uzawa’s
algorithm, it goes up to 82.1%. With both batch normalization and Uzawa, the
average best accuracy is even higher at 84.6%.

Table 19: Average test accuracy and 95% confidence interval over 100 instances on the circles
2D dataset with 1000 points and 1 block (in %)

No batch normalization Batch normalization

ResNet 76.6 ± 3.5 75.4 ± 3.1
ResNet with λ = 0.005 76.5 ± 3.5 75.6, ± 3.3

LAP-ResNet 82.1 ± 2.6 84.6 ± 3.1

A second case is when the network is too big (Table 20). The network with
100 blocks and no batch normalization has an average test performance of only
89.1%. As expected, adding batch normalization helps greatly as the average
test accuracy rises to 99.4%. This performance is improved slightly by adding a
transport cost via Uzawa’s algorithm and reaches 99.8%. Note that adding the
transport cost without batch normalization hinders the test performance in this
case.

Table 20: Average test accuracy and 95% confidence interval over 100 instances on the circles
2D dataset with 1000 points and 100 blocks (in %)

No batch normalization Batch normalization

ResNet 89.1 ± 0.9 99.4 ± 0.4
ResNet with λ = 0.09 69.7 ± 4.0 99.5 ± 0.6

LAP-ResNet 75.7 ± 2.9 99.8 ± 0.2
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A third instance of the transport cost improving generalization is when we use
a big initialization (Table 22). The network has 9 blocks and we initialize the
weights and biases of the fully connected layers by drawing from a centered normal
distribution with standard deviation equal to 5. Here, batch normalization is
essential for the network to recover from this initialization and get close to
100% test accuracy inside 100 epochs. If we further add a transport cost with
λ = 0.04, the average highest test accuracy improves from 97.8% to 99.8%. If
we add a transport cost via Uzawa’s algorithm instead of a fixed weight, we
get an average test accuracy of 99.6%. An example of the behavior we want to
avoid with a big initialization is in Figure 39 below. With batch normalization
(and the same random seeds), we get the behavior in Figure 40. If we also add
λ = 0.04, we gain further control as seen in Figure 41.

Table 21: Average test accuracy and 95% confidence interval over 100 instances on the circles
2D dataset with 50 points and 9 blocks (in %)

No batch normalization Batch normalization

ResNet 88.2 ± 2.3 92.9 ± 2.0
ResNet with λ = 0.04 93.5 ± 2.1 94.4 ± 2

LAP-ResNet 95.8 ± 1.8 96.0 ± 1.3

A final case is when the training set is small (Table 21). Here we consider a
dataset containing 50 points (40 train and 10 test) and a network with 9 blocks.
The test performance of this network is on average 88.2%. We can get to 92.7%
average test accuracy with batch normalization but using Uzawa’s algorithm and
no batch normalization yields the best average performance at 95.7%. Adding
batch normalization does not change this.

Table 22: Average test accuracy and 95% confidence interval over 100 instances on the circles
2D dataset with a N (0, 5) initialization (in %)

No batch normalization Batch normalization

ResNet 90.2 ± 1.3 98.0 ± 0.8
ResNet with λ = 0.04 89.7 ± 1.5 99.7 ± 0.2

LAP-ResNet 79.1 ± 3.9 99.4 ± 0.4

F.5.3 Additional Transport Visualizations in 2 Dimensions

We provide here further visualizations of transport dynamics in 2 dimensions
inside a ResNet-9, as in Section 3.2.2, but now showing point clouds after every
block. In Figure 38, we show the normal behavior of a network trained with
transport regularization (to be compared with the first row in Figure 12 in
Section 3.2.2). The three following figures show how transport regularization
and batch normalization help control the behavior of a badly initialized network.
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Figure 38: Circles test set after each block after training with transport regularization with
weight λ = 0.07.
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Figure 39: Circles test set after each block after training with N (0, 5) initialization.
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Figure 40: Circles test set after each block after training with N (0, 5) initialization and batch
normalization.
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Figure 41: Circles test set after each block after training with N (0, 5) initialization, batch
normalization and transport regularization with fixed weight λ = 0.04.
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G.1 Implementation Details
We use standard data augmentation and standard implementations for VGG-19,
ResNet-50, ResNet-101, ResNet-110, ResNet-152 and Swin-Tiny Transformer
(the same as for the other methods). We use NVIDIA Tesla V100 16GB GPUs
for the experiments.

Training a Resnet-152 on TinyImageNet in Table 4 takes about 36 hours.
Training a Resnet-152 on CIFAR100 in Table 4 takes about 11 hours. Training
a ResNet-110 on STL10 in Table 6 takes about 3 hours. Training a Swin-Tiny
Transformer in Table 7 take between 40 minutes and 1 hour.

For sequential and multi-lap sequential training, we use SGD with a learning
rate of 0.007. With the exception of the Swin Transformer in Table 7, we use
SGD for parallel training with learning rate of 0.003 in all Tables but Table 6
where the learning rate is 0.002. For the Swin Transformer in Table 7, we use
the AdamW optimizer with a learning rate of 0.007 and a CosineLR scheduler.

For end-to-end training we use a learning rate of 0.1 that is divided by five at
epochs 120, 160 and 200. Momentum is always 0.9. For parallel and end-to-
end training, we train for 300 epochs. For sequential and multi-lap sequential
training, the number of epochs varies per module (see Section 4.5.5).

For experiments in Section 4.5.1, we use a batch size of 256, orthogonal initial-
ization [Saxe et al., 2014] with a gain of 0.1, label smoothing of 0.1 and weight
decay of 0.0002. Only for Table 6, the batch size changes to 64.

For experiments in Section 4.5.5, we use a batch size of 128, orthogonal initial-
ization with a gain of 0.05, no label smoothing and weight decay of 0.0001.

For the experiments on TinyImageNet in Table 4, we use τ = 500000 for the
first two modules and then double it for the last two modules for TRGL.

For the experiments on CIFAR100 in Table 5, we use λk,1 = 1, h = 1 and s = 50
for TRGL.

For the experiments on STL10 in Table 6, we use τ = 0.5 and double it at the
midpoint, expect for the first line where τ = 50.

G.2 Additional Experiments

Table 23: Test accuracy of 2-7 ResNet on CIFAR100 with parallel TRGL and VanGL, compared
to DDG and FR from [Huo et al., 2018a] that also split their networks in 2 module-wise-
parallel-trained modules.

Parallel VanGL (ours) Parallel TRGL (ours) DDG ResNet-101 FR ResNet-101

76.26 76.96 75.75 76.90
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Table 24: Test accuracy of parallel TRGL and VanGL with 2 modules, compared to DGL
and DDG from [Belilovsky et al., 2020] and InfoPro from [Wang et al., 2021] that also split a
ResNet-110 in 2 module-wise-parallel-trained modules, on CIFAR 10.

Parallel VanGL (ours) Parallel TRGL (ours) DGL DDG InfoPro

94.01 ± .17 94.05 ± .18 93.50 93.41 93.58

Table 25: Average last block test accuracy and 95% confidence interval of 20-1 ResNet (32
filters, fixed encoder, same classifier) over 20/50 runs on MNIST with different train sizes and
parallel (Par) TRGL and VanGL, compared to E2E.

Train size Par VanGL Par TRGL E2E

60000 99.07 ± .04 99.08 ± .04 99.30 ± .03
30000 98.90 ± .05 98.93 ± .06 99.22 ± .03
12000 98.52 ± .06 98.59 ± .06 98.96 ± .06
6000 98.05 ± .09 98.16 ± .07 98.62 ± .06
1500 96.34 ± .12 96.91 ± .07 97.19 ± .08
1200 95.80 ± .12 96.58 ± .09 96.88 ± .09
600 91.35 ± .99 95.16 ± .15 95.30 ± .17
300 89.81 ± .73 92.86 ± .24 92.87 ± .28
150 81.84 ± 1.22 87.48 ± .42 87.82 ± .59

Table 26: Average last block test accuracy and 95% confidence interval of 20-1 ResNet (100
filters, fixed encoder, same classifier) over 10 runs on CIFAR10 with different train sizes and
parallel (Par) TRGL and VanGL, compared to E2E.

Train size Par VanGL Par TRGL E2E

50000 85.98 ± .28 86.02 ± .26 93.11 ± .19
25000 80.94 ± .25 81.09 ± .32 89.10 ± .29
10000 72.49 ± .46 73.01 ± .31 80.52 ± .46
5000 62.31 ± .54 64.06 ± .57 69.44 ± .88
500 38.61 ± .47 41.44 ± .44 40.40 ± .60

Figures 18 and 42 suggest that our regularization helps most when looking at
the accuracy of the last block. We confirm this by including in Table 27 the
accuracy achieved by the best block for the same experiment as in Table 11 and
we notice a more important improvement from the regularization in the accuracy
of the last block than in the accuracy of the best block. We also observe that
with the regularization the difference between the accuracy of the last block and
that of the best block is smaller than without the regularization. We further
confirm this through the following experiment. As the network gets deeper (50
blocks trained for 10 epochs each sequentially), we expect training it block-wise
to become more difficult, and indeed the improvement from the regularization
is slightly larger than usual when looking at the accuracy of the last block for
both sequential training methods (Table 28). We also include in Table 29 results
from block-wise training of ResNeXt-50-32×4d [Xie et al., 2017], which turns
out to be difficult to train block-wise.
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Table 27: Average highest test accuracy and 95% confidence interval of 10-1 ResNet over 10
runs on CIFAR10 with different train sizes and sequential (Seq) TRGL and VanGL, compared
to E2E.

Train Seq VanGL Seq TRGL E2E

50000 88.14 ± .14 88.34 ± .22 91.88 ± .18
25000 84.15 ± .17 84.46 ± .22 88.75 ± .27
10000 76.62 ± .40 77.47 ± .35 82.61 ± .35
5000 69.60 ± .43 70.22 ± .50 73.93 ± .67
1000 51.59 ± .91 52.06 ± .71 50.63 ± .98

Table 28: Average last block test accuracy and 95% confidence interval of 50-1 ResNet over 10
runs on CIFAR100 with sequential (Seq) and multi-lap sequential (MLS) TRGL and VanGL,
compared to E2E.

Seq VanGL Seq TRGL MLS VanGL MLS TRGL E2E

63.40 ± .46 63.86 ± .56 62.59 ± .64 63.24 ± .50 63.34 ± 2.41

Table 29: Average test accuracy and 95% confidence interval of ResNeXt50 over 10 runs on
CIFAR100 with sequential (Seq), multi-lap sequential (MLS) and parallel (Par) TRGL and
VanGL. End-to-end training in this setting achieves an accuracy of 72.97 ± 1.18.

Seq VanGL Seq TRGL MLS VanGL MLS TRGL Par VanGL Par TRGL

52.29 ± .53 52.42 ± .65 52.59 ± .63 52.84 ± .65 57.86 ± .49 57.93 ± .51

Figure 42: Test accuracy after each block of 10-1 ResNet averaged over 10 runs with 95%
confidence intervals. Left: multi-lap sequential vanilla (VanGL, in blue) and regularized
(TRGL, in red) block-wise training on 10% of the CIFAR100 training set. Right: parallel
vanilla (VanGL, in blue) and regularized (TRGL, in red) block-wise training on 10% of
CIFAR100 training set.
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G.3 Memory Usage
In Table 30 below, we look at the accuracy of a ResNet110 split into K modules
that are equally heavy instead of equally deep, which consumes even less memory
(see Table 9 in Section 4.5.3). The module-wise training methods are then called
VanGL*, TRGL* and InfoPro* as in [Wang et al., 2021]. We notice a slight
degradation in the performance of module-wise training compared to Table
6, but the benefit of the regularization increases, as we now gain almost two
percentage points of accuracy when using 4 modules, and still outperform
end-to-end training.

Table 30: Test accuracy of parallel (Par) TRGL* with K modules (average and 95% confidence
interval over 5 runs) on STL10, compared to InfoPro* and E2E training from Table 3 in [Wang
et al., 2021]

Architecture K Par VanGL* Par TRGL* (ours) InfoPro* E2E

ResNet-110 2 79.05 ± 1.33 79.47 ± 1.36 79.05 ± 0.57 77.73 ± 1.61
4 77.14 ± 1.23 78.94 ± 1.13 78.78 ± 0.72 77.73 ± 1.61

In Table 31 below, we report the memory saved (as a percentage of the memory
required for end-to-end training) for the four networks trained module-wise
in parallel on TinyImageNet with 4 modules in Table 4, and the Swin-Tiny
Transformer [Liu et al., 2021] trained on CIFAR10 with a batch size of 1024,
also split into 4 modules trained in parallel, where the regularization increases
the test accuracy from 90.96 to 93.2% (average of 5 runs).

Table 31: Memory savings on TinyImageNet (4 first rows) and CIFAR10 (last row) of networks
split into 4 modules trained in parallel with a batch size of 256 (4 first rows) and 1024 (last
row), as a percentage of the weight of end-to-end training.

Architecture Par VanGL Par TRGL

VGG-19 27% 21%
ResNet-50 26% 20%
ResNet-101 24% 11%
ResNet-152 21% 8%
Swin-Tiny 32% 30%

Note that methods DDG [Huo et al., 2018b] and FR [Huo et al., 2018a], being
delayed gradient methods and not module-wise training methods, do no save
memory (they actually increase memory usage, see FR [Huo et al., 2018a]).
Sedona [Pyeon et al., 2021] also does not claim to save memory, as their
first module (the heaviest) is deeper than the others, but rather to speed
up computation. Finally, DGL [Belilovsky et al., 2020] is architecture-wise
essentially identical to VanGL and consumes the same amount of memory.
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G.4 Sensitivity to Hyperparameter τ

We show in Figure 43 below that TRGL still performs better than VanGL (in
the same setting as in Table 6 in Section 4.5.1, i.e. using a ResNet110 trained
on STL10 with 16 modules trained in parallel) for values of τ from 0.03 to 100
and is still roughly equivalent to it for values up to 5000.

Figure 43: Average test accuracy over 5 runs of parallel TRGL using a ResNet110 on STL10
with 16 modules with different values of τ (in red), and of VanGL (blue line).
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In the tables below, VAN corresponds to detectors trained on a vanilla network,
RCE to detectors trained on a network trained with reverse cross entropy and
LAP to detectors trained on a transport-regularized network. ‘MH’ refers to
the Mahalanobis detector and ‘TR’ refers to our detector.

H.1 Implementation Details
For ResNeXt50 ([Xie et al., 2017]) on CIFAR100 ([Krizhevsky, 2009]), we train
for 300 epochs using SGD with a learning rate of 0.1 (divided by ten at epochs
150, 225 and 250), Kaiming initialization, a batch size of 128 and weight decay
of 0.0001. For RCE training, the only changes are that the learning rate is 0.05
and the initialization is orthogonal with a gain of 0.05.

For ResNet110 ([He et al., 2016b]) on CIFAR10 ([Krizhevsky, 2009]), we train
for 300 epochs using SGD with a learning rate of 0.1 (divided by ten at epochs
150, 225 and 250), orthogonal initialization with a gain of 0.05, a batch size of
256, weight decay of 0.0001 and gradient clipping at 5. For RCE training, the
only change is that we don’t use gradient clipping.

For WideResNet ([Zagoruyko and Komodakis, 2016]) on TinyImageNet, we train
for 300 epochs using SGD with a learning rate of 0.1 (divided by ten at epochs
150, 225 and 250), orthogonal initialization with a gain of 0.1, a batch size of
114 and weight decay of 0.0001.

For the magnitude parameter of the Mahalanobis detector, we try all the values
tried in their paper for the magnitude and we report the best results.

H.2 Detection of Seen Attacks

Table 32: Average adversarial detection accuracy of seen attacks and standard deviation over
5 runs using ResNet110 on CIFAR10.

Attack

Detector FGM APGD BIM DF CW AA HSJ BA

VAN TR 97.14 ± 0.59 94.10 ± 0.41 97.54 ± 0.52 99.98 ± 0.49 98.04 ± 0.47 88.88 ± 1.34 99.94 ± 0.11 96.56 ± 0.56
RCE TR 95.96 ± 0.54 95.32 ± 0.80 96.16 ± 0.61 99.92 ± 0.10 89.36 ± 0.53
LAP TR 98.70 ± 0.28 97.50 ± 0.37 99.28 ± 0.30 99.84 ± 0.11 97.96 ± 0.37 94.08 ± 0.80 99.92 ± 0.14 97.02 ± 0.18

VAN MH 87.78 ± 4.20 82.08 ± 4.00 86.78 ± 4.70 91.50 ± 3.17 85.58 ± 2.60 80.46 ± 2.24 85.50 ± 1.75 80.20 ± 2.11
RCE MH 93.00 ± 0.60 87.88 ± 0.49 92.30 ± 1.03 94.98 ± 0.40 83.38 ± 0.49
LAP MH 95.64 ± 0.62 90.70 ± 0.72 95.38 ± 0.54 96.70 ± 0.69 93.36 ± 0.61 89.96 ± 0.88 94.56 ± 0.36 89.62 ± 0.43

VAN NS 94.56 ± 0.67 94.28 ± 0.54 95.04 ± 0.52 99.78 ± 0.10 93.86 ± 9.22 88.78 ± 1.41 99.68 ± 0.10 92.10 ± 0.46
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Table 33: Average adversarial detection accuracy of seen attacks and standard deviation over
5 runs using ResNeXt50 on CIFAR100.

Attack

Detector FGM PGD BIM AA DF CW

VAN TR 97.26 ± 0.53 96.04 ± 0.48 98.02 ± 0.28 84.90 ± 0.74 99.80 ± 0.15 97.04 ± 0.88
RCE TR 97.44 ± 0.43 96.58 ± 0.14 97.78 ± 0.22 50.10 ± 0.09 99.04 ± 0.14 92.52 ± 0.34
LAP TR 98.32 ± 0.28 97.84 ± 0.54 98.92 ± 0.14 87.56 ± 0.64 99.58 ± 0.18 97.80 ± 0.18

VAN MH 95.82 ± 0.49 93.94 ± 0.48 96.06 ± 0.64 83.90 ± 0.69 97.30 ± 0.45 95.38 ± 0.56
RCE MH 96.46 ± 0.43 94.74 ± 0.44 96.58 ± 0.60 50.10 ± 0.09 97.64 ± 0.44 88.36 ± 0.62
LAP MH 96.82 ± 0.36 94.60 ± 0.70 97.76 ± 0.50 86.58 ± 0.54 97.12 ± 0.28 96.42 ± 0.42

VAN NS 94.70 ± 0.67 94.18 ± 0.97 94.72 ± 0.65 84.82 ± 0.76 99.56 ± 0.21 90.72 ± 1.39

Table 34: Average adversarial detection accuracy of seen attacks and standard deviation over
5 runs using WideResNet on TinyImageNet.

Attack

Detector FGM APGD BIM AA

VAN TR 95.36 ± 0.36 95.22 ± 0.50 95.26 ± 0.46 81.38 ± 0.38
LAP TR 95.14 ± 0.49 95.20 ± 0.71 95.12 ± 0.67 81.24 ± 0.53

VAN MH 81.06 ± 1.10 79.66 ± 1.00 81.20 ± 1.31 78.40 ± 0.72
LAP MH 85.26 ± 0.96 85.10 ± 0.60 82.46 ± 1.62 78.40 ± 1.04

VAN NS 94.90 ± 0.70 94.86 ± 0.93 95.00 ± 0.56 81.32 ± 0.22

H.3 Detection of Unseen Attacks

Table 35: Average adversarial detection accuracy of unseen attacks after training on FGM
and standard deviation over 5 runs using ResNet110 on CIFAR10.

Attack

Detector APGD BIM AA DF CW HSJ BA

VAN TR 89.3 ± 1.6 96.0 ± 0.7 85.1 ± 1.1 91.0 ± 0.9 93.2 ± 1.0 93.0 ± 0.9 90.9 ± 0.6
RCE TR 91.8 ± 1.1 93.6 ± 1.1 50.0 ± 0.1 63.4 ± 1.1 60.5 ± 0.9 63.9 ± 1.0 52.5 ± 0.5
LAP TR 92.8 ± 0.5 98.8 ± 0.4 84.2 ± 0.5 75.5 ± 1.2 75.2 ± 1.0 76.8 ± 0.6 75.0 ± 0.4

VAN MH 77.3 ± 4.7 77.2 ± 4.8 72.1 ± 3.1 80.1 ± 3.4 79.9 ± 3.7 79.7 ± 3.0 79.3 ± 3.0
RCE MH 81.5 ± 0.6 82.6 ± 1.3 50.0 ± 0.1 81.2 ± 0.7 76.0 ± 0.9 81.6 ± 0.9 68.5 ± 1.2
LAP MH 87.9 ± 0.8 84.9 ± 0.4 81.9 ± 1.2 81.6 ± 0.7 81.5 ± 0.6 81.5 ± 0.3 81.4 ± 0.8

VAN NS 92.1 ± 0.5 93.9 ± 0.4 51.8 ± 0.6 51.4 ± 0.58 50.84 ± 1.1 52.1 ± 0.7 59.9 ± 5.4
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Table 36: Average adversarial detection accuracy of unseen attacks after training on FGM
and standard deviation over 5 runs using ResNeXt50 on CIFAR100.

Attack

Detector APGD BIM AA DF CW HSJ BA

VAN T 91.9 ± 0.8 95.0 ± 0.5 73.3 ± 1.0 85.2 ± 0.6 78.2 ± 1.0 85.0 ± 0.4 92.1 ± 4.8
RCE T 87.7 ± 0.5 95.1 ± 0.9 50.0 ± 0.1 72.3 ± 0.4 61.9 ± 0.5 72.4 ± 0.4 57.7 ± 0.4
LAP T 89.3 ± 0.8 97.7 ± 0.3 74.0 ± 1.3 76.0 ± 1.0 74.7 ± 1.1 78.1 ± 3.4 71.9 ± 3.9

VAN M 90.9 ± 0.8 93.2 ± 0.3 73.1 ± 0.6 82.7 ± 0.9 76.4 ± 0.7 82.8 ± 1.2 84.5 ± 2.0
RCE M 82.0 ± 0.7 88.6 ± 0.8 50.0 ± 0.1 74.1 ± 0.8 63.0 ± 0.6 74.6 ± 0.3 63.2 ± 0.9
LAP M 86.7 ± 0.9 93.9 ± 0.4 80.0 ± 0.6 79.4 ± 1.6 80.9 ± 2.0 80.5 ± 3.7 78.2 ± 2.0

VAN NS 92.16 ± 0.41 93.88 ± 0.97 51.32 ± 0.41 51.62 ± 0.53 51.02 ± 0.43 52.04 ± 0.74 57.9 ± 7.52

Table 37: Average adversarial detection accuracy of unseen attacks after training on FGM
and standard deviation over 5 runs using WideResNet on TinyImageNet.

Attack

Detector APGD BIM AA DF CW

VAN TR 93.26 ± 0.60 94.66 ± 0.49 77.04 ± 0.74 90.62 ± 0.60 91.42 ± 1.06
LAP TR 93.48 ± 0.72 94.80 ± 0.56 76.58 ± 0.48 90.12 ± 0.55 91.52 ± 0.89

VAN MH 76.96 ± 0.94 77.02 ± 1.08 60.36 ± 0.62 73.18 ± 0.59 75.52 ± 0.82
LAP MH 77.96 ± 0.49 78.00 ± 0.77 61.96 ± 0.89 73.98 ± 1.12 76.22 ± 0.83

VAN NS 94.06 ± 0.61 94.62 ± 0.64 72.82 ± 1.98 71.96 ± 4.03 65.60 ± 2.20

H.4 Detection Rate of Successful Adversarial Samples
As in [Lee et al., 2018], we might be only concerned with detecting adversarial
samples that successfully fool the network and that are created from clean
samples that are correctly classified. We find that the detection rate of successful
adversarial samples is always very high and close to 100% on our detector. The
results are in Table 38 for seen attacks and in Table 39 for unseen attacks.

Table 38: Average detection rate of successful adversarial samples from seen attacks over 5
runs on Network/LAP-Network.

Attack

Network/Data Det FGM APGD BIM AA DF CW HSJ

ResNet110
CIFAR10

TR 97.7/98.6 99.3/99.4 98.3/99.6 100/100 100/99.9 98.6/98.7 100/99.9
MH 88.3/93.9 85.9/86.8 88.1/93.8 88.3/95.4 93.8/98.2 83.5/93.9 82.3/95.1
NS 95.9 95.9 96.4 99.9 99.9 99.9 99.7

ResNeXt50
CIFAR100

TR 98.2/98.6 97.1/97.9 98.6/99.2 100/100 99.9/99.4 99.9/99.6
MH 96.7/97.1 95.8/92.7 96.6/98.0 98.8/98.7 97.6/97.8 98.1/98.1
NS 95.0 94.8 94.6 99.9 99.3 100

WideResNet
TinyImageNet

TR 95.4/95.9 96.7/96.4 95.0/96.1 100/100
MH 84.0/85.0 82.7/84.8 85.8/86.2 95.6/96.5
NS 94.4 94.5 94.3 99.9
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Table 39: Average detection rate of successful adversarial samples from unseen attacks after
training on FGM over 5 runs.

Attack

Network/Data Detector APGD BIM AA DF CW HSJ BA

ResNet110
CIFAR10

TR 96.94 98.68 98.54 93.42 92.22 93.22 93.38
MH 79.80 78.66 81.10 79.96 78.96 78.14 79.42
NS 93.02 94.24 10.22 8.12 8.76 9.60 25.50

ResNeXt50
CIFAR100

TR 98.76 98.56 74.06 75.14 72.90 75.42 91.04
MH 90.86 93.38 73.74 73.64 72.34 73.66 76.44
NS 91.8 93.8 8.32 8.06 7.38 8.94 21.9

WideResNet
TinyImageNet

TR 100.0 100.0 91.06 95.00 96.00
MH 79.16 86.42 71.70 68.34 76.66
NS 93.20 93.98 54.5 50.80 51.96

H.5 False Positive Rate
We report here the false positive rate on seen (Table 40) and unseen (Table 41)
attacks.

Table 40: Average false positive rate of seen attacks over 5 runs on Network/LAP-Network.

Attack

Network/Data Det FGM APGD BIM AA DF CW HSJ

ResNet110
CIFAR10

TR 3.3/1.5 6.3/2 2.7/0.8 1.9/1.5 0.1/0.2 2.6/2.8 0.1/0.1
MH 13.9/3.5 18.7/4.7 13.6/3.1 13.3/6.4 10.2/4.6 12.4/7.4 11.9/5.8
NS 5.4 4.9 4.8 2.9 0.4 2.3 0.3

ResNeXt50
CIFAR100

TR 3.4/1.9 4.6/2.3 2.5/1.9 4.0/4.1 0.2/0.3 0.3/0.4
MH 5.2/3.3 6.3/3.6 4.6/3.3 13.7/10.8 2.9/2.7 2.5/2.2
NS 5.0 5.0 4.8 5.1 0.2 2.8

WideResNet
TinyImageNet

TR 3.7/5.2 5.3/4.9 3.6/4.6 6.8/7.0
MH 18.1/16.3 17.5/16.9 18.0/15.9 14.8/15.3
NS 4.5 4.5 4.2 7.4

Table 41: Average false positive rate of unseen attacks after training on FGM over 5 runs.

Attack

Network/Data Detector APGD BIM AA DF CW HSJ BA

ResNet110 TR 6.70 6.02 8.06 6.34 5.64 6.70 6.70
CIFAR10 MH 21.36 21.46 23.36 18.48 18.86 18.72 19.10

ResNeXt50 TR 8.96 7.10 7.82 3.74 3.74 4.86 5.74
CIFAR100 MH 7.28 7.08 7.90 7.78 7.68 7.56 7.90

WideResNet TR 9.44 9.44 9.48 9.44 9.44
TinyImageNet MH 14.48 14.54 14.48 14.54 14.82
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H.6 AUROC
We report in Table 42 the AUROC of seen attacks, and in Table 43 the AUROC
of unseen attacks. Note that the AUROC is computed on the class-agnostic
random forest detector, not on the ensemble of the class-agnostic and the
class-conditional detectors.

The AUROC is the area under the receiver operating characteristic curve (or
ROC curve). The ROC curve plots the true positive rate (TPR) against the
false positive rate (FPR), at different threshold values from 0 to 1.

For our random forest classifiers, it is the percentage of decision trees in the
forest that detect an adversarial sample (or an out-of-distribution sample) that
is compared to the threshold. If it is higher than the threshold, than the input
is declared adversarial (or out-of-distribution). If it is lower than the threshold,
then the input is declared clean.

Table 42: Average AUROC of seen attacks over 5 runs on Network/LAP-Network.

Attack

Network/Data Det AA DF CW HSJ

ResNet110 TR 94.91/99.95 99.94/99.92 98.77/99.96 99.95/99.94
CIFAR10 MH 81.94/94.17 89.60/94.17 88.33/94.31 86.01/93.45

ResNeXt50 TR 99.86/99.70 99.84/99.58 99.85/99.61
CIFAR100 MH 87.13/94.32 86.88/91.82 86.33/91.36

WideResNet TR 82.58/82.95
TinyImageNet MH 70.85/71.36

Table 43: Average AUROC of unseen attacks over 5 runs on Network/LAP-Network.

Attack

Network/Data Detector AA DF CW HSJ

ResNet110 TR 82.70 90.09 88.84 87.30
CIFAR10 MH 56.46 62.25 61.59 55.89

ResNeXt50 TR 71.53 72.61 71.89 74.85
CIFAR100 MH 56.60 56.00 56.06 57.07

WideResNet TR 70.37 81.06 80.22
TinyImageNet MH 51.61 51.72 51.57

H.7 Detection of Out-of-Distribution Samples
We report below the AUROC (Table 44 for ResNet110 on CIFAR10 and Table
46 for ResNeXt50 on CIFAR100) and the FPR at a fixed TPR of 95% (Tables
45 for ResNet110 on CIFAR10 and 47 for ResNeXt50 on CIFAR100) for the
out-of-distribution detection experiments in Section 5.4.4.
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Table 44: Average OOD detection AUROC and standard deviation over 5 runs using ResNet110
trained on CIFAR10.

OOD Experiment 1 OOD Experiment 2

Detector CIFAR100 (seen) SVHN (unseen) CW-CIFAR10 (seen) SVHN (unseen)

VAN TR 99.64 ± 0.13 98.74 ± 0.47 99.32 ± 0.14 96.29 ± 0.71
RCE TR 99.61 ± 0.09 99.01 ± 0.25 96.53 ± 0.58 86.34 ± 3.98
LAP TR 99.73 ± 0.09 99.43 ± 0.28 99.31 ± 0.07 96.12 ± 0.59

VAN MH 92.74 ± 1.50 97.00 ± 0.80 88.38 ± 2.94 88.04 ± 4.03
RCE MH 97.97 ± 0.25 96.26 ± 0.40 88.28 ± 2.22 79.53 ± 3.78
LAP MH 98.06 ± 0.38 96.31 ± 0.75 95.22 ± 0.90 86.54 ± 3.60

Table 45: Average OOD detection FPR at 95% TPR and standard deviation over 5 runs using
ResNet110 trained on CIFAR10.

OOD Experiment 1 OOD Experiment 2

Detector CIFAR100 (seen) SVHN (unseen) CW-CIFAR10 (seen) SVHN (unseen)

VAN TR 1.16 ± 0.66 2.68 ± 1.05 2.71 ± 1.01 6.68 ± 0.98
RCE TR 1.16 ± 0.41 1.94 ± 0.86 19.2 ± 2.35 24.98 ± 5.43
LAP TR 1.02 ± 0.44 1.54 ± 0.56 2.70 ± 0.64 5.68 ± 1.12

VAN MH 36.42 ± 4.29 15.66 ± 1.69 49.46 ± 4.80 36.78 ± 6.97
RCE MH 7.34 ± 0.90 20.30 ± 4.45 41.94 ± 6.44 52.72 ± 7.71
LAP MH 6.98 ± 2.35 17.56 ± 5.76 23.06 ± 6.29 58.40 ± 14.42

Table 46: Average OOD detection AUROC and standard deviation over 5 runs using ResNeXt50
trained on CIFAR100.

OOD Experiment 1 OOD Experiment 2

Detector AA-CIFAR100 (seen) SVHN (unseen) CW-CIFAR100 (seen) SVHN (unseen)

VAN TR 94.96 ± 0.38 78.77 ± 1.15 99.00 ± 0.13 95.17 ± 0.31
RCE TR 50.12 ± 0.05 50.30 ± 8.13 87.50 ± 1.65 79.99 ± 3.62
LAP TR 96.45 ± 0.08 76.28 ± 0.73 99.16 ± 0.28 94.84 ± 1.63

VAN MH 93.32 ± 0.41 85.02 ± 0.97 98.24 ± 0.32 93.07 ± 0.33
RCE MH 50.15 ± 0.08 58.04 ± 3.56 86.73 ± 2.03 77.42 ± 3.38
LAP MH 94.87 ± 0.24 92.76 ± 0.39 97.84 ± 0.20 95.92 ± 0.64
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H Additional Experiments from Section 5

Table 47: Average OOD detection FPR at 95% TPR and standard deviation over 5 runs using
ResNeXt50 trained on CIFAR100.

OOD Experiment 1 OOD Experiment 2

Detector AA-CIFAR100 (seen) SVHN (unseen) CW-CIFAR100 (seen) SVHN (unseen)

VAN TR 27.68 ± 1.84 32.66 ± 1.41 5.42 ± 0.82 8.90 ± 1.20
RCE TR 96.12 ± 0.96 94.72 ± 3.10 44.12 ± 3.31 45.68 ± 2.01
LAP TR 21.62 ± 0.30 29.47 ± 0.59 4.90 ± 0.92 10.52 ± 3.61

VAN MH 29.75 ± 1.09 39.06 ± 0.96 8.02 ± 0.81 16.38 ± 0.82
RCE MH 95.28 ± 0.27 91.42 ± 1.26 45.12 ± 3.76 48.45 ± 4.55
LAP MH 24.74 ± 0.69 34.54 ± 1.16 8.10 ± 0.46 9.80 ± 1.21
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