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Avant-propos

Ce mémoire d’habilitation est une synthèse de mon travail de recherche réalisé depuis
l’obtention de mon poste de Maître de conférences à l’Université Gustave Eiffel en 2013.
Ma recherche s’inscrit dans le domaine de l’apprentissage statistique. Plus particulière-
ment, elle s’articule autour de deux thématiques: l’apprentissage supervisé sous con-
trainte et l’apprentissage pour des données à dépendance temporelle.

Ce manuscrit présente mes contributions à l’apprentissage multi-classes. Il se dé-
compose en quatre chapitres. Un premier chapitre est consacré à une introduction à
la classification multi-classes et introduit les notions importantes. Ce chapitre est aussi
l’occasion d’exposer les enjeux et motivations des résultats présentés dans ce manuscrit.
Les deux chapitres suivants sont consacrés à l’exposé de résultats obtenus en apprentis-
sage sous contrainte, tandis que le dernier chapitre traite de la classification pour des
données trajectorielles.

Une partie importante de mes travaux de recherche porte sur la classification sous
contrainte. Au sein de cette thématique, j’ai principalement exploré deux sujets de
recherche. D’une part la classification supervisée par ensemble (set-valued classification)
sous contrainte de taille, dont je présente les résultats obtenus en collaboration avec
E. Chzhen (LMO) et M. Hebiri (LAMA) au Chapitre 2. D’autre part, je m’intéresse à
l’apprentissage sous contrainte d’équité (fairness) qui est un sujet d’importance croissante
au sein de la communauté de l’apprentissage statistique. Mes travaux portant sur l’équité
algorithmique sont issues en grande partie d’une collaboration avec E. Chzhen, M. Hebiri,
L. Oneto (DIBRIS, University of Genoa), et M. Pontil (Istituto Italiano di Tecnologia et
Université College London). Les résultats issus de cette collaboration s’inscrivent dans
le cadre de la régression et de la classification binaire. Une extension au cadre de la
classification multi-classes est présentée au Chapitre 3. Ce travail est le fruit d’une col-
laboration avec R. Elie (DeepMind), M. Hebiri et F. Hue (ENSAE). L’un des points com-
muns aux procédures décrites dans le Chapitre 2 et le Chapitre 3 est que les méthodes
d’apprentissage proposées peuvent tirer parti d’un cadre d’observation semi-supervisé.

En apprentissage multi-classes l’objectif est de prédire à partir de l’observation d’une
variable X, dite covariable, sa classe d’appartenance Y (ou étiquette). L’apprentissage
multi-classes est une thématique qui a été très étudiée au cours des deux dernières
décénies, son potentiel applicatif irriguant toutes les branches de notre société. Due à
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leur complexité croissante, de nombreux jeux de données multi-classes présentent une
forte ambiguité; différentes étiquettes pouvant alors correspondre à la covariable X ob-
servée. Ce type de difficulté est notamment rencontré dans les problèmes d’annotation
d’image comme pour la base de données PlantNet (voir Göeau, Joly, and Bonnet, 2015).
Dans ces situations, l’approche classique qui consiste à ne prédire qu’au moyen d’une
seule classe, n’est plus adaptée. En effet, prédire une seule étiquette parmi une grande
liste de candidates peut s’avérer très peu informatif. Dans ce cas, une alternative est de
considérer la classification par ensemble. C’est-à-dire que l’on va prédire une liste de
classes candidates plutôt qu’une unique classe. Le Chapitre 2 présente mes contributions
à cette thématique de recherche.

L’apprentissage sous contrainte d’équité (fairness) est un sujet de plus en plus prég-
nant dans les applications de l’apprentissage statistique. En effet, l’objectif de la fair-
ness est de “corriger” le biais dans les données observées afin que les algorithmes
d’apprentissage répondent à des contraintes éthiques. Une des idées sous-jacente est
qu’un algorithme d’apprentissage ne doit pas être discriminant vis-vis d’une variable
dite sensible tel que le genre ou l’ethnie. L’étude de la fairness s’inscrit ainsi au coeur des
débats qui animent actuellement nos sociétés modernes. L’objectif du statisticien étant
de comprendre les mécanismes pouvant induire ces biais. Le Chapitre 3 résume une
contribution à ce problème dans le cadre de l’apprentissage multi-classes.

La classification de données à dépendance temporelle est un domaine important de
recherche en Statistique, les récentes avancées technologiques (notament l’utilisation de
capteurs) rendant très facile la collecte de ce type de données. Une partie de mon travail
de recherche s’inscrit dans ce cadre. Durant ma thèse, j’ai travaillé sur la mise en place
de méthodes de classification pour des données de maintien postural. Les troubles du
maintien postural sont susceptibles d’entraîner une chute qui est l’une des premières
causes de mortalité chez les personnes âgées. Les objectifs à plus long terme sont la mise
au point de protocoles d’identification de troubles du maintien postural et l’adaptation
au cas par cas des protocoles de rééducation fonctionnelle. L’une des spécificités de ce
travail est l’exploitation d’une modélisation des données trajectorielles comme solutions
d’équations différentielles stochastiques.

Une des perspectives soulevée par ces travaux de thèse a été l’étude d’un point de vue
théorique et méthodologique de procédures de classification dans le cas où les variables
explicatives sont solutions d’une équation différentielle stochastique. Au Chapitre 4, je
présente les contributions obtenues en collaboration avec C. Dion-Blanc (LPSM) et M.
Martinez (LAMA) et apportant une réponse à ce problème. Les résultats ont été obtenus
pour des trajectoires unidimensionnelles et dans un cadre d’estimation paramétrique.
Ce travail a ouvert de nombreuses perspectives de recherche. En particulier, la question
de l’extension de ces résultats au cadre non-paramétrique et pour des trajectoires multi-
dimensionnelles fait partie d’un projet de recherche actuellement en cours. Les premiers
résultats obtenus dans cette direction sont également présentés au Chapitre 4 et la suite
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du projet est l’objet du travail de thèse d’Eddy Ella-Mintsa (LAMA) que je co-encadre
avec C. Dion-Blanc et V.C. Tran (LAMA).
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Chapter 1

Introduction to multi-class
classification problem

Multi-class classification is one of the most studied statistical frameworks, arising in
many fields which range from medical applications to social studies (e.g., medical diag-
nosis, image recognition, text categorization to name a few). For a general introduction
to this topic, we refer for instance to the well-established book by Devroye, Györfi, and
Lugosi (1996). This chapter is dedicated to the presentation of main notions which are at
the core of this manuscript. In particular, we introduce the general multi-class classifica-
tion framework in Section 1.1. In Section 1.2, we sketch the main estimation techniques
in multi-class classification. Section 1.3 introduces mixture models which are widely
used to model multi-class classification problems. Finally, in Section 1.4 we present some
modern challenges that are addressed in this manuscript.

1.1 General framework

In multi-class classification, a generic observation is a pair of random variables (X, Y)
such that the feature vector X belongs to some space X and the label Y takes its values
in Y = {1, . . . , K}, with K ≥ 2, and indicates the associated class to X. The distribution
of (X, Y), denoted by P, is assumed to be unknown to the statistician. In this setting, a
classifier g is a measurable function which maps X onto Y . Hence, a classifier is viewed
as a prediction of the associated label Y. Throughout this manuscript, for a given classifier
g, we consider the misclassification risk

R(g) = P(g(X) 6= Y)

as the measure of the performance of a classifier g. The set of all classifiers is denoted by
G. Note that we often refer to multi-class (or multi-category) classification when K ≥ 3.
The specific case when K = 2 refers to the binary classification setting and is the most
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14 CHAPTER 1. INTRODUCTION TO MULTI-CLASS CLASSIFICATION PROBLEM

studied classification problem in the machine learning community. We distinguish this
case from the general multi-class classification framework where K ≥ 3 even though these
two problems share some similarities in nature. However, important technical differences
also exist making the multi-class setting as a case study per se. We will discuss this point
later.

1.1.1 Bayes classifier

At this step, a natural object to consider is a classifier g∗ which achieves the minimum
risk

g∗ ∈ arg min
g∈G

R(g). (1.1)

An elementary, yet important result in classification context is the characterization of the
optimal rule g∗, namely the Bayes classifier , expressed for all x ∈ X as

g∗(x) ∈ arg max
k∈Y

pk(x), with pk(x) = P(Y = k|X = x).

Clearly, since the distribution of (X, Y) is unknown, we do not have access to the Bayes
classifier. Hence, an objective in multi-class classification is to build, based on a learning
sample, an empirical classifier which mimics the Bayes classifier.

In view of the form of the optimal classifier, it is worth noting that the conditional
probabilities pk will play a central role in the estimation of g∗. If we consider the binary
case (K = 2, and Y = {0, 1}) the Bayes classifier can also be expressed simply as a
thresholding of the conditional probability p1

g∗(x) = 1{p1(x)≥1/2}.

This is in fact a specificity of the binary classification that eases the statistical analysis in
this framework. This property does not hold in the multi-class setting and makes a major
difference between the two settings.

As we have seen above, the optimal classifier achieves the minimum risk. Therefore,
it is natural that the performance of a given classifier g is evaluated through its excess
risk which is defined as

E(g) = R(g)− R(g∗).

In particular, we can show a closed form of this excess risk.

Proposition 1.1. For any g ∈ G, the following holds

E(g) = EX

[
K

∑
k=1

∑
j 6=k
|pk(X)− pj(X)|1{g(X)=j, g∗(X)=k}

]
.
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Interestingly, the above expression of the excess risk in the multi-class setting is a
straightforward but important generalization of the binary case which can be written as

E(g) = EX

[
|2p1(X)− 1|1{g∗(X) 6=g(X)}

]
.

Next step consists in building an estimator of Bayes classifier and provides some the-
oretical insights, such as a control of its excess risk. This is the purpose of the following
section. In particular, Section 1.2 can be viewed as a road-map for the study of classifica-
tion procedures in multi-class framework.

1.2 Estimation strategy

In multi-class classification, the construction of a classification procedure relies on
a learning sample Dn = {(Xi, Yi), i = 1, . . . , n} of i.i.d. copies of (X, Y). Hence,
a classification procedure or an empirical classifier is a measurable (classifier-valued)
function of the learning sample Dn. Following the standard practice, we will often use
the general notation ĝ to denote an empirical classifier and drop the explicit dependency
on the learning sample. The excess risk of a empirical classifier ĝ is then a random
variable (or, rather a random element, since ĝ is classifier-valued, but we omit this benign
distinction) that depends on Dn. One basic and fundamental property that we expect
from a good empirical classifier ĝ is its point-wise consistency w.r.t. some class P of joint
distributions P of (X, Y)

lim
n→+∞

E [E(ĝ)] = 0, for P ∈ P ,

which ensures that the classifier ĝ is asymptotically as good as the Bayes classifier (note
that at this stage we are not aiming at characterizing rates of convergence, since the
above guarantee is not sufficient for this purpose). In principle, there are two main
ways to build a consistent classifier, both of which are relying on the definition and
the characterization of the Bayes classifier. The first strategy involves the estimation of
the conditional probabilities and relies on the plug-in principle. The second one takes
advantage of Equation (1.1) and relies on the empirical risk minimization principle.

1.2.1 Plug-in approach

Provided the characterization of the Bayes classifier, the most intuitive way to build
consistent classification procedures relies on the construction of consistent estimators
of the conditional probabilities pk for all k ∈ {1, . . . , K}. More precisely, the first step
consists in building estimators p̂k of the pk’s based on the sample Dn. We do not focus on
this step which is rather well studied (van de Geer, 1990; Devroye, Györfi, and Lugosi,
1996; Wegkamp and van de Geer, 1996; Tsybakov, 2009a); let us, however, mention that
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standard estimation methods can be used for this task such as the Kernel estimators or
the k-Nearest Neighbor estimators (see Devroye, Györfi, and Lugosi, 1996, for instance).

Then, the empirical classifier is defined for all x ∈ X by

ĝ(x) ∈ arg max
k∈Y

p̂k(x).

This approach is motivated by the following result, which links the classification excess
risk to its regression counterpart.

Proposition 1.2. We have that

E [E (ĝ)] ≤ 2E

[
K

∑
k=1
| p̂k(X)− pk(X)|

]
.

The above proposition ensures that the consistency of the p̂k’s implies the consistency
of the plug-in classifier ĝ. Furthermore, one can also note that rates of convergence for
the excess risk can trivially be deduced from the rates of convergence of the estimators
p̂k w.r.t. the L1-norm. Importantly, the properties of the plug-in classifier ĝ are inherited
from the properties of the estimators p̂k. We refer to (Devroye, Györfi, and Lugosi, 1996;
Yang, 1999; Audibert and Tsybakov, 2007; Tsybakov, 2009a) for more details.

1.2.2 Empirical risk minimization procedure

In this section, we describe another way to build consistent empirical classifiers. It
relies on the empirical risk minimization principle which has been widely studied in the
context of supervised learning.

Consider a set of classifiers G ′ ⊂ G, we define the empirical risk of a given classifier
g ∈ G ′ by

R̂(g) =
1
n

n

∑
i=1

1{g(Xi) 6=Yi},

and we naturally set the empirical risk minimizer (E.R.M.) ĝ over the set G ′

ĝ ∈ arg min
g∈G ′

R̂(g).

From the definition of ĝ, we deduce that

E [E (ĝ)] = E [R(ĝ)− R(ḡ)] + E [R(ḡ)− R(g∗)] ,

where ḡ ∈ arg minG ′ R(g). Hence, the excess risk of the empirical risk minimizer is clas-
sically decomposed into two terms. The first one is the variance term which is usually
studied using tools from the empirical process theory and depends on complexity as-
sumptions imposed on the set G ′ . In particular, assumptions on the entropy of the set G ′
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are considered (van de Geer, 2000). The second one is the bias term and also depends
on the complexity assumptions on G ′ and on the assumptions on the joint distribution of
(X, Y). In this case, the properties of ĝ are inherited from the properties of G ′ . We refer
to (Devroye, Györfi, and Lugosi, 1996; Vapnik, 1998; Massart and Nédélec, 2006) for the
statistical property of the E.R.M. estimator.

Nevertheless, due to the non-convexity of the minimization problem defined by Equa-
tion (1.2.2), the estimator ĝ is in general not computable. Although, the E.R.M. ĝ offers
appealing properties, it cannot be considered in this form for practical purposes. To avoid
this issue, convex surrogates have been provided in the statistical literature. In particular,
we refer to the work by Freund and Schapire (1997), Vapnik (1998), Friedman, Hastie,
and R. Tibshirani (2000), Zhang (2004), Bartlett, Jordan, and McAuliffe (2006), Tewari
and Bartlett (2007), and Yuan and Wegkamp (2010) for a complete study. Hereafter, we
present the convexification of the problem (1.2.2) in the case of the square loss with the
one-versus-all approach (Zhang, 2004). We consider this case for simplicity but also to
highlight the link between classification and regression. Of course, other choices of loss
functions can be considered and we refer to (Zhang, 2004; Bartlett, Jordan, and McAuliffe,
2006) for more details.

Convexification: from regression to classification. A particular feature of convexifica-
tion is that it relies on a score function f(·) = ( f1(·), . . . , fK(·)), that is, a measurable
mapping from X to RK. Each of these score functions results in an associated classifier
gf defined as

gf(x) ∈ arg max
k∈Y

fk(x).

Even though, the score function is not well tailored for the classification task (it does not
take values in a discrete set) we can, nevertheless, consider its L2-risk as

R2(f) = E

[
K

∑
k=1

(Zk − fk(X))2

]
, with Zk = 2 · 1{Y=k} − 1.

Hence, the risk R2 is simply the sum over all k ∈ Y of the L2-risks associated to the
regression problems of Zk onto X. Interestingly, this formulation can be viewed as the
generalization of the regression problems associated to K separate binary classification
problems where for each k ∈ Y , we focus on the classification problem Y = k against
Y 6= k. From this perspective, we can see this formulation as a one-versus-all problem.
Here again, we can define the optimal score function f∗ w.r.t. R2

f∗ ∈ arg min
f

R2(f), (1.2)

where the infimum is taken over all measurable functions. Hence, for each k ∈ Y , we
have that f ∗k (X) = E [Zk|X] = 2pk(X)− 1. From the definition of f∗, one can establish
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Zhang’s Lemma (see Zhang, 2004) which connects the regression problem defined by
Equation (1.2) to the multi-class problem.

Lemma 1.1. Let f a score function, then the following holds

E [R(gf)− R(g∗)] ≤ 1√
2
(E [R2(f)− R2(f∗)])

1/2 .

The immediate consequence of this result is that the properties of the classifier gf can
be studied through the properties of the score function f. In view of this result, it is then
natural to consider empirical risk minimizer estimator w.r.t. L2-risk. More precisely, we
define for a given score function f its empirical risk

R̂2(f) =
1
n

n

∑
i=1

K

∑
k=1

( fk(Xi)− Zi
k)

2, where Zi
k = 2 · 1{Yi=k} − 1.

Therefore for a set F of score functions, the empirical risk minimizer f̂ is then defined as

f̂ ∈ arg min
f∈F

R̂2(f).

Theoretical guarantees of f̂ are then obtained through complexity assumptions imposed
on the set F . Note that, the resulting estimator f̂ can be also interpreted as a plug-
in classifier. Indeed, in view of the form the optimal score function f ∗, estimators of

conditional probabilities may be simply deduced by setting p̂k =
f̂k+1

2 .

1.3 The case of the mixture model

In Section 1.2, we provide a high-level description of general methods to estimate the
Bayes classifier. Of course, the theoretical properties of these procedures depend on the
assumption on the joint distribution of (X, Y). In this section, we consider the particular
case where the distribution of (X, Y) comes from a mixture model. For simplicity, we
assume that X = Rd and present the mixture model for multi-class classification in the
parametric setting.

Let Θ ⊂ Rp. We assume that Y is distributed according to (πk)k∈Y . Conditional on
Y = k, we assume that X admits a density fθk(·) = f (θk, ·) w.r.t. the Lebesgue measure.
Note that the function f is supposed to be known while for each k the parameter θk is
unknown. In this case, the marginal density of X is given for all x ∈ Rd by

fX(x) =
K

∑
k=1

πk fθk(x).

Hence, under this parametric assumption, the classes are simply discriminated by the
parameters (θk)k∈Y . Thanks to the Bayes formula, we easily deduced that

pk(x) =
πk fθk(x)

fX(x)
1{ fX(x) 6=0}.
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In other words, in the considered parametric setting, the Bayes classifier is known up to
the parameter (θk)k and the marginal distribution of the label. Even though restrictive,
such a modelling can be appealing from the computational and statistical perspectives,
leading to faster algorithms and better statistical rates. Indeed, the distribution of Y
can be estimated by the empirical frequencies π̂k while estimator θ̂k of parameter θk can
be obtained by standard parametric methods, which are typically reduced to convex
optimization problems. Naturally, given estimators π̂k and θ̂k, we consider the plug-in
classifier ĝ defined by

p̂k(x) =
π̂k fθ̂k

(x)

f̂X(x)
1{ f̂X(x) 6=0}.

Apart from their appealing computational and statistical properties, mixture models and
the described methodology results in classifiers which are easily interpretable, which
should be contrasted with general “black box” algorithms (e.g. neural networks). It goes
without saying that the numerical performance of this estimation procedure strongly
depends on the considered model and requires an important modeling effort.

1.4 Overview of the results

In the last decade, several challenges have emerged in multi-class classification. In
particular, modern multi-class datasets are often heterogeneous, complex, and also large
scale, leading to multi-class datasets which may involve a large number of observations,
of variables, and/or of classes. In the present manuscript, we will try to address some of
these characteristics providing a specific answer adapted to the problem in hand.

Due to the high ambiguity between classes inherent in large scale multi-class datasets,
single-output algorithms often exhibit poor performance. As an illustration, the error rate
of state-of-the art methods is around 20% on the ImageNet dataset (Xie et al., 2017). In
this context, we may question the relevance and value of single-output predictions. It
is precisely within these high ambiguity problems that we benefit from the set-valued
classification approach. Indeed, set-valued predictors, which allow to output a set of
possible class candidates rather than an single class, are dedicated to handle the ambigu-
ity in multi-class classification. In Chapter 2, we present a statistical analysis of plug-in
and empirical risk minimization methods in the framework of set-valued classification
with controlled expected size.

Mitigating bias in data is an active research field in the machine learning community.
This is premised on the fact that learning algorithms may inherit bias in the data during
the training process, leading to undesired knock-on effect on future decisions. In particu-
lar, severe conflicts may arise with ethical criteria of the modern society using algorithms
that only have a purpose of prediction accuracy. Algorithmic fairness, which has been
emerging in the last few years, try to give a solution to the problem of mitigating the bias
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in data. In Chapter 3, we provide results obtained in fairness in the context of multi-class
classification.

The recent advance of modern technologies has generated a large number of datasets
which can be modeled as functional data. In this context, a major challenge is to provide
learning algorithms that are designed to handle temporal data. Many methods have been
developed to treat such type of data (see (Ramsay and Silverman, 2007) for an overview).
In Chapter 4, we present a contribution to this research area by considering the specific
case where the feature is modeled as a diffusion sample path. More precisely, results
provided in Chapter 4 focus on the multi-class problem where the data come from a
solution of a mixture of stochastic differential equations, and can be viewed as an extension
of the mixture model presented in Section 1.3 dedicated to functional data classification.



Chapter 2

Set-valued classification

In this chapter, I present results obtained for set-valued classification. This setting is
motivated by the fact that modern multi-class datasets can be extremely ambiguous due
to the large variety of label candidates. In this kind of situation, single-output classifier
can lead to wrong and unsatisfactory predictions. In contrast, set-valued classifiers allow
to predict multiple candidate labels and provide an alternative that may improve the
prediction accuracy. In the set-valued classification framework, a predictor is allowed to
predict not only a single label, but a set of candidates labels. Hence, it offers a natural
way to work with the ambiguity.

Based on previously obtained results in (Denis and Hebiri, 2020) in the context of
classification with reject option, we propose in (Denis and Hebiri, 2017) the set-valued
approach, where the size of the output (e.g. the number of the predicted labels) can
be controlled in expectation by the practitioner. Up to our knowledge, that was the
first work dealing with this framework at that time. We refer to this new setting as set-
valued classification with control expected size. This approach shares some similarities with
the top-k procedure which always outputs k candidate labels (Lapin, Hein, and Schiele,
2015). In particular, by controlling the size of the output, both approaches ensures the
interpretability of the output. However, in contrast to the top-k procedure, controlling the
size in expectation of the predictor offers the opportunity of handling the heterogeneity
of the feature space. That is to say, the size of the output is adaptive w.r.t. the marginal
distribution of X.

In Section 2.3, we present a general procedure which is the result of several works.
In particular, this procedure can leverage unlabeled data to satisfy the size constraint
in expectation. We then show that consistent set-valued predictors under expected size
constraint can be obtained in a semi-supervised way. Interestingly, the proposed method-
ology can be generalized to other learning problems under constraint. As an important
development, we extend it to algorithmic fairness (Chzhen et al., 2020a,b). In (Denis and
Hebiri, 2017), we propose an empirical risk minimization procedure which is presented
in Section 2.4. In light of this work, we propose in (Chzhen, Denis, and Hebiri, 2021)

21
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a minimax analysis of the set-valued classification with controlled expected size setting.
Importantly, this work highlights the relevance of the semi-supervised approach in the
set-valued classification framework. A part of these results are presented in Section 2.5.

2.1 General framework

In this section, we introduce main definitions and notations. A set-valued classifier Γ
is a (measurable) function which maps X onto 2Y . The set of all set-valued classifiers is
denoted by Γ. Naturally, two parameters arise in this framework: the error rate and the
(expected) size of a set-valued which are defined as

P (Γ) = P (Y /∈ Γ(X))︸ ︷︷ ︸
error

, S (Γ) = E |Γ(X)|︸ ︷︷ ︸
size

.

These two notions appear as fundamental and they have different names depending on
the community and the field (for instance, the error rate is often called coverage, recall,
or risk). The balance between the set size and the error rate is a common denomina-
tor between all set-valued classifiers, and depending on the application they should be
considered in a different way. Hence different framework of set-valued classification
are studied in the literature. In the following section we present the most considered
set-valued settings and try to give some of their characteristics.

2.1.1 Set-valued approaches

Arguably the most natural set-valued classifier is the one that outputs a fixed amount
of candidate labels for each instance. This type of set-valued classification strategies
is called top-k prediction (Lapin, Hein, and Schiele, 2015; Oh, 2017), where k is the
amount of candidate labels predicted. For an observation x, the optimal way to out-
put k candidates is to select those that correspond to k highest conditional probabili-
ties p1(x), . . . , pK(x). For instance, top-5 prediction is the one chosen for the ImageNet
dataset (Russakovsky et al., 2015). One of the advantage of this approach is that the
interpretability of the output is controlled through the parameter k. Indeed, The top-k
procedure is then defined as

Top-k: Γ∗top(s) ∈ arg min
{

P(Y /∈ Γ(X)) : ∀x ∈ Rd |Γ(x)| = s
}

,

with some s ∈ Y . One of the drawback of this approach is that it does not take into
account inhomogeneous structure of the problem. Roughly speaking, there is no reason
to always predict the same amount of labels all the time. As a remedy, we propose to
replace the hard constraint on the size of the output by a constraint on the expected size.
More formally, for a given s ∈ (0, K), we consider the following constraint problem

s-Oracle: Γ∗s ∈ arg min{P (Y ∈ Γ(X)) : EX|Γ(X)| ≤ s}. (2.1)
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Interestingly, while this formulation generalizes the top-k approach, it also preserve its
main characteristic. Indeed, since the parameter s ∈ (0, K) is fixed before hand, by con-
sidering this approach we also control the interpretability and stability of the outcome.

Yet another way to define a set-valued classification framework is proposed
by Vovk (2002a,b) and Vovk, Gammerman, and Shafer (2005) and statistically addressed
by Sadinle, Lei, and Wasserman (2018), where for a fixed α ∈ (0, 1), they define Γ∗α as

Controlled error-rate: Γ∗α ∈ arg min {E|Γ(X)| : P(Y /∈ Γ(X)) ≤ α} ,

that is, Γ∗α is the “smallest” set-valued classifier with controlled probability of error. Even
though this framework is intuitive, this apporach does not allow to control the size of
the output. In certain situations it suffers from the lack of interpretability and the lack of
stability w.r.t. the parameter α. In (Chzhen, Denis, and Hebiri, 2021; Chzhen et al., 2021),
we illustrate this phenomena. Other approach based on the control of the point-wise
error, P(Y /∈ Γ(X)|X = x) are recently investigated in the literature (Gyöfi and Walk,
2020; Romano, Sesia, and Candès, 2020).

In the rest of this chapter, we present the results obtained in (Denis and Hebiri, 2017;
Chzhen, Denis, and Hebiri, 2021) for the statistical problem induced by Equation (2.1).

2.2 Set-valued classification with controlled expected size

Let s ∈ Y . This section establishes the important properties of the optimal set-valued
predictor with controlled expected size Γ∗s . We recall its definition here.

s-Oracle: Γ∗s ∈ arg min {P (Γ) : Γ ∈ Γ s.t. S(Γ) ≤ s} ,

2.2.1 Properties of s-Oracle.

Let us start by the following mild continuity assumption which is assumed through-
out this chapter.

Assumption 1 (Continuity of CDF). For all k ∈ Y the cumulative distribution function (CDF)
Fpk(·) := PX(pk(X) ≤ ·) of pk(X) is continuous on (0, 1).

Continuity Assumption 1 is central. It allows to express the s-Oracle set-valued clas-
sifier Γ∗s in the form of thresholding and to highlight the relation of the constrained
minimization with its unconstrained counterpart.

Proposition 2.1. Let the function G : [0, 1]→ [0, K] be defined for all t ∈ [0, 1] as

G(t) :=
K

∑
k=1

(
1− Fpk(t)

)
=

K

∑
k=1

PX(pk(X) > t) ,
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then under Assumption 1, for s ∈ (0, K), the s-Oracle set-valued classifier Γ∗s can be obtained for
all x as

Γ∗s (x) =
{

k ∈ Y : pk(x) ≥ G−1(s)
}

, (2.2)

where we denote by G−1 the generalized inverse of G defined for all s ∈ (0, K) as G−1(s) :=
inf {t ∈ [0, 1] : G(t) ≤ s}.

Note that the threshold G−1(s) depends on the joint distribution P and thus, is un-
known beforehand. Furthermore, under Assumption 1, the considered framework is well
posed in the sense that the s-Oracle set-valued classifier Γ∗s is unique up to changes on
sets of PX zero measure.

Theorem 2.1. For every s ∈ (0, K), under Assumption 1 the s-Oracle set-valued classifier Γ∗s
defined in Proposition 2.1 is unique up to changes on PX zero measure. That is, for all set-valued
classifier such that S(Γ) ≤ s either of the following conditions hold

• P(Γ) > P(Γ∗s ),

• Γ(x) = Γ∗s (x) for almost all x ∈ Rd w.r.t. PX .

Under Assumption 1, we can also provide another characterization of the s-Oracle
set-valued classifier. The next proposition establishes that s-Oracle can be obtained via
an unconstrained minimization, which trades-off the error and the size.

Proposition 2.2. Let s ∈ (0, K), and assume that Assumption 1 is fulfilled, then the s-Oracle
defined in Equation (2.2) is a minimizer over Γ of the following risk

Rs(Γ) = P(Γ) + G−1(s) S(Γ) .

Consequently, the accuracy of a set-valued classifier Γ can be quantified according to
its excess risk

Rs(Γ)− Rs(Γ∗s ) =
K

∑
k=1

EPX

[
|pk(X)− G−1(s)|1{k∈Γ(X)4Γ∗s (X)}

]
, (2.3)

One can already observe that the above excess risk of any set-valued classifier Γ relies on
the behavior of the conditional probabilities pk around the threshold G−1(s).

2.2.2 Measures of performance.

Let us conclude this section by introducing performance measures that we will study
in the context of set-valued classification with controlled expected size. Of course, the
objective is to measure the “distance” w.r.t. the oracle set-valued classifier. Let s ∈ (0, K)
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and Γ a set-valued classifier. The most intuitive measure of performance is the Ham-
ming distance, which is a suitable way to quantify the distance between two sets. The
Hamming risk of Γ is defined as

H (Γ) = EX [|Γ(X)4Γ∗s (X)|] .

Hence, since4 stands for the symmetric difference, we then have that H(Γ) ≥ 0 and that
H(Γ) = 0 implies that Γ(x) = Γ∗s (x) almost surely w.r.t. PX. In view of Proposition 2.2,
another natural measure of performance is the excess risk Rs(Γ)− Rs(Γ∗s ). Note that the
excess risk is bounded by the Hamming risk, and consistency w.r.t. to the Hamming risk
implies consistency w.r.t. the risk Rs.

2.3 Plug-in set-valued classifier

In this section, we present a general data-driven procedure which relies on the plug-in
principle. Let us point out that the feasible set {Γ ∈ Γ : S(Γ) ≤ s} of the above problem
is distribution dependent. It implies that a priori we cannot decide whether a given
set-valued classifier is feasible. However, this set only depends on the marginal dis-
tribution PX of the features, which motivates us to introduce unlabeled sample in the
observational model. Hence, we are interested in the semi-supervised setup of this
problem. That is, in what follows it is assumed that two independent samples are

provided, a labeled one DL
n = {(X1, Y1), . . . , (Xn, Yn)} i.i.d.∼ P and an unlabeled sample

DU
N = {Xn+1, . . . , Xn+N} i.i.d.∼ PX both being independent from (X, Y).

Based on the learning samples, the statistical goal is then to build an empirical set-
valued classifier Γ̂ : (Rd ×Y)n × (Rd)N → Γ, which mimics the behavior of Γ∗s . In
particular one of the desired property of Γ̂ is that the expected size of the empirical
set-valued classifier satisfy the size constraint. However, as noticed above, since the
constraint on the size depends on the marginal distribution PX, we relax this constraint
and focus on empirical set-valued for which E

[
S(Γ̂)

]
→ s.

2.3.1 Construction of the estimator

The expression of the optimal set-valued classifier provided Equation (2.2) naturally
suggests a plug-in approach. The proposed procedure is two-step procedure. In a first
step, based on the labeled sample, we build preliminary estimators p̂k of the posterior
probabilities pk. In order to build the plug-in estimator, we consider for all t ∈ (0, 1)

G̃(t) =
K

∑
k=1

PX ( p̂k(X) ≥ t|Dn) ,

and then consider the pseudo-oracle set valued classifier defined for all x ∈ X as

Γ̃(x) = {k ∈ Y , p̂k(x) ≥ G̃−1(s)}.
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Before to go further, it is important to note that, as for the s-Oracle classifier, the continuity
of G̃ is required.

Assumption 2. For all k ∈ Y , conditionally on the data, the cumulative distribution function
Fp̂k(t) := PX( p̂k(X) ≤ t) of p̂k(X) is continuous on (0, 1).

The above assumption is important since it ensures that

E
[
S(Γ̃)

]
= s.

A key point of our study is that it is always possible to ensure that this assumption is
satisfied by introducing a random perturbation. Let (ζ1, . . . , ζK) be K i.i.d. random vari-
ables distributed according to a uniform distribution on [0, u] (u > 0) and independent
from all other variables. For each k ∈ Y , we introduce the randomized estimator

p̄k(X, ζk) = p̂k(X) + ζk, and G̃u(t) =
K

∑
k=1

PX,ζk( p̄k(X, ζk) ≥ t|Dn).

Then, the function G̃u is continuous and the resulting randomized set-valued classifier
satisfies the size constraint. Since the distribution of G̃u depends on the distribution of X
and (ζk)k∈Y , in a second step, based on the unlabeled dataset DU

N and (ζ i
k) i.i.d. from a

Uniform distribution on [0, u] and independent from all other random variable, we define
its empirical counterpart for all t ∈ (0, 1)

Ĝu(t) =
1
N

N

∑
i=1

K

∑
k=1

1{ p̄k(Xn+i ,ζ i
k)≥t}.

The resulting set-valued classifier is then defined as

Γ̂u(X, ζ) = {k ∈ Y , p̄k(X, ζk) ≥ G̃−1
u (s)}.

Note that this approach is not explicitly presented in (Denis and Hebiri, 2017; Chzhen,
Denis, and Hebiri, 2021), but rigorous presentation of this construction can be found
in (Denis, Hebiri, and Zaoui, 2020) in the context of regression with reject option.

Of course, if the size of the unlabeled N = 0, we simply split the labeled sample into
two independent samples. Then, one sample is used to estimate the posterior probabil-
ities while the second one is used to calibrate the threshold. Interestingly, the proposed
procedure is general and we successfully extend this methodology to other learning prob-
lem under constraint (Chzhen et al., 2020b; Denis, Hebiri, and Zaoui, 2020; Denis et al.,
2021). In particular, we show an application of this methodology in Chapter 3.

2.3.2 Theoretical properties

In this section, we establish the first properties of the plug-in set-valued classifier.
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Universal expected size guarantee. The first result is a distribution-free result which
shows that the set-valued classifier Γ̂u meets, asymptotically, the expected size constraint.

Theorem 2.2. Let s ∈ Y , and u > 0, there exists a universal constant such that for any distri-
bution of (X, Y) and any estimators p̂k of pk, it holds that

E
[∣∣Eζ

[
S(Γ̂u)

]
− s
∣∣] ≤ C√

N
.

Interestingly, this result highlights that the proposed post-processing procedure sat-
isfies the expected size constraint up to a reminder term of order N−1/2 and an rely on
any off-the-shell estimator of the posterior probabilities pk. Importantly, only unlabeled
data are required to calibrate the threshold.

Consistency. We now establish, under mild assumptions, the consistency of Γ̂u and then
show that the proposed set-valued classifier mimics the oracle one both in term of error
and expected size.

Theorem 2.3. Let s ∈ Y . Assume that u = un → 0 and that for each k ∈ Y , we have
E [| p̂k(X)− pk(X)]→ 0. Under Assumption 1, it holds that

lim
n,N→+∞

E
[
H
(
Γ̂un

)]
= 0.

This result ensures that asymptotically Γ̂u = Γ∗s provided that the perturbation u is
sufficiently small and that estimators p̂k are consistent w.r.t. to L1-risk. As an immediate
consequence of the above result, we also have that Γ̂u is consistent with respect to the
risk Rs. Note that we only establish the consistency of the plug-in set-valued classifier. In
Section 2.5, we also show that plug-in classifier can achieve optimal rates of convergence.

2.3.3 Numerical evaluation

In this section, we illustrate the numerical properties of the plug-in set-valued clas-
sifier. One of our primary objectives is to provide experimental evidences that highlight
the importance of the assumptions involved in our framework. In particular, we focus on
Assumption 2 that is required from p̂1, . . . , p̂K and moreover, in case N = 0, we highlight
the importance of data splitting for construction of p̂1, . . . , p̂K and estimation of G. To this
end, we compare the performance of the set-valued classifier Γ̂u against several natural
alternatives:

a) classifier that violates the continuity Assumption 2: exploits an estimator p̂k of the
regression functions pk so that Assumption 2 is violated;

b) classifier that violates the independence between samples DL
n and DU

N : uses the Xi’s used
for training the regression functions p̂k to also estimate G function.
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Figure 2.1: Importance of Assumption 2. Set-valued classifier Γ̂−c
s does not satisfy As-

sumption 2. Set-valued classifier Γ̂+c
s modifies the output of the random forest to force

continuity.

We consider the MNIST dataset (LeCun et al., 1998) which is composed of images of hand-
written digits from 0 to 9. The goal is to predict which digit is present on the image. For
the base estimator p̂k we select the random forest method (Breiman, 2001) which does not
satisfy the continuity Assumption 2.

We fix u = 10−6 for the construction of Γ̂u (in the sequel, the dependency w.r.t. u is
dropped) while we do not add the random perturbation when we evaluate the plug-in
set-valued classifier in the case where Assumption 2 is not satisfied. Note that in the last
case, the construction of the set-valued classifier is the same as Γ̂u. We simply replace p̄k

by p̂k.
Consequently, we compare the performance of the following set-valued classifier Γ̂+c

s
(builded with the random perturbation), Γ̂−c

s (builded without the random perturbation),
Γ̂+sp

s (builded by using the splitting of the sample), and Γ̂−sp
s (without splitting). Note

that the randomization is used to build Γ̂+sp
s and Γ̂−sp

s . For each set-valued classifier,
the empirical error rate P(Γ̂s) and empirical expected size S(Γ̂s) are evaluated by cross-
validation.

General observations. Let us focus on the set-valued Γ̂+c
s (Continuous) which is the

semi-supervised method presented in Section 2.3.1. It satisfies all the required assump-
tions and hence Theorem 2.2 is applicable to this classifier. Figure 2.1-right-bottom dis-
plays the expected size of Γ̂+c

s for s = 2. It highlights that even with a moderate unlabeled
sample size N, the set-valued classifier has the prescribed expected size.
In addition, when we compare the values of the errors P(Γ̂+c

s ) in all the boxes in Fig-
ure 2.3, we observe that this error is indeed decreasing w.r.t. s. It is important to notice
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Figure 2.2: Importance of splitting in case DU
N = ∅. Set-valued classifier Γ̂−sp

s uses the
same labeled data twice. Set-valued classifier Γ̂+sp

s splits labeled data to force indepen-
dence.

that the error of the corresponding single-output classifier (random forest without the
calibration step) is 0.140 and then the use of the set-valued classifier is relevant already
for moderate values of the size as s = 2. In this case, P(Γ̂+c

2 ) equals 0.014 – the error is 10
times lower.

Continuity of the estimator. As it was mentioned in the beginning of this section, the
random forest classifier does not satisfy Assumption 2. Our goal here is to understand the
importance of this assumption. Figure 2.1-left-bottom demonstrates that in the absence
of the continuity Assumption 2, the set-valued classifier Γ̂−c

s (Not continuous) which does
not modify p̂1, . . . , p̂K has a systematic bias in terms of the size across a wide range of
N. Meanwhile, Γ̂+c

s (Continuous) successfully captures the prescribed size in average, see
Figure 2.1-right. We also note that in both cases the variance of the outcome reduces with
the growth of the unlabeled data N. Finally, we highlight that the error of Γ̂−c

s is slightly
lower than that of Γ̂+c

s . However, this is attributed to the larger output size and not its
superior performance.

Data splitting. The second important conclusion we report deals with the relevance of
the independence condition between the dataset used to estimate the regression functions
and the dataset used to estimate the function G. Figure 2.2-right displays that the set-
valued classifier Γ̂−sp

s (Without splitting) consistently over-estimates the size. By time, the
expected size can even be twice as large as the desired size. In contrast, the size of the
set-valued classifier Γ̂+sp

s (With splitting) follows the diagonal line illustrating again that
the proposed construction succeeds to satisfy the size constraint. According to the error,
we can see from Figure 2.2-left that the set-valued classifier without splitting outperforms
slightly the set-valued classifier with splitting. However, this should be tempered by the
fact that the size of the former is larger. In addition this could be related to the fact that
we used more data to estimate the pk’s for the method without splitting.
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Figure 2.3: Distribution of the size of Γ̂+c
s in a single outcome of the experiments across

various values of s.

Which sizes do we get? We end this section by a thiner description of the size of the
set-valued classifier Γ̂+c

s (Continuous). For a single outcome of the experiment we report
on Figure 2.3 the distribution of the size of the set-valued classifier for s = 1, 2. One draw
the following conclusion. First of all we note that setting s = 1 is not equivalent to the
set-up of the single-output classification. Indeed, the plot on top-left of Figure 2.3 shows
that even though most of the times the corresponding set-valued classifier outputs only
one candidates, there are situations where no labels or two predicted label candidates
are provided. Moreover, the error of Γ̂+c

1 (with s = 1) is 0.105, while the error of the
corresponding single-output classifier (pure random forest without the second step) is
0.14. Hence, set-valued classifiers can improve the performance even in the case of s = 1.
Besides, note that for values of s = 2 the corresponding set-valued classifier significantly
improves the error, while having small size in average. Finally, we highlight how the set-
valued classifier with the controlled expected size is different from the top-s procedure.

2.4 Empirical risk minimization for set-valued classification

In the previous section, we provide a general procedure to build set-valued classifier
based on any estimators of the posterior probabilities. Furthermore, we have shown that
from the numerical point of view, this method , which is easily implementable, exhibits
good performance. Now, the question of the aggregation of set-valued classifier is then
legitimate. This is one of the motivation of Denis and Hebiri (2017). In this work, we
study set-valued classifier based on empirical risk minimization technique. Similarly to
Section 1.2.2 in Chapter 1, due to the non convexity of the problem, we focus on convex
surrogate of the initial problem that is tailored for the set-valued classification problem.
In view of Equation (2.2), we propose a two-step procedure. In a first step we build, based
on a proper convex loss, a vector f of score functions. In a second step, as for the plug-in
procedure, we calibrate a threshold to satisfy the expected size constraint. Hence, the
main question is which convex loss suits for set-valued classifier. Note that throughout
this chapter, we assume that Assumption 1 is fulfilled.
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2.4.1 Convexification of the initial problem

Let f = ( f1, . . . , fK) : X → RK be a score function and Gf(·) = ∑K
k=1(1− Ffk(·)), where

Ffk is the CDF of fk(X). Analogously to Assumption 1, let us assume the continuity of Gf.
This allows us to write that for any s ∈ (0, K), there exists δ ∈ R, such that Gf(−δ) = s.
The set-valued classifier Γf,δ associated to f and δ is defined by

Γf,δ(X) = {k ∈ Y : fk(X) ≥ −δ}.

The definition of parameter δ, implies that S (Γf,δ) = s. The excess risk formula provided
in Equation (2.3) suggests the one-versus-all approach (see Section 1.2.2 in Chapter 1).
For simplicity, we present the proposed method for the L2-risk. We refer to (Denis and
Hebiri, 2017) for a study of general loss functions.

We recall that for a score function f, its associated L2-risk is defined as

R2 (f) = E

[
K

∑
k=1

(Zk − fk(X))2

]
, with Zk = 2 1{Y=k} − 1, k = 1, . . . , K.

Let F a convex set of score function , we aim at solving

f̄ ∈ arg min
f∈F

R2 (f)︸ ︷︷ ︸
optimal over F

, f∗ ∈ arg min
f

R2 (f)︸ ︷︷ ︸
overall optimal

,

for the purpose of building the optimal set-valued classifiers Γf̄,δ and Γf∗,δ respectively.
The following result show that the square loss is set-valued calibrated (Zhang, 2004;
Bartlett, Jordan, and McAuliffe, 2006; Yuan and Wegkamp, 2010).

Proposition 2.1. Let s ∈ (0, K). There exists δ∗ ∈ R such that

Γf∗,δ∗ = Γ∗s ,

The property of calibration means that the set-valued classifier based on f∗, the mini-
mizer of the L2-risk, is the s-Oracle Γ∗s . Roughly speaking, minimizing the Ł2-risk is the
same as minimizing the risk Rs.

2.4.2 Data-driven procedure

Recall that we have in hand a labeled DL
n and an unlabeled DU

N datasets. Similarly to
the construction of plug-in set-valued classifier, the labeled dataset is used to build f̂ the
minimizer of the empirical L2-risk.

f̂ ∈ arg min
f∈F

R̂2(f) with R̂2(f) =
1
n

n

∑
i=1

K

∑
k=1

(Zi
k − fk(X i))

2,



32 CHAPTER 2. SET-VALUED CLASSIFICATION

where Zi
k = 2 1{Yi=k} − 1 for all k = 1, . . . , K and F is a convex set of score functions.

At this stage, we need to specify the δ > 0 such that S(Γf̂,δ) = s. For simplicity, we
assume that the conditional distribution function of the score function f̂k are continuous.
As in Section 2.3 this condition on the estimator can be satisfied using randomization of
the functions f̂k without changing the statistical performance of the resulting set-valued
predictor. Then, based on DU

N , we define the empirical set-valued classifier

Γ̂(x) =
{

k ∈ Y : f̂k(x)) ≥ Ĝ−1(s)
}

with Ĝ(·) = 1
N ∑

X∈DU
N

K

∑
k=1

1{ f̂k(X)≥·}. (2.4)

2.4.3 Theoretical guarantees

Now we investigate rates of convergence for the empirical set-valued classifiers Γ̂ w.r.t.
the risk Rs. Note that the distribution-free result provided in Section 2.3 holds for Γ̂. The
rate of convergence of the set-valued classifier Γ is obtained under the classical margin
assumption (Mammen and Tsybakov, 1999).

Assumption 3 (α-margin assumption). We say that the distribution P of the pair (X, Y) ∈
Rd × Y satisfies α-margin assumption if there exists C1 > 0 and t0 ∈ (0, 1) such that for every
positive t ≤ t0

PX

(
0 <

∣∣∣pk(X)− G−1(s)
∣∣∣ ≤ t

)
≤ C1tα .

The exponent α will directly specify the rates of convergence and the classification
problem gets easier with the growth of this parameter. It is important to note that since
we assume that the distribution functions of pk(X) are continuous for each k, we have
PX
(
0 < |pk(X)− G−1(s)| ≤ t

)
→ 0 with t → 0. Therefore, the margin condition only

specifies the rate of this decay to 0. We can now state our error control for the empirical
set-valued classifiers defined by (2.4).

Theorem 2.4. Assume that ‖ f ‖∞ ≤ B for all f ∈ F . Let Mn = N (1/n, L∞,F ) be the covering
number of F w.r.t. L∞-norm with closed balls with radius 1/n. Grants Assumptions 1 and 3

E
[
Rs(Γ̂)− Rs(Γ∗s )

]
.
{

inf
f∈F

(R2(f)− R2( f ∗)) +
log(Mn)

n

}α/(α+2)

+
1√
N

,

where the leading constant depends only on L, B, and α.

The rate of convergence for the excess error is of order
(

log(Mn)
n

)α/(α+2)
+ 1√

N
. In

particular, it establishes the consistency of the procedure provided that α > 0. Besides,
same results holds for the Hamming distance. At the time it was proved, this result is
the first, up to our knowledge, that provides a bound on the excess risk for set-valued
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classifiers in multi-class setting. Compared to the literature, the exponent α/(α + 2)
is not classical and it is not clear whether it is improvable. Indeed, in the standard
multi-class framework, this exponent is of order (α + 1)/(α + 2) (see Zhang (2004)). The
second part of the rates which is of order N−1/2 relies on the estimation of the function
G̃(t) = ∑K

k=1(1− Ff̂k
(t)), which serves as a pseudo-oracle CDF that knows the marginal

distribution PX.

2.4.4 Numerical experiments

According to the developed methodology, we propose an aggregation procedure
based on the cross-validation principle. Formally, the procedure is applied in the case
where F is the convex hull of a finite family of score functions (we refer to (Denis and
Hebiri, 2017) for more details). Here, we consider a family of 4 score functions based
respectively on the random forest, the softmax regression, the support vector machines,
and the k nearest neighbors (with k = 11) procedures. Note that the numerical results
are presented for the boosting loss for which Theorem 2.4 apply.

We evaluate the performance of the procedure on two real datasets: the Forest type
mapping dataset and the one-hundred plant species leaves dataset coming from the UCI
database. We refer to these two datasets as Forest and Plant respectively. The Forest
dataset consists of K = 4 classes and 523 labeled observations In the Plant dataset, there
are K = 100 classes and 1600 labeled observations.

To get an indication of the statistical significance of the aggregated procedure (referred
as CV) we compare it to the set-valued classifiers that result from each component of the
library in terms of empirical error and empirical expected size. Without going in deep
details, we mention that we split the dataset in three: the labeled DL

n and an unlabeled DU
N

datasets of size n and N respectively to train the set-valued classifiers. A third labeled
dataset of size M is used to compute error and size. We set the sizes of the samples
as n = 200, N = 100 and M = 223 for the Forest dataset, and n = 1000, N = 200
and M = 400 for the Plant one. The empirical error and expected size is computed by
cross-validation.

As a benchmark, we notify that the misclassification errors of the best classifier from
the library for the Forest dataset is evaluated at 0.15 , whereas in the Plant dataset, it is
evaluated at 0.40. Note that The performance of the classical methods is rather weak in
the latter dataset.

The results are reported in Table 2.1, and confirm our expectations. A general ob-
servation is that the size constraint is quite well satisfied for all of the methods. Also,
moderate level of constraint s leads to drastic improvement in terms of errors as com-
pared to our benchmarks. Moreover, we observe that the risk gets drastically better with
moderate s as compared to the best misclassification risk. For instance, for the Plant, the
error rate of the set-valued classifier with s = 2 based on random forests is 0.18 whereas
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Forest (K = 4)
s-set

s rforest softmax reg svm kknn CV

2 P 0.02 (0.02) 0.06 (0.02) 0.02 (0.01) 0.05 (0.03) 0.02 (0.01)
S 2.00 (0.09) 2.00 (0.08) 2.00 (0.09) 2.00 (0.08) 2.00 (0.08)

Plant (K = 100)
s-set

s rforest softmax reg svm kknn CV

2 P 0.18 (0.03) 0.77 (0.02) 0.32 (0.04) 0.20 (0.03) 0.17 (0.03)
S 2.00 (0.09) 2.02 (0.18) 1.99 (0.10) 2.00 (0.08) 2.00 (0.08)

10 P 0.02 (0.01) 0.42 (0.04) 0.03 (0.02) 0.08 (0.03) 0.02 (0.01)
S 9.95 (0.38) 10.06 (0.58) 9.98 (0.22) 9.98 (0.23) 9.96 (0.37)

Table 2.1: For each dataset, we derive the estimated error P and size S of the different
set-valued classifiers w.r.t. s. We compute the means and standard deviations (between
parentheses) over the repetitions. For each s, the set-valued classifiers are based on—
from left to right—rforest, softmax reg and svm, kknn and CV which are respectively
the random forest, the softmax regression, support vector machines, k nearest neighbors
and the aggregation procedure. Top: the dataset is the Forest – the dataset is the Plant.

the misclassification error rate of the best component in the library is 0.40. Interestingly
the aggregated set-valued classifier (CV) outperforms all components of the library in all
of the experiments. A last observation that motivates the use of aggregation procedure.

2.5 Optimal rates of convergence

In this section, we focus on the study of optimal rates of convergence for set-valued
classifiers with controlled expected size. We exploit classical non-parametric theory tools
to derive upper and lower bounds on the excess-risk (Mammen and Tsybakov, 1999;
Yang, 1999; Györfi et al., 2002; Massart and Nédélec, 2006; Audibert and Tsybakov, 2007).
From the technical point of view, our work is close in spirit to the one by Audibert
and Tsybakov (2007) who study the statistical performance of plug-in classification rules
under assumptions which involve the smoothness of the regression function and the
margin condition 3. They derive fast rates of convergence (faster than n−1/2) for plug-in
classifiers based on local polynomial estimators (Stone, 1977; Tsybakov, 1986; Audibert
and Tsybakov, 2007) and show their optimality in the minimax sense.

The motivation of this section is two folds

Q1. What is a minimax setup in this problem and what are the minimax rates of con-
vergence?

Q2. Can we statistically justify the introduction of the unlabeled data DU
N from the
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minimax perspective? To be more precise, we would like to understand whether
the rates of convergence are affected by N – the size of the unlabeled sample.

Neither of these natural questions have been considered and answered in the previous
literature. For simplicity, we only present the result obtained in (Chzhen, Denis, and
Hebiri, 2021) w.r.t. the measure of risk Rs.

The central notion we manipulate in this section is the minimax rate of convergence
in the semi-supervised setting. Let us denote by P a family of joint distribution of (X, Y),
and let Γ̂ be an estimator based on DL

n and DU
N . We introduce the maximal risk

Ψn,N
(
Γ̂,P

)
= sup

P∈P
EDL

n ,DU
N

[
Rs(Γ̂)− Rs(Γ∗s )

]
.

The minimax rate of convergence is then defined as follows.

Definition 2.1 (Minimax rate of convergence). For a given family P of joint distributions on
Rd ×Y the minimax rates are defined as

En,N(P) := inf
Γ̂

Ψn,N
(
Γ̂,P

)
,

where the infimum is taken over all set-valued classifiers based on DL
n and DU

N . The sequence
En,0(P) corresponds to the supervised regime, while the sequence En,N(P) for N ≥ 1 corre-
sponds to the semi-supervised regime.

2.5.1 Assumptions

In this part we state all the assumptions used in this work and state the family of
distributions P which drives the minimax rates. The first assumption is the margin
assumption Assumption 3 that we already introduced in the previous Section 2.4.

The second assumption restricts the set of possible marginal distributions of the fea-
ture vectors. Following Audibert and Tsybakov (2007), we first introduce the notion of
regular set. Let c0 and r0 be two positive constants. We say that a Borel set A ⊂ Rd is a
(c0, r0)-regular set if

Leb (A ∩ B(x, r)) ≥ c0 Leb (B(x, r)) , ∀r ∈ (0, r0], ∀x ∈ A .

Definition 2.2 (Strong density). We say that the probability measure PX on Rd satisfies the
(µmin, µmax, c0, r0)-strong density assumption if it is supported on a compact (c0, r0)-regular set
A ⊂ Rd and has a density µ w.r.t. the Lebesgue measure such that µ(x) = 0 for all x ∈ Rd \ A
and

0 < µmin ≤ µ(x) ≤ µmax < ∞, ∀x ∈ A .
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Let us mention, that there are various ways to relax this assumption. For instance, it
is possible to get rid of the lower bound on the density (Audibert and Tsybakov, 2007;
Kpotufe and Martinet, 2018). Besides, the compactness of the support can also be relaxed
and replaced by a proper tail condition (Gadat, Klein, and Marteau, 2016). This type of
relaxations are not altering our conclusions about the effect of unlabeled data and thus,
for simplicity, we provide the analysis under the strong density assumption.

The next assumption is standard in non-parametric statistics, and states that the con-
ditional distribution of Y is smooth.

Definition 2.3 (Hölder class, Tsybakov, 2009a). We say that a function h : Rd → R is (β, L)-
Hölder for β > 0 and L > 0 if h is bβc times continuously differentiable and ∀x, x′ ∈ Rd we
have ∣∣h(x′)− hx(x′)

∣∣ ≤ L
∥∥x− x′

∥∥β ,

where hx(·) is the Taylor polynomial of degree bβc of h(·) at the point x ∈ Rd. The set of all
functions from Rd to R satisfying the above conditions is called (β, L, Rd)-Hölder and is denoted
by H(β, L, Rd).

Finally, we are in position to define the family of distributions P that governs the
rates of convergence.

Definition 2.4. We denote by P(L, β, α) the set of joint distributions on Rd × Y which satisfy
the following conditions

• the marginal PX satisfies the (µmin, µmax, c0, r0)-strong density,

• for all k ∈ Y the kth regression function pk(·) = P(Y = k | X = ·) belongs to the
(β, L, Rd)-Hölder class, that is, pk ∈ H(β, L, Rd) for all k ∈ Y ,

• for all k ∈ Y the regression function pk satisfy the (C1, t0, α)-Margin assumption,

• for all k ∈ Y , the cumulative distribution function Fpk of pk(X) is continuous.

The family of distributions P(L, β, α) resembles the one considered in (Audibert and
Tsybakov, 2007) in the context of binary classification. The major difference is the con-
tinuity Assumption 1, which poses certain restrictions and does not allow to re-use in a
straightforward way their construction for lower bounds.

2.5.2 Lower bound

In this section we establish minimax lower bounds on the introduced risk measures.
Our rates highlight the benefit of the semi-supervised approaches in the context of the
set-valued classification with controlled expected size.
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Theorem 2.5. Let K ≥ 3, s ≤ bK/2c − 1. If 2αd β
2 e ≤ d, then for all n, N ∈N it holds that

En,N(P(L, β, α)) & n−
(1+α)β
2β+d

∨
(n + N)−1/2.

The above lower bound imply that the best rate in the supervised regime is n−1/2

across all the risk. Therefore, even if the margin assumption is very strong (α � 1) su-
pervised methods (N = 0) cannot achieve fast rates. This fact is the major difference with
classical setups where the value of threshold is known (such as classification and level set
estimation). Indeed, under the same assumptions on the family of distributions, without
the continuity Assumption 1, the minimax rate in those frameworks is n−(1+α)β/(2β+d)

as proved for instance in (Audibert and Tsybakov, 2007; Rigollet and Vert, 2009) and
unlabeled data cannot improve it. In contrast, this limitation can be neglected in the
semi-supervised regime. Indeed, for sufficiently large unlabeled sample, the dominant
term in the lower bound is of order n−(1+α)β/(2β+d), which can be faster than n−1/2. More
precisely, the following relations are necessary to get fast rates of convergence

(n + N)−1/2 = o
(

n−(1+α)β/(2β+d)
)

, n−(1+α)β/(2β+d) = o(n−1/2) .

The condition on the left hand side ensures that we have enough unlabeled data to elim-
inate the impact of not knowing threshold G−1(s) in Equation (2.2). Whereas, the condi-
tion on the right hand side ensures that the classification problem with “known” thresh-
old admits fast rates. The above discussion suggests that the lack of knowledge of the
threshold G−1(s) is significant, and the considered framework is more difficult from the
statistical perspective than its more classical counterparts.

Finally, Note that the second part of the rate in all three cases is (n + N)−1/2 instead
of N−1/2. Actually, if n� N, from purely minimax perspective it is impossible to obtain
a lower bound with N−1/2 instead of (n + N)−1/2. Indeed, one can always split the
labeled sample erasing labels from one of them. Such splitting artificially augments the
size of unlabeled sample N by some fraction of n. Of course, the regime n � N is
not particularly interesting, since, despite the fact that N 6= 0, still corresponds to the
essentially supervised setup.

2.5.3 Upper bound

In this section, we build a set-valued classifier that achieves (up to a log factor) the
lower bound stated in Theorem 2.5. We first establish the obtained upper bound and then
present the construction of the estimator.

Theorem 2.6. Let K ∈N, s ∈ (0, K), then there exists an estimator Γ̂ such that for all n, N ∈N

we have

Ψn,N
(
Γ̂,P(L, β, α)

)
.
(

n
log n

)− (1+α)β
2β+d ∨

(n + N)−1/2 .
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As an immediate consequence, from the above result is that the lower bound of The-
orem 2.5 are achievable.

Construction of the estimator. The construction of the set-valued classifier is similar to
the one described in Section 2.3 with technical modifications for matching the obtained
lower bound. In particular, in order to get the rate (n + N)1/2, we do use the whole
labeled sample to build estimators of the posterior probability. These estimators p̂k are
constructed using an arbitrary half Dbn/2c of the labeled dataset DL

n and the following
assumption is required.

Assumption 4 (Exponential concentration). There exist estimators p̂k for all k ∈ Y based on
Dbn/2c and positive constants C1, C2 and δ0 ≥ 0 such that for all k ∈ Y and all n ≥ 2 we have
for all δ > δ0n−β/(2β+d)

sup
P∈P(L,β,α)

P (| p̂k(x)− pk(x)| ≥ δ) ≤ C1 exp
(
−C2n

2β
2β+d δ2

)
,

for almost all x ∈ Rd w.r.t. PX .

Assumption 5 (Continuity of CDF). For all k ∈ Y , conditionally on the data, the cumulative
distribution function Fp̂k(t) := PX( p̂k(X) ≤ t) of p̂k(X) is almost surely P⊗bn/2c continuous
on (0, 1).

First let us point out that Assumption 4 induces that for all n ≥ 2 and all α > 0

sup
P∈P(L,β,α)

E ‖p− p̂‖1+α
∞,PX

.
(

n
log n

)− (1+α)β
2β+d

,

where p(·) = (p1(·), . . . , pK(·))> and p̂(·) = ( p̂1(·), . . . , p̂K(·))>. Assumption 4 is com-
monly used in the statistical community when we deal with rates of convergence in the
classification settings (Audibert and Tsybakov, 2007; Lei, 2014; Sadinle, Lei, and Wasser-
man, 2018). It is for instance satisfied by the locally polynomial estimator (Stone, 1977;
Tsybakov, 1986; Audibert and Tsybakov, 2007) with δ0 = 0. As already seen, Assump-
tion 5 can always be satisfied by slightly processing any estimator p̂. In (Chzhen, Denis,
and Hebiri, 2021), we propose to perturb the estimator with a deterministic perturbation
to fit with the minimax framework.

Finally, To make our presentation mathematically correct we introduce the following
notation DL

n = Dbn/2c
⋃Ddn/2e, where Dbn/2c is the dataset used to build the estimators

p̂k for k ∈ Y . Now, all the labels are removed from Ddn/2e. That is, Ddn/2e consists of
dn/2e i.i.d. samples from PX. Consequently, the semi-supervised estimator of G(·) is
defined as

Ĝ(·) = 1
dn/2e+ N ∑

X∈DU
N
⋃Ddn/2e

K

∑
k=1

1{ p̂k(X)>·}.
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Finally, the set-valued classification procedure Γ̂ is defined point-wise as

Γ̂(x) =
{

k ∈ Y : p̂k(x) ≥ Ĝ−1(s)
}

.

Sketch of proof. Now, we briefly discuss about the log factor obtained in Theorem 2.6.
We introduce an intermediate quantity G̃(·) = ∑K

k=1 PX ( p̂k(X) > ·), and the associated
set-valued classifier, which we refer to as the pseudo Oracle classifier given for all x ∈ Rd

by
Γ̃(x) = {k ∈ Y , p̂k(x) ≥ G̃−1(s)}.

The set-valued Γ̃ assumes knowledge of the marginal distribution PX, it is seen as an
idealized version of Γ̂, and formally corresponds to the case N = +∞. Besides, thanks
to Assumption 2, this pseudo Oracle satisfies the size constraints, that is S(Γ̃) = s almost
surely. Now, we start with the following decomposition

Rs(Γ̂)− Rs(Γ∗s ) = Rs
(
Γ̂
)
− Rs

(
Γ̃s
)︸ ︷︷ ︸+ Rs(Γ̃)− Rs(Γ∗s )︸ ︷︷ ︸

(1) (2)

The first term (1) in the r.h.s. of the above inequality is relies on a C.D.F. estimation
problem. For the second term (2), we observe that

k ∈ (Γ∗s (X)∆ Γ̃s(X))⇒
∣∣∣pk(X)− G−1(s)

∣∣∣ ≤ |G−1(s)− G̃−1(s)|+ | p̂k(X)− pk(X)| (2.5)

Now, the crucial step of our analysis is the following lemma, that bounds the difference
between G̃−1(s) and G−1(s) in terms of the difference between p̂k’s and pk’s.

Lemma 2.1 (Upper bound on the thresholds). Let Assumption 1 be satisfied, then for all
s ∈ (0, K) ∣∣∣G−1(s)− G̃−1(s)

∣∣∣ ≤ ‖p− p̂‖∞,PX
, almost surely P⊗n ⊗P⊗N

X .

The difference |G−1(s) − G̃−1(s)| resembles the Wasserstein infinity distance which
gives an alternative approach to prove Lemma 2.1, see (Bobkov and Ledoux, 2016).
Lemma 2.1 explains the extra log n factor that appears in the upper bound, as the mini-
max estimation in sup norm contains the log n factor, see for instance (Stone, 1982; Tsy-
bakov, 2008). From Equation (2.5) and Assumption 3,

Rs(Γ̂)− Rs(Γ∗s ) ≤ 2 max
k
‖ p̂k − pk‖∞

K

∑
k=1

PX

(∣∣∣pk(X)− G−1(s)
∣∣∣ ≤ 2 max

k
‖ p̂k − pk‖∞

)
≤ C max

k
‖ p̂k − pk‖1+α

∞ .

It is intuitively clear that if, on top of Lemma 2.1, we manage to control the dif-
ference |G̃−1(s) − Ĝ−1(s)| then the proof of the upper bound would simply follow the
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arguments of Audibert and Tsybakov (2007). Yet, such a control is not feasible under our
assumptions. To see this, notice that conditionally on Dn the quantity |G̃−1(s)− Ĝ−1(s)|
resembles the deviation of quantile from its empirical version. However, classical result1

on asymptotic normality of sample quantiles (Ma and Robinson, 1998, Theorem 2) tells
that in order to have a central limit theorem with (n + N)−1/2 rate it is necessary and suf-
ficient to require G̃′(G̃−1(s)) > 0. From the minimax perspective, this condition cannot
be satisfied since we do not require any lower bound on the derivative of G(·).

In (Chzhen, Denis, and Hebiri, 2021) we demonstrate that the upper bound can be
improved if we assume that the derivative of G(·) is uniformly lower bounded, that is,
G−1(·) has some regularity.

2.6 Conclusion

In this chapter, we studied the set-valued classification problem with a controlled
expected size. The theoretical analysis started with a setting that allowed us to get dis-
tribution free results and then we added some assumptions to build a minimax analysis
where we emphasized the unlabeled data as a key feature to get fast rate of convergence
in some situations. From this perspective, our analysis wants to be a promotion for semi-
supervised methods that can be exploited in several fields such as the fairness problem
that we described in Chapter 3. We paid a particular attention to understand the mean-
ing and the implications of the continuity assumption we imposed on the conditional
probability CDF. One of our main challenges was the study and the control of differences
of quantiles, the function G−1 being in the center of our attention, through tools from
empirical processes, rank statistics and non parametric theory.

In (Denis and Hebiri, 2017; Chzhen, Denis, and Hebiri, 2021), the dependency in
the number of labels K has not been considered. Yet, set-valued classification can face
extreme classification scenarios. The prediction ability of set-valued classifiers should be
investigated in a context where the number of labels is large, as well as the number of
observations and features. By step, the first consideration should be to tackle the question
of large number of labels. Techniques from high dimensional statistic should be used,
in particular, one could think of a new notion of sparsity assumption adapted to the
set-valued classification. A possible direction is to introduce a margin assumption that
involves a number s∗ � K which reflects, in the set-valued framework, the optimal size
s. In this case, one may expect only logarithmic deflation of the rate in terms of K, and
maybe linear (or surperlinear) in terms of the sparsity level s∗. This line of research might
also be related to multi-label classification where this kind of behaviors have already been
obtained for instance in (Jain, Prabhu, and Varma, 2016) and in a previous work (Chzhen
et al., 2017).

1We can arrive to a similar conclusion from (Bobkov and Ledoux, 2016, Theorem 5.11)



Chapter 3

Multi-class classification under
demographic parity constraint

In this chapter, I present a contribution for multi-class classification under fair-
ness constraint. Algorithmic fairness has become very popular during the last decade
(Calders, Kamiran, and Pechenizkiy, 2009; Zemel et al., 2013; Lum and Johndrow, 2016;
Zafar et al., 2017; Agarwal et al., 2018; Donini et al., 2018; Agarwal, Dudik, and Wu,
2019; Barocas, Hardt, and Narayanan, 2019; Chzhen et al., 2019; Chiappa et al., 2020). It
helps addressing an important social problem: mitigating historical bias contained in the
data. This is a crucial issue in many applications such as loan assessment, health care, or
even criminal sentencing. The common objective in algorithmic fairness is to reduce the
influence of a sensitive attribute on a prediction.

In recent years, various authors and communities have been proposing different for-
mal definition of the notion of fairness, equality, and justice. An attractive formalism
relies on the idea that a prediction must not discriminate based on some characteristics
of an instance (sensitive feature) such as the gender or the ethnicity. We refer the inter-
ested reader to (Barocas, Hardt, and Narayanan, 2019; Mehrabi et al., 2019) for a general
introduction to the problem of fair prediction and to (Barrio, Gordaliza, and Loubes,
2020; Oneto and Chiappa, 2020) for a review of the most recent theoretical advances.

In (Chzhen et al., 2019), we investigated the binary classification and regression set-
tings under fairness constraints. One of the major contribution of these works is to
provide a closed form of the oracle predictors and derive post-processing estimation
procedures which are able to leverage unlabeled data and exhibit good numerical per-
formance. In the same spirit, we investigate in (Denis et al., 2021) the fair multi-class
classification framework. Imposing fairness constraint in the multi-class problem has
only been briefly discussed in (Ye and Xie, 2020) by considering Support Vector Machine
(SVM) fair prediction. Our contribution provides a deeper analysis of the problem.

41
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3.1 Fair multi-class classification

In this section, we introduce the general framework and also define and discuss the
notion of fairness that we consider. In addition, we exhibit a closed form of the optimal
fair predictor in Section 3.1.3.

3.1.1 Statistical setting

In fair multi-class classification, compared to the usual multi-class setting, we assume
that the input feature is a couple (X, S) where X corresponds to the vector of covariates
and S is the sensitive feature (e.g. gender, ethnicity, qualification, birth place, . . .). For
simplicity, we assume that S ∈ {−1, 1}. The distribution of the sensitive feature S is
denoted by (πs)s∈S , and we assume that mins∈S πs > 0. A complete observation is of the
form (X, S, Y) where Y ∈ Y is the label associated to (X, S). In this context, a classification
rule g is a function mapping X × {−1, 1} onto Y , whose performance is again evaluated
through the misclassification risk

R(g) = P (g(X, S) 6= Y) .

For k ∈ Y , pk(X, S) denotes the conditional probability P (Y = k|X, S). Recall that a Bayes
classifier minimizes the misclassification risk and is defined as

g∗(x, s) ∈ arg max
k∈Y

pk(x, s) , for all (x, s) ∈ X × S .

3.1.2 Multi-class classification with demographic parity

Several notion of fairness have been studied in the binary classification framework,
such as Equalized-Odds, Equality of Opportunity, or Demographic Parity. We refer for in-
stance to (Hardt, Price, and Srebro, 2016; Barocas, Hardt, and Narayanan, 2019) for an
overview of these notions. In this chapter, we consider muti-class classification problems
under Demographic Parity (DP) fairness constraint (Calders, Kamiran, and Pechenizkiy,
2009), that requires the independence of the prediction function from the sensitive feature
S. The DP constraint is perhaps the most intuitive notion of fairness which is common to
the classification and regression setting. DP constraint has a recognized interest in var-
ious applications; this constraint could be typically imposed in loan agreement without
gender attributes or in the context of crime prediction without ethnicity discrimination.
Formally, we define DP constraint as follows

Definition 3.1 (Demographic parity). We say that a classifier g ∈ G (and write g ∈ Gfair) with
respect to the distribution P on X × S × Y if

P (g(X, S) = k|S = 1) = P (g(X, S) = k|S = −1) , ∀k ∈ Y .
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The above definition naturally extends to the multi-class setting the DP considered in
binary classification (Agarwal, Dudik, and Wu, 2019; Gordaliza et al., 2019; Jiang et al.,
2019; Oneto, Donini, and Pontil, 2019; Chiappa et al., 2020) .

Intuitively, when fairness is required, two important aspects of a classifier g need to
be controlled: its misclassification risk R(g) and its unfairness, which we define below.

Definition 3.2 (Unfairness measure). The unfairness of a classifier g ∈ G is quantified by

U (g) :=
K

∑
k=1
|P (g(X, S) = k|S = 1)−P (g(X, S) = k|S = −1)| .

Naturally, taking into account the definition above, a classifier g is fair if and only if U (g) = 0.

Alternative measures of unfairness could be considered. For instance, once can re-
place the summation by a maximum over k in the above definition. However, summing
over all possible labels is more informative and appears more naturally when controlling
the prediction risk (see Theorem 3.2).

3.1.3 Optimal fair classifier

In this section, we provide an explicit formulation of the optimal fair classifiers w.r.t.
the misclassification risk under DP constraint. An optimal fair classifier is a solution of

min
g∈Gfair

R(g).

The difficulty of obtaining an optimal fair classifier consists in properly balancing the
misclassification risk together with the fairness criterion. Let g be a classifier and
λ = (λ1, . . . , λK) ∈ RK the Lagrange multiplier of the above minimization problem.
We introduce a risk measure, referred as fair-risk, which provides a trade-off between the
accuracy of g and its unfairness

Rλ(g) := R(g) +
K

∑
k=1

λk [P (g(X, S) = k|S = 1)−P (g(X, S) = k|S = −1)] .

In order to be able to derive a characterization of the optimal fair classifier, we require
the following assumption on the random variables pk(X, s).

Assumption 6. The mapping t 7→ P
(

pk(X, S)− pj(X, S) ≤ t|S = s
)

is assumed continuous,
for any k, j ∈ Y and s ∈ S .

This assumption requires that the distribution of the differences pk(X, S) − pj(X, S)
has no atoms. Note that this assumption is similar to Assumption 1. In fact, it plays the
same role and is specific to the multi-class framework. In particular, we observe that in
the binary case (K = 2), the above assumption simply boils down to the one considered
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in (Chzhen et al., 2019) that requires the continuity of t 7→ P (pk(X, S) ≤ t|S = s). It is,
however, clear that in the general case K ≥ 3 these two conditions describe different sets
of distributions.

From Assumption 6, we deduce a characterization of the optimal fair classifier.

Proposition 3.1. Let Assumption 6 be satisfied and define λ∗ ∈ RK by

λ∗ ∈ arg min
λ∈RK

∑
s∈S

EX|S=s

[
max

k
(πs pk(X, s)− sλk)

]
.

Then, g∗fair ∈ arg ming∈Gfair R(g) if and only if g∗fair ∈ arg ming∈G Rλ∗(g).

In other words, the optimum of the risk R(g) over the class of fair classifiers is also
maximizing the fair-risk Rλ∗ . By construction, Rλ∗ is a risk measure which optimally
balances both classification accuracy and unfairness. Proposition 3.1 directly implies that
Rλ∗(g) ≥ Rλ∗(g∗fair) = R(g∗fair) ≥ 0, for g ∈ G. We now quantify the performance of any
classifier g ∈ G through its excess fair-risk

Efair(g) := Rλ∗(g)−Rλ∗(g∗fair).

Furthermore, Proposition 3.1 directly implies a closed form expression of optimal fair
classifiers, which is the bedrock of our procedure. Any optimal fair classifier is simply
maximizing scores, which are obtained by shifting the original conditional probabilities
in a optimal manner.

Corollary 3.1. Under Assumption 6, an optimal fair classifier is characterized by

g∗fair(x, s) ∈ arg max
k

(πs pk(x, s)− sλ∗k ) , (x, s) ∈ X × S .

Note that a similar characterization of a optimal fair predictor is obtained in (Chzhen
et al., 2020a)

3.2 General estimation procedure

In this section, we provide now a plug-in estimator for the optimal fair classifier g∗fair.
The proposed procedure is inspired from the methodology described in Section 2.3 of
Chapter 2. In particular, we propose an algorithm that enjoys strong theoretical guar-
antees both in terms of fairness and risk. In particular, we exhibit in Section 3.2.2
distribution-free fairness guarantee.
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3.2.1 Plug-in estimator

We are given two datasets. The first labeled one Dn = {(Xi, Si, Yi), i = 1, . . . , n} con-
sists of i.i.d. samples from the distribution P. This is the classical dataset used for training
estimators ( p̂k)k of the conditional probabilities (pk)k, e.g., Random Forest, SVM, etc. The
second unlabeled datasetD′N consists of N i.i.d. copies of (X, S). the sampleD′N is collected
and split in the following way: we set (S1, . . . , SN) the i.i.d. sample of sensitive features
used to compute empirical frequencies (π̂s)s∈S for estimating (πs))s∈S . The number of
observations corresponding to S = s is denoted Ns, for s ∈ S . Of course N−1 + N1 = N.
For s ∈ S , the feature vector in D′N denoted Xs

1, . . . , Xs
Ns

is composed by i.i.d. data from
PXs , the distribution of X|S = s. All samples are assumed independent.

In order to derive consistency results on the excess fair-risk and the unfairness of our
plug-in rule, we require continuity conditions on the random variables p̂k(X, S), in the
spirit of Assumption 2 (conditional on the learning sample). However, such property is
automatically satisfied whenever perturbing the ( p̂k)k with a small random noise. To this
end, we introduce p̄k(X, S, ζk) := p̂k(X, S) + ζk, for a given uniform perturbation ζk on
[0, u].

Given (ζk)k∈Y and (ζs
k,i) independent copies of a Uniform distribution on [0, u], we

define the randomized fair classifier ĝ as

ĝ(x, s) = arg max
k∈Y

(
π̂s p̄k(x, s, ζk)− sλ̂k

)
, for all (x, s) ∈ X × S ,

with λ̂ ∈ RK given as

λ̂ ∈ arg min
λ

∑
s∈S

1
Ns

Ns

∑
i=1

[
max
k∈Y

(
π̂s p̄k(Xs

i , s, ζs
k,i)− sλk

)]
. (3.1)

Note that the construction of the plug-in rule ĝ relies on (x, s) but also on the pertur-
bations ζ and ζs

k,i for k ∈ Y , i ∈ Ns and s ∈ S . Note that the objective function in
Equation (3.1) is convex but non smooth due to the evaluation of the function (hard) max.
In (Denis et al., 2021), we provide an alternative algorithm based on soft-max regular-
ization. Finally, as for the procedure provided in Section 2.3 of Chapter 2, the proposed
estimator relies on a post-processing approach. In a first step, preliminary estimators of
pk are builded while in a second step these estimators are re-calibrated to meet fairness
criterion.

3.2.2 Statistical guarantees

We are now in position to derive fairness and consistency guarantees of the plug-in
procedure.
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Universal fairness guarantee. We first focus on fairness assessment and prove that the
plug-in estimator ĝ is asymptotically fair. The convergence rate on the unfairness to zero
is parametric with the number of unlabeled data N. Notably, as in set-valued classi-
fication, the fairness guarantee is distribution-free and holds for any estimators of the
conditional probabilities.

Theorem 3.1. For any distribution P, there exists a constant C > 0 which only depends on K
and mins∈S πs, such that for any estimators p̂k we have,

E [U (ĝ)] ≤ C√
N

.

Consistency of the excess fair-risk. We now consider the excess risk of the estimator ĝ.
We define the L1-norm in RK between the estimator p̂ := ( p̂1, . . . , p̂K) and the vector of
the conditional probabilities p := (p1, . . . , pK) as ‖p̂− p‖1 = ∑k∈Y | p̂k(X, S)− pk(X, S)| .

Theorem 3.2. Let Assumption 6 be satisfied, then the following holds

E [Efair(ĝ)] ≤ C

(
E [‖p̂− p‖1] + ∑

s∈S
E [|π̂s − πs|] + E [U (ĝ)] + u

)
.

The above result highlights that the excess fair-risk of ĝ depends on 1) the quality of
the estimators of the conditional probabilities through its L1-risk; 2) the quality of the
estimators of (πs)s∈S ; 3) the unfairness of the classifier; and 4) the upper-bound u on the
regularizing perturbations. Consequently, ĝ is consistent w.r.t. the excess-fair risk as soon
as the estimator p̂ is consistent in L1-norm.

Corollary 3.2. If E [‖p̂− p‖1]→ 0 and u = un → 0 when n→ ∞, we have

E [Efair(ĝ)]→ 0, as n, N → ∞ .

We emphasize that Theorem 3.1 and Corollary 3.2 directly imply that ĝ performs
asymptotically as well as g∗fair in terms of both fairness and accuracy.

3.3 Numerical experiments

In this section, we discuss several numerical aspects of the proposed algorithm. As a
benchmark, we introduce an alternative approach that enforces fairness on each individ-
ual score in Section 3.3.1. Then, we illustrate efficiency of our procedure on real datasets
in Section 3.3.2.
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3.3.1 Alternative strategy for fair multi-class classification

The procedure developed in Section 3.2 enforces the score maximizer to be fair. An
alternative approach suggested in (Ye and Xie, 2020) consists in imposing fairness at the
level of each posterior probability instead of their maximizer. That is to say, we require
that the posterior probabilities are DP fair. However, Ye and Xie, 2020 does not provide
any theoretical analysis of this approach. In (Chzhen et al., 2020b), we provide a solution
of the regression problem under DP constraint. Following this idea, we consider the L2-
risk defined in Chapter 1 and using the same notations, we consider a score function f
for which we define the DP constraint

Definition 3.3. We say that f : X × {−1, 1} 7→ RK is score-fair in demographic parity if each
coordinate of f is fair w.r.t. the demographic parity notion of fairness (Chzhen et al., 2020b).

Consequently, a possible way to tackle fair multi-class classification is to consider the
following minimization problem

f∗score−fair ∈ arg min {R2( f ) : f is score-fair} .

While this approach seems to be rather natural, let us emphasize that score-fair DP does
not imply DP for the score maximizer, since the maximum, unlike thresholding, operation
does not preserve the DP property. Optimal score-fair functions rely on the L2-risk and be
easily characterized following the approach in (Chzhen et al., 2020b; Gouic, Loubes, and
Rigollet, 2020). In particular, Theorem 2.3 in (Chzhen et al., 2020b) identifies the distri-
bution of score-fair classifier f∗score−fair as solutions of a Wasserstein barycenter problem.
We refer to (Denis et al., 2021) for the details of the estimation procedure of f∗score−fair.

3.3.2 Application to real datasets

In this section, we illustrate the performance of our method argmax-fair, the alternative
approach score-fair, and the classifier builded without fairness constraint (unfair), for both
linear and non-linear multi-class classification. For linear models, we consider the one-
versus-all logistic regression (reglog) and the SVM with linear kernel (linearSVC); for
non-linear models: SVM model with Gaussian kernel (GaussSVC) and Random Forests
algorithm (RF).

Datasets. The performance of our method is evaluated on four benchmark datasets for
which we provide a short description.

Communities&Crime (CRIME) dataset contains socio-economic, law enforcement, and
crime data about communities in the US with 1994 examples. The task is to predict
the number of violent crimes per 105 population which, we divide into K = 7 balanced
classes based on equidistant quantiles. Following Calders et al., 2013 and Chzhen et al.,
2020c the binary sensitive feature is the percentage of black population.
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METHOD
DATA CRIME, K = 7 LAW, K = 4 WINE, K = 5 CMC, K = 3

Accuracy Unfairness Accuracy Unfairness Accuracy Unfairness Accuracy Unfairness
reglog + unfair 0.34± 0.02 1.12± 0.07 0.43± 0.01 0.89± 0.05 0.54± 0.01 0.47± 0.05 0.52± 0.02 0.78± 0.16
reglog + score-fair 0.33± 0.01 0.78± 0.09 0.42± 0.01 0.09± 0.02 0.54± 0.01 0.08± 0.03 0.51± 0.02 0.25± 0.1
reglog + argmax-fair 0.28± 0.01 0.26± 0.07 0.42± 0.01 0.05± 0.02 0.54± 0.02 0.04± 0.01 0.52± 0.02 0.19± 0.1
linearSVC + unfair 0.36± 0.02 1.12± 0.07 0.43± 0.01 0.97± 0.07 0.53± 0.01 0.27± 0.05 0.51± 0.02 0.63± 0.22
linearSVC + score-fair 0.31± 0.02 0.88± 0.05 0.42± 0.01 0.1± 0.03 0.53± 0.01 0.1± 0.07 0.53± 0.02 0.26± 0.16
linearSVC + argmax-fair 0.29± 0.02 0.25± 0.08 0.42± 0.01 0.04± 0.02 0.53± 0.01 0.06± 0.04 0.52± 0.02 0.2± 0.12
GaussSVC + unfair 0.36± 0.02 1.4± 0.13 0.43± 0.01 1.04± 0.04 0.53± 0.01 0.28± 0.06 0.51± 0.02 1.0± 0.17
GaussSVC + score-fair 0.35± 0.02 1.02± 0.07 0.42± 0.01 0.16± 0.04 0.55± 0.01 0.12± 0.04 0.51± 0.02 0.16± 0.09
GaussSVC + argmax-fair 0.3± 0.02 0.22± 0.05 0.42± 0.01 0.10± 0.03 0.55± 0.01 0.06± 0.03 0.5± 0.03 0.2± 0.08
RF + unfair 0.37± 0.02 1.02± 0.04 0.40± 0.01 0.65± 0.04 0.66± 0.01 0.31± 0.05 0.55± 0.02 0.35± 0.18
RF + score-fair 0.34± 0.02 0.67± 0.06 0.39± 0.01 0.11± 0.05 0.66± 0.01 0.09± 0.03 0.52± 0.03 0.21± 0.08
RF + argmax-fair 0.3± 0.02 0.33± 0.11 0.39± 0.01 0.07± 0.02 0.66± 0.01 0.08± 0.02 0.55± 0.02 0.22± 0.13

Table 3.1: Performance (accuracy & unfairness) of the methods for all datasets and clas-
sifiers. We report the means and standard deviations over the 30 repetitions. Colored
values highlight fairness.

Law School Admissions (LAW) dataset (Wightman and Ramsey, 1998) presents national
longitudinal bar passage data and has 20649 examples. The task is to predict a students
GPA divided into K = 4 classes based on equidistant quantiles. The sensitive attribute is
the race (white versus non-white).

Wine Quality (WINE) dataset (Cortez et al., 2009) reports the description of 6497 wines
and the task is to predict the quality graded by the experts. The quality is between 3 (bad)
and 9 (good) but we consider only K = 5 classes (4 to 8) due to a too low frequency of
the class 3 and 9 (resp. 5 and 30 examples). The sensitive attribute is the color (red versus
white).

Contraceptive Method Choice (CMC) dataset is about 1987 National Indonesia Contra-
ceptive Prevalence Survey. The problem is to predict the contraceptive method choice
of a woman (no use, long-term or short-term methods) based on her demographic and
socio-economic characteristics. The sensitive feature is the religion (Islam versus Non-
Islam).

Performance. Results are presented in Table 3.1 and highlight the effectiveness of our
method. As an example, for the LAW dataset and the GaussSVC with argmax-fair, the
unfairness is divided by almost 25 (0.97 to 0.04). Furthermore, the argmax-fair procedure
outperforms the unfair and the score-fair algorithms for the datasets CRIME, LAW and
WINE in terms of unfairness: However, we observe a small decrease of the models accu-
racy (relatively small compared to the gain in fairness). Note that for the dataset CMC,
score-fair and argmax-fair achieve similar performance.

3.4 Conclusion

In the multi-class classification framework, we provide an optimal fair classification
rule under DP constraint and derive misclassification and fairness guarantees of the as-
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sociated plug-in fair classifier. Our approach achieves distribution-free fairness and can
be applied on top of any probabilistic base estimator. We illustrate the proficiency of our
procedure on various synthetic and real datasets, notably in comparison to the score-fair
approach suggested in (Ye and Xie, 2020). The efficiency of our algorithm in terms of
fairness is particularly salient for datasets with large historical bias.

However, our numerical study also outlines the downside of fairness proficiency in
terms of classification accuracy. One should hereby be very cautious when using clas-
sifiers with strong fairness guarantee, as it possibly degrades the classification quality.
This calls for an analysis of classification problems with fairness constraints from a multi-
objective perspective and paves the way for characterizing the Pareto front between fair-
ness and accuracy objectives. An interesting approach to handle both fairness and accu-
racy in the multi-class setting will be to consider set-valued classification under fairness
constraint.
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Chapter 4

Multi-class classification for
diffusion paths

In this chapter, I present a generalization of the mixture model described in Chap-
ter 1 to the case where the feature consists of observations of a diffusion process, that is
solution of a stochastic differential equation (s.d.e.), observed over a fixed time interval
[0, T]. As a consequence, the drift function of the s.d.e. in this model depends on the label
of the observation. While mixture models are widely studied from a statistical learning
perspective, the presented results are among the first that deal with the s.d.e. framework
and constitute a new contribution to the functional data learning field.

Usually, in the context of parameters estimation of a diffusion process, the only avail-
able data consists of a single observation (continuous or discrete) of a diffusion path.
Within this context, T → +∞ and ergodicity properties of the diffusion are used in force
to handle this problem. One of the specificity of the model we study in this chapter
is that the horizon time T is fixed and the ergodicity of the diffusion process is not re-
quired. However, in the multi-class setting, this framework can be considered since a
learning sample of independent copies of (X, Y) is available. The asymptotic in T is then
replaced by the asymptotic w.r.t. the sample size. Throughout this chapter, we assume
that data are collected at discrete times.

Up to our knowledge, the work of Cadre (2013) is the first one that tackles the problem
of classification in the s.d.e. framework. There, the authors focus on binary classification
for continuous observations and provide an estimation procedure relying on the empiri-
cal risk minimization strategy. However, this method cannot be implemented for practical
purpose since the proposed procedure does not consider E.R.M. estimator based on con-
vex surrogate of the misclassification risk (see Section 1.2.2 in Chapter 1). More recently,
the work of Gadat, Gerchinovitz, and Marteau (2020) provides a minimax analysis of a
much simpler mixture model where the input feature is modeled as a solution of a white
noise equation.

In (Denis, Dion, and Martinez, 2020), we extend the results obtained by Cadre (2013)
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to discrete time observations in the multi-class framework. In the parametric setting,
we provide theoretical guarantees for different estimation procedures which are easily
implementable. A part of these results are presented in Section 4.3.

In addition, we also investigate in (Denis, Dion, and Martinez, 2020) the parametric
estimation of the drift function in our specific framework. Motivated by the extension of
our results to the nonparametric case, a second line of results presented in this chapter fo-
cuses on the estimation of the drift function in the context of i.i.d. repeated observations.
This part is developed in (Denis, Dion, and Martinez, 2021) where we propose a novel
constrained estimator relying on a ridge type constraint. This procedure offers appealing
properties and can be viewed as an alternative strategy to the cutoff procedure developed
in (Comte and Genon-Catalot, 2020) studied in the context of continuous observations.
The construction of the procedure and its main properties are provided in Section 4.4.

4.1 Model and assumptions

In this chapter, the feature X is a mixture of Brownian motion with drift. More pre-
cisely, X takes its value in X := (C([0, T]), C) the set of real valued continuous functions
with its corresponding σ-algebra endowed by the uniform topology. Given a starting
point x0 ∈ R, the process X = (Xt)t∈[0,T] is assumed to come from the following diffu-
sion model {

X0 = x0

dXt = b∗Y(Xt)dt + σ(Xt)dWt,
(4.1)

where (Wt)t≥0 denotes a standard Brownian motion on some probability space (Ω,F , P)

and such that the label Y is independent of (Wt)t≥0 with known distribution under P

given by (πk)k∈Y . The function b∗ = (b∗1 , . . . , b∗K) is a vector of K unknown Borel real
functions. The real-valued function σ is assumed to be known. In the sequel, (FX

t )t≥0 :=
{σ(Xs : s ≤ t) ; t ≥ 0} denotes the natural filtration of the process X.

4.1.1 Assumptions

Throughout this chapter, we make the following assumptions.

Assumption 7 (Ellipticity and regularity). There exist strictly positive constants σ0, σ1 such
that

0 < σ0 ≤ σ(x) ≤ σ1, ∀x ∈ R.

There exists a positive constant L0 such that

sup
i∈Y
|b∗i (x)− b∗i (y)|+ |σ(x)− σ(y)| ≤ L0|x− y|, ∀(x, y) ∈ R2.
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Assumption 7 ensures the existence and uniqueness of a strong solution for Equa-
tion (4.1) and that E[supt∈[0,T] |Xt|q] < ∞ for any integer q ≥ 1. Furthermore, it implies
that

sup
i∈Y
|b∗i (x)| ≤ C0(1 + |x|). (4.2)

Finally, b∗ satisfies the following condition.

Assumption 8 (Novikov condition).

E

[
exp

(
1
2

∫ T

0

b∗2i
σ2 (Xs)ds

)]
< +∞, ∀i ∈ Y .

Here Novikov’s condition (Assumption 8) is sufficient to apply Girsanov’s theorem
(Revuz and Yor, 2013)

4.1.2 Bayes Classifier

The Bayes classifier g∗ is then defined as

g∗(X) ∈ arg max
k∈Y

pk(X), pk(X) := P
(

Y = k|FX
T

)
.

The following proposition, which is an extension of the one obtained in (Cadre, 2013) in
the context of binary classification, provides a closed form of the Bayes classifier. This
result relies on the application of the Girsanov’s theorem.

Proposition 4.1. For all t ∈ (0, T) and each i ∈ Y we define

Fk :=
∫ T

0

b∗k
σ2 (Xs)dXs −

1
2

∫ T

0

(b∗k )
2

σ2 (Xs)ds.

The sequence of conditional probabilities satisfies

pk(X) = P
(

Y = k|FX
T

)
= ϕk(F) P− a.s

where F = (F1, . . . , FK), and ϕk : (x1, . . . , xK) 7→
pkexk

∑K
j=1 pjexj

are the softmax functions.

Proposition 4.1 is a key result and is the bedrock of the classification procedures
presented in this chapter. Indeed, it highlights the dependency of the Bayes classifier
w.r.t. the unknown function b∗. It naturally suggests that consistent classification rule
can be derived from estimator of b∗.
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4.2 Estimation strategy

Let (Xt)t∈[0,T] be the solution of (4.1). We assume that the observation consists of
a single discretized sample path X(ω) := (Xk∆(ω))k∈{0,...,n} with T = n∆. Note that
while we assume that T is fixed, we consider the asymptotic n → +∞. As we assume
that observations are collected at discrete times, the learning sample DN consists in i.i.d.

observations (X(j), Y(j))j=1,...,N of (X, Y).

4.2.1 Discrete observations classifier

Hereafter, we define a set of classifiers which are based on the discrete time ob-
servations (Xk∆)k∈{0,...,n}. We refer these classifiers as discrete observations classifiers. In
particular, we provide a control of the excess risk of these classifiers.

For a trajectory X and b = (b1, . . . , bK) a vector of K Borel real functions, we define
for i ∈ Y the discrete version of F based on (Xk∆)k∈{0,...,n} and b:

Fi
b :=

n−1

∑
k=0

(
bi

σ2 (Xk∆)(X(k+1)∆ − Xk∆)−
∆
2

b2
i

σ2 (Xk∆)

)
, Fb := (F1

b, . . . , FK
b ).

Then we set pk
b(X) := ϕk(Fb), k = 1, . . . , K.

Finally, for any function b, we then naturally define the discrete observations classifier
gb by

gb(X) := arg max
k∈Y

pk
b(X).

4.2.2 Comparison inequality

The following proposition establish a bound for the excess risk of some discrete ob-
servations classifier gb, and highlights its link with a suitable distances between b and b∗.
We introduce the norm ‖.‖T defined for a real valued function f and a process X from
model (4.1):

‖ f ‖2
T := sup

t∈[0,T]
E[| f (Xt)|2].

Moreover, for a function b = (b1, . . . , bK), we set ‖b‖T := max
i∈Y
‖bi‖T.

Proposition 4.2. Let b = (b1, . . . , bK). Assume that there exists Cb > 0 and γ ≥ 1 such that
supi∈Y |bi(x)| ≤ Cb(1 + |x|)γ. Then, the following holds

K

∑
i=1

EX

[∣∣∣ p̄i
b(X)− pi(X)

∣∣∣] ≤ C

√∆ +
K

∑
i=1

(
EX

[
1
n

n−1

∑
k=0

(
bi − b∗i )

2(Xk∆)
)])1/2


≤ C1

(√
∆ + ‖b− b∗‖T

)
.
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where C, C1 are positive constants which depend on T, K, Cb and on the constants in the Assump-
tions 7, 8.

Therefore, if we manage to build consistent estimator b̂ of b∗ w.r.t. ‖.‖T, the resulting
plug-in classifier ḡb̂ is also consistent. In (Denis, Dion, and Martinez, 2020), we investi-
gate the parametric setting and provide theoretical guarantees for estimator of the drift
defined as the minimizer of a contrast function based on the Gaussian log-likelihood
approximation. We will discuss the extension to the nonparametric case later (see Sec-
tion 4.3.3). In the next section, we present results obtained for classifiers defined as
empirical risk minimizers which take advantage of Proposition 4.2.

4.3 Classification procedure based on emprirical risk minimiza-
tion

In (Cadre, 2013), the empirical risk minimization procedure is used in the context of
binary classification where the features come from continuous diffusion sample paths
and are discriminated by their drift. Following the same idea, we investigate the case
where the estimator of b∗ is defined as an empirical risk minimizer. To this end, we
assume that b∗ belongs to a set of functions B. Besides, for b ∈ B, we introduce the
empirical risk of a discrete observations classifier gb by

R̂(gb) =
1
N

N

∑
j=1

1{gb(X(j)
) 6=Y(j)}.

Now, assume that there exists an ε-net Bε ⊆ B with respect to the norm ‖.‖T. We define
the estimator b̂ε = (b̂ε

1, . . . , b̂ε
K) as

b̂ε ∈ arg min
b∈Bε

R̂(gb). (4.3)

As mentioned in Chapter 1, this estimator can not be considered in practice. One of
the contribution provided in (Denis, Dion, and Martinez, 2020) is to bypass this issue by
proposing a procedure which involves a convex surrogate of the minimization problem
defined in Equation (4.3). The procedure is described in Section 4.3.1. However, from a
theoretical perspective it is always interesting to study the properties of b̂ε, at least as a
benchmark. The following theorem establishes the rates of convergence of the classifica-
tion procedure gb̂ε w.r.t. its excess risk.

Theorem 4.1. Assume that there exists u > 0, C > 0 such that log(Card(Bε)) ≤ Cε−u. Let
∆ = O

(
N−2/(2+u)

)
and ε ∝ N−1/(2+u). The empirical risk minimizer satisfies

E
[
E(gb̂ε)

]
≤ C

N1/(2+u)
.
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where C is a positive constant which depends on T, K, and on the constants in the Assumptions 7
and 8.

The proof of this result relies on Proposition 4.2 and classical tools of empirical pro-
cess. It shows that, provided that the time step ∆ is sufficiently small, the obtained rates
of convergence is the same to the one obtained when the feature X belongs to R. This
rate of convergence is obtained in (Cadre, 2013) in the context of binary classification
with continuous time observations.

Hereafter, we provide an example of set B for which Theorem 4.1 applies. Define
ψ(x) := C1(1 + |x|) and C1 ≥ C0 (with C0 given in Equation (4.2)). Let β ≥ 1 and
consider

Fβ =

{
b ∈ Cβ, ∀j ∈ Z, i = 0, . . . , β sup

[j,j+1[

∣∣∣∣ dib
dxi

∣∣∣∣ ≤ ψ(|j|), |b(x)| ≤ ψ(x)

}
.

Application of the result given in (Van Der Vaart and Wellner, 1996) (see the proof of
Theorem 2.7.1) shows that Theorem 4.1 can be applied with B = (Fβ)

K with u = 1/β.
In this case, we obtain that the rate of convergence of the empirical risk minimizer is of
order of N−β/2β+1 where β is the smoothness of drift functions b∗i . Hence, we obtain
similar rate as in the classical classification setting (Yang, 1999).

4.3.1 One-versus-All approach

In this section, we focus on the case where the set B is a parametric family of drift
functions. The set B is defined as follows

B = {(b(θi, .))i∈Y , ∀i ∈ Y , θi ∈ Θ} ,

where Θ ⊂ Rd is compact and for each θ ∈ Θ, x 7→ b(θ, x) is a real valued function
which satisfies Assumptions 7, 8. Moreover, we assume that the function b is known.
For each i ∈ Y , we denote the drift functions by b∗i (x) := b(θ∗i , x), θ∗i ∈ Θ (and π∗ =

πbθ∗ ). Furthermore, for θ = (θ1, . . . , θK) ∈ ΘK, we denote the vector (b(θi, .))i∈Y by
bθ = (bθ1 , . . . , bθK). Finally, for θ ∈ ΘK, we also define ‖θ‖ = maxi∈Y ‖θi‖∞. We consider
the following assumption

Assumption 9. Function b is Lipschitz-continuous with respect to θ ∈ Θ:

|b(θ, x)− b(θ′, x)| ≤ C (1 + |x|) ‖θ − θ′‖∞.

This assumption implies that for θ, θ
′ ∈ Θ, we have

‖b(θ, ·)− b(θ′, ·)‖T ≤ C‖θ − θ
′‖∞,

for a constant C depending on T.
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Classification procedure. We derive a classification procedure based on the one-versus-
all approach. It involves a convex surrogate of the minimization problem defined in
Equation (4.3). Hence, we consider the square loss and apply the methodology described
in Chapter 1. Let f(·) = ( f 1(·), . . . , f k(·) a score function, its associated L2 risk is

R2 (f) =

[
K

∑
k=1

E
(

Zk − f k(X)
)2
]

, Zk = 2 1{Y=k} − 1.

In this case, we recall that

f ∗k(X) = 2pk(X)− 1, k ∈ Y .

In view of the form of the optimal score function f ∗, we naturally define the estimator θ̂

of the true parameter θ∗

θ̂ ∈ arg min
θ∈ΘK

R̂2( f θ), f
k
θ = 2pk

bθ
− 1, k ∈ Y , (4.4)

with R̂2 the empirical counterpart of R2. The following theorem establishes the consis-
tency of the proposed procedure.

Theorem 4.2. Assume that Θ = [0, 1]d and that there exists α ≥ 2 such that ∆ ∝ O(N−α).
Under Assumption 9, the classification procedure gb

θ̂
given by (4.4) satisfies,

E
[

R(gb
θ̂
)− R(g∗)

]
≤ O

(√
d log(N)

N

)
.

We can note that up to the logarithmic factor, we obtain the usual parametric rate of
convergence which is of order of N−1/2. Interestingly, if we consider θ̂ ∈ arg min

θ∈ΘN
R̂(gbθ

)

with ΘN a 1/N-net of ΘK, one can show that the rate of convergence is also of order
N−1/2. Hence, from a theoretical point of view, the use of convex surrogate does not
degrade the performance of the classification procedure when α ≥ 2.

4.3.2 Numerical evaluation

In this section, we provide a short simulation study to evaluate the performance of
the procedure described in Section 4.3.1. Let us describe the models under consideration
for our numerical experiments. We fix K = 3, πk = 1/K and σ = 1. We consider the
following examples

• model 1 Additive OU b(θ, x) = −(x− θ), x0 = 4

• model 2 Multiplicative OU b(θ, x) = −θx, x0 = 4
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2

4

6

0.00 0.25 0.50 0.75 1.00

Figure 4.1: Illustration of the classification problem with 3 classes (blue, green and ma-
genta) for the three different values of θ∗) for model Additive with n = 100, N = 100.

• model 3 Polynomial b(θ, x) = −(x− θ)3 − (x + θ)3, x0 = 4

• model 4 Hyperbolic b(θ, x) = −θx/
√

1 + x2, x0 = 4

We compare the results on the design: θ∗ = {1, 2, 4} for model 1, 2, 4, and θ∗ =

{1/4, 1/2, 1} for model 3. The models 1 and 2 are widely used in practical applica-
tions, and they satisfy all the assumptions required for our theoretical results, while the
model 3 does not fulfill the Assumption 7, illustrating the robustness of the classification
procedure. The model 4 is widely used in mathematical finance to model log-returns of
assets prices in stock markets.

Figure 4.1 displays some trajectories generated according to the model 1 (Additive).
At first sight, without the knowledge of the labels, it seems to be difficult to assign a class
to each trajectory. It illustrates the difficulty of this classification problem (see Table 4.1).
As a benchmark, we also evaluate the procedure provided in (Denis, Dion, and Martinez,
2020) based on the contrast estimation which is referred as MLE. This procedure relies on
the parametric estimation of parameter θk. The procedure based on the one-versus-all
strategy is referred as OVA gθ̂ with θ̂ given in Equation (4.4).

We fix n ∈ {50, 250}, ∆ = 1/n, N = 500 For each model we provide an evaluation
of the misclassification risk of the two classification procedures by using the Monte-
Carlo method over 100 repetitions. Furthermore, the risk of the Bayes rule is evaluated
independently with a sample of size 10000. The results are summarized in Table 4.1 .
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Oracle MLE OVA
Model 1 0.31 (.002) 0.31 (0.01) 0.31 (0.01)
Model 2 0.12 (.003) 0.12 (0.01) 0.12 (0.01)
Model 3 0.22 (.003) 0.23 (0.01) 0.22 (0.01)
Model 4 0.33( .004) 0.33 (0.02) 0.33 (0.01)

Table 4.1: Average and standard deviation of the misclassification error rate of the two
procedures with n = 250 and N = 500.

First of all, note that model 1 and model 4 seem to be more tricky for the misclas-
sification risk. This is due to the fact that the classes generated by θ∗1 and θ∗2 are much
overlapped. On the contrary, the classification problem involved by model 2 is more eas-
ier. Second, all the classification procedures perform well. Indeed, the evaluation of the
misclassification risk are closed to the Bayes risk with small variances. Furthermore the
two procedures have similar performance.

4.3.3 A first conclusion

This section is dedicated to a preliminary discussion regarding the presented results.
The contribution of (Denis, Dion, and Martinez, 2020) should be viewed as a first step
of the study of the problem defined by Equation (4.1). Notably, we show that standard
techniques of statistical learning can be successfully apply to the mixture diffusion model.
We establish, provided that the time step ∆ is sufficiently small, that the classification
procedure presented in Section 4.3 achieves standard rates of convergence. However,
results provided in (Denis, Dion, and Martinez, 2020) mainly focus on the parametric
setting and require that the weights of the mixture as well as the diffusion coefficient are
known.

A second step of our research on this topic has been to focus on the study of plug-
in procedures in the nonparametric setting including the estimation of the weights and
the diffusion coefficient in the procedure. In light of this, the objective is to study a
procedure where drift functions bk are separately estimated by a nonparametric method.
Naturally, the first challenge is to focus on the estimation of the drift function within
the i.i.d. framework. Indeed, this problem is usually tackled in the setting where the
observation consists in a single path. In this context, an estimator of the drift function
is evaluated when the horizon time T tends to infinity and under the assumption that
the underlying process is ergodic. On the contrary, in our framework the horizon time is
fixed and we do not require ergodicity property. The asymptotic w.r.t. T is then replaced
by the asymptotic with respect to the learning sample. Clearly, these two settings are
different and classical approaches can not be considered for the estimation of the drift
function under the i.i.d. framework.
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4.4 Estimation of the drift function under i.i.d. framework: a
first step toward the plug-in procedure

In this section, we focus on the following model

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x0 (4.5)

where x0 ∈ R is known, and (Wt)t≥0 denotes a standard Brownian motion.
The estimation of the drift function of a diffusion process from a single path is a

well known problem (see for instance Kutoyants, 2004). More precisely, one can cite,
(Yoshida, 1992; Gobet, 2002) for the case of continuous ergodic diffusions, (Bibby and
Sørensen, 1995; Kessler, Sørensen, et al., 1999) for martingale estimation functions, (Go-
bet, Hoffmann, Reiß, et al., 2004) in the low frequency context, and (Hoffmann, 1999;
Dalalyan et al., 2005; Comte, Genon-Catalot, and Rozenholc, 2007; Schmisser, 2013) in
the nonparametric context. In the Bayesian literature, the asymptotic properties of min-
imum contrast estimators are studied for example in (Meulen and Van Zanten, 2013;
Gugushvili and Spreij, 2014; Koskela, Spano, and Jenkins, 2019).

Nevertheless, it seems that very few works investigate the estimation of the drift
function from a sample of i.i.d. observations (diffusion paths) when the horizon time T is
assumed to be fixed. In fact, up to our knowledge, only Comte and Genon-Catalot (2020)
and Della Maestra and Hoffmann (2021) deals with this framework. However, the work
of Della Maestra and Hoffmann (2021) focuses on the more general setting of stochastic
system of N interacting particles and does not directly handle the i.i.d. framework. The
closest contribution to ours is provided in (Comte and Genon-Catalot, 2020) where the
authors consider a least squares contrast estimator (based on continuous observations).
In order to ensure the stability of the estimator, the authors propose to insert a cutoff
function. More precisely, the estimator is set to the zero function according to some
threshold which depends on the dimension of the considered space of approximation.
This procedure may reduce the dimension of the spaces of approximation on which the
resulting estimator is non trivial and can lead to some limitations in practice. As an al-
ternative strategy, we propose in (Denis, Dion, and Martinez, 2021) to build a regularized
estimator based on a ridge constraint.

4.4.1 Assumptions and notations

We present results obtained in (Denis, Dion, and Martinez, 2021) for the estimation of
the drift function on a compact interval that we assume to be [0, 1] for simplicity. That is
to say, we focus on the estimation of b̃(.) = b(.)1[0,1](.).

We consider the assumptions detailed in Section 4.1. We also assume that

Assumption 10. σ belongs C2
b (R).
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Note that under the considered assumptions, the process (Xt)t∈[0,T] admits a transition
density (t, x) 7→ p(t, x0, x).

Finally, we assume that N ∈ N∗ independent discrete observations
(

X(1), . . . , X(N)
)

coming from independent solutions
(

X(1), . . . , X(N)
)

of (4.1) are available. We refer to

the vector of observations
(

X(1), . . . , X(N)
)

as the learning sample.
We introduce some additional notations and then give key result on the transition

density p. For a real valued function h defined on R, we denote ‖h‖n,b the empirical
integrated norm defined as:

‖h‖2
n,b := EX

[
1
n

n−1

∑
k=0

h2(Xk∆)

]
,

where EX is the expectation with respect to the law PX of the discrete path X defined
by (4.5). Its standard L2-norm is denoted by ‖h‖. Let us also introduce the following
empirical norm

‖h‖2
N,n :=

1
Nn

N

∑
j=1

n−1

∑
k=0

h2
(

X(j)
k∆

)
.

The following lemma highlights the connection between the norms ‖.‖n,b and ‖.‖

Lemma 4.1. Under assumptions 7, and 10, there exists π1 > π0 > 0, such that for all y ∈ [0, 1]
and n ≥ 4, we have

π0 ≤
1
n

n−1

∑
k=1

p(k∆, x0, y) ≤ π1.

This result is one the main tool for the study of the rates of convergence. Notably, for
a function h such that supp(h) ⊆ [0, 1], we have ‖h‖2 ≤ 1

π0
‖h‖2

n,b.

4.4.2 Ridge estimator for drift function

In this section, we describe our regularized procedure which relies on a projection
estimator based on the B-spline basis.

B-spline basis. Let KN ∈ N∗, AN , BN ∈ R, AN < BN , and M ∈ N∗. Let us introduce
the sequence of knots u = (u−M, . . . , uKN+M) such that for i = 0, . . . , KN

ui = AN + i
(BN − AN)

KN
,

u−M = . . . = u−1 = u0 = AN , and uKN = uKN+1 = . . . = uKN+M = BN . We consider
the B-splines functions (Bi,M,u)i=−M,...,KN−1 of degree M associated to the knot vector u.
The B-splines functions are defined as follows (see for instance Györfi et al., 2006, and
references therein).
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Definition 4.1. the B-spline function of degree ` with knots vector u is recursively defined for all
x ∈ R by,

Bi,`,u(x) = 1[ui ,ui+1)(x),

for ` = 0, and i = −M, . . . , KN + M− 1, and

Bi,`+1,u(x) =
x− ui

ui+`+1 − ui
Bi,`,u(x) +

ui+`+2 − x
ui+`+2 − ui+1

Bi+1,`,u(x),

for ` = 0, . . . , M− 1, and i = −M, . . . , KN + M− l − 2. We use the convention 0/0 = 0.

Note that the B-spline functions are positive functions. According to the choice of the
knot vector u, the B-spline functions are zero outside [AN , BN ]. Besides, these functions
are linearly independent even though their supports are not disjoint. The main advan-
tage of these piecewise polynomial functions is that they satisfy some global smoothness
conditions. This kind of attractive property is particularly interesting when we want to
build smooth estimates. Finally, the B-spline space SKN ,M,u is defined as

SKN ,M,u = span{(Bi,M,u) : i = −M, . . . , KN − 1}.

Hence, the linear space SKN ,M,u has dimension dim(SKN ,M,u) = KN + M. We also recall
that if h ∈ SKN ,M,u, then h is M− 1 continuously differentiable on [AN , BN) and zero out-
side of [AN , BN). Another appealing property of the B-spline is that for all x ∈ [AN , BN),
∑KN−1

i=−M Bi,M,u(x) = 1.

Constrained estimation based on the B-spline basis. Since we focus on the estimation
of b on [0, 1], we set AN = 0, and BN = 1. For LN > 0, we define the constrained subspace

SKN ,LN ,M :=

{
h =

KN−1

∑
i=−M

aiBi,M,u ∈ SKN ,M,u : ‖a‖2
2 ≤ (KN + M)LN

}
. (4.6)

The subspace SKN ,LN ,M is composed of functions h = ∑KN−1
i=−M aiBi,M,u for which we ensure

uniform boundedness on the coefficients ai. Then, in view of the properties of the B-
spline, functions of SKN ,LN ,M are bounded w.r.t. ‖ · ‖∞ and ‖ · ‖. Note that the choice of
the tuning parameter in the constraint ensures a control of the bias term. Indeed, assume
that ‖b̃‖∞ ≤

√
LN , then there exists h̃ ∈ SKN ,LN ,M such that

∣∣h̃(x)− b̃(x)
∣∣ ≤ C

KN
, ∀x ∈ (0, 1).

We consider the estimator b̂N,n defined as the minimizer of a least square contrast

b̂N,n ∈ arg min
h∈SKN ,LN ,M

γN,n(h), (4.7)
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where for h ∈ SKN ,LN ,M,

γN,n(h) :=
1

N n

N

∑
j=1

n−1

∑
k=0

(
Z(j)

k∆ − h(X(j)
k∆)
)2

, Z(j)
k∆ :=

X(j)
(k+1)∆ − X(j)

k∆

∆
.

Note that the resulting estimator is then defined as b̂N,n(.) = ∑KN−1
i=−M âiBi,M,u(.) where the

vector â = t(â−M, . . . , âKN−1) ∈ RKN+M is the ridge estimator (see Hastie, Tibshirani, and
Friedman, 2001):

â = arg min
‖a‖2

2≤(KN+M)LN

‖Z− Ba‖2
2,

where the vector Z = t(Z(j)
∆ , . . . , Z(j)

n∆, j = 1, . . . n) belongs to RNn and the matrix B =

(Bi,M,u(Xj))j,i ∈ R(Nn)×(KN+M), with Xj = t(X(j)
∆ , . . . , X(j)

n∆). This problem has a unique
solution which ensures that the resulting estimator b̂N,n is always well defined. Moreover,
this procedure offers attractive numerical properties.

4.4.3 Optimal rates of convergence

This section is dedicated to the study of the rates of convergence of the estimator
b̂N,n. We assume that x0 ∈ (0, 1). The rate of convergence of the estimation procedure is
studied over the class of Hölder functions.

Assumption 11. For β ∈ [1, M + 1], and R > 0, the restriction b̃ := b|[0,1] of b to [0, 1]
belongs to the Hölder ball Σ(β, R): the function b̃ is l = bβc times differentiable on (0, 1) and its
derivative b̃(l) satisfies

∀x, y ∈ (0, 1),
∣∣∣b̃(l)(x)− b̃(l)(y)

∣∣∣ ≤ R |x− y|β−l .

Upper bound. In order to derive optimal rate of convergence, we consider a slightly
modified version of the estimator defined in Equation (4.7). The truncated estimator is
defined as follow

b̂LN
N,n(x) :=

{
b̂N,n(x) if |b̂N,n(x)| ≤ √LN ,
sgn(b̂N,n(x))

√
LN if |b̂N,n(x)| > √LN .

We remind the reader that LN is the multiplicative factor that controls the bound on the
Euclidean norms of the parameter coefficients a for all functions belonging to SKN ,LN ,M

(see Equation (4.6)). First, for N large enough, since b̃ is bounded, ‖b̃‖∞ ≤
√

LN which
implies ‖b̃− b̂LN

N,n‖b ≤ ‖b̃− b̂N,n‖b. Therefore, the consistency of b̂N,n implies the consis-
tency of b̂LN

N,n. Moreover, let us notice that ‖b̂N,n‖∞ <
√
(KN + M)LN while the truncated

estimator b̂LN
N,n satisfies ‖b̂LN

N,n‖∞ <
√

LN . This property is particularly important in Theo-
rem 4.3 to reduce the order of the variance term with respect to KN .
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Proposition 4.3. Grant Assumptions 7, and 11. For N large enough, the following holds

E

[∥∥∥b̂LN
N,n − b̃

∥∥∥2

N,n

]
≤ C

((
M + 1

KN

)2β

+
KN + LN

N
+ ∆

)
,

where C > 0 is a constant depending only on σ1, π0, T, M, and R.

The obtained bound is composed of three terms. The first one, which relies on the
spline approximation properties, gives the order of the bias under the assumption that
the function b̃ is Hölder. The second is the variance term which is of order (KN + LN)/N.
Note that the bound on the variance term relies on the equivalence between the em-
pirical norm and the L2-norm over [0, 1]. In (Denis, Dion, and Martinez, 2021), it is
shown that without the ellipticity assumption the control of the variance term is of order
((KN + LN)/N)1/2. Finally, the last term is the error due to the discretization. Combin-
ing Proposition 4.3 with concentration arguments and lemma 4.1, we obtain the following

result. Let us introduce KN = {1, . . . , K∗N} with K∗N =
√

N/ log2(N).

Theorem 4.3. Grant Assumptions 7, 10, and 11. Let KN ∈ KN . Assume that LN = log(N)

and ∆ = O(1/N), then for N large enough the following holds

E
[
‖b̂LN

N,n − b̃‖2
]
≤ C

((
M + 1

KN

)2β

+
log2(N)KN

N

)
,

where C > 0 is a constant depending only on σ1, T, M and R.

From this result, one can see that the rate of convergence is, up to a logarithmic factor,
the optimal nonparametric rate in the regression setting (Tsybakov, 2009b). Indeed, since

β ≥ 1, for KN =

⌊(
N/log2(N)

)1/(2β+1)
⌋
∈ KN , we obtain

E
[
‖b̂LN

N,n − b̃‖2
]
.
(

log2(N)

N

) 2β
2β+1

. (4.8)

This inequality shows that, regarding to the L2-risk, the problem of estimating the drift
function on a compact set based on repeated observations is equivalent to the estimation
of a function in the regression setting (provided that the time step ∆ is small enough).
Let us comment the logarithm factors. The first log(N) is due to the fact that there is
no prior knowledge on the bound of ‖b̃‖∞. The second one is due to the control of the
supremum of an empirical process over the subset SKN ,LN ,M.

Lower bound. We establish a lower bound on the L2-risk for the Hölder class of func-
tions Σ(β, R) with regularity parameter β, defined in Assumption 11.
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Theorem 4.4. Grant Assumptions 7, an 10, and 11. There exists two constants c1, c0 > 0 such
that for N large enough and b̂ constructed from (X1, . . . , XN),

sup
b : b̃∈Σ(β,R)

E

[∥∥∥b̂− b̃
∥∥∥2
]
≥ c1N−2β/(2β+1),

The proof of the Theorem follows the same lines of Theorem 2.8 in (Tsybakov, 2009b)
except for the control of the Kullback-Leibler divergence. In Theorem 4.4, this control
relies on the Girsanov formula. Hence, Theorem 4.4 and Equation (4.8) establish that the
estimator b̂LN

N,n is optimal in the minimax sense. However, the choice of KN depends on
the regularity β of the function b̃ which is unknown in practice.

Adaptive estimator. We propose an adaptive estimator based on a penalized con-
trast. To alleviate the notations, the parametes KN is denoted by K. Besides, in order
to highlight the dependency on K, the estimator b̂LN

N,n is denoted b̂K (and we choose
LN = log(N)). Our adaptive procedure relies on the dyadic B-splines. That is to say,

we assume that K belongs to K = {2p, p = 0, . . . , pmax} with 2pmax ≤
√

N/ log2(N).
Hence, this particular choice ensures that the spaces SK,M,u are nested (for K < K′,
SK,M,u ⊂ SK′,M,u) which is an important property in light of the proof of Theorem 4.5.
We define the following estimator

K̂ = arg min
K∈K

{
γN,n(b̂K) + pen(K)

}
, (4.9)

and then consider the estimator b̂K̂ defined as the minimizer of a penalized contrast. To

penalize the complexity of SK,L,M, we choose a penalty term pen(K) ≥ 44 log2(N)(K+M)
N for

N large enough. Now, we state the following result

Theorem 4.5. Grant Assumptions 7, 10, and 11. Assume that LN = log(N) and ∆ = O(1/N).
The estimator b̂K̂ of b̃ satisfies

E
[
‖b̂K̂ − b̃‖2

]
≤ 2 inf

K∈K

{
inf

h∈SK,L,M

∥∥∥h− b̃
∥∥∥2

n,b
+ pen(K)

}
+

C
N

,

where C is a positive constant depending on σ1, π0, T, M and R.

This result shows that the estimator b̂K̂ achieves the bias-variance compromise over
the model collection (SK,L,M)K∈K. In particular, whenever b̃ ∈ Σ(β, R), with β ≤ M +

1, the estimator b̂K̂ reaches the optimal rate up to a logarithmic factor. Note that the

penalty term can be chosen equal to 44 log2(N)(K+M)
N . However, in practice it is better to

consider pen(K) = c log(N)2(K+M)
N where the constant c is calibrated through numerical

experiments.



66 CHAPTER 4. MULTI-CLASS CLASSIFICATION FOR DIFFUSION PATHS

4.4.4 Numerical experiments

In this Section, we briefly illustrate the performance of the proposed estimator. We
choose n∆ = T = 1 with n = 100. The sample size N is fixed to 1000. Our estimators
are based on the cubic (M = 3) B-spline basis. We restrict our investigation to the
set K = {2p, p = 0, 1, 2, 3, 4, 5} (thus dim(SK,M,u) = 2p + 3, p = 0, 1, 2, 3, 4, 5). Finally,
according to our theoretical results, the constant coefficient LN is chosen equal to log(N).
After numerical investigations which are detailed in (Denis, Dion, and Martinez, 2021),
we fix c = 0.01.

We consider the three following models to illustrate the accuracy of the estimator.

• model 1 b(x) = 1− x, σ(x) = 1

• model 2 b(x) = (1− x2)(−2atanh(x)− x), σ(x) = 1− x2

• model 3 b(x) = 0.1(− sin(2πx) + cos(2πx) + 16 sin(3πx)− 5 cos(3πx)), σ(x) = 1

The first model is widely used diffusion models. The model 2 possess a non constant
diffusion coefficient and do not satisfy the ellipticity assumption 7. Finally, The model 3
has a multimodal drift function. It requires to explore more possible values of K (larger
dimension).

We focus on the estimation of b̃ = b1[−1,1]. Note that for model 2 we have b̃ = b.
Figure 4.2 displays ten realizations of the estimators b̂K̂ on the three models. We can see
that these estimates perform quite well. Regarding the chosen dimension, for models 1,2
the value K̂ = 1 is mostly chosen while K̂ = 8 is mostly selected for model 3. This is not
surprising since the drift functions of model 1,2 are quite simple whereas the multimodal
aspect of the drift function of model 3 requires to select larger K̂. Hence, for model 3 the
estimation of b̃ is more challenging.

Note that, we also investigate in (Denis, Dion, and Martinez, 2021) the estimation
of b without restriction on the estimation interval. In this case, it is natural to build our
procedure on the random interval defined as

[
min

(
(X̄1, . . . , X̄N) , max

(
(X̄1, . . . , X̄N)]. In

this case, we also show that the estimation procedure has good performance.

4.5 Discussion and perspectives

In Section 4.4, we provide a new procedure to estimate the drift function of homoge-
neous diffusion process in the i.i.d. framework. It is the starting point of the study of a
plug-in classification procedure for the mixture model defined by Equation (4.1) in the
nonparametric setting. This work is a part of the Ph.D. thesis of E. Ella Mintsa whom I
co-supervise with C. Dion-Blanc and V.C. Tran.

Let me briefly present the main idea of the strategy followed by E. Ella-Mintsa. Con-
sidering the result obtained in Proposition 4.2, a first step consists in the construction of
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Figure 4.2: The three graphs show the three models 1-2-3 (top to bottom) and on each of
them the true drift function in blue (dark) and 10 estimates b̂K̂ in green (light grey), on
the compact interval [−1, 1]
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the ridge estimator b̂k of b∗k for each k, based on the observations of the learning sample
for which the associated label is k. A first difficulty is that the obtained excess risk of the
resulting plug-in classifier satisfies

E
[
E(ḡb̂)

]
≤ C

(√
∆ +

K

∑
k=1

EY

[
‖b̂k − b∗k‖n,b∗Y

])
.

Therefore, the theoretical properties of the ridge estimator presented in Section 4.4 are
not sufficiently sharp to ensure that for each k

K

∑
k=1

E
[
‖b̂k − b∗k‖n,b∗Y

]
→ 0.

Indeed, when the s.d.e. is driven by b∗j with j 6= k, the estimator b̂k may be not consistent.
Furthermore, our result holds only for the estimation of the drift function over a com-
pact interval. To bypass these difficulties, the strategy is to obtained a similar result as
Lemma 4.1 for a compact interval [−AN , AN ], with AN → +∞. Importantly, the depen-
dency of the constants π0 and π1 w.r.t. AN should be carefully evaluated. In this case, for
each t ∈ [0, T], P (|Xt| ≥ AN) is easily controlled by the Markov Inequality, and then one
can obtain the following bound on the excess risk

E
[
E(ḡb̂)

]
≤ C
√

∆ + RAN + CAN

K

∑
k=1

E
[
‖b̂k − b∗k‖[−AN ,AN ]

]
,

where RAN → 0 and CAN is a positive constant depending on π0 and π1. Hence, the
control of CAN will allow to derive the consistency of the plug-in classifier.

The other line of the extension of the results provided in this chapter is to consider
the case where the distribution of Y and the coefficient diffusion σ are unknown. While
the estimation of the weights of the mixture is not really a difficult task as it can be
easily handled by considering the empirical distribution of Y, the estimation of σ is more
intricate. To tackle this problem, E. Ella Mintsa proposes a version of the estimator
described in Section 4.4 dedicated to the estimation of σ.

Another extension is to investigate a classification procedure based on the empirical
risk minimization principle. In this case, we can consider a similar procedure as the
one described in Section 4.3.1 where the minimization is performed over the set SKN ,LN ,M

defined in Equation (4.6).
An important part of the study of these procedures will be also to evaluate their

numerical performance. In particular, a comparison with other classification procedures
for functional data such as depth classification or recurrent neural networks will highlight
the relevance of the proposed approach.

Lastly, the generalization of the initial model is an important guideline for further
research. The extension to the case of inhomogeneous diffusions as well as considering
the case of multidimensional diffusions will cover a broader class of possible applications.
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