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Résumé

Bruit de phase des filaments et métrologie de 1’effet Kerr dans les cristaux

Le développement des sources a XUV utilisables en laboratoire a été motivé par la spectro-
scopie a rayons X. Ce domaine de la spectroscopie étudie les transitions des électrons pres du
noyau vers la bande de valence et requiert I’émission de XUV car ils correspondent a I’énergie
de ces transitions. Historiquement la spectroscopie a rayons X était réalisée uniquement dans
des synchrotrons ou lasers a électrons libres. Le développement récent de 1"émission d’harmo-
niques d’ordre élevé (HHG) a permis aux rayons X d’étre émis dans des laboratoires a taille hu-
maine. Le champ électrique requis pour ce type de source a rayon X est typiquement produit
par un ‘Optical parametric chirped pulse amplifier’ (OPCPA). Le processus de HHG est trées
peu efficace ce qui résulte en une émission de rayon X avec un flux tres faible. En conséquence
un temps d’intégration de 1’ordre de la seconde est nécessaire pour les expériences utilisant ces
sources et entraine des temps de mesure compléte de 1’ordre de quelques heures. La stabilité
des OPCPAs en devient d’autant plus critique, et en particulier de leur CEP (ordre zéro de la
phase) pour les applications avec des durées d'impulsion de I'ordre du cycle optique. Ce travail
se concentre sur deux aspects du développement des OPCPAs : la caractérisation de l'indice
de réfraction non linéaire de cristaux utilisés pour le développement d’'OPCPAs et le bruit de
phase stochastique introduit par la génération de supercontinuum. L'effet Kerr optique est un
effet non linéaire d’ordre 3 responsable de I’auto-modulation de phase et de I’auto-focalisation.
La caractérisation précise de 1'indice de réfraction non linéaire est essentielle pour le design et
le développement des OPCPAs étant donné que les nombreux étages de gain qui les composent
requierent des intensités élevées pour atteindre la saturation. Cette these présente une nouvelle
méthode de caractérisation du tenseur non linéaire d’ordre 3 dans le régime femto-seconde ap-
pelée ‘Nonlinear chirped interferometry’. Cette méthode est une méthode a trois ondes oti une
référence est utilisée pour mesurer la variation de délai de groupe d"une sonde sous l'influence
d’une pompe de haute énergie dans un matériau non linéaire. La variation de délai de groupe
est mesurée avec de l'interférométrie spectrale. Le point fort de cette méthode est son immu-
nité relative aux fluctuations extérieures malgré le fait qu’elle est interférométrique. En effet
on atteint des incertitudes au moins aussi bonnes que 1’état de l’art sans stabilisation active
ou détection hétérodyne. L'interférometre est utilisé pour caractériser des cristaux liquides ou
des cristaux non linéaires (saphir, LBO, KTA, MLN, LGS). La deuxieme partie de la these est
dédiée a la quantification du bruit stochastique de phase de la génération de supercontinuum
par filamentation. La filamentation est un effet non linéaire utilisé comme moyen principal
d’élargissement spectral employé dans la génération de ‘seed” des OPCPAs. Dans ce cas le su-
percontinuum est typiquement réalisé en focalisant le faisceau de pompe dans un cristal de
YAG de quelques millimetres de longueur. Une version modifiée de I'intérférometre de Bellini
et Hansch avec de la détection spectrale est présentée. Le bruit de phase stochastique est me-
suré en utilisant de l'interférométrie spectrale et les parametres de génération sont caractérisés.
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La longueur du cristal de YAG, sa position le long de I’axe de propagation, I’énergie par im-
pulsion et la phase spatiale sont quantifiés individuellement. Une zone optimale de stabilité est
identifiée pour chaque parametre et des coefficients de transfert entre 1’énergie et la phase spa-
tiale ainsi qu’entre la phase spatiale et la phase spectrale sont mesurés. Ces coefficients servent
de métrique quantifiant I'impact des fluctuations de ces parametres sur la phase spectrale.

Mots-clés : optique ultra-rapide, optique non linéaire, filamentation, effet Kerr, interféromé-
trie spectrale



Abstract

Phase noise of filaments and optical Kerr effect metrology in crystals

The development of table-top soft X-ray sources has been motivated in the recent years by X-
ray spectroscopy. This field of spectroscopy studying the transitions of core electrons to the
valence band requires the emission of soft X-ray light as it is the spectral region corresponding
to these transitions. Historically this was accomplished in big laser facilities such as synchro-
trons or free electron lasers. The development of high order harmonic generation (HHG) in
the recent years allowed X-ray spectroscopy to be realized in human-sized optical laboratories.
The driving field of these sources is typically generated with an optical parametric chirped
pulse amplifier (OPCPA). As the HHG is an inefficient process the soft X-ray yield of a table-
top source is very low. This means the experiments require long integration time (of the order
of the second per point) leading to hours-long measurements. This means the stability of the
OPCPA is critical especially its CEP (order zero of the phase) when it comes to pulse durations
close to the optical cycle. This Ph.D. focuses on two aspects of OPCPA development : characte-
rization of the nonlinear refractive index of crystals commonly used for OPCPA in the infrared
range and the stochastic phase noise introduced by the supercontinuum generation process.
Optical Kerr effect is a third order nonlinear effect responsible for self-phase modulation and
self-focusing. The precise knowledge of its metric in materials (the nonlinear refractive index)
is essential to calibrate and develop OPCPA as the various OPA stages making an OPCPA re-
quire high peak intensity to reach gain saturation. This thesis presents a novel optical Kerr
effect spectroscopy method labeled nonlinear chirped interferometry used to characterize the
third order nonlinear tensor on the femtosecond time scale. This method is a three-beam expe-
riment where a reference beam is used to monitor the transient group delay variation of a probe
beam under the influence of an intense pump beam in a nonlinear crystal. The transient delay
shift is measured with spectral interferometry. The strength of the method is its resilience to
environmental fluctuations despite being interferometric. It indeed does not require any active
stabilization or advance measurement scheme to reach state-of-the-art uncertainty values. This
method was used to characterize liquid crystals as well as nonlinear crystals (sapphire, LBO,
KTA, MLN, LGS). The thesis’s second part is dedicated to quantifying the stochastic phase
noise of the supercontinuum generation process. Supercontinuum generation is an extremely
nonlinear process used as the main spectral broadening tool in the seed generation of OPCPA.
In the case of infrared OPCPA it is typically achieved by focusing the driving beam inside a
mm-long YAG crystal. A modified version of the Bellini-Hédnsch interferometer with spectral
detection is presented. The stochastic phase noise of the supercontinuum is assessed using
spectral interferometer and the generation parameters of the supercontinuum are investigated.
The YAG crystal length, position along the beam propagation axis, the pulse energy and the
spatial phase of the beam are all individually characterized. Stability areas for each parameter
are identified and transfer coefficients between energy and spectral phase and spatial phase
and spectral phase are extracted. These coefficients are a metric to quantify the impact of the
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fluctuations of the parameters on the spectral phase.

Keywords : ultrafast optics, nonlinear optics, filamentation, Kerr effect, spectral interferometry
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Introduction

The discovery and the development of the mode-locking of laser cavities [1] and particu-
larly passive mode locking [2] allowed the creation of tabletop pulsed laser sources with a
pulse duration shorter than the picosecond. Femtosecond sources are perfect candidates for
the generation of optical frequency combs with a resolution in frequency smaller than 1014
[3]. Plenty of applications were then investigated with precise and tunable frequency combs,
such as frequency comb spectroscopy [4], optical waveform generation [5] and optical clocks
[6]. Femtosecond laser sources are also used for biomedical applications such as laser eye sur-
gery [7], Raman microscopy [8] or two-photon microscopy [9]. In industry femtosecond sources
are a manufacturing tool used for metal machining as the short pulse duration allows for mate-
rial etching with minimal thermal effects [10]. Femtosecond sources are perfect candidates for
investigating and using nonlinear optics due to their high peak intensity [11]. With their deve-
lopment came the development of nonlinear optics [12] and its various applications. Nonlinear
optics is the field describing the many photon interactions and can be split according to the
order of the nonlinearity. Second-order nonlinearity leads to second harmonic generation [13],
sum frequency generation, and difference frequency generation [14]. The most notable third-
order effect is the optical Kerr effect [15] i.e. the modification of the refractive index with in-
tensity. Higher-order nonlinear effects include high harmonic generation [16] and multiphoton
absorption [17]. Nonlinear optics is routinely used for pulse shaping [18], pulse characteriza-
tion [19] and pulse spectral broadening [20].

One specific category of femtosecond sources that relies on nonlinear optics is called optical
parametric chirped pulse amplifiers (so-called third-generation femtosecond sources). OPCPAs
are pulse laser sources combining two effects : chirped pulse amplification [21] and optical pa-
rametric amplification [22]. Two main pump laser technologies for OPCPA are titanium sap-
phire and ytterbium YAG. Titanium sapphire has been used for a longer time due to its wide
gain bandwidth supporting sub-10fs pulses [23]. In the later years, Yb :YAG pump lasers are
taking over because they can reach higher average powers [24]. Seeding an Optical Parametric
Amplifier (OPA) with the pulses generated by such sources [22] can produce few-cycle high-
power pulses in the optical and infrared spectral range.

Having access to such ultrashort and broadband pulses opens the door for new applications
in attosecond physics as well, such as XUV attosecond pulses generation in gases [25] and more
recently in solid state nanostructures [26], the emission and the control of electron wavepackets
[27] and the nano tunneling of electrons [28]. All these processes rely on the interaction between
the electric field of the light pulse and the Coulomb potential of an electron to bend it and allow
a tunnel ionization of the electron. This effect is directly dependent on the electric field value,
which is dependent on the Carrier Envelope Phase (CEP) of each pulse.

The Carrier Envelope Phase (CEP) or Carrier Envelope Offset (CEO) is the relative phase
difference between the envelope and the carrier wave of a light pulse. Figure 2 shows a typical
few-cycle pulse with its CEP.
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electric field £ (a.u.)

0
time 7 (fs)

FIGURE 2 - [3] figure 1 :5-fs pulse with sech-shaped field envelope. The pulse-to-

pulse carrier-envelope offset phase, ®crp, is proportional to the round trip delay

of the central fringe, ATcrp, and the carrier frequency, vg. Pcro is defined as the
phase angle at the pulse center.

The research on CEP stable sources started in the early 2000s, at this time, the main stra-
tegy to achieve CEP stabilization was the control of the oscillator cavity length with thin Silica
wedges. Combining an f-2f interferometer with motorized wedges creates an active stabiliza-
tion method via a feedback loop [29, 30]. The output of the stabilized oscillator can then be
amplified to reach hundreds of yJ pulse power [31]. Instead of modifying the laser cavity to
compensate for the CEP drift, an acousto-optic frequency shifter (AOFS) can be used at the
output of the oscillator along with a feedback loop, this method is called a feed-forward (FF)
method [32]. The advantages of the FF method over the FB method are the fact that it only
requires simple electronics and that it does not depend on the long-term performance of the
system. However, it tends to perform poorly over long periods of time, when the modulation
frequency drifts outside of the bandwidth of the AOFS. A solution to compensate for this issue
is to combine both feedback and feed-forward methods [33].

Similarly to the mode-locking of a laser cavity, a passive method gives better results [34].
Generating the intrapulse difference frequency, or more generally the difference frequency of
a supercontinuum and its seed creates an idler that is CEP stable (figure 9 (b) [34]). To reach
the state-of-the-art CEP stable optical amplifiers, the last step is to add a feedback loop with
an Acousto-Optic Programmable Dispersive Filter (AOPDF) [35]. Despite passive and active
stabilization, noise still remains in the CEP of the OPCPAs. As the amplifiers are complex and
long systems, it is difficult to assess the origin of the noise and the contribution of each step
to it. However, the most likely suspect of coherence loss is the white light generation. What's
more, two supercontinua are generated in a typical CEP stable amplifier, one for the passive
stabilization with DFG and one for the measurement setup.

The spectral broadening in supercontinuum generation is caused by two different funda-

mental nonlinear processes. The first one is Self Phase Modulation (SPM) and is most relevant
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for pulses with nJ energy levels. The second one and the most significant in the generation of
octave-spanning spectra is filamentation [36]. Filamentation results in a much bigger loss of
intrapulse coherence than lone SPM [37] and as a result produces more CEP noise.

This work focuses on two different topics both in service of CEP-stable OPCPA develop-
ment. The first topic investigated in chapter 2 is optical Kerr effect spectroscopy where nonli-
near chirped interferometry is presented and used to characterize crystals used for optical pa-
rametric amplification. The next three chapters (chapter 3, 4 and 5) are dedicated to the study
of the intrapulse coherence loss due to the WLG process.



Chapitre 1

Introduction

This chapter aims to introduce the necessary concepts to understand the studies develo-
ped in this thesis. The first section will define the mathematical formalism used to describe a
(continuous or pulsed) light wave and focus on linear optics. The second section will study
interferometry. The third section will focus on nonlinear optics by detailing two essential pro-
cesses for this thesis : difference frequency generation and filamentation.

1.1 Linear optics

1.1.1 Mathematical pulse representation

The first section of this chapter derives the formalism used throughout this chapter to detail
the different processes. The formalism derived here was largely inspired from [38]. Light is an
electromagnetic wave that can be characterized by its electric field. As the light considered in
this thesis is emitted from lasers it is highly directional and will be propagating along the z-axis.
The mathematical expression for the electric field is :

E(r,t) = eA(7, t)ei(h_“’t) + c.c. (1.1)

where k is the wave vector and w is the frequency of the light. A(r, t) is the wave amplitude
and can also be time and space-dependent. é is the polarization vector. The polarization is
generally elliptical but will be kept linear in this chapter. The transverse spatial profile of the
beam will be considered to be homogeneous and can then be expressed only as a function of z
and t:

E(z,t) = eA(z, t)e!Fh L cc. (1.2)

A common form of a beam and the only one considered in this thesis is that of a Gaussian
beam that takes the form in equation 1.3.
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(2 —tan" (£ )—w
E(r,t) = éA(z,t)Z:(Jz)expl(ZS(Z)Jrkz tan () t) +c.c. (1.3)
where :
2\ 2
w(z) = woy |1+ <> (1.4)
ZR
q(z) =z —izg (1.5)
2
nmaw
ZR =5 0 (1.6)

wy is the beam waist and is the beam radius at z = 0, 4(z) is the complex radius of curvature
and zg is the Rayleigh range.

When simulating or describing a physical phenomenon, the spatial profile is often ignored
to simplify the model. In this case, the field can be expressed in the time domain as :

E(t) = eA(t)e ™! +c.c. (1.7)

The temporal profile of the wave is described by the temporal wave envelope A(t). The
temporal width is defined with the Full Width Half Maximum (FWHM) of the temporal enve-

lope in intensity. Taking the example of a Gaussian beam also in time A(f) takes the form :

2
Alt)y=e " 21”2(TFWtHM) (1.8)
The intensity of the pulse is defined as :
I(t) = 2ngegc| Az, t)|? (1.9)

Adding a time-dependent phase to the pulse description gives this mathematical expression

along the polarization axis (assuming linear polarization) :

E(t) — I(t)e_i(Wt_‘P(t)) + c.c. (1.10)

From this equation, the complex and real amplitudes of the pulse are defined :
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A(t) = /I(t)e " (1.11)
A(t) = /I1(t) (1.12)

This formalism will be used in section 1.1.2 to describe the Fourier transform properties of

a pulse.

1.1.2 Fourier transform

Any square-integrable complex function can be decomposed as the sum of harmonic oscil-
lations with a respective phase and amplitude according to the Fourier theorem. The Fourier
transform is the mathematical tool allowing the retrieval of the harmonic decomposition of a
complex function. It is expressed as follows taking the electric field as a real function :

E(w)= [ " E(Betar = FT(E®)) (113)

Similarly the inverse Fourier transform used to go from E(w) to E(t) is defined as :
1 oo iwt -1
E(t) = E/ E(w)e“tdw = FTYE(w)) (1.14)

—o0

The field can then be expressed as a function of spectral amplitude and spectral phase as
follows :

E(w) = /S(w)e '?) (1.15)

As examples figures 1.1 and 1.2 show the temporal and spectral profiles of a monochromatic
wave and a light pulse respectively.
In the first case (figure 1.1 (a)) the wave is purely monochromatic and written as :

E(t) = sin(—wt) (1.16)

The Fourier transform is a pure Dirac peak located at the frequency w as figure 1.1 (b)
shows. On the contrary in the second case (figure 1.2 (a)) the wave is a light pulse written as :

' 2
VIRt sin(—wt) (1.17)

E(t)=e
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FIGURE 1.1 - (a) : monochromatic wave in the time domain (b) : spectral ampli-
tude of the Fourier transform (blue) and spectral phase of the Fourier transform

(red).

The Fourier transform in this case also has a Gaussian shape centered around the frequency
as shown in figure 1.2 (b). The product between the temporal duration and the spectral band-
width is above a given value depending on the shape of the amplitude of the electric field. In
the case of Gaussian pulses the time-bandwidth product is as follows :

AtAw > 0.44 (1.18)

where At and Aw are the temporal FWHM duration and the FWHM spectral bandwidth
respectively. This relationship shows that the larger the spectral bandwidth the shorter the
temporal duration. For a given spectrum it gives a minimum duration of a pulse. This is called
the Fourier Transform Limit and it is reached as explained in section 1.1.3 for a flat or linear
spectral phase.

This concept of Fourier transform was first introduced by Joseph Fourier in the 18th cen-
tury. It has many applications in mathematics and was the object of many fundamental works
[39-42]. Fourier transform is a powerful analysis tool similar to the Laplace transform [43]. It
can be used to solve problems in the Fourier domain that would be otherwise difficult to tackle
such as differential equations or other problems in mathematical physics [44]. Fourier trans-
form is also routinely used in quantum mechanics. In the same way that it was shown that
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FIGURE 1.2 — (a) : light pulse in the time domain (b) : spectral amplitude of the
Fourier transform (blue) and spectral phase of the Fourier transform (red).

Fourier transform can be used to go from temporal representation to frequency representation
it can be used to go from a wave function and position representation to wave function and
momentum representation [45]. In the field of space optics, Fourier transform is realized [46]
simply by the use of a lens for example [47]. The Fourier transform of an object placed before
a lens can be observed at the lens focus. Another common device for Fourier transform is the
spectrometer used to access the spectral content of an optical pulse [48]. However, only the
power spectral density of a pulse or |E(w)|? can be accessed without any phase information.
The typical architecture of a spectrometer is a diffracting optics (typically a grating [49]) that
diffracts different wavelengths with a different angle and a detection device such as an array of
photo-detectors. The use of a diffracting optics gives access to the Fourier plane in numerous

shaping systems [50].

1.1.3 Phase description

After the mathematical description of light and the basics of the Fourier transform this
subsection takes a look at the phase properties of a light pulse.

Dispersion

Depending on the context the term dispersion has two meanings :



6 Chapitre 1. Introduction

— when discussing the dispersion of a pulse it refers to the description of the spectral phase

of the pulse.

— when discussing the dispersion of a material it refers to the effect of a material on the

spectral phase of a pulse. This is directly contained in the frequency-dependent refrac-
tive index n(w).

The spectral phase of a pulse is defined in equation 1.15 as ¢(w). Figure 1.2 shows the
Fourier transform of a pulse with a linear spectral phase. This subsection explores the conse-
quences of the spectral phase profile on the temporal shape of the pulse. A Taylor expansion of
the spectral phase around a central frequency wy is shown in equation 1.19.

p(w) = @o+ ¢1(w —wo) + %(w — wo)2 + %(w — w0)3 + ... (1.19)

Figure 1.3 shows the Fourier transform with the different phase orders and their correspon-

ding temporal profiles. The name and consequences of the different orders are detailed below.

— @ is the 0-th order phase or the absolute phase or the Carrier Envelope Phase (CEP).
This term is the same in the frequency domain and in the time domain as :

FTIf(t)e?] = F(w)e'? (1.20)

— @1 is the first order of the spectral phase (slope) and corresponds to the group delay
(typically expressed in fs). A variation of the group delay does not modify the temporal
shape of the pulse but shifts the pulse in the time domain.

— ¢ is the second order of the spectral phase or Group Delay Dispersion (GDD, typically
expressed in fs?). A non-zero value of GDD causes symmetric temporal stretching of the
pulse by creating a time dependence of the instantaneous frequency of the light pulse
effectively spreading the arrival time of the different frequency components of the pulse.
Adding quadratic spectral phase symmetrically broadens the pulse in the temporal do-
main (figurel.3 (c)). Additionally, a quadratic phase in the temporal domain is called
chirp and the direct consequence of that is a linear dependency of the instantaneous
frequency with time. It has the following temporal equation :

E(t) = A(t)exp(—iwot + Bt*) (1.21)

where A(t) is the temporal envelope of the pulse and B is the chirp coefficient.

— @3 is the third order of the spectral phase or Third Order Dispersion (TOD, typically
expressed in fs®). A non-zero value of TOD also temporally reshapes the pulse but its
description is not as simple as with GDD. Adding third-order spectral phase creates
a very distinct asymmetric feature in the time domain. There are indeed multiple pre-
pulses visible in figure 1.3 (d) however the FWHM duration of the pulse is almost not
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FIGURE 1.3 - (a) : spectral amplitude of the example pulse in grey with three

different spectral phases : flat phase in blue, quadratic phase in red and third

order phase in green. (b) : temporal envelope of the pulse with a flat phase. (c) :

temporal envelope of the pulse with a quadratic phase. (d) : temporal envelope
of the pulse with third order phase.

The dispersion analysis is generally limited to these orders of dispersion as the impact of
the higher order is not trivial to describe and is not as essential.

As mentioned in the previous subsection accessing the spectral content of a pulse is easily
done with a spectrometer. This is only half the information however and to retrieve the com-
plete electric field information spectral phase also has to be known. Determining the spectral
phase of a pulse is however much less trivial as the direct measurement of the electric field or
of the temporal shape of a femtosecond pulse is not possible with nanosecond response time
electronics [51]. Most of the pulse measurement techniques rely on nonlinear optics or interfe-
rometry and will be described in the following sections.

The control of the spectral phase of a pulse has been used for numerous applications. One
of the most famous ones in ultrafast optics is called chirped pulse amplification (CPA) [52]
for which the 2018 Nobel Prize in physics was awarded. In this amplification technique, the
pulse is temporally stretched by adding second-order spectral phase before amplification. This
drastically reduces the peak intensity resulting in a more effective amplification. The pulse is
then re-compressed by compensating for the introduced spectral phase. Spectral phase ma-
nagement is also used in the chirp-managed directly modulated laser [53]. It is a modulation
technique used in telecommunication for highly dispersion-tolerant long-distance communica-
tion. Long-distance telecommunication is a field requiring dispersion management to transmit
information. The typical optical fiber used for telecommunication is called SMF-28 [54, 55]. It
is a glass step-index optical fiber with a maximum transmission at the wavelength of 1550 nm
(the most common telecommunication wavelength). At this wavelength however and with this
core diameter the dispersion inside the fiber (both from the glass dispersion and the waveguide
dispersion [56]) is not zero. As a consequence, the temporal shape of a pulse propagating for a
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long distance in such a fiber will be stretched. This motivated the development of dispersion
compensation techniques [57] or dispersion shifted fibers [58].

All the phase properties considered here were in the time or equivalently in the frequency
domain assuming perfect homogeneity in the spatial domain. The next subsection studies the
properties of the spatial phase of a light beam.

Spatial phase aberrations

The spatial phase of optical beams describes the phase of the electric field in the transverse
plane of propagation. It is a 2-dimensional quantity that is most commonly decomposed using
the Zernike polynomials which are mathematically expressed as follows :

Zy' (0, ) = Ry (p) cos(me) (1.22)
Z,"(p, @) = R}/ (p) sin(me) (1.23)

where n and m are positive integers and R} functions are the radials polynomials defined
as follows :

m e Vet O L
R = 1.24

Figure 1.4 shows the 16 first Zernike polynomials.
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FIGURE 1.4 - 16 lowest order Zernike polynomials. Figure reproduced from [59].

These 2D polynomial functions describe the common optical aberrations. The aberrations
are shown with increasing polynomial order. Orders 0 (Z1) and 1 (Z2 and Z3) are an offset and
a tilt in the spatial phase and are irrelevant to this thesis. Order 2 is made of the focusing aber-
ration (Z4) and the astigmatism aberration (Z5 and Z6). Order 3 is made of the coma aberration
(27 and Z8) and the trefoil aberration (Z9 and Z10). Finally, order 4 is made of the spherical
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aberration (Z9), the secondary astigmatism aberration (Z12 and Z13), and the quadrafoil aber-
ration (not shown here).

Much like a spectrometer gives no information on the spectral phase, a simple intensity
measurement via a camera gives no information on the spatial phase. There are many wave-
front measurement techniques available such as Shack-Hartmann wavefront sensor [60], py-
ramid sensor [61] or shearing interferometry [62] among others [63]. In this work, only the
Shack-Hartmann technology will be used as presented in appendix C. Alternatively, analyzing
the far field of the beam gives partial information on the wavefront. This is typically achieved
by looking at the beam profile at the focal plane of a lens or mirror.

Phase manipulation is also realized in the spatial domain. Its most simple example is the
use of focusing optics. More advanced applications exist such as arbitrary wavefront shaping
using a spatial light modulator [64-66]. Wavefront shaping is also an essential component of
the 4f pulse shaper [67]. Wavefront shaping additionally has a plethora of applications outside

of optics in biomedical science for example [68].

1.2 Interferometry

After mathematically describing a single light pulse and its associated phase this section
studies the interactions between multiple pulses and specifically the interference phenomenon.

1.2.1 Principle

Let us first consider the most basic example of two monochromatic waves with the same
wavelength, whose complex amplitudes are respectively named E;(r) and E;(r). The coherent

addition is expressed as :

E(r) = E1(r) + Ex(r) (1.25)

For the convenience of reading the explicit dependence on r will be omitted in the following

equations. The intensity of the total wave is then :

I=|E|? (1.26)
I = |E]* + |E2]* + E{E> + E1 E3 (1.27)
Substituting the expressions of E; and E; in equation 1.26 by E; = L6t and E; = /Te'?

gives this new expression of the total intensity :

I=1+IL+2v/LIcos(¢) (1.28)
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where ¢ is the phase difference between the two waves ¢ = @ — ¢;. Assuming waves of
the same intensity Iy the equation writes :

I =2Iy[1+ cos(¢)] (1.29)

The intensity is oscillating with the phase difference between the values of 0 and 4Iy. Now
let us consider the particular case of two co-propagating plane waves with a delay distance d
such that E; = /Ipe ** E;, = /Tpe *(#=49)_In this case the phase difference is ¢ = kd = @
and the total intensity is :

=2l [1 + cos <Z7f\”d>] (1.30)

Interferometers are based on this principle. In an interferometer, a wave is split into two
waves using a beam splitter. The two waves are delayed an unequal distance and then recombi-
ned. As the intensity profile depends on the delay 4, the refractive index 1, and the wavelength
A ; interferometers can be used to measure small variations of all these parameters.

So far only perfect coherence has been studied. Partial coherence is considered by introdu-
<ET Ey>

cing the correlation between the two waves g1o = Jih and the total field becomes :
I=L+DL+2y IllzRE(glz) (1.31)

where ¢ = arg(g12). In the extreme case where the waves are perfectly correlated g1, = €%
which comes back to equation 1.28. In the other extremum of complete decoherence g1» = 0,
there is no interference. Any case in between can be described by introducing the visibility or
contrast of the interference. It is defined as :

Imax - Imin
V=r-— 1.32
Imax + Imin ( )
I(t) = (Ih + L) [1 4 Vcosg] (1.33)

In the particular case where I; = I the visibility is :

V = |g12| (134)
I(7) = 211+ Re(g12)] (1.35)

In the case of two identical delayed waves (delay 7) the correlation can be defined as a

function of delay g1 = g» = g(7) and the intensity now takes the following form :
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I(t) =2Ip [1+ |g(T)| cos ¢(T)] (1.36)

Taking the following coherence function as an example g(7) = g,(7)e’07 the temporal
coherence T, of the wave is defined by the width of |g,(7)|. It is linked to the spectral bandwidth
of the wave by 7. = 5. The direct consequence of this is the lower coherence time for pulsed
light compared to monochromatic waves.

When the waves are polychromatic the resulting signal is in this case as derived in [38] :

I(t) = 2/0+Oo S(w)(1+ cos(wT))dw (1.37)

where S(w) is the Fourier transform of the real part of the correlation function g,(7).

This can be interpreted as the superposition of all the interferences between the monochro-
matic waves of the pulses.

One of the most famous applications of interferometry is the Michelson and Morley expe-
riment in 1887 [69] leading to the theory of special relativity. Michelson interferometer can be
used as narrow-band optical filters [70] or to measure the oscillator strengths of atomic tran-
sitions in sodium vapor [71]. The latter was accomplished by placing sodium vapor in one of
the arms of a Michelson interferometer and studying the interference pattern. Multiple-wave
lateral shearing interferometry is used as a sensitive wavefront measurement technique [72].

Interferometry also has applications outside of physics in biomedical fields for example.
Optical coherence tomography [73] is a technique based on low coherence interferometry used
to visualize internal tissue microstructures. Finally, angle-resolved low coherence interferome-
try [74] allows the measurement of the size of sub-cellular objects such as the cell nuclei.

1.2.2 FTSI

This section focuses on spectral interference and in particular on Fourier Transform Spectral
Interferometry (FTSI) [75]. The purpose of this technique is to access the spectrally-resolved
phase difference between two polychromatic waves. Let us consider the interference of two
electric fields E; and E; on a spectrometer. The temporal delay between the two fields is 7. The
respective Fourier transforms of these fields are Ej(w) and E;(w). The total intensity in the

Fourier domain is then :

E(t) = El(t) + Ez(t - T) (1.38)
[(w) = [Ey(w) + Ea(w)eT|? (1.39)
I(w) = |Ey(w)]? + |Ea(w) > + f(w)exp(iwT) + f*(w)e T (1.40)
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where |E1(w)|? and |Ex(w)|? are the spectral intensities of the two electric fields and f(w)
is the interference term between E; and E; (f(w) = Ej(w)E;(w)). The first step of the FTSI

algorithm is to take the inverse Fourier transform of the spectral intensity :

FTHI(w)] = E{(=1) @ Er(t) + E3 (=) ® Ea(t) + f(t = T) + f*(~t = T) (1.41)

The first two terms are the auto-correlations of the two individual electric fields and are cen-
tered around ¢t = 0. The two last terms are the cross-correlation functions centered at t = T and
t = —7 respectively. As the auto-correlations do not contain any phase information according
to the Wiener-Khinchin theorem they are numerically filtered out and only the component at
t = 7 is kept. This is only possible if the value of T is large enough to temporally separate the
three components. f(t — 7) is then Fourier transformed back in the frequency domain to get

w)el“T. The amplitude and phase of this term are :
p p

iwr)

arg(f(w)e?) = ¢r, — g, + w1t (142)
|f(w)eT| = |Ey(w) || E2(w))] (1.43)

As equation 1.42 shows the phase difference between the two waves is encoded into the
interferogram and accessible through the algorithm described here. In the particular case where
Ei(w) = Ex(w) = E(w) the equations become :

I(w) = |[E(w)(1+€“T)|? (1.44)

[(w) = |E(w)[*(2 + e “T +e7'wT (1.45)
FTUI(w)] = 2E*(—t)  E(t) + f(t — 1) + f*(—t — 1) (1.46)
arg(f(w)e“?) = wt (1.47)
|f(w)e“T| = [E(w) (1.48)

The different steps of the algorithm are presented in this configuration of identical waves
in figure 1.5. This is entirely simulated with two spectra centered around the central frequency
of 300 THz. The spectral bandwidth of the pulses is 10 THz FWHM and the temporal delay is
1.5ps [76].

In this example, the two pulses are identical so the phase is as expected purely linear. In
the more interesting case where the two electric fields are not identical the phase extracted
and shown in figure 1.5 (c) would not be linear but would be the spectrally resolved phase
difference between the two waves.

Fourier transform spectral interferometry is part of a family of techniques called spatially
and spectrally resolved interferometry (SSRI). It is a technique based on interference with tilted
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FIGURE 1.5 - (a) : interference pattern around the central frequency of 300 THz.
(b) : inverse Fourier transform of the spectrum in figure (a). The central peak is
the auto-correlations of the individual waves and the terms at +/-7 are the inter-
ference terms. The temporal filter is plotted in orange and selects the component
at +7 to Fourier transform back. (c) : Fourier transform of the signal selected in
(b). The spectral amplitude is the envelope of the original spectral fringes and the
spectral phase is linear with a slope of 1.5 ps matching the temporal delay bet-
ween the two pulses.

wavefronts and spectral resolution [77]. This technique has been used to determine the dis-
persion of thin metallic layers [78] or of dispersion compensating laser mirrors [79]. In more
recent years SSRI has been used to characterize laser pulses [80] or even to characterize attose-
cond pulses [81]. The technique can be extended with the use of a broadband light source such
as a supercontinuum source [82, 83]. SSRI can also be used in pump-probe experiments as in
[84] where a spectral interferometer is coupled to a Sagnac interferometer to take single-shot
measurement of both the difference transmission and the difference phase spectra. In [85] spec-
tral interferometry is used to precisely determine the group delay of the pulse stretcher and

compressor of a CPA system.
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Among this family of techniques is the more specific self-referenced spectral interferometry
(SRSI) [86, 87] used for pulse characterization. This is the technique used in the Wizzler (Fast-
lite). SRSl is a pulse characterization technique based on the generation of a replica of the pulse
to characterize with a flat spectral phase. The spectral interferogram resulting from the inter-
ference between the original pulse and its replica then yields the spectral phase of the original
pulse.

In this thesis, spectral interference is particularly interesting as it will be widely employed

for metrology and phase noise analysis of nonlinear processes in chapters 2, 4 and 5.

1.3 Nonlinear optics

So far all the phenomena described were part of linear optics. In other words, it was confi-
ned to the interaction verifying the superposition principle. This section focuses on nonlinear
optics by studying multi-photon processes such as Difference Frequency Generation (DFG) or
the Optical Kerr Effect (OKE). The field of nonlinear optics historically started shortly after the
invention of the laser with the discovery of the Second Harmonic Generation (SHG) [88]. It is
the interaction of two photons at an identical frequency where a single photon with double the
energy is generated.

Most of the formalism derived hereafter was largely inspired by [12].

In linear optics, the polarization vector is directly proportional to the electric field as shown

here :

P(t) = eox\WE(t) (1.49)

where ¢ is the permittivity of free space and x(V) is the linear susceptibility. This equation
can be generalized to express the polarization as a power series of the electric field ignoring in
this case all the delayed effects :

P(t) = e ) _(x"WE (1)) (1.50)

k
P(t)=Y_pW (1.51)
k

where x(?) is the second order susceptibility and x(®) is the third order susceptibility. Equa-
tion 1.50 can be written in a vectorial form to be more general. In this case x(?) and x(®) are
second and third order tensors respectively.

Starting from the Maxwell equation the following wave equation can be derived for an
electric field at a frequency w;, :
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(1.52)
Nonlinear optics can be described using the wave equation as well as nonlinear polari-
(DFG).

zation. The derivation will be made for the specific case of Difference Frequency Generation
1.3.1 OPA/DFEG

Difference frequency generation is a second-order nonlinear effect. In this case, we consi-
der a lossless nonlinear medium and collimated, monochromatic, and continuous waves. The

waves propagate on the nonlinear medium with normal incidence so all refraction effects will
be ignored. Figure 1.6 shows a diagram of the configuration.

» O, =0 -0
3 2

FIGURE 1.6 — Figure modified from 2.2.1 from [12].

All three fields must respect the wave equation 1.3. The electric fields E; and the nonlinear
polarization P; take the following forms :

Ei(z,t) = Aje'kiz=@it) 4 ¢ c.
Pl'(Z, t)

(1.53)
= Peitkiz—wit) 4 ¢ e,
where A; is a constant. This approximation is valid as long as the nonlinear source term

(1.54)
(P;) is small. In this case, we assume the wave at frequency ws is a strong wave essentially
following expression :

undepleted by the process. This allows us to consider it a constant for this process. P, has the

P, = 2eox P E3E}
where :

(1.55)



16 Chapitre 1. Introduction

E1,3 = A1,3€ik1'3z (156)

Substituting into the amplitude of the polarization gives :

Py = 2epx? Az Afeltha—h)z (1.57)

Finally substituting this into the wave equation where V is simply the second derivative
with position in this particular case gives :

2 1 2
P g2 _igpy 4 ECGA | )
0z2 0z c?
2),,2
— _WAgAi‘eiKks—kﬂz—wzﬂ +eoc. (1.58)

After simplification, the equation takes the following form :

%A,
072

2 (2) 2 A .

Under the slowly varying envelope approximation the first term vanishes finally giving this

wave equation :

oAz _ ixPw
9z koc?

2 .
2 A3 Ajet™= (1.60)

where Ak = k3 — k1 — k; is called the wave vector mismatch. Equation 1.3.1 is called the
coupled-wave equation as it describes the amplitude of the E; electric field through its coupling
with E; and E3. An analog derivation can be done for field 1 by giving the following coupled-

wave equation :

dA ix@) 2 . i
o XklczlAzAge iakz (1.61)

If the particular condition of Ak = 0 the configuration is known as perfect phase matching.
The condition for perfect phase matching can be expressed as :
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mwi  Npw3  N3Ws (1.62)
c c c '

w
m—%zZOh—nﬁai (1.63)

In a medium with normal dispersion, the refractive index at frequency w> is higher than
at ws. The same is true for the frequencies w; and w,. This makes equation 1.3.1 impossible
in a normal dispersion medium unless the medium is birefringent. Birefringent media have
different refractive indices depending on the polarization direction. This allows the phase mat-
ching condition to be respected in a normal dispersion medium simply by adjusting the crystal
angle and the input beam polarization. One of the most common crystals for second-order
nonlinear effects including DFG is f-Barium-Borate (BBO). In perfect phase matching configu-
ration, the coupled-wave equations take this form for w; :

Ay _ 2wiwi(x®)
822 - k1k2C4

A3 A% A, (1.64)

2w2w3 (x?))?

Introducing x? = As|? gives the new equation :
g g q

k1k2C4
with a solution :
Ay(z) = Csinh(xz) + D cosh(kz) (1.66)

where C and D are integration constants. Finally with the boundary condition of A;(0) = 0
the solution is :

A1(z) = A1(0) cosh(kz) (1.67)
Ao(z) =i Zlii’g;AT(O) sinh(xz) (1.68)

Both wy and w; fields show exponential growth with position. The field w; maintains its
original phase whereas the phase of the w field is the phase difference between the field at
w3 and the field at w;. This property is essential when it comes to passive CEP stabilization
through the DFG process. The result of this process is an energy transfer between the frequency
w3 (pump) to the two waves at frequencies w; (signal) and w, (idler). As a result, the signal
wave gets amplified by a parametric process (DFG). This is then also called Optical Parametric
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Amplification (OPA) and is the base process of the sources called optical parametric amplifiers.
A particular category of these sources combining OPA and chirped pulse amplification (CPA)
[21] is called Optical Parametric Chirped Pulse Amplification (OPCPA) [89]. An example of
such a source will be described extensively in section 3.3.

1.3.2 Quasi-phase-matching

The phase-mismatch Ak was introduced in the previous section as well as the condition of
perfect phase matching Ak = 0 for an efficient OPA process. If the OPA crystal is not birefrin-
gent this condition can not be met. When normal phase-matching can not be implemented a
technique known as quasi-phase-matching can be implemented. Figure 1.7 shows a periodi-

cally poled crystal diagram.

(a) T

SO
A

FIGURE 1.7 - Figure from [12]. Schematic representations of a second-order non-

linear optical material in the form of (a) a homogeneous single crystal and (b) a

periodically poled material in which the positive c axis alternates in orientation
with period A.

In a periodically poled crystal, the crystal orientation (c axis) is periodically inverted. As
a result, the sign of the nonlinear coupling coefficient d, s is periodically alternated. Figurel.8
compares the field amplitudes in the three cases of perfect phase matching, phase mismatch,
and quasi-phase-matching.

The period of the material poling is chosen so that when the field amplitude would decrease

(curve (c)) the crystal axis is flipped causing the field amplitude to keep growing.

1.3.3 Sum frequency generation

In an analog fashion to DFG, the process of summing the frequency of two photons is called
sum frequency generation (SFG). When the process happens with a single beam it is referred
to as second harmonic generation (SHG). The derivation of the coupled wave equations is ex-
tremely similar to what was done in section 1.3.1. The expression of the equations is as follows
for the SFG process of w3 = wy + wy (with wy # wy) :
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L (b) with quasi-phase-matching

I (c) with a wavevector
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FIGURE 1.8 - Figure from [12]. Comparison of the spatial variation of the field
amplitude of the generated wave in a nonlinear optical interaction for three dif-
ferent phase matching conditions. Curve (a) assumes that the phase-matching
condition is perfectly satisfied, and consequently, the field amplitude grows li-
nearly with propagation distance. Curve (c) assumes that the wavevector mis-
match Ak is nonzero, and consequently, the field amplitude of the generated wave
oscillates periodically with distance. Curve (b) assumes the case of a quasi-phase-
matched interaction, in which the orientation of the positive c axis is periodically
modulated with a period of twice the coherent buildup length L., to compen-
sate for the influence of wavevector mismatch. In this case, the field amplitude
grows monotonically with propagation distance, although less rapidly than in
the case of a perfectly phase-matched interaction.

o _ ix

ey Az Atk (1.69)
JA iv(2) 2 .
2 71Xk2c‘2"2 Az Ajeit (1.70)

where Ak = k3 — k1 — ky is called, the wave vector mismatch. Equation 1.3.1 is called the
coupled-wave equation as it describes the amplitude of the E; electric field through its coupling
with Eq and E3. An analog derivation can be done for field 1 by giving the following coupled-

wave equation :

0A3 i)((z)a%
9z ksc?

Ay Ape™ 1Dz (1.71)

The phase matching considerations are also similar to what was introduced for DFG.
The effects of DFG and OPA presented in this section are second-order nonlinear effects.
The most basic second-order effect is second harmonic generation [13]. Second harmonic ge-

neration is used in most commercial green laser pointers as well as in high power high beam
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quality lasers [90]. The incoherent process analog to second harmonic generation is called two-
photon absorption and can be used for high-resolution microscopy [9] for example. An analog
effect called sum-frequency generation (SFG) is used in pulse characterization techniques such
as auto-correlation [91] or FROG [12]. SFG has a similar principle to SHG using two different
pulses. Both these characterization techniques are based on the nonlinear autocorrelation ex-
perimentally realized by SFG between two delayed replicas of the original pulse. The only
difference between the two techniques is the detection which is a simple photodiode for the
autocorrelation and a spectrometer for the FROG. In the case of autocorrelation, only the pulse
duration can be retrieved whereas FROG gives complete electric field reconstruction. SFG can
also be used to create laser sources mostly in the visible [92] and in the UV [93]. SFG can also
be used as a spectroscopy method exploiting the surface SFG [94]. After the description of
second-order nonlinear effects, section 1.3.4 describes the main third-order nonlinear effect cal-
led Optical Kerr Effect (OKE).

1.3.4 Kerr effect

The refractive index of a material depends on the intensity of the light propagating in the
material. This section describes the origin of this effect called the Kerr effect and describes some
of its immediate consequences. The third-order non-linear polarization vector is expressed as :

PNE = 3epx %) (w = w 4 w — w) |E(w) [*E(w) (1.72)

Writing the total polarization vector ignoring all the other nonlinear order gives :

pToT _ eox(l)E(w) + 360X(3)\E(w)\2E(w) (1.73)
pToT _ €oxesrE(w) (1.74)

where :
Xeff = XV + 3¢ |E(w)|? (1.75)

The refractive index is generally expressed as :

n* =1+ Xeff (1.76)

This gives a dependence of the refractive index on the square of the amplitude of the electric
field as follows :
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n(w) = no(w) +na(w)|E(w)[? (1.77)
n(w) = no(w) +na(w)I (1.78)
where :
ng = /14 xM® (1.79)
(3)
1y = 32; 0 (1.80)

ng is then called the linear refractive index and n, is the nonlinear refractive index depen-
ding on the intensity of the light. This equation is valid when only one field of light is consi-
dered. When there are two beams of light E(w) and E(w’) named pump and probe being high
and low intensity respectively. In this case, the nonlinear polarization vector for the field w’ has
the following form :

PNE (W) = 6ex® (w' = ' + w — w)|E(w)|*E(w") (1.81)

The value of the nonlinear refractive index in the case of this cross-coupling effect is :

= (1.82)

The magnitude of the nonlinear refractive index, in this case, is twice as high as in the case
of the self-induced effect. In this whole section so far the tensor nature of the nonlinear suscepti-
bility has been ignored as the fields considered implicitly always had the same polarization. In
reality x(®) is an 81 coefficient tensor to account for all the polarization configuration. Naturally,
when the nonlinear material has some symmetry properties the associated tensor coefficients
will be identical. In the simplest case of an isotropic material for example the diagonal terms
are all identical. The intensity dependence of the refractive index has two main consequences
in the spatial domain and in the temporal domain : self-focusing and self-phase modulation

respectively.

Self-focusing

Let us assume a light pulse with a Gaussian spatial profile in the transverse plane of propa-
gation. If we assume a material with a positive 1, the refractive index then also has a Gaussian
profile in space with a maximum value at the center of the beam. This is exactly analog to the
refractive index of a lens causing the beam to focus. The focusing distance in the material zf
can be calculated using Fermat’s principle. The refractive index of the material is called 1y and
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is the refractive index value at the edge of the beam. 1 + 121 is the value of the refractive index
in the center of the beam. Fermat’s principle states that the optical path length of all rays of the
same wavefront must be identical. Defining 6 as the angle between the edge of the beam and
the central ray in the material then gives the following relation :

_ Moy
(no + le[)Zsf = o st (1.83)
In the small angle approximation cos(fsf) = 1 — %Ozf giving :
. 21’[21

This is known as the self-focusing angle and allows the calculation of the self-focusing dis-

tance zf = 3’—3 which is the distance where the pulse will focus because of self-focusing :

1o
Zsf = Wy TZI (185)

Self-phase modulation

Let us now ignore all spatial effects and focus on the temporal consequence of the OKE. Let

us assume a pulse with the following shape :

E(z,t) = A(z, t)e!koz=wot) 4 ¢ ¢, (1.86)

The time-dependent refractive index can be expressed as :

n(t) = ng+ nal(t) (1.87)

where I(t) = 2npeoc| A(z,t)|?. The consequence of the time-dependent refractive index is a
time-dependent phase shift that has the expression :

PnL(t) = —nal (t)wo% (1.88)

As a result of the nonlinear phase shift, the spectral content of the pulse is broadened. This
can be mathematically expressed by taking the Fourier transform of the pulse :
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S((U) — |/A(t)e(_iwot_i¢NL(t)€thdt|2 (1.89)

This gives a complete description of the spectral content of the pulse. A simpler picture can
describe the spectral broadening via the instantaneous frequency of the pulse as a function of

time. The frequency of the pulse can be described as :

w(t) = wo+ d‘ZTL () (1.90)

In the case of a Gaussian pulse in intensity figure 1.9 shows the temporal nonlinear phase

and the associated frequency shift.
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FIGURE 1.9 - (a) : gaussian nonlinear phase shift in time. (b) : associated instan-
taneous frequency variation.

Self-phase modulation is widely used as a frequency-broadening technique. It is used in
pulse post-compression schemes in hollow-core fibers [95] or in multi-pass cells [96]. Self-
focusing can be used to fabricate microstructure in materials [97]. Self-focusing is also a li-
mitation to the peak power that can propagate in amplifiers [98]. Above a certain power, the
beam collapses leading to the generation of plasma in the medium [99]. These two phenomena

are an essential part of the filamentation process [100].
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1.3.5 Filamentation

Filamentation is a regime of propagation where the light is confined to a tight effective area
over macroscopic distances of propagation [101]. Filamentation can happen in gases [102] or
in condensed media [103]. Many processes are involved in the filamentation process. The main
one is the Kerr effect described in the previous subsection. When the self-focusing of the beam
is stronger than the divergence of the beam the beam size will naturally decrease because of
self-focusing. This is defined by the relation :

Ouir = O (1.91)

where 0;y is the self-focusing angle and 0,7 = 0.61%”1 is the diffraction angle. 65y depends
on the beam power which allows the definition of the critical power for which equation 1.91 is

met. Injecting the two angle values in the equation gives the following relation :

(0.61)2A2
[=——"— 1.92
2n0n2d2 ( ? )
(0.61)%A2
Perit = (8 7) (1.93)
nona

This model only includes self-focusing and diffraction balance. Ignoring every other inter-
action the beam would collapse to a singularity after the distance z; defined in equation 1.85.
zf can also be defined as a function of P;; to be [101] :

0.367 271/ \ * a2
Zf =
\/ (vV/P/Peyis — 0.852)2 — 0.219

(1.94)

In reality, many mechanisms stop the beam collapse such as multi-photon absorption [104],
group velocity dispersion [105], the saturation of the Kerr effect [106], nonlinear absorption
[107], nonlocal effects [108], avalanche breakdown [109] and nonparaxial effect [110]. All these
processes counteract the self-collapse of the beam. Which mechanism contributes the most de-
pends on the material [111] and the community is not clear cut on the most significant ones
[112]. In the bulk case, the significant mechanisms are group velocity dispersion and plasma de-
focusing [113, 114]. When the beam is focused tightly due to self-focusing the intensity reaches
a small fraction of the ionization potential. As a consequence the probability of multi-photon
ionization becomes significant and the medium gets ionized generating a plasma. When the
field intensity is even higher the main ionization mechanism becomes tunneling ionization. A
consequence of the plasma generation is a local reduction of the refractive index according to

the law :



1.3. Nonlinear optics 25

p(rt)
20.

n=mng—

(1.95)

where p(7, t) is the electron density and p, is the density corresponding to the critical plasma
density above which the plasma becomes opaque.

The result of the interplay of all these effects is a peculiar structure where the regime of
propagation is non-Gaussian without diffraction. This allows the pulse to propagate with peak
intensity above the TW/cm? over long distances (a few mm in bulk). Despite the highly nonli-
near effects at play the beam quality and short pulse duration are conserved. The beam profile
during filamentation always has a Townes beam profile [115]. Most of the pulse energy is not
contained in the filament itself. 90% of the pulse energy is contained in what is called the pho-
ton reservoir around the filament [116]. The reservoir is essential to maintain the filamentation
regime [117] and the filaments break down once the energy in the reservoir gets too low. It
is decreased by multiphoton absorption or plasma absorption [107]. Another consequence of
the filamentation is the intensity clamping [118]. Because filamentation is the result of the self-
focusing effect and the various defocusing contribution that all depend on the pulse power
the intensity inside the filament is very stable. This specific value depends on the material but
is typically of the order of 10'* W/cm? [100]. The propagation over multiple millimeters with
such a small diameter and high pulse energy translates into a high amount of nonlinear effect.
One of these effects is called self-steepening. It causes the temporal shape of the pulse to exhi-
bit a steep slope on the front edge of the pulse. This is a consequence of the Kerr effect and the
Gaussian temporal profile of the pulse where the central part experiences a higher refractive
index. It is illustrated in figure 1.10.
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FIGURE 1.10 - Figure from [101].
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A third effect after self-focusing and self-steepening arises from the Kerr effect : self-phase
modulation. As previously described it causes spectral broadening (so does self-steepening and
ionization in a non-symmetrical fashion) and is one of the reasons filamentation can be used as
a seed for optical parametric amplification [119].

The structure of a filament looks like the diagram from figure 1.11.

FIGURE 1.11 - Figure 6 from [100].

Filamentation is a complex process where many processes interplay as briefly explained.
As such the simulation of all these processes is challenging. Several models were developed
to describe filamentation. The non-exhaustive list includes : the moving focus model [116], the
slowly varying envelope [120], the soliton description [121], and the nonlinear Schrddinger
equation approach [122, 123]. The latter seems to be the most successful approach. Despite
many of these simulations focusing on the simulation of filamentation in gases, some work on
condensed state media exists [121, 124].

Filamentation is a regime of propagation where the light is effectively collimated at a small
effective diameter over relatively long distances. Filament generated in bulk is used as a seed
to OPA [35] and will be the main focus of chapters 4 and 5. Filamentation can also be used as
an engraving mechanism to write waveguides in glass for example [125].

1.4 Context with SMART-X and Softlite

This Ph.D. is part of the common laboratory "Systémes organiques pour le Filtrage Tem-
porel des Impulsions Femtosecondes" (Softlite) between the company Fastlite and the institute
Institut Physique de Nice (INPHYNI). This laboratory is focused on the study of liquid crys-
tal devices to manipulate femtosecond laser pulses. Thermo-optically addressed liquid crystal
spatial light modulators were developed [64] and the current focus of Softlite is the characte-
rization of such devices [126, 127]. The goal of this device is to serve as a flexible shaper for
femtosecond optics.

This Ph.D. was funded by the European Union as part of Marie Sklodowska Curie Actions
(MSCA). It is part of the Innovative Training Network (ITN) on the Study of carrier transport
in MAterials by time-Resolved specTroscopy with ultrashort soft X-ray light (SMART-X). The
ITN is focused on X-ray ultrafast spectroscopy with an emphasis on the carrier dynamics of
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novel materials for energy supply and storage. The goal of the network is the development
of table-top ultrafast X-ray spectroscopy in the condensed phase. The network is made up of
15 early-stage researchers spread throughout 7 European countries. The researchers work in
8 research institutions and two high-tech companies including Max-Born Institut, Stockholm
University, Politecnico di Milano, or Greateyes. The research conducted spans various topics
around X-ray spectroscopy ranging from source development (this work), sample preparation
and characterization [128], X-ray spectroscopy theory [129] and experiments [130]. The Ph.D.
thesis aims at pushing the understanding of OPCPA development, particularly as sources for
soft X-ray tabletop generation.

1.5 Objectives of the thesis

This thesis has two main topics : the characterization of the nonlinear refractive index (and
other terms of the third order nonlinear susceptibility tensor) of crystals relevant for OPC-
PAs via a novel method and the study of the coherence of the supercontinuum generation
in bulk crystals as a potential source of CEP noise. Chapter 2 presents a novel optical Kerr
effect spectroscopy method called nonlinearly chirped interferometry. It will be used for the
characterization of common crystals used in the optical parametric amplification of near and
mid-infrared light with a 1030 nm pump pulse and for the characterization of liquid crystals
(previously not done in the femtosecond regime). Chapter 3 will discuss the current state-of-
the-art of CEP-stable sources and focus on the optical parametric chirped pulse amplifiers. It
will end by presenting a CEP-stable OPCPA and motivating the study of the coherence of bulk
supercontinuum generation. Chapters 4 and 5 will study the coherence properties of bulk su-
percontinuum generation in the experimental conditions of seed generation of near or mid-IR
OPCPA. Chapter 4 presents the conditions of WLG as well as the experimental setup used for
coherence characterization which is a modified version of the Bellini-Hénsch interferometer
[131] with spectral detection. Chapter 5 conducts a parametric study of the WLG process by
isolating the generation parameters and studying their influence on the coherence of the WLG
process. Among the investigated parameters are the pulse energy, the crystal position, and the
spatial phase. The contribution of each parameter to the stochastic phase variations is quanti-
fied and optimal generation regimes are identified.
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Chapitre 2

Third-order susceptibility metrology

The third-order nonlinear susceptibility tensor x® quantifies the material response in re-
sonant and non-resonant four-wave mixing processes. This includes the well-known optical
Kerr effect (OKE) through the diagonal terms of the tensor as well as some other processes
such as cross-polarized wave generation [132]. As the optical Kerr effect appears in all mate-
rials regardless of their symmetry properties, they are omnipresent processes. For the specific
case of optical parametric amplification, peak intensity in nonlinear crystals can reach or exceed
100 GW /cm? [35]. Ignoring third-order nonlinear effects such as self-focusing or self-phase mo-
dulation, in this case, is not realistic. Such high peak intensity indeed causes a significant ac-
cumulated nonlinear phase (B integral) to the pulses. As a result, their temporal and spatial
shapes are significantly modified. Plethora of spectroscopic techniques devoted to x(®) terms
measurement have been developed in the last decades as detailed in section 2.1. In our group,
we have introduced a novel method, "nonlinear chirped interferometry" to characterize the
third-order nonlinearity at the femtosecond and picosecond time scale. This method is a three-
beam experiment where a reference beam is used to monitor the relative optical group delay
of a probe beam under the influence of an intense pump in a given nonlinear medium. Spec-
tral interferometry is used to monitor the transient delay variation of the probe beam inside
the nonlinear medium. It will be shown that this transient group delay change is proportional
to the nonlinear phase shift under specific chirp conditions of the three involved beams. The
method is intrinsically less sensitive to environmental phase drifts although interferometric. It
is applied for the characterization of liquid crystals (under the funding "Ultrafast Nonlinear
Optics in Liquid Crystals" UNLOC by the Agence Nationale de la recherche) and crystals rou-
tinely used for optical parametric amplification. This was a collective work between Elizaveta
Neradovskaia, Aurélie Jullien, Nicolas Forget, and me. I was involved in the setup characteri-
zation, calibration, and usage to characterize the materials previously mentioned. Two articles
were published out of this work. The first one [133] details the principle of the method and the
second one [134] gives the results obtained in the characterization of liquid crystals and OPA

crystals.
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2.1 Third-order susceptibility tensor characterization techniques

Characterizing the x(®) tensor of a medium started much before the invention of the Z-scan
method [135, 136] in 1989 by Mansoor Sheik-Bahae. The pioneering techniques are based on
optical third harmonic generation [137], ellipse rotation [138], photo-acoustics [139], and dege-
nerate four-wave mixing [140]. Z-scan however quickly became the standard characterization
method. In this method, the nonlinear sample is moved along the propagation direction of a
beam near its focus (+/- Z in figure 2.1). The amount of nonlinear phase and nonlinear absorp-
tion experienced by the pulse depends on the peak intensity, hence on the sample position.
Monitoring the transmitted power through an aperture as a function of the sample position
allows the retrieval of the nonlinear index. If the aperture is completely open, only the imagi-
nary part of the nonlinear refractive index (two-photon absorption, TPA) is measured. Partially
closing the aperture gives access to the real part of the nonlinear refractive index, which is res-
ponsible for self-focusing or defocusing. This technique involves a single polarization and a
single central wavelength, only allowing the retrieval of the diagonal degenerate terms of the
x® tensor. The addition of a half-wave plate before the sample gives access to the anisotropy
of the medium [141]. This technique can detect nonlinear phase shifts of 50 mrad.

SAMPLE APERTURE

. J

D2

-Z t—y +Z

D1

FIGURE 2.1 - Diagram of the Z-scan method where the power ratio B2 is recor-
ded as a function of the Z position.

In the next decade, the group of Mansoor Sheik-Bahae came up with some improvements
to the original Z-scan method. In the eclipsing Z-scan [142], the aperture is replaced by an
obscuration disk that blocks most of the beam and only transmits a thin halo of light. The
amount of transmitted power depends again on the self-focusing in the medium. While the
standard Z-scan can detect wavefront distortion of the order of A/300 with a Signal to Noise
Ratio (SNR) of 1, eclipsing Z-scan brings this value down to A /10000.

Two-color Z-scan [143] measures non-degenerate nonlinearities. A second harmonic gene-
ration crystal and a polarizer are added before the focusing lens. A variable portion of the
pump laser is frequency doubled to serve as a probe or a pump. The probe intensity is mo-
nitored as a function of the sample position giving access to non-degenerate TPA coefficients
and cross-phase modulation effects. The pump and probe pulses can be S or P-polarized in-
dependently, measuring diagonal and off-diagonal terms of the tensor. The main drawback of
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the two-color Z-scan is the impossibility to discriminate between the instantaneous and the
delayed nonlinear response of the media due to a fixed delay.

Time-resolved two-color Z-scan [144] adds an additional adjustable time delay between the
second harmonic and the fundamental pump. Performing Z-scan measurements with different
pump-probe delays as well as delay scans for different Z positions gives complete information
about the instantaneous and delayed nonlinear response of the media.

Other characterization techniques have emerged, such as time-resolved interferometry
[145], single shot supercontinuum interferometry (SSSI) [146], spectrally resolved two-beam
coupling (SRTBC) [147, 148], cross-phase modulation, frequency shift measurement [149] or
chirped spectral holography [150] :

— Time-resolved interferometry is a three-pulse measurement, a standard pump-probe ex-
periment with the addition of a reference pulse sampled from the same driving field.
Monitoring the amplitude and phase of the spatial interference pattern between the
probe and reference pulses as a function of pump-probe delay gives all the information
about the nonlinear refractive index.

— Single-shot supercontinuum interferometry is another three-pulse interferometric expe-
riment. In this case, the probe and reference beams are twin supercontinua generated
in air, and instead of detecting a spatial interference pattern, spectral interferometry is
studied.

— Spectrally resolved two-beam coupling is a standard pump-probe experiment with the
addition of a monochromator to select a narrow part of the probe spectrum. The trans-
mitted probe power is measured in this spectral slice as a function of the pump-probe
delay. The addition of the monochromator allows the detection to take place on the
edge of the probe spectrum, where the self-phase modulation effects are strongest. As-
suming perfect characterization of the probe and pump pulses, one can retrieve real and
imaginary parts of ny. The sensitivity of this method is of the order of 10~°rad using
heterodyne detection.

— Chirped spectral holography is a three-beam measurement with a reference, pump, and
probe pulse. The pulses go through the sample in this order. The reference and probe
pulses are low-energy pulses and the pump is high-energy. The reference propagates
in the sample and since it is a low-energy pulse the state of the sample or of the refe-
rence pulse itself is unaffected. The sample is then excited by the pump before being
probed. This method then uses a spectral holography algorithm to retrieve vibrational
information on the sample.

In this non-exhaustive list of methods for OKE, most methods require active stabilization
and noise reduction to isolate the contribution of weak nonlinearities. This can be by using
heterodyne detection for example or by an active stabilization of the setup mostly in the inter-
ferometric measurements. As will be shown in the next section, the biggest advantage of our
method is the absence of active stabilization or heterodyne detection while reaching similar or
better uncertainty values. The development of this interferometric measurement was motiva-

ted by the lack of data on the x®) tensor of materials commonly used in OPAs pumped at the
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fundamental wavelength of 1 um. The typical crystal thickness around the millimeter coupled
with the femtosecond to the picosecond time duration of the pulses forces the soft focusing
geometry. A hard-focusing geometry would indeed lead to the ionization of the material. As
a result, the built interferometer is meter-scale to mimic the experimental conditions of optical
parametric amplification. The second motivation was the characterization of liquid crystals that
requires high sensitivity to discriminate the contributions of the LC and the substrate. The me-
thod proposed here fulfills both these needs. This chapter presents the method by first showing
numerical simulations isolating the different effects involved in the measurement, confirming
experimentally the method is valid, and finally showing the results obtained in liquid crystals
and bulk crystals.

2.2 Principle

Nonlinear chirped interferometry is a frequency degenerated pump-probe experiment with
interferometric detection where the probe optical group delay relative to a reference pulse is
monitored rather than the nonlinear phase shift. Figure 2.2 illustrates the principle of the ex-
periment with the definition of the three beams : reference, pump, and probe. Two beams are
co-propagated in the nonlinear sample with a small angle : the strong pump beam (P) and the
weak probe beam (Pr). The different delays will be defined as such : 7 is the group delay of
wave k where k is R for reference, P for pump, and Pr for probe. The two relevant relative
delays will be written :

Tppr = Tp — Tpr (2.1)

TRPr = TR — Tpr (2.2)

The latter is the metric of interest. Finally, the relative delay between reference and probe
without pump beam will be written as 73p,. As the next section shows Tgp, # Tp, under the
presence of the pump beam and is the monitored experimental parameter. The exact monitored
parameter is not strictly the group delay of the probe beam 7p, but the relative group delay
difference between the probe and reference trp,. This should be emphasized as the variations
of the probe group delay 7p, will not be identical to the variations of the reference probe relative
group delay trp, even though 1z will be kept constant.

:lm Reference (R) o
Pump(P)' /‘]

FIGURE 2.2 - Figure from [133]. Principle of nonlinear chirped interferometry.
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A simple theoretical model based on the nonlinear Schrodinger equation is sufficient to
explain the interactions of the three pulses relevant to the experiment. This model includes
the two-beam coupling contribution but excludes diffraction and material dispersion which is
justified in this case as the length of the nonlinear medium is much shorter than the dispersion
length [151] for the considered pulse duration.

2.21 Nonlinear Schrédinger equation

Let Ep(w), Epr(w) and Eg(w) be the complex amplitude of the pump, probe, and reference
respectively. The respective spectral phases are ¢p(w), ¢p,(w) and ¢r(w). The complex ampli-
tudes can then be written as

Ex(w) = |Ex(w)lexp[—igr(w)] (2.3)

with k € P, Pr,R.
To simplify the model, all the spectral phases are assumed to be purely quadratic and can
be expressed as :

(@) = @i(wo) + Ti(wo) (w — wo) + 9\ (w — wp)?/2 (2.4)

where T (wy) is the group delay and go,((z) is the chirp coefficient. The formalism shown here was

largely developed as a tool for spectrally resolved two-beam coupling [152]. Assuming that the
pump and probe pulses are S or P-polarized, that the nonlinear sample is isotropic, and that
the excitation wavelength is far away from resonance the propagation equation of the probe
pulse amplitude can be written as follows [152] :

CaEPr
0z

oE . ol
+ (go +471p) =" = 2iwoyIpEp, — 475 "Ep, (2.5)

where 71, ¢ is the group index at wy, 7y is the nonlinear coupling coefficient and Ip is the time
dependent pump intensity. With this set of approximations, y has two different expressions,

one for parallel and perpendicular polarization respectively :

3 0
Y= 4€On%CXxxxx =" (2.6)
L e
= — 2.7
YL 4€01’1%CX‘WW (2.7)

The three terms containing the pump intensity in equation 2.5 can be separated as follows :

— The left term is an increase of the group index by 4yIp (Kerr effect induced by the pump
pulse).

— The second term of the right member is two-beam coupling (2BC) and causes energy
exchange between the pump and the probe pulse.
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— The first term of the right member is cross-phase modulation (XPM) and causes a fre-
quency shift Q) (figure 2.4).
Let us take a look at each individual term involving the pump intensity and its conse-
quences on the relative group delay tzp,.

Increase of group index induced by the Kerr effect

The first term on the left of equation 2.5 is :

JdEp,
ot

(Tlg,() + 4’)/Ip> (2.8)

The pump induces a Kerr effect modification of the group index of the probe beam by a
term 4+ Ip. This results in a modification of the group delay of the probe. This contribution is
however negligible and will be ignored in the numerical model. The group index at the central
wavelength of 1030 nm in fused silica is 1.46 [153]. The order of magnitude of the nonlinear
term 4-yIp for a pulse energy of 1 mJ, a pulse duration of 200 fs, and a beam diameter of 300 ym
in fused silica is 0.003. This is three orders of magnitudes below the group index, so this effect
will be ignored as it does not contribute significantly to the variation of Trp;.

Two-beam coupling

The second term in equation 2.5 is :

dl
~4y Ep, (2.9)

This term quantifies the two-beam coupling between pump and probe [152, 154]. Let us
consider a pump-probe experiment in a nonlinear sample where the two beams have respective
frequencies w; and w,. The two beams set up a moving interference grating in the sample. As a
result of the Kerr effect, the intensity grating is transcribed into a refractive index grating from
which the beams will scatter into each other. The scattered light experiences a phase shift due
to the delayed nonlinear response leading to an energy gain or an energy loss. The theoretical
coupling equations are derived in [154]. They show that if w; < w, the probe gains energy from
the pulse and vice versa. If the two frequencies are identical no energy exchange happens. For
this experiment pump and probe are frequency-degenerated, meaning that no energy exchange
should happen between pump and probe. However, this is not true anymore when a chirp is
induced in the beams. Let us now consider a frequency-degenerated pump-probe experiment
where the pump and probe pulses are chirped.

Figure 2.3 shows the pump and delayed probe with identical chirp values (non-zero) to
illustrate the 2BC effect between pump and probe in this case. The Wigner-Ville representation
shows the time-frequency distribution of the pump and probe pulses. As a result, a pulse with
a flat linear spectral phase will be a vertical line in this representation. Similarly, a chirped pulse
will be a slanted line in this representation and the slope of the line is the chirp value of the
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FIGURE 2.3 — Wigner-Ville representations of the probe and pump pulses. The

probe pulse is represented in blue and the pump pulse in red. The slope of each

pulse is equal to their respective chirp (5000 fs?). In figure (a) the pump-probe

delay is positive resulting in an energy exchange from pump to probe whereas

in figure (b) the pump-probe delay is negative resulting in an energy exchange
from probe to pump.

pulse. Second-order dispersion creates a time-dependent instantaneous frequency. As the two
pulses are delayed their respective instantaneous frequencies are different. This is indicated in
the figure by the black arrow. The instantaneous frequency w; is higher than w, which allows
energy exchanges between the two pulses via 2BC. Let us assume in figure 2.3 the top pulse
is the pump and the bottom pulse is the probe (tpp, < 0). For this particular delay, the ins-
tantaneous frequency of the pump pulse is higher than that of the probe pulse causing energy
exchange from the pump to the probe increasing the energy in the leading edge of the probe
pulse. This will cause a temporal reshaping of the probe pulse and increase its relative group
delay with the reference pp,. This means that 2BC contributes to the change of the relative
group delay pp; if the pump and probe pulses are both chirped.

Cross-phase modulation

The first term of the left side of equation 2.5 is :

2iaJ0’)/IpEpr (210)

This term corresponds to the cross-phase modulation induced by the pump pulse on the
probe pulse. It causes a time-dependent nonlinear phase shift ¢y, that results in a transient
frequency shift Q). It should be noted that the frequency shift is much smaller than the carrier
frequency. This frequency shift is proportional to the nonlinear phase and as a consequence
proportional to the nonlinear tensor coefficients. Figure 2.4 shows the nonlinear phase-shift
and its associated probe frequency shift () as a function of the pump-probe delay tpp,.

It should be noted that cross-phase modulation does not affect the probe group delay 7p;. It
will be shown in section 2.2.2 that the interferometric detection method allows transcription of

the transient frequency shift () to the probe reference delay trp,.
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FIGURE 2.4 - Figure from [133]. Nonlinear XPM phase and shift of the carrier
frequency of the transmitted probe pulse as a function of the pump-probe delay
Tppy-

2.2.2 Numerical simulations

The model will be used to simulate different chirp configurations and isolate the contri-
butions of the different terms of equation 2.5 to the measured signal. The peak intensity of
the pump pulse will be taken to be 300 GW/cm? in a 1-mm-thick crystal for an XPM nonlinear
phase shift around 300 mrad. The observable is the spectral fringes resulting from the reference-
probe interference. The fringes are simulated as a function of 7pp,. From the fringes the probe
reference delay Trp; is extracted by Fourier transform interferometry. The metric used will be
the transient delay shift of the probe named 6t = f(tpp,). It will be shown at the end of this
section that J7 is proportional to the nonlinear phase shift @y itself proportional to the x®)
tensor (the quantity to characterize here). The numerical simulation (supplementary material
of [133]) was run using a calculation grid of 8192 points spanning over a 1 PHz-bandwidth cen-
tered at 291.3 THz. The equivalent time grid has a time step of 5 fs and spans over 2.05 ps. The
simulation results are all displayed in figure 2.6 and are all organized as follows (figure 2.5) :

— The first row of each figure details the chirp parameters of each given configuration.

— The second row of each figure is the reference-probe interferogram scanned over 2.05 ps.

— The third row is the positive AC peak of the Fourier transform located at a time around

195, (3ps). This quantity is obtained by following the algorithm of Fourier transform
spectral interferometry described in section 1.2.2 on the interferogram of the second
TOW.

— The fourth and last row of each figure is the maximum of the AC peak of the third row.

It is extracted by fitting a Gaussian on the AC peak. All these quantities are plotted as a
function of the pump-probe delay tpp;.

4 different configurations are going to be explored. In the first one, the chirp of all three
pulses is set to zero giving a reference case for the later configurations. In the second case, the
chirp of all pulses is set to an identical quantity (non-zero) to showcase the influence of the
2BC term of equation 2.5. In the third one, the chirp of pump and probe is set to zero while the
reference is chirped to showcase the imprint of the transient frequency shift () on the transient
delay shift 7. Finally, the last configuration shows the combination of both effects previously
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FIGURE 2.5 — Organization of the data presented in figure 2.6

mentioned, the pump and probe are chirped equally, and some additional chirp is added on
the reference pulse in this case.
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FIGURE 2.6 - Figure from [133]. Numerical illustration for the numerical values
indicated in the text. Top row : computed spectral interference S(w) between the
reference and the transmitted probe as a function of 7pp,. Middle row : modulus
of the Fourier transform as a function of tpp,. Bottom row : group delay shift of
the transmitted probe trp, — Tgpr as a function of pp,. The four columns cor-
respond to the following cases : all three pulses are unchirped (a), all pulses are
chirped by the same amount (b), only the reference pulse is chirped (c), and all
pulses are chirped with an additional chirp on the reference pulse (d). For all the
sub-plots, 2BC stands for two-beam coupling and FS for frequency shift.
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Case (a)

Figure (a) describes the first simulated configuration where the second order dispersion of

all three pulses is set to zero :

ok =9 =9 =0 (2.11)
Mg, = o) — g =0 (2.12)

The frequency shift of the probe is clearly visible in the spectrogram as it will be in all the
following simulations. In this first case, the reference probe delay is weakly affected by the
pump presence. The only effect here is XPM causing mild reshaping of the