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Chapter 1: General Introduction 

Since the early 1980s, new techniques have been developed for manufacturing millimeter and 

submillimeter instruments and devices [1]. If this miniaturization has made it possible to group on 

a small surface maximum of electrical and electronic components for optimal functionality, it is 

faced with an increase in temperature due to the impossibility of installing fans or ordinary cooling 

systems based on pumps. In recent years, several techniques (active and passive) have been used 

to improve heat transfer in miniaturized systems. These methods are also implemented in heat 

exchangers in some industrial fields such as power plants, aeronautics, and aerospace to enhance 

heat transfer [2–4]. Passive methods involve changing the geometry of considered systems or using 

additives to fluids, while active methods use an external force such as acoustic vibration of the 

considered system, the application of electric, or magnetic fields [5,6].  

In this work, we are interested in the use of the electric field for the generation of thermo-

convective motions in dielectric fluids. When a fluid layer is subject to an alternating electric field 

and a thermal gradient, the thermoelectric coupling creates a body force called dielectrophoretic 

force. The intensity of this force is controlled through the applied electric potential. The 

dielectrophoretic force consists of two terms: a conservative force that can be combined with the 

pressure gradient, and a non-conservative force which can be considered as a thermal buoyancy 

force with an associated effective gravity called electric gravity. This buoyancy force is responsible 

for the convective motion in the fluid under certain conditions to be determined. Therefore, the 

control of the heat transfer by the regulation of the applied electric potential to a dielectric fluid 

should permit an energetic optimization of the cooling systems for microfluidic systems which can 

be incorporated in aerospace or aeronautic equipments [7–9].  

Besides technical applications, the dielectrophoretic force can also be used for the simulation 

of some natural phenomena. For example, large-scale geophysical convective flows are, generally, 

generated by the coupling between the gravity fields, temperature gradients, and magnetic fields. 

In this manner, the thermo-convective flow of a fluid layer confined in spherical shells with a high-

frequency electric voltage has been investigated to simulate thermal convection in the Earth mantle 

or stars [10–15]. In that case, the artificial gravity considered by the authors is centripetal as the 
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Earth’s gravity. The application of an electric field to a fluid layer with temperature gradients, in 

the presence of Earth gravity and under microgravity conditions, has shown a variety of flow 

dynamics [16,17]. In addition, other investigations on thermal convection generated by the electric 

gravity in cylindrical geometries have been performed  [8,18–21]. All authors demonstrated that 

thermal convection can be induced by the artificial electric gravity in different geometry systems 

with dielectric fluids and modifies the resulting heat transfer. To have only a purely central gravity 

field, experiments have been carried out under a microgravity environment in parabolic flight on 

Zero-G airbus [22–24], and on the International Space Station (GEOFLOW experiment, Cottbus, 

Germany) [16,25]. These experiments showed the similarity between electric and Archimedean 

buoyancies in the convective flow generation as well as the variety of bifurcation phenomena. 

The flow of a dielectric fluid confined between two parallel plane plates subject to both a 

temperature gradient and an alternating electric field has been investigated for some decades  [26–

32]. These authors have shown that the dielectrophoretic force can destabilize the base state and 

the global heat transfer is consequently modified. This configuration then represents a good model 

for the improvement of plate heat exchangers' efficiency in some industrial domains. However, 

none of these investigators have realized the characterization of the dynamic flow regimes 

generated by electric buoyancy. For these reasons, flow regimes induced by the Archimedean and 

electric buoyancies in rectangular horizontal or vertical cavities have been studied to complete the 

existing literature. 
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1.1. Previous works  

1.1.1. Thermal convection in horizontal and vertical rectangular cavities 

When a fluid layer is confined between two horizontal parallel plates kept at different 

temperatures, with the hotter lower plate, it experiences convective motions when the temperature 

difference reaches a critical value. This result is due to the competition between the stabilizing 

forces (viscous and thermal) and the destabilizing Archimedean buoyancy caused by the gravity 

and the fluid density variation with temperature. This natural convection is known as Rayleigh-

Bénard convection [33]. Numerous theoretical, numerical, and experimental studies have shown 

that beyond the onset of thermal convection, a rich variety of flow patterns that can be stationary, 

time-dependent, chaotic, or turbulent, occur depending on the physical properties of the fluid and 

the container geometry. The fluid dynamics in this system can be described using two control 

parameters: the Rayleigh number 𝑅𝑎 = 𝛼Δ𝑇𝑔𝑑3/𝜈𝜅, and the Prandtl number 𝑃𝑟 = 𝜈/𝜅 (where 𝛼 

is the thermal expansion coefficient, Δ𝑇 the temperature difference, 𝑑 the thickness of the fluid 

layer, 𝜈 the viscosity, 𝜅 the thermal diffusivity and 𝑔 the Earth gravity). Thermal convective 

motions set in when 𝑅𝑎 reaches the critical value 𝑅𝑎𝑐 = 1708 independently on 𝑃𝑟. The Rayleigh-

Bénard convection is a good model for the understanding of many large-scale flows occurring in 

nature as the dynamics of the atmosphere, dynamics of oceans, and meteorological and 

astrophysical phenomena [34,35].  

In the case of a fluid layer between two infinite vertical parallel plates kept at different 

temperatures, the torque of the Archimedean buoyancy generates a basic state which is 

characterized by an ascending flow near the hot plate and descending flow near the cold one. This 

yields a large circulation cell stability of which depends on the Grashof number (𝐺𝑟). In this case, 

the Earth’s gravity is perpendicular to the imposed temperature gradient. This problem of thermal 

convection is well known in the literature [3,36–40]. These investigations revealed the existence 

of many flow regimes that occur depending on the aspect ratio Γ = ℎ/𝑑 (where ℎ is the height), 

the Rayleigh number 𝑅𝑎 and the Prandtl number 𝑃𝑟. In particular, for extended systems i.e. Γ →

∞, it has been shown numerically that when the Rayleigh number reaches the critical value, the 

mechanism of the basic flow destabilization depends on the Prandtl number 𝑃𝑟 [41–43]. For 𝑃𝑟 <

12.45, the critical mode is a hydrodynamic mode composed of a transverse stationary vortices; 
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while for 𝑃𝑟 > 12.45, the critical mode is thermal mode composed of transverse oscillatory mode. 

The heat transfer enhancement in the vertical slot has also been highlighted by computing the 

Nusselt number [42]. Furthermore, one can find more details about the literature review on thermal 

convection in vertical cavities in the thesis of Tadie Fogaing [42] or in the book by Gershuni and 

Zhukhovitskii [39], and in some published articles [40,41,44–51]. 

1.1.2. Thermoelectric convection in a horizontal fluid layer 

A dielectric fluid layer, differentially heated and subject to a high-frequency electric field, 

undergoes electric buoyancy analogous to the Archimedean buoyancy. The fluid layer is stressed 

by an alternating electric voltage between two electrodes with a high enough frequency to avoid 

the accumulation of electrons and ions in the bulk. As in the Rayleigh-Bénard problem, this force 

can generate thermal convection in the presence of Earth gravity and under a microgravity 

environment. Since the beginning of the 1960s, many theoretical, experimental, and numerical 

studies have been performed on horizontal fluid layers to understand the mechanism generating 

thermoelectric convection and the resulting heat transfer efficiency  [26–32,52–56]. The two 

configurations studied by the authors are presented in Figure 1.1. According to their results, the 

quiescent base state bifurcates to a steady convective flow when the electric field 𝐸 exceeds the 

critical value 𝐸𝑐  for a given temperature difference; thus heat transfer increased.   

 

Figure 1.1: Configuration of horizontal parallel electrodes: (a) thermally unstable stratification & 

(b) thermally stable stratification of the dielectric fluid layer in the absence of the dielectrophoretic 

force. Configuration of Turnbull  [30] and Stiles [27]. 
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Gross and Porter [53] carried out in 1966 one of the first experiments concerning the effects of 

the electric field on the stability of a horizontal dielectric fluid layer. The liquid used for their 

experiments is transformer oil which has thermal dependence of dielectric constant about 10−4/°C. 

The investigators found the formation of patterns similar to those of Bénard instability for constant 

electric tension; while no effects were observed for the applied alternating electric field. They 

explained these results as the effects of the electric field on the free charges due to the strong 

temperature dependence of the conductivity of the experiment oil. In 1968, Gelmont and Ioffe 

performed a linear stability analysis of this problem with the upper plate warmer [52]. Their results 

showed that the electric field has destabilizing effects on the conductive base state of a horizontal 

fluid layer under microgravity conditions and in the case of stable stratification of the density due 

to the action of the dielectrophoretic force. They determined a critical value beyond which the 

influence of the electric field 𝐸 becomes important; its estimated value for a given system (𝜅 =

𝜈 = 3.10−3𝑐𝑚2/𝑠, 𝛼~10−3𝐾−1, the thickness of the layer ℎ = 0.1𝑐𝑚 and the wavenumber 𝑘𝑧 =

𝜋/ℎ) is about 𝐸𝑐~2 × 10
5𝑉/𝑚. This result was confirmed by Roberts and Turnbull in 1969 who, 

separately, performed a two-dimensional linear stability analysis of the thermoelectric Rayleigh-

Bénard problem [26,30]. The authors also characterized the flow patterns' behavior with different 

boundary conditions. Since the dielectrophoretic buoyancy can be analogous to the Archimedean 

buoyancy regarding the convective flow generation, Roberts [26] introduced the electric Rayleigh 

number 𝐿 (𝐿 = 𝛼 Δ𝑇𝑔𝑒𝑑
3/𝜈𝜅 with 𝑔𝑒 the electric gravity), which is similar to the Rayleigh number 

𝑅𝑎. This control parameter compares the electric effects to the diffusive forces (viscous dissipation 

and thermal diffusion) in the fluid. When the effects of the dielectrophoretic buoyancy 

predominate, the base state is destabilized and the quiescent state bifurcates to a thermo-convective 

flow regime at a critical electric Rayleigh number 𝐿𝑐. Under microgravity conditions, where the 

electric buoyancy is the sole source of instability, the critical value of the electric Rayleigh number 

is 𝐿𝑐 ≈ 2129 and the critical wave number is 𝑘𝑐 = 3.226. On Earth values of the threshold 𝐿𝑐 

depends on the intensity and the direction of the heating i.e. the Rayleigh number 𝑅𝑎. Turnbull and 

Melcher performed both linear stability analysis and an experiment on a inhomogeneous fluid 

layer [31]. Authors considered a system heated from the top and subject to a high-frequency 

alternating electric field. They found a good agreement between the linear stability analysis and 

the experiments for viscous fluids (phenylmethyl silicone fluid and dimethyl silicone fluid). The 
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occurrence of thermoelectric convection is characterized by stationary convective rolls for all cases 

of fluid stratification [26,30,31]. 

Stiles [27] performed a linear analysis of a horizontal fluid layer with a stable thermal 

stratification, by assuming stationary critical modes, for high values of the Rayleigh number 𝑅𝑎. 

This corresponds to an extension of Roberts’s results and the author gave a more precise 

explanation of Turnbull and Melcher’s experimental results. The critical wave number and the 

critical electric Rayleigh number at the onset of convection increase when |𝑅𝑎| increases as shown 

in Figure 1.2. For Rayleigh number in the range of 103 – 104, the critical electric Rayleigh number 

is given by the following linear relationship 𝐿𝑐 = 2129 − 1.246𝑅𝑎; while the slope of 𝐿𝑐 is unity 

for large values of |𝑅𝑎|. His results also showed that, when the Rayleigh number |𝑅𝑎| > 109, 

convective patterns set in when the critical electric Rayleigh number 𝐿𝑐 exceeds moderately the 

|𝑅𝑎| value. That explains the linear growth of 𝐿𝑐 for large values of |𝑅𝑎|. Since 𝐿0𝑐 ≈ 2129 is the 

value of 𝐿𝑐 under microgravity conditions and 𝑅𝑎0𝑐 = 1708 is the critical value of the classical 

Rayleigh-Bénard problem, the ratio 𝐿0𝑐/𝑅𝑎0𝑐 ≈ 1.246 corresponds to the slope of 𝐿𝑐 = 𝑓(𝑅𝑎). 

 

Figure 1.2: Critical electrical Rayleigh number 𝐿𝑐 as a function of the gravitational Rayleigh 

number |Ra| for a dielectric fluid layer bounded by two electrodes and heated from the top [45]. 
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All previous studies showed that the mechanism of the onset of the stationary dielectrophoretic 

convection depends considerably on 𝑅𝑎; the values of the critical electric Rayleigh number 𝐿𝑐 are 

independent of the diffusive nature of the fluid i.e. Prandtl number 𝑃𝑟. However, no explanation 

has been given for the difference between the critical electric Rayleigh number 𝐿𝑐 ≈ 2129 and the 

classical critical Rayleigh number 𝑅𝑎𝑐 = 1708. 

Yoshikawa et al. [32] performed a two-dimensional linear stability analysis of a horizontal 

dielectric fluid layer of infinite length, with a temperature difference applied across the fluid gap, 

under microgravity conditions. They showed that the electric gravity of the perturbed flow can be 

decomposed into two terms: the basic electric gravity and the perturbed electric gravity. The latter 

represents the thermoelectric feedback due to the electric field perturbations generated by 

temperature disturbances when the thermoelectric coupling parameter 𝛾𝑒 = 𝑒Δ𝑇 becomes 

significant i.e. 𝛾𝑒 ≥ 0.2 [32]. It was shown that the perturbed electric gravity performs a negative 

power i.e. it dissipates energy and this explained the difference between the threshold of the classic 

Rayleigh-Bénard convection (𝑅𝑎𝑐 = 1708) and the thermoelectric Rayleigh-Bénard convection 

(𝐿𝑐 = 2128.7).  

To extend the analysis of thermoelectric convection, weakly nonlinear analysis of the 

thermoelectric convection has been performed by Stiles et al. and Yoshikawa et al.  [28,32] who 

confirmed that the occurrence of thermoelectric structures (when 𝐿 > 𝐿𝑐) leads to the increase of 

the heat transport between the two parallel plates, even under a microgravity environment. The 

Nusselt number 𝑁𝑢, which represents the ratio of the total heat flux (conduction + convection) to 

that by conduction, can be determined in terms of parameters such as 𝑅𝑎, 𝑃𝑟, and 𝛿 = 𝐿/𝐿𝑐 − 1. 

Turnbull and Melcher [31] measured the Nusselt number 𝑁𝑢 by means of the Schmidt-Milverton 

technique for phenyl-methyl-silicone fluid and dimethyl-silicone fluid. The results showed that the 

value of the 𝑁𝑢 increases when a thermoelectric instability occurs for both liquids. 

Under microgravity conditions (𝑅𝑎 = 0), Yoshikawa et al. [32] have performed a weakly 

nonlinear analysis of the thermoelectric convection in dielectric fluid layers of aspect ratio Γ =

114 for 𝛾𝑒 = 0.03. They showed that the thermoelectric convection in microgravity occurs via a 

stationary supercritical bifurcation, hence it can be described by the stationary Ginzburg-Landau 

equation.  
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Figure 1.3 (a) shows the Nusselt dependence on 𝑅𝑎 for a system heated from above obtained 

by Stiles et al. [28]. The behavior of the Nusselt number 𝑁𝑢 as function of the criticality near the 

threshold obtained by Yoshikawa et al. [32] is presented in Figure 1.3 (b). The authors confirmed 

the correlation of 𝑁𝑢 (𝛿) near the threshold obtained by Stiles et al. [28] for 𝑃𝑟 ≥ 1; they also 

provided an explanation of the difference in the slopes of 𝑁𝑢(𝛿) near the threshold of the 

thermoelectric convection and of the Rayleigh-Bénard convection. 

 

(a) 

 

 

(b) 

Figure 1.3: Scaled Nusselt number behavior as a function of 𝑅𝑎 for a system heated from above 

with 𝑃𝑟 = 10 (a) [28]; variation of the Nusselt number with the supercriticality parameter δ for 

thermoelectric convection, under microgravity conditions (b) [32]. 

However, the characterization of thermoelectric convective regimes and associated heat 

transfer has not yet been investigated for large values of the electric potential away far from the 

threshold. This point represents one of the objectives of this thesis. 
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1.1.3. Thermoelectric convection in a vertical fluid layer 

When a dielectric liquid is confined in an infinitely-long vertical rectangular cavity subject to 

a horizontal temperature difference, the latter induces a stationary unidirectional vertical flow 

which consists of an ascending flow near the hot plate and a descending flow near the cold one.  

 

Figure 1.4: A dielectric fluid confined between two vertical plane electrodes with a horizontal 

temperature gradient and a high-frequency voltage. 

Adding a horizontal high-frequency electric voltage to this vertical cavity (Figure 1.4) 

generates a third mode called electric mode which appears when the electric voltage exceeds a 

certain critical value [42,54,57,58]. The electric gravity generated by the thermoelectric coupling 

effect is oriented from the cold plate toward the hot plate and it is then perpendicular to the Earth 

gravity (Figure 1.4). We will still focus on the stability of a vertical fluid layer subject to both a 

horizontal temperature gradient and an alternating electric field. Takashima and Hamabata [58] 

performed a linear stability analysis to investigate the effect of electric buoyancy on the stability 

of the convective cell of dielectric fluid in a vertical cavity. The authors assumed two-dimensional 

perturbations in the framework of Squire’s theorem. For small values of the electric Rayleigh 
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number 𝐿, they recovered stationary hydrodynamic modes for 𝑃𝑟 < 12.45 and oscillatory thermal 

modes for 𝑃𝑟 > 12.45. However, for 𝐿𝑐 = 2128.7, the convective cell becomes unstable to a 

stationary electric mode for low values of the 𝑃𝑟 < 0.1, independently of Grashof number 𝐺𝑟 (=

𝑅𝑎/𝑃𝑟). This critical value 𝐿𝑐 is the same as that obtained in the case of thermoelectric convection 

in a horizontal fluid layer under microgravity conditions. Nevertheless, for dielectric fluids with 

𝑃𝑟 > 0.1, the critical value of the electric Rayleigh number depends on the Grashof number 𝐺𝑟 

and Prandtl number 𝑃𝑟. Smorodin and Velarde [54] considered the parametric excitation of the 

vertical fluid layer by averaging in time the electrohydrodynamic force for the linear stability 

analysis. Their results showed that thermoelectric instability can be investigated considering the 

time-averaged dielectrophoretic force when the quantity 𝜔𝜏𝜈 ≥  100 where 𝜔 and 𝜏 are the 

dimensionless modulated frequency and the viscous dissipation time respectively. 

Recently, Tadie Fogaing [42] revisited the work of Takashima and Hamabata [58] and 

performed linear stability analysis in a vertical slot subject to dielectrophoretic force in order to 

elucidate the effect of the electric buoyancy on hydrodynamic and thermal modes. She took into 

account the feedback of the thermoelectric effects on the flow through the parameter 𝛾𝑒. She 

established a state diagram in the plane (𝐿,𝑅𝑎𝑐) for different values of 𝑃𝑟 and for a fixed value of 

𝛾𝑒 = 0.022 (Figure 1.5). When 𝑅𝑎 = 0, the critical electric Rayleigh number is 𝐿𝑐 ≈ 2129 

independently of 𝑃𝑟. The stability state diagram shows that the thresholds of hydrodynamic and 

thermal modes are not affected by the electric field for weak values of 𝐿 and weakly decrease when 

L approaches 𝐿𝑐 from below. Both the stability diagrams of Takashima & Hamabata and Tadie 

Fogaing show that for all values of 𝑃𝑟, there are three unstable modes: either hydrodynamic mode 

and electric mode or thermal mode and electric mode. They also found the occurrence of bistability 

for 𝑃𝑟 > 0.1 when 𝐿 overcomes 𝐿𝑐 = 2129. The dependence of the critical wavenumbers and the 

critical frequency exhibited similar complex behaviors. The origin of this bistability was 

questionable as no physical interpretation was convincingly provided by the authors. 
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Figure 1.5: Diagram of the 𝑅𝑎𝑐  variation with the electric Rayleigh number 𝐿 for 𝑃𝑟 ∈

[0.01,10000] and 𝛾𝑒 = 0.022 [42]. 

Recently, Meyer [59] investigated, during his thesis work, the thermoelectric convection in a 

vertical cylindrical annulus in the presence of Earth gravity and under a microgravity environment. 

Under microgravity conditions, the electric buoyancy induces thermoelectric convection which 

manifests by stationary helical modes independently of Prandtl number 𝑃𝑟. More details can be 

found in the thesis report of A. Meyer [59]. They also found critical modes in form of vertical 

columnar rolls in the vertically cylindrical capacitors subject to both dielectrophoretic force and 

Archimedean buoyancy. These columnar modes have also been observed in the laboratory and 

under microgravity conditions [20,23,60,61]. A numerical study of the columnar modes induced 

by the dielectrophoretic force in cylindrical annulus has been performed for large values of the 

electric potential [21]. All these studies suggest that the use of 2D models for the analysis of the 

thermoelectric convection in the vertical rectangular cavity may not be appropriate. Thus, flow 

perturbations in the vertical cavity subject to a dielectrophoretic buoyancy should be three-

dimensional. Therefore, the present study aims to extend the works by Takashima & Hamabata [58] 

and Tadie Fogaing [42] by investigating the stability of the flow against three-dimensional 

perturbations. This is one of the objectives of the thesis. 
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1.2. Thesis organization 

This thesis aims to investigate the thermal convection induced by the dielectrophoretic force 

generated by the coupling of the temperature gradient and the high-frequency voltage applied to 

rectangular cavities. For each given temperature difference, the applied electric potential is 

increased to elucidate the effect of the electric buoyancy on the dielectric fluid. In the horizontal 

cavity, the present study aims to extend the work by Yoshikawa et al. [32] and to compute the heat 

transfer in the thermoelectric Rayleigh-Bénard convection in the thermal unstable (0 < 𝑅𝑎 < 𝑅𝑎𝑐) 

and thermally stable configurations (𝑅𝑎 < 0) for all acceptable values of 𝐿. 

The general formulation of the thermoelectric convection problem is presented in Chapter 2 

where we introduced the electric buoyancy from the dielectrophoretic force and the general 

governing flow equations. Then this thesis is split into two parts: the first part concerns the effect 

of the electric buoyancy in the horizontal cavity i.e. the study of thermoelectric Rayleigh-Bénard 

convection (RBC) and the second part treats the effects of the dielectrophoretic force on the flow 

in a vertical rectangular cavity. Chapter 3 addresses the linear stability analysis of the 

thermoelectric RBC for three cases: microgravity conditions (𝑅𝑎 = 0), unstable stratification 

when 𝑅𝑎 > 0 and stable stratification (𝑅𝑎 < 0). The variation of the critical electric Rayleigh 

number 𝐿𝑐 and the critical wavenumbers 𝑘𝑐 against 𝑅𝑎 will be presented. An energetic study at the 

threshold elucidates the contribution of each intervening force to the destabilization of the base 

state. The nature of the bifurcation from the base state to thermo-convective state is analyzed for 

all cases in Chapter 4. The evolution of the flow patterns beyond the threshold is given for two 

values of 𝑃𝑟: 𝑃𝑟 = 1 and 𝑃𝑟 = 65. We then computed the heat transfer coefficient to estimate the 

thermal efficiency of thermoelectric convective structures. Chapter 5 addresses the linear stability 

analysis against three-dimensional perturbations in a vertical slot subject to a horizontal 

temperature gradient and a horizontal electric field. It is complemented with the computation of 

the kinetic energy balance. The general conclusion and perspectives are given in Chapter 6.  

We have added an appendix chapter containing experimental results on the thermoelectric 

convection in rectangular cavities. The results were obtained during the Parabolic Flight Campaign 

(PFC VP139) held in Bordeaux in September 2018 performed by the joint team of LOMC 

(University of Le Havre Normandie) and LAS (Brandenburgische Technische Universität Cottbus-
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Senftenberg). The experimental work consists of a preliminary investigation on a dielectric fluid 

flow in rectangular cavities in microgravity conditions. Additional tables of the critical parameters 

for both horizontal and vertical cavities, for different values of 𝑃𝑟 are also presented in the 

appendix.  
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Chapter 2: General formulation of the problem 

This chapter deals with the effects of the electrohydrodynamic force induced by the electric 

field on an inhomogeneous dielectric fluid. We will make some general assumptions to derive the 

expression of the dielectrophoretic force and the associated electric gravity. After the definition of 

control parameters, we will present the dimensionless equations governing the thermoelectric 

convection. 

2.1. Electrohydrodynamic force 

When an electric field is applied to a dielectric fluid of density 𝜌 and permittivity 𝜖, in addition 

to the motion of the free charges, it modifies the polarization depending on the chemical bonds in 

the fluid. This mechanism then induces a net force, called electrohydrodynamic (EHD) force the  

density of which is given by [62]: 

𝑓𝐸𝐻𝐷 = 𝜌𝑒 �⃗⃗� + (�⃗⃗� ⋅ �⃗⃗�)�⃗⃗�, (2.1) 

where 𝜌𝑒 is the density of electric charges in the fluid volume and �⃗⃗� is the polarization vector which 

depends on the fluid permittivity 𝜖 and the electric field �⃗⃗�. The first term in (2.1) called 

electrophoretic force represents the density of coulomb force. It arises from the action of the electric 

field on the free charges in the fluid layer. If the electric field is generated by a direct potential, the 

electrophoretic force is the dominant term of the EHD force. The second term of the equation (2.1) 

can be split into two terms: the electrostriction (ES) force and the dielectrophoretic (DEP) force as 

follows [63]: 

(�⃗⃗� ⋅ �⃗⃗�)�⃗⃗� = ∇⃗⃗⃗ [
𝜌

2
(
𝜕𝜖

𝜕𝜌
)
𝑇
�⃗⃗�2] −

�⃗⃗�2

2
∇⃗⃗⃗𝜖, (2.2) 

where 𝜌 is the density of the dielectric fluid. The ES force is conservative and it can be lumped 

with the pressure term of the momentum equation; so that it does not affect the fluid motion for 

incompressible flows in a rigid enclosure [64]. 
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The DEP force arises from the inhomogeneity of the fluid permittivity and acts on neutral fluid 

particles. This inhomogeneity can be created by a temperature difference Δ𝑇 or a concentration 

gradient. In this study, the permittivity variation is due to the applied temperature difference and 

to the geometry. Indeed, in a cylindrical annulus or in a spherical shell, the electric force is directed 

towards the inner surface, where the field lines are more concentrated. The physical mechanism of 

the EHD force, when the system is subject to an alternating electric potential, is sketched in Figure 

2.1. 

 

 

Figure 2.1: Schematic representation of the different components of the electrohydrodynamic 

force [65]. 

2.1.1. Dielectrophoretic force 

For a fluid in a container with a characteristic length 𝑑, we can introduce the characteristic 

timescales using the kinematic viscosity 𝜈, the thermal diffusivity 𝜅, the permittivity 𝜖, and the 

electric conductivity 𝜎𝐸 as follows: 

 the viscous dissipation timescale : 𝜏𝜈 = 𝑑2/𝜈 ,   

 the thermal diffusion timescale : 𝜏𝜅 = 𝑑2/𝜅  

 the charge relaxation time that characterizes the free charges injection : 𝜏𝑒 = 𝜖/𝜎𝐸,  

 the characteristic timescale for ions migration with mobility 𝜇 under a field 𝐸: 𝜏𝑚 = 𝑑/𝜇𝐸. 
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If the frequency 𝑓 of the applied electric field is much larger than all frequencies corresponding to 

the characteristic timescales  

𝑓 ≫ (
1

𝜏𝜈
,
1

𝜏𝜅
,
1

𝜏𝑒
,
1

𝜏𝑚
), (2.3) 

the fluid cannot follow to the rapid variation of the electric field �⃗⃗�. Indeed, when we apply a high-

frequency voltage 𝑉(𝑡) =  √2𝑉0𝑠𝑖𝑛(2𝜋𝑓𝑡), the quasi-static approximation suggests that the fluid 

motion is affected only by the constant part  〈𝐸〉2 =
𝐸0
2

2
 of the time-averaged component of the DEP 

force. Hence, during a period of the oscillation of the electric field, the contribution to the 

dielectrophoretic force comes from the constant part of the electric field. In addition, if the gap size 

𝑑 is larger than the thickness of the Debye layer near charge surfaces, the free charges accumulation 

can then be avoided. Thus, the dielectrophoretic force predominates over the electrophoretic force 

in equation(2.1) [31,64]. 

In addition to the physical phenomena described above, the displacement due to the polarization 

may produce internal heating in the fluid when the frequency of the applied electric field is too 

large [66]. In the present study, we will assume that the dielectric heating arising from the dielectric 

loss is negligible, and we will focus on the effect of the dielectrophoretic force to generate 

thermoelectric convection in the fluid. Moreover, we will assume for small temperature difference 

Δ𝑇, so that the density 𝜌 and the permittivity 𝜖 of most of the dielectric fluids are approximated by 

linear functions of temperature 

𝜌(𝜃) = 𝜌𝑟𝑒𝑓 [1 − 𝛼𝜃]  ;        𝜀(𝑇) = 𝜀𝑟𝑒𝑓[1 − 𝑒𝜃];  (2.4) 

where 𝜌𝑟𝑒𝑓 = 𝜌(𝑇𝑟𝑒𝑓) is the density taken at the reference temperature 𝑇𝑟𝑒𝑓 , 𝛼 is the thermal 

expansion coefficient, 𝜖𝑟𝑒𝑓 = 𝜖(𝑇𝑟𝑒𝑓) is the dielectric permittivity at 𝑇𝑟𝑒𝑓 , 𝑒 is the coefficient of 

thermal permittivity, and 𝜃 = 𝑇 − 𝑇𝑟𝑒𝑓  is the temperature deviation from the reference temperature 

𝑇𝑟𝑒𝑓 . For most of dielectric fluids, 𝛼~10−3𝐾−1 and  e ∈ [10-3-10-1 ]K -1 [18,27].  

For a fluid domain bounded by two walls kept at different constant temperatures 𝑇1 and 𝑇2 =

 𝑇1 − Δ𝑇, the reference temperature can be chosen as the mean value of those two temperatures:  
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𝑇𝑟𝑒𝑓 =
𝑇1+𝑇2

2
. (2.5) 

Under these assumptions, the DEP force reads  

𝐹𝐷𝐸𝑃 = ∇⃗⃗⃗ [
𝑒𝜀𝑟𝑒𝑓�⃗⃗�

2

2
] −

𝑒𝜀𝑟𝑒𝑓�⃗⃗�
2

2
∇⃗⃗⃗𝑇. (2.6) 

 

2.1.2. Electric buoyancy and electric gravity 

The expression of the DEP force (2.6) can be written as follows: 

𝐹𝐷𝐸𝑃 = �⃗⃗� (
𝑒𝜀𝑟𝑒𝑓𝜃�⃗⃗�

2

2
)− 𝛼𝜌𝑟𝑒𝑓𝜃𝑔𝑒, (2.7) 

The first term is conservative and it can be included in the pressure term of the Navier-Stokes 

equation; the second term is the non-conservative part and it represents the dielectrophoretic 

buoyancy with an effective electric gravity 𝑔𝑒 [10,32,66]. This effective electric gravity can be 

written: 

𝑔𝑒 = −�⃗⃗�𝛹 (2.8) 

where the quantity −𝛼𝜌𝑟𝑒𝑓𝛹 =
𝑒𝜀𝑟𝑒𝑓�⃗⃗�

2 

2
 is the electric energy contained in the capacitor [68]. The 

thermoelectric buoyancy is the analogue  of the Archimedean buoyancy force (𝛼𝜌𝑟𝑒𝑓𝜃𝑔), and the 

electric gravity 𝑔𝑒 plays a similar role as the Earth's gravity 𝑔 in the generation of thermal  

convection [10,21,31,32]. Thus, the dielectrophoretic buoyancy represents the source of vorticity 

can be a source of thermoelectric convective motions in dielectric fluids. In particular, it can be 

used to trigger the heat transfer particularly in small-size systems where the electric field can reach 

large values even for small values of the electric tension difference. 

                                                 
 In Planetary Physics, the quantity 𝛹 is called geopotential [67]. 
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2.2. General governing equations 

2.2.1. Flow equations in the electrohydrodynamic Boussinesq approximation 

For a small temperature difference (𝛾𝑎 = 𝛼Δ𝑇 ≪ 1) in buoyancy-driven flows, the 

electrohydrodynamic Boussinesq approximation can be adopted for the mathematical description 

of the problem [26,69]. This approximation consists in considering the density and the permittivity 

of the dielectric fluid constant with respect to the temperature, everywhere in the governing 

equations, except in the buoyancy term and in the electro coupling term. 

The incompressible flow of a Newtonian dielectric fluid can be described by the equation of 

mass conservation, the momentum equation, the energy equation, and the Gauss equation:  

 Continuity equation: �⃗⃗� ⋅ �⃗⃗� = 0, (2.9) 

 Momentum equation: 𝜕�⃗⃗⃗�

𝜕𝑡
+ (�⃗⃗� ⋅ �⃗⃗�)�⃗⃗� = −�⃗⃗�𝜋 + 𝜈∆�⃗⃗� − 𝛼𝜃(𝑔 + 𝑔𝑒), 

(2.10) 

 Energy equation: 𝜕𝜃

𝜕𝑡
+ (�⃗⃗� ⋅ �⃗⃗�)𝜃 = 𝜅∆𝜃, (2.11) 

 Gauss equation: �⃗⃗� ∙ [𝜖(𝜃)�⃗⃗�] = 0, where �⃗⃗� = −�⃗⃗�𝜙, (2.12) 

where �⃗⃗�(𝑥, 𝑦, 𝑧) = 𝑢𝑒𝑥 +  𝑣𝑒𝑦 +  𝑤𝑒𝑧  is the velocity field in the Cartesian coordinates, and 𝜙 is 

the electric potential. The quantity 𝜋 is the Bernoulli function that represents the total pressure 

acting on the fluid divided by the density. The total pressure involves the hydrostatic pressure, the 

non-conservative part of the DEP force, and the electrostriction pressure. The quantity represents 

the generalized hydraulic charge: 

𝜋 =
𝑝

𝜌𝑟𝑒𝑓
+ 𝑔𝑧 +

𝑒𝜀𝑟𝑒𝑓𝜃�⃗⃗�
2

2
−

1

2
(
𝜕𝜖

𝜕𝜌
)
𝑇
�⃗⃗�2. (2.13) 

The last term on the r.h.s of the momentum equation (2.10) represents the source of the thermos-

convective instabilities in the fluid. It includes Archimedean buoyancy and thermoelectric 

buoyancy. The Gauss equation describes the coupling between the temperature and the electric 

field �⃗⃗� through the variation of the permittivity with the temperature. 
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The set of governing equations is completed by the boundary conditions at the surfaces (𝑆1 and 

𝑆2) bounding the dielectric fluid layer: 

𝑢 = 𝑣 = 𝑤 = 0, 𝜃 =
𝛥𝑇

2
, 𝜙 = √2𝑉0 at 𝑆1, (2.14) 

𝑢 = 𝑣 = 𝑤 = 0, 𝜃 = −
𝛥𝑇

2
, 𝜙 = 0 at 𝑆2. (2.15) 

 

2.2.2. Vorticity equation 

The equation for the vorticity �⃗⃗⃗� = �⃗⃗� × �⃗⃗� is obtained by taking the curl of the momentum 

equation (2.10) and reads:  

𝜕�⃗⃗⃗⃗�

𝜕𝑡
+ (�⃗⃗� ⋅ �⃗⃗�)�⃗⃗⃗� = (�⃗⃗⃗� ⋅ �⃗⃗�)�⃗⃗� + 𝜈∆�⃗⃗⃗� − 𝛼�⃗⃗�𝜃 × �⃗�. (2.16) 

with �⃗� = 𝑔 + 𝑔𝑒. The term 𝛼�⃗⃗�𝜃 × �⃗� is the baroclinic source of the vorticity. In the Cartesian 

coordinates, this term reads 

(�⃗⃗�𝜃) × �⃗� = [(𝑔 + 𝑔𝑒 𝑧)
𝜕𝜃

𝜕𝑦
− 𝑔𝑒𝑦

𝜕𝜃

𝜕𝑧
] 𝑒𝑥 + [𝑔𝑒 𝑥

𝜕𝜃

𝜕𝑧
− (𝑔 + 𝑔𝑒 𝑧)

𝜕𝜃

𝜕𝑥
] 𝑒𝑦 + [𝑔𝑒𝑦

𝜕𝜃

𝜕𝑥
−𝑔𝑒𝑥

𝜕𝜃

𝜕𝑦
] 𝑒𝑧 . 

where 𝑔𝑒𝑥 ,  𝑔𝑒𝑦and 𝑔𝑒 𝑧 are the components of the electric gravity 𝑔𝑒. We see that all the 

components of the electric gravity are coupled with the temperature gradients and thus intervene 

in all the source terms of vorticity in (2.16). In particular, the coupling between the horizontal 

gradients with the electric gravity introduce a source for the vertical vorticity in contrast to the 

Rayleigh-Bénard convection where the vertical component of vorticity obeys a diffusion equation.  

2.2.3. The equation for the kinetic energy 

The kinetic energy equation is obtained from the momentum equation (2.10) written in the 

following form: 

𝑑�⃗⃗⃗�

𝑑𝑡
= −�⃗⃗�𝜋 − 𝜈�⃗⃗� × (�⃗⃗� × �⃗⃗�) − 𝛼𝜃�⃗�, (2.17) 
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where we have used the equality ∇⃗⃗⃗ × (∇⃗⃗⃗ × �⃗⃗�) = −Δ�⃗⃗�. The scalar product of the equation (2.17) 

with �⃗⃗� gives the equation of the kinetic energy evolution per mass unit :  

𝑑

𝑑𝑡
(
1

2
|�⃗⃗�|2) = 𝛼𝜃𝑤𝑔 − 𝛼𝜃(�⃗⃗� ⋅ 𝑔𝑒) − 𝜈�⃗⃗� ⋅ (∇⃗⃗⃗ × �⃗⃗⃗�); 

Integration over the flow volume 〈𝑋〉 =
1

𝑉
∫𝑋 𝑑𝑉 yields the equation of kinetic energy balance: 

𝑑𝐾

𝑑𝑡
= 𝑃𝐺 + 𝑃𝐸𝐺 −𝐷𝜈, (2.18) 

where: 

 𝐾 = 〈
1

2
|�⃗⃗�|2〉 is the kinetic energy per mass unit, 

 𝑃𝐺 = 〈𝛼𝜃𝑤𝑔〉 represents the power generated by the Archimedean buoyancy, 

 𝑃𝐸𝐺 = 〈𝛼𝜃(�⃗⃗� ⋅ 𝑔𝑒)〉 is the power performed by the electric gravity, 

 D𝜈 = 〈𝑑𝜈〉 is the viscous dissipation, 

with 

𝑑𝜈 = 2𝜈 [(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] + 𝜈 [(
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)
2

+ (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)
2

] [70]. (2.19) 

 

2.2.4. Equation of the pressure 

Taking the divergence of the momentum equation (2.10) yields: 

Δ𝜋 = 𝜔2 − 𝜎2 − 𝛼[(∇⃗⃗⃗𝜃) ⋅ �⃗� + (∇⃗⃗⃗ ⋅ 𝑔𝑒)θ ]; (2.20) 

where 𝜎2 = �⃗⃗� ⋅ ( ∇⃗⃗⃗ × �⃗⃗⃗�) represents the local dissipation of the kinetic energy by the viscosity and 

𝜔2 = �⃗⃗⃗� ⋅ �⃗⃗⃗� is the enstrophy per unit mass. The equation (2.20) shows that, besides the temperature 

gradient,  the spatial variation of the electric gravity is a source term of pressure.  
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2.3. Control parameters and dimensionless flow equations 

2.3.1. Control parameters 

The ratio of the viscous dissipation to the thermal diffusion inside the fluid layer is the Prandtl 

number: 

𝑃𝑟 =
𝜏𝜅

𝜏𝜈
=

𝜈

𝜅
. (2.21) 

Under the action of the Archimedean buoyancy, a hot fluid particle can rise a distance 𝑑 with a 

constant acceleration during the characteristic timescale 𝜏𝐴  given by 𝜏𝐴
2 ∝

𝑑

𝛼𝑔Δ𝑇
. 

The competition between the stabilizing and the destabilizing forces is characterized by the ratio 

of timescales of viscous dissipation and thermal diffusion known as the Rayleigh number: 

𝑅𝑎 =
𝜏𝜈𝜏𝜅

𝜏𝐴
2  
=

𝛼Δ𝑇𝑔𝑑3

𝜈𝜅
= 𝐺𝑟 𝑃𝑟, (2.22) 

where 𝐺𝑟 =
𝛼Δ𝑇𝑔𝑑3

𝜈2
 is the Grashof number often used in studies of heat transfer by convection. 

Under microgravity conditions, the characteristic time for advection of the fluid particle due to the 

temperature difference is given by 𝜏𝐷𝐸𝑃
2 ∝

𝑑

𝛼𝑔𝑒Δ𝑇
 and the thermoelectric convection can be 

characterized by the electric Rayleigh number  

𝐿 =
𝜏𝜈𝜏𝜅

𝜏𝐷𝐸𝑃
2  

=
𝛼Δ𝑇𝑔𝑒𝑑

3

𝜈𝜅
, (2.23) 

where the electric gravity 𝑔𝑒 is computed at a given position in the fluid. The electric Rayleigh 

number 𝐿 is the measure of the intensity of the dielectrophoretic force relative to the dissipative 

forces. For any dielectric fluid, there exists an intrinsic electric potential based on the properties of 

the fluid:  

𝑉𝑖 = √
𝜌𝜈𝜅

𝜖𝑟𝑒𝑓
.  (2.24) 
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This quantity can be used to define the dimensionless electric potential as 𝑉𝐸 = 𝑉0/𝑉𝑖. Table 2.1 

shows the physical properties of some dielectric fluids. 

The intensity of the coupling between the temperature difference and the electric field is given by 

the thermoelectric parameter 𝛾𝑒: 

𝛾𝑒 = 𝑒Δ𝑇. 

The thermal expansion coefficient of the permittivity 𝑒 has values of order 𝑒 ∝ 10−3𝐾−1 for 

silicone oils, 𝑒 ≈ 0.2𝐾−1 for the acetonitrile or the nitrobenzene [42]. We have introduced a new 

dimensionless number called the modified Archimedes number. The Archimedes number 

compares gravitational and inertial forces to the viscous effects. To take into account the electric 

effects on the motion of fluid particles within the fluid volume differentially heated, this modified 

number 𝐴𝑟′ is defined by: 

𝐴𝑟 ′ =
𝛼𝑔𝑑3

𝑒𝜈2
=

𝑅𝑎

𝑃𝑟𝛾𝑒
=

𝛼

𝑒
𝐺𝑎  ;   𝐺𝑎 =

𝑔𝑑3

𝜈2
. (2.25) 

Table 2.1: Physical properties of some dielectric liquids at a fixed temperature. 

Dielectric 

Fluids 

AK5 

(25°C) 

AK0.65 

(25°C) 

Novec 7200 

(25°C) 

1-Nonanol 

(20°C) 

Pure water   

(25°C) 

𝜌 [𝑘𝑔 ⋅ 𝑚−3] 920 760 1430 820 997 

𝜈 

10−8 [𝑚2 ⋅ 𝑠−1] 
5.00 0.65 0.43 14.20 0.89 

𝜅 

10−8 [𝑚2 ⋅ 𝑠−1] 
8.49 3.90 7.94 14.60 8.49 

𝜖 

10−11  [𝐹 ⋅ 𝑚−1] 
2.39 1.93 6.46 7.61 69.33 

𝜖𝑟  2.70 2.18 7.30 8.60 78.30 

𝑃𝑟 64.60 7.66 11.03 178.84 6.11 

𝑉𝑖 [V] 3.86 1.47 0.61 3.48 0.43 

Breakdown potential 

for 2.5 mm (kV) 
≥ 35 ≥ 35 ~40  ≥ 160 

                                                 
  The value of the breakdown potential for 1-Nonanol was not found in the literature for this study.  
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2.3.2. Dimensionless flow equations 

In the electrohydrodynamic Boussinesq approximation, the equations (2.9-2.12) can be made 

dimensionless using the following scales: 

 the thickness 𝑑 of the fluid layer for the length, 

 the characteristic viscous timescale 𝜏𝜈  for the time, 

 the characteristic viscous velocity 𝜈/𝑑 for the velocity, 

 the imposed difference temperature 𝛥𝑇 for the temperature, 

 𝜌(𝜈/𝑑)2 for the pressure, 

 𝜙0 for the electric potential, 

 𝜙0/𝑑 for the electric field. 

The resulting equations read: 

�⃗⃗� ⋅ �⃗⃗� = 0, (2.26) 

𝜕�⃗⃗⃗�

𝜕𝑡
+ (�⃗⃗� ⋅ �⃗⃗�)�⃗⃗� = −�⃗⃗�𝐻 + ∆�⃗⃗� + 𝑃𝑟−1(𝑅𝑎𝑒𝑧 − 𝐿�̂⃗�𝑒)𝜃, (2.27) 

𝜕𝜃

𝜕𝑡
+ (�⃗⃗� ⋅ �⃗⃗�)𝜃 =

1

𝑃𝑟
∆𝜃, (2.28) 

�⃗⃗� ∙ [(1 − 𝛾𝑒𝜃)�⃗⃗�𝜙] = 0, where �⃗⃗� = −�⃗⃗�𝜙. (2.29) 

The generalized pressure 𝐻 is given by: 

𝐻 = (
𝜈

𝑑
)
2

[
𝑃

𝜌𝑟𝑒𝑓
+

1

2
(
𝜕𝜀

𝜕𝜌
)
𝑇
�⃗⃗�2 +

1

2

𝑒𝜃𝜀𝑟𝑒𝑓 �⃗⃗�
2

𝜌𝑟𝑒𝑓
]. (2.30) 
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Thermoelectric Rayleigh-Bénard convection  
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Chapter 3:  Thermoelectric convection in horizontal 

rectangular cavities: Linear stability analysis 

When the lower plate of a rectangular system is hotter than the upper plate, the fluid layer close 

to the cold plate is denser than the fluid close to the hot plate, leading to a thermally unstable 

stratification. For small values of Δ𝑇, viscous dissipation and thermal diffusion dominate the 

Archimedean buoyancy and the fluid remains in stable equilibrium. Above a critical value (Δ𝑇)𝑐 

which depends on fluid properties, the Archimedean buoyancy takes over the dissipative forces 

and convective motion sets in the fluid. When the top plate is hotter than the lower plate, such a 

configuration has a stable thermal stratification as the heavier fluid close to the cold plate is below 

the lighter fluid close to the hot plate. In both cases, the electric buoyancy intervenes in the base 

state destabilization. The present chapter addresses the effect of the dielectrophoretic buoyancy on 

the thermally stability of a dielectric fluid in three different situations: microgravity (𝑅𝑎 = 0), 

thermal stable configuration (𝑅𝑎 < 0) and thermally unstable configuration (𝑅𝑎 >  0). 

3.1. Fluid configuration 

We investigate the critical conditions of the thermoelectric convection in a Newtonian dielectric 

fluid layer bounded by two rigid horizontal plates maintained at different constant temperatures.  

 

 

Figure 3.1: Horizontal dielectric fluid layer bounded by two parallel plates kept at different 

temperatures and subject to a high-frequency electric field. 
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We note 𝑇1 the temperature of the lower plate and 𝑇2 the temperature of the top plate so that the 

vertical temperature gradient across the dielectric fluid layer is Δ𝑇 = 𝑇1 − 𝑇2. The flow is subject 

to an alternating electric field which arises from the applied electric voltage with an effective value 

𝑉0. 

3.2. Base state of dielectric fluid in a horizontal cavity 

For a small temperature difference Δ𝑇 and a low electric field, the fluid is in a quiescent state 

(conduction regime): �⃗⃗� = (0,0,0). This state is invariant with respect to the translation in the 

horizontal plane and all dynamical variables change in the axial coordinate 𝑧 only. This  base state 

is governed by the following set of dimensionless equations derived from the system of equations 

(2.26)-(2.29): 

 
𝑑𝐻𝑏

𝑑𝑧
= 𝑃𝑟−1(𝑅𝑎 − 𝐿𝑔𝑒𝑏)𝜃𝑏 , (3.1) (3.1.a) 

𝑑2𝜃𝑏

𝑑𝑧2
= 0, (3.1.b) 

𝑑2𝜙𝑏

𝑑𝑧2
− 𝛾𝑒 (𝜃𝑏

𝑑𝜙𝑏

𝑑𝑧
+𝜙𝑏

𝑑𝜃𝑏

𝑑𝑧
) = 0. (3.1.c) 

 

The equation (3.1.a) shows that the basic electric gravity 𝑔𝑒𝑏  coupled with the basic temperature 

𝜃𝑏  reduces the pressure gradient in the vertical direction. The parameter 𝛾𝑒 in equation (3.1.c) 

determines the coupling of the temperature and the electric field. 

The integration of equations (3.1.a), (3.1.b), and (3.1.c) yields the temperature profile, the electric 

potential, and the pressure distribution of the base state 
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𝜃𝑏 (𝑧) = −𝑧,

𝜙𝑏(𝑧) = 𝑙𝑛 (
1 + 𝛾𝑒𝑧

1 + 𝛾𝑒/2
) [𝑙𝑛 (

2 − 𝛾𝑒
2 + 𝛾𝑒

)]
−1

,

𝐸𝑏(𝑧) = −
𝛾𝑒

(1 + 𝛾𝑒𝑧) ⋅ 𝑙𝑛 (
2 − 𝛾𝑒
2 + 𝛾𝑒

)
,

𝐻𝑏(𝑧) = ∫𝑃𝑟
−1(𝑅𝑎 − 𝐿�̂�𝑒𝑏)𝜃𝑏𝑑𝑧 . }

 
 
 
 

 
 
 
 

 (3.2) 

The base state is purely conductive and heat transfer occurs by thermal diffusion. From equations 

(2.8) and (3.2), the electric gravity in the base state 𝑔𝑒𝑏  is given by 

𝑔𝑒𝑏 = �̅�𝑒 ⋅ �̂�𝑒𝑏,  (3.3) 

where �̂�𝑒𝑏 = −(1 + 𝛾𝑒𝑧)
−3 is the dimensionless basic electric gravity, and �̅�𝑒 is the characteristic 

electric gravity taken at mid-gap (𝑧 = 0) i.e.  

�̅�𝑒 =
𝜀𝑟𝑒𝑓𝑒𝑉0

2𝛾𝑒
3

𝛼𝜌𝑑3
[𝑙𝑛 (

1−𝛾𝑒/2

1+𝛾𝑒/2
)]
−2

.   (3.4) 

The electric Rayleigh number defined using �̅�𝑒 reads:  

𝐿 =
𝛼𝛥𝑇�̅�𝑒𝑑

3

𝜈𝜅 
= 𝛾𝑒

4 [𝑙𝑛 (
1−𝛾𝑒/2

1+𝛾𝑒/2
)]
−2

𝑉𝐸
2.   (3.5) 

The two control parameters 𝐿 and 𝑅𝑎 contain the temperature difference Δ𝑇. In order to separate 

the effects of the temperature difference from those due to the electric field, we use the 

dimensionless potential 𝑉𝐸  related to 𝐿 by  𝑉𝐸 = 𝛾𝑒
−2𝑙𝑛(

1−𝛾𝑒/2

1+𝛾𝑒/2
) 𝐿1/2. 

The integration of the equation of 𝐻𝑏 gives the analytic expression of the generalized hydraulic 

charge: 

𝐻𝑏(𝑧) = −
1

2
⋅
𝑅𝑎

𝑃𝑟
𝑧2 +

𝐿

𝑃𝑟
⋅

2𝛾𝑒𝑧+1

2𝛾𝑒
2(𝛾𝑒𝑧+1)

2. (3.6) 

Figure 3.3 shows the profiles of the base conductive flow for the different cases of thermal 

stratification of the fluid. The electric gravity is oriented from the low electric field region toward 

the zone of the high electric field; in the plane capacitor, the electric field is always larger at the 
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hot surface [26]. Figure 3.2 shows the orientation of the electric gravity in the base state depending 

on the heating direction. One can also observe that the sign of basic electric gravity changes when 

𝛾𝑒 changes its sign by the curves presented in Figure 3.3 (c). 

 

                      (a)                                                                                 (b) 

Figure 3.2: Electric gravity generated by a high-frequency electric field in a dielectric fluid in a 

rectangular horizontal cavity with a vertical temperature gradient: (a) lower plate is hotter than 

the upper plate (thermal unstable stratification), (b) lower plate is colder than the upper plate 

(thermally stable stratification).  

 

 

Figure 3.3: Base state : (a) Temperature profile 𝜃𝑏 , (b) Electric potential 𝜙𝑏, (c) Electric field 

𝐸𝑏 , (d) Electric gravity 𝑔𝑒𝑏  for 𝛾𝑒 = 0.01 (blue curve) and 𝛾𝑒 = −0.01 (red curve).    
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3.3. Linearized equations and eigenvalue problem 

The linear stability theory consists of the superposition of infinitesimal perturbations to the 

base state and then in the linearization of the resulting equations: 

(𝑢, 𝑣, 𝑤, 𝜋, 𝜃,𝜙) = (0,0,0,𝐻𝑏, 𝜃𝑏 , 𝜙𝑏) + (𝑢
′, 𝑣 ′, 𝑤 ′,𝜋′, 𝜃′, 𝜙′), (3.7) 

where the prime denotes the perturbations.  

3.3.1. Linearized equations 

After subtraction of the base state, the system of linearized equations reads: 

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
+
𝜕𝑤′

𝜕𝑧
= 0,

𝜕𝑢′

𝜕𝑡
= −

𝜕𝜋′

𝜕𝑥
+

𝜕2𝑢′

𝜕𝑥2
+
𝜕2𝑢′

𝜕𝑦2
+

𝜕2𝑢′

𝜕𝑧2
−

𝐿

𝑃𝑟
𝜃𝑏𝑔𝑒𝑥

′ ,

𝜕𝑣′

𝜕𝑡
= −

𝜕𝜋′

𝜕𝑦
+
𝜕2𝑣′

𝜕𝑥2
+

𝜕2𝑣′

𝜕𝑦2
+
𝜕2𝑣′

𝜕𝑧2
−

𝐿

𝑃𝑟
𝜃𝑏𝑔𝑒𝑦

′ ,

𝜕𝑤′

𝜕𝑡
= −

𝜕𝜋′

𝜕𝑧
+
𝜕2𝑤′

𝜕𝑥2
+

𝜕2𝑤′

𝜕𝑦2
+
𝜕2𝑤′

𝜕𝑧2
+

1

𝑃𝑟
(𝑅𝑎 − 𝐿𝑔𝑒𝑏)𝜃

′ −
𝐿

𝑃𝑟
𝜃𝑏𝑔𝑒𝑧

′ ,

𝜕𝜃′

𝜕𝑡
+ 𝑤 ′ 𝑑𝜃𝑏

𝑑𝑧
=

1

𝑃𝑟
(
𝜕2𝜃′

𝜕𝑥2
+
𝜕2𝜃′

𝜕𝑦2
+

𝜕2𝜃′

𝜕𝑧2
) ,

0 = (1 + 𝛾𝑒𝑧)Δ𝜙
′ − 𝛾𝑒 [(

𝑑2𝜙𝑏

𝑑𝑧2
)𝜃′ + (

𝑑𝜃𝑏

𝑑𝑧
)(

𝑑𝜙′

𝑑𝑧
) + (

𝑑𝜙𝑏

𝑑𝑧
)(

𝜕𝜃′

𝜕𝑧
)] .}
 
 
 
 
 

 
 
 
 
 

  (3.8) 

We have taken into account the perturbation of electric gravity which is induced by the 

perturbations of the temperature and of the electric field i.e. 𝑔𝑒 = 𝑔𝑒𝑏 + 𝑔𝑒
′  .  

The boundary conditions impose that perturbations vanish at the hot and the cold parallel plates: 

𝑢′ = 𝑣 ′ = 𝑤 ′ = 𝜋′ = 𝜃′ =  𝜙′ = 0 at 𝑧 = ±1/2. (3.9) 

3.3.2. Normal modes expansion 

Since we consider a rectangular cavity with infinite horizontal extent, the base state is invariant 

in the plane (𝑥, 𝑦) so that the perturbations can be developed in normal modes as follows 
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[
 
 
 
 
 
 
𝑢′(𝑥, 𝑦, 𝑧, 𝑡)

𝑣′(𝑥, 𝑦, 𝑧, 𝑡)

𝑤′(𝑥, 𝑦, 𝑧, 𝑡)

𝜋′(𝑥, 𝑦, 𝑧, 𝑡)

𝜃′(𝑥, 𝑦, 𝑧, 𝑡)

𝜙′(𝑥, 𝑦, 𝑧, 𝑡)]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑈(𝑧)
𝑉(𝑧)

𝑊(𝑧)
𝛱(𝑧)
𝛩(𝑧)
𝛷(𝑧) ]

 
 
 
 
 

𝑒𝑥𝑝[𝑠𝑡 + 𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)] + 𝑐. 𝑐  (3.10) 

where 𝑠 = 𝜎 + 𝑖𝜔 is the complex growth rate of the perturbations with 𝜎 the real growth rate and  

𝜔 the frequency; 𝑐. 𝑐. represents the complex conjugate; 𝑘𝑥  and 𝑘𝑦 are respectively the 

wavenumbers along the horizontal 𝑥 and 𝑦 directions. The perturbation  𝑔𝑒
′  is also expanded into 

normal mode: 

𝑔𝑒
′ = (𝐺𝑒𝑥𝑒𝑥 +𝐺𝑒𝑦𝑒𝑦 + 𝐺𝑒𝑧𝑒𝑧) 𝑒𝑥𝑝[𝑠𝑡 + 𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]. (3.11) 

The vector [𝑈(𝑧), 𝑉(𝑧),𝑊(𝑧),Π(𝑧), Θ(𝑧),Φ(𝑧)]𝑡  represents the amplitudes of perturbations 

(𝑢′, 𝑣 ′,𝑤 ′,𝜋′, 𝜃′, 𝜙′).  Substitution of (3.10) into the linearized equations (3.8) yields the following 

equations for the  perturbations amplitudes: 

 

𝐷𝑊 + 𝑖(𝑘𝑥𝑈+ 𝑘𝑦𝑉) = 0,

−𝑖𝑘𝑥𝛱 + (𝐷
2 − 𝑘2)𝑈 −

𝐿

𝑃𝑟
𝜃𝑏𝐺𝑒𝑥 = 𝑠𝑈,

−𝑖𝑘𝑦𝛱 + (𝐷
2 − 𝑘2)𝑉 −

𝐿

𝑃𝑟
𝜃𝑏𝐺𝑒𝑦 = 𝑠𝑉,

−𝐷𝛱 + (𝐷2 − 𝑘2)𝑊 +
1

𝑃𝑟
(𝑅𝑎 − 𝐿�̂�𝑒𝑏)𝛩 −

𝐿

𝑃𝑟
𝜃𝑏𝐺𝑒𝑧 = 𝑠𝑊,

−𝐷𝜃𝑏𝑈 +
1

𝑃𝑟
(𝐷2 − 𝑘2)𝛩 = 𝑠𝛩,

[(1 + 𝛾𝑒𝑧)(𝐷
2 − 𝑘2) + 𝛾𝑒𝐷]𝛷 − 𝛾𝑒(𝐷

2𝜙𝑏 + 𝐷𝜙𝑏𝐷)𝛩 = 0,}
 
 
 
 

 
 
 
 

  (3.12) 

where 𝐷 =
𝑑

𝑑𝑧
, 𝑘 is the total wavenumber 𝑘 = √𝑘𝑥2  + 𝑘𝑦2. The components (𝐺𝑒𝑥, 𝐺𝑒𝑦, 𝐺𝑒𝑧) of the 

normal mode of the electric gravity perturbation 𝑔𝑒
′  are given by: 

𝐺𝑒𝑥 = f(𝛾𝑒)(𝑖𝑘𝑥𝐷𝜙𝑏𝐷𝛷),

𝐺𝑒𝑦 = f(𝛾𝑒)(𝑖𝑘𝑦𝐷𝜙𝑏𝐷𝛷),

𝐺𝑒𝑧 = f(𝛾𝑒)𝐷(𝐷𝜙𝑏𝐷𝛷),

}  (3.13) 
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where f(𝛾𝑒) ≡
1

𝛾𝑒
3 [𝑙𝑜𝑔 (

1−𝛾𝑒 2⁄

1+𝛾𝑒 2⁄
)]
2

. Yoshikawa et al. [32] have shown that the basic electric gravity 

provides positive power to the perturbation (i.e. it enhances the instability), while the perturbation 

electric gravity produces a negative power i.e. it acts against the basic electric gravity [32]. 

3.3.3. Reduction to a 2-d thermal convection 

The continuity equation for the perturbation �⃗⃗�′ suggests the introduction of the quantity 𝑙𝑈 =

𝑘𝑥𝑈+ 𝑘𝑦𝑉 in order to reduce the number of equations in the system of equations (3.11). 

Elimination of the pressure from the set of perturbations equations (3.12) and the use of the 

relations (3.13) leads to the following system of coupled equations (3.14) for 𝑊, 𝛩, and 𝛷:  

(𝐷2 − 𝑘2 − 𝑠)(𝐷2 − 𝑘2)𝑊 −
𝑘2

𝑃𝑟
(𝑅𝑎 − 𝐿�̂�𝑒𝑏)𝛩 +

𝐿

𝑃𝑟
𝑓(𝛾𝑒)𝑘

2𝐷𝜙𝑏𝐷𝛷 = 0, (3.14.a) 

(𝐷2 − 𝑘2 − 𝑠𝑃𝑟)𝛩 = −𝑃𝑟𝑊, (3.14.b) 

[(1 + 𝛾𝑒𝑧)(𝐷
2 − 𝑘2) + 𝛾𝑒𝐷]𝛷− 𝛾𝑒(𝐷

2𝜙𝑏 +𝐷𝜙𝑏𝐷)𝛩 = 0. (3.14.c) 

The elimination of the axial velocity component leads to the equations (3.15):  

[(𝐷2 − 𝑘2 − 𝑠)(𝐷2 − 𝑘2)(𝐷2 − 𝑘2 − 𝑠𝑃𝑟) + 𝑘2(𝑅𝑎 − 𝐿�̂�𝑒𝑏)]𝛩 − 𝐿𝑓(𝛾𝑒)𝑘
2𝐷𝜙𝑏𝐷𝛷 = 0,  

          (3.15.a) 

[(1 + 𝛾𝑒𝑧)(𝐷
2 − 𝑘2) + 𝛾𝑒𝐷]𝛷− 𝛾𝑒𝐷(𝐷𝜙𝑏𝛩) = 0. (3.15.b) 

 

The system (3.15) contains the Rayleigh-Bénard convection as a limit case when 𝐿 = 0 [33]. From 

the system of equations (3.15), one deduces immediately that stationary modes (𝑠 = 0) are 

independent of 𝑃𝑟 as in the Rayleigh-Bénard convection [33]. This was confirmed by the studies 

of Roberts [26] and Yoshikawa et al. [32]. In Roberts's work [26], the perturbative gravity terms 

were neglected. 
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3.3.4. Eigenvalue problem 

The boundary conditions (3.9) impose that the complex amplitudes vanish at the horizontal 

surfaces: 

𝑈 = 𝑉 = 𝑊 = 𝛱 = 𝛩 = 𝛷 = 0 at 𝑧 ± 1/2.   (3.16) 

The system of linearized equations (3.12) together with the boundary conditions (3.16) form an 

eigenvalue problem which can be written as follows: 

�̅̅�𝛹 ⃗⃗⃗⃗⃗ = 𝑠�̅̅��⃗⃗⃗�,  (3.17) 

where the vector Ψ⃗⃗⃗⃗ represents the perturbation eigenvector 

�⃗⃗⃗�(𝑧) = [𝑈 𝑉 𝑊      𝛱 𝛩 𝛷]𝑡.  (3.18) 

The control parameters 𝑅𝑎, 𝐿, 𝑃𝑟, 𝛾𝑒, and the solution of the conductive state enter the operator L̅̅:     

L̅̅ =

[
 
 
 
 
 
 
 
𝑖𝑘𝑥 𝑖𝑘𝑦 𝐷 0 0 0

𝐷2 − 𝑘2 0 0 −𝑖𝑘𝑥 0 −
𝐿

𝑃𝑟
𝜃𝑏𝐺𝑒𝑥

0 𝐷2 − 𝑘2 0 −𝑖𝑘𝑦 0 −
𝐿

𝑃𝑟
𝜃𝑏𝐺𝑒𝑦

0 0 𝐷2 − 𝑘2 −𝐷
1

𝑃𝑟
(𝑅𝑎 − 𝐿�̂�𝑒𝑏) −

𝐿

𝑃𝑟
𝜃𝑏𝐺𝑒𝑧

−𝐷𝜃𝑏 0 0 0
1

𝑃𝑟
(𝐷2− 𝑘2) 0

0 0 0 0 𝐴 𝐵 ]
 
 
 
 
 
 
 

. (3.19) 

The quantities 𝐴 and 𝐵 are given by 

𝐴 = −𝛾𝑒(𝐷
2𝜙𝑏 +𝐷𝜙𝑏𝐷), 𝐵 = (1 + 𝛾𝑒𝑧)(𝐷

2 − 𝑘2) + 𝛾𝑒𝐷. 

The operator �̅̅� is given by: 

�̅̅� =

[
 
 
 
 
 
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0]

 
 
 
 
 

. 
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The eigenvalue problem allows for the computation of the growth rate (𝑠) of the perturbations as 

a function of their wavenumber (𝑘𝑥 , 𝑘𝑦) and of the control parameters (𝑅𝑎, 𝐿, 𝑃𝑟, 𝛾𝑒). Thus, 

solving the eigenvalue problem (3.17) is equivalent to finding the characteristic equation: 

𝐹(𝑅𝑎, 𝐿, 𝑃𝑟, 𝛾𝑒 , 𝜎, 𝜔, 𝑘𝑥 , 𝑘𝑦) = 0 or   𝑠 = 𝑓(𝑅𝑎, 𝐿, 𝑃𝑟, 𝛾𝑒 , 𝑘𝑥 , 𝑘𝑦).  (3.20) 

3.3.5. Marginal stability 

The linear stability analysis aims to determine the marginal perturbations for which 𝜎 = 0. 

Indeed, when 𝜎 < 0, disturbances are damped and the base state remains stable; whereas when 

𝜎 > 0, the perturbations grow and the base state becomes unstable. The marginal states belong to 

the surface 𝜎(𝑅𝑎, 𝐿, 𝑃𝑟, 𝛾𝑒 , 𝑘𝑥 , 𝑘𝑦) = 0 called marginal or neutral surface. The minimum of the 

neutral surface is the critical point which determines the onset of the instability. The onset of the 

thermoelectric convection is determined by 

 𝐿𝑐 = 𝐿𝑐(𝑅𝑎,𝑃𝑟, 𝛾𝑒);  𝑘𝑥𝑐 = 𝑘𝑥𝑐(𝑅𝑎,𝑃𝑟, 𝛾𝑒); 𝑘𝑦𝑐 = 𝑘𝑦𝑐(𝑅𝑎, 𝑃𝑟, 𝛾𝑒);  𝜔𝑐 = 𝜔𝑐(𝑅𝑎, 𝑃𝑟, 𝛾𝑒).  

The critical state appears as a stationary mode if 𝜔𝑐 = 0 and as an oscillatory mode if 𝜔𝑐 ≠ 0.  

In the present study, we fixed 𝑃𝑟, 𝑅𝑎 and 𝛾𝑒, and then determined the marginal stability curves 

𝐿 = 𝐿(𝑘𝑥,𝑘𝑦).  

3.3.6. Numerical method 

The eigenvalue problem (3.17) is solved with an in-house code developed by Yoshikawa that 

uses the Chebyshev spectral collocation method. All unknown functions are expanded into the 

Chebyshev polynomial series and equations (3.17) are discretized using the Chebyshev-Gauss-

Lobatto collocation points 𝑧𝑗 where 𝑗 = 1,2,… ,𝑁 − 1 with 𝑁 being the highest order of the 

considered Chebyshev polynomials [32]. To ensure the good convergence of solutions, we chose  

𝑁 = 32. The resulting discretized problem is then solved by the QZ-decomposition method to 

determine the eigenvalues and the eigenfunctions. 
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3.4. Results 

The objective of the study is the determination of the critical conditions of thermoelectric 

convection in a dielectric fluid confined in a rectangular cavity for three situations :  i) microgravity 

(𝑅𝑎 = 0), ii) a thermally unstable stratification of the fluid 𝑅𝑎 < 𝑅𝑎𝑐 = 1708 (threshold of the 

Rayleigh-Bénard convection) and iii) a thermally stable stratification (𝑅𝑎 < 0). We present results 

obtained for 𝑅𝑎 ∈ [ −1.2 ⋅ 104; 1708 [. 

3.4.1. Marginal curves and critical parameters 

Figure 3.4 illustrates  the behavior of the marginal stability curves for 𝑃𝑟 = 1, 𝑅𝑎 ∈

{−500, 0,500}. We determined the values of critical parameters 𝐿𝑐, 𝑘𝑐 , 𝜔𝑐  presented in Table 3.1. 

(a) 
(b) 

Figure 3.4: (a) Marginal stability curves for 𝑃𝑟 = 1, and different values of 𝑅𝑎; (b) Variation of 

critical electric Rayleigh number 𝐿𝑐 against 𝑅𝑎 for various values of 𝑃𝑟.  

In the microgravity, 𝑔 = 0 (or 𝑅𝑎 = 0), the conducting state becomes unstable when 𝐿 reaches the 

value 𝐿𝑐 = 2128.6. The corresponding critical modes are stationary (𝜔𝑐 = 0) and are called 

electric modes as they originate from the effect of the dielectrophoretic buoyancy. We recover the 

results of the previous studies [26,27,32]. For a fluid with thermally stable stratification (𝑅𝑎 < 0), 

the marginal stability curve lies above that of the microgravity case. The threshold of 

thermoelectric convection 𝐿𝑐(𝑅𝑎 < 0) > 𝐿𝑐(𝑅𝑎 = 0).  
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For a fluid with thermally unstable stratification (0 < 𝑅𝑎 < 1708), the marginal stability curve 

lies below that of the microgravity case, so that the threshold 𝐿𝑐 < 𝐿𝑐(𝑅𝑎 = 0). On Earth 

conditions, in a fluid with thermally unstable stratification, the thermoelectric convection is 

enhanced while in a fluid with thermally stable stratification, the thermoelectric convection is 

delayed. Even in the fluid with stable or unstable thermal stratification, the critical modes are 

induced by the dielectrophoretic buoyancy, that is why they are also called electric modes. 

We have computed the critical parameters for 5 values of 𝑃𝑟 corresponding to dielectric fluids 

with different diffusive properties (gas, light liquids, oils) and found that these parameters are 

independent of 𝑃𝑟 within the numerical precision of the computations (Table 3.1, Figure 3.5). This 

is in agreement with the results of Stiles [27] and Yoshikawa et al. [32]. 

Table 3.1: Critical parameters for the thermoelectric convection for 𝑃𝑟 = 1 and 𝑃𝑟 = 100 and 

different values of 𝑅𝑎. 

 𝑃𝑟 = 1 𝑃𝑟 = 100 

Case 𝑅𝑎 𝐿𝑐 𝑘𝑐 𝑅𝑎 𝐿𝑐 𝑘𝑐 

 

Unstable  

Ssratification 

 

1708 0 3.115 1708 0 3.115 

1000 883.518 3.161 1000 883.115 3.148 

500 1506.573 3.193 500 1506.535 3.191 

Microgravity  

conditions (𝑔 = 0) 
0 2128.694 3.228 0 2128.694 3.228 

Stable 

stratification 

−500 2749.868 3.260 −500 2749.857 3.259 

−1000 3370.074 3.294 −1000 3370.047 3.294 

−2000 4607.532 3.366 −2000 4607.547 3.365 

−4000 7070.302 3.516 −4000 7070.455 3.516 

−6000 9516.479 3.672 −6000 9516.995 3.672 

−8000 11945.940 3.830 −8000 11947.220 3.828 

−10000 14359.050 3.986 −10000 14361.600 3.983 

−12000 16756.340 4.134 −12000 16760.960 4.126 
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 (a) (b) 

Figure 3.5: Variation of critical parameters against 𝑅𝑎 for various values of 𝑃𝑟: (a) critical 

electric Rayleigh number 𝐿𝑐, (b) critical wavenumber 𝑘𝑐. 

The variations of the critical parameters (𝐿𝑐, 𝑘𝑐) of thermoelectric convection in a rectangular 

cavity with 𝑅𝑎 are plotted in Figure 3.4 (b) and Figure 3.5 in the range [-12000, 1708]; they are 

given by linear relationships: 

𝐿𝑐 = 𝐿𝑐
0 (1 −

Ra

𝑅𝑎𝑐
0) and 𝑘𝑐 = 𝑘𝑐

0 (1 − 𝛼
𝑅𝑎

𝑅𝑎𝑐
0), (3.21) 

where 𝐿𝑐
0 = 2128.6, 𝑅𝑎𝑐

0 = 1708, 𝑘𝑐
0 = 3.228,𝛼 = 0.042. The relationships (3.21) estimate 

critical parameters by no more than 2% for 𝐿𝑐 and 1.24% for 𝑘𝑐 and they are in good agreement 

with results of Stiles [27]. Based on the variation of the ratio of wavenumbers as a function of the 

𝑅𝑎 in Figure 3.5 (b), one can conclude that the thermoelectric convective rolls appear with random 

angle in the horizontal plane.   

3.4.2. Eigenfunctions of the critical states 

Streamlines and flow fields of the critical state give insight into the shape of the flow. We 

presented, in Figure 3.6, the eigenfunctions of the critical electric mode under microgravity 

conditions (𝑅𝑎 = 0) for 𝑃𝑟 = 11.03. This value of 𝑃𝑟 corresponds to the liquid Novec 7200 used 

in the experiment performed during the Parabolic Flight Campaign (PFC VP139) held in Bordeaux 

in September 2018. Figures are plotted in both vertical planes (𝑥 − 𝑧) and (𝑦 − 𝑧); they  show that 

the thermoelectric convection patterns are inclined in the horizontal (𝑥 − 𝑦)-plane with an angle of 
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about 83° with respect to the 𝑥 direction. The thermo-convective flow is characterized by 

alternating cold (blue) and hot (red) zones which show counter-rotating convective rolls having 

about the size of the gap. Arrows represent velocity vectors and colors give the temperature 

perturbation. For the elucidation of the periodicity along the 𝑥 direction, we set 𝑙𝑥 = 40.  

(a)  (a)  

(b) (b) 

(c)  (c)  

(d)  (d)  

(e)  (e)  

Figure 3.6: Eigenfunctions of the electric mode for 𝑃𝑟 = 11.03, 𝑅𝑎 = 0, and 𝐿𝑐 = 2128.69. (a) 

the velocity fields and the temperature levels, (b) the electric potential 𝜙′, (c-d) the horizontal 

velocity components 𝑢′ and 𝑣 ′, and (e) the vertical velocity 𝑤 ′.  
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The cross-section (𝑦 − 𝑧) of thermo-convective flow induced by the dielectrophoretic 

buoyancy in a fluid layer for 𝑃𝑟 = 65 and 𝑅𝑎 = 500 is presented in Figure 3.7. The flow is 

characterized by alternating cold (blue) and hot (red) zones which show counter-rotating 

convective rolls having about the size of the gap. Arrows represent velocity vectors and colors give 

the temperature perturbation in Figure 3.7 (a). 

(a) (a) 

(b)  (b) 

(c) (c) 

(d)  (d) 

 (e)  (e) 

Figure 3.7: Eigenfunctions of the electric mode for 𝑃𝑟 = 65, 𝑅𝑎 = 500, and 𝐿𝑐 = 1706.57. (a) 

the velocity fields and the temperature levels, (b) the electric potential 𝜙′, (c-d) the horizontal 

velocity components 𝑢′ and 𝑣 ′, and (e) the vertical velocity 𝑤 ′. 
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Figure 3.8 presents the instantaneous flow fields of the critical modes for 𝑃𝑟 = 65, 𝑅𝑎 =

−500. It shows that the electric modes are inclined in the horizontal plane (𝑥 − 𝑦). 

(a) (a) 

(b)  (b) 

(c)  (c) 

(d)  (d) 

(e) (e) 

Figure 3.8: Eigenfunctions of the electric mode for 𝑃𝑟 = 65, 𝑅𝑎 = −500 and 𝐿𝑐 = 2749.89. 

(a) the velocity fields and the temperature levels, (b) the electric potential 𝜙′, (c-d) the horizontal 

velocity components 𝑢′ and 𝑣 ′ , and (e) the vertical velocity 𝑤 ′. 
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3.4.3. Energetic analysis at the threshold 

The fluid stability is governed by the competition between Archimedean buoyancy, 

dielectrophoretic buoyancy, and viscous dissipation. To emphasize the contribution of each term 

to the energy balance at the onset of the thermoelectric convection, we have computed the power 

of each force in the equation of the kinetic energy (2.18). In the framework of the linear stability 

analysis, the time evolution of the kinetic energy of the perturbation is derived by taking the scalar 

product of the momentum equation with �⃗⃗�’. After decomposing the electric gravity into basic 

electric gravity and perturbative electric gravity, we integrate the resulting equation over the whole 

volume [32]:  

𝑑𝐾

𝑑𝑡
= 𝑊𝐵𝐸𝐺 +𝑊𝑃𝐸𝐺 +𝑊𝐺 −𝐷𝜈, (3.22) 

where 𝐾, 𝑊𝐺  and  𝐷𝜈 are defined in (2.18), 𝑊𝐵𝐸𝐺 = −
𝐿𝑐

𝑃𝑟
∫𝜃′�⃗⃗�′ ⋅ 𝑔𝑒𝑏 𝑑𝑉 is the contribution of the 

basic electric gravity to the power of the dielectrophoretic force, and 𝑊𝑃𝐸𝐺 = −
𝐿𝑐

𝑃𝑟
∫(𝜃𝑏 �⃗⃗�

′) ⋅ 𝑔𝑒
′ 𝑑𝑉 

is the contribution of the perturbed electric gravity to the power of the dielectrophoretic force. 

In order to analyze the equation (3.22) at the onset of thermoelectric convection, let us introduce a 

new variable 𝜑 = 𝑒𝑠𝑡+𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦, so that we have 𝜑𝜑∗ = 𝑒2𝜎𝑡 . The development of the velocity in 

normal modes �⃗⃗�’ = �̂�(𝑧)𝑒𝑠𝑡+𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦 + 𝑐. 𝑐. yields �⃗⃗�’ = �̂�𝜑 + �̂�∗𝜑∗, and then �⃗⃗�′
2
= �̂�2𝜑2 +

2�̂� ⋅ �̂�∗𝜑𝜑∗ + �̂�∗2𝜑∗
2
. Therefore, we obtain the following formulae for the time variation of the 

kinetic energy of the perturbation  

𝑑𝐾

𝑑𝑡
= 2𝜎 𝑒2𝜎𝑡 ∫ �̂� ⋅ �̂�∗𝑑𝑉 = 2𝜎 ∫ �̂� ⋅ �̂�∗𝑒2𝜎𝑡𝑑𝑉 = 2𝜎𝐾, 

Equation (3.22) leads to : 

𝜎 =
𝑊𝐵𝐸𝐺

2𝐾
+
𝑊𝑃𝐸𝐺

2𝐾
+
𝑊𝐺

2𝐾
−

𝐷𝜈

2𝐾
. 

So the balance of powers from all forces intervening at the threshold of the thermos-convection 

reads:  

𝑊𝐵𝐸𝐺

2𝐾
+

𝑊𝑃𝐸𝐺

2𝐾
+
𝑊𝐺

2𝐾
−

𝐷𝜈

2𝐾
= 0.      (3.23) 

Each power is computed using the eigenfunctions of critical mode.  
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The terms of the energy equation terms of a flow in a system heated from the bottom are 

presented in Figure 3.9 for 𝑃𝑟 = 11.03. All terms were computed for different values of 𝑅𝑎 below 

𝑅𝑎𝑐 ≈ 1708 (vertical dashed line) in Figure 3.9. We observe that 𝑊𝐺  increases when increasing 

𝑅𝑎; while the contribution 𝑊𝐵𝐸𝐺  of the basic electric gravity decreases with 𝑅𝑎. This diminution 

of the power 𝑊𝐵𝐸𝐺  with 𝑅𝑎 is due to the decrease of  𝐿𝑐 with 𝑅𝑎 as shown in equation (3.21). The 

two mechanisms driving the convection are Archimedean buoyancy and basic electric gravity 

buoyancy. The intersection of the curves of the powers from the Archimedean buoyancy and the 

dielectrophoretic buoyancy from the basic electric gravity related power graphs determines the 

point 𝑅𝑎 = 𝑅𝑎∗ ≈ 954 where 𝑊𝐺 = 𝑊𝐵𝐸𝐺. The dielectrophoretic buoyancy is the dominant term 

in thermoelectric convection generation when 𝑅𝑎 < 𝑅𝑎∗; and the Archimedean buoyancy 

dominates when 𝑅𝑎 > 𝑅𝑎∗. This suggests that in this later case, the thermo-convective structures 

are Rayleigh-Bénard cells which were favored by the dielectrophoretic buoyancy.  

 

Figure 3.9: Different terms of the energy balance at the critical point (𝐿𝑐, 𝑘𝑐) normalized by twice 

the kinetic energy plotted as a function of the Rayleigh number 𝑅𝑎. 

Figure 3.10 shows the variation of the terms of the kinetic energy equation with |𝑅𝑎| at the 

threshold for a system heated from the top. One sees that the power 𝑊𝐵𝐸𝐺  is the sole positive term 

in the energy equation. The contribution 𝑊𝐺  and 𝑊𝑃𝐸𝐺  are both negative, with the viscous 

dissipation term. Therefore, the dielectrophoretic force induced by the perturbative electric gravity 

1708 



48 

 

and the Archimedean buoyancy contributes to the stabilization of the system. Since |𝑊𝐺| and 

|𝑊𝑃𝐸𝐺 | increase with |𝑅𝑎|, the stabilization of the system is intensified with |𝑅𝑎|; thus an intense 

electric potential is needed to induce thermoelectric convection.    

 

 

Figure 3.10: Different terms of the energy balance at the critical point (𝐿𝑐, 𝑘𝑐) normalized by 

twice the kinetic energy plotted as a function |𝑅𝑎| for 𝑃𝑟 = 11.03 (Novec 7200) for a system 

heated from the top. 

 

The local kinetic energy 𝐸𝑐 =
1

2
‖�⃗⃗�′‖2, the local power of the basic electric gravity 𝑤𝐵𝐸𝐺 =

−
𝐿

𝑃𝑟
(𝜃′�⃗⃗�′) ⋅ 𝑔𝑒𝑏 , the local power of the perturbed electric gravity 𝑤𝑃𝐸𝐺 = −

𝐿

𝑃𝑟
(�̅��⃗⃗�′) ⋅ 𝑔𝑒

′ , and the 

local power of the Archimedian buoyancy 𝑤𝐺 = −
𝑅𝑎

𝑃𝑟
(𝜃′𝑤 ′) are presented in Figure 3.11 for 𝑃𝑟 =

65, and 𝑅𝑎 = 500. One sees that 𝑤𝐺  and 𝑤𝐵𝐸𝐺 are both positive at the central zone (𝑧 = 0) in both 

vertical (𝑥 − 𝑧) and (𝑦 − 𝑧) planes. 
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(a) (a) 

(b) (b) 

(c) (c) 

Figure 3.11: Cross-section of different local power terms at the threshold (𝐿𝑐 = 1506.57) for 

𝑃𝑟 = 65, 𝑅𝑎 = 500, , and 𝛾𝑒 = 1.92 ⋅ 10−3: local kinetic energy (a), local power arising from 

the basic electric gravity (b), and the local power from the Archimedean buoyancy (c). 

 

By integrating the energy terms over the horizontal 𝑥 and 𝑦-directions, we obtain the energy 

evolution inside the gap. Results are presented in Figure 3.12. Curves represent the local variation 

along the 𝑧-axis of mass density of the kinetic energy of disturbances 𝐸𝑐 , the power performed by 

the basic electric gravity 𝑤𝐵𝐸𝐺, and the power of the Archimedean buoyancy 𝑤𝐺 . One can observe 

that 𝑤𝐵𝐸𝐺 and 𝑤𝐺  are maximum at the mid-gap 𝑧 = 0. This shows that the effects of the 

Archimedean and dielectrophoretic buoyancies are maximum at zone 𝑧 = 0 which corresponds to 

the active zone. Since  𝑤𝐵𝐸𝐺 is larger than 𝑤𝐺 , we confirm that thermoelectric convection is 

governed by basic electric gravity (Figure 3.11-Figure 3.12). 
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(a) 

(b) (c) 

Figure 3.12: Profiles of local kinetic energy (a), local power generated by the basic electric 

gravity (b), and the local power performed by the Archimedean buoyancy (c) at the threshold 

(𝐿𝑐 = 1506.57) for 𝑃𝑟 = 65, 𝑅𝑎 = 500. The local kinetic energy is normalized by 𝐾, 𝑤𝐵𝐸𝐺 by 

𝑊𝐵𝐸𝐺  and the local power of the Archimedean buoyancy 𝑤𝐺  by 𝑊𝐺 .  
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3.5. Partial Conclusion 

The stability of a horizontal layer of a dielectric fluid subject to a vertical temperature gradient 

and to a vertical alternating electric field has been investigated. The dielectrophoretic force 

produced by the thermoelectric coupling changes the stability of the fluid layer  when the electric 

Rayleigh number reaches the critical value 𝐿𝑐(𝑅𝑎) independently on 𝑃𝑟. We confirmed previous 

results from different authors on the threshold of the thermoelectric convection under microgravity 

conditions (𝑅𝑎 = 0) with critical modes formed of stationary counter-rotating vortices with a 

spatial periodicity in the horizontal plane. 

When the fluid layer is heated from the top (𝑅𝑎 < 0), it has a thermally stable stratification and 

the thermoelectric convection is delayed. When the fluid layer is heated from the bottom (0 <

𝑅𝑎 < 1708)  it has a thermally unstable stratification and the thermoelectric convection occurs for 

lower values of the electric Rayleigh number [𝐿𝑐(0 < 𝑅𝑎 < 1708) < 𝐿𝑐(𝑅𝑎 = 0) < 𝐿𝑐(𝑅𝑎 <

0)].  

The energetic analysis showed that the power of the dielectrophoretic force due to basic electric 

gravity is the dominant term in energy generation. Its intensity is more important in the central part 

of the gap located at 𝑧 = 0. The influence of 𝑅𝑎 on the energy balance has also been analyzed. 

When the fluid layer is in thermally stable stratification (𝑅𝑎 < 0), the basic electric gravity is the 

only term generating the thermoelectric convection as in the microgravity conditions (𝑅𝑎 = 0). 

When the fluid is heated from the bottom, the dielectrophoretic buoyancy and the Archimedean 

buoyancy complement each other in the destabilization of the base state. We have found that the 

Archimedean buoyancy overcomes the dielectrophoretic buoyancy  when 𝑅𝑎 reaches the 𝑅𝑎∗. So 

we conclude that thermoelectric convection occurs for 𝑅𝑎 < 𝑅𝑎∗ while for 𝑅𝑎 > 𝑅𝑎∗ , we have 

Rayleigh-Bénard convection enhanced by dielectrophoretic buoyancy. 
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Chapter 4: Numerical simulation of thermoelectric 

convection in a horizontal rectangular cavity  

The present chapter addresses results from Direct Numerical Simulations (DNS) of thermo-

electro-hydrodynamic instabilities in a horizontal rectangular cavity in microgravity and in 

thermally stable and unstable stratifications. We first determine the critical values of the electric 

Rayleigh number for given values of 𝑃𝑟 and different values of 𝑅𝑎. Then, we use a weakly 

nonlinear analysis with the Landau-Stuart Equation (LSE) to determine the nature of the bifurcation 

from the base state to the first regime of thermoelectric convection. Different regimes of 

thermoelectric convection are computed by increasing 𝐿. The variation of the heat transfer 

coefficient 𝑁𝑢 of thermoelectric convection with the control parameter 𝐿 is determined for two 

values of 𝑃𝑟.  

4.1. Numerical method 

We consider a horizontal rectangular cavity with lengths 𝐿𝑥 = 𝐿𝑦 = 10𝑑. According to linear 

stability analysis, such lengths allow having about  10 modes in the 𝑥-direction  and 2 modes in the 

𝑦-direction.   The choice of the aspect ratio 𝛤 = 𝐿𝑥/𝑑 = 10 is motivated by the study of Hartlep 

et al. [71]. With this value, the authors were able to observe the different instability modes present 

in a classical Rayleigh-Bénard convection during the transition to turbulence. The numerical code 

is an in-house code written by Dr. Kang [21,72–74]. In the Cartesian coordinates, we have used 

the finite volume method to discretize the dimensionless governing flow equations (2.26)-(2.29). 

The fluid domain is divided into many control volumes as shown in Figure 4.1. The second-order 

central difference scheme was used for spatial discretization. The Crank-Nicolson scheme was 

employed for time advancement for the second-order diffusion terms and the third-order of the 

Runge-Kutta for the convective terms and the other terms. The pressure in the momentum equation 

and the continuity equation are coupled using the fractional step method; so that the resulting 

Poisson equation is solved by a spectral method. The Preconditioned Biconjugate Gradient method 
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(PBCG) was utilized to solve the Laplace equation for the electric potential. The pressure, the 

temperature, and the potential are determined at the center of the control volume while the 

velocities are determined at each face of the control volume. 

 

 

Figure 4.1: Control volume and grid system in the vertical (𝑥 − 𝑧) plane. 

The temperature and the electric potential are kept constant on the top and bottom walls. Since 

the no-slip condition was employed, we have utilized the Dirichlet boundary conditions at the 

horizontal solid surfaces located at 𝑧 = ±1/2 : 

�⃗⃗� = 0; 𝜃 = 1/2; 𝜙 = 1 à 𝑧 = −1/2 , 

�⃗⃗� = 0; 𝜃 = −1/2; 𝜙 = 0 à 𝑧 = 1/2 ; 

and the periodic boundary conditions for the velocity, the temperature, and the electric potential 

along the horizontal 𝑥 and 𝑦 directions: 

�⃗⃗�(𝑥, 𝑦, 𝑧) = �⃗⃗�(𝑥 ± 𝐿𝑥/2, 𝑦 ± 𝐿𝑦/2, 𝑧),

𝜃(𝑥, 𝑦, 𝑧) = 𝜃(𝑥 ± 𝐿𝑥/2, 𝑦 ± 𝐿𝑦/2, 𝑧),

𝜙(𝑥, 𝑦, 𝑧) = 𝜙(𝑥 ± 𝐿𝑥/2, 𝑦 ± 𝐿𝑦/2, 𝑧).

} (4.1) 

The computational grid cells in this study are chosen depending on the values. For example, 

we have adopted the grid cells with 256(𝑥) × 256(𝑦) × 64(𝑧) for 𝑃𝑟 = 1 with 64 points in the 

vertical direction (𝑧). For large values of Prandtl number 𝑃𝑟 ≫ 1, the thermal boundary layer is 

smaller than the momentum boundary layer. Viscous and buoyancy forces are in balance in the 

thermal boundary layer and viscous and inertia are in balance in the larger viscous boundary layer. 
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Accordingly, we need to increase the grid point number along the vertical direction, for example, 

we have chosen 256(𝑥) × 256(𝑦) × 96(𝑧) for 𝑃𝑟 = 65. The grid refinement is uniform in the 

horizontal (𝑥) and (𝑦) directions, while more grid points are located near the walls in the vertical 

direction (𝑧). To ensure the convergence of solutions, we have computed the mean values of the 

temperature and the velocity for the chosen grid cells. The obtained values are 1% less than those 

obtained with doubled grid points in each direction. This refinement corresponds to an optimal 

computation time. 

For the visualization of the flow patterns,  we plotted the iso-surfaces of the quantity 𝑄 [75]: 

𝑄 = −
1

2
tr(S̿2 + Ω̿2) where  𝑆̿ and Ω̿ are the symmetric and the antisymmetric parts of the velocity 

gradient tensor ∇⃗⃗⃗�⃗⃗� respectively. Their components are given by  

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) and Ω𝑖𝑗 =

1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
−

𝜕𝑢𝑖

𝜕𝑥𝑗
). 

By introducing the quantities 𝑇𝑖𝑗 =
𝜕𝑢𝑗

𝜕𝑥𝑖
 and 𝑇𝑗𝑖 =

𝜕𝑢𝑖

𝜕𝑥𝑗
, the quantity 𝑄 reads [75]:  

𝑄 = −0.5 ⋅ [𝑇11
2 + 𝑇22

2 + 𝑇33
2 + 2 ⋅ (𝑇21 ⋅ 𝑇12 + 𝑇13 ⋅ 𝑇31 + 𝑇23 ⋅ 𝑇32)]. 

In our study, we have fixed the value of the thermoelectric coefficient 𝛾𝑒 = 0.01. For a given 

value of 𝑃𝑟, computations are started with random noise with an amplitude of about 10−5. For 

given values of the 𝑅𝑎, the flow is computed for increasing the values of the applied electric 

potential above the threshold, i.e. 𝐿 > 𝐿𝑐. 

4.2. Conductive Base state 

For small values of the electric potential i.e.  𝐿 <  𝐿𝑐(𝑅𝑎), the fluid layer is at rest, and heat 

transfer is accomplished by conduction. The temperature obeys the Fourier law. The electric field 

is also linearly distributed along the vertical direction. The numerical code was tested by computing 

the numerical solution of the quiescent conductive state. Analytic and numerical solutions for  𝑃𝑟 =

1, 𝑅𝑎 = 0, and 𝐿 = 2100 are plotted in Figure 4.2 and Figure 4.3. The temperature and the electric 

potential are invariant by translation along the 𝑦 direction. Thus the behaviors of isotherms and 

equipotentials are the same in both vertical (𝑥 − 𝑧) and (𝑦 − 𝑧) directions. 
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Figure 4.2: Analytic and numerical solution of the conductive base state for 𝑃𝑟 = 1, 𝑅𝑎 = 0 and 

𝐿 = 2100. Profiles of  the (a) temperature and (b) the electric potential. 

(a) (b) 

Figure 4.3: Isotherms (a) and equipotential (b) of the quiescent base state in the (𝑥, 𝑧) plane for 

𝑃𝑟 = 1, 𝑅𝑎 = 0 and 𝐿 = 2100. 

 

4.3. Landau-Stuart equation 

The linear stability analysis yields the critical parameters (threshold, critical wavenumber) of 

the thermoelectric convection but the mode amplitude can be obtained from DNS. Near the 

threshold, the amplitude can be chosen as the amplitude of either the vertical velocity or the 

temperature. The velocity component is aligned with the vertical temperature gradient and 

participates in the vertical advection of the temperature. The amplitude of the vertical velocity at 

the mid-gap reads: 

𝐴 =
1

𝐿𝑥𝐿𝑦
∫ ∫ |𝑤(𝑥, 𝑦, 𝑧 = 0)|𝑑𝑥𝑑𝑦

𝑙𝑥
2

−
𝑙𝑥
2

𝑙𝑦

2

−
𝑙𝑦
2

. (4.2) 
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Near the threshold, the dynamics of the perturbed state are described by the nonlinear Landau-

Stuart equation [76]:  

𝜏0
𝑑𝐴

𝑑𝑡
= 𝛿 𝐴 − 𝑙|𝐴|2𝐴 + 𝑔|𝐴|4𝐴,  (4.3) 

where 𝛿 = (𝐿 − 𝐿𝑐) 𝐿𝑐⁄  is the relative distance from the threshold,  𝜏0 is the characteristic time of 

the perturbations, 𝑙, and 𝑔 are the nonlinear saturation coefficients. If the Landau coefficient 𝑙  is 

positive, the bifurcation is supercritical and there is no need to take into account the higher-order 

terms in (4.3). When 𝑙 < 0, the bifurcation is subcritical and the term of higher order is then needed 

for the saturation. In that case, one has to consider the sign of 𝑔  in order to decide to limit the 

expansion to the 5th order (𝑔 < 0) or to continue to higher order if (𝑔 > 0). 

The characteristic time 𝜏0 = 𝜎0
−1 where 𝜎0 is computed from linear stability analysis. Indeed, in 

the neighborhood of the threshold, the growth rate 𝜎 obeys the following relation: 

𝜎 = 𝜎0𝛿 + 𝜎(𝑂
2),  with 𝜎0 = (

𝜕𝜎

𝜕𝛿
)|
𝐿𝑐
= 𝐿𝑐 (

𝜕𝜎

𝜕𝐿
)|
𝐿𝑐

. (4.4) 

It can be determined also from DNS in the linear phase of the curve 𝑙 𝑛|𝐴| = 𝑓(𝑡) ≈ 𝜎0𝛿𝑡. The 

coefficients 𝑙 and 𝑔  which determine the nature of the bifurcation from the base state to the thermo-

convective regime given by the following formulae [72] 

𝑙 = −
𝑑𝑓(|𝐴|2)

𝑑|𝐴|2
|
|𝐴|2=0

 with 𝑓(|𝐴|2) = 𝛿 − 𝑙|𝐴|2 + 𝑔|𝐴|4; 𝑔 =
𝑙

2|𝐴𝑚|
2 ,  (4.5) 

where 𝐴𝑚 is the amplitude corresponding to the maximum of 𝑓(|𝐴|2) in the case of subcritical 

bifurcation (𝑙 < 0). 

4.4. Instability threshold and nature of bifurcation 

4.4.1. Critical electric Rayleigh number 𝐿𝑐 and nature of bifurcation  

When the electric potential exceeds the critical value, a convective flow sets and its amplitude 

𝐴 defined in equation (4.2) grows exponentially in time until it gets saturated due to nonlinearities 

(Figure 4.4). The plots show that each amplitude curve contains three parts: the random noise near  
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𝑡 = 0, the linear growth phase and the nonlinear saturation phase. We analyze the linear growth 

and nonlinear saturation phases to determine the coefficients of the Landau-Stuart equation (4.3). 

 

(a) 𝑅𝑎 = −500 (b) 𝑅𝑎 = 0 

Figure 4.4: Temporal evolution of the amplitude of perturbations, until the saturation for 𝛿 <

0.03 of a saturated perturbed flow for 𝑃𝑟 = 65, 𝛾𝑒 = 0.01. 

 

Since the LSA has shown that critical modes of the thermoelectric convection are stationary, 

the time evolution of 𝐴 in the linear-growth phase is given by: 

𝐴(𝑡) = 𝐶𝑒𝜎𝑡 , (4.6) 

where the linear growth rate 𝜎 is real. The growth rate 𝜎 can be determined by using the exponential 

fit of the time evolution of the amplitude 𝐴 or equivalently by the plot ln 𝐴(𝑡) = ln 𝐶 +𝜎𝑡. 

 

The slope of the amplitude depends on the value of 𝐿 (Figure 4.4). The obtained values of 𝜎 are 

plotted as a function of the electric Rayleigh number 𝐿 i.e. 𝜎(𝐿) for the fixed values of the Rayleigh 

number 𝑅𝑎. The intersection of the line 𝜎(𝐿) with the horizontal axis (𝜎 = 0) determines the 

threshold of the thermoelectric convection 𝐿𝑐 i.e. 𝐿𝑐 = 𝐿(𝜎 = 0) as shown in Figure 4.5-a. 
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(a) (b) 

Figure 4.5: Growth rate σ plotted against a) the electric Rayleigh number 𝐿 to determine 𝐿𝑐, and 

b) the criticality δ to determine the characteristic time 𝜏0 for 𝛾𝑒 = 0.01, 𝑃𝑟 = 65, and  𝑅𝑎 = 0. 

Under a microgravity condition (𝑅𝑎 = 0), the critical electric Rayleigh number found by DNS 

is 𝐿𝑐 = 2131.9 for 𝑃𝑟 = 65 and 𝐿𝑐 = 2128.10 for 𝑃𝑟 = 1; these values are very close to the 

threshold obtained by the LSA (𝐿𝑐 = 2128.6). The evolution of the growth rate 𝜎 as a function of 

the reduced control parameter near the threshold is presented in Figure 4.5 (b). From the slope of 

the curve 𝜎 = 𝑓(𝛿), we can extract the characteristic time 𝜏0, defined in equation (4.4).  

When the system reaches saturation we extracted the Landau constant 𝑙 using equation (4.5). 

Figure 4.6 shows that the slope at the origin of the derivative of the logarithm of the amplitude is 

negative, therefore the Landau coefficient 𝑙 is positive for 𝑃𝑟 ∈ {1;65}. We found that the 

bifurcation to thermoelectric convection is supercritical in microgravity and for different thermal 

stratification of the fluid layer. Table 4.1 gives values of 𝐿𝑐, 𝜏0, 𝑙 for 𝑃𝑟 ∈ {1;65} and different 

values of 𝑅𝑎. The characteristic time 𝜏𝐷𝐸𝑃  introduced in chapter 2 is made non-dimensional by the 

characteristic viscous time 𝜏𝜈 . Its non-dimensional form is computed at the threshold by the 

following formula �̃�𝑐𝑜𝑛𝑣(𝑅𝑎) = √
𝑃𝑟

𝐿𝑐(𝑅𝑎)
 and results are presented in Table 4.1.       
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Figure 4.6: Variation of the 𝑑(ln|𝐴|)/𝑑𝑡 as a function of |A|2 for 𝑃𝑟 = 65: under microgravity 

conditions (𝑅𝑎 = 0, 𝐿𝑐 = 2131.9); and unstable stratification case (𝑅𝑎 = 500, 𝐿𝑐 = 1507.95). 

Table 4.1: Values of the critical electric Rayleigh number 𝐿𝑐 and the coefficients of the LSE for 

two values of 𝑃𝑟 and different values of 𝑅𝑎. 

𝑃𝑟 𝑅𝑎 −1000 −500 0 500 1000 

 

1 

𝐿𝑐 3369.74 2749.06 2128.10 1504.65 883.38 

𝜏0 0.044 0.055 0.073 0.105 0.179 

𝑙 0.023 0.027 0.031 0.040 0.058 

�̃�𝑐𝑜𝑛𝑣 0.017 0.019 0.022 0.026 0.034 

 

65 

𝐿𝑐 3375.81 2768.47 2131.90 1507.95 885.42 

𝜏0 2.06 2.43 3.18 4.62 7.99 

𝑙 99.73 111.13 130.10 157.12 245.06 

�̃�𝑐𝑜𝑛𝑣 0.139 0.153 0.175 0.208 0.271 

Table 4.1 shows that the values of the characteristic time 𝜏0 and of the Landau coefficient 𝑙 depend 

considerably on 𝑃𝑟. Under microgravity conditions, the values of 𝜏0 agree with those obtained in 

the case of the two-dimensional thermoelectric convection under microgravity conditions for 𝛾𝑒 =

0.03 [32]. This coefficient can be correlated using the same relationship of the classical Rayleigh-

Bénard problem 𝜏0 = (𝑃𝑟 + 0.5117)/19.65 [77] within a precision of 5%. The values given by 

Yoshikawa et al. [32] and Cross [77] are 𝜏0 ∈ {0.078, 3.33} for 𝑃𝑟 ∈ {1;  65}.  
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(a) (b) 

Figure 4.7: Variation of (a) 𝜏0 and (b) 𝑙 as function of 𝑅𝑎 for two values of Prandtl number 𝑃𝑟. 

To illustrate the supercritical bifurcation, we have plotted the amplitude of the saturated 

thermo-convective flows as a function of 𝐿 in Figure 4.8 for two values of the Prandtl number 𝑃𝑟 

under microgravity conditions.  

(a) (b) 

(c) (d) 

Figure 4.8: Variation of the amplitude |𝐴𝑒| of saturated regimes with 𝐿 and 𝐴𝑒
2 as function of 𝛿 

for 𝑅𝑎 = 0, (a-c) 𝑃𝑟 = 1, and (b-d) 𝑃𝑟 = 65.  
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One sees that the amplitude of the convection increases with increasing the value of the electric 

Raleigh number 𝐿 for both values of 𝑃𝑟. The slopes at the origin are about 𝑆1 = 5.4 ⋅ 10
−3  for 

𝑃𝑟 = 1 (Figure 4.8 (a)) and 𝑆2 = 7.1 ⋅ 10−5  for 𝑃𝑟 = 65 (Figure 4.8 (b)). We also notice that the 

amplitude |𝐴𝑒| changes with 𝑃𝑟 while its global behavior as a function of the electric Rayleigh 

number 𝐿 is the same for both 𝑃𝑟 as shown on Figure 4.9. The changes in slopes of the curve of 

|𝐴𝑒| with 𝐿 in Figure 4.8 (a) and (b) can be associated with the change of the flow regimes. Figure 

4.8 (c-d) shows the variation of 𝐴𝑒
2 =

1

𝑙
𝛿 as function of 𝛿; we then observe that the linear 

approximation in the LSE is only valid around the threshold for both values of 𝑃𝑟.Due to the 

important viscous effects for 𝑃𝑟 = 65, the amplitude of thermoelectric convection regimes is much 

lower than that of the thermal convective instabilities occurring for 𝑃𝑟 = 1.    

 

Figure 4.9: Variation of the amplitude |𝐴| of saturated regimes with the electric Rayleigh number 

𝐿 for 𝑅𝑎 = 0, and 𝑃𝑟 = 1 and 𝑃𝑟 = 65. 

4.5. Flow regimes for 𝑃𝑟 = 1 

We have seen from the previous section that the first bifurcation to the thermoelectric 

convection regime in the differentially heated fluid layer is independent of 𝑃𝑟 for all values of 𝑅𝑎. 

In this section, the Prandtl number will be fixed at 𝑃𝑟 = 1. To investigate the different thermo-

convective regimes induced by the dielectrophoretic buoyancy, we performed numerical 

simulations for given values of 𝑅𝑎 and electric Rayleigh number 𝐿 ranging from 𝐿𝑐 to 104. We 

stop computations at this value because of the limitation due to the breakdown voltage. For 
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example, the voltage corresponding to 𝐿 = 10 000 for the silicone oil (AK5) is about 𝑉0 =

38.6 𝑘𝑉. This value is under the predicted breakdown voltage given in Table 2.1.  

4.5.1. Flow patterns under microgravity conditions (𝑅𝑎 = 0) 

Dielectrophoretic instability occurs in the fluid layer under microgravity conditions when 𝐿𝑐 ≈

2132. The thermoelectric convection appears in form of stationary straight convective rolls with 

an inclined axis in the (𝑥 − 𝑦) plane. The analysis  of the behavior of the flow  above the threshold 

shows that the thermoelectric convective patterns remain stationary for 𝐿𝑐 < 𝐿 < 3500. We have 

plotted in Figure 4.10 (a), the amplitude of the averaged vertical velocity to monitor the evolution 

of thermoelectric convection. The stationarity of the rolls in the convective regime is evidenced by 

plotting the time evolution of the vertical velocity 𝑤0 and the temperature 𝜃0  at the center of the 

rectangular cavity (Figure 4.10 (b)). Graphs reveal that 𝑤0 and 𝜃0  converge to finite stationary 

values after the computational time exceeds 400 times the viscous time. An example of the first 

steady regime can be seen in Figure 4.11. 

(a) (b) 

Figure 4.10: Time evolution of the (a) amplitude of averaged vertical velocity |𝐴| at the mid-gap 

z = 0; (b) vertical velocity w0  and temperature 𝜃0  at the center of the rectangular cavity for 𝑃𝑟 =

1 and 𝐿 = 2150. Amplitudes and time are, respectively, normalized by the viscous velocity ν/d 

and the viscous time 𝑑2/𝜈. 

From linear stability analysis, we have shown that critical roll patterns are inclined in the plane 

horizontal (𝑥 − 𝑦) plane. The wavenumber of patterns observed close to the threshold (Figure 4.11) 

is around 𝑘 = 3.204 with 𝑘𝑥 = 0.628 and 𝑘𝑦 = 3.142. The value of 𝑘 = 3.204 is close to that 

predicted in LSA which is about 𝑘𝑐 = 3.228. The thermo-convective structures are tilted at an 
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angle of 78° to the 𝑥 axis. This inclination angle changes randomly when 𝐿 increases as shown in 

Figure 4.11 (a1) and (a2). The inclination angle of rolls in Figure 4.11 (a2) is about 53° with the 

𝑦 −direction. Snapshot of temperature distributions in Figure 4.11 (a) and (b) is taken at the mid-

height position (𝑧 = 0) to show the patterns of thermo-convective structures. 

(a1) 𝑄 = 4, and 𝐿 = 2150 (a2) 𝑄 = 40, and 𝐿 = 2400 

(b1) (b2) 

Figure 4.11: (a) Vortical structures illustrated by iso-surfaces of 𝑄, and (b) isotherms in the 

horizontal (𝑥 − 𝑦) plane for 𝑃𝑟 = 1, γ𝑒 = 0.01, 𝑅𝑎 = 0 and two values of 𝐿.  

The instantaneous temperature fields together with the instantaneous velocity of flow on the 

vertical planes (𝑥 − 𝑧) and (𝑦 − 𝑧) are shown in Figure 4.12 for 𝐿 = 2400. This flow regime is 

chosen in order to elucidate the periodicity in both horizontal directions. In the temperature 

distribution, blue represents cold zones and red corresponds to hot zones; the corresponding 

temperature perturbations are presented in Figure 4.12 (b). For low values of 𝐿 around the 

threshold, we observe zones of high perturbation electric potential located alternatively near the 

hot and cold plates in Figure 4.12 (c). Figure 4.12 (f) shows an alternate of positive (red) and 

negative (blue) vertical velocity 𝑤 zones; this illustrates the upward and downward motions of 

fluid particles that form vortices. The vertical vorticity components in both vertical (𝑥 − 𝑧) and 

(𝑦 − 𝑧) cross-sections are presented in Figure 4.13 for 𝐿 = 2400. In both vertical planes, we 
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observe that the magnitude of the vertical vorticity component is lower than the magnitude of the 

horizontal vorticity components. 

(a) (a) 

(b) (b) 

(c) (c) 

  (d) 
(d) 

(e) (e) 

 (f)  (f) 

Figure 4.12: Instantaneous flow fields of saturated state in the plane 𝑦 = 0, and in the plane 𝑥 =

0 for 𝑃𝑟 = 1, γ𝑒 = 0.01, 𝑅𝑎 = 0 and 𝐿 = 2400. Vectors represent the velocity fields: (a) 

temperature distribution (color); (b) temperature perturbations; (c) electric potential 

perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) vertical velocity 

component (color). 
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(a) (a) 

 (b) (b) 

(c) (c) 

Figure 4.13: Vorticity components in the plane 𝑦 = 0, and in the plane 𝑥 = 0 for 𝑃𝑟 = 1, γ𝑒 =

0.01, 𝑅𝑎 = 0 and 𝐿 = 2400. Vectors represent the velocity fields: (a) and (b) horizontal 

vorticity components (color); and (c) vertical vorticity components (color). 

 

When we increase the value of the electric Rayleigh number 𝐿, the straight rolls become 

deformed but remain stationary and then become time-dependent for a further increase of 𝐿. Figure 

4.14 shows the instantaneous images of flow structures for 𝑅𝑎 = 0 and 𝑃𝑟 = 1 and different values 

of 𝐿. The convective patterns present some steady regimes with localized defects (𝐿 ∈

{3500; 5000}). The system of flow structures becomes time-dependent patterns for 𝐿 = 7000 

(periodic regime) and the disordered flow structures appear at 𝐿 = 10 000 as illustrated in Figure 

4.15. The latter flow regime corresponds to the oscillatory spiral with defects and a zone of 

disordered rolls. 
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(a)  𝐿 = 3500, 𝑄 = 80 (b) 𝐿 = 5000, 𝑄 = 200 (c) 𝐿 = 6000, 𝑄 = 200 

(d) 𝐿 = 7000, 𝑄 = 250 (e)  𝐿 = 8000, 𝑄 = 150 (f) 𝐿 = 10000, 𝑄 = 500 

Figure 4.14: Instantaneous structures of isosurfaces of Q for 𝑃𝑟 = 1 and different values of 𝐿 

under microgravity environment 𝑅𝑎 = 0. 

 

 

(a) (b) 

Figure 4.15: Time evolution of the vertical velocity 𝑤0 and the temperature 𝜃0  at the cavity center 

(𝑥 = 𝑦 = 𝑧 = 0) for 𝑅𝑎 = 0, 𝑃𝑟 = 1, 𝐿 = 7000 (a) and 𝐿 = 10 000 (b).   
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Figure 4.16 shows the horizontal cross-sections of the instantaneous temperature distribution 

at the mid-gap (𝑧 = 0) at different values of the electric Rayleigh number 𝐿. These snapshots 

(Figure 4.16) represent the convection patterns presented above in Figure 4.14. 

 

(a) 𝐿 = 3500 (b) 𝐿 = 5000 (c) 𝐿 = 6000 

(d) 𝐿 = 7000 (e) 𝐿 = 8000 (f) 𝐿 = 10 000 

Figure 4.16: Screenshot of instantaneous thermo-convective flow in the horizontal (𝑥 − 𝑦) plane 

at the mid-height 𝑧 = 0 for 𝑅𝑎 = 0, 𝛾𝑒 = 0.01, 𝑃𝑟 = 1, and different values of the electric 

Rayleigh number 𝐿 > 𝐿𝑐. 

The coexistence of rolls and defects is characteristic of the classical Rayleigh-Bénard convection 

for 𝑃𝑟 ≈ 1 [35]. Figure 4.17 shows the deformation of isotherms of the convective regime in both 

vertical (𝑥 − 𝑧) and (𝑦 − 𝑧) planes at the mid-gap corresponding to 𝐿 = 10 000. The further 

increase of the electric Rayleigh number leads to the concentration of high perturbation electric 

potential at the central 𝑧 = 0. The vorticity components of the perturbed flow for 𝐿 = 10 000 are 

shown in Figure 4.18. 
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(a) 
(a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.17: Instantaneous flow fields of the flow regime in the vertical planes for 𝑃𝑟 = 1, γ𝑒 =

0.01, 𝑅𝑎 = 0 and 𝐿 = 10 000: (a) temperature distribution (color); (b) temperature 

perturbations; (c) electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 

(color); and (f) vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-

f) and snapshots are taken at 𝑦 = 0 and 𝑥 = 0.  



70 

 

 

 

 

 

 

(a)  (a) 

(b) 
(b) 

(c) (c) 

Figure 4.18: Vorticity components in the plane 𝑦 = 0, and in the plane 𝑥 = 0 for 𝑃𝑟 = 1, γ𝑒 =

0.01, 𝑅𝑎 = 0 and 𝐿 = 10 000. Vectors represent the velocity fields: (a) and (b) horizontal 

vorticity components (color); and (c) vertical vorticity components (color). 
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4.5.2. Convective flow patterns under unstable stratification (𝑅𝑎 > 0) 

When we apply low electric potential (𝐿 < 𝐿𝑐(𝑅𝑎)) to a dielectric fluid layer heated from the 

bottom, the basic state is an unstable stratified state as long as the Rayleigh number 𝑅𝑎 is lower 

than its critical value in the classical Rayleigh-Bénard problem (𝑅𝑎 < 𝑅𝑎𝑐 = 1708). When 𝐿 ≥

𝐿𝑐(𝑅𝑎), the effects of the electric buoyancy combined with the thermal buoyancy dominate the 

stabilizing viscous dissipation and thermal diffusion. Thus, counter-rotating thermo-convective 

cells occur in the cavity. Figure 4.19 shows the perturbed flow patterns for 𝑃𝑟 = 1, 𝑅𝑎 = 500 (i.e. 

the imposed temperature difference), and different values of 𝐿 (i.e. increase in the electric voltage). 

(a) 𝐿 = 1550, 𝑄 = 6  (b) 𝐿 = 1700, 𝑄 = 17 (c) 𝐿 = 4000, 𝑄 = 65 

(d) 𝐿 = 5000, 𝑄 = 100 (e) 𝐿 = 7000, 𝑄 = 100 (f) 𝐿 = 10 000, 𝑄 = 200 

Figure 4.19:  Instantaneous flow structures visualized by the isosurfaces of 𝑄 for 𝑃𝑟 = 1, 𝑅𝑎 =

500, and different values of 𝐿. 

The thermo-convective structures, near the threshold, are aligned with the 𝑦-direction and have 

a wavenumber 𝑘 = 3.142. The orientation of these rolls changes with the value of 𝑅𝑎. For example 

for 𝑅𝑎 = 1000, the straight rolls are inclined in the (𝑥 − 𝑦) horizontal plane (𝑘𝑥 = 1.885 and 

𝑘𝑦 = 2.265), but their total wavenumber remains unchanged (𝑘 = 3.142). As the value of 𝐿 

increases, the flow bifurcates to different complex regimes presenting many structures with defects 
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(Figure 4.19) similar to those observed in the Rayleigh-Bénard convection [35,78]. The spatio-

temporal behavior of two regimes with dislocations is illustrated by the temperature distribution 

patterns presented in Figure 4.20-(a). These pictures are taken in the horizontal (𝑥 − 𝑦) cross-

section at the mid-height 𝑧 = 0. The time evolution of the vertical velocity and the temperature 

computed at the cavity center (𝑥 = 𝑦 = 𝑧 = 0) are presented in Figure 4.20-(b). One sees that the 

flow regime is steady for 𝐿 = 1700, while it bifurcates to an unsteady thermo-convective 

instability when 𝐿 = 7000. 

(a1) (b1) 

(a2) (b2) 

Figure 4.20: Isotherms of the flow regimes with defects in the (𝑥 −  𝑦) plane and time variation 

of the vertical velocity 𝑤0 and the temperature 𝜃0  at the cavity center (𝑥 = 𝑦 = 𝑧 = 0). Plots 

correspond to 𝑃𝑟 = 1, 𝑅𝑎 = 500 for (a) 𝐿 = 1700 and (b) 𝐿 = 7000. 

For a better understanding of the flow regime with dislocations, the instantaneous flow fields, the 

temperature perturbation and the potential perturbation are presented in Figure 4.21 for 𝐿 = 1700.   
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(a) (a) 

(b) (b) 

 (c)  (c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.21: Instantaneous flow fields of the flow regime in the vertical planes for 𝑅𝑎 = 500, 

𝑃𝑟 = 1, and 𝐿 = 1700: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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The temperature distribution in both vertical planes are presented in  Figure 4.21 (a) and the 

temperature and electric potential fluctuations are shown in Figure 4.21 (b) and (c). The 

temperature perturbations are located around the mid-height 𝑧 = 0 for values of 𝐿 near the 

threshold. Figure 4.22 shows the vorticity components in both vertical planes 𝑦 = 0 and 𝑥 = 0. 

 

(a) (a) 

(b) (b) 

(c) (c) 

Figure 4.22: Vorticity components in the (𝑥 − 𝑧) plane, and in the (𝑦 − 𝑧) plane for 𝑃𝑟 = 1, 

𝑅𝑎 = 500, and 𝐿 = 1700. Vectors represent the velocity fields: (a) and (b) horizontal vorticity 

components (color); and (c) vertical vorticity components (color). 

The instantaneous flow fields, the fluctuations in temperature and electric potential in the 

vertical cross-sections are presented in Figure 4.23 for 𝑅𝑎 = 500 and 𝐿 = 7000. Figure 4.23 (a) 

shows the considerable deformation of isotherms from those of previous steady thermo-convective 

regimes. One also sees that from Figure 4.23 (b), the temperature field perturbations predominates 

over the temperature field of the conductive base state when 𝐿 = 7000. The vorticity components 

of this flow regime is presented in Figure 4.24. 
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(a) (a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.23: Instantaneous flow fields of the flow regime in the vertical planes for 𝑃𝑟 = 1, 𝑅𝑎 =

500, and 𝐿 = 7000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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(a) (a) 

(b)  (b) 

(c) (c) 

Figure 4.24: Vorticity components in the (𝑥 − 𝑧) plane, and in the (𝑥 − 𝑧) plane for, 𝑃𝑟 = 1, 

𝑅𝑎 = 500, and 𝐿 = 7000. Vectors represent the velocity fields: (a) and (b) horizontal vorticity 

components (color); and (c) vertical vorticity components (color). 

The oscillatory flow is also present when we increase the Rayleigh number 𝑅𝑎 i.e. the imposed 

temperature difference. When 𝑅𝑎 = 1000, the thermoelectric convection set on with steady 

straight rolls which persist until 𝐿 = 1500 (𝐿𝑐 ≈ 883); then the flow bifurcates to stationary 

regimes with dislocations for 𝐿 𝜖[2000: 3500]. The time-dependent thermo-convective structures 

appear at 𝐿 = 4000, while the flow becomes again stationary with dislocations for 𝐿 = 4500 and 

straight rolls at 𝐿 = 5000. We have observed the oscillatory thermo-convective instability for 

values of the electric Rayleigh number lying in the range 𝐿 𝜖[6000:9000]; except for 𝐿 = 7000 

where the corresponding regime presents structures with defects.  

For 𝑅𝑎 = 500 and 𝑅𝑎 = 1000, after the time-dependant regimes, the flow converges to a 

steady rolls regime when 𝐿 = 10 000 as shown in Figure 4.19-f. The size of these stationary 

thermo-convective rolls is larger than the size of rolls obtained in the neighborhood of the threshold 

(𝐿 = 𝐿𝑐). The corresponding wavenumbers of the patterns are 𝑘𝑥 = 1.885 and 𝑘𝑦 = 1.257; this 

confers a total wavenumber 𝑘 = 2.265. Flow patterns of the corresponding steady regime can be 

observed on the isotherms deformation in the (𝑥 − 𝑧) and (𝑦 − 𝑧) vertical planes (Figure 4.25-(a)). 
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(a) (a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.25: Instantaneous flow fields of the flow regime in the vertical planes for 𝑃𝑟 = 1, 𝑅𝑎 =

500 and 𝐿 = 10 000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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Figure 4.25 shows that when 𝐿 = 10 000, thermo-convective rolls instability is characterized 

by the occurrence of thermal plumes which correspond to the detachment of the thermal boundary 

layer from the hot surface. The snapshots of the flow fields, presented in Figure 4.25, were taken 

in the vertical (𝑥 − 𝑧)  and (𝑦 − 𝑧) cross-sections at, respectively, 𝑦 = 0 and 𝑥 = 0. Although the 

thermo-convective structures are characterized by straight rolls for values of 𝐿 around the threshold 

and 𝐿 = 10 000, the isotherms are considerably different (Figure 4.21 and Figure 4.25). Figure 

4.26 shows the vorticity components for 𝑃𝑟 = 1, 𝑅𝑎 = 500, and 𝐿 = 10 000. 

 

(a) (a) 

(b)  (b) 

(c) (c) 

Figure 4.26: Vorticity components in the (𝑥 − 𝑧) plane, and in the (𝑥 − 𝑧) plane for 𝑃𝑟 = 1, 

𝑅𝑎 = 500, and 𝐿 = 10 000. Vectors represent the velocity fields: (a) and (b) horizontal vorticity 

components (color); and (c) vertical vorticity components (color). 

4.5.3. Convective flow patterns under stable stratification (𝑅𝑎 < 0) 

When 𝑅𝑎 < 0, thermal convection is set on trough stationary convective rolls when 𝐿 =

𝐿𝑐(𝑅𝑎). For increasing values of 𝐿 ≥ 𝐿𝑐(𝑅𝑎), the obtained vortical structures are presented in 

Figure 4.27. The flow regimes around the threshold consist of stationary straight rolls as in the case 

of 𝑅𝑎 = 0 and 𝑅𝑎 > 0 as shown in Figure 4.27 (a). While increasing the value of 𝐿, a variety of 

complex convective patterns develop inside the dielectric fluid layer. Figure 4.27 (b) and (c) show 

some convective regimes generated by the dielectrophoretic force for 𝑅𝑎 = −500 and moderate 
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values of 𝐿. One sees that the flow in the rectangular cavity bifurcates to thermo-convective flow 

structures with dislocations. The further increase of 𝐿 leads to stationary straight rolls at 𝐿 = 7500 

and to a spiral defect regime from 𝐿 = 8 000. 

(a) 𝑄 = 12, 𝐿 = 2850 (b) 𝐿 = 4000, 𝑄 = 50  (c) 𝐿 = 6000, 𝑄 = 200 

(d) 𝐿 = 7500, 𝑄 = 200 (e) 𝑄 = 200, 𝐿 = 8000 (f) 𝐿 = 10 000, 𝑄 = 200 

Figure 4.27: Instantaneous structures vortices visualized by the isosurfaces of 𝑄 for 𝑃𝑟 = 1, 

𝑅𝑎 = −500 and different values of 𝐿. 

 

(a) (b) (c) 

Figure 4.28: Temperature distribution of the flow regimes in the horizontal plane 𝑧 = 0 for 𝑃𝑟 =

1, 𝑅𝑎 = −500, and different values of 𝐿: (a) 𝐿 = 2850, (b) 𝐿 = 6000 and (c) 𝐿 = 8000. 
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Figure 4.28 shows the snapshots of temperature distributions in the horizontal (𝑥 − 𝑦) plane for 

three different flow regimes. These flow regimes are chosen to analyze the behavior of the 

temperature of the uniform steady flow (𝐿 = 2850), the non-uniform steady flow (𝐿 = 6000) and 

the time-dependent flow regime (𝐿 = 8000). 

For 𝐿 = 6000, the saturated flow becomes stationary after a few computational times. The 

temporal evolution of the vertical velocity 𝑤0 and the temperature 𝜃0 , both taken at the center of 

the cavity, are presented in Figure 4.29 for (a) 𝐿 = 6000 and (b) 𝐿 = 10 000. One sees that the 

flow regime at 𝐿 = 6000 reaches a saturated state while the system does not saturate for 𝐿 =

10 000 in the range of the considered computational time. 

(a)  (b) 

Figure 4.29: Time evolution of the vertical velocity 𝑤0 and temperature θ0 at the center of the 

cavity for 𝑃𝑟 = 1, 𝑅𝑎 = −500 and (a) 𝐿 = 6000; (b) 𝐿 = 10 000. 

The non-uniform unsteady flow regimes observed for 𝐿 ≥ 8000 present spiral defects with 

complex spatio-temporal dynamics as in the case of microgravity conditions (𝑅𝑎 = 0) and a system 

heated from below (𝑅𝑎 = 500) for 𝑃𝑟 = 1 (Figure 4.27 (e)). The global movements of these spiral 

regimes are illustrated in Figure 4.29 (b). 

The instantaneous flow fields captured in vertical cross-sections are presented in Figure 4.30 

for 𝑅𝑎 = −500 and 𝐿 = 6000. A qualitative view of the temperature distribution is shown in 

Figure 4.29 (a), and the fluctuations in temperature and in electric potential are illustrated in Figure 

4.30 (b) and (c). The vorticity components of this steady flow regime are shown in Figure 4.31. 
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(a) (a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.30: Instantaneous flow fields of the flow regime in the vertical planes for 𝑃𝑟 = 1, 𝑅𝑎 =

−500 and 𝐿 = 6000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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(a) (a) 

(b)  (b) 

(c) (c) 

Figure 4.31: Vorticity components in the plane 𝑦 = 0, and in the plane 𝑥 = 0 for 𝑃𝑟 = 1, 𝑅𝑎 =

−500, and 𝐿 = 6000. Vectors represent the velocity fields: (a) and (b) horizontal vorticity 

components (color); and (c) vertical vorticity components (color). 

The instantaneous flow fields and vorticity components of the time-dependent thermoelectric 

convection regime are presented in Figure 4.32 and Figure 4.33 for 𝑅𝑎 = −500 and 𝐿 = 10 000. 

A diagram of the different thermo-convective flow regimes obtained in the horizontal rectangular 

cavity is shown in  Figure 4.34 for 𝑃𝑟 = 1. This sketch highlights the scenario of bifurcations that 

occurs in a system heated from the bottom (𝑅𝑎 = 500), from the top (𝑅𝑎 = −500), and under 

microgravity conditions (𝑅𝑎 = 0). In the value range of 𝐿 under study, the sketch of the flow 

behaviors presents more bifurcation scenarios for  𝑅𝑎 = 0. The flow regimes range from the 

stationary convective rolls (𝐿𝑐 = 2128) to the oscillating convective spiral defects (𝐿 = 10 000). 

We observe that the flow in the rectangular cavity bifurcates towards a stationary rolls regime after 

the appearance of dislocations for all values of 𝑅𝑎. When 𝑅𝑎 = 0, the reappearance of convective 

rolls without defects is observed for 𝐿 = 4000, 𝐿 = 7000 for 𝑅𝑎 = −500, and 𝐿 = 10 000 for 

𝑅𝑎 = 500.  
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(a) (a) 

(b) (b) 

 

(c) 

 

(c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.32: Instantaneous flow fields of the flow regime in the vertical planes for 𝑃𝑟 = 1, 𝑅𝑎 =

−500 and 𝐿 = 10 000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 



84 

 

 

(a) (a) 

(b) (b) 

(c) (c) 

Figure 4.33: Vorticity components in the plane 𝑦 = 0, and in the plane 𝑥 = 0 for 𝑃𝑟 = 1, 𝑅𝑎 =

−500, and 𝐿 = 10 000. Vectors represent the velocity fields: (a) and (b) horizontal vorticity 

components (color); and (c) vertical vorticity components (color). 

 

 

Figure 4.34: State diagram of the transitions for 𝑃𝑟 = 1, 𝑅𝑎 ∈ {−500, 0, 500} and different 

increasing values of 𝐿. 
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4.6. Flow regimes for 𝑃𝑟 = 65 

4.6.1. Convective flow patterns under microgravity conditions (𝑅𝑎 = 0)  

We have seen from the linear stability analysis that the first regime of thermoelectric convection 

consists of stationary convective rolls independently of the Prandtl number 𝑃𝑟. This has been 

confirmed by the patterns obtained by DNS around the critical point for 𝑃𝑟 = 65  (Figure 4.35 and 

Figure 4.36). Sometime after launching computations with random noise, we can observe, from 

Figure 4.35 (a), that the amplitude of convection increases with time. The graph of |𝐴| present a 

zone of an exponential growth with time. By increasing the time, nonlinearities lead to the 

saturation of the system. The amplitude of the flow then converges to a constant value as shown in 

Figure 4.35 (a). Besides the graph of the amplitude 𝐴, Figure 4.35 (b) illustrates the saturation of 

the temperature and the vertical component of the velocity at the center of the cavity (𝑥 = 𝑦 = 𝑧 =

0). As for  𝑃𝑟 = 1, in their saturated state, perturbations organize in form of stationary rolls (Figure 

4.36).  

 

(a) (b) 

Figure 4.35: Time evolution of the (a) amplitude of averaged vertical velocity |𝐴| at the mid-gap 

𝑧 = 0; (b) vertical velocity w0  and temperature 𝜃0  at the center of the rectangular cavity for 

𝑃𝑟 = 65 and 𝐿 = 2200 (𝛿 = 0.032). Amplitudes and time are, respectively, normalized by the 

viscous velocity 𝜈/𝑑 and the viscous time 𝑑2/𝜈. 
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Figure 4.36 shows the instantaneous rolls (a) and the temperature field 𝜃 determined at the mid-

height (𝑧 = 0) for 𝐿 = 2200, and 𝑃𝑟 = 65. Near the threshold, these thermo-convective patterns 

are independent of 𝑃𝑟. Just above the threshold, the vortices are periodic in both horizontal 

directions. The values of the corresponding wavenumbers are 𝑘𝑥 = 0.628 and 𝑘𝑦 = 3. The number 

of vortices is 𝑁𝑥 = 𝐿𝑥𝑘𝑥 𝜋⁄ = 2 ,𝑁𝑦 = 𝐿𝑦𝑘𝑦 𝜋⁄ = 10. The total wavenumber is 𝑘 = √𝑘𝑥2 + 𝑘𝑦2 =

3.204 which is close to the critical value obtained by the LSA (𝑘𝑐 = 3.228). This wavenumber is 

the same as that obtained for 𝑃𝑟 = 1 and the inclination angle of rolls remains unchanged. This 

confirms that the nature of the dielectrophoretic instability is independent of the 𝑃𝑟.  

 

 

(a) 
(b) 

Figure 4.36: Instantaneous flow field for 𝑅𝑎 = 0, 𝑃𝑟 = 65 and 𝐿 = 2200 > 𝐿𝑐: (a) vortical 

structures of 𝑄 = 0.008, (b) temperature field levels. The temperature distribution is plotted at 

the mid-height (𝑧 = 0) of the cavity. 

 

Figure 4.37 shows the instantaneous flow fields, the temperature distribution, and the vorticity 

components of saturated stationary thermo-convective flow induced by the dielectrophoretic force 

in the (𝑥 − 𝑧) and (𝑦 − 𝑧) vertical planes. The deformation of the electric potential levels is 

presented in Figure 4.37 (b) for 𝑅𝑎 = 0 and 𝐿 = 2200. The corresponding vorticity components 

are shown in Figure 4.38.  
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 (a)  (a) 

(b) (b) 

(c) (c) 

 (d)  (d) 

 (e)  (e) 

 (f)  (f) 

Figure 4.37: Snapshots of instantaneous saturated thermo-convective flow in the planes 𝑦 = 0 

and 𝑥 = 0 for 𝑅𝑎 = 0, 𝑃𝑟 = 65 and 𝐿 = 2200: (a) temperature distribution (color); (b) 

temperature perturbations; (c) electric potential perturbations; (d-e) horizontal velocity 

components 𝑢 and 𝑣 (color); and (f) vertical velocity component 𝑤 (color). Vectors represent the 

velocity fields in (d-f). 
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(b)  (a) 

(c) (b) 

(d) 
(c) 

Figure 4.38: Vorticity components in the plane 𝑦 = 0, and in the plane 𝑥 = 0 for 𝑃𝑟 = 65, 𝑅𝑎 =

0, and 𝐿 = 2200. Vectors represent the velocity fields: (a) and (b) horizontal vorticity 

components (color); and (c) vertical vorticity components (color). 

 

In contrast with the independence of the first instability patterns on 𝑃𝑟, far from the threshold 

(𝐿 > 𝐿𝑐), the dynamics of the thermo-convective flows observed for 𝑃𝑟 = 65 considerably differ 

from those of 𝑃𝑟 = 1. Different types of thermo-convective structures are presented in Figure 4.39. 

We observed that the flow patterns are modulated from 𝐿 = 3 500; this modulation occurs along 

the roll axis and could be due to the periodic boundary conditions applied in the horizontal 

directions. As the value of 𝐿 is increased, the spatial modulation of rolls increases. However, the 

flow regime is still time-independent. 
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(a) 𝐿 = 2500, 𝑄 = 0.008 (b) 𝐿 = 3500, 𝑄 = 0.02 (c) 𝐿 = 5000, 𝑄 = 0.08  

(d) 𝐿 = 6000, 𝑄 = 0.15 (e) 𝐿 = 6500, 𝑄 = 0.18  (f) 𝐿 = 10000, 𝑄 = 0.3  

Figure 4.39: Instantaneous structures of isosurfaces of 𝑄 for 𝑃𝑟 = 65 and different values of 𝐿 

in microgravity environment 𝑅𝑎 = 0.  

For 𝐿 = 6000, the modulation along the rolls in the horizontal directions (Figure 4.39-d) 

resembles the zigzag instability observed in the Rayleigh Bénard convection [35]. For this regime, 

the instantaneous flow fields of modulated patterns are presented in Figure 4.40. The figure shows 

the instantaneous flow fields in the vertical (𝑥 − 𝑧) and (𝑦 − 𝑧) planes for 𝐿 = 6 000. The 

deformation of equipotentials increases with increasing the value of 𝐿 (Figure 4.40, Figure 4.44 ). 

One sees that the perturbation electric potential is higher at the central zone 𝑧 = 0. Furthermore, 

the vorticity components in both (𝑥 − 𝑧) and (𝑦 − 𝑧) vertical planes are presented in  Figure 4.41. 

In contrast with the Rayleigh Bénard problem, the vertical vorticity 𝜔𝑧 does not have a relaxing 

behavior since it contains the source term arising from the electric buoyancy. However, its 

magnitude is lower than the magnitudes of the horizontal components 𝜔𝑥 and 𝜔𝑦 of vorticity. 
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 (a)  (a)  

 (b) (b) 

(c)  (c) 

  (d)   (d)  

 (e)  (e)  

 (f)   (f)  

Figure 4.40: Instantaneous flow fields of the flow regime in the vertical planes for 𝑃𝑟 = 65, 

𝑅𝑎 = 0 and 𝐿 = 6000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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(a) (a) 

(b) (b) 

(c) (c) 

Figure 4.41: Vorticity components in the (𝑥 −  𝑧) and (𝑦 − 𝑧) vertical planes for 𝑃𝑟 = 65, 𝑅𝑎 =

0, and 𝐿 = 6 000. 

 

At 𝐿 = 6 500, a new instability occurs and two perpendicular sets of rolls appear in the flow 

leading to stationary cross-roll patterns (Figure 4.39-e). Similar behavior of convective rolls has 

been reported in Rayleigh-Bénard convection as steady cross-roll convection [35,79,80]. This 

three-dimensional flow is due to the detachment of the thermal boundary layer from the horizontal 

plates. Indeed, this cross-roll instability presents square patterns in the horizontal (𝑥 − 𝑦) plane as 

shown in Figure 4.42 which corresponds to the temperature distribution for 𝐿 = 6 500. The 3D 

time-independent flow regime is characterized by the thermal plumes in form of mushrooms in the 

vertical temperature distribution as illustrated in Figure 4.42. For this case, only the temperature 

distribution in all planes is presented.  
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Figure 4.42: Illustration of the perturbed 3D flow by the temperature distribution in the (𝑥 − 𝑦) 

horizontal plane (𝑧 = 0) and the vertical (𝑥 − 𝑧) and (𝑦 − 𝑧) cross-sections for 𝑅𝑎 = 0, 𝑃𝑟 =

65 and 𝐿 = 6 500. 

When the electric Rayleigh number reaches 𝐿 = 9 000, the steady cross-roll instability presents 

defects as shown in Figure 4.43 (a). The screenshot of the temperature field in the horizontal slice, 

presented in Figure 4.43 (b), indicates that square cells are replaced by pentagons in certain 

locations especially near the corners.  

(a)  
(b) 

Figure 4.43: Instantaneous flow field for 𝑅𝑎 = 0, 𝑃𝑟 = 65 and 𝐿 = 9 000: (a) vortical structures 

of 𝑄 = 0.2 and (b) isotherms. The temperature distribution is plotted at the mid-height (𝑧 = 0) 

of the cavity. 

At 𝐿 = 10 000, the defects of the cross-roll patterns (pentagons) disappear and the flow goes 

back to the instability regime presenting squares all over the flow. The instantaneous flow fields of 
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the square pattern regime for 𝑃𝑟 = 65, 𝑅𝑎 = 0, and 𝐿 = 10 000 are presented in Figure 4.44 for 

both vertical (𝑥 − 𝑧) and (𝑥 − 𝑧) cross-sections. The components of the vorticity are presented in 

Figure 4.45 for both vertical planes 𝑥 = 0 and 𝑦 = 0. 

(a) (a) 

(b) (b) 

(c) (c) 

 (d)  (d) 

 (e) (e) 

(f) (f) 

Figure 4.44: Snapshots of instantaneous saturated flow in the vertical planes for 𝑅𝑎 = 0, 𝑃𝑟 =

65 and 𝐿 = 10 000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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(a) (a)  

 

(b) (b)  

(c) (c) 

Figure 4.45: Vorticity components in the (𝑥 −  𝑧) and (𝑦 −  𝑧) vertical planes for 𝑃𝑟 = 65, 

𝑅𝑎 = 0, and 𝐿 = 10 000. 
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4.6.2. Convective flow patterns under unstable stratification (𝑅𝑎 > 0) 

For 𝑃𝑟 = 65 and 𝑅𝑎 >  0, thermoelectric convection occurs in the fluid with straight inclined 

rolls having a wavenumber 𝑘 = 3.204 as shown in Figure 4.46 (a1). When the electric Rayleigh 

number 𝐿 is increased just above the threshold, we observe a new type of convective flow pattern 

with bending rolls. 

 

(a1) 𝑄 = 0.002, 𝐿 = 1550 (a2) 𝑄 = 0.045, 𝐿 = 1650 

 (b1)  (b2) 

Figure 4.46: (a) Vortical structures illustrated by iso-surfaces of 𝑄, and (b) isotherms in the 

horizontal (𝑥 − 𝑦) plane for 𝑃𝑟 = 65, 𝑅𝑎 = 500 and two values of 𝐿.  

Figure 4.47 presents instantaneous vortical structures of different flow regimes for  𝑃𝑟 = 65, 

𝑅𝑎 = 500 and different values of 𝐿. One sees that at 𝐿 = 4000, the flow exhibits a steady three-

dimensional regime. The steady thermo-convective flow presents vortices with bending at certain 

locations. The instantaneous flow structures for 𝐿 = 4000 are displayed in Figure 4.47 (a). 
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(a) 𝐿 = 4000, 𝑄 = 0.08  (b) 𝐿 = 5000, 𝑄 = 0.16 (c) 𝐿 = 6000, 𝑄 = 0.16 

(d) 𝐿 = 7000, 𝑄 = 0.16 (e) 𝐿 = 8000, 𝑄 = 0.20 (f) 𝐿 = 10 000, 𝑄 = 0.16 

Figure 4.47: Instantaneous flow structures visualized by the isosurfaces of 𝑄 for 𝑅𝑎 = 500, 

𝑃𝑟 = 65, and different values of 𝐿. 

For 𝐿 = 5000, the flow exhibits time-dependent thermo-convective rolls (Figure 4.47-(b)). The 

time evolution of the convection amplitude is presented in Figure 4.48-(a). We have also plotted 

the time variation of the vertical velocity and the temperature at the cavity center of this oscillatory 

regime in Figure 4.48-(b). Figure 4.49 shows the flow fields in the vertical (𝑥 − 𝑧) and (𝑦 − 𝑧)  

cross-sections. The temperature and the electric potential fluctuations are shown in Figure 4.49 (b) 

and Figure 4.49 (c). 

(a) (b) 

Figure 4.48: Time evolution of (a) the amplitude of the averaged vertical velocity, (b) the vertical 

velocity 𝑤0 and the temperature 𝜃0  at the cavity center (𝑥 = 𝑦 = 𝑧 = 0) for 𝑅𝑎 = 500, 𝑃𝑟 = 65 

et 𝐿 = 5000. 
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(a) (a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 

(f) (f) 

Figure 4.49: Snapshots of instantaneous saturated flow in the vertical planes for 𝑃𝑟 = 65, 𝑅𝑎 =

500, and 𝐿 = 5000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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All components of the vorticity in the vertical cross-sections are displayed in Figure 4.50 for a 

better illustration of the oscillating convective regime visualized in Figure 4.47 (b).   

 

 

(a) (a) 

 (b)  (b) 

(c) (c) 

Figure 4.50: Vorticity components in the (𝑥 −  𝑧) and (𝑦 −  𝑧) vertical planes for 𝑃𝑟 = 65,  

𝑅𝑎 = 500, and 𝐿 = 5000. 

 

The oscillating thermoelectric convection disappears when increasing the value of the electric 

Rayleigh number. For 𝐿 = 6000, a three-dimensional stationary regime with modulated structures 

occurs in the system (Figure 4.47-c). A similar regime has already been observed under 

microgravity conditions (𝑅𝑎 = 0) for 𝑃𝑟 = 65 and at the same value of 𝐿.  
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The increase of the value of 𝐿 leads to the occurrence of steady cross-roll instability at 𝐿 =

7000 (Figure 4.47-(d)). The flow presents square patterns similar to the patterns obtained under 

microgravity conditions for 𝑃𝑟 = 65 and in the Rayleigh-Bénard convection [35]. A further 

increase of 𝐿 ≥ 8000 leads to the appearance of defects in the square patterns generating some 

zones with pentagons as shown by the temperature distribution presented in Figure 4.51.  

 

 

(a) (b) 

Figure 4.51: Illustration of the perturbed 3D flow by the temperature distribution in the (𝑥 − 𝑦) 

horizontal plane (𝑧 = 0) and the vertical (𝑥 − 𝑧) and (𝑦 − 𝑧) cross-sections for 𝑃𝑟 = 65, 𝑅𝑎 =

500: (a) 𝐿 = 8000 and (b) 𝐿 = 10 000. 

 

We have to notice that thermoelectric convective states obtained for 𝑅𝑎 > 0 are mostly similar 

to those obtained in microgravity (𝑅𝑎 = 0). However, we have observed a window where an 

oscillatory regime (i.e. 𝐿 = 5000) appears in the system and this instability could be deeply 

investigated. 
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4.6.3. Convective flow patterns for the stable stratification (𝑅𝑎 < 0) 

For the present case, we have conducted numerical simulations for 𝑅𝑎 = −500 and 𝐿 > 𝐿𝑐. 

Figure 4.52 shows the different saturated thermoelectric convection regimes obtained for 𝑃𝑟 = 65, 

𝑅𝑎 = −500 and different values of the electric Rayleigh number 𝐿. One sees that around the 

threshold, the thermoelectric instability is characterized by stationary inclined rolls. These straight 

vortices are modulated for 𝐿ϵ{2800, 4000}. The deformation of flow patterns in this range could 

be due to the periodic boundary conditions. At 𝐿 = 5500, the cross-roll thermo-convective flow 

appears in the fluid layer (Figure 4.52-(d)).  

When 𝐿 = 10 000, the regime of square patterns bifurcates to stationary flow patterns with 

defects as shown in Figure 4.52 (f). The defects are illustrated by the temperature distribution 

presented in Figure 4.53. These thermo-convective flow structures have already been observed in 

the ordinary Rayleigh-Bénard problem [35]. However, we did not observe an oscillatory solution 

in the case of the electric buoyancy-driven instability in a system heated from the top for 𝑃𝑟 = 65. 

(a) 𝐿 = 2800, 𝑄 = 0.0016 (b) 𝐿 = 2850, 𝑄 = 0.0016  (c) 𝐿 = 4000, 𝑄 = 0.06  

(d) 𝐿 = 5500, 𝑄 = 0.3  (e) 𝐿 = 8000, 𝑄 = 0.18  (f) 𝐿 = 10 000, 𝑄 = 0.2  

Figure 4.52: Instantaneous structures of vortices visualized by the isosurfaces of 𝑄 for 𝑅𝑎 =

−500, 𝑃𝑟 = 65, and different values of 𝐿. 
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The temperature levels captured in the horizontal plane (𝑦 − 𝑥) at the mid-height 𝑧 = 0 are 

presented in Figure 4.53 for the different observed regimes. The defects obtained in the thermo-

convective regime that presents square patterns at 𝐿 = 10 000 are illustrated in Figure 4.53 (f). 

(a) 𝐿 = 2800        (b) 𝐿 = 2850  (c) 𝐿 = 4000  

(d) 𝐿 = 5500  (e) 𝐿 = 8000        (f) 𝐿 = 10 000 

Figure 4.53: Instantaneous mid-gap temperature distribution in the horizontal (𝑥 − 𝑦) plane for 

𝑅𝑎 = −500, 𝑃𝑟 = 65, and different values of 𝐿. 

 

Figure 4.54 and Figure 4.55 show the patterns of the thermo-convective structures generated 

by the electric buoyancy around the threshold for 𝑅𝑎 = −500 and 𝐿 = 2800. Snapshots are taken 

in the vertical slices to have a better insight in the vertical distribution of the temperature and flow 

behavior. We observe that the vertical components of vorticity are negligible compared to the 

horizontal components. 
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(a) (a) 

(b) (b) 

(c) (c) 

 

(d) (d) 

 

(e) (e) 

 

(f) (f) 

Figure 4.54: Snapshots of instantaneous saturated flow in the vertical planes for 𝑃𝑟 = 65, 𝑅𝑎 =

−500, and 𝐿 = 2800: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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(a) (a) 

 

(b) (b) 

 

(c) (c) 

Figure 4.55: Vorticity components in the (𝑥 −  𝑧) and (𝑦 −  𝑧) vertical planes for 𝑃𝑟 = 65,  

𝑅𝑎 = −500, and 𝐿 = 2800. 

 

 

Figure 4.52 and Figure 4.53 showed that the flow regime corresponds to a uniform steady flow 

presenting square patterns for 𝐿 = 8000. The behavior of this square pattern regime in the vertical 

planes is illustrated in Figure 4.56 and Figure 4.57. We observe that the vertical vorticity 

components for 𝐿 = 8000 are stronger than that of 𝐿 = 2800. Figure 4.58 shows the bifurcation 

scenarios present in the thermoelectric convection in a rectangular cavity filled with silicone oil 

(i.e. 𝑃𝑟 = 65) for 𝑅𝑎 ∈ {−500, 0, 500} and different values of 𝐿. The time dependent convective 

regime is obtained only for 𝑅𝑎 = 500 and the modulated rolls regime are obtained at the same 

value of 𝐿 for 𝑅𝑎 = {0, 500}. 
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(a) (a) 

(b) (b) 

(c) (c) 

 
(d) (d) 

 
(e) (e) 

 
(f) (f) 

Figure 4.56: Snapshots of instantaneous saturated flow in the vertical planes for 𝑃𝑟 = 65, 𝑅𝑎 =

−500, and 𝐿 = 8000: (a) temperature distribution (color); (b) temperature perturbations; (c) 

electric potential perturbations; (d-e) horizontal velocity components 𝑢 and 𝑣 (color); and (f) 

vertical velocity component 𝑤 (color). Vectors represent the velocity fields in (d-f). 
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(a) (a) 

 
(b) (b) 

 
(c) 

 
(c) 

Figure 4.57: Vorticity components in the (𝑥 −  𝑧) and (𝑦 −  𝑧) vertical planes for 𝑃𝑟 = 65,  

𝑅𝑎 = −500, and 𝐿 = 8000. 

 

Figure 4.58: State diagram of the transitions for 𝑃𝑟 = 65, 𝑅𝑎 ∈ {−500, 0, 500} and different 

increasing values of 𝐿. 
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4.7. Characterization of the heat transfer  

In this section, we analyze the heat transfer associated with thermoelectric convection. When 

the fluid layer is at rest (�⃗⃗� = 0), the heat transport is only managed by conduction. However, when 

the electric Rayleigh number 𝐿 ≥ 𝐿𝑐(𝑅𝑎), thermo-convective rolls modify the heat transfer. The 

heat transfer is characterized by the transfer coefficient ℎ or its dimensionless number called 

Nusselt number 𝑁𝑢 = ℎ𝑑 𝑘⁄  where 𝑘 is the thermal conductivity. The Nusselt number represents 

the ratio of the total heat flux (conduction + convection) to the heat flux by conduction. In this 

study, in order to compute the time-averaged Nusselt number in the rectangular cavity, we have 

used  the following relation [81]: 

𝑁𝑢 =
1

𝑇𝐿𝑥𝐿𝑦
∫ ∫ ∫ (𝑃𝑟𝜃𝑤 −

𝜕𝜃

𝜕𝑧
)

𝐿𝑥/2

−𝐿𝑥/2
𝑑𝑥𝑑𝑦

𝐿𝑦/2

−𝐿𝑦/2
𝑑𝑡

𝑇

0
, (4.7) 

where 𝑇 is the total time. 

The first term represents the heat exchange by convection, and the second is the heat exchange by 

conduction. 

We have considered two types of dielectric fluids: gas with 𝑃𝑟 = 1  and oils with 𝑃𝑟 = 65. 

The latter corresponds to fluids used in some experiments performed or to be performed in 

parabolic flight experiments (see Appendix A). The variation of 𝑁𝑢  as a function of the electric 

Rayleigh number 𝐿 for three cases: 𝑅𝑎 < 0, 𝑅𝑎 = 0, and 𝑅𝑎 > 0 is shown in Figure 4.59.  In the 

conductive regime(𝐿 < 𝐿𝑐), we have 𝑁𝑢 = 1  and when thermo-convection sets in, i.e. when ≥

𝐿𝑐, 𝑁𝑢 > 1  due to the transport of heat by thermoelectric convective rolls from the hot plate toward 

the cold one. As 𝐿 increases,  the intensity of thermo-convective rolls increases, and 

correspondingly the heat transfer increases. 
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(a) (b) 

Figure 4.59: Variation of the Nusselt number 𝑁𝑢 as a function of the electric Rayleigh 

number 𝐿 and some values of 𝑅𝑎 for (a) 𝑃𝑟 = 1, and (b) 𝑃𝑟 = 65. 

In Figure 4.59 (a) and (b), we notice that  

i) For each value of 𝐿, the heat transfer is larger for the unstable thermal stratification of 

the base state (𝑅𝑎 > 0) and lower for the stable thermal stratification (𝑅𝑎 < 0)  than 

the heat transfer in microgravity (𝑅𝑎 = 0).  

For a fixed value of the temperature difference (𝑅𝑎 = 𝑐𝑜𝑛𝑠𝑡.), we have fitted the Nusselt number 

with  a linear function of the criticality 𝛿 = 𝐿/𝐿𝑐 − 1 in the neighborhood of the threshold (𝛿 <

0.1): 

𝑁𝑢 = 1 + 𝐶𝛿 (4.8) 

 

The value of the slope 𝐶 varies with 𝑅𝑎 and is independent of 𝑃𝑟. Table 4.2 shows that the 

coefficient 𝐶 decreases with 𝑅𝑎. Under microgravity conditions where 𝑅𝑎 = 0 i.e. 𝑔 = 0, 𝐶 =

0.79. This value is the same as the one obtained in previous studies [28,32] in the two-dimensional 

weakly non-linear analysis of the thermoelectric convection in microgravity for 𝑃𝑟 ≥ 1. Moreover, 

this slope is the same as in the Rayleigh-Bénard convection problem [82].  
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Since thermoelectric convection is analogous to the Rayleigh-Bénard convection,  we have 

correlated the behavior of 𝑁𝑢 at large values of 𝐿 by the power law [81]: 

𝑁𝑢 ~ 𝐿𝛾 , (4.9) 

with 𝛾 the power law exponent. The values of 𝛾 are sensitive to the thermal stratification of the 

base state i.e. they depend on 𝑅𝑎 (Table 4.2). For large values of 𝐿, the heat transfer depends on 

𝑃𝑟 through the exponent 𝛾 i.e. 𝛾 = 𝛾(𝑃𝑟). 

Table 4.2: Values of the slope C around the threshold (𝛿 < 0.1) and the values of  𝛾 for Pr ∈

{1;65}, and different values of 𝑅𝑎. 

𝑅𝑎 𝐶 

𝛾 

𝑃𝑟 = 1 𝑃𝑟 = 65 

- 1000 1.02 0.44 0.53 

- 500 0.91 0.35 0.46 

0 0.79 0.33 0.41 

500 0.61 0.28 0.37 

1000 0.43 0.21 0.33 

 

In the turbulent Rayleigh-Bénard convection, the power law in (4.9) is examined in terms of 

kinematic and thermal energy dissipation rates. Based on the decomposition of these dissipation 

rates into boundary layers and bulk contributions, Grossman and Lohse [81] established four 

regimes. In our case, for 𝑃𝑟 = 1 and 𝑅𝑎 = 0, the exponent 𝛾 = 0.33 of the scaling power law 

agrees with that of the regime 𝐼𝑉𝑢 of the classical Rayleigh-Bénard problem for large values of 𝑅𝑎 

and 𝑃𝑟 [81]. In that regime, both thermal and viscous dissipations are dominated by the bulk, and 

they found 𝛾 = [0.28 − 0.33] depending on the dissipation regime and independently of the aspect 

ratio. For a system heated from the top 𝑅𝑎 < 0, 𝛾 increases considerably with increasing |𝑅𝑎| as 

in the case of the Rayleigh-Bénard problem with oscillating body force [5]. When 𝑅𝑎 = 1000, the 

value of the power constant 𝛾 = 0.21. This value corresponds to that of the regime 𝐼𝐼𝑢 in the 
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Rayleigh-Bénard problem sketched by Grossman and Lohse [81]. It should be noticed that in 

practice, the values of 𝐿 are limited by the breakdown voltage 𝑉𝐵𝐷 of dielectric liquids (Table 2.1) 

which corresponds to the rupture of the dielectric nature of the fluid. In general, silicone oils have 

high dielectric strength but the breakdown potential is reduced by the presence of impurities or 

droplets of water or air bubbles. Therefore, we cannot reach high values of 𝐿 that correspond to 

turbulent thermo-convective flows. 

For 𝑃𝑟 = 65 under microgravity conditions, the value of the exponent is 𝛾 = 0.41. This value 

does not enter the range of the RBC power-law scaling predicted by Grossman and Lohse [81] for 

the classic turbulent flows with a smooth lower plate. But it agrees with that obtained in the 

modified RB flow using rough plates, to modify the height of the boundary layers, where 𝛾 =

0.3 − 0.5 depending on the height of a roughness element [6]. This result also agrees with that 

obtained in the case where a direct heating source is introduced in the bulk of the system  [83] or 

adding an oscillating body force to the momentum equation [5] to enhance the heat transport by 

increasing the value of the exponent 𝛾. Zou and Yang [84] have found the same result by separating 

numerically the dynamic boundary layer from the thermal one. All articles cited above for the 

comparison correspond to modified turbulent Rayleigh-Bénard convection flows for the 

enhancement of heat transport. Indeed, we can highlight that dielectrophoretic buoyancy is an 

alternative to the heat transfer enhancement without any modification of the roughness of the plates 

or any introduction of intrusive material in the bulk of the fluid layer. Despite that, the 

dielectrophoretic force in rectangular cavities remains less efficient than the classical or modified 

Rayleigh-Bénard convection in the range of control parameters studied here.      

We have introduced a new parameter called the modified electric Rayleigh number 𝐿′. This 

dimensionless number, encompassing the two control parameters 𝐿 and 𝑅𝑎, was defined taking 

into account the instability thresholds of the Rayleigh-Bénard problem (𝐿 = 0; 𝑅𝑎𝑐
0 = 1708) and 

the thermoelectric convection under microgravity conditions (𝑅𝑎 = 0; 𝐿𝑐
0 ≈ 2129): 

𝐿′ = 𝑅𝑎 + (𝑅𝑎𝑐
0/𝐿𝑐

0) ⋅ 𝐿. (4.10) 

For any given couple (𝑅𝑎; 𝐿), the behavior of convection to heat transfer i.e. the quantity 𝑁𝑢 −

1 can be plotted as a function of the modified Rayleigh number 𝐿′. In Figure 4.60-(a), we observe 

that all the curves are almost collapsed for 𝑃𝑟 = 1. In addition, Figure 4.60-(b) illustrates the 
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evolution of the Nusselt 𝑁𝑢 − 1 as function of the modified Rayleigh number 𝐿′ for 𝑃𝑟 = 65. The 

curve shows that, as in the case of 𝑃𝑟 = 1, the thermoelectric convection problem can be reduced 

to a simple Rayleigh-Bénard problem with 𝐿′ as a control parameter independently of 𝑃𝑟. The 

global thermoelectric convection threshold (𝐿 = 𝐿𝑐) corresponds to values of 𝐿𝑐
′  lying between 

1704 (for 𝑅𝑎 = −1000) and 1709 (for 𝑅𝑎 = 1000) whatever the value of the Rayleigh number 

𝑅𝑎 < 𝑅𝑎𝑐. This brings the generalized problem of the thermal convection induced by the electric 

buoyancy back to a classic Rayleigh-Bénard problem with 𝐿′ as the unique control parameter. 

(a) (b) 

Figure 4.60: Variation of the Nusselt number 𝑁𝑢 as a function of the modified Rayleigh number 

𝐿′ for some values of 𝑅𝑎 and (a) 𝑃𝑟 = 1, and (b) 𝑃𝑟 = 65. 

The unification of the Rayleigh Bénard thermoelectric convection problem by introducing the 

modified Rayleigh number 𝐿′ = 𝑅𝑎 + (𝑅𝑎𝑐
0/𝐿𝑐

0)𝐿 requires the definition of an effective electric 

gravity 𝑔𝑒𝑓𝑓: 

𝐿′ =
𝛼Δ𝑇𝑑3𝑔𝑒𝑓𝑓

𝜈𝜅
. (4.11) 

Using the definition of the electric Rayleigh number, we can express the effective gravity of the 

unified problem as follows: 

𝑔𝑒𝑓𝑓 = 𝑔 ⋅ 𝑠𝑖𝑔𝑛(Δ𝑇) + 𝐶𝑔𝑒, (4.12) 

where the constant 𝐶 = 𝑅𝑎𝑐
0/𝐿𝑐

0 = 0.8024 and the electric gravity is 𝑔𝑒 = 𝑔𝑒𝑏 + 𝑔𝑒
′ . This 

definition of 𝑔𝑒𝑓𝑓  in equation (4.12) shows that the Earth's gravity stabilizes the system when 
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heated from the top (𝑔𝑒𝑓𝑓  is diminished); while the total gravity is augmented when the system is 

heated from the bottom. The introduction of the effective gravity 𝑔𝑒𝑓𝑓  provides the possibility to 

simulate the thermoelectric convection patterns that could be generated in low-gravity 

environments (such Moon or Mars). One knows that the gravity of the Moon is 6 times smaller 

than the Earth's gravity and that of Mars is about 3 times smaller. Based on the equation (4.12), the 

gravity 𝑔 can be diminished by the term of the electric gravity 𝑔𝑒 such that to recover Mars or 

Moon gravity conditions. This shows the possibility to simulate the thermoelectric convection 

problem in varying gravity conditions.  

For example, we consider a rectangular cavity filled with a dielectric liquid, heated from the 

top and subject to an alternating electric potential under terrestrial conditions. The effective value 

of the electric potential needed to realize an experiment that approximate the Moon or Mars gravity 

conditions can be computed as follows:  

𝑉0 = √
1

𝐵⋅𝐶
(�̃�𝑒𝑓𝑓 + 𝑔), with 𝐵 =

𝜀𝑟𝑒𝑓𝑒

𝛼𝜌𝑑3
𝛾𝑒
3 [𝑙𝑛 (

1−𝛾𝑒/2

1+𝛾𝑒/2
)]
−2

; (4.13) 

where the quantity �̃�𝑒𝑓𝑓  is the effective electric gravity which corresponds to the gravity of the 

Moon �̃�𝑒𝑓𝑓
𝑀𝑜𝑜𝑛 =

1

6
𝑔 or the gravity of Mars �̃�𝑒𝑓𝑓

𝑀𝑎𝑟𝑠 =
1

3
𝑔. The values of 𝑉0 for different dielectric 

liquids are presented in Table 4.3 for a system with gap size 𝑑 = 5 𝑚𝑚 and an applied temperature 

difference Δ𝑇 = 5 𝐾. An experiment performed considering these parameters would 

approximatively correspond to experiments realized under Mars or Moon gravity conditions.     

Table 4.3: Values of the effective electric potential necessary for the simulation of thermoelectric 

convection on Mars or on the Moon under terrestrial conditions. 

Dielectric 

Fluids 

AK5 

(25°C) 

AK0.65 

(25°C) 

Novec 7200 

(25°C) 

1-Nonanol 

(20°C) 

Pure water   

(25°C) 

𝛾𝑒 0.0053 0.0065 0.0195 0.0148 0.0230 

𝑉0
𝑀𝑜𝑜𝑛  [kV] 114.31 105.51 28.81 36.08 2.28 

𝑉0
𝑀𝑎𝑟𝑠 [kV] 122.20 112.80 30.80 38.57 2.43 
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4.8. Partial conclusion  

Previous studies on the thermoelectric convection in the horizontal dielectric fluid were 

performed by Stiles et al. [28] and Yoshikawa et al. [32] considering a weakly non-linear analysis. 

Stiles have analyzed the dependence 𝑁𝑢(𝑅𝑎) for a wide range of |𝑅𝑎|. He found a coefficient 𝐶 ≈

0.8 for 𝑃𝑟 = 10 under microgravity conditions. Yoshikawa et al. [32] recovered the same value 

by employing a two-dimensional weakly non-linear analysis, and they took into account the 

thermoelectric coupling effects on the threshold. Moreover, they found that 𝐶 was independent of 

𝑃𝑟 around the threshold.  

We have performed a numerical study of the thermoelectric convection induced by the 

dielectrophoretic force in a horizontal fluid layer, which can be heated from the top or the bottom. 

Results show that the critical electric Rayleigh number 𝐿𝑐 depend on the value of the Rayleigh 

number 𝑅𝑎, while the corresponding instability consists of straight stationary rolls whatever the 

value of 𝑅𝑎 as predicted by the linear stability analysis. Under microgravity conditions, different 

patterns are found in the dielectric fluid between two horizontal plates for different given values of 

the electric Rayleigh number 𝐿 above the threshold. Thermal convection is set on with steady 

stationary rolls; and when 𝐿 increases, the primary rolls are deformed and merge into complex 

patterns. The pattern regimes are similar to the structures generated by the Archimedean buoyancy 

in the Rayleigh-Bénard problem and they are characterized by a slow spatio-temporal modulation. 

The Nusselt number 𝑁𝑢, which characterizes the heat transfer, grows with increasing the intensity 

of the electric potential. This shows that dielectrophoretic buoyancy can be used in the generation 

of thermo-convective flows in microfluidic devices or in microgravity. 

The analogy between the thermoelectric convection generated by the electric buoyancy under 

microgravity conditions and the ordinary Rayleigh-Bénard convection is presented in Figure 4.61. 

The sketch on the left shows the thermo-convective regimes for 𝑃𝑟 ∈ [1,65] under microgravity 

conditions (𝑅𝑎 = 0). As we already mentioned above (Chapter 3), the onset of the thermoelectric 

convection in a microgravity environment (𝑅𝑎 = 0) is delayed due to the dissipative nature of the 

perturbed part of electric gravity independently of 𝑃𝑟. However, the time-dependent convection 

appears at 𝐿 = 7000 as in the case of the Rayleigh-Bénard convection for 𝑃𝑟 = 1. When 𝑃𝑟 = 65, 



113 

 

the steady cross-roll convection sets on at 𝐿 = 6500. This value is lower than that obtained in the 

RBC where cross-roll instability appears at 𝑅𝑎 ≈ 2.3 ⋅ 104. 

 

𝑃𝑟 = 1 

 

 

𝑃𝑟 = 65 

 

Figure 4.61: (a) The Busse diagram [35] shows the transitions in the Rayleigh-Bénard convection 

as a function of 𝑅𝑎 and 𝑃𝑟: (I) steady rolls regime, (II) three-dimensional convection, (III) time-

dependent convection, and (IV) turbulent convection. (b) Regimes of thermoelectric convection 

as a function of 𝐿 under microgravity conditions (𝑅𝑎 = 0) for 𝑃𝑟 = {1,65}.   
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Chapter 5: Thermoelectric convection in a vertical 

cavity filled with a dielectric fluid   

In this section, we investigated the stability of a dielectric fluid layer in a vertical rectangular 

cavity subject to a horizontal temperature difference and an alternating electric potential. In such a 

configuration, the electric gravity is perpendicular to the Earth's gravity since it is oriented from 

the cold plate toward the hot plate. The main objective of this study is to perform a 3D linear 

stability analysis to determine the critical parameters and the nature of the critical modes and to 

predict critical modes that may occur in vertical rectangular cavities set during the 𝑔 and 

hypergravity phases of parabolic flights when the power is not turned off. The study is inspired by 

the DNS results on columnar thermo-convective rolls in the vertical cylindrical annulus subjected 

to both Archimedean and electric buoyancies in Earth conditions [20,21,74]. 
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5.1. Flow configuration 

We consider a dielectric fluid inside a vertical rectangular cavity subject to a horizontal 

transverse temperature difference Δ𝑇 and a high-frequency electric potential that generates an 

electric field �⃗⃗� (See Figure 5.1). 

 

 

Figure 5.1: A vertical slot filled by a dielectric fluid, subject to a horizontal temperature gradient 

and an alternating electric field of effective voltage 𝑉0. 

The flow in the vertical slot can be described by the couple of equations (2.26)-(2.29) defined 

in Chapter 2. The vertical electrodes are uniformly kept at different temperatures 𝑇𝑐  (cold) and 𝑇ℎ 

(hot). The reference temperature is defined as follows 𝑇𝑟𝑒𝑓 =
𝑇ℎ+𝑇𝑐

2
 and the temperature difference 

is Δ𝑇 = 𝑇ℎ − 𝑇𝑐. The boundary conditions imposed on the electrodes are:  

𝑢 = 𝑣 = 𝑤 = 0, 𝜃 =
1

2
,𝜙 = 1 𝑎𝑡 𝑥 = −1/2 

𝑢 = 𝑣 = 𝑤 = 0,𝜃 = −
1

2
,𝜙 = 0 𝑎𝑡 𝑥 = 1/2.

} (5.1) 
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5.2. Base state  

For small temperature differences and weak electric voltage, the system of equations (2.26)-

(2.29) with boundary conditions has a steady-state solution described by  �⃗⃗� = 𝑊𝑏(𝑥)𝑒𝑧 , 𝜃 =

𝜃𝑏(𝑥), 𝜙 = 𝜙𝑏(𝑥). In this state, the motions of fluid particles are aligned to isotherms, due to the 

shear flow, so the temperature field is determined only by heat conduction without any advection 

effect. The equations governing the basic state are [42]:  

𝑑𝜋𝑏
𝑑𝑥

+
𝐿

𝑃𝑟
𝜃𝑏𝑔𝑒𝑏 = 0,

𝑑2𝑊𝑏

𝑑𝑥2
+𝐺𝑟𝜃𝑏 = 0,

𝑑2𝜃𝑏
𝑑𝑥2

= 0,

(1 − 𝛾𝑒𝜃𝑏)
𝑑2𝜙𝑏
𝑑𝑥2

− 𝛾𝑒
𝑑𝜃𝑏
𝑑𝑥

𝑑𝜙𝑏
𝑑𝑥

= 0.}
 
 
 
 

 
 
 
 

 (5.2)  

The solutions of these equations (5.2) subject to the boundary conditions (5.1) are: 

 Basic velocity: 𝑊𝑏 =
1

6
𝐺𝑟 ⋅ 𝑥 (𝑥2 −

1

4
), where the Grashof number is 𝐺𝑟 = 𝑅𝑎/𝑃𝑟; 

 Basic temperature profile: 𝜃𝑏 = −𝑥; 

 Basic electric potential: 𝜙𝑏 = ln (
1+𝛾𝑒𝑥

1+𝛾𝑒 2⁄
) [ln (

1−𝛾𝑒 2⁄

1+𝛾𝑒 2⁄
)]
−1

; 

 Basic electric field : 𝐸𝑏 =
𝛾𝑒

ln(
2−𝛾𝑒
2−𝛾𝑒

)
⋅

1

1+𝛾𝑒𝑥
 . 

From equation (2.8) and the solution of the basic electric field, the electric gravity of the base flow 

is obtained 𝑥: 𝑔𝑒𝑏 = −[1 + 𝛾𝑒𝑥]
−3. The basic electric gravity remains the same as in the case of 

the horizontal configuration. Accordingly, the definition of the electric Rayleigh number remains 

the same as in the horizontal configuration: 𝐿 =
𝜀1𝜙0

2
𝛾𝑒
4

𝜌𝜅𝜈
[ln (

1−𝛾𝑒 2⁄

1+𝛾𝑒 2⁄
)]
−2

. 

Fluid particles move upward near the hot electrode and downward near the cold electrode. The 

vorticity of the base flow is given by: 

�⃗⃗⃗�𝑏 = −
𝑑𝑊𝑏

𝑑𝑥
𝑒𝑦 = −

1

6
𝐺𝑟 (3𝑥2 −

1

4
) 𝑒𝑦. (5.3) 
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The pressure distribution is then obtained by straightforward integration of the first equation of the 

set of (5.2) and it reads: 

𝜋𝑏(𝑥) =
𝐿

𝑃𝑟
⋅

2𝛾𝑒𝑥+1

2𝛾𝑒
2(𝛾𝑒𝑥+1)

2
. 

The profiles of the axial velocity 𝑊𝑏 , vorticity 𝜔𝑏, temperature 𝜃𝑏 , electric potential 𝜙𝑏, and the 

electric field are shown in Figure 5.2. We can observe, from Figure 5.2(e), that intensity of the 

electric field of the base state is stronger at the hot plate. 

(a) 
(b) (c) 

(d) (e) 

Figure 5.2: Profiles of velocity (a), vorticity (b), temperature (c), electric potential (d), and 

electric field (e) of the base state flow for 𝑅𝑎 = 800. 
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5.3. Linear stability equations  

To analyze the stability of the flow, we superimpose to the base flow infinitesimal perturbations 

and we linearize the resulting equations. Since the system is assumed infinite along the horizontal 

direction 𝑦 and the vertical direction 𝑧, the perturbations are developed into normal modes as 

follows : 

[
 
 
 
 
 
 
𝑢′(𝑥, 𝑦, 𝑧, 𝑡)

𝑣′(𝑥, 𝑦, 𝑧, 𝑡)

𝑤′(𝑥, 𝑦, 𝑧, 𝑡)

𝜋′(𝑥, 𝑦, 𝑧, 𝑡)

𝜃′(𝑥, 𝑦, 𝑧, 𝑡)

𝜙′(𝑥, 𝑦, 𝑧, 𝑡)]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑈(𝑥)
𝑉(𝑥)

𝑊(𝑥)
𝛱(𝑥)
𝛩(𝑥)
𝛷(𝑥) ]

 
 
 
 
 

𝑒𝑥𝑝[𝑠𝑡 + 𝑖(𝑘𝑦𝑦 + 𝑘𝑧𝑧)] + 𝑐. 𝑐   

The complex amplitudes [𝑈(𝑥), 𝑉(𝑥), 𝑊(𝑥), 𝛱(𝑥),𝛩(𝑥),𝛷(𝑥)] of normal modes then satisfy the 

following equations: 

𝐷𝑈+ 𝑖(𝑘𝑦𝑉 + 𝑘𝑧𝑊) =  0,

[𝑠 − (𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝑈 = −𝐷𝛱 − 𝐿𝑃𝑟−1(𝑔𝑒𝑏𝛩 + 𝜃𝑏𝐺𝑒𝑥),

[𝑠 − (𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝑉 = −𝑖𝑘𝑦𝛱 − 𝐿𝑃𝑟
−1𝜃𝑏𝐺𝑒𝑦 ,

[𝑠 − (𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝑊 + 𝐷𝑊𝑏𝑈 = −𝑖𝑘𝑧𝛱 + 𝑃𝑟
−1(𝑅𝑎𝛩 − 𝐿𝜃𝑏𝐺𝑒𝑧),

𝑈 = [𝑠 − 𝑃𝑟−1(𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝛩,
[(1 + 𝛾𝑒𝑥)(𝐷

2− 𝑘2) + 𝛾𝑒𝐷]𝛷− 𝛾𝑒[𝐷
2𝜙𝑏 +𝐷𝜙𝑏𝐷]𝛩 = 0, }

 
 
 

 
 
 

 

 

(5.4) 

 

where 𝑘2 = 𝑘𝑦
2 + 𝑘𝑧

2  with 𝑘𝑦 and 𝑘𝑧 , the wavenumbers along 𝑦 and 𝑧 respectively; and the 

operator 𝐷 = 𝑑 𝑑𝑥 ⁄ . The quantity 𝑠 is the complex growth rate of perturbations. The linear stability 

system of equations (5.4) contains the base flow velocity component, temperature, and electric 

field. Thus, three types of modes can be excited in such a system: hydrodynamic modes, thermal 

modes, or electric modes. The present study aims to determine the conditions of the excitation of 

these different modes.  

The boundary conditions for the perturbations are:  

𝑈 = 𝑉 = 𝑊 = 𝛱 = 𝛩 = 𝛷 = 0 at 𝑥 ± 1/2.   (5.5) 

In the system of equations (5.4), we have taken into account perturbations in the electric gravity. 
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5.4. Results of linear analysis 

5.4.1. Marginal stability curves 

We computed the growth rate 𝑠 = 𝑠(𝑅𝑎, 𝐿, 𝑃𝑟, 𝑘𝑦, 𝑘𝑧) with varying 𝑅𝑎 for fixed other 

parameters and then we determined a marginal condition for 𝑅𝑎, where the real part 𝜎 = 𝑅𝑒(𝑠) of 

the fast-growing mode changes its sign. The determination of marginal conditions for different 

values of wavenumbers yields a marginal stability hypersurface 𝑅𝑎 = 𝑅𝑎(𝐿, 𝑃𝑟 , 𝑘𝑦, 𝑘𝑧) or 𝐿 =

𝐿(𝑅𝑎, 𝑃𝑟 , 𝑘𝑦, 𝑘𝑧). The problem contains three control parameters that participate in the selection 

of critical modes: for a fixed 𝑃𝑟 and 𝐿 < 𝐿𝑐, the critical modes may be either hydrodynamic (𝑃𝑟 <

12.45 )or thermal modes (𝑃𝑟 > 12.45). For fixed 𝑃𝑟 and 𝑅𝑎, the critical modes may be electric 

modes which are monitored by 𝐿. For given values of the control parameters (𝐿, 𝑃𝑟), the global 

minimum 𝑅𝑎 = 𝑅𝑎𝑐  of the marginal surface gives a critical condition (𝑘𝑦𝑐, 𝑘𝑧𝑐 , 𝑅𝑎𝑐, 𝜔𝑐). 

 

Figure 5.3: Marginal stability curves for 𝑃𝑟 = 11.03 and 𝐿 = 0. 

Figure 5.3 gives the marginal stability curve for 𝑃𝑟 = 11.03 when no electric field is applied   

(𝐿 = 0); the liquid is the Novec 7200 used in experiments. Curves correspond to marginal states 

for three different values of 𝑘𝑦. The lowest curve corresponds to the mode with 
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𝑅𝑎𝑐 = 8.683 ⋅ 104, 𝑘𝑐 = 2.765, 𝑘𝑦 = 0 and 𝜔𝑐 = 0; the critical mode is then stationary 

hydrodynamic transverse mode. 

 

  

(a) (b) 

Figure 5.4: (a) Marginal stability curves for 𝑃𝑟 = 20 and 𝐿 = 170 - the lowest curve (𝑘𝑦 = 0) 

is the marginal state; and (b) the frequency that corresponds to the marginal state. 

 

Figure 5.4 shows three marginal stability curves for 𝑃𝑟 = 20, 𝛾𝑒 ≪ 1, and low values of  the 

electric potential. The system is stable below the blue curve (𝜎 < 0), while it becomes unstable in 

the zone under the marginal curve (𝜎 > 0). The lowest point of the blue curve gives then the critical 

gravitational Rayleigh number 𝑅𝑎𝑐, the critical wavenumber 𝑘𝑐 and the critical frequency 𝜔𝑐. Two 

branches are observable in Figure 5.4 (a): Thermal Mode (TM) and Hydrodynamic Mode (HM). 

Curves illustrate that the TM is the lowest one for 𝑃𝑟 = 20. The values of critical parameters are 

tabulated in Appendix C for different values of 𝑃𝑟 and 𝐿. To investigate the occurrence of the 

electric modes, we fix 𝑅𝑎 < 𝑅𝑎𝑐  and vary 𝐿 i.e. we look for the hypersurface 𝐿 =

𝐿(𝑅𝑎, 𝑃𝑟, 𝑘𝑦, 𝑘𝑧).  
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5.4.2. Critical modes 

The critical conditions are determined for different values of 𝑃𝑟𝜖 [0.3, 104]. The critical modes 

are hydrodynamic, thermal, or electric, depending on the values of the parameters (𝐿,𝑅𝑎, 𝑃𝑟). The 

hydrodynamic modes (HM) appear in fluids with 𝑃𝑟 < 12.45 in form of stationary transverse  

convective rolls which are periodic along the z-direction with the wavenumber (𝑘𝑧 ≈ 2.8) and are 

invariant in the y-direction (𝑘𝑦 = 0). Their critical parameters (𝐺𝑟𝑐 = 𝑅𝑎𝑐/𝑃𝑟, 𝑘𝑐) weakly depend 

on 𝑃𝑟 [39,42,57]. 

The thermal modes (TM) appear in fluids with 𝑃𝑟 > 12.45  in form of oscillatory (𝜔 ≠ 0) 

horizontal convective rolls. Like hydrodynamic modes, thermal modes have periodicity along the 

𝑧-direction (𝑘𝑧 ≠ 0) and are invariant in the 𝑦-direction. Since thermal modes are oscillatory, we 

have computed the corresponding phase velocity:   

𝑐 = 𝜔𝑐 𝑘𝑐⁄ . (5.6) 

This critical phase velocity 𝑐 of thermal convective rolls decreases with 𝑃𝑟 as shown in Table 5.1. 

The critical phase velocity must be smaller than the maximum of the base flow velocity computed  

at the threshold value  𝑊𝑏
𝑚𝑎𝑥 =  √3 𝐺𝑟𝑐 216⁄  which should be the velocity of perturbations in 

inviscid homogeneous parallel shear flows [85]. 

Table 5.1 gives the critical values of HM and TM for different values of Pr. We have also 

introduced the values of 𝑊𝑏
𝑚𝑎𝑥  for HM for completeness, their weak variation is due to the weak 

variation in  𝐺𝑟𝑐. Following the analysis of Gershuni-Zhukhovitskii [39], we found that the critical 

value 𝐺𝑟𝑐 of thermal modes decreases with 𝑃𝑟 following the law 𝐺𝑟𝑐 = 𝐴 √𝑃𝑟⁄ , 𝐴 = 9400 (Table 

5.1). Table 5.2 also shows the critical parameters of the transverses instabilities (HM & TM) for 

two values of the Prandtl number 𝑃𝑟. 
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Table 5.1: Critical parameters for different values of 𝑃𝑟 and 𝐿 = 0. 

 

For low values of the electric potential, the electric Rayleigh number has almost no effect on the 

critical parameters (𝐺𝑟𝑐, 𝑘𝑐, 𝜔𝑐). When 𝐿 reaches 𝐿𝑐 ≈ 2128.6, we observe the switch from the 

thermal or hydrodynamic modes to the electric mode (EM) due to the dielectrophoretic buoyancy 

which dominates the action of the torque of the Archimedean buoyancy. The electric mode occurs 

in form of vertical vortices (i.e. with an axis parallel to the 𝑧 −axis) and they are periodic along the 

y-direction i.e. 𝑘𝑧 = 0. The critical wavenumber is 𝑘𝑐 =  𝑘𝑦𝑐 ≈ 3.2. We found that the threshold 

of the electric modes is independent of the diffusive properties of the dielectric fluid i.e. of 𝑃𝑟 

(Table 5.3) as in the case of the thermoelectric convection in microgravity. The threshold of the 

electric modes is also independent of the Archimedean buoyancy i.e. 𝐿 = 𝐿𝑐(𝑅𝑎) =

2128.6; ∀ 𝑅𝑎 < 𝑅𝑎𝑐. 

Surprisingly, in the Earth's gravity, we have found that the threshold of the thermoelectric 

convection in a vertical cavity is  𝐿𝑐(𝑅𝑎) = 2128.6 (within the numerical precision of 0.03%). The 

critical modes are electric and they consist of stationary vertical convective rolls, i.e., columnar 

vortices with a periodicity in the 𝑦-direction (𝑘𝑦𝑐 ≈ 3.23) and invariant in the 𝑧-direction (𝑘𝑧 =

Modes 𝑃𝑟 𝑅𝑎𝑐 𝐺𝑟𝑐 𝑘𝑐 𝜔𝑐 𝑐 𝑊𝑏
𝑚𝑎𝑥  

 

 

HM 

0.3 2370 7896 2.73 0 0 63.35 

1 7940 7.940 2.81 0 0 63.69 

10 7.73 ∙ 104 7730 2.83 0 0 61.90 

 

 

 

 

TM 

20 4.86 ∙ 104 2430 1.53 28.88 18.66 102.05 

60 5.94 ∙ 104 992 2.33 18.64 7.86 40.96 

100 7.46 ∙ 104 746 2.40 14.67 6.04 31.24 

500 1.71 ∙ 105 342 2.63 7.51 2.84 14.16 

1000 2.46 ∙ 105 246 2.68 5.53 2.04 10.41 

10000 8.93 ∙ 105 89 2.33 1.64 0.72 3.71 
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0). This result is in contrast with the results of Takashima & Hamabata [58] and Tadie Fogaing [42] 

who assumed that perturbations were two-dimensional in the 𝑥 − 𝑧 plane and missed the modes in 

the 𝑦-direction. Indeed, they found the same value of 𝐿𝑐(𝑅𝑎) = 2128.7, but their critical modes 

were transverse (i.e.  with 𝑘𝑧𝑐 = 3.23, 𝑘𝑦 = 0). 

 

 

Figure 5.5: Marginal stability curves for 𝑃𝑟 = 20 and 𝐿 = 2128.6; the lowest curve (𝑘𝑧 = 0) is 

the marginal state. 

 

We have presented in Figure 5.5 the marginal stability curves for 𝑃𝑟 = 20 when 𝐿 = 2128.6. 

The corresponding critical mode is an electric mode with the following corresponding 𝑘𝑧𝑐 = 0 and 

𝑘𝑦𝑐 ≠ 0. This shows that the electric mode has periodicity in the 𝑦 −direction i.e columnar mode.  
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Table 5.2: Critical parameters for 𝑃𝑟 = 5 (Hydrodynamic Modes) and 𝑃𝑟 = 15 (Thermal 

Modes). 

𝑘𝑧𝑐  𝑘𝑦 𝐺𝑟𝑐 𝑅𝑎𝑐  𝛾𝑒 𝐿 𝜔𝑐 

Hydrodynamic modes (𝑃𝑟 = 5) 

2.77 0.00 7860.50 39302.510 1.97 ⋅ 10−2 0 0 

2.77 0.00 7820.37 39101.825 1.96 ⋅ 10−2 682.525 0 

2.77 0.00 7780.24 38901.215 1.95 ⋅ 10−2 1358.460 0 

Thermal modes (𝑃𝑟 = 15) 

1.083 0.00 4018.998 6.03 ⋅ 104 10−2 0 -33.16 

1.083 0.00 4001.975 6.00 ⋅ 104 10−2 1047.821 -32.97 

1.083 0.00 3999.909 5.997 ⋅ 104 10−2 1152.033 -32.95 

1.083 0.00 3997.718 5.996 ⋅ 104 10−2 1256.104 -32.93 

1.083 0.00 3995.492 5.989 ⋅ 104 10−2 1360.056 -32.91 

1.083 0.00 3993.261 5.989 ⋅ 104 10−2 1463.898 -32.90 

1.083 0.00 3991.067 5.987 ⋅ 104 10−2 1567.647 -32.88 

1.083 0.00 3988.866 5.983 ⋅ 104 10−2 1671.287 -32.86 

1.083 0.00 3986.625 5.979 ⋅ 104 10−2 1774.804 -32.84 

1.083 0.00 3984.428 5.976 ⋅ 104 10−2 1878.236 -32.82 

1.083 0.00 3982.238 5.973 ⋅ 104 10−2 1981.567 -32.80 
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Table 5.3: Critical parameters for 𝑃𝑟 = 5 and 𝑃𝑟 = 15 (Electric Modes). 

𝑘𝑧  𝑘𝑦𝑐  𝐺𝑟 𝑅𝑎 𝛾𝑒 𝐿𝑐 

Columnar vortices (𝑃𝑟 = 5) 

0.00 3.20 7601.92 38009.610 1.90 ⋅ 10−2 2125.067 

0.00 3.20 6960.40 34802.010 1.74 ⋅ 10−2 2128.582 

0.00 3.23 6088.03 30440.155 1.52 ⋅ 10−2 2128.583 

0.00 3.25 2414.12 12070.600 6.04 ⋅ 10−3 2128.373 

0.00 3.23 1169.71 5848.530 2.92 ⋅ 10−3 2128.691 

0.00 3.23 737.40 3687.002 1.84 ⋅ 10−3 2128.692 

0.00 3.23 507.37 2536.871 1.27 ⋅ 10−3 2128.687 

0.00 3.23 357.24 1786.187 8.93 ⋅ 10−4 2128.695 

0.00 3.24 245.81 1229.046 6.15 ⋅ 10−4 2128.769 

0.00 3.20 154.94 774.702 3.87 ⋅ 10−4 2128.475 

Columnar vortices (𝑃𝑟 = 15) 

0 3.229 4062.810 6.09 ⋅ 104  1.02 ⋅ 10−2 2128.147 

0 3.229 2707.844 4.06 ⋅ 104  6.77 ⋅ 10−3 2128.681 

0 3.229 1621.816 2.43 ⋅ 104  4.05 ⋅ 10−3 2128.357 

0 3.230 804.816 1.21 ⋅ 104  2.01 ⋅ 10−3 2128.660 

0 3.231 529.493 7.9 ⋅ 103 1.32 ⋅ 10−3 2128.159 

0 3.254 389.840 5.85 ⋅ 103  9.75 ⋅ 10−4 2128.354 

0 3.246 304.246 4.56 ⋅ 103  7.61 ⋅ 10−4 2128.087 

0 3.237 245.802 3.69 ⋅ 103  6.15 ⋅ 10−4 2128.705 

0 3.245 202.681 3.04 ⋅ 103  5.07 ⋅ 10−4 2128.780 

0 3.250 169.067 2.54 ⋅ 103  4.23 ⋅ 10−4 2127.964 

0 3.192 141.912 2.13 ⋅ 103  3.55 ⋅ 10−4 2128.673 

0 3.230 119.071 1.79 ⋅ 103  2.98 ⋅ 10−4 2128.545 

 



127 

 

The thresholds of the different modes obtained in the vertical slot for different values of 𝑃𝑟 are 

shown in the 𝐿 − 𝑅𝑎 plane in Figure 5.6. One observes that the critical parameters of HM and TM 

do not exhibit any significant variation with 𝐿, meaning that these modes are not sensitive to the 

electric field intensity, except in the case of low values of 𝑃𝑟 ≤ 0.3. For these low values of 𝑃𝑟, 

the threshold of HM decreases as 𝐿 increases before reaching the value 𝐿𝑐. We are not aware of 

dielectric fluids with such low values of 𝑃𝑟, so that this result may not have any practical relevance. 

The electric modes obtained in the vertical slot are similar to columnar vortices obtained in 

cylindrical annulus under combined effects of dielectrophoretic and Archimedean buoyancies 

found by Meyer et al. [20] and numerically investigated later by Kang and Mutabazi [21,74]. The 

electric modes in the cylindrical annulus in microgravity are stationary and helical; moreover,  their 

threshold is a function of the radius ratio [65]. 

 

 

Figure 5.6: Variation of the threshold of the critical modes in the plane (𝐿, 𝑅𝑎) for 

𝑃𝑟 𝜖 [0.3, 104]. Blue lines correspond to HM, and red lines represent TM. EM has a unique 

threshold represented by the vertical line located at  𝐿𝑐 = 2128.6. 
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In the absence of an electric field (𝐿 = 0), we found the ordinary problem of natural convection 

in a vertical slot. Figure 5.7 shows the critical values of the wavenumber (𝑘𝑐) and the frequency 

(𝜔𝑐) respectively, for different values of 𝐿. The critical parameters (𝑘𝑐,𝜔𝑐)  and the phase velocity 

𝑐 are independent of the value of 𝐿 for weak values of the electric field. Close to the threshold 𝐿 ≈

𝐿𝑐 = 2128.6 the electric field has a weak effect on the wavenumber 𝑘𝑐. This is due to the 

mechanism of switching from transverse modes to the columnar vortices in which the perturbations 

have to reorganize themselves.      

(a) (b) 

(c) 

Figure 5.7: Variation of critical parameters (𝑘𝑐, 𝜔𝑐) with the electric Rayleigh number 𝐿  for 

different values of Prandtl number 𝑃𝑟: (a) critical wavenumber ( 𝑘𝑐); (b) critical frequency (𝜔𝑐); 

(c) phase velocity. Blue points correspond to HM (stationary modes), red points correspond to 

TM modes (oscillatory modes), and black points to EM (stationary modes). 
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5.4.3. Perturbation flow fields at the critical point 

In this study, we did not enter into details about the transition from stationary modes to 

oscillatory modes. A rigorous explanation of the distinction of hydrodynamic from thermal mode s 

can be found in the literature [36,40]. In particular, it was shown that HM originates from Kelvin-

Helmholtz instability of the base profile 𝑊𝑏(𝑥) leading to cat’s eyes vortices which are inclined in 

the gap. An illustration of the possible solutions to the thermoelectric instability in a vertical slot 

at the threshold is presented in Figure 5.8. For hydrodynamic and thermal modes, the transverse 

velocity component 𝑣 ′ = 0  while for the electric modes there is no vertical velocity component 

(𝑤 ′ = 0). Velocity fields (𝑢′, 𝑤 ′), temperature perturbation 𝜃′, and perturbed electric potential 𝜙′ 

of critical hydrodynamic modes are displayed in Figure 5.9 and Figure 5.10. One observes strong 

variations in temperature perturbations 𝜃′ (hot and cold zones) around the mid-plane (𝑥 = 0). 

Velocity fields and isotherms of convective rolls of HM have inclined cross-sections due to the 

basic shear flow. The description of the flow structure in HM can be found in Lee and Korpela [40].  

The transverse velocity 𝑢′ and the axial velocity 𝑤 ′ contours of HM do not depend on the Prandtl 

number 𝑃𝑟; while isotherm patterns and equipotentials change with 𝑃𝑟.  

 

Figure 5.8: A schematic illustration of different critical modes occurrence. 
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(a) (b) (c) (d) 

Figure 5.9: Perturbation flow fields of critical hydrodynamic mode for 𝑃𝑟 = 1, 𝐿 = 1461.76, 

𝑅𝑎𝑐 = 7.52 ∙ 10
3 and  𝛾𝑒 = 1.89 ⋅ 10

−2 . (a) Perturbation velocity component along the 𝑥-

direction 𝑢′; (b) the axial perturbation velocity 𝑤 ′; (c) Velocity vectors and isotherm patterns 

𝜃′; and (d) the electric potential perturbation 𝜙′ of the perturbations. 
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Figure 5.10 shows the eigenfunctions of the dielectric liquid (Novec 7200).  

 

(a)  (b)  (c)  (d)  

Figure 5.10: Perturbation flow field of critical hydrodynamic mode for 𝑃𝑟 = 11.03, 𝐿 = 0, 

𝑅𝑎𝑐 = 8.683 ⋅ 104and  𝑘𝑧𝑐 = 2.765. (a) Perturbation velocity component along the 𝑥-direction 

𝑢′; (b) the axial perturbation velocity 𝑤 ′; (c) Velocity vectors and isotherm patterns 𝜃′; and (d) 

the electric potential perturbation 𝜙′ of the perturbations. 
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Figure 5.11 and Figure 5.12 show the flow fields of oscillatory critical thermal modes. We can 

highlight that TM has velocity and temperature fields different from HM. Indeed, strong variations 

in temperature perturbations 𝜃′ (hot and cold zones) in TM occur near the hot wall. Streamlines 

and isotherms of convective rolls of TM have an almost squared section and the size of rolls 

depends on the 𝑃𝑟. The equipotential lines show the difference in the flow behavior between HM 

and TM. For both hydrodynamic and thermal modes, the transverse velocity 𝑢′ and the perturbation 

temperature 𝜃′ are in phase.  

  

(a) (b) (c) (d) 

Figure 5.11: Perturbation flow field of critical thermal mode for 𝑃𝑟 = 20, 𝐿 = 1655, 𝑅𝑎𝑐 =

4.74 ∙ 104, 𝑘𝑧𝑐 = 1.67 and  𝛾𝑒 = 6 ⋅ 10
−3. (a) Perturbation velocity component along the x-

direction 𝑢′; (b) the axial perturbation velocity 𝑤 ′; (c) Velocity vectors and isotherm patterns 

𝜃′; and (d) the electric potential perturbation 𝜙′ of the perturbations. 
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(a) (b) (c) (d) 

Figure 5.12: Perturbation flow field of critical thermal mode for 𝑃𝑟 = 100, 𝐿 = 1282, 𝑅𝑎𝑐 =

7.34 ∙ 104 and  𝛾𝑒 = 1.84 ⋅ 10−3; (a) Perturbation velocity component along the x direction 𝑢′; 

and (b) the axial perturbation velocity w′; (c) Velocity vectors and isotherm patterns 𝜃′; and (d) 

the electric potential perturbation 𝜙′ of the perturbations 

The electric mode is invariant along the vertical direction and its velocity field has only two 

velocity components (𝑢′, 𝑣 ′) . Figure 5.13 and Figure 5.14 show the perturbed flow of the critical 

electric mode for 𝑃𝑟 = 10, 𝑅𝑎 = 2536.56, and 𝛾𝑒 = 6.34 ⋅ 10−4. The velocity distributions (𝑢′, 

𝑣′) are presented in Figure 5.13; the temperature perturbation 𝜃′, the velocity vectors and 

equipotential in Figure 5.14. The hot and cold zones in convective vortices of the electric mode are 

located at the mid-plane 𝑥 =  0. Figure 5.15 and Figure 5.16 show the averaged values of the 

egenfunctions of an critical electric mode inside the gap for 𝑅𝑎 = 0. 
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(a) 

(b) 

Figure 5.13: Perturbation velocity 𝑢′ (a), and 𝑣 ′ (b) at the threshold 𝐿𝑐 = 2128.6 for 𝑃𝑟 = 10, 

𝑅𝑎 = 2536 and  𝛾𝑒 = 6.34 ⋅ 10
−4. 

 

(a) 

(b) 

Figure 5.14: Flow fields of the critical electric mode for 𝑃𝑟 = 10 and 𝑅𝑎 = 2536: (a) streamline 

and isotherm patterns of the perturbations at the critical state (arrows represent velocity vectors); 

(b) equipotential lines. 
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(a) (b) 

Figure 5.15: Profile of perturbation amplitudes of velocity (𝑢′, v′) for electric modes 

corresponding to 𝑃𝑟 = 15 and different values of Ra and γe at the threshold (𝐿𝑐 ≈ 2129). 

 

(a) (b) 

Figure 5.16: Profile of temperature perturbation 𝜃′ (a) and the perturbation of electric potential 

ϕ′ corresponding to 𝑃𝑟 = 15 and different values of 𝑅𝑎 and  𝛾𝑒 at the threshold (𝐿𝑐 ≈ 2129). 
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5.5. Energetic analysis of the perturbed flow at the threshold 

The base flow in the vertical cavity is characterized by a large convective cell. At the threshold, 

this base flow contributes to the total kinetic energy evolution of the perturbed flow due to the basic 

shear flow velocity 𝑊𝑏 . The balance equation can be written as follows: 

𝑑𝐾

𝑑𝑡
= 𝑊𝑠ℎ +𝑊𝐺 + 𝑊𝐵𝐸𝐺 +𝑊𝑃𝐸𝐺 −𝐷𝜈, (5.7) 

where 𝑊𝑠ℎ = −∫
𝑑𝑊𝑏

𝑑𝑥
𝑢′𝑤′ 𝑑𝑉 is the power generated by the shear from the base flow. 𝑊𝐺 =

𝑅𝑎

𝑃𝑟
∫𝜃′𝑤 ′𝑑𝑉 is the power of the Archimedian buoyancy; the base flow also contributes to the 

perturbed flow through the electric gravity 𝑔𝑒𝑏 and basic temperature 𝜃𝑏 . Their contributions are 

given by the power terms :  𝑊𝐵𝐸𝐺 = −
𝐿

𝑃𝑟
∫𝜃′𝑢′𝑔𝑒𝑏 𝑑𝑉 and 𝑊𝑃𝐸𝐺 = −

𝐿

𝑃𝑟
∫𝜃𝑏(𝑢′⃗⃗ ⃗⃗ ⋅ 𝑔𝑒′⃗⃗⃗⃗⃗) 𝑑𝑉, power 

produced by 𝑔𝑒𝑏  and by the basic temperature combined with the perturbed electric gravity 

respectively. The local values of 𝐾, 𝑊𝑠ℎ, 𝑊𝐺 , 𝑊𝐵𝐸𝐺 , and 𝑊𝑃𝐸𝐺  are given by their density 𝐸𝑐 =

1

2
(𝑢′2 + 𝑣 ′2+ 𝑤 ′2), 𝑤𝑠ℎ = −

𝑑𝑊𝑏

𝑑𝑥
(𝑢′𝑤 ′), 𝑤𝐺 = 𝐺𝑟(𝜃

′𝑤 ′), and 𝑤𝐵𝐸𝐺 = −
𝐿

𝑃𝑟
⋅ (𝜃′𝑢′𝑔𝑒𝑏). 

Since the dielectrophoretic effects predominate when the electric Rayleigh number reaches 𝐿𝑐 ≈

2129, we will first analyze the effect of the electric Rayleigh number (𝐿 < 𝐿𝑐) on the energy 

balance for transverse critical modes (hydrodynamic modes and thermal modes). Then, we will 

analyze the effect of the gravitational Rayleigh number 𝑅𝑎 on the different terms of energy 

equation for electric modes.  

We have presented in Figure 5.17 the density of the kinetic energy 𝐸𝑐  of perturbations, the  

density of power of the Archimedean buoyancy 𝑤𝐺 , the density of the power of the basic vorticity 

𝑤𝑠ℎ, and the density of power of the basic electric gravity 𝑤𝐵𝐸𝐺 at the threshold for electric mode. 

One sees that for hydrodynamic modes, the distribution of the kinetic energy illustrates the 

inclination of HM cells (Figure 5.17 a). The power produced by the Archimedean buoyancy 𝑤𝐺   

presents positive zones at the central line of the cavity (𝑥 = 0) and negative zones near the walls. 

The power density from the shear by the base flow 𝑤𝑠ℎ is positive and strong at the active central 

zone (𝑥 = 0) where the vorticity is maximum; and presents alternating positive and negative zones 

along the electrodes (Figure 5.17 c). The power density 𝑤𝐵𝐸𝐺 shows that the power of the 
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dielectrophoretic buoyancy arising from the basic electric gravity is also strong in the central axis 

and follows approximately the same behavior as the Archimedean buoyancy (Figure 5.17 d). 

 

 

(a) (b) (c) (d) 

Figure 5.17: The contours of kinetic energy density and the densities of different power terms of 

the energy transfer at the critical point for 𝑃𝑟 = 1, 𝑅𝑎𝑐 = 7.52 ⋅ 10
3 (Hydrodynamic mode), 

𝐿 = 1462, and 𝛾𝑒 = 1.89 ⋅ 10−2. 

 

For thermal modes, the density of the kinetic energy of perturbations contains intense zones, in 

red, near the vertical electrodes (Figure 5.18 a). The density of energy produced by the 

Archimedean buoyancy 𝑤𝐺 , which is the dominant energy generation source in TM, is concentrated 

at the left hot wall (Figure 5.18 b). The powers performed by the basic vorticity 𝑤𝑠ℎ and the basic 

electric gravity 𝑤𝐵𝐸𝐺 are also presented in Figure 5.18 (c, d). The active zone (where 𝑤𝐵𝐸𝐺 is more 

intense) which was located at 𝑥 = 0 for hydrodynamic modes, is shifted near the hot surface for 

thermal modes. The results obtained in this study are similar to the classical thermal modes [42]. 
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(a) (b) (c) 
(d) 

Figure 5.18: The contour of kinetic energy and different power terms of the energy transfer at 

the critical point for 𝑃𝑟 = 100, 𝑅𝑎𝑐 = 7.34 ⋅ 104 (Thermal mode), 𝐿 = 1282, and 𝛾𝑒 = 1.84 ⋅

10−3. 

 

Figure 5.19 shows the variation of the different powers in the energy equation as a function of 

𝐿 for hydrodynamic modes (a) and thermal modes (b). We observe that 𝑊𝑠ℎ and 𝑊𝐺  are both 

positives; the base flow and the Archimedean buoyancy give power to the perturbed flow whatever 

the value of the electric Rayleigh number 𝐿 for both hydrodynamic and thermal modes. They 

contribute to the destabilization of the conducting base state. Figure 5.19 (a) shows that 𝑊𝑠ℎ > 𝑊𝐺 

i.e. the hydrodynamic effect predominates over the Archimedean buoyancy in the generation of the 

convection; while in Figure 5.19 (b) the Archimedean buoyancy produces more power than the 

basic shear flow 𝑊𝐺 >𝑊𝑠ℎ. The viscous dissipation 𝐷𝜈 due to the shear near the vertical walls 

dissipates the kinetic energy of the dielectric fluid. For both hydrodynamic and thermal modes, the 

electric field does not affect energy transfer to flow perturbation. Because 𝑤𝐵𝐸𝐺 and 𝑤𝑃𝐸𝐺  are 

identically zeros, the electric gravity plays no role and 𝑅𝑎𝑐  is independent of 𝐿. 
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(a) (b) 

Figure 5.19: Different terms of the energy balance at the critical point (𝑅𝑎𝑐 , 𝑘𝑐) normalized by 

twice the kinetic energy plotted as a function of the electric Rayleigh number 𝐿: hydrodynamic 

mode (a) 𝑃𝑟 = 5, 𝛾𝑒 = 0.02, and 𝑅𝑎𝑐 ≈ 3.95 ⋅  10
4 ; (b) thermal mode 𝑃𝑟 = 15, 𝑅𝑎𝑐 ≈ 6.15 ⋅

 104 , and 𝛾𝑒 = 0.01. All terms were computed for different values of 𝐿 below the critical value 

𝐿𝑐 ≈ 2129. The vertical dashed line corresponds to the threshold 𝐿 = 𝐿𝑐. 

 

Figure 5.20 shows the powers of different energy transfer mechanisms of the perturbed flow, at 

the critical conditions (𝐿𝑐, 𝑘𝑐) of the electric mode, plotted as function of 𝑅𝑎. All power terms of 

the energy equation are independent of 𝑅𝑎. The power 𝑊𝐺  from the Archimedean buoyancy and  

the power 𝑊𝑠ℎ from the shear in the base flow do not contribute to the energy transfer from the 

base state to perturbations whatever the value of 𝑃𝑟. The power generated by the basic electric 

gravity 𝑔𝑒𝑏  combined to the temperature perturbation 𝜃′ is positive 𝑊𝐵𝐸𝐺 > 0. The power 𝑊𝑃𝐸𝐺  

from the perturbative gravity is negative whatever the value of the Rayleigh number 𝑅𝑎, it 

contributes to the energy dissipation as does the viscous dissipation 𝐷𝜈. The dielectrophoretic 

buoyancy arising from the basic electric gravity and the temperature perturbation is then the sole 

source term of destabilization leading to the thermoelectric convection. Therefore 𝐿𝑐 is independent 

of 𝑅𝑎 for electric modes. 
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Figure 5.20: Different terms of the energy balance at the critical point (𝐿𝑐, 𝑘𝑐) normalized by 

twice the kinetic energy plotted as a function of the gravitational Rayleigh number Ra for an 

electric mode (𝑃𝑟 = 15 and 𝐿𝑐 ≈ 2129). All terms were computed for different values of Ra 

below the critical value 𝑅𝑎𝑐 ≈ 6.15 ⋅ 10
4. The vertical dashed line corresponds to the threshold. 

 

Since the basic electric gravity is the term that destabilizes the base flow by injecting energy 

into the system, we plotted the contour of its power density 𝑤𝐵𝐸𝐺 in the (𝑥, 𝑦) plane. The contour 

of the density of perturbation kinetic energy 𝐸𝑐  and the power density of the basic electric buoyancy 

𝑤𝐵𝐸𝐺 inside the gap are presented in Figure 5.21. The power density 𝑤𝐵𝐸𝐺 ≥ 0 everywhere and 

presents maximum values of alternating zones at the central plane of the gap (𝑥 = 0).    
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           (a) 

           (b) 

Figure 5.21: Local kinetic energy 𝐸𝑐  (a), and power produced by the basic electric gravity wBEG 

(b) at the threshold for 𝑃𝑟 = 10, 𝑅𝑎 = 2536 and γe = 6.34 ⋅ 10−4. 

 

Figure 5.22 shows the local energy production 𝑤𝐵𝐸𝐺 by the basic electric gravity 𝑔𝑒𝑏  combined 

with the perturbation temperature 𝜃′ inside the gap for different values of the gravitational Rayleigh 

number 𝑅𝑎 and 𝛾𝑒. The power density 𝑤𝐵𝐸𝐺 is averaged along the y-direction and profile reveals 

that the energy production is maximum at the mid-gap (𝑥 = 0). The local average kinetic energy 

evolution 𝐸𝑐  is presented in Figure 5.23. Arround the mid-gap (𝑥 = 0), the curves of 𝑤𝐵𝐸𝐺 and 𝐸𝑐  

are weakly sensitive to 𝑅𝑎.   

Table 5.4: Values of Ra and 𝛾𝑒 corresponding to the graphs below. 

𝑅𝑎 4.1 ⋅ 104 7.9 ⋅ 103 4.6 ⋅ 103 3 ⋅ 103 1.8 ⋅ 103 

𝛾𝑒 0.0068 0.0013 0.0008 0.0005 0.0003 
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Figure 5.22: Profile of the local work performed by the dielectrophoretic buoyancy due to the 

basic electric gravity, normalized by WBEG   for 𝑃𝑟 = 15 and 𝐿 ≈ 2129, corresponding to 

columnar modes. 

 

 

Figure 5.23: Local kinetic energy 𝐸𝑐  evolution in the 𝑥-direction for Prandtl number 𝑃𝑟 = 15, 

and 𝐿 ≈ 2129 that corresponds to electric modes.   
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5.6. Discussion 

5.6.1. Comparison with previous studies 

Our study concerned the investigation of the thermoelectric convection generated by the electric 

buoyancy in a vertical slot differentially heated and subject to a horizontal electric field. This 

problem has been investigated by Takashima and Hambata [58], and Tadie Fogaing [42]. In both 

studies, the authors performed linear stability analysis by assuming the validity of Squire’s theorem 

and considered only two-dimensional perturbations in the vertical (𝑥 − 𝑧) plane. They found three 

modes in that vertical plane; but the variations of the critical parameters 𝐺𝑟𝑐 and 𝑘𝑐 with 𝐿 were 

not accurate. In particular, they found the co-existence of two critical modes when 𝐿 exceeds a 

certain value 𝐿𝑐
𝑠  depending on the value of 𝑃𝑟. The couples of critical coexisting modes are either 

Electric Mode and Hydrodynamic Mode or Electric Mode and Thermal Mode. Accordingly, 𝐺𝑟 

becomes a double-valued function of 𝐿. In addition, they found that the critical electric mode should 

be oscillatory depending on 𝑃𝑟 and 𝛾𝑒. 

Our results showed that the problem of thermoelectric convection in the vertical slot has only 

two solutions: hydrodynamic or thermal transverse rolls (𝑘𝑦 = 0 and 𝑘𝑧 ≠ 0 ) and electric 

columnar modes (𝑘𝑦 ≠ 0 and 𝑘𝑧 = 0) [86]. However, we did not find any inclined convective rolls 

in the (𝑦 − 𝑧) plane (𝑘𝑦 ≠ 𝑘𝑧 ≠ 0). The critical parameters of the hydrodynamic and thermal 

modes are independent of the electric intensity except for hydrodynamic modes in the fluids with 

small values of (𝑃𝑟 ≤ 0.3) when 𝐿 > 200 where the threshold decreases and reaches the value 

𝑅𝑎𝑐 = 0 when 𝐿 = 𝐿𝑐 i.e. at the threshold of the electric mode (EM). 

The diagram of states in Figure 5.6 is different from the one obtained by Takashima and 

Hamabata or by Tadie Fogaing [86]. The marginal stability curve of the electric modes found by 

the authors has negative curvature. 

5.6.2. Reduction to a 2-d convection  

Observation of the linearized equations (5.4) suggests transforming it into a system with two-

dimensional perturbations. For that, we introduce  a transverse velocity �̂� into the continuity 
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equation which becomes 𝑙�̂� ≡ 𝑘𝑦𝑉 + 𝑘𝑧𝑊. The resulting system of perturbed flow equations 

reads: 

𝐷𝑈 + 𝑖𝑙�̂� = 0
[𝑠 − (𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝑈 = −𝐷𝛱 − 𝐿𝑃𝑟

−1(𝑔𝑒𝑏𝛩 + 𝜃𝑏𝐺𝑒𝑥)

[𝑠 − (𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝑙�̂� = −𝑖𝑘2𝛱 + 𝑘𝑧(𝑅𝑎𝑃𝑟
−1𝛩 − 𝐷𝑊𝑏𝑈) − 𝐿𝑃𝑟

−1𝑙�̂�𝜃𝑏
𝑈 = [𝑠 − 𝑃𝑟−1(𝐷2 − 𝑘2) + 𝑖𝑘𝑧𝑊𝑏]𝛩

0 = [(1 + 𝛾𝑒𝑥)(𝐷
2 − 𝑘2) + 𝛾𝑒𝐷]𝛷 − 𝛾𝑒(𝐷

2𝜙𝑏 + 𝐷𝜙𝑏𝐷)𝛩 }
 
 

 
 

 

 

(5.8) 

 

where 𝑙�̂� ≡ 𝑘𝑦𝐺𝑒𝑦 + 𝑘𝑧𝐺𝑒𝑧. The axial wavenumber (𝑘𝑧) is coupled with the vertical velocity 𝑊𝑏  

of the base flow. Our problem is then reduced to a two-dimensional flow with velocity components 

(𝑈,  �̂�). In this case, three solutions are possible:  

𝑘𝑦 = 0 and 𝑘𝑧 ≠ 0 → transverse solutions with axes parallel to the 𝑦 axis i.e. periodic in the 

𝑧 −direction, 

𝑘𝑦 ≠ 0 and 𝑘𝑧 = 0 → columnar solutions with axes parallel to the 𝑧 axis i.e. periodic in the 

𝑦 −direction, 

𝑘𝑦 ≠ 0 and 𝑘𝑧 ≠ 0 → oblique solutions with periodicity in both 𝑦 − and 𝑧 −directions. 

The strong influence of 𝑘𝑧  in (5.8) makes the Squire theorem non-applicable to the present 

problem [87]. Focusing on the critical electric modes, we can set the axial wavenumber 𝑘𝑧 = 0 in 

the system of equations (5.8) and use the expressions of the temperature of the base state and the 

perturbative gravity to write the resulting equations:  

[(𝐷2 − 𝑘2 − 𝑠)(𝐷2 − 𝑘2 − 𝑃𝑟 𝑠)(𝐷2 + 𝑘2) + 𝐿𝑘2𝑔𝑒𝑏]𝛩 = −𝐿𝑘2𝐶𝐷𝜙𝑏𝐷𝛷,        

[(1 + 𝛾𝑒𝑥)(𝐷
2 − 𝑘2) + 𝛾𝑒𝐷]𝛷 − 𝛾𝑒(𝐷

2𝜙𝑏 + 𝐷𝜙𝑏𝐷)𝛩 = 0. 
(5.9) 

Electric modes are then described by the temperature field and the electric potential. Since the base 

flow velocity 𝑊𝑏  does not appear in the system of equations (5.9), the critical parameters of the 

electric modes are not affected by 𝑊𝑏 . One sees that the equations of the classic Rayleigh-Bénard 

problem can be found by neglecting the perturbative electric gravity (i.e. 𝐷𝛷 = 0) in the right-

hand side of the first equation of the system (5.9). Moreover, the electric modes are stationary (𝑠 =

0); thus their independence on 𝑃𝑟 is explained by the fact that 𝑃𝑟 disappears from equations (5.9) 

at the threshold. 
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5.6.3. Comparison with stationary vertical cylindrical annulus 

Recently Meyer [59] investigated the effects of the dielectrophoretic force in vertical stationary 

cylindrical annulus on the Earth conditions. The temperature difference is imposed by heating the 

inner cylinder and they introduced the parameter 𝛿 = 𝛾𝑎/𝛾𝑒 (𝛾𝑎 = 𝛼Δ𝑇) that gives the fluid 

properties. 

 

Figure 5.24: Variation of the critical Rayleigh number 𝑅𝑎 as a function of the electric Rayleigh 

number 𝐿 for two different values of the Prandtl number 𝑃𝑟 in a vertical cylindrical annulus with 

a radial temperature gradient [59]. 

Under microgravity conditions, the critical electric mode induced by only the electric buoyancy 

in a cylindrical annulus consists of helical modes. However, in laboratory experiments and for low 

values of 𝐿 < 𝐿𝑐, two critical modes have been detected depending on the 𝑃𝑟 as in the case of the 

vertical cylindrical cavity [59]: Hydrodynamic modes which originate from the shear arising from 

the axial base flow, and Thermal modes which are produced by the Archimedean buoyancy and 

slightly dependent on the radius ratio 𝜂. It has been shown that 𝜂 affects the nature of critical modes 

obtained. When the electric potential reaches a certain critical value 𝐿𝑐(𝜂), the hydrodynamic or 

thermal modes disappear and the stationary columnar mode appears. Figure 5.24 shows the 

behavior of the critical Rayleigh number 𝑅𝑎𝑐  with the electric Rayleigh number 𝐿 for a fixed aspect 

ratio 𝜂 = 0.9 and two given values of 𝑃𝑟. We can observe that for both values of 𝑃𝑟, the columnar 

vortices occur when 𝐿 reaches 𝐿𝑐 ≈ 1708 independently of 𝛿. This result motivated the three-
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dimensional analysis of the thermoelectric convection in vertical cavities in the presence of 

Archimedean and electric buoyancies. 

In the present study, we considered three-dimensional perturbations. Results have been resumed 

in the stability diagram in the plane (𝐿,𝑅𝑎) together with the wavenumber 𝑘𝑐(𝐿) and the frequency 

𝜔𝑐(𝐿). The threshold of the electric mode is independent of 𝑃𝑟; this represents a universal property 

of the electric mode which was established for different geometrical configurations (horizontal 

fluid layer, cylindrical annulus, spherical shell) [18]. This investigation also revealed that the 

electric modes manifest in form of stationary columnar rolls in contrast with the previous 

investigations [32,58] where 2D perturbations were assumed to lead to transverse rolls. We then 

highlighted three independent critical modes in the flow of dielectric fluid in a vertical slot: 

transverse (�⃗⃗� = 𝑘𝑧𝑒𝑧) HM or TM depending on 𝑃𝑟 and vertical EM (�⃗⃗� = 𝑘𝑦𝑒𝑦). 

The present study has allowed clarifying the nature of the electric modes observed in the 

cylindrical annulus. Indeed, in the microgravity conditions, the threshold increases with the radius 

ratio, and in the zero-curvature limit, 𝐿𝑐 → 2128.6. The critical electrical mode occurs in form of 

stationary helical vortices [32,88]. In the Earth conditions, as 𝐺𝑟 increases, the threshold of 

electrical modes decreases and the helical vortices become columnar vortices [20,21]. The helical 

nature of the electric mode in the cylindrical annulus is due to the curvature and it becomes unstable 

and bifurcates to columnar vortices. A similar result was found recently by adding a global body 

rotation which transforms the helical vortices into columnar vortices [73]. 

5.7. Partial conclusion 

Linear stability analysis of the convective cell of dielectric fluid in a vertical slot induced by a 

horizontal temperature gradient has been performed for different values of high-frequency electric 

field intensity. The flow is controlled by the Prandtl number, the Rayleigh number, and the electric 

Rayleigh number. For small electric field intensity, the convective cell becomes unstable against 

either stationary hydrodynamic or oscillatory thermal modes depending on the Prandtl  number 𝑃𝑟, 

when the Rayleigh number 𝑅𝑎 exceeds critical values 𝑅𝑎𝑐. These modes occur in form of 

transverse vortices with a periodicity in the vertical direction and they are insensitive to the electric 

field intensity. For a fixed value of the temperature difference below its critical value, the 

convective cell can be destabilized by electric-driven perturbations when the electric Rayleigh 
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number 𝐿 reaches the critical value 𝐿𝑐 which is independent of the diffusive properties of the fluid.  

The resulting electric mode consists of a pattern of stationary vertical vortices with a periodicity in 

the horizontal plane. The energetic analysis of the critical electric modes shows that the 

dielectrophoretic force due to the basic electric gravity injects energy into the system while the one 

due to the perturbative part stabilizes the flow. The energy balance is completely independent of 

the Rayleigh number 𝑅𝑎. 
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Chapter 6: General conclusions and perspectives 

In this thesis work, the thermoelectric convection, generated by the coupled effect of 

temperature gradient and an alternating electric field, in a rectangular cavity filled with dielectric 

fluid has been investigated in Earth’s gravity and under a microgravity environment. To perform 

these studies, we have used different tools: linear stability analysis, numerical simulations, and 

experiments in parabolic flight. Two configurations of the rectangular cavity were considered: the 

horizontal configuration which generalizes the classical Rayleigh-Bénard problem, and the vertical 

cavity. We have investigated the stability of the fluid against three-dimensional perturbations. The 

control parameters are the gravitational Rayleigh number 𝑅𝑎, the Prandtl number 𝑃𝑟, the 

thermoelectric coupling parameter 𝛾𝑒, and the electric Rayleigh number 𝐿. For both cases, we have 

performed linear stability analysis to determine the critical parameters. An energy analysis has 

permitted us to identify the main mechanisms which drive thermoelectric convection and the 

particular role of the dielectrophoretic force.  

For the horizontal cavity, we have used the Landau-Stuart equation to determine the supercritical 

nature of the bifurcation from the base state to the thermoelectric convection and the DNS to follow 

the evolution of thermoelectric convective structures for high values of the electric Rayleigh 

number 𝐿. The effects of the  dielectrophoretic buoyancy have been investigated for three 

situations: the microgravity condition (𝑅𝑎 = 0), stable thermal stratification (𝑅𝑎 < 0), and 

unstable thermal stratification (0 ≤ 𝑅𝑎 ≤ 𝑅𝑎𝑐 = 1708).  

We found that the electric buoyancy destabilizes the base state when the electric Rayleigh 

number 𝐿 reaches the critical value 𝐿𝑐(𝑅𝑎) which is independent of the diffusive nature of the 

dielectric fluid (𝑃𝑟). Under microgravity conditions 𝑔 ≈ 0 i.e. 𝑅𝑎 = 0 the electric buoyancy is the 

sole source of instability, and the critical electric Rayleigh number is 𝐿𝑐 ≈ 2128. The resulting 

convective motions consist of stationary rolls with wavenumber 𝑞𝑐 that depend on 𝑅𝑎. We then 

established the variation of critical parameters (𝐿𝑐, 𝑞𝑐) with the Rayleigh number 𝑅𝑎. The energy 

analysis at the threshold showed that the dielectrophoretic buoyancy due to the basic electric 

gravity is the dominant term in the kinetic energy equation; thus the destabilization of the flow is 

due to the dielectrophoretic buoyancy. 
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Using Direct Numerical Simulations (DNS), we found that the increase of the electric Rayleigh 

number 𝐿 beyond the threshold showed a complexification of the thermo-convective patterns with 

the occurrence of defects and unsteadiness. The dynamics of these patterns, far from the threshold 

𝐿 > 𝐿𝑐, is sensitive to the value of the Prandtl number 𝑃𝑟. The development of these thermo-

convective structures is similar to that obtained in the Rayleigh-Bénard problem. The contribution 

of the dielectrophoretic buoyancy to the heat transfer is analyzed by computing the Nusselt number 

𝑁𝑢 for all saturated regimes. This number, which is the dimensionless measure of the heat transfer  

coefficient increases as a function of the applied electric potential when 𝐿 ≥ 𝐿𝑐(𝑅𝑎) for all cases. 

In the neighborhood of the criticality, the value of the averaged Nusselt number 𝑁𝑢 is independent 

of Prandtl number 𝑃𝑟. However, 𝑁𝑢 becomes sensitive to 𝑃𝑟 for large values of 𝐿. We have 

generalized the thermoelectric convection problem in horizontal cavities by introducing a new 

control parameter called modified Rayleigh number 𝐿′ which combines both the electric gravity 

and Earth gravity and yields an effective gravity 𝑔𝑒𝑓𝑓  which can be varied by tuning the electric 

gravity. 

We have performed linear stability analysis in a vertical rectangular cavity subject to a 

horizontal temperature gradient and a horizontal alternating electric field.  The base state consists 

of a shear flow arising from the ascending motion near the hot plate and descending flow near the 

cold one. The linear stability analysis showed the existence of three critical modes depending on 

the values of  𝑅𝑎, 𝑃𝑟, and 𝐿: Hydrodynamic Mode (HM), Thermal Mode (TM), and Electric Mode 

(EM). For low values of the electric Rayleigh number 𝐿 < 𝐿𝑐 = 2128.6, the critical mode is HM 

when 𝑃𝑟 < 12.45 and TM for 𝑃𝑟 > 12.45. HM is characterized by stationary transverse rolls and 

TM by oscillatory transverse rolls. The electric field has nearly no effect on HM and TM as long 

as 𝐿 < 𝐿𝑐. However, when 𝐿 ≥ 𝐿𝑐, the critical mode becomes electric mode (EM) characterized 

by stationary vertical columnar vortices. These vortices are similar to those obtained in the 

cylindrical annulus. The energetic analysis showed that the 𝑅𝑎 and the 𝑃𝑟 do not affect the energy 

transfer to the critical electric modes. 

As a perspective of the present study, it should be interesting to make a deeper analysis of the 

thermo-convective patterns computed in the present work in the horizontal rectangular cavity in 

order to push more in detail the comparison with the Rayleigh-Bénard convection. The DNS of 

thermoelectric convection in the vertical slot should be the next priority for the preparation of future 

parabolic flight experiments. 
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Appendix A: Experimental study of thermoelectric Rayleigh-

Bénard convection in rectangular cavities 

 

 

To validate the numerical work on the thermoelectric convection in rectangular cavities, we 

performed some experiments under microgravity conditions, during a Parabolic Flight Campaign 

(PFC VP139) held in Bordeaux in September 2018. The campaign has been supported by the 

French spatial agency CNES (Centre National d'Études Spatiales) through its subsidiary company 

Novespace in charge of the parabolic flights. The experiments have been performed in 

collaboration with the German TEHD team of Dr. Martin Meier, TEHD-project leader at the 

Department of Aerodynamics and Fluid Mechanics of the Brandenburg University of Technology 

in Cottbus (head: Prof. Dr. C. Egbers) which designed and built the experimental setup appropriate 

for parabolic flight campaigns. Since 2010, the German team has performed 12 parabolic flight 

campaigns on this topic [22,23,61,89]. Recently Marcel Jongmanns [20] defended his thesis 

dealing with flow control by the dielectrophoretic force in a cylindrical cavity. The experimental 

setup used for this work is the same except for the rectangular cavity cell, which was also designed, 

developed, and built by the BTU team.  

The system under study consists of two rectangular cavities filled with dielectric liquids: one 

in the horizontal configuration and another in the vertical configuration. Since we have investigated 

the thermoelectric convection induced by the dielectrophoretic force, both systems are 

differentially heated and subject to a high-frequency electric field produced by the application of 

an electric potential. The flow in the rectangular cavities is visualized using the Background 

Oriented Schlieren (BOS) method [90–94] which is based on the density variation of the fluid due 

to the temperature difference. 

 

 

 

 



154 

 

A.1. Experimental apparatus  

A.1.1. General description 

All the experimental materials are packaged in two racks depending on their functionality. The 

first rack called the experiment rack is composed of one box containing the rectangular cavities, 

the metrology equipment, and the cooling and heating systems. It also contains a high-voltage 

generator and an electronic box that includes connectors, fuses, and power plugs. The second rack 

called the control rack accommodates a computer, a monitor, a keyboard, a data acquisition card, 

the main fuse box with an emergency stop, and a system of two input/output connector blocks. The 

two racks are connected by a system of cables and the whole experiment is connected to the aircraft 

laboratory power plug. In addition to the security button provided by Novespace, the experiment 

is equipped with an emergency stop to cut off the electric alimentation if any electrical problem 

arises. 

 

 

Figure A.1: Experimental apparatus composed of the control rack and the experiment rack loaded 

inside the laboratory part of Zero-G Aircraft. 

  



155 

 

A.1.2. Rectangular cavities  

The system under study consists of two rectangular cavities, in different configurations, filled 

with a dielectric liquid. These experimental cells are characterized by their lengths, widths, and 

depths. In both horizontal and vertical configurations, the total height and the total width are fixed; 

only the depth can be changed, allowing the regulation of the gap size. The experiment cells are 

composed of three compartments: two chambers for the heating and the cooling process, and the 

gap cavity. Cover and view plates and the gap plate are made of polymethylmethacrylate (PMMA) 

to guarantee electrical and thermal insulation. The gap cavity includes two plates of borosilicate 

glass, which is known for its resistance to high temperatures. The interior of those plates is 

recovered by a thin Transparent Conductive Oxide (TCO) coating which serves the application of 

the electric potential by connecting one plate to the high voltage generator and the second plate to 

the ground. The outer part which represents the pressure frame of the experimental cells is made 

of aluminum (AlMgSi0.5). A schematic description of the rectangular cavity is presented in Figure 

A.2. This rectangular cavity can be placed horizontally or vertically in the experiment box. 

 

Figure A.2: Description of the rectangular cavity designed and built by the German team in 

Cottbus (LAS, BTU Cottbus). The figure on the left represents a cut through the middle of the 

cell. 
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The temperature difference inside the gap is imposed by fixing a heating loop on one face and 

a cooling loop on the other face. The liquid used for the heating and cooling loops is silicone oil 

(AK5) from Wacker Chemie. Both heating and cooling chambers are connected to different 

reservoirs, where temperatures are set according to two different methods. The two reservoirs are 

made of polyoxymethylene (POM). The temperature in the cooling system is controlled by a heat 

exchanger with a Peltier element fixed outside of the experimental box. The Peltier controller can 

provide temperatures inside the cooling liquid until about 10 ℃ under the ambient temperature 

outside of the box. A heating box with heating cartridges, containing temperature sensors, was 

utilized to heat the liquid (AK5) inside the heating loop. A power supply of 24 V DC provides a 

power of 100 W to the heating system. The dimensions of experiment cells are tabulated in Table 

A.1. Cell A represents the horizontal rectangular cavity and cell B is the vertical cavity.   

Table A.1: Characteristics of the rectangular cavity. 

Experiment cells 

 Cell A Cell B 

Dimensions of cells    

Total height  280 mm  280 mm 

Total width 120 mm  120 mm 

Total deep 65 mm 70 mm 

Dimensions of the cavity 

(gap) 
  

Total height  200 mm 200 mm 

Total width 40 mm 40 mm 

Total deep 5 mm 10 mm 

 

A couple of heating and cooling systems can generate inside the gap a temperature gradient up to 

30 ℃. Thermocouples fixed to the inlets and outlets of the heating and cooling loops allow reading 

the imposed temperature difference across the gap by taking the averaged value between the 

entrance and the output. The high voltage generator can deliver an alternative peak voltage 𝑉𝑝𝑒𝑎𝑘 =
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√2𝑉0 up to 10 𝑘𝑉 with various frequencies 𝑓. The peak voltage 𝑉𝑝𝑒𝑎𝑘 corresponds to 𝜙 introduced 

in previous chapters. 

A.1.3. Choice of working dielectric fluid 

Based on the linear stability analysis, the onset of the thermoelectric convection in parallel 

plates under microgravity conditions depends on the value of the electric Rayleigh number 𝐿. The 

critical value of the electric Rayleigh number is 𝐿𝑐 = 2128.6 in an infinite extended system under 

microgravity conditions. The corresponding critical electric potential is then determined by the 

following formula: 𝑉0c = 𝑉𝑖 ⋅ 𝛾𝑒
−2 [log (

2−𝛾𝑒

2+𝛾𝑒
)]√𝐿𝑐, where 𝑉𝑖 (equation (2.24)) is the intrinsic 

electric potential of the dielectric liquid that we use.  

As we are limited by a maximum value of the peak voltage equal to 10 𝑘𝑉 in a parabolic flight 

situation, we have chosen the dielectric liquid with the lowest curve as shown in Figure A.3 (a).  

 (a) (b) 

Figure A.3: a) Critical values of 𝑉𝑝𝑒𝑎𝑘 as a function of the temperature difference Δ𝑇 for some 

dielectric liquids; b) the corresponding basic electric gravity of these liquids sandwiched between 

two parallel plates of thickness 𝑑 = 5 𝑚𝑚 for 𝑉𝑝𝑒𝑎𝑘 = 10 𝑘𝑉  and Δ𝑇 = 10 𝐾.  

This figure gives the variation of the peak voltage as a function of the imposed temperature 

difference at the critical point (𝐿 = 𝐿𝑐) for different dielectric liquids. The gap of the experiment 

cells is then filled with the Novec 7200; which is a dielectric liquid characterized by a high value 

of electric permittivity. We have also plotted the basic electric gravity for different liquids in a 
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given system in Figure A.3 (b). One sees that the basic electric gravity curve is more important in 

Novec 7200. 

The physical phenomena in the experimental cells are described in terms of the viscous diffusion 

time scale 𝜏𝜈 , the thermal diffusion timescale 𝜏𝜅  and the turnover time scale 𝜏𝑐 = 𝜏𝐷𝐸𝑃 = √
𝜏𝜈𝜏𝜅

𝐿𝑐
. 

The latter one is the necessary time for a fluid particle to complete a round trip in the convection 

roll over the gap. It characterizes the growth of the vorticity generated by the electric buoyancy. 

For the working fluid Novec 7200, the values of these characteristic timescales are presented in 

Table A. 2. This table also contains some dielectric liquids.  

Table A. 2: Values of the characteristic timescales for a system of thickness 𝑑 = 5 𝑚𝑚 under 

microgravity conditions. 

Working fluids 𝜏𝑒 [s] 𝜏𝜈  [s] 𝜏𝜅  [s] 𝜏𝑐  [s] 

Novec 7200 2.6 58.14 641.03 4.18 

AK5 (25°C) 23.9 5.00 323.00 0.87 

AK0.65 (25°C) 19.3 38.46 294.46 2.31 

1-Nonanol (20°C)  1.76 314.86 0.51 

 

In the experiment under consideration, the turnover time 𝜏𝑐  is way smaller than the viscous and 

thermal diffusive times (𝜏𝜈 , 𝜏𝜅). Since the duration of the microgravity phase is about 22 s, one 

sees that this time is 5 times 𝜏𝑐  for the Novec 7200. The period of the applied alternating electric 

𝑇 = 5 ⋅ 10−3 s. This period 𝑇 is smaller than all characteristic times, which is in harmony with the 

assumption that the alternating electric potential can be replaced by its effective stationary part.  

A.2. Background Oriented Schlieren 

The Background Oriented Schlieren technique (BOS) is used for the visualization of the flow 

inside the gap. The BOS technique is a non-intrusive method of fluid flows visualization, based on 

the capture of the refractive index variation due to the inhomogeneity in the fluid layer. It remains 
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one of the synthetic Schlieren techniques that also provides a quantitative measurement of the 

density changes in fluid flows by using a simple optical system [90]. As an expansion of the basic 

Schlieren technique, experimental studies have shown that the BOS technique has many 

applications. Some of them are the study of the sound wave of a gunshot, the shed vortex, the 

supersonic jet, the mixing turbulent jet, the measurement of the pressure field of a laser‑induced 

underwater shock wave, or the axisymmetric supersonic flow over a cone-cylinder model [90–93]. 

Therefore, this technique represents an interesting measurement method for engineering in the 

Aeronautic and Aerospace industries. 

The BOS system consists of a camera, a background pattern plate with random-dot patterns, a 

light source, and a computer for data processing. The homogeneous light source and the pattern 

plate are both mounted to the rectangular cavity for the vertical orientation and below for the 

horizontal configuration. The density gradient is created by the imposed temperature difference 

and the perturbation temperatures induced in the flow system when the base state is destabilized 

by the electric field. The experimental setup of the BOS technique is presented in Figure A.4. 

 

Figure A.4: Flow visualization experimental setup – Part of instruments of the BOS technique.   

The basic principle of the BOS technique consists of placing an illuminated dot pattern in the 

background of the rectangular cavity and photographing the dot patterns through the fluid layer  

with a camera placed in front. Without the density gradient, the random structures on the 
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background dot patterns are undisturbed; while when the fluid layer is inhomogeneous, the light 

rays that the CCD camera perceives are deflected. We then take a reference image that corresponds 

to the one with no applied temperature difference and no applied electric potential. Indeed, the 

comparison between the two pictures of the background pattern gives the phase difference which 

can be translated into an apparent displacement field (shift) [94]. The shifting field (displacement 

field) is determined by the cross-correlation method used in PIV. The divergence of this 

displacement field is directly related to the density gradient. The result of the BOS algorithm 

represents the displacement field measured in 𝑚𝑚. An illustration of the BOS technique is 

presented in Figure A.5. 

 

 

Figure A.5: Schematic representation of the principle of the BOS technique [91]. The zone of 

density gradient of width 𝑐 represents the gap of the rectangular cavity.  

A.3. Parabolic Flight Campaign (PFC)  

Parabolic flight is one of the methods offering access to a microgravity environment. The fi rst 

objectives of the parabolic flight campaigns were dedicated to the training of astronauts. The 

extension of parabolic flights to scientific studies allowed researchers to experience microgravity 

effects on different physical phenomena. For example, it allows the investigation of the fluid flows 

under three different gravity phases: 1𝑔, 0𝑔, and 1.8𝑔. The realization and the characteristics of 

the parabolic maneuvers are presented in Figure A.6. 

Before the beginning of a parabola, the plane has a steady horizontal flight at an altitude of 

6000 m. In this phase, we are submitted to normal gravity (1𝑔) and the speed of the plane is about 
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820 km/h. Then, the pilots pitch the airplane up until reaching the injection at about 50° nose-up 

angle with the horizontal. Due to the centrifugal force arising from the airplane's upward 

inclination, a strong apparent gravity or hypergravity (1.8𝑔) is established during 20 s.  

 

Figure A.6: The airbus A310 Zero-G and the sketch of the five phases for the realization of one 

parabola. Courtesy of NOVESPACE.    

At the end of this hypergravity phase, the regimes of the aircraft engines are significantly reduced, 

so that to compensate for the resistance of air. In that case, the aircraft is only subject to its weight 

and that of the passengers and experiences. After 5 seconds of the transitory phase, the plane enters 

into the microgravity phase with a parabolic trajectory for 22 seconds. This corresponds to 11 

seconds of upwards free fall and 11 seconds of downward free fall. The parabola injection altitude 

is 7600 m and the accuracy of the weightlessness is about ±0.02𝑔. This precision on the 

microgravity quality is sufficient to assume that the fluid flow experiences only electric gravity 

when the potential is applied. At the end of this phase, a second hypergravity phase is encountered 

for 20 seconds before recovering the initial horizontal steady flight. Figure A.7 shows the time 

variation of the different components of acceleration during a whole parabola. Since the parabolic 

flight campaign is composed of 30 parabolas of experiments, the cumulative duration of 

weightlessness is about 11 minutes.   
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Figure A.7: The evolution of the normalized acceleration with the time during the parabolic 

maneuver. All terms of acceleration are normalized by the value of the Earth’s gravity.    

A.4. Experimental results 

Under microgravity conditions, electric gravity is the sole source that induces thermo -

convective motions in the dielectric fluid layer. The base state is purely conductive. As the 

microgravity phase is preceded by the 1.8 g phase, the rectangular cavity, in the horizontal 

configuration, is heated from above to ensure a stable stratification of the fluid layer during this 

phase. During this parabolic flight campaign, we investigated the thermoelectric convection under 

microgravity conditions for horizontal and vertical rectangular cavities filled with the Novec 7200 

and Nonanol. We faced a leaking problem for the experiment performed with Nonanol, therefore 

no results will be presented here for this liquid.  

A.4.1. Horizontal Orientation  

We have performed experiments by fixing the values of the temperature difference Δ𝑇 between 

the upper and lower plates,  and varying the value of the applied electric potential 𝑉𝑝𝑒𝑎𝑘. The system 

has an accelerometer that detects the microgravity phase. The control program can activate  the 

heating system to set Δ𝑇, and the electric potential 𝑉𝑝𝑒𝑎𝑘 is activated at the beginning of each 

microgravity phase. The voltage remains activated until the following hypergravity phase. In this 

report, we will present the data for Δ𝑇 = 7 𝐾 and 10 𝐾. The electric potential 𝑉𝑝𝑒𝑎𝑘 is increased 
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until 5 𝑘𝑉  for each fixed value of the temperature difference 𝛥𝑇.  Figure A.8 shows the divergence 

of the displacement field (𝐷𝑖𝑣(�⃗�, 𝑦)) for Δ𝑇 = 7 𝐾 and different values of  𝑉𝑝𝑒𝑎𝑘. Pictures are 

taken at the end of the microgravity phase (0 g) so that the patterns have time to develop in the 

flow. The first image corresponds to the case without electric potential and represents a reference 

image. For all values of the applied electric potential below 2 𝑘𝑉, no displacement field has been 

observed, this means that there is no thermo-convection. When we increase further the electric 

tension, we observe that some structures appear in the cavity for 𝑉𝑝𝑒𝑎𝑘 = 2 𝑘𝑉 . The corresponding 

electric Rayleigh number value for temperature difference Δ𝑇 = 7𝐾 is 𝐿 = 4010. Therefore, we 

are above the critical value predicted by linear stability analysis as shown in Figure A.3 and 

numerical simulations (𝐿𝑐 ≈ 2129). These patterns are inclined in the horizontal plane and are 

similar to those obtained in numerical simulations of thermoelectric convection in a Silicone oil 

(𝑃𝑟 = 65) under microgravity conditions for 𝐿𝑐 < 𝐿 ≤  5000. The correspondence between the 

electric Rayleigh number 𝐿 and the electric voltage is given in Table A.3. Using the intrinsic 

potential 𝑉𝑖, we defined a dimensionless voltage 𝑉𝐸 = 𝑉𝑝𝑒𝑎𝑘/√2𝑉𝑖; and the electric Rayleigh 

number is computed by the following formula: 𝐿 = [𝛾𝑒
2/ 𝑙𝑛 (

2−𝛾𝑒

2+𝛾𝑒
)]
2

VE
2.       

Table A.3: Control parameters for Novec 7200 

Δ𝑇 (K) 7 10 15 

𝛾𝑒 0.027 0.039 0.059 

Vpeak (kV) 𝑉𝐸 𝐿 𝐿 𝐿 

0 0 0 0 0 

0.5 580 250 511 1150 

1 1160 1000 2040 4600 

1.5 1740 2250 4600 1.03 ⋅ 104 

2 2320 4010 8170 1.84 ⋅ 104 

3 3480 9010 1.84 ⋅ 104 4.14 ⋅ 104 

5 5800 2.50 ⋅ 104 5.11 ⋅ 104 1.15 ⋅ 105 

10 1.16 ⋅ 105 1.00 ⋅ 105 2.04 ⋅ 105 4.60 ⋅ 105 
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As the potential 𝑉𝑝𝑒𝑎𝑘 increases, another type of pattern more disordered grows. For 𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉  

and 𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉, the flow patterns generated by the electric gravity are more complex. 

 

𝑉𝑝𝑒𝑎𝑘 = 0 𝑘𝑉 

 

𝑉𝑝𝑒𝑎𝑘 = 0.5 𝑘𝑉  

 

𝑉𝑝𝑒𝑎𝑘 = 1 𝑘𝑉  

 

𝑉𝑝𝑒𝑎𝑘 = 2 𝑘𝑉 

 

𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉  

 

𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉  

 

Figure A.8: Patterns of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) for the six first 

parabolas corresponding to Δ𝑇 ≈ 7 𝐾 and for different values of the 𝑉𝑝𝑒𝑎𝑘. 

For a better understanding of the fluid motions during the whole microgravity phase, we have 

plotted the space-time diagrams of the divergence of the displacement field at the fixed position 

𝑥 = 20 𝑚𝑚. Results are presented in Figure A.9. The plot shows that for Δ𝑇 = 7 𝐾, the 

perturbation induced by the application of the electric potential needs a certain time to grow and 

gives rise to some patterns. 

The delay of occurrence and the nature of the observed structures depend on the value of 𝑉𝑝𝑒𝑎𝑘. 

The higher the potential 𝑉𝑝𝑒𝑎𝑘 is, the sooner the structures appear. One sees that for Δ𝑇 = 7 𝐾 and 

𝑉𝑝𝑒𝑎𝑘 = 2 𝑘𝑉, the flow is induced in the last 5 seconds before the end of the microgravity phase. 



165 

 

For the case where 𝑉𝑝𝑒𝑎𝑘 = 3 and 5 𝑘𝑉 , movements are visible in the first half part of the 

microgravity phase. Especially for  𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉 they are observed only 5 seconds after the 

beginning of the weightlessness phase. This time approximately coincides with the characteristic 

turnover time 𝜏𝑐  estimated above at 4.18 s for the Novec 7200 (Table A. 2). 

𝑉𝑝𝑒𝑎𝑘 = 2 𝑘𝑉  

 

𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉  

 

𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉  

 

Figure A.9: Space-time diagram of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) during 

a weightlessness phase at 𝑥 = 20 𝑚𝑚. Snapshots correspond to a temperature difference Δ𝑇 ≈

7 𝐾 and for different values of the applied electric potential 𝑉𝑝𝑒𝑎𝑘. 
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Figure A.10 displays the flow patterns obtained for Δ𝑇 = 10 𝐾 and different values of the 

electric potential. As in Figure A.8, the snapshots are taken at the end of the microgravity phase. 

These patterns are seen as signatures of thermoelectric convection in microgravity. In this case, the 

effect of the dielectrophoretic force on the fluid layer is visible at 𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉; this value is larger 

than that obtained for Δ𝑇 = 7 𝐾.  

     

𝑉𝑝𝑒𝑎𝑘 = 0.5 𝑘𝑉 

 

𝑉𝑝𝑒𝑎𝑘 = 1 𝑘𝑉

 

𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉

 

𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉

 

Figure A.10: Patterns of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) for the six first 

parabolas corresponding to a temperature difference Δ𝑇 ≈ 10 𝐾 and for different values of the 

applied electric potential 𝑉𝑝𝑒𝑎𝑘. 
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A qualitative description of patterns can be done with the space-time plots of the displacement 

patterns in Figure A.11. We can see from the plots that the dynamics of the formation of the 

instability patterns during the microgravity phase change with the applied potential.   

 

𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉  

 

𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉  

 

Figure A.11: Space-time diagram of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) 

during a weightlessness phase at 𝑥 = 20 𝑚𝑚. Snapshots correspond to Δ𝑇 ≈ 10 𝐾 and for two 

values of 𝑉𝑝𝑒𝑎𝑘. 

On the space-time diagrams of the displacement vector in Figure A.9 and Figure A.11, we 

observe that the flow disturbances begin to grow sometime after the onset of the microgravity 

phase. To compute the growth rate of the thermoelectric instability, Meyer et al. [24] firstly 
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proposed to integrate the divergence of the displacement vector (𝐷 = 𝐷𝑖𝑣(�⃗�,𝑦)) over 𝑦 at the mid-

gap (𝑥 = 20 𝑚𝑚): 

𝐷 =
1

𝐿𝑦
∫ |𝐷(𝑦, 𝑡)| 𝑑𝑦. (A.1) 

After choosing the part of the curve 𝐷(𝑡) that fit an exponential evolution, we modeled the 

integrated value of the displacement vector as �̅�(𝑡) = 𝐷 ⋅ 𝐸𝑥𝑝(𝜎𝑡) where 𝜎 is the growth rate of 

perturbations and 𝐷 the amplitude of 𝐷. 𝜎 corresponds then to the slope of the linear regression: 

𝑙𝑛 (
�̅�

�̂�
) = 𝜎𝑡. (A.2) 

The time variation of the quantity 𝐷 is plotted in Figure A.12 for a fixed value of Δ𝑇 and different 

values of 𝑉𝑝𝑒𝑎𝑘 above the threshold during the microgravity phase. The graphs show that the delay 

for perturbations to start growing decreases as the applied electric potential increases. For the 

extraction of 𝜎, we have plotted in Figure A.13, the time evolution of 𝑙𝑛(𝐷) corresponding to the 

quantities presented in Figure A.12. The instant 𝑡 = 0 𝑠 in the figures corresponds to the beginning 

of the microgravity phase. The extracted values of 𝜎 for two experiments with the same control 

parameters are tabulated in Table A.4. We can observe that 𝜎 increases with increasing the electric 

potential for experiment 2. This behavior was expected; while for experiment 1, a decrease in the 

growth rate is observed for 𝑉𝑝𝑒𝑎𝑘 = 3 𝐾. This effect could be due to an artifact originating from 

the measurement technique.  

Table A.4: Values of the growth rate for different values of the applied electric potential for two 

experiments. The temperature difference is fixed at Δ𝑇 = 7 𝐾 for both experiments. 

𝑉𝑝 (kV) 2 3 5 

L 4010 9010 2.5 ⋅ 104 

𝜎1 (first experiment) [𝑠−1 ] 0.70 0.59 1.1 

𝜎2 (second experiment) [𝑠−1  ] 0.41 0.49 0.53 

𝜎 = (𝜎1 + 𝜎2)/2 [𝑠−1 ] 0.56 0.54 0.81 
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(a)  (a) 

  

(b)  (b) 

 

(c) (c) 

Figure A.12: Time evolution of 𝐷 during a 

weightlessness phase at the mid-gap (𝑥 =

20 𝑚𝑚) for Δ𝑇 = 7𝐾 and (a) 𝑉𝑝𝑒𝑎𝑘 = 2 𝑘𝑉, 

(b) 𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉, and (c) 𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉. 

Figure A.13: Time evolution 𝑙𝑛(𝐷) for Δ𝑇 =

7𝐾 and (a) 𝑉𝑝𝑒𝑎𝑘 = 2 𝑘𝑉 , (b) 𝑉𝑝𝑒𝑎𝑘 = 3 𝑘𝑉, 

and (c) 𝑉𝑝𝑒𝑎𝑘 = 5 𝑘𝑉. 
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A.4.2. Vertical Orientation  

During our PFC campaign, the vertical rectangular cavity is filled with the dielectric liquid 

Novec 7200. For small values of 𝐿 and 𝑅𝑎 ≥ 𝑅𝑎𝑐, the critical mode is hydrodynamic. During our 

experiment, the value of the Rayleigh number corresponding to a temperature difference Δ𝑇 = 7𝐾 

is 𝑅𝑎 = 6.55 ⋅ 106 and 𝑅𝑎 = 9.36 ⋅ 106 for Δ𝑇 = 10𝐾 during the 1g phase of the parabola 

maneuver. So both values of 𝑅𝑎 are above the critical value 𝑅𝑎𝑐 = 7.9 ⋅ 10
4 (without electric 

potential) marking the onset of hydrodynamic instability. Therefore, we would observe transverse 

rolls during the 1g phase which would be reinforced in the 1.8g; phase preceding the weightlessness 

phase. Figure A.14 shows the instantaneous flow structures for an applied temperature gradient 

Δ𝑇 ≈ 7 𝐾 and 𝑉𝑝𝑒𝑎𝑘 ≈ 0 𝑘𝑉. The snapshot is taken at the beginning of the microgravity phase. We 

can observe that the patterns of the divergence of the displacement are bent along the 𝑥-direction.   

 

Figure A.14: Patterns of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) for the first 

parabola without the electric potential (𝑉𝑝𝑒𝑎𝑘 = 0); The temperature difference is Δ𝑇 ≈ 7 𝐾. 

In Figure A.15, we have presented the space-time diagram of the divergence of the 

displacement vector during the three phases of the parabola to have better insight into the behavior 

of the initial base flow. One observes that the transverse instability arising from the hydrodynamic 

effects during the 1g phase is reinforced during the hypergravity phase. The passage from the 1.8g 

to 0g phase is visible in the space-time diagram with a small deformation of the patterns. Despite 

this, the flow patterns persist during the first 18 s of the microgravity phase. At the end of 
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weightlessness, these structures are dissipated as shown in the space-time diagram and the passage 

to the hyper-gravity phase destroys completely the flow patterns. In the case of the vertical 

orientation, the obtained results were perturbed because of the alignment of the vertical cell with 

the plane direction. In this case, as the camera is placed perpendicularly to this direction, the flow 

is strongly affected by the hypergravity phases at the entrance and the exit of the weightlessness 

phase. 

 

 

 

Figure A.15: Space-time diagram of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) 

during a whole parabola at 𝑥 = 20 𝑚𝑚. Snapshots correspond to a temperature difference Δ𝑇 ≈

7 𝐾 and no electric potential 𝑉𝑝𝑒𝑎𝑘 = 0𝑘𝑉. 

In the absence of electric potential, the effect of microgravity (0g) dissipates the initial 

transverse structures; these patterns persist until the end of the microgravity phase. When the 

electric potential is applied, no significant visible effect of the dielectrophoretic on the initial 

transverse structures. This could be because the basic state of the system corresponds to an 

established flow regime during the two phases of 1g and 1.8g. Therefore, the duration of 

microgravity (22s) is not sufficient enough to destabilize this initial regime. However, we have 

observed the hydrodynamic modes and their persistence in the microgravity phase. 
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For a temperature difference 𝛥𝑇 = 10𝐾, the snapshots of the instantaneous flow structures at 

the end of the microgravity phase are presented in  Figure A.16 for two values of the applied electric 

potential. The structures observed are inclined patterns. This deformation could be due to the 

inclination of the aircraft during the parabolic flight since the vertical cavity is aligned with the 

plane. The flow in the fluid is also affected by the acceleration component 𝑔𝑥  which is not zero at 

the beginning and at the end of the microgravity phase as shown in Figure A.7. 

 

 

𝑉𝑝𝑒𝑎𝑘 = 3𝑘𝑉 𝑉𝑝𝑒𝑎𝑘 = 5𝑘𝑉 

Figure A.16: Patterns of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�, 𝑦)) for Δ𝑇 ≈ 10 𝐾 

and different values of the electric potential 𝑉𝑝𝑒𝑎𝑘. 

 

Figure A.17 shows the space-time diagram of the flow during a microgravity phase for Δ𝑇 ≈

10 𝐾 and two values of the electric potential 𝑉𝑝𝑒𝑎𝑘 = 3𝑘𝑉, and 𝑉𝑝𝑒𝑎𝑘 = 5𝑘𝑉. We can see a change 

in the flow patterns a few times after the beginning of the microgravity phase.  
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a- 𝑉𝑝𝑒𝑎𝑘 = 3𝑘𝑉, 

b- 𝑉𝑝𝑒𝑎𝑘 = 5𝑘𝑉 

Figure A.17: Time evolution of the divergence of the displacement vector (𝐷𝑖𝑣(�⃗�,𝑦)) at the 

mid-gap during a weightlessness phase. Snapshots correspond to Δ𝑇 ≈ 10 𝐾 and 𝑉𝑝𝑒𝑎𝑘 = 3𝑘𝑉 

(a), and 𝑉𝑝𝑒𝑎𝑘 = 5𝑘𝑉 (b). 

 

  



174 

 

A.5. Partial Conclusion 

During the parabolic flight campaign of September 2018, we investigated the effect of artificial 

electric gravity on a dielectric liquid layer in rectangular cavities in horizontal and vertical 

orientations. The evolution of the fluid is measured using the Background Orientation Schlieren 

technique.  

Our investigations first concerned the horizontal orientation of the rectangular cell and heated 

from the top to ensure that the base state is stable and so no convective motions occur before the 

microgravity phase. For two fixed values of the temperature gradient, the value of the electric 

Rayleigh number is increased. The experiments performed during this campaign elucidated that 

thermo-convective motions are induced in the fluid during the microgravity phase. These motions 

consist of thermoelectric convective structures induced by dielectrophoretic buoyancy. For small 

temperature differences, flow patterns appear at a critical value of the electric potential which 

corresponds to that predicted by the linear stability. We also determined the growth rate of 

perturbations and showed that its value increases with the applied electric potential. Due to the 

limit of the weightlessness duration (22 s), we could not observe the establishment of a saturated 

state. 

Concerning the vertical orientation, we investigated the fluid flow during the 1g, 1.8g, and 0g 

phases. We did not see any significant effect of the electric potential on the system due to the initial 

flow well established during the hypergravity phase. In addition, the system is affected by the 

horizontal component of the acceleration during the microgravity phase. A direct comparison 

between the BOS images and the original images showed that the BOS technique is not the best 

measurement technique for our experiment.  

The experimental results obtained in the horizontal cavity validated the results from linear 

stability analysis and DNS. For future parabolic campaigns and DNS, it should be interesting to 

investigate the effects of the horizontal acceleration on the fluid, in particular, at the beginning and 

the end of the microgravity phase. The case of the vertical configuration may be studied in more 

detail to investigate the evanescence of the convective flow patterns in microgravity; the effect of 

the dielectrophoretic buoyancy in such a configuration may be investigated in the laboratory of 

LAS at BTU Cottbus. 
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Appendix B: Critical parameters of thermoelectric Rayleigh-

Bénard convection 

 

Values of critical parameters are given in the following tables for different values of 𝑃𝑟.  

Table B.1: Critical parameters of electric modes for 𝑃𝑟 = 1 and different values of 𝑅𝑎. 

𝑹𝒂 𝑮𝒓 𝒌𝒚𝒄  𝒌𝒙𝒄  𝑳𝒄 𝜸𝒆 𝒌𝒄 

1 000 1 000 0.258 3.150 883.518 2.5E-03 3.161 

500 500 0.943 3.050 1 506.573 1.3E-03 3.193 

10 10 1.050 3.050 2 115.838 1.5E-05 3.226 

5 5 0.025 3.225 2 122.350 1.3E-05 3.225 

0 0 2.074 2.456 2128.694 2.5E-05 3.228 

-5 -5 0.348 3.200 2 134.796 -1.3E-05 3.219 

-10 -10 2.100 2.450 2 140.696 2.5E-05 3.227 

-100 -100 1.702 2.748 2 253.006 -2.5E-04 3.233 

-500 -500 0.251 3.250 2 749.868 -1.3E-03 3.260 

-1 000 -1000 1.642 2.856 3 370.074 -2.5E-03 3.294 

-1 500 -1500 2.206 2.494 3 989.296 -3.8E-03 3.330 

-2 000 -2000 1.044 3.200 4 607.532 -5.0E-03 3.366 

-2 500 -2500 0.125 3.400 5 224.757 -6.3E-03 3.402 

- 3 000 -3000 1.850 2.900 5 840.967 -7.5E-03 3.440 

-3 500 -3500 2.244 2.656 6 456.150 -8.8E-03 3.477 

-4 000 -4000 1.752 3.048 7 070.302 -1.0E-02 3.516 

-4 500 -4500 0.855 3.450 7 683.412 1.1E-02 3.554 

-5 000 -5000 1.298 3.350 8 295.480 -1.3E-02 3.593 

-5 500 -5500 2.244 2.856 8 906.503 -1.4E-02 3.632 

-6000 -6000 1.800 3.200 9516.479 -1.5E-02 3.672 

-6 500 -6500 0.900 3.600 10 125.410 -1.6E-02 3.711 

-7 000 -7000 0 3.750 10 733.300 -1.8E-01 3.750 

-7 500 -7500 0.544 3.750 11 340.150 -1.9E-02 3.789 

-8 000 -8000 2.244 3.106 11 945.940 -2.0E-02 3.832 

-8 500 -8500 0.952 3.748 12 550.750 -2.1E-02 3.867 

- 9 000 -9000 1.258 3.684 13 154.520 2.3E-02 3.893 

-9 500 -9500 0.594 3.900 13 757.290 -2.4E-02 3.945 

-10 000 -10000 1.906 3.500 14 359.050 -2.5E-02 3.985 

-11 000 -11000 0.692 4.000 15 559.630 -2.8E-02 4.059 

-12 000 -12000 2.202 3.498 16 756.340 -3.0E-02 4.134 
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Table B.2: Critical parameters of electric modes for 𝑃𝑟 = 10 and different values of 𝑅𝑎. 

𝑹𝒂 𝑮𝒓 𝒌𝒚𝒄  𝒌𝒙𝒄  𝑳𝒄 𝜸𝒆 𝒌𝒄 

1000 100 0.992 3.000 883.505 2.5E-04 3.160 

500 50 2.070 2.430 1 506.576 1.3E-04 3.192 

10 1 0.400 3.200 2 116.260 2.5E-06 3.225 

5 0.5 1.050 3.050 2 122.477 1.3E-06 3.226 

0 0 0.694 3.151 2 128.693 2.5E-12 3.227 

-5 -0.5 0.700 3.149 2 134.909 -1.1E-06 3.226 

-10 -1 0.700 3.150 2 141.125 -2.5E-06 3.227 

-100 -10 1.700 2.750 2 253.007 -2.5E-05 3.233 

-500 -50 1.150 3.050 2 749.869 -1.3E-04 3.260 

-1000 -100 1.642 2.856 3 370.078 -2.5E-04 3.294 

-1500 -150 2.205 2.495 3 989.310 -3.8E-04 3.330 

-2000 -200 1.045 3.200 4 607.553 -5.0E-04 3.366 

-2500 -250 0.125 3.400 5 224.799 -6.3E-04 3.402 

-3000 -300 1.850 2.900 5 841.035 -7.5E-04 3.440 

-3500 -350 2.244 2.656 6 456.655 -7.5E-04 3.477 

-4000 -400 1.748 3.050 7 070.454 -1.0E-03 3.516 

-4500 -450 0.169 3.550 7 683.628 -1.1E-03 3.554 

-5000 -500 0.552 3.550 8 295.769 -1.3E-03 3.593 

-5500 -550 2.224 2.856 8 906.894 -1.4E-03 3.620 

-6000 -600 1.801 3.198 9 516.988 -1.5E-03 3.670 

-6500 -650 0.900 3.600 10 126.060 -1.6E-03 3.711 

-7000 -700 0 3.750 10 734.110 -1.8E-03 3.750 

-7500 -750 1.452 3.500 11 341.160 -1.9E-03 3.789 

-8000 -800 1.550 3.500 11 947.210 -2.0E-03 3.828 

-8500 -850 2.494 2.957 12 552.260 2.1E-03 3.868 

-9000 -900 1.251 3.700 13 156.330 -2.3E-03 3.906 

-9500 -950 2.000 3.400 13 759.430 -2.4E-03 3.947 

-10000 -1000 1.902 3.500 14 361.580 -2.5E-03 3.983 

-11000 -1100 0.258 4.050 15 563.060 -2.8E-03 4.058 

-12000 -1200 1.502 3.850 16 760.900 -3.0E-03 4.133 
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Table B.3: Critical parameters of electric modes for 𝑃𝑟 = 60 and different values of 𝑅𝑎. 

𝑅𝑎 𝐺𝑟 𝑘𝑦𝑐  𝑘𝑥𝑐  𝐿𝑐 𝛾𝑒 𝑘𝑐 

1000 16.67 0.258 3.150 883.514 4.2E-05 3.161 

500 8.33 0.944 3.050 1 506.573 2.1E-05 3.193 

10 0.17 0.406 3.194 2 116.236 4.2E-07 3.219 

5 0.08 0.900 3.100 2 122.455 2.1E-07 3.228 

-5 -0.08 1.302 2.952 2 134.896 -2.1E-07 3.226 

-10 -0.17 2.200 2.350 2 141.046 -4.2E-06 3.219 

-100 -1.67 1.700 2.750 2 252.972 -4.2E-06 3.234 

-500 -8.33 0.252 3.250 2 749.868 -2.1E-05 3.260 

-1000 -16.67 1.642 2.856 3 370.082 -4.2E-05 3.295 

-1500 -25.00 2.206 2.494 3 989.309 -6.3E-05 3.330 

-2000 -33.33 1.043 3.200 4 607.554 -8.3E-05 3.366 

-2500 -41.67 0.125 3.400 5 224.799 -1.0E-04 3.402 

-3000 -50.00 1.852 2.898 5 841.032 -1.3E-04 3.439 

-3500 -58.33 2.244 2.657 6 456.258 -1.5E-04 3.477 

-4000 -66.67 0.275 3.500 7 070.414 -1.7E-04 3.511 

-4500 -75.00 0.175 3.550 7 683.629 -1.9E-04 3.554 

-5000 -83.33 0.552 3.550 8 295.777 -2.1E-04 3.593 

-5500 -91.67 2.244 2.856 8 906.898 -2.3E-04 3.632 

-6000 -100.00 1.802 3.198 9 516.993 -2.5E-04 3.671 

-6500 -108.33 0.898 3.600 10 126.050 -2.7E-04 3.710 

-7000 -116.67 0 3.750 10 734.120 -2.9E-04 3.750 

-7500 -125.00 0.544 3.750 11 341.160 -3.1E-04 3.789 

-8000 -133.33 1.552 3.500 11 947.190 -3.3E-04 3.828 

-8500 -141.67 2.500 2.950 12 552.270 -3.5E-04 3.867 

-9000 -150.00 1.252 3.700 13 156.350 -3.8E-04 3.906 

-9500 -158.33 2.000 3.400 13 759.450 -4.0E-04 3.945 

-10000 -166.67 1.902 3.500 14 361.610 -4.2E-04 3.983 

-11000 -183.33 0.256 4.050 15 563.100 -4.6E-04 4.058 

-12000 -200.00 1.500 3.850 16 760.950 -5.0E-04 4.132 
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Table B.4: Critical parameters of electric modes for 𝑃𝑟 = 100 and different values of 𝑅𝑎. 

𝑅𝑎 𝐺𝑟 𝑘𝑦𝑐  𝑘𝑥𝑐  𝐿𝑐 𝛾𝑒 𝑘𝑐 

1000 10 0.550 3.100 883.115 2.5E-05 3.148 

500 5 1.700 2.700 1 506.535 1.3E-05 3.191 

10 0.1 0.405 3.202 2 116.250 2.5E-07 3.227 

5 0.05 0.900 3.100 2 122.407 1.3E-07 3.228 

-5 -0.05 2.125 2.425 2 134.847 -1.3E-07 3.224 

-10 -0.1 0.700 3.150 2 141.124 -2.5E-07 3.227 

-100 -1 1.200 3.000 2 252.929 -2.5E-06 3.231 

-500 -5 0.250 3.250 2 749.857 -1.3E-05 3.259 

-1000 -10 1.248 3.048 3 370.047 -2.5E-05 3.294 

-1500 -15 0.444 2.300 3 989.282 -3.8E-05 2.342 

-2000 -20 1.043 3.199 4 607.547 -5.0E-05 3.365 

-2500 -25 0.125 3.400 5 224.801 -6.3E-05 3.402 

-3000 -30 1.850 2.900 5 841.036 -7.5E-05 3.440 

-3500 -35 1.750 3.000 6 456.202 -8.8E-05 3.473 

-4000 -40 1.748 3.050 7 070.455 -1.0E-04 3.516 

-4500 -45 0.169 3.550 7 683.629 -1.1E-04 3.554 

-5000 -50 0.551 3.550 8295.801 -1.3E-04 3.593 

-5500 -55 2.244 2.856 8 906.917 -1.4E-04 3.632 

-6000 -60 1.800 3.200 9 516.995 -1.5E-04 3.672 

-6500 -65 0.898 3.600 10 126.070 -1.6E-04 3.710 

-7000 -70 0 3.750 10 734.120 -1.8E-04 3.750 

-7500 -75 1.452 3.500 11 341.170 -1.9E-04 3.789 

-8000 -80 1.552 3.500 11 947.220 -2.0E-04 3.828 

-8500 -85 2.494 2.956 12 552.270 -2.1E-04 3.868 

-9000 -90 1.250 3.700 13 156.340 -2.3E-04 3.906 

-9500 -95 2.000 3.400 13 759.450 -2.4E-04 3.945 

-10000 -100 1.902 3.500 14 361.600 -2.5E-04 3.983 

-11000 -110 0.258 4.050 15 563.090 -2.8E-04 4.058 

-12000 -120 0.458 4.101 16 760.960 -3.0E-04 4.126 
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Table B.5: Critical parameters of electric modes for 𝑃𝑟 = 1000 and different values of 𝑅𝑎. 

𝑅𝑎 𝐺𝑟 𝑘𝑦𝑐  𝑘𝑥𝑐  𝐿𝑐 𝛾𝑒 𝑘𝑐 

1000 1 0.800 3.050 883.279 2.5E-06 3.153 

500 0.5 1.808 2.642 1 506.108 1.3E-06 3.201 

10 0.01 0.400 3.200 2 116.073 2.5E-08 3.225 

5 0.005 2.100 2.450 2 122.401 1.3E-08 3.227 

-5 -0.005 2.100 2.450 2 134.790 -1.3E-08 3.227 

-10 -0.01 1.500 2.850 2 141.037 -2.5E-08 3.221 

-100 -0.1 0.407 3.206 2 252.950 -2.5E-07 3.232 

-500 -0.5 0 3.250 2 749.842 -1.3E-06 3.250 

-1000 -1 1.650 2.850 3 369.801 -2.5E-06 3.293 

-1500 -1.5 2.199 2.498 3 989.026 -3.8E-06 3.328 

-2000 -2 2.000 2.700 4 607.299 -5.0E-06 3.360 

-2500 -2.5 2.400 2.400 5 223.821 -6.3E-06 3.394 

-3000 -3 0.500 3.400 5 840.387 -7.5E-06 3.437 

-3500 -3.5 2.475 2.450 6 456.232 -8.8E-06 3.482 

-4000 -4 2.256 2.694 7 070. 295 -1.0E-05 3.514 

-4500 -4.5 0.648 3.500 7 683.464 -1.1E-05 3.559 

-5000 -5 1.301 3.349 8 295.788 -1.3E-05 3.593 

-5500 -5.5 0.952 3.500 8 906.844 -1.4E-05 3.627 

-6000 -6 1.800 3.200 9 516.955 -1.5E-05 3.671 

-6500 -6.5 2.450 2.800 10 126.040 -1.6E-05 3.721 

-7000 -7 0 3.750 10 734.080 -1.8E-05 3.750 

-7500 -7.5 1.452 3.500 11 341.160 -1.9E-05 3.789 

-8000 -8 1.552 3.500 11 947.220 -2.0E-05 3.828 

-8500 -8.5 2.494 2.955 12 552.270 -2.1E-05 3.866 

-9000 -9 1.252 3.700 13 156.340 -2.3E-05 3.906 

-9500 -9.5 1.998 3.402 13 759.450 -2.4E-05 3.945 

-10000 -10 1.898 3.502 14 361.620 -2.5E-05 3.983 

-11000 -11 0.258 4.050 15 563.110 -2.8E-05 4.059 

-12000 -12 1.502 3.850 16 760.980 -3.0E-05 4.133 

 

  



180 

 

Appendix C: Thresholds of hydrodynamic, thermal, and 

electric modes in the vertical rectangular fluid layer 

Some numerical values of critical parameters are presented in this appendix. In the case of the 

flow in a vertical cavity, we showed the existence of three critical modes depending on the values 

of 𝑅𝑎, 𝑃𝑟, and 𝐿.    

Table C.1: Critical values of hydrodynamic and electric modes for 𝑃𝑟 = 1. 

𝑘𝑧𝑐  𝑘𝑦𝑐  𝐺𝑟𝑐𝑟 𝛾𝑒 𝐿 𝜔𝑐 𝑅𝑎𝑐 

2.81 0.00 7940.29 1.99E-02 0 -2.40E-04 7940.29 

2.83 0.00 7558.95 1.89E-02 1332.85 -5.48E-03 7558.95 

2.83 0.00 7520.10 1.88E-02 1461.76 -6.11E-03 7520.10 

2.83 0.00 7481.07 1.87E-02 1590.15 -6.60E-03 7481.07 

2.83 0.00 7441.79 1.86E-02 1718.07 -7.14E-03 7441.79 

2.83 0.00 7402.19 1.85E-02 1845.57 -7.66E-03 7402.19 

2.83 0.00 7362.41 1.84E-02 1972.75 -8.14E-03 7362.41 

2.83 0.00 7322.25 1.83E-02 2099.62 -8.77E-03 7322.25 

2.83 0.00 7318.22 1.83E-02 2112.29 -8.82E-03 7318.22 

2.83 0.00 7314.18 1.83E-02 2124.97 -8.87E-03 7314.18 

The transition from Hydrodynamic mode to Electric mode 

𝑘𝑧𝑐  𝑘𝑦𝑐
 𝐺𝑟 𝛾𝑒 𝐿𝑐 𝜔𝑐 𝑅𝑎𝑐 

0.00 3.23 7307.51 1.83E-02 2128.56 -1.56E-06 7307.51 

0.00 3.23 7279.12 1.82E-02 2128.56 -1.13E-06 7279.12 

0.00 3.23 6962.25 1.74E-02 2128.57 -1.07E-06 6962.25 

0.00 3.23 5838.09 1.46E-02 2124.89 -7.30E-07 5838.09 

0.00 3.19 3682.11 9.21E-03 2125.86 -4.86E-07 3682.11 

0.00 3.29 1784.42 4.46E-03 2126.59 -2.13E-07 1784.42 

0.00 3.23 774.76 1.94E-03 2128.65 9.27E-07 774.76 

0.67 3.18 376.23 9.41E-04 2133.71 -5.45E-05 376.23 

0.67 3.17 299.62 7.49E-04 2131.89 -3.72E-05 299.62 
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Table C.2: Critical values of thermal and electric modes for 𝑃𝑟 = 20. 

𝑘𝑧𝑐  𝑘𝑦𝑐
 𝐺𝑟𝑐𝑟  𝛾𝑒 𝐿 𝜔𝑐 𝑅𝑎𝑐 

1.67 0.00 2415.74 6.04E-03 0.00 -7.75 48314.78 

1.67 0.00 2403.85 6.01E-03 419.56 -7.70 48076.90 

1.67 0.00 2399.24 6.00E-03 586.27 -7.70 47984.72 

1.67 0.00 2396.95 5.99E-03 669.40 -7.68 47939.02 

1.67 0.00 2392.18 5.98E-03 835.11 -7.66 47843.62 

1.67 0.00 2387.43 5.97E-03 1000.19 -7.65 47748.56 

1.67 0.00 2385.23 5.96E-03 1082.57 -7.65 47704.58 

1.67 0.00 2368.94 5.92E-03 1654.50 -7.59 47378.78 

1.67 0.00 2366.63 5.92E-03 1735.60 -7.58 47332.50 

1.67 0.00 2364.32 5.91E-03 1816.56 -7.57 47286.30 

1.67 0.00 2362.01 5.91E-03 1897.36 -7.56 47240.14 

1.67 0.00 2359.72 5.90E-03 1978.03 -7.55 47194.46 

1.67 0.00 2357.42 5.89E-03 2058.55 -7.55 47148.46 

The transition from oscillatory thermal modes to stationary electric modes 

𝑘𝑧𝑐  𝑘𝑦𝑐 𝐺𝑟 𝛾𝑒 𝐿𝑐 𝜔𝑐 𝑅𝑎𝑐 

0.00 3.24 2343.95 5.86E-03 2128.76 1.22E-08 46878.94 

0.00 3.23 2029.44 5.07E-03 2127.16 2.15E-08 40588.70 

0.00 3.23 1216.23 3.04E-03 2128.12 -5.38E-08 24324.50 

0.00 3.23 603.60 1.51E-03 2128.63 1.72E-07 12072.08 

0.00 3.23 292.43 7.31E-04 2128.71 1.41E-07 5848.57 

0.00 3.25 184.26 4.61E-04 2127.68 1.62E-07 3685.24 

0.00 3.21 126.85 3.17E-04 2128.73 6.40E-08 2536.92 

0.00 3.23 89.31 2.23E-04 2128.68 -3.02E-06 1786.17 

0.00 3.24 61.45 1.54E-04 2128.67 -2.60E-06 1228.99 

0.00 3.19 38.73 9.68E-05 2128.40 2.17E-05 774.67 
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Table C.3: Critical values of thermal and electric modes for 𝑃𝑟 = 100. 

𝑘𝑧𝑐  𝑘𝑦𝑐
 𝐺𝑟𝑐𝑟  𝛾𝑒 𝐿 𝜔𝑐 𝑅𝑎𝑐 

2.42 0.00 745.27 1.86E-03 0.00 3.71 74527.29 

2.43 0.00 734.26 1.84E-03 1281.66 -3.64 73426.08 

2.43 0.00 732.72 1.83E-03 1406.89 -3.64 73271.54 

2.44 0.00 731.16 1.83E-03 1531.56 -3.64 73115.90 

2.44 0.00 729.64 1.82E-03 1655.78 -3.63 72963.59 

2.44 0.00 728.09 1.82E-03 1779.41 -3.63 72808.75 

2.44 0.00 726.54 1.82E-03 1902.52 -3.62 72654.12 

2.44 0.00 725.01 1.81E-03 2025.14 -3.61 72501.17 

The transition from oscillatory thermal modes to stationary electric modes 

𝑘𝑧𝑐  𝑘𝑦𝑐  𝐺𝑟 𝛾𝑒 𝐿𝑐 𝜔𝑐 𝑅𝑎𝑐 

0.00 3.23 717.21 1.79E-03 2128.64 7.34E-08 71721.17 

0.00 3.21 609.58 1.52E-03 2128.71 4.48E-08 60958.14 

0.00 3.23 120.72 3.02E-04 2128.55 -1.74E-08 12071.61 

0.00 3.23 58.48 1.46E-04 2128.34 7.38E-07 5847.56 

0.00 3.25 36.86 9.22E-05 2128.30 6.35E-09 3686.32 

0.00 3.24 25.37 6.34E-05 2128.60 2.18E-08 2536.77 

0.00 3.23 17.86 4.47E-05 2128.63 7.56E-07 1786.13 

0.00 3.21 12.29 3.07E-05 2128.09 5.54E-08 1228.66 

0.00 2.93 7.70 1.92E-05 2114.95 -1.17E-04 769.78 
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Appendix D: Properties of some dielectric liquids used for 

experiments 

  

The properties of some dielectric liquids are presented in this section. Principally the physical 

properties of silicone oils and the Novec. Table D.1 is furnished by the specialized American 

company of silicone oil and lubricant products Clearco Products Inc. The table gives the properties 

of two types of silicone oils based on their viscosity: low viscosity liquids and standard viscosity 

liquids.  

Table D.2 presents the properties of three types of Novec liquid. In both tables, the kinematic 

viscosity is given in terms of centistokes: 1 cSt = 0.01 St. = 10−6 m2 s-1. The dielectric strength 

is also expressed in volt per mil (V/mil). This unit corresponds to the electric field obtained by 

applying a potential of 1V between two infinite parallel planes distanced by 1 mil. Therefore,  

1 𝑉/𝑚𝑖𝑙 = 39.37 ⋅ 10−3 𝑘𝑉/𝑚𝑚 = 1000 𝑉/𝑖𝑛𝑐ℎ, with 1 𝑖𝑛𝑐ℎ = 1000 𝑚𝑖𝑙 = 0.0254 𝑚. The 

Novec fluids are manufactured by the 3M Novec Engineered Fluids. The values are determined at 

25°C.  

Table D.1: Properties of Polydimethylsiloxane Fluids (Clearco Products Inc.). 
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Table D.2: Physical properties of Novec Fluids.  

Dielectric Liquids Novec 7100 Novec 7200 Novec 7500 

Boiling Point (°C) 61 76 128 

Pour Point (°C) -135 -138 -110 

Vapor Pressure (Pa) 26.8 ⋅ 103 15.7 ⋅ 103 2.1 ⋅ 103  

Density (kg/m3) 1510 1420 1610 

Coefficient of Volume Expansion 

(°C-1) 0.0018 0.0016 0.0013 

Kinematic Viscosity (cSt.) 0.38 0.41 0.77 

Specific Heat (J kg-1 °C-1) 1180 1220 1130 

Heat of Vaporization @ B.P. (J/g) 112 119 88.5 

Dielectric Strength (kV, 0.1” gap) ~40 ~40 ~40 

Dielectric Constant (1 KHz) 7.4 7.3 5.8 

Volume Resistivity (Ω cm) 108 108 108 
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Appendix E: Pictures during the parabolic flight campaign 

The following pictures show the experimental apparatus of the parabolic campaign of September 

2018 downloaded inside the Aircraft at NOVESPACE in Bordeaux showing the two experimental 

boxes. The experiment control computer with the LabVIEW program opened. Figure E.2 presents 

the rectangular cavities, the cameras, and the illuminated dot patterns for the flow visualization.    

   

  

 Figure E.1: The experiment inside the aircraft. The picture on the right is the control computer 

with the LabVIEW main interface during a simulation run test inside the Aircraft on the 

ground. 

  

Figure E.2: Presentation of the interior of the experimental rack. 
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Figure E.3: The experiment inside the aircraft during a microgravity phase. Participants of the 

parabolic flight campaign of September 2018. From the left to the right of the up picture in the 

right: M. Meier, I. Mutabazi, E. B. Barry, M. Jongmanns, O. Crumeyrolle. In the same order for 

the picture below in front of the Zero-G aircraft: E. B. Barry, I. Mutabazi, A. Meyer.   

  

Figure E.4: E. B. Barry and the French 

astronaut Thomas Pesquet during the 2018 

PFC.  

Figure E.5: E. B. Barry and the French 

journalist Jamy Gourmaud during the 2018 

PFC. 
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