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Abstract

Computer simulations are an invaluable tool for modeling and investigating real-world phenom-
ena and processes. However, as any model, simulations are affected by uncertainty caused by
imperfect knowledge or natural variability of their parameters, initial conditions, or input values.
This leads to uncertainty in the model response, which needs to be quantified to make subse-
quent conclusions and decisions trustworthy. To alleviate the considerable cost of uncertainty
analyses for expensive computational models, the latter are often replaced by surrogates, i.e.,
by approximations with an explicit functional form that can be created based on a rather small
number of model evaluations, and can be evaluated at low cost.

Some computer models are affected by uncertainty only through their input parameters: for fixed
values of the inputs, they always produce the same response. These models are called deter-
ministic simulators. In contrast, models that feature inherent stochasticity are called stochastic
simulators. The latter generate a different result each time they are run even if their input
parameters are held at fixed values. In other words, they behave like random fields whose index
set is the space of input parameters.

In this thesis, we investigate spectral surrogate models, which are a class of global non-intrusive
methods that expand the computational model onto an orthonormal basis of a suitable function
space. We focus on sparse expansions, i.e., representations that only include a small finite subset
of the basis elements. Sparse representations are typically computed by regression with sparsity-
encouraging constraints, often using ideas originating from the field of compressed sensing.

In particular, for deterministic simulators we explore the popular sparse polynomial chaos ex-
pansions (PCE) method, which utilizes a polynomial basis that is orthonormal with respect to
the distribution of the input variables. We conduct an extensive literature survey as well as
a benchmark of several promising methods on multiple models of varying dimensionality and
complexity. The benchmark results are aggregated and visualized in a novel way to extract
reliable recommendations about which methods should be used in practice.

We also investigate the recently proposed Poincaré chaos expansions, which rely on a generally
non-polynomial basis consisting of eigenfunctions of a specific differential operator connected
to the Poincaré inequality. By construction, this basis is well suited for derivative-based global
sensitivity analysis, which we explore both analytically and numerically.

Furthermore, we propose a new surrogate model for stochastic simulators. Taking the random
function view of a stochastic simulator, we approximate its trajectories by sparse PCE and
perform Karhunen-Loève expansion on them. The latter is a well-known spectral representation
for a random field which separately characterizes its spatial and stochastic variation. The joint
distribution of the random coefficients is inferred using the marginal-copula framework. The
resulting surrogate model is able to approximate marginal distributions, mean, and covariance
function of the stochastic simulator, and can generate new trajectories.
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Zusammenfassung

Computersimulationen sind ein wertvolles Werkzeug für die Modellierung und Erforschung realer
Phänomene und Prozesse. Allerdings sind Simulationen, wie alle Modelle, von Ungewissheit
betroffen, die durch fehlende Informationen oder durch die natürliche Variabilität ihrer Param-
eter, Anfangsbedigungen oder Eingabewerte verursacht wird. Dies führt zu Ungewissheit in der
Modellantwort, welche quantifiziert werden muss, damit anschliessende Schlussfolgerungen und
Entscheidungen verlässlich sind. Um die beträchtlichen Kosten von Ungewissheitsanalysen für
teure Computermodelle zu verringern, werden letztere häufig durch Ersatzmodelle (engl. surro-
gates) angenähert, d.h. durch Funktionen mit expliziter analytischer Form, die mithilfe weniger
Modellauswertungen erstellt und kostengünstig ausgewertet werden können.

Einige Computermodelle sind nur durch ihre Eingabeparameter von Ungewissheit betroffen: für
eine gegebene Kombination von Eingabewerten erzeugen sie immer dieselbe Ausgabe. Solche
Modelle heissen deterministische Simulatoren. Im Gegensatz dazu werden Modelle mit in-
härenter Stochastizität stochastische Simulatoren genannt. Diese erzeugen bei jeder Auswertung
eine andere Ausgabe, selbst wenn die Eingabewerte immer gleich sind. Mit anderen Worten,
sie verhalten sich wie Zufallsfelder (engl. random fields), wobei der Raum der Eingabewerte als
Indexmenge fungiert.

In dieser Arbeit untersuchen wir spektrale Ersatzmodelle, eine Klasse globaler nicht-intrusiver
Methoden, welche das Computermodell mithilfe einer orthonormalen Basis eines geeigneten
Funktionenraums darstellen. Wir konzentrieren uns auf dünnbesetzte (engl. sparse) Darstellun-
gen, d.h. solche, die nur eine geringe endliche Anzahl Basisfunktionen verwenden. Dünnbesetzte
Darstellungen erhält man üblicherweise mithilfe von Regression mit Nebenbedingungen, welche
die Dünnbesetztheit begünstigen, wobei oft Ideen aus dem Gebiet der komprimierten Erfassung
(engl. compressed sensing) verwendet werden.

Für deterministische Simulatoren haben wir uns speziell mit der beliebten Methode der dünnbe-
setzten polynomiellen Chaos-Expansion (PCE) beschäftigt, welche eine polynomielle Basis ver-
wendet, die orthonormal bezüglich der Eingabeverteilung ist. Wir erstellen eine umfassende
Literaturübersicht und führen eine Vergleichsstudie vielversprechender Methoden auf mehreren
Modellen unterschiedlicher Dimension und Komplexität durch. Die Ergebnisse werden auf eine
neue Weise zusammengeführt und visualisiert, um zuverlässige Empfehlungen zur Methodenwahl
in der Praxis zu erhalten.

Wir untersuchen auch die relativ neue Methode der Poincaré-Chaos-Expansion, die eine im
Allgemeinen nicht polynomielle Basis verwendet, welche aus Eigenfunktionen eines Differenzial-
operators mit Verbindungen zur Poincaré-Ungleichung besteht. Diese Basis ist per Definition
gut für die gradientenbasierte globale Sensitivitätsanalyse geeignet, was wir sowohl analytisch
als auch numerisch untersuchen.

Ausserdem entwickeln wir ein neues Ersatzmodell für stochastische Simulatoren. Unter Verwen-
dung der Zufallsfunktionen-Sicht eines stochastischen Simulators nähern wir dessen Trajektorien
mit dünnbesetzten PCE an und berechnen die Karhunen-Loève-Expansion derselben. Letztere
ist eine bekannte spektrale Darstellung für Zufallsfelder, welche die räumliche und stochastische
Variabilität getrennt modelliert. Die multivariate Verteilung der zufälligen Koeffizienten wird
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mithilfe von Marginalverteilungen und Copulas bestimmt. Das resultierende Ersatzmodell kann
Marginalverteilungen sowie Mittelwert- und Kovarianzfunktion des stochastischen Simulators
annähern und neue Trajektorien erzeugen.
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CHAPTER 1

Overview

1.1 Motivation and context

Computer technology has made incredible progress. Just 80 years ago, only a handful people in
the world were concerned with electronic computing machines. The first computers of that time
were big devices filling whole rooms, and to enter a program into such a machine, the operators
had to physically manipulate its wires and switches. One generation ago, when my parents
wrote their dissertations using typewriters, computer technology had already advanced a lot.
Powerful operating systems and programming languages had been developed, the first personal
computers had become available, and around the time I was born, the world wide web started
out as a project of a few especially tech-savvy people. Nowadays, the majority of people in our
society owns at least a smartphone or a personal computer, not speaking of the various other
types of smart devices from watches to cars that are becoming increasingly prevalent. Many
of us use the internet every day, even depend on it to do their work and stay connected with
friends and family, and a large number of companies and government institutions would not be
able to operate anymore without computers. Computers are everywhere.

In addition to the well-known developments that came with computers, such as automation,
big data, and anything related to the internet from Wikipedia to social media, there is another
domain in which computers critically influence our everyday lives. It is perhaps less familiar
to the lay-person, but no less important: namely, the domain of computer simulation. This
broad term describes the replication of real-world processes and phenomena by mathematical
models solved by computer calculations, exploiting the fact that computers can perform billions
of calculation steps and process huge amounts of data per second. To name some prominent
examples, computer simulations play an essential role in weather forecasting, climate science, and
the aerospace industry. Recently, computer simulations of the spreading of infectious diseases
have attracted media attention due to the COVID-19 pandemic.

Yet computer simulations, also called computer models, are used in many more fields and for
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many more purposes. Nowadays, there is hardly a scientific field that does not enrich its theoret-
ical and experimental research with insights and predictions gained from computer models. In
industry, products and processes are optimized using computer simulation. Car manufacturers
optimize the safety and cost of critical components. Insurance companies use computer models
to assess risks and adjust their contract pricing. Even in politics, computer simulations can
be used to aid policy decisions. Much of our modern, comfortable standard of living, coun-
ting on affordable products and services and reliable infrastructure, is facilitated by computer
simulations that have helped explore and optimize the respective system of interest.

In all of the cases described above, computer simulations are crucial because they can give us
information that could not otherwise be obtained: real-world experiments would be unethical,
too expensive or impossible. At the same time, while it would theoretically be possible to
perform the required calculations by hand, this would take many (hundreds of) years.

Of course, to be able to rely on the predictions and responses of a computer simulation, we need
to be able to trust that the values it returns are reasonable. This concerns the mathematical
equations used for the model, the algorithm used to solve them, and the implementation in
computer code: the equations should describe the phenomenon well, the algorithm should be
suitable, and the implementation should be free of bugs.

However, even if the equations, the algorithm, and the implementation are confirmed to be
adequate, there are further sources of inaccuracy or uncertainty that can influence the predictions
of a computer simulation. Every model depends on some parameters and input values that
describe the properties and characteristics of the specific phenomenon of interest: e.g., in a
space flight simulation, such parameters would include the weight, speed, and dimensions of the
spacecraft. In an epidemics simulation, relevant parameters would be the infection and recovery
rates as well as the size of the potentially affected population. However, the natural world is
so complex that we can hardly ever know these parameter values exactly. In other words, the
parameters are affected by uncertainty.

To illustrate this, let us consider an example from structural engineering, namely the compressive
strength of concrete. Concrete is one of the most widely used building materials of our time, and
its strength is a crucial parameter in any simulation of a concrete structure. Perhaps surprisingly
(at least to non-engineers), it turns out that it is virtually impossible to produce two batches
of concrete that have exactly the same strength. Concrete is made of cement, water, and a
granular component called aggregate, and its strength depends on the properties and amounts
of all these ingredients. The same company can produce concrete with the same recipe and still
end up with concrete having a widely varying strength – an uncertainty that is usually dealt
with by using generous safety margins in structural design. Likewise, if the concrete strength
was an input parameter to a computational model, this uncertainty would need to be taken into
account. The uncertainty in the input parameters to a computational model is called parametric
uncertainty.

Does the uncertainty in the input parameters affect the output of the computer model, and if
so, how severely? In what way are our subsequent conclusions and decisions affected by this un-
certainty? Answering these questions is the main focus of the field of uncertainty quantification
(UQ). More precisely, typical questions tackled in UQ include the following:
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• How uncertain is the simulation prediction as a consequence of the uncertainty in the
input? (Uncertainty propagation)
• Which input uncertainties have the largest influence on the output uncertainty, and which
ones are unimportant? (Sensitivity analysis)
• What is the probability that the system attains a state that is not considered safe anymore
(damaged or failed)? (Reliability analysis)
• Which parameters are optimal for a certain objective, if the system is affected by uncer-
tainty? (Robust optimization)
• Which (range of) input parameters makes the model output fit best to given observations?
(Bayesian calibration)
• Which set of parameter combinations provides the most information about the behavior
of the model? (Optimal experimental design)

Clearly, questions from this list arise in almost any research field that uses computational mod-
els. To answer these questions, we need to combine knowledge and ideas from various scientific
areas, which makes UQ an interdisciplinary science at the intersection of fields such as compu-
tational science, numerical and functional analysis, statistics, computer science, and whichever
engineering or applied science field that is interested in answering the above-mentioned ques-
tions.

To understand the behavior of a computational model under uncertainty, a single model run
is not enough – it must be run many times in different configurations to explore its behavior.
The most widely-known uncertainty propagation method, Monte Carlo simulation, does exactly
this: the computer model is run for a large number of different randomly generated parameter
configurations, and the resulting spread of responses is interpreted as the output uncertainty.
This method is universal and can be applied readily for computer simulations that only involve
a few calculations and can be run in a fraction of a second. However, the typical computer
simulation in current applied science and engineering research or in industrial applications is
much more resource-intensive, which often makes the Monte Carlo approach overly expensive
or even infeasible. Such an expensive computer model often involves the simulation of several
components, each of which requires solving complex mathematical equations over a long time
scale or with a fine spatial resolution. Performing a single simulation might take hours or days.
Even though the computational power of modern computing facilities is increasing steadily due
to technological progress, this is compensated for by the increasingly complex state-of-the-art
simulations and the associated ever-growing computational demands. Examples of such complex
simulations from civil engineering are the response of high-rise buildings to earthquakes, or
the power production of an off-shore wind turbine that is subject to varying wind and wave
conditions.

In these situations, where it is infeasible to run the computational model sufficiently many
times to perform a thorough uncertainty analysis, a convenient solution is to take a detour
through a surrogate model. A surrogate model is a mathematical function that approximates
the input-output relationship of the original computational model. Being a model of a model,
it is also sometimes called metamodel; other synonyms are response surface or emulator. It is
often trained based on a relatively small number of samples from the original model, and can
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be evaluated at a fraction of its cost. Subsequently, the inexpensive surrogate can be used for
uncertainty analysis in place of the expensive original model.

If no knowledge of the original computational model except for a number of input-output pairs
for training is required, we call the surrogate non-intrusive and the computational model a
black-box. Non-intrusive surrogates for black-box models are the topic of this thesis. More
specifically, we will investigate several instances of a specific class of surrogate models called
spectral expansions, which combine a strong mathematical foundation with good performance
in practical problems. The specific objectives of our research are explained in the following
section.

1.2 Research objectives

Before we present the research questions investigated in this thesis, we must briefly introduce the
two classes of computational models that we will consider, namely deterministic and stochastic
simulators.

When investigating parametric uncertainty, it is convenient to treat the computer model as a
deterministic simulator: there is no uncertainty within the computational model. Only the input
parameters are assumed to be affected by uncertainty, and this uncertainty is modeled separately.
Surrogating such a deterministic simulator can also be viewed as a function approximation task:
an expensive deterministic function is to be approximated by another cheap-to-evaluate one,
based on a few evaluations of the former. An introduction to surrogates for deterministic models
is provided in Section 2.2.

However, there also exist computer experiments for which it is infeasible or undesirable to com-
pletely separate all the uncertainty from the computational model. For example, for stochastic
differential equation models that involve a driving white noise term, it is usually not meaningful
to treat the latter as a (high-dimensional) input variable, which would be necessary to make
the model deterministic. Such models that are affected by additional stochasticity on top of the
explicitly modeled randomness in the input variables are called stochastic simulators. Running
such a simulator repeatedly with identical input parameter values can still result in varying re-
sponses because of the additional stochasticity. We will describe several examples of stochastic
simulators in Section 2.3.

The overarching goal of this thesis is to develop cost-effective surrogate models for deterministic
and stochastic simulators, and to investigate their performance and limitations.

Our methodology includes two main components: spectral expansions and sparsity. Spectral
expansions are representations of a function in terms of an orthonormal basis of a suitable func-
tion space, and we will consider three instances: polynomial chaos expansion (PCE), Poincaré
chaos expansion, and Karhunen-Loève expansion. The first and the last ones are well-known
since the seminal work by Ghanem and Spanos (1991) establishing stochastic computation in
engineering. The second one is a recent development (Roustant et al., 2017, 2020a). All details
about these spectral expansions can be found in Section 2.4 below.
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To represent a function in terms of a basis, it is expressed as a weighted sum of basis functions.
If most of the weights are zero, i.e., if only a few basis functions are involved in the sum, we
call the representation sparse. Sparsity is a useful concept that can achieve considerable savings
in computational cost. In the domain of signal processing, it has led to the development of the
fruitful field of compressed sensing (Donoho, 2006; Candès et al., 2006). It has also success-
fully been applied in the field of spectral expansions, notably for polynomial chaos expansions,
resulting in sparse PCE (Blatman and Sudret, 2008, 2010, 2011; Doostan and Owhadi, 2011;
Mathelin and Gallivan, 2012). Sparsity and compressed sensing are discussed in Section 2.5.

Conceptually, the work presented in this thesis can be divided into three parts, each part ad-
dressing a different topic in the area of surrogate modeling with sparse spectral methods:

1. Benchmark and literature review of methods for computing sparse polynomial
chaos expansions (PCE).

(a) The sparse PCE literature is vast, and for practitioners and newcomers it can be
difficult to identify the most recent and relevant methodological developments, often
resulting in suboptimal choices for their applications. Can we provide a comprehen-
sive and accessible overview of ideas and concepts?

(b) Which of the many sparse PCE computation techniques results in the best surrogate?
How does this depend on the characteristics of the model that is to be surrogated?

These questions are addressed in the two journal papers Lüthen et al. (2021) and Lüthen
et al. (2022a) reported here in Chapters 3 and 4:

• N. Lüthen, S. Marelli, B. Sudret (2021). Sparse polynomial chaos expansions: Liter-
ature survey and benchmark. SIAM/ASA J. Uncertain. Quantif. 9 (2), 593–649.
DOI: 10.1137/20M1315774

• N. Lüthen, S. Marelli, B. Sudret (2022). Automatic selection of basis-adaptive sparse
polynomial chaos expansions for engineering applications. Int. J. Uncertainty Quan-
tification 12 (3), 49–74.
DOI: 10.1615/Int.J.UncertaintyQuantification.2021036153

2. Regression-based sparse Poincaré chaos expansions.
What are the advantages of using a different, non-polynomial basis of the function space
for the spectral expansion? Which properties does this basis have? How can derivative
information be utilized for spectral surrogate modeling and sensitivity analysis?
These questions are addressed in the submitted journal paper Lüthen et al. (2022c) pro-
vided in Chapter 5:

• N. Lüthen, O. Roustant, F. Gamboa, B. Iooss, S. Marelli, B. Sudret (2022). Global
sensitivity analysis using derivative-based sparse Poincaré chaos expansions.
DOI: 10.48550/arXiv.2107.00394

https://doi.org/10.1137/20M1315774
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2021036153
https://doi.org/10.48550/arXiv.2107.00394
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3. Surrogate modeling for stochastic simulators.
Sparse PCEs show good performance for deterministic simulators. How can their efficiency
be exploited to build a surrogate model for stochastic simulators?
This is addressed in the submitted journal paper Lüthen et al. (2022b) provided in Chap-
ter 6:

• N. Lüthen, S. Marelli, B. Sudret (2022). A spectral surrogate model for stochastic
simulators computed from trajectory samples.
DOI: 10.48550/arXiv.2207.05653

1.3 Outline

The thesis is organized as follows. Following this introductory chapter, we describe the current
state of the art of surrogate modeling for deterministic and stochastic simulators with a focus
on spectral methods and sparsity in Chapter 2. Chapters 3 to 6 contain the journal papers and
preprints that resulted from our PhD research. The resulting findings and associated insights
as well as connections to other research areas are discussed in Chapter 7.

https://doi.org/10.48550/arXiv.2207.05653


CHAPTER 2

Review of the state of the art

In this chapter, we describe the current state of the art of the most relevant concepts and
methods in uncertainty quantification that constitute the foundation for the research developed
during this PhD (Chapters 3 to 6). We first give an overview of probabilistic uncertainty
quantification and the associated notation in Section 2.1. Then, we review the relevant literature
for surrogate modeling for deterministic (Section 2.2) and stochastic simulators (Section 2.3). In
both cases, our focus lies on a certain class of methods called spectral, which we explain in detail
in Section 2.4. Another useful concept in surrogate modeling, complementing spectral methods
well, is sparsity, which we discuss in Section 2.5. We then give an overview of sensitivity analysis
methods in Section 2.6. Finally, in Section 2.7 we present available software implementations of
uncertainty quantification methods.

2.1 Probabilistic uncertainty quantification

Mathematically, a deterministic computational model can be expressed as a functionM : D → Y
that maps from the set D of admissible inputs to the set Y of possible outputs (or responses).
Usually, it is assumed that the input domain D is a subset of Rd, where d is the dimension of
the input space, i.e., the number of scalar parameters. In this thesis, we assume that the output
range Y is a subset of R, i.e., the model is real-valued.1

When performing uncertainty quantification, the first crucial step is to define and implement
the computational model. In the workflow sketched in Figure 2.1 (adapted from Sudret (2007)),
this is displayed as Step A. In particular, we need to define the output quantity of interest for
the uncertainty analysis: it is often advantageous not to use the full set of output values the
computer simulation provides, but instead a meaningful aggregate value or a set of values related
to the specific question of interest.

1In general, the response of the model can also be vector-valued or even functional in space or time, which is
often addressed by using linear (Nagel et al., 2020; Perrin et al., 2021) or nonlinear (Giovanis and Shields, 2018;
Kontolati et al., 2022a) dimension reduction methods in the output space.
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The second step (Step B in Figure 2.1) in the UQ workflow is to find a suitable mathematical
representation of the uncertainty in the input parameters. While there exist several approaches
to do so, by far the most common framework and the one used in this thesis is probability theory
(Grigoriu, 2002).2 We model the input of a deterministic simulator as a d-dimensional random
vector X with finite variance and joint probability density function fX , where d is typically
in the order of ten to a hundred.3 Here and in the following, uppercase letters denote random
variables, whereas lowercase letters denote real numbers (e.g., realizations of a random variable).
Boldface letters denote vectors or matrices.

Since the input is a random vector, the output Y = M(X) is a random variable. We assume
that the model output Y has finite variance, which is equivalent to the modelM being in the
function space

L2
fX

(D) =
{
h : D → R |

∫
D
h(x)2fX(x)dx <∞

}
, (2.1)

i.e., being square-integrable with respect to the density fX . The uncertainty analysis depicted
in Figure 2.1 as Step C is then conducted for the random variable Y . The goal of uncertainty
propagation is to characterize the moments or even the full distribution of Y . Sensitivity anal-
ysis, introduced in more detail in Section 2.6, aims at ranking the input parameters by their
importance for the variability of the model output. Further analyses could be performed such as
reliability analysis, reliability-based design optimization, or Bayesian calibration of parameters
from data (see also the list of UQ questions in Section 1.1); however, as they are not discussed
in this thesis, they are omitted from Figure 2.1.

To reduce the computational cost of the uncertainty analysis for the original modelM, a surro-
gate model M̃ might be constructed, which can provide an approximate answer to the questions
of Step C. This is illustrated in Figure 2.1 in the form of an additional purple box. The con-
struction and use of a surrogate model can be seen as a detour which aims at reducing the
overall computational cost, potentially at the expense of accuracy. We discuss surrogate models
for deterministic models in Section 2.2.

So far, we described the mathematical setup for deterministic simulators. In contrast, a stochas-
tic simulator is a computer model M for which the mapping from the input variables to the
response is not deterministic. As before, we assume that the d-dimensional input random vector
X has finite variance. However, due to residual stochasticity in the model, now the output
Yx =M(x) is a random variable even for fixed x ∈ D. In other words,M can be modeled as a
random field, i.e., a collection of random variables indexed by the set of inputs:

M : D × Ω→ R

– For each x ∈ D, M(x, ·) : Ω→ R is a random variable

– For each ω ∈ Ω, M(·, ω) : D → R is a function (deterministic simulator)
2The uncertainty affecting a system is sometimes further classified as epistemic, i.e., due to incomplete knowl-

edge, and aleatory, i.e., due to natural variability of the parameter in question. While some researchers apply
different methods to the two types of uncertainty, using e.g. imprecise probability for epistemic uncertainty (Faes
et al., 2021), we model both types probabilistically. Note also that the classification can depend on the point of
view, as illustrated by the example of the compressive strength of concrete in Section 1.1.

3For an overview of the state-of-the-art treatment of very high-dimensional input in UQ, we refer to Kontolati
et al. (2022b).
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Step B: Input
Probabilistic model
of the input X

Step A: Model
Y =M(X)

Surrogate model
M̃(X) =

∑
α cαψα(X)

Step C: Analysis
Response characteristics:
moments E [Y ], Var [Y ],

distribution fY
Sensitivity indices

Figure 2.1: A diagram illustrating the three steps of an uncertainty analysis, adapted from Sudret
(2007). An additional purple box shows the surrogate model (here illustrated with the functional
form of PCE), which after its construction can be used in place of the original model to perform
the UQ analysis. While there are more areas of UQ that could be included here, such as reliability
analysis or Bayesian inference, this diagram focuses on the topics discussed in this thesis.

Here, ω ∈ Ω is a random event responsible for the stochasticity of the simulator. It is not
explicitly modeled and instead considered to be an unobservable, latent parameter whose value
is not known. In the case of computer simulations, it is usually possible to fix ω by fixing the
seed of the pseudo-random number generator, which results in the same sequence of random
numbers being generated. However, the seed is in general not a useful parametrization of the
latent stochasticity and should not be treated as an input variable. We will discuss stochastic
simulators, random fields, and the associated surrogate models in Section 2.3.

2.2 Surrogate modeling for deterministic simulators

We consider the case of real-valued deterministic simulators M : D → Y ⊂ R. Uncertainty
analysis is concerned with the properties of the induced random variable Y = M(X). There
are two possible approaches to constructing a surrogate model for Y :

• The response random variable Y could be approximated, aiming for equality in distribu-
tion: Ỹ d= Y .
• The mappingM could be approximated, aiming for almost sure equality M̃(X) a.s.= Y =
M(X).

The second approach is nowadays much more widespread. One reason for this might be that
when constructing surrogate models for black-box models, we usually assume to have at our
disposal a number of input-output pairs generated by the model. It is therefore natural to use
this information to approximate the mapping itself instead of only the resulting distribution.

In the context of deterministic simulators, a surrogate model M̃ is a mathematical function that
approximates the input-output relationship of the computational model, which is considered a
black-box. The surrogate model is computed based on a set of training data consisting of
input-output pairs, also called experimental design, of the original deterministic simulator.4

4Due to their construction from data, such surrogate models are sometimes also called data-fit or data-driven
surrogates (Robinson et al., 2008; Asher et al., 2015) to distinguish them from both reduced-order models, which
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As opposed to real-world experiments, deterministic computer simulations are not affected by
noise. Still, instead of interpolating the training data, most surrogate modeling methods approx-
imate it, i.e., they determine a function that minimizes a suitable distance to the data points
under some assumptions and constraints. Depending on the functional form of the surrogate,
approximation can have a smoothing effect, i.e., it might capture the low-frequency components
of the data and disregard the high-frequency ones. It is well-known that polynomial interpola-
tion can be unstable unless specific experimental designs are used, which is known as Runge’s
phenomenon (Xiu, 2010). More generally, interpolating the training data can lead to overfitting,
i.e., the surrogate might lose the ability to generalize to unseen points, whereas approximation
is often more stable.

The various families of surrogate models differ in their functional form and in the number of
parameters they involve. Determining the exact functional form and the parameter values fitting
the provided data best is often called training, in reference to machine learning terminology. As
usual, there is a trade-off between flexibility of the model and requirements on the amount of
data: a function with many free parameters and a flexible functional form is able to approximate
a wide variety of models, but it requires a lot of training data to avoid overfitting. On the other
hand, a function making many structural assumptions and involving only a few parameters can
be trained based on a small set of data, but it might be inexact if the structural assumptions
do not match the true shape of the model. When knowledge about model characteristics is
available, it can be used to select a surrogate model with suitable structure.

We give an overview of common surrogate models for deterministic simulators in Section 2.2.1.
Then, in Section 2.2.2 we highlight some connections between surrogate modeling and (super-
vised) machine learning techniques. Finally, we discuss in Section 2.2.3 how the performance of
a surrogate model can be assessed.

2.2.1 Overview of common surrogate models

In this section we give a short overview of the families of surrogate models that are typically
used in UQ for deterministic simulators.5

Polynomial chaos expansions (PCE) approximate the original model by a weighted sum of mul-
tivariate polynomials, which are orthonormal with respect to the density fX of the input. Under
certain assumptions on fX , the orthonormal polynomials constitute a basis for L2

fX
(D) defined

in Eq. (2.1) and are therefore suitable for approximating square-integrable models. One of
the advantages of PCE is that moments and certain kinds of sensitivity indices can be com-
puted analytically from its functional form (see Section 2.6). PCE is one of the main surrogate
modeling techniques used and investigated in this thesis, and is explained in further detail in
Section 2.4.1.1.

are simplified models utilizing knowledge about the physics and equations of the original model (Benner et al.,
2015), and hierarchical (multifidelity) surrogates. However, as we explain in more detail in Section 2.2.2, the
typical setup in UQ does not rely on data alone but assumes to have access to both the input distribution and
the computational model from which the data is constructed (see also Section 2.1).

5The use of surrogates is not restricted to the field of UQ. Surrogate models are used also for other purposes
such as optimization (Robinson et al., 2008; Forrester and Keane, 2009; Razavi et al., 2012).
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Kriging, or Gaussian process modeling, is another popular surrogate technique in UQ. It has
its origins in mining and geostatistics (Krige, 1951; Matheron, 1963) and was introduced for
general computational models by Sacks et al. (1989). In the machine learning community, it
is also known as Gaussian process regression (Rasmussen and Williams, 2006). In Kriging, we
construct a Gaussian stochastic process that is conditioned on the given experimental design.
Depending on the formulation, the resulting process can be interpolating or approximating.
The choices of covariance function and associated hyperparameters govern the regularity of the
realizations. The final prediction, i.e. the surrogate, is usually the mean of the inferred process.
Being a stochastic process, Kriging provides confidence bounds for the prediction, which can
be used for goal-oriented active learning, i.e., for the sequential enrichment of the experimental
design with additional informative points. Kriging is popular because of its suitability for active
learning and because its covariance function is a kernel, which is a powerful mathematical
concept allowing to work even with non-numeric data. A drawback of Kriging is its unfavorable
scaling with the number of experimental design points: to compute a Kriging metamodel, a
dense covariance matrix needs to be inverted, which becomes prohibitively expensive for large
experimental designs. Many of the approaches for surrogate modeling of stochastic simulators
in the literature rely on Kriging in some way (see Section 2.3.3).

As a hybrid between the two types of approaches, polynomial chaos-Kriging or PC-Kriging has
been developed (Kersaudy et al., 2015; Schöbi et al., 2015). Here, a Kriging metamodel is
constructed whose trend function is a PCE, thus combining the global behavior of PCE with
the local correction capabilities of Kriging.

Several other types of surrogate models have been proposed, including low-rank tensor approx-
imations, also known as canonical decompositions (Nouy, 2010; Chevreuil et al., 2015; Konakli
and Sudret, 2016), support vector machines (Smola and Schölkopf, 2004; Bourinet et al., 2011),
regression trees (Breiman et al., 1984) and other localized regression methods (Marelli et al.,
2021b), radial basis functions (Buhmann, 2000), and artificial neural networks (Hajela and Berke,
1992; Tripathy and Bilionis, 2018).

There are numerous papers reviewing and comparing surrogate modeling methods for different
purposes (sensitivity analysis, optimization, etc.) and different fields of applications (Forrester
and Keane, 2009; Razavi et al., 2012; Asher et al., 2015; Le Gratiet et al., 2017; Chatterjee
et al., 2019; Becker, 2020; Cheng et al., 2020). Unsurprisingly, no surrogate modeling method is
consistently superior to all others. The decision for a specific type of surrogate model depends
on the characteristics of the computational model such as dimensionality and regularity, on the
amount and properties of the available data, and on the purpose of the analysis (uncertainty
propagation, reliability, sensitivity, optimization, etc.).

Since no single method performs best in all cases, several authors propose combining the predic-
tions of several surrogates, or choosing one out of many based on model selection criteria (Viana
et al., 2009; Sagi and Rokach, 2018; Liu et al., 2020b; Cheng and Lu, 2020; Parisi et al., 2021).
This concept of aggregating surrogate models is known as ensemble modeling. For an overview
of common model selection criteria, see Section 2.2.3.

Some surrogate models provide more than just an approximation to the model: for example, they
might additionally yield analytical estimates of the response moments of the model, sensitivity
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indices, or confidence bounds for their predictions. However, since evaluations of surrogate
models are cheap, it is always possible to compute moments numerically using Monte Carlo
simulation. Bootstrap can often be used to obtain confidence bounds (Hastie et al., 2001;
Marelli and Sudret, 2018).

2.2.2 Surrogate modeling versus supervised machine learning

Readers familiar with machine learning (Bishop, 2006) will have recognized many methods
and concepts mentioned in the previous section, which gives rise to the question: what is the
difference between surrogate modeling in the field of UQ and supervised learning in the field
of machine learning? The goal of supervised learning is, for a given set of input-output data
pairs, to learn an suitable map that is able to make predictions for unseen data points. If the
domain of the output data is a discrete set (e.g., when the outputs are categorical), the learning
task is commonly called classification, while in the continuous case it is called regression. In
this section, we summarize some of the relevant differences and similarities between black-
box surrogate modeling and supervised machine learning regression, and point out interesting
connections between the fields of uncertainty quantification and machine learning.

Mathematically, the setup of the problems looks similar. Both black-box surrogate modeling
and supervised machine learning regression rely on a set of training data, and make a number
of structural assumptions in order to approximate the input-output (or in machine learning
terminology, feature-response) relationship using a mathematical model.

However, they differ in the data-generating process and the size of the training set. In UQ, we
usually assume that both the computational model and a probabilistic model of its input are
available (as explained in Section 2.1). Due to the cost of the computational model, only a few
model evaluations can be afforded; however, it is possible to choose the experimental design
points in order to collect especially informative model evaluations. The evaluations of the
deterministic computational model are not affected by noise. To compensate for the relatively
small data sets, UQ methods typically make rather strict structural assumptions.

In contrast, in machine learning the data-generating process is usually not available, but only
the data itself is given, and it might be noisy. The amount of data is typically large (a situation
described with the well-known term “big data”), which permits the use of very expressive models
such as neural networks that have many free parameters. A challenge in machine learning is the
choice of network architecture as well as the training process, both of which involve numerous
hyperparameters that need to be chosen carefully, an operation known as tuning.

Machine learning methods typically need to deal with thousands (if not millions) of features, for
example, when the features are the pixels of an image in a classification task. Also, the features
are often not real numbers, but might be categorical variables, images or even text or speech.
While many classical UQ techniques were initially developed for rather low-dimensional numer-
ical input in the order of a few tens of continuous variables, recent UQ research is increasingly
concerned with input spaces of very high dimension (Lataniotis et al., 2020; Kontolati et al.,
2022b) and with the treatment of categorical or discrete inputs (Lauvernet and Helbert, 2020;
Roustant et al., 2020b; Zhu and Sudret, 2021a; Rohmer et al., 2022).
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Some methods, like Gaussian process regression (Kriging) (Rasmussen and Williams, 2006), sup-
port vector machines (Vapnik, 1995) and principal component analysis (Pearson, 1901; Jolliffe,
2002) have been used for years by both the UQ and the machine learning communities. Artifi-
cial neural networks have been used for structural engineering and for uncertainty quantification
(Hajela and Berke, 1992; Tripathy and Bilionis, 2018), while Torre et al. (2019) and Timpe et al.
(2020) have explored the use of PCE for machine learning applications. As a surrogate model-
ing method that is not purely black-box, the so-called physics-informed neural networks have
received a lot of attention in recent years for the solution of (stochastic) differential equations
(Raissi et al., 2019; Zhu et al., 2019; Yang et al., 2020; Karniadakis et al., 2021). Here, the
solution is represented by a neural network, and the differential equations are embedded into
the loss function used for training.

The connections between UQ and machine learning go beyond the data-driven identification of
input-output maps. While neural networks are under certain assumptions universal approxima-
tors (Cheng and Titterington, 1994) and perform well for many practical problems when enough
data is available, in their pure form they also have some disadvantages: it is often not obvious
to understand why a neural network reaches a certain conclusion or what factors influence its
response, nor how confident the network is in its prediction, all questions that by definition are
central to the field of UQ. Therefore, recent machine learning research is increasingly concerned
with questions of fairness, explainability and confidence (Sundararajan et al., 2017; Abdar et al.,
2021; Bénesse et al., 2022) and also uses traditional UQ techniques for this purpose (Liu et al.,
2020a; Fel et al., 2021).

2.2.3 Surrogate model assessment and model selection

In order to be useful, a surrogate model must accurately approximate the input-output rela-
tionship of the computational model. Therefore, we need to be able to evaluate how well a
given surrogate is performing. Furthermore, surrogate models often depend on a number of tun-
able hyperparameters that need to be chosen according to such a performance criterion during
training.

A global measure of the approximation quality is the mean-squared error between the modelM
and the surrogate model M̃ defined by

ε = EX

[(
M(X)− M̃(X)

)2
]
. (2.2)

Here the expectation is with respect to X, so that the squared difference is weighted by the
input density fX .

Denote by X = {x(i)}Ni=1 ⊂ D the experimental design used to train the surrogate model M̃,
usually sampled from fX . A simple approximation to ε is the empirical error

εemp = 1
N

N∑
i=1

(M(x(i))− M̃(x(i)))2. (2.3)

However, judging the approximation quality of the surrogate from the empirical error, i.e., from
its performance on the same points that were used to train it, will in general underestimate the
true prediction error.
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A better approximation to ε is the validation error

εval = 1
Nval

Nval∑
i=1

(M(x(i)
val)− M̃(x(i)

val))
2, (2.4)

where Xval = {x(i)
val}

Nval
i=1 is a large set of points sampled from fX independently of X .

If such a large set of additional model evaluations is not available, which is usually the case for
all but toy problems, the error can be approximated by cross-validation (Hastie et al., 2001)
based on X as follows: the experimental design is split into several parts, called folds. Each
fold is in turn treated as validation set, while the remaining points of the experimental design
are used to construct the surrogate model. Finally, the errors computed on the left-out sets are
averaged, and serve as an estimate for the validation error. If the number of folds is equal to the
size of the experimental design, the method is known as leave-one-out (LOO) cross-validation
(Hastie et al., 2001).

Cross-validation is a general error assessment technique that is not only used to judge the
performance of the final surrogate, but is also often used already during the training process for
selecting hyperparameters, or – in the case of iterative methods – for deciding when to stop the
iterations. These decisions are also called model selection, because we have to decide between
different surrogate models (of the same type) arising from different choices of hyperparameters.

For methods which aim at fitting a random quantity to given data, such as Kriging which infers
a stochastic process (Rasmussen and Williams, 2006), or weak polynomial chaos approximation
which fits a distribution (Xiu, 2010), an alternative discrepancy measure is the likelihood, which
is the probability of observing the training data given a certain choice of parameters. A model
with many free parameters is typically more flexible and can achieve a larger likelihood than
one with fewer parameters. Therefore, model selection based on the likelihood alone can lead
to overfitting. To prevent this, model selection criteria such as Akaike’s information criterion
(AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz, 1978) additionally
take the number of free parameters into account. It has been shown that AIC is asymptotically
equivalent to cross-validation (Stone, 1977).

It should be noted that the repeated application of the same criterion for training and selection
among a large number of models can also lead to overfitting (Rao et al., 2008; Arlot and Celisse,
2010; Cawley and Talbot, 2010).

2.3 Surrogate modeling for stochastic simulators

The classical framework of UQ shown in Figure 2.1 assumes that all stochasticity influencing
the system can be modeled probabilistically in the form of random input variables. The compu-
tational model itself is then deterministic and can be surrogated by the deterministic function
approximation methods described in Section 2.2. However, there are cases in which it is not
desired or even not possible to completely separate the stochasticity from the computational
model. The model contains residual randomness which causes the response to be a random
quantity, even for fixed input parameters. In this case, we call the model a stochastic simulator.
There are two main cases from which stochastic simulators arise.
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2.3.1 Examples of stochastic simulators

In some instances, the stochasticity is an intrinsic part of the computational model. For example,
consider the stochastic susceptible-infected-recovered (SIR) model developed in epidemiology to
study the spread of an infectious disease (Britton, 2010). Here, the population consists of
individuals that are either susceptible to a disease, infected by it, or recovered and therefore
immune. Two numbers, the rates of infection and recovery, govern the stochastic evolution of
the disease with respect to time. Due to the stochasticity of infection and recovery, the evolution
might look different each time the simulation is run, even if the population size and the rate
parameters are kept at the same values. More generally, any stochastic differential equation with
a random forcing term is a stochastic simulator of this class. In these models, the stochasticity
drives the simulation and therefore cannot be modeled separately: the model is intrinsically a
stochastic simulator.

Stochastic simulators also arise in cases when the complete characterization of the stochasticity
would in principle be possible but is not desired, e.g., if the latter is too high-dimensional or
too complicated to be modeled explicitly. For example, when designing a wind turbine for a
new geographical site, the structural safety of the turbine over a period of many years must be
assessed for the specific wind conditions at the respective location. This is done by employing
a wind generation model together with a deterministic aero-servo-elastic simulation of the wind
turbine structure (Dimitrov et al., 2018; Slot et al., 2020).

The wind generation model generates wind boxes, i.e., realizations of a vector-valued random
field defined in both time and space. A wind box is often summarized by a few statistics such
as mean wind speed, turbulence, inflow angle etc., which together are called wind climate. For
each wind climate, an arbitrary number of wind boxes can be generated that match these values.
If we completely separated the wind box generation from the multi-physics simulation of the
turbine, the latter would be a deterministic simulator; however, the wind fields are too high-
dimensional to be modeled explicitly using the classical methodology described in Section 2.2.6

Therefore, it can be desirable to treat the generation of wind boxes from wind conditions as a
part of the computer model, resulting in a stochastic simulator which, for given wind climate,
returns a different response each time the simulation is run. The same reasoning shows that the
simulation of earthquake damage to a structure can be regarded as a stochastic simulator (Zhu
et al., 2022). In these cases, the stochasticity comes from latent variables that are not explicitly
modeled probabilistically as input variables.

2.3.2 Stochastic simulators as random fields

As explained in Section 2.1, stochastic simulators can be seen as random fields for which the
space of explicitly modeled parameters D assumes the role of the index set, and the latent
stochasticity is represented as an event from an abstract space Ω.

6A conceptually quite different approach, namely autoregressive models, has recently been proposed for con-
structing custom surrogates for such high-dimensional time-dependent random input (Dimitrov et al., 2022).
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The random fieldM : D × Ω→ R has the properties that

– For each x ∈ D, Yx =M(x, ·) : Ω→ R is a random variable; (2.5)

– For each ω ∈ Ω, M(·, ω) : D → R is a deterministic function, called trajectory. (2.6)

We call Eq. (2.5) the random variable view of the random field, and Eq. (2.6) the random
function view. These two perspectives lead to different types of surrogate models, as we will see
below.

We assume that M ∈ L2
fX

(D) × L2(Ω,F , P ) where (Ω,F , P ) is the probability space of the
stochastic event ω ∈ Ω.

Just like deterministic computer models, stochastic simulators can only be evaluated pointwise,
i.e., for a finite number of experimental design points x(i) ∈ D and stochastic events ω(j) ∈ Ω.
Repeated evaluations for the same location x ∈ X , each time using a different ω(j), j = 1, . . . , R,
are called replications. For many computational models, it is possible to fix the sequence of
random numbers used for the computations by fixing the seed of the random number generator,
which allows the (pointwise) evaluation of the simulator along trajectories even if the underlying
stochastic event ω is not known.

To fully characterize a general random field, it is necessary to specify the collection of all its
finite-dimensional distributions (Grigoriu, 2002, Chapter 3.5)

{FYx1 , ... ,Yxn
: n ≥ 1,x1, . . . ,xn ∈ D}, (2.7)

where FYx1 , ... ,Yxn
(y1, . . . , yn) = P (Yx1 ≤ y1 ∧ . . . ∧ Yxn ≤ yn). The univariate distributions FYx

are called marginals or marginal distributions. Extending the concept of moments of random
variables to random fields, the deterministic mean function ofM is given by µ(x) = E [Yx]. If
µ(x) = 0, the random field is called centered. The (auto-)covariance function of M is defined
by

C(x,x′) = Cov [Yx, Yx′ ] . (2.8)

To enable the theory presented in Section 2.4.2 below, we assume that C is continuous on D×D.

While Eq. (2.7) is needed for general random fields, there are a few special cases that can be
characterized by a smaller number of properties, most notably the family of Gaussian processes,
for which all finite-dimensional joint distributions are multivariate Gaussian distributions. A
Gaussian process is uniquely defined by its mean and covariance function. Its conditional dis-
tributions are again multivariate Gaussians, which motivates the popular surrogate modeling
technique Kriging a.k.a. Gaussian process modeling (Section 2.2.1). While Gaussian random
fields are computationally convenient, random fields encountered in real-world problems (and in
particular, stochastic simulators) are often not Gaussian. One obvious argument is that Gaus-
sian variables are unbounded, whereas physical quantities are almost always bounded (Grigoriu,
2002, p. 118).

2.3.3 Overview of surrogate modeling approaches

Most surrogate modeling approaches for stochastic simulators developed to date have focused
on the random variable view (Eq. (2.5)), i.e., on their interpretation as a collection of random
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variables indexed by the set of inputs. The goal of these approaches, which we describe in
Section 2.3.3.1, is to approximate the random variablesM(x, ·) in distribution, usually relying on
the regularity of the mapping with respect to x. In other words, they approximate the marginal
distributions FYx , without attempting to match any of the higher-order joint distributions (i.e.,
n > 1 in Eq. (2.7)). The resulting surrogate can be used to generate pointwise samples, which
will approximately follow the correct marginal distributions.

By construction, this class of surrogates is in general not able to generate trajectories. To obtain
a surrogate model that has this feature, we must take the random function view (Eq. (2.6)),
and data sampled from trajectories must be available. In the context of stochastic simulators,
the literature on such surrogate models is scarce. However, in the broader context of inferring
general random fields from given samples, there are a number of methods, which we discuss in
Section 2.3.3.2.

2.3.3.1 Surrogates in distribution

We first give an overview of surrogate models that characterize the response random variable in
distribution. This can be seen as conditional distribution estimation, aiming at characterizing
the quantity P (Y |X = x).

To obtain an explicit expression for the statistics or the full distribution ofM(x, ·) at each loca-
tion in the input domain D 3 x, various parametric approaches have been developed, which often
rely on deterministic surrogate models to emulate these statistics or other auxiliary quantities
(such as expansion coefficients) over D. (Joint) Gaussian process models have been proposed
to address scalar statistics of the random response variables, such as mean and variance (Iooss
and Ribatet, 2009; Ankenman et al., 2010; Marrel et al., 2012; Binois et al., 2018). Other ap-
proaches emulate quantiles using quantile Kriging (Plumlee and Tuo, 2014) or other quantile
regression methods (Torossian et al., 2020). Assuming that the full marginal distributions at a
set of experimental design points X ⊂ D are available, Moutoussamy et al. (2015) propose to
represent the probability density in terms of a suitable functional basis. Similarly, Browne et al.
(2016) propose to represent the quantile function of the stochastic simulator output in terms of
a suitable basis, and emulate the parameters throughout the domain using Gaussian processes.

Another parametric choice is the generalized lambda model (Zhu and Sudret, 2020) that utilizes
the generalized lambda distribution (Freimer et al., 1988), a parametric family of distributions
with only four parameters that is able to closely approximate many of the classical unimodal
parametric families (Gaussian, uniform, exponential, lognormal etc.). Zhu and Sudret (2020)
apply this distribution to emulate the response densities based on replications, and extrapolate
to the whole domain using PCE, using a joint computation scheme that simultaneously fits
the response densities and the PCE models to the given data. The generalized lambda model
has further been refined to avoid the need for replications by employing maximum conditional
likelihood estimation (Zhu and Sudret, 2021b,c).

Replacing the generalized lambda distribution by a PCE approximation of the conditional ran-
dom variables, Zhu and Sudret (2022) recently developed the replication-free stochastic PCE
method. This approach uses PCE with two additional variables (a latent and a noise variable)
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to emulate the stochastic simulator, inspired by the weak PCE methodology based on maximum
likelihood estimation (Xiu, 2010).

A classical nonparametric method for conditional density estimation, likewise not requiring
replications, is the well-known kernel density estimation (Fan and Gijbels, 1996; Hall et al.,
2004).

Finally, in the field of machine learning, generative models like variational autoencoders (Kingma
and Welling, 2014) and generative adversarial networks (Goodfellow et al., 2014) are designed
to learn a target distribution from data and to sample from it, thus being a kind of surrogate
in distribution. Similarly, Bayesian neural networks (MacKay, 1992; Goan and Fookes, 2020),
whose weights are independent Gaussian random variables, are able to approximate conditional
distributions. Bayesian methods such as Markov Chain Monte Carlo or variational inference are
used to infer the parameters of the weight densities from the given data.

2.3.3.2 Surrogates using the random function view

Whereas the methods presented in the previous section are able to accurately characterize the
marginal response distributions, they do not model the joint distributions of higher order. Of
course, unless we are in the specific case of a Gaussian random field, modeling all the finite-
dimensional distributions in Eq. (2.7) is infeasible. If we still want to capture some of the
higher-order information about the random field, we need to make use of its structure, i.e., of
the properties of its covariance function (Eq. (2.8)) and the induced regularity of its trajectories.
In other words, we need to utilize the random function view of random fields shown in Eq. (2.6).
The overall goal is to find a representation of the random field that can be sampled from, both
pointwise and trajectory-wise.

In the literature, two classes of methods for the representation of random fields can be distin-
guished. The first is the construction of a representation for given properties such as marginal
distributions, covariance function, or spectral density.7 These properties are assumed to be
known analytically, and the goal is to generate samples from a random field with these prop-
erties. Note that general non-Gaussian random fields are not completely characterized by their
marginals and covariance function (Grigoriu, 2002). We will give a short overview of such
methods in the following.

The second class, which is most relevant in the context of surrogating stochastic simulators,
is the inference of a representation from data, i.e., from pointwise samples of the random field
along trajectories. This data is generated by a real-world process (such as an earthquake) or
by a stochastic computational model, both of which behave like a random field. However, it
might be impossible or too expensive to use these processes or models directly for generating a
large amount of samples, and therefore a surrogate needs to be constructed. These methods are
discussed below.

7The spectral density exists only for weakly stationary random processes, i.e., for processes with constant mean
and an autocorrelation function r(τ ) = E [YxYx+τ ] that only depends on the difference between two locations.
For a one-dimensional centered process, it is defined by s(ν) = 1

2π

∫∞
−∞ r(τ) exp(−iντ)dτ , i.e., it is the Fourier

transform of the autocorrelation function (Grigoriu, 2002).
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Simulation of non-Gaussian random fields from properties. A simple way to discretize
a random field is to represent it by a random vector (i.e., a finite number of random variables)
on a mesh defined in the index set. The value of the random field at other locations is then
computed from the random vector. Sudret (2007) gives an overview of such methods, including
the midpoint method (Der Kiureghian and Ke, 1988) and spatial averaging (Vanmarcke and
Grigoriu, 1983). However, Sudret and Der Kiureghian (2000) point out that these methods are
rather inefficient.

Alternatively, series expansion methods exploit the structure of the random field in order to
represent it using “spatial” functions (i.e., functions defined over the index set) and random
coefficients (Sudret, 2007). Grigoriu (2010) classifies the series expansion methods into linear
models with dependent parameters and nonlinear models, also known as translation processes.

Linear series expansion methods represent the random field as a series of spatial functions hk(x)
weighted by random coefficients ξk(ω), with the general form (Grigoriu, 2006, 2010)

M(x, ω) = µ(x) +
∞∑
k=0

ξk(ω)hk(x). (2.9)

The spectral representation method expands a weakly stationary random process in terms of
trigonometric polynomials (Fourier expansion) (Deodatis and Shinozuka, 1991; Grigoriu, 2006).8

Orthogonal series expansion (OSE) expands a random field onto any orthonormal basis for the
spatial component (Zhang and Ellingwood, 1994). Finally, Karhunen-Loève expansion (KLE)
expands a general random field onto an optimal orthonormal spatial basis, which is computed
as the solution of an integral eigenvalue problem involving the covariance function (Karhunen,
1946; Loève, 1978). We will explain KLE in detail in Section 2.4.2. In all these cases, the random
coefficients ξk of the resulting expansion are in general dependent, and failing to account for this
dependence can result in improper characterizations of the random field (Grigoriu, 2010).

Note that the linear series expansion in Eq. (2.9) transforms the random field, which (taking
the random variable view of Eq. (2.5)) is an uncountably infinite collection of correlated random
variables, into a countable collection of random variables {ξk}∞k=0 together with spatial functions
{hk}∞k=0 capturing the correlation.

For the special case of Gaussian random fields, the expansion optimal linear estimation (EOLE)
method (Li and Der Kiureghian, 1993) provides a compromise between pointwise and series
representation, by representing the random field by a random vector defined on a mesh, and
interpolating between the mesh points using optimal linear estimation, relying on the Gaussian
assumption just like Kriging. The random vector can be further compressed by using a form of
dimension reduction closely related to KLE (see Section 2.4.2).

Translation processes make use of the fact that simulating a Gaussian process G is comparatively
easy, e.g. by EOLE or KLE, since such a process is fully characterized by its mean and covariance
function, and all conditional distributions are Gaussian (Grigoriu, 2006). For given marginals
and covariance function or spectral density of the general non-Gaussian random field of interest,

8Strictly speaking, this interpretation only holds for periodic processes. For general processes, the analysis is
slightly more involved (Grigoriu, 2006).
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the goal of translation process algorithms is to find a mapping T such that the induced ran-
dom field T (G) has the requested properties (Grigoriu, 1984; Yamazaki and Shinozuka, 1988;
Grigoriu, 1998; Deodatis and Micaletti, 2001; Sakamoto and Ghanem, 2002; Poirion and Puig,
2010; Shields et al., 2011; Kim and Shields, 2015). Here, the difficulty is that the marginals and
covariance function might be inconsistent, i.e., there might be no such mapping T that achieves
the desired properties (Grigoriu, 2010).

Inference of random fields from data. The methods described above all assume that the
marginals and the covariance function or the spectral density of the random field of interest are
known analytically. Now, we turn to methods that aim to characterize a random field solely
based on a set of samples. Many of these methods rely on the spectral method Karhunen-Loève
expansion (KLE), which is described in detail in Section 2.4.2 below.

One popular approach is based on the repeated evaluation of the random field at the points of
a given mesh. In other words, the random field is reduced to a high-dimensional random vector
with one component per mesh point, similar to the pointwise representation described above.
First, discrete KLE (i.e., principal component analysis (PCA); see Section 2.4.2) is performed
on the realizations of the high-dimensional random vector to reduce its dimensionality. Then,
the random coefficients are modeled, often by PCE (Ghanem and Spanos, 1991; Soize, 2010).
The PCE coefficients are determined, e.g., by maximum likelihood (weak PCE) (Desceliers
et al., 2006; Perrin et al., 2012) or Bayesian inference (Ghanem and Doostan, 2006). Das et al.
(2009) propose two methods to approximate the experimentally determined multivariate joint
distributions of the random coefficients by PCE based on conditional distributions and the
Rosenblatt transform (Rosenblatt, 1952). To further model the uncertainty in the stochastic
model induced by the finite size of the sample set, a number of papers explores the inference of
random instead of deterministic PCE coefficients (Ghanem and Doostan, 2006; Das et al., 2008;
Arnst et al., 2010; Soize, 2010).

The extension of the inferred high-dimensional random vector (defined on the mesh) to the
continuous index set (where the original random field is defined) is often not discussed, because
it is considered sufficient to know the random field on a fine mesh. Among the few publications
explicitly addressing this topic, Desceliers et al. (2006) suggest to use the interpolation functions
of the finite element method. Das et al. (2009) generally refer to this aspect as “a task of
interpolation or/and approximation technique”. In the specific context of stochastic simulators,
Azzi et al. (2019) propose to use PCE or Kriging for this extension.

A variant of the KLE-PCE methodology described above is the intrusive method proposed by
Doostan et al. (2007), which was later extended to the non-intrusive case by Raisee et al. (2015)
and Abraham et al. (2018). Starting from a PCE expansion for each of the random variables
of a coarse mesh computed from given replications, this method first computes a KLE on the
coarse mesh (“optimal expansion”). The resulting random variables of the KLE, modeled as
PCE, are then used to derive spatial functions on a finer mesh.

In the context of earthquake engineering, in a series of papers Zentner and Poirion (2012); Poirion
and Zentner (2013, 2014) reverse this construction: first, they interpolate the trajectories based
on the given data and express them in terms of an orthonormal basis. Then they perform KLE
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on the interpolated trajectories, which – due to the orthonormality of the basis – reduces to a
discrete eigenvalue problem. The random coefficients are modeled by kernel density estimation,
taking bivariate dependence into account (Poirion and Zentner, 2014).

Azzi et al. (2019) propose another approach based on KLE, which first infers a continuous
representation of the covariance function based on the sample covariance matrix computed from
replications at mesh points. Then, the eigenfunctions of KLE are computed on a finer mesh.

Because KLE is linear in the random coefficients (see Eq. (2.9)), the complexity of non-Gaussian
random fields potentially requires the random coefficients to follow intricate joint distributions
(see also Section 2.4.2). To avoid having to infer complicated joint distributions, Sarma et al.
(2008) and Ma and Zabaras (2011) instead suggest using kernel PCA, a nonlinear extension of
KLE. The data is first mapped to the so-called feature space using a nonlinear transformation,
and then KLE is applied, with the hope that the data is (close to) linear in the feature space. A
difficulty of kernel PCA is the pre-image problem: the obtained realizations in the feature space
must be mapped back to the original space of the data. Sarma et al. (2008) use a polynomial
kernel while Ma and Zabaras (2011) use a Gaussian kernel. Both assume that in the feature
space, the random coefficients of the linear expansion (Eq. (2.9)) are independent.

In the context of stochastic differential equations with stochastic forcing as well as random input
parameters, Navarro Jimenez et al. (2017) suggest to model the resulting random field by PCE
with random coefficients (i.e., choosing PCE basis functions for hk in Eq. (2.9)). The stochastic
coefficients are determined by non-intrusive pseudospectral projection. They do not discuss
resampling the random field, because the purpose of their construction is sensitivity analysis.

2.4 Spectral methods

The topic of this thesis is surrogate modeling with spectral methods. The word spectral usually
hints to the connection to an eigenvalue problem, since the spectrum of an operator denotes
the set of its eigenvalues. Solving an eigenvalue problem yields, in addition to the eigenvalues,
eigenvectors or eigenfunctions that are orthogonal in the respective space where the problem
is set. Under appropriate conditions, the eigenvectors or -functions constitute a basis for this
space.

A spectral expansion is then the representation of an element from that space in terms of such
an orthogonal basis. More generally, this expression is used for any representation as long as
the respective basis is orthogonal.

2.4.1 Chaos expansions

In UQ, a spectral expansion in L2
fX

(D) is also often called chaos expansion, in reference to an
early contribution by Wiener (1938) who introduced them for stochastic processes using Hermite
polynomials.9

9Therefore, the use of the term chaos expansion in UQ predates the mathematical field of chaos theory by
several decades (Xiu, 2010). Chaos expansions as introduced here do not belong to the field of chaos theory.
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The general mathematical framework of chaos expansions is as follows. Together with the inner
product

〈g, h〉 =
∫
D
g(x)h(x)fX(x) dx, (2.10)

the space of square-integrable functions L2
fX

(D) defined in Eq. (2.1) is a Hilbert space.10 Inter-
preted probabilistically, a modelM∈ L2

fX
(D) has finite variance underX, i.e., VarX [M(X)] <

∞.

Let {ψk}∞k=0 be an orthonormal basis for L2
fX

(D), i.e.,

1. for all i, j, 〈ψi, ψj〉 = δij =

1 if i = j

0 otherwise
; and

2. {ψk}∞k=0 is dense in L2
fX

(D).

Then the chaos expansion ofM∈ L2
fX

(D) in terms of this basis is given by

M(x) =
∞∑
k=0

ckψk(x), (2.11)

where
ck = 〈M, ψk〉 (2.12)

is the projection ofM onto ψk.

It follows that the random response vector Y =M(X) can be expressed as a series of random
variables Zk = ψk(X) by

Y =
∞∑
k=0

ckZk. (2.13)

From now on, we assume that the components of the random vector X are independent.11

Therefore, the density fX factorizes into fX(x) =
∏d
i=1 fXi(xi). A basis of L2

fX
(D) = L2

fX1
(D1)⊗

. . .⊗L2
fXd

(Dd) can be obtained from one-dimensional bases {ψ(i)
k }∞k=0 of L2

fXi
(Di) by a standard

tensor product construction: an element ψα of the multivariate basis is given by

ψα(x) =
d∏
i=1

ψ(i)
αi (xi), (2.14)

where the so-called multi-index α = (α1, . . . , αd) ∈ Nd
0 collects the indices of the respective

univariate basis elements.

We will describe two particular types of chaos expansion below, namely polynomial chaos ex-
pansions (PCE) in Section 2.4.1.1 and Poincaré chaos expansions in Section 2.4.1.2. Beyond
these, a chaos expansion in terms of a basis consisting of B-splines has recently been proposed
(Rahman, 2020; Eckert et al., 2020). While rarely used in UQ, another instance that fits into
the chaos expansion framework is the well-known Fourier expansion, whose orthonormal basis
consists of sines and cosines.

10A Hilbert space is a complete metric space with an inner product that induces the metric. It is a powerful con-
cept in functional analysis and applied mathematics. Under certain conditions it admits a countable orthonormal
basis, which is essential for function approximation.

11We discuss the case of dependent input variables in Section 2.4.1.1 for PCE and in Section 2.6.3 for sensitivity
analysis.
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2.4.1.1 Polynomial chaos expansion

Polynomial chaos expansion denotes the expansion of a modelM∈ L2
fX

(D) in terms of a multi-
variate orthonormal polynomial basis obtained as the tensor product of univariate orthonormal
polynomial bases (Eq. (2.14)). In the following, we describe the construction of the latter.

Let fX be the probability density function of a random variable X defined on D ⊂ R. An
orthonormal polynomial basis for L2

fX
(D) exists if and only if the distribution function FX is

uniquely defined by the sequence of its moments (Ernst et al., 2012). This is the case for most of
the standard parametric distributions such as uniform, Gaussian, Beta or Gamma distributions,
but not for the lognormal distribution. A sufficient condition for existence is that all moments
are finite and the support of the distribution is compact (Ernst et al., 2012).

For the classical parametric distribution families, the associated orthonormal polynomials are
well-known, and their properties have been studied for centuries (Szegö, 1939; Gautschi, 2004).
When X is Gaussian, the associated orthonormal polynomials are the (probabilists’) Hermite
polynomials. A uniformly distributed X is associated to the Legendre polynomials. A Beta
distribution generates the Jacobi polynomials, and a Gamma distribution the Laguerre poly-
nomials. In Figure 2.2, we illustrate the first five orthonormal polynomials associated to two
different densities.
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Figure 2.2: The first five orthonormal polynomials associated to two different densities: Left,
Hermite polynomials associated to the Gaussian distribution. On the right, arbitrary polynomials
associated to a custom (non-classical) multimodal density. The basis functions are plotted in color,
while the densities are shown in gray.

Originally, PCE was proposed in terms of Hermite polynomials by Ghanem and Spanos (1991)
corresponding to the Gaussian distribution. The approach was generalized by Xiu and Karni-
adakis (2002) to distributions from the Askey scheme, i.e., the parametric families mentioned
above. However, PCE can even be computed for arbitrary distributions (including discrete
ones), as long as they admit an orthonormal polynomial basis, which is known under the name
arbitrary PCE (Soize and Ghanem, 2004; Wan and Karniadakis, 2006; Oladyshkin and Nowak,
2012; Torre et al., 2019).
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To construct an orthonormal polynomial basis for a given distribution, there are several op-
tions. For the three classical polynomial families Hermite, Jacobi (which includes Legendre
as special case), and Laguerre, one way is to solve the associated eigenvalue problem which
involves a differential operator (Bochner, 1929). An alternative for any type of distribution is
orthonormalization of the set of monomials {1, x, x2, x3, . . .} using the Gram-Schmidt algorithm.

A third, often more stable, method is the Stieltjes procedure (Gautschi, 1982, 2004): Orthonor-
mal polynomials obey an equation known as the three-term recurrence rule

√
βn+1ψn+1(x) = (x− αn)ψn(x)−

√
βnψn−1(x), (2.15)

starting with ψ−1(x) = 0 and ψ0(x) = 1, where αn and βn are given by

αn = 〈xψn, ψn〉
〈ψn, ψn〉

, (2.16)

βn = 〈ψn, ψn〉
〈ψn−1, ψn−1〉

. (2.17)

The coefficients αn and βn are known analytically for the classical orthonormal families. For
other cases, they can be computed by numerical integration.

A univariate orthonormal polynomial basis constructed by Eq. (2.15) has exactly one element
of each degree k ∈ N0. The degree is used as the index of the elements in the basis.

If an orthonormal polynomial basis does not exist, such as in the case of the lognormal distri-
bution, we can first map the given input to another distribution and then use the associated
polynomials for the PCE. Such a mapping is called isoprobabilistic transform. For example, in
the case of a lognormal variable X a transformation to Gaussian variables is easily achieved by
taking the logarithm: Z = T (X) = log(X) is Gaussian. The PCE is then computed for the
transformed model M̃(Z) =M(T −1(Z)).

In principle, this procedure can be used for any two continuous random variables X and Z

using the probability transform T = F−1
Z ◦ FX . However, especially when one of the variables

is bounded and the other unbounded, the transform can introduce significant nonlinearity into
the composite model M̃ = M ◦ T −1, which in turn requires high-degree polynomials to be
approximated well (Lei et al., 2019; Torre et al., 2019).

The case of dependent input variables is an active area of research. If the components of
X are not independent, it is still possible to construct a multivariate polynomial basis that
is orthonormal with respect to the distribution of X, e.g., by applying the Gram-Schmidt
procedure (Torre et al., 2019; Jakeman et al., 2019; Lei et al., 2019); however, it is not unique
but depends on the ordering of terms. Alternatively, the dependent random vector X can be
transformed to an independent one using a suitable probability transform (Lebrun and Dutfoy,
2009) before computing the PCE, which likewise is a non-unique operation depending on the
ordering of the variables. Torre et al. (2019) demonstrated that for the purpose of global
approximation, it can be advantageous to use a basis that is orthonormal to the marginals only,
ignoring the dependence structure.
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2.4.1.2 Poincaré chaos expansion

The Poincaré chaos expansion has recently been proposed by Roustant et al. (2020a), expanding
on the results of an earlier paper by Roustant et al. (2017) with the goal of computing Poincaré
constants for univariate distributions.

In one dimension, the Poincaré constant CP (fX) associated to the probability density fX of a
random variable X is the smallest possible constant C with

EX
[
h(X)2

]
≤ C EX

[
(h′(X))2

]
(2.18)

for all h ∈ H1
fX

with EX [h(X)] = 0, where H1
fX

is the Sobolev space of weakly differentiable
functions, i.e., H1

fX
= {h ∈ L2

fX
: h′ ∈ L2

fX
}. The Poincaré inequality (2.18) bounds the variance

of any function h by its expected squared derivative. The constant CP (fX) is informative
about the underlying distribution: it is a measure of multimodality and can be related to the
convergence rate of Markov chains (Pillaud-Vivien et al., 2020).

Roustant et al. (2017) introduced a computation procedure for Poincaré constants of univariate
measures fXdx fulfilling the following assumption:

Assumption 1 (Assumption on fX). Assume that fX is supported on a bounded interval
(a, b) and that fX(x) = e−V (x) with V continuous and piecewise C1 on [a, b].

Under this assumption, the Poincaré constant can be obtained by solving the following eigenvalue
problem:

Lψk = ψ′′k − V ′ψ′k = −λkψk, (2.19)

ψ′k(a) = ψ′k(b) = 0,

which can be expressed in weak form as

for all h ∈ H1
fX

〈
h′, ψ′k

〉
= λk 〈h, ψk〉 . (2.20)

The solutions (λk, ψk) have the following properties:

• After normalization, the eigenfunctions (ψk)k≥0 form an orthonormal basis of L2
fX

.
• The eigenvalues satisfy 0 = λ0 < λ1 < . . .→∞.
• For the first eigenpair, λ0 = 0 and ψ0(x) = 1.
• For the second eigenpair, CP (fX) = 1

λ1
, and ψ1 attains equality in Eq. (2.18).

• If fX ∈ Cm, then ψk ∈ Cm+1.
• ψk has k roots.

We show examples for univariate Poincaré bases in Figure 2.3. The Poincaré basis is in general
not polynomial, except for the special case of the Gaussian distribution, for which the associated
Poincaré basis coincides with the Hermite polynomials. The Poincaré basis associated to the
uniform distribution can be shown to consist of cosine functions.

The eigenvalue problem in Eq. (2.19) can be solved numerically e.g. by one-dimensional finite
elements. Since by Assumption 1 the measure is supported on a bounded interval, for most
purposes it is enough to use an evenly spaced grid with sufficiently fine resolution.

As a consequence of Eq. (2.20), the Poincaré basis has several interesting properties related to
derivatives. This is explored in our paper Lüthen et al. (2022c) available in Chapter 5.
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(a) Truncated Gaussian (trunc. to [−3, 3])
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Figure 2.3: The first five basis functions of Poincaré bases associated to different densities: Trun-
cated Gaussian, uniform, triangular, and a custom density. The basis functions are plotted in colors,
while the densities are shown in gray. We observe that higher-order functions oscillate more. The
first eigenfunction is constant, and the functions have zero derivative at the boundary since they
observe the homogeneous Neumann boundary condition (Eq. (2.19)).

2.4.1.3 Truncation

In order to compute the chaos expansion in Eq. (2.11) for a given model, the coefficients of the
expansion need to be determined. In general, infinitely many coefficients are needed for an exact
representation, which is of course impossible in practice. Therefore, the expansion is truncated
to a finite number of terms characterized by a multi-index set A ⊂ Nd. The most widely used
truncation for PCE is the total-degree truncation of order p ∈ N, where the total degree of each
retained basis element does not exceed p:

Ap = {α ∈ Nd :
d∑
i=1

αi ≤ p}. (2.21)

For the non-polynomial Poincaré chaos expansion, the word “degree” refers to the index of the
univariate basis function or, equivalently, to the number of its roots.
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More details about other possible truncation strategies and adaptive choices of truncation sets
can be found in our publication Lüthen et al. (2022a), which is provided in Chapter 4.

2.4.1.4 Computation of the coefficients

Since the most popular chaos expansion in the field of UQ is the PCE, most of the UQ literature
about coefficient computation discussed in this section is dealing with orthonormal polynomial
bases, but many results can directly be applied or be generalized easily to other types of chaos
expansions.

Historically, PCE were first applied in an intrusive context with the goal of solving stochastic
differential equations, i.e., differential equations with random parameters (Ghanem and Spanos,
1991). In the stochastic Galerkin method, polynomial functions of one or several random vari-
ables serve as a basis for the random part of the solution, in the same way as the (finite element)
functions on a spatial grid might serve as a basis for the spatial part of the solution. The stochas-
tic Galerkin method is called intrusive because in order to perform an uncertainty analysis for
a given deterministic differential equation, the solution scheme itself needs to be modified to
incorporate the additional basis functions for the random part.

However, because the modification of existing code is inconvenient (and impossible for certain
industrial applications, as the source code of the used computer models is often not available),
most research efforts nowadays focus on non-intrusive PCE, which are computed purely from
input-output data pairs of the computational model. In the following, we briefly discuss the
three main non-intrusive approaches: projection, interpolation, and regression.

Projection relies on Eq. (2.12) to compute each coefficient of the expansion by projecting the
model onto the respective basis function. The integrals can be evaluated using numerical in-
tegration, e.g. Gauss quadrature, with methods such as non-intrusive spectral projection (Le
Maître et al., 2002) or sparse pseudospectral projection (Constantine et al., 2012; Conrad and
Marzouk, 2013). While the number of model evaluations for naive tensor product quadrature
scales as (p+ 1)d, sparse quadrature based on the Smolyak scheme (Gerstner and Griebel, 2003;
Conrad and Marzouk, 2013) can alleviate this to some degree (Eldred et al., 2008).

Whereas projection uses the pointwise model evaluations indirectly for computing approxima-
tions to the integrals in Eq. (2.12), another class of methods directly interpolates the model
in the given pointwise evaluations. In other words, for a set of experimental design points
X = {x(1), . . . ,x(N)} ⊂ Rd the goal is to find the coefficient vector c such that

M(x(i)) =MPCE
X (x(i); c) for all i = 1, . . . , N, (2.22)

where the notation MPCE
X ( · ; c) denotes the PCE adapted to the random vector X and using

the coefficient vector c. This is sometimes called stochastic collocation (Xiu and Hesthaven,
2005; Babus̆ka et al., 2007).12 The choice of points X crucially influences the stability of the

12There is some confusion around the term “stochastic collocation” in PCE because it has been used by various
authors to refer to different classes of methods. Narayan and Zhou (2015) use this term for both interpolation
and regression-based methods. It is used to refer to least-squares regression by e.g. Hosder et al. (2007); Eldred
et al. (2008); Narayan et al. (2017). Xiu (2009) also counts pseudospectral projection as stochastic collocation
method, to contrast it with stochastic Galerkin methods.
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interpolation procedure (Babus̆ka et al., 2007; Narayan and Jakeman, 2014; Narayan and Zhou,
2015; Loukrezis et al., 2019).

Alternatively, the coefficients can be computed by regression, which aims to find an approximate
solution to Eq. (2.22). One possibility is ordinary least-squares regression (OLS) (Isukapalli,
1999; Berveiller et al., 2006). Here, the model as well as the basis functions are evaluated on the
experimental design X , yielding the response vector y = (M(x(1)), . . . ,M(x(N)))T ∈ RN and
the regression matrix Ψ ∈ RN×P with entries Ψij = ψαj (x(i)) for an enumeration A = {αj}Pj=1.
To obtain the coefficients, the OLS problem

ĉ = arg min
c
‖Ψc− y‖22 (2.23)

is solved, which has the closed-form solution ĉ = (ΨTΨ)−1ΨTy. The inversion requires N ≥ P ,
where P =

(d+p
d

)
for a total-degree basis of degree p in d dimensions (Eq. (2.21)). To avoid

overfitting, a heuristic recommendation in the engineering community is to choose N ≥ 2P or
≥ 3P (Hosder et al., 2007; Fajraoui et al., 2017).13

The continuous version of the OLS problem, using the notation of Eq. (2.22), is

ĉ = arg min
c

E
[(
M(X)−MPCE

X (X; c)
)2
]
. (2.24)

The analytical solution to this problem is given by Eq. (2.12), which makes the continuous
version of OLS equivalent to the exact projection-based computation of the coefficients.

An alternative regression-based method that is often more sample-efficient than OLS is given
by sparse regression, which we will explain in detail in Section 2.5.2.

2.4.2 Karhunen-Loève expansion

The chaos expansion described in the previous section was defined for deterministic models
M∈ L2

fX
(D) – or, equivalently, for the induced random variables Y =M(X). Now, we turn to

random fields {Yx = M(x, ·)}x∈D as defined in Section 2.3.2, which are collections of random
variables indexed over an index set D.

2.4.2.1 The standard case

Let µ(x) be the mean function and C(x,x′) be the covariance function of the random field (see
Section 2.3.2). Assume that D is closed and bounded, C is continuous, and that M(x, ·) has
finite variance for all x ∈ D.

Then the Karhunen-Loève expansion (KLE) of the random field M is given by the following
representation (Kosambi, 1943; Karhunen, 1946; Loève, 1978; Ghanem and Spanos, 1991):

M(x, ω) = µ(x) +
∞∑
k=1

√
λk ξk(ω)φk(x) (2.25)

13In fact, rigorous theoretical analyses of least squares methods for orthonormal polynomials have resulted in
the following more demanding bounds: in one dimension, N

logN ≥ c1P
2 for OLS (Migliorati et al., 2014); in d

dimensions, N ≥ c2P logP (Hampton and Doostan, 2015a) or N
logN ≥ c3P for certain weighted least-squares

methods (Cohen and Migliorati, 2017); where in all cases, ci is a constant that does not depend on N or P .
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where {φk}k=1,2,... is an orthonormal basis of L2(D), λ1 ≥ λ2 ≥ . . .→ 0 is a decreasing sequence
of real numbers, and {ξk}k=1,2,... is a countable family of zero mean, unit variance, uncorrelated
random variables. The quantities (λk, φk) arise as solutions of the integral eigenvalue problem∫

D
C(x,x′)φk(x′)dx′ = λkφk(x), (2.26)

which constitutes a homogeneous Fredholm integral equation of the second kind (Atkinson,
1996). The KL-random variables (KL-RV) ξk are the result of the projection of M onto the
basis:

ξk(ω) = 1√
λk

∫
D

(M(x, ω)− µ(x))φk(x)dx. (2.27)

Note that both {φk}∞k=1 and {ξk}∞k=1 are orthonormal bases, one capturing the “spatial” variation
ofM over D (in terms of x), the other capturing the stochastic variation ofM (in terms of ω).
In that sense, Eq. (2.25) can be called a diagonalization of the random field (Venturi, 2011).

The covariance function can be expressed as the uniformly converging series (Mercer’s theorem)
(Grigoriu, 2002)

C(x,x′) =
∞∑
k=1

λkφk(x)φk(x′). (2.28)

It follows that the average variance of the random field over the domain D is equal to
∑∞
k=1 λk.

The series in Eq. (2.28) only depends on the spatial basis functions: the KL random variables
do not enter this expression.

2.4.2.2 Non-Gaussian random fields

For a Gaussian random field, the KL random variables ξk are standard Gaussian and indepen-
dent. However, KLE also exists for non-Gaussian fields. The non-Gaussianity is governed by the
joint distribution fξ, which might in general be complex and difficult to model or infer, leading
some authors to conclude that KLE is mainly useful for Gaussian random fields (Grigoriu, 2006;
Betz et al., 2014).

Still, several approaches for modeling the (joint) non-Gaussian distribution of KL random vari-
ables have been proposed. For given marginals and covariance function, Phoon et al. (2002,
2005) propose an algorithm which iteratively updates the distributions of the KL-RV in order
to match the requested marginals. Other authors suggest to model the KL-RV by PCE using
an iterative algorithm for the coefficients (Dai et al., 2019) or the method of fractional moments
(Zhang et al., 2022). When only samples are given, the method of choice is often kernel density
estimation (Grigoriu, 2010; Poirion and Zentner, 2013, 2014).

2.4.2.3 Extended KLE

While in Eqs. (2.25) to (2.27), KLE is defined for a closed and bounded index set D and uses
unweighted integrals, it can also be generalized to the weighted Hilbert space L2

fX
(D) with

probability density fX . It is then called extended KLE (Iemma et al., 2006).
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2.4.2.4 Numerical computation

In practice, the infinite expansion in Eq. (2.25) must be truncated, resulting in

M(x, ω) ≈ µ(x) +
M∑
k=1

√
λk ξk(ω)φk(x). (2.29)

K is usually chosen so that the fraction of explained variance satisfies∑M
k=1 λk∑∞
k=1 λk

> 1− ε (2.30)

for a small threshold parameter ε > 0. The basis {φk}k=1,2,... is optimal in the sense that for
any M , Eq. (2.29) has the smallest truncation error among all possible expansions in L2

fX
(D).

In most cases, the integral eigenvalue problem in Eq. (2.26) does not have an analytical solution.
The numerical solution is challenging because the integral is potentially high-dimensional and
the quantities of interest are not only vectors but functions. Numerous methods for solving
Eq. (2.26) have been proposed, such as Galerkin methods (Ghanem and Spanos, 1991; Gutiérrez
et al., 1992; Schwab and Todor, 2006), the Nyström method (Atkinson, 1996; Betz et al., 2014),
expansion optimal linear estimation (EOLE) (Li and Der Kiureghian, 1993), orthogonal series
expansion (OSE) (Zhang and Ellingwood, 1994), and degenerate kernel methods (Atkinson,
1996; Betz et al., 2014). We refer to the comprehensive review by Betz et al. (2014) for more
details.

2.4.2.5 Functional PCA

KLE can be seen as the continuous equivalent of the well-known dimension reduction method
principal component analysis (PCA) (Jolliffe, 2002), which for a given random vector (or for
realizations of a random vector) determines a new orthogonal coordinate system that is optimal
for a truncated expansion. KLE does the same for random functions, and is therefore also known
as functional PCA (Besse and Ramsay, 1986; Jolliffe, 2002; Ramsay and Silverman, 2005).

2.5 Sparsity and compressed sensing

Many numerical methods are affected by the so-called curse of dimensionality. This term denotes
the explosion of the computational cost that often occurs when solving problems with a large
number of parameters, which is referred to as their dimension. For example, the size of a PCE
basis of total degree p as defined in Eq. (2.21), which in d dimensions is given by P =

(p+d
p

)
,

grows fast with increasing d. Solving a system of linear equations is another example: the
number of required operations scales with N3, where N is the number of degrees of freedom
(e.g., the number of nodes in a finite element mesh with increasingly fine resolution).

Due to the curse of dimensionality, many high-dimensional problems may exceed the capacity
even of today’s powerful supercomputers. While the capabilities of computers continue to grow
due to technological progress, the curse of dimensionality will always be an issue as long as the



2.5. Sparsity and compressed sensing 31

algorithm in question scales worse than the improvement in technology. The only solution here
is to alleviate the curse of dimensionality by devising better algorithms.

Such a tool, able to mitigate the curse of dimensionality for certain applications, is given by
sparsity. Let v ∈ RP be a vector, sometimes also called signal.14 For example, v could be the
vector of coefficients for a representation of an object in a suitable basis. The signal v is called
sparse if most of its entries are equal to zero. More precisely, it is called s-sparse if it does
not have more than s nonzero entries. A closely related concept is compressibility: a signal is
called compressible if most of its entries are close to zero and only a few of them are large in
magnitude. In other words, a compressible signal is well-approximated by a sparse signal.

2.5.1 The setting of compressed sensing

The concept of sparsity has had a big impact on the field of signal processing with the introduc-
tion and rigorous analysis of compressed sensing (Candès et al., 2006; Donoho, 2006; Candès and
Wakin, 2008), which is sometimes also known as compressive sensing or compressive sampling.
Traditionally, signal processing was bound by the Nyquist rate: to reconstruct a time-dependent
signal with a frequency of at most B Hz from measurements, at least 2B samples at constant
rate are necessary. The groundbreaking result of compressed sensing is the following: under the
assumption that the representation of the signal in some suitable basis is s-sparse, and using a
specific type of measurement acquisition, the signal can be reconstructed with much less than
2B samples – notably without knowing where in the sparse representation the s nonzero entries
occur.

To make these notions more precise, let c ∈ RP be the sparse signal of interest.15 It is measured
by the sensing matrix Ψ ∈ RN×P , which results in the vector of measurements y = Ψc ∈
RN , where usually N < P . In other words, y is a linear combinations of the columns of Ψ,
weighted by the entries of c. Since N < P , the resulting linear system of equations Ψc′ = y is
underdetermined. Equivalently, in the compressed sensing literature this situation is also often
referred to as overcomplete basis, i.e., there are many more elements in the basis (columns in
Ψ) than necessary to explain the measurements y.

The goal is to reconstruct the sparse signal from the measurements, i.e., to find the sparsest
solution c of the equation Ψc′ = y. Mathematically, this can be written using the `0-“norm”16

‖c‖0 =
∑
i 1ci 6=0 counting the number of nonzero entries in c as follows:

c = arg min
c′∈RP

∥∥c′∥∥0 subject to Ψc′ = y. (2.31)

The only way to solve this so-called `0-minimization problem exactly is by a combinatorial search
through all possible nonzero patterns for c. However, this is infeasible for large problem sizes.

14This term is due to the origins of this theory in the field of signal processing.
15We assume for simplicity that the signal of interest c is sparse in RP . More generally, we can assume that c

is sparse when expressed in a certain basis Φ ∈ RP×P , i.e., c = Φa with a sparse. Then, the compressed sensing
methodology will be applied to find a = arg mina′∈RP ‖a′‖0 subject to ΨΦa′ = y.

16The `0-“norm” is not actually a norm because the triangle inequality is not fulfilled.
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The convex relaxation of this problem is given by `1-minimization, where ‖c‖0 is replaced by
the `1-norm ‖c‖1 =

∑
i |ci|:

c = arg min
c′∈RP

∥∥c′∥∥1 subject to Ψc′ = y. (2.32)

Under certain assumptions on Ψ and on the sparsity of c, the solution of Eq. (2.32) coincides
with the solution of Eq. (2.31). At the same time, Eq. (2.32) is much easier to solve because this
problem is convex. An exemplary mathematical result of compressed sensing, making precise
what assumptions are needed, is given in Section 2.5.2 below. Making compressed sensing even
more powerful, the same methodology can be used to compute best s-sparse approximations cs
to compressible signals c, achieving a trade-off between the accuracy of the solution cs and the
number N of required measurements.

Considering signals that are sparse in some basis has two main advantages:

1. It improves the interpretability of the solution: it is immediately clear which basis elements
are needed to explain the signal.

2. Due to sparsity, reconstruction is possible even in the case N < P , when the linear system
of equations is underdetermined, which alleviates the curse of dimensionality.

Compressed sensing, and more generally sparsity, has had significant impact not only in the
field of signal processing but also in many other fields, from biomedicine to information security
(Kougioumtzoglou et al., 2020). Specifically, the field of engineering mechanics has benefitted
from compressed sensing techniques, as discussed in the extensive review by Kougioumtzoglou
et al. (2020). We will discuss sparsity in the context of engineering models in more detail in
Section 2.5.3.

In the field of UQ, sparsity has been utilized in particular for sparse regression-based PCE,
starting in 2008 with a method proposed by Blatman and Sudret (2008). We give an overview
of the literature on sparse regression-based PCE in Section 2.5.4.

We now cite one exemplary result from the compressed sensing literature to illustrate the type
of mathematical guarantee obtained by compressed sensing.

2.5.2 An exemplary result of compressed sensing

The following results are from Candès and Plan (2011), adapted to our notation. Let c ∈ RP

be an s-sparse signal. Let Ψ ∈ RN×P be the so-called sensing matrix (to be multiplied with the
signal) and assume that each of its rows were sampled i.i.d. from a vector-valued distribution F
with the following two properties:

1. Isotropy: For a row Ψ ∼ F , it holds that E
[
ΨTΨ

]
= 1P (with 1P the P × P identity

matrix).
2. Incoherence: For the coherence parameter µ(F ) defined by

µ(F ) = sup
Ψ∼F

max
k=1, ... ,P

|Ψk|2, (2.33)

it holds that µ(F ) <∞, where Ψk is the k-th entry of a random row vector Ψ ∼ F .17

17If such a bound does not exist (e.g., for the Gaussian example F = N (0,1P )), a probabilistic bound can be
defined so that µ(F ) is with high probability an upper bound.
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For example, the isotropic distribution F = N (0,1P ) results in a sensing matrix Ψ whose entries
are i.i.d. standard Gaussian random variables. Its coherence can be shown to be µ(F ) = 6 logP
(Candès and Plan, 2011).

PCE provides another example of an isotropic sensing matrix: assuming that the experimental
design X has been sampled i.i.d. from the input distribution fX , a PCE regression matrix
Ψ containing the basis function evaluations at these locations is isotropic, because the basis
functions are orthonormal w.r.t. fX : EX [ψk(X)ψl(X)] = δkl. We will talk more about the
application of compressed sensing theory to PCE in Section 2.5.4 below.

Now, consider the `1-minimization problem in Eq. (2.32). Candès and Plan (2011) obtain the
following result:

Theorem 1 (Noiseless incoherent sampling (Candès and Plan, 2011)). Let c be a fixed
but otherwise arbitrary s-sparse vector in RP and pick any scalar β > 0. Then with probability
at least 1 − 5

P − e
−β, c is the unique minimizer to Eq. (2.32) with y = Ψc provided that [the

number N of rows of Ψ, each sampled from F , fulfills]

N ≥ Cβ µ(F ) s log(P ). (2.34)

More precisely, Cβ may be chosen as C0(1 + β) for some positive numerical constant C0.

If we wanted to solve Ψc = y by inversion of Ψ, we would need at least N = P points. In
contrast, the bound in Eq. (2.34) grows only logarithmically in P , up to the factor µ(F ) that
depends on the way the sensing matrix Ψ is constructed. This makes the coherence parameter
µ(F ) an important property that crucially influences the efficiency of the procedure. A number
of contributions in the PCE literature computes and optimizes the coherence for the distribution
F induced by the PCE regression matrix (Doostan and Owhadi, 2011; Yan et al., 2012; Hampton
and Doostan, 2015a,b; Shin and Xiu, 2016; Jakeman et al., 2017; Narayan et al., 2017); see also
Section 2.5.4 below.

The cited result relies on the coherence parameter µ(F ) to guarantee recovery. Bounds similar
to Eq. (2.34) have been obtained for other properties of the sensing matrix Ψ, for example the
spark (Donoho and Elad, 2003), the mutual coherence (Donoho et al., 2006), and the restricted
isometry property (RIP) (Candès et al., 2008).

While the above result is for noiseless recovery, i.e., Ψc = y, similar results exist for the case
that c is not exactly s-sparse but only compressible, or that y is corrupted by noise. For this
case, Candès and Plan (2011) propose to solve the so-called LASSO problem18

ĉ = arg min
c′∈RP

∥∥Ψc′ − y∥∥2
2 + λ

∥∥c′∥∥1 . (2.35)

This results in bounds on the norms ‖c− ĉ‖1 and ‖c− ĉ‖2 which involve the best s-sparse
approximation to the true solution c, while requiring the same number of samples as the noiseless
case in Eq. (2.34). λ is a hyperparameter governing the trade-off between accuracy and sparsity,
chosen as λ = 10

√
P by Candès and Plan (2011). While Eq. (2.35) looks similar to ridge

regression, which uses the `2-norm for the constraint in the second summand and can be solved
18LASSO stands for “least absolute shrinkage and selection operator”.
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analytically, the LASSO problem does not have a closed-form solution (Hastie et al., 2001,
Ch. 3.4.2).19

Besides Eqs. (2.31) and (2.35), there are many other problem formulations and algorithms that
provably encourage sparse solutions. For example, a formulation equivalent to Eq. (2.35) is basis
pursuit denoising (BPDN) given by

c = arg min
c′

∥∥c′∥∥1 s.t.
∥∥Ψc′ − y∥∥2 ≤ σ. (2.36)

Instead of measuring sparsity with the `1-norm ‖c‖1 =
∑
i |ci|, other sparsity-enhancing for-

mulations make use e.g. of a combination of different norms such as `1 − `2 minimization (Yin
et al., 2015) or elastic net (Hastie et al., 2001), or of Bayesian formulations utilizing a sparsity-
encouraging prior on the coefficients (Tipping, 2001; Tipping and Faul, 2003; Babacan et al.,
2010). A plethora of algorithms has been developed for solving these formulations, from gradient-
descent based methods such as spectral projected gradient-`1 (SPGL1) for (2.36) (van den Berg
and Friedlander, 2008) to stepwise regression algorithms such as orthogonal matching pursuit
(OMP) (Pati et al., 1993; Tropp and Gilbert, 2007) or least-angle regression (LARS) (Efron
et al., 2004) to iterative algorithms for sparse Bayesian learning (Tipping and Faul, 2003; Wipf
and Rao, 2004; Ji et al., 2008; Babacan et al., 2010), to name just a few. General surveys
of compressed sensing algorithms are available, e.g., in Bruckstein et al. (2009); Qaisar et al.
(2013); Zhang et al. (2015); Arjoune et al. (2017).

2.5.3 Sparsity in engineering models

In computational as well as experimental engineering, it is common to deal with sparse data,
i.e., only a small number of point measurements of the system of interest in a few configurations
is available (Kougioumtzoglou et al., 2020). This is the case, for example, in structural health
monitoring where a small number of sensors on a structure is used to determine the state of the
system (Bao et al., 2011). The sparse set of data must be used together with some structural
assumptions to draw conclusions about the system of interest.

As elaborated in the extensive review by Kougioumtzoglou et al. (2020), compressed sensing has
successfully been applied to several engineering subfields, from structural health monitoring to
uncertainty modeling and uncertainty propagation. With our focus on surrogate modeling, this
thesis belongs to the third subfield. In particular, we will use sparse PCE and its close relative,
sparse PoinCE, to surrogate deterministic simulators, while for stochastic simulators we will
employ a method that uses sparse PCE as one of its building blocks (see Chapters 3 to 6).

The successful application of compressed sensing requires a suitable basis in which the signal
of interest is sparse. As evident from the success of sparse PCE for engineering models (see,
e.g., Blatman and Sudret (2008); Chatterjee et al. (2019); Hariri-Ardebili and Sudret (2020)),
the polynomial chaos basis seems to be well suited for this task. A tentative explanation for

19In the special case that Ψ has orthogonal columns and is overdetermined, the solution to Eq. (2.35) can
be obtained analytically by shrinking and truncating the coefficients of the OLS solution in Eq. (2.23) (soft
thresholding) (Hastie et al., 2001, Ch. 3.4). However, this formula is not applicable in the underdetermined case,
in which the OLS solution cannot be computed.
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this observation could be that many quantities of interest computed from engineering models
are effectively smooth functions of their input parameters, or arise from physical processes
that have (close to) linear, exponential or low-frequency oscillatory behavior and are thus well
approximated by polynomials.

Furthermore, due to independence, the orthonormal polynomial basis of PCE is constructed as a
tensor product of univariate bases (Section 2.4.1). By construction, most of the resulting terms
only involve a subset of all variables. The number of basis functions in a total-degree basis is
large, but often only a few of these functions are actually needed to represent the model. A few
heuristic arguments can be found in the literature to explain this observation:

• If the model is high-dimensional, it is often the case that only a few of its input parameters
are important. Becker (2020) relates this to the well-known Pareto principle (also known
as “80/20 rule”): a small number of variables is able to explain a large amount of variation.
In other words, models often have low effective dimensionality.
• The response of a system is often dominated by main effects (i.e., terms involving only a sin-
gle variable) and low-order interactions between variables, an observation called sparsity-
of-effects principle (Montgomery, 2004).

However, it should be noted that not all engineering models are sparse in the PCE basis. Most
are only compressible, i.e., the magnitude of their PCE coefficients decays fast. At the same
time, there are also examples that are not well approximated by polynomials, e.g., functions
such as likelihoods with highly localized behavior, non-differentiable functions arising e.g. from
taking maxima, or discontinuous models. For such models, a possible solution are adaptive
domain partitioning schemes in which local surrogates are constructed (Le Maître et al., 2004;
Wan and Karniadakis, 2006; Moustapha and Sudret, 2019; Marelli et al., 2021b).

We will numerically explore the sparsity of engineering models in terms of the non-polynomial
Poincaré basis (Section 2.4.1.2) in Chapter 5.

2.5.4 Sparse regression for polynomial chaos expansions

Shortly after the breakthrough in compressed sensing around 2006 (Donoho, 2006; Candès et al.,
2006), these ideas also arrived in the UQ community working on PCE. The first papers suggest
stepwise regression algorithms to build a sparse solution step by step (Blatman and Sudret, 2008,
2010). Subsequently, the `1-minimization formulation and the associated rigorous algorithms
were applied to PCE, yielding sparse PCE (Blatman and Sudret, 2011; Doostan and Owhadi,
2011; Mathelin and Gallivan, 2012) which continues to receive considerable attention from both
the engineering and the applied mathematics communities.

Regression-based PCE perfectly fits into the framework of compressed sensing. For an ex-
perimental design X = {x(1), . . . ,x(N)} ⊂ D sampled from the input distribution fX , the
regression matrix Ψ ∈ RN×P is obtained by evaluating the orthonormal polynomial basis func-
tions at the experimental design points, resulting in entries Ψij = ψαj (x(i)). The columns of
Ψ are by design orthogonal in expectation: in the terminology of Section 2.5.2, Ψ is isotropic.
The sparse signal to be “recovered” is the vector of coefficients c that defines the PCE through
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MPCE(x) =
∑
α∈A cαψα(x). The measurements are the model evaluations collected into the

response vector y = (M(x(1)), . . . ,M(x(N)))T .

As introduced in Eq. (2.23), the ordinary least squares (OLS) regression problem is to find c with
c = arg minc′∈RP ‖y −Ψc′‖22. This problem has the unique solution cOLS =

(
ΨTΨ

)−1
ΨTy if

the regression matrix Ψ has rank P , which requires N ≥ P (Berveiller et al., 2006).

In the case of PCE, a sparse solution is desired not because sparse solutions are better ap-
proximations but for computational reasons: a sparse solution of sufficient accuracy can often
be obtained with considerably fewer model evaluations than a dense solution would require.
However, if enough data was available, a denser solution might provide an overall better approx-
imation.

To find sparse coefficient vectors c for given data, the PCE community has developed numerous
approaches ranging from methods that closely follow recent developments in compressed sensing
(Blatman and Sudret, 2011; Hampton and Doostan, 2015b; Jakeman et al., 2017; Alemazkoor
and Meidani, 2018a) to heuristic algorithms which achieve sparsity by iteratively adding or
removing nonzero coefficients from the vector (Blatman and Sudret, 2008, 2010; Shao et al.,
2017; Alemazkoor and Meidani, 2017). Not all methods that are currently in use can be traced
back to a specific article introducing it to the PCE community. There are a number of methods
that have been used for years without an explicit introduction, e.g., orthogonal matching pursuit
(OMP) (Pati et al., 1993; Tropp and Gilbert, 2007), spectral projected gradient-`1 (SPGL1)
(van den Berg and Friedlander, 2008), and subspace pursuit (Dai and Milenkovic, 2009).

Furthermore, as explained in Section 2.5.2, the properties of the regression matrix are important
for the quality of the result. The regression matrix is induced by the sampling of the exper-
imental design, whose choice can therefore influence the final result. Again, the literature on
sampling schemes is vast. Currently used and investigated schemes include, among others, Latin
hypercube sampling (LHS) (McKay et al., 1979; Shields and Zhang, 2016), D-optimal sampling
(Kiefer and Wolfowitz, 1959; Diaz et al., 2018), and coherence-optimal sampling (Hampton and
Doostan, 2015b). Some of these methods introduce weights into the regression problem.

Further contributions to the sparse PCE literature include preconditioning schemes (Alemazkoor
and Meidani, 2018b), basis adaptivity (Jakeman et al., 2015; Hampton and Doostan, 2018),
rotation of the input coordinates (Tipireddy and Ghanem, 2014; Yang et al., 2018; Tsilifis et al.,
2019; Papaioannou et al., 2019), and sequential sampling of the experimental design (Fajraoui
et al., 2017; Hampton and Doostan, 2018; Diaz et al., 2018).

For a thorough and extensive literature review, we refer to our publications Lüthen et al. (2021)
and Lüthen et al. (2022a) provided in Chapters 3 and 4.

2.6 Sensitivity analysis

An important part of understanding the model behavior under uncertainty is the analysis of
the relative importance of each of the input variables, which is known as sensitivity analysis
(Saltelli et al., 2008). There are numerous approaches for sensitivity analysis from local to global
methods, ranging from correlation-based methods suited mainly for linear models to the more
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general but more costly variance-based or density-based approaches. For extensive reviews and
comparisons of the available methods, see Iooss and Lemaître (2015); Borgonovo and Plischke
(2016); Borgonovo (2017); Becker (2020); Da Veiga et al. (2021).

To assess the global sensitivity of a real-valued nonlinear model with independent input variables,
one of the most widespread approaches is the variance-based Sobol’ sensitivity analysis, which
we describe in detail in Section 2.6.1. Sobol’ indices determine the contribution of each input
parameter (and of each possible combination of parameters) to the variance of the output.

In the case that partial derivatives of the computational model are available, the derivative-based
global sensitivity measures (DGSM) can be computed. These indices are defined as the L2

fX
(D)-

norm of the partial derivatives over the input space. We present this method in Section 2.6.2.

Further notable developments in global sensitivity analysis include the following. Shapley indices
were originally introduced in game theory to attribute the “created value” of a team to each of the
team members. In UQ, they can be applied for sensitivity analysis using the “team” of input
variables and a suitable definition for the created value, e.g., the unnormalized closed Sobol’
index (Owen, 2014; Owen and Prieur, 2017). The density-based Borgonovo indices measure the
expected L1-difference between the unconditional output density and the density conditioned on
the i-th variable (Borgonovo, 2007). These were generalized by Da Veiga (2015) by replacing the
L1-difference by other dissimilarity measures between distributions. Recently, Da Veiga (2021)
proposed two types of moment-independent indices based on kernel mean embeddings and the
maximum mean discrepancy measure, or the Hilbert-Schmidt independence criterion (HSIC),
respectively. Both indices allow an ANOVA-like decomposition analogous to Eq. (2.38) and can
be seen as density-based generalizations of Sobol’ indices.

In Sections 2.6.1 and 2.6.2, we present two global methods in more detail, namely Sobol’ indices
and derivative-based global sensitivity indices (DGSM), which will be needed in Chapter 5. In
Section 2.6.3 we discuss which sensitivity analysis methods are applicable in the more general
cases when the input variables are dependent or when the output is not scalar and real-valued.
The latter includes the case of stochastic simulators.

2.6.1 Hoeffding-Sobol’ decomposition and Sobol’ indices

Assuming that the input random variables Xi, i = 1, . . . , d are independent, any functionM∈
L2
fX

(D) can be decomposed uniquely as a sum of terms of increasing complexity

M(x) = m0 +
∑

1≤i≤d
mi(xi) +

∑
1≤i<j≤d

mi,j(xi, xj)

+
∑

1≤i<j<k≤d
mi,j,k(xi, xj , xk) + · · ·+m1,...,d(x1, . . . , xd), (2.37)

where the terms satisfy
∫
mI(xI)fXk(xk)dxk = 0 for all I ⊂ {1, . . . , d} and k ∈ I. This

implies that the terms are mutually orthogonal, i.e.,
∫
mI(xI)mJ(xJ)fX(x)dx = 0 for I 6=

J . This decomposition is known as Hoeffding-Sobol’ decomposition or ANOVA decomposition
(Hoeffding, 1948; Efron and Stein, 1981; Sobol’, 1993).
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ANOVA stands for “analysis of variance”, which refers to the following decomposition resulting
from taking the variance on both sides of Eq. (2.37):

Var [M(X)] =
∑

1≤i≤d
Var [mi(Xi)] +

∑
1≤i<j≤d

Var [mi,j(Xi, Xj)] + · · ·+ Var [m1,...,d(X1, . . . , Xd)] .

(2.38)
Since all these terms are non-negative, it is clearly visible which amount of the output variance
is explained by variable Xi alone: this quantity is called first-order Sobol’ index and is given by

S1
i = Var [mi(Xi)]

Var [M(X)] . (2.39)

The total influence of a variable Xi on the output variance is given by the total Sobol’ index

STi = 1
Var [M(X)]

∑
J :i∈J

Var [mJ(XJ)] , (2.40)

gathering all the contributions by terms that involve variable Xi. Due to the normalization,
0 ≤ S1

i ≤ 1 and 0 ≤ STi ≤ 1. It holds that S1
i ≤ STi , and the difference between these two

indices quantifies the interaction effect involving Xi. If S1
i is large, Xi is important. On the

other hand, STi close to zero implies that Xi does not have a large effect on the variance of the
output; in other words, setting Xi to a constant value will not have a large impact on the output
uncertainty.

Sobol’ indices can be computed by Monte Carlo-based methods (Homma and Saltelli, 1996;
Jansen, 1999; Sobol’, 2001; Janon et al., 2014; Becker, 2020). An alternative is to compute
them from a surrogate model (Iooss and Lemaître, 2015; Le Gratiet et al., 2017). For this,
polynomial chaos expansions are especially suitable, because the tensor product basis functions
directly relate to the terms of the Hoeffding-Sobol’ decomposition as follows (Sudret, 2008). Let
M(X) =

∑
α∈Nd cαψα(X). Then

mI(XI) =
∑

α:αi>0 for i∈I,
αj=0 for j /∈I

cαψα(X) (2.41)

and it follows that the Sobol’ indices can be computed from the PCE coefficients as

S1
i = 1

D

∑
α:αi>0,

αj=0 for j 6=i

c2
α, (2.42)

STi = 1
D

∑
α:αi>0

c2
α (2.43)

with the total variance D = Var [M(X)] =
∑
α6=0 c

2
α.

More generally, the formulas for the first-order and total Sobol’ indices Eqs. (2.42) and (2.43)
hold for any tensorized spectral expansion whose associated univariate bases each contain the
constant function as first element.

2.6.2 Derivative-based global sensitivity measure (DGSM)

When the partial derivatives of the computational model are available, a global sensitivity index
can be obtained by integration. The so-called derivative-based sensitivity measure (DGSM)
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index ofM with respect to Xi (Sobol and Gresham, 1995; Kucherenko et al., 2009; Sobol’ and
Kucherenko, 2009) is defined by

νi = E

[(
∂M
∂xi

(X)
)2]

=
∫

Rd

(
∂M
∂xi

(x)
)2
fX(x)dx =

∥∥∥∥∂M∂xi
∥∥∥∥2
. (2.44)

This can be seen as a continuous version of the Morris sensitivity indices (Morris, 1991; Lamboni
et al., 2013). DGSM can efficiently be computed by Monte Carlo simulation (Kucherenko et al.,
2009). An alternative is the computation through PCE, which is possible analytically for certain
polynomial families (Sudret and Mai, 2015).

2.6.3 Dependent input and non-scalar output

Most of the methods described above assume that the input variables are independent and that
the output is real-valued and continuous. We now briefly discuss extensions to the more general
cases of dependent input and non-scalar output. In particular, the latter includes sensitivity
analysis for stochastic simulators.

When the input variables are dependent, several methods, including the popular Sobol’ indices,
are not applicable or give answers that are difficult to interpret. Efficiently conducting meaning-
ful sensitivity analysis for dependent variables is an active area of research, and several solutions
have been proposed from local polynomial regression (Da Veiga et al., 2009) over modified
variance-based indices utilizing random variable transformations (Mara and Tarantola, 2012;
Mara et al., 2015) to Shapley indices (Owen, 2014; Owen and Prieur, 2017; Da Veiga, 2021).
For a comprehensive overview of the current state of the art in this field, we refer to Da Veiga
et al. (2021).

For the treatment of time- or space-dependent vector-valued or functional output, Nagel et al.
(2020) and Perrin et al. (2021) reduce the dimensionality of the output by principal component
analysis (PCA) before applying Sobol’ analysis to the principal components. Nagel et al. (2020)
analyze the evolution of the resulting Sobol’ indices with time, while Perrin et al. (2021) aggre-
gate the indices using the generalized sensitivity index of Lamboni et al. (2011) and Gamboa
et al. (2014). Density-based methods like the Borgonovo indices or the dissimilarity measure
generalization by Da Veiga (2015) can take multivariate output into account by integrating the
density measure over the whole multivariate output range. Finally, the kernel-based methods
proposed by Da Veiga (2021) can be applied to output of any type (categorical, vector-valued,
functional) provided that suitable kernels are used.

Sensitivity analysis can also be performed for stochastic simulators (Section 2.3). As discussed
by Zhu and Sudret (2021c), Sobol’ indices can be generalized to stochastic simulators in sev-
eral ways. The first is to consider both the explicit and latent variables as input variables,
resulting in classical Sobol’ indices for the extended input space (Iooss and Ribatet, 2009). The
second way is to consider a statistic of the output random variable, which effectively reduces
the stochastic simulator to a deterministic one, and to perform Sobol’ analysis for this statistic
(Iooss and Ribatet, 2009; Azzi et al., 2020). Finally, Sobol’ analysis can be applied to each of
the deterministic trajectories of the stochastic simulator obtained by fixing the latent variables.
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The resulting indices are random variables that depend on the latent variables (Hart et al., 2017;
Navarro Jimenez et al., 2017).

Kernel-based methods provide another alternative for the sensitivity analysis of stochastic sim-
ulators. Using the random variable view of Eq. (2.5), a stochastic simulator can be seen as a
deterministic model with random variable output. Therefore, with a suitable choice of kernel
for probability distributions, the recently proposed kernel-based indices by Da Veiga (2021) can
be applied.

2.7 Software for uncertainty quantification

There is an increasing awareness in the computational science community that understanding
the influence of uncertainty on the model output is an important part of the quality assurance
of computational models, and that UQ methods can give valuable insights about the model
itself. UQ is an active field of research, and a vast amount of efficient and reliable techniques
have been and continue being developed to address the questions from Section 1.1. This also
poses a challenge: modelers and practitioners, while being experts in their respective field of
applied science or engineering, cannot always be aware of the most recent developments and
recommendations in UQ, and might perform outdated, inaccurate or inefficient analyses (Saltelli
et al., 2019).

In view of this, it is necessary to test the developed methods on practical problems, and to
benchmark them to provide recommendations. At the same time, it is important to make
the recent developments available to the public in form of software that is thoroughly tested
and easy to use, so that not every researcher has to implement the UQ method of interest
(which might be mathematically or computationally quite involved) from scratch. Fortunately,
numerous such software projects have been developed by experts in the field of UQ, written in
various programming languages and with different focus areas and target groups. Among others,
there are the Python libraries UQPy (Olivier et al., 2020), UQ[Py]Lab (Lataniotis et al., 2021),
and PyApprox (Jakeman, 2022); the C++/Python libraries OpenTURNS (Andrianov et al.,
2007) and UQTk (Sargsyan et al., 2022); the C++ toolkit Dakota (Adams et al., 2014); the R
sensitivity package (Iooss et al., 2021); the R/Shiny platform Lagun (Da Veiga et al., 2022);
and the Matlab-based software packages Cossan (Patelli et al., 2014) and UQLab (Marelli and
Sudret, 2014).

For the research conducted in the context of this thesis, we have made extensive use of UQLab.
UQLab is a general-purpose UQ software developed by the Chair of Risk, Safety and Uncertainty
Quantification at ETH Zürich. It is based on Matlab (Mat, 2020) and comprises numerous
modules covering all steps of the UQ framework (Section 2.1), notably the modeling of the
input, surrogate models like sparse PCE and Kriging, as well as sensitivity analysis, but also
further modules such as Bayesian inversion, random fields, or reliability analysis, just to name
a few. Selected results of our research related to sparse PCE solvers (Chapter 3) were already
made available in the recent release UQLab Version 1.4.0 (Marelli et al., 2021a).
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Summary and outlook on the following chapters

This concludes our review of the state of the art in uncertainty quantification, in which we
specifically focused on the topics relevant for this thesis, i.e., surrogate modeling by spectral
methods, sparsity, and sensitivity analysis. In the subsequent Chapters 3 to 6, we report our
research results which build on the presented material as follows.

In Chapters 3 and 4, we survey and classify the literature on sparse regression-based PCE, whose
basics we reviewed in Section 2.4.1 (PCE) and Section 2.5 (sparse regression). Furthermore, we
perform an extensive benchmark of the most promising methods using UQLab (Section 2.7).

In Chapter 5, we analytically and numerically investigate the properties of sparse Poincaré chaos
expansions, relying on the theory presented in Section 2.4.1.2 (Poincaré chaos), Section 2.5
(sparse regression), and Section 2.6 (sensitivity analysis).

Finally, in Chapter 6 we propose a new sparse spectral surrogate model for stochastic simulators,
which belongs to the class of surrogate models taking the random function view as explained
in Section 2.3.3.2. We use sparse polynomial chaos expansion (Sections 2.4.1 and 2.5) and
Karhunen-Loève expansion (Section 2.4.2) to construct a surrogate that is able to approximate
non-Gaussian stochastic simulators.
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CHAPTER 3

Sparse polynomial chaos expansions:
Literature survey and benchmark

This chapter contains the postprint of

Lüthen, N., Marelli, S., Sudret, B. (2021). Sparse polynomial chaos expansions:
Literature survey and benchmark. SIAM/ASA J. Uncertain. Quantif. 9 (2), 593–
649.1

as published in the SIAM/ASA Journal of Uncertainty Quantification, differing from the pub-
lished paper only in terms of layout and formatting.

Author contributions. N. Lüthen: Methodology, Software, Validation, Investigation, Writ-
ing - Original Draft, Visualization. S. Marelli: Conceptualization, Methodology, Writing - Re-
view & Editing, Supervision. B. Sudret: Conceptualization, Methodology, Writing - Review
& Editing, Supervision, Funding Acquisition.

Abstract

Sparse polynomial chaos expansions (PCE) are a popular surrogate modelling method that
takes advantage of the properties of PCE, the sparsity-of-effects principle, and powerful sparse
regression solvers to approximate computer models with many input parameters, relying on
only few model evaluations. Within the last decade, a large number of algorithms for the
computation of sparse PCE have been published in the applied math and engineering literature.
We present an extensive review of the existing methods and develop a framework for classifying

1First published in SIAM/ASA Journal of Uncertainty Quantification in Volume 9, Number 2, 2021, published
by the Society for Industrial and Applied Mathematics (SIAM). Copyright c© by SIAM and ASA. Unauthorized
reproduction of this article is prohibited.
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the algorithms. Furthermore, we conduct a unique benchmark on a selection of methods to
identify which approaches work best in practical applications. Comparing their accuracy on
several benchmark models of varying dimensionality and complexity, we find that the choice of
sparse regression solver and sampling scheme for the computation of a sparse PCE surrogate can
make a significant difference, of up to several orders of magnitude in the resulting mean-squared
error. Different methods seem to be superior in different regimes of model dimensionality and
experimental design size.

3.1 Introduction

Computer modelling is used in nearly every field of science and engineering. Often, these com-
puter codes model complex phenomena, have many input parameters, and are expensive to
evaluate. In order to explore the behavior of the model under uncertainty (e.g., uncertainty
propagation, parameter calibration from data or sensitivity analysis), many model runs are re-
quired. However, if the model is costly, only a few model evaluations can be afforded, which
often do not suffice for thorough uncertainty quantification. In engineering and applied sciences,
a popular work-around in this situation is to construct a surrogate model. A surrogate model
is a cheap-to-evaluate proxy to the original model, which typically can be constructed from a
relatively small number of model evaluations and approximates the input-output relation of the
original model well. Since the surrogate model is cheap to evaluate, uncertainty quantification
can be performed at a low cost by using the surrogate model instead of the original model.
Therefore, surrogate modelling aims at constructing a metamodel that provides an accurate
approximation to the original model while requiring as few model evaluations as possible for its
construction.

In this article, we focus on nonintrusive regression-based sparse polynomial chaos expansions
(PCE), which is a popular surrogate modelling technique, and within the last decade is has
received attention from the communities of applied mathematics and engineering. PCE express
the computational model in terms of a basis of polynomials orthonormal with respect to the in-
put random variables (Xiu and Karniadakis, 2002) and work well for globally smooth problems,
which are common in many engineering applications. In addition to being a surrogate model,
PCE are also often used for uncertainty propagation and sensitivity analysis, since moments
and Sobol’ sensitivity indices can be computed analytically (Sudret, 2008). Nonintrusive PCE
treat the model as a black box (unlike intrusive PCE commonly used for solving stochastic
PDEs). It is often advantageous to compute a sparse PCE, which is an expansion for which
most coefficients are zero. This can be justified by the sparsity-of-effects principle and by com-
pressibility: The sparsity-of-effects principle is a heuristic stating that most models describing
physical phenomena are dominated by main effects and interactions of low order (Montgomery,
2004). Furthermore, PCE of real-world models are usually either sparse or at least compressible,
meaning that the PCE coefficients, sorted by magnitude, decay quickly. Additional advantages
of sparse expansions are given in Section 3.2.2.

Within the last decade, a large number of articles has been published on the topic of regression-
based sparse PCE, each containing promising improvements on how to perform sparse PCE but
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often lacking a thorough comparison to previously published methods. In this work, we survey
the state-of-the-art literature, develop a general framework into which the various approaches
can be fit, and carry out a numerical benchmark of a selection of methods to assess which of the
many sparse PCE methods perform best on a representative set of realistic benchmark models.

The paper is structured as follows. Section 3.2 contains the description of our framework for
classifying the sparse PCE literature as well as the extensive literature review. Section 3.3
contains the benchmark description and the numerical results. Finally, conclusions are drawn
in section 3.4. More detailed descriptions of selected sparse solvers and experimental design
techniques are given in the Appendices using unified notation.

3.2 Framework and literature survey for sparse polynomial chaos
expansions

3.2.1 Regression-based polynomial chaos expansions

Let X be a d-dimensional random vector on a domain D ⊂ Rd with independent components
and probability density function fX(x) =

∏d
i=1 fXi(xi). Let L2

fX
(D) be the space of all scalar-

valued models with finite variance under fX , i.e., L2
fX

(D) = {h : D → R | VarX [h(X)] < +∞}.
Under certain assumptions on the input distribution fX (Xiu and Karniadakis, 2002; Ernst
et al., 2012), there exists a polynomial orthonormal basis {ψα : α ∈ Nd} for L2

fX
(D). Since the

components of X are assumed to be independent, the basis elements are products of univariate
orthonormal polynomials and are characterized by the multi-index α ∈ Nd of polynomial degrees
in each dimension.

We consider a particular model M ∈ L2
fX

(D) and denote by Y = M(X) the corresponding
output random variable. Y can be represented exactly through an infinite expansion in {ψα :
α ∈ Nd}. In practice, however, not all infinitely many coefficients can be computed, and we are
interested in a truncated expansion

Y =M(X) ≈MPCE(X) =
∑
α∈A

cαψα(X) (3.1)

whose accuracy depends on the choice of the finite set A ⊂ Nd (i.e., on the basis elements used
for the expansion) as well as on the coefficients cα. Several truncation techniques are described
in Section 3.2.4.

To compute the coefficients, one well-known and practical approach is regression (Isukapalli,
1999; Berveiller et al., 2006)2. The basic regression approach is ordinary least squares (OLS).
Let {x(k)}Nk=1 ⊂ D be a sample of the input space called experimental design (ED). Let
y = (y(1), . . . , y(N))T be the vector of model responses with y(k) =M(x(k)). Define the matrix

2Other, earlier approaches for computing the coefficients are stochastic Galerkin and stochastic collocation
methods (Ghanem and Spanos, 1991; Xiu and Hesthaven, 2005; Shen et al., 2020). For a comparison of their
performance to regression-based PCE, see, e.g., Berveiller (2005); Hosder et al. (2007); Doostan and Owhadi
(2011); Mathelin and Gallivan (2012).
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of basis function evaluations Ψ with entries Ψij = ψj(x(i)), where the basis functions are enu-
merated in an arbitrary way. Denoting the number of basis functions with P , we see that the
regression matrix Ψ is an N × P -matrix. Then, the OLS regression problem can be written as

ĉ = arg min
c∈RP

‖Ψc− y‖2 . (3.2)

For a unique and robust solution, a heuristic number of model evaluations is N ≈ 2P, 3P (Hosder
et al., 2007; Fajraoui et al., 2017), which can be infeasible for high-dimensional or high-degree
PCE approximations.

3.2.2 Sparse PCE

Sparse coefficient vectors are determined through sparse regression, which, in addition to a good
regression fit, requires that the solution be sparse. This constraint on sparsity is realized e.g.
by adding as a regularization term the `0-“norm” or the `1-norm of the coefficient vector to the
OLS formulation of (3.2) (see Appendix 3.B for more details). Many sparse regression methods
used in PCE were originally developed in the context of compressive sensing (Donoho, 2006;
Candès et al., 2006). For an introduction to the concepts and ideas of compressive sensing, see,
e.g., Candès and Wakin (2008); Bruckstein et al. (2009); Kougioumtzoglou et al. (2020).

Unlike OLS, compressive sensing methods allow one to use fewer design points N than basis
functions P and still recover the true sparse solution, or find a good sparse approximation to it.
This and its robustness to noise, both of which are induced by the sparsity constraint, are the
main reasons why sparse PCE are preferred to full PCE in practical settings when the number
of model evaluations necessary for OLS-based PCE would be infeasible to compute. Note that
while the use of sparse PCE for engineering models can be justified by compressibility and the
sparsity-of-effects heuristic (section 3.1), the main goal in sparse PCE is to compute a good
surrogate model from a few model evaluations and not to find the sparsest possible expansion.
The assumption of sparsity is used as a tool for finding robust solutions to underdetermined
systems of linear equations.

The first publications on sparse regression-based PCE proposed greedy forward-backward selec-
tion algorithms (Blatman and Sudret, 2008, 2010) and introduced the LARS algorithm for sparse
PCE (Blatman and Sudret, 2011). On the mathematical side, Doostan and Owhadi (2011) ana-
lyzes convergence properties for sparse Legendre PCE when the design points are sampled from
the uniform distribution. Another early work is Mathelin and Gallivan (2012) demonstrating
that sparse PCE are less costly and more accurate than PCE based on Smolyak sparse grids.
Since then, a large number of articles has been published on the topic of sparse PCE suggesting
new methods for specific aspects of the sparse regression procedure. In the following, we present
a framework into which the existing literature can be fit. The framework provides an overview
of the available choices and enables a structured comparison of their impact on the performance
of the resulting sparse PCE. Naturally, some new combinations of methods arise that have not
yet been considered in the literature.
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Figure 3.1: Framework for computing sparse PCE. For each component of the framework, a
number of methods has been proposed in the literature. In the first part (section 3.2) of this
paper, we review the literature for each of the components. Details on selected methods are given
in Appendices 3.A and 3.B. In the second part (section 3.3), we conduct a benchmark of selected
methods for the components marked in orange, performing a single iteration of the framework.
Iterative basis adaptation and experimental design enrichment are not considered in this work and
are left for future benchmarks.

3.2.3 Framework: Classifying the literature on sparse PCE

Here, we present the framework we developed in order to gain an overview of the extensive
literature proposing new methods for computing sparse PCE. Figure 3.1 shows a sketch of this
framework. To compute a sparse PCE, the first step is to choose a set A of candidate polyno-
mials for the expansion (Section 3.2.4) as well as an experimental design (Section 3.2.5). The
experimental design defines the locations of the model evaluations. Once the model evalua-
tions are obtained, the sparse solution can be computed by applying a sparse regression solver
(see Section 3.2.6). This solver often depends on a number of hyperparameters that have to
be selected carefully in order to get good results. Then, a suitable model selection criterion is
evaluated (Section 3.2.7). If the obtained solution is satisfactory, the process can be stopped.
Otherwise, the basis can be adapted (usually augmented; see Section 3.2.4), and/or the experi-
mental design can be enriched (see Section 3.2.5.4). This process is repeated until the value of
the model selection criterion either is satisfactory or cannot be reduced.

In addition to the components shown in Figure 3.1, there are methods (we call them enhance-
ments) that aim at generally improving the solution to the sparse regression problem by, e.g.,
adapting the input space or preconditioning the regression matrix. They are discussed in Sec-
tion 3.2.8.

3.2.4 Choice of basis and basis adaptation

The approximation quality of a truncated PCE hinges on the polynomial functions available
for building the surrogate model, which are characterized by the associated set of multi-indices
A ⊂ Nd. We call the finite set of polynomials {ψα : α ∈ A} included in the current truncated
PCE model basis and call its members candidate polynomials or candidate basis functions.
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A sparse PCE algorithm will find nonzero coefficients only for a subset Aactive ⊂ A of the
basis functions, which we call active basis functions. On the one hand, A should include enough
candidate polynomials to facilitate a good approximation. On the other hand, unnecessary basis
functions decrease the ratio N/P of model evaluations to unknown coefficients and deteriorate
the regression matrix. Therefore, it is beneficial to carefully select the polynomials to be included
in the expansion.

The choice of basis is often motivated by the sparsity-of-effects principle, a heuristic guideline
stating that most real-world models are well approximated by terms of low degree and low
interaction order. The following are popular ways to construct a basis:

• Total-degree A total-degree basis of degree p is defined by Ap = {α : ‖α‖1 ≤ p}.
• Hyperbolic truncation Let p be fixed. Define the q-norm-truncated basis

Ap,q = {α : ‖α‖q ≤ p} (3.3)

with q ∈ (0, 1] (Blatman and Sudret, 2011) and the quasi-norm ‖x‖q =
(∑d

i=1 |xi|q
) 1
q .

For q = 1, Ap,1 is the total-degree basis of order p. For smaller q, this truncation scheme
excludes terms with high interaction order while keeping univariate polynomials up to
degree p.
• Interaction order The interaction order of the basis can be restricted by defining

Ap,r = {α ∈ Ap : #{i : αi 6= 0, i = 1, . . . , d} ≤ r} (3.4)

(Blatman and Sudret, 2008; Marelli and Sudret, 2019). This is useful for reducing the
number of basis functions especially in high dimensions and when it is known (e.g., for
physical reasons) that only a certain number of variables might interact.

Instead of using a fixed basis A, it can be beneficial to employ an iterative scheme which
starts from a small set of basis functions (low-dimensional, low-order) and, after computing a
sparse solution, repeatedly adapts the basis by including a set of the most promising candidate
polynomials and possibly removing others. This is called basis adaptivity (not to be confused
with Gaussian adaptation (Tipireddy and Ghanem, 2014); see also Section 3.2.8).

A simple instance of basis adaptivity is degree adaptivity (Blatman and Sudret, 2010), which
is based on total-degree bases. The procedure starts with a basis of low total degree and
iteratively increases the total degree of the basis. Finally, a model selection criterion is used
to select the best basis and associated sparse solution. Similarly, q-norm and interaction order,
or a combination of all three, can also be used to design a basis adaptation scheme (Blatman
and Sudret, 2010, 2011). This basis adaptivity is solution-agnostic in the sense that it does not
use any information from the solutions computed in previous runs for the augmentation of the
basis. Another solution-agnostic method is the dimension- and order-incrementing algorithm
of Alemazkoor and Meidani (2017). Two methods that adapt the basis based on the active
terms of the previous sparse solution are forward neighbor basis adaptivity (Sargsyan et al.,
2014; Jakeman et al., 2015) and anisotropic degree basis adaptivity (Hampton and Doostan,
2018). These approaches keep the size of the basis small by strictly controlling which functions
are added to the basis, often starting with a constant surrogate model and adding dimensions
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only when necessary. A discussion and benchmark of basis-adaptive methods for sparse PCE is
available in Lüthen et al. (2022a).

3.2.5 Experimental design

Generally, experimental design techniques aim to select points in order to achieve certain goals
related to exploration of the space (space-filling design), or to achieve certain properties of
the regression matrix such as (in expectation) orthonormal columns, small determinant, small
condition number, etc. For regression-based PCE, there are several main classes of experimental
design techniques:

• Sampling based on the input distribution. The samples are drawn from the input dis-
tribution. Techniques like Latin hypercube sampling (LHS) can be used to improve the
space-filling properties.
• Sampling from a different distribution (also called induced sampling (Guo et al., 2020)).
A different distribution and associated basis are constructed that have better properties
than the input distribution and its basis.
• Choosing points according to an optimality criterion from a candidate set. Certain prop-
erties of the regression matrix are optimized by choosing the design points from a suitable
candidate set.

Note that none of these sampling methods considers the evaluations y of the computational
model. For model-aware sampling techniques (active and supervised learning), see Section
3.2.5.4.

The following sections contain an overview of available sampling methods for sparse PCE. Se-
lected experimental design techniques are described in more detail in Appendix 3.A. Note that
due to the large amount of literature on experimental design for sparse PCE, our review cannot
be exhaustive. There are many more approaches available, including the deterministic Weil
points (Zhou et al., 2014), sparse grids (Perkó et al., 2014), randomized or subsampled quadra-
ture points (Berveiller et al., 2006; Tang and Iaccarino, 2014; Guo et al., 2017), etc.

3.2.5.1 Sampling based on the input distribution

The most basic sampling method is Monte Carlo (MC) sampling, where the points are sampled
independently from the input distribution (Doostan and Owhadi, 2011; Hampton and Doostan,
2015b). LHS (McKay et al., 1979) aims at distributing the design points in a more space-filling
way than MC sampling, using a stratification of the input quantile space in each dimension.
LHS is known to filter main effects; i.e., it reduces the variance of linear regression estimators
when the quantity of interest is dominated by terms of interaction order one (Shields and Zhang,
2016). LHS with sample decorrelation can further reduce the variance (Owen, 1994). LHS can
also be used together with a criterion such as maximin distance (maximize the minimal distance
between the design points in quantile space) (Pronzato and Müller, 2012), where several LHS
designs are generated and the one that optimizes the criterion is returned.
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A generalization of LHS that combines it with stratified sampling is Latinized partially stratified
sampling (Shields and Zhang, 2016), which filters both main effects and low-order interaction
terms and has been shown to consistently outperform LHS in high-dimensional cases.

Other space-filling/low-discrepancy methods are Sobol’ sequences (Sobol’, 1967) and Halton
sequences (Halton, 1960), which are deterministic but appear to be quasi-random and space-
filling in low dimensions.

3.2.5.2 Sampling from a different distribution

Several methods consider the coherence parameter of a basis, defined by

µ(A, {ψα}) = sup
x∈D

max
α∈A
|ψα(x)|2, (3.5)

which can be used to bound the number of samples needed for accurate recovery by `1-minimization
(Candès and Plan, 2011; Hampton and Doostan, 2015b). For Hermite and Legendre polynomial
bases, the coherence parameter of a total-degree basis grows exponentially with the total degree
p (Rauhut and Ward, 2012; Yan et al., 2012; Hampton and Doostan, 2015b).

To construct a coherence-optimal design, a new probability distribution and its associated
orthonormal basis are constructed that achieve minimal coherence (Hampton and Doostan,
2015b,a). The new basis can be derived from the original PCE basis by multiplying each member
by a weight function. Coherence-optimal samples can be drawn by Markov Chain Monte Carlo
(MCMC) (Hampton and Doostan, 2015b) or by rejection sampling (see section 3.A.2.3). A re-
lated sampling scheme is obtained by constructing a new probability distribution and associated
orthonormal basis which have improved but not optimal coherence; however, the distribution is
constructed to belong to some classical family and is therefore straightforward to sample. This
is called asymptotic sampling (Hampton and Doostan, 2015b,a) and results in a Chebyshev
distribution for uniform input, and in a uniform distribution (within a ball of degree-dependent
radius) for Gaussian input. Numerical experiments confirm the expected performance gain of
coherence-optimal sampling over both MC and asymptotic sampling, and of asymptotic sam-
pling over MC in the case of low dimension d and high total degree p. For high-dimensional
problems with low degree, MC often performs better than asymptotic sampling (Hampton and
Doostan, 2015b).

The so-called Christoffel sparse approximation (CSA) (Jakeman et al., 2017; Narayan et al.,
2017; Cohen and Migliorati, 2017) is a related approach which constructs a new orthonormal
basis that minimizes the quantity

µ̃(A, {ψα}) = sup
x∈D

(
1
|A|

∑
α∈A
|ψα(x)|2

) 1
2

. (3.6)

As for coherence-optimal sampling, the new basis can be derived from the original basis by
multiplying each member by a weight function, which results in a weighted regression problem.
The corresponding probability distribution is chosen to be the so-called weighted pluripoten-
tial equilibrium measure, which for bounded distributions is the Chebyshev distribution. For
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one-dimensional Gaussian input, this measure is a symmetric Beta distribution with degree-
dependent bounds.

Note that all three sampling methods described in this section introduce weights and therefore
modify the objective function into a weighted regression problem WΨc ≈ Wy. Since the
objective function belongs to the scope of the solver, these methods cannot be considered as
pure sampling methods in the sense of being completely independent of the solver.

3.2.5.3 Choosing points according to an optimality criterion from a candidate set

The following methods choose points from a candidate set in order to optimize properties of the
regression matrix. Candidate points can be sampled, e.g., using MC, LHS (Fajraoui et al., 2017),
coherence-optimal sampling (Diaz et al., 2018; Alemazkoor and Meidani, 2018a), or Christoffel
sampling (Shin and Xiu, 2016). Note that some of these methods introduce weights, resulting
in a weighted regression problem. The candidate set can have a large influence on the resulting
design.

• D-optimal sampling aims at maximizing the determinant D(Ψ) = det( 1
NΨTΨ)

1
P of the

information matrix (Kiefer and Wolfowitz, 1959). Note that D(Ψ) = 0 if N < P . Maxi-
mizing the D-value is connected to minimizing the variance of the coefficients of the PCE
estimate (Zein et al., 2013). Algorithms for D-optimal designs include greedy augmenta-
tion (Dykstra, 1971), exchange techniques (Fedorov, 2013; Cook and Nachtsheim, 1980;
Nguyen and Miller, 1992; Zein et al., 2013), maxvol (Mikhalev and Oseledets, 2018), gra-
dient descent (Zankin et al., 2018), and rank-revealing QR decomposition (RRQR)/subset
selection (Diaz et al., 2018; Gu and Eisenstat, 1996). The advantage of the last method is
that it can also be applied for wide matrices Ψ ∈ RN×P where N < P .
• S-optimal sampling (also called “quasi-optimal” in Shin and Xiu (2016a)) selects samples

from a large pool of candidate points so that the PCE coefficients computed using the
selected set are as close as possible to the coefficients computed from the whole set of
candidate points (Shin and Xiu, 2016a). The S-value is defined by3

S(Ψ) =
(√

det ΨTΨ∏P
i=1 ‖Ψi‖2

) 1
P

(3.7)

where Ψi denotes the ith column of the regression matrix. Its maximization has the effect
of maximizing the column orthogonality of the regression matrix while at the same time
maximizing the determinant of the information matrix (Shin and Xiu, 2016a). Note that
S(Ψ) = 0 if N < P . An S-optimal experimental design can be computed using a greedy
exchange algorithm (Shin and Xiu, 2016a,?; Fajraoui et al., 2017).
• Near-optimal sampling simultaneously minimizes the two matrix properties mutual co-
herence and average cross-correlation (Alemazkoor and Meidani, 2018a), both of which
quantify the correlation between normalized columns of the regression matrix (see sec-
tion 3.A.3.3 for the definitions of these properties). A near-optimal design can be built by

3This definition assumes that the columns of the matrix Ψcand, containing the evaluations of all candidate
points, are mutually orthogonal.
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a greedy algorithm (Alemazkoor and Meidani, 2018a). Note that for near-optimal sam-
pling, it is not necessary that N ≥ P , since this method does not rely on the determinant
of the information matrix.

3.2.5.4 Sequential enrichment of the experimental design

Instead of sampling the whole experimental design at once, it has been proposed to use sequential
enrichment. Starting with a small experimental design, additional points are chosen based on the
last computed sparse PCE solution or on an augmented basis. In the context of machine learning,
sequential sampling is also known as active learning (Settles, 2012). Sequential enrichment
has been proposed in the context of S-optimal sampling (Fajraoui et al., 2017), D-optimal
sampling (Diaz et al., 2018), and coherence-optimal sampling (Hampton and Doostan, 2018).
Zhou et al. (2019) suggest an enrichment strategy based on approximations to the expected
quadratic loss function, i.e., the mean-squared error. Ji et al. (2008) and Seeger and Nickisch
(2008) propose choosing points that minimize the differential entropy of the posterior distribution
of the coefficients (using a Bayesian regression setting). In all cases, numerical examples show
that the sequential strategy generally leads to solutions with a smaller validation error compared
to nonsequential strategies. Due to the complexity of the topic and the already large extent of
our benchmark, this strategy, albeit promising, is not explored further in this paper.

3.2.6 Solution of the minimization problem

There are many formulations of the regression problem that lead to a sparse solution, such as `0-
minimization, `1-minimization (basis pursuit denoising (BPDN), LASSO), `1− `2 minimization,
Bayesian methods, etc. (see also Appendix 3.B). Based on these formulations, a vast number of
sparse solvers has been proposed in the compressed sensing literature; see, e.g., Carron (2013)
and the surveys of Qaisar et al. (2013); Zhang et al. (2015); Arjoune et al. (2017). We focus here
on solvers that have been proposed in the context of sparse PCE. Of course, it is straightforward
to use any other sparse solver to compute a sparse PCE.

The following solvers have been proposed in the sparse PCE literature:

• Convex optimization solvers. `1-minimization in its various formulations is a (constrained)
convex optimization problem. Least angle regression (LARS) (Efron et al., 2004; Blatman
and Sudret, 2011; Marelli and Sudret, 2019) is an iterative method that adds regressors
one by one according to their correlation with the current residual, and updates the co-
efficients following a least angle strategy. With the LARS-LASSO modification, which
allows for backwards elimination of regressors, LARS is able to generate the whole LASSO
path (Efron et al., 2004). Unmodified LARS can also be classified as a greedy method.
SPGL1 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander, 2015) solves
the BPDN formulation by solving a succession of LASSO instances using the spectral pro-
jected gradient (SPG) method. Other solvers belonging to this class are e.g. the solvers
implemented in `1magic (Candès and Romberg, 2005) and SparseLab (Donoho et al.,
2007).
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• Greedy methods are variants of stepwise regression where the regressors are added to
the model one by one according to some selection criterion, aiming at finding a heuristic
solution to the intractable `0-minimization formulation. Orthogonal matching pursuit
(OMP) (Tropp and Gilbert, 2007; Doostan and Owhadi, 2011; Marelli and Sudret, 2019)
is a classical forward selection algorithm in which orthonormalized regressors are added to
the model one by one according to their correlation with the residual, and the coefficients
are computed by least-squares. Baptista et al. (2019) suggests extensions to OMP such
as parallelization, randomization and a modified regressor selection procedure. Subspace
pursuit (SP) (Dai and Milenkovic, 2009; Diaz et al., 2018; Diaz, 2018) is an iterative
algorithm that repeatedly uses least squares on a subset of regressors. LARS (Efron
et al., 2004; Blatman and Sudret, 2011) without the LASSO modification (allowing for
removal of regressors) can also be classified as a greedy method. Another greedy method is
ranking-based sparse PCE (Tarakanov and Elsheikh, 2019) which employs batch updating,
coordinatewise gradient descent of the elastic net formulation, and a correlation- and
stability-based ranking procedure for the regressors. Many more greedy stepwise regression
techniques have been proposed, utilizing various selection criteria, solvers, and stopping
criteria. An overview of methods following this scheme is given in section 3.B.6.
• Bayesian compressive sensing (BCS) (a.k.a. sparse Bayesian learning) is a class of meth-

ods that use a Bayesian setting to find a sparse solution. They impose a sparsity-inducing
prior on the coefficients, whose parameters are again considered to be random variables
with a hyperprior (Tipping, 2001; Ji et al., 2008; Sargsyan et al., 2014; Tsilifis et al., 2020).
The solution is typically the maximum a posteriori estimate of the coefficients and can be
computed e.g. by differentiation (Tipping, 2001), expectation-maximization (Figueiredo,
2003; Wipf and Rao, 2004), expectation-propagation (Seeger and Nickisch, 2008), varia-
tional inference (Tsilifis et al., 2020; Bhattacharyya, 2020), or a fast approximate algorithm
(Faul and Tipping, 2002; Tipping and Faul, 2003). An extension called FastLaplace with
an additional layer of hyperparameters has been proven to attain even sparser solutions
(Babacan et al., 2010; Babacan, 2011). A greedy algorithm using the Bayesian setting
to select the regressors is the greedy Bayesian Kashyap information criterion (KIC)-based
algorithm (Shao et al., 2017).
• Iteratively reweighted methods. Iteratively reweighted `1-minimization uses the coeffi-

cients computed in a previous iteration to construct a weighted `1-minimization problem
(Candès et al., 2008; Yang and Karniadakis, 2013). Cheng and Lu (2018b) suggest an
iterative reweighted method with D-MORPH regression (Li and Rabitz, 2010) as its com-
putational core, which is a technique that follows a certain path, defined by a quadratic
objective function, on the manifold of solutions to the underdetermined system.

Each of the solvers mentioned above features one or more hyperparameters whose values must
be calibrated. This is usually done by cross-validation. Popular choices are leave-one-out (LOO)
cross-validation (accelerated for least-squares solutions) (Blatman and Sudret, 2010, 2011), LOO
cross-validation with a modification factor for small sample sizes (Chapelle et al., 2002; Blatman
and Sudret, 2011), and k-fold cross-validation (Doostan and Owhadi, 2011; Jakeman et al., 2015;
Huan et al., 2018).
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Selected sparse regression solvers are described in more detail in Appendix 3.B.

3.2.7 Model selection criterion

To decide whether to continue iterating in the framework or stop the process, we need to assess
how well the current sparse solution performs. Our main quantity of interest is the generalization
error, which quantifies the mean-square accuracy of the surrogate. It is given by

Egen = EX

[(
M(X)−MPCE(X)

)2
]

(3.8)

whereM is the computational model, X is the random input vector, andMPCE is the sparse
PC surrogate.

The generalization error can be approximated by the validation error, which is the MC estimate
of (3.8) on a validation set {(x(i)

val, y
(i)
val) : x(i)

val ∼i.i.d. fX , y
(i)
val = M(x(i)

val), i = 1, . . . , Nval}. To
make the validation error independent of the scaling of the model, it is convenient to use the
relative mean-squared error defined by

RelMSE =
∑Nval
i=1 (y(i)

val −MPCE(x(i)
val))2∑Nval

i=1 (y(i)
val − ȳ)2

(3.9)

where ȳ = 1
Nval

∑Nval
i=1 y

(i)
val .

The best surrogate modelMPCE (defined by A and c) is the one that has the smallest general-
ization error. In practical applications, the generalization error typically cannot be computed,
and a large validation set is not available due to computational constraints. Instead, we define
a model selection criterion that acts as a proxy for the generalization error. A typical stopping
criterion in the PCE framework of Figure 3.1 is the observation that the model selection crite-
rion no longer improves. The following model selection criteria have been proposed in the sparse
PCE literature:

• k-fold cross-validation (CV) (Hastie et al., 2001; Jakeman et al., 2015; Hampton and
Doostan, 2018), which approximates the validation error by building a surrogate several
times on different subsets of the data, and evaluating the error on the remaining data
points.
• Leave-one-out (LOO) cross-validation (Hastie et al., 2001; Blatman and Sudret, 2010,
2011), which is N -fold cross-validation (where N is the size of the experimental design).
For PCE approximations computed by OLS, there exists an efficient formula to evaluate
the LOO error (Blatman and Sudret, 2011, Appendix D).
• Modified LOO (Blatman and Sudret, 2011), which uses a correction factor for the LOO
which was derived for the empirical error for OLS with small sample size (Chapelle et al.,
2002). The correction factor depends on the experimental design and the active basis
functions.
• Kashyap information criterion (KIC) (Shao et al., 2017; Zhou et al., 2019c), an approxi-

mation to the Bayesian model evidence, which is the likelihood of observations given the
model.
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• Sparsity (Alemazkoor and Meidani, 2017), which uses the idea that a larger basis should
lead to a sparser solution when the necessary basis functions enter the model, unless the
ratio of basis functions to model evaluations becomes too large.

A model selection criterion is also often used to determine the hyperparameter of the sparse
solver (see Section 3.2.6).

If cross-validation is used to select the solver hyperparameter, this estimate of the validation
error is often too optimistic due to model selection bias. Instead of reusing this estimate for
model selection, it is better to perform an outer loop of k-fold or LOO cross-validation, a
procedure called double cross-validation or cross-model validation (Baumann and Baumann,
2014; Liu et al., 2020b).

3.2.8 Further enhancements of sparse PCE

There are many enhancements to the simple scheme for sparse PCE presented in Figure 3.1.
The following methods have been suggested to improve the accuracy of the solution and reduce
the number of model evaluations needed:

• Alemazkoor and Meidani (2018b) construct a preconditioning matrix for a given regression
matrix which reduces the mutual coherence while avoiding deterioration of the signal-to-
noise ratio.
• Huan et al. (2018) suggest a technique called stop-sampling, which guides the decision of
whether to obtain more samples (sequential ED enrichment) by observing the decrease of
the CV error.
• In the case when prior information about the magnitude of the coefficients is available,
Peng et al. (2014) use this information to construct a weighted regression problem which
allows a more accurate solution with fewer points (similar to iteratively reweighted `1-
minimization).
• Liu et al. (2020b) use resampled PCE, which is a technique for improving the PCE solution
by aggregating the results of several solver runs on different subsets of the data. Only the
terms that are chosen most often by the solvers are retained in the final solution.
• Several methods exist to reduce the dimension of the input space before computing the
sparse PCE. Unsupervised methods are principal component analysis (PCA) and kernel
PCA (Lataniotis, 2019). “Basis adaptation” methods (referring to a basis of the input
random space) determine a suitable rotation of the input space, often assumed to be inde-
pendent standard Gaussian, into new coordinates which permit a sparser representation
in fewer coordinates (see Tipireddy and Ghanem (2014); Yang et al. (2018); Tsilifis et al.
(2019) and others). A related technique is nonlinear PCE-driven partial least squares
(PLS) (Papaioannou et al., 2019; Zhou et al., 2020), which reduces the input dimension by
identifying directions in the input space that are able to explain the output well in terms
of a sum of one-dimensional PCEs.
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3.3 Numerical results

3.3.1 Benchmark design

While the number of methods for computing sparse PCE is large, to the best of the authors’
knowledge there is no comprehensive benchmark study on this topic. Most publications only
compare the newly developed method to one or two baseline methods. An overview of publica-
tions containing comparisons of sparse PCE methods is presented in Appendix 3.D.

Since the number of possible combinations of sampling schemes, sparse regression solvers, basis
adaptation schemes, model evaluation criteria etc. is huge (see Section 3.2.3 and thereafter), we
restrict our benchmark as follows to some of the most promising and best-known methods:

• We consider the sampling schemes MC, LHS, coherence-optimal, and D-optimal. LHS is
used together with a maximin criterion to improve the space-filling property (using the
MATLAB function lhsdesign). D-optimal designs are constructed from a coherence-
optimal candidate set4 using the subset selection/RRQR algorithm, which allows for the
construction of D-optimal experimental designs with size N smaller than the number of re-
gressors P (Diaz et al., 2018). There is no such algorithm for S-optimal sampling, which is
why we do not consider the latter in this benchmark. We do not consider Sobol’ sequences,
since they have been shown to be outperformed by LHS in sparse PCE applications (Fa-
jraoui et al., 2017). Near-optimal sampling can realistically be used only for rather small
bases (P ∈ O(100)), since its algorithm scales as O(MP 2), with M = 10P as suggested
by (Diaz et al., 2018) (see below). We use it with a coherence-optimal candidate set for
two models with small basis.
• We consider the sparse regression solvers LARS, OMP, subspace pursuit (SP), FastLaplace
(which we call here BCS), and SPGL1. Each of these solvers involves at least one hyperpa-
rameter, whose range is chosen according to reasonable guesses. For LARS and OMP, the
hyperparameter is the number K of selected regressors and its range is [1,min{P,N − 1}].
For SP, K must fulfill 2K ≤ min{P,N}. For BCS and SPGL1, the hyperparameter σ
is chosen from the range σ2 ∈ N ·V̂ar [y] ·[10−16, 10−1] which resembles a suitable range
of possible relative MSE values. The hyperparameter values of LARS and OMP are de-
termined by modified LOO cross-validation, while the hyperparameters of SP, BCS, and
SPGL1 are determined by k-fold cross-validation (Section 3.2.6). In addition, we consider
a variant of SP which uses LOO cross-validation instead of k-fold cross-validation, which
we name SPLOO.
• We only consider the nonadaptive setting, in which both the basis and the size of the

experimental design are fixed before the sparse PCE is computed.
• For each model, we define a reasonable range of 5–7 experimental design sizes. Each
experiment is repeated 30–50 times to account for statistical uncertainty. The experimental

4We have also conducted all benchmark experiments with D-optimal designs constructed from LHS candidate
sets, but we do not display these results, because we found that in most cases, D-opt(LHS) sampling performs
(significantly) worse than most other sampling schemes, and often worse than its candidate set LHS. This matches
with the results of Fajraoui et al. (2017) who observed this in a sequential enrichment setting and with the LARS
solver.
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designs are generated anew for each repetition and each ED size. All solvers are tested on
the same ED realizations.
• The coherence-optimal candidate sets from which the D-optimal designs are selected have
size M = 10P as in (Diaz et al., 2018). For computational reasons, they are not sampled
completely anew for each replication, but are rather drawn uniformly at random without
replacement from a larger set of size 2M = 20P as in (Diaz et al., 2018).
• Since we are interested in sparse PCE for the purpose of surrogate modelling, our main
quantity of interest is the relative mean-squared error56 (RelMSE) as defined in (3.9).
We investigate the RelMSE for several models, sparse solvers, and experimental design
techniques. Typically, the practical interest lies in small experimental designs.
• Since the experimental design is random, the resulting validation error is a random vari-
able. We visualize the data with boxplots. When comparing the performance of different
methods, we consider the median performance and the spread of the resulting valida-
tion error. However, often there can be considerable overlap of validation errors between
methods.

3.3.2 Software

For the implementation of the benchmark, we use the general-purpose uncertainty quantification
software UQLab (Marelli and Sudret, 2014). UQLab supports the integration of other software
packages.7 We utilize the following code:

• UQLab for MC sampling and LHS (Marelli and Sudret, 2014).
• DOPT_PCE for D-optimal sampling (subset selection/RRQR) and subspace pursuit (Diaz
et al., 2018; Diaz, 2018).
• An in-house developed rejection-based implementation of coherence-optimal sampling.
• An in-house implementation of near-optimal sampling based on the description by Ale-
mazkoor and Meidani (2018a).
• UQLab for the solvers LARS and OMP (Marelli and Sudret, 2014).
• spgl1-1.9 for SPGL1 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander,
2015).
• FastLaplace for the hierarchical implementation “FastLaplace” of BCS (Babacan et al.,
2010; Babacan, 2011).

5Note that some authors such as Doostan and Owhadi (2011); Hampton and Doostan (2015b); Diaz et al.
(2018); Alemazkoor and Meidani (2018a) choose to normalize instead by

∑
x∈Xval

M(x)2 or use the unnormalized
mean-squared error (Shin and Xiu, 2016). To assess the recovery of sparse vectors just as in compressed sensing,
some consider the error in the coefficient vector instead of the error in the model approximation (Alemazkoor and
Meidani, 2018a).

6Since a typical application of PCE is the computation of moments and Sobol’ indices, the error in these
quantities is another possible performance measure. However, globally accurate prediction as considered in this
paper is more challenging that the prediction of moments and Sobol’ indices, which are accurate if the largest-
in-magnitude coefficients are estimated accurately. If a globally accurate surrogate model can be constructed,
typically also the moments and Sobol’ indices are accurate.

7A description of how to use custom sparse solvers and sampling schemes in the UQLab framework can be
found in the supplementary material.
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3.3.3 Benchmark: Considered models

Our benchmark is performed on a selection of 11 computational models of varying complexity
and input dimensionality, which are typical benchmark models in the context of sensitivity
and reliability analysis. An overview of these models is given in Table 3.1. For details on the
models, we refer the reader to the respective publications supplied in the last column of the table.
While of course not representative of all possible classes of engineering models, we believe that
this sample provides a good testing ground for the comparative performance among different
approaches for computing sparse PCE.

Table 3.1: Overview of the 11 computational models used in our benchmark. Italic font denotes
finite element (FE) models, all other models are analytical. For each model, a static total-degree basis
with hyperbolic truncation defined by p and q is used. The values are chosen to fulfill P ≈ 10

3 Nmax,
where Nmax is the largest tested experimental design size. The values for p in parentheses for
the Ishigami and borehole models refer to the smaller basis used in Section 3.3.6. The column
“Reference” provides the relevant literature in which the models and their probabilistic inputs are
described in detail.

Model Dimension Input distributions Basis Nmax Reference

Ishigami function 3 uniform p = 14 (12),
q = 1

200 (Blatman
and Sudret,

2011)

Undamped oscillator 6 Gaussian p = 5,
q = 1

150 (Echard
et al., 2013)

Borehole function 8 Gaussian, lognormal,
uniform

p = 5 (4),
q = 1

300 (Harper and
Gupta,
1983)

Damped oscillator 8 lognormal p = 5,
q = 1

400 (Dubourg,
2011)

Wingweight function 10 uniform p = 4,
q = 1

300 (Forrester
et al., 2008)

Truss model 10 lognormal, Gumbel p = 4,
q = 1

300 (Blatman
and Sudret,

2011)

Morris function 20 uniform p = 8,
q = 0.5

400 (Blatman
and Sudret,

2010b)

Structural frame model 21 lognormal, Gaussian;
dependent input

variables

p = 8,
q = 0.5

400 (Blatman
and Sudret,

2010)

2-dim diffusion model 53 Gaussian p = 4,
q = 0.5

500 (Konakli
and Sudret,

2016)

1-dim diffusion model 62 Gaussian p = 4,
q = 0.5

500 (Fajraoui
et al., 2017)

100D function 100 uniform p = 4,
q = 0.5

1400 UQLab
example8

In addition to analyzing aggregated performance on all 11 models, we investigate the behavior of
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Table 3.2: Borehole function: Input random variables and their distributions

Variable Distribution Description
rw N (0.10, 0.0161812) borehole radius
L U([1120, 1680]) borehole length
Kw U([9855, 12045]) borehole hydraulic conductivity
Tu U([63070, 115600]) transmissivity of upper aquifer
Tl U([63.1, 116]) transmissivity of lower aquifer
Hu U([990, 1110]) potentiometric head of upper aquifer
Hl U([700, 820]) potentiometric head of lower aquifer
r Lognormal([7.71, 1.0056]) radius of influence

the methods in detail on a subset of four spotlight models, each of which possesses characteristic
properties that might influence the approximation quality of sparse PCE methods: the Ishigami
function is low-dimensional and highly compressible in the PCE basis but requires a high-
degree basis to be approximated accurately. The borehole function is smooth and nonlinear
and therefore is an example for a well-behaved engineering model. A two-dimensional diffusion
model, a stochastic heat diffusion PDE in two physical dimensions, is high-dimensional, not
analytical, and the magnitude of its expansion coefficients decays only slowly. Finally, the 100D
function is high-dimensional, analytical, and compressible.

The Ishigami model is the well-known three-dimensional, highly nonlinear, smooth analytical
function

f(X1, X2, X3) = sin(X1) + a sin2(X2) + bX4
3 sin(X1) (3.10)

taking uniform input X ∼ U([−π, π]3). A typical choice is a = 7, b = 0.1. For this function, any
sparse solver should be able to find a sparse solution.

The borehole function simulates the water flow through a borehole between two aquifers (Harper
and Gupta, 1983). It is an eight-dimensional nonlinear function which, despite having an ana-
lytical form, is not trivial to approximate. It is defined by

B(rw, L,Kw, Tu, Tl, Hu, Hl, r) = 2πTu(Hu −Hl)
ln (r/rw)

(
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

) . (3.11)

Its input random variables and their distributions are provided in Table 3.2.

The two-dimensional heat diffusion model (Konakli and Sudret, 2016) is defined by the partial
differential equation (PDE)

−∇ · (κ(x)∇T (x)) = Q1A(x) in Ω = [−0.5, 0.5]2 (3.12)

with boundary conditions T = 0 on the top boundary and ∇T ·n = 0 on the left, lower, and right
boundaries of the square domain Ω, where n denotes the outer unit normal (see Konakli and
Sudret (2016) for an illustration of the setup). Here, the source is in A = [0.2, 0.3]2 with strength
Q = 500. The output quantity of interest is the average temperature in B = [−0.3,−0.2]2.
The diffusion coefficient κ(x) is modelled by a lognormal random field with mean µκ = 1 and
standard deviation σκ = 0.3. The autocorrelation function of the underlying Gaussian random
field is an isotropic squared-exponential with length scale l = 0.2. The random field κ(x) is
discretized using the EOLE method (Li and Der Kiureghian, 1993) with d = 53 terms, which
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comprises 99% of its variance. The solution to an individual heat diffusion problem is computed
using an in-house finite element code (Konakli and Sudret, 2016). The input comprises d = 53
independent standard normal random variables.

Finally, the so-called 100D function is an analytical model of the form

f(X) = 3− 5
d

d∑
i=1

iXi + 1
d

d∑
i=1

iX3
i + 1

3d

d∑
i=1

i ln
(
X2
i +X4

i

)
(3.13)

+X1X
2
2 +X2X4 −X3X5 +X51 +X50X

2
54

taking uniform inputs Xi ∼ U([1, 2]), i 6= 20, and X20 ∼ U([1, 3]). We use d = 100. This function
was designed for sensitivity analysis: the first-order sensitivity indices of the input variables are
generally nonlinearly increasing with their index, with certain variables having especially high
sensitivity. The model also contains four interaction terms. It is an example from UQLab.8

For each of the models, we use a fixed basis for the benchmark. In general, the best total degree
p and the hyperbolic truncation q are a priori unknown. We heuristically choose q = 1 for
low-dimensional models (d ≤ 10) and q = 0.5 for high-dimensional models (d ≥ 20). The degree
p is chosen so that the number of basis functions P is approximately 10

3 Nmax, where Nmax is the
largest number of experimental design points for the specific benchmark. This choice is based
on the reasoning that for an experimental design of size N , sparse solvers like LARS often select
an active basis of size ≈ N

3 , and that the candidate basis might be 10 times larger than the final
active basis to be sufficiently rich. We focus on rather small experimental designs, since our goal
is not to investigate the convergence of the methods as N →∞ (which has been demonstrated
elsewhere), but to decide which methods are most efficient for small N . This results in the
choice of values for p, q, and Nmax displayed in Table 3.1.

3.3.4 Results: Comparison of solvers

First, we use a fixed sampling scheme (LHS) to compare the performance of the six solvers
LARS, OMP, subspace pursuit (SP) using k-fold cross-validation, Subspace Pursuit using LOO
cross-validation (SPLOO), FastLaplace (BCS), and SPGL1 on all 11 benchmark models described
above.

In Figure 3.2 we display boxplots (50 replications) of relative MSE against experimental design
size for all six solvers for the four spotlight models. For the remaining seven models, the
corresponding boxplots (30 replications) of relative MSE against experimental design size are
provided in Figure 3.C.1 in Appendix 3.C. In the plots, the lines as well as the dot inside the
white circle denote the median of the relative MSE. We make the following observations:

• For the smallest experimental designs, all solvers perform similarly poorly: there is not
enough information in the ED to construct an accurate surrogate model. For larger exper-
imental designs, there can be considerable differences between the solvers’ generalization
errors of up to several orders of magnitude, which demonstrates that the solvers do not
use the available information in identical ways.

8https://www.uqlab.com/sensitivity-high-dimension

https://www.uqlab.com/sensitivity-high-dimension
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• BCS, SPLOO, and OMP are often among the best solvers. BCS performs especially well
for smaller experimental design sizes. In the case of the Ishigami model, it seems to
plateau earlier than the other solvers. It also tends to find sparser solutions than the other
solvers (not shown in plots), which might explain these observations: sparse solutions are
advantageous when only limited data is available, but at the same time they carry the risk
of ignoring important terms. For large ED sizes and the two highly compressible models
(Ishigami and 100D function), BCS has a larger spread than the other solvers, possibly
because the sparsity-enforcing procedure does not always include all of the important
terms. In contrast, the greedy solver OMP returns rather dense solutions, which seem to
generalize well. SPLOO performs well in general for low-dimensional models.
• SP does not perform well for small ED sizes, but for large ED sizes it sometimes outper-

forms the other solvers. Together with BCS, it tends to find sparser solutions than the
other solvers (not shown in plots).
• LARS and SPGL1 often achieve a similar generalization error, which is often larger, some-
times significantly, than that of the other solvers. SPGL1 tends to return rather dense
solutions (not shown in plots), which might not generalize as well as other solutions.
• Some models characterized by relatively poor compressibility (e.g. diffusion and frame)
show comparable performance among all solvers. This is expected, as in such cases the
sparsity assumption is a rather weak proxy for solution quality.
• The exceptions to the general observations outlined above are the damped oscillator and
the Morris function, for which the solver performance is reversed, with LARS and SPGL1
among the best solvers, and OMP and SPLOO among the worst. In these cases, however,
none of the methods achieves satisfactory accuracy within the available computational
budget.

To objectively assess the performance of the methods, we now aggregate the results across
models. Since all solvers are tested on the same set of experimental designs, we can determine
the ranking of solvers for each experimental design (50 replications × 6−7 ED sizes for the four
spotlight models, and 30 replications × 5− 7 ED sizes for each of the seven additional models,
resulting in 2620 PCEs) and count how often each solver achieved each rank. This is displayed
in Figure 3.3 in the form of stacked bar plots, where the counts are given as percentages. The
counts have been normalized by the number of replications and ED sizes used for each model,
so that each of the models contributes equally to the final percentages.

This ranking alone, however, does not provide a complete picture; e.g., a solver ranked last can
be off by orders of magnitude or barely worse than the best-performing one. Therefore, we added
an additional set of triangle markers detailing for how many of the EDs the respective solver
returned a result that was within two, five, or 10 times the smallest relative MSE attained by
any of the six solvers on the same ED. For example, the red triangle in the top row of Figure 3.3a
indicates that in ca. 30% of the runs, the solution returned by LARS had a validation error that
was at most twice as large as that of the best solution on the same ED.

We have grouped the analysis results separately for the 6 low-dimensional (d ≤ 10) and the 5
high-dimensional (d ≥ 20) models, because we observed that dimension had a significant impact
on the rankings, and this information is readily available even for black-box models. We also
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Figure 3.2: Boxplots of relative MSE against ED size from the solver benchmark for the four
spotlight models. Results for six sparse solvers and LHS design. For the corresponding plots for the
seven remaining models, see Figure 3.C.1 in Appendix 3.C.

analyze small and large ED sizes separately, where the first half of considered ED sizes (3–4)
are regarded small, and the second half large.

We make the following observations:

• Low-dimensional models, small ED sizes: BCS is the best solver most often (31% of runs)
and also most often within two times the smallest error (72% of runs). However, it comes
within one order of magnitude of the smallest relative MSE (a property which we here call
robustness) in only 87% of runs, while SPLOO achieves this in 94% of runs. In the two
former metrics, SPLOO comes second. LARS and SP perform worst, followed by OMP and
SPGL1. Here and in the following, we observe that OMP and SPLOO often result in quite
robust solutions.
• Low-dimensional models, large ED sizes: SPLOO outperforms the other solvers in all re-
spects. It provides the smallest relative MSE of all solvers in 42% of runs, is in 73% of
runs within two times of the smallest relative MSE, and is even in 99% of runs within
one order of magnitude of the smallest relative MSE. For the other solvers, the statistics
confirm the observations highlighted by the spotlight models: LARS and SPGL1 overall
do not perform well. SP and BCS come close to the best solution quite often, but are less
robust, whereas OMP is robust but often not as close to the best solution.
• High-dimensional models: For the small as well as the large ED sizes, we see that BCS
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(c) high-dim models (d ≥ 20), small ED sizes
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Figure 3.3: Aggregated results for the solver benchmark (Section 3.3.4), separately for low-
dimensional (a),(b) and high-dimensional models (c),(d). Left: small ED sizes. Right: large ED
sizes. For each model and experimental design, the ranking of the six solvers is determined. The
stacked bar plots visualize how often each solver achieved the respective rank. The triangle markers
in hues of red additionally demonstrate in how many runs the obtained relative MSE was within a
factor of {2, 5, 10} of the smallest relative MSE achieved on this experimental design.

performs exceptionally well. It is the best solver in 45% (53%) of runs and comes within
two times the smallest relative MSE in even 96% (97%) of runs. Both BCS and OMP
attain in all cases a relative MSE within 10 times the smallest relative MSE. SP performs
better for large rather than small ED sizes. While SPLOO performed best for the low-
dimensional models, here it shows poor performance. Note that all solvers come within 10
times the smallest relative MSE in more than 89% of all runs, showing that the choice of
solver has a smaller impact for high-dimensional than for low-dimensional models.

3.3.5 Results: Comparison of sampling schemes together with solvers

We pair the five solvers LARS, OMP, SP, SPLOO, and BCS9 with the sampling schemes MC,
LHS, coherence-optimal, and D-optimal based on a coherence-optimal candidate set. We use
the abbreviations coh-opt and D-opt(coh-opt) for the latter two. Since SPLOO performed poorly

9Since SPGL1 did not perform well in the previous section, and is quite slow, we do not include it further in
this benchmark.
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for high-dimensional models in the solver benchmark of the previous section, we do not consider
it here for the high-dimensional models.

We run the benchmark for the low-dimensional models Ishigami, undamped oscillator, borehole,
damped oscillator, and wingweight function, and for the high-dimensional models Morris func-
tion, two-dimensional diffusion, one-dimensional diffusion, and 100D function. The truss model
has Gumbel input, for which we (as of now) cannot construct a coherence-optimal sample. The
same holds for the structural frame model with its dependent input.

Detailed boxplots of the relative MSE against ED size for the spotlight models, showing how
each solver performed when paired with the sampling schemes, can be found in Appendix 3.C,
Figures 3.C.2–3.C.5. For the sake of readability, in this section we only show results that are
aggregated over models, separately for the low- and high-dimensional cases. For every model
and repetition index, we determine the relative ranking of the 20 (16) combinations (5 (4) solvers
× 4 sampling strategies). We also determine which of the combinations came within a factor
of {2, 5, 10} of the smallest relative MSE among this set (robustness). Then, we count how
often each combination achieved each rank, and how often each combination achieved a relative
MSE within a factor of the smallest relative MSE. The results are displayed in Figure 3.4 in
the form of stacked bar plots for the ranks, with triangle markers denoting the percentage of
robust runs. The combinations are sorted by the percentage of runs in which they achieved a
relative MSE within two times the smallest relative MSE, because we find that this metric is a
good compromise between performance and robustness. We analyze small and large ED sizes
separately, where the first half of considered ED sizes (3–4) are regarded as small and the second
half as large.

Note that, as opposed to the aggregated results in Figure 3.3, where the solvers are compared on
the same experimental designs, here the comparison is done on different experimental designs,
which are matched randomly.10 Our results in Figure 3.4 are bootstrapped four times using
random permutations of the replication index, corresponding in total to 250 replications, to
minimize the influence of this randomness (which is in any case not large, as can be seen from
permutation tests).

From Figure 3.4 and Figures 3.C.2–3.C.5, we make the following observations:

• There can be considerable differences in the performance of different combinations of
solvers and sampling schemes. The differences are larger for low-dimensional models,
visible in the spread of triangle markers in Figures 3.4a and 3.4b. For high-dimensional
models, many combinations find an error that is close to the smallest error, which can be
seen from the red triangle markers at high percentages in Figures 3.4c and 3.4d, and from
the clustered boxplots in Figures 3.C.4 and 3.C.5, (e) and (f).
• MC and LHS perform comparably, and for the high-dimensional models almost identically.

10The relative MSE of each combination is interpreted as a random variable Esampling
solver , where the randomness

is induced by the randomness in the experimental design. E.g., ELHS
BCS is the random variable of relative MSE

attained by BCS applied to an LHS design of specified size. The reference error (“smallest relative MSE”) E∗

is a random variable as well, defined as the minimum over one realization of each combination of methods:
E∗ = mins∈sampling,t∈solversE

t
s. The plots in Figure 3.4 are therefore read as follows: e.g., in the low-dimensional,

small ED size case (Figure 3.4a): P
(
ED-opt
BCS = E∗

)
= 0.16, P

(
ED-opt
BCS ≤ 10E∗

)
= 0.78.
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Figure 3.4: Aggregated results for the five low-dimensional models Ishigami, undamped oscillator,
borehole, damped oscillator, and wingweight (top), and for the four high-dimensional models Morris
function, structural frame, two-dimensional diffusion, and 100D function (bottom). Separately for
small (a),(c) and large (b),(d) experimental designs. For the low-dimensional (high-dimensional)
case, we investigate five (four) solvers and four sampling schemes, resulting in 20 (16) combinations.
For each model and repetition, the ranking of all the combinations is determined (note that as
opposed to Figure 3.3, here the comparison is done on different EDs, which are matched randomly.
Results are bootstrapped four times by random permutations to increase robustness). The stacked
bar plots visualize how often each combination achieved the respective rank. The triangle markers
in hues of red additionally demonstrate in how many runs the obtained relative MSE was within
a factor of {2, 5, 10} of the smallest relative MSE achieved in this comparison. The combinations
are sorted by the percentage of runs in which they achieved a relative MSE within two times the
smallest relative MSE of the respective random pairing (red triangle marker). Plots of relative MSE
against ED size for the spotlight models can be found in Appendix 3.C, Figures 3.C.2–3.C.5.
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For the low-dimensional models, LHS sampling has, in most cases, median error and
variability that are the same as or smaller than MC. This is consistent with the literature
(Shields and Zhang, 2016). These observations are confirmed by the plots in Figure 3.4:
for almost every solver, the combination with LHS is slightly better than the corresponding
one with MC in each of the metrics.
• The advanced sampling schemes coh-opt and D-opt(coh-opt) show a clear advantage over
MC and LHS sampling for low-dimensional models and large experimental designs (consis-
tent with theoretical considerations and numerical experiments (Hampton and Doostan,
2015b)). For low-dimensional models and small experimental designs, they show mixed
performance; for high-dimensional models, they perform the same as or worse than LHS
and MC.
It is known that coh-opt sampling leads to a greater improvement over MC sampling for
low-dimensional, high-degree expansions than for high-dimensional, low-degree expansions
(Hampton and Doostan, 2015b; Alemazkoor and Meidani, 2018a). Note also that all
numerical experiments in the literature testing coh-opt sampling were performed in d ≤ 30
dimensions, using only models with uniform input, or manufactured sparse PCE, i.e.,
polynomial models with an exactly sparse representation (Hampton and Doostan, 2015b,a;
Alemazkoor and Meidani, 2018a; Diaz et al., 2018).
Both coh-opt and D-opt are sampling methods that aim to improve properties of the
regression matrix. They are adapted to the candidate basis. If the candidate basis is
large and contains many regressors that are not needed in the final sparse expansion, this
adaptation might even deteriorate the solution.
• BCS is one of the best-performing solvers, almost regardless of sampling scheme. The
exceptions are low-dimensional models with large experimental designs, where SPLOO with
coh-opt sampling outperforms all other solvers. This might be related to BCS plateauing
earlier than other solvers (see Figure 3.2a and 3.2b). It seems BCS is preferable whenever
the information content is low (small ED sizes or high-dimensional models).
• OMP and SPLOO are generally quite robust (within one order of magnitude of the best
solution). However, OMP often does not come close to the best solution, especially when
paired with LHS or MC. BCS is more robust for high-dimensional models than for low-
dimensional models. LARS and SP show mixed performance, with LARS being one of the
least robust solvers.
• Aggregating the results for each sampling scheme separately (not shown), we observe that
the behavior of the solvers is very similar in terms of ranking and robustness to the behavior
observed on LHS (Figure 3.3), suggesting that the ranking of solvers is mostly independent
of the sampling scheme.

Note that the results in Figures 3.C.2, 3.C.3, and 3.C.5 exhibit plateauing for larger sample sizes.
This indicates that the maximal accuracy achievable with this set of basis functions has been
reached. Using a larger basis might lead to more accurate solutions, if it contains an important
regressor that was previously missing. However, note that a larger basis can also lead to less
accurate solutions: when the experimental design size is held fixed while a larger basis is used,
the ratio of experimental design points to basis functions is smaller, and the properties of the
regression matrix might deteriorate.
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3.3.6 Results: Comparison of sampling schemes together with solvers, using
a smaller candidate basis

We repeat the experiments from the previous section for the Ishigami and borehole models,
using a smaller candidate basis for which near-optimal sampling is feasible. The tested solvers
are LARS, OMP, SP, SPLOO, and BCS. We use the sampling schemes MC, LHS, coh-opt, D-
opt(coh-opt) and near-opt(coh-opt). Boxplots of relative MSE against ED size are shown in
Figures 3.5 and 3.6. For the sake of conciseness, we only show the combinations involving OMP
and SPLOO. The remaining plots are provided in Appendix 3.C, Figure 3.C.6.

We observe the following:

• Since the basis is smaller, the relative MSE reaches a plateau already for smaller experi-
mental design sizes.
• Most qualitative observations regarding solver and sampling performance are the same as
in the previous section, where a larger basis was used.
• Near-optimal sampling often achieves the same or a slightly smaller error than coh-opt
sampling, which is consistent with (Alemazkoor and Meidani, 2018a). In many cases,
near-optimal sampling achieves the smallest median error. For the Ishigami model, near-
optimal sampling additionally exhibits small variability, while for the borehole model, it
has a rather large spread, i.e., several outliers.
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Figure 3.5: Results for the Ishigami model with a smaller basis (d = 3, p = 12, q = 1). Results for
two sparse solvers and five experimental design schemes. 50 replications. For the remaining plots,
see Figure 3.C.6 in Appendix 3.C.

3.4 Discussion and conclusions

In this paper, we investigated sparse PCE methods with the goal of computing accurate surrogate
models based on a few model evaluations.

We presented a literature survey and a framework describing the general computation procedure
for sparse PCE. We have seen that the existing literature on sparse PCE can be fit into this
framework and that methods developed for different components of the framework can naturally
be combined.
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Figure 3.6: Results for the borehole model with a smaller basis (d = 8, p = 4, q = 1). Results for
two sparse solvers and five experimental design schemes. 50 replications. For the remaining plots,
see Figure 3.C.6 in Appendix 3.C.

In order to give recommendations to practitioners who want to use sparse PCE surrogates for
their applications, we performed a numerical benchmark based on 11 example functions which
are intended to resemble real-world engineering problems presenting different challenges. We
tested several popular sparse solvers and sampling schemes on a fixed set of basis functions, using
a range of experimental design sizes and 30–50 replications, and made the following observations:

• The choice of sampling scheme and sparse regression solver can make a difference of up
to several orders of magnitude for the relative MSE. Mostly, the rankings of solvers and
sampling schemes seem to be independent of one another: an experimental design that
works best for one solver will also perform well with other solvers, and the ranking of
solvers looks similar independent of which sampling scheme is used. Both solvers and
sampling schemes make a greater difference for low-dimensional models.
• For low-dimensional models and small ED sizes, the solver BCS performs best, regardless
of sampling scheme (with D-opt(coh-opt) being slightly preferable), while the solver SPLOO

(a variant of SP) appears to be especially robust.
• For low-dimensional models and large ED sizes, SPLOO together with coherence-optimal
sampling outperforms all other combinations.
• For low-dimensional models, and when the basis is small enough to make it feasible, near-
optimal sampling outperforms all other sampling schemes, regardless of the solver.
• For high-dimensional models, BCS is by far the best solver. All solvers perform better
when paired with LHS; in other words, no advanced sampling scheme appears competitive
compared to LHS for such problems, whatever the solver used.

The benchmark results demonstrate that in costly, real-world applications it is worth choosing
the sparse PCE training strategy carefully, since the methods can make a substantial difference
in the quality of the resulting surrogate. While a more accurate surrogate model is generally
desirable, in industrial applications it might have a higher impact for purposes such as optimiza-
tion, rather than, e.g., sensitivity analysis.

Our conclusions are based on a number of benchmark models, which we consider representative of
engineering models in terms of dimensionality and complexity. Naturally, however, no selection
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of models can cover the whole space of engineering models. Further work would be required to
understand the connection among model properties, basis choice, experimental design size, and
sparse PCE techniques like solvers and sampling schemes.

All results were obtained using a fixed basis based on a heuristic choice (see Section 3.3.3).
Generally, when the optimal degree of the basis is unknown, degree adaptivity (based on a
cross-validation error) can be a useful strategy. Due to time and space constraints, this was
not investigated in the present work. Adaptivity critically depends on the availability of an
accurate error estimator. Some of the best solvers in this study (i.e., OMP and BCS) tend to
underestimate the generalization error (not shown in the plots), which might be a drawback in
the setting of adaptive degree selection and might change the effect and ranking of solvers and
sampling methods. For a detailed discussion and benchmark of basis-adaptive schemes, we refer
the reader to Lüthen et al. (2022a).

As evident from the extensive literature on the topic, sparse PCE is an already well-established
technique, as well as an active field of methodological research. Recent innovations include
Bayesian techniques for sparse PCE and the identification of suitable rotated coordinates for
the expansion. Such innovative ideas are expected to lead to further improvements in the
computation of sparse PCE, which will in turn benefit applications as well as all advanced
methods that use sparse PCE as one of their building blocks (see, e.g., Schöbi et al. (2015);
Chatterjee et al. (2019); Zhu and Sudret (2020); Marelli et al. (2021b)).

PCE is a popular metamodelling tool in the engineering community, and many different methods
are available. Up to now, the choice of which of the many PCE methods to apply was mostly
left to chance or the personal experience of the practitioner. In our benchmark, we explored
a significant set of methods that have received attention in the past few years. We hope that
this work can serve as a basis for further benchmarking efforts, in order to identify which of
the many available methods are most suitable for real-world problems. These might include
sequential enrichment of experimental design, Gaussian adaptation of the input space, stepwise
regression algorithms and many other ideas for sparse solvers, as well as methods for extremely
high-dimensional problems.

Our benchmark code is available on request. The solvers BCS and SPLOO will be made available
in the 1.4.0 release of UQLab. For a description of how to add custom sampling schemes and
sparse solvers for PCE to UQLab, we refer the reader to the supplementary material accom-
panying this paper. To facilitate easier benchmarking of PCE techniques on a large number
of examples in a standardized setup, we are actively engaging in designing and developing a
benchmarking platform for surrogate modelling methods similar to the UCI machine learning
repository11 or the structural reliability platform RPrepo12 where data sets, models, and meth-
ods can be made available for testing and benchmarking.
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Appendix

3.A Details on experimental design sampling techniques

It depends on certain properties of the regression matrix Ψ whether or not sparse regression
techniques are able to find the true sparse solution of a linear system of equations (assuming
that it exists). In the context of polynomial chaos, the entries of the regression matrix are the
basis polynomials evaluated at the design points. The basis polynomials are determined by the
distribution of the input random variables and the choice of the index set A, while the design
points {x(j)}Nj=1 can be chosen freely from the input space to optimize properties of the resulting
regression matrix.

In the following, we present sampling schemes that have been proposed in the literature for
the computation of sparse PCE. Some of the schemes come with theoretical results about their
performance for sparse PCE, others have heuristic justification or have guarantees for least-
squares regression. They can be broadly grouped into three categories:

• Sampling according to the input distribution
– MC (Doostan and Owhadi, 2011; Hampton and Doostan, 2015b)
– LHS (McKay et al., 1979)

• Sampling from a modified distribution (induced sampling)
– asymptotic (Hampton and Doostan, 2015b)
– coherence-optimal (Hampton and Doostan, 2015b)
– Christoffel sparse approximation (Jakeman et al., 2017)

• Optimizing matrix properties
– D-optimal (Diaz et al., 2018)
– S-optimal (Shin and Xiu, 2016a; Fajraoui et al., 2017)
– near-optimal (Alemazkoor and Meidani, 2018a)

Some of the sampling schemes are nontrivial or costly to evaluate, or even not available for all
input distributions. However, the bottleneck in surrogate modelling for practical applications
is typically the repeated evaluation of the model, which justifies the use of a complex sampling
scheme if it allows better approximation with fewer samples.
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3.A.1 Sampling according to the input distribution

This class of sampling methods consists of all methods that are oblivious to the choice of trunca-
tion set A and whose main objective is to distribute design points evenly in the quantile space.
Heuristically, the more uniformly the points are distributed in the quantile space, the more
information about the model is captured in the model evaluations, since no region of the input
domain is forgotten.

LHS is one technique for achieving a space-filling design. For each component of the input
random vectorX, the corresponding quantile space is divided into N intervals. In each interval,
one point is sampled uniformly at random. Then, the points for each dimension are combined
randomly into vectors and finally transformed into the input space using an isoprobabilistic
transform. LHS can be shown to reduce the variance of linear regression estimates when the
main effects are dominant, i.e., when the most important terms have interaction order one
(Shields and Zhang, 2016). LHS can be combined with heuristic criteria such as the maximin
distance strategy, where among several random LHS designs the one with the largest minimal
pairwise distance between points is chosen, to further improve on the space-filling property.

Stratified sampling is a related sampling technique in which the input space is divided into
disjoint regions, called strata, from which points are sampled and weighted according to the
probability mass of their stratum. Stratified sampling reduces the variance of statistical esti-
mators (McKay et al., 1979). There exists a range of methods between stratified sampling and
LHS, called partially stratified sampling, which are able to reduce the variance of statistical es-
timators when interaction terms are dominant (Shields and Zhang, 2016). The authors propose
an additional method called Latinized partially stratified sampling (LPSS) which combines LHS
and stratified sampling with the aim tif minimizing the variance of the resulting estimator. It
is especially beneficial when there is prior knowledge about which variable groups interact, and
it has been used for several problems with input dimension d = 100.

MC sampling, i.e., sampling from the input distribution, is a special case of the coherence-
based theory detailed in Section 3.A.2.1 below, and bounds on the coherence and the associated
number of points needed for recovery can be derived (Doostan and Owhadi, 2011; Rauhut and
Ward, 2012; Yan et al., 2012; Hampton and Doostan, 2015b).

3.A.2 Sampling from a different distribution

The ability of sparse regression to recover the true sparse solution (if it exists; otherwise it
recovers the best sparse approximation) largely depends on the regression matrix. In the case of
PCE, the entries of this matrix are the evaluations of the basis polynomials at the experimental
design points. The points can be chosen in a way that improves the recovery properties of the
matrix.

Several approaches exist in which the `1-minimization problem is modified into a weighted
problem and samples are drawn not from the input distribution, but from a suitable modified
distribution. The idea of these approaches is as follows. Define a weight function w(x) : Ω→ R

in a suitable way, which will be explained later. For an ED {x(k)}Nk=1, define the diagonal matrix
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W = diag(w(x(1)), . . . , w(x(N))). Then the following modified system is solved:

min
c
‖c‖1 s.t. ‖WΨc−Wy‖2 ≤ ε. (3.14)

Depending on w(x), this modification can improve or deteriorate the solution c. Of course, the
weight function is chosen to improve the solution. The matrix WΨ can also be interpreted as
the evaluation of a modified basis {ψ̃α(x) = w(x)ψα(x)}α∈A. To ensure orthonormality of the
columns of WΨ, the design points are drawn from a suitably modified input distribution fX̃ .

3.A.2.1 Coherence, isotropy, and weighted orthonormal systems

In this section, we define concepts that are the basis for guarantees on accuracy and stability
for different sampling distributions. We mainly follow the exposition in Hampton and Doostan
(2015b).

In the setting of PCE, the coherence of an orthonormal system {ψα}α∈A is defined by

µ(A, {ψα}) = sup
x∈D

max
α∈A
|ψα(x)|2. (3.15)

For distributions for which this quantity would be ∞, such as a Gaussian distribution, see the
remark below.

A second important concept is isotropy (Candès and Plan, 2011): a random matrix, whose rows
are chosen randomly following some distribution a ∼ Fa, is isotropic if it holds that E

[
aTa

]
= 1.

In the case of PCE, Fa is induced by propagating the input distribution FX through the basis
functions. By construction, the regression matrix of standard PCE is isotropic if the ED is
sampled from the input distribution. Under the assumption that the regression matrix Ψ is
isotropic, the number of samples needed for perfect recovery of sparse solutions in the noiseless
case is proportional to µ(A, {ψα})s log(P ) with high probability (Candès and Plan, 2011), where
s is the sparsity of the solution vector and P = |A| is the number of basis functions. A similar
result holds in the noisy case.

Thus, an orthonormal system {ψα}α∈A with low coherence µ(A, {ψα}) requires fewer samples
for perfect recovery. The goal of coherence-optimal sampling is to find a weighted system
{ψ̃α(x) = w(x)ψα(x)}α∈A that achieves µ(A, {ψ̃α}) < µ(A, {ψα}) and is orthonormal with
respect to some distribution f̃X .

The ideas of isotropy and coherence were applied to PCE by Hampton and Doostan (2015b),
who construct an isotropic regression matrix with improved coherence as follows. Let B : D → R

be the tight upper bound for the polynomial basis,

B(x) = max
α∈A
|ψα(x)|. (3.16)

Let G : D → R be a loose upper bound with G(x) ≥ B(x) ∀x ∈ D. (G is useful because using
a simple expression for the upper bound can in some cases result in f̃X being a well-known
distribution that can be sampled from easily.) Define a new probability distribution f̃X(x) by

f̃X(x) = c2G(x)2fX(x), (3.17)
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where c =
(∫

Ω fX(x)G(x)2dx
)− 1

2 is the normalizing constant. Then, with the weight function

w(x) = 1
cG(x) , (3.18)

the set of functions {ψ̃α(x) = w(x)ψα(x)}α∈A is an orthonormal system with respect to the
distribution f̃X . This follows directly from the orthonormality of {ψα}α∈A with respect to fX .
Furthermore, if G = B, the coherence µ(A, {ψ̃α}) is minimal.

Remark Some polynomial bases (e.g. Hermite polynomials) do not have a finite upper bound.
It is still possible to obtain similar results by considering a smaller domain S ⊂ D on which the
upper bound is finite and the isotropy is still approximately fulfilled. The modified probability
distribution is then f̃X(x) = c2G(x)2fX(x)1S(x).

3.A.2.2 Sampling using a loose upper bound ("asymptotic sampling")

In the case of Legendre and Hermite polynomials, and using a certain loose upper bound
G(x) ≥ maxα∈A |ψα(x)|, analytical expressions for distributions with improved coherence can
be obtained (Hampton and Doostan, 2015b).

In the case of Legendre polynomials on [−1, 1]d, a loose upper bound on the polynomials is given
by G(x) ∝

∏d
i=1(1 − x2

i )−
1
4 , which leads to the Chebyshev distribution f̃X(x) =

∏d
i=1

1
π
√

1−x2
i

and to the weight function w(x) =
∏d
i=1(1− x2

i )
1
4 .

In the case of Hermite polynomials for standard Gaussian variables, a loose upper bound on the
polynomials is given by G(x) ∝ exp(1

4 ‖x‖
2
2), and the subset S is chosen to be the d-dimensional

ball with radius
√

2
√

2p+ 1. This leads to a uniform distribution f̃X on S and to the weight
function w(x) = exp(−1

4 ‖x‖
2
2).

Additionally, asymptotic distributions for Laguerre polynomials (corresponding to the Gamma
distribution) and for Jacobi polynomials (Beta distribution) have been implemented in the
software package COH-OPT (Hampton and Doostan, 2017).

For Legendre polynomials, asymptotic sampling has a smaller coherence than standard sampling
in the case d < p (asymptotically). In the case d > p, which is more common in applications,
standard sampling has (asymptotically) a smaller coherence. According to theory, the sam-
pling scheme with smaller coherence should exhibit better recovery rates. This is confirmed
numerically (Hampton and Doostan, 2015b, section 5.1). For Hermite polynomials, the same
observation is made.

3.A.2.3 Coherence-optimal sampling

The choice G = B leads to the minimum possible coherence µ(A, {ψ̃α}) (Hampton and Doostan,
2015b, Theorem 4.5). B is simple to evaluate for a single point x ∈ D, but its functional form is
in general not known. Therefore, Hampton and Doostan (2015b) suggest sampling f̃X ∝ B2fX

using Markov chain Monte Carlo (MCMC) sampling with proposal distribution equal to the
input distribution in the case d ≥ p and equal to the asymptotic distribution in the case d < p.
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The resulting (unnormalized) weights are w(x) = 1
B(x) . As expected from theory, numerical

examples indicate that coherence-optimal sampling achieves better recovery and a smaller error
in various norms than both standard and asymptotic sampling (Hampton and Doostan, 2015b).
Coherence-optimal sampling can be shown to have good properties also when used as a sampling
scheme for least-squares regression (Hampton and Doostan, 2015a).

MATLAB code for MCMC-based coherence-optimal sampling is available (Hampton and Doostan,
2015a,b). However, MCMC-based coherence-optimal sampling can be very slow for high-dimensional
input. An alternative is rejection-based coherence-optimal sampling. Here, samples xcand are
generated from a proposal distribution fprop, which has the property that there is a γ ∈ R such
that γfprop(x) ≥ f̃X(x) for all x ∈ D. Uniform random numbers u ∼i.i.d. U([0, 1]) are generated.
A proposed point xcand is accepted if u ≤ f̃(xcand)

γfprop(xcand) . This is the implementation used in this
benchmark. We use a product proposal density whose marginals are determined by the input
marginals, the dimension of the problem, and the degree of the expansion: we choose uniform
proposal marginals for uniform input marginals. For Gaussian input marginals, we use Gaussian
proposal marginals if d ≥ p; otherwise, we use the corresponding asymptotic distribution. As
usual, lognormal input is mapped to Gaussian random variables before sampling (Blatman and
Sudret, 2011).

Note that for Gaussian input, coherence-optimal and asymptotic sampling have a significantly
larger spread than input sampling, as can be seen from Figure 3.A.2. Their support is the ball of
radius r =

√
2
√

2p+ 2 (as implemented in (Hampton and Doostan, 2017)). This can potentially
cause problems in engineering applications, for which simulations may be less accurate when the
input parameters are far from typical operating conditions.

3.A.2.4 Christoffel sparse approximation

A similar weighted sampling scheme is Christoffel sparse approximation (Narayan et al., 2017;
Jakeman et al., 2017; Cohen and Migliorati, 2017). Those authors propose to use the weight
function

w(x) =
(

1
|A|

∑
α∈A
|ψα(x)|2

)− 1
2

(3.19)

which leads to a modified basis that has pointwise minimal average squared basis magnitude
(compare to (3.18) with G = B). This quantity (3.6) is a measure similar to coherence (3.5) and
is used by Hampton and Doostan (2015a) and Cohen and Migliorati (2017) together with the
induced probability measure to obtain convergence results for weighted least-squares regression.
Narayan et al. (2017) and Jakeman et al. (2017) choose as probability distribution the so-called
weighted pluripotential equilibrium measure (possibly degree-dependent), which asymptotically
coincides with f̃(x) = c2w(x)2f(x) when the total degree of the truncated basis p → ∞.
However, the modified basis is not orthonormal with respect to this measure, which leads to
weaker theoretical recovery results. Theoretical results are available only for the univariate
case. In numerical examples, the method performs well for low-dimensional high-degree cases
and often very similarly to asymptotic sampling. In high dimensions, it performs worse than
input sampling (i.e., MC). It has not been compared to coherence-optimal sampling.
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3.A.3 Choosing points according to an optimality criterion from a candidate
set

The following methods aim to improve the properties of the regression matrix by choosing the
“best” design points from a large candidate set. The methods differ in the criterion defining what
are the “best” points. Most presented algorithms are greedy or heuristic and are actually only
able to find a suboptimal design (local optimum). The choice of the candidate set obviously
influences the quality of the resulting design. In the literature, candidate sets were sampled
from MC (Diaz et al., 2018), LHS (Fajraoui et al., 2017), coherence-optimal sampling (Diaz
et al., 2018; Alemazkoor and Meidani, 2018a), or Christoffel sparse approximation (Shin and
Xiu, 2016). In the case of coherence-optimal sampling or Christoffel sparse approximation,
the resulting optimized sample inherits the weights. It also often preserves the spread of the
candidate set, as can be seen in Figure 3.A.2.

3.A.3.1 D-optimal sampling

D-optimal design of experiments (Kiefer andWolfowitz, 1959; Dykstra, 1971) aims at maximizing
the determinant of the so-called information matrix 1

N
ΨTΨ ∈ RP×P . The D-value is defined

as
D(Ψ) = det(ΨTΨ). (3.20)

Sometimes the determinant of the inverse information matrix is minimized (Nguyen and Miller,
1992), or the P th root is taken for normalization purposes (Diaz et al., 2018). The maximization
of this determinant is connected to the minimization of the variance of the PCE coefficient
estimate (Nguyen and Miller, 1992; Zein et al., 2013). Note that D(Ψ) = 0 if N < P .

There exists a large selection of methods for constructing D-optimal experimental designs. For
an overview of methods for constructing designs following alphabetic optimality criteria (such
as A-, D-, or E-optimality), see (Hadigol and Doostan, 2018, Section 4.5).

Here, we only discuss D-optimal sampling based on rank-revealing QR decomposition (RRQR)
(Diaz et al., 2018), since this is the technique used in our benchmark. We decided to use RRQR-
based D-optimal sampling because it can be used even in the case N < P when other D-optimal
methods fail due to singularity of the information matrix. Note that RRQR is not guaranteed
to find a design with maximal D-value but only a local optimum (Diaz et al., 2018, Section 3.4).

Let Ψcand ∈ RM×P be the regression matrix evaluated at a set of M candidate points. The
goal is to select N ≤ M points from this candidate set with the property that the D-value
of the resulting regression matrix Ψ ∈ RN×P is as large as possible. Since in the case of
sparse PCE often N < P , which leads to D(Ψ) = 0, another strategy is necessary. The RRQR
decomposition, also known as pivoted QR, aims at permuting the columns of the original matrix
in a way that ensures the R-matrix of the associated QR decomposition is as well-behaved13

as possible. This is useful for inexpensively determining the numerical rank of a matrix (Hong
and Pan, 1992; Gu and Eisenstat, 1996). RRQR has a strong connection to SVD and to the

13R =
(
Ak Bk

0 Ck

)
where Ak is well-conditioned and ‖Ck‖2 is small
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selection of submatrices of maximal determinant (Hong and Pan, 1992). Gu and Eisenstat (1996)
propose a pivoted QR decomposition where pivots are chosen to maximize the determinant of
the resulting quadratic submatrix of R. The exchange of rows is based on a formula relating
the determinant of the quadratic submatrix of R before and after the row exchange by a simple
factor (Gu and Eisenstat, 1996, Lemma 3.1). This algorithm can be used together with SVD to
perform subset selection to construct an initial experimental design from a large set of candidate
samples (Seshadri et al., 2017; Diaz et al., 2018). Here, first an SVD of the matrix ΨT

cand is
computed. Then RRQR is applied to the transpose of the matrix consisting of the first N right
singular vectors. The resulting permutation matrix is used to determine the points to be chosen
from the candidate set.

3.A.3.2 Quasi-optimal sampling based on the S-value

Here, the idea is to select samples from a pool of candidate points so that the PCE coefficients
obtained using the selected set are as close as possible to the coefficients that would be obtained
if the whole set of candidate points was used (Shin and Xiu, 2016a). Under the assumption that
the columns of the matrix Ψcand are mutually orthogonal, the S-value is defined by

S(Ψ) =
(√

det ΨTΨ∏P
i=1 ‖Ψi‖2

) 1
P

, (3.21)

where Ψi denotes the ith column of the regression matrix Ψ. Its maximization has the (heuristic)
effect of maximizing the column orthogonality of the regression matrix while at the same time
maximizing the determinant of the information matrix (Shin and Xiu, 2016a). It holds that
S(Ψ) ∈ [0, 1] due to Hadamard’s inequality. If N < P , S(Ψ) = 0. If N ≥ P , S(Ψ) = 1 if
and only if the columns of Ψ are mutually orthogonal. There exists an update formula for the
S-value when the regression matrix is augmented by one row, which thus avoids the repeated
calculation of determinants.

Shin and Xiu (2016a) suggest a greedy algorithm that in every iteration augments the current
matrix by an additional row which maximizes the S-value of the resulting matrix among all
candidate rows. When the current number of rows in the matrix Ψ is smaller than the number
of columns, the procedure can be adapted to avoid S(Ψ) = 0. We do not include it in our bench-
mark because it is not well suited for situations where there are more basis polynomials than
design points, which is the case in sparse PCE without experimental design enrichment. How-
ever, in a sequential enrichment context (Fajraoui et al., 2017) and for least-squares regression
(Shin and Xiu, 2016), this algorithm performs well.

3.A.3.3 Near-optimal sampling

The coherence parameter (3.15) gives a bound on the recovery rate, but it is not the only
criterion that has been studied with respect to recovery accuracy. Two other matrix properties
related to recovery accuracy are mutual coherence and average cross-correlation. Both of them
consider the correlation between normalized columns of the regression matrix, i.e., their scalar
product. They are scalar measures of how “orthonormal” the columns of a rectangular matrix
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Ψ ∈ RN×P with N < P are. The heuristic idea is that columns should point in as different
directions as possible, so that the multiplication with sparse coefficient vectors, which results in
a linear combination of a subset of the columns, is “as unique as possible”. This facilitates the
recovery of the true sparse solution (assuming that it exists).

The mutual coherence is defined by

µ(Ψ) = max
i 6=j

|ΨT
i Ψj |

‖Ψi‖2 ‖Ψj‖2
, (3.22)

where Ψi denotes the ith column of the regression matrix Ψ ∈ RN×P . The mutual coher-
ence is the worst-case cross-correlation between any two columns of the matrix. It is zero for
orthonormal matrices and positive for N < P .

The average (squared) cross-correlation is defined by

γ(Ψ) = 1
P (P − 1)

∥∥∥1P − Ψ̃T Ψ̃
∥∥∥2

F
= 1
P (P − 1)

∑
i 6=j

|ΨT
i Ψj |2

‖Ψi‖22 ‖Ψj‖22
(3.23)

where Ψ̃ is the column-normalized version of Ψ, and Ψi denotes the ith column of the regression
matrix. The norm is the Frobenius-norm, taking the sum of squares of all matrix entries, and
the factor P (P − 1) is the number of column pairs.

Alemazkoor and Meidani (2018a) suggest simultaneously optimizing mutual coherence and av-
erage cross-correlation by using the greedy procedure described in Algorithm 1 below: In each
iteration, the current regression matrix is augmented by one row. This row corresponds to that
point xj from the large pool of candidate points which minimizes the (normalized) distance of
(µ′j , γ′j) ∈ R2 to the “utopia point” (min(µ′),min(γ ′)) among all candidate points.

Algorithm 1 Near-optimal sampling (Alemazkoor and Meidani, 2018a).
1: Sample a large number M of candidate points from the coherence-optimal distribution and

compute candidate rows arranged in a matrix Ψcand

2: Initialize Ψopt(1) to be a random row from Ψcand

3: for i = 2 . . . N do
4: for j = 1 . . .M do
5: Ψtemp = row-concatenate(Ψopt(i-1),Ψ

(j)
cand)

6: µ′j = µ(Ψtemp) and γ′j = γ(Ψtemp)
7: end for
8: µ′ = (µ′1, . . . , µ′M ) and γ ′ = (γ′1, . . . , γ′M )

9: j∗ = arg minj
(

µ′j−min(µ′)
max(µ′)−min(µ′)

)2
+
(

γ′j−min(γ′)
max(γ′)−min(γ′)

)2

10: Ψopt(i) = row-concatenate(Ψopt(i-1),Ψ
(j∗)
cand)

11: end for

The algorithm is called near-optimal because it is a greedy algorithm, finding only a local op-
timum, and because optimized mutual coherence and average cross-correlation are only hinting
at, but not guaranteeing, good recovery accuracy (Alemazkoor and Meidani, 2018a). Its compu-
tational complexity is O(NMP 2), where N is the size of the final experimental design, M is the
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number of candidate samples (chosen to be, e.g., proportional to P (Diaz et al., 2018)), and P is
the number of regressors. This makes the algorithm prohibitively expensive in the case of large
bases (P in the order of thousands), which is why we do not use it for some of the benchmark
examples.

3.A.4 Illustration of sampling schemes

In Figures 3.A.1 and 3.A.2, we show illustrations of experimental designs in d = 2 dimensions
with N = 100 and p = 12 for selected sampling techniques. The candidate set has a size of
M = 1000. Figure 3.A.1 presents experimental designs for uniform input in the interval [−1, 1],
while Figure 3.A.2 presents experimental designs for standard Gaussian input.

Note that in the standard Gaussian case, the asymptotic distribution, the coherence-optimal
distribution, and the matrix-optimal distributions based on a coherence-optimal candidate set
all have a very large spread that grows with the total degree of the basis. For degree p =
12, some points are seven standard deviations away from the mean. Engineering models are
typically calibrated only for a certain region of the input domain corresponding to nonnegligible
probability, and they may be less accurate (or even fail) outside of this region.
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Figure 3.A.1: Visualization of experimental designs constructed for uniform input in [−1, 1]2 for
degree p = 12. Red filled points denote the chosen experimental design, while blue circles denote
the candidate set. Size of the ED: N = 100, size of the candidate set: M = 1000.
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Figure 3.A.2: Visualization of the experimental design constructed for standard Gaussian input
in d = 2 dimensions for degree p = 12. The gray surface plot illustrates the Gaussian probability
density function. Red filled points denote the chosen experimental design, while blue circles denote
the candidate set. Size of the ED: N = 100; size of the candidate set: M = 1000. The support of the
asymptotic and the coherence-optimal distribution is the ball of radius r =

√
2
√

2p+ 2 ≈ 7.2. Note
that engineering models may be less accurate in regions where the input distribution has negligible
mass.
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3.B Details on sparse regression solvers

In this appendix, we describe the sparse solvers used in our benchmark in more detail: LARS,
OMP, subspace pursuit, SPGL1 and FastLaplace (BCS). In addition, we present an overview of
greedy stepwise regression solvers for sparse PCE.

There exist various formulations for the sparse regression problem. The typical form minimizes
the `2-norm of the empirical error under an additional constraint that is designed to enforce
sparsity.

Sparsity is measured by the number of nonzero entries in a vector, formally denoted by ‖c‖0 =∑
i 1{ci 6=0} (even though this expression is not a norm). This results in the sparse regression

problem
ĉ = arg min

c
‖Ψc− y‖22 + λ ‖c‖0 (3.24)

called `0-minimization. The only way to solve this problem exactly is by a combinatorial search
through all possible nonzero patterns for c, which is infeasible for large problem sizes.

The convex relaxation of this problem is `1-minimization, where ‖c‖0 is replaced by ‖c‖1 =∑
i |ci|. There are several equivalent formulations of the relaxed problem, namely

ĉ = arg min
c
‖Ψc− y‖22 + λ ‖c‖1 (3.25)

ĉ = arg min
c
‖c‖1 s.t. ‖Ψc− y‖2 ≤ σ (3.26)

ĉ = arg min
c
‖Ψc− y‖2 s.t. ‖c‖1 ≤ τ (3.27)

called Lagrangian formulation, basis pursuit denoising (BPDN), and least absolute shrinkage
and selection operator (LASSO), respectively. It has been shown that under certain conditions,
the solutions to `0-minimization and `1-minimization coincide (Bruckstein et al., 2009). How-
ever contrary to (3.24), formulations (3.25)–(3.27) are convex problems and allow a numerical
solution with considerably smaller cost. The three formulations (3.25), (3.26), and (3.27) are
equivalent in the sense that if ĉ is solution to one of the formulations, there exists a value of
constraint parameter σ, τ , or λ so that ĉ is also a solution to the other formulations. However,
the relationship between the parameters σ, τ, λ that makes the problems equivalent depends on
Ψ and y and is not known in advance (van den Berg and Friedlander, 2008).

There exist other sparsity-enforcing formulations, such as `p-norms (Bruckstein et al., 2009),
`1 − `2-minimization (Yin et al., 2015), or elastic net (Tarakanov and Elsheikh, 2019). One
example that we will describe is Bayesian compressive sensing, where a sparsity-enforcing prior
is used for the coefficients of the PCE, resulting in a formulation that is equivalent to a sparse
regression problem with a different kind of sparsity constraint, e.g., one related to the Student-t
distribution (Tipping, 2001).

In the following descriptions of the algorithms, A ⊂ Nd with various sub- or superscripts denotes
a set of multi-indices, which by definition of PCE can be identified with a set of basis polynomials.
With the notation of Section 3.2.1, y ∈ RN denotes the vector of model responses, Ψ ∈ RN×P

denotes the regression matrix of basis polynomials evaluated at the N experimental design
points, and c ∈ RP denotes the coefficients of a PCE. The residual is defined by r = y−Ψc, so
that the norm of the residual is the empirical error.
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The polynomials used for building the PCE are sometimes also called basis functions, regressors,
or predictors. A sparse PCE is a PCE for which only some of the basis functions have nonzero
coefficients: these basis functions are called active. We assume the regressors are normalized,
so that the correlation between two regressors is equivalent to their inner product (and to the
cosine of the angle between them).

3.B.1 Orthogonal matching pursuit (OMP)

Orthogonal matching pursuit (OMP), also called forward stepwise regression, is a classical greedy
technique for finding approximate solutions to the `0-minimization problem (3.24) (Pati et al.,
1993; Bruckstein et al., 2009). Despite its being a heuristic method, under certain assumptions
there are theoretical guarantees for the solutions returned by OMP (Tropp and Gilbert, 2007;
Bruckstein et al., 2009). OMP is an iterative algorithm that starts out with an empty model
and adds the regressors one by one to the set of active regressors. In each iteration, OMP
selects the regressor that is most correlated with the current residual, adds it to the set of active
regressors, and then updates the coefficients of all active regressors to make sure the new residual
is orthogonal to all of them and has smallest possible norm. The updating of the coefficients can
be done through an update formula (Berchier, 2015) or by computing the least-squares solution
to the system of equations involving only the active regressors (Marelli and Sudret, 2019).

The technique is presented in Algorithm 2. The iterations are continued until min{N,P} basis
functions are in the active set (then either all polynomials are selected, or there are not enough
points in the experimental design to use least-squares anymore).

Algorithm 2 Orthogonal matching pursuit (OMP) (Pati et al., 1993; Tropp and Gilbert, 2007;
Marelli and Sudret, 2019).
1: Given a set of candidate basis functions Acand

2: Initialize all coefficients to zero: c0 = 0. Set A0 = ∅
3: Set the residual vector r := y

4: for i = 1, . . . ,m do . m ≤ min{N,P}
. OMP can be stopped early when the error did not decrease anymore for a while

5: Find α∗ ∈ Acand \ Ai−1 with maximal correlation with the residual by solving

α∗ = arg max
α∈Acand\Ai−1

|rTψα|

. The entries of vector ψα are evaluations of the basis function ψα at the ED
6: Ai = Ai−1 ∪ {α} . Current set of active predictors
7: Compute the coefficients ci by least-squares using only the active indices Ai

. This can be done in O(iN) when maintaining a QR factorization (Tropp and Gilbert,
2007)

8: Update the residual r = y −ΨAici
9: end for

OMP does not, per se, return a sparse solution. If a desired level of sparsity K is known a priori,
the algorithm can be stopped after K iterations. Another possibility is to stop the algorithm as
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soon as the residual norm is smaller than some error threshold (Bruckstein et al., 2009; Doostan
and Owhadi, 2011; Jakeman et al., 2015), where the best error threshold is determined through
cross-validation. A third possibility is to determine the best number of active basis functions
through a model selection criterion, e.g. the LOO error (Marelli and Sudret, 2019). Since
the coefficients are computed by OLS on the active basis, the LOO can be computed cheaply
(Chapelle et al., 2002; Blatman and Sudret, 2011). Typically, for an increasing sequence of basis
functions the LOO error first decreases (reduction of underfitting), then increases (overfitting).
This can be utilized to terminate the algorithm early once the LOO error starts rising (early-stop
criterion) (Marelli and Sudret, 2019).

The computational complexity of OMP isO(mNP ) (Tropp and Gilbert, 2007; Dai and Milenkovic,
2009), where m ≤ min{N,P} is the number of iterations. The computation of the correlations
of the current residual with all regressors is O(NP ) and has to be performed m times. The
computation of the least-squares solution in step i can be done in O(iN), e.g., by maintaining
a QR factorization of the information matrix (Tropp and Gilbert, 2007), or by using Schur’s
complement to update the information matrix inverse whenever a new regressor is added.

From the authors’ experience, OMP often suffers from overfitting and can produce an unreliable
LOO error estimate, which can be detrimental in basis-adaptive settings (see also (Lüthen et al.,
2022a)).

OMP is available in many software packages, among them UQLab (Marelli and Sudret, 2014).

3.B.2 Least angle regression (LARS)

Least-angle regression (LARS, sometimes also abbreviated LAR) is a greedy technique that finds
an approximate solution to the `1-minimization problem (Efron et al., 2004). It is similar to
OMP in that the algorithm starts out with an empty model and adds regressors one by one based
on their correlation with the residual. However, unlike OMP, which updates the coefficients using
least-squares (making the residual orthogonal to all active regressors in each step), LARS updates
the coefficients in such a way that all active regressors have equal correlation with the residual.
LARS can be interpreted as producing a path of solutions to (3.27), corresponding to increasing
τ . The coefficients are increased in the equiangular direction until a nonactive regressor has as
much correlation with the residual as all the active regressors. This regressor is then added to
the set of active regressors and the new equiangular direction is computed. The optimal stepsize
between the addition of subsequent regressors can be computed analytically (Efron et al., 2004).
This algorithm solves (3.27) approximately. A slightly modified version of LARS, called LARS-
LASSO, removes regressors whenever the sign of their coefficient changes, and it has been proven
to solve (3.27) (or its noiseless counterpart) exactly under certain conditions (Efron et al., 2004;
Bruckstein et al., 2009).

The LARS technique is presented in Algorithm 3. It returns a sequence A1 ⊂ A2 ⊂ . . . ⊂ Am
of sets containing indices of active basis functions, with m = min{N,P}. Just like OMP, LARS
can be stopped when a predefined sparsity K is reached or when the norm of the residual ‖r‖2
falls below a predefined error threshold.
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Algorithm 3 Least angle regression (LARS) (Efron et al., 2004; Blatman and Sudret, 2011).
1: Given a set of candidate basis functions Acand

2: Initialize all coefficients to zero: c0 = 0. Set A0 = ∅
3: Set the residual vector r := y

4: for i = 1, . . . ,m do . m = min{N,P}
5: Find α ∈ Acand \ Ai−1 with maximal correlation with the residual

. For i > 1, αi is the element "responsible for" γi
6: Ai = Ai−1 ∪ {α} . Current set of active predictors
7: Compute ci . Equiangular direction for all α ∈ Ai

. c1 is equal to the first selected predictor
. (Efron et al., 2004, Eq. 2.6)

8: Compute γi . Optimal stepsize: using this, there is a new regressor that is as much
correlated with r as all regressors in Ai are

. (Efron et al., 2004, Eq. 2.13)
9: Compute the new coefficients ci = ci−1 + γici . Move the coefficients jointly into the

direction of the least-squares solution until one of the other predictors in Acand \ Ai has as
much correlation with the residual as the predictors in Ai (ensured by choice of γi and ci)

10: Update the residual r = y −Ψici

11: end for

A modified version of LARS, called hybrid LARS, uses the equicorrelated approach to select the
predictors, but computes the coefficients of the metamodel by least-squares (Efron et al., 2004;
Blatman and Sudret, 2011). Once the LARS algorithm has finished and returned the sequence of
basis setsA1, . . . ,Am, the corresponding coefficients are recomputed by least squares, ci = cLSQ

i ,
which ensures minimal empirical error for every metamodel (Ai, ci). Hybrid LARS facilitates
another way to choose the best sparsity level: as for OMP, a model selection criterion (e.g. LOO)
for each metamodel can be evaluated, and the best one is chosen. This procedure is detailed
in Algorithm 4. Cheap OLS-based computation of LOO (Chapelle et al., 2002; Blatman and
Sudret, 2011) and the early-stop criterion (Marelli and Sudret, 2019) can be applied as well.

Algorithm 4 Hybrid LARS with LOO-CV (Blatman and Sudret, 2011; Marelli and Sudret,
2019)
1: Initialization as in LARS (Algorithm 3)
2: for i = 1, . . . ,m do
3: Run one step of LARS and obtain (Ai, ci) . Algorithm 3
4: Recompute the coefficient vector using least-squares on the selected basis Ai only, ob-

taining cOLS
i (the coefficients corresponding to A \ Ai are set to zero) . Hybrid

LARS
5: Compute the LOO error εLOO(i) for cOLS

i . OLS-based LOO computation (Chapelle
et al., 2002; Blatman and Sudret, 2011)

6: end for . early stopping possible by monitoring the LOO error (Marelli and Sudret, 2019)
7: Return the metamodel (Ai∗ , ci∗) with i∗ = arg mini εLOO(i)
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As for OMP, the computational complexity of LARS (in the case N < P ) is O(mNP ), where
m ≤ min{N,P} is the number of iterations. This is due to matrix-vector multiplication and
matrix inversion which have to be performed in every iteration. The latter can be computed in
O(mN), when using techniques such as Schur’s complement to update the information matrix
inverse whenever a new regressor is added.

LARS is available in many software packages, e.g., as MATLAB implementation in UQLab
(Marelli and Sudret, 2014).

3.B.3 Subspace pursuit (SP)

Another formulation of the `0-minimization problem is

min
c∈RP

‖Ψc− u‖2 s.t. ‖c‖0 = K (3.28)

which is equivalent to (3.24) for a certain choice of λ.

Subspace pursuit (SP) seeks to identify a solution to (3.28) by iteratively and greedily enlarging
and shrinking the set of active basis functions (Dai and Milenkovic, 2009). As with LARS and
OMP, regressors are added to the set of active basis functions according to their correlation with
the residual. However, the regressors are not added one by one, but batchwise. More precisely,
SP maintains at all times an active basis of size K, where K denotes the desired sparsity. In
each iteration, it adds K regressors at once and computes the coefficients of the active regressors
by OLS. Then, it removes the K regressors with the smallest-in-magnitude coefficients. This
is continued until convergence. Under certain assumptions, there are theoretical guarantees for
the solution that SP returns (Dai and Milenkovic, 2009). To make the augmentation of the basis
and the OLS regression feasible, it must hold that 2K ≤ min{N,P}.

The technique is described in Algorithm 5 for a fixed value of sparsity K. The residual of a
vector and a regression matrix is defined as

residual(y,Ψ) = y −ΨΨ†y (3.29)

where Ψ† denotes the pseudoinverse of Ψ and Ψ†y = c is the least-squares solution to Ψc ≈ y
(the case of an overdetermined system). The algorithm returns a set A containing K multi-
indices.

For arbitrary sparse vectors, the computational complexity isO(N(P+K2)K) (Dai and Milenkovic,
2009). For very sparse vectors with K2 ∈ O(P ), the complexity thus becomes O(NPK), com-
parable to the runtime of OMP. The number of iterations that the SP algorithm performs can
be shown to be O(K) in general and even O(logK) in certain cases (Dai and Milenkovic, 2009).

When the optimal sparsity level K is unknown, it can be determined e.g. by cross-validation:
Diaz et al. (2018) suggest running Algorithm 5 for a range of NK = 10 different values for K and
choosing the one with the smallest 4-fold cross-validation error. In this paper, we propose to
use leave-one-out cross-validation instead of 4-fold cross-validation, resulting in the SP variant
SPLOO.
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Algorithm 5 Subspace pursuit (SP) (Dai and Milenkovic, 2009).

1: Given desired sparsity K ≤ min{N2 ,
P
2 }

2: Given the experimental design and the candidate basis Acand, compute the associated re-
gression matrix Ψ and the right-hand-side y

3: A0 = {K indices corresponding to the largest magnitude entries in ΨTy}
. Scalar product of columns of Ψ with y

4: y0
res = residual(y,ΨA0) . Residual of least-squares solution based on active basis

5: for l = 1, 2, . . . do
6: S l = Al−1 ∪ {K indices corresponding to the largest magnitude entries in ΨTyl−1

res }
. Augment by indices of full basis that correlate best with the residual

7: c = Ψ†Sly . Least-squares solution based on set S l of size 2K
8: Al = {K indices corresponding to the largest magnitude entries in c}
9: ylres = residual(y,ΨAl) . Residual of least-squares solution based on Al

10: if
∥∥∥ylres

∥∥∥
2
≥
∥∥∥yl−1

res

∥∥∥
2
then . if new K-sparse approx. is worse than the previous one

11: STOP iteration and return Al−1.
12: end if
13: end for
Remark: In line 10, the original publication (Dai and Milenkovic, 2009) uses “>” instead of
“≥”, but we also want to stop when the set has converged.

A related algorithm is CoSAMP (Needell and Tropp, 2009), which differs from SP mainly in the
number of regressors added in each iteration.

Subspace pursuit is available as MATLAB implementation in the software package DOPT_PCE
(Diaz et al., 2018; Diaz, 2018).

3.B.4 SPGL1

`1-minimization is a convex problem, since both the objective function and the constraint are
convex functions. Therefore, convex optimization methods can be used to find a solution. In
this section, we describe the algorithm SPGL1 (van den Berg and Friedlander, 2008).

For a given value of τ , formulation (3.27) (LASSO) can be solved by spectral projected gradient
(SPG) descent (Birgin et al., 2000; van den Berg and Friedlander, 2008).14 However, for real-
world problems, we often do not know a priori an appropriate value for τ . On the other hand,
a sensible range of values for σ in formulation (3.26) (BPDN) can typically be estimated based
on the noise level in the data and the expected model fit. In the case of PCE metamodelling, σ
can be related to an estimate of the relative MSE through RelMSE = σ2

NV̂ar[y] , whose values are
for engineering models typically between 10−10 and 100 = 1.

The main idea of the solver SPGL1 is to solve BPDN through a detour over LASSO. Let cτ be

14SPG is a gradient-based optimization algorithm with several enhancements (Barzilai–Borwein spectral step
length and the Grippo–Lampariello–Lucidi scheme of nonmonotone line search) and projection onto the feasible
set Ωτ = {c ∈ RP : ‖c‖1 ≤ τ}
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the solution to LASSO for a given τ . Define a function φ : R+ → R+ by

φ(τ) := ‖Ψcτ − y‖2 . (3.30)

Then the solution to BPDN with σ := φ(τ) is cτ . In other words, φ is the functional relationship
between σ and τ that makes the two formulations BPDN and LASSO equivalent for given Ψ
and y. φ is the Pareto front of LASSO and BPDN and shows the trade-off between the minimal
achievable `1-norm of the coefficients and the minimal `2-norm of the corresponding residual.
The Pareto front is convex, nonincreasing and differentiable with an analytically computable
derivative (van den Berg and Friedlander, 2008).

To find a solution to BPDN with a given σ, LASSO is solved with SPG several times for a
sequence of τ until one is found with φ(τ) = σ. The sequence of τ is created by performing
Newton’s root finding algorithm on the function f(τ) = σ − φ(τ).

Each SPG iteration has a computational complexity of O(NP + P logP ) (from matrix-vector
multiplication and `1-projection). Multiplying this with the number of SPG steps and the
number of Newton steps yields the computational complexity of SPGL1.

This algorithm is available as MATLAB package SPGL1 (van den Berg and Friedlander, 2008;
Van den Berg and Friedlander, 2015).

In our numerical benchmarks computing sparse PCE for compressible models, SPGL1 was among
the slowest solvers and often returned rather dense solutions.

3.B.5 Sparse Bayesian learning

Methods from the class of Bayesian compressive sensing (BCS), also known as sparse Bayesian
learning (SBL), embed the regression problem in a probabilistic framework (Tipping, 2001; Ji
et al., 2008; Babacan et al., 2010; Sargsyan et al., 2014; Tsilifis et al., 2020). The goal is to
compute, for a given model response vector y and a regression matrix Ψ, the coefficient vector
cMAP which maximizes the posterior distribution p(c|y). Another quantity of interest could be
the most probable value y∗ at a new point x∗ maximizing p(y∗|y).

In BCS, it is assumed that the “measurements” y are generated by adding zero-mean, finite-
variance noise to the evaluations of the true model. This noise is often assumed to be Gaussian
white noise with standard deviation σ, which, for a given input x, results in a Gaussian distri-
bution for its output y with mean Ψc and covariance matrix σ21 , i.e., y|c,x, σ ∼ N (Ψc, σ21).
Note that in the case of PCE, this is generally not a valid assumption: when an important term
is missing from the PCE model, the discrepancy between measurements and PCE model eval-
uations can be highly correlated, heteroscedastic, and non-Gaussian, and have nonzero mean.
However, even though the assumptions might not be fulfilled, this framework can still be useful
for finding sparse solutions.

The class of BCS algorithms comprises several methods that differ in the assumptions on the dis-
tributions of the various hyperparameters and in the (usually iterative, approximate) techniques
for computing the posterior quantities.
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In Figure 3.B.1a we present the general setup of sparse Bayesian learning. The measurements
y are assumed to follow a Gaussian distribution as described above. The noise variance σ2 is
assumed to be a random variable whose distribution has to be specified (e.g. fixed, uniform, or
inverse-Gamma). The coefficients ci are assumed to be random variables as well, drawn from a
normal distribution with mean zero and variance γi, i.e., each weight has its own variance. γ is
a so-called hyperparameter, parametrizing the distribution of a parameter.

γ

c σ2

y

p(γi)

p(c|γ) = ∏
iN (ci|0, γi)

p(σ2)

p(y|c, σ2) = N (y|Ψc, σ21)

(a) General setup of BCS

γ

c σ2

y

p(c|γ) =
∏
iN (ci|0, γi)

p(y|c, σ2) = N (y|Ψc, σ21)

λ

p(γi|λ) = λ
2 exp

(
−λ2γi

)

p(λ|ν) = Γ
(
λ|ν2 , ν2

)

ν

(b) Setup by Babacan et al. (2010)

Figure 3.B.1: Illustration of the general setup of BCS (a) and the hierarchical generalization of
Babacan et al. (2010) (b). (a): The likelihood and the prior on the coefficients are usually Gaussian,
but the choice of p(σ2) and p(γ) differs between publications, as well as the resulting solution
algorithm. (b): Babacan et al. (2010) makes a specific choice for p(γ) and includes an additional
layer of hyperparameters. Shaded variables are held fixed.

So far, the described setup with fixed σ2 and γi would yield (weighted) ridge regression. The
sparsity comes into play through an assumption on the distribution of the hyperparameter γ.
For specific choices of p(γi), it can be shown that the resulting effective prior on the coefficients
p(c) =

∫
p(c|γ)p(γ)dγ is a sparsity-encouraging distribution, i.e., one that has a sharp peak at

zero, encouraging zero values, while at the same time a heavy tail, allowing for large coefficient
values as well. Examples are the Laplace distribution and the generalized Student-t distribution
(Wipf et al., 2004; Babacan et al., 2010; Figueiredo and Nowak, 2001).

Such sparsity-encouraging distributions are often intractable to use, because they do not al-
low for analytical computation of the desired values (such as the most likely coefficients given
the data, or the prediction of the measurement value at a new point). However, feasible algo-
rithms can be developed based on a suitable approximation step. Various frameworks for sparse
Bayesian learning have been proposed whose setup follows the general structure of Figure 3.B.1a,
but which differ in the choice of priors for the hyperparameters and employ different solution
algorithms for the MAP estimate of these hyperparameters (Tipping, 2001; Faul and Tipping,
2002; Figueiredo, 2003; Tipping and Faul, 2003; Wipf and Rao, 2004; Ji et al., 2008; Seeger and
Nickisch, 2008; Babacan et al., 2010; Sargsyan et al., 2014; Tsilifis et al., 2020; Bhattacharyya,
2020). The MAP estimate of the hyperparameters is inserted into the distribution for c. Be-
cause p(c|γ) and p(y|c, σ2) are normal distributions, all subsequent computations can be carried
out analytically (Tipping, 2001; Wipf et al., 2004; Wipf and Rao, 2004). The sparsity of c is
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enforced because by the choice of p(γ) and the other distributions, many of the components
γMAP
i of γMAP will actually be zero, forcing the corresponding ci to be zero as well.

BCS in the implementation of Babacan et al. (2010) was suggested for sparse PCE by Sargsyan
et al. (2014). This approach employs an additional layer of hyperparameters as displayed in
Figure 3.B.1b. The prior on the coefficient variances is an exponential distribution p(γi|λ) =
Exp

(
γi
∣∣λ

2

)
with shared hyperparameter λ. The hyperparameter λ follows a Gamma distribution

p(λ|ν) = Γ(λ|ν2 ,
ν
2 ) with hyperparameter ν. ν → 0 implies p(λ) ∝ 1

|λ| (improper prior) and
ν → ∞ implies the certain value λ = 1. In practice, Babacan et al. (2010) find that ν = 0
gives the best results. The prior on β = σ−2 is a Gamma distribution p(β) = Γ(β|a, b) with
hyperparameters a, b. In practice, the algorithm does not estimate β well, which is, however,
crucial; therefore, it is set to a fixed value (e.g. β−1 = 0.01 ‖y‖22 in Babacan et al. (2010); in
our benchmark, we use cross-validation to determine the best value for this parameter, similarly
to the strategy for SPGL1). The objective function is the logarithm of the joint distribution
L(γ, λ, β) = log p(y,γ, λ, β), which is an analytical expression. To maximize it, Babacan et al.
(2010) adapt the fast approximate algorithm of Tipping and Faul (2003); Faul and Tipping
(2002) to their generalized hierarchical setting. Here, the derivatives of the objective function
with respect to the hyperparameters λ, β, and γi, i = 1, . . . , P are computed. This results in an
iterative scheme where these parameters are optimized one at a time while the other ones are
held fixed. The algorithm is explained in detail in Babacan et al. (2010, Algorithm 1) and has
been implemented in MATLAB under the name FastLaplace (Babacan, 2011).

3.B.6 Greedy stepwise regression solvers

Many of the sparse regression solvers that have been proposed for computing sparse PCE belong
to the class of greedy stepwise regression. Here, starting from an empty model, the regressors
are added one by one according to a selection criterion (forward selection). Some methods
also include a backward elimination step. Then the coefficients of the selected regressors are
computed. The procedure is iterated until a stopping criterion is reached. Alternatively, several
models are built and one is selected in the end using a model selection criterion. We summarize
some greedy stepwise regression techniques proposed for sparse PCE, together with their choices
for selection criterion, coefficient computation, and stopping criterion, in Table 3.B.1, including
the well-known methods OMP and LARS.

New greedy methods in the fashion of Table 3.B.1 can easily be derived by pairing other methods
for the regressor selection, the coefficient computation method, and the model selection crite-
rion. Note that except for LARS and OMP, these greedy methods are heuristic (no theoretical
guarantee of convergence) and often depend on a number of tuning parameters.
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3.C Additional results

In this appendix, we display additional results that complement the results shown in Sec-
tions 3.3.4–3.3.6. For a detailed description of the setup, we refer the reader to Section 3.3.

3.C.1 Comparison of sparse solvers

In Figure 3.C.1 we display the boxplots of relative MSE for the seven additional models presented
in Table 3.1.

3.C.2 Comparison of sampling schemes together with solvers

In Section 3.3.5, Figure 3.4 we showed aggregated results for the benchmark of solvers and
sampling schemes. To give a more tangible impression of the data, in Figures 3.C.2–3.C.5 we
display the boxplots of relative MSE against ED size for the four models Ishigami, borehole, two-
dimensional diffusion, and 100D function. We show all combinations of solvers and sampling
schemes, resulting in 16–20 combinations. Solvers are denoted by different colors. Sampling
schemes are shown in varying shades and line styles. We also show the same results sliced at
small and large ED sizes to compare the performance between solvers.

3.C.3 Comparison of sampling schemes together with solvers, using a smaller
candidate basis

Due to space limitations, in Section 3.3.6 (Figures 3.5 and 3.6) we only showed results for two of
the five solvers (OMP and SPLOO). In Figure 3.C.6, we show boxplots of relative MSE against
ED size for the three remaining solvers LARS, SP, and BCS.

3.D Benchmark studies

An overview of articles and benchmark studies comparing sparse PCE methods, including their
main results, is given in Table 3.D.1.
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(a) Undamped oscillator (d = 6)
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(b) Damped oscillator (d = 8)
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(c) Wingweight function (d = 10)
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(d) Truss model (d = 10)
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(e) Morris function (d = 20)
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(f) Structural frame model (d = 21)
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(g) 1-dim diffusion model (d = 62)

Figure 3.C.1: Results for seven additional models (see Table 3.1 in Section 3.3.4 for more details),
complementing the results in Figure 3.2. Boxplots of relative MSE against experimental design for
six sparse solvers and LHS design. Thirty replications. Note that the damped oscillator and the
Morris function are very challenging for PCE: no solver achieves a relative MSE significantly smaller
than 0.1, even when large EDs are used.
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(a) LARS
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(b) OMP
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(c) SP
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(d) SPLOO
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Figure 3.C.2: Boxplots of relative MSE from the benchmark of five solvers and four sampling
schemes for the Ishigami model (d = 3, p = 14, q = 1). Solvers are coded by colors. Sampling
schemes are shown in varying shades and line styles. In (f) and (g), we show the relative MSE of
each of the solvers combined with each sampling scheme in the order MC–LHS–coh-opt–D-opt(coh-
opt).
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(a) LARS
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(b) OMP
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(c) SP
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(d) SPLOO
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Figure 3.C.3: Boxplots of relative MSE from the benchmark of five solvers and four sampling
schemes for the borehole model (d = 8, p = 4, q = 1). Solvers are coded by colors. Sampling schemes
are shown in varying shades and line styles. In (f) and (g), we show the relative MSE of each of the
solvers combined with each sampling scheme in the order MC–LHS–coh-opt–D-opt(coh-opt).
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(a) LARS
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(b) OMP
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(c) SP
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Figure 3.C.4: Boxplots of relative MSE from the benchmark of four solvers and four sampling
schemes for the two-dimensional diffusion model (d = 53, p = 4, q = 0.5). Solvers are coded by
colors. Sampling schemes are shown in varying shades and line styles. In (e) and (f), we show the
relative MSE of each of the solvers combined with each sampling scheme in the order MC–LHS–
coh-opt–D-opt(coh-opt).
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(a) LARS
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(b) OMP
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(c) SP
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Figure 3.C.5: Boxplots of relative MSE from the benchmark of four solvers and four sampling
schemes for the 100D function (d = 100, p = 4, q = 0.5). Solvers are coded by colors. Sampling
schemes are shown in varying shades and line styles. In (e) and (f), we show the relative MSE of each
of the solvers combined with each sampling scheme in the order MC–LHS–coh-opt–D-opt(coh-opt).
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(a) Ishigami model, LARS
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(b) Borehole model, LARS
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(c) Ishigami model, SP
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(d) Borehole model, SP
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(e) Ishigami model, BCS
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(f) Borehole model, BCS

Figure 3.C.6: Left column: results for the Ishigami model with a smaller basis (d = 3, p = 12, q =
1), complementing the plots in Figure 3.5. Right column: results for the borehole model with a
smaller basis (d = 8, p = 4, q = 1), complementing the plots in Figure 3.6. Results for three sparse
solvers and five experimental design schemes. Fifty replications.
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Table 3.D.1: Overview of some articles and benchmark studies comparing sparse PCE methods. The
“best method” listed in the last column is the one delivering the smallest target error, as reported in the
respective publications. Target quantities can be moments, Sobol’ indices or the generalization error of
the PCE surrogate. Abbreviations: ‘�’ stands for ‘better than’; for the acronyms of solvers and sampling
schemes see Sections 3.2.5 and 3.2.6 or the respective publications; for the sampling schemes, the method
given in parentheses indicates how the corresponding candidate set is created (e.g., D-opt(coh-opt) stands
for D-optimal sampling based on a coherence-optimal candidate set). If the cited paper proposed a new
method, this method is marked by a star (*).

Ref. Type Methods compared Result

Hampton and
Doostan (2015b,a)

sampling MC, asymptotic*, and coh-opt* coh-opt best

Fajraoui et al.
(2017)

sampling LHS, Sobol, D-opt(LHS), S-opt(LHS)*;
sequential sampling*

sequential S-opt(LHS) best; D-
opt(LHS) worst

Hadigol and
Doostan (2018)

sampling
(OLS)

MC, LHS, coh-opt, A-opt(coh-opt)*, D-
opt(coh-opt)*, E-opt(coh-opt)*

D-opt(coh-opt) best for p > d;
MC, LHS best for p < d

Jakeman et al.
(2017)

sampling MC, asymptotic, CSA* for p > d: CSA better than MC
and asymptotic

Alemazkoor and
Meidani (2018a)

sampling MC, coh-opt, near-opt(coh-opt)* near-opt(coh-opt) � coh-opt �
MC

Diaz et al. (2018) sampling coh-opt, D-opt(coh-opt), sequential D-
opt(coh-opt)*

seq. D-opt(coh-opt) �
D-opt(coh-opt) � coh-opt

Dutta and Gan-
domi (2020)

sampling MC, LHS, Sobol, Importance Sampling LHS best

Hu and Ludkovski
(2017)

solvers OMP, SPGL1, BCS (Babacan et al.,
2010)

BCS � OMP � SPGL1

Huan et al. (2018) solvers l1_ls, SpaRSA, CGIST, FPC_AS,
ADMM with default parameters

all showed similar performance;
ADMM slightly advantageous

Liu et al. (2020b) solvers OMP, LARS, rPCE* rPCE � LARS � OMP

Baptista et al.
(2019)

solvers OMP, SPGL1, and two variants* of
OMP (modified regressor selection, ran-
domization)

best: OMP, and OMP with mod-
ified regressor selection

Tarakanov and
Elsheikh (2019)

solvers OMP, LARS, Rank-PCE* best: Rank-PCE

Zhou et al. (2019c) solvers LARS, BCS (Wipf and Rao, 2004), BCS
(Ji et al., 2008), D-MORPH-reweighted
Cheng and Lu (2018b), stepwise regres-
sion based on Bayesian ideas*

best: stepwise regression (based
on 1 Sobol’ design)
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Abstract

Sparse polynomial chaos expansions (PCE) are an efficient and widely used surrogate modeling
method in uncertainty quantification for engineering problems with computationally expensive
models. To make use of the available information in the most efficient way, several approaches
for so-called basis-adaptive sparse PCE have been proposed to determine the set of polynomial
regressors (“basis”) for PCE adaptively.

1First published in International Journal for Uncertainty Quantification in Volume 12, Number 3, 2022, pub-
lished by Begell House, Inc. Copyright c© 2022 by Begell House, Inc.
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The goal of this paper is to help practitioners identify the most suitable methods for constructing
a surrogate PCE for their model. We describe three state-of-the-art basis-adaptive approaches
from the recent sparse PCE literature and conduct an extensive benchmark in terms of global
approximation accuracy on a large set of computational models. Investigating the synergies
between sparse regression solvers and basis adaptivity schemes, we find that the choice of the
proper solver and basis-adaptive scheme is very important, as it can result in more than one
order of magnitude difference in performance. No single method significantly outperforms the
others, but dividing the analysis into classes (regarding input dimension and experimental design
size), we are able to identify specific sparse solver and basis adaptivity combinations for each
class that show comparatively good performance.

To further improve on these findings, we introduce a novel solver and basis adaptivity selection
scheme guided by cross-validation error. We demonstrate that this automatic selection procedure
provides close-to-optimal results in terms of accuracy, and significantly more robust solutions,
while being more general than the case-by-case recommendations obtained by the benchmark.

4.1 Introduction

Surrogate modeling techniques are a popular tool in applied sciences and engineering, because
they can significantly reduce the computational cost of uncertainty quantification analysis for
costly real-world computational models. Here, the computational model is approximated by a
cheaper-to-evaluate function, which is created based on a small number of model evaluations,
the so-called experimental design. One well-known and popular surrogate modeling technique is
polynomial chaos expansion (PCE), which approximates the output of a computational model by
a spectral expansion in terms of an orthonormal polynomial basis in the input random variables
(Xiu and Karniadakis, 2002). PCE is particularly well suited for surrogating smooth models
in low to medium dimension, and for the efficient computation of moments and Sobol’ indices
(Sudret, 2008; Le Gratiet et al., 2017). Engineering models are often challenging due to their
computational cost: complex models often depend on a large number of input parameters, but
we can only afford a few tens or hundreds of model evaluations. This is the so-called low-
data regime. Sparse PCE techniques, which aim to compute an expansion involving only few
terms, have proven especially powerful and cost-efficient for real-world engineering problems such
as, among many others, surrogate-assisted robust design optimization (Chatterjee et al., 2019),
hybrid simulation for earthquake engineering (Abbiati et al., 2021), dam engineering (Guo et al.,
2019; Hariri-Ardebili and Sudret, 2020), and wind turbine design (Slot et al., 2020). Note that
real-world applications are typically not exactly sparse; however, sparse regression-based PCE is
a useful tool to find good approximations at low computational cost. The aim in this context is
not sparsity, but the accurate approximation of the computational model. In particular, we are
interested in global approximation accuracy, as measured by the relative mean-squared error.
Applications with specific requirements on accuracy, such as optimization or reliability analysis,
might rely instead on more specialized surrogate techniques.

In the last decade, a large amount of literature on sparse PCE has been published, proposing
methods that make sparse PCE more accurate, efficient and applicable to high-dimensional
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problems. However, it is often not obvious how well these methods perform when compared to
and combined with each other, especially on real-world engineering problems. In an attempt to
fill this gap, the authors recently conducted a literature survey on sparse PCE and a classification
of the available methods into a general framework, as well as a benchmark of selected methods
on a broad class of computational models (Lüthen et al., 2021). This benchmark extensively
compared sparse regression solvers and experimental design sampling schemes, using a fixed
polynomial basis to focus on the effect of those two classes of methods. We found that the
choice of sparse solver and sampling scheme can make a difference of up to several orders of
magnitude in the resulting approximation error, and that different methods are preferable in
different regimes of ED size. The performance of solvers and sampling schemes seemed to be
mostly independent from one another.

The goal of the present paper is to build on and complement this earlier benchmark by exploring
the promising field of basis-adaptive sparse PCE, in which the basis is iteratively augmented
and refined. So far, novel basis-adaptive methods have been proposed in isolation and not been
compared to one another. We want to help practitioners choose the most suitable methods
for constructing a PCE surrogate for their applications by answering the following questions:
(1) Is there a significant difference between different combinations of sparse solvers and basis
adaptivity strategies, and does the proper choice matter in actual applications? (2) In the case
that no combination clearly emerges as superior, is there a smart strategy to automatically select
a good combination? To answer the first question, we describe three basis-adaptive schemes
from the sparse PCE literature in detail, namely, degree and q-norm adaptivity (Blatman and
Sudret, 2011; Marelli et al., 2021a), forward neighbor degree adaptivity (Jakeman et al., 2015),
and anisotropic degree basis adaptivity (Hampton and Doostan, 2018). We then evaluate the
performance and synergies of combinations of these basis-adaptive schemes with several sparse
regression solvers in terms of validation error2 on a library of 11 computational models of varying
complexity, representative of a broad class of engineering models. These range from three- to 100-
dimensional and include both analytical and numerical models. Since no combination of solver
and basis adaptivity significantly outperforms the others, we address the second question by
introducing an additional selection step, choosing one among several candidate PCEs computed
by different combinations of methods on the same experimental design, using a cross-validation
estimate for the generalization error.

The paper is structured as follows. In Section 4.2, we recall the definition of (sparse) PCE and the
computing framework introduced in Lüthen et al. (2021). We discuss various estimators for the
generalization error, sparse regression solvers, and basis adaptivity, and introduce automatic
selection. The associated benchmark results for basis adaptivity and automatic selection are
presented in Section 4.3. Finally, a discussion and summary of our results is provided in Section
4.4. Additional information and results can be found in the Appendix.

2We focus on global approximation accuracy instead of the computational cost of training, since the main
cost in surrogate modeling for engineering applications is typically incurred by the model evaluations themselves.
Indeed, the training of each of the surrogates presented in this work requires between a few seconds and a few
minutes on a standard business laptop. Even orders of magnitude difference in the training costs of each surrogate
do not matter as long as the resulting accuracy is appreciably better.
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4.2 Sparse polynomial chaos expansions

LetX be a d-dimensional random vector with mutually independent components and probability
density function fX . Denote by DX the domain of the random vector X. Define the space
L2
fX

(D) = {h : DX → R | VarX [h(X)] < +∞} of all scalar valued models with finite variance
under fX . Under very general conditions on the input distribution fX , there exists a polynomial
basis {ψα : α ∈ Nd} of L2

fX
(D) (Xiu and Karniadakis, 2002; Ernst et al., 2012). Since the

components of X are mutually independent, each polynomial basis function can be built as a
product of univariate polynomials in X1, . . . , Xd and characterized by the multi-index α ∈ Nd

whose entries are equal to the degrees of the univariate terms.

For a computational model M ∈ L2
fX

(D), let Y = M(X) denote the output random variable.
Y can be cast as the following spectral expansion:

Y =M(X) =
∑
α∈Nd

cαψα(X). (4.1)

In practice, a finite, truncated polynomial chaos expansion

Y =M(X) ≈MPCE(X) =
∑
α∈A

cαψα(X) (4.2)

is computed, where A ⊂ Nd is the truncation set defining the basis elements used in the expan-
sion. The accuracy of the expansion depends on A and the coefficient values (cα)α∈A =: c ∈ RP ,
with P = card(A).

Among several methods for computing the coefficient vector c for a given truncation set, sparse
regression is a particularly powerful and efficient method (Doostan and Owhadi, 2011; Blat-
man and Sudret, 2011). In this approach, the model is evaluated at a number of points
X = {x(1), . . . ,x(N)} ⊂ DX called the experimental design (ED), yielding the vector of
model responses y = (M(x(1)), . . . ,M(x(N)))T . Let {αj}Pj=1 be an arbitrary ordering of the
multi-indices in the truncation set and define the regression matrix Ψ ∈ RN×P with entries
Ψij = ψαj (x(i)). Sparse regression methods determine a vector c that minimizes the residual
norm ‖Ψc− y‖2 under the constraint that it has only few nonzero entries i.e., it is sparse. This
is usually achieved by regularized regression, resulting e.g. in the LASSO formulation

ĉ = min
c∈RP

‖Ψc− y‖22 s.t. ‖c‖1 ≤ τ, (4.3)

where τ is a parameter regulating the sparsity of c. A PCE with a sparse coefficient vector c is
called sparse PCE. Provided that the regression matrix fulfills certain properties (Candès and
Wakin, 2008; Bruckstein et al., 2009; Candès and Plan, 2011), sparse regression can find robust
solutions to underdetermined systems of linear equations, which means that the experimental
design can be smaller than the number of unknown coefficients.

The quality of the solution depends on the choice of the basis A, on the experimental design
X , and on the method used for computing the coefficients. For each of these components,
many different methods have been proposed in recent years, including iterative methods which
adaptively determine A, or the experimental design X . These methods were recently surveyed
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Figure 4.1: Framework for computing sparse PCE introduced by Lüthen et al. (2021), who con-
ducted a literature survey and a benchmark for the central components “Experimental design” and
“Sparse regression” (adapted from Lüthen et al. (2021)). In the present work, we discuss and bench-
mark the components marked in orange. In particular, we discuss the component “Basis adaptivity”
and explore its relationship to sparse regression solvers.

and classified into the framework shown in Fig. 4.1 (modified from Lüthen et al. (2021)). In the
present contribution, we focus on the question of how to determine a suitable basis A. To this
end, we benchmark several basis-adaptive approaches and explore their interplay with sparse
regression solvers.

4.2.1 Error estimation and model selection

Model selection is applied on several levels in the sparse PCE framework:

• Within the sparse solver to select its hyperparameter (see Section 4.2.2)
• Within the basis adaptivity scheme to select a basis (see Section 4.2.3)
• Finally, between solvers and basis adaptivity schemes, to automatically select a combina-
tion that is close to best (see Section 4.2.4).

Our main quantity of interest is the generalization error, in the form of the relative mean squared
error normalized by the model variance

Egen =
EX

[
(M(X)−MPCE(X))2

]
VarX [M(X)] . (4.4)

It can be approximated by the validation error in the form of the relative mean squared error
(MSE)

RelMSE =
∑Nval
i=1

(
M(x(i)

val)−MPCE(x(i)
val)
)2

∑Nval
i=1

(
M(x(i)

val)−
1

Nval

∑Nval
j=1 M(x(j)

val)
)2 (4.5)

computed on a large validation set {x(i)
val}

Nval
i=1 ∼i.i.d. fX . We only consider model selection criteria

that are estimates of the generalization error.

To get an accurate estimate of the generalization error, without using an additional validation
set, a widely used method is cross-validation (Vapnik, 1995). Here, the available data is repeat-
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edly divided into two disjoint sets, one for computing the solution (training) and the other for
evaluating the error (validation). Aggregating the error estimates from the different splits, we
get a cross-validation estimate of the generalization error.

One cross-validation strategy is to divide the data randomly into k disjoint, roughly equally large
parts, and use each of the parts in turn as validation set. This is called k-fold cross-validation.
If k is chosen to be equal to the size of the experimental design, the strategy is known as leave-
one-out cross-validation (LOO). This is closest to using all data points to compute a solution,
since in each iteration, only one point is left out from the training set.

In general, LOO can be quite costly, since for an experimental design of size N , the method
under consideration has to be applied N times. A cheap approximation to the LOO error,
which requires only one application of the method, is available for certain sparse regression
solvers, namely for those which in their last step recompute the solution with ordinary least-
squares (OLS) on the set of regressors with nonzero coefficient (called active basis) (Blatman
and Sudret, 2010). In particular, this is the case for the solvers hybrid least angle regression
(LARS) (Blatman and Sudret, 2011), orthogonal matching pursuit (OMP) (Pati et al., 1993;
Jakeman et al., 2015), and subspace pursuit (SP) (Diaz et al., 2018) (see Section 4.2.2). For
these solvers, the OLS-based LOO estimate coincides with the true LOO error if the following
holds: regardless of which experimental design point is left out, the sparse regression solver
consistently yields the same active basis.

Since the repeated use of LOO for model selection often results in the generalization error being
underestimated, especially on small experimental designs, Blatman and Sudret (2011) proposed
to use a modification factor originally developed for the empirical error (Chapelle et al., 2002),
defined by

T = N

N − Pactive

(
1 + tr((ΨT

activeΨactive)−1)
)
, (4.6)

where Pactive denotes the number of nonzero coefficients (the corresponding basis functions are
called active), and Ψactive denotes the regression matrix containing only the active regressors.
The product of the modification factor T with the LOO error is called modified LOO error.

4.2.2 Sparse regression solvers

Various sparse regression solvers available for solving sparse PCE were described in detail in
Lüthen et al. (2021). We give here only a short overview of the solvers used in our benchmark,
and refer to Lüthen et al. (2021) for further details. These solvers are common choices in the
sparse PCE literature.

• Hybrid least angle regression (LARS) (Blatman and Sudret, 2011): adding regressors
one-by-one, following a least-angle strategy. The hybrid approach recomputes the final
coefficient values by ordinary least squares (OLS) on the selected regressors.
• Orthogonal matching pursuit (OMP) (Pati et al., 1993; Jakeman et al., 2015): greedily
adding orthogonal regressors one-by-one, computing their coefficients by OLS.
• Subspace pursuit (SP) (Diaz et al., 2018): searching iteratively for a solution with a certain
`0-norm by adding and removing regressors from the active set. Coefficients are computed
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by OLS. We include two variants of SP in this benchmark, one which determines its
hyperparameter by 5-fold cross-validation similar to the implementation in (Diaz, 2018),
which we denote by SPk=5, and one where it is determined by OLS-based LOO, introduced
in (Lüthen et al., 2021) and denoted by SPLOO.
• Bayesian compressive sensing (BCS) (Babacan et al., 2010): using a Bayesian framework
to enforce sparsity of the coefficients.
• SPGL1 (van den Berg and Friedlander, 2008): a convex optimization solver following the
Pareto front of the residual-sparsity trade-off.

Each of the solvers features at least one hyperparameter whose value needs to be determined
via cross-validation in order to get a good solution. For LARS, OMP, SPk=5, and SPLOO,
this hyperparameter is the number of active basis functions (nonzero coefficients) of the final
solution. For BCS and SPGL1, it is the bound on the residual norm in the sparse regression
formulation.

The benchmark in Lüthen et al. (2021) of sparse regression solvers on a non-adaptive polynomial
basis showed that BCS and SPLOO generally outperform other sparse solvers for low-dimensional
models, while for high-dimensional models, BCS is by far the best sparse solver.

4.2.3 Basis adaptivity

The sparse solver and the experimental design, which were benchmarked in (Lüthen et al., 2021),
are not the only ingredients to a sparse PCE. The choice of the candidate basis, from which the
sparse solver determines the active basis (i.e., the set of regressors with nonzero coefficient), is
another important ingredient: if the candidate basis is chosen too small, important terms might
be missing, which might lead to a large model error. On the other hand, if the candidate basis
is too large, the ratio of the number of experimental design points to the number of coefficients
is small, which causes some properties of the regression matrix to deteriorate and can result in
a large approximation error.

Of course, it is not possible to know a-priori the best choice of the candidate basis. Basis-adaptive
schemes start with an initial candidate basis and adapt it iteratively, adding or removing basis
functions in each iteration according to various heuristics. The performance of the bases in the
different iterations is evaluated using a model selection criterion, typically an estimate of the
generalization error.

Several procedures for basis-adaptive sparse PCE have been proposed in the literature. We
discuss three approaches in detail, namely

• degree and q-norm (“p&q”) basis adaptivity, as implemented in UQLab (Marelli et al.,
2021a), see Section 4.2.3.1;
• forward neighbor basis adaptivity (Jakeman et al., 2015), see Section 4.2.3.2; and
• anisotropic degree basis adaptivity (Hampton and Doostan, 2018), from the software
BASE_PC (Hampton and Doostan, 2017), see Section 4.2.3.3.

We also briefly mention several other approaches found in the literature.
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4.2.3.1 Degree and q-norm (“p&q”) adaptivity

A typical choice for a PCE basis is the basis of total degree p defined by the set of multi-indices

Ap = {α ∈ Nd :
d∑
i=1

αi ≤ p}. (4.7)

Furthermore, hyperbolic truncation (Blatman and Sudret, 2011) uses the q-(quasi-)norm

‖x‖q =
(

d∑
i=1
|xi|q

) 1
q

(4.8)

with q ∈ (0, 1] to truncate a total-degree basis further:

Ap,q = {α ∈ Nd : ‖α‖q ≤ p}. (4.9)

Hyperbolic truncation has the effect of excluding some of the basis functions with high degree
and high interaction order. This is particularly effective for high-dimensional problems.

A simple basis-adaptive scheme is degree adaptivity (Blatman and Sudret, 2011), which com-
putes a number of PCEs on a sequence of total-degree candidate bases of increasing size, and
returns the PCE minimizing a certain error estimate as final solution. Analogously, a q-norm
adaptive scheme can be developed, and easily be combined with degree adaptivity (Marelli
et al., 2021a), yielding degree and q-norm (p&q) adaptivity. Degree and q-norm adaptivity
is solution-agnostic, i.e., it does not take the solution computed in the previous iteration into
account.

4.2.3.2 Forward neighbor basis adaptivity

Jakeman et al. (2015) suggest a basis-adaptive algorithm based on a graph view of the PCE
regressors (see also Gerstner and Griebel (2003); Narayan et al. (2014)). Since the input random
vector is assumed to have independent components, the basis functions have tensor product
structure. The basis functions can be considered nodes of a directed graph constructed as
follows (see also Fig. 4.2): two regressors are considered neighbors if their multi-index of degrees
differs only in one dimension by 1, i.e., there is a directed edge from ψα to ψβ iff γ := β − α
is a multi-index with γi = 1 for one i ∈ {1, . . . , d} and γj = 0, j 6= i. Forward neighbors of a
regressor are regressors reachable by an outgoing edge, and backwards neighbors are regressors
connected by an incoming edge.

In the context of basis-adaptive PCE, this construction is used to determine a number of candi-
date regressors to be added to the currently active basis, starting from an initial basis of small
total degree. Assume that an important high-degree or high-order regressor is not yet part of the
candidate basis but some of its backwards neighbors are. The fact that it is missing should be
visible in the coefficients of its backwards neighbors, which can be expected to have a significant
nonzero coefficient to compensate for the fact that the important high-degree regressor is not
yet part of the basis.

This heuristic is the foundation of the algorithm whose pseudocode is summarized in Algo-
rithm 6. In each iteration, the current set of active basis functions is determined (restriction



4.2. Sparse polynomial chaos expansions 117

Figure 4.2: Illustration of forward neighbor basis adaptivity (Jakeman et al., 2015) in d = 3
dimensions. The regressors are seen as nodes in a graph, where a directed edge connects regressors
whose multi-index differs by 1 in exactly one dimension. Assume that the set of active regressors
Aactive initially consists of the gray nodes. All admissible nodes are highlighted in green. Together
with the gray nodes, they constitute the set A(1) and would be added to the model in the next
expansion step of forward neighbor basis adaptivity (Step 3 in Algorithm 6).

step). All forward neighbors of these active basis functions are surveyed and added to the can-
didate basis if they are admissible, i.e., if all of their backwards neighbors are in the active set
(expansion step). Jakeman et al. (2015) employ several expansion steps to prevent premature
termination, and use cross-validation error estimates. We call this algorithm forward neighbor
basis-adaptive.

Algorithm 6 Forward neighbor basis adaptivity (Jakeman et al., 2015)
1: Initial PCE (basis chosen a-priori, typically small total-degree basis)
2: Restriction: retain only the active regressors Aactive

3: Expansion: let A(0) = Aactive. For t = 1, . . . , T , obtain the set A(t) by augmenting A(t−1)

by all its admissible forward neighbors.
4: Compute a PCE and its error estimate for each augmented basis A(1), . . . ,A(T ).
5: Choose the PCE with the lowest error estimate among the T candidates. Stop if this error

estimate is larger than the previously obtained best error estimate. Else, continue iteration
with restriction step (Step 2)

This algorithm is implemented in the software Dakota (Adams et al., 2014). We use our own
Matlab-based implementation of the algorithm. Consistently with Jakeman et al. (2015), we set
T = 3.

4.2.3.3 Anisotropic degree basis adaptivity

Hampton and Doostan (2018) propose an algorithm called BASE-PC, which combines a basis-
adaptive scheme with sequential enrichment of a coherence-optimal experimental design. The
two steps are executed alternatingly: based on the current ED, a suitable basis is chosen; and
according to the currently active basis functions, the ED is enriched and the weights are updated.

In the present work, we solely consider the basis adaptivity part of the BASE-PC algorithm.
The main idea of this algorithm is to use an anisotropic degree basis, defined by a degree vector
p ∈ Nd. A related idea was explored earlier by Blatman and Sudret (2009). Similarly to a
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total-order basis, an anisotropic degree basis is defined by

Ap = {α ∈ Nd :
d∑
i=1

αi
pi
≤ 1}. (4.10)

If all entries of p are the same, i.e., p1 = p2 = . . . = pd = p, this definition reduces to a total-order
basis of degree p. The equation

∑d
i=1

αi
pi

= 1 defines a hyperplane that cuts the i-th coordinate
axis at αi = pi.

In each iteration, the algorithm determines the current anisotropic degree vector based on the
currently active basis. A new, larger candidate basis is then constructed by considering the
anisotropic degree basis corresponding to a uniformly increased anisotropic degree vector.

We use our own, slightly modified implementation of the basis adaptivity part of BASE-PC, as
summarized in Algorithm 7. The most costly operation is the computation of the anisotropic-
degree basis (line 6). Hampton and Doostan (2018) developed a specialized efficient algorithm to
generate the multi-indices of an anisotropic degree basis, which we utilize in our implementation.
We call Algorithm 7 anisotropic degree basis-adaptive.

Algorithm 7 Anisotropic degree basis adaptivity (Hampton and Doostan, 2018)
1: Initial PCE (fixed basis of low order)
2: for o = 1, . . . , 10 do . outer loop
3: Restriction: denote by Aactive the set of active regressors of the last selected PCE
4: for i = 1, . . . , 10 do . inner loop
5: Additional restriction: remove i−1

10 regressors from the set Aactive starting with the
ones with smallest-in-magnitude coefficients, obtaining a set Ai ⊆ Aactive

6: Expansion: compute the dimension-wise maximal degree of the regressors in Ai,
denoted by degree vector pmax. Compute pnew = (pmax

1 + 1, pmax
2 + 1, . . . , pmax

d + 1) and the
associated anisotropic-degree basis Ai,new

7: Compute a PCE on the basis Ai,new and its error estimator ei

8: If ei ≥ ei−1, increase the so-called strike counter by 1. Break from the inner loop if
the strike counter is ≥ 3

9: end for
10: From the 10 candidate PCEs, select the PCE with the lowest error estimate
11: Break from the outer loop if the error estimate has increased three times in subsequent

iterations (ExpansionEarlyStop; same idea as inner loop strike counter)
12: end for
13: Return the PCE with the lowest error estimate among all PCEs selected in the outer loop.

4.2.3.4 Other basis adaptivity algorithms

We briefly summarize other approaches for basis adaptivity for sparse PCE. These approaches
will not be investigated in our benchmark.

Many algorithms which use stepwise regression to build up a sparse basis regressor-by-regressor
can be classified both as sparse regression solvers (as done in Lüthen et al. (2021)) and as basis-
adaptive algorithms. As an example, the approach by Blatman and Sudret (2010) adds and
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removes regressors one-by-one based on the induced change in LOO error, thereby building up
a small set of active basis functions which is sparse in a larger total-degree basis. In this case,
the candidate basis coincides with the active basis. Mai and Sudret (2015) use the “principle of
heredity” together with LARS to determine additional bivariate interaction terms to be added to
the model, once a univariate term is identified as relevant. We do not consider these approaches,
since we are interested in algorithms modifying the candidate basis not only one regressor at a
time, but at a larger scale.

Alemazkoor and Meidani (2017) propose a basis-adaptive algorithm relying on sparsity and step-
by-step augmentation of the basis. In each step, the candidate basis is a total-order basis for
a subset of input random variables, while the remaining input random variables are considered
constant. The initial basis consists only of the constant term. In each iteration, either one of the
constant dimensions is activated, or the total degree of the candidate basis is increased by one
(active dimensions only), depending on the resulting error estimate or sparsity of the solution.
The coefficients are solved by OLS until a pre-defined threshold of residual norm is reached.
Then, the sparse regression solver SPGL1 is used, which identifies the sparsest solution whose
residual norm is smaller than the given threshold. We do not consider this method due to its
high computational cost and its strong tie to the solver SPGL1, making it less effective when
paired with other sparse regression solvers.

Loukrezis et al. (2019) propose a basis-adaptive algorithm for interpolating PCE on Leja-based
sparse grids. Their algorithm is a more cautious version of forward neighbor basis adaptivity
(Section 4.2.3.2): after adding all admissible forward neighbors to the basis and computing
their coefficients, all of the recently added regressors are removed again, except for the one that
achieved the largest-in-magnitude coefficient. Thapa et al. (2020) suggest a basis-adaptive pro-
cedure that relies on total-order bases of increasing degree. In contrast with degree adaptivity
(Section 4.2.3.1), the basis functions of degree p+ 1 are not added all at once, but in chunks of
a certain size dependent on the dimension and the degree p. After adding a chunk of basis func-
tions, the PCE is recomputed and regressors with a coefficient smaller than a certain threshold
are removed from the basis. We do not consider these two approaches because they are similar
to the previously presented approaches while being more costly.

4.2.4 Automatic selection of a sparse PCE solution from several candidate
solutions

For realistic simulators used in engineering and applied sciences, evaluating the computational
model is the expensive part of the surrogate modeling process. Once the model evaluations are
obtained, all further computations are post-processing steps, and are computationally cheap in
comparison to the model evaluations. Thus, it is feasible to apply several adaptive sparse PCE
methods and choose the best one.

We therefore propose the use of an additional layer of selection which we call here automatic
selection. It can be seen as a simple case of ensemble modeling (Sagi and Rokach, 2018) where
a single metamodel (“strong learner”) is chosen based on its cross-validation performance – or,
in other words, model selection. For a given experimental design, we compute several sparse



120 Chapter 4. Sparse PCE – Basis adaptivity and automatic selection

PCEs through different combinations of sparse solvers and basis adaptivity schemes. From the
resulting PCE solutions, we choose one based on the value of a suitable estimate of generalization
error as model selection criterion. There are several possibilities. One possible choice is the
estimator already used for selecting the hyperparameter of the solver and for basis adaptivity,
i.e., (modified) LOO for LARS, OMP and SPLOO, and k-fold cross-validation for SPk=5, BCS
and SPGL1. However, this estimator might not be consistent between solvers, which is however
necessary for such an automatic selection. Furthermore, this estimate might be biased due to
its repeated use.

A second class of estimators is given by the so-called hybrid cross-validation error estimators.
The word hybrid is a reference to Efron et al. (2004), who created the hybrid version of least-
angle regression (LARS) which uses LARS only to identify the set of active basis functions,
and then recomputes the coefficients by ordinary least-squares (OLS) on this active set. To
compute the hybrid leave-one-out (LOO) or hybrid k-fold cross-validation error estimate for
any PCE solution, the same procedure is used: first, the active basis functions are identified
using the whole experimental design. Then, the coefficients are recomputed several times using
OLS, following the chosen cross-validation framework. This requires solving a linear system of
equations k times in the case of k-fold cross-validation. In case of LOO, only one linear system
of equations needs to be solved (Blatman and Sudret, 2010). Furthermore, we can make use of
the modification factor of Eq. (4.6) to compute the hybrid modified LOO error estimate.

As baseline cases, we will also select a solution 1) randomly from a set of generally well-
performing methods, and 2) corresponding to the best combination identified in the benchmark
of basis adaptivity schemes (Section 4.3.1).

4.3 Numerical results

In this benchmark, we compare the performance of various combinations of sparse regression
solvers with basis-adaptive schemes. We use the following methods and associated implementa-
tions. The sparse solvers (wrapped to fit into our benchmark framework) are:

• Hybrid-LARS: UQLab (Marelli et al., 2021a; Marelli and Sudret, 2014)
• OMP: UQLab (Marelli et al., 2021a; Marelli and Sudret, 2014)
• SPk=5: own implementation of Diaz et al. (2018), available in UQLab (Marelli et al.,
2021a; Marelli and Sudret, 2014)
• SPLOO: own adaptation of Diaz et al. (2018), available in UQLab (Marelli et al., 2021a;
Marelli and Sudret, 2014)
• BCS: own implementation of FastLaplace (Babacan et al., 2010), available in UQLab
(Marelli et al., 2021a; Marelli and Sudret, 2014)
• SPGL1: SPGL1 v1.93 (van den Berg and Friedlander, 2008; Van den Berg and Friedlander,
2015)

The basis adaptivity schemes are:
3Our benchmark is performed with SPGL1 v1.9. A new version of SPGL1, v2.1, is available since June 2020.

In our tests, the new version (with “hybrid” mode) did not perform significantly better than the old version. The
numerical results show therefore results for SPGL1 v1.9 with default parameters.
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• p&q adaptivity: UQLab (Marelli et al., 2021a; Marelli and Sudret, 2014)
• forward neighbor basis adaptivity: own implementation of the algorithm based on the
description in Jakeman et al. (2015)
• anisotropic degree basis adaptivity: own implementation of an algorithm adapted from the
basis-adaptive part of BASE-PC (v1) (Hampton and Doostan, 2018), using the function
basis_anisotropic_total_order.m from Hampton and Doostan (2017) to generate the
multi-indices of an anisotropic degree basis (see Section 4.2.3.3)

To reduce the complexity of our benchmark, we choose Latin hypercube sampling with max-
imin distance optimization to generate the experimental design (ED) since Lüthen et al. (2021)
demonstrated that the choices of sparse solver and sampling scheme are mostly independent
from each other.

We use the following model selection methods:

• For the selection of the hyperparameters of the sparse regression solvers, we use
– modified OLS-based LOO for the solvers LARS, OMP and SPLOO

– k-fold CV for the solvers SPk=5 (k = 5), BCS (k = 10) and SPGL1 (k = 10)
• The basis adaptivity schemes use the same criterion as the respective solver uses.
• We investigate in Section 4.3.2 which criterion is suited best for the final model selection.

I.e., instead of prescribing fixed values for the hyperparameters, we let the parameters be de-
termined adaptively. In this sense, we give each method equal opportunity to produce the best
possible solution (assuming that the CV error is a good proxy for solution quality).

For our benchmark, we use 11 benchmark models ranging from low-dimensional analytical mod-
els to high-dimensional differential equations. All of these models have previously been used
as numerical examples for surrogate modeling or reliability analysis. None of these models has
an exactly sparse representation. Note that we do not aim at benchmarking the ability of the
methods to recover “true” sparse solutions, but instead their approximation capabilities on en-
gineering models, which are typically not exactly sparse but compressible, meaning that the
magnitude of their PC coefficients decays rapidly. Table 4.1 provides an overview of the bench-
mark models. For a more detailed presentation, we refer the interested reader to the respective
publications (see column "Reference" of Table 4.1).

4.3.1 Basis adaptivity

We benchmark the sparse solvers LARS, OMP, SPk=5, SPLOO, BCS, and SPGL1 combined with
the basis-adaptive schemes described in Section 4.2.3:

1. degree and q-norm (p&q) adaptivity (abbreviation: PQ)
2. forward neighbor basis adaptivity (FN)
3. anisotropic degree basis adaptivity (AD)

As a base case, we include a static basis following the rule P ≈ 10
3 N (abbreviation: ST), where

we use hyperbolic truncation with q = 0.5 for high-dimensional models (d ≥ 20).

4https://www.uqlab.com/sensitivity-high-dimension

https://www.uqlab.com/sensitivity-high-dimension
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Table 4.1: Overview of the 11 computational models used in our benchmark. Finite elementmodels
are marked in italic font, all other models are analytical. The column “Reference” provides the liter-
ature in which the models and their input are described in detail. The column “ED sizes” contains
the two sizes of experimental design (small and large) used in the basis adaptivity benchmark.

Model Dimension Distributions Reference ED sizes
(small, large)

Ishigami function 3 uniform Blatman and
Sudret (2011)

50, 150

Undamped oscillator 6 Gaussian Echard et al.
(2013)

60, 120

Borehole function 8 Gaussian, lognormal,
uniform

Morris et al.
(1993)

100, 250

Damped oscillator 8 lognormal Dubourg (2011) 150, 350

Wingweight function 10 uniform Forrester et al.
(2008)

100, 250

Truss model 10 lognormal, Gumbel Blatman and
Sudret (2011)

100, 250

Morris function 20 uniform Blatman and
Sudret (2010b)

150, 350

Structural frame model 21 lognormal, Gaussian;
dependent input variables

Blatman and
Sudret (2010)

150, 350

2-dim diffusion model 53 Gaussian Konakli and
Sudret (2016)

100, 400

1-dim diffusion model 62 Gaussian Fajraoui et al.
(2017)

100, 400

100D function 100 uniform UQLab
example4

400, 1200

The benchmark is performed on all 11 models presented in Table 4.1. The experimental design
(ED) is created by Latin hypercube sampling (LHS) with optimized maximin distance. We
investigate one “small” and one “large” ED size per model (see last column of Table 4.1), which
correspond to the second-smallest and second-largest experimental design size, respectively, of
an earlier benchmark (Lüthen et al., 2021) dedicated to investigating solvers and sampling
schemes on a static basis. The small ED size is chosen to be at the lower end of the range
of reasonable ED sizes. The large ED size represents the “highly informative” regime (in the
engineering sense), which for costly engineering models is in the order of a few hundred model
evaluations. Here we restrict ourselves to two ED sizes to control the complexity of the results;
however, two ED sizes are needed since the earlier benchmark showed that the solver behavior
is different in the two regimes. Since almost no engineering model is exactly sparse in the PCE
basis, adaptivity can be expected to help identify relevant higher-order terms in all regimes of
ED size – as soon as the ED is large enough to contain some information about the model.
For each model and experimental design size, we repeat the analysis R = 30 times to account



4.3. Numerical results 123

for the stochasticity of the sampling method. Due to their excessive computational cost5, we
omit SPGL1 and anisotropic degree basis adaptivity from the benchmark for high-dimensional
models (d ≥ 20). More details on the settings for the basis adaptivity schemes (e.g., initial basis
and investigated degree ranges) can be found in 4.A.

4.3.1.1 Boxplots of results for the Ishigami function

The results from this benchmark for the Ishigami function are displayed in Fig. 4.1 in the form of
boxplots. Results for the remaining models are shown in 4.B.1. The boxplots visualize the results
for all combinations on 30 independent ED realizations. The star-shaped markers denote for one
(arbitrarily selected) ED realization the respective validation errors of each of the combinations,
highlighting one set of data points which is also contained in the boxplots. We observe that the
ranking based on statistics (e.g., median as denoted by the white circle) and the ranking based
on the actually attained error on a specific ED can be quite different (see e.g. SPk=5 & FN
vs. BCS & FN in Fig. 4.1a). From the star-shaped markers, it is obvious that the solvers and
basis-adaptive schemes do not exploit the available information in the same ways: while some
combinations show their best performance on the selected ED, others perform average or worse
on the same ED. We want to find the “best” method, i.e., a solver-basis adaptivity combination
that consistently, on each different model and ED realization, achieves a close-to-optimal error.
In other words, in this comparative study we are less interested in the absolute values of the
error (since we assume that the tested methods have been validated before in the associated
literature), but rather in the relative performance of the methods. The boxplots alone do not
give the full picture, since they do not show which errors correspond to the same ED realization.
Also, looking at the results for this and other benchmark models in 4.B.1, it is difficult to visually
extract information about the overall performance of the methods.

4.3.1.2 Bar plots – results aggregated over models and replications, separately per
model dimensionality and ED size

Therefore, we propose an aggregated visualization of the results as displayed in Fig. 4.2 and
described in the following. For every model and ED size, we determine on each unique ED
realization which combination attained the smallest error ε∗ (for example, for the ED realization
visualized in Fig. 4.1a by the star-shaped markers, SPLOO & PQ attains rank 1). We also
determine on the same ED for each combination whether it came within a factor of 2, 5, or 10
of ε∗. For example, for the ED realization visualized in Fig. 4.1a by the star-shaped markers,
the best error is attained by SPLOO & PQ. All other combinations achieve an error that is more
than a magnitude larger, and would therefore not get a count for this ED realization.

We then aggregate the counts over all repetitions and all models in four different classes: low
dimensionality (d ≤ 10) and small experimental design, low dimensionality and large experi-

5Anisotropic degree basis adaptivity increases the degree of the basis uniformly by 1 in each dimension,
which for high-dimensional models often results in infeasibly large bases. SPGL1, or the implementation we are
using, takes considerably longer than the other solvers for an increasing number of basis elements P . Since our
benchmark setup requires several thousand runs of the sparse solver for the case of high-dimensional models, the
computational cost of the full benchmark is infeasible given our computational resources.
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Figure 4.1: Comparison of all possible combinations of solvers and basis adaptivity schemes for
the Ishigami function. Abbreviations of basis adaptivity schemes: ST – static basis, PQ – degree-
and q-norm, FN – forward neighbor, AD – anisotropic degree. We show validation errors attained
by all 24 combinations of methods on 30 realizations of experimental design. The boxplots visualize
the attained errors across all 30 realizations. The star-shaped markers denote for one arbitrarily
selected ED realization the errors that the different combinations attain (highlighting one set of data
points which is also contained in the boxplots). Left: small ED; right: large ED.

mental design, and their corresponding high dimensionality counterparts (d ≥ 20). In other
words, for each of the four classes we count how often each combination achieved the best error
or came within a factor of 2, 5, or 10 of the best error, for each unique experimental design.
These counts, scaled as percentages of all runs6, are then visualized in the form of overlapping
horizontal bars in Figs. 4.2a–4.2e as follows: The dark red bar shows the percentage of runs in
which the particular combination of sparse solver and basis-adaptive scheme found the small-
est relative MSE ε∗. The other three bars in hues of red illustrate how often the respective
combination was within a factor of 2, 5, or 10 of ε∗ on the same ED.

These bars are therefore a measure of the dispersion of the accuracy of each method in terms
of distance to the best attainable accuracy. This measure is more interesting than the absolute
scatter of a method, since a large variability does not matter as long as the method always
provides a close-to-optimal solution; and small variability is of no value if the method is always
orders of magnitude away from the best possible solution. We only show the six combinations
of solver and basis adaptivity scheme whose relative MSE was most often within two times the
best relative MSE (denoted by the bright red bar), and sort the combinations according to this
criterion. (For the full list of combinations, see Figs. 4.B.3–4.B.6 in the appendix.)

Comparing the subplots 4.2a–4.2d, we observe that the results for small and large ED sizes and
low- and high-dimensional models are indeed quite different, which justifies analyzing the results
separately. As detailed in the previous paragraph, the plots show both which combinations of
solver and basis adaptivity scheme attain the smallest relative MSE how often (length of the
dark red bar), and how robust the combination is (lengths of the other three bars), i.e., how often
the solution was within a small factor of the best solution. We observe that depending on the
criterion considered to assess the combinations of solver and basis adaptivity scheme, different
combinations turn out to perform best. In the following, we summarize the performance of solver-

6There are 6× 30 realizations for the two low-dimensional cases (Figs. 4.2a and 4.2b), and 5× 30 realizations
for the two high-dimensional cases (Figs. 4.2c and 4.2d). Fig. 4.2e aggregates over all 660 ED realizations.
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Figure 4.2: Aggregated results of our comparative study. For each of the 11 models, 2 ED sizes, and 30
replications (i.e., ED realizations), we have run each of the combinations of sparse solver and basis adaptivity
scheme and computed the corresponding relative mean-squared errors (MSE) (see Fig. 4.1 for results for
the Ishigami function). We determine the relative performance of the method combinations separately on
each ED realization: denoting the best attained relative MSE on a specific ED by ε∗, we record which of the
method combinations reached this error or came within a factor of {2, 5, 10} of ε∗ on the same ED.
We then aggregate the counts over all replications and models, separating by low/high dimensionality and
small/large ED size (panels 4.2a–4.2d). This results in 6× 30 runs for the low-dimensional cases, and 5× 30
runs for the high-dimensional cases (per method combination). For readability, in panels 4.2a–4.2d only the
six best combinations are shown (for the full results, see 4.B.2). The results are displayed in the form of
overlapping bars, representing percentages. The dark red bar represents the percentage of runs where the
method combination reached the best relative MSE on the specific ED realization. The other bars in shades
of red denote the percentages of runs where the error of the particular method combination was within a
factor of {2, 5, 10} of the best error on the same ED realization. The method combinations are sorted by
the length of the bright red bar (number of runs with an error ≤ 2ε∗).
In panel 4.2e, we display the relative performance of the method combinations aggregated over all models,
ED sizes and replications (i.e., 11× 2× 30 runs).
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basis adaptivity combinations with three numbers X-Y -Z, where X denotes the percentage of
runs where the respective combination turned out best (i.e., the length of the dark red bar), Y
denotes the percentage of runs that were within a factor of two of the smallest error on that
ED (length of the bright red bar), and Z denotes the percentage of runs that were within 1
order of magnitude of the smallest error (light red bar). The numbers are rounded to integer
values. Italic numbers indicate that this is the best value achieved among all combinations. The
enumeration tags refer to the panels in Figure 4.2.

(4.2a) Low-dimensional models, small ED: BCS together with forward neighbor basis adaptivity
(22 -56 -75) achieves the smallest error more often than any other combination. However,
this combination is not the most robust: in 100− 75 = 25% of runs, its error is more than
one magnitude worse than the best error. SPLOO together with p&q adaptivity (11-32-89 )
is the most robust instead.

(4.2b) Low-dimensional models, large ED: by far the best combination in all three categories is
SPLOO together with forward neighbor basis adaptivity (42 -69 -96 ).

(4.2c) High-dimensional models, small ED: there are two combinations that outperform the oth-
ers: SPk=5 with forward neighbor basis adaptivity (29 -74 -80) and BCS with a static basis
(3-73-100 ). A close third is BCS with p&q adaptivity (27-69-100 ).

(4.2d) High-dimensional models, large ED: the two best combinations are SPk=5 with forward
neighbor basis adaptivity (53 -77 -81) and SPLOO with forward neighbor basis adaptivity
(21-62-99 ).

We observe from this enumeration that only the solvers BCS, SPk=5 and SPLOO are found among
the best combinations. Considering the best six combinations (based on the second number Y )
as in Fig. 4.2, only LARS is joining the list. OMP does not perform well in any of the cases (see
also Appendix, Figs. 4.B.3–4.B.6). This is likely due to its tendency to severely underestimate
the generalization error, which might make the comparison between error estimates of different
bases unreliable. Likewise, SPGL1 is never among the best six combinations for low-dimensional
models.

Regarding basis adaptivity schemes, the static basis is not among the best six combinations
(based on the second number Y ) for low-dimensional models. However for high-dimensional
models, especially for the small ED case, it is among the six best combinations several times
and performs well.

Note that in the high-dimensional, small ED case (Figs. 4.2c and 4.B.4), the static basis shows
the most robust behavior (in terms of the third number Z) while any solver with forward neighbor
basis adaptivity is off by more than a magnitude in at least 20% of runs. This is due to its bad
performance for the 100D function (see also Fig. 4.B.2u). The 100D function is also responsible
for the peculiar results of the high-dimensional, large ED case (Figs. 4.2d and 4.B.6): only SPLOO

together with forward neighbor basis adaptivity is able to find a very accurate solution, reaching
a validation error of 10−10 which is several orders of magnitude smaller than what the other
combinations reach. However, several other combinations are within one order of magnitude of
the smallest error for all other high-dimensional models, reaching overall 80% for Z, as can be
seen from Fig. 4.B.6.
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4.3.1.3 Bar plots – results aggregated over all models, ED sizes, and replications

To get a complete picture of solver and basis adaptivity scheme performance, we display in
Fig. 4.2e the relative performance of all combinations of solvers and basis adaptivity schemes,
averaged over all models and experimental designs regardless of their dimensionality and size. We
exclude combinations involving SPGL1 and anisotropic degree basis adaptivity (AD), which were
only tested for low-dimensional models. Therefore, Fig. 4.2e contains 3× 5 = 15 combinations.
We see that SPLOO together with forward neighbor basis adaptivity (26 -59 -89 ) performs best
in all three categories. SPk=5 together with forward neighbor basis adaptivity (24-56-81) is on
the second place in terms of the first two criteria (X and Y ), while SPLOO together with p&q
basis adaptivity (6-29-86) is the second-best solver in terms of achieving an error within one
order of magnitude of the best error most often (Z). BCS together with any basis adaptivity
scheme performs well, while all combinations involving OMP are on the bottom of the list.
Combinations with a static basis are found more towards the end of the list, and those with
forward neighbor basis adaptivity are found more towards the beginning of the list.

4.3.1.4 Conclusion of the comparative study

From these plots, we see clearly that there is no single combination of sparse solver and basis
adaptivity scheme that always outperforms all others. While SPLOO together with forward
neighbor basis adaptivity shows superior performance when averaged over all models and ED
sizes, we identify better-performing combinations when we differentiate by model dimension and
ED size. In some cases, we are faced with a trade-off between accuracy and robustness: e.g.,
for low-dimensional models and small EDs, the choice of BCS & FN has a higher probability of
yielding a near-optimal solution (within a factor of 2 to the best), while the choice of SPLOO &
PQ has a higher probability of not being more than a magnitude off from the optimal one.

It seems to be easier to identify trends regarding solvers than regarding basis adaptivity schemes.
For example, BCS performs well when information is scarce (small ED sizes or high-dimensional
models) while SPLOO performs well for large ED sizes, as already observed in (Lüthen et al.,
2021), and OMP generally underperforms. This might be because sparse regression solvers
are based on quite different principles, from gradient descent over greedy stepwise regression
to Bayesian reasoning, while the basis adaptivity schemes all work with variations of the same
concept – namely, gradually increasing the degree of the basis. Basis-adaptive schemes generally
outperform the static basis, most likely because they offer more basis elements to choose from.
However, it seems to not matter as much how the additional basis elements are generated, since
none of the three basis-adaptive methods always finds the best basis. Note that the selection of
the bases is guided by the cross-validation error. If the cross-validation error does not correlate
well with the real validation error, the scheme will select a suboptimal basis. OMP generally has
an unreliable cross-validation error, which might explain its bad performance with basis-adaptive
schemes.
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4.3.2 Automatic selection of sparse solver and basis adaptivity scheme

As we saw in the previous section, there is no single best-performing combination of sparse
solver and basis adaptivity scheme. In this section, we investigate the question: is there any
criterion which can help us choose the best combination of solver and basis adaptivity scheme
for a given problem? One such criterion could be a deterministic rule based on dimensionality of
the model and ED size, relying on the results from the previous section. Another option could
be to use cross-validation-based model selection criteria as described in Section 4.2.4 (see also
Section 4.2.1). We call this process of automatically choosing a well-performing combination
from a number of candidate combinations using a model selection criterion automatic selection.

Due to the performance of the methods in the benchmark in the previous sections, we restrict
our investigation to the solvers SPk=5, SPLOO and BCS, and to the basis adaptivity schemes

• p&q adaptivity (PQ), forward neighbor adaptivity (FN), and anisotropic degree adaptivity
(AD) for low-dimensional models
• static basis (static), p&q adaptivity (PQ), and forward neighbor adaptivity (FN) for high-
dimensional models

resulting in 9 possible solutions for each model, ED size and repetition.

We use the following model selection criteria (see also Section 4.2.4):

1. the oracle solution, i.e, the smallest relative MSE attained among all 24 or 15 combinations
of methods (for low-dimensional or high-dimensional models, respectively) – i.e., among
all methods tested in Section 4.3.1, not only among the 9 candidate solutions considered
here – on each ED realization, as an ideal lower bound. Of course, this information is not
available in practice.

2. the criterion used for basis and hyperparameter selection by the respective solver (see
Section 4.2.1)

3. hybrid LOO, computed by OLS on the active basis functions only
4. hybrid modified LOO, computed by OLS on the active basis functions only, and using the

correction factor from Eq. (4.6)
5. hybrid 10-fold cross-validation error, computed by OLS on the active basis functions only
6. A fixed rule dependent on dimensionality and ED size, according to the findings in Section

4.3.1, choosing the solver that achieved the smallest error most often (i.e., having the
longest dark red bar, and coincidentally also the longest bright red bar):
• low-dimensional models, small ED: BCS & FN
• low-dimensional models, large ED: SPLOO & FN
• high-dimensional models, small ED: SPk=5 & FN
• high-dimensional models, large ED: SPk=5 & FN

This implies that by design, the lengths of the bars for this selection criterion are identical
with the results for the respective combination in Fig. 4.2.

7. A randomly picked combination of solver and basis adaptivity scheme from the 9 available
options as upper bound: any sensible model selection criterion must perform better than
this.

The results are presented in Figure 4.3. Note that we do not display which sparse solver and
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Figure 4.3: Testing different automatic selection strategies. As before, the overlapping bar plot
visualizes the percentage of runs where the respective strategy achieved the best error ε∗ or was
within a factor of {2, 5, 10} of the best error ε∗ among the seven selection strategies. The bar labels
are explained in the enumeration of model selection criteria in the text.
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basis adaptivity scheme was chosen – we only show how close the chosen solution comes to the
best possible solution.

• By construction, the oracle selection performs best in all cases. (We only include it into
the plot to emphasize that all other criteria are measured against the best attained error
on each ED.)
• The random selection is by far the worst selection criterion, which shows that automatic
selection provides a statistically significant improvement over random selection.
• All three hybrid selection criteria are in general more robust than the fixed rule, attaining
an error within 2 times of the best solution (bright red bar) similarly or more often than
the fixed rule, and being within one order of magnitude of the best error (light red bar)
even more than 90% of runs (low-dimensional models) or 99% of runs (high-dimensional
models). Averaging over all runs (Fig. 4.3e), the hybrid criteria attain the best error almost
as often as the fixed rule, which was chosen for this reason, i.e., because it attained the
best error most often. This shows that automatic selection is able to return a solution
with almost the same accuracy as the best-performing method, while being more robust
than a fixed rule or a random choice of methods.
• The criterion used for basis and hyperparameter selection, i.e., k-fold CV for SPk=5 and

BCS, and LOO for SPLOO, performs slightly worse than the three hybrid selection criteria
in all cases shown in Fig. 4.3. The slightly worse performance of this selection criterion
might be explained by selection bias: since the criterion was already used twice for selec-
tion, it is likely that it underestimates the generalization error. Another reason might be
that the criteria used by different solvers (OLS-based LOO vs. k-fold CV) might not be
comparable among each other (inconsistency).

We conclude that automatic selection, i.e., using cross-validation to choose a PCE solution from
a number of candidate solutions computed with different methods on the same experimental
design, can achieve results that are as accurate as and more robust than results from a fixed rule
for which combination of solver and basis adaptivity scheme to use, even if this rule is based
on a thorough benchmark such as the one in Section 4.3.1. While automatic selection leads to
increased computational cost due to the need of training the surrogate with different solvers
and basis adaptivity schemes on the same experimental design, it is a case-independent strategy
applicable to models of any dimensionality and experimental designs of any size, and it finally
results in a PCE that is both accurate and more reliable.

4.4 Conclusion and discussion

Our goal was to provide guidance for the choice of sparse PCE methods in engineering appli-
cations, by answering the two questions: (1) Is there a significant difference between different
combinations of sparse solvers and basis adaptivity strategies, and does the proper choice matter
in actual applications? (2) Is there a smart strategy to automatically select a good combination?

To answer these questions, we performed an extensive comparative study investigating several
approaches for computing sparse PCE with the goal of surrogate modeling, using the relative
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mean squared error on a validation set as the main performance metric. In particular, we stud-
ied the performance of combinations of basis adaptivity schemes and sparse solvers in order to
identify combinations that yield the smallest generalization error. Our investigations are based
on 11 analytical and numerical benchmark models of varying input dimension and complexity,
representative of a wide range of engineering problems. We considered the sparse solvers least
angle regression (LARS), orthogonal matching pursuit (OMP), subspace pursuit based on k-
fold cross-validation (SPk=5), subspace pursuit based on LOO (SPLOO), Bayesian compressive
sensing/FastLaplace (BCS), and spectral projected gradient-`1 (SPGL1). The basis adaptivity
schemes we compared were a fixed basis truncation scheme following the rule N ≈ 10

3 P , degree-
and q-norm adaptivity, forward neighbor basis adaptivity, and anisotropic degree basis adap-
tivity. We made a distinction between four cases, namely low- and high-dimensional models as
well as small and large experimental design sizes.

The comparative study revealed that it is important to carefully select the strategy, since the
difference in generalization error between different combinations of methods can be large, even
more than an order of magnitude. No single solver or basis-adaptive scheme significantly outper-
formed the others. However, by dividing the analysis into classes (low-/high-dimensional models
and small/large ED sizes), some significant patterns can be identified. The combinations that
performed well always involved the solvers SPLOO, SPk=5, or BCS, but never SPGL1 or OMP.
For the basis-adaptive schemes, the picture is less clear, except that combinations involving
forward neighbor basis adaptivity achieved the best accuracy most often, and that the static
basis (i.e., no basis adaptivity) was in nearly all cases outperformed by basis-adaptive schemes.
This might imply that basis-adaptive schemes provide the opportunity to improve the solution
by offering more regressors to choose from, but that none of them consistently generates the
most suitable basis. The choice of the final basis is guided by the cross-validation error, which
is computed based on the solution returned by the respective sparse solver. A good correlation
of cross-validation and validation error is crucial for the scheme to make good choices – which
for example is not the case for the solver OMP. Overall, there is no combination of solver and
basis-adaptive scheme that was consistently best across all models and experimental design sizes,
although averaging over all four cases, SPLOO together with forward neighbor basis adaptivity
outperformed all other combinations.

Since no clear best combination of solver and basis adaptivity scheme emerged, we introduced
an automatic selection step. Based on a suitable error estimate, automatic selection chooses one
PCE solution out of several candidate solutions computed by various combinations of solvers and
basis adaptivity schemes. We found that automatic selection using any hybrid cross-validation
error estimate performs better than the fixed rules obtained from the basis adaptivity bench-
mark: automatic selection attains the best possible relative MSE almost as often as the best
solver-basis adaptivity combination, while being significantly more robust. An additional advan-
tage of automatic selection is that it is independent of model dimension or size of the available
experimental design, unlike the proposed fixed rules, which rely on the somewhat arbitrary, al-
beit simple, classification we applied (low/high dimension and small/large experimental design).

These findings demonstrate that when building a sparse PCE for an expensive black-box com-
putational model, it is worth it to carefully select a sparse solver, and to apply a basis-adaptive
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scheme, because the difference in relative MSE between different combinations of methods on
the same experimental design can be larger than one order of magnitude. While we could iden-
tify a number of methods that generally perform well, and others that should be avoided, as we
described above, a superior strategy is to compute several PCE solutions and perform a final
model selection using one of the presented hybrid cross-validation error estimators.

Further research could investigate the use of true cross-validation for automatic selection instead
of the hybrid estimates which we used here. Also, it might be possible to identify other problem
characteristics besides model dimension and the size of the available experimental design to
guide the choice of methods in the sparse PCE framework. A promising class of methods
combines basis adaptivity with the sequential enrichment of the experimental design, adapted
to the current candidate or active basis (Fajraoui et al., 2017; Diaz et al., 2018; Hampton and
Doostan, 2018), which might be able to further improve on the results obtained here.
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Appendix

4.A Details on the settings for the basis adaptivity schemes in
the benchmark

In Table 4.A.1, we list the basis adaptivity settings for each of the 11 models in our benchmark.

• The rule for the static basis (ST) is to choose a total-degree basis with p so that the
number of basis functions P is closest to 10

3 N , where N is the number of ED points. Here,
for low-dimensional models, the q-norm is chosen as q = 1, while for high-dimensional
models, we use q = 0.5.
• For degree and q-norm basis adaptivity (PQ), we choose the ranges for degree and q-norm
as large as possible while still keeping the number of basis functions computationally
manageable (rule of thumb . 104).
• For forward neighbor degree adaptivity (FN), the degree of the initial basis is chosen so
that the size of the basis is closest to 10N (as recommended in (Jakeman et al., 2015)),
while we set the q-norm to the maximum of the q-norm-range for PQ basis adaptivity.
• Finally, for anisotropic degree basis adaptivity, which is only used for low-dimensional
models, we use q = 1 and p = dpmax

2 e, where pmax is the maximum of the degree range for
PQ basis adaptivity.

4.B Additional results

4.B.1 Basis adaptivity benchmark: raw data

Figs. 4.B.1 and 4.B.2 show the raw data of the basis adaptivity benchmark: for each model and
ED size, we display the boxplots of resulting relative MSE for each combination of sparse solver
and basis-adaptive scheme. The star-shaped markers visualize the attained error for one specific
ED realization. They illustrate that the resulting errors are not always well correlated: on the
same ED, some methods achieve one of their smallest errors while others produce one of their
largest. Therefore, we continue in Section 4.3.1 by investigating the relative performance of the
different methods.
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Table 4.A.1: Details on the initial bases and degree and q-norm ranges for the various basis
adaptivity schemes

Model dim d static basis PQ range FN initial AD initial

Ishigami function 3 p = 8 (small ED)
/ p = 12 (large),
q = 1

p ∈ [1, . . . , 25],
q ∈ [0.5, 0.6, . . . , 1]

p = 12 (small ED)
/ p = 19 (large)

p = 13

Undamped oscilla-
tor

6 p = 4 / p = 4 ,
q = 1

p ∈ [1, . . . , 10],
q ∈ [0.5, 0.6, . . . , 1]

p = 5 / p = 6 p = 5

Borehole function 8 p = 4 / p = 4 ,
q = 1

p ∈ [1, . . . , 10],
q ∈ [0.5, 0.6, . . . , 1]

p = 5 / p = 6 p = 5

Damped oscillator 8 p = 4 / p = 5 ,
q = 1

p ∈ [1, . . . , 7],
q ∈ [0.5, 0.6, . . . , 1]

p = 5 / p = 6 p = 4

Wingweight func-
tion

10 p = 3 / p = 4 ,
q = 1

p ∈ [1, . . . , 7],
q ∈ [0.5, 0.6, . . . , 1]

p = 4 / p = 5 p = 4

Truss model 10 p = 3 / p = 4 ,
q = 1

p ∈ [1, . . . , 6],
q ∈ [0.5, 0.6, . . . , 1]

p = 4 / p = 5 p = 3

Morris function 20 p = 6 / p = 8 ,
q = 0.5

p ∈ [1, . . . , 8],
q ∈ [0.4, 0.5, 0.6]

p = 6 / p = 8,
q = 0.6

–

Structural frame
model

21 p = 5 / p = 8 ,
q = 0.5

p ∈ [1, . . . , 8],
q ∈ [0.4, 0.5, 0.6]

p = 6 / p = 8,
q = 0.6

–

2-dim diffusion
model

53 p = 3 / p = 4 ,
q = 0.5

p ∈ [1, . . . , 6],
q ∈ [0.4, 0.5, 0.6]

p = 4 / p = 5,
q = 0.6

–

1-dim diffusion
model

62 p = 3 / p = 4 ,
q = 0.5

p ∈ [1, . . . , 5],
q ∈ [0.4, 0.5, 0.6]

p = 3 / p = 4,
q = 0.6

–

100D function 100 p = 3 / p = 4 ,
q = 0.5

p ∈ [1, . . . , 5],
q = 0.5

p = 4 / p = 5,
q = 0.5

–
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(f) Borehole function, N = 250
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Figure 4.B.1: Comparison of different combinations of solvers and basis adaptivity schemes for
low-dimensional models. We show validation errors attained by all 24 combinations of methods
on 30 realizations of experimental design. The boxplots visualize the attained errors across all 30
realizations. The star-shaped markers denote the attained errors of all combinations for one selected
ED realization. They highlight one set of data points which is also part of the larger set visualized
by the boxplots. Left: small ED; right: large ED. Abbreviations of basis-adaptive schemes: ST:
static basis; PQ: degree and q-norm; FN: forward neighbor; AD: anisotropic degree. Continued in
next figure.
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(j) Truss model, N = 250
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Figure 4.B.1: Continued. Comparison of different combinations of solvers and basis adaptivity
schemes for low-dimensional models. We show validation errors attained by all 24 combinations
of methods on 30 realizations of experimental design. The boxplots visualize the attained errors
across all 30 realizations. The star-shaped markers denote the attained errors of all combinations
for one selected ED realization. They highlight one set of data points which is also part of the larger
set visualized by the boxplots. Left: small ED; right: large ED. Abbreviations of basis-adaptive
schemes: ST: static basis; PQ: degree and q-norm; FN: forward neighbor; AD: anisotropic degree.
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Figure 4.B.2: Comparison of different combinations of solvers and basis adaptivity schemes for
high-dimensional models. We show validation errors attained by all 15 combinations of methods
on 30 realizations of experimental design. The boxplots visualize the attained errors across all 30
realizations. The star-shaped markers denote the attained errors of all combinations for one selected
ED realization. They highlight one set of data points which is also part of the larger set visualized
by the boxplots. Left: small ED; right: large ED. Abbreviations of basis-adaptive schemes: ST:
static basis; PQ: degree and q-norm; FN: forward neighbor. Continued in next figure.
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Figure 4.B.2: Continued. Comparison of different combinations of solvers and basis adaptivity
schemes for high-dimensional models. We show validation errors attained by all 15 combinations
of methods on 30 realizations of experimental design. The boxplots visualize the attained errors
across all 30 realizations. The star-shaped markers denote the attained errors of all combinations
for one selected ED realization. They highlight one set of data points which is also part of the larger
set visualized by the boxplots. Left: small ED; right: large ED. Abbreviations of basis-adaptive
schemes: ST: static basis; PQ: degree and q-norm; FN: forward neighbor; AD: anisotropic degree.
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4.B.2 Bar plots for all combinations of methods

In Figs. 4.B.3-4.B.6, we display the aggregated results for all combinations of solvers and sam-
pling schemes (while in Section 4.3.1, we only displayed the six best combinations). We sort the
method combinations according to how often they achieved an error within two times the best
relMSE (bright red bar). For a detailed description of how to read this plot, we refer to Section
4.3.1.
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Abstract

Variance-based global sensitivity analysis, in particular Sobol’ analysis, is widely used for de-
termining the importance of input variables to a computational model. Sobol’ indices can
be computed cheaply based on spectral methods like polynomial chaos expansions (PCE). An-
other choice are the recently developed Poincaré chaos expansions (PoinCE), whose orthonormal
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tensor-product basis is generated from the eigenfunctions of one-dimensional Poincaré differen-
tial operators. In this paper, we show that the Poincaré basis is the unique orthonormal basis
with the property that partial derivatives of the basis form again an orthogonal basis with re-
spect to the same measure as the original basis. This special property makes PoinCE ideally
suited for incorporating derivative information into the surrogate modelling process. Assuming
that partial derivative evaluations of the computational model are available, we compute spec-
tral expansions in terms of Poincaré basis functions or basis partial derivatives, respectively, by
sparse regression. We show on two numerical examples that the derivative-based expansions
provide accurate estimates for Sobol’ indices, even outperforming PCE in terms of bias and
variance. In addition, we derive an analytical expression based on the PoinCE coefficients for a
second popular sensitivity index, the derivative-based sensitivity measure (DGSM), and explore
its performance as upper bound to the corresponding total Sobol’ indices.

5.1 Introduction

Computer models simulating physical phenomena and industrial systems are commonly used
in engineering and safety studies, for prediction, validation or optimisation purposes. These
numerical models often take as inputs a high number of physical parameters, whose values
are variable or not perfectly known, creating the need for uncertainty quantification on model
computations (Smith, 2014). Uncertainty quantification typically becomes more challenging the
higher the input dimension is (curse of dimensionality). In this situation, global sensitivity
analysis (GSA) is an invaluable tool that allows the analyst to rank the relative importance
of each input of the model and to detect non-influential inputs (Borgonovo and Plischke, 2016;
Razavi et al., 2021). Most often relying on a probabilistic modeling of the model input variables,
GSA tries to explain model output uncertainties on the basis of model input uncertainties,
accounting for the full range of variation of the variables.

A well-known and widely used GSA method is Sobol’ analysis (Sobol’, 1993), which relies on the
functional ANOVA (analysis of variance) decomposition (Efron and Stein, 1981). For a square-
integrable model and independent input variables, Sobol’ analysis determines which part of the
model output variance can be attributed to each input and to each interaction between inputs.
The overall contribution of each input, including interactions with other inputs, is provided by
the total Sobol’ index (Homma and Saltelli, 1996). Sobol’ indices can be estimated efficiently
using various Monte Carlo-based techniques as well as metamodel-based techniques (Prieur and
Tarantola, 2017). The latter save on expensive model evaluations by first performing a small
number of model runs, which are used to compute an accurate approximation to the original
model – the meta- or surrogate model – from which the Sobol’ indices are finally computed
(Fang et al., 2006; Le Gratiet et al., 2017).

One of the most popular and powerful metamodelling methods is the polynomial chaos expansion
(PCE) (Xiu and Karniadakis, 2002). PCE represents the model in a specific basis consisting of
polynomials that are orthonormal with respect to the input distribution. Orthogonal polynomial
systems have been studied throughout the last century and they have many useful properties (see,
e.g., Szegö (1939) and Simon (2010)). One particular strength of PCE is that once it is computed,
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it easily gives all the variance-based quantities defined through the ANOVA decomposition, and
in particular the Sobol’ indices at all orders (Sudret, 2008). In practice, the expansion cannot
use infinitely many terms and must be truncated. Among the many approaches available to
compute the expansion coefficients, sparse regression techniques combined with adaptive basis
selection appear to be especially promising (see Lüthen et al. (2021, 2022a) for an overview).
Here, a small number of terms is selected which is able to best represent the computational
model based on the available model evaluations.

In some practical situations, partial derivatives of the model output with respect to each input
are easily accessible, for example by algorithmic differentiation of the numerical model in the
reverse (adjoint) mode (Griewank and Walther, 2008). This technique allows for computing all
partial derivatives of the model output at a cost independent of the number of input variables.
Since PCEs are such a well-established metamodelling tool, there have been many efforts to
leverage the additional information contained in model derivatives to improve the performance
of PCE. The idea of including derivative information into sparse regression problems, often
called gradient-enhanced `1-minimization, is tested by Jakeman et al. (2015) for one numerical
example with uniform inputs, and analyzed theoretically and numerically by Peng et al. (2016)
for Hermite PCE. Both report favorable results. Roderick et al. (2010) and Li et al. (2011)
apply polynomial regression (PCE) in the context of nuclear engineering. They include deriva-
tive information into the least-squares regression formulation and observe that most polynomial
families are not orthogonal with respect to the H1 inner product. This may deteriorate certain
properties of the regression matrix. To alleviate this issue, Guo et al. (2018) develop a precon-
ditioning procedure for gradient-enhanced sparse regression with certain polynomial families,
with the goal of improving the orthogonality properties of the regression matrix. In all these
approaches, the utilization of derivative information is not straightforward, but requires spe-
cific polynomial families and/or specialized sampling and preconditioning, because the partial
derivatives of a PCE basis do in general not form an orthogonal system. Gejadze et al. (2019)
have derived derivative-enhanced projection methods to compute the PCE coefficients but their
method is restricted to Hermite polynomials and low polynomial degree.

On a different note, the availability of model derivatives has implications also for GSA. The so-
called Derivative-based Global Sensitivity Measures (DGSM) are computed by integrating the
squared partial derivatives of the model output over the domain of the inputs. These indices have
been shown to be efficiently estimated by sampling techniques (as Monte Carlo or quasi-Monte
Carlo) as well as from PCE (Sudret and Mai, 2015), and have been proven to be an excellent
screening technique (i.e., detecting all the non-influential inputs among a large number), see
e.g. the review in Kucherenko and Iooss (2017). Indeed, the interpretation of DGSM indices
is straightforward due to their inequality relationship with Sobol’ indices: multiplied with the
associated Poincaré constant, DGSM indices provide an upper bound of the total Sobol’ index
(Lamboni et al., 2013), regardless of the input probability distribution.

Another way to utilize model derivatives, which solves the issues present for the polynomial
chaos formulation, and naturally provides sharp lower bounds as well as upper bounds on total
Sobol’ indices, is to compute Poincaré chaos expansions (Roustant et al., 2020a), which we will
abbreviate by PoinCE in the sequel. Similar to PCE, PoinCE is a spectral expansion in terms
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of an orthonormal basis whose elements are eigenfunctions of the so-called Poincaré differential
operator. The eigenfunctions are in general non-polynomial, except for the special case of the
Gaussian distribution, where they coincide with the Hermite polynomials. The key property of
PoinCE is that the partial derivatives of the basis form again an orthogonal basis with respect to
the input distribution. This allows to conveniently expand the derivative of the computational
model in terms of partial derivatives of the basis (PoinCE-der), which yields another estimator
for partial variances and Sobol’ indices. If the partial derivatives of the model have smaller
variability than the model itself, the estimates based on the model derivatives might be more
accurate. This makes PoinCE(-der) an efficient tool for screening (Roustant et al., 2020a).

Our present contribution to the field of generalized chaos expansions and GSA is two-fold. On the
theoretical side, we provide a proof that the Poincaré basis is in fact characterized uniquely as the
orthonormal basis which remains an orthogonal basis (w.r.t. the same probability measure) after
differentiation. Furthermore, we show how PoinCE naturally generalizes an analytical formula
for DGSM originally developed for Hermite PCE (Sudret and Mai, 2015), which implies that
PoinCE simultaneously and efficiently provides lower and upper bounds to all partial variances.
On the computational side, we improve on Roustant et al. (2020a), which introduced projection-
based Poincaré chaos and demonstrated that small Sobol’ indices were approximated particularly
well by the derivative expansion. In this contribution, we compute PoinCE by sparse regression,
thus generalizing the powerful and cost-effective sparse PCE methodology to non-polynomial
functions. We explore the performance of PoinCE as an estimator for partial variances (upper
and lower bounds) and compare it to standard PCE.

This paper is organized as follows. Section 5.2 revisits the mathematical foundations of PoinCE
and presents several analytical results related to Sobol’ indices and DGSM. Section 5.3 explains
the computation of PoinCE basis functions, and the sparse regression methodology adapted
from PCE to PoinCE. The methodology is applied in Section 5.4, where two example problems
are investigated to demonstrate its performance for sensitivity analysis and screening. Finally,
we summarize our conclusions in Section 5.5.

5.2 Mathematical background

5.2.1 Orthonormal bases in L2

In this section, we recall some important facts about orthonormal bases in L2(E,µ) where E
is a subset of Rd and µ is a probability measure on E. We first outline the general theory in
Section 5.2.1.1. The particular cases of polynomial and Poincaré bases in several dimensions are
developed in Sections 5.2.1.2 and 5.2.1.3.

5.2.1.1 General theory

To begin with, recall that L2(E,µ) endowed with the inner product

〈f, g〉 =
∫
E
f(x)g(x)µ(dx), for f, g ∈ L2(E,µ) (5.1)
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is a Hilbert space. Recall that a sequence of functions (Φα)α∈I (I ⊂ N) is an orthonormal
system in L2(E,µ) if it satisfies the two following assumptions:

1) For all α 6= α′, 〈Φα,Φα′〉 = 0, (orthogonality)
2) For all α, 〈Φα,Φα〉 = 1 (unit norm).

An orthonormal system in L2(E,µ) is called complete if the closure of the span generated by
(Φα) is L2(E,µ). In this case, the system (Φα) is called an Hilbertian or orthonormal basis of
L2(E,µ) and for any function f ∈ L2(E,µ) the following expansion holds:

f =
∑
α

〈Φα, f〉Φα, (µ almost surely). (5.2)

When used to represent random variables in terms of a basis of uncorrelated random variables,
such an expansion is often called chaos expansion in the uncertainty quantification literature
(Wiener, 1938; Ghanem and Spanos, 1991; Ernst et al., 2012).

An archetype example of chaos expansion is given by the so-called Fourier expansion. This
corresponds to the case where the set E = [0, 1] is endowed with the Lebesgue measure and we
have for α ∈ Z,

Φα(x) =
√

2 cos(2παx) if α < 0, Φ0(x) = 1, and Φα(x) =
√

2 sin(2παx) if α > 0.

In this frame, any square-integrable function f may be expanded as

f(x) = a0 +
√

2
∑
α>0

(aα cos(2παx) + bα sin(2παx)) .

Here, for all α ∈ Z∗,

a0 =
∫ 1

0
f(x)dx, aα =

√
2
∫ 1

0
f(x) cos(2πα)dx, bα =

√
2
∫ 1

0
f(x) sin(2πα)dx.

When the probability measure is a product measure µ = µ1 ⊗ · · · ⊗ µd on a product space of
intervals E = E1 × E2 × · · · × Ed, there is a canonical way to build a Hilbertian basis from a
collection of univariate Hilbertian ones. Indeed, for i = 1, . . . , d assume that (Φ(i)

αi ) is a Hilbertian
basis of L2(Ei, µi). Then, setting α := (α1, . . . , αd) and defining the tensor product functions
Φα :=

∏d
i=1 Φ(i)

αi , we obtain that (Φα) is an orthonormal basis of L2(E,µ).

In the following we describe two particular chaos types, namely the classical polynomial chaos
and the recently developed Poincaré chaos, for a probability measure µ on E ⊂ R.

5.2.1.2 Polynomial chaos

A classical family of chaos expansions on an interval E of R endowed with a probability measure
are polynomial chaos expansions (PCE) given by orthonormal polynomial bases. A well-known
example is the Hermite expansion for which the set E is the whole line R endowed with the
standard Gaussian distribution. In this example, for α ∈ N, Φα = Hα is the Hermite polynomial
of degree α. The first Hermite polynomials are

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1
2 , H3(x) = x3 − 3x

6 , H4(x) = x4 − 6x2 + 3
24 (x ∈ R).
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In general, there exists an orthonormal polynomial basis for L2(µ) whenever the moment problem
for µ is determinate. This includes the uniform, Gaussian, Beta and Gamma distributions, as
well as all distributions with compact support (Ernst et al., 2012).

5.2.1.3 Poincaré chaos

The Poincaré basis is another example of an orthonormal basis of L2(µ), consisting of functions
that admit weak derivatives, i.e. that belong to H1(µ) = {f ∈ L2(µ) s.t. f ′ ∈ L2(µ)}. Recall
that H1(µ), endowed with the norm ‖f‖2H1(µ) = ‖f‖2 + ‖f ′‖2, is a Hilbert space. This short
summary is based on Roustant et al. (2017) in which more details can be found. We assume
that:

Assumption 2. The probability measure µ is supported on a bounded interval (a, b) and admits
a density of the form ρ = e−V , where V is continuous and piecewise C1 on [a, b] with respect to
the Lebesgue measure.

This assumption is sufficient to guarantee the existence of a Poincaré basis. On the topological
side, it implies that the Hilbert space L2(µ) (resp. H1(µ)) is equal to L2(a, b) (resp. H1(a, b)),
with an equivalent norm. Indeed, µ is a bounded perturbation of the uniform measure on [a, b],
meaning that the pdf ρ is bounded from below and above by strictly positive constants (by
continuity of V on the compact support [a, b]).

Theorem 2 (1D Poincaré basis). Under Assumption 2, there exists an orthonormal basis
(ϕα)α≥0 of L2(µ) such that for all f ∈ H1(µ) and for all integer α ≥ 0, we have:〈

f ′, ϕ′α
〉

= λα 〈f, ϕα〉 , (5.3)

where (λα)α≥0 is an increasing sequence that tends to infinity:

0 = λ0 < λ1 < λ2 < · · · < λα −→
α→∞

+∞.

Here, the inner product 〈·, ·〉 is the one on L2(µ) as defined in (5.1). The basis functions ϕα are
unique up to a sign change, and form the so-called Poincaré basis. Notice that ϕ0 is a constant
function equal to ±1; by convention, we choose ϕ0 = 1.
Furthermore, the Poincaré basis functions are the eigenfunctions of the differential operator

L(f) = f ′′ − V ′f ′

i.e. satisfy L(f) = −λf , subject to Neumann conditions f ′(a) = f ′(b) = 0. The (λα)α≥0 are the
corresponding eigenvalues.
Finally, α−2λα → π2 when α tends to infinity, and for all α ∈ N?, the eigenfunction ϕα has
exactly α zeros in (a, b).

Proof. The main part of the Theorem can be found in Roustant et al. (2017) or Bakry et al.
(2014). The two last assertions come by rewriting the differential equation f ′′ − V ′f ′ = −λf in
the Sturm-Liouville form

− (pf ′)′ + qf = λwf (5.4)
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with p = w = ρ and q = 0. Then, by the Sturm-Liouville theory (see e.g. Zettl (2010, Theorem
4.3.1, (1), (6) and (7))), we have that α−2λα → π2 when α tends to infinity, and for all α ∈ N?,
the eigenfunction ϕα has exactly α zeros in (a, b).

The Poincaré basis shares some similarity with both the polynomial chaos and the Fourier basis
in terms of oscillations: by Theorem 2, the higher the order of the eigenvalue, the more oscillating
the corresponding eigenfunction.

For some specific cases, the Poincaré basis is known analytically. For instance, for the uniform
distribution, the Poincaré basis is a kind of Fourier basis (see e.g. Roustant et al. (2020a,
§4)). Otherwise it has to be computed numerically, e.g., by a finite element technique (see
Section 5.3.1).

Note that Assumption 2 is a convenient sufficient condition which guarantees the existence of a
Poincaré basis. It is satisfied for a large range of truncated parametric probability distributions.
The set of probability distributions for which the Poincaré chaos exists is larger, but not well
known. For instance, the Poincaré chaos is defined for the Gaussian distribution, and then
coincides with polynomial chaos, corresponding to Hermite polynomials. This is the only case
where Poincaré chaos and polynomial chaos coincide (Bakry et al., 2014, §2.7). On the other
hand, Poincaré chaos is not defined for the Laplace distribution, since the eigenvalues of the
associated operator do not form a countable set (Bakry et al., 2014, §4.4.1).

The Poincaré basis is useful for sensitivity analysis. First, it is linked to the Poincaré inequality

Varµ(f) ≤ CP (µ)
∫
f ′2dµ, (5.5)

which holds for all functions f ∈ H1(µ) under the assumptions on µ. Indeed, the smallest
constant CP (µ) such that (5.5) is satisfied is equal to CP (µ) = 1/λ1, and choosing f = ϕ1

corresponds to the equality case (Roustant et al., 2017). Roughly speaking, the Poincaré ba-
sis function associated to the first non-zero eigenvalue is the function with the largest possible
variance for a given amount of integrated squared derivative (in the L2 sense). A second ap-
pealing property for the analysis of variance is that the derivatives of the Poincaré basis remain
orthogonal functions:

Proposition 1. Under Assumption 2, the sequence
(

1√
λα
ϕ′α

)
α≥1

is an orthonormal basis of
L2(µ).

Proof. The orthonormality of the sequence is a consequence of (5.3) by choosing f = ϕβ, with
β ∈ N∗. It remains to show that the system is dense in L2(µ), or equivalently, that its orthogonal
is null. Let thus f ∈ L2(µ) such that〈

f, ϕ′α
〉

= 0, for all α ≥ 1.

As explained when stating Assumption 2, L2(µ) (resp.H1(µ)) is equal to L2(a, b) (resp. H1(a, b)),
with an equivalent norm. Now, there exists g ∈ H1(µ) such that f = g′. Indeed, let us define g
by g(x) = g(a) +

∫ x
a f(t)dt. As f ∈ L2(µ) = L2(a, b), then g belongs to H1(a, b) = H1(µ), and

g′ = f . Then we have 〈
g′, ϕ′α

〉
= 0, for all α ≥ 1.
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By (5.3), we obtain 〈g, ϕα〉 = 0 for all α ≥ 1 (as λα > 0 for α ≥ 1). As the functions ϕα form an
orthonormal basis of L2(µ) with ϕ0 = 1, this implies that g is a constant function, and finally
f = 0. The proof is completed.

In fact, the property in Proposition 1, i.e., that the derivatives of the Poincaré basis form again
an orthogonal basis in L2(µ), uniquely characterizes the Poincaré basis:

Proposition 2. Under Assumption 2, Poincaré bases are the only orthonormal bases (ϕα) of
L2(µ) in H1(µ) such that (ϕ′α) is an orthogonal basis of L2(µ).

This result seems difficult to find in the literature. German-speaking readers can find a sim-
ilar proposition in Mikolas (1955), stated in the frame of Sturm-Liouville theory for twice-
differentiable functions satisfying boundary conditions. See also Kwon and Lee (2003) for a
similar result under the assumption that all functions involved in the Sturm-Liouville problem
Eq. (5.4) are of class C∞. We provide below a proof based on Hilbertian arguments.

As a corollary, if there exists a basis different from the Poincaré basis for which derivatives form
an orthogonal system, then that system is not dense in L2(µ). As an example, for the uniform
probability measure on [0, 2π], consider the usual Fourier basis formed by {cos(nx), sin(nx) :
n ≥ 0} (up to multiplicative constants). Taking derivatives results in the same set of functions
(up to multiplicative constants) – except for the constant function cos(0x) = 1. Thus, the
derivatives form an orthogonal system which covers the orthogonal of constant functions in
L2(µ), which is a strict subspace of L2(µ). Meanwhile, the Poincaré basis for this probability
measure is formed by functions proportional to cos

(
n
2x
)
for n ≥ 0. Proposition 2 guarantees that

all functions of L2(µ), including the constant functions, are spanned by the derivatives. Indeed,
this is explained intuitively by the presence of half-frequencies: when n is odd, the functions
sin
(
n
2x
)
are not orthogonal to 1.

Proof of Proposition 2. The fact that a Poincaré basis remains an orthogonal basis by derivation
has been proved in Proposition 1. Conversely, let (ϕα)α≥0 be a system of H1(µ), with ϕ0 = 1,
such that (ϕα) is an orthonormal basis of L2(µ) and (ϕ′α)α≥1 is an orthogonal basis of L2(µ).
Let us first prove that (ϕα) is an orthogonal basis of H1(µ). The orthogonality is a direct
consequence of the definition of the inner product of H1(µ):

〈ϕα, ϕβ〉H1(µ) = 〈ϕα, ϕβ〉L2(µ) +
〈
ϕ′α, ϕ

′
β

〉
L2(µ)

= (1 + ‖ϕ′α‖2L2(µ))δα,β.

Let us prove that (ϕα) is dense in H1(µ). As explained when stating Assumption 2, L2(µ) (resp.
H1(µ)) is equal to L2(a, b) (resp. H1(a, b)), with an equivalent norm. Hence, it is equivalent
to prove that (ϕα) is dense in H1(a, b). Now, let f be in H1(a, b). As (ϕ′α) is dense in L2(a, b)
(equivalently in L2(µ)), then f ′ expands as f ′ =

∑
α∈N cαϕ

′
α. In H1(a, b) each function is equal

to the primitive function of its derivative, hence we have:∣∣∣∣∣f(t)− f(a)−
N∑
α=1

cα(ϕα(t)− ϕα(a))
∣∣∣∣∣ =

∣∣∣∣∣
∫ t

a

(
f ′(x)−

N∑
α=1

cαϕ
′
α(x)

)
dx

∣∣∣∣∣
≤ (b− a)

∥∥∥∥∥f ′ −
N∑
α=1

cαϕ
′
α

∥∥∥∥∥
L2(a,b)
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where the inequality comes from the Cauchy-Schwarz inequality. We deduce that ‖f − f(a) −∑N
α=1 cα(ϕα−ϕα(a))‖L2(a,b) → 0 when N tends to infinity. Together with f ′ =

∑
α∈N cαφ

′
α, this

implies that ‖f − f(a)−
∑N
α=1 cα(ϕα − ϕα(a))‖H1(a,b) → 0. As ϕ0 = 1, this proves that (ϕα) is

dense in H1(a, b), which was to be proved.
Now, let us fix α ≥ 0. Consider the linear form Lα defined on H1(µ) by Lα(f) = 〈f ′, ϕ′α〉L2(µ).
The Cauchy-Schwarz inequality gives |Lα(f)| ≤ ‖f ′‖L2(µ)‖ϕ′α‖L2(µ) ≤ ‖f‖H1(µ)‖ϕ′α‖L2(µ). This
proves that Lα is continuous. Hence, by the Riesz representation theorem, there exists a unique
ζα ∈ H1(µ) such that for all f ∈ H1(µ), Lα(f) = 〈f, ζα〉H1(µ), i.e. 〈f ′, ϕ′α〉L2(µ) = 〈f, ζα〉H1(µ) .

Choosing f = ϕβ with β 6= α, we obtain by orthogonality of (ϕ′α) that for all β 6= α,
〈ϕβ, ζα〉H1(µ) = 0. As (ϕβ)β≥0 is an orthogonal basis of H1(µ), this implies that ζα is collinear
to ϕα, i.e., there exists λ̃α ∈ R such that ζα = λ̃αϕα. Thus, for all f ∈ H1(µ), we have

〈f ′, ϕ′α〉L2(µ) = λ̃α 〈f, ϕα〉H1(µ) . Choosing f = ϕα, we get λ̃α =
‖ϕ′α‖2

L2(µ)
1+‖ϕ′α‖2

L2(µ)
, which belongs to

[0, 1). Finally, we obtain that 〈f ′, ϕ′α〉L2(µ) = λα 〈f, ϕα〉L2(µ) , where λα = λ̃α
1−λ̃α

is a non-negative
real number. As it is true for all f in H1(µ) and all α ∈ N, this implies, by uniqueness of the
Poincaré basis (under Assumption 2), that (ϕα)α≥0 is a Poincaré basis.

Turning to higher dimensions, we assume that for all i = 1, . . . , d, the probability measure µi
satisfies Assumption 2, and we denote by (ϕi,αi)αi≥0 the sequence of 1-dimensional Poincaré
basis functions, and by (λi,αi)αi≥0 the sequence of associated eigenvalues. The Poincaré chaos
basis is then defined by the tensor product Φα = ϕ1,α1 ⊗ · · · ⊗ϕd,αd . Using the properties of L2

bases, (5.3) thus implies that for all f ∈ H1(µ), for all i = 1, . . . , d:〈
∂f

∂xi
,
∂Φα
∂xi

〉
= λi,αi 〈f,Φα〉 . (5.6)

Similarly, applying Proposition 1, we get:

Proposition 3. Under Assumption 2, for all i = 1, . . . , d, the sequence
(

1√
λi,αi

∂Φα
∂xi

)
α,αi≥1

is

an orthonormal basis of L2(µ).

5.2.2 Variance-based indices, derivative-based indices

We first recall the definition of variance-based sensitivity indices, which quantify the importance
of each input variable in terms of function response variability.

Let f be a real-valued function defined on E = E1 × · · · × Ed ⊆ Rd. The uncertainty of the
inputs is represented by a random vector X = (X1, . . . , Xd)T with probability measure µ on E.
We further assume that the Xi’s are independent and that f(X) belongs to L2(E,µ). Denoting
by µi the marginal distribution of Xi on Ei (i = 1, . . . , d), we then have µ = µ1 ⊗ · · · ⊗ µd. In
this framework, f(X) can be decomposed uniquely as a sum of terms of increasing complexity

f(X) = f0 +
∑

1≤i≤d
fi(Xi) +

∑
1≤i<j≤d

fi,j(Xi, Xj) + · · ·+ f1,...,d(X1, . . . , Xd) (5.7)

under centering conditions E [fI(XI)] = 0 and non-overlapping conditions E [fI(XI)|XJ ] = 0, for
all sets I ⊆ {1, . . . , d} and all strict subsets J of I. We have used the set notation XI to represent
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the subvector ofX obtained by selecting the coordinates belonging to I. These conditions imply
that all the terms of (5.7) are orthogonal, leading to the variance decomposition

Varf(X) =
∑

1≤i≤d
Varfi(Xi) +

∑
1≤i<j≤d

Varfi,j(Xi, Xj) + · · ·+ Varf1,...,d(X1, . . . , Xd) (5.8)

Due to this property, the functional decomposition (5.7) is often called ANOVA (ANalysis Of
VAriance) decomposition. Originating from Hoeffding (1948), it was revisited by Efron and
Stein (1981), Antoniadis (1984), and Sobol’ (1993). For a given set I ⊆ {1, . . . , d}, we call the
corresponding term of (5.8) partial variance (denoted DI), and call its normalized version Sobol’
index (denoted SI):

DI = Var(fI(XI)), SI = DI

D
,

where D = Varf(X) is the overall variance (total variance). In particular, for i ∈ {1, . . . , d},
the first-order Sobol’ index Si corresponds to the proportion of variance of f(X) explained by
Xi only. In order to include also the interactions of Xi with the other variables, the total partial
variance and the total Sobol’ index are defined by

Dtot
i =

∑
I⊇{i}

Var(fI(XI)), Stot
i = Dtot

i

D
.

Note that practitioners also call the (total) partial variances unnormalized (total) Sobol’ indices.
In the sequel, we will use these two words interchangeably.
The total Sobol’ index can be used for screening. Indeed, under mild conditions, if Stot

i = 0
then the function f does not depend on xi over E (in the pointwise sense).

When the derivatives are available, a global sensitivity index can be obtained by integration.
The so-called derivative-based sensitivity measure (DGSM) index of f with respect to Xi (Sobol
and Gresham, 1995; Kucherenko et al., 2009) is defined by

νi = E

[(
∂f

∂xi
(X)

)2]
=
∫

Rd

(
∂f

∂xi
(x)
)2
dµ(x) =

∥∥∥∥ ∂f∂xi
∥∥∥∥2
. (5.9)

Contrarily to variance-based indices, DGSM are not associated to a variance decomposition.
Nevertheless, they can be used for screening. Indeed, under mild conditions, νi = 0 implies that
f does not depend on xi over E.

5.2.3 Chaos expansion serving sensitivity analysis

One main advantage of using an orthonormal basis for sensitivity analysis is that, once the
expansion has been obtained, the variance-based indices can be computed in a straightforward
way as a sum of squared coefficients (Sudret, 2006, 2008). More precisely, let f be in L2(µ),
and let (Φα)α∈Nd be a multivariate orthonormal basis obtained by tensorization as described in
Section 5.2.1. The expansion of f in this basis is given by

f =
∑
α∈Nd

cαΦα. (5.10)
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By using the orthonormality we obtain the expression of the total variance

D =
∑
α6=0

c2
α. (5.11)

The expression of the total Sobol’ index Stot
i is obtained by only considering the terms of the

decomposition (5.10) that contain the variable xi, i.e. such that αi ≥ 1. Hence, we have
Stot
i = Dtot

i
D with Dtot

i the total partial variance

Dtot
i =

∑
α,αi≥1

c2
α. (5.12)

The first-order Sobol’ index S1
i relies on the terms that include xi only, i.e., S1

i = D1
i
D with

D1
i =

∑
α,αi≥1,

αj=0 for j 6=i

c2
α. (5.13)

Let us now consider the case where the gradient of f is available. The Poincaré basis is par-
ticularly suited to this situation. Indeed, we can derive in a straightforward way expressions
of both variance-based and derivative-based indices, involving the derivatives of f . Due to or-
thonormality, the coefficients of the basis expansion in (5.10) are given by the projection of f
onto the associated basis element:

cα = 〈f,Φα〉 . (5.14)

From now on, let (Φα)α denote the Poincaré basis. Combining (5.6) and (5.14), and assuming
that α1 ≥ 1, cα can be written using the partial derivatives w.r.t variable X1 (Roustant et al.,
2020a):

cα = 〈f,Φα〉 = 1
λ1,α1

〈
∂f

∂x1
,
∂Φα
∂x1

〉
= 1
λ1,α1

〈
∂f

∂x1
,
∂ϕ1,α1

∂x1
⊗ ϕ2,α2 ⊗ · · · ⊗ ϕd,αd

〉
(5.15)

and equivalently using partial derivatives w.r.t variable Xi if αi ≥ 1. Thus, (5.11), (5.12) and
(5.13) can also be computed using the various partial derivatives of f . Whereas the theoretical
expressions are equal, their estimators have different properties. For example, if the integral is
evaluated by Monte Carlo simulation, the expression whose integrand has smaller variance will
be more accurate. We describe in Section 5.3 the computation of the expansion coefficients by
regression, and we empirically compare the two estimation procedures in Section 5.4.

Furthermore, DGSM can be computed directly from the Poincaré expansion. More precisely, we
have the following proposition.

Proposition 4 (DGSM formula for Poincaré chaos). Let f ∈ H1(µ). Let f =
∑
α cαΦα

be the expansion of f in the Poincaré chaos basis, with cα = 〈f,Φα〉. Then the DGSM index of
f with respect to Xi is equal to:

νi =
∑

α, αi≥1
λi,αi (cα)2 . (5.16)

Proof. Write f =
∑
α cαΦα. Then by Proposition 3, we get

∂f

∂xi
=

∑
α, αi≥1

cα
∂Φα
∂xi

,
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where we can constrain the sum to multi-indices α such that αi ≥ 1, since ϕi,αi = 1 for αi = 0.
Now, using again the orthogonality of Poincaré basis derivatives (Proposition 3), it follows that

νi =
∥∥∥∥ ∂f∂xi

∥∥∥∥2
=

∑
α, αi≥1

(cα)2
∥∥∥∥∂Φα
∂xi

∥∥∥∥2
=

∑
α, αi≥1

λi,αi (cα)2 .

Formula (5.16) extends a previous result given by Sudret and Mai (2015) when all the µi are
standard Gaussian. Indeed, in that case, Poincaré chaos coincides with polynomial chaos, and
λi,αi = αi.

Using the expressions provided in (5.12) and (5.16) and an inequality derived by Sobol’ and
Kucherenko (2009) and Lamboni et al. (2013), we obtain lower and upper bounds to total
partial variances as follows:

∑
α∈A,αi≥1

(cα)2 ≤ Dtot
i ≤ CP (µi)νi =

∑
α∈Nd, αi≥1

λi,αi
λi,1

(cα)2 . (5.17)

The lower bound is an obvious consequence of the truncation. The upper bound holds only for
the full infinite expansion and is otherwise underestimated. Comparing the form of the right-
hand side of Eq. (5.17) with the total Sobol’ formula Eq. (5.12) gives insight into how tight this
upper bound is: equality is attained only if the Poincaré chaos expansion does not contain terms
of higher degree than 1 for Xi (then,

λi,αi
λi,1

= 1). Else, depending on the decay behavior of cα
the gap can be significant, since the eigenvalues are diverging to infinity (see Theorem 2).

5.3 Computation of sparse Poincaré expansions

Let f ∈ H1(µ,E) be a computational model defined on the input space E ⊂ Rd, with indepen-
dent input random variables and with the input probability measure µ admitting a probability
density function ρ fulfilling Assumption 2 for each of the marginals. In the remainder of this
paper, we assume that ρ is known. We also assume that we are provided with an i.i.d. sample
from the input distribution and with the corresponding model evaluations and model gradient
values at each of the points.

With Poincaré expansion (PoinCE) we denote the expansion of the computational model onto
the Poincaré basis

f(x) =
∑
α

cαΦα(x), (5.18)

and with Poincaré derivative expansion in direction i (PoinCE-der-i) the expression

∂f

∂xi
(x) =

∑
α,αi≥1

c ∂,iα
∂Φα
∂xi

(x), (5.19)

or the equivalent expansion using normalized basis derivatives that have unit norm in L2(µ).
Note that (5.19) is the partial derivative of (5.18) w.r.t. variable Xi. Because the zeroth order
basis function of a Poincaré basis is the constant function, basis terms for which αi = 0 have
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zero partial derivative w.r.t. Xi and are not included in (5.19). While in theory by Equation
(5.15), the two expressions (5.18) and (5.19) provide identical coefficients for corresponding basis
elements, i.e., cα = c ∂,iα for α ∈ {α′ ∈ A : α′i ≥ 1}, in practice they will not coincide when
estimated from a data set of finite size. This will be investigated in Section 5.4 for a number of
numerical examples.

In this section, we describe how such expansions are computed in practice: this concerns the
computation of the Poincaré basis functions, the choice of truncation, the location of the sam-
pled points, and the method for computing the coefficients. The implementation relies on and
integrates into the UQLab framework (Marelli and Sudret, 2014).

5.3.1 Implementation of Poincaré basis functions

As described in Section 5.2.1.3, Poincaré basis functions are tensor products of univariate
Poincaré basis functions. Each 1D basis consists of the eigenfunctions of the Poincaré differential
operator associated with the respective marginal distribution (Theorem 2).

A Poincaré basis is guaranteed to exist for marginal distributions fulfilling Assumption 2 and
for the Gaussian distribution. Other distributions have to be transformed or truncated to allow
for a Poincaré basis. Since an isoprobabilistic transformation to standard variables can be
highly nonlinear (Torre et al., 2019; Oladyshkin and Nowak, 2012), we opt for truncation: if the
distribution is not Gaussian and has (one- or two-sided) unbounded support, we truncate it to
its 10−6- and (1− 10−6)-quantiles, respectively.1

We consider here only standard parametric families of probability densities (bounded and un-
bounded), although a Poincaré basis can be computed for any input distribution which after
truncation fulfills Assumption 2. In particular, without any changes to the methodology PoinCE
could be used in a data-driven framework (Torre et al., 2019) by computing the Poincaré basis
for a dimensionwise kernel density estimate of the input distribution (assuming independence)
given the available data.

As can be seen from applying the change-of-variables formula for a linear transformation to
(5.3), the eigenvalues of the Poincaré differential operator scale with the inverse of the squared
support interval length. To avoid numerical difficulties, we therefore linearly transform (i.e.,
shift and rescale) parametric families to standard parameters using

• their bounds in the case of uniform, beta, triangular;
• their location and scale parameter in the case of Gaussian, Gumbel, Gumbel-min, Laplace,
logistic;
• their (inverse) scale parameter in the case of exponential, gamma, Weibull, lognormal.

1One might argue that this can distort the results obtained with PoinCE, especially in the tails. It is true
that this truncation introduces a small error. However, as all such methods, PoinCE by design approximates
accurately mainly the bulk, not the tails (for this, specialized techniques like subset simulation shall be used).
Furthermore, in practical applications it is a modelling choice how to represent the input distribution. Choosing
an unbounded parametric distribution is common, but not necessarily the most sensible choice, since for virtually
every quantity in the real world there is an upper bound that cannot be exceeded.



158 Chapter 5. Sparse Poincaré chaos expansions

In the current implementation, distributions not belonging to this group of families are not being
rescaled.

For standard uniform (U([−0.5, 0.5]) and standard Gaussian (N (0, 1)) marginals, the Poincaré
basis can be analytically computed and is given by the Fourier (cosine) basis and the Hermite
polynomial basis, respectively (Roustant et al., 2020a). Therefore, in the special case of uniform
or Gaussian marginals, we always (after rescaling) use the analytical solution.

For all other marginals, the Poincaré basis is computed numerically using linear finite elements.
We use a fine uniform grid within the bounds and piecewise linear functions with local support,
commonly called ‘hat’ functions. Using the weak formulation of the eigenvalue problem of the
Poincaré differential operator given in (5.3), we arrive at the shifted generalized eigenvalue
problem

Ka(n) = (λn + 1)Ma(n) (5.20)

as described in Roustant et al. (2017, section 4.3), where the eigenvector a(n) denotes the vector
of coefficients used to express eigenfunction ϕn in terms of ‘hat’ functions. Here M is the
mass matrix, and K is the sum of mass- and stiffness matrix. After solving this problem using
Matlab’s builtin function eigs, we interpolate the discrete eigenvectors with piecewise cubic
splines, prescribing zero derivatives at the interval boundaries. Then, the basis derivatives are
computed using centered finite differences. While more sophisticated techniques (e.g., Hermitian
C1 elements, or Haar wavelets (Bujurke et al., 2008)) could of course be used to improve this
numerical computation procedure, it is accurate enough for our purposes of demonstrating the
usefulness of PoinCE. Eigenfunctions and eigenfunction derivatives are scaled to have unit norm
with respect to the measure µi.

5.3.2 Choice of the basis truncation

In practice, the series in (5.18) and (5.19) cannot include an infinite number of terms, but must
be truncated to a finite expansion. We denote by A ⊂ Nd the subset of multi-indices that are
included in the expansion. For PCE, A is typically chosen to include terms up to a certain
degree p, resulting in the so-called total degree basis

Ap = {α ∈ Nd :
d∑
i=1
|αi| ≤ p}. (5.21)

To further restrict the number of terms used in the expansion, another common truncation
method is hyperbolic truncation (Blatman and Sudret, 2011)

Ap,q = {α ∈ Nd : ‖α‖q ≤ p}. (5.22)

with the `q-(quasi-)norm ‖α‖q =
(∑d

i=1 α
q
i

) 1
q for q ∈ (0, 1].

Since the Poincaré basis is in general not polynomial, the concept of polynomial degree cannot be
used to characterize the basis functions. Instead, we use the natural order of the basis functions
corresponding to the increasing sequence of Poincaré eigenvalues, which also corresponds to an
increasing number of oscillations (Theorem 2; recall that the nth eigenfunction has n zeros).
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Therefore, we use the PCE terminology “degree” also for PoinCE. In particular, a degree of
αi = 0 denotes the constant basis function ϕi,0(xi) = 1 associated to the eigenvalue λi,0 = 0.

Often, in practice it is not known which degree is needed for a given problem. While in theory the
expansion is more accurate the larger the total degree is, in practice accuracy is limited by the
number of available sample points, since the quality of the regression solution (see Section 5.3.3)
depends on the ratio of sample points to basis elements. In that case, a successful strategy
consists of applying degree adaptivity, i.e., choosing the best degree for the expansion by cross-
validation (Blatman and Sudret, 2011; Lüthen et al., 2022a). This procedure is computationally
inexpensive, since it only requires a new surrogate model fit for each new total degree, but no
additional model evaluations. We apply leave-one-out (LOO) cross-validation together with a
modification factor introduced by Chapelle et al. (2002) (Blatman and Sudret, 2011).

Both hyperbolic truncation and degree adaptivity contribute to the sparsity of the resulting
expansion by identifying a suitable subset of basis functions necessary for a good approximation.
Sparsity is a successful concept in regression-based PCE (Lüthen et al., 2021). Denote by P = |A|
the number of basis elements in the truncated expansion. A, also called candidate basis, contains
the basis elements available for approximation. We describe below how sparse regression further
selects only a subset of A to be active, i.e., have a nonzero coefficient. The final expansion might
(and indeed often will) have less than P active terms.

5.3.3 Computation of the coefficients by sparse regression

For computing the coefficients of an orthogonal expansion as in (5.18) and (5.19), there exist
two main approaches. One is projection: the model f is projected onto the basis functions, see
(5.2). The resulting integral may be evaluated by Monte Carlo (MC) simulation, as done by
Roustant et al. (2020a) for Poincaré chaos, or by (sparse) quadrature methods (Le Maître et al.,
2002; Matthies and Keese, 2005; Constantine et al., 2012). However, note that in general MC
converges slowly, while quadrature (even when sparse) is affected by the curse of dimensionality.

The second approach is regression, introduced for PCE by Blatman and Sudret (2008). Here,
after choosing an experimental design X = {x(1), . . . ,x(N)} of input points, (5.18) is discretized
as

y ≈ Ψc (5.23)

where y = (f(x(1)), . . . , f(x(N)))T is the vector of model evaluations, Ψ ∈ RN×P is the regression
matrix with entries Ψkj = Φj(x(k)) where j refers to an enumeration of the multivariate basis
(Φα)α∈A, and c is the vector of expansion coefficients. The discretization of (5.19) is analogous,
with a vector

y∂,i =
(
∂f

∂xi
(x(1)), . . . , ∂f

∂xi
(x(N))

)T
(5.24)

containing model partial derivatives and a regression matrix Ψ∂,i with entries

Ψ∂,i
kj = 1√

λi,αj(i)

∂Φj

∂xi
(x(k)), (5.25)

where αj(i) denotes the ith component of the jth basis element characterized by the multi-index
αj (see also Proposition 3).
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The regression problem can be solved by ordinary least squares as

ĉ = arg min
c
‖Ψc− y‖22 , (5.26)

provided that enough model evaluations are available – at least N ≥ P , or better N ≥ kP

with k = 2, 3 to avoid overfitting. Due to the rapid growth of the total-degree basis with
increasing dimension and degree, this requirement on model evaluations is often too restrictive
for real-world problems.

To avoid this problem, sparse regression can be used, which regularizes the problem by encour-
aging solutions with few nonzero coefficients (Candès and Wakin, 2008; Kougioumtzoglou et al.,
2020). An example is `1-minimization:

ĉ = arg min
c
‖Ψc− y‖22 + λ ‖c‖1 . (5.27)

The `1-norm penalizes the coefficient vector so that sparse solutions are preferred. The sparse
regression formulation allows for accurate solutions even in the case N < P . There exist many
sparse regression methods utilizing different formulations of the sparse regression problem, see
e.g. Lüthen et al. (2021) for an overview of available sparse regression solvers in the context
of PCE. In this work, we use the sparse solver Hybrid Least Angle Regression (Hybrid-LARS)
(Blatman and Sudret, 2011; Marelli et al., 2021a).

A result by Candès and Plan (2011) on sparse recovery emphasizes the importance of isotropy
of the row distribution of the regression matrix, i.e., the requirement that for a row a =
(Φα1(x), . . . ,ΦαP (x)) of the regression matrix Ψ it holds that E

[
aTa

]
= IP , where IP is

the identity matrix of size P , and the expectation is with respect to the distribution of the
experimental design points. If the experimental design points are chosen to follow the input
distribution, the distributions of regression matrix rows for Poincaré as well as for normalized
Poincaré derivative expansions are isotropic by construction due to orthonormality of the bases
w.r.t. the input distribution. To improve the space-filling property of the experimental design, we
use Latin Hypercube Sampling (LHS) (McKay et al., 1979) with maximin distance optimization.

5.3.4 Coefficients and Sobol’ indices for Poincaré derivative expansions

Let ĉ ∂,i be the solution to the sparse regression problem corresponding to the i-th Poincaré
derivative expansion (PoinCE-der-i) (5.19) with regression matrix (5.25) and data vector (5.24).2

By construction, this expansion only provides coefficients corresponding to the basis elements
from the set Ai := {α ∈ A : αi ≥ 1}, since the partial derivatives w.r.t. Xi of the basis elements
{α ∈ A : αi = 0} are zero and therefore no coefficient value can be computed for those elements.
Theoretically, for α ∈ Ai the coefficient c ∂,iα from (5.19) is equal to the PoinCE solution cα from
(5.18), however when estimated from a data set of finite size they will in general not coincide.

The coefficients from the set Ai are sufficient for computing partial variances for variable i as
in (5.12) and (5.13), but not enough for computing the total variance (5.11), which requires

2Note that in practice, we normalize and rescale the regression matrix as described in Section 5.3.1 to improve
the estimation of the coefficients.
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all coefficients cα,α ∈ A, and which is needed for normalizing the partial variances to Sobol’
indices.

To compute the total variance from PoinCE-der expansions, we therefore aggregate the coeffi-
cients of all d PoinCE-der-i expansions into one vector ĉ ∂,avg as follows:

ĉ ∂,avg
α = 1

#{i : αi ≥ 1}
∑
i:αi≥1

ĉ ∂,iα for each α ∈ A \ 0, (5.28)

i.e., every PoinCE-der-i expansion which computed a coefficient value for the basis element
with index α contributes equally to the averaged value. It follows that in theory, the averaged
coefficient ĉ ∂,avg

α is equal to the PoinCE solution cα from (5.18), too. It can therefore be used
to estimate the total variance according to (5.11).

The averaging procedure yields PoinCE-der estimates for all coefficients except for the coefficient
c0 corresponding to the constant term ψ0. Let ĉ ∂,avg

α = (ĉ ∂,avg
α )α∈A\0 be in the form of a column

vector in R(P−1)×1. In order to use the averaged PoinCE-der expansion also as a surrogate model,
we estimate the remaining coefficient ĉ ∂,avg

0 corresponding to the constant term by ordinary
least-squares on the residual yres:

yres = y −Ψ
(

0
ĉ ∂,avg
α

)
,

ĉ ∂,avg
0 = 1

N

N∑
k=1

y(k)
res

Note that the described construction uses model evaluations and partial derivatives separately.
An obvious question is whether one could use these simultaneously to compute an estimate for
the coefficients. Although tempting, the simple stacking of regression matrices Ψ and Ψ∂,i into
a big regression matrix (as done by Peng et al. (2016) for Hermite PCE) is not satisfactory, since
the increasing norm of the basis partial derivatives (see Proposition 3) introduces an undesired
weighting into the problem. The simultaneous use of evaluation and derivative data is a topic
of further research.

5.4 Numerical results

We investigate the performance of PoinCE (both based on model evaluations and on derivatives)
on two numerical examples. The focus of our study is on Sobol’ sensitivity analysis, but we also
investigate DGSM-based upper bounds to partial variances, validation error (relative mean-
squared error) and sparsity. Our implementation is based on UQLab (Marelli and Sudret, 2014)
and integrates into its PCE module (Marelli et al., 2021a).

We use the following estimation techniques to compute the Sobol’ indices of the models:

• PoinCE-LARS / PoinCE-der-LARS: Poincaré expansion and Poincaré derivative expan-
sion computed by LARS as proposed in Section 5.3.3
• PoinCE-MC / PoinCE-der-MC: As a baseline, we compare to MC-based computation
using the Poincaré basis/the Poincaré partial derivative basis as in Roustant et al. (2020a)
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• PCE-LARS: As a second baseline, we compare to PCE computed by LARS (with general-
ized polynomial chaos adapted to the respective input) (Blatman and Sudret, 2011; Marelli
et al., 2021a). Sparse PCE is a state-of-the-art method for computing Sobol’ indices for
real-world models (Le Gratiet et al., 2017).

We do not compare to any sample-based estimates of Sobol’ indices, since it is known that
ANOVA-based estimation outperforms sample-based estimation. For example, Sudret (2008)
and Crestaux et al. (2009) have shown that polynomial chaos-based estimators of Sobol’ indices
are much more efficient than Monte Carlo or quasi-Monte Carlo-based estimators (for smooth
models and dimensions up to 20). Recently, Becker (2020) has shown that certain sample-based
approaches can be more efficient than metamodel-based ones for screening with total Sobol’
indices. However, the screening performance metrics of Becker (2020) are only based on input
ranking. In contrary, our practical purpose is to perform a so-called quantitative screening which
aims at providing a correct screening and a good estimation of Sobol’ indices.

We do not include a comparison to gradient-enhanced PCE (Peng et al., 2016; Guo et al., 2018)
because so far these methods are developed only for Gaussian, uniform and Beta input and are
not immediately usable for other input distributions. Furthermore, the code of the relatively
involved sampling- and preconditioning approach is not readily available. The development and
comparison of gradient-enhanced PoinCE to gradient-enhanced PCE is a topic of future research.

Partial variances are normalized to Sobol’ indices using the total variance. For PCE-LARS
and PoinCE-LARS, the total variance is computed from the expansion coefficients as in (5.11).
For PoinCE-MC and PoinCE-der-MC, we use the sample variance as done by Roustant et al.
(2020a). For PoinCE-der-LARS, the total variance is obtained by the procedure detailed in
Section 5.3.4.

The DGSM-based upper bound to the total partial variances is computed from (5.17) using
the coefficients of the PoinCE derivative expansions as described in Section 5.3.4. Note that
the inequalities in (5.17) are analytical bounds that do not necessarily hold for the estimated
quantities.

For uniform and Gaussian input variables, the analytical expression for the Poincaré basis func-
tions is used, while for all others, the basis functions are computed numerically using a resolution
of 103 points for the uniform grid within the given bounds (see Section 5.3.1).3

5.4.1 Dyke cost model

Our first application is a simplified analytical model computing the cost associated to a dyke
that is to be constructed along a stretch of river to prevent flooding (Iooss and Lemaître, 2015;
Roustant et al., 2020a). Its output is the cost in million euros given by

Y = 1S>0 +
[
0.2 + 0.8

(
1− exp−

1000
S4
)]
· 1S≤0 + 1

20 (8 · 1Hd≤8 +Hd · 1Hd>8) (5.29)

where S is the maximal annual overflow andHd is the dyke height. Here, the first term represents
the cost of the consequences of a flooding event, the second describes the maintenance costs,

3For the flood model, the change in the resulting Sobol’ indices when instead using a grid with 102 or 104

points is in the order of 10−4 or 10−6, respectively.
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and the third is associated to the construction cost. S is computed from the river characteristics
detailed in Table 5.1 via the 1D Saint-Venant equations under several simplifying assumptions
as follows:

S =

 Q

BKs

√
Zm−Zv

L

0.6

+ Zv −Hd − Cb (5.30)

The model Eq. (5.29) is continuous and piecewise C1, and therefore in H1. It has 8 input
variables, of which Q,Ks, Zv and Hd are important, and Cb, Zm, L and B are unimportant (see
also the last two columns of Table 5.1).

Table 5.1: Input variables to the dyke cost model and reference values of first-order and total
Sobol’ indices. The reference values were obtained to good precision by Monte-Carlo-based Sobol’
index estimation using a large sample (Roustant et al., 2020a).

Input Function Unit Distribution Si Stot
i

Q Maximal annual flowrate m3/s Gumbel G(1013, 558)
truncated to [500, 3000]

0.358 0.483

Ks Strickler coefficient − Gaussian N (30, 82)
truncated to [15,+∞]

0.156 0.252

Zv River downstream level m Triangular T (49, 51) 0.167 0.223
Zm River upstream level m Triangular T (54, 56) 0.003 0.008
Hd Dyke height m Uniform U([7, 9]) 0.119 0.177
Cb Bank level m Triangular T (55, 56) 0.029 0.040
L Length of river stretch m Triangular T (4990, 5010) 0.000 0.000
B River width m Triangular T (295, 305) 0.000 0.000

The dyke cost model has been used by Roustant et al. (2020a) to demonstrate the performance
of projection-based PoinCE. We compare the new regression-based methods PoinCE-LARS and
PoinCE-der-LARS with the projection-based counterparts PoinCE-MC and PoinCE-der-MC,
and additionally with the standard PCE method PCE-LARS. The projection-based estimates
use a basis of total degree 2, while the regression-based estimates use degree adaptivity with
a degree of up to 5 (remember that for PoinCE, the degree corresponds to the ordering of the
eigenfunctions by the magnitude of the eigenvalues). The experimental design is sampled by
LHS with maximin distance optimization. Gradients are computed here by finite differences.
For each size of the experimental design, we perform 50 independent repetitions. We display
the resulting estimates in the form of boxplots. We show results only for three input variables:
the most important variable Q, the low-importance variable Cb, and the unimportant variable
B. The results for the remaining input variables can be found in Section 5.A.

5.4.1.1 Comparison of MC-based and regression-based computation of PoinCE(der)

First we investigate the two different ways to compute PoinCE: projection-based as in Roustant
et al. (2020a) versus sparse regression-based as described in Section 5.3. Figure 5.1 and 5.2 show
estimates for first-order and total Sobol’ indices. We observe that in all cases the regression-
based estimates have a smaller variance than the corresponding projection-based estimates.
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Also, the median of the regression-based estimates is closer to the true Sobol’ index value than
the median of the projection-based estimates. Note that while the regression-based estimates
use a degree-adaptive basis of p ≤ 5, the projection-based estimates use a fixed degree of only
p = 2. While this choice introduces a certain bias to the projection-based estimates, a larger
value for p leads to unfeasibly large variance for those estimates. This is because the coefficients
of higher-order terms cannot be estimated precisely with few experimental design points, which
makes the overall estimate less precise.

We also observe that regression-based estimates are often clustered around the true Sobol’ index
already for very small experimental design sizes. This might be due to the generally smaller
variance of sparse-regression-based coefficient estimates compared to MC-based estimates, as
well as due to the choice of normalization factor for Sobol’ indices (coefficient-based variance
Eq. (5.12) vs. sample variance as described in the beginnning of Section 5.4). Since regression
generally leads to more precise estimates than projection, in the remainder of this paper we
focus on regression-based PoinCE estimates.

Furthermore, as already observed by Roustant et al. (2020a), PoinCE-der estimates for Sobol’
indices have a smaller variance than PoinCE estimates. In the case of projection-based estimates,
this is the case if the derivative has a smaller variance than the original model. In the case of
regression, the explanation might be that PoinCE-i-der has to compute less coefficients than
PoinCE for the same number of experimental design points ({α ∈ A : αi > 0} vs. A), which
can result in a more precise estimate of the true coefficient values.

Figure 5.1: Comparison of PoinCE estimates of first-order Sobol’ indices for the dyke cost model.
Degree p = 2 for the MC-based estimates and p ≤ 5 (degree-adaptive) for the regression-based
estimates. Results for the remaining variables are displayed in Figure 5.A.1 in the appendix.

5.4.1.2 Comparison of regression-based PoinCE-der with PCE and the DGSM-
based upper bound

Next, we investigate the performance of regression-based PoinCE compared to state-of-the-art
PCE, and the usefulness of the DGSM-based upper bound to partial variances derived in (5.17).
The corresponding results, unnormalized4 estimates for first-order and total Sobol’ indices, are

4We show unnormalized indices because the DGSM-based upper bound is not normalized.



5.4. Numerical results 165

Figure 5.2: Comparison of PoinCE estimates of total Sobol’ indices for the dyke cost model. Degree
p = 2 for the MC-based estimates and p ≤ 5 (degree-adaptive) for the regression-based estimates.
Results for the remaining variables are displayed in Figure 5.A.2 in the appendix.

displayed in Figure 5.3 and 5.4. Because PoinCE-der achieves more accurate estimates than
PoinCE, we compute the DGSM-based upper bound using the PoinCE-der-i coefficients. For
total Sobol’ indices, we also include a precise Monte Carlo estimate for the DGSM-based upper
bound (using 107 derivative samples) computed from (5.9) and the second inequality of (5.17).

We make the following observations: the PCE-LARS estimates are generally very similar to the
PoinCE-LARS estimates, but the latter often have a slightly larger range. The similarity might
be because both rely on model evaluations only. However, the respective basis functions have
a very different shape (for inputs that do not follow a Gaussian distribution). In particular,
the PoinCE basis functions by construction obey Neumann boundary conditions, i.e., have zero
derivative on the boundary.

As observed before for normalized indices, PoinCE-der performs better than PoinCE: the median
is closer to the true value, and the range is smaller. This effect is especially pronounced for low-
importance variables. In 8 dimensions, a PoinCE-der expansion of degree 5 has 495 terms while
the total-degree basis of PCE and PoinCE has 1287 terms. This means that a PoinCE-der
expansion has to estimate less than half of the coefficients. PoinCE-der generally gives a tighter
“lower bound” than PCE (but note that the estimates are not guaranteed to be a lower bound).

By construction (5.17), the DGSM-based upper bound estimate is larger than or equal to the
corresponding total Sobol’ index estimate. However, it would be an upper bound to the true
Sobol’ index value only if the full infinite expansion was used. This is visible in Figure 5.A.4
and 5.4: for some inputs, the upper bound estimate almost coincides with the Sobol’ index
estimate, and is smaller than the true Sobol’ index.

For some inputs, such as Ks and especially Hd (see Figure 5.A.4), the DGSM-based upper bound
is not tight. An explanation for the large gap between the Sobol’ index and the upper bound
for Hd, using (5.17), might be that Hd is responsible for a kink in the model (through the last
term of (5.29)), while the Poincaré basis is differentiable in Hd (cosine functions). Therefore, its
expansion needs high-order terms. From (5.17) it follows that even if the PoinCE-der found the
true coefficients, the estimated upper bound is not tight due to the quickly-growing eigenvalues.
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Finally, we see that in many cases the gap between the estimated upper bound estimate and its
true value is larger than the gap between Sobol’ index estimate and its true value. The reason
might be that some higher-order terms are still missing from the considered expansion. Due
to the eigenvalue factor involved in the estimate of the upper bound (5.17), this has a larger
influence on the upper bound than on the Sobol’ index estimate.

Figure 5.3: Estimates of unnormalized first-order Sobol’ indices for the dyke cost model (p ≤ 5).
Boxplots: in grey the PCE-based estimates. The dashed line (“True value”) denotes a high-precision
estimate for the unnormalized first-order Sobol’ index. Results for the remaining input variables
can be found in Figure 5.A.3 in Section 5.A.

Figure 5.4: Estimates of unnormalized total Sobol’ indices for the dyke cost model (p ≤ 5).
Boxplots: in grey the PCE-based estimates and in black the DGSM-based upper bound from (5.17).
Lines: the dashed line (“True value”) denotes a high-precision estimate for the unnormalized total
Sobol’ index, while the dotted line (“UB true value”) is a MC-based high-precision estimate for the
DGSM-based upper bound. Results for the remaining input variables can be found in Figure 5.A.4
in Section 5.A.

5.4.1.3 Comparison of total variance, relative mean-squared error, and sparsity

To estimate Sobol’ indices precisely, it is crucial to have a good estimate for the total variance.
For PCE-LARS, PoinCE-LARS, and PoinCE-der-LARS, this value can directly be computed
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from the expansion coefficients, while for PoinCE computed by projection, we are using the
empirical variance, as detailed in the beginning of Section 5.4. In Figure 5.5a we display the
scatter of the variance estimates (50 replications). The empirical estimate has the largest varia-
tion, while PoinCE-der-LARS has the smallest. PCE-LARS and PoinCE-LARS underestimate
the total variance more than PoinCE-der-LARS. This is likely one reason for the good perfor-
mance of PoinCE-der for the estimation of Sobol’ indices: a more accurate total variance leads
to more accurate Sobol’ indices.

Interestingly, while PoinCE performs well for the estimation of Sobol’ indices, this is not true
for the generalization error, given by the relative mean-squared error

RelMSE = EX
[
(f(X)− f surr(X))2]

VarX [f(X)] (5.31)

with the surrogate model f surr. The RelMSE is computed by Monte Carlo integration on a
validation set of size 106 sampled from the input distribution µ. In Figure 5.5b we display box-
plots of estimates for the generalization error on a validation set of size 106 (mean-squared error
normalized by the variance of the validation set). PoinCE-der attains a smaller relative MSE
than PoinCE. PCE shows faster convergence behavior than both, and attains a smaller relative
MSE than PoinCE. PoinCE-der performs better than PCE for the two small experimental design
sizes, which shows that the information brought by derivatives might be especially useful when
data is scarce.

Finally, we display the number of nonzero coefficients of each expansion in Figure 5.5c. PCE and
PoinCE have a similar number of active coefficients, while PoinCE-der has considerably more ac-
tive coefficients. This corresponds to a better validation error only for the smallest experimental
design size (Figure 5.5b). A possible explanation is the following: using the derivative infor-
mation to compute PoinCE-der, the same amount of data is used for a (truncated) expansion
containing less terms than the PoinCE expansion has (since some terms, which do not contain
the variable for which the partial derivative is taken, drop out). In this way, more coefficients
can be computed.

5.4.2 Mascaret data set

Our second application focuses on a phenomenological and industrial simulation model, called
Mascaret (Goutal et al., 2012), based on a 1D solver of the Saint Venant equations and aiming at
computing water height for river flood events. The studied case, taken from Petit et al. (2016)
and also studied in Roustant et al. (2017), is the French Vienne river in permanent regime
whose uncertain input data concern flowrate, several physical parameters and geometrical data
(transverse river profiles). 37 independent inputs have then been considered as random variables:

• 12 Strickler coefficients of the main channel Ki
s,c, uniform in [20, 40];

• 12 Strickler coefficients of the flood plain Ki
s,p, uniform in [10, 30];

• 12 slope perturbations dZi, standard Gaussian with bounds [−3, 3];
• 1 discharge valueQ, Gaussian with zero mean and standard deviation 50, bounds [−150, 50].

The derivatives of the model output with respect to these 37 inputs have been efficiently (with
a cost independent of the number of inputs) computed by using the adjoint model of Mascaret
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(a) Estimates of the vari-
ance

(b) Relative mean-squared
error

(c) Number of nonzero co-
efficients

Figure 5.5: Dyke cost model: Comparison of PCE and PoinCE(-der) with respect to the following
metrics: estimation of total variance, relative mean-squared error, and number of nonzero coefficients
in the respective expansions.

(Demangeon et al., 2015). This adjoint model has been obtained by automatic differentiation
(Griewank and Walther, 2008) using the automatic differentiation software Tapenade (Hascoët
and Pascual, 2013). A large-size Monte Carlo sample (n = 20 000) is available from the study
of Petit et al. (2016). This data set contains all the values of the 37 inputs, the water height as
output and the 37 partial derivatives of the output (one derivative with respect to each input).
Note that this sample, which has a very large size, has been obtained during a research work for
a demonstrative purpose. In industrial practice, the aim is to use the minimal possible sample
size: it is expected to use methods able to deal with sample sizes of the order of one hundred.

Previous studies on this data set (Petit et al., 2016; Roustant et al., 2017) have identified 32 of
the 37 inputs as noninfluential. In our study, we display results for the 5 remaining inputs (K11

s,c,
K12
s,c, dZ11, dZ12, and Q) and for one of the noninfluential inputs (K1

s,c). We choose a basis with
hyperbolic truncation using q = 0.5, and degree adaptivity p = 1, 2, . . . , 8. We analyze several
experimental design sizes ranging from 30 to 300. For each experimental design size, we run 30
replications, sampling the design randomly without replacement from the given full data set.
“True” values for Sobol’ indices and total variance are computed from a PCE using all 20 000
points.

5.4.2.1 Comparison of regression-based PoinCE(der) with PCE and the DGSM-
based upper bound

Estimates of first-order and total Sobol’ indices are displayed in Figure 5.6 and 5.7. We display
results for regression-based PCE, PoinCE, and PoinCE-der. In addition, we display the upper
bound computed as in (5.17), computed based on PoinCE-der coefficients and normalized by the
PoinCE-der total variance. We observe that for the non-influential variable K1

s,c (and indeed
all other 31 non-influential variables), derivative-based PoinCE correctly identify a total and
first-order Sobol’ index of 0. Overall, PoinCE and PCE show very similar results, with PoinCE
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having slightly larger variance in a few cases. For some variables such as dZ11 and Q, the
DGSM-based estimate of the upper bound almost coincides with the PoinCE-der estimate.
Overall, we observe that PoinCE-der estimates have smaller variance than PCE and PoinCE
for the important variables K11

s,c, dZ
11, and Q, even already for 30 experimental design points.

For low-importance variables such as K12
s,c and dZ12, PoinCE-der correctly identifies a value

away from zero already for the smallest experimental design, while half of the PCE and PoinCE
estimates are zero. For small experimental design sizes, the PoinCE-der estimates also have a
smaller bias than the PCE and PoinCE estimates. Sometimes the PoinCE-der estimates seem to
systematically over- or underestimate the true Sobol’ index by a small amount. However, note
that the “true” value was computed by a PCE (based on all 20 000 points), and might therefore
itself be slightly inaccurate.

Figure 5.6: First-order Sobol’ indices for the Mascaret data set (30 replications). “True” values
computed from a PCE using all 20 000 points.

5.4.2.2 Comparison of total variance and relative mean-squared error

In Figure 5.8a we display various estimates for the total variance. We observe again that PoinCE-
der yields an estimate with smaller variance and less bias than PoinCE and PCE. PoinCE and
PCE both have smaller variance than the empirical estimate, but generally underestimate the
total variance.

While PoinCE-der estimates Sobol’ indices and total variance well, we observe in Figure 5.8b
showing the relative MSE that PCE and PoinCE are performing better as global surrogate
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Figure 5.7: Total Sobol’ indices for the Mascaret data set (30 replications). “True” values computed
from a PCE using all 20 000 points.

models: their model approximation error is for large experimental designs almost an order of
magnitude better than for PoinCE-der.

5.5 Conclusion

In this paper we studied PoinCE, an expansion in terms of the Poincaré basis, which is an
orthonormal basis of L2(µ) with the unique property that all its partial derivatives form again
an orthogonal basis for the same space. We provided a proof of this property as well as a few
analytical results as direct consequences. In particular, we showed how upper and lower bounds
for partial variances can be obtained analytically from PoinCE coefficients.

We described the computation of PoinCE and Poincaré derivative expansions by sparse regres-
sion and applied the method to two numerical examples. We found that while PoinCE does not
outperform PCE in terms of validation error, it can be advantageous for estimating Sobol’ in-
dices in the low-data regime. PoinCE is therefore a valuable tool if model derivatives are cheaply
available (e.g., by automatic differentiation or as a by-product of the simulation). Taking par-
tial derivatives reduces the size of the truncated basis especially for high-dimensional, low-order
total-degree bases, which gives an advantage to derivative-based PoinCE over expansions relying
on model evaluations.

Future work on the topic of PoinCE will investigate the simultaneous use of model evaluations
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(a) Estimates of the variance (b) Relative mean-squared error

Figure 5.8: Mascaret data set. Comparison of PCE and PoinCE(-der) with respect to the following
metrics: estimation of total variance, and relative mean-squared error. “True” value of total variance
computed from a PCE using all 20 000 points.

and derivatives for the computation of the coefficients, and compare to the related topic of
gradient-enhanced PCE.
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Appendix

5.A Additional results

In Figure 5.A.1 to 5.A.4, we show additional results for the dyke cost model, namely Sobol’
index estimates (normalized and unnormalized) for the remaining five input variables. For the
corresponding discussion, see Section 5.4.1.

Figure 5.A.1: Comparison of PoinCE estimates of first-order Sobol’ indices for the dyke cost
model. Degree p = 2 for the MC-based estimates and p ≤ 5 (degree-adaptive) for the regression-
based estimates. See also Figure 5.1 in the main part of the paper.
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Figure 5.A.2: Comparison of PoinCE estimates of total Sobol’ indices for the dyke cost model.
Degree p = 2 for the MC-based estimates and p ≤ 5 (degree-adaptive) for the regression-based
estimates. See also Figure 5.2 in the main part of the paper.
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Figure 5.A.3: Estimates of unnormalized first-order Sobol’ indices for the dyke cost model (p ≤ 5).
Boxplots: in grey the PCE-based estimates. The dashed line (“True value”) denotes a high-precision
estimate for the unnormalized first-order Sobol’ index. See also Figure 5.3.
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Figure 5.A.4: Estimates of unnormalized total Sobol’ indices for the dyke cost model (p ≤ 5).
Boxplots: in grey the PCE-based estimates and in black the DGSM-based upper bound from (5.17).
Lines: the dashed line (“True value”) denotes a high-precision estimate for the unnormalized total
Sobol’ index, while the dotted line (“UB true value”) is a MC-based high-precision estimate for the
DGSM-based upper bound. See also Figure 5.4.
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Abstract

Stochastic simulators are non-deterministic computer models which provide a different response
each time they are run, even when the input parameters are held at fixed values. They arise
when additional sources of uncertainty are affecting the computer model, which are not explicitly
modeled as input parameters. The uncertainty analysis of stochastic simulators requires their
repeated evaluation for different values of the input variables, as well as for different realizations

https://arxiv.org/abs/2207.05653
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of the underlying latent stochasticity. The computational cost of such analyses can be consid-
erable, which motivates the construction of surrogate models that can approximate the original
model and its stochastic response, but can be evaluated at much lower cost.

We propose a surrogate model for stochastic simulators based on spectral expansions. Con-
sidering a certain class of stochastic simulators that can be repeatedly evaluated for the same
underlying random event, we view the simulator as a random field indexed by the input pa-
rameter space. For a fixed realization of the latent stochasticity, the response of the simulator
is a deterministic function, called trajectory. Based on samples from several such trajectories,
we approximate the latter by sparse polynomial chaos expansion and compute analytically an
extended Karhunen-Loève expansion (KLE) to reduce its dimensionality. The uncorrelated but
dependent random variables of the KLE are modeled by advanced statistical techniques such
as parametric inference, vine copula modeling, and kernel density estimation. The resulting
surrogate model approximates the marginals and the covariance function, and allows to obtain
new realizations at low computational cost. We observe that in our numerical examples, the
first mode of the KLE is by far the most important, and investigate this phenomenon and its
implications.

6.1 Introduction

Nowadays, computer simulations are an essential ingredient of the research and development
workflow in virtually all fields of science and engineering. Typically, not all parameters and
conditions needed for the simulations are known exactly, and this uncertainty affects the output
of the simulations. This is the main focus of the field of uncertainty quantification (Smith, 2014).

Most computer simulations can be classified as deterministic simulators: repeatedly evaluating
the model M for the same set of input parameters x always yields the same deterministic
response y =M(x) ∈ R.1 To perform uncertainty quantification, the uncertainty on the input
(parameters and conditions) is usually represented probabilistically, and we follow this approach
in this paper. Propagating the input uncertainty through the deterministic simulator, the overall
response of the simulation becomes a random quantity.

However, not all computer simulations can be classified as deterministic simulators. Some models
contain intrinsic stochasticity that cannot be modeled as input parameter, e.g., epidemiological
models where each transmission or recovery is a random event, governed by the respective rate
of occurrence. Other models depend on uncontrollable environmental variables such as wind
fields or earthquakes, for which it can be infeasible or undesirable to explicitly model their
uncertainty. In these cases, it is more convenient to use the notion of a stochastic simulator:
only some of the uncertainty is explicitly modeled as random input variables, and there is some
residual randomness affecting the computational model that causes the model response M(x)
for a fixed set of input parameters x to still be a random variable: Yx =M(x). In other words,
evaluating the computer model several times with the same input parameters x will result in

1We consider here only real-valued simulators. The extension to low-dimensional vector-valued simulators is
straightforward. For the extension to high-dimensional vector-valued or function-valued simulators, see e.g. Nagel
et al. (2020); Perrin et al. (2021).
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different realizations y of the random variable Yx. Of course, since there is no true randomness
in a computer, every computer simulation can be made deterministic by fixing the random seed.
However, the seed is in general not a useful parametrization of uncertainty.

Uncertainty quantification methods typically require many runs of the computational model,
which can become costly or even infeasible for expensive engineering simulators. To save com-
putational resources, the model is often replaced with a cheaper surrogate model (ormetamodel),
which provides a reasonably good approximation to the original model. The surrogate model is
computed from a small number of model evaluations and can subsequently be evaluated many
times with negligible computational cost. Surrogate models often treat the model as a black
box, i.e., they do not use any specific knowledge about the model and rely only on the avail-
able input-output data samples (and sometimes on the characteristics of the input parameter
space). Popular surrogate models for deterministic simulators include polynomial chaos ex-
pansions (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002), Kriging (Sacks et al., 1989;
Rasmussen and Williams, 2006), radial basis functions (Buhmann, 2000), and support vector
regression (Vapnik, 1995; Smola and Schölkopf, 2004).

Since the response of stochastic simulators is a random variable for every set of input parameters,
even more runs might be required to analyze their uncertainty, making surrogate models all
the more relevant in this case. Research on surrogating stochastic simulators is comparatively
recent. Most available methods focus on the marginal response distribution P (Y |X = x) for
x ∈ D and emulate the conditional density itself or certain statistics of it. Early contributions
aimed at characterizing the variation of the first two moments of the output response over
the input domain using joint Gaussian process models (Iooss and Ribatet, 2009; Marrel et al.,
2012). Another class of methods aims at directly modeling the variation of the marginal output
probability density function (pdf) of the random variable Yx over the input domain. Assuming
that the true marginal response pdf at a number of input locations is known, Moutoussamy
et al. (2015) represent the marginal pdf of a new input point as a linear combination of training
examples (i.e., kernel regression) or of specifically constructed basis functions. However, the
true marginal pdf is rarely known or its generation might require a lot of samples. For a finite
number of stochastic simulator evaluations over the input domain (with or without replications),
Zhu and Sudret (2020, 2021b) model the variation of the marginal output pdf over the input
domain using the so-called generalized lambda model, a parametric distribution family that is
able to approximate many classical families. In fact, stochastic simulators are akin to real-world
scientific experiments, which are usually stochastic due to unavoidable measurement error and
environmental noise. Therefore, standard statistical methods like quantile regression (Torossian
et al., 2020) and kernel conditional density estimation (Hall et al., 2004) can also be used to
emulate the marginal distribution of the response of a stochastic simulator. Furthermore, Zhu
and Sudret (2022) developed an approach that emulates the stochastic simulator response in
distribution, inspired by the weak PCE methodology based on maximum likelihood estimation
(Xiu, 2010).

A related method from machine learning are Bayesian neural networks, whose weights are
modeled as independent Gaussian random variables (MacKay, 1992; Goan and Fookes, 2020).
Bayesian methods such as Markov Chain Monte Carlo or variational inference are used to de-
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termine the parameters of the weight densities from the given data. Furthermore, generative
models like variational autoencoders (Kingma and Welling, 2014) and generative adversarial
networks (Goodfellow et al., 2014) can be seen as surrogate models in distribution, learning a
conditional target density from data.

All the methods cited above aim at emulating only the univariate probability density functions
of the response random variables of the stochastic simulator. However, they do not take into
account the correlation and higher-order information between the stochastic simulator responses
at different points in the input domain. This close relation between the responses at different
input locations can be best illustrated by fixing the stochasticity of the simulator (e.g., by fixing
the random seed)2: in this case, the stochastic simulator response over the input domain becomes
a deterministic function, which we call a trajectory. In other words, the stochastic simulator
can be seen as a random field, i.e., as a collection of random functions.

Surrogating a stochastic simulator based on few model evaluations becomes therefore the task
of inferring a random field from discrete samples (often called “limited data”). Popular methods
for modeling random fields include orthogonal series expansions, such as spectral representation
(Shinozuka and Deodatis, 1991; Grigoriu, 1993) or Karhunen-Loève expansion (KLE) (Loève,
1978; Karhunen, 1946; Zhang and Ellingwood, 1994; Ramsay and Silverman, 2005; Grigoriu,
2006), and translation processes, which are mappings of Gaussian processes (Yamazaki and
Shinozuka, 1988; Grigoriu, 1998; Sakamoto and Ghanem, 2002; Shields et al., 2011). To our
knowledge, the only publication in the specific context of stochastic simulators which takes
the random field point of view and aims at emulating trajectories (including the higher-order
relations between responses at different input locations) is by Azzi et al. (2019), who construct
a metamodel using Karhunen-Loève expansion together with the deterministic methods PCE
and Kriging.

The goal of our paper is to develop a surrogate model that is able to emulate the trajectories of a
stochastic simulator, and allows insight into the dependence between the simulator responses at
different input locations. Our method of choice in this paper is Karhunen-Loève expansion, one
of the most popular methods for random field inference from limited data. The main challenges
in constructing a trajectory-based surrogate for a stochastic simulator (a stochastic emulator)
are explained in more detail in the following:

1. Accuracy and efficiency: the surrogate should be accurate while needing as few model
evaluations as possible.

2. Continuous surrogate from discrete data: the surrogate should emulate the response over
the whole (continuous) input domain, while the available data consists of trajectories
sampled at a few points throughout the input domain (i.e., discrete samples).

3. The stochastic simulator is in general a non-Gaussian random field. This introduces addi-
tional complexity into the Karhunen-Loève model.

We are addressing each of these challenges by introducing a novel approach that combines several
state-of-the-art methodologies. We use Karhunen-Loève expansion in conjunction with sparse
PCE (Blatman and Sudret, 2011; Lüthen et al., 2021), which is a powerful and sample-efficient

2Note that this does not require this randomness to be modeled. In practice, fixing the seed might not be
possible for all computational models, as it depends on their implementation.
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surrogate modeling method for deterministic simulators, to address Challenge 1. This circum-
vents the otherwise high computational cost of solving the integral eigenvalue problem of KLE
(Schwab and Todor, 2006; Betz et al., 2014) by reducing the integral eigenvalue problem to
finite-dimensional discrete principal component analysis (PCA) in the truncated space of PCE
coefficients. The joint distribution of the resulting sample of dependent random KLE coeffi-
cients (Challenge 3) is identified using statistical inference within the marginal-copula frame-
work (Torre et al., 2019b). The procedure results in an analytical formula for the stochastic
emulator that can be used for computing marginals and correlations, as well as for generating
new trajectories that resemble trajectories of the original stochastic simulator.

In our approach, the extension from discrete data to the continuous model (Challenge 2) is
achieved by approximating the sampled trajectories by sparse regression-based PCE. A similar
approach has been used by Navarro Jimenez et al. (2017) in the context of stochastic differential
equations with the goal of sensitivity analysis, using non-intrusive pseudospectral projection to
compute the PCE coefficients. The representation by sparse PCE can be seen as a variant of
orthogonal series expansion (OSE) (Zhang and Ellingwood, 1994), which expands a second-order
random process in terms of an orthogonal basis of the associated Hilbert space.

Note that when random fields are approximated based on a set of samples, it is most often
assumed that the latter are collected on a discrete mesh in the index set, whereas this is not a
requirement for our method. In such mesh-based approximations to random fields, PCE is often
used for modeling the random variables arising in dimension-reduced expansions (Desceliers
et al., 2006; Doostan et al., 2007; Das et al., 2009; Raisee et al., 2015; Abraham et al., 2018; Dai
et al., 2019). This is distinct from our approach, as we use PCE to approximate the trajectories
in the input space. Our approach yields an emulator for the whole input space (including unseen
locations), while existing approaches are mostly focused on building an emulator on the discrete
mesh where the samples were collected.

KLE represents a random field using an optimal orthogonal basis of the index space, resulting
in an expansion in terms of deterministic functions weighted by random coefficients. These
random coefficients are by construction uncorrelated, but unless the random field is a Gaussian
random field, they are in general statistically dependent. Inferring the joint distribution of de-
pendent random variables from samples is challenging but necessary for approximating a general
non-Gaussian random field by KLE. To address this challenge of inference, several approaches
have been proposed. Grigoriu (2010) suggests two methods to infer the joint distribution of the
random coefficients of a series expansion model, of which one amounts to kernel density esti-
mation, and the other to the fitting of a discrete joint distribution. Poirion and Zentner (2013,
2014) use KLE for modeling seismic ground motion time series, and model the random KLE
coefficients by 1D sample CDFs assuming at most pairwise dependence (Poirion and Zentner,
2013), or by kernel density estimation (Poirion and Zentner, 2014). In the present paper, we
investigate the use of kernel density estimation and inference of parametric joint distributions
based on marginals and vine copulas.

This paper is organized as follows: in Section 6.2 we recall the relevant theory and definitions.
In Section 6.3 we present our new stochastic emulator. The proposed method is then applied in
Section 6.4, where we assess its performance on several examples of varying complexity. Here we
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observe that the KLE is often significantly dominated by its first mode, a phenomenon that we
investigate in Section 6.5. Finally, we draw conclusions and give an outlook on possible further
developments in Section 6.6.

6.2 Theoretical foundation

We provide a brief summary of the relevant theory and concepts needed to construct our pro-
posed stochastic emulator for stochastic simulators: random fields, polynomial chaos expansions,
Karhunen-Loève expansion, and inference of joint probability distributions.

6.2.1 Stochastic simulators as random fields

Let X be a random vector with values in D ⊂ Rd, with finite variance and joint probability
density function (pdf) fX . Denote by ω ⊂ Ω an abstract random event in a probability space
(Ω,F , P ). A stochastic simulator is a mapping

M : D × Ω→ R, (6.1)

(x, ω) 7→ M(x, ω). (6.2)

Fixing x ∈ D, the quantity Yx = M(x, ·) : Ω → R is a random variable. Fixing ω ∈ Ω,
M(·, ω) : D → R is a function in the input parameters, which we call trajectory or realization
of the stochastic simulator (see also Figure 6.1). We assume that Yx has finite variance for all
x, and thatM(·, ω) ∈ L2

fX
(D) for all ω ∈ Ω.

(a) Random variable Yx =M(x, ·) (b) TrajectoryM(·, ω) : D → R

Figure 6.1: Visual representation of a stochastic simulator when either the input parameters x or
the random event ω are held fixed, resulting in a random variable (left) or a deterministic function
(right). The computational model is a high-rise building parametrized by several properties x
(visualized in the sketch by the shape of the building) subject to random earthquake events ω
(visualized by 1D time series in different colors), whose outputM(x, ω) is a real number (e.g., the
maximal displacement at the top floor).

These definitions imply that a stochastic simulator M can be seen as a random field (also:
stochastic process or random process) {Yx}x∈D with index set D, i.e., as a family of random
variables {Yx} indexed by x ∈ D. In the following, we provide a brief reminder of a few random
field basics. For more details, see e.g. Grigoriu (2002).
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To fully characterize a general random field, one needs to specify the collection of all its finite-
dimensional distributions

FYx1 , ... ,Yxn
(y1, . . . , yn) = P (Yx1 ≤ y1 ∧ . . . ∧ Yxn ≤ yn) (6.3)

for all n ≥ 1 and any x1, . . . ,xn ∈ D. Extending the concept of moments of random variables
to random fields, the deterministic mean function of the random field is given by µ(x) = E [Yx].
If µ(x) = 0, the random field is called centered. The (auto-)covariance function is defined by

c(x,x′) = E
[
(Yx − µ(x))(Yx′ − µ(x′))

]
. (6.4)

In general, a random field is not uniquely defined by its mean and covariance function. The only
exception is the family of Gaussian processes, for which all finite-dimensional joint distributions
are multivariate Gaussian distributions. For Gaussian processes, conditional distributions are
again multivariate Gaussians, which lies at the foundation of the popular surrogate modeling
technique Kriging/Gaussian process modeling. While Gaussian random fields are computation-
ally convenient, random fields encountered in real-world problems (and in particular, stochastic
simulators) are often non-Gaussian. One obvious argument is that Gaussian variables are un-
bounded while physical quantities are almost always bounded (Grigoriu, 2002).

A special feature of a stochastic simulatorM, as opposed to classical random fields, is that its
index set is not an interval or a hypercube, but a general domain D ∈ Rd with weight function
fX . We will use this property to build an accurate surrogate model for M respecting the
probability density fX of the input space.

6.2.2 Polynomial chaos expansion

Polynomial chaos expansion (PCE) is a technique for modeling random variables using a basis
of polynomials that are orthonormal w.r.t. a given probability density function (Ghanem and
Spanos, 1991; Xiu and Karniadakis, 2002). In our algorithm (Section 6.3), we will use PCE
to approximate trajectories M(·, ω) of the stochastic simulator, which can be seen as random
variablesM(X, ω) with their randomness induced by the uncertainty in the input X.

Consider a random vector X with values in D ⊂ Rd and independent components. Let
fX(x) =

∏d
i=1 fXi(xi) be its probability density function (pdf) and assume that X has fi-

nite variance. Let L2
fX

(D) be the space of real-valued function that are square-integrable under
fX , i.e., L2

fX
(D) =

{
g : D → R

∣∣ VarX [g(X)] < +∞
}
. Under certain assumptions on the ran-

dom vector X (Xiu and Karniadakis, 2002; Ernst et al., 2012), there exists an orthonormal
polynomial basis {ψα | α ∈ Nd} of L2

fX
(D), where each element is the product of univariate

polynomials characterized by the multi-index α.

Let M ∈ L2
fX

(D) be a (computational) model. Its output Y = M(X) is a random vari-
able, which can be represented in terms of the orthonormal polynomial basis as M(X) =∑
α∈Nd aαψα(X) with aα = EX [M(X)ψα(X)]. This representation is called polynomial chaos

expansion. In practice, a truncated expansion is computed,

M(X) ≈MPCE(X) =
∑
α∈A

aαψα(X), (6.5)
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where A ⊂ Nd is a finite subset of the full basis. The accuracy of a truncated PCE depends on
three ingredients: the choice of A, the method used for computing the coefficients a = (aα)α∈A,
and the choice of points X ⊂ D used in the coefficient computation method. An extensive
overview of the state-of-the-art methods to determine these is given in Lüthen et al. (2021,
2022a).

6.2.3 Karhunen-Loève expansion

Karhunen-Loève expansion (KLE) is a well-established spectral expansion technique through
which a random field is represented in terms of an optimal orthogonal basis for the index space,
weighted by random coefficients (Karhunen, 1946; Loève, 1978). KLE transforms the random
field, which is an uncountably infinite but correlated family of random variables {Mx}x∈D, into a
countably infinite but uncorrelated family of different random variables {ξi}i=1,2,.... Furthermore,
the random variables ξi are typically of decreasing importance. KLE is therefore well suited and
often used for discretization and modeling efforts for random fields.

To make these notions more precise, let {Mx(ω)}x∈D be a random field. Denote by µ(x) =
E [Mx] its mean function, and by c(x,x′) = Cov [Mx,Mx′ ] its covariance function. Let D be
closed and bounded. Let c be continuous on D×D and assume thatMx has finite variance for
all x ∈ D. Then the Karhunen-Loève expansion of the random fieldMx is given by

Mx(ω) = µ(x) +
∞∑
k=1

√
λkξk(ω)φk(x) (6.6)

where (φk)k=1,2,... is an orthonormal basis of L2(D), λ1 ≥ λ2 ≥ . . . ≥ 0 is a non-increasing
sequence of non-negative real numbers, and {ξk}k=1,2,... is a countable family of zero mean, unit
variance, uncorrelated random variables.

Here, (λk, φk) are solutions to the integral eigenvalue problem∫
D
c(x,x′)φk(x′)dx′ = λkφk(x), (6.7)

and ξk is the result of the projection ofM onto the spatial basis

ξk(ω) = 1√
λk

∫
D
M(x, ω)φk(x)dx. (6.8)

From Eq. (6.6) and the properties of φk and ξk it follows immediately that the covariance
function can be expressed as

c(x,x′) =
∞∑
k=1

λkφk(x)φk(x′) (6.9)

(Mercer’s theorem). Note that the KLE random variables {ξk} (herein KL-RV ) do not enter
this expression.

KLE is especially well-suited to Gaussian random fields, since in this case the random variables
ξk are standard Gaussian and independent. However, Eq. (6.6) holds for all random fields
fulfilling the assumptions, not only for Gaussian random fields. The non-Gaussianity is modeled
by the (possibly complex) joint distribution fξ of the KL-RV.
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Eqs. (6.6) to (6.8) are formulated in terms of L2(D), but they can be generalized: let X be
a random variable with values in D ⊂ Rd, density fX , and finite variance. Then KLE can be
generalized to the space L2

fX
(D) instead of L2(D). In that case, the index set D does not have

to be bounded, since the volume of D under measure fXdx is finite. This is called extended
KLE (Iemma et al., 2006). This property is crucial for our proposed stochastic emulator, which
we will introduce in Section 6.3.

In practice, the infinite expansion in Eq. (6.6) must be truncated. From the orthonormality of
{φk} it follows from Eq. (6.9) that the variance of the random field is equal to

∑∞
k=1 λk. The

sequence λ1 ≥ λ2 ≥ · · · ≥ 0 is non-increasing, and typically (depending on the correlation length
of the random field) this sequence decays rather quickly to zero. Loosely speaking, the higher
the correlation between different locations in the index set, the fewer spatial basis functions are
needed to approximate the trajectories, and the faster the decay of the eigenvalues. Knowing
this, the KLE can be truncated at theM -th term withM chosen so that the fraction of explained
variance is sufficiently large: ∑M

k=1 λk∑∞
k=1 λk

> 1− ε (6.10)

for a small threshold parameter ε > 0 (e.g., ε = 0.001).

KLE is closely related to function principal component analysis (fPCA) (Besse and Ramsay,
1986; Ramsay and Silverman, 2005). To compute a solution to the integral eigenvalue problem
in Eq. (6.7), there are several possibilities (Ramsay and Silverman, 2005, Section 8.4): the
integrals can be approximated numerically; the eigenproblem can be discretized on a number of
representative grid points inD (this is the approach chosen by the majority of modelers, including
Azzi et al. (2019)); or the eigenproblem can be written in terms of a suitable (truncated) spatial
basis, which transforms the problem into a (finite-dimensional) discrete eigenvalue problem. The
third approach is related to orthogonal series expansion (OSE) (Zhang and Ellingwood, 1994).
It is used by Poirion and Zentner (2014), who derive the explicit discrete problem for a basis
consisting of interpolation functions, building on results by Besse and Ramsay (1986) and Besse
(1991). We use this approach together with the orthogonal basis provided by polynomial chaos
expansion (Section 6.3). Detailed calculations are provided in Section 6.A.

6.2.4 Inference of the joint distribution of the Karhunen-Loève random vari-
ables

Characterizing the dependent (but uncorrelated) Karhunen-Loève random variables (KL-RV)
ξk, k = 1, . . . ,M correctly is important for the accurate modeling of a general non-Gaussian
stochastic process (Grigoriu, 2010). However, inferring the joint distribution of a random vector
is a challenging task. The main challenge is the scarcity of data: the higher the dimensionality,
the more samples are needed to be able to correctly infer the dependence structure of the data.
We need to construct a suitable parametric or non-parametric model to accurately describe the
joint distribution. In the following, we introduce the marginal-copula framework, which is a
powerful tool to represent and infer complex dependence structures between random variables
(Nelsen, 2006; Torre et al., 2019).
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Let Z be any M -dimensional random vector with multivariate cumulative distribution function
(CDF) FZ and marginal distributions FZi . The so-called Sklar’s theorem states that FZ can be
written as

FZ(z1, . . . , zM ) = C (FZ1(z1), . . . , FZM (zM )) , (6.11)

where the function C : [0, 1]d → R is called copula (Sklar, 1959; Nelsen, 2006). C is a CDF with
uniform marginals, which defines the dependence structure of the random vector Z. C is unique
if all marginals FZi are continuous, and it holds that

C(u1, . . . , uM ) = FZ
(
F−1
Z1

(u1), . . . , F−1
ZM

(uM )
)
. (6.12)

Let an i.i.d. sample Z = {z(1), . . . ,z(N)} of the random vector Z be given. The goal is to infer
the joint distribution FZ from this sample. For this, the copula representation of Eq. (6.11)
is convenient, since it allows inferring the marginals and the dependence structure of the data
separately, as briefly explained in the following.

To infer the marginal distributions, we consider two options. The first is parametric inference,
where we choose from a set of parametric probability distributions with zero mean and unit stan-
dard deviation (see Table 6.1) the distribution with the smallest Akaike information criterion
(AIC). If a distribution family has more than two parameters, its remaining parameters are cho-
sen by maximum likelihood. We utilize the uncertainty quantification software UQLab (Marelli
and Sudret, 2014; Torre et al., 2021) with a modification prescribing the desired moments.

Table 6.1: Considered marginal families with zero mean and unit standard deviation. The last
column lists the remaining degrees of freedom k after fixing the first two moments. The Akaike
information criterion is then given as AIC = 2k − 2 logL, where L is the likelihood.

Type Parameter k

Uniform U([a, b]) a = −
√

3, b =
√

3 0
Gaussian N (µ, σ) µ = 0, σ = 1 0
Gumbel (for maxima) G(µ, β) µ ≈ −0.4501, β ≈ 0.7797 0
Gumbel (for minima) Gmin(µ, β) µ ≈ 0.4501, β ≈ 0.7797 0
Logistic P (µ, s) µ = 0, s ≈ 0.5513 0
Laplace L(µ, b) µ = 1, b = 1√

2 0
Beta B(a, b, r, s) a, b chosen according to data bounds

r = a(ab+1)
b−a , s = b(ab+1)

a−b

2

A second popular method to represent marginal behavior non-parametrically is kernel density
estimation (KDE) (Wand and Jones, 1995; Simonoff, 1996), which has also been proposed for
estimating the distribution of KL-RV (Grigoriu, 2010; Poirion and Zentner, 2014). Here the
distribution is modeled as a Gaussian mixture, where the Gaussian density functions are centered
in the data points and share the same standard deviation, called bandwidth in the case of 1D
KDE. We adopt a bandwidth estimation method optimal for data with Gaussian distribution
(Bowman and Azzalini, 1997).

To characterize the dependence structure, we use a copula. While any multivariate CDF with
uniform marginals U([0, 1]) constitutes a copula, there are a number of well-known parametric
families (see, e.g., Nelsen (2006); Joe (2014)). Besides the independence copula and the families
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derived from multivariate elliptical distributions, most of these parametric families are pair
copulas, i.e., they couple only two variables. Constructing meaningful parametric copulas for
more than two variables (other than elliptical copulas) is in general difficult (Nelsen, 2006).

A solution is to decompose the M -variate copula into a product of conditional pair copulas,
which is known as vine copula construction (Bedford and Cooke, 2002). This is always possible
as a consequence of the chain rule of probability. In general, a vine copula is the product of
M(M−1)

2 pair copulas.3 The factorization into pair copulas is not unique but depends on the
ordering and grouping of variables. Two classes of vine copulas, differing in the order in which
the variables are grouped into pairs, are the drawable vine (D-vine) (Kurowicka and Cooke,
2005) and the canonical vine (C-vine) (Aas et al., 2009). For a more detailed description of the
vine copula construction, we refer to Aas et al. (2009) and Torre et al. (2019b).

To infer a copula from data, we first map the multivariate data to [0, 1]d by applying element-
wise the inferred marginal CDFs (see Eq. (6.11)). Then we infer the dependence structure by
using Kendall’s tau to determine the groupings of variables as well as their order in the vine
copula (Aas et al., 2009; Torre et al., 2019b). For each pair copula, the parameters are identified
by maximum likelihood. Finally, the best-fitting copula is chosen using AIC. This approach
is implemented in the statistical inference module of UQLab (Torre et al., 2021). The list of
available copula families can be found in Lataniotis et al. (2021, Section 1.4).

6.3 Surrogating a stochastic simulator from a set of samples

We are now ready to describe the construction of our spectral surrogate model for a stochastic
simulator. Assume that discrete samples of the stochastic simulator M are available in the
following form:

Tr =
{(
x(r,i),M

(
x(r,i), ω(r))) : i = 1, . . . , Nr

}
, r = 1, . . . , R (6.13)

i.e., in the form of discrete evaluations of the stochastic simulator on R trajectories, where for
every r, {x(r,i) : i = 1, . . . , Nr} is an i.i.d. sample from the input distribution fX , the so-called
experimental design. In particular, for different trajectories the samples can be taken at different
locations, i.e., for r1 6= r2 we can have x(r1,i) 6= x(r2,i) and in principle even different numbers of
samples Nr1 6= Nr2 . However, here we assume for notational simplicity that Nr = N for all r.

Our proposed method consists of the following steps (see also Figure 6.1):

1. Approximate each discrete trajectory Tr by a sparse PCEMPCE
r in L2

fX
(D):

MPCE
r (x) =

∑
α∈A(r)

a(r)
α ψα(x) (6.14)

with A(r) the set of regressors with nonzero associated coefficient a(r)
α . We use a total-

degree basis with degree- and q-norm adaptivity to determine the truncation set A(r)

(Blatman and Sudret, 2011; Lüthen et al., 2022a) and apply the least-angle regression
3There are M − 1 unconditional pair copulas; M − 2 pair copulas conditioned on 1 other variable; M − 3

conditioned on 2 other variables; and so on, until there is 1 pair copula conditioned on all except 2 variables.



192 Chapter 6. A spectral surrogate for stochastic simulators

solver to compute the coefficients (sparse PCE) (Blatman and Sudret, 2011; Lüthen et al.,
2021).

2. Determine a set A of regressors that jointly represents all trajectories well:
• Identify the union A =

⋃R
r=1A(r) of all chosen regressors.

• To keep the size of the basis manageable, discard the regressors with the smallest
sum of squares of coefficients over all trajectories (

∑R
r=1

(
a

(r)
α
)2) until P = |A| ≤ N

2
regressors or less are left in A.
• To avoid discontinuous behavior resulting from sparse selection, recompute the coef-
ficients of every trajectory by ordinary least squares (OLS), using the chosen set of
regressors A.

This results in R PCE trajectories, where each trajectory uses the same set of P PCE
basis functions.

3. Center the PCE trajectories by subtracting the sample mean

µ̂PCE(x) = 1
R

R∑
r=1
MPCE

r (x) =
∑
α∈A

(
1
R

R∑
r=1

a(r)
α

)
ψα(x) (6.15)

which is itself a PCE. We denote by M̃PCE
r (x) =MPCE

r (x)− µ̂PCE(x) the centered PCE
trajectories. Extract the coefficients ã(r)

α of the centered trajectories and store them in a
P ×R matrix ã.

4. Apply extended KLE to the set of PCE trajectories. The sample covariance function
has the form

ĉ(x,x′) = 1
R− 1

R∑
r=1
M̃PCE

r (x)M̃PCE
r (x′). (6.16)

Computing the eigenfunctions φ(x) of the associated integral eigenvalue problem in Eq. (6.7)
is equivalent to computing a PCA on the PCE coefficients, i.e., equivalent to solving the
following P -dimensional eigenproblem for ã:

Σb = λb, (6.17)

where Σ = 1
R−1 ãã

T (see Section 6.A for the derivation of this equivalence). The eigen-
vectors b contain the coefficients of the eigenfunctions represented in the PCE basis:
φ(x) =

∑
α∈A bαψα(x).

5. Identify the truncation order K � P for the KLE based on a given threshold for the
explained variance. We use a threshold of 99.9% (see Eq. (6.10)).

6. Compute the realizations of the KL-RV ξi from the sample trajectories by projecting
onto the eigenfunctions. Due to the orthonormality of the PCE basis, this can be done
analytically (see Section 6.A.2). Denote the realizations by ξ(r) ∈ RK .

7. Infer the joint distribution fξ of random KL coefficients from the data set {ξ(r)}r=1, ... ,R.
We will test four methods consisting of the techniques described in Section 6.2.4:
(a) Option 1: assume standard Gaussian marginals, which implies independence;
(b) Option 2: parametric inference of the marginals (with moment constraints) and of

the copula;
(c) Option 3: 1D kernel density estimation of each marginal, assuming independence;
(d) Option 4: 1D kernel density estimation of each marginal and parametric inference of

the copula.
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The resulting stochastic model for the random fieldM is

M̂(x, ·) = µ̂(x) +
K∑
k=1

√
λk Zk(·)

(∑
α∈A

b(k)
α ψα(x)

)
︸ ︷︷ ︸

=φk(x)

(6.18)

where Z = (Z1, Z2, . . . , ZK) is a random vector distributed according to the inferred joint
distribution fξ.

The full procedure is visualized in Figure 6.1.

Using the stochastic emulator constructed in Eq. (6.18), we can easily compute the following
quantities.

• The mean function µ̂ is given by the sample mean of the approximated trajectories (PCE
trajectories), see Eq. (6.15).
• The covariance function ĉ(·, ·) can be computed from the KLE eigenfunctions using the

truncated version of Eq. (6.9). Note that this relation does not involve the KL-RV.
• New trajectories (i.e., realizations of the random field) can be generated by drawing new
samples of the KL-RV ξk, and evaluating Eq. (6.6).
• A histogram of the marginal pdf fMx′ of the random field at any input space location x′

can be created by generating many new trajectories and evaluating them at x′.

Remark 1 (Another stochastic emulator). A simple stochastic emulator able to model
marginal distributions fMx′ can be constructed by evaluating all PCE trajectories from Step 2
above at the new location x′ and computing a kernel density estimate on the resulting set
of predictions. This method will be used as a comparison method for marginal estimation in
Section 6.4. However, unlike our stochastic emulator in Eq. (6.18), this simple emulator is not
able to resample trajectories.

Remark 2 (Alternatives to PCE). We choose PCE to approximate the sampled trajectories
because it is a powerful method for deterministic surrogate modeling. However, the choice
of PCE in the above method is not crucial: without any changes to the methodology, PCE
could be replaced by any other spectral expansion onto an orthonormal basis of L2

fX
(D), e.g., a

Poincaré basis (Lüthen et al., 2022c) or a spline basis (Rahman, 2020). From the orthonormality
of the basis it follows that functional PCA in L2

fX
(D) becomes traditional (unweighted) PCA

in the coefficient space (see Section 6.A), which avoids the expensive numerical solution of the
integral eigenvalue problem in d dimensions, and instead solves an inexpensive discrete eigenvalue
problem.
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Figure 6.1: Sketch of our stochastic emulator, starting with stochastic simulator samples (discrete
trajectories) at the top and resulting in the stochastic emulator at the bottom, which is a KLE
that includes a probabilistic model of the KL-RV. The sketch is purely for illustration and does
not display real data. Note that there are two equivalent ways to arrive at the third box: through
extended KLE and through PCA on the coefficients.



6.4. Numerical experiments 195

6.4 Numerical experiments

To analyse the performance of our stochastic emulator, we apply it to three models of increas-
ing complexity: the three-dimensional Ishigami function with two random parameters (Sec-
tion 6.4.1), the borehole model with five hidden (latent) variables (Section 6.4.2), and finally
the Heston stochastic volatility model, a system of two stochastic ODEs with six inputs that
has already been used by Zhu and Sudret (2021c) as a stochastic emulator benchmark model
(Section 6.4.3).

We first investigate the pointwise approximation capabilities of our emulator by plotting the
stochastic simulator and emulator responses at selected points throughout the input domain.
Then, we investigate the convergence behavior of our stochastic emulator using the following
global error measures:

• The global convergence of the marginal distributions is assessed using the averaged nor-
malized Wasserstein distance. The Wasserstein distance of order two between two random
variables Y1, Y2 with quantile functions (inverse CDF) Q1, Q2 is defined by (Villani, 2009)

dWS(Y1, Y2) = ‖Q1 −Q2‖2 =

√∫ 1

0
(Q1(u)−Q2(u))2 du. (6.19)

To measure the global quality of marginal approximation, we consider the quantity

εmarg = EX

[
dWS

(
M(X, ·),M̂(X, ·)

)
σ(M(X, ·))

]
, (6.20)

computed by Monte-Carlo integration on a validation set with Nval = 1, 000 points and
Rval = 10, 000 replications (Zhu and Sudret, 2021b).
• The global error between the true covariance function c and the emulated one ĉ is computed
by

εcov = ‖c− ĉ‖L2
fX

(D)×L2
fX

(D) ≈
1

Nval

∥∥∥C − Ĉ∥∥∥
F

(6.21)

where C and Ĉ denote the true and emulated covariance matrices for a validation sample
{x(i) : i = 1, . . . , Nval}, and ‖·‖F is the Frobenius norm.

6.4.1 Stochastic Ishigami function

6.4.1.1 Problem statement

The Ishigami function is a a well-known benchmark function for deterministic surrogate models.
It is highly non-linear and has significant interaction terms. It becomes a stochastic simulator
by treating its parameters a and b, which are usually fixed at a = 0.7 and b = 0.1, as additional
random variables:

f(X;A,B) = sin(X1) +A sin(X2)2 +BX4
3 sin(X1). (6.22)

A and B have here the role of so-called hidden or latent random variables. In other words,
we assume that they cannot be observed, and that therefore their values cannot be utilized in
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the surrogate modeling process. They introduce stochasticity into the otherwise deterministic
Ishigami model. Here we model A and B as lognormal random variables with mean 7 and
standard deviation 0.7, and mean 0.1 and standard deviation 0.1, respectively. We assume that
both variables are coupled with a Clayton pair copula with parameter 1.5. The non-hidden
(explicit) input variables are as usual X = (X1, X2, X3), which are independent and uniformly
distributed in [−π, π]. A Sobol’ analysis of f(X;A,B) in Eq. (6.22) reveals that the main effect
of the group of explicit input parameters (M1 in Eq. (6.28)) is approx. 75%, while the interaction
effect between the explicit and the latent group is approx. 25%, and the main effect of the group
of latent variables is negligible. Samples of the input space and the latent space are displayed
in Figure 6.1.
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Figure 6.1: Samples of the input space (left) and the latent space (right). The red line in Figure 6.1a
is the trajectory along which the simulator/emulator response is plotted in Figure 6.7. The red dots
annotated by small numbers denote the five points that are used for visualization in the following.
Figure 6.1b shows a sample of the latent space (A,B in Eq. (6.22)).

We use different experimental design sizes N ∈ {50, 100, 150} and a maximum degree of p = 14
for the PCE trajectories (with degree-adaptivity (Blatman and Sudret, 2011)). This results in a
relative mean-squared error in the order of 10−3/10−5/10−10, respectively. We also test different
numbers of trajectories R ∈ {10, 30, 100, 300}, and use a different experimental design for each
trajectory. For each combination of experimental design size and number of trajectories, we
conduct 50 independent repetitions. All resulting stochastic emulators are evaluated on the
same validation set, consisting of Rval = 10, 000 trajectories of the true stochastic simulator,
each evaluated on a set of Nval = 1, 000 points in the input space.



6.4. Numerical experiments 197

6.4.1.2 Analysis of the KL-RV samples

To illustrate the type of result obtained with our proposed stochastic emulator described in
Section 6.3, we now present scatterplots showing realizations of the following random quantities:
1) the KL-RV (compressed representation of PCE coefficients) resulting from step 7; 2) the
PCE coefficients resulting from transforming the KL-RV samples to the PCE coefficient space.
Detailed results for the predictionM(x′, ·) at a new location x′ for a number of new trajectories
are presented in Section 6.4.1.3 below. The results shown here are based on parametric inference
of marginals and copula (Option (b) of Step 7).

The truncation of the KLE (Step 5 of our algorithm) typically results in two modes with eigen-
values λ1 ∈ [3, 5] and λ2 ≈ 0.1 depending on the size and realization of the experimental design.
We display a specific example in Figure 6.2, which is computed from 100 trajectories with 150
samples each, and has eigenvalues λ1 = 4.46 and λ2 = 0.10. The figure shows resampled values
for the KL-RV: in black, samples computed from validation trajectories by projecting first onto
the truncated PCE space and then onto the eigenfunctions; in red, new samples drawn from
the input object inferred in Step 7 of our algorithm (Section 6.3). We see that their inferred
joint distribution (Beta and Gumbel marginals, with a Clayton copula) visually matches the
validation data well.
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Figure 6.2: KL-RV coefficient samples computed from validation trajectories (black) and new
samples from the stochastic emulator (red). This is data from one experiment with N = 150 and
R = 100, max degree p = 14. Number of validation trajectories and resampled PCE coefficients:
200 each. Number of KL modes: M = 2. Inferred distribution of KL-RV: Beta and Gumbel, with
Clayton copula (parameter 0.32). The corresponding eigenvalues are λ1 = 4.46 and λ2 = 0.10.

The KL-RV are the compressed representation of the random PCE coefficients (which in turn
encode trajectories). Mapping the realizations of the KL-RV back to the PCE coefficient space,
we obtain the samples displayed in Figure 6.3 forN = 150 and R = 100. Validation samples from
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the original stochastic simulator (generated by regressing them onto the truncated PCE basis)
are displayed in black, while 200 resampled PCE coefficient vectors generated from the stochastic
emulator are shown in red. We only show the 5 coefficients with maximal mean absolute value.
We see that the validation samples have a slightly larger spread than the emulator samples, but
that overall the behavior is matched well. Some parameters have linear functional dependence,
e.g., a1, a8 and a17, which is perfectly reproduced by the emulator. These parameters correspond
to the basis functions α1 = (0, 0, 0) (constant term), α8 = (0, 4, 0) and α17 = (0, 6, 0) and are
needed to emulate the second term of the stochastic Ishigami model in Eq. (6.22). There are no
interactions with the other terms, therefore a different value of A just proportionally changes the
relative weighting of these terms. A similar explanation holds for a2 and a6 with α2 = (1, 0, 0)
and α6 = (1, 0, 2), which are involved in emulating the first and the third term of Eq. (6.22)
and change proportionally with B.
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Figure 6.3: PCE coefficient samples computed from validation trajectories (black) and new samples
from the stochastic emulator (red). This is data from one experiment with N = 120 and R = 100,
max degree p = 14. Number of validation trajectories and resampled PCE coefficients: Rval = 200
each. The PCE coefficients are sorted by mean magnitude, and we only display the largest 5 out of
total 75 nonzero coefficients.

6.4.1.3 Marginal performance on selected validation points

We now investigate the performance of the stochastic emulator with parametric inference of
KL-RV marginals and copulas (choice 7b) on a selection of out-of-sample validation points, i.e.,
points that were not used for training.
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Figure 6.4 shows the histograms and pairwise scatterplots of samples from the output random
variables Yi = M(x(i), ·) and Ŷi = M̂(x(i), ·) of the stochastic simulator and emulator, re-
spectively. The five selected validation locations {x(i)}5i=1 in the input space are visualized in
Figure 6.1a by red dots. Each black (resp. red) point in Figure 6.4 is a new trajectory of the
stochastic simulator (resp. emulator) evaluated at the five given points. Both samples have the
same size (200 new trajectories). Overall, the model behavior is captured well, but the stochastic
simulator has a slightly larger spread (see e.g. Y2 vs. Y3).
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Figure 6.4: Scatterplot of output Yi =M(x(i), ·) of the stochastic simulator (black) and of output
Ŷi = M̂(x(i), ·) of the parametric stochastic emulator (red, created from training set with N = 150,
R = 100) for five validation points sampled from the input space. The location of these five points
is illustrated in Figure 6.1a.

From the data in the off-diagonal scatter plots in Figure 6.4, we can compute the sample covari-
ance matrix. However, we can also compute the covariance analytically from the KLE eigen-
functions, using Eq. (6.9). In Figure 6.5, we use the five illustrative points shown in Figure 6.1a
to compare this covariance estimate to a validation covariance matrix computed empirically
from 10, 000 trajectories of the stochastic simulator. Qualitatively, the covariance is reproduced
well, although the KLE-based covariance is slightly smaller in magnitude than the empirical
covariance.
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Figure 6.5: Covariance approximation for the Ishigami model for the Nval = 5 validation locations
in the input space illustrated in Figure 6.1a. Computation based on N = 150, R = 100, max degree
p = 14. KLE-based covariance: computed from eigenfunctions as in Eq. (6.9). Empirical covariance:
based on the validation set comprising 10, 000 trajectories of the stochastic simulator.

In Figure 6.6, we visualize the marginal distribution fY1 of Y1 = M(x(1), ·) at one validation
point (the point marked with “1” in Figure 6.1a) for an increasing number of trajectories in the
training set, and 4 independent repetitions of each experiment. The estimates for the marginal
distribution fY1 are computed by KDE from 10, 000 samples from the constructed stochastic
emulator, while the histogram and the dashed curve represents a validation set of 10, 000 samples
of the original stochastic simulator. As expected, we observe that with an increasing number R
of trajectories, the shape of the predicted marginal becomes closer to the kernel density estimate
of the validation set and shows less variation.
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Figure 6.6: Prediction of Y -marginal at validation point x(1)
val = (−π2 ,

π
2 ,−

π
2 ) for the Ishigami

model and R = {10, 30, 100, 300} trajectories with the parametric stochastic emulator for 4 inde-
pendent repetitions. Visualization of predicted marginals by KDE using 10, 000 samples. Number
of experimental design points N = 150, max degree p = 14. The approximation error is in the order
O(10−10).

Finally, to assess visually how well the resampled trajectories match the behavior of the original
stochastic model, we plot in Figure 6.7 a 1D slice of 10 new trajectories generated by the
stochastic simulator (left) and the stochastic emulator (middle). The slice through the input
space is shown in Figure 6.1a by a red line. On the right, data for the same slice is shown, but
this time we show quantiles aggregated over 10, 000 new trajectories each. The trajectory slices
look qualitatively similar, although there is a lot of variability between individual realizations.
From the aggregated data on the left, we see that the bulk of the distribution (10%-90% quantile)
is predicted quite accurately. Interestingly, in Figure 6.7c it seems that the trajectories of the



6.4. Numerical experiments 201

stochastic emulator (red) have a larger spread than the ones of the simulator (black), contrary to
the results earlier in this section, which always showed the simulator having a larger spread than
the emulator. This illustrates the difficulty of inferring global behavior from local observations.
Theoretically, the emulator should have a smaller variance than the simulator, because terms
are missing from Eq. (6.9) due to truncation.
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Figure 6.7: Visualization of stochastic simulator/emulator response Y when following a 1D slice
through the input space, which is illustrated with a red line in Figure 6.1a. N = 150, R = 100. The
left and middle plots show 10 trajectories each. The right plot aggregates the values from 10, 000
trajectories to show quantile information.

6.4.1.4 Convergence with the number of trajectories

To assess the global performance of our proposed method, we now construct stochastic emulators
for all combinations of input space experimental design sizes N ∈ {50, 100, 150} and numbers
of trajectories in the range R ∈ {10, 30, 100, 300}. We then evaluate each of the resulting
stochastic emulators Rval = 10, 000 times at Nval = 1, 000 validation points in the input space
(out-of-sample, i.e. not used for training) and compute the errors as described in Section 6.4.
Each combination is independently repeated 50 times to account for the statistical uncertainty
of the sampling of both experimental design and trajectories, which allows us to display results
in the form of Tukey boxplots.

In Figure 6.8a, we display the global convergence of marginal predictions for the parametric
stochastic emulator in terms of εmarg defined in Eq. (6.20). Each boxplot represents one experi-
ment (i.e., a specific number of experimental design points and number of trajectories), repeated
independently 50 times. The value of the averaged and normalized Wasserstein distance εmarg

is, by itself, difficult to interpret. To aid the interpretation and give an idea of the quality of
the approximation, we add two auxiliary quantities to the plot:

• The averaged and normalized Wasserstein distance is computed based on samples. As a
lower bound, we independently sample 100 × 2 validation sets (each consisting of Rval =
10, 000 trajectories evaluated at Nval = 1, 000 points in the input domain; each pair of
validation sets shares the same points in the input domain). We then compute the error in
Eq. (6.20) for each of the 100 pairs. The median and quantiles (0.25–0.75 and 0.05–0.95)
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of this value are displayed in Figure 6.8a in gray, indicating the best possible error that
can be achieved due to the natural variability of the sample estimates.
• A priori, it is unclear which value of the (averaged) normalized Wasserstein distance corre-
sponds to predicted marginals that are visually close to the true marginals. To have some
concrete examples on what a specific value of the normalized Wasserstein distance means,
we consider the marginals predicted at one chosen validation point, shown in Figure 6.8b.
We add the corresponding value of the normalized Wasserstein distance between simulator
and emulator prediction as a small colored circle to the plot in Figure 6.8a.

We observe that the quality of the marginal estimates improves as we increase the size of the
input parameter sample, which is expected since the PCE approximation of the trajectories
becomes better with increasing experimental design size. N = 50 points are clearly too few to
achieve a good estimate, whereas N = 100 and N = 150 show convergence with the number
of trajectories, indicating that the error from statistical inference is the dominating one. While
the convergence of the marginals with the number of trajectories looks slow, the improvement
of the marginal shapes is actually significant (compare the values with Figure 6.8b).
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Figure 6.8: Convergence of εmarg and εcov (Eqs. (6.20) and (6.21)) for increasing number of available
trajectories and parameter locations. Results for the stochastic emulator with parametric inference
(choice 7b of our algorithm in Section 6.3) and 50 replications. The errors are computed based on
a validation set of size Nval = 1, 000, Rval = 10, 000. The gray areas and the dashed line represent
quantiles and the median of a lower bound estimate for the respective error measure computed from
100× 2 independent MC samples of size Rval = 10, 000 generated by the true stochastic simulator.
The colored points in Figure 6.8a correspond to the results for a single replication and validation
point as shown in Figure 6.8b and help assess the meaning of the numerical error measures.
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In addition to marginal predictions, our stochastic emulator can also emulate the covariance
function, using Eq. (6.9). Since this equation relies only on the KL eigenfunctions, not on the
KL-RV, the choice of inference method in Step 7 of our algorithm in Section 6.3 does not affect
these results. In Figure 6.8c we display the convergence of εcov from Eq. (6.21). We observe
that the error decreases with increasing numbers of trajectories. For the largest numbers of
trajectories and experimental design points, the error is already in the range of the rough lower
bound on achievable accuracy (obtained as described above by empirical sampling of the true
model). Interestingly, unlike the marginal error in Figure 6.8a, an increasing number N of input
parameter samples does not lead to a smaller covariance error. This indicates that the covariance
estimate is less sensitive to the quality of the trajectory approximation, while the inference of
the distribution of the KL-RV is more sensitive to it.

So far, we showed results for the stochastic emulator with parametric inference only (Option 7b).
Now, in Figure 6.9 we compare the four inference options described in Step 7 of the algorithm
in Section 6.3 with the results of a fifth method described in Remark 1, which we call here PCE-
KDE. We use the experimental design size N = 100, which yields PCE approximations with
relative validation error of 10−5. Due to this close fit, the PCE-KDE estimate can be considered
as near-optimal estimate given the available data.

The error εmarg is again computed on a validation set consisting of Rval = 10, 000 trajectories
evaluated at Nval = 1, 000 points in the input space.

We observe that for 20 trajectories, the five methods show almost identical performance. This
suggests that 20 trajectories are not yet enough to infer a distribution that is able to generalize
to unseen data, so that any marginal distribution with mean zero and unit standard deviation
provides a reasonable approximation. Comparing with the results for PCE-KDE, we see that
our emulator is similarly accurate in prediction at an unseen point as a kernel density estimate
using the training set of highly accurate PCE trajectories. This suggests that we do not lose
much accuracy by applying our KLE approach on top of the PCE approximation, which can be
seen as a form of dimension reduction in the stochastic space.

For the larger number of trajectories, R = 100 and R = 500, we do observe a difference between
the performance of the different marginal inference methods: standard Gaussians perform worst,
while kernel density estimation without copula performs best of all the inference methods con-
sidered. Kernel density estimation with independence assumption performs almost on par with
the PCE-KDE estimate. This suggests that the KL-RV are close to independent in this case,
and that fitting a vine copula (using the available pair copulas) does not improve the overall
inference, at least in the considered cases of limited data. It also demonstrates that the true
KL-RV distribution is not well approximated by independent standard Gaussians nor by other
currently available parametric families, but that it can be approximated well by the more flexible
kernel density estimation. Parametric inference, offering a variety of standard marginal shapes,
performs slightly better than Gaussian random variables.
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Figure 6.9: Convergence of average normalized Wasserstein distance. Comparison of the four
different methods for inferring the joint distribution of KL-RV described in Step 7 with the method
PCE-KDE described in Remark 1. N = 100 and p = 14. Errors are computed based onNval = 1, 000,
Rval = 10, 000, for 50 replications. The gray areas and dashed line have the same meaning as in
Figure 6.8.

6.4.2 Borehole function with latent variables

As a second example, we consider the well-known borehole function, which computes the water
flow between two aquifers that are connected by a borehole (Harper and Gupta, 1983). It
depends on eight parameters and is defined by

B(Rw, Hu,Kw, R, Tu, Tl, Hl, L) = 2πTu(Hu −Hl)
ln (R/Rw)

(
1 + 2LTu

ln(R/Rw)R2
wKw

+ Tu
Tl

) . (6.23)

Its input random variables and their distributions are provided in Table 6.1.

We consider five parameters (Ξ = (R, Tu, Tl, Hl, L)) of the borehole function to be latent, re-
sulting in the three-dimensional stochastic simulator B̃(rw, hu, kw) = B(rw, hu, kw; Ξ).

For the three-dimensional input space, we use N = {20, 30, 60} input samples and a maximal
PCE degree of p = 6. The accuracy of the borehole approximation in terms of relative mean-
squared validation error is in the order of 10−3/10−7/10−10 for the different experimental design
sizes. The number of trajectories is in the range R = {10, 30, 100, 300}.

This results in typically M = 2 KL modes for an explained variance threshold of 99.9%. The
eigenvalues of the KLE are approximately λ1 ≈ 170 and λ2 ≈ 0.5. The first mode alone covers
more than 99.5% of the total variance, even though five independent parameters are used as
latent variables. Two of these have a significant total Sobol’ index, and the sum of the first-
order indices of the latent group is 19%. We will investigate this phenomenon in more detail in
Section 6.5 below.

As before, we analyze the global convergence of the marginal and covariance approximation for
increasing numbers of input samples and trajectories, and we compare different methods for
inferring the distribution of the KL-RV as described in Step 7 of our algorithm (Section 6.3).
For the detailed explanation of the error measures, the setup of the convergence study, and the
interpretation of the plots, see Sections 6.4 and 6.4.1.

In Figure 6.10a, we see that our method converges in both global error metrics (εmarg and εcov)
towards the rough empirical lower bound indicated by the gray area and dashed line. For εmarg,
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Table 6.1: Borehole function: Input random variables and their distributions. For the borehole
stochastic simulator with hidden variables, five of the eight variables (marked by italic letters) are
considered latent.

Variable Distribution Description Total Sobol’ index
Rw N (0.10, 0.0161812) borehole radius 6.94e-01
Hu U([990, 1110]) potentiometric head of upper aquifer 1.06e-01
Kw U([9855, 12045]) borehole hydraulic conductivity 2.51e-02
R Lognormal([7.71, 1.0056]) radius of influence 2.77e-06
Tu U([63070, 115600]) transmissivity of upper aquifer 2.10e-08
Tl U([63.1, 116]) transmissivity of lower aquifer 8.23e-06
Hl U([700, 820]) potentiometric head of lower aquifer 1.06e-01
L U([1120, 1680]) borehole length 1.03e-01

the difference between the results for the three experimental design sizes N = 20, 30, and 60 is
small. This indicates that at least for this model, a validation mean-squared error smaller than
O(10−3) does not lead to significantly more accurate results, and that below this accuracy the
error is dominated by the inference error.

The convergence of the emulated covariance function is displayed in Figure 6.10c. As expected,
the global error become smaller with an increasing number of trajectories, and approaches
the lower bound representing the variability due to the error being computed from samples.
Again, the difference in the results for the three experimental design sizes N = 20, 30, 60 is
small. Since the first mode accounts for more than 99.5% of the explained variance, the first
KLE eigenfunction has the dominating influence on the covariance estimation (Eq. (6.9)). The
results indicate that the first eigenfunction and its eigenvalue are estimated accurately already
for the smallest experimental design sizes.

The comparison of the different inference methods for the distribution of the KL-RV (Step 7 of
the algorithm) is displayed in Figure 6.11. Similarly as for the Ishigami function, we observe that
for a small number of trajectories (R = 10 and 30) the four inference methods and PCE-KDE
show almost the same performance. Modeling the KL-RV with standard Gaussian distributions
seems to offer a slight advantage (resulting in a slightly smaller median error and smaller vari-
ability) for small numbers of trajectories, probably because they make the strongest assumptions
on the distribution shape, which is advantageous for generalizability in the case of small data.
As the number of trajectories grows, a similar pattern as in Section 6.4.1 emerges: standard
Gaussian inference shows the worst performance, followed by parametric inference. Inference
with kernel density estimation (dependent and independent) shows the best performance, on
par with the PCE-KDE estimate, which (due to the high accuracy of the PCE approximations
for N = 60) represents the near-optimal estimate given the available training data.

Interestingly, there is no significant difference between the performance of KDE with and without
the independence assumption. Here the magnitude of the eigenvalues might offer an explanation:
with more than two orders of magnitude difference between λ1 and λ2, the dependence between
the two random variables ξ1 and ξ2 does not influence the resulting predictions as much as the
correct identification of the marginal shape of the first KL-RV ξ1.
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Figure 6.10: Convergence of the εmarg and εcov (Eqs. (6.20) and (6.21)) for an increasing number of
available trajectories and parameter locations. Results for the stochastic emulator with parametric
inference (Option 7b) and 50 replications. The errors are computed based on a validation set of size
Nval = 1, 000, Rval = 10, 000. The gray areas and the dashed line represent quantiles and the median
of a lower bound estimate for the respective error measure computed from 100× 2 independent MC
samples of size Rval = 10, 000 generated by the true stochastic simulator. The colored points in
Figure 6.10a correspond to the results for a single replication and validation point as shown in
Figure 6.10b and help assess the meaning of the numerical error measures.
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Figure 6.11: Convergence of εmarg. Comparison of the four different methods for inferring the joint
distribution of KL-RV described in Step 7 with PCE-KDE described in Remark 1. N = 60 and
p = 6. Errors are computed based on Nval = 1, 000, Rval = 10, 000, and 50 replications. The gray
areas and dashed line have the same meaning as in Figure 6.10.
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6.4.3 Heston stochastic volatility model for a stock price

As a third example, we consider the Heston stochastic volatility model, which describes a stock
price Yt (Heston, 1993) with its volatility νt modeled as stochastic process:

dUt = µUtdt+
√
νtUtdW (1)

t , (6.24)

dνt = κ(θ − νt)dt+ σ
√
νtdW (2)

t (6.25)

with two Wiener processes W (1)
t and W

(2)
t with correlation coefficient ρ. This model has six

uniformly distributed parameters X = (µ, κ, θ, σ, ρ, ν0) detailed in Table 6.2, the bounds of
which are calibrated from real data as described in Zhu and Sudret (2021c). The quantity of
interest is

Yx = U1(X = x), (6.26)

i.e., the stock price after 1 year. As proposed by Zhu and Sudret (2021c), we set U0 = 1 and use
the Euler-Maruyama method to integrate the system of stochastic differential equations (SDEs)
and replace νt by max(νt, 0) to avoid negative values of νt. This model is a stochastic simulator
due to the stochasticity induced by the two Wiener processes W (1)

t and W (2)
t driving the SDEs.

A trajectory in the parameter space D is obtained by fixing the realizations of these processes
and evaluating Eqs. (6.24) and (6.25) for x ∈ D.

For the six-dimensional input space, we use N = {50, 100, 150} input samples and a maximal
PCE degree of p = 7. The accuracy of the approximation in terms of relative mean-squared
validation error is ca. O(0.03)/O(0.02)/O(0.006) for the different experimental design sizes. This
means that the Heston model is not particularly well approximated by PCE, even for rather
large experimental designs. We use a number of trajectories in the range R = {10, 30, 100, 300}.

This results in typically M = 4 to 6 KL modes for an explained variance threshold of 99.9%.
The first eigenvalue is λ1 ≈ 0.05 and usually covers more than 97% of the variance.

Table 6.2: Parameters and their distributions for the Heston SDE model.

Variable Distribution Description
µ U([0, 0.1]) Expected return rate
κ U([0.3, 2]) Mean reversion speed of the volatility
θ U([0.02, 0.07]) Long term mean of the volatility
σ U([0.2, 0.4]) Volatility of the volatility
ρ U([−1,−0.5]) Correlation coefficient between dW (1)

t and dW (2)
t

ν0 U([0.02, 0.07]) Initial volatility

Again, we analyze the global convergence of the marginal and covariance approximation in
the same way as in the preceding sections. The marginal approximations of the parametric
stochastic emulator converge with increasing experimental design size and number of trajectories,
but slowly, as displayed in Figure 6.12a. There is no significant difference between the three
experimental design sizes N = 50, 100, 150. This indicates that the improvement due to a better
PCE approximation for an increasing number of experimental design points is overshadowed by
the inaccuracy due to the inference of the KL-RV. This, in turn, could be because the PCE
approximation is not yet sufficiently accurate (note that the relative validation error is in the



208 Chapter 6. A spectral surrogate for stochastic simulators

order of 10−2 for all ED sizes.) Even for the largest number of trajectories, the averaged and
normalized Wasserstein distance between the responses of the true model and the emulator is
still much larger than the variability resulting from sampling the true model, which is illustrated
by the gray areas and the dashed line in Figure 6.12a (quantiles and median, respectively).
Comparing the boxplots to the colored points corresponding to the marginal estimates illustrated
in Figure 6.12b, we observe that the marginal shape of the stochastic response for one validation
point x(1)

val is already captured quite well for 100-300 trajectories (with the value for R = 300
being a bit of an outlier).

The convergence of the covariance function is shown in Figure 6.12c. As expected, the covariance
estimate becomes better with increasing number of trajectories, even approaching the lower
bound obtained by resampling the original model. However, we observe again that an increasing
number of experimental design points does not influence the estimate much, which indicates that
the covariance estimate is quite robust against the trajectory approximation quality. Since the
first mode is also dominant for this example (accounting for ca. 97% of the explained variance),
it indicates that the first eigenfunction is well estimated already for small experimental design
sizes.

Figure 6.13 shows the comparison between the different methods for KL-RV inference (Step 7 of
the algorithm in Section 6.3) as described in Section 6.4.1.4. All four methods perform compara-
bly. The independent standard Gaussian approximation performs slightly better than the other
methods in the case of few trajectories and slightly worse for the case of many trajectories, which
is consistent with the previous cases. Again, KDE with and without dependence shows almost
identical performance, indicating that the either the true copula is the independence copula, or
that the existing parametric copulas are not suitable for capturing the dependence structure.
While the inference methods show a similar performance to PCE-KDE for smaller numbers of
trajectories, PCE-KDE finds a better marginal approximation when R = 300 trajectories are
available. This indicates that some information is lost in the KLE procedure of Section 6.3.
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Figure 6.12: Convergence of εmarg and εcov (Eqs. (6.20) and (6.21)) for an increasing number of
available trajectories and parameter locations. Results for the stochastic emulator with parametric
inference (choice 7b) and 50 replications. The errors are computed based on a validation set of size
Nval = 1, 000, Rval = 10, 000. The gray areas and the dashed line represent quantiles and the median
of a lower bound estimate for the respective error measure computed from 100× 2 independent MC
samples of size Rval = 10, 000 generated by the true stochastic simulator. The colored points in
Figure 6.12a correspond to the results for a single replication and validation point as shown in
Figure 6.12b and help assess the meaning of the numerical error measures.
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Figure 6.13: Convergence of marginals (Wasserstein distance). Comparison of the four different
methods for inferring the joint distribution of KL-RV described in Step 7 with PCE-KDE described
in Remark 1. N = 150 and p = 5. Errors are computed based on Nval = 1, 000, Rval = 10, 000, and
50 replications. The gray areas and dashed line have the same meaning as in Figure 6.12.
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6.5 Considerations on the number of modes

In this section we investigate how many modes K we can expect in the stochastic emulator of
Eq. (6.18). We consider here a certain class of stochastic simulators that arise from a deter-
ministic model z 7→ M(z) by considering some of its variables as hidden (or latent). In other
words, the stochastic simulator is M(X,Ξ), where X are the explicit input variables, and Ξ
the latent variables inducing the stochasticity (the random events, see Section 6.2.1). Assume
that all components of Z = (X,Ξ) are independent, and denote by fk the marginal distribution
of Zk.

Assume further that the deterministic simulatorM has finite variance under fZ . Then it can be
decomposed into the Hoeffding-Sobol’ decomposition (a.k.a. ANOVA decomposition, analysis of
variance) (Hoeffding, 1948; Sobol and Gresham, 1995) as

M(Z) = m0 +
∑

1≤i≤d
mi(Zi) +

∑
1≤i<j≤d

mi,j(Zi, Zj) + · · ·+m1,...,d(Z1, . . . , Zd) (6.27)

where the terms satisfy
∫
mI(ZI)fk(zk)dzk = 0 for all k ∈ I ⊂ {1, . . . , d}. m0 is the mean

of M(Z). The univariate terms mi are called main effects, and the remaining summands are
interaction terms of increasing order.

Now we group the summands of Eq. (6.27) according to whether they involve only input vari-
ables, only latent variables, or some variables from both groups. This results in the following
decomposition:

M(X,Ξ) = m0 +M1(X) +M2(Ξ) +M12(X,Ξ) (6.28)

where, e.g.,M1(x) =
∑
I:ZI⊂X mI(zI). The last summand of Eq. (6.28) contains all interaction

terms from Eq. (6.27) that involve at least one input and at least one latent variable.

It is a rather common phenomenon in uncertainty quantification that engineering models actually
have near-zero interaction terms. In that case, the model is essentially additive with respect to
the two groups of variables X and Ξ:

M(X,Ξ) ≈ m0 +m1(X) +m2(Ξ). (6.29)

This means that any realization ξ of the unknown latent variables Ξ results in a constant
shift of M(·, ξ) regardless of the value of the input parameters x, a behavior that can be
accurately modeled by a single KL mode: if equality holds in Eq. (6.29), the mean function is
µ(x) = EΞ [M(x,Ξ)] = m0 +m1(X), the covariance function is c(x,x′) = Var [m2(Ξ)], and the
only nonzero eigenvalue of Eq. (6.7) is λ1 = Var [m2(Ξ)] with eigenfunction φ1(x) = 1.

We have observed this in the numerical examples in Section 6.4, e.g., for the case of the bore-
hole model with hidden variables. The deterministic borehole model defined in Eq. (6.23) has
relatively low interaction: despite its nonlinearity, under the input uncertainties in Table 6.1
its first order Sobol’ indices (Sobol’, 1993) sum up to

∑8
i=1 S

1
i ≈ 96.7%. The interaction effect

between the explicit and the latent group is around 2%. Therefore, only one mode is sufficient
to model the stochastic simulator that results from treating several of the model’s variables as
latent.
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6.6 Discussion and conclusions

We presented a spectral surrogate model for stochastic simulators, a special class of compu-
tational models whose response for a given input is a random variable. Our method relies
on several advanced techniques for modeling uncertainties, such as polynomial chaos expansion
(PCE), Karhunen-Loève expansion (KLE), and statistical inference of multivariate distributions.
The resulting surrogate model is not only able to emulate the marginal distributions and the
covariance structure, but it can also generate new trajectories.

The form of our surrogate model provides insight into the model structure. The number of
expansion modes indicates how high-dimensional the underlying stochasticity is. The eigen-
functions of the KLE, which are polynomials, give information about how the input parameters
influence the stochastic simulator output. Even though our numerical examples were chosen to
represent a range of cases of increasing complexity, we found that one mode was usually sufficient
to explain more than 95% of the variance of the stochastic simulator. We were able to explain
this phenomenon for the common case of stochastic simulators that arise from finite-dimensional
deterministic models with independent inputs and finite variance by treating some of their input
variables as latent. Considering the Hoeffding-Sobol’ decomposition of the underlying determin-
istic simulator, we found that if the interaction terms between the explicit and latent variables
are negligible, one single KL mode will be sufficient to emulate the behavior of the stochastic
simulator. Indeed, by experience, this is a common occurrence in applications of uncertainty
quantification. Interactions are rarely dominant in engineering problems, and so one KL mode
might suffice in many cases.

From our numerical experiments, we found that the Gaussian (or more generally, parametric)
approximation of marginals of the KL-random variables (KL-RV) can be preferable if the number
of available trajectories is very small. When more trajectories are available, the better choice
is kernel density estimation. Since the first mode was dominant in our numerical examples, the
characterization of the dependence between KL-RV turned out not to be crucial, at least for the
class of applications considered.

Our numerical tests reveal that the emulator is able to capture the true model behavior rea-
sonably well, as long as enough input samples and trajectories are used. Due to the sequential
nature of our approach, it is important to use enough points in the experimental design: if the
PCE approximation is not accurate enough, also the inferred distribution for the KL-RV will be
inaccurate. Interestingly, we observed in all three examples that the covariance estimate was not
heavily influenced by using a larger experimental design, even though the latter typically results
in more accurate PCE approximations of the trajectories. This indicates that the number of
trajectories is more important for the covariance approximation than the quality of the PCE
approximation. Also, it seems that (since the first mode was dominant for all investigated mod-
els) the first KLE eigenfunction can be identified accurately already from a small experimental
design.

Note that our surrogate relies on the assumption that the trajectories are well approximated by
sparse PCE, an assumption not fulfilled by some stochastic simulators, e.g., ones with discontin-
uous or non-differentiable trajectories in the input parameter space. This could be circumvented
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by using another basis specially adapted to the purpose, such as wavelets. Furthermore, by con-
struction, our emulator is only suitable for stochastic simulators whose response is correlated
throughout the input domain. If there is little to no correlation between the responses at dif-
ferent points in the input space, KLE (which is ultimately a dimension reduction technique),
would need infeasibly many modes to converge.

Our methodology can be extended in several ways. The computation of the sparse PCE ap-
proximation of the trajectories could be done jointly for all trajectories, instead of fitting each
trajectory separately and later discarding regressors. While in our study the dependence be-
tween KL-RV was not crucial for the accuracy of the emulator, an improved estimation of the
dependence structure would be desirable if for future models more modes turn out to be impor-
tant. Furthermore, an interesting question is under which circumstances one mode is enough to
represent the underlying stochasticity of stochastic simulators, and how the methodology can
be adapted to take advantage of this phenomenon. The general idea of representing trajectories
by their coefficients, and after dimension reduction modeling their joint distribution, can also
be applied outside spectral expansions, e.g. for Bayesian neural networks, at the cost of losing
some of the analytical properties following from orthogonality. Finally, in the spirit of common
random numbers (Pearce et al., 2022), the applicability of our stochastic emulator for purposes
such as optimization should be explored.
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Appendix

6.A Analytical derivations for extended KLE on PCE trajecto-
ries

The following is a detailed exposition of the analytical computations for extended KLE using
the PCE basis in L2

fX
(D). A less detailed derivation for L2(D) can be found in Ramsay and

Silverman (2005, Section 8.4.2).

We show in Section 6.A.1 that if the trajectories x 7→ M(x, ω) are represented by PCE, and
extended KLE is applied, then the sample covariance function is a polynomial, the integral
eigenvalue problem reduces to PCA in the expansion coefficients, and the eigenfunctions are
polynomials. In Section 6.A.2, we show that the realizations of the random KLE coefficients
can be determined analytically.

Let for r = 1, . . . , R
M̃PCE

r (x) =
∑
α∈A

ãαψα(x) (6.30)

be the centered PCE trajectory computed from discrete evaluations of the trajectory Tr (Eq. (6.13)).
The sample covariance function is a polynomial given by

ĉ(x,x′) = 1
R− 1

R∑
r=1
M̃PCE

r (x)M̃PCE
r (x′). (6.31)

6.A.1 Analytical solution of the extended KLE eigenvalue problem

Computing an extended KLE in the function space L2
fX

(D) corresponds to solving the following
eigenproblem:

〈ĉ(x, ·), φi(·)〉L2
fX

(D) =
∫
D
ĉ(x,x′)φi(x′)fX(x′) dx′ = λiφi(x). (6.32)

Since ĉ is polynomial, also the eigenfunctions will be polynomials and can be represented in
terms of the PCE basis as follows:

φi(x) =
∑
α∈A

b(i)α ψα(x). (6.33)
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Solving Eq. (6.32) reduces to finding (λi, (b(i)α )α∈A) for i = 1, . . . ,M .

Dropping the i-subscript of the eigenfunction for convenience, we compute

∫
D
ĉ(x,x′)φ(x′)fX(x′) dx′ =

∫
D

1
R− 1

R∑
r=1
M̃PCE

r (x)M̃PCE
r (x′)φ(x′)fX(x′) dx′

= 1
R− 1

R∑
r=1
M̃PCE

r (x)
∫
D
M̃PCE

r (x′)φ(x′)fX(x′) dx′

= 1
R− 1

R∑
r=1
M̃PCE

r (x)
∫
D

(∑
α∈A

ãrαψα(x′)
)∑

β∈A
bβψβ(x′)

 fX(x′) dx′

= 1
R− 1

R∑
r=1
M̃PCE

r (x)
(∑
α∈A

ãrαbα

)
(orthonormality of PCE basis)

= 1
R− 1

R∑
r=1

∑
β∈A

ãrβψβ(x)

(∑
α∈A

ãrαbα

)

=
∑
β∈A

(
1

R− 1

R∑
r=1

ãrβ

(∑
α∈A

ãrαbα

))
ψβ(x).

The eigenvalue problem reduces to

∑
β∈A

(
1

R− 1

R∑
r=1

ãrβ

(∑
α∈A

ãrαbα︸ ︷︷ ︸
=(ãr)Tb∈R

))
ψβ(x) != λ

∑
β∈A

bβψβ(x).

Because the PCE basis functions ψβ are of different orders, we can rewrite this into matrix form:

1
R− 1

R∑
r=1


ãrβ1

(ãr)T

ãrβ2
(ãr)T
...

ãrβP (ãr)T

 b =
(

1
R− 1

R∑
r=1

ãr (ãr)T
)
b =

( 1
R− 1 ã ã

T
)
b

!= λb, (6.34)

where ã is the P × R-matrix of active and centered PCE trajectory coefficients. Defining
the matrix Σ = 1

R−1 ã ã
T , which is the empirical covariance matrix of the centered PCE

coefficients, we see that Eq. (6.34) is nothing else than principal component analysis (PCA) on
the coefficients.

Note that it was necessary to apply KLE in L2
fX

(D) to arrive at this equation, since the PCE
basis is orthonormal in L2

fX
(D) but in general not in L2(D).

The solution vectors b(i) to the eigenvalue problem Σb(i) = λib
(i) are the PCE coefficients of

the KLE eigenfunctions: φi(x) =
∑
α∈A b

(i)
α ψα(x). Since the PCE basis is orthonormal, and

assuming that the eigenvectors b(i) are normalized to unit norm, it follows that the eigenfunctions
{φi} are orthonormal.
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6.A.2 Analytical computation of the realizations of the KL-RV

Let λi be an eigenvalue and
φi(x) =

∑
α∈A

b(i)α ψα(x) (6.35)

the associated eigenfunction expressed in the PCE basis. The projection of the PCE trajectories
onto the KLE basis is given by

ξri = 1√
λi

∫
D
M̃PCE

r (x)φi(x)fX(x) dx

= 1√
λi

∑
α∈A

ãrαb
(i)
α = 1√

λi
(ãr)Tb(i) ∈ R.

Let ã ∈ RP×R the matrix of coefficients of centered PCE trajectories and b ∈ RP×M the matrix
of PCE coefficients of the KLE functions. Then we can compute the matrix Ξ ∈ RM×R of KLE
coefficient realizations by

Ξ =
(
diag

( 1√
λ1
, . . . ,

1√
λM

)
b

)T
ã. (6.36)
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CHAPTER 7

Discussion and conclusions

We live in exciting times. Computers can execute billions of calculation steps per second and
thus dramatically extend our human thinking capabilities (with respect to anything that can be
expressed by numbers, at least). When sitting at a laptop or desktop computer, or even holding
a smartphone, this power is literally at our fingertips. The challenge is now to do something
meaningful with this power: to contribute to the better understanding or even to the solution
of real problems, while at the same time doing so efficiently with regard to time and energy.
There is no doubt that carefully prepared computer simulations can help address this challenge,
advance science and guide decisions – as long as the ever-present uncertainties of our real world
are not neglected in the process.

Dealing with these uncertainties is precisely the task of the field of uncertainty quantification
(UQ), which provides methods for investigating the influence of stochasticity on the model in
question. In order to be useful, UQ methods must be efficient, well-tested, and accessible to
practitioners, i.e., creators of computational models that might themselves not be experts in
UQ.

This thesis made contributions towards these goals. Its overarching topic, surrogate modeling,
is a general methodology for improving the efficiency of UQ techniques by approximating the
original simulator with a less expensive replacement model, based on well-chosen model evalua-
tions and regularity assumptions. In particular, we investigated the popular sparse polynomial
chaos expansions (PCE) method. To make the large literature on sparse PCE more accessible,
we performed an extensive literature survey and benchmark of various methods, which resulted
in problem-dependent recommendations. We also investigated two new surrogate models. The
first, Poincaré chaos expansions, is a spectral expansion technique in the spirit of sparse PCE,
but using a non-polynomial basis that is especially well suited for sensitivity analysis when
partial derivatives of the model are available. The second method is a surrogate for stochastic
simulators, i.e., computational models with latent stochasticity. Taking the random function
view, we use trajectory samples to approximate the spatial as well as the stochastic behavior of
the model.
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We now discuss the conclusions and outlooks associated to each of these topics. These discussions
are not meant to merely repeat the conclusions of the respective papers, but to summarize the
results and to point out connections with related work from a more global perspective. In
particular, we will discuss the nature and role of sparse expansions, and share considerations
regarding benchmark design.

7.1 Sparse polynomial chaos expansions

The literature on sparse regression-based PCE, a spectral surrogate modeling method making
use of orthonormal polynomials and compressed sensing ideas, has grown tremendously in the
recent years. To provide an overview of the various available approaches and to benchmark their
performance with respect to the global mean-square error between surrogate and true model,
we conducted an extensive literature review and a thorough benchmark, resulting in the two
publications presented in Chapters 3 and 4.

7.1.1 Conclusions

Literature review and benchmark. In Chapter 3, we identified a framework for the sparse
PCE computation procedure consisting of the following components (see Figure 3.1 for an il-
lustration): construction of the initial basis, construction of the initial experimental design,
solution of the sparse regression problem (i.e., computation of the coefficients), evaluation of an
error measure or model selection criterion, adaptation of the basis, and sequential enrichment
of the experimental design. A large part of the literature on sparse PCE targets one or several
of these components. Furthermore, there are a number of methods outside this framework that
are meant to improve the sparse PCE computation procedure, e.g., by pre-conditioning the
regression problem, or by identifying a more suitable coordinate system in the input domain.

Because the number of components and associated proposed methods is large, and the number
of possible combinations even larger, we had to restrict our benchmark to a few components
and to a selection of most promising methods. In Chapter 3, we investigated the impact of
the initial experimental design and of the sparse regression solver on the global approximation
quality of the final result. For the experimental design, we investigated the schemes MC, LHS,
coherence-optimal sampling, D-optimal sampling, and near-optimal sampling. For the solvers,
we considered least-angle regression (LARS), orthogonal matching pursuit (OMP), subspace
pursuit (SP), Bayesian compressive sensing (BCS), and spectral projected gradient-`1 (SPGL1).
We tested 11 benchmark models of various dimensionality and complexity repeatedly for several
sizes of the experimental design, while using a fixed basis.

We found that the performance of the methods varied considerably across the models and over
the repetitions. To aggregate the results from the various models, experimental design sizes, and
repetitions, we divided the experiments into four classes according to two criteria: small/large
size of experimental design, and low/high dimensionality of the model. For each combination of
sparse regression solver and sampling scheme, we then counted the fraction of experiments that
resulted in an optimal or close-to-optimal error, and visualized this ranking.
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Based on this ranking, we were able to identify solvers and sampling schemes that consistently
showed better or worse performance. Our conclusions are explained in detail in Section 3.4.
To highlight a few results: we found that the solvers OMP, LARS, and SPGL1 performed
comparatively poorly, whereas BCS and SP based on leave-one-out cross-validation performed
rather well. Regarding the sampling schemes, LHS was the best choice for high-dimensional
models. For low-dimensional models, coherence-optimal sampling performed well for large design
sizes, and the near-optimal scheme performed best for problems with a rather small basis.

Basis adaptivity and automatic selection. We continued the benchmark in Chapter 4,
where we investigated the component of basis adaptivity. This introduces an iterative aspect
into the PCE computation procedure: after computing an expansion, new regressors are chosen
and added to the basis. Then, the expansion is recomputed and the procedure is repeated
until convergence. We investigated three methods from the literature, namely degree- and q-
norm, forward neighbor, and anisotropic degree basis adaptivity. The latter two choose the new
regressors based on the previously computed solution. We used LHS for the experimental design,
and paired the basis-adaptive schemes with the solvers LARS, OMP, SP, SPGL1, and BCS. For
the evaluation of the results, we conducted the same aggregation as previously described, and
focused on the relative performance, measured in the percentage of runs in which the combination
attained an error within a certain factor of the best possible error on the same experimental
design achieved by any other combination.

We found that the three basis-adaptive methods we tested generally produced a more accurate
solution than a static (i.e., fixed) basis. This was especially pronounced for low-dimensional
models, where in a large number of cases, basis adaptivity achieved an error that was more
than one order of magnitude smaller than the one of a static basis. In contrast, in the case of
high-dimensional models with a small experimental design (i.e., the case of very scarce data),
the static basis produced more robust solutions than the adaptive basis schemes.

Among the tested solvers, SP and BCS performed well, whereas SPGL1 and OMP did not.
This is consistent with the performance of these solvers in Chapter 3. Aggregated over all
experiments, forward-neighbor basis adaptivity together with leave-one-out-based SP showed
good performance most often. However, even this combination was far from the smallest possible
error in a rather large percentage of cases.

Therefore, we implemented the automatic selection of one out of several sparse solutions gener-
ated by different methods based on cross-validation, which was able to achieve close-to-optimal
errors, and outperformed any single recommendation of solver and basis adaptivity scheme. This
result is another example for the good performance of cross-validation for model selection, which
has already been utilized successfully e.g. for determining important regressors in sparse PCE
(Liu et al., 2020b) and for ensemble modeling (Viana et al., 2009; Parisi et al., 2021).

The nature of sparse expansions. The basis adaptivity scheme “forward neighbor” provides
insight into the sparsity pattern of sparse PCE. This scheme views the set of regressors as
a directed graph; see Section 4.2.3.2 for a detailed explanation. This scheme would not be
successful if the target sparse expansion contained isolated regressors whose backward neighbors
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all have negligible coefficients. This suggests that expansions of real-world models possess a
specific sparsity pattern: building on the exposition of forward neighbor basis adaptivity by
Jakeman et al. (2015) who state that “the magnitude of the ancestors of a PCE coefficient is a
reasonable indicator of the size of the child coefficient”, we hypothesize that sparse expansions
are actually dense with respect to the important input variables.1 The expansions are sparse
only within a larger basis of candidate regressors, such as a total-order basis: unimportant input
variables and low interaction between variables cause a substantial part of this candidate basis
to have negligible coefficients.

In the classification of models for global sensitivity analysis by Kucherenko et al. (2011), this
corresponds to function type A, i.e., functions of small effective dimension, of which they say that
“Type A functions are probably the most common type of functions encountered in practice”.

Following this reasoning, the type of basis is not necessarily essential for achieving a sparse
expansion: any tensor-product basis that includes the constant regressor in each univariate
basis would similarly allow sparse expansions. Of course, the type of basis has an influence on
compressibility, i.e., on the decay in coefficient magnitude. We will talk more about this topic
in Section 7.2 in the context of Poincaré chaos expansions.

Furthermore, this has implications for the design of benchmark cases to test sparse PCE algo-
rithms. It is not uncommon for methodological papers to use artificial test cases, such as the
“manufactured sparse PCE” model constructed as the weighted sum of a few randomly selected
polynomials, for a first test of the algorithm in question. However, for the result to be indica-
tive of the real-world performance of the tested method, such models should follow the sparsity
pattern described above.

The role of sparsity. We want to discuss the role of sparsity in sparse PCE using the example
of BCS. In our benchmark, this solver performed especially well for high-dimensional models or
for small experimental designs, in other words: whenever information is scarce. However, for
low-dimensional models and a large design, it did not perform well. BCS uses a hierarchical
Bayesian formulation of the regression problem, in which the parameters of the prior distribution
of the coefficients are again random variables, resulting in a sparsity-encouraging effective prior
for the coefficients. Empirically, we often found that BCS generates sparser solutions than
other solvers, which fits the conclusions of Babacan et al. (2010) comparing BCS with another
Bayesian method.

However, as opposed to compressed sensing, in UQ we are usually not interested in the sparsest
possible solution. Instead, sparsity is a device to achieve reasonably accurate approximations
under limited data. Sparsity avoids overfitting by only including the most relevant regressors
into the model, thus acting as a regularizer. Viewed from another angle, sparsity is a tool for
computational efficiency, allowing the solution of underdetermined systems of linear equations.
However, real computational models are almost never sparse in the PCE basis. Whenever there
is enough information to make it feasible (such as in the case of low-dimensional models with a

1To give an example: if in a three-dimensional model the regressor with multi-index (3, 7, 0) has a non-negligible
coefficient, then typically the same is true for all the smaller ones: {(i, j, 0) : i ≤ 3, j ≤ 7}. In the literature on
least-squares approximation, such a set is also called downward closed.
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large experimental design), a denser model will in general give a better approximation than a
sparse one, which might explain the worse relative performance of BCS in this case.

Benchmark design. In an active methodological research field such as surrogate modeling,
and in particular sparse PCE, it is important to perform comparative studies in order to identify
the most promising methods for further research, to provide an incentive to study the reasons for
better or worse performance of certain methods, and to create recommendations for practitioners
looking for advice which method to use. Regarding the implementation of the benchmark, we
found that it is important to clearly define the scope of the study, to include a sufficiently
large number of test models, to use repetitions for the (stochastic) sampling of the experimental
design, and to appropriately aggregate the results in order to see the big picture. For the latter,
we developed a novel way to accumulate and visualize the relative performance of different
methods using stacked bar plots. We concluded that the most relevant information to display
is the fraction of experiments in which the respective method achieves a global validation error
that is within a certain factor of the error of the best-performing method.

Literature reviews. Literature reviews can help make an established, specialized field of
research more accessible to new researchers looking for the main directions and open questions.
They can also help discover connections between topics and retrace the evolution of certain
ideas. We hope that with our two review and benchmark papers, we were able to provide such
guidance and overview for sparse regression-based PCE at least for the current point in time.

7.1.2 Outlook

The literature review and benchmarks could be extended in several ways. In our benchmarks,
we investigated the effect of the initial experimental design, the sparse solver, and the basis
adaptivity scheme. Further work could target the other components of the sparse PCE com-
putation procedure, e.g., sequential enrichment of the experimental design, pre-conditioning, or
the identification of potentially more suitable coordinates for the expansion.

Furthermore, for the components we tested, we were not able to consider all available methods.
For example, in the solver benchmark we did not include the class of heuristic stepwise regression
algorithms, which usually show superior performance in the numerical tests of the respective
authors. Among the sampling schemes, techniques such as Leja sequences and Christoffel sparse
approximation appear promising. At the same time, new methods are continuously being de-
veloped. Preferably, the benchmark should be continued on the same (or even on an extended)
suite of models to allow for the fair comparison of methods.

Going one step further, the ideal solution would be a free public benchmarking service similar
to the “RPrepo” platform, which Rozsas and Slobbe (2019) developed for black-box reliability
algorithms. This service collects benchmark problems of various complexity and provides a
server that allows the remote testing of new algorithms under exactly equal conditions.

Similar to a benchmark, a literature review becomes outdated as new methods continue to be
published. A suitable format for keeping it up to date would be a live online document that is
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regularly updated to collect the most relevant literature.

We have mentioned the difficulty of selecting a representative set of benchmark models, and
the associated difficulty of inferring recommendations on which methods to use depending on
the model characteristics and the available experimental design. For his benchmark of Sobol’
sensitivity analysis methods, Becker (2020) has found an elegant solution called metafunctions:
test cases are randomly constructed from a set of univariate basis functions, using specific
distributions for the number of dimensions, the coefficient values, and the number of interaction
terms. The resulting test functions are representative of real-world models with respect to the
Pareto principle and the sparsity-of-effects principle (see also Section 2.5.3). While artificial,
this principled way of constructing test cases allows detailed insight into the interplay between
model properties and method performance.

Among the methods we tested, the solver BCS appeared to be especially promising. Apart from
its good performance in the small-data regime, it is based on Bayesian inference, which has two
beneficial consequences that are worth studying further: first, through the specification of the
prior distributions it is possible to encode prior information about the magnitude of coefficients.
This has already been utilized by Shao et al. (2017) in a stepwise regression algorithm. Second,
the posterior distribution of the coefficients contains information about the confidence in the
resulting estimates given the data, which can be used for active learning (Zhou et al., 2019; Pan
et al., 2020).

Turning to model selection, with our automatic selection scheme choosing between several ex-
pansions generated by various sparse PCE algorithms, we have provided more evidence that
cross-validation performs well for this purpose. While there is the danger of overfitting if used
excessively (Cawley and Talbot, 2010), model selection by cross-validation, and more generally
ensemble learning, are powerful concepts with great potential for improving surrogate modeling.

Among the sampling methods, coherence-optimal sampling showed good performance for low-
dimensional models. However, so far this sampling scheme has only been analyzed and imple-
mented for the uniform and the Gaussian distribution (Hampton and Doostan, 2015b). It is
not yet known how to efficiently construct such a sample for other types of distributions or for
dependent inputs.

More generally, many of the available sampling schemes are based either on optimizing the
space-filling quality of the resulting sample (e.g., maximin LHS), or on optimizing a property of
the regression matrix (e.g., D-optimal, coherence-optimal, or near-optimal sampling). While the
authors proposing the latter schemes for PCE (Diaz et al., 2018; Hampton and Doostan, 2015b;
Alemazkoor and Meidani, 2018a) demonstrate superior performance for these algorithms, Weise
et al. (2022) find in their recent benchmark that for the considered test functions, LHS (with
some adaptations improving the space-filling property) outperforms various optimal sampling
schemes, including coherence- and D-optimal sampling. Therefore, it would be of special interest
to further investigate in a principled way the impact of matrix properties on the approximation
quality of the resulting PCE. Answering this question is particularly challenging because the
result also crucially depends on the benchmark model and its input distribution.

Finally, we have listed several insights into the nature of sparse expansions. This information
might be utilized to develop new algorithms.
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7.2 Poincaré chaos expansions

In Chapter 5, we investigated Poincaré chaos expansions (PoinCE), a new type of spectral
expansion especially suited for global sensitivity analysis. Similar to sparse PCE, we construct a
tensor-product basis and compute the coefficients by sparse regression. The Poincaré basis is in
general not polynomial (with the exception of the basis associated to the Gaussian distribution,
which coincides with the Hermite polynomials). Poincaré functions are similar to polynomials
in that they always include the constant function, and that the n-th order function has n roots.
They arise as eigenfunctions to a differential eigenvalue problem that was originally derived for
computing Poincaré constants for univariate measures with bounded support.

7.2.1 Conclusions

While the Poincaré basis functions associated to the Gaussian distribution are the well-known
Hermite polynomials, the basis associated to uniform input consists of cosine functions. Hence,
PoinCE constitutes a connecting link between the two well-known spectral methods PCE and
Fourier expansion with the potential of generalizing results for each of them.

Poincaré basis functions are orthonormal and have the special property that the partial deriva-
tives of the basis form again an orthonormal basis with respect to the same measure. In Chap-
ter 5, we were able to show that this is in fact a characterizing property, i.e., every basis with
this property must be a Poincaré basis.

As a consequence, we derived an analytical formula for the computation of DGSM, which extends
a formula by Sudret and Mai (2015) to the non-Gaussian case and provides insight into the
inequality bound between total Sobol’ indices and DGSM: namely, this bound is tight if the
expansion does not include relevant terms of order larger than one in the respective variable.
Otherwise, the gap can be significant, which we also observed in the numerical examples.

The characterizing property of orthogonal derivatives also provides a convenient way to utilize
model derivative evaluations for the computation of expansion coefficients. We implemented an
algorithm that combines the partial derivative evaluations with respect to the different input
variables to compute accurate estimates of Sobol’ indices. We found that this procedure generally
resulted in more accurate and less biased estimates than the ones computed by PCE or by
Poincaré chaos expansions (PoinCE) based on model evaluations alone.

When taking partial derivatives of a multivariate expansion with respect to a certain input
variable, all regressors that do not involve this variable will vanish. This reduces the number
of unknown coefficients particularly for high-dimensional problems and rather low-dimensional
expansions, and might be one possible explanation for the good performance of derivative-based
PoinCE.

We also compared the performance of PCE, PoinCE, and derivative-based PoinCE as a global
surrogate model, based on the L2

fX
(D)-error. Surprisingly, we found that here PCE outperforms

the other two methods, particularly for larger experimental design sizes. This difference in
performance between sensitivity analysis and surrogate modeling requires more investigation.
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Furthermore, we found that the two expansions PCE and PoinCE have almost the same num-
ber of nonzero coefficients for a given experimental design size. This supports the hypothesis
mentioned in Section 7.1 that expansions are sparse because of unimportant input variables and
low interaction order, not because of true sparsity in the basis. However, given that the same
level of sparsity in PCE and PoinCE leads to a different quality of global approximation, we
speculate that polynomial functions might be better suited than Poincaré chaos expansions to
approximate the model of interest with a low-degree expansion. In other words, it seems that
the model is less compressible in the Poincaré basis than in the PCE basis.

7.2.2 Outlook

While PoinCE is unlikely to replace PCE in the near future, it is an interesting example of a
non-polynomial orthonormal basis that is relatively easy to construct. The direct comparison
allows us to obtain insights also about PCE, e.g., regarding compressibility.

An open question about PoinCE is the performance gap between sensitivity analysis, where
it performs well, and surrogate modeling, where it is outperformed by PCE. This should be
investigated on a larger number of benchmark models. Answering this question might provide
further insight into what is important for accurately estimating Sobol’ sensitivity indices.

Furthermore, in our computations we have used either model evaluations or model partial deriva-
tives to compute the PoinCE coefficients. We are working on combining the information of both
sources in the spirit of derivative-enhanced PCE (Jakeman et al., 2015; Peng et al., 2016).

In general, the existence of the Poincaré basis with its favorable orthogonality property raises the
question whether we could construct other non-polynomial orthonormal bases with beneficial
properties for certain applications.

7.3 Spectral surrogate for stochastic simulators

In Chapter 6 we proposed a surrogate model for stochastic simulators based on the random
function view of stochastic simulators. Fixing the seed, the response of a stochastic simulator
becomes a deterministic function, which we surrogate using sparse PCE. Then, we perform
Karhunen-Loève expansion (KLE) on the resulting trajectories and characterize the stochastic
behavior by statistical inference of the random coefficients of the KLE (KL-RV).

7.3.1 Conclusions

The method approximates the full stochastic simulator including mean function, covariance func-
tion, marginal distributions, and trajectories. It does not assume that the stochastic simulator
is a Gaussian random field. Our numerical examples show that non-Gaussian distributions for
the KL-RV outperform Gaussian ones.

KLE requires the solution of an integral eigenvalue equation involving the covariance function,
which is generally expensive to solve. In our case, several factors contribute to circumventing
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this problem: we perform extended KLE in L2
fX

(D) and utilize an orthonormal polynomial basis
to approximate the trajectories. Here, sparsity is key for obtaining accurate approximations at
low cost. The covariance function is computed from the sample trajectories. All of this results in
the integral eigenvalue equation becoming a cheap-to-solve finite-dimensional matrix eigenvalue
problem.

In our numerical examples, we observe that M = 1 term in the KL expansion is often sufficient
to emulate a large part of the variance. We explain this phenomenon using the Hoeffding-Sobol’
decomposition of the model considering both its explicit and latent parameters – assuming it
exists – and find that one mode is sufficient if there are no interaction terms between the explicit
and the latent group.

In general, by identifying the number of modes through the explained variance, our method can
discover the effective dimensionality of the latent stochastic space.

7.3.2 Outlook

The random function view of stochastic simulators shares similarities with the “common ran-
dom numbers” approach used in optimization (Pearce et al., 2022). This connection should be
explored further; possibly, our stochastic emulator could be applied for optimization. Further-
more, the precise connection of our approach to kernel PCA (Sarma et al., 2008) should be
investigated.

Navarro Jimenez et al. (2017) and Zhu and Sudret (2021c) have discussed Sobol’ sensitivity
analysis for stochastic simulators. This methodology can easily be applied to our simulator, and
can even be computed analytically from the PCE trajectories.

While KLE works especially well for Gaussian random fields, our approach is not restricted to
the latter, because our methodology characterizes the dependent distribution of the random
coefficients of KLE. We use the copula framework to infer the dependence, which could benefit
from the introduction of additional copula families that better describe the type of dependence
found in KL-RV of stochastic simulators.

Finally, the observation that only one mode covers a large amount of the explained variance is
worth exploring further. This phenomenon should be tested and analyzed for more complex and
realistic engineering stochastic simulators.

7.4 Final conclusion

We have investigated several types of sparse spectral surrogate models in this thesis, with the
goals of testing their performance in practice, giving recommendations, and understanding their
behavior in more detail. Spectral methods, which utilize an orthonormal basis of L2

fX
(D) for

approximation, are global methods adapted to the distribution of the input random vector. The
orthogonality of the basis is an important property for computational reasons (see e.g. Eq. (2.12)
and the concept of isotropy in Section 2.5.2).
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We focused on sparse expansions computed by sparse regression. Here, sparsity is a tool for
computational efficiency, allowing the accurate calculation of coefficients even for rather small
experimental design sizes, which is the data regime typically encountered in UQ. With our litera-
ture review and benchmarks of sparse polynomial chaos expansions, and the two methodological
contributions of sparse Poincaré chaos expansions for global sensitivity analysis and our new
trajectory-based surrogate for stochastic simulators, we have addressed the above-mentioned
goals of performance evaluation, recommendation, and improved understanding, as discussed in
the preceding sections.

Furthermore, to disseminate the results of our research, we have already made the most promis-
ing sparse regression solvers from our benchmark available in the general-purpose UQ software
UQLab (Marelli et al., 2021a). We are planning to add further functionality related to basis
adaptivity and automatic selection for PCE, as well as a module for the treatment of stochastic
simulators.

Finally, we want to comment on the interdisciplinary nature of the field of uncertainty quantifi-
cation, specifically on its location at the intersection of engineering and applied mathematics.
During our research, we have seen various examples for exciting, rigorous results stemming from
thorough mathematical investigation. To name a few examples, there is coherence-optimal sam-
pling (Candès and Plan, 2011; Hampton and Doostan, 2015b), the inequality relation between
Sobol’ indices and DGSM (Lamboni et al., 2013), and the surprising fact that there is no polyno-
mial basis associated to the lognormal distribution (Ernst et al., 2012). Rigorous mathematical
analysis has been essential in obtaining these results.

On the other hand, the theoretical performance and proven validity of methods is not always
indicative of their performance in practice. For example, the bound on the number N of samples
in compressive sensing (Theorem 1 in Section 2.5.2) involves a constant whose value is not known,
making the bound useful mainly for large problem sizes P . For the case of rather small degree,
this theorem does not necessarily guarantee that N < P is sufficient for sparse recovery.

Furthermore, engineering research can be ahead of the associated mathematical results by sev-
eral decades. For example, Xiu and Karniadakis (2002) proposed to compute PCE associated
to distributions from the Wiener-Askey scheme ten years before Ernst et al. (2012) provided
the formal proof of convergence. Also, polynomial approximation by least-squares regression
(Isukapalli, 1999; Berveiller et al., 2006) has been used long before in the recent years Cohen
and Migliorati (2017) and colleagues were able to prove rigorous bounds for its performance.

These small examples illustrate that applied mathematics and engineering research should go
hand in hand to further advance the field of uncertainty quantification, finally resulting in meth-
ods that are able to efficiently obtain reliable and meaningful solutions to real-world problems
from computer simulations.
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