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RÉSUMÉ

Mots-clefs: Intégrateurs géométriques, systèmes hamiltoniens, géométrie de Poisson, systèmes
dynamiques, groupoïde symplectique

Cette thèse est motivée par des applications en analyse numérique et porte sur la géométrie de
Poisson et la géométrie de Dirac.

Nous résumons ici les principaux résultats de la thèse.

• Nous introduisons pour toute structure de Poisson π sur une variété M la notion de bi-réalisation,
et l’illustrons par l’exemple sur les crochets de Poisson constants, linéaires, et certains crochets
quadratiques. Dans cette bi-réalisation, nous démontrons que le flot hamiltonien d’un hamil-
tonien quelconque H se reformule par une équation aux dérivées partielles de Hamilton-Jacobi
en transformant H en une famille C8 de fonctions sur M dépendantes du temps SpHq “ StpHq

dont l’existence est assurée localement pour des petites valeurs de t.

• Nous définissons les intégrateurs de Poisson hamiltoniens comme des intégrateurs de Poisson
dont la trajectoire discrète suit le flot d’un hamiltonien dépendant du temps et expliquons, par
l’exemple d’abord, en quoi ils sont une généralisation naturelle des intégrateurs symplectiques
pour une structure de Poisson quelconque. Par la suite, une construction générale d’un intégra-
teur de Poisson hamiltonien pour une structure de Poisson π, un hamiltonien H, un ordre k et
un pas de temps ∆t quelconques sont donnés via la troncature à l’ordre k de la transformée de
Hamilton-Jacobi S∆tpHq du hamiltonien H sur une bi-réalisation de la structure de Poisson π.

Nous définissons également la suite de Farmer et expliquons comment elle fournit des formules
récursives explicites pour résoudre l’équation de Hamilton-Jacobi à un ordre arbitraire.

• Pour une famille C8 de sous-variétés lagrangiennes L d’une variété symplectique, nous con-
struisons une famille de 1-formes fermées appelée 1-forme de variation de L et démontrons par
suite une correspondance canonique, dans un groupoïde symplectique local, entre les familles de
bi-sections lagrangiennes et les doublets formés d’une bi-section lagrangienne et d’une famille
C8 de 1-formes fermées sur la base. Nous expliquons comment cela founrit une interprétation
géométrique des intégrateurs de Poisson hamiltoniens à travers la notion de bi-réalisation.

• Nous définisssons pour tout hamiltonien dépendant du temps pHtqtPI P C8pI ˆ Mq une série
formelle MϵpHq P C8pMq rrϵss , dite série de Magnus, dont on démontre que le flot hamiltonien
au temps 1 est formellement égal au flot de pHtqtPI au temps ϵ. En l’appliquant aux hamiltoniens
dépendants du temps correspondants aux intégrateurs de Poisson précédemment construits, nous
démontrons l’existence pour ces méthodes numériques d’un hamiltonien modifié.

• Finalement, nous comparons nos méthodes numériques avec les méthodes de Runge-Kutta sur
l’exemple du solide rigide et des équations de Lotka-Volterra. À l’inverse de ceux existants, nous
observons pour nos algorithmes la préservation des Casimirs à la précision machine et l’oscillation
des trajectoires discrètes autour du niveau du hamiltonien, oscillation dont l’amplitude est con-
trôlée par l’ordre de la méthode. Nos intégrateurs de Poisson hamiltoniens sont aussi testés
sur un système de Lotka-Volterra dont la trajectoire part à l’infini et l’on démontre numérique-
ment, comparés aux méthodes Runge-Kutta, un meilleur comportement au voisinage de cette
singularité, bien que l’ordre de notre méthode soit sur cet exemple choisi moins élevé.
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En appendice, nous rappelons quelques élements de théorie des groupoïdes symplectiques locaux
préliminaires à la construction d’intégrateurs hamiltoniens de Poisson.

Nous résumons ici les résultats de géométrie de Dirac.

• Nous introduisons la cohomologie horizontale H‚
hor d’une algébroïde et, dans le cas particulier

d’une structure de Dirac D Ñ M, étudions son 2-cocycle canonique ωD et son annulation en
cohomologie sur les exemples classiques des feuilletages réguliers, des structures présymplectiques
et des structures de Poisson.

• Sous condition suffisante de l’exactitude de rωDs dans H2
horpDq et pour tout hamiltonien H P

C8pMq, nous exhibons une fonctionnelle dont les points critiques sont exactement les courbes
intégrales des champs de vecteurs hamiltoniens de H, c’est-à-dire les sections X P XpMq tels que
pX,dHq P ΓpDq.

• Toujours sous couvert de la nullité de rωDs, nous déduisons du précédent résultat une générali-
sation de la transformée de Legendre aux structures de Dirac.
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ABSTRACT

Keywords: Geometric integrators, Hamiltonian systems, Poisson geometry, dynamical systems,
symplectic groupoids

This thesis is motivated by applications in numerical analysis and deals with Poisson and Dirac
geometry.

We sum up here the main results of this thesis.

• We introduce for any Poisson structure π on a manifold M the notion of bi-realisation and
illustrate it by examples on constant, linear and some quadratic Poisson brackets. In that bi-
realisation, we show that the Hamiltonian flow of a Hamiltonian H can be reformulated through
Hamilton-Jacobi equation by transforming H into a smooth family of time-dependent functions
on M SpHq “ StpHq, for which existence is ensured for small values of t.

• We define Hamiltonian Poisson integrators as Poisson integrators for which discrete trajectory
follows the flow of a time-dependent Hamiltonian and we explain, by an example at first, how
they are a natural generalisation of symplectic integrators for a generic Poisson structure. Next, a
construction of a Hamiltonian Poisson integrator for generics Poisson structure π, Hamiltonian
H, order k and time-step ∆t are given via any truncation at order k of the Hamilton-Jacobi
transform S∆tpHq of the Hamiltonian H on a bi-realisation of the Poisson structure π. We also
define the Farmer sequence and we explain how it gives explicit recursive formulae to solve
Hamilton-Jacobi equation at an arbitrary order.

• For a smooth family of Lagrangian submanifolds L of a symplectic manifold, we construct a
family of closed 1-forms named variation form of L and we show a canonical correspondence,
in a local symplectic groupoid, between families of Lagragnian bi-sections and couples made of
a Lagrangian bi-section and a smooth family of closed 1-forms on the base. We explain how
this gives a geometric interpretation of Hamiltonian Poisson integrators through the notion of
bi-realisation.

• We define for any time-dependent Hamiltonian pHtqtPI P C8pI ˆ Mq a formal series MϵpHq P

C8pMq rrϵss named Magnus series, for which we show that its time 1 Hamiltonian flow is formally
equal to the Hamiltonian flow of pHtqtPI at time ϵ. By applying it to time-dependent Hamiltoni-
ans corresponding to the previously constructed Hamiltonian Poisson integrators, we show the
existence for those numerical methods of a modified Hamiltonian.

• To conclude, we compare our integrators with Runge-Kutta methods on the example of rigid
body dynamics and Lotka-Volterra differential equations. Unlike existing methods, we observe
for our algorithms Casimir preservation at required precision and oscillation of discrete trajec-
tories around a level of the Hamiltonian, the amplitude of those oscillations being controlled
by the order of the method. Our Hamiltonian Poisson integrators are also benchmarked on a
Lotka-Volterra system for which the trajectory diverges to infinity. We show through numerical
simulations a better behaviour in a neighborhood of this singularity compared to Runge-Kutta
methods, even if the order of our method is chosen to be lower.
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We recall in appendix some theory of local symplectic groupoids that is preliminary to our construction
of Hamiltonian Poisson integrators.

We sum up here Dirac geometry results.

• We introduce the horizontal cohomology H‚
hor of a Lie algebroid and, in the particular case of a

Dirac structure D Ñ M, we study its canonical 2-cocycle ωD and its vanishing in cohomology on
classical examples such as regular foliations, pre-symplectic structures and Poisson structures.

• Under the sufficiency condition of the exactness of rωDs in H2
horpDq and for any Hamiltonian

H P C8pMq, we exhibit a functional for which critical points are exactly integral curves of
Hamiltonian vector fields of H, i. e. sections X P XpMq such that pX,dHq P ΓpDq.

• Under the same vanishing assumption of rωDs, we deduce from the previous result a generalisa-
tion of the Legendre transform to Dirac structures.
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CHAPTER 1

A motivation for new geometric integrators

Figure 1.1: Long run simulation of the Runge-Kutta 2 method for a periodic orbit of equation (1.2)

The system of differential equations

9xj “ ϵjxj `

n
ÿ

k“1
ajkxjxk, j P J1, nK (1.1)

was used by Vito Volterra in his Leçons Mathématiques sur la Lutte pour la Vie [72] as a model
in population dynamics. pxjqj stands for the collection of species populations and pϵjqj and pajkqjk

are real parameters describing respectively inner properties and interactions of species. The general
behaviour of (1.1) is intricate and has been extensively studied from a qualitative aspect (see [57,
21, 41] to cite a few). The rich dynamics of (1.1) emphasizes not only the fact that integrating by
quadratures a generic differential equation is hopeless, but also how it requires robust numerical tools
to study it. Indeed, we illustrate on a very simple 3-dimensional particular case of Volterra’s equation
the advantages of numerical methods constructed on geometric features of the dynamical system.

Let us set n “ 3, ϵ “

¨

˚

˝

2
0

´2

˛

‹

‚

and a “

¨

˚

˝

0 1 1
´1 0 1
´1 ´1 0

˛

‹

‚

. The system becomes

8
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9x “ xpy ` zq ´ 2x
9y “ ypz ´ xq

9z “ ´zpx` yq ` 2z
. (1.2)

Setting x0 “

¨

˚

˝

2
2
2

˛

‹

‚

, it can be shown that the trajectory xptq exists for all t and is periodic. However,

a traditional method fails to preserve the periodicity of the computed trajectory by destroying its
topology itself: the Runge-Kutta method with time-step ∆t “ 10´1 gives a discrete trajectory that
even runs to infinity as the amount of iteration grows. The 104 first iterations are plotted figure 1.1.

Such numerical issues have been noticed by engineers in the mid twentieth century ([71]) and have
motivated the development of geometric integrators, i.e. numerical methods for which the construction
relies on geometric structures of the equation we solve numerically. Those methods typically proved to
perform better on long run simulations, remedying problems such as the one occuring in figure (1.1).
The first ones to be developped were so-called symplectic integrators and designed for Hamiltonian
systems in the context of symplectic geometry, meaning that the differential equation is of the form

˜

9q

9p

¸

“ J ¨ ∇Hpq, pq “

˜

´BpH

BqH

¸

. (1.3)

Such integrators have been extensively studied both from theoretical ([32, 5]) and practical aspects.
Their stability has found successful applications in various fields such as molecular dynanmics ([70])
or cosmology ([20]). In the latter, a simulation of the universe is performed to understand patterns in
long term accretion of galaxies, achieving long run numerical simulations of the N -body problem for
N about 11 000.

However, such symplectic integrators are of no help for equation (1.1) since the equation is not
of the form (1.3). Instead of being Hamiltonian for the symplectic structure J, Volterra’s equations
are Hamiltonian for a Poisson structure, meaning that J is replaced by a matrix πpxq that is still
skew-symmetric but with its rank dropping from one point to another:

9x “ πpxq ¨ ∇Hpxq. (1.4)

Equation (1.2) is Poisson Hamiltonian for πpxq “

¨

˚

˝

0 x1x2 x1x3

´x1x2 0 x2x3

´x1x3 ´x2x3 0

˛

‹

‚

andHpxq “
3

ř

i“1
xi´logpxiq.

Generic Hamiltonian systems for a Poisson structure differ greatly from (1.3) in terms of symmetries
and singularities. Their genericity allows a wider class of the latter ones. In turn, Poisson Hamiltonian
systems appear in many classes of dynamical systems coming from conservative mechanics ([47, 1]),
often related to reduction theory. Furthermore, symplectic integrators cannot be applied on a general
equation of the form (1.4), hence the need of a notion of Poisson integrator.

Still, first attempts of Poisson integrators were based on straightforward generalisation of sym-
plectic integrators using local normal forms of Poisson structure. Darboux-Weinstein theorem ([18])

states that any Poisson structure πpxq is locally of the form
˜

J 0
0 0

¸

, transforming (1.4) into
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¨

˚

˝

9q

9p

9c

˛

‹

‚

“

¨

˚

˝

´BpHpq, p, cq

BqHpq, p, cq

0

˛

‹

‚

. (1.5)

There, symplectic integration may apply by ignoring the c variable. However, this approach faces two
main drawbacks :

• although it can be achieved in particular cases ([38]), finding the transformation that takes a

generic πpxq to
˜

J 0
0 0

¸

is in general as hard as solving (1.4),

• this approach requires an individual treatment of each singularity, since Darboux transformation
around a point x0 depends on the behaviour of πpxq around x0, for instance on variations of the
rank of π.

Another approach is based on splittings and gave successful results in particular cases ([56]) – even
generating interesting related algebraic theory ([39]) – although it is based on explicit integration and
therefore cannot be claimed as an anolog of symplectic integrators for Poisson Hamiltonian systems.
(1.1) is already a motivation for the search of Poisson integrators for a generic Hamiltonian, since
physically relevant parameters occur in the system and pop up in the Hamiltonian itself1.

A modern approach to Poisson integrators is geometric and related to the integration of the Lie
bracket t., .u associated to π. Roughly speaking, two operations can be done to the Poisson structure
π :

• symplectic realization: replacing π by J, i.e. killing singularities of π, by doubling dimension
([22]),

• higher integration: integrating the Lie bracket t., .u to a group2 the same way a Lie algebra
integrates to a Lie group, this very wide group allowing, in turn, to recover symmetries of the
space we started with. This large group admits a finite-dimensional structure if one replaces
its product by a local groupoid multiplication law, a notion that is out of the reach of this
introduction. We come back to it later.

The object we obtain by combining those two items is related to the notion of local symplectic groupoid.
Several attempts have been made to use it for the task of numerical integration of Poisson Hamiltonian
systems (see [26, 27, 37] and [23] for an inspiring particular case).

The aim of this thesis is to carry out this local symplectic groupoid approach of numerical inte-
gration for a general Poisson Hamiltonian system of the form (1.4) and to perform a theoretical study
of resulting discrete trajectories.

Since we think it encapsulates the spirit of the thesis, we say a few words on the way local
symplectic groupoids appear in our construction of numerical methods. We use it by introducing
the notion of bi-realisation, which is a coordinate version of the former. The Poisson integrators we
construct are built using the k-th jet of the exact geometric object on the bi-realisation corresponding
to the dynamics we discretize. The study of the geometry of the local symplectic groupoid gives
geometric properties of the numerical methods and coordinates for the bi-realisation allow to use it for

1although not every equation of the form (1.1) is Poisson Hamiltonian, see [21] for details
2Rybicki studied rigorously in [61] the question of integration of Poisson algebras to infinite dimensional Lie groups.
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Figure 1.2: Hamiltonian Poisson method at order 1 for equation (1.2)

numerical computations. For equation (1.2) at order 1 and with time-step ∆t, our obtained numerical
scheme is unexpected:

1. starting from

¨

˚

˝

xn

yn

zn

˛

‹

‚

, solve the non-linear equation in

¨

˚

˝

x̃n

ỹn

z̃n

˛

‹

‚

,

$

’

&

’

%

ep
´∆t

2 pỹn`z̃n´2qqx̃n “ xn

ep ∆t
2 px̃n´z̃nqqỹn “ yn

ep ∆t
2 px̃n`ỹn`2qqz̃n “ zn

2. and set
$

’

&

’

%

xn`1 “ ep ∆t
2 pỹn`z̃n´2qqx̃n

yn`1 “ ep ∆t
2 p´x̃n`z̃nqqỹn

zn`1 “ ep
´∆t

2 px̃n`ỹn`2qqz̃n

.

We show on figure 1.2 the simulation of equation (1.2) with our above described methods, where
we set same parameters as for 1.1. The integrator we use here is of order 1. The result of the numerical
simulation is a discrete trajectory oscillating around the periodic one at an amplitude controlled by
the order of the method in a sense we detail in section 4.2.

More generally, the obtained Hamiltonian Poisson integrators have remarkable qualitative proper-
ties, for instance in terms of preservation of symmetries or stability around a singularity. Moreover,
their geometric construction allows a fine theoretical study of their behaviour.
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The thesis is organized as follows.
Chapter 2 is devoted to a summary and a simplified presentation of the main results of the thesis.

We introduce there the notion of bi-realisation of a Poisson structure and explain how it allows to
construct Hamiltonian Poisson integrators through Hamilton-Jacobi equation. A theoretical study of
the latter is carried out, as well as a theoretical study of the obtained numerical methods.

Chapter 3 contains the geometric approach to the question of Poisson integrators. The main object
underlying their construction is the local symplectic groupoid. Therefore, this chapter collects proofs
and results expressed in terms of symplectic groupoids. We also prove here theorems of chapter 2,
in particular the ones about truncated solutions of Hamilton-Jacobi equation and analysis of discrete
trajectories of Hamiltonian Poisson integrators.

In chapter 4, we implement and benchmark various Poisson integrators to illutrate benefits of the
notion of Hamiltonian Poisson integrators. Our numerical simulations confirm theoretical results of
the previous chapters.

Chapter 5 is an on-going parallel project about the search of a construction of integrators preserving
a Dirac structure. We present results that reformulate Dirac Hamiltonian dynamics in a variational
principle under a cohomological assumption.

To conclude, chapter 6 gathers perspectives concerning our variational principle for dynamics on
Dirac structures on one side, and our Hamiltonian Poisson integrators on the other side.



CHAPTER 2

Summarized results for Poisson integrators

2.1 Geometric integrators for Poisson Hamiltonian systems

2.1.1 Poisson structures: definition

Let us briefly recall1 what are Poisson bivector fields and Hamiltonian differential equations, and why
they matter. In mechanics, quite some differential equations governing a motion xptq valued in an
open subset U Ă Rn take the form:

$

’

’

’

’

’

&

’

’

’

’

’

%

9x1ptq “
n
ř

j“1
π1jpxptqq

BHpxptqq

Bxj
...

9xnptq “
n
ř

j“1
πnjpxptqq

BHpxptqq

Bxj

(2.1)

where H : U ÝÑ R is a smooth function, that it is customary to call Hamiltonian in this context, and
pπijq, i, j P t1, . . . , nu is a family of smooth functions which satisfy

πji “ ´πij and
n

ÿ

a“1

Bπij
Bxa

πak` ö“ 0, (2.2)

where all indices i, j, k P t1, . . . , nu and ö stands for their cyclic permutations.
Let us first explain these conditions: there is a theorem (see chapter 1 of [43]) claiming that a

family pπijq, i, j P t1, . . . , nu of smooth functions on U Ă Rn satisfies (2.2) if and only if the bilinear
map:

t¨, ¨u : C8pUq ˆ C8pUq ÝÑ C8pUq

f, g ÞÑ
n
ř

i,j“1

1
2πijpxq

ˆ

Bf
Bxi

Bg
Bxj

´
Bg
Bxi

Bf
Bxj

˙

(2.3)

is a Lie bracket, i.e. is anti-symmetric and satisfies the Jacobi identity:

tf, gu “ ´tg, fu and ttf, gu, hu ` ttg, hu, fu ` tth, fu, gu “ 0 (2.4)
1A reader familiar with Poisson geometry may safely skip this section up to 2.1.3.

13
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for all f, g, h P C8pMq.
Equivalently, the functions πijpxq above can be considered as being a tensor, i.e. a map from

U Ă Rn to sopn,Rq, viewed as a nˆ n matrix depending on x:

π : U ÝÑ sopn,Rq

x ÞÑ pπijpxqni,j“1q
,

such that the associated bracket (2.3) verifies Jabobi relation (2.4). This is the way we define Poisson
structures below.

Definition 2.1.1. A Poisson structure on an open subset U Ă Rn is a tensor π on U such that the
bilinear map C8pUq ˆ C8pUq Ñ C8pUq defined by

tf, gupxq “ t∇xf.πpxq.∇xg

satisfies the skew-symmetry and Jacobi identities (2.4). Equivalently, Poisson structures can be seen
as tensors whose coefficients pπijpxqq, i, j P t1, . . . , nu satisfy2 equations (2.2).

The long history behind this notion comes with a vocabulary, which is sometimes confusing: it
is customary to call the bilinear map t¨, ¨u the Poisson bracket. Also, functions in C8pUq are –
depending on the context – sometimes all called Hamiltonian functions or simply Hamiltonians. Last,
using property of the derivation with respect to the product of functions, the easy to check relation:

tf, ghu “ tf, guh` gtf, hu

is called Leibniz identity. For examples of Poisson structures that appear in mechanics, see section
2.2.3.

We saw that a Poisson structure associates to two smooth functions f, g P C8pUq another smooth
function tf, gu. But it also allows to associate to one Hamiltonian function H P C8pUq a first order
autonomous differential equation, as in (2.5). More abstractly, (2.5) means that to a Hamiltonian
function H we associate the (vector) differential equation:

9xptq “ πpxptqq ¨ ∇xptqH. (2.5)

We say that a first order autonomous differential equation of the form (2.5) above is a Hamiltonian
differential equation for pπ,Hq. The reader may note that if H “ Ht depends on time, the equation
becomes non-autonomous. We will use this extension of the notion later on.

Remark 2.1.2. In differential geometry, a first order differential equation on an open subset U of Rn

with an independent parameter having the meaning of time

9x “ F pxq (2.6)

is generally referred to as a vector field on U . Moreover, rather than considering only open subsets of
Rn, the phase space is often assumed to be a differential manifold.

2The Schouten bracket r., .sS on tensors, see for instance [22], allows to rephrase the Jacobi condition (2.4) for the
tensor π into rπ, πs.
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2.1.2 The underlying geometry of a Poisson structure

It is natural to ask why it matters that behind an autonomous first order differential equation, there
is a Poisson structure and a Hamiltonian function. What does one gain by knowing that a given
differential equation is Hamiltonian of pπ,Hq? The classical answer is that many “quantities” related
to π or H are preserved under the flow of the differential equation.

More precisely, any solution xptq (i. e. an integral curve) of a Hamiltonian differential equation
for pπ,Hq has the following properties:

1. H is a constant of motion, i.e. Hpxptqq “ Hpxp0qq. In words, it means that the flow of a
Hamiltonian differential equation for pπ,Hq preserves the level sets of the Hamiltonian function
H.

2. More generally, any function G such that tG,Hu “ 0 is a constant of motion.

3. Even more generally, for any function G P C8pUq,

dGpxptqq

dt “ tG,Hupxptqq.

Now, let us recall some properties of the time t flow of a differential equation which is Hamiltonian
for pπ,Hq, i.e. the map ϕt : xp0q ÞÑ xptq, which is well-defined in a neighborhood of any m P U for t
small enough:

1. ϕt preserves π: πpϕtpxqq “ t∇xϕtpxq ¨ πpxq ¨ ∇xϕtpxq, where ∇xϕtpxq is the Jacobian of ϕt at x.
It means that the flow of a Hamiltonian differential equation for pπ,Hq preserves the Poisson
structure π.

2. The previous condition can also be stated as meaning that the pull-back map f ÞÑ ϕ˚
t f , i.e. the

map assigning to a smooth function f the smooth function f ˝ϕt, is a Lie algebra morphism, i.e.

ϕ˚
t tf, gu “ tϕ˚

t f, ϕ
˚
t gu

for all functions f and g.

3. Item 1 above means in particular that the geometry of π is preserved. For instance if at the
initial point xp0q, the matrix πpxp0qq has some given rank, it has this same rank at every point
along the integral curve xptq. Below, we will give a much stronger statement, using the notion
of symplectic leaves.

Definition 2.1.3. A symplectic singular foliation on U Ă Rn is a partition

U “
ď

cPI

Fc

by submanifolds, such that each Fc is equipped with a symplectic structure ωc. The pair pFc, ωcq is
called a symplectic leaf.

Theorem 2.1.4 ([43, 65]). Any Poisson structure on U Ă Rn induces a natural foliation by symplectic
leaves characterized by the following two properties:
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1. two points belong to the same symplectic leaf if and only if they can be connected by a sequence of
Hamiltonian trajectories, i.e. by integrating the equation (2.5) for some choice of Hamiltonian
functions.

2. for every c P I, the inclusion i : Fc ãÑ M is a Poisson morphism.

In addition, the tangent space of the symplectic leaf Fc at a point m coincides with the image of the
matrix πpmq.

Remark 2.1.5. The last point of the previous statement means that the tangent space of a leaf at a
point is given by all the possible Hamiltonian vector fields at this point. A leaf of a point is therefore
locally generated by all integral curves of Hamiltonian differential equations.

Figure 2.1: The symplectic foliation of R3 by concentric spheres and the origin associated to the
canonical Poisson structure of sop3q˚

As observed in some of the following examples, the foliation is generically singular. Two neigh-
bouring leaves do not necessarily have the same dimension and can differ from a topological point of
view. Therefore, its study is an active field of research and motivates one of the long term applications
of the numerical tools we present here.

The last reason explaining the importance of knowing that a differential equation is Hamiltonian
for pπ,Hq is the following: by definition of a leaf, a solution xptq of a Hamiltonian differential equation
for pπ,Hq can not “jump” from one symplectic leaf to another. We mean that if xp0q belongs to a leaf
Fc, then the solution xptq belongs to the same leaf for every t.

Remark 2.1.6. This last “constraint” is maybe less studied for numerical methods than the previous
ones, because when the Poisson structure is a symplectic one, it is not a constraint at all: the foliation
contains only one leaf being the whole space. But for non-symplectic Poisson structures this is a very
important feature to take into account.

In conclusion, for any Poisson structure π:
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♢ for any first order autonomous differential equation which is Hamiltonian for pπ,Hq, the Hamil-
tonian H is constant along any integral curve;

♡ each integral curve stays on the same symplectic leaf of the foliation defined by π;

♠ the flow of this differential equation preserves π, i.e. is a Poisson morphism;

♣ the converse is not necessarily true: preservation of π does not guarantee that the flow is Hamil-
tonian.

2.1.3 Examples of Hamiltonian equations – first candidates for integrators

The goal of what follows is to explain the logic behind the construction of numerical schemes that take
into account the geometric features described above. We illustrate it on simple cases yet instructive
examples.

Important examples of Poisson structures are the symplectic ones in their canonical form, e.g.

where π “

˜

0 ´I

I 0

¸

. For those, a wide example of symplectic integrators are already available in the

literature. One construction of such integrators uses the principle of symplectic Runge–Kutta schemes
([75]). For an integer s, said to be the stage of the method, it reads:

xn`1 “ xn ` ∆t
s

ř

i“1
biki

kl “ π ¨ ∇Hpxn ` ∆t
n
ř

j“1
aljkjq @l P J1, sK

(2.7)

where slopes ki are implicitly defined and coefficients bi and aij are chosen such that the discrete flow
preserves π. We emphasize two features of this particular Poisson structure:

1. π is constant with respect to x,

2. any trajectory preserving it is necessary a time-dependent Hamiltonian one, at least locally,
meaning that the map ϕ∆t : xn ÞÑ xn`1 is the flow of a non-autonomous (= time-dependent)
Hamiltonian differential equation 9yptq “ πpyptqq ¨ ∇Htpyptqq.

For a Poisson structure π on a vector space given by a constant but degenerate skew-symmetric
matrix, the same principle can be applied ([36]) and leads to a discrete flow that preserves the Poisson
tensor, i.e. a Poisson integrator. However, even in that slight extension, it may lead to non-physical
simulations, e.g. non-Hamiltonian Poisson integrators. A discrete trajectory does not necessarily stays
on a symplectic leaf. Such a fact is due to existence of outer Poisson automorphisms, as illustrated in
an example section 4.1.1. This remark motivates a theoretical and geometric approach to the question
of Poisson integrators.

2.1.4 Hamiltonian Poisson integrators

Although the present work has many links with differential geometry, local coordinates are required
for our construction of numerical integrators. That explains in most of the sections the use of open
subsets of Rn rather than manifolds. The next definition follows this point of view.
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Definition 2.1.7. We call integrator of order k for a differential equation

9xptq “ Xpxptqq

a family of diffeomorphisms of the open subset3 U Ă Rn

ϕh : U ÝÑ U ,

depending smoothly on a real parameter h such that the exact solution of the differential equation
coincides with ϕhpxp0qq up to order k in h, i.e. }ϕhpxp0qq ´ xphq} “ o

`

hk
˘

. The numerical scheme of
timestep ∆t associated to an integrator consists in the recursive sequence

x0 “ x and xn`1 “ ϕ∆tpxnq.

Remark 2.1.8. Since a numerical scheme is defined by its iterations, the words integrator, numer-
ical method and numerical scheme can be understood without ambiguity as synonyms all along this
manuscript.

Consider now a differential equation as in (2.5) on U Ă Rn which is Hamiltonian for a Poisson
structure π and a Hamiltonian H P C8pUq.

Definition 2.1.9. An integrator of order k for the Hamiltonian differential equation (2.5)

ϕh : U ÝÑ U ,

is said to be a Poisson integrator if ϕh is a Poisson diffeomorphism of pU , πq for all h for which it is
defined.

As explained in the Example 4.1.1, Poisson integrators can have a flow: the trajectories may jump
from one symplectic leaf to another, and thus have non-physical behaviour. Hence, we formulate the
following definition.

Definition 2.1.10. An integrator of order k for (2.5)

ϕh : U ÝÑ U ,

is said to be a Hamiltonian Poisson integrator of order k ě 1 if there exists a time-dependent
Hamiltonian function pHtqt, depending smoothly on t, that coincides with H up to order k ´ 1,
i.e. Ht ´ H “ o

`

tk´1˘

, and whose integral curve coincides with the curve h ÝÑ ϕhpxq for all x P U
for which it is defined.

The following proposition claims that this second definition is strictly stronger.

Proposition 2.1.11. A Hamiltonian Poisson integrator of order k is a Poisson integrator of order k.

Proof. As long as it is well-defined, the flow of a time dependent Hamiltonian differential equation is
a family of Poisson diffeomorphisms. Also, if Ht and H coincide up to order k ´ 1, their Hamiltonian
flows coincide then up to order k.

Remark 2.1.12. As mentioned in the introduction, in general, we will not need in definition 2.1.10
to describe explicitly the family pHtq. All what matters at this point is that it exists.

3There is a subtle point here: we cannot assume ϕh to be a well-defined diffeomorphism from U to U for all h small
enough, but we can assume that for all h small enough, there is an open subset Uh Ă U on which ϕh is a diffeomorphism
onto its image.
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Backward analysis and modified Hamiltonian

Backward analysis is the theoretical explanation of the well-known good behaviour of symplectic
integrators on long run simulations ([5]). For symplectic integrators, when one intends to approximate
the trajectory of the Hamiltonian system coming from a Hamiltonian function H, each iteration in
the discrete trajectory is the time h flow of a time-dependent Hamiltonian function pHtqtPI . In good
cases, there exists a Hamiltonian function Hphq that does not depend on t whose time 1-flow coincides
with the time h-flow of pHtqtPI . Such a function Hphq always exist at the formal level and is called
modified Hamiltonian. Our definition of Hamiltonian Poisson integrator comes from this remark:
indeed, a Hamiltonian Poisson integrator is a Poisson integrator admitting a modified Hamiltonian.
We plan to keep on working on consequences of this property. A first attempt can be found later on
with introduction of Magnus formula (2.5.2) that ensures the existence of a modified Hamiltonian,
that is to say a formal Hamiltonian function defining the discrete trajectory of a Hamiltonian Poisson
integrator.

To explain the notion of modified Hamiltonian, let us consider the general case of integrators,
leaving Poisson structures aside at the moment. Let ϕh be an integrator of order k for a differential
equation given by a vector field X as in definition 2.1.7. In general, the integrator ϕh will be the time
h flow of a time dependent vector field pXtqt (that coincides with X up to a given order). As proved
in section IX.1 of [32], there exists a formal4 vector field Xh P XpUqrrhss that does not depend on the
time t such that, formally5:

ϕh “ Φ1
Xh
. (2.8)

In words, the time 1-flow of the formal vector field Xh is ϕh. We are looking for an equivalent of this
formal vector field Xh in the context of Hamiltonian Poisson integrators.

Definition 2.1.13 (Modified Hamiltonian of a Hamiltonian Poisson integrator). Let pHtqt be the
time-dependent Hamiltonian function of a given Hamiltonian Poisson integrator ϕh. We call modified
Hamiltonian a formal series Hh P C8pUqrrhss such that ϕh coincides, formally in h, with the time
1-flow of Hh.

Equivalently, this definition means that the time 1-flow of

Xh “ π ¨ ∇Hh. (2.9)

coincides with the Hamiltonian Poisson integrator ϕh formally in h.

Remark 2.1.14. 1. As stated in [32], symplectic integrators always admit a modified Hamiltonian.
However, it is not true anymore for a generic Poisson structure: an integrator preserving it may
not admit such a backward analysis. Related issues are illustrated example 4.1.1 and lead us to
the notion of Hamilton Poisson integrator.

2. The modified Hamiltonian is not unique: adding a Casimir function to Hh does not change
equation (2.9).

4We mean by that a formal series in h with coefficients in XpUq.
5The flow Φ1

Xh
of Xh at time 1 is defined as Φ1

Xh
“ expXh “

ř

kPN
hk

k! pXhq
k, where Xh is seen as an endomorphism of

C8
pUqrrhss. By definition, equation (2.8) can then be rephrased as: for any f P C8

pUq, fpϕhq “ expXhpfq in C8
pUqrrhss.
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As we will see in Section 2.5.2, and as will be detailed in Section 3.1, there is a way to compute
a modified Hamiltonian function provided that the time-dependent Hamiltonian functions pHtq are
given: A modified Hamiltonian of a given Hamiltonian Poisson integrator is obtained by applying
Magnus formula to the time dependent Hamiltonian function pHtqt that defines the Poisson integrator.

2.2 Bi-realisations for Poisson manifolds

Having set the preliminaries and the framework in the previous sections, we are now ready to address
the core of the thesis: construct Hamiltonian Poisson integrators for a wide class of Poisson structures
and any Hamiltonian differential equation on them. One of the important "tools" for the procedure is
the notion of local symplectic groupoid associated to a Poisson structure that arose in [16]. See [18]
for a modern introduction to the matter. Notice that we will mostly not need the whole groupoid
structure but a neighborhood of the identity of the latter, which can be considered to be closer from
the version of [37]. Several authors [26], [23] (to cite a few) have already used symplectic groupoids6

to construct some numerical integrators: the relation is explained in [13].
Symplectic groupoids of Poisson manifolds are not easy to construct as an object, even while our

method does not use all the structure of the Lie groupoid (product, inverse) but only the source
and target. All we need is what we call a bi-realisation, so we will not have to define the notion of
symplectic groupoid in full generality. We will explain below the need of this new terminology.

In the first subsections of what follows, we explain under which circumstances this bi-realisation,
whose existence is guaranteed by theoretical arguments, is explicitly constructable. Then, we detail
how to construct a decent Poisson integrator for the differential equation (2.5) at order 1 and of
time-step h. For this we just use the subset tpx, h∇Hpxqq, x P Uu or geometrically: the graph of
hdH in T ˚M. It is moreover possible to get a better Poisson integrator at an arbitrary order by
replacing h∇H by a polynomial in h, of the form h∇H ` h2

2 ∇S2 ` . . . , whose terms are computed
by an easy recursion, solving Hamilton-Jacobi equation at the desired order. Details are developed at
the beginning of section 2.4 and in section 2.5.1 where the Farmer theorem is explained. The modified
Hamiltonian is also computed by a recursion through Magnus formula.

Existence of such bi-realisation is guaranteed by theorems, see [13] for details. Since it matters in
what follows, we will systematically make remarks on what is computable and with what precision.

2.2.1 Bi-realisations I: definition and existence

The reader used to Poisson geometry may ask why we introduce below the concept of a bi-realisation,
since she or he will probably understand immediately that those are in fact the local model of a
symplectic groupoid. We insist in thinking that introducing the notion is conceptually clearer and
makes our theory easier to understand for a public that has never heard about Lie groupoid. We start
with an even more basic definition:

Definition 2.2.1. A bi-surjection is the following data:
6A Lie groupoid over a manifold, roughly speaking, is an analog of a Lie group, where to each element one associate

two mappings to this base manifold: source α and target β. Then two elements are composable when the source of one
matches the target of the other, and for those the standard group axioms are satisfied. The symplectic form is compatible
with this composition. See for instance [65].
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1. an open subset U Ă Rn – the phase space,

2. an open subset W Ă U ˆ Rn containing U ˆ t0u,

3. two surjective submersions, called source and target, α, β : W Ñ U such that for all x P U

αpx, 0q “ βpx, 0q “ x.

We denote a bi-surjection by pW, α, βq.

Bi-surjections allow to associate a diffeomorphism of U out of any bi-section, i.e. any submanifold
L of dimension n in W to which the restrictions of the source α and the target β are diffeomorphisms
onto U . A bi-section L of a bi-surjection pW, α, βq induces a diffeomorphism φL : U ÝÑ U defined as
φL “ β ˝ pα|L

q´1 as on figure 2.2.

Figure 2.2: The diffeomorphism φL induced by a bi-section L of W

The crucial remark is that, if L and pW, α, βq are explicitly known, then the computation φL

only requires to invert a diffeomorphism. This operation, in general, can be done numerically with
required precision and with reasonable cost, so that the diffeomorphism φL can be easily computed.
The discretisations that we are going to construct are families pφLh

qh of diffeomorphisms, depending
on a “small” real parameter h, associated to a family Lh of bi-sections such that L0 “ U ˆ t0u, so that
φL0 “ IdU is the identity map.

Assume that W Ă Rn ˆ Rn comes equipped with a symplectic structure:

ω :“
n

ÿ

i“1
dpi ^ dxi (2.10)

with x1, . . . , xn, p1, . . . , pn being the natural variables on U ˆ Rn, labeled in that order. The corre-
sponding Poisson structure satisfies:

txi, xjuω “ tpi, pjuω “ 0 and txi, pjuω “ 1i“j .

We can now state the main definition:

Definition 2.2.2 (Bi-realisation). Let π be a Poisson structure on an open subset U Ă Rn. A
bi-realisation of pU , πq is a bi-surjection pW, α, βq, with source α and target β satisfying the following:

1. α is a Poisson map,

2. β is an anti-Poisson map,
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3. the fibers of α and β are symplectically orthogonal to each other.

In all three items above, W comes equipped with the Poisson bracket t¨, ¨uω associated to the symplectic
structure (2.10).

This definition can be compared with definition 3.3.3 in a more geometric context.

Remark 2.2.3. Conditions 1 – 3 in Definition 2.2.2 mean that for all functions F,G P C8pUq:

α˚tF,Guπ “ tα˚F, α˚Guω, β˚tF,Guπ “ ´tβ˚F, β˚Guω,

tα˚F, β˚Guω “ 0.

Remark 2.2.4. 1. Closely related concepts are found in the literature, for instance the one of
connected strict dual pairs ([16]). However, for our purpose, it matters that the symplectic form
on the open subset W is the canonical one.

2. Last cited reference explains how to recover the groupoid multiplication out of source and target
of a symplectic groupoid, see prop 1.2 of chapter 3. As a consequence, even if we do not use
multiplication and inverse here, we can recover them from the data of a bi-realisation of a Poisson
structure.

We will quote the following three results, for completeness and future references.

Lemma 2.2.5. For every F P C8pUq:

tpx1, . . . , xn, Bx1F, . . . , BxnF q, px1, . . . , xnq P Uu

is a Lagrangian submanifold of U ˆ Rn equipped with the canonical symplectic structure ω.

Proposition 2.2.6. Let pW, α, βq be a bi-realisation for a Poisson structure π on U . For any bi-section
L Ă W which is Lagrangian with respect to ω, the induced diffeomorphism φL : U ÝÑ U is a Poisson
diffeomorphism. Moreover, for Lagrangian bi-sections contained in some neighborhood of U ˆ t0u, this
Poisson diffeomorphism is the value at time 1 of the flow of a time-dependent Hamiltonian vector field.

As a consequence, for every F P C8pUq a small enough function7 the Lagrangian submanifold

tpx1, . . . , xn, Bx1F, . . . , BxnF q, px1, . . . , xnq P Uu Ă W

is a Lagrangian bi-section of pW, α, βq. The following result is now classical in the theory of symplectic
Lie groupoid:

Theorem 2.2.7 (Existence and uniqueness). [37, 16] Any Poisson structure on an open subset U Ă Rn

admits a bi-realisation. Furthermore, it is canonical in the following sense: two different bi-realisations
of a Poisson structure are symplectomorphic through some symplectomorphism fixing U ˆ t0u, at least
in a neighborhood of the latter.

7More precisely, the 8-norm of the derivative at a point must be smaller than some local bound.
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2.2.2 Bi-realisations II: Explicit constructions

Theorem 2.2.7 states that bi-realisations do exist and are unique. Below we explain two tools to con-
struct such: Poisson spray for a generic Poisson structure and cotangent lift for the Poisson structure
of the dual of a Lie algebra. They are respectively illustrated in the present manuscript on the Poisson
bracket txi, xju “ aijxixj (see equation (2.13)) related to Lotka-Volterra systems coming from pop-
ulation dynamics and the Poisson bracket on so˚pnq (see equation (2.15)) related for n “ 3 to rigid
body dynamics. A third construction of bi-realisation is due to Karasev and is described in theorem
2.2.17.

Poisson Spray and Moser’s trick

We give here a conceptual approach to the construction of bi-realisation using the notion of Poisson
spray.

Definition 2.2.8 ([19]). Let pM,πq be a Poisson manifold, τ : T ˚M Ñ M the cotangent projection
and for λ a non-zero real number, mλ : ξ P T ˚M ÞÑ λξ P T ˚M the fiberwise multiplication by λ. A
vector field X P XpT ˚Mq is said to be a Poisson spray if it verifies the following two conditions:

1. @ξ P T ˚M, dξτ.Xpξq “ π#pξq,

2. X is homogeneous of degree 1: @λ P R˚, m˚
λX “ λX.

i.e. dλξmλ´1 .Xpλξq “ λXpξq.

Example 2.2.9. For some choice of coordinates xi, the Poisson tensor has the form

πpxq “
ÿ

1ďiăjďn

πijpxqBxi ^ Bxj .

Denoting px, ξq the induced cotangent coordinates,

Xpx, ξq “
ÿ

1ďiăjďn

πijpxqξjBxi

is a Poisson spray. The homogeneity is easily seen by looking at the linearity in ξ.

The second point of its definition implies that X vanishes on the zero section 0T˚M . Consequently,
there exists a neighborhood W of 0T˚M such that the time 1 flow of X Φ1

X : W Ñ Φ1
XpWq is a

well-defined global diffeomorphism onto its image.

Remark 2.2.10. For a given Poisson structure, Poisson sprays always exist (see [19]). However,
Poisson sprays are far from being unique. For instance, one can add a term of the form “fpxqξiξjBξj

”
to it – this is an important freedom that allows to construct explicit integration of the flow above in
a lot of important cases.

Theorem 2.2.11 ([19]). Any Poisson spray induces target, source and multiplicative form of the local
symplectic groupoid near 0T˚M in the following way :

1. ᾱ “ τ : T ˚M Ñ M,

2. β̄ “ τ ˝ Φ1
X ,
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3. Ω “
ş1
0 Φ s

X
˚ω ds, where ω is the canonical symplectic form.

Note that Ω is symplectic up to shrinking of W. Also, it is not necessarily the canonical symplectic
form ω used in the definition of bi-realisation. However, by the so-called Moser’s trick, a Poisson spray
can be “rectified” to yield a bi-realisation. So in short the following result is often instrumental for
the final construction:

Theorem 2.2.12. Any Poisson spray gives a symplectic open subset which is symplectomorphic to a
bi-realisation.

Proof. As mentioned, by Moser’s trick [73], the canonical symplectic form ω and the 2-form Ω of
the Poisson spray are symplectomorphic in a neighborhood of the zero section in T ˚M : ω “ ψ˚Ω.
Moreover, ψ is the identity map on M Ă T ˚M , and so is its differential at any point of M . Then, a
bi-realisation on this neighborhood is given by:

α “ ψ˚ᾱ, β “ ψ˚β̄.

For a generic Poisson structure, the flow ΦX of a Poisson spray may not be explicitly computable.
However:

Corollary 2.2.13. If both the Poisson spray and the Moser symplectomorphism are explicitly com-
putable, then theorem 2.2.12 gives an explicit bi-realisation.

Dual of a Lie algebra: cotangent lifts

In the case of the linear Poisson structure on the dual of a Lie algebra, there is a direct way of
constructing bi-realisations.

Proposition 2.2.14. Let g be a Lie algebra of a Lie group G, and φ : G Ñ g a local diffeomorphism
in 1G, bijective on an open subset V containing the unit 1G, such that :

1. φp1Gq “ 0

2. T1Gφ “ Id.

Let us denote by ψ the inverse of φ and V̄ “ φpVq.

Then a bi-realisation of the Lie-Poisson structure on g˚ is given by:
$

&

%

α : V̄ ˆ g˚ Ñ g˚ : pη, ξq ÞÑ R˚
ψpηq

´

T ˚
ψpηq

φ
¯

.ξ

β : V̄ ˆ g˚ Ñ g˚ : pη, ξq ÞÑ L˚
ψpηq

´

T ˚
ψpηq

φ
¯

.ξ “ Ad˚
ψpηq.αpη, ξq

.

Let us describe more precisely these source and target maps. Since φ maps V Ă G to V̄ Ă g, its
differential Tφ maps TV to T V̄ » V̄ ˆ g. Composing this map with the right and left identifications
of TV with V ˆ g and using the diffeomorphism ψ, one gets two families indexed by η P V̄ of linear
invertible endomorphisms of g. The source and targets above are the dual of these maps8. The example
of sopnq˚ is detailed in section 2.2.3 while mathematical precisions can be found in the example 3.3.7.

8The reader familiar with the notion of logarithmic derivative will notice that those maps are the inverse of the dual
of the logarithmic derivative of ψ after right and left trivialisations of TG.
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Remark 2.2.15. Notice that we do not assume φ to be the logarithm, i.e. the inverse of the exponen-
tial map. It may be any local diffeomorphism. In fact, the logarithm map may not be a good choice
since its differential may be too complicated to compute at each iteration of our future numerical
method.

Corollary 2.2.16. If φ, its inverse and its differential are explicitly computable, then proposition
2.2.14 gives an explicit bi-realisation.

A remark on Karasev construction

Several methods to construct explicit bi-realization of a Poisson structure will be given in Section
2.2.3, in particular for constant, linear, and some quadratic Poisson structures. We indicate here a
general method that may also be applied, that predates in construction of the symplectic groupoid
and is due to Karasev [37].

Let pU , πq be a Poisson manifold, with U a subset of Rn, so that T ˚U can be identified with pairs
m P U and ξ P Rn. Let ∇ be the canonical affine connection. For every ξ P Rn, consider the integral
curve mptq of the differential equation:

9mptq “ π#
mptqξ and mp0q “ m.

We denote the corresponding flow by pm, ξ, sq ÝÑ Ξpm, ξqpsq for every m P U , ξ P Rn, s P R for wih
the solution is well-defined and call it the Poisson geodesic flow.

The idea of Karasev consists in looking at the following two equations whose unknowns α, β are
in M , for a given pm, ξq P T ˚M :

ż 1

0
Ξpα, ξqptqdt “ m and

ż 0

´1
Ξpβ, ξqptqdt “ m.

Since, for ξ “ 0, the unique solutions are α “ β “ m, there exists a neighborhood W of M in T ˚M

on which the two previous equation have a unique solution, defining therefore two maps W Ñ M that
we denote α and β. Moreover, he proves the following theorem:

Proposition 2.2.17 ([37]). The triple pW, α, βq is a bi-realisation for a Poisson structure pM,πq.

Remark 2.2.18. This bi-realisation is explicit provided that the Poisson geodesic flow Ξ and its
integral can be computed. It is computable by quadratures if so is the geodesic flow, which is the
case for a large class of Poisson structures. However, we have not been able to find an example where
Karasev construction leads to explicit bi-realizations that we are not able to construct by simpler
means.

2.2.3 Examples of explicit bi-realisations

In what follows we construct a symplectic bi-realisation for several classes of Poisson structures, using
various techniques, including Poisson sprays. We start with the simplest Poisson structure given by a
symplectic form written in canonical (Darboux) coordinates, to recover some symplectic integrators.
Then we continue with a couple of constructions that will later be used in the numerical tests.
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Symplectic case.

Let M “ R2 “ tpq, pqu, then π “ Bp ^ Bq. Let pq, p, ξq, ξpq be cotangent coordinates on R4. Consider a
Poisson spray Xpq, p, ξq, ξpq “ ξpBq ´ ξqBp.

The objects of theorem 2.2.11 are:

1. ᾱ : T ˚M Ñ M : q, p, ξq, ξp ÞÑ pq, pq,

2. β̄ : T ˚M Ñ M : q, p, ξq, ξp ÞÑ pq ` ξp, p´ ξqq,

3. Ω “ ω ` 1
2dp^ dξp ´ 1

2dξq ^ dq ´ 1
3dξq ^ dξp.

The symplectomorphism announced by theorem 2.2.12 between Ω and the canonical symplectic struc-
ture ω is given by

Ψ:

¨

˚

˚

˚

˚

˝

q

p

ξq

ξp

˛

‹

‹

‹

‹

‚

ÞÑ

¨

˚

˚

˚

˚

˝

q ´
ξp

2
p`

ξq

2
ξq

ξp

˛

‹

‹

‹

‹

‚

,

and the resulting bi-realisation is W “ R2 ˆ R2 with structural maps
#

α : pq, p, ξq, ξpq ÞÑ pq ´ 1
2ξp, p` 1

2ξqq

β : pq, p, ξq, ξpq ÞÑ pq ` 1
2ξp, p´ 1

2ξqq
. (2.11)

Remark 2.2.19. Since bi-realisations will be used to construct numerical schemes preserving the
Poisson structure, the bi-realisation (2.11) will provide symplectic integrators. In general, they will
be different from the existing ones.

Quadratic Poisson structures

The following example will be important for Lotka-Volterra systems. Consider M “ Rn and a
quadratic Poisson structure:

π “
ÿ

1ďi,jďn

aijxixjBxi ^ Bxj (2.12)

Using the (natural) Poisson spray of [46]:

X “
ÿ

1ďi,jďn

aijxixjξiBxj ´
ÿ

1ďi,jďn

aijxiξiξjBξj
,

and the Moser symplectomorphism:

Ψ:
˜

xj

pj

¸

ÞÑ

˜

e´ 1
2

ř

i aijxipixj

e
1
2

ř

i aijxipipj

¸

,

one constructs the following bi-realisation: W “ Rn ˆ Rn and
$

&

%

α : px, pq ÞÑ

´

e´ 1
2

ř

i aijxipi .xj

¯

j“1,...,n

β : px, pq ÞÑ

´

e
1
2

ř

i aijxipi .xj

¯

j“1,...,n

. (2.13)
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Canonical Poisson structure on so˚pnq

Let us spell-out the cotangent lift construction in the case of the algebra sopnq of anti-symmetric
matrices. The scalar product ă ., . ą : pX,Y q P sopnq ÞÑ TrpXT .Y q P R induces an isomorphism
between sopnq and its dual. The local diffeomorphism we use is the Cayley transform, from the
connected component of Id in SOpnq to sopnq:

φ : SOpnq` Ñ sopnq : Q ÞÑ 2Q´ I

Q` I
(2.14)

with inverse
ψ : sopnq Ñ SOpnq` : A ÞÑ

2 `A

2 ´A
.

Its derivative at Q P SOpnq` is

TQφ : sopnq Ñ sopnq : H ÞÑ 2pI `Q´1q´1.H.pI `Qq´1

and the transpose of it by ă ., . ą is its cotangent lift T ˚φ. Using that for all pB,Hq P sopnq2,

ă B, TQφ.H ą“ă 4pI `Qq´1BpI `Q´1q´1, H ą and setting Q “ ψpAq, A P sopnq, one gets

T ˚φ : sopnq ˆ sopnq˚ Ñ SOpnq ˆ sopnq

pA, xq ÞÑ pψpAq, pI ` A
2 q.x.pI ´ A

2 q.

Since the metric is Ad-invariant, Ad˚
Qx “ Q.x.Q´1. We can choose W “ sopnq ˆ sopnq and the source

and target:
#

α : sopnq ˆ sopnq Ñ sopnq : pA, xq ÞÑ pI ` A
2 q.x.pI ´ A

2 q

β : sopnq ˆ sopnq Ñ sopnq : pA, xq ÞÑ pI ´ A
2 q.x.pI ` A

2 q
. (2.15)

In conclusion, the construction of numerical schemes requires explicit objects, so that computations
can be made. The notion of bi-realisation of section 2.2.2 provides such a framework. The next section
explains how we use those bi-realisation to construct Hamiltonian Poisson integrators.

2.3 Geometry of Lagrangian bi-sections

We explain here the differential geometry that leads to Hamilton-Jacobi equation. Those geometric
tools rely on some calculus on Lagrangian bi-sections of a bi-realisation. A differential geometry
vocabulary and the proofs will be either explained all along or detailed in chapter 3, see also [13].

2.3.1 A canonical correspondence

The main result is a canonical correspondence between smooth families of Lagrangian bi-sections of
W and smooth families of closed 1-forms on U .

Let I be a real open interval containing 0 and ξ P C8pI,Ω1
0pUqq a smooth family of closed 1-forms

on U . Let L0 be a Lagrangian bi-section of W. There exists an unique vector field ÝÑ
ξ on W such that

ωp
ÝÑ
ξ , ¨q “ α˚ξ.

One side of the previously cited correspondence is the following observation:
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Proposition 2.3.1. Let ξ P C8pI,Ω1
0pUqq be a smooth family of closed 1-forms on U and assume that

for all t P I, the flow of Φt
ÝÑ
ξ

is well-defined on L0. Consider the following family of submanifolds of
W:

Lt “ Φt
ÝÑ
ξ

pL0q (2.16)

Then L “ pLtqtPI is a smooth family of Lagrangian bi-sections.

Remark 2.3.2. Upon identifying W with the local symplectic groupoid integrating π, the vector field
ÝÑ
ξ corresponds to the left action of the Lie algebroid T ˚U on it.

For a smooth family of Lagrangian bi-sections L “ pLtqt, there exists a unique9 smooth family of
closed 1-forms ξL on U such that (2.16) holds. ξL is called the variation form of L . We give a brief
construction here.

Let x P L0 and γ : I Ñ W be a path such that γptq P Lt for all t. Then, since L0 is Lagrangian :

9γp0q P T|L0W

r 9γp0qs P N|L0L0 “ T|L0W L

TL0 » T ˚L0

so that we get a covector on L0 at x. This covector actually only depends on the family L : any other
γ̃ such that γ̃ptq P Lt for all t has the same normal projection. Moreover, the same reasoning can be
done replacing L0 by Lt for any t P I and those covectors glue along while the starting point γp0q

varies. At this stage, we obtained a family pξ̂tqt of 1-forms such that for each t P I :

ξ̂t P Ω1pLtq.

Two remarks conclude the construction :

1. since Lt is Lagrangian, dξ̂t = 0,

2. since Lt is a bi-section, the source induces by push-forward a diffeomorphism from Ω1pLtq to
Ω1pUq.

The resulting smooth family of closed 1-forms ξ is the desired variation form of L . The previous
reasoning can be done in a general local symplectic groupoid of a Poisson manifold pM,πq, hence the:

Theorem 2.3.3. Let I be an interval containing 0. In a symplectic groupoid G Ñ M endowed with
its symplectic form Ω, there is a canonical one-to-one correspondence between:

(i) smooth families of Lagrangian bi-sections pLtqtPI of pG,Ωq,

(ii) pairs made of a Lagrangian bi-section L0 and a smooth family of closed one-forms on the base
pξtqtPI such that the vector field π#pξtq is a complete vector field on M .

2.3.2 The Hamilton-Jacobi equation

Two examples of smooth families of Lagrangian bi-sections in a bi-realisation W matter in view of
applying theorem (2.3.3).

9up to a well-known cornelian dilemma between right and left
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Example 2.3.4. • Let H P C8pUq be a Hamiltonian. It is classical (see also appendix .1) that
LH “ pΦt

α˚HqtPI induces the flow of H on U :

if Lt “ Φt
α˚HpUq, φLt “ Φt

H .

• Explicit families of Lagrangian bi-sections are obtained by graphs of smooth families of closed
forms on U pζtqt P Ω1

0pUq: L ζ “ ptζtpxq, x P Uuqt. This is the geometric (closed forms replace
gradients) and dynamical (there is a time parameter t) reformulation of lemma 2.2.5.

Apart from Hamiltonian Poisson integrators we aim at constituting, the context yields a natural
question: how to interpolate the Hamiltonian flow with a time-dependent family of closed 1-forms, i.e.
how to choose ζt such that

L ζ “ LH ? (2.17)

(2.17) implies the exactness of ζt : ζt “ dSt and the answer is given by their equality of variation form.
Since it is an equality of exact 1-forms :

ddSt
dt pxq “ dα˚H

`

Φt
α˚Hpxq

˘

(2.18)

dSt
dt pxq “ α˚H pdxStq ` cptq (2.19)

where cptq is a time-dependent constant resulting from integration. We set cptq “ 0 and obtain the
Hamilton-Jacobi equation

#

dSt
dt pxq “ α˚H pdxStq
S0 “ 0

(2.20)

We can now state one of our main result:

Theorem 2.3.5. Assume we are given pW, α, βq a bi-realisation of a Poisson structure pU , πq and H
a Hamiltonian function.

1. The Hamilton-Jacobi equation (2.20) admits a solution pStqt in a neighborhood of M ˆ t0u Ă

U ˆ R.

2. The family of Poisson automorphisms induced by the Lagrangian bi-sections given by the graphs
of the pdStqt is the flow of H.

Remark 2.3.6. Since bi-realisations are symplectomorphic to neigborhoods of the identity in a sym-
plectic groupoid, the previous construction justifies the following motto :
The local groupoid of a Poisson structure is the space in which Lagrangian perturbations of the identity
section recover the foliation on the base.
Given a bi-realisation, Hamilton-Jacobi equation tells exactly in which manner.

2.4 Explicit construction of Hamiltonian Poisson integrators

We are now ready to put together all what has been discussed in the context of Poisson geometry in
the previous sections, and make the final step to construction of the appropriate structure preserving
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integrators. To sum it up, we start with a Poisson structure π defined on an open subset U Ă Rn.
The only assumption that we need is that it admits an explicit bi-realisation pW, α, βq.

We recall that W is an open subset of U ˆ Rn containing U ˆ t0u equipped with its canonical
symplectic structure. We denote its source by α, its target by β, and its base map by τ. It is
consequently equipped with its canonical symplectic structure. We denote by 0 : U Ñ W the map
0pxq “ px, 0q.

W
τ
		

α

~~

β

  
U U

0

HH

U
Remark 2.4.1. We recall that for any px, pq P W, αpx, pq and βpx, pq are in the same symplectic leaf
of π. This leaf is not necessarily the same symplectic leaf at the one containing τpx, pq “ x.

Consider again the Hamiltonian differential equation

9xptq “ πpxptqq ¨ ∇Hpxptqq (2.21)

for some Hamiltonian H P C8pUq.

We claim that we can construct an explicit Hamiltonian Poisson integrator of order k for (2.21).
There are several steps that we now present.

Step 1. To start with, one needs to compute the first k terms of the Hamilton-Jacobi transform of H.
The latter is a formal series with coefficients being smooth functions on U of the form

StpHqpxq “ tS1pxq `
t2

2 S2pxq `
t3

6 S3pxq ` . . . ,

and the coefficients are computed by recursion as follows:

(a) Set S1pxq “ Hpxq.

(In particular, for k “ 1, the truncation of the generating transform of Hpxq is simply
tHpxq.)

(b) The smooth function Si`1pxq is then given by the recursive formula:

Si`1pmq “
di

dti

ˇ

ˇ

ˇ

ˇ

t“0
H

´

α
´

dmS
piq
t

¯¯

(2.22)

where we write Spiq
t “

ři
j“1

tj

j!Sj .

Since the bi-realisation is supposed to be explicitly known, the construction of these terms
can be done explicitly as well.

By construction, the Hamilton-Jacobi transform is the solution S “
ř8
i“1

ti

i!Si P C8pUqrrtss

of the formal Hamilton-Jacobi equation, which is a formal reformulation of equation (2.20)
and is equivalent to (2.22):

BSt
Bt

“ α˚HpdStq and S0 “ 0

Step 2. Assume Spkq

t “
k
ř

i“1

ti

i!Si is constructed. Now starts the construction of the Hamiltonian Poisson

integrator itself. Choose a timestep, i.e. fix a small positive real number h. We define a
numerical scheme approximating the integral curve of (2.21) with initial value x0 by constructing
the sequence pxnqn according to the following recursion:
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(a) Assume that for every n P N, the equation

α

˜

yn,
k

ÿ

i“1
hi ∇Sipynqq

¸

“ xn

admits a unique solution yn (otherwise, it means that the time step is too large).

(b) Set

xn`1 :“ β

˜

yn,
k

ÿ

i“1
hi ∇Sipynq

¸

.

Remark 2.4.2. The computations related to formal power series in Step 1. can be done efficiently
with computer algebra tools10. Explicit formulae for (2.22) will be given with a systematic and
combinatorial study in section 2.5.1. Let us give the first terms:

1. S1 “ H

2. S2 “ 0˚ ptα˚H, τ˚S1uq

3. S3 “ 0˚ ptα˚H, τ˚S2u ` ttα˚H, τ˚S1u, τ˚S1uq

4. S4 “ 0˚ ptα˚H, τ˚S3u ` 2ttα˚H, τ˚S2u, τ˚S1u ` ttα˚H, τS1u, τ˚S2u ` tttα˚H, τ˚S1u, τ˚S1u, τ˚S1uq .

Above, the Poisson bracket is the one of the canonical symplectic form on W and 0˚ means that the
function on W is restricted to U ˆ t0u, therefore considered as a function on U .

Remark 2.4.3. The resolution of the implicit relation in Step 2 can be done by approximation (for
example by fixed point techniques) very efficiently: as any fixed point method, it can be done rapidly
with given precision.

Mathematical details of the following important result can be found section 3.3.

Theorem 2.4.4. The above numerical scheme defines a Hamiltonian Poisson integrator at order k
for the Hamiltonian differential equation (2.21).

Stated differently, for the Hamiltonian differential equation (2.21), given a bi-realisation W of
pU , πq, the diffeomorphism ϕh : U Ñ U associated to the bi-section given by the graph of the differential
∇Spkq

řk
i“1

ti

i! ∇Si, where S1, . . . , Sk are the k-th first term of the formal Hamilton-Jacobi transform,
is a Hamiltonian Poisson integrator of order k.

Definition 2.4.5. We call this numerical scheme the k-th order Poisson integrator for H associated
to the bi-realisation W.

Example 2.4.6. For k “ 1, this numerical scheme consists in mapping xn to βpyn, h∇Hpynqq where
yn is the unique solution of αpyn, h∇Hpynqq “ xn.

Example 2.4.7. In the case of a Lie-Poisson structure on a Lie algebra g equipped with a local
diffeomorphism φ : G Ñ g with inverse ψ : g Ñ G, for k “ 1, our Hamiltonian Poisson integrator of
order 1 goes through the following steps:

10Some numerical methods of this thesis have been constructed using the Python library for symbolic mathematics
SymPy.
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1. Compute a ÞÑ pψpηqq
´1 Tηψpaq, where pψpηqq

´1 is the inverse of ψpηq for the group law of G,
which is a family depending on η P g – η is close to zero in g – of diffeomorphisms from g to
itself. Then consider the dual of its inverse, which is now a family of maps Dη : g˚ » g˚ being
the identity map for η “ 0. Then solve D∆t∇Hpynqpynq “ xn.

2. Consider
xn`1 “ Ad˚

ψp∆t∇ynHqxn.

By construction, xn and xn`1 belong to the same symplectic leaf.

Remark 2.4.8. At order k “ 1 in the symplectic case (i.e. non-degenerate constant Poisson struc-
ture), it is easy to check that for the harmonic oscillator H “

p2`q2

2 , one recovers the symplectic
mid-point scheme. For a general Hamiltonian H, the present construction gives the fact that an
implicit Euler scheme of timestep ∆t

2 composed with an explicit Euler scheme of timestep ∆t
2 is a sym-

plectic integrator of order at least 1 and timestep ∆t. More generally, for higher orders the constructed
Hamiltonian Poisson integrators for symplectic structures will be symplectic integrators, but they are
in general different from the standard symplectic Runge-Kutta methods.

Remark 2.4.9. We have mentioned in the introduction that the naive idea “restrict to a leaf, be
symplectic there” to recover Poisson globally, does not work because is almost never constructive. But
the other way around it is actually fruitful: now having constructed a Hamiltonian Poisson integrator
forcing the trajectory to stay on the correct leaf, one can apply the backward analysis techniques
(restricted to leaves before globalizing) for error estimates, see section 4.2.

Remark 2.4.10. Recall that in the case of linear Poisson structures of Proposition 2.2.14, the con-
struction of the bi-realisation amounts to computation of the coadjoint action of G on g, and con-
struction of a local diffeomorphism: ϕ : G Ñ g with its differential at 1 being the identity.

The obtained Hamiltonian Poisson integrator of order 1 is of the form:

xn`1 “ Ad˚
ϕ´1p∆t∇ynHqxn

which is certainly not surprising: a symplectic leaf is an orbit of the coadjoint action and any such
numerical scheme stays in the symplectic leaf where one starts from.

An obvious choice for ϕ is the inverse of the exponential map. As mentioned, there is some
freedom in that choice: any such a local diffeomorphism can be used to compute a Hamiltonian
Poisson integrator up to order k. It is important, however, to be able to compute easily its differential
and its inverse.

It is remarkable that the point yn where one computes the differential ∇ynH does not need to be in
the coadjoint orbit of xn. This shows that this method is deeply "Poisson in nature": we cannot simply
restrict to a leaf and look for a symplectic integrator there: one has to look outside the symplectic
leaf.
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2.5 Algebra of Hamilton-Jacobi equation

2.5.1 The Farmer sequence and an algebraic formulae for the formal Hamilton-
Jacobi equation

One sees from Equation (2.22) why the computation of first terms of the Taylor expansion with respect
to t of the solution St of Hamilton-Jacobi equation, i.e. the formal Hamilton-Jacobi equation matters:
if a bi-realisation can be constructed then each truncation at order k of this equation gives an explicit
Hamiltonian Poisson integrator or order k as in Definition 2.4.5. We explain here some algebraic
procedure that allows to compute recursively the terms of the formal series St “

8
ř

i“1

ti

i!Si that solves

the formal Hamilton-Jacobi equation (2.22).
Let Pn be the list of all ordered tuples11 pp1, . . . , pkq of non-zero positive integers such that p1 `

¨ ¨ ¨ ` pk “ n, i.e. partitions of n. We warn the reader that, for us, p1, 3q and p3, 1q are different
partitions of 4.

To any pp1, . . . , pkq P Pn , we now associate an integer βpp1, . . . , pkq as follows. Define S as the
free N module generated by polynomials with coefficients in N. In short,

S “ N
”

NrXs

ı

.

We denote elements of S by
ř

i ni ˛

#

Pi

+

with ni P N and Pi P NrXs. Again, we warn the reader not

to confuse 3 ˛

#

2X `X2

+

with
#

6X ` 3X2

+

: those are different elements in S.

We now define a N-linear endomorphism of S which is given for any polynomial P P NrXs of degree
|P | by:

I : S ÝÑ S

P ÞÝÑ
ř|P |`1
i“1

#

P `Xi

+

Example 2.5.1. For instance I
˜#

X `X2

+¸

“

#

2X `X2

+

`

#

X ` 2X2

+

`

#

X `X2 `X3

+

.

The following definition now makes sense:

Definition 2.5.2 (Farmer sequence). Define the sequence pAnqně1 valued in S as the iterations of I

starting at
#

X

+

:
$

’

&

’

%

A1 “

#

X

+

An`1 “ IpAnq

(2.23)

Example 2.5.3. Let us give the first terms:

1. A2 “

#

2X
+

`

#

X `X2

+

11Our initial construction was quite different: the link with partitions is partially inspired by the work of Anton
Fehnker, a master student at Göttingen Mathematisches Institut that was training for Mathematical Olympiads during
Summer 2023.
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2. A3 “

#

3X
+

` 2 ˛

#

2X `X2

+

`

#

X ` 2X2

+

`

#

X `X2 `X3

+

.

3. A4 “

#

4X,X ` 3X2

+

` 3 ˛

#

2X ` 2X2

+

` 3 ˛

#

3X ` X2

+

`

#

X ` X2 ` 2X3

+

` 2 ˛

#

X `

2X2 `X3

+

` 3 ˛

#

2X `X2 `X3

+

`

#

X `X2 `X3 `X4

+

.

It is routine to check that An is a linear combination of polynomials P such that P p1q “ n and of
the form

řk
i“1 piX

i where none of the integral coefficients p1, . . . , pk are zero. As a consequence,

An “
ÿ

pp1,...,pkqPPn

βpp1, . . . , pkq ˛

#

p1X ` ¨ ¨ ¨ ` pkX
k

+

for some integers βpp1, . . . , pkq. Now, the following definition makes sense:

Definition 2.5.4. Let pW, α, βq be a bi-realisation of U and let τ be the canonical projection τ : W Ñ

U . To any Hamiltonian H P C8pUq, we associate a formal power series SH :“
8
ř

i“1

ti

i!Si in C8pMqrrtss

where the sequence pSnqně1 is defined recursively by S1 “ H, and:

Sn`1 “
ÿ

pp1,...,pkqPPn

βpp1, . . . , pkq 0˚
´

adτ˚Spk
. . . adτ˚Sp1

α˚H
¯

.

where adgf “ tf, gu is the adjoint action of the canonical Poisson bracket on C8pWq and 0 : U Ñ W
is the zero section of the vector bundle τ : T ˚U Ñ U .

Details of the following theorem are given section 3.3.4.

Theorem 2.5.5. For any Hamiltonian function H on pU , πq, and for any bi-realisation pW, α, βq of
U , the formal function S “

8
ř

i“1

ti

i!Si P C8pUqrrtss is the solution of the formal Hamilton-Jacobi equation

(2.22) (i.e. is the Hamilton-Jacobi transform of the Hamiltonian H) if and only if S verifies definition
2.5.4.

Also, for every k ě 1, the formal function
k
ř

i“1

ti

i!Si is a solution of the formal Hamilton-Jacobi

equation up to order k.

As a consequence, we recover first terms of the formal Hamilton-Jacobi transform given in remark
2.4.2.

2.5.2 Magnus formula for the modified Hamiltonian

The definition of Hamiltonian Poisson integrator spots the importance of time-dependent Hamiltonians
pHtqt and of their Hamiltonian flow Φh. A main difference with classical Hamiltonians is that the
existence of a first integral is not true anymore. This question is answered in this section in those
terms: any non-autonomous (= time dependent) Hamiltonian flow admits a formal Hamiltonian which
is also a formal first integral. See section 3.1 for details. The technique used in what follows relies on
the construction of a Hamiltonian as a formal series H rrϵss P C8pMq rrϵss such that its time 1 flow is
formally the time ϵ flow of pHtqt. There is an analogy with linear differential equations: the flow of

9xptq “ A ¨ xptq
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is given by the exponential xptq “ etA ¨ x0. If the matrix A depends on t

9xptq “ Aptq ¨ xptq,

there exists a formal series Ã rrϵss such that xpϵq “ eÃrrϵss ¨ x0, see Magnus formula of [6]. We extend
this formal series in the context of Poisson structures.

Definition 2.5.6. Let pHtq be a time-dependent Hamiltonian function on pU , πq. The Magnus formal
series

MϵpHq “

8
ÿ

i“0

ϵi

i! MpHqi P C8pMq rrϵss

of pHtqtPI is defined by the formal differential equation:
$

&

%

M0pHq “ 0

BϵMϵpHq “
8
ř

i“0

Bi
i! adiMϵpHq

ř8
j“0

ϵj

j!
Bj

Btj

ˇ

ˇ

ˇ

t“0
Ht

(2.24)

where adMpHq “ t MpHq, ¨ u, adiMpHq is the i-th power of the endomorphism adMpHq, and ad0
MpHq “

Id. Here, pBiqiPN is the Bernoulli sequence, defined by its generating function: x
exppxq´1 “

8
ř

i“0

Bi
i! x

i.

The terms of the Magnus formal series MpHq can be computed recursively out of equation (2.24),
which ensures its existence and uniqueness.

Remark 2.5.7. There is another expression of the Magnus formal series obtained out of sucessive
integration of (2.24), which results in the practical formula [6]:

MϵpHq “
şϵ
0Htdt

´1
2

şϵ
0

!

şt1
0 Ht2 dt2, Ht1

)

dt1

`1
6

şϵ
0

!

şt1
0

!

şt2
0 Ht3 dt3, Ht2

)

dt2, Ht1

)

dt1

` . . .

(2.25)

For any k P N, we call k-th Magnus truncation Hamiltonian

MϵpHqpkq :“
k

ÿ

i“0

ϵi

i! MpHqi

the sum of the k ` 1 first terms of the Magnus formal series MϵpHq. By construction, for all given ϵ,
MϵpHqpkq P C8pUq is a smooth Hamiltonian function on M for which we can speak about the Hamil-
tonian flow. The following theorem, proved in section 3.1, aims at approximating a non-autonomous
Hamiltonian flow by an autonomous one at any order.

Theorem 2.5.8. Let pHtqtPI be a time-dependent Hamiltonian for the Poisson structure pU , πq. For
any k P N:

• the flow Φϵ
pHtqt

, at time ϵ, of the time-dependent Hamiltonian pHtqtPI P C8pU ˆ Iq,

• and the flow Φ1
MϵpHqpkq, at time 1, of the k-th Magnus truncation Hamiltonian MϵpHqpkq P

C8pMq,

coincide up to order k in ϵ.
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Remark 2.5.9. Theorem 2.5.8 can be restated in terms of the local coordinates x1, . . . , xn:

@ 0 ď j ď k,
Bj

Bϵj

ˇ

ˇ

ˇ

ˇ

ϵ“0
Φϵ

pHtqt
pxq “

Bj

Bϵj

ˇ

ˇ

ˇ

ˇ

ϵ“0
Φ1

MϵpHqpkqpxq. (2.26)

It is therefore an equality of the k-th first jets of the integral curve for the time-dependent Hamiltonian
functions pHtqt and the integral curve for the Hamiltonian MϵpHqpkq.

We apply now theorem 2.5.8 to Hamiltonian Poisson integrators that have been constructed above.
To do so, we use the following formula:

Proposition 2.5.10. Consider a Hamiltonian Poisson integrator ϕkϵ as in Definition 2.4.5. Let
pS

pkq
ϵ qϵ be the solution at order k of the formal Hamilton-Jacobi equation (2.20). A time-dependent

Hamiltonian pHk
t qt for ϕkϵ is given for all x P U , by

Hk
t pxq “

dSpkq

t

dt pyq

where y is the solution of αpy,∇dSpkq

t
dt pyqq “ x.

Remark 2.5.11. Let us spell out Hk
t using a bi-realisation W on the open subset U .

Hk
t “

dSkt
dt ˝ τ|Lk

t
˝ α´1

|Lk
t

(2.27)

where τ : T ˚M Ñ M is the cotangent projection and Lkt is the bi-section given by the graph of dSkt .

The previous statements altogether give the concluding corollary of this section by applying the
Magnus formula to the time-dependent Hamiltonian Hk

t obtained from Skt through Proposition 2.5.10.

Corollary 2.5.12. 1. Any Hamiltonian Poisson integrator admits a formal modified Hamiltonian:
obtained by applying the Magnus formula to the time-dependent Hamiltonian pHtqtPI .

2. Moreover, in the case of the k-th order Hamiltonian Poisson integrator constructed out of a
bi-realisation as in Definition 2.4.5, this modified Hamiltonian MϵppHk

t qtq coincides with ϵH up
to order k: MϵppHk

t qtq “ ϵH ` o
`

ϵk
˘

.

In particular, truncating MϵppHk
t qtq at any finite order in ϵ, we get a smooth first integral up to

the order of truncation. Similar techniques have been used in [5] to explain the good behaviour of
symplectic integrators on long run simulations.

2.6 Numerical behaviour of Hamiltonian Poisson integrator

This section introduces section 4.2 and sums up numerical properties of our Hamiltonian Poisson
integrators. Consider the Hamiltonian Poisson integrator φk∆t of Hamiltonian H, order k and time-
step ∆t associated to an explicit bi-realisation W of pU , πq as in Definition 2.4.5.



2.6. NUMERICAL BEHAVIOUR OF HAMILTONIAN POISSON INTEGRATOR 37

Properties of one iteration: symplectic leaves are preserved By definition of the order, the
norm of the difference between the trajectory Φ∆t

H pxq we are looking for and its approximation φk∆tpxq

is controlled by p∆tqk :

}φk∆tpxq ´ ΦH
∆tpxq} ď Cp∆tqk (2.28)

for some constant C ą 0, at least on a relatively compact open subset.
Now, for every x in U , x and φk∆tpxq (provided that the second is well-defined) are in the same

symplectic leaf up to the precision of which one is able to solve the nonlinear equation in y

αpy,∇Spkq

∆t pyqq “ x. (2.29)

This precision a priori only depends on the nonlinear solver we use. However, in general, since it
can be solved with a fixed point method, it can be solved with "machine precision" using only few
computations.

Last, the Hamiltonian functionH is not preserved by our Hamiltonian Poisson integrator. However,
the formal modified Hamiltonians H∆t does satisfy

H∆tpϕ
k
∆tpxqq “ H∆tpxq.

Properties of the discrete trajectory For any k-th order numerical integrator, if we repeat the
operation N times, the distance between the discrete solution given by the integrator and the real
solution of the differential equation may grow linearly in Np∆tqk. However, since symplectic leaves
are preserved with given precision, we can expect that the discrete trajectory will preserve Casimir in
an excellent way. Moreover, provided that the formal modified Hamiltonian Hϵ is not just a formal
function but a real function, it will be constant along the discrete trajectories of the integrator. Since
1
ϵHϵ and H coincide up to order pϵqk, it implies that the Hamiltonian function H itself is going to
be relatively well preserved. In our numerical examples (see chapter 4), oscillations around the level
H´1ptHpxquq of H are observed: their amplitude is controlled by the order of the method. The
simultaneous control on the distance to the symplectic leaf and on the distance to an energy level for
a generic Hamiltonian is of course a very important feature explaining this good long-term behaviour.

Preservation of symmetries will also be illustrated on the rigid body dynamic example, see section
4.2.1. As we will see, the most interesting discrete dynamics happens on long-run simulations.

Another remarkable fact is the stability in a neighborhood of a singularity: along an exploding
trajectory, a Hamiltonian Poisson integrator sticks to the continuous trajectory much longer than a
traditional method. This phenomenon is illustrated on a Lotka-Volterra system, see section 4.2.2.

Up to here, we have used words such as "stability", "exploding" and "symmetries" without definition.
We will illustrate them in chapter 4.
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Introduction

In this self-consistent chapter, we address the question of Hamiltonian Poisson integrators in a more
systematic manner than in the overview in chapter 2: we will now from scratch consider generic
Poisson manifolds by using the concept of symplectic Lie groupoids, and, of course, we will prove
prove the theorems presented in chapter 2.

Recall that Poisson integrators are examples of so-called geometric integrators, which are numerical
methods for solving differential equations, designed to preserve some geometric structure naturally
associated to the studied system. The first and the best studied geometric numerical methods are
symplectic integrators, also called symplectic schemes1. Symplectic integrators (see e.g. [75]) are
suited to discretize the flow of Hamiltonian equations, and as their name suggests, are designed to
preserve the symplectic structure in the process. Qualitatively, this results in a better control on the
conservation of the energy of the system ([59]), even for simulations on large time intervals. Designed
in the early eighties, they are now widely used in various applications, like conservative large scale
molecular dynamics [70]. Some work followed and attempted to preserve various structures naturally
associated to the phase space of the system or to the system itself; detailed literature review can
be found in [32] and references therein for integrators preserving several structures from classical
differential geometry, and in a more recent review [63] for structures coming from more contemporary
“higher” and “generalized” geometry.

Poisson geometry permits to generalize simultaneously Hamiltonian mechanics on symplectic man-
ifolds and Lie group dynamics. Furthermore, it is an efficient tool to study symmetries of a large class
of dynamical systems, arising from conservative equations such as the ones of celestial mechanics [2],
rigid body [47], Toda lattices [4], Korteweg-de-Vries equation [1], Lotka-Volterra systems [41], to cite
a few. Except for the first one, those are associated to non-symplectic Poisson structures. A natural
question is then the design of numerical methods that take into account this geometry in order to find
reliable approximations of solutions. And this question was indeed addressed right after the appear-
ance of symplectic integrators. The first of them were based on an important result that a Poisson
manifold is foliated into symplectic leaves [10], the idea being essentially that the dynamics shoud be
restricted to a leaf, so that a usual symplectic integrator can be used. The main issue of this approach
is that having a Poisson structure where one can explicitly (and globally) describe the leaves is a very
strong assumption, so the class of systems where the construction applies is rather small. The next
class of papers ([26], [56]) made a step forward in this direction, enforcing the condition of preserva-
tion of the leaves of the Poisson foliations, being often not explicit but conceptually more appropriate.
However, we have observed (see Example 3.2.24) that some of these constructions applied naively do
not produce the desired results in terms of energy conservation. More recently, the authors [23] have
constructed Poisson integrators for dual of Lie algebroids (i.e. fiberwise linear Poisson structures on a
vector bundle), understood them through Hamilton-Jacobi equations and Lagrangian bi-sections (see
also [26]). These are elements that appear in the present study as well, but now for generic Poisson
structures.

Indeed, in this chapter, we revisit and explain the above mentioned problems in the more conceptual
and general framework of manifolds and differential geometry. We introduce a (stronger) notion of a
Hamiltonian Poisson integrator, which takes into account simultaneously the geometry of the phase

1Throughout this chapter we will use “integrators”, “schemes” and “numerical methods” as synonyms.
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space (Poisson structure) and the physics of the system (Hamiltonian function). Moreover we make
this idea constructive by using the local symplectic groupoid associated to Poisson manifolds. Since
the symplectic groupoid inducing this Poisson structure on its unit can be thought of as a bigger
foliated space where the foliation has been desingularized, the discretized dynamics we suggest uses
heavily the idea to lift the picture to this groupoid and project back at each time step – with an
explicit construction.

The chapter is organized as follows. In sections 1 and 2, we introduce the necessary mathe-
matical background for the construction of Hamiltonian Poisson integrators. First, we adapt the
Magnus formula to time-dependent Hamiltonian systems. Second, we explain the concept of families
of Lagrangian bi-sections of symplectic groupoids. This is already enough to formulate the notion of
Hamiltonian Poisson integrators and give several properties, like, e.g. backward analysis. Then in
section 3, we use Hamilton-Jacobi equation to make this idea constructive, namely to produce smooth
families of Lagrangian bi-sections inducing Poisson integrators that approximate at any given order
the Hamiltonian flow.

In the sequel, pM,πq is a Poisson manifold, whose Poisson bracket will be denoted by tF,Gu for
all F,G P C8pMq. Also, ϵ P I Ă R is a real number (thought of as being small and positive when
having numerical applications in mind), called discretization parameter.

Below is a list of references for several notions that we will not recall:

1. Poisson manifolds pM,π “ t¨, ¨uq, [43, 18]. The Poisson structure will be denoted by π when
considered as a section of Λ2TM or by pF,Gq ÞÑ tF,Gu when considered as biderivation of
smooth functions.

2. Lie groupoids and local Lie groupoids [51, 16], denoted respectively as G Ñ M and UpMq Ñ M .
For all considered local or global groupoids, the source shall be denoted by α and the target by
β.

3.1 Hamiltonian Magnus formula

For Aptq a time-dependent linear operator, the Magnus formula allows to make the time ϵ flow of a
time-dependent linear differential equation 9x “ Aptqx of order 1 as an exponential xpϵq “ exppBϵqxp0q.
In general, there are convergence issues that forbid Bϵ to be defined out of Aptq for a given value of
ϵ, but it is well-defined as a formal series in ϵ. More generally, the Magnus formula allows to express,
up to convergence issues, the flow at a given time ϵ of a time-dependent left-invariant vector field on
a Lie group by an exponential trajectory at time 1 of a left invariant vector field depending on ϵ (but
not depending on the time t). A review on Magnus expansion can be found in [6]. The aim of the
present section is to adapt the idea to time-dependent Hamiltonian differential equations on a Poisson
manifold.

A time-dependent function on a manifold M is a family pHtqtPI of functions on M that depend
smoothly on the parameter t – living in an open interval I containing 0 – in the sense that pm, tq ÞÑ

Htpmq P C8pM ˆ Iq. For pM,πq a Poisson manifold, a time-dependent function pHtqtPI P C8pM ˆ Iq

will be referred to as a time-dependent Hamiltonian function. It induces a time-dependent vector field
XHt :“ tHt, ¨u called time-dependent Hamiltonian vector field.
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We call formal Taylor expansion of pHtqtPI the formal series

H rrϵss :“
ÿ

iě0

ϵi

i!
BiHt

Bti

ˇ

ˇ

ˇ

ˇ

t“0
P C8pMq rrϵss .

One must not confuse the formal Taylor expansion of a Hamiltonian function pHtqtPI (which does
not depend on the Poisson structure π) with a second and more subtle formal series in C8pMq rrϵss

defined as follows:

Definition 3.1.1. The Magnus formal series

MϵpHq “

8
ÿ

i“0

ϵi

i! MpHqi P C8pMq rrϵss

of pHtqtPI is defined by the formal differential equation:
$

&

%

M0pHq “ 0

BϵMϵpHq “
8
ř

i“0

Bi
i! adiMϵpHq

´

H rrϵss
¯ (3.1)

where adiMϵpHq is the i-th power of the endomorphism adMϵpHq “ t MϵpHq, ¨ u, and ad0
MpHq “ Id.

Also, pBiqiPN is the Bernoulli sequence, defined by its generating function: x
exppxq´1 “

8
ř

i“0

Bi
i! x

i.

The terms of the Magnus formal series MpHq rrϵss can be computed recursively out of equation
(3.1), which ensures its existence and uniqueness.

Remark 3.1.2. There is another expression of the Magnus formal series obtained out of sucessive
integration of (3.1), which results in the practical formula [6]:

MϵpHq “
şϵ
0Htdt

´1
2

şϵ
0

!

şt1
0 Ht2 dt2, Ht1

)

dt1

`1
6

şϵ
0

!

şt1
0

!

şt2
0 Ht3 dt3, Ht2

)

dt2, Ht1

)

dt1

` . . .

(3.2)

Let us explain the meaning of this expression. Assume we wish to compute the third term ϵ3

3! MpHq3

in the Magnus formal series. For that purpose, it suffices to find the term in ϵ3 in each one of the first
two terms of (3.2):

şϵ
0Htdt “ ϵH0 ` ϵ2

2
BHt
Bt

ˇ

ˇ

t“0 ` ϵ3

6
B2Ht
Bt2

ˇ

ˇ

ˇ

t“0
` ¨ ¨ ¨

şϵ
0

!

şt1
0 Ht2 dt2, Ht1

)

dt1 “ ϵ3

6 tH0,
BHt
Bt

ˇ

ˇ

t“0u ` ¨ ¨ ¨
(3.3)

and to add them up.

Example 3.1.3. For a time-independent Hamiltonian pHtqtPI with Ht “ H for all t P I, the Magnus
formal series is ϵH.

Example 3.1.4. If M and N are two Poisson manifolds, ϕ : M Ñ N is a Poisson map and pHtqtPI is
a time-dependent Hamiltonian on N : Mϵpϕ

˚Hq “ ϕ˚MϵpHq.
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For any k P N, we call k-th Magnus truncation Hamiltonian and we denote by

MϵpHqpkq :“
k

ÿ

i“0

ϵi

i! MpHqi

the sum of the k ` 1 first terms of the Magnus formal series MϵpHq. By construction, for all given ϵ,
MϵpHqpkq P C8pMq is a smooth Hamiltonian function on M .

Theorem 3.1.5. Let pHtqtPI be a time-dependent Hamiltonian on a Poisson manifold pM,πq. For
any k P N:

(i) the flow Φϵ
pHtqt

, at time ϵ, of the time-dependent Hamiltonian pHtqtPI P C8pM ˆ Iq,

(ii) and the flow Φ1
MϵpHqpkq, at time 1, of the k-th Magnus truncation Hamiltonian MϵpHqpkq P

C8pMq,

coincide up to order k in ϵ.
In other words, for all f P C8pMq and 0 ď j ď k:

Bj

Bϵj

ˇ

ˇ

ˇ

ˇ

ϵ“0

´

Φϵ
pHtqt

´ Φ1
MϵpHqpkq

¯˚

f “ 0. (3.4)

Proof. The computation is a formal Hamiltonian analog of [6].
Set f pkq

ϵ P C8pMq rrϵss the formal Taylor expansion of Φ1
MϵpHqpkq

˚f , where pull-backs of smooth
maps are defined on formal series in an obvious way. The definition of MpHq implies the following
equalities of formal series :

Bϵpf
pkq
ϵ q “ Φ1

MϵpHqpkq
˚

8
ÿ

i“0

1
pi` 1q!adiXMϵpHqpkq

.BϵXMϵpHqpkqpfq (3.5)

“ Φ1
MϵpHqpkq

˚
8
ÿ

i“0

1
pi` 1q!adiXMϵpHqpkq

.
k´1
ÿ

j“0

Bj
j! adjXMϵpHqpkq

.XHϵpfq ` o
´

ϵk´1
¯

. (3.6)

The definition of Bernoulli numbers and the equality
ř

iPN

xi

pi`1q! “
expx´1

x implies the simplification

Bϵpf
pkq
ϵ q “ Φ1

MϵpHqpkq
˚XHϵpfq ` o

´

ϵk´1
¯

. (3.7)

As Φ0
pHtqt

“ Φ1
M0pHqpkq “ Id, the result follows by differentiation.

Remark 3.1.6. Theorem 3.1.5 can be restated using functions of particular interest in mechanics,
namely local coordinates x on M :

@ 0 ď j ď k,
Bj

Bϵj
ˇ

ˇ

ϵ“0pΦϵ
pHtqt

´ Φ1
MϵpHqpkqqpxq “ 0, (3.8)

so that both integral curves at x coincide up to order k.

Remark 3.1.7. A particular case of the Magnus formula in the symplectic setting appears in [39],
Section 19, where the author studies symplectic integrators for the harmonic oscillator. Up to different
conventions, Equation (19.9) is the Magnus formula of the Hamiltonian of Equation (19.11).

Several time-dependent Hamiltonian vector fields we dealt with in this section arise while studying
geometric integrators of Hamiltonian systems that do not depend on time. Indeed, under some general
assumptions, each iteration of a Poisson integrator for a Hamiltonian H is the time ϵ-flow of a time-
dependent Hamiltonian pHtq, as will be detailed in 3.2.4. To have an integrator at order k, we will
require the Magnus series MϵppHtqtq of pHtq to coincide with ϵH at order k.
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3.2 Hamiltonian Poisson integrators

In order to define and study Poisson integrators, we recall simple facts of symplectic geometry.

3.2.1 Smooth families of Lagrangian submanifolds

Definition 3.2.1. Let V be a manifold. A family pLtqtPI of submanifolds of V parametrized by I is
said to be a smooth family of submanifolds of V if LI “ tpx, tq P V ˆ I, x P Ltu is a submanifold of
V ˆ I such that the restriction to LI of the projection V ˆ I Ñ I is a surjective submersion.

From now on, we fix pLtqtPI a smooth family of submanifolds of V , and LI Ă V ˆI as in Definition
3.2.1. Let t0 P I and NLt0 “ TV |Lt0

{TLt0 be the normal bundle of Lt0 . We claim that there is a
canonically defined smooth section

”

BLt0
Bt0

ı

P ΓpNLt0q

called the normal variation of pLtqtPI at t0. We begin with a definition.

Definition 3.2.2. A smooth path γ : I Ñ V is said to be an pLtqtPI -path if γpsq P Ls for all s P I.
Equivalently, an pLtqtPI -path is a smooth path γ : I Ñ V such that s ÞÑ pγpsq, sq is valued in the
submanifold LI Ă V ˆ I.

The existence, uniqueness and smoothness of the normal variation follow from the three items of
Lemma 3.2.3 respectively.

Lemma 3.2.3. Let pLtqtPI be as above.

1. Let t0 P I and x P Lt0. There exists at least one pLtqtPI-path γ, defined in an open neighborhood
of t0, such that γpt0q “ x.

2. For any two paths γ1, γ2 as in the first item, 9γ1pt0q ´ 9γ2pt0q P TxLt0.

3. The map assigning to x P Lt0 the class in the normal bundle of the derivative 9γpt0q of a path as
in the first item is a smooth section of the normal bundle.

Proof. The I-valued path t ÞÑ t lifts through LI // // I to a path γ with γpt0q “ px, t0q, because the
latter map is a surjective submersion by assumption. The two remaining items are straightforward
and left to the reader.

From now on, let us assume that V is equipped with a symplectic 2-form ωV . A smooth family
of submanifolds pLtqtPI is said to be a smooth family of Lagrangian submanifolds when all the sub-
manifolds Lt are Lagrangian. Under these assumptions, for all t P I, the normal bundle TV {TLt is
canonically isomorphic to T ˚Lt and the normal variation is a family of 1-forms ξt P Ω1pLtq, called
variation form of pLtqtPI at t. In equation:

ωV
`“

BLt
Bt pxq

‰ˇ

ˇ

t
, u

˘

“ ξtpuq for all u P TxLt (3.9)

The following lemma is left to the reader as well:

Lemma 3.2.4. Let pLtqtPI be a smooth family of Lagrangian submanifolds. The variation form ξt P

Ω1pLtq of pLtqtPI at t P I is a closed 1-form.



3.2. HAMILTONIAN POISSON INTEGRATORS 44

Figure 3.1: Normal variation of Lt0 at x out of two L-paths γ1 and γ2.

Definition 3.2.5. We call exact a smooth family of Lagrangian submanifolds pLtqtPI such that its
corresponding variation 1-forms pξtqtPI are exact; we call variation functions their primitives, i.e. some
time-dependent functions phtqtPI such that dht “ ξt for all t P I.

Remark 3.2.6. For a given smooth family of exact Lagrangian submanifolds, the family of time-
dependent functions phtqtPI is unique up to a time-dependent constant.

Here are two important classes of smooth families of Lagrangian submanifolds.

Example 3.2.7. Let V be a symplectic manifold, and H P C8pV q a Hamiltonian function whose
Hamiltonian vector field admits a flow for all t P R. For every Lagrangian submanifold L Ă V, the
family Lt “ ϕtHpLq is an exact smooth family of Lagrangian submanifolds. An L-path starting at
x P L is given by the flow pϕtHpxqqt of H and the variation form of L at t is the restriction to Lt of
the exact form dH.

Example 3.2.8. Let T ˚Q be a cotangent bundle. For every smooth family of closed one-forms pζtqtPI

on Q, their graphs Lt “ ζ̄t “ tζtpxq, x P Qu form a smooth family of Lagrangian submanifolds. An
L-path starting at x P ζ̄0 is given by the 1-forms pζtpxqqt and the variation form at t is τ˚

|ζ̄t
Btζt, where

τ : T ˚Q Ñ Q is the cotangent projection and τ|ζ̄t
: ζ̄t ĂÑQ its restriction to ζ̄t.

Variation forms behave well with respect to symplectomorphisms, as explained in the following
example.

Example 3.2.9. Let pV, ωV q and pW,ωW q be two symplectic manifolds, ϕ : V „
ÝÑ W a bijective

symplectomorphism and pLtqt a smooth family of Lagrangian submanifolds with variation 1-forms ξt.
Then, L̃t “ ϕpLtq is also a smooth family of Lagrangian submanifolds with variation 1-forms ξ̃t that
verify ϕ˚ξ̃t “ ξt.

3.2.2 Usual Hamilton-Jacobi equation revisited

This section is independent from the core of the chapter but we think it matters for terminology and
pedagogical interest. We use variation forms to reinterpret the usual Hamilton-Jacobi equation in
terms of smooth families of Lagrangian submanifolds. Consider a Hamiltonian H P C8pT ˚Qq on the
cotangent bundle T ˚Q of a manifold Q. The Hamilton-Jacobi equation consists in looking for a family
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of functions St P C8pQ ˆ Qq, depending smoothly on t in some interval I Ă R, such that for every
pq, q̄q P QˆQ and every t P I:

BtStpq, qq “ HpdqStpq, qqq (3.10)

where dqStpq, qq P T ˚
q Q is the differential of Sp¨, q̄q at the point q, so that pq, q̄q ÞÑ HpdqStpq, qqq P C8pQˆQq.

Theorem 3.2.10 (Hamilton-Jacobi theorem for a cotangent bundle). If pStqtPI verifies equation
(3.10), if there exist open subsets U Ă Q ˆ Q and V Ă T ˚Q between which pq, qq ÞÑ dqStpq, qq is
a diffeomorphism for every t P I and if their exists ϵ0 P J such that the Hamiltonian flow Φϵ0

H of
H P C8pT ˚Qq at time ϵ0 is given by:

Φϵ0
Hpζq “ dqSϵ0pq, qq @ζ P V Ă T ˚Q (3.11)

where pq, qq P Q ˆ Q is the unique element in U that satisfies ζ “ ´dqSϵ0pq, qq, then the Hamiltonian
flow Φϵ

H of H P C8pT ˚Qq at time ϵ P I is given by:

Φϵ
Hpζq “ dqSϵpq, qq @ζ P V Ă T ˚Q. (3.12)

Classical literature [54] defines elements in T ˚Q as pairs pq, pq with q P Q and p P T ˚
q Q, and the

map ΦH
ϵ : pq, pq ÞÑ pq̄, p̄q above is then seen as being implicitly defined by:

#

q “ BqSϵpq, qq

p “ ´BqSϵpq, qq
(3.13)

Let us use the tools developed in subsection 3.2.1 to give an interpretation and a proof of Theorem
3.2.10.

Proof. Geometrically, two families of Lagrangian submanifolds are involved here:

1. Since Φt
H : T ˚Q Ñ T ˚Q is a symplectomorphism, its graph Φt

H “ tpx,Φt
Hpxqq P T ˚QˆT ˚Q, x P

T ˚Qu, is a Lagrangian submanifold of T ˚Q ˆ T ˚Q equipped with the product symplectic form
with positive and negative signs on first and second factor respectively. As in example 3.2.7,
variation forms of pΦt

Hqt are pξtqt “ pΦ´t
H

˚dHqt, where Φ´t
H is understood as a map Φ´t

H : Φt
H Ñ

T ˚Q.

2. For every t P J , the graph of the exact form dSt is a Lagrangian submanifold of T ˚pQ ˆ Qq

equipped with its canonical symplectic form. As in example 3.2.8, variation forms of pdStqt are
pξ̃tqt “ pτ˚

|dSt
d B

Bt
Stqt, for τ the cotangent projection.

Now, the two symplectic manifolds above are canonically symplectomorphic:

Ψ: T ˚Qˆ T ˚Q Ñ T ˚pQˆQq

pζpqq, ζ̄pq̄qq ÞÑ ζpqq ´ ζ̄pq̄q
. (3.14)

As in 3.2.9, both variation forms are related by Ψ, hence:

dBtSt “ pΦ´t
H Ψ´1τ´1

|dSt
q˚dH. (3.15)

Since Φ´t
H restricted to Ψ´1τ´1

|dSt
pQˆQq corresponds with the projection on first factor of T ˚QˆT ˚Q,

for any pq, q̄q P QˆQ,

Φ´t
H Ψ´1τ´1

|dSt
pqq̄q “ dStpq, q̄q (3.16)
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and the equation
dBtStpq, q̄q “ dpdqStq˚H (3.17)

follows. It is clear that a time-dependent constant can be added to generating functions pStqt. Equation
(3.17) is Hamilton-Jacobi equation (3.10) up to a time-dependent coboundary. This completes the
proof of theorem 3.2.10.

As a conclusion, one geometric interpretation of Hamilton-Jacobi equation is that the canonical
symplectomorphism (3.14) above intertwines the two families of Lagrangian submanifolds pdStqt and
pΦt

Hqt, and the resulting equation is the one of their variation forms.

Remark 3.2.11. The solution pStqt of (3.10) may be singular at t “ 0, since the diagonal ∆ “

tx, xuxPT˚Q of T ˚Q ˆ T ˚Q is sent by Ψ to tx,´xuxPT˚Q which is not the graph of a globally defined
differential form on QˆQ. For instance, when

H : T ˚Rd Ñ R : pq, pq ÞÑ V pqq `Kppq

is a separable fiberwise convex Hamiltonian and f is the Legendre transform of K, ∇f “ p∇Kq´1 and
the symplectic Euler scheme pq, pq ÞÑ pq̃, p̃q can be rewritten as:

#

p “ ∇fp
q´q̃
ϵ q ` ϵ∇V pqq “ BqSϵpq, q̃q

p̃ “ ∇fp
q´q̃
ϵ q “ Bq̃Sϵpq, q̃q

,

for Sϵpq, q̃q “ ϵV pqq ´ ϵfp
q´q̃
ϵ q. Since K is convex, for any pq, q̄q outside the diagonal,

lim
ϵÑ0

Sϵpq, q̃q “ 8.

This have consequences because in numerical schemes, the step is a small number. For instance, in
[23], where a formalism for fiberwise linear Poisson structures is developed, the authors get rid of the
singularity by a local non-canonical change of coordinates.

Using an embedding of the local symplectic groupoid in the cotangent bundle of the unit manifold,
we will see in section 3.3.2 a different kind of Hamilton-Jacobi equation for which S0 “ 0.

Remark 3.2.12. In theorem 3.2.10, one might replace Q ˆ Q by a groupoid G Ñ Q, T ˚Q by the
dual A˚ of the Lie algebroid of G and T ˚QˆT ˚Q by the cotangent groupoid T ˚G Ñ A˚ of G. This is
based on the classical observation that T ˚G is a symplectic groupoid integrating the Poisson manifold
A˚. Then, one would obtain theorem 7 in [23].

3.2.3 Symplectic groupoids

The Lagrangian submanifolds we are interested in lie in a neighborhood of the Poisson manifold in
its symplectic groupoid, a framework that we introduce now, following [16] (see [18] for a complete
review on the subject).

Definition 3.2.13. Let G Ñ M be a Lie groupoid over M. A symplectic 2-form Ω P Ω2pGq is said to
be multiplicative if the graph of the product

!

pg1, g2, g1.g2q P G3, αpg2q “ βpg1q

)

is Lagrangian for the symplectic form pr˚
1Ω ` pr˚

2Ω ´ pr˚
3Ω, where pri : G3 Ñ G is the projection over

the i-th factor. The pair pG Ñ M,Ωq is then called a symplectic groupoid.
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Let us recall some useful properties of symplectic groupoids.

1. The unit manifold M is a Lagrangian submanifold in pG,Ωq and comes equipped with a natural
Poisson structure π such that the source α : G Ñ M is a Poisson map. Also the target β : G Ñ M

is an anti-Poisson map.

2. The Lie algebroid of G is isomorphic to T ˚M : its anchor is π7 : T ˚M Ñ TM . Its leaves are the
symplectic leaves of π. Also, since a 1-form ν P Ω1pMq is a section of the Lie algebroid, it defines
a right-invariant vector field and a left-invariant vector field on G Ñ M , respectively denoted by
ÝÑν and ÐÝν and associated, under the isomorphism Ω5 : TG » T ˚G, to the left and right invariant
1-forms α˚ν and β˚ν.

Although not every Poisson manifold pM,πq is the unit manifold of a symplectic groupoid, every
Poisson manifold is the unit manifold of a local symplectic groupoid, see e.g. [19], [22], said to integrate
pM,πq. Two local symplectic groupoids integrating the same Poisson manifold are isomorphic in a
neighborhood of M .

The relation between the local symplectic groupoid of a Poisson manifold and Poisson integrators
comes from the following theorem about bi-sections, i.e. submanifolds L Ă G to which the restrictions
of both source and target maps are diffeomorphisms onto M . Notice that any bi-section L Ă G induces
a diffeomorphism ϕL :“ β|L

˝ α´1
|L

of the unit manifold M .

Proposition 3.2.14 ([16]). Let pM,πq be a Poisson manifold and pG Ñ M,Ωq a local symplectic
groupoid integrating it. If a bi-section L Ă G is Lagrangian, then:

1. the induced diffeomorphism ϕL : M Ñ M is a Poisson automorphism,

2. provided that the fibers of the source map are connected, for all x P M, ϕLpxq and x belong to
the same symplectic leaf.

G

α

��

β

��

L
?�

OO

»~~ »   
M

ϕL //M

(3.18)

We are now interested in smooth families of Lagrangian submanifolds pLtqtPI of a symplectic groupoid
G, where I Ă R is an open interval containing 0, that happen to be bi-sections for all t P I. From now
on, such an pLtqtPI shall be refered to as a smooth family of Lagrangian bi-sections.

Example 3.2.15 (Lagrangian bi-sections of the symplectic groupoid of a symplectic manifold). The
symplectic groupoid of a symplectic manifold pM,ωq is the pair groupoid. In addition, any smooth
family of symplectomorphism pϕtqt of a symplectic manifold pM,ωq is the flow of a time-dependent
vector field related through ω to a time-dependent closed form pξtq. Consequently, any smooth family
of Lagrangian bi-section pLϵqϵPI will be of the form tpx, ϕϵpxqq, x P MuϵPI .

If M “ T ˚Q is a cotangent bundle, for any solution S P C8pIˆQˆQq of Hamilton-Jacobi equation
as in section 3.2.2, a smooth family of Lagrangian bi-sections of the pair groupoid T ˚QˆT ˚Q of T ˚Q

is given by ΨpdStqt where

ΨpdStq “ tpdqStpq, q̄q,´dq̄Stpq, q̄qq , pq, q̄q P QˆQu Ă T ˚Qˆ T ˚Q.



3.2. HAMILTONIAN POISSON INTEGRATORS 48

Example 3.2.16 (Lagrangian bi-sections of the symplectic groupoid of the dual of a Lie algebra).
Let us identify T ˚G with G ˆ g˚ by left translations. This transformation groupoid integrates the
canonical Poisson structure on g˚, where the source is the projection on g˚. Then any smooth family
of Lagrangian bi-sections is of the form

@t, Lt def
“ tpρtppq, pq P T ˚G, p P g˚u

where ρ is a smooth family of sections of the source such that

Lpρtq´1 ˚dxρt : g˚ Ñ g

is symmetric for the dual pairing for all x P g˚. The corresponding Poisson automorphism is p P g˚ ÞÑ

Ad˚
ρtppq.p

Remark 3.2.17. Any exact family of Lagrangian bi-sections L induces naturally a Hamiltonian
Poisson integrator of timestep ∆t

M ÝÑ M

x ÞÝÑ β ˝ pα|L∆t
q´1pxq

in the sense of the definition 3.2.25 below.
This procedure allows to construct Poisson automorphisms that not only remain in the same

symplectic leaf when we iterate them but also are Hamiltonian trajectories. This is a natural property
to ask to a Poisson scheme. The reader may notice that given a Hamiltonian H on M, one does
not know its flow and the bi-sections Lt “ Φt

ÝÑ
H

pMq are consequently not generically computable. In
section 3.3, we explain how Hamilton-Jacobi equation on the symplectic groupoid produces Lagrangian
bi-sections such that the induced Poisson integrator approximates a Hamiltonian flow at any desired
order in the timestep.

By Lemma 3.2.4, the variation form is a closed 1-form on Lt for all t P I. Using pα´1
|Lt

q˚ : Ω1pLtq Ñ

Ω1pMq, the variation 1-forms of pLtqtPI become a smooth family pξtqtPI of closed 1-forms in Ω1pMq,
that we still call the variation 1-forms of pLtqtPI , with a slight abuse of notation. Before stating the
proposition that relates ξ and L, denoting by Ω5 the musical isomorphism of the symplectic form Ω:

Lemma 3.2.18. Let pLtqtPI and pξtqtPI be as above. The time t-flow of the time dependent vector
field ÝÑ

ξt “ pΩ5q´1pα˚ξtq restricts to a diffeomorphism from L0 to Lt.

Proof. By definition of variation forms, Φt
ÝÑ
ξ

pL0q Ă Lt. In order to prove the other inclusion, let x P Lt

and set x0 “ pΦt
ÝÑ
ξ

q´1pxq. We are left to prove that x0 P L0. Since the flow of ÝÑ
ξ is an L-path, ÝÑ

ξ is a

complete vector field on I and (3.9) ensures that the flow ΦÝÑ
ξ

is locally an L-path:

@ 0 ď u ď t, D ϵ0 ą 0,@ |ϵ| ď ϵ0,Φu´ϵ
ÝÑ
ξ

px0q P Lu´ϵ

For any u P r0, ts, pΦu
ÝÑ
ξ

q´1pxq P Lu, hence the result.

Lemma 3.2.18 says that smooth families pLtqtPI of Lagrangian bi-sections in a symplectic groupoid
can be recovered from L0 and from their associated variation forms pξtq P Z1pMq. Not every pair
pL0, pξtqq gives a family of Lagrangian bi-sections, because the flow of ÝÑ

ξt may not be defined for every
time t P I. However, the correspondence works under relatively mild assumptions:
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Proposition 3.2.19. Let I be an interval containing 0. In a symplectic groupoid G Ñ M , there is a
one-to-one correspondence between:

(i) smooth families of Lagrangian bi-sections pLtqtPI of pG,Ωq,

(ii) pairs made of a Lagrangian bi-section L0 and a smooth family of closed one-forms on the base
pξtqtPI such that the vector field π#pξtq is a complete vector field on M .

Proof of Proposition 3.2.19. From lemma 3.2.18, for any ϵ P I,

Lϵ “ ϕϵ
p
ÝÑ
ξt qt

pL0q. (3.19)

Consequently, two smooth families of Lagrangian bi-sections admitting the same variation forms and
corresponding at 0 are equal.

Now, set Lϵ “ ϕϵ
p
ÝÑ
ξt qt

pL0q. The smoothness and bi-section properties are clear. We prove that Lϵ
is a Lagrangian submanifold.
Indeed, the flow of a left-invariant vector field is a symplectomorphism if and only if the corresponding
1-form on the base is closed. To verify this claim, set Π P ΓpΛ2Gq the Poisson tensor corresponding
to Ω. For any f, g P C8pMq, using the Schouten bracket of [22]:

LÝÝÑ
f.dgΠ “ α˚fLÝÑdgΠ `

ÝÑdf ^
ÝÑdg

“
ÝÝÝÝÝÑdf ^ dg

“
ÝÝÝÝÑdpfdgq.

Then:
LÝÑ
ξϵ

Π “
ÝÑdξϵ “ 0 (3.20)

concludes the proof.

Remark 3.2.20. Equation (3.19) proves that a smooth family of Lagrangian bi-sections pLtqtPI is
exact if and only if there exist global L-paths that are left-invariant time-dependent Hamiltonian
trajectories:

D H P C8pM ˆ Rq,@ t0 P I,@ x P Lt0 , D γ an L-path,
#

γpt0q “ x

9γ “ Xα˚H

`

γ
˘

Remark 3.2.21. Equation (3.20) comes out from the multiplicativity of Π and is a particular case
of a much more general correspondence between multiplicative polyvector fields on the groupoid and
differentials on its algebroid, cf. theorem 2.34 of [74].

Examples will be given in Section 3.2.5, except for the following two examples, that connect with
symplectic geometry.

Example 3.2.22. The example 3.2.15 already relates smooth family of closed 1-forms on a symplectic
manifold with smooth family of Lagrangian bi-sections of the associated pair groupoid.

Example 3.2.23. According to Weinstein’s theorem [16], every Poisson manifold pM,πq integrates
to a local symplectic groupoid structure pG Ñ M,ωq where G is a neighborhood UpMq of the zero
section of T ˚M and ω “ ωcan is the restriction to UpMq of the canonical symplectic 2-form of T ˚M .
To every smooth family pLtq of Lagrangian bi-sections with L0 “ M and Lt Ă UpMq, we can therefore
associate two different kinds of families of closed 1-forms.
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1. We can forget the groupoid structure, and say that on T ˚M , each one of the Lt is the graph of
a closed 1-form:

Lt “ tζt|m,m P Mu

for ζt a closed 1-form on M.

2. Alternatively, one can forget that G has been identified to T ˚M , and use Proposition 3.2.19 to
associate a family ξt of closed 1-forms.

Both families of closed 1-forms are in general different, but related by the equality of the variation
forms of their corresponding families of Lagrangian submanifolds. As 1-forms on Lt for all t:

α˚ξt “ τ˚dζt
dt

where τ : T ˚M Ñ M is the natural projection.

3.2.4 Hamiltonian Poisson integrators and their backward analysis

Poisson integrators appearing in the literature may be understood as germs of Lagrangian bi-sections.
A particular case of this principle is developed for fiberwise linear Poisson structures on the dual of a
Lie algebroid in [23].

Let us consider a Hamiltonian vector field, i.e. a differential equation of the type

9xptq “ π#
xptqpdxptqHq “ XH |xptq

where pM,πq is a Poisson manifold and H P C8pMq a Hamiltonian function. A reasonable definition
of a Poisson integrator ϕϵ of order k ě 1 for H might be defined by the following three conditions :

1. ϕϵ agrees with the time-ϵ flow of XH up to order k in ϵ,

2. ϕϵ is a Poisson diffeomorphism for all ϵ P I,

3. ϕϵ maps each leaf to itself (through a map which is necessarily a symplectic diffeomorphism).

The purpose of a Poisson integrator is to choose a particular value ∆t of ϵ, called timestep, then
consider the iterations of the diffeomorphism ϕ∆t. The hope is of course that the n-th iterations
remain good approximations of the flow of XH at time n∆t for large n P N.

In the particular case of symplectic integrators, the theoretical ground of their good behaviour
is their backward analysis. Indeed, any smooth family of symplectomorphisms pϕtqt is the flow of a
time-dependent vector field pXtqt related through the symplectic form to the flow of a closed 1-form.
So any symplectic integrator for H at order k is locally the flow of a time-dependent Hamiltonian
phtqt such that h0 “ H. The order k of the method is then related to the order at which the initial
Hamiltonian H equals phtqt: H “ ht ` o

`

tk´1˘

.

In this context, an important feature of Poisson integrators is that it is not always true anymore.
There exists a smooth family of Poisson automorphisms, even staying on the same symplectic leaf, that
are not a flow of a time-dependent Hamiltonian, because of so-called outer-automorphisms. These are
measured by the first Poisson cohomology group of the Poisson manifold. This makes a huge difference
with symplectic schemes, for which this property is automatically verified, at least locally. Here is an
example of such a phenomenon:
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Example 3.2.24. For the Poisson tensor π “ px2 ` y2qBx ^ By on R2, a Poisson integrator for
H : px, yq Ñ

x2`y2

2 of order k and step ∆t is
˜

xn`1

yn`1

¸

“ ep∆tqk

˜

cos rn∆t ´ sin rn∆t
sin rn∆t cos rn∆t

¸

¨

˜

xn

yn

¸

where rn “ pxnq2 ` pynq2 (3.21)

and behaves remarkably bad for long simulations: for any norm }.} and initial point px0, y0q ‰ 0R2 ,

denoting by ΦH the flow of the Hamiltonian vector field generated by H,

}pxn, ynq ´ Φn∆t
H px0, y0q} ÝÑ

nÑ`8
`8.

As in the general case, this phenomenon is explained by the fact that the first Poisson cohomology
group H1

π is locally non-trivial around 0: there exists no neighborhood U of 0 such that H1
πpUq “ t0u.

Indeed, H1
π is generated by rotations and dilations. In other words, there exist smooth families of

Poisson automorphisms pϕtqt such that ϕ0 “ Id but ϕ is not the flow of a time-dependent Hamiltonian
vector field.

The previous example suggests to make stronger assumptions to define a notion of Hamiltonian
Poisson integrator:

Definition 3.2.25 (Hamiltonian Poisson integrator). Let pM,πq a Poisson manifold and H P C8pMq

a Hamiltonian on M. A smooth family pϕϵqϵPI of diffeomorphisms of M is a Hamiltonian Poisson
integrator of order k ě 1 for H if:

1. ϕϵ is a Poisson diffeomorphism for all ϵ P I,

2. there exists phtqt a time-dependent Hamiltonian such that

(a) ht “ H ` o
`

tk´1˘

(b) ϕϵ “ Φϵ
phtqt

is the time-ϵ flow of h.

It follows easily that
ϕϵ “ Φϵ

H ` o
´

ϵk
¯

(3.22)

in the sense of theorem 3.1.5 and related Magnus series.
We can now state the main result of this section, which is the core of the explicit constructions

of Poisson integrators that will be presented in the sequel. We recall that given an exact family of
Lagrangian bi-sections L on pG Ñ M,ωq, their variation functions phtqt P C8pM ˆ Iq denote the
pull-back by the source of exact 1-forms obtained from L-paths through ω.

Theorem 3.2.26. Let pM,πq be a Poisson manifold, pG Ñ M,ωq a local symplectic groupoid integrat-
ing it and k ě 1. For every smooth family pLtqtPI of exact Lagrangian bi-sections such that L0 “ M

and with variation functions phtqtPI , if the Magnus series Mϵphq of phtqtPI P C8pM ˆ Iq coincides
with ϵH at order k, then the induced family of diffeomorphisms pϕLtqtPI is a Hamiltonian Poisson
integrator of order k for H.

Remark 3.2.27. We invite the reader to understand Theorem 3.2.26 as meaning that, provided a
symplectic groupoid integrating a Poisson structure is entirely known and computable, then finding
a Hamiltonian Poisson integrator reduces to a Magnus series question. This is the first part of the
construction we have announced in the introduction.
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Proof of theorem 3.2.26. Since ϕ is induced by L, it is a Hamiltonian Poisson integrator for H, of
time-dependent Hamiltonian phtqtPI .

We still need to compute its order. For any f P C8pMq:

ϕ˚
ϵ f “ pΦϵ

phtqtPI
q˚f

“ pΦ1
ϵHq˚f ` o

´

ϵk
¯

“ pΦϵ
Hq˚f ` o

´

ϵk
¯

.

This concludes the proof.

Corollary 3.2.28. Let pM,πq be a Poisson manifold and pG Ñ M,ωq a local symplectic groupoid
integrating it.

For every smooth family pLtqtPI of exact Lagrangian bi-sections with L0 “ M , if the corresponding
variation form at 0 BLt

Bt

ˇ

ˇ

t“0 is equal to dH, then its induced diffeomorphisms pϕLtqtPI are Hamiltonian
Poisson integrators of order 1 for H.

3.2.5 Examples of Hamiltonian Poisson integrators

The description of Poisson integrators in Theorem 3.2.26 unifies already known constructions: the
classical Euler-Symplectic scheme [32] (see Example 3.2.29), the mid-point method for the harmonic
oscillator (see Example 3.2.30), and the Kahan discretization of Lotka-Volterra system already de-
scribed by Pol Vanhaecke [41] (see Example 3.2.32).

Example 3.2.29 (Euler symplectic scheme for a separable Hamiltonian). For a general Hamiltonian
H P C8pT ˚Rdq and pq, pq cotangent coordinates, the symplectic Euler scheme ([32]) is:

#

qn`1 “ qn ` ∆tBH
Bp pqn, pn`1q

pn`1 “ pn ´ ∆tBH
Bq pqn, pn`1q

. (3.23)

Let us interpret this implicit (in the generic case) numerical scheme as a Poisson integrator at order
1 for H, in the sense of theorem 3.2.26. We use the notations of the latter theorem:

pM,ωq On M “ T ˚Rd, we denote by pq, pq some canonical cotangent coordinates, and we consider the
canonical Poisson structure associated to the symplectic 2-form ω “

řd
i“1 dpi ^ dqi.

pG,Ωq the symplectic groupoid integrating the Poisson manifold T ˚Rd is the pair groupoid G :“ T ˚Rdˆ

T ˚Rd equipped with the subtraction of canonical symplectic forms Ω “
řd
i“1 dpi^dqi´

řd
i“1 dp̃i^

dq̃i, pq̃, p̃q some canonical cotangent coordinates on the second factor.

pLϵq The submanifold

Lϵ “

"

pq, p, q̃, p̃q, q̃ “ q ` ϵ
BH

Bp
pq, p̃q and p̃ “ p´ ϵ

BH

Bq
pq, p̃q

*

is Lagrangian in pG,Ωq. Indeed, using relations on Lϵ:

dp̃^ dq̃ “ dp^ dq ` ϵdp^ dBH

Bp
pq, p̃q ´ ϵdBH

Bq
pq, p̃q ^ dq ´ ϵ2dBH

Bq
pq, p̃q ^ dBH

Bp
pq, p̃q. (3.24)

The term dBH
Bq pq, p̃q ^ dBH

Bp pq, p̃q vanishes because the graph of dH is Lagrangian and dp ^

dBH
Bp pq, p̃q “ dBH

Bq pq, p̃q ^ dq by symmetry of the Hessian matrix, so that dp̃^ dq̃ “ dp^ dq.
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For ϵ small enough, it is also a bi-section of G, at least after restriction to a relatively compact
open subset. To simplify the presentation, we will assume that it is a globally defined bi-section.
For ϵ “ 0, the bi-section is the unit manifold M “ T ˚Rd.

pϕϵq The bi-sections Lϵ define a smooth family of symplectomorphisms of pM “ T ˚Rd, ωq, which are
precisely, for ϵ “ ∆t, the symplectic Euler Poisson integrator (3.23).

pht,Hϵq Under the simplifying assumption that H is separable, i.e. it splits in the following form:

H : T ˚Rd Ñ R : pq, pq ÞÑ V pqq `Kppq

with V and K two smooth real-valued functions, we can compute explicitely:

the variation functions i.e.

ht : pq, pq ÞÑ Kppq ` V

ˆ

q ` t
BK

Bp
ppq

˙

(3.25)

and the modified Hamiltonian, i. e. the Magnus series of ht, has first two terms

Hϵ :“ ϵH `
ϵ2

2

B

BV

Bq
,

BK

Bp

F

` o
`

ϵ2
˘

(3.26)

Let us explain how we computed (3.25). Under the assumption that H splits, the Lagrangian
submanifold corresponding to (3.23) becomes

#

q̃ “ q ` ϵBK
Bp pp´ ϵBV

Bq q

p̃ “ p´ ϵBV
Bq pqq

. (3.27)

Using the relations
#

q “ q̃ ´ ϵBK
Bp pp̃q

p “ p̃` ϵBV
Bq pq̃ ´ ϵBK

Bp pp̃qq
, (3.28)

the differentiation of the L-path ϕϵ “

˜

q̃

p̃

¸

with respect to ϵ gives :

Bϵ

˜

q̃

p̃

¸

“

˜

BK
Bp pp̃q ´ ϵB2K

Bp2 pp̃q ¨ BV
Bq pq̃ ´ ϵBK

Bp pp̃qq

BV
Bq pq̃ ´ ϵBK

Bp pp̃qq

¸

“

˜

Bphϵpq̃, p̃q

´Bqhϵpq̃, p̃q

¸

and the system (3.23) is consequently Hamiltonian with respect to the time-dependent Hamiltonian
phtqtPI .

Example 3.2.30 (Mid-point scheme). For this example, the Hamiltonian is the harmonic oscillator
H : pq, pq ÞÑ 1

2p}q}2 ` }p}2q, for which it is well-known ([32]) that the mid-point scheme
#

qn`1 “ qn ` ∆tpn`pn`1
2

pn`1 “ pn ´ ∆t qn`qn`1
2

,

is symplectic.

pM,ωq The Poisson manifold M “ T ˚Rd is the same as the last example.

pG,Ωq As a consequence, the symplectic groupoid T ˚Rd ˆ T ˚Rd does not differ as well.
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pLϵq For any ϵ P R, the submanifold

Lϵ “

"

pq, p, q̃, p̃q, q̃ “ q ` ϵ
p` p̃

2 and p̃ “ p´ ϵ
q ` q̃

2

*

is a Lagrangian bi-section in pG,Ωq. That can be seen using relations on Lϵ :
$

&

%

q̃ “ 1
1` ϵ2

4
pϵp` p1 ´ ϵ2

4 qqq

p̃ “ 1
1` ϵ2

4
p´ϵq ` p1 ´ ϵ2

4 qpq
(3.29)

and consequently

dp̃^ dq̃ “
1

p1 ` ϵ2

4 q2
p´ϵ2dq ^ dp` p1 ´

ϵ2

4 q2dp^ dqq (3.30)

“ dp^ dq. (3.31)

pht,Hϵq The above one-step forward map ϕt : pq, pq ÞÑ pq̃, p̃q induces a vector field Xt “ Btϕt ˝ ϕ´1
t .

One verifies that Xt is colinear to the Hamiltonian vector field of H, and so are H and the
time-dependent Hamiltonian: expressing dq̃

dϵ and dp̃
dϵ with respect to q̃ and p̃, on computes the

Hamiltonian vector field of phtqt and consequently phtqt: at a time t,

htpq, pq “
p1 ´ t2

4 q2 ` t2

p1 ` t2

4 q3
Hpq, pq.

The modified Hamiltonian is simply

Hϵ “

ż ϵ

0

p1 ´ t2

4 q2 ` t2

p1 ` t2

4 q3
dtˆH.

In this case, the Hamiltonian Poisson integrator preserves H.

Example 3.2.31 (Linear Hamiltonian on the dual of a Lie algebra). Let G be a Lie group, g its Lie
algebra and consider its symplectic groupoid Gˆg˚ Ñ g˚. As the coadjoint action of G on g˚ preserves
the Lie bracket, a Poisson scheme discretising the flow of a linear Hamiltonian f P g is given by:

xn`1 “ Ad˚
exppϵfqxn

and corresponds to the Lagrangian bi-sections tpexppϵfq, xq, x P g˚u Ă Gˆ g˚.

Example 3.2.32 (Kahan discretization of one Lotka-Volterra system). For the quadratic Poisson
bracket on Rd given by:

txi, xju “ xixj if 1 ď i ă j ď d (3.32)

and the linear Hamiltonian Hpxq “
řd
i“1 xi, a Poisson integrator is given in [41] by the Kahan

discretisation

x
pn`1q

i ´ x
pnq

i “ ∆t xpnq

i

´

ÿ

jąi

x
pn`1q

j ´
ÿ

jăi

x
pn`1q

j

¯

` ∆t xpn`1q

i

´

ÿ

jąi

x
pnq

j ´
ÿ

jăi

x
pnq

j

¯

(3.33)

where n is the iteration indice of the scheme and x “ pxiq are coordinates on Rd.
Let us interpret this discretization in terms of Theorem 3.2.26 and show that it is a Hamiltonian

Poisson intergator:
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pM,πq is M “ Rd with the Poisson structure (3.32).

pG,Ωq Its symplectic groupoid is

G “ T ˚Rd,

Ω “
ř

i dxi ^ dpi `
ř

i,jpδiăj ´ δiąjqxipjdxi ^ dpj `
ř

jăi pipjdxi ^ dxj `
ř

jăi xixjdpi ^ dpj
α : px, pq ÞÑ x,

β : px, pq ÞÑ
`

e
ř

ipδiăj´δiąjqxipixj
˘

1ďjďn

with px, pq cotangent coordinates on T ˚Rd.

phtq The variation function is given by:

htpxq “ Hpxq ˆ
Bf

Bt
pt,Hpxqq,

where2

f : pR, 0q ˆ R Ñ R

pt, uq ÞÑ 2
uarctanhptuq

.

pLϵq The family of Lagrangian submanifolds Lϵ are given by Lϵ “ Φϵ
pα˚htqtPR

pRdq.

L0 is the unit manifold.

pϕϵq The induced Poisson diffeomorphism is defined implicitly by (3.33) for ϵ “ ∆t.

pHϵq The modified Hamiltonian is simply Hϵpxq :“ Hpxqfpϵ,Hpxqq.

Let us give some details on these points.

Let ϕϵ the map implicitly defined by equation (3.33) and f :
pR, 0q ˆ R Ñ R

pt, uq ÞÑ eut´1
upeut`1q

. Then

following proposition 3.1 of [41],
ϕϵpxq “ Φfpt,xq

H pxq. (3.34)

In this case, one verifies by differentiation that

Φt
hpxq “ Φfpt,Hpxqq

H pxq (3.35)

where
htpxq “ Hpxq ˆ

Bf

Bt
pt,Hpxqq.

The Lagrangian bi-sections associated to (3.33) are the image of Rd by the flows of the time-dependent
right-invariant vector fields associated to pdhtqtPI in the symplectic groupoid integrating pRd, t., .uq.

Example 3.2.33 (Splitting methods through Lagrangian bi-sections). This example is inspired by
[39]. Let G Ñ M be a symplectic groupoid integrating a Poisson manifold M and H “ H1 ` H2 be
a splitted Hamiltonian such that for each Hi, one knows a smooth family of Lagrangian bi-sections
pLitqt inducing a Poisson integrator pϕiϵqϵ for Hi at order 1, with variation functions phitqt.

2All along this manuscript, the notation pT , xq stands for a neighborhood of x in its topological space T .
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pLϵq The composition of Lagrangian bi-sections in G, as detailed in appendice .1, is a Lagrangian
bi-section again, so that

t ÞÑ L2
t ˝ L1

t

is a smooth family of Lagrangian bi-sections. It is easily checked to induce a Poisson integrator
for H at order 1.

(ϕϵ) The induced Poisson diffeomorphism is the composition ϕϵ “ ϕ1
ϵϕ

2
ϵ .

phtq The variation function is given by

ht “ h1
t ` h2

t

`

pϕ1
t q

´1˘

and is equal to H at order 1.

For Poisson integrator at order k, the situation is more complicated. As shown by [39] in the
symplectic context, we then have to compose several times the bi-sections, and use the following
consequence of the Baker-Campbell-Hausdorff formula: assume we are given ϕ1 and ϕ2 two Poisson
integrators for H1 and H2 at order 1, then there exists n P N and pcjl q j“1,2

1ďlďn
such that Lpkq

ϵ “ Π1
l“nL

2
c2

l
ϵ
˝

L1
c1

l
ϵ

induces a Poisson integrator for H at order k.

pLϵq Lagrangian bi-sections are Lpkq
ϵ “ Π1

l“nL
2
c2

l
ϵ

˝ L1
c1

l
ϵ
.

(ϕϵ) The induced Poisson diffeomorphism is the composition ϕϵ “ Πn
l“1ϕ

1
c1

l
ϵ
ϕ2
c2

l
ϵ
.

phtq,pHϵq The variation function is

ht “ c1
1h

1
t ` c2

1h
2
t pϕ

1
c1

1t
q´1 ` c1

2h
1
t pϕ

1
c1

1t
ϕ2
c2

1t
q´1 ` . . .

and equals H at order k ´ 1. The modified Hamiltonian is the Magnus series Mphq of phtqt.

3.3 Hamilton-Jacobi equation on the local symplectic groupoid

When the local symplectic groupoid is known, i.e. a symplectomorphism with a neighborhood of the
zero section of T ˚M (equipped with its canonical symplectic structure) is explicitly given, constructive
Poisson integrator of arbitrary order for an arbitrary Hamiltonian can be given. This will turn results
of section 3.2 into more constructive ones. Indeed, we have constructed in the previous examples the
exact family of Lagrangian bi-sections by hand. We will now give a general manner to do it.

3.3.1 Geometry of Lagrangian bi-sections in the cotangent bundle of the base

Let us recall a classical result of Poisson geometry:

Theorem 3.3.1. [16]-[19]-[22] There exists a neighborhood of T ˚M that carries a structure of local
symplectic groupoid G on the base M. Its symplectic form is the canonical one and its unit map is the
zero section.
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Remark 3.3.2. In the above references, the symplectic form on a neighborhood of T ˚M is not the
canonical one. However, the base being Lagrangian, Moser’s trick applies near the zero section and
gives a symplectomorphism that maps the obtained symplectic forms to the canonical symplectic form.
Besides, provided some local coordinates on M are fixed, [37] contains formulae constructing source
and target for ωcan that have been recently revisited in [9] in the context of quantization. A geometric
interpretation of forms obtained by Poisson sprays allows to construct wide classes of new examples
of the present theory ([15]).

This theorem is, in its general form, an existence theorem. However, in many cases, the source
and target maps of the groupoid structure on pT ˚M,ωcanq can be made explicit.

Definition 3.3.3. We call a bi-realisation of a Poisson manifold pM,πq a triple pW, α, βq made of a
neighborhood W Ă T ˚M of the zero section of T ˚M symplectomorphic to a local symplectic groupoid
integrating pM,πq such that the identity section of the local groupoid and the zero section of T ˚M

correspond by this symplectomorphism and whose source and target are α and β.

Remark 3.3.4. Notice that, as explained in section 3.2.3, for any bi-realisation pW, α, βq, the source
α : W Ñ M is a Poisson submersion and the target β : W Ñ M an anti-Poisson submersion. Also, it
follows from the definition that α and β are left inverses of the zero section 0: M Ñ T ˚M :

0˚α “ 0˚β “ IdM . (3.36)

The reader may observe too that we do not specify the groupoid product.

Let us illustrate the notion of bi-realisation in some cases of interest. We make use of the so-called
Poisson spray of [19] and Moser’s trick in a neighborhood of M to compute bi-realisations of examples
3.3.5 and 3.3.8.

Example 3.3.5. For the Poisson structure Bp^Bq of T ˚Rn with coordinates pq, pq, denoting pq, p, ξq, ξpq

the induced coordinates on T ˚T ˚Rn, the choice of the Poisson spray ξpBq ´ ξqBp gives the following
bi-realisation:

#

α : pq, p, ξq, ξpq ÞÑ pq ´ 1
2ξp, p` 1

2ξqq

β : pq, p, ξq, ξpq ÞÑ pq ` 1
2ξp, p´ 1

2ξqq
(3.37)

Example 3.3.6. When pM,ωM q is symplectic, there is no “natural” (i.e. preferred) way to send
symplectically a neighborhood of the diagonal of the pair groupoid pM ˆ M,p˚

1ωM ´ p˚
2ωM q on a

neighborhood of M in T ˚M . More precisely, there are as many ways as choices of Lagrangian bundles
such that fibers are transverse to the diagonal in M ˆ M . In fact, bi-realisations are in one-to-one
correspondence with symplectomorphisms between a neighborhood of the zero section in T ˚M and a
neighborhood of the diagonal in M ˆM . However, they may not be computable explicitly in general.

Example 3.3.7. Let G be a Lie group with Lie algebra g. Consider φ a diffeomorphism from an open
subset U Ă G to an open subset of U Ă g mapping 1G to 0 and such that its differential at 1G is the
identity.

Since φ is a diffeomorphism, Tφ : TU Ñ TU is an invertible vector bundle morphism, and so is
its cotangent lift T ˚φ : T ˚U Ñ T ˚U . It is moreover a symplectomorphism, when T ˚U and T ˚U are
equipped with their respective canonical structures. Since the source and target of T ˚G » g˚ ˆ G

are given by α : pξ, gq ÞÑ ξ and β : pξ, gq ÞÑ Ad˚
gξ, it suffices to transport those through T ˚φ to get a

bi-realisation.
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Let us be more explicit: with the cotangent lift

T ˚φ : T ˚g
ξx

Ñ
ÞÑ

T ˚G
tpdφ´1xφq.ξx

and the natural3 isomorphism T ˚g » T ˚g˚, the symplectic groupoid of the dual of a Lie algebra
T ˚G Ñ g˚ becomes indeed g ˆ g˚ near g˚ with source and target:

$

&

%

α : pg, 0q ˆ g˚ Ñ g˚ : pη, ξq ÞÑ

´

Lφ´1pηq
˚T ˚

φ´1pηq
φ

¯

.ξ

β : pg, 0q ˆ g˚ Ñ g˚ : pη, ξq ÞÑ

´

Rφ´1pηq
˚T ˚

φ´1pηq
φ

¯

.ξ
(3.38)

The most natural diffeomorphism φ is of course the logarithm map log : G Ñ g. There are however
other ones, like, e.g.:

1. for g the Lie subalgebra of nˆ n nilpotent matrices, the map φ : x Ñ x´ id

2. for g the Lie subalgebra of skew-symmetric n ˆ n matrices, the map x ÞÑ 4 id´x
id`x is also a

diffeomorphism in a neighborhood of id.

Those are better from a computational point of view.

Example 3.3.8. The symplectic groupoid G Ñ Rn of the real log-canonical Poisson bracket on Rn,
i.e.:

txi, xju “ aijxixj , (3.39)

withA “ paijqi,j a skew-symmetric matrix is computed in [46] and is shown to be globally diffeomorphic
to T ˚Rn. The explicit structures given in [46] can be modified such that G “ T ˚Rn is equipped with
the canonical symplectic structure. The source and target maps defined in [46] then become, with
px, pq cotangent coordinates on T ˚Rn:

$

&

%

α : px, pq ÞÑ

´

e´ 1
2

ř

i aijxipi .xj

¯

j“1,...,n

β : px, pq ÞÑ

´

e
1
2

ř

i aijxipi .xj

¯

j“1,...,n

(3.40)

The triple pT ˚Rn, α, βq is a bi-realisation of the Poisson structure (3.39).

3.3.2 Lagrangian bi-sections and Hamilton-Jacobi equation

We are now ready to use bi-realisations in order to look for Poisson integrators that approximate the
flow of a Hamiltonian H, by considering them as graphs of closed 1-forms on M .

More precisely, assume we are given pU , α, βq a bi-realisation of a Poisson manifold pM,πq and H

a Hamiltonian function. In the sequel, we will see from (3.41) that the flow of H corresponds to a
family pLtqtPI of Lagrangian bi-sections of the symplectic groupoid pG,Ωq, with L0 “ M . Reducing I if
necessary, the bi-sections pLtqtPI become Lagrangian submanifolds in an open subset U of pT ˚M,ωcanq.
Since L0 is the zero section, Lt is the graph of a closed 1-form ζt P C8pMq depending smoothly on
t. This form is exact, thanks to the following proposition. Local assumptions are set to make the
statement precise.

Proposition 3.3.9. Let ξ P Ω1
0pUq, U Ă M a relatively compact open subset and I a sufficiently small

open interval containing 0.
3g˚˚

» g
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1. There exists a unique smooth family of 1-forms pζtqtPI such that their graphs have ξ as variation
form: ζ̄t “ Φt

ÝÑ
ξ

pUq.

2. For all t, ζt is exact if and only if ξ is also exact.

Proof. For I sufficiently small, the flow of ÝÑ
ξ is complete. Furthermore, the map ψt “ τ ˝ Φt

ÝÑ
ξ

is a

diffeomorphism of U for all t P I. That allows to set ζt “ Φt
ÝÑ
ξ

pψtq
´1 and to prove the first point.

Setting Lt “ Φt
ÝÑ
ξ

pUq, the second point comes from example 3.2.23 and the bijectivity of τ and

α when they are restricted to Lt: there exists f P C8pUq such that ξ “ df if and only if ζt “

d
şt
0pα ˝ τ´1

|Ls
q˚fds.. The other direction follows the same principle.

Corollary 3.3.10. When ξ “ dH is exact, the closed 1-forms ζt are exact: ζt “ dSt, with pStqt P

C8pU ˆ Iq a solution of
#

BtStpmq “ pτ|dSt
q´1˚α˚

|dSt
Hpmq ` χptq

S0 “ 0
, (3.41)

and where χptq P C8pI,Rq is any smooth function and τ is the cotangent projection.

Proof. From ξ “ dH, one deduces:
dζt
dt “ dpα ˝ τ´1

|ζ̃t
q˚H (3.42)

and the exactness of ζt for all t: ζt “ dSt. To recover equation (3.41), observe that pull-backs are
contravariant and integrate to get the desired equality of smooth functions.

We call (3.41) the Hamilton-Jacobi equation for a Poisson structure. Since χ is arbitrary and plays
no role, it will be set to 0.

Remark 3.3.11. Let us comment on the initial condition S0 “ 0. In the context of this chapter, we
are mainly interested with local embeddings of the symplectic groupoid G in some cotangent bundle
T ˚V such that the unit space M coincides with the base V . It may happen, though, that one considers
embeddings where this property does not hold. For instance, the symplectic groupoid T ˚G of the dual
of an integrable Lie algebroid A “ LiepGq is naturally fibered on its groupoid G but the fibration is
transverse to the unit space. In those cases, it still makes sense to look for Lagrangian bi-sections
as graphs of closed forms, but only if they are sufficiently far from M. There, one might relax the
condition S0 “ 0 and build a family of Poisson automorphisms that are no perturbation of the identity
map.

Remark 3.3.12. For a linear Poisson structure, [27] explains how to obtain numerical methods
preserving the Lie-Poisson structure. This framework is then developped for a general setting in [26]
to obtain a coordinate version of (3.41).

Theorem 3.3.13. Assume we are given pU , α, βq a bi-realisation of a Poisson manifold pM,πq and
H a Hamiltonian function.

1. The Hamilton-Jacobi equation (3.41) admits a solution pStqt in a neighborhood of M ˆ t0u Ă

M ˆ R.

2. The family of Poisson automorphisms induced by the Lagrangian bi-sections pdStqt is the flow
of H.
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Proof. The embedding of G Ñ M in T ˚M allows to express Lagrangian bi-sections near the base with
graphs of closed 1-forms in a smooth way. That explains the first point.

Similar computation as example 3.2.23 gives the Hamiltonian H induced by pdStqt, which admits
the differential:

pα´1
|dSt

q˚τ|dSt

˚dBtSt “ dH.

Remark 3.3.14. Let us relate the usual Hamilton-Jacobi equation described in Section 3.2.2 with
the equation we present in this section.

For the first one: Φt
ÝÑ
H

pT ˚Qq Ă T ˚Q ˆ T ˚Q is related by some graph of exact one-form dSt on
QˆQ by Ψ defined in (3.14).

For the second one: Φt
ÝÑ
H

pMq Ă G is related by some graph of exact one-form dSt on M by the
bi-realisation.

Equation (3.41) is analogous to equation (3.17) and its generalizations in [23] in the sense of
variations of Lagrangian bi-sections. Indeed, the equation (3.17) measures Lagrangian perturbations
of the diagonal in T ˚Qˆ T ˚Q by 1-forms on QˆQ through the canonical symplectomorphism (3.14)
while the second one measures Lagrangian perturbations of M in its local symplectic groupoid by
1-forms on M through some bi-realisation.

3.3.3 Main result and construction of the Hamiltonian Poisson integrators

The computation of pStqt is not of interest from a numerical aspect because it is equivalent to integrate
the Hamiltonian flow. Nevertheless, a natural consequence of theorem 3.3.13 is that the first terms of
the expansion of pStqt with respect to t induce an approximation of similar order of the flow of H.

Theorem 3.3.15. Assume we are given pU , α, βq a bi-realisation of a Poisson manifold pM,πq and
H an Hamiltonian function. Define recursively a family pSiqiPN of smooth functions on M by S0 “ 0,
S1 “ H, S2pmq “ d

dt |t“0HpαptdmHqq, and

Si`1pmq “
di

dti

ˇ

ˇ

ˇ

ˇ

t“0
H

´

α
´

dmS
piq
t

¯¯

(3.43)

where Spiq
t “

ři
j“1

tj

j!Sj .

The family of Poisson automorphisms associated to the Lagrangian bi-sections d
´

S
pkq

t

¯

are Hamil-
tonian Poisson integrators of order k for H with variation functions :

dht “ pτ
|dS

pkq

t
˝ α´1

|dS
pkq

t

q˚dBtS
pkq

t (3.44)

and the modified Hamiltonian verifies Mϵphq “ ϵH ` o
`

ϵk
˘

.

Remark 3.3.16. The term of St of order 1 in t is necessarily H.

Remark 3.3.17. St “
ř8
i“1

1
i!Si is a solution of the formal Hamilton-Jacobi equation, i.e. equation

(3.41) made formal in t and S
pkq

t is the truncation at order k or this solution.

Our general algorithm of a Poisson integrator of timestep ∆t for H at order k, following remark
3.2.17 and theorem 3.3.15, is given by the three steps:
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1. Use recursion (3.43) to compute the k-th terms of pS
pkq

t qt.

2. starting from x P M, solve

x “ αpdxS
pkq

∆t q, x P M, (3.45)

3. and project

x̃ “ βpdxS
pkq

∆t q. (3.46)

It is clear that near any point x P M and for small ∆t, equation (3.45) always has a solution.
This extends definition 2.1.10 to Poisson manifolds. We have completed the task of associating

to any bi-realisation and any Hamiltonian H a Hamiltonian Poisson integrator of arbitrary order and
time-step.

3.3.4 An algebraic formula for the formal Hamilton-Jacobi equation

In section 2.5.1, we have explained how to construct a solution of the formal Hamilton-Jacobi equation.
We repeat it here quasi-verbatim, but for a generic manifold M . We will not recall some examples
and first terms given in section 2.5.1.

Let Pn be the list of all ordered tuples pp1, . . . , pkq of non-zero positive integers such that p1 `¨ ¨ ¨`

pk “ n, i.e. partitions of n. We warn the reader that, for us, p1, 3q and p3, 1q are different partitions
of 4. To any pp1, . . . , pkq P Pn , we now associate an integer βpp1, . . . , pkq as follows. Define S as the
free N module generated by polynomials with coefficients in H. In short,

S “ N
”

NrXs

ı

We denote elements of S by
ř

i ni ˛

#

Pi

+

with ni P N and Pi P NrXs. Again, we warn the reader not

to confuse 3 ˛

#

2X `X2

+

with
#

6X ` 3X2

+

: those are different elements in S.

We now define a N-linear endomorphism of S which is given for any polynomial P P NrXs of degree
|P | by:

I : S ÝÑ S

P ÞÝÑ
ř|P |`1
i“1

#

P `Xj

+

Definition 3.3.18 (Farmer sequence). Define the sequence pAnqně1 valued in S as the iterations of

I starting at
#

X

+

:
$

’

&

’

%

A1 “

#

X

+

An`1 “ IpAnq

(3.47)
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It is routine to check that An is a linear combination of polynomials P such that P p1q “ n and of
the form

řk
i“1 piX

i where none of the integral coefficients p1, . . . , pk are zero. As a consequence, it is
of the form

An “
ÿ

pp1,...,pkqPPn

βpp1, . . . , pkq ˛

#

p1X ` ¨ ¨ ¨ ` pkX
k

+

for some integers βpp1, . . . , pkq. The following definition now makes sense:

Definition 3.3.19. Consider a bi-realisation with source α, target β and projection τ : W Ñ U . To
any Hamiltonian H P C8pMq, we associate a formal power series SH :“

8
ř

i“1

ti

i!Si in C8pMqrrtss where

the sequence pSnqně1 is defined recursively by S1 “ H, and:

Sn`1 “
ÿ

pp1,...,pkqPPn

βpp1, . . . , pkq 0˚
´

adτ˚Spk
. . . adτ˚Sp1

α˚H
¯

.

where adgf “ tf, gu is the adjoint action of the canonical Poisson bracket on C8pT ˚Mq and 0 : M Ñ

T ˚M is the zero section of the vector bundle τ : T ˚M Ñ M .

We need the following lemma in order to state the main result.

Lemma 3.3.20. For all F P C8pT ˚M ˆ Iq and G P C8pM ˆ Iq,

d
dtpdGtq˚Ft “ pdGtq˚

ˆ

dFt
dt `

"

Ft, τ
˚ dGt

dt

*˙

, (3.48)

where t., .u is the Poisson bracket of the canonical symplectic form and pdGtq˚ denotes the pull-back
by the section m P M ÞÑ dmGt P T ˚M .

Proof. From the chain rule:

d
dtpdGtq˚Ft “ pdGtq˚

ˆ

dFt
dt `

〈
dFt,d

dGt
dt

〉˙

,

where ddGt
dt is the vector field on T ˚M having fibers preserving integral curves

pt, pq P R ˆ T ˚M ÞÑ p` tdτppq

dGt
dt .

In order to conclude, we are left to prove that this is the Hamiltonian vector field of τ˚ dGt
dt . This holds

thanks to the construction of the canonical symplectic form.

Remark 3.3.21. In what follows, this lemma will be applied repeatedly to get more derivative
formulae. For instance:

d2

dt2 pdGtq˚Ft “pdGtq˚

ˆ

d2Ft

dt2 ` 2
"

dFt
dt , τ

˚ dGt
dt

*

`

"

Ft, τ
˚ d2Gt

dt2

*

`

""

Ft, τ
˚ dGt

dt

*

, τ˚ dGt
dt

*˙ (3.49)

Notice that each term of the previous sum is either a second derivative or some Poisson brackets

iterated k times, the i-th of them being a ni-th derivative with
k
ř

i“1
ni “ 2. Roughly speaking, each

term has 2 " d
dt". In general, " dj

dtj pdGtq˚Ft" is a sum of terms that all contain j " d
dt". This fact underlies

the appearance of the β coefficents in the next theorem.
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Here is the main result, describing the solution of the formal Hamilton-Jacobi equation.

Theorem 3.3.22. For any Hamiltonian function H on pM,πq, and for any bi-realisation pW, α, βq,
the formal function St “

8
ř

i“1

ti

i!Si P C8pUqrrtss is the solution of the formal Hamilton-Jacobi equation

(3.43) (i.e. is the formal Hamilton-Jacobi transform of the Hamiltonian H) if and only if S verifies
definition 3.3.19.

Also, for every k ě 1, the function S
pkq

t :“
k
ř

i“1

ti

i!Si is a solution of the formal Hamilton-Jacobi

equation up to order k.

Proof. The proof is based on a repeated use of lemma 3.3.20. Let St “
8
ř

i“1

ti

i!Si P C8pUqrrtss be the

solution of the formal Hamilton-Jacobi equation (3.43), j ě 2 and let us show that

Sj`1 “
ÿ

pp1,...,pkqPPj

βpp1, . . . , pkq 0˚
´

adτ˚Spk
. . . adτ˚Sp1

α˚H
¯

. (3.50)

For any l P J1, jK, lemma 3.3.20 applied l times to α˚HpdStq gives

dj

dtj pdStq˚α˚H “
dj´l

dtj´l
pdStq˚

ÿ

pp1,...,pkqPPl

βpp1, . . . , pkq 0˚

ˆ

ad
τ˚ dpk St

dtpk

. . . ad
τ˚ dp1 St

dtp1
α˚H

˙

. (3.51)

The result follows by setting l “ j and t “ 0.

Conclusion

Let us sum up the message of this chapter. A bi-realisation of a Poisson manifold M, or equivalently
a symplectomorphism between the local symplectic groupoid and a neighborhood of the base in T ˚M,

allows to transform, through the analog of the Hamilton-Jacobi equation, a Hamiltonian H P C8pMq

into a smooth family of functions pStqt on M with S0 “ 0. Then, using the induced Lagrangian
bi-sections pdStqt, the source and the target, the recursively computed truncation Spkq of order k of
S gives a Poisson integrator ϕ∆t “ β ˝ pα

dS
pkq

∆t

q´1 of order k for H. These integrators have strong

geometric properties: not only their iterations stay on the symplectic leaf of the initial point (even a
singular one), but they also follow the exact flow of a Hamiltonian on the manifold, which coincides
with H up to order k ´ 1.

Hence the groupoid formalism developed in section 3.2 proved to be useful for the construction
of integrators. As one could expect, most existing Poisson integrators were already of that form,
although not understood as such. Moreover, the Magnus formula introduced in section 3.1 gives a
new constructive way to compute the modified Hamiltonian of a Hamiltonian Poisson scheme and a
new point of view on backward analysis in the context of geometric integrators for symplectic and
Poisson geometry.

As mentioned in the introduction, one expects those integrators to be of particular interest in
mechanics, where it matters to preserve properties of the dynamics when discretizing trajectories.
In order to illustrate the link between their geometric properties and their long-term stability, we
implement and benchmark some Poisson schemes of section 3.3.3 in the next chapter, to study them
from a numerical aspect in comparison with other classical and geometric methods available to the
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community. A more “applied” reader may have skipped the above purely mathematical chapter, some
“minimal working knowledge” in geometry being reviewed in chapter 2, obviously at the expence of
proofs and generalizations. See also [15]. We will now apply those constructions to problems from
mechanics.



CHAPTER 4

Numerical Methods in Poisson Geometry and Applications in Mechanics

based on arXiv:2303.15883

65

https://arxiv.org/abs/2303.15883


4.1. NON-HAMILTONIAN POISSON INTEGRATORS 66

We give in this chapter numerical experimentations to test the Hamiltonian Poisson integrators
that we have introduced in definition 2.4.5 and are at the heart of this work. Since it is devoted to
applications, let us give a non-exhaustive list. Poisson geometry allows to describe a large class of
conservative systems in mechanics, both for discrete and continuous media. Those may be obtained
as a result of a reduction procedure or as an ad hoc model for evolution of some natural systems. To
cite a few: chemistry (polymer dynamics, [25]), plasticity (elastoplasticity, [49]), population dynamics
([41, 21]), liquid crystals theory ([24]), thermodynamics (GENERIC formalism, [31]), control theory
(active and kinematic constraints, [53]).

In all those examples, the Poisson structure matters to express symmetries, conservation laws and
qualitative behaviour of the considered dynamical system. We illustrate in this chapter the importance
of preserving those features during numerical computations.

4.1 Non-Hamiltonian Poisson integrators

Important examples of Poisson structures are the symplectic ones in their canonical form, e.g. where

π “

˜

0 ´I

I 0

¸

. For those, a wide example of symplectic integrators are already available in the

literature. One construction of such integrators uses the principle of symplectic Runge–Kutta schemes
([75]):

xn`1 “ xn ` ∆t
s

ř

i“1
biki

ki “ πpxn ` ∆t
n
ř

j“1
aijkjq ¨ ∇Hpxn ` ∆t

n
ř

j“1
aijkjq

(4.1)

where slopes ki are implicitly defined and coefficients bi and aij are chosen such that the discrete flow
preserves π. For this precise π, any trajectory preserving it is necessary a time-dependent Hamiltonian
one, at least locally.

For a Poisson structure π on a vector space given by a constant but degenerate skew-symmetric
matrix, the same principle can be applied ([36]) and leads to a discrete flow that preserves the Pois-
son tensor, i.e. a Poisson integrator. However, it may lead to non-physical simulations, e.g. non-
Hamiltonian Poisson integrators. It does not guarantee the Hamiltonian property of the discrete
trajectory anymore because of the existence of outer Poisson automorphisms, as illustrated in the
following example.

Example 4.1.1. Consider U “ R3. The system of differential equations
$

’

&

’

%

9x “ ´
px`y´zq

8
`

p´x´ y ` zq2 ` px` y ´ zq2˘

9y “
p´y`zq

4
`

px´ y ` zq2 ` px` y ´ zq2˘

9z “
px´y`zq

8
`

px´ y ` zq2 ` px` y ´ zq2˘

(4.2)

is Hamiltonian with respect to the Poisson structure

πpx, y, zq “
px´ y ` zq2 ` px` y ´ zq2

4

¨

˚

˝

0 ´1 ´1
1 0 ´1
1 1 0

˛

‹

‚

and the Hamiltonian H : px, y, zq ÞÑ
px´y`zq2`px`y´zq2

8 . For any ∆t ą 0, the system of equations:
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$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

xn`1 “ xn cos
´

∆tx
2
n`y2

n´2ynzn`z2
n

2

¯

` yn sin
´

∆tx
2
n`y2

n´2ynzn`z2
n

2

¯

´zn sin
´

∆tx
2
n`y2

n´2ynzn`z2
n

2

¯

yn`1 “
´xn`yn´zn

2 sin
´

∆t pxn´yn`znq2`pxn`yn´znq2

4

¯

`
´xn`yn`zn

2 exp p∆tkq

`
xn`yn´zn

2 cos
´

∆t pxn´yn`znq2`pxn`yn´znq2

4

¯

zn`1 “
´xn`yn`zn

2 exp p∆tkq `
xn´yn`zn

2 cos
´

∆t pxn´yn`znq2`pxn`yn´znq2

4

¯

`
xn`yn´zn

2 sin
´

∆t pxn´yn`znq2`pxn`yn´znq2

4

¯

(4.3)

is a discretisation of order k of the differential equation (4.2). A direct computation shows that it is
a Poisson integrator, i.e. pxn, yn, znq ÞÑ pxn`1, yn`1, zn`1q is a Poisson isomorphism. However, it is
not a Hamiltonian Poisson integrator. This can be proven as follows: for any vector field on R3 that
vanishes at least quadratically at p0, 0, 0q, the differential of its flow at p0, 0, 0q is the identity map. In
particular, since the coefficients of the Poisson structure vanish at least quadratically at p0, 0, 0q, so
does any Hamiltonian vector field, so that any Hamiltonian Poisson integrator should be made of a
local diffeomorphism whose differential at p0, 0, 0q is the identity map. Since the differential at p0, 0, 0q

of the map pxn, yn, znq ÞÑ pxn`1, yn`1, zn`1q is not equal to identity map, the latter Poisson integrator
is not Hamiltonian.

(a) Flow of (4.2) (b) Poisson integrator (4.3)

Figure 4.1: Discrepancy created by the Poisson integrator (4.3)

Figures 4.1.A and 4.1.B show the difference between the actual flow of (4.2) and the first iterations

of the Poisson integrator (4.3) at order k “ 2 with initial points

¨

˚

˝

1
1
2

˛

‹

‚

and timestep ∆t “ 10´4. The flow

should be 4π-periodic while an approximation of it at order 2 destroys the topology of the curve, even
while it preserves the Poisson tensor. The geometric reason is that the Poisson integrator (4.3) does not
stay on a symplectic leaf of the Poisson structure, i.e. a hyperplane of equation tx´y`z “ constantu.

In conclusion, non-Hamiltonian Poisson integrator may have long term behaviour that is extremely
un-natural and non-physical.
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4.2 Numerical tests for Hamiltonian Poisson integrators

In this section we illustrate the advantages of our Hamiltonian Poisson integrators coming from explicit
bi-realisations on a couple of examples. This is based on two natural examples of those described in
section 2.2.3: a linear one and a quadratic one.

4.2.1 The Rigid Body

First turn to the linear Poisson structures and to the dynamics of a rigid body about a periodic orbit.
The equations governing the system read:

9x “ ´x^ J.x,

where ^ denotes the vector product in R3, and the symmetric positive matrix J is the inertia tensor

of the body. It is a Hamiltonian differential equation for πpxq “

¨

˚

˝

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

˛

‹

‚

and Hpxq “

1
2Tr

´

jpxqT .J.jpxq

¯

where j : R3
ĄÝÑsop3q given by:

x ÞÝÑ

¨

˚

˝

0 ´x3 x2

x3 0 x1

´x2 ´x1 0

˛

‹

‚

.

This can be reinterpreted as being an Hamiltonian differential equation on teh dual of sop3q, equipped
with its canonical Poisson structure.

For our numerical example, we consider the inertia tensor J “

¨

˚

˝

1 0 0
0 π 0
0 0 100

˛

‹

‚

and x0 “

¨

˚

˝

1
1
1

˛

‹

‚

The

trajectory is in this case given by Figure 4.2. It is a periodic trajectory: this is expected since we work
in dimension 3 and since the Casimir function (=the square of the norm) and H has to be preserved,
which imposes that most integral curves are in fact loops.

We apply our method:

1. to the bi-realization of the linear Poisson structure on the dual of sop3q obtained using the Cayley
transform, i.e. the local diffomorphism sop3q Ñ SOp3q described in (2.14):

φ : SOp3q` Ñ sop3q : Q ÞÑ 4Q´ I

Q` I

2. at order 2

3. the initial point above and ∆t “ 10´4.

We call HPI-2 the henceforth obtained Hamiltonian Poisson integrator.
We will test:

• if the symplectic leaves are preserved, i.e. if the concentric spheres are preserved, i.e. if the
square of the norm is preserved, and

• if the Hamiltonian function H is preserved.
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Figure 4.2: The trajectory of the angular velocity of a rigid body in R3.

In dimension 3, preserving these two functions tells if the integrator makes sense or not.
HPI-2 behaves much better than the Runge-Kutta method of order 4 in the preservation of both

Casimir and Hamiltonian levels (Figure 4.3).
The Hamiltonian Poisson integrator (HPI-2) preserves the level of the Casimir functions at machine

precision. The error of the traditional method (RK-4) depends linearly on the number of iterations
and so diverges from the continuous (closed) trajectory. In Figure 4.3 we have plotted only the first
10 time units of integration to stress these two phenomena.

Also, HPI-2 oscillates around a Hamiltonian value with an amplitude depending on ∆t. Although
RK-4 has a better precision, we emphasize that in a longer simulation the amplitude of oscillations
for the HPI-2 integrator does not increase, while for RK-4 the linear growth is still observed. Hence,
one recovers a typical stability phenomenon of symplectic integrators, already noticed and explained
in [5].

Remark 4.2.1. The Casimir in this case is the square of the norm. Hence Figure 4.3c indicates that
RK-4 iterations will converge to 0 in R3, which is a fixed point of the dynamics as well as a singular
leaf of the foliation of the total space. This lead on long run simulations to pathological behaviours.
In turn, it stresses the importance of numerical methods preserving leaves of a singular foliation such
as the ones appearing in Poisson structures.

The theoretical explanations relies on the Magnus formula for the Poisson structures introduced
in section 2.5.2. For the convenience of the reader, the schematic sections of the trajectory and their
integrators are illustrated on Figure 4.4.
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(a) Errors on Hamiltonian values for HPI-2

(b) Errors on Hamiltonian values for RK-4 (c) Error on Casimir values for HPI-2 and RK-4

Figure 4.3: Comparison between Runge-Kutta 4 and our Hamiltonian Poisson integrator at order 2
for the Rigid Body dynamics

(a) A Poincaré section of the trajectory (green plane)
(b) Intersection between (interpolated) discrete tra-
jectories and the Poincaré section

Figure 4.4: Illustration "drawn by hand" of the difference of behaviour of two numerical methods with
respect to Hamiltonian and Casimir levels
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4.2.2 The Lotka-Volterra System

Let us look at a particular case of Lotka-Volterra type equations

9x1 “ x1px2 ` x3q

9x2 “ x2p´x1 ` x3q

9x3 “ ´x3px1 ` x2q.

This system of differential equations appears in [72] (page 97, equation (16)) as a model in population
dynamics, and similar systems have been extensively studied since then (e.g. [21]). For this particular
one, an explicit solution was computed in [41]: it allows to compare, for any initial point and desired
time, numerical simulations with the exact solution xexactptq “ px1ptq, x2ptq, x3ptqq.
Some integral curves xexactptq go to infinity, exploding exponentially fast while approaching some
specific time. For instance, using the exact formulas given in [41], one observes that for the initial
value

¨

˚

˝

x1p0q

x2p0q

x3p0q

˛

‹

‚

“

¨

˚

˝

´3
5

10´3

˛

‹

‚

,

the trajectory xexactptq starts exploding around Tsing » 0.23. We use this singularity to test the
standard explicit 2nd order Runge–Kutta method (RK-2) and a Hamiltonian Poisson integrator of
order 1 (HPI-1).

In short, we apply our method:

1. to the Poisson structure of the generic Lotka-Volterra system is the quadratic Poisson structure
of Equation (2.12) encoded by the 3 ˆ 3 matrix

A “

¨

˚

˝

0 1 1
´1 0 1
´1 ´1 0

˛

‹

‚

,

2. to the explicit bi-realization explained in equation (2.13),

3. at order 1,

4. for the dynamics is governed by the linear Hamiltonian H “ x1 ` x2 ` x3,

5. and the initial value
¨

˚

˝

´3
5

10´3

˛

‹

‚

.

Since there exists an explicit expression of the solution, we will simply compare our numerical inte-
grators to that explicit solution. It is also interesting to see how much they preserve a local Casimir
functions, which, in our case in the function: C : x ÞÑ x1x3

x2
.

Remark 4.2.2. For the quadratic structure described in Equation (2.12) out of a generic skew-
symmetric matrix A, for every u P KerA.

f : R`
n Ñ R

x ÞÑ
ź

1ďiďn

xui
i

is a local Casimir function. Hence the expression of the Casimir in the case we are interested in.
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Here is what numerical simulations show: although our Hamiltonian Poisson integrator is of order
1 only, it performs much better than the order two Runge-Kutta method near the singularity Tsing

described above (see Fig. 4.5):

Figure 4.5: Comparison of the error for RK-2 and HPI-1: the sigularity is around 223

We observe that the HPI-1 method approximates the solution much better than the RK-2. In fact
comparing the values of the variables, we see that the RK-2 misses the singularity completely, in a
sense that it goes off the exact solution much earlier than it may tend to infinity, so using it alone one
would not even notice that the solution is singular; while the HPI-1 method pushes the solution up to
the last step before hitting the singularity, where it goes to what one can call “numerical infinity”.

Also, the RK-2 Runge-Kutta method does not preserve C, while the constructed Hamiltonian Pois-
son integrator HP-1 does preserve the Casimir value with machine precision, see Figure 4.6 enlightens
the stability of a Hamiltonian Poisson integrator in the neighborhood of a singularity observed on
figure 4.5: on top of preserving the Poisson structure, it stays on a symplectic leaf along iterations,
even near the singularity (which is around 0.23 the the previosu graph).

Figure 4.6: Comparison on Casimir values between HPI-1 and RK-2

It is actually quite unexpected that an order 1 integrator behaves better than an order 2 integrator.
This example is especially interesting because we are in presence of a singularity. The explanation is
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that as often in such a singular situation, an integrator that does not preserve the underlying geometric
structure of the differential equations can not "see" the singulariy as well as an integrator that does
preserve it.

Conclusion / perspectives

In this chapter, we have briefly explained how the idea of the groupoid construction from 3 was
implemented for design of Poisson integrators. For some details once again we refer to [15]. Let
us stress again that the term Hamiltonian Poisson integrators we have introduced is important – it
explains the conceptual difference to constructions present in literature.

We have seen that even for simple academic examples constructed Hamiltonian Poisson integrators
proved to be more accurate than even higher order classical methods, especially on long run simu-
lations. But a similar strategy can be implemented with no changes for more complicated systems
of ordinary differential equations – we are working on a symbolic package for automatic generation
of the simulation source codes for that ([14]). Moreover, similar methods can be designed even for
Poisson Hamiltonian partial differential equations, which often appear in fluid dynamics and waves
simulations. The key idea there is to use the locality of discretisation in space to spell-out the groupoid
structure maps – we intend to explore this direction in further works.
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This more or less independent project on Dirac dynamics is ongoing. The approach is similar as
the previous chapters: we hope that a better understanding of the geometric objects involved in the
dynamics of a mechanical system will help to build robust numerical methods for this system. Previous
chapters were dealing with Poisson Hamiltonian systems while in the following, Dirac Hamiltonian
systems are dealt with. Apart from the philosophy of the approach, clear relations with the rest of
the thesis are left to be done, as well as numerical applications. Therefore, we decided to present it
apart from the main results of the present manuscript.

Introduction and motivation

Dirac structures, initially motivated by mechanics, have been first studied in a geometric framework
([17]) as a construction unifying symplectic geometry, Poisson structures and foliations altogether.
Some port-Hamiltonian ([64]) and constrained systems ([76, 60]) can be mentioned as direct mechanical
occurences of such structures. Dirac structures are also used as target spaces for gauge theories and
describe – in a precise meaning – symmetry algebras of most general 2 dimensional sigma-models ([40]).
In most of those works, the appearing Dirac structure is a consequence of the form of observables or
of the gauge fields. In the present work, the question is somehow opposite.

The precise one we ask ourselves in this chapter can be vaguely formulated as: “given a Dirac
structure, what else do we need to know to define meaningful dynamics on it”. The question is in the
spirit of [3], where the notion of Dirac systems is described in the context of constrains as well as for
control theory; it also somehow complements the series of works [29, 30] on a uniform description, using
algebroids, of constraint systems in both Hamiltonian and Lagrangian formalisms. All those works,
like many others are inspired by the approach to mechanics using double vector bundles introduced
in [66, 67]. In this chapter, more precisely, we study the cohomological conditions for a system arising
from a Dirac structure to admit a variational (Lagrangian) formulation. For convenience, by some
language abuse, we will call them obstructions, but what we actually mean is sufficient conditions.
That is for “good cases”, when this obstruction is absent, we explain how a Lagrangian is constructed.
This includes some classes of Poisson structures, for which a variational formulation of Hamiltonian
mechanics becomes possible. This is also an important step to the construction of Dirac structure-
preserving numerical methods, since having constructed the Lagrangian, under some assumptions, one
can profit from the well-established machinery of variational numerical methods.

The chapter is organized as follows. We start by recalling some notions of Lie algebroids we give the
definition of their cohomology and describe the main geometric tool – cohomology of Dirac structures,
providing some examples. We also explain the relation of this Dirac cohomology and the obstructions
to construct a variational formulation for the dynamics on the Dirac structures. We illustrate the
construction on some examples and counter-examples. To conclude, we explain some ideas about
variational integrators and possible application of those in our setting – this is a separate rich topic
that we intend to elaborate in another more “mechanically oriented” work.
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5.1 The horizontal cohomology of Lie algebroids and Dirac struc-
tures

5.1.1 Lie algebroids

The notion of Lie algebroids is a simultaneous generalization of tangent bundles and Lie algebras. In
this subsection we briefly review the relevant notions. We refer to [51] for a detailed account.

Definition 5.1.1. Let M be a smooth manifold. A Lie algebroid pA, ρ, r¨, ¨sq is given by a finite-
dimensional vector bundle A, a vector bundle morphism ρ : A Ñ TM , called anchor and a (R-bilinear)
Lie bracket on the sections of A

r¨, ¨s : ΓpAq ˆ ΓpAq Ñ ΓpAq

satisfying for all f P C8pMq, s, s1 P ΓpAq:

rs, fs1s “ f rs, s1s ` ρpsqpfq ¨ s1.

It can be shown that the above condition implies that ρ˚ : ΓpAq Ñ ΓpTMq “ XpMq is a Lie
algebra homomorphism. Lie algebroids appear in many different settings:

• The tangent bundle TM with its usual bracket and ρ “ id is a Lie algebroid.

• Let F Ă TM be an involutive subbundle, i.e. a foliation. Then F is a Lie algebroid with the
restricted bracket and the inclusion F Ñ TM as anchor.

• Let g be a Lie algebra and v : g Ñ XpMq an infinitesimal action (i.e. a Lie algebra homomor-
phism). Then gˆM is a Lie algebroid with bracket induced by the Lie bracket on g and anchor
ρpξ, pq “ vpξqppq. In particular Lie algebras can be seen as Lie algebroids over a point.

• Let π P ΓpΛ2TMq be a Poisson bivector. Then the cotangent bundle of M carries a Lie algebroid
structure induced by π. This is actually a particular instance of the Lie algebroid associated to
a Dirac structure, which we will treat in the next subsection.

Lie algebroids can be alternatively defined as fiberwise linear Poisson structures on vector bundles
or as differential graded manifolds of degree 1 (cf. e.g. [68]). In particular, there is a degree 1
differential (the Lichnerowicz differential, [48]) dA : ΓpΛ‚A˚q Ñ ΓpΛ‚`1A˚q, where ‚ denotes an
appropriate integer index. This differential is defined by

pdAηqpξ1, ..., ξn`1q “
ÿ

i

p´1qi`1ρpξiqpηpξ1, ..., ξ̂i, .., ξn`1qq

`
ÿ

iăj

p´1qi`jηprξi, ξjs, ξ1, ..., ξ̂i, ..., ξ̂j , .., ξn`1q

The differential satisfies d2
A “ 0 and induces a cohomology, which is called Lie algebroid cohomol-

ogy and denoted by H‚pAq. The anchor ρ induces a morphism from the usual de Rham cohomology
to it: H‚

dRpMq Ñ H‚pAq.

A Lie algebroid always induces a singular foliation on M : The subspace ρpAq Ă TM is always
involutive and – by construction – locally finitely generated, hence the integrability theorem (cf.
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[34], reviewed in [44]) applies and M has a decomposition into immersed connected submanifolds
M “

Ů

αNα such that TNα “ ρpAq|Nα for all Nα. Moreover, the bracket on A restricts to well-
defined brackets on A|Nα , turning A|Nα Ñ Nα into Lie algebroids.

The submanifolds Nα are called leaves (of the foliation induced by the Lie algebroid) and a Lie
algebroid is called transitive, if it has only one leaf, i.e. ρpAq “ TM and M is connected.

5.1.2 The horizontal cohomology of Lie algebroid

Definition 5.1.2. Let A ρ
Ñ TM be a Lie algebroid over the smooth manifold M . We define:

• The subspace of ρ-horizontal forms at m P M as:

pΛ‚A˚
mqhor :“ tα P Λ‚A˚

m | ιvα “ 0 @v P kerpρm : Am Ñ TmMqu

• The subspaces of ρ-horizontal forms:

ΓpΛ‚A˚qhor “ tα P ΓpΛ‚A˚q | αm is horizontal for all mu

• the horizontal cohomology of A as the quotient

H‚
horpAq “

kerpdA : ΓpΛ‚A˚qhor Ñ ΓpΛ‚`1A˚qhorq

ImagepdA : ΓpΛ‚´1A˚qhor Ñ ΓpΛ‚A˚qhorq

Remark 5.1.3. Of course, there are natural maps H‚
dRpMq Ñ H‚

horpAq and H‚
horpAq Ñ H‚pAq. In

general, these maps are neither injective nor surjective, as we will see in the sequel.

Example 5.1.4. When A is a transitive Lie algebroid (i.e. ρpAq “ TM), then H‚
horpAq is isomorphic

to the usual de Rham cohomology H‚
dRpMq. More generally, if ρpAq is a regular foliation (i.e. if ρ has

constant rank), then H‚
horpAq recovers the longitudinal cohomology of the foliation induced by ρpAq.

The above example actually extends to the following:

Lemma 5.1.5. Let A be a Lie algebroid and N Ă M a leaf of A and η P ΓppΛkA˚qhorq a ρ-horizontal
form.

1. η|N is a ρ-horizontal k-form on the restricted Lie algebroid A|N Ñ N , i.e. it induces a unique
k-form ηN P ΩkpNq.

2. η is completely determined by the collection tηN | N leaf of Au.

3. When η is horizontal, we have pdAηqN “ dηN .

4. Let rηs “ 0 P Hk
horpAq, then rηN s “ 0 P Hk

dRpNq for all leaves N of the algebroid A.

Remark 5.1.6. In view of the above example and remark, let us stress that the usual intuition related
to the “horizontal” as parallel to the base should be applied very carefully since it is sometimes
misleading. This newly defined cohomology also should not be confused with basic or equivariant
cohomology of algebroids (cf. [28, 78]).
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5.1.3 Dirac structures

In this subsection, we briefly review the notion of Dirac structures. For details we refer to [17].

Let M be a manifold. The standard Courant algebroid (exact Courant algebroid with vanishing
Ševera class) on M is given by pTM, x¨, ¨y, r¨, ¨sq, where TM is TM ‘ T ˚M as a vector bundle, x¨, ¨y :
TM b TM Ñ R is1 the standard symmetric pairing xpv, αq, pw, βqy “ αpwq ` βpvq and r¨, ¨s : ΓpTMq b

ΓpTMq Ñ ΓpTMq is the Courant bracket:

rpX,αq, pY, βqs “ prX,Y s, LXβ ´ LY α ´
1
2dpβpXq ´ αpY qqq.

This bracket is skew-symmetric but does not satisfy the Jacobi identity. There is an alternative defini-
tion of bracket (the Dorfman bracket), which satisfies the Jacobi identity, but is not skew symmetric.
We are now prepared to give the central definition of a Dirac structure:

Definition 5.1.7. A dimpMq-dimensional subbundle D Ă TM is called Dirac structure, if it is
isotropic (i.e. xD,Dy “ 0) and involutive (i.e. rΓpDq,ΓpDqs Ă ΓpDq ).

Let us look at some examples:

• Let ω P Ω2
clpMq be a closed 2-form. Then its graph Γω “ tpv, ιvωq | v P TMu is a Dirac

structure. Any Dirac structure with bijective anchor D Ñ TM (i.e. the restriction of the
projection TM Ñ TM to D is bijective) can be described by the graph of a closed 2-form.

• Let π P ΓpΛ2TMq be a Poisson structure. Its graph Γπ “ tpιαπ, αq | α P T ˚Mu is a Dirac
structure. Any Dirac structure with bijective projection D Ñ T ˚M can be described as a
Poisson bivector.

• Let F Ă TM be an involutive (regular) distribution and F ˝ Ă T ˚M its annihilator. Then
D “ F ‘ F ˝ is a Dirac structure.

Remark 5.1.8. The closedness of the 2-form ω is essential for Γω to be involutive. However, for a
non-closed 2-form, we can consider a twisted Courant algebroid pTM, x¨, ¨y, r¨, ¨sdωq (with a twisting of
the Courant bracket using dω) with respect to which Γω is involutive, i.e. a (twisted) Dirac structure.
In this chapter, we will only work with Dirac structures in the standard Courant algebroid.

Restricted to a Dirac structureD, the Courant bracket becomes a Lie bracket and turnsD into a Lie
algebroid. We call the (horizontal) Lie algebroid cohomology of D its (horizontal) Dirac cohomology.
The Dirac structure also induces a canonical horizontal 2-cocycle that we will now describe.

5.1.4 The natural horizontal two-cocycle of a Dirac structure

Let D Ă TM be a Dirac structure. We define ωD P ΓpΛ2D˚q by

ωDppv, αq, pw, βqq “ αpwq ´ βpvq.

As D is isotropic, we have ωDppv, αq, pw, βqq “ 2αpwq “ ´2βpvq, i.e. ωD is horizontal at each point.
A computation based on the involutivity of D ([8]), shows that ωD is closed in Dirac cohomology, i.e.

1
b stands for the tensor product.
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dDωD “ 0, and hence ωD is horizontal.2 It thus yields a natural class in H2
horpDq. Hence, in view of

Lemma 5.1.5 we have:

Lemma 5.1.9. Let D Ă TM be a Dirac structure.

1. There is a naturally induced horizontal cocycle ωD P ΓpΛ2D˚qhor associated to any Dirac struc-
ture D.

2. If rωDs “ 0 P H2
horpDq, then for any leaf N of D, rpωDqN s “ 0 P H2

dRpNq.

Remark 5.1.10. The second statement above heavily relies on the fact that we work with the hori-
zontal cohomology: Even when a primitive of ωD in ΓpΛ‚D˚q exists, it has no reason to be horizontal
(i.e. to restrict to leaves) in general.

Remark 5.1.11. The construction of the above 2-form works out, even when D is an almost-Dirac
structure, i.e. an isotropic dimpMq-dimensional subbundle of TM (which might not be involutive).
However, in this case D can fail to be a Lie algebroid and hence there is no associated Lie algebroid
cohomology to lie in.

5.1.5 Examples

Let us interpret the class rpωDqs in the most important cases.

Example 5.1.12. D “ Γω Ă TM is the graph of a (pre-)symplectic structure ω. Then the Lie
algebroid structure on D is isomorphic to the Lie algebroid TM . Hence, the horizontal cohomology
is canonically isomorphic to the de Rham cohomology (H‚

horpDq – H‚pDq “ H‚
dRpMq). The form ωD

corresponds to ω under this isomorphism.

Example 5.1.13. Let D “ F ˆ F ˝ Ă TM , where F Ă TM is a regular foliation. The Lie algebroid
structure on D is the induced bracket on F (the usual Lie bracket of vector fields) and the zero bracket
on F ˝. Then H‚pDq – H‚pF q ˆ Λ‚pF ˝q˚ and H‚

horpDq – H‚pF q. The form ωD is zero.

Remark 5.1.14. If F Ă TM is not involutive, then D “ F ˆ F ˝ is still an almost-Dirac structure
(cf. Remark 5.1.11). Even though there is no cohomology, the associated 2-form ωD is still zero.

Example 5.1.15. Let D Ă TM be the graph of a Poisson structure π. Then the Lie algebroid D

is isomorphic to T ˚M and H‚pDq – H‚
πpMq is known as the Poisson cohomology (see for example

[22]). The class of ωD in H‚pDq corresponds to the class of π in H2
πpMq. The class of ω in the finer

cohomology H‚
baspDq is zero if and only if π P X2pMq admits a primitive E P XpMq (a vector field E

satisfying LEπ “ π), which is tangent to the Poisson structure, i.e. is a section of ρpDq Ă TM .
For instance for M “ R2, the Poisson structure π “ x2Bx ^ By admits such a primitive E “ xBx.
Also, on each leaf N of D, ωD restricts to a symplectic form ([8]). And hence there are no exact

symplectic structures on compact manifolds, this leads to the following obstruction to the existence of
horizontal primitives of ωD: for a Poisson structure with vanishing cohomology class, the only compact
leaves of its symplectic foliation are points.

2Note that from now on we write horizontal as a shorthand for ρ-horizontal, since the anchor map is no longer
explicitly used.
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Example 5.1.16. Here is a classical type of Poisson structures: let g be a Lie algebra. Its dual
M “ g˚ carries a natural Poisson structure, whose leaves are the coadjoint orbits of G ñ g˚ (cf. e.g.
[43]).

In this case rπs P H2
πpMq “ H2pDq is always zero: There exists a (linear) vector field E, such that

rπ,Es “ π. However, E can rarely be chosen to be tangent to the coadjoint orbits. For instance, when
g is compact and semi-simple, this can never occur.

5.2 A variational approach to exact Dirac structures

5.2.1 Dirac paths

Theorem 5.2.1. Let D Ă TM be a Dirac structure over M , H P C8pMq be a Hamiltonian function
and γ a path on M.

Assume that the horizontal 2-class rωDs vanishes, and let θ P ΓpD˚qhor be such that dDθ “ ωD,
then the following statements are equivalent:

(i) The path γ is a Hamiltonian curve, i.e. p 9γptq, dHγptqq P D for all t.

(ii) All Dirac paths ζ : I Ñ D over γ (i.e. ρpζq “ 9γ) are critical points among the Dirac paths with
the same end points of the following functional:

ζ ÞÑ

ż

I

`

θγptqpζptqq `Hpγptqq
˘

dt (5.1)

(iii) There exists a Dirac path ζ : I Ñ D over γ and the latter is the critical point, among Dirac
paths with the same end points, of the functional (5.1).

Proof. As θpζq does not depend on the choice of a Dirac path ζ over γ, the equivalence of (ii) and (iii)
is obvious.

For the equivalence between (i) and (iii), let us first note that we can restrict the functional (5.1)
to a fixed leaf N containing γ. On N , ωD corresponds to a pre-symplectic form ωN and θ yields a
potential of ωN , i.e. a 1-form θN P Ω1pNq such that dθN “ ωN . Thus, it suffices to prove the assertion
of the theorem for an exact pre-symplectic form ωN “ dθN . That is to say, we want to prove, that the
image of 9γ by the musical isomorphism ω5

N equals dH along γ: ω5
N p 9γq “ dγH if and only if γ : I Ñ N

is a critical point of
ż

I

`

θN |γptqp 9γptqq `Hpγptqq
˘

dt

among curves with fixed endpoints. For symplectic manifolds this is a classical result [2], we provide
a proof (that follows the same lines) for the sake of completeness.

Take a small variation

v :
I ˆ p´ϵ, ϵq Ñ N

pt, sq ÞÑ vpt, sq

of γ with fixed endpoints and set Y ptq “ B
Bs

ˇ

ˇ

s“0v P TγptqN . We call γ˚LY θN the smooth R-valued
function on I defined by

γ˚LY θN ptq “
B

Bt
θN |γptqpY ptqq ` dθN pY ptq, 9γptqq.
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(If Y happens to be the restriction to γ of a vector field Y on N , γ˚LY θN ptqdt P Ω1pIq is the pull-back
through γ : I Ñ N of LY θN , hence the notation.)

B

Bs

ˇ

ˇ

ˇ

ˇ

0

ż

tPI

ˆ

θN |vsptq

ˆ

Bvs
Bt

ptq

˙

`Hpvsptqq

˙

dt

“

ż

tPI

B

Bs

ˇ

ˇ

ˇ

ˇ

0

ˆ

θN |vsptq

ˆ

Bvs
Bt

ptq

˙

`Hpvsptqq

˙

dt

“

ż

tPI

`

γ˚LY θN ptq ` dH|γptqpY ptqq
˘

dt

“

ż

tPI

`

dθN pY ptq, 9γptqq ` dH|γptqpY ptqq
˘

dt

In the two last equalities, we used integration by parts and the fact that Y p0q “ 0 and Y p1q “ 0 since
the endpoints of v are fixed, so that

ş

I
B
BtθN |γptqpY ptqqdt “ 0. Since Y ptq is arbitrary except at end

points, this proves the result.

Remark 5.2.2. In the above proof, we actually do not require the equality dθ “ ω and the horizon-
tality of θ globally. We only need both properties along the leaf N one considers.

Example 5.2.3 (Hamiltonian classical mechanics). We recover a classical framework ([35]) by the
following: let M “ T ˚Q, H P C8pT ˚Qq and γptq “ pqptq, pptqq be a path on T ˚Q, where pq, pq are
position-momenta coordinates on the phase space T ˚Q. Then, γ is a Hamiltonian trajectory of H :

#

9q “ ´ BH
Bp

9p “ BH
Bq

if and only if γ is a critical point of the functional

γ ÞÑ

ż

I

`

θγptqp 9γptqq `Hpγptqq
˘

dt,

where θ “ pdq is the Liouville 1-form.

The above proof enables us to treat a much wider class of Dirac structures than in section 5.1.5,
especially singular ones.

Example 5.2.4 (Restriction to a leaf). Consider R4 with the Poisson structure

π “ px2 ` y2qBx ^ By ` Bz ^ Bw.

Along the singular leaf L “ tx “ y “ 0u the vector field wBw is horizontal and a primitive for π on
that leaf, hence the above remark applies and we obtain a variational characterization of paths.

5.2.2 Tulczyjew isomorphisms and Legendre transformation

Tulczyjew isomorphisms

For self-containedness of this chapter, we recall here the isomorphisms established by W. Tulczyjew
([66, 67]) between double (co)tangent bundles (at least one “co” should be present).
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We first present the canonical flip, which is a canonical involution:

σ : T pTQq » T pTQq.

It can be seen as a sort of Schwarz Lemma: for every smooth map Σps, tq :“ R2 Ñ Q (defined in a
neighborhood of p0, 0q):

1. t ÞÑ
BΣp0,tq

Bs is a path in TQ starting from BΣ
Bs p0, 0q. Its first jet at 0 belongs to T BΣ

Bs
p0,0q

pTQq.

2. s ÞÑ
BΣps,0q

Bt is a path in TQ starting from BΣ
Bt p0, 0q. Its first jet at 0 belongs to T BΣ

Bt
p0,0q

pTQq.

By definition, the canonical flip is an unique map that exchanges both elements in T pTQq:

σ

ˆ

B

Bt

BΣps, tq

Bs

ˇ

ˇ

ˇ

ˇ

s“t“0

˙

“
B

Bs

BΣps, tq

Bt
Σps, tq

ˇ

ˇ

ˇ

ˇ

s“t“0

A canonical isomorphism:
κ : TT ˚Q Ñ T ˚TQ.

is then obtained through the following construction: TTQ is what is called a double vector bundle,
for it has two compatible vector bundle structures over TQ. Consider the respective duality pairings

ă ¨, ¨ ą1: T pT ˚Qq b T pTQq ÝÑ R

and
ă ¨, ¨ ą2: T ˚pTQq b T pTQq ÝÑ R.

Then the mapping κ is implicitly canonically defined by imposing

ă κpaq, b ą2“ă a, σpbq ą1

for all a P T pT ˚Qq and b P T pTQq which are in the same fiber of their canonical projections on TQ.
More Tulczyjew isomorphisms of vector bundles are obtained by post- or pre-composing Ω5 : TT ˚Q Ñ

T ˚T ˚Q or its inverse, where Ω is the canonical symplectic form on T ˚Q. We will be mostly interested
in the isomorphism

β ” ω5 ˝ κ´1 : T ˚TQ Ñ T ˚T ˚Q (5.2)

which is a particular case of the canonical isomorphism also called Tulczyjew isomorphism T ˚E »

T ˚E˚ for any vector bundle E([52]) that we describe now.

Relation inbetween Tulczyjew isomorphisms and Legendre transformation

Throughout this paragraph, U is a fiberwise convex open subset of a vector bundle E over Q, equipped
with a smooth function L : U Ă E Ñ R called Lagrangian.

Recall that if a smooth function f on an open convex subset U Ă V of a vector space is strictly
convex, then its differential, defined for all v P U by:

Ff : U Ñ V ˚

v ÞÑ

ˆ

e ÞÑ
d

dt

ˇ

ˇ

ˇ

ˇ

t“0
fpv ` teq

˙
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is a diffeomorphism from U onto its image U 1. Applying this result at every fiber of E, we obtain that
if the restriction of L to any fiber is strictly convex, then FL : U Ă E ãÑ E˚ is a diffeomorphism from
U to its image U 1 Ă E˚.

In this context, we define the Legendre transform H P C8pU 1q of L to be the unique function
satisfying Hpαq ` Lpvq “ xα, vy for all α P E˚ with α “ FLpvq.

Proposition 5.2.5. The Legendre transform and the Tulczyjew isomorphism are related by the equality

βpdeLq “ dFLpeqH

for every e P U .

When L is not strictly convex on a fiberwise cnvex open subset, the Legendre transform does not
need to exist. However the set tβpdeLq | e P Uu is always a Lagrangian submanifold of T ˚E˚. It
appears throughout this chapter as the image of DL.

5.2.3 Generalized implicit Lagrangian systems

Let L : TQ Ñ R a (possibly degenerate) Lagrangian.

Remark 5.2.6. Note that in this section and in the next one the base manifold will be systematically
Q instead of M used before – this is to stress the fact that in the Lagrangian picture it is necessary
to lift the construction to double vector bundles, and thus the relevant Dirac structures will be over
Q or T ˚Q depending on the context. The general facts about Dirac structures will still be formulated
with the base manifold denoted by M .

Definition 5.2.7. We call Tulczyjew’s differential the map u ÞÑ DuL :“ βpduLq, where β : T ˚TQ Ñ

T ˚T ˚Q is the Tulczyjew isomorphism 5.2. Its image is a submanifold of T ˚T ˚Q.

Definition 5.2.8. We also define a map from TQ to T ˚Q by FLpvq for every v P TqQ by

B

Bt

ˇ

ˇ

ˇ

t“0
Lpv ` twq “ xFLpvq, wy

a) We denote by Leg “ FLpTQq Ă T ˚Q the image of FL.

b) We call partial vector fields on Leg sections3 of ΓpT pT ˚Qqq|Leg.

c) An integral curve of a partial vector field X on Leg is a path t ÞÑ ut P TQ such that

d
dtFLputq “ XFLputq.

d) An implicit Lagrangian system for an almost Dirac structure D Ă TT ˚Q is a pair pX,Lq, with
X a partially defined vector field on Leg, such that pXpFLpuqq,DuLq P D for all u in TQ.

Remark 5.2.9. We do not assume partial vector fields on Leg to be tangent to Leg in any sense. Of
course, if they are not tangent, they may have little integral curves.

3For E a vector bundle over a manifold X and Y Ă X an arbitrary subset (not necessarily a manifold), we denote by
ΓpEq|Y restrictions to Y of smooth sections of E in a neighborhood of Y in X.
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Remark 5.2.10. Particular cases include:

• Usual Hamiltonian dynamics. When FL is a diffeomorphism and D is the graph of the canonical
symplectic form on T ˚Q, implicit Lagrangian systems are pairs pXH , Lq, where XH is the Hamil-
tonian vector field of H, the Hamiltonian function associated to L via the Legendre transform.

• Constraint dynamics, which actually motivated the construction, we give some details below:
Example 5.2.17.

5.2.4 Implicit Lagrangian systems with magnetic terms

Definition 5.2.11 ([8]). Let D Ă TM be a subbundle.

1. For all ϕ : M 1 Ñ M , we denote by ϕ!D the set

ϕ!Dm1 :“
!

pX,ϕ˚βq with X P Tm1M 1, β P T ˚
ϕpm1qM s.t.pϕ˚pXq, βq P Dϕpm1q

)

When D is an (almost-)Dirac structure we call ϕ!D the pullback of D.

2. Let ω be a 2-form ω P Ω2pMq, we denote by eωD the set

eωD “ tpv, β ` ιvωq | pv, βq P Du

and call it the gauge transform of D.

Lemma 5.2.12 (cf. e.g. [8]). Let D Ă TM be a Dirac structure and M 1 be a manifold.

1. For any smooth map ϕ : M 1 Ñ M , ϕ!D is a Dirac structure on M 1.

2. For any closed 2-form ω P Ω2pMq, eωD is a Dirac structure on M .

Given D Ă TQ a Dirac structure on Q, this lemma allows to consider (i) its pull back π!D on T ˚Q

through the canonical base map π : T ˚Q Ñ Q, then (ii) consider the gauge transformation eΩπ!D of
this pull-back with respect to the canonical symplectic 2-form Ω.

Definition 5.2.13. Let D Ă TQ be a Dirac structure on Q. We call constrained magnetic Lagrangian
system an implicit Lagrangian system for the Dirac structure D “ eΩπ!D Ă TT ˚Q as above.

Theorem 5.2.14. Let D Ă TQ be a Dirac structure and L : TQ Ñ R a Lagrangian. Assume that
the 2-form ωD P ΓpΛ2D˚qhor admits a horizontal primitive θ P ΓpD˚qhor. Then for q : I Ñ Q the
following are equivalent:

a) There exists a Dirac path ζ : I Ñ D such that ρpζq “ 9q which is the critical point among Dirac
paths with the same end points of

ż

I
pLpρpζptqqq ` θpζptqqqdt. (5.3)

b) For all t P I, the following condition holds.
ˆ

B

Bt
FLp 9qptqq,D 9qptqL

˙

P D “ eΩπ!D. (5.4)
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Proof. We claim that it suffices to check the equivalence on a small open set in Q. The second asser-
tion is clearly local in nature and a path is a critical point for the functional (5.3) if and only if for
any t P I there is a subinterval t P It Ă I on which it is critical4.

It suffices therefore to establish the equivalence on an open subset U of Q, on which the Dirac
structure takes the following normal form ([7]):

• U “ S ˆN , where S Ă Ra, N Ă Rb with qp0q lying in S ˆ t0u.

• D|U “ eηppTS‘t0uqˆΓΠq, where η P Ω2
clpUq and Π P X2pNq is a Poisson bivector field vanishing

at 0 and ΓΠ is the corresponding Dirac structure on N .

As S ˆ t0u is a leaf of D, qptq P S ˆ t0u for all t. By our assumptions on D

ż

I
pLpρpζptqqq ` θpζptqqqdt “

ż

I
pLp 9qq ` θSp 9qqqdt,

where θS P Ω1pSq is the one-form on S induced by θ and hence satisfies dθ “ i˚Sη where iS : S Ñ

U, iSpsq “ ps, 0q.
We will denote by LS the restriction of L to TS and write q “ pqS , 0q. With these conventions,

the above functional reads:
ż

I
pLSp 9qSq ` θSp 9qSqqdt.

The classical Euler-Lagrange theorem ([58]) with magnetic term implies that being a critical point
of this functional is equivalent to

ˆ

B

Bt
FLSp 9qSptqq,D 9qSptqL

S

˙

P eΩπ!eη
S

pTS ‘ t0uq. (5.5)

Via the isomorphism TT ˚U “ TT ˚S ˆ TT ˚N , the assertion (5.4) decomposes as two conditions, the
first one (on S) being (5.5). The second condition (on N) is always satisfied, as one can verify by a
straightforward computation in local coordinates which relies on the fact that q is constant on N .

Corollary 5.2.15. Let Q,L,D be as in Theorem 5.2.14 and pX,Lq an implicit Lagrangian system.
Then any integral curve γ of X is the base path of a critical point of (5.3).

Example 5.2.16 (Classical symplectic magnetic terms). Theorem 5.2.14 allows to recover variational
formulation of the dynamics of a particle in a magnetic field, see section 6.7 of [54] for their Hamil-
ton equations. We give a geometric explanation of this particular case using the notion of implicit
Lagrangian system.

Let Q be any manifold, ω P Ω2
clpQq and D “ Γω Ă TQ. Let L : TQ Ñ R be a Lagrangian. In this

case eΩπ!D “ ΓΩ`π˚ω Ă TT ˚Q.
As H‚

basicpDq “ H‚
dRpMq, (cf. Example 5.1.12), the 2-form on D admits a basic potential if and

only if ω is de-Rham exact, i.e. ω “ dθ, θ P Ω1pQq.
4That can be seen as follows: for two subinterval J1 and J2 of I,

ş

J1
Ť

J2
pLpρpζptqqq ` θpζptqqqdt “

ş

J1
pLpρpζptqqq `

θpζptqqqdt`
ş

J2
pLpρpζptqqq ` θpζptqqqdt´

ş

J1
Ş

J2
pLpρpζptqqq ` θpζptqqqdt
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Let us assume that the Legendre transform FL : TQ Ñ T ˚Q is bijective, and denote the Legendre
transform of the Lagrangian by H, i.e.

Hppq “ xp, pFLq´1py ´ L ˝ pFLq´1ppq

In this case DL is simply dH. Theorem 5.2.14 yields that the critical points of Lpq, 9qq ` θp 9qq

correspond under the Legendre transform to integral curves of the Hamiltonian flow of H for the
symplectic structure Ω ` π˚ω. Corollary 5.2.15 states that pX, dHq is an implicit Lagrangian system
with respect to eΩπ!D if and only if the vector field X is the Hamiltonian vector field of H with respect
to Ω ` π˚ω.

Example 5.2.17 (Holonomic constraints as a regular foliation). Let F Ă TQ be a regular foliation.
As discussed in Example 5.1.13, the Dirac structure D “ F ‘F ˝ always admits a horizontal primitive,
as the 2-form in Λ2D˚ is zero (there is no magnetic term). Then π!D is the Dirac structure associated
to the pullback foliation π´1pF q and

eΩπ!D “ tpw,αq P TT ˚Q‘ T ˚T ˚Q | π˚pwq P F, α ´ Ω5w P π´1pF q˝u

Let L : TQ Ñ R be a Lagrangian. Then Theorem 5.2.14 and Corollary 5.2.15 yield that the
integral curves of any implicit Lagrangian system pX,DLq for eΩπ!D are critical points of L among
curves that are tangent to F . The condition (5.4) translates directly to the Euler-Lagrange equations
for a system subject to holonomic constraints, which are classically spelled-out using the Lagrange
multipliers [42].

Remark 5.2.18. Holonomic and non-holonomic constraints. Note that the result above con-
cerns the so-called holonomic constraints, i.e. the conditions defining the constraints do not depend
essentially on the velocities of the system. Geometrically this means that the foliation F comes from
an integrable constraint distribution ∆ Ă TQ. Simple mechanical examples and counterexamples can
be constructed by “rolling without slipping” problems: They are often formulated as an orthogonality
condition on the velocity at the contact point – the condition is integrable for the rolling disk but not
for a rolling ball. Under some extra assumptions the non-holonomic constraints can still be treated in
the variational approach ([76]), though with no geometric interpretation. In this setting our result
is more subtle, since as mentioned above, remarks 5.1.11 and 5.1.14, the non-integrable almost Dirac
structures are very different from the cohomological perspective. Formally, we cannot speak of an
obstruction class, since the “differential” does not square to zero. However when some primitive can
be defined, parts of theorems 5.2.1 and 5.2.14 are still valid.

5.2.5 Applications to numerics

One of the motivations for the above construction is its potential application to design appropriate
structure preserving numerical methods – so called geometric integrators.

Historically, the first example of those are the symplectic numerical methods, they are known since
several decades, and are now state of the art for Hamiltonian systems ([75]). The key idea is that
in the continuous setting the Hamiltonian flow not only preserves the level sets of the Hamiltonian
function, but also leaves invariant the symplectic form. It is thus natural to mimic this property for
the discrete flow, i.e. computing the trajectory numerically one wants to take the symplectic form into
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account. And since it is actually the same symplectic form that defines the dynamics of the system,
one can reverse the argument: a flow preserving the symplectic form will “respect” the level sets of
the Hamiltonian defining it.

The Lagrangian counterpart of this picture is related to so-called variational integrators ([55]), the
idea is rather natural as well. Instead of considering a continuous Lagrangian and searching for its
extrema along all the paths with fixed endpoints:

inf L ” inf
ż T

0
Lpqptq, 9qptqqdt (5.6)

one defines the discrete version Ld of the integrant L as follows:

Ldpqn`1, qn, vnq :“ ∆tnLpqn, vnq.

Here qn ” qptnq, vn is some approximation of 9qptnq depending on qn and qn`1; and ∆tn are the time
intervals between qn and qn`1, not necessarily all equal. One then defines the discrete analogue of
variational principle (DVP), i.e. studies the trajectories pq0, q1 . . . , qn´1, qnq extremizing

Ld “

N
ÿ

n“0
Ld,

subject to q0 “ qp0q and qN “ qpT q. For conservative mechanical systems one can recover usual
symplectic methods with this variational approach, and it is actually more universal, since the timestep
is allowed to vary as well.

A similar strategy can be applied whenever the variational principle can be formulated. For
example, in [55] the case of systems with constraints is explored, which motivated some parts of this
chapter; later on similar ideas were explored for continuous media problems (see e.g. [11]) Hence, the
results of Sections 5.2.3 and 5.2.4 on the dynamics on Dirac structures fit to the picture perfectly:
they basically say that as soon the cohomological obstruction is absent, one can formulate the Dirac
dynamics with a variational approach. In Equation (5.6) one merely replaces the path qptq in the
configuration manifold by a Dirac path ζptq. In the continuous setting the Dirac paths preserve the
Dirac structure by definition, the variational formulation permits to guarantee this property for the
trajectory computed numerically.

There is however an important detail to mention: the folkloric perception of geometric integrators
as “preservation of the geometric structure guarantees preservation of physical properties” is slightly
simplified. For instance in the symplectic case, it is not the original Hamiltonian that is preserved,
but its discrete version, for which one can estimate the difference [59]. The phenomenon is even more
subtle in the variational case. In fact, saying that satisfying the discrete variational principle (DVP)
results in preserving some quantities of the system is no longer that straightforward. In the generic
case the DVP will only give the relations between different variables of the system, but they will
still depend on the choice of discretization or approximation of some of them. It may (and often
does) also happen that the choice of the discretization to preserve the structure exactly is technically
very difficult or even a priori impossible. This means that the correct statements will concern rather
preservation of geometric structures up to some order of discretization step.

A typical example of this situation is provided by the so-called constraint algorithms: for dynam-
ical systems, the methods to take into account the constraints expressed as algebraic conditions on
dynamical variables. When it is impossible to explicitly resolve the constraints, i.e. introduce the
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dynamical variables satisfying them automatically, there are essentially two approaches: introduce
the penalization terms with Lagrange multipliers and discretize them appropriately or “project” the
solution to the level set of the algebraic conditions at each time step. However, to the best of our
knowledge, there are very few proven theorems on how the discrete version of the system satisfies the
constraints. We have tried to fill some gaps in empirical observations that one sees in literature. For
example ([62]) the Dirac structure based algorithm ([76]) in the absence of constraints is naturally
symplectic. And some partial results on how to construct pseudo-geometric integrators preserving the
conditions up to some order are given in [50].

With the approach of the current chapter we now understand why the naive attempts to increase
the order of the constraint-based methods (like e.g. [45]) do not produce the desired results: roughly
speaking the obtained integrators fail to be geometric/variational in the proper sense of the word. A
way out would be to formulate the DVP for the calculus of variations in a more general case ([58]),
and then apply it to the context of Theorems 5.2.1 and 5.2.14.
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6.1 Perspectives on the variational approach to Hamiltonian Dirac
dynamics

We have defined in chapter 5 the basic Dirac cohomology, which permits to describe an explicit and
verifiable condition for variational formulation of dynamics on Dirac structures.

As mentioned in the last part of the chapter, on top of purely mathematical interest, this construc-
tion should be useful to design more reliable tools for numerical integration of the flow of dynamical
systems on Dirac structures. Those in turn naturally appear when studying constraint, interacting
or dissipative mechanical systems, which are not in the range of classical Hamiltonian formalism. We
expect the results of this chapter to provide a unified approach to those and in particular an extension
of the observations from Section 5.2.5 to arbitrary Dirac structures with vanishing horizontal cocycle.

Let us also mention that, since Poisson manifolds provide an example of Dirac structures, this
approach is useful to construct some Poisson integrators. In the context of this chapter there is
no conceptual difference between the Dirac structures coming from constraint distributions or from
symplectic foliations of Poisson manifolds. The constructed discretizations should thus preserve the
symplectic leaves. This is somewhat complementary to the strategy of chapter 4, where the main tool
is rather Hamiltonian dynamics and symplectic groupoids.

We suppose that these technical questions deserve a separate study ([33]) of the description of the
discrete variational principal for the general case and the related discussion of the implementation
issues. Some work on Dirac computational dynamics has been started (see [50]) while a study on
applications and consequences in numerical analysis of chapter 5 still needs to be done.

We also remark that cohomological assumptions of theorems 5.2.1 and 5.2.14 are sufficient but not
necessary. For instance, the construction applies to quasi Dirac structures, i.e. non-involutive ones. In
addition, the integration of the cocycle rωDs can be considered while the Dirac structure is restricted
to a leaf. We hope those last remarks to enlarge the class of potential applications.

6.2 Hamiltonian Poisson integrators : analysis for discrete trajecto-
ries and Zeitlin’s model

This sections provides a conclusion and some future directions of research about Poisson integrators.
Some computations on Lagrangian bi-sections of a local model of the local symplectic groupoid

of a Poisson structure π lead us to the Hamilton-Jacobi equation. Given a bi-realisation W and a
Hamiltonian H, it gave in turn the construction, for any order k and any time-step ϵ, of a Hamiltonian
Poisson integrator φkϵ of H. This construction provides two properties to φkϵ :

• it is a Poisson automorphism,

• x and φkϵ pxq are on the same leaf of the Poisson structure.

We also observed numerically a good stability around a singularity of the considered system.
Using Magnus formula, we think the existence of a time-dependent Hamiltonian recovering φkϵ

might be deeply related to the behaviour of Hamiltonian Poisson integrators for long run simulations
and we plan to work on consequences of this existence property.
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This work is presented for finite dimensional Poisson structures, while an interesting class of
problems in computational dynamics lie in the framework of infinite dimensional Poisson geometry
(see [1] for lectures on Poisson geometry in fluid mechanics). We suggest a relation between both by
the example of Zeitlin’s model ([77]) for incompressible fluid.

Hamiltonian Poisson integrators might be used there ([12]) and provide interesting geometric fea-
tures. The question of the relation inbetween the existence of a time-dependent Hamiltonian recovering
a Hamiltonian Poisson integrator and its behaviour for long run simulations is also relevant in that
framework. Furthermore, a better theoretical understanding of Zeitlin’s model may lead to its ex-
tension at other Poisson partial differential equations and open a new direction towards geometric
integrators for those PDEs.
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.1 Local symplectic groupoids

This appendice aims at summarizing the theory and prove the theorems we need about local symplectic
groupoids for the construction of Hamiltonian Poisson integrators. It is mainly based on [69, 16, 61,
22]. A better presentation will be given soon, as well as a better statement and a proof of theorem
.1.20.

.1.1 Local Lie groupoids

Definition .1.1 (Local Lie groupoid, [69]). A local Lie groupoid is the following data:

• a manifold G called the space of arrows,

• a manifold M called the base space,

• two surjective submersions α and β from G to M, respectively called the source and target,

• a neighborhood V of G ˆM
Ť

M ˆ G in the fiber product G ˆα β G and a smooth map m : V Ñ

G : pa, bq ÞÑ a ¨ b called the local product,

• a map inv: V ö : a ÞÑ a´1 called the inverse.

This data is assumed to verify the following properties: for every pa, b, cq P G3 such that pa, bq, pb, cq,
pa ¨ b, cq and pa, b ¨ cq are in V,

• pa.bq.c “ a.pb.cq, i. e. the local product is associative,

• αpa ¨ bq “ αpaq and βpa ¨ bq “ βpbq,

• a ¨ ipβpaqq “ ipαpaqq ¨ a “ a,

• a ¨ a´1 “ ipαpaqq and a´1 ¨ a “ ipβpaqq.

This local Lie groupoid will be denoted by its space of arrows G.

Remark .1.2. It can be shown, see chapter III of [51], that :

1. the inverse is a diffeomorphism,

2. the identity section is an immersion.

Remark .1.3. Any neighborhood of M in G is again a local Lie groupoid by restriction of the
structural maps α and β and shrinking of V.

Since what matters in the present appendix lies in any neighborhood of M and using the previous
remark, we will assume that the source has connected fibers. Notice that it implies the same property
for the target.

Remark .1.4. The local product might be understood as follows. Given a P G, a.b exists and is in G
if and only if βpaq “ αpbq and b is sufficiently close to the identity section.

The existence of a local product allows to define invariant vector fields on G.



.1. LOCAL SYMPLECTIC GROUPOIDS 94

Definition .1.5. Let X P XpGq. X is said to be left invariant (resp. right invariant) if for any
pa, bq P V,

X ˝ Lapbq “ TbLaXpbq, (1)

respectively
X ˝Rbpaq “ TaRbXpaq, (2)

where La denotes the left translation by a and Rb denotes the right translation by b.

Remark .1.6. Equations (1) and (2) imply respectively that for any pa, bq P V, if X is left invariant:

Φt
Xpa ¨ bq “ a ¨ Φt

Xpbq (3)

and if X is right invariant:
Φt
Xpa ¨ bq “ Φt

Xpaq ¨ b. (4)

Proposition .1.7. Let X and Y two vector fields on G such that X is left invariant and Y is right
invariant. Then,

rX,Y s “ 0 (5)

Proof. Using remark .1.6, the flows of X and Y commute: for any a P G, any t P R such that
Φt
Xpipβpaqqq exists and any s P R such that Φs

Y paq exists,

Φs
Y ˝ Φt

Xpaq “ Φs
Y paq ¨ Φt

Xpipβpaqq (6)

“ Φt
X ˝ Φs

Y paq. (7)

.1.2 Local symplectic groupoids

Multplicative symplectic structures on local Lie groupoids – in the following sense – allow to study
Poisson structures and are used in the present manuscript to study Hamiltonian dynamics on them.

Definition .1.8 (Local symplectic groupoid). pG,Ωq is said to be a local symplectic groupoid if G is
a local Lie groupoid equipped with the symplectic form Ω and if Ω is multiplicative:

m˚Ω “ ppr1q˚Ω ` ppr2q˚Ω, (8)

where for i “ 1, 2, pri : V Ñ G : pa1, a2q ÞÑ ai.

Thanks to the multiplicative symplectic form Ω, the musical isomorphism from TG to T ˚G relates
invariant vector fields on G to pull-back of 1-forms through source and target by the following lemma:

Proposition .1.9. There is a 1-1 correspondence between:

• left (resp right) invariant vector fields on G,

• pull-backs of 1-forms on M through the target map (resp. the source map).
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Proof. Let X P XpGq a left invariant vector field and set ζ “ ΩpX, .q P Ω1pGq.

A consequence of the multiplicativity of Ω is the fact that translations are symplectomorphisms.
Combining this observation with the left invariance of X:

@Y P XpGq, @a P G, ζ ppLaq˚Y q “ ζpY q ˝ La, (9)

inducing ζ P Im
`

β˚ : Ω1pMq Ñ Ω1pGq
˘

as a consequence. ζ is unique by non-degeneracy of Ω and
that proves the correspondence for left invariant vector fields, the one for right invariance vector fields
being proven the same way.

Remark .1.10. Since T ˚M is the algebroid of G, this correspondence might be extended in the more
general setting of algebroids, although such generalities are not required for the present manuscript.

Let us introduce the following notations: we will write ÐÝ
ξ for the left invariant vector field associated

to the 1-form ζ P Ω1pMq and ÝÑ
ξ for the right invariant one. The commuting property between pull-

packs and the de Rham differential gives the immediate

Corollary .1.11. For any Hamiltonian H P C8pMq,
ÐÝdH is the Hamiltonian vector field of β˚H while

ÝÑdH is the Hamiltonian vector field of α˚H.

Let us give a first geometric property of G seen as a symplectic manifold.

Proposition .1.12. The identity section i is a Lagrangian embedding of the base space M into the
arrow space G.

Proof. M is isotropic by multiplicity of Ω. Furthermore, the graph of m in G3 is at the same time of
dimension 2 dim G ´ dimM by rank-nullity theorem and if dimension 3

2 dim G by (8).

Lemma .1.13. @pf, gq P C8pMq2, tα˚f, β˚guΩ “ 0.

Proof. Thanks to the corollary .1.11, a proof is given by the following observation that the flow of a
left invariant vector field preserves the source.

This last lemma can be rephrased as follows: the source and target fibers are symplectically dual
to each other. It admits an important consequence:

Proposition .1.14. There exists a unique Poisson structure on M such that the source α is Poisson.

Proof. Jacobi relation for t., .uΩ gives for any pf, g, hq P C8pMq

ttα˚f, α˚guΩ, β
˚huΩ “ 0. (10)

Using lemma .1.13, one obtains that tα˚f, α˚guΩ P C8pGq is invariant on fibers of α: there exists a
smooth function on M such that its pull-back by α is tα˚f, α˚guΩ. The transformation taking f and
g to this smooth function verifies axioms of a Poisson bracket and that concludes the proof.
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.1.3 Lagrangian bisections

Definition .1.15. A submanifold L of G is a Lagrangian bi-section if:

1. L is Lagrangian,

2. α and β restrict to L as diffeomorphisms from L to M.

Proposition .1.16. Set ϕL “ β ˝ α´1
|L : M Ñ M. ϕL is a Poisson automorphism.

Proof. L induces a symplectomorphism ξL of G by right translations. We set, for any a P G,

χLpaq “ a ¨ α´1
|L ˝ βpaq. (11)

Since L is Lagrangian, pχLq˚Ω “ Ω. Besides, let us observe that the following diagram commute:

G G

M M

χL

β β

ϕL

, (12)

from which we obtain, for any f and g in C8pMq,

β˚pϕLq˚tf, guπ “ pχLq˚β˚tf, guπ (13)

“ ´tpβξLq˚f, pβξLq˚guΩ (14)

“ β˚tpϕLq˚f, pϕLq˚guπ (15)

which concludes by injectivity of β˚ : C8pMq Ñ C8pGq.

Example .1.17. The identity section is a Lagrangian bi-section inducing the identity on M.

Remark .1.18. The set of Lagrangian bisections of G can be equipped with a group law (see, for
instance, [61]). Since the right translation of the product of two Lagrangian bi-sections is the compo-
sition of the two translations, the commutativity of the diagram (12) provides the following formula:
for L and K two Lagrangian bisections,

ϕL¨K “ ϕL ˝ ϕK . (16)

Proposition .1.19. Let H P C8pMq and t such that the Hamiltonian flow Φt
α˚H of α˚H exists. Set

L “ Φt
α˚HpMq. Then:

1. L is a Lagrangian bi-section,

2. it induces ϕL “ Φt
H on M.

Proof. L is a Lagrangian submanifold because Φt
α˚H is a symplectomorphism. Let us show that it is

a bi-section.
Let x P M and let us show that there exists a unique a P L such that βpaq “ x. From lemma .1.13,

we obtain
β ˝ Φt

α˚H “ β (17)

and so a “ Φt
α˚Hpipxqq suits. It is unique by (17).
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Let us show that there exists a unique a P L such that αpaq “ x. Since Xα˚H “
ÝÑdH, applying (4)

to ÝÑdH:
inv

`

Φt
α˚HpMq

˘

“ Φ´t
α˚HpMq (18)

Since α “ β ˝ inv, a similar argument as the one used for β above allows to conclude that L is indeed
a Lagrangian bi-section.

We are left to prove that ϕL “ Φt
H . Let f be a smooth function on M. Thanks to the diagram

(12):

β˚ d
dt

ˇ

ˇ

ˇ

ˇ

t“0
f ˝ ϕL “

d
dt

ˇ

ˇ

ˇ

ˇ

t“0
f ˝ β ˝ χL (19)

“ ´tβ˚f, β˚HuΩ. (20)

We conclude by anti-Poisson and surjectivity properties of β.

.1.4 Local product of a bi-realisation

This theorem is proved in chapter III of [16], pages 37-44.

Theorem .1.20. Let U a tubular neighborhood of M in T ˚M equipped with the canonical symplectic
form ω and α and β two surjective submersions from U to M such that:

1. α and β are respectively Poisson and anti-Poisson,

2. for every f and g in C8pMq, tα˚f, β˚gu “ 0,

3. α and β are left inverses of the identity section, meaning α|M “ β|M “ idM .

Then, there exists a tubular neighborhood Ũ Ă U on which a local product is defined. This local product
induces on Ũ the structure of a local symplectic groupoid over M.
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