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Résumé

Dans cette thèse, nous proposons des constructions efficaces de primitives cryptographiques
avec des fonctionnalités avancées. Nous nous concentrons sur des primitives qui permettent des
applications préservant la confidentialité, telles que la recherche sur des données chiffrées ou le
vote électronique, avec une sécurité prouvable dans le modèle de l’oracle aléatoire (ROM). En
particulier, nous construisons des schémas de chiffrement avec recherche (SSE) et des schémas de
signature aveugle.

SSE permet à un client d’effectuer des requêtes par mots-clés sur une base de données chiffrée
stockée sur un serveur distant. Pour obtenir le résultat, le serveur effectue souvent un grand
nombre d’accès aléatoires à la mémoire. En conséquence, le débit mémoire d’un schéma SSE
est souvent le principal goulot d’étranglement. Pour nos constructions, nous proposons d’abord
des variantes de schémas de hachage classiques qui permettent l’allocation d’éléments pondérés.
Sur la base de ces variantes, nous construisons plusieurs schémas SSE avec une bonne efficacité
mémoire sur les supports de stockage modernes. Cela inclut Pluto, un schéma SSE statique
avec une efficacité mémoire optimale, et Hermes, un schéma SSE dynamique avec une efficacité
mémoire sous-logarithmique et sécurité persistante.

Les signatures aveugles servent d’outil fondamental pour les applications préservant la
confidentialité (par exemple, le vote électronique, les jetons confidentiels d’authentification, les
chaînes de blocs). Nous présentons deux cadres optimisés pour construire des signatures aveugles
dans le ROM. Nous instancions chaque cadre dans le contexte des couplages et obtenons des
signatures aveugles efficaces avec un nombre optimal de tours sous des hypothèses standards.
La première construction est une variante hautement optimisée de la construction générique de
signature aveugle de Fischlin (CRYPTO’06). Notre deuxième construction est une construction
semi-générique à partir d’une classe spécifique de schémas de signature randomisables qui admet
une réduction tous-sauf-un.

Mots clés : Chiffrement avec Recherche, Hachage Pondéré, Signature Aveugle
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Abstract

In this thesis, we propose efficient constructions of cryptographic primitives with advanced
functionalities. We focus on primitives that enable privacy-preserving applications, such as
encrypted search or electronic voting, with provable security in the random oracle model (ROM).
In particular, we construct searchable symmetric encryption (SSE) and blind signature schemes.

SSE allows a client to perform keyword queries on an encrypted database stored on a distant
server. To obtain the result, the server often performs a large number of random memory accesses.
In consequence, the memory throughput of an SSE scheme is often the main bottleneck. For our
constructions, we first propose variants of classical hashing schemes that allow for allocation of
weighted items. Based on these variants, we construct several SSE schemes with good memory
efficiency on modern storage media. This includes Pluto, a static SSE scheme with optimal
memory efficiency, and Hermes, a dynamic SSE scheme with sublogarithmic memory efficiency
and forward security.

Blind signatures serve as a foundational tool for privacy-preserving applications (e.g., electronic
voting, privacy-authentication tokens, blockchains). We present two optimized frameworks to
construct blind signatures in the ROM. We instantiate each framework in the pairing setting
and obtain efficient round-optimal blind signatures under standard assumptions. The first
construction is a highly optimized variant of the generic blind signature construction by Fischlin
(CRYPTO’06). Our second construction is a semi-generic construction from a specific class of
randomizable signature schemes that admits an all-but-one reduction.

Keywords: Searchable Symmetric Encryption, Weighted Hashing, Blind Signature
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Chapter

1
Introduction en Français

Dans ce chapitre, nous présentons un aperçu de nos contributions et des travaux connexes.
Nous donnons également un bref aperçu de l’ensemble de nos travaux et de l’organisation de ce
manuscrit.

Chapter content
1.1 Cryptographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Confidentialité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Chiffrement avec recherche . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Nos Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Signatures aveugles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Nos Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Publications associées et autres contributions . . . . . . . . . . . . . 9
1.6 Organisation du Manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Cryptographie

La cryptographie fournit des outils pour une communication sécurisée, souvent sous la forme
de primitives cryptographiques modulaires. La primitive la plus importante est peut-être le
chiffrement symétrique, où deux utilisateurs Alice et Bob partagent une clé secrète commune
K et cherchent à échanger des messages privés de manière sécurisée, c’est-à-dire qu’aucun tiers
(souvent appelé « adversaire ») ne doit apprendre d’informations sur les messages privés sans
connaître K. Pour ce faire, Alice chiffre son message m en utilisant le clé secrète K et un
algorithme de chiffrement Enc via c← Enc(K, m). Ensuite, Bob obtient le texte chiffré c et peut
récupérer m ← Dec(K, c) à l’aide d’un algorithme de déchiffrement Dec et de la clé K. Nous
appelons souvent une instantiation d’une telle primitive un schéma. Même si l’adversaire ne
peut pas exécuter l’algorithme de déchiffrement Dec sans K, il peut y avoir un autre moyen de
récupérer (des parties de) le message m à partir du texte chiffré c. Ainsi, les schémas sont analysés
cryptographiquement pour gagner en confiance dans leur sécurité : s’il n’existe aucune attaque
faisable, il est raisonnable de supposer qu’il est sécurisé. Les exigences que nous attendons d’un
schéma sécurisé sont formalisées dans des notions de sécurité, par exemple, il devrait être difficile
de distinguer si un texte chiffré donné chiffre soit m0 soit m1, même si l’adversaire peut choisir
les deux messages à sa guise. Ces notions de sécurité sont formalisées dans des jeux de sécurité,
où un challenger interagit avec un adversaire (qui cherche à gagner le jeu). Si un adversaire
parvient à gagner le jeu, il brise la sécurité du schéma. Ce cadre nous permet de classer les
attaques, voire de prouver mathématiquement qu’un schéma est (in)sécurisé pour une notion
donnée de sécurité.

Bien qu’il existe des schémas de chiffrement symétrique avec une sécurité parfaite [Sha49],
c’est-à-dire que le schéma est impossible à briser même pour un adversaire ayant une puissance de
calcul illimitée, ces schémas sont impraticables en raison des grandes clés secrètes qui augmentent
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avec la longueur du message. Il est donc souhaitable de construire des schémas efficaces au
détriment de la sécurité parfaite. En pratique, la sécurité contre les adversaires ayant une
puissance de calcul limitée est suffisante.

En 1973, IBM a introduit le Data Encryption Standard (DES)—un schéma de chiffrement
symétrique efficace conçu pour une utilisation pratique [oSN77]. Bien qu’il ait été démontré qu’il
était non sécurisé [BS93], les principes de sa conception guident la construction des primitives
modernes. De nos jours, il existe des schémas de chiffrement symétrique efficaces largement
considérés comme sécurisés, tels que AES [oSN01]. D’autres primitives symétriques avec des
fonctionnalités différentes sont également proposées. Un exemple important est celui des fonctions
de hachage (avec clé), qui créent un empreinte courte à partir de messages longs, et la sécurité
garantit qu’il est difficile de trouver deux messages distincts ayant la même empreinte. Un autre
exemple sont les Message Authentication Codes (MAC), qui peuvent créer des étiquettes sur des
messages à l’aide d’une clé privée K, et la sécurité garantit qu’il est impossible de falsifier une
étiquette pour des messages sans connaître K. Les MAC permettent par exemple l’authentification
des utilisateurs, c’est-à-dire qu’Alice peut vérifier si elle communique avec Bob et peut garantir
l’intégrité des données reçues. Cependant, il reste un inconvénient : Alice et Bob ont besoin
d’une clé secrète partagée K. Pour permettre une communication sans configuration fastidieuse
des clés K, une nouvelle approche est nécessaire.

Les fondements de cette direction ont été posés dans le travail fondamental de Diffie et
Hellman [DH76] dans lequel ils introduisent la cryptographie asymétrique. Dans le chiffrement
asymétrique, les deux parties communicantes n’ont pas besoin de partager une clé secrète
commune K, mais Bob peut chiffrer des messages pour Alice avec la clé publique pkA d’Alice.
Alice peut ensuite déchiffrer de tels textes chiffrés avec sa clé secrète skA, et la sécurité garantit
que les textes chiffrés ne divulguent aucune information sur le message à un adversaire n’ayant
pas accès à skA. Cette approche nécessite (au moins) l’existence de fonctions à sens unique,
c’est-à-dire de fonctions faciles à calculer mais difficiles à inverser, dont l’existence implique
P ̸= NP. À ce jour, la question de savoir si P ̸= NP reste non résolue, et les cryptographes
s’appuient sur des hypothèses de complexité calculatoire. Ces hypothèses indiquent qu’un
problème est difficile à résoudre pour un algorithme limité en puissance de calcul. Ensuite, les
cryptographes construisent des schémas et démontrent qu’ils sont sécurisés sous ces hypothèses.
Cette approche permet de créer divers schémas cryptographiques avec une sécurité démontrable
selon certaines hypothèses. D’autres primitives comprennent l’échange de clés, qui établit une clé
secrète commune entre Alice et Bob pour permettre une communication ultérieure sécurisée avec
des primitives symétriques (plus efficaces), ou les signatures numériques qui sont l’équivalent
asymétrique des MACs.

1.2 Confidentialité

Un objectif important de la cryptographie est de préserver la confidentialité des utilisateurs.
Lorsqu’un utilisateur interagit avec un système numérique, il divulgue souvent des informations
personnelles au système. Par exemple, si Alice stocke ses notes personnelles sur le serveur d’un
fournisseur de services cloud, celui-ci pourrait connaître le contenu de ses notes. De même, si Bob
vote en ligne pour son candidat préféré, le contenu de son bulletin de vote pourrait être divulgué
au système de vote. Ces informations privées pourraient être vendues à des tiers, mais même si le
fournisseur de services lui-même traite les informations privées avec soin et de bonnes intentions,
de telles informations privées pourraient être récupérées par un adversaire ayant compromis
le fournisseur, avec de graves conséquences. En raison de l’importance de la protection des
données personnelles, celle-ci est requise par la loi dans l’Union Européenne conformément au
règlement général sur la protection des données (RGPD). Le RGPD exige, par exemple, que
les données personnelles soient stockées de manière confidentielle et que le système réduise au
minimum la quantité d’informations personnelles qu’il traite. La cryptographie fournit les outils
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nécessaires pour garantir cela : le chiffrement permet le stockage de données confidentielles, et
les signatures numériques (ou les MAC) permettent l’authentification des utilisateurs qui sont
autorisés à accéder aux informations privées.

Fonctionnalités plus avancées. Alors que les primitives cryptographiques de base men-
tionnées précédemment fournissent certains outils pour garantir la confidentialité, les systèmes
complexes du monde réel nécessitent plus que simplement le chiffrement et les signatures. Par
exemple, lors du chiffrement de toutes les données stockées par Alice sur le cloud, il devient
difficile d’interagir avec les données ultérieurement. Alice peut souhaiter rechercher des notes
contenant le mot-clé cryptographie, mais si les données sont chiffrées, elle doit récupérer toutes
les notes et les parcourir elle-même pour les rechercher. De même, si Bob chiffre son vote et
l’envoie au système de vote, celui-ci ne peut pas calculer le résultat de l’élection sans être en
mesure de déchiffrer le texte chiffré. Cela pourrait conduire à l’idée que la cryptographie assure
des propriétés de sécurité souhaitables mais entrave apparemment la fonctionnalité.

Cependant, Alice et Bob ne sont pas limités à l’utilisation du chiffrement et des signatures : la
cryptographie moderne offre de nombreux autres outils. Des systèmes plus complexes, tels que la
recherche sur des données chiffrées ou le vote électronique (comme esquissé ci-dessus), nécessitent
des primitives cryptographiques avancées avec des fonctionnalités plus riches. Ces primitives sont
conçues pour avoir deux propriétés importantes : l’efficacité et la sécurité. Une efficacité concrète
est souhaitable car les schémas sont déployés dans des applications du monde réel. De même,
une sécurité démontrable est nécessaire pour garantir que les garanties de sécurité souhaitées du
système sont respectées, idéalement en se basant sur des hypothèses bien établies. L’objectif de
cette thèse est la conception de telles primitives avec un accent sur l’efficacité et la sécurité basées
sur des hypothèses standards. Nous présentons des constructions efficaces et démontrablement
sécurisées de chiffrement avec recherche et de signatures aveugles qui sont utilisées, par exemple,
dans le contexte de la recherche sur des données chiffrées et du vote électronique.

1.3 Chiffrement avec recherche

Les bases de données chiffrées sont une proposition attrayante. Une entreprise ou un hôpital peut
souhaiter externaliser sa base de données clients pour une disponibilité, une évolutivité ou une
persistance accrue, sans confier les données en clair à un service externe. Un service de messagerie
chiffrée de bout en bout peut souhaiter stocker et rechercher des messages d’utilisateurs sans les
déchiffrer. Dans une autre direction, même si une base de données sensible est stockée localement,
une entreprise peut souhaiter la conserver chiffrée afin de fournir une protection supplémentaire
contre les attaques et le vol de données. L’adoption par MongoDB de techniques de chiffrement
avec recherche est une autre illustration récente de la demande croissante de bases de données
chiffrées [Mon22]. Lors de l’externalisation du stockage d’une base de données chiffrée, une
fonctionnalité minimale souhaitable est la capacité d’effectuer des recherches dans les données.

Chiffrement avec recherche. La promesse du chiffrement avec recherche (SSE) est de
permettre à un client d’externaliser une base de données chiffrée de taille N vers un serveur non
fiable, tout en conservant la capacité d’effectuer des recherches sur les données [SWP00]. Au
minimum, le client est en mesure d’envoyer une requête de recherche pour récupérer tous les
identifiants de documents correspondant à un mot-clé donné. Dans le cas du SSE dynamique
(DSSE), le client est également en mesure de modifier le contenu de la base de données en envoyant
des requêtes de mise à jour, par exemple pour insérer ou supprimer des entrées. Le serveur
doit être capable de traiter correctement les requêtes, tout en apprenant le moins d’information
possible sur les données et les requêtes du client.
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Solutions avec une fuite minimale. Il existe des solutions bien étudiées à ce problème et
nous en donnons un bref aperçu ci-dessous.

La récupération privée d’informations (PIR) a été introduite dans [CGKS95]. En résumé, le
PIR permet à un utilisateur de récupérer la i-ème entrée d’une base de données de N bits détenue
par un ou plusieurs serveurs sans révéler quelle position a été consultée au(x) serveur(s). Avec le
PIR, le client peut chiffrer sa base de données et l’externaliser vers le serveur. Ensuite, il peut
récupérer l’élément souhaité sans divulguer aucune information au serveur. Malheureusement,
cette exigence de confidentialité élevée entraîne une surcharge de calcul et/ou de stockage côté
client [BIM04, CK20, Yeo23], même si une indication privée est stockée par le client pour améliorer
l’efficacité.

La mémoire RAM inconsciente (ORAM) permet à un client d’exécuter un programme sur un
serveur sans révéler les motifs d’accès à la mémoire [GO96]. En raison de ses solides garanties
de confidentialité, il est souvent utilisé dans la construction du chiffrement avec recherche
(e.g., [GMP16, KMO18, AM23]). Comme dans le cas du PIR, l’utilisation de l’ORAM entraîne
une surcharge importante en bande passante [GO96, LN18]. Ainsi, son utilisation est souvent
réduite aux parties du protocole de recherche chiffrée complet (e.g., [MM17, DCPP20]) au prix
d’une fuite supplémentaire.

Le chiffrement entièrement homomorphe (FHE) permet l’exécution de circuits arbitraires
sur des données chiffrées [Gen09]. La recherche par mot-clé dans une base de données peut
être modélisée comme un circuit de taille linéaire par rapport à la taille de la base de données.
Comme l’évaluation des circuits sur des données chiffrées est proportionnelle à la taille du circuit,
cette approche entraîne une surcharge de calcul importante du côté du serveur. Récemment,
un travail passionnant a construit un chiffrement entièrement homomorphe pour les calculs en
mémoire RAM [LMW22], ce qui permet l’exécution de programmes qui évolue avec la complexité
du programme RAM associé. Malheureusement, cette approche est actuellement peu pratique.

Compromis entre fuite d’information et sécurité. Par rapport aux solutions mentionnées
précédemment, une spécificité de la littérature sur le SSE est l’accent mis sur des solutions à
haute performance, adaptées au déploiement sur de grands ensembles de données du monde réel.
Des schémas de SSE efficaces sont conçus pour divulguer certaines informations sur la base de
données chiffrée et les requêtes. La fuite d’informations d’un schéma est généralement exprimée
par une fonction de fuite. La preuve de sécurité accompagnant un schéma de SSE fournit des
garanties formelles concernant les informations divulguées au serveur lors des recherches et des
mises à jour. Les approches historiques efficaces basées sur le chiffrement déterministe ou le
chiffrement préservant l’ordre [BCLO09] sont sujettes à de graves attaques en raison de la grande
quantité d’informations divulguées au serveur [NKW15, GLMP19]. Face à cette situation, la
recherche moderne sur le chiffrement avec recherche cherche à offrir des compromis raisonnables
entre performances, fonctionnalités et sécurité, adaptés au déploiement dans le monde réel.
Généralement, les informations divulguées incluent la taille totale de la base de données, la
répétition des requêtes et un identifiant (tel que l’adresse mémoire) des documents correspondant
à une requête.

Une propriété importante d’une fonction de fuite est la sécurité persistante. La sécurité
persistante exige que les mises à jour ne divulguent aucune information sur le mot-clé mis à jour
au serveur [SPS14]. La motivation de la sécurité persistante est qu’elle atténue certaines attaques
: les attaques les plus graves de [ZKP16] exploitent la fuite des mises à jour, et échouent sur les
schémas avec sécurité persistante.

Orientations. Depuis que le SSE a été introduit par Song et al. [SWP00], le domaine s’est
développé dans plusieurs directions différentes. En raison de l’ampleur de la littérature sur
le SSE, nous mettons en évidence quelques branches importantes. Dans la mesure où le SSE
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représente un compromis entre fonctionnalité, sécurité et efficacité, la recherche dans ce domaine
peut être grossièrement divisée en trois volets, correspondant à chaque composant du compromis.

Alors que les schémas de SSE sont souvent conçus pour permettre des requêtes de mots-clés
efficaces, certains travaux étendent la fonctionnalité fournie aux requêtes booléennes [CJJ+13],
aux requêtes de plage [PKV+14] ou même à des sous-ensembles de SQL [KM18].

Les travaux portant sur la sécurité incluent les attaques et les efforts visant à réduire la fuite
d’informations en réponse à ces attaques. La plupart des attaques contre le chiffrement avec
recherche relèvent de la catégorie des attaques par abus de fuite, un terme inventé dans [CGPR15].
Les attaques par abus de fuite ne contredisent pas les garanties de sécurité d’un schéma, mais
montrent comment la fuite d’informations autorisée par le modèle de sécurité permet au serveur
de reconstruire de grandes parties de la base de données dans certains contextes [CGPR15,
GLMP19]. Ces attaques ont motivé d’autres travaux visant à réduire ou à supprimer la fuite
d’informations [GKM21], y compris des constructions avec sécurité persistante [PM21, BMO17,
KMPQ21, EKPE18, DCPP22].

Parmi les travaux qui visent principalement l’efficacité, le développement le plus notable de
ces dernières années concerne l’efficacité en entrée/sortie (E/S).

Efficacité E/S. Pour des raisons de performance, la plupart des conceptions de SSE s’appuient
exclusivement sur des primitives cryptographiques symétriques qui ont un faible surcoût de calcul
en pratique. Par conséquent, le principal goulot d’étranglement de performance est déterminé par
la rapidité à laquelle les données peuvent être accédées sur le disque [CT14]. Cela a été formalisé
sous la notion de localité et d’efficacité de lecture. La localité demande que les données correlées
soient stockées dans un petit nombre d’emplacements disjoints sur le disque, et l’efficacité de
lecture demande que les surcoûts de lecture des données soient faibles. Cette notion est motivée
par le comportement d’E/S des disques durs (HDD), où les lectures disjointes sont beaucoup
plus coûteuses en termes de latence et de débit que les lectures contiguës.

La nécessité de stocker des données correlées à proximité n’est pas du tout anodine pour la
sécurité. Demander que les éléments de données correlées soient stockés à proximité crée une
corrélation entre l’emplacement d’un élément de données chiffrées en mémoire et son contenu.
Étant donné que le serveur peut observer l’emplacement des données qu’il est chargé de récupérer,
et que nous ne voulons pas que le serveur déduise des informations sur le contenu de ces données,
cela crée une tension entre la sécurité et l’efficacité. Autrement dit, la sécurité demande qu’il n’y
ait aucune corrélation entre l’emplacement des données et leur contenu, tandis que l’efficacité
E/S demande le contraire.

Cette tension a été exprimée dans un résultat d’impossibilité par Cash et Tessaro à Eurocrypt
2014 [CT14]. En bref, Cash et Tessaro montrent qu’un schéma SSE sécurisé avec un stockage
linéaire du serveur ne peut pas avoir à la fois une localité constante et une efficacité de lecture
constante. Cela est vrai même pour le SSE statique. Dans un autre travail phare, lors du
STOC 2016, Asharov et al. construisent un SSE avec une localité constante et une efficacité
de lecture en Õ (log N) - voire Õ (log log N) avec une légère restriction sur la base de données
en entrée [ANSS16]. Leur construction met en évidence une connexion profonde entre le
hachage pondéré et le chiffrement avec recherche local. Depuis l’introduction de l’efficacité
mémoire pour le SSE, de nombreuses constructions avec des accès mémoire efficaces ont été
proposées [CT14, ANSS16, ASS21, DP17a, MM17, DPP18].

1.3.1 Nos Contributions

Dans cette thèse, nous introduisons une mesure différente de l’efficacité E/S, appelée efficacité
des pages. L’efficacité des pages est le rapport entre le nombre de pages lues par le serveur pour
traiter une requête et le nombre de pages nécessaires pour contenir la réponse en texte clair.
Alors que la localité et l’efficacité de lecture capturent l’efficacité des schémas SSE lorsqu’ils
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sont exécutés sur des disques durs (HDD), notre notion est motivée par le comportement d’E/S
des disques à semi-conducteurs modernes (SSD). Nous construisons ensuite plusieurs schémas
avec une bonne efficacité des pages dans le cadre introduit dans [ANSS16] basé sur le hachage
pondéré.

Hachage pondéré. L’efficacité des pages consiste à stocker des identifiants liés dans un petit
nombre de pages. Il est naturel de considérer les pages comme des compartiments et les listes
d’identifiants correspondant à un seul mot-clé comme des balles d’un poids proportionnel à la
taille de la liste. Nous nous intéressons ensuite à une borne supérieure sur le poids total lorsque n
balles d’un poids total wtot sont réparties aléatoirement dans O(n) compartiments. Une meilleure
borne supérieure permet ensuite la construction de schémas SSE plus efficaces. Nous analysons
des variantes pondérées des problèmes classiques de répartition de balles dans des compartiments
non pondérés suivants :

– Dans l’allocation à choix unique (1C), chaque balle est insérée dans un seul compartiment
choisi au hasard. Le compartiment le plus chargé contient au plus O(log N) balles [JK77].

– Dans l’allocation à choix double (2C), chaque balle est insérée dans le compartiment le
moins chargé parmi deux compartiments choisis au hasard. Le compartiment le plus chargé
contient au plus O(log log n) balles [ABKU94].

– Dans le hachage coucou avec réserve [PR04, KMW10], chaque balle est insérée dans
l’un des deux compartiments choisis au hasard ou dans la réserve. Après une procédure
d’optimisation, chaque compartiment contient au plus une balle et la taille de la réserve est
minimale.

Une analyse pondérée de 1C est donnée en espérance dans [BFHM08], et nous incluons une borne
supérieure qui tient avec une probabilité écrasante pour plus de clarté. Notre variante de 2C est
une généralisation de l’allocation pondérée à choix double appelée L2C, conçue pour la preuve
de borne supérieure. Enfin, notre variante du hachage coucou repose sur un algorithme de flot
maximum pour l’optimisation globale. Toutes nos bornes dans le cas pondéré correspondent
asymptotiquement aux bornes dans le cas classique avec des poids uniformes et sont valables
avec une probabilité écrasante.

Chiffrement avec recherche à efficacité des pages. Ensuite, nous construisons plusieurs
schémas (D)SSE avec une bonne efficacité des pages basés sur nos variantes de hachage pondéré :

– Pluto : Du point de vue théorique, l’efficacité des pages constantes est une exigence
moins contraignante que la combinaison de la localité constante et de l’efficacité de lecture
constante. Fait intéressant, cette exigence moins contraignante contourne le résultat
d’impossibilité de Cash et Tessaro : nous construisons un schéma SSE statique avec une
efficacité des pages optimale appelé Pluto. La configuration nécessite un calcul de flot
maximum sur l’ensemble des données, ce qui rend le schéma inefficace pour les mises à jour.

– LayeredSSE : Nous utilisons notre généralisation pondérée de l’allocation à choix double L2C
pour construire un schéma SSE dynamique avec une efficacité des pages de Õ (log log N/p).
Le schéma révèle le schéma de requête pendant les mises à jour et n’a pas de sécurité
persistante. Néanmoins, c’est le premier schéma dynamique avec une efficacité des pages
sous-logarithmique.

– Hermes : Enfin, nous construisons un schéma DSSE avec sécurité persistante et une efficacité
des pages de Õ (log log N/p). Le schéma est basé sur LayeredSSE et des techniques nouvelles
telles que le tamponnement contrôlé du client et les mises à jour factices.
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1.4 Signatures aveugles

Les signatures aveugles ont été introduites dans [Cha82] et améliorent la fonctionnalité des
signatures numériques en fournissant des garanties de confidentialité supplémentaires. Alice et
Bob s’engagent dans un protocole interactif à la fin duquel Alice obtient une signature sur un
message de son choix signé par Bob. Les propriétés requises sont l’aveuglement et l’incapacité de
forger une signature supplémentaire. L’aveuglement stipule que si Alice présente ultérieurement
la signature à Bob, celui-ci ne peut pas relier la signature à une session de signature spécifique.
En particulier, Bob ne connaît pas le message signé pendant la session de signature. L’incapacité
de forger une signature supplémentaire signifie qu’Alice peut obtenir des signatures pour au plus
ℓ messages distincts à partir de ℓ sessions de signature.

Les signatures aveugles sont un élément fondamental dans de nombreuses applications préser-
vant la confidentialité, telles que les e-cash [Cha82, CFN90, OO92], les attributs anonymes [Bra94,
CL01], les votes électroniques [Cha88, FOO92], l’attestation anonyme directe [BCC04], les
blockchains [YL19, BDE+22] et les jetons d’authentification préservant la confidentialité [VPN22,
HIP+22]. Depuis l’introduction des signatures aveugles dans [Cha82], elles sont devenues un
vaste domaine de recherche. Nous donnons d’abord un bref aperçu des orientations de recherche
sur les signatures aveugles.

Signatures aveugles à plusieurs tours

Dans le modèle de l’oracle aléatoire (ROM), il existe des signatures aveugles en 3 étapes
efficaces [Sch90, Oka93, AO00]. Il est important de noter que dans le ROM, l’adversaire a accès
à un oracle représentant une fonction aléatoire idéalisée H. En pratique, H est souvent instantié
de manière heuristique avec une fonction de hachage résistante aux collisions. Dans leur travail
fondateur, Pointcheval et Stern [PS00] montrent que [Oka93] est sécurisé pour au plus un nombre
logarithmique de sessions de signature. Leur analyse a été généralisée et affinée dans [HKL19], et
un résultat similaire a été montré pour [AO00] dans [KLX22a]. Malheureusement, une attaque
récente [BLL+21] montre que la borne sur les sessions de signature concurrentes est atteinte.

Cette approche a ensuite été affinée, et il existe plusieurs signatures aveugles en 3 étapes [Abe01,
KLX22b, FPS20, TZ22] qui sont prouvées sûres dans le modèle générique de groupe (GGM)
ou dans le modèle algébrique de groupe (AGM), ainsi que dans le ROM. Dans le GGM et
l’AGM, l’adversaire est restreint à effectuer des attaques algébriques, c’est-à-dire qu’il utilise le
groupe en boîte noire. Ces constructions évitent l’attaque décrite dans [BLL+21] et peuvent être
instantiées de manière efficace en pratique. Notamment, [TZ22, KLX22b] offrent une sécurité
concurrente complète. Ces modèles sont moins souhaitables d’un point de vue théorique car
ils restreignent considérablement les capacités de l’adversaire. Dans le ROM, [BL13] montre la
sécurité séquentielle de [Abe01] sans groupes génériques, mais le signataire doit veiller à ce qu’au
plus une session de signature soit ouverte à tout moment.

Transformations d’amélioration. Une récente ligne de recherche [KLR21, CAHL+22] basée
sur [Poi98] propose des transformations d’amélioration génériques pour les signatures aveugles
avec une sécurité concurrentielle limitée. Malheureusement, l’efficacité calculatoire augmente
linéairement avec le nombre de signatures effectuées. Récemment, [HLW23] propose une con-
struction concrète basée sur les couplages dans le ROM avec une bonne efficacité qui est optimale
en nombre de tours (cf. ci-dessous).

Signatures aveugles optimal en nombre de tours

Une propriété souhaitable pour les signatures aveugles est de pouvoir réaliser une session de
signature en deux tours, c’est-à-dire que deux messages sont échangés pour obtenir une signature.
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Il existe plusieurs résultats d’impossibilité [Lin08, FS10, Pas11] qui indiquent qu’une configuration
de confiance, un modèle idéalisé ou des hypothèses non standards sont nécessaires.

Exploitation de la complexité et hypothèses interactives. Il existe des signatures aveugles
optimales en termes de tours [GRS+11, GG14] qui contournent les résultats d’impossibilité pour
construire des signatures aveugles dans le modèle standard en utilisant l’exploitation de la
complexité (« complexity leveraging » en anglais). [KNYY21] parvient à éviter l’exploitation
de la complexité en s’appuyant à la fois sur des hypothèses post-quantiques et des hypothèses
classiques. Les schémas mentionnés ci-dessus sont principalement d’intérêt théorique et ne sont
pas pratiques.

Chaum [Cha82] donne une construction simple basée sur la signature RSA classique, qui
a ensuite été démontrée sécurisée dans [BNPS03] sous une hypothèse One-more RSA et dans
le ROM. Plus tard, [Bol03, AKSY22] proposent des schémas similaires dans des contextes
différents, sécurisés sous une hypothèse one-more comparable dans le ROM. De plus, il existe des
constructions dans le modèle standard [AFG+10, FHS15, FHKS16, Gha17] qui reposent sur des
hypothèses interactives adaptées en termes de difficulté. Les constructions mentionnées ci-dessus
sont efficaces mais reposent sur des hypothèses de sécurité interactives. Cela est acceptable d’un
point de vue pratique car les hypothèses ne sont pas encore compromises. Mais d’un point de
vue théorique, cela est moins satisfaisant : les hypothèses interactives ne sont pas falsifiables et
donc moins souhaitables [Nao03].

Configuration de confiance. Dans le cadre des couplages, il existe plusieurs signatures
aveugles optimales en termes de tours avec une configuration de confiance [MSF10, SC12, KSD19]
dans le modèle standard. Encore une fois, ces schémas sont moins pratiques et la configuration de
confiance est structurée, c’est-à-dire non uniforme. Cela entrave le déploiement pratique car une
trappe peut être intégrée dans les paramètres du schéma. Il existe d’autres schémas [BFPV13,
AJOR18] avec une configuration uniforme que nous discutons ci-dessous.

Constructions dans le ROM. Il existe quelques constructions efficaces sécurisées dans le
ROM avec une sécurité concurrentielle complète. Nous en donnons un bref aperçu.

Dans le cadre des réseaux de lattice, del Pino et Katsumata [dK22] proposent une signature
aveugle optimale en nombre de tours avec des tailles de signature et de communication de 100
Ko et 850 Ko.

Hanzlik et al. [HLW23] optimisent l’approche des transformations de renforcement dans le
cadre des couplages. Ils fournissent des signatures aveugles avec différents compromis sécurisés
sous l’hypothèse CDH. Une instance donne par exemple une taille de signature de 5 Ko avec une
taille de communication de 72 Ko, sous l’hypothèse CDH.

De plus, il existe des constructions dans le cadre des couplages avec une configuration de
confiance composée d’éléments de groupe aléatoires [BFPV13, AJOR18]. Blazy et al. [BFPV13]
construit des signatures aveugles basées sur la signature de Waters [Wat05] avec seulement deux
éléments de groupe, c’est-à-dire 96 B, mais avec une communication importante, par exemple
220 KB pour des messages de 256 bits. Abeet al. [AJOR18] instancie la signature aveugle de
Fischlin [Fis06] pour obtenir des signatures aveugles d’une taille de 5,8 Ko avec environ 1 Ko de
communication. Avec des techniques standards, la configuration de confiance peut être supprimée
dans le ROM.

Une question intéressante est jusqu’où nous pouvons optimiser les signatures aveugles (opti-
males en termes de tours) dans le ROM compte tenu des progrès récents.
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1.4.1 Nos Contributions

Nous présentons deux signatures aveugles optimales en termes de tours basées sur des hypothèses
standards liées aux groupes et le ROM dans le cadre de l’couplage asymétrique. La première
construction a une taille de signature de 447 B et une taille de communication de 303 B. Dans
le ROM, elle présente la plus petite taille de communication parmi toutes les constructions
précédentes prouvées sous des hypothèses standards, et c’est la première construction où la
somme de la taille de signature et de la taille de communication est inférieure à 1 Ko. La
deuxième construction a une taille de signature de 96 B et une taille de communication de
2.2 KB. Bien qu’elle ait une taille de communication plus grande par rapport à notre première
construction, la signature ne comprend que 2 éléments de groupe, correspondant à la taille
précédemment la plus courte selon Blazyet al. [BFPV13], tout en améliorant simultanément leur
taille de communication d’environ deux ordres de grandeur. Les deux constructions ont des
variantes partiellement aveugles efficaces.

Pour notre première construction, nous revisitons la construction générique de signature
aveugle de Fischlin [Fis05] et affaiblissons progressivement les composants nécessaires selon
Fischlin et montrons que la signature aveugle peut être instanciée de manière beaucoup plus
efficace dans le ROM que précédemment grâce à un choix judicieux des composants.

Pour notre deuxième construction, nous reprenons l’idée de Blazy et al. [BFPV13] en nous
appuyant sur des signatures « randomisables ». Nous construisons une signature aveugle basée sur
les signatures Boneh-Boyen [BB04a] et une preuve de connaissance nulle non interactive extrayable
en ligne obtenue via la transformation de Fiat-Shamir appliquée à Bulletproofs [BBB+18] et à
un Σ-protocol pour certaines déclarations liées à ElGamal.

1.5 Publications associées et autres contributions
Nous donnons un aperçu concis de nos publications personnelles.

– Non-interactive Keyed-Verification Anonymous Credentials [CR19]. Les anony-
mous credentials avec keyed-verification sont des protocoles qui permettent l’authentification
d’utilisateurs autorisés auprès d’une autorité désignée sans compromettre leur vie privée.
Un schéma est dit non interactif si le processus d’authentification ne nécessite qu’un seul
message envoyé par l’utilisateur qui dissimule toujours son identité. Nous construisons le
premier schéma de justificatif d’identité anonyme avec vérification par clé non interactif
dans le modèle standard, sans pairings. Nous y parvenons en nous appuyant sur une
combinaison de MAC algébrique avec une NIZK avec vérificateur désigné approprié dans
le modèle standard. Pour cela, nous introduisons la notion des NIZK inconscientes, où le
prouveur peut générer des preuves non interactives pour des énoncés qu’il ne peut pas véri-
fier lui-même, ne disposant que d’une partie du témoin correspondant, et où la preuve peut
être vérifiée efficacement en fournissant la partie manquante du témoin. Nous proposons
une construction optimisée d’une preuve NIZK avec vérificateur désigné insoupçonnable
nécessitant une configuration de confiance dans le modèle standard.
Cet article est le résultat de notre mémoire de licence et a été publié dans les actes de la
conférence PKC en 2019.

– Efficient Range Proofs with Transparent Setup from Bounded Integer Commit-
ments [CKLR21]. Nous introduisons une nouvelle approche pour construire des preuves
d’intervalles efficaces. Notre approche repose sur une transformation qui transforme tout
engagement sur un corps fini en un schéma d’engagement permettant de s’engager et de
prouver efficacement des relations concernant des entiers bornés. Bien que la transformation
restreigne modérément les propriétés homomorphiques, elle permet d’instancier l’approche
pour des preuves d’intervalle basées sur la décomposition en carrés dans divers contextes.
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Il s’agit d’un paradigme qui était auparavant limité aux preuves d’intervalle basées sur
RSA. Nous instancions l’approche pour améliorer l’état de l’art dans les paradigmes du
logarithme discret, des réseaux et des groupes de classes.
Cet article est le résultat de notre mémoire de Master et a été publié dans les actes de la
conférence Eurocrypt en 2021.

– SSE and SSD: Page-Efficient Searchable Symmetric Encryption [BBF+21]. Le
goulot d’étranglement des performances des schémas SSE classiques provient généralement
du coût des accès mémoire. Nous constatons que pour les nouveaux supports de stockage
tels que les disques SSD (Solid State Drives), la notion classique de localité n’est pas un
bon prédicteur des performances pratiques. Au lieu de cela, les performances des SSD
dépendent principalement de l’efficacité des pages, c’est-à-dire de la lecture du moins de
pages possible. Nous définissons cette notion et identifions un problème simple d’allocation
mémoire qui représente le principal défi technique nécessaire pour construire une SSE
efficace en termes de pagination. Nous construisons un schéma SSE statique optimal en
termes d’efficacité de pagination et d’efficacité de stockage, appelé Tethys, ainsi que les
variantes Pluto et Nilus. Le cœur technique de ce résultat est une nouvelle généralisation
du hachage coucou aux éléments de taille variable.
Cet article a été publié dans les actes de la conférence Crypto en 2021.

– Dynamic Local Searchable Symmetric Encryption [MR22]. Nous proposons les
premières constructions dynamiques pour les SSE avec sous-logarithmique efficacité des
pages et localité. Pour les DSSE avec une taille de page p, nous construisons un schéma
avec une efficacité de stockage O(1) et une efficacité des pages Õ (log log(N/p)), appelé
LayeredSSE. L’innovation technique principale derrière LayeredSSE est une nouvelle exten-
sion pondérée du processus d’allocation à deux choix. Ensuite, nous introduisons le Generic
Local Transform, qui prend en entrée un schéma DSSE efficace en termes efficacité des
pages avec certaines caractéristiques, et produit un schéma SSE avec de fortes propriétés
de localité. Nous appliquons le Generic Local Transform à LayeredSSE et obtenons un
schéma DSSE avec une efficacité de stockage O(1), une localité O(1) et une efficacité de
lecture Õ (log log N), à condition que la liste la plus longue ait une taille O(N1−1/ log log λ).
Enfin, nous appliquons le Generic Local Transform à une variante de Tethys [BBF+21] et
obtenons un SSE statique inconditionnel avec une efficacité de stockage O(1), une localité
O(1) et une efficacité de lecture O(logε N), pour une constante arbitrairement petite ε > 0.
Cet article a été publié dans les actes de la conférence Crypto en 2022.

– Sharp: Short Relaxed Range Proofs [CGKR22]. Nous fournissons des techniques
d’optimisation des preuves d’intervalles basées sur la décomposition en carrés et obtenons
des preuves d’intervalles optimisées dans les groupes de logarithmes discrets. Ces techniques
incluent des tests de courte longueur en batch pour les fractions, une Σ-protocol optimisée
pour montrer qu’une valeur engagée est la somme de 3 carrés, et une méthode pour
changer de groupe au sein d’une Σ-protocol pour améliorer l’efficacité. Comme nos preuves
d’intervalles satisfont une notion de sécurité « relaxée », nous montrons comment renforcer
leur sécurité avec un élément de groupe d’ordre caché supplémentaire. Nous esquissons
également des applications des preuves d’intervalle relaxées, telles que les justificatifs
d’identité anonymes et les transactions anonymes.
Cet article a été publié dans les actes de la conférence CSS en 2022.

– Hermes: I/O-Efficient Forward-Secure Searchable Symmetric Encryption [MR23].
Nous construisons le premier schéma DSSE à chiffrement avec sécurité persistante et sous-
logarithmique efficacité des pages appelé Hermes. Notre construction repose sur deux
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nouvelles techniques. Premièrement, nous utilisons une quantité contrôlée de mise en
mémoire butoir côté client, combinée à un arrangement de mises à jour déterministe.
Deuxièmement, nous introduisons la notion de SSE prenant en charge des dummy updates.
En combinant ces deux techniques, nous offrons une nouvelle voie pour réaliser la sécurité
persistante, qui est compatible avec l’efficacité E/S. Hermes atteint une efficacité des pages
Õ
(
log log N

p

)
, une efficacité de stockage constante, et présente une fuite standard avec une

sécurité persistante.
Cet article va être publié dans les actes de la conférence Asiacrypt en 2023.

– Practical Round-Optimal Blind Signatures in the ROM [KRS23]. Nous présentons
deux signatures aveugles de complexité optimale dans le ROM avec des approches différentes
: l’une atteint la somme la plus petite des tailles de signature et de communication, tandis
que l’autre atteint la plus petite taille de signature. Nos deux instanciations sont basées
sur des hypothèses standards sur les groupes de couplage asymétriques. Notre première
construction est une variante hautement optimisée de la construction générique de signature
aveugle de Fischlin, avec des tailles de signature et de communication respectivement 447 B
et 303 B. Nous affaiblissons progressivement les blocs de construction requis par Fischlin
et obtenons la première signature aveugle dont la somme des tailles de signature et de
communication est inférieure à 1KB. Notre deuxième construction est une construction
semi-générique issue d’une classe spécifique de schémas de signature randomisables qui
admet une réduction tous-sauf-un. La taille de la signature est seulement 96 B tandis que
la taille de la communication est 2.2 KB. Cela correspond à la plus petite taille de signature
connue précédemment tout en améliorant la taille de la communication de plusieurs ordres
de grandeur. Nos deux constructions reposent sur une analyse fine (non boîte noire) du
lemme de bifurcation.
Cet article va être publié dans les actes de la conférence Asiacrypt en 2023.

– Mergeable Searchable Encryption and Applications [BMR23]. Nous introduisons
une vision alternative de SSE dynamique, où le protocole de mise à jour est remplacé
par un protocole de fusion (Merge). Le protocole Merge prend en entrée les identifiants
de deux bases de données et les fusionne en une seule base de données. Le protocole de
mise à jour traditionnel peut être retrouvé en tant que cas particulier de Merge, où l’une
des deux bases de données d’entrée est constituée d’une seule entrée (la nouvelle mise
à jour), tandis que l’autre est constituée de l’ensemble du reste de la base de données.
La plus grande flexibilité d’une opération de fusion ouvre de nouvelles opportunités en
termes d’efficacité et de sécurité. En pratique, cela imite le comportement des arbres de
fusion log-structurés, largement déployés dans le monde des bases de données en texte clair.
Nous illustrons cette polyvalence en construisant d’abord une instantiation efficace de SSE
fusionnable et l’utilisons pour dériver plusieurs applications, également dans le domaine de
SSE traditionnelle. Cela comprend la première DSSE avec une bonne efficacité des pages
sans état client avec sécurité persistante.
Cet article est en cours de soumission.

1.6 Organisation du Manuscrit

Cette thèse est organisée en sept chapitres comme suit.

– Le chapitre 2 est l’introduction du présent document.

– Le chapitre 3 introduit les notations utilisées tout au long de la thèse, et rappelle certaines
définitions, notions et résultats fondamentaux.
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– Le chapitre 4 présente des variantes pondérées des variantes classiques de hachage. Ce
chapitre contient du contenu issu de [BBF+21, MR22, BMR23], bien que nous généralisions
le hachage coucou avec des poids entiers (comme dans [BBF+21]) à des poids réels.

– Le chapitre 5 introduit la notion d’efficacité des pages et construit deux schémas efficaces
en termes de pages, Pluto et LayeredSSE. Les constructions utilisent les variantes pondérées
de hachage du chapitre 4. Ce chapitre est basé sur [BBF+21, MR22].

– Le chapitre 6 présente le premier schéma SSE à sécurité avancée avec une efficacité mémoire
sub-logarithmique. La construction s’appuie sur LayeredSSE et est basée sur [MR23].

– Le chapitre 7 présente deux constructions efficaces de signatures aveugles dans le ROM
basées sur des hypothèses standards. Ce chapitre est basé sur [KRS23].

– Le chapitre 8 donne un aperçu de nos résultats et discute de certains problèmes ouverts.



Chapter

2
Introduction

In this chapter, we give an overview of our contributions and related work. We also give a brief
overview of all our works and the organization of this manuscript.
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2.1 Cryptography
Cryptography provides tools for secure communication, often in the form of modular cryptographic
primitives. The most important primitive is perhaps symmetric encryption, where two users
Alice and Bob share a common secret key K and aim to exchange private messages securely,
i.e., no third party (often referred to as adversary) should learn information about the private
messages without knowledge of K. To this end, Alice encrypts her message m using her secret key
K an encryption algorithm Enc via c← Enc(K, m). Then, Bob obtains the ciphertext c, and can
recover m← Dec(K, c) via some decryption algorithm Dec and the key K. We often refer to an
instantiation of such a primitive as scheme. Even if the adversary cannot execute the decryption
algorithm Dec without K, there might be another way to recover (parts of) the message m from
the ciphertext c. Thus, schemes are cryptanalyzed to gain confidence in their security: if no
attack works it is reasonable to assume that it is secure. The requirements we expect from a
secure scheme are captured in security notions, e.g., it should be hard to distinguish whether
a given ciphertext encrypts either m0 or m1, even if the adversary can choose both messages
at will. Such security notions are formalized in security games, where a challenger interacts
with an adversary (that intends to win the game). If an adversary manages to win the game, it
breaks the security of the scheme. This framework allows us to classify attacks, or even prove
mathematically that a scheme is (in)secure for a given notion of security.

While there are symmetric encryption schemes with perfect security [Sha49], i.e., the scheme
is impossible to break even for an adversary with unbounded computational power, these schemes
are impractical due to large secret keys that scale with the length of the message. Thus, it is
desirable to construct efficient schemes at the expense of perfect security. In practice, security
against adversaries with restricted computational power is sufficient.

In 1973, IBM introduced the Data Encryption Standard (DES)—an efficient symmetric
encryption scheme designed for practical use [oSN77]. While it was shown to be insecure [BS93],
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its design principles guide the construction of modern primitives. Nowadays, there are efficient
symmetric encryption schemes that are widely believed to be secure, e.g., AES [oSN01]. Also,
other symmetric primitives with different functionalities are proposed. An important example
is (keyed) hash functions which create a short digest of long messages, and security ensures
that it is hard to find two distinct messages with the same digest. Another example is Message
Authentication Codes (MACs) which can create tags on messages given a private key K, and
security ensures that it is not possible to forge a tag for messages without knowing K. MACs
enable for example authentication of users, i.e., Alice can check if she is talking to Bob and can
ensure the integrity of received data. Nevertheless, one caveat remains: Alice and Bob need
a shared secret key K. To enable communication without the tedious setup of keys K a new
approach is needed.

The foundation of this direction was laid in the seminal work of Diffie and Hellman [DH76] in
which they introduce asymmetric cryptography. In asymmetric encryption, both communicating
parties do not have to share a common secret key K, but Bob can encrypt messages for Alice
with the public key pkA of Alice. Alice can then decrypt such ciphertexts with her secret key skA,
and security ensures that ciphertexts leak no information about the message to an adversary
without access to skA. This approach requires (at least) the existence of one-way functions,
i.e., functions that are easy to compute but hard to invert, whose existence implies P ̸= NP.
As to this date the question of whether P ̸= NP remains unresolved, cryptographers rely on
computational hardness assumptions. These assumptions state that some problem is hard to
solve for a computationally bound algorithm. Then, cryptographers construct schemes and show
that it is secure such assumptions. This approach enables the creation of diverse cryptographic
schemes with provable security under some assumption(s). Additional primitives include key
exchange which establishes a common secret key between Alice and Bob to enable subsequent
secure communication with (more efficient) symmetric primitives, or digital signatures which are
the asymmetric counterpart of MACs.

2.2 Privacy
An important goal of cryptography is to preserve the privacy of users. When a user interacts
with a digital system, it often leaks personal information to the system. For example, if Alice
stores her personal notes on the server of a cloud provider, the cloud provider might learn the
content of her notes. Similarly, if Bob votes online for his favorite candidate, the content of his
ballot might be leaked to the voting system. This private information might be sold to third
parties, but even if the service provider itself treats the private information with care and good
intentions, such private information might be recovered by an adversarial third party after a
data breach with grave consequences. Due to the great importance of the protection of personal
data, it is required by law in the European Union under the General Data Protection Regulation
(GDPR). The GDPR demands for example that personal data is stored confidentially and that
the system minimizes the amount of personal information it processes. Cryptography provides
tools required to ensure this: encryption enables the storage of confidential data, and digital
signatures (or MACs) enable the authentication of users that are entrusted to access private
information.

Richer Functionalities. While the aforementioned basic cryptographic primitives provide
some tools to ensure privacy, complex real-world systems require more than just encryption and
signatures. For example, when encrypting all data stored by Alice on the cloud, it becomes
difficult to interact with the data later on. Alice might want to search for notes that contain
the keyword cryptography but if the data is encrypted, she has to retrieve all notes and then
search through them herself. Similarly, if Bob encrypts his vote and sends it to the voting system,
the voting system cannot calculate the result of the election without being able to decrypt the
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ciphertext. This might lead to the assumption that cryptography ensures desirable security
properties but seemingly hinders functionality.

But Alice and Bob are not restricted to the use of encryption and signatures: modern
cryptography provides many other tools. More involved systems, such as encrypted search or
electronic voting (as sketched above), require more advanced cryptographic primitives with richer
functionalities. These primitives are designed to have two important properties: efficiency and
security. Concrete efficiency is desirable since the schemes are deployed in real-world applications.
Similarly, provable security is required to ensure that the desired security guarantees of the
system hold, ideally under well-established assumptions. The focus of this thesis is the design
of such primitives with a focus on efficiency and security based on standard assumptions. We
present efficient and provably secure constructions of searchable symmetric encryption and blind
signatures which are used, e.g., in the context of encrypted search and electronic voting.

2.3 Searchable Symmetric Encryption

Encrypted databases are an attractive proposition. A business or hospital may want to outsource
its customer database for higher availability, scalability, or persistence, without entrusting
plaintext data to an external service. An end-to-end encrypted messaging service may want
to store and search user messages, without decrypting them. In a different direction, even if
a sensitive database is stored locally, a company may want to keep it encrypted to provide
a layer of protection against security breaches and data theft. The adoption by MongoDB
of searchable encryption techniques is another recent illustration of the growing demand for
encrypted databases [Mon22]. When outsourcing the storage of an encrypted database, a minimal
desirable functionality is the ability to search the data.

Searchable Encryption. The promise of searchable symmetric encryption (SSE) is to allow a
client to outsource an encrypted database of size N to an untrusted server while retaining the
ability to search the data [SWP00]. At a minimum, the client is able to issue a search query
to retrieve all document identifiers that match a given keyword. In the case of Dynamic SSE
(DSSE), the client is also able to modify the contents of the database by issuing update queries,
for example, to insert or remove entries. The server must be able to correctly process the queries
while learning as little information as possible about the client’s data and queries.

Solutions with Minimal Leakage. There are some well-studied solutions to this problem
and we give a brief overview below.

Private information retrieval (PIR) was introduced in [CGKS95]. Roughly, PIR allows a
user to retrieve the i-th entry from a N -bit database held by one or more servers without
revealing which position was accessed by the server(s). With PIR, the client can encrypt its
database and outsource it to the server. Then, she can retrieve the desired item without leaking
any information to the server. Unfortunately, this strong privacy requirement inherits heavy
computational and/or client storage overheads [BIM04, CK20, Yeo23], even if a private hint is
stored by the client to improve efficiency.

Oblivious RAM (ORAM) allows a client to run a program on a server without revealing
memory access patterns [GO96]. Due to its strong privacy guarantees it is often used in the
construction searchable encryption (e.g., [GMP16, KMO18, AM23]). As in the case of PIR, the
usage of ORAM comes at a large overhead in bandwidth [GO96, LN18]. Thus, the use is often
minimized to parts of the full encrypted search protocol (e.g., [MM17, DCPP20]) at the cost of
additional leakage.

Fully homomorphic encryption (FHE) allows for the execution of arbitrary circuits over
encrypted data [Gen09]. Keyword search in a database can be modeled as a circuit that is linear
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in the size of the database. As the evaluation of circuits over encrypted data scales linearly with
the circuit size, this approach requires large computational overhead on the server side. Recently,
an exciting work constructs homomorphic encryption for RAM computation [LMW22] which
allows for the execution of programs that scales with the complexity of the associated RAM
program. Unfortunately, this approach is impractical for now.

Tradeoffs between Leakage and Security. Compared to the aforementioned solutions, a
specificity of SSE literature is the focus on high-performance solutions, suitable for deployment
on large real-world datasets. Efficient SSE schemes are designed that leak some information
about the encrypted database and the queries. The leakage of a scheme is typically expressed via
a leakage function. The security proof accompanying an SSE scheme provides formal guarantees
regarding what information is leaked to the server during searches and updates. Efficient historical
approaches based on deterministic encryption or order-preserving encryption [BCLO09] are subject
to severe attacks, due to the large amount of information leaked to the server [NKW15, GLMP19].
In view of this situation, modern research on searchable encryption seeks to offer workable
trade-offs between performance, functionality, and security, suited for real-world deployment.
Typically, this leaked information includes the total size of the database, the repetition of queries,
and an identifier (such as the memory address) of the documents that match a query.

An important property of a leakage function is forward security. Forward security asks
that updates should leak no information on the updated keyword to the server [SPS14]. The
motivation for forward security is that it mitigates certain attacks: the more severe attacks
from [ZKP16] exploit update leakage, and fail on forward-secure schemes.

Directions. Since SSE was introduced by Song et al. [SWP00], the area has developed in
several different directions. Because of the breadth of literature on SSE, we highlight a few
important branches. Insofar as SSE is a trade-off between functionality, security, and efficiency,
research in the area can be roughly divided into three avenues, one for each component of the
trade-off.

While SSE schemes are often designed to allow for efficient keyword queries, some works
extend the provided functionality for boolean queries [CJJ+13], range queries [PKV+14], or even
subsets of SQL [KM18].

Works that deal with security include attacks, and efforts to reduce leakage in response to
those attacks. Most attacks against searchable encryption fall in the category of leakage-abuse
attacks, a term coined in [CGPR15]. Leakage-abuse attacks do not contradict the security claims
of a scheme, but show how the leakage allowed by the security model enables the server to
reconstruct large parts of the database in certain settings [CGPR15, GLMP19]. These attacks
have motivated further works that reduce or suppress leakage [GKM21], including forward-secure
schemes [PM21, BMO17, KMPQ21, EKPE18, DCPP22].

Among works that mainly target efficiency, perhaps the most notable development in recent
years is I/O efficiency.

I/O Efficiency. For performance reasons, most SSE designs rely exclusively on symmetric
cryptographic primitives which have small computational overhead in practice. As a result, the
main performance bottleneck is instead determined by how quickly the data can be accessed on
disk [CT14]. This was formalized under the notion of locality and read efficiency. Locality asks
that related data be stored in a small number of disjoint locations on disk, and read efficiency
asks that the overhead of read data is small. This notion is motivated by the I/O behavior
of Hard Disk Drives (HDDs), where disjoint reads are much more expensive in latency and
throughput than contiguous reads.

The need to store related data in close proximity is not at all innocuous for security. Asking
that related data items should be stored in close proximity creates a correlation between the
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location of an encrypted data item in memory, and its contents. Since the server can observe
the location of data it is asked to retrieve, and we do not want the server to infer information
about the contents of that data, this creates tension between security and efficiency. That is,
security asks that there is no correlation between the location of data and its content, while I/O
efficiency asks for the opposite.

This tension was captured in an impossibility result by Cash and Tessaro at Eurocrypt
2014 [CT14]. In brief, Cash and Tessaro show that a secure SSE scheme with linear server
storage cannot have both constant locality and constant read efficiency. This holds true even for
static SSE. In another seminal work, at STOC 2016, Asharov et al. build an SSE with constant
locality and Õ (log N) read efficiency — even Õ (log log N) with a mild restriction on the input
database [ANSS16]. Their construction uncovers a deep connection between weighted hashing
and local searchable encryption. Since the introduction of memory efficiency for SSE, many
constructions with efficient memory accesses were proposed [CT14, ANSS16, ASS21, DP17a,
MM17, DPP18].

2.3.1 Our Contributions

In this thesis, we introduce a different measure of I/O efficiency, called page efficiency. Page
efficiency is the ratio of memory pages read by the server to process a query, divided by the
number of pages necessary to hold the plaintext answer. While locality and read efficiency
capture the efficiency of SSE schemes when run on HDDs, our notion is motivated by the I/O
behavior of modern Solid State Drives (SSDs). Then, we construct several schemes with good
page efficiency in the framework introduced in [ANSS16] based on weighted hashing.

Weighted Hashing. Page efficiency asks to store related identifiers in a small number of
pages. It is natural to view pages as bins and identifier lists matching a single keyword as balls
of weight proportional to the size of the list. Then, we are interested in an upper bound on
the total weight when n balls of total weight wtot are allocated into O(n) bins at random. A
better upper bound later allows for the construction of more efficient SSE schemes. We analyze
weighted variants of the following unweighted balls-into-bins problems:

– In one-choice allocation (1C), each ball is inserted into a single bin chosen at random. The
most loaded bin contains at most O(log N) balls [JK77].

– In two-choice allocation (2C), each ball is inserted into the least loaded bin amongst two bins
chosen at random. The most loaded bin contains at most a O(log log n) balls [ABKU94].

– In cuckoo hashing with stash [PR04, KMW10], each ball is inserted into one of two bins
chosen at random or the stash. After an optimization procedure, each bin contains at most
one ball and the size stash is minimal.

An analysis of weighted 1C is given in expectation in [BFHM08], and we include an upper bound
that holds with overwhelming probability for completeness. Our 2C variant is a generalization of
weighted two-choice allocation called L2C which is designed for the upper bound proof. Lastly,
our cuckoo hashing variant relies on a max flow algorithm for global optimization. All our bounds
in the weighted setting asymptotically match the bounds in the classical setting with uniform
weights and hold with overwhelming probability.

Page-efficient Searchable Encryption. Then, we construct several (D)SSE schemes with
good page efficiency based on our weighted hashing variants:

– Pluto: From a theoretical standpoint, constant page efficiency is a weaker requirement
than the combination and constant locality and constant read efficiency. Interestingly, this
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weaker requirement sidesteps the impossibility result of Cash and Tessaro: we construct a
static SSE scheme with optimal page efficiency called Pluto. The setup requires a max flow
calculation over all data which renders the scheme inefficient for updates.

– LayeredSSE: We use our weighted generalization of two-choice allocation L2C to construct
a dynamic SSE scheme with Õ (log log N/p) page efficiency. The scheme leaks the query
pattern during updates and is not forward secure. Nevertheless, it is the first dynamic
scheme with sublogarithmic page efficiency.

– Hermes: Finally, we construct a DSSE scheme with forward security and Õ (log log N/p)
page efficiency. The scheme is based on LayeredSSE and novel techniques such as controlled
client buffering and dummy updates.

2.4 Blind Signatures

Blind signatures were introduced in [Cha82] and enhance the functionality of digital signatures
to provide additional privacy guarantees. Alice and Bob engage in an interactive protocol at the
end of which Alice obtains a signature on a message of her choice signed by Bob. The required
properties are blindness and one-more unforgeability. Blindness states that if Alice later presents
the signature to Bob, Bob cannot link the signature to a specific signing session. In particular,
Bob does not learn the signed message during the signing session. One-more unforgeability states
that Alice can obtain signatures on at most ℓ distinct messages from ℓ signing sessions.

Blind signatures are a fundamental building block in many privacy-preserving applications such
as e-cash [Cha82, CFN90, OO92], anonymous credentials [Bra94, CL01], e-voting [Cha88, FOO92],
direct anonymous attestation [BCC04], blockchains [YL19, BDE+22] and privacy-preserving
authentication tokens [VPN22, HIP+22]. Since blind signatures were introduced in [Cha82], they
have become a vast area of research. We first give a short overview of research directions on
blind signatures.

Multi-round Blind Signatures

In the Random Oracle Model (ROM), there are efficient 3-move blind signatures [Sch90, Oka93,
AO00]. Note that in the ROM, the adversary has oracle access to an idealized random function H.
In practice, H is often heuristically instantiated with a collision-resistant hash function. In their
seminal work, Pointcheval and Stern [PS00] show that [Oka93] is secure for at most polylog-many
signing sessions. Their analysis was generalized and refined in [HKL19] and a similar result was
shown for [AO00] in [KLX22a]. Unfortunately, a recent attack [BLL+21] shows that the polylog
upper bound on concurrent signing sessions is tight.

This approach was later refined and there are several 3-move blind signatures [Abe01, KLX22b,
FPS20, TZ22] that are proven secure in the Generic Group Model (GGM) or Algebraic Group
Model (AGM), and the ROM. In the GGM and AGM, the adversary is restricted to performing
algebraic attacks, i.e., it uses the group in a black-box manner. These constructions avoid the
attack given in [BLL+21] and can be instantiated efficiently in practice. Notably, [TZ22, KLX22b]
provide full concurrent security. Such models are less desirable from a theoretical perspective as
they restrict the capabilities of the adversary substantially. In the ROM, [BL13] shows sequential
security of [Abe01] without generic groups, but the signer needs to ensure that at most one
signing session is open at all times.

Boosting Transforms. A recent line of work [KLR21, CAHL+22] based on [Poi98] provides
generic boosting transformations for blind signatures with limited concurrent security. Un-
fortunately, the computational efficiency scales linearly with the number of signed signatures.
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Recently, [HLW23] provides a concrete pairing-based construction in the ROM with good efficiency
that is round optimal (cf. below).

Round-Optimal Blind Signatures

A desirable property for blind signatures are signing session in two rounds, i.e., two messages are
exchanged to obtain a signature. There are several impossibility results [Lin08, FS10, Pas11]
that indicate that either a trusted setup, an idealized model, or non-standard assumptions are
required.

Complexity Leveraging and Interactive Assumptions. There are round-optimal blind
signatures [GRS+11, GG14] that circumvent impossibility results to construct standard model
blind signatures via complexity leveraging. [KNYY21] manages to avoid complexity leveraging
by relying on both post-quantum assumptions and classical assumptions. The aforementioned
schemes are mainly of theoretical interest and not practical.

Chaum [Cha82] gives a simple construction based on the classical RSA signature, which was
later shown secure in [BNPS03] under a One-more RSA and in the ROM. Later, [Bol03, AKSY22]
propose similar schemes in different settings secure under a comparable one-more assumption in the
ROM. Further, there are constructions in the standard model [AFG+10, FHS15, FHKS16, Gha17]
that rely on tailored interactive hardness assumptions. The above constructions are efficient
but rely on interactive security assumptions. This is acceptable from a practical viewpoint as
the assumptions are not yet broken. But it is less satisfactory from a theoretical viewpoint:
interactive assumptions are non-falsifiable and thus less desirable [Nao03].

Trusted Setup. In the pairing setting, there are several round-optimal blind signatures
with trusted setup [MSF10, SC12, KSD19] in the standard model. Again, these schemes are
less practical and the trusted setup is structured, i.e., non-uniform. This hinders practical
deployment as a trapdoor might be embedded in the parameters of the scheme. There are other
schemes [BFPV13, AJOR18] with a uniform setup that we discuss below.

Constructions in the ROM. There are some efficient constructions secure in the ROM with
full concurrent security. We give a brief overview.

In the lattice setting, del Pino and Katsumata [dK22] propose a round-optimal blind signature
with signature and communication sizes 100 KB and 850 KB.

Hanzlik et al. [HLW23] optimize the approach of boosting transforms in the pairing setting.
They provide blind signatures with different tradeoffs secure under the CDH assumption. One
instantiation yields for example a signature size of 5 KB with a communication size 72 KB, under
the CDH assumption.

Further, there are constructions in the pairing setting with a trusted setup consisting of random
group elements [BFPV13, AJOR18]. Blazy et al. [BFPV13] constructs blind signatures based on
Waters signature [Wat05] of mere 2 group elements, i.e., 96 B, but with large communication, e.g.,
220 KB for 256 bit messages. Abe et al. [AJOR18] instantiates the Fischlin blind signature [Fis06]
to obtain blind signatures of size 5.8 KB with around 1 KB of communication. With standard
techniques, the setup can be removed in the ROM.

An interesting question is how far we can optimize (round-optimal) blind signatures in the
ROM given the recent progress.

2.4.1 Our Contributions

We present two round-optimal blind signatures based on standard group-based assumptions
and the ROM in the asymmetric pairing setting. The first construction has signature and
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communication sizes 447 B and 303 B, respectively. In the ROM, it has the smallest com-
munication size among all prior schemes proven under standard assumptions and is the first
construction where the sum of the signature and communication sizes fit below 1 KB. The second
construction has signature and communication sizes 96 B and 2.2 KB, respectively. While it has
a larger communication size compared to our first construction, the signature only consists of 2
group elements, matching the previously shortest by Blazy et al. [BFPV13] while simultaneously
improving their communication size by around two orders of magnitude. Both constructions
have efficient partially blind variants.

For our first construction, we revisit the generic blind signature construction by Fischlin [Fis05]
and progressively weaken the building blocks required by Fischlin and show that the blind
signature can be instantiated much more efficiently in the ROM than previously thought by a
careful choice of the building blocks.

For our second construction, we revisit the idea by Blazy et al. [BFPV13] relying on randomiz-
able signatures. We construct a blind signature based on Boneh-Boyen signatures [BB04a] and an
online-extractable non-interactive zero-knowledge proof obtained via the Fiat-Shamir transform
applied to Bulletproofs [BBB+18] and a Σ-protocol for some ElGamal related statements.

2.5 Associated Publications and other Contributions

We give a concise overview of our personal publications.

– Non-interactive Keyed-Verification Anonymous Credentials [CR19]. Anonymous
credentials with keyed-verification are protocols are protocols that allow for the authentica-
tion of authorized users to a designated authority without compromising their privacy. A
scheme is said to be non-interactive if the authentication process only requires the user to
send a single message that still conceals its identity. We construct the first non-interactive
keyed-verification anonymous credential scheme in the standard model, without pairings.
We achieve this by building upon a combination of algebraic MAC with an appropriate
designated-verifier NIZK in the standard model. For this, we introduce the notion of
oblivious non-interactive zero-knowledge proof systems, where the prover can generate
non-interactive proofs for statements that he cannot check by himself, having only a part of
the corresponding witness, and where the proof can be checked efficiently given the missing
part of the witness. We provide an optimized construction of an oblivious designated-verifier
NIZK with a trusted setup in the standard model.
This paper is the result of our Bachelor thesis and has been published in the proceedings
of PKC in 2019.

– Efficient Range Proofs with Transparent Setup from Bounded Integer Commit-
ments [CKLR21]. We introduce a new approach for constructing efficient range proofs.
Our approach relies on a transformation that transforms any commitment over a finite
field into a commitment scheme that allows to commit to and efficiently prove relations
about bounded integers. While the transformation restricts the homomorphic properties
moderately, it allows us to instantiate the approach for range proofs based on square
decomposition in various settings. This is a paradigm that was previously limited to
RSA-based range proofs. We instantiate the approach to improve over the state of the art
in the discrete logarithm, lattice, and class group setting.
This paper is the result of our Master thesis and has been published in the proceedings of
Eurocrypt in 2021.

– SSE and SSD: Page-Efficient Searchable Symmetric Encryption [BBF+21]. The
performance bottleneck of classic SSE schemes typically comes from the cost of memory
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accesses. We observe that for newer storage media such as Solid State Drives (SSDs) the
classical notion of locality is not a good predictor of practical performance. Instead, SSD
performance mainly depends on page efficiency, that is, reading as few pages as possible.
We define this notion and identify a simple memory allocation problem that captures the
main technical challenge required to build page-efficient SSE. We construct an optimal
page-efficient and storage-efficient static SSE scheme Tethys, and variants Pluto and Nilus.
The technical core of the result is a new generalization of cuckoo hashing to items of
variable size.
This paper has been published in the proceedings of Crypto in 2021.

– Dynamic Local Searchable Symmetric Encryption [MR22]. We provide the first
dynamic constructions for page efficient and local SSE. For page-efficient DSSE with page
size p, we build a scheme with storage efficiency O(1) and page efficiency Õ (log log(N/p)),
called LayeredSSE. The main technical innovation behind LayeredSSE is a novel weighted
extension of the two-choice allocation process. Then, we introduce the Generic Local
Transform, which takes as input a page-efficient DSSE scheme with certain features and
outputs an SSE scheme with strong locality properties. We apply the Generic Local
Transform to LayeredSSE, and obtain a DSSE scheme with storage efficiency O(1), locality
O(1), and read efficiency Õ (log log N), under the condition that the longest list is of
size O(N1−1/ log log λ). Finally, we apply the Generic Local Transform to a variant of
Tethys [BBF+21], and obtain an unconditional static SSE with storage efficiency O(1),
locality O(1), and read efficiency O(logε N), for an arbitrarily small constant ε > 0.
This paper has been published in the proceedings of Crypto in 2022.

– Sharp: Short Relaxed Range Proofs [CGKR22]. We provide techniques to optimize
range proofs based on square decomposition and obtain optimized range proofs in discrete
logarithm groups. These techniques include batched shortness tests for fractions, an
optimized Σ-protocol for showing that a committed value is the sum of 3 squares and a
method to switch groups within a Σ-protocol to improve efficiency. As our range proofs
satisfy a relaxed notion of security, we show how to enhance their security with one
additional hidden order group element. We also sketch applications of relaxed range proofs,
such as anonymous credentials and anonymous transactions.
This paper has been published in the proceedings of CSS in 2022.

– Hermes: I/O-Efficient Forward-Secure Searchable Symmetric Encryption [MR23].
We construct the first forward-secure and page-efficient DSSE scheme called Hermes. Our
construction relies on two novel techniques. First, we make use of a controlled amount of
client buffering, combined with a deterministic update schedule. Second, we introduce the
notion of SSE supporting dummy updates. In combination, those two techniques offer a
new path to realizing forward security, which is compatible with I/O efficiency. Hermes
achieves Õ

(
log log N

p

)
page efficiency, constant storage efficiency, and has standard leakage

with forward security.
This paper will be published in the proceedings of Asiacrypt in 2023.

– Practical Round-Optimal Blind Signatures in the ROM [KRS23]. We present
two round-optimal blind signatures in the ROM with different approaches: one achieves
the smallest sum of the signature and communication sizes, while the other achieves the
smallest signature size. Both of our instantiations are based on standard assumptions
over asymmetric pairing groups. Our first construction is a highly optimized variant of
the generic blind signature construction by Fischlin and has signature and communication
sizes 447 B and 303 B, respectively. We progressively weaken the building blocks required
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by Fischlin and result in the first blind signature where the sum of the signature and
communication sizes fit below 1 KB. Our second construction is a semi-generic construction
from a specific class of randomizable signature schemes that admits an all-but-one reduction.
The signature size is only 96 B while the communication size is 2.2 KB. This matches the
previously known smallest signature size while improving the communication size by several
orders of magnitude. Both of our constructions rely on a (non-black box) fine-grained
analysis of the forking lemma.
This paper will be published in the proceedings of Asiacrypt in 2023.

– Mergeable Searchable Encryption and Applications [BMR23]. We introduce an
alternative view of dynamic SSE, where the update protocol is replaced by a Merge protocol.
The Merge protocol takes as input the identifiers of two databases and merges them into a
single database. The traditional Update protocol can be recovered as the special case of
Merge, where one of the two input databases consists of a single entry (the new update),
while the other consists of the entire rest of the database. The greater flexibility of a
Merge operation opens up new opportunities for both efficiency and security. In practice,
it mimics the behavior of log-structured merge trees, which are widely deployed in the
world of plaintext databases. We illustrate this versatility by first building an efficient
instantiation of mergeable SSE and using it to derive several applications, also in the
realm of traditional SSE. This includes the first stateless page-efficient DSSE with forward
security.
This paper is in submission.

2.6 Organization of the Manuscript
This thesis is organized into seven chapters as follows.

– Chapter 2 is the present introduction.

– Chapter 3 introduces the notations used throughout and recalls some definitions, notions,
and fundamental results.

– Chapter 4 presents weighted variants of classical hashing variants. This chapter contains
content from [BBF+21, MR22, BMR23], though we generalize cuckoo hashing with integer
weights (as in [BBF+21]) to real weights.

– Chapter 5 introduces the notion of page efficiency and constructs two page efficient schemes,
Pluto and LayeredSSE. The constructions use the weighted hashing variants of Chapter 4.
This chapter is based on [BBF+21, MR22].

– Chapter 6 provides the first forward secure SSE scheme with sublogarithmic memory
efficiency. The construction relies on LayeredSSE and is based on [MR23].

– Chapter 7 presents two efficient constructions of blind signatures in the ROM based on
standard assumptions. This chapter is based on [KRS23].

– Chapter 8 gives a brief overview of our results and discusses some open problems.



Chapter

3
Preliminaries

In this chapter, we establish the notation that we use throughout the thesis. Also, we recall some
probabilistic lemmata, computational hardness assumptions, and definitions of cryptographic
primitives used in subsequent chapters.

Chapter content
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3.6 Searchable Symmetric Encryption . . . . . . . . . . . . . . . . . . . . 34

3.1 Notation

Let λ ∈ N be the security parameter. A probabilistic polynomial time (PPT) algorithm A runs
in time polynomial in the (implicit) security parameter λ. We write Time(A) for the runtime
of A. A function f(λ) is negligible in λ if it is O(λ−c) for every c ∈ N. We write f = negl(λ)
for short. Similarly, a function f(λ) is overwhelming in λ if 1− f(λ) = negl(λ). Also, we write
f = poly(λ) if f(λ) is a polynomial with variable λ. If D is a probability distribution, x← D
means that x is sampled from D and if S is a set, x← S means that x is sampled uniformly and
independently at random from S. We also write |S| for the cardinality of set S.

Further, we write D0
c≈ D1 for distributions D0, D1, if for all PPT adversaries A, we have

|Pr[x0 ← D0 : A(1λ, x0) = 1] − Pr[x1 ← D1 : A(1λ, x1) = 1]| = negl(λ). Similarly, we write
D0

s≈ D1 if the above holds even for unbounded adversaries. For some PPT algorithm A, we
write AO if A has oracle access to the oracle O. If A performs some check, and the check fails,
we assume that A outputs ⊥ immediately. Generally, we assume that adversaries are implicitly
stateful.

We denote with [n] the set {1, ..., n} for n ∈ N. We write [a, b] for the integer interval
{x ∈ N : a ≤ x ≤ b} and [a, b]R for the real interval {x ∈ R : a ≤ x ≤ b}. For any h⃗ = (h1, ..., hq)
and i ∈ [q], we denote h⃗<i as (h1, ..., hi−1) and h⃗≥i as (hi, ..., hq), where h⃗<1 denotes an empty
vector. Moreover, for any two vectors h⃗, h⃗′ of arbitrary length, we use h⃗∥h⃗′ to denote the
concatenation of the two vectors. In particular, for any i ∈ [q] and h⃗ ∈ Hq, we have h⃗ = h⃗<i∥h⃗≥i.
We denote by ⊕ the bitwise XOR operation.

Protocols. Let prot = (protA, protB) be a protocol between two parties A and B. We denote an
execution of protocol prot between A and B with input inA and inB respectively by protA(inA)←→
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protB(inB). We may write prot(inA; inB) for short, if both executing parties can be inferred from
the context.

Data Structures. For concision, in algorithmic descriptions, tables and arrays are implicitly
assumed to be initialized with zeros if they contain integers or ⊥’s otherwise, if it is clear by
context (unless stated otherwise). Our algorithms will frequently make use of bins, which can be
thought of as disjoint memory segments of some fixed size s = f(p, λ) for some function f with
some additional input p. Bins can contain arbitrary data up to their capacity s. Bins are always
implicitly assumed to be padded with zeros up to their full capacity, so that their size remains
fixed. In particular, the encryption of a bin reveals no information about the amount of real
data contained in the bin.

3.2 Probability

In this paragraph, we recall some basic probabilistic results that we require later on. The
following variant of the Chernoff bound gives an upper bounds on the probability that certain
random variables attain values far from their expectation.

Lemma 3.1 (Chernoff’s Bound). Suppose that X1, ..., Xn are independent random variables
taking values in {0, 1}. Let X denote their sum and let µ = Exp[X] denote the expectancy of X.
Then for any δ > 0, it holds that

Pr[X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

2 + δ

)

The next lemma allows us to switch between expectation and probability when analyzing
whether some event occurs with negligible probability in some scenarios.

Lemma 3.2. Let N ∈ N with N = poly(λ). For any integer-valued random variable X ∈ [0, N ]
and any RN > 0:

Pr [X > RN ] = negl(λ) iff Exp[max(X −RN , 0)] = negl(λ).

Proof. We denote Y = max(X −RN , 0). Note that Y is a non-negative integer-valued random
variable. Thus, we have that

Exp[Y ] =
∑
i≥0

i Pr [Y = i] =
∑
i≥0

Pr [Y > i]

The above implies that Pr[Y > 0] ≤ Exp[Y ]. Thus, if Exp[Y ] = negl(λ), we have that

Pr[X > RN ] = Pr[Y > 0] ≤ Exp[Y ] = negl(λ).

For the other direction, assume that Pr[X > RN ] = negl(λ). We have as above that
Exp[Y ] =

∑
i≥0 Pr[Y > i]. As Y ≤ N , we have

∑
i≥0 Pr[Y > i] =

∑N
i=0 Pr[Y > i]. Finally,

observe that Pr[Y > i] ≤ Pr[X > RN + i] ≤ Pr[X > RN ] = negl(λ). As N = poly(λ), the
statement follows.

Finally, we recall the standard splitting lemma from Pointcheval and Stern [PS00].

Lemma 3.3 (Splitting Lemma). Let ϵ ∈ (0, 1] and A ⊆ X × Y such that

Pr
(x,y)←X×Y

[(x, y) ∈ A] ≥ ϵ.
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For any α ∈ [0, ϵ) define

B =
{

(x, y) ∈ X × Y

∣∣∣∣∣ Pr
(x,y′)←X×Y

[(x, y′) ∈ A] ≥ ϵ− α

}
.

Then we have

Pr
(x,y)←X×Y

[(x, y) ∈ B | (x, y) ∈ A] ≥ α

ϵ
.

3.3 Graphs
We present a brief overview of graphs and flows in networks (see [Sch03] for more details).

Directed Graphs.

A directed graph G = (V, E) is a tuple vertices V and edges E ⊆ V × V . Sometimes, we label
edges of a graph with real values via a function ℓ : E → R. Sometimes, we write G = (V, E, ℓ)
for labeled graphs.

Max Flow and Min Cuts

A network N = (G, c, s, t) consists of a directed graph G = (V, E) with edge capacities c : E → R+,
a source s ∈ V , as well as a sink t ∈ V . For each edge (u, v) ∈ E, we assume that its corresponding
back edge (v, u) is in E, with c(v, u) = 0 if necessary.

A flow assigns a value, its flow, to each edge which has to satisfy two properties. First, the
flow of an edge cannot exceed its capacity. Second, the sum of the flows entering a node must
equal the sum of the flows exiting that node, except for the source and the sink. The value of
the flow is its outgoing flow from source s. Note that this value is equal to the incoming flow at
sink t, as the flow has to be conserved throughout the network.

Definition 3.4 (Flows, Flow Value). A flow f : E → R+ is an assignment of edge weights
satisfying the following constraints:

– Capacity constraint: ∀(u, v) ∈ E : f(u, v) ≤ c(u, v)

– Conservation of flows:

∀v ∈ V \ {s, t} :
∑

u∈V :{u,v}∈E

f(u, v) =
∑

u∈V :{v,u}∈E

f(v, u).

The value of the flow is defined as

|f | =
∑

u∈V :{s,u}∈E

f(s, u)−
∑

u∈V :{u,s}∈E

f(u, s).

A cut is a partition (S, T ) of the nodes V such that the source resides in S and the sink
resides in T . The capacity of a cut is the sum of the weights of edges leaving S.

Definition 3.5 (Cuts, Capacity). A cut C = (S, T ) is a partition of V such that s ∈ S and
t ∈ T . The capacity of a cut C is defined as cap(C) =

∑
(u,v)∈E∩(S×T ) c(u, v).

The following theorem shows that finding a maximum flow and a minimal cut are closely
related.

Theorem 3.6 (Max-Flow Min-Cut). For any network, the maximal flow value from s to t is
equal to the minimal cut capacity over cuts separating s and t. Further, there is a max flow f
and a min cut (S, T ) of V such that the flow of edges between S and T is at capacity, and there
is no flow from T to S.
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Algorithms. Finding a max flow of a network is a well-studied problem, and many efficient
solutions exist. The Ford-Fulkerson algorithm [FF56] finds the max flow fmax of a network in
running time O(|E|fmax). The algorithm looks (in a greedy manner) for augmenting paths in
the graph. As the name suggests, an augmenting path is a path (under capacity) that increases
the max flow by sending more flow along its edges. Since the greedy decision might not be
optimal, the algorithm considers the residual graph which allows for reallocation of some flow from
previous rounds. If no more augmenting path can be found, the solution is optimal. Note that
the Ford-Fulkerson might not terminate if the capacities are irrational, but there are algorithms
that work for real weights (e.g., [SW97]).

3.4 Assumptions
We introduce the group-based hardness assumptions we require in Chapter 7. We also give a
brief overview of explainable sampling of group elements.

3.4.1 Groups

Throughout this work, write 1G for the neutral element of some group G and use multiplicative
notation. Also, we assume a PPT algorithm (G1,G2,GT , e, g1, g2)← PGen(1λ) that on input 1λ

outputs descriptions of the groups G1,G2,GT of prime order p and a pairing e : G1 ×G2 → GT ,
as well as generators g1, g2 of G1,G2, respectively. Recall that e is a pairing if e is non-degenerate
(i.e., e(g1, g2) ̸= 1GT

) and e is bilinear (i.e., e(ga
1 , gb

2) = e(g1, g2)ab for a, b ∈ Zp). We sometimes
use implicit notation [x]k = gx

k for k ∈ [1, 2, T ], x ∈ Zp and gT = e(g1, g2). We extend the notation
to matrices naturally, i.e., we write [A]k = ([ai,j ]k) for A = (ai,j) ∈ Zn×m

p and k ∈ [1, 2, T ]. Note
that while we mainly consider the asymmetric pairing setting (i.e., G1 ̸= G2), all instantiations
have a natural variant in the symmetric pairing setting with similar efficiency. Similarly, we
assume a PPT algorithm (Ĝ, g) ← GGen(1λ, p) that on input 1λ and prime order p, outputs
a description of a group Ĝ of order p with generator g that is not equipped with a pairing.
Generally, we assume that given the description(s), group operations, pairing evaluation and
membership tests are efficient, and write g ← G for drawing elements from some group G at
random. For readability, we leave PGen and GGen implicit in the rest of the work.

Instantiation For our instantiations in Chapter 7, we assume that the modulus p is of size
256 bit, and an element of (G1,G2,GT ) is of size (382, 763, 4572) bit, respectively. These are
common sizes of standard BLS curves [BLS03] with security parameter λ = 128, in particular
BLS12-381 [Bow17]. For groups that require no pairing operation, we use a curve of order p and
assume that elements are of size 256 bit. We generally write Ĝ for such groups.

Assumptions

Throughout, we use the following hardness assumptions. Let G be an arbitrary group with
generator g and (G1,G2,GT , e, g1, g2)← PGen(1λ) be a pairing description.

The discrete logarithm (DLOG) assumption in G states that it is hard to compute the discrete
logarithm x of some random h = gx ∈ G. The decisional Diffie-Hellman (DDH) assumption states
that it is hard to distinguish tuples (ga, gb, gab) from tuples (ga, gb, gc) with random a, b, c← Zp.
The symmetric external Diffie-Hellman (SXDH) assumption holds if the DDH assumption holds
in G1 and in G2. Finally, the (asymmetric) computational Diffie-Hellman assumption states that
given (ga

1 , ga
2 , gb

1, gb
2), it is hard to computes gab

1 .

Definition 3.7 (DLOG). The discrete logarithm (DLOG) assumption in group G with generator
g holds if for any PPT adversary A, it holds that

Pr[x← Zp : A(g, gx) = x] = negl(λ)
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Definition 3.8 (DDH). The decisional Diffie-Hellman (DDH) assumption holds in group G with
generator g if for any PPT adversary A, it holds that

|Pr[a, b← Zp : A(g, ga, gb, gab) = 1]− Pr[a, b, c← Zp : A(g, ga, gb, gc) = 1]| = negl(λ).

Definition 3.9 (SXDH). The symmetric external Diffie-Hellman (SXDH) assumption holds in
(G1,G2,GT , e, g1, g2) if the DDH assumption holds in G1 and in G2.

Definition 3.10 (CDH). The computational Diffie-Hellman (CDH) assumption holds in (G1,G2,GT ,
e, g1, g2) if for any PPT adversary A, it holds that

Pr[a, b← Zp : A(g1, g2, ga
1 , ga

2 , gb
1, gb

2) = gab] = negl(λ).

Explaining Group Elements as Random Strings

Our frameworks in Chapter 7 generally require that public parameters pp (of commitment
schemes) and common random strings crs (of NIZKs) are random bit strings. For readability, we
allow that pp and crs contain random group elements g ← G for some group G. This is without
loss of generality, as using explainable sampling, we can explain these elements as random strings.

Concretely, explainable sampling for G allows us to sample from the uniform distribution UG
over G via g ← SampleG(1λ; r) using ℓG bits of randomness, where r ← {0, 1}ℓG . Importantly,
there exists an algorithm ExplainG that given uniformly random g ∈ G outputs randomness
r′ ← ExplainG(1λ, g) such that g = SampleG(1λ; r′) and r

s≈ r′. Note that such sampling
techniques are known for elliptic curves, see for example [BCI+10].

Using this notation, a random string crs = (r1, ..., rn) of size {0, 1}n·ℓG represents n group
elements gi ← SampleG(1λ; ri). Further, as long as all g′i ∈ G are also distributed independently
and uniformly at random, the bit string crs′ = (r′1, ..., r′n) will have a negligible statistical distance
to crs, where r′i ← ExplainG(1λ, g′i). Thus, we can safely replace crs with crs′ in security reductions.
The above also applies for pp = (r1, ..., rn). Similarly, we can instantiate random oracles that
map into the group G with random oracles mapping into {0, 1}ℓG this way.

Throughout, we write g ← G short for g ← SampleG(1λ). Also, we write crs = (g1, ..., gn) for
short, where gi are drawn uniformly at random. Note that we can replace crs with crs′ = (g′1, ..., g′n)
in proofs, if all g′i are also distributed independently uniform over G. We extend the notation
above to tuples of random elements drawn from different groups. These techniques also apply for
mixed crs or pp over different groups.

3.5 Cryptographic Primitives

We give a brief overview of the primitives used in Chapters 5 and 6. We also discuss the random
oracle model used throughout this manuscript.

3.5.1 Symmetric Primitives

We introduce symmetric encryption and pseudorandom function used in Chapters 5 and 6. We
recall the random oracle model used throughout this manuscript.

Symmetric Encryption

A symmetric encryption scheme E is a tuple of PPT algorithms (KeyGen, Enc, Dec) such that

– E.KeyGen(1λ): outputs a secret key K,

– E.Enc(K, m): given secret key K and message m, outputs a ciphertext c,
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– E.Dec(K, c): given secret key K and ciphertext c, outputs a message m.

Below, we define the notions of correctness and IND-CPA security. Later, we assimilate the
encryption scheme E with its encryption algorithm Enc, and sometimes leave key generation
implicit. That is, we say Enc is an encryption scheme (with decryption algorithm Dec), and some
key KEnc is generated for security parameter λ. We often write EncKEnc(m) short for Enc(KEnc, m).

Definition 3.11 (Correctness). A symmetric encryption scheme E is correct if for all keys
K← E.KeyGen(1λ), messages m, and c← E.Enc(K, m), we have that E.Dec(K, c) = m.

Definition 3.12 (IND-CPA). A symmetric encryption scheme is IND-CPA secure if for any PPT
adversary A, we have

Advind
A (λ) =

∣∣∣∣Pr
[
K← E.KeyGen(1λ), (m0, m1)← AO(1λ),
coin← {0, 1}, c← E.Enc(K, mcoin) : |m0| = |m1|,

coin = AO(c)

]
− 1

2

∣∣∣∣ = negl(λ),

where O is an oracle that on input m outputs Enc(K, m).

Pseudorandom Function

A pseudorandom function (PRF) family F = {FK : A→ B | K ∈ {0, 1}λ} is a family of functions.
Below, we define PRF security.

Definition 3.13 (PRF security). A PRF is secure if for any PPT adversary A, we have

Advprf
A (λ) =

∣∣∣∣Pr
[
K← {0, 1}λ :
1 = AFK(·)(1λ),

]
− Pr

[
R← {F : A→ B} :
1 = AR(·)(1λ),

]∣∣∣∣ = negl(λ).

Hash Function

A (keyed) hash function H is of the form H : K × {0, 1}∗ 7→ {0, 1}ℓ. The key (i.e., the first input)
to H is usually implicit, and part of the public parameters. We call H a collision-resistant hash
function (CRHF), if it is hard to find a collision, i.e., two inputs m, m′ such that H(m) = H(m′).

Random Oracle Model

Later, we often prove security of a scheme using in the random oracle model [BR93]. In the
random oracle model, a hash function H : {0, 1}∗ → D is idealized as truly random function.
That is, for each fresh query x, the output y ← H(x) is sampled uniformly and independently at
random from its output domain D. For repeated queries, the same output is provided.

While we cannot instantiate random oracles in a sound manner in the standard model
[CGH98], H is usually instantiated with a hash function heuristically. This approach has become
standard to prove security for efficient cryptographic schemes.

3.5.2 Asymmetric Primitives

Next, we define the asymmetric primitives we use in Chapter 7.

Commitment Scheme

A commitment scheme is a PPT algorithm C = C.Commit such that

– C.Commit(pp, m; r): given the public parameters pp ∈ {0, 1}ℓC , message m ∈ Cmsg and
randomness r ∈ Crnd, computes a commitment c ∈ Ccom, and outputs the pair (c, r),
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Here, {0, 1}ℓC , Cmsg, Crnd, Ccom, are public parameter, message, commitment randomness, and
commitment spaces, respectively.1 We do not explicitly define the opening algorithm since we
can use the commitment randomness r as the decommitment (or opening) information and check
if c = Commit(pp, m; r) holds to verify that c is a valid commitment to message m.

Below, we first define the standard notions of binding and hiding, where note that correctness
is implicit since we define the decommitment algorithm via Commit. While we define the
computational variants below, we obtain the statistical variants by allowing the adversary A to
be unbounded.

Definition 3.14 (Hiding). A commitment scheme is hiding if for any PPT adversary A, we have

Advhide
A (λ) =

∣∣∣∣Pr
[
pp← {0, 1}ℓC , (m0, m1)← A(pp),
coin← {0, 1}, (c, r)← Commit(pp, mcoin) : coin = A(c)∧

m0, m1 ∈ Cmsg

]
− 1

2

∣∣∣∣ = negl(λ).

Definition 3.15 (Binding). A commitment scheme is binding if for any PPT adversary A, we
have

Advbind
A (λ) = Pr

pp← {0, 1}ℓC , (m0, m1, r0, r1)← A(pp),
m0 ̸= m1 ∈ Cmsg ∧ r0, r1 ∈ Crnd
∧(cb, rb) = Commit(pp, mb; rb), b ∈ {0, 1}

: c0 = c1

 = negl(λ).

We further define rerandomizability. This allows rerandomizing a commitment to a new
commitment on the same message. Moreover, we require that the new commitment has enough
min-entropy for a random rerandomization randomness.

Definition 3.16 (Rerandomizability). A commitment scheme is rerandomizable if there exist
PPT algorithms (RerandCom, RerandRand) such that

– RerandCom(pp, c, ∆r): given the public parameter pp, a commitment c ∈ Ccom, and a reran-
domization randomness ∆r ∈ Crnd, deterministically outputs a rerandomized commitment
c′ ∈ Ccom,

– RerandRand(pp, c, m, r, ∆r): on input of the public parameter pp, a commitment c ∈ Ccom, a
message m ∈ Cmsg, a randomness r, and a rerandomization randomness ∆r ∈ Crnd, outputs
a rerandomized randomness r′,

and the following holds:

– for all pp ∈ {0, 1}ℓC , m ∈ Cmsg, (c, r) ← Commit(pp, m), and ∆r ∈ Crnd, if we compute
c′ = RerandCom(pp, c, ∆r) and r′ ← RerandRand(pp, c, m, r, ∆r), then it holds that c′ = c′′,
where (c′′, r′) = Com(pp, m; r′), and

– we have

max
c,c′∈Ccom

Pr[pp← {0, 1}ℓC , ∆r ← Crnd : c′ = RerandCom(pp, c, ∆r)] = negl(λ).

We note that any natural additive homomorphic commitment scheme satisfies rerandom-
izability if we define RerandCom(pp, c, ∆r) = c + Commit(pp, 0; ∆r) = c′. Observe that if
c = Commit(pp, m; r), the rerandomziaed randomness is r′ = r + ∆r since c′ = Commit(pp, m; r′)
by the homomorphic property. Moreover, c′ has high min-entropy since Commit(pp, 0) has high
min-entropy for most natural commitment schemes. Finally, we note that while a computational
variant of the high min-entropy property suffices for our generic construction, we use the statistical
variant for simplicity and because our instantiation satisfies it.

1We assume uniform public parameters to improve readability. In our context, it is sufficient that the distribution
of the public parameters is explainable (see section 3.4.1).
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Signature Scheme

We consider deterministic signature schemes; a scheme where the randomness of the signing
algorithm is derived from the secret key and message. We can derandomize any signature
scheme by using a pseudorandom function for generating the randomness used in the signing
algorithm (see for example [Kat10]). Formally, a signature scheme is a tuple of PPT algorithms
S = (KeyGen, Sign, Verify) such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,

– Sign(sk, m): given a signing key sk and a message m ∈ Smsg, deterministically outputs a
signature σ,

– Verify(vk, m, σ): given a verification key pk and a signature σ on message m, deterministi-
cally outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We define the standard notion of correctness and EUF-CMA
security

Definition 3.17 (Correctness). A signature scheme is correct, if for all (vk, sk)← KeyGen(1λ),
m ∈ Smsg, and σ ← Sign(sk, m), it holds that Verify(vk, m, σ) = 1.

Definition 3.18 (EUF-CMA). A signature scheme is EUF-CMA if for any PPT adversary A, we
have

Adveuf
A (λ) = Pr

[
(vk, sk)← KeyGen(1λ)
(m, σ)← ASign(sk,·)(vk) : m /∈ L ∧ Verify(vk, m, σ) = 1

]
= negl(λ),

where L is the list of messages A queried to the Sign-oracle.

(Partially) Blind Signature Scheme

A partially blind signature scheme is a tuple of PPT algorithms PBS = (KeyGen, Sign, Verify)
such that

– KeyGen(1λ): generates the verification key bvk and signing key bsk,

– User(bvk, t , m): given verification key bvk, common message t ∈ BSt, and message
m ∈ BSmsg, outputs a first message ρ1 and a state st,

– Signer(bsk, t , ρ1): given signing key bsk, common message t ∈ BSt, and first message ρ1,
outputs a second message ρ2,

– Derive(st, t , ρ2): given state st, common message t ∈ BSt, and second message ρ2, outputs
a signature σ,

– Verify(bvk, t , m, σ): given verification key bvk, common message t ∈ BSt, and signature σ
on message m ∈ BSmsg, outputs a bit b ∈ {0, 1}.

Here, BSt and BSmsg are the message and tag spaces, respectively. In case the common message
t ∈ BSt is omitted from the syntax (or alternatively, always set to a fixed value), then we call the
scheme to be a blind signature BS. We consider the standard security notions for blind signatures
[JLO97]. Below, we define correctness, partial blindness under malicious keys, and one-more
unforgeability of a (partially) blind signature scheme. The definition for blind signature can be
recovered by ignoring t, denoted with a box. Moreover, we assume the state is kept implicit in
the following for better readability.
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Definition 3.19 (Correctness). A partially blind signature scheme is correct, if for all mes-
sages ( t , m) ∈ BSt × BSmsg, (bvk, bsk) ← KeyGen(1λ), (ρ1, st) ← User(bvk, t , m), ρ2 ←
Signer(bsk, t , ρ1), σ ← Derive(st, t , ρ2), it holds that Verify(bvk, t , m, σ) = 1.

Definition 3.20 (Partial Blindness Under Malicious Keys). A partially blind signature scheme
is blind under malicious keys if for any PPT adversary A, we have

Advblind
A (λ) = Pr

∣∣∣∣∣∣∣∣∣∣∣∣∣



(bvk, t , m0, m1)← A(1λ), coin← {0, 1},
(ρ1,b, stb)← User(bvk, t , mb) for b ∈ {0, 1},
(ρ2,coin, ρ2,1−coin)← A(ρ1,coin, ρ1−coin),
σb ← Derive(stb, t , ρ2,b) for b ∈ {0, 1},
if ∃b s.t. Verify(bvk, t , mb, σb) = 0:

then σ0 = σ1 = ⊥,

: coin = A(σ0, σ1)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ).

Definition 3.21 (One-more Unforgeability). A blind signature scheme is one-more unforgeable
if for any Q = poly(λ) and PPT adversary A that for each common message t makes at most
Q signing queries containing the same t , we have

Advomuf
A (λ) = Pr

[
(bvk, bsk)← KeyGen(1λ)
{ t , (mi, σi)}i∈[Q+1] ← AO(bvk) : ∀i ̸= j ∈ [Q + 1] : mi ̸= mj

∧ Verify(bvk, t , mi, σi) = 1

]
= negl(λ),

where O = Signer(bsk, · , ·) is a signing oracle.

Σ-Protocol

Let R be an NP relation with statements x and witnesses w. We denote by LR = {x |
∃w s.t. (x, w) ∈ R} the language induced by R. A Σ-protocol for an NP relation R for language
LR is a tuple of PPT algorithms Σ = (Init, Chall, Resp, Verify) such that

– Init(x, w): given a statement x ∈ LR, and a witness w such that (x, w) ∈ R, outputs a first
flow message (i.e., commitment) α and a state st, where we assume st includes x, w,

– Chall(1λ): samples a challenge β ← CH,

– Resp(st, β): given a state st and a challenge β ∈ CH, outputs a third flow message (i.e.,
response) γ,

– Verify(x, α, β, γ): given a statement x ∈ LR, a commitment α, a challenge β ∈ CH, and a
response γ, outputs a bit b ∈ {0, 1}.

Here, CH denotes the challenge space. We call the tuple (α, β, γ) the transcript and say that
they are valid for x if Verify(x, α, β, γ) outputs 1. When the context is clear, we simply say it is
valid and omit x. Also, we omit the parameter 1λ in the following from Chall for readability.

We first define the standard notions of correctness, honest-verifier zero-knowledge, and
2-special soundness.

Definition 3.22 (Correctness). A Σ-protocol is correct, if for all (x, w) ∈ R, (α, st)← Init(x, w),
β ∈ CH, and γ ← Resp(st, β), it holds that Verify(x, α, β, γ) = 1.

Definition 3.23 (High Min-Entropy). A Σ-protocol has high min-entropy if for all (x, w) ∈ R
and (possibly unbounded) adversary A, it holds that

Pr[(α, st)← Init(x, w), α′ ← A(1λ) : α = α′] = negl(λ).
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Definition 3.24 (HVZK). A Σ-protocol is honest-verifier zero-knowledge (HVZK), if there exists
a PPT zero-knowledge simulator Sim such that the distributions of Sim(x, β) and the honestly
generated transcript with Init initialized with (x, w) are computationally indistinguishable for
any x ∈ LR, and β ∈ CH, where the honest execution is conditioned on β being used as the
challenge.

Definition 3.25 (2-Special Soundness). A Σ-protocol is 2-special sound, if there exists a
deterministic PT extractor Ext such that given two valid transcripts {(α, βb, γb)}b∈[2] for statment
x with β0 ̸= β1, along with x, outputs a witness w such that (x, w) ∈ R.

Note that in the above, two valid transcripts for x with the same commitment and different
challenges imply that statement x is in LR. That is, we do not guarantee x to lie in LR when
invoking Ext. While subtle, this allows us to invoke Ext properly within the security proof even
if the reduction cannot decide if the statement x output by the adversary indeed lies in LR.

In the following, we propose a new notion of f -unique extraction. The notion is similar to the
unique response property [Fis05, Unr12] which requires that given an incomplete transcript (α, β),
there is at most one response γ such that the transcript τ = (α, β, γ) is valid. We relax this in
two ways. First, we require that given a transcript τ and another challenge β′, it is impossible to
find two different responses γ0, γ1, such w0 ̸= w1, where wb is the witness extracted from τ and
τb = (α, β′, γb). We further relax this by only requiring this property for a portion of the witness,
defined by a function f , i.e., we require f(w0) ̸= f(w1) instead of w0 ̸= w1.

While it may seem like an unnatural property, this is satisfied by many natural Σ-protocols.
In particular, if the first flow α contains a perfectly binding commitment c = Commit(f(w); r) to
f(w), and the extractor extracts the appropriate r, then the Σ-protocol has f -unique extraction.
We remark also that a statistical variant of f -unique extraction is sufficient for our purpose. We
choose the definition below for simplicity and because our instantiation satisfies it. See section 7.2
for more details and concrete example of f -unique extraction.

Definition 3.26 (f -Unique Extraction). For a (possibly non-efficient) function f , a Σ-protocol Σ
has f -unique extraction if for any statement x, any transcript τ = (α, β, γ) and challenge β′ ̸= β,
there is no γ0, γ1, such that for τb = (α, β′, γb), we have

f(Ext(x, τ, τ0)) ̸= f(Ext(x, τ, τ1)).

Non-Interactive Zero Knowledge

Given a witness w for statement x, a non-interactive zero-knowledge (NIZK) proof system allows
a prover to generate a proof π that attests that she knows some w′ such that (w′, x) ∈ R.
Proofs π can be verified for statement x without revealing anything but that the statement is
true. Here, we quantify “knowledge of the witness” either via adaptive knowledge soundness or
online-extractability. The former informally states that if an algorithm A can generate a valid
proof-statement pair (x, π), then there exists some extractor that when given black-box access
to A, can extract some witness w s.t. (x, w) ∈ R. The latter requires that the witness w can
be extracted from (x, π) “on-the-fly” without disrupting A. In this context, we require some
random oracle H on which proving and verification rely. Further, we assume that the prover and
verifier are supplied with a common random string crs. As we later aim to avoid such a crs in
our blind signature framework, the crs will be the output of a random oracle.

More formally, an NIZK for a relation R is a tuple of PPT algorithms (ProveH, VerifyH) with
oracle access such that:

– ProveH(crs, x, w): receives a common random string crs ∈ {0, 1}ℓ, a statement x and a
witness w, and outputs a proof π,
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– VerifyH(crs, x, π): receives a statement x and a proof π, and outputs a bit b ∈ {0, 1}.

An NIZK satisfies correctness and zero-knowledge, where we call it adaptive knowledge sound if
it satisfies definition 3.29 and online-extractable if it satisfies definition 3.31.

Definition 3.27 (Correctness). An NIZK is correct if for any crs ∈ {0, 1}ℓ, (x, w) ∈ R, and
π ← ProveH(crs, x, w), it holds that VerifyH(crs, x, π) = 1.

Definition 3.28 (Zero-Knowledge). An NIZK is zero-knowledge if there exists a PPT simulator
Sim = (SimH, Simπ) such that for any PPT adversary A, it holds that

Advzk
A (λ) =

∣∣∣Pr
[
AH,P(crs) = 1

]
− Pr

[
ASimH,S(crs) = 1

]∣∣∣ = negl(λ),

where P and S are oracles that on input (x, w) return ⊥ if (x, w) /∈ R, and else output
ProveH(crs, x, w) or Simπ(crs, x) respectively. Note that the probability is taken over crs← {0, 1}ℓ
and the random choices of H, and both SimH and Simπ have a shared state.

We define adaptive knowledge soundness. We remark that the soundness relation Rlax can be
different from the (correctness) relation R. We are typically interested in R ⊆ Rlax and call Rlax
the relaxed relation.

Definition 3.29 (Adaptive Knowledge Soundness). An NIZK is adaptively knowledge sound for
relation Rlax if there exists positive polynomials pT, pP and a PPT algorithm Ext such that for
any crs ∈ {0, 1}ℓ, given oracle access to any PPT adversary A (with explicit random tape ρ) that
makes QH = poly(λ) random oracle queries with

Pr[(x, π)← AH(crs; ρ) : VerifyH(crs, x, π) = 1] ≥ µ(λ),

we have
Pr
[
(x, π)← AH(crs; ρ),
w ← Ext(crs, x, π, ρ, h⃗) : (x, w) ∈ Rlax

]
≥ µ(λ)− negl(λ)

pP(λ, QH) ,

where h⃗ are the outputs of H, and the probability is over the random tape ρ and the random
choices of H. Also, we require that the runtime of Ext is bounded by pT(λ, QH) · Time(A).

Remark 3.30 (Fiat-Shamir). The Fiat-Shamir transformation can applied to a Σ-protocol (or
more generally an interactive proof system) to compile it into an NIZK. Non-interactivity is
achieved by computing the challenge β ← H(x, α) deterministically from the output of the first
message α of the Σ-protocol and the statement x. Then, the last message γ is computed given β,
and the transcript π = (α, β, γ) is prover’s output. Roughly, special soundness of a Σ-protocol
translates to adaptive knowledge soundness of the NIZK obtained via Fiat-Shamir in the ROM.

Next, we define (multi)-online extractability similarly to [dK22]. We consider a slightly
simplified definition where the runtime of the extractor Ext does not depend on the advantage µ
of the adversary A.

Definition 3.31 ((Multi)-Online Extractability). An NIZK is online-extractable if for all PPT
adversaries A, there exists a PPT simulator SimCRS and extractor Ext, such that

CRS Indistinguishability. For any PPT adversary A, we have

Advcrs
A (λ) = |Pr[AH(crs) = 1]− Pr[AH(crs) = 1]| = negl(λ),

where crs← {0, 1}ℓ and (crs, td)← SimCRS(1λ).
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Online Extractability. There exists positive polynomials pT, pP such that for any QH =
poly(λ) and PPT adversary A that makes at most QH random oracle queries with

Pr
[
(crs, td)← SimCRS(1λ), {(xi, πi)}i ← AH(crs) : ∀i : VerifyH(crs, xi, πi) = 1

]
≥ µ(λ),

where i ∈ [QS ], it holds that

Pr
[
(crs, td)← SimCRS(1λ), {(xi, πi)}i ← AH(crs),

{wi ← Ext(crs, td, xi, πi)}i
: ∀i : (xi, wi) ∈ R
∧ VerifyH(crs, xi, πi) = 1

]
≥ µ(λ)− negl(λ)

pP(λ, QH) ,

where the runtime of Ext is upper bounded by pT(λ, QH) · Time(A) and again i ∈ [QS ].

3.6 Searchable Symmetric Encryption

We recall the notion of searchable symmetric encryption (SSE). Throughout, a database
DB = {(wi, (id1, ..., idℓi

))}Ki=1 is a set of K pairs (wi, (id1, ..., idℓi
)), where wi is a keyword,

and (id1, ..., idℓi
) is a tuple of ℓi document identifiers matching keyword wi. The number of

distinct keywords is K. We write DB(wi) = (id1, ..., idℓi
) for the list of identifiers matching

keyword wi. The size of the database DB is the number of distinct keyword-identifier pairs
(wi, idj), with idj ∈ DB(wi). It is equal to

∑K
i=1 ℓi.

We will usually assume that there is an upper bound W on the total number of keywords:
K ≤ W ; and an upper bound N on the size of the database:

∑k
i=1 ℓi ≤ N . Throughout the

thesis, the integer p denotes the page size. We treat p as a variable independent of the size of
the database N , in line with previous work. Our complexity analysis holds in the RAM model of
computation, where accessing a random memory word costs unit time. Memory is counted in
the number of memory words, which are assumed to be of size O(λ) bits, as is common in the
literature.

Before giving the formal definition, let us sketch how a dynamic SSE scheme operates. The
client stores a small state st, while the server stores the encrypted database EDB. The client
calls Σ.Setup to initialize both states, on input an initial plaintext database DB. To search the
database on keyword w, the client initiates the protocol Σ.Search on input w, and eventually
obtains the list of matching identifiers DB(w). As a side effect, Σ.Search may also update the
client and server states. Similarly, to add a new keyword-identifier pair (w, id) to the encrypted
database, the client initiates Σ.Update on the corresponding input.

A dynamic searchable symmetric encryption scheme Σ is a 4-tuple of PPT algorithms (KeyGen,
Setup, Search, Update):

– Σ.KeyGen(1λ): Takes as input the security parameter λ and outputs client secret key K.

– Σ.Setup(K, N, W, DB): Takes as input the client secret key K, upper bounds N on the
database size and W on the number of keywords, and a database DB. Outputs an encrypted
database EDB and client state st.

– Σ.Search(K, w, st; EDB): The client receives as input the secret key K, keyword w and state
st. The server receives as input the encrypted database EDB. Outputs some data d, an
updated state st′ for the client, and an updated encrypted database EDB′ for the server.

– Σ.Update(K, w, id, op, st; EDB): The client receives as input the secret key K, a keyword-
identifier pair (w, id), an operation op ∈ {del, add}, and state st. The server receives the
encrypted database EDB. Outputs an updated state st′ for the client, and an updated
encrypted database EDB′ for the server.
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We denote by SearchC (resp. UpdateC) the client side of the protocol Search (resp. Update),
and by SearchS (resp. UpdateS) its server counterpart. We may omit W in the input of Setup if
it is not used.

For concision, in the remainder, the client state st will be omitted in the notation. As is
standard in SSE literature, we sometimes assume that keywords are preprocessed via a PRF by
the client to avoid clutter in the description of our schemes. That is, w = PRFK(H(k)) where k
is the actual keyword, for some PRF key K known only to the client.

Epochs. To facilitate the description of our schemes in Chapter 6, it is convenient to concep-
tually partition update queries issued by the client into sequences of W consecutive updates.
The time frame corresponding to one such sequence of W updates is called an epoch. More
precisely, the k-th epoch comprises all updates and searches that are performed between the
((k − 1) ·W + 1)-th and (k ·W )-th update. Looking ahead, update queries belonging to the
current epoch will typically be preprocessed together on the client side, then progressively pushed
to the server during the next epoch.

Correctness. Informally, correctness asks that at the outcome of a Search protocol on keyword
w, the client should obtain exactly the identifiers of documents matching w. The following
definition asks for perfect correctness. In some cases, we may allow correctness to fail as long as
the probability of failure is negligible.

Definition 3.32 (Correctness). An SSE scheme Σ is correct if for all sufficiently large W, N ∈ N,
for all databases DB, and all sequences of search and update operations, provided at most
K keywords are used, and the size of the database remains at most N at all times, letting
K ← Σ.KeyGen(1λ) and EDB ← Σ.Setup(K, N, W, DB), at the outcome of a search query on
keyword w, the client obtains exactly the identifiers of documents matching keyword w at query
time. (That is, documents matching w in the initial database DB or added by an update query
matching w, and not subsequently deleted.)

Security. We use the standard semantic security notion from [CGKO06]. The server is modeled
as an honest-but-curious adversary. Intuitively, security asks that the information learned by the
server in the course of the scheme’s execution is no more than a specified leakage. The allowed
leakage is expressed by a leakage function, composed of setup leakage LStp, search leakage LSrch,
and update leakage LUpdt. The intent is that, when executing Setup on input x, the server should
learn no more than LStp(x). To formally capture that requirement, the security definition asks
that there exists a PPT simulator that can simulate the view of the server, taking as input only
LStp(x). The same goes for Search and Update.

Formally, we define two games, SSEReal and SSEIdeal. In both games, the adversary
first chooses a database DB. In SSEReal, the encrypted database EDB is then generated by
Setup(K, N, DB). In SSEIdeal, EDB is instead generated by a stateful PPT algorithm Sim
called the simulator, on input LStp(DB, N). After receiving EDB, the adversary adaptively issues
search and update queries. In SSEReal, all queries are answered honestly. In SSEIdeal, search
queries on keyword w are simulated by Sim on input LSrch(w), and update queries for operation
op, keyword w, and identifier id are simulated by Sim on input LUpdt(op, w, id). At the end of
the game, the adversary outputs a bit b.

Definition 3.33 (Semantic Security). Let Σ be an SSE scheme and let L = (LStp,LSrch,LUpdt)
be a leakage function. The scheme Σ is L-adaptively secure if for all PPT adversaries A, there
exists a PPT simulator Sim such that:

|Pr[SSERealΣ,A(λ) = 1]− Pr[SSEIdealΣ,Sim,L,A(λ) = 1]| = negl(λ).
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Leakage Patterns

To facilitate the description of leakage functions, we make use of the following standard notions
from the literature (see [Bos16] for more details).

– The search pattern sp(w) for keyword w is the sequence of identifiers of previous search
queries on w.

– The update pattern up(w) for keyword w is the sequence of identifiers of previous update
queries on w.

– The query pattern qp(w) = (sp(w), up(w)) is the combination of search and update patterns.

Forward Security and Backward Security. Forward security was introduced and formalized
in [SPS14] and [Bos16], respectively. In this manuscript, we consider a strictly stronger notion of
forward security where updates leak no information.

Definition 3.34 (Forward Security). An SSE scheme with leakage L = (LStp,LSrch,LUpdt) is
forward-secure if LUpdt(op, w, id) = ⊥.

The notion of backward security was formalized in [BMO17], and restricts the leakage incurred
by deletions. Backward security is not the main focus of this manuscript, and we refer the reader
to [BMO17] for the formal definition. We consider type-II backwards security in Chapter 6,
which requires that search queries leak the documents currently matching w, when they were
inserted, and when all the updates on w happened (but not their content). Note that schemes
with leakage Lfs are forward-secure and type-II backward-secure.

Remark on Deletions

Generally, we present our SSE constructions without deletions to improve readability. This
however does not reduce their functionality, as all schemes can be extended to support deletions
with the generic framework of [Bos16]. Intuitively, given an SSE scheme Σadd that supports
additions, it allows us to construct a scheme Σ that supports additions and deletions with the
same leakage. For this, two instantiations of Σadd are used, Σ0 for additions and Σ1 for deletions.
Added identifiers are inserted into Σ0 while deleted keyword-identifier pairs are inserted into
Σ1. For each search request, the client queries Σ0 and Σ1 and retrieves identifier lists L0 and L1
respectively. The result of the search request then is L0 \ L1. Clearly, if Σadd has leakage Lfs,
then Σ also has leakage Lfs.

Efficiency Metrics

We recall common efficiency measures for SSE introduced in [CT14]. Locality and read efficiency
quantify the memory efficiency of SSE schemes on hard disk drives. Storage efficiency quantifies
the storage overhead compared to a plaintext database.

Definition 3.35 (Read Pattern). Regard server-side storage as an array of memory locations,
containing the encrypted database EDB. When processing search query Search(K, wi, sti; EDBi) or
update query Update(K, (wi, Li), opi, sti; EDBi), the server accesses memory locations m1, ..., mh.
We call these locations the read pattern and denote it with RdPat(opi, ini).

Definition 3.36 (Locality). A SSE scheme has locality L if for any λ, DB, N , sequence S, and
any i, RdPat(opi, ini) consists of at most L disjoint intervals.

Definition 3.37 (Read Efficiency). A SSE scheme has read efficiency R if for any λ, DB, N ,
sequence S, and any i, |RdPat(opi, ini)| ≤ R · P , where P is the number of memory locations
needed to store all (added and deleted) document indices matching keyword wi in plaintext (by
concatenating indices).
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Definition 3.38 (Storage Efficiency). A SSE scheme has storage efficiency E if for any λ, DB,
N , sequence S, and any i, |EDBi| ≤ E · |DBi|.
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Chapter

4
Weighted Hashing

In this chapter, we propose and analyze hashing variants based on classical balls-into-bins
processes in the weighted setting, including one-choice allocation, two-choice allocation and
cuckoo hashing. We prove upper bounds on the size of the most loaded bin that hold with
overwhelming probability.
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4.1 Introduction
In this chapter, we investigate various properties of single-choice games as well as multiple-choice
games in the context of weighted balls. That is, we want to allocate n balls into m bins, where
each ball bi has a weight wi ∈ [0, 1]R, and its destination bins are chosen at random. We denote by
wtot =

∑
i wi the total weight. If the weight distribution can change throughout the process, the

value wtot denotes an upper bound on the total weight. We consider one-choice allocation (1C),
two-choice allocation (2C), and cuckoo hashing. These algorithms have found many applications
in cryptography, especially in the literature related to oblivious algorithms.

In what follows, with overwhelming probability is synonymous with except with negligible
probability, whereas with high probability simply means with probability close to 1 in some sense,
but not necessarily overwhelming.

One-choice allocation. In one-choice allocation, n balls with uniform weight are thrown into
n bins. Each ball is inserted into a single bin chosen independently and uniformly at random,
e.g., by hashing an identifier of the ball. A standard analysis using Chernoff bounds shows that,
at the outcome of the insertion process, the most loaded bin contains at most O(log n) balls with
high probability [JK77], and at most O(δ(n) log n) balls with overwhelming probability, for any
δ = ω(1).

In the weighted setting, each weighted ball is placed in a random bin. Again, we are interested
in the load of the most loaded bin, where the load is the total weight of the balls allocated into a
bin. [BFHM08] shows that if balls have weights in the real interval [0, 1]R and the sum of weights
of all balls is fixed to some wtot ∈ N, then inserting wtot balls of weight 1 is the worst case for
the maximum load of a bin (in expectation).
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Two-choice allocation. Once again, n balls are thrown into n bins. For each ball, two bins
are chosen independently and uniformly at random. The ball is inserted into whichever of the two
bins contains the fewest balls at the time of insertion. A celebrated result by Azar et al. shows
that, at the outcome of the insertion process, the most loaded bin contains O(log log n) balls
with high probability [ABKU94]. It was later shown that the result holds with overwhelming
probability [RMS01]. Thus, having two choices per ball instead of one yields an exponential
improvement in the load of the most loaded bin. This result has found application in many
areas of computer science. A survey may be found in [RMS01], which also presents some of the
underlying analytical techniques.

The weighted variant of the two-choice process inserts each ball into whichever of two
uniformly random bins currently contains the least weight in total (rather than the least number
of balls, in the unweighted case). If balls have weights in [0, 1]R, then one would hope that the
load of the most loaded bin is O(log log wtot), where wtot =

∑
wi is the total weight of the balls.

At STOC 2007, Talwar and Wieder analyzed the weighted two-choice process [TW07]. They
showed that when the weights of the balls are drawn independently from a fixed distribution
of expectation 1, with some mild smoothness assumptions, the load of the most loaded bin is
indeed O(log log n) (which is also O(log log W ), if W is defined to be the expectation of the total
weight). In fact, they show a much stronger result that the gap between the expected load of each
bin and the load of the most loaded bin is bounded by O(log log m) with high probability, even
when inserting an unbounded number of balls m≫ n into n bins, inspired by a seminal paper by
Berenbrink et al. showing the same result in the unweighted case [BCSV06]. A simpler proof of
a variant of the result was later given in [TW14], again assuming weights drawn independently
from a suitable distribution. To our knowledge, all existing analyses of the weighted two-choice
process rely on a distributional assumption of that form1.

It seems quite natural to want to consider the case that there is no distributional assumption:
the sequence of ball weights is instead an arbitrary sequence, subject only to an upper bound on
the weight of an individual ball. Indeed, in many cases, the weights of the balls (corresponding,
e.g., to the cost of a job in a job allocation application, or the size of an object in a memory
management application) may be determined by a client, and need not be drawn from a consistent
distribution, and may not be independent of each other. To our knowledge, a distribution-free
result of that form is only known for 1C [BFHM08] (in expectation), but the same article argues
that their analysis technique cannot extend to the two-choice process.

Cuckoo hashing. Cuckoo hashing is introduced by Pagh and Rodler [PR04]. It has found
many applications within cryptography: among others, oblivious algorithms (cf. [CGLS17],
and the references therein), private set intersection [PSSZ15], and more recently, searchable
encryption [PPYY19, BBF+21]. In cuckoo hashing, n balls are inserted into (2 + ε)n bins, where
ε > 0 is an arbitrarily small constant. Each bin can contain at most one ball. For each ball, two
bins are chosen independently and uniformly at random. The ball is inserted into one of the two
bins. If the bin was already occupied, the occupying ball is moved to its other possible destination
bin, possibly creating a chain reaction. Pagh and Rodler have shown that insertion terminates in
expected O(log n) time [PR04] (including the amortized cost of rebuilding the whole table with a
new hash function in case of insertion failure). In the end, similar to two-choice allocation, each
ball is stored in one of two possible locations. Thanks to the more complex insertion algorithm,
which allows moving already placed balls, the most loaded bin has (by definition) a load of 1,
instead of O(log log n) for two-choice allocation. To achieve a negligible probability of failure,
cryptographic applications typically use cuckoo hashing with a stash [KMW10].

1A partial exception may exist: the result on the so-called (1 + β)-choice process studied in [PTW10] is written
in the same distributional form, but upon closer inspection, it appears that the core potential function argument
could be written without the need of a distributional assumption, as long as the weights are bounded. However, as
noted also in [TW14], this technique can only prove a logarithmic bound, rather than the O(log log).
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4.1.1 Our Contributions

In this chapter, we provide weighted variants for the aforementioned allocation schemes and
prove upper bounds for the load of the most loaded bin. All our upper bounds match the upper
bounds in the classical setting with unweighted balls.

One-choice allocation. As a warm-up, we extend the results in [BFHM08] and show that
for weighted 1C, a logarithmic bound of Õ (log wtot) holds with overwhelming probability for
m = o(wtot) bins.

Two-choice allocation. We introduce layered two-choice (L2C), a weighted adaption of 2C.
L2C has the same basic behavior as a (weighted) two-choice algorithm: for each ball, two bins
are chosen uniformly at random as possible destinations. The only difference is how the bin
where the ball is actually inserted is selected among the two destination bins. The most natural
choice would be to store the ball in whichever bin currently has the least load, where the load
of a bin is the sum of the weights of the balls it currently contains. Instead, we use a slightly
more complex decision process. In a nutshell, we partition the possible weights of balls into
O(log log λ) subintervals, and the decision process is performed independently for balls in each
subinterval. For the first subinterval (holding the smallest weights), we use the aforementioned
weighted 1C process, while for the other subintervals, we use an unweighted two-choice process.

The point of this construction is that its analysis reduces to the analysis of the weighted one-
choice process and the unweighted two-choice process, for which powerful analytical techniques
are known. We leverage those techniques to show that in L2C, the most loaded bin has a load
at most O(log log wtot). This bound is the asymptotically identical to the bound in classical
two-choice allocation without requiring that ball weights be drawn independently from a fixed
distribution (unlike past results in [TW07, TW14]). Our bound requires only than ball weights
lie in [0, 1]R and that an upper bound wtot on the total weight is known. In practice, what this
means is that we have an allocation algorithm that, for most intents and purposes, behaves like a
weighted variant of two-choice allocation, and for which updates and distribution-free guarantees
can be obtained relatively painlessly.

Note that in our SSE constructions in Chapters 5 and 6, the adversary is in control the weight
distribution, so such a distribution-free bound is required for our applications.

Cuckoo hashing. We introduce a natural generalization WCuckoo of cuckoo hashing with a
stash that allows for the allocation of weighted balls. Notably, WCuckoo is the first variant of
cuckoo hashing for weighted balls. Given n balls (bi, wi) with total weight wtot and m = (2+ε)wtot
bins, we initially allocate each ball into the first bin ui of the two bins (ui, vi) chosen at random.
Each bin is identified with a vertex vi ∈ V and each ball (bi, wi) is identified with an edge
(ui, vi) ∈ E of weight wi, where V = [m] and E ⊆ V × V . This gives rise to a graph G = (V, E)
with m vertices and n edges labeled with weights, similar to the (unweighted) standard cuckoo
graph. Our algorithm WCuckoo extends the graph with a source s and sink t, both connected
with the bins V depending on the bin loads. Then, the allocation is optimized according to a
max flow calculated in the extended graph.

In our analysis, we first show that this allocation strategy is optimal in the sense that it
minimizes the overflow, i.e., the total weight moved to the stash. In short, we view WCuckoo as an
algorithm that operates on graphs G (as sketched above) and apply the max-flow min-cut theorem
to partition the vertices (i.e., bins) into two sets S (containing the source) and T (containing the
sink). Then, we use that the partition (S, T ) is minimal to show that the allocation of WCuckoo
cannot be improved.

Finally, we show that for any input, a stash of size 1 + ω(log λ)/ log m suffices with over-
whelming probability. Roughly, we use a convexity argument to reduce to results on cuckoo
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hashing. The first step is to prove that the expectancy of the stash size for an arbitrary input is
upper-bounded by its expectancy when balls are of uniform weight. The core of that step is a
convexity argument: we prove that the minimal stash size, as a function of the underlying graph,
is convex. The result then follows using some majorization techniques (inspired by the analysis
of weighted balls-and-bins problems in [BFHM08]). In the second step, we extend a result by
Wieder [Wie17] on cuckoo hashing with uniform balls. In particular, we show that known stash
bounds for cuckoo hashing (with uniform balls) hold with overwhelming probability. The third
and final step is to slightly extend the above convexity argument, and combine it with some
particular features of the problem and the uniform stash bound, to deduce a tail bound on the
stash size, as desired.

4.2 One-Choice Allocation

We recall the weighted one-choice allocation process. An arbitrary number of balls {bi}i of weight
wi ∈ [0, 1]R with total weight at most wtot are thrown into m bins at random. We show that the
maximum loaded bin has a load of Õ (log wtot) with overwhelming probability.

We start with a description of the process. The balls with weights in [0, 1]R are thrown
uniformly and independently at random into m bins. We model the random choice with a hash
function H : {0, 1}∗ 7→ {1, ..., m}, where H is uniformly random among functions mapping into
{1, ..., m}. We set δ(λ) = log log λ throughout this section.

Algorithm 1 One-Choice Allocation (1C)
1C.Setup(wtot)

1: Set m← ⌈wtot/(δ(λ) log(wtot))⌉
2: Initialize m empty bins B0, ..., Bm−1
3: Return B0, ..., Bm−1

1C.UpdateBall(b, w, B0, ..., Bm−1)
1: Receive bins B1, ..., Bm, and ball b with weight w
2: Set α← H(b) mod m
3: if b /∈ Bα then
4: Insert b into Bα

5: Update weight of b to w in Bα

We now prove an upper bound on the load of the most loaded bin. First, we recall a lemma
(proven in [BFHM08]) that upper bounds the expectation of a weighted one-choice process.

Lemma 4.1 ([BFHM08], Corollary 3.5). Let wtot ∈ N and c ∈ [0, 1]R. Let w̃ = (c)i∈[ñ] and
w = (wi)i∈[n] be non-negative vectors. Let

∑n
i=1 wi ≤ c · ñ and wi ≤ c for all i ∈ [n].

Denote by Xmlb (resp. X̃mlb) the random variable indicating the load of the most loaded bin
after throwing n balls with weights w (resp. wtot balls with weights x̃) uniformly and independently
at random into m bins. For any positive R ∈ R, it holds that

Exp[max(Xmlb −R, 0)] ≤ Exp[max(X̃mlb −R, 0)].

Note that we simplified the formulation of [BFHM08] and adapted it to our needs. Roughly,
[BFHM08] requires that w̃ majorizes w, which holds if both are chosen as in Lemma 4.1.
Then, [BFHM08] shows that Exp[X̃mlb] ≥ Exp[Xmlb] using a convexity argument. As f(X) =
max(X −R, 0) is increasing, it is straightforward to adapt their proof to our formulation. Note
that we use a similar argument in Section 4.4, where we also define majorization formally. For
the upper bound on the most loaded bin in weighted 1C, our formulation is sufficient.
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Theorem 4.2 (1C). Let wtot = poly(λ) and m ∈ N such that exp(−wtot/m) = negl(λ). Then, the
most loaded bin during the execution of an (initially fixed) sequence of 1C.UpdateBall operations
has load at most 1 + 3⌈wtot⌉/m except with negligible probability, if the total weight of the inserted
balls does not exceed wtot.

Proof. Let Xmlb be the random variable denoting the load of the most loaded bin at some point
during the sequence. Let R = 3⌈wtot⌉/m. We show that Pr[Xmlb > R + 1] = negl(λ). Note that
this is implied by Pr[⌈Xmlb⌉ > R + 1] = negl(λ).

As ⌈Xmlb⌉ < ⌈wtot⌉ is integer-valued, we can apply Lemma 3.2. Now, we need to show that
Exp[max (⌈Xmlb⌉ − (R + 1), 0)] = negl(λ). As ⌈Xmlb⌉ < Xmlb + 1, it suffices to show that the
expression Exp[max (Xmlb −R, 0)] is negligible in λ.

By Lemma 4.1, this quantity is upper bounded by Exp[max(X̃mlb − R, 0)], where X̃mlb is
the load of the most loaded bin for ⌈wtot⌉ balls of weight 1. Note that X̃mlb ≤ ⌈wtot⌉ is a
non-negative integer variable. After a final application of Lemma 3.2, it remains to show that
Pr[X̃mlb ≥ R] = negl(λ). For the last quantity, it is sufficient to analyze classical 1C without
weights.

Let Xi be the random variable that denotes the number of balls in bin Bi. Every ball has a
chance of 1/m to be assigned to Bi and there are ⌈wtot⌉ balls. Thus, we have Exp[Xi] = ⌈wtot⌉/m.
Note that Xi can be expressed as sum of independent random variables taking values in {0, 1}.
Applying Lemma 3.1 with constant 2, we obtain:

Pr[Xi ≥ 3Exp[Xi]] ≤ exp
(
−4 · Exp[Xi]

4

)
=⇒ Pr[Xi ≥ R] ≤ exp(−⌈wtot⌉/m) = negl(λ),

by assumption. Finally, a union bound over all bins yields that Pr[X̃mlb ≥ R] = negl(λ).

Inserting the parameters of the two-dimensional one-choice algorithm of [ANSS16], we obtain
a quasi-logarithmic upper bound for weighted 1C via Theorem 4.2.

Corollary 4.3. Let λ ≤ wtot = poly(λ), and m = ⌈wtot/(δ(λ) log wtot)⌉ with δ(λ) = ω(1)
Then, the most loaded bin during the execution of an (initially fixed) sequence of 1C.UpdateBall

operations has load at most Õ (log wtot) except with negligible probability, if the total weight of
the inserted balls does not exceed wtot.

Proof. This follows as exp(−δ(λ) log wtot) = negl(λ) if wtot ≥ λ and δ(λ) = ω(1).

4.3 Two-Choice Allocation
In this section, we describe layered two-choice allocation (L2C), a variant of two-choice allocation
that allows to allocate n weighted balls (bi, wi) into m bins, where bi is a unique identifier
and wi ∈ [0, 1]R is the weight of the ball. (We often write ball bi for short.) First, let 1 ≤
δ(λ) ≤ log(λ) be a function. We denote by wtot =

∑n
i=1 wi the sum of all weights and set

m = wtot/(δ(λ) log log wtot). We will later choose δ(λ) = o(log log λ) such that allocation has
negligible failure probability. In the overview, we set δ(λ) = 1 and assume that m = Ω(λ) for
simplicity (which suffices for negligible failure probability).

4.3.1 Overview

L2C is based on both weighted one-choice allocation (1C) and unweighted two-choice allocation
(2C). On a high level, we split the set of possible weights [0, 1]R into log log m subintervals

[0, 1/ log m]R, (1/ log m, 2/ log m]R, ..., (2log log m−1/ log m, 1]R.
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In words, the first interval is of size 1/ log m and the boundaries between intervals grow by a
factor 2 every time. We will allocate balls with weights in a given subinterval independently from
the others.

Balls in the first subinterval have weights wi ≤ log m and are thus small enough to apply
weighted 1C. This suffices because one-choice performs worst for uniform weights of maximal
size 1/ log m. In that case, there are at most n′ = wtot log m balls and we expect a bin to contain
n′/m = log m · log log wtot balls of uniform weight, since m = wtot/(log log wtot). As each ball
has weight 1/ log m, the expected load per bin is log log wtot. This translates to a O(log log wtot)
bound with overwhelming probability. Formally, this follows via Theorem 4.2 after scaling the
weights with a factor log m.

For the other intervals, applying unweighted and independent 2C per interval suffices, as
the weights of balls differ at most by a factor 2 and there are only log log m intervals. More
concretely, let ni be the number of balls in the i-th subinterval Ai = (2i−1/ log m, 2i/ log m]R for
i ∈ {1, ..., log log m}. Balls with weights in subinterval Ai fill the bins with at most O(ni/m +
log log m) balls, independent of other subintervals. Note that we are working with small weights,
and thus potentially have ω(m) balls. Thus, we need to extend existing 2C results to negligible
failure probability in m for the heavily-loaded case (cf. lemma 4.5). As there are only log log m
subintervals, and balls in interval Ai have weight at most 2i/ log m, we can just sum the load of
each subinterval and receive a bound

log log m∑
i=1

2i

log m
O(ni/m + log log m) = O(wtot/m + log log m).

In total, we have O(wtot/m + log log m) = O(log log wtot) bounds for the first and the remaining
intervals. Together, this shows that all bins have load at most O(log log wtot) after allocating all
n items. This matches the bound of standard 2C with unweighted balls if m = Ω(λ). For our
SSE application (cf. Section 5.4), we want to allow for negligible failure probability with the least
number of bins possible. We can set δ(λ) = log log log(λ) and obtain a bin size of Õ (log log wtot)
with overwhelming probability, if m = wtot

δ(λ) log log wtot
. The analysis is identical in this case.

Handling Updates. The described variant of L2C is static. That is, we have not shown
a bound on the load of the most loaded bin if we add balls or update the weight of balls.
Fortunately, inserts of new balls are trivially covered by the analysis sketched above, if m was
chosen large enough initially in order to compensate for the added weight. Thus, we assume
there is some upper bound wtot on the total weights of added balls which is used to initially set
up the bins. We can also update weights if we proceed with care.

For this, let bi be some ball with weight wold. We want to update its weight to wnew > wold. If
wold and wnew reside in the subinterval, we can directly update the weight of bi, as L2C ignores the
concrete weight of balls inside a given subinterval for the allocation. Indeed, in the first interval,
the bin in which bi is inserted is determined by a single random choice, and for the remaining
subintervals, the 2C process only considers the number of balls inside the same subinterval,
ignoring concrete weights.

When wnew is larger than the bounds of the current subinterval, we need to make sure that
the ball is inserted into the correct bin of its two choices. For this, the ball bi is inserted into the
bin with the lowest number of balls with weights inside the new subinterval. Even though the
bin of bi might change in this process, we still need to consider bi as a ball of weight wold in the
old bin for subsequent ball insertions in the old subinterval. Thus, we mark the ball as residual
ball but do not remove it from its old bin. That is, we consider it as ball of weight wold for the
2C process but assume it is not identified by bi anymore. As there are only log log m different
subintervals, storing the residual balls has a constant overhead. The full algorithm L2C is given
in Algorithm 2. We parameterize it by a hash function H mapping uniformly into {1, ..., m}2.
The random bin choices of a ball bi are given by α1, α2 ← H(bi).
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Algorithm 2 Layered 2-Choice Allocation (L2C)
L2C.Setup({(bi, wi)}ni=1, wtot)

1: Receive n balls (bi, wi), and maximal total weight wtot
2: Initialize m = ⌈wtot/(δ(λ) log log wtot)⌉ empty bins B1, ..., Bm

3: for all i ∈ {1, ..., n} do
4: Set α1, α2 ← H(bi)
5: InsertBall(bi, wi, Bα1 , Bα2)
6: Return B1, ..., Bm

L2C.InsertBall(bnew, wnew, Bα1 , Bα2)
1: Receive bins Bα1 , Bα2 , and ball (bnew, wnew)
2: Assert that α1, α2 are the choices given by H(bnew)
3: Split the set of possible weights [0, 1]R into log log m sub-intervals

[0, 1/ log m]R, (1/ log m, 2/ log m]R, ..., (2log log m−1/ log m, 1]R

4: Choose k ∈ N minimal such that wnew ≤ 2k/ log m
5: if k = 1 then
6: Set α← α1
7: else
8: Let Bα be the bin with the least number of balls of weight in

(
2k−1

log m , 2k

log m

]
R

among Bα1

and Bα2

9: Insert ball bnew into bin Bα

L2C.UpdateBall(bold, wold, wnew, Bα1 , Bα2)
1: Receive bins Bα1 , Bα2 that contain ball (bold, wold), and new weight wnew ≥ wold
2: Assert that α1, α2 are the choices given by H(bold)
3: if wold, wnew ∈

(
2k−1

log m , 2k

log m

]
R

for some k then
4: Update the weight of bold to wnew directly
5: else
6: Mark bold as residual ball (it is still considered as a ball of weight wold)
7: InsertBall(bold, wnew, Bα1 , Bα2)

4.3.2 Analysis

Let δ(λ) = log log log λ and m sufficiently large such that m−Ω(δ(λ) log log wtot) = negl(λ). Alterna-
tively, we can also set δ(λ) = 1 and m = Ω(λ). (Note that this is the probability that allocation
of 1C or 2C fails.)

We need to show that after setup and during a (selective) sequence of operations, the most
loaded bin has a load of at most O(δ(λ) log log wtot), where wtot is an upper bound on the total
weight of the inserted balls. Let us sketch the proof. First, we modify the sequence S such that
we can reduce the analysis to only (sufficiently independent) L2C.InsertBall operations, while
only increasing the final bin load by a constant factor. This is constant factor of the load is due
to the additional weight of residual balls. Then, we analyze the load of the most loaded bin
for the each subinterval independently. This boils down to an analysis of a 1C process in the
first subinterval and a 2C process in the remaining subintervals as in the overview of L2C (cf.
Section 4.3.1). Summing up the independent bounds yields the desired result.

Theorem 4.4. Let wtot = poly(λ), and m = ⌈wtot/(δ(λ) log log wtot)⌉ with δ(λ) = log log log λ.
(Alternatively, we can also set δ(λ) = 1 and m = Ω(λ).) Assume that m ≥ λ1/ log log λ, and model
H as random oracle.
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Then it holds that throughout the execution of some sequence S of L2C operations, where up-
dates exclusively increase the weight of balls, the most loaded bin has at most load O(δ(λ) log log wtot)
except with negligible probability.

Before proving Theorem 4.4, we introduce some additional preliminaries. In the next lemma,
we consider a sequence of ball insertions and deletions of arbitrary length, such that the total
number of balls in the bins at any point in time is bounded by n = h ·m. A ball insertion is a
standard 2-choice insertion: pick two bins i.u.r., and insert the ball into the least loaded bin. A
deletion removes one previously inserted ball. The sequence of additions and deletions is fixed at
the input of the problem.

Lemma 4.5 (2C). Let δ(m) be an arbitrary map such that 1 ≤ δ(m) ≤ log m for all m ≥
1. At the outcome of the sequence of additions and deletions, the most loaded bin contains
O(h + δ(m) log log m) items, except with probability m−Ω(δ(m) log log m).

In particular, by setting δ(m) = 1, we get that if m ≥ λ, then the failure probability from
the claim is negligible. Similarly, by setting δ(m) = log log log(m), we get that if m ≥ λ1/ log log λ,
then the failure probability from the claim is negligible. Also, note that δ(λ) = Θ(δ(m)) for
m = poly(λ) in both cases.

Proof. We adapt the proof of [Vöc03], which proves a bound O(h) + log log m with probability
m−α, for an arbitrary constant α. The proof uses witness trees. The existence of a bin containing
more than Ch + L items implies the existence of a witness tree of height L + C ′, for some
suitable constants C, C ′. Thus, in order to bound the probability that a bin contains more than
Ch + L items, it suffices to bound the probability that a witness tree of height L + C ′ exists. In
more detail, the proof shows that the probability that a witness tree of height L + 3 exists is
upper-bounded by

m−κ+1+o(1) + m−α

where κ, α are certain parameters (to be discussed later), with:

L ≤ log log m + log(1 + α) + κ.

The proof sets α and κ to be constants. The fact that γ and κ are constant is not essential
to the argument, and is only used in two places in the proof.

The first place is the end of Section 2.3, when upper-bounding the probability of activation of
a pruned witness tree by m−κ+1+o(1). The final step of that upper-bound requires α · κ = mo(1),
which is obviously true for a pair of constants.

The other, more important place where the choice of having constant α and κ comes into play
is in the final derivation. The proof shows that, except with probability at most m−κ+1+o(1)+m−α,
the number of items in the most loaded bin is at most:

L + O(h) ≤ log log m + log(1 + α) + κ + O(h)
= log log m + O(1) + O(h)
= log log m + O(h).

In that final computation, the fact that α and κ are constant makes it possible to absorb the
log(1 + α) + κ term into the O(h) term. The other term is only log log m, which is optimal. If
we set α = κ = δ(m) log log m instead, we get:

L + O(h) ≤ log log m + log(1 + α) + κ + O(h)
≤ 3δ(m) log log m + O(h).
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In the case δ = 1, this worsens the constant in front of the log log term, which is likely why the
authors chose α and κ to be constant. (A better constant than 3 is possible, we choose 3 for
simplicity.) On the other hand, the probability of failure becomes at most

m−κ+1+o(1) + m−α = m−Ω(δ(m) log log m)

as claimed. Note that the condition α · κ = mo(1) is still fulfilled.

We are now ready to prove Theorem 4.4.

Proof. Let {(bi, wi)n
i=1} be balls with (pair-wise unique) identifier bi and weight wi ∈ [0, 1]R. Fur-

ther, let S = (opi, ini)s+n
i=n+1 be a sequence of s insert or update operations opi ∈ {L2C.InsertBall,

L2C.UpdateBall} with input ini = (bi, wi, Bαi,1 , Bαi,2) for inserts and ini = (bi, oi, wi, Bαi,1 , Bαi,2)
for updates. Here, bi denotes the identifier of a ball with weight wi and old weight oi ≤ wi before
the execution of opi. Also, the bins are chosen via αi,1, αi,2 ← H(bi).

Execute (Bi)m
i=1 ← L2C.Setup({(bi, wi)n

i=1}) and the operations opi(ini) with input ini for all
i ∈ [n + 1, n + s]. Also, assume that

∑n+s
i=1 wi− oi ≤ wtot, i.e., the total weight after all operations

is at most wtot. We need to give an upper bound on the load of the most loaded bin throughout
the execution of the process.

Note that the load of a bin is never decreasing, so it is sufficient to analyze the final load
of bins B1, ..., Bm. Also, note that we can replace Setup with n InsertBall operations. Thus, we
can assume without loss of generality that bins B1, ...Bm are initially empty after L2C.Setup.
Also, note that m−Ω(δ(λ) log log wtot) = negl(λ) under the given requirements (cf. lemma 4.5). As
H is modeled as a random oracle, we assume that the bin choices α1, α2 of ball b are chosen
independently and uniformly at random from [1, m]2. We split the proof into three parts:

(1) First, we will modify the sequence S such that we can reduce the analysis to only
(sufficiently independent) L2C.InsertBall operations, while only increasing the final bin load by a
constant factor.

(2) Second, we analyze the maximal bin load when only considering balls of weight at most
1/ log m. Here, L2C.InsertBall behaves exactly as weighted 1C, and we can upper bound the bin
load via Theorem 4.2.

(3) Last, we inspect the maximal bin load considering items in the remaining subintervalls
(2i−1/ log m, 2i/ log m]R for i ∈ {1, ..., log log m}. Per interval, L2C.InsertBall behaves like un-
weighted two-choice (independent of other subintervals) and inherits the log log m bin load
direclty, as balls with different weights differ only by a constant factor per interval. Summing up
the maximal bin load per interval will yield the desired result.

Part 1 — Adapting the sequence: Observe that update operations that with old and
new weights inside the same subinterval can be ignored. More concretely, let opi = UpdateBall
be some update operation on ball bi with old weight oi and new weight wi. If oi both wi are
in the same subinterval ( 2k−1

log m , 2k

log m ]R for some k, the operation opi replaces the old weight oi

of ball bi with the new weight wi directly (inside the same bin). Thus, we can simply remove
opi and replace the previous operation opj = (bi, oj , oi) = (bj , oj , wj) on the same ball with
op′j = (bi, oj , wi) directly. This does not change the final load of the bins. (Note that operations
between opj and opi make the same choices as the concrete weight inside a subinterval never
impacts which bin is chosen.)

Now, let (opi)i∈I be all remaining update operations for some fixed ball b∗, so bi = b∗ and
opi = UpdateBall for i ∈ I. As we removed consecutive update operations in the same subinterval,
operation opi marks the ball b∗ as residual ball and calls InsertBall(b∗, wi, Bα∗,1 , Bα∗,2). Let
j = max(I) be the index of the last update operation opj on b∗ and k be minimal such that
wj ≤ 2k/ log m. As there are only k subintervals below the last interval (2k−1/ log m, 2k/ log(m)]R,
there are at most k such update operations, i.e., |I| ≤ k, and one insert ball operation. Assume
without loss of generality that all k + 1 operations exist. The residual ball left by the i-th update
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operation has at most size 2i−1/ log m and thus, this UpdateBall operation can be replaced by
an InsertBall(b∗, 2i−1/ log m, (Bα∗,1 , Bα∗,2)) operation. Thus, for ball b∗ with final weight wj , we
have to insert k additional balls in order to replace all update operations on ball b∗ with inserts.
The total weight of these additional balls is

k∑
i=1

2i−1/ log m ≤ 2k/ log(m) ≤ 2wj ,

since wj ≥ 2k−1/ log(m). Thus, the total weight is increased by at most 2wj per ball when we
replace UpdateBall operation with InsertBall operations as above, where wj is the final weight.

This way, we can iteratively transform all UpdateBall operations into InsertBall operations at
the cost of a factor 3 in the total weight. The remaining InsertBall operations have as input some
ball bi that is inserted at most once per subinterval. Also, the bin choices are drawn uniformly and
independently random per ball and subinterval. Thus, if we transform the sequence S as above
into a sequence S′ of InsertBall operations, and show the desired upper bound O(δ(λ) log log wtot)
for S′ and w′tot = 3wtot, then the same upper bound (up to a constant factor) holds for the initial
sequence S. Without loss of generality, we only consider sequences with InsertBall operations
and w′tot = 3wtot weight in the following. Note that the other parameters remain unchanged.

Part 2 — Light balls: Here, we show that the most loaded bin has load at most
O(δ(λ) log log wtot) when only considering balls of at most weight 1/ log m. Assume that all
balls are of size at most 1/ log m for simplicity. In that case, observe that InsertBall behaves
like weighted 1C with balls of weight wi ≤ 1/ log m and total weight at most w′tot. Recall that
m = ⌈wtot/(δ(λ) log log wtot)⌉.

First, observe that 1C with balls of weight wi · log m ∈ [0, 1]R, m bins and maximal total
weight w′tot · log m has an upper bound of

O(w′tot · log m

m
) = O(log m · δ(λ) log log wtot)

on the load of the most loaded bin except with negligible probability. This follows from
Theorem 4.2, as exp(−w′tot · log(m)/m) = O(m−δ(λ) log log wtot) = negl(λ).

Scaling back the sequence to their original weights wi by a factor 1/ log m yields the de-
sired bound. That is, the sequence with weights wi has an upper bound 1/ log m · O(log m ·
δ(λ) log log wtot) = O(δ(λ) log log wtot) as desired.

Part 3 — Heavy balls: So far, we have shown that the most loaded bin has load at most
O(δ(λ) log log wtot) with overwhelming probability, when only considering balls of weight smaller
or equal to 1/ log m. We will now show that when considering the remaining balls of weight in
(1/ log m, 1]R, a maximal load of O(wtot/m + δ(λ) log log wtot) = O(δ(λ) log log wtot) is preserved.

For i ∈ [log log m], let ni be the number of balls in each subinterval Ai = (2i−1/ log m, 2i/ log m]R.
Recall that each ball bi has two bin choices that are drawn uniformly and independently random
at the first insertion. These choices are reutilized across the subintervals Ai, if bi is inserted in
multiple subintervals. But note that per subinterval, bi is only inserted once. Thus, L2C behaves
like unweighted 2C for each subinterval Ai (independent from the balls in other subintervals).
By Lemma 4.5, the bin with the highest number of balls (amongst the ni balls with weights in
Ai) contains at most O(ni/m + δ(λ) log log m) balls with overwhelming probability. (Note that
there are at most wtot log m balls and that m−Ω(δ(λ) log log wtot) = negl(λ).)

Each ball with weight wi ∈ Ai has weight at most max(Ai) = 2i/ log m and thus, the load of
the most loaded bin is at most 2i/ log m ·O(ni/m + δ(λ) log log m) when considering balls with
weights in Ai. Summing over all Ai’s, when considering only balls with weights in (1/ log m, 1],
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the load of the most loaded bin is at most

log log m∑
i=1

2i

log m
O(ni/m + δ(λ) log log m)

=
log log m∑

i=1
O(2 ni2i−1

m log m
) +

log log m∑
i=1

2i

log m
O(δ(λ) log log m)

≤O(wtot
m

+ δ(λ) log log wtot),

as m = O(wtot) and
∑

i ni2i−1 ≤ 3wtot, since w′tot = 3wtot is an upper bound on the total weight.
The above holds with overwhelming probability, since the probability that 2C fails is negl(λ),
and there are only log log m subintervals.

As we showed in the first part that is suffices to look at the modified sequence (with
only InsertBall operations) and we gave an upper bound for the remaining balls of weight
at most 1/ log m in the first part, we have that the load of the most loaded bin is at most
O(δ(λ) log log wtot). This concludes the proof.

4.4 Cuckoo Hashing

In this section, we explore weighted cuckoo hashing. We present a natural generalization of
static cuckoo hashing with a stash and prove upper bounds on the stash size. As a reminder,
cuckoo hashing allocates the balls into m bins B1, ..., Bm with capacity 1 or a stash. The main
differences to 2C are that balls can be moved to a stash, and that the allocation can be optimized
globally to minimize the stash size. This allows for a constant bin size of 1.

Each weighted ball bi is mapped to two random bins via hash functions H1, H2 : {0, 1}∗ 7→
{1, ..., m}. We assume that each ball has weight wi ∈ [0, 1]R, and that H1 (resp. H2) is
uniformly random among functions mapping into {1, ..., m/2} (resp. {m/2 + 1, ..., m}). Two
possible destination bins BH1(bi) and BH1(bi) are associated to the i-th ball bi. This is a direct
generalization of unweighted cuckoo hashing, where all balls have size 1. Throughout, we assume
that balls bi can be split into parts. Each part can be allocated to either Bα1 , bin Bα2 or the
stash. Later, we show how to allocate balls without splitting them into parts at the cost of
having bins of capacity 2 instead of 1.

The goal of the WCuckoo algorithm is to allocate the balls into the bins and the stash, while
respecting the capacity of every bin and while minimizing the stash size. It determines weights
wi,j for each ball bi such that wi,1 +wi,2 < wi. These weights determine how each ball is allocated.
Each ball bi is split into three parts of weight wi,1, wi,2 and wi,3 = wi −

∑
b wi,b The parts of

weight wi,1 and wi,2 of ball bi are allocated into bins BH1(bi) and BH1(bi), respectively. If wi,3 > 0,
the remaining weight wi,3 is allocated to the stash. It ensures that each bin receives a total
weight of at most 1, and that the stash is as small as possible.

4.4.1 Overview

We present our weighted cuckoo hashing algorithm WCuckoo in Algorithm 3. Below, we give a
brief description. The algorithm takes as input the number of bins m and the balls (bi, wi)i∈[n].
It outputs bins {Bi}i that contain the balls b respecting the following conditions:

1. Each part of ball b is allocated into either Bα1 , Bα2 or the stash, where α1 = H1(bi) and
α2 = H2(bi).

2. All bins do not exceed their capacity.
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Algorithm 3 WCuckoo
WCuckoo.Setup((bi, wi)n

i=1), wtot

1: wtot ←
∑n

i=1 wi, m← (2 + ε)wtot
2: Initialize m empty bins B1, ..., Bm and an empty stash S.
3: Create an oriented graph G with m vertices numbered {1, . . . , m}
4: Initialize empty table wgt to store edge labels
5: for all balls (bi, wi) do
6: Set α1 ← H1(bi), α2 ← H2(bi)
7: if (α1, α2) /∈ G then
8: Add (α1, α2) to G with label wgt[α1, α2]← 0
9: Update label wgt[α1, α2]← wgt[α1, α2] + wi

10: Add separate source vertex s and sink vertex t to G
11: for all vertex u do
12: Compute its outgoing weight outu =

∑
(u,v)∈E wgt[u, v].

13: if outu > 1 then
14: Add edge from the source s to u with wgt[s, u]← outu − 1
15: else if outu < 1 then
16: Add edge from u to the sink t with wgt[u, t]← 1− outu

17: Add missing back edges initialized with capacity 0 in G

18: Compute a max flow f from s to t with capacity labels wgt
19: for all edges (u, v) in G do
20: Update wgt[u, v]← wgt[u, v]− f [u, v]
21: Update wgt[v, u]← wgt[v, u] + f [u, v]
22: for all balls (bi, wi) do
23: Set α1 ← H1(bi), α2 ← H2(bi)
24: Set wi,1 ← min(wgt[α1, α2], wi)
25: Set wi,2 ← min(wgt[α2, α1], wi − wi,1)
26: Set wi,3 ← wi − (wi,1 + wi,2)
27: Allocate wi,1, wi,2, wi,3 weight of bi to Bα1 , Bα2 , S, respectively
28: Update label wgt[α1, α2]← c[α1, α2]− wi,1
29: Update label wgt[α2, α1]← c[α2, α1]− wi,2

30: return (B1, ..., Bm, S)

The algorithm first creates a graph similar to the cuckoo graph in cuckoo hashing: vertices are
the bins, and for each ball, there is an edge (α1, α2) is drawn between its two possible destination
bins α1 = H1(bi) and α2 = H2(bi). Here, each edge (α1, α2) is associated with the weight of
the ball, and we collapse multiple directed edges between two bins into a directed single edge
associated with the sum of their weights.

Note that edges are initially oriented in an arbitrary way. Ultimately, each ball will be
assigned to the bin α1 at the origin of its corresponding edge. If the bin already contains more
than 1− wgt[α1, α2] weight, then the ball is split and the remaining weight is moved to α2. If
the total weight of α2 also exceeds its capacity after insertion, the ball is split again and the
excess weight is moved to the stash. This means that the load of a bin is the total outgoing
weight of the associated vertex, and at most 1.

Efficiency. We now analyze the efficiency of WCuckoo. WCuckoo allocates a total number of
m = (2 + ε)wtot bins. We show that a stash size 1 + ω(log λ)/ log m suffices to allocate all balls.
In particular, the stash size does not grow with the total weight.
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Theorem 4.6 (Main bound). The probability that the allocation fails is bounded by: Let L ∈ [0, 1]nR
such that

∑
i L[i] = wtot ≥ 4, m = (2 + ε)wtot for some constant ε > 0, s = O(w1/c

tot ) for some
sufficiently large constant c.

Pr[Failm,s(L, H)] = O(m−(s−1)/2).

The computational cost is dominated by the max flow algorithm in setup. We refer to
Section 3.3 for an overview of possible algorithms.

Indivisible balls. In our analysis, we assume that we can split balls and allocate each part
into either of the two bins or the stash. This is not a problem for our applications in Chapter 5.
But if in a specific application, we need to allocate each ball entirely without splitting, it is not
hard to see that a bin size of 3 (instead of 1) is sufficient (with logarithmic stash as before). This
follows immediately from Theorem 4.6. Given an allocation where the balls are split, move each
ball into the data structure (i.e., bins or stash) that contains the most weight of the ball. Then,
each data structure receives at most 3 times its original weight (with respect to the allocation
with split balls).

4.4.2 Analysis

In this section, we prove Theorem 4.6. First, we show that the algorithm WCuckoo is optimal, in
the sense that it minimizes the size of the stash, among all possible ways of allocating the balls
between their two destination bins and the stash. Then, we upper bound the stash size via a
convexity argument.

Setup and Notation

Let us recall some notation. Let (bi, wi)n
i=1 be a tuple of weighted balls, let m be the total

number of bins, and let s be the size of the stash (counted as the total weight allocated to the
stash). Recall that wi ∈ [0, 1]R for all i ∈ [n]. We always assume m is a multiple of 2; otherwise,
an extra bin is added. The hash functions are chosen as follows: H1 is uniformly random among
functions mapping into {1, ..., m/2}; H2 is uniformly random among functions mapping into
{m/2 + 1, ..., m}. We denote the total weight of all balls by wtot =

∑n
i=1 wi.

Graphs. For a vertex u in a directed graph G = (V, E, wgt) with edge labels wgt, we say that
wgt(u, v) is the weight of edge (u, v) ∈ E. Below, all graphs are directed with edge labels, and
we assume that all for all (u, v) ∈ E we have (v, u) ∈ E (with wgt(v, u) = 0 if the back edge
was added). Let outG(u) :=

∑
(u,v)∈E wgt(u, v) denote the total weight of outgoing edges. We

consider graphs with non-negative weights wgt(u, v) ≥ 0 for all edges (u, v) ∈ E. We write
Wtotal(G) =

∑
(u,v)∈E wgt(u, v) for the total weight of all edges in G.

We say that a graph D = (VD, ED, wgtD) arises from G if ED = E, VD = V and for all edges
(u, v) ∈ E, we have wgt(u, v) + wgt(v, u) = wgtD(u, v) + wgtD(v, u) and wgtD(u, v) ≥ 0.

A (vertex-induced) subgraph of G is a graph G′ = (V ′, E′, wgt′) such that V ′ ⊆ V and
E′ = (V ′ × V ′) ∩ E with weights wgt′(u, v) = wgt(u, v) for all (u, v) ∈ E′.

Let P = ((u, v1), ..., (vk, v)) be a path from u to v in G. We write inv(P ) = ((v, vk), ..., (v1, u))
for the path from v to u following the back edges.

When the set of vertices V and edges E is fixed, we sometimes view directed graphs as
vector spaces over R, in the natural way. That is, let G0 = (V, E, wgt0), G1 = (V, E, wgt1) be
undirected graphs. Let x ∈ R. We define the addition of two graphs by G0 + G1 = (V, E, wgt),
where ∀(u, v) ∈ E, wgt(u, v) = wgt0(u, v) + wgt1(u, v). Similarly, scalar multiplication is defined
by x ·G0 = (V, E, wgt), where ∀(u, v) ∈ E, w(u, v) = x · wgt0(u, v).
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Proof of Optimality

We regard WCuckoo as an algorithm that takes as input a graph G = (V, E, wgt) with |V | = m
vertices and total weight Wtotal(G) =

∑
(u,v)∈E wgt(u, v). WCuckoo outputs a graph D arising

from G. The input graph corresponds to the graph constructed in lines 3 to 9 in Algorithm 3.
The output graph is the graph D = (V, E, wgtD), where the weights were adapted as in line 19
to 21 in Algorithm 3 according to the max flow. Note the graphs arising from G correspond to
the possible allocations of the balls into their destination bins, and the output graph D arises
from G. The allocation is optimal, if the total weight of each bin over capacity is globally as
small as possible. This motivates the notion of overflow.

Definition 4.7. Let G = (V, E, wgt) be a directed graph. The overflow over(G) is defined as:

over(G) =
∑
v∈V

max(0, outG(v)− 1)

Observe that the overflow is exactly the weight that cannot fit into the bins. Hence, the the
stash size is the overflow of the graph D output by WCuckoo. The main result of this section is
Theorem 4.9, which states that WCuckoo is optimal, in the sense that it minimizes the overflow.
This holds regardless of the hash functions: we do not care how they are picked for our proof
of optimality. WCuckoo takes as input a graph and bin capacity, and always orients the edges
optimally for the given metric, regardless of what the graph looks like.

Definition 4.8. Let G be a graph. The optimal overflow opt(G) is the infimum, taken over the
overflow of all directed graphs G′ arising from G:

opt(G) = inf
G′ arises from G

over(G′).

Note that as over(G′) ∈ R and at least 0, the above notion of overflow is well-defined. The
core result of this section is the following theorem.

Theorem 4.9 (Optimality of WCuckoo). Let G = (V, E, wgt) be a directed graph with weights
wgt. Let D be the graph output by WCuckoo on input G. Then over(D) = opt(G).

Before proving theorem 4.9, we begin with a few definitions and lemmas. First, we show
that the there exists some graph D such that opt(G) = over(G). Consequently, we write
opt(G) = maxG arises from G over(G′) in the following. This follows from compactness of R and
continuity of over.

Lemma 4.10 (Existence). Let G = (V, E, wgt) be a directed graph. Then there exists some
graph D such that opt(G) = over(D).

Proof. Let (Gi) be a sequence of graphs arising from G such that limi→∞ over(Gi) = opt(G). Let
wgti be the weights of graph Gi = (V, E, wgti). There are finitely many edges E, so we can write
wgti = wgt(u,v)

i as a vector in R|E|. As R|E| is compact as finite cartesian product of a compact
space R, it is compact 2. Thus, there is a converging sub-sequence (wgtf(i)) of (wgti) which
converges to wgtD ∈ R|E|. Let D = (V, E, wgtD). As Gi arises from G, we have for all i ∈ N that

wgtf(i)(u, v) + wgtf(i)(v, u) = wgt(u, v) + wgt(v, u).

Thus, the series (wgtf(i)(u, v) + wgtf(i)(v, u)−wgt(u, v)−wgt(v, u)) converges to 0, and D arises
from G as addition is continuous. Similarly, over is continuous as a composition of continuous
functions, and we have

opt(G) = lim
i→∞

over(Gi) = over((V, E, lim
i→∞

wgti)) = over(D).

2This is known as Tychonoff’s theorem.
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Definition 4.11. Let G = (V, E) be an undirected graph. The unavoidable overflow unav(G) of
G is defined as unav(G) = Wtotal(G)− |V |. If ∆ ⊆ V , we write unavG(∆) for unav(G′), where G′

is the subgraph of G induced by ∆.

Lemma 4.12. Let G = (V, E) be an undirected graph. Then opt(G) = max∆⊆V unavG(∆).

Proof. We first show that opt(G) ≥ max∆⊆V unavG(∆). Pick ∆ ⊆ V . Let D be a graph arising
from G such that over(D) = opt(G), and let D′ = (∆, E′) be the subgraph of D induced by ∆.
We have:

over(D) ≥ over(D′) =
∑
v∈∆

max(0, outD′(v)− 1)

≥
∑
v∈∆

(outD′(v)− 1) = Wtotal(D′)− |∆|

= unavG(∆).

This shows that opt(G) ≥ max∆⊆V unavG(∆) as desired. Next, we show that opt(G) ≤
max∆⊆V unavG(∆).

Again, let D be a directed graph arising from G such that over(D) = opt(G). Define Γ ⊆ V
to be the set of vertices of D whose weight outG(v) is strictly more than 1. Let ∆ ⊇ Γ be the
set of vertices that can be reached from Γ by following a directed path P in D with edges of
non-zero weight.

Note that we have outD(v) ≥ 1 for all v ∈ ∆. We can show this as follows. Assume for the
sake of contradiction that there is some v ∈ ∆ with outD(v) < 1. Let P = (u, v1), ..., (vk, v)
be a directed path (with no repeated vertices) to v ∈ ∆ with u ∈ Γ and wgtD(e) > 0 for all e
in P . Let wgtP = mine∈P wgtD(e) > 0. We can decrease the weight of all edges in P by wgtP

and increase the weight of all edges in inv(P ) by wgtP . This defines a graph D = (V, E, wgtD)
with wgtD(e) = wgtD(e) + wgtP for e ∈ P , wgtD(e) = wgtD(e) − wgtP if e ∈ inv(P ), and
all other weights remain unchanged. Thus, the graph D arises from D and the overflow of
intermediate vertices remains unchanged. Notably, we have outD(u) = outDu − wgtP and
outD(v) = outD(v) + wgtP , so the overflow in D is smaller than in D. This contradicts optimality
of D.

Observe that all outgoing edges with non-zero weight of vertices in Γ are included in the
subgraph D′ induced by ∆. Thus, we have over(D′) = over(D). Finally, we have

over(D) = over(D′) =
∑
v∈∆

(outD′(v)− 1) = Wtotal(D′)− |∆| = unav(D′) = unavG(∆).

Hence opt(G) ≤ max∆⊆V unavG(∆).

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Let G = (V, E, wgt) be the directed graph at the input of WCuckoo. Let
G = (Vst, E, wgtG) with Vst = V ∪ {s, t} be the directed graph obtained within WCuckoo right
after running the max flow algorithm, and before adapting the edge weights. So G includes the
source and sink vertices s and t, as well as a number of edges from the source to V and from V
to the sink. Concretely, for each vertex v ∈ V at most one edge is added in E. If outG(v) > 1,
an edge (s, v) ∈ E with wgtG(s, v) = outG(v)− 1 is added, and if outG(v) < 1, there is an edge
(v, t) ∈ E with wgtG(v, t) = 1−outG(v). Without loss of generality, we assume that wgtGu, v = 0
if (u, v) /∈ E.

After building G, the WCuckoo algorithm computes a max flow f . Let F = |f | denote
the value of the max flow. Finally, let D = (Vst, E, wgtD) denote the directed graph obtained
after updating the weights; and D = (V, E, wgtD) the subgraph of D induced by V . The
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graph D is the graph that is returned by WCuckoo. Note that by construction, we have
wgtD(u, v) = wgt(u, v)− f(u, v) + f(v, u) for all (u, v) ∈ ED, with f(u, v) < wgt(u, v). Thus, D
arises from G. Our goal is to prove over(D) = opt(G).

To do so, the strategy is to use Lemma 4.12, and exhibit a subset of vertices ∆ ⊆ V
such that unavG(∆) = over(D). This is enough to conclude, because using Lemma 4.12,
opt(G) ≥ unavG(∆) = over(D) ≥ opt(G), so opt(G) = over(D) as desired. We now build such a
∆.

By the Max-Flow Min-Cut Theorem (cf. Theorem 3.6), there exists a partition C of Vst

into disjoint subsets S and T such that s ∈ S, t ∈ T , and the total flow of edges going from
S to T in C is equal to F = cap(C). Furthermore, the flow of each edge is at capacity, i.e.,
f(u, v) = wgt(u, v) for all (u, v) between S and T .

We claim that ∆ = S \ {s} is our witness: that is, unavG(∆) = over(D). First, we have that

outD(u) =
∑

(u,v)∈E

wgtD(u, v) =
∑

(u,v)∈E

wgtG(u, v)− f(u, v) + f(v, u)

=
∑

(u,v)∈E

wgtG(u, v) +
∑

(u,v)∈E

f(v, u)− f(u, v)

= outG(u) +
∑

(u,v)∈E

f(v, u)− f(u, v)−
∑

(u,v)∈E\E

f(v, u)− f(u, v)

= outG(u)−
∑

(u,v)∈E\E

f(v, u)− f(u, v)

= outG(u)− f(s, u) + f(u, t)

Here, used the conservation of flows property in the second to last equation, and in the last
equation that f(u, s) = f(t, u) = 0 due to the capacity constraint.

We show that over(D) = over(G) − F . Let u ∈ V . Indeed, if outG(u) = 1, then there is
no edge between s or t and u in G, and thus f(s, u) = f(u, t) = 0. Thus, we have outD(u) =
outG(u) = 1. If outG(u) < 1, then outD(u) = outG(u) + f(u, t) ≤ 1, and if outG(u) > 1, then
outD(u) = outG(u)− f(s, u) ≥ 1, where we used the capacity constraint of f for both inequalities.
Let Γ = {u ∈ V | outG(u) ≥ 1}. Note that

∑
u∈Γ f(s, u) = F because all edges with non-zero

capacity from the source end in Γ by construction of G. In total, we have

over(D) =
∑
v∈V

max(0, outD(v)− 1) =
∑
u∈Γ

outD(u)− 1

=
∑
u∈Γ

outG(u)− f(s, u)− 1 = over(G)− F.

Next, observe that the invariants of edge weights from the source to V and from V to the
sink are kept in D. That is if outD(v) > 1, then

wgtD(s, v) = wgtG(s, v)− f(s, v) + f(v, s)
= outG(v)− 1− f(s, v) = outD(v)− 1.

Thus, there is an edge (s, v) in D with wgtD(s, v) = outD(v)− 1. Similarly, if outD(v) < 1, then
there is an edge (v, t) in D with wgtD(v, t) = 1− outD(v).

Further, for all (u, v) ∈ S×T we have wgtD(u, v) = wgtG(u, v)−f(u, v)+f(v, u) = 0, because
the flow of the edges between S and T in G is at capacity and there is no flow from T to S. In
words, all edges between S and T have weight 0 in D.

Thus, in D all v ∈ ∆ are at least at capacity, as otherwise there would be an edge from S to
T with positive weight in D. Similarly, if v ∈ V is over capacity, then v ∈ ∆. Otherwise, there
would be an edge from s to T with positive weight.
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Finally, we are ready to conclude. All edges from ∆ to V \∆ have 0 weight, so
∑

v∈∆ outD(u) =
Wtotal(D∆), where D∆ is the subgraph of D induced by ∆. Also, all vertices in D that are over
capacity are in ∆, so

over(D) =
∑
v∈V

max(0, outD(v)− 1) =
∑
v∈∆

outD(v)− 1 = Wtotal(D∆)− |V | = unav(D).

Upper Bound of the Stash Size

We now show that for any algorithm that is optimal in the sense of Theorem 4.9 (including
WCuckoo), a stash of size ω(log λ)/ log m suffices to ensure a negligible probability of failure. A
failure occurs when the stash is too small to receive all reassigned values.

Recall that we want to balls bi of weight wi ∈ [0, 1]R with total weight
∑

wi = wtot into
m = O(wtot/p) bins of capacity 1. Fix an arbitrary stash size s. The ball bi must be stored in
bins H1(bi), H2(bi), or in the stash, where the hash functions are modeled as uniformly random
over the ranges {1, ..., m/2} and {m/2 + 1, ..., m} respectively. Allocation succeeds if every bin
receives at most a total weight of 1, the stash receives at most a total weight of s, and all balls
are allocated entirely. Algorithmically, we already know how to proceed: we have proved that
WCuckoo is optimal, in the sense that it minimizes the number of values stored in the stash,
among all possible assignments. This means that if it is possible to succeed (for a given pair of
hash functions), then WCuckoo always succeeds. What we want to do now is to determine m
and s such that it is in fact possible to succeed, except with negligible probability. Note that
WCuckoo already fixes m according to the following analysis, for now we assume that it is a
variable. Here and in the remainder, to ease notation, we assume that wtot and s are integers
(which can be enforced by adding a ball with weight at most 1).

As in Section 4.4.2, we view WCuckoo as an algorithm with input G = (V, E, wgt), a directed
graph with |V | = m vertices, and outputs a graph D arising from G. Recall that WCuckoo
minimizes the overflow over(G) =

∑
v∈V max(0, outG(v)− 1), which is equal to the stash size s.

Our goal in this section is to find a suitable upper bound on that quantity, which holds with
overwhelming probability.

Our proof strategy is to reduce the analysis of the stash size to a cuckoo hashing problem
with wtot balls and m bins. We divide the proof into three steps. In the first step, we show that
having wtot balls of weight 1 is a worst case for the expected stash size. With the right view of
the problem, the result follows from a convexity argument, using a majorization technique. In
the second step, we show that in that worst case, our problem becomes equivalent to a cuckoo
hashing problem, and hence inherits the same upper bound as in [KMW10]. However, since our
reduction to the worst case was only in expectancy, we are not done. In the third step, we derive
an upper bound that holds with overwhelming probability from the previous results. Let us start
with some notation.

Input graph. Again, We regard WCuckoo as an algorithm that takes as input a directed
graph G = (V, E, wgt) with |V | = m vertices and total weight Wtotal(G) =

∑
(u,v)∈E wgt(u, v).

The input graph is induced by the tuple of ball weights L := (wi)n
i=1, the number of bins

m, and a pair of hash functions H = (H1, H2) mapping into {1, ..., m/2} and {m/2, ..., m},
respectively. We call G = (V, E, wgt) = graphm

H(L) the input graph of WCuckoo, defined as
follows: V = {1, ..., m}, and for u, v ∈ V :

w(u, v) =
∑

i∈[1,k],
(H1(i),H2(i))=(u,v)

wi.

In the following, we write L[i] = wi. Also, we assume that E = V × V and write G = (V, wgt)
for short, where we assume that wgt(u, v) = 0 if there is no i with (H1(i), H2(i)) = (u, v).



56 4 - Weighted Hashing

Probability of Failure. Given m, s, a tuple L of weights with maxi L[i] ≤ 1, and a pair of
hash functions H = (H1, H2) mapping into {1, ..., m/2} and {m/2, ..., m}, respectively, define
Failm,s(L, H) as the event that it is impossible to assign the weight of every ball i into the bins
H1(idi), H2(idi), or in the stash, such that no bin receives more than 1 weight, and the stash
receives no more than s weight. Note that the total weight wtot is implied by the parameter L:
wtot =

∑
i L[i]. We want an upper bound on the probability of Failm,s(L, H), over the random

choice of the hash functions H, as a function of (m, wtot, s), and independently of the choice of
L (as long as L satisfies the constraints of our problem: maxi L[i] ≤ 1, and

∑
i L[i] = wtot).

The probability of failure Failm,s(L, H) can be expressed expressed differently as follows.
Because WCuckoo is optimal in the sense of minimizing the stash size, opt(G) is equal to the
stash size after running WCuckoo on a graph G. Thus, the probability of failure is equal to:

Pr[Failm,s(L, H)] = Pr[opt(graphm
H(L)) > s],

where the probability is over the uniformly random choice of H1, H2. We are ultimately in-
terested in upper bounding this probability, but for now, we focus on the expected stash size
Exp[opt(graphm

H(L))].

Step 1: Majorization. The main result of this step is the following lemma. Below, the list
LD corresponds to an arbitrary tuple (that is provided as input to WCuckoo) and LM to a tuple,
where every ball has weight 1. After proving this lemma for some function fH , we show that the
stash size fulfills the requirements.

Lemma 4.13 (Bound of Expectancy). Let LM ∈ {0, 1}n, LD ∈ [0, 1]nR with
∑

i LD[i] =
∑

i LM [i].
Let fH : [0, 1]nR 7→ R be convex and such that Exp[fH(L)] is invariant under list permutation. It
holds that:

Exp[fH(LM )] ≥ Exp[fH(LD)],

where the expectancy is over the (uniformly random) choice of H = (H1, H2).

Because the hash functions (H1, H2) are uniform, composing their input with any fixed permu-
tation still yields a uniform distribution. It follows that the expected stash size Exp[opt(graphm

H(·))]
is invariant under list permutation. We will later show that the stash size is a convex function,
and thus, the lemma above shows that the list LM is the worst case for the expectation of the
stash size.

The proof of Lemma 4.13 follows the structure of [BFHM08], and uses the so-called majoriza-
tion technique. We now introduce the notions and tools necessary for our proof. We refer to
[BFHM08] for more details.

Definition 4.14 (Majorization). For two non-increasing vectors L1, L2 ∈ Rn with
∑

i L1[i] =∑
i L2[i], we say that L1 majorizes L2, written L1 ≻ L2, if

∀k ∈ [n] :
∑
i∈[k]

L1[i] ≥
∑
i∈[k]

L2[i].

Definition 4.15 (T-Transformation). A T-transformation matrix T is a matrix of the form
T = δI +(1−δ)P , where δ ∈ [0, 1]R, I is the identity matrix, and P is a permutation matrix that
swaps exactly two coordinates. We write L1

T=⇒ L2, if L2 can be derived form L1 by applying
one T-transformation.

Lemma 4.16. For L1, L2 ∈ Rk, L1 ≻ L2 if and only if L2 can be derived from L1 by successive
applications of at most k − 1 T-Transformations.



4.4 - Cuckoo Hashing 57

The above lemma allows us to transform one list into another, given that the target list is
majorized by the original list. For LM and LD defined as in Lemma 4.13, it holds that LM

majorizes LD, so we can transform LM into LD with k − 1 T-transformations. This allows us to
prove Lemma 4.13.

Proof of Lemma 4.13. Without loss of generality (since f is invariant under list permutation),
we assume that LM and LD are non-increasing vectors. Under the given constraints, it holds
that LM ≻ LD. Thus, LD can be derived from LM by k − 1 T-transformations:

LM
T=⇒ L1

T=⇒ L2
T=⇒ · · · T=⇒ Lk−2

T=⇒ LD.

Setting LM = L0 and LD = Lk−1, we have Li+1 = δiLi + (1− δi)LiPi, for all i ∈ [0, k − 2]. We
receive

Exp[fH(Li+1)] ≤ δiExp[fH(Li)] + (1− δi)Exp[fH(LiPi)] = Exp[fH(Li)],

since fH is convex and Exp[fH(LiPi)] = Exp[fH(Li)] by assumption. The result follows by
induction.

We now show that the stash size opt(graphm
H(·)) is convex. First, we show that opt is convex.

We will later conclude that the expected stash size is convex, since graphm
H is linear.

Lemma 4.17. The function opt(·) is convex, meaning that for graphs G = (V, wgt), G0 =
(V, wgt0) and G1 = (V, wgt1) with G = δG0 + (1− δ)G1 for all δ ∈ [0, 1], it holds that:

opt(G) ≤ δopt(G0) + (1− δ)opt(G1).

Proof. Let G = δG0 + (1− δ)G1 with weight wgt = δwgt0 + (1− δ)wgt1. With Lemma 4.12, we
have that opt(D) = max∆⊆V unavD(∆) for D ∈ {G, G0, G1}. The convexity follows from the
following calculation:

opt(G) = max
∆⊆V

unavG(∆) = max
∆⊆V

∑
(u,v)∈∆2

wgt(u, v)− |∆|

= max
∆⊆V

∑
(u,v)∈∆2

δwgt0(u, v) + (1− δ)wgt1(u, v)− |V |

= max
∆⊆V

∑
(u,v)∈∆2

δ(wgt0(u, v)− |V |) + (1− δ)(wgt1(u, v)− |V |)

≤ max
∆⊆V

∑
(u,v)∈∆2

δ(wgt0(u, v)− |V |) + max
∆⊆V

∑
(u,v)∈∆2

(1− δ)(wgt1(u, v)− |V |)

= δ(max
∆⊆V

unavG0(∆)) + (1− δ)(max
∆⊆V

unavG1(∆))

= δopt(G0) + (1− δ)opt(G1).

Lemma 4.18. Let H = (H1, H2) be fixed hash functions, L ∈ Rn. Then opt(graphm
H(L)) is

convex (as a function of L).

Proof. We first show that graphm
H is linear. Let L1, L2 ∈ Rn be two lists and δ ∈ R. The weight

of edge (u, v) in graphm
H(L1 + δL2) is

wgt(u, v) =
∑

i∈[n],
(H1(i),H2(i))=(u,v)

(L1 + δL2)[i]

=
∑

i∈[n],
(H1(i),H2(i))=(u,v)

L1[i] + δ
∑

i∈[n],
(H1(i),H2(i))=(u,v)

L2[i]

= wgt1(u, v) + δwgt2(u, v),
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where wgt1 and wgt2 are the weights of graphm
H(L1) and graphm

H(L2), respectively. Thus graphm
H

is linear. Now let L = δL1 + (1− δ)L2 for δ ∈ [0, 1]R. Linearity implies that

graphm
H(L) = δgraphm

H(L1) + (1− δ)graphm
H(L2),

and Lemma 4.17 yields the desired result.

Thus, we can apply Lemma 4.13 on the stash size opt(graphm
H(·)). As consequence, lists of

the form LM , i.e.balls with weight 1, are a worst case for the expected stash size.

Step 2: Cuckoo Hashing. The previous step shows that it suffices to bound the expectancy
for the particular list LM . This means we have “gotten rid” of the parameter L, in the sense
that we have reduced our problem to a version where this parameter is fixed. Thus, it is enough
to bound the probability of failure in the case where all weights are 1, and bins have capacity
1. This is exactly a “cuckoo with a stash” problem, in the sense of Kirsch et al. [KMW10].
In that setting, Kirsch et al. prove an upper bound O(w−s

tot) on the failure probability. That
bound cannot be used directly, because it requires that the stash size s should be constant. In
particular, it can only yield a polynomially low failure probability. A negligible failure probability
is crucial in our setting, since the failure probability depends on the list length distribution,
which we aim to hide. An extension of the original proof from [KMW10] to variable s is also
given in [GM11], but that extension requires that the table size m should be polylogarithmic in
the security parameter.

An O(w−s/2
tot ) bound for variable s was shown in [ADW14], with only the restriction that

s = O(w1/c
tot ) for some constant c. The proof targets explicit hash families, but also extends to

uniformly random functions, as noted in the introduction of the same article. In fact, a simpler
variant of the proof directly targeting uniformly random hash functions is given in [Wie17]. For
efficiency reasons, in practice, we wish to use cryptographic hash functions, modeled as uniformly
random functions, so we are mainly interested in the uniform case. For that reason, we use the
result from [Wie17] (extending it slightly to get a closed-form expression).

Lemma 4.19 (Corollary of [Wie17], Theorem 5.5). Consider the setting of cuckoo hashing where
wtot items are inserted into two tables of size m ≥ (1 + ε)wtot each, for some constant ε > 0,
with a stash of size s. Assume the hash functions used for cuckoo hashing are uniformly random.
Then the probability that a valid cuckoo assignment fails to exist3 is at most

w−s
tot ·

( 2
1 + ε

)s

·
∞∑

t=0

t8s

(1 + ε)t
= O

(
√

s ·
(

Cs8

wtot

)s)

for some constant C ≤ 2 · (8(1 + 1/ε)/e)8.

Proof. Let f denote the probability that a valid cuckoo assignment fails to exist. The first bound
on f is proved in [Wie17, Theorem 5.5]. Technically, the theorem is written in a setting where s is
constant, but as already observed in [PSWW18, Appendix C], the proof is purely combinatorial,
and holds for arbitrary s.

The O
(√

s ·
(

Cs8

wtot

)s)
upper bound can be derived as follows. Letting Ak be the k-th Eulerian

polynomial, by a classic identity [Pet15],

∞∑
t=0

tkxt = x ·Ak(x)
(1− x)k+1 .

3That is, letting T1, T2 denote the two tables, and h1, h2 the hash functions, it is not possible to assign every
item x into either index h1(x) in T1, index h2(x) in T2, or the stash, without either assigning two items to the
same table location, or exceeding the stash size s.
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Reinjecting into the first bound with x = 1/(1 + ε) yields

f ≤
( 2

(1 + ε)wtot

)s

· x ·A8s(x)
(1− x)8s+1 .

Since x < 1 and Ak is increasing, A8s(x) < A8s(1) = (8s)!. Using the upper-bound variant of
Stirling’s formula k! ≤ e

√
k(k/e)k, this yields

f ≤
( 2

(1 + ε)wtot

)s

· x · 2e
√

2s(8s/e)8s

(1− x)8s+1

≤
( 2

wtot

)s

· x

1− x
· 2e
√

2s

( 8s

e(1− x)

)8s

= O
(
√

s ·
(

Cs8

wtot

)s)
.

Lemma 4.19 says something about the existence of a solution to a cuckoo hashing problem
with certain parameters. This is enough in the scope of this article, because WCuckoo outputs
an optimal solution. Thus, using Lemma 4.19, we get that, for some constant C ′:

Pr[Failm,s(LM , H)] = O
(
√

s ·
(

C ′s8

wtot

)s)
.

A straightforward computation yields the following corollary.

Corollary 4.20. Let m = (2 + ε)wtot for some constant ε > 0, and s = O(w1/c
tot ) for some

sufficiently large constant c. Then:

Pr[Failm,s(LM , H)] = O
(
m−s/2

)
.

Step 3: Bounding the Probability of Failure. We will now use the results from the
previous two steps to compute a bound for the probability of failure Pr[Failm,s(L, H)], for an
arbitrary lists L. From Step 2, we know a bound on the probability of failure for the list LM .
From Step 1, we know that LM is a worst case for the expectancy of the stash size, but not
necessarily the failure probability. The remaining arguments bridge that gap.

We our now ready to show the main result. In particular, a stash of size s = 1 +
ω(log λ)/ log wtot suffices to ensure that WCuckoo succeeds, except with negligible probabil-
ity.

We are now ready to prove Theorem 4.6.

Proof. We denote fH(·) = opt(graphm
H(·)) in the following. We need to show that the probability

of failure Pr[Failm,s(L, H)] = Pr[fH(L) > s] is negligible. Note that ⌈fH(L)⌉ ≤ wtot is integer-
valued, so due to Lemma 3.2, it suffices to show that Exp[max(⌈fH(L)⌉ − s, 0)] = negl(λ). As
⌈fH(L)⌉ < fH(L) + 1, it remains to show

Exp[max(fH(L)− (s− 1), 0)] = negl(λ).

Lemma 4.18 shows that opt(graphm
H(·)) is convex. We know that max(fH(·)− (s−1), 0) is convex

as composition of the increasing and convex function g(x) = max(x− s, 0) and convex function
opt(graphm

H(·)). It is also invariant under list permutation. Thus, we can apply Lemma 4.13 on
max(fH(·)− (s− 1), 0):

Exp[max(fH(L)− (s− 1), 0)] ≤ Exp[max(fH(LM )− (s− 1), 0)],
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where LM ∈ {0, 1}wtot is the vector consisting of wtot copies of the value 1. We now upper bound
this expectancy. To do so, we apply (a variant of) the definition of the expectancy (as in the proof
of Lemma 3.2), split the resulting sum into three parts and bound each part separately. Here, note
that fH(LM ) is an integer variable 4. Denote PH(i) = Pr[max(fH(LM )− (s + i− 1), 0) > 0].
We have

Exp[max(fH(LM )− (s− 1), 0)] =
∑
i≥0

Pr[max(fH(LM )− (s− 1), 0) > i]

=
∑
i≥0

Pr[max(fH(LM )− (s + i− 1), 0) > 0]

=
⌈log(m)⌉∑

i=0
PH(i) +

m−1∑
i=⌈log(m)⌉+1

PH(i) +
∑
i≥m

PH(i)

We consider each of the three terms above in turn. For the first term, we can apply Lemma 4.19,
as the probability PH(i) is the probability of failure of cuckoo hashing for stash size s + i− 1 ≤
s + ⌈log(m)⌉ − 1 = O(w1/c

tot ), for some sufficiently large constant c. Thus:

⌈log(m)⌉∑
i=0

PH(i) = O
( ⌈log(m)⌉∑

i=0
m−(s+i−1)/2

)
= O

(
m−(s−1)/2 ·

⌈log(m)⌉∑
i=0

m−i/2
)

= O(m−(s−1)/2).

The last equation holds because

log(m)∑
i=0

m−i/2 ≤
∞∑

i=0
m−i/2 = 1

1−m−1/2 = O(1).

Let us turn to the second term. Observe that PH(·) is necessarily non-increasing. In
particular, PH(i) ≤ PH(⌈log m⌉) for i ≥ log m. Applying the cuckoo hashing bound, we get
PH(⌈log m⌉) ≤ m−(s+⌈log m⌉−1)/2. Using this bound in the second sum yields:

m−1∑
i=⌈log m⌉+1

PH(i) ≤ m ·O(m−(s+⌈log m⌉−1)/2)

= O(m−(s−1)/2 ·m1−⌈log m⌉/2)
= O(m−(s−1)/2).

Finally, let us consider the third term. If the stash size s is larger than the total weight wtot
of all balls to allocate, it is trivially not possible for the stash to overflow, and the probability of
failure is 0. Thus, the third term vanishes, as PH(i) = 0 for i ≥ m. Putting everything together,
we get

Pr[Failm,p,s(L, H)] = O(m−(s−1)/2).

This concludes the proof.

4When all balls have weight 1, we consider the case where balls are not split into parts. In that case, the
optimal overflow is an integer. Also, any upper bound for the stash size in this case yields an upper bound for
when we allow for splitting (as we consider the optimal stash size). To avoid clutter in the notation, we still write
fH(LM ) for short.



Chapter

5
Page Efficiency and
Constructions

The performance bottleneck of classic SSE schemes typically does not come from their fast,
symmetric cryptographic operations, but rather from the cost of memory accesses. To address
this issue, many works in the literature have considered the notion of locality, a simple design
criterion that helps capture the cost of memory accesses in traditional storage media, such as
Hard Disk Drives.

In this chapter, we propose a notion that captures efficiency on new storage media, such as
Solid State Drives, which have become increasingly common. Then, we provide two constructions
with good page efficiency based on L2C and WCuckoo (cf. Chapter 4).
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5.1 Introduction
In Searchable Symmetric Encryption (SSE), a client holds a collection of documents and wishes
to store them on an untrusted cloud server. The client also wishes to be able to issue search
queries to the server and retrieve all documents matching the query. Meanwhile, the server should
learn as little information as possible about the client’s data and queries. Searchable Encryption
is an important goal in the area of cloud storage since the ability to search over an outsourced
database is often a critical feature. The goal of SSE is to enable that functionality while offering
precise guarantees regarding the privacy of the client’s data and queries with respect to the host
server.

Compared to other settings related to computation over encrypted data, such as Fully
Homomorphic Encryption, a specificity of SSE literature is the focus on high-performance
solutions, suitable for deployment on large real-world datasets. To achieve this performance, SSE
schemes accept the leakage of some information on the plaintext dataset, captured in security
proofs by a leakage function. The leakage function is composed of setup leakage and query
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leakage. The setup leakage is the total leakage prior to query execution and typically reveals
the size of the index, and possibly the number of searchable keywords. For a static scheme, the
query leakage usually reveals the repetition of queries, and the set of document indices matching
the query. Informally, the security model guarantees that the adversary does not learn any
information about the client’s data and queries, other than the previous leakages.

In particular, the allowed leakage typically reveals nothing about keywords that have not
yet been queried. Although this requirement may seem natural and innocuous, it has deep
implications for the storage and memory accesses of SSE schemes. At Eurocrypt 2014, Cash and
Tessaro [CT14] proved an impossibility result that may be roughly summarized as follows. If an
SSE scheme reveals nothing about the number of documents matching unqueried keywords, then
it cannot satisfy the following three efficiency properties simultaneously: (1) constant storage
efficiency: the size of the encrypted database is at most linear in the size of the plaintext data;
(2) constant read efficiency: the amount of data read by the server to answer a query is at most
linear in the size of the plaintext answer; (3) constant locality: the memory accesses made by
the server to answer a query consist of a constant number of contiguous accesses. Thus, a secure
SSE scheme with constant storage efficiency and read efficiency cannot be local: it must perform
a superconstant number of disjoint memory accesses.

In practice, many SSE schemes (e.g.[CGKO06, CJJ+13, Bos16]) make one random memory
access per entry matching the search query. As explained in [CJJ+14, MM17], making many
small random accesses hampers performance: hard disk drives (HDD) were designed for large
sequential accesses, and solid-state drives (SSD) use a leveled design that does not accommodate
small reads well. As discussed (e.g., in [BMO17]), this results in the fact that in many settings,
the performance bottleneck for SSE is not the cost of cryptographic operations (which rely on
fast, symmetric primitives), but the cost of memory accesses.

As a consequence, SSE scheme designers have tried to reduce the number of disk accesses
needed to process a search query, e.g.by grouping entries corresponding to the same keywords
in blocks [CJJ+14, MM17], or by using more complex allocation mechanisms [ANSS16, ASS18,
DPP18]. However, no optimal solution is possible, due to the previously mentioned impossibility
result of Cash and Tessaro. In the static case, the first construction by Asharov et al. [ANSS16]
from STOC 2016 achieves linear server storage and constant locality, at the cost of logarithmic
read efficiency (the amount of data read by the server to answer a query is bounded by the size
of the plaintext answer times O(log N), where N is the size of the plaintext database). The
logarithmic factor was reduced to logγ N for γ < 1 by Demertzis et al. at Crypto 2018 [DPP18].
Further, [ANSS16] provides a construction with O(log log N) read efficiency but the maximal
number of matching keywords is slightly restricted.

An interesting side-effect of this line of research is that it has highlighted the connection
between Searchable Encryption and hash-based memory allocation schemes (cf. Chapter 4). The
construction from [ANSS16] relies on a two-dimensional variant of the classic balls-and-bins
allocation problem. Likewise, the construction from [DPP18] uses several memory allocation
schemes tailored to different input sizes.

5.1.1 Our Contributions

As discussed above, memory accesses are a critical bottleneck for SSE performance. This has led
to the notion of locality, and the construction of many SSE schemes aiming to improve locality,
such as [CT14, ANSS16, MM17, DP17b, DPP18]. The motivation behind the notion of locality
is that it is a simple criterion that captures the performance of traditional storage media such
as HDDs. In recent years, other storage media, and especially SSDs, have become more and
more prevalent. To illustrate that point, the number of SSDs shipped worldwide is projected to
overtake HDD shipments in 2021 [Sta21].

However, locality as a design target, was proposed assuming an implementation on a HDD.
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The starting observation is that for SSDs, the notion of locality is no longer a good predictor of
practical performance. This raises two questions: first, is there a simple SSE design criterion to
capture SSD performance, similar to locality for HDDs? And can we design SSE schemes that
fulfill that criterion?

The answer to the first question is straightforward: for SSDs, performance is mainly determined
by the number of memory pages that are accessed, regardless of whether they are contiguous.
This leads us to introduce the notion of page efficiency. The page efficiency of an SSE scheme
is simply the number of pages that the server must access to process a query, divided by the
number of pages of the plaintext answer to the query 1.

To answer the second question, we use the weighted hashing variants in Chapter 4 to build
Pluto and LayeredSSE. The scheme Pluto is an SSE scheme with optimal page efficiency, optimal
storage efficiency, and standard leakage pattern: no information is leaked about unqueried
keywords. Pluto is based on weighted cuckoo hashing and is static, i.e., it does not support
updates. In the dynamic setting, our scheme LayeredSSE has optimal storage efficiency and
O(log log N/p) page efficiency with standard leakage (in the above sense), though it is not forward
secure. While LayeredSSE is less efficient than Pluto as it relies on L2C, it allows for efficient
updates. Note that the asymptotic notation treats both the database size and the page size as
variables. The efficiency of both constructions is summarized in Table 5.1.

Table 5.1: Page-efficient SSE schemes. N denotes the total size of the database, W denotes the
number of keywords, p is the number elements per page, ε > 0 is an arbitrarily small constant,
and λ is the security parameter.

Schemes Client st. Page eff. Storage eff. Dynamism

Πpack, Π2lev [CJJ+14] O(1) O(1) O(p) Static
OCA [ANSS16] O(1) Õ (log N) O(1) Static
TCA [ANSS16] O(1) Õ (log log N) O(1) Static
IO-DSSE [MM17] O(W ) O(log W ) O(1) Dynamic

Pluto O(p log λ) 3 3 + ε Static
LayeredSSE O(1) Õ

(
log log N

p

)
O(1) Dynamic

5.2 Page Efficiency

Optimizing an SSE scheme for locality requires that each read query accesses few non-contiguous
memory locations, thus making this operation efficient for HDDs. In the case of SSDs, it is
sufficient to optimize for few page accesses (as SSDs efficiently read entire pages of memory).
For this reason, we introduce the notions page cost and page efficiency to measure the efficiency
of read queries performed on SSDs. We introduce the notion of page efficiency.

In the following definitions, we set K ← KeyGen(1λ) and EDB ← Setup(K, N, DB) given
database DB and upper bound N on the number of document identifiers. Also, S = (opi, ini)s

i=1
is a sequence of search and update queries, where opi ∈ {add, del,⊥} is a operation and ini =
(opi, wi, idi, sti, EDBi) its input. Here, wi is a keyword and idi is a (added or deleted) identifier,
and after executing all previous operations opj for j ≤ i, sti is the client state and EDBi the
encrypted database. We denote by DBi the database after i operations. We assume that the

1We note that experiments in [BBF+21] confirm that page efficiency is an excellent predictor of SSD performance.
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total number of identifiers never exceeds N . (If opi = ⊥, the query is a search query and Li is
empty.)

Definition 5.1 (Page Pattern). Regard server-side storage as an array of pages, containing
the encrypted database EDB. When processing search query Search(K, wi, sti; EDBi) or update
query Update(K, (wi, Li), opi, sti; EDBi), the read pattern RdPat(opi, ini) induces a number of
page accesses p1, ..., ph′ . We call these pages the page pattern, denoted by PgPat(opi, ini).

Definition 5.2 (Page Cost). A SSE scheme has page cost aX + b, where a, b are real numbers,
and X is a fixed symbol, if for any λ, DB, N , sequence S, and any i, |PgPat(opi, ini)| ≤ aX + b,
where X is the number of pages needed to store document indices matching keyword wi in
plaintext.

Definition 5.3 (Page Efficiency). A SSE scheme has page efficiency P if for any λ, DB, N ,
sequence S, and any i, |PgPat(opi, ini)| ≤ P ·X, where X is the number of pages needed to store
document indices matching keyword wi in plaintext.

5.3 Pluto
In this section, we construct a static page-efficient SSE scheme called Pluto. Let p be the page size.
Roughly, Pluto uses WCuckoo (cf. Section 4.4) to allocate lists L of at most p identifiers matching
a keyword w close together. As Algorithm 3 is kept purely combinatorial, balls technically have
no content. We still need to retrieve lists L given the keyword w in the context of searchable
encryption. Thus, we say that the pair (w, L) is a ball identified by w and scaled weight |L|/p.
We assume that we can retrieve the list L given w from the bin that contains ball (w, L). Clearly,
this does not change the behavior of WCuckoo and the stash bound still holds. We adapt the
notation of WCuckoo to such lists:

– WCuckoo.Setup({(wi, Li)}Wi=1, wtot): The input is (wi, Li) and some maximal weight wtot,
where Li is a list of (at most p) identifiers matching keyword wi. We say that (wi, Li) is a
ball with identifier wi and weight |Li|/p ∈ [0, 1]R. The bin choices for (wi, Li) are given by
α1, α2 ← H(wi). The setup algorithm of Algorithm 2 is performed given these balls, and
the bins B1, ..., Bm and the stash S is output.

Note that given the bins BH1(wi), BH2(wi) and the stash S, we can recover the list Li of matching
identifiers. Note that due to the scaling, a bin contains at most p identifiers.

5.3.1 Construction

We now describe Pluto in detail. Let PRF be a secure PRF mapping to {0, 1}2λ+⌈log(N)⌉. Let Enc
be an IND-CPA secure symmetric encryption scheme (assimilated with its encryption algorithm
in the notation). We split the output of the PRF into a key of 2λ bits and a mask of ⌈log N⌉ bits.
The first 2λ bits are used to preprocess the keywords wi, and the last ⌈log N⌉ bits mi are used
for encryption. We write mi ← PRFKPRF(wi) for short, and keep the preprocessing of wi implicit
(cf. Section 3.5.1). Also, we denote by H1 and H2 the hash functions of WCuckoo. Pseudo-code
is provided in Algorithm 4.

– Pluto.KeyGen(1λ): generates a PRF key KPRF and an encryption key KEnc, and outputs
K = (KPRF, KEnc).

– Pluto.Setup(DB, K): takes as input a database DB, and the client’s master secret key
K = (KPRF, KEnc). For each keyword wi, we have a list DB(wi) of ℓi identifiers corresponding
to the documents that match wi. First, samples mi ← PRFKPRF(wi) which will serve as
token for wi later on. First, the lists DB(wi) are partitioned into sublists Li,1, ..., Li,xi ,
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where Li,xi has at most p identifiers and the other sublists have exactly p identifiers.
Note that xi = ⌈ℓi/p⌉. Then, a table Tfull (resp. Tlen) that can store up to ⌊N/p⌋
(resp. N) entries is allocated. All full lists Li,j with identifiers matching wi are stored in
Tfull[wi, j]← EncKEnc(Li,j), and the number of lists xi is stored in Tlen[wi]← mi ⊕ xi. The
remaining incomplete lists are allocated via WCuckoo. That is, bins B1, ..., Bm and a stash
S are created via WCuckoo.Setup((wi, Li,xi), wtot) for wtot = N/p, and all bins are padded
to full capacity p. Then, all bins are encrypted and EDB = (Benc

i , Tfull, Tlen) and client state
S is output.

– Pluto.Search(K, wi, S; EDB): sets mi ← PRFKPRF(wi) and sends (wi, mi) to the server. The
server retrieves xi ← Tlen[wi] ⊕mi, and sends Bα1 , Bα2 and Tfull[wi, j] for j ∈ [xi − 1] to
the client, where αi ← Hi(wi). Then, the client retrieves DB(wi) from S and the decrypted
bins and full lists.

Algorithm 4 Pluto
Pluto.KeyGen(1λ)

1: Sample keys KPRF, KEnc for PRF, Enc
2: return K = (KPRF, KEnc)

Pluto.Search(K, wi, S; EDB)
Client:

1: Set mi ← PRFKPRF(wi)
2: return (wi, mi)

Server:
1: Initialize empty set R
2: Set xi = Tlen[Ki]⊕mi

3: for all j ∈ [xi − 1] do
4: Add Tfull[wi, j] to R

5: Add BH1(wi) and BH2(wi) to R
6: return R

Client:
1: Recover DB(wi) from S and R
2: return DB(wi)

Pluto.Setup(K, DB)
1: Initialize table Tlen of size N
2: Initialize table Tfull of size ⌊N/p⌋
3: Initialize empty tuple L
4: for all keywords wi do
5: mi ← PRFKPRF(wi)
6: xi ← ⌈|DB(wi)|/p⌉
7: Tlen[wi]← xi ⊕mi

8: Split DB(wi) into sublists Li,1, ..., Li,xi

9: Add (wi, Li,xi) to L
10: for all j ∈ [xi − 1] do
11: Set Tfull[wi, j]← Li,j

12: Set wtot = ⌈N/p⌉
13: B1, ..., Bm, S ←WCuckoo.Setup(L, wtot)
14: Set Benc

i ← EncKEnc(Bi)
15: Store the stash S on the client
16: return EDB = (Benc

1 , ..., Benc
m , Tfull, Tlen)

5.3.2 Security

The leakage profile of the construction is the standard leakage profile of a static SSE scheme. Recall
that xi is the minimal number of pages for the list of documents matching keyword wi. The leakage
during setup is LSetup(DB) = |DB| = N and the leakage during search is LSearch(DB, wi) = (ℓi, sp),
where sp is the search pattern and ℓi = |DB(wi)|. Let L = (LSetup,LSearch).

Before detailing the security proof, we give a brief sketch. For Setup, the simulator creates the
required number m of bins, derived from N = LSetup(DB), and fills each one with the encryption
of arbitrary data using Enc. Similarly, it creates a table Tlen of size N with random entries, and
a table Tfull with ⌊N/p⌋ entries of p encrypted zeroes. It then creates the simulated database
EDB consisting of the bins and the tables. The IND-CPA security of Enc guarantees that the
adversary cannot distinguish the simulated bins from the real ones. Also, the simulated table is
indistinguishable from the real table, since the concrete values xi are masked with a random
mask mi. Thus, the unqueried table entries appear random.

For a (new) search query, the simulator obtains from the leakage function the number xi, and
simulates the token mi = ℓi ⊕ T [wi] and chooses wi ← {0, 1}2λ at random. The PRF security of
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PRF guarantees that the adversary cannot distinguish the simulated values from the real ones.
Note that the adversary recovers the correct value ℓi = T [wi]⊕ (ℓi ⊕ T [wi]). This concludes the
proof.

While the proof is simple, it relies heavily on WCuckoo. Namely, the bins accessed to
retrieve the incomplete lists are independent on the database distribution. Another subtle but
important point is that the security argument requires that the correctness of WCuckoo holds with
overwhelming probability over the random coins choice of H1 and H2. Indeed, the probability of a
correctness failure may be dependent on the input of WCuckoo.Setup, and thus leak information.
Moreover, if a correctness failure occurs, it is not acceptable to run WCuckoo.Setup again with
fresh hash functions, as the choice of H1 and H2 would become dependent on the database
distribution.

Theorem 5.4. Let L = (LSetup,LSearch) with LSetup(DB) = |DB| = N and LSearch(DB, wi) =
(ℓi, sp). Assume that Enc is an IND-CPA secure encryption scheme and PRF is a secure pseudo-
random function. Then Pluto is an L-adaptively semantically secure SSE scheme.

Proof. Recall that the leakage during setup is LSetup(DB) = N , and the leakage during search
is LSearch(wi) = (ℓi, sp), where ℓi is the number of sublists for the list of documents matching
keyword wi, and sp is the search pattern. Our goal is to show that SSE is L-adaptively semantically
secure.

Let S denote the simulator. During setup, S receives LSetup(DB) = |DB| = N , and is tasked
with simulating the database EDB. To do this, S samples a fresh key K′Enc for Enc, and generates
B′1 = EncK′

Enc
(z), ..., B′m = EncK′

Enc
(z), where z is an all-zero input of length p. Note that m can be

computed via N . Then, the simulator creates a simulated table T ′len filled with N random entries
χ← {0, 1}⌈log N⌉. Similarly, it creates a simulated table T ′full filled with ⌊N/p⌋ entries of the form
EncK′

Enc
(z). The simulator returns the simulated database EDB′ = (B′1, ..., B′m), T ′len, T ′full.

During a search query, the simulator receives LSearch(wi) = (ℓi, sp), and is tasked with
simulating the search token m′i and w′i (which is preprocessed by a PRF). If the search pattern
sp reveals that the same keyword has already been searched in the past, the simulator simply
replies the same token. Otherwise, w′i is chosen uniformly at random. The simulated mask is set
to m′i = T ′[w′i]⊕ ℓi. The simulated search token is (w′i, m′i). Observe that the server recovers the
correct value ℓi.

We need to prove that the real game is indistinguishable from the ideal game. We proceed
with a sequence of hybrid games.

– Hybrid 0 is the real experiment.

– Hybrid 1 is the same as Hybrid 0 except each pair (wi, mi) is replaced with the simulated
pair (w′i, m′i). The table Tlen and the search tokens are still generated as in the real game,
using this new sampling of (w′i, m′i). The PRF security of PRF implies that the advantage
of an adversary trying to distinguish Hybrid 0 from Hybrid 1 is negligible.

– Hybrid 2 is the same as Hybrid 1 except the table Tlen is replaced by the simulated table
T ′len, and the search token (wi, mi) by the simulated search token (w′i, m′i). That is, those
values are generated as in the ideal game. It is easy to see that the view of the adversary
in Hybrid 2 is identical to its view in Hybrid 1. The advantage of an adversary trying to
distinguish between Hybrid 1 and Hybrid 2 is zero.

– Hybrid 3 is the same as Hybrid 2, except a flag FAIL is raised if the input of Setup is not
valid, which occurs if two distinct lists have the same identifier, i.e., there exist i ̸= j
such that w′i = w′j . By a standard birthday argument, this probability is negligible. More
precisely, there are at most N = poly(λ) values w′i, so there are less than N2 pairs (i, j),
and each pair has a probability of collision 2−2λ, hence by the union bound, the probability
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of collision is upper-bounded by N22−2λ = negl(λ)(λ). It follows that the advantage of an
adversary trying to distinguish Hybrid 2 from Hybrid 3 is negligible.

– Hybrid 4 is the same as Hybrid 3 except the real database EDB is replaced by the simulated
database EDB′. The real key KEnc and the simulated key K′Enc used to generated the two
databases are identically distributed, so the only difference between the two databases lies
in the plaintext messages being encrypted. Since Enc is IND-CPA secure, it follows that
the advantage of an adversary trying to distinguish Hybrid 3 from Hybrid 4 is negligible.

– Hybrid 5 is the ideal experiment. The server’s view in the ideal experiment and in Hybrid 5
are identically distributed, so the advantage of an adversary trying to distinguish Hybrid 4
from Hybrid 5 is zero.

This concludes the proof.

Remark 5.5. In the proof, we assumed that Tlen and Tfull do not leak the keys wi at setup. This
can be achieved, e.g., with cuckoo hashing. Nevertheless, it is not difficult to adapt the proof if
the keys are leaked, though different PRF evaluations of the keyword to index Tlen and Tfull are
required.

5.3.3 Efficiency

With the above notation, each search requires xi page accesses for Tfull, 1 page access for Tlen and
2 page accesses for both bins. Thus, page efficiency is O(1). Also, as Tlen, Tfull and (B1, ..., Bm)
all require O(N) space, the storage efficiency is O(1). The client requires permanent storage of
1 + ω(log λ)

log((2+ε)N/p) pages. The runtime is dominated by setup due to the invocation of WCuckoo.

5.4 LayeredSSE

In this section, we introduce the SSE scheme LayeredSSE based on L2C. Essentially, we interpret
lists Li of identifiers matching keyword wi as balls of a certain weight and use L2C to manage the
balls in m bins. Let N be the maximal size of the database, p be the page size and H be a hash
function mapping into {1, ..., m}2 for m = ⌈wtot/(log log log λ · log log wtot)⌉ and wtot = N/p.
Assume for now that |Li| ≤ p, i.e.each keyword has at most p associated keywords. Let
p ≤ N1−1/ log log λ. (This is needed for the requirement m ≥ λ1/ log log λ of L2C, see Theorem 4.4.)
As for Pluto, we first adapt the notation of L2C to identifier lists as follows.

– L2C.Setup({(wi, Li)}Wi=1, wtot): We interpret the pair (wi, Li) as a ball with identifier wi

and weight |Li|/p ∈ [0, 1]R, where Li is a list of (at most p) identifiers matching keyword
wi. The bin choices for (wi, Li) are given by α1, α2 ← H(wi). Run the setup defined in
Algorithm 2 given these balls.

– L2C.InsertBall((w, L), Bα1 , Bα2): Insert ball (w, L) into either bin Bα1 or bin Bα2 as in
Algorithm 2.

– L2C.Update((w, L), L′, Bα1 , Bα2): Update the weight of ball (w, L) to weight |L ∪ L′|/p as
in Algorithm 2 and add identifiers L′ to list L. One of the bins now contains the ball
(w, L∪L′). If the new weight lies in a different subinterval, one bin contains a residual ball
(w, L) that we consider to not match w anymore.
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5.4.1 Construction

Here, we describe the dynamic page efficient symmetric searchable encryption scheme LayeredSSE
based on L2C. For a concise overview, we assume that ℓi ≤ p and ignore delete operations for
now. Also, we present a version of the scheme with an update that requires 2 RTTs. Later,
we show how to treat arbitrary list sizes, introduce delete operations and show how to obtain
updates in 1 RTT. A detailed description of LayeredSSE is given in Algorithm 5.

– LayeredSSE.KeyGen(1λ): Sample encryption key KEnc for Enc with the given security
parameter λ. Return the client’s master secret key K = KEnc.

– LayeredSSE.Setup(K, N, DB): Receive as input the client’s secret key K, an upper bound
N on the number of identifiers and the initial database DB = (DB(wi))W

i=1. Recall that
DB(wi) = (id1, ..., idℓi

) is a list of ℓi document identifiers and that
∑W

i=1 ℓi ≤ N . interpret
(wi, DB(wi)) as a ball of weight ℓi/p ∈ [0, 1] and call L2C.Setup with maximal weight
N/p and balls (wi, DB(wi))W

i=1 as input. The two random choices (αi,1, αi,2) ← H(wi) in
L2C.Setup are drawn by evaluating H on wi. The result are m bins (Bi)m

i=1 filled with the
balls such that each bin has load at most c log log log(λ) log log(N/p) (see Theorem 4.4).
Thus, each bin contains at most p · c log log log(λ) log log(N/p) identifiers as weights are
scaled by a factor p. (The constant c ∈ N only depends on N but not the output of
L2C.Setup.) Next, each bin is filled up to maximal size with dummy items. Finally, encrypt
the bins Benc

i ← EncKEnc(Bi) and return EDB = (Benc
i )m

i=1.

– LayeredSSE.Search(K, w; EDB): The client receives its secret key K and keyword w. She
sends w to the server, and in return receives bins Benc

α1 , Benc
α2 , where (α1, α2)← H(w).

– LayeredSSE.Update(K, (w, L′), add; EDB): The client receives its secret key K, keyword w
and a list L′ of new identifiers matching w. She sends w to the server and again receives
bins Benc

α1 , Benc
α2 in return, where (α1, α2)← H(w). Next, the client decrypts Benc

α1 , Benc
α2 to

Bα1 , Bα2 and retrieves ball (w, L) from the corresponding bin Bα ∈ {Bα1 , Bα2}. Then, she
calls L2C.UpdateBall with old ball (w, L), new identifiers L′ and bins Bα1 , Bα2 to insert the
new identifiers L′ into one of the bins. Finally, she reencrypts the bins and sends them to
the server. The server then replaces the old bins with the updated bins.

Algorithm 5 LayeredSSE
LayeredSSE.KeyGen(1λ)

1: Sample key KEnc for Enc
2: return K = KEnc

LayeredSSE.Setup(K, N, DB)
1: Set in← {(wi, DB(wi))}Wi=1
2: Set (B1, ..., Bm)← L2C.Setup(in, N/p)
3: Set Benc

i ← EncKEnc(Bi) for i ∈ [1, m]
4: return EDB = (Benc

1 , ..., Benc
m )

LayeredSSE.Search(K, w; EDB)
Client:

1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1 , Benc
α2

LayeredSSE.Update(K, (w, L′), add; EDB)
Client:

1: return w

Server:
1: Set α1, α2 ← H(w)
2: return Benc

α1 , Benc
α2

Client:
1: Set Bαi ← DecKEnc(Benc

αi
) for i ∈ {1, 2}

2: Retrieve ball (w, L) from Bα for appropriate
α ∈ {α1, α2}

3: Run L2C.UpdateBall((w, L), L′, Bα1 , Bα2)
4: Set Bnew

αi
← EncKEnc(Bαi) for i ∈ {1, 2}

5: return Bnew
α2 , Bnew

α2

Server:
1: Replace Benc

αi
with Bnew

αi
for i ∈ {1, 2}
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5.4.2 Security

The scheme LayeredSSE is correct as each keyword has two bins that contain its identifiers
associated to it (and these bins are consistently retrieved and updated with L2C). If the hash
function is modeled as a random oracle, the bin choices are uniformly random and Theorem 4.4
guarantees that bins do not overflow.

Also, LayeredSSE is selectively secure and has standard setup leakage N , such as search and
update leakage qp, where qp is the query pattern. This can be shown with a simple hybrid
argument. We first sketch the proof. For setup, the simulator Sim receives N , recomputes m
and initializes m empty bins B1, ..., Bm of size p · c log log log(λ) log log(N/p) each. Sim then
outputs EDB′ = (EncK′

Enc
(Bi)m

i=1) for some sampled key K′Enc. As Enc is IND-CPA secure (and
bins do not overflow in the real experiment except with negligible probability), the output EDB′
is indistinguishable from the output of Setup in the real experiment. For a search query on
keyword w, Sim checks the query pattern qp whether w was already queried. If w was not
queried before, Sim a new uniformly random keyword w′. Otherwise, Sim responds with the
same keyword w′ from the previous query. As we assume that keywords are preprocessed by the
client via a PRF, the keywords w and w′ are indistinguishable. For an update query on keyword
w, the client output in the first flow is the same as in a search query and thus, Sim can proceed
as in search. For the second flow, Sim receives two bins Bα1 , Bα2 from the adversary, directly
reencrypts them and sends them back to the adversary. This behavior is indistinguishable, as the
bins are encrypted and again, bins do not overflow except with negligible probability. A formal
analysis is given below.

Lemma 5.6 (Correctness). The scheme LayeredSSE is correct if at most p identifiers are
associated to each keyword and H is modeled as a random oracle.

Proof. We use L2C to insert (and update) the lists of identifiers DB(w) of length ℓ ≤ p into m bins.
Each list is interpreted as a ball of weight ℓ/p ∈ [0, 1]. Theorem 4.4 implies that the maximal
loaded bin has load at most c log log log(λ) log log(N/p) for some appropriate constant c ∈ N (for
δ(λ) = log log log(λ)), since the bin choices via H are uniformly and independently random by
assumption. That means, it contains at most p · c log log log(λ) log log(N/p) identifiers (as we
scaled weights by a factor p). Consequently, the bins only overflow with negligible probability.
Further, it follows from inspection that one of the two bins returned by the search algorithm on
input w contains all the identifiers matching keyword w.

Lemma 5.7 (Selective Security). Let LStp(DB, N) = N , LSrch(w) = qp and LUpdt(op, w, L′) = qp,
where qp is the query pattern and op = add. Let L = (LStp,LSrch,LUpdt). The scheme LayeredSSE
is L-selectively semantically secure if at most p identifiers are associated to each keyword, Enc is
IND-CPA secure and H is modeled as a random oracle.

Proof. Let Sim denote the simulator and A an abitrary honest-but-curious PPT the adversary.
Initially, Sim receives LStp(DB, N) = N and a series of search and update requests with input

LUpdt(opi, wi, L′i) = LSrch(wi) = qp. First, Sim initializes m = ⌈(N/p)/(log log(N/p) log log log(λ))⌉
bins B1, ..., Bm zeroed out up to size p · c log log log(λ) log log(N/p), and outputs EDB′ =
(EncK′

Enc
(B1), ..., EncK′

Enc
(Bm)) for some encryption key K′Enc sampled by Sim. Next, Sim simulates

the search and update queries.
For search queries, Sim receives sp. If the query pattern sp indicates that the keyword was

already queried, Sim outputs the keyword w′ from the previous query. Otherwise, Sim outputs a
new uniformly random keyword w′ (that has not been queried yet).

For update queries, Sim receives sp. First, Sim proceeds as in search for generating the first
output w′. After sending w′ to the adversary A, Sim receives two encrypted bins. Sim simply
reencrypts both bins and sends them back to the server.

We now show that the real game is indistinguishable from the ideal game. For this, we define
four hybrid games.
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– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0 except the simulated keywords w′ are output. By
assumption Hybrid 0 and Hybrid 1 are indistinguishable.

– Hybrid 2 is the same as Hybrid 1 except a flag FAIL is raised when a bin overflows
(i.e.contains more than p · c log log N/p identifiers after Setup or Update). Theorem 4.4
implies that this happens only with negligible probability. Thus, Hybrid 1 and Hybrid 2
are indistinguishable.

– Hybrid 3 is the same as Hybrid 2 except that the encrypted database EDB is replaced with
the simulated EDB′ and bins are just reencrypted and sent back to the adversary in the
second flow of Update. Since Enc is IND-CPA secure (and a flag FAIL is only raised with
negligible probability), it follows that Hybrid 2 and Hybrid 3 are indistinguishable.

– Hybrid 4 is the same as the ideal experiment. The server’s view in the ideal experiment
and in Hybrid 3 are identically distributed, so we conclude inductively that the ideal game
and the real game are indistinguishable.

For adaptive security, the adversary can issue search and update queries that depend on
previous queries. As Theorem 4.4 assumes selectively chosen InsertBall and UpdateBall operations,
there is no guarantee that bins do not overflow anymore in the real game. Thus, the adversary
can potentially distinguish update queries of the simulated game from real update queries if she
manages to overflow a bin in the real game, as she would receive bins with increased size only in
latter case. Fortunately, we can just add a check in Update whether one of the bins overflows
after the L2C.UpdateBall operation. In that case, the client reverts the update and send back
the (reencrypted) original bins. Now, Theorem 4.4 still guarantees that bins overflow only with
negligible probability after Setup and we can show that the simulated game is indistinguishable
from the real game as before. (Note that LayeredSSE is still correct after this modification, since
queries are chosen selectively for correctness.) Note that when the client remarks that a bin
overflowed in an Update in a real world environment, this is due malicious Update operations.
The client can adapt his reaction accordingly, whereas the server learns no information about
the attack without being notified by the client.

We can show that LayeredSSE with the adjustment of Update is correct and L-adaptively
secure, where L is defined as in Lemma 5.7. The same simulator Sim suffices and we omit the
details.

5.4.3 Extensions

In this section, we discuss some extensions such as handling lists of arbitrary size and improved
update round trip times. Note that while we did not describe how to handle deletes explicitly,
this can be done generically (cf. Section 3.6).

Handling Long Lists

We now adapt LayeredSSE to handle arbitrary lists L (with potentially more than p identifiers).
We proceed similarly to the static scheme Pluto from [BBF+21] and extend the ideas to updates.
For this, we split L into sublists of size at most p. The (encrypted) full sublists of size p can be
stored in a hash table Tfull on the server and the incomplete sublists are handled by LayeredSSE
as before. For search, the client needs to know the number of sublists in order to fetch the right
amount from the server. This information is also required for update queries in order to know
when to insert another full list into Tfull. This information can be outsourced in a table Tlen.
Here, the client stores for each keyword w (with ℓ matching identifiers) the number of sublists
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Tlen[w] = ⌈ℓ/p⌉ in encrypted format. In the following, we describe the updated Setup, Search and
Update of LayeredSSE in more detail.

Setup. For setup, let Li be a list of ℓi identifiers matching keyword wi and PRF be a secure
pseudo-random function mapping to {0, 1}⌈log(N)⌉. We set xi = ⌈ℓi/p⌉. The client splits
Li into sublists Li,1, ..., Li,xi−1 of size p and sublist Li,xi of size at most p. She evaluates
mi ← PRFKPRF(wi), where KPRF is a key for PRF sampled in KeyGen. The mask mi is used to
encrypt the content of Tlen. After initializing the table Tlen with N random entries of size log(N)
bits and Tfull with N/p (arbitrary) lists of size p, she sets Tlen[wi] = xi⊕mi and Tfull[w || i] = Li,j

for j ∈ [1, x − 1]. Next, she generates (Bi)m
i=1 as before with the incomplete lists Li,xi except

that the bin choices for list Li,xi are (αi,1, αi,2)← H(wi || xi). Note that we need to also hash
the counter xi, as after some updates, the incomplete sublist of wi might become full and a new
incomplete sublist has to be started. When the new incomplete sublist gets inserted with L2C, it
is interpreted as a new ball and new bins need to be chosen. Finally, she encrypts the content of
Tfull and returns EDB = (Tlen, Tfull, (Benc

i )m
i=1).

Search. For search queries on keyword w, the client outputs mask m← PRFKPRF(w) in addition
to w. The server uses this mask to decrypt the number of sublists x ← Tlen[w] ⊕m, retrieves
x− 1 encrypted sublists Li ← Tfull[w || i] from the table for i ∈ [1, x− 1] and the two bins Benc

α1
and Benc

α2 via (α1, α2)← H(w || x). Finally, the server sends the encrypted bins and sublists to
the client. Clearly, the client obtains all matching identifiers after decrypting the received lists
and bins.

Update. For update queries on keyword w and list L′ of (at most p) new identifiers2, the client
generates mask m as before and sends (w, m) to the server. The server again decrypts x from
Tlen and sends Benc

α1 , Benc
α2 to the client. In addition, the server already sends the bins Benc

α3 , Benc
α4

for α3, α4 ← H(w || x + 1) to the client (in case the incomplete list overflows). The client now
retrieves the old (incomplete) list L of identifiers matching w from the decrypted bins Bα1 , Bα2 .
We distinguish two cases:

1. If L ∪ L′ contains more than p identifiers, the client sets Lnew = L ∪ L′ and marks (w, L)
as a residual ball inside Bα1 , Bα2 . Then, she splits Lnew into two sublists L=p with p
identifiers and L≤p of at most p identifiers. The client then inserts list L≤p into bins
Bα3 , Bα4 via L2C.InsertBall((w, L≤p), Bα3 , Bα4) and sends the updated (reencrypted) bins
{Benc

i }4i=1 such as encrypted list Lenc = EncKEnc(L=p) to the server.

2. Otherwise, the client proceeds as before, i.e.adds the new identifiers L′ to ball (w, L) via
UpdateBall and reencrypts the received bins.

Finally, the server replaces the old bins with the reencrypted bins, and if she received an encrypted
list Lnew, she stores the received list in Tfull[w || x + 1] = Lenc and updates Tlen[w] = x + 1.

Leakage profile. Now, search and update queries LayeredSSE leak the number of sublists
x = ⌈ℓ/p⌉ for a given keyword w with ℓ matching identifiers. Further, updates leak when a
list was completed (so also the value ⌈(ℓ + |L′|)/p⌉). This is captured in the leakage function
Ll2c = (LStp,LSrch,LUpdt), defined as follows. The setup leakage is LStp(DB, N) = N is the
maximal size N of the database, the search leakage LSrch(w) = (qp, ⌈ℓi/p⌉, ⌈di/p⌉) is the query
pattern and the number of pages required to store the inserted and deleted items, and the update
leakage LUpdt(op, w, L) = (op, qp, ⌈(ℓi + |L|)/p⌉, ⌈(di + |L|)/p⌉, ⌈ℓi/p⌉, ⌈di/p⌉) is the operation,
the query pattern and the number of pages required to store the inserted and deleted items

2For updates with more than p identifiers, the client can perform multiple updates.
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(before and after the update). As tables Tlen and Tfull are encrypted, it is straightforward to adapt
the security analysis in Section 5.4.2 to the extended scheme with respect to leakage function L.

Optimized RTT

Search queries of LayeredSSE need only 1 RTT, whereas update queries unfortunately require 2
RTTs. We can use “piggybacking” in order to reduce the update RTT to 1 as follows. Instead of
sending the second flow of the update query directly to the server, the client stashes the response
and waits for the next query (either update or search). On the next query, the client sends the
stashed response in addition to the query. The server then finishes the pending update query (by
storing the received bins and updating the tables) and responds the query subsequently.

5.4.4 Efficiency

We now inspect the efficiency of LayeredSSE. Let wtot = N/p. The server stores m =
⌈wtot/(log log log λ · log log wtot)⌉ bins of size O(p log log log(λ) log log(wtot)) ·O(λ) each, tables
Tlen with N entries of size log(N) and Tfull with N/p entries of size p ·O(λ) each. (Recall that
a single identifier has size O(λ).) As N = poly, the storage efficiency is O(1) in total. There
is no client stash required3. Further, the server looks up 4 bins of capacity Õ (p log log(N/p))
and x− 1 encrypted lists of p identifiers from Tfull for a search query on word w, where x is the
number of pages needed to store the document indices matching keyword w in plaintext. Thus,
the page efficiency is Õ

(
log log N

p

)
. This further implies that LayeredSSE has O(1) locality if

only lists up to size p are inserted.

Theorem 5.8 (LayeredSSE). Let N be an upper bound on the size of database DB and p be
the page size. Let p ≤ N1−1/ log log λ. The scheme LayeredSSE is correct and Ll2c-adaptively
semantically secure if Enc is IND-CPA secure and H is modeled as a random oracle. It has
constant storage efficiency and Õ (log log N/p) page efficiency.

Proof. Efficiency and security follow from the discussions above.

3The version of LayeredSSE with 1 RTT updates requires a stash of size Õ (p log log(N/p)) to temporarily store
the second flow of the update query until the next query.



Chapter

6
Forward Security and Page
Efficiency

Since the seminal work of Bost [Bos16], forward security has become a de facto standard in SSE.
In the same article, Bost conjectures that forward security and I/O efficiency are incompatible.
This explains the current status quo, where users are forced to make a difficult choice between
security and efficiency. In this chapter we show that forward security and I/O efficiency can be
realized simultaneously. That is, we construct an SSE scheme with I/O efficiency Õ

(
log log N

p

)
,

storage efficiency O(1), with standard leakage and forward security.
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6.1 Introduction
In the previous chapter, we give page-efficient constructions for static and dynamic schemes. The
focus of this chapter is to construct page-efficient SSE with forward security.
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Forward Security

Forward security was introduced in [SPS14] and asks that updates leak no information to the
server. Since the first efficient construction of forward-secure SSE [Bos16], forward security
has become a de facto standard in SSE [Bos16, PM21, BMO17, KMPQ21, EKPE18, DCPP22].
Forward secure SSE is useful in practice since it mitigates certain file-injection attacks [ZKP16]
that exploit update leakage. Further, forward security ensures that building the database online
leaks no information (except the number of update queries) to the server.

Memory Efficiency

In Chapter 5, we introduce a new notion of memory efficiency, called page efficiency. Page
efficiency is the ratio of memory pages read by the server to process a query, divided by the
number of pages necessary to hold the plaintext answer. From a practical standpoint, page
efficiency is a very good predictor of performance on modern Solid State Drives (SSDs), whereas
locality is mainly relevant for older Hard Disk Drives. From a theoretical standpoint, constant
page efficiency is a weaker requirement than the combination and constant locality and constant
read efficiency.

Since the work of Cash and Tessaro [CT14], many I/O-efficient schemes have been proposed.
Of these, the vast majority hold in the static setting [CT14, ANSS16, ASS21, DP17a, DPP18,
BBF+21], where the database is fixed at setup and does not support updates. To our knowledge,
the only construction in the dynamic setting is IO-DSSE [MM17] and our scheme LayeredSSE
(cf. Section 5.4).

IO-DSSE. We give a brief overview of IO-DSSE. IO-DSSE opened the way in a new area but
suffers from significant limitations. Intuitively, I/O efficiency requires that document identifiers
that match the same keyword should be stored in close proximity. For that purpose, IO-DSSE
groups identifiers matching the same keyword into blocks of a fixed size p. Since the number of
documents matching a given keyword need not be a multiple of p, it is usually the case that one of
the blocks is incomplete, i.e., it contains less than p identifiers. As in other works on I/O-efficient
SSE, the main technical issue is how to efficiently handle incomplete blocks. Especially, when
a new document matching a given keyword is added to the database, the document identifier
needs to be appended to the incomplete block associated with the keyword. In that process, it is
unclear how to hide to the server which incomplete block is being modified.

The solution proposed by IO-DSSE is to store incomplete blocks in an optimized Oblivious
RAM (ORAM) construction. ORAM is a generic solution to hide memory access patterns but is
notoriously expensive in practice. In IO-DSSE, this approach is viable, because IO-DSSE focuses
on use cases with few searchable keywords: they target a messaging app scenario and assume
in their experiments that no more than 350 keywords are searchable. Because the number of
keywords is small, and there can be at most one incomplete block per keyword, the ORAM
overhead remains manageable. By contrast, if we were to run IO-DSSE on the English Wikipedia
database (a classic target in SSE literature), which contains millions of keywords, IO-DSSE blows
up the size of the database by a factor of more than 100. A second limitation of IO-DSSE is that
its security claim is incorrect. It does not appear that the issue can be fixed without a significant
penalty for performance. We refer to [MR23] for more details. A third limitation of IO-DSSE is
that, independently of the previous security issue, IO-DSSE is not forward-secure. This puts it at
odds with most of the rest of modern (non-I/O-efficient) SSE literature, where forward security
has become a standard requirement [Bos16, PM21, BMO17, KMPQ21, EKPE18, DCPP22].

LayeredSSE. Similarly, our construction LayeredSSE is not forward secure. Unfortunately,
LayeredSSE leaks which keyword is being updated, which is the worst case with regard to certain
file-injection attacks [ZKP16].
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Hierarchical Approach. Before detailing our contributions, we note that dynamic I/O-efficient
SSE could in principle be built using a folklore hierarchical construction, which generically builds
dynamic SSE from a static SSE scheme. That construction was sketched in [SPS14, DP17a],
and studied in more detail in [DCPP22]. Following that approach, one could theoretically
build a dynamic I/O-efficient SSE scheme by using a static I/O-efficient SSE scheme as an
underlying static scheme. However, this quickly proves impractical. First, the approach inherently
incurs a logarithmic factor in both locality and page efficiency, on top of the I/O cost of the
underlying static SSE. As a result, it cannot hope to match the page efficiency of Hermes, which
is sublogarithmic. The most natural candidate for the underlying static SSE is the Pluto scheme
(cf. Section 5.3): it is the only one to achieve constant page efficiency, hence the only one that
would not further deteriorate page efficiency beyond the log factor inherent to the approach.
However, Pluto has a quadratic O(N2) setup time. This is problematic, because for every N
insertions, the generic construction requires building a fresh static SSE instance of size N . This
implies that the average computational cost of one update would be O(N2/N) = O(N). Last
but not least, the hierarchical approach requires periodically rebuilding a static SSE scheme
of size N . Generically, this implies storing the entire database on the client side during the
rebuilding phase.

6.1.1 Our Contributions

Both SSE design goals, I/O efficiency, and forward security, date back to 2014 [CT14, SPS14].
Almost a decade later, there is no satisfactory solution to achieving both at once. This is not a
coincidence: the two goals seem to be fundamentally at odds with each other, and it was even
conjectured in [Bos16] that both notions are incompatible. While [Bos16] argues only about
locality for SSE (page efficiency did not exist at the time), the same argument directly translates
to page efficiency. To sum up the argument: a correlation between the identifiers DB(w) matching
keyword w and a newly inserted identifier also matching w breaks forward security. On the other
hand, identifiers matching the same keyword w need to be stored in close proximity to satisfy
page efficiency. Note that accessing correlated pages still breaks forward security. Consequently,
an identifier cannot be written to the server, unless DB(w) is partially rewritten for each access,
in an ORAM-like manner.

This state of affairs raises some troubling questions for SSE. Since I/O efficiency is the
main performance bottleneck, if it is mutually exclusive with forward security, then forward
security comes at a heavy performance price — hinting at a stronger form of Cash and Tessaro’s
impossibility result when forward security comes into play. It would also imply that the rich
literature on I/O-efficient SSE will have to remain confined to static SSE, or at least non-forward-
secure SSE. So far, the conjecture is supported by current work: [Bos16] conjectures that I/O
efficiency and forward security are “irreconcilable notions”, except via expensive constructions
such as ORAM. [MM17] builds the first dynamic I/O-efficient SSE scheme to date with low
update leakage (although still not quite forward-secure), but relies on ORAM and has a flawed
security proof. Our construction LayeredSSE from Section 5.4 has great page efficiency but leaks
the query pattern and size of the response during updates.

As our main contribution, we go against the prevailing wisdom and show that the previous
conjecture is incorrect. We build the first forward-secure SSE scheme, Hermes, with linear
server storage and sublogarithmic page efficiency Õ (log log(N/p)). Notably, Hermes is the first
I/O-efficient SSE scheme with forward security. We note that this holds with regard to page
efficiency: the question of building a similar scheme with respect to locality remains an intriguing
open question. A brief comparison with existing schemes is given in Table 6.1. Hermes does not
rely on ORAM, or any ORAM-like structure. Instead, it makes use of two new technical ideas.

First, we introduce the notion of SSE schemes supporting dummy updates. A dummy update
can be triggered by the client at any time, and must look indistinguishable from a real update
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Table 6.1: An overview of relevant dynamic SSE schemes. N is an upper bound on database
size, W is an upper bound on the number of keywords, p is the page size.

SSE Page Efficiency St. Efficiency Client St. Forward Sec.

Σoϕoς [Bos16] O(p) O(1) O(W ) ✓

Πpack, Π2lev [CJJ+14] O(1) O(p) O(W ) ✗

IO-DSSE [MM17] O(log W ) O(1 + p·W
N ) O(W ) ✗

LayeredSSE [Section 5.4] Õ
(
log log N

p

)
O(1) O(1) ✗

Hermes Õ
(
log log N

p

)
O(1) O(W ) ✓

in the server’s view. On the other hand, we require that server storage should only grow with
an upper bound N on the number of real entries in the database: dummy updates create no
storage overhead. We present a simple framework to build an SSE scheme Dummy(Σ) supporting
dummy updates, based on an underlying suitable SSE scheme Σ. The framework is based on an
application of the two-choice allocation process.

The second main technical idea is a form of “deamortized” trivial ORAM. An explanation
of this technique is deferred to the technical overview below. For now, we note that it involves
buffering O(W ) updates on the client side before pushing them to the server, where W is an
upper bound on the number of searchable keywords. It was proved in [BF19] that single-round
forward-secure SSE requires Ω(W ) client storage. As a consequence, the new buffer does not
increase client storage beyond a constant factor1. Interestingly, it is is the use of client storage
that circumvents the proof sketched in [Bos16] for the incompatibility of forward security and
I/O efficiency.

6.1.2 Technical Overview

I/O efficiency and forward security are two important goals of SSE research, but seemingly
incompatible. On an intuitive level, this is because I/O efficiency requires that identifiers
matching the same keyword should be stored close to each other, so that they can be read
together efficiently when the keyword is queried. Forward security requires that when a new
identifier matching some keyword is added, it cannot be stored close to previous identifiers for
the same keyword, since that would leak information about the new identifier to the server. One
way to resolve this apparent contradiction is to use ORAM, as was suggested in [Bos16], and
later realized in [MM17]. We start by sketching the ORAM approach, which will serve to explain
what Hermes does differently.

A natural way to build page-efficient SSE is to maintain an array of bins of capacity one
page each, one bin for each keyword. When the client wishes to insert a new document identifier
matching some keyword w, the new document identifier is added to the bin associated with w.
Once the bin for keyword w is full, i.e. it contains a full page of identifiers matching w, the page
of identifiers is inserted into a separate SSE scheme Σ that only contains full pages, and the bin
is emptied. Because Σ only contains full pages, each page can be stored in an arbitrary location,
and the scheme remains page-efficient; hence page efficiency is easy to realize. In order to search
for the list of document identifiers that match the keyword w, the client needs only to fetch the
bin associated with w, and query Σ on w.

The problem with this naive approach is that it is not forward-secure: during an update,
the server can see which bin is accessed, hence which keyword is being updated. A generic

1Although O(W ) client storage is inherent to sublogarithmic forward-secure SSE as just noted, in practice,
this cost may be too high for some applications. Practical tradeoffs to reduce client storage are discussed in
Section 6.5.2.
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way to circumvent this leakage is to store the bins in an ORAM, which completely hides access
patterns. (Roughly speaking, this approach is the one of IO-DSSE.) Despite the use of ORAM,
the approach still has two issues. First, it is still not forward-secure: when a page becomes full,
the server can observe that a new element is inserted into Σ, hence updates are not leakage-free
(this leakage suffices to break the security game of forward-secure SSE). Second, ORAM incurs
an Ω(log W ) overhead, where W is the number of searchable keywords, and is costly in practice.

Challenge 1: achieving forward security. To avoid leaking when a bin becomes full, we
could insert a new item in Σ for every client update, regardless of whether the bin is actually full.
A bin becomes full after it receives p client updates, where p is the page size (counted in number
of memory words, identified here with the size of a document identifier). Asymptotically, we
would have storage efficiency O(p) instead of the desired O(1). In practice, for 64-bit identifiers
and 4kB memory pages, p = 512: blowing the size of Σ by a factor p is not acceptable. Instead,
we introduce the idea of SSE supporting dummy updates. When a bin is full, the full page
is inserted into Σ; when it is not full, the client issues a dummy update to Σ. The promise
of dummy updates is that they should be indistinguishable from real updates in the server’s
view. At the same time, we arrange that they cost nothing in storage: in our actual construction
dummy updates do not alter the contents of the encrypted database.

Challenge 2: realizing dummy updates. At a high level, building SSE with dummy
updates comes down to building a key-value store that is amenable to fake key queries. For that
purpose, we use the two-choice allocation process. In a two-choice process, n values are stored in
m bins of fixed capacity c. Each value for key k is stored in the bin H1(k) or H2(k), where H1,
H2 are hash functions mapping into [1, m]. We pad the bins to their full capacity c, and encrypt
them with an IND-CPA scheme. Intuitively, simulating a dummy query is simple: the client
fetches two uniformly random bins, re-encrypts them, and re-uploads them to the server. Setting
c = Õ (log log n), m = Õ (n/ log log n) suffices to ensure a negligible probability of overflow, with
constant storage efficiency. This idea can be adapted to the SSE setting. We realize it as a
framework that builds a scheme Dummy(Σ) supporting dummy updates, based on an underlying
suitable forward-secure scheme Σ.

Challenge 3: dispensing with ORAM. Recall that our scheme uses W bins, each of
capacity one page. As noted in the introduction, single-round forward-secure SSE requires Ω(W )
client storage [BF19]. If we buffer W updates on the client before pushing them to the server,
we can afford to scan all W bins. This costs W page accesses per W updates, hence O(1)
amortized page efficiency. Another way to view this process is that we are performing a trivial
ORAM (i.e. reading the entire array of bins), amortized over W updates. This basic idea can be
deamortized, in such a way that each client update generates O(1) page accesses in the worst
case. The deamortization is somewhat subtle and proceeds differently depending on the regime
of global parameters N , W , and p. For that reason, we introduce two schemes, BigHermes and
SmallHermes, respectively for the case N ≥ pW and N ≤ pW . Hermes is the combination of
those two schemes, one for each regime.

In the end, the storage and page efficiency of Hermes reduce to those of the underlying scheme
supporting dummy updates. Because that scheme relies on the two-choice process, this works out
to Õ (log log(N/p)) page efficiency, and constant storage efficiency. While the ideas of buffering
and deamortization, as well as dummy updates, may be natural in hindsight, we view them as
the key contributions of this chapter: to our knowledge, they realize forward security in a way
that is fundamentally different from how it was realized in prior works — and one that happens
to be compatible with I/O efficiency. We note that both new techniques (the use of dummy
updates, for forward security; and the replacement of standard ORAM with “deamortized” trivial
ORAM, for efficiency), are modular: we could have introduced intermediate schemes that realize
one without the other, although we did not see a compelling reason for it.
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6.2 SSE with Dummy Updates
A first key technique for our results is the introduction of the notion of dummy updates. An SSE
schemes supports dummy updates if its interface is equipped with a new operation DummyUpdate,
taking as input only the client’s master key K. For technical reasons, we also require that Setup
receives an additional parameter D, an upper bound on the total number of dummy updates.

6.2.1 Security Definition

Informally, an SSE scheme supporting dummy updates is said to be secure if it is secure in the
same sense as a normal SSE scheme, with the added requirement that dummy updates should
be indistinguishable from real updates from the server’s perspective. (A subtle but important
point is that later constructions will ensure that server storage does not depend on D: dummy
updates will look indistinguishable from real updates, without actually affecting server storage.)

The security definition for SSE supporting dummy updates is given in Definition 6.1, with
the associated security game in Algorithm 6. Note that this definition naturally extends the
standard definition (Definition 3.33).

Definition 6.1 (Adaptive Semantic Security with Dummy Updates). Let Σ be an SSE scheme
supporting dummy updates, A a stateful PPT adversary, and Sim a stateful PPT simulator.
Let q ∈ N, and let L = (LStp,LSrch,LUpdt) be a leakage function. The games SSERealdum

Σ,A and
SSEIdealdum

Σ,A,L,A are defined in Algorithm 6. Σ is L-adaptively secure with support for dummy
updates if LUpdt does not depend on its first input op, and if for all PPT adversaries A, there
exists a PPT simulator Sim such that:

|Pr[SSERealdum
Σ,A(λ) = 1]− Pr[SSEIdealdum

Σ,Sim,L,A(λ) = 1]| = negl(λ).

Algorithm 6 Security games for SSE supporting dummy updates.
SSERealdum

Σ,A

1: K← Σ.KeyGen(1λ)
2: (DB, N, D, W, stA)← A(1λ)
3: EDB← Σ.Setup(K, N, D, W, DB)
4: send EDB to A
5: for all 1 ≤ i ≤ q do
6: (opi, ini, stA)← A(stA)
7: if opi = srch then
8: Parse ini = wi

9: Σ.SearchC(K, wi)↔ A(stA)
10: else if opi ∈ {add, del} then
11: Parse ini = (wi, idi)
12: Σ.UpdateC(K, wi, idi, opi)↔ A(stA)
13: else
14: Σ.DummyUpdateC(K)↔ A(stA)
15: output bit b← A(stA)

SSEIdealdum
Σ,Sim,L,A

1: (DB, N, D, W, stA)← A(1λ)
2: EDB← Sim(LStp(DB, N, D, W ))
3: send EDB to A
4: for all 1 ≤ i ≤ q do
5: (opi, ini, stA)← A(stA)
6: if opi = srch then
7: Sim(LSrch(ini))↔ A(stA)
8: else
9: Sim(LUpdt(opi, ini))↔ A(stA)

10: output bit b← A(stA)

6.2.2 A Framework to Build SSE with Dummy Updates

We now describe a framework that constructs an SSE scheme Dummy(Σ) supporting dummy
updates, based on an underlying SSE scheme Σ. Provided Σ is suitable in a sense that will be
defined shortly, the resulting scheme Dummy(Σ) achieves the following features:
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– It is a secure SSE scheme supporting dummy updates (cf. Definition 6.1).

– Server storage grows only with the number of real updates; in particular, it does not depend
on the upper bound D on the number of dummy updates.

– Relative to the base scheme Σ, Dummy(Σ) only incurs a Õ (log log N) overhead in commu-
nication.

The definition of a suitable SSE is given next. Essentially, it requires that server storage should
behave like a key-value store. This is how most forward-secure SSE schemes operate. It also
requires that running Setup on a non-empty initial database DB is equivalent to running Setup
on an empty database, then performing updates to add the contents of DB. Here, “equivalent”
means that the client and server states at the outcome of either process are distributed identically.
This condition can be fulfilled trivially by any SSE scheme. It is not strictly necessary, but makes
the description of the framework, and its security proof, more consise.

Definition 6.2 (Suitable SSE). We say that an SSE scheme Σ is suitable if there exist a key
space K, a token space T , and a map keys : T 7→ K such that: (1) Σ.Setup(K, N, W, DB) outputs
an encrypted database EDB in the form of an encrypted key-value store that maps a key to
encrypted identifiers. (2) Σ.Search(K, w; EDB) is a two-step protocol in which the client first
sends a token τ ∈ T and the server responds with EDB[k1], ..., EDB[kq] for k1, ..., kq ← keys(τ).
(3) Σ.Update(K, (w, id), op; EDB) is a one-step protocol in which the client sends a key k ∈ K and
value v = EncKEnc(id) and the server stores v in EDB at position k, i.e.sets EDB[k] = v. (4) Running
the setup routine Setup(K, N, W, DB) is equivalent to running the setup Setup(K, N, W, ∅) with
an empty database and subsequently performing an update operation for each keyword-identifier
pair (w, id) ∈ DB locally. (5) Σ is forward-secure.

Construction

A detailed description is given in Algorithm 7. Let us explain it here in text. Let Σ be a
suitable SSE scheme. First, observe that it is easy to add dummy updates to Σ if we are
willing to let server storage grow linearly with the number of dummy updates: we could simply
let DummyUpdate perform a real update with a fresh keyword-identifier pair. Because Σ is
forward-secure, the leakage of either type of update would be ⊥. The problem is that the server
would have to store the keyword-identifier pairs arising from dummy updates, potentially blowing
up storage overhead. This is what we wish to avoid.

Instead, the idea is to wrap Σ inside an encrypted two-choice allocation scheme (cf. Chapter 4).
First, Dummy(Σ) initializes a two-choice scheme with m = N/Õ (log log N) bins B1, ..., Bm, each
of capacity Õ (log log N) (where one unit corresponds to the storage cost of one identifier in
Σ). Because Σ is suitable, we know server storage in Σ behaves like a key-value store: for each
update with token τ , the server stores the corresponding data items under the keys keys(τ).
Let H : K → {1, ..., m}2 map keys to pairs of bins. In Dummy(Σ), whenever Σ would store a
data item under a key k, the same item is instead stored in one of the two bins Bα, Bβ, where
(α, β)← H(k). The destination bin is chosen among Bα, Bβ according to the two-choice process:
the item is inserted into whichever bin currently contains fewer items.

In Dummy(Σ), the client always downloads and sends back full bins, padded to their maximal
capacity Õ (log log N), and encrypted under a key KEnc known only to the client. This is where
the Õ (log log N) overhead in communication comes from. On the other hand, thanks to the
properties of the two-choice process, dummy updates can be realized easily: the client simply
asks to access two bins (α, β) ← H(k) for a fresh key k, re-encrypts them, and re-uploads
them. This matches the behavior of real updates (up to the IND-CPA security of Enc, and the
pseudo-randomness of H, modeled as a random oracle). In more detail, the key k for dummy
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updates is generated by Σ.Update using a reserved dummy keyword wdum, and a fresh identifier
id chosen by the client.

Remark. Although the outline given above is natural, the detailed construction in Algorithm 7
involves some subtlety. During setup, Σ receives as upper bound for the size of the database
N + D, rather than just N . This is useful for the security proof. It also means that the encrypted
database generated by Σ may scale with D. However, that database is not needed to run
Dummy(Σ), so this has no impact on storage efficiency. To see that the database generated by
Σ is not needed by Dummy(Σ), observe in Algorithm 7 that Dummy(Σ) crucially only makes
use of the client-side part of the protocols of Σ; the only relevant aspect of the server-side part
of those protocols is the keys map. This is made possible by the suitability assumption on Σ,
which is used very strongly.

Algorithm 7 Dummy(Σ)
Dummy(Σ).Setup(K, N, W, D, DB)

1: Pick dummy keyword wdum
2: EDBΣ ← Σ.Setup(KΣ , N + D, W + 1, ∅)
3: Initialize m = N/Õ (log log N) empty bins

B1, ..., Bm of capacity Õ (log log N).
4: for all (w, id) ∈ DB do
5: (k, v)← Σ.UpdateC(K, (w, id), add)
6: (α, β)← H(k)
7: Insert id into the bin Bγ with fewest

items among Bα, Bβ

8: return EDB = (EncKEnc(Bi))m
i=1

Dummy(Σ).KeyGen(1λ)
1: Sample KΣ ← Σ.KeyGen(1λ) and key KEnc

for Enc
2: return K = (KΣ , KEnc)

Dummy(Σ).Search(K, w; EDB)
Client:

1: τ ← Σ.SearchC(KΣ , w)
2: send τ

Server:
1: k1, ..., kq ← keys(τ)
2: (αi, βi)← H(ki) for i ∈ [1, q]
3: send {Benc

αi
, Benc

βi
}qi=1

Dummy(Σ).Update(K, (w, id), op; EDB)
Client:

1: (k, v)← Σ.UpdateC(KΣ , (w, id), add)
2: send k

Server:
1: (α, β)← H(k)
2: send Benc

α , Benc
β

Client:
1: Decrypt Benc

α , Benc
β to Bα, Bβ

2: Insert id into the bin Bγ with fewest identi-
fiers among Bα, Bβ

3: send re-encrypted Bα, Bβ

Server:
1: Replace Benc

α , Benc
β with received bins

Dummy(Σ).DummyUpdate(K; EDB)
Client:

1: Pick fresh identifier id
2: (k, v)←Σ.UpdateC(KΣ , (wdum, id), add)
3: send k

Server:
1: (α, β)← H(k)
2: send Benc

α , Benc
β

Client:
1: send re-encrypted Bα, Bβ

Server:
1: Replace Benc

α , Benc
β with received bins

Security

The security of Dummy(Σ) follows naturally from that of Σ. Indeed, Dummy(Σ) essentially
amounts to running Σ inside encrypted bins, with the difference that Σ is scaled for size N + D.
As a result, Dummy(Σ) intuitively has at most the same leakage as Σ for Setup, Search and
Update, except that D is additionally leaked. Regarding DummyUpdate, the only difference
between real and dummy updates is that a new identifier is inserted in the bin with the former,
while the bins are re-encrypted without modifying their content with the latter. Since Enc is



6.2 - SSE with Dummy Updates 81

IND-CCA-secure, and bins are always padded to ther full size (cf. Section 3.1), the two behaviors
are indistinguishable.

Theorem 6.3. Let Σ be a suitable, Lfs-adaptively secure SSE scheme. Let Enc be an IND-
CPA secure encryption scheme. Let H be a random oracle. Let N ≥ λ, and D = poly(N).
Dummy(Σ) is a correct and secure SSE scheme supporting dummy updates with respect to
leakage Ldum = (LStp,LSrch,LUpdt), where LStp(DB, N, D, W ) = (N, D, W ),LSrch(w) = (qp, ℓ),
and LUpdt(op, w, id) = ⊥.

Before we give a formal proof, we give some intuition. Because 2C guarantees a maximum
load of Õ (log log N) with overwhelming probability if N ≥ λ (cf. Lemma 4.5), correctness follows
from the correctness of Σ. We turn to security. Let SimΣ be a simulator for Σ. During setup, the
client initializes the encrypted database EDBΣ of Σ and outputs m = N/Õ (log log N) encrypted
bins. The output leaks nothing but N , since the bins are encrypted. Note that for subsequent
updates and searches, the state of SimΣ still needs to be initialized by simulating EDBΣ . (Here,
we use the fourth property of Definition 6.2.) This potentially leaks N, D and W . For search
queries, the search token can be sampled via SimΣ . This requires the query pattern qpΣ of Σ
and the length ℓ of the identifier list matching the searched keyword. Note that each search and
update query induces a corresponding query on Σ. Thus, the query pattern of Dummy(Σ) and
Σ are equivalent. Consequently, ℓ and qp are leaked. Similarly, all updates (including dummy
updates) can be simulated via SimΣ . As updates leak nothing in Σ, neither dummy nor real
updates have any leakage.

Now, we show semantic security of Dummy(Σ) with dummy updates, if Σ is suitable and
forward secure. Note that correctness follows from Lemma 4.5 and the proof is straight-forward.

Proof. Let Sim denote the simulator and A an arbitrary honest-but-curious PPT adversary. Fur-
ther, let SimΣ be a simulator for Σ with leakage Lfs. Initially, Sim receives LStp(DB, N, D, W ) =
(N, D, W ) and later, an series of search and update queries with input LSrch(w) = (qp, ℓ) and
LUpdt(op, w, id) = ⊥ respectively. First, Sim generates an encryption key K′Enc and initial-
izes m = N/Õ (log log N) bins B1, ..., Bm zeroed out up to size Õ (log log N). Next, she sets
EDBΣ ← SimΣ(N, W ) and outputs EDB′ = (EncK′

Enc
(B1), ..., EncK′

Enc
(Bm)). Next, Sim simulates

the search and update queries.
For search queries, Sim receives the query pattern qp and the length ℓ of the identifier list

matching the searched keyword. Sim outputs τ ← SimΣ(qp, ℓ). For update queries, Sim receives
no input. Sim sets (k, v) ← SimΣ(⊥) and outputs k. We now show that the real game is
indistinguishable from the ideal game. For this, we define five hybrid games.

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0 raises a flag flag when a bin overflows its capacity during
setup or update. As the client never inserts an identifier if the bin were to overflow, the
probability of a flag being raised is 0. Thus, Hybrid 1 and Hybrid 0 are indistinguishable.

– Hybrid 2 is the same as Hybrid 1 except in Setup, the encrypted database EDB replaced
with EDB′, and in Update, the client sends back fresh encryptions of log log(m) zeros. Since
Enc is IND-CPA secure, it follows that the advantage of an adversary trying to distinguish
Hybrid 2 from Hybrid 1 is negligible.

– Hybrid 3 is given in Algorithm 8 and is the same as Hybrid 2 except in Setup, the client
performs the setup of Σ with DB directly instead of performing the updates locally. As Σ
is suitable, Hybrid 3 and Hybrid 2 are identically distributed and thus indistinguishable.

– Hybrid 4 is given in Algorithm 9 and is the same as Hybrid 3, except the scheme Σ is
simulated via SimΣ . Hybrid 4 and Hybrid 3 are indistinguishable, as Σ is Lfs-adaptively
secure.
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– Hybrid 5 is identical to the ideal game. Hybrid 5 and Hybrid 4 are identically distributed
and thus, indistinguishable.

Algorithm 8 Hybrid 3
Dummy(Σ).Setup(K, N, W, DB)

1: Set NΣ ← N + D and WΣ ←W + 1
2: Generate random K′Enc
3: Generate dummy keyword wdum and identifier

iddum
4: Let EDBΣ ← Dummy(Σ).Setup(K, NΣ , WΣ , DB)
5: Initialize m = N/Õ (log log N) bins B1, ..., Bm

containing Õ (log log N) zeros
6: return output EDB = (EncK′

Enc
(Bi))m

i=1

Dummy(Σ).Search(K, w; EDB)
Client:

1: Set τ ← Σ.SearchC(K, w)
2: send τ

Dummy(Σ).Update(K, (w, id), op; EDB)
Client:

1: Set (k, v)← Σ.UpdateC(K, (w, id), add)
2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

Dummy(Σ).DummyUpdate(K; EDB)
Client:

1: Set d← (wdum, iddum)
2: Set (k, v)← Σ.UpdateC(K, d, add)
3: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

Algorithm 9 Hybrid 4
Setup(LStp(N, W, DB))

1: Set NΣ ← N + D and WΣ ←W + 1
2: Generate random K′Enc
3: Let EDBΣ ← SimΣ(Lfs

Stp(NΣ , WΣ , ∅))
4: Initialize m empty bins B1, ..., Bm

5: Fill each bin up to capacity Õ (log log N)
with zeros

6: return output EDB = (EncK′
Enc

(Bi))m
i=1

SearchC(LSrch(w))
Client:

1: Simulate τ ← SimΣ(LSrch(w))
2: send τ

UpdateC(LUpdt(op, w, id) = ⊥)
Client:

1: Simulate (k, v)← SimΣ(⊥)
2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

DummyUpdateC()
Client:

1: Simulate (k, v)← SimΣ(⊥)
2: send k

Client:
1: Receive Benc

α , Benc
β

2: send reencrypted Bα, Bβ

6.2.3 Efficient Instantiations

We now evaluate the efficiency of our framework. Notably, if Σ is efficient in a certain sense, so
is Dummy(Σ).

Definition 6.4. A suitable SSE scheme Σ is said to be efficient if:
– Σ has O(1) storage efficiency;

– If EDB contains ℓ values matching keyword w, then for τ ← Σ.SearchC(K, w), |keys(τ)| = ℓ.
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Later, we will only use Σ to store full pages. That is, the atomic items stored in Σ will be
identifier lists of size p, rather than single identifiers. Each key will map to one list of size p.
Each access to the encrypted database EDB then translates to one page access, and retrieves
p identifiers. On the other hand, if Σ is efficient in the sense above, the number of accesses
is minimal, hence Σ with full-page items has page efficiency O(1). Dummy(Σ) then has page
efficiency Õ (log log N). Moreover, if Σ has O(1) storage efficiency, so does Dummy(Σ).

Putting both remarks together, we see that if Σ is efficient per Definition 6.4, then Dummy(Σ)
has storage efficiency O(1), and when used to store full-page items as outlined above, it has page
efficiency Õ (log log N). To instantiate this idea, the Σoϕoς [Bos16] and Diana [BMO17] schemes
are good choices: they are both suitable, efficient, and Lfs-adaptively secure (assuming identifiers
are encrypted before being stored on the server).

Remark 6.5. The Dummy(Σ) framework technically does not exclude the possibility that the
sizes of individual search tokens and keys could scale with D, insofar as they are produced by Σ,
and N + D is an input of Σ.Setup. In practice, the overhead is at most constant for Σoϕoς and
Diana, and can be eliminated entirely with a careful instantiation. To simplify the presentation,
we have not added formal requirements for that purpose at the framework level.

6.3 BigHermes: the Big Database Regime

We are now ready to present our main construction, Hermes. The construction differs depending
on whether N ≥ pW or N < pW . This section presents BigHermes, which deals with the
case N ≥ pW . Throughout the section, we assume N ≥ pW , and let Σdum be an efficient
forward-secure SSE supporting dummy queries, in the sense of Section 6.2.

The final BigHermes construction is rather involved. To simplify the explanation, we build
BigHermes progressively. We introduce three variants: BigHermes0, BigHermes1, BigHermes2.
The three variants are gradually more complex, but achieve gradually stronger properties.
The difference lies in the efficiency guarantees. BigHermes0 uses the idea of dummy updates
from Section 6.2 to achieve sublogarithmic page efficiency, communication and time complexity
overheads; but only in an amortized sense. BigHermes1 shows how BigHermes0 can be deamortized
in page efficiency and communication, notably without the use of ORAM found in prior work
[MM17]. We provide an overview of the data structures used in BigHermes1 in Table 6.2. Finally,
BigHermes2 builds on BigHermes1 to deamortize time complexity, and completes the construction.

Table 6.2: Overview of the data structures used in BigHermes1 (see Algorithm 10).

Data Structure Comments

Bins Bw1 , ..., BwW Each bin Bw stores up to p identifiers matching keyword w
CBnew : w 7→ L Table that buffers for each keyword w fresh identifiers L matching

w (up to W identifiers in total)
CBout : w 7→ (L, L) Table that buffers for keyword w up to 2 identifier lists of size at

most p
CFP : [1, W/p] 7→ L Table that maps an index to either a list L of p identifiers or ⊥
Tlen : w 7→ ℓ Stores for keyword w the number ℓ of identifiers that match w.

6.3.1 BigHermes0: Amortized BigHermes

If a list of identifiers matching the same keyword contains exactly p identifiers, let us say that the
list is full. If it contains less than p identifiers, it is underfull. In BigHermes0, for each keyword
w, the server stores exactly one underfull list of identifiers matching w. For that purpose, the
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server stores W bins (Bwi)W
i=1 of capacity p, one for each keyword. Full lists are stored separately

in an instance of Σdum. When searching for keyword w, the client will retrieve the corresponding
bin, and call Σdum.Search to fetch full lists matching w (if any).

Naively, to perform an update on keyword w, the client could simply fetch the corresponding
bin and add the new identifier, emptying the bin into Σdum if it is full. However, this would
trivially break forward security, because the server would learn information about which keyword
is being updated. Instead, the scheme proceeds in epochs (cf. Section 3.6). Each epoch
corresponds to W consecutive updates. The client buffers all updates arising during the current
epoch, until the buffer contains W updates, and the epoch ends. At the end of the epoch, the
client downloads all bins (Bwi)W

i=1 from the server, updates them with the W new identifiers
from its buffer, and pushes the updated bins back to the server.

If one of the bins becomes full during this end-of-epoch update, it would be tempting to
immediately insert the full list into Σdum. However, this would again break forward security, as
the server would learn how many bins became full during the epoch. To hide that information,
BigHermes0 takes advantage of dummy updates. Observe that during an end-of-epoch update,
at most W lists can become full. To hide how many bins become full, BigHermes0 always
performs exactly W updates on Σdum at the end of the epoch, padding real updates with dummy
updates as necessary. From a security standpoint, this approach works because real updates and
dummy updates are indistinguishable. From an efficiency standpoint, dummy updates have no
impact on the efficiency of Σdum, as discussed in Section 6.2 (in short, while dummy updates
are indistinguishable from real ones for the server, they effectively do nothing). The only cost
of dummy updates is in communication complexity, and page efficiency. For both quantities,
note that W updates to Σdum are performed per epoch of W client updates, thus at most one
dummy update per client update. Hence, we can instantiate Σdum for at most Ddum = N dummy
updates, and BigHermes0 directly inherits the same page efficiency and communication overhead
as Σdum.

It remains to discuss the order of (real and dummy) updates on Σdum at the end of an epoch.
This order has an impact on the security of the scheme. To see this, suppose that the following
process is used: at the end of an epoch, push full lists to Σdum for each keyword where this
is needed, taking keywords in a fixed order w1, w2, ...; then pad with dummy updates. Now
imagine that during an epoch, the client fills a list for keyword w2, but not for w1. When the
client subsequently performs a search on w2, the server can see that the locations accessed in
Σdum during the search (partially) match the locations accessed during the first update on Σdum
at the end of the previous epoch (since the first update was for w2). Since it was the first update,
this implies that no update was needed for w1. The server deduces that no list for w1 was full at
the end of the previous epoch. This breaks security. To avoid that issue, at the end of an epoch,
BigHermes0 first computes all W updates that will need to be issued to Σdum, then permutes
them uniformly at random, before sending the updates to the server. As the security proof will
show, this is enough to obtain security.

In the end, BigHermes0 achieves storage efficiency O(1), inherited from the same property
of Σdum, and because of the assumption N ≥ pW , the storage cost of the W bins is O(N). As
noted earlier, BigHermes0 also inherits the page efficiency and communication overhead of Σdum.
Because the number of entries in the database of Σdum is at most N/p, it follows that BigHermes0
has page efficiency and communication overhead Õ (log log(N/p)). However, this is only in an
amortized sense, since batches of W updates are performed together at the end of each epoch.

6.3.2 BigHermes1: BigHermes with Deamortized Communication

The reason BigHermes0 successfully hides which underfull list requires an update when the client
wishes to insert a new keyword-document pair is simple: all underfull lists (bins) are updated at
the same time, at the end of an epoch. This approach may be interpreted as hiding the access
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pattern to bins using a trivial ORAM: the entire set of bins is downloaded, updated locally, and
uploaded back to the server. Dummy updates are then used to hide how many full bins are
pushed to Σdum. This approach is possible due to amortization: a trivial ORAM access only
occurs once every W client updates, and updates all W bins simultaneously.

In short, BigHermes1 deamortizes BigHermes0 by no longer updating bins all at once at the
end of an epoch, and instead updating them one by one over the course of the next epoch. Thus,
BigHermes1 may be understood as a “deamortized” trivial ORAM, which turns out to be much
more efficient in our setting than directly using a standard ORAM, as in prior work [MM17].
Among other benefits, this is what allows Hermes to achieve sublogarithmic efficiency, avoiding the
logarithmic overhead inherent in ORAM [LN18]. Let us now explain the algorithm. Pseudo-code
is available in Algorithm 10. A visual representation of the update procedure is also given in
Figure 6.1.

At a high level, at the end of an epoch, the client pre-computes where the W new identifiers
from the epoch should be stored on the server, without actually pushing them to the server. To
that end, the client maintains a (client-side) table Tlen, that maps each keyword to the number
of matching identifiers currently in the server-side database. Using Tlen, at the end of an epoch,
for each keyword w, the client splits the list of new identifiers matching the keyword into three
(possibly empty) sublists: (1) a sublist that completes the content of Bw to a full list (if possible);
(2) full sublists of size p; and (3) an underfull sublist of remaining identifiers (if any). Let CBout
be a (client-side) buffer that maps each keyword to sublists (1) and (3). All sublists of type
(2) are stored in another buffer CFP that maps an integer in [1, W/p] to either a full list or ⊥.
(Note that there are at most W/p such sublists in total.) Once all keywords are processed in
that manner, the content of CFP is shuffled randomly.

Over the course of the next epoch, the contents of CFP and CBout are pushed to the server
according to a fixed schedule. In more detail, during the k-th update operation of the next
epoch, the client inserts the new keyword-identifier pair into CBnew. This new keyword-identifier
pair will not be processed until the end of the current epoch. The client then moves on to
pushing updates that were buffered from the end of the previous epoch, proceeding as follows.
She downloads the bin Bwk

for the k-th keyword from the server. The client then retrieves from
CBout[wk] the list L1 that completes the content of Bwk

to a list of size p, and the new underfull
list Lx. If there are enough new identifiers in L1 to complete the content of Bwk

to a full list,
the new full list is written to Σdum, and the contents of Bwk

is replaced with Lx. Otherwise,
the client performs a dummy update to Σdum, and adds the identifiers of L1 to Bwk

. In either
case, Bwk

is then re-encrypted and uploaded to the server. Finally, if k ≤W/p, the client also
retrieves LS ← CFP[k]. Recall that LS is either a full list buffered from the previous epoch, or
⊥. If LS = ⊥ the client performs a dummy update, otherwise she writes LS to Σdum. In total,
from the point of view of the server, during the k-th client update in a given epoch, the bin Bwk

is accessed, and if k ≤ W/p (resp. k > W/p), two (resp. one) updates are performed in Σdum.
Thus, the access pattern during a client update is fully predictable, and reveals no information
to the server. Also note that during each epoch, at most 2W dummy updates are performed.
Hence, a number of at most Ddum = 2N dummy updates are performed on Σdum.

6.3.3 BigHermes2: Fully Deamortized BigHermes

In summary, BigHermes1 achieves worst-case sublogarithmic page efficiency, communication
complexity, as well as server-side time and memory complexities. It also achieves sublogarithmic
client-side time complexity, but only amortized over an epoch, since the last update of an epoch
triggers an end-of-epoch computation that runs in time O(W ) on the client. Although the
computations are simple, this behavior may be undesirable, and one may wish for worst-case
sublogarithmic time complexity on the client side. Since every other aspect of the scheme is
already deamortized, this would result in a fully deamortized scheme. That is what we set out to
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do with BigHermes2.
Here, standard deamortization techniques suffice. The main new techniques underpinning

BigHermes (SSE supporting dummy updates, and the idea of “deamortizing” a trivial ORAM)
were already present in BigHermes1. That is why we have focused the presentation on BigHermes1,
in both Algorithm 10 and Figure 6.1. Nevertheless, we now show that client-side computation
can also be deamortized.

BigHermes2 makes use of a pipeline precomputation in two steps. For this, we require separate
copies of CBnew, CFP and CBout for both steps. We denote by CB(i)

new, CFP(i) and CB(i)
out the copies

of CBnew, CFP and CBout respectively for the step i. Additionally, we require a table Tx that
stores for each keyword w the number of underfull sublists, i.e.sublists of type (1) or (2), during
the current epoch; and a counter ctr that counts the total number of (full) sublists of type (2).
The tables Tlen and Tx are shared by both steps. Further, we assume that at the beginning of
each epoch, a new permutation π is drawn, CB(1)

new, CFP(1) and CB(1)
out is copied to CB(2)

new, CFP(2)

and CB(2)
out respectively, and that CB(1)

new, CFP(1), CB(1)
out, ctr and Tx are reinitialized. The client

then performs the following operations, for each pipeline step.

1. During the first step, the data structures are prepared such that in step 2, the client can
directly write the content to the server. That is, each update, the new keyword-identifier
pair (w, id) is added to the identifier list CBnew[w], and Tlen[w] is incremented. Then, the
client checks whether the current identifier list CBnew[w] is equal to the sublist of type (1),
i.e.if Tx[w] = 0 and Tlen[w] = 0 mod p. In that case, the sublist is complete and Tx[w] is
incremented. Further, she sets CBout[w]← CBnew[w] and empties CBnew[w] thereafter.
If Tx[w] ̸= 0, she checks whether |CBnew[w]| = p, i.e.whether the sublist is of type (2).
In that case, Tx[w] and ctr is incremented. Then, she sets CFP[π(ctr)] ← CBnew[w] and
empties CBnew[w] thereafter.
Note that at the end of an epoch, all full lists of size p are written to CFP in a random
location. Further, for each keyword w, CBnew[w] contains the underfull sublist of type (3)
that will be written to Bw in the next step and CBout[w] contains the sublist of type (1)
that completes the current list of Bw (if that is possible).

2. During the second step, the content of the data structures is written to the server as before.
The only difference is that CBout only contains L1, whereas CBnew contains Lx (with the
notation of Algorithm 10).

6.3.4 Security

BigHermes is forward-secure with standard leakage Lfs defined below. In words, Setup leaks an
upper bound on the size of the database and on the number of keywords; Search reveals the
query pattern, and the number of identifiers matching the searched keyword; and updates leak
nothing.

Theorem 6.6. Let N be an upper bound on the size of the database, let p be the page size, and let
W be an upper bound on the number of keywords. Let N ≥ pW , and assume N/p ≥ λ. Let Σdum
be a forward-secure SSE supporting dummy updates, let Enc be an IND-CPA secure encryption
scheme, and let PRF be a secure pseudorandom function (for the preprocessing of keywords).

Let Lfs = (Lfs
Stp,Lfs

Srch,Lfs
Updt), with Lfs

Stp(DB, W, N) = (W, N), Lfs
Srch(wi) = (qp, ℓi) where ℓi is

the number of identifiers matching wi, and Lfs
Updt(op, w, id) = ⊥. Then BigHermes is correct and

Lfs-adaptively semantically secure.

We first sketch the security proof. BigHermes stores all full identifier lists of size p in Σdum,
and one underfull sublist per keyword w in the bin Bw. Each search, the corresponding bin is
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Client

CBnew

w1 ... wi ... wW

CBout

w1 ... wi ... wW

L1

Lx

CFP

π(1) ... π(W/p)

p

if cnt = p

empty CBnew into CBout and CFP

(w, id)

Server

Bins

Benc
1 ... Benc

i
... Benc

W

p

Σdum

stores full pages

access
Benc

cnt two (real or dummy) updates

Figure 6.1: Sketch of the update schedule of BigHermes1. (The data structure Tlen are omitted
for clarity.) Each update, the variable cnt is incremented and the dotted lines are executed. See
Algorithm 10 for pseudo-code.
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Algorithm 10 BigHermes1

BigHermes1.Setup(K, N, W, DB)
1: Initialize bins Bw1 , ..., BwW of capacity p
2: Initialize empty database DBdum
3: for all keywords w do
4: Split DB(w) into x lists Li such that Lx

has size at most p−1, and the remaining
lists have size p

5: Insert pairs {(w, Li)}x−1
i=1 into DBdum

6: Insert list Lx into Bw

7: Tlen[w]← |DB(w)|
8: cnt← 0
9: (Ndum, Ddum, Wdum) = (N/p, 2N, W )

10: EDBΣdum ← Σdum.Setup(KΣdum , Ndum,
Ddum, Wdum, DBdum)

11: EDB← (EDBΣdum , {EncKEnc(Bwi)}Wi=1)
12: return EDB

BigHermes1.KeyGen(1λ)
1: Set KΣdum ← Σdum.KeyGen(1λ)
2: Sample key KEnc for Enc
3: return K = (KEnc, KΣdum)

BigHermes1.Search(K, w; EDB)
Client:

1: Perform Σdum.Search(KΣdum , w; EDB)
2: send w

Server:
1: send Benc

w

BigHermes1.Update(K, (w, id), add; EDB)
Client:

1: if cnt = p then
2: π ← uniformly random permuation

of [1, W/p]
3: Initialize empty set S of full pages
4: for all keywords w do
5: L← CBnew[w]
6: r ← Tlen[w] mod p
7: Tlen[w] = Tlen[w] + |L|
8: Split L into x lists Li such that L1

has size at most p − r (exactly size
p− r if x > 1), Lx has size at most
p, and the other lists all have size p

9: CBout[w]← CBout[w] ∪ {(L1, Lx)}
10: S ← S ∪ {(w, L2), ..., (w, Lx−1)}
11: CFP[π(i)]← S[i] for 1 ≤ i ≤ |S|
12: Empty CBnew and set cnt = 0
13: CBnew[w]← CBnew[w] ∪ {id}
14: cnt← cnt + 1
15: send cnt
Server:

1: send Benc
cnt

(continue description of update)
Client:

1: Set Bcnt = DecKEnc(Benc
cnt )

2: Retrieve list L of identifiers from Bcnt
3: (L1, Lx)← CBout[wcnt]
4: CBout[wcnt]← ⊥
5: if L1 ̸= Lx then ▷ x > 1
6: Run Σdum.Update(K, (wcnt, L1 ∪ L),

add; EDB)
7: Bcnt ← Lx

8: else ▷ x = 1
9: Run Σdum.DummyUpdate(K; EDB)

10: Bcnt ← L ∪ L1
11: if cnt ≤W/p then
12: if CFP[cnt] ̸= ⊥ then
13: (w, LS)← CFP[cnt]
14: Run Σdum.Update(K, (w, LS), add;

EDB)
15: CFP[cnt]← ⊥
16: else
17: Run Σdum.DummyUpdate(K; EDB)
18: send Benc

cnt ← EncKEnc(Bcnt)
Server:

1: Update Benc
cnt
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accessed, and the client searches for all full lists on the server in Σdum. All identifiers that are
not retrieved are contained in a buffer on the client. Thus, correctness follows immediately from
the correctness of Σdum.

The setup only leaks W and N to the server, as the bins are encrypted, and the security of
Σdum guarantees that EDBΣdum leaks no other information. Further, updates leak no information
which follows from two facts: (1) exactly one bin is accessed each update via a fixed schedule known
in advance; (2) dummy updates and real updates leak no information, and are indistinguishable
in the view of the server, owing to the security of Σdum.

It remains to consider searches. Each search on keyword w only leaks the query pattern qp,
and the length ℓ of the identifier list for w. (Recall from Section 3.6 that the query pattern qp is
equal to the search pattern sp and update pattern up.) To establish this, we need to show that
the view of the server can be simulated using only qp and ℓ. Based on the search pattern and
the fact that bins are encrypted with IND-CPA encryption, simulating access to the bin Bw is
straightforward. Thus, security reduces to the simulation of Σdum. Because Σdum is secure, we
know that its behavior can be simulated as long as we can compute the query pattern qpΣdum
and answer length ℓΣdum for Σdum. To see that this is the case, first observe that the number of
Σdum-updates on w and the load of Bw per epoch can be recomputed given only up and ℓ. From
there, the simulator can compute the number ℓi of full lists for keyword w that were pushed to
Σdum during a given epoch i. Clearly,

∑
i ℓi = ℓΣdum . To deduce the update pattern upΣdum for

Σdum, it remains to determine when each update was performed during the epoch. Intuitively,
because updates to Σdum occurring in a given epoch are permuted uniformly at random, it
suffices to choose x updates to Σdum uniformly at random among updates issued during the
epoch (excluding updates already chosen for the same purpose on a different keyword). This
yields upΣdum . On the other hand, each search query to BigHermes triggers exactly one search
query to Σdum: the search pattern of Σdum matches the search pattern of BigHermes. Thus, the
simulator can compute qpΣdum , and we are done.

We are now ready to prove Theorem 6.6. A formal proof of correctness is omitted as it is
straight-forward.

Proof. We show that BigHermes is secure with leakage Lfs. Let Sim denote the simulator and A
an arbitrary honest-but-curious PPT adversary. Further, let SimΣ be a simulator of Σ.

Initially, Sim receives Lfs
Stp(DB, W, N) = (W, N) and later, an adaptive series of search and

update queries with input Lfs
Srch(wi) = (qp, ℓi) and Lfs

Updt(opi, wi, idi) = ⊥ respectively. First,
Sim generates an encryption key K′Enc and initializes W bins B1, ..., BW zeroed out up to size p.
Then, Sim sets EDB′Σ ← SimΣ(W, N) and outputs EDB′ = (EncK′

Enc
(B1), ..., EncK′

Enc
(BW ), EDB′Σ).

Further, Sim initializes a counter cnt = 0 of the number of updates. Next, Sim simulates the
search and update queries.

For search queries, Sim receives query pattern qp = (sp, up) and the total number ℓ of
identifiers matching the searched keyword. If the search pattern sp indicates that the keyword
was already searched, Sim outputs the keyword w′ from the previous query. Otherwise, Sim
outputs a new uniformly random keyword w′. Also, Sim associates an index µ ∈ [1, W ] to w′ at
random but distinct from indices of other keywords. Next, Sim simulates a search query of Σ.
Recall that up is a bit vector that indicates for each update query whether it was an update on
the searched keyword or not. As the updates on SmallHermes induce an altered update pattern
on Σ, the simulator Sim needs to reconstruct the update pattern upΣ of Σ from up. For this,
she proceeds as follows for the k-th epoch:

She initializes an all-zero vector upΣ = (0, ..., 0) of length 2cnt. If the coordinates of upΣ were
already computed for the k-th epoch during a previous search query for the current keyword, she
sets upΣ as before at these positions. If otherwise no search query was issued on the keyword
after the k-th epoch, the corresponding coordinates of upΣ were not yet set. Recall that during
the last epoch, the updates on Σ depend on the updates during the previous epoch, and during
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the first epoch, only dummy updates are performed. She will set the coordinates as follows for
k > 1.

Sim recomputes the number of added sublists x in the (k − 1)-th epoch for the searched
keyword. (Note based on up and ℓ, Sim can recompute the number of identifiers in the bin of the
searched keyword at the beginning of the (k − 1)-th epoch and the number of identifiers added
during the (k − 1)-th epoch. These values determine x. Then, x− 1 sublists are then written to
Σ during the k-th epoch due to preprocessing.) Then, if x ≥ 2, she sets upΣ [2(k + µ)− 1]← 1,
where µ is the index of w′. Further, for all i ∈ [1, x− 2], she chooses some j ∈ [1, W/p] that has
not been chosen during the (k−1)-th epoch at random and sets upΣ [2(k +j)]← 1. (If 2(k +µ)−1
or 2(k + j) are larger than 2cnt, then the client remembers the choice until the update happened
and sets up accordingly for subsequent searches.) Note that for the first epoch, upΣ remains
zeroed out. Similarly, Sim computes the number nclient of identifiers matching the searched
keyword that are still buffered on the client via ℓ and up, and sets sets ℓΣ ← ⌊(ℓ − nclient)/p⌋.
Finally, Sim invokes SimΣ with input qpΣ and ℓΣ to simulate the search protocol of Σ.

In order to simulate an updates, Sim simply invokes SimΣ twice (with input ⊥) to simulate
the update protocol of Σ and increments cnt.

We now show that the real game is indistinguishable from the ideal game. For this, we define
four hybrid games.

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0, except the simulated keywords w′ are output during
search. As we assume that w is the output of a PRF and thus indistinguishable from
random, Hybrid 0 and Hybrid 1 are (computationally) indistinguishable.

– Hybrid 2 is the same as Hybrid 1, except the updates on Σ are induced by upΣ . That is,
updates for a given keyword w′ on Σ are performed each u-th update operation, where
upΣ [u] = 1 (but with the real identifiers). Note that by construction, for each such update
on Σ, there is a full list of identifiers that was inserted during the previous epoch. Hybrid
2 is identically distributed to Hybrid 1, as the π is a random permutation.

– Hybrid 2 is the same as Hybird 1, except Σ is simulated. That is, EDBΣ is replaced with
the simulated EDB′Σ , the search queries are simulated with input ℓΣ and upΣ , and the
updates on Σ are simulated with input ⊥. Hybrid 2 and Hybrid 1 are indistinguishable
based on the security of Σ.

– Hybrid 3 is the same as Hybrid 2, except the bins are zeroed out. That is, EDB is replaced
fully with EDB′ and received bins are only reencrypted during updates. Since Enc is
IND-CPA secure, Hybrid 3 and Hybrid 2 are indistinguishable.

– Hybrid 4 is identical to the ideal game. Hybrid 4 and Hybrid 3 are identically distributed
and thus, indistinguishable.

6.3.5 Efficiency

We now analyze the efficiency of BigHermes, when Σdum is efficient (in the sense of Section 6.2.3).
Each client-side data structure, including identifier buffers and tables, has size O(W ). Since
there is a constant number of such structures, overall client storage is O(W ). On the server
side, Σdum has storage efficiency O(1), and the bins require pW = O(N) storage, hence overall
storage efficiency is O(1). We turn to page efficiency. During each update, one bin of size p is
read, and two updates on Σdum are performed. Since Σdum only stores full pages, of which there
can be at most N/p, Σdum.Update has page efficiency Õ (log log(N/p)). Similarly, a search on a
keyword w with ℓ matching identifiers induces one bin access and (at most) ⌊ℓ/p⌋ accesses of
Õ (log log(N/p)) pages each. We conclude that BigHermes has page efficiency Õ (log log(N/p)).
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6.4 SmallHermes: the Small Database Regime
Recall that p is the page size, N is an upper bound on the total number of identifiers and
W is an upper bound on the total number of distinct keywords. In this section, we assume
N ≤ pW . We detail our scheme SmallHermes. Our construction builds on the page-efficient
dynamic SSE scheme LayeredSSE from Section 5.4. While LayeredSSE is not forward secure, we
show that with the techniques developed in this chapter, we can construct an oblivious update
algorithm with O(W ) client memory. Note that our technique can only be applied if N ≤ pW in
an efficient manner. Our construction preserves the efficiency properties of LayeredSSE, namely
Õ
(
log log N

p

)
page efficiency and constant storage efficiency, and uses only O(W ) client storage.

We present the results as follows. First, we recall how LayeredSSE works and outline a simple
amortized update procedure that it forward secure. This intermediate construction SmallHermes0
is presented in Section 6.4.1. Next, we present SmallHermes1 version, which has deamortized
communication. This version is also given in pseudo-code in Algorithm 11 and the used data
structures are presented in Table 6.3. Then, we show how to deamortize both communication and
computation via the construction SmallHermes2. Finally, we analyze the security and efficiency.

Table 6.3: Overview of the data structures used in SmallHermes (see Algorithm 11).

Data Structure Comments

Bins B1, ..., Bm Each bin stores up to p · bN,p identifiers as in LayeredSSE with
bN,p = Õ (log log(N/p))

Tlen : w 7→ ℓ Table that stores for each keyword w the number ℓ of matching
identifiers

CBnew : w 7→ L Table that buffers for each keyword w fresh identifiers L matching
w (up to W identifiers in total)

CBout : γ 7→ L Table that buffers for the γ-th bin the identifiers (potentially
matching different keywords) to be added to Bγ

Tload : (γ, κ) 7→ nγ,κ Stores for bin γ the number nγ,κ of sublists in layer κ

6.4.1 SmallHermes0: Amortized SmallHermes

Recall that LayeredSSE stores identifiers in m = o(N/p) encrypted bins according to L2C. That
is, each list L of (at most p) identifiers matching keyword w is mapped to two bins Bα, Bβ

with log log N
p conceptual layers and capacity Õ

(
p log log N

p

)
. Then, L is stored in either Bα

or Bβ depending on the load of each bin at layer κ, where κ depends on the size of L. For a
search on keyword w, the bins Bα and Bβ are requested from the server. The client can read the
matching identifiers from the bins after decryption. These bins are also retrieved for each update
on keyword w, and the new identifier is inserted in one of the bins according to L2C. When a list
has more than p identifiers, it is split into sublists of size p which are treated independently as
described above. This results in Õ

(
log log N

p

)
page efficiency and O(1) storage efficiency. See

Section 5.4 for more details.
The setup and search of SmallHermes0 are identical to setup and search of LayeredSSE. As

updates of LayeredSSE are not forward secure, we now show how to adapt the update procedure
such that it has no leakage. With O(W ) client storage, the client can buffer O(W ) fresh
keyword-identifier pairs in a buffer CBnew. When CBnew is full, she can download the entire
encrypted database EDB from the server and perform the updates locally with amortized O(1)
page efficiency, as N ≤ pW . For this, she has to perform up to W insertions according to L2C
operations. In the following, we show how to deamortize this simple approach. As the final variant
SmallHermes2 is technically involved, we first present an intermediate variant SmallHermes1.
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6.4.2 SmallHermes1: SmallHermes with Deamortized Communication

SmallHermes1 deamortizes the communication at the cost of O(W log log N) client storage. Note
that the overhead can be avoided heuristically via the use weighted 2C or via more pre-computation
(details follow later). Since each bin is of size Õ

(
p log log N

p

)
, we aim for Õ

(
log log N

p

)
page

efficiency and constant storage efficiency. We proceed as follows, assuming that per keyword,
there are at most p matching identifiers.

The client accesses each bin in a fixed schedule and inserts new identifiers into the required
bin, based on locally computed load information. The client stores an additional table Tload which
maps a bin Bγ and layer κ to the number nγ,κ ← Tload(γ, κ) of lists stored in Bγ at layer κ. 2

Whenever the client decides to store an identifier list in a bin, she also updates Tload accordingly.
With Tload, the client can now directly decide locally where to insert each new identifier. Note
that the client cannot download the corresponding bin directly to insert the identifier, as this
would break forward security. But we can still leverage the load information of Tload with an
additional identifier buffer CBout.

Each update, the client inserts the new keyword-identifier pair into CBnew. After W updates
CBnew is filled and the client pre-computes the location of the new identifiers. That is, for all
keywords w, the client pre-computes the index γ of bin Bγ in which to insert the list Lnew of new
identifiers matching w (that are buffered in CBnew). The list Lnew is then moved into CBout[γ].
Note that the index γ can be computed via Tload, if Tload is continuously updated throughout the
pre-computation.

After this pre-computation, for each bin Bγ , the buffer CBout[γ] contains all identifiers from
CBnew to be inserted into bin Bγ . CBnew can be emptied subsequently. During the next epoch,
the client can download each bin Bγ via a fixed schedule and insert CBout[i] into Bi. For this,
SmallHermes1 downloads bin Bi the i-th update operation of the epoch.

Note that a fresh identifier is written to the server after at most 2W update operations
and inserted into the bin Bγ chosen according to L2C. Consequently, no bin overflows with
overwhelming probability due the correctness of L2C. Also, during each update operation, at most
one bin of size pO(log log N

p ) is downloaded. As in LayeredSSE, exactly two bins are accessed
during a Search. Thus, SmallHermes1 has O(log log N

p ) page efficiency and O(1) storage efficiency.

Handling arbitrary list lengths. If there are more than p identifiers per keyword, we split
the lists L of identifiers matching keyword w into full lists and (at most) one underfull list.
Sublists with exactly p identifiers are called full, whereas sublists with less than p identifiers
are referred to as underfull. In order to compute the correct bin for the new identifiers, the
client also stores the length of L for each keyword in a table Tlen. During an update, the client
computes the size r = Tlen[w] mod p of the underfull list on the server. Lnew (defined as above)
is split into x = ⌈ r+|Lnew|

p ⌉ sublists as follows:

– L1, the sublist that fills the underfull list on the server (if possible).

– L2, ..., Lx−1, the full sublists of size p.

– Lx, the remaining underfull sublist (if any).

For each sublist Li, we again compute the bin Bγ in which we need to insert Li via Tload (according
to L2C) and insert Li into CBout[γ]. Note that during this process, we interpret L1 as a list of
size |L1|+ r, as it will complete the underfull sublist on the server, if possible. Also, Tlen and
Tload are updated accordingly throughout the pre-computation.

2The table Tload is the reason O(W log log N) client storage is required. Using some additional pre-computation,
the client can compute Tload at only O(W ) required positions. This retains O(W ) client storage (see section 6.4.3).
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Algorithm 11 SmallHermes1
SmallHermes1.Setup(K, N, DB)

1: Set in← {(wi, DB(wi))}i
2: Set (B1, ..., Bm)← L2C.Setup(in, N/p)
3: Set Benc

i ← EncKEnc(Bi) for i ∈ [1, m]
4: Tlen[w]← ℓi for all keywords w
5: Setup Tload according to load of (B1, ..., Bm)
6: Set cnt← 0
7: return EDB = (Benc

1 , ..., Benc
m )

SmallHermes1.KeyGen(1λ)
1: Sample KEnc for Enc
2: return K = KEnc

SmallHermes1.Search(K, w; EDB)
Client:

1: Set ℓ← Tlen(w) and x = ⌈ℓ/p⌉
2: send w, x

Server:
1: Set αi, βi ← H(w || i) for i ∈ [1, x]
2: send {Benc

αi
, Benc

βi
}xi=1

SmallHermes1.Update(K, w, id, add; EDB)
Client:

1: if cnt = p then
2: for all keywords w do
3: Set L← CBnew[w]
4: Set r ← Tlen[w] mod p
5: Set x← ⌈(r + |L|)/p⌉
6: Split L into x lists Li such that

L1 has size at most p − r, Lx has
size at most p, and the other lists
L2, ..., Lx−1 have size p

7: Precompte bin index γi of Li via load
information in Tload for all i ∈ [1, x]

8: Set CBout[γi] ← CBout[γi] ∪ {Li} for
all i ∈ [1, x]

9: Update load information in Tload ac-
cordingly

10: Set Tlen ← Tlen[w] + |L|
11: Empty CBnew and set cnt = 0
12: CBnew[w]← CBnew[w] ∪ {id}
13: cnt← cnt + 1
14: if cnt ≤ m then
15: send cnt
Server:

1: send Benc
cnt

Client:
1: Set Bcnt ← DecKEnc(Benc

cnt )
2: Insert CBout[γi] into Bcnt
3: send Benc

cnt ← EncKEnc(Bcnt)
Server:

1: Update Benc
cnt
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Client

CBnew

w1 ... wi ... wW

Pipeline

local precomputation

CBout

1 ... i ... m

(w, id)

access Benc
cnt

Server

Bins

Benc
1 ... Benc

i
... Benc

W

pbN,p

Figure 6.2: Sketch of the update schedule of SmallHermes1. (The data structures Tlen and
Tload are omitted for clarity.) Each update, the variable cnt is incremented and added keyword-
identifier pairs are moved along the dotted lines. See Algorithm 11 for pseudo-code. Note that
the SmallHermes2 shares the same structure, though the pipeline that pre-computes the final bin
location of added identifiers is much more sophisticated.

6.4.3 SmallHermes2: Fully Deamortized SmallHermes

Here, we remove the requirement of O(W log log N
p ) client storage and deamortize both the

communication and computation of SmallHermes. This optimization is possible, because we
observe that for inserting the O(W ) new identifiers of CBnew, we do not require the entire load
information of L2C. Only the load of bin layers in which a new identifier is inserted is required.
Per epoch, each new identifier requires the load of some bin Bγ at some layer κ. There at most
2W such pairs (γ, κ). The load information of these pairs can be precomputed in a pipeline with
three steps, where each step is performed during O(W ) updates. In an additional fourth step,
the client can finally fill CBout as before using the load information. During the next W updates,
the content of the filled buffer CBout is pushed to the server as before. This approach naturally
yields an update operation with at most O(p log log N

p ) communication and computation.
Before we present each pipeline step, we fix some convention as all steps rely on the results

of previous steps. We assume that there are independent copies of client data structures
CBnew, CBout, Tload and Thash, per pipeline step. We index a data structure ds from step i via
ds(i). Note that Tlen is a table shared by all steps. The pipeline steps are executed in reverse
order, i.e.step i + 1 is executed before step i. We implicitly assume that the content of ds(i) is
copied to ds(i+1) before execution of pipeline step i. The contents of all data structures of step i
are emptied after the step is performed and the content was copied to step i + 1. The 5 pipeline
steps are as follows:

1. In the first step, the client simply buffers the identifiers id in CB(1)
new as before, i.e.for each
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new keyword-identifier pair (w, id), the client adds id to the list CB(1)
new[w].

2. In the second step, the client splits for each keyword w the list of L← CB(2)
new[w] of new

identifiers matching w into sublists Li (as explained above) and computes for each of these
sublists the two bins it could be stored in. The result (along with auxiliary information) is
stored in Thash. Further, all required layers are marked in Tload with ∞ (and filled with the
correct value in the following step).
In more detail, during the k-th update operation, the client takes some keyword w for
which CB(2)

new is not empty. She sets r ← Tlen[w] mod p if w was considered for the first
time this step and set r ← 0 otherwise 3. Also, she sets d ← ⌊Tlen[w]/p⌋. The client
removes up to p − r identifiers Lnew = (id1, ..., idℓnew) from CB(2)

new[w]. Note that Lnew
corresponds to the i-th sublist Li, if w was considered for the i-th time during this step.
She sets κ = layer(ℓnew + r). Then, she computes α, β ← H(w || (1 + d)) and stores
T

(2)
hash[β] ← T

(2)
hash[β] || (Lnew, κ, α) and T

(2)
hash[α] ← T

(2)
hash[α] || (Lnew, κ, β). Also, she sets

T
(2)
load[α, κ]← 0. Finally, she updates Tlen[w]← ℓnew + Tlen[w].

3. In the third step, the client fetches the load for all required bin-layer pairs (γ, κ) and stores
it in T

(3)
load, i.e.all keys of T

(3)
load that are mapped to an integer n. The load nγ,κ will either

be 0, if it was marked in step 2, or equal to the load of the bin at the given layer, if it was
updated in step 4 (see step 4 for more details). The client proceeds as follows.
Whenever she fetches the bin Bcnt during an update operation, she retrieves the load nγ,κ of
bin Bcnt at all layer κ. Then, only if T

(3)
load[γ, κ] = 0, she stores the load in T

(3)
load[γ, κ] = nγ,κ.

4. In the fourth step, the client fills CBout with the new sublists. Also, she updates Tload from
the previous level according to the updates in order to avoid inconsistencies. She proceeds
as follows.
During the k-th update operation, she retrieves and removes some list and auxiliary
information (w, Lnew, β, κ) from T

(4)
hash[α] for some bin Bα. Then, she computes the bin γ

in which to store Lnew according to L2C using the load information from T
(4)
load[γ, κ] and

inserts the new sublist into CB(4)
out[γ]. Further, she increments T

(4)
load[γ, κ]. Note that this

changes the load of the bin but we do not push Lnew to the server in this step. Thus, the
load information of the subsequent step 4 would be computed wrong for layers of bins that
were updated in this step. In order to avoid these inconsistencies, the client further updates
the load information of step 3 accordingly, i.e.sets T

(3)
load[γ, κ] = T

(4)
load[γ, κ] + 1 directly.

5. In the fifth step, the client writes the content of CBout to the server as in Algorithm 11.

Careful inspection shows that the pipeline pre-computation retains correctness. Also, the view of
the server remains unchanged, thus SmallHermes2 remains semantically secure with the same
leakage. Notably, even the client computation is de-amortized.

6.4.4 Heuristic Variant via Weighted 2C
In SmallHermes, we can replace L2C with weighted 2C. That is, weighted balls are inserted in
the least loaded bin of two bins chosen at random, independent of layers. While we know of no
non-trivial upper bound for this variant, heuristically it performs similar to L2C (see Figure 6.3).
With this adaption, the entire load information can be kept on the client with O(W ) storage.
Thus, the SmallHermes1 has O(W ) client storage using weighted 2C. Further, each update,
we can directly decide in which bin to insert the added identifier, independent of layers, and

3This can be decided using another table Tflg that matches a keyword w to a flag b ∈ {0, 1}, initialized with 0
for each keyword. When the keyword w is considered, the flag Tflg is set to 1.
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Figure 6.3: The loads of 2C for 10000 runs with balls of total weight N . The function
f(λ, N, p) = c log log log(λ) log log(N/p) is the theoretical upper bound for the most loaded bin
in L2C with constant c = 2 and λ = 128. The weights {wi} are chosen at random in [1, 512].

update the load information accordingly. Recall that in SmallHermes2, we previously had to fetch
exactly the right load information which resulted in complicated pipeline pre-computation. With
weighted 2C, the client-side pipeline in SmallHermes2 can be heavily simplified, which reduces
both the computation per update and the client storage. As this variant is only heuristically
secure, we omit details.

6.4.5 Security

SmallHermes is forward secure with the same leakage as BigHermes.

Theorem 6.7. Let N be an upper bound on the size of the database, W be an upper bound on the
number of keywords and let p ≤ N1−1/ log log λ be the page size. We model H : {0, 1}∗ 7→ {1, ..., m}
as a random oracle. Let N ≤ pW . Let Enc be a IND-CPA secure symmetric encryption scheme
and PRF be a secure pseudorandom function (for the preprocessing of w).

Let Lfs = (Lfs
Stp,Lfs

Srch,Lfs
Updt), with Lfs

Stp(DB, W, N) = (W, N), Lfs
Srch(wi) = (qp, ℓi) where ℓi

is the number of identifiers matching wi, and Lfs
Updt(op, w, id) = ⊥. The scheme SmallHermes is

correct and Lfs-adaptively semantically secure.

Before we give a detailed proof, we sketch the argument. The underlying L2C scheme is
scaled such that up to N identifiers (organized into lists of size at most p) fit into the bins
without overflowing (for any list distribution). SmallHermes inserts lists into the least loaded of
two randomly chosen bins at the corresponding layer. Consequently, the bins are filled according
to L2C. It follows from Theorem 4.4 that no bin overflows its capacity with overwhelming
probability. Correctness follows immediately.

Semantic security also follows from the following facts. (1) The bins are encrypted and thus,
only the upper bound N is leaked during setup. (2) During search, 2 · ⌈ℓ/p⌉ bins are accessed,
where ℓ is the number of identifiers matching the searched keyword w. These bins are re-accessed
if w is searched again but look random random to the server for the first search (as bin indices
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are the output of a hash function and w is random in the view of the server). Thus, a search
leaks the search pattern and the number of sublists. (3) Updates are performed by accessing
each bin via a fixed schedule (that solely depends on the number of updates).

We now prove Theorem 6.7. Again, we omit correctness as it is tedious but straight-forward.

Proof. We show that SmallHermes is secure with leakage Lfs. Let Sim denote the simulator
and A an arbitrary honest-but-curious PPT adversary. Initially, Sim receives Lfs

Stp(DB, W, N) =
(W, N) and later, an series of search and update queries with input Lfs

Srch(wi) = (qp, ℓi) and
Lfs

Updt(opi, wi, idi) = ⊥ respectively. First, Sim generates an encryption key K′Enc and initializes
m = N/(p · bN,p) bins B1, ..., Bm zeroed out up to size p · bN,p. Then, Sim outputs EDB′ =
(EncK′

Enc
(B1), ..., EncK′

Enc
(Bm)). Further, Sim initializes a counter cnt = 0. Next, Sim simulates

the search and update queries.
For search queries, Sim receives query pattern qp and the length ℓ of the searched identifier

list. If the query pattern qp indicates that the keyword was already searched, Sim outputs the
keyword w′ from the previous query. Otherwise, Sim outputs a new uniformly random keyword
w′ that has not been output during a search query yet. In addition, Sim forwards x = ⌈ℓ/p⌉ to
the A.

For update queries, Sim receives no input. Sim simply increments cnt, sends cnt to the A,
re-encrypts the received bin and sends it back to to A.

We now show that the real game is indistinguishable from the ideal game. For this, we define
three hybrid games.

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0, except the simulated keywords w′ are output. As we
assume that w is the output of a PRF and thus indistinguishable from random, Hybrid 0
and Hybrid 1 are (computationally) indistinguishable.

– Hybrid 2 is the same as Hybrid 1, except the encrypted database EDB is replaced with
EDB′ and whenever the simulator receives a bin, she simply sends back re-encrypted bins.
Since Enc is IND-CPA secure (and bins always have size p · bN,p), it follows that Hybrid 1
and Hybrid 2 are indistinguishable.

– Hybrid 3 is identical to the ideal game. Hybrid 3 and Hybrid 2 are identically distributed
and thus, indistinguishable.

6.4.6 Efficiency

Each data structure on the client side requires at most O(W ) storage. As there are only a
constant number of data structures and pipeline steps, the total client storage is O(W ). At
most one bin is downloaded each update and each search on keyword w, exactly ⌈ℓ/p⌉ bins are
retrieved, where ℓ is the length of the list of identifiers matching keyword w. As each bin of size
Õ
(
p log log N

p

)
, the page efficiency is Õ

(
log log N

p

)
and the server storage is O(N).

6.5 The Hermes Scheme: Putting Everything Together

We have constructed BigHermes (Section 6.3), an I/O-efficient SSE scheme with forward security
in the big database regime, i.e., N ≥ pW . Similarly, we built SmallHermes (Section 6.4) in the
regime N ≤ pW . We combine them to construct Hermes.
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6.5.1 Hermes

The Hermes scheme simply uses either BigHermes or SmallHermes, depending on which regime
the global parameters N , W and p are in. That is, Setup, Search, and Update for Hermes behave
exactly as in BigHermes, if N ≥ pW , and as in SmallHermes otherwise. Clearly, Hermes has
Õ (log log(N/p)) page efficiency and O(1) storage efficiency. Further, because both sub-schemes
are forward-secure with leakage Lfs (Theorems 6.6 and 6.7), the same holds for Hermes. This is
formalized in Theorem 6.8.

Theorem 6.8. Let N be an upper bound on the size of the database, and let W be an upper bound
on the number of keywords. Let p be the page size. Assume p ≤ N1−1/ log log λ, and N/p ≥ λ. Let
Enc be an IND-CPA-secure encryption scheme, and let PRF be a secure pseudo-random function.

Let Lfs = (Lfs
Stp,Lfs

Srch,Lfs
Updt), with Lfs

Stp(DB, W, N) = (W, N), Lfs
Srch(wi) = (qp, ℓi) where ℓi is

the number of identifiers matching wi, and Lfs
Updt(op, w, id) = ⊥. Then Hermes is correct and

Lfs-adaptively semantically secure.

6.5.2 Optimizations and Trade-offs

For ease of exposition, several design choices in Hermes have been made in favor of simplicity.
Depending on the deployment scenario, various tradeoffs and optimizations are possible. We
sketch a few in this section. These tradeoffs apply to both sub-schemes of Hermes, BigHermes
and SmallHermes.

Round Trip Time

Hermes requires 1 RTT for searches, which is optimal for response-hiding SSE. Using standard
techniques (piggy backing), it is straightforward to make Hermes optimal in RTT for updates.
That is, the client performs each update over the course of multiple queries by stashing the
update responses, and resuming the operation on the next query (either update or search).

Full-fledged Database

A full-fledged encrypted database for documents can be constructed in a natural way using
Hermes. The client prepares a separate encrypted documents database on the server, and uses
Hermes to encrypt the inverse index. The document database can be a hash table mapping
document identifiers to encrypted documents 4. For a search, the client first queries Hermes to
retrieve the matching identifiers, then she queries the document hash table to obtain the concrete
documents. For an update, she adds the fresh encrypted document to the document database
directly, and then updates the inverse index encrypted via Hermes accordingly. As Hermes is
forward secure and as pushing a document leaks no information about matching keywords, the
scheme remains forward secure. Note that we do not have to buffer documents on the client
during updates; only the inverse index implemented with Hermes requires client buffering.

In a plaintext database, those documents would also be stored in such a manner (but in
plaintext). As page efficiency is relative to a plaintext database, the page efficiency of the document
database is optimal, and the inverse index managed by Hermes retains its sublogarithmic page
efficiency. As usual, this solution further leaks the access pattern. Note that we can also use
Pluto or LayeredSSE to construct a full-fledged encrypted database in the same manner.

4As usual, this solution leaks the access pattern. It is possible to replace the hash table with an ORAM to
obtain an SSE scheme that hides the access pattern, at the expense of a logarithmic document access cost. Note
that the inverse index remains efficient.
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Dynamic Server Storage

First, as defined, the Σdum component of Hermes requires allocating all memory upfront. If the
database is intended to grow up to N elements, then O(N) memory must be allocated at setup
time. In some use cases, that behavior may be undesirable. If so, the scheme can be modified so
that its memory usage scales dynamically with the size of the database. First, setup an instance
of Hermes with capacity k for some small k. Once that instance reaches full capacity, create a
new instance with capacity 2k, initialized with the content of the original instance. The original
instance is then deleted, and the pattern repeats. This basic technique has been studied in depth
in the context of memory allocation algorithms, and can be further refined in various way, for
example to deamortize the cost of building the new instance; see e.g. [FKL01]. We leave further
optimizations along this line for future works.

Reducing Client Storage

Hermes requires O(W ) client storage. This is optimal for efficient forward secure SSE schemes
[BF19]. In most such schemes, for example [Bos16, BMO17], the O(W ) comes from the need
to store a counter for each keyword, similar to Tlen in Hermes. To improve memory efficiency,
Hermes additionally buffers O(W ) keyword-identifier pairs on the client. The client memory
required for this can be reduced by a (constant) factor c in exchange for increasing update page
efficiency by factor c. We sketch how to proceed for BigHermes. (The tradeoff can be applied to
SmallHermes in a similar manner.) Each update, the client performs c updates of BigHermes at
once. That is, she buffers the new keyword-identifier pair on the client, and instead of retrieving
a single bin and performing two (dummy) updates to Σ, read c bins and perform 2c (dummy)
updates to Σ. Now, each epoch lasts W/c updates and thus, only O(W )/c pairs need to be
buffered on the client. While c bins are fetched each update (instead of one), note that the page
efficiency of read queries is not impacted, as the worst-case load of the bins is not impacted.

On Leakage

In line with most SSE literature, Hermes does not specify how full documents are fetched on
the server, once their identifier is retrieved. In SSE folklore, it is typically assumed that the
documents are simply encrypted, and then queried from the server. That explains why most
SSE schemes make no attempt to hide access pattern leakage (that is, which documents match
a given query): this information will implicitly be revealed at a later stage, when the client
queries the full documents. This leakage can sometimes be exploited by attacks, although this
depends on the use case (see [BKM20] for a detailed analysis). Some recent work has proposed to
obfuscate access pattern leakage at the expense of efficiency [GPPW20]. While such techniques
are out of scope, we note that Hermes naturally lends itself to such obfuscation techniques, in
particular because it never requires the server to learn document identifiers in the clear (in fact,
it is naturally response-hiding).

Finally, we note that Hermes realizes an encrypted multi-map. As such, beyond the direct
application to keyword search, it can be used in any application that relies on encrypted
multi-maps, such as the graph search algorithms from [CK10].
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Chapter

7
Practical Round-Optimal Blind
Signatures in the ROM

The focus of this chapter is on blind signatures. We present two frameworks to construct blind
signatures in the ROM. We instantiate each framework to obtain efficient round-optimal schemes
secure under standard pairing assumptions.
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7.1 Introduction

Blind signature is an interactive signing protocol between a signer and a user with advanced
privacy guarantees. At the end of the protocol, the user obtains a signature for his choice of
message while the signer remains blind to the message she signed. To capture the standard
notion of unforgeability, it is further required that a user interacting with the signer at most
ℓ-times is not be able to produce valid signatures on more than ℓ distinct messages. The former
and latter are coined as the blindness and one-more unforgeability properties, respectively.

Chaum introduced the notion of blind signatures [Cha82] and showed its application to
e-cash [Cha82, CFN90, OO92]. Since then, it has been an important building block for other
applications such as anonymous credentials [Bra94, CL01], e-voting [Cha88, FOO92], direct
anonymous attenstation [BCC04], and in more recent years, it has seen a renewed interest
due to new applications in blockchains [YL19, BDE+22] and privacy-preserving authentication
tokens [VPN22, HIP+22].
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Round-Optimality. One of the main performance measures for blind signatures is round-
optimality, where the user and signer are required to only send one message each to complete
the signing protocol. While this is an ideal feature for practical applications, unfortunately,
there are a few impossibility results [Lin08, FS10, Pas11] on constructing round-optimal blind
signatures in the plain model (i.e., without any trusted setup) from standard assumptions (e.g.,
non-interactive assumptions and polynomial hardness). To circumvent this, cryptographers
design round-optimal blind signatures by making a minimal relaxation of relying on the random
oracle model (ROM) or the trusted setup model. Considering that trusted setups are a large
obstacle for real-world deployment, in this chapter we focus on round-optimal blind signatures in
the ROM under standard assumption1. We refer the readers to Section 2.4 on round optimal
blind signatures under non-standard assumptions (e.g., interactive or super polynomial hardness)
or relying on stronger idealized models such as the generic group model.

Practical Round-Optimal Blind Signatures. Constructing a practical round-optimal blind
signature has been an active area of research. In a seminal work, Fischlin [Fis06] proposed the
first generic round-optimal blind signature from standard building blocks. While the construction
is simple, an efficient instantiation remained elusive since it required a non-interactive zero-
knowledge (NIZK) proof for a relatively complex language.

Recently, in the lattice-setting, del Pino and Katsumata [dK22] showed a new lattice-tailored
technique to overcome the inefficiency of Fischlin’s generic construction and proposed a round-
optimal blind signature with signature and communication sizes 100 KB and 850 KB.

A different approach that has recently accumulated attention is based on the work by
Pointcheval [Poi98] that bootstraps a specific class of blind signature schemes into a fully
secure one (i.e., one-more unforgeable even if polynomially many concurrent signing sessions are
started). This approach has been improved by Katz et al. [KLR21] and Chairattana-Apirom et
al. [CAHL+22], and the very recent work by Hanzlik et al. [HLW23] optimized this approach
leading to a round-optimal blind signature based on the CDH assumption in the asymmetric
pairing setting. One of their parameter settings provides a short signature size of 5 KB with a
communication size 72 KB.

Finally, we observe that there are two constructions in the pairing setting with a trusted
setup which can be instantiated in the ROM under standard assumptions [BFPV13, AJOR18]2.
Blazy et al. [BFPV13] exploited the randomizability of Waters signature [Wat05] and constructed
a blinded version of Waters signature consisting of mere 2 group elements, i.e.96 B. While it
achieves the shortest signature size in the literature, since the user has to prove some relation to
his message in a bit-by-bit manner, the communication scales linearly in the message length. For
example for 256 bit messages, it requires more than 220 KB in communication.

Abe et al. [AJOR18] use structure-preserving signatures (SPS) and Groth-Ostrovsky-Sahai
(GOS) proofs [GOS12] to instantiate the Fischlin blind signature with signatures of size 5.8 KB
with around 1 KB of communication 3.

While round-optimal blind signatures in the ROM are coming close to the practical parameter
regime, the signature and communication sizes are still orders of magnitude larger compared
to those relying on non-standard assumptions or strong idealized models such as blind RSA
[Cha82, BNPS03] or blind BLS [Bol03]. Thus, we continue the above line of research to answer
the following question:

How efficient can round-optimal blind signatures in the ROM be under standard
assumptions?

1We note that all of our results favor well even when compared with schemes in the trusted setup model.
2Both [BFPV13, AJOR18] require a trusted setup for a common reference string crs consisting of random group

elements. We can remove the trusted setup by using a random oracle to sample crs.
3Interestingly, this natural approach yields a scheme with with 0.4 KB communication and 2.7 KB signature

size under standard assumptions in the ROM, if instantiated with Jutla-Roy signatures [JR17].
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Table 7.1: Comparison of Round-Optimal Blind Signatures in the ROM

Reference Signature size Communication size Assumption

del Pino et al. [dK22] 100 KB 850 KB DSMR, MLWE, MSIS
Blazy et al. [BFPV13] 96 B 220 KB † SXDH, CDH
Abe et al. [AJOR18] 5.5 KB 1 KB SXDH

Hanzlik et al. [HLW23]‡ 5 KB 72 KB CDH9 KB 36 KB

Ours: Section 7.2 447 B 303 B SXDH
Ours: Section 7.4 96 B 2.2 KB DDH, CDH

All group-based assumptions are in the asymmetric paring setting, and MLWE and MSIS
denote the module version of the standard LWE and SIS, respectively. DSMR denotes the
decisional small matrix ratio problem, which can be viewed as the module variant of the
standard NTRU. (†): Communication of [BFPV13] scales linearly with the message size,
and is given here for 256 bit messages. (‡): [HLW23] offers tradeoffs between signature
and communication sizes.

7.1.1 Contributions

We present two round-optimal blind signatures based on standard group-based assumptions
in the asymmetric pairing setting. The efficiency is summarized in Table 7.1, along with the
assumptions we rely on. The first construction has signature and communication sizes 447 B
and 303 B, respectively. It has the smallest communication size among all prior schemes and is
the first construction where the sum of the signature and communication sizes fit below 1 KB.
The second construction has signature and communication sizes 96 B and 2.2 KB, respectively.
While it has a larger communication size compared to our first construction, the signature only
consists of 2 group elements, matching the previously shortest by Blazy et al. [BFPV13] while
simultaneously improving their communication size by around two orders of magnitude. Both
constructions have efficient partially blind variants.

For our first construction, we revisit the generic blind signature construction by Fischlin [Fis05].
We progressively weaken the building blocks required by Fischlin and show that the blind signature
can be instantiated much more efficiently in the ROM than previously thought by a careful
choice of the building blocks. At a high level, we show that the generic construction remains
secure even if we replace the public-key encryption scheme (PKE) and online-extractable NIZK4

with respectively a commitment scheme and a rewinding-extractable NIZK such as those offered
by the standard Fiat-Shamir transform [FS87, PS00, BN06]. While these modifications may
seem insignificant on the surface, it accumulates in a large saving in the concrete signature and
communication sizes. Moreover, our security proof requires overcoming new technical hurdles
incurred by the rewinding-extraction and relies on a fined-grained analysis of a variant of the
forking lemma.

For our second construction, we revisit the idea by Blazy et al. [BFPV13] relying on ran-
domizable signatures. However, our technique is not a simple application of their idea as their
construction relies on the specific structure of the Waters signature in a non-black-box manner.
Our new insight is that a specific class of signature schemes with an all-but-one (ABO) reduction
can be used in an almost black-box manner to construct round-optimal blind signatures, where
ABO reductions are standard proof techniques to prove selective security of public-key primitives
(see references in [Nis20] for examples). Interestingly, we can cast the recent blind signature by

4This is a type of NIZK where the extractor can extract a witness from the proofs output by the adversary in
an on-the-fly manner.



104 7 - Practical Round-Optimal Blind Signatures in the ROM

del Pino and Katsumata [dK22] that stated to use lattice-tailored techniques as one instantiation
of our methodology.

In the instantiation of our second construction, we use the Boneh-Boyen signature [BB04a]
that comes with an ABO reduction along with an online-extractable NIZK obtained via the
Fiat-Shamir transform applied to Bulletproofs [BBB+18] and a Σ-protocol for some ElGamal
related statements. To the best of our knowledge, this is the first time an NIZK that internally
uses Bulletproofs was proven to be online-extractable in the ROM. Prior works either showed the
non-interactive version of Bulletproofs to achieve the weaker rewinding extractability [AFK22,
AC20] or the stronger online simulation extractability by further assuming the algebraic group
model [GOP+22]. We believe the analysis of our online extractability to be novel and may be of
independent interest.

7.1.2 Technical Overview

We give an overview of our techniques.

Fischlin’s Round-Optimal Blind Signature. We review the generic construction by Fis-
chlin [Fis05] as it serves as a starting point for both of our constructions. The construction
relies on a PKE, a signature scheme, and an NIZK. The blind signature’s verification and signing
keys (bvk, bsk) are identical to those of the underlying signature scheme (vk, sk). For simplicity,
we assume a perfect correct PKE with uniform random encryption keys ek and that ek is pro-
vided to all the players as an output of the random oracle. The user first sends an encryption
c ← PKE(ek, m; r) of the message m. The signer then returns a signature σ ← Sign(sk, c) on
the ciphertext c. The user then encrypts ĉ ← PKE(ek, c∥r∥σ; r̂) and generates an NIZK proof
π of the following fact where (c, σ, r, r̂) is the witness: ĉ encrypts (c, r, σ) under r̂; c encrypts
the message m under r; and σ is a valid signature on c. The user outputs the blind signature
σBS = (ĉ, π).

It is not hard to see that the scheme is blind under the IND-CPA security of the PKE and the
zero-knowledge property of the NIZK. The one-more unforgeability proof is also straight-forward:
The reduction will use the adversary A against the one-more unforgeability game to break the
EUF-CMA of the signature scheme. The reduction first programs the random oracle so that it
knows the corresponding decryption key dk of the PKE. When A submits c to the blind signing
oracle, the reduction relays this to its signing oracle and returns A the signature σ it obtains.
Moreover, it makes a list L of decrypted messages m← Dec(dk, c). When A outputs the forgeries
(σBS,i = (ĉi, πi), mi)i∈[ℓ+1], it searches a mi such that mi ̸∈ L, which is guaranteed to exist since
there are at most ℓ signing queries. The reduction then decrypts (ci, ri, σi)← Dec(dk, ĉi). Since
the PKE is perfectly correct and due to the soundness of the NIZK, ci could not have been queried
by A as otherwise mi ∈ L, and hence, (ci, σi) breaks EUF-CMA security.

Source of Inefficiency. There are two sources of inefficiency when trying to instantiate this
generic construction. One is the use of a layered encryption: the NIZK needs to prove that c
is a valid encryption of m on top of proving ĉ is a valid encryption of (c, r, σ). This contrived
structure was required to bootstrap a sound NIZK to be online-extractable.5 Specifically, the
one-more unforgeability proof relied on the reduction being able to extract the (partial) witness
(ci, ri, σi) in an on-the-fly manner from the outer encryption ĉi explicitly included in the blind
signature. The other inefficiency stems from the heavy reliance on PKEs. As far as the correctness
is concerned, the PKE seems replaceable by a computationally binding commitment scheme.
This would be ideal since commitment schemes tend to be more size efficient than PKEs since
decryptability is not required. However, without a PKE, it is not clear how the above proof

5Constructing an online extractable NIZK by adding a PKE on top of a sound NIZK is a standard method.
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would work.

First Construction

We explain our first construction, an optimized variant of Fischlin’s generic construction.

Using Rewinding-Extractable NIZKs. The first step is to relax the online-extractable NIZK
with a (single-proof) rewinding-extractable NIZK. Such an NIZK allows extracting a witness
from a proof output by an adversary A by rewinding A on a fixed random tape. NIZKs obtained
by compiling a Σ-protocol using the Fiat-Shamir transform is a representative example of an
efficient rewinding-extractable NIZK. The net effect of this modification is that we can remove
the layer of large encryption by ĉ, thus making the statement simpler and allowing us to remove
ĉ from σBS.

Let us check if this rewinding-extractable NIZK suffices in the above proof of one-more
unforgeability. At first glance, the proof does not seem to work due to a subtle issue added by
the rewinding extractor. Observe that the reduction now needs to simulate A in the rewound
execution as well. In particular, after rewinding A, A may submit a new c′ to the blind signing
oracle, which was not queried in the initial execution. The reduction relays this c′ to its signing
oracle as in the first execution to simulate the signature σ′. As before, we can argue that there
exists a message mi in the forgeries output by A in the first execution such that mi ̸∈ L, but we
need to further argue that mi ̸∈ L′, where L′ is the list of decrypted messages A submitted in
the rewound execution. Namely, we need to argue that mi /∈ L ∪ L′ for the reduction to break
EUF-CMA security. However, a naive counting argument as done before no longer works because
|L ∪ L′| can be large as 2ℓ, exceeding the number of forgeries output by A, i.e., ℓ + 1.

We can overcome this issue by taking a closer look at the internal of a particular class of
rewinding-extractable NIZK. Specifically, throughout this paper, we focus on NIZKs constructed
by applying the Fiat-Shamir transform on a Σ-protocol (or in more general a public-coin
interactive protocol). A standard way to argue rewinding-extractability of a Fiat-Shamir NIZK
is by relying on the forking lemma [PS00, BN06], which states (informally) that if an event
E happened in the first run, then it will happen in the rewound round with non-negligible
probability. In the above context, we define E to be the event that the i-th message in A’s
forgeries satisfy mi ̸∈ L, where i is sampled uniformly random by the reduction at the outset
of the game. Here, note that E is well-defined since the reduction can prepare the list L by
decrypting A’s signing queries. The forking lemma then guarantees that we also have mi ̸∈ L′

in the rewound execution.6 This slightly more fine-grained analysis allows us to replace the
online-extractable NIZK with a rewinding-extractable NIZK.

Issue with Using Commitments. The next step is to relax the PKE by a (computationally
binding) commitment scheme. While the correctness and blindness hold without any issue, the
one-more unforgeability proof seems to require a major reworking. The main reason is that
without the reduction being able to decrypt A’s signing queries c, we won’t be able to define the
list L. In particular, we can no longer define the event E, and hence, cannot invoke the forking
lemma. Thus, we are back to the situation where we cannot argue that the extracted witness
(ci, ri, σi) from A’s forgeries, is a valid forgery against the EUF-CMA security game. Even worse, A
could potentially be breaking the computationally binding property of the commitment scheme
by finding two message-randomness pairs (mi, ri) and (m′i, r′i) such that they both commit to
ci but mi ̸= m′i. In such a case, extracting from a single proof does not seem sufficient since a

6For the keen readers, we note that we are guaranteed to have the same i-th message in both executions since
these values are fixed at the forking point due to how the Fiat-Shamir transform works.
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reduction would need at least two extracted witnesses to break the binding of the commitment
scheme.

To cope with the latter issue first, we extend the one-more unforgeability proof to rely on
a multi-proof rewinding-extractable NIZK. In general, multi-proof rewinding-extractors run
in exponential time in the number of proofs that it needs to extract from [SG98, BFW15].
However, in our situation, with a careful argument, we can prove that our extractor runs in strict
polynomial time since A provides all the proofs to the extractor only at the end of the game.
This is in contrast to the settings considered in [SG98, BFW15] where A can adaptively submit
multiple proofs to the extractor throughout the game.

We note that the assumption we require has not changed: a Σ-protocol for the same relation
as in the single-proof setting compiled into an NIZK via the Fiat-Shamir transform. To prove
multi-proof rewinding-extractability of this Fiat-Shamir NIZK, we can no longer rely on the now
standard general forking lemma by Bellare and Neven [BN06] that divorces the probabilistic
essence of the forking lemma from any particular application context. A naive extension of the
general forking lemma to the multi-forking setting will incur an exponential loss in the success
probability. To provide a meaningful bound, we must take into account the extra structure
offered by the Fiat-Shamir transform, and thus our analysis is akin to the more traditional forking
lemma analysis by Pointcheval and Stern [PS00] or by Micali and Reyzin [MR02]. To the best of
our knowledge, we provide the first formal analysis of the multi-proof rewinding-extractability
of an NIZK obtained by applying the Fiat-Shamir transform to a Σ-protocol. We believe this
analysis to be of independent interest.

Final Idea to Finish the Proof. Getting back to the proof of one-more unforgeability,
the reduction now executes the multi-proof rewinding-extractor to extract all the witnesses
(ci, ri, σi)i∈[ℓ+1] from the forgeries. Relying on the binding of the commitment scheme, we are
guaranteed that all the commitment ci’s are distinct. Moreover, since A only makes ℓ blind
signature queries in the first execution, we further have that there exists at least one ci in the
forgeries which A did not submit in the first execution.

However, we are still stuck since it’s unclear how to argue that this particular ci was never
queried by A in any of the rewound executions. Our next idea is to slightly strengthen the
NIZK so that the proof π is statistically binding to a portion of the witness that contains the
commitments.7 We note that this is still strictly weaker and more efficiently instantiable compared
to an online-extractable NIZK required by Fischlin’s construction since we do not require the full
list of witnesses to be efficiently extractable from the proofs in an online manner. We use this
property to implicitly fix the commitments (ci)i∈[ℓ+1] included in the forgeries after the end of
the first execution of A. This will be the key property to completing the proof.

The last idea is for the reduction to randomize what it queries to its signing oracle. For this,
we further assume the commitment scheme is randomizable, where we emphasize that this is
done for ease of explanation and we do not strictly require such an assumption (see remark 7.6).
When A submits a commitment c to the blind signing oracle, the reduction randomizes c to c′

using some randomness rand and instead sends c′ to its signing oracle. It returns the signature σ
and rand to A. A checks if c becomes randomized to c′ using rand and if σ is a valid signature on
c′. It then uses c′ instead of c to generate the blind signature as before. The key observation is
that the reduction is invoking its signing oracle with randomness outside of A’s control. Since the
commitments (ci)i∈[ℓ+1] were implicitly fixed at the end of the first execution, any randomized c′

sampled in the subsequent rewound execution is independent of these commitments. Hence, the
probability that the reduction queries ci to the signing oracle in any of the rewound execution is
negligible, thus constituting a valid forgery against the EUF-CMA security game as desired.

7At the Σ-protocol abstraction, we call this new property f -unique extraction. It is a strictly weaker property
than the unique response property considered in the literature [Fis05, Unr12].
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Instantiation. We instantiate the framework in the asymmetric pairing setting, i.e.we have
groups G1,G2,GT of prime order p, some fixed generators g1 ∈ G1, g2 ∈ G2, and a pairing
e : G1 × G2 7→ GT . For the commitment scheme, we choose Pedersen commitments (CPed) of
the form c = gm

1 ppr, as CPed is randomizable and consists of a single group element. Note that
the public parameter pp ∈ G1 is generated via a random oracle. We then need to choose an
appropriate signature scheme that allows signing CPed commitments. We choose SPS as all
components of the scheme are group elements, in particular, the message space is Gℓ

1, where ℓ is
the message length. The most efficient choice in the standard model is [JR17] with signatures of
size 335 Byte. Instead, we optimize KPW signatures [KPW15] to a signature size of 223 Byte
(from originally 382 Byte). Our optimized variant SKPW is no longer structure-preserving, as it
consists of one element τ in Zp, but suffices for our applications. We refer to section 7.3 for more
details.

Note that SKPW would be an inefficient choice in the original Fischlin blind signature [Fis06],
as it requires encrypting the signature τ over Zp to instantiate the online-extractable NIZK.
In the pairing setting, this incurs an overhead in proof size linear in the security parameter λ
8. The benefit of using our framework with the weaker rewinding-extractable NIZK is that we
now only need to prove knowledge of τ , and thus can get away without encrypting it. Such
an NIZK is possible with a single element in Zp based on a Schnorr-type Σ-protocol (compiled
with Fiat-Shamir). In the Σ-protocol, we further commit to group elements (wi)i ∈ Gn

1 in the
witness via ElGamal commitments (CEG) of the form Ei = (wi · ppri , gri

1 ), which the prover
sends to the verifier in the first flow. In particular, this ensures f -unique extraction, as Ei fixes
the commitment c ∈ {wi}i statistically. Naively, this approach requires 2n group elements,
where n is the number of group elements in the witness. Instead, we share the randomness
among all commitments under different public parameters ppi generated via a random oracle.
The commitments remain secure but require only n + 1 group elements. In particular, we set
Ei = (wi · pps

i ) and fix s via S = gs
1. Then, we can open all commitments Ei in zero-knowledge

with a single element in Zp, as knowledge of s is sufficient to recover the witness wi from all Ei.
Then, we compile our Σ-protocol with Fiat-Shamir to obtain a rewinding-based NIZK. We apply
a well-known optimization to avoid sending some of the first flow α, and include the hash value
β ← H(x, α) in the proof explicitly. In total, compared to sending the witness to the verifier in
the clear, our NIZK only has an overhead of 1 group element in G1 and 3 elements in Zp. The
additional group element is S. The three additional Zp elements are the hash value β, and values
in the third flow required for (i) showing knowledge of s and (ii) linearizing a quadratic equation
in the signature verification.

The instantiation of our framework achieves communication size of 303 Byte and signature
size of 447 Byte.

Second Construction

We explain our second construction relying on randomizable signatures with an ABO reduction.

Getting Rid of NIZKs in the Signature. While the previous construction provides a small
sum of signature and communication sizes, one drawback is that the blind signature has inherently
a larger signature than those of the underlying signature scheme. The source of this large blind
signature stems from using an NIZK to hide the underlying signature provided by the signer.

A natural approach used in the literature is to rely on techniques used to construct randomiz-
able signature schemes [BFPV13, FHS15, FHKS16, KSD19]. Informally, a randomizable signature
scheme allows to publicly randomize the signature σ on a message m to a fresh signature σ′.

8For instance, with ElGamal, the message is encrypted in the exponent and decryption would require a discrete
logarithm computation. Thus, the message is typically encrypted bit-wise which incurs an overhead of log2(p).
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Many standard group-based signature schemes (in the standard model and ROM) are known to
satisfy this property, e.g., [BB04a, Wat05]. A failed attempt would be for the user to randomize
the signature σ provided by the signer and output the randomized σ′ as the blind signature.
Clearly, this is not secure since the user is not hiding the message m, that is, σ and σ′ are
linkable through m thus breaking blindness. An idea to fix this would be to let the user send
a commitment c = Com(m; r) to the signer and the signature signs the “message” c. However,
unless the commitment c can be randomized consistently with σ, we would still need to rely on an
NIZK to hide c. This calls for a signature scheme that is somehow compatible with commitments.

Signatures with All-But-One Reductions. Our main insight is that a specific class of
signature schemes with an all-but-one (ABO) reduction is naturally compatible with blind
signatures. An ABO reduction is a standard proof technique to prove selective security of public
key primitives, e.g., [BB04b, SW05, GPSW06, ABB10], where a formal treatment can be found
in [Nis20]. In the context of signature schemes, this is a proof technique that allows the reduction
to embed the challenge message m∗ (i.e., the signature for which the adversary forges) into the
verification key. The reduction can simulate any signatures on m ̸= m∗, and when the adversary
outputs a forgery on m∗, then the reduction can break some hard problems.

Let us now specify the class of signature scheme. We assume an additive homomorphic
commitment scheme, that is, Com(m; r) + Com(m′; r′) = Com(m + m′; r + r′). We then assume a
signature scheme where the signing algorithm Sig(sk, m) can be rewritten as Ŝig(sk, Com(m; 0)+u),
where u is some fixed but random commitment included in the verification key. Namely, Sig
first commits to the message m using no randomness, adds u to it, and proceeds with signing.
Note that if u = Com(−m′; r′) for some (m′, r′), then Com(m; 0) + u = Com(m−m′; r′). While
contrived at first glance, this property is naturally satisfied by many of the signature schemes
that admit an ABO reduction; the ABO reduction inherently requires embedding the challenge
message m∗ into the verification key in an unnoticeable manner and further implicitly requires
message m submitted to the signing query to interact with the “committed” m∗. Specifically,
the former hints at a need for an (implicit) commitment scheme and the later hints at the
need for some operation between the commitments. Finally, to be used in the security proof,
we assume there is a simulated signing algorithm ŜimSig along with a trapdoor td such that
ŜimSig(td, Com(m −m′; r′), m −m′, r′) = Ŝig(sk, Com(m; 0) + u) if and only if m ≠ m′, where
recall u = Com(−m′; r′). Specifically, ŜimSig can produce a valid signature if it knows the
non-zero commitment message and randomness.

Let us explain the ABO reduction in slightly more detail. In the security proof, the reduction
guesses (or the adversary A submits) a challenge message m∗ that A will forge on. It then
sets up the verification key while replacing the random commitment u to u = Com(−m∗; r∗)
while also embedding a hard problem that it needs to solve. Due to the hiding property of
the commitment scheme, this is unnoticeable from A. Then, instead of using the real signing
algorithm Ŝig, the reduction uses the simulated signing algorithm ŜimSig. As long as m ̸= m∗,
ŜimSig(td, Com(m−m∗; r∗), m−m∗, r∗) outputs a valid signature, and hence, can be used to
simulate the signing oracle. Finally, given a forgery on m∗, the reduction is set up so that it can
break a hard problem.

Turning it into a Blind Signature. To turn this into a blind signature, the key observation
is that Ŝig is agnostic to the committed message and randomness of Com(m; 0) + u — these are
only used during the security proof when running ŜimSig. Concretely, a user of a blind signature
can generate a valid commitment Com(m; r), send it to the signer, and the signer can simply
return σr ← Ŝig(sk, Com(m; r) + u). If the signature admits a way to map σr back to a normal
signature σ for m, then we can further rely on the randomizability of the signature scheme to
obtain a fresh signature σ′ on the message m.
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The proof of one-more unforgeability of this abstract blind signature construction is almost
identical to the original ABO reduction with one exception. For the reduction to invoke the
simulated ŜimSig, recall it needs to know the message and randomness of the commitment
Com(m; r) + u. Hence, we modify the user to add an online-extractable NIZK to prove the
correctness of the commitment Com(m; r) so that the reduction can extract (m, r). Here, we
require online-extractability rather than rewinding-extractability since otherwise, the reduction
will run exponentially in the number of singing queries [SG98, BFW15]. Also, this is why the
communication size becomes larger compared with our first construction. Finally, when the
adversary outputs a forgery including m∗, the reduction can break a hard problem as before.
Here, we note that we can simply hash the messages m with a random oracle to obtain an
adaptively secure scheme using the ABO reduction.

Interestingly, while the recent lattice-based blind signature by del Pino and Katsumata [dK22]
stated to use lattice-tailored techniques to optimize Fischlin’s generic construction, the construc-
tion and the proof of one-more unforgeability follows our above template, where they use the
Agrawal-Boneh-Boyen signature [ABB10] admitting an ABO reduction. The only difference is
that since lattices do not have nice randomizable signatures, they still had to rely on an NIZK
for the final signature. While we focused on ABO reductions where only one challenge message
m∗ can be embedded in the verification key, the same idea naturally extends to all-but-many
reductions. The blind signature by Blazy et al. [BFPV13] relying on the Waters signature can be
viewed as one such instantiation. Finally, while we believe we can make the above approach formal
using the ABO reduction terminology defined in [Nis20], we focus on one class of instantiation in
the main body for better readability. Nonetheless, we believe the above abstract construction
will be useful when constructing round-optimal blind signatures from other assumptions.

Instantiation. We instantiate the above framework with the Boneh-Boyen signature scheme
SBB [BB04a, BB08]. Recall that signatures of SBB on a message m ∈ Zp are of the form
σ = (sk · (um

1 · h1)r, gr
1), where u1, h1 ∈ G1 are part of the verification key, sk is the secret

key and r ← Zp is sampled at random. We observe that SBB is compatible with the Pedersen
commitment scheme CPed with generators u1 and g1. Roughly, the user commits to the message
m via c = um

1 · gs
1

9, where s← Zp blinds the message, proves that she committed to m honestly
with a proof π generated via an appropriate online-extractable NIZK Π, and sends (c, π) to the
signer. The signer checks π and signs c via (µ0, µ1)← (sk · (c · h1)r, gr

1). Note that as c shares
the structure um

1 with SBB signatures on message m, the user can recompute a valid signature
on m via σ ← (µ0 · µ−s

1 , µ1). Before presenting σ to a verifier, the user rerandomizes σ to ensure
blindness. We refer to section 7.4 for more details.

The main challenge is constructing an efficient online-extractable NIZK Π for the relation
Rbb = {(x, w) : c = um

1 ·gs
1}, where x = (c, u1, g1) and w = (m, s). As we require online-extraction,

a simple Σ-protocol showing c = um
1 · gs

1 compiled via Fiat-Shamir is no longer sufficient as in
our prior instantiation, as the extractor needs to rewind the adversary in order to extract (m, s).
For example, we could instantiate Π with the (online-extractable) GOS proofs but such a proof
has a size of around 400 KB. Another well-known approach is to additionally encrypt the witness
(m, s) via a PKE and include the ciphertext into the relation; recall this method was used when
explaining the Fischlin blind signature. The extractor can then use the secret key to decrypt
the witnesses online. While a common choice for the PKE would be ElGamal encryption, this is
insufficient since the extractor can only decrypt group elements gm

1 and gs
1 and not the witness

in Zp as required. To circumvent this, a common technique is to instead encrypt the binary
decompositions (mi, si)i∈[ℓ2] of m, s, respectively, with ElGamal, where ℓ2 = log2(p). It then
proves with a (non-online extractable) NIZK that m =

∑ℓ2
i=1 mi2i−1 and s =

∑ℓ2
i=1 si2i−1 are valid

openings of c, while also proving that mi, si encrypted in the ElGamal ciphertexts are elements
9In the actual construction, we further hash m by a random oracle; this effectively makes SBB adaptively secure.
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in {0, 1}, where the latter can be done via the equivalent identity x · (1− x) = 0. The extractor
can now decrypt the ElGamal encryptions of mi to gmi

1 ∈ {g1, 1G1} and efficiently decide whether
mi is 0 or 1. Similarly, it can recover the decomposition si. Unfortunately, this approach requires
at least 2ℓ2 ElGamal ciphertexts which amount to 32 KB alone. In fact, the bit-by-bit encryption
of the witness is also the efficiency bottleneck of GOS proofs for Zp witnesses.

We refine the above approach in multiple ways to obtain concretely efficient online-extractable
NIZKs. Instead of using the binary decomposition, we observe that the extractor can still recover
x from gx

1 if x ∈ [0, B − 1] is short, i.e., B = poly(λ). Thus, we let the prover encrypt the
B-ary decompositions (mi, si)i∈[ℓ] of m and s, where ℓ = logB(p). For example, setting B = 232

allows the extractor to recover mi via a brute-force calculation of the discrete logarithm, and the
number of encryptions is reduced by a factor of 32. Concretely, we modify the prover to prove
that an ElGamal ciphertext encrypts (mi, si)i∈[ℓ] such that (i) each mi and si are in [0, B − 1],
and (ii) m =

∑ℓ
i=1 miB

i−1, s =
∑ℓ

i=1 siB
i−1, and c = um

1 · gs
1.

To instantiate our approach, we glue two different (non-online extractable) NIZKs Πrp and
Πped together, each being suitable to show relations (i) and (ii), respectively. For the range
relation (i), we appeal to the batched variant of Bulletproofs [AC20] and turn it non-interactive
with Fiat-Shamir. For the linear relation (ii), we use a standard NIZK with an appropriate
Σ-protocol compiled with Fiat-Shamir. We further apply three optimizations to make this
composition of NIZKs more efficient:

1. While Bulletproofs require committing to the decompositions (mi, si)i∈[ℓ] in Pedersen com-
mitments, we use the shared structure of ElGamal ciphertexts and Pedersen commitments
to avoid sending additional Pedersen commitments. This also makes the relation simpler
since we do not have to prove consistency between the committed components in the
ElGamal ciphertext and Pedersen commitment.

2. We use a more efficient discrete logarithm algorithm during extraction with runtime O(
√

B),
which allows us to choose more efficient parameters for the same level of security. This
further reduces the number of encryptions by a factor 2.

3. We perform most of the proof in a more efficient elliptic curve Ĝ of same order p without
pairing structure. As both the NIZKs Πrp and Πped are not reliant on pairings, this reduces
the size and efficiency of the NIZK considerably.

Proof of Instantiation. Finally, we analyze the security of the optimized online-extractable
NIZK Π obtained by gluing Πrp and Πped together. Correctness and zero-knowledge are straight-
forward. Also, online-extraction seems immediate on first sight. The extractor decrypts the
decomposition, reconstructs the witness (m, s), and checks whether c = um

1 gs
1. To show why it

works, we rely on the soundness of the range proof Πrp to guarantee that the committed values
are short. This allows the extractor to decrypt efficiently. Moreover, we rely on the soundness of
Πped to guarantee that the decrypted values form a proper B-ary decompositions of an opening
(m, s) of c. However, this high-level idea misses many subtle issues.

First, Bulletproofs are not well-established in the non-interactive setting in the ROM. While
Attema et al. [AFK22] show that special sound multi-round proof systems are knowledge sound
(or rewinding-extractable) when compiled via Fiat-Shamir, Bulletproofs are only computationally
special sound under the DLOG assumption. An easy fix for this is to relax the relation of the
extracted witness. That is we use two different relations: one to be used by the prover and
the other to be used by the extractor. We define an extracted witness w to be in the relaxed
relation if either w is in the original relation or w is a DLOG solution with respect to (part
of) the statement. With this relaxation, the interactive Bulletproofs becomes special sound
for the relaxed relation since we can count the extracted DLOG solution as a valid witness.
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Observing that the result of [AFK22] naturally translates to relaxed relations, we can conclude
the non-interactive Bulletproofs to be rewinding-extractable in the ROM.

The second subtlety is more technical. For the formal proof, when the adversary submits a
proof such that the online-extraction of Π fails, we must show that the adversary is breaking
either the soundness of the underlying NIZKs Πrp or Πped. Recall that Πrp and Πped are glued
together via the ElGamal ciphertext (cf. item 1). Specifically, each witness w ∈ (mi, si)i∈[ℓ]
are encrypted as c = (c0, c1) = (gwppr, gr) with randomness r ← Zp, and Πrp uses the partial
“Pedersen part” c0, while Πped uses the entire “ElGamal part” c. Thus one possibility for the
online-extraction of Π failing is when the adversary breaks the tie between the two NIZKs by
breaking the binding property of the Pedersen commitment. That is, if the adversary finds the
DLOG between (g, pp), it can break the consistency between the two NIZKs in such a way that
online-extraction of Π fails.

Put differently, to show that no adversary can trigger a proof for which the online-extraction
of Π fails, we must show (at the minimum) that we can use such an adversary to extract a DLOG
solution between (g, pp). This in particular implies that we have to simultaneously extract the
witness w0 of Πrp containing one opening of c0 and the witness w1 of Πped containing the other
opening of c0 in order to break DLOG with respect to (g, pp), or equivalently to break the binding
property of the Pedersen commitment. The issue with this is that we cannot conclude that both
extractions succeed at the same time even if Πrp and Πped individually satisfy the standard notion
of rewinding-extractability. For instance, using the standard notion of rewinding-extractability,
we cannot exclude the case where the adversary sets up the proofs π0, π1 of Πrp, Πped, respectively,
in such a way that if the extractor of Πrp succeeds, then the extractor of Πped fails. We thus
show in a careful non-black box analysis that the extraction of both proofs succeeds at the same
time with non-negligible probability. To the best of our knowledge, this is the first time an NIZK
that internally uses Bulletproofs is proven to be online-extractable in the ROM. We believe that
our new analysis is of independent interest.

7.2 Optimizing the Fischlin Blind Signature

In this section, we provide an optimized generic construction of blind signatures compared with
the Fischlin blind signature [Fis06]. In particular, we relax the extractable (and perfect binding)
commitment and multi-online extractable NIZK used as the central building block for the Fischlin
blind signature by a computationally binding commitment and a standard rewinding-based NIZK
built from a Σ-protocol satisfying f -unique extraction. As we show in Section 7.3, this relaxation
allows us to minimize the sum of the communication and signature size. We construct a natural
partially blind variant in Section 7.6.

7.2.1 Construction

Our generic construction is based on the building blocks (C, S, Σ) that satisfy some specific
requirements. If (C, S, Σ) satisfies these requirements, then we call it BSRnd-suitable.

Definition 7.1 (BSRnd-Suitable (C, S, Σ)). The tuple of schemes (C, S, Σ) are called BSRnd-
suitable, if it holds that

– C is a correct and hiding rerandomizable commitment scheme with public parameter,
message, randomness, and commitment spaces {0, 1}ℓC , Cmsg, Crnd, and Ccom, respectively,
such that Cmsg is efficiently sampleable and 1/|Cmsg| = negl(λ),

– S is a correct and EUF-CMA secure deterministic signature scheme with message space
Smsg that contains Ccom, i.e., Ccom ⊆ Smsg and we assume elements in Smsg are efficiently
checkable,
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– Σ is a correct, HVZK, 2-special sound Σ-protocol with high min-entropy, and challenge
space CH with 1/|CH| = negl(λ) for the relation

Rrnd := {x =(pp, vk, m), w = (µ, c, r) |
C.Commit(pp, m; r) = (c, r) ∧ S.Verify(vk, µ, c) = 1}.

We also require Σ to be f -unique extraction where f(w) = c, i.e., f outputs c and ignores
(µ, r).

Overview. Let (C, S, Σ) be BSRnd-suitable. Let Hpar, HM, Hβ be a random oracles from {0, 1}∗
into {0, 1}ℓC , Cmsg, CH, respectively. We now describe our framework BSRnd[C, S, Σ], or BSRnd
for short.

For key generation, the signer samples (vk, sk)← S.KeyGen(1λ) and publishes bvk = vk and
stores bsk = sk. Further, the verification key bvk (or rather the hash functions) implicitly specifies
the public parameter pp for C via pp = Hpar(0).

To sign a message m, the user first commits to HM(m) via C and sends the commitment c to
the signer. The signer then rerandomizes the commitment c to c′ via sampling a rerandomization
randomness ∆r, and signs c′ via S. It then sends the signature µ to the user along with ∆r.
The user checks by recomputing c′ from c and ∆r, and checks if µ is a valid signature on c′.
Finally, the final blind signature is a proof π for relation Rext, generated via Σ using Fiat-Shamir.
Note that π is a non-interactive proof of knowledge of a signature µ on a commitment c′ to HM(m).

Description. In more detail, we have the following, where we assume pp is provided to all of
the algorithms for readability.

– BSRnd.KeyGen(1λ): samples (vk, sk)← S.KeyGen(1λ) and outputs verification key bvk = vk
and signing key bsk = sk.

– BSRnd.User(bvk, m): sets m ← HM(m) and outputs the commitment c ∈ Ccom generated
via (c, r)← C.Commit(pp, m) as the first message and stores the randomness st = r ∈ Crnd.

– BSRnd.Signer(bsk, c): checks if c ∈ Ccom, samples a rerandomization randomness ∆r ← Crnd,
rerandomizes the commitment c via c′ = C.RerandCom(pp, c, ∆r), signs µ← S.Sign(sk, c′),
and finally outputs the second message ρ = (µ, ∆r).

– BSRnd.Derive(st, ρ): parse st = r, ρ = (µ, ∆r) and checks ∆r ∈ Crnd. It then com-
putes the randomized commitment c′′ = C.RerandCom(pp, c, ∆r) and randomized ran-
domness r′ ← C.RerandRand(pp, c, m, r, ∆r), and checks S.Verify(vk, c′′, µ) = 1 and c′′ =
C.Commit(pp, m; r′). Finally, it outputs a signature σ = π, where (α, st′) ← Σ.Init(x, w),
β ← Hβ(x, α), γ ← Σ.Resp(x, st′, β), π = (α, β, γ) with x = (pp, vk, m), w = (µ, c′′, r′).

– BSRnd.Verify(bvk, m, σ): parses σ = π and π = (α, β, γ), sets m = HM(m) and x =
(pp, vk, m), and outputs 1 if β = Hβ(x, α), Σ.Verify(x, α, β, γ) = 1, and otherwise outputs 0.

7.2.2 Correctness and Security

We prove correctness, blindness, and one-more unforgeability. The correctness of BSRnd follows
directly from the correctness of the underlying schemes (C, S, Σ). Blindness follows mainly from
the HVZK property of Σ and the hiding property of C. The only thing to be aware of is that the
user needs to check the validity of the rerandomized commitment c′′ by computing a rerandomized
randomness using the randomness r used to compute the original commitment c. In order to
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invoke the hiding property of C on c, we rely on the correctness of the randomization property
so that the reduction no longer needs to check the validity of c′′.

The main technical challenge is the proof of one-more unforgeability. Here, we argue that we
can use a successful attacker on the one-more unforgeability of BSRnd to extract some forgery σ
for S. The crux is to ensure that the extracted commitment was never signed during Signer(bsk, ·)
queries, even if we rewind the adversary in order to extract the witness from the forgery. We
ensure this with two ideas: We first use f -unique extractionof Σ to argue that the forgeries
implicitly fix the to-be-extracted commitments ci’s in the first execution of the adversary. We
then use the fact that the reduction adds new randomness in the rewound executions outside of
the adversary’s control, that is, rerandomize the commitment c submitted to the signing oracle,
to argue that the ci’s cannot appear in the list of rerandomized commitments. Finally, we note
that we extract from all the proofs included in the forgeries since one extraction is not enough:
since we’re only using a computationally binding commitment, the adversary may be breaking
the binding property, in which case, the reduction needs at least two witnesses. To this end, we
perform a more fine-grained analysis of the standard forking lemma. More details can be found
in section 7.1.2.

Theorem 7.2 (Correctness). The scheme BSRnd is correct.

Proof. Let pp ← Hpar(0), m ∈ {0, 1}∗ and (vk, sk) ← S.KeyGen(1λ). The user first computes
m← HM(m) and (c, r)← C.Commit(pp, m; r) for some r ← Crnd. Note that c ∈ Ccom as m ∈ Cmsg.
The signer computes ∆r ← Crnd, c′ = C.RerandCom(pp, c, ∆r), and µ ← S.Sign(sk, c′), where
c′ ∈ Ccom ⊆ Smsg. The user computes the randomized commitment c′′ = C.RerandCom(pp, c, ∆r)
and randomized randomness r′ ← C.RerandRand(pp, c, m, r, ∆r), and checks S.Verify(vk, c′′, µ) = 1
and c′′ = C.Commit(pp, m; r′). This holds since RerandCom is deterministic, and by the correctness
of the rerandomized commitment (see definition 3.16) and of S. It then computes σ = π, where
π is a proof generated using x = (pp, vk, m), w = (σ, c′, r′) and we have (x, w) ∈ Rrnd due to the
previous check. As m = HM(m) and Σ is correct, we have Σ.Verify(x, α, β, γ) = 1 as desired.

Theorem 7.3 (Blindness). The scheme BSRnd is blind under malicious keys under the hiding
and rerandomization properties of C and the high min-entropy and HVZK properties of Σ.

Proof. Let A be a PPT adversary against blindness and QH denote the number of Hβ queries.
We define the following hybrids and denote by AdvHi

A (λ) the advantage of A in Hybrid i.

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0, except the challenger aborts if the random oracle Hβ

was already queried on (xb, αb) before generating πb = (αb, βb, γb) for b ∈ {0, 1}. In more
detail, the challenger runs (αb, st′b)← Σ.Init(xb, wb), where xb and wb are defined as in the
protocol, samples βb ← CH, runs γb ← Σ.Resp(x, αb, st′b, βb). Then if (xb, αb) for either
b = 0 or 1 were queried to Hβ, the challenger aborts the game. Otherwise, the challenger
programs Hβ(xb, αb)← βb.
Hybrids 0 and 1 differ only when the game aborts. Due to the high min-entropy of Σ,
the probability that the random oracle is already defined on input (xb, αb) is bounded by
QH · negl(λ) = negl(λ) for each b ∈ {0, 1}. Taking the union bound on b ∈ {0, 1}, we have
that |AdvH0

A (λ)− AdvH1
A (λ)| ≤ negl(λ).

– Hybrid 2 is the same as Hybrid 1, except we omit the check on the rerandomized commit-
ments. That is, when the challenger receives a second message ρb = (µb, ∆rb) from the
adversary, it only computes the randomized commitment c′′b = C.RerandCom(pp, cb, ∆rb)
and checks S.Verify(vk, c′′b , µb) = 1. Recall in the previous hybrid, the challenger further
computed the randomized randomness r′b ← C.RerandRand(pp, cb, mb, rb, ∆rb) and checked
c′′b = C.Commit(pp, mb; r′b).
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Hybrids 1 and 2 differ only when c′′b ̸= C.Commit(pp, mb; r′b). However, this can never
occur due to the correctness of the rerandomized commitment (see definition 3.16). Hence,
AdvH1

A (λ) = AdvH2
A (λ).

– Hybrid 3 is the same as Hybrid 2, except the proofs πb are simulated without the witness wb.
That is, the challenger generates a simulated transcript (αb, βb, γb) by sampling βb ← CH
and running (αb, γb)← Σ.Sim(xb, βb).

We can construct an adversary BΣ such that |AdvH2
A (λ) − AdvH3

A (λ)| ≤ 2 · Advhvzk
BΣ (λ).

Essentially, BΣ challenges A and uses the provided oracles to generate proofs and answer
Hβ queries. If the oracle outputs simulated proofs, the game is distributed identically to
Hybrid 3. Else, the oracle outputs real proofs and behaves as in Hybrid 2.

– Hybrid 4 is the same as Hybrid 3, except the commitment-randomness pair (cb, rb) ←
C.Commit(pp, HM(mb)) are instead computed as commitments to HM(0).

It is straightforward to construct an adversary BC on the hiding property of C with
|AdvH3

A (λ)− AdvH4
A (λ)| ≤ 2 · Advhide

BC (λ) by noticing that the challenger no longer requires
the commitment randomness rb to simulate A due to the modification we made in Hybrids
2 and 3. We note that the public parameters pp obtained from the hiding challenger can
be programmed into Hpar(0).

In Hybrid 4, the value of coin is information-theoretically hidden from A, as the commitments cb

and the proofs πb are identically distributed for b ∈ {0, 1}. Consequently, AdvH4
A (λ) = 0. Also,

the running time of the adversaries BC and BΣ are roughly that of A. Combining the inequalities
yields the statement.

Theorem 7.4 (One-More Unforgeability). The scheme BSRnd is one-more unforgeable under the
binding and rerandomizability properties of C, EUF-CMA security of S, and the 2-special soundness
and f -unique extraction properties of Σ.

Proof. Let A be a PPT adversary against one-more unforgeability. Denote by QS the number of
signing queries, by QM the number of HM queries, and by QH the number of Hβ queries. Recall
that we model Hpar, HM, and Hβ as random oracles, where we assume without loss of generality
that A never repeats queries. In the end of the interaction with A, that is after QS signing
queries, A outputs QS + 1 forgeries {(mi, σi)}i∈[QS+1]. We write σi = πi and denote by ci the
QS first message queries to BSRnd.Signer(bsk, ·) issued by A. Note that if A is successful, then
we have Σ.Verify(xi, αi, βi, γi) = 1 and βi = Hβ(xi, αi) for mi = HM(mi), xi = (pp, vk, mi), and
πi = (αi, βi, γi). We first slightly alter the real game and remove subtle conditions to make the
later proofs easier. We denote by AdvHi

A (λ) the advantage of A in Hybrid i for i ∈ {0, 1}.

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0, except it aborts if there is a collision in HM or Hβ, or
there is some (xi, αi) for i ∈ [QS + 1] that was never queried to Hβ.

It suffices to upper bound the abort probability. A collision in HM (resp. Hβ) happens
with probability at most Q2

M /|Cmsg| (resp. Q2
H/|CH|) (which follows for example from

a union bound). Moreover, the probability that some fixed βi of A’s output equals to
Hβ(xi, αi) is exactly 1/|CH|, if (xi, αi) was never queried to Hβ. Thus, it follows that
AdvH0

A (λ) ≤ AdvH1
A (λ) + Q2

M
|Cmsg| + Q2

H+1
|CH| = AdvH1

A (λ) + negl(λ).
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Description of Wrapper Algorithm B. We now present a wrapper algorithm B that
simulates the interaction between the challenger G and A in Hybrid 1. Looking ahead we apply
a generalization of the standard forking lemma on B to extract the witnesses from all the proof
(i.e.forgery) output by A.

Notice that G is deterministic once the keys (vk, sk) of the (deterministic) signature scheme S,
the QS rerandomization randomness in Crnd, and the outputs of the random oracles Hpar, HM, Hβ

are determined. Since Hpar is only used to generate the public parameter pp of the commitment
scheme, we assume without loss of generality that only pp is given to A rather than access to
Hpar. We use coin to denote all the QM outputs of HM and the random coins used by A. We
use h⃗ = (β̂i, ∆ri)i∈[QH+QS ] ∈ (CH× Crnd)QH+QS to explicitly denote the list that will be used to
simulate the outputs of Hβ and rerandomziation randomness sampled by G. Here, we note that h⃗
is deliberately defined redundantly since G only needs QH hash outputs and QS rerandomziation
randomness, rather than QH + QS of them each. We also use β̂ ∈ CH to denote the output of
Hβ to distinguish between the hash value β included in A’s forgeries. We then define B as an
algorithm that has oracle access to S.Sign(sk, ·) as follows:

BS.Sign(sk,·)(pp, vk, h⃗; coin) : On input pp, vk, and h⃗ ∈ (CH × Crnd)QH+QS , B simulates the
interaction between the challenger G and A in Hybrid 1. B invokes A on the randomness
included in coin and simulates G, where it runs the same code as G except for the following
differences:

– It uses the provided pp and vk rather than generating it on its own;
– All QM random oracle queries to HM are answered using the hash values include in

coin;
– On the i-th (i ∈ [QH ]) random oracle query to Hβ, it retrieves an unused (β̂k, ∆rk)

with the smallest index k ∈ [QH + QS ] and outputs β̂k and discards ∆rk;
– On the i-th (i ∈ [QS ]) first message ci ∈ Ccom from A, it retrieves an unused (β̂k, ∆rk)

with the smallest index k ∈ [QH + QS ] and discards β̂k. It then computes c′i =
C.RerandCom(pp, ci, ∆rk), queries the signing oracle on c′i, obtains µi ← S.Sign(sk, c′i),
and returns the second message ρi = (µi, ∆rk).

At the end of the game when A outputs the forgeries, B checks if the forgeries are valid and
the added condition in Hybrid 1. If the check does not pass, then B outputs ((0)i∈[QS+1],⊥),
i.e., QS + 1 zeros followed by a ⊥. Otherwise, B finds the indices Ii ∈ [QH + QS ] such
that Hβ(xi, αi) = βi = β̂Ii for i ∈ [QS + 1], which are guaranteed to exist uniquely due to
the modification we made in Hybrid 1. It then sets Λ = (xi, αi, βi, γi)i∈[QS+1] and outputs
((Ii)i∈[QS+1], Λ). It can be checked that B perfectly simulates the view of the challenger G
in Hybrid 1. Therefore, B outputs Λ ̸= ⊥ with probability AdvH1

A (λ).

Description of Forking Algorithm FB. We now define a generalization of the standard
forking algorithm F so that F keeps on rewinding B until some condition is satisfied. Concretely,
F takes as input (pp, vk), has oracle access to S.Sign(sk, ·), and invokes B internally as depicted
in algorithm 12, where the number of repetition T is defined below.

We show that if A succeeds in breaking one-more unforgeability in Hybrid 1 with non-negligible
probability, then we can set a specific number of repetition T so that the forking algorithm FB
terminates in polynomial time and succeeds in outputting a non-⊥ with non-negligible probability.
Formally, we have the following lemma.

Lemma 7.5. Let ϵ = AdvH1
A (λ). Then, if we set T =

(
ϵ

(QH+QS)(QS+2)2

)−1
· log(2QS + 2), FB

outputs a non-⊥ with probability at least ϵ
2(QS+2)2 .
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Algorithm 12 Description of the forking algorithm FS.Sign(sk,·)
B (pp, vk)

1: Pick coin for B at random.
2: h⃗← (CH× Crnd)QH+QS

3:
(
(Ii)i∈[QS+1], Λ

)
← BS.Sign(sk,·)(pp, vk, h⃗; coin)

4: if Λ = ⊥ then
5: return ⊥ ▷ Return fail.
6: D := () ▷ Prepare empty list.
7: for j ∈ [QS + 1] do
8: (c, flag) := (1,⊥)
9: while c ∈ [T ] ∧ ¬flag do

10: h⃗
(c)
j,≥Ij

← (CH× Crnd)QH+QS−Ij+1

11: h⃗
(c)
j := h⃗<Ij∥h⃗

(c)
j,≥Ij

12:
(
(I(c)

j,i )i∈[QS+1], Λ
(c)
j

)
← BS.Sign(sk,·)(pp, vk, h⃗

(c)
j ; coin)

13: if I
(c)
j,j = Ij then

14: D = D ∪ (j, Ij , Λ
(c)
j )

15: flag = ⊤ ▷ Break from while loop.
16: c = c + 1
17: if |D| < QS + 1 then ▷ Check if B succeeds in all QS + 1 run.
18: return ⊥ ▷ Return fail.
19: return (Λ, D)

In particular, if ϵ is non-negligible, then T = poly(λ). Moreover, the running time of FB is at
most (roughly) a factor T · (QS + 1) + 1 more of B (or equivalently A), so FB runs in polynomial
time.

Proof. Assume B outputs a valid Λ = (xi, αi, βi, γi)i∈[QS+1] in the first execution and denote
this event as E. For i ∈ [QS + 1], we denote the tuple (xi, αi, βi, γi) as the i-th forgery. For
any (i, k) ∈ [QS + 1] × [QH + QS ], we denote Ei,k as the event that forgery is associated to
the k-th hash query, i.e., the k-th entry of h⃗ ∈ (CH× Crnd)QH+QS includes βi. Here, note that
∀i ∈ [QS + 1], we have

∑
k∈[QH+QS ] Pr[Ei,k] = 1. We define the set Pi as

Pi =
{

k

∣∣∣∣ Pr[Ei,k | E] ≥ 1
(QH + QS)(QS + 2)

}
,

where for any k ∈ Pi, we have Pr[Ei,k] ≥ ϵ
(QH+QS)(QS+2) . Let us define Egood

i =
∨

k∈Pi
Ei,k. Then,

we have Pr
[
Egood

i

∣∣∣ E
]
≥ QS+1

QS+2 , since there are at most (QH + QS) possible values of k’s not in
Pi and they can only account to a probability at most (QH + QS)× 1

(QH+QS)(QS+2) = 1
QS+2 .

Next, for any (i, k) ∈ [QS + 1] × Pi, let us define Xi,k = Rcoin × (CH × Crnd)k−1 and
Yi,k = (CH × Crnd)QH+QS−k+1, where Rcoin denotes the randomness space of coin. Here, note
that (xi, h⃗≥k) ∈ Xi,k × Yi,k can be parsed appropriately to be (coin, h⃗), and defines all the
inputs of B, where we assume a fixed (pp, vk). We further define Ai,k ⊆ Xi,k × Yi,k to be the
set of inputs that triggers event Ei,k. Then using the splitting lemma (cf. lemma 3.3) with
α = QS+1

QS+2 ·
ϵ

(QH+QS)(QS+2) , there exists a set Bi,k ⊂ Xi,k × Yi,k such that

Bi,k =
{

(xi, h⃗≥k) ∈ Xi,k × Yi,k

∣∣∣∣∣ Pr
h⃗′≥k←Yi,k

[
(xi, h⃗′≥k) ∈ Ai,k

]
≥ ϵ

(QH + QS)(QS + 2)2

}
, (7.1)
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and

Pr
(xi,h⃗′≥k)←Xi,k×Yi,k

[
(xi, h⃗≥k) ∈ Bi,k

∣∣∣ (x, h⃗≥k) ∈ Ai,k

]
≥ QS + 1

QS + 2 . (7.2)

We are now ready to evaluate the success probability of the forking algorithm FB. With
probability ϵ, B outputs ((Ii)i∈[QS+1], Λ) in the first execution on input (coin, h⃗) ∈ Rcoin× (CH×
Crnd)QH+QS . Then the probability that event Egood

i occurrs for all i ∈ [QS + 1] is at least

Pr
[
∀i ∈ [QS + 1], Egood

i

∣∣∣E] ≥ 1−
∑

i∈[QS+1]
Pr
[
¬Egood

i

∣∣∣E] ≥ 1
QS + 2 ,

where the first inequality follows from the union bound and the second inequality follows from
Pr
[
Egood

i

∣∣∣ E
]
≥ QS+1

QS+2 .

Then, from eq. (7.2) and following the same union bound argument, FB samples a good
input such that (coin, h⃗) ∈ Bi,Ii for all i ∈ [QS + 1] conditioned on Egood

i for all i ∈ [QS + 1]
with probability at least 1

(QS+2) . Therefore, by eq. (7.1), if FB resamples h⃗i,≥Ii ∈ Yi,Ii =
(CH×Crnd)QH+QS−Ii+1 conditioned on the set Bi,Ii , B succeeds on input (coin, h⃗i,<Ii∥h⃗i,≥Ii) with
probability at least ϵ

(QH+QS)(QS+2)2 . Conditioning on sampling an input (coin, h⃗) ∈ Bi,Ii for all
i ∈ [QS + 1] and noting the independence of each rewinding, the probability that B succeeds in
all j-th rewinding for j ∈ [QS + 1] is at least(

1−
(

1− ϵ

(QH + QS)(QS + 2)2

)T
)QS+1

≥
(

1− 1
elog(2QS+2)

)QS+1

=
(

1− 1
2(QS + 1)

)QS+1
≥ 1

2 .

Collecting all the bounds, we conclude that FB succeeds with probability at least ϵ
2(QS+2)2

as desired. Moreover, the running time of FB is roughly the same as running B for at most
T · (QS + 1) + 1 times, where the runtime of B is roughly the same as the runtime of A.

Using FB to Break Binding of C or EUF-CMA of S. We are now ready to finish the proof.
Assume ϵ = AdvH1

A (λ) is non-negligible. We use FB to extract the witnesses from the proofs
output by A with non-negligible probability and show that such witnesses can be used to break
either the binding of C or the EUF-CMA security of S. Thus establishing that ϵ = negl(λ) by
contradiction.

We define adversary AC,S on both the binding property of C and the EUF-CMA property of S
as follows. Initially, AC,S obtains pp from the binding challenger. Further, she receives vk and
oracle access to a signing oracle S.Sign(sk, ·) from the EUF-CMA challenger. Then, she runs the
forking algorithm R ← FS.Sign(sk,·)

B (pp, vk). She checks R ≠ ⊥, and parses R = (Λ, D), where
Λ = (xi, αi, βi, γi)i∈[QS+1] and D = (j, Ij , Λj)j∈[QS+1]. Due to lemma 7.5, FB runs in polynomial
time and has non-negligible success probability. Below, we describe the second part of AC,S and
analyze its success probability conditioned on FB succeeding. (If R = ⊥, then AC,S outputs ⊥
and aborts.)

For j ∈ [QS + 1], we denote by (x′j , α′j , β′j , γ′j) the j-th element of the tuple Λj . Moreover,
note that the same coin and values (β̂1, ∆r1), ...(β̂Ij−1, ∆rIj−1) are used for the initial run of B
and the run of B where B outputs Λj . Thus, we have for all j ∈ [QS + 1] that (xi, αi) = (x′i, α′i).
Moreover, we have β̂Ij ̸= β̂j,Ij , or equivalently βj ̸= β′j for all j ∈ [QS + 1] with probability at
least 1− QS+1

|CH| = 1−negl(λ) since each hash outputs are sampled uniformly and independently at
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random. This allows AC,S to invoke 2-special soundness of Σ with overwhelming probability. For
all i ∈ [QS + 1], she runs Ext on (xi, (αi, βi, γi), (αi, β′i, γ′i)) to extract a witness wi = (µi, ci, ri)
such that C.Commit(pp, mi; ri) = ci ∧ S.Verify(vk, µi, ci) = 1, where xi = (pp, vk, mi).

If there exists distinct i, j ∈ [QS + 1] with ci = cj , AC,S sends (mi, mj , ri, rj) to the binding
security game of C. Note that due to the check in Hybrid 1, the (mi)i∈[QS+1] are pairwise distinct,
in particular mi ̸= mj but C.Commit(pp, mi; ri) = C.Commit(pp, mj ; rj). However, due to the
binding property of C, this can happen with only negligible probability. Thus, the extracted
commitments (ci)i∈[QS+1] must be distinct with overwhelming probability.

In such a case, there must be at least one i∗ ∈ [QS + 1] such that c∗i was never queried to the
signing oracle S.Sign(sk, ·) in the first execution of B or equivalently of A. This is because due to
the one-more unforgeability game, A only queries the signing oracle QS times. Thus, AC,S finds
such i∗ with the smallest index and outputs (µi∗ , c∗i ) as a forgery against the EUF-CMA security of
S.

It remains to show that what AC,S output is a valid forgery, i.e., B never queried c∗i to the
signing oracle in any of the rewound executions. To argue this, we first show that all the extracted
commitments (ci)i∈[QS+1] are fixed after the first execution ends due to f -unique extraction (cf.
definition 3.26). For any (xi, τi := (αi, βi, γi)) ∈ Λ defined in the first execution of B, conditioning
on FB succeeding, another valid transcript (xi, τ ′i := (αi, β′i, γ′i)) ∈ Λi with βi ≠ β′i is guaranteed
to exist with overwhelming probability. Due to f -unique extraction, for any such valid transcript
the value f(Ext(xi, τi, τ ′i)) = ci is identical, where recall f simply outputs the commitment
included in the witness. Put differently, conditioning on FB succeeding, (xi, τi) uniquely defines ci

with overwhelming probability. We emphasize that ci does not need to be efficiently computable
given only (xi, τi); we only care if ci is determined by (xi, τi) in a statistical sense.

Now, assume B queried c∗i to the signing oracle in one of the rewound executions. This
means A outputs some c∗ to B (or equivalently the simulated challenger G in Hybrid 1) and
B computed c∗i = C.RerandCom(pp, c∗, ∆r∗), where ∆r∗ is a fresh randomness sampled by FB
to be used in the rewound execution. However, this cannot happen with all but negligible
probability due to the rerandomizability of C since we have established above that ∆r∗ is sampled
independently from c∗i . Since there are at most T · (QS + 1) rewound executions, the probability
that B queries c∗i to the signing oracle during in one of the rewound execution is bounded by
T · (QS + 1) · negl(λ) = negl(λ), where we use T = poly(λ) due to lemma 7.5.

Thus, with overwhelming probability, what AC,S output is a valid forgery against the EUF-CMA
security of S. However, due to the hardness of EUF-CMA security of S, this cannot happen with
all but negligible probability. Combining all the arguments, we conclude that ϵ = AdvH1

A (λ) is
negligible. This completes the proof.

Remark 7.6 (Removing the Rerandomizability Property). As briefly noted in our technical
overview, an alternative approach to using rerandomizable commitment is to let the signer
(i.e., BSRnd.Signer) sample a random string rand and run µ ← S.Sign(sk, c∥rand) instead of
µ ← S.Sign(sk, c′), where c′ = C.RerandCom(pp, c, ∆r) is the rerandomized commitment. The
signer then sends ρ = (µ, rand) as the second message instead of ρ = (µ, ∆r). By observing that
rand has an identical effect as ∆r in the security proof, it can be checked that the same proof
can be used to show blindness and one-more unforgeability of this modified protocol. While this
approach works for any commitment scheme, we chose not to since it requires a slightly larger
NIZK proof due to the enlarged signing space of the underlying signature scheme S.

7.3 Instantiation of the Generic Construction

In this section, we instantiate the BSRnd-suitable schemes (C, S, Σ) required for the construction
of BSRnd in section 7.2.



7.3 - Instantiation of the Generic Construction 119

Commitments

We instantiate the commitment scheme C with Pedersen commitments. We also use a variant of
ElGamal commitments in our instantiation of Σ.

Rerandomizable Commitment Scheme. We recall Pedersen commitments CPed [Ped92]
with public parameters pp ∈ G over a group G with generator g:

– CPed.Commit(pp, m; r): outputs commitment c = gm · ppr and opening r ← Zp,

Pedersen commitments are correct, computationally binding under the DLOG assumption and
statistically hiding. Further, note that it is rerandomizable via:

– CPed.RerandCom(pp, c, ∆r): outputs c′ ← c · pp∆r

– CPed.RerandRand(pp, c, m, r, ∆r): outputs r′ ← ∆r + r

ElGamal. We recall ElGamal commitments CEG [ElG84] with public parameters pp ∈ G over
a group G with generator g:

– CEG.Commit(pp, m; r): outputs commitment c = (c1, c2) = (m·ppr, gr) and opening r ← Zp,

ElGamal commitments are correct, perfectly binding and computationally hiding under DDH.
Also, it is extractable with the following simulator and extractor:

– CEG.SimSetup(1λ): samples x← Zp, and outputs public parameters pp = gx and trapdoor
td = x.

– CEG.Ext(pp, td, c): extracts m← c1/ctd
2 .

Note that the second part c2 = gr of the commitment can be reused across multiple commit-
ments, if each commitment uses different public parameters, i.e.ppi ← G, as below.

Remark 7.7 (ElGamal with Message Space Gn). Let n ∈ N and ppi ← G for i ∈ [n]. We can
commit to messages (m1, ..., mn) ∈ Gn via R← gr and ci = mippr

i . The (non-compact) vector
commitment (R, c1, ..., c2) remains correct, perfectly binding with message space Gn and hiding
under DDH [BBM00]. Extraction is possible as before with the trapdoor td = (xi)i∈[n] with
gxi = ppi via mi ← ci/Rxi .

Remark 7.8 (ElGamal with Message Space Zp). We can commit to a message m ∈ Zp via
c = (gmppr

i , gr). This variant remains perfectly binding with message space Zp and hiding under
DDH. Note that this variant is not extractable for message space Zp. If the message m is of
polynomial size, i.e.|m| ≤ B for some bound B = poly(λ), extraction is possible via g ← c1/ctd

2
and then calculating the discrete logarithm m of g. This can be done in polynomial time by
trying all m′ ∈ Zp with |m′| ≤ B with brute-force.

Signature Scheme

For the signature scheme S, we use a variant of the Kiltz-Pan-Wee (KPW) structure-preserving
signature (SPS) scheme [KPW15] in the asymmetric pairing setting. The message space of KPW
is Gℓ

1, where ℓ ∈ N is the message length.
Any SPS must contain at least three group elements, and at least one in each G2 and in G1

[AGHO11]. But as the bit size of elements in G2 is larger than the bit size of elements in G1
and Zp, removing elements in G2 in the signature is desirable. For BSRnd, we do not require the
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full structure-preserving property of KPW, as we can design efficient Σ-protocols for signature
verification, even if the signature contains elements in Zp.

Indeed, KPW signatures contain an element σ4 in G2. We observe that we can safely replace
σ4 with its discrete logarithm τ . Further, we can omit two more elements in G1 for free, as they
can be recomputed via τ and the remaining signature elements.

Our optimized variant is given below.

– SKPW.KeyGen(1λ): samples a, b ← Zp and sets A ← (1, a)⊤ and B ← (1, b)⊤. It
samples K ← Z(ℓ+1)×2

p , K0, K1 ← Z2×2
p and sets C ← KA. It sets (C0, C1) ←

(K0A, K1A), (P0, P1) ← (B⊤K0, B⊤K1), vk ← ([C0]2, [C1]2, [C]2, [A]2), and sk ←
(K, [P0]1, [P1]1, [B]1). It outputs (vk, sk).

– SKPW.Sign(sk, [m]1): samples r, τ ← Zp and sets σ1 ← [(1, m⊤)K + r(P0 + τP1)]1 ∈ G2
1,

σ2 ← [rB⊤]1 ∈ G2
1, and σ3 ← τ ∈ Zp. It outputs (σ1, σ2, σ3).

– SKPW.Verify(vk, [m]1, (σ1, σ2, σ3)): checks e(σ1, [A]2) = e([(1, m⊤)]1, [C]2) · e(σ2, [C0]2 ·
τ [C1]2).

We show that SKPW is EUF-CMA under the SXDH assumption in Theorem 7.9. The proof
relies on the computational core lemma of [KW15]. SKPW can be made deterministic via a
pseudorandom function.

Theorem 7.9. The scheme SKPW is correct and EUF-CMA secure under the SXDH assumption.

Proof. Correctness follows from a simple calculation. For EUF-CMA security, we first recall the
computational core lemma of [KW15].

Lemma 7.10. For all adversaries A, there exists an adversary B with almost the same running
time satisfying

Pr


b = b′ :

a, b← Zp, A← (1, a)⊤, B ← (1, b)⊤

K0, K1 ← Z2×2
p

(P0, P1)← (B⊤K0, B⊤K1)
pk← ([P0]1, [P1]1, [B]1, K0A, K1A, A)
b← {0, 1}, b′ ← AOb,O∗(pk)


≤ 1

2 + 2QAdvsxdh
B (λ) + Q/p

where Q is the number of queries A makes to Ob, A is not allowed to make the same query to
both Ob and O∗, and

– Ob(τ): on a query τ ∈ Zp returns ([bµa⊥ + r(P0 + τP1)]1, [rB⊤]1) ∈ (G2
1)2 with µ← Zp,

r ← Zp, where a⊥ ∈ Z2
p is a non-zero vector that satisfies a⊥A = 0,

– O∗(τ∗): on a query τ∗ ∈ Zp returns [K0 + τ∗K1]2 with only a single query to O∗ allowed
for A,

Now let A be an adversary against the EUF-CMA security of the scheme SKPW. After Q signing
queries, A outputs a forgery ([m∗]1, σ∗). We follow the proof structure of [KPW15], but adapt it
to our optimizations using lemma 7.10. We define the following hybrids and denote by AdvHi

A (λ)
the advantage of A in Hybrid i.

– Hybrid 0 is the real game.
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– Hybrid 1 is the same as Hybrid 0, except the verification check (to verify the final
output of A), is replaced with SKPW.Verify∗, defined as follows. On input of verification
key vk, message [m]1, and signature σ = (σ1, σ2, σ3), SKPW.Verify∗ checks e(σ1, [1]2) =
e([(1, m⊤)]1, [K]2) · e(σ2, [K0]2 · σ3[K1]2).

Note that for any ([m]1, σ), we have

e(σ1, [A]2) = e([(1, m⊤)]1, [C]2) · e(σ2, [C0]2 · τ [C1]2)
⇐⇒ e(σ1, [A]2) = e([(1, m⊤)]1, [KA]2) · e(σ2, [K0A]2 · τ [K1A]2)
⇐= e(σ1, [1]2) = e([(1, m⊤)]1, [K]2) · e(σ2, [K0 + τK1]2)

Thus, if ([m]1, σ) passes SKPW.Verify but not SKPW.Verify∗, we have that σ1−([(1, m⊤)K]1+
σ2(K0 + τK1)) ∈ G2

1 is a non-zero vector in the kernel of A. Finding such a vector is
hard under the SXDH assumption, and we can construct an adversary Bdh such that
|AdvH0

A (λ)− AdvH1
A (λ)| ≤ Advsxdh

Bdh (λ).

– Hybrid 2 is the same as Hybrid 1, except if the chosen tags τ1, ..., τQ during the signing
queries are not all distinct.

A simple union bound implies that |AdvH1
A (λ)− AdvH2

A (λ)| ≤ Q2/p.

– Hybrid 3 is the same as Hybrid 2, except it samples i∗ ← [Q + 1] and aborts if i∗ is not the
smallest index such that τi = σ∗3, where τQ+1 = σ∗3 is the tag from the forgery.

As there are Q queries, we have AdvH3
A (λ) ≥ 1/(Q + 1)AdvH2

A (λ).

– Hybrid 4 is the same as Hybrid 3, except the signature queries are answered as follows.
On input of [m]1 in the i-th signing query, samples r, τ, µ← Zp, and set µ← 0 if τ = τ∗.
Then, set σ1 ← [(1, m⊤)K + µa⊥ + r(P0 + τP1)]1, σ2 ← [rB⊤]1, and σ3 ← τ ∈ Zp, where
a⊥ is a non-zero vector in the kernel of A such that a⊥A = 0. Finally, outputs (σ1, σ2, σ3).

Hybrid 3 and Hybrid 4 are indistinguishable which we can show by constructing an adversary
B4 against lemma 7.10. B4 first samples K and receives ([P0]1, [P1]1, [B]1, K0A, K1A, A)
with which she sets up the verification key vk for A. B4 answers the i-th signing query for
i ̸= i∗ via (σ1, σ2, σ3)← ([(1, m⊤)K]1 · σ′1, σ2), where (σ′1, σ2)← Ob(τ). The i∗-th signing
query is answered honestly. A quick calculation shows that for b = 0 (resp. b = 1) the
queries are answered as in Hybrid 3 (resp. 4). Note that SKPW.Verify∗ can be simulated via
a query to O∗(τ∗). Thus, we have |AdvH3

A (λ)− AdvH4
A (λ)| ≤ 2QAdvsxdh

B (λ) + Q/p, where B
is the adversary from lemma 7.10.

– Hybrid 5 is the same as Hybrid 4, except K is computed as K ← K′ + ua⊥ for K′ ←
Z(ℓ+1)×2

p , u ← Zℓ+1
q . Clearly, Hybrid 5 and Hybrid 4 are identically distributed and we

have AdvH4
A (λ) = AdvH5

A (λ).

Finally, observe that as in [KPW15], the verification key vk and signing queries for τi ̸= τ∗

leak no information about u, as C = (K′ + ua⊥)A = K′A, and (1, m⊤)(K′ + ua⊥) + µa⊥ is
identically distributed to (1, m⊤)K′ + µ′a⊥. The i∗-th signing query leaks (1, m⊤)(K′ + ua⊥),
captured by (1, m⊤)u. To provide a valid forgery, A needs to compute

v := (1, m∗⊤)(K′ + ua⊥).

Given (1, m⊤)u, for any adaptively chosen m∗ ≠ m, we have that (1, m∗⊤)u is uniformly
random over Zp in the view of A. Thus, v is also uniformly random over Zp and we have
AdvH5

A (λ) ≤ 1/p.
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Σ-protocol

Now, we instantiate the Σ-protocol Σ for relation Rrnd, where C is instantiated with CPed over
G1 and S instantiated with SKPW. In this context, the relation Rrnd can be written as

Rrnd = {(x, w) : c = gm
1 ppr∧

e(µ1, [A]2) = e((g1, c), [C]2) · e(µ2, [C0]2 · µ3[C1]2)},

where x = (pp, vk, m), w = (µ, c, r) for vk = ([C0]2, [C1]2, [C]2, [A]2) and µ = (µ1, µ2, µ3).
We now provide the Σ-protocol, denoted Σrnd. For readability, we further assume that

random generators (pp1, ..., pp5) are setup without trapdoors via a random oracle for simplicity.
(In the construction, we let these values be output by the hash functions Hpp in addition to pp.)
On a high level, the prover commits to the witness in ElGamal commitments under different
public parameters ppi and shared randomness S = gs

1, and then shows that the committed values
satisfy the required relations. Note that the verification equation of µ is quadratic, as both µ2
and µ3 are witnesses. For this part, we introduce a new witness ω = s · µ3.

– Σrnd.Init(crs, x, w): for (crs, x, w) defined as above, denote e1 = c, e2 = µ1,1, e3 = µ1,2, e4 =
µ2,1, e5 = µ2,2 and τ = µ3, ω = s · τ . First, sets S = gs

1 for s← Zp and commits to ei with
shared randomness via Ei = eipps

i . Samples additive masks s̃, r̃, ω̃, τ̃ ← Zp and sets

Dm = pp−s̃
1 · pp−r̃, Ds = g−s̃

1 , Dω = S τ̃ g−ω̃
1

Dµ = e((pp−s̃
2 , pp−s̃

3 ), [A]2)−1 · e((1G1 , pp−s̃
1 ), [C]2)

· e((pp−s̃
4 , pp−s̃

5 ), [C0]2) · e((E τ̃
4 pp−ω̃

4 , E τ̃
5 pp−ω̃

5 ), [C1]2).

Outputs α = (S, E1, ..., E5, Dm, Ds, Dω, Dµ) and stores (s̃, r̃, ω̃, τ̃) in st,

– Σext.Chall(): samples a challenge β ← Zp,

– Σext.Resp(st, β): sets γr = β · r + r̃, γs = β · s + s̃, γτ = β · τ + τ̃ , γω = β ·ω + ω̃, and outputs
the response γ = (γr, γs, γτ , γω),

– Σext.Verify(crs, x, α, β, γ): checks the following equations

Dm = Eβ
1 · pp−γs

1 g−β·m
1 pp−γr , Ds = Sβg−γs

1 , Dω = Sγτ · g−γω
1 ,

Dµ = e(F1, [A]2)−1 · e(Fm, [C]2) · e(F2, [C0]2) · e(F3, [C1]2),

where F1 = (Eβ
2 ·pp−γs

2 , Eβ
3 ·pp−γs

3 ), Fm = (gβ
1 , Eβ

1 ·pp−γs
1 ), F2 = (Eβ

4 ·pp−γs
4 , Eβ

5 ·pp−γs
5 ), F3 =

(E−γτ
4 ·pp−γω

4 , E−γτ
5 ·pp−γω

5 ), and outputs 1 iff all checks succeed. Note that the first equation
checks that the commitment c committed in E1 is a valid CPed commitments to m, the
second equation fixes s (and thus the values committed in Ei) and the third equation fixes
ω = s · τ which allows to open the commitments Eτ

4 and Eτ
5 in zero-knowledge. Finally

the last equation checks whether the committed signature µ is valid. For this, we rewrite
e(µ2, [C0]2 ·µ3[C1]2) = e(µ2, [C0]2) · e(µµ3

2 , [C1]2), and use that (Eτ
5 , Eτ

6 ) commits to µ2
µ3 .

Theorem 7.11 (Correctness). The scheme Σrnd is correct.

Proof. Note that we have Eβ
i pp−γs

i = eβ
i · pp−s̃

i and E−γτ
i pp−γω

i = eβ·τ
i · E−τ̃

i · pp−ω̃
i . With these

identities, the identities in Σrnd.Verify follow from a straightforward calculation, and we omit
details.

Theorem 7.12 (HVZK). The scheme Σrnd is HVZK under the DDH assumption.
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Proof. Let x = (pp, vk, m) and β ← Zp. We define the simulator Sim as follows. On input
of (x, β), samples s ← Zp, and sets S = gs

1, Ei ← pps
i for i ∈ [5]. Then, samples γ =

(γr, γs, γτ , γω) ← Z4
p and computes Dm, Ds, Dω, Dµ via the identities in Σext.Verify. Finally,

sets α = (S, E1, ..., E5, Dm, Ds, Dω, Dµ) and outputs the transcript (α, β, γ).
To show that Sim outputs transcripts that are indistinguishable from real transcripts, we

define the following hybrids and denote by AdvHi
A (λ) the advantage of A in Hybrid i.

– Hybrid 0 outputs honestly generated transcripts.

– Hybrid 1 is the same as Hybrid 0, except the elements (Dr, Ds, Dω, Dµ) are generated as
in Sim. A quick calculation shows that Hybrid 0 and Hybrid 1 are identically distributed,
and we have AdvH0

A (λ) = AdvH1
A (λ).

– Hybrid 2 is the same as Hybrid 1, except γ is computed as in Sim. Again, it is easy to
check that AdvH1

A (λ) = AdvH2
A (λ).

– Hybrid 3 is the same as Hybrid 2, except the commitments (S, E1, ..., E5) are commitments
to 1G1 instead. If A can distinguish between Hybrid 2 and Hybrid 3, we can construct
an adversary B against the DDH assumption, as (S, E1, ..., E5) is hiding under DDH (see
remark 7.7). Here, we use the fact that the public parameters (pp1, ..., pp5) are output by
a random oracle which is programmed with the challenge ppi appropriately.

As Hybrid 3 outputs simulated transcripts, the statement follows.

Theorem 7.13 (Special Soundness). The scheme Σext is 2-special sound.

Proof. Let x = (pp, vk, m). We define the extractor Ext as follows. First, Ext receives as
input two valid transcripts (α, β, γ) and (α, β′, γ′) with β ≠ β′. Next, Ext parses α =
(S, E1, ..., E5, Dm, Ds, Dω, Dµ) and γ = (γr, γs, γτ , γω), γ′ = (γ′r, γ′s, γ′τ , γ′ω). From the identi-
ties in Σext.Verify, we obtain the identities

Sβ′ · g−γ′
s

1 = Sβ · g−γs
1 ,

Eβ′

1 · pp−γ′
s

1 g−β′·m
1 pp−γ′

r = Eβ
1 · pp−γs

1 g−β·m
1 pp−γr

Sγ′
τ · g−γ′

ω
1 = Sγτ · g−γω

1 ,

e(F ′
1, [A]2)−1 · e(F ′

m, [C]2) = e(F1, [A]2)−1 · e(Fm, [C]2)
·e(F ′

2, [C0]2) · e(F ′
3, [C1]2) · e(F2, [C0]2) · e(F3, [C1]2),

where F1 = (Eβ
2 · pp−γs

2 , Eβ
3 · pp−γs

3 ), Fm = (gβ
1 , Eβ

1 · pp−γs
1 ), F2 = (Eβ

4 · pp−γs
4 , Eβ

5 · pp−γs
5 ), F3 =

(E−γτ
4 · pp−γω

4 , E−γτ
5 · pp−γω

5 ) and similarly for F ′
1, F ′

m, F ′
2 and F ′

3. We denote ∆x = (γx − γ′x)
for x ∈ {r, s, τ, ω} and ∆β = (β − β′). Note that ∆β ̸= 0. We further denote s = ∆γs/∆β, r =
∆γr/∆β, τ = ∆γτ /∆β and ω = ∆γω/∆β.

From the first equation, we obtain S∆β · g−∆γs
1 = 1G1 . Taking both sides to the power

of 1/∆β yields S = g
∆γs/∆β
1 = gs

1. Similarly, we obtain from the second equation that E∆β
1 ·

pp−∆γs
1 g−∆βm

1 · pp−∆γr = 1G1 , and thus E1 = gm
1 · ppr · pps

1. Consequently, we have c = gm
1 · ppr,

for c = E1 · pp−s
1 As above, the third equation yields Sτ = gω

1 , so ω = s · τ .
We can now recompute the value ei committed in Ei via ei ← Eipp−s

i . Note that that
F1(F ′

1)−1 = (E∆β
2 · pp−∆γs

2 , E∆β
3 · pp−∆γs

3 ) and thus (F1(F ′
1)−1)1/∆β = (E2 · pp−s

3 , E3 · pp−s
4 ) =

(e3, e4). Similarly, we have (Fm(F ′
m)−1)1/∆β = (g1, e1), (F2(F ′

2)−1)1/∆β = (e4, e5) and (F3(F ′
3)−1)1/∆β =

(eτ
4 , eτ

5). Finally, the last identity implies:

e((e2, e3), [A]2) = e((g1, e1), [C]2) · e((e4, e5), [C0]2) · e((eτ
4 , eτ

5), [C1]2)

As e((eτ
4 , eτ

5), [C1]2) = e((e4, e5), τ [C1]2), it follows that (µ1 = (e2, e3), µ2 = (e4, e5), µ3 = τ) is a
valid signature on message e1 = c. Also, we know c = gm

1 · ppr, as desired.
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Theorem 7.14. The Σ-protocol Σext has high min-entropy.

Proof. Observe that, for example, Ds is distributed uniformly random in G1. It follows that the
advantage of any adversary in the min-entropy game is at most 1/p = negl(λ).

Theorem 7.15. The Σ-protocol Σext has f -unique extraction, where f(µ, c, r) = c.

Proof. As c is committed via an ElGamal commitment, even the first flow α of a transcript
(α, β, γ) fixes c perfectly. The statement follows.

7.3.1 Optimizations and Efficiency

We analyze the efficiency of BSRnd when instantiated with the above schemes.

Optimizations. Note that in the construction, we apply Fiat-Shamir to the Σrnd. It is well-
known that the values (Dm, Ds, Dω, Dµ) can be omitted from the proof, as the identities can be
recomputed as in Σrnd.Verify and checked via β.

Efficiency. The scheme BSRnd is secure under SXDH. The user sends 1 element in G1 and 1
element in Zp, the signer sends 4 elements in G1 and 1 element in Zp and the final signature
contains 6 elements in G1 and 5 elements in Zp. Consequently, the total communication is 303
Byte and signatures are of size 447 Byte for λ = 128.

7.4 Blind Signatures based on Boneh-Boyen Signature

In this section, we provide a blind signature based on randomizable signatures. Compared to
the optimized generic construction of the Fischlin blind signature in section 7.2, the resulting
signature size is much smaller since it only consists of one signature of the underlying randomizable
signature scheme. The construction also relies on an online-extractable NIZK, which we show
in section 7.5 that can be instantiated efficiently by carefully combining Bulletproofs and another
NIZK for an ElGamal commitment. In Section 7.6.2 we show how to adapt the scheme for a
partially blind variant, where we modify the Boneh-Boyen signature [BB04a, BB08] in order to
embed the common message into the verification key.

7.4.1 Construction

We focus on the asymmetric pairing setting. We note that there is also a natural variant of
this scheme in the symmetric setting and we omit details. First, we recall the Boneh-Boyen
signatures [BB04a, BB08] in the asymmetric setting. While this is implicit in our proof, we note
the following is known to be selectively secure in the standard model under the CDH assumption:

– SBB.KeyGen(1λ): samples α, β, γ ← Zp, and sets u1 = gα
1 , u2 = gα

2 , h1 = gγ
1 , h2 = gγ

2 , v =
e(g1, g2)αβ, and outputs vk = (u1, u2, h1, h2, v) and sk = gαβ

1 ,

– SBB.Sign(sk, m): samples r ∈ Zp and outputs (σ1, σ2) = (sk · (um
1 h1)r, gr

1) ∈ G2
1,

– SBB.Verify(vk, m, (σ1, σ2)): outputs 1 if e(σ1, g2) = v · e(σ2, um
2 h2), and otherwise outputs 0.
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Overview. We present our framework for blind signatures based on SBB. Let Π be an
online-extractable NIZK proof system, with random oracle Hzk : {0, 1}∗ 7→ {0, 1}ℓzk and common
reference string crs of length ℓcrs for the relation

Rbb := {x = (c, u1, g1), w = (m, s) | c = um
1 · gs

1}.

Let HM, Hcrs be a random oracles mapping into Zp, {0, 1}ℓcrs respectively. The framework
BSBB[Π], or BSBB for short, broadly works as follows. The verification and signing keys are
identical to the ones of SBB, that is vk = (u1, u2, h1, h2, v) and sk = gαβ

1 . Additionally, the
oracle Hcrs implicitly defines a common random string crs = Hcrs(0) for Π. In order to obtain
a signature on message m, the user first commits to m = HM(m) in a Pedersen commitment
c← um

1 · gs
1 ∈ G1, where s← Zp. Then, computes a proof π via Π showing that c was computed

honestly, and sends ρ1 = (c, π) to the signer. The signer then checks the proof and sends
ρ2 = (ρ2,0, ρ2,1)← (sk · (c · h1)r, gr

1) to the user, where r ← Zp. Finally, the user checks that the
ρ2 is valid with respect to c and that (ρ2,0, ρ2,1) are consistent, and then derives a re-randomized
SBB signature on m = HM(m) via σ = (ρ2,0/ρs

2,1 · (um
1 h1)r′

, ρ2,1 · gr′
1 ).

Description. In more detail, we have the following, where we assume that crs is provided to
all of the algorithms for readability.

– BSBB.KeyGen(1λ): outputs (bvk, bsk) ← SBB.KeyGen(1λ), where bvk = (u1, u2, h1, h2, v)
with u1 = gα

1 , u2 = gα
2 , h1 = gγ

1 , h2 = gγ
2 , v = e(g1, g2)αβ and bsk = gαβ

1 .

– BSBB.User(bvk, m): checks validity of the verification key bvk via e(u1, g2) = e(g1, u2)
and e(h1, g2) = e(g1, h2), sets m ← HM(m) and computes a Pedersen commitment c =
um

1 gs
1 ∈ G1 to m and a proof π ← Π.ProveHzk(crs, x, w), where s← Zp, x = (c, u1, g1), and

w = (m, s). It outputs the first message ρ1 = (c, π) and stores the randomness st = s.

– BSBB.Signer(bsk, ρ1): parses ρ1 = (c, π), checks Π.VerifyHzk(crs, x, π) = 1 and outputs the
second message ρ2 = (ρ2,0, ρ2,1)← (sk · (c · h1)r, gr

1) ∈ G2
1, where r ← Zp.

– BSBB.Derive(st, ρ2): parses st = s and ρ2 = (ρ2,0, ρ2,1), checks e(ρ2,0, g2) = v · e(ρ2,1, um
2 gs

2 ·
h2), and outputs the signature σ = (ρ2,0/ρs

2,1 · (um
1 h1)r′

, ρ2,1 · gr′
1 ) ∈ G2

1 for r′ ← Zp.

– BSBB.Verify(bvk, m, σ): sets m← HM(m) and outputs b← SBB.Verify(bvk, m, σ).

7.4.2 Correctness and Security

We prove correctness, blindness and one-more unforgeability. Correctness follows from a simple
calculation. Blindness follows from the zero-knowledge property of Π, and as c statistically hides
the message and σ is re-randomized. The proof follows a similar all-but-one reduction as the
underlying Boneh-Boyen signature. The only difference is that we modify the Boneh-Boeyn
signature which is selectively secure in the standard model, to be adaptively secure in the ROM,
and to use the (multi)-online extractor to extract randomness of c submitted by the adversary.
Concretely, the reduction first guesses a query m∗ = HM(m∗) and embeds a CDH challenge into
vk such that it can sign all values in Zp \{m∗}. For each signing query, the reduction extracts the
randomness of c from the proof π, simulates the signing of m as in the original EUF-CMA proof of
SBB, and finally reapplies the randomness of c to the intermediate signature. If the extracted
message is m∗, the reduction aborts. Here, we crucially require that Π is online-extractable. In
the end, the reduction hopes to receive a valid signature on m∗ with which it can solve CDH.
More details can be found in section 7.1.2.

Theorem 7.16 (Correctness). The scheme BSBB is correct.
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Proof. Let (bvk, bsk) ← BSBB.KeyGen(1λ), where bvk = (u1, u2, h1, h2, v) and sk = gαβ
1 with

u1 = gα
1 , u2 = gα

2 , h1 = gγ
1 , h2 = gγ

2 , v = e(g1, g2)αβ and bsk = gαβ
1 . Let ρ1 = (c = (um

1 gs
1), π) ←

BSBB.User(bvk, m) for any message m and m ← HM(m), where note that the check on the
verification key performed by the user passes by construction. Under the correctness of Π, the
proof π verifies, and we have ρ2 = (ρ2,0, ρ2,1) = (sk · (c · h1)r, gr

1)← BSBB.Signer(bsk, ρ1). Note
that the check in BSBB.Derive(st, ρ2) passes as

e(ρ2,0, g2) = e(sk · (c · h1)r, g2)
= e(sk, g2) · e(c · h1, g2)r

= v · e(um
1 gs

1 · h1, g2)r

= v · e(gr
1, um

2 gs
2 · h2) = v · e(ρ2,1, um

2 gs
2 · h2).

Then, we can verify that σ = (σ0, σ1)← BSBB.Derive(st, ρ) indeed outputs a valid SBB signature:

(σ0, σ1) = ((sk · (um
1 gs

1 · h1)r)/grs
1 · (um

1 h1)r′
, gr

1 · gr′
1 )

= (sk · (um
1 h1)r · (um

1 h1)r′
, gr+r′

1 )
= (sk · (um

1 h1)r+r′
, gr+r′

1 ).

Theorem 7.17 (Blindness). The scheme BSBB is blind under malicious keys under the zero-
knowledge property of Π.

Proof. Let A be a PPT adversary against blindness. We define the following hybrids and denote
by AdvHi

A (λ) the advantage of A in Hybrid i.

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0, except the Hzk queries and the proofs (π0, π1) are
instead simulated via Sim = (SimHzk , Simπ) of Π. In more detail, for every query q to the
random oracle Hzk, it outputs SimHzk(q). After receiving (bvk, m0, m1) from A, it checks
the validity of the verification key bvk and sets πb ← Simπ(crs, xb) for xb = (cb, u1, g1),
where cb = umb

1 gsb
1 and mb = HM(mb)

We can construct an adversary BΠ against the zero-knowledge property of Π with advantage
Advzk

BΠ(λ) ≥ |AdvH0
A (λ) − AdvH1

A (λ)|. BΠ simulates the view to A by programming the
received crs into Hzk. It then uses the provided oracles to answer Hzk queries and to
generate proofs (π0, π1). Finally, BΠ forwards the guess of A to its challenger. If the oracle
outputs simulated proofs, the game is distributed identically to Hybrid 1. Else, the oracle
outputs real proofs and behaves as in Hybrid 0. Thus, we have

|AdvH0
A (λ)− AdvH1

A (λ)| ≤ Advzk
BΠ(λ).

– Hybrid 2 is the same as Hybrid 1, except that the (inefficient) challenger recovers the
signing key bsk, and prepares the signatures (σ0, σ1) on its own. In more detail, the
challenger brute force searches the exponent α, β, γ ∈ Zp such that u1 = gα

1 , h1 = gγ
1 ,

and v = e(g1, g2)αβ in the verification key bvk output by A. When A returns the second
message ρb,2 = (ρb,2,0, ρb,2,1), it first checks if e(ρb,2,0, g2) = v · e(ρb,2,1, umb

2 gsb
2 · h2) as in the

previous Hybrid 1. If so, it runs σb ← SBB.Sign(sk, mb), where sk = gαβ
1 and mb = HM(mb).

Otherwise, it is the same as the previous Hybrid 1.
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We show that Hybrids 1 and 2 are perfectly indistinguishable. Since the check performed
by the challenger passes, we have the following for both Hybrids:

e(ρb,2,0, g2) = v · e(ρb,2,1, umb
2 gsb

2 · h2)
⇔ e(ρb,2,0, g2) = e(g1, g2)αβ · e(ρb,2,1, g2)αmb+sb+γ .

If we set ρb,2,1 = g
r∗

b
1 , then we have ρb,2,0 = g

αβ+r∗
b ·(αmb+sb+γ)·

1 = sk · (cb · h1)r∗
b , where

sk = gαβ
1 . In Hybrid 1, the challenger then outputs the signature

σb = (ρ2,b,0/ρsb
2,b,1 · (u

mb
1 h1)r′

b , ρ2,b,1 · g
r′

b
1 )

= (sk · (umb
1 gsb

1 · h1)r∗
b · g−r∗

b sb

1 · (umb
1 h1)r′

b , g
r∗

b +r′
b

1 )

= (sk · (umb
1 h1)r∗

b +r′
b , g

r∗
b +r′

b
1 ),

where r′b ← Zp. Since r′b is information-theoretically hidden from A, σb is identically
distributed as a signature output by SBB.Sign(sk, mb) in Hybrid 2. Hence, we have
AdvH1

A (λ) = AdvH2
A (λ).

– Hybrid 3 is the same as Hybrid 2, except that the challenger samples a random cb ← G1,
simulates a proof πb ← Simπ(crs, xb) for xb = (cb, u1, g1), and outputs ρb,1 = (cb, πb) as the
first message. It can be checked that Hybrids 2 and 3 are perfectly indistinguishable by
noticing that sb ← Zp is information-theoretically hidden from A due to the modifications
we made in Hybrids 1 and 2. Namely, in Hybrid 2, we have cb = umb

1 gsb
1 where sb is

uniform over Zp from the view of A. Hence, sampling cb uniform over G results in the
same distribution. Hence, we have AdvH2

A (λ) = AdvH3
A (λ).

In Hybrid 3, the value of coin is information-theoretically hidden from A, as the commitments cb

and the proofs πb are identically distributed for b ∈ {0, 1}. Consequently, AdvH3
A (λ) = 0. Also,

the running time of the adversaries BΠ is roughly that of A. Combining the inequalities yields
the statement.

Theorem 7.18 (Unforgeability). The scheme BSBB is one-more unforgeable under the CDH
assumption and the online-extractability of Π.

Proof. Let A be a PPT adversary against one-more unforgeability of BSBB. Let Ext be the
extractor and Simcrs the simulator of Π from definition 3.31. We denote by QS the number of
signing queries, by QM the number of HM queries, and by QH the number of Hzk queries. Recall
that we model Hcrs, Hzk and HM as random oracles, where we assume without loss of generality
that A never repeats queries. We denote by qj the j-th query to HM for j ∈ [QM ]. After QS

signing queries, A outputs QS + 1 forgeries {(mi, σi)}QS+1
i=1 . We write σi = (σi,1, σi,2), and denote

by ρ1,i = (ci, πi) the QS first message queries to BSBB.Signer(bsk, ·) issued by A. We define the
following hybrids and denote by AdvHi

A (λ) the advantage of A in Hybrid i.

– Hybrid 0 is identical the real game.

– Hybrid 1 is the same as Hybrid 0, except it samples (crs, τ) ← Simcrs(1λ) and programs
crs into the random oracle Hcrs via Hcrs(0)← crs. It is easy to construct an adversary Bcrs
against the CRS indistinguishability of Π such that AdvH1

A (λ) ≥ AdvH0
A (λ)− Advcrs

Bcrs(λ).

– Hybrid 2 is the same as Hybrid 1, except (mi, si) is extracted from all the proofs {πi}i∈[QS ]
using ExtΠ. Specifically, when A provides the signing query ρ1,i = (ci, πi), the challenger
runs wi ← Ext(crs, td, xi, πi), where xi = (ci, u1, g1). It parses wi = (mi, si) and aborts if
umi

1 · g
si
1 ̸= ci. Otherwise, it is defined identically to the previous Hybrid 1.
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We can construct an adversary BExt against the multi-online extractability of Π with
AdvH2

A (λ) ≥ AdvH1
A (λ)−negl(λ)
pP(λ,QH) with additional runtime overhead pT(λ, QH) · Time(A), where

pP and pT are polynomials as defined in definition 3.31. In more detail, let us first consider
B′Ext that receives crs from its challenger, and simulates the challenger of Hybrid 2 for A,
after programming crs into Hcrs and by answering Hzk queries via its provided oracle. At the
end of the game, B′Ext outputs the pairs {(xi, πi)}i∈[QS ], where xi = (ci, u1, h1). Because A
succeeds with probability AdvH1

λ , the pre-condition of definition 3.31 holds, and the above
bound follows.
Observe that the output wi of Ext is not used anywhere in Hybrid 2. Also, aborting in case
of extraction failure and the runtime of Ext does not impact the success probability of A
in Hybrid 2. Therefore, we can equally define an adversary BExt that runs Ext during the
game instead of at the end. Specifically, this is identical to the description of the Hybrid 2
challenger.

– Hybrid 3 is the same as Hybrid 2, except it aborts if there is a collision in HM or if there is
some message mi in A’s output that was never queried to HM.

The abort probability is upper bounded by Q2
M +1
p , as a collision in HM happens with

probability at most Q2
M /p and the probability that some SBB signature σi is valid for a

random message m ∈ Zp is 1/p. It follows that AdvH3
A (λ) ≥ AdvH2

A (λ)− Q2
M +1
p .

– Hybrid 4 is the same as Hybrid 3, except it guesses a query index j∗ of HM for which it
outputs some random m∗ ∈ Zp, and aborts if either some sign query contains m∗ or if A
provides no forgery for some message that hashes to m∗. More concretely, before Hybrid
3 interacts with A, it samples m∗ ← Zp and j∗ ← [QM ]. For the j∗-th query to HM, it
sets HM(qj∗)← m∗. At the i-th signing query, the signer aborts if the extracted witness
is (m∗, si), else proceeds as usual. Also, Hybrid 3 aborts if m∗ /∈ {HM(mi) | i ∈ [QS + 1]},
where mi are the messages from the forgeries output of A.
A simple calculation yields AdvH4

A (λ) ≥ 1
QM

AdvH3
A (λ), where E3 denotes the event that A

is successful in Hybrid 3.

AdvH4
A (λ) = Pr[m∗ /∈ {Ext(crs, td, xi, πi)}i∈[QS ] ∧m∗ ∈ {HM(mi)}i=∈[QS+1] | E3] · Pr[E3]

= Pr[m∗ ∈ {HM(mi)}i∈[QS+1] \ {Ext(crs, td, xi, πi)}i∈[QS ] | E3] · Pr[E3]
≥ Pr[m∗ = m⋆ | E3] · Pr[E3]
= 1/QM · AdvH3

A (λ)

Here, we use for the inequality that there is no collision in HM, and thus there exists at
least one m⋆ ∈ {HM(mi)}i∈[QS+1] \ {Ext(crs, td, xi, πi)}i∈[QS ]. In the last equality, we use
that j∗ is uniform in A’s view.

– Hybrid 5 is the same as Hybrid 4, except it sets up a punctured verification key and
simulates signing without knowing the full sk. Specifically, it samples g1 ← G1, g2 ← G2
and sets A1 ← gα

1 , A2 ← gα
2 , B1 ← gβ

1 , B2 ← gβ
2 , u1 = A1, u2 = A2, h1 = u−m∗

1 · gδ
1, h2 =

u−m∗

2 · gδ
2, v = e(A1, B2), where m∗ is the j∗-th HM output and α, β, δ ← Zp, and sends

bvk = (g1, g2, u1, u2, h1, h2, v) to A. Note that implicitly γ = −m∗ · α + δ ∈ Zp. For
each signing query ρi,1 = (ci, πi) with extracted witness wi = (mi, si), the challenger
samples some r̃i ← Zp, and sets ρi,2,1 = gr̃i

1 ·B
−1/(mi−m∗)
1 and ρi,2,0 = A(mi−m∗)r̃ · g(si+δ)r̃i

1 ·
B
−(si+δ)/(mi−m∗)
1 . It then returns A the second message as ρi,2 = (ρi,2,0, ρi,2,1). Otherwise,

it is defined identically as in the previous Hybrid 4.
Clearly, bvk is distributed identically in Hybrids 4 and 5. Also, ρi,2,0 = g

r̃i−β/(mi−m∗)
1 is

distributed identically in Hybrids 4 and 5, as ri = r̃i−β/(mi−m∗) is distributed uniformly
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over Zp for a uniform r̃i. The same holds for ρi,2,1, as mi ̸= m∗ due to the abort condition
and

gαβ
1 (ci · h1)ri = gαβ

1 (Ami · gsi
1 ·A

−m∗
· gδ

1)r̃i−β/(mi−m∗)

= gαβ
1 (Ami−m∗

· gsi+δ
1 )r̃i−β/(mi−m∗)

= gαβ
1 A−β ·A(mi−m∗)r̃ · g(si+δ)r̃i

1 ·B−(si+δ)/(mi−m∗)

= A(mi−m∗)r̃ · g(si+δ)r̃i

1 ·B−(si+δ)/(mi−m∗) = ρi,2,1.

Thus, AdvH5
A (λ) = AdvH4

A (λ).

We now show that we construct an adversary BCDH with AdvCDH
ACDH(λ) = AdvH5

A (λ). First, BCDH
receives CDH-tuple (g1, g2, A1, A2, B1, B2), and uses these values to simulate the challenger of
Hybrid 5 to A. After A outputs the forgeries {(mi, σi)}QS+1

i=1 , BCDH outputs σi∗,1/σδ
i∗,2 to its

challenger, where i∗ such that HM(mi∗) = m∗ and σi∗ = (σi∗,1, σi∗,2).
Note that due to the abort conditions in Hybrid 5, the probability that BCDH outputs such a

value σi∗,1/σδ
i∗,2 with e(σi∗,1, g2) = v · e(σi∗,2, u

mi∗
2 ·h2) is at least AdvH5

A (λ). In that case, we have

e(σi∗,1, g2) = v · e(σi∗,2, u
mi∗
2 · h2)

=⇒ e(σi∗,1, g2) = v · e(σi∗,2, Am∗
2 ·A−m∗

2 gδ
2)

=⇒ e(σi∗,1, g2) = v · e(σi∗,2, gδ
2)

=⇒ e(σi∗,1/σδ
i∗,2, g2) = v

Thus, σi∗,1/σδ
i∗,2 = gαβ

1 as desired. The statement follows after collecting all the above bounds
on the success probability and runtime.

7.5 Instantiation of the Framework based on Boneh-Boyen
Here, we instantiate the online-extractable NIZK Π and analyze the efficiency of the blind
signature BSBB[Π]. First, we present our instantiation of Π. Π is a NIZK for showing knowledge
of an opening of a Pedersen commitment c = um

1 gs
1, where u1, g1 ∈ G1 and m, s ∈ Zp,10 i.e.for

the relation
Rbb := {x = (c, u1, g1), w = (m, s) | c = um

1 gs
1}.

On a high level, we follow the well-known paradigm of combining an extractable commitment
scheme (or equivalently a PKE) with a rewinding-based (non-online-extractable) NIZK Π′ to
construct an online-extractable NIZK Π. In the paradigm, the prover commits to the witness
(m, s) using the extractable commitments, and adds a proof π via Π′ to ensure that she indeed
committed to openings of c, i.e.that c = um

1 gs
1 and (m, s) are committed in the extractable

commitments. The online extractor can recover (m, s) from π by extracting the commitments
via an appropriate trapdoor. Note that the soundness of the NIZK Π′ guarantees consistency
of the committed values and the openings of c. Indeed, in case the online extraction fails with
non-negligible probability, we obtain a contradiction to the soundness of the underlying NIZK Π′
via rewinding.

In the group setting, a common choice is ElGamal commitments. Note that we require the
variant of ElGamal with message space Zp, i.e.cm = (gm

1 pprm , grm
1 ) and (cs = gs

1pprs , grs
1 ) (see

remark 7.8). Unfortunately, we can only extract (m, s) if the values are short, i.e.m, s ∈ [0, B− 1]
for B = poly(λ). A common technique to circumvent this issue is to instead commit to the binary

10While we used m in the previous section, we omit the bar and simply denote m for readability.
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decomposition (mi)i and (si)i, where m =
∑⌈log2 p⌉

i=1 mi2i−1 and s =
∑⌈log2 p⌉

i=1 si2i−1, and show
that the committed values (mi)i and (si)i are bits and form valid decompositions of m and s,
respectively. Unfortunately, this approach requires 2 · ⌈log2(p)⌉ ElGamal commitments, and thus
at least 1024 group elements for λ = 256. These elements already amount to more than 32 KB
alone.

We instead commit to the B-ary decomposition (mi)i∈[ℓ] and (si)i∈[ℓ] of m =
∑ℓ

i=1 miB
i−1

and s =
∑ℓ

i=1 siB
i−1, respectively, where ℓ = ⌈logB p⌉. As before, we show consistency of the

committed values with the openings of c via a NIZK that ensures c = um
1 gs

1, m =
∑ℓ

i=1 miB
i−1

and s =
∑ℓ

i=1 siB
i−1, and a range proof which ensures that all ElGamal committed mi and si lie

in the range [0, B − 1]. This approach improves efficiency considerably. For example for B = 232,
we have ℓ = 8 and require only 32 group elements for the ElGamal commitments, instead of 1024.

We instantiate the NIZK Π by composing two NIZKs together: one for proving the ElGamal
commitments (Πped) and the other for the range proof (Πrp). For the first NIZK Πped, we use
the Fiat-Shamir transformation on an appropriate Σ-protocol Σped. For the second NIZK Πrp
for the range proof, we would like to use the Fiat-Shamir transformation on a variant of
Bulletproofs [BBB+18] that shows range membership for multiple Pedersen commitments ([AC20],
Appendix F.2). However, Bulletproofs are not well-established in the non-interactive setting.
Recently, [GOP+22] shows that non-interactive Bulletproofs are sound in the AGM and ROM,
but as the proof relies on the AGM, it is not sufficient for our purpose. Attema, Fehr and
Klooß show in another recent result [AFK22] that the Fiat-Shamir transformation is sound for
multi-round interactive proof systems Σint, if Σint is standard special sound, i.e.given a valid
transcript tree, it is possible to recover the witness unconditionally. Unfortunately, Bulletproofs
and its variant [AC20] satisfy only computational special soundness which is insufficient to apply
the result of [AFK22] directly. To this end, we show that for an appropriate relaxed special
soundness relation, we can nonetheless apply the Fiat-Shamir transform on Bulletproofs and its
variant [AC20] using the result of [AFK22]. While the resulting NIZK Πrp for the range proof
satisfies a relaxed notion of special soundness, this is sufficient for our purpose.

Equipped with the above tools, we can instantiate Π. We apply three further optimizations:

1. The (interactive) range proof of [AC20] requires the witness e = (m1, ..., mℓ, s1, ..., sℓ) to be
committed in the Pedersen commitments. Note that we can reuse the ElGamal commitments
Ei as Pedersen commitments for the range proof, where (Ei = gei

1 ppri , Ri = gri
1 )i∈[2ℓ] are

already required for online extraction. However, as the extractor knows the trapdoor td
such that gtd

1 = pp, we need to be careful in the security analysis, as td also allows to
equivocate Pedersen commitments (and thus potentially break soundness of the range
proof). This subtlety is reflected in the relaxed soundness relation. Fortunately, we can
analyze the extraction probability without knowing td and the proof goes through. We
provide more details in section 7.5.

2. During extraction, we use a more efficient algorithm to compute the discrete logarithm
in O(

√
B). This allows us to choose better parameters, as a larger bound B improves

efficiency but impacts the runtime of the extractor.

3. Observe that pairing groups are generally larger and slower than simple prime-order groups.
Thus, we move the parts that are not required to be in G1 into a group Ĝ of the same
order p as G1 (to maintain algebraic consistency). As both NIZKs Πped and Πrp are not
reliant on pairings, we can perform both almost exclusively in Ĝ.

In the following, we first present the Σ-protocol Σped (which we will later transform into a
NIZK Πped via Fiat-Shamir) and the NIZK Πrp for the range proof. We then combine both proof
systems into an online-extractable NIZK Π for the relation Rbb and analyze its security. In more
detail, when online-extraction of Π fails, it is easy to show that we can extract a witness from at
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least one of the proofs generated by Πped and Πrp by relying on the rewinding-extraction of Πped
and the adaptive knowledge soundness of Πrp (cf. definition 3.29) in an independent manner.
What is non-trivial is to show that both extractions succeed simultaneously. Such simultaneous
extraction is necessary since the two NIZKs are glued together by the Pedersen commitment
Ei = gei

1 ppri : each NIZK may be using a different opening to construct the proof, in which case
we need to extract from both proofs to break binding. For instance, using the standard notion
of rewinding-extractability, we cannot exclude the case where the adversary sets up the proofs
π0, π1 of Πrp, Πped, respectively, in such a way that if the extractor of Πrp succeeds, then the
extractor of Πped fails. We show through a careful non-black analysis of the underlying NIZKs
that there is a non-negligible probability of the rewinding-extraction of Πped and the adaptive
knowledge soundness of Πrp succeeding at the same time. Finally, we evaluate the efficiency of
BSBB[Π]. For readability, we mark elements ĝ in Ĝ with a hat.

Σ-protocol Σped for the Decomposition

We first present a Σ-protocol Σped for the relation Rped where

Rped = {(x, w) : c = um
1 gs

1, Ei = ĝei p̂pri , Ri = ĝri ,∏
i∈[ℓ]

EBi−1
i = ĝm · p̂ptm ,

∏
i∈[ℓ]

EBi−1
i+ℓ = ĝs · p̂pts},

where x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2ℓ], B) and w = (m, s, (ei, ri)i∈[2ℓ], tm, ts). Note that the
relation shows that m =

∑ℓ
i=1 eiB

i−1 and s =
∑ℓ

i=1 ei+ℓB
i−1 under the DLOG assumption. The

protocol is given below.

– Σped.Init(x, w): for (x, w) as above, samples additive masks m̃, s̃, ẽi, r̃i, t̃m, t̃s ← Zp, sets

Dc = um̃
1 gs̃

1, Dei = ĝẽi p̂pr̃i , Dri = ĝr̃i ,

Dm = ĝm̃p̂pt̃m , Ds = ĝs̃p̂pt̃s ,

where i ∈ [2ℓ], outputs α = (Dc, (Dei , Dri)i∈[2ℓ], Dm, Ds), and stores (m̃, s̃, (ẽi, r̃i)i∈[2ℓ], t̃m, t̃s)
in st.

– Σped.Chall(): samples a challenge β ← Zp,

– Σped.Resp(st, β): sets γk = β · k + k̃ for k ∈ {m, s, e1, ..., e2ℓ, r1, ..., r2ℓ, tm, ts}, and outputs
the response γ = (γm, γs, (γei , γei)i∈[2ℓ], γtm , γts),

– Σped.Verify(x, α, β, γ): checks the following equations

Dc = uγm
1 · gγs

1 · c
−β, Dei = ĝγei p̂pγri · E−β

i , Dri = ĝγri ·R−β
i ,

Dm = ĝγm p̂pγtm · (
ℓ∏

i=1
EBi−1

i )−β, Ds = ĝγs p̂pγts · (
ℓ∏

i=1
EBi−1

i+ℓ )−β,

and outputs 1 if and only if all checks succeed. Note that the first three equations open
the commitments c and (Ei, Ri), and the last two equations show the products hold. Also,
observe that the equations are well-defined, as both Ĝ and G1 have order p.

We now show that Σped is correct, HVZK, 2-special sound and has high min-entropy.

Theorem 7.19. The Σ-protocol Σped is correct.
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Proof. Let (α, β, γ) be a honest transcript for (x, w), where x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2ℓ], B)
and w = (m, s, (ei, ri)i∈[2ℓ], tm, ts). We use the notation from above. We show that the first and
fourth check pass, the remaining identities follow similarly.

uγm
1 · gγs

1 · c
−β = uβ·m+m̃

1 · gβ·s+s̃
1 · c−β =

(um
1 · gs

1)β · um̃
1 gs̃

1 · c−β = cβ · um̃
1 gs̃

1 · c−β = Dc

ĝγm p̂pγtm · (
ℓ∏

i=1
EBi−1

i )−β = ĝβ·m+m̃p̂pβ·tm+t̃m · (
ℓ∏

i=1
EBi−1

i )−β =

(ĝm · p̂ptm)β · ĝm̃p̂pt̃m · (
ℓ∏

i=1
EBi−1

i )−β = ĝm̃p̂pt̃m = Dm

Theorem 7.20. The Σ-protocol Σped is HVZK.

Proof. Let x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2ℓ], B) and β ∈ Zp. We define the simulator Sim as
follows. On input (x, β), samples γ = (γm, γs, (γei , γei)i∈[2ℓ], γtm , γts) ← Z4+4ℓ

p and computes
(Dc, (Dei , Dri)i∈[2ℓ], Dm, Ds) via the identities in Σped.Verify. Finally, sets α = (Dc, (Dei , Dri)i∈[2ℓ],
Dm, Ds) and outputs the transcript (α, β, γ).

To show that Sim outputs transcripts that are indistinguishable from real transcripts, we
define the following hybrids and denote by AdvHi

A (λ) the advantage of A in Hybrid i.

– Hybrid 0 outputs honestly generated transcripts.

– Hybrid 1 is the same as Hybrid 0, except the elements (Dc, (Dei , Dri)i∈[2ℓ], Dm, Ds) are
generated as in Sim. It is easy to check that Hybrid 0 and Hybrid 1 are identically
distributed, and we have AdvH0

A (λ) = AdvH1
A (λ).

– Hybrid 2 is the same as Hybrid 1, except γ is computed as in Sim. As the values k̃ serves as
one-time pad for β · k, where k ∈ {m, s, e1, ..., e2ℓ, r1, ..., r2ℓ, tm, ts}, it follows that Hybrid
1 and Hybrid 2 are identically distributed. Thus, we have AdvH1

A (λ) = AdvH2
A (λ).

As Hybrid 2 outputs simulated transcripts, the statement follows.

Theorem 7.21. The Σ-protocol Σped is 2-special sound.

Proof. Let x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2ℓ], B). We define the extractor Ext as follows. On input
valid transcripts (α, β, γ) and (α, β′, γ′) with β ̸= β′. Ext parses α = (Dc, (Dei , Dri)i∈[2ℓ], Dm, Ds)
and γ = (γm, γs, (γei , γei)i∈[2ℓ], γtm , γts), γ′ = (γ′m, γ′s, (γ′ei

, γ′ei
)i∈[2ℓ], γ′tm

, γ′ts
). As both transcripts

are valid, we obtain the following identities via the verification identities

uγm
1 · gγs

1 · c
−β = u

γ′
m

1 · gγ′
s

1 · c
−β′

,

ĝγei p̂pγri · E−β
i = ĝγ′

ei p̂pγ′
ri · E−β′

i ,

ĝγri ·R−β
i = ĝγ′

ri ·R−β′

i ,

ĝγm p̂pγtm · (
ℓ∏

i=1
EBi−1

i )−β = ĝγ′
m p̂pγ′

tm · (
ℓ∏

i=1
EBi−1

i )−β′
,

ĝγs p̂pγts · (
ℓ∏

i=1
EBi−1

i+ℓ )−β = ĝγ′
s p̂pγ′

ts · (
ℓ∏

i=1
EBi−1

i+ℓ )−β′
,
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We denote ∆k = (γk − γ′k) and k = ∆k/∆β for k ∈ {m, s, e1, ..., e2ℓ, r1, ..., r2ℓ, tm, ts} and
∆β = (β−β′). Note that ∆β ̸= 0. The extractor finally outputs (m, s, e1, ..., e2ℓ, r1, ..., r2ℓ, tm, ts).

From the first equation, we obtain u
γm−γ′

m
1 · gγs−γ′

s
1 · c−(β−β′) = 1G1 . Taking both sides to the

power of 1/∆β yields u
∆m/∆β
1 · g∆s/∆β

1 = c. By definition of m and s, we obtain c = um
1 gs

1 as
desired. Similarly, we obtain from the second and third equation that ĝei p̂pri = Ei and ĝri = Ri,
respectively. The fourth equation yields that ĝγm−γ′

m p̂pγtm−γ′
tm · (

∏ℓ
i=1 EBi−1

i )−(β−β′) = 1Ĝ.
Again, multiplying with 1/∆β in the exponent yields

∏
i∈[ℓ] EBi−1

i = ĝm · p̂ptm , and similarly the
fifth equation yields

∏
i∈[ℓ] EBi−1

i+ℓ = ĝs · p̂pts . This concludes the proof.

Theorem 7.22. The Σ-protocol Σped has high min-entropy.

Proof. Observe that all Dri are distributed uniformly random in Ĝ. It follows that the advantage
of any adversary in the min-entropy game is at most 1/pℓ = negl(λ).

Range Proof Πrp for the Decomposition

We now describe the NIZK Πrp for the range proof for the vectors committed in Ei. We start
with an appropriate multi-round interactive proof system and obtain Πrp via the Fiat-Shamir
transformation. We follow the definitions for multi-round interactive proof systems and the
notion of (k, N)-special soundness with vectors k and N of [AFK22]. We use the definitions of
correctness, HVZK of [AC20]. Since we can rely on the result of [AFK22, AC20] in a black-box
manner, we refer the readers to [AFK22, AC20] for the formal definitions.

Let Hrp be a random oracle mapping into Zp
11. Πrp is a NIZK with random oracle Hrp for

the relation

Rrp = {(x, w) : Ei = ĝei · p̂pri , ei ∈ [0, B − 1] for i ∈ [2ℓ]},

with x = (B, (Ei)i∈[2ℓ]) and w = ((ei, ri)i∈[2ℓ]), where B is a power of two. We obtain Πrp by
applying the Fiat-Shamir transformation as described in [AFK22] to the multi-round interactive
proof system Σ2ℓ

rp with crs = (ĝ, p̂p, (ĝi)i∈[ℓrp]) from [AC20] (Appendix F.2), for appropriate
ℓrp ∈ N.

Denote with Rdlog = {(crs, w∗)} the relation that contains all non-trivial DLOG relations w∗

for crs, i.e.computing w∗ for random crs allows to solve the DLOG assumption (see [AC20] for
more details). Via Theorem 14 of [AC20], we can show that Πrp is correct and zero-knowledge.
Moreover, we can show adaptive knowledge soundness for the relaxed relation

Rlax := {(x, w) : (x, w) ∈ Rrp or (crs, w) ∈ Rdlog},

using Theorem 4 of [AFK22], which is sufficient for our purpose. We sketch the proof below.

Theorem 7.23. The NIZK Πrp for relation Rrp is correct, zero-knowledge and adaptively knowledge
sound for the relaxed relation Rlax ⊇ Rrp.

Sketch. Correctness follows directly, as Σ2ℓ
rp is correct (Theorem 14, [AC20]) and the Fiat-Shamir

transformation retains correctness of the interactive protocol. For showing zero-knowledge,
observe that the intermediate prover outputs in Σ2ℓ

rp have high min-entropy. Thus, with all but
negligible probability, these outputs were never queried to the random oracle. Consequently, the
simulator can simulate a proof π by first simulating a transcript with challenge vector β using
the HVZK property of Σ2ℓ

rp , and then programming the random oracle with β accordingly.

11Note that technically, Πrp requires a tuple of hash function (Hi)i∈[5+µ] mapping into Zp, where µ =
⌈log2(4 log2(B)ℓ + 4)⌉ − 1. With sufficient input separation, we view (Hi)i∈[5+µ] as a single random oracle
Hrp, for example if we query Hrp(i, q) instead of Hi(q).
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Note that [AFK22] shows computational special soundness of Σ2ℓ
rp for the relation Rrp. Here,

computational special soundness means that either some w such that (x, w) ∈ Rrp or w∗ such that
(w∗, crs) ∈ Rdlog is extracted from a transcript tree. The latter happens with negligible probability
under the DLOG assumption, so w is extracted with overwhelming probability. However, to
apply Theorem 4 from [AFK22] to Πrp, we require standard special soundness of Σ2ℓ

rp , and thus
we make the witness w∗ explicit in the relation Rlax. For the relation Rlax, the interactive proof
system Σ2ℓ

rp is (k, N)-special sound with vectors k = (2ℓ + 1, 4nℓ + 1, 2nℓ + 3, 2, 2, n1, ..., nµ) and
N = (Ni)5+µ

i=1 , where n = log2(B), µ = ⌈log2(4nℓ + 4)⌉− 1, ni = 3 and Ni = p. As [AFK22] never
requires correctness or HVZK of the proof system, it is fine that Rrp and Rlax are different. Thus,
we can apply Theorem 4 in [AFK22] to show adaptive knowledge soundness 12. Note that the
knowledge error Er(k, N) is negligible in λ, following the notation of [AFK22], because:

Er(k, N) = 1−
5+µ∏
i=1

(1− ki − 1
Ni

)

≤ 1−
5+µ∏
i=1

(1− 4nℓ

p
)

= negl(λ)

As we also have
∏5+µ

i=1 ki ≤ (5nℓ)5 · 3log2(8nℓ) = O((nℓ)6) = poly(λ), the extractor runs in time
poly(λ) as desired. The statement follows.

Online-extractable NIZK Π for Rbb

We are now ready to instantiate the online-extractable NIZK Π for the relation Rbb with crs =
(ĝ, p̂p, (ĝi)i∈[ℓrp]). Let Hrp be the random oracle of Πrp and Hβ be a random oracle mapping into
Zp. We denote by Hbb = (Hrp, Hβ) the random oracle of Π 13. Let B = poly(λ) be a power of
two. The scheme is given below.

– Π.ProveHbb(crs, x, w): on input crs, x = (c, u1, g1) and w = (m, s), decomposes m =∑ℓ
i=1 miB

i−1, s =
∑ℓ

i=1 siB
i−1, and computes Ri = ĝri , Ei = ĝei p̂pri

i for i ∈ [2ℓ], where e =
(m1, ..., mℓ, s1, ..., sℓ) and ri ← Zp. Then, sets tm ←

∑ℓ
i=1 riB

i−1 and ts ←
∑ℓ

i=1 ri+ℓB
i−1,

and computes

π0 ← Πrp.ProveHrp(crs, x0, w0),

for statement x0 = (B, (Ei)i∈[2ℓ]) and witness w0 = ((ei, ri)i∈[2ℓ]), and

(α, st)← Σped.Init(x1, w1),
β ← Hβ(x1, α),
γ ← Σped.Resp(x1, st, β),
π1 ← (α, β, γ),

for statement x1 = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2ℓ], B) and witness w1 = (m, s, (ei, ri)i∈[2ℓ], tm, ts).
Outputs π = (π0, π1, (Ei, Ri)i∈[2ℓ]).

12Technically, our definition of adaptive knowledge soundness (cf. definition 3.29) differs slightly from the
definition in [AFK22]. Ours allows us to prove online-extractability for our construction Π later, and it is easy to
check that the extractor of [AFK22] suffices for our definition (cf. remark 3, [AFK22]).

13Note that as in section 7.5, we can see Hbb as a single random oracle mapping into Zp (to fit our definition).
For readability, we allow Hbb to be a tuple of random oracles in the security proof.
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– Π.VerifyHbb(crs, x, π): on input crs, x = (c, u1, g1) and π = (π0, π1, (Ei, Ri)i∈[2ℓ]), checks

Πrp.VerifyHrp(crs, x0, π0) = 1,

Hβ(x0, α) = β′ ∧ β = β′,

Σped.Verify(x1, α, β, γ) = 1,

where π1 = (α, β, γ) and x0, x1 are defined as above, and outputs 1 iff all checks succeed.

We show that Π is correct, zero-knowledge under the DDH assumption and online-extractable
under the DLOG assumption. Correctness follows immediately from the correctness of Πrp and
Σped. Also, zero-knowledge is easy to show via the hiding property of ElGamal commitments,
the zero-knowledge property of Πrp (cf. theorem 7.23) and the HVZK and high min-entropy
property of Σped (cf. theorems 7.20 and 7.22).

The proof for multi-proof extractability is more intricate. Roughly, the extractor embeds a
trapdoor td for the commitment scheme in the crs. Then, given a statement-proof pair (x, π) with
x = (c, u1, g1) and π = (π0, π1, (Ei, Ri)i∈[2ℓ]), it decrypts the witnesses (ei)i from the ElGamal
commitment (Ei, Ri)i and tries to check if the extracted witness reconstructs to a witness in the
relation Rbb. We expect that this is possible, as the range proof guarantees that the committed
values are short and Σped proves the linear relations in the exponents.

For the sake of exposition, below we only consider extracting from a single pair (x, π)← A(crs)
generated by some adversary A. The argument generalizes to QS pairs in a straightforward
manner. Note that (x, π) defines statement-proof pairs (x0, π1) for Πrp and (x1, π1) for Σped as
in Π.Verify.

For the sake of contradiction, let us assume that extraction fails. We first try to extract a
witness w0 = (e′i, r′i)i from π0 via the knowledge extractor of Πrp, and a witness w1 = (m, s, (ei, ri)i)
from π1 from two related transcripts obtained via rewinding A. Here, it is important that A
is run with the same random tape coinA for both extractions to guarantee that the statements
x0 and x1 share the commitments (Ei)i. For now, let us assume that both extractions succeed,
i.e.(x0, w0) ∈ Rrp and (x1, w1) ∈ Rped. Assuming the soundness of Πrp, we have e′i ∈ [0, B − 1].
Moreover, assuming the soundness of the non-interactive Σped, the extracted (ei)i form the B-ary
decomposition of a valid opening of c. Then, under the assumption that extraction fails, we must
have e′i ̸= ei for some i. However, this breaks the binding property of the Pedersen commitment
implicitly defined by the ElGamal commitments. In particular, we found a DLOG relation for
the tuple (ĝ, p̂pi). Note that while the extracted DLOG relation is a trapdoor information td
the extractor uses to extract the witnesses, this will not be an issue since we do not need td to
analyze the success probability of the adversary.

It remains to show that extraction of w0 and w1 succeeds. Recall that we assumed that the
extraction of w0 and w1 succeeds simultaneously, even if we initially run A on a shared random
coin. But these events are dependent, and applying adaptive knowledge soundness of Πrp and
a general forking lemma independently is not sufficient. Instead, we first extract w0 with the
extractor of Πrp. This step has a high success probability due to knowledge soundness of Πrp.
Then, we define a specialized forking algorithm that first runs A on the same randomness (and
same initial random oracle choices), and then rewinds A to obtain related transcripts. Finally, a
careful non-black box analysis of the forking algorithm, similar to [PS00], allows us to conclude
that the algorithm succeeds in finding two related transcripts.

Theorem 7.24. The NIZK Π is correct.
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Proof. By construction, it holds that (x0, w0) ∈ Rrp. Similarly, we have (x1, w1) ∈ Rped, as∏
i∈[ℓ]

EBi−1
i =

∏
i∈[ℓ]

(ĝei p̂pri
i )Bi−1

= ĝ
∑ℓ

i=1 miB
i−1
· p̂p

∑ℓ

i=1 riB
i−1

= ĝm · p̂ptm ,

and similarly
∏

i∈[ℓ] EBi−1
i+ℓ = ĝs · p̂pts .

Theorem 7.25. The NIZK Π is zero-knowledge under the zero-knowledge property of Πrp, the
HVZK and high min-entropy property of Σped, and under the DDH assumption in Ĝ.

Proof. Denote by Sim0 = (SimHrp , Simπ0) the simulator of Πrp and by Σped.Sim1 the simulator of
Σped. We define the simulator Sim = (SimHbb , Simπ) of Π as follows. SimHbb prepares an empty
list L. For every new query q to the random oracle Hβ, it returns a random element β ← Zp

and stores (q, β) in L, and answers old queries consistently via L. For every query q to the
random oracle Hrp, it returns SimHrp(q). Now, for each proof query (x, w) ∈ Rbb, Simπ sets
(Ei, Ri)← (p̂pri , ĝri) for random ri ← Zp and i ∈ [2ℓ], and prepares the two statements x0, x1 as
in the real protocol. It then simulates π0 ← Simπ0(crs0, x0) and π0 = (α, β, γ)← Σped.Sim1(x1, β),
where β ← Zp. If Hβ was already queried on input (x1, α), then Simπ outputs ⊥. Otherwise,
Simπ outputs the simulated proof π = (π0, π1, (Ei, Ri)i∈[2ℓ]), and SimHbb stores ((x1, α), β1) in
the list L.

Let A be PPT adversary on the zero-knowledge property of Π and let QHrp , QHβ
, QS denote

the number of Hrp, Hβ, Simπ queries, respectively. Without loss of generality, we assume that A
never queries Hrp and Hβ twice on the same input. We define the following hybrids and denote
by AdvHi

A (λ) the probability that A outputs 1 in Hybrid i.

– Hybrid 0 is identical to real game, where proofs are honestly generated. Specifically,
the proof oracle outputs on input (x, w) the value ⊥ if (x, w) /∈ Rbb, and else the value
Π.ProveHbb(crs, x, w). By definition, A outputs 1 with probability AdvH0

A (λ).

– Hybrid 1 is identical to Hybrid 0, except we simulate the proofs π0 using the simulator
Sim0 = (SimHrp , Simπ0) of Πrp. In more detail, for every query (x, w) ∈ Rbb, the challenger
computes (Ei, Ri)i∈[2ℓ] as before, but sets π0 ← Simπ0(crs, x0) for x0 = (B, (Ei)i∈[2ℓ]). The
simulator still generates the proof π1 honestly, and outputs π = (π0, π1, (Ei, Ri)i∈[2ℓ]).
Similarly, for every query q to Hrp, outputs SimHrp(q).
We can construct an adversary BΠrp against the zero-knowledge property of Πrp with
advantage Advzk

BΠrp
≥ |AdvH0

A (λ) − AdvH1
A (λ)|. Concretely, BΠrp challenges A and uses the

provided oracles to generate the proofs π0 and answer the Hrp queries. In the end, BΠrp

outputs the bit b received from A. If the provided oracle generate real proofs, then BΠrp

simulates Hybrid 0 to A, else it simulates Hybrid 1, and thus we have

|AdvH0
A (λ)− AdvH1

A (λ)| ≤ Advzk
BΠrp

.

– Hybrid 2 is the same as Hybrid 1, except for every query (x, w) ∈ Rbb, the simulator aborts
if the random oracle Hβ was already queried on its input when generating π1. Concretely,
after generating π0 as in Hybrid 1, the simulator sets (α, st)← Σped.Init(x1, w1) for (x1, w1)
defined as before. It then draws β ← Zp and finishes the generation of π1 = (α, β, γ) via
γ ← Σped.Resp(x1, st, β). Finally, it checks if (x1, α) was already queried to Hβ and aborts
if so. Otherwise, it programs Hβ(x1, α)← β.
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Hybrids 1 and 2 differ only when the game aborts. Due to the high min-entropy of Σped,
the probability that the random oracle is already defined on input (x1, α) is bounded by
QHβ
·negl(λ). Further, there are at most QS queries to Simπ, and because QSQHβ

·negl(λ) =
negl(λ), we have

|AdvH1
A (λ)− AdvH2

A (λ)| ≤ negl(λ).

– Hybrid 3 is the same as Hybrid 2, except for every query (x, w) ∈ Rbb, the proofs π1 are
simulated without the witness w1. That is, the simulator generates a simulated proof
π1 = (α, β, γ) by setting β ← Zp and running (α, γ)← Σped.Sim(x1, β), and programs Hβ

accordingly.
We can construct an adversary BΣped against the HVZK property of Σped. Concretely, for
every (x, w) ∈ Rbb, BΣped obtains the transcript (α, β, γ). If (x1, α) was already queried to
Hβ , then it aborts as in the previous game. Otherwise, it uses π1 = (α, β, γ) to generate π
as in Hybrid 2. If BΣped receives simulated proofs, the game is distributed as in Hybrid 3,
else it is distributed as in Hybrid 2. Consequently, we have

|AdvH2
A (λ)− AdvH3

A (λ)| ≤ QS · Advhvzk
BΣped

(λ).

– Hybrid 4 is the same as Hybrid 3, except for every query (x, w) ∈ Rbb, the commitments
(Ei, Ri)i∈[2ℓ] are commitments to 0.
As the openings of (Ei, Ri)i∈[2ℓ] are not required anymore for generating π0 and π1, we can
construct an adversary BDDH against the hiding property of the ElGamal commitments
(which holds under DDH). We thus have

|AdvH3
A (λ)− AdvH4

A (λ)| ≤ 2ℓ · Advddh
BDDH(λ)

Note that the description of the simulator in Hybrid 4 is identical to Sim = (SimHbb , Simπ).
Collecting the above bounds yields the statement.

Theorem 7.26. The NIZK Π is multi-online extractable under adaptive knowledge soundness of
Πrp, the 2-special soundness property of Σped, and under the DLOG assumption in Ĝ.

Proof. The simulator and extractor are given below. Roughly, the extractor extracts the B-ary
decomposition of (m, s) from the commitments (Ei, Ri)i∈[2ℓ], then recomputes and outputs (m, s)
if c = um

1 gs
1. If the reconstruction of (m, s) fails or the supplied proof is invalid, it outputs ⊥.

– SimCRS(1λ): sets crs = (ĝ, p̂p, (ĝi)i∈[ℓrp]) with ĝ, ĝi ← Ĝ, td ← Zp and p̂p ← ĝtd, and
outputs (crs, td),

– Ext(crs, td, x, π): on input crs, trapdoor td, and proof π = (π0, π1, (Ei, Ri)i∈[2ℓ]) for state-
ment x = (c, u1, g1), the extractor first checks if π is valid via Π.VerifyHbb(crs, x, π) = 1.
Then, it sets Fi ← Ei ·R−td

i and checks that there is some ei ∈ [0, B− 1] such that Fi = ĝei .
If so, it sets m =

∑ℓ
i=1 eiB

i−1 and s =
∑ℓ

i=1 ei+ℓB
i−1, checks c = um

1 · gs
1, and finally

outputs w = (m, s). If any of the above checks fails, it outputs ⊥.

Note that both SimCRS and Ext are PPT because the exponent of Fi can be brute-forced in
polynomial time, as B = poly(λ). Also, if Ext does not output ⊥, Ext is guaranteed to output w
such that (x, w) ∈ Rbb by construction.

We show that Π has CRS indistinguishability with the simulator SimCRS. Observe that
SimCRS(1λ) and the random variable crs ← (ĝ, p̂p, (ĝi)i∈[ℓrp]) with ĝ, p̂p, ĝi ← Ĝ are identically
distributed. It follows that for any PPT adversary A, we have Advcrs

A (λ) = 0.
It remains to show that Π is (multi-)online-extractable with the extractor Ext. We denote by

H0 the random oracle Hrp and by H1 the random oracle Hβ . Let A be an adversary making at most
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Q0, Q1 queries to H0, H1 respectively. For (crs, td) ← SimCRS(1λ), {(xi, πi)}i∈[QS ] ← AHbb(crs),
we denote by wi ← Ext(crs, td, xi, πi) the extracted witness from the i-th proof. We define the
following events.

– Ver is the event that all statement-proof pairs verify correctly, i.e.for all i ∈ [QS ] it holds
that Π.VerifyHbb(crs, xi, πi) = 1.

– Faili is the event that the extractor fails for input (crs, td, xi, πi) on a valid proof, i.e.we
have wi = ⊥ but Π.VerifyHbb(crs, xi, πi) = 1.

– Fail is the event that the extractor fails for some valid proof (xi, πi), i.e.there exists some
i ∈ [QS ] such that the event Faili occurs.

With this notation, let us assume that Pr[Ver] ≥ µ(λ) for some µ(λ). Under the DLOG assumption
in Ĝ, we show in Lemma 7.27 that Pr[Faili] = negl(λ). Thus:

Pr[Fail] = Pr[∃i ∈ [QS ], Faili] ≤
∑

i∈[QS ]
Pr[Faili] = negl(λ),

Thus, we have as desired:

Pr[Ver ∧ ∀i ∈ [QS ], (xi, wi) ∈ Rbb] = Pr[Ver ∧ ¬Fail]
= Pr[Ver]− Pr[Ver ∧ Fail] ≥ µ(λ)− Pr[Fail]
≥ µ(λ)− negl(λ).

It remains to show Lemma 7.27. Recall that for all PPT adversaries Adl, it holds that

Pr[w∗ ← Adl(crs) : (crs, w∗) ∈ Rdlog] = negl(λ) (7.3)

under the DLOG assumption, where the probability is over the randomness of crs and the random
coins of Adl. Recall that the simulated crs is distributed identically to a random crs, and as the
ElGamal trapdoor td is never provided to A, A’s output is identically distributed on input crs
and crs. Thus, we only need to analyze the probability of the event Faili for a random crs (without
known trapdoor td). This is important because td itself provides a non-trivial DLOG relation,
but this is the hard problem we want to solve using A.

Lemma 7.27. For some fixed i ∈ [QS ], we have Pr[Faili] = negl(λ) under the DLOG assumption.

Proof. Assume that Pr[Faili] is non-negligible. We construct an adversary Adl that on input a
random crs finds a DLOG relation w∗ in crs with non-negligible probability in polynomial time.
When A on input crs outputs statement-proof pairs {(x′j , π′j)}j∈[QS ] for NIZK Π, the i-th pair
(x′i, π′i) contains a range proof π0 for Πrp (resp. a Fiat-Shamir proof π1 for Σped), and their
statements x0 (resp. x1) can be recomputed given (x′i, π′i) as in Π.Verify. In the analysis, we are
interested in these proof-statement pairs and wish to extract the witness for both statements x0
and x1 simultaneously. We proceed as follows.

First, we define two wrapper algorithms B0,B1 of A that output the i-th statement-proof
pair (x0, π0), (x1, π1) output by A for Πrp, Σped, respectively. B0 and B1 are defined to run A
with identical random coinA and random oracle outputs to ensure the statements x0 and x1 are
consistent, i.e., contain the same commitments (Ej)j . These algorithms will later be used to
define our DLOG solver Adl.
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Description of Wrapper Algorithm Bb. We denote by coinA the random coin of A, and by
h⃗0 = (β̂0,j)j∈[Q0] ∈ ZQ0

p , h⃗1 = (β̂1,j)j∈[Q1] ∈ ZQ1
p the outputs of H0, H1, respectively. Note that for

fixed (crs, coinA, h⃗0, h⃗1), calling A is deterministic and the statement-proof pairs {(x′j , π′j)}j∈[QS ] =
AHbb(crs; coinA) are uniquely defined, where Hbb queries are answered via h⃗0 and h⃗1. We then
define Bb as an algorithm that has oracle access to Hb (and a variant with fixed Hb outputs h⃗b)
as follows:

BHb
b (crs; coinb): On input crs = (ĝ, p̂p, (ĝi)i∈[ℓrp]) and coinb = (coinA, h⃗1−b), Bb runs A on input

crs with fixed randomness coinA, where for the j-th query to H1−b, it outputs the j-
th value β̂1−b,j in h⃗1−b, and it simulates Hb with the provided oracle. After obtaining
{(x′j , π′j)}j∈[QS ] = A(crs, coinA) from A, it checks if Π.VerifyHbb(crs, x′i, π′i) = 1, i.e., the
i-th proof verifies correctly. Then, parses x′i = (c, u1, g1) and π′i = (π0, π1, (Ej , Rj)j∈[2ℓ]),
and sets x0 = (B, (Ej)j∈[2ℓ]) and x1 = (c, u1, g1, ĝ, p̂p, (Ej , Rj)j∈[2ℓ], B). If any check fails,
outputs (⊥,⊥). Otherwise, for b = 0, outputs (x0, π0). For b = 1, parses π1 = (α, β, γ),
and looks for the index I such that β = β̂1,I = H1(x1, α), and finally outputs (I, Λ) with
Λ = (x1, α, β, γ). Note that without loss of generality, the index I is well defined, as
guessing β correctly without querying H1 on input (x1, α) happens with probability at
most 1/p = negl(λ).

Bb(crs, h⃗b; coinb): runs BHb
b (crs; coinb), where the j-th query to Hb is answered with the j-th

value β̂b,j of h⃗b. Note that Bb is deterministic on input (crs, h⃗b; coinb).

Description of Forking Algorithm FB1. We now define a variant FB1 of the standard forking
algorithm that rewinds B1 until a related transcript is found. Concretely, FB1 takes as input
(crs, coin1, h⃗1), and invokes B1 internally as depicted in algorithm 13. Note that the standard
forking algorithm chooses coin1 and initial hash values h⃗1 at random, whereas FB1 receives some
fixed initial choice of coin1 and h⃗1. In Adl, we will initialize the input of FB1 with the choices
made by the extractor Ext0 of Πrp.

We expect that after at most T = poly(λ) calls to B1, the forking algorithm is successful with
non-negligible probability, i.e., it outputs some non-⊥. Note that for inputs drawn independently
and uniformly at random, the classical analysis of the forking algorithm yields the desired result.
But here, the inputs are conditioned on the event that the extractor Ext0 is successful on input
(x0, π0), and we cannot apply the classical result directly. Thus, we analyze the success probability
of FB1 later. Nevertheless, if FB1 is successful, it outputs related transcripts for the statement x1,
which is fixed via the initial run of A in B1.

Algorithm 13 Description of the forking algorithm FB1(crs, coin1, h⃗1)

1:
(
I, Λ

)
← B1(crs, h⃗1; coin1)

2: if Λ = ⊥ then
3: return ⊥ ▷ Return fail.
4: for c ∈ [T ] do
5: h⃗

(c)
1,≥I ← ZQ1−I+1

p

6: h⃗
(c)
1 := h⃗1,<I∥h⃗(c)

1,≥I

7: (I(c), Λ(c))← B1(crs, h⃗
(c)
1 ; coin1)

8: if I(c) = I then ▷ Found related transcript.
9: return (Λ, Λ(c))

return ⊥ ▷ Return fail.

Description of the DLOG Adversary Adl. We are now ready to define Adl. Roughly, Adl samples
inputs (incl. randomness) for both wrapping algorithms (B0,B1) such that they output proofs
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(π0, π1) for statements (x0, x1) with shared commitments (Ej)j∈[2ℓ]. Then, it invokes the extractor
Ext0 of Πrp on (x0, π0) to extract a witness w0 for the i-th proof output by A. Next, it rewinds
B0 with matching initial inputs via the forking algorithm FB1 to obtain a related transcript for
(x1, π1), and extracts witness w1 via 2-special soundness. If both extractions were successful,
Adl can compute a DLOG relation in crs conditioned on event Faili, as x0 and x1 share the
commitment (Ej)j∈[2ℓ] and the parameter B by construction. We denote by Ext0 the extractor of
Πrp (cf. Definition 3.29) and by Ext1 the extractor of Σped (cf. Definition 3.25). We now describe
Adl.

Adl(crs): On input crs, Adl prepares a list h⃗b ← ZQb
p of initial responses for Hb queries, where

b ∈ {0, 1}. Then, she draws some random coinA for A, and initializes for b ∈ {0, 1} the
randomness of Bb via coinb = (coinA, h⃗1−b). Then, Adl runs (x0, π0) ← B0(crs, h⃗0; coin0),
extracts a witness w0 ← Ext0(crs, x0, π0, coin0, h⃗0), and checks (x0, w0) ∈ Rlax. Next, she
runs R ← FB1(crs, coin1, h⃗1), checks R ̸= ⊥, and parses R = {(x1, π1), (x1, π2)} with
π1 = (α, β, γ), π2 = (α, β′, γ′) and β ̸= β. Then, she extracts w1 ← Ext1(x1, π1, π2). Note
that by construction, if R ̸= ⊥, we have (x1, w1) ∈ Rped under 2-special soundness of Σped
(see Lemma 7.29 for more details). Next, it parses the statements x0 = (B′, (E′j)j∈[2ℓ]) and
x1 = (c, u1, g1, ĝ, p̂p, (Ej , Rj)j∈[2ℓ], B). She outputs ⊥ if any check fails. As the initial run
of A in B0(crs, h⃗0; coin0) and FB1(crs, coin1, h⃗1) are identical, we have B = B′ and E′j = Ej

for all j ∈ [2ℓ]. Next, Adl computes a DLOG relation w∗ as follows:
First, if (crs, w0) ∈ Rdlog, sets w∗ = w0, else parses w0 = ((e′j , r′j)j∈[2ℓ]) and w1 =
(m, s, (ej , rj)j∈[2ℓ], tm, ts). Next, if there is some j ∈ [2ℓ] with e′j ̸= ej , the binding
property of the Pedersen commitment Ej is broken, and w∗ ← (ej − e′j)/(r′j − rj) mod p

yields a non-trivial DLOG relation in crs, as p̂p = ĝw∗ . Further, if m ̸=
∑ℓ

i=1 eiB
i−1, then

w∗ ← (m−
∑ℓ

i=1 miB
i−1)/(

∑ℓ
i=1 riB

i−1− tm) yields a DLOG relation due to the following:∏
i∈[ℓ]

EBi−1
i = ĝm · p̂ptm

=⇒
∏
i∈[ℓ]

(ĝei p̂pri)Bi−1 = ĝm · p̂ptm

=⇒ ĝ
∑

i∈[ℓ] eiB
i−1

p̂p
∑

i∈[ℓ] riB
i−1

= ĝm · p̂ptm

=⇒ ĝ
∑

i∈[ℓ] eiB
i−1−m = p̂ptm−

∑
i∈[ℓ] riB

i−1

=⇒ ĝ
(
∑

i∈[ℓ] eiB
i−1−m)/(tm−

∑
i∈[ℓ] riB

i−1) = p̂p,

where the first equality is due to (x1, w1) ∈ Rped. A similar calculation shows that Adl can
compute a DLOG relation w∗ if s ̸=

∑ℓ
i=1 ei+ℓB

i−1.
In summary, Adl succeeds extracting a DLOG relation w∗ if the extraction of both
(xb, πb)b∈{0,1} succeeds and the extracted witness reconstructs to a witness not in Rbb.
Otherwise, if either extraction fails or the extracted witness reconstructs to a witness in
Rbb, she outputs ⊥.

Analysis of the Success Probability of Adl. We finally analyze the probability that Adl
outputs a DLOG relation in crs conditioned on event Faili. If the probability is non-negligible, we
conclude Pr[Faili] = negl(λ) as desired under the hardness of DLOG. Below, for simplicity, we
omit the subscript and use Fail for Faili.

First, notice that conditioned on the event Fail, Adl cannot extract a witness that reconstructs
to a witness in Rbb. Therefore, Adl outputs ⊥ if and only if extraction fails, and on the other
hand, when it outputs a non-⊥, then this always results in a DLOG relation in crs as desired.
Thus, we only need to prove that Adl outputs a non-⊥ with non-negligible probability — or
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equivalently, succeeds extracting from both (x0, π0) and (x1, π1) with non-negligible probability
in polynomial time — to conclude the proof.

We first prove the following lemma which states that if event Fail occurs then Adl succeeds
in extracting a witness from (x0, π0) with non-negligible probability. We later analyze the
probability that Adl further succeeds in extracting a witness from (x1, π1).

Lemma 7.28. We have Pr[(x0, w0) ∈ Rlax ∧ Fail] ≥ ε under adaptive knowledge soundness of
Πrp, where ε = (Pr[Fail]− negl(λ))/pP(λ, Q0) and pP is the polynomial in definition 3.29. Here,
the probability is taken over the randomness of crs and those used by Adl.

Proof. The statement follows from adaptive knowledge soundness of Πrp if we restrict B0 to only
output proofs if extraction of (x′i, π′i) fails. As checking this condition requires knowledge of the
trapdoor td of crs, we analyze the probability for some crs with known td. The statement follows
as crs and crs are identically distributed.

In more detail, we define a wrapper algorithm B of B0. B samples (crs, td)← SimCRS(1λ) and
initializes coinb and h⃗0 as in Adl. Then, it runs (xB, πB)← B0(crs, h⃗0; coin0), and outputs (xB, πB)
if ⊥ = Ext(crs, td, x′i, π′i), where (x′i, π′i) is the i-th statement-proof pair output by A in B0. Note
that by definition of B0, if (xB, πB) ̸= (⊥,⊥), then we also have Πrp.VerifyH0(crs, xB, πB) = 1.
Thus, under adaptive knowledge soundness of Πrp, we have

Pr[(xB, wB) ∈ Rlax ∧ ⊥ = Ext(crs, td, x′i, π′i)] ≥ ε

for wB ← Ext0(crs, xB, πB, coin0, h⃗0). As crs and crs are identically distributed, the pair (x0, w0)
in Adl is identically distributed to the output of B conditioned on the event Fail. Thus, a quick
calculation yields as desired

Pr[(x0, w0) ∈ Rlax ∧ Fail] ≥ Pr[(xB, wB) ∈ Rlax ∧ ⊥ = Ext(crs, td, x′i, π′i)] ≥ ε.

This completes the proof.

It remains to analyze the probability that Adl extracts (x1, w1) ∈ Rped with non-negligible
probability, conditioned on (x0, w0) ∈ Rlax and Fail. We stress that the two extractions are
not independent, as the same random coinA and initial hash values h⃗0, h⃗1 are used for both
extractions, so a non-black-box analysis is required. In Lemma 7.29, we show that the events
(x0, w0) ∈ Rlax, (x1, w1) ∈ Rped and Fail occur after a polynomial number of forking steps in FB1

with non-negligible probability. Combining this with lemma 7.28, we conclude that Adl succeeds
extracting from both (x0, π0) and (x1, π1) with non-negligible probability in polynomial time.

Lemma 7.29. For T = 4Q1/ε, we have Pr[(x0, w0) ∈ Rlax ∧ (x1, w1) ∈ Rped ∧Fail] ≥ ε
8 − negl(λ),

and the runtime of FB1 is at most (4Q1/ε) · Time(A) = poly(λ). Here, the probability is taken
over the randomness of crs and those used by Adl.

Proof. Denote by E the event that (x0, w0) ∈ Rlax and the event Fail occurs, i.e.the extraction
of Πrp succeeds but online-extraction of Π failed for the i-th proof. Note that Pr[E] ≥ ε is
non-negligible (cf. Lemma 7.28). We show that even though the forking algorithm uses the
same initial randomness, it also holds that Pr[E ∧R ̸= ⊥] with non-negligible probability, where
R← FB1(crs, coin1, h⃗1) is the output of FB1 in Adl. This directly yields (x1, w1) ∈ Rped as follows:

FB1 runs B1 with identical randomness until the I-th H1 query and it outputs statement-
transcript pairs (x1, π1) and (x′1, π2) for Σped, each associated to the I-th H1 query. Thus, we
have that α = α′ and x1 = x′1 for π1 = (α, β, γ), π2 = (α′, β′, γ′). Also, we have that β′ ̸= β
except with negligible probability, as hash outputs are sampled uniformly and independently at
random, in which case the extractor Ext1 succeeds, i.e.(x1, w1) ∈ Rped.

We are now ready to analyze the probability that Pr[E ∧R ̸= ⊥]. The argument follows the
high level structure of the proof of the forking lemma in [PS00]. First, denote by Ek the event
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that π1 is associated to the k-th H1 query, i.e.the k-th entry β̂1,k of h⃗1 is equal to β. Next, we
define the set P as

P =
{

k

∣∣∣∣ Pr[Ek | E] ≥ 1
2Q1

}
.

Note that for any k ∈ P , we have Pr[Ek] ≥ ϵ
2Q1

. Further, for the event Egood
1 =

∨
k∈P Ek, we have

Pr
[
Egood

1

∣∣∣ E
]

=
∑
k∈P

Pr [Ek | E] ≥ Q1
2Q1

= 1
2 . (7.4)

We define the set Xk = (RA ×RExt0 × ZQ0
p )× Zk−1

p and Yk = ZQ1−k+1
p , where RA (resp. RExt0)

denotes the randomness space of A (resp. Ext0). Note that for fixed crs, the tuple (x, y) ∈ Xk×Yk

can be parsed to define all inputs of Adl, including randomness except the random choices in FB1 .
In more detail, parse x = (coinA, coinExt0 , h⃗0, h⃗1,<k) and y = h⃗1,≥k. Set h⃗1 = (⃗h1,<k∥h⃗1,≥k). Note
that given coinExt0 , Adl runs w0 = Ext0(crs, x0, π0, coin0, h⃗0; coinExt0) with randomness coinExt0 .
Then, the execution of Adl on input crs and randomness (x, y) is deterministic up to the run of
FB1 .

Further, note that given (x, y) ∈ Xk × Yk, it can be determined whether Ek occurred. We
define Ak ⊆ Xk × Yk as the set of such inputs, i.e.(x, y) ∈ Ak iff (x, y) triggers Ek. Then, the
splitting lemma (cf. Lemma 3.3) with α = ε

4Q1
yields that that for the set Bk ⊆ Xk × Yk defined

Bk =
{

(x, y) ∈ Xk × Yk

∣∣∣∣ Pr
y′←Yk

[
(x, y′) ∈ Ak

]
≥ ε

4Q1

}
, (7.5)

we have

Pr
(x,y)←Xk×Yk

[(x, y) ∈ Bk | (x, y) ∈ Ak] ≥ 1
2 . (7.6)

We are now ready to evaluate the probability of (x0, w0) ∈ Rrp, (x1, w1) ∈ Rped and Fail, when
Adl is run with initial randomness (x, y). As shown above, this event occurs if both E and R ̸= 0,
i.e.the the run of FB1 outputs some non-⊥.

With probability ε, we have that E occurs. As in that case, the i-th proof output by A
verifies, we further have that the initial run of B1 in FB1 produces some (I, Λ) ̸= ⊥. Then, the
probability that Egood

1 occurs is at least Pr
[
Egood

1

∣∣∣ E
]
≥ 1

2 due to eq. (7.4). In that case, we have
(x, y) ∈ AI by definition. Then, from eq. (7.6) we have that (x, y) ∈ Bk with probability at least
1
2 . Thus, eq. (7.5) yields that the probability that FB1 resamples some y′ ∈ YI with (x, y′) ∈ AI

is at least ε
4Q1

conditioned on (x, y) ∈ Bk.
In words, in the c-th iteration in FB1 , the sampled h⃗

(c)
1,≥I ← ZQ1−I+1

p triggers EI , as YI =
ZQ1−I+1

p . This means that Adl computes some π1 that is associated to I-th H1 query on input
(x, h⃗

(c)
1,≥I). Equivalently, we have I(c) = I on original input (x, y) and thus R ̸= ⊥.

Note that all h⃗
(c)
1,≥I ← ZQ1−I+1

p are sampled independently and uniformly at random in FB1 for
c ∈ [T ], where T = 4Q1/ε. Thus, conditioned on Adl sampling some (x, y) ∈ Bk, the probability
that R ̸= ⊥ is at least

1−
(

1− ε

4Q1

) 4Q1
ε

≥ 1− 1
e
≥ 1

2

Collecting all the bounds, we conclude that R ≠ ⊥ with probability at least ε
8 . Further, the

runtime of FB1 is at most (4Q1/ε) · Time(A).
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Optimizations and Efficiency

We now analyze the efficiency of the blind signature BSBB[Π].

Efficiency of Π. First, we optimize the extractor Ext of Π which allows us to choose better
parameters. Note that the runtime of Ext scales linearly with the size of the exponents ei ∈
[0, B − 1], as it brute-forces the discrete logarithm of 2ℓ group elements Fi = ĝei . At the same
time, the proof size scales linearly with ℓ = ⌈logB(ℓ)⌉. Thus, for practical efficiency, we would like
to set B as large as possible, while keeping the extractor efficient for the security reduction. If
we use a more efficient algorithm to compute discrete logarithms of elements (with exponents in
interval [0, B − 1]), we can choose a larger bound B without any loss in runtime of the extractor.
A good choice is Pollard’s kangaroo algorithm [Pol78] which has runtime O(

√
B). This allows us

to increase the bit size of B by a factor 2 for the same level of security.
Second, we can omit α1 in π1, as the identities in Σped.Verify can be recomputed and then

verified via β1 due to collision resistance.
With these optimizations, the proof π1 contains 5 + 4ℓ elements in Zp. For n = log2(B), the

batched range proof π0 contains 2⌈log2(2nℓ + ℓ + 4)⌉+ 1 elements in Ĝ and 7 elements in Zp. As
a proof π of Π consists of π = (π0, π1, (Ei, Ri)i∈[2ℓ]), the total proof size is 12 + 4ℓ elements in Zp

and 2⌈log2(2nℓ + ℓ + 4)⌉+ 4ℓ + 1 elements in Ĝ.

Efficiency of BSBB[Π]. When BSBB[Π] is instantiated with Π for B = poly(λ), the user sends
1 element in G1, 2⌈log2(2nℓ + ℓ + 4)⌉+ 4ℓ + 1 in Ĝ, and 10 + 2ℓ elements in Zp to the signer.
The signer sends 2 elements in G1, and the final signature contains 2 elements in G1. We set
B = 264 in order to have an extractor that performs roughly ℓ · 232 group operations, where
ℓ = ⌈logB p⌉ = 4. The total communication is 2.2 KB and signatures are of size 96 Byte for
λ = 128.

7.6 Frameworks for Partially Blind Signatures

In this section, we present variants of our constructions in sections 7.2 and 7.4 that achieve
partial blindness.

7.6.1 Partial Blindness of the Optimized Fischlin Transform

We show how to adapt BSRnd for partial blindness. Roughly, instead of signing only the
commitment c, the signer signs the vector (c, HT(t)) instead, where t is the common message
and HT is a random oracle.

The partially blind signature PBSRnd is based on building blocks (C, S, Σ) that are BSRnd-
suitable (cf. definition 7.1), except the message space Smsg of the signature scheme S contains all
tuples (c, t), where t = HT(t).

Definition 7.30 (PBSRnd-Suitable (C, S, Σ)). The tuple of schemes (C, S, Σ) are called PBSRnd-
suitable, if it holds that

– C is the same as a commitment scheme that is BSRnd-suitable.

– S is the same as a signature scheme that is BSRnd-suitable, except that the message space
Smsg encompasses Ccom × T H, where T H is a set with 1/|T H| = negl(λ).

– Σ is the same as a Σ-protocol that is BSRnd-suitable except for the relation

Rp-rnd := {x = (pp, vk, m, t), w = (µ, c, r) | C.Commit(pp, m; r) = c∧S.Verify(vk, µ, (c, t)) = 1}.
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Construction

We present the partially blind signature PBSRnd below.

Overview. Let (C, S, Σ) be PBSRnd-suitable. Again, let Hpar, HM, Hβ be a random oracles from
{0, 1}∗ into {0, 1}ℓC , Cmsg, CH, respectively. Further, let HT be a random oracle from {0, 1}∗ into
T H. We now present the framework PBSRnd[C, S, Σ] (or PBSRnd for short) for partially blind
signatures based on BSRnd.

Key generation is the same as before, i.e.it outputs (bvk, bsk)← S.KeyGen(1λ), and implicitly
defines a public parameter pp for C via pp = Hpar(0). For message m and common message t,
the user commits to m← HM(m) with randomness r via C and sends the commitment c to the
signer. As before, the signer rerandomizes c with some random ∆r, but signs (c′, t) instead of c′

via S, where t = HT(t), and sends the pair (µ, ∆r) to the user. The derived signature is a proof
π for relation Rp-rnd generated by Σ using the Fiat-Shamir transform. Note that the user can
recompute c′ and its randomness via ∆r and r, as before.

Description. For completeness, we provide the full description below, where we assume pp is
provided to all of the algorithms for readability. The changes are highlighted with a box.

– PBSRnd.KeyGen(1λ): samples (vk, sk)← S.KeyGen(1λ) and outputs verification key bvk = vk
and signing key bsk = sk.

– PBSRnd.User(bvk, t, m): sets m← HM(m) and outputs the commitment c ∈ Ccom generated
via (c, r)← C.Commit(pp, m) as the first message and stores the randomness st = r ∈ Crnd.

– PBSRnd.Signer(bsk, t, c): checks if c ∈ Ccom, samples a rerandomization randomness ∆r ←
Crnd, rerandomizes the commitment c via c′ ← C.RerandCom(pp, c, ∆r), signs µ← S.Sign(sk,

(c′, t) ) for t← HT(t), and finally outputs the second message ρ = (µ, ∆r).

– PBSRnd.Derive(st, t, ρ): parses st = r, ρ = (µ, ∆r) and checks ∆r ∈ Crnd. It then com-
putes the randomized commitment c′′ = C.RerandCom(pp, c, ∆r) and randomized ran-
domness r′ ← C.RerandRand(pp, c, m, r, ∆r), and checks S.Verify(vk, (c′′, t) , µ) = 1 and
c′′ = C.Commit(pp, m; r′). It then outputs a signature σ = π for common message t,
where (α, st′) ← Σ.Init(x, w), β ← Hβ(x, α), γ ← Σ.Resp(x, st′, β), π = (α, β, γ) with
x = (pp, vk, m, t ), w = (µ, c′, r′).

– PBSRnd.Verify(bvk, t, m, σ): parses σ = π and π = (α, β, γ), and sets m = HM(m), t ←
HT(t), and x = (pp, vk, m, t ), and outputs 1 if β = Hβ(x, α), Σ.Verify(x, α, β, γ) = 1, and
otherwise outputs 0.

Correctness and Security

We have the following theorem. As the proof is similar to the security proof of BSRnd, we only
provide a sketch.

Theorem 7.31. The partially blind signature PBSRnd is (i) correct, (ii) partially blind under
malicious keys under the hiding and rerandomization properties of C and the high min-entropy and
HVZK properties of Σ, and (iii) one-more unforgeable under the binding and rerandomizability
properties of C, EUF-CMA security of S and the 2-special soundness and f-unique extraction
properties of Σ.
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Sketch. Compared to BSRnd, the only change is that the signer signs the message (c′, t) instead
of c′. Note that the relation Rp-rnd of Σ is adapted appropriately. Thus, correctness and
zero-knowledge follow as before. One-more unforgeability is almost identical to before.

Let A be a PPT adversary that performs QS signing queries for some (adaptively chosen)
common message t∗. We define the game G as the real game with A, except the challenger aborts
if there is a collision in HM or HT or there is some (xi, αi) in the forgeries of A that was never
queried to Hβ. As before, we can show that the challenger never aborts except with negligible
probability.

Then, the challenger interacts with A as in the real game, and obtains forgeries (πi =
(αi, βi, γi))i∈[QS+1] from A, for messages mi and common message t∗. Denote by xi = (pp, vk, mi, t

∗)
the corresponding statements.

Then, we rewind the adversary A as in theorem 7.4 to obtain the witnesses wi = (µi, ci, r).
Under 2-special soundness of Σ, we have (xi, wi) ∈ Rrnd. That is, we have for all i ∈ [QS + 1] that
ci = C.Commit(pp, mi; r) and S.Verify(vk, µi, (ci, t

∗)) = 1, where mi = HM(mi) and t
∗ = HT(t∗).

Recall that there are no collisions in HM in G, so we have mi ̸= mj for all distinct i, j ∈ [QS + 1].
Thus, under the binding property of C, there cannot exist two distinct indices i, j ∈ [QS + 1]
such that ci = cj , as both ci and cj open to distinct messages mi ̸= mj .

Consequently, as at most QS signing sessions under common message t∗ were performed,
there must be at least one commitment ci∗ that was never signed in the initial run under common
message t∗. As before, this initial run fixes ci∗ due to f -unique extraction of Σ, so we are
guaranteed to never sign the tuple (ci∗ , HT(t∗)) during rewinding under rerandomizability of
C. But as µi is a valid signature for (ci∗ , HT(t∗)), we break EUF-CMA security of S. Note µi is a
valid forgery, even if ci∗ was signed under some other common message t ̸= t∗, as there are no
collisions in HT in G and we have (ci∗ , HT(t)) ̸= (ci∗ , HT(t∗)).

Instantiation

We can set T H = G1. Then, HT maps into G1 and we can instantiate the scheme using SKPW
signatures and CPed commitments as in section 7.3. Note that the size of SKPW signatures
is independent of the number of signed group elements. Also, it is simple to adapt the Σ-
protocol Σrnd accordingly. Consequently, the total communication and signature size remains
303 and 447 Byte for λ = 128, respectively.

7.6.2 Partial Blindness of Blind Signature based on Boneh-Boyen

We now show how to adapt the framework BSBB to obtain a partially blind signature PBSBB.
Again, we focus on the asymmetric setting. Our idea is to construct part of the verification key
vk = (u1, u2, h1, h2, v) (cf. section 7.4.1) using a hash of the common message t. However, since
(u1, u2, h1, h2) = (gα

1 , gα
2 , gγ

1 , gγ
2 ) formed a valid DDH tuple, it is not clear how to do this. To this

end, we adapt the Boneh-Boyen signature scheme SBB such that u2, h2 no longer needs to be
a part of the verification key. Instead, we include one additional element in the signature to
compensate for this modification. Looking ahead, since the verification key is now vk = (u1, h1, v)
where h1 is a random group element, we are able to create this term by a hash of the common
message t.14 The resulting scheme SBB is defined below. We later show (implicitly) in the
security proof of PBSBB that the variant SBB is selectively secure under CDH. We omit the
subscript and simply use (u, h) below.

– SBB.KeyGen(1λ): samples α, β, γ ∈ Zp, and sets u = gα
1 , h = gγ

1 , v = e(g1, g2)αβ, and
outputs vk = (u, h, v) and sk = gαβ

1 .
14Note in the symmetric setting, we can use standard the Boneh-Boyen signature scheme SBB and let a random

oracle output h1, as there is no h2. The signature size in the symmetric setting remains 2 group elements.
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– SBB.Sign(sk, m): samples r ∈ Zp and outputs (σ0, σ1, σ2) = (sk · (umh)r, gr
1, gr

2).

– SBB.Verify(vk, m, (σ0, σ1, σ2)): verify that e(σ0, g2) = v ·e(umh, σ2) and e(σ1, g2) = e(g1, σ2).

Construction. Now, we construct PBSBB and detail the changes required to the framework BSBB
(cf. section 7.4). Again, let Π be an online-extractable NIZK proof system, with random oracle
Hzk : {0, 1}∗ 7→ {0, 1}ℓzk and common reference string length ℓcrs for the relation

Rbb := {x = (c, u, g1), w = (m, s) | c = um · gs
1},

and let HM, Hcrs be a random oracles mapping into Zp, {0, 1}ℓcrs respectively. Further, we rely on
a random oracle HG1 mapping into G1. The framework PBSBB[Π], or PBSBB for short, is as BSBB
except that the underlying signature is replaced with SBB and the value h in the verification key
is sampled via HG1 .

Construction. Below, we detail the construction and highlight the changes with respect to BSBB
via a box. We assume that crs is provided to all of the algorithms for readability.

– PBSBB.KeyGen(1λ): samples α, β ∈ Zp, and sets u = gα
1 , v = e(g1, g2)αβ, and outputs

bvk = (u, v) and bsk = gαβ
1 .

– PBSBB.User(bvk, t, m): sets m← HM(m) and computes a Pedersen commitment c = umgs
1

and a proof π ← Π.ProveHzk(crs, x, w), where s ← Zp, x = (c, u, g1), and w = (m, s). It
outputs the first message ρ1 = (c, π) and stores the randomness st = s.

– PBSBB.Signer(bsk, t, ρ1): parses ρ1 = (c, π) and checks Π.VerifyHzk(crs, x, π) = 1. It then sets
ht ← HG1(t) and outputs the second meesage ρ2 = (ρ2,0, ρ2,1, ρ2,2)← (sk·(c· ht )r, gr

1, gr
2 ),

where r ← Zp.

– PBSBB.Derive(st, t, ρ2): parses st = s and ρ2 = (ρ2,0, ρ2,1, ρ2,2), checks e(ρ2,0, g2) = v ·
e(c · ht , ρ2,2) and e(ρ2,1, g2) = e(g1, ρ2,2) , and outputs the signature σ = (σ0, σ1, σ2) =

(ρ2,0/ρs
2,1 · (um ht )r′

, ρ2,1 · gr′
1 , ρ2,2 · gr′

2 ) for r′ ← Zp.

– BSBB.Verify(bvk, t, m, σ): checks e(σ0, g2) = v · e(um ht , σ2) and e(σ1, g2) = e(g1, σ2) ,
where m and ht as above.

Correctness and Security

We can show that PBSBB is correct, blind, and one-more unforgeable.

Theorem 7.32. The scheme PBSBB is correct, blind under malicious keys under the zero-
knowledge property of Π, and one-more unforgeable under the CDH assumption and the online-
extractability of Π.

Proof. The proof of correctness and blindness follow almost as in theorems 7.16 and 7.17, and
we omit details. In the following, we show that PBSBB is one-more unforgeable. Roughly, the
reduction punctures the verification key (including ht for all common messages t) depending on
whether (i) t is the (adaptively chosen) common message t∗ from the forgeries of A or (ii) t is
some other common message. In case of (i), the reduction punctures ht such that it can sign all
but some random message mt ← Zp. As the message mt is hidden from A, she does not provide
a signing request for (a commitment of) mt with high probability, and the reduction can answer
all signing queries for t ̸= t∗. In case of (ii), for the common message t∗ of the A’s forgeries, the
reduction punctures ht∗ on m∗ ← Zp. As in theorem 7.18, we show that by programming the
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random oracle HM, we can argue that A never asks for a signature on (a commitment of) m∗

but provides a forgery for message mi∗ such that m∗ = HM(mi∗) with noticeable probability, in
which case we can solve CDH. We formalize the above intuition below.

Let A be a PPT adversary against the one-more unforgeability of PBSBB. Let Ext and Simcrs
be the extractor and simulator of Π, respectively (cf. definition 3.31). Without loss of generality,
let QS be the number of signing queries per common message, and QT the total number of
common messages. We denote by QM the number of HM queries, by QH the number of Hzk
queries, and by QG the number of HG1 queries. We assume without loss of generality that A’s
queries to the random oracles are unique. Moreover, we assume A queries the common message t
to HG1 before submitting a signing query with t. We denote by qj (resp. q′j) the j-th query to HM
for j ∈ [QM ] (resp., HG1 for j ∈ [QG]). After QS signing queries per common message, A outputs
QS + 1 forgeries {(mi, σi)}i∈[QS+1] for some common message t∗. We write σi = (σi,0, σi,1, σi,2),
and denote by ρ1,i = (ci, πi) the signing queries issued by A. We define the following hybrids
and denote by AdvHi

A (λ) the advantage of A in Hybrid i. (Note that until Hybrid 3, the steps are
identical to the steps in theorem 7.18).

– Hybrid 0 is identical to the real game.

– Hybrid 1 is the same as Hybrid 0, except it samples (crs, τ)← Simcrs(1λ) and programs crs
into the random oracle Hcrs via Hcrs(0)← crs. We can construct an adversary Bcrs against
the CRS indistinguishability from Π such that AdvH1

A (λ) ≥ AdvH0
A (λ)− Advcrs

Bcrs(λ).

– Hybrid 2 is the same as Hybrid 1, except the witnesses (mi, si) are extracted from all
the proofs πi for all i ∈ [QS · QT ] using Ext. Specifically, when A provides the signing
query (ci, πi), the challenger runs wi ← Ext(crs, td, xi, πi), where xi = (ci, u, g1). It parses
wi = (mi, si) and aborts if umi · gsi

1 ̸= ci. Then, proceeds as in Hybrid 1.

We have AdvH2
A (λ) ≥ AdvH1

A (λ)−negl(λ)
pP(λ,QH) under the online extractability of Π. Note that the

challenger has an additional runtime overhead pT(λ, QH) ·Time(A), and that pP and pT are
polynomials as defined in definition 3.31. We note that Ext does not need to be invoked at
the end of the game as required by the definition of online-extractability. See theorem 7.18
for more detail.

– Hybrid 3 is the same as Hybrid 2, except it aborts if there is a collision in HM or if there is
some message mi in A’s output that was never queried to HM.

It holds that AdvH3
A (λ) ≥ AdvH2

A (λ)− Q2
M +1
p .

– Hybrid 4 is the same as Hybrid 3, except it aborts if there is a collision in HG1 or if the
common message t∗ of A’s output was never queried to HG1 .
A given signature verifies with respect to some random ht at most with probability 1/p
and a collision happens with probability at most Q2

G/p. Thus, it holds that AdvH4
A (λ) ≥

AdvH3
A (λ)− Q2

G+1
p .

– Hybrid 5 is the same as Hybrid 4, except it first samples m∗ ∈ Zp, k∗ ← [QG], and δk∗ ← G1.
For the k∗-th query q′k∗ to HG1 , it sets HG1(q′k∗) ← h∗t := u−m∗ · gδk∗

1 . Hybrid 5 aborts if
the forgeries output by A is not on a common message t∗ such that h∗t = HG1(t∗).
Due to the modification we made in Hybrid 4, the common message t∗ is guaranteed to be
queried to HG1 . Since k∗ is information-theoretically hidden to A and the distribution of
h∗t is uniform over G1 as in the previous hybrid, we have AdvH5

A (λ) ≥ 1/QG · AdvH4
A (λ).

– Hybrid 6 is the same as Hybrid 5, except it guesses a query index j∗ of HM for which it
outputs m∗ ∈ Zp, and aborts if either the challenger extracts m∗ in some signing query
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with common message t∗ or if A provides no forgery for some message that hashes to m∗.
More concrete, Hybrid 6 further samples j∗ ← [QM ] at the outset of the game. For the
j∗-th query to HM, it sets HM(qj∗)← m∗. At the i-th signing query, the signer aborts if the
extracted witness is (m∗, si) and the common message is t∗, else proceeds as usual. Also,
Hybrid 6 aborts if m∗ /∈ {HM(mi)}i∈[QS+1], where mi are the messages from the forgeries
of the final output of A.

Conditioned on no collision in HM, there are only QS signing queries but QS + 1 values
mi ← HM(mi) from the forgeries, and with probability 1/QM the challenger guesses the
right HM query. Following the same calculation as in theorem 7.18, we have AdvH6

A (λ) ≥
1

QM
AdvH5

A (λ).

– Hybrid 7 is the same as Hybrid 6, except it sets up a punctured verification key and
simulates signing without knowing the full sk. Specifically, it sets A1 = gα

1 , A2 = gα
2 , B =

gβ
1 , B2 = gβ

2 , u = A1, v = e(A1, B2), for α, β ← Zp. Then, sends bvk = (u, v) to A. Also,
Hybrid 7 initially samples mt,k ← Zp for k ∈ [QG]\{k∗}, and answers the k-th HG1 query
with ht,k = u−mt,k · gδk

1 if k ̸= k∗. It answers the k∗-th query as in the previous Hybrid 5.

For the i-th signing query (ci, πi) with common message ti and extracted witness wi =
(mi, si), parses HG1(ti) = ht,k = u−mt,k · gδk

1 for an appropriate k ∈ [QG], and aborts if
mi = mt,k and k ̸= k∗. Note that such a k uniquely exists due to Hybrid 4. Moreover,
due to the modification we made in Hybrid 6, it always abort when (mi, ti) = (m∗, t∗)
or equivalently (mi, k) = (m∗, k∗). If it didn’t abort, it samples some r̃i ← Zp, sets
ρ2,1 = gr̃i

1 · B
−1/(mi−mt,k)
1 , ρ2,2 = gr̃i

2 · B
−1/(mi−mt,k)
2 and ρ2,0 = A

(mi−mt,k)r̃
1 · g(si+δk)r̃i

1 ·
B
−(si+δk)/(mi−mt,k)
1 .

It is not hard to check that Hybrid 7 and Hybrid 6 are identically distributed as long as
A doesn’t query a common message ti ≠ t∗ such that mi = mt,k for k ̸= k∗. Since mt,k is
information-theoretically hidden from A, we conclude via a union bound that the abort
probability is at most (QSQT )/p. Thus, AdvH7

A (λ) = AdvH6
A (λ)− (QSQT )/p.

We can now construct an adversary BCDH to solve CDH with AdvCDH
ACDH(λ) = AdvH7

A (λ). First,
BCDH receives a CDH-tuple (g1, g2, A1, A2, B1, B2), with which it simulates Hybrid 7 to A. After
A outputs the forgeries {(mi, σi)}i∈[QS+1], BCDH outputs σi∗,0 · σ−δk∗

i∗,1 to its challenger, where i∗

such that HM(mi∗) = m∗.

Due to the abort conditions in Hybrid 5 and Hybrid 6, the adversary is guaranteed to output
an appropriate forgery that verifies correctly with probability at least AdvH7

A (λ). In that case, we
show that σ

δk∗
i∗,0/σi∗,1 is indeed of the form gαβ

1 , where α, β is the discrete logarithm of A1, B1,
respectively. For readability, we write (σ0, σ1, σ2) = (σi∗,0, σi∗,1, σi∗,2) in the following (with slight
abuse of notation).

As the i∗-th forgery verifies, we have e(σ0, g2) = v ·e(um∗ ·h∗t , σ2) and e(σ1, g2) = e(g1, σ2). The
latter guarantees that the discrete logarithms of σ1 and σ2 are identical, i.e.we have σ1 = gρ

1 and
σ2 = gρ

2 for some appropriate ρ. Note that we have v = e(g1, g2)αβ , u = A1 and h∗t = u−m∗ · gδk∗
1
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due to the changes in Hybrid 5 and Hybrid 7. Consequently, we have

e(σ0, g2) = v · e(um∗
· h∗t , σ2)

=⇒ e(σ0, g2) = e(g1, g2)αβ · e(um∗
· u−m∗

· gδk∗
1 , σ2)

=⇒ e(σ0, g2) = e(g1, g2)αβ · e(gδk∗
1 , σ2)

=⇒ e(σ0, g2) = e(g1, g2)αβ · e(g1, g2)δk∗ ·ρ

=⇒ e(σ0 · g−δk∗ ·ρ
1 , g2) = e(g1, g2)αβ

=⇒ e(σ0 · σ−δk∗
1 , g2) = e(gαβ

1 , g2)

=⇒ σ0 · σ−δk∗
1 = gαβ

1

The statement follows by collecting all the above bounds.

Instantiation.

We can use the online extractable NIZK Π from section 7.5. Both communication and signature
size increase by one element in G2.
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Chapter

8
Conclusion and Open Questions

In this thesis, we presented weighted variants of classical hashing algorithms such as one-choice
allocation, two-choice allocation and cuckoo hashing. Then, we introduced the notion of page
efficiency that captures memory efficiency of SSE schemes on SSDs. Based on our hashing
variants, we constructed a static SSE scheme Pluto with optimal page efficiency, and a dynamic
SSE scheme LayeredSSE with sublogarithmic page efficiency. Next, we constructed the dynamic
SSE scheme Hermes, an SSE scheme with forward security and sublogarithmic page efficiency.
The above tradeoffs were not known in the realm of memory-efficient SSE, including local SSE.
Finally, we presented two efficient constructions of round-optimal blind signatures. We proved
security under standard assumptions in the ROM, and our constructions are the most efficient
schemes in that setting. Below, we list some intriguing open problems in the context of our
contributions.

Open Problems in Weighted Hashing. The most interesting open problem for weighted
hashing is perhaps an upper bound on the most loaded bin in weighted 2C allocation. While we
provide an upper bound for a modified variant L2C, an upper bound for the classical variant
remains elusive. Also, our analysis of L2C does not allow for deletions, and an upper bound in
the presence of deletes would be interesting.

Similarly, dynamic variant of weighted cuckoo hashing would be interesting. Note that while
our weighted cuckoo hashing algorithm is static, it is simple to add balls via the execution of
an additional max flow algorithm. The runtime will likely be less than the first setup, as the
allocation is already optimized (except for the new insertion). Nevertheless, an algorithm with
constant insertion time for balls as in classical cuckoo hashing is unknown.

Open Problems in SSE. In the direction of memory-efficient SSE, we consider the question
whether there are lower bounds for dynamic SSE with standard leakage (and/or forward security)
to be interesting. Notably, our static construction Pluto has optimal page efficiency, but while our
dynamic constructions LayeredSSE and Hermes come close to optimal, both have a non-constant
overhead. Is this inherent or can the constructions be optimized?

Also, while there are constructions of local dynamic SSE with sublogarithmic efficiency (cf.
[MR22]), it is unclear whether it is possible to construct efficient local SSE with forward security.

Open Probelems in blind signatures. In the pairing setting, our constructions of blind
signatures in the ROM come close to the efficiency of constructions based on non-interactive
assumptions or generic groups. In the lattice setting, there are efficient construction with
poly-concurrent security under standard assumptions in the ROM [dK22]. Outside of the above
settings, such constructions are not known (unless computation and communication scales with
the number of signatures [KLR21, CAHL+22]).
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Appendix

A
Notation

Mathematical Notations
x← S Uniform and independent sampling from a set S
x← D Sampling from a distribution D

D0
s≈ D1 Distributions D0 and D1 are statistically indistinguishable

D0
c≈ D1 Distributions D0 and D1 are computationally indistinguishable

Pr[E] Probability of event E
Exp[E] Expectation of event E
|S| Cardinality of set S
[n] The set of integers {1, ..., n}
[a, b] The interval of integers {a, ..., b}
[a, b]R The interval of reals {x ∈ R : a ≤ x ≤ b}
h⃗ = (h1, ..., hq) A row vector (h1, ..., hq)
h⃗<i The vector (h1, ..., hi−1)
h⃗≥i The vector (hi, ..., hq)
h⃗∥h⃗′ The concatenation of two vectors h⃗ and h⃗′

Zp Integers modulo p
G Some prime order group

Algorithms and Cryptography
y ← A(x) Execution of (randomized) algorithm A with input x and output y
y ← A(x; r) Execution of randomized algorithm A with input x, explicit ran-

domness r and output y
AO Algorithm with access to some oracle O
st The state of an algorithm
λ The security paramter
Time(A) The runtime of algorithm A
negl(λ) Some negligible function in λ
poly(λ) Some polynomial function in λ
Θ(·),O(·), Ω(·), o(·), ω(·) Asymptotic notation

Searchable Encryption
DB Database
DB(w) Identifier list matching w
N Upper bound on the size of the database
W Upper bound on the number of keywords
p Page size
prot = (protA, protB) A protocol between two parties A and B
protA(inA)←→ protB(inB) The interaction of protocol prot between parties A and B
prot(inA; inB) Short notation for the interaction of protocol prot between parties

A and B
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Appendix

B
Abbreviations

Algorithms
1C One-choice allocation
2C Two-choice allocation
L2C Layered two-choice allocation (cf. Section 4.3)
WCuckoo Weighted cuckoo hashing (cf. Section 4.4)

Assumptions
DLOG Discrete Logarithm
CDH Computational Diffie-Hellman
DDH Decisional Diffie-Hellman
SXDH Symmetric External Diffie-Hellman

Cryptographic Notions
PPT Probabilistic Polynomial-Time
SSE Searchable Symmetric Encryption
PRF Pseudorandom Function
NIZK Non-interactive Zero-Knowledge
HVZK Honest-Verifier Zero-Knowledge
ROM Random Oracle Model
SPS Structure-preserving Signatures

Cryptographic Schemes
CPed Pedersen Commitments
CEG ElGamal Commitments
SKPW Kiltz-Pan-Wee Signatures
SBB Boneh-Boyen Signatures
Pluto SSE scheme (cf. Section 5.3)
LayeredSSE SSE scheme (cf. Section 5.4)
Hermes SSE scheme (cf. Section 6.5)
BSRnd Blind signature (cf. Section 7.2)
BSBB Blind signature (cf. Section 7.4)
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MOTS CLÉS

Chiffrement avec Recherche ⋆ Hachage Pondéré ⋆ Signature Aveugle

RÉSUMÉ

Dans cette thèse, nous proposons des constructions efficaces de primitives cryptographiques avec des fonctionnalités
avancées. Nous nous concentrons sur des primitives qui permettent des applications préservant la confidentialité, telles
que la recherche sur des données chiffrées ou le vote électronique, avec une sécurité prouvable dans le modèle de
l’oracle aléatoire (ROM). En particulier, nous construisons des schémas de chiffrement avec recherche (SSE) et des
schémas de signature aveugle.
SSE permet à un client d’effectuer des requêtes par mots-clés sur une base de données chiffrée stockée sur un serveur
distant. Pour obtenir le résultat, le serveur effectue souvent un grand nombre d’accès aléatoires à la mémoire. En
conséquence, le débit mémoire d’un schéma SSE est souvent le principal goulot d’étranglement. Pour nos construc-
tions, nous proposons d’abord des variantes de schémas de hachage classiques qui permettent l’allocation d’éléments
pondérés. Sur la base de ces variantes, nous construisons plusieurs schémas SSE avec une bonne efficacité mémoire
sur les supports de stockage modernes. Cela inclut Pluto, un schéma SSE statique avec une efficacité mémoire optimale,
et Hermes, un schéma SSE dynamique avec une efficacité mémoire sous-logarithmique et sécurité persistante.
Les signatures aveugles servent d’outil fondamental pour les applications préservant la confidentialité (par exemple, le
vote électronique, les jetons confidentiels d’authentification, les chaînes de blocs). Nous présentons deux cadres op-
timisés pour construire des signatures aveugles dans le ROM. Nous instancions chaque cadre dans le contexte des
couplages et obtenons des signatures aveugles efficaces avec un nombre optimal de tours sous des hypothèses stan-
dards. La première construction est une variante hautement optimisée de la construction générique de signature aveugle
de Fischlin (CRYPTO’06). Notre deuxième construction est une construction semi-générique à partir d’une classe spéci-
fique de schémas de signature randomisables qui admet une réduction tous-sauf-un.

ABSTRACT

In this thesis, we propose efficient constructions of cryptographic primitives with advanced functionalities. We focus
on primitives that enable privacy-preserving applications, such as encrypted search or electronic voting, with provable
security in the random oracle model (ROM). In particular, we construct searchable symmetric encryption (SSE) and blind
signature schemes.
SSE allows a client to perform keyword queries on an encrypted database stored on a distant server. To obtain the result,
the server often performs a large number of random memory accesses. In consequence, the memory throughput of an
SSE scheme is often the main bottleneck. For our constructions, we first propose variants of classical hashing schemes
that allow for allocation of weighted items. Based on these variants, we construct several SSE schemes with good
memory efficiency on modern storage media. This includes Pluto, a static SSE scheme with optimal memory efficiency,
and Hermes, a dynamic SSE scheme with sublogarithmic memory efficiency and forward security.
Blind signatures serve as a foundational tool for privacy-preserving applications (e.g., electronic voting, privacy-
authentication tokens, blockchains). We present two optimized frameworks to construct blind signatures in the ROM.
We instantiate each framework in the pairing setting and obtain efficient round-optimal blind signatures under standard
assumptions. The first construction is a highly optimized variant of the generic blind signature construction by Fischlin
(CRYPTO’06). Our second construction is a semi-generic construction from a specific class of randomizable signature
schemes that admits an all-but-one reduction.

KEYWORDS

Searchable Symmetric Encryption ⋆ Weighted Hashing ⋆ Blind Signature
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