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Résumé: Dans ce travail, on traite le problème du com-
mande actif des vibrations robustes pour une structure
mécanique flexible à travers des techniques pour des sys-
tèmes à dimensions infinis et finis. Les approches abor-
dées sont reglées pour une commande à retour de sor-
tie basée sur une commande aux actions retardées pro-
portionelles, par une approche basée sur quasipolynomi-
als, et une commande synthétisée par la méthode H∞
avec une approche par LMIs. Le but c’est l’analyse de
ses capabilités pour amortisser les modes vibratoires dans
une bande passante d’intérêt, et éviter les effets dénom-
més de phénomène “spillover”. Cettes commandes sont
sythétisés à travers d’un modèle de dimensions finies,

dérivé à partir d’un analyse des dimensions finies des
structures mécaniques, combiné avec des methodes de
réduction.
Les structures flexibles envisagées ici sont, d’abord, une
poutre flexible d’aluminium à la configuration Euler-
Bernoulli, dont un bout est encastrée et l’autre libre,
deuxièmement, une membrane axisymmetrique. Chaque
système est instrumenté d’un capteur et d’un actionneur
piézoélectrique, ils sont bien soumises à chaque coté des
structures et elles sont bien placées. Notre intention est
d’examiner les performances susmentionnés par les envi-
ronnements de simulation numérique et la mise en œuvre
à titre expérimental.

Title: Active Vibration Control of Flexible Structures under Input Saturation through Delay-Based Controllers and
Anti-Windup Compensators
Keywords: time-delay systems, vibration control, flexible structures, H∞ control, spectral analysis, LMI approach,
sampled-data systems

Abstract: In this work, the problem of active vibra-
tion control of flexible mechanical structures is addressed
through infinite and finite dimensional techniques. The
compared approaches are adjusted for an output feed-
back controller based on delayed proportional actions,
through a quasipolynomial-based approach, and an op-
timal H∞ controller design computed with an LMI ap-
proach. They are shown in order to analyze their capa-
bilities to damp some vibrational modes in the frequency
bandwith of interest, and to avoid the so called “spill-
over” phenomenon. These controllers are synthetized

through a finite dimensional model, derived from a finite
element analysis of the mechanical structure, combined
with some reduction methods.
The flexible structures considered here are, firstly, a flex-
ible aluminium beam in the Euler-Bernoulli configura-
tion, and secondly, an axysimmetric membrane. Both
of them are equipped with two piezoelectric patches that
are bounded and collocated on each face of the struc-
ture. We intend to examine and discuss the aforemen-
tioned performances in both simulation and experimental
environments.
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Introduction en français

Le contrôle actif des vibrations des systèmes flexibles pose de sérieux problèmes dans de nombreux domaines industriels et

scientifiques. Dans la littérature, nous pouvons trouver de tels problèmes, qu’ils ont tendance à apparaître dans une grande

variété de systèmes, comme les ponts, les grues [161], les bâtiments [169, 160], les véhicules [69], les avions [131, 45, 75],

etc. Tous ces systèmes ont tendance à être exposés à des vibrations, et s’ils ne sont pas construits pour supporter ces

environnements extrêmes ( vent, traversée de turbulences atmosphériques, moteurs en marche ), ils peuvent les faire

tomber en panne à cause de la fatigue, l’usure des connecteurs électriques, la fissuration de certaines pistes de cuivre, etc.

De fortes contraintes peuvent apparaître dans les composants lors des pics de résonance si plusieurs pièces possèdent les

mêmes fréquences de résonance. Normalement, lorsqu’un ingénieur doit concevoir des composants, il est primordial de

connaître l’environnement dans lequel il va travailler. L’ingénieur doit posséder des compétences de grande valeur afin de

mettre en œuvre les simulations pour émuler les phénomènes qui agiront sur les composants. L’amortissement actif des

vibrations [141] est un outil particulier qui, avec des capteurs et des actionneurs appropriés, peut permettre de manipuler

une structure mécanique flexible comme un système dynamique d’entrée-sortie de dimension infinie. Ce problème peut

être résolu avec des outils tels que Méthode des Éléments Finis [110], pour approcher un système donné en un système

linéaire de dimension finie.

Le contrôle actif de vibrations, qui aussi sont appelés d’isolation active des vibrations ou d’annulation active des

vibrations, sont les systèmes qui réagissent, de façon dynamique, c’est-à-dire, sont capables de capter et de réagir à ces

vibrations en conséquence. L’amortissement des vibrations c’est la réduction des pics de résonance par la dissipation de

l’énergie vibratoire, ce qui peut être réalisé avec la conception d’un contrôleur qui stabilise l’approximation linéaire de la

dynamique de la structure flexible [141]. L’isolation des vibrations c’est où l’origine de l’excitation vibratoire et les parties

sensibles du système à être isolées sont séparées avec des dispositifs auxiliaires qui sont appellés des isolateurs de vibrations

ou des montures d’isolateurs de vibrations [146]. Par ailleurs, il y a deux types généraux des systèmes d’annulation des

vibrations : les systèmes de commande prédicitive et ceux pour retour de sortie [123, 104]. Les systèmes de commande

prédictive sont programmés spécifiquement pour compenser les vibrations périodiques régulières, de tel façon que, cette

méthode peut anticiper et corriger les vibrations avant leur production. Les systèmes de rétroaction détectent et réagissent

en permanence aux vibrations entrantes, en ajustant les erreurs au fur et à mesure qu’elles se produisent. Typiquement ils

ont un mécanisme qui détecte les vibrations d’entrée et un actionneur qui réagit par conséquence, soit par le réglage d’un
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isolateur pour réduire les vibrations, ou bien, soit par la création d’un signal qui les réduit [154].

Les structures flexibles ont plusieurs avantages par rapport a celles des systèmes rigides. Parmi ceux-ci, nous retrouvons

la légèreté, la vitesse de fonctionnement plus élevée et le moindre coût. Peu de systèmes possèdent les particularités d’être

l’archétype général des structures flexibles. C’est le cas d’une poutre flexible ou d’une membrane axisymétrique, qui

appartiennent à ce type de structures. Leur étude et leur analyse illustrent, clairement, les avantages offerts susmentionnés

[76]. De plus, une révision extensive à propos des méthodes de modélisation, des analyses dynamiques, et des techniques de

commande utilisées pour les manipulateurs flexibles, en incluant deux liens, est presentée en [111]. L’étude des structures

flexibles s’applique dans les domaines industriels [43], comme les manipulateurs flexibles utilisés dans la chirurgie medical

[109], avec les robots à roues [203], c’est aussi possible de les utiliser dans l’orbite terrestre [153], dans les oléoducs de

haute mer[86, 186], des tubes prolongateurs pour le transport du pétrole [82], des câbles de grue pour le positionnement

des charges [128], dans les avions à ailes battantes [77], pour les secours en cas d’incendie à échelle pivotante [53], dans les

tours éoliennes [1], entre autres. Un obstacle qui se manifeste pour ces structures, est causé par les vibrations inattendues.

De plus, les effets des vibrations sont connus comme un obstacle pour le comportement des systèmes, qui conduissent

vers une basse productivité et qui créent des ruptures par fatigue. Le contrôle vibratoire a été un sujet attirant pendant

les dernières années par les communautés scientifique et industrielle. Des approches différentes ont été utilisé pendant les

dernières décennies pour contrôler l’amortissement des modes de vibration dans les structures flexibles. Par exemple, en

[125] diverses techniques sont rassemblées en utilisant des transducteurs piézoélectriques “shunt”, qui sont encastrés dans

les structures flexibles. Ils peuvent être utilisés comme des capteurs ou des actionneurs. Aussi une approche passive qui

utilise des transducteurs piézoélectriques "shunt" pour réduire la vibration dans une roue d’un train a été utilisé en [115].

Les accéléromètres piézoélectriques sont très populaires mais ils ne peuvent pas mesurer les composantes continues [141].

Un autre exemple de cette démarche est la conception des lois de commande dans les cas des capteurs et des actionneurs

non-colocalisés pour les structures flexibles, où il existe un nombre infini de modes de vibration. Leur points nodaux se

trouvent entre les emplacements des capteurs et des actionneurs. Par conséquence les fréauences des modes du système

se dirigent vers la partie droite du plan complexe [198].

Les techniques de placement de pôles sont utilisées dans des problèmes de contrôle très divers [159]. Le comportement

robuste des systèmes dynamiques est souvent un sujet d’intérêt par le fait que les incertitudes sont inévitables. Sous une

allocation des valeurs propres par régions, le comportement robuste peut être accompli. L’amortissement en boucle fermé

peut être réalisé en forçant les emplacements des pôles dans les régions stables souhaitées du plan complexe, c’est-à-dire,

à n’importe quelle région dans la partie gauche ouverte du plan complexe. Cette idée est une approche qui peut être

réalisée en prenant en considération les contrôleurs H∞, et en utilisant les inegalités de matrices linéaires ( LMIs ) pour

spécifier une région exponentiellement stable ( c’est-à-dire {s ∈ C : R(s) < 0}, où s répresente la variable complexe

de Laplace ) sur le plan complexe. Ces LMIs sont résolus avec l’utilisation de la méthode du point intérieur, efficace

pour l’optimisation convexe. Une caractérisation des LMIs pour des régions convexes générales du plan complexe pour

la synthèse du contrôleur H∞ a été montré en [39]. Par ailleurs, des résultats importants de la stabilité-D avec régions
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définies par LMIs, avec des incertitudes paramétriques suivies par des exemples illustratifs pour la conception dynamique

des contrôleurs par retour de sortie sont traités en [40], où les pôles de la boucle fermée sont assignés à l’intérieur des

régions spécifiques.

Le problème de la commande H∞ a été initialement mis en évidence par les travaux de Zames [205], incluant plusieurs

aspects englobés dans la sensibilité d’un système de rétroaction aux perturbations pour améliorer sa robustesse. Le problème

de sensibilité minimale indiqué dans [205] s’est avéré comme un problème d’interpolation de Nevanlinna-Pick. Aussi, dans

[7], pour placer les pôles à l’intérieur d’une région circulaire dans la moitié gauche du plan complexe.

Autre approche consiste à attribuer de manière robuste les valeurs spectrales dans la moitié gauche du plan complexe.

Il s’agit essentiellement d’un problème des valeurs inverses propres, à la recherche d’une immunité contre les perturbations

du système. Une mesure du conditionnement optimale auquelle on peut s’attendre pour un système particulier avec un

ensemble donné des pôles pour évaluer l’application de ces derniers attribués est donnée dans [93]. L’affectation d’une

structure robuste a été analysée dans [87], où un théorème d’analyse du retour de sortie dynamique a été proposé.

En raison des modes de vibration haute fréquence non modélisées qui apparaissent dans l’analyse fréquentielle des

structures flexibles, les approches robustes ont tendance à être plus attirantes. Une autre approche qui utilise des patchs

piézoélectriques a été montrée dans [177]. Dans [178], une amélioration pratique a été incluse dans le système où la

préoccupation concernant la limitation des actionneurs est prise en compte.

Une façon de simmuler le comportement de ces systèmes d’ordre élevé consiste à utiliser des retards temporels, car

il est possible de les réduire avec des variables d’état de dimension finie, voir [67]. D’autres références qui s’y trouvent,

soulignent l’application des systèmes retardés dans de nombreuses disciplines comme l’ingénierie de contrôle : les procédés

de fabrication ( voir [83] ), le moteur à combustion interne ( voir [42] ), la simplification et la réduction d’équations aux

dérivées partielles (EDP) ( voir [158] ), les retards de communication dans la télécommande et le réseau par exemple un

système de téléopérateur maître-esclave pour un robot est illustré dans [5] et une recherche sur les téléopérateurs bilatéraux

se trouvent dans le survey [134], etc. Néanmoins, il est communément admis que les retards peuvent entraîner des effets

déstabilisants sur la dynamique qu’ils impliquent, pour les systèmes sans retards il est possible d’utiliser des retards dans les

actions de contrôle pour rétroaction pour atteindre l’objectif spécifié. L’un des premiers articles montrant cela, indiquait

l’utilisation d’un contrôleur basé sur le retard pour améliorer la stabilité des systèmes avec un comportement oscillatoire et

un faible amortissement dans [166]. Les propriétés concernant les fonctionnalités utiles des contrôleurs basés sur le retard

ont été traitées récemment. Par exemple, une propriété appelée la dominance induite par la multiplicité ( MID ) a été

prouvée et utilisée dans plusieurs applications de suppression des vibrations dans des travaux pionniers récents, voir [27].

Dans des travaux antérieurs, il a été montré que la multiplicité d’une valeur spectrale peut être bornée par une borne

générique, que nous noterons BP S tout au long de ce document. Aussi, il a été souligné que l’attribution exacte des

BP S valeurs spectrales différentes pour les systèmes à retard d’ordre inférieur, sans aucune exigence supplémentaire de

multiplicité entre eux, garantit la dominance de ces modes non oscillants. Logiquement, si ces racines assignées sont

négatives, la stabilité exponentielle du système est garantie. Dans le cas d’un système de deuxième ordre, la propriété de
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dominance a été démontrée analytiquement avec une conception de placement des pôles pour le contrôle actif des vibrations

dans [29], voir aussi [31]. En [17], un critère qui permet de caractériser l’effet stabilisateur donné par la coexistence des

modes pour les équations différentielles retardées linéaires d’ordre n est donné. La stabilité et les performances des systèmes

à retards ont une importance théorique et pratique. Par conséquent, l’analyse de stabilité est effectuée par des approches

dans le domaine fréquentiel.

Nous considérerons ci-après deux approches de commande différentes pour un contrôle de dimension finie robuste des

systèmes à paramètres distribués : une approche H∞ optimale basée sur l’optimisation des LMI et une approche basée

sur le retour de sortie proportionnel-retardé. La première implique l’analyse et la synthèse des techniques de placement

de pôles robustes à l’aide des inégalités matricielles linéaires, atteignant une stabilité quadratique grâce à la synthèse de

contrôleurs H∞ [40]. La deuxième est basée sur des actions proportionnelles et retardées de la sortie mesurée et des

signaux de commande [180]. Les deux approches sont spécifiques aux systèmes linéaires assurant les emplacements des

pôles dans la moitié gauche du plan complexe, soit dans une région prescrite spécifique, ou bien soit dans des valeurs

négatives spécifiques ponctuelles. Dernièrement, un grand intérêt s’est manifesté pour comprendre le comportement des

retards en tant que paramètre de conception dans le contrôle des systèmes dynamiques.

Objectifs

Le sujet principal de cette thèse se divise en deux grandes parties. Premièrement, la description des structures flexibles

soumis à des lois de la commande proportionnel-retardé et la commande H∞ basée sur les LMIs, dans le domaine frequentiel

et temporel. Deuxièmement, la conception du contrôle pour placement des pôles des systèmes à retard, où un contrôleur

pour rétroaction est conçu de telle manière que les performances en boucle fermée du modèle de synthèse ( d’ordre inférieur

que le système d’origine ), comprenant jusqu’aux trois premiers modes de vibration des structures flexibles considérées,

seront bien amorties. De plus, la boucle fermée doit être robuste et stable face aux dynamiques non modélisées.

Avec la commande quasi-polynômial, nous mettons l’accent sur la synthèse et la conception des contrôleurs coņus

grâce à la connaissance de la racine la plus placée à droite dans le spectre des pôles du système. Au cours de cette

thèse, nous envisageons à approfondir les connaissances de ces techniques émergentes. L’objectif géneral se développe en

sous-objectifs qui se présentent comme suit :

Objectif 1. L’étude approfondie de lacommande linéaire, robuste et optimale, en se concentrant sur la technique de

placement des pôles dans les régions convexes du plan complexe, et décrites par inégalités matricielles linéaires

(LMI) pour les systèmes linéaires avec des incertitudes statiques sur la matrice d’état. Nous appliquons le résultat

déduit pour la conception d’un correcteur dynamique pour rétroaction attribue d’une manière robuste les pôles du

système dans une région LMI prédéfinie du plan complexe et minimise un coût H∞.

Objectif 2. L’approche de modélisation des structures mécaniques minces, de type plaque, permet l’utilisation des modèles
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mathématiques linéaires et de dimension finie et sa réduction modale correspondante pour la synthèse du contrôleur.

Objectif 3. L’analyse de ces systèmes de synthèse d’ordre inférieur que les systèmes d’analyse qui permet la synthèse des

correcteurs et l’exploitation d’avantage de leur application pour les systèmes de dimension finie d’ordre supérieur

dans une gamme de fréquences plus large.

Objectif 4. L’effet de pôles réels dans le plan complexe, qui sont une conséquence directe des quasi-polynômes et leur

impact dans le contrôle actif de vibrations de structures mécaniques flexibles considérés. Nous nous intéressons à la

racine dominante d’un quasi-polynôme, qui est caractérisée soit par la coexistence des racines réelles différentes, ou

soit par la multiplicité de racines réelles dans la moitié gauche du plan complexe.

Dans un effort pour atteindre ces objectifs énumérés ci-dessus, nous envisageons une analyse dans le domaine fréquentiel.

Pour l’application de tels correcteurs, nous devons nous assurer que leur ordre est relativement bas. Pour cela, nous utilisons

un modèle de synthèse des structures flexibles considérées, qui est obtenu à partir d’un modèle d’analyse par des techniques

de réduction bien connues. Cela introduit une autre exigence de stabilité robuste, où le contrôleur d’un modèle d’ordre

inférieur doit garantir le bon contrôle lorsqu’il est appliqué au modèle d’ordre supérieur de la structure flexible, appelé “

modèle d’analyse ”, et qui décrit les structures mécaniques flexibles dans une plage de fréquences plus large. Quant à la

contribution principale liée à l’approche basée sur les quasi-polynômes, nous étudions sa version en temps discret avec un

retard proportionnel au temps d’échantillonnage.

Structure du manuscrit

Le présent travail est organisé comme suit. Les résultats de base sont rassemblés dans le chapitre 2. Le chapitre 3 introduit

les prérequis et décrit les systèmes flexibles que nous considérons. Un contrôleur H∞ optimal est présenté au chapitre 4.

La méthodologie récente qui induit le placement des pôles dominants non oscillants dans l’axe réel négatif est explorée

dans le chapitre 5. La conception de compensateurs anti-windup, dont le but est de peaufiner les contrôleurs linéaires, ce

qui agrandit l’ordre du système en boucle fermée, qui permettent de réduire les saturations du système, et les résultats

des simulations numériques appliquées au problème de suppression des vibrations d’une poutre flexible sont exprimés au

chapitre 6. Enfin, dans le chapitre 7 les remarques et observations finales sont discutées.
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Chapter 1

Introduction

This chapter serves as an introduction to the manuscript and sets the stage for the subsequent chapters. In this first

chapter, firstly we introduce the motivation of this research, secondly the objectives proposed for this dissertation are

outline, and finally the manuscript structure is presented. We then outline the structure of the manuscript and conclude

by listing the publications that have contributed to this work.

In Section 1.1, we discuss the context and motivation for the research. We highlight the current state of the field,

identify gaps in knowledge, and articulate the research questions that this study aims to address. We also discuss the

significance of the study and its potential impact.

In Section 1.2, we lay out the specific objectives of the research. We describe the research questions that we aim to

answer and the methods that we will use to achieve our objectives.

In Section 1.3, we provide an overview of the structure of the manuscript. We describe each chapter’s content, and

the methods used. This overview will help readers navigate the manuscript and understand how the different chapters

contribute to the overall research objectives.

In final Section 1.4, we list the publications that have contributed to this work. These publications have provided the

foundation for the research and have been used to support the arguments made in this manuscript.

Overall, this introduction chapter sets the tone for the rest of the manuscript and provides a comprehensive overview

of the research. It outlines the context and motivation, research objectives, manuscript structure, and list of publications

that have contributed to the study.

Contents
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1.3 Structure of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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1.1. CONTEXT AND MOTIVATION CHAPTER 1. INTRODUCTION

1.1 Context and motivation

The active vibration control of flexible systems causes serious problems in many industrial and scientific fields. In the

literature we can find such problems, and they tend to appear in a wide variety of systems, as bridges, cranes [161],

buildings [169, 160], vehicles [69], airplanes [131, 45, 75], etc. All these systems tend to be exposed to vibrations, and

if they are not constructed to endure these extremes environments (wind, crossing of atmospheric turbulences, working

engines), they can cause them to fail due to fatigue, wearing away the electrical connectors, cracking some copper tracks,

etc. High stresses can appear in components during the resonance peaks if several parts own the same resonant frequencies.

Normally, when an engineer needs to design components, it is of paramount importance to know the environment in which it

will work. The engineer needs to possess high valuable skills in order to set the correct initial conditions in the simulations to

emulate the phenomena that will be acting on the component. Vibration damping is a particular tool that, with appropriate

sensors and actuators, can allow to manipulate a mechanical flexible structure as an input-output dynamical system of

infinite dimension. This problem can be tackled with tools such as the Finite Element Method [110], to approximate a

given system into a linear system of finite dimension.

Active vibration control systems, also called active vibration isolation or active vibration cancellation, are isolation

systems that dynamically react to incoming vibrations, e.i., they sense incoming vibrations and react to them. Different

approaches for achieving this vibration reduction can be considered, where we can find vibration stiffening, damping and

isolation as the most common ones. Vibration stiffening involves shifting the resonance frequencies of the flexible structure

under consideration out of the range of the frequency span of interest [183]. Vibration damping is founded on reducing the

resonance peaks by dissipating the vibration energy, which can be performed through the design of a stabilizable controller

for the linear approximation of the flexible structure dynamics [141]. Vibration isolation is where the origin of vibration

excitation and the sensitive parts of the system to be isolated are separated by auxiliary devices called vibration isolators

or vibration isolating mounts [146]. Additionally, there are two general types of active vibration cancellation systems:

feedforward and feedback systems [123, 104]. Feedforward systems are specifically programmed to compensate for regular

periodic vibrations, this way, this method anticipates and corrects the vibrations before they happen. Feedback systems

continually sense and react to incoming vibrations, adjusting the errors as they take place. Typical feedback systems have

a sensing mechanism which senses incoming vibrations and an actuator which reacts to these vibrations, either by tuning

an isolator to reduce the incoming vibrations or creating a signal which reduces them out [154].

Flexible structures have several advantages over those rigid-body structures. Among those we find the lightweight,

higher operation speed and lower cost. Few systems have the particularity of being the touchstone of a general archetype

of structures. This is the case of the flexible beam system, which belongs to this class of structures, and its study and

analysis illustrates, clearly, the advantages mentioned above [76]. Moreover, an extensive review on the modeling methods,

dynamical analyses and control techniques employed for flexible manipulators including two links is presented in [111].

The study of these flexible structures finds applications in, industrial as well as scientifical areas [43], such as flexible

8
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manipulators used in surgical procedures [109], wheeled robots [203], it finds also Earth’s orbital utility [153], deep-sea

oil pipelines [86, 186], marine mooring lines for station keeping [193, 78], marine risers for oil transportation [82], crane

cables for positioning the payload [128], the flapping-wing robotic aircraft [77], the fire rescue turntable ladder [53], the

wind turbine tower [1], among other systems. Also, severe hindrance in the performance of such structures is caused due

to undesired vibrations.

Moreover, since vibration effects are known to be a system performance hindrance, leading to low productivity and

provoking early fatigue failures, vibration control has been a topic that gets a lot of attention during the last years by the

scientific and industrial communities. Different approaches to the damping control of vibration modes in flexible structures

have been used through the last decades. In [125] a number of techniques are collected using “shunted” piezoelectric

transducers, which are embedded into the flexible structures, and can be used either as sensors or actuators. A passive

approach using “shunted” piezoelectric transducers to mitigate vibration in a train wheel was used in [115]. Piezoelectric

accelerometers are very popular but they cannot measure a D.C. component [141]. Another example of this procedure is

the fact of designing controllers for the case of non-collocated, either sensors or actuators, in flexible structures, in which

exist an infinite number of modes whose nodal points fall between the sensor and actuator locations, consequentely moving

some of the system’s eigenvalues into the right-half of the complex plane, [198].

Pole placement techniques are used in different control problems [159]. Robust behavior of dynamical systems is often

a topic of interest due to the fact that uncertainties are inevitable. There exist several controller design methods which

work with the assignment of a finite spectrum, such as, for example, the Linear-Quadratic regulator (LQR) controller,

which sets a quadratic performance index to be minimized on the states and control input, the Linear-Quadratic Gaussian

(LQG) controller, which takes into account the presence of measurement noise and disturbance inputs, but we choose

to treat the H∞ controller, which provides an intuitive framework for achieving a certain performance and robustness,

altogether with computational efficiency, using LMIs. Systems’ performance can be measured through different norms

such as the H2 and the H∞ norms [64]. Under an adequate regional or pointwise eigenvalue structure assignment this

can be achieved. Closed-loop damping can be achieved by forcing the poles into a desired stable region of the complex-

plane, i.e. any region in the open left-half side of such plane. This idea is an approach that can be done through the

consideration of H∞ controllers, the use of Linear Matrix Inequalities (LMIs) to specifie a certain exponentially stable

region (i.e. {s ∈ C : ℜ(s) < 0}, where s stands for the complex variable) in the complex-plane. These LMIs are solved

using efficient interior-point methods for convex optimization. An LMI characterization for general convex regions of

the complex-plane for the H∞ controller synthesis has been shown in [39]. Important results over D-stability with LMI

regions with parametric uncertainties followed by illustrative examples for designing dynamic output-feedback controllers

are discussed in [40], where the closed-loop poles are robustly assigned into an specified region.

The H∞ problem was initially pointed-out by the work of Zames [205], including several aspects encompassed within the

sensitivity of a feedback system with disturbances for improving its robustness. The minimum sensitivity problem pointed-

out in [205] turned out to be a Nevanlinna-Pick interpolation problem. Lately, in [7], the Nevanlinna-Pick interpolation

9
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problem is used for robust stabilisation, placing the poles inside a circular region in the left-half of the complex-plane.

Other approaches consist on robustly pointwise assigning the spectral values in the left-half of the complex-plane. This

is essentially an inverse eigenvalue problem, looking for immunity against system perturbations. A measure for the optimal

conditioning that may be expected for a particular system with a given set of poles to evaluate the applicability of the

assigned poles is given in [93]. Robust eigenstructure assignment has been analysed in [87], where a theorem for the

analysis of the dynamic output-feedback was proposed.

Due to the unmodeled high-frequency vibration modes that appear in the frequency analysis of flexible structures,

robust approaches tend to be more appealling. Other approach using piezoelectric patches was shown in [177]. In [178],

a practical improvement was included in the system where concern about the actuators’ limitation is taken into account.

A way to simulate the behavior of these high-order systems is using time-delays, as it is possible to simplify them with

finite dimensional state variables, see [67] and the references therein, where it is stressed the applicability of such delayed

systems in many disciplines besides control engineering, e.g. the manufacturing processes (see, e.g., the thesis dissertation

[83]), the internal combustion engine (refer to the survey paper [42]), the simplification and reduction of partial differential

equations (PDEs) (in [158] the growth-rate model for the Covid-19 is estimated), communication delays in remote control

and network (a master-slave teleoperator system for a robot is shown in [5] and a survey on the bilateral teleoperators can

be found in [134]), among others. Nonetheless, it is a common belief that time-delays may lead to destabilizing effects on

the dynamics that they are involved, for systems without delays it is possible to use time-delays in feedback control actions

to achieve the specified objective. One of the first papers showing this stated a delay-based controller used for improving

the stability of systems with oscillatory behaviour and small damping in [166]. Properties about the useful features of

delayed-based controllers have further been treated recently, e.g. a property called Multiplicity-Induced Dominancy (MID)

has been proven and used in several vibration suppression applications in recent pioneering works, see for instance [27]. The

first time where multiple zero frequency imaginary roots were characterized with a general formula for the LU-factorization

was in [24].

In previous works, it has been showed that the multiplicity of a spectral value can be bounded by a generic bound, that

we will denote as BP S throughout this document. Besides, it has been pointed out that assigning exactly BP S different

spectral values for low-order time-delay systems, without any further requirement of multiplicity among them, guarantees

the dominancy of such non-oscillating modes. In [17], where the coexistence of real spectral values is proven as an effective

approach. Logically, if these assigned roots are negative, exponential stability of the system is guaranteed. In the case of

second-order systems, the dominancy property has been analitically shown altogether with a pole placement design for the

active vibration control in [29], see also [31]. In [17], a criterion that allows the characterization of the stabilizing effect

given by the coexistence of non-oscillating modes for n-order linear delayed-differential equations is given. The stability

and the performance of the systems with time-delays are of theoretical and practical importance. Therefore, the stability

analysis is done through frequency-domain approaches.

We will consider hereafter two different control approaches for robust finite-dimensional control of thin mechanical
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structures: an optimal H∞ LMI-based approach and an output-feedback proportional-delayed-based approach. The former

implies analysis and synthesis for robust pole placement techniques using Linear Matrix Inequalities, arriving to a quadratic

stability and D-stability through the synthesis of H∞ controllers [40]. The latter based on proportional and delayed actions

of the measured output and control law’s signals [180]. Both approaches are customized for linear systems assuring the

poles locations in the left-half of the complex-plane, either in a specific prescribed region, or in pointwise specific negative

values.

1.2 Objectives

Lately a big interest has arisen to understand the behavior of time-delays as a design parameter in the control of dynamical

systems. The main topic of this thesis is the frequency-domain analysis and pole placement control design of time-delay

systems, where an output-feedback controller is designed in such a way, that the closed-loop performance of the low-

order synthesis model, which for the studied case includes the first three vibration modes of the flexible structures under

consideration, will be well-damped. Also, the closed-loop should be robustly stable against unmodelled dynamics.

With the quasipolynomial-based control, we make emphasis on the synthesis and controllers design based on the

knowledge of the rightmost root in the spectrum of the system’s poles. During this dissertation we aim to deepen in

the application of these emergent techniques, and understanding the usage and the design of such techniques. The

sub-objectives noted to be developed during this research are presented as follows:

Objective 1. Study and familiarization with linear, robust and optimal control, focusing in a technique for pole placement

in convex regions of the complex plane, described by Linear Matrix Inequalities (LMI) for linear systems with static

uncertainties on the state matrix. We apply this result for the design of a dynamic output-feedback controller that

robustly assigns the system’s poles in a predefined LMI region of the complex plane.

Objective 2. The modelling approach involving thin mechanical structures allows to use finite-dimensional linear mathe-

matical models and its corresponding modal reduction for their controller synthesis.

Objective 3. The investigation and analysis of these low-order systems to allow the optimization of controller’s parameters

for the controller synthesis, and to further explore their applicability for the high-order finite-dimensional systems

that approach these thin mechanical structures in a wider range of frequency.

Objective 4. The effect of the poles among the infinite spectral values in the complex plane, which are a direct con-

sequence of quasipolynomials and their impact in the active vibration control of the thin mechanical structures

under consideration. We are interested on the dominant root of a quasipolynomial, which is characterized by the

coexistence of different real roots in the left-half of the complex plane.

11
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In an effort to meet these listed objectives above, we consider a frequency domain analysis. For the application of

such controllers we have to ensure that their order is relatively low. For this purpose, we are using a synthesis model of

the considered flexible structures, which is obtained from an analysis model through some reduction techniques that are

well known. This introduces another robust stability requirement, where a low-order model’s controller has to guarantee

the proper control when it is applied to the high-order model of the flexible structure, called as “analysis model”, and

that describes the thin mechanical structures in a wider range of frequency. As for the main contribution related to the

quasipolynomial-based approach, we study its discrete-time version with a commensurate delay w.r.t. the time-sampling.

1.3 Structure of the manuscript

The present work is organized as follows. Basic results are gathered in the Chapter 2. The Chapter 3 introduces the

prerequisites and describes the flexible systems that we consider. An optimal H∞ controller is outlined in Chapter 4. The

recent methodology that induces dominant non-oscillating poles placement in the negative real axis is explored in Section

5. Approaches for designing anti-windup compensators, whose purpose is to tweak linear controllers, which enlarges the

order of the closed-loop system, which enable the reduction of the saturations in the system, and results from numerical

simulations applied on the vibration suppression problem of a flexible beam are expressed in Chapter 6. Finally, in Chapter

7 closing remarks and observations are discussed.
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Chapter 2

Background

In this particular chapter, we focus to analyse several properties and characteristics of time-delay systems. This sets the

stage for a formal introduction in much generality, introducing functional differential equations as representations of time-

delay systems. Linear delay systems are discussed deeply with the frequency-domain methods. It provides background

knowledge required to understand the subsequent chapters. It covers linear differential-difference equations in Section

2.1.1, we treat the frequency domain analysis of LTI systems in Section 2.1.2, design of delayed feedback stabilizing

controllers in Section 2.1.3, some convex optimization problems and examples in Section 2.2, and provides some notes and

references for further reading in Section 2.3.
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2.1. RETARDED DIFFERENTIAL EQUATIONS’ PROBLEMS CHAPTER 2. BACKGROUND

2.1 Retarded Differential equations’ problems

This section gathers important theorems and some examples of delay-differential equations of retarded type.

2.1.1 Linear differential-difference equations

Ordinary differential equations (ODE’s) are equations involving functions on a temporal continuous argument, and time-

derivatives of such a function. These equations can be written as

f

(
t, x,

d x

dt
, · · · ,

dn x

dtn

)
= c

which can be also well written simply as f(t, x, ẋ, · · · , x(n)) = c, where t represent the time argument, the variable x ∈ Rn

indicate an unknown function, the dots and powers among parenthesis indicate time-derivatives, and the constant c, that

may be scalar or vector variables, and should have the same dimension. When these equations involve current and past

values of the states, they are called time-delay systems.

Time-delay systems (often called TDS) are dynamical systems modelled through differential equations that depend

on current and past values of the states. They are often called functional differential equations (FDEs), are also known

as differential equations with deviating arguments, due to their evaluation on arguments that are distributed over some

intervals in the past.

Time-delay systems are systems that include in their dynamics the effect of a deferral during a certain amount of

time. This entails the involvement, not only of the current states’ values, but also about its past values. The previously

mentioned systems are also called hereditary systems, systems with time-lag, systems with aftereffect, systems with dead

times, equations with deviating argument, or differential-difference equations, among others. Their presence proliferates

among different natural systems, including a wide variety of fields spanning along biosciences (dynamics of populations’

heredity [102]), physics, chemistry (dynamics in chemical kinetics [151]), economics (dynamics of bussiness cycles [88]),

social behaviors, etc. An example of their study and analysis has become largely interesting due to its repercussion rate of

contagions that can arise after an extensive virus oubreak [191]. As a matter of fact, TDS were first introduced in order

to describe the behavior of biological systems, and later their consideration was found useful in many engineering systems,

such as mechanical transmissions, fluid transmissions, manufacturing processes, nuclear reactors, and so on and so forth.

Normally, the study and design of control laws can be compared and tested using practical methods, adjusting gains,

modifying parameters, or augmenting the system with the addition of compensators, like the anti-windup compensators,

which can enhance and improve its behavior. Nonetheless, in the case when these systems are challenging, expensive

or dangerous, experimental implementation should be compared with data obtained from digital computer simulations

performed in advance.

The stability analysis of time-delay systems has aroused so much interest in recent years, but among its difficulties
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CHAPTER 2. BACKGROUND 2.1. RETARDED DIFFERENTIAL EQUATIONS’ PROBLEMS

is that, contrary to the linear systems of finite dimension where Routh-Hurwitz stability criterion is available [13], there

is no simple known criterion for determining the asymptotic stability of a general linear time-delay system based only on

its coefficients and delays [118]. Several methodologies capable of synthetizing controllers of a similar order than the

system are available, including but not limiting to approaches through the finite spectrum assignment, H2 and H∞ control

synthesis schemes, and Linear Matrix Inequalities based controllers. Despite their usefullness, these approaches are often

of difficult implementation into high-order systems. Due to this reason, most of the cases low-order controllers are chosen

over high-order ones.

It can be considered that many of the effects often studied in systems dynamics, are the reactions of given systems

to real exogenous actions, as well as their satisfactory or insatisfactory behaviour when stabilized with a control law. The

reason of this delay can be attributed to many reasons, but specially due to the transport and the propagations phenomena,

often intrinsically present in the systems’ dynamics. Once more, the study of TDS becomes important.

In the forthcoming sections, and without loss of generality, we will briefly introduce the reader to some basic aspects

of time-delay systems represented by functional differential equations (FDEs).

A thoroughly study of the real world systems inevitablely compels one to take into account that the rate of change of

physical systems involve present states, as well as past states. As it was discussed in the introduction (Chapter 1), one

way to tackle phenomenons involving delayed signals is to include the information relating the past states values in the

computed model of the systems’ dynamics. These model’s differential equations, where a time-delay is involved and, thus,

the present value is a function that is evaluated with present and past values, which lay in a solution interval, are called

functional differential-difference equations. When the theory of linear differential-difference equations is discussed, what

is intended is to recall in a comprehensible way a unified theory for different classes of ordinary differential equations (see

e.g. [116], [73]).

There are classes of systems that involve time-delays in the derivatives, which include many of these special types,

are called neutral functional differential equations (NFDE). Other interesting case of ODE’s is the case when there are

equations with no delays in the derivatives and a past-dependence only on the state variable, which are called retarded

functional differential equations (RFDE).

Retarded Functional Differential Equations

The functional differential equations of retarded type can be considered as


ẋ(t) = f(t, xt(θ)), t ≥ t0,

xt0(θ) = ϕ(θ), ∀ θ ∈ [−τ, 0]
(2.1)
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2.1. RETARDED DIFFERENTIAL EQUATIONS’ PROBLEMS CHAPTER 2. BACKGROUND

where xt(·), for a given t ≥ t0, denotes the restriction of x(·) to the interval [t − τ, t] translated to [−τ, 0], i.e.

xt(θ) = x(t + θ), ∀ θ ∈ [−τ, 0]

It is assumed that ϕ ∈ Cv
n,τ and the map f(t, ϕ) : R+ × Cv

n,τ 7→ Rn is continuous and Lipschitzian in ϕ and f(t, 0) = 0.

The scope of this thesis constraints itself to the linear case of these type of equations, which is presented below.

The characteristic equation for an homogeneous linear differential equation with constant coefficients (2.2) is obtained

by looking for its nontrivial solutions of the form c eλt, where c is either a real constant or an n-vector, i.e. c ∈ Rn.

ẋ(t) = A0 x(t) + A1 x(t − τ) (2.2)

where A0 ∈ Rn×n is a squared matrix, the n-dimensional state vector x(t) ∈ Rn, and τ is the time-delay [120], with a

characteristic equation given by the roots of the right-hand side of the function

h(s) def= det{s I − A0 − A1 esτ } (2.3)

has non-trivial solutions f(t) = c est with i = 1, . . . , n. As this thesis deals partly with the poles of infinite dimensional

systems, a useful theorem capable of predicting an upper-bound on the number of zeros in an horizontal strip is given by

the Polya-Szegö theorem, which is summarized as follows:

Theorem 1. ([140, pp. 144-145]) Let τ1, τ2, . . . , τN denote real numbers such that

τ1 < τ2 < · · · < τN

and let m1, m2, . . . , mℓ be positive integers such that

m1 ≥ 1, . . . , mℓ ≥ 1, m1 + m2 + · · · + mN = D.

Let fi,j(s) = si−1 eτjs, for 1 ≤ i ≤ dj and 1 ≤ j ≤ N . Let PSb be the number of zeros of the function

f(s) =
∑

1≤j≤N
1≤i≤dj

ci,j fi,j(s) (2.4)

that are contained in the horizontal strip

α ≤ ℑ(s) ≤ β
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Assuming that ∑
1≤k≤d1

|ck,1| > 0 and
∑

1≤k≤dn

|ck,N | > 0

then
(τN − τ1) (β − α)

2 π
− D + 1 ≤ PSb ≤ (τN − τ1) (β − α)

2 π
+ D + N − 1. (2.5)

Setting α = β = 0, the above theorem yields PSb ≤ D + N − 1 where D stands for the sum of the degrees of the

polynomials involved in the quasipolynomial function f(s) and N denotes the associated number of polynomials. This

gives a sharp bound for the number of real roots of f(s).

Neutral Functional Differential Equations

The delayed differential equations of neutral type are generalizations of differential equations that describe

ẋ(t) −
m∑

i=1
Di ẋ(t − τi) −

m∑
i=0

Ai x(t − τi) = 0, (2.6)

with x(t) ∈ Rn are the state variables, Ai and Di are square real matrices of dimension n and τi, with i = 1, . . . , m, are

constant delays. The characteristic equation of the NFDE is described in the frequency domain as

h(s) = det
(

s I −
m∑

i=1
Di s e−sτi −

m∑
i=0

Ai e−sτi

)
, (2.7)

where τ0 = 0. When we consider these systems in the scalar case with a single delay, the general function of NFDE in

(2.6) is rewritten as

ẋ(t) − d ẋ(t − τ) − a x(t − τ) = 0 (2.8)

The characteristic equation is rewritten as

h(s) = s − (d s + a) e−sτ = 0 (2.9)

As the stability of the solutions of differential equations lies on the roots’ locations of its characteristic equation, an

important result to take into consideration when dealing with neutral functional difference equations is expressed in the

next theorem.

Theorem 2. ([56, Theorem 2.1]) In the equation (2.8), if |dm| > 1, then for all τ > 0, there is an infinite number of

roots of equation (2.9) where the real parts are positive.

We can say then, that if in equation (2.9) we set |dm| > 1, then the trivial solution of the system described by the

NFDE (2.8) is unstable for all τ > 0.
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Example 1. We illustrate the analysis of a scalar neutral time-delay equation with the following system

ẋ(t) − d ẋ(t − τ) = a x(t) (2.10)

from this last equation, its characteristic function is given by a quasipolynomial of the form

h(s) = s (1 − d e−τs) − a

From this last characteristic function, if |d| < 1, then the solution is stable. Nonetheless, there exist an infinite number of

roots. □

Example of time-delay systems

Time-delay systems belong to the class of infinite dimensional systems, which are different from ordinary differential

equations (ODE), whose dimension is finite. In modelling physical processes, a classical hypothesis taken is that we can

predict the future behavior of a deterministic system by taking into account the present state of the system. But in

time-delay systems, we can suppose that the past states also affect the system future responses.

Example 2. Proportional Minus Delay (PMD) controller

Usually, the presence of time-delays in industrial processes can represent a big challenge, so many efforts have been done

in order to minimize the effect of such problems. Generally, the presence of time-delays on stabilizing feedback structures

will induce a destabilizing effect. Nonetheless, they are not necessarily destabilizing, as it has been pointed by [16] with

a single-species equation.Besides that, there has also been proposed to use those time-delays in the controller design to

improve the systems’ performances [165]. Time-delays incorporated in conventional controllers can result convenient (see,

e.g. [201], where it is shown that time-delays can result beneficial for energy harvesting performance).

R(s)
K̂p +

K̂d

−
e−Td s

G(s)

W (s)

C(s)

Controller

Controlled
Process

E(s) U(s)

Figure 2.1. Proportional Minus Delay controller.

Considering the closed-loop system of Figure 2.1 in the Laplace domain, the control law has the form

U(s) =
(
K̂p − K̂d e−τs

)
E(s) (2.11)
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where K̂p > 0 and K̂d > 0 are parameters to adjust and τ is the controller’s delay. The effect of this controller is

equivalent to the PD-controller’s effect. To show this, from (2.11) we have

u(t) = K̂p e(t) − K̂d e(t − τ),

=
(
K̂p − K̂d

)
e(t) + τ K̂d

[
e(t) − e(t − τ)

τ

]
(2.12)

One can state that
1
τ

[
e(t) − e(t − τ)

]
= 1

τ

∫ t

t−τ

ė(t) dt. (2.13)

From (2.12)-(2.13), and letting Kp = K̂p − K̂d, and Kd = τ K̂d, we write

u(t) = Kp e(t) + Kd

[
1
τ

∫ t

t−τ

ė(t) dt

]
. (2.14)

Therefore, it is possible to perform the action of the PD controller averaged over a very short period of time τ , adjusting

the gains Kp and Kd as the proportional and derivative gains.

Simulation of the PMD controller For illustration purposes, a simulation of a first order system given by G(s) = 1
s+1

is performed, with a reference signal r(t) and a perturbation signal w(t) chosen as

r(t) = 1.5 (1 − e−6t), t ≥ 0,

w(t) = 0.2 sin(100t), 0 ≤ t ≤ 5.

 (2.15)

The addition of the signals r(t) and w(t) is plotted on Figure 2.2a. The gains are chosen as Kp = 1 and Kd = 4, the

time-delay is chosen as τ = 0.314, and the response c(t) of the system is shown in Figure 2.2b, where we appreciate how

the proportional minus delay control law is appropriately responding against a noisy input.

□

(a) Reference signal plus perturbation (2.15). (b) Output response for the PMD-controller.

Figure 2.2. Noisy reference input and PMD-controller action.
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2.1.2 Frequency-domain analysis

Despite that in this work, we deal exclusively with linear time-invariant (LTI) systems, we are focused in studying and

achieving conditions that ensure the stabilisation of time-delay systems with a small amount of conservatism. The LTI-delay

systems are discussed in greater length with frequency domain descriptions [68].

Different kind of systems are analyzed in the time-domain by means of the convolution. To perform a similar analysis

through the frequency domain, we use the Fourier transform. In this way, every input signal is represented as an addition

of cosine waves, and each of them having a specific amplitude and phase.

Recalling, the convolution is the standard tool for the analysis of LTI systems. The impulse response, h(t), of a given

system, is the only knowledge required from such system to compute its response y(t) to different inputs x(t), and it is

represented as

y(t) = x(t) ∗ h(t), (2.16)

where the symbol ∗ represent the convolution operation
∫ t

0 x(t − τ) h(τ)dτ . As a way to elude a difficult operation as the

convolution, it results highly advantageous to analyse the system in the frequency domain applying a Fourier transform to

the LTI system. The Fourier transform permits to obtain the ouput of the LTI system performing a simple multiplication

instead of the difficult convolution, as it is shown below, in equation (2.17), where Y (ω), X(ω) and H(ω) denote the

Fourier transforms of the system’s output y(t), the LTI system state x(t), and the impulse input h(t), respectively.

Y (ω) = X(ω) H(ω), (2.17)

As we can say that the Fourier transform is a subset of the Laplace transform, this frequency-domain analysis approach

is commonly referred as the Laplace-domain approach [47].

A common method for defining stability relies in the fact that, for any given system that may be described by the

convolution operation (2.16) is bounded-input, bounded-output (BIBO) stable if any bounded input u(t) results in a

bounded output y(t). Additionally, the steady-state solution of a LTI system also is said to be stable if, and only if, all the

roots of its characteristic quasipolynomial (polynomial for the non-delayed case) have negative real part, i.e. ℜ(s) < −α

for α > 0.

The retarded-type time-delay systems are written as

ẋ(t) −
m∑

i=0
Ai x(t − τi) = 0, (2.18)

where Ai ∈ Rn×n are given matrices of appropriate dimensions, and τi are constant delays. Its characteristic equation is

written as

∆(s) = det
(

s I −
m∑

i=0
Ai e−sτi

)
, (2.19)
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where τ0 = 0 [116].

For example, we can consider the scalar case of a linear retarded differential equation as

ẋ(t) = a0 x(t) + a1 x(t − τ), (2.20)

where the constant coefficients a0 and a1 are real and the time-delay τ > 0 is positive. We see that the quasipolynomial

of this function is written as

∆(s) = s − a0 − a1 e−τs = 0. (2.21)

The difference from systems without delays is that, the characteristic equation ∆(s) = 0 from Eq. (2.21) has an infinite

number of solutions. This corresponds to the infinite-dimensional property of the time-delay systems. Since the quasipoly-

nomial (2.21) is an entire function [81], it cannot have an infinite number of zeros within any compact set |s| ≤ c, ∀c > 0.

A consequence of this is that most of the characteristic roots tend to infinity.

The loci of these roots can be explained in the following way. Let

|s| ≤ |a0| + |a1| e−τℜ(s) (2.22)

be the upper bound for the absolute value of the characteristic roots. As the left-hand side of (2.22) approaches infinity,

i.e. |s| → ∞, in the right-hand side approaches infinity. As a consequence we have

lim
|s|→∞

ℜ(s) = −∞.

Therefore, there is a finite number of zeros to the right of any line parallel to the real-axis [57].

The effect of time-delays across the different areas may have different behaviours, either stabilizing or destabilizing

effects. This notion can be studied through the frequency domain. For example, the system

ẍ(t) + x(t) − x(t − τ) = 0 (2.23)

will be unstable for a time-delay τ = 0, but it is asymptotically stable for τ = 1 [57]. This damping effect can be explained

by the approximation
d

dt
x(t) ≃ 1

h

[
x(t) − x(t − τ)

]
.

Just as for the ODEs are asymptotically stable if, and only if, all the characteristic roots have negative real parts, it is

the same case when dealing with LTI TDS. It is worth noting that for linear TDS, as in Eq. (2.23), asymptotic stability

and exponential stability are equivalent.
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2.1.3 Delayed feedback stabilizing design

Straightaway we address the behavior of the generic delay-differential equations of the form

y(n)(t) + an−1 y(n−1)(t) + · · · + a0 y(t) + αn−1 y(n−1)(t − τ) + · · · + α0 y(t − τ) = 0, (2.24)

where y(t) is the time-dependent function, n > 0 is a positive integer, ak ∈ R and αk ∈ R are the constant coefficients,

for k0, 1, . . . , n − 1, and τ > 0 is a real-valued time-delay. The delay-differential equations of retarded type, or retarded

functional differential equations (RFDE) subsumes the highest derivative in the non-delayed polynomial, being this highest

derivative given by y(n)(t) in equation (2.24).

A way that illustrates the reason for the study of this time-delay systems is that a delayed-state-feedback control law

under the form

y(n)(t) + an−1 y(n−1)(t) + · · · + a0 y(t) = u(t − τ), (2.25)

where u(t − τ) is the delayed-state-feedback control input, chosen in a specific way for getting a specific closed-loop

behaviour of the equation (2.25). In the non-delayed case, i.e. when τ = 0, an effective choice that properly assigns

all eigenvalues of the system accordingly to the coefficients’ values is taken as u(t) = −βn−1 y(n−1)(t) − · · · − β0 y(t),

resulting in dynamics that behave following

y(n)(t) + (an−1 + βn−1) y(n−1)(t) + · · · + (a0 + β0) y(t) = 0. (2.26)

The stabilization methodology discussed for arriving to the equation (2.26) is called pole placement [137], and it does

not hold in the delay-based case described here. An important diffficulty in the analysis of the asymptotic behaviour of

(2.24) is that, contrarily to the situation for (2.26), the corresponding characteristic function has infinitely many roots.

Going back to our discussion about time-delay systems, the stability of the RFDE (2.25) can be analyzed through the

characteristic quasipolynomial’s roots, thus

∆(s) = sn +
n−1∑
k=0

ak sk +
n−1∑
k=0

βk sk e−τs. (2.27)

The function in equation (2.27) is defined for the Laplace variable s ∈ C, where ∆ : C 7→ C [118]. The stability properties

analysed from the characteristic roots’ placement on equation (2.26), will be asymptotically stable if each spectral value

si < 0 is a negative real pole, with i = 0, 1, . . . , n. Moreover, the dynamics behaviour of (2.25) is determined by the

spectral abcissa, that is the dominant root of this quasipolynomial (2.27), i.e. the root with the largest real part.
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Multiplicity Induced-Dominancy

The interesting idea of controlling systems through a partial pole placement with a multiple dominant root (MID) has been

treated in recent works, as in [32, 33, 28], among others, where a generic quasipolynomial of retarded type, as given in

equation (2.27) are used, and a given real negative value s0 can be a multiple root of the characteristic quasipolynomial of

the closed-loop system. When this multiplicity reaches its maximal value for its given quasipolynomial, it can be portrayed

as an integral representation, as it is shown in the next theorem from [182]:

Theorem 3. ([182, Thm 2.3]) Let τ > 0, a real scalar s0 ∈ R, and consider the quasipolynomial ∆(s) from (2.27). The

number s0 is a root of ∆(s) with multiplicity of at least n + m if, and only if, there exists a constant a ∈ R, s.t.

∆(s) = τm (s − s0)n+m

(m − 1)! ·
∫ 1

0
tm−1 (1 − t)n−1 (1 − a t)e−tτ(s−s0) dt (2.28)

Another way to show the characterization of real roots of maximal multiplicity for the quasipolynomial ∆(s) and their

dominance on the dynamics of (2.25) is portrayed in the theorem depicted forthwith.

Theorem 4. ([118, Thm 3.1]) Consider the quasipolynomial ∆(s) given by the equation (2.27). Let s0 be the root

of highest multiplicity. Then, the root s0 holds a multiplicity 2n in the quasipolynomial ∆(s), if and only if, for every

k = 0, 1, . . . , n − 1, the parameters ak and αk denoted in equation (2.27) are given by

ak =

 n

k

 (−s0)n−k + (−1)n−k + (−1)n−k n!
∑n−1

j=k

 j

k


 2n − j − 1

n − 1

 sj−k
0

j! τn−j
,

βk = (−1)n−1 es0τ
∑n−1

j=k

(−1)j−k (2n − j − 1)!
k! (j − k)! (n − j − 1)!

sj−k
0

τn−j
,


(2.29)

then, if the requisites in the equations (2.29) hold, the spectral value s0 is strictly the dominant root of the quasipolynomial

∆(s) in equation (2.27). Moreover, if the coefficient an−1 > − n2

τ , then the trivial solution of (2.24) is exponentially

asymptotically stable.

Proof. See [118, §4].

Thanks to this last theorem, a system’s spectral values of maximal multiplicity are necessarily dominant for retarded

delay-differential equations.

Coexistence of real roots

The best way to explain this procedure, is applying into a simple systems portrayed by delay-differential equations. Theorems

showing properties on first-order and second-order retarded time-delay equation with a single time-delay, i.e. a scalar
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differential equation with only one delay. A retarded differential equation involving a single delay constant term can serve

as a mathematical model for many different phenomena.

The first-order DDE is governed by

ẋ(t) + a x(t) + b x(t − τ) = 0. (2.30)

This model represents a biological model which was discussed in [18, Eq. (3.5.3), p.382]. A contagious disease is spread

throughout a community by people coming into contact with other people. Let the state x(t) represent the population size

at time t, b > 0 denotes the contact rate between infected and uninfected populations [152, Ch. 8, § 7]. The characteristic

equation associated to equation (2.30) is

∆(s, τ) = s + a + b e−τs. (2.31)

The value of a time-delay τ in equation (2.30) that adequately places two negative real spectral values, assuring a delay

independent exponential asymptotic stable solution, can be given as long as the parameters values a and b meet some

requirements, whose requirements can be summarized in the next theorem:

Theorem 5. ([3, Thm 2]) For a given time-delay τ > 0, the first-order delay-differential equation (2.30) has two distinct

negative real spectral value at s1 and s2, where s2 < s1, if and only if

a = a(s1, s2, τ) := s2 e−τs1 − s1 e−τs2

e−τs2 − e−τs1
,

b = b(s1, s2, τ) := s1 − s2

e−τs2 − e−τs1
.

(2.32)

Also, the spectral values s1 and s2 from the equation (2.30) are negative, if and only if a(s1, s2, τ) = 0 with a positive

time-delay τ > 0. The spectral value s1 is the spectral abcissa in the complex-plane.

Second-order RDE Consider the detailed procedure for a scalar second-order delay differential equation, which can

provide insight into the dynamic behaviour of wide variety of many natural phenomena. However there are some inherent

limitations to this approach. The equation for this kind of systems is given as follows

ẍ(t) + a ẋ(t) + b x(t) + α x(t − τ) = 0. (2.33)

The characteristic equation related to the equation (2.33) is

∆(s, τ) = s2 + a s + b + α e−τs. (2.34)

Then, we gather results allowing delay-dependent stability on a scalar second-order retarded-differential equation in the

next theorem.
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Theorem 6. ([3, Thm 4]) The RDE (2.33) permits three different negative real poles in the spectral plane si with i = 1, 2

and si < si+1, if and only if the parameters a, b and α satisfy

a = a(s1, s2, s3, τ) := 1
Q

∑
i,j,k∈Λ

i<j, i ̸=j ̸=k

(−1)i+j (s2
i − s2

j ) e−τsk ,

b = b(s1, s2, s3, τ) := − 1
Q

∑
i,j,k∈Λ

i<j, i ̸=j ̸=k

(−1)i+j si sj (si − sj) e−τsk ,

α = α(s1, s2, s3, τ) = − 1
Q

∏
i,j∈Λ
i<j

(si − sj).


(2.35)

where Λ = {1, 2, 3} and

Q := Q(s1, s2, s3, τ) =
∑

i,j,k∈Λ
i<j, k ̸=i, j

(−1)i+j (si − sj) e−τsk .

In this case, α is necessarily negative. The spectral value s1 is negative, if and only if there exists τ0 > 0 that solves the

equation

a(s1, s2, s3, τ0) + s2 = 0,

which guarantees the asymptotic stability of the system. Furthermore, the root s1 is the spectral abscissa of (2.33).

Remark 2.1. For higher-order retarded delay systems, the procedure is to assign a number N of negative spectral values

(N ≤ PSb ) allowing to get conditions on the parameters. Once the parameters’ values are set, one shows the dominancy

of the assigned spectral values, either by using the principle argument or using the quasipolynomial factorization proposed

in [3].

2.2 Convex optimisation problems

This section recollects some fundamental proofs and reasonings that structure the robust control field.

2.2.1 Pole placement

Pole placement techniques are ideal when dealing with robustness issues. The unstructured uncertainties can be represented

as in Figure 2.3, where ∆ stands for an uncertainty operator of the system, and G(s) is the nominal model of the system.

These poles can be assigned either to specific points or to a whole region. These regions can be described appropriately

with the help of Linear Matrix Inequalities (LMIs). Methods involving LMIs have become wide popular for designing

regional eigenvalues’ assignment controllers through efficient optimisation algorithms nowadays widely available, see [11],

[149], and for discrete time [148].

In addition, robust pole placement fits in an excellent way to treat different control objectives, thus giving a multiob-

jective performance. Particularly, the H∞ approach involves frequency-domain aspects that guarantee that the H∞ norm
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Figure 2.3. System interconnection with the neglected dynamics.

between the controlled output and the external disturbance achieves satisfactorily frequency response in closed-loop.

The time performance of a given system is directly related to the location of its poles in the complex plane. In closed-

loop, we can force the system’s poles to be constrained in a previously specified and adequated region of the complex

plane. Many different kinds of regions have been already considered, such as α-stability regions, vertical strips, horizontal

strips, circular regions, and more general convex regions [70].

For every pole of an LTI system s ∈ C, we can specified several parameters of its behavior in relation to its location,

which are defined as follows

ωn = |s|, ωd = ℑ(s)

α = − ℜ(s) ζ = α
ωn

,

(2.36)

where ωn and ωd stand for the undamped and damped natural frequencies respectively, α represents the decay rate and ζ

serves as the modal damping ratio [135].

2.2.2 Robust stability analysis

Let us consider the autonomous Linear Time-Invariant system described by

ẋ(t) = A x(t), with x(0) = x0 ∈ Rn (2.37)

where square matrix A ∈ Rn×n is the coefficient matrix, the state-vector x(t) ∈ Rn and x0 ∈ Rn the initial condition.

Asymptotic stability of this system is achieved when

lim
t→∞

x(t) → 0, ∀ x(0) ∈ Rn. (2.38)

In this last case, the system is said to be (asymptotically) stable. Analysing the stability of a closed-loop system, where the

stabilization property of a control law designed for a given system is effective, is of paramount importance. If a practical

system of interest can be modeled simply as in Eq. (2.37), its stability analysis is straightforward [105], [48]. Let all the

eigenvalues of the system (2.37) be on the open left-half part of the complex plane (denoted by Cneg), then the matrix A
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is said to be Hurwitz stable.

Nonetheless, due to inevitable parametric uncertainties [54], it is difficult (if no impossible) to model a pragmatic

system with precision as depicted in Eq. (2.37). For these kind of problems, commonly it is used a “model set”, that is

written as

ẋ(t) = A(θ) x(t), (2.39)

where the ℓ-parameters θ ∈ Eℓ are contained in a simplex set, which is defined as

En := {θ ∈ Rn : θ ≥ 0, 1T θ = 1}.

with 1 representing a vector of appropriate dimensions with all its components one. Then, En is said to be a standard

simplex set on Rn. Therefore, the matrix A is linear in θ, and it is given by

A(θ) :=
ℓ∑

j=1
θj Aj ,

where the matrices Aj ∈ Rn×n (with j = 1, . . . , ℓ) are known matrices.

It is required to mention that the value of the parameter θ is time-invariant, but its exact value is unknown. In other

words, the only available information on these parameters θ is that they belong to the simplex set Eℓ.

Now, if all the eigenvalues of a simple depicted system, as in Eq. (2.37), are contained in the left-half part of the

complex plane, the uncertain system (2.39) is said to be robustly stable. A way of dealing with the little variations of the

eigenvalues of A(θ), with θ ∈ Eℓ, thoroughly, is with the next theorem.

Theorem 7. ([48, Thm 2.1]) If there exist a real matrix P = P T > 0 symmetric and positive definite, such that

P A + AT P < 0, (2.40)

then, the system (2.37) is Hurwitz-stable.

Thus, we can use this last Theorem 7 to analyse the robust stability of the uncertain system (2.39).

Theorem 8. ([48, Thm 2.2]) If there exists a real matrix P = P T > 0 such that

ℓ∑
j=1

θj (P Aj + AT
j P ) < 0 (2.41)

or equivalently, P A(θ) + A(θ)T P < 0. Then the system (2.39) is stable for all θ ∈ Eℓ.
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2.2.3 Some Linear Matrix Inequalities Problems with Analytic Solution

Problems involving LMI can vary in a wide range, we focus into three different problems, the feasibility problem, the linear

optimization problem, and the generalized eigenvalue minimization problem.

The feasibility problem

The feasibility problem consists in determining the variable x ∈ Rm such that the matrix F (x) < 0 hold.

For example, let a linear time-invariant (LTI) system be given by ẋ(t) = A x(t), the convergence of the trajectories

x(t) → 0 (i.e. asymptotic stability) is ensured by the existence of a positive quadratic function V (x) = xT (t) P x(t) if,

and only if its time-derivative along all trajectories of the system is negative, i.e. V̇ (x) = ẋT P x+xT P ẋ < 0 ∀ x, ẋ

[48].

It is possible to derive LMI formulas to the problem given above, by replacing ẋ by its value A x, and thus, resulting

into the next matrix-valued functions inequalities

P > 0, AT P + P A < 0

where the symbols > 0 and < 0 stand for positive and negative definiteness, respectively. Using the standard

definition

F (x) ≜ F0 +
m∑

i=1
xi Fi > 0, (2.42)

we can redefine the latter example, given two matrices A = AT , P = P T ∈ R2×2 as

A =

a1 a2

a2 a3

 , and P =

x1 x2

x2 x3


where the variables x1, x2 and x3 are the design parameters. Thus, we write the LMI problem as

AT P + P A = x1

2 a1 a2

a2 0

+ x2

 2 a2 a1 + a3

a1 + a3 2 a2

+ x3

 0 a2

a2 2 a3

 . (2.43)

This results in a standard feasibility problem.

Minimisation of a linear objective under LMI constraints

The problem of the minimisation of a linear objective under LMI constraints is stated as follows:
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minx∈Rm cT x

such that F (x) < 0

where c ∈ Rm is a given vector, and x ∈ Rm is the vector of decision variables.

As an example, we will consider a H2 control problem. We assume the system described by


ẋ(t) = A x(t) + B w(t),

y(t) = C x(t)
(2.44)

where w(t) represents the disturbance with unit covariance. Suppose the H2 performance is given by

∥H∥2
2 = lim

t→∞
E
(

1
t

∫ t

0
yT (s) y(s) ds

)
,

So, the optimal H2 performance is given by

∥H∥2
2 = min

{
tr(C P CT ) : A P + P AT + B BT < 0

}
.

This optimization problem is equivalent to minimize tr(Q) subject to

A P + P AT + B BT < 0, (2.45)

C P CT ≤ Q. (2.46)

Using the Schur complement (discussed after the following example ??), (2.46) is equivalent to

 −Q C P

P CT −P

 < 0.

Schur complement A simple way to solve a set of n linear equations is using what is known as Schur complement. It

consists simply of the row reduction involved in a coefficient matrix of dimension 2 × 2 that renders the given matrix into

the upper triangular form.

In the homogeneous case, let

∆ =

A B

C D


29



2.2. CONVEX OPTIMISATION PROBLEMS CHAPTER 2. BACKGROUND

and suppose that A ∈ Rn×n is non-singular, B ∈ Rn×1, C ∈ R1×n and D ∈ R1×1. Now define the vector v =
[
x1 x2

]T

and let

∆ v = 0,A B

C D


x1

x2

 = 0,

that describes a system of n = 2 linear equations, given by

A x1 + B x2 = 0, (2.47)

C x1 + D x2 = 0. (2.48)

Multiplying (2.47) from the left by (−C A−1) and adding one equation to the other we get

−C A−1 A x1 − C A−1 B x2 + C x1 + D x2 = 0,

(D − C A−1 B)︸ ︷︷ ︸
(M/A)

x2 = 0. (2.49)

reducing the original problem (2.47) into solving a single linear equation.

Now, let’s consider the non-homogeneous case for a system of linear equations given by

A B

C D


x1

x2

 =

u

v

 (2.50)

Following the same procedures as before, we write

(D − C A−1 B)︸ ︷︷ ︸
(M/A)

x2 = u − C A−1 u (2.51)

and now the solution of the variable x2 can be represented in function of the Schur complement as

x2 = (D − C A−1 B)−1 (u − C A−1 u).

This basic property, introduced by the mathematician Issai Schur (1875-1941) in 1917 [156], allows to represent a

system of linear matrix inequalities as a single inequality [206]. From this last result, it is deduced the next lemma.
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Lemma 2.2.1. [59, Lemma 3.2] The block matrix

 P M

MT Q


is negative definite, if and only if 

Q < 0,

P − M Q−1 MT < 0
(2.52)

Besides, P − M Q−1 MT is referred as the Schur complement of Q.

2.2.4 Singular value decomposition

Here we recall some notions about the singular value decomposition (SVD), which is part of some approximation methods

for model order reduction. It is an important tool in the analysis of linear time-invariant systems and has paramount

importance in the robust stability issue. For that, the next Lemma guarantees the existence of the SVD.

Lemma 2.2.2. ([66, Lemma 2.2.1]) For any m × p complex matrix Q, there exist m × m and p × p unitary matrices Y

and U , and a real matrix Σ, such that

Q = Y

Σ 0

0 0

 U∗ (2.53)

in which Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and min(m, p) ≥ r. When Q is real, Y and U may be

chosen orthogonal. The equation (2.53) is called a singular value decomposition (SVD) of Q.

The singular values of the matrix Q, given by σ1, σ2, . . . , σr, are obtained through the computation of the square

roots of the positive eigenvalues of Q∗ Q or Q Q∗.

The set of all singular values, the maximum singular value and the minimum singular value of a given matrix (·) will

be written as

σ(·) = {σi : i = 1, . . . , p},

σ̄(·) = σ1,

σ(·) = σp.
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Some important inequalities worth to mention, are

σ̄(Q + R) ≤ σ̄(Q) + σ̄(R),

σ̄(QR) ≤ σ̄(Q) σ̄(R).

This is due to the fact that the maximum singular value defines an induced norm [66].

2.2.5 LMI Regions

A region of the complex plane described by linear matrices inequalities (LMI) can be either an open half plane, or a disk,

or a conic sector, among other convex sets. It is often represented by the letter D and can be written as

D =
{

z = s + s∗ ∈ C|L + s M + s∗ MT < 0
}

where L and M are both real, and LT = L. Next, we will list some elementary LMI regions commonly used in the

pole placement approach [40] :

Open Half Plane. For the open left-half-plane Re(z) < −α

FD(z) = fD(z) = s + s∗ + 2 α < 0.

Centered Disk. For a disk centered on the real-axis at (−q, 0) with radius r

FD(z) =

 −r q + s

q + s∗ −r

 < 0.

Conic Sector. For conic sectors with apex at the origin and inner angle 2 θ

FD(z) =

sin(θ)
[
z + z∗] cos(θ)

[
z − z∗]

cos(θ)
[
z∗ − z

]
sin(θ)

[
z + z∗]

 .

Along these elementary LMI regions mentioned above, it is worth to mention some basic properties of these LMI regions

(see [105] for further details).

• Symmetry: LMI regions are symmetric with respect to the real axis.

• Convexity: LMI regions are convex.
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• Intersection: Given two LMI regions D1 and D2 with characteristic functions

fD1 = L1 + s M1 + s∗ MT
1 and fD2 = L2 + s M2 + s∗ MT

2 , respectively, then the intersection D1 ∩ D2 is an-

other LMI region with a characteristic function given by fDT
= LT + s MT + s∗ MT

T , where LT = diag{L1, L2}

and MT = diag{M1, M2}.

• Density: LMI regions are dense in the set of convex regions that are symmetric with respect to the real axis.

• Openness: If s ∈ D and fD < 0, then the openness of the set of negative definite matrices implies that

L + (s + ∆ s) M + (s + ∆ s)∗ MT = fD −
[
∆ s M + (∆ s)∗ MT

]
< 0

for small |∆ s|. Therefore, LMI regions are open.

• Invariance: The LMI regions are invariant under congruence transformation of the characteristic function with a

non-singular matrix, i.e. the LMI regions remains the same.

2.3 Notes and references

The efforts done along the years in the study of functional differential-difference equations has been as broad as it is long.

For a wider introduction on the theory of functional delay-differential equations, from which the time-delayed differential

equations form a special class, can be regarded in [18], [72] and [73].

We introduce the class of DDEs called linear time-delay system of retarded type, whose equations largely appear when

modelling biological or physical systems, among others. For further references on these kind of systems see [98], [97].

The section recalling the convex optimisation methods is based on [34], where different tools for optimising control

loops were recalled, such as the “Linear Matrix Inequalities”, the Shur complement, among others.

We outlined the spectral properties of the time-delay systems. We will deepen more in the recent results involving the

partial pole-placement for linear time-invariant systems with time-delays in the Chapter 5. The results presented in the

following chapters are treated with frequencey-domain concepts to analyse their stability.
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Chapter 3

Flexible systems under consideration

This chapter is concerned with the study of flexible structures and its state of the art in the Section 3.1. Then, we

begin in Section 3.2 by exploring the different vibration modes on these structures, followed by Section 3.3 on the use of

piezoelectric devices in such systems. We will then delve into the model order reduction technique in Section 3.4, which

plays a critical role in our analysis. Afterward, in Section 3.5 we will introduce the statement of the control problem, which

we aim to address in this study. In Section 3.6 and Section 3.7, we will provide an overview of the characteristics of the

two flexible structures that we work with, which are the flexible beam, which is located at the Laboratoire des Signaux

et Systèmes (L2S) in the Université Paris-Saclay, in Paris, France, and the flexible axisymmetric membrane, respectively,

essential to understanding the results of our analysis. Finally, we will summarize the key points covered in this chapter in

Section 3.8.
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3.1 Introduction

During the last several years, the use of the flexible beam structure has been widely spreaded throughout the world due to

its advantages, such as the evolution of smart materials, actuators, control strategies, but mainly to the development of

computational tools [2]. In [2] a comparative analysis is done through several control strategies for the vibration control of

civil structures, including classical (Proportional-Integral-Derivative (PID) [71], Positive Position Feedback (PPF) [197],

Integral Force Control (IFC) [107], Pole Placement Control (PPC) [19], Velocity Feedback Control [200]) and modern

(Linear Quadratic Gaussian (LQG) regulator [129], H∞ [163], Sliding Modes Control (SMC) [37], H2 [21], fuzzy logic

[199]) control strategies.

The beam represents the transposition of a 2-dimensional plate in a 1-dimensional space. As the beam’s dynamics can

be quite well described by only one dimension when only the flexion movement is considered, as can be seen in Figure 3.5.

It is a well known dynamical model, widely used in the literature related to the active vibration control. The performance

of several control strategies on different models of the flexible beam have been evaluated in past works (see for instance

[15], [52], [185], [95] and [8], among others), but the topic of the time-delay based controllers has not been yet studied

deeply.

As a matter of fact, flexible structures are systems whose models exist under the influence of an infinite number of

vibration modes. Their behavior is studied with the description of a truncated model, which are finite-dimensional models.

Using these models, it is possible to compute and synthetize feedback control laws. Usually, the dynamics that stay

outside the bandwidth of interest are called the out of bandwidth modes, and they are neglected during the controller

synthesis. Often, their vibrations are attenuated with the implementation of piezoelectrical structures, creating in this way

the termed “smart structures”. Due to their characteristics, smart materials have been used for several years in fields as

civil engineering, where the structures’ deformation is isolated and attenuated [20].

3.2 Vibration Modes

When we consider flexible structures, we need to considerate specific features intrinsic on them. Resonance is a phenomenon

which consists in the amplification of the motion at a specific frequency. The flexible structures resonate at certain

frequencies, whose movements are harmonic, or sinusoidal, and it keeps the same pattern of deformation. These patterns

are called mode shape, or simply mode [62]. The set of equations forming the general representation of all the individual

components of the dynamics of a flexible structure with a finite number of modes, where n is the number of degrees of

freedom, is

M ẍ(t) + C ẋ(t) + K x(t) = f(t), (3.1)
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where x(t) ∈ Rn is the vector that denotes all the displacements of the corresponding outputs to be controlled, f(t) ∈ Rn

is a vector of all the equivalent forces and torques, M = MT > 0 ∈ Rn×n is the mass matrix, C ≥ 0 ∈ Rn×n is the

damping matrix and K ≥ 0 ∈ Rn×n is the stiffness matrix, respectively. These matrices come from the linear approximation

of the infinite-dimensional model, often done through the finite elements analysis [141]. The damping matrix C stands

for various dissipation mechanisms whose meticulously modeling is not an easy task. Therefore, the Rayleigh damping

assumption is often used and corresponds the choice of a damping matrix written as a linear combination of the mass and

stiffness matrices, given as C = α M + β K, where the parameter α and β are selected empirically. The displacement

trajectories can be found by solving equation (3.1). Nonetheless, the number of vibration modes in the whole frequency

span of the system is n, which is roughly equal to infinity, and it is too large for practical engineering applications. One

popular approach, is the use of the modal analysis technique (or superposition technique) [110]. In order to apply the

aforementioned technique, we need to analyse the homogeneous equation of (3.1), i.e. when the forces applied to the

system f(t) = 0 are equal to zero, which is also called free response of an undamped system, or free vibration analysis,

and it is written as

M ẍ(t) + K x(t) = 0. (3.2)

where x(t) is the vector that denotes all the displacements, M > 0 is the mass matrix and K ≥ 0 is the stiffness matrix.

The befitting trajectory to this late equation is expressed as

x = ϕi ejωit, (3.3)

where ϕi and ωi are the amplitude of the modal displacement, i.e. the corresponding mode shape, and the natural frequency

of the free vibration mode, respectively. These parameters must satisfy the Equation (3.4), shown as

(K − si M) ϕi = 0 (3.4)

which was obtained after substituting the corresponding solution (3.3) into (3.2). The number of modes is equal to the

number of degrees of freedom, x ∈ Rn. Due to the fact that the matrices M = MT > 0 and K = KT ≥ 0, the eigenvalue

si = ω2
i , must be real and non-negative [141]. In most of the literature is common to find the vibration modes ordered by

increasing frequency, i.e. ω1 ≤ ω2 ≤ · · · ≤ ωn. Solving Equation (3.4) for a mode shape ϕi ̸= 0 different from zero, the

determinant of the left-hand side of its equation must be equal to zero, i.e.:

det(K − s M) = 0, (3.5)

that being developed, we get a polynomial on s of order n, meaning that we have n roots, whose eigenvalues are

solved as s1 ≤ s2 ≤ · · · sn, and ϕi is the eigenvector or mode shape, associated to the mode i (i ∈ [1, . . . , n], with the
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aforementioned n being the size of the system).Orthogonality relations among the eigenmodes of different eigenfrequencies

exist, and in case of M -normalised eigenmodes, it leads to the relations given as

ϕT
i M ϕj = δij ,

ϕT
i K ϕj = ω2

j δij ,

 (3.6)

where the Kronecker delta function δij = 0 if i ̸= j and δij = 1 if i = j [150, Ex. 13.6]. Given that the eigenvectors

ϕi are independent and orthogonal, they form a basis T spanning the n-dimensional space in which, the solution vector

is the summation of the products between the i eigenvectors ϕi and the modal coordinates Xi(t), which have a unique

expansion and is given by

U(t) =
n∑

k=1
ϕk Xk(t) (3.7)

where Xk stand for the modal coordinates,

For succesful active vibration control, identification of these resonance frequencies is very important. This oscillation

phenomenon is introduced for several components in the mechanical devices. If a structure is excited by a signal with a

frequency given as either one of its natural frequencies, it can be subjected to acute aggressive vibrations. The identification

of this natural frequencies can lead to the detection of structural damage, as it is shown in the survey [196] with the analysis

of some recent resonance frequency detection technologies, and a method where first, an eigensolution is identified and

used together with properties of the eigenvalue problem to detect damaged components is given in [14]. The corresponding

eigenvalue equation (3.5) is said to have m multiple eigenvalues if there are m vectors satisfying this equation.

3.3 Piezoelectric devices

The coupling between the electrical energy and mechanical energy is done, for example, through the piezoelectric effect,

which is present in certain materials. When a mechanical stress is exerted into the piezoelectric material, a potential

difference is produced as a consequence. This phenomenon, called direct piezoelectric effect, was discovered in quartz by

Pierre and Jacques Curie in 1880 [100]. The converse piezoelectric effect was discovered by Gabriel Lippmann in 1881.

This is, when a potential difference is applied into some of such materials, this electrical energy is visible in the device

through a mechanical effect. When the electrical energy is set across a piezoelectric device, the polarized charges of

the material try to align themselves along the potential’s electric field, which causes the mechanical deformation that we

perceive as the effect of this potential. Following this line, the fact that a voltage is generated within these devices was

thought as a very convenient way to measure the strain applied to some structures [46].

Among the wide and useful applications of the piezoelectric devices, there are the piezoelectric ceramics, which are

PZT (lead-zirconate-titanate) ceramics that act, either, as mechanical sensors, or actuators. These PZT composites act
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when vibration is transmitted to the piezoelectric material, and in this way it is converted into electrical energy, and vice

versa.

The characteristics of different piezoelectric materials, such as the Quartz or the PZT, make them relevant for different

applications. Quartz crystals are ideal as timing devices, due to their minimal temperature effects and high quality factor.

Piezoelectric ceramics as the PZT, gives a better performance when is used as a transducer, due to its higher dielectric

constant and higher coupling factor. These characteristics are grouped in Table 3.1.

Table 3.1. Piezoelectric material characteristics.

Symbol Units Quartz PZT
Dielectric constant KT 4.5 1,800
Coupling factor k33 0.09 0.66
Charge constant d33 C/N × 10-12 2.0 460
Voltage constant g33 Vm/N × 10−3 50 28
Quality factor Q 105 80

More details about the characteristics of piezoelectric materials can be found in [141], [142], [187], etc.

3.4 Model Order Reduction

The flexible mechanical structures’ dynamics contain both PDEs and ODEs, making it difficult to control for engineers due

to its infinite dimensionality. Several methods have been developed to improve the frequency response estimation [150].

The main tool used to construct models, in a reduce frequency range, capable of describing the system behaviour in a

finite-frequency span is called finite element analysis. Particularly, the structures involving elastic properties tend to need

a large number of degrees of freedom in finite element models, leading to high-order finite systems, in such a way that

they get realistic predictions of their dynamic behaviours. As we consider structures that can be called flexible systems,

which are distribute parameter systems, and whose state-space is infinite-dimensional.

These systems have an infinite number of degrees of freedom due to the distributed feature of their variables. Several

lightly damped vibration modes are susceptible of being very close one to each other. Differences between the full-order

and the low-order mathematical model still exist, and both approximated models still keep important differences with the

real structure. Modelling methods should stand for the controller robustness and performance characteristics based on the

model design, as model inaccuracies or uncertainties.

The design of robust dynamic controllers that succesfully stabilize flexible structures cannot be expected to lead to

low-order controllers [23]. However, we are interested in low order vibration modes, typically spanning from [1–700] Hz].

As we can observe in the bode diagram of the Figure 3.1, the magnitude and phase frequency response are shown for

the undamped flexible beam’s analysis model in black solid lines, which spans along [0 − 1, 300] Hz. We are interested in

39



3.4. MODEL ORDER REDUCTION CHAPTER 3. FLEXIBLE SYSTEMS UNDER CONSIDERATION

100 101 102 103

Frequency (Hz)

-10

0

10

20

30

40

50

60

M
a
g
n
it
u
d
e
 (

d
B

)

Analysis Model

100 101 102 103

Frequency (Hz)

200

400

600

800

1000

1200

1400

1600

P
h
a
s
e
 (

d
e
g
)

Analysis Model

Figure 3.1. Undamped response from w(t) to controlled output za(t) of the flexible beam’s analysis model.

a mathematical model that approprietly describes the flexible beam’s range of frequency that we are interested on. So

we use a low-order synthesis model for the controller synthesis. This low-order synthesis model describes a SISO system,

(i.e. Single-Input Single-Output system), and it is used for computing a plant’s controller whose input is the measured

output za of the flexible structure, and its output is the control input u of the system, which are the position at the tip

of the beam and the PZT actuator, respectively.

A model that correctly describes the dynamics of our flexible systems with n degrees of freedom, which at the same

time is a good approximation of an infinite dimensional system (as the distributed parameter systems treated here), is

an acceptable approximation, only if n is big enough [35]. Using numerical discretization techniques, such as the Finite

Element Method, the PDEs that describe our flexible system are deciphered into n first-order ODEs. When we consider

that the lower-frequency vibration modes of a flexible system are the most easily excitable ones, they become the most

significant to the global response of the system [185]. When it comes to the choice of the coordinates to be used for the

system’s representation, the most commonly used are the nodal and modal coordinates. The nodal coordinates are defined

with the displacements and velocities of particular structural locations, which are called nodes. The modal coordinates

are defined through the displacements and velocities of structural (or natural) modes. In the following we consider the
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modal model of the considered systems. Through the use of modal coordinates, the following state-space representation

is obtained [62, Ch. 2]:

A =

0nc×nc 1nc

−Ω2 −2 Z Ω

 , (3.8)

Bu =
[
0 bu

]
, Bw =

 0

bw

 , (3.9)

C =
[
cy 0

]
, (3.10)

where 0nc
is a zero matrix of dimensions nc by nc, the element 1nc

is the identity matrix of dimensions nc by nc, the

element Ω = diag(ω1, ω2, . . . , ωn) ∈ Rn×n represents the natural frequencies of each mode in a diagonal matrix, and

the element Z = diag(ξ1, ξ2, . . . , ξn) ∈ Rn×n represents the damping coefficients of each mode in a diagonal matrix; the

vectors bu =
[
b1 b2 · · · bn

]
and bw =

[
β1 β2 · · · βn

]
. If any of the values of, either bi = 0 or βi = 0, with

i = 1, 2, . . . , n, then the mode i is uncontrollable by the control input u. The vector cy =
[
c1 · · · cn

]
, where if any

of its elements ci = 0, with i defined above, then the mode i is not observable by the output variable za.

3.5 Statement of the control problem

We are interested in a mathematical model describing low-frequencies of interest, i.e. in the range of [1 Hz − 1100 Hz].

The complete model used for the system’s analysis is called “analysis model”, which involves a high-order dimension,

including the displacements and velocities of the structural modes in a large span of frequency. Nonetheless, for the

controller synthesis we used the so-called “synthesis model”, which implies a lower or equal order than the former discussed

analysis model, given that the range of frequency of interest spans through the vibration modes of interest, which go from

low-frequency modes to high-frequency modes. The equations (3.11) stand for the state-space representation of a system,

and it permits to get its input-output frequency response, whose dimensions may vary according to the flexible structure

to be modelled, and the dimensions of the real matrices A, Bu, Bw, Cy,, Dy, Cz and Dz are 2nc × 2nc, 2nc × 1, 2nc ×

1, 1×2nc, 1×2, 6×2nc and 6×2, respectively. The state vector x arranges the second-order dynamics of the nc vibration

modes. One output corresponds to the measurement of the deformation of the piezoelectric sensor y ∈ R, and the vector

z = [zd, zv, za, zd1 , zv1 , za1 ] ∈ R6 is the controlled output, which in the case of the flexible beam, it is composed of 6

measurements of position, velocity and acceleration at two different places in the beam.
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(a) Bode diagram from w to za.
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(b) Bode diagram from u to za.
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(c) Bode diagram from w to y.
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(d) Bode diagram from u to y.

Figure 3.2. Bode diagrams of the flexible beam from the perturbation w and the control input u to the measured output
y and the controlled output za.


ẋ(s) = A x(s) + Bu u(s) + Bw w(s),

y(s) = Cy x(s) + Dyw w(s) + Dyu u(s),

z(s) = Cz x(s) + Dzw w(s) + Dzu u(s)

(3.11)
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We reduce our model even further to describe just the low order frequencies that we are interested to control with the

active vibration control. In the Figure 3.2, we can observe the bode diagrams of the model that we obtain from the

numerical technique of the finite element model in solid lines, and the bode diagrams of the low-order model describing

just the first three vibrating modes in dashed-starred lines. In the Subfigure 3.2a we see the Analysis-model vs. Low-Order

model magnitude in the bode diagram from w to za. Similarly, in Subfigures 3.2b and 3.2c, we see the uncontrolled

response between the inputs u and w, and the outputs za and y, respectively. Moreover, the Subfigure 3.2d, we see the

bode plot response between the input u and the measured output y. The damping factor on each mode of the system

is given by ξ = 1×10−3. In practical systems, some level of damping is usually present due to factors like friction,

air resistance, or material properties. This damping helps dissipate energy and prevents the oscillations from continuing

indefinitely. However, in idealized mathematical models without damping, the damping ratio is zero, and the oscillations

persist without any loss of energy. With the active vibration control techniques we purport to increase this damping factor

for the vibration modes of interest (in this case, the interest befalls on the first three controllable and observable vibration

modes). Thus, we use a low-order mathematical model describing the first three vibrating modes plus the low-pass filters

W1 and W2, with cutoff frequencies of 950 Hz each one, and the high-pass filter W3, which concerns the robustness with

respect to the neglected modes of high frequencies in the synthesis model, with a cutoff frequency of 900 Hz. Using

weighting filters, we allow the bandwidth of interest to be analysed by isolating low-order frequencies from the high-order

frequencies.

Evaluation of frequency responses along all the high-order analysis model, may not be benefical for the controller

synthesis intended for the flexible structure. Instead, these controllers can be efficiently computed through reduced low-

order models.

3.6 Characteristics of the flexible beam

Several types of models for flexible structures can be found among the vast existing literature, as the non-linear models

with partial differential equations were compared in [23] for the Euler-Bernoulli beam theory with structural and viscous

damping, or in [147] where the mathematical modelling of the flexible beam is acquired for the Timoschenko beam theory

as well as for the Euler-Bernoulli beam theory.

As it can be inferred by the title of this dissertation, we intend to adequately damp the vibrating modes of interest

inside a frequency range in a generic flexible structure. The techniques treated in the following chapters deal with state

output-feedback control laws, as a linear optimal-based H∞, and a quasi-polynomial-based controller. These will be

designed from a low-order model lumped from the controllable and observable modes included in the high-order model.

This synthesis model is obtained from the selected n modes of the system, in such n modes will be controlled. The energy

of the uncontrollable and observable modes, and the modes outside the range of frequency is ignored during the controller

synthesis. Nonetheless, the case where the actuator(s) action(s) render these ignored vibration modes instable can happen,
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(a) Bode diagram from w to za. (b) Bode diagram from u to za.

(c) Bode diagram from w to y. (d) Bode diagram from u to y.

Figure 3.3. Bode diagrams of the flexible membrane from the perturbation w and the control input u to the measured
output y and the controlled output za.

and it is known as a controller “spillover” [12].

Below, the flexible structures under consdieration in the frequency range of interest that we intend to use (for the

controllers’ synthesis in future chapters) are considered.

The models considered here were obtained through the Finite Element Method (FEM) and they can be expressed
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in state-space form or through transfer functions. The main difference of this order reduction is the presence of direct

feedforward elements in the measured output, i.e. y(t) = C y x(t)+D yw w(t)+D y u u(t). Following the model’s truncation

up to the vibration modes involved in the frequency range of interest, we end up with a finite-dimensional model. Since

the controllers treated in this work are designed for tackling vibration perturbations in finite-dimensional systems, this is

appropriate for our purposes. For this case, the frequency range that best suits will be with the first three controllable and

observable vibration modes, which implies a range of frequency spanning among [0—700 ]Hz for the flexible beam, and

[0—1200 ]Hz for the flexible axisymmetric membrane. A methodology for measuring the energy contained in each mode

was proposed in [176].

Figure 3.4. Flexible beam.

3.6.1 State-space representation of the flexible beam

In this part we describe the structure of the system under consideration, i.e. the flexible beam. In the mechanical engineering

area, as a result of the robotics technology development with high speed, high precision and lightweight, flexible arms are

being used for industrial purposes, instead of rigid arms [76].

The flexible beam is a mechanical system with an aluminium based structure, clamped into a stiff movable support

from one side subjected to an irregular thrust, meant to act as a perturbation input-signal w(t) aligned vertically (i.e. along

the z-axis), holding the other side of the beam loose. It is equipped with two piezoceramic lead zirconate titanate (PZT)

collocated patches, one of them is used as an actuator with a 0.4 mm thickness and the other is used as a sensor with

a 0.7 mm thickness. An analysis including the reason that the sensor’s thickness must be greater than the actuator’s

thickness can be found in [172].

The first six vibrating modes inside the range of frequency that awares interest to our control purposes are represented

from the Figures 3.6.a to 3.6.f, that spans from 0 Hz to 700 Hz, and all are controllable and observable, controllable by

the actuators and observables by the sensor.

There are other modes that are not controllable and not observable at all. In the Figures 3.7.a to 3.7.c are the first

three modes that are not controllable and observable, and that lie inside our frequency range of interest.
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Figure 3.5. Flexible beam diagram.

The state variables in a system’s model possess an engineering meaning, they are the canonical set of conserved

extensive quantities in the system [74]. The flexible beam considered here is endowed with the first 10 vibrating modes,

from which 2 are static modes (1 for every system’s input). Finally, this model is composed of 12 modes, i.e. 12 pairs of

complex poles, A ∈ R2nc×2nc , where nc = 12 represents the number of vibration modes. The two inputs are formed by

one matching the actuator’s voltage through the matrix Bu ∈ R2nc×1, and the other matches the imposed acceleration

to the embedded device (in m/sec2), through the matrix Bw ∈ R2nc×1.

This model is also made by 7 outputs, from which one corresponds to the piezoelectric sensor’s deformation measure-

ment, it is the output used for the computation of the control law, seen through observation matrix Cy ∈ R1×2nc , and

a feedforward matrix Dy ∈ R1×2. Three outputs allow to recover the cinematic characteristics along the vertical axis

(z-axis) of a point located at the beam’s loose end (zd, zv & za), and other three at a point located at the beam’s center

(zd1, zv1 & za1).

(a) Mode 1 at 38.82 Hz (b) Mode 3 at 237.38 Hz (c) Mode 4 at 648.62 Hz

(d) Mode 5 at 1, 236.05 Hz (e) Mode 8 at 1, 986.94 Hz (f) Mode 9 at 2, 907.37 Hz

Figure 3.6. Controllable and observable modes in the range of frequency of interest.

These devices are often called smart structures, which are structures that can adapt automatically to different operating

and environmental conditions [85]. In problems related to vibration suppression, the transducers’ signals are often used in
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the feedback control loops analysis involved in the design of active vibration controllers.

The objective of damping structures with peaks of resonance at low frequencies, results in an interesting problem,

particularly for the smart structures which have lightly damped modes with closely spaced resonance frequencies.

Due to the fact that a flexible beam is a test-bench available in many labs, it allows the experimental implementation

of the proposed control techniques.

The flexible beam is modelled using Finite Element Analysis (FEA) associated with modal analysis that allows to get

a multivariable model (MIMO) describing the structure’s behavior among all inputs and all outputs, as can be seen in the

state-space realization. After the modelling techniques with the Finite Element Method (FEM), the flexible structures (in

this case the flexible beam and the flexible membrane) hold a linear time-invariant model, with the same features, inputs

and the same outputs.

A reduced-order model in state-space form, is derived from the analysis model and it is used here for the synthesis

of the controllers. It can be obtained through a truncation technique, as long as consistency with the static gains of the

analysis model be provided.

The input-output frequency response through a high-order and accurate model in state-space form, where according

to the presence of direct feedthrough matrices or not, will be considered henceforward either as the synthesis model or as

the analysis model, respectively.

The state-space model includes 2nc = 24 ill-damped poles, with a damping factor ξi = 1×10−3, which is not enough

for vibration damping applications, that need to deal with these perturbations, and to damp them properly, as fast as

possible.

3.6.2 Transfer function representation of the flexible beam

Engineering problems are prone to be complicated. It is valuable to understand the challenges of a problem well enough to

be able to specify the nature of its solutions. This is done using the formal language of engineering, mathematics, science

and problem solving. In most engineering analysis this is done through developping and studying mathematical models

(of varying precision) to predict the behavior of physical systems. The way to describe these physical systems is through

differential equations due to their time dependance. All real systems are non-linear, and without generalizing, they can

(a) Mode 2 at 230.51 Hz. (b) Mode 6 at 1, 373.02 Hz. (c) Mode 7 at 1, 406.64 Hz.

Figure 3.7. Uncontrollable and unobservable modes in the range of frequency of interest.
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be approximated by linear systems in a given set-point, with the association that superposition characteristics are true to

some extent [108, Ch. 13] w.r.t. some variables.

Mathematically, the resulting differential equations are not only linear, but they also have constant coefficients. For

example, the description of a single vibration mode is given by the second order equation as follows

ẍ(t) + 2 ζ ωn ẋ(t) + ω2
n x(t) = f(t) (3.12)

where x(t) is the dependent variable or physical phenomenon to control (displacement, voltage, etc.), f(t) is a forcing

function (force, voltage, etc.), and ζ and ωn are the damping factor and the natural frequency, respectively, whose values

depend on the size and interconnections of the individual physical components that form the system (spring/stiffness

constants, inductance values, etc.).

The Equation (3.12) is a second-order differential equations, also called ‘linear constant coefficient ordinary differential

of 2nd order equation’ (LCCODE) [184], or simply ‘ordinary differential equation’ (ODE). The method typically used for

solving these kind of equations is the Laplace transform [103].

Though the fact that all the initial conditions of the system must be known for the use of the Laplace transform, an

important characteristic of such transformation, is that it transforms ODE into algebraic equations, allowing the problem

the use of simple and standard manipulations.

In our systems, from the exogenous perturbation w(t) to the controlled output z a(t), we have a SISO system. As

a wholesome it is composed by the output to be controlled za(t), thanks to the model obtained through finite element

method, the strain as an output that can be measured through a piezoelectric sensor y(t), the perturbation w(t), and the

actuator’s control input u(t), as it can be seen in the Equation (3.13). Hence, the transfer function of this SISO’s model,

with s as the Laplace variable, is written as

Pb


z a(s) = Qzw(s)

φ(s) w(s) + Qu z(s)
φ(s) u(s),

y(s) = Qyw(s)
φ(s) w(s) + Qu y(s)

φ(s) u(s).
(3.13)

The order for the specified quasipolynomials in equation (3.13) is 2 nc, which differs from the analysis to the synthesis

models. We can establish the relations between (3.11) and (3.13) as

φ(s) = det(sI − A),

Qzw(s) = Cz Bw + Dzw det(sI − A),

Qyw(s) = Cy Bw + Dyw det(sI − A),

Qzu(s) = Cz Bu + Dzu det(sI − A),

Qyu(s) = Cy Bu + Dyu det(sI − A).
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Remark 3.1. Note that if the measurement of the output z a(t) is required, we can recover it from an accelerometric

sensor at the end of the beam, or through the implementation of a state observer.

The values of the transfer function coefficients of the synthesis model’s polynomials are expressed in Table 3.2, where

it is worth mentioning that the denominator φ(s) is a monic polynomial.

Table 3.2. Numerical values for the flexible beam’s polynomials coefficients in the synthesis model of Equation (3.13).

Qzw(s) =
2nc∑
k=0

qzwk
sk, Qzu(s) =

2nc∑
k=0

qzuk
sk,

qzw0 = 4.2255 × 1012 qzu0 = −9.3849 × 1010

qzw1 = −2.6316 × 1013 qzu1 = 7.0058 × 1011

qzw2 = −5.7283 × 1013 qzu2 = 1.3460 × 1012

qzw3 = −7.9945 × 107 qzu3 = 1.5127 × 106

qzw4 = −1.5930 × 107 qzu4 = −1.8971 × 106

qzw5 = −1.4598 × 10 qzu5 = 5.1122

qzw6 = −1.2561 qzu6 = 4.3989 × 10−1

Qyw(s) =
2nc∑
k=0

qywk
sk, Q u y(s) =

2nc∑
k=0

q y uk
sk,

qyw0 = −9.1133 × 1017 qyu0 = 2.02 × 1017

qyw1 = −2.4171 × 1012 qyu1 = 1.8185 × 1012

qyw2 = −2.1924 × 1012 qyu2 = 3.1394 × 1012

qyw3 = −1.729 × 106 qyu3 = 5.6534 × 106

qyw4 = −3.184 × 105 qyu4 = 1.3761 × 106

qyw5 = −5.0564 × 10−2 qyu5 = 7.4011 × 10−1

qyw6 = −4.3509 × 10−3 qyu6 = 6.3683 × 10−2

φ(s) =
2nc−1∑

k=0
ak sk,

a0 = 2.1983 × 1018 a1 = 2.2051 × 1013

a2 = 3.8069 × 1013 a3 = 7.7528 × 107

a4 = 1.8893 × 107 a5 = 1.1622 × 101

Remark 3.2. As a particular remark, we have recalled the modelling of the flexible beam, for its state-space representation

and the transfer function equations. The Figure 3.8 shows the frequency responses, where only 6 peaks of resonance can

be seen for the analysis model, and only 3 peaks for the synthesis model. These peaks are the modes 1, 3, and 4, with

resonant frequencies at 38.82 Hz, 237.38 Hz, and 648.62 Hz, respectively. We notice that the other modes concerned in the

whole linear time-invariant system computed from the FEA are not considered. This is because they are non-controllable,

non-observable, or neither controllable nor observable.

The flexible beam is portrayed in the picture of Figure 3.9.
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Figure 3.8. Frequency responses of the analysis (-) and synthesis (- -) models for the flexible beam.

Figure 3.9. Photograph of the flexible beam taken at the L2S.
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3.7 Characteristics of the flexible membrane

This section aims to describe the characteristics of the model used for the performance analysis of a flexible axisymmetric

membrane against exogenous perturbations. As well as the flexible beam discussed above (Section 3.6.1), two piezoelectric

patches are placed, and in this case they are oriented according to its axis of symmetry. For its performance analysis against

a perturbation on the z-axis, the structure is fixed on a moving base, whose time response can be shaped as a rectangular

signal, pushing the membrane with an acceleration, noted w(t). In [174] where the FEM model of this membrane has

been considered before.

Membrane

xy

z

ed = 0.4mm

D
a

=
23

m
m

Piezoelectric circular
patch, one on each side

D
d

=
15

0m
m

Figure 3.10. Flexible axisymmetric membrane (dimensions on the right) inserted in the device which is subjected to
vibrations (Computer Aided Design figure on the left)

The mathematical modeling of the dynamical behavior for such flexible mechanical structures is based on several

coupled partial differential equations (PDEs) in space and time-dependant variables. The non-linear system of a similar

circular membrane is discussed in [192], where the discussion on a second-order partial differential equation modelling

of a damaged membrane for the analysis of its mechanical vibration is carried on. Such equations, that are of infinite

dimensional ones, are usually addressed through numerical methods like the Finite Element Modeling (FEM) [139]. This

method leads to a set of Ordinary Differential Equations (ODEs) that are linear but with a very great number of variables.

Because of the numerical feature of this method, it is worth at mentioning that the physical parameters of the PDEs are

dissolved within numerical coefficients of the corresponding ODEs.

An accurate model in state-space form is derived from the set of ODEs from the FEM thanks to a model reduction

method called modal analysis. It describes the inputs-to-outputs dynamical behavior in the bandwidth of interest, say

[0 − 4000Hz] for our system. In contrast to the flexible beam’s model described above, this model depicts the first 42

vibration modes plus 2 static modes that account for both inputs (control law u and perturbation w), adding up to nc = 44

vibration modes, and piezoelectric input-output interfaces, given by 1 actuator and 1 sensor, respectively. This model is
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the analysis model and it is of order 2nc = 88, which includes only controllable and observable modes. A low-order model,

dedicated to the controller design, is obtained from the analysis one thanks to a reduction method based on state-variable

truncation [4]. It is called the synthesis model. It is of order 6 and it includes the first three vibration modes that are

controllable and observable. Let x ∈ R2nc be the state vector of the system, with nc = 44 in the case of the analysis

model and with nc = 3 for the synthesis model. Both models can be described by the linear state-space model in (3.14),

denoted as Pm. Note that, in the case of the synthesis model, there are non-zero feedthrough terms between the inputs

w and u and the outputs z and y, whereas these feedthrough terms are equal to zero in the case of the analysis model.

The piezoelectric sensor’s patch has a thickness of 0.7 mm, and the piezoelectric actuator’s patch has a thickness of

0.4 mm. As can be seen, the thickness of the piezoelectric actuator has to be smaller than the piezoelectric sensor, and a

discernement about it can be found in [171].

These piezoelectric patches are rigidly bounded each side of the disk and centered according to its axis of symmetry.

The problem of vibrations measured through a piezoelectric sensor within a moving membrane has been treated in [49]

and [174]. This system is shown in the Figure 3.10.

The controlled signal (input), noted u(t), is the voltage applied across the piezoelectric actuator. The measured output,

noted y(t), is the electric voltage delivered by the piezoelectric sensor. The disturbance input w(t) is the total acceleration

applied to the clamped circular edge of the structure. The controlled output that is consider in this manuscript, noted

za(t), is the z component (see Figure 3.10) of the acceleration of a point located at the center of the disc and on the

upper side of the piezoelectric chip used as a sensor.

The flexible axysimmetric membrane, is shown in the left of Figure 3.10. The important dimensions of this membrane

can be described with the diameters’ distances (i.e. Dd = 150 mm for the outer disk, and Da = 23 mm for the inner disk),

and its thickness (i.e. ed = 0.4 mm). They can be observed in the right of the Figure 3.10.

3.7.1 State-space representation of the flexible membrane

The mathematical modeling of the dynamical behavior for such mechanical structures is based on several coupled partial

differential equations in space and time-dependant variables. See for example [63] for more details that are out of the

scope of this dissertation. Such equations, that are of infinite dimension, are usually addressed through numerical methods

like the Finite Element Modeling (FEM) [99]. It allows to obtain a set of several ordinary differential equations that are

more tractable, but which occult several physical distributed parameters behind numerical coefficients.

The finite element analysis associated with modal analysis permit to get a high-order and accurate model, in state-

space form (3.14), which is devoted to simulation analysis. A low-order one, dedicated to the controller synthesis, is also

available and differs from (3.14) especially by the presence of feedthrough terms between the inputs w and u and the

outputs z and y, whereas no feedthrough term is present in the analysis model. In our case, the analysis model is of order

10 after eliminating the uncontrollable and unobservable modes. It describes the inputs-to-outputs dynamical behavior

52



CHAPTER 3. FLEXIBLE SYSTEMS UNDER CONSIDERATION3.7. CHARACTERISTICS OF THE FLEXIBLE MEMBRANE

in the bandwidth [0 − 4000Hz]. In the current work, the analysis model is composed of 44 oscillating vibration modes

making up a model of 88 states, but it contains 38 uncontrollable and unobservable modes. The low-order model is of

order 6, containing the first 3 controllable and observable vibration modes. The reduced one is of order 6, including the

first three vibration modes. All the kept modes are controllable and observable. Let x ∈ R2np be the state vector of the

system, with np = 44 vibration modes in the case of the analysis model and with np = 3 vibration modes for the synthesis

model. The shapes of the first vibration modes are shown in the Figure 3.12.

Pm


ẋp(t) = Axp(t) + Bww(t) + Buu(t)

za1(t) = Czxp(t) + Dzww(t) + Dzuu(t)

y(t) = Cyxp(t) (+ Dyww(t) + Dyuu(t))

(3.14)

where the structural difference between the analysis model and the synthesis one, is the presence of feedforward matrices

Figure 3.11. Frequency responses of the analysis (-) and synthesis (- -) models for the flexible membrane.

in the measured output, given as y(t) = Cyxp(t) + Dyww(t) + Dyuu(t). The piezo-actuated membrane is a SISO system,

i.e. with only one actuator, driven by the controlled electrical voltage u, and only one measured output signal corresponding
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Mode 1 at 120 Hz

x
z

y

Mode 6 at 497.6 Hz

x
z

y

Mode 15 at 1178 Hz

x
z

y

Figure 3.12. First three controllable and observable vibration modes.

to the electrical voltage y. The disturbance input w is the total acceleration applied to the clamped edge of the structure.

The vertical total acceleration of the membrane center is our controlled output z.

3.7.2 Transfer function representation of the flexible axisymmetric membrane

In order to talk about the different model’s representations of the two flexible structures used in this work, we finish

specifying the transfer function model of the flexible axisymmetric membrane, derived from the data of the state-space

one.

In the sequel, the transfer functions based model is used for the delay-based control design instead of the state-space

form. It is derived from (3.14) by applying to it the Laplace transform. It is given by

Pm


z(s) = Qzw(s)

φ(s) w(s) + Qzu(s)
φ(s) u(s)

y(s) = Qyw(s)
φ(s) w(s) + Qyu(s)

φ(s) u(s)
(3.15)

where s denotes the Laplace variable.

These polynomials are written as

Qzw(s) :=
2nc∑
k=0

qzwk
sk, Qzu(s) :=

2nc∑
k=0

qzuk
sk,

Qyw(s) :=
2nc∑
k=0

qywk
sk, Qyu(s) :=

2nc∑
k=0

qyuk
sk

and φ(s) :=
2nc∑
k=0

ak sk

where anp
= 1 is imposed for simplicity. The numerical values of the polynomials’ coefficients for the synthesis model in

(3.15) are given in Table 3.3.
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Table 3.3. Numerical values for the polynomials’ coefficients in the case of the axisymmetric membrane’s synthesis model.

Qzw(s) =
2nc∑
k=0

qzwk
sk, Qzu(s) =

2nc∑
k=0

qzuk
sk,

qzw0 = 5.30488 × 1014 qzu0 = −1.01734 × 1020

qzw1 = −5.31674 × 1015 qzu1 = −2.38029 × 1015

qzw2 = −7.53046 × 1014 qzu2 = −2.21049 × 1014

qzw3 = −3.05369 × 109 qzu3 = −2.00512 × 109

qzw4 = −5.92403 × 107 qzu4 = −4.12495 × 107

qzw5 = −1.29576 × 102 qzu5 = −1.22644 × 102

qzw6 = −1.14827 qzu6 = −1.08684

Qyw(s) =
2nc∑
k=0

qywk
sk, Q y u(s) =

2nc∑
k=0

q u yk
sk,

qyw0 = 1.71742 × 1019 qyu0 = 2.93494 × 1019

qyw1 = 4.69023 × 1013 qyu1 = 5.08699 × 1014

qyw2 = −3.20992 × 1012 qyu2 = 5.40386 × 1013

qyw3 = −1.12431 × 106 qyu3 = 2.67285 × 108

qyw4 = 7.50731 × 104 qyu4 = 5.85451 × 106

qyw5 = −1.68094 × 10−1 qyu5 = 9.45916

qyw6 = −1.48961 × 10−3 qyu6 = 8.38248 × 10−2

φ(s) =
2nc−1∑

k=0
ak sk,

a0 = 3.04635 × 1020 a1 = 5.42594 × 1015

a2 = 5.72533 × 1014 a3 = 2.98444 × 109

a4 = 6.51670 × 107 a5 = 1.12844 × 102

Remark 3.3. In this section we have reviewed the modelling of the flexible axisymmetric membrane, in state-space and

transfer function realizations. We see that the frequency responses are shown in the Figure 3.11, where only 6 peaks of

resonance can be seen for the analysis model, and only 3 peaks for the synthesis model. These peaks are the modes 1,

6, and 15, with resonant frequencies at 120 Hz, 497.6 Hz, and 1178 Hz, respectively. The other modes are not considered

due to the fact that they are not neither controllable, nor observable ones.

3.8 Chapter summary

In this chapter a general presentation of the flexible structures under consideration is given. The flexible structures included

the flexible beam and the flexible axisymmetric membrane. Its behavior involving PDE renders it as an infinite-dimensional

system. The physical characteristics were described. The description of its controllable and observable modes as well as
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its uncontrollable and unobservable modes were shown. The flexible beam’s numerical model was given and it state-space

realization was well deployed. Considering the uncontrolled bode plots of the Figure 3.8 and the Figure 3.11, we see the

modes that we intend to damp. To avoid that when an input signal with a frequency close to the resonant frequencies

produce an output with an high amplitude, we should use an active vibration control technique. The techniques treated in

subsequent chapters involve the quasipolynomial-based control technique (Chapter 5), as well as the optimal H∞ technique

(Chapter 4). Finally, properties on the flexible structures modelling were shown where we can say that, after applying

the FEA techniques for the flexible structures, we then get a linear time-invariant system with similar inputs and similar

outputs, with different resonant frequencies for the vibration modes, and static gains.
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Chapter 4

Optimal H∞ controller design

Recalling the purpose of the present work is to explore new control techniques that can be used for the active vibration

control problem, specifically in flexible systems. The following method is based on the principle of the H∞ control, its

robustness properties, as well as its controller synthesis.

This chapter is based on the H∞ control techniques used for flexible structures and it deals with the basic results and

fundaments on the system’s performance regarding regulation, tracking, or disturbance rejection. It is divided into seven

sections. In Section 4.1, we discuss the H∞ norm and its application in control theory. In Section 2.2.1, we introduce

pole placement techniques and explain how they can be used for control design. In Section 4.2, we discuss the objective

of the H∞ controller and how it can be used to achieve robust performance. In Section 4.3, we discuss unstructured

uncertainties and their impact on control design. In Sections 4.4 and 4.5, we present the optimal H∞ control design for

the flexible beam and axisymmetric membrane, respectively. We discuss the design process and the resulting control laws.

Finally, in Section 4.6, we provide concluding remarks, summarizing the main contributions of the chapter.
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4.1 H∞ norm

Considering a system with a dynamic given as y = G(s) u. We can measure its performance according to the next definition

Definition 4.1. The H∞ norm of the transfer function Tzw, from the input w to the output za is

∥Tzw∥∞ = sup
w∈L2,
w ̸=0

∥za∥2

∥w∥2
. (4.1)

So, going again with the transfer function G, and using the Fourier transform and the maximum singular value we have

∥G∥∞ = sup
ω∈R

σmax
(
G(jω)

)
(4.2)

for every stable rational function G.

The definition 4.1 can be seen as the energy gain ∥G(s)∥∞ from the input w to the output z, i.e. :

∥G(s)∥∞ = max
u(t)̸=0

∫ ∞

0
yT (t) y(t) dt∫ ∞

0
uT (t) u(t)dt

where y ∈ Rn and u ∈ Rm.

Next, the characterization of a system’s H∞ norm according to its state-space realization (i.e. its A, B, C and D

matrices) is addressed using the Bounded Real Lemma.

Lemma 4.1.1 (Bounded Real Lemma). Let (A, B, C, D) be the G(s) stable transfer function’s state-space realization,

and let a constant γ > 0. The H∞ norm ∥G(s)∥∞ < γ if and only if there exists a positive definite symmetric matrix

X = XT > 0 such that 
X A + AT X X B CT

BT X −γ I DT

C D −γ I

 < 0. (4.3)

4.2 Objective of the H∞ controller

Out there, there are many different techniques that proove their utility when designing linear multivariable analog con-

trollers, and pole placement is a very attractive technique. The pole placement technique implies to assemble a subset

of the open loop poles in specific regions inside the stability region. It consists on specifying a performance function and

then optimize it. The most popular norms to perform optimization techniques are the H2 and the H∞ norms. In the H∞
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control case, such performance function is the norm of the closed-loop transfer matrix, suitably weighted.

The controller structure used here is adequate for systems where we intend to minimise the L2-norm from an unknown

perturbation, say white or colored noise, to the controlled output of interest. Likewise, the synthesis problem of providing

robustness to the controller’s design against the unstructured modes is essential. Nonetheless, the design objective includes

minimising the H∞ norm as well as provide damping of the first three vibrating modes through the robustness of the regional

pole placement with a full-order dynamic controller (4.5).

The H∞ controller is a type of robust control that seeks to achieve several key control objectives. Firstly, the objective

of robust stability is achieved by designing the controller to ensure that the closed-loop system is stable, even in the presence

of disturbances and uncertainties. This is achieved by minimizing the maximum singular value of the closed-loop transfer

function, which corresponds to the largest amplification of the system’s sensitivity to disturbances [91, Chap. 3]. Secondly,

the performance improvement objective is achieved by reducing the effect of disturbances on the system’s response and

improving the tracking accuracy. This results in a smoother and more accurate response to changes on the set-point, and

reduces the sensitivity of the system to external disturbances. Thirdly, the disturbance rejection is achieved by reducing

the effect of disturbances on the system’s response, so that the desired performance is maintained despite the presence

of external disturbances. This is particularly useful in applications where the system is sensitive to disturbances, such as

in process control [157]. Fourthly, the L2 norm constraint in H∞ control design provides a guarantee on the energy of

the control input, making it useful in systems where control effort is a concern. This constraint ensures that the control

input has a limited energy, making it suitable for systems where high control efforts may cause actuator saturation or

other undesirable effects. Finally, H∞ control provides robustness against modeling errors by considering the worst-case

scenario of the system behavior in the presence of uncertainties. This is particularly useful in situations where the system

model is uncertain or incomplete, as it ensures that the control system will remain stable even in the presence of modeling

errors. Overall, H∞ control is a useful tool for achieving a range of control objectives, including stability, performance

improvement, disturbance rejection, guaranteed L2 norm performance, and robustness against modeling errors.

Among the different synthesis methods of H∞ controllers, here we consider the controllers formulated with the help

of linear matrix inequalities (LMI). These controllers may be synthetized succesfully with the help of computational tools

related to the semi-definitie programming (SDP). This approach based on LMIs allows bigger flexibility and affordability to

treat a more specific class of systems, e.g. linear time invariant (LTI) systems, large-scale systems, among others [34, 96].

The robust pole placement technique in LMI regions is a method for designing robust controllers for linear systems

that achieves a desired closed-loop pole placement in a region defined by linear matrix inequalities (LMIs) [40]. In this

technique, the objective is to design a controller that stabilizes the system and places the closed-loop poles at specified

locations, while also ensuring that the system remains robust to uncertainty and disturbances. The design problem is

formulated as a convex optimization problem, where the LMI constraints define the region in which the desired poles must

be placed. These methodologies can produce controllers with orders comparable with the order of the system. Therefore,

techniques to reduce the orders of these controllers have to be used.
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Here we use a methodology proposed in [40] for a multiobjective problem through an LMI-based approach introduced

in [58].

This methodology is followed using the low-order model for synthesis purposes, in order to compute this low-order

controller capable of meeting the multiobjective purpose, as well as its correct implementation into a real-time computer.

A robust D-stable controller is computed if a matrix X > 0 exists, such that


MD(Acℓ, X) MT

1
⊗

(X Bcℓ) MT
2
⊗

CT
cℓ

M1
⊗

(BT
cℓ X) −γ I I

⊗
DT

cℓ

M2
⊗

Ccℓ I
⊗

Dcℓ −γ I

 < 0, (4.4)

where MT
1 M2 = M is a full-rank factorization of M , I is the identity matrix of appropriate sizes, Acℓ, Bcℓ, Ccℓ and Dcℓ

are the closed-loop matrices, given by

Acℓ :=

A + Bu DK Cy Bu CK

BK Cy AK

 ,

Bcℓ :=

B∆ + Bu DK Dy∆

BK Dy∆

 ,

Ccℓ :=
[
C∆ + D∆u DK Cy D∆u CK

]
,

Dcℓ := D∆∆ + D∆u DK Dy∆.

The dynamical output-feedback controller is given as:

K


η̇ = AK η + BK y,

u = CK η + DK y.

(4.5)

Theorem 9. ([40, Thm 5.1]) There exists a full-order output-feedback controller K and a matrix X > 0 such that (4.4)

holds, if and only if there exist two n × n symmetric matrices R and S, and matrices Ak, BK , CK and DK such that

Λ1 :=

R I

I S

 > 0, (4.6)
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Λ2 =


L
⊗

Λ1 + M
⊗

ΦA + MT
⊗

ΦT
A MT

1
⊗

ΦB MT
2
⊗

ΦT
C

M1
⊗

ΦT
B −γ I I

⊗
ΦT

D

M2
⊗

ΦC I
⊗

ΦD −γ I

 < 0, (4.7)

where

ΦA =

A R + Bu CK A + Bu DK Cy

AK S A + BK Cy

 ,

ΦB =

B∆ + Bu DK Dy∆

S B∆ + BK Dy∆

 ,

ΦC =

 C∆ R + D∆u CK

C∆ + D∆u DK Cy


T

,

ΦD = D∆∆ + D∆u DK Dy∆.

If these LMIs are feasible, then a nth-order controller that robustly assigns the closed-loop poles in D is

K(s) = DK + CK (s I − AK)−1 BK ,

with the matrices AK , BK and CK derived as follows:

• We perform the singular value decomposition of I − R S, producing a diagonal matrix Sv containing the singular

values and two unitary matrices U and V , such that U Sv V = I − R S.

• We compute square matrices M̂, N̂ ∈ Rn×n such that M̂ = U S
1/2
v and N̂ = S

1/2
v V .

• We solve the following linear equations

AK = N̂ AK M̂T + N̂ BK Cy R + S Bu CK M̂T + S (A + Bu DK Cy) R,

BK = N̂ BK + S Bu DK ,

CK = CK M̂T + DK Cy R.


(4.8)

for BK , CK and AK .
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4.3 Unstructured Uncertainties

The designing of control laws for different systems’ models, often conveys the involvement of uncertainties that have to

be taken into account. These uncertainties can come from model differences, i.e. differences between the mathematical

model and the actual system; from parameteric uncertainties, which can be produced due to measurement erros or changes

in the operating conditions; from exogenous inputs, these are external inputs that affect the system’s behavior; or from

unmodeled dynamics that have to be neglected during the modelization process for control purposes. By robust control

theory, we intend to control a system, i.e. to render it stable, even under the presence of the uncertainties and disturbances.

In this thesis project, we consider this last class of uncertainties. As these unmodeled dynamics uncertainties are

assumed static because they do not change over time, they can be modeled as constant matrices.

Consider the uncertain linear system given as

ẋ = A(∆) x,

A(∆) := A + B (I − ∆D)−1 ∆C,

(4.9)

where the state matrix A(∆) ∈ Rn×n depends on the uncertainty matrix, which is bounded as

σmax(∆) ≤ γ−1

with ∆ ∈ Cm×m, and let G(s) := D + C (s I − A)−1 B be the closed-loop of the system without uncertainties. The

nominal value of this system corresponds to the case when the uncertainty matrix, ∆ = 0. The parameter γ defines the

level of uncertainty measured through the H∞ norm by

∥G(s)∥∞ < γ

Consider the next LMI given by

D = {z ∈ C : fD(z) = L + z M + z̄ MT < 0} (4.10)

which defines the generic LMI region in the complex plane. To say that the matrix A(∆) is D-stable it is required that

the closed-loop poles remain in D for all ∆. Therefore, given some uncertainty level γ, we need to manage to place all

the eigenvalues of A(∆) in D.

The robust H∞ controller is represented by the block diagram in Figure (4.1). This is the linear fractional transformed

model. The H∞ norm of the synthesis model interconnected with the computed controller has to be less than one, but to
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deal with the neglected vibration modes, or unstructured uncertainties, we choose the weight filter W3 such that [176]:

∥W3(s) ∆(s)∥∞ ≤ 1.

To isolate low-frequency modes in the case of the flexible beam from the high-frequency modes belonging to unstruc-

tured uncertainties, we choose the weighting filter W1 as a low-pass filter to only allow frequencies below a certain cutoff

frequency to pass through. In the other hand, the weighting filter W2 is a low-pass filter used to penalize high-frequencies

of resonant peaks in the accelerometric frequency response za(s). Besides W3 is selected as a high-pass filter to capture

the behaviour of the system at high-frequencies to provide robustness to the H∞ controller.

4.4 Optimal control for the flexible beam

The application we are considering in this section is focused in the active vibration control of a flexible beam equipped

with piezoactuated patches. Here we lay out the way we implement a linear H∞ control synthesis for computing a linear

controller that allows us to afford a good performance in closed-loop.

The Figure 4.3 exhibits the closed-loop frequency response of the acceleration at the end of the beam, overlapping

with the uncontrolled response. In the Subfigure 4.3a is shown the synthesis model of the flexible beam system, which

describes the first three vibration modes, which are the modes 1, 3 and 4. To its right, we find the analysis model, which

displays the first six controllable and observable modes that we found in the beam’s model frequency response is shown in

the Figure 4.3b. One can note the reduction of at least 20dB on each targeted peak of resonance. This corroborates the

previous analysis of the H∞ costs.

A way of dealing with the design problems can be the construction of a Nichols chart, which involves the construction

of a plane plotting the logaritmic magnitude versus the phase of the closed-loop system with the low-order optimal H∞

controller, which is of order 8. The Nichols chart of the closed-loop system’s analysis and synthesis model with the

P

∆

W2u y

za

z∆

W1
w

w∆

W3

K

Figure 4.1. Synthesis structure.
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α
2θ

r ℑ{s}

ℜ{s}

Figure 4.2. Convex cluster sector described by LMI regions, located in the open left-half of the complex plane.
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(a) Bode plot responses in closed-loop of the flexible beam’s
synthesis model.

(b) Bode plot responses in closed-loop of the flexible beam’s
analysis model.

Figure 4.3. Bode plot responses of the synthesis and analysis model’s of the flexible beam system in closed-loop with the
low-order optimal LMI-based H∞ controller. We can see that beyond the third vibration mode, the damping effect is
similar to the FRF of the undamped system. In dashed line we have the uncontrolled response. In solid line we find the
closed-loop response with the H∞ controller.

low-order controller of order 8 can be beheld in the Figure 4.6, where solid lines represent the analysis model, and the

dashed lines represent the synthesis model. It gives the gain characteristics and the phase characteristics of the closed-loop

transfer function at the same time [135]. The H∞ controller computed is effective in damping the first three vibration

modes. Moreover, the order size of this controller is reduced through implicit balancing techniques. These techniques are

methods for reducing the order of a LTI system while preserving its dynamical properties, producing a lower-order system
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Figure 4.4. Bode plot responses in magnitude (up) and phase(down) for the flexible beam’s optimal LMI-based H∞
controller. In dashed line we have the full-order synthesized controller of 18 states. In solid line we find the low-order
controller of 8 states.

that approximates the behaviour of the original system as closely as possible. The Bode diagrams of the closed-loop system

with the computed low-order controller from Equation (4.11), are given in the Figure 4.3a, where above we find the gain

margin (above) and the phase margin (below), with the original high-order controller K first computed of 18th order in

dashed black-line, and the consequent reduced low-order controller Kr of 8th order, shown in solid black-line.

The method treated here has been tailored for linear systems particularly. Robust regional pole placement has been

succesfully applied in [177] to a plate like flexible structure. The theoretical background for this problem can be found in

[40]. In what follows we specify its application for this smart structure.

Three filters are used for weighting the signals with a good trade-off. The first filter W1(s) is chosen as an order 1

low-pass filter, with a cut-off frequency fc1 = 950 Hz at the disturbance input-signal to characterize the power spectral

density of this irregular signal. The filter W2(s) is a penalizing filter, which is designed with fc2 = 950 Hz and placed at

the controlled output-signal z a(t). Filter W3(s) is designed as an order 10 Butterworth high-pass filter, with a cut-off

frequency fc3 = 5, 654 Hz.

The prescribed LMI-region was chosen as the intersection of three LMI regions, as seen in the Figure 4.2. These
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Figure 4.5. Poles and zeros of the flexible beam’s optimal H∞ LMI-based controller. (Left) The full-order controller of 18
states. (Right) Low-order controller of 8 states.

Figure 4.6. Nichols chart of the flexible beam’s analysis and synthesis models.

constraints are defined by the shifted open left-half plane, a disk centered at the origin and a conic sector with apex at

the origin defined by the numerical values of α = −15, radius r = 1e5 and θ = 89.4◦. This LMI region is chosen to

achieve a good trade-off between robustness, speed of response, control performance, and a bigger damping ratio for the

high-frequency modes of the system.

Besides, the magnitude Bode diagram of the 18 states full-order controller and the 8 states low-order controller is shown

in Figure 4.4. The transfer function of the low-order controller is written in equation (4.11), where the coefficients’ values

of the numerator and the denominator of this linear transfer function can be found in table 4.1. The low-order dynamic

controller in state-space representation is obtained in a canonical state-space realization, with a modal decomposition where

the state matrix A is block-diagonal, with each block corresponding to a cluster of nearby modes, using the MATLAB
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canon command [89]. It’s corresponding continuous transfer function in frequency domain is given by equation (4.11)

with its coefficients given in the Table 4.1.

KH∞(s) = Nb(s)
Db(s) (4.11)

4.5 Optimal control for the axisymmetric membrane

In this section, we carry on with the conundrum of active vibration control using an optimal H∞ controller for a different

flexible structure. The flexible structure taken into consideration is a thin circular membrane equipped with piezoelectric

patches, fixed on each side, and centered according to their axis of symmetry. The final goal of this controller keeps

being the vibration damping of several of its vibration modes. We analyse these specific modes through a model reduction

technique which looks upon neglecting the non observable modes, and the modes out of the bandwidth of interest. We

evaluate the model’s performance throughout several numerical simulations which will be useful for assessing the results

obtained from our main cotribution, given in the next chapters.

As has been said above, this membrane is a thin fabric composite structure which is used in different applications, such

as to predict the elastic performance of woven fabric composites [92, 130], or homogenisation techniques for membrane

structures based on repeating unit cell geometry [44].

The biggest challenge for the current technique is to compute a controller which is able to damp the specified vibrating

modes in a low frequency bandwidth. Robustness against vibrating modes outside the range of frequency is desired, in order

to avoid the “spillover” phenomenon [22]. The behavior of these flexible structures when they are studied and linearized

in a specific range of frequency, can be controlled thanks to linear control techniques [80].

The computed continuous-time axisymmetric membrane’s optimal H∞ controller in frequency domain is given by

equation (4.12), and its corresponding coefficients are in table 4.2.

KH∞(s) = Nm(s)
Dm(s) . (4.12)

The Figure 4.7 illustrates the closed-loop accelerometric frequency response overlapped with the uncontrolled response.

In the Subfigure 4.7a we have the synthesis model describing up to the first three vibration modes, composed of the modes

1, 6 and 15. And the analysis model, which includes the first five controllable and observable modes that we found in the

membrane model frequency response is shown in the Figure 4.7b. Also, we can see the frequency response of the stable

low-order optimal H∞ controller function given in the Figure 4.9, which overlaps the frequency response of the former

high-order controller, and the latter low-order controller.

In the Figure 4.10 we seeand that the order reduction is adequate with the open-loop gains in decibels and in degrees

for the reduced-order model, as well as the full-order model. One can note the reduction of at least 20dB on each targeted
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Table 4.1. Coefficients of the continuous controller’s transfer function of the flexible beam given by (4.11).

Nb(s) =
8∑

k=0
ni si, Db(s) =

8∑
k=0

ni si,

n0 = 7.168×1026 d0 = 1.182×1026

n1 = 1.207×1023 d1 = 1.854×1023

n2 = 5.396×1021 d2 = 1.399×1021

n3 = 1.786×1018 d3 = 8.962×1017

n4 = 1.437×1015 d4 = 7.323×1014

n5 = 2.718×1011 d5 = 2.012×1011

n6 = 4.855×107 d6 = 5.737×107

n7 = 5346 d7 = 7747

n8 = 0.1374 d8 = 1

Table 4.2. Coefficients of the controller’s transfer function of the axisymmetric membrane given by (4.12).

Nm(s) =
8∑

k=0
ni si, Dm(s) =

8∑
k=0

ni si,

n0 = 2.112×1033 d0 = 7.443×1032

n1 = 1.521×1030 d1 = 3.508×1029

n2 = 6.984×1026 d2 = 1.154×1027

n3 = 2.421×1023 d3 = 1.908×1023

n4 = 3.118×1019 d4 = 1.408×1020

n5 = 6.045×1015 d5 = 1.62×1016

n6 = 2.643×1011 d6 = 3.235×1012

n7 = 2.106×107 d7 = 2.8×108

n8 = 421.6 d8 = 1.807×104

n9 = 0.00652 d9 = 1

peak of resonance. This corroborates the previous analysis of the H∞ costs.

4.6 Concluding remarks

The problem of the active damping control technique of an infinite-dimensional systems with a robust linear controller,

with a proper model order reduction has been tackled using a finite dimensional technique. We have emphasized the fact

that, computing a controller with a order reduced model of the plant accentuates the interest in avoiding the spillover

phenomenon, which occurs when high-frequency disturbances are present in the system, and they can “spill over” into

the reduced-order model and cause significant errors in the system’s response. We have considered two flexible systems,

such as the flexible beam and the flexible axisymmetric membrane. We have shown how, despite using different flexible
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(a) Bode plot responses in magnitude (up) and phase(down) in
closed-loop for the flexible axisymmetric membrane’s synthesis
model.

(b) Bode plot responses in magnitude (up) and phase(down)
in closed-loop of the flexible axisymmetric membrane’s analysis
model.

Figure 4.7. Bode plot response of the axisymmetric membrane’s analysis and synthesis models with the optimal LMI-based
H∞ controller. In dashed line we have the open-loop response. In solid line we find the closed-loop response with the H∞
controller.

structures we can accurately be controlled through the H∞ controller, accomplishing robustness and control performance

in the presence of uncertainties, including modeling errors and disturbances. The importance of achieving a low-order

controller is emphasized. Overall, we have designed an efficient control method through the FEM technique, weighting

filters and the optimal H∞ technique based on LMIs. Then, some details concerning the discretization of the controller

for its consequent study in a sampled-data system is shown.
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Figure 4.8. Bode plot responses in magnitude (up) and phase(down) for the axisymmetric membrane’s optimal LMI-based
H∞ controller. In dashed line we have the full-order synthesized controller of 18 states. In solid line we find the low-order
controller of 8 states.
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Figure 4.9. Poles and zeros of the flexible axisymmetric membrane’s optimal H∞ LMI-based controller. (Left) The full-
order controller of 18 states. (Right) Low-order controller of 9 states.

Figure 4.10. Nichols chart of the flexible axisymmetric membrane’s analysis and synthesis models.
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Chapter 5

Quasi-polynomial Based Control Design

This chapter focus its attention into a class of time-delay systems, whose application lies in the partial pole-placement

(PPP) of some poles of the spectrum into the negative real axis of the complex plane.

The chapter is structured as follows. First some general remarks about time-delay systems for a continuous domain are

considered for an overview of time-delay systems in Section 5.1. Then, the objective of a Quasi-Polynomial Based (QPB)

controller is considered in Section 5.2. Then some characteristics about the controller design based on delayed-differential

characteristic functions, or QPB controller design, is discussed in Section 5.3. The Section 5.4 includes the results obtained

through several simulations for the previously modelled flexible structures, i.e. the flexible equipped beam and the flexible

axisymmetric membrane. And finally, Section 5.5 summarizes the chapter with some brief remarks.
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5.1 Introduction

The time between when a control signal is sent, when it is received and acted upon it is what we consider a time-delay

in control theory. The control applications which send and receive signals constantly, and as they do, they are vulnerable

to many factors and affect areas such as mobile devices networks [124], lagrangian systems [132], robot manipulators [61]

and active damping of flexible structures [31].

The main objective in this chapter is to investigate an approach based on the stabilization properties that time-delay

systems can bear when correctly used for an output-feedback controller. This output-feedback is applied in such a way

that we solve with its parameters’ values the problem of correctly assigning partial poles of the spectrum distribution into

the negative real-axis of the complex plane. This is a property related with time-delay systems which is reviewed in this

chapter. It has been treated in recent studies, and it is called QPB control [179, 6]. Besides, novel properties related

to time-delay systems have been studied before, see for instance [32], where an interesting property sought through the

feedback control of these system is called Multiplicity Induced Dominancy (MID).

The type of linear time-delay systems considered for the Quasi-Polynomial Based (QPB) control is infinite dimensional

with constant delays, given as

ẋ(t) =
N∑

k=0
Ak x(t − τk) (5.1)

where the state-vector x =
[
x1 x2 · · · xn

]T

∈ Rn, and the according initial conditions belong to the Banach space

of continuous functions C([−τN , 0],Rn). The time-delays, given by τN > τN−1 > · · · > τ1 > τ0 = 0 are strictly increasing

positive constant delays, and the matrices Ak ∈ Mn(R, where Mn(R) denotes the n × n-dimensional matrices with real

numbers denoted by the set R. The stability of the solutions of the system (5.1) can be defined by the location of the

zeros of the characteristic quasipolynomial, which is given by

∆(s, τ) = det(sI − A0 −
N∑

k=1
Ak e−τks). (5.2)

We emphasize the fact that the characteristic quasipolynomial of the characteristic equation, which is given in the way

of (5.2), involves an infinite number of roots, while for pure linear and time-invariant differential equations there are only

a finite number of roots [18, p. 55]. We recall that systems described by retarded differential equations is found in most

of the applications, because they are found in systems with a feedback subjected to a time-delay [18].

We show that an upper-bound for multiple coexisting negative real roots of time-delay systems is given. It is also

shown that the codimension of roots in the origin of the complex plane can be characterized with an appropriate functional

Birkhoff matrix [25], instead of using the argument principle, as done in [140].

The dominant properties of multiple roots is the fact that makes the time-delay controllers of utility for a control

synthesis technique. Through the use of scalar delay equations, the dominant property of a multiple root is shown in [28].
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Next, such a property was considered for second-order systems controlled by a delayed proportional controller as

proposed in [31, 29] where its applicability in active vibration damping for a piezo-actuated beam is shown. An extension

to the delayed proportional-derivative controller case is studied in [26, 30] where the dominancy property is parametrically

characterized and proven using the argument principle. Besides, the reader can see [30, 26], where an analytical proof for the

dominancy of the spectral value with maximal multiplicity for second- order systems controlled via a delayed proportional-

derivative controller is discussed. Recently, in [3] it was shown that under appropriate conditions, the coexistence of

distinct negative zeros of the quasipolynomial of reduced degree, bounded by the admissible multiplicity given by the

Polya-Szegö bound [140, p. 144] of exactly BP S spectral values, guarantees the asymptotic stability of the trivial solution

of the corresponding time-delay system through assigning BP S real spectral values which make them the rightmost roots

of the corresponding quasipolynomial. The dominancy of such real spectral values is shown using an extended factorization

technique which generalizes the one proposed in [3]. More precisely, an analytical characterization of the spectral abscissa

for the low-order retarded time-delay system with real spectral values which are not necessarily multiple is explored, see also

[17]. The effect of the coexistence of such non oscillatory modes on the asymptotic stability of the trivial solution is then

exploited. In particular, the method Coexistence of Real Roots Induce Dominancy (CRRID) of BP S-order real spectral

values makes them rightmost-roots of the corresponding quasipolynomial. These results give rise to a new control approach

for the design of output feedback controllers based on delayed actions, that is based in a PPP method, which pointwise

assign locations in the negative real axis of the complex plane to specific dominant poles in the spectrum distribution.

These methods are based on the adequate manipulation of the quasipolynomial obtained from the system in closed-loop,

and therefore we call this method CRRID or MID, combined with QPB controller.

Furthermore, if the number of coexistent real spectral values reaches the BP S , then a necessary and sufficient condition

for the asymptotic stability is provided (which is equivalent to the exponential stability [98, p. 79]), see also [127] for an

estimate of the exponential decay rate for stable linear delay systems. Notice also that the proposed constructive approach,

which consists in providing an appropriate factorization of a given quasipolynomial function and then to focus on the location

of zeros of one of its factors, gives further insights on such a qualitative property. Namely, it furnishes the exact exponential

decay rate rather than just counting the number of the quasipolynomial roots on the left-half plane as may be done by

using the principle argument, see for instance [164].

Moreover, it was stressed in [133] that, in some cases, time-delay has a stabilizing effect in the control design. Indeed,

the closed-loop stability is guaranteed precisely by the existence of the delay. A control law of the form
∑m

k=1 γk y(t − τk)

results interesting from the practical point of view, avoiding complicated control laws and giving a straightforward way to

apply the control law.

Thus, the problems considered through these time-delay systems lead to methods that provide an asymptotic stability

characterized by the coefficients which multiply the output of the systems, plus a scale and delayed value of the same

output and the control input. We need to recall that assigning pointwise values of the roots to specific points in the

complex plane has been treated before [19, 36]. For instance, in [19] a method for poles assignment through the closed-
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loop system with terms affected by a bounded time-delay is proposed. In [114] is shown how systems that are affected by

time-delays in the states outputs and the control input, and with the purpose of designing a stabilizing output-feedback,

can be converted into systems with time-delays in the states only. It is valuable to consider that the feedback law includes

past values of itself.

In [112], a similar finite pole placement for time-delay systems with commensurate delays is proposed. Other analyt-

ical/numerical placement methods for retarded time-delay systems are proposed in [121, 126], see also [207] for further

insights on pole-placement methods for retarded time-delays systems with proportional-integral-derivative controller-design.

In this thesis, we further aim at experimenting the methodology described in [3] in order to perform the damping of

the main vibration modes for flexible structures, modelled by the Finite Element method. These flexible structures are

the flexible beam, whose state of the art related to its distributed sensing and control through piezoelectric materials was

reviewed in [144], and for the flexible membrane in [41], where several approaches using membranes are considered.

5.2 Objective

The main goal of the sought controller is to reduce the peaks of resonance for the first three controllable and observable

modes, by using an output feedback controller, without making unstable the vibration modes that are not in the synthesis

model. By using the same kind of output feedback controller as in [179], the considered system is inserted in the output

feedback control structure of the Figure 5.1, where the reference signal is always equal to zero. A rectangular impulse

signal is used for the disturbance input w(t). The control problem consists in reducing the vibrations generated by the

first three modes when the mobile support imposes a shock to the whole flexible membrane.

The transfer function model of the exogenous perturbation w(t) to the controlled output z a(t) is composed by a linear

and time-invariant system. Its transfer functions are given by equation (5.3). This equation contains the piezoelectric

sensor’s voltage output y(t) and possesses a single input, given by the control signal u(t), that corresponds to the voltage

accross the piezoelectric actuator which behaves as a strain actuator and s represents the Laplace variable.


z a(s) = Qzw(s)

φ(s) w(s) + Qzu(s)
φ(s) u(s),

y(s) = Qyw(s)
φ(s) w(s) + Qyu(s)

φ(s) u(s).
(5.3)

There is a bound BP S on the number of real roots that can be placed in the negative real-axis of the complex-plane.

It is possible to obtain this bound thanks to the next theorem:

Theorem 10. ([140, p. 144]) Let τ1, τ2, . . . , τN denote real numbers such that

τ1 < τ2 < · · · < τN
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and let m1, m2, . . . , mℓ be positive integers such that

m1 ≥ 1, . . . , mℓ ≥ 1, m1 + m2 + · · · + mN = D.

Let fi,j(s) = si−1 eτjs, for 1 ≤ i ≤ dj and 1 ≤ j ≤ N . Let BP S be the number of zeros of the function

f(s) =
∑

1≤j≤N
1≤i≤dj

ci,j fi,j(s) (5.4)

that are contained in the horizontal strip

α ≤ ℑ(s) ≤ β

Assuming that ∑
1≤k≤d1

|ck,1| > 0 and
∑

1≤k≤dn

|ck,N | > 0

then
(τN − τ1) (β − α)

2 π
− D + 1 ≤ BP S ≤ (τN − τ1) (β − α)

2 π
+ D + N − 1. (5.5)

Setting α = β = 0, the above theorem yields BP S ≤ D + N − 1 where D stands for the sum of the degrees of the

polynomials involved in the quasipolynomial function f(s) and N denotes the associated number of polynomials.

This theorem enables us to set an upper-bound in the number of a quasipolynomial’s real roots. We proceed with the

case of the negative non-oscilating poles’ presence for a second-order system’s quasipolynomial ∆ of the form

∆(s, τ) = s2 + a s + b + α e−τs = 0. (5.6)

Theorem 11 ([3, Thm 4]). The second-order system’s quasipolynomial (5.6) has three distinct negative real roots, such

that s3 < s2 < s1 if, and only if, the parameters a, b, and α, are given by

a(s1, s2, s3, τ) = 1
Φ

∑
i,j,k∈Λ

i<j,i ̸=j ̸=k

(−1)i+j(s2
i − s2

j ) e−skτ ,

b(s1, s2, s3, τ) = − 1
Φ

∑
i,j,k∈Λ

i<j,i ̸=j ̸=k

(−1)i+jsi sj (si − sj) e−skτ ,

α(s1, s2, s3, τ) = − 1
Φ

∏
i,j∈Λ
i<j

(si − sj)
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where Λ := {1, 2, 3}, and where

Φ := Φ(s1, s2, s3, τ) =
∑

i,j,k∈Λ
i<j,j ̸=i,j

(−1)i+j(si − sj) e−skτ

In this case, α is necessarily negative.

• The spectral value s1 is negative if, and only if, there exists a time-delay τ0 > 0 such that

a(s1, s2, s3, τ0) + s2 = 0.

This ensures the asymptotic stability of the system.

• The root s1 is the spectral abcissa of (5.6).

Remark 5.1. Thanks to the latter theorem a number of roots in any finite vertical region can be upper-bounded. Moreover,

for higher order time-delay systems, it is possible to get conditions on a number N of negative real roots, and we can get

an upper-bound by applying the Polya-Szegö Theorem 10 as N ≤ BP S . The dominancy of the assigned spectral values

can be proved using either the principle argument or the quasipolynomial factorization proposed in [28, 3].

5.3 Methodology

In this section, we summarize the procedure for calculating the parameters’ values of a quasipolynomial-based controller

(for more details on the theory of stabilization of time-delay systems see [119]).

Given the equation (5.1), with a complete set of eigenvalues of Ak, with k = 0, . . . , N , it is possible to construct a

subspace of solutions of (5.1) that corresponds to those eigenvalues.

We organize this section in two parts. Firstly, we focus in the parameters to find, which generally involves the

computation with the aid of a symbolic algebra package as Mathematica [194], and it is numerically accomplished with

its spectral values computation with the help of MATLAB [50]. These are the settings for the calculations to perform.

Secondly, we will see how the computations are implemented in the software package Mathematica.

5.3.1 QPB control design method

To solve the control problem posed by a dynamical system, we prefer to consider a controller with a low complexity in

its design. The controllers treated here are denominated as quasipolynomial-based (QPB) controllers [179]. The idea of

these methods lies in the assignation of poles to a specific point (or points) of the left-half of the complex-plane, which in

the active vibration control corresponds to non-oscillating modes.
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Recently, two different methods to control dynamical systems involving the analysis of a characteristic equation described

by a quasipolynomial have been proposed. These are the multiplicity induced dominancy (MID) and the coexisting real

roots inducing dominancy (CRRID). Their properties and their use for feedback stabilization using time-delays has allowed

the use of a time-delay as a design parameter. Consider the next definition and proposition.

Definition 5.1. Let q0, qr0 , p0, pr0 be scalar coefficients such that τ ∈ R+, p0 ̸= 0, and at least one of the two other

numbers q0 and qr0 is nonzero. Then a generic output feedback QPB controller is defined in the frequency domain by:

K(s, τ) := q0 + qr0 e−τs

p0 + pr0 e−τs
, (5.7)

thus, it yields to the following continuous-time delay-difference equation:

u(t) = −pr0

p0
u(t − τ) + q0

p0
y(t) + qr0

p0
y(t − τ). (5.8)

Proposition 5.1. There exists a set of parameters q0, qr0 , p0, pr0 and τ > 0 such that the controller (5.10) allows to

assign three negative coexisting poles (spectral values) s1, s2 and s3 for the system (5.12) in closed-loop with the control

law (5.9).

Proof. The first pronouncement about the existence of four free parameters is related to the quasipolynomial interpolation,

i.e., having four free parameters and three constraints, the problem is well-posed since there are more parameters than

unknown constraints. Furthermore, the dominancy of the assigned poles is guaranteed through the integral factorization

of the quasipolynomial, where the function will have the desired behavior, as previously used in the works of [3, 17] or

[179].

The above proposition involves that for this specific quasipolynomial with a single time-delay, we can find constant

values that assign three negative dominant poles, such that the corresponding synthesis model’s resonance peaks are well

damped.

Considering a generic quasipolynomial ∆(s) with m ≤ n, we force a given negative value s0 ∈ C− to be a multiple

spectral root of the system’s closed-loop characteristic function. These controller’s parameters can be obtained due to the

parametric conditions that show the dominant property of the multiple spectral root [32].

1. Obtain the transfer function from the state-space model computed through the finite element method, which describes

the number of vibration modes that we are interested in using for the synthesis model. For this we use the command

ss2tf in MATLAB [117, pp. 12526-12536], which converts a state-space representation of a system into an equivalent

transfer function. We recall that the modal reduced state-space matrices that compose the dynamics of certain
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vibration modes of a mechanical system in state-space can be described as

A =

 0nc
1nc

−Ω2 −2 Z Ω

 ,

Bw =

 0

bw

 , Bu =

 0

bu

 ,

Cy =
[
cy 0

]
, Cz =

[
cz 0

]
.

where Ω = diag(ω2
1 , . . . , ω2

nc
), Z = diag(2ξ1ω1, . . . , 2ξnc

ωnc
), nc is the number of vibration modes, ωi is the natural

frequency of the ith mode, and ξi is the damping coefficient of the same ith mode.

2. Get the closed-loop transfer function

Let us define the output feedback control law in the frequency domain by

u(s) = K(s, τ) y(s), (5.9)

where K(s, τ) stands for the QPB controller. For this purpose, let’s define the proportional-delayed output-feedback

controller as

K(s, τ) := ∆q(s, τ)
∆p(s, τ) where


∆q(s, τ) := q0 + qr0 e−τs,

∆p(s, τ) := p0 + pr0 e−τs.

(5.10)

It can be seen that, after using the Laplace anti-transform on (5.10), we write this control law given in the time-

domain as

u(t) = q0

p0
y(t) + qr0

p0
y(t − τ) − pr0

p0
u(t − τ) (5.11)

which is an output feedback control law based on proportional actions plus delayed proportional actions.

We can refer to equation (5.11) as an output-feedback proportional-delayed control law that uses proportional and

delayed signals from the output as well as delayed values of the control.

The transfer function between the controlled output z a(s) and disturbance input-signal w(s) in closed-loop is given

by

z(s) = Qzw(s) ∆p(s, τ) + Q(s) ∆q(s, τ)
φ(s) ∆p(s, τ) − Qyu(s) ∆q(s, τ) w(s) (5.12)

where Q(s) φ(s) = Qzu(s) Qyw(s) − Qzw(s) Qyu(s). The characteristic quasipolynomial of this structure’s transfer
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function in closed loop is given by the denominator of equation (5.12), i.e.

∆(s, τ) := φ(s) ∆p(s, τ) − Q u y(s) ∆q(s, τ). (5.13)

For the sake of future reference, we will call the numerator of (5.12) as

∆num(s, τ) := Qzw(s) ∆p(s, τ) + Q(s) ∆q(s, τ). (5.14)

3. Express the function (5.12) as a retarded equation with a normalization of the highest degree monomial. The degree

of the non-delayed part

P0(s) =
2nc∑
i=0

ai si,

has to be strictly greater than the degree of the delayed part.

P1(s, τ) =
2nc−1∑

j=0
bj sj e−τs.

In other words, we have

∆(s, τ) =
2nc∑
i=0

ai si

︸ ︷︷ ︸
P0(s)

+
2nc−1∑

j=0
bj sj

︸ ︷︷ ︸
P1(s)

e−τs (5.15)

4. Then, depending if it is intended to use a MID method or a CRRID method, the system of equations that is used to

find the parameters of equation (5.10) varies, as it is explained below.

Multiplicity Induced Dominancy (MID): To work with a control law given by a multiplicity that defines the

rightmost root of the system, we take the characteristic quasipolynomial (5.15) and we derivate w.r.t. the

Laplace variable s for each one of the multiple poles. We then, solve the resulting system of equations for the

chosen multiple value sc of the form



∑2nc

i=0 ai si
c +

(∑nc−1
j=0 bj sj

c

)
e−scτ = 0,

d

ds

[∑2nc

i=0 ai si
c +

(∑nc−1
j=0 bj sj

c

)
e−scτ

]
= 0,

d2

ds2

[∑2nc

i=0 ai si
c +

(∑nc−1
j=0 bj sj

c

)
e−scτ

]
= 0.

(5.16)

Coexisting Real Roots Induced Dominancy (CRRID): In order to arrive to a control law that places three co-
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existing poles in the negative real axis of the complex-plane, we solve the following system of equations:



∑2nc

i=0 ai si
1 +

(∑nc−1
j=0 bj sj

1

)
e−s1τ = 0,∑2nc

i=0 ai si
2 +

(∑nc−1
j=0 bj sj

2

)
e−s2τ = 0,∑2nc

i=0 ai si
3 +

(∑nc−1
j=0 bj sj

3

)
e−s3τ = 0.

(5.17)

i.e. the characteristic quasipolynomial ∆(sk, τ) = 0 with k = 1, 2, 3 [179, Thm 1], and in (5.15) we set a2nc
= 1

and b2nc = 0, for solving the parameters given in the control law (5.10), where we are using a time-delay as a

design parameter.

Stability of the closed-loop transfer function (5.12), with w(s) considered as a rectangular impulse perturbation of the

system, is achieved if and only if all roots of the quasipolynomial (5.15) lie in the left-half of the complex plane.

We are interested in the frequency domain analysis of the transfer function’s denominator with some roots aligned in

the negative real-axis contained in the left-half of the complex plane.

Nonetheless, we need to ensure that the rightmost root be included in the subset of assigned poles. If all the poles of

the function (5.13) have negative real parts, the equilibrium point is BIBO-stable.

Remark 5.2. For solving the five parameters of the controller equation (5.13) we have to impose five constraints, as it

was shown above.

With the help of the software MATLAB [50], and using the command QPmR introduced in [188], a numerical study

of the complex plane allows to see the behavior of our rightmost assigned root s1 as the spectral abscissa of the system

(5.12), whose relation to the other chosen roots is described by the inequalities 0 > s1 > s2 > s3. Therefore, the behavior

of s1 as the spectral abscissa is verified, in order that our choice of poles renders the complete high-order analysis model

BIBO-stable.

Thus, a quasi-polynomial based controller can be calculated and tested for a generic flexible structure, whose model

was obtained through the Finite Element Method (FEM) techniques.

5.3.2 Solving the controller’s parameters

The computational implementation of the analytical results shown above, will be described in this subsection. The obtention

of the Delay-Differential Equation (5.15) will be achieved after the next steps. The transfer function realization of a flexible

structure, as shown for our study cases in Equation (3.13) and (3.15) for the flexible beam and the flexible axysimmetric

membrane, respectively, is introduced in our symbolic software Mathematica with a sintaxis given as follows:

> φ[s_] = s6 + a5 s5 + a4 s4 + a3 s3 + a2 s2 + a1 s + a0

Where the constants a5, a4, a3, a2, a1 and a0 are considered as indicated in the Table 3.2 for the flexible beam, and
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by the Table 3.3 for the flexible axisymmetric membrane. Moreover, the polynomials symbolic representation has to be

created with a special syntax for subscripted variables with the Notation Palette as shown below,

> Needs["Notation‘"]

> Symbolize[Qzu]

> Symbolize[Qyu]

> Symbolize[Qzw]

> Symbolize[Qyw]

The values for the coefficients of the polynomials defined above are given by the Table 3.2 for the flexible beam, and by

the Table 3.3 for the flexible axisymmetric membrane.

> Symbolize[p0]

> Symbolize[q0]

> Symbolize[pr0]

> Symbolize[qr0]

Where the variables p0, q0, pr0 & qr0 are the coefficients of the controller’s transfer function, defined as

> K[s_,τ_] =
q0 + qr0 e-τs

p0 + pr0 e-τs

A definition that considerably simplifies terms in the evaluation of the output signal to be controlled is

> Q[s_] =
Qzu[s] Qyw[s] - Qzw[s] Qyu[s]

φ[s]
After that, we define the controller’s numerator and denominator with the variables ∆q(s) and ∆p(s), respectively, as

follows:

> Symbolize[Δq]

> Symbolize[Δp]

> Δq[s_ ,τ_] := Numerator[K[s_ ,τ]];

> Δp[s_ ,τ_] := Denominator[K[s_ ,τ]];

The transfer function of the controlled output of interest is defined as

> z[s_] :=
Qzw[s] Δp[s,τ] + Q[s] Δq[s,τ]
φ[s] Δp[s,τ] - Qyu[s] Δq[s,τ]

From this transfer function, we consider its denominator as the characteristic quasipolynomial with the next instruction:

> Δ[s_,τ_] := Denominator[z[s]];

We use the next instruction to set constraints on the delayed and non-delayed polynomials that compose the quasipolynomial

Δ[s,τ], setting the non-delayed polynomial as a monic polynomial, and the delayed polynomial to the degree 2nc − 1, as

follows

> Collect[Δ[s,τ],{Exp[-s τ],s}]

Finally we solve numerically for the 5 parameters of our controller with the instruction NSolve :

> ns1 = NSolve [ {Δ[s1,τ] == 0, Δ[s2,τ] == 0, Δ[s3,τ] == 0, pr0 - quy6 qr0 == 0, p0 - quy6 q0 == 1

}, {p0,q0,pr0,qr0,τ},Reals ]
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Where s1, s2 and s3 are the assigned eigenvalues in negative real axis of the complex plane. Nonetheless, it is not clear

at this point how to select these pointwise real eigenvalues, but it has been seen that equitable distribution over the real

negative axis, can lead to the asymptotic behavior of solutions determined by the real spectral abscissa of the characteristic

quasipolynomial (5.15).

Remark 5.3. It is fundamental to be aware about the dominance property of the assigned real roots. Therefore, to

guarantee the dominancy among the assigned spectral values, it is necessary to show it either by using principle argument,

or the quasipolynomial factorization. The dominance can be further checked by plotting the spectrum distribution.

5.4 Simulation results

Q u z(s)
φ(s)

Qw z(s)
φ(s)

Qw y(s)
φ(s)

Q u y(s)
φ(s)

K(s, τ)

+

+

+
++

+

w(s)

u(s)

za(s)

y(s)

0

Figure 5.1. Feedback control system.

As it was considered in the former optimal controller design, we intend to damp the first three vibration modes of

our systems. The target is to compute a delayed-output feedback controller and to evaluate its performance when the

structure is put through a disturbance input w(t) produced by an exogenous perturbation of 1 m/sec2 and a time length

of tℓ = 5×10−3 sec, shaped as a rectangular impulse motion, as it is shown in Figure 5.1. Its robustness features allow to

partially place the analysis model’s poles, including dominancy over the unmodelled roots of the synthesis model. This is,
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to assign precise locations of a few number of poles, whose dominance is proved through the use of the principle argument,

or the use of the quasipolynomial factorization proposed in [3].

5.4.1 Flexible beam

By following the controller proposed in (5.10), the numerical values of the controller’s parameters in order to damp

appropriately the first three vibration modes on the flexible beam are gathered in a clear way in Table 5.1.

We appropriately shape the spectrum of the closed-loop system by assigning a subset of coexisting poles to specific

stable locations in the left-half of the complex plane. These poles should be placed sufficiently far from the imaginary axis

to guarantee robust stability of the system [122].

Table 5.1. Numerical values of the Quasi-Polynomial Based controller (5.10) for a spectrum assignement given by s1 =
−1, s2 = −101 and s3 = −201 in the flexible beam system.

q0 = 33.6443 qr0 = 1.68338

p0 = 3.14258 pr0 = 1.07203×10−1

τ = 7.47849×10−3 sec

Recoursing to different simulations with subsets of poles varying all along hundreds of units on the negative real-axis,

the QPB method gives the following numerical values for the parameters of the controller in (5.10) that assigns s1 = −1,

s2 = −101 and s3 = −201 as the dominant roots of the characteristic polynomial for: p0 ≃ 3.14258, pr0 ≃ 1.07203×10−1,

q0 ≃ 33.6443, qr0 ≃ 1.68338 and τ ≃ 7.47879×10−3 sec.

The roots of the characteristic function of the control law used for the flexible beam system are plotted in the Figure

5.2, which can be used to check graphically the stability of the control law, as well as to get some insights into how the

control law will respond to changes in the signals, delays and coefficients that compose it. We recall that in this section we

Figure 5.2. Spectrum distribution of the controller’s complex plane around the origin.
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are interested on the design of a delayed output-feedback controller that will stabilize the system. It is worth to mention

that the QPB controller design involves an infinite number of roots, as can be seen in the Figure 5.3.

This quasipolynomial is given by

∆(s, τ) = φ(s) ∆P (s, τ) − Qu y(s) Q(s, τ), (5.18)

whose terms can be rearranged as the addition of two polynomials, i.e. ∆(s, τ) = P0(s) + P1(s) e−τs. For the dominant

values s1 = −1, s2 = −101 and s3 = −201, these polynomials are given as

Table 5.2. Coefficients ai and bi of polynomials P0(s) =
∑6

0 ais
i and P1(s) =

∑6
0 bis

i

i ai bi

6 1 0

5 11.6217 −2.24265 × 10−14

4 1.3075 × 107 −291117

3 5.3432 × 107 −1.20563 × 106

2 1.4011 × 1013 −1.2037 × 1012

1 8.11729 × 1012 −6.97186 × 1011

0 1.05493 × 1017 −1.04712 × 1017

In the figure 5.3 we show the distribution of the closed-loop poles, with a focus around the three assigned poles s1, s2

and s3. We can check the frequency response of the quasipolynomial-based controller in the Figure 5.4, where damping

of the first three vibration modes in the analysis model, where the amplitude of the first mode is nearly zero, while the

amplitudes of the second and third modes were significantly reduced. The vibration modes neglected during the controller

synthesis were the 4th, 5th and 6th modes.

To show the performances of the proposed QPB-controller, the time responses of both signals in open-loop (red) and

in closed-loop (blue) for the controlled output za(t) of the full-order (analysis) model is depicted in the figure 5.5 where

the disturbance w(t) is a rectangular impulse (black), modelling a brief shock imposed to the whole flexible structure.
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Figure 5.3. Three coexisting real roots of the flexible beam’s infinite-dimensional characteristic quasipolynomial in closed-
loop with the QPB controller. The parameters’ values chosen are p0 ≃ 3.14258, pr0 ≃ 1.07203×10−1, q0 ≃ 33.6443, qr0 ≃
1.68338 and τ ≃ 7.47849×10−3 sec.

Figure 5.5. Time response of the flexible beam for the case of the controlled output za(t) with an exogenous perturbation
w(t), which has an amplitude of 1 m/sec2, and a time length tℓ = 5×10−3 sec. It describes the accelerometric behavior
of the tip of the beam. It is possible to see in red color the open-loop response. In blue color is drawn the closed-loop
response with the optimal H∞ controller and in black is the closed-loop response with the QPB controller.
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Figure 5.4. Frequency response of the flexible beam’s system in closed-loop with the QPB controller. Above is placed the
magnitude frequency response, and below is located the phase frequency response. The open-loop system is drawn with
dashed lines, and the closed-loop with the QPB controller is with solid lines.

The Figure 5.5 shows the time response of the flexible beam when subjected to an exogenous perturbation with a

given amplitude and duration. The plot illustrates the accelerometric behavior of the tip of the beam, with the open-loop

response displayed in red, and the closed-loop responses with the optimal H∞ controller and the QPB controller displayed

in blue and black, respectively. The plot provides useful insights into the effectiveness of the different control strategies,

and can be used to analyze and optimize the behavior of the system under different conditions.

5.4.2 Flexible axisymmetric membrane

We shape the spectrum of the closed-loop system by assigning a subset of dominant poles to specific stable location in

the left-half of the complex plane. Starting with the Multiplicity-Induced Dominance control, we assign three poles far

enough from the imaginary axis. This guarantees good and fast control of the output of interest, combined with a small

peak in the actuator voltage. Using the MID-based control, we assign sc = −600 as our spectral abscissa of multiplicity

3, getting the parameters as shown in the Table 5.3 for the case of the analysis model.
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Figure 5.6. Time response of the measured output ypiez(t).

Figure 5.7. Time response of the controlled output za(t).

Figure 5.8. Closed-loop control signal upiez(t).
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Table 5.3. Parameters’ values for the axisymmetric membrane’s MID-based control law.

q0 ≃ 7.478 qr0 ≃ 69.884

p0 ≃ 1.6268 pr0 ≃ 5.858

τ = 1.904 × 10−4 sec

Table 5.4. Parameters’ values for the axisymmetric membrane’s CRRID-based control law.

q0 ≃ 41.290 qr0 ≃ 36.403

p0 ≃ 4.4611 pr0 ≃ 3.0515

τ = 3.36 × 10−4 sec

In the case of the CRRID approach these poles should be placed sufficiently far from the imaginary axis to guarantee

robust stability of the system [122]. Recoursing to different simulations with subsets of poles varying all along hundreds

of units on the negative real-axis, the quasipolynomial-based control method gives the following numerical values for the

parameters of the controller in (5.10) that assigns s1 = −500, s2 = −550 and s3 = −600 as the coexisting real roots of

the characteristic quasipolynomial are given in the Table 5.4.

In the Figure 5.10 we see the controller’s poles in the complex plane. It is worth to recall that this is an infinite

dimensional controller, due to the fact of the time delay involved in its design.

The latter QPB controller proposed in Equation (5.10) for the flexible axisymmetric membrane is employed with the

numerical values of the controller’s parameters, which are gathered in a clear way in Table 5.4.

(a) Blue curves are the real parts of the characteristic equation
and the red dashed curves are the imaginary parts when both are
equal to zero of the QPB controller’s characteristic quasipolyno-
mial given by the values in the table 5.4.

(b) Zeros of the infinite-dimensional controller given by the values
in the Table 5.4 with ℜ(s) = −1130.71.

Figure 5.9. Infinite roots of the controller’s characteristic quasipolynomial used for the QPB approach with the flexible
axisymmetric membrane. In Subfigure 5.9a, we have the real and imaginary parts in blue and red, respectively. In the
Subfigure 5.9b we have the same complex plane with an horizontal zoom to their position.
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(a) Spectrum distribution of the flexible axisymmetric membrane
in closed-loop with QPB controller.
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(b) Zoom around the origin of the complex plane of the axisym-
metric membrane in closed-loop with the QPB control.

Figure 5.10. The three coexisting real roots in the complex plane for the flexible membrane. The values used in this
system are p0 ≃ 4.4611, pr0 ≃ 3.0515, q0 ≃ 41.290, qr0 ≃ 36.403, τ ≃ 3.360×10−4 sec. In the Subfigure 5.10a we check
graphically the poles’ behavior of a quasipolynomial. In the Subfigure 5.10b we do a zoom around the origin to gain insight
about how the three assigned real roots in the controller’s design include the spectral abcissa.

The quasipolynomial is given by

∆(s, τ) = φ(s) ∆p(s, τ) − Qu y(s) ∆q(s, τ), (5.19)

whose terms can be rearranged as the addition of two polynomials, i.e. ∆(s, τ) = P0(s) + P1(s) e−τs, given by

P0(s) = s6 + 112.844 s5 + 4.8986×107 s4 + 2.2778×109 s3

+3.2288×1014 s2 + 3.2016×1015 s + 1.4718×1020,

P1(s) = −1.1368×10−13 s5 − 1.4266×107 s4 − 6.2302×108 s3

−2.2010×1014 s2 − 1.9611×1015 s − 1.3882×1020.

Figure 5.10 shows the distribution of the closed-loop poles, with a focus around the three assigned poles s1, s2 and s3.

The frequency response of the closed-loop system with the QPB controller, can be seen in the Figure 5.11, where

we plotted the frequency response for the uncontrolled system, and the frequency response for the system in closed-loop

with a QPB control design approach, in dashed and solid lines, respectively. It shows the magnitude and phase responses

of the closed-loop systems as a function of frequency, which is represented on a logarithmic scale in Hertz. We can see

that in spite of designing the controller with a synthesis model, which considered only the first three vibration modes, the

computed QPB controller brings good damping performance in the five vibration modes included in the analysis model.

All the modes are reduced, specially the first three modes. To show the performance of the proposed QPB-controller, we

display the time-response of the output to be controlled za(t) with the uncontrolled response (red) and the QPB controlled

response (blue) in the Figure 5.12, where the disturbance w(t) is a rectangular impulse of an amplitude of 1 m/sec2, and

a time length tℓ = 5×10−3 sec. It models a very brief shock imposed to the whole flexible structure.
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Figure 5.11. Frequency response of the flexible axisymmetric membrane’s system in closed-loop with a QPB control design
approach. Above is placed the magnitude frequency response, and below is located the phase frequency response. The
open-loop system is drawn with dashed lines, and the closed-loop with the QPB controller is with solid lines.

Upon completing the simulations of our control approaches, it becomes crucial to examine the effects of these strategies

on the system’s behavior. To shed light on these dynamics, we present Table 5.5, which offers a comprehensive comparison

within the analysis model. This table provides valuable insights into the excitation frequencies of each vibration mode and

reveals subtle variations induced by the implementation of our controllers in the closed-loop system.

Table 5.5. Natural frequencies of 6 Vibration Modes (VM) in the analysis model.

Frequency (Hz)
VM OL QPB H∞

1 38.8207 45.457 38.95524
2 237.7805 233.247 235.4965
3 648.62584 631.300 647.3163
4 1,236.0549 1,210.8981 1,235.8108
5 1,986.94097 1,965.2276 1,986.5378
6 2,907.37549 2,898.358 2,907.1782
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Figure 5.12. Time response of the controlled output za(t), against a disturbance w(t) = 1 m/sec2 during a time length of
tℓ = 5×10−3 sec.

Forthwith, a crucial analysis of the damping characteristics is essential for understanding the stability and performance

of the controlled modes. Table 5.6 serves this purpose, presenting the damping factors associated with each mode.

Table 5.6. Damping coefficients of the 6 Vibration Modes (VM) in the analysis model.

Damping Coefficient
VM OL QPB H∞

1 0.001 0.132 0.0819
2 0.001 0.0.0709 0.0287
3 0.001 0.0232 0.0447
4 0.001 0.009 0.0029
5 0.001 0.0035 0.0017
6 0.001 0.0014 0.0011

Furthermore, to gain a deeper understanding of the system’s response, Table 5.7 provides critical information on the

exact pole positions corresponding to the non-oscillating modes. These tables collectively contribute to a comprehensive

evaluation of the control strategies and their impact on the flexible structure’s vibrational behavior.

5.5 Concluding remarks

In this chapter, a basic introduction to time-delay control theory required for developping this work is summarized. The

interest in using time-delays as a designer parameter of the controllers is highlighted. We consider to implement this
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Table 5.7. Pole locations of the 6 Vibration Modes (VM) in the analysis model.

Pole Locations

VM OL QPB H∞

1 −0.2439 ± i 243.9176 −37.6468 ± i 283.123 −20.0504 ± i 243.9403

2 −1.4915 ± i 1491.5048 −103.864 ± i 1461.85 −42.5827 ± i 1479.0555

3 −4.0754 ± i 4075.4342 −92.185 ± i 3965.507 −181.8802 ± i 4063.1394

4 −7.7663 ± i 7766.3578 −69.248 ± i 7607.982 −22.4875 ± i 7764.7959

5 −12.4843 ± i 12484.3120 −44.058 ± i 12347.811 −21.6714 ± i 12481.7663

6 −18.2675 ± i 18267.5698 −27.248 ± i 18210.903 −20.8727 ± i 18266.3271

controller in the low-order synthesis model of our flexible structures under consideration, which are the flexible beam and

the flexible axisymmetric membrane, which are distributed parameter systems. These synthesis models include only the

first three controllable and observable vibration modes. An active vibration damping is achieved through the use of a

pointwise pole placement technique with an adequate characteristic quasipolynomial.

This chapter has shown the interest to use time-delay in a controller as a design parameter. The practical applications

that we have considered are for flexible structures equipped with a piezoelectric sensor and a piezoelectric actuator in a

collocated configuration. For this systems it is expected to achieve an active vibration control thanks to an output feedback

controller. This controller has been designed by using a PPP technique through an approach based on the design of a

characteristic quasipolynomial that acts as the equation of these closed-loop delayed systems. The possibilities are left

open for a proper discretization into a digital system, which will be dealt with on the next chapter. This action is taken in

order to ensure the damping of the first three observable and controllable vibrating modes. The output feedback feature

opens the possibility to implement such a controller in an experimental test bench.
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Chapter 6

The saturation problem, antiwindup

compensator design and numerical

simulations

The aim of this chapter is to present an approach for designing antiwindup compensators. The chapter begins in the

section 6.1 with an introduction to the antiwindup compensators and the windup phenomenon, where their importance

in control system design is discussed. Next, in section 6.2 the antiwindup compensator design methodology is treated.

The approximation techniques come in section 6.3 which include techniques such as Pade approximation and Thiran

approximation. In addition, the implementation of sampled data systems is presented in section 6.4, which is essential

for digital control systems. Then, the quasipolynomial-based controller simulation is discussed in section 6.5. Finally, the

chapter concludes in section 6.6 with some remarks on the performance of the designed antiwindup compensator and its

potential for improving the vibration control of flexible structures.
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6.1. INTRODUCTION
CHAPTER 6. THE SATURATION PROBLEM, ANTIWINDUP COMPENSATOR DESIGN AND NUMERICAL

SIMULATIONS

6.1 Introduction

A phenomenon that is often overlooked is the fact that neither motors nor actuators are flawless, and therefore, they face

saturations as an intrinsec property that can constrain the control laws’ designs. Not considering these limitations can lead

into undesirable effects. Besides, through balanced reduction techniques, we have followed a methodology for the synthesis

of an H∞ controller, which in turn has been approximated by a lower-order representation that represents faithfully the

behavior of the system of interest under the frequency range that concerns us. Also, a QPB controller approach has

been considered, and it is in our nature to look for an appropriate real-time implementation of such delayed-controller.

Such models’ implementation generally involve too many degrees of freedom and they are reduced to produce closed-loop

models that involve only a few degrees of freedom (including just the vibration modes of the system).

The windup effect is an event which occurs when a non-linearity comes into account, i.e. the control-input signal

saturation [204]. These are due to physical limitations in the devices, particularly the actuators’ constraints, they can be

considered as limited positions and speeds. Usually this implies a situation where the system suffers a degradation. This

was first identified as a common effect on the PID controllers [113, 9, 138]. Several anti-windup schemes were reviewed

and a unified framework was formulated in [101]. Then, with the broadening of the anti-windup studies, modern theories

[60, 168, 204] identify two areas of methods for the anti-windup design, the Direct Linear Anti-Windup (DLAW) and the

Model Recovery Anti-Windup (MRAW), where the DLAW method is used in [90] where a control approach with input

saturations is proposed for the control of an autopilot system, and the MRAW method is used in [94] where the PID

controller and the Anti-Windup filter are obtained simultaneously.

Considering that saturations can be found in every real system’s dynamic, and that they can produce defective and

treacherous behaviors, it becomes a paramount concern to avoid reaching such limits. To avoid these scenarios, a first

possibility is the design of control laws that do not reach these thresholds of saturating levels, at expense of a potential

decrease in the closed-loop performance. But a second possibility involves the tweak (or compensation) of the closed-loop

dynamics, and hence avoiding this performance degradation [168]. For the latter possiblity, is necessary to develop and

validate a control law for an ideal control input signal free from saturations. This is that, as long as the dynamics of the

systems stay below saturation levels, the control input signal behaves as it is originally designed. Then, when saturations

are present in the system, is when tweaks in the closed-loop dynamics are carried out through the attachment of another

control loop, which will be active only when saturation levels are reached.

And nowadays, controllers are implemented in a digital manner. Nonetheless, there are good reasons to carry out

a continuous design and transform the continuous controller into a digital one with appropriate techniques [141]. The

time-delays involved in the QPB controller were linearized using the Padé approximation [65, pp. 530-531]. The Thiran

approximation was used to digitalize the control laws in order to implement them through the real-time device available

at the lab.

The term “anti-windup compensation” appeared in the literature to treat the windup effect seen on the integral action
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of a PID controller when it was affected by input saturation, where the value of the state could ‘windup’ to very high

values. However, many linear control systems (not only integral actions) can exhibit unpredictable behavior when they

reach saturation in the control signals. The main idea behind these anti-windup compensators is to compensate the bad

performance beared by the non-linear saturations.

In [173] a linear anti-windup technique that takes into account the presence of a direct feedthrough term, i.e. Dyu ̸= 0

in the plant’s dynamic model is considered to extend the results given in [195] for the strictly proper case (no direct

feedthrough term from u to y).

The state of the art related to the problem of the synthesis of compensators has been treated before in several works,

such as [190], where the stability and convergence of an adaptive pole placement controller with saturating inputs is

analyzed, and in [162], where optimal compensators are designed for discrete-time input-constrained systems. In [79] the

synthesis of anti-windup compensators is carried out through a formulation in discrete-time ensuring an upper bound on

the L2 norm in three different cases, full-order (an order equal to the plant’s order), static (zeroth order), which bestows

a low computational complexity, and low-order cases, which can be outperformed the static compensators [145]. In [167]

we find computation strategies that guarantee a specific L2 performance level and the topic of anti-windup compensators

has also been extended to include the synthesis of compensators for discrete-time linear systems with saturating control

inputs.

6.2 Antiwindup compensator design

The design of the anti-windup compensator is explained in this section. The design of this anti-windup compensator takes

into account systems which are not strictly proper, making this procedure better tailored for flexible systems [175].

Consider that the linear plant of the system is given as

P



ẋ = A x + Bw w + Bu u

z = Cz x + Dzw w + Dzu u

y = Cy x + Dyw w + Dyu u︸ ︷︷ ︸
feedthrough terms

(6.1)

where u ∈ Rnu stands for the control input (often expressed in voltage), y ∈ Rny is the measured output, w ∈ Rnw

stands for the exogenous input, and za ∈ Rnz stands for the controlled output of the system. Equation (6.1) represents

the synthesis model (smaller order than the analysis model), which was used for the specific controller design.
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The stabilizing controller C when input saturation is ignored is given in state-space form by

C


ẋc = Ac xc + Bc y + v1

yc = Cc xc + Dc y + v2

(6.2)

where xc ∈ Rnc is the vector containing the states of the linear controller, yc ∈ Rnu is the controller output, and

v = [vT
1 vT

2 ]T ∈ Rnv , with v1 ∈ Rnc and v2 ∈ Rnu , are the additional inputs delivered by the anti-windup compensator. In

the case where there is no input saturation, v = 0 ∈ Rnc+nu . The purpose of the additional inputs from the anti-windup

compensator is to tweak the closed-loop system, such that the dynamics of the system are improved when the control

signal is saturated.

The dynamic anti-windup compensator, whose input is given by the deadzone signal q = dz(yc) := yc − sat(yc). This

last definition may exceed the saturation limits of the actuator. To prevent this, the deadzone signal is constrained by

the inequality |q| < qmax, where qmax is the maximum allowable magnitude of the deadzone signal, and its dynamic is

established by

AW


ẋaw = Aaw xaw + Baw q

v = Caw xaw + Daw q

(6.3)

with xaw ∈ Rnaw , where its order is the same as the plant’s (6.1) order, i.e. naw = np.

For the non-strictly proper case, P̃ represents the strictly proper plant w.r.t. u(t), which is given by

P̃


ẋ = A x + Bw w + Bu u

z = Cz x + Dzw w + Dzu u

ỹ = Cy x + Dyw w

(6.4)

and C̃ corresponds to the controller the system and is given as

C̃


˙̃xc = Ãc x̃c + B̃c ỹ + M̃c q + ṽ1

ỹc = C̃c x̃c + D̃c ỹ + Ñc q + ṽ2

(6.5)

where the additional inputs ṽ = [ṽ1ṽ2]T are computed as

ṽ1

ṽ2

 =

 1nc
Bc Dyu ∆−1

c

0nu×nc
∆−1

c


v1

v2

 (6.6)

with ∆c = 1nu
−Dc Dyu. The matrices used for the equivalent controller for the strictly proper case C̃ in (6.5) are defined
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as follows 

Ãc := Ac + Bc Dyu ∆−1
c Cc,

B̃c := Bc (1ny
+ Dyu ∆−1

c Dc),

C̃c := ∆−1
c Cc,

D̃c := ∆−1
c Dc,

M̃c := −Bc Dyu (1nu
+ ∆−1

c Dc Dyu),

Ñc := −∆−1
c Dc Dyu

(6.7)

The new matrices written as M̃c and Ñc can not be ignored in the anti-windup compensator synthesis, because they are

responsible of taking into account the deadzone signal q = dz(yc) in the augmented controller state equations C̃ in (6.5).

To have a solution for the anti-windup compensator synthesis, we need to consider certain assumptions, where firstly,

we assume that the group of matrices (A, Bu, Cy) are controllable and observable; and secondly, we assume that the

closed-loop interconnection of the plant P and the linear controller C is stable when there is no saturation, i.e. u = yc,

and v = 0 [175].

The closed-loop interconnection of the strictly proper plant P̃ (6.4) and the corresponding control law C̃ (6.5), is

represented as

G



ẋ = Ã x + B̃0 q + B̃1 w + B̃2 v,

yc = C̃0 x + D̃00 q + D̃01 w + D̃02 v,

z = C̃1 x + D̃10 q + D̃11 w + D̃12 v,

q = 1nu
q

(6.8)
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where q = dz(yc) and x ∈ Rnc+np . These new closed-loop matrices are defined as



Ã :=

A + Bu D̃c Cy Bu C̃c

B̃c Cy Ãc

 ;

B̃0 :=

Bu (Ñc − 1nu
)

M̃c

 ; C̃0 := [D̃c Cy C̃c];

B̃1 :=

Bw + Bu D̃c Dyw

B̃c Dyw

 ; D̃01 := D̃c Dyw;

B̃2 :=

0np×nc
Bu ∆−1

c

1nc Bc Dyu ∆−1
c

 ; D̃02 := [0nu×nc ∆−1
c ];

C̃1 := [Cz + Dzu D̃c Cy Dzu C̃c];

D̃10 := Dzu (Ñc − 1nu
); D̃12 := [0nz×nc

Dzu ∆−1
c ];

D̃11 := Dzw + Dzu D̃c Dyw; D̃00 := Ñc.

(6.9)

Then, the anti-windup compensator’s matrices are collected in the variable Θ, just as

Θ :=

Aaw Baw

Caw Daw

 ∈ R(np+nc)×(np+nc) (6.10)

Then, from the above definitions and clarifications, we can continue applying the feasibility theorem as follows:

Theorem 12 ([173, Theorem 2]). Given a non-strictly proper LTI plant P and a respective linear controller C, in view

of the assumptions referring to controllability, observability, stabilizability of the controller in the absence of saturations

(i.e. u = yc), and the equivalent strictly proper plant P̃ with its corresponding controller C̃, given real scalars 0 < ki ≤ 1,

i = 1, 2, . . . , nu, and a scalar γ > 0, a bound on the desired L2-norm of the closed-loop system from the exogenous

input(s) w to the controlled output(s) za. Providing the existence of matrices R11 ∈ Snp×np

+ , S ∈ Sn×n
+ , and a diagonal
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matrix V = diag{v1, v2, · · · , vnu
} > 0 which satisfy the inequalities




A R11 + R11 AT

−Bu

(
(Ñc − 1nu

) V + V (ÑT
c − 1nu

)
)

BT
u




R11 CT
z

+2 Bu (1nu
− K−1) V DT

zu

 Bw


Cz R11

+2 Dzu V (1nu
− K−1) BT

u




−γ 1nz

+2 Dzu (1nu
− K−1) V DT

zu

 Dzw

BT
w DT

zw −γ 1nw


< 0, (6.11)


ÃT S + S Ã S B̃1 C̃T

1

B̃T
1 S −γ 1nw

D̃T
11

C̃1 D̃11 −γ 1nz

 < 0, (6.12)


R11 [1np

0] 1np

0

 S

 ≥ 0 (6.13)

then, there exist an anti-windup compensator AW of order naw = np that robustly stabilizes the closed-loop system G

with respect to a sector-bound assumption.

It should be noted that the design approach proposed in [195] for anti-windup compensators for non-strictly proper

systems is different from that for strictly proper systems in that the former approach involves matrices presented in (6.9)

that cover almost all the elements, indicating that these matrices represent general conditions applicable to the non-strictly

proper case.

The LTI system given in (6.1) will happen to be a strictly proper case when we assume Dzw(t) = 0. With this said,

we define the L2 gain of the system (6.1) as the value

sup
∥w∥2 ̸=0

∥z∥2

∥w∥2
(6.14)

where the supremum is taken over all nonzero trajectories of the system, and ∥u∥2
2 =

∫∞
0 uT u dt is the L2 norm of u.

If there exists a quadratic function V (ξ) = ξT P ξ, with P > 0 and a positive constant γ > 0, such that

d

dt
V (x) + zT z − γ2 wT w ≤ 0 (6.15)
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and integrating from 0 to T

V (x(T )) +
∫ T

0
(zT z − γ2 wT w) dt ≤ 0 (6.16)

with the initial condition x(0) = 0 and since V (x) ≥ 0, then the L2 gain is smaller than γ, thus it follows that

∥z∥2

∥w∥2
≤ γ

We can rewrite the inequality (6.15) as a LMI, given by

AT P + P A + CT
z Cz P Bw

BT
w P −γ2 I

 ≤ 0 (6.17)

where the identity matrix I is introduced with appropriate dimensions. Then, we can compute the smallest upper bound

on the L2 gain of the LTI system (6.1) through the minimization of the value γ. Assuming that the group (A, Bw, Cz) is

minimal (controllable and observable), this late eigenvalue problem results in the value of the L2 gain of the LTI system,

which follows a narrow relation with the H∞ norm of its transfer matrix ∥Cz (s I − A)−1 Bw∥∞ [34, §6.3.2].

Given this close relation between the L2 gain and the H∞ norm, it becomes intriguing the comparison of the strictly

proper and the non-strictly proper cases, to accentuate the differences of both approaches. Specifically, for strictly proper

systems, the L2 gain is equal to the H∞ norm, and the analysis and design of antiwindup compensators can be based

solely on the L2 gain. However, for non-strictly proper systems, this relation between the L2 gain and the H∞ norm does

not hold, and additional considerations are required for the design and analysis of antiwindup compensators.

In practice, when γ is too small, the existence of a solution can not be guaranteed by this methodology. This means

that the system must have very good performance, which may not be achievable with the given controller or actuator

limitations. Therefore, the optimization problem may not have a feasible solution. However, all the conditions of theorem

12, arrive to the minimum possible value of γ, and given that (6.11)-(6.13) are non-convex with respect to γ, i.e. it can

be translated into the following optimization problem

min
R11,S,V

γ subject to (6.11) (6.12) (6.13) (6.18)

and the condition (6.13) assures that we will get a nawth-order anti-windup compensator [59], where naw = np +nc. This

is because a nawth-order anti-windup compensator must hold that

R In

In S

 ≥ 0 (6.19)

rank(R − S−1) ≤ naw (6.20)
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The anti-windup compensator contruction methodology presented below has been used in past works as in [195] and

[173].

Theorem 13. Given the solutions R11, S, γ and V from the feasibility theorem (Theorem 12), let W = V −1 K−1 =

K−1 V −1, HT = [Inaw
0naw×(n−naw) and consider the following decomposition M NT = In − R S where M, N ∈

Rn×naw , R =

 R11 R12

R12 R22

 with R12 = [Inp
0]S−1

 0

Inc

, R22 =

 Inc

0

S−1[0 Inc
] = RT

22. Then, a nawth-order

anti-windup compensator, where naw ≥ np, can be obtained by using the following method:

1. Compute a feasible D̂aw ∈ Rnv×nc such that




W K (D̃00 + D̃02 D̂aw) − 2 W

+(D̃T
00 + D̂T

aw D̃T
02) K W


W K D̃01 D̃T

10 + D̂T
aw D̃T

12

D̃T
01 K W −γ Inw

D̃T
11

D̃10 + D̃12 D̂aw D̃11 −γ Inz


︸ ︷︷ ︸

−Π

< 0 (6.21)

2. Compute the least-square solutions of the following equations for B̂aw ∈ Rn×nu , Ĉaw ∈ Rnv×naw



0 Inu 0 0

Inu

0

0

−Π





B̂aw

?


=



0nu×n

B̃T
0 S + W K C̃0

B̃T
1 S

C̃1 S


(6.22)



0 D̃T
02 K W 0 D̃T

12

W K D̃02

0

D̃12

−Π





Ĉaw

?


=



B̃T
2 H

W K C0 R H + D̂T
aw B̃T

2 H + B̃T
0 H

B̃T
1 H

C̃1 R H


(6.23)

and the matrix Âaw ∈ Rn×naw as

Âaw = −ÃT H − X
(

B̂aw

)
Π−1 Y

(
Ĉaw, D̂aw

)
(6.24)
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where

X
(

B̂aw

)
:=
[
S B̃0 + B̂aw + C̃T

0 K W S B̃1 C̃T
1

]
(6.25)

Y
(

Ĉaw, D̂aw

)
:=



(
B̃T

0 + D̂T
aw B̃T

2

)
H + W K C̃0 R H + W K D̃02 Ĉaw

B̃T
1 H

C̃1 R H + D̃12 Ĉaw

 (6.26)

3. Compute the original matrices of the anti-windup compensator in the variable Θ as in (6.10) with the algebraic

relations given by

Aaw Baw

Caw Daw

 =

 N S B̃2

0nv×naw
Inv


† 

Âaw B̂aw

Ĉaw D̂aw

−

S Ã R H 0n×nu

0nv×naw
0nv×nu



 MT H 0naw×nu

0nu×naw
Inu


†

(6.27)

Figure 6.1. Different input signals’ responses in the strict proper case for the flexible beam system with a H∞ control law.
In red the closed-loop with no saturation; in blue the system with saturated input without compensation; and in yellow
the case with input saturated with anti-windup compensation.

An alternative way to be able to compute the second point of the Theorem 13, provided a solution for D̂aw from the

LMI (6.21) in the first point, lies on the solution of the next BMIs

ÃT S + S Ã + X(B̂aw) Π−1 X(B̂aw)T < 0, (6.28)

HT (Ã R + R ÃT ) H + HT B̃2 Ĉaw + ĈT
aw B̃T

2 H + Y (Ĉaw, D̂aw)T Π−1 Y (Ĉaw, D̂aw) < 0, (6.29)

where the inequalities (6.28) and (6.29) can be solved for the variables B̂aw and Ĉaw, respectively.

With the purpose of showing the benefit of these antiwindup compensators, we have applied such compensators into
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the flexible beam, which was described in the section 3.6.1, in closed-loop with an optimal H∞ controller, as described

in Chapter 4. In the next plots, it is shown how the system is perturbed by a rectangular signal of amplitude 1 m/sec2

and length of 1×10−3 sec. The control input responses for the flexible beam can be seen in the Figure 6.1, where we

appreciate a peak at the beginning of the control action in the red signal, which represents the closed-loop system without

saturation, in blue is the system with saturation, which takes a long time to control, and in yellow we see the saturated

control input with the antiwindup compensator, which does not saturate the actuator; the controlled output responses are

seen in the Figure 6.2, where once more we find in red the closed-loop response without saturation, in blue we see the

closed-loop response with saturation, and in yellow the closed-loop response with the antiwindup compensator, which is

able to damp the vibration in less than 0.5 sec.

In the Figure 6.3, the performance of the non-strict proper case with the H∞ control law is seen in the saturated input

signal demanded by the system in yellow, where the unsaturated control input is seen in blue, and their comparison to

the non-saturated control input, in red, is an unrealistic due to its voltage peak close to 4000 V. The non-strictly proper

case of the anti-windup compensator with the H∞ control law outperforms its non-saturated counterpart by significantly

reducing the peak value in the actuator signal. The latter exhibits an excessive high peak that can lead to actuator

saturation and degrade the overall system performance. The Figure 6.4 shows the controlled output of the flexible beam,

where in red the closed-loop with no input saturation; in blue the system with saturated input and without compensation;

and in yellow the case with input saturated with anti-windup compensation. The system with antiwindup compensation

stabilizes in around 0.8 sec, while the saturated system without compensation looks like an open-loop response. Despite

Figure 6.2. Different controlled outputs’ responses in the strict proper case for the flexible beam system with a H∞ control
law. In red the closed-loop with no input saturation; in blue the system with saturated input and without compensation;
and in yellow the case with input saturated with anti-windup compensation.
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Figure 6.3. Different input signals’ responses in the non-strict proper case for the flexible beam system with a H∞ control
law. In red the closed-loop with no saturation; in blue the system with saturated input without compensation; and in
yellow the case with input saturated with anti-windup compensation.

Figure 6.4. Different controlled outputs’ responses in the non-strict proper case for the flexible beam system with a
H∞ control law. In red the closed-loop with no input saturation; in blue the system with saturated input and without
compensation; and in yellow the case with input saturated with anti-windup compensation.

the unsaturated response is fast, as was mentioned before, it is unrealistic.

6.3 Approximation techniques

In the last chapters, we have shown two interesting and different control approaches to treat the control problem of

vibration damping. We have treated a finite dimensional H∞ controller, where there exist a H∞-norm as a strict upper
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bound from signals w(t) to za(t) as ∥Pzw(s)∥∞ < β, where β can be interpreted as a disturbance rejection performance

[155] and β ≤ 1. In this case, β = 0.9 and an H∞ LMI-based dynamic controller robust against the neglected modes

upperly bounded as σmax(∆(s)) ≤ γ−1, with γ = 9.28912.

Also, we have treated a QuasiPolynomial-Based (QPB) controller, where exist a set of parameters p0, pr0 , q0, qr0 and

τ such that the proportional-delayed output-feedback controller (5.10) that in the structure’s closed-loop equation (5.12)

pointwise places three negative non-oscillating poles in the left-half side of the complex plane.

To illustrate the results mentioned above, the impulse response has been computed using the digital controllers coun-

terparts of the computed controllers so far, whose structure is described by the equation (6.33), and the analysis and

synthesis models.

In the Figure 6.5 the low-order synthesis model is observed, where the proportional-delayed approach in closed-loop,

whose time-delays were approximated through the 1st order Padé approximation in Simulink, we get attenuations in the

first, second and third vibration modes of 45.97 dB, 36.93 dB and 26.17 dB, respectively. In the other hand, suppressions

of 35.61 dB, 28.46 dB and 29.02 dB are obtained against the same amplitude peaks with the optimal H∞ LMI-based

approach. Robustness issues w.r.t. neglected modes in the synthesis model are well tackled, plus some vibration modes

that are slightly damped outside of the frequency range of interest, which are shown in Figure 6.6.

To approximate the time-delays into LTI systems, we use two different approaches, the Padé approximation for contin-

uous time systems and the Thiran approximation for discrete time systems.

6.3.1 Pade approximation

In the context of discrete systems and the Padé approximation, we can define a linear time-delay system as a rational

function N(s)/D(s), where N(s) and D(s) are polynomials of degrees p and q, respectively. The Padé approximation

aims to approximate this rational function by a truncated power series that matches the first p+q coefficients of the Taylor

series expansion of the function around zero, while preserving its essential singularities. This allows us to approximate the

exponential term of the function with a polynomial of degree p + q.

These systems with time-delays are described with a transfer function of the form

G(s) =
N0(s) +

∑M
i=0 Ni(s) · e−τis

D0(s) +
∑N

j=0 Dj(s) · e−τjs
(6.30)

where N0(s) and D0(s) are polynomials of degress p and q, respectively, Ni(s) and τi > 0 are a polynomial and a

positive time-delay, respectively, for i = 1, 2, . . . , M , and Dj(s) and τj > 0 are another polynomial and another positive

time-delay, respectively, for j = 1, 2, . . . , N .

H. Padé in his thesis, elaborated the properties of his approximants with special emphasis on the example of the

exponential function: it is a beautiful example of how the approximants work in an ideal situation [10].
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Theorem 14. ([136], [10], [143, p. 122]) Let (p, q) ∈ N, where N is the set of integer numbers. Let np,q ∈ Q and

dq,p ∈ Q, where Q is the set of all rational numbers, such that,

Np,q(s) :=
p∑

i=0

p!
(p − i)! · (p + q − i)!

(p + q)! · si

i! ,

Dp,q(s) :=
q∑

j=0
(−1)j q!

(q − j)! · (p + q − j)!
(p + q)! · sj

j! .

Figure 6.5. Comparison among the implemented controllers with the low-order synthesis model. The open-loop (dashed),
the H∞ LMI-based controller (solid) and the proportional-delayed controller (dotted).
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Figure 6.6. Comparison among the implemented controllers with the full-order analysis model. The open-loop (dashed),
the H∞ LMI-based controller (solid) and the proportional-delayed controller (dotted).

Then, es is approximated by

es ≃ Np,q(s)
Dp,q(s) ,

which is called “Pade approximation”.

6.3.2 Thiran approximation

The filter design technique developped forthwith is the Thiran approximation, whose main difference with the Pade

approximation is that it generates a better phase matching.
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Historically, in 1971, Thiran published a solution for a lowpass filter with maximally flat group delay response at the

zero frequency [170].

Several applications in numerous fields of signal processing (communications, array processing, speech processing and

music technology) use the fractional delay filters as a device for bandlimited interpolation between samples. Generally,

recursive digital filters can meet the same frequency-domain specifications with a smaller number of multiplications than

a FIR filter. However, a notorious limitation of such filter is its lack of linear phase characteristics, getting only constant

group delays approximations. Designing Finite Impulse Response (FIR) filters is simplified because the filter coefficients

correspond to the samples of the filter impulse response. As a result, the frequency domain specifications can be converted

to the “coefficient domain” through the inverse discrete time Fourier transform. And this is not possible with the recursive

filters [106].

The solution for the all-pass filter coefficients approximating the delay τD is

ak = (−1)k

 N

k

 N∏
n=0

τD − N + n

τD − N + k + n
(6.31)

for k = 0, 1, . . . , N , where

 N

k

 = N !
k! (N − k)! is a binomial coefficient. As it always holds that a0 = 1 the polynomial

can be scaled as desired. Consequently, an N -th order all-pass filter thiran fractional delay filter has the form

F (z) = z−N D(z−1)
D(z) ,

= aN zN + an−1 z−1 + · · · + a1 z−(N−1) + z−N

1 + a1 z−1 + · · · + aN−1 z−(N−1) + an z−N
(6.32)

where τD = τ

Ts
, with Ts denoting the time sample, N = ceil(D) being the filter order, z is a complex variable, and the

numerator polynomial is a mirrored version of the denominator D(z).

6.4 Sampled-data system implementation

The fact that many of the industrial controllers are digital provides a strong motivation for adapting or extending already

known controllers design techniques. Usually, the signals of interest inside control systems are continuous-time signals,

altogether with the performance specifications, whose properties are formulated in continuous-time. Modern control

systems often use digital technology for controllers and sensors. Then, modern control systems involve both, continuous

and discrete-time signals, in a continuous-time framework [38].

The fundamental operation of sampling is taken from continuous physical signals, such as position, velocity, or temper-
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ature, and these values are used in order to compute the appropriate control action to be applied. Systems where discrete

signals appear in some places and continuous signals occur in other parts are called sampled-data systems. In many ways

the analysis of either a pure continuous-time system or a discrete-time system is simpler than that of a sampled-data

system [55].

In the real world, the phenomena behaviour occurs in continuous-time and the whole computer operations occur on

discrete electrical signals and, in order to properly study and analyse the system response against exogenous signals, it is

necessary to consider the behaviour of the plant among the sampling instants.

The flexible cantilevered beam interconnection with the controller can be modelled in Simulink as it is shown in the

diagram on Figure 6.7, where black- colored elements represent continuous time operations and signals, the green-colored

blocks represent discrete-time manipulations with a time sampling Ts = 50µ sec, and the red-colored blocks represent the

scopes of the model with a period of 500 nsec; a low-pass filter is placed after the zero-order hold block, with a corner

frequency fc = 1, 000 Hz and a quantizer block is used to discretize the signal using a quantization algorithm that uses

a round-to- nearest method to map signal values to quantized values at the output. At the output, the signal takes an

stair-step shape. Mathematically this operation can be computed in Matlab/Simulink as y = q * round(u/q), where y

is the quantized output, u is the input signal, and q is the quantization interval. We used a quantization interval q = 0.01

seconds.

The sampling and holding process takes place from a physical signal, say a position or velocity magnitude, we need

a sensor to produce a voltage, typically in a linear characteristic way [84], and an analog-to-digital converter (commonly

known as ADC or A/D) that converts the voltage into a digital number [189]. In order to provide the system with an

accurate signal of the control law we use a sample-and-hold block (analogously, we have a physical sample-and-hold circuit)

[202].

A lot of care has been devoted to the set up of this model in order to allow Simulink to execute it in an adequate

and accurate way. This numeric scheme is based on two feedback loops that simulate the interaction between the host

mechanical system and the discrete-time controllers. In the Figure 6.8, we see the sampled-data system, which embeds a

discrete system into the real world, represented by a continuous-time.
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Figure 6.7. Sample-data system built on Simulink.

w(t) z(t)

P

D/A A/D

K (z−1; Ts)

u(t) y(t)

Figure 6.8. Block diagram of a discrete control as a sampled-data system.
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Figure 6.9. Impulse response to a perturbation w = 1 m/sec2 to the flexible beam’s synthesis model. The open-loop (red),
the H∞ LMI-based controller (blue) and the QPB controller (black).

Figure 6.10. Impulse response to a perturbation w = 1 m/sec2 to the flexible beam’s analysis model. The open-loop (red),
the H∞ LMI-based controller (blue) and the QPB controller (black).

6.5 QPB Controller Simulation

The proportional-delayed controller was emulated through the tool Simulink of the software Matlab-R2019b, where the

time-delay expressed in equation (5.10) is approximated using Thiran’s method. The structure of the digital functions of113
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the controller can be appreciated in equation (6.33).

K∗(z) =
∆∗

q(z)
∆∗

p(z) =

ceil(τ/Ts2 )∑
k=0

δqk
z−k

ceil(τ/Ts2 )∑
k=0

δpk
z−k

. (6.33)

The Figure 6.9 shows the impulse response of the synthesis model, where the open-loop, H∞ and the QPB controllers

are plotted in red, blue and black colors, respectively. With the H∞ controller, an error |e(t)| < 0.1 m/sec2, implying

a significant vibration reduction, can be checked after 0.22 sec, though with the QPB controller, a significant vibration

reduction can be appreciated after 0.04 sec. The full-order (analysis) model, with the open-loop response, H∞ and QPB

closed-loop responses, in red, blue and black, respectively, are plotted in the Figure 6.10. The same error reference used

before can be verified after 0.29 sec and 0.175 sec, for the H∞ and QPB controllers, separately.

6.6 Concluding remarks

This chapter treated the importance of the anti-windup compensators design over systems affected by control input

saturations. Results on the numerical implementation of dynamic anti-windup compensators mixed with adequate linear

controllers has been handled. To enhance the vibration suppression of a flexible cantilever beam, controlled by an H∞ linear

control law, a linear dynamic compensator of order 9 is synthetized with the given procedure. Time-domain simulations

showed that the chosen configurations improve their impulse-response.

A general presentation of the sampled-data systems was given, as well as a brief explanation of the model’s characteristics

and the software properties of Simulink that allow us to perform it. These simulations will help us to implement these

controllers in the real-time system called flexible cantilevered beam.
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Chapter 7

Conclusions and Perspectives

In this work, we have addressed the problem of vibration attenuation in flexible structures, specifically for a flexible beam and

a flexible axisymmetric membrane. We successfully applied the delay-stabilizing techniques, using a QPB (quasipolynomial-

based) controllers, and demonstrated their effectiveness in reducing vibration. Furthermore, we compared the performance

of our QPB controller with an optimal controller based on LMIs and norms minimization, highlighting the robustness

attributes of the former. Throughout our study, we used linear finite-dimensional tools, focusing on the compatibility of

our results with robustness considerations.

First, in Section 7.1, we present our conclusions based on the findings of our work. We summarize the main contributions

of our study, highlighting the effectiveness of the rightmost root assignment technique in reducing vibrations, and discussing

the strengths and weaknesses of different control design methods. Secondly, in Section 7.2, we provide perspectives on

future work in this area. We identify potential directions for future research, including the application of our findings to

other types of flexible structures.
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7.1 Conclusions

In the Chapter 1 we have shown the reasons and the work done up to now, related to the active vibration control of

different flexible structures using several approaches, keeping all along a special attention into the dynamic controllers by

H∞-based controllers applied in SISO systems, and the recent studies and advances related to the quasipolynomial-based

controllers, that have been used in several works in SISO models.

In Chapter 2, we have introduced preliminaries of the diverse kind of systems, their mathematical features, and a variety

of tools and definitions used throughout the work in the subsequent chapters. It is a brief literature review on analysis and

control problems within the finite-dimensional systems.

In Chapter 3 we have introduced the flexible structures used, called “flexible beam” and “axisymmetric membrane”,

whose models have been studied and approximated through Finite-Element Method techniques, and then reduced ac-

cordingly for the controller synthesis, which left us with two different model sizes, the so-called analysis model and the

synthesis model. The former used for the approximation of the whole structure including the neglected vibration modes in

the controller synthesis, and the latter used for the controllers’ synthesis and simulation results.

Chapter 4 serves to present useful results concerning the stabilization and control with an H∞ control technique

through the use of a theorem involving Linear Matrix Inequalities. Altogether, we present and solve the control problem

using a regional pole placement by a region in the complex plane described by the intersection of several LMIs, achieving in

this way an adequate vibration control. Furthermore, the discretization and the emulation of the continuous-time system

interconnected with the discrete-time dynamic controller is carried-out for the sake of the approximation to the real-time

sampled-data system.

In Chapter 5 the QPB controller, which is a PPP (partial pole placement) technique used for placing several non-

oscilating poles in the negative real axis of the complex-plane is introduced. The basics about the classical time-delay

systems with its corresponding possible approximations, by Padé or Thiran approximations, whose results are appropriate

for continuous-time and discrete-time systems, respectively. Also, some final remarks about the frequency-domain rep-

resentations and the spectrum distribution on time-delays are emphasized before introducing the QPB control technique

involving a scalar time-delay.

In the Chapter 6, an exposition of two extensions to the QPB and H∞ controller have been exposed. The first

extension is the handling of the case where saturation arrives into the actuators, which in practice have upper bounds for

the amount of voltage that they can deliver. In this way, despite the system’s order is enlarged, antiwindup compensators

are developed to avoid the risk of winding-up the closed-loop system. The second extension is the application as a sampled-

data system, where the discrete model is used with its corresponding approximation into a discrete-time system with its

own interconnection into the continuous-time plant (thus, forming a sampled-data system), with an adequate sampling

time, which is smaller than the computed time-delay in the computed QPB controller. Characteristical data analysis in

the form of plots in the time-domain is shown.
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7.2 Perspectives

The goal of this work is to spread the use of time-delay based control techniques into the control of LTI systems, specifically

the active vibration control of flexible structures, presented in Chapter 5, with results shown numerically. The evaluation

of the stabilizing capabilities of quasipolynomial-based controllers has resulted attractive for these flexible structures.

These systems are infinite dimensional and the Finite Element Method allows us to approximate their models as a finite

dimensional system, composed of an appropriate number of vibration modes. With the help of a reduced-order model, we

are able to synthetize the desired controllers.

As a second point, this thesis has permitted a better appreciation of these controllers benefits through a comparison

of H∞-based controlling methods and by the Quasi-Polynomial-based controlling methods. The tools for the calculation

and computation of these controllers are well adapted to the characteristics of the system. These calculation tools allow,

for example, the trace of plots that represent the evolution of their behavior in the time-domain, as well as the frequency-

domain. The simplicity of the quasipolynomial based controllers has been highlighted, and its impact can be spreaded in

industrial applications, for which further improvement of their design has to be done.

Addressing the behavior of time-delays and their effect over the flexible structures of distributed parameters is an

option to traditional stabilizing controllers, and its simplicity and lower computational complexity make them an appealing

method for future researches. The effects of different sampling times for the discrete systems deserves further research.

These results are convincing and reassuring for future extensions of this research. In future works, a subject that

deserves to be deeply analysed is the application of these methods for systems with parametric uncertainties and its

robustness properties for wider frequency spans, as well as for non-linear systems.
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