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Introduction

Contexte de l'étude

Le phénomène de givrage dans le domaine de l'aéronautique est l'une des sources majeures d'accidents graves. En effet, un profil d'aile givré voit ses performances aérodynamiques (portance et trainée) diminuer, parfois drastiquement. De plus, le givre alourdit l'appareil. Ceci peut conduire à un état où la portance n'est plus suffisante pour maintenir l'appareil en vol. En outre, le givrage peut avoir des conséquences sur les appareils de mesure, tels les sondes Pitot, et sur les moteurs. Il est donc capital de savoir anticiper le phénomène de givrage et de pouvoir garantir la sécurité de l'appareil. Pour certifier les appareils, l'industrie aéronautique a recours à des essais en vol, des essais en soufflerie et à la simulation numérique. Les essais en soufflerie sont très coûteux, nécessitent des installations spécifiques et ne permettent pas toujours de reproduire fidèlement toutes les conditions pouvant être rencontrées en vol tandis qu'il est difficile lors d'essais en vol, encore plus coûteux, de rencontrer certaines configurations imposées par la réglementation. Qui plus est, les organismes de certification aéronautique ont renforcé les réglementations liées au givrage tandis que la recherche de la performance énergétique, pour réduire la consommation en carburant, nécessite de modéliser avec plus de précision le phénomène de givrage pour pouvoir dimensionner les systèmes de protection au plus juste. Par conséquent, l'industrie cherche à accroitre la part de la simulation numérique dans le processus de certification vis-à-vis du phénomène de givrage.

En vol, le givrage se produit lorsque des gouttes d'eau surfondues impactent la surface de l'appareil. Du point de vue de la modélisation, il fait donc intervenir un écoulement multiphasique (gouttes d'eau, air). Lors de l'impact de ces gouttes sur la surface de l'appareil, ou sur le givre recouvrant l'appareil, peut se produire l'accrétion du givre. Ce processus thermodynamique de changement de phase libère de l'énergie appelée énergie latente de fusion car les gouttes surfondues sont dans un état métastable, énergétiquement plus haut que la phase solide à cette température. L'énergie libérée lors de la solidification est évacuée dans la phase liquide résiduelle et dans l'air à travers les échanges convectifs et diffusifs. Si ces échanges ne sont pas suffisants, la phase liquide finit par atteindre une température trop élevée pour se solidifier et une partie de l'eau va ruisseler et givrer éventuellement en aval. Ceci donne lieu à différents types de givre selon les conditions thermodynamiques. Pour des conditions très froides, avec des températures typiques en dessous de -15°C, et une concentration assez faible en gouttes se forme un type de givre dit "blanc". Dans ce cas, les gouttes gèlent complètement et quasi-instantanément, emprisonnant ainsi des bulles d'air pendant la solidification. La glace ainsi formée est opaque et cassante. L'autre forme de givre rencontrée est le givre dit "transparent" qui apparait pour une atmosphère moins froide et une concentration en gouttes plus élevée. Les gouttes ne gèlent pas complètement dès l'impact et il se forme un film et/ou des ruisselets d'eau liquide qui gèlent progressivement plus loin de l'impact. Des formes de glace complexes avec des cornes peuvent ainsi voir le jour. Ces formes modifient drastiquement les performances aérodynamiques de l'aile. Ce type de givre, plus dense, est plus résistant que le givre blanc. La figure 1 illustre la différence entre ces deux types de givre et montre l'apparition de formes complexes principalement pour du givre transparent. Les conditions de vol ont un impact important sur la forme de givre. Les conditions standard retenues pour la certification sont définies dans des appendices des réglementations de la FAA et de l'EASA. Pour ces travaux, sont considérées les conditions atmosphériques présentées dans l'appendice C de l'EASA (European Aviation Safety Agency) [START_REF]Certification, specifications and acceptable means of compliance for large aeroplanes[END_REF] qui concerne les nuages composés de très petites gouttes d'eau surfondues, le seul appendice considéré jusque très récemment. Pour lutter contre la formation de givre, une solution technique souvent utilisée est de chauffer localement l'aile au niveau du bord d'attaque car il s'agit de la zone où le plus de givre se forme spontanément. De plus, l'apparition de givre à proximité du bord d'attaque peut directement entrainer un décollement de la couche limite aux effets catastrophiques sur les performances aérodynamiques. Cet apport de chaleur est réalisé soit à l'aide d'un circuit d'air prélevant de la chaleur du moteur, soit avec des résistances électriques chauffantes. Il permet de prévenir la formation de givre, voire de dégivrer une paroi. Le processus de givrage met ainsi en compétition plusieurs effets vis-à-vis de la thermique et la maîtrise de cette dernière est capitale pour estimer l'accrétion du givre. Tout d'abord, l'écoulement est généralement plus froid que la paroi et tend donc par transferts convectifs à refroidir la paroi. L'évaporation de la phase liquide et la sublimation de la phase solide sont des processus endothermiques et contribuent eux aussi à refroidir la paroi. D'autres effets tendent cependant à chauffer la paroi. La solidification, étant un processus libérant de l'énergie, en fait partie. La présence d'une couche limite visqueuse crée de la dissipation convertissant une fraction de l'énergie cinétique de l'écoulement en chaleur. Enfin, l'utilisation de protections thermiques contre le givre apporte de la chaleur à la paroi. Il existe d'autres techniques pour lutter contre le givrage tels que des systèmes mécaniques mais ils ne sont pas étudiés ici. x Le processus de certification impose de traiter de nombreuses configurations, il est donc nécessaire d'avoir accès à des outils de modélisation rapides s'inscrivant dans une approche industrielle compétitive. La complexité du phénomène de givrage dans les conditions de vol et le coût machine prohibitif d'une modélisation complète et simultanée de tous les phénomènes impose de résoudre séparément les différentes physiques mises en jeu pour respecter la contrainte de temps de calcul. Dans un premier temps, l'aérothermique monophasique stationnaire externe est modélisée. L'écoulement considéré est un écoulement d'air. Cette modélisation est stationnaire car l'échelle de temps caractéristique du processus d'accrétion est très grande devant le temps nécessaire pour atteindre un régime aérothermique stationnaire. Pour modéliser la trajectoire des gouttes d'eau, les gouttes sont généralement supposées être advectées par l'écoulement gazeux. Ceci suppose que la densité du nuage traversé est suffisamment faible pour que la présence des gouttes ne modifie pas notablement l'écoulement d'air, ce qui est le cas pour le givrage où les fractions volumiques sont de l'ordre de 10 -6 . Des approches Eulérienne ou Lagrangienne peuvent alors être utilisées pour effectuer le calcul des trajectoires des gouttes d'eau. Ceci permet d'aboutir à un taux d'impact de gouttes sur le profil et détermine aussi la température des gouttes à l'impact. Enfin, à partir des données précédentes et des conditions thermiques de la paroi, un bilan de masse et d'énergie est appliqué à l'eau déposée en paroi. Pour effectuer ce bilan, toutes les grandeurs aérodynamiques sont considérées constantes pendant la durée du pas de temps considéré. Ceci permet d'aboutir à une épaisseur de givre. L'apparition du givre modifiant logiquement la géométrie et donc les grandeurs aérodynamiques, l'hypothèse de stationnarité est mise à mal et doit être corrigée en effectuant des itérations pour le calcul aérothermique et pour la trajectographie. Cette étape nécessite un traitement spécifique vis-à-vis du maillage car la forme du profil est modifiée. Communément, une opération de remaillage ou bien de déformation de maillage est utilisée [START_REF] Trontin | Description and assessment of the new onera 2d icing suite igloo2d[END_REF]. Cette étape est délicate car elle doit être automatisée sur une surface à la géométrie parfois complexe. Il est aussi possible d'opter pour un traitement à l'aide de frontières immergées [START_REF] Lavoie | An Improved Characteristic Based Volume Penalization Method for the Euler Equations Towards Icing Applications[END_REF], [START_REF] Lavoie | An Immersed Boundary Methodology for Multi-Step Ice Accretion using a Level-Set[END_REF]. La figure 2 illustre la structure d'une chaîne de calcul de givrage, telle que la chaîne IGLOO développée par l'ONERA.

Le calcul de l'aérothermique est une étape clé de la modélisation du givrage mais est aussi la plus coûteuse en temps de calcul. En effet, la résolution tridimensionnelle à l'aide d'un solveur RANS reste lourde et ce d'autant plus que plusieurs calculs sont nécessaires en raison de la variation de géométrie mais aussi pour déterminer le coefficient de transfert thermique. Pour réduire au plus le coût de cette étape, l'étude de configurations 2D est privilégiée mais ne permet pas de reproduire tous les effets tels que la présence d'écoulements transverses sur une aile en flèche. Les configurations 2D permettent d'utiliser des méthodes beaucoup plus rapides que sont les approches couplées fluide parfait -couche limite utilisées par la chaîne de calcul IGLOO2D [START_REF] Trontin | Description and assessment of the new onera 2d icing suite igloo2d[END_REF]. Cette chaîne de calcul est utilisée à un niveau industriel en France. En 3D, la problématique du coût de calcul est encore plus importante, d'autant que des méthodes très rapides de couplage fluide parfait -couche limite sont moins accessibles.

Objectifs des travaux

La résolution de la couche limite dans IGLOO2D est effectuée par une méthode intégrale résolvant à la fois la couche limite dynamique et la couche limite thermique. La méthode intégrale a été développée et implémentée dans le code appelé BLIM2D (Boundary Layer Integral Method) au cours des travaux de thèse de C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF]. Durant ces travaux, la résolution de la couche limite dynamique en régimes laminaire et turbulent en 2D a été mise en place. Le givre étant une surface rugueuse, l'effet de la rugosité a aussi été pris en compte vis-à-vis de la dynamique à travers le coefficient de frottement. Des critères de transition laminaire-turbulent tenant compte de la rugosité ont aussi été implantés. Deux méthodes de résolution des transferts thermiques ont été mises en place. L'une d'elles se base sur des corrélations empiriques adaptées aux deux régimes mais nécessitant de nombreuses approximations et s'étendant mal à des configurations 3D. La seconde résout l'équation intégrale de l'énergie mais n'a été développée qu'en régime laminaire. L'extension de la méthode en 3D a été étudiée théoriquement mais n'a pas été implémentée. Ces méthodes ont été développées pour des conditions aux limites thermiques à la paroi uniformes. De plus, la résolution est effectuée avec Chapitre 1 État de l'art sur la modélisation de la couche limite L'objectif de cette section est de définir le contexte de l'étude, les concepts utilisés et expliciter les travaux antérieurs sur lesquels se base la présente étude. Dans un premier temps, la modélisation de la couche limite dynamique sera présentée ainsi que les méthodes intégrales utilisées pour résoudre la couche limite dynamique. Ceci permet d'introduire la méthode existante dans le solveur BLIM2D utilisée dans cette thèse [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF] pour la résolution de la couche limite dynamique. Une fois la couche limite dynamique résolue, il est possible de résoudre la couche limite thermique, les deux approches étant découplées en écoulement incompressible. Les différentes méthodes possibles pour résoudre la couche limite thermique seront présentées, parmi lesquelles la méthode intégrale thermique, objet du coeur du travail de thèse.

Modèles pour la couche limite dynamique

La théorie de la couche limite trouve ses fondements dans les travaux de Prandtl en 1904. Elle modélise le fait que les effets de la viscosité dans un écoulement sur une paroi à haut nombre de Reynolds (comme c'est très nettement le cas pour les applications étudiées dans ces travaux) restent confinés dans une petite région très proche de la paroi : la couche limite. En dehors de la couche limite les effets de la viscosité ne se font pas sentir et l'écoulement se comporte comme un fluide parfait. L'étude de la couche limite a fait l'objet d'un très grand nombre de travaux. Certains ouvrages tels que [START_REF] Schlichting | Boundary-Layer Theory[END_REF] offrent une bonne revue sur les nombreux aspects du sujet. Dans la couche limite, le profil de vitesse varie très rapidement suivant la direction normale à la paroi. Ceci permet de définir un paramètre arbitraire communément utilisé : l'épaisseur de la couche limite. Il s'agit de la distance à la paroi à partir de laquelle la vitesse atteint 99% de la vitesse à l'infini. Il est donc possible de supposer que la vitesse hors de la couche limite est égale à la vitesse de l'écoulement à l'infini sans commettre une erreur significative. Dans la couche limite, la vitesse normale à la paroi est très petite devant la vitesse longitudinale et la variation de pression statique suivant la normale à la paroi est très faible. Ces considérations d'ordre de grandeur permettent d'écrire les équations de Prandtl à partir des équations de Navier-Stokes en négligeant les termes les plus petits.

Les équations de Prandtl

Équations de la couche limite dynamique en 3 dimensions

Les équations de Prandtl permettent de traiter les régimes laminaire et turbulent. Elles s'écrivent en 3 dimensions pour un écoulement incompressible, avec y la direction normale à la paroi : sont négligés dans l'équation de quantité de mouvement suivant z (1.1c). Selon l'équation 1.1d, la variation de pression suivant la normale à la paroi est donc au plus de l'ordre de grandeur de δ/L et est par conséquent considérée nulle. La contrainte de cisaillement s'écrit τ :y = µ ∂u: ∂y pour un écoulement laminaire. L'ouvrage de J. Cousteix [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF] offre une revue détaillée de la physique de la couche limite laminaire et des méthodes de résolution de la couche limite laminaire. Pour plus d'informations sur les équations régissant le régime turbulent, le lecteur peut se référer à l'ouvrage de J. Cousteix [START_REF] Cousteix | Turbulence et couche limite[END_REF]. La transition entre les deux régimes peut être modélisée de diverses façons. Des exemples de modèles de transition pourront par exemple être trouvés dans la section 1.1.3.3.

∂u

Résolution des équations de Prandtl en régime stationnaire

Le système d'équations 1.1 dans sa version stationnaire est un système parabolique pour une couche limite attachée. La méthode consiste à générer un profil de vitesse supposé à la frontière amont du domaine de calcul et à mailler suivant la direction normale à la paroi. Le champ de vitesse est ensuite calculé station par station en se déplaçant de l'amont vers l'aval car l'information ne se déplace que dans le sens de l'écoulement en raison de la nature du système. L'épaisseur de la couche limite étant une grandeur inconnue, une approche itérative est effectuée. Si la taille de zone maillée à une station s'avère inadéquate après le calcul, alors localement un remaillage et un nouveau calcul sont effectués. Malgré les étapes de remaillage, cette méthode est rapide et précise. Par exemple, les codes CLICET, en configuration bidimensionnelle, et 3C3D, en configuration tridimensionnelle, adoptent cette méthode de résolution. Elle a cependant un gros inconvénient, elle est très peu robuste proche du décollement et ne peut fournir de solutions pour un écoulement décollé. Le code CLICET servira de code de référence pour cette thèse pour comparer les cas non-décollés. Le rapport technique [START_REF] Aupoix | Couches limites bidimensionnelles compressibles. descriptif et mode d'emploi du code clicet -version 2015[END_REF] présente en détails le code de calcul CLICET.

Méthodes intégrales pour la résolution de la couche limite dynamique

Concept des méthodes intégrales

La première méthode intégrale a été mise au point par Von Kármán (1921) qui a intégré l'équation de quantité de mouvement 1.1b pour obtenir une solution approchée de la couche limite. L'intégration s'effectue suivant la direction normale à la paroi sur l'épaisseur de couche limite dynamique. La direction normale à la paroi n'apparait plus dans le système d'équations ce qui réduit de 1 la dimension du système. Ceci permet une résolution plus rapide du système et donne des paramètres caractéristiques de la couche limite tels que les épaisseurs de déplacement, de quantité de mouvement et le coefficient de frottement. Ce processus d'intégration rend le système insoluble car l'intégration entraine une perte d'information qui se matérialise par un plus grand nombre d'inconnues que d'équations. Pour passer outre cette difficulté, des relations supplémentaires appelées relations de fermeture doivent être utilisées. Ceci permet d'avoir autant d'équations que d'inconnues. Pour un état de l'art approfondi sur les méthodes intégrales résolvant la couche limite dynamique, le lecteur peut consulter le manuscrit de thèse de C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF] 1.1.

Les différentes équations intégrales

En combinant les équations de Prandtl, il est possible de générer nombre d'équations intégrales. La célèbre équation de Von kármán autrement appelée équation intégrale de la quantité de mouvement est certainement la plus connue et la plus utilisée des équations intégrales et s'obtient par intégration de l'équation de quantité de mouvement longitudinale 1.1b en régime stationnaire. H = δ 1 δ 2 représente le facteur de forme, C f le coefficient de frottement et δ 2 l'épaisseur de déplacement.

dδ 2 dx + δ 2 H + 2 u e du e dx = C f 2 (1.2)
L'équation intégrale de l'énergie cinétique est obtenue par intégration de l'équation de quantité de mouvement 1.1b multipliée par u, avec C D le coefficient de dissipation et δ 3 l'épaisseur d'énergie cinétique :

1 u e 3 du e 3 δ 3 dx = 2C D (1.3)
Pour plus de détail sur l'obtention des équations intégrales, le lecteur peut se référer à l'ouvrage de J. Cousteix [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF] ou bien de Kays et Crawford [START_REF] Kays | Convective Heat Mass and Transfer[END_REF] par exemple. Les équations font intervenir des grandeurs intégrales dont les définitions sont les suivantes : Les méthodes intégrales peuvent consister à utiliser une seule équation intégrale (généralement des variantes de l'équation intégrale de quantité de mouvement) ou plusieurs pour former un système. Les modèles à une équation sont plus simples et plus rapides mais traduisent une couche limite répondant instantanément au gradient de pression extérieur. Les modèles à plusieurs équations permettent de prendre en compte les effets d'histoire mais sont plus difficiles et lourds à mettre en oeuvre.

δ 1 = ∞ 0 1 - u u e dy ( 1 

Relations de fermeture pour les méthodes intégrales

Les inconnues d'un système d'équations intégrales sont définies par des intégrales d'une combinaison du profil de vitesse longitudinal qui est inconnu. La plupart des relations de fermeture consistent en des hypothèses effectuées sur le profil de vitesse longitudinale pour permettre son intégration. C'est dans le choix de ces hypothèses que repose la modélisation physique de l'écoulement et les limitations d'une méthode intégrale. Il existe 3 grandes familles de relations de fermeture utilisées.

La première est de se baser sur une solution de similitude. En écoulement laminaire, les solutions de similitude les plus utilisées sont les solutions de Falkner et Skan (1930). Ces solutions sont utilisées pour des écoulements pour lesquels la vitesse extérieure à la couche limite est de la forme :

u e (x) = Cx m et m = β 2 -β (1.9)
La distribution de vitesse représente un écoulement incompressible de fluide parfait autour d'un dièdre d'angle βπ. β = 0 représente un écoulement de plaque plane tandis que β = 1 représente un écoulement de point d'arrêt. Les solutions de ces écoulements permettent par exemple de déterminer que le facteur de forme H est constant pour m donné (et donc pour un gradient de pression donné). Elles permettent alors de générer des relations pour des grandeurs telles que C f ou δ 3 /δ 2 en fonction du facteur de forme H, qui représente le gradient de pression. Pour plus de détails, le lecteur peut consulter l'ouvrage de J. Cousteix [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF]. En régime turbulent, le concept de couche limite d'équilibre permet de reproduire le même type de démarche (pour plus de détails sur les couches limites d'équilibre, le lecteur peut se référer à l'ouvrage de J. Cousteix [START_REF] Cousteix | Turbulence et couche limite[END_REF]).

Le deuxième type de relations de fermeture consiste à utiliser un profil de vitesse supposé. En régime laminaire, les premiers profils utilisés pour fermer les équations intégrales ont été étudiés par Pohlhausen suivi par Schlichting et Ulrich. Un profil du même type que celui utilisé par Mangler est utilisé par le code BLIM2D et est détaillé à la section 1.1.3.2. En régime turbulent, l'une des représentations les plus simples du profil de vitesse est un profil en loi puissance. Ce type de profil s'attache à décrire la région externe de la couche limite et n'est donc pas précis dans la région interne. Il s'agit du profil utilisé par le code BLIM2D et est détaillé dans la section 1.1.3.4. Un tel profil demande donc d'être associé à d'autres relations de fermeture pour des variables influencées nettement par la région de proche paroi, telles que le coefficient de frottement. Il existe aussi des profils valables sur toute l'épaisseur de la couche limite tels que celui de Swafford [START_REF] Swafford | Analytical approximation of two-dimensional separated turbulent boundary layer velocity profiles[END_REF] et Whitfield [START_REF] Whitfield | Analytical description of the complete turbulent boundary layer velocity[END_REF]. Il a cependant l'inconvénient d'être compliqué.

Enfin il existe des relations de fermeture empiriques reliant les inconnues de l'équation intégrale à des grandeurs telles que le facteur de forme H et Re δ 2 (nombre de Reynolds basé sur l'épaisseur de quantité de mouvement). Ces relations empiriques ne sont cependant valables que sur le domaine pour lequel elles ont été mises au point. De telles relations ont été utilisées en régime turbulent (cf 1.1.3).

Modélisation de la couche limite dynamique par les solveurs BLIM2D/BLIM3D

Cette section présente la résolution de la couche limite dynamique par méthode intégrale mise en place dans le code BLIM2D au cours de la thèse de C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF]. La méthode est directement explicitée en 3D mais dans BLIM2D seuls les termes suivant la direction x interviennent. L'intérêt de cette méthode est de permettre la résolution des équations de couche limite intégrale sous une forme conservative, aisément résolue sur des surfaces quelconques par approche Volumes-Finis.

Système d'équations intégrales dynamiques

Les équations de Prandtl décrites à la section 1.1.1 sont utilisées pour construire le système d'équations intégrales pour les deux régimes d'écoulement. D'après l'équation 1.1d, P (x, y, z) = P e (x, z). A l'aide de l'équation de quantité de mouvement suivant la direction x exprimée hors de la couche limite (donc l'équation d'Euler car hors de la couche limite l'écoulement considéré est assimilé à un fluide parfait) le gradient de pression extérieur peut être exprimé en fonction des gradients de Avec les variables suivantes, q = (u x , u z ) étant le vecteur vitesse dans le plan tangent à la paroi : Ces grandeurs tensorielles peuvent être réexprimées à partir de grandeurs intégrales plus communes telles que l'épaisseur de déplacement δ 1i , de quantité de mouvement δ 2ij et d'énergie cinétique δ 3ij :

M = ∞ 0 ( qe -q)dy (1.15a) T = ∞ 0 (( qe -q) ⊗ q)dy (1.15b) E = ∞ 0 q | qe | 2 -|q| 2 dy (1.15c) C D = 1 ρ| qe | 3
M = | qe | δ 1x δ 1z T = | qe | 2 δ 2xx δ 2xz δ 2zx δ 2zz E = | qe | 3 δ 3xx + δ 3zx δ 3xz + δ 3zz (1.16) avec : 
| qe |δ 1i = ∞ 0 (u ei -u i )dy (1.17)

| qe | 2 δ 2ij = ∞ 0 (u ei -u i )u j dy (1.18) | qe | 3 δ 3ij = ∞ 0 (u 2 ei -u 2 i )u j dy (1.19)
Le système 1.14 a plus d'inconnues que d'équations, il est donc nécessaire d'utiliser des relations de fermeture pour avoir autant d'équations que d'inconnues. Les relations de fermeture consistent à utiliser des formes de profils de vitesse supposées ainsi que des solutions empiriques pour le régime turbulent. Ces relations de fermeture tridimensionnelles supposent que la partie longitudinale de l'écoulement de couche limite, c'est-à-dire selon la direction des lignes de courant extérieures, a un comportement très proche d'un écoulement bidimensionnel de couche limite et les grandeurs longitudinales peuvent être fermées avec des relations de fermeture bidimensionnelles. Cela suppose que la composante transversale de la vitesse dans la couche limite est petite devant la composante longitudinale. Ainsi, les équations de continuité et de quantité de mouvement selon la direction longitudinale ne dépendent plus de la composante transversale de la vitesse. L'utilisation de relations de fermeture décomposées en parties longitudinale et transverse impose de travailler dans un repère local (s, y, c) lié aux lignes de courant extérieures. Ce repère est défini tel que :

s = qe | qe | , y = n p , c = s × y |s × y| (1.20) 
où n p est le vecteur normal à la paroi. Le vecteur vitesse dans le plan tangent à la paroi s'écrit : q(η) = | qe |(û s (η)s + ûc (η)c) (1.21) avec η = y/δ et δ est une estimation de l'épaisseur de couche limite dynamique.

Relation de fermeture en régime laminaire

Les relations de fermeture en régime laminaire reposent sur un profil de vitesse supposé.

Profil de vitesse longitudinal

Le profil de vitesse utilisé dans cette approche repose sur la forme du profil proposé par Mangler [START_REF] Mangler | Das impulsverfahren zur näherungsweisen berechnung der laminaren reigugungsschit[END_REF]. Il s'écrit :

u s | qe | (η) = ûs = 1 -(1 + A s (H)η)(1 -η) ps(H)-1 (1.22)
où η = y δ et δ est une estimation de l'épaisseur de la couche limite dynamique, c'est-à-dire la distance à partir de laquelle il est possible de considérer que la vitesse est égale à la vitesse de l'écoulement extérieur sans commettre d'erreur significative. Ainsi par construction ûs (η = 1) = 1. H représente le facteur de forme et sa définition est H = δ 1s δ 2ss . Trois conditions sont nécessaires pour exprimer A s , p s et δ en fonction des variables primaires longitudinales δ 1s et δ 2ss . 

∂ ûs ∂η

η=0 = | qe |δC f s 2ν (1.23a) δ 1s = δ 1 0 (1 -ûs )dη (1.23b) δ 2ss = δ 1 0 ûs (1 -ûs )dη (1.23c)
u c (η) | qe | = ûc (η) = A c η(1 -ûs (η)) (1.29)
avec η = y/δ et ûs (η) le profil de vitesse longitudinal décrit par 1.22. Ce profil est unidirectionnel et n'admet pas de courants de retour et A c est exprimé en fonction des variables primaires grâce à la condition suivante qui assure la cohérence de la définition de δ 1c .

δ 1c = δ 1 0 -û c (η)dη (1.30)
Les relations de fermeture s'écrivent en utilisant les définitions de C f c et C Dc ainsi que le profil de vitesse transverse 1.29 :

C f c 2 Re δ 2ss = A c δ 2ss δ (1.31a) C Dc Re δ 2ss = A 2 c (2p s -1) 2A 2 s + (2p s + 1)A s + (p s -1)(2p s + 1) (2p s -3)(2p s + 1) δ 2ss δ (1.31b) A c = - δ 1c δ 1s (p s + 1 + A s )(p s + 2) p s + 2 + 2A s (1.31c)
Le rapport δ 2ss δ ne dépend que des grandeur p s (H) et A s (H). Il est calculé à partir de la définition de δ 2ss , équation 1.23c.

La définition du coefficient de frottement est telle que :

τ p = 1 2 ρ| qe | 2 C f = 1 2 ρ| qe | 2 C f s C f c (1.32)
L'annexe A présente les profils de vitesse obtenus par le solveur BLIM2D en régime laminaire. 

k s = c/1000 et 0.2mm ≤ k s ≤ 1.5mm (1.35)

Relations de fermeture en régime turbulent

Les relations de fermeture en régime turbulent reposent sur deux éléments. En premier, il s'agit d'un profil de vitesse supposé, imprécis proche de la paroi. En second, une relation empirique permet de déterminer le coefficient de frottement car son calcul direct nécessite la connaissance précise du profil de vitesse à la paroi.

Profil de vitesse longitudinal

La couche limite turbulente est beaucoup plus complexe que la couche limite laminaire car elle met en compétition les phénomènes de viscosité et de turbulence. La couche limite peut être décomposée en plusieurs régions dont le comportement est différent. Au plus proche de la paroi se situe la sous-couche visqueuse où seule la viscosité joue un rôle et la vitesse de l'écoulement est très faible due à la présence de la paroi. Viennent ensuite respectivement les zones tampons et inertielles où le terme de frottement turbulent prend progressivement le pas sur le terme de frottement visqueux. La vitesse de l'écoulement restant faible, le terme d'inertie reste négligeable. Ces trois sous-couches constituent la région interne de la couche limite pour laquelle la viscosité joue un rôle important. Vient ensuite la couche limite externe composée de la zone de vitesse déficitaire puis de la zone de sillage. Le terme de frottement visqueux est négligeable et les termes d'inertie et de frottement turbulent sont prédominants. Des modèles représentant l'évolution de la vitesse dans l'ensemble de la couche limite sont disponibles, mais C. Bayeux ne les a pas employés du fait de la complexité de leur mise en oeuvre. Cependant, la région externe de la couche limite est la plus étendue et a donc un poids statistique plus important après intégration. L'approche favorisée a donc été d'utiliser un profil de vitesse modélisant uniquement la région externe mais faux dans la région interne (en particulier dans la sous-couche visqueuse). Ce profil de vitesse, employé en particulier par Tai [START_REF] Tai | An integral prediction method for three-dimensional flow separation[END_REF], s'écrit : ûs = η 

δ 1s = δ 1 0 (1 -ûs )dη = δ n + 1 (1.37a) δ 2ss = δ 1 0 ûs (1 -ûs )dη = nδ (n + 1)(n + 2) (1.37b)
On en déduit la relation n(H) pour respecter les conditions susmentionnées :

n = 2 H -1 (1.38)
Le profil de vitesse utilisé donne de bons résultats pour H < 3 et il ne représente donc pas des écoulements avec un gradient de pression adverse trop important et ne permet pas le décollement. En outre, ce profil ne respecte pas certaines conditions aux limites. En effet, pour y = 0 et H < 3 la pente est infinie à la paroi tandis qu'en y = δ la pente est non nulle. Ceci n'entraine pas d'erreurs importantes sur le calcul des épaisseurs δ 1s , δ 2ss et δ 3s car il s'agit de grandeurs intégrées peu sensibles aux valeurs aux extrémités du profil. Par contre, les coefficients de frottement et de dissipation ne peuvent être calculés directement à partir du profil de vitesse. Ils sont donc déterminés à partir de relations empiriques issues de la littérature. Le coefficient de frottement est déterminé à partir de la relation proposée par White [START_REF] White | Viscous fluid flow[END_REF]. 

C f s = 0.3e -1.33H (log Re δ 2ss )
C Ds = H * 2 C f 6 4 H -1 + 0.03 H -1 H 3 (1.40)
avec : 

H * =            1.505 + 4 Re δ 2ss + 0.165 -1.6 √ Re δ 2ss (H 0 -H)

Profil de vitesse transversal

Pour les écoulements turbulents, actuellement, le code BLIM2D n'a pas de fermeture transverse implémentée, l'écoulement transverse est donc supposé nul. Un profil de vitesse utilisé dans la littérature est le profil de Mager [START_REF] Mager | Generalisation of boundary layer momentum integral equation to three-dimensionnal flows including those of rotating system[END_REF] qui s'écrit :

u z u x = tan(β 0 )(1 -y/δ) 2 (1.43)
β 0 représente l'angle entre la ligne de courant extérieure et la ligne de courant pariétale et s'exprime de la façon suivante :

tan(β 0 ) = ∂uz ∂y ∂ux ∂y y=0
(1.44)

Un autre profil de vitesse longitudinal connu est le profil de Johnston [START_REF] Johnston | Three Dimensional Turbulent Boundary Layer[END_REF]. Il est séparé en deux parties. Proche de la paroi, la vitesse transversale est définie par :

u z = u x tan(β 0 ) (1.45)
Dans la région extérieure elle s'exprime :

u z = A(u e -u x ) (1.46)
Les deux profils de vitesse présentés ne permettent de représenter que des champs de vitesse transverses unidirectionnels. Il existe d'autres profils plus sophistiqués permettant de modéliser des écoulements longitudinaux bidirectionnels. Le profil de vitesse transverse intervenant faiblement dans l'équation intégrale de l'énergie, le profil de vitesse transversal choisi a un impact beaucoup plus faible que le profil de vitesse longitudinal.

Résolution numérique employée par BLIM2D

Les équations de couche limite dynamique et thermique étant découplées, elles sont donc résolues séparément. Le système 1.14 est résolu à l'aide d'une formulation Volumes-Finis. Les termes sources sont résolus à l'aide d'une formulation implicite tandis que les termes flux sont résolus à l'aide d'une méthode Euler explicite, ce qui donne lieu à un pas de temps maximal pour assurer la stabilité numérique. Ce pas de temps maximal est défini par une condition sur le nombre de CFL. En pratique une condition CF L ≤ 0.4 est généralement utilisée pour le pas de temps local. Un décentrement amont par rapport au signe de la vitesse extérieure est utilisé pour l'estimation des gradients longitudinaux étant donné que le système est hyperbolique et que les valeurs propres du système sont toutes positives pour tous les régimes d'écoulements à l'aide d'une méthode de contrôle. Des schémas numériques d'ordre 1 en temps et en espace sont utilisés. À chaque pas de temps, la résolution de ce système non linéaire de deux équations à deux inconnues est effectuée à l'aide d'une méthode de Newton. La résolution est poursuivie jusqu'à l'obtention de l'état stationnaire.

Modèles pour la couche limite thermique 1.2.1 Concept de couche limite thermique

Le concept de couche limite thermique, qui a lui aussi été introduit par Prandtl suite à la couche limite dynamique, est très semblable au concept de couche limite dynamique présenté à la section 1.1. La température de l'écoulement varie rapidement dans une zone proche de la paroi de petite épaisseur δ T . Cette grandeur arbitraire est généralement définie telle que la température adimensionnée

θ(δ T ) = T (δ T )-Tp
Te-Tp = 0.99, où T e est la température hors de la couche limite et T p est la température à la paroi. Le calcul de cette couche limite thermique permet de déterminer le flux pariétal ϕ p et le coefficient de transfert thermique noté h tc définis tels que :

ϕ p = -k ∂T ∂y y=0 ; ϕ p = h tc (T p -T r ) (1.47)
k est la conductivité thermique de l'air et T r la température de récupération.

Équation de la couche limite thermique

L'équation de la couche limite thermique est obtenue à partir des mêmes simplifications que celles présentées dans la partie 1.1.1. En 3D, elle s'écrit en utilisant un système de coordonnées cartésien, y représentant la direction normale à la paroi : 

ρ ∂h i ∂t +
h = c p T (1.49)
L'équation différentielle de l'énergie 3D, incompressible et instationnaire s'écrit :

∂T ∂t + u x ∂T ∂x + u y ∂T ∂y + u z ∂T ∂z = - 1 ρc p ∂ϕ ∂y + 1 ρc p u x ∂P ∂x + u z ∂P ∂z + 1 ρc p τ xy ∂u x ∂y + τ zy ∂u z ∂y (1.50)
Le flux de chaleur est défini par ϕ = -k ∂T ∂y . De la même façon que pour la couche limite dynamique (cf section 1.1.1.2), la couche limite thermique peut être résolue par CLICET. Ce dernier résolvant les équations compressibles, les deux systèmes de couches limite dynamique et thermique sont liés et le calcul itératif est effectué jusqu'à convergence des deux couches limites.

Équations simplifiées

Loi de Crocco

La loi de Crocco-Busemann(1932-1935) s'écrit à partir de l'équation 1.48 stationnaire et de l'équation de Prandtl 1.1b pour un nombre de Prandtl P r = 1 sur une plaque plane. Pour plus de détails, le lecteur peut se reporter au livre de J. Cousteix [START_REF] Cousteix | Turbulence et couche limite[END_REF].

ρu x ∂u x ∂x + ρu y ∂u x ∂y = ∂ ∂y µ ∂u x ∂y (1.51a) ρu x ∂h i ∂x + ρu y ∂h i ∂y = ∂ ∂y µ ∂h i ∂y (1.51b)
Par conséquent, l'enthalpie d'arrêt h i est une fonction linéaire de la vitesse longitudinale u x . Si l'enthalpie à la paroi h p est constante, alors :

h i = h p + h ie -h p u ex u x (1.52)
L'équation 1.52 peut ensuite être réexprimée avec l'enthalpie statique.

h = h p + (h ie -h p ) u x u ex -(h ie -h e ) u x u ex 2 (1.53)

Analogie de Reynolds

Il est possible de dériver de la loi de Crocco une méthode simplifiée reposant sur le fait que la résolution de la couche limite dynamique donne des informations sur la couche limite thermique. L'analogie de Reynolds est alors obtenue pour un écoulement laminaire de plaque plane, un nombre de Prandtl P r = 1 et des températures de paroi uniformes. Elle décrit des couches limites thermiques et dynamiques de même épaisseur pour lesquelles les profils de température et de vitesse sont identiques. Le nombre de Stanton St est relié au coefficient de frottement C f :

St = C f 2 (1.54) St = h t u e ρC p (1.55)
Cette analogie peut s'étendre au cas turbulent si le nombre de Prandtl turbulent vaut P r t = 1. Cela signifie que le transfert d'énergie cinétique turbulente et le transfert de chaleur par la turbulence s'effectuent au même rythme. Le nombre de Prandtl turbulent réel étant généralement situé aux alentours de 0.85 -0.90, cette dernière condition n'est pas aussi restrictive que celles du cas laminaire. La condition P r = 1 rend l'analogie de Reynolds peu précise pour l'étude de l'air où le nombre de Prandtl vaut environ 0.70 -0.72 dans les conditions étudiées pour le givrage en vol. L'analogie de Reynolds modifiée a été mise au point pour prendre en compte le nombre de Prandtl et s'écrit :

C f 2 = StP r 2/3 (1.56)

Solution autosimilaire

Une solution autosimilaire pour la couche limite thermique laminaire a été établie par Kays et Crawford, semblable aux solutions autosimilaires de Falkner-Skan pour la couche limite dynamique. Cette solution est valable pour des écoulements pour lesquels la vitesse extérieure peut s'exprimer u ∞ = Cx m , pour laquelle la température de paroi est constante et la vitesse est suffisamment faible pour que la dissipation visqueuse soit petite devant les échanges convectifs mis en jeu. Pour ce type d'écoulement on a :

StP rRe 1/2 x = cte (1.57)
La constante de l'équation 1.57 a été tabulée dans l'ouvrage de référence sur la couche limite thermique et les transferts thermiques écrit par Kays et Crawford [START_REF] Kays | Convective Heat Mass and Transfer[END_REF]. Smith et Spalding [START_REF] Smith | Heat transfer in a laminar boundary layer with constant fluid proporties and constant walll temperature[END_REF] proposent une méthode moins restrictive, basée elle aussi sur une approche autosimilaire. Cette méthode est valable pour un corps de forme quelconque et de température uniforme et permet de calculer le nombre de Stanton pour un nombre de Prandtl égal à 0.7 :

St = (11.68) -0.5 ν e | qe | 2.87 | qe |P r δ 0 ν e | qe | 1.87 ds (1.58)

Gestion de températures de paroi et flux non uniformes

L'utilisation de systèmes de protections thermique contre le givre présentées à la section 5.1.5 génère des parois ayant des températures et des flux non uniformes. Il s'agit d'un enjeu important de cette thèse. Ces conditions de paroi non uniformes sont nettement moins abordées dans la littérature que les conditions de paroi uniforme. Pour une méthode intégrale, elles ont pourtant pour conséquence de potentiellement affecter le profil de température et donc les relations de fermeture. Eckert a en effet montré que la dérivée d'ordre 3 de la température à la paroi était affectée par le gradient de température de paroi dans la direction longitudinale (le détail des calculs est présenté en annexe B) :

∂u x ∂y y=yp ∂T ∂x y=yp + ∂u z ∂y y=yp ∂T ∂z y=yp = k ρc p ∂ 3 T ∂y 3 y=yp (1.59)
Les relations de fermetures présentées par J. Cousteix dans [ [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF], [START_REF] Cousteix | Turbulence et couche limite[END_REF]] ont été développées sans considérations spéciales sur la non-uniformité de la condition thermique de paroi, de même que les profils de température de C. Bayeux en régime laminaire ou encore de Sucec en régime turbulent. La section 2.2.3 montrera d'ailleurs la nécessité d'un traitement spécifique de ces conditions pour les méthodes intégrales, le système décrit à la section 2.1 ne permettant pas de décrire ces conditions. Par ailleurs, on peut noter qu'il n'y a pas non plus a priori de relations de fermeture disponibles dans la littérature basées sur des solutions de similitude adaptées pour des parois à température non uniformes. Pourtant, Eckert [START_REF] Eckert | Analysis of Heat and Mass transfer[END_REF], mentionne que dans certains cas de températures variables, en 2D, il existe une auto-similarité entre les profils de température, à l'image de l'auto-similarité des profils de vitesse de Falkner-Skan, s'il est possible d'exprimer la grandeur de la façon suivante :

T p -T e = C t x ι (1.60)
Cette expression est similaire à l'expression de la vitesse extérieure dans le cas d'un écoulement de dièdre.

u e = Cx m (1.61)
Pour la couche limite dynamique laminaire, des relations de fermeture ont été développées à l'aide des solutions de similitude obtenues sur ces écoulements de dièdre. Elles ont en effet été utilisées pour relier les grandeurs à fermer, telles que le coefficient de frottement C f , au facteur de forme H, H étant constant pour une valeur de m donnée constante, et donc pour un gradient de pression donné. Pour obtenir des relations du même type concernant la couche limite thermique, des solutions à l'équation adimensionnée de l'énergie 1.62 doivent être recherchées, un paramètre K constant pour ι constant doit être identifié (l'analogue du facteur de forme H), et une relation de fermeture du type St = f (K, H, P r) devrait être développée. Malheureusement, il ne semble pas que ce travail ait déjà été effectué dans la littérature.

d 2 θ dη 2 + P rf d θ dη -(2 -β)P rι df dη θ = 0 (1.62)

Méthodes intégrales pour la couche limite thermique

Principe des méthodes intégrales de couche limite thermique

La philosophie des méthodes intégrales thermiques est la même que pour la couche limite dynamique. Il s'agit ici d'intégrer sur l'épaisseur de couche limite thermique, notée δ T , une forme de l'équation de l'énergie. Il est possible de travailler en variable d'enthalpie ou sous certaines hypothèses (telles que celles effectuées section 1.2.2) en variable de température. Un exemple de formulation intégrale de l'équation de l'énergie est la suivante :

∂ρ e u e h ie ∆ ∂x = ϕ p (1.63)
avec ∆ l'épaisseur d'énergie définie de la façon suivante :

∆ = ∞ 0 ρu ρ e u e h i h ie -1 dy (1.64)
Ce processus d'intégration entraine une perte d'information qui résulte en un système disposant de plus d'inconnues que d'équations, il est donc nécessaire d'utiliser des relations de fermeture pour résoudre le système. Dans le cas de la couche limite dynamique, de nombreuses études ont été effectuées, ce qui a donné lieu à de multiples stratégies possibles pour les relations de fermetures. Dans le cas de la couche thermique, beaucoup moins d'études ont été effectuées, ainsi peu de stratégies ont été explorées. Pour fermer le système, il est possible d'utiliser une équation ou bien un profil de température supposé ou enfin des relations semi-empiriques. Pour les relations semi-empiriques, en régime laminaire, J. Cousteix [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF] relie par exemple le facteur d'analogie s = St/(C f /2) à H 32 = δ 3 /δ 2 , au nombre de Mach à l'extérieur de la couche limite, à la température de paroi et à la température de récupération. Concernant les profils de température supposés, par exemple, la loi de Crocco étant parfois employée dans les lois de paroi, il serait imaginable d'utiliser la loi de température issue de l'équation 1.53 :

Cette relation, si la capacité thermique peut être considérée constante, peut-être réexprimmée en terme de température statique en remplaçant la température d'arrêt par la température de récupération :

T = T p + (T r -T p ) u x u ex -(T r -T e ) u x u ex 2 (1.65)
Cette loi modifiée prend en compte le fait que la température de récupération T r est inférieure à la température génératrice T ie . La loi de Crocco est aussi valable en régime turbulent sous les mêmes hypothèses que l'analogie de Reynolds, à savoir P r t = 1 et en définissant une viscosité turbulente µ t . Malgré l'intérêt indéniable de l'équation de Crocco qui permet de déterminer le profil de température à partir du profil de vitesse, elle n'est strictement valable que pour un écoulement de plaque plane et des nombres de Prandtl de l'unité. La stratégie basée sur des profils de température supposés est aussi celle adoptée pour ces travaux et ceux antérieurs [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF].

Équation intégrale thermique

L'équation intégrale de l'énergie développée par C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF] s'écrit, sous sa forme conservative : 

∂((T e -T p )δ 1T ) ∂t + ∇.((T e -T p )| qe |θ T ) = - ϕ p ρc p - 1 c p | qe | 3 .C D (1.
ϕ p = -k ∂T ∂y y=0 (1.67c) C D = 1 ρ| qe | 3 ∞ 0 τ.
∂q ∂y dy (1.67d) avec q = (u x , u z ) le vecteur vitesse dans le plan tangent à la paroi. Ce système comporte plus d'inconnues que d'équations, il est donc nécessaire de faire appel à des relations de fermeture. L'utilisation d'un profil de température supposé permet de déterminer les grandeurs δ 1T , θ T et ϕ p . Il est cependant à remarquer que si le profil de température est imprécis proche de la paroi (ce qui est probablement le cas en régime turbulent étant donné la complexité de la couche limite turbulente) alors le flux pariétal ϕ p ne peut pas être déduit du profil de température supposé et nécessite une relation de fermeture supplémentaire. Plus de détails sur les hypothèses, l'obtention du système et les relations de fermeture en régime laminaire sont donnés à la section 2.1.1.

Relation de fermeture en régime turbulent

La relation de fermeture pour la couche limite thermique en régime turbulent n'a pas été étudiée dans la version préexistante de BLIM2D. En régime turbulent, la complexité de la couche limite qui peut être séparée en plusieurs zones rend complexe le développement de profils de température précis sur l'ensemble de la couche limite.

De même que pour la couche limite dynamique, la région externe de la couche limite étant la plus étendue, il est préférable d'estimer précisément cette région pour déterminer précisément les grandeurs intégrales.

Le profil de température le plus simple pour décrire cette région est celui de Reynolds [START_REF] Reynolds | Heat transfer in the turbulent inccompressible boundary layer -1-constant wall temperature[END_REF] qui utilise l'approche classique mais restrictive de la loi en y/δ T puissance 1/n pour Tp-T Tp-Te pour une plaque plane sans gradient de pression. La valeur n = 5.6 aboutit à de meilleurs résultats pour des nombres de Reynolds entre 10 5 et 3.5 × 10 6 tandis que n = 7 donne lieu à de meilleurs résultats pour des nombres de Reynolds de l'ordre de 10 7 . De même que pour la couche limite dynamique, une relation de fermeture supplémentaire doit être envisagée pour modéliser le flux de chaleur pariétal car le profil de température n'est pas assez précis à proximité de la paroi.

Des profils de température valables dans l'épaisseur de la couche limite sont aussi proposés par différents auteurs (White [START_REF] Christoph | Calculation of turbulent transfer and skin friction[END_REF], Thomas [START_REF] Thomas | A simple integral approach to turbulent thermal boundary layer flow[END_REF], [START_REF] Sucec | Modern integral method calculation of turbulent boundary layers[END_REF], [START_REF] Wang | Temperature scaling and profiles in forced convection turbulent boundary layers[END_REF]). Ils sont généralement de la forme T + = f (y+, P r, P r T , δ + T , β) où β est le paramètre de Clauser du gradient de pression. Un exemple de profil de température est proposé par Sucec : [START_REF] Swafford | Analytical approximation of two-dimensional separated turbulent boundary layer velocity profiles[END_REF]) parfois utilisé pour la couche limite dynamique , il pourrait être envisagé d'utiliser un tel profil de température pour fermer le système, mais la complexité du profil rend la tâche de relier la grandeur intégrale calculée au profil de température ardue. De plus, les profils proposés ont principalement été développés et utilisés pour des conditions de paroi à température uniforme (ou flux uniforme dans le cas de l'approche de J. Sucec), parfois sans gradient de pression, ce qui pourrait poser des problèmes dans d'autres conditions d'utilisation.

T + = P r t κ ln y + + C T (P r) + 2P r t π T (x) κ × 3 y + δ + T 2 -2 y + δ + T 3 y + < δ + T et y + < δ + (1.

Bilan du chapitre

Au cours de ce chapitre, dans un premier temps les notions sur la couche limite dynamique ont été présentées pour introduire la méthode de résolution intégrale de la couche limite dynamique utilisée par le code BLIM2D au cours des travaux antérieurs effectués par C. Bayeux. Cette méthode a été présentée de façon assez détaillée car c'est sur elle que reposeront les calculs de la couche limite dynamique par méthode intégrale présentés dans la suite de ce manuscrit. Dans un second temps, la notion de couche limite thermique a été présentée. La résolution de la couche limite thermique permet de calculer le coefficient de transfert thermique nécessaire à la chaine de calcul. Le choix a été fait de présenter plus succinctement la méthode intégrale développée par C. Bayeux pour l'équation de l'énergie en régime laminaire. En effet, elle sera présentée en détails au chapitre suivant, qui a pour but d'étudier et tester cette méthode. Par ailleurs, la couche limite thermique en régime turbulent n'ayant pas été encore traitée dans BLIM, des relations de fermeture envisageables pour le régime turbulent ont été présentées. La nécessité de prendre en compte les effets de conditions thermiques non uniformes a été introduite. Cette étude bibliographique met en avant le fait que peu d'études par méthode intégrale thermique ont été effectuées et sont directement utilisables pour des conditions d'applications de givrage réelles pour lesquelles il existe des gradients de pression et de températures de paroi et dont une partie de l'écoulement est en régime turbulent. Signalons aussi que les équations de couche limite (non intégrales) ont aussi été présentées dans ce chapitre et que ces dernières peuvent être résolues par le code CLICET, qui servira de référence dans tout le reste de ce manuscrit.

La résolution de la couche limite thermique par le solveur BLIM2D, effectuant une résolution par méthode intégrale et mise au point au cours des travaux de thèse de C. Bayeux, est présentée dans le chapitre 2 pour le régime laminaire. Cette méthode de résolution sera ensuite évaluée pour déterminer ses limites et les confronter aux objectifs que doit remplir un solveur de couche limite au sein d'une chaîne de givrage.

Chapitre 2

Présentation, analyse et évaluation de la méthode intégrale à profil de température supposé

Le premier objectif de ce chapitre est de présenter en détail la méthode intégrale thermique utilisée dans le code de calcul BLIM en régime laminaire. On rappelle donc d'abord le système d'équations intégrales et la relation de fermeture proposée dans la thèse de C. Bayeux. Il s'agit d'un système à une équation intégrale pour l'énergie, la relation de fermeture étant basée sur un profil de température supposé. Le coefficient d'échange convectif étant un paramètre fondamental pour les calculs d'accrétion, la méthode de calcul de ce coefficient est ensuite présentée. Enfin, C Bayeux ayant identifié une condition suffisante d'existence de solutions au système, l'analyse a été approfondie et une étude analytique permet de montrer les conditions d'existence et d'unicité de solutions au système. Le deuxième objectif est de montrer les capacités et limites de la méthode de résolution au vu des besoins présentés dans le chapitre précédent. Des cas-tests sont donc simulés avec des conditions thermiques pariétales uniformes ou non. Les résultats s'avérant imprécis pour certains cas de parois à température non uniforme, une optimisation des degrés de liberté est effectuée pour déterminer les capacités intrinsèques du profil de température supposé à représenter le profil de température réel.

Modélisation de la couche limite thermique par le solveur BLIM

Système d'équations intégrales thermique

On rappelle dans cette section comment a été établi le modèle thermique intégral développé et implémenté dans BLIM2D par C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF] . Il est basé sur plusieurs hypothèses. L'écoulement est supposé à densité constante, ce qui permet par ailleurs de découpler la résolution de la couche limite thermique de celle de la couche limite dynamique. L'écoulement extérieur est connu (u e et T e ) car obtenu par un calcul Euler. L'enthalpie est une fonction de la température h = c p T d'après l'équation 1.49. L'équation différentielle de l'énergie 3D, incompressible et instationnaire (1.50) 

U 1T = (T e -T p )δ 1T = ∞ 0 (T e -T )
ϕ p = -k ∂T ∂y y=0 (2.8c) C D = 1 ρ|q e | 3 ∞ 0 τ. ∂q ∂y dy (2.8d)
Le détail des calculs permettant d'obtenir l'équation intégrale (2.7) est explicité en annexe de la thèse de C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF]. L'équation modélise la variation du débit d'enthalpie due à la quantité de chaleur transmise par conduction à travers la paroi et à la quantité d'énergie cinétique dissipée par effet visqueux dans l'épaisseur de la couche limite. Ce terme de dissipation visqueuse intervient déjà dans la résolution de la couche limite dynamique et est donc déjà connu. En effet, si la densité est considérée constante, les équations de la couche limite dynamique et de la couche limite thermique sont découplées. Cette équation scalaire possède trop d'inconnues, il faut donc la fermer en reliant toutes les inconnues à une seule variable primaire. La variable primaire résolue est U 1T . Les termes ϕ p et (T e -T p )|q e |θ T sont des termes qui doivent être fermés. Ceci a été effectué dans la thèse de C. Bayeux uniquement en écoulement laminaire à partir d'un profil de température supposé présenté ci-après.

Profil de température supposé en régime laminaire : solution de C. Bayeux

Les calculs de couche limite thermique intégrale peuvent être effectués à température imposée ou à flux imposé à la paroi ou encore avec des conditions mixtes. Les relations de fermeture sont donc établies pour pouvoir prendre en considération tous ces cas. Des relations de fermeture basées sur l'étude d'écoulements bidimensionnels sont utilisées. En effet on suppose que la partie transverse de l'écoulement n'a que peu d'effets sur l'écoulement global de couche limite et que la partie longitudinale se comporte comme un écoulement de couche limite bidimensionnel. Cependant, la partie transversale de l'écoulement joue un rôle dans la résolution de l'équation intégrale de l'énergie 2.7 à travers le terme :

(T e -T p )|q e ||θ T c = ∞ 0 u c (T e -T )dy (2.9) où u c est la composante transverse de la vitesse dans la couche limite. Pour rappel, l'indice s se rapporte à la direction longitudinale par rapport à la vitesse extérieure tandis que l'indice c se rapporte à la direction transverse. On suppose que le profil de température s'écrit sous la forme d'un polynôme de degré q (expliqué en détail dans l'annexe de la thèse de C. Bayeux) :

T e -T = θ(y) = q i=0 B i y δ T i (2.10)
où δ T est une estimation de l'épaisseur de couche limite thermique. Il faut donc q+1 conditions aux limites pour déterminer les B i . Les trois premières conditions utilisées sont : (2.12)

en y = δ T θ = 0 (2.11a) en y = 0 -k ∂T ∂y = ϕ 0 + h 0 (T 0 -T ) donc k ∂θ ∂y = ϕ 0 + h 0 (θ -θ 0 ) (2.11b) en y = 0 ∂ 2 T ∂y 2 = - ρ|q e | 4 (C 2 f s + C 2 f c ) 4kν donc ∂ 2 θ ∂y 2 = ρ|q e | 4 (C 2 f s + C 2 f c ) 4kν (2.11c) avec θ 0 = T e -T 0 . h 0 , T 0 et ϕ 0 déterminent
On sait de plus que ∂ϕ ∂y y=0

= -k ∂ 2 T ∂y 2 y=0 et ∂us ∂y y=0 = |qe| 2 C f s 2ν et ∂uc ∂y y=0 = |qe| 2 C f c 2ν
Cette condition fait donc intervenir le coefficient de frottement qui est connu grâce au calcul de la couche limite dynamique. Pour les (q -2) autres conditions, on impose que toutes les dérivées jusqu'à l'ordre (q-2) en y = δ T soient nulles :

en y = δ T ∂ j T ∂y j = 0 donc ∂ j θ ∂y j = 0 ∀j ≤ q -2, j ∈ N (2.13)
D'après les conditions (2.13), la dérivée du polynôme θ(y) de degré (q-1) s'écrit sous la forme :

∂θ ∂y = a y δ T + e 1 - y δ T q-2
(2.14) avec q > 2. e est déterminé grâce à la condition (2.11b).

en y = 0 , ∂θ ∂y = ϕ 0 + h 0 (θ -θ 0 ) k = e (2.15)
En dérivant (2.14) on a :

∂ 2 θ ∂y 2 = a δ T 1 - y δ T q-2 - q -2 δ T a y δ T + e 1 - y δ T q-3 (2.16)
La condition 2.11c permet d'en déduire que :

en y = 0 , a -(q -2)e δ T = ρ|q e | 4 (C 2 f s + C 2 f c ) 4kν (2.17) d'où a = (q -2)e + ρ|q e | 4 (C 2 f s + C 2 f c )δ T 4kν (2.18)
Le profil de température est ensuite obtenu en intégrant 2.14

θ = -δ T q -1 a y δ T + e 1 - y δ T q-1 - aδ T q(q -1) 1 - y δ T q + cte (2.19)
La condition (2.11a) permet d'en déduire que cte= 0 d'où :

θ(y = 0) = -(a + eq)δ T q(q -1) (2.20)
d'où le système d'équations pour a et e :

       a = (q -2)e + ρ|q e | 4 (C 2 f c + C 2 f s )δ T 4kν e = ϕ 0 -h 0 θ 0 k - (a + eq)h 0 δ T q(q -1)k (2.21)
Finalement on peut écrire le profil de température sous la forme :

T e -T = θ(y) = C + D y δ T 1 - y δ T q-1 (2.22) avec :        C = -(8(q -1)ν(ϕ 0 -h 0 θ 0 ) + ρ|q e | 4 (C 2 f c + C 2 f s )δ T )δ T 4(q -1)ν(qk + 2h 0 δ T ) D = -(4(q -1)(q -2)kν(ϕ 0 -h 0 θ 0 ) + ρ|q e | 4 (C 2 f c + C 2 f s )h 0 δ 2 T + (q -1)kρ|q e | 4 (C 2 f c + C 2 f s )δ T )δ T 4(q -1)kν(qk + 2h 0 δ T )
(2.23) Bien que pour l'obtention de la forme du profil de température 2.22 la formulation polynomiale 2.10 ait servi de point de départ, l'exposant q est autorisé à prendre des valeurs non entières pour une description plus fidèle du profil de température. La détermination de l'exposant q du profil de température est basée sur l'analyse de solutions obtenues pour des écoulements autosimilaires de type Falkner-Skan. Ces solutions, évoquées en section 1.2.3.3, reposent notamment sur l'hypothèse d'un terme de dissipation visqueuse négligeable. Alors, pour m et P r fixés on a :

StP rRe 1/2 s = cte (2.24) avec St = ϕ p ρ e |q e |C p (T p -T e ) .
C. Bayeux a effectué des simulations avec le code de couche limite intégrale pour les cas m=0 (plaque plane) et m=1 (point d'arrêt) en faisant varier q jusqu'à à obtenir la solution quasi-exacte 2.24. Une approximation linéaire permet ensuite de déduire q en fonction de H. q devant rester supérieur à 2 par construction, l'expression de q suivante est obtenue (le seuil de 2.01 est choisi arbitrairement) :

q(H) = max[(-1.181319H + 6.313094), (2.01)]
(2.25)

Notons que quelques tentatives d'optimisation de la valeur de q, présentées en annexe C, ont été effectuées dans la présente thèse. L'annexe montre que, même si la relation 2.25 n'est pas forcément optimale, elle donne de bons résultats.

Par définition (2.8a) on peut donc en déduire que :

U 1T = (T e -T p )δ 1T = C(q + 1) + D q(q + 1) δ T (2.26)
ce qui permet finalement d'exprimer δ T en fonction de la grandeur primaire U 1T , et de déterminer complètement le profil de température 2.22. Notons cependant qu'un polynôme en δ T doit alors être résolu, ce qui peut poser des difficultés d'existence et d'unicité de la solution, évoquées en section 2.1.4. Les termes inconnus de l'équation intégrale peuvent alors être déterminés. À partir du profil de température, le flux pariétal ϕ p peut être déterminé.

ϕ p = -k ∂T ∂y y=0 = k D -(q -1)C δ T (2.27)
Le terme (T e -T p )|q e |θ T est intégré numériquement à partir des profils de température et de vitesse.

Calcul du coefficient de transfert thermique

Le coefficient de transfert thermique h t , un paramètre capital pour le module d'accrétion, est défini tel que : ϕ p = h tc (T p -T r ). T r désigne la température de récupération, il s'agit de la température de paroi pour laquelle le flux pariétal est nul. Bien qu'étant inconnue, elle peut être obtenue en effectuant un calcul thermique par méthode intégrale en imposant une condition adiabatique. Cette condition adiabatique s'écrit ∂θ ∂y = 0 ce qui modifie les coefficients C et D de la relation de fermeture 2.23 qui se réduisent désormais à :

   C = -ρ|qe| 4 (C 2 f c +C 2 f s )δ 2 T 4(q-1)νqk D = - ρ|qe| 4 (C 2 f c +C 2 f s )δ T 2 4νqk
(2.28)

Un deuxième calcul est effectué en imposant soit le flux pariétal soit la température de paroi, permettant ainsi la linéarisation du flux pariétal autour de cette valeur. Ce deuxième calcul permet de connaître les deux grandeurs ϕ p et T p à la fois. Le coefficient de transfert thermique h tc peut donc être déduit des grandeurs T r , T p et ϕ p .

Conditions d'existence d'une solution admissible en régime laminaire

Objectif de la démarche

La démarche exposée en section 2.1.2 fait intervenir la résolution du polynôme 2.26 pour relier l'inconnue δ T du profil de température présumé à la variable primaire U 1T . Cette étape de la résolution peut poser des difficultés dans certains cas. C. Bayeux avait notamment identifié qu'une condition suffisante pour obtenir une solution unique positive δ T était d'étudier des conditions de parois chaudes T p > T e . Le but de cette section est d'étudier plus en détail les conditions d'existence et d'unicité d'une solution. Notons qu'en pratique l'équation est résolue par une méthode de Newton. Les règles établies ici permettront de circonscrire le domaine dans lequel cette méthode peut converger vers le bon résultat.

Cas général : conditions mixtes

D'après les équations 2.26 et 2.23, on en déduit que dans le cas général en condition mixte :

U 1T = - ρ|q e | 4 (C 2 f c + C 2 f s )h 0 δ 4 T + 2qρk|q e | 4 (C 2 f c + C 2 f s )δ 3 T + 12q(q -1)νk(ϕ 0 -h 0 θ 0 )δ 2 T 4q(q + 1)(q -1)kν(qk + 2h 0 δ T ) (2.29)
La solution analytique de ce polynôme du quatrième ordre est trop complexe pour pouvoir écrire des conditions d'existence et d'unicité de racines positives en fonction des conditions aux limites imposées. Il est possible de déterminer ces conditions pour des cas de température de paroi imposée ou de flux pariétal imposé car, dans ces cas, la relation se réduit à un polynôme du troisième ordre, plus simple à résoudre analytiquement. Le cas à température de paroi imposée, le plus utile pour la suite de ce manuscrit, est présenté ci-dessous.

Température imposée

A partir de la solution générale, une température imposée est obtenue en faisant tendre h 0 vers l'infini. La grandeur θ 0 correspond à la valeur imposée de T e -T p . La relation entre l'épaisseur de couche limite thermique et la variable résolue s'écrit :

U 1T = -δ 3 T ρ|q e | 4 (C 2 f c + C 2 f s ) + 12q(q -1)νkθ 0 δ T 8(q + 1)(q -1)qkν (2.30)
Cela revient donc à chercher la solution au polynôme d'ordre 3 écrit sous forme canonique :

aδ 3 T + bδ 2 T + cδ T + d = 0 (2.31a) a = 1 (2.31b) b = 0 (2.31c) c = -12q(q -1)νkθ 0 ρ|q e | 4 (C 2 f c + C 2 f s ) (2.31d) d = 8q(q -1)(q + 1)kνU 1T ρ|q e | 4 (C 2 f c + C 2 f s ) (2.31e) 
Comme a=1 et b=0, les formules de Cardan s'appliquent directement. Le discriminant ∆ s'écrit de la façon suivante :

∆ = -(4c 3 + 27d 2 ) (2.32) ∆ = - -6912q 3 (q -1) 3 ν 3 k 3 θ 3 0 ρ 3 |q e | 12 (C 2 f c + C 2 f s ) 3 + 1728q 2 (q -1) 2 (q + 1) 2 k 2 ν 2 U 2 1T ρ 2 |q e | 8 (C 2 f c + C 2 f s ) 2 (2.33)
Le signe du discriminant permet de savoir le type de racines. Il y a trois cas : ∆ > 0 : 3 solutions réelles distinctes ∆ = 0 : une ou deux solutions réelles ∆ < 0 : une solution réelle, 2 solutions complexes conjuguées Il est possible de faire apparaitre une grandeur caractéristique pour déterminer le signe du discriminant en fonction de la différence de température.

θ L = 3 (q + 1) 2 ρ| qe | 4 (C 2 f c + C 2 f s )U 2 1T 4q(q -1)νk (2.34)
Les formules de Cardan permettent d'obtenir les solutions de l'équation 2.31a en fonction du discriminant et donc en fonction de θ 0 et θ L . Rappelons que les solutions admissibles sont positives. Ceci permet d'écrire :

∆ = 6912q 3 (q -1) 3 ν 3 k 3 ρ 3 |q e | 12 (C 2 f c + C 2 f s ) 3 θ 3 0 -θ 3 L (2.35)
Une solution réelle : Si θ 0 < θ L alors ∆ < 0 et il y a deux solutions complexes conjuguées et une solution réelle. Il s'agit du cas pour lequel T p > T e -θ L Si θ 0 < 0, (cas de paroi chauffée, T p > T e ) la solution réelle s'écrit :

δ T = -2 c 3 sinh 1 3 arcsinh 3d 2c 3 c
. La solution est positive si U 1T < 0 (et est négative si U 1T > 0). On a donc une solution admissible si "en moyenne", la température dans la couche limite est supérieure à la température extérieure. Si θ L > θ 0 > 0, (cas d'une paroi très légèrement refroidie), la solution réelle s'écrit :

δ T = -2 |d| d -c 3 cosh 1 3 arcosh -3|d| 2c -3 c
. La solution est positive si U 1T < 0. De nouveau, dans ce cas, il reste nécessaire qu'"en moyenne", la température soit supérieure à la température extérieure dans la couche limite.

Racines multiples : Si θ 0 = θ L alors il y a une solution réelle de multiplicité 2 ou 3 et éventuellement une racine réelle de multiplicité 1. Le second discriminant, ∆ 0 = b 2 -3ac = 36q(q-1)νkθ 0 ρ|qe| 4 (C 2 f c +C 2 f s ) permet de différencier les deux cas. Si ∆ 0 = 0 alors il y a une racine triple. Ce cas implique U 1T = 0 et θ 0 = 0 ce qui ne peut être valable qu'au bord d'attaque pour des conditions limites uniformes. La solution est alors la solution triviale δ T = 0. Si ∆ 0 ̸ = 0 alors il y a une racine réelle de multiplicité 2 et une racine réelle de multiplicité 1. La racine double s'écrit 

δ d = 9d 2∆ 0 = (q+1)U 1T θ 0 et la racine simple s'écrit δ s = -9d ∆ 0 = -2(q+1)U 1T
= -(q+1)U 1T θ 0 ρ|qe| 4 (C 2 f c +C 2 f s )
4q(q-1)νkθ 0 , le signe de cette expression est celui de -U 1T car θ 0 est positif. Par conséquent, si U 1T est négatif, il n'y a qu'une seule racine positive. . Ce cas favorable apparaît donc pour une température en moyenne supérieure à la température extérieure dans la couche limite, ce qui n'est pas le plus consistant avec T p < T e dans les cas simples. Si U 1T est positif, il y a deux racines positives, ce qui pose la question du choix de la racine à privilégier.

Bilan Le tableau 2.1 référence le nombre de racines positives ou nulles existant pour chaque cas. Les cas avec une seule racine positive correspondent aux cas où il y a unicité de la solution et donc pour lesquels la méthode de Newton converge sans poser de problème. L'étude montre qu'en général, ce cas très favorable est rencontré pour une paroi plus chaude que l'écoulement, ce qui est souvent le cas pour l'étude du givrage, que la paroi soit chauffée par un système de protection ou que la paroi soit recouverte d'une couche de givre, qui est plus chaude que l'écoulement. Pour des parois très légèrement refroidies, il est aussi possible d'obtenir une solution positive unique.

Les cas avec plusieurs racines positives impliquent qu'il faut trouver un moyen de discriminer l'une des racines qui est solution du problème physique, des autres qui ne le sont pas. Ce cas de figure est rencontré si la paroi est fortement refroidie (T p < T e -θ L ).

Les cas où il n'y a pas de racine positive impliquent qu'il n'y a pas de solution au problème et donc qu'il y a une incohérence dans le système d'équations. Ces cas peuvent par exemple être rencontrés pour une température de paroi uniforme faiblement refroidie T e -θ L < T p < T e et un écoulement accéléré entrainant une valeur positive de U 1T localement alors que θ 0 < θ L . Le fait que l'écoulement soit accéléré entraine une diminution de T e ce qui se traduit par une modification de U 1T . Dans le cas où la différence de température imposée est faible, cette variation de U 1T est suffisante pour que le système soit mal posé. Pour des conditions de température de paroi non uniformes, cette configuration est susceptible de se produire dans des cas moins prévisibles car le comportement de la couche limite thermique dans ces cas est moins bien maitrisé. La méthode intégrale décrite en section 2.1 se doit d'être évaluée dans les conditions d'application visées, c'est-à-dire pour les phénomènes de givrage et de dégivrage. Le but de cette méthode intégrale est de fournir à la chaîne de calcul le coefficient de transfert thermique. Cette grandeur doit par conséquent être le paramètre de validation global de la méthode. Par ailleurs, la méthode faisant appel à un profil de température supposé, évaluer la performance de ce dernier est une étape capitale du processus de validation. Dans un premier temps, les cas les plus simples sont étudiés, c'est-à-dire que la température de paroi ou le flux pariétal est imposé constant. Il s'agit de cas de figure qui ont déjà été étudiés dans la thèse de C Bayeux, avec un certain succès concernant l'évaluation du coefficient de transfert thermique. Dans cette thèse, d'autres conditions sont étudiées pour confirmer le bon comportement du modèle, toujours pour le coefficient de transfert thermique mais aussi selon les autres critères tels que l'adéquation du profil de température, et servir de base à l'étude de cas plus complexes.

U 1T < 0 U 1T = 0 U 1T > 0 θ 0 < θ L 1 1 0 θ 0 = θ L 1 1 1 θ 0 > θ L 1 2 2
Les systèmes de protection thermique contre le givre entrainent en effet des conditions thermiques non uniformes à la paroi pour lesquelles le coefficient de transfert thermique ainsi que le profil de température supposé sont évalués de même que précédemment. L'évaluation des performances de la méthode intégrale s'effectue par comparaison avec CLICET, un code de couche limite développé par l'ONERA décrit à la section 1. Les températures statiques T e se rapportent au bord de fuite. Pour les cas hors plaque plane, la température totale est constante mais la température statique ne l'est pas.

Concernant le maillage, un maillage de 512 points qui a garanti une très bonne convergence de la solution pour tous les cas étudiés dans la thèse de C Bayeux a été retenu.

Évaluation de la méthode pour des conditions thermiques pariétales uniformes

Évaluation des profils de température supposés

La validation de la méthode commence par estimer la validité du profil de température supposé dans la couche limite en le comparant au profil calculé par le code de couche limite CLICET. 2 montre le profil de température, en régime laminaire, supposé par BLIM2D et calculé par CLICET. La température statique de l'écoulement extérieur au bord de fuite est imposée 20K supérieure à la paroi. On constate que pour des parois refroidies, la précision du profil de température supposé est moindre.

Évaluation des sorties utilisées par la chaîne de givrage

Le coefficient de transfert thermique h tc est la sortie principale du code BLIM2D. La figure 2.3 montre le coefficient de transfert thermique, calculé selon la méthode présentée à la section 2.1.3, pour une température de paroi imposée 20K plus chaude que la température statique de l'écoulement extérieur au bord de fuite tandis que la figure 2.4 montre le coefficient de transfert pour une température de paroi imposée 20K plus froide que l'écoulement extérieur au bord de fuite. Bien que le profil de température supposé soit moins précis dans le cas refroidi que dans le cas chauffé, le coefficient de transfert thermique calculé est pratiquement identique pour les deux valeurs de température de paroi. Pour le cas du point d'arrêt, la précision est moins bonne que pour les autres valeurs de m, et donc de gradient de pression. La figure 2.5 montre que le calcul du coefficient de transfert thermique sur un large intervalle de différences de températures, pouvant être rencontrées dans le domaine du givrage, donne les mêmes résultats. Par conséquent, l'utilisation du coefficient de transfert thermique par le module d'accrétion sur la plage de températures de paroi traitée est possible car il ne dépend que très peu des températures de paroi pour des conditions uniformes. Au cours de ses travaux de thèse, C.Bayeux a utilisé une méthode de calcul du coefficient de transfert thermique différente, à partir de deux calculs du flux pariétal à température de paroi imposée. Ceci mène à des conclusions similaires.

Comme expliqué en section 2.1.3, le calcul du coefficient de transfert thermique h tc repose sur une évaluation correcte de la température de récupération T r , obtenue pour un calcul sur paroi adiabatique, et qui est d'ailleurs aussi une donnée de sortie importante du code de couche limite. Le calcul de la température de récupération que ce soit par les codes BLIM2D et CLCIET ou bien la corrélation 
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Comme déjà montré dans la thèse de C Bayeux, la méthode donne donc d'excellents résultats pour le calcul du coefficient de transfert thermique à température de paroi imposée uniforme pour toutes les valeurs du gradient de pression uniforme. On a montré que l'accord sur le calcul de la température de récupération était aussi très bon, ainsi que sur le profil de température. L'annexe C montre qu'il est possible d'améliorer encore les résultats en optimisant la valeur de l'exposant q pour le profil de température 2.22. Cependant, les gains escomptés en termes de précision pour ces conditions de paroi uniformes sont marginaux.

Évaluation de la méthode pour des conditions thermiques pariétales non uniformes

Le profil de température (2.22) mis au point pour fermer le système a été élaboré pour une température de paroi uniforme. Or, la présence de protections thermiques contre le givrage entraine de fortes variations de température et de flux pariétal sur l'aile. Différents cas tests sur un écoulement de point d'arrêt (m=1) sont étudiés pour déterminer les limites de la méthode. L'écoulement extérieur est dans les conditions T e = 263.15K, P e = 80000P a. La longueur de plaque est de 0.25m. Des cas de variation linéaire de la température avec l'abscisse sont étudiés. Comme pour les cas isothermes, les résultats du code de calcul de couche limite CLICET servent de référence vis-à-vis du profil de température. Des cas de saut de température pariétale entre deux zones isothermes sont aussi présentés en annexe D.1 avec, dans un cas, un saut de température positif et dans l'autre, un saut négatif.

Évaluation de la méthode

Étude d'une décroissance de température pariétale linéaire Une diminution linéaire de la température pariétale est tout d'abord étudiée. La différence de température T p -T e vaut 110K au bord d'attaque et le gradient est constant : = +400K.m -1 . Ce gradient est choisi car il s'agit de la même valeur absolue que pour la diminution de température de paroi présentée précédemment, ceci permet donc de comparer l'effet de ces deux types d'évolution. Il s'agit donc d'une paroi de plus en plus chauffée. Le nombre de Mach vaut encore M e = 0.25. Pour ce type d'écoulement, les figures 2.8 et 2.9 montrent que les résultats de BLIM2D sont toujours moins bons qu'en conditions de paroi uniformes, mais qu'ils sont meilleurs que pour le cas d'une paroi de moins en moins chauffée. La figure 2.8 montre le profil de température à deux abscisses. L'allure générale du profil de température est peu déformée proche de la paroi mais évolue plus rapidement loin de la paroi, ce qui aboutit à une épaisseur de couche limite thermique plus grande qu'un cas à température de paroi uniforme. Plus la variation de température pariétale est maintenue sur une longue distance plus le profil s'incurve loin de la paroi et plus la couche limite est épaisse par rapport à une couche limite isotherme. La solution calculée par BLIM2D loin de la paroi s'écarte donc de plus en plus de la solution réelle à mesure que l'évolution de température pariétale est maintenue. La solution reste néanmoins bonne très proche de la paroi. La figure 2.9 représente le coefficient de transfert thermique. La paroi étant de plus en plus chaude, une augmentation du coefficient de transfert thermique avec la distance au bord d'attaque est observée alors que dans le cas isotherme il est constant (cf figures 2.3 2.4). Bien que BLIM2D capture cette augmentation, il la sous-estime. L'erreur commise par BLIM2D est de l'ordre de 9%, ce qui n'est pas négligeable mais reste limité.

(a) x = 0.125m (b) x = 0.175m (c) x = 0.20m (d) x = 0.225m
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Pour des variations linéaires de la température de paroi, la forme du profil de température calculé par BLIM2D est peu affectée sur une petite distance mais si cette variation est maintenue, le profil de température et donc le coefficient de transfert thermique est significativement modifié. Le cas d'une paroi de moins en moins chaude, qui est malheureusement la configuration la plus rencontrée pour des parois protégées thermiquement contre le givre, est celui qui donne les moins bons résultats. Le profil de température va jusqu'à s'inverser localement, ce que la méthode intégrale ne modélise qu'avec beaucoup de retard. Notons que pour des variations très brutales de températures, vues en annexe D. 

Évaluation des capacités du profil de température supposé

Objectif et méthode L'objectif de cette section est de déterminer si la forme du profil de température choisie, définie par l'équation (2.22), est capable de donner un résultat satisfaisant dans le cas d'une température de paroi non-constante à partir de deux degrés de liberté. On rappelle l'expression du profil de température (équation 2.22) :

T e -T = Θ(y) = C + D y δ T 1 - y δ T q-1
Le coefficient C vaut toujours T e -T p pour respecter les conditions aux limites. Pour cette section, de façon à assurer une épaisseur de couche limite thermique correcte, elle est déterminée à partir de la solution CLICET comme l'épaisseur à partir de laquelle T -T p = 0.99(T e -T p ), soit δ T = δ T 0.99 . L'idée est alors, en faisant varier les paramètres D et q, de minimiser la norme L2 de l'erreur entre le profil de température supposé et la solution de référence CLICET sous la contrainte que l'erreur sur le flux pariétal

|ϕpBLIM -ϕpCLICET | |ϕpCLICET |
reste inférieure à 2%. Pour ce faire, l'algorithme utilisé est l'algorithme SLSQP de la librairie scipy.optimize de Python. Les cas-tests présentés en section 2.2.3.1 sont étudiés.

Étude d'une décroissance linéaire de température pariétale

Pour le cas de la paroi de moins en moins chauffée étudié précédemment, la différence de température T p -T e vaut 110K au bord d'attaque et le gradient

∂(Tp-Te) dx

= -400K.m -1 est constant. La figure 2.10 représente le profil de température optimisé aux quatre abscisses déjà représentées en figure 2.6. Les profils de température optimisés s'éloignent de plus en plus de la solution de référence, en particulier proche de la paroi. Ceci devient plus marqué lorsque le flux pariétal change de signe. Le tableau 2.3 montre la norme L2 de l'erreur relative commise sur le profil de température pour toute l'épaisseur de la couche limite thermique. Si l'erreur commence très faible et ne vaut que 1.8 % en x = 125mm, elle dépasse les 5% en x = 0.225m. Le profil optimisé commet donc une erreur non négligeable si le gradient de température de paroi est maintenu sur une grande distance. Il n'est ainsi pas possible, sur la base des deux degrés de liberté du profil de température 2.22, de reproduire à la fois une valeur correcte du flux de chaleur pariétal et le pic local de température de la figure 2.10 par exemple. = +400K.m -1 est constant. La figure 2.11 représente le profil de température optimisé aux deux abscisses déjà étudiées précédemment. On constate un excellent accord sur la partie basse du profil de température et une petite erreur sur la partie supérieure du profil de température. Le tableau 2.4 montre la norme L2 de l'erreur relative commise sur le profil de température pour toute l'épaisseur de la couche limite thermique. On constate ici un excellent accord entre le profil optimisé et la solution de référence, l'erreur étant inférieure à 3% sur l'ensemble du profil. Le profil semble donc plus à même de décrire les profils de température rencontrés pour des cas d'accroissement linéaire de température de paroi.

Position (en mm) 125 225

Erreur en% 2. 
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Cette étude effectuée en optimisant le profil de température supposé sur deux degrés de liberté permet de déterminer les limites de ce profil. Le profil est donc intrinsèquement capable de représenter des croissances linéaires de T e -T p sur de grandes distances et des décroissances linéaires sur de petites distances ou pour de petits gradients. L'étude présentée en annexe D.2 sur le cas de discontinuités de température pariétale confirme la tendance observée pour le chauffage de paroi réduit de l'amont vers l'aval. Elle montre aussi que le profil de température 2.22 est aussi mis en difficulté pour une augmentation brutale du chauffage conduisant à une nette rupture dans le profil de température. Il est donc nécessaire de mettre au point une autre relation de fermeture pour traiter ces cas ou de revoir la méthode dans son ensemble.

Bilan du chapitre

Au cours de ce chapitre la méthode intégrale thermique à une équation de C. Bayeux a été présentée en explicitant le système d'équations intégrales résolu et la relation de fermeture utilisée. Cette relation de fermeture repose sur un profil de température présumé, pour lequel l'évaluation des paramètres repose sur la recherche des racines d'un polynôme. Les conditions d'existence et d'unicité de la solution de ce polynôme ont été étudiées, montrant qu'il existe des cas pour lesquels il n'existe pas une unique solution positive, ce qui constitue une des premières difficultés de la méthode, notamment pour les cas de parois refroidies, ou éventuellement dans des conditions de parois à température non uniforme. Les capacités et limites de la méthode ont ensuite été étudiées pour des conditions pariétales successivement uniformes et non-uniformes. Une approche par optimisation des degrés de liberté du profil de température supposé a permis de déterminer les capacités intrinsèques au profil de température. Cette étude a montré que si la méthode donne de bons résultats pour des températures de paroi uniformes, elle est largement imprécise pour des températures de paroi non-uniformes. Ceci a deux causes. Premièrement la méthode ne transporte qu'une seule information : l'épaisseur de la couche limite thermique, or la présence d'une température de paroi non uniforme déforme le profil de température en plus d'agir sur l'épaisseur de couche limite thermique. Il est donc nécessaire de transporter plus d'informations pour avoir accès localement à l'information nécessaire à une description suffisamment représentative du profil de température. Deuxièmement le profil de température supposé, avec ses deux degrés de liberté, n'est pas capable de représenter tous les cas de température de paroi non uniforme. Il est donc nécessaire de repenser fondamentalement la méthode. Le chapitre suivant est dédié à la mise en place d'une méthode intégrale basée sur une approche modale de type Galerkin, dans l'objectif de transporter suffisamment d'informations pour prendre en compte l'histoire de la couche limite et de donner plus de degrés de liberté au profil de température.

Chapitre 3

Approximation modale de la couche limite thermique

Précédemment, il a été montré que la méthode intégrale préexistante (appelée méthode classique pour la suite) ne permet pas de traiter des cas de température de paroi non uniforme car elle ne transporte pas assez d'informations. De plus, un travail effectué uniquement sur le profil de température supposé ne permet pas de combler ce manque d'informations et mène à des complications d'ordre mathématique. L'objectif de ce chapitre est donc de présenter une méthode intégrale alternative résolvant la couche limite thermique en transportant suffisamment d'information et donc suffisamment de variables pour pouvoir décrire précisément le profil de température dans la couche limite pour une température de paroi non uniforme et ainsi de permettre d'en déduire précisément le flux pariétal. La solution retenue a été d'utiliser une approche modale pour décomposer le profil de température. De plus, la méthode intégrale thermique classique se base sur des hypothèses de masse volumique et autres paramètres thermodynamiques constants qui ne permettent pas de traiter des cas faisant apparaitre des variations relatives de température importantes dans la couche limite, que ce soit suivant la direction normale ou longitudinale à la paroi. L'objectif est donc de prendre en compte l'effet de la variation des paramètres thermodynamiques avec la température dans la couche limite thermique pour pouvoir traiter des cas faisant apparaitre des variations importantes de température dans la couche limite. On suppose que les effets de compressibilité sont plus faibles que l'effet du chauffage de la paroi et peuvent donc être ignorés. Cette hypothèse s'appuie sur le fait que pour les applications givrage le nombre de Mach est faible (de l'ordre de 0, 3) et que les parois protégées thermiquement peuvent faire apparaitre localement des écarts relatifs de température de plusieurs dizaines de pourcents.

Le contenu du chapitre s'appuie pour l'essentiel sur l'article "A Galerkin method for the simulation of laminar boundary layers on heated walls" [START_REF] Radenac | A galerkin method for the simulation of laminar boundary layers on heated walls[END_REF] publié dans la revue Energies. L'originalité de la méthode proposée provient du fait que les stratégies mises en place pour la résolution numérique dépendent des directions de l'espace. Une méthode de type Galerkin est utilisée pour traiter la direction perpendiculaire à la paroi tandis qu'une méthode Volumes-Finis est utilisée dans les autres directions. La discrétisation suivant la direction normale à la paroi résolue par la méthode de type Galerkin mène à une méthode intégrale à plusieurs équations. La difficulté réside dans le fait que la taille du domaine sur lequel est effectué la résolution est elle même une inconnue, ce qui rend le problème discret non-linéaire contrairement au cas usuel de la résolution de l'équation de la chaleur par la méthode de Galerkin.

La dernière partie du chapitre est constituée de quelques compléments permettant d'apporter des précisions sur la méthode. D'autres compléments figurent également en annexe, notamment d'autres cas de validation numérique non traités dans l'article faute de place suffisante.

Dans tout l'article, BLIM2D désigne la méthode modale de type Galerkin. Dans le reste du manuscrit, elle sera désignée par "M-BLIM2D" dans les figures. Le M signifie "modal" étant donné que le profil de température est décomposé sur plusieurs modes.

Article paru dans la revue "Energies"

A Galerkin method for the simulation of laminar boundary layers on heated walls

Introduction

Although the resolution of thermal boundary layers most often relies on solving the Navier-Stokes equations, there are still fields of application for which the pursuit of very fast methods of solving this problem are privileged. For instance, aircraft in-flight icing prediction is one field for which it has remained common practice to calculate convective heat transfer by coupling inviscid fluid and boundary layer codes. Indeed, for both certification and aircraft design, a large number of icing conditions must be calculated within a reasonable time. In addition, the calculation procedure is sequential and quasi-steady. As the ice grows, the shape of the airfoil or obstacle is updated. The flow needs to be systematically calculated around this updated shape. Therefore, many aerodynamic calculations may be necessary. The same issue is faced when modeling the activation of thermal ice protection systems (electro-thermal or bleed-air systems) : the resolutions of the aerodynamics, of the heat transfer in the substrate of the protected feature and of the water runback and freezing over the protected surface have to be coupled. This also leads to a huge number of aerodynamic simulations. As a result, a robust and fast calculation method for convective heat transfer is interesting for in-flight icing applications. This is the case in 2D but even more so in 3D due to the large number of degrees of freedom.

Icing problems are characterized by a separation of time scales such that the transient state of the aerodynamic flow can be considered as infinitely fast compared to the ice-growth duration and to the time required to reach thermal equilibrium inside the protected airfoil. This justifies the aforementioned use of a sequential coupling of several solvers for the simulations of ice accretion. Steady-state solutions of the aerodynamic field, and especially of the boundary layer, are also wanted for the same reason. To do so, integral-boundary-layer methods are often used for ice-accretion simulations. Since the core of this paper is dedicated to the modeling of boundary layers over heated walls, it is worth mentioning that boundary-layer solvers are widely used in the icing community also for modeling thermal ice protection systems. For instance, simplified (algebraic) integral methods are used by Morency et al [START_REF] Morency | Anti-icing system simulation using canice[END_REF], Al-Khalil et al [START_REF] Al-Khalil | Validation of nasa thermal ice protection computer codes part 3 : Validation of antice[END_REF], Silva et al [START_REF] Araújo Lima Da Silva | Numerical simulation of airfoil thermal anti-ice operation. part 1 : Mathematical modeling[END_REF], Wright [START_REF] Wright | User's manual for lewice version 3.2[END_REF] and Bu et al [START_REF] Bu | Numerical simulation of an airfoil electrothermal anti-icing system[END_REF]. There are issues of inaccuracy in using such simple approaches on heated walls, as mentioned by Morency et al [START_REF] Morency | Heat and mass transfer in the case of anti-icing system simulation[END_REF]. To overcome these issues, it is possible to improve the heated boundary-layer resolution by solving the Navier-Stokes equations, as proposed for instance by Croce et al [START_REF] Croce | Cht3d -fensap-ice conjugate heat transfer computations with droplet impingement and runback effects[END_REF], Wright [START_REF] Wright | User's manual for lewice version 3.2[END_REF] or Bu et al [START_REF] Bu | Numerical simulation of aircraft thermal anti-icing system based on a tight-coupling method[END_REF]. It is also possible to replace the integral boundary-layer solver with a solver of the Prandtl boundary-layer equations as done at ONERA [START_REF] Henry | Development of an electrothermal de-icing/anti-icing model[END_REF][START_REF] Chauvin | A robust coupling algorithm applied to thermal ice protection system unsteady modeling[END_REF] with the solver CLICET [START_REF] Aupoix | Couches limites bidimensionnelles compressibles. descriptif et mode d'emploi du code clicet -version 2015[END_REF], or by Morency [START_REF] Morency | Heat and mass transfer in the case of anti-icing system simulation[END_REF]. The latter approach is consistent with the search for codes with low-CPU time consumption. However, for such an approach, the surface grid is not independent of the location of the stagnation point or separation line, which is a constraint for the ice-accretion-simulation workflow, especially in 3D. Additionally, no solution can be produced by such a solver beyond the separation of the boundary layer. Bayeux et al [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF] thus developed an integral-boundary-layer solver in order to solve the dynamic boundary layer (not the simplified algebraic equations), with the purpose of an easy enough extension to 3D solutions on any kind of unstructured grids [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF]. The solver was used successfully for ice-accretion simulations by Radenac et al [START_REF] Radenac | Use of a two-dimensional finite volume integral boundary-layer method for ice-accretion calculations[END_REF]. The laminar thermal boundary layer was solved in a similar integral way in [START_REF] Radenac | An extended rough-wall model for an integral boundary layer model intended for ice accretion calculations[END_REF] under the assumption that the wall temperature is uniform. However, Harry et al [START_REF] Harry | Heat transfer modeling by integral boundary-layer methods towards icing applications[END_REF] showed that this basic one-equation thermal boundary-layer integral method fails at capturing the evolution of the wall temperature for severe wall-heating conditions. Difficulties arise especially for large variations of wall temperature, which is the actual situation for surfaces thermally protected against ice. Complex temperature profiles are indeed impossible to predict with the one-equation integral method.

One solution to this issue is to use a system of integral equations [START_REF] Harry | Heat transfer modeling by integral boundary-layer methods towards icing applications[END_REF] (a multi-equation mo-del) instead of the usual single-equation method so that history effects can be taken into account through additional degrees of freedom. As the technique proposed in this work for deriving additional equations is to use a Galerkin-type approximation in the direction normal to the wall, it is worth mentioning Graebel et al's article [START_REF] Graebel | A galerkin method for calculation of laminar thermal boundary layers[END_REF] concerning the use of such a method for the solution of the thermal boundary layer. Their paper addresses the resolution of both the dynamic and thermal steady-state, incompressible, laminar boundary layers in 2D. The velocity and temperature profiles in the direction normal to the wall are projected onto orthonormal bases of functions, based on Laguerre polynomials.

The system of partial differential equations that governs the boundary-layer behavior then becomes a system of ordinary differential equations with respect to the streamwise coordinate. This system is solved by a so-called predictor-corrector approach. Additionally, specific functions are introduced by Graebel et al in order to speed-up the convergence of the resolution. However, it has to be mentioned that the solved system of equations is actually a reshaped set of equations after Falkner-Skan transformations, which are well adapted to the 2D incompressible laminar regime. In addition, their approach was only validated on a test-case where the wall temperature is constant.

The aim of the present paper is therefore to present and discuss a multi-equation method based on an integral approach for the solution of the steady-state energy equation in the boundary layer. The method has to be compliant with simulations of non-uniformly heated walls, in order to be able to model the use of ice protection systems. As in Graebel et al's article [START_REF] Graebel | A galerkin method for calculation of laminar thermal boundary layers[END_REF], attention is limited to the 2D laminar flow regime which is important for icing applications, as the flow near the leading edge is generally laminar. However, it is required that the model should be compliant with future extensions to 3D configurations and to the turbulent regime (meaning that, for instance, no Falkner-Skan transformation has to be introduced). To meet these constraints, the classical boundary-layer energy equation is used to derive our system of integral equations by applying the Galerkin method with respect to the y-variable (normal direction to the wall). Since this equation is a scalar equation, with no specific 3D effects, the extension to 3D is expected to be straightforward. Contrary to Graebel et al's article [START_REF] Graebel | A galerkin method for calculation of laminar thermal boundary layers[END_REF], the solution of the sole energy equation in the boundary layer will thus be addressed. The solution of the dynamic boundary layer will be supposed to be known and given by another solver, in a decoupled manner which is suitable for incompressible flows. However, since a variable field of temperature in the boundary layer makes the density field variable too, the assumption of constant density will not be made in the derivation of the equations, and the impact of compressibility effects will be discussed. The method presented here is not limited to aircraft in-flight icing applications. In particular, since integral boundary layer methods have already been developed to study wind turbines [START_REF] Ozdemir | Solving the integral boundary layer equations with a discontinuous galerkin method[END_REF], and these can also be thermally protected against icing [START_REF] Sunden | On heat transfer issues for wind energy systems[END_REF], the method presented here can also be applied in this area. Integral boundary layer methods may also be used for aerodynamic design in the aeronautical industry [START_REF] Lokatt | Finite-volume scheme for the solution of integral boundary layer equations[END_REF] or for the modeling of wall mass transfers [START_REF] Prieling | Analysis of the wall mass transfer on spinning disks using an integral boundary layer method[END_REF] (and more generally for the rapid design and optimization of any system involving heat and mass transfer induced by forced convection). Nevertheless, in the present work, the method will be tested in representative cases of icing applications only.

The paper is divided into 4 parts. The first part recalls the boundary-layer energy equation and the corresponding assumptions on which the proposed solution method is based (section 3.1.2). The solution method is shown in section 3.1.3. This is an original method where the evolution in the normal direction to the wall is discretized with a Galerkin method (yielding to a system of integral equations) whereas the streamwise evolution is discretized with the finite volume method. The basis of functions used with the Galerkin method is less optimized for laminar regime than Graebel et al's approach [START_REF] Graebel | A galerkin method for calculation of laminar thermal boundary layers[END_REF]. However, it should be possible to extend the method to the turbulent regime in the future (with several adjustments which are not discussed in this article). The last part of the article discusses the use of the proposed method on test-cases representative of in-flight icing conditions, especially with non-uniform wall temperature, which are rarely addressed with integral methods in the literature (section 3.1.4).

Laminar boundary-layer energy equation

The goal of this work is to solve an energy equation for the 2D compressible laminar boundary layer, assuming that the flow is steady outside of the boundary layer. The major point of the compressible assumption is to allow the density to be variable, which is mainly due to the dilatability in the case treated here.

Let us consider the variation of the enthalpy h(t, x, y) as a function of time (t) and position in a 2D boundary layer where x is the streamwise direction and y is the direction normal to the wall. The equation reads [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF] :

ρ∂ t (h) + ρu x ∂ x (h) + ρu y ∂ y (h) = ∂ t (p) + u x ∂ x (p) -∂ y (ϕ) + Ḋ (3.1)
where ρ(t, x, y) is the density, u x (t, x, y) and u y (t, x, y) are the flow velocities in the x and y direction, respectively, p(t, x, y) is the pressure. Besides, the heat flux reads :

ϕ = -k∂ y (T ) (3.2)
where T (t, x, y) is the temperature and k is the thermal conductivity of the fluid (generally a function of T ). Finally, the viscous dissipation reads :

Ḋ = τ xy ∂ y (u x ) (3.3)
The viscous shear stress is τ xy = µ∂ y (u x ), where µ is the dynamic viscosity of the fluid (also depending on T in general). Additionally, it is worth recalling that the other equations governing the 2D compressible laminar boundary layer are as follows [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF] : For the numerical integration presented in section 3.1.3, it is of practical interest to derive an equivalent equation for the thermal boundary layer by replacing T by a new unknown θ(t, x, y) = T e (x)-T (t, x, y) which by definition vanishes at the edge of the boundary layer (where the temperature is T e ). It is worth noticing that the temperature T e depends only on x, as do the other variables at the edge of the boundary layer, pressure p e and velocity u xe , because steady-state is assumed and x is the streamwise direction.

∂ t (ρ) + ∂ x (ρu x ) + ∂ y (ρu y ) = 0 (3.4) ρ∂ t (u x ) + ρu x ∂ x (u x ) + ρu y ∂ y (u x ) = -∂ x (p) + ∂ y (τ xy ) (3.
First, the following equation for T is derived from equation (3.1) :

ρc p ∂ t (T ) + ρc p u x ∂ x (T ) + ρc p u y ∂ y (T ) = u x d x (p e ) + ∂ y (k∂ y (T )) + Ḋ, (3.7) 
which stems from the fact that the specific heat capacity at constant pressure is c p = (∂ T (h)) p . This equation also accounts for the fact that equation (3.6) implies that p(t, x, y) = p e (x). Equation (3.4) allows to further reshape equation (3.7) :

c p ∂ t (ρT ) + c p ∂ x (ρu x T ) + c p ∂ y (ρu y T ) = u x d x (p e ) + ∂ y (k∂ y (T )) + Ḋ (3.8)
Since the temperature T e (x) at the edge of the boundary layer depends only on x, the following equation on T -T e = -θ is obtained by simply subtracting T e × equation (3.4) from equation (3.8).

c p ∂ t (ρ(T -T e )) + c p ∂ x (ρu x (T -T e )) + c p ∂ y (ρu y (T -T e )) + c p ρu x d x (T e ) = u x d x (p e ) +∂ y (k∂ y (T -T e )) + Ḋ (3.9)
The terms linked to the derivatives of p e and T e can be further simplified because the flow outside of the boundary layer is assumed to be inviscid and steady. Under these assumptions, the x-momentum equation of the system of Euler equations simply reads :

ρ e u xe d x (u xe ) = -d x (p e ) (3.10)
Considering that the total enthalpy h i,e outside of the boundary layer is constant, it can also be stated that :

d x (h i,e ) = 0 = c p e d x (T e ) + 1 2 d x u x 2 e (3.11)
Finally, equations (3.10) and (3.11) imply that :

d x (p e ) = - ρ e 2 d x u x 2 e = ρ e c p e d x (T e ) (3.12)
Consequently, equation(3.9) writes :

c p ∂ t (ρθ) + c p ∂ x (ρu x θ) + c p ∂ y (ρu y θ) = ρc p -ρ e c p e u x d x (T e ) + ∂ y (k∂ y (θ)) -Ḋ (3.13)
Eventually, if the specific heat capacity is assumed constant, which is a fairly good assumption for air in the relatively narrow range of temperatures investigated in the field of icing (around 223 K to 373 K), the equation governing the relative temperature θ in the boundary layer reads :

∂ t (ρc p θ) + ∂ x (ρu x c p θ) + ∂ y (ρu y c p θ) = (ρ -ρ e ) c p u x d x (T e ) + ∂ y (k∂ y (θ)) -Ḋ (3.14) 
Although equation (3.14) is unsteady, it will be used to build an iterative numerical method that converges towards the steady-state solution. This method is easy to generalize in 3D and on any surfaces. More specifically, the equation that will be solved for this purpose is the following one :

∂ t (ρ e c p θ) + ∂ x (ρu x c p θ) + ∂ y (ρu y c p θ) = (ρ -ρ e ) c p u x d x (T e ) + ∂ y (k∂ y (θ)) -Ḋ. (3.15)
Using a density independent of y in the time derivative does not affect the steady-state solution and will simplify the resolution.

There is no major difficulty in deriving the equation for the 3D case, where a crosswise z-direction must be defined (the only additional assumption is that of irrotationality of the edge flow). Equation (3.15) is simply replaced by :

∂ t (ρ e c p θ) + ∂ x (ρu x c p θ) + ∂ y (ρu y c p θ) + ∂ z (ρu z c p θ) = (ρ -ρ e ) c p (u x ∂ x (T e ) + u z ∂ z (T e )) +∂ y (k∂ y (θ)) - Ḋ (3.16)

Solution method

The solution method proposed here is a hybrid method of Galerkin type with respect to the y variable and of finite volume type with respect to the other space variables x and z. It has the advantage of requiring only a 2D surface mesh (in 3D) or a 1D linear mesh (in 2D), which not only reduces the computational cost but also greatly simplifies the implementation of the method. Indeed, in practice, the same situation as in the case of an integral method is faced, with the difference that a system of integral equations must be solved (with a dimension depending on the order of the Galerkin method) instead of a single equation for the integral thickness of the boundary layer. In the following, in order to simplify the notations, the method will be presented in the 2D case but its generalization in 3D does not present any theoretical difficulty.

Galerkin method with respect to the y variable

The Galerkin method consists in searching for an approximation of the solution θ(t, x, y) of the following form :

θ(t, x, y) def = N j=1 θ j (t, x)φ j ( y δ T (t, x) ) (3.17)
where δ T denotes the thickness of the thermal boundary layer, the θ j are the modal coordinates (all having the dimension of a temperature) and the φ j are the basis functions defined as :

φ j (ŷ) = π j (ŷ)(1 -ŷ) q if ŷ ∈ [0, 1], φ j (ŷ) = 0 if ŷ ∈ [1, +∞[, (3.18) 
where ŷ = y δ T , q is a strictly positive constant and π 1 , . . . , π N are N independent polynomials, whose expressions will be specified later (the degree of π j is less than or equal to j). It is worth mentioning that the approximate solution θ(t, x, y) verifies by construction the boundary condition θ(t, x, δ T (t, x)) = 0.

As N increases, θ is a polynomial of increasingly higher degree in y and thus tends to oscillate in the vicinity of y = δ T . However since the integer part of q -1 corresponds to the number of zero derivatives of θ at y = δ T , q allows to control the behaviour of the solution in the vicinity of the boundary layer edge. At fixed N, if q is large enough, the oscillations can be suppressed but if q is too high, the solution tends to flatten in the neighborhood of y = δ T which leads to a decrease in the accuracy of the method. After various numerical tests, the choice q = max(2, N ) appeared to be a good compromise and this value was thus adopted for all the numerical tests which will be presented later in the paper.

From equations (3.17) and (3.18), appears that, at fixed t and x, the approximate solution θ is determined by N + 1 independent parameters, the modal coordinates θ 1 , . . . , θ N and the thermal boundary layer (approximate) thickness δ T . One of these degrees of freedom can be easily removed.

Indeed, using the Dirichlet boundary condition, θ = θ w def = T e -T w in y = 0, the following relationship is obtained :

N j=1 θ j φ j (0) = θ w (3.19)
Hence, if the π j polynomials are chosen such that π 1 (0) = 1 and π j (0) = 0 for j > 1, this equation greatly simplifies :

θ 1 = θ w (3.20)
The N unknowns of the problem are thus finally θ 2 , . . . , θ N , δ T and N independent equations must now be derived from the master equation (3.15). To do this, equation (3.15) just needs to be projected onto the space P N -1 of polynomials in y of degree less than or equal to N -1. The solution of equation (3.15) must therefore verify :

∀P ∈ P N -1 , +∞ 0 [∂ t (ρ e c p θ) + ∂ x (ρc p u x θ) + ∂ y (ρc p u y θ) -∂ y (k∂ y θ)) -(ρ -ρ e )c p u x ∂ x T e + Ḋ]P (y)dy = 0 (3.21)
P N -1 is a vector space of dimension N , it suffices to take for P the N monomials ψ i defined by

ψ i (y) def = C i y i-1 for i = 1 . . . N
, where the C i are normalization constants whose values will be specified later on. By replacing in equation (3.21), the exact solution θ by the approximate solution θ and the polynomial P by each of the monomials ψ i , the following system of equations is obtained :

∀i = 1 . . . N, ∂ t M i + ∂ x F x,i = S i (3.22)
where by definition (the variables x and t being omitted for clarity) :

M i def = ρ e c p +∞ 0 θ(y)ψ i (y)dy (3.23) F x,i def = +∞ 0 ρ(y)c p u x (y) θ(y)ψ i (y)dy (3.24) S i def = +∞ 0 ψ i (y)∂ y (k∂ y θ)(y)dy - +∞ 0 ∂ y (ρc p u y θ)(y)ψ i (y)dy +c p ∂ x T e +∞ 0 (ρ(y) -ρ e )u x (y)ψ i (y)dy - +∞ 0 Ḋ(y)ψ i (y)dy (3.25)
It can be seen that the application of the Galerkin's method with respect to the variable y leads to a system of conservation laws whose unknowns are the first N moments of the temperature profile (up to a multiplicative constant) and whose terms F x,i and S i correspond respectively to the convective fluxes in the x direction and to the source terms. The physical meaning of the different terms composing S i will be discussed later on.

For the system (3.22) to be mathematically well-posed, the relation between the moments M i (i = 1 . . . N ) and the temperature profile θ must be bijective so that the terms F x,i and S i can be considered as implicit functions of the moments. The necessity of this condition will become clear in the next subsection dedicated to the finite volume discretization of the system (3.22). One must therefore address the question of the computation of θ j for j = 1 . . . N and δ T from the first N moments of θ, i.e. the question of the inversion of the system corresponding to the equation (3.23) for i varying from 1 to N . For this purpose, using the expression of θ, the equation (3.23) can be rewritten in the following matrix form :

M i = N i=1 A ij (δ T )θ j (3.26)
where the coefficients of the matrix A ij (δ T ) are given by :

A ij (δ T ) def = +∞ 0 ρ e c p φ j ( y δ T )ψ i (y)dy = C i δ i T ρ e c p 1 0 π j (ŷ)(1 -ŷ) q ŷi-1 dŷ (3.27)
From the point of view of the finite volume discretization of system (3.22) which will be exposed in the following section, the computation of δ T and of the θ j from the M i needs to be simple and always possible. For this, it is possible to play on the choice of the polynomials π j . Let us set by definition :

π j (ŷ) = B j0 ŷ0 + B j1 ŷ1 + B j2 ŷ2 + . . . + B jj ŷj (3.28)
For the polynomial of lowest degree, π 1 , it is natural to take a constant polynomial and thus to set : π 1 ≡ 1 (since all polynomials can be normalized arbitrarily). For the other polynomials (j > 1), it was shown that it is necessary to have π j (0) = 0 to get the simple relation θ 1 = θ w . So, for all j = 2 . . . N , the polynomials π j read :

π j (ŷ) = B j1 ŷ1 + B j2 ŷ2 + . . . + B jj ŷj (3.29)
At j fixed, j conditions have to be imposed in order to fix the values of the coefficients B jk . We have chosen to impose that the matrix A ij is lower triangular (which ensures the possibility to inverse the system (3.26)) and that its diagonal terms verify the normalization condition A ii = δ i T ρ e c p . At j fixed, this leads to the following linear system of unknowns (B jk ) k=1...j :

           j k=1 1 0 (1 -ŷ) q ŷi-1+k dŷ B jk = 0, ∀i = 1, . . . , j -1, j k=1 1 0 (1 -ŷ) q ŷj-1+k dŷ B jk = 1 C j (3.30)
The coefficients of this system Π ik = 1 0 (1 -ŷ) q ŷi-1+k dŷ can be easily calculated by recurrence, leading to :

Π ik = q!(k + i -1)! (q + k + i)! (3.31)
At a fixed k, they are all the smaller as q and i are large. To make sure that all the B jk are of the same order of magnitude whatever the value of j between 2 and N , we have chosen to set :

C j = 1 0 (1 -ŷ) q ŷj-1 dŷ -1 = (q + j)! q!(j -1)! (3.32)
It is worth noticing that at the continuous level (or if a computer of infinite precision is used for the computations), the choice of C i has no incidence on the values of the approximated solution θ since only the products θ j π j play a role. The larger π j , the smaller θ j . The normalization is only important in finite precision because it avoids a too large disparity between the θ j and thus allows a better conditioning of the problem. For all j = 2 . . . N , the system (3.30) can be solved analytically but this is not useful as its numerical solution is very fast and does not present any difficulties (except for large j since the system then becomes ill-conditioned). In practice, the system (3.30) is solved numerically once for all when the solver is launched and the values of N and q are fixed.

Let us now return to the problem of computing δ T and θ i knowing the M i . It has already been determined that θ 1 = θ w . In addition, since by construction A 1j = 0 for all j > 1, the first equation of system (3.26) implies :

M 1 = A 11 θ 1 (3.33) 
with :

A 11 = C 1 δ T ρ e c p 1 0 (1 -ŷ) q dŷ = δ T ρ e c p (3.34)
Hence :

δ T = M 1 ρ e c p θ w (3.35)
δ T being known thanks to equation (3.35) and the matrix A ij being lower triangular, the computation of the θ i for i = 2 . . . N is then straightforward.

Finally, let us give some details on the physical meaning and the computation of the source terms S i (i = 1 . . . N ) which are actually composed of four terms according to equation (3.25). The first term of S i :

Φ i ( θ) def = +∞ 0 ψ i (y)∂ y (k∂ y θ)(y)dy
accounts for the effect of the conductive heat transport in the y direction. Integrating by part and using the expression of θ, it can be rewritten as :

Φ i ( θ) = - N j=1 θ j +∞ 0 k δ T ψ ′ i (y)φ ′ j y δ T dy - N j=1 θ j k(0) δ T φ ′ j (0)ψ i (0) (3.36)
which leads to :

             Φ 1 ( θ) = -k(0)C 1 δ -1 T N j=1 θ j φ ′ j (0) i = 1 Φ i ( θ) = -C i (i -1)δ i-2 T N j=1 θ j 1 0 k(ŷ)ŷ i-2 φ ′ j (ŷ)dŷ i = 2 . . . N (3.37)
which can also be written in the following matrix form :

Φ i ( θ) = N j=1 K ij ( θ)θ j (3.38)
The second term of S i :

G i ( θ) = - +∞ 0 ∂ y (ρc p u y θ)(y)ψ i (y)dy
corresponds to the convective heat flux in the y direction. Performing an integration by part, the term G i reads :

G i ( θ) = (i -1)C i +∞ 0 ρ(y)c p u y (y) θ(y)y i-2 dy (3.39)
The third term of S i :

R i ( θ) = c p ∂ x T e +∞ 0 (ρ(y) -ρ e )u x (y)ψ i (y)dy (3.40)
takes into account the influence of the density variations accross the boundary layer. In this equation and the previous one, the density profile is related to the temperature profile using the relation :

ρ(y) = p e rT (y) = p e r(T e -θ(y)) (3.41)
Lastly the fourth term of S i :

Qi = - +∞ 0 Ḋ(y)ψ i (y)dy (3.42)
accounts for the heat production due to viscous forces. It should be noted that for the extension to 3D, the only changes are the following. Equation (3.16) is used as the starting point for the analysis, instead of equation (3.15). Consequently, the system to be solved becomes :

∀i = 1 . . . N, ∂ t M i + ∂ x F x,i + ∂ z F z,i = S i
where there is a cross-wise component F z,i to the convective flux term :

F z,i def = +∞ 0 ρ(y)c p u z (y) θ(y)ψ i (y)dy.
Only the third term of S i , R i , has to be modified to account for the edge-temperature gradient along the cross-wise direction :

R i ( θ) = c p ∂ x T e +∞ 0 (ρ(y) -ρ e )u x (y)ψ i (y)dy + c p ∂ z T e +∞ 0
(ρ(y) -ρ e )u z (y)ψ i (y)dy.

Finite volume method with respect to the x variable

To simplify the notations it is useful to set :

M =    M 1 . . . M N    , F =    F x,1 . . . F x,N    , S =    S 1 . . . S N    , Θ =    θ 1 . . . θ N   
With these notations, the system (3.22) can be rewritten in the following more compact form :

∂ t (M) + ∂ x (F(Θ, δ T )) = S(Θ, δ T ) (3.43)
The finite volume method and the explicit Euler scheme applied to equation (3.43) lead to the following numerical scheme :

M n+1 i = M n i - ∆t ∆x i (F n i+1/2 -F n i-1/2 ) + ∆tS n i (3.44)
where by definition ∆t is the time step, M n i denotes the value of the discrete solution in the mesh cell

C i =]x i-1/2 , x i+1/2 [ at time t n = n∆t, ∆x i = x i+1/2 -x i-1/2 is the size of the cell C i , F n i+1/2
is the numerical flux between the cells C i and C i+1 on the time interval [t n , t n+1 ], and S n i is the discrete value of the source term in the cell C i on the time interval [t n , t n+1 ].

The way to calculate the numerical fluxes and the source terms remains to be specified. As our first objective was simply to verify the potential of our method, we only implemented very simple numerical schemes. On the one hand, an explicit time discretization scheme is used and on the other hand an upwind first order scheme is applied for the computation of the numerical fluxes (by upwinding according to the sign of the velocity u xe ). We have thus taken :

F n i+1/2 = F(Θ n i , δ n T i , u xe (x i+1/2 )) if u xe (x i+1/2 ) > 0 F n i+1/2 = F(Θ n i+1 , δ n T i+1 , u xe (x i+1/2 )) if u xe (x i+1/2 ) ≤ 0, (3.45) 
where the edge velocity used for upwinding is

u xe (x i+1/2 ) = (u xe (x i ) + u xe (x i+1
)) /2, and

S n i = S(Θ n i , δ n T i ) (3.46)
As they only involve smooth functions, all the integrals contained in the expression of the numerical fluxes and source terms can be approximated by using a Gauss-Legendre quadrature formula with q nodes which is exact when the function to be integrated is a polynomial of degree 2q -1. In practice we used a formula with 2N nodes where N is the number of modes of the Galerkin method. We verified on different tests that the integration error was negligible compared to the other approximation errors.

Finally, the proposed method of resolution comes down to the following algorithm :

-Solution initialization : in each cell, set : δ 0 T i = δ D (x i ) where δ D is the dynamic boundary layer thickness and θ 0 1i = θ w , θ 0 2i = 0, . . . , θ 0 N i = 0.

-Time iteration : in each cell, knowing M n i from the previous time step compute first δ n T i and Θ n i by using equations (3.35) and (3.26). Then compute the numerical fluxes and the source terms using Gauss-Legendre quadrature formulas, and finally update the solution using the scheme (3.44).

-End of the computation : Iterate until convergence to the steady state i.e. until a given norm of the residual drops below a predefined threshold.

As the objective is only to compute the stationary solution, it is preferable to choose the largest possible time step to accelerate the convergence. However, the algorithm being explicit, the maximum value of the (local) time step ∆t i is limited by a numerical stability criterion of the form :

Max |u xe,i |∆t i ∆x i , 2κ e N 2 (q + 1) 2 ∆t i (δ n T i ) 2 ≤ CFL max (3.47)
where κ e is the edge value of the thermal diffusivity κ def = k ρc p and CFL max is a numerical parameter that can be taken equal to 1 according to all our numerical experiments (in practice, CFL max = 0.9 was used for the simulations of this article). The first term |u xe,i |∆t i ∆x i is related to the convective flux in the x direction and the second term 2κ e N 2 (q + 1)

2 ∆t i (δ n T i ) 2
is related to the heat diffusion source term. The presence of N 2 is due to the fact that the higher the number of modes, the smaller the characteristic diffusion length scale in the y direction which behaves like

δ T N (q + 1)
. It must be noted that δ T /(q+1) corresponds to the effective boundary layer thickness rather than δ T itself. It will indeed be demonstrated later on that, contrary to δ T , this parameter converges to a constant value when the number of modes N increases. Additionally, the factor 2 is caused by the very usual constraint of a Fourier number criterion being lower than 1/2 in explicit resolution of the heat equation. In future works, the constraint (3.47) can be easily overcome by using an implicit Euler scheme instead of the current explicit Euler scheme.

Regarding the extension to 3D, as the system to be solved is only slightly modified, the same finite-volume method can be used. A standard upwind numerical scheme for unstructured surface meshes will then naturally handle the two components of the convective flux identified earlier.

Results and Discussion

The modal method described in section 3.1.3 has been implemented in a code called BLIM2D. Several test-cases computed with BLIM2D will be discussed in this section in order to show the interest of the method.

Test-case definition

In this paper, wedge air-flow test-cases will be considered. Flat profiles are thus investigated, for which the edge velocity is simply u xe = Kx m (figure 3.1). K and m are two constants which have to be set. K allows to change the Mach number of the test-case, while m is linked to the pressure gradient (and to the angle of the wedge). As a reminder, the well-known Falkner-Skan solutions are the solutions of the wedge-flow dynamic boundary layer. The wedge-flow cases are interesting because they allow to validate the proposed solution method for a large set of academic test cases that are representative of real conditions. For instance, m = 1 corresponds to the air flow in the vicinity of a stagnation point (wedge with an angle equal to π/2), which is a key area for icing applications. It is indeed a laminar region where some ice deposition occurs and where thermal protection systems are usually installed and produce a high amount of heat. This explains the large number of cases with this value of m in the remainder of the article. Further downstream, the flow is accelerated, which can be modelled by wedge flows with m ∈ [0, 1], m = 0 being the flat-plate condition with zero pressure gradient (and constant edge velocity). Further downstream, the flow is finally decelerated, which can be modelled with m < 0 wegde-flows. The wall temperature will be set either constant or linearly varying. The zero temperaturegradient cases are simple enough cases for a basic single-equation integral-boundary-layer method to produce a good solution [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF][START_REF] Harry | Heat transfer modeling by integral boundary-layer methods towards icing applications[END_REF]. However, some aspects regarding the numerical resolution will be specifically investigated in these cases. The expected numerical results will be discussed in section 3.1.4.2 for conditions allowing self-similar temperature profiles (test-case 1 of table 3.1, as discussed later). The grid convergence of the solution will be shown in section 3.1.4.2. The convergence of the solution with the number N of modes will be shown in section 3.1.4.2. In particular, the wall heat flux and the temperature profiles produced by BLIM2D will be analyzed. Table 3.1 -Physical parameters for the test-cases. M is the Mach number at the end of the plate (x = L), T w0 is the wall temperature at x = 0, p ie and T ie are the total pressure and total temperature of the edge flow, respectively. Regarding the non-zero temperature-gradient cases (section 3.1.4.4), they were chosen after some literature review. In an article by Papadakis et al [START_REF] Papadakis | Icing tunnel experiments with a hot air anti-icing system[END_REF], the wall temperature was shown to evolve almost linearly in some cases, with temperature gradient close to -400K/m. The wall temperature is thus warmer at the beginning of the geometry (physical stagnation point) than further downstream. Test-case 4 is expected to model these conditions (table 3.1). For numerical purposes, test-cases where the temperature gradient is zero or positive (+400K/m) are also considered (test-cases 3 and 5, respectively).

Test-case L (m) m M p ie (Pa) T ie (K) T w0 (K) ⃗ ∇T w • ⃗ e x (K/
For these cases, the solution will be compared against a numerical reference solution provided by the code CLICET [START_REF] Aupoix | Couches limites bidimensionnelles compressibles. descriptif et mode d'emploi du code clicet -version 2015[END_REF], which is a quite widely used solver for boundary-layer modeling [START_REF] Aupoix | Roughness corrections for the kω shear stress transport model : status and proposals[END_REF][START_REF] Chedevergne | Analytical wall function including roughness corrections[END_REF][START_REF] Henry | Development of an electrothermal de-icing/anti-icing model[END_REF][START_REF] Chauvin | A robust coupling algorithm applied to thermal ice protection system unsteady modeling[END_REF]. Indeed, CLICET directly solves the boundary layer equations (Prandtl equations), and especially equation (3.1), by using a 2D mesh and a finite volume method. It should be noted that the velocity fields in the boundary layer are not strictly the same for the two codes. BLIM2D is fed with the integral boundary layer solution exposed in the article of Bayeux et al [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF] (see appendix 3.1.5 for more information), whereas CLICET uses its own velocity field which is solved jointly with the temperature field. CLICET's velocity field can thus be affected by low effects of compressibility and moderate effects of dilatability. This potential source of discrepancies between BLIM2D and CLICET will be addressed in section 3.1.4.3. To be more specific, in BLIM2D, the streamwise velocity profile u x (y) is computed using the integral method described in Bayeux et al [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF], while the normal velocity profile is given by the following equation :

u y (y) = y 0 -∂ x (u x ) (y ′ )dy ′ , ( 3.48) 
under the assumption that the velocity field is incompressible (which is consistent with Bayeux's model assumptions [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF]). Bayeux's velocity profile is defined for 0 ≤ y ≤ δ, where δ is the dynamic boundary-layer thickness produced by the dynamic-boundary-layer integral model [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF]. For y > δ, the velocity profile is extended with

u x = u xe .
It should be noted (see appendix 3.1.5) that the model has also been validated against an empirical relation for a non-uniform wall temperature.

Convergence of the method

The convergence of the method is assessed by refining the finite-volume grid and by increasing the number of modes of the Galerkin method.

For both investigations, the edge-flow conditions are those of test-case 1 in table 3.1 : a stagnation point (m = 1), with a low Mach number M = 0.01 at the end of the plate (L = 0.25 m) and a constant wall temperature T w = 264.15K. As in all the following sections, uniform grids are used for which the number of cells N x lies between 64 and 512.

The Mach number is very low as well as the difference between the wall temperature and the edge-flow temperature. The very low Mach number implies low dissipation in the boundary layer, whereas the low temperature difference produces low dilatation effects and almost constant density in the boundary layer. The dynamic boundary layer is thus expected to remain unaffected by the wall heating. Both effects are favorable conditions for the self-similar behavior of the thermal boundary layer.

Description of the investigated test-case

First of all, the input parameters of simulations are of various kinds : the physical conditions given in table 3.1 (boundary conditions at the edge of the boundary layer and at the wall), the velocity field in the boundary layer and the numerical parameters N and N x . Regarding the velocity field inside the boundary layer (for N x = 256), figure 3.2 confirms that the velocity field provided to BLIM2D is not exactly the same as the reference CLICET velocity profile, although the discrepancies are small. For N x = 256 and N = 5, figure 3.3a shows that for the first equation of system (3.22), the heat-flux source term Φ 1 is the only source term which does not vanish. For the second equation (figure 3.3b), the dissipation Q2 and density R 2 terms still vanish. The same behaviour is observed for the other equations, 3 to N (but it is not shown here for the sake of conciseness). This is consistent with the fact that the test-case running conditions were chosen so that dissipation is negligible and density varies little in order to achieve self-similar temperature profiles. It must be noted that the convective term G 2 is of the same order of magnitude as the heat flux term Φ 2 (although remaining lower). The same behavior is observed for the other equations, 3 to N (however, the source terms become lower for higher number of equations).

Figure 3.4 confirms that self-similar temperature profiles are produced by BLIM2D, here for N = 4 : all the temperature profiles are superimposed at every point of the grid. 

Grid convergence

The finite volume method employed for the solution is not the most original part of this article. Therefore this section only aims at showing that proper convergence is achieved when using refined surface grids. For a resolution with N = 4 equations, figure 3.5 shows that the heat flux ϕ w is almost constant. There are some troubles in the vicinity of the inlet boundary condition at x/L = 0. The results become smoother there for finer meshes. Otherwise, all mesh sizes N x ∈ {64, 128, 256, 512} produce similar results. The computation of the relative error in the wall heat flux (compared to the finer mesh) shows that N x = 256 allows errors lower than 10 -5 for x/L > 0.1 (figure 3.6). 

Convergence of the Galerkin method

For the convergence of the Galerkin method, a uniform grid with N x = 256 points was used. The number of modes is increased from N = 1 to N = 5 to show the convergence. Since the Galerkin method is the core of this article, it is worth discussing several aspects of the solution which are affected by the number of modes employed.

For the self-similar solution investigated here, where the temperature profiles are the same for all values of x, equation 3.17 shows that the weights θ j are expected to be constant. Figure 3.7a shows θ 1 which is strictly equal to θ w as imposed by equation 3.20. Another example is shown with θ 2 in figure 3.7b. A constant value is obtained for all values of N (actually, a small variation of less than 1% is obtained), which indicates a good behavior of the solution. However, for a given j, the θ j are not expected to converge when N increases. For instance, figure 3.7b shows that |θ 2 | grows when N increases (obviously, θ 2 was set to 0 for N = 1). The same behavior was observed for θ 3 , θ 4 and θ 5 (the small variation can reach a few percents for θ 4 and θ 5 ), but it is not shown for the sake of conciseness. It must also be mentioned that, for a given value of N , the weights θ j tend to decrease when j increases. For instance, figures 3.7a and 3.7b show that θ 1 is equal to θ w whereas θ 2 /θ w is of the order of 10 -2 to 10 -1 . This reflects the fact that each additional mode contributes to the solution less and less strongly. As explained in section 3.1.3, the thermal-boundary-layer thickness δ T is an output of the numerical method. Figure 3.8 shows that it does not depend on x/L, which is consistent with the fact that the boundary layer thickness is constant for m = 1 [START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF]. The figure also demonstrates that δ T is not the same for all values of N . This is actually expected because equation (3.35) implies that δ T is proportional to C 1 = q + 1 = max(N + 1, 3), via M 1 (for self-similar temperature profile and constant δ T ). δ T /(q + 1) was thus also plotted in figure 3.8 (dashed lines). A non-monotonic convergence is obtained for this parameter, which changes very little. The reference δ T in figure 3.8 was provided by CLICET. The definition of δ T is actually not the same for CLICET (height at which θ reaches 0.01 × θ w ) and for BLIM2D (height at which the presumed temperature profile of equation (3.17) reaches 0). In order to compare between the temperature profiles produced by CLICET and by BLIM2D, it is mandatory to define a common scale for the y coordinate. In the remainder of the article, this scale will be the thickness produced by CLICET, δ T,ref .

Figure 3.8δ T for N = 1 to N = 5, and for the reference CLICET solution (solid lines). δ T /(q + 1) for N = 1 to N = 5 (dashed lines). Test-case 1, N x = 256. Figure 3.9a shows the non-dimensional temperature profiles produced by BLIM2D for N = 1 to N = 5 modes, at x/L = 1 (the temperature profile is self-similar, so any value of x/L gives the same solution, except for small disturbances in the vicinity of x/L = 0). The agreement between the BLIM2D solutions and the reference solution is good, especially for N = 3 to N = 5. To better quantify the errors in the BLIM2D solutions, three error norms defined as follows are plotted in figure 3.9b. The L 1 norm is defined as :

ε L1 = 2 L L L/2 1 δ T,ref δ T,ref 0 |θ(x, y) -θ ref (x, y)|dydx, (3.49)
the L 2 norm is defined as :

ε L2 = 2 L L L/2 1 δ T,ref δ T,ref 0 |θ(x, y) -θ ref (x, y)| 2 dydx 0.5 , (3.50)
the L ∞ norm is defined as :

ε L∞ = max x∈[L/2,L] max y∈[0,δ T,ref ] (|θ(x, y) -θ ref (x, y)|) . (3.51)
For all three norms, the error decreases from N = 2 to N = 4. N = 5 does not allow to make the error drop further. It has to be noted that the L ∞ error is lower than 0.01 K, i.e. lower than 1 % of the temperature difference between the wall and the edge of the boundary layer. This is really low for an error in temperature for icing applications. The main explanation for this residual error is that for this case, as mentioned earlier, the source term G i linked to the convection in the y direction cannot be neglected for the equations 2 to N (equation (3.39)). Since the velocity fields are not exactly the same for CLICET and BLIM2D, the fact that G i is not negligible is a cause of the residual error in ϕ w : the use of the reference velocity field provided by CLICET in BLIM2D for u y allows to decrease the relative error in St to 4 • 10 -3 . Additionally, an intrinsic source of error of the method is due to the definition used for the velocity profile u y for δ < y ≤ δ T . The use of equation ( 3 

Influence of the wall to free-stream temperature ratio

In order to see the effect of the sole wall temperature on the solution (at fixed edge temperature), the conditions of test-case 2 were used (table 3.1). These conditions are the same as test-case 1, except that the edge-velocity exponent m can change and the wall temperature can be increased to values investigated in further test-cases : T w ∈ {273.15, 323.15, 373.15} K (meaning that T w -T e ∈ {10, 60, 110} K). The same grid was used as in section 3.1.4.2, so N x = 256.

Influence on the velocity profile For m = 1, figure 3.11a shows that the higher the wall temperature, the higher the discrepancy between the reference velocity profile and the profiles used in BLIM2D, that do not account for any effect of the temperature on the density changes.

It has to be noted that m = 1 provides a better overall agreement between BLIM2D and CLICET on the velocity profiles (even up to T w -T e = 110 K) than any other value of pressuregradient exponent m, as shown in figure 3.11b. Less accelerated (m = 1/3 or m = 0) or decelerated flows (m = -0.01961) exhibit larger L 2 relative errors in the velocity :

ε r,ux,L2 = 2 L L L/2 1 δ ref δ ref 0 u x (x, y) -u xref (x, y) u xref (x, y) 2 dydx 0.5 , ε r,uy,L2 =   2 L L L/2 1 δ ref δ ref 0 u y (x, y) -u y ref (x, y) u y ref (x, y) 2 dydx   0.5 (3.53)
Additionally, the errors tend to increase when T w -T e is increased (except incidentally the error in u y for T w -T e = 10 K). Finally, the relative error is larger in u y than in u x . However, while the relative error increases when m decreases for u x , there is no monotonic trend for the evolution of ε r,uy,L2 with respect to m. 

Influence of the wall temperature gradient

Test-cases more representative of flight conditions are addressed in this section. In-flight icing often occurs for moderate Mach numbers. Here, the value M = 0.25 was retained. Several conditions of wall temperature are investigated (cases 3 with constant temperature, 4 with negative walltemperature gradient and 5 with positive wall-temperature gradient, see table 3.1). Additionally, the number of grid elements is still N x = 256 for all the simulations.

The relative errors in velocity profile of test-cases 3, 4 and 5 are superimposed on the test-case 2 curves in figure 3.11b (test-case numbers using a font color associated with the value of m). For the cases of non-zero gradient of temperature, the associated wall temperature is approximated, since it is not constant. The order of magnitude of the relative errors in the streamwise velocity is little affected by the changed conditions. However, for the normal velocity, the error can be higher. In particular, the relative error can even largely exceed 100 % for some cases : 1) where u y becomes low in a fairly extensive region near the wall (m = 1/3, ⃗ ∇T w • ⃗ e x = 0 K/m), 2) where the sign of u y changes along y

(m = 1/3, ⃗ ∇T w • ⃗ e x = 400 K/m ; m = 0 or -0.1961, ⃗ ∇T w • ⃗ e x = -400 K/m).
Regarding the relative error in the wall heat flux, figure 3.12 shows the errors for test-cases 3, 4 and 5 in the same way as figure 3.11b for the error in the velocity. The number of modes is N = 4 for all the solutions of this figure. The relative error exceeds 100 % for test-case 4 because the heat flux changes sign, as shown later on. The relative error is thus very large in the area where the heat flux vanishes. Otherwise, the same orders of magnitude of error are retrieved as for the very-low-Machnumber case 2. Moreover, the difficulties of the detailed analysis of the m = 1 case persist. The main conclusion is however that the relative error in heat flux does not exceed 7 % for the cases investigated, which is mainly due to the errors in input-velocity profiles. This error is deemed reasonable for the envisioned applications.

In the remainder of this section, a more detailed analysis of the m = 1 and m = -0.01961 cases is made. Indeed, m = 1 is the stagnation-point condition, which is a key area for icing applications as already pointed out earlier. Besides, the decelerated case m = -0.01961 exhibits the highest relative errors in heat flux.

Uniform temperature, m=1 First, the test-case 3 with a constant wall temperature is investigated and N ∈ {3, 4, 5}. Figure 3.13 shows the Stanton number evolution as well as the relative error compared to the reference solution. The solution for N = 4 achieves convergence in number of modes, similarly to the low Mach-number condition investigated earlier. The relative error increases along the profile, reaching 2 % for x/L = 1. This is actually consistent with the fact that the error in the velocity was also observed to be increasing with x/L (which is not shown, for the sake of conciseness).

The solution is also good for the temperature profiles. The two temperature profiles shown in figure 3.14 are very similar and the profiles produced by the various values of N are quite satisfactory.

Uniform temperature gradient -400 K/m, m=1

The negative wall-temperature-gradient testcase is such that the wall-temperature is 373.15 K for x/L=0 and 273.15 K for x/L=1. The wallheat-flux is originally positive because the wall is warmer than the flow (and so is St, figure 3.15a). Nevertheless, since the wall is colder further downstream, the air-flow eventually carries enough heat for the wall-heat-flux to change sign, around x c /L = 0.75 here. For x/L > x c /L, the wall actually cools the air-flow. The area in the vicinity of x c /L is difficult to capture (the N = 3 curve starts departing from the reference curve there). Increasing N is extremely beneficial for capturing the whole trend further downstream.

The temperature profiles shown in figure 3.15b are indeed not always monotonic (x/L = 0.875 and x/L = 1 for instance). The heat transportation by the air-flow actually heats the bottom part of the profile. This is more and more obvious for increasing values of x/L. This kind of profile is difficult to capture with temperature profiles in the form of equation (3.17). Increasing the number of modes N allows higher-degree (N + q) polynomials for the modeling of the temperature profile. Convergence The error in the temperature profile increases at x/L = 1. This is partly due to the fact that the error in the vertical velocity profile is larger at this location than upstream. This effect is even more pronounced because at this location, the vertical convection source term G has a greater relative importance in the overall balance. Moreover, the need to locally refine the mesh to follow the increasing gradient of the solution is not totally excluded. Despite this weakness, the reference solution is very well reproduced up to x/L = 0.875 and the error on the Stanton number remains acceptable. 

Uniform temperature gradient +400 K/m, m=1

The positive wall-temperature-gradient testcase is such that the wall-temperature is 273.15 K for x/L=0 and 373.15 K for x/L=1. The wall thus keeps heating the air-flow for increasing values of x/L. Figure 3.16 shows that this situation is less challenging for the modeling than negative wall-temperature gradients. Despite the high level of wall temperature gradient addressed, the conclusions are quite similar to the zero-temperature gradient configuration. The solution is converged for N = 4. As shown in figure 3.16a, the wall heat-flux is accurately predicted (the relative error is actually lower than 2 %). The temperature profiles are almost self-similar and they are accurately predicted by the Galerkin approach. As for m = 1, the slope of the error in St versus x/L is consistent with the slope observed for the error in the velocity (which also decreases with x). This confirms the major effect of the velocity profile provided as input to the calculation. Besides, the catastrophic level of error for low x/L is actually deemed to be less representative of the behavior of the method than the final 4 % error. A growing error in the dynamic-boundary-layer resolution was indeed also observed in the vicinity of x/L = 0 for decelerated wedge flows in the paper of Bayeux et al [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF] but there was not such a strong error in the decelerated areas on real airfoils. Regarding the temperature profiles, self-similarity is almost retrieved and all values of N produce similar levels of error, which are higher than for m = 1 (figure 3.17b).

As for m = 1, it has to be noticed that these conclusions remain valid for a heated wall with positive wall-temperature-gradient (test-case 5).

Uniform temperature gradient -400 K/m, m=-0.01961 Finally, the decelerated flow with negative wall-temperature-gradient is even more challenging for the model than for m = 1. The same conclusions can be drawn, but with higher levels of error, as shown in figure 3.18. The number of modes required for achieving convergence is also larger (N = 12). The temperature profile is highly disturbed by the advection of heat from upstream to downstream (figure 3.18b). Increasing the number of modes N allows to better capture the temperature profiles, especially in the vicinity of the wall. 

Discussion about the computational time

It should be noted that the performance of the proposed method in terms of computational time has not been studied in this work. In particular, no effort has been made to optimize the code used. However, we can mention that the simulations performed with N = 4 to 5 modes, which are generally of sufficient accuracy, require only a few tens of seconds of computation on a simple single-core computer.

On the other hand, the computational time increases very quickly with the number N of modes because of the very restrictive stability condition (in O(1/N 2 )) on the time step. The future use of a totally implicit time integration method, allowing to get rid of the stability condition, should allow a gain of several orders of magnitude on the number of time steps necessary to reach the stationary solution and thus significantly increase the performance of the method. Moreover, it should be kept in mind that for applications to aircraft in-flight icing, an important part of the expected time saving comes from the fact that the method should make it possible to replace iterative Navier-Stokes calculations by a viscous-inviscid-interaction approach, which is much less costly because it requires much less dense meshes near the walls.

Conclusion

In this paper, an original numerical method has been presented to solve laminar thermal boundary layers with non-uniform wall boundary conditions. This new method is based on the coupling between a modal method (Galerkin method) in the normal direction to the wall and a finite volume method in the tangential directions, which allows to use only a surface mesh like an integral method.

Many numerical tests were performed to evaluate its accuracy, to determine the number of modes needed, and to ensure that the method is able to correctly compute the wall heat flux even in the presence of very large wall temperature variations. A series of academic test cases was used, corresponding to wedge flows, representative of the different possible situations encountered on a real airfoil protected by a thermal anti-icing or de-icing system : stagnation point flow, accelerated flow, decelerated flow, with positive or negative wall temperature gradient. The solutions obtained with the new method have been compared to those obtained with a finite volume method applied directly to the Prandtl equations of the boundary layer (ONERA's CLICET code). With only 5 modes, it has been shown that in all cases the relative error on the wall heat flux did not exceed a few percent which is quite sufficient for the targeted applications considering the numerous other sources of uncertainty. It has also been shown that the origin of this error comes for a large part from the error committed on the prediction of the velocity field used for the resolution of the thermal boundary layer.

Future work will focus on the extension of the method to the case of turbulent boundary layers and on the implementation of the method in the ONERA 3D icing computational suite [START_REF] Radenac | Igloo3d computations of the ice accretion on swept-wings of the sunset2 database[END_REF][START_REF] Bempedelis | A 3D Finite-Volume Integral Boundary Layer method for icing applications[END_REF]. In particular the possibility of a 2-way coupling with the resolution of the dynamic boundary layer will be considered and the explicit time integration scheme used in the present work will be replaced by an implicit scheme to avoid the restrictive stability condition and save computational time. Considering the good results obtained on the 2D laminar cases presented in this paper, this new method is a promising option to build a fast and robust computational suite to simulate the ice accretion on 3D surfaces protected by a thermal anti-icing or de-icing system.

U = u xe δ 1 u x 2 e δ 2 F = u x 2 e δ 2 u x 3 e δ 3 -u x 3 e δ 2 S =   -u xe δ 1 ∂ x (u xe ) + 1 2 u x 2 e C f (u x 2 e δ 1 -u x 2 e δ 2 )∂ x (u xe ) - 1 2 u x 3 e C f + 2u x 3 e C D   δ 1
, δ 2 and δ 3 correspond to the displacement, momentum and kinetic-energy thicknesses, respectively.

δ 1 = ∞ 0 1 - u x u xe dy δ 2 = ∞ 0 u x u xe 1 - u x u xe dy δ 3 = ∞ 0 u x u xe 1 - u 2 x u xe 2 dy
C f and C D denote, respectively, the friction coefficient and the dissipation coefficient :

1 2 u e 2 C f = τ w ρ , u e 3 C D = 1 ρ ∞ 0 τ xy ∂ y (u) dy
τ w is the skin friction. In Equation (3.55), the first equation is an unsteady version of the well-known von Kármán equation. The second one is the kinetic energy integral equation. In laminar regimes, this system is closed through the use of the following assumed velocity profile :

u x u xe = 1 -(1 + a(H)η) (1 -η) p(H)-1 (3.56)
where η = y/δ, δ is the dynamic boundary-layer thickness, and the parameters a and p are dependent on the shape factor H = δ 1 δ 2 .

The conservative formulation allows the use of a finite volume resolution. A first-order upwind scheme is used and the steady-state solution is reached with a semi-implicit scheme, for which only the source terms are implicit, and with local time-stepping. The interested reader will find further information in Bayeux's article [START_REF] Bayeux | Theory and validation of a 2d finite-volume integral boundary-layer method for icing applications[END_REF]. 

Compléments méthodologiques

Détermination de l'exposant q utilisé dans la base de fonctions ϕ

Cette section vise à apporter des compléments sur la détermination de l'exposant q qui apparait dans la base de fonction φ sur laquelle le profil de température à travers la variable θ est projeté. En section 3.1.3.1, cet exposant a été défini tel que q = max(2, N ) avec N le nombre de modes résolus. Une étude est proposée ici pour discuter ce choix.

Pour rappel, l'équation 3.18 s'écrit, pour ŷ ∈ [0, 1] : φ j (ŷ) = π j (ŷ)(1 -ŷ) q . L'exposant q définit donc le nombre de dérivées nulles de φ j et donc de θ, en y = δ T . On rappelle aussi que l'épaisseur de la couche limite thermique déterminée par la méthode dépend de q et vaut (q + 1)δ T,e avec δ T,e l'épaisseur de couche limite thermique effective, qui présente l'avantage d'être indépendante de q(N ) et donc de converger quand le nombre de modes est augmenté. L'augmentation de q mène donc à calculer une étendue supérieure de la couche limite dans laquelle le profil de température est quasi-nul ce qui implique d'effectuer des calculs, pour estimer les intégrales, dans une zone où la température est quasi constante. Ceci donne aussi plus de poids à la partie supérieure de la couche limite et moins dans la partie inférieure, comme présenté par la figure 3.20. La sous-figure (a) représente le poids donné par la fonction (1 -y/δ T ) q tracé par rapport à δ T,e pour y ∈ [1, δ T,e ] et q variant de 2 à 6. On constate que lorsque q augmente, le poids attribué à toute la zone comprise dans la couche limite thermique effective diminue. La sous-figure (b) représente le poids de la même fonction pour y ∈ [1, δ T,q=6 ] avec δ T,q=6 l'épaisseur de couche limite obtenue pour q = 6. Cette épaisseur vaut pour rappel 7δ T,e . On voit ici que lorsque q augmente, le poids de la partie supérieure augmente. Le changement de comportement de la fonction se situe, pour les valeurs tracées ici, entre y/δ T,q=6 = 0.231 et 0.241. Ceci correspond à y/δ T,e entre 1.62 et 1.69. Ainsi, même pour des valeurs assez faibles de q, l'augmentation de q augmente principalement l'importance d'une zone largement hors de la couche limite réelle.

(a) Tracé du poids pour plusieurs valeurs de q en fonction de la distance à la paroi normalisée par l'épaisseur de la couche limite de référence (b) Tracé du poids pour plusieurs valeurs de q en fonction de la distance à la paroi normalisée par l'épaisseur de la couche limite obtenue avec q = 6 Qui plus est, l'estimation des intégrales par quadrature de Gauss utilise des points de collocation répartis principalement vers les extrémités du domaine d'intégration. Ainsi, augmenter q accroit la taille du domaine résolu et implique donc de placer plus de points de collocation au-dessus de la couche limite réelle, là où le profil de température varie peu. Ceci implique de donner numériquement plus de poids à la partie la plus externe du profil de température lorsque q augmente. Il est donc nécessaire d'utiliser plus de points de collocation lorsque que q augmente pour conserver la même précision sur le calcul des intégrales. Pour cette section, le nombre de points utilisés a été doublé pour s'assurer que l'erreur de quadrature n'est pas un paramètre rentrant en compte dans l'analyse de l'effet de l'exposant q.

De plus, l'estimation de la vitesse verticale est approximative car en dehors de la couche limite dynamique (cf 3.3.1). Ceci est donc une source d'erreur supplémentaire lorsque la taille du domaine résolu augmente et donc lorsque q augmente. La précision obtenue sur le flux pariétal pour différentes valeurs de l'exposant q permet de déterminer l'effet de ce paramètre sur la qualité de la méthode. Pour tous les cas présentés dans cette section, la longueur de la plaque est de 0.25m et 250 points sont utilisés pour les calculs. Sauf mention contraire, 5 modes ont été utilisés pour les calculs. Une utilisation de q < 2 mène à une divergence du calcul. On voit ici que q = 2 mène aux meilleurs résultats avec une erreur relative de 2 × 10 -3 tandis que q = 2.5 donne une erreur relative de 5 × 10 -3 et q > 3 mène à une erreur relative de 6 × 10 -3 . La précision de la méthode est donc peu sensible à la valeur de l'exposant q et ce à mesure qu'il augmente. On constate aussi que la valeur optimale de q pour ce calcul n'est pas celle qui a été retenue. Les sous-figures 3.21(c-d) représentant le profil de température adimensionné en s = 0.8 expliquent ce choix. La sous-figure (d) représente un zoom sur la partie supérieure du profil de température. Des oscillations significatives et non physiques apparaissent pour q = 2. Ces oscillations augmentent en amplitude vers l'extérieur de la couche limite. En effet, q représente le nombre de dérivées nulles du profil de température en y = δ T et le degré du polynôme utilisé pour décomposer le profil de température est égal au nombre de modes utilisés, soit ici 5. Puisque q < N , rien n'empêche le profil de température d'arborer des oscillations proches du sommet de la couche limite. Plus q se rapproche de N , plus ces oscillations sont réduites. Pour q ≥ N , les oscillations sont nulles à la proximité immédiate de δ T . Dans la partie inférieure, le profil est contraint par le terme source de conduction thermique qui relie la dérivée à la paroi au bilan d'énergie intégral effectué dans la couche limite. Paradoxalement, l'apparition de ces oscillations non physiques ne nuit pas à la précision du calcul dans ce cas car q = 2 mène à la meilleure estimation du flux pariétal. Ceci se fait cependant au détriment de la robustesse de la résolution car q < 2 entraine une divergence du calcul et rien ne prouve que q = 2 mènerait à de meilleurs résultats pour d'autres situations. Les oscillations du profil de température diminuent rapidement car à q = 2.5 elles sont limitées et à q = 3 elles sont pratiquement imperceptibles. Malgré cela, la plus petite des valeurs assurant qu'il soit impossible au profil de température d'osciller a été choisie pour que la méthode soit robuste.

Une étude sur des écoulements de point d'arrêt avec d'autres différences de température et nombres de Mach (T p -T ∞ = 50K M ∞ = 0.25) mène à des conclusions identiques à la fois en termes de précision et de robustesse. Dans le cas d'écoulements de plaque plane, pour les mêmes conditions de température de paroi et d'écoulement extérieur que précédemment, la méthode s'avère moins robuste pour des faibles valeurs de q. Il faut q > 3 pour parvenir à un résultat convergé. Aucune oscillation n'apparait pour q > 3 et la précision est pratiquement identique pour toutes les valeurs. La méthode est donc peu sensible à la valeur de q pour une plaque plane tant que cette dernière est suffisante.

La figure 3.22 représente le même cas que précédemment mais en utilisant 7 modes au lieu de 5. La sous-figure 3 L'utilisation de q ≤ 5 ne permet pas la convergence du calcul (divergence du calcul ou détermination d'une épaisseur de couche limite thermique négative ou nulle) alors que pour une température de paroi uniforme, toutes les autres conditions étant égales par ailleurs, q = 2 permet la convergence du calcul. Pour des cas présentant de larges variations de température de paroi, il est nécessaire d'utiliser beaucoup de modes, ce qui se traduit par une nécessité croissante d'utiliser un exposant q plus élevé. De plus, ces conditions rendent la résolution moins robuste en utilisant de faibles valeurs de q. On observe ici aussi que les valeurs plus faibles de q mènent à des résultats plus précis en toute fin de profil, mais les résultats sont quasiment identiques sur la majeure partie du profil. Les sous-figures 3. 23(d-e-f) représentent le profil de température adimensionné en s = 0.8, s = 0.9 et s = 0.99. La première valeur de q permettant la convergence de la méthode ne présente pas d'oscillations non physiques dans la partie supérieure du profil. La courbure des profils de température semble rendre la méthode moins robuste face à l'apparition d'oscillations au sommet de la couche limite. Les résultats sont ici quasi identiques pour toutes les valeurs de q en s = 0.8 et s = 0.9 mais en s = 0.99 on observe que les valeurs plus petites de q mènent à des résultats plus précis. L'utilisation de q plus petit menant à une épaisseur de couche limite résolue plus proche de la réalité, des oscillations plus faibles au niveau de l'épaisseur de couche limite réelle sont observées.

Bilan

Pour conclure, le choix q = max(2, N ) ne mène généralement pas aux résultats les plus précis mais la faible sensibilité de la méthode à l'exposant q mène à une perte de précision limitée. Ce choix permet de s'assurer qu'aucune oscillation non physique du profil de température dans la partie supérieure de la couche limite n'apparaisse. Ces oscillations peuvent entrainer la divergence du calcul pour des valeurs plus faibles de q. La multiplicité des paramètres (gradient de pression et répartition de la température de paroi) ne permet pas, a priori, d'obtenir facilement les valeurs optimales de q en fonction des conditions du calcul pour gagner en précision. Un compromis entre robustesse et précision doit être fait. Pour les présents travaux, le choix a été fait de privilégier la robustesse et par conséquent, sauf mention contraire, pour la suite du manuscrit q = max(2, N ). 

Détermination des paramètres thermodynamiques et du flux pariétal

La conductivité thermique est déterminée par la relation suivante en régime laminaire :

k = µc p P r (3.57)
Concernant la détermination de la conduction thermique k, le nombre de Prandtl et la capacité thermique sont considérés constants sur la plage de valeurs rencontrées dans les applications givrage et sont déterminés à partir des conditions de l'écoulement à l'infini amont. La viscosité dynamique µ est calculée à partir du profil de température par la loi de Sutherland.

µ(T ) = µ(T ref ) T T ref 3/2 T ref + S T + S (3.58) Avec T ref = 273.15K, S = 110.4K et µ(T ref ) = 1
.711 × 10 -5 P a.s. La température est déduite du profil de θ par T = T e -N j=1 Θ j φ j . Le flux pariétal n'est pas calculé au cours de la résolution mais est le résultat attendu du calcul. Il est donc déterminé après convergence du calcul de la façon suivante :

ϕ w = k N j=1 Θ j (t, x, z)
∂φ j ∂y y=0 (3.59)

Compléments sur la mise en oeuvre algorithmique

Complément sur la détermination du profil de vitesse verticale

Pour rappel, il a été mentionné dans l'article 3.1 qu'il apparait un terme source décrivant l'effet de la convection thermique induit par la vitesse verticale. La vitesse verticale étant une inconnue de la résolution de la couche limite dynamique par la méthode intégrale dynamique de C. Bayeux [START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF], elle est obtenue par intégration de l'équation de continuité à l'aide du profil de vitesse longitudinale. Il est à noter que ce dernier ayant été calculé sous l'hypothèse d'une couche limite à masse volumique constante, l'équation de continuité incompressible est ici utilisée.

u y (Y ) = - Y 0 ∂u x ∂x + ∂u z ∂z dy (3.60)
Il est de plus nécessaire de déterminer la vitesse verticale hors de la couche limite dynamique car la résolution de la couche limite thermique s'étend au-delà de la couche limite dynamique (pour rappel, la méthode modale fait apparaitre une épaisseur de couche limite thermique dont la définition est différente de l'épaisseur à 99% et dépendant du nombre de modes utilisé). Il n'est plus possible d'utiliser l'équation de continuité basée sur les hypothèses de couche limite, par conséquent, il est nécessaire d'effectuer une approximation de la vitesse verticale. Pour ce faire, l'équation 3.60 est maintenue avec u x = u ex et u z = u ez . Ceci impose une variation linéaire de u y et revient à prolonger par continuité le profil de vitesse verticale. Bien que ceci ne donne lieu qu'à une approximation de la vitesse verticale, il s'agit d'une zone où θ est petit et donc le poids de cette zone dans le terme source après intégration est quasi-négligeable. Ceci justifie pourquoi il est possible de se contenter d'une approximation de la vitesse verticale.

Sachant que la vitesse est constante au cours de la résolution, la vitesse verticale n'est calculée qu'une seule fois, avant d'effectuer la résolution instationnaire de couche limite thermique. En outre, étant donné que l'épaisseur de couche limite thermique, et donc l'intervalle d'intégration, varie à chaque itération, il n'est pas possible de calculer uniquement les points évalués au cours de l'intégration numérique par quadrature de Gauss puisque leur position varie lorsque l'intervalle d'intégration varie au cours de la résolution instationnaire de la couche limite thermique. La vitesse est donc calculée en un nombre de points, indépendants de l'épaisseur de la couche limite thermique, qui est un paramètre d'entrée de la méthode. Au cours de la résolution en temps, lorsque la vitesse verticale est nécessaire, elle est interpolée à partir des valeurs discrètes préalablement calculées. Tous les résultats présentés au cours de ces travaux de thèse ont utilisé 400 points pour le calcul de la vitesse verticale. Une étude de convergence a montré que ce nombre de points était largement suffisant. Le temps de calcul de la vitesse verticale étant négligeable par rapport au reste de la résolution, il n'y a pas de raison de ne pas raffiner le calcul de la vitesse verticale. Le calcul de la vitesse verticale est effectué de la façon suivante : les profils de vitesse longitudinaux et transversaux sont estimés uniquement à partir d'un nombre de paramètres limités (épaisseur de couche limite, facteur de forme). La dérivée de ces paramètres par rapport aux grandeurs longitudinales et transversales est calculée. Pour chaque point Y n la vitesse verticale est calculée de manière récurrente sachant que u y (0) = 0 :

u y (Y n ) = u y (Y n-1 ) -Y n-1 ∂u x ∂x Y n-1 + ∂u z ∂z Y n-1 + Y n ∂u x ∂x Y n-1 + ∂u z ∂z Y n-1 (3.61)
Ce procédé d'intégration permet, en n estimations des dérivées des profils de vitesse longitudinale, de calculer u y en n points plutôt que d'effectuer une intégration complète de 0 à Y i ce qui nécessite de répéter les mêmes calculs. Ce procédé est peu précis proche de 0, vu que très peu de points sont utilisés pour le calcul des premières intégrales mais étant donné que la vitesse verticale est quasi nulle proche de la paroi cela n'a pas d'effet sur le calcul du terme source. La figure 3.24 montre le profil de vitesse verticale calculé par cette méthode pour des écoulements autour de dièdres à différentes valeurs du paramètre de gradient de pression m. L'écoulement à l'infini se trouve dans les conditions suivantes : M ∞ = 0.01, T ∞ = 263K et P ∞ = 80000P a. Les profils sont extraits à 20 cm du bord d'attaque et la paroi est 1K plus chaude que l'écoulement externe. On constate que la vitesse verticale varie entre 0.5% de la vitesse extérieure pour une plaque plane et 2% pour un écoulement de point d'arrêt. On constate de plus que le profil calculé pour un écoulement ralenti est sensiblement moins précis que dans des cas de plaque plane ou des écoulements accélérés. L'erreur est au maximum de 5% dans le cas ralenti mais généralement autour de quelques %.

Il est montré en annexe E que ne pas prendre en compte le terme source de convection par la vitesse verticale engendre une erreur telle que la méthode s'avérerait moins précise que la méthode intégrale à une équation malgré le fait que la vitesse verticale soit beaucoup plus petite que la vitesse longitudinale. Ceci est dû au fait que la convection par la vitesse verticale n'est pas à comparer à la convection par la vitesse horizontale car il s'agit de deux effets sur des directions orthogonales. L'effet de la vitesse verticale est donc à comparer aux autres termes sources, en particulier le terme conduction thermique. La conductivité thermique de l'air étant faible, même une faible valeur de la vitesse verticale permet d'obtenir un effet convectif supérieur à l'effet conductif. Cependant, le fait que la vitesse verticale tende vers 0 à la paroi, où le gradient de température est généralement le plus élevé, explique que la conduction thermique soit généralement prédominante. Le poids plus important à la partie inférieure de la couche limite donné par la fonction (1 -ŷ) q assure aussi que la conduction reste prédominante après intégration. La section 3.4.1 présente l'apport relatif des termes sources et leur évolution spatiale. 

a f (x)dx = b -a 2 n i=1 ω i f b -a 2 x i + a + b 2 (3.62)
où les x i sont les points d'estimation de la fonction dans l'intervalle réduit [-1,1] appelés noeuds de la quadrature et les ω i sont les poids attribués aux points x i . Les valeurs de x i et ω i sont des valeurs ne dépendant que du nombre de points d'intégration n. Les noeuds x i sont les racines du nième polynôme de Legendre noté P n (x) tandis que les poids ω i sont donnés par :

w i = 2 (1 -x 2 i )P ′ n (x i ) 2 le
nième polynôme de Legendre est défini comme solution de l'équation différentielle suivante :

d dx (1 -x 2 ) d dx P n (x) + n(n + 1)P n (x) = 0 (3.63)
Les valeurs x i , ω i peuvent être cependant aisément obtenues dans la littérature. Ici elles ont été générées à partir de la bibliothèque numpy sous python par l'appel de la fonction : "np.polynomial.legendre.leggauss" et directement intégrées à l'algorithme.

Le profil de température et les fonctions de projection ψ i sont des polynômes. D'autre part, le profil de vitesse peut être précisément approché par des polynômes de faible ordre. Par conséquent, cette stratégie d'intégration semble bien fondée. À l'aide de 2N points d'intégration, N étant le nombre de modes résolus, une précision à 4 chiffres est obtenue sur tous les termes.

Algorithme détaillé

La méthode est résolue de la manière suivante et synthétisée dans le tableau 3.2. Tout d'abord, la vitesse verticale est calculée dans chaque cellule par l'équation (1.22) sur un nombre de points constant, paramètre de la méthode. Cette vitesse est stockée dans un tableau. Lorsqu'au cours de la résolution, la vitesse verticale est nécessaire, elle est interpolée linéairement à partir de ce tableau. L'annexe E présente les profils de vitesse verticale calculés à partir du profil de vitesse longitudinale (1.1.3.2) en configuration 2D. Puis, l'épaisseur de couche limite thermique δ T est initialisée à partir de l'épaisseur de couche limite dynamique δ. L'analogie de Reynolds considère que les épaisseurs de couche limite thermique et dynamique sont proportionnelles et même égales, avec un nombre de Prandtl égal à 1. Bien que ce ne soit évidemment pas le cas (d'où la présente méthode) ceci permet cependant d'initialiser l'épaisseur de la couche limite thermique avec le bon ordre de grandeur. Puis, la première composante du vecteur M est initialisée à l'aide de l'équation (3.35) : M 1 = ρ e c p δ T θ w , pour une résolution à température de paroi imposée, connaissant θ w . Les composantes restantes de M sont posées nulles. Sont ensuite calculés les coefficients C j (équation 3.32) et la matrice B car ils ne dépendent que du nombre de modes N . La partie constante en temps de la matrice de passage A (équations 3.27, 3.28 et 3.29) notée T , introduite à l'équation (G.4) (cf section G.1) est ensuite calculée. Il en est de même pour l'inverse de T . S'ensuit la résolution de la boucle en temps. La première étape est de calculer l'inverse de A à partir de δ T et de sa partie indépendante de δ T déjà calculée (équations 3.27, 3.28 et 3.29). Puis Θ est déduite de M par le biais de l'inverse de la matrice passage A (relation 3.26). L'étape suivante est de calculer M pour le prochain pas de temps par la résolution de l'équation conservative (3.44) nécessitant ainsi le calcul de tous les termes sources et flux. L'épaisseur de couche limite thermique δ T peut désormais être calculée pour l'itération suivante à partir de (3.35), toujours pour une résolution à température de paroi imposée. Le calcul est poursuivi jusqu'à ce que la norme L2 du résidu chute en dessous d'un seuil prédéfini (choisi de l'ordre de 10 -13 ). La norme L2 du résidu à l'itération n est définie égale à :

1 N N i=1 (M n i -M n-1 i ) 2 (3.64)
avec N le nombre de cellules et i le numéro de la cellule.

Pour finir, le flux thermique à la paroi est calculé à partir de la dérivée à la paroi du profil de température convergé, à l'aide de l'expression (3.59). 

Étude complémentaire sur le comportement de la méthode modale 3.4.1 Vérification de l'évolution spatiale des termes sources vis-à-vis de la théorie

L'objectif de cette section est de vérifier que le comportement suivant la direction longitudinale des variables obtenues numériquement est bien celui attendu analytiquement.

Pour un écoulement de plaque plane à T e -T p constant, il peut être démontré (cf annexe F) que les composantes des termes sources de conduction thermique et de dissipation visqueuse varient en x (i-2)/2 . La figure 3.25 représente les termes sources pour chacune des composantes, pour une plaque plane à T p -T e = 50K et les conditions extérieures M ∞ = 0.25, T ∞ = 263.15K et P ∞ = 80000P a. Les termes sources sont adimensionnés par la valeur maximale atteinte par l'ensemble des termes sur l'étendue du profil, résultant ainsi en un tracé avec des ordonnées comprises entre -1 et 1 pour chacune des composantes. En rouge est tracé le terme source de conduction thermique (eq 3.37), en vert le terme de dissipation visqueuse (eq 3.42), en bleu le terme de convection par la vitesse verticale (eq 3.39) et en noir le terme décrivant l'effet conjugué des variations de masse volumique et de température extérieure (eq 3.40). Les termes sources sont tracés composante par composante car les composantes n'interagissent pas entre elles au cours du bilan effectué et n'ont pas la même dimension. L'intérêt de ce tracé n'est pas de comparer l'effet de chaque composante. Il s'agit de comparer le poids de chaque terme source pour chaque composante ainsi que leur évolution spatiale.

On constate donc que pour toutes les composantes, le terme de conduction thermique est largement dominant, indiquant que la conduction thermique pilote le processus. A l'exception de la première composante, le terme de convection par la vitesse verticale est la seconde contribution en norme et atteint environ 0.3 pour la deuxième composante et 0.4 pour les suivantes, (le terme de conduction thermique atteint 1.0 dans tous les cas). Il advient de cette contribution élevée qu'il est nécessaire d'estimer précisément ce terme et donc le profil de vitesse verticale pour obtenir une résolution précise. La contribution est identiquement nulle pour la première composante en raison du choix de la fonction ψ car ∂ψ 1 ∂y = 0 (cf eq 3.39). La contribution du terme de dissipation visqueuse est sans surprise étroitement liée au rapport entre l'effet de la dissipation visqueuse et de la conduction thermique estimé par le nombre d'Eckert (Ec = u 2 ∆T cp ). Pour un nombre d'Eckert qui n'est pas grand, ici Ec = 0.14, la contribution du terme de Pour finir, le terme décrivant l'effet des variations conjuguées de masse volumique et de température extérieure est dans le cas présent identiquement nul pour toutes les composantes. En effet, il est le produit entre la variation en espace de la température externe et de la différence de masse volumique entre l'intérieur de la couche limite et l'écoulement extérieur. Dans le cas d'une plaque plane, la température extérieure est constante. Il faut donc une vitesse externe non constante pour que ce terme soit non nul. Même avec une différence de température conséquente et une variation rapide des grandeurs externes, ce terme reste petit devant les autres ce qui est le cas pour les conditions traitées à la partie 4.1.

L'annexe F présente le logarithme des composantes des termes sources en fonction du logarithme de la position adimensionnée, dans le but de vérifier que ces tracés sont des droites dont la pente est de a = (i -2)/2. Ceci permet de vérifier que la tendance déterminée analytiquement est bien suivie. Le tableau 3.3 liste les pentes de chaque composante pour chaque terme source déterminées à partir de la figure F.1. Les pentes sont calculées à partir des 50 derniers points du profil (contenus entre les abscisses adimensionnées s = 0.8 et s = 1.0) de façon à éliminer les premiers points où la solution n'est numériquement pas auto-similaire. Le terme de convection se rapporte au terme source de convection par la vitesse verticale. La première composante du terme de convection par la vitesse verticale n'est pas renseignée car le terme est identiquement nul et ne suit donc pas la pente des autres termes. On constate que la pente théorique est respectée par les termes de conduction et dissipation avec une faible erreur. De plus, le terme de convection respecte lui aussi ces tendances avec une précision légèrement moindre probablement due à l'imprécision du profil de vitesse verticale utilisé se répercutant sur la précision de l'estimation du terme source de vitesse verticale.

Étude de convergence en maillage pour un plus grand nombre d'écoulements de dièdres

La convergence en maillage est étudiée en traçant l'erreur relative sur le flux pariétal par rapport à un calcul utilisant 512 points pour plusieurs types de maillages. Les maillages utilisés ont respectivement 64, 128, 256 et 512 points pour les conditions externes M ∞ = 0.01, T ∞ = 263K et P ∞ = 80000P a. La température de paroi est imposée à 264K. L'étude est effectuée dans sa totalité avec 4 modes.

La figure 3.26(a) traite d'un écoulement de plaque plane. On observe que l'erreur relative sur le flux pariétal pour 256 points passe en dessous de 10 -2 en s = 0.07 et en dessous de 10 -3 en s = 0.4. La convergence spatiale est donc rapidement atteinte et 256 points suffisent pour une plaque plane. L'erreur relative diminue avec la distance au bord d'attaque à l'exception de la toute fin de la plaque à 256 points.

La 

Effet de la variation des paramètres thermodynamiques

L'approche développée dans ce chapitre diffère de la méthode intégrale à une équation présentée au chapitre 2 à la fois par la décomposition modale du profil de température et par la prise en compte de la variation des paramètres thermodynamiques. Pour quantifier uniquement l'apport de l'approche modale, dans cette section, on considère que les variations de température sont suffisamment faibles pour avoir la conduction thermique k, la viscosité dynamique µ et la masse volumique ρ invariables en espace et en temps. L'équation de l'énergie 3.15 se réécrit donc en considérant ρ strictement constant :

ρ ∂c p θ ∂t + ∂u x c p θ ∂x + ∂u y c p θ ∂y = k ∂ 2 θ ∂y 2 -Ḋ (3.65)
Ceci permet donc de se séparer des termes c p (ρ -ρ e ) u x ∂Te ∂x + u z ∂Te ∂z et simplifie donc le problème. Cette équation donne lieu, en poursuivant la démarche d'intégration et la décomposition modale du profil de température utilisant les mêmes bases de fonctions que précédemment, à l'équation suivante :

∂ t M + ∂ x F x = S (3.66a) S = Φ + Q + G (3.66b) F x = N j=1 Θ j ρc p δ T 0 u x (y)ψ(y)φ j (y, δ T )dy (3.66c)
Cette simplification fait disparaitre le terme source R i . De plus, la matrice A s'écrit comme suit, en considérant ρ = ρ e (x) indépendant du temps et constant dans l'épaisseur de la couche limite.

A = [a i,j ] = ρ(x)c p δ T 0 ψ i (y)φ j (y, δ T )dy (3.67a) M = AΘ (3.67b)
Les termes sources s'écrivent de façon similaire. Tout d'abord le terme source de conduction thermique :

Φ i ( θ) = - N j=1 θ j k δ T +∞ 0 ψ ′ i (y)φ ′ j y δ T dy - N j=1 θ j k δ T φ ′ j (0)ψ i (0) (3.68)
Ce terme peut être intégré analytiquement, réduisant ainsi le temps le calcul et augmentant légèrement la précision de son estimation.

Le terme source décrivant le flux de chaleur convecté par la composante normale à la paroi de la vitesse n'est pratiquement pas modifié et s'écrit : Ce terme étant désormais complètement indépendant de la résolution de la couche limite thermique car la viscosité ne dépend plus de la température, il n'est nécessaire de le calculer qu'une seule fois, réduisant ainsi le temps de calcul. Par conséquent, la non prise en compte de la variation des paramètres thermodynamiques avec la température réduit le temps de calcul. Il peut être intéressant d'évaluer conjointement ce gain de temps et la précision de la solution selon les cas pour déterminer l'intérêt d'utiliser une solution simplifiée. Est ici comparée la précision de la résolution avec et sans la prise en compte de la variation des paramètres thermodynamiques.

G i ( θ) = (i -1)C i ρc p
En pratique, les grandeurs thermodynamiques sont prises égales à leur valeur à l'extérieur de la couche limite comme dans la méthode intégrale à une équation. Les dérivées spatiales des grandeurs thermodynamiques extérieures sont donc négligées.

La figure 3.27 représente l'effet de la prise en compte de la variation des paramètres thermodynamiques dans la couche limite sur une plaque plane pour une différence de température de T p -T ∞ = 100K. Les grandeurs extérieures valent M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a. La plaque mesure 0.25m et 500 points sont utilisés. En vert est représenté M-BLIM tandis qu'en rouge est représentée la version simplifiée de M-BLIM supposant tous les paramètres thermodynamiques égaux à la valeur hors de la couche limite tel que présenté dans cette section. Pour les deux versions de M-BLIM, 4 modes sont utilisés. La figure 3.27(c) représente les profils de température à l'abscisse adimensionnée s = 0.8. La prise en compte de la variation des paramètres thermodynamiques permet une excellente représentativité du profil de température alors que la version simplifiée commet jusqu'à 20 % d'erreur sur la température adimensionnée. On remarque aussi que la dérivée de la température à la paroi est mal estimée en utilisant des paramètres thermodynamiques constants alors même que le flux pariétal obtenu à cette abscisse par la méthode simplifiée est plus précis. Cette apparente incohérence provient du fait que l'utilisation de grandeurs thermodynamiques constantes entraine une sous-estimation de la conductivité thermique dont l'erreur compense la surestimation de la dérivée à la paroi. La méthode simplifiée entraine une réduction du temps de calcul de l'ordre de 40%. Ainsi, pour des cas où la différence de température est faible, soit de l'ordre de quelques dizaines de degrés, cette approche est envisageable pour gagner en temps de calcul. En effet, la norme L2 de l'erreur relative commise par la méthode simplifiée sur le profil de température est de 2.10 -2 pour une différence de température de 100K et de 5.10 -3 pour une différence de température de 50K. L'erreur devient donc conséquente vers 50K pour ce qui est un intermédiaire de calcul. À titre de comparaison, en prenant en compte les variations des grandeurs thermodynamiques, l'erreur commise n'est que de 2.10 -4 et de 7.10 -10 respectivement.

Bilan

Pour conclure, la prise en compte de la variation des paramètres thermodynamiques dans la couche limite permet de déterminer des profils de température plus représentatifs de la réalité mais cela ne se traduit pas nécessairement par une amélioration de l'estimation du flux pariétal en raison d'une compensation d'erreur possible lorsque la variation des paramètres thermodynamiques n'est pas prise en compte. Pour que la variation des paramètres thermodynamiques entraine une significative hausse de précision, le couplage entre la couche limite thermique et la couche limite dynamique doit être exploré. D'autre part, pour des cas où l'effet de la dissipation visqueuse est important comparativement aux effets de conduction thermique, la méthode modale permet de mieux estimer le profil de température, ce qui s'accompagne d'un flux pariétal mieux estimé.

Discrétisation temporelle et spatiale de la formulation Volumes-Finis en 3D

Cette section a pour but de présenter avec plus de détail que dans l'article le schéma numérique utilisé pour résoudre le système obtenu par la méthode de décomposition modale. Pour respecter les conventions usuelles, les indices i et j désignent des cellules tandis que n désigne le temps. Ils ne désignent donc pas, dans cette section, les composantes des bases de fonction ψ, φ et le nombre d'équations résolues.

Le système d'équations peut s'écrire de la façon suivante :

∂(M) ∂t + ∇.F (M) = S(M) (3.71) 
avec ∇. l'opérateur divergence appliqué au plan tangent à la paroi. A l'aide de la matrice A définie par l'équation 3.27, le tenseur flux F peut s'écrire :

F = N k=1 N l=1 (A -1 ) kl M l δ T 0 ρc p u(y) ⊗ ψ(y)φ k (y, δ T )dy (3.72)
tandis que le vecteur des termes source S s'écrit :

S = Φ + Q + G + R x + R z (3.73a) Φ = - N m=1 N l=1 (A -1 ) ml M l k(0) δ T ∂φ m ∂y y=0 ψ(0) + δ T 0 k δ T ∂φ m ∂y ∂ψ ∂y dy (3.73b) Q = - δ 0 µ(y) ∂u x ∂y 2 + ∂u z ∂y 2 ψ(y)dy (3.73c) G = N k=1 N l=1 (A -1 ) kl M l δ T 0 ρc p φ k u y y i-2 dy (3.73d) R x = δ T 0 ψ(ρ -ρ e )c p u x ∂T e ∂x dy (3.73e) R z = δ T 0 ψ(ρ -ρ e )c p u z ∂T e ∂z dy (3.73f)
En suivant une formulation Volumes-Finis, le système est intégré sur une cellule Ω i , entre les instants t n et t n+1 :

Ω i M(t n+1 )dΩ - Ω i M(t n )dΩ = - j∈N (i) t n+1 t n Γ ij F .n ij dΓdt + t n+1 t n Ω i SdΩdt (3.74)
où le théorème de la divergence a été utilisé pour transformer l'intégrale de volume en intégrale de surface. Γ ij est la frontière partagée par la cellule Ω i avec l'une de ses voisines Ω j . N (i) est l'ensemble des frontières de la cellule i avec ses voisines. n ij est la normale unitaire locale à la frontière Γ ij dans le plan tangent à la cellule Ω i et pointant vers l'extérieur. L'équation 3.74 peut se réécrire sous forme discrète telle que :

M n+1 i = M n i - ∆t n |Ω i | j∈N (i) F ij |Γ ij | + ∆t n S i (3.75)
où M n i correspond aux valeurs moyennes des inconnues dans la cellule i à l'instant t n , F ij est le flux numérique à la frontière Γ ij à l'instant t n et S n i est la valeur discrète du terme source dans la cellule Ω i .

M n i def = 1 |Ω i | Ω i M(t n )dΩ (3.76a) F ij def = 1 ∆t n 1 |Γ ij | t n+1 t n Γ ij F .n ij dΓdt (3.76b) S i def = 1 ∆t n 1 |Ω i | t n+1 t n Ω i SdΩdt (3.76c)
où le terme flux F est décrit par l'équation 3.72 et le terme source S est décrit par l'équation 3.73. Concernant les flux numériques, un schéma numérique de premier ordre décentré amont par rapport à la vitesse externe est utilisé pour l'expression des flux afin d'assurer la stabilité numérique. Pour une approche structurée, le décentrement est effectué tel que, sur la face séparant les cellules i, j, pour la maille i, le flux numérique noté G i,j s'écrit :

si u ec,ij > 0, G ij = N k=1 N l=1 (A -1 ) kl M l i δ T,i 0 ρ i c p u ij (y) ⊗ ψ(y)φ k (y, δ T,i )dy (3.77a) si u ec,ij < 0, G ij = N k=1 N l=1 (A -1 ) kl M l j δ T,j 0 ρ j c p u ij (y) ⊗ ψ(y)φ k (y, δ T,j )dy (3.77b)
La vitesse u ij à l'interface entre les cellules i et j est définie par le profil de vitesse supposé, lui-même défini par les grandeurs suivantes : facteur de forme H, vitesse extérieure u e et épaisseur de couche limite dynamique δ. Soit le vecteur U de ces grandeurs, il est calculé par :

U ij = 1 ∆s i + ∆s j (∆s j U i + ∆s i U j ) (3.78)
L'extension du schéma à l'ordre 2 peut être envisagée à l'aide d'une reconstruction de type MUSCL pour une meilleure estimation des termes de flux numérique. Une méthode d'Euler explicite a été employée pour la discrétisation des termes de transport et des termes sources. Ceci implique un critère limite de stabilité pour le pas en temps employé, ∆t i , dépendant à la fois des termes sources et flux numérique. Pour rappel, la condition sur le pas de temps utilisé s'écrit en 3D, avec s la direction de l'écoulement externe et ∆s la différence de position suivant la direction s entre deux cellules pour lesquelles le flux numérique est calculé, u se,ij représentant la vitesse externe à l'interface entre les cellules i et j : ) 2keN 2 (q+1) 2 apparaissant à l'équation 3.47 détermine la limitation sur le pas de temps due par l'expression explicite du terme source de diffusion thermique. Aucune condition théorique basée sur un critère de stabilité n'a pu être déterminée pour établir le pas de temps maximum autorisé par les autres termes sources. Cependant, le succès du critère 3.47 montre que le terme source de condition thermique est le plus pénalisant vis-à-vis du pas de temps pour les conditions d'applications visées. Le fait que ce terme soit dominant semble lié à la raideur de ce terme. L'utilisation d'une discrétisation implicite pour les termes sources permettrait de passer outre cette limitation du pas de temps et d'accroître le pas de temps maximal. C'est ainsi une perspective de travail. Néanmoins, la complexité mathématique du système rend l'implicitation complexe. L'implicitation des termes sources nécessite d'introduire une matrice Jacobienne ∇ M S telle que :

M ax |u se,ij |∆t i ∆s i , 2K e N 2 (q + 1) 2 ∆t i (δ n T i ) 2 (3.
M n+1 i = M n i + [I -∆t i ∇ M S] -1 ∆t i   - ∆t n |Ω i | j∈N (i) F ij |Γ ij | + S n i   (3.81)
L'expression de cette matrice Jacobienne étant complexe, une solution possible est de l'estimer par différentiation automatique [START_REF] Griewank | On automatic differentiation[END_REF], c'est à dire d'estimer algorithmiquement par calcul numérique les dérivées intervenant dans la matrice Jacobienne.

Bilan du chapitre

Dans ce chapitre, une seconde méthode de résolution de la couche limite thermique a été proposée pour répondre aux besoins mis en évidence au chapitre précédent, c'est-à-dire la capacité à résoudre des conditions de température de paroi non-uniformes en ajoutant des équations pour transporter plus d'informations et en tenant compte de l'influence des variations de la température sur les propriétés physiques de l'air (viscosité, densité, conductivité thermique). La méthodologie employée est générale au sens où elle peut s'appliquer en 2D et 3D, pour les écoulements laminaires ou turbulents. Cependant, dans le cadre de la thèse elle n'a été développée, implémentée et validée que pour des cas 2D laminaires. La méthode a été testée numériquement pour un grand nombre d'écoulements génériques correspondant à des écoulements de dièdre, avec à la fois des conditions aux limites uniformes et des conditions présentant des variations linéaires de température de paroi importantes. Elle a également été testée sur des cas avec des conditions aux limites discontinues (voir annexe H) et a démontré une précision satisfaisante même pour des discontinuités de l'ordre de 50% de la différence de température moyenne entre la paroi et l'écoulement externe.

Elle s'est avérée capable de capturer à la fois le flux pariétal et des profils de températures complexes. Néanmoins, pour des cas d'écoulements ralentis ou pour des cas fortement chauffés, les résultats sont moins satisfaisants. La cause est que la solution utilisée pour la couche limite dynamique est dépendante de la température. Il serait donc nécessaire de faire appel à un couplage entre la résolution de la couche limite dynamique et de la couche limite thermique pour résoudre ces cas. Cette solution est envisagée pour de futurs travaux.

Le système simplifié dans le cas où les grandeurs thermodynamiques sont constantes a été présenté dans le but de déterminer l'influence de la variation des propriétés physiques de l'air sur la précision de la méthode et le temps de calcul. Cette étude a montré que la prise en compte de la variation des propriétés thermodynamiques permet de déterminer beaucoup plus précisément les profils de température lorsque les différences de température sont élevées.

Pour pousser plus loin sa validation et prouver son intérêt pratique, la nouvelle méthode doit maintenant être comparée à la méthode intégrale classique présentée au chapitre 2 sur des cas réalistes de profils d'ailes pour des jeux de conditions aux limites variées et représentatives des applications visées.

Chapitre 4

Évaluation de la méthode modale pour des profils d'aile chauffés

Dans ce chapitre on étudie des écoulements sur des profils d'ailes pour les mêmes jeux de conditions de température de paroi que ceux présentés au chapitre précédent. La méthode modale M-BLIM2D est comparée à la fois à la solution de référence fournie par le code CLICET et à la méthode intégrale à une équation, désignée par la suite par "S-BLIM2D", présentée et étudiée au chapitre 2. Le S signifie "simple" étant donné que la méthode utilise une approche plus directe et ne résout qu'une seule équation.

Dans un premier temps, la méthode M-BLIM2D est évaluée sur des cas avec une température de paroi uniforme. Ces cas sont bien modélisés par la méthode S-BLIM2D, il est cependant nécessaire de vérifier que la nouvelle méthode fournit elle aussi de bons résultats sur les cas simples avant de considérer les cas plus complexes. Dans un deuxième temps, la méthode M-BLIM2D est évaluée dans les cas où la température de paroi varie le long du profil, en décroissant depuis le point d'arrêt dans un premier temps, puis en croissant. Ces deux possibilités sont étudiées séparément car comme on le verra les phénomènes mis en jeu et les résultats numériques sont différents.

Il convient enfin de noter que le calcul du champ aérodynamique externe est effectué par le code EULER2D qui sera présenté à la sous-section 5.1.2 de la partie 5.1 consacrée à la présentation de la chaîne de givrage IGLOO2D.

Température de paroi uniforme

Sont considérés tout d'abord des écoulements autour de profils d'aile de type NACA0012 avec une corde de 0.5m. L'écoulement infini amont est dans les conditions M ∞ = 0.25,

T ∞ = 263K et P ∞ = 80000P a.
La figure 4.1 représente le type de maillages utilisé sur les profils de type NACA. Ici est représenté un maillage à 128 points seulement pour plus de visibilité. Ces maillages sont issus des travaux de Jameson et Vassberg [START_REF] Vassberg | In pursuit of grid convergence, part i : Two-dimensional euler solutions[END_REF]. L'utilisation de maillages se déraffinant plus rapidement en s'éloignant du bord d'attaque entraine des oscillations non physiques sur le flux pariétal de la part de méthode M-BLIM2D et n'apparaissant pas pour la méthode S-BLIM2D.

Dans un premier temps est considéré un profil sans incidence. La figure 4.2 représente le profil de vitesse extérieure utilisé, en fonction de l'abscisse adimensionnée par la corde du profil. Il s'agit de la condition d'entrée du calcul de couche limite. Étant donné que seule la zone laminaire est traitée par la méthode M-BLIM2D, l'abscisse adimensionnée tracée s'arrête bien avant d'atteindre 1 du fait de la transition laminaire turbulent. Le profil de vitesse extérieure est convergé dès 256 points utilisés.

Une étude de convergence en maillage sans angle d'attaque est effectuée pour les conditions aérodynamiques présentées précédemment et illustrée par la figure 4.3. La température de paroi est imposée à 313.15K. La solution de référence, toujours calculée par CLICET, est obtenue à partir d'un calcul du champ aérodynamique extérieur obtenu avec 1024 points. Le nombre de points de Remarque sur le temps de calcul : Pour donner une idée de l'évolution du temps de calcul de la couche limite thermique par la méthode M-BLIM2D en fonction du nombre de modes, le calcul avec quatre modes prend environ 5 fois plus de temps que le calcul avec deux modes tandis que le calcul avec six modes prend 30 fois plus de temps que le calcul avec deux modes. On observe donc une augmentation significative du temps de calcul avec le nombre de modes. Ceci est dû à intégrales avec le nombre de modes et la condition sur le pas de temps maximal autorisé (3.47), évoluant de façon quadratique avec le nombre de modes. On conçoit donc que pour utiliser un nombre élevé de modes sans atteindre un temps de calcul prohibitif ne permettant pas de justifier l'utilisation de méthodes couplées fluide parfait/ couche limite en lieu et place d'une résolution complète des équations de Navier-Stokes, il soit d'abord nécessaire d'optimiser la résolution. Ceci passe en premier lieu par l'implicitation complète de la méthode, ce qui permettrait d'augmenter le nombre de CFL et donc de grandement réduire le temps de calcul. Il serait ainsi viable d'utiliser un plus grand nombre de modes. Le compromis entre le nombre de modes utilisés et le temps de calcul dépend du gain de temps obtenu par l'optimisation de la méthode ainsi que de multiples paramètres tels que la complexité du cas, le nombre de points et la précision désirée.

Dans un second temps est considéré le même profil d'aile (NACA0012) pour les mêmes conditions aérodynamiques mais sous une incidence de 4°. La figure 4.6 représente le profil de vitesse extérieure utilisé, en fonction de l'abscisse adimensionnée. L'accélération sur l'extrados se produit sur une très petite distance. À partir de l'abscisse adimensionnée s = 0.02 environ, l'écoulement est ralenti. Or, il a été montré que la méthode modale donne lieu à des résultats significativement moins précis pour un écoulement ralenti. D'où la précision moindre sur la majeure partie de l'extrados observée ci-après. calculé par M-BLIM2D proche du bord d'attaque, à l'extrados, est précis sur la totalité de l'épaisseur de la couche limite de 3 à 5 modes tandis que le profil de température à 2 modes a une erreur non négligeable dans la partie supérieure de la couche limite. Le profil de température supposé par S-BLIM2D reste peu précis. La figure 4.7(d) montre que le profil de température calculé par M-BLIM2D loin du bord d'attaque, à l'extrados, est peu précis entre y/δ T = 0.15 et y/δ T = 0.6. Le profil de température calculé par S-BLIM2D est quant à lui peu précis partout. L'erreur commise sur l'estimation du profil de température est supérieure à l'erreur commise dans la partie ralentie du cas sans incidence. Étant donné que les profils de température sont moins précis lorsque l'écoulement est ralenti, il est logique que l'erreur sur l'estimation des profils de température augmente à l'extrados sous incidence car il apparait une zone plus fortement ralentie. Les résultats sur l'extrados sont pratiquement identiques de 3 à 5 modes mais légèrement plus précis à 2 modes. 

Bilan

Les conclusions établies sur écoulements de dièdres, à savoir que les écoulements accélérés sont mieux modélisés que les écoulements ralentis, restent valables pour des profils d'ailes. Par conséquent, les profils sous incidence qui font apparaitre des zones plus fortement ralenties dans la zone laminaire sont moins bien modélisés. La méthode modale offre des résultats dans l'ensemble légèrement plus précis que la méthode intégrale précédente vis-à-vis du flux pariétal calculé. Pour ce qui est des profils de température, bien qu'il ne s'agisse que d'intermédiaires de calcul pour les méthodes intégrales, la méthode modale M-BLIM2D donne des profils bien plus fidèles que S-BLIM2D. La convergence en nombre de modes est généralement atteinte à partir de 4 modes. Le temps de calcul reste comparable à la méthode intégrale à une équation tant que l'on se limite à la plus petite valeur du nombre de modes permettant d'atteindre la convergence en nombre de modes.

Température de paroi diminuant linéairement avec la distance au bord d'attaque

Dans cette section sont étudiés des cas pour lesquels la température de paroi diminue linéairement avec la distance au bord d'attaque. Ces cas se rapprochent des conditions étudiées dans le domaine du givrage. En effet, les protections thermiques se situant à proximité du bord d'attaque, la température de paroi tend à diminuer plus loin du bord d'attaque.

La figure 4.10 représente un écoulement autour d'un profil NACA0012 sans incidence pour lequel l'écoulement infini amont est dans les conditions M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a. La corde est de 0.5m. Un maillage identique à la section 4.1 avec 1024 points surfaciques est utilisé. La température de paroi au bord d'attaque est de 313K et un gradient de température de paroi de -400K.m -1 suivant l'abscisse curviligne est imposé. La température de paroi atteint 273K en s = 0.2 en fin de zone laminaire. Les conditions thermiques sont identiques au cas 4 présenté en section 3.1.4 par la figure 3.16. Il est à noter qu'il a été nécessaire de réduire la valeur de l'exposant q pour atteindre la convergence à partir de 7 modes. Pour ce cas, il a été utilisé q = max(2, (q + 2)/2). Il a été constaté dans ce cas qu'un exposant q plus bas mène à une plus grande robustesse contrairement aux conclusions tirées de la section 3.2.1. La cause de cette perte de robustesse n'est cependant pas due à l'apparition d'oscillations non physiques au sommet des profils de température comme étudiée à la section 3.2.1. Une cause suspectée de cette perte de robustesse est le déraffinement du maillage en fin de profil. La figure 4.10(a) représente le flux pariétal pour la totalité de la zone laminaire de deux à six modes et la figure 4.10(b) représente un zoom sur la fin du domaine de calcul sur l'extrados, de cinq à neuf modes. Les conclusions sont similaires à celles obtenues pour des écoulements de dièdres, est cependant rajoutée la méthode S-BLIM2D à la comparaison et dans ce cas les résultats obtenus par M-BLIM2D sont plus précis que pour les écoulements de dièdres présentés à la section 3.1.4. M-BLIM2D offre de bien meilleurs résultats que S-BLIM2D et modélise précisément le flux pariétal jusqu'à s = 0.1 environ sans nécessiter l'utilisation de plus de modes que pour des conditions de température de paroi uniforme. En s'approchant du point où le flux pariétal change de signe, l'erreur augmente significativement et continue à augmenter après le changement de signe du flux pariétal. Il devient donc nécessaire d'augmenter significativement le nombre de modes pour continuer de bénéficier de l'augmentation de la précision de l'estimation du flux pariétal. L'utilisation de cinq modes mène à une erreur de 29% en fin de profil tandis que neuf modes permettent d'obtenir seulement une erreur de 5% environ. À titre comparatif, la méthode S-BLIM2D mène à une erreur de 105% en ce même point. Si un nombre de modes insuffisant est utilisé, la tendance d'évolution du flux pariétal en fin de profil n'est pas respectée, avec un flux pariétal augmentant avec la distance au bord d'attaque, alors qu'il devrait diminuer.

Les figures 4.10(c-d-e) représentent les profils de température adimensionnés aux abscisses adimensionnées s = 0.1, s = 0.15 et s = 0.2. Avant le changement de signe du flux pariétal situé en s = 0.145 environ, le profil de température est fidèle et convergé en nombre de modes dès cinq modes, ce qui est très proche d'une situation de température de paroi uniforme. Cependant, une fois passé le changement de signe du flux pariétal, on constate qu'il est nécessaire d'utiliser plus de modes avec neuf modes donnant lieu à un profil fidèle en s = 0.15. En s = 0.2, l'utilisation de neuf modes donne lieu à un profil de température très proche de la solution attendue.

Le calcul utilisant neuf modes mène à un temps de calcul de 420s là où cinq modes prennent 18s. Le gain de précision apporté par l'augmentation du nombre de modes se paie donc chèrement en temps de calcul. Pour limiter cet effet, il faudrait donc impliciter les termes sources pour passer outre la condition sur le pas de temps dépendant de façon quadratique au nombre de modes utilisés. La parallélisation du calcul des intégrales permettrait aussi de gagner en temps de calcul. 

Température de paroi augmentant linéairement avec la distance au bord d'attaque

Dans cette section sont étudiés des cas pour lesquels la température de paroi augmente linéairement avec la distance au bord d'attaque. Ce cas est peu représentatif des conditions rencontrées en givrage mais se doit d'être étudié si des configurations peu communes doivent être traitées ou parfois localement dans des cas plus classiques.

La figure 4.11 représente un écoulement autour d'un profil NACA0012 sans incidence pour lequel l'écoulement infini amont est dans les conditions M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a. La corde est de 0.5m. Un maillage identique à la section 4.1 avec 1024 points surfaciques est utilisé. La température de paroi au bord d'attaque est de 303K et un gradient de température de paroi de +400K.m -1 est imposé. La température de paroi atteint donc 343K en s = 0.2 au niveau de la fin de la zone laminaire. Le flux pariétal diminue en s'éloignant du bord d'attaque, malgré l'augmentation de la température de paroi, en raison de l'épaississement de la couche limite. .12 -Profils de température adimensionnés par rapport à l'épaisseur de couche limite thermique calculée par M-BLIM2D avec 5 modes à plusieurs abscisses pour un NACA0012 sans incidence, pour une température de paroi variant de +40K par rapport à l'écoulement à l'infini amont au bord d'attaque, à +80K en fin de zone laminaire La figure 4.12(a) représente les profils de température adimensionnés calculés par CLICET en plusieurs abscisses. L'adimensionnement de l'ordonnée s'effectue cette fois par rapport à l'épaisseur de couche limite calculée par M-BLIM2D avec 5 modes. On constate que la solution n'est pas autosimilaire. Cette conclusion est attendue car l'augmentation significative de la température dans la couche limite assure que les paramètres thermodynamiques varient suffisamment dans la couche limite pour avoir un effet perceptible sur les profils de température. Les profils de température ne sont cependant pas très éloignés de l'autosimilarité. Ceci peut expliquer pourquoi il n'est pas nécessaire d'utiliser plus de modes que dans un cas isotherme pour traiter ces cas car il n'est pas nécessaire de transporter plus d'informations pour décrire les profils de température. La figure 4.12(b) représente les profils de température adimensionnés calculés par M-BLIM2D en plusieurs abscisses, toujours adimensionnés par rapport à l'épaisseur de couche limite calculée par M-BLIM2D. On constate que M-BLIM2D donne des profils de température autosimilaires contrairement à CLICET. Ceci est au moins en partie dû au fait que le champ aérodynamique obtenu à température constante est utilisé. Le gradient de température de paroi, effet sur les variables thermodynamiques mis à part, n'engendre donc pas de dépendance importante à la position du profil de température adimensionné en tant que tel. L'effet de ce gradient positif de température de paroi sur les profils de température dans la couche limite est indéniablement moindre par rapport à un gradient négatif de température de paroi.

Le cas d'un profil d'aile fait donc apparaitre les mêmes caractéristiques que les cas de dièdre. Il est à noter que si une petite différence de température est imposée au bord d'attaque avec le même gradient de température de paroi que précédemment, ceci peut mener à un besoin de raffinement de maillage au bord d'attaque beaucoup plus sévère. Plus le gradient de température est élevé comparativement à la différence de température entre la paroi et l'écoulement extérieur, plus le profil de température est déformé par ce gradient et donc plus la température dans la couche limite varie rapidement en espace.

Il est donc nécessaire d'avoir un raffinement spatial plus fin.

La figure 4.13 représente en effet le même cas que précédemment, à savoir que l'écoulement infini amont est dans les conditions M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a. La corde est de 0.5m et un gradient de température de paroi de +400K.m -1 est imposé. La différence est que la température de paroi au bord d'attaque est de 273K au lieu de 303K. La température de paroi atteint donc 313K en s = 0.2 au lieu de 343K au niveau de la fin de la zone laminaire. Malgré le même gradient de température pariétale, l'évolution du flux pariétal en espace est différente car, dans l'ensemble, il augmente au lieu de diminuer montrant ainsi qu'à la fois le gradient de température de paroi et la température au bord d'attaque jouent. De plus, si le résultat est convergé en maillage loin du bord d'attaque, la solution délivrée par M-BLIM2D dépend fortement du maillage proche du bord d'attaque dépeignant un besoin de raffinement plus élevé au bord d'attaque en raison du gradient de température de paroi imposé. En outre, un point important est que pour la solution de référence CLICET, le résultat à proximité du bord d'attaque dépend lui aussi du maillage utilisé bien que plus faiblement. Le code CLICET générant son propre maillage pour résoudre la couche limite, on en déduit que les conditions limites ne sont pas obtenues ici avec assez de précision à la proximité du bord d'attaque pour permettre d'obtenir un résultat convergé pour la couche limite thermique. Le problème de couche limite thermique est dans ce cas très sensible aux conditions aérodynamiques externes. Il y a donc un effet conjoint du maillage utilisé pour la résolution de la couche limite thermique et de la solution de l'écoulement externe sur la qualité de la solution obtenue par M-BLIM2D. Dans ce chapitre, la méthode modale M-BLIM2D a été évaluée et comparée avec la méthode intégrale à une équation S-BLIM2D sur des cas de profils chauffés, isothermes ou non. La méthode M-BLIM2D donne des résultats seulement légèrement plus précis que ceux obtenus par S-BLIM2D pour ce qui est du flux pariétal. Les profils de température sont par contre beaucoup plus précis.

Pour les cas où la température de paroi est linéairement décroissante à partir du point d'arrêt, la méthode M-BLIM2D améliore grandement la précision des résultats. Tant que le flux pariétal ne change pas de signe en raison de la variation de température de paroi, les résultats sont très bons même avec un nombre de modes identique à une situation isotherme. Si le flux pariétal change de signe il est nécessaire d'utiliser plus de modes pour conserver la même précision. Cette erreur croissante sur le flux pariétal à nombre de modes constant est corrélée à la plus grande complexité des profils de température qui requièrent donc plus de modes pour être bien calculés. Le cas étudié a montré qu'il était nécessaire de passer de cinq à neuf modes pour conserver une précision similaire. La corrélation majeure entre le temps de calcul et le nombre de modes (le nombre d'intégrales à calculer dépend de façon quadratique du nombre de modes tandis que le nombre de points de quadrature où les fonctions sont estimées a été défini comme deux fois le nombre de modes) implique une augmentation significative du temps de calcul pour traiter ces cas. Comme signalé au chapitre 3, l'implicitation de la méthode permettrait de réduire très sensiblement le temps de calcul en permettant d'utiliser des pas de temps bien plus grands pour converger rapidement vers la solution stationnaire. Ce travail n'a pas pu être réalisé dans le cadre de la thèse et fait donc partie des perspectives d'amélioration de la méthode.

Enfin, dans le cas d'une température de paroi linéairement croissante à partir du point d'arrêt, l'augmentation de précision apportée par la méthode M-BLIM2D reste faible là encore par rapport à la méthode S-BLIM2D pour ce qui est du flux de chaleur pariétal. Ceci est imputable au fait que, dans ce cas, les profils de température sont quasi autosimilaires si bien que la méthode intégrale S-BLIM2D n'est pas vraiment mise en difficulté. On constate également que la convergence en nombre de modes est aussi rapide que dans le cas isotherme.

Chapitre 5

Évaluation de la méthode intégrale au sein de la chaîne de givrage

La fin des travaux de thèse a consisté à intégrer la méthode M-BLIM2D au sein de la chaîne de givrage IGLOO2D de l'ONERA afin de vérifier sa robustesse et de s'assurer que la méthode, une fois améliorée et optimisée, pourra remplacer le code CLICET et l'ancienne méthode intégrale S-BLIM2D, au moins pour certaines applications. L'objectif de ce dernier chapitre est donc de présenter et de commenter les résultats obtenus. Le chapitre comprend deux parties. On présente tout d'abord rapidement les principaux solveurs constituant la chaîne IGLOO2D puis la méthode qui a été mise en oeuvre pour coupler la méthode M-BLIM2D avec le reste de la chaîne et pouvoir traiter des cas d'accrétion sur paroi chauffée. La seconde partie du chapitre est consacrée à la description des tests numériques effectués et à l'analyse des résultats. Le couplage utilisant le code de couche limite CLICET sert de référence pour l'ensemble du chapitre.

Modélisation et simulation numérique du phénomène de givrage

Rappel de l'architecture d'une chaine de givrage

L'architecture de la chaîne de calcul IGLOO2D a été présentée en introduction et est succinctement rappelée ici. Dans un premier temps, l'aérodynamique de l'écoulement externe est calculée par une approche fluide parfait. Dans un second temps, la couche limite est calculée, soit à l'aide de CLI-CET, soit à l'aide d'une approche intégrale. Désormais, la résolution de la couche limite thermique en régime laminaire peut être effectuée par l'approche intégrale à une équation S-BLIM2D ou l'approche intégrale modale M-BLIM2D.

Vient ensuite le calcul de trajectographie, présenté à la section 5.1.3, déterminant la trajectoire des gouttes d'eau à partir du champ aérothermique. Puis, le calcul de l'accrétion du givre à partir de ces données est présenté à la section 5.1.4.

La chaine IGLOO2D permet de traiter de multiples configurations physiques intervenant dans le phénomène du givrage. Ne sont présentés ici que les modèles utilisés pour les simulations effectuées.

Modélisation du champ aérodynamique

Le champ aérodynamique externe est modélisé en effectuant l'hypothèse d'un écoulement de fluide parfait. Les effets diffusifs dus à la viscosité sont confinés dans la couche limite qui est calculée indépendamment. Les équations d'Euler compressibles en 2D peuvent donc être utilisées ici pour l'écoulement externe. Elles s'écrivent :

∂W ∂t + ∂F ∂x + ∂G ∂y = 0 (5.1)
Les vecteurs W, F et G sont donnés par :

W =     ρ ρu ρv ρE     ; F =     ρu P + ρu 2 ρuv (ρE + P )u     ; G =     ρv ρuv P + ρv 2 (ρE + P )v     (5.2)
E est l'énergie totale par unité de masse. La pression P et la densité ρ sont reliées, en considérant que l'air se comporte comme un gaz parfait, par :

P ρ = rT (5.3) où r = 287J.kg -1 .K -1
Ces équations sont obtenues à partir des équations de Navier-Stokes en négligeant le terme de viscosité. La solution stationnaire du système 5.1 est obtenue numériquement grâce au code EULER2D à l'aide d'une approche Volumes Finis. Une formulation MUSCL [START_REF] Bram Van Leer | Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method[END_REF] et un flux numérique de Roe [START_REF] Roe | Approximate riemann solvers, parameter vectors, and difference schemes[END_REF] sont utilisés pour le calcul des flux sur les arêtes.

Modélisation de la trajectoire des gouttes et de leur taux de captation

Le solveur de trajectographie est dédié à la résolution de l'écoulement diphasique dispersé et utilise pour entrée le champ aérodynamique calculé préalablement. Le but de ce solveur est de déterminer localement le débit massique, la température et l'énergie cinétique des gouttes d'eau impactant la surface étudiée. Ces informations sont des entrées nécessaires au module d'accrétion détaillé à la section 5.1.4 ci-dessous. Il existe deux types d'approches possibles : Lagrangienne ou Eulérienne. Une description plus détaillée de la modélisation d'écoulements diphasiques dispersés peut être trouvée dans [START_REF] Murrone | Numerical modeling of dispersed two-phase flows[END_REF].

Le solveur de trajectographie Lagrangien utilisé dans la chaîne IGLOO2D et développé par l'ONERA s'appelle TRAJL2D. Il est brièvement décrit ci-dessous. Il est semblable au solveur 3D dont la description est obtenue dans [START_REF] Villedieu | SLD lagrangian modeling and capability assessment in the frame of onera 3D icing suite[END_REF]. L'approche Lagrangienne signifie que chaque particule numérique de la phase dispersée portée par l'écoulement transporte les variables de position, vitesse, taille, température ainsi que d'autres quantités nécessaires.

Les équations du mouvement utilisées pour des gouttes liquides sont :

   dxg dt = v g m g dv g dt = 1 2 ρC D πr g 2 ||v a (x g ) -v g ||(v a (x g ) -v g ) + m g g (5.4) 
Avec x g la position, v g la vitesse, m g la masse, r g le rayon de la goutte et C D la traînée de la goutte.

Un large nombre de particules numériques doit être calculé pour être représentatif de l'écoulement étudié. Les propriétés moyennes de la phase dispersée sont obtenues en moyennant les grandeurs sur un échantillon représentatif de particules traversant le volume étudié. Chaque particule peut être composée à la fois de glace et de liquide. Des modèles spécifiques traitant de la trainée, du transfert thermique et des processus de changement de phase peuvent être choisis indépendamment selon le type de particules considérées. La fraction volumique des particules est considérée suffisamment faible pour que leur influence sur l'écoulement soit négligeable. Par conséquent, le champ aérodynamique peut donc être considéré indépendant de la solution de la trajectographie. Les trajectoires des gouttes sont émises depuis une ligne d'injection et calculées indépendamment les unes des autres jusqu'à ce qu'elles atteignent une surface solide ou un bord du domaine de calcul. Un flux massique, dépendant de la densité massique du nuage de gouttes, est assigné à chacune des trajectoires. La sommation sur toutes les trajectoires permet donc de déterminer le taux de masse déposée sur une surface solide.

La trainée d'une goute liquide est donnée par la corrélation de Schiller et Naumann.

C D = 24 Reg (1 + 0.15Re 0.687 g ) si Re g = 2ρrg||vg-va|| µ < 1000 0.44 sinon (5.5) 
v a , µ, ρ représentent respectivement la vitesse, la viscosité dynamique et la densité de l'écoulement aérodynamique moyen. Cette approche permet de calculer le coefficient de captation β nécessaire au calcul de l'accrétion du givre au milieu x e d'une arête e de la frontière du solide on a par définition :

β(x e ) = ṁe L e U ∞ LW C ∞ (5.6) 
ṁe représente le débit massique à travers l'arête e, U ∞ la vitesse à l'infini, L e la longueur de l'arête e et LW C ∞ (cloud Liquid Water Content exprimé en kg.m -3 ) la densité massique en eau du nuage à l'infini. Dans le cas de petites gouttes considérées pour ces travaux et correspondant à l'Appendice C [START_REF]Certification, specifications and acceptable means of compliance for large aeroplanes[END_REF], le dépôt des gouttes impactant la paroi est supposé total. Pour les SLD (Supercooled Large Droplet) ou les cristaux de glace, des modèles de taux de dépôt doivent être utilisés.

Modélisation de l'accrétion de givre

La modélisation de l'accrétion dans la chaîne IGLOO2D est effectuée par le solveur MESSIN-GER2D qui effectue le bilan de Messinger, consistant en un bilan d'énergie et de masse [START_REF] Messinger | Equilibrium temperature of an unheated icing surface as a function of air speed[END_REF] appliqué au film d'eau sur la paroi impliquant les flux entrant et sortant de masse et d'enthalpie. La figure 5.1 représente ces bilans. Ce solveur utilise les sorties des solveurs aérothermiques et de trajectographie. Les sorties sont le régime (givre blanc, givre transparent, film liquide), l'estimation du taux massique de croissance de givre ṁacc , la fraction massique de phase liquide f l et la température de paroi T p . y v représente la fraction massique de vapeur d'eau, T e la température au bord de la couche limite et h m est le coefficient de transfert massique déduit du coefficient de transfert thermique par l'analogie de Chilton-Colburn [START_REF] Chilton | Mass transfer coefficients : Prediction form data on heat transfer and fluid friction[END_REF].

h m h tc = Le -2/3 ρc p (5.10)
Le est le nombre de Lewis du système air-eau tel que Le = α/D, α représentant la diffusivité thermique dans l'air et D la diffusion massique de la vapeur d'eau dans l'air. Les grandeurs ρ et c p utilisées sont celles de l'air. Le bilan d'énergie s'écrit :

d dt (U + E k ) -ṁimp H imp -ṁin H in + ṁev H ev + ṁout H out = Qc + Qheat (5.11)
Les grandeurs H sont les enthalpies massiques (J/kg) des différents phénomènes mis en jeu, Qc représente le flux convectif (W/m 2 ), Qheat est le flux chauffant par conduction dû à la paroi (W/m 2 ), U est l'énergie interne du système considéré constitué d'un mélange d'eau liquide et solide (J/m 2 ) et E k est l'énergie cinétique du système considéré (J/m 2 ). Le flux convectif Qc est défini tel que :

Qc = h tc (T r -T p ) (5.12)
h tc est le coefficient de transfert thermique convectif calculé par le module aérothermique et T r est la température de récupération définie par :

T r = T e 1 + r rec γ -1 2 M 2 e ( 5.13) 
γ est le ratio des capacités thermiques (γ = cp cv ) et vaut 1, 4 pour l'air sec. Le facteur de récupération peut être approximé dans le cas d'une plaque plane par r rec = P r 1/2 pour une couche limite laminaire tandis que r rec = P r 1/3 pour une couche limite turbulente. P r est le nombre de Prandtl de l'air. Cette définition de la température de récupération est cependant empirique. Il est possible de la déterminer en effectuant un calcul adiabatique ou en effectuant deux calculs à deux températures imposées différentes et en résolvant le système formé par la linéarisation du flux pariétal entre ces deux températures de parois. Cette dernière approche a été privilégiée pour le couplage car elle ne nécessite pas d'effectuer d'approximations, sources d'erreurs. Elle sera détaillée à la section 5.1.7.1.

Le système des équations 5.11 et 5.7 fait donc apparaitre 3 inconnues : T p , ṁacc et ṁout ( ṁin est une donnée d'entrée égale à ṁout de la cellule amont et l'approche étant stationnaire, les thermes d(U + E k )/dt sont supposés nuls). Il y a donc une inconnue de trop pour résoudre le système. Le problème est levé à l'aide d'une approche en 3 étapes dictée par la nature des processus thermophysiques pouvant se produire. Dans un premier temps, l'hypothèse de givre blanc est effectuée. Il n'y a que de la glace sur la paroi et la température de paroi est négative (inférieure à 0°C). Dans ce cas, ṁout = 0 car il n'y a pas de ruissellement. Il ne reste plus que les deux inconnues T p et ṁacc . Si la température de paroi calculée est positive alors l'hypothèse précédente est erronée et une autre doit être effectuée. Dans ce cas, l'hypothèse de film est appliquée avec seulement de l'eau à l'état liquide sur la paroi. Ceci signifie que ṁacc = 0 et les deux inconnues restantes sont T p et ṁout . Une dernière hypothèse est effectuée si, à l'étape précédente, la température calculée est négative. Cela indique que la précédente hypothèse est fausse. La seule autre possibilité est la coexistence des phases solide et liquide. Dans ce cas T p = 0°C et les deux inconnues restantes sont ṁacc et ṁout .

Prise en compte d'un système de protection thermique contre le givre

Présentation des systèmes de protection contre le givre

Pour contrer l'apparition du givre, protéger l'appareil et ainsi garantir la sûreté du vol, de multiples dispositifs ont été mis au point. Les plus communs sont présentés succinctement dans cette section ainsi que les moyens à mettre en place pour modéliser ces systèmes. Pour plus de précisions, le lecteur peut se référer aux travaux de Bennani [START_REF] Bennani | Modélisation Bidimensionnelle de systèmes électrothermiques de protection thermiques[END_REF]. Protéger l'appareil du givre peut s'effectuer par deux méthodes. La première est d'empêcher le givre de se former sur l'appareil. On parle ainsi de systèmes antigivrants. La technique la plus couramment utilisée consiste à employer des systèmes chauffants pour maintenir la paroi à une température suffisamment élevée pour que, après l'impact des gouttes surfondues, se forme une pellicule d'eau liquide à température positive, ne pouvant donc pas se solidifier. De tels systèmes antigivrants sont très gourmands en énergie et la chaleur nécessaire à apporter à la paroi dépend grandement des conditions atmosphériques. La deuxième méthode consiste à retirer le givre après sa formation, on parle ainsi de systèmes dégivrants. L'utilisation d'approches instationnaires est nécessaire pour étudier les phases de dégivrage. Les deux types de système les plus employés sont les systèmes mécaniques et les systèmes thermiques.

Les systèmes mécaniques ne sont pas présentés ici car la méthode développée au cours de ces travaux n'entre en jeu pour que pour modéliser les protections thermiques contre le givre.

Des systèmes thermiques peuvent à la fois être utilisés dans le rôle de systèmes antigivrants et dégivrants. L'avantage des systèmes dégivrants est qu'ils ne sont pas actifs en permanence, contrairement aux systèmes antigivrants, et donc consomment moins d'énergie. Il existe deux grandes familles de systèmes thermiques. La première utilise un circuit d'air chaud prélevé du compresseur et est conçue en tant que systèmes antigivrants. La figure 5.3 représente l'architecture d'un système à air chaud. La deuxième famille utilise des résistances électriques pour chauffer la paroi, le but étant de faire fondre le givre sur une partie suffisamment étendue de la paroi pour que la glace se détache. Il s'agit donc de systèmes dégivrants. Pour un fonctionnement à moindre coût énergétique, le système est composé de multiples résistances chauffantes allumées de manière cyclique. Des températures de paroi supérieures à la température de fusion, allant de 10°C à 35°C, sont nécessaires pour retirer la glace. La présence d'une paroi givrée non protégée thermiquement résulte en des conditions thermiques présentant des variations en espace faibles, voire inexistantes et sont donc plus simples à modéliser du point de vue de la couche limite thermique. A l'inverse, l'utilisation de protections thermiques, principalement dans les cas de systèmes antigivrants ou dans les cas d'utilisation de résistances chauffantes allumées cycliquement, génère des conditions thermiques non-uniformes, d'où la méthode intégrale développée au chapitre 3. De ceci résultent des profils de température complexes dans la couche limite, plus difficiles à traiter à l'aide de méthodes simplifiées. Cet effet de non uniformité des conditions a cependant un effet très important sur l'accrétion du givre et ne peut être ignoré. Actuellement, le code CLICET (voir section 1.1.1.2) est utilisé pour traiter ces cas par méthode couplée fluide parfait/ couche limite en 2D car il était le seul code de couche limite permettant de les traiter.

D'autres solutions utilisant, par exemple, des surfaces hydrophobes sont étudiées mais leur efficacité et leur durée de vie limitée n'a pas permis leur industrialisation aujourd'hui. Des solutions hybrides utilisant plusieurs technologies présentées précédemment ont été explorées. Actuellement, les systèmes les plus utilisés sont les systèmes à air chaud pour les nacelles et les ailes tandis que les systèmes électrothermiques sont utilisés principalement pour les rotors d'hélicoptères et les sondes.

La modélisation de ces systèmes de protection s'effectue à l'aide de chaînes de givrage utilisant l'architecture présentée dans les sections précédentes. Cependant, pour traiter des problématiques spécifiques à chacun des systèmes susmentionnés, des modules dédiés ont été développés. L'approche Messinger est stationnaire mais certains systèmes nécessitent une modélisation instationnaire. Dans ces cas est utilisé le code MiLeS2D [START_REF] Chauvin | An implicit time marching galerkin method for the simulation of icing phenomena with a triple layer model[END_REF].

Certains modules prennent la place du module MESSINGER2D et calculent à la fois l'accrétion et l'effet du système dégivrant ou antigivrant. D'autres modules sont couplés avec le module d'accrétion et permettent de déterminer la température dans la paroi. 

Modélisation des systèmes électrothermiques

Bien que les systèmes électrothermiques ne soient pas actuellement les plus utilisés (bien qu'ils pourrait être plus utilisés à l'avenir car moins énergivores et en raison de l'électrification des appareils), ils peuvent générer des conditions pariétales fortement non uniformes et constituent d'excellents cas de validation pour la méthode développée au cours de ces travaux. Ces systèmes sont modélisés dans la chaine IGLOO2D à l'aide du code ETIPS2D rapidement décrit dans cette section. Pour plus de détails le lecteur peut se référer à [START_REF] Bennani | Two dimensional model of an electrothermal ice protection system[END_REF][START_REF] Bennani | Modélisation Bidimensionnelle de systèmes électrothermiques de protection thermiques[END_REF].

La modélisation des systèmes électrothermiques consiste à résoudre un problème de conduction thermique dans la paroi faisant intervenir plusieurs couches de différents matériaux. Concernant ETIPS2D, le problème est résolu à l'aide d'une discrétisation Volumes Finis de l'équation de la chaleur et d'une formulation implicite de la discrétisation en temps. L'équation résolue s'écrit donc pour une cellule K :

∂ ∂t K ρhdV = K Q src dV + ∂K -ϕ.ndΓ (5.14) 
où ρ est la masse volumique du solide, h est l'enthalpie spécifique, Q src est le terme source de production de chaleur, ϕ est le flux de chaleur et n est la normale sortante à la cellule K. L'enthalpie est reliée à la température par la relation classique h = c p T et le flux de chaleur est modélisé par la loi de Fourier ϕ = -λ∇T avec λ la conduction thermique. La paroi est généralement constituée de plusieurs composants générant ainsi des discontinuités.

Le flux ϕ ,E à l'interface E entre deux cellules constituées de deux composants différents s'écrit :

ϕ ,E = λ L ∆ L λ R ∆ R λ L ∆ L + λ R ∆ R (T L -T R ) (5.15)
avec les indices L et R se rapportant aux cellules gauches et droites respectivement et ∆ L , ∆ R les distances entre les centres des cellules et leur frontière commune. Deux types de conditions aux limites sont distinguées. Premièrement, des conditions de Dirichlet pour lesquelles la température de paroi est imposée. Le flux à la paroi ϕ n s'écrit, avec l'indice bnd se rapportant aux grandeurs au centre de la cellule située à la frontière, ∆ bnd la distance entre le centre de la cellule et la frontière extérieure, T p la température de paroi :

ϕ n = -λ bnd T bnd -T p ∆ bnd (5.16)
Deuxièmement les conditions de Neumann (flux imposé) et Fourier-Robin (conditions mixtes) sont résolues de façon identique. Le flux à la paroi s'écrit :

ϕ n = h tc (T rec -T p ) + ϕ 0
(5.17) avec h tc le coefficient de transfert thermique, T rec la température de récupération et ϕ 0 le flux imposé. Le flux à la paroi se réécrit :

ϕ n = λ bnd h tc h tc ∆ bnd + λ bnd (T rec -T p ) + λ bnd h tc ∆ bnd + λ bnd ϕ 0 (5.18) 

Couplage entre les solveurs pour la modélisation des parois protégées thermiquement contre le givre

L'étude de parois protégées thermiquement contre le givre nécessite de modéliser à la fois la couche limite thermique, le comportement de l'eau à la paroi et le système de protection thermique dans la paroi. Les calculs de la couche limite, de l'accrétion et de la température dans la paroi sont couplés. La résolution de la couche limite était à l'origine effectuée à l'aide du code CLICET. Dans cette thèse, on a autorisé l'utilisation de S-BLIM2D ou M-BLIM2D pour cette étape. La figure 5.4 illustre le couplage mis en place.

Dans un premier temps, l'aérodynamique extérieure est calculée. Ensuite est effectué le calcul de trajectographie. Vient ensuite la boucle de couplage entre les trois solveurs restants.

Premièrement, le solveur MESSINGER2D est couplé au solveur ETIPS2D par utilisation d'une procédure d'échanges de conditions aux limites, basée sur des conditions de type Fourier et des coefficients d'échange numérique. La détermination de coefficients d'échange optimaux fait l'objet d'études présentées par exemple dans la thèse de R. Chauvin [START_REF] Chauvin | Un modèle unifié pour les phénomènes de givrage en aéronautique et les systèmes de protection thermiques[END_REF].

Le calcul de couche limite est ensuite effectué à partir de la condition de Dirichlet qu'est la température de paroi fournie par MESSINGER2D-ETIPS2D. Ceci permet enfin de déterminer le nouveau couple de variables h tc et T r selon la méthode exposée en 5.1.7.1. Ces variables sont ensuite utilisées pour effectuer successivement un nouveau bilan d'accrétion menant à la détermination d'une nouvelle température de film et un nouveau calcul de la température dans la paroi. Cette résolution est effectuée itérativement jusqu'à ce que la norme de la variation de la température de paroi passe sous le seuil de convergence défini. Sauf mention contraire, pour la suite du chapitre, la norme L2 est utilisée et le seuil de convergence est fixé à 10 -2 . Le couplage est arrêté si le seuil de convergence n'est pas atteint après 100 itérations. Il est à noter qu'afin de rendre plus robuste le couplage, une méthode de relaxation est utilisée. Elle consiste à imposer au solveur de couche limite une température de paroi T i+1 p non strictement égale à la température de MESSINGER2D-ETIPS2D T * p , mais à :

T i+1 p = (1 -α)T i p + αT * p (5.19)
où T i p est la température de paroi à l'itération actuelle. 

Calcul de la couche limite et intégration de M-BLIM2D dans le couplage

Dans cette section est présentée la méthode utilisée pour déterminer le coefficient de transfert thermique à partir de la résolution de la couche limite thermique à température de paroi imposée. Étant donné que la résolution de la couche limite thermique en régime turbulent n'est pas implémentée pour les solveurs S-BLIM2D et M-BLIM2D, la résolution est différente en régime turbulent.

Calcul de la couche limite laminaire par linéarisation du flux pariétal entre deux températures de paroi

Les solveurs de couche limite CLICET, S-BLIM2D et M-BLIM2D ne peuvent fournir en sortie directe que le flux pariétal. Pour obtenir le coefficient de transfert thermique à l'aide de la température de paroi calculée précédemment, sont effectués deux calculs de la couche limite à deux températures imposées T p1 et T p2 proches de la température de paroi. Les flux pariétaux obtenus pour ces deux conditions (respectivement notées ϕ p1 et ϕ p2 ) permettent de linéariser le problème thermique autour de la température de paroi tel que :

h tc = ϕ p1 (T p1 -T r ) = ϕ p2 (T p2 -T r ) (5.20)
La résolution de ce système permet de déterminer h tc et T r en fonction uniquement de T p1 , T p2 , ϕ p1 et ϕ p2 :

h tc = ϕ p2 -ϕ p1 T p2 -T p1 (5.21a) T r = ϕ p2 T p1 -ϕ p1 T p2 ϕ p2 -ϕ p1 (5.21b)
Pour notre étude, nous avons utilisé comme valeur T p1 = T p + 5K et T p2 = T p -5K, avec T p la température de paroi obtenue à l'aide des solveurs ETIPS2D et MESSINGER2D. Bien que le choix de T p1 et T p2 soit arbitraire il n'impacte pas les résultats de h tc et T r . T r est ici la valeur obtenue par la linéarisation du flux pariétal autour de la température de paroi. Cette valeur peut donc être éloignée de la température de récupération réelle si cette dernière est éloignée de la température de paroi autour de laquelle la linéarisation a été effectuée. C'est d'autant plus le cas si l'on considère des températures de paroi variant fortement en espace.

Calcul de la couche limite turbulente

Le critère de transition laminaire-turbulent de Drela est utilisée pour tous les solveurs de couche limite utilisés. Ce critère a été présenté à la section 1.1.3.3. On considère ici une modélisation sur paroi lisse. La rugosité, pour la modélisation du givrage, n'est généralement prise en compte que dans la zone turbulente étant donné que la rugosité due à l'apparition du givre entraine généralement rapidement la transition laminaire-turbulent. Sachant que l'objectif de l'étude est d'évaluer l'apport du solveur de couche limite thermique laminaire développé, on se contente ici d'une modélisation de la couche limite turbulente sur paroi lisse même si du givre apparait étant donné que les résultats dans cette zone sont secondaires.

Pour le calcul de la couche limite turbulente par le code CLICET, la même approche par linéarisation du flux pariétal est effectuée.

Le calcul par méthode intégrale de la couche limite turbulente n'étant actuellement pas possible, une méthode simplifiée est utilisée. Le coefficient de transfert thermique est directement obtenu par l'approche suivante, proposée par Ambrok [START_REF] Ambrok | Approximate solutions of equations for the thermal boundary layer with variations in the boundary layer structure[END_REF] : 

h tc (x) = 0.

Évaluation du couplage sur un cas de profil d'aile protégé contre le givre

La méthode de couplage ayant été présentée, les couplages utilisant respectivement les solveurs S-BLIM2D, M-BLIM2D et CLICET pour résoudre la couche limite sont ici comparés, le solveur CLICET constituant la solution de référence. L'objectif est ici de déterminer le gain éventuel apporté par la méthode M-BLIM2D par rapport à la méthode S-BLIM2D pour un profil protégé contre le givre.

Présentation du cas d'étude

Un profil NACA0018 avec une corde de 0.39m et sans incidence est utilisé pour cette étude. L'écoulement infini amont est dans les conditions M ∞ = 0.336, T ∞ = 263, 05K et P ∞ = 92644P a. Le diamètre médian des gouttes est de 20µm et la densité massique volumique du nuage de gouttes est de 1g.m -3 . Le profil est chauffé à l'aide de résistances électriques réparties de façon symétrique entre l'intrados et l'extrados. Le tableau 5.1 récapitule la puissance surfacique et la position de chaque résistance chauffante.

Les maillages utilisés pour les calculs Euler ont été générés par déformation des maillages utilisés au chapitre 4 pour traiter des profils NACA0012 et illustrés par la 

Étude de convergence en maillage et en nombre de modes

Pour l'étude de la convergence en nombre de modes, on fixe le maillage à une résolution de 512 points le long du profil. La figure 5.6 présente la température de paroi dans la zone laminaire calculée par le couplage utilisant M-BLIM2D avec différents nombres de modes. Le nombre de modes utilisé affecte peu la température de paroi obtenue. Les résultats sont convergés à partir de quatre modes.

La figure 5.7 représente l'étude de convergence en maillage effectuée sur la température de paroi calculée par le couplage utilisant M-BLIM2D avec quatre modes. Les maillages utilisés pour l'ensemble du couplage (calcul de l'aérodynamique externe, de la trajectographie et de la couche limite) sont de 128, 256 et 512 points. La différence de température de paroi calculée entre 256 et 512 points est au plus de 0.1 K. Le calcul est donc convergé en maillage avec un maillage surfacique de 512 points. Pour la suite, le maillage à 512 points est utilisé. 

Exploitation des résultats

Dans cette partie, nous étudions l'influence des différentes méthodes de résolution de couche limite (CLICET, S-BLIM2D, M-BLIM2D) sur les résultats obtenus. Les résultats obtenus à partir du couplage utilisant le code CLICET constituent la référence.

La figure 5.8(a) représente la température de paroi obtenue par le couplage mentionné précédemment utilisant les différentes méthodes de résolution de la couche limite uniquement dans la zone laminaire tandis que la figure 5.8(b) représente l'ensemble du profil . Quatre modes sont utilisés ici pour M-BLIM2D dans la zone laminaire. La température de paroi calculée par S-BLIM2D et M-BLIM2D diffère au niveau du bord d'attaque, l'estimation effectuée par M-BLIM2D étant beaucoup plus précise par comparaison à CLICET. Sur le reste de la zone laminaire, les résultats obtenus par M-BLIM2D et S-BLIM2D sont pratiquement similaires bien que M-BLIM2D décrive légèrement mieux la tendance de la température de paroi. La position et la valeur du maximum de température de paroi est obtenue un peu plus précisément par M-BLIM2D. On remarque que la précision se dégrade en s'éloignant vers l'aval. La faible dépendance des résultats à la méthode intégrale employée pour la résolution de la couche limite montre que dans ce cas, la non uniformité de la température de paroi n'est pas un élément déterminant dans le couplage utilisé pour la résolution de la température de paroi.

La couche limite thermique de la zone turbulente, calculée par la méthode intégrale simplifiée lorsque la zone laminaire est résolue par S-BLIM2D ou M-BLIM2D, montre que les résultats obtenus ne dépendent pratiquement pas pour ce cas de la méthode de résolution de la partie laminaire de la couche limite.

Remarque : la résolution de la couche limite turbulente étant différente pour CLICET des deux autres solveurs, ceci affecte aussi légèrement la zone laminaire en raison de la conduction thermique dans la paroi. Cette dernière permet de transporter de l'information de l'aval vers l'amont, ce qui n'est pas possible dans la couche limite. En raison des méthodes numériques utilisées, il n'est pas possible d'avoir exactement la même résolution de la couche limite turbulente pour tous les solveurs. Il n'est pas possible de maintenir artificiellement la laminarité de la couche limite sur l'ensemble du profil car cela cause la divergence du couplage. Une solution envisageable est d'imposer une condition adiabatique pour la zone turbulente. Ceci a pour effet d'aboutir à un traitement identique de la zone turbulente par tous les solveurs. Le gradient de température de paroi étant relativement faible au niveau de la transition laminaire turbulent, l'effet de la conduction thermique dans la paroi reste limité. On constate donc que le flux convectif n'est responsable que d'une partie de l'évacuation de la chaleur perdue par la paroi et donc qu'il est loin d'être le seul paramètre permettant de déterminer la température de la paroi. Le choix de la méthode de résolution de la couche limite, s'il impacte la température de paroi calculée, ne contribue qu'entre le tiers et la moitié du bilan permettant d'établir cette dernière. En s'éloignant du bord d'attaque, les gouttes impactantes contribuent de moins en moins à l'évacuation de la chaleur et ce terme tend vers 0 tandis que l'évaporation et le flux convectif tendent à contribuer à la moitié de l'évacuation de l'énergie. En fin de zone laminaire, l'énergie dans le film liquide provient plus de l'écoulement depuis l'amont où il est plus chaud que du transfert par conduction à la paroi.

Il est à noter que le taux d'évaporation est modélisé par l'analogie de Chilton-Colburn [START_REF] Chilton | Mass transfer coefficients : Prediction form data on heat transfer and fluid friction[END_REF], qui consiste à déduire le coefficient de transfert de masse du coefficient de transfert thermique. Ceci signifie que la solution de la couche limite thermique dicte l'effet de l'évaporation. Cette analogie étant mise au point sous hypothèse de plaque plane sans gradient de pression, la détermination du coefficient de transfert thermique par une autre méthode dans d'autres conditions (présence d'un gradient de pression) peut entrainer une imprécision sur la détermination du terme d'évaporation et donc indirectement sur la détermination de la température de paroi. T p + 5K pour la détermination du coefficient de transfert thermique à la dernière itération. L'objectif est ici de comparer la qualité des solutions offertes par S-BLIM2D et M-BLIM2D par rapport à la solution de référence donnée par CLICET.

La figure 5.12(a) représente le flux pariétal sur l'extrados (le cas d'étude étant symétrique, la solution sur l'intrados est identique). En noir est représenté le résultat obtenu en effectuant le couplage avec le code de couche limite CLICET, tandis qu'en bleu est effectué le couplage avec S-BLIM2D et en vert le couplage avec M-BLIM2D utilisant quatre modes. M-BLIM2D et CLICET donnent lieu à des résultats pratiquement identiques jusqu'à s = 0.11 environ avant qu'un écart conséquent s'installe, atteignant 30% en fin de zone laminaire, à s ≃ 0.2. S-BLIM2D donne lieu à des résultats éloignés de CLICET sur l'ensemble de la zone laminaire et suit moins bien la tendance d'évolution du flux pariétal car les courbes se croisent par deux fois. La différence atteint 25% avec CLICET en fin de zone laminaire à s ≃ 0.2.

La différence de température de paroi entre CLICET et les deux autres solveurs augmentant en fin de zone laminaire, la différence de flux pariétal augmente elle aussi. Toutefois, est observé un excellent accord sur le flux pariétal entre M-BLIM2D et CLICET, là où la température de paroi est proche pour les deux méthodes. Les résultats de température de paroi et de flux pariétal sont donc cohérents. A l'inverse, bien que le couplage avec S-BLIM2D conduit à une température de paroi plus faible que le couplage avec CLICET en fin de zone laminaire, le flux pariétal reste surestimé. Le tracé des profils de température des figures 5.12(a-b-c) respectivement aux abscisses adimensionnées s = 0.02, s = 0.1 et s = 0.2 permet de mieux comprendre la différence de comportement entre les solveurs S-BLIM2D et M-BLIM2D. A l'abscisse s = 0.02, les profils de température obtenus par CLICET et M-BLIM2D sont très similaires tandis que le profil de température obtenus par S-BLIM2D surestime légèrement la température proche de la paroi et sous-estime l'épaisseur de la couche limite thermique. En s = 0.1 les conclusions sont similaires si ce n'est que la température proche de la paroi obtenue par S-BLIM2D est plus proche de celle obtenue par CLICET. Pour finir, en s = 0.2, une large différence apparait proche de la paroi entre CLICET et les autres solveurs. Le profil est légèrement courbé proche de la paroi pour CLICET ce qui n'est pas capté par S-BLIM2D. A l'inverse, pour M-BLIM2D, cette courbure est surestimée réduisant ainsi la pente à la paroi.

La solution du cas présenté ne donne pas lieu à une variation suffisamment conséquente de la température de paroi pour mettre en défaut S-BLIM2D au vu des études effectuées aux chapitre précédent. Il est par conséquent nécessaire d'étudier un cas pour lequel la distribution de température de paroi solution du couplage entraine une différence notable de solution dans la couche limite thermique.

Étude d'un cas chauffé plus fortement au bord d'attaque

On s'intéresse ici à un second cas identique au premier à l'exception près que les puissances surfaciques des résistances chauffantes ont été modifiées. Elles sont récapitulées dans le tableau suivant 5.2 :

Position adimensionnée par la corde 0 -0.023 0.023 -0.110 0.110 -0.197 0.197 -0.285

Puissance surfacique en W.m -2 54000 8000 2000 1000

Table 5.

-Puissance et position des résistances chauffantes

Le but de ce cas est d'évaluer la précision du couplage dans un cas avec un gradient de chauffage amplifié dans la direction longitudinale afin d'augmenter le gradient de température de paroi. Cette répartition de puissance des résistances chauffantes a été choisie pour qu'apparaisse un large gradient négatif de température de paroi, situation dans laquelle il a été montré au chapitre 4.2 que la précision du solveur M-BLIM2D est supérieure à celle de S-BLIM2D. 4 modes ont été utilisés, la convergence en nombre de modes étant atteinte à partir de ce nombre. Le même maillage que l'étude précédente, à 512 points surfaciques, a été utilisé.

La figure 5.13 représente la température de paroi obtenue avec les différents solveurs utilisés pour résoudre la couche limite. La solution de référence obtenue par le couplage utilisant CLICET donne lieu à un gradient moyen de température de paroi d'environ 200K.m -1 . On constate que la solution obtenue par M-BLIM2D est significativement plus proche de la solution de référence obtenue par CLICET que ne l'est la solution obtenue par S-BLIM2D dans la première partie du profil, jusqu'à s = 0.1 environ. Cet effet est ici plus marqué que pour le cas précédent. En s'approchant de la fin de la zone laminaire, la température de paroi obtenue par M-BLIM2D s'éloigne de celle obtenue par CLICET et s'avère être plus proche de la solution obtenue par S-BLIM2D. L'écart de température de paroi entre CLICET et M-BLIM2D en fin de profil est d'environ 2K, une valeur de seulement 0.2K supérieure au cas étudié précédemment. La solution donnée par S-BLIM2D est légèrement plus éloignée de la solution donnée par M-BLIM2D en fin de profil par rapport au cas précédent. L'écart reste néanmoins peu significatif. Au vu de l'amélioration conséquente de la précision de l'estimation du flux pariétal apportée par M-BLIM2D par rapport à S-BLIM2D pour des conditions de température de paroi imposée avec un large gradient de température de paroi négatif, on pourrait s'attendre à un gain de précision plus significatif pour le cas présent. Ce cas ne semble donc pas suffisamment contraignant pour mettre en défaut S-BLIM2D et mettre en valeur une plus-value significative apportée par M-BLIM2D pour ce couplage. Le gradient de température de paroi étant élevé à la proximité de la transition laminaire turbulent, le phénomène de conduction thermique dans la paroi permet à la résolution de la couche limite turbulente d'avoir un impact significatif sur la couche limite laminaire à l'inverse du premier cas étudié. 2 bien que M-BLIM2D donne lieu à un profil de température plus proche de la solution de référence, la dérivée de la température à la paroi est nettement moins bien évaluée. Si, pour ce cas, au lieu d'imposer la température de paroi obtenue par le couplage de chaque solveur on impose la même température de paroi pour tous les solveurs, alors il s'avère que M-BLIM2D modélise très fidèlement à la fois le profil de température et le flux pariétal en tout point. Il advient donc pour ce cas qu'une petite variation de la température de paroi (ici la différence est inférieure à 2K en tout point entre les solutions offertes par les couplages avec CLICET et M-BLIM2D) entraine une large variation de la forme des profils de températures et du flux pariétal. Ceci explique pourquoi, malgré une meilleure modélisation de la couche limite thermique pour des températures de paroi non uniformes, l'utilisation de M-BLIM2D au sein du couplage peut localement amplifier les légères erreurs commises initialement. La nécessité de faire appel à un coefficient de relaxation pour éviter la divergence du couplage lors de la mise à jour de la température de paroi indique la nature potentiellement instable du couplage. De petites erreurs commises par un solveur peuvent être amplifiées par d'autres solveurs. Par conséquent, l'amélioration d'un solveur sur la modélisation d'un phénomène non couplé n'engendre pas nécessairement l'amélioration de la qualité du couplage dans son ensemble. Pour pouvoir statuer sur l'intérêt de la méthode développée au sein de ce couplage il serait donc nécessaire d'effectuer une étude plus poussée de l'ensemble du couplage, chose complexe qui n'a malheureusement pu être réalisée. Le bilan d'énergie effectué par le modèle MESSINGER est une fois encore utilisé pour déterminer l'importance du flux convectif par rapport aux autres termes pour la détermination de la température du film liquide. Au bord d'attaque, le terme de convection ne contribue qu'à évacuer 26% de la chaleur perdue par la paroi, en dessous de l'effet des gouttes impactantes et de l'évaporation qui est le terme dominant pour évacuer la chaleur. En s'éloignant du bord d'attaque l'effet de l'impact des gouttes tend rapidement à disparaitre mais l'évaporation reste toujours dominante devant le flux convectif. Ainsi, dans ce cas, l'augmentation de la puissance de chauffe se traduit par une part plus importante de l'évaporation par rapport au flux convectif pour la détermination de la température de film. Ceci peut aussi expliquer pourquoi, malgré des conditions thermiques plus sévères que le cas précédent, la température de paroi obtenue par les couplages utilisant différents solveurs de couche limite parviennent à des températures de paroi si proches, étant donné que leur contribution décroît.

Bilan du chapitre

Dans ce chapitre nous avons présenté la méthodologie de couplage utilisée dans la chaîne de IGLOO2D pour résoudre des configurations d'antigivrage et de dégivrage ainsi que la manière dont nous avons implémenté le solveur M-BLIM2D au sein de la chaîne de calcul.

Nous avons ensuite décrit et analysé les résultats obtenus pour deux cas de calcul correspondant à un profil d'aile équipé d'un système d'antigivrage thermique, la puissance de chauffage étant plus importante dans le second cas que dans le premier. Dans les deux cas, la solution obtenue avec M-BLIM2D a été comparée à celles obtenues avec CLICET (solution de référence) et S-BLIM2D. Au final, même si la solution M-BLIM2D est plus proche de la solution CLICET (plus encore dans le second cas que dans le premier), le gain en précision obtenu s'avère plus faible que celui escompté suite aux tests numériques des chapitres 3 et 4. Nous avons tenté d'en comprendre la raison mais ne sommes pas parvenus à en donner une explication évidente. Il faudra donc poursuivre cette analyse et traiter d'autres cas d'application pour voir si cette constatation est générale.

Conclusion et perspectives

L'objectif de cette thèse était le développement d'une méthode intégrale permettant de modéliser les transferts thermiques dans une couche limite au-dessus d'une paroi isotherme ou non. L'application visée étant la simulation des phénomènes de givrage/dégivrage, les méthodes intégrales sont très avantageuses par rapport aux approches directes basées sur la résolution des équations de Navier-Stokes ou de Prandtl car elles sont plus rapides et nécessitent uniquement un maillage surfacique. Dans un premier temps, nous avons testé la méthode intégrale à une équation issue de la thèse de C. Bayeux, s'appuyant sur un profil de température présumé et des propriétés physiques de l'air constantes. Nous avons mis en évidence plusieurs limitations de la méthode, en particulier dans le cas de parois chauffées où les profils de températures peuvent localement s'éloigner fortement du profil de température supposé et le flux de chaleur pariétal peut changer de signe. Pour y remédier nous avons proposé une approche plus générale consistant à appliquer une méthode de Galerkin dans la direction normale à la paroi et à tenir compte de la dépendance en température des propriétés physiques de l'air. On est alors conduit à résoudre non plus une seule équation intégrale mais un système d'équations intégrales, de dimension le nombre de modes retenus pour l'approximation du profil de température dans la direction normale à la paroi.

Les capacités de la nouvelle méthode ont été évaluées dans un premier temps pour des écoulements de dièdres car il s'agit de configurations génériques aisément reproductibles et très utilisées pour l'étude de la couche limite. Dans un second temps, un travail similaire pour des profils d'aile a été effectué pour étudier des configurations plus proches des applications industrielles. Des conditions de température de paroi uniformes ou non ont été étudiées dans les deux cas. La précision de la méthode modale a été comparée à celle de la méthode intégrale à une équation, démontrant un gain net de précision de la méthode modale, à la fois pour l'estimation du flux pariétal mais aussi concernant les profils de température. Le gain est d'autant plus important que le nombre de modes est élevé et que le profil de température est non-monotone. La méthode modale a enfin été utilisée au sein de la chaîne IGLOO2D afin de simuler des cas de profils d'ailes protégés thermiquement en conditions givrantes. On obtient un léger gain de précision sur la détermination de la température de paroi par rapport à la méthode intégrale à une équation mais ce gain reste cependant limité sur les cas étudiés.

Pour résumer, la méthode modale développée au cours des travaux de thèse est précise à la fois sur des configurations de température de paroi uniforme et non uniforme. Elle est capable de traiter de forts gradients de température de paroi (et même des cas plus théoriques de discontinuités de température pariétale). Elle apporte donc une plus-value significative par rapport à la méthode intégrale à une équation sur ces cas. Elle a aussi l'avantage d'être robuste.

Cette méthode a cependant des limitations au vu de son utilisation pour résoudre des problèmes de givrage. Ces limitations mènent à des perspectives de travail. Premièrement, l'intérêt d'une résolution couplée couche limite / fluide parfait, est la vitesse de résolution. Or, bien que le temps de calcul soit comparable à celui de la méthode intégrale à une équation lorsque deux modes sont utilisés, il augmente très rapidement avec le nombre de modes. Une solution pour réduire fortement le temps de calcul serait d'impliciter le schéma d'intégration temporelle ce qui permettrait de s'affranchir de la condition de stabilité sur le pas de temps et de converger beaucoup plus rapidement vers la solution stationnaire.

La précision spatiale de la méthode, pour des géométries plus complexes et/ou des variations plus brutales de la température de paroi, pourrait être améliorée en utilisant un schéma d'ordre 2 en espace.

Le paramètre q de la méthode modale a été défini comme ne dépendant que du nombre de modes. Il est cependant envisageable d'effectuer une étude plus poussée de cette grandeur et de le faire dépendre d'autres paramètres pour améliorer la précision de la méthode, même s'il peut s'avérer compliqué en pratique de trouver les bons paramètres. La difficulté est en effet qu'en raison de ce choix, quand le nombre de modes augmente, la hauteur résolue augmente et devient très grande devant la hauteur effective de la couche limite, ce qui ne paraît pas optimal en termes de précision et de coût de calcul.

La résolution est aussi limitée à des conditions de température de paroi imposée. Bien qu'il soit possible de déterminer le coefficient d'échange thermique et de résoudre des problèmes de givrage couplant plusieurs solveurs simplement à l'aide de cette condition, l'implémentation de conditions de flux imposé et de conditions mixtes est envisageable pour élargir le domaine d'application de la méthode.

Pour pouvoir utiliser pleinement la méthode pour des applications de givrage, il est nécessaire d'étendre la résolution à des configurations 3D. Il n'y a, a priori, aucune difficulté pour le faire, la formulation théorique de la méthode ayant été écrite en 2D et 3D.

Le couplage utilisant la méthode intégrale pour résoudre des cas de profils d'ailes protégés thermiquement contre le givre, en conditions givrantes, doit être validé sur un plus grand nombre de cas. Les cas traités dans ce manuscrit n'ont en effet pas permis d'obtenir un gain majeur sur la précision des résultats avec la méthode modale par rapport à la méthode à une équation. Comme cela apparaît contradictoire avec les études menées en conditions purement aérodynamiques et hors du couplage, un approfondissement des analyses est requis.

Une perspective majeure est l'étude de couches limites turbulentes. En effet, la limitation aux couches limites laminaires est un frein à une utilisation industrielle car la couche limite turbulente représente la majeure partie du domaine et une portion assez significative de la zone exposée au givre dans certaines conditions qui ont été laissés de côté dans ce manuscrit. Certaines pistes sont envisageables pour l'étude de couches limites turbulentes par méthode intégrale modale. Il est tout d'abord nécessaire de déterminer la fonction poids associée à la décomposition modale. Cette détermination peut s'appuyer sur la caractérisation des profils de température rencontrés en régime turbulent établie par l'étude bibliographique. Si le profil de température obtenu par cette décomposition modale ne permet pas de déterminer précisément le gradient de température à la paroi, il est alors nécessaire de mettre en place une relation de fermeture pour déduire le flux pariétal à partir des grandeurs intégrales disponibles. La détermination de certains termes sources (dissipation et éventuellement convection verticale) ne peut être effectuée précisément en raison d'un profil de vitesse qui n'est pas exact proche de la paroi. Il sera peut-être nécessaire d'avoir recours à des méthodes autres que l'intégration directe de ces termes.

La rugosité de paroi joue un rôle majeur sur le transfert thermique en régime turbulent et doit donc être prise en compte. Il existe deux moyens de procéder : soit effectuer d'abord une résolution complète sur une paroi considérée lisse puis de corriger cette résolution pour prendre en compte la rugosité ou bien modifier directement les profils de vitesse et de température pour prendre en compte la rugosité. Dans les deux cas, il s'agit de situations où la résolution de la couche limite turbulente s'avérera importante. Dans le deuxième cas, a priori le plus précis, les méthodes de fermeture devront de nouveau être adaptées.

Pour les conditions de chauffage important, la gamme de températures dans la couche limite peut être très large, menant à de fortes variations de la masse volumique ainsi que d'autres paramètres thermodynamiques. L'hypothèse simplificatrice d'un découplage entre la couche limite dynamique et la couche limite thermique est alors remise en cause. Les essais effectués dans cette thèse montrent que cela tend à diminuer la précision de la méthode. Si des simulations ultérieures montrent que la perte de précision est critique, il faudra intégrer la variation de densité dans la résolution de la couche limite dynamique et effectuer une résolution couplée des deux couches limites. La première possibilité pour modéliser ce couplage consiste à explorer un couplage faible entre les deux résolutions en effectuant successivement les calculs de couche limite dynamiques et thermiques. La distribution des paramètres thermodynamiques (tels la viscosité et la masse volumique) calculée par la résolution de la couche limite thermique permet de mettre à jour la valeur de la couche limite dynamique. La seconde possibilité est de mettre en place un couplage fort en résolvant simultanément les couches limites dynamique et thermique.

Enfin, il est aussi envisageable d'utiliser la méthode développée dans cette thèse pour d'autres applications pour lesquelles il est nécessaire de déterminer le transfert thermique par flux convectif en régime forcé avec une paroi.

Annexe A

Profil de vitesse longitudinale utilisé

La qualité du profil de vitesse longitudinale déterminé au cours de la résolution de la dynamique dans la couche limite est un paramètre déterminant de la qualité de la modélisation de la couche limite thermique. La figure A.1 montre les profils de vitesse longitudinale calculés par cette méthode pour des écoulements autour de dièdres à différentes valeurs du paramètre de gradient de pression m. L'écoulement à l'infini se trouve dans les conditions suivantes : M ∞ = 0.01, T ∞ = 263K et P ∞ = 80000P a. Les profils sont extraits à 20 cm du bord d'attaque et la paroi est 1K plus chaude que l'écoulement externe. On constate que la solution offerte par BLIM2D est d'excellente qualité pour des écoulements accélérés. Dans le cas d'un écoulement sur une plaque plane, une petite erreur de l'ordre de 1% est commise dans la partie supérieure de la couche limite tandis que la partie inférieure reste très précise. Pour le cas ralenti présenté figure A.1(d), l'erreur est accrue dans la partie supérieure de la couche limite pour atteindre environ 2%. Il en est de même dans la partie inférieure à y/δ = 0.05 où l'erreur atteint localement 3%. Cette précision réduite sur le profil de vitesse longitudinale pour les écoulements ralentis peut expliquer les résultats obtenus pour la couche limite thermique. Les tracés pour des nombres de Mach supérieurs donnent des résultats similaires. Eckert [START_REF] Eckert | Analysis of Heat and Mass transfer[END_REF] met en évidence l'effet de la déformation du profil de température dans la couche limite due à la variation de la température de paroi. Pour ce faire, l'équation différentielle instationnaire et incompressible de l'énergie dans le cadre des hypothèses de couche limite (1.50) peut être réutilisée pour introduire l'effet d'une variation de température de paroi. A partir des hypothèses stationnaires, pour un écoulement extérieur irrotationnel, en utilisant la loi de Fourier pour la conduction thermique et τ :y = µ ∂u: ∂y dans la sous-couche visqueuse, l'équation peut être réécrite de la façon suivante : Bien que cette différentiation de l'équation de l'énergie permette de prendre en compte localement la variation de la température de paroi en espace, elle ne permet d'un point de vue discret au niveau d'une cellule que de prendre en compte l'effet des cellules voisines. Ainsi, une variation brutale de la température de paroi, telle une marche, qui affecte significativement la couche limite thermique sur une large distance, ne peut être modélisée à l'aide de cette méthode. Deuxièmement, l'implémentation de cette méthode pour modifier la relation de fermeture qu'est le profil de température supposé nécessite, soit de remplacer l'une des conditions aux limites par une condition sur la dérivée troisième du profil de température ce qui est peut précis, soit de rajouter une condition à la limite ce qui complexifie énormément le système à résoudre pour déterminer le profil de température. Pour ces raisons cette méthode a un intérêt applicatif très limité.

u x ∂T ∂x + u y ∂T ∂y + u z ∂T ∂z = k ρc p ∂ 2 T ∂y 2 - 1 2c p u x ∂| qe | 2 ∂x + u z | qe | 2 ∂z + µ

Annexe C

Optimisation de l'exposant q de la relation de fermeture thermique en régime laminaire pour la méthode intégrale à une équation L'exposant q de l'expression de la relation de fermeture thermique 2.22 a été déterminé comme une fonction du facteur de forme uniquement, à l'aide d'une fonction linéaire calée sur 2 points. Bien que la solution puisse être ajustée sur un plus grand nombre de paramètres de similitude cela n'améliore pas nécessairement les résultats. Une approximation quadratique à 3 points a été explorée au cours de cette thèse mais donne des résultats moins précis sur le flux pariétal. La valeur de l'exposant q est vérifiée en cherchant la valeur minimisant l'erreur, au sens des moindres carrés, sur le flux pariétal par rapport à un calcul CLICET pour déterminer la sensibilité de ce paramètre aux autres conditions physiques. La figure C.1 montre l'effet de la grandeur T e -T p sur l'exposant q optimal. Les traits en pointillés représentent le coefficient q déterminé par la relation 2.25 ne prenant en compte que le facteur de forme. Sur une large plage de différences de température, pour une paroi chauffée (T e -T p < 0), l'exposant q optimal ne varie pas beaucoup avec T e -T p . Pour des écoulements ralentis ou si |T e -T p | est petit alors q optimal dépend beaucoup de T e -T p . On constate aussi un saut de q optimal au passage d'une paroi chauffée à une paroi refroidie. Cette étude montre le coefficient q donnant les meilleurs résultats. La sensibilité du calcul à ce coefficient reste cependant limitée. Ainsi, une petite erreur sur son choix n'entraine qu'une petite erreur sur le résultat final. Le tableau C.1 montre la norme L2 de l'erreur relative entre BLIM2D et CLICET sur le coefficient de transfert thermique calculé en fonction de l'exposant q utilisé par BLIM2D. Le cas étudié est un écoulement de dièdre dans les conditions du tableau 2.2 avec m = 0.333 et T e -T p = -20K. Il s'agit du cas tracé en bleu sur la figure C.1 et l'intervalle des valeurs optimales de ce cas est parcouru. Cela signifie donc que ne pas prendre la variation de l'exposant q optimal en fonction de la température n'entraine pas de grandes erreurs. Exposant q 2.6 2.8 3.0 3.2 3.4 3.6 3.8 Erreur relative en % -2.2 -1.5 -0.9 -0.3 0.2 0.6 1.0 Table C.1 -Norme L2 de l'erreur relative sur h tc entre BLIM2D et CLICET en fonction de l'exposant utilisé par BLIM2D La figure C.2 montre la dépendance de l'exposant q optimal au nombre de Mach extérieur. Pour une plaque plane, la dépendance est quasi nulle. Cependant, plus l'écoulement est accéléré, plus la dépendance est marquée. Dans le cas d'un écoulement ralenti, l'effet de la variation du nombre de Mach sur l'exposant q optimal est inversé. L'effet d'un saut de température peut s'assimiler au développement d'une seconde couche limite dans la première pour laquelle la température externe est donnée par la solution de la première couche limite thermique. La figure D.1(a) montre le profil de température au saut de température de paroi. Le profil de température de CLICET est bien coupé en deux parties séparées par une brusque rupture de pente. La partie supérieure n'est pas affectée par le saut de température et correspond à la première couche limite thermique. En s'éloignant du saut de température, la seconde couche limite thermique s'épaissit et par conduction la variation brutale du gradient de température, séparant le profil de température en deux parties, devient de plus en plus douce et arrondie comme le montre la figure D.1(b) représentant le profil de température 2.5mm en aval du saut de température. Après une distance suffisante, la rupture de pente s'est tellement étalée que le profil de température reprend la même forme que celle obtenue pour une température de paroi uniforme comme le montre la figure D.1(d) 10mm en aval du saut de température. Bien que la forme du profil de température ne soit pas altérée loin d'un saut de température, la croissance de la couche limite thermique est affectée à la proximité du saut de température de paroi, ce qui résulte en un décalage d'épaisseur de couche limite thermique. La méthode intégrale thermique de BLIM2D repose sur des considérations d'équilibre local. La seule information sur la couche limite thermique transportée est l'épaisseur de couche limite thermique. Après le saut de température, la résolution de l'équation 2.7 correspond à la solution d'un cas à température de paroi uniforme égale à la température de paroi après le saut. La nouvelle épaisseur de couche limite calculée correspond au résultat permettant d'équilibrer le gradient d'épaisseur d'enthalpie, le terme de flux pariétal et la dissipation. Elle n'est donc pas reliée directement à l'épaisseur de couche limite thermique en amont, ce qui résulte en un saut d'épaisseur de couche limite thermique (figureD.1(a)) non physique, à la position du saut de température de paroi. Bien que la couche limite thermique réelle retrouve progressivement le même profil de température qu'un cas isotherme, le saut d'épaisseur de couche limite calculé par BLIM2D ne peut pas être rattrapé et un décalage d'épaisseur de couche limite thermique apparait sur tout le reste du profil, comme en atteste la figure D.1(d).

La figure D.2 représente le coefficient de transfert thermique calculé selon la méthode présentée à la section 2.1.3. Le saut de température positif se traduit par un gradient de température pariétale 

D.1.2 Étude d'un saut de température de paroi décroissant

La même étude que précédemment est effectuée mais cette fois-ci avec la configuration inverse, c'est-à-dire avec une différence de température T p -T e de 10K sur 0.125m puis de 5K sur 0.125m (T e est toujours constante et égale à 263.15K et le nombre de Mach vaut M e = 0.01. ). La figure D.3(a) montre le profil de température au saut de température de paroi. Comme pour le cas précédent, il est séparé en deux parties. Cependant, dans la première partie, la température augmente avec la distance à la paroi alors même que la paroi est plus chaude que l'écoulement extérieur. Dans la partie supérieure, la température diminue jusqu'à atteindre la température extérieure. Les figures D. 3(b-c-d) montrent qu'en s'éloignant du saut de température la première zone s'étend et les gradients sont moins élevés. Le passage entre les deux zones s'étale progressivement. Loin du saut de température, l'inversion du gradient de température disparait : la température diminue de façon monotone en s'éloignant de la paroi. Le profil de température reste très courbé sur une grande distance après le saut de température et montre un point d'inflexion. Le calcul BLIM2D ne montre aucun de ces aspects. Par contre, un saut non physique d'épaisseur de couche limite thermique apparait encore. thermique augmente ensuite rapidement passant localement par une configuration adiabatique pour atteindre la même évolution qu'avant le saut de température. La distance nécessaire pour que le coefficient de transfert thermique retrouve la même variation qu'un cas isotherme est cependant beaucoup plus grande dans cette configuration que dans la précédente. Ceci est dû au fait que le profil de température est beaucoup plus modifié dans cette configuration et retrouve difficilement l'allure observée en condition de température de paroi uniforme. De même que pour le cas précédent, BLIM2D ne parvient pas à modéliser cette chute du coefficient de transfert thermique, remplacée par un petit saut. Dans ce cas, l'erreur commise après le saut est encore plus importante que pour le cas précédent et perdure sur une plus grande distance du fait que l'allure singulière du profil de température persiste sur une plus grande étendue. Les sauts de température de paroi constituent des cas limites, numériquement difficiles à résoudre comme il a été montré. En réalité, la conduction thermique dans la paroi impose que de tels sauts de température n'existent pas, l'évolution de température étant continue. Néanmoins, la discrétisation due au maillage rend toute évolution de température assimilable à une suite de sauts de température de paroi, d'où l'intérêt d'étudier le comportement d'un large saut de température, cas limites de variations spatiales très rapides de la température de paroi.

D.2 Évaluation des capacités du profil de température supposé D.2.1 Étude d'un saut de température de paroi croissant

Le premier cas étudié représente un point d'arrêt avec une différence de température T p -T e de 10K sur 0.125m puis de 15K sur 0.125m (T e est toujours constante et égale à 263.15K). La figure D.5 représente le profil de température optimisé selon la méthode présentée précédemment, à plusieurs abscisses. Le tableau D.1 montre la norme L2 de l'erreur relative sur le profil de température. Pour pouvoir obtenir un gradient de température pariétale convenablement estimé, on constate que le profil de température supposé commet une erreur relative très élevée (39 %) juste après le saut. Ceci implique que les grandeurs intégrales seraient mal estimées même avec le meilleur profil de température autorisé par la forme supposée du profil de température. En s'éloignant du saut de température de paroi, le profil de température se rapproche d'un profil de couche limite obtenu pour une température de paroi uniforme. Par conséquent, l'erreur diminue très rapidement passant en dessous de 5% après seulement 5mm. Le profil de température est donc sérieusement mis en défaut sur une distance suivant x après le saut de température pariétale équivalente à environ une épaisseur de couche limite pour ce cas. L'objectif est ici de déterminer la variation des termes sources de l'approche modale en fonction de la direction longitudinale pour une approche 2D. Dans un cas quelconque il n'existe vraisemblablement pas de solution analytique mais dans certaines conditions il est possible de déterminer simplement cette évolution. Ceci constitue ainsi un outil supplémentaire de vérification de l'implémentation de la méthode.

On se place ici dans les conditions d'un écoulement établi de plaque plane tel que u e = cte, T e = cte et T p = cte. De plus, l'épaisseur de couche limite dynamique vaut δ = c 1 √ x et l'épaisseur de couche limite thermique vaut δ T = c 2 √ x avec c 1 et c 2 des constantes. L'exposant q est constant et vaut N . Les composantes de Θ sont constantes. La conductivité thermique et la viscosité thermique sont constantes. L'écoulement étant autosimilaire, les profils de vitesse et de température ne dépendent respectivement que des variables ȳ = y δ et ŷ = y δ T . La fonction ψ est rappelée ici :

ψ i = C i y i-1 (F.1a) C i = 1 0
(1 -y) q y i-1 dy = (q + j)! q!(j -1)! (cf eq 3.32) (F.1b) de même, la définition de la fonction φ (eq 3.18, 3.28, 3.29) est rappelée sachant que les B j,k sont des constantes :

j = 1, φ 1 (y, δ T ) = π 1 (1 -ŷ) q = (1 -ŷ) q (F.2a) ∀ j > 1, φ j (y, δ T ) = π j (1 -ŷ) q = j k=1 B j,k ŷk (1 -ŷ) q (F.2b)
Pour le terme source de conduction thermique (eq 3.37) l'expression est rappelée :

Φ i = - N j=1 Θ j k(0) ∂φ j ∂y y=0 ψ i (0) + δ T 0 k ∂φ j ∂y ∂ψ i ∂y dy (F.3)
Sachant que ψ i (0) ̸ = 0 uniquement pour i = 1 et que ∂ψ i ∂y ̸ = 0 uniquement pour i > 1. On considère séparément i = 1 et i > 1. À l'aide des équations 3.37, 3.18, 3.28, 3.29, en séparant le cas j = 1 des autres valeurs de j car l'expression de φ 1 est différente :

Φ 1 = -k(0)   - qΘ 1 δ T - ∂ ∂y   N j=2 Θ j j l=1 B j,l y δ T l C 1 1 - y δ T q   y=0   (F.4) soit : Φ 1 = -k(0)   - qΘ 1 δ T - N j=2 Θ j B j,1 δ T C 1   (F.5) d'où Φ 1 = a 1
δ T avec a 1 une constante car le vecteur Θ est constant d'après les hypothèses. Pour i > 1, la conduction thermique k est supposée constante, soit à l'aide du changement de variable ŷ = y δ T :

Φ i>1 = - N j=2 Θ j 1 0 k ∂φ j ∂ ŷ 1 δ T ∂ψ i ∂ ŷ 1 δ T δ T dŷ (F.6) soit Φ i>1 = - N j=2 Θ j 1 0 k ∂φ j ∂ ŷ 1 δ T C i (i -1)ŷ i-2 δ i-1 T 1 δ T δ T dŷ (F.7)
d'où :

Φ i>1 = -δ i-2 T N j=2 Θ j 1 0 k ∂φ j ∂ ŷ C i (i -1)ŷ i-2 dŷ (F.8)
Sachant que φ j est une fonction de ŷ uniquement, Φ i>1 = a i δ i-2 T avec a i une constante. Sachant que δ T = c 2 √ x, on a donc pour tout i, en posant c 3 une constante :

Φ i = c 3 x i/2-1 (F.9)
Pour le terme de dissipation visqueuse, s'écrivant pour rappel en 2D (eq 3. x est effectué dans la première intégrale :

G i = N j=1 Θ j 1 0 ρc p φ j (ŷ) b 1 √ x ŷc 2 /b 1 0 -ηf ′ (η)dη C i (i -1)ŷ i-2 (c 2 √ x) i-2 c 2 √ xdŷ (F.19)
sachant que b 1 , c 2 sont indépendants de x et en sortant la variable x des intégrales :

G i = N j=1 Θ j c 2 x i/2-1 1 0 ρc p φ j (ŷ) ŷc 2 /(b 1 ) 0 -ηf ′ (η)dη C i (i -1)ŷ i-2 c i-2 2 dŷ (F .20) 
L'intégrande de la première intégrale est indépendant de x, on obtient donc en posant c 5 une constante :

G i = c 5 x i/2-1 (F.21)
Les termes sources de conduction thermique, de dissipation visqueuse et de convection par la vitesse verticale pour un écoulement de plaque plane à température uniforme varient donc en x i/2-1 .

F.2 Tracé des termes sources

La figure F.1 représente le tracé du logarithme de la valeur absolue des termes sources adimensionnés en fonction du logarithme de la position adimensionnée pour une plaque plane à une température de paroi imposée constante à 313K. L'écoulement extérieur est dans les conditions M ∞ = 0.25, T ∞ = 263.15K et P ∞ = 80000P a résultant en une différence de température de T p -T e = 50K. Les premiers points étant proches du bord d'attaque, l'autosimilarité et donc la tendance des termes sources n'est pas respectée. A l'inverse, suffisamment éloigné du bord d'attaque, l'écoulement est autosimilaire et on peut constater que chaque terme source évolue de la même façon. Les tracés sont des droites dont les pentes vérifient l'expression établie précédemment pour chaque terme source, S i = cx i/2-1 avec c une constante et i l'indice du mode. Ceci consiste donc mathématiquement à résoudre un polynôme de degré N + 1. Ceci pose le problème de l'unicité de la solution car il y a N + 1 racines et la seule condition discriminante est la nécessité d'une racine positive. Il est donc nécessaire de mettre en place une stratégie spécifique à la résolution de conditions de flux pariétal imposé. Ceci n'a pas été effectué dans le cadre de la thèse car, au niveau de la chaîne de calcul de givrage, l'utilisation de conditions de température de paroi imposée est suffisante pour le moment et a donc été développée en priorité.

Pour ce qui est des conditions mixtes, le problème est proche du cas d'un flux pariétal imposé.

en y = 0, k ∂θ ∂y = k N j=1 Θ j ∂φ j ∂y = ϕ 0 + h 0 (θ -θ 0 ) (G.8)
La suite du raisonnement est similaire, à l'exception du terme h 0 (θ -θ 0 ) en y = 0. Ceci aboutit à :

(ϕ 0 -h 0 θ 0 )δ N +1 T + h 0 M 1 ρ e c p δ N T + kqM 1 ρ e c p δ N -1 T -k N j=2 j i=1
T j,i δ N +1-j T M i,j B j,1 δ T = 0 (G.9)

Les seules différences par rapport à (G.7) sont la présence de -h 0 θ 0 pour le terme de degré N + 1 et que le terme de degré N du polynôme est désormais non nul. Se pose donc ici aussi le problème de l'unicité de la solution.

G.2 Réflexions pour l'extension de la méthode en régime turbulent

La méthode présentée jusqu'à présent a été conçue et évaluée pour des couches limites laminaires. L'objectif de cette section est de déterminer les différences inhérentes au régime turbulent, les difficultés en découlant et les solutions envisageables pour maintenir une résolution satisfaisante vis-à-vis de l'objectif double de précision et de rapidité de calcul. En régime turbulent l'équation intégrale (3.21) reste valable et la décomposition du profil de température (3.17) peut être effectuée. Le régime turbulent fait cependant apparaitre de multiples difficultés. L'équation de l'enthalpie en régime turbulent, rappelée ici, est identique au régime laminaire mais l'écriture de certains termes est plus complexe. D'autre part, le profil de température dans la couche limite est différent du profil de température en régime laminaire en raison de ces termes diffusifs supplémentaires, à l'origine d'un profil de vitesse moyenne lui aussi différent. Pour la présente approche, ceci signifie donc que les bases de fonctions φ utilisées doivent tenir compte de la forme spécifique des profils de température. En régime laminaire, ces fonctions ont été définies telles que φ j (ŷ) = π j (ŷ)W (ŷ), avec π j un polynôme et W = (1 -ŷ) q , une fonction adaptée à la description du profil de température en régime laminaire. Cette fonction W n'est pas idéale pour la description du profil de température en régime turbulent. Il est donc nécessaire d'en déterminer une nouvelle, W t , qui le soit. Les lois les plus simples décrivant le profil de température turbulent sont des lois en puissance de y δ T 1 n . Néanmoins, elles sont très peu précises proche de la paroi. Il existe des profils de température plus complexes et plus précis sur l'ensemble de la couche limite, présentés en section 1.2.5.3. Ces profils peuvent être difficiles à estimer avec les données disponibles ou bien générer des difficultés d'ordre numérique. En effet, l'intérêt de la méthode modale est de limiter la modélisation physique à des fonctions simples et de laisser la décomposition modale converger vers la solution de l'équation de l'énergie. Dans le cas de la turbulence, cette décomposition modale est moins naturelle. En effet, la solution est une fonction complexe, décomposée en plusieurs zones, difficilement approchable par des polynômes. Ceci signifie qu'il est peut-être nécessaire d'utiliser beaucoup plus de modes. Les polynômes π j (ŷ) peuvent toujours être définis de façon à simplifier le système et dépendent donc de la base des fonctions ψ et de W t .

ρc
Concernant la seconde base de fonctions ψ i , la solution la plus simple est donc d'utiliser les mêmes fonctions ψ en régime laminaire et en régime turbulent ainsi que le même nombre de modes. En effet, conserver la propriété d'indépendance spatiale et temporelle permet d'éviter d'avoir à calculer des termes sources supplémentaires et évite des complications numériques. De plus, les propriétés des fonctions de continuité, de dérivabilité et de génération de jeux d'équations indépendantes, détenues par les fonctions ψ restent importantes en régime turbulent. De plus, il est à noter qu'au point de transition entre les deux régimes, la zone turbulente récupère les flux numériques calculés en régime laminaire. L'utilisation de fonctions ψ différentes peut générer des problèmes pour déterminer les conditions entrantes pour la première cellule turbulente et générer des complications numériques (apparition ponctuelle de termes sources dus à des variations spatiales et temporelles de ψ ainsi que l'apparition de discontinuités de ψ rendant l'estimation des dérivées longitudinales et transversales de ψ non définies). Ceci peut être d'autant plus problématique pour l'utilisation de fonctions d'intermittence entre les régions laminaire et turbulente. De plus, bien que ce cas n'apparaisse que rarement (voire pas du tout) pour des études de givrage, il faut aussi considérer le phénomène de relaminarisation. Il serait aussi préférable que la méthode autorise aussi la région laminaire à recevoir un flux provenant d'une région turbulente sans engendrer des problèmes numériques. Le nombre de modes utilisés agit de façon identique à la nature des bases ψ. Il n'y a pas, a priori, de raisons pour que le nombre de modes nécessaire à l'obtention d'une solution convergée soit identique pour les deux régimes. Or, un nombre différent de modes entre une station amont et aval pose encore une fois le problème du calcul du flux numérique entrant, surtout si le flux numérique sortant de la station amont a moins d'informations que nécessaire à la détermination du flux numérique aval.

Un autre point propre au régime turbulent est l'intégration numérique des termes source et flux. En raison de la complexité des profils de température et de vitesse, le profil de vitesse supposé à l'heure actuel en régime turbulent étant beaucoup moins précis que le profil vitesse supposé en régime laminaire, le calcul de ces termes peut être entaché d'une large erreur, en particulier dû à l'imprécision proche de la paroi des profils supposés. Cette erreur est issue de la modélisation et ne peut être supprimée en raffinant l'intégration numérique. Il serait donc peut-être nécessaire de développer des profils de vitesse en régime turbulent qui soient plus précis. Les profils de vitesse existant dans la littérature entraineraient aussi une complexification de la résolution de la couche limite thermique. Pour ce qui est du flux numérique, l'erreur sur le profil de vitesse se cumule avec l'erreur sur le profil de température. Cependant, sa détermination ne fait pas appel au calcul de dérivées, ces termes sont donc moins problématiques. Pour ce qui est du terme source de flux convectif par la vitesse verticale, cette dernière nécessite l'intégration suivant la direction verticale des dérivées longitudinales (respectivement transverses) des profils de vitesse longitudinaux (respectivement transverses). Néanmoins, les dérivées longitudinales et transverses sont, a priori, mieux estimées que les dérivées verticales. Par conséquent on peut s'attendre à ce que le profil de vitesse verticale soit, à défaut d'être précis, d'une erreur semblable au profil de vitesse verticale en régime laminaire. Pour finir, le terme source de dissipation est très largement entaché d'erreur car la dérivée suivant la direction verticale de la vitesse est mal estimée avec le profil de vitesse utilisé actuellement par BLIM en régime turbulent. Bien que la solution puisse être améliorée avec un profil de vitesse plus précis, il reste que le terme de dissipation fait intervenir le carré de la dérivée et donc amplifie les erreurs. Vient s'ajouter à cela l'erreur commise sur l'estimation de la viscosité turbulente qui peut ne pas être négligeable si elle est estimée par les modèles les plus simples (tels que les modèles algébriques envisagés qui dépendent eux-mêmes de la dérivée du profil de vitesse). Pour ce qui est du terme de conduction thermique, qui est le terme source dominant, il est nécessaire que la dérivée du profil de température soit précise, en particulier proche de la paroi, ou bien d'utiliser une relation de fermeture supplémentaire.

Annexe H

Étude d'une discontinuité de la température de paroi

Dans cette section est étudié l'effet d'une température de paroi présentant une discontinuité entre deux zones uniformes. L'objectif est de certifier la robustesse de la méthode face à des conditions complexes. Bien que ces conditions ne soient pas physiques en raison de la conduction dans les matériaux, numériquement elles sont le cas limite de variations très localisées de la température de paroi. Cette étude n'est ici menée que pour des écoulements de points d'arrêt car il s'agit du cas pour lesquels les résultats sont les meilleurs et la couche limite dynamique est peu dépendante de la température. Afin de travailler avec de faibles différences de température, un nombre de Mach très faible est utilisé, réduisant ainsi l'effet de la dissipation visqueuse. Les conditions sont M ∞ = 0.01, T ∞ = 263K et P ∞ = 80000P a. La plaque mesure 25cm et 250 points sont utilisés. Malgré la discontinuité de température, la convergence en maillage est pratiquement atteinte. À l'exception d'une légère dépendance à la proximité immédiate de la discontinuité, la solution observée est convergée.

H.1 Étude d'une augmentation brutale de la température de paroi

Est premièrement étudié le cas d'une augmentation brutale de la température de paroi. La température de paroi est imposée 10K supérieure à la température de l'écoulement externe puis subitement passe à 15K au-dessus de la température de l'écoulement externe. Le saut de température de paroi est placé à la position adimensionnée s = 0.5, suffisamment loin du début de la plaque pour que la solution soit pleinement autosimilaire et indépendante du maillage utilisé.

La figure H.1(a) représente le flux pariétal. La figure H.1(b) représente l'erreur relative sur le flux pariétal. On observe après le saut de température de paroi que les résultats obtenus dépendent beaucoup du nombre de modes utilisé avec une évolution spatiale singulière. L'augmentation du nombre de modes tend à améliorer l'évaluation du flux pariétal proche du saut de température de paroi tandis que, plus loin, à partir de trois modes, la distinction n'est plus évidente localement. Dans l'ensemble, l'augmentation du nombre de modes utilisé donne lieu à de meilleurs résultats. Un point important est que, malgré la discontinuité, l'erreur ne dépasse pas 10% à la proximité immédiate du saut avec cinq modes et ne dépasse pas 2% sur le reste du profil. On constate que la méthode modale avec cinq modes permet de capturer relativement précisément cette discontinuité et l'évolution spatiale après cette dernière. L'erreur commise à partir de s = 0.05 après la discontinuité de température de paroi est inférieure à l'erreur avant la discontinuité. Par conséquent, cette discontinuité n'affecte la précision de la méthode qu'à sa proximité. Ceci assure la robustesse de la méthode face à ce genre de cas. On constate des niveaux d'erreur bien inférieurs à ceux obtenus avec S-BLIM à la section 2.2.3 sur une large zone après le saut (s'étendant de s = 0.5 à s = 0.65).

Les figures H.1(c-d-e) représentent les profils de température à trois positions après le saut de température de paroi. La sous-figure (c) se situe à la cellule exacte où la discontinuité de température de paroi est imposée. Pour rappel, comme présenté à la section 2.2.3.1, la solution de référence montre un brusque changement de pente situé proche de la paroi vers y/δ T = 0.1. S-BLIM sous-estime largement l'épaisseur de la couche limite thermique et ne capture absolument pas la forme du profil de température. M-BLIM utilisant deux modes donne lieu à un profil de température aberrant sous-estimant l'épaisseur de couche limite thermique au même titre que S-BLIM. Le profil montre aussi des oscillations non physiques. À partir de trois modes, apparait la qualité de M-BLIM à bien estimer l'épaisseur de couche limite thermique. Des oscillations persistent mais sont de plus faible amplitude que pour deux modes. À partir de quatre modes, les oscillations disparaissent et l'allure générale du profil de température est de mieux en mieux captée à mesure qu'est augmenté le nombre de modes, bien que la rupture de pente ne soit pas complètement captée.

La sous figure (d) se situe à s = 0.01 après le saut de température de paroi soit trois cellules en aval. Les conclusions sont similaires mais la rupture de pente de la solution de référence s'estompe menant à un meilleur accord entre la méthode modale et la solution de référence. De plus, les oscillations à deux et trois modes perdent en intensité.

La sous figure (e) se situe à s = 0.05 après le saut de température de paroi soit treize cellules en aval. On constate que la méthode M-BLIM, avec trois modes ou plus, donne lieu à un niveau de précision sur l'estimation de la température de paroi similaire à ceux constatés si le saut n'était pas présent. Les oscillations à deux et trois modes ont disparu. La méthode S-BLIM donne toujours lieu à des profils de température peu précis et sous-estime l'épaisseur de la couche limite thermique.

H.2 Étude d'une diminution brutale de la température de paroi

Est dans un second temps étudié le cas d'une diminution brutale de la température de paroi. La température de paroi est imposée 10K supérieure à la température de l'écoulement externe puis subitement passe à 5K au-dessus de la température de l'écoulement externe. Le saut de température de paroi est placé comme précédemment à la position adimensionnée s = 0.5.

La figure H.2(a) représente le flux pariétal à partir de s = 0.45 et la figure H.2(b) à partir de s = 0.6 pour plus de clarté en fin de profil. Comme présenté à la section 2.2.3.1, le flux pariétal change de signe à partir du saut de température de paroi et ce sur une zone étendue, puis retrouve le même signe qu'avant le saut de température de paroi. Pour rappel, la méthode S-BLIM ne capte pas ce changement de signe. Le saut de température de paroi mène immédiatement à un pic de flux pariétal. Plus le nombre de modes utilisé est élevé, mieux ce pic est capté. Il faut néanmoins beaucoup de modes pour atteindre une estimation précise de ce pic car cinq modes mènent à 29% d'erreur sur l'estimation locale du flux pariétal et neuf modes mènent à 10% d'erreur. En s'éloignant du pic, l'augmentation du nombre de modes utilisé continue à accroître la précision. Une forte dépendance des résultats au nombre de modes utilisé est constatée et ce, même loin de la discontinuité contrairement au cas précédent. Plus le nombre de modes utilisé est élevé, mieux est captée la zone transitoire entre les deux températures de paroi consignes. Ceci laisse à penser que l'utilisation d'un nombre beaucoup plus élevé de modes pourrait mener à une bien meilleure capture du régime transitoire. L'augmentation du nombre de modes utilisé entrainant actuellement une diminution du pas temps maximal autorisé ainsi qu'une augmentation du nombre d'intégrations à effectuer, il est souhaitable d'impliciter les termes sources pour éviter des temps de calcul devenant prohibitifs en utilisant des pas de temps plus élevés.

Les figures H.2(c-d-e-f) représentent les profils de température à quatre positions après le saut de température de paroi. La sous-figure (c) se situe à la cellule exacte du saut de température de paroi. La solution de référence montre une très forte courbure proche de la paroi tandis que la partie supérieure est une fois encore non affectée par le saut de température de paroi. Pour rappel, S-BLIM ne capte absolument pas la forme du profil de température. A l'inverse, M-BLIM, à mesure que le nombre de modes utilisé augmente, capte de mieux en mieux le profil de température. À partir de sept modes, la partie supérieure du profil de température est plutôt bien captée alors qu'une erreur significative persiste au niveau du maximum local du profil de température. La dérivée à la paroi est affectée par cet échec à capturer cet extremum, menant à une dérivée sous-estimée à la paroi.

La sous figure (d) se situe à s = 0.01 après le saut de température de paroi soit trois cellules en aval. La courbure de la solution de référence diminue proche de la paroi et la valeur du maximum diminue. M-BLIM capte mieux l'extremum. La dérivée à la paroi est cette fois surestimée pour quatre et cinq modes tandis qu'elle est sous-estimée pour deux, trois, sept et neuf modes. Ce comportement est dû au fait que la forme du profil de température évolue très rapidement en espace ce qui est difficile La sous figure (e) se situe à s = 0.05 après le saut de température de paroi soit 13 cellules en aval. La partie supérieure de la couche limite commence à être affectée par le changement de température de paroi et la méthode modale ne modélise plus précisément la partie supérieure du profil de température. De plus, à cette position, l'augmentation du nombre de modes ne donne plus automatiquement lieu à une amélioration des profils de température.

La sous figure (f) se situe à s = 0.1 après le saut de température de paroi soit 25 cellules en aval et donne lieu à des conclusions similaires. Cinq modes permettent à cette abscisse de mieux capter la partie inférieure du profil de température que la partie supérieure, alors que sept modes et plus sont précis dans la partie supérieure inversant ainsi la tendance observée plus proche de la discontinuité de température de paroi.

Bilan

La méthode modale M-BLIM donne lieu à de bien meilleurs résultats que la méthode S-BLIM et est robuste face à ces cas exigeants que sont des discontinuités de température de paroi. Un comportement différent est observé s'il s'agit d'une augmentation ou d'une diminution de la différence de température. L'augmentation de la différence de température de paroi est correctement estimée par M-BLIM sur la totalité de l'espace. Au contraire, la diminution de la différence de température de paroi donne lieu à une solution très complexe aux variations très rapides suivant la direction longitudinale nécessitant d'utiliser bien plus de modes que pour des variations continues de la température de paroi. Bien que la méthode M-BLIM donne lieu à de bien meilleurs résultats que S-BLIM, l'erreur commise reste significative et il est nécessaire d'utiliser un nombre plus large de modes que dans les cas étudiés jusqu'à présent, particulièrement dans le cas où un changement du signe flux pariétal se produit.
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 1 Figure 1 -Types de givre rencontrés en aéronautique
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 2 Figure2-Structure d'un code de givrage pour une surface non-protégée,[START_REF] Bayeux | Méthode Intégrale pour la couche limite tridimensionnelle[END_REF] 
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 03 δ d et δ s sont donc de signe opposé et il y a toujours une et une seule racine réelle positive si θ 0 = θ L . 3 solutions réelles : Si θ 0 > θ L alors il y a trois solutions réelles. Ces solutions s'écrivent sous la forme : δ k = 2 -c k = [0, 1, 2]. Il peut donc y avoir soit 2 solutions positives et une solution négative soit une solution positive et deux négatives. Pour déterminer le cas, le signe des solutions cos α --2πk 3 est déterminé en fonction de α, toujours avec k = [0, 1, 2]. L'intervalle étudié est α = [0; 2π/3] car la fonction est de période 2π/3. Il y a une unique solution positive pour 0 < α < π 6 et π 2 < α < 2π 3 . Il y a deux solutions positives pour π 6 < α < π 2 . En posant α = 1/3 arcos(β) cela revient à dire qu'il y a 2 solutions positives pour π 2 < arcos(β) < 3π 2 et une seule solution positive pour 0 < arcos(β) < π 2 . Ceci implique qu'il n'y a qu'une seule solution positive pour 0 < β < 1 et deux solutions positives pour -1 < β < 0. En remplaçant β par sa définition : β

  (a) Plaque plane m = 0 (b) Cas accéléré m = 0.3333 (c) Point d'arrêt m = 1 (d) Cas ralenti m = -0.01961
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 21 Figure 2.1 -Profil de température à 0.25m du bord d'attaque pour une température de paroi 20K supérieure à la température extérieure, comparaison entre BLIM2D et CLICET

  (a) Plaque plane m = 0 (b) Cas accéléré m = 0.3333 (c) Point d'arrêt m = 1 (d) Cas ralenti m = -0.01961
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 22 Figure 2.2 -Profil de température à 0.25m du bord d'attaque pour une température de paroi 20K inférieure à la température extérieure, comparaison entre BLIM2D et CLICET

  (a) Plaque plane m = 0 (b) Cas accéléré m = 0.3333 (c) Point d'arrêt m = 1 (d) Cas ralenti m = -0.01961
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 23 Figure 2.3 -Coefficient de transfert thermique, comparaison de BLIM2D et de CLICET pour un calcul à une température de paroi 20K supérieure à la température extérieure

  (a) Plaque plane m = 0 (b) Cas accéléré m = 0.3333 (c) Point d'arrêt m = 1 (d) Cas ralenti m = -0.01961
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 24 Figure 2.4 -Coefficient de transfert thermique, comparaison de BLIM2D et de CLICET pour un calcul à une température de paroi 20K inférieure à la température extérieure
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 25 Figure 2.5 -Coefficient de transfert thermique, comparaison de BLIM2D et de CLICET pour un écoulement accéléré avec m = 0.333, à différentes valeurs de T p -T e
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 26 Figure 2.6 -Profils de température pour un cas de point d'arrêt pour une différence de température T p -T e de 110K au bord d'attaque et un gradient de température de paroi T p -T e de -400K.m -1
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 27 Figure 2.7 -Coefficient de transfert thermique pour un cas de point d'arrêt pour une différence de température T p -T e de 110K au bord d'attaque et un gradient de température de paroi T p -T e de -400K.m -1
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 28129 Figure 2.8 -Profils de température pour un cas de point d'arrêt pour une différence de température T p -T e de +10K au bord d'attaque et un gradient de température de paroi T p -T e de 400K.m -1
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 2101623 Figure 2.10 -Profils de température optimisés pour un point d'arrêt pour une différence de température T p -T e de +10K au bord d'attaque et un gradient de température T p -T e de -400K.m -1
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 324211 Figure 2.11 -Profils de température optimisés pour un point d'arrêt pour une différence de température T p -T e de +10K au bord d'attaque et un gradient de température T p -T e de 400K.m -1
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 54 is the continuity equation, while equations (3.5) and (3.6) are the momentum equations in the streamwise and normal directions, respectively.
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 31 Figure 3.1 -Definition of the wedge-flow geometry.
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 32 Figure 3.2 -Velocity profiles for CLICET (reference) and BLIM2D, at x/L = 1. Test-case 1, N x = 256.
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 33 Figure 3.3 -Source terms for N = 5. (a) equation 1, (b) equation 2. Test-case 1, N x = 256.
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 34 Figure 3.4 -Non-dimensional temperature profiles for N = 4, at all the points of the grid. Test-case 1, N x = 256.
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 35 Figure 3.5ϕ w for N x = 64 to N x = 512. Test-case 1, N = 4.
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 36 Figure 3.6 -Relative error in ϕ w for N x = 64 to N x = 256. Test-case 1, N = 4.
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 37 Figure 3.7θ j for N = 1 to N = 5 : (a) θ 1 , (b) θ 2 . Test-case 1, N x = 256.
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 393 Figure 3.9 -Temperature for N = 1 to N = 5, and for the reference CLICET solution. (a) temperature profiles at x/L = 1, (b) error. Test-case 1, N x = 256.
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 310 Figure 3.10a shows that the Stanton number is indeed little affected by N and the solution provided by BLIM2D is satisfactory. However, for this case, the Stanton number varies significantly because the heat flux ϕ w is almost constant and the velocity increases linearly from x = 0 to x = L. The relative error between the results produced by BLIM2D and CLICET shows that the modal approach also produces the lowest errors for N = 4 and N = 5 (figure 3.10b). There is no significant difference between the errors for N = 4 and N = 5, suggesting that the solution is converged for N = 4. The relative error is around 7 • 10 -3 . Again, regarding the targeted applications, this can be deemed as very low.The main explanation for this residual error is that for this case, as mentioned earlier, the source term G i linked to the convection in the y direction cannot be neglected for the equations 2 to N (equation (3.39)). Since the velocity fields are not exactly the same for CLICET and BLIM2D, the fact that G i is not negligible is a cause of the residual error in ϕ w : the use of the reference velocity field provided by CLICET in BLIM2D for u y allows to decrease the relative error in St to 4 • 10 -3 . Additionally, an intrinsic source of error of the method is due to the definition used for the velocity profile u y for δ < y ≤ δ T . The use of equation (3.48) with d x (u xe ) ̸ = 0 tends to arbitrarily extend u y linearly for y > δ. This does not make any real physical sense on the one hand, and on the other hand it introduces a difference with respect to CLICET which has an evolution of u y bounded between y = 0 and the reference boundary-layer thickness δ T,ref (as shown in figure3.2). This ultimately disturbs the calculation of the integral (3.39) for this case where δ < δ T .
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 3112 Figure 3.11 -Velocity in test-case 2. (a) velocity profiles, m = 1, x/L = 1, (b) L 2 relative error. Impact of the wall temperature changes on the profiles. The errors of test-cases 3, 4 and 5 are superimposed (large case size : u x ; small case size : u y ). N x = 256.
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 3 Figure 3.12 -L 2 relative error in the wall heat flux in test-case 2 with respect to the wall temperature. The results of test-cases 3, 4 and 5 are super-imposed. N x = 256, N = 4.
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 3 Figure 3.13 -(a) Stanton number for N = 3 to N = 5 and (b) relative error in the Stanton number. Test-case 3, m = 1. N x = 256.
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 314 Figure 3.14 -Temperature profiles for several x/L locations, and for the reference CLICET solution. Test-case 3, m = 1. N x = 256.
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 315 Figure 3.15 -(a) Stanton number and (b) temperature profiles for several x/L locations. Test-case 4, m = 1. N = 3 to N = 10, N x = 256.
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 316 Figure 3.16 -(a) Stanton number and (b) temperature profiles for several x/L locations. Test-case 5, m = 1. N = 3 to N = 5, N x = 256.

Figure 3 .

 3 Figure 3.17 -(a) error in the Stanton number and (b) temperature profiles for several x/L locations. Test-case 3, m = -0.01961. N = 3 to N = 5, N x = 256.
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 318 Figure 3.18 -(a) Stanton number and (b) temperature profiles for several x/L locations. Test-case 4, m = -0.01961. N = 3 to N = 12, N x = 256.
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 319 Figure 3.19 -Validation of (a) the wall heat flux and (b) the Nusselt number. Test case 3, with wall temperature varying as x 1/2 , m = 0. N = 3 to N = 5, N x = 256.
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 320 Figure 3.20 -Tracé de la fonction poids 1 -y δ T
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 321 Figure 3.21 -Écoulement de point d'arrêt pour une différence de température de T p -T e = 1K, pour 5 modes

  .21(a) représente le flux pariétal et 3.21(b) représente l'erreur relative sur le flux pariétal. Elles montrent des résultats et conclusions similaires à l'étude précédente. Néanmoins, les sous-figures 3.21(c-d) représentant le profil de température montrent des oscillations d'amplitude bien supérieures pour q = 2 et q = 2.5 montrant ainsi la nécessité croissante d'augmenter q à mesure que N augmente. La figure 3.23 représente un écoulement de point d'arrêt pour lequel M = 0.25, P ie = 80005P a, T ie = 263, 15K. La différence de température varie de T p -T e = 110K à T p -T e = 10K. Il s'agit du cas 4 présenté dans l'article. Les sous-figures 3.23(a-b) représentent le flux pariétal et la sous-figure 3.23(c) représente l'erreur relative sur le flux pariétal pour q allant de 6 à 11 et une utilisation de 11 modes.
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 322 Figure 3.22 -Écoulement de point d'arrêt pour une différence de température de T p -T e = 1K, pour 7 modes
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 323 Figure 3.23 -Écoulement de point d'arrêt pour une différence de température variant linéairement de T p -T e = 110K à T p -T e = 10K, pour 11 modes

Figure 3 . 24 - 3 . 3 . 2

 324332 Figure 3.24 -Profils de vitesse verticale adimensionnée par la vitesse extérieure pour différentes valeurs du paramètre de gradient de pression m

  b

Figure 3 . 25 -

 325 Figure 3.25 -Composante des termes sources adimensionnés pour un écoulement de plaque plane à une différence de température de T p -T e = 50K

  figure 3.26(b) traite d'un écoulement accéléré à m = 0.3333. On observe que l'erreur relative sur le flux pariétal pour 256 points passe en dessous de 10 -3 en s = 0.15. La convergence spatiale est donc plus rapidement atteinte que pour la plaque plane. L'erreur relative diminue avec la distance au bord d'attaque. La figure 3.26(c) traite d'un écoulement ralenti à m = -0.01961. On observe que l'erreur relative sur le flux pariétal pour 256 points passe en dessous de 10 -3 en s = 0.45 mais ne passe que localement

Figure 3 . 26 -

 326 Figure 3.26 -Erreur relative sur le flux pariétal par rapport à un maillage à 512 points pour plusieurs écoulements de dièdres.

La figure 3 .

 3 27(a) représente le flux pariétal tandis que la figure 3.27(b) représente l'erreur sur le flux pariétal. La non prise en compte de la variation des paramètres thermodynamiques mène à une précision moindre sur l'estimation du flux pariétal proche du bord d'attaque mais à une meilleure estimation loin du bord d'attaque.

8 Figure 3 . 27 -

 8327 Figure 3.27 -Effet de la prise en compte de la variation des paramètres thermodynamiques dans la couche limite. Cas d'un point d'arrêt à T p -T ∞ = 100K

Figure 4 . 1 -

 41 Figure 4.1 -Type de maillage utilisé pour les profils NACA0012

Figure 4 . 2 -

 42 Figure 4.2 -Profil de vitesse extérieur pour un profil NACA0012 sous une incidence de 0°, à M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a .

Figure 4 . 3 -

 43 Figure 4.3 -Convergence en maillage sur un profil NACA0012 sans incidence par la méthode M-BLIM2D en utilisant 4 modes par tracé de l'erreur relative sur le flux pariétal

  (a) Nombre de Stanton (b) Erreur relative sur le flux pariétal (c) Profil de température adimensionné sur l'épaisseur de la couche limite, à l'extrados et à la position adimensionnée s = 0.01 (d) Profil de température adimensionné sur l'épaisseur de la couche limite, à l'extrados et à la position adimensionnée s = 0.2

Figure 4 . 4 -

 44 Figure 4.4 -NACA0012 sans incidence, pour une température de paroi 50K supérieure à l'écoulement à l'infini amont

Figure 4 . 5 -

 45 Figure 4.5 -Profils de température adimensionnés obtenus par M-BLIM2D avec 5 modes, à plusieurs abscisses pour un NACA0012 sans incidence, pour une température de paroi 50K supérieure à l'écoulement à l'infini amont

Figure 4 . 6 -

 46 Figure 4.6 -Profil de vitesse extérieur pour un profil NACA0012 sous une incidence de 4°, à M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a

  (a) Nombre de Stanton (b) Erreur relative sur le flux pariétal (c) Flux pariétal (d) Profil de température adimensionné sur l'épaisseur de la couche limite, à l'extrados et à la position adimensionnée s = 0.01 (e) Profil de température adimensionné sur l'épaisseur de la couche limite, à l'extrados et à la position adimensionnée s = 0.1
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 47 Figure 4.7 -NACA0012 sous une incidence de 4°, pour une température de paroi 50K supérieure à l'écoulement à l'infini amont

Figure 4 . 8 -

 48 Figure 4.8 -Profil de vitesse extérieur pour un profil GLC 305 sous une incidence de 4°, à M ∞ = 0.27, T ∞ = 263K et P ∞ = 101325P a

  (a) Nombre de Stanton (b) Erreur relative sur le flux pariétal (c) Flux pariétal

Figure 4 . 9 -

 49 Figure 4.9 -Profil GLC 305 sous une incidence de 4°, à M ∞ = 0.27, T ∞ = 263K et P ∞ = 101325P a, pour une température de paroi 50K supérieure à l'écoulement à l'infini amont

  (a) Flux pariétal sur la totalité du profil (b) Flux pariétal entre s = 0.1 et s = 0.22 (c) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.1 (d) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.15 (e) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.2

Figure 4 .

 4 Figure 4.10 -Profil NACA0012 sans incidence avec une température de paroi variant de +50K par rapport à l'écoulement à l'infini amont au bord d'attaque, à +10K en fin de zone laminaire

  (a) Flux pariétal (b) Erreur relative sur le flux pariétal (c) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.01 (d) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.2
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 411 Figure 4.11 -Profil NACA0012 sans incidence avec une température de paroi variant de +40K par rapport à l'écoulement à l'infini amont au bord d'attaque, à +80K en fin de zone laminaire

  (a) Profils de température adimensionnés obtenus par CLICET (b) Profils de température adimensionnés obtenus par M-BLIM2D avec 5 modes

Figure 4

 4 Figure 4.12 -Profils de température adimensionnés par rapport à l'épaisseur de couche limite thermique calculée par M-BLIM2D avec 5 modes à plusieurs abscisses pour un NACA0012 sans incidence, pour une température de paroi variant de +40K par rapport à l'écoulement à l'infini amont au bord d'attaque, à +80K en fin de zone laminaire
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 413 Figure 4.13 -Flux pariétal d'un profil NACA0012 sans incidence avec une température de paroi variant de +10K par rapport à l'écoulement à l'infini amont, à +50K

Figure 5 . 1 -

 51 Figure 5.1 -Bilan de masse et d'enthalpie effectué par MESSINGER2D, (figure issue de [3]) Le bilan de masse local s'écrit : ṁimp + ṁin = ṁacc + ṁev + ṁout (5.7) avec ṁimp le débit de masse impactant, ṁin le débit de ruissellement amont, ṁout le débit de ruissellement aval, ṁev le débit d'évaporation et de sublimation et enfin ṁacc la croissance massique de la phase solide. Toutes ces grandeurs sont exprimées en (kg.m -2 .s -1 ). Le taux massique de ruissellement est calculé par MESSINGER2D. Ce ruissellement implique que, du point de vue de l'aérodynamique, la paroi vue n'est en fait pas fixe et solide mais liquide et se déplaçant. Cependant, les vitesses de ruissellement sont très petites devant la vitesse de l'écoulement extérieur. De plus, prendre en compte ce ruissellement pour l'aérodynamique nécessite un couplage fort entre la résolution de l'accrétion et du champ aérodynamique. Par conséquent, les solveurs aérodynamiques ignorent l'existence de ce film. Le débit massique (par unité de surface) impactant est donné par : ṁimp = β.LW C.U ∞ (5.8) LWC (cloud Liquid Water Content exprimé en kg.m -3 ) correspond à la nature du nuage et des gouttes qui le composent. Ce paramètre représente la masse d'eau dans un volume d'air. Le paramètre β correspond au taux de captation calculé par le module de trajectographie. Le taux massique d'évaporation ṁev est donné par : ṁev (T p ) = -ρh m (y v (T e ) -y v (T p )) (5.9)

Figure 5 . 2

 52 Figure 5.2 -B. F. Goddrich, schéma de fonctionnement de EEDI,[START_REF] Zumwalt | Analysis and tests for design of an electro-impulse de-icing system[END_REF] 

Figure 5 . 3 -

 53 Figure 5.3 -Architecture d'un système de protection thermique à air chaud

Figure 5 . 4 -

 54 Figure 5.4 -Principe du couplage mis en place

  0125ρ e u e c p P r -0.5 Re -0.25 θ T x(5.22) où Re θ T x = ρ e u e θ T x µ e . Cette relation est développée pour être valide en négligeant la dissipation visqueuse, pour une température de paroi constante. Cette formule a un domaine de validité étendu par l'utilisation de l'épaisseur d'enthalpie θ T x , inspirée par Kays et Crawford[START_REF] Kays | Convective Heat Mass and Transfer[END_REF] :θ T x = θ T x,trans + 0.0156P r -0.5 µ 0.25 e x xtrans ρ e u e (T p -T e ) 1.25 dx (ρ e u e (T p -T e )) θ T x,trans = 1 u e (x trans ) xtrans 0 µ e h tc,lam (x) ρ e kP r dx est l'épaisseur d'enthalpie au point de transition x trans et h tc,lam est le coefficient de transfert thermique au point de transition.

  figure 4.1. La figure 5.5 montre un maillage à 256 points surfaciques utilisé. On s'intéressera bien entendu principalement à la zone laminaire étant donné que l'objectif de cette étude est d'évaluer l'effet du module M-BLIM2D sur le couplage et que la résolution n'a été développée qu'en régime laminaire. La transition laminaire turbulent est déterminée par le critère de Drela pour tous les solveurs, présenté en section 1.1.3.3.
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 55 Figure 5.5 -Illustration des maillages utilisés dans cette section. Le cas présenté ici utilise 256 points surfaciques
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 5657 Figure 5.6 -Température de paroi en fonction du nombre de modes utilisés par M-BLIM2D dans la zone laminaire avec un maillage de 512 points sur le profil

  (a) Température de paroi dans la région laminaire (b) Température de paroi sur l'ensemble du profil

Figure 5 . 8 -Figure 5 . 9 -

 5859 Figure 5.8 -Température de paroi en fonction de la méthode utilisée pour la résolution de la couche limite

  Figure 5.10 -Coefficient de transfert thermique en fonction de la méthode utilisée pour la résolution de la couche limite
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 511 Figure 5.11 -Termes du bilan d'énergie effectué par MESSINGER

  Figure 5.12 -Calcul effectué pour une température de paroi 5K supérieure à la température de paroi calculée par couplage
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 513 Figure 5.13 -Température de paroi en fonction de la méthode utilisée pour la résolution de la couche limite

  Figure 5.14 -Coefficient de transfert thermique en fonction de la méthode utilisée pour la résolution de la couche limite

Figure 5 . 16 -

 516 Figure 5.16 -Calcul effectué pour une température de paroi 5K supérieure à la température de paroi calculée par le couplage

Figure A. 1 -

 1 Figure A.1 -Profils de vitesse longitudinale adimensionnée par la vitesse extérieure pour différentes valeurs du paramètre de gradient de pression m

Figure C. 1 - 1 Figure C. 2 - 1

 1121 Figure C.1 -Exposant q optimal en fonction de T e -T p à M ach = 0.1

  (a) Profil de température à la position de la discontinuité de température de paroi (b) Profil de température à 2.5mm de la discontinuité de température de paroi (c) Profil de température à 5mm de la discontinuité de température de paroi (d) Profil de température à 10mm de la discontinuité de température de paroi

Figure D. 1 -

 1 Figure D.1 -Profils de température pour un cas de point d'arrêt pour une différence de température T p -T e de +10K sur 0.125m puis une différence de température de T p -T e de +15K sur 0.125m

Figure D. 2 -

 2 Figure D.2 -Coefficient de transfert thermique pour un cas de point d'arrêt pour une différence de température T p -T e de 10K sur 0.125m puis une différence de température de T p -T e de 15K sur 0.125m

Figure D. 3 -

 3 Figure D.3 -Profils de température pour un cas de point d'arrêt pour une différence de température T p -T e de 10K sur 0.125m puis une différence de température de T p -T e de 5K sur 0.125m

Figure D. 4 -

 4 Figure D.4 -Coefficient de transfert thermique pour un cas de point d'arrêt pour une différence de température T p -T e de 10K sur 0.125m puis une différence de température de T p -T e de 5K sur 0.125m

  (a) Profil de température à la position de la discontinuité de température de paroi (b) Profil de température à 2.5mm de la discontinuité de température de paroi (c) Profil de température à 5mm de la discontinuité de température de paroi (d) Profil de température à 10mm de la discontinuité de température de paroi
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 55132 Figure D.5 -Profils de température optimisés pour un cas de point d'arrêt pour une différence de température T p -T e de +10K sur 0.125m puis une différence de température de T p -T e de +15K sur 0.125m

10 )δ 2 ρc p φ j u y ∂ψ i ∂y dy (F. 13 ) 14 ) 0 Y 18 )

 1021314018 Le changement de variable ȳ = y δ est effectué, µ est supposé constant et, à partir de la définition de ψ : δ i-1 δdȳ (F.11) sachant que u x n'est fonction que de ȳ, Qi = b i δ i-2 avec b i une constante. En remplaçant une fois de plus par δ = c 1 √ x, on a donc, en posant c 4 une constante :Qi = c 4 x i/2-1 (F.12)Le terme source de convection par la vitesse verticale s'écrit (eq 3.39)La vitesse verticale est calculée à partir de l'équation de continuité incompressible :Le profil de vitesse longitudinal est autosimilaire et le paramètre de similitude s'écrit η = y b 1 √x avec b 1 une constante. Le profil de vitesse verticale peut s'écrire u x (x, y) = f (η) et est remplacé dans l'équation de continuité incompressible :∂u y ∂y = -∂f ∂η ∂η ∂x = y 2b 1 x 3/2 f ′ (η) (F.15)Puis en intégrant suivant la direction verticale de 0 à y. u y (x, y) = y 2b 1 x 3/2 f ′ (η)dY (F.16) Le changement de variable η = y b 1 √ x est ensuite effectué : u y (x, y) = de u y est ensuite injectée dans l'équation (F.13) : Sachant que δ T = c 2 √ x le changement de variable ŷ = y δ T = y c 2 √

1

 1 Figure F.1 -Tracé du logarithme des composantes des termes sources adimensionnés pour un écoulement de plaque plane à une différence de température de T p -T e = 50K

  (a) Flux pariétal (b) Erreur relative sur le flux pariétal (c) Profil de température adimensionné sur l'épaisseur de la couche limite à la position du saut de température de paroi (d) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.01 après le saut de température de paroi (e) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.05 après le saut de température de paroi

Figure H. 1 -

 1 Figure H.1 -Écoulement de point d'arrêt avec une température de paroi variant brutalement de 10K supérieure à l'écoulement à l'infini amont, à 15K supérieure

  (a) Flux pariétal (b) Flux pariétal à partir de s=0.6 (c) Profil de température adimensionné sur l'épaisseur de la couche limite à la position du saut de température de paroi (d) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.01 après le saut de température de paroi (e) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.05 après le saut de température de paroi (f) Profil de température adimensionné sur l'épaisseur de la couche limite à la position adimensionnée s = 0.1 après le saut de température de paroi

Figure H. 2 -

 2 Figure H.2 -Écoulement de point d'arrêt avec une température de paroi variant brutalement de 10K supérieure à l'écoulement à l'infini amont, à 5K supérieure

  

  

  

  i représente la vitesse suivant l'axe i, P la pression statique, ρ est la masse volumique et τ la contrainte de cisaillement. Elle s'écrit τ :y = µ ∂u: ∂y pour un écoulement laminaire et τ :y = µ ∂U: ∂y -ρu ′ : u ′ y pour un écoulement turbulent, avec µ la viscosité dynamique. Ces équations sont obtenues en négligeant les termes d'ordre O(δ/L), où δ est l'épaisseur de la couche limite dynamique, grandeur faible devant L la longueur caractéristique du système. Il advient, par rapport aux équations de Navier-Stokes, que les termes1 

								x ∂x	+	∂u y ∂y	+	∂u z ∂z	= 0	(1.1a)
				∂u x ∂t	+ u x	∂u x ∂x	+ u y	∂u x ∂y	+ u z	∂u x ∂z	= -	1 ρ	∂P ∂x	+	1 ρ	∂τ xy ∂y	(1.1b)
				∂u z ∂t	+ u x	∂u z ∂x	+ u y	∂u z ∂y	+ u z	∂u z ∂z	= -	1 ρ	∂P ∂z	+	1 ρ	∂τ zy ∂y	(1.1c)
												-	1 ρ	∂P ∂y	= 0	(1.1d)
	ρ	∂τxx ∂x et 1 ρ	∂τxz ∂z sont négligés dans l'équation de quantité de mouvement suivant x (1.1b)
	tandis que les termes 1 ρ	∂τzx ∂x et 1 ρ	∂τzz ∂z							

u

  vitesse extérieure u e . De même, on peut écrire l'équation dans la direction z. De plus, on suppose que ∂ ∂y ≡ 0 et ∂ ∂t ≡ 0 hors de la couche limite d'où :

			-	1 ρ	∂P ∂x	= -	1 ρ	∂P e ∂x	= u ex	∂u ex ∂x	+ u ez	∂u ex ∂z	(1.11a)
			-	1 ρ	∂P ∂z	= -	1 ρ	∂P e ∂z	= u ex	∂u ez ∂x	+ u ez	∂u ez ∂z	(1.11b)
	Les équations de Prandtl peuvent donc être réécrites :
					∂u x ∂x	+	∂u y ∂y	+	∂u z ∂z	= 0	(1.12a)
	∂u x ∂t	+ u x	∂u x ∂x	+ u y	∂u x ∂y	+ u z	∂u x ∂z	= u ex	∂u ex ∂x	+ u ez	∂u ex ∂z	+	1 ρ	∂τ xy ∂y	(1.12b)
	∂u z ∂t	+ u x	∂u z ∂x	+ u y	∂u z ∂y	+ u z	∂u z ∂z	= u ex	∂u ez ∂x	+ u ez	∂u ez ∂z	+	1 ρ	∂τ zy ∂y	(1.12c)
										-	1 ρ	∂P ∂y	= 0	(1.12d)
		∂u ex ∂t	+ u ex	∂u ex ∂x		+ u ey	∂u ex ∂y	+ u ez	∂u ex ∂z	= -	1 ρ	∂P e ∂x	(1.10)

Le système d'équations intégrales est alors obtenu en effectuant une intégration de la façon suivante :

  Ces équations imposent respectivement la cohérence des définitions des grandeurs C f , δ 1s et δ 2ss . Pour assurer ces relations, C. Bayeux a établi que la valeur de p s (H) est estimée à partir de la fonction suivante : La fonction g proposée par J. Cousteix[START_REF] Cousteix | Aérodynamique et Couche limite laminaire[END_REF] est issue des solutions autosimilaires de Falkner-Skan pour les équations de couche limite. Elle est liée au coefficient de frottement C f par la relation suivante :

	p s (H) =	2.4834 + 2 + 2.0411×10 11 0.7877 (H-1.9538) 1.6001 (H+25.89) 7.7560	si H ≤ H dec si H ≥ H dec	(1.24)
	H dec représente le facteur de forme pour lequel une couche limite laminaire décolle. Il vaut H dec =
	4.02923. C. Bayeux a établi :									
		A s (H) = p 2 s -p s (p s + 1)Hg(H) -1	(1.25)
	C f s 2	Re δ 2ss = g(H)		avec Re δ 2ss =	| qe |δ 2ss ν	(1.26)
	L'expression de g est la suivante :					
	g(H) = 2.99259	1 H	-	1 8.05846	1.7	-	1 8.05846	1.7	si H ≤ H dec	(1.27a)
	g(H) = 0.20644 -90.30936 + (H -1) -0.06815 + 46.34236 1 4.02923	1.3 (4.02923) 2 -3.35661 1 -H 1.3 1 H 2 1	2.338238	si H ≥ H dec	(1.27b)
	Enfin, l'épaisseur de couche limite δ nécessaire pour définir η, la variable de l'équation 1.22, est
	donnée par :									
				δ =	δ 1s p			

s (p s + 1) p s + p 2 s -p s (p s + 1)Hg(H) (1.28) Profil de vitesse transversal Le profil de vitesse transversal n'est naturellement utilisé que pour des configurations 3D résolues par BLIM3D et dépend du profil de vitesse longitudinal. Il s'écrit :

1.1.3.3 Critères de transition laminaire-turbulent utilisés

  Le critère de transition utilisé dans le solveur BLIM2D sur une paroi lisse est un critère local proposé par Drela et basé sur le modèle d'Abu-Ghannam et Shaw. Le nombre de Reynolds de transition, défini tel que Re δ 2 trans = | qe|δ2ss,trans νe est calculé à partir du facteur de forme H et du taux de turbulence extérieure T u. L'écoulement transversal ayant peu d'influence sur l'écoulement global, seule l'épaisseur de quantité de mouvement longitudinale δ 2ss est utilisée pour la détermination de Re δ 2 trans .

	Re δ 2 trans = 155 + 89 0.25tanh	10 H -1	-5.5 + 1 ñ1.25	(1.33a)
	ñ = -8.43 -2.4ln	T u ′ 100		(1.33b)
	T u ′ = 2.7tanh	T u 2.7			(1.33c)
		Re k =	| qe |k s ν e	> 600	(1.34)

La rugosité a cependant un impact significatif sur la transition et les parois givrées ont une très forte rugosité, l'utilisation de critères de transition prenant en compte les effets de rugosité est nécessaire. Le critère de transition utilisé est le critère adapté par l'ONERA pour les chaînes de givrage IGLOO et ONICE. Ce critère est basé sur le concept de hauteur de grain de sable k s développé à l'origine en 1933 par Nikuradse

[START_REF] Nikuradse | Laws of flows in rough pipes[END_REF]

. Il représente la hauteur d'une rugosité régulière de type 'grain de sable'. De façon analogue à de nombreux autres critères de transition, la transition est atteinte lorsqu'un nombre de Reynolds caractéristique Re k dépasse une valeur critique : Toute la difficulté consiste à déterminer la bonne hauteur de grain de sable équivalent k s qui est mal maitrisée. Pour les codes de givrage ONERA, la relation suivante est utilisée pour les profils d'aile, avec c la corde du profil :

  1/n (1.36) avec η = y/δ. n est un paramètre du modèle, dans le cas d'une plaque plane, n = 7 donne les meilleurs résultats. La présente approche utilise n(H) pour modéliser une plus large gamme d'écoulements à savoir l'effet du gradient de pression externe. Le profil de vitesse respecte les mêmes conditions que le profil de vitesse laminaire, reliant δ, δ 1s et δ 2ss

  les conditions aux limites. La condition 2.11b représente la condition mixte. h 0 est un paramètre permettant de modifier le comportement de la condition à la limite. Augmenter h 0 permet d'imposer plus fortement la température de paroi tandis que réduire h 0

	permet d'imposer plus fortement le flux pariétal.					
	La condition 2.11c est obtenue en écrivant l'équation locale de l'énergie en y = 0 :
	0 = -	∂ϕ ∂y y=0	+ µ	∂u s ∂y	2 y=0	+ µ	∂u c ∂y	2 y=0

Table 2 .

 2 1 -Nombre de racines positives, pour une température de paroi imposée, en fonction de θ 0 et U

1T 2.2 Évaluation du potentiel et des limitations de la méthode 2.2.1 Présentation de la démarche utilisée pour évaluer la méthode existante

  

Table 2

 2 C et m sont des constantes. m détermine le gradient de pression. Ces écoulements académiques ont en effet l'intérêt de balayer les conditions de gradient de pression obtenus sur des ailes droites et donc de caractériser les avantages et défauts de la méthode intégrale sur des écoulements d'intérêt. Des valeurs négatives de m décrivent une situation où le gradient de pression est défavorable tandis que des valeurs positives traduisent un gradient de pression favorable. Le cas m = 0 représente une plaque plane sans gradient de pression tandis que le cas m = 1 représente un point d'arrêt, un cas qui est spécialement important pour le givrage, le givre s'accumulant au bord d'attaque des ailes par exemple.L'annexe A présente le profil de vitesse longitudinale calculé par la résolution de la couche limite dynamique par BLIM2D et utilisé pour la résolution de la couche limite thermique pour différentes valeurs du paramètre m.

	.2 -Conditions de calcul utilisées, sauf mention contraire, pour les cas de validation
	La validation est effectuée pour des écoulements de dièdre respectant la distribution de vitesse
	extérieure suivante :	
	u e (x) = Cx m	(2.36)

  1, et qui constituent plus un cas limite intéressant d'un point de vue numérique qu'un cas réaliste, la situation est encore pire. La méthode intégrale réagit par des sauts non physiques de l'épaisseur

de couche limite au niveau des discontinuités de température, et le coefficient d'échange convectif est durablement mal estimé. Il semble requis de transporter un plus grand nombre d'informations que la simple épaisseur de couche limite de la méthode à une équation. De cette étude ressort aussi la problématique de savoir si le profil de température supposé 2.22 permet de décrire correctement des profils de température, tels que ceux attendus en figures 2.6(d) et 2.8(b) par exemple (ou à l'extrême ceux des figures D.1(a) et D.3(a)), à partir des degrés de liberté qu'il offre.
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	Algorithme

2 -Algorithme de calcul utilisé

Table 3 .

 3 

	Terme	Composante 1 Composante 2 Composante 3 Composante 4 Composante 5
	Analytique	-0.5	0	0.5	1	1.5
	Conduction	-0.503	-2.70 × 10 -7	0.502	1.003	1.502
	Dissipation	-0.504	-5.05 × 10 -6	0.504	1.01	1.51
	Convection	-	-9.50 × 10 -3	0.489	0.986	1.48

3 -Tableau des pentes de chaque composante de chaque terme source pour un écoulement de plaque plane à T p -T e = 50K

  ,max le maximum en valeur absolue des valeurs propres de la matrice Jacobienne de F par rapport à M. Les valeurs propres de ce système sont cependant inconnues dans le cas général. Ces valeurs représentent la vitesse de propagation de l'information dans la couche limite. Cette information se propageant par le biais d'un processus convectif piloté par la vitesse extérieure et la vitesse dans la couche limite étant en tout point inférieure à la vitesse extérieure, l'information se propage donc à une vitesse inférieure ou égale à la vitesse extérieure (il peut exister des cas où la vitesse dans la couche limite est localement supérieure à la vitesse extérieure mais ils sont rares et n'interviennent pas dans les configurations étudiées). La norme de la vitesse extérieure est donc un majorant en valeur absolue des valeurs propres de la matrice Jacobienne. La complexité du calcul des valeurs propres par le biais de la détermination de la matrice Jacobienne implique un coût machine n'étant pas nécessairement compensé par l'utilisation d'un pas de temps local supérieur. De plus, le pas de temps local maximum dépend aussi des termes sources.Les termes sources étant calculés explicitement, il existe aussi une condition de stabilité due à ces termes. En particulier la condition sur le pas de temps ∆ t i ≤

			79)
	Le terme Cette condition s'exprime autrement : |u se,ij |∆t i représente la condition issue de la détermination explicite du flux convectif. ∆s i
	∆t i = CF L	∆s i λ i,max	(3.80)
	avec λ iCF Lmax(δ n T i	

Table 5 .

 5 1 -Puissance et position des résistances chauffantes. La configuration est symétrique

  En effet, l'équation de la quantité de mouvement suivant x, sous sa forme conservative, s'écrit sous les hypothèses de couche limite (équation de Prandtl). le cas où la variation d'énergie totale due à la variation de température est très supérieure à la variation d'énergie totale due à la vitesse et en négligeant les effets visqueux, l'équation (B.2) peut se réécrire : des équations B.2 et B.5 est de faire apparaitre les termes ∂T ∂x y=yp et ∂T ∂z y=yp de variation spatiale de la température pariétale et de les relier au profil de température.

	L'intérêt														
																ρc p	∂u x ∂y	2	+	∂u z ∂y
	∂u x ∂y y=yp	∂T ∂x y=yp	+	∂u z ∂y y=yp	∂T ∂z y=yp	=	k ρc p	∂ 3 T ∂y 3	y=yp	-	1 2c p	∂u x ∂y y=yp	∂| qe | 2 ∂x
	+	∂u z ∂y y=yp	∂| qe | 2 ∂z		+	2µ ρc p		∂u x ∂y y=yp	∂ 2 u x ∂y 2	y=yp	+	∂u z ∂y y=yp	∂ 2 u z ∂y 2	y=yp	(B.2)
	Les termes ∂ 2 ux ∂y 2	y=yp	et ∂ 2 uz ∂y 2	y=yp	apparaissant sont difficiles à déterminer précisément. Cepen-
	dant, ces termes peuvent être remplacés par ∂ 2 ux ∂y 2	y=yp	= -ue ν	due dx et ∂ 2 uz ∂y 2	y=yp	= -ue ν	due dz , d'après
	l'équation (B.4). ∂u x ∂t	+	∂u 2 x ∂x	+	∂u y u x ∂y	+	∂u z u x ∂z	= u ex	∂u ex ∂x	+ u ez	∂u ex ∂z	+	1 ρ	∂τ xy ∂y	(B.3)
	En régime stationnaire et exprimée à la paroi, elle se réécrit en une dimension :
									d ′ où	-u ex ∂ 2 u x ∂u ex ∂x ∂y 2 y=0 = = -1 ρ	∂τ xy ∂y y=0 ν dx u e du e	(B.4)
				∂u x ∂y y=yp	∂T ∂x y=yp	+	∂u z ∂y y=yp		∂T ∂z y=yp	=	k ρc p	∂ 3 T ∂y 3	y=yp	(B.5)

2 (B.1) L'équation (B.1) est ensuite dérivée par rapport à y puis exprimée à la paroi. Dans le cas d'un écoulement où le nombre d'Eckert Ec est faible (Rq : Ec = u 2 ∆T cp ), c'est-à-dire dans

  = ϕ j,cond + ρh ′ u ′ j . Sous les hypothèses de couche limite et en négligeant les corrélations entre les fluctuations de la viscosité et de la vitesse et les fluctuations de la conductivité et de la température, l'équation G.10 devient : ′x +ρh ′ u ′ z avec µ mol la viscosité moléculaire identique au régime laminaire et k mol la conduction thermique moléculaire identique au régime laminaire. Les termes supplémentaires -ρu ′ i u ′ j et ρh ′ u ′ j sont respectivement homogènes à une tension visqueuse et à une diffusion thermique. La difficulté à modéliser correctement ces termes est l'enjeu de l'étude de la turbulence. Pour la présente étude qui vise, pour rappel, à mettre en place une méthode de résolution rapide de la couche limite thermique, des simplifications doivent donc être utilisées pour rendre la méthode réalisable et rapide tout en conservant une précision satisfaisante comparativement à d'autres méthodes de résolution de la couche limite. La simplification la plus courante et envisagée est de faire appel aux notions de viscosité turbulente et de conductivité turbulente. La première consiste à supposer que -ρu ′ i u ′ j = µ t ∂u i ∂x j et est appelée approximation de Boussinesq. Elle consiste donc à postuler que la tension turbulente apparente se comporte comme une tension visqueuse. La deuxième est similaire et consiste à supposer que ρh ′ u ′ j = -k t ∂T ∂y de façon semblable à l'approximation de Boussinesq. Ceci revient à poser que la diffusion turbulente de l'enthalpie se comporte comme la conduction thermique moléculaire. La conduction thermique turbulente est reliée à la viscosité turbulente par la relation k t = µtcp P rt . On a donc sous ces hypothèses :τ :,y = (µ mol + µ t )Il est donc nécessaire de faire appel à deux fermetures, une pour µ t et une pour P r t . Le modèle le plus simple est de considérer un nombre de Prandtl turbulent constant (classiquement entre 0.85 et 0.9 dans une couche limite d'air). Pour ce qui est de la viscosité turbulente, elle peut être déterminée à partir d'échelles de longueur et de vitesse caractéristiques telles que µ t = ρlu avec l l'échelle de longueur caractéristique et u l'échelle de vitesse caractéristique. Ces échelles caractéristiques peuvent être calculées à partir d'équations de transport mais ces dernières sont coûteuses pour une méthode intégrale. Le plus simple et vraisemblablement le plus adapté est d'utiliser des modèles algébriques qui permettent de déterminer le rapport l δ tandis que la vitesse caractéristique est supposée proportionnelle au cisaillement moyen ∂u ∂y . Un exemple de modèle est le modèle de Van Driest, le plus simple, dont la formulation de la longueur de mélange proposée par Michel et al.[START_REF] Michel | Application d"un schéma de longueur de mélange à l'étude des couches limites turbulentes d'équilibre[END_REF] s'écrit : + , la distance réduite à la paroi dont l'expression pour les écoulements compressibles est : est le frottement pariétal. Bien qu'il existe des modèles plus complexes permettant de prendre en compte des effets de gradients de pression, de soufflage et d'histoire, le plus simple est d'utiliser A + = 26, valeur standard sur plaque plane pour le modèle de Van Driest entre autres.

				∂u : ∂y		(G.12a)
		ϕ = -(k mol + k t )	∂T ∂y		(G.12b)
	l δ	= 0.085tanh	κy 0.085δ		κ = 0.41	(G.13)
	et la viscosité turbulente est exprimée comme :				
		µ t = ρl 2 F 2 ∂u ∂y			(G.14)
	où F est la fonction d'amortissement de van Driest [71]		
		F = 1 -exp	y + A +		(G.15)
	p + ρc p u y avec y y + = ∂T ∂t + ρc p u j ∂T ∂x j = u j ∂x j ∂P ∂T ∂t + ρc p u x ∂T ∂x ∂T ∂y + ρc p u z ∂T ∂z = u x ∂P ∂x + u z + ∂P ∂t ∂P -∂z + ∂ϕ j ∂x j ∂P ∂t √ ρτ p y µ avec ϕ j ρc p où τ p	+ τ i,j -∂ϕ ∂x j ∂u i ∂y + τ x,y	∂u x ∂y	+ τ z,y	∂u z ∂y	(G.10) (G.11) (G.16)

avec τ :,y = µ mol ∂u: ∂y -ρu ′ : u ′ y et ϕ = -k mol ∂T ∂y +ρh ′ u

∂(Tp-Te) dx= -400K.m -1 , cette valeur est choisie pour être cohérente avec les données expérimentales de Papadakis[START_REF] Papadakis | Icing tunnel experimments with a hot air anti-icing system[END_REF], obtenues en soufflerie givrante, faisant apparaitre le plus fort gradient de température de paroi. Le nombre de Mach vaut M e = 0.25. Il s'agit donc d'une paroi de moins en moins chauffée. La figure 2.6 montre le profil de température à quatre abscisses. Les figures 2.6(a-b) montrent les profils de température proches du bord d'attaque. Un point d'inflexion apparait sur le profil de température le séparant en deux zones. Dans la zone inférieure le gradient de température augmente avec la distance à la paroi, contrairement à un profil de couche limite thermique usuel. Dans la zone supérieure, le gradient de température diminue en s'éloignant de la paroi. Plus le gradient de température pariétale est maintenu sur une longue distance, plus le profil est courbé. Ceci perdure en effet jusqu'à un point où la dérivée de la température à la paroi change de signe, montré par les figures 2.6(c-d). Il se crée donc, après une distance suffisante, une zone où le flux pariétal est inversé, c'est-à-dire une zone dans laquelle la paroi reçoit de la chaleur bien qu'elle soit plus chaude que l'écoulement extérieur. La raison à cela est que de l'énergie est convectée depuis l'amont, où le chauffage de la paroi est plus fort. Ces effets échappent largement à la méthode intégrale bien qu'en fin de profil, illustrée par la figure 2.6(d), la dérivée à la paroi ait changé de signe. L'épaisseur de la couche limite thermique est bien modélisée au début de la couche limite, quand le profil de température n'est pas trop courbé. Cependant, quand le profil de température devient vraiment distordu, l'épaisseur de couche limite thermique croît beaucoup plus lentement que pour une condition isotherme d'où l'épaisseur plus élevée de couche limite thermique calculée par BLIM2D en fin de profil. La méthode à une équation 2.7 transporte une unique variable reliée à l'épaisseur de couche limite. Il y a donc a priori un manque d'information transportée pour permettre à la fois le changement de l'épaisseur de couche limite et la modification de la forme du profil (position du point d'inflexion, de l'éventuel pic local de température, courbure, etc...) La figure 2.7 représente le coefficient de transfert thermique calculé par la méthode de la section 2.1.3. L'apparition de la zone inférieure dans la couche limite où la convection depuis l'amont apporte de l'énergie, entraine une réduction du coefficient de transfert thermique. La paroi est donc chauffée

modes donnent ici dans l'ensemble les meilleurs résultats, bien qu'à la proximité du bord d'attaque

modes ou plus donnent lieu à une meilleure solution. La figure 4.7(c) montre que le pic de transfert thermique apparait à l'extrados proche du bord d'attaque et non au bord d'attaque en raison de la forte accélération sur l'extrados. Ceci n'apparait pas clairement en traçant le nombre de Stanton en raison de l'accroissement simultané du flux pariétal et de la vitesse extérieure. L'erreur sur le pic de transfert thermique atteint presque 7% pour S-BLIM2D tandis que pour M-BLIM2D elle atteint

5% avec 3 modes et 4% avec 2, 4 ou 5 modes. Après le pic de flux pariétal, les deux solveurs S-BLIM2D et M-BLIM2D passent d'une sous-estimation à une surestimation du flux pariétal. L'erreur sur le flux pariétal estimé par S-BLIM2D atteint 10% et stagne tandis que pour M-BLIM2D l'erreur sur le flux pariétal augmente de façon continue pour atteindre 9.5% avec 4 et 5 modes, 8.5% avec 3 modes et 6.5% avec 2 modes. Les figures 4.7(d) et 4.7(e) représentent les profils de température adimensionnés aux abscisses adimensionnées s = 0.01 et s = 0.1 respectivement. La figure 4.7(c) montre que le profil de température

D.2.2 Étude d'un saut de température de paroi décroissantLe second cas étudié représente un cas de point d'arrêt avec une différence de température T p -T e de 10K sur 0.125m puis de 5K sur 0.125m (T e est toujours constante et égale à 263.15K). La figure D.6 représente le profil de température optimisé à plusieurs abscisses. Le tableau D.2 montre la norme L2 de l'erreur relative sur le profil de température. Paradoxalement, bien que le profil de température soit plus déformé par ce type de saut de température pariétale, le profil optimisé ne commet pas une erreur aussi élevée que pour le saut de température de paroi croissant, juste après le saut. Cependant, en s'éloignant du saut, l'erreur commise diminue beaucoup plus lentement qu'au cas précédent. En effet, pour le cas précédent le profil de température retrouve rapidement une forme similaire à un profil de température sur paroi isotherme alors que pour le cas présent le profil de température est altéré sur une large distance. Même 25mm après le saut de température de paroi, l'erreur reste supérieure à 5%. On constate donc que le profil de température est mis en défaut sur une grande distance suivant x après le saut de température. Le profil de température a cependant la capacité de produire une inversion du flux pariétal. Il ressort de ce cas la grande variété des profils de température à reproduire.

Remerciements

Nomenclature

In BLIM2D, the dynamic boundary layer is solved via a two-equation integral boundary-layer model :

where

Appendix B : Validation of the Model against an Empiric Relation

The method was assessed against the empiric relation N u = 0.453Re 

As stressed by Lienhard [START_REF] Lienhard | Heat transfer in flat-plate boundary layers : A correlation for laminar, transitional, and turbulent flow[END_REF] for instance, it is expected that imposing a wall temperature varying as x 1/2 will lead to a constant wall heat flux along the flat plate.

The conditions 3 of Table 3.1 were used with m = 0, except that the wall temperature is given by T w -T r = 20x 1/2 . Regarding the mesh size, again, N x = 256. Figure 3.19a shows that for a number of modes N = 4, the solution is well converged. The figure also demonstrates that the heat flux is a rather well-predicted constant (relative error around 0.005), except in the immediate vicinity of x = 0. Figure 3.19b validates the model in terms of Nusselt number for this case with non-uniform wall temperature.

Annexes

Annexe E

Détermination de l'importance de la prise en compte de la vitesse verticale

La figure E.1 présente l'erreur commise sur le flux pariétal pour un écoulement autour d'un profil d'aile de type NACA 0012 sans incidence. L'écoulement infini amont est dans les conditions suivantes : M ∞ = 0.25, T ∞ = 263K et P ∞ = 80000P a. La paroi est 50K plus chaude que l'écoulement à l'infini. En rouge sont représentés les résultats sans prendre en compte le terme source de convection due à la vitesse verticale et en vert si ce terme est pris en compte. On constate donc qu'il est capital de tenir compte de ce terme car ceci peut mener jusqu'à 25% d'erreur s'il n'est pas pris en compte. 

Résumé

Le givrage en vol des aéronefs est une source de dégradation des performances aérodynamiques voire d'accidents. Le coût et la difficulté des essais en soufflerie et en vol conduisent à faire appel à des outils de simulation numérique pour le développement et la certification d'un avion contre le givrage. Le coût de calcul est un problème important pour les codes de givrage car de nombreuses paramétrisations sont généralement attendues. Le givrage est un phénomène hautement multiphysique nécessitant de coupler différents modules, la majeure partie du coût de calcul étant due au module aérothermique. Cette thèse s'inscrit dans le cadre de la modélisation 3D de la couche limite thermique, nécessaire à la modélisation 3D de l'accrétion du givre. L'objectif est de disposer d'outils numériques à la fois rapides, robustes et compatibles avec la modélisation des profils d'ailes utilisant des systèmes de protection thermique. L'approche utilisée dans cette thèse est une méthode couplée Euler/ méthode intégrale de couche limite. La modélisation de la couche limite thermique nécessite la prise en compte de son histoire en raison des conditions aux limites de paroi non-uniformes. Une méthode intégrale basée sur une méthode modale a été développée. Elle permet de transporter plus d'informations qu'une méthode basée sur une simple intégration de l'équation d'énergie. La direction normale à la paroi est traitée à l'aide d'une méthode Galerkin tandis qu'une méthode de volumes finis est utilisée dans les autres directions. La méthode développée pour des configurations 3D a été validée sur des configurations 2D pour des conditions thermiques non uniformes. Le code a ensuite été utilisé avec la chaîne de givrage 2D de l'Onera pour traiter des cas d'application d'accrétion de givre. Ceci a démontré la robustesse de la méthode ainsi que la capacité à modéliser la couche limite thermique pour des cas complexes avec une température de paroi présentant des variations spatiales rapides, alors qu'une méthode intégrale basée directement sur l'intégration de l'équation d'énergie échouait.

Abstract

In-flight icing of aircraft is a source of aerodynamic performance degradation or even accidents. The cost and difficulty of wind tunnel and flight testing leads to make use of numerical simulation tools for the development and certification of an aircraft against icing. The computational cost is an important issue for icing codes because many parameterizations are generally expected. Icing is a highly multiphysical phenomenon requiring to couple different modules, most of the calculation cost being due to the aerothermal module. This thesis is part of the 3D modeling of the thermal boundary layer, necessary for the 3D modeling of ice accretion. The objective is to have numerical tools that are both fast, robust, and compatible with the modeling of wing profiles using thermal protection systems. The approach used in this thesis is a coupled Euler/ integral boundary layer method. The modeling of the thermal boundary layer requires taking into account its history due to non-uniform wall conditions. An integral method based on a modal method has been developed. It allows to transport more information than a method based on a simple integration of the energy equation. The direction normal to the wall is treated using a Galerkin method while a finite volume method is used in the other directions. The method developed for 3D configurations has been validated on 2D configurations for non-uniform thermal conditions. The code was then used with the 2D icing chain of Onera to deal with application cases of ice accretion. This demonstrated the robustness of the method as well as the ability to model the thermal boundary layer for complex cases with a wall temperature with rapid spatial variations, while an integral method based directly on the integration of the energy equation failed.