
HAL Id: tel-04267889
https://hal.science/tel-04267889v1

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-Based Design of Real-Time Systems
Marius Bozga

To cite this version:
Marius Bozga. Component-Based Design of Real-Time Systems. Computer Science [cs]. Université
Joseph Fourier Grenoble 1, 2010. �tel-04267889�

https://hal.science/tel-04267889v1
https://hal.archives-ouvertes.fr

Document d’Habilitation à Diriger des Recherches

Université Joseph Fourier, Grenoble I

Component-Based Design of Real-Time Systems

Marius Bozga

February 4, 2010

Composition du Jury :

Valérie Issarny DR Inria Rocquencourt, rapporteur
Jean-Marc Jézéquel Professeur à l’Université de Rennes, rapporteur

Bengt Jonsson Professeur à l’Université de Uppsala, rapporteur
Jean-Bernard Stefani DR Inria Grenoble Rhone Alpes, examinateur

Joseph Sifakis DR CNRS, Verimag, exminateur

2

Contents

1 Introduction 7

1.1 System Design Challenge . 7

1.1.1 Component-based Frameworks . 9

1.1.2 Encompassing Heterogeneity . 10

1.1.3 Achieving Constructivity . 11

1.2 Our contribution . 12

1.2.1 The BIP Component Framework . 12

1.2.2 BIP-centric System Design . 13

1.3 Organization of the Report . 15

2 System Construction 17

2.1 Basic Ideas . 17

2.1.1 Components and Glue . 17

2.1.2 Incrementality: Flatenning and Decomposition 18

2.1.3 Compositionality and Composability 18

2.1.4 Expressivity . 19

2.2 The BIP Framework . 20

2.2.1 Ports and Interfaces . 20

2.2.2 Atomic Behavior . 21

2.2.3 Connectors and Interaction Models . 22

2.2.4 Priority Models . 27

2.2.5 Composite Components . 28

2.3 The BIP Language . 32

2.4 Discussion . 34

3 Language Factory 37

3.1 Timed Systems . 37

3

4 CONTENTS

Case Study: Scheduling of Timed Tasks 39

3.2 Synchronous Systems . 41

3.2.1 Modal Flow Components . 41

3.2.2 Modeling of Lustre programs . 44

Single-clock synchronous programs . 45

Multi-clock synchronous programs . 47

3.2.3 Experimental work . 49

3.3 Architecture Analysis & Design Language . 50

3.4 Domain Specific Languages . 52

Wireless Sensor Networks . 52

Autonomous Robotic Systems . 53

4 System Implementation 57

4.1 Flatenning . 57

4.1.1 Flatenning of Component Hierarchy 58

4.1.2 Flatenning of Connector Hierarchy . 59

4.2 Implementation . 61

4.2.1 Sequential Implementation . 62

4.2.2 Distributed Implementation . 64

Partial State Semantics . 64

Centralized Engine . 66

Case Study: the Hypercube Adder . 69

Decentralized Engine . 69

4.3 Optimization . 73

4.3.1 Composition of Atomic Behaviour . 73

Case Study: the Mpeg4 Encoder . 76

5 System Validation 79

5.1 Compositional Generation of Invariants . 79

5.1.1 Invariants for Atomic Components . 81

5.1.2 Invariants for Flat Interaction Models 83

Atomic Components without Data . 83

Atomic Components with Data . 85

5.1.3 Application for Checking Deadlock-Freedom 86

5.1.4 The D-Finder Tool . 87

CONTENTS 5

5.2 Model-Checking of Real-Time Systems . 88

5.2.1 An Open and Modular Exploration Platform 89

5.2.2 Static Analysis for Model-Checking and Test Generation 90

5.2.3 Applications and Case Studies . 91

Case Study: Ariane 5 Flight Program 91

Case Study: K9 Rover Executive . 93

5.3 Automatic Abstraction of Timed Components 93

6 Conclusion 97

6 CONTENTS

Chapter 1

Introduction

1.1 System Design Challenge

The design of large and reliable IT systems is a challenging engineering problem. Traditional
engineering disciplines such as civil engineering or mechanical engineering are based on solid
theory for building artifacts with predictable behaviour over their life-time. In contrast, we
lack constructivity results for computing systems: computer science provides only partial an-
swers to particular system design problems. With few exceptions, in our domain predictability
is impossible to guarantee at design time and therefore, a posteriori validation remains the
only means for ensuring correctness.

For example, today we master in a satisfactory way the construction of two categories of
systems. On one hand, there are critical systems of low to medium complexity such as flight
controllers or industrial plant controllers. For such systems, the tight relation with control
theory and control engineering influence the development of synchronous languages and asso-
ciated technology, with their wellknown success today. On the other hand, there are complex
best-effort systems such as telecommunication systems. Here, the layered model of network
protocols provides a solid technology that sustain the construction of extremely complex
and functional computer networks among which Internet is probably the most remarkable
example.

Nevertheless, in addition to the two above categories of systems there exist many others, less
well deserved by the current design practice, but with a broad utility foreseen in the near
future. In particular, the development of affordable critical systems including automotive,
medical or robotic devices still rely on a large variety of ad-hoc design techniques. The same
situation is observed for the integration of systems of systems e.g., the Internet of things,
smart grids, ambient intelligence, etc.

In general, the design of large IT systems is facing several difficulties, all of them being derived
from our limited ability to handle, represent and communicate information:

• integration complexity: Complex software systems are built by reusing and assembling
components, that are, simpler sub-systems. Clearly, this is the only way to master the
inherent complexity and to ensure the correctness of the design, and also to increase
the productivity. However, system level integration becomes extremely difficult because

7

8 CHAPTER 1. INTRODUCTION

components are highly heterogeneous: they have different characteristics, are often
developed using different technologies, and highlight different features from different
viewpoints.

• incomplete requirements: The requirements are often incomplete and ambiguous because
expressed in natural languages.

• design approaches: Design approaches are often empirical and based on expertise and
experience of design teams. On one hand, this situation confers several advantages
because people tend to solve new problems by reusing, extending and improving past
solutions proven to be efficient and robust. Consequently, this favors components reuse
and avoids re-inventing and re-discovering design solutions every time. On the other
hand, this situation also acts like a barrier: teams are not always able to adapt in
a satisfactory manner to new requirements and moreover, they tend to reject better
solutions simply because they do not fit their design know-how.

For these reasons, it is not surprising that large IT projects are most likely to exceed their
budget and timing while delivering poor quality results.

There are several requirements that a design methodology for complex software systems must
ensure:

• Correctness: Avoiding design errors or at least, detect and eliminate them as early as
possible is a major issue. The following requirements are a prerequisite for correct and
scalable design methodologies. First, the design methodology should rely on the use
of models with well-defined semantics. Second, it should rely on constructivity results
allowing to infer global properties of a system from properties of its components. Third,
it should lead to correct implementations by application of transformations preserving
functional properties.

• Productivity: The design flow must allow enhanced productivity, especially for pro-
gramming complex distributed applications. This can be achieved by offering program-
mers domain-specific languages allowing in particular natural expression of parallelism,
both data or functional parallelism. The semantics of these languages must be de-
fined through translation to a reference semantic model in order to ensure coherent and
seamless integration of components developed using different heterogeneous program-
ming models. The current design practice is fairly much more complex e.g., software
design frameworks are based on interaction by method call and do not allow direct
modeling of atomic interaction mechanisms. On the contrary, modeling frameworks for
mixed hardware/software or control systems such as SystemC and Simulink/Stateflow
have built-in mechanisms for synchronous execution, and are not adequate for describing
asynchronous systems.

• Performance: The performance of a system is as important as its functional correctness.
Resources such as memory, time and energy must be first class concepts. Moreover,
it should be possible to analyze and evaluate efficiency in using resources as early as
possible along the design process. Unfortunately, widely used modeling formalisms such
as the Unified Modeling Language UML [RJB04], its MARTE profile [OMG08b] or the
Architecture Analysis and Design Language AADL [FLV03] offer only syntactic sugar

1.1. SYSTEM DESIGN CHALLENGE 9

for expressing timing constraints and scheduling policies. The lack of adequate semantic
frameworks does not allow checking for inconsistency in timing requirements, or in the
meaningful composition of scheduling policies.

• Parsimony: The design flow should not enforce any particular programming or execu-
tion model. Designers can use degrees of freedom in the design process, e.g. parallelism
or non-determinism, for choosing amongst possible implementations guided only by
system requirements. Nonetheless, the most successful design methodologies nowadays
privilege a unique programming model together with an associated compilation chain
oriented towards a given execution model. For example, synchronous design methodolo-
gies strongly rely on synchronous programming models and targets sequential implemen-
tations on single processors. Alternatively, real-time programming based on scheduling
theory for periodic tasks targets dedicated real-time multitasking platforms, etc.

To meet the above requirements, we need component-based frameworks encompassing het-
erogeneity and allowing constructivity along the design process. We explain these concepts
below.

1.1.1 Component-based Frameworks

In this section, we provide a brief description of the current state of the art of component-
based technology for different domains encompassing hardware, software and middleware. We
see that component-based engineering is widely used in VLSI circuit design methodologies,
and is supported by a large number of tools. Software component-based techniques have
seen significant development, especially through the use of object technologies supported
by modern programming languages, modeling standards and middleware. However, these
techniques have not yet achieved the same level of maturity as has been the case for hardware.
There exists a huge body of literature dealing with components and their use for different
purposes and in different contexts. The following deal, one way or another, with issues related
to component-based engineering for modeling and/or programming complex software systems:

• Software Design Description Languages [GS04, BFLL04], and Architecture Description
Languages focusing on non-functional aspects [VPL99, AVCL02].

• Normalized system modeling languages such as UML [OMG09], SysML [OMG08a], SDL
[ITU99] and associated tools.

• Languages and notations specific to system design tools such as Sys-
temC [Pan01, RHG+01], Metropolis [BWH+03], Ptolemy [EJL+03], GME [BGK+06],
Simulink/Stateflow [Mat], Autofocus [HS01], 42 [MB07]

• Component models based on classical concepts of Component-Based Software Engineer-
ing (CBSE) like Fractal [BCS04] and its implementations, e.g., Julia, Think, etc

• Middleware standards such as Corba, Javabeans, .NET

• Software development environments such as PCTE, SWbus, Softbench, Eclipse.

10 CHAPTER 1. INTRODUCTION

• Coordination language extension of programming languages such as Javaspaces
[FHA99], TSpaces [FLN+03], Polyphonic C♯ [BCF02], nesC [GLvB+03] and

• Theoretical frameworks based on process algebras e.g., the Pi-Calculus [Mil98] or based
on automata e.g., [RC03].

There are significant differences between the notion of component in software engineering and
the notion of component in hardware engineering. In the former, communication between the
components are point to point, by function calls. Conventional function calls are blocking,
in the sense that the caller makes no progress until the callee completes. Exceptions are
languages such as Polyphonic C♯ which offers declaration of asynchronous methods and syn-
chronization patterns, allowing two or more methods to synchronize. Moreover, in software
models, the interconnect between the components is not always easy to determine due to
polymorphism and dynamic linking, in general. Furthermore, the execution of the behavior
of the components is often made in the context of asynchronous threads, and components do
not have any proper activity. The inability to statically determine the component intercon-
nections and the thread of execution leads to reduced analyzability of software models.

In contrast, in hardware models, components are concurrent, have their own activity, and
communication is clearly identified through dedicated channels. The execution is inherently
synchronous.

1.1.2 Encompassing Heterogeneity

Heterogeneity is the property of systems built from components with different characteristics.
Heterogeneity has several sources and manifestations, and the existing body of knowledge is
largely fragmented into unrelated models and corresponding results.

System designers deal with a large variety of components, each having different characteris-
tics. Two central problems are the meaningful composition of heterogeneous components to
ensure their correct inter-operation, and the meaningful refinement and integration of het-
erogeneous viewpoints during the design process. For this, we need semantic frameworks
encompassing heterogeneous composition. Superficial classifications may distinguish between
hardware and software components, or between continuous-time (analog) and discrete-time
(digital) components, but heterogeneity has two more fundamental sources: the composition
of subsystems with different execution and interaction semantics; and the abstract view of a
system from different perspectives.

Heterogeneity of interaction

Interactions are combinations of actions performed by system components in order to achieve
a desired global behavior. Interactions can be atomic or non-atomic. For atomic interactions,
the state change induced in the participating components cannot be altered through interfer-
ence with other interactions. As a rule, synchronous programming languages and hardware
description languages use atomic interactions. By contrast, languages with buffered com-
munication (e.g., SDL) and multi-threaded languages (e.g., Java) generally use non-atomic
interactions.

1.1. SYSTEM DESIGN CHALLENGE 11

Both atomic and non atomic interaction may involve strong or weak synchronization. Strongly
synchronizing interactions can occur only if all participating components agree (e.g., CSP
rendezvous [Hoa78]). Weakly synchronizing interactions are asymmetric; they require only
the participation of an initiating action, which may or may not synchronize with other actions
(e.g., outputs in Esterel [BC85]).

Heterogeneity in interactions may also arise due to the different number of participants.
Interactions can be binary (point to point) or n-ary for n ≥ 3. Interactions in CCS and SDL,
function calls in most programing languages and message passing through channels are typical
examples of binary interactions, while some high level modeling languages/platforms allow
for n-ary synchronizations e.g., Polyphonic C♯. The implementation of n-ary interactions by
using binary interaction primitives is a non-trivial problem.

Heterogeneity of execution

Presently, there is a lack of formalisms encompassing both synchronous and asynchronous ex-
ecution. Synchronous execution is typically used in hardware, in synchronous programming
languages, and in time-triggered systems. It considers that a system’s execution is a sequence
of global steps. It assumes synchrony, meaning that the environment does not change during
a step, or equivalently, that the system is infinitely faster than its environment. In each execu-
tion step, all the system components contribute by executing some quantum of computation.
The synchronous execution paradigm, therefore, has a built in strong assumption of fairness:
in each step all components can move forward.

Asynchronous execution, by contrast, does not use any notion of global computation step.
It is adopted in most distributed systems description languages such as SDL and UML,
and in multi threaded programming languages such as ADA and Java. The lack of built
in mechanisms for sharing computation between components can be compensated through
scheduling and coordination mechanisms, e.g., priorities, locks, semaphores, etc.

Heterogeneity of abstraction

System development involves the use of languages, models and physical implementations,
representing a system and its components at different abstraction levels. For heterogeneity,
a key abstraction is the one relating an application software to its implementation on a given
platform.

Application software is untimed in the sense that it abstracts out physical time. The only
references to physical time are time parameters of real time statements, such as timeouts and
watchdogs. The expiration of watchdogs or timeouts is treated at the semantic level as an
external event. The application code running on a given platform, however, is a dynamic
system that can be modeled as a timed [AD94] or hybrid automaton [Hen96]. The runtime
state includes not only the variables of the application software, but also all variables that
are needed to characterize its dynamic behavior such as time, quantity of resources e.g.,
memory and power. We need abstractions and theory relating application software to its
implementations. In particular, such abstractions should guarantee the preservation of all
essential properties of the application software.

12 CHAPTER 1. INTRODUCTION

1.1.3 Achieving Constructivity

Constructivity is the possibility to build complex systems that meet given requirements,
from building blocks and glue components with known properties. Constructivity can be
achieved by algorithms (compilation and synthesis), and also by architectures and design dis-
ciplines. In principle, component-based frameworks should allow inferring system properties
from properties of their structure. Currently, most of the existing validation techniques e.g.,
model-checking, need the construction of global models. We need theory, methods and tools
for establishing, by construction, overall system correctness from component properties.

For dealing with heterogeneous systems, we need results in two complementary directions.
First, we need construction methods for specific, restricted application contexts characterized
by particular types of requirements and constraints, and/or by particular types of components
and composition mechanisms. Clearly, hardware synthesis techniques, software compilation
techniques, algorithms (e.g., for scheduling, mutual exclusion, clock synchronization), archi-
tectures (such as time-triggered; publish-subscribe), as well as protocols (e.g., for multimedia
synchronization) contribute solutions for specific contexts.

Second, we need theories that allow the incremental combination of the above results in a
systematic process for system construction. Such theories would be particularly useful for
the integration of heterogeneous models, because the objectives for individual subsystems
are most efficiently accomplished within those models which most naturally capture each
of these subsystems. More precisely, we need theory for composition meeting the following
requirements:

• Incrementality: This means that composite systems can be considered as the compo-
sition of smaller parts. Incrementality is necessary for progressive analysis and the
application of compositionality rules.

• Compositionality: Compositionality rules allow inferring global system properties from
the local properties of the components. An example is inferring global deadlock-freedom
from the deadlock freedom of the individual components.

• Composability: Composability rules guarantee that a component’s essential proper-
ties are not affected during the system construction process, i.e., even after gluing
together the components, their essential individual properties are preserved. Compos-
ability means stability of component properties across integration, e.g., establishing
noninterference for two scheduling algorithms used to manage two system resources.

1.2 Our contribution

1.2.1 The BIP Component Framework

We present in this work, the BIP component framework [BBS06, Bas08]. The name BIP is
derived from Behavior, Interaction and Priority, the three main foundations of this framework.
BIP serves for modeling heterogeneous real-time components, and integrates results developed
at Verimag over the past five years. Its main characteristics are the following:

1.2. OUR CONTRIBUTION 13

• It supports a component construction methodology based on the thesis that components
are obtained as the superposition of three layers. The lower layer contains atomic com-
ponents described by their behavior. The intermediate layer includes a set of connectors
describing the interactions between transitions of the behavior. The upper layer is a
set of priority rules describing scheduling policies for interactions. Layering implies a
clear separation between behavior and structure (connectors and priority rules).

• It uses a parameterized composition operator on components. The product of two com-
ponents consists in composing their corresponding layers separately. Parameters are
used to define new interactions as well as new priority rules between the composed
components [GS05, Sif05]. The use of such a composition operator allows incremental
construction. That is, any compound component can be obtained by successive com-
position of its constituents. This is a generalization of the associativity/commutativity
property for composition operators whose parameters depend on the order of composi-
tion.

• It encompasses heterogeneity. It provides a powerful mechanism for structuring inter-
actions involving strong synchronization (rendezvous) or weak synchronization (broad-
cast). E.g., synchronous execution is characterized as a combination of properties of the
three layers. Timed components can be obtained from untimed components by applying
a structure preserving transformation of the three layers.

• It allows considering the system construction process as a sequence of transformations
in a three-dimensional space: Behavior × Interaction × Priority. A transformation is
the result of the superposition of elementary transformations for each dimension. This
provides a basis for the study of property preserving transformations or transformations
between subclasses of systems such as untimed/timed, asynchronous/synchronous and
event-triggered/data-triggered.

1.2.2 BIP-centric System Design

We propose a system design methodology based on BIP. The design flow is illustrated in
figure 1.1 and its main characteristics are the following:

• The design flow is model-based. It relies on the BIP component framework to represent
both application models, that is, pure functional models of the software as well as system
models, that is implementations of the final system, where constraints and specific
characteristics of the execution platform are taken into account.

• In order to increase productivity, we use translations from common programming models
into BIP. We already define and experiment with translations from general languages
(e.g, synchronous languages) as well as for domain specific languages.

• A key idea in our methodology is to generate the system models (i.e., implementations)
from the application model of the software and a model of the target platform by using
a set of correct-by-construction model transformations. These transformations preserve
functional properties. Furthermore, they take into account extra-functional constraints.
We propose several types of model transformations:

14 CHAPTER 1. INTRODUCTION

Programming Model

Application SW

SW Model in BIP

System Model in BIP

Translation

Model Transformation

Code Generation

Deployed SW

Simulation Middleware

Execution Platform

SW Model

Code Generation

Performance

Analysis

Functional

Validation

Platform Model

Figure 1.1: BIP-centric design flow

1. Architecture Optimization: These transformations take BIP models and transform
them into functionally equivalent BIP models with different architectures. Such
transformations have already been implemented in the BIP2BIP tool[BJS09]. They
allow in particular to generate from a hierarchical model an equivalent flat model
or a single atomic component by composing the behavior of the constituent com-
ponents. Flat models have been proven optimal for implementation on single-
processor platforms. We will study transformations for deriving optimal imple-
mentations with respect to given execution platform.

2. Distributed Implementation: Coordination in BIP is achieved through multiparty
interactions and scheduling by using dynamic priorities. The associated semantics
is defined on a global state model. This makes reasoning about systems easy, how-
ever, it is harder to obtain distributed implementations where the primitives avail-
able for communication and coordination are less powerful[BBBS08]. For example,
the implementation of a multiparty interaction as an asynchronous send/receive
protocol can be done: either in a decentralized manner by adding to each one of the
components involved in the interaction a controller; or in a centralized manner by
using a single controller coordinating the behavior of the components. In general,
we plan to reuse and adapt existing distributed algorithms for realizing multiparty
interactions or solving related problems. We will prove their correctness in this
particular context by developing composability arguments e.g, non-interference of
the algorithms with the functional behaviour of the system. Finally, we will assess
their performance with respect to different criteria such as the degree of parallelism
or the overhead for coordination.

1.3. ORGANIZATION OF THE REPORT 15

3. Memory management: BIP adopts a private memory model which is safe for pro-
gramming but may lead to inefficient implementations. The aim is to realize mem-
ory transformation from private to shared memory and conversely. We are also
interested in transformations leading to mixed solutions combining private and
shared memory and determining tradeoffs.

• We provide theory, methods and tools for establishing the correctness of application
models. We favor a correct-by-construction development, for example, we provide
generic constructivity results allowing to establish by construction deadlock-freedom
and confluence of synchronous systems represented in BIP. Moreover, we also provide
tools based on compositional and incremental methods for discovering key functional
properties such as invariants. Furthermore, we provide tools based on simulation and
state space exploration for debugging and tuning the application models, in specific
situations.

• In order to estimate performance of the final system implementation, we envisage specific
methods inspired by functional verification, such as compositional analysis and abstrac-
tion of timed automata models, as well as connections to well-established performance
evaluation methods e.g., modular performance analysis based on analytic models or dis-
crete event simulation. Moreover, in addition to time, the scope of performance analysis
will be extended to other important resources such as memory and energy, and this will
require further enrichment of the BIP component model.

1.3 Organization of the Report

In chapter 2, System Construction, we introduce the key concepts of component-based
construction using the BIP component framework. We begin with an abstract model for
components and their composition using abstract glue. This abstract model help us to for-
malize and reason about constructivity properties such as incrementality, compositionality
and composability. Moreover, it is used to define an abstract measure of the expressive power
of component based frameworks. Then, we present the concrete BIP model. We introduce
the three layers – atomic behaviour, interaction models and priority models – and provide
the operational semantics for composition. We close the chapter with a discussion on the BIP
system construction space.

In chapter 3, Language Factory we provide an overview of the expressive power of BIP
for modeling applications developed using different programming models. First, we illus-
trate how timed systems can be effectively represented using a discrete time version of BIP.
Second, we consider synchronous systems. In general, for such systems there exist general
constructivity results allowing to establish properties such as deadlock-freedom and conflu-
ence (determinism) of computations. We show how synchronous systems can be represented
using a specialized version of BIP and how the constructivity results can be reformulated and
proven in this particular setting. Finally, we close the chapter by briefly presenting how ap-
plications developed using domain specific languages can be represented in BIP. We consider
the case of mixed hardware/software applications for sensor networks and the case of software
controllers for autonomous robots

In chapter 4, System Implementation, we present the main transformations leading from

16 CHAPTER 1. INTRODUCTION

BIP application models to efficient implementations with specific architectures. As a first
step, we define semantics preserving transformations allowing to flatten (partially or totally)
hierarchical components and/or hierarchical interaction models. Then, we define two different
methods of implementation, sequential and distributed, to be used according to the execution
platform underneath. In particular, for distributed implementation, we investigate different
architecture solutions, ranging from fully centralized, where a global controller is used to
coordinate the execution of all interactions between atomic components, to fully decentralized,
where each interaction can be executed on its own, and coordination between them is realized
using a decentralized protocol. Finally, we present specific model optimization allowing to
merge several atomic components into one atomic component. Such an optimization allow
to reduce the coordination overhead between components at runtime and to achieve similar
performance as for hand-written implementations, for particular applications.

In chapter 5, System Validation, we present the methods currently available for validation
of (significant subsets of) BIP models: compositional generation of invariants, explicit state
space exploration and model-checking, and automatic generation of timing abstractions. The
first method, actually implemented in the D-Finder tool [BBNS09], allows to compute two
categories of invariants, namely component invariants and interaction invariants, in a com-
positional and incremental manner. This method scales well in practice and the generated
invariants have been proven useful to establish deadlock-freedom of large applications. For
debugging purposes and/or finer grain analysis, we provide state space exploration and model-
checking techniques. In fact, a significant subset of BIP is covered by the IF model-checker
[VER], a state of the art toolbox for validation of distributed real-time systems. Finally, we
briefly introduce the automatic generation of timing abstractions. This recent method has
been experimented in the context of asynchronous circuits. It allows to generate tractable
validation models following a compositional and incremental generation approach.

Chapter 2

System Construction

We describe in this chapter the main notions about components and their composition. We
begin with an abstract model, where basic definitions of components and component com-
position are introduced. This abstract model is then used to formalize generic properties
of component-based construction such as incrementality and constructivity. Then, we intro-
duce the concrete model used within the BIP component framework. We provide an abstract
syntax and operational semantics for all the key concepts including atomic and composite
components, interaction and priority models. We conclude the chapter with a discussion on
the BIP system construction space.

2.1 Basic Ideas

2.1.1 Components and Glue

A component is a behavioral entity, having a well defined interface. It denotes an executable
specification whose runs can be modeled as sequences of discrete actions.

We distinguish two kinds of components: atomic and composite. Atomic components are
the basic elements in the components hierarchy. Their behavior is explicitly represented as
labeled transition systems.

Definition 2.1 (labeled transition system).

A labeled transition system is a triple B = (Q,Σ,−→), where Q is a set of states, Σ is a set of
labels, and −→⊆ Q× Σ×Q is a set of labeled transitions.

For any pair of states q, q′ ∈ Q and label a ∈ Σ, we write q
a−→ q′, iff (q, a, q′) ∈ T . If such q′

does not exist, we write q ̸ a−→.

Composite components are obtained by composing together other components (atomic or
composite) using a glue. Their behavior is the product of behaviors of the inner components,
with restrictions implied by the glue. Formally, a glue gl consists of a set of memory-less
glue operators with the precise meaning defined by operational semantic rules. The following
definition is adopted from [BS08].

17

18 CHAPTER 2. SYSTEM CONSTRUCTION

Definition 2.2 (glue operator).

A glue operator for behaviors (Bi)i=1,n is any behavior transformer defined by derivation rules
of the form

[glue operator]

{qi
ai−→i q

′
i}i∈I {qi = q′i}i ̸∈I {qk ̸ ak−−→k}k∈K

(q1, . . . , qn)
∪i∈Iai−−−−−→ (q′1, . . . , q

′
n)

where I,K ⊆ {1, . . . n}, I ̸= ∅ and I ∩K = ∅. That is, there is at least one positive premise
and negative and positive premises are not contradictory.

Let us remark that glue operators are defined by stratified rules. They define transitions
of composite components (−→) as a result of composition of transitions of their constituents
(−→i).

Our ultimate goal is to provide a methodology for component description and integration
in a meaningful manner. The methodology must be incremental, i.e., components can be
composed through a meaningful hierarchy of glues. Moreover, it must provide support for
compositionality and composability, as follows.

2.1.2 Incrementality: Flatenning and Decomposition

We consider a component-based development framework as being incremental if it allows to
(re)partition an existing component-based system into any required structure.

Incrementality can be achieved as a combination of decomposition and flattening operations.
Decomposition consists in transforming a n-ary glue operator into a successive application of
binary glue operators, as shown on figure 2.1. In general, we should be able to write:

gl (B1, . . . , Bn) = gl1 (B1, gl2 (B2, . . . , Bn))

That is, any composite component can be obtained by successive composition of its atomic
components. Flatenning is the dual of the decomposition operation. Any given structure can
be flattened to a component which is the composition of its atomic components by using a
single glue operator:

gl1,n
(
gl1,2 (B1, B2) . . . Bn

)
= gl (B1, . . . , Bn)

2.1.3 Compositionality and Composability

Compositionality means inferring global system properties from the properties of the individ-
ual components. It can be formally defined by rules of the form:

2.1. BASIC IDEAS 19

B2B1 Bn

gl

. . .

B1

BnB2 . . .

gl2

gl1

B2B1 Bn

gl1,n

gl1,2

. . .

Figure 2.1: Incrementality: flatenning and decomposition

[Compositionality]

{Bi |= ϕi}i=1,n

gl(B1, . . . Bn) |= g̃l(ϕ1, . . . ϕn)

where ϕi is a property of the component Bi, gl is a glue composing the components, and g̃l is
an operator on properties depending on the glue gl.

Composability guarantees that during the system construction process, all essential properties
of subcomponents are preserved. It is defined by rules of the following form:

[Composability]

{gli(Bi1 , Bi2 , ...) |= ϕi}i=1,m

gl(B1, . . . Bn) |=
∧m

i=1 ϕi

where gli is a glue satisfying a property ϕi on a subset of components {Bi1 , Bi2 , ...}; and
gl = ⊙m

i=1gli is a composition of the glues.

2.1.4 Expressivity

The paper [BS08] introduces a meaningful way to compare the expressivity of glues, that is,
composition operators used in component-based frameworks.

To determine whether one glue is more expressive than another, we compare their respective
sets of behaviors composable from the same atomic ones. Several approaches to comparing
the expressiveness of glues can be considered according to the type of modifications of the
system that one allows in order to perform the comparison. In any case, this consists in
exhibiting for each operator of one glue an equivalent operator in the other one. Below, we
define two criteria for the comparison of glue expressiveness:

1. Strong expressiveness, where the exhibited glue operator must be applied to the same
set of behaviors as the original one,

20 CHAPTER 2. SYSTEM CONSTRUCTION

2. Weak expressiveness, where the exhibited glue operator must be applied to the same
set of behaviors as the original one, with potentially an addition of some fixed set of
coordination behaviors.

2.2 The BIP Framework

The BIP component framework is a concretization of the abstract framework introduced pre-
viously. BIP considers behavior defined using extended transition systems and composition of
behaviors using two kinds of glue, interactions and priorities. It is shown in [BS08] that these
encompass the universal glue presented in definition 2.2, that means, BIP has the (maximal)
expressive power of the universal glue. The framework is based on a 3-tier architecture as
illustrated in figure 2.2, the layers being behavior, interaction and priority, where:

1. Behavior describes the dynamic behavior of atomic components. It consists of a set
of extended transition systems. Each transition has a port, a guard and a function.
Guards are conditions depending on local state. Ports characterize the component’s
ability to interact with a given environment.

2. Interactions describe architectural constraints on behavior. They define joint state
changes of composed components used to coordinate their execution.

3. Priorities provide a mechanism for restricting the global behavior of the layers under-
neath by filtering amongst possible interactions. They help reducing non-determinism in
the execution of the interactions between the components. They are useful for enforcing
state invariant properties and/or scheduling policies.

BIP defines mechanisms for composition of behavior using the interaction and priority glues.
In the following sections, we give a formal description of each of the layers, introduced here.

Priorities

Interactions

B E H A V I O R

Figure 2.2: BIP 3-tier Architecture

2.2.1 Ports and Interfaces

Ports are particular names defining communication points for components. As we shall see
later, they are used to establish interactions between components by using connectors.

In BIP, we assume that every port p has an associated distinct data variable xp. This variable
is used to exchange data with other components, when interactions take place.

A set of ports is called an interface.

2.2. THE BIP FRAMEWORK 21

2.2.2 Atomic Behavior

Definition 2.3 (atomic behavior).

An atomic behavior B is a tuple (P,X,N) where:

• P is a finite set of ports, the interface of the behavior,

• X is a finite set of variables, including the ones associated to ports in P ,

• N = (L, T, F) is an extended 1-safe Petri net:

– L is a finite set of places,

– T is a finite set of transitions τ labelled by (pτ , gτ , fτ) where

∗ pτ ∈ P ∪ {⊥} is the port triggered by the transition τ , if any

∗ gτ is the guard of τ , that is a predicate on X and

∗ fτ is the update function associated with τ , that is a state transformer defined
on X,

– F ⊆ L× T ∪ T × L is the token flow relation.

Example 2.1.

Figure 2.3 presents examples of atomic behaviour using an intuitive and self-explanatory
graphical notation.

⊥
x++

send

sendx y receive x send

receive ⊥
[y odd]

[y even] x:=y/2

⊥

send

receivey

⊥receive

Figure 2.3: Examples of atomic behaviour

In order to define the operational semantics for atomic behavior, let us first introduce some
notations. Given a Petri net N = (L, T, F) we define the set of 1-safe markings M as the
set of functions m : L → {0, 1}. Given two markings m1,m2, we define inclusion m1 ≤ m2

iff for all l ∈ L, m1(l) ≤ m2(l). Also, we define addition m1 +m2 as the marking m12 such
that, for all l ∈ L, m12(l) = m1(l) + m2(l). Given a set of places K ⊆ L, we define its
characteristic marking mK by mK(l) = 1 for all l ∈ K and mK(l) = 0 for all l ∈ L \ K.
Moreover, when no confusion is possible from the context, we will simply use K to denote its
characteristic marking mK . Finally, for a given transition τ , we define its pre-set •τ (resp.
post-set τ•) as the set of places flowing to (resp. from) that transition •τ = {l | (l, τ) ∈ F}
(resp. τ• = {l | (τ, l) ∈ F}).

22 CHAPTER 2. SYSTEM CONSTRUCTION

Definition 2.4 (atomic behavior semantics).

The semantics of a atomic behavior B = (P,X,N) with N = (L, T, F) is defined as the
labelled transition system SB = (QB,ΣB,−→

B
) where

• QB = M×V is the set of states defined by:

– M = {m : L → {0, 1}} the set of 1-safe markings,

– V = {v : X → D} the set of valuations of variables,

• ΣB = P ×D2 ∪ {β} is the set of labels,

• −→
B
⊆ QB × ΣB ×QB is the set of transitions defined by the following rules:

[B1]

τ ∈ T pτ = ⊥

•τ ≤ m gτ (v) = true

m′ = m− •τ + τ• v′ = fτ (v)

(m,v)
β−→
B

(m′,v′)

[B2]

τ ∈ T pτ ∈ P stableB(m,v)

•τ ≤ m gτ (v) = true vup = v(xpτ)

m′ = m− •τ + τ• v′ = fτ (v[xpτ 7→ vdn])

(m,v)
p(vup/vdn)
−−−−−−−−→

B
(m′,v′)

where stableB(q) = ¬∃q′.q β−→
B

q′.

At semantic level, we distinguish two kinds of transitions. Internal transitions, defined by
the rule B1, correspond to the firing of behavior transition labeled with ⊥. These transitions
can be taken as soon as they are enabled by the marking and the guard, and update the
data valuation and the marking, according to the net flow and annotations of the transition.
Visible transitions, defined by the rule B2, correspond to transitions labeled by ports p. These
transitions have most likely the same definition as the internal ones, except that they also
perform an instantaneous data exchange through the port: the current value vup is sent and
a new value vdn is received for xp, before the update.

Moreover, visible transitions have implicitly lower priority than internal transitions: their
execution is postponed until the configuration is stable, that is, no internal transitions are
enabled anymore. This choice is motivated by the intuition that, usually, ones expect that
components engage in interactions (that may need to consult and update their local data)
only when their state is stable.

2.2.3 Connectors and Interaction Models

Composition operators allow to build composite components from a set of sub-components
that interact simultaneously by respecting constraints of an interaction model. We propose

2.2. THE BIP FRAMEWORK 23

a means for structuring interactions by using connectors.

Connectors are used to define sets of related interactions, that means, involving ports from
the same support set of ports, in a compact manner. For each interaction, the connector
defines its guard, an enabling condition, as well as two transfer predicates defining how the
data available on ports is transferred within the connector. As we will see later in more
details, the data transfer within connectors is decomposed in two phases. In the first phase,
data is moving up from support ports to the connector. In the second phase, data is moving
down, from the connector back to the ports. The transfer predicates define the local data
transfer rules, for every interaction of the connector.

Definition 2.5 (connector).

A connector γ is a tuple (P, p0, A) where

• P is the support set of ports,

• p0 is the exported port of the connector, such that p0 ̸∈ P ,

• A ⊆ 2P is a set of interactions a = {pi}i∈I ⊆ P labelled by ga, a↑, a↓ where:

– ga((xpi)i∈I) is the guard condition, that is,
a predicate on {xpi}i∈I ,

– a↑ (x′p0 , (xpi)i∈I) is the upward transfer, that is,
a predicate defining x′p0 depending on {xpi}i∈I ,

– a↓ ((x′pi)i∈I , xp0 , (xpi)i∈I) is the downward transfer, that is,
a predicate defining {x′pi}i∈I depending on xp0 and {xpi}i∈I

Example 2.2.

Consider the connector γ123 = ({p1, p2, p3}, p0, {p1, p1p2, p1p2p3}) defining a causal chain of
interactions on ports p1, p2 and p3. The exported port is p0. The connector defines three
distinct interactions p1, p1p2 and p1p2p3. Their associated guards and data transfer are as
follows:

a ga a↑ a↓
p1 true x′0 = x1 x′1 = x0
p1p2 true x′0 = x2 x′1 = x0, x′2 = x0
p1p2p3 true x′0 = x3 x′1 = x0, x′2 = x0, x′3 = x0

Clearly, the number of interactions of a connector can grow exponentially to the number of
ports in the support set. To manage their complexity, we follow the results in [GS05] and
we propose a typing mechanism for the ports of a connector. That is, in order to specify the
feasible interactions, we rely on the following two basic modes of synchronization:

• strong synchronization or rendez-vous, when the only feasible interaction of a connector
is the maximal one, i.e., containing all the ports.

• weak synchronization or broadcast, when feasible interactions are all those containing a
particular port which initiates the broadcast.

24 CHAPTER 2. SYSTEM CONSTRUCTION

It is possible to represent any arbitrary interaction through a connector by structured combi-
nation of the above two basic synchronization protocols. To characterize these protocols, we
associate types with ports: trigger and synchron. A trigger is an active port, and can initiate
an interaction without waiting all other ports. It is represented graphically by a triangle. A
synchron port is passive, hence needs synchronization with other ports, and is denoted by a
circle. A feasible interaction of a connector is a set of its ports such that either it contains
some trigger, or it is maximal, i.e., consisting of all the synchron ports.

p1 p2 p3x2 x3 p1 p2 p3x2x1

p0x0

x4 p4p0x0

x1 x3

γ123

γ14

γ23

(a) (b)

Figure 2.4: Examples of connectors

Example 2.3.

A structural realization of the connector γ123 using two broadcast connectors γ23 and γ14 is
illustrated in figure 2.4(b). The associated guards and transfer predicates are as follows:

a ga a↑ a↓
p1 true x′0 = x1 x′1 = x0
p1p4 true x′0 = x4 x′1 = x0, x

′
4 = x0

a ga a↑ a↓
p2 true x′4 = x2 x′2 = x4
p2p3 true x′4 = x3 x′2 = x4, x′3 = x4

An interaction model consists of a set of hierarchically structured connectors, built on top
of a fixed set of interfaces and satisfying several well-formedness rules such as acyclicity and
path determinism.

Definition 2.6 (interaction model).

Let {Pj}j∈J be a given set of disjoint interfaces.

Let Γ be a set of connectors, each one exporting a distinct port, and let P (Γ) = {p0 | γ =
(P, p0, A) ∈ Γ} be the set of their (distinct) exported ports.

We say that Γ is an interaction model for the set of interfaces {Pj}j∈J by definition iff:

1. for each connector γ = (P, p0, A) it holds

(a) it exports a fresh port: p0 ̸∈ ∪j∈JPj,

(b) it has a well defined support: P ⊆ ∪j∈JPj ∪ P (Γ),

(c) it uses at most one port in every interface: ∀j ∈ J. |P ∩ Pj | ≤ 1,

2. the dependency relation →Γ on the set of ports ∪j∈JPj ∪ P (Γ) defined as

p →Γ p′ ⇔ ∃γ = (P, p0, A) ∈ Γ.(p = p0 and p′ ∈ P)

satisfies the following conditions:

2.2. THE BIP FRAMEWORK 25

(a) it is acyclic, that is, there are no circular dependencies,

(b) it is path deterministic, that is, there is at most one way to reach a port from
another one through dependencies.

Given an interaction model Γ, we define the subset of its top level connectors Γ⊤ as follows:

Γ⊤ = {γ = (P, p0, A) ∈ Γ | ∀γ′ = (P ′, p′0, A
′) ∈ Γ. p0 ̸∈ P ′}

The ports exported by top level connectors are called top level ports. An interaction model Γ
is called flat iff all connectors are top level, that is Γ = Γ⊤. Otherwise it is called hierarchical.

Example 2.4.

Figure 2.5 presents a hierarchical interaction model for three interfaces {si, pi}i=1,3.

p3x3x2 p2x1 p1

p0x0

x4 p4

s1 s2 s3

s0

p1

p3

s0

s2s1 s3

p2

p0

p4

Figure 2.5: Example of interaction model Γ and its associated dependency relation →Γ

An interaction model defines interaction trees, that are sets of interactions belonging to
hierarchical connectors that are executed simultaneously.

Definition 2.7 (interaction tree).

Let Γ be an interaction model on interfaces {Pj}j∈J .
A set of ports at ⊆ ∪j∈JPj ∪ P (Γ) is an interaction tree iff

1. it contains a uniquely defined port p0, called top(at) from which all the other ports are
recursively dependent

∃!p0 ∈ at. ∀p ∈ at. p0 →∗
Γ p

2. if the interaction tree contains the exported port of some connector, then it includes also
exactly one interaction on that connector

∀γ = (P, p0, A) ∈ Γ. (p0 ∈ at ⇒ ∃!a ∈ A. a ⊆ at)

The subset of leaf ports in an interaction tree at, denoted by bottom(at), contains the ports
belonging to interfaces, bottom(at) = at ∩ ∪j∈JPj .

An interaction tree is called maximal iff it involves a top level connector, that is top(at) ∈
P (Γ⊤). For an interaction model Γ, we denote by At(Γ) the set of its maximal interactions
trees. Moreover, for a given set of ports P , we denote by At(Γ, P) the set of interaction trees
with top ports belonging to P .

26 CHAPTER 2. SYSTEM CONSTRUCTION

Example 2.5.

For the interaction model given in figure 2.5, the set of maximal interaction trees is
{s0s1s2s3, p0p1, p0p1p4p2, p0p1p4p2p3}.

The global data transfer occuring within interaction trees is restricted by the guards and obeys
the upward and downward transfer predicates of every triggered connector. More precisely, the
operational semantics of connectors is defined in terms of transformations of port valuations,
that are, partial functions associating values to (variables associated to) ports.

Let at be an interaction tree. Let σ0 be a partial valuation of interface ports such that
dom(σ0) = bottom(at). The upward valuation upat(σ0) is obtained by propagating values from
interface ports upward into the tree, as long as the guard conditions allow them. Formally, it
is the smallest port valuation satisfying the following rules:

[U1]

(p0 7→ v0) ∈ σ0

(p0 7→ v0) ∈ upat(σ0)

[U2]

{pi 7→ vi}i∈I ⊆ upat(σ0)

γ = (P, p0, A) ∈ Γ a = {pi}i∈I ∈ A

ga((vi)i∈I) = true a↑ (v′0, (vi)i∈I)

(p0 7→ v′0) ∈ upat(σ0)

In a dual manner, we define the downward valuation dnat(σ, v) obtained by transforming a
given valuation σ on at ports according to downward transfer predicates and an initial value
v on the top port:

[D1]

p = top(at)

(p 7→ v) ∈ dnat(σ, v)

[D2]

(p0 7→ v0) ∈ dnat(σ, v)

{pi 7→ vi}i∈I ⊆ σ

γ = (P, p0, A) ∈ Γ a = {pi}i∈I ∈ A

a↓ ((v′i)i∈I , v0, (vi)i∈I)

∀i ∈ I. (pi 7→ v′i) ∈ dnat(σ, v)

Example 2.6.

2.2. THE BIP FRAMEWORK 27

The figure 2.6 gives an example of computing port valuations on the maximal interaction tree
of the hierarchical connector from figure 2.4(b). Let consider an initial valuation x1 7→ 8, x2 7→
13, x3 7→ 17 for the bottom ports. During the upward transfer, the value 17 is propagated to
x4 and x0, following the upward predicates p2p3↑ and then p1p4↑. Then, during the downward
transfer the value 17 gets propagated downwards to x1 and x3 following p1p4↓ and then p2p3↓.

p0

x1 = 8 x2 = 13 x3 = 17

p1 p2 p3

p4

x0 = 17

x4 = 17

p0

x1 = 17 x2 = 17 x3 = 17

p1 p2 p3

p4

x0 = 17

x4 = 17

Figure 2.6: Example of data transfer on interaction trees

The formal abstract foundation of the chosen interaction models in BIP is the Algebra of
Connectors AC(P), introduced in [BS07]. This algebra provides a compact notation for
algebraic representation and manipulation of connectors. It extends the notion of connectors
to algebraic terms built from a set of ports by using a n-ary fusion operator and a unary
typing operator for triggers and synchrons. Given two connectors involving sets of ports s1
and s2, it is possible to obtain by fusion a new connector involving the set of ports s1

⋃
s2, as

shown in figure 2.7(a). It is also possible to structure connectors hierarchically, as shown in
figure 2.7(b) where terms p1p4 and p3p4 are typed and then fused to obtains a new connector.

(a) (b)

p1 p2 p3 p4

p1 p2 p3 p4{ {

s1 s2

Figure 2.7: Fusion (a) and structuring (b) of connectors in AC(P)

2.2.4 Priority Models

Priorities are a powerful tool for restricting nondeterminism, and allows straightforward mod-
eling of urgency and scheduling policies for real time systems. For example, execution con-
straints like run to completion and synchronous execution can be modeled by priority models
on threads. Moreover, as priorities may change dynamically depending on the system state,
they can advantageously overcome the static restrictions of other execution models.

A priority model is a memoryless controller defined by a fixed set of dynamic priority rules
on interaction trees. It filters the possible interaction trees from the interaction model, based
on (an abstraction of) the current global state of the system.

Definition 2.8 (priority model).

28 CHAPTER 2. SYSTEM CONSTRUCTION

Let At be a set of interaction trees and X a set of variables.

A dynamic priority model Π across interaction trees At and dependent on data X is defined
by a set of priority rules π of the form (g, at, bt) where

• at, bt are distinct interaction trees in A,

• g is the condition of the priority, that is a predicate on X,

We note priority rules π = (g, at, bt) as at ≺g bt.

A priority model is saturated iff, forall distinct interaction trees at, bt, ct it holds

at ≺g1 bt ∧ bt ≺g2 ct ⇒ at ≺g1∧g2 ct

Let us notice that any priority model can be statically saturated.

A particular priority model, that favors, among the enabled interactions of a connector, the
maximal one, i.e., the one with maximum number of ports, is known as maximal progress
priority. This can be explicitly represented through priority rules amongst the interaction
trees, of the form (ai)i∈I ≺ (aibi)i∈I , where ai and aibi are interactions of the same connector.
As an example, maximal progress is necessary to model correctly a broadcast. Maximal
progress is implicitly assumed in connectors for their compact and natural representation.

Example 2.7.

The maximal progress for the interaction trees of the interaction model given in figure 2.5 is
defined by the priority rules: p0p1 ≺true p0p1p4p2 ≺true p0p1p4p2p3.

2.2.5 Composite Components

Composite components are defined recursively by composition from atomic behavior or other
composite components using glue consisting of interaction and priority models. We should
notice the following key issues about the proposed composition operation:

• the interface of the new component is a subset of top level ports of the interaction model.
That is, only the chosen top level ports remain visible outside for future interaction,
whereas the others are hidden and become internal to the component;

• similarly, the data available from the composite component is a subset of data available
from its subcomponents;

• finally, it is required that the priority model filters only maximal interaction trees com-
pleted within the component, that is, interaction trees having top level ports internal
to the component.

Definition 2.9 (component).

Components C are recursively defined as

• atomic components, defined by an atomic behavior B = (P,X,N) or

2.2. THE BIP FRAMEWORK 29

• composite components, defined as tuples (P,X, gl, {Cj}j∈J) where

– {Cj}j∈J are the sub-components, either atomic or composite, with disjoint inter-
faces {Pj}j∈J and available data {Xj}j∈J ,

– gl = ⟨Π,Γ⟩ is the composition glue:

∗ Γ is an interaction model for the set of interfaces {Pj}j∈J ,
∗ Π is a saturated priority model across At(Γ, P (loc)), the subset of maximal
interaction trees which remain local, that is with top ports from P (loc) =
P (Γ⊤) \ P , and dependent on data available from subcomponents ∪j∈JXj,

– P ⊆ P (Γ⊤) is the interface of the component, that is a subset of the exported ports
of the top level connectors,

– X ⊆ ∪j∈JXj is the available data of the component, that is a subset of data avail-
able from its subcomponents.

Example 2.8.

The figure 2.8 shows a composite component which implements a simple distributed sorting
algorithm. Every atomic component holds two variables, xi and yi, such that xi < yi. These
variables are available on ports mini and maxi. Their values are exchanged over local con-
nectors relating adjacent components, in order to obtain a globally sorted list of values. The
global minimum (x1) and maximum (y3) values are made available on the interface of the
component, for further composition.

x0min0 max0 y0

s12 s23↓ swap(x2, y1)

[y1 > x2] [y2 > x3]

↓ swap(x3, y2)

swap(x2,y2)

⊥

if (x2 > y2)

min2

x2min2

max2

max2 y2

swap(x1,y1)

⊥

if (x1 > y1)

min1

x1min1

max1

max1 y1

swap(x3,y3)

⊥

if (x3 > y3)

min3

x3min3

max3

max3 y3

Π : s12max1min2 ≺ s23max2min3

↑ x′
0 = x1

↓ x′
1 = x0

↑ y′
0 = y3

↓ y′
3 = y0

Figure 2.8: Example of a composite component

The operational semantics of composite components is recursively defined on the component
structure. For atomic components, their semantics coincides with the semantics of the un-
derlying behaviour. For composition, the semantics is obtained by restricting the parallel
behaviour according to the interaction and priority models applied.

Definition 2.10 (component semantics). The semantics of component C is a labeled transi-
tion system SC = (QC ,ΣC ,−→

C
) defined inductively on the structure of C as follows:

30 CHAPTER 2. SYSTEM CONSTRUCTION

1. C is an atomic component, defined by an atomic behavior B = (P,X,N).

Then, SC = SB.

2. C is a composite component defined as the (P,X, gl = ⟨Π,Γ⟩, {Cj}j∈J)
Let SCj = (QCj ,ΣCj ,−→

Cj

)j∈J be the semantics of its sub-components. The labeled tran-

sition system SC = (QC ,ΣC ,−→
C
) is defined as:

• QC =
⊗

j∈J QCj is the set of states, the Cartesian product of sets of states of
sub-components,

• ΣC = P ×D2 ∪At(Γ, P (loc)) ∪ {β} is the set of labels,

• −→
C
⊆ QC × ΣC ×QC is the transition relation, defined by the following rules:

[C1]

qi
β−→
Ci

q′i ∀j ∈ J \ {i}.qj = q′j

((qj)j∈J)
β−→
C

((q′j)j∈J)

[C2]

qi
ati−→
Ci

q′i ∀j ∈ J \ {i}.qj = q′j

((qj)j∈J)
β−→
C

((q′j)j∈J)

[C3]

fireableC(q, a
t, q′)

stableC(q)

∀(at ≺g bt) ∈ Π.

 g(q) = true
⇒

¬fireableC(q, bt,−)

q
at−→
C

q′

[C4]

fireableC(q, p0(v
up/vdn), q′)

stableC(q)

¬∃at. fireableC(q, at,−)

q
p0(v

up/vdn)
−−−−−−−−−→

C
q′

where the fireableC and stableC predicates are defined as follows:

2.2. THE BIP FRAMEWORK 31

fireableC((qj)j∈J , ℓ, (q
′
j)j∈J) =

∃I ⊆ J.

∃σ0, σup, σdn.

∀i ∈ I. [qi
pi(v

up
i /vdni)

−−−−−−−−−→
Ci

q′i] ∀j ∈ J \ I. qj = q′j

at ∈ At(Γ) p0 = top(at)

σ0 = {pi 7→ vupi }i∈I

σup = upat(σ0) (p0 7→ vup0) ∈ σup

σdn =

{
dnat(σup, v

dn
0) if p0 ∈ P

dnat(σup, v
up
0) if p0 ∈ P (loc)

σdn ⊇ (pi 7→ vdni)i∈I

ℓ =

{
p0(v

up
0 /vdn0) if p0 ∈ P

at if p0 ∈ P (loc)

stableC(q) = ¬∃q′. q β−→
C

q′.

The semantics of composite components distinguish three types of transitions:

• internal transitions, defined by rules C1 and C2 and labeled by β, correspond to internal
transitions and interaction transitions taking place in subcomponents;

• interaction transitions, defined by rule C3 and labeled by maximal interaction trees
at, correspond to complete interactions taking place within the component. They are
defined according to interaction and priority models of the component, as follows. First,
for an interaction to take place, the involved subcomponents must be ready to interact,
and moreover the ports offered and their associated data must enable at and fulfill
its associated data transfer. Furthermore, the interaction must be completed within
the component, that means, its top port belongs to a local connector and therefore no
extra participants are foreseen for interaction. Finally, this interaction tree must be
also maximal according to the priority model amongst all other interaction transitions
enabled;

• visible transitions, defined by the rule C4 and labeled by a data exchange through an
interface port, correspond to partial interactions taking place within the component.
They are similar to interaction transitions, except that they involve an extra data ex-
change on the top port of the interaction tree, which belongs to the interface of the
component.

Finally, the three types of transitions are implicitly prioritized such that, internal transitions
have higher priority than interaction transitions, which in turn have higher priority than
visible transitions. Intuitively, this implies that interactions take place on globally stable
states.

32 CHAPTER 2. SYSTEM CONSTRUCTION

Example 2.9.

The three types of transitions can be clearly identified on figure 2.9, which shows a fragment
of the underlying semantics of the composite component presented in figure 2.8. In every state
we highlight the values of variables xi and yi.

[2, 3] [4, 6] [1, 5]

[2, 4] [1, 3] [6, 5] [2, 4] [3, 1] [5, 6]

[2, 4] [1, 3] [5, 6]

[2, 1] [4, 3] [5, 6]

[2, 4] [3, 1] [6, 5]

[2, 3] [4, 1] [6, 5]

[2, 3] [1, 4] [6, 5] [2, 3] [4, 1] [5, 6]

[2, 3] [1, 4] [5, 6]

[1, 2] [4, 3] [5, 6] [2, 1] [3, 4] [5, 6]

[2, 4] [3, 6] [1, 5]

[1, 2] [3, 4] [5, 6]

[8, 2] [3, 4] [5, 6] [1, 2] [3, 4] [5, 3]

[2, 1] [3, 4] [5, 6]

s12max1min2 s23max2min3

β2β3

s23max2min3

s12max1min2

β1

β3

β3

β3β2

β2

β2

β2

β2

β1

β1

min0(1/8) max0(6/3)

s12max1min2

≺

Figure 2.9: Semantics of a composite component (fragment)

2.3 The BIP Language

For representing system models in the BIP framework we developed the BIP language.

It is a user-friendly textual language which provides syntactic constructs for describing sys-
tems conforming to the formal framework presented in Section 2.2. The BIP language lever-
ages on C style variables and data type declarations, expressions and statements, and provides
additional structural syntactic constructs for defining component behavior, specifying the co-
ordination through connectors, and describing the priorities. Moreover, it provides additional
constructs for dealing with parametric descriptions (i.e., where the same component occur
replicated in many places) as well as for expressing timing constraints associated with behav-
ior.

The principal constructs are:

2.3. THE BIP LANGUAGE 33

1. atom: to specify atomic behavior, with an interface consisting of ports. Behavior is
described as a set of transitions. Transitions are labeled by ports.

2. connector : to specify the coordinations between the ports of components, their interac-
tions and the associated guards and up/down transfer.

3. priority : to restrict the possible interactions, based on conditions depending on the
state of the integrated components.

4. composite: to specify components hierarchically, from atomic behavior or composite
components, with connectors and priorities.

5. model : to specify the entire system, encapsulating the definition of the components,
and specify the top level instance of the system.

6. package: to specify a set of related components and connectors;

The language allows defining types for ports, atoms, connectors, and composite components,
defining priorities, and instantiating objects of the defined types.

Example 2.10.

The example below provides the concrete textual representation for the sorting example in
BIP.

34 CHAPTER 2. SYSTEM CONSTRUCTION

model sorting

/* definition of port types */
port type MinPort(int x)

port type MaxPort(int y)

port type InternalPort

/* definition of swapping connectors */
connector type Swap

(MaxPort max, MinPort min)

define max min

on max min

provided max.y > min.x

down {# swap(max.x, min.y); #}
end

/* definition of singleton connectors */
connector type MinCopy(MinPort min)

define min

data int x0

on min up x0 = min.x;

down min.x = x0;

export port MinPort min0(x0)

end

connector type MaxCopy(MaxPort max)

define max

data int y0

on max up y0 = max.y;

down max.y = y0;

export port MaxPort max0(y0)

end

/* definition of atomic components */
atomic type Element(int px, int py)

data int x = px

data int y = py

export port MinPort min(x)

export port MaxPort max(y)

port InternalPort update

place sorted

place unsorted = initial

on min from sorted to unsorted

on max from sorted to unsorted

on update from unsorted to sorted

do # if (x > y) swap(x, y); #

end

/* definition of the composition */
compound type Network

component Element e1(2,4)

component Element e2(3,6)

component Element e3(1,5)

connector MinCopy min0(e1.min)

connector Swap s12(e1.max, e2.min)

connector Swap s23(e2.max, e3.min)

connector MaxCopy max0(e3.max)

priority pi s12 < s23

export port MinPort min0 is min0

export port MaxPort max0 is max0

end

/* the top level component */
component Network n

end

2.4 Discussion

The BIP framework shares features with other existing frameworks proposed for heteroge-
neous components, such as [BWH+03, EJL+03, BGK+06, Arb05]. A common key idea is
to encompass high-level structuring concepts and mechanisms. Ptolemy was the first tool to
support this by distinguishing between behavior, channels, and directors. Similar distinctions

2.4. DISCUSSION 35

are also adopted in Metropolis and BIP, which offer interaction-based and control-based mech-
anisms for component integration. The two types of mechanisms correspond to cooperation
and competition, two complementary fundamental concepts for system organization.

This is a significant progress with respect to languages directly supporting only interaction-
based mechanisms of such as CSP, Lotos, Java. There is evidence through numerous examples
treated in BIP, that the combination of interactions and priorities allow enhanced modularity
and direct modeling of schedulers, quality controllers and quantity managers. Of course, one
could advocate that ease of description for rich languages without an adequate methodology
may be at the detriment of simplicity and insight gained through the use of a smaller number
constructs and concepts. The comparison of languages based on a set of rigorous and pertinent
criteria is an issue that deserves further investigation.

Π

B

Γ

architecture

system

Figure 2.10: The BIP Construction Space

BIP characterizes systems as points in a three-dimensional space Behavior × Interaction
× Priority, as represented in figure 2.10. Elements of this space characterize the overall
architecture. Each dimension, can be equipped with an adequate partial order, e.g., refinement
for behavior, inclusion of interactions, inclusion of priorities. Some interesting features of this
representation are the following:

Separation of concerns: Any combination of behavior, interaction and priority models
meaningfully defines a component. This is not the case for other formalisms e.g., in
Ptolemy [EJL+03], for a given model of computation, only particular types of channels
can be used. Separation of concerns is essential for defining a component’s construction
process as the superposition of elementary transformations along each dimension.

Unification: Different subclasses of components e.g., untimed/timed, asyn-
chronous/synchronous, event-triggered/data-triggered, can be unified through
transformations in the construction space. These transformations often involve
displacement along the three coordinates. They allow a deeper understanding of the
relations between existing semantic frameworks in terms of elementary behavioral and

36 CHAPTER 2. SYSTEM CONSTRUCTION

architectural transformations. For instance, as explained later in section 3.1, timed
systems can be obtained from an untimed systems by 1) refinement of its untimed
behavior (adding continuous variables and tick transitions); 2) by adding a synchronous
interaction between ticks; 3) by adding priorities to express urgency of timed transitions
with respect to ticks.

Correctness by construction: The component construction space provides a basis for the
study of architecture transformations allowing preservation of properties of the under-
lying behavior. The characterization of such transformations can provide (sufficient)
conditions for correctness by constructions such as compositionality and composability
results for deadlock-freedom [GS05]. In an ongoing work, we try to determine regions
of the system construction space where properties are preserved, in particular deadlock-
freedom and state invariance.

Chapter 3

Language Factory

We show hereafter how BIP can be used to model several classes of systems as well as to
represent several commonly used programming models.

First of all, we provide the general principles for modeling of timed systems using discrete
time. Then, we provide a general representation for the synchronous programming model.
We show that we can meaningfully represent synchronous components e.g., Lustre nodes,
using (compositions of) atomic components with a particular cyclic behaviour. Moreover,
for this particular class of components we provide sufficient syntactic conditions to ensure
deadlock freedom and confluence of computations. Finally, we will show how BIP can be
used to represent domain specific programming models used for wireless sensor networks and
autonomous robotic systems.

3.1 Timed Systems

Timed systems are faithfully modeled as timed automata with urgency [BST98, BS00]. In
timed automata models, the execution of a transition is an instantaneous action defining
a discrete change in the state, whereas time progresses continuously in states. Urgency is
expressed by means of an urgency attribute on transitions. This attribute can take the
values eager, lazy or delayable. Eager transitions must executed at a point of time at which
they become enabled, unless they are not disabled by executing another transition. Lazy
transitions do not have any urgency constraints, i.e., if not executed they can be disabled by
time progress. Delayable transitions are a composite type very useful in practice. Delayable
transitions cannot be disabled by time progress. They are considered to be lazy at some state
unless they are disabled at the next time unit; otherwise, they are considered eager.

As basis for the description of timed systems, we introduce atomic timed behavior which is
a slight extension of the atomic behavior defined in section 2.2. The definition of atomic
behavior is inspired from [AGS02]. It consists in adding the following restrictions/extensions
on the atomic behavior model:

• the control flow is restricted to a simple automaton,

• the set of variables is partitioned into continuous (evolving continuously with time

37

38 CHAPTER 3. LANGUAGE FACTORY

progress) and discrete (unchanged over time progress) variables,

• for every location l and continuous variable c, there is an evolution function Φc
l : D(c)×

R+ → D(c) describing the continuous evolution of c over time. Evolution function Φc
l

must satisfy:

1. Φc
l (v, 0) = v, forall v ∈ D(c)

2. Φc
l (v, t1 + t2) = Φc

l (Φ
c
l (v, t1), t2), forall v ∈ D(c), t1, t2 ∈ R+

• every transition τ has an urgency type attribute uτ .

For sake of readability, in the graphical notation, urgency types are associated with ports
(transition labels). We use the notation pu, where p is a port and u can be either ϵ (eager),
λ (lazy), or δ (delayable).

· · ·

l

fr

rl

· · ·

gr

p r · · · tickrp

tick
tpcl
c = ϕc

l (c,∆)ϕc
l

· · ·

gp
fr
gr
rp

fp

p
gp
fp

Figure 3.1: From timed atomic behavior to atomic behavior

Formally, the meaning of atomic timed behavior is defined by a simple structural mapping to
regular atomic behavior. The principle of the mapping is illustrated in figure 3.1. It consists in
discretizing time by a fixed step ∆ and modelling explicitly time progress by loop transitions
on every location. These transitions are labeled by a special fresh port, called tick, which will
be further used for synchronization with other timed components. For a control location l,
their guard and associated functions are defined as follows:

• the guard tpcl =
∧
{¬gτ | (l, τ) ∈ F, uτ = ϵ}, that means, time progress is enabled iff

no eager transition outgoing from l is enabled,

• the function performs c′ = ϕc
l (c,∆), for all continuous variables c, that means, all

continuous variables take their value after ∆ time units.

In composite components involving timed behavior, strong synchronization is necessary be-
tween all the tick ports as shown in the architecture of figure 3.2. That is, a connector
implementing a rendez-vous between all the tick ports is needed in order to model syn-
chronous time progress for all the interacting components. It is worth mentioning that such
a construction is meaningful only if all atomic behavior has been discretized using the same
time step ∆.

3.1. TIMED SYSTEMS 39

p1 p2 pntick1 tick2 tickn

tick

· · · · · · · · ·

tick1
l2 ln

tick2 tickn
l1

· · ·

x3 = ϕn(x3,∆)x2 = ϕ2(x2,∆)x1 = ϕ1(x1,∆)

Figure 3.2: Composition of timed components

Case Study: Scheduling of Timed Tasks

This example taken from [WDE05], comes from a performance evaluation problem with timed
tasks processing events from a bursty input generator. There are three tasks T1, T2 and T3,
connected serially to an input generator. A task is activated by the reception of an input
event from its predecessor, and executes on dedicated CPU’s. On completion, the task sends
an output event to its successor. The block diagrams of two possible instantiations of the
task system on several CPUs are shown in figure 3.3.

CPU1 CPU2

CPU3

CPU2

CPU1

(a) (b)

T1 T2

T3

T2
Input

Generator
Input

Generator T1

T3

Figure 3.3: Scheduling of Timed Tasks

The basic components for the model are Task and InputGenerator. A generic timed model of
Task is shown in figure 3.4, which can be used either as a simple task, or as a preemptable
task. It uses an integer variable c to count the number of input events received and not yet
handled. It uses a timed variable d to measure of the execution time. The evolution functions
specifying the update of d with time are given as:

ϕRdy(d, t) = d

ϕSusp(d, t) = d

ϕExe(d, t) = d+ t

The urgency on the transition labeled by finishδ in figure 3.4 means that the transition is
lazy when d < WCET and eager when d = WCET .

40 CHAPTER 3. LANGUAGE FACTORY

The ports and behavior of InputGenerator are shown in figure 3.5. This component is param-
eterized by the period T , the jitter J with J > T , and the minimum inter-arrival time D
between successive input events being generated.

Rdy

Exe Susp
getϵ

c=c+1;

startϵ, [c > 0]
c=c-1;d=0;

startpreempt

resume

get

[d ≤ WCET]
preemptλ

resumeλ

ϕExe(d, t)

ϕSusp(d, t)

ϕRdy(d, t)c=c+1;
getϵ

finishδ

c=c+1;
getϵ

finish

Figure 3.4: Task Component

Run

goδ

[k ≥ 0 ∧ x+ k ≤ J ∧ y ≥ D]
y=0;k- -;

[x = T]
x=0;k++;

periodϵ

periodgo

ϕRun({x, y}, t)

Figure 3.5: InputGenerator Component

The first system instance given in figure 3.3(a) is constructed in BIP as a serial composition
of the InputGenerator, and three instances of Task, T1, T2 and T3, as illustrated in figure 3.6.
The transmission of the events, i.e., synchronization between the InputGenerator and Tasks are
modeled by connectors. In this model, the tasks are non-preemptable, so the ports preempt
and resume are not involved in any interaction.

C2

C1

C5

T1 T2

T3C8

C7

C4

C0

C6

InputGen

C3
go

period

tick

resume

preempt start

f
in

is
htickget

preempt

resume

get tick

f
in

is
h

start

preempt

resume

gettick

start

f
in

is
h

Figure 3.6: System model: first instance

The second system instance given in figure 3.3(b) where tasks T1 and T3 share CPU1 and T1

can preempt T3, whereas T2 runs on CPU2, is constructed in BIP as illustrated in figure 3.7.

Mutual exclusion between T1 and T3 is enforced by the connectors C3, C6, C7 and C8. They
guarantee that a task will preempt if the other has to start, and similarly a task can resume
only when the executing task finishes. Note that C3 is a structured connector, representing
the interactions T1.finish T2.get and T1.finish T2.get T3.resume. In the first case T1 finishes
and transmits an event to T2, in the second case it additionally releases the resource to T3 by
resuming its execution.

3.2. SYNCHRONOUS SYSTEMS 41

C2 C3

C1

C5

T1 T2

T3

C0

C6C7C8

C4

InputGen

tick go

period

start

f
in

is
h

resume

preempt

get tick

f
in

is
htickget

preempt start

preempt

resume

gettick

start

f
in

is
h

resume

Figure 3.7: System model: second instance

Static priority between T1 and T3 is enforced by the priority rule

T3.start ≺ T1.start

and non-preemption of T1 by T3 is realized by the rule

T3.start T1.preempt ≺ InputGenerator.tick T1.tick T2.tick T3.tick

3.2 Synchronous Systems

The main principles of modeling synchronous systems in BIP have been introduced in [BSS09].

Synchronous systems are composed of strongly synchronized parallel components. Their
global behavior is characterized by runs consisting of successive computation steps. In each
step, all components perform some quantum of computation. This ensures a built-in fairness
between components in sharing resources, usually enforced by using static scheduling policies.
Synchronous computation models are particularly adequate for hardware, real-time systems
and streaming systems. Their main advantage over asynchronous computation models is
efficiency and predictability (determinacy), in particular thanks to lightweight analysis tech-
niques for deciding deadlock-freedom and timeliness. Nonetheless, for general applications an
adequate mix of synchronous and asynchronous computation is necessary for optimal use of
resources e.g. GALS models [BCC+08].

3.2.1 Modal Flow Components

In this section, we show how the basic execution mechanisms underlying synchronous data-
flow systems can be modeled in BIP. We define the class of modal flow components. They are
a sub-class of BIP components where Petri nets are replaced by modal flow graphs. These
correspond to a subclass of priority Petri nets for which deadlock-freedom and confluence
can be decided at low cost. Modal flow graphs are structures expressing dependency relations

42 CHAPTER 3. LANGUAGE FACTORY

between events within one computation step. Similar structures such as [HM08, Now06, ZL08]
have been proposed and used in different contexts. An important difference between modal
flow graphs and related formalisms is the use of three different modalities characterizing
dependency between events. For a given set of ports P , a modal flow graph is a directed
acyclic graph with nodes P and edges representing the union of three binary relations. Each
relation expresses a different kind of causal dependency (modality) between pairs of ports p
and q:

• q strongly depends on p if the execution of p must be followed by the execution of q.
That is, p and q cannot be executed independently, only the sequence pq is possible;

• q weakly depends on p if the execution of p may be followed by q. That is either p can
be executed alone or the sequence pq;

• q conditionally depends on p if when both p and q are executed, then q must follow
p. Conditional dependency requires that if p and q occur then only the sequence pq is
possible; otherwise p or q may be independently executed.

The semantics of a modal flow component is defined by an atomic BIP component further
restricted by a priority order on ports. The Petri net is derived from the modal flow graph as
follows. We define a transition for every port in the modal flow graph. Moreover, we define
an extra transition, labeled by a distinguished sync port, to delimit successive computation
steps. Places of the net are defined for minimal ports in the modal flow graph as well as for
every pair of dependent ports. The former are used to initialize the computation, whereas the
latter are used to enforce the right order of execution between dependent ports. According to
their definition, places can be tagged as initial, final, or both. The sync transition is enabled
when only final places are marked. In this case, termination of a step consists in removing
tokens from the final places and putting a token in each initial place. Finally, we consider
a priority order on ports which ensures maximal progress in every computation step: first,
all (regular) ports have higher priority than sync and second, every port has higher priority
than all its dependent ports in the modal flow graph. This construction is illustrated in the
following example.

Example 3.1.

In figure 3.8 we show a modal flow graph describing the treatment of an email in one computa-
tion step. Bold, simple and dashed arrows represent respectively strong, weak and conditional
dependency relations. Depending on conditions [cond1] and [cond2], the possible execution
sequences are : open read close, open read forward send1 close, open read answer write send2
close, open read (forward send1 || answer write send2) close where || is the interleaving of
sequences.

Figure 3.9 shows the associated BIP behavior. Initial places are marked with a token; final
places are grayed. As usual, transitions are enabled when their input places are marked and the
associated condition is true. The priority order restricts choices amongst enabled transitions
(ports). That is if both forward and close are enabled then forward is executed. Finally, the
sync transition is not explicitly represented.

3.2. SYNCHRONOUS SYSTEMS 43

read

forward answer

[cond1] [cond2]

send1

send2

open

write

close

Figure 3.8: Modal flow graph

read

answer

send2

write

close

send1

forward

open

[cond2]

[cond1]

sync ≺ close ≺ send1, send2
send1 ≺ forward

send2 ≺ write ≺ answer

answer, forward ≺ read ≺ open

Figure 3.9: BIP behaviour

We show that modal flow graphs are deadlock-free if they are well-triggered. This property
expresses consistency between the three types of dependency. It also guarantees confluence
under some conditions of non interference of concurrent computations.

Well-triggered modal flow graphs can be decomposed as shown in Figure 3.10. The strong
dependency relation defines a set of connected subgraphs involving all the ports of the compo-
nent. Each one of these subgraphs has a single root which is the common cause for its ports.
Weak dependencies express triggering of the root of a subgraph by some port of another
subgraph. Finally, conditional dependencies may relate ports of different subgraphs provided
the acyclicity property is not violated.

Figure 3.10: Well trigerred modal flow graphs

The following theorem taken from [BSS09] establishes the main results about modal flow

44 CHAPTER 3. LANGUAGE FACTORY

components.

Theorem 3.1.

1. A well-triggered modal flow component is deadlock-free if every port with strong causes
has its guard true.

2. A well-triggered modal flow component is confluent if for every independent ports, their
associated guarded actions do not interfere.

3.2.2 Modeling of Lustre programs

To illustrate the use of modal flow graphs for modeling synchronous systems, we provide a
modular translation of Lustre [HCRP91] into modal flow graphs. Similar translations can be
made for other synchronous languages or graphical formalisms [GGBM91, CCN06].

Lustre [HCRP91] is a dataflow synchronous language for programming reactive systems. Lus-
tre programs operate on flows of values, that are infinite sequences (x0, x1, · · · , xn, · · ·) of
values at logical time instants 0, 1, · · · , n. An abstract syntax for Lustre programs is shown
below. In (resp. Out) denotes the set of input (resp. output) flows of a program node.
Symbols N , E, x, v, b denote respectively node names, expressions, flows, boolean flows and
constant values.

program ::= node+

node ::= node N (In) (Out) equation+

equation ::= x = E |
x, · · · , x = N(E, · · · , E)

E ::= x | v | op(E, · · · , E) | pre(E, v) |
E when b | current E

A Lustre program is structured as a set of nodes. Each node computes output flows from
input flows. Output flows are defined either directly by means of equations of the form x = E,
meaning xn = En for any time instant n ≥ 0 or, as the output of other (already defined)
nodes instantiated with particular inputs x, ... = N(E, ...).

The basic operators used in expressions E, are combinatorial operator (op), unit delay (pre),
sampling (when) and interpolation (current). Combinatorial (memory-less) operators in-
clude usual boolean, arithmetic and relational operators. The unit delay pre operator gives
access to the value of its argument at the previous time instant. For example, the expression
E′ = pre(E, v) means E′

0 = v and E′
i = Ei−1, for all i ≥ 1.

In Lustre each flow (and expression) is associated with a logical clock. Implicitly, there
always exists a unique, fastest, basic clock which defines the step (or basic clock cycle) of a
synchronous program. Depending on this clock, other slower clocks can be defined as the
sequences of time instants where boolean flow variables take the value true. In order to define
and manipulate flows operating on slower clocks, Lustre provides two additional operators.
The sampling operator when, samples a flow depending on a boolean flow. The expression
E′ = E when b, is the sequence of values E when the boolean flow b is true. The expression E
and the boolean flow b have the same clock, while the expression E′, operates on a slower clock
defined by the instants at which b is true. The interpolation operator current, interpolates
an expression on the clock which is immediately faster than its own clock. The expression

3.2. SYNCHRONOUS SYSTEMS 45

E′ = current E, takes the value of E at the last instant when b was true, where b is the
boolean flow defining the slower clock of E.

We consider statically correct programs which satisfy the static semantics rules of Lus-
tre [Hal98]. These rules exclude programs containing cyclic, dependent equations, recursive
calls of nodes as well as combinatorial operators applied to expressions having different clocks.

We define modular operational semantics for Lustre, first for single-clock programs and then
for multi-clock programs.

Single-clock synchronous programs

The single-clock subset of Lustre is generated by using only combinatorial and unit delay
operators. All flows are sampled (indexed) by the basic clock.

The translation from Lustre to modal flow graphs is modular. Each node is represented by
a well-triggered modal flow component with two kinds of ports: act control ports and input
(in) or output (out) data ports. An act port is triggered by the basic clock and initiates
the step of the node. The in (resp. out) data ports carry data input (resp. output) read
(resp. produced) by the node. Additionally, modal flow graphs may contain internal ports
and variables, depending on the specific computation carried by the node.

in outx x

act

in

out

act

in outx x

act

out

in

act

flow pre

combinatorial

act

out

in1 in2

in1

in2

x1

x2

act

op

outy

y=op(x1, x2)

Figure 3.11: Single-clock operators

The modal flow components shown in Figure 3.11 correspond to basic Lustre elements: flow,
pre operator and combinatorial operator. The flow component whenever activated through
the act port, reads a value through the in port and outputs this value through the out port in
the same step. The pre component has a local variable x. Whenever it is activated through
act, it outputs the current value x, then it inputs and assigns a new value to x to be used in
the next step. The combinatorial component starts a step when it is triggered through the act
port. Then it reads input values in some arbitrary order, performs its specific computation,
and finally, produces an output value.

The modal flow component representing a single-clock Lustre node is obtained by composing
a set of components by using a set of interactions defined as follow:

• components: For each input and output flow declared in the node we add a flow

46 CHAPTER 3. LANGUAGE FACTORY

component. For each pre (resp. combinatorial) expression occuring within the equa-
tions, we add a pre (resp. combinatorial) component. Moreover, for each subnode called
within equations we add its corresponding modal flow component.

• interactions: Interactions are of two types: control flow and data flow. A single control
flow interaction realizes strong synchronization between all the act ports of all compo-
nents. Data flow interactions synchronize one out port to one or more in ports. They
are used to propagate data from input flow components to expression components and
from expression components to output flow components or other expression components
according to the syntactic structure of expressions and equations.

Example 3.2.

Figure 3.12 shows a discrete integrator written in Lustre and its corresponding synchronous
network of operators.

node Integrator(i: int)

returns o: int;
let o = i + pre(o,0); tel;

i o
+

pre

Figure 3.12: Integrator

The representation of this node as a composition of modal flow components is shown in Fig-
ure 3.13. The atomic modal flow components correspond to the pre operator, the combina-
torial + operator, the input flow and the output flow. In addition to the act interaction,
there are three interactions for data transfer from outputs to inputs: 1) from the input flow
component to the + component, 2) from the pre component to the + component and 3) from
the + operator to the output flow component and back to the pre component. The result of
the composition is shown in Figure 3.14.

The following theorem is a consequence of modularity of translation and of the following facts:
1) the modal flow graphs corresponding to the basic constructs of Lustre are well-triggered; 2)
for statically correct Lustre programs [HCRP91], composition of the basic modal flow graphs
preserves well-triggeredness.

Theorem 3.2.

Every statically correct single-clock Lustre node is represented by a well-triggered modal flow
component such that:

1. it has a unique root which is an act port;

2. all its dependencies are strong;

3. it is deadlock-free and confluent;

4. simulates the micro-step Lustre semantics [Hal98] of the node.

3.2. SYNCHRONOUS SYSTEMS 47

+

p

act2

in2

pin2

act2

p := 0

out2

act1

out1

in1
iiin1

act1

act4

out4

in4
ooin4 out4

act4

z out3

in3a in3b

out3

act3

y

x

in3b

in3a

act3

x := i

out1

out2

y := p

p := z, o := z

Figure 3.13: The integrator node as composition of elementary modal flow components

o out4

act1act2act3act4

+ out3in2in4 out4

in1 i

p := 0

p := z, o := z

out2in3bout1in3a

act1act2act3act4

in1

y := px := i

z = x+ y

Figure 3.14: The integrator modal flow component

48 CHAPTER 3. LANGUAGE FACTORY

Multi-clock synchronous programs

In Figure 3.15, we provide two components modeling respectively the sampling and interpo-
lation operators of Lustre. Both components have two control ports, acti and acto triggering
respectively the input in and the output out data ports. For a sampling component, acto
depends weakly on acti, and moreover, the output out depends conditionally on the input in.
Thus an input is always read and whenever required, an output is produced with the most
recent value of the input – which is precisely the interpretation of sampling. For the interpo-
lation component, we have the opposite: acti depends weakly on acto but out conditionally
depends on in. Thus the output is always produced with the most recent value of the input.
The last modal flow graph in Figure 3.15 describes an additional component, the derived
clock component corresponding to a boolean flow b. This component is used to initiate all the
computations carried on the clock b. Intuitively, it triggers the slower clock port only after
its base clock act has been triggered and if the value obtained through the data input in port
is true.

sampling interpolating

acti

in

acto

out

x

x

in

out

acti acto

acto

out

acti

in

x

x

in

acto acti

out

derived clock

clock

act

in

act

in

clock[b]

b

Figure 3.15: Multi-clock operators

We apply a similar modular construction method for building modal flow components for
multi-clock nodes:

• components: First, we add a derived clock component for each clock (i.e, when b).
Second, we add a sampling (resp. interpolation) component for each sampling (resp.
interpolation) expression occuring within the equations of the node.

• interactions: The data flow interactions are the same as for the single-clock case, with
the addition that data is also propagated to the input port of derived clocks. Regarding
control flow interactions, we add one interaction which synchronizes all the act ports of
flows and expressions sampled on the basic clock. In addition, for each derived clock
component, we add an interaction which synchronizes its clock port with all act ports
of flows and expressions sampled by that clock.

Example 3.3.

Consider the following Lustre program:

3.2. SYNCHRONOUS SYSTEMS 49

node input handler(a: bool, x: int when a)
returns y: int;
let y = if a then current x else pre(y, 0); tel ;

node output handler(c: bool, y: int) returns z: int when c;
var yc: int when c;
let yc = y when c; z = yc * yc ; tel ;

node input output(a,c: bool, x: int when a)
returns z: int when c;
var y: int;
let y = input handler(a, x); z = output handler(c, y); tel;

Depending on an input value x triggered by an input clock a, the input output node produces
a corresponding output value z triggered by an output clock c, by using the most recent available
value of the input.

The main node is the input output node which interconnects the two nodes, input handler

and output handler. The input handler node receives at every moment the boolean value a.
An integer value x is received only when a is true. The output value y is an integer produced
at every moment by interpolating the value of x. The output handler node receives at every
moment a boolean c and an integer variable y. It produces an output z by sampling y when
c is true. Finally, the input output top node connects the output of the input handler to
the input of the output handler.

if a
y := x

a, c : bool
x, z, y, yc : int

inc

outz

yc := y

z := yc2

cinc

xinx

act acta actc

aina
z outz

acta

inx

ina[a = T]

act

actc [c = T]

Figure 3.16: The input/output handler

50 CHAPTER 3. LANGUAGE FACTORY

Figure 3.16 shows the modal flow component representing the system. Its modal flow graph
is obtained after composition and static simplification of the modal flow graphs of the in-
put output node. It can be decomposed into three subgraphs with activation ports act, acta
and actc corresponding respectively to the basic, when a, and when c clocks.

The following theorem establishes the correctness of our translation.

Theorem 3.3.

Every statically correct multi-clock Lustre node is represented by a well-triggered modal flow
component which:

1. has multiple (control) root act ports, one for each clock in the Lustre program, and
multiple data in/out ports;

2. the subgraphs defined by strong dependencies are connected through weak dependencies
into a tree;

3. is deadlock-free and confluent;

4. simulates the micro-step Lustre semantics [Hal98] of the node.

3.2.3 Experimental work

We have implemented a translator from Lustre to BIP synchronous components which di-
rectly generates Petri nets without using modal flow graphs. The translator is currently fully
operational. It takes as input Lustre programs and produces full-fledged BIP systems, that
can be simulated and analyzed using the BIP toolset.

This first approach has several important drawbacks. For the generated BIP programs it is
not easy to verify properties guaranteed by construction for some synchronous programs e.g.
deadlock-freedom and confluence. Moreover, the BIP compilation chain cannot easily recover
the information that the system is indeed synchronous and consequently, it cannot produce
optimized code. For example, experiments with concrete Lustre programs show an 600 : 1
overhead of execution time between the C code produced by the BIP compiler and executed
by the BIP engine, and the flat C code produced by the Lustre compiler. Although, this
overhead can be diminished to 20:1 by applying static composition of components in BIP, it
still remains high.

Modal flow graphs allow coping with these drawbacks. We are now investigating the pos-
sibility to integrate directly modal flow components in BIP. Our results about confluence
and deadlock-freedom of modal flow components provide syntactic conditions, easily imple-
mentable in an automatic tool. Moreover, modal flow components keep all the data-flow
explicit and can be used to generate efficient code, monolithic or not, as synchronous lan-
guage compilers do.

3.3 Architecture Analysis & Design Language

The SAE Architecture Analysis & Design Language (AADL) [FLV03] is a textual and graph-
ical language proposed to design and analyze the software and hardware architectures of

3.3. ARCHITECTURE ANALYSIS & DESIGN LANGUAGE 51

performance-critical real-time systems. It plays actually a central role in several toolsuites
such as OSATE [SEI06] and Ocarina[HZPK08].

A system modelled in AADL consists of application software mapped to an execution plat-
form. Data, subprograms, threads, and processes collectively represent application software.
They are called software components. Processor, memory, bus, and device collectively rep-
resent the execution platform. They are called execution platform components. Execution
platform components support the execution of threads, the storage of data and code, and
the communication between threads. Systems are called compositional components. They al-
low software and execution platform components to be organized into hierarchical structures
with well-defined interfaces. Operating systems may be represented either as properties of
the execution platform or can be modelled as software components.

Components may be hierarchical, i.e. they may contain other components. In fact, an AADL
description is almost always hierarchical, with the topmost component being an AADL system
that contains, for example, processes and processors, where the processes contain threads and
data, and so on. Compared to other modeling languages, AADL defines low-level abstractions
including hardware descriptions. These abstractions are more likely to help design a detailed
model close to the final product.

The paper [CRBS08] presents a general methodology and an associated tool for the structural
translation of AADL specifications into BIP. In this work, we define precise operational models
for all AADL components in terms of BIP components. Moreover, we clearly define the AADL
communication mechanisms using various types of ports in terms of BIP interaction models.
This precise mapping enables simulation of systems specified in AADL as well as their analysis
using formal verification techniques developed for BIP, e.g. deadlock detection.

Example 3.4.

An AADL thread represents a sequential flow of control that executes instructions within a
process. The parallel execution of several threads inside a process is managed by a scheduler.

A thread type declaration specifies communication ports (including data ports, event ports, and
event data ports), subprogram declarations, and property associations. A thread component
implementation specifies local data, the definition of the behaviour either as a subprogram
sequence call or as a state-machine, and thread property associations. Properties are used to
represent attributes and other characteristics, such as the period, dispatch protocol, deadline,
etc. For instance, the dispatch protocol defines how the thread is activated for execution. Four
dispatch protocols are supported in AADL: periodic, aperiodic, sporadic, and background.

The representation of an AADL thread as an atomic BIP component is shown in figure 3.17.
The initial state of the thread is halted. On an interaction through the load port the thread is
initialized and moves to the init state. Then, it enters the ready state, if immediately available
for execution, otherwise it enters the suspended state. When the thread is in the suspended
state it cannot be dispatched for execution; the thread is waiting for an event and/or period
depending on the dispatch protocol to wake up. In the ready state, a thread is waiting to be
dispatched for execution through an interaction on the port exec. When dispatched, it enters
the state compute to perform its specific computation. Upon successful completion, the thread
goes to the outputs state and produces its outputs, if any. Then, it enters the finish state.
Finally, the thread may be requested to enter its halted state through interactions on the stop
port or abort port (at any time).

52 CHAPTER 3. LANGUAGE FACTORY

halted

suspended

ready

compute

init

preempt

error

in1

in2

out1

out2

out3

abortload stop

preemptcompleteexec

load

preempt

exec

[ready]

[¬ready] [ready]

[timeout]

[input overflow]

finish

outputs
outj

ink

completestop

abort exec

Figure 3.17: Generic representation of AADL threads in BIP

3.4. DOMAIN SPECIFIC LANGUAGES 53

3.4 Domain Specific Languages

In the remainder of this chapter we will show how BIP can be used to represent domain
specific programming models. We will present two concrete cases: the representation of nesC
applications used to program motes in sensor networks and the representation of Genom
applications used to program functional modules in autonomous robots. However, for sake of
exhaustivity, let us mention that BIP has been also used for the representation of Business
Process Execution Language BPEL [AAA+07], Distributed Operation Layer DOL [TBHH07]
and FXML [YAD+08]

Wireless Sensor Networks

Wireless sensor networks are complex component-based systems with rich dynamics subject
to strong extra-functional requirements. They have surprisingly many applications nowadays,
however, their design is extremely complex because it involves the composition of a variety of
hardware and software components developed with different methodologies and tools. Conse-
quently, there is a limited understanding on how specific component features and applications
impact the global behavior of such networks.

The main obstacle for a better design practice is the lack of modeling frameworks encompass-
ing heterogeneity. Currently, there exists mainly simulation environments that use simulation
software built in a more or less ad hoc manner, by integrating the application code in specific
platforms e.g., Tossim [LLWC03] or EmTOS [GSR+04]. They can be useful for debugging
purposes but they are not adequate for a more thorough exploration of a network’s non-
deterministic dynamics.

To cope with complexity and enhance understanding, it is important to consider wireless sen-
sor networks as the composition of a relatively small set of functions, services and components
by using incremental structuring principles. Following this principle, a model construction
methodology using BIP has been developed for TinyOS [All] based networks. This method-
ology, presented in [BMP+07], consists in building the model of a node as the composition of
a model extracted from a nesC [GLvB+03] program describing the application, and abstract
models of TinyOS components. This opens the way for enhanced analysis and early error
detection by using verifications techniques. The methodology is characterized as follows:

• A global model for the network is built by composition of BIP components modeling
the application software as well as operating system and radio features. This is a
main difference with existing simulation approaches, directly using TinyOS and C code
generated by the nesC compiler. The BIP model for the TinyOS is an abstract machine
driving the execution of the BIP model, obtained by translation of the application
software written in nesC.

• A significant difference with existing simulation approaches, is that the obtained BIP
models are non-deterministic and fully characterize the behavior of the wireless sensor
network. Furthermore, these models have a well-defined notion of state. They can
be verified by using state space exploration techniques e.g., model-checking. Even if
due to inherent limitations, complete verification of complex networks is intractable,

54 CHAPTER 3. LANGUAGE FACTORY

verification is very useful for systematic debugging and early error detection. Some
preliminary verification results have been reported in [BMP+07].

• Another important difference is incremental model construction of BIP models. In-
crementality means that the global model is obtained by progressively composing its
atomic components as shown earlier in section 2.2. This system construction methodol-
ogy allows defining an architecture hierarchy, with the glue specifying the composition
at an architectural level from its subordinate levels. Figure 3.18 shows the architecture
of a sensor node (mote) consisting of nesC applications and TinyOS, with their internal
contents. The methodology allows preservation of the structure through translation into
BIP. That is, it is possible to identify in the global model all its atomic components
and their interactions. This allows in particular, to study the impact of changes of a
component’s behavior or structure on the global behavior and its properties.

Command
Handler

Event
HandlerTask

nesC

Radio

Task Scheduler Event Scheduler

Timer Sensor

TinyOS

Mote

Figure 3.18: Architecture of a Mote

Autonomous Robotic Systems

Autonomous robots are complex systems that require the interaction/cooperation of numerous
heterogeneous software and hardware components. Nowadays, robots are getting closer to
humans and as such are becoming critical systems which must meet safety properties including
in particular logical, temporal and real-time constraints.

The use of BIP for modeling, design and implementation of autonomous robots has been
investigated in a joint project with LAAS1, a leading laboratory in the robotics domain. At
LAAS, researchers have developed a global software architecture, that enables the seamless
integration of heterogeneous processes (e.g., with different functionalities and requirements)
needed for driving robots. This architecture decomposes the robot software into three main
levels:

• a functional level, it includes all the basic built-in robot action and perception capacities.
These processing functions and control loops (e.g., image processing, obstacle avoidance,

1Laboratoire d’Analyse et d’Architecture des Systèmes, Toulouse

3.4. DOMAIN SPECIFIC LANGUAGES 55

motion control, etc.) are encapsulated into controllable communicating modules devel-
oped using a dedicated software component framework, called GenoM [FHC97, MFB02].
Each module provides services which can be activated by the decisional level according
to the current tasks, and exports posters containing data produced by the module and
for others (modules or the decisional level) to use;

• a decisional level: this level includes the capacities of producing a task plan (using the
IxTeT planner [LG95]) and supervising its execution, while being at the same time
reactive to events from the functional level;

• at the interface between the decisional and the functional levels, lies an execution control
level that controls the proper execution of the services according to safety constraints
and rules, and prevents functional modules from unforeseen interactions leading to catas-
trophic outcomes. This level is usually programmed on the top of existing functional
modules, however, it does not depend on the internal execution details of the modules
themselves.

Timer Scheduler Activity

Execution Task

Service Controller

Service

Genom Module

Activity

Poster

Figure 3.19: Architecture of a GenoM module

Our joint collaboration with LAAS reported in [BIS08, BGL+08] demonstrate that BIP can
be seamlessly integrated within the preexisting design methodology, in particular:

• BIP has been used for (1) the incremental modeling of GenoM modules used to imple-
ment the functional level and (2) the modeling of their allowed interactions as specified
by the control execution level of the robot;

• the resulting BIP model has been used to synthesize a controller for the overall execution
of all the functional modules and to enforce by construction the constraints and the rules
inside modules but also between the various functional modules;

• the BIP model has been also used to formally verify several safety-critical properties of
the robot including ordering and synchronization constraints, data freshness properties,
deadlock-freedom, etc.

The approach has been fully implemented and now there exists a GenoM/BIP controller for
the navigation part of a functional level of the DALA robot [BGL+08], running in simulation

56 CHAPTER 3. LANGUAGE FACTORY

and on the real robot. This controller enforces online by construction the interactions model
(intra-module and inter-module). The concrete runs on the robot show that the performance
of the code generated from BIP is good enough for a simple yet complete robotics experiment.
This work also shows that it is possible to use structural analysis techniques for deadlock
detection and for verification of safety properties.

Chapter 4

System Implementation

Efficient implementation of component-based systems is a non-trivial task. Nowadays, it is
widely admitted that modularity in component-based development incurs an additional non-
negligible overhead for implementation because of extensive use of interfaces, wrappers and
other implementation artifacts.

In this chapter, we present methods for efficient and modular implementation of BIP systems.
By implementation, we mean producing one (or more) executable(s) running according to the
operational semantics. First of all, we show that it is possible to eliminate the hierarchical
definition of composite components and interaction models. That is, BIP models can be
flatenned while preserving completely their operational semantics and without increasing their
overall size. Second, we provide two implementation methods for flat composite components.
The former is sequential and targets single-processor (or single-threaded) execution platforms,
whereas the later is distributed and targets multi-processor (or multi-threaded) platforms.
Third, we present static optimization allowing to reduce the overhead of componentization.

4.1 Flatenning

As argued in section 2.1, incrementality of a component-based development framework can
be achieved through flatenning, that is, the ability to eliminate the hierarchical structure of
composite components. For BIP, the flatenning of a composite component is fully defined
through two steps:

1. flattening of component hierarchy which replaces the hierarchy on components by a
hierarchical interaction model applied only on atomic components;

2. flattening of connector hierarchy which computes for each hierarchically structured con-
nector an equivalent flat connector;

Example 4.1.

We illustrate the flatenning on the BIP model given in figure 4.1. It consists in the serial
connection of two sorting networks of three elements each, identical to the one presented earlier
in section 2.2. The internal behaviour of atomic components is not relevant for flatenning
and therefore it is not presented.

57

58 CHAPTER 4. SYSTEM IMPLEMENTATION

min0

min2 max2
s67 s78

min6 max6 min7 max7 min8 max8

max0s12

min1 max1
s34 s45

min3 max3 min4 max4 min5 max5

Π1 : s34 ≺ s45 Π2 : s67 ≺ s78

Figure 4.1: An example of hierarchical component

4.1.1 Flatenning of Component Hierarchy

The purpose of this transformation is to eliminate the hierarchical structure of composite
components. This transformation is implemented as the simultaneous inlining of all the inner
components, as defined below.

Consider an arbitrary composite component C = (P,X, gl, (Cj)j∈J). The result of the si-
multaneous inlining of subcomponents within C is another composite component, denoted
∇C = (P0, X0, gl0, (Bk)k∈K) where:

• P0 = P , the set of interface ports is P ,

• X0 = X, the set of available data is X,

• (Bk)k∈K , the set of all atomic components Bk contained recursively in C,

• gl = ⟨Π0,Γ0⟩ where

– Γ0 = ∪l∈LΓl, the union of all interaction models contained recursively in the com-
posite subcomponents Cl of C,

– Π0 = sat({at ≺g bt | ∃atl ≺g btl ∈ Πl. a
t
l ⊆ at, btl ⊆ bt} ∪

{at1 ≺true a
t
2 | ∃C1, C2. top(a

t
1) ∈ P

(loc)
1 , top(at2) ∈ P2, C1 contains C2})

Priorities are obtained as the (saturated) union of two sets of priorities. First,
there is the extension of priorities defined in sub components to complete interac-
tions across the whole interaction model. Second, there are priorities derived from
the implicit semantics rule that gives higher preference to interaction transition
(i.e., complete interactions) over visible transitions (i.e., incomplete interactions)
at every composite component.

Example 4.2.

Figure 4.2 presents the composite component obtained by flatenning the hierarchical composite
component from figure 4.1. Intuitively, this transformation removes the inner composite boxes
and moves the priorities to the top component. In this example, let us remark that priorities
between inner interactions s23 ≺ s34 respectively s67 ≺ s78 are preserved as such. In addition,
we have the rule s12max1min2 ≺ s23, s34, s67, s78 which gives priority to inner interactions
with respect to outer ones.

4.1. FLATENNING 59

min0

min2 max2
s67 s78

min6 max6 min7 max7 min8 max8

max0s12

min1 max1
s34 s45

min3 max3 min4 max4 min5 max5

Π : s12max1min2 ≺ s34, s45, s67, s78

s67 ≺ s78

s34 ≺ s45

Figure 4.2: Flatenning of component hierarchy

Intuitively, by inlining we preserve the global interaction model. Therefore, the same inter-
actions are potentially enabled and executed on the hierarchical model as well as on the flat
model. Moreover, priorities on the flat model are defined in order to preserve both priori-
ties from the hierarchical model and implicit priorities enforced by the semantics of parallel
composition. Inner (lower-level) interactions have higher priority than outer (higher-level)
interactions. Formally, the following proposition holds.

Proposition 4.1.

Structural inlining preserves semantics, up to hiding of inner interactions
SC ≃ S∇C

4.1.2 Flatenning of Connector Hierarchy

The purpose of this transformation is to eliminate the hierarchical structure of interaction
models. This transformation relies on the composition (i.e., glueing) of two linked connectors,
introduced below.

Definition 4.1 (composition of connectors).

Let γi = (Pi, pi,0, Ai)1,2 be connectors such that p2,0 ∈ P1, that is, γ1 is hierarchically depen-
dent on γ2. The composition of γ1 with γ2 is a new connector denoted γ1◦γ2 = (P12, p12,0, A12)
where:

• P12 = (P1 \ p2,0) ∪ P2,

• p12,0 = p1,0,

• A12 = {a1 | a1 ∈ A1, p2,0 ̸∈ a1} ∪
{a1 \ {p2,0} ∪ a2 | a1 ∈ A1, p2,0 ∈ a1, a2 ∈ A2}

In the first case, the guards and data transfer are inherited as such from γ1. In the
second case, the guard and the transfer are defined as follows:

– ga12 = ga2 ∧ ∃xp2,0 .∃x′p2,0 .(a2↑ ∧ ga1 ∧ xp2,0 = x′p2,0)

60 CHAPTER 4. SYSTEM IMPLEMENTATION

– a12↑= ∃xp2,0 .∃x′p2,0 .(a1↑ ∧ a2↑ ∧ xp2,0 = x′p2,0)

– a12↓= ∃xp2,0 .∃x′p2,0 .(a1↓ ∧ a2↓ ∧ xp2,0 = x′p2,0)

Intuitively, by composition, two linked connectors are glued together into a single connector.
Their guards, respectively the upward and downward transfer predicates are composed ac-
cording to the rules defined for propagation of port valuations in section 2.2. Consequently,
any port valuation obtained by the successive application of the upward (resp. downward)
transfer predicates of the two connectors is equally obtained by the application of the upward
(resp. downward) transfer predicate of the composed connector.

Example 4.3.

Figure 4.3 illustrates the successive glueing of subconnectors for one of the hierarchical con-
nectors occuring in figure 4.2. Roughly speaking, inner ports are eliminated and the effect of
upward/downward transfer predicates is propagated to the upward/downward transfer of the
parent connector.

max5y5

max1y1

min6x6

min2x2

s12

↑ y′1 = y5

↓ y′5 = y1

↓ swap(y1, x2)

[y1 > x2]

↓ x′
6 = x2

↑ x′
2 = x6

max5y5 min6x6

min2x2

s12 ↓ swap(y5, x2)

[y5 > x2]

↓ x′
6 = x2

↑ x′
2 = x6

max5y5 min6x6

s12 ↓ swap(y5, x6)

[y5 > x6]

Figure 4.3: Example of connector glueing

The composition of connectors extends to hierarchical glues. Consider a hierarchical glue
gl = ⟨Π,Γ⟩ and let γ2 = (P2, p2,0, A2) ∈ Γ \ Γ⊤ be one of its transient connectors. The
connector γ2 can be glued with all the dependent connectors in Γ and the result propagated
over priorities. The result of the inlining will be a new glue, denoted gl△γ2 = ⟨Π′,Γ′⟩ where:

• Γ′ = {γ1 | γ1 = (P1, p1,0, A1), p2,0 ̸∈ P1, γ1 ̸= γ2} ∪
{γ1 ◦ γ2 | γ1 = (P1, p1,0, A1), p2,0 ∈ P1}

• Π′ = Π[p2,0 7→ ⊥] =
{
(at \ {p2,0}) ≺g (bt \ {p2,0}) | at ≺g bt ∈ Π

}
Example 4.4.

Figure 4.4 presents the composite component obtained by flatenning the interaction model from
figure 4.1. Intuitively, all inner ports are removed and priority rules are updated accordingly.

Flatenning of hierarchical glue consists in iteratively glueing all linked connectors, until the
final interaction model becomes flat e.g., it does not contain hierarchical connectors anymore.
According to the following proposition, any composition step can be proven correct, that
means, it preserves the semantics of the hierarchical model up to renaming of hierarchical
interactions.

4.2. IMPLEMENTATION 61

min0

s67 s78

min6 max6 min7 max7 min8 max8

max0s12

s34 s45

min3 max3 min4 max4 min5 max5

s67 ≺ s78

s34 ≺ s45

Π : s12 ≺ s34, s45, s67, s78

Figure 4.4: Flatenning of connector hierarchy

Proposition 4.2.

1. inlining of transient connectors preserves semantics up to renaming
SC ≃ SC△γ2

2. inlining of transient connectors is commutative
(gl△γ1)△γ2 = (gl△γ2)△γ1

4.2 Implementation

We present hereafter methods for implementing BIP components. Given a BIP (composite)
component, we want to produce executable code that runs conforming to the operational
semantics of the component.

Without loss of generality, we will consider only flat composite components. This is clearly
not a restriction, as we have already seen in section 4.1 that any hierarchical component can
be flatenned with no extra cost.

We are interested in producing modular implementations, where the code of atomic compo-
nents is perfectly isolated from the glue and coordination code needed to play interactions
and priorities. This way, we will be able to perform separate compilation as well as to include
legacy components, for which the complete source code may not be available. For doing so,
we consider a relatively simple interface for atomic components, consisting of two functions,
initialize and execute:

• the initialize function is supposed to be called once in order to initialize the component
and to execute its behaviour until the first stable state is reached. At that point, this
function returns the set of ports on which the component is ready to interact, together
with their associated (up) values;

• the execute function is supposed to be called iteratively, after initialize. Its argument
is a port amongst the ones previously proposed for interaction together with the ac-
tual (down) value available on it. This function should then perform the quantum of

62 CHAPTER 4. SYSTEM IMPLEMENTATION

computation triggered by that port, starting from the current stable state and until the
next stable state is reached. At that point, as the initialize function, it returns the set
of ports ready for interaction at that state.

Let us mention that an actual implementation for this interface can be automatically gener-
ated from atomic BIP components.

Moreover, we distinguish between glue code and coordination code. In the first category, we
consider the code needed for data transfer on connectors and for priority evaluation between
enabled interactions. This code is also abstracted through simple interfaces and automatically
generated from interaction and priority models. In the second category, we consider the code
orchestrating the whole execution e.g., implementing the operational semantics of BIP models
using atomic behavior’s and glue implementation. This code, denoted further as the engine,
is completely generic i.e., independent of BIP models running underneath, and developed
manually once for all.

We are mainly interested in two categories of implementations: sequential and distributed. As
the name suggests, in the first case, we are targeting sequential (or monothreaded) implemen-
tations where the code of atomic components, the glue and coordination code is running on a
single processor. In the second case, we are targeting distributed (or multi-threaded) imple-
mentations where the code of atomic components and respectively, the glue and coordination
code is split across different processors. Such distributed implementations can advantageously
exploit the computing capabilities provided by e.g, multi-core execution platforms.

4.2.1 Sequential Implementation

The sequential implementation of BIP follows precisely the operational semantics described
in section 2.2. From a BIP model, a compiler is used to generate the C++ code for atomic
components and glue. This code is then orchestrated by a sequential engine that directly
interprets the operational semantics rules.

Engine
BnB1 B2 . . .

Π

Γ

restrict()

fireable()

execute()

initialize()/execute()

Figure 4.5: Architecture of sequential implementation

The main algorithm of the engine is given below. It starts by initializing and retrieving the set
of enabled ports for every atomic components. Then, in the main loop, the engine computes
from the set of the ports offered by individual components and the set of interactions, the set
of the enabled interactions. Amongst these, it chooses a maximal one, according to priorities.

4.2. IMPLEMENTATION 63

Then, for the chosen interaction, the engine executes the data transfer followed by the specific
computations of every involved atomic components.

foreach j in 1, n do

Pj := Bj.initialize();

do forever

A := compute-fireable(Γ, P1, ..., Pn);

Amax := restrict-priorities(Π, A);
if Amax is not empty then

choose a = (pi)i∈I in Amax;

execute-data-transfer(a);
foreach i in I do

Pi := Bi.execute(pi);
else

deadlock();

stop;

fi

done

The centralized engine has run-time options for execution and enumerative state-space explo-
ration.

In execution mode, the engine offers the possibilities of running either a random trace (by
randomly selecting an enabled interaction for execution), or an interactive trace, where the
user is offered to choose an interaction out of the enabled ones. When a trace is executed,
the engine displays the sequence of interactions.

In state space exploration mode, the engine generates the underlying labeled transition sys-
tems (LTS) of the model. The LTS can be minimized and compared using tools like Alde-
baran [BFKM97] or further analyzed by model-checking. In particular, we have used the
model-checker tool Evaluator [MS00] to perform verification of temporal logic properties. For
example, properties related to specific order of execution of interactions have been verified for
a robotic controller [BGL+08] and for a self stabilizing distributed reset algorithm [BBBS09].

A less costly alternative to temporal logic model checking is validation with observers. For
a safety property Φ, we construct first an observer for Φ, i.e. an automaton which monitors
the system behavior and reports an error on violation of Φ. Observers can be modeled in
BIP as atomic components with extra annotations on locations, like Error and Prune. The
validation consists of exploring the state-space of the system augmented with the observers.
During exploration, if a global system state containing the Error location of the observer is
reached, an error is reported. Additionally, the Prune locations are used to skip exploration
of some specific paths of the state graph, and are useful in reducing the exploration time for
big systems. This technique has been used in the verification of timing properties of modules
of the robot controller [BGL+08].

64 CHAPTER 4. SYSTEM IMPLEMENTATION

4.2.2 Distributed Implementation

The operational semantics of BIP presented in section 2.2 is based on the notion of global
stable states of the system, i.e., a complete stable state is required to trigger any interaction
in a composite component. This is known as the global state semantics. In this section, we
provide a distributed implementation method for systems in BIP, based on a partial state
semantics where the assumption of global stability is relaxed. This implementation ensures a
better usage of resources in a parallel execution environment while completely preserving the
observational semantics of the system.

Partial State Semantics

The notion of partial state semantics as a basis for distributed implementation for BIP models
has been introduced in [BBBS08].

The partial state semantics is based on a straightforward generalization of global state se-
mantics where interactions are allowed to fire as soon as only the involved components are
stable. Nonetheless, as the following example will show, this condition alone is too weak and
the two models are not observationally equivalent in general.

Example 4.5.

Consider a composite component consisting of four atomic components A,B,C,D each one
offering cyclically an interaction through ports a, b, c, d followed respectively by the internal
execution of functions fa, fb, fc, fd (Figure 4.6). The glue consists of three rendez-vous con-
nectors Γ = {ab, bc, cd} and priorities Π = {ab ≺ bc, cd ≺ bc}.

faa

a

fbb

b

fcc

c

fdd

d

ab bc cd

Figure 4.6: Global State vs Partial State Semantics

Using the global state semantics, this system executes forever the interaction bc. Consider
now the corresponding partial state semantics where interactions are executed as soon as the
involved components are stable. For this semantics, it is possible to execute the sequence
fa.fb.ab.(fa.cd.fc.fb.ab.fd)

ω which goes through states never enabling the interaction bc.

The above example motivates the definition of partial state semantics based on global state
semantics where the rule C3 is replaced by rule C ′

3 given below. In addition to stability
of the participating components, the premises of this rule include an oracle, a predicate
parameterized by the priorities of the initial BIP model. The oracle characterizes the partial

4.2. IMPLEMENTATION 65

states from which an interaction tree can be safely executed: if an interaction tree at can
be inhibited by another interaction tree bt, then at cannot be executed if the system has
some internal evolution leading to a state enabling bt. We show that there are many possible
choices for oracles. If the time for computing them is negligible, best performance is achieved
for oracles allowing interaction as soon as possible in order to reduce waiting times of stable
components. The worst performing oracle is the one allowing interaction only when all the
components are stable. For this oracle partial and global state semantics coincide.

[C ′
3]

fireableC(q, a
t, q′)

∀pi ∈ at ∩ Pi. stable
(i)
C (q) oracle(q, at,Π)

∀(at ≺g bt) ∈ Π.

 g(q) = true
⇒

¬fireableC(q, bt,−)

q
at−→
C

q′

where stable
(i)
C ((qj)j∈J) = ¬

(
∃q′i. qi

β−→
Ci

q′i ∨ ∃ati. qi
ati−→
Ci

q′i

)
and oracle(at, q,Π) is any predicate that implies, for each at ≺g bt ∈ Π one of the following:

1. g evaluates to false on a stable subset of q:

∃K ⊆ J. (∀k ∈ K. stable
(k)
C (q) ∧ g(qK) = false)

2. bt is disabled by at least one stable component of q:

∃pi ∈ bt ∩ Pi.

(
stable

(i)
C (q) ∧ ¬(∃q′i. qi

pi(v
up
i /vdni)

−−−−−−−−−→
Ci

q′i)

)
3. g evaluates to true on a stable subset of q and the full support of bt is stable:

∃K ⊆ J. (∀k ∈ K. stable
(k)
C (q) ∧ g(qK) = true) ∧ ∀pi ∈ bt ∩ Pi. stable

(i)
C (q)

The following theorem proven in [BBBS08] provides sufficient conditions for partial state
models to be behaviorally equivalent to global state models. We use observational equivalence
[Mil95] for this comparison by considering that β-transitions are not observable.

Theorem 4.3.

If sub-components do not contain diverging internal computations, the global state semantics
and the partial state semantics are observationally equivalent.

We will now define several oracles for the system providing various degrees of parallelism and
cost of implementation. There is a compromise to make between the degree of parallelism
allowed by an oracle, and the cost for its implementation.

66 CHAPTER 4. SYSTEM IMPLEMENTATION

dynamic oracle: The dynamic oracle implements a slightly strengthened version of condi-
tions (1) and (3) from the oracle definition. In contrast to that conditions, it does not
allow partial evaluation of guards. It requires the stability of all the components in the
support set in order to evaluate the guard;

static oracle: The static oracle implements an even stronger condition. It does not allow
either partial evaluation of guards nor partial evaluation of the non-fireability of in-
teractions. That is, the condition (2) is also strengthened and requires that all the
components involved in bt to be stable, regardless their moves.

lazy oracle: The lazy oracle forbids all interactions from partial states. It waits for all
the atomic components to finish their computation in order to know all the possible
interactions. It is defined by oraclelazy(q, a

t,Π) ⇐⇒ stableC(q)

Example 4.6.

Consider the composite component presented in figure 4.7. There are five components A, B,
C, D and E. Consider that the first two are stable, waiting for the interaction ab, whereas
the last three are unstable, performing some internal computation.

a b

c d eba

y =?x = F

Π : ab ≺ bc if x ∧ y

A C D EB

? ? ?

Figure 4.7: Example for oracles

According to the most liberal definition of oracle, the interaction ab is allowed to take place
immediately. In fact, the priority guard x∧y is false because x is known to be false in a stable
component. However, the dynamic oracle does not authorize this interaction. It postpones it
until either the D component become stable (and then, the guard can be completely evaluated
to false) or the C component become stable and moreover, it disables the interaction bc.
The static oracle requires that both C and D become stable, that is, complete stability of
all components involved in the guard and conflicting interactions. Finally, the lazy oracles
requires that all the components are stable e.g, including E.

Centralized Engine

The principle of distributed implementation with centralized engine is illustrated in figure
4.8.

The partial state semantics is enforced by a centralized engine which coordinates the parallel
execution of the atomic components. Each atomic component is assigned to a different thread
(or processor), the engine being assigned a thread as well. Each atomic component performs

4.2. IMPLEMENTATION 67

Engine
. . .

Π

Γ

restrict()

fireable()

execute()

notify()/wait()

B1 B2 Bn

Figure 4.8: Architecture of distributed implementation

its computations locally and then, when it reaches a stable state, it notifies the engine about
the ports on which it is willing to interact. The engine is parameterized by an oracle. Iter-
atively, the engine computes feasible interactions available on stable components. Then, if
such interactions exist and the oracle allows them, the engine selects one for execution and
notifies the involved components. The algorithms for respectively atomic components and
engine are sketched below.

Pi := initialize();

do forever

notify(E, Pi);

wait(E, pi);
Pi := execute(pi);

done

foreach j in 1, n do

Pj := ⊥;
do forever

wait(Bk, Pk);

do forever

A := compute-fireable(Γ, P1, ..., Pn);

Amax := restrict-priorities(Π, A, O);

if Amax is not empty then

choose a = (pi)i∈I in Amax;

execute-data-transfer(a);
foreach i in I do

notify(Bi, pi);

Pi := ⊥;
else

break;

fi

done

if forall j = 1, n. Pj ̸= ⊥ then

deadlock();

stop;

fi

done

A relevant measure of the performance of a distributed implementation is the degree of par-
allelism over time, that means, the number of simultaneously executing atomic components.

68 CHAPTER 4. SYSTEM IMPLEMENTATION

We analyze the relationship between the degree of parallelism and parameters of the system.
To simplify the analysis, consider an abstract system consisting of n atomic components al-
ways able to interact through their ports. We distinguish the following cases, illustrated in
Figure 4.9:

• For a distributed implementation without oracle, the degree of parallelism is related
to the minimal cardinality b of blocking subsets of atomic components. A subset of
atomic components is blocking iff every interaction in the system requires at least one
component of the subset to participate. Now, the degree of parallelism l is such that
b ≤ l ≤ n. In fact, whenever less than b components are running some interaction is
possible and the engine can eventually launch it. However, it is worth mentioning that
such an implementation without priorities is sound in general iff there are no priorities
applied in the system;

• For an implementation with the lazy oracle, the maximal degree of parallelism is related
to the maximal degree of interaction d, that is the maximal number d of components
involved in a single interaction. In this case, the degree of parallelism l is such that
0 ≤ l ≤ d. Interactions can be executed only from global states so there is no possibility
of concurrency between interactions - the engine is not able to keep running more than
d atomic components at time;

• Finally, for dynamic oracles, the degree of parallelism is related again to the minimal
cardinality b⋆ of some particular blocking sets of atomic components, the ones which
block all the maximal interactions. We have b⋆ ≤ b and the degree of parallelism l
achieved in this case is such that b⋆ ≤ l ≤ n. Using a similar reasoning as in the case
without oracle, whenever less than b⋆ components are running, there should exist a
maximal interaction ready and the engine can eventually launch it.

b

d
eg
re
e
o
f
p
a
ra
ll
el
is
m

b⋆

d

dynamic oracle

lazy oracle

no oracle
n

time

Figure 4.9: Performance analysis

4.2. IMPLEMENTATION 69

Case Study: the Hypercube Adder

This case study treats a parallel adder originally presented in [Qui86], which adds 2m values in
a hypercube multi-processor machine. When the algorithm begins, the nodes hold the values
to be added. On termination, the node labeled 0 contains their sum. Figure 4.11 presents the
BIP model of a pipelined parallel-adder in a 4-dimensional hypercube with 24 nodes. Each
node is modeled as a BIP component with ports in and out, labeling two transitions from a
single control state, as shown in Figure 4.10. It also contains an array of values to be added
(not shown on the figure) and the variable ph which records the index of current running
addition on that node.

out

out
y := 0
ph++

in
y := y + x

in

in
x
phipho

y
out

[pho = phi]

↓ x := y

Figure 4.10: The adder node and out/in connectors

In pipelined execution, every node receives partial addition results from its predecessors, adds
them to its own value, sends the resulting sum to its unique successor and increments its ph
variable. Communications between nodes are modeled as interactions between the out port
of a node and the in port of its successor, with a transfer of value from the node to the
successor. Priorities are used to enforce correct order of the computation, i.e., a node cannot
perform an out unless it has synchronized through its in port with all its predecessors. The
final result of every addition is generated by the root node labeled 0.

The degrees of parallelism achieved, respectively without oracle and with lazy and dynamic
oracles, are shown in Figure 4.12. Without oracle, the degree of parallelism is in average
equal to 10. Let us notice that, without oracle, the functional behavior is completely wrong
as priorities are used to enforce the right order of computation between nodes. With the lazy
oracle, the maximal degree of parallelism equals the maximal degree of interaction which is
2. However, due to specific timing constraints on the execution of in and out transitions, the
degree of parallelism stays in average close to 1. Finally, the dynamic oracle achieves a much
better performance with an average degree of parallelism equal to 7.

Decentralized Engine

We have proposed a distributed implementation for BIP, but it still has a single centralized
engine. As the previous experiments show, this implementation behaves very well in practice
and most likely it outperforms the sequential implementation. Nevertheless, the centralized
architecture is an important drawback and communication with one single engine for every
interaction may lead to poor performance in many situations. Still, there is no magic solution
for breaking the engine. The BIP semantics requires a global control to deal with priorities

70 CHAPTER 4. SYSTEM IMPLEMENTATION

out

in
N1

out

in
N9

out

in

out

in
N13

out

in
N3

out

in
N11

out

in
N7

out

in
N15

in
N0

out

in
N8

out

in
N4

out

in
N12

out

in
N2

out

in
N10

out

in
N6

out

in
N14

N5

Π : ∀i, j, k. Ni.out ·Nj .in ≺ Nk.out ·Ni.in if Ni.ph = Nk.ph

out

Figure 4.11: The hypercube architecture

4.2. IMPLEMENTATION 71

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
eg

re
e

of
 p

ar
al

le
lis

m

Execution time (seconds)

No Oracle
Dynamic Oracle
Lazy Oracle

Figure 4.12: Degree of parallelism measured for the Parallel Adder

between the interactions, in addition to handling conflicts arising due to local choices offered
by the components.

We start to investigate alternative solutions, with more or less centralized architectures. For
sake of clarity, we define the architecture of the decentralized implementation in BIP as
well, that is, by considering that engine(s) responsible of the execution of connectors are
particular BIP components and the glue is specific to communication primitives available on
the execution platform (e.g, asynchronous message passing).

The spectrum of possibilities for decentralized implementation is very large as shown in figure
4.13.

The first solution, illustrated in figure 4.13(a) correspond to the centralized engine detailed
earlier.

The second solution, illustrated in figure 4.13(b) and detailed in [Qui09], consists in com-
puting statically a partition of connectors according to their potential conflicts and then,
implementing every conflicting class on a dedicated engine. This method works well as long
as conflicts can be determined statically with enough precision in order to allow a non-trivial
partitioning of the overall set.

Example 4.7.

72 CHAPTER 4. SYSTEM IMPLEMENTATION

B1 B2 B3

γ1

γ2

γ3

E1,2,3

B1 B2 B3

E2

E1 E3

B1

E1,3

E2

B2 B3

B1 B2 B3
B1 B2 B3

(a) (b)

(c) (d)

Figure 4.13: The spectrum of decentralized implementation

4.3. OPTIMIZATION 73

The parallel adder presented earlier has potential conflicts between all connectors. This hap-
pens because the atomic behavior of every node is defined by a single state automaton, as
shown in figure 4.10, where both ports in and out are simultaneously enabled. However, this
behavior can be re-modeled such that every node strictly alternates a fixed number of in and
one out moves. In this case, there are no conflicts due to internal choices, but only because
several connectors share the same in port. Every such group of connectors can be handled by
a dedicated engine.

The third solution, illustrated in figure 4.13(c) takes a more radical approach to enforce
distribution. It consists in implementing every connector on one distinct engine, and in
addition, adding an extra coordination protocol to solve potential conflicts and to enforce
dynamic priorities. Such coordination protocols have been investigated in the literature e.g.,
precisely for the distributed implementation of multi-party interactions [PCT04], or in general
for solving graph related problems such as finding independents sets or maximal matchings.
Nevertheless, they are not entirely satisfactory for BIP as such because, in particular, none
of these approaches handle dynamic priorities amongst interactions.

Finally, an extreme solution would be to include engine specific code as well as the coordina-
tion protocols within atomic components, as shown in figure 4.13(d).

In all cases, an orthogonal problem is finding the best implementation for a given execution
platform e.g., network on chip or multi-core architecture with specific characteristics. Com-
puting the deployment which enables maximal performance (e.g., increased degree of paral-
lelism) with reduced coordination overhead (e.g, number of exchanged coordination messages)
is subject of future work.

4.3 Optimization

Another wellknown way to increase the performance of an implementation is to use compile-
time optimizations. In this section, we will describe such an optimization that reduces the
overhead of the engine code by reducing the overall number of atomic components and by
moving some of glue and coordination code into atomic components. The basic idea is to
statically compose several atomic components into a single atomic component using the cor-
responding glue. Under particular conditions, this transformation completely preserves the
BIP semantics.

4.3.1 Composition of Atomic Behaviour

This optimization consists in the static composition of (subsets of) atomic components within
composite components, under some restrictions on their behaviour and glue. The result is
a new composite component, with fewer atomic components and simplified glue but with
identical semantics with the initial composite component. This operation is an adaptation of
the usual syntactic parallel composition with synchronization on Petri nets.

Formally, the transformation is defined as follows. Let C = (PC , XC , gl, (Bj)j∈J ∪ (Bk)k∈K)
be a flat composite component with glue gl = ⟨Π,Γ⟩. Let Bj = (Pj , Xj , (Lj , Tj , Fj))j∈J , be
a subset of the atomic subcomponents of C. The subcomponents (Bj)j∈J can be statically
composed, while preserving the semantics of C, if the following restrictions are met:

74 CHAPTER 4. SYSTEM IMPLEMENTATION

• none of the atomic components (Bj)j∈J and (Bk)k∈K contains internal transitions;

• the interaction model Γ is flat and for every every connector γ = (P, p0, A) of Γ, either

1. is local, that is p0 ̸∈ PC , and uses exclusively ports of (Bj)j∈J , that is P ⊆ ∪j∈JPj

or,

2. is exported, that is p0 ∈ PC , and uses at most one port of (Bj)j∈J , that is |P ∩
∪j∈JPj | ≤ 1

• the priority model Π is empty.

Let us remark that the second restriction holds trivially for closed (system level) compositions,
that is where the set PC of exported ports is empty. Given the restrictions above, the set of
internal connectors of C and the set of atomic components (Bj)j∈J can be replaced inside C
by a single atomic component B0 = (P0, X0, N0) defined as follows:

• P0 = {p ∈ ∪j∈JPj | ∃γ = (P, p0, A). p0 ∈ PC ∧ p ∈ P} is the set of ports, that is, the
ones used on interactions on exported connectors;

• X0 = ∪j∈JXj is the set of variables,

• the Petri net N0 = (L0, T0, F0) is defined as follows:

– L0 = ∪j∈JLj is the set of places,

– T0 = {τ | τ ∈ ∪j∈JTj , pτ ∈ P0} ∪
{⟨a, (τi)i∈I⟩ | ∃γ = (P, p0, A) ∈ Γ. p0 ̸∈ PC ∧ (pτi)i∈I = a ∈ A}

The set of transitions contains (1) transitions from atomic components involving
ports in P0 and (2) transitions corresponding to sets of interacting transitions
from atomic components on local connectors. For transitions of the first category,
the associated guards and update functions are kept as they were in the local
components. For every transition τ = ⟨a, (τi)i∈I⟩ of the second category, the port
pτ is ⊥ and the associated guard gτ and function fτ are defined by:

∗ gτ =
∧

i∈I gτi ∧ ga

∗ fτ = (∃xp0 .∃x′p0 . xp0 = x′p0 ∧ a↑ ∧a↓) ◦
∧

i∈I fτi

That means, the new guard is obtained as the conjunction of all local guards plus
the guard of the interaction taken. Also, the new update function is obtained
as the sequential composition of the interaction transfer (upward, downward) and
the local update functions, in an arbitrary order. In fact, the order is completely
irrelevant because the composed transitions come from different components and
are working on disjoint sets of variables.

– F0 = {(l, ⟨a, (τi)i∈I⟩) | (l, τi) ∈ Fi} ∪ {(⟨a, (τi)i∈I⟩, l) | (τi, l) ∈ Fi} ∪
{(l, τ) | (l, τ) ∈ ∪j∈JFj} ∪ {(τ, l) | (τ, l) ∈ ∪j∈JFj}

That is, the flow constraints are preserved as such for transitions of the first cate-
gory and composed for interacting transitions.

The following proposition establishes formally the correctness of our transformation.

4.3. OPTIMIZATION 75

Proposition 4.4.

Let C = (PC , XC , gl, (Bj)j∈J ∪ (Bk)k∈K) a composite component satisfying the restrictions
above.

Let B0 be the result of composition of (Bj)j∈J and let C0 = (PC , XC , gl0, B0 ∪ (Bk)k∈K).

Then SC = SC0.

Example 4.8.

The figure 4.14 illustrates the principle of the static composition for two simple atomic com-
ponents. Iteratively, every atomic component interacts twice through the inj port then once
through the outj port. If they are connected serially as shown in the figure 4.14 (left), their
composition can be performed statically and leads to the atomic component shown in figure
4.14 (right). This component is fully equivalent to the composition: iteratively, it interacts
four times on the in1 port before interacting once on the out2 port.

in1

in1

in1
out2 out2in1

in1

in2

in2in1

in2

out1out1 out2out2

Figure 4.14: An example of atomic behaviour composition

In contrast to flatenning transformations described in section 4.1, component composition
may lead to an exponential blowup of the number of transitions in the resulting Petri net.
This situation may happen if the same interaction can be realized by combining different
transitions from each one of the involved components. For instance, the interaction p1p2 can
give rise to four transitions in the resulting Petri net if there are two transitions labeled by
p1 and p2 in the synchronizing components. Nevertheless, in practice we are rarely faced to
this situation, as in atomic components, each port occurs at most in one transition (as in
examples shown hereafter). In this case, the resulting Petri net has as many transitions as
interactions between the composed components.

76 CHAPTER 4. SYSTEM IMPLEMENTATION

Case Study: the Mpeg4 Encoder

In the context of an industrial project, we have componentized in BIP an Mpeg4 encoder
written in C by an industrial partner. The aim of this work was to evaluate gains in scheduling
and quality control of the componentized program. The results were quite positive regarding
quality control [CFSS08, CFLS05] but the componentized program has been almost two times
slower than the handwritten C program. To overcome this performance issue, we have used
the optimization above and then we generate an equivalent C implementation from the final
atomic BIP component.

in outin out

GrabPicture OutputPicture

grabPicture() outputPicture()
work work

Encode

in out in outin out

Figure 4.15: Mpeg4 encoder structure

The initial BIP model for the encoder is shown in figure 4.16. It consists of 11 atomic com-
ponents, and 14 connectors. It uses the data and the functions of the initial handwritten C
program. At top level, the model is composed of two atomic components and one composite
component. The atomic component GrabFrame gets a frame and produces macroblocks (each
frame is split into Max macroblocks of 256 pixels). The atomic component OutputFrame
produces an encoded frame. The composite component Encode consists of 9 atomic compo-
nents and the corresponding connectors. It encodes macroblocks produced by the component
GrabFrame.

Figure 4.17 shows the execution times for the initial handwritten C code, for the componen-
tized BIP model and for the single component BIP model. Notice that the latter and the
handwritten C code have almost the same execution time. However, the advantages from the
componentization of the handwritten code are multiple. In addition to increased clarity, the
componentized BIP model has been rescheduled as shown in [CFSS08, CFLS05] so as to meet
given timing requirements. Table 4.1 gives the size of the handwritten C code, the structured
BIP model, as well of the generated C code from respectively, the structured BIP model C(1)

and the single component BIP model C(2). The time taken by the BIP2BIP tool to flatten
and to perform the static composition is negligible (less than 1 second).

Handwritten BIP C(1) C(2)

loc 600 350 1800 800

Table 4.1: Code size in lines-of-code (loc) for Mpeg4 Encoder

4.3. OPTIMIZATION 77

M
o
ti
o
n
E
st
im

a
te

G
ra
b
M
a
cr
o
B
lo
ck

D
C
T

Q
u
a
n
t

IQ
u
a
n
t

ID
C
T

R
ec
o
n
st
ru
ct

C
o
d
in
g

In
tr
a
P
re
d
ic
ti
o
n

in outin in in in

in in

inin

in1

in2

outoutout

out

out out

out out

out

Encode

Figure 4.16: Encode component structure

Figure 4.17: Execution time for the Mpeg4 Encoder

78 CHAPTER 4. SYSTEM IMPLEMENTATION

Chapter 5

System Validation

We present hereafter fully automatic methods for analysis and validation of BIP systems. We
begin with an iterative and compositional method for generation of invariants. This method
derives increasingly stronger invariants of a particular form, that is, conjunction of local
invariants for atomic components and interaction invariants characterizing the composition
glue. Such invariants are used to validate safety properties and in particular deadlock-freedom.

A second validation method we experiment is explicit state exploration or model-checking.
We recall here the main principles for building an efficient state-space exploration tool and we
illustrate them on the IF toolbox. This toolbox handle successfully a significant fragment of
BIP where the interaction models are restricted to asynchronous message passing and shared
variables.

Finally, we provide some key idea about our ongoing work on compositional generation of
abstractions for timed systems.

5.1 Compositional Generation of Invariants

Compositional verification techniques [CLM89, KV98] as well as assume-guarantee techniques
[AH96, AL95, CJ88, GL94, McM97, Pnu85, Sta85] have been invented to cope with state
explosion in concurrent systems. The general idea is to apply divide-and-conquer approaches
to infer global properties of complex systems from properties of their components. Separate
verification of components limits state explosion. Nonetheless, components mutually interact
in a system and their behavior and properties are interrelated. This is a major difficulty in
designing scalable compositional techniques.

We present hereafter the compositional method for verification of BIP systems introduced in
[BBNS08]. This method is based on the use of two kinds of invariants: component invariants
which are over-approximations of components’ reachability sets and interaction invariants
which are constraints on the states of components involved in interactions. Interaction invari-
ants are obtained by computing traps and locks of finite-state abstractions of the verified sys-
tem. The method is applied in particular for deadlock verification. It has been implemented
in D-Finder [BBNS09], an interactive tool that takes as input BIP systems and applies proof
strategies to eliminate potential deadlocks by computing increasingly stronger invariants.

79

80 CHAPTER 5. SYSTEM VALIDATION

We consider flat composite components C = (P,X, gl, (B1, . . . , Bn)) obtained by composing
a set of atomic components B1, ..., Bn by using a flat glue gl = ⟨Π,Γ⟩.
To prove a global invariant Φ for C, we use the following rule:

[]

{Bi |= □Φi}i=1,n Ψ ∈ II(gl, {Φi}i=1,n) (
n∧

i=1
Φi) ∧Ψ ⇒ Φ

C |= □Φ

where

• Bi |= □Φi means that Φi is an invariant of the atomic component Bi,

• Ψ ∈ II(gl, {Φi}i=1,n) means that Ψ is an interaction invariant of C computed from the
glue gl and invariants Φi known for atomic components.

Let us notice that the rule above is an instance of the compositionality rule given in section
2.1.

There are two key issues for the implementation of this rule respectively, finding component
invariants Φi and finding interaction invariants II. We illustrate below effective algorithmic
methods for solving both issues. First, we provide a method for computing atomic component
invariants based on static analysis of their behavior. Then, we provide a general method
for computing interaction invariants II(gl, (Φi)i=1,n) from the glue gl and a given set of
component invariants Φi.

Example 5.1.

As running example, we consider the following case study taken from [ACH+95]. This case
study is about controlling the coolant temperature in a reactor tank by moving two independent
refrigerating rods. The goal is to maintain the coolant between the temperatures θm and θM .
When the temperature reaches its maximum value θM , the tank must be refrigerated with
one of the rods. The temperature rises at a rate vr and decreases at rate vd. A rod can be
moved again only if T time units have elapsed since the end of its previous movement. If
the temperature of the coolant cannot decrease because there is no available rod, a complete
shutdown is required.

5.1. COMPOSITIONAL GENERATION OF INVARIANTS 81

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1

t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2

t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1
Controller Rod2

Figure 5.1: Temperature Control System

In figure 5.1 we provide a discretized model of the system in BIP. It is decomposed into three
atomic components: the Controller and two components Rod1, Rod2 modeling the rods. We
take θm = 100◦, θM = 1000◦, T = 3600 seconds. Furthermore, we assume that vr = 1◦/s
and vd = 2◦/s. The Controller has two control locations {l5, l6}, a variable θ, three ports
{tick, cool, heat} and four transitions: 2 loop transitions labeled by tick which increase or de-
crease the temperature as time progresses and 2 transitions triggering moves of the rods. The
components Rod1 and Rod2 are identical, up to the renaming of states and ports. Each one has
two control locations and four transitions: two loop transitions labeled by tick and two transi-
tions synchronized with transitions of the Controller. The components are composed by using
the following set of interactions, indicated by connectors in the figure: {tick, tick1, tick2},
{cool, cool1}, {cool, cool2}, {heat, rest1}, {heat, rest2}.

In this model, complete shutdown corresponds to a deadlock. We want to generate invariants
in order to prove deadlock-freedom of the system when started in the ideal state where the
temperature in the reactor is as low as possible, and the two rods are ready to be used:
Init = at l5 ∧ (θ = 100) ∧ at l1 ∧ (t1 = 3600) ∧ at l3 ∧ (t2 = 3600)

5.1.1 Invariants for Atomic Components

Let B = (P,X, (L, T, F)) be an atomic component, fixed.

For the sake of clarity, we made several simplifying assumptions about the behavior. First
of all, we consider that behavior is defined using plain automata and not general Petri nets.
That is, we exclude concurrency between transitions within atomic components. Second, we
consider that no data is exchanged through ports i.e., we are considering only pure control
interactions. Finally, we consider that there are no internal transitions, that is, all transitions
trigger ports belonging to the interface of the component.

For a location l, we use the predicate at l which is true iff the behavior is at location l. A

82 CHAPTER 5. SYSTEM VALIDATION

state predicate Φ is a boolean expression involving location predicates and predicates on X.
Any state predicate can be put in the form

∨
l∈L at l∧φl. Notice that predicates on locations

are disjoint and their disjunction is true.

We recall hereafter the definition of the Post predicate transformer allowing to compute suc-
cessors of global states represented symbolically by state predicates. Given a state predicate
Φ =

∨
l∈L at l ∧ φl, we define

Post(Φ) =
∨
l∈L

(
∨

(l,τ),(τ,l′)∈F

at l′ ∧ Postτ (φl))

where
Postτ (φ)(X) = (∃X ′.gτ (X

′) ∧ fτ (X
′, X) ∧ φ(X ′)).

Equivalently, we have that Post(Φ) =
∨

l∈L at l∧ (
∨

(l′,τ),(τ,l)∈F Postτ (φl′)) which allows com-
puting Post(Φ) by forward propagation of the assertions associated with control locations in
Φ.

We define in a similar way the Preτ predicate transformer for a transition τ :

Preτ (φ)(X) = ∃X ′.gτ (X) ∧ fτ (X,X ′) ∧ φ(X ′)

Definition 5.1 (invariant).

Let ⟨B,Φinit⟩ be an initialized atomic component. A predicate Φ is

• an inductive invariant of ⟨B,Φinit⟩ iff (Φinit ∨ Post(Φ)) ⇒ Φ,

• an invariant of ⟨B,Φinit⟩ iff there exists an inductive invariant Φ0 such that Φ0 ⇒ Φ.

Notice that invariants are over-approximations of the set of the reachable states of B when
started at Φinit. Let us recall the obvious facts if Φ1,Φ2 are two invariants of an atomic
component B then Φ1 ∧ Φ2, Φ1 ∨ Φ2 are also invariants of B. We compute sequences of
inductive invariants for atomic components by using the proposition below.

Proposition 5.1.

Given an initialized atomic component ⟨B,Φinit⟩, the following iteration defines a sequence
of increasingly stronger inductive invariants:

Φ0 = true Φi+1 = Φinit ∨ Post(Φi)

In our heuristic, we use different strategies for producing invariants. We usually iterate until
we find deadlock-free invariants. Their use guarantees that global deadlocks are exclusively
due to synchronization.

A key issue is the efficient computation of component invariants as the precise computation
of Post requires quantifier elimination. An alternative to quantifier elimination is to compute
over-approximations of Post based on syntactic analysis of the predicates. In this case, the
obtained invariants may not be inductive.

We give here a very brief description of a syntactic technique used for approximating Postτ
for a fixed transition τ . A more detailed presentation, as well as much elaborated techniques
for generating invariants for sequential behavior are given in [BL99].

5.1. COMPOSITIONAL GENERATION OF INVARIANTS 83

Consider a transition τ of B. Assume that its guard is of the form gτ (Y) and the associated
update function fτ is of the form Z ′

1 = eτ (U)∧Z ′
2 = Z2 where Y,Z1, Z2, U ⊆ X and {Z1, Z2}

is a partition of X.

For an arbitrary predicate φ find a decomposition φ = φ1(Y1)∧φ2(Y2) such that Y2 ∩Z1 = ∅
i.e., which has a conjunct not affected by the update function fτ . We apply the following rule
to compute over-approximations Postaτ (φ) of Postτ (φ)

Postaτ (φ) = φ2(Y2) ∧
{

gτ (Y) if Z1 ∩ Y = ∅
true otherwise

}
∧
{

Z1 = eτ (U) if Z1 ∩ U = ∅
true otherwise

}
Proposition 5.2.

If τ and φ are respectively a transition and a state predicate as above, then Postτ (φ) ⇒
Postaτ (φ).

Example 5.2.

Using static analysis techniques we are able to automatically compute the invariants Φ1,Φ2,Φ3

respectively for Rod1, Rod2 and Controller:
Φ1 = (at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600)
Φ2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600)
Φ3 = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000)

5.1.2 Invariants for Flat Interaction Models

The notion of invariant defined from atomic components is naturally lifted to composite
components. As before, invariants are predicates over-approximating the set of reachable
states of composite components.

Any invariant of an atomic component is an invariant of the composite component as well.
However, in this section, we are mainly interested in finding interaction invariants, that are
predicates relating control and data variables from different atomic components according to
the composition glue.

For the sake of clarity, we made few simplifications about the glue. First of all, we consider
only flat interaction models. This is not really an important restriction, since we have a
systematic way to flatten any hierarchical glue. Second, as for atomic components, we did not
consider data transfer but only pure control interactions. Finally, we are ignoring priorities.
In principle, by doing so, we increase the non-determinism and the set of reachable states, for
any model. Therefore, any invariant obtained on the relaxed model, is also an invariant for
the model where priorities are applied.

We first show how to compute interaction invariants for composite components C =
(P,X, gl, (B1, . . . , Bn)) without data, that is, where the atomic sub-components Bi are fi-
nite transition systems. Then, we show how to deal with general transition systems extended
with data by using abstraction.

Atomic Components without Data

Let C = (P, ∅, gl, (B1, . . . , Bn)) be a composite component where the glue gl = ⟨Π,Γ⟩ is flat
and atomic subcomponents Bi = (Pi, ∅, (Li, Ti, Fi))i=1,n are transition systems without data.

84 CHAPTER 5. SYSTEM VALIDATION

Definition 5.2 (Forward/Backward Interaction Sets).

We define for a set of locations L ⊆
⋃n

i=1 Li its forward interaction set L•:

L• =

{
⟨a, {τi}i∈I⟩

∣∣∣ ∀i ∈ I. (τi ∈ Ti) ∧ ∃i ∈ I. (•τi = l ∈ L) ∧
∃γ ∈ Γ. {pτi}i∈I = a ∈ A(γ)

}
We define in a similar manner, its backward interaction set •L:

•L =

{
⟨a, {τi}i∈I⟩

∣∣∣ ∀i ∈ I. (τi ∈ Ti) ∧ ∃i ∈ I. (τ•i = l ∈ L) ∧
∃γ ∈ Γ. {pτi}i∈I = a ∈ A(γ)

}

That is, L• (resp. •L) consists of sets of sub-component transitions involved in some interac-
tion of γ in which at least one transition τi issued from (resp. going into) a location in L can
participate (see figure 5.2).

......

l ∈ L

τi

a

Figure 5.2: Forward interaction sets

The elements of •L and L• can also be viewed as the transitions of the Petri net obtained by
static composition of C as defined in section 4.3. As for Petri nets, we can define the notions
of traps and locks.

Definition 5.3 (Traps and Locks).

A trap is a set L of locations L ⊆
⋃n

i=1 Li such that L• ⊆ •L

A lock is a set L of locations L ⊆
⋃n

i=1 Li such that •L ⊆ L•.

The following proposition expresses a well known characteristic property of traps and locks
in Petri nets. First, if the initial state of C has some control location belonging to a trap
then all its reachable states have some control location belonging to that trap. Second, if the
initial state of of C has no control locations belonging to a lock, then none of its reachable
states has a control location belonging to that lock.

Proposition 5.3.

Let ⟨C,Φinit⟩ be an initialized composite component and let L ⊆
⋃n

i=1 Li be a set of locations.

1. if L is a trap which contains an initial location defined by Φinit then Φ =
∨

l∈L at l is
an interaction invariant of ⟨C,Φinit⟩,

5.1. COMPOSITIONAL GENERATION OF INVARIANTS 85

2. if L is a lock which does not contain any initial location defined by Φinit then Φ =∧
l∈L ¬at l is an interaction invariant of ⟨C,Φinit⟩.

Traps and locks can be effectively computed using for instance the method of [Sif78] which
characterizes them as solutions of a system of boolean implications.

Atomic Components with Data

We present hereafter a compositional method to compute interaction invariants for initialized
composite components ⟨C,Φinit⟩ where C = (P,X, gl, (B1, · · · , Bn)) and Bi = (Pi, Xi, Ni)
are arbitrary atomic components with data. The key idea is to rely on data abstraction, as
follows:

1. for every atomic component Bi = (Pi, Xi, Ni) compute separately a finite state ab-

straction B♯
i = (Pi, ∅, N ♯

i). In principle, any predicate abstraction method can be used,
however, we give a particular attention to the method of [BLO98a] and previously imple-
mented in the InVeSt [BLO98b] tool because it offers several advantages. First, it allows
to construct an abstract transition system, by abstracting each concrete transition sep-
arately. Second, it is parameterized by an abstraction function αi, and therefore the
abstraction can be made dependent on particular concrete predicates e.g., the atomic
predicates occuring in the guards, or in invariants Φi of the concrete behavior;

2. compute the initial set of abstract states Φ♯
init using the abstraction functions (αi)i=1,n

chosen at previous step;

3. consider the abstract composite component C♯ = (Pi, ∅, (B♯
1, ..., B

♯
n)). It is clear that C♯

is a composite component without data, and moreover, it can be shown that C♯ is an
abstraction of C. Therefore, we can apply the previously described techniques to derive
abstract interaction invariants Φ♯ for C♯ given initial states Φ♯

init;

4. finally, obtain concrete interaction invariants Φ of C by concretizing the abstract in-
variants Φ♯. The concretization is indeed possible because of the particular abstraction
method used at the first step. It amounts to rewriting back abstract variables (or ab-
stract locations) as defined by the abstraction functions (αi)i=1,n chosen for atomic
components.

This method is illustrated below on the running case study.

Example 5.3.

In order to compute interaction invariants for the Temperature Control System we need a
finite-state abstraction. Figure 5.3 presents such an abstraction computed with respect to
the local invariants Φ1, Φ2 and Φ3 computed earlier. The abstraction function applied uses
elementary predicates occuring in local invariants and is summarized in the table below.
ϕ11 = at l1 ∧ t1 = 0 ϕ51 = at l5 ∧ θ = 100 ϕ31 = at l3 ∧ t2 = 0
ϕ12 = at l1 ∧ t1 ≥ 1 ϕ52 = at l5 ∧ 101 ≤ θ ≤ 1000 ϕ32 = at l3 ∧ t2 ≥ 1
ϕ21 = at l2 ∧ t1 ≥ 3600 ϕ61 = at l6 ∧ θ = 1000 ϕ41 = at l4 ∧ t2 ≥ 3600
ϕ22 = at l2 ∧ t1 < 3600 ϕ62 = at l6 ∧ 100 ≤ θ ≤ 998 ϕ42 = at l4 ∧ t2 < 3600

86 CHAPTER 5. SYSTEM VALIDATION

rest2 cool2heatcoolcool1rest1

tick1

cool1
rest1

rest1

tick1 tick tick2

tick

tick

cool

tick2

cool2
rest2

rest2

tick2tick

ticktick1 tick2

heat

ϕ12

ϕ21ϕ22

ϕ51 ϕ52

ϕ62 ϕ61

ϕ31 ϕ32

ϕ41

ϕ11

ϕ42

Rod♯
1 Controller♯ Rod♯

2

tick2tick1 tick1

Figure 5.3: Abstract model for the Temperature Control System

The set of of minimal traps for the abstract system are:
L1 = {ϕ21, ϕ41, ϕ51, ϕ52}
L2 = {ϕ11, ϕ12, ϕ21, ϕ31, ϕ32, ϕ41}
L3 = {ϕ32, ϕ41, ϕ42, ϕ51}
L4 = {ϕ11, ϕ12, ϕ31, ϕ32, ϕ61, ϕ62}
L5 = {ϕ12, ϕ21, ϕ22, ϕ51}

These traps lead to the following concrete interaction invariant:
Ψ = ((at l2 ∧ t1 ≥ 3600) ∨ (at l4 ∧ t2 ≥ 3600) ∨ (at l5 ∧ 100 ≤ θ ≤ 1000))

∧
((at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600) ∨ (at l3 ∧ t2 ≥ 0)∨ (at l4 ∧ t2 ≥ 3600))

∧
((at l3 ∧ t2 ≥ 1) ∨ (at l4) ∨ (at l5 ∧ θ = 100))

∧
((at l1 ∧ t1 ≥ 0) ∨ (at l3 ∧ t2 ≥ 0) ∨ (at l6 ∧ θ = 1000) ∨ (at l6 ∨ 100 ≤ θ ≤ 998))

∧
((at l1 ∧ t1 ≥ 1) ∨ (at l2) ∨ (at l5 ∧ θ = 100))

5.1.3 Application for Checking Deadlock-Freedom

We present an application of the method for checking deadlock-freedom of composite compo-
nents.

Definition 5.4 (Enabled states).

Let C = (P,X, gl, (B1, ..., Bn)) be a composition of atomic components Bi =
(Pi, Xi, (Li, Ti, Fi)). The predicate Enabled characterizes the set of the states of C from which
interactions are enabled, formally:

Enabled =
∨
γ∈Γ

∨
a∈A(γ)

enabled(a)

enabled(a) =
n∧

i=1

∧
p∈a∩Pi

∨
τ∈Ti

at •τ ∧ gτ

enabled(a) characterizes all the states from which interaction a can be executed.

5.1. COMPOSITIONAL GENERATION OF INVARIANTS 87

Obviously, whenever started in a given set of initial states Φinit, the component is deadlock-
free iff the predicate Enabled is an invariant for ⟨C,Φinit⟩.

Example 5.4.

The set of deadlock-free states for the Temperature Control System is characterized by the
following predicate, extracted automatically from the interaction model:
Enabled = (at l5 ∧ θ < 1000)

∨
(at l6 ∧ θ > 100))

∨
((at l5 ∧ θ = 1000) ∧ (at l3 ∧ t2 ≥ 3600))

∨
((at l5 ∧ θ = 1000) ∧ (at l1 ∧ t1 ≥ 3600))

∨
((at l6 ∧ θ = 100) ∧ at l2)

∨
((at l6 ∧ θ = 100) ∧ at l4)

Using the local and interaction invariants computed earlier, we are ready to prove that Enabled
is also an invariant and the system is deadlock free if the following implication hold:

Φ1 ∧ Φ2 ∧ Φ3 ∧Ψ ⇒ Enabled

Unfortunately, the implication above does not hold. In fact, one obtain that Φ1 ∧ Φ2 ∧ Φ3 ∧
Ψ ∧ ¬Enabled is satisfiable and it is the disjunction of the following terms:

1. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

2. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

3. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Each one of the above terms represents a family of possible potential deadlocks. There are
two possibilities: either there are real deadlock states (reachable from the initial state) and
belonging to these sets or there are no such deadlocks, but our invariants are too weak to prove
deadlock freedom. In this example, the first situation happens, the system indeed contains real
deadlock states and so, it is not surprising that we cannot prove deadlock freedom.

5.1.4 The D-Finder Tool

The techniques presented below have been implemented in a tool called D-Finder designed
as shown in figure 5.4.

This tool takes as input a BIP system and progressively find and eliminate potential dead-
locks. It basically works as follows. First, it constructs the predicate characterizing the set
of deadlock states (¬Enabled generation module). Second, iteratively, it constructs increas-
ingly stronger local invariants of components (Φi generation module) and using them, finer
finite state abstractions and increasingly stronger global interaction invariants (Abstraction
and Ψ generation module). Third, it checks deadlock freedom by checking satisfiability of∧
Φi
∧

Ψ
∧

¬Enabled (satisfiability module). If it succeeds, the system is proven deadlock-
free, else it may continue or gives up, according to the user choice. For doing all this, D-Finder
is connected with several external tools. It uses Omega [Tea96] for quantifier elimination and
Yices [DdM06] for checking satisfiability of predicates. It is also connected to the state space
exploration tool of the BIP platform, for finer analysis when the heuristic fails to prove
deadlock-freedom.

88 CHAPTER 5. SYSTEM VALIDATION

BIP model

Yices

Omega

Deadlock-free Deadlocks

generation

Satisfiability

false

̸= false-strengthen ̸= false-give up

Abstraction and

simulationconfirmation

generation

BIPDeadlock

Local

verification

deadlock-free
Φi

Ψ

∧
Φi

Ψ generation

∧
Φi ∧ Ψ ∧ ¬Enabled

Enabled

Enabled

Figure 5.4: D-Finder Tool Architecture and Workflow

5.2 Model-Checking of Real-Time Systems

State-space exploration is one of the most successful techniques used for the analysis of con-
current systems and also the core component of any model-based validation tool (i.e, model-
checker, test-generator, etc). Nevertheless, exploration is far from being trivial for hetero-
geneous systems that, use complex data, involve various communication mechanisms, mix
descriptions of different levels of abstraction, and moreover, depend on time constraints. The
solution we propose is an open, modular and extensible exploration platform designed to cope
with the complexity and the heterogeneity of actual concurrent systems.

This section presents an overview on the IF toolset [BGM02, BGO+04, BGMO08] which is
an environment for modelling and validation of asynchronous real-time systems. The toolset
is built upon a rich formalism, the IF notation, allowing structured automata-based system
representations. Moreover, the IF notation is expressive enough to support real-time prim-
itives and extensions of high-level modelling languages such as SDL and UML by means of
structure preserving mappings.

Although developed earlier, IF can also be seen as a BIP profile for asynchronous sys-
tems where interactions are restricted to asynchronous message passing and shared variables.
Therefore, any BIP model fitting these particular restrictions can be equally interpreted as
an IF model and analyzed with the IF toolset.

The core part of the IF toolset consists of a syntactic transformation component and an
open exploration platform. The syntactic transformation component provides language level
access to IF descriptions and has been used to implement static analysis and optimization
techniques. The exploration platform gives access to the graph of possible executions. It has
been connected to different state-of-the-art model-checking and test-case generation tools.

5.2. MODEL-CHECKING OF REAL-TIME SYSTEMS 89

5.2.1 An Open and Modular Exploration Platform

dynamic scheduling

asynchronous execution

(time, channels,...)

code

predefined

state space

representation

process code
specific
application

LTS exploration tools:
- debugging

Exploration platform

- model checking
- test generation

syntactic
transformation tools:
- static analyser
- code generator

reader writer

IF AST

IF
C/C++

Figure 5.5: The core components of the IF toolbox

The exploration platform gives access to the operational semantics models corresponding to IF
descriptions. This exploration platform can be seen as the specialization of the sequential BIP
engine to exhaustive state-space exploration of IF models. It offers primitives for representing
and accessing execution states and labels as well as basic primitives for traversing the state
space: an init function which gives the initial state, and a successor function which computes
the set of enabled transitions and successor states from a given state. These are the key
primitives for implementing any on-the-fly forward enumerative exploration or validation
algorithm.

Figure 5.5 shows the structure of the exploration platform. The main features of the platform
are simulation of the process execution, non-determinism resolution, management of time and
representation of the state space. The exploration platform can be seen as a tiny operating
system where process instances are plugged-in and jointly executed. Process instances are
either application specific (coming from IF descriptions) or generic (such as time or channel
handling processes).

Simulation time is handled by a specialized process managing clock allocation/deallocation,
computing time progress conditions and firing timed transitions. There are two implementa-
tions available, one for discrete time and one for dense time. For discrete time, clock values
are explicitly represented by integers. Time progress is computed with respect to the next
enabled deadline. For dense time, clock valuations are represented using variable-size Differ-
ence Bound Matrices (DBMs) as in tools dedicated to timed automata such as Kronos[Yov97]
and Uppaal[LPY98].

The exploration platform composes all active processes and computes global states and the
corresponding system behaviour. The exploration platform consists of two layers sharing a
common state representation:

90 CHAPTER 5. SYSTEM VALIDATION

• Asynchronous execution layer: this layer implements the general interleaving execution
of processes. The platform asks successively each process to execute its enabled steps.
During a process execution, the platform manages all inter-process operations: message
delivery, time constraints checking, dynamic creation and destruction, tracking of events.
After a completion of a step by a process, the platform takes a snapshot of the performed
step, stores it and delivers it to the second layer.

• Dynamic scheduling layer: this layer collects all the enabled steps. It uses a set of
dynamic priority rules to filter them. The remaining ones, which are maximal with
respect to priority rules, are delivered to the user application via the exploration API.

The exploration platform and its interface has been used as back-ends of debugging tools
(interactive or random simulation), model checking (including exhaustive model generation,
on the fly µ-calculus evaluation, model checking with observers), test case generation, and
optimization (shortest path computation).

This architecture provides features for validating heterogeneous systems. Exploration is not
a priori limited to IF descriptions: executable components with an adequate interface can be
executed in parallel on the exploration platform. It is indeed possible to use native C/C++
code (either directly, or instrumented accordingly) of already implemented components.

Another advantage of the architecture is that it can be extended by adding new interaction
primitives and exploration strategies. Presently, the exploration platform supports asyn-
chronous (interleaved) execution and asynchronous point-to-point communication between
processes. Different execution modes, like synchronous or run-to-completion, are obtained by
using dynamic priorities.

Concerning the exploration strategies, reduction heuristics such as partial-order reduction or
some form of symmetry reduction are already incorporated in the exploration platform. More
specific heuristics may be added depending on a particular application domain.

5.2.2 Static Analysis for Model-Checking and Test Generation

The central problem arising in model-checking or model-based test generation is the well
known state explosion. There are mainly two reasons: concurrency, which is usually flattened
using an interleaving semantics and data, which are also evaluated to all possible, distinct
values. Various solutions exist and have been implemented to deal with state explosion. For
instance, on-the-fly techniques attempt to explore only a part of the model e.g., guided by
the test purpose. Symbolic techniques rely on symbolic and compact representations of sets
of states instead of individual states.

In this context, we proposed several complementary reduction techniques [BFG99, BFG00]
relying on the use of static slicing of IF specifications depending on properties to be verified or
test purposes before model generation. A first slicing takes into account the set of interactions
between specification processes, starting from inputs enabled in the test purpose. We obtain
a first reduction of the specification, consisting of the part which is statically reachable, given
the inputs of the test purpose. A second slicing, computes variables and parameters which
may be relevant to outputs observed by the test purpose. All other, irrelevant variables and
associated actions are safely discarded. Finally, the specification is sliced with respect to

5.2. MODEL-CHECKING OF REAL-TIME SYSTEMS 91

constraints on data attached to the test purpose. The constraints we consider are either
constants (i.e, variable equals some value at a control point) or intervals (i.e, for numerical
variables only, restriction to intervals of values).

All these optimizations transform IF specifications without loss of information with respect
to the test purpose. Moreover, they are independent and can be implemented separately.
Furthermore, they can be applied iteratively, in any order, until no more reduction is obtained
– a fixpoint is always reached given that specifications are statically finite.

5.2.3 Applications and Case Studies

Case Study: Ariane 5 Flight Program

The objective of the Ariane 5 Flight Program is to control the launcher mission from lift-off
to payload release. This software operates in a completely automatic mode and has to handle
both the external disturbances and different hardware failures that may occur during the
flight. This case study presents the most relevant points required for embedded application
and focuses on the real time critical behavior. More detailed descriptions of this case study
can be found in [GOO06].

In an earlier experience with this case study using SDL as a modeling language [BLM01],
we modelled only the asynchronous part of the system, responsible for controlling the flight
phases and the exception handling. We succeeded in verifying the correctness of this part
of the software using several models of the environment (representing the synchronous part)
obtained from a real flight, but we had no insurance that these environments represent an
abstraction of the other parts of the software.

The Ariane-5 Flight Program is a composition of several synchronous and asynchronous mod-
ules with strong interactions. Synchronous, cyclically scheduled modules have a specific period
and phase; they receive their inputs at the start of their periods and shall produce their out-
puts before their next execution. Non cyclic, asynchronous modules are activated on external
events, and are synchronized or not with the cyclic synchronous processes depending of their
required deadline; which is in some cases very short. Moreover, in order to verify the correct-
ness of the real time software design, non-functional features such as the scheduling policy
(task or thread definition, priorities between tasks) CPU consumption of each algorithmic
function (associated to a task) and different timing constraints have to be expressed.

The design has been modelled in UML using Rational Rose and the Omega UML profile
as a collection of objects communicating mostly through asynchronous signals, and whose
behavior is described by state machines. Abstract operations are used to model the guidance,
navigation and control tasks. For the modeling of timed behavior and timing properties, we
used the Omega real-time features. The model obtained for the Ariane-5 Flight Program is
relatively large: 23 classes, each one with several operations and a state machine. In addition,
the UML model has been annotated with 12 observers, expressing all the relevant untimed
and timed requirements or assumptions. The translation into IF is completely automatic
using uml2if and gives around 7000 lines of IF code.

92 CHAPTER 5. SYSTEM VALIDATION

C
y
c
lic

s

m
in

o
r_

c
y
c
le

 :
 I

n
te

g
e

r

fa
s
v
o

l
:

In
te

g
e

r

in
c
g

 :
 I

n
te

g
e

r

g
u

id
a

n
c
e

_
p

e
ri
o

d
 :

 I
n

te
g

e
r

=
 8

<
<

A
c
ti
v
e

>
>

G
u

id
a

n
c
e

_
T

a
s
k

<
<

A
c
ti
v
e

>
>

1

1

+
G

u
id

a
n

c
e

_
T

a
s
k

1

+
C

y
c
lic

s
 1

T
h

ru
s
t_

M
o
n
it
o

r

n
b
 :

 I
n

te
g

e
r

n
b
_

c
o

n
f

:
In

te
g
e

r
=

 3

T
1

d
e

lh
1
 :

 T
im

e
r

H
0

 :
 T

im
e
r

H
0

_
ti
m

e
 :

 I
n

te
g
e

r

<
<

T
ri
g

g
e
re

d
>

>
 D

e
c
id

e
_
E

A
P

_
S

e
p

a
ra

ti
o

n
()

(f
ro

m
 G

N
C

)

1

1

+
C

y
c
lic

s

1

+
T

h
ru

s
t_

M
o

n
it
o

r

1

V
a

lv
e

s

<
<

T
ri
g

g
e

re
d

>
>

 O
p

e
n

()

<
<

T
ri
g

g
e

re
d

>
>

 C
lo

s
e

()

(f
ro

m
 E

n
v
ir
o
n

m
e

n
t)

<
<

A
c
ti
v
e

>
>

A
c
y
c
lic

fa
s
v
o

l
:

In
te

g
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

tq
d

p
 :

 T
im

e
r

H
0

 :
 T

im
e

r

T
p

s
to

t_
p

re
p

 :
 T

im
e

r

T
p

s
ta

r_
p

re
p

 :
 T

im
e

r

T
p

s
to

t_
e

a
p

re
l
:

T
im

e
r

T
p

s
ta

r_
e

a
p

re
l
:

T
im

e
r

E
n
d

_
Q

D
P

 :
 B

o
o

le
a

n

E
a
rl
y
_

s
e

p
 :

 T
im

e
r

L
a

te
_

s
e

p
 :

 T
im

e
r

c
lo

c
k
 :

 T
im

e
r

<
<

A
c
ti
v
e

>
>

1

1

+
A

c
y
c
lic

1

+
C

y
c
lic

s

1

1

1

+
A

c
y
c
lic

1
 +

G
u

id
a

n
c
e

_
T

a
s
k

1

1

1

+
T

h
ru

s
t_

M
o
n

it
o

r

1

+
A

c
y
c
lic

 1

E
P

C

c
u

rr
e

n
t_

is
_

o
k
 :

 B
o

o
le

a
n

c
lo

c
k
 :

 T
im

e
r

H
0

 :
 T

im
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

(f
ro

m
 S

ta
g

e
s
)

<
<

A
c
ti
v
e

>
>

1

1

+
E

P
C

1

+
A

c
y
c
lic

1

1

1

+
C

y
c
lic

s

1

+
E

P
C

1

1

1
+

E
P

C
 1

+
G

u
id

a
n

c
e

_
T

a
s
k

1

1

1

+
T

h
ru

s
t_

M
o

n
it
o
r

1

+
E

P
C

1

1

1

+
E

P
C

_
E

V
B

O

1

+
E

V
B

O

1

1

1

+
E

P
C

_
E

V
V

P

1

+
E

V
V

P

1

1

1

+
E

P
C

_
E

V
V

C
H

1

+
E

V
V

C
H

1

1

1

+
E

P
C

_
E

V
V

C
O

1

+
E

V
V

C
O

1

1

1

+
E

P
C

_
E

V
V

G
H

1

+
E

V
V

G
H

1

1

+
E

P
C

1

E
A

P

H
0

 :
 T

im
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

<
<

T
ri
g

g
e

re
d

>
>

 E
A

P
_

P
re

p
a

ra
ti
o

n
()

<
<

T
ri
g

g
e

re
d

>
>

 E
A

P
_

R
e

le
a

s
e

()

(f
ro

m
 S

ta
g

e
s
)

<
<

A
c
ti
v
e

>
>

1

1

+
E

A
P

1

+
A

c
y
c
lic

1

1

1

+
E

A
P

1

+
E

P
C

1

P
y
ro

(f
ro

m
 E

n
v
ir
o
n

m
e

n
t)

<
<

A
c
ti
v
e

>
>

1

1

+
E

A
P

_
P

y
ro

1

1

+
P

y
ro

1

1

1

1

+
E

A
P

_
P

y
ro

2

1

+
P

y
ro

2

1

1

1

+
E

A
P

_
P

y
ro

3

1

+
P

y
ro

3

1

Figure 5.6: Fragment of the UML Specification

5.3. AUTOMATIC ABSTRACTION OF TIMED COMPONENTS 93

To cope with the complexity of the model, in addition to static analysis and partial order
reduction, some application specific abstractions and reductions have been needed. In order
to verify the correct cooperation between the cyclic and the acyclic behavior, we have used
three approaches: we verified the cooperation between the concrete specification of the cyclic
behavior with an abstraction of the acyclic behavior and the other way round. This gave
satisfactory results concerning the properties of the asynchronous part handling the global
flight phases. In addition, we considered the cooperation between the concrete specifications
of both parts by scaling down the durations of some phases of the mission.

This last method allowed to verify the main schedulability related property of the basic cycle
ensuring that its execution finishes before its deadline (i.e. before being requesting to restart
a new execution cycle) has been naturally expressed by a timed observer and validated for
several scheduling policies and timing assumptions. Notice that an RMA approach simply
concluded that the system is not schedulable. On the reduced model, all properties have been
validated through model checking. Intentionally added bugs have been discovered as well,
and error scenarios provided for all of them.

Case Study: K9 Rover Executive

The NASA Ames K9 rover is an experimental platform for autonomous wheeled vehicles called
rovers, targeted for the exploration of the Martian surface. K9 is specifically used to test out
new autonomous software. The rover Executive provides a flexible means for commanding
the rover through plans that control the movement, the experimental apparatus and other
resources on board - also taking into account the possibility of failures. The correctness
requirement states the conformance of the executive with respect to plan semantics, which
means that the Executive indeed executes the plans according to their intended semantics.

The K9 rover Executive is a highly non-deterministic system: it is designed as a parallel
composition of threads running in an open environment. For a fixed plan, it is therefore
possible to obtain many executions, depending on the interleaving of threads, occurrence of
failures and interactions with the external environment.

The validation experience of the K9 rover Executive is completely described in [ABBO04,
BBKT04]. Our approach can be summarized as follows. First, we build an abstract IF model
of the K9 rover Executive. This abstraction has been done manually on the source code,
still in a systematic manner which could be automated. The obtained IF model consists of
20 parallel processes corresponding to threads and objects, totalizing around 1000 lines of
IF code. Second, we precisely capture the plan semantics using timed IF observers: given
a plan, we synthesize automatically a timed observer which encodes the correct executions
for that plan. Third, checking the conformance with respect to any fixed plan amounts to
the model-checking of the abstract model of the Executive against the corresponding plan
observer.

5.3 Automatic Abstraction of Timed Components

The only way to master the complexity of large systems is to apply a hierarchi-
cal/compositional analysis methodology. The basic principle of such a methodology is that a

94 CHAPTER 5. SYSTEM VALIDATION

Executive
K9 Rover

Java

Executive
K9 Rover

data
plan

plan2if

plan

specification
plan

description
plan

IF model checking

yes/no

observer
planIF IF IF

IFmodel extraction

abstraction
+

complementation

Figure 5.7: Approach for validation of the K9 rover executive

composite component C treated at one level of abstraction as a composition of some detail, is
encapsulated as an atomic component C♯ when a higher level is considered. The major differ-
ence between C and C♯ is that the latter abstracts away from the internal details appearing
in C and focuses on the interface behavior of the component which determine its high-level
functionality.

The problem we tackle here is how to derive automatically C♯ from C such that on one
hand, the description of C♯ is significantly less complex than the one of C and on the other
hand, C♯ is a valid abstraction, as precise as possible, of C. Moreover, we are looking for
compositional generation methods, that means given C = gl(C1, ..., Cn) we want to compute

C♯ from gl(C♯
1, C

♯
2, ..., C

♯
n) instead of gl(C1, ..., Cn).

We experiment this compositional abstraction idea in several particular application domains.
The following procedure taken from [SBM09, Sal07] summarizes the abstraction process for
timed components C occuring in the modeling of asynchronous circuits:

1. From a composite component C we construct an extended composite component C(X)

by adding fresh auxiliary input clocks that do not participate in transition guards or
invariants, but only observe the dynamics of the component and measure the time
elapsed since each input event. An input clock is discarded after a finite amount of time
when the chain of reactions triggered by its event terminates.

2. We apply the symbolic forward reachability algorithm to the extended component C(X)

to obtain its semantic model SC(X) in form of a zone graph [Tri98]. This model is
identical to the semantic model SC of C, however, it is annotated with additional

5.3. AUTOMATIC ABSTRACTION OF TIMED COMPONENTS 95

(redundant) timing constraints involving clocks in X.

3. We relax the timing constraints of SC(X) by projecting them on clocks in X. To be
more precise, each transition guard is projected on the clock associated with the input
event that has triggered it.

4. We project the symbolic graph on the interface ports to obtain Svis
C(X) , thus making some

internal transitions silent.

5. We then reduce the discrete state space of Svis
C(X) by merging states which are equivalent

in terms of the untimed behaviors they admit and after merging transitions guards we
obtain the reduced atomic component C♯.

It has been proven in [Sal07] that this abstraction method preserves completely the untimed
(qualitative) semantics but may relax the timing constraints, that is, exact temporal corre-
lation between input and output events is lost. This loss of precision is due to steps 3 and 5
above which over-approximate some of the temporal constraints of the initial behaviour.

As reported in [SBM09], using this compositional method we were able to compute abstrac-
tions and to verify properties on several complex asynchronous circuits. Some of these circuits
are far too complex for being analyzed using traditional monolithic model-checking.

We are currently investigating the possibility to extend the abstraction methods to other
categories of timed systems, and we consider in particular, resource allocation and scheduling
problems in multi-processor systems.

96 CHAPTER 5. SYSTEM VALIDATION

Chapter 6

Conclusion

System Construction

We have presented the BIP component framework, that shares features with other existing
frameworks for heterogeneous components, such as [BWH+03, EJL+03, BGK+06, Arb05]. A
common key idea is to encompass high-level structuring concepts and mechanisms. BIP offers
interaction-based and control-based mechanisms for component integration. The two types
of mechanisms correspond to cooperation and competition, two complementary fundamental
concepts for system organization.

BIP is based on the notions that a system can be obtained as the composition of three fun-
damental layers, behavior, interaction and priority. Behavior is represented by atomic com-
ponents. Interactions are a combination of two protocols, namely rendezvous and broadcast,
and we have shown that this is sufficient for expressing any kind of interaction mechanism.
Finally, priorities represent elementary controllers, necessary for scheduling.

It has been shown that the BIP glue, consisting of the interactions and priority rules, is as
expressive as the universal glue [BS08]. BIP is based on a minimal set of primitives for the
representation of any kind of system. It provides a mechanism of clear separation of concern
regarding behavior and interaction. Global system properties can be achieved by adding sep-
arately behavior (as atomic components), creating interaction, specifying restriction between
them, and any combination of the above three choices.

BIP characterizes systems as points in a three-dimensional space: Behavior × Interaction ×
Priority. Elements of the Interaction × Priority space characterize the overall architecture.
Each dimension, can be equipped with an adequate partial order, e.g., refinement for behavior,
inclusion of interactions, inclusion of priorities. Separation of concerns is essential for defining
a component’s construction process as the superposition of elementary transformations along
each dimension.

Language Factory

We have provided evidence through examples treated in BIP, that the combination of inter-
actions and priorities allow enhanced modularity and direct modeling of useful programming

97

98 CHAPTER 6. CONCLUSION

models.

We present a general approach for modeling synchronous component-based systems [BSS09].
These are systems of synchronous components strongly synchronized by a common action
that initiates execution steps of each component. Steps can be described using modal flow
graphs, a particular class of Petri nets for which deadlock-freedom and confluence are met by
construction provided some easy-to-check conditions hold. This result is the generalization
of existing results for classes of Petri nets without conflicts. As an example, we applied
our construction to the Lustre synchronous language [HCRP91] and provide a semantics
preserving mapping of Lustre into BIP. This translation shows the interplay between data
flow and control flow and allows understanding how strict synchrony can be weakened to get
more less synchronous computation models.

We have provided a system construction methodology, leading to componentization of non
trivial systems defined using domain specific languages [CFSS08, BGL+08]. It consists of first
identifying the atomic components, determining the basic functionality, defining an architec-
ture hierarchy of composite components and their inclusion relations, and finally defining the
glue for building the composite components from the lower level. For example, in [BMP+07]
we have described how a global model of a sensor network mote can be obtained after iden-
tifying the atomic components of the system, i.e., components for the nesC and those for
TinyOS. It considers modeling the execution platform as an abstract machine driving the
execution of the application software. The model generation methodology applied to nesC
can be adapted for any language used for programming applications.

Another successful application of the BIP framework is in the construction and verification
of a robotic system [BGL+08]. Here we present a methodology for modeling the functional
level of an autonomous robot in BIP. The code generated by the tool-set along with the BIP
engine provides an automatic synthesis of the execution controller for the robot. The BIP
model also offers validation techniques for checking essential ”safety” properties.

System Implementation

We elaborate a design flow methodology and we develop the associated software infrastructure
based on the BIP component framework. A concrete language, defined as an extension of C,
has been proposed for describing systems in BIP. The associated toolbox provides a frontend
parser for generation of BIP models, a model transformation tool and code generation facilities
for execution or enumerative exploration.

We have defined and implemented several useful architectural transformations on BIP sys-
tems [BJS09]. These transformations include flatenning of hierarchical compositions and
hierarchical connectors and also static composition of atomic behavior. We show that these
transformations are semantic preserving and moreover, when used in the implementation
flow, they can increase the time performance of the final implementation with few orders of
magnitude.

We have developed two implementation methods for BIP, sequential and distributed, which
target respectively single-processor or multi-processor execution platforms. In both cases we
rely on the use of a centralized controller, the engine, which coordinates the interactions and
the execution of code within atomic components. For the distributed implementation we have

99

considered a relaxed operational semantics, called partial state semantics, which allows for a
better exploitation of parallel execution resources. We provide sufficient conditions to ensure
that the (global) state and the partial state semantics are equivalent and we show how the
later can be implemented using asynchronous send/receive primitives [BBBS08].

We are now pursuing the work on distributed implementation using specific model transfor-
mations. Our aim is to transform progressively the application model towards a distributed
implementation model, where execution platform constraints, such as the support for parallel
execution and the communication primitives, are taken into account. We plan to study the
spectrum of distributed architectures, from fully centralized to fully decentralized ones. In
particular, we foreseen the use of existing distributed algorithms for multiparty interaction
and conflict resolution e.g. maximal matching algorithms, as a basis for the distributed im-
plementation methods. The adequacy of every solution will be established with respect to
two criteria, respectively the degree of parallelism and the overhead for coordination.

Another work direction planned for implementation concerns the integration of memory man-
agement policies. BIP adopts a private memory model which is safe for programming but
may lead to inefficient implementations. The aim is to study memory transformation from
private to shared memory and conversely. We are also interested in transformations leading
to mixed solutions combining private and shared memory and determining tradeoffs.

System Validation

We have discussed that constructivity is necessary for building correct systems from compo-
nents and glue with known properties. As example, we provide correct-by-construction results
for synchronous systems developed using modal-flow components and associated composition
operators [BSS09].

Alternatively, we have developed a general compositional deadlock-detection method for BIP
[BBNS08] and we have implemented it in the D-Finder tool [BBNS09]. This method is based
on simple techniques for automatic generation of two categories of invariants respectively,
atomic component invariants and interaction invariants. It scales well to large systems. For
classical benchmarks, D-Finder outperforms traditional validation methods based on exhaus-
tive exploration, regardless the type of representation used for the state space e.g., symbolic
or explicit.

This compositional method is now being extended in two directions. First extension concerns
interaction models with data transfer. Actually, the inability to handle data transfer is a
rather severe limitation. We are now investigating how to produce sound abstractions without
data from general BIP systems, which are as precise as possible and where data transfer has
been taken into account. Second extension concerns incrementality of the method. Actually,
the method analyzes the BIP system at once. Any structural or behavioral change requires
to restart the analysis from the beginning. To improve this situation, an incremental method
would re-analyze only the part of the system that has been impacted by the change. For
example, it can be shown that by adding one connector, all the already known interaction
invariants are preserved and usually, only a few newer interaction invariants are established.
The tool must therefore focus on discovering these new invariants instead of re-discovering
the previous ones.

100 CHAPTER 6. CONCLUSION

Finally, a significant subset of BIP can be simulated and model checked using the IF toolset
[VER]. Although we do not advocate traditional model-checking as a major technique for
system validation, it still provides a valuable help in system-level debugging or as part of
compositional methods requiring finer analysis of smaller parts of the system.

Bibliography

[AAA+07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,
Y. Goland, A. Guizar, N. Kartha, C. K. Liu, R. Khalaf, D. Konig, M. Marin,
V. Mehta, S. Thatte, D. v. d. Rijn, P. Yendluri, and A. Yiu. Web Services
Business Process Execution Language Version 2.0, Committee Draft, 25 January,
2007, 2007.

[ABBO04] A. Akhavan, M. Bozga, S. Bensalem, and E. Orfanidou. Experiment on Verifi-
cation of a Planetary Rover Controller. In Proceedings of the 4th Intl. Workshop
on Planning and Scheduling for Space, IWPSS’04, Darmstadt, Germany, June
2004.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, Pei-Hsin Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis
of Hybrid Systems. Theoretical Computer Science, 138(1):3–34, 1995.

[AD94] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126:183–235, 1994.

[AGS02] K. Altisen, G. Gößler, and J. Sifakis. Scheduler Modeling Based on the Controller
Synthesis Paradigm. Real-Time Systems, 23(1-2):55–84, 2002.

[AH96] R. Alur and T.A. Henzinger. Reactive Modules. In Proceedings of the 11th Annual
Symposium on LICS, pages 207–208. IEEE Computer Society Press, 1996.

[AL95] M. Abadi and L. Lamport. Conjoining Specification. ACM Transactions on
Programming Languages and Systems, 17(3):507–534, 1995.

[All] TinyOS Alliance. http://www.tinyos.net/.

[Arb05] F. Arbab. Abstract Behavior Types: a foundation model for components and
their composition. Science of Computer Programming, 55(1-3):3–52, 2005.

[AVCL02] R. Allen, S. Vestal, D. Cornhill, and B. Lewis. Using an architecture description
language for quantitative analysis of real-time systems. In Proceedings of the 3rd
International Workshop on Software and Performance WOSP’02, pages 203–210,
New York, NY, USA, 2002. ACM.

[Bas08] A. Basu. Component-based Modeling of Heterogeneous Real-Time Systems in
BIP. PhD thesis, Université Joseph Fourier, December 2008.

101

102 BIBLIOGRAPHY

[BBBS08] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed Semantics and
Implementation for Systems with Interaction and Priority. In Proceedings of
FORTE’08, volume 5048 of LNCS, pages 116–133. Springer, June 2008.

[BBBS09] A. Basu, B. Borzoo, M. Bozga, and J. Sifakis. Brief Announcement: Incremen-
tal Component-Based Specification, Verification, and Performance Evaluation of
Distributed Reset. In Proceedings of DISC’09 - 23rd International Symposium
on Distributed Computing, Elche/Elx, Spain, October 2009.

[BBKT04] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis. Testing conformance of real-
time software by automatic generaton of observers. In Proceedings of Runtime
Verification Workshop, RV’04, April 2004.

[BBNS08] S. Bensalem, M. Bozga, T. Nguyen, and J. Sifakis. Compositional Verification
for Component-based Systems and Application. In Proceedings of ATVA 2008,
Seoul, Korea, volume 5311 of LNCS, pages 64–79. Springer, 10 2008.

[BBNS09] S. Bensalem, M. Bozga, T. Nguyen, and J. Sifakis. D-Finder: A Tool for Composi-
tional Deadlock Detection and Verification. In Proceedings of CAV’09, Grenoble,
France, volume 5643 of LNCS, June 2009.

[BBS06] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Systems in
BIP. In 4th IEEE International Conference on Software Engineering and Formal
Methods (SEFM06), Pune, India, pages 3–12, September 2006. invited talk.

[BC85] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language
and its Mathematical Semantics. In Seminar on Concurrency, Carnegie-Mellon
University, pages 389–448, London, UK, 1985. Springer-Verlag.

[BCC+08] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli.
Composing heterogeneous reactive systems. ACM-TECS, 7(4), 2008.

[BCF02] N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for
C#. In Proceedings of the 16th European Conference on Object-Oriented Pro-
gramming ECOOP’02, pages 415–440, London, UK, 2002. Springer-Verlag.

[BCS04] E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal Component Model. The
Object Web Consortium, 2004.

[BFG99] M. Bozga, J. Cl. Fernandez, and L. Ghirvu. State Space Reduction based on Live
Variables Analysis. In A. Cortesi and G. Filé, editors, Proceedings of SAS’99
(Venice, Italy), volume 1694 of LNCS, pages 164–178. Springer, September 1999.

[BFG00] M. Bozga, J. Cl. Fernandez, and L. Ghirvu. Using Static Analysis to Improve
Automatic Test Generation. In S. Graf and M. Schwartzbach, editors, Proceedings
of TACAS’00 (Berlin, Germany), LNCS, pages 235–250. Springer, March 2000.

[BFKM97] M. Bozga, J. Cl. Fernandez, A. Kerbrat, and L. Mounier. Protocol Verification
with the Aldebaran Toolset. Software Tools for Technology Transfer, 1(1+2):166–
183, December 1997.

BIBLIOGRAPHY 103

[BFLL04] R. Bruni, J. L. Fiadeiro, I. Lanese, and A. Lopes. New insights on architectural
connectors. In Proceedings of IFIP TCS 2004, 3rd IFIP International Conference
on Theoretical Computer Science, pages 367–379. Kluwer Academics, 2004.

[BGK+06] K. Balasubramanian, A.S. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema.
Developing Applications Using Model-Driven Design Environments. IEEE Com-
puter, 39(2):33–40, 2006.

[BGL+08] A. Basu, M. Gallien, C. Lesire, T. Nguyen, S. Bensalem, F. Ingrand, and
J. Sifakis. Incremental Component-Based Construction and Verification of a
Robotic System. In ECAI 2008 - 18th European Conference on Artificial Intelli-
gence, Patras, Greece, July 21-25, 2008, Proceedings, volume 178 of FAIA, pages
631–635, 2008.

[BGM02] M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation environment for
component-based real-time systems. In K.G. Larsen Ed Brinksma, editor, Pro-
ceedings of CAV’02 (Copenhagen, Denmark), volume 2404 of LNCS, pages 343–
348. Springer, July 2002.

[BGMO08] M. Bozga, S. Graf, L. Mounier, and I. Ober. Real Time Systems 1: Modeling and
verification techniques, chapter Modeling and Verification of Real Time Systems
Using the IF Toolbox, pages 319–352. Wiley, 2008.

[BGO+04] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In
The SFM’04 School (Bertinoro, Italy), volume 3185 of LNCS, pages 237–267.
Springer, September 2004.

[BIS08] S. Bensalem, F. Ingrand, and J. Sifakis. Autonomous Robot Software Design
Challenge. In 2008 International Advanced Robotics Program (IARP). Inter-
national Workshop on Technical Challenges for Dependable Robots in Human
Environnements, May 16-17, Pasadena, USA, 2008.

[BJS09] M. Bozga, M. Jaber, and J. Sifakis. Source-to-Source Architecture Transforma-
tion for Performance Optimization in BIP. In Proceedings of SIES’09 - IEEE
Symposium on Industrial Embedded Systems - Lausanne, Switzerland, July 2009.

[BL99] S. Bensalem and Y. Lakhnech. Automatic Generation of Invariants. Formal
Methods in System Design, 15(1):75–92, July 1999.

[BLM01] M. Bozga, D. Lesens, and L. Mounier. Model-Checking Ariane-5 Flight Program.
In Proceedings of FMICS’01 (Paris, France), pages 211–227. INRIA, 2001.

[BLO98a] S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State
Systems Compositionally and Automatically. In A. Hu and M. Vardi, editors,
Proceedings of CAV’98 (Vancouver, Canada), volume 1427 of LNCS, pages 319–
331. Springer, June 1998.

[BLO98b] S. Bensalem, Y. Lakhnech, and S. Owre. Invest: A tool for the verification
of invariants. In A. J. Hu and M. Y. Vardi, editors, Proceedings of CAV ’98,
Vancouver, BC, Canada, volume 1427 of Lecture Notes in Computer Science,
pages 505–510. Springer, 1998.

104 BIBLIOGRAPHY

[BMP+07] A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis. Using BIP for
Modeling and Verification of Networked Systems – A Case Study on TinyOS-
based Networks. In Proceedings of NCA’07, pages 257–260, 2007.

[BS00] S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and
Computation, 163(1):172–202, 2000.

[BS07] S. Bliudze and J. Sifakis. The Algebra of Connectors — Structuring Interaction in
BIP. In Proceeding of the EMSOFT’07, pages 11–20, Salzburg, Austria, October
2007. ACM SigBED.

[BS08] S. Bliudze and J. Sifakis. A Notion of Glue Expressiveness for Component-Based
Systems. In Franck van Breugel and Marsha Chechik, editors, Proceedings of
CONCUR 2008, volume 5201 of LNCS, pages 508–522. Springer, 2008.

[BSS09] M. Bozga, V. Sfyrla, and J. Sifakis. Modeling Synchronous Systems in BIP. In
Proceedings of EMSOFT’09, Grenoble, France, October 2009.

[BST98] S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In
COMPOS’97: Revised Lectures from the International Symposium on Composi-
tionality: The Significant Difference, pages 103–129, London, UK, 1998. Springer-
Verlag.

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A.L.
Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System Design
Environment. IEEE Computer, 36(4):45–52, 2003.

[CCN06] S. L. Campbell, J. Chancelier, and R. Nikoukhah. Modeling and Simulation in
Scilab/Scicos. Springer, 2006.

[CFLS05] J. Combaz, J.C. Fernandez, T. Lepley, and J. Sifakis. Fine Grain QoS Control for
Multimedia Application Software. In Proceedings of DATE’05, pages 1038–1043,
2005.

[CFSS08] J. Combaz, J.C. Fernandez, J. Sifakis, and L. Strus. Symbolic quality control for
multimedia applications. Real-Time Systems, 40(1):1–43, 2008.

[CJ88] K. M. Chandy and J.Misra. Parallel program design: a foundation. Addison-
Wesley Publishing Company, 1988.

[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional Model Checking.
In Proceedings of the 4th Annual Symposium on LICS, pages 353–362. IEEE
Computer Society Press, 1989.

[CRBS08] Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating AADL into BIP -
Application to the Verification of Real-Time Systems. In ACES MB’08 Workshop,
2008.

[DdM06] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
Proceedings of CAV’06, volume 4144 of LNCS, pages 81–94, 2006.

BIBLIOGRAPHY 105

[EJL+03] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity: The Ptolemy approach. Proceed-
ings of the IEEE, 91(1):127–144, 2003.

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. Javaspaces: Principles, Patterns, Prac-
tice. Sun Microsystems, 1999.

[FHC97] S. Fleury, M. Herrb, and R. Chatila. GenoM: A Tool for the Specification and the
Implementation of Operating Modules in a Distributed Robot Architecture. In
International Conference on Intelligent Robots and Systems, Grenoble, France,
pages 842–848, 1997.

[FLN+03] M. Fontoura, T. Lehman, D. Nelson, T. Truong, and Y. Xiong. TSpaces Ser-
vices Suite: Automating the Development and Management of Web Services. In
Proceedings of The 12th International World Wide Web Conference, Budapest,
Hungary, 2003. http://www.almaden.ibm.com/cs/tspaces/.

[FLV03] P. H. Feiler, B. Lewis, and S. Vestal. The SAE Architecture Analysis and Design
Language (AADL) Standard: A basis for model-based architecture-driven embed-
ded systems engineering. In Proceedings of the RTAS Workshop on Model-driven
Embedded Systems, pages 1–10, 2003.

[GGBM91] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real
time applications with Signal. Proceedings of IEEE, 79(9):1321–1336, 1991.

[GL94] O. Grumberg and D. E. Long. Model Checking and Modular Verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The NesC
language: A holistic approach to networked embedded systems. In SIGPLAN
Conference on Programming Language Design and Implementation, 2003.

[GOO06] S. Graf, I. Ober, and I. Ober. Validating Timed UML models by simulation and
verification. STTT, Software Tools for Technology Transfer, 8(2), 2006.

[GS04] D. Garlan and B. R. Schmerl. Using Architectural Models at Runtime: Research
Challenges. In European Workshop on Software Architecture, pages 200–205,
2004.

[GS05] G. Gößler and J. Sifakis. Composition for Component-based Modeling. Science
of Computer Programming, 55(1-3):161–183, 2005.

[GSR+04] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil,
and T. Schoellhammer. A system for simulation, emulation and deployement of
heterogeneous sensor networks. In 2nd International Conference on Embedded
Networked Sensor Systems. ACM Press, 2004.

[Hal98] N. Halbwachs. About synchronous programming and abstract interpretation.
Science of Computer Programming, 31(1):75–89, 1998.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of IEEE, 79(9):1305–1320, 1991.

106 BIBLIOGRAPHY

[Hen96] T. A. Henzinger. The Theory of Hybrid Automata. In Proceedings of the 11th An-
nual IEEE Symposium on Logic in Computer Science LICS’96, page 278, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[HM08] D. Harel and S. Maoz. Assert and negate revisited: Modal semantics for UML
sequence diagrams. Software and System Modeling, 7(2):237–252, 2008.

[Hoa78] C.A.R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8), August 1978.

[HS01] F. Huber and B. Schätz. Integrated Development of Embedded Systems with Aut-
oFOCUS. Technical Report TUM-I0107, Fakultät für Informatik, TU München,
2001.

[HZPK08] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the final
embedded system using the Ocarina AADL tool suite. ACM Transactions on
Embedded Computer Systems, 7(4):1–25, 2008.

[ITU99] ITU. Recommendation Z.100. Specification and Description Language (SDL).
Technical Report Z-100, International Telecommunication Union – Standardiza-
tion Sector, Genève, November 1999.

[KV98] O. Kupferman and M. Y. Vardi. Modular model checking. LNCS, 1536:381–401,
1998.

[LG95] P. Laborie and M. Ghallab. IxTeT: an Integrated Approach for Plan Generation
and Scheduling. In Proceedings ETFA’95, Paris, France, pages 485–495, 1995.

[LLWC03] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate and scalable
simulation of entire TinyOS applications. In SenSys ’03: 1st International Con-
ference on Embedded networked sensor systems, pages 126–137, New York, NY,
USA, 2003. ACM Press.

[LPY98] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Journal on
Software Tools for Technology Transfer, 1:134–152, 1998.

[Mat] Mathworks. http://www.mathwork.com.

[MB07] F. Maraninchi and T. Bouhadiba. 42: programmable models of computation for a
component-based approach to heterogeneous embedded systems. In Proceedings
of the 6th international conference on Generative programming and component
engineering GPCE’07, pages 53–62, New York, NY, USA, 2007. ACM.

[McM97] K. L. McMillan. A Compositional Rule for Hardware Design Refinement. In
Proceedings of CAV ’97, Haifa, Israel, pages 24–35. Springer-Verlag, 1997.

[MFB02] A. Mallet, S. Fleury, and H. Bruyninckx. A specification of generic robotics soft-
ware components: future evolutions of GenoM in the Orocos context. In Inter-
national Conference on Intelligent Robotics and Systems, Lausanne, Switzerland,
2002.

BIBLIOGRAPHY 107

[Mil95] R. Milner. Communication and concurrency. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK, 1995.

[Mil98] R. Milner. The pi calculus and its applications. In Proceedings of the 1998 joint
international conference and symposium on Logic programming JICSLP’98, pages
3–4, Cambridge, MA, USA, 1998. MIT Press.

[MS00] R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regu-
lar Alternation-Free Mu-Calculus. Technical Report 3899, INRIA Rhône-Alpes,
France, 2000.

[Now06] D. Nowak. Synchronous structures. Information and Computation, 204(8):1295–
1324, 2006.

[OMG08a] OMG. OMG Systems Modeling Language SysML (OMG SysML). Object Man-
agement Group, 2008.

[OMG08b] OMG. A UML Profile for MARTE: Modeling and Analysis of Real-Time Embed-
ded systems. Object Management Group, 2008.

[OMG09] OMG. Unified Modeling Language UML. Object Management Group, 2009.

[Pan01] P. R. Panda. SystemC: A Modeling Platform Supporting Multiple Design Ab-
stractions. In Proceedings of the International Symposium on Systems Synthesis
(ISSS), pages 75–80. ACM, 2001.

[PCT04] J. A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for implement-
ing multiparty synchronization: Research articles. Concurrency and Computation
: Practice & Experience, 16(12):1173–1206, 2004.

[Pnu85] A. Pnueli. Logics and models of concurrent systems, chapter In transition from
global to modular temporal reasoning about programs, pages 123–144. Springer-
Verlag, Inc., New York, USA, 1985.

[Qui86] M. J. Quinn. Designing efficient algorithms for parallel computers. McGraw-Hill,
Inc., New York, NY, USA, 1986.

[Qui09] J. Quilbeuf. Etude d’une implantation distribuée du langage bip. Master’s thesis,
Université Grenoble I, 2009.

[RC03] A. Ray and R. Cleaveland. Architectural Interaction Diagrams: AIDs for system
modeling. In Proceedings of the 25th International Conference on Software Engi-
neering ICSE’03, pages 396–406, Washington, DC, USA, 2003. IEEE Computer
Society.

[RHG+01] J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, and W. Mueller. The
simulation semantics of SystemC. In Proceedings of the conference on Design,
automation and test in Europe DATE’01, pages 64–70, Piscataway, NJ, USA,
2001. IEEE Press.

[RJB04] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, second edition, 2004.

108 BIBLIOGRAPHY

[Sal07] R. Ben Salah. On Timing Analysis of Large Systems. PhD thesis, Institut Na-
tional Politechnique de Grenoble, October 2007.

[SBM09] R. Ben Salah, M. Bozga, and O. Maler. Compositional Timing Analysis. In
Proceedings of EMSOFT’09, Grenoble, France, October 2009.

[SEI06] SEI Software Engineering Institute, CMU. An Extensible Open Source AADL
Environment (OSATE), 2006.

[Sif78] J. Sifakis. Structural properties of petri nets. In Proceedings of MFCS’78, vol-
ume 64 of LNCS, pages 474–483, 1978.

[Sif05] Joseph Sifakis. A Framework for Component-based Construction. In 3rd IEEE In-
ternational Conference on Software Engineering and Formal Methods (SEFM05),
pages 293–300, September 2005. Keynote talk.

[Sta85] E. W. Stark. A proof technique for rely/guarantee properties. In FSTTCS:
proceedings of the 5th conference, volume 206, pages 369–391. Springer-Verlag,
1985.

[TBHH07] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping Applications to Tiled
Multiprocessor Embedded Systems. In Proceedings of the 7th International Con-
ference on Application of Concurrency to System Design ACSD’07, pages 29–40,
Washington, DC, USA, 2007. IEEE Computer Society.

[Tea96] Omega Team. The omega library. Version 1.1.0, November 1996.

[Tri98] S. Tripakis. L’Analyse Formelle de Systèmes Temporisés en Pratique. PhD thesis,
Université Joseph Fourier, Grenoble, France, December 1998.

[VER] VERIMAG/DCS. If web page. http://www.verimag.imag.fr/˜async/IF.

[VPL99] J. Vera, L. Perrochon, and D. C. Luckham. Event-Based Execution Architectures
for Dynamic Software Systems. In Proceedings of the TC2 First Working IFIP
Conference on Software Architecture WICSA 1, pages 303–318. Kluwer, B.V.,
1999.

[WDE05] Workshop on Distributed Embedded Systems, Lorentz Center, Leiden, 2005.
http://www.tik.ee.ethz.ch/ leiden05.

[YAD+08] S. Yovine, I. Assayad, F. Defaut, M. Zanconi, and A. Basu. A formal ap-
proach to derivation of concurrent implementations in software product lines.
In Process Algebra for Parallel and Distributed Processing: Algebraic Languages
in Specification-Based Software Development, page 11. CRC Press-Taylor and
Francis Group, LLC, 04 2008.

[Yov97] S. Yovine. KRONOS: A Verification Tool for Real-Time Systems. Software Tools
for Technology Transfer, 1(1+2):123–133, December 1997.

[ZL08] Y. Zhou and E. A. Lee. Causality interfaces for actor networks. ACM-TECS,
7(3), 2008.

	Introduction
	System Design Challenge
	Component-based Frameworks
	Encompassing Heterogeneity
	Achieving Constructivity

	Our contribution
	The BIP Component Framework
	BIP-centric System Design

	Organization of the Report

	System Construction
	Basic Ideas
	Components and Glue
	Incrementality: Flatenning and Decomposition
	Compositionality and Composability
	Expressivity

	The BIP Framework
	Ports and Interfaces
	Atomic Behavior
	Connectors and Interaction Models
	Priority Models
	Composite Components

	The BIP Language
	Discussion

	Language Factory
	Timed Systems
	Case Study: Scheduling of Timed Tasks

	Synchronous Systems
	Modal Flow Components
	Modeling of Lustre programs
	Single-clock synchronous programs
	Multi-clock synchronous programs

	Experimental work

	Architecture Analysis & Design Language
	Domain Specific Languages
	Wireless Sensor Networks
	Autonomous Robotic Systems

	System Implementation
	Flatenning
	Flatenning of Component Hierarchy
	Flatenning of Connector Hierarchy

	Implementation
	Sequential Implementation
	Distributed Implementation
	Partial State Semantics
	Centralized Engine
	Case Study: the Hypercube Adder
	Decentralized Engine

	Optimization
	Composition of Atomic Behaviour
	Case Study: the Mpeg4 Encoder

	System Validation
	Compositional Generation of Invariants
	Invariants for Atomic Components
	Invariants for Flat Interaction Models
	Atomic Components without Data
	Atomic Components with Data

	Application for Checking Deadlock-Freedom
	The D-Finder Tool

	Model-Checking of Real-Time Systems
	An Open and Modular Exploration Platform
	Static Analysis for Model-Checking and Test Generation
	Applications and Case Studies
	Case Study: Ariane 5 Flight Program
	Case Study: K9 Rover Executive

	Automatic Abstraction of Timed Components

	Conclusion

