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Résumé

La présente thèse de doctorat explore l’interaction complexe entre les excitons et les
phonons dans les nanostructures de nitrure de bore hexagonal (hBN) à l’aide de méthodes
de calcul avancées. La thèse commence par une introduction au hBN, mettant en lumière
ses propriétés uniques et son importance dans la physique de la matière condensée.
Le chapitre 2 donne un aperçu complet du cadre théorique de pointe utilisé tout au

long de la recherche, englobant la théorie de la fonctionnelle de la densité (DFT), la
théorie des perturbations de la fonctionnelle de la densité (DFPT) pour les propriétés des
phonons, et la théorie des perturbations à N-corps (MBPT) à travers l’approximation GW
et l’équation de Bethe-Salpeter pour prendre en compte les effets collectifs électroniques
et excitoniques.
Dans le chapitre 3, l’accent est mis sur le hBN massif soumis à une déformation

uniaxiale, où le couplage exciton-phonon est étudié à l’aide d’une méthode de dérivation
par différences finies. Cette approche reproduit approximativement les changements
d’intensité de la luminescence observés lorsqu’une contrainte est appliquée au cristal. Les
résultats de ce chapitre donnent des indications précieuses sur les propriétés électroniques,
phononiques et excitoniques, ainsi que sur les interactions exciton-phonon dans les
systèmes hBN massifs soumis à une déformation uniaxiale.
Le chapitre 4 se penche sur l’étude du hBN monocouche, en utilisant une méthode

ab initio fondée sur une dérivation théorique rigoureuse des éléments de matrice du
couplage exciton-phonon. En incorporant les pics directs et indirects dans les spectres
de luminescence, cette méthode donne des intensités relatives détaillées, permettant une
interprétation précise des mesures expérimentales publiées par différents groupes de
recherche. Notamment, cette étude élimine la possibilité d’observer des répliques de
phonons dans les spectres du hBN monocouche, apportant une nouvelle clarté à des
interprétations auparavant ambiguës.

En outre, la thèse présente des résultats préliminaires pour le BN Bernal, un polytype
de hBN avec un empilement de couches différent, présentant des gaps d’énergie directs
et indirects très proches les uns des autres. Ce matériau intrigant a le potentiel d’afficher
simultanément des pics directs et indirects dans les spectres de luminescence. Dans le
cadre des recherches en cours qui incluent une étude numérique poussée, ce chapitre
ouvre la voie à une compréhension plus approfondie des interactions exciton-phonon
dans la phase Bernal du BN.

Dans l’ensemble, cette thèse de doctorat contribue de manière significative au domaine
de la physique computationnelle de la matière condensée en clarifiant les phénomènes
complexes de couplage exciton-phonon dans diverses nanostructures hBN. Les connais-
sances acquises grâce à cette étude peuvent faire progresser la compréhension et la
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conception de nouveaux dispositifs optoélectroniques basés sur des matériaux hBN.

Mots-clés : luminescence, phonons, excitons, couplage exciton-phonon
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Abstract

The present PhD thesis explores the intricate interplay between excitons and phonons in
hexagonal Boron Nitride (hBN) nanostructures through advanced computational methods.
The thesis commences with an introduction to hBN, shedding light on its unique properties
and relevance in condensed matter physics.

Chapter 2 provides a comprehensive overview of the state-of-the-art theoretical frame-
work employed throughout the research, encompassing Density Functional Theory (DFT),
Density Functional Perturbation Theory (DFPT) for phonon properties, and Many-Body
Perturbation Theory (MBPT) through the GW approximation and the Bethe-Salpeter
equation to account for collective electronic and excitonic effects.

In Chapter 3, the focus lies on uniaxially strained bulk hBN, where the exciton-phonon
coupling is studied using a finite-difference derivative method. This approach approxi-
mately reproduces the changes in luminescence intensity observed when strain is applied
to the crystal. The outcomes of this chapter offer valuable insights into the electronic,
phononic and excitonic properties, as well as exciton-phonon interactions in bulk hBN
systems under uniaxial strain.
Chapter 4 delves into the investigation of monolayer hBN, employing an ab initio

method grounded on a rigorous theoretical derivation of the exciton-phonon coupling
matrix elements. By incorporating both direct and indirect peaks in the luminescence
spectra, this method yields detailed relative intensities, enabling an accurate interpretation
of experimental measurements published by different research groups. Notably, this study
eliminates the possibility of observing phonon replicas in the spectra of monolayer hBN,
providing new clarity to previously ambiguous interpretations.
Furthermore, the thesis offers preliminary results for Bernal BN, a polytype of hBN

with a different layer stacking, featuring closely situated direct and indirect energy gaps.
This intriguing material holds potential for displaying simultaneously both direct and
indirect peaks in luminescence spectra. As part of ongoing research that includes deep
numerical studies, this chapter paves the way for a deeper understanding of exciton-phonon
interactions in Bernal BN structures.

Overall, this PhD thesis contributes significantly to the field of computational condensed
matter physics by unraveling the complex exciton-phonon coupling phenomena in various
hBN nanostructures. The insights gained from this study have the potential to advance
the understanding and design of novel optoelectronic devices based on hBN materials.

Keywords: luminescence, excitons, phonons, exciton-phonon coupling
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Résumé étendu

Le matériau central de cette thèse est le nitrure de bore hexagonal. Depuis sa première
synthèse en 1842 parWilliam H. Balmain, le nitrure de bore existe sous différentes formes,
cristallines ou amorphes. Il est utilisé dans l’industrie comme lubrifiant, ou bien dans des
composants soumis à de fortes températures, du fait de sa grande stabilité thermique et
chimique.

Sa forme hexagonale (hBN) attire beaucoup l’attention des chercheurs en physique de
la matière condensée depuis les vingt dernières années, depuis la synthèse de cristaux
à haute pureté par Taniguchi et Watanabe en 2004. Cette forme a un réseau cristallin
hexagonal, constitué de feuillets empilés les uns sur les autres, ou les atomes de bore et
d’azote sont alternés aux sommets des hexagones et sont liés par des liaisons hybrides
sp2. Ce cristal est très similaire au graphite. Le polytype le plus stable a un empilement
dit AA’, c’est-à-dire qu’un atome de bore est superposé à un atome d’azote du feuillet du
dessous. C’est principalement ce polytype qui sera étudié dans cette thèse notamment
dans le Chapitre 3. Il existe d’autres polytypes en fonction de l’empilement. Nous pouvons
mentionner la forme dite Bernal (bBN) qui a un empilement AB, c’est-à-dire qu’un atome
de bore est au-dessus du centre d’un hexagone du feuillet inférieur. Ce polytype sera
étudié à la fin du Chapitre 4. Les polytypes hBN et bBN sont des isolants avec des gaps
d’énergie indirects autour de 6 eV. Cependant, la première caractérisation optique du
hBN à haute pureté par Taniguchi et Watanabe a révélé que l’intensité de luminescence
du hBN est bien plus haute que d’autres matériaux à gaps indirects comme le diamant, et
comparable à celle de matériaux à gaps directs comme l’oxide de zinc. Ceci a conduit
à un débat dans la communauté scientifique sur la nature directe ou indirecte du hBN
massif. Aujourd’hui grâce à l’évolution technologique des appareils de mesure et grâce
à des simulations ab initio, il est acquis que ce matériau possède un gap indirect. Sa
forte luminescence est due à un fort couplage entre les excitons et les vibrations du
réseau cristallin, ce qui permet aux excitons noirs de se recombiner de façon radiative, en
amplifiant l’intensité de luminescence.
Tout comme le graphite, il est possible d’exfolier mécaniquement un ou plusieurs

feuillets afin d’obtenir un crystal d’une épaisseur finie, allant jusqu’à une couche mono-
atomique. La monocouche de nitrure de bore hexagonal (mBN) a un paramètre de maille
extrêmement proche de celui du graphène, qui fait l’objet d’énormément de recherches
dues à ses propriétés remarquables. Il est ainsi un candidat de choix comme substrat ou
matériau d’encapsulation sans contrainte pour le graphène, qui joue en plus le rôle de bar-
rière de passivation. Il a été montré qu’il pouvait décupler la mobilité des électrons dans
le graphène. Du fait de son caractère isolant ainsi que sa transparence dans le domaine
visible, le mBN peut également améliorer les propriétés optiques des dichalcogénures de
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métaux de transitions, sans altérer leurs propriétés électroniques, ou bien agir comme
isolant diélectriques entre deux matériaux pour contrôler leur couplage électrique. En
combinant différents matériaux en deux dimensions, avec ou sans contrainte, avec ou sans
rotation entre les feuillets, les possibilités d’hétérostructures sont infinies et les propriétés
optiques et électroniques peuvent être ajustées presque à volonté. Pour toutes ces raisons,
le mBN est un matériau de choix dans l’élaboration de composants opto-électroniques.
Pour mesurer les propriétés optiques d’un feuillet monoatomique, il faut descendre

à température cryogénique et avoir des appareils avec des résolutions très fines. C’est
pourquoi les mesures précises de luminescence de mBN sont apparues dans la littérature
scientifique seulement récemment. De plus, ces mesures contiennent des structures diffé-
rentes d’un spectre à l’autre et leurs interprétations ne sont pas unanimes.

Après cette introduction générale, le Chapitre 2 contient la présentation du socle
théorique nécessaire à nos calculs, qui commence par l’explication du problème à N-
corps, essentiel dans tous les domaines de la physique de la matière condensée. D’un
point de vue théorique, l’Hamiltonien qui décrit le système d’électrons et d’ions qui
constitue les solides ou les molécules peut s’écrire en une somme de six termes. Ce
qui peut sembler assez simple est pourtant insolvable dès que le nombre d’électrons et
d’ions considérés dépasse une dizaine. En effet, bien que certains termes ne posent pas de
problème particulier à calculer comme les énergies cinétiques totales des électrons ou des
ions, les autres termes peuvent être immensément plus compliqués, comme l’interaction
électron-électron, qui est une interaction à deux corps. La complexité de ce terme fait
que l’on doit recourir à des simplifications et des approximations pour réussir à calculer
les propriétés des solides qui nous intéressent. Bien qu’il soit possible de recourir à des
modèles et de décrire certaines propriétés par des paramètres, l’approche choisie dans
cette thèse est dite ab initio, c’est-à-dire que les seules données initiales sont les numéros
atomiques des atomes composant le crystal ainsi que leurs positions. Dans cette approche,
il faut s’assurer que les approximations faites ne soient pas trop restrictives et que toute la
physique des phénomènes que nous tentons de reproduire soit incluse. Cela peut mener à
une complexité à la fois dans la formulation théorique, mais aussi dans l’implémentation
numérique dans les codes de simulation. En général, les temps de calculs ab initio sont
plus longs que ceux des modèles. Toutefois du point de vue de l’utilisateur des codes de
simulation, la tâche est simplifiée car il suffit seulement de préciser en entrée le type de
cristal à étudier et de lire les sorties produites par les codes.

La première approximation est celle de Born-Oppenheimer, qui consiste à découpler le
mouvement des ions et celui des électrons. On considère que les électrons sont toujours
dans l’état fondamental lorsqu’on calcule le mouvement des ions, et les positions ioniques
sont un paramètre dans l’Hamiltonien des électrons.

La première théorie décrite ici est celle de la fonctionnelle de la densité (DFT), élaborée
dans les années 1960 par Hohenberg, Kohn et Sham. Celle ci a pour but de calculer la
densité électronique dans l’état fondamental du système. On peut montrer que l’énergie
totale du système dépend de la densité électronique. L’idée pour calculer la densité est
de construire un système auxiliaire qui aurait la même densité dans l’état fondamental
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que le système réel qui nous intéresse, mais dont les électrons sont indépendants les uns
des autres. Leur interaction est remplacée par un champ moyen qui contient les effets
électrostatiques classiques ainsi que les effets quantiques d’échange et de corrélation.
Ce champ moyen est le potentiel de Kohn-Sham. Il est présent dans une équation de
Schrödinger, appelée l’équation de Kohn-Sham, pour chaque particule indépendante
du système auxiliaire. Cependant l’expression analytique de ce potentiel dépend de la
densité électronique, comme montré par Kohn et Sham. A son tour, la densité peut être
calculée en sommant les modules carrés des fonctions d’ondes solutions des équations de
Kohn-Sham. Nous voyons ici que pour obtenir la densité électronique, il faut résoudre les
équations de Kohn-Sham de façon autocohérente, en partant d’une densité hypothétique
et en convergeant à chaque itération vers la bonne densité. Une fois que la densité ne
varie pas plus qu’un seuil arbitraire à chaque itération, le calcul s’arrête et nous pouvons
obtenir l’énergie totale de l’état fondamental du système.
Cette théorie est en principe exacte, mais le potentiel d’échange-correlation n’a pas

d’expression analytique et est impossible à calculer avec précision. Pour cette raison,
il faut l’approximer afin de rendre sa dépendance en la densité calculable. Différentes
approximations existent telles que l’approximation de la densité locale (LDA) ou l’ap-
proximation du gradient généralisé (GGA). Chaque approximation a ses avantages et
ses inconvénients, et se rapprochent toutes plus ou moins du vrai potentiel d’échange-
corrélation. De plus le potentiel ionique dans lequel évoluent les particules indépendantes,
qui contient une divergence autour de la position des ions, est lui aussi approximé par des
pseudopotentiels pour supprimer cette divergence et accélérer les calculs. Ces potentiels
approximés sont appelés pseudopotentiels.
Afin de pouvoir diagonaliser l’Hamiltonien et résoudre les équation de Kohn-Sham,

il faut choisir une base dans laquelle exprimer les fonctions d’ondes. La base que nous
utilisons dans cette thèse est la base des ondes planes. Celle-ci a la particularité de bien
s’accorder avec le théorème de Bloch qui décrit les électrons dans des cristaux périodiques.
Ici les électrons de Bloch sont décrits par une combinaison linéaire d’ondes planes, et
possèdent donc un moment et un vecteur d’onde.
Il faut toutefois insister sur le fait que les valeurs propres des équations de Kohn-

Sham ne sont pas les états d’énergie des vrais électrons du système. Ce sont les niveaux
d’énergie du système auxiliaire, qui n’ont pas de réelle signification physique. Toutefois, si
les approximations sont suffisamment précises et que le calcul de densité est suffisamment
convergé, les valeurs propres de Kohn-Sham peuvent donner un bonne approximation des
niveaux d’énergies du vrai système, mais seulement pour les plus hauts états de valence.
Le gap des semi-conducteurs et des isolants n’est jamais précis en DFT et il faut recourir
à des théories plus précises pour décrire le gap et les états d’énergies excités du système.
Ceci est réalisé grâce à la théorie des perturbations à N-corps (MBPT). Cette théorie

est basée sur la fonction de Green du système à N électrons. Cet object mathématique a
le sens physique du propagateur à N particules, c’est à dire la probabilité qu’un électron
introduit à l’instant t1, à la position r1 et avec le spin σ1 se propage jusqu’à la position r2

et avec le spin σ2 au temps t2. Dans cette thèse, la dépendance en spin n’est pas considérée
donc elle est toujours implicite. Mathématiquement, la fonction de Green est la solution
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d’une équation différentielle dont le terme de source est un delta de Dirac. Dans notre
cas, c’est la solution de l’équation de Schrödinger contenant l’Hamiltonien électronique.
La fonction de Green complète du système est une matrice multidimensionnelle, dont
les deux premiers éléments de matrice sont la fonction de Green à une particule et la
fonction de Green à deux particules. Beaucoup de quantités physiques intéressantes
peuvent être extraites de ces fonctions, comme par exemple l’énergie totale du système
d’électron corrélés. Plus intéressant dans notre cas, les pôles de la fonction de Green
à une particule donnent les énergies d’excitation du système à N électron interagissant.
On peut faire l’analogie entre les pôles de la fonction de Green à une particule et les
spectres de photoémission ou de photoémission inversée. En effet, ces mesures consistent
à mesurer l’énergie cinétique d’un électron arraché ou ajouté au système à N électrons,
afin de déterminer les niveaux d’énergie existants. De façon équivalente, les pôles de la
fonction de Green à N-1 électrons donnent les niveaux de valence du système, et ceux de
la fonction de Green à N+1 électrons donnent les niveaux de conduction.
La fonction de Green à une ou deux particules est calculée en prenant en compte

l’interaction avec tous les électrons. Les dérivations sont esquissées dans la partie 2.3
de la thèse. L’idée est d’ajouter une perturbation au système et de calculer les variations
des différents potentiels grâce à la dérivée fonctionnelle par rapport à la perturbation. De
cette façon et si l’on définit des nouvelles quantités physiques telles que la polarisabilité,
la matrice diélectrique, la self-énergie ou encore l’interaction écrantée, on peut obtenir
un système d’équations intégro-différentielles qui relient toutes ces quantités. Ce sont
les équations d’Hedin, qui sont en principe exactes mais impossible à résoudre de façon
analytique pour des systèmes réels. Pour simplifier la résolution, une des approximations
les plus répandues consiste à négliger l’interaction électron-trou dans le vertex. De cette
façon, la self-énergie se réduit au produit matriciel de la fonction de Green électronique
G et de l’interaction écrantéeW , ce qui donne le nom d’approximation GW . Avec cette
approximation, les équations d’Hedin peuvent être reformulées en terme de quasiparti-
cules, c’est-à-dire que les électrons ne sont plus considérés indépendants mais “habillés”
par l’interaction avec les autres. Les énergies de ces quasiparticules sont données par les
pôles de la fonction de Green électronique. Cela permet d’obtenir la structure de bandes
électronique du système en meilleur accord avec l’expérience par rapport à la DFT. Un
lien peut également être établi entre les pôles de la fonction de Green et les énergies
d’ionisation et l’affinité électronique du système. Ainsi on peut simuler les expériences
consistant à ajouter ou à arracher un électron du système. Ces variations de charge sont
appelées excitations neutres, qui sont ainsi bien décrites par l’approximation GW .

En revanche, les excitations neutres, c’est-à-dire qu’un électron du système est promu à
une bande de conduction mais ne quitte pas le cristal, nécessitent de considérer l’interac-
tion électron-trou, négligée plus haut. A cette fin, nous considérons une équation de Dyson
pour la fonction de Green à deux particules. Elle est appelée l’équation de Bethe-Salpeter
(BSE) et décrit la propagation de paires électron-trou liés par l’interaction de Coulomb.
Une telle paire liée est un nouveau type de quasiparticule appelée exciton. Moyennant
quelques approximations décrites dans le Chapitre 2, la BSE peut être reformulée en un
Hamiltonien à deux particules écrit dans la base des excitons. Ses valeurs propres sont les
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énergies des excitons et les coefficients du changement de base sont les vecteurs propres
des excitons.

La description des excitons est essentielle afin de reproduire correctement les spectres
optiques obtenus expérimentalement. Il est possible d’écrire les fonctions de réponse
du système dans la base des excitons, ainsi que la fonction diélectrique microscopique.
Ensuite, on peut obtenir la partie imaginaire de la fonction diélectrique macroscopique,
qui est directement proportionnelle à l’observable mesuré dans les mesures d’absorp-
tion optique. L’inclusion des effets excitoniques permet de simuler des spectres très
ressemblants avec l’expérience.
Pour simuler des spectres de luminescence en revanche, une formulation ab initio

nécessiterait la description de phénomènes hors équilibre concernant l’interaction d’ex-
citons, phonons et photons. Bien que certaines approchent aillent dans ce sens, cela est
hors de la portée de cette thèse. En revanche, nous supposons que les systèmes que nous
simulons sont dans une situation de quasi-équilibre, et que l’absorption et l’émission de
lumière sont en équilibre dans un régime permanent. Cette approximation nous permet
d’utiliser la relation de van Roosbroeck–Shockley qui permet de calculer le taux d’émis-
sion spontanée à partir du taux d’absorption. Le seul inconvénient est qu’il faut introduire
un paramètre pour décrire le quasi-équilibre et le fait que les particules excitées ne sont
pas décrite par la même température que le réseau. Dans cette thèse nous avons fait le
choix de la fonction de Boltzmann qui donne de bons résultats pour une faible densité
d’excitons. Il nous a donc fallu introduire une température excitonique que nous avons
fitté sur des mesures expérimentales. C’est le seul paramètre parmi tous nos calculs ab
initio.
Nous présentons ensuite comment décrire les vibrations du réseau cristallin. Nous

considérons que les atomes vibrent autour de leur position d’équilibre comme des oscilla-
teurs harmoniques quantiques. Un quantum de vibration est appelé un phonon, c’est une
excitation collective avec une fréquence et un vecteur d’onde donnés. Nous présentons
dans la section 2.5 une théorie basée sur un perturbation de la DFT, appelée théorie
de la perturbation de la fonctionnelle de la densité (DFPT). Elle permet de calculer
les fréquences et vecteurs propres de phonons dans une cellule unité. Les fréquences
dépendent des vecteurs d’onde ou de façon équivalente du moment, et on peut obtenir les
courbes de dispersion de chaque mode de phonon.
Ensuite, le problème des vibrations des atomes et le problème électronique sont re-

groupés de nouveau pour obtenir le couplage électron-phonon. Nous pouvons le formuler
en seconde quantification. Ce sera un élément clé dans la construction du couplage
exciton-phonon étudié dans cette thèse.
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Figure 0.1. – Schéma du processus de calcul du couplage exciton-phonon et de la lumi-
nescence assistée par les phonons. Les cadres verts et rouges indiquent l’utilisation
de Quantum ESPRESSO et yambo comme codes de simulation, respectivement.

Un schéma du processus de calcul est présenté dans la Fig. 0.1, qui contient également
le nom des codes de simulation utilisés.

Après avoir présenté l’état de l’art théorique, nous passons aux résultats de cette thèse.
Dans le Chapitre 3 nous reportons nos résultats obtenus sur le hBN massif soumis à une
déformation uniaxiale. Nous commençons par présenter les motivations expérimentales.
Nous avons tenté de reproduire la variation d’intensité relative des différents pics dans
les spectres de cathodoluminescence d’un feuillet de hBN déposé sur un substrat nano-
structuré qui induit une déformation de l’échantillon. A différents endroits du cristal, les
pics correspondants à des transitions assistées par des phonons acoustiques voient leur
intensité augmenter par rapport aux pics des phonons optiques, en corrélation avec la
déformation de l’échantillon. Pour simuler ces conditions, nous appliquons une défor-
mation uniaxiale à un cristal de hBN massif. Nous avons étudié l’effet sur les propriétés
électroniques, phononiques et excitoniques pour des valeurs allant d’une compression
de 2.5% à un étirement de 2.5% de la longueur à l’équilibre. Nous observons que la
déformation induit une brisure de symétrie et que la zone de Brillouin n’est plus un
hexagone parfait. Les fréquences de phonons sont augmentées ou diminuées, suivant les
modes considérés et la valeur de déformation appliquée. Il en va de même pour les bandes
électroniques. Nous proposons une interprétation en terme d’interaction inter-feuillets,
qui dépend fortement de la distance entre les feuillets superposés et qui et modifiée avec
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la déformation. Nous constatons que la brisure de symétrie lève la dégénérescence dans
les orbitales à extrémités des bandes de valence et conduction. Ceci les points de haute
symétrie dans l’espace réciproque K etM non-équivalents aux pointsK ′ etM ′. Il y a
donc quatre transitions non-équivalentes extrêmement proches en énergie.
La levée de dégénérescence a également un effet sur les énergies des excitons. Nous

observons que les deux excitons directs avec les plus basses énergies, qui sont doublement
dégénérés à l’équilibre, se séparent et donnent quatre niveaux distincts. L’énergie des
excitons directs décroissent pour des étirements et croissent pour des compressions. Pour
les excitons indirects, qui ne sont pas dégénérés, la tendance n’est pas la même et leur
énergie décroît pour toutes les valeurs de déformation. L’effet de la séparation des niveaux
d’énergie est clairement visible sur le spectre d’absorption où l’on voit apparaître un
deuxième pic, provenant de la séparation de l’exciton blanc en deux états. L’effet est
également visible sur la fonction d’onde de ces deux nouveaux états : en effet les deux ne
sont pas orientés suivant la même direction cristallographique.
Dans la section 3.5, nous présentons l’approche utilisée pour calculer l’effet des pho-

nons sur les excitons. Le couplage est obtenu par une dérivée aux différences finies de la
fonction de réponse ou des dipoles excitoniques, de façon équivalente. Cette dérivée per-
met de calculer le couplage des excitons à moments finis avec les modes de phonons ayant
les mêmes moments. Il est donc nécessaire de construire des supercellules pour pouvoir
capturer la périodicité des modes de phonons aux moments choisis. Dans notre cas et
comme évoqué plus haut, il nous faut considérer toutes les transitions non-équivalentes
donnant des excitons indirects à très proche énergie. Tout ceci nous conduit à présenter
les spectres de luminescence à différente valeur de déformation dans la Fig. 0.2.
Ces résultats montrent un élargissement des répliques de phonon à faible valeur de

déformation, ainsi qu’une faible augmentation de l’intensité des pics à haute énergie. Ceci
est causé par l’inclusion des quatre transitions non-équivalentes proches en énergie. Nous
voyons que ces pics se séparent de plus en plus avec l’augmentation de la compression,
jusqu’à ce qu’un seul pic subsiste à -2.5%, une compression relativement importante.
Ces résultats vont dans le sens des mesures expérimentales mais l’accord n’est pas total.
L’utilisation d’un nombre restreint de moments de phonons et d’excitons est une limitation.
Il se peut aussi que des facteurs expérimentaux aient été négligés par notre méthode,
comme le fait que la déformation ne soit pas nécessairement uniaxiale.

Dans le Chapitre 4, nous présentons un approche pour calculer le couplage exciton-
phonon qui permet de surpasser la méthode par différences finies. Nous utilisons la
théorie des perturbations pour inclure de façon dynamique l’interaction électron-phonon
à l’intérieur d’un Hamiltonien. Celui-ci contient les éléments de couplage exciton-phonon,
qui sont construits à partir de quantités calculées ab initio d’une part avec la BSE et en
DFPT d’autre part. Ensuite, nous reformulons le problème pour obtenir une self-énergie
décrivant l’interaction exciton-exciton médiée par des phonons. De cette façon nous
pouvons écrire une fonction de réponse du système contenant une correction dynamique
due à l’interaction avec les phonons. Cette correction dynamique est une avancée du
point de vue théorique car elle permet d’obtenir les satellites de phonons dans les spectres
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Figure 0.2. – Spectres de luminescence en fonction de la déformation, pour des valeurs
choisies de compression. Les courbes sont déplacées verticalement par souci de
clarté. Les données expérimentales sont reportés par les points noirs de la courbe
du haut. Les spectres sont décalés en énergie pour correspondre à l’expérience. Les
lignes pointillées sont un guide visuel.

optiques et surtout la renormalisation qu’ils causent à l’intensité des pics directs. De
cette façon nous pouvons comparons l’intensité relative des processus directs et des
transitions indirectes assistées par les phonons. Ceci s’accompagne d’une avancée sur
le plan numérique étant donné que notre formulation comprend le couplage de tous les
excitons avec tous les modes de phonons, sur toute l’étendue de la zone de Brillouin.

Nous avons implémenté cette approche dans le code yambo, et nous l’avons testée sur
le hBN massif pour lequel nous pouvons nous comparer à une littérature expérimentale et
théorique abondante. Notre spectre obtenu est en plutôt bon accord avec l’expérience pour
la position des pics et l’intensité du doublet LA/TA. En revanche, l’intensité du doublet
LO/TO est inversée par rapport à l’expérience. De plus nous constatons l’apparition d’un
satellite causé par les phonons ZA/ZO, qui ne devrait pas être visible car interdit par
symétrie. Nous attribuons ces problèmes à la façon dont nous construisons les éléments
de matrice de couplage exciton-phonon. En effet, ceux-ci sont obtenus par le produit
d’une quantité phononique et un quantité excitonique qui ne sont pas calculées avec
la même phase de Kohn-Sham de départ. Ce problème peut être réglé en désactivant
l’utilisation des symétries de la zone de Brillouin et en écrivant une interface avec un
troisième code de simulation, comme l’a été montré après la publication de nos résultats
par un collaborateur. Cependant, appliquer cette solution augmente considérablement le
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temps de calcul et surtout l’espace disque nécessaire pour obtenir le couplage exciton-
phonon sans le problème des phases. Etant donné que les ordres de grandeur des intensités
sont corrects, nous avons décidé de continuer et d’appliquer cette méthode au feuillet
monoatomique de hBN (mBN).

Nous avons étudié les propriétés excitoniques du mBN en détail. La dispersion d’exci-
tons contient un minimum global au pointK, donnant un caractère indirect à ce matériau,
en contradiction avec les mesures expérimentales. Cet exciton provient des transitions
électroniques entre la bande de valence et les états quasi-libres à Gamma dans l’approxi-
mation GW . Cette vallée excitonique pourrait être la plus peuplée et causer l’extinction
du signal de luminescence. Après une étude de la fonction d’onde et du couplage exciton-
phonon de cet état, nous avons décidé de ne pas utiliser l’approximation GW et de rester
au niveau DFT+BSE, où ce problème est non-existant. L’étude des éléments de couplage
exciton-phonon résolue en moment nous montre que le couplage est maximal dans une
petite région autour de Γ et quasiment nulle aux bords de la zone de Brillouin.

Nous avons finalement calculé le spectre de luminescence du mBN libre. Nous l’avons
comparé à trois spectres expérimentaux publiés récemment. Les structures apparaissant
dans les trois spectres ne sont pas les mêmes et les interprétations sur leur origine diffèrent.
Nous reportons nos résultats et leur comparaison aux spectres expérimentaux dans la Fig.
0.3
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Figure 0.3. – Spectre de luminescence calculé pour la monocouche de hBN (a) comparé
aux résultats expérimentaux dans les Ref. [1](b), Ref. [2](c) et Ref. [3](d). Les
spectres calculés ont été décalés en énergie pour s’accorder avec le pic principal
du panel (c). Par souci de clarté, nous avons tracé le spectre calculé sur chaque
panel. Dans l’encadré du panel (a) nous montrons la même courbe en échelle semi-
logarithmique, qui révèle le satellite à moindre intensité.

Grâce à notre méthode, nous pouvons comparer l’intensité relative du pic direct et des
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satellites de phonons, interprétés comme visibles dans certains des spectres. Nos résultats
montrent un pic direct très intense. Nous voyons également un satellite issu du couplage
entre l’exciton direct et des phonons optiques, mais dont l’intensité est inférieure à celle
du pic direct de deux ordres de grandeur. Concernant des satellites issus du couplage de
phonons avec un exciton indirect, nous n’en voyons pas apparaître. Nous pouvons donc
éliminer l’hypothèse selon laquelle les structures expérimentales seraient des satellites
de phonons.
Nous avons étudié l’influence du substrat graphitique présent dans deux des trois

expériences. Premièrement, l’influence du substrat augmente l’énergie de l’exciton pro-
blématique àK, ce qui valide notre choix de ne pas le considérer. Ensuite, nous avons
modélisé l’effet de l’écrantage du substrat sur le spectre de luminescence avec un modèle.
Nous en avons conclu que l’influence du substrat n’est probablement pas assez forte pour
révéler les satellites de phonon. Cependant la complexité de nos calculs ne nous permet
pas d’utiliser un modèle élaboré voire un calcul direct d’une épaisseur finie de substrat
en plus du mBN.

Enfin nous présentons dans la section 4.7 nos résultats préliminaires sur une autre phase
de hBN, la phase Bernal qui correspond à un empilement AB des feuillets. Ce matériau a
des gaps directs et indirects proches en énergie, ce qui pourrait révéler les signatures des
excitons directs et des satellites de phonons de le même spectre de luminescence, à des
intensités comparables. Nos premiers résultats tendent vers une luminescence directe,
mais ceci fera l’objet d’une étude numérique plus poussée.

En conclusion cette thèse présente des spectres de luminescence calculés à partir de
premiers principes. Deux méthodes différentes de calcul du couplage exciton-phonon
ont été présentées et permettent d’obtenir une compréhension des processus donnant
naissance aux structures dans les spectres. Les résultats présentés ouvrent des perspectives
d’amélioration à la fois théoriques et numériques dont certaines sont activement explorées.
Finalement, nous espérons que ces travaux peuvent avoir un impact et contribuer à
l’élaboration de composants opto-électroniques ou photovoltaïques.
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1. Introduction

Modern society faces a wide range of challenges that require complex and multifaceted
solutions. The challenges posed by climate change and the necessity for clean energy in
order to reduce greenhouse gas emissions intersect with the goals of economic growth
and the global exchange of information, goods and people. Unprecedented issues are
emerging from this increasingly technologically advanced and interconnected civilization.

This PhD work was initiated amidst the most impactful public health crisis of our time,
the COVID-19 pandemic. Despite all the negative facets of this pandemic, it unexpectedly
gave a boost to a specific market : the emerging technology of deep ultraviolet violet
light-emitting diodes (UVC LEDs), and the market is predicted to grow five-fold.[4]
Indeed the deep UV light, i.e. with wavelengths ranging from 100 to 280 nm, has been
demonstrated to inactivate the coronavirus accountable for the disease, thus making it
harmless.[5] Besides surface disinfection, UVC LEDs have many applications in water
and air depolution, agriculture, printing and more.[6] The material studied in this thesis,
hexagonal Boron Nitride, is a candidate of choice for the elaboration of UVC LEDs due
to its bright light emission in the deep ultraviolet.
This is a recent example of how technological innovations resulting from scientific

research in materials science can provide a means to address the challenges of modern
society. The European Union supports such research, in particular through the Flagship
projects, which are large-scale research initiatives with an emphasis on technology transfer
to industry. Three out of the four Flagship projects are closely related to materials science:
Batteries30+ for the development of efficient and compact energy storage,[7] Quantum
Technologies[8] for the quantum computers and algorithms and Graphene,[9] which
focuses on two-dimensional materials. All of these are research projects that could
provide means to produce clean energy and store it. In all of these scientific areas, theory
and numerical simulations are essential to support the experimental discovery of materials
and guide the engineering of new devices. This is particularly relevant in Condensed
Matter Physics which is the subject of this thesis. Since the discovery of Graphene and
its extraordinary properties by Novoselov and Geim in 2004,[10] the two-dimensional
materials such as Graphene, black Phosphorus, transition metal dicalchogenides (TMDs)
and hexagonal Boron Nitride (hBN) have attracted a great deal of attention. Indeed, they
exhibit a range of electronic and optical properties that allow the design of devices for
different applications, especially when different layers are stacked to form the so-called
van der Waals heterostructures.[11] The resulting devices are then very compact and fit
very well into the technological trend of device miniaturization.

With the variety of optical and electronic properties offered by all the existing monolay-
ers, and the ability to engineer them with factors such as stacking of different layers,[12]
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1. Introduction

twisting angle between them,[13, 14] and straining[15] as well as their interaction with
substrates, the possibilities for devices are almost limitless. In this ecosystem, hexagonal
Boron Nitride is a candidate of choice for its structural, electronic and optical properties.

The process of luminescence
Optical measurements are an efficient way to characterize materials and reveal the

microscopic, quantum, interplay between electronic wavefunctions and electromagnetic
field of light, and collective quantum effects in the crystal.[16] In particular, spontaneous
emission of light after an excitation, known as luminescence, is the key property for the
elaboration of light-emitting diodes.[17]

For spontaneous light emission to happen in a semiconductor or insulator, there needs
to be a population of excited electrons in the conduction band. The excitation can have
different forms. It can be done with the electromagnetic field of external light, then the
process is called photoluminescence. If the electrons are excited by an external beam
of electrons colliding with the crystal, it is called cathodoluminescence. If they are
excited by an external electric field, it is called electroluminescence, et cetera. When
the electrons are promoted to the higher-energy conduction bands, they leave an empty
state in the valence band. This empty state can be thought of as a hole in the Fermi
sea of the valence states. It propagates with the opposite of the electron’s momentum
and has a negative effective mass. For light to be emitted, the excited electrons need to
de-excite and go back to the empty states. We speak of radiative recombination of an
electron-hole pair. When the hole and the electron have the same momentum (and the
same spin and symmetry) the radiative recombination can happen because the emitted
light carries an almost null momentum, hence respecting momentum conservation. The
energy difference between the electron and the hole corresponds to the frequency of
emitted light, multiplied by ~. However when the bottom of the conduction band is not at
the same momentum than the top of the valence band, the light emission cannot happen
directly because of momentum conservation. There needs to be a second-order process
to exchange momentum. For instance, the excited electron can transfer its momentum
to another one in the conduction band and then recombine with the hole. This process
is known as Auger-Meitner recombination.[18] Otherwise, the momentum exchange
can come from the absorption or emission of a phonon, hence gaining or losing energy
and momentum and finally leading to a radiative recombination. This is known as a
phonon-assisted transition and it is the process that is studied in this thesis.

Luminescence is often thought of as the reverse process of light absorption. Indeed in
absorption, light with a frequency higher than the gap can excite electrons and promote
them to the conduction band, with almost zero transfer of momentum. In the case of
phonon-assisted transitions, the electron can be promoted to the conduction band at
another momentum, thanks to the absorption or emission of a phonon.

Because of this similarity, the spectra of absorption and of luminescence are quasi sym-
metrical for direct transitions. The slight asymmetry come from the phonon broadening
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of the electron density of states, known as the Stokes shift. However when considering
phonon-assisted transitions, the asymmetry will be more pronounced because the inter-
play between direct and indirect processes will lead to quite different features in the two
spectra.

In this thesis, we study the properties of different forms of hBN and develop theoretical
and numerical methods with the aim of reproducing and predicting their luminescence
spectra from ab initio calculations.

The peculiar properties of hexagonal Boron Nitride
The first reported synthesis of Boron Nitride dates back from 1842.[19] It is now

available commercially under the form of a white powder and finds applications as
lubricant or for its high thermal resistivity. It can be found under the form of a layered
material composed of atomically thin layers arranged in a honeycomb lattice. High-
purity crystals are synthesized under high-pressure and high-temperature conditions.[20]
Different stacking of the layers lead to different stable or metastable polytypes. In this
thesis we will be mainly concerned with the AA’ and the AB stackings, that are illustrated
in Fig. 1.1. We will refer to the AA’ polytype as hBN and to the AB polytype (or
Bernal phase) as bBN. The atoms within a layer are bond by hybrid sp2 bonds, while
the interlayer interactions are of van der Waals type. hBN is stable at ambient pressure

(a) AA’ stacking (b) AB stacking

Figure 1.1. – Two polytypes of hexagonal Boron Nitride where four hexagonal unit cells
are shown. Boron atoms are represented with brown spheres, Nitrogen with blue
ones. We will refer to the AA’ polytype as hBN and to the AB polytype (or Bernal
phase) as bBN.

and room temperature. It is an insulator with a gap of about 6 eV. Due to its low lattice
mismatch with Graphene and its insulating character, it is a substrate of choice and

30



1. Introduction

a good encapsulation layer for Graphene-based applications.[21] It also has a variety
of defect-related physics that can find applications for quantum computing,[22] single
photon emission[23] or bright color center emission.[24] However the property of interest
for this thesis is the bright light emission in the deep UV domain and the rich features
appearing in the luminescence spectra. hBN was shown to have a very high internal
quantum yield, comparable to that of a direct gap material such as Zinc Oxide.[25]
This is due to the strong exciton-phonon coupling enhanced by the anisotropy of this
layered material and to the large density of transitions due to flat bands in the electronic
dispersion.[26] Experimental luminescence spectra for the bulk material are abundant in
literature, see for instance Refs. [25, 27]. These spectra exhibit a fine structure due to the
scattering with different phonon modes as was reproduced by first-principle calculations
in Refs. [28, 29] However, obtaining the optical absorption spectrum experimentally
requires more advanced equipment because hBN absorbs in the UV range. In Ref. [30] it
was obtained using synchrotron radiation for a large range of frequencies. In general the
absorption (or a quantity proportional to it such as the photoluminescence excitation 1)
and the luminescence spectra have a strong asymmetry, as can be seen in Fig. 1.2, because
the state dominating the absorption is different from the one dominating the luminescence,
which is at lower energy. Moreover the coupling with different phonon modes gives rise
to multiple peaks in the luminescence spectrum, only visible in absorption with a very
fine resolution because the direct peak overlaps with them. This will be explained in
details in the body of this thesis.

Figure 1.2. – Comparison between the cathodoluminescence (red) and the photolumines-
cence excitation (blue), which is proportional to absorption of bulk hBN. iX and dX
refer to indirect and direct exciton energy, respectively. Eg indicates the gap energy.
Extracted from Ref. [25].

1. Photoluminescence excitation (PLE) is the measure of the luminescence intensity as a function of
the energy of the laser that excites the system. The PLE signal is the highest where the system absorbs the
most light.
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As for the Bernal phase (bBN), it was recently synthesized and characterized with
optical measurements. Its photoluminescence spectrum was reported in Refs. [31, 32]. It
seems to exhibit direct and indirect gaps very close in energy, as theoretically predicted
in Ref.[12], giving rise to direct peak and phonon satellites with comparable intensities.
This case is addressed at the end of Chapter 4.

For a single layer, measuring the luminescence intensity is much harder because the
signal is faint due to the low thickness of the material. To have a good resolution, one
needs to be at cryogenic temperature in ultra-high vacuum, and have an extremely pure
sample. Cathodoluminescence measurements were performed for sheet thicknesses down
to six layers,[33] but the signal-to-noise ratio becomes too low for smaller thicknesses. 2
Photoluminescence measurements are equally difficult to obtain, but some results were
published recently for monolayers grown by epitaxy on a Graphite substrate,[1, 3] or
mechanically exfoliated and deposited on an SiO2 substrate.[2] These three spectra exhibit
features that are quite different, and their interpretation is not unanimous. We address
this question in Chapter 4.

On the theoretical point of view, absorption spectra are relatively easy to obtain from
state-of-the-art ab initio calculation, but luminescence is more difficult since it is an out-
of-equilibrium process. Moreover, a general formulation of luminescence that includes
both direct and phonon-assisted transitions on the same footing from first-principles is
still lacking. This thesis contributes towards this goal.

Scope of the thesis
The state-of-the-art theoretical framework in which our calculations are contained

starts from the widely used Density Functional Theory (DFT).[35] In this theory the
electrons are treated as independent particles evolving in a mean-field created by the other
electrons and the ions are treated as classical particles interacting via this mean-field.
It allows to compute the ground state electronic density of the crystal and to obtain the
equilibrium geometries, with a certain set of approximations. From there we extract the
Kohn-Sham eigenvalues and wavefunctions. These eigenvalues give an approximation to
the band structure and are the starting point of the more involved Many-Body Perturbation
Theory (MBPT).

MBPT is based on Green’s functions and treats the many-body interactions as a pertur-
bation of the independent-particle system. The electrons become quasiparticles, whose
evolution in time and space is easier to describe than the full many-electrons system.[36,
37] With this we are able to obtain a more accurate band structure and simulate exper-
iments that involve charged excitations – i.e. addition or removal of an electron of the
system.
However the neutral excitations of the many-electron system – i.e. an electron being

excited but staying in the system – are not well described at this point. To this end we

2. We mention for exhaustiveness Ref. [34] where cathodoluminescence was reported for a single layer
of BN, however the signal-to-noise ratio is very small and this article has not been peer-reviewed yet.
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need the two-particle response functions within MBPT, that are calculated starting from
the quasiparticle band structures including correlation effects that take into account the
electron-hole interaction. We can formulate the problem in terms of electron-hole pairs
bound by the Coulomb interaction that are called excitons. They play a significant role
in the optical spectra of hBN and including their effects gives a much better agreement
with experiments compared to independent-particle or quasiparticle levels of theory. A
link can be made between microscopic excitonic quantities and macroscopic observables
measured experimentally.[38]

Finally, we use a perturbative method based on DFT to obtain the vibrational properties
of the crystal in the harmonic approximation, meaning that each atom is represented
as an harmonic oscillator vibrating around its equilibrium position. It is called Density
Functional Perturbation Theory (DFPT).[39] In second quantization, it gives a description
of the vibrational modes of the lattice in terms of quanta of vibration called phonons.
They are another type of quasiparticle, that is a collective excitation, with a definite
frequency and wave vector, analogous to the crystal momentum of electrons. We can
now reintroduce the coupling between nuclear and electronic motions and formulate the
electron-phonon coupling in second quantization. Since we are interested in the role of
phonons in the optical response, we have to consider the coupling between excitons and
phonons.
In condensed matter, this problem and the resulting phonon-assisted luminescence is

an old topic. The first studies date back to the 1960s by Toyozawa et al.[40, 41] and the
first dynamical solution of the BSE, the so-called Shindo solution, was proposed precisely
to study the exciton-phonon problem.[42] For model semiconductor quantum wells, the
time-evolution of correlation functions, that includes simultaneous exciton-phonon and
exciton-photon scattering, was studied in Ref. [43]. However this approach requires
material-dependent parameters and is computationally expansive for real materials.
With the increase in computing capabilities, computationally heavy theories such

as MBPT became in reach and further developed to study more challenging materials.
We can cite a few works on this regard such as the theory of Hallen-Bardeen-Blatt for
phonon-assisted absorption of indirect semiconductors, [44] applied using first-principles
for Silicon.[45] Later, Perebeinos et al. introduced the coupling with excitons, absent
from the previously mentioned theory, to study the optical absorption of carbon nanotubes
with a combined tight-binding and ab initio approach.[46]

Zacharias et al. derived a formalism based on Williams-Lax theory[47, 48] to treat
phonon-assisted transitions on the same footing as vibrational renormalization of the
electronic band structures, but only for independent particles.[49] They further included
excitonic effects in the optical absorption from finite differences [50] in monolayer Ger-
manium Selenide. This methodology is based on a finite-difference derivative scheme to
compute the exciton-phonon coupling. This goes beyond previous approaches developed
independently by Paleari et al. in Ref. [29] and Cannuccia et al. in Ref. [28] in the sense
that in the two latter references, the renormalization of the exciton energies due to the
coupling with phonon is neglected. This approximation is well suited for the study of
large indirect gap semiconductors and insulators and indeed they applied the methodology
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to the calculation of phonon-assisted luminescence of bulk hBN, which were the first
times such spectra were obtained from first principles. Moreover, Paleari et al. and
Cannuccia et al. included dynamical effects not present in the work of Zacharias et al.
This is the approach we will present in detail in Chapter 3 and that we applied to the study
of luminescence of strained hBN.
Other formulations of the exciton-phonon problem beyond the perturbative approach

are present in the literature, such as the polaron transformation in Ref. [51], the use of the
density matrix in Ref. [52], the formulation in terms of two-particle Green’s functions
from Ref. [53] or the more general real-time approach from Ref. [54] as well as the
cumulant ansatz to include scattering of excitons with multiple phonons from Ref. [55]

In order to simulate materials that present both direct exciton peaks and phonon-assisted
replicas in their luminescence spectrum one needs an approach that takes into account
the dynamical renormalization of the direct emission peaks due to the interaction with
phonons. Many of the approaches presented above do not consider this effect, that is
one of the main developments of this thesis. This development is presented in Chapter
4, where we compute the exciton-phonon matrix elements by treating the interaction of
excitons and phonons with second-order perturbation theory. This allows to obtain an
exciton-phonon interaction Hamiltonian. We can reformulate the Hamiltonian problem
in the form of a response function including a dynamical correction due to scattering
with phonons. This correction gives rise to the appearance of phonon-assisted peaks in
the optical spectra, and it yields their renormalization of the direct excitonic peaks. The
main advantage of this ab initio approach is that we can compare the direct and indirect
phonon-assisted processes in the luminescence spectra, while doing all the necessary
calculations in the unit cell.

A sketch of the workflow we used to obtain the exciton-phonon coupling and phonon-
assisted luminescence is drawn in Fig. 1.3. The simulation code we used for DFT
and DFPT is the Quantum ESPRESSO suite.[56, 57] For the MBPT calculations, we
used existing features of the yambo code,[58] and we implemented new features for the
exciton-phonon coupling and phonon-assisted luminescence.

Structure
This thesis is structured as follows. In Chapter 2, we summarize the theoretical back-

ground necessary to our exciton-phonon calculations and phonon-assisted luminescence.
We start by briefly introducing DFT, then we sketch a derivation of the Hedin’s equations
and obtain the GW Approximation (GWA). We proceed by deriving the Bethe-Salpeter
Equation (BSE) and introducing the concept of excitons. We present the link between the
obtained many-body, microscopic quantities and the macroscopic observables measured
in experiments. In the last part of this Chapter, we present DFPT, the theory we use to
compute phonons and electron-phonon coupling from first-principles.

Chapter 3 is devoted to bulk hBN under strain. We present our results concerning the
effect of uniaxial strain on the electronic, phononic and excitonic properties of hBN. Then,
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Figure 1.3. – Workflow of the calculations to compute exciton-phonon coupling and
phonon-assisted luminescence. The green and red boxes indicate that we used
Quantum ESPRESSO and yambo as simulation codes, respectively.

we explain the finite-difference method we used to compute the exciton-phonon coupling
in a static way, using displaced atoms in supercells. Finally, we show our luminescence
results for the strained crystals and discuss their agreement with available experimental
results.

In Chapter 4, we present the derivation of the exciton-phonon coupling ab initio, from
first-order perturbation theory. From this we are able to obtain a response function
containing a dynamical correction due to the coupling of excitons and phonons. We apply
this approach to compute the luminescence spectrum of monolayer hexagonal Boron
Nitride (mBN) and address contradictory experimental interpretations of the structures
therein. We also show preliminary results of the calculated luminescence of Bernal
Boron Nitride (bBN), which might exhibit both direct peak and phonon satellites with
comparable intensities.
At the end of each chapter is a summary box with a summary of the chapter’s key

concepts and methods.
At the very end of this document, five appendices complement the main text and

provide additional information on the materials and computational details.
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2.1. Introduction to the many-body problem
In this thesis, most of the computed quantities are not based on any parameter. The only

input required is the chemical composition of the system, i.e. the atomic numbers of the
atoms constituting the crystal. This way of calculation is called ab initio. It is a powerful
framework since it does not require to fit any parameter to experiments and it can include
all the physical phenomena one wants to consider. One of the shortcomings is that we
often need to resort to approximations for the problems to be solvable numerically. To
perform such calculations, we need to consider all nuclei and all electrons in the crystal,
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as well as all the interactions between them. The system of interacting electrons and
nuclei in a material can be described by the following Hamiltonian :

Ĥ =−
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where capital indices refer to nuclei and lowercase indices refer to electrons. ZI ,MI and
RI are the atomic number, the mass and the position in real space of nucleus I , andme, ri
are the electron mass and position in real space. In this thesis, unless explicitly specified,
we will use the atomic units, that is ~ = me = e = π/ε0 = 1. The terms on the first line
are the kinetic energy of the ions and the ion-ion interaction, respectively. On the second
line we have the kinetic energy of electrons, that we will later denote Tee, the electron-
electron interaction Vee and finally the electron-nucleus interaction, which we will refer to
as the external potential felt by electrons in equilibrium, Vext. This Hamiltonian is difficult
to solve for a system containing two nuclei and two electrons, and is untractable for a larger
number of particles. The kinetic terms and the interaction terms can be solved separately,
but their combination is a formidable problem. To greatly simplify this Hamiltonian, we
use the so-called Born-Oppenheimer approximation. It consists in considering that the
nuclei move in a much longer time-scale than the electrons, because their masses are
much greater than those of the electrons. Every time we compute the electronic part, we
consider that the nuclei do not have time to move from their equilibrium position. [59]
We can then split the Hamiltonian into a nuclear term and an electronic term, and the
nuclear part is just an additive constant. The electronic Hamiltonian then reads :

Ĥe = T̂e + V̂ee + V̂ext (2.2)

The first and second term are universal for all systems.The peculiarities of any systems
are included in the last term in the above equation.

2.2. Density Functional Theory
Density Functional Theory (DFT) is vastly used in solid-state physics and quantum

chemistry. In this thesis, it will be the starting tool to compute structural and electronic
properties of our systems. The idea behind DFT is to replace the real system of interacting
electrons by an auxiliary system of non-interacting particles evolving in an effective
potential. DFT is an exact theory in principle and allows one to compute the ground state
of the many-electron system.
DFT is based on the work of Hohenberg and Kohn who stated and proved two funda-

mental theorems. [60] The first one ensures there is a one-to-one correspondence between
the electronic density and the external potential acting on the system. The second theorem
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states that the total energy of the system is a functional of the electronic density. The
total energy of a system of interacting electrons is written as :

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|T̂ + V̂ee|Ψ〉+

∫
drvext(r)n(r) (2.3)

By virtue of the Hohenberg and Kohn theorems, the total energy is a functional of the
density and can be written as :

EHK [n] = FHK [n] +

∫
drvext(r)n(r) (2.4)

where FHK [n] = 〈T̂ 〉+ 〈V̂ee〉 is a universal functional of the density, i.e. the dependence
on n of the functional is the same for all systems. The ground-state energy E = E0 is
the minimum of the energy functional at the ground-state density n = n0. To be able to
compute these quantities, Kohn and Sham reformulated the problem into an auxiliary
system of non-interacting particles, that has the same density as the real system.[61] Its
energy is :

Eip[n] = Tip[n] +

∫
drveff(r)n(r) (2.5)

The total wavefunction of the system is expressed as a Slater determinant of single-particle
wavefunctions : |Ψ〉 = |ψ1ψ2 . . . ψNe〉. This reformulation is particularly helpful because
it allows the kinetic energy term to be calculated analytically :

Tip =
Ne∑
i

〈ψi| −
∇i

2
|ψi〉 (2.6)

The expression for the total energy functional in Eq. (2.4) can be rewritten as :

EKS[n] = Tip[n] +

∫
drvext(r)n(r) + EH [n] + Exc[n] (2.7)

where Tip is the kinetic energy of the independent particles with density n, EH is the
Hartree energy, which is the classical electrostatic interaction :

EH [n] =

∫
drdr′

n(r′)n(r)

|r− r′| (2.8)

and Exc is the exchange-correlation energy functional defined as :

Exc[n] = 〈T̂ 〉 − Tip[n] + 〈V̂ee〉 − EH [n]. (2.9)

It is the difference between the exact kinetic energy and the independent particle one,
Tip, plus the difference between the exact electron-electron interaction and the Hartree
energy functional. Hence it contains the quantum effects of exchange and correlation of
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fermions.
Since the auxiliary system is an ensemble of independent particles, one can write the

so-called Kohn-Sham equations for each individual particle i :(
−∇

2

2
+ veff(r)

)
ψi(r) = εiψi(r). (2.10)

They are analogous to Schrödinger equation for a particle evolving in a local effective
potential veff, that we have yet to determine. Their solutions are the auxiliary system’s
eigenvalues εi and eigenvectors ψi. Using these eigenfunctions we can construct the
electronic density as :

n(r) =
∑
i

fi |ψi|2 (2.11)

where fi is the occupation number of state i. Applying the variational principle to Eip
and EKS we get

δEip[n]

δn

∣∣∣∣∣
n0

= 0 =⇒ δTip[n]

δn

∣∣∣∣∣
n0

= −veff(r) (2.12)

δEKS[n]

δn

∣∣∣∣∣
n0

= 0 =⇒ δTip[n]

δn

∣∣∣∣∣
n0

= −vH(r)− δExc[n]

δn

∣∣∣∣∣
n0

− vext(r) (2.13)

Using the fact that the total kinetic energy is independent of the density at fixed number
of particles, we get :

veff(r) = vext(r) +
δEH [n]

δn(r)
+
δExc[n]

δn(r)

≡ vext(r) + vH([n], r) + vxc([n], r).

(2.14)

At this point, we see that we have to solve the many-electron problem self-consistently.
Indeed, the density is obtained by solving the Kohn-Sham equations which contain the
effective potential. In turn, this potential depends on the density. In practice, one starts
from a guess density and iterate over the self-consistent cycle until the quantities of
interest vary less than an arbitrary threshold.
Density Functional Theory is often used as a reference for bandgaps and electronic
dispersion calculations. One has to be careful when interpreting Kohn-Sham eigenvalues,
because they do not bear any physical meaning. First, there is no guarantee that one can
find an auxiliary system of non-interacting particles for any real system. Then, the excited
states and bandgaps are not the physical ones.[62] This is why we will use a more refined
theory presented in the next section.

Up to now, DFT is in principle an exact theory, as long as one can define an auxiliary
system with the same density as the real system. However, there exists no analytical form
of the exchange-correlation potential. Hence we will then have to resort to approximations
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to compute the density in practice.

Exchange-correlation functional approximations

The Local Density Approximation (LDA) is the first one that we present, and that we
used for most of the results in this thesis. It was proposed by Kohn and Sham.[61] It con-
sists in replacing the exchange-correlation energy density by the one of the homogeneous
electron gas, which is local in the density :

ELDA
XC [n] =

∫
dr εHEGxc (n(r)) (2.15)

The exchange energy density of the homogeneous electron gas is known : εHEGX (n) =
−3

4
( 3
π
n)(1/3), and the correlation energy density is obtained from interpolation of an

accurate quantum Monte Carlo simulation for various values of densities.[63] The LDA
is relatively simple and computationally inexpensive. It gives a satisfactory description of
system with slowly-varying density, but also surprisingly good results for a larger range of
materials. For instance, for layered materials such as hBN, the interlayer binding energies
are rather accurate, due to the tendency of overbinding of the LDA which cancels the
error induced by the lack of van der Waals interactions.

In theGeneralized Gradient Approximation (GGA) the exchange-correlation energy
density contains an additional dependence in the gradient of the density :

EGGA
XC [n] =

∫
dr εGGAxc (n(r),∇n(r)). (2.16)

This type of functional is obtained by setting some parameters to satisfy exact constraints.
The structural and bonding properties are often improved with respect to the LDA. There
are many more approximations going beyond LDA and GGA functionals that we will not
detail here,[59] as we did not use them for the DFT calculations in this thesis.

Pseudopotentials

For our purposes, it is not necessary to describe every single electron in the crystal. In
fact, for the range of energies we are interested in, the electrons that can be optically excited
are those that occupy the highest valence shells. The core electrons of the first s and p
shells are bound too strongly to the nuclei to be excited by a few electron-Volts incoming
light. Hence, to simplify the system, we use pseudopotentials to avoid describing the
core electrons. Pseudopotentials also solve the problem of the divergence of the Coulomb
potential as r→ 0, which leads to rapid oscillations in the wave functions of the occupied
orbitals.[59] Beyond a given cutoff radius rc, pseudopotentials are constrained to be
exactly equal to the true potential. Below this radius, the pseudopotential does not diverge
and assumes a finite value at r = 0, as can be seen in Fig. 2.1 This generates a pseudo-
wave function which is smooth and does not oscillate below the cutoff radius. With
this method, the Kohn-Sham eigenvalues of the higher valence states remain unchanged,
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Figure 2.1. – Sketch of the pseudopotential compared to the real potential and the
wavefunctions they generate.

and the computationally demanding task of representing the oscillating wave function
is eliminated. The fact that fewer electrons have to be taken into account also helps to
speed up the calculations.

Basis set

For real systems, the wave function of the crystal is an immensely complicated object
whose analytical expression is out of reach. For computational purposes, one needs to
represent it in a complete basis of the Hilbert space. Depending on the characteristics of
the system, the choice of the basis functions is different.
In this thesis we study infinite, periodic crystals. A suitable basis for this case is the

plane waves. It originates naturally from the Bloch theorem, which states that the wave
function of an electron can be written as a product of a plane wave times a periodic
function :

φj,k(r) = uj(r)e
ik·r (2.17)

The uj functions have the same periodicity as the lattice. The Bloch wave has a wavevector
k. For infinite periodic crystals, this is a continuous variable belonging in the first Brillouin
Zone (BZ). The quantity ~k is called the quasi-momentum of the electron, or crystal
momentum. For brevity, we will call it momentum of the electron. We decompose the
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periodic functions uj in plane waves as such :

uj(r) =
∑
G

cj,Ge
iG·r (2.18)

where cj,G are the coefficients of the plane waves basis, and the G are the reciprocal
lattice vectors. The plane wave expansion of the band j follows :

φj,k(r) =
∑
G

cj,k+Ge
i(k+G)·r (2.19)

In principle all complete bases of the Hilbert space yield equal representation of the
wave function. As it is impossible to numerically sample a Hilbert space with infinite
dimension, one has to truncate the representation. Thus, one has to make sure enough
basis functions are included in the expansion to have an accurate wave function. In our
case, we choose an energy cutoff Ecut such that :

1

2
|k + G|2 ≤ Ecut (2.20)

One has to verify that the cutoff is high enough so that the results are accurate, but
setting it too high would mean including more plane waves which would slow down
the calculations. Since the plane waves are orthonormal, adding extra ones to the basis
by increasing Ecut does not add redundant physical information.[59] All the potentials
entering the Kohn-Sham equations can be expressed in the plane waves basis, as well as
the equations themselves.

2.3. Many-Body Perturbation Theory
As mentioned above, DFT is not well suited to simulate optics experiments of semi-

conductors or insulators. Optical excitations are neutral excitations, in the sense that the
excited electron does not leave the system and can therefore interact with the hole it left
behind in the valence band. This interaction between a hole in a valence band and an
excited electron in the conduction bands is not accurately accounted for in DFT, as it
is designed to calculate the total energy and the electronic density of the groundstate.
For this reason, we resort to a more refined theoretical framework to treat the electronic
correlations and study the excited states.
In this section I will present the basics of Many-Body Perturbation Theory (MBPT).

In this theory, the many-body interactions are treated as a perturbation to the system of
non-interacting electrons. I will detail the effects on the electronic structure and also the
inclusion of the electron-hole interaction, to deal with optical excitations.
Including the many-body interaction in an Hamiltonian formulation would lead to

computing immensely complicated wavefunctions for the system of N electrons, and this
is not tractable. Instead, if we are more interested in observables such as optical spectra,
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we can reformulate the problem in terms of Green’s functions. It is a mathematical object
which is the solution of the equation of motion for the N interacting electrons, when the
source term is a Dirac distribution. The link between the two formulation writes :[

i∂t − Ĥe

]
G(r, t; r′, t′) = δ(r− r′)δ(t− t′)

G(r, r′, ω) =
[
ω − Ĥe

]−1 (2.21)

The first line is the time-dependent Schrödinger equation for N interacting electrons. The
second line gives the N-body Green’s function in terms of the Hamiltonian, where we
took the Fourier transform t− t′ → ω. The one-body and two-body Green’s functions are
the first two matrix elements of G. We will see in this section how to obtain many useful
quantities from them, such as the electronic density, the total energy, the charged and
neutral excitation energies and much more. The derivations in this section are adapted
from textbooks,[38, 64] review articles [65, 37, 66] and lecture notes.[67]

2.3.1. Hedin’s equations
We consider a system of N interacting electrons. We will consider the effect of nuclei

motion in a later section. We start from the Hamiltonian for interacting electrons in
second quantization:

Ĥe =

∫
dx1 ψ̂

†(x1)h(r1)ψ̂(x1) +
1

2

∫∫
dx1 dx2 ψ̂

†(x1)ψ̂†(x2)v(r1, r2)ψ̂(x2)ψ̂(x1)

= Ĥ0 + Ĥint.

(2.22)

where ψ̂(x) is a field operator in Schrödinger representation, h is the single-particle
Hamiltonian for non-interacting particles evolving in an external potential Vext and
v(r1, r2) = e2(4π |r1 − r2|)−1 is the Coulomb interaction. In the above equation, x is
the combined space and spin variables x = (r, σ). For the most part of this thesis, the
spin dependence of most quantities will be implicit.
For the following derivation, we introduce an external potential Φ(x, x′; t) which is

local in time but nonlocal in space. We write it in the form of an interaction Hamiltonian
:

Ĥ ′(t) =

∫
dxdx′ψ̂†(x)Φ(x, x′; t)ψ̂(x′) (2.23)

In our case, this external perturbation will be set to 0 at the end of the calculation. It is
a formal tool to derive the useful equations for the time-evolution of Green’s functions.
With this Hamiltonian, it is especially relevant to introduce the interaction picture, in
which both the operators and the wavefunctions have a time dependence.[38] For the field
operators we have :

ψ̂(1) ≡ ψ̂(x1, t1) = eiĤt1ψ̂(x1)e−iĤt1 (2.24)
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where we introduce the notation 1 ≡ (x1, t1). For the interaction Hamiltonian we have :

Ĥ ′I(t) = eiĤtĤ ′(t)e−iĤt =

∫
dxdx′ψ̂†(x, t+)Φ(x, x′; t)ψ̂(x′, t) (2.25)

where we use the notation t+ for t+ δ with δ → 0+. We define a time-evolution operator
in terms of this interaction Hamiltonian :

Ŝ = exp

{
−i
∫ +∞

−∞
dtĤ ′I(t)

}
(2.26)

We now write the definitions of single- and two-particle Green’s functions that include
the dependence in Φ :

G(1, 2) = −i
〈N | T̂

[
Ŝψ̂(1)ψ̂†(2)

]
|N〉

〈N |T [Ŝ] |N〉
(2.27)

and

G2(1, 2 : 1′, 2′) = (−i)2
〈N | T̂

[
Ŝψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)

]
|N〉

〈N |T [Ŝ] |N〉
(2.28)

where |N〉 is the exact ground state of the N-electron system and T is a time-ordering opera-
tor. It ensures that the time variable increases from right to left. It gives T̂

[
ψ̂(r1t1)ψ̂†(r2t2)

]
= θ(t1− t2)ψ̂(r1t1)ψ̂†(r2t2)− θ(t2− t1)ψ̂†(r2t2)ψ̂(r1t1), where θ is the Heaviside func-
tion.[68] The physical meaning of the one-body Green’s function is the probability
amplitude that an electron added in the system at time t2 and position r2 propagates to
position r1 and time t1. In the time-ordered formalism that we are using, it is also the
probability amplitude that a hole created at time t1 and position r1 propagates to (r2, t2),
depending on how the two time variables are ordered. The two-particle Green’s function
G2 describes the propagation of two correlated particles. Depending on the time ordering,
it can describe a propagation electron-electron pair, a hole-hole pair or an electron-hole
pair. It will become useful in a following section.

We will now sketch a derivation for the equations of motion of the single-particle
Green’s function. To do this, we will make explicit the time dependence of each term
in Eq. (2.27). We start with the time evolution of the quantity T̂ [Ŝ] appearing in the
denominator of Eq. (2.27). For this we define the time evolution operator from Eq. (2.26)
in the interaction picture, from time ta to tb :

Ŝ(ta, tb) = exp

{
−i
∫ tb

ta

dtĤ ′I(t)

}
(2.29)
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Now the time derivatives of T̂ [Ŝ] are:

∂

∂ta
T [Ŝ(ta, tb)] = −iĤ ′I(ta)T [Ŝ(ta, tb)]

∂

∂tb
T [Ŝ(ta, tb)] = iT [Ŝ(ta, tb)]Ĥ

′
I(tb)

(2.30)

For the field operators, the derivation of the equations of motions can be found in Appendix
A. They read :

∂

∂t1
ψ̂(1) = −i

[
h(1) +

∫
d3v(1, 3)ψ̂†(3)ψ̂(3)

]
ψ̂(1)

∂

∂t2
ψ̂†(2) = i

[
ψ̂†(2)h(2) + ψ̂†(2)

∫
d3v(2, 3)ψ̂†(3)ψ̂(3)

] (2.31)

where we introduced v(1, 2) = v(r1, r1)δ(t1 − t2) and h(1) = h(r1). Knowing that the
derivative of the Heaviside function is a Dirac delta, we can write the equations of motion
for the single-particle Green’s functions :[
i
∂

∂t1
− h(1)

]
G1(1, 2)−

∫
d3Φ(1, 3)G1(3, 2) + i

∫
d3v(1, 3)G2(1, 3+; 2, 3++) = δ(1, 2)[

−i ∂
∂t2
− h(2)

]
G1(1, 2)−

∫
d3G1(1, 3)Φ(3, 2) + i

∫
d3v(2, 3)G2(1, 3−−; 2, 3−) = δ(1, 2)

(2.32)

with the notations :
Φ(1, 2) = Φ(x1, x2; t1)δ(t1 − t2). (2.33)

and
1+ = (r1, t

+
1 ) where t+1 = lim

η→0
t1 + η, η > 0 (2.34)

and equivalently for 1++. 1− and 1−− follow from a change of sign. Here we notice
that the equations for the single-particle Green’s function depend on the two-particle
Green’s function. The latter could be expressed in terms of the three-body Green’s
function, and so on. Instead of using a hierarchy of higher-order Green’s function, we will
eliminate the two-particle Green’s function from the equation and write a set of coupled
integro-differential equations containing the self-energy and other useful quantities.

We use the functional derivative identity, derived for example in Ref. [65] :

G2(1, 3; 2, 3+) = G(1, 2)G(3, 3+)− δG(1, 2)

δΦ(3)
(2.35)

where we consider the external potential to be local in space Φ(x1, x2; t1)
= Φ(x1, t1)δ(x1, x2). This restriction is enough to generate the equations of motion
for the single-particle Green’s function. For the two-particle ones instead, one needs
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to consider the more general form of the external potential, non-local in space. The
equations of motion become :[

i
∂

∂t1
− h(1)− Φ(1) + i

∫
d3v(1, 3)G(3, 3+)

]
G(1, 2)

− i
∫
d3v(1+, 3)

δG(1, 2)

δΦ(3)
= δ(1, 2) (2.36)

and[
i
∂

∂t2
− h(2)− Φ(2) + i

∫
d3v(2, 3)G(3−, 3)

]
G(1, 2)

− i
∫
d3v(2−, 3)

δG(1, 2)

δΦ(3)
= δ(1, 2) (2.37)

We cannot take the limit Φ → 0 yet because it would require the knowledge of the
functional dependence ofG on Φ. However Hedin proposed a way to rewrite the equations
of motion (or at least one of them and the other would undergo the same process) by
introducing new physical quantities, coupled in nonlinear self-consistent equations.[36]

The first of these quantities is the total classical potential V :

Vtot(1) ≡
∫
d2v(12)〈n̂(2)〉+ Φ(1) (2.38)

where n̂ is the density operator. It is the total potential felt by the electrons. It is local
as is it the sum of the external perturbation and the Hartree potential. The equation of
motion for the Green’s function is then :[

i
∂

∂t1
+

1

2
∇2(1)− Vtot(1)− i

∫
d3v(1+, 3)

δ

δΦ(3)

]
G(1, 2) = δ(1, 2) (2.39)

To get rid of the functional derivative with respect to the external perturbation, we make
use of the definition of the inverse Green’s function and of the functional differentiation
of a product:

δG(1, 2)

δΦ(3)
= −

∫
d45G(1, 4)

δG−1(4, 5)

δΦ(3)
G(5, 2) (2.40)

where the inverse single-particle Green’s function is defined as :∫
d3G−1(1, 3)G(3, 2) =

∫
d3G(1, 3)G−1(3, 2) = δ(1, 2) (2.41)

We now use the chain rule for functional differentiation :

δG−1(4, 5)

δΦ(3)
=

∫
d6
δG−1(4, 5)

δVtot(6)

δVtot(6)

δΦ(3)
(2.42)
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We introduce the scalar vertex function, a three-point quantity defined as :

Γ(1, 2; 3) ≡ −δG
−1(1, 2)

δVtot(3)
(2.43)

We introduce the inverse dielectric matrix ε−1 :

ε−1(1, 2) =
δVtot(1)

δΦ(2)
. (2.44)

It is the many-body formulation of the classical (inverse) dielectric matrix. We introduce
the dynamically screened interaction W or screened Coulomb interaction, defined as :

W (1, 2) ≡
∫
d3ε−1(1, 3)v(3, 2) ≡

∫
d3v(1, 3)ε−1(2, 3) (2.45)

Note that the screened interaction is symmetric under the exchange of indicesW (1, 2) =
W (2, 1). Finally, we introduce the electron self-energy, defined as :

Σ(1, 2) = i

∫
d34G(1, 3)Γ(3, 2; 4)W (4, 1+) (2.46)

With these quantities, we can rewrite the equation of motion for the single-particle
Green’s function :[

i
∂

∂t1
+

1

2
∇2(1)− Vtot(1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2) (2.47)

We can see here that the self-energy Σ has the meaning of a non-local and energy-
dependent effective single-particle potential.

Using Eqs. (2.43) and (2.47), we can express the vertex function in terms of the above
quantities.

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3). (2.48)

More details about these quantities and their derivations can be found for example in
Strinati’s review. [65] The previous quantities form a set of coupled integro-differential
equations. In order to close the loop and build a self-consistent set, we need to write the
relations betweenW and the other quantities. By combining Vtot, ε−1 andW , we get :

W (1, 2) = v(1, 2) +

∫
d34v(1, 3)

δ〈n̂(3)〉
δVtot(4)

W (4, 2) (2.49)
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We define the irreducible polarizability to be :

χ̃(1, 2) ≡ δ〈n̂(1)〉
δVtot(2)

. (2.50)

It is the response of the density under the action of the total classical potential. This
term is often called P in the GW literature. The reducible polarizability is instead the
derivative of the density with respect to the perturbation Φ :

χ(1, 2) ≡ δ〈n̂(1)〉
δΦ(2)

=

∫
d3

δn(1)

δVtot(3)

δVtot(3)

δΦ(2)
=

∫
d3χ̃(1, 3)ε−1(3, 2) = χ̃(1, 2)+

∫
d34χ̃(1, 3)v(3, 4)χ(4, 2)

(2.51)

With the following relation

n(1) = 〈n̂(1)〉 = −iG(1, 1+), (2.52)

and using properties of the inverse Green’s function and the chain rule, one can write :

χ̃(1, 2) = −iδG(1, 1+)

δVtot(2)
= i

∫
d34G(1, 3)

δG−1(3, 4)

δVtot(2)
G(4, 1+)

= −i
∫
d34G(1, 3)G(4, 1+)Γ(3, 4; 2)

(2.53)

Then we can write the screened interaction in term of χ̃ :

W (1, 2) = v(1, 2) +

∫
d34v(1, 3)χ̃(3, 4)W (4, 2) (2.54)

as well as the dielectric matrix :

ε(1, 2) = δ(1, 2)−
∫
d3v(1, 3)χ̃(3, 2) (2.55)

Note that we can also express the inverse dielectric matrix in terms of the reducible
polarizability from Eq. (2.51) :

ε−1(1, 2) = δ(1, 2) +

∫
d3v(1, 3)χ(3, 2) (2.56)

where both quantities satisfy :∫
d3ε−1(1, 3)ε(3, 2) =

∫
d3ε(1, 3)ε−1(3, 2) = δ(1, 2). (2.57)
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We now have a set of coupled self-consistent equations, where the limit Φ→ 0 can be
taken.

2.3.2. Dyson equation
In order to be able to compute the Green’s function and the related useful quantities, we

need to reformulate the problem using the non-interacting Green’s function G0. We start
by separating the part which comes only from the one-particle operators in the equation
of motion Eq. (2.47) : [

i
∂

∂t1
− h(1)

]
G0(1, 2) = δ(1, 2) (2.58)

This is the definition of the non-interacting Green’s function G0. Using its inverse G−1
0 ,

which obeys the same relation as the full single-particle Green’s function in Eq. (2.41),
we can rewrite the interacting Green’s function as :

G(1, 2) =

∫
d34G0(1, 4)G−1

0 (4, 3)G(3, 2) (2.59)

Inserting the above equation in Eq. (2.47), we get :∫
d3
[
G−1

0 (1, 3)− Σ(1, 3)
]
G(3, 2) = δ(1, 2). (2.60)

After multiplying from the left by
∫
d1G0(4, 1) we obtain :

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2) (2.61)

or equivalently,
G−1(1, 2) = G−1

0 (1, 2)− Σ(1, 2) (2.62)

Equation (2.61) is called the Dyson equation for the single-particle Green’s function.
KnowingG0, which is numerically simple to compute, and approximating the self-energy
Σ, which we will discuss later, allows one to compute the Green’s function G. At this
point it is useful to rewrite the self-energy as a sum of two terms Σ = vH + Σxc, which
are the Hartree potential and the exchange-correlation self-energy, repectively. Formally,
it writes :

Σ(1, 2) = vH(1, 2)− i
∫
d34v(1, 4)G(1, 3)

[
δG−1(3, 2)

δΦ(4+)

]
. (2.63)

With the Dyson equation for the Green’s function, we can now complete the set of
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self-consistent, coupled equations that are called the Hedin’s equations [36]:

Σ(1, 2) = i

∫
d34G(1, 3)Γ(3, 2; 4)W (4, 1+)

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3)

χ̃(1, 2) = −i
∫
d34G(1, 3)G(4, 1+)Γ(3, 4; 2)

W (1, 2) = v(1, 2) +

∫
d34v(1, 3)χ̃(3, 4)W (4, 2)

Γ andW also satisfy Dyson equations, just asG. This is an exact set of coupled equations,
that is solved self-consistently. The complexity to solve this set of equation comes from
the vertex function Γ, which is a function of three points. Approximating Γ in the
polarizability yields the Random Phase Approximation (RPA). Approximating it in the
self-energy gives the GW Approximation (GWA). We present these two in the following.

2.3.3. The Random Phase Approximation
The RPA consists in neglecting the vertex corrections in the formula of the reducible

polarizability Eq. (2.53). The vertex function reduces to

Γ(1, 2; 3) ≈ δ(1, 2)δ(1, 3). (2.64)

Then the irreducible polarizability writes :

χ̃(1, 2) ≈ χ̃0(1, 2) ≡ −iG(1, 2+)G(2, 1+) (2.65)

Working out the above expression, one can see that it is made of non-interacting electron-
hole pairs. The full polarizability follows from Eq. (2.51) :

χ(1, 2) = χ̃0(1, 2) +

∫
d34χ̃0(1, 3)v(3, 4)χ(4, 2) =

∫
d3χ̃0(1, 3) [1− vχ̃0]−1 (3, 2)

(2.66)
When we calculate χ̃0 from the single-particle Green’s function as in Eq. (2.65), the
derivative with respect to the perturbation is neglected. In this regard, χ̃0 is not an RPA
response function. We call it the independent particle response function while χ̃ is called
the RPA response function, for historical reasons. However, χ̃0 will be useful when
dealing with optical properties. Overall, the RPA gives a simplified means to compute
the response functions and screening of the system.
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2.3.4. The GW approximation
To calculate properties of the correlated N-electron system, the Hedin’s equations are

a great tool but are unsolvable in practice. One has to chose a starting approximation for
the self-energy, which contains the summation to all orders in the interaction expansion
of G. One way to approximate the self-energy is to consider δΣ(12)

δG(4,5)
= 0 so that Γ =

δ(1, 2)δ(1, 3), just as for the RPA, and we obtain :

Σxc(1, 2) = iG(1, 2)W (1, 2). (2.67)

This is the so-called GW approximation, which gives good results for weakly-correlated
materials.[37] It is the first-order in the expansion of the self-energy in terms of the
interaction W . All higher order terms that are involved in electronic correlations are
neglected. Part of those can be included by recomputing G self-consistently with the
Hedin’s equations. However in practice, it is not guaranteed that it leads to better results.
TheGW method is commonly used as a one-shot calculation starting from the DFT Kohn-
Sham eigenvalues and wave functions. This is referred to as the G0W0 approximation.
Instead one can iterate the Hedin’s cycle in the GWA but calculating only the change in
the poles of G. This is referred to as the self-consistent eigenvalue GW , or evGW. We
will use both in the body of this thesis.

Eq. (2.67) resembles the Hartree-Fock approximation, where the exchange part of the
self-energy is written as ΣHF

x (1, 2) = iG(1, 2+)v(1, 2). The difference in this case is
that we used the dynamically screened interaction instead of the bare Coulomb one.

2.3.5. Quasiparticle equations
Once the limit Φ → 0 is taken, there is no time-dependent potential acting on the

system of N electrons. Hence, the system is invariant under time translation and the
Green’s function depends only on the time difference τ = t1− t2. One can do the Fourier
transform from time τ to frequency ω, and we can write the Green’s function in the
so-called Lehmann representation :

G(x1, x2;ω) =
∑
a

fa(x1)f ∗a (x2)

ω − εa + iη
+
∑
i

fi(x1)f ∗i (x2)

ω − εi + iη
(2.68)

where a, i denote electron states, fa(x) = 〈N | ψ̂(x) |N + 1, a〉 and
fi(x) = 〈N − 1, i| ψ̂(x) |N〉 are the Lehmann amplitudes (also called Dyson orbitals).
They are defined with the N -electron ground state |N〉 whose total energy is EN , the
electron state number a of the (N + 1)-electron system |N + 1, a〉 with total energy
EN+1,a and the electron-state number i of the (N − 1)-electron system |N − 1, i〉 with
total energy EN−1,i. The Lehmann representation of the Green’s function also contains
the quasiparticle energies, which are defined as εa = EN+1,a − EN = −Aa and εi =
EN − EN−1,i = −Ii. Aa and Ii are the electron affinities and ionization energies.
This highlights the link between the poles of the Green’s function from many-body
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Figure 2.2. – Sketches of A) the photoemission spectroscopy , where the kinetic energy
of the extracted electron is measured, B) Inverse photoemission spectroscopy, where
the emitted light coming from the de-excitation of the added electron is measured.
EF is the Fermi level, Evac is the vacuum level, Ekin is the kinetic energy of the
added or removed electron, Φ is the extraction energy.

perturbation theory and the photoemission spectroscopy (PES) and inverse photoemission
spectroscopy (IPES), and is illustrated in Fig. 2.2. In PES, the ionization energy writes
Ii = −εi = ~ω − Ekin − Φ for εi < EF where Φ is the extraction energy to send an
electron above the vacuum energyEvac with a kinetic energyEkin, thanks to an irradiation
of energy ~ω. In IPES, the electronic affinity writes −Aa = εa = Ekin − ~ω + Φ, for
εa ≥ EF , with EF being the Fermi level.

With this form of the Green’s function we can reformulate the Dyson equation from Eq.
(2.61). Just as the Green’s function, the self-energy depends only on the time difference
τ = t1 − t2. We can then take the Fourier transform of Eq. (2.47) :

[ω − h(r1)]G(x1, x2;ω)−
∫
dx3Σ(x1, x2;ω)G(x3, x2;ω) = δ(x1, x2) (2.69)

Inserting the Lehmann representation ofG(x1, x2;ω), one can select the term correspond-
ing to a given pole εn by multiplying the equation by ω − εn and taking the limit ω → εn,
giving :

[εn − h(r1)] fn(x1)f ∗n(x2)−
∫
dx3Σ(x1, x3; εn)fn(x3) = εnfn(x1) (2.70)
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and we obtain an eigenvalue equation :

h(r1)fn(x1) +

∫
dx3Σ(x1, x3; εn)fn(x3) = εnfn(x1) (2.71)

These are the quasiparticle equations. They give the quasiparticle energies and the
Lehmann amplitudes, or also called the Dyson orbitals. The quasiparticle energies
are in general complex, and the Lehmann amplitudes, which act as the quasiparticles
wavefunctions, are not orthogonal because Σ is energy-dependent and non Hermitian.
The physical meaning of the poles of G is therefore the exact excitation energies of the
N ± 1 electrons. In an infinite, periodic system, the poles form a branch cut, and we
can interpret the excitation spectrum in terms of quasiparticles with energies Re εn and
life-times 1/ Im εn Here it is again made apparent that Σ is a non-local, energy-dependent
single-particle effective potential. One thing to notice is also the fact that the quasiparticle
energy is made out of the bare, independent single particle, and another term coming
from the interaction with surrounding particle. The quasiparticle is the bare particle
“dressed” with the interaction. This is a formulation in the Green’s functions formalism
of the quasiparticle concept, which was first introduced by Landau in the theory of Fermi
liquids.[69] Since Σ is frequency-dependent, so are the quasiparticle energies. To solve
this in practice, we linearize the self-energy around the independent particle energies
computed in DFT and get :

εn = εKSn + Zn Re Σ(εKSn ) (2.72)

where εKSn are Kohn-Sham eigenvalues and the renormalization factor Z is defined as :

Zn ≡
[

1− ∂Σ(ω)

∂ω

∣∣∣∣∣
ω=εn

]−1

(2.73)

It is a measure of the single-particle character of the system. If Z = 1, there is no
correlation effects and the electron addition or removal spectra (given by ImG) shows
a single peak at the quasiparticle energy. The life-time of the single-particle state is
infinite. For weakly correlated system, we have typically Z . 1. In this case, the intensity
of the quasiparticle peak is renormalized by Z, and the amount missing is transferred
to secondary peaks called satellites. In the GW approximation, only one satellite is
present and its maximum is usually not at the correct position when compared with
experiments.[70] This is due to the approximations done in the derivation of the GW
self-energy. Finally if Z � 1, it means that the material is not well described by a single-
particle scheme, for example because of strong correlations. In this case, Many Body
Perturbation Theory is not well suited to describe such materials and a non-perturbative
approach is required.

53



2. State of the art theory – 2.3. Many-Body Perturbation Theory

2.3.6. The Bethe-Salpeter equation
The GW approximation allows us to compute the quasiparticle energies via the ad-

dition or removal of one particle. These excitations are called charged. Instead, optical
excitations in semiconductors are called neutral excitations, where an electron is promoted
to a conduction band but stays in the crystal, leaving a hole in a valence band. In order to
have a good description of these phenomena, we need to consider the interaction between
the excited electron and the hole. In principle, this interaction is included in the vertex
function Γ from Eq. (2.48). However, we have neglected it in the GW approximation.
In this section, we will see how to include the electron-hole interaction from the two-
particle Green’s function. Doing this will include the electron-hole interaction only in
the response function, where it is known to have very important contributions, and not in
the single particle Green’s function where its contribution is less important. [71] We will
also see how we can change the formulation of the problem from particles in bands to a
new type of quasiparticle : the exciton, which is a bound electron-hole pair.

Dyson equation for the two-particle propagator L

We start by writing a Dyson equation for the two-particle Green’s function, defined in
Eq. (2.28). We define the two-particle correlation function or propagator L :

L(1, 2, 1′, 2′) = −G2(1, 2, 1′, 2′) +G(1, 1′)G(2, 2′) (2.74)

It contains the correlated propagation of a particle and a hole which is the first term, and
the second term removes the uncorrelated propagation of the two. Depending on the
time-ordering of the field operators in the definitions of G and G2, one can have different
combinations for the two particles, for instance hole-hole, electron-electron etc. By using
the identity in Eq. (2.35), with a fully non-local external potential Φ(2′, 2), we can also
write :

L(1, 2, 1′, 2′) =
δG(1, 1′)

δΦ(2′, 2)
= −

∫
d33′G(1, 3)

δG−1(3, 3′)

δΦ(2′, 2)
G(3′, 1′) (2.75)

After computing the functional derivative of the inverse Green’s function, we get :

L(1, 2, 1′, 2′) = G(1, 2′)G(2, 1′) +

∫
d33′G(1, 3)

δΣ(3, 3′)

δΦ(2′, 2)
G(3′, 1′) (2.76)

with Σ = vH + Σxc. One can take the limit Φ→ 0 in the above equation to obtain the
equilibrium solution. The first term in Eq. (2.76) is defined as the propagator for two
independent particles :

L0(1, 2, 1′, 2′) = G(1, 2′)G(2, 1′) (2.77)
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We can use the chain rule for the functional derivative of Σ to express it with respect to
G. Now if we define the two-particle interaction Ξ as :

Ξ(3, 2, 3′, 2′) ≡ −iδ(3, 3′)δ(2′+, 2)v(3+, 2) +
δΣxc(3, 3

′)

δG(2′, 2)
(2.78)

we see that it is made out of two terms. When G changes under the action of Φ, the
variation of the Hartree potential vH gives the first term, and the second term comes
from the variation of Σxc. This two-particle interaction is a measure of how the internal
potentials (both local and non-local) of the system vary under the action of the external
non-local perturbation Φ. Finally we obtain the Bethe-Salpeter equation (BSE):

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) +

∫
d3′3d44′L0(1, 3′, 1′, 3)Ξ(3, 4, 3′, 4′)L(4′, 2, 4, 2′)

(2.79)
which is a Dyson equation for the two-particle propagator L. The two-particle interaction
quantity Ξ is called the kernel. It contains two terms we can separate and hence break
the BSE into the so-called irreducible contribution, that does not contain the derivative
of the Hartree potential vH :

L̃(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′) +

∫
d33′d44′L0(1, 3′, 1′, 3)

δΣxc(3, 3
′)

δG(2′, 2)
L(4′, 2, 4, 2′)

(2.80)
and

L(1, 2, 1′, 2′) = L̃(1, 2, 1′, 2′)− i
∫
d34L̃(1, 3, 1′, 3)v(3+, 4)L(4, 2, 4+, 2′) (2.81)

Now, from the first identity in Eq. (2.74), we have that L is the variation of G under
the action of a non-local potential Φ. If we define vH(2′, 2) ≡ δ(2′, 2)vH(2), then we
can extend the total classical potential Vtot from Eq. (2.38) to be non-local, and we can
express the irreducible two-particle propagator as :

L̃(1, 2, 1′, 2′) =
δG(1, 1′)

δVtot(2′, 2)
(2.82)

With this equation, we can notice the similarity with Eq. (2.50), where the density is
replaced by the Green’s function and the total classical potential is non-local. In fact, the
irreducible two-particle propagator L̃ is a generalization of the irreducible polarizability
to four points. We have the relation :

− iL̃(1, 2, 1+, 2+) = χ̃(1, 2) (2.83)
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The same relation exists for the full or reducible polarizability, which we call χ, and the
reducible two-particle propagator :

χ(1, 2) =
δn(1)

δΦ(2)
= −iL(1, 2, 1+, 2+) (2.84)

In the two above equations, the time-ordering is chosen so that the two-particle propagator
(reducible or irreducible) describes the propagation of an electron-hole pair.

The Bethe-Salpeter equation in the GW approximation

In the same way we needed an approximation to compute the electron self-energy
Σ, we need an approximation to be able to compute the kernel Ξ and hence the Dyson
equation for L. The main difficulty in solving the BSE is that the kernel is a four-points
quantity. In principle, the arguments are in spin-space-time coordinates. In the following,
we will omit the spin dependence. The two-particle propagators depend on four times or
three time differences, in the absence of a time-dependent Hamiltonian. We can do the
Fourier transform of the BSE, which will therefore depend on three frequencies. If we
consider only the simultaneous propagation of an electron and a hole, we obtain :

L(ω1, ω2) = L0(ω1, ω2) +

∫
dω3dω4

L0(ω1, ω2, ω3)

(2π)2
Ξ(ω1, ω3, ω4)L(ω1, ω4) (2.85)

For more details about this derivation and the relation between the Green’s functions in
frequency space, please refer to section 4 of Chapter 14 of Ref. [38]. We set ourselves
in the GW approximation, which will simplify the calculation of the kernel Ξ. The
exchange-correlation part reads :

ΞGWA
xc (1, 2, 3, 4) = iδ(1, 4)δ(2, 3)W (1, 2) + iG(1, 3)

δW (1, 3)

δG(4, 2)
(2.86)

The first term is at first order inW . The second term is the change in the screening when
the system is perturbed, and contains higher orders inW . In accordance with the GW
approximation, we also neglect here the second term in the above equation. In frequency
space, we are left with :

ΞGWA
xc (ω1, ω2, ω3) ≈ iW (ω2 − ω3) (2.87)

Here we see that the coupling between two particles, which comes from the screened
interaction, is frequency-dependent. It originates from the fact that the system needs time
to adapt to the perturbation, which is the creation of the electron-hole pair. Another im-
portant approximation that we introduce here is that we consider the screened interaction
to be static, i.e. frequency-independent : W (ω)→ W (0). In practice, we obtain L0 with
the single-particle Green’s functions in the quasiparticle approximation in the dynamic
GWA, and we use a static screening only for the kernel of the BSE. Reintroducing the
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space and (implicit) spin dependence, we finally obtain :

L(x1, x2, x1′ , x2′ ;ω) =L0(x1, x2, x1′ , x2′ ;ω)

− i
∫
dx3dx4L0(x1, x3, x1′ , x3;ω)v(x3, x4)L(x4, x2, x4, x2′ ;ω)

− L0(x1, x4, x1′ , x3;ω)W (x3, x4)L(x3, x2, x4, x2′ ;ω)

(2.88)

The static screening approximation is necessary to obtain a two-particle propagator that
depends only on one frequency. Hence we will be able to invert the BSE and to rewrite
the problem into an excitonic Hamiltonian, as it is done in the paragraph below. However,
previous works attempted to solve the BSE with a dynamic kernel, such as Refs. [42,
72]. Part of the results presented later in this thesis are obtained by adding a dynamical
correction to the static BSE kernel.

Reformulation in a two-particle Schrödinger equation

The BSE derived in the previous section, Eq. (2.88), can be reformulated into a
Schrödinger equation for two particles, which is easier to solve and will highlight the
physics of the problem and make the excitons appear as emerging quasiparticles. In this
section, we omit the dependence in the momenta for simplicity, but the generalization
to finite momenta is possible.[73] Here we consider an independent-particle basis in
which the non-interacting two-particle propagator L0 is diagonal, and we assumed that
we obtained the quasiparticle eigenvalues from the GWA. At T = 0, we can write :

L0 n1n2n3n4(ω) = Ln4n2
0 n1n3

= 2i
(fn1 − fn2)δn1n4δn2n3

ω − (ε1 − ε2)± iη (2.89)

where the ni indices denote for the quasiparticle state with occupation number fi and the
factor 2 in the right-hand side stems from the summation on spin indices. The plus or
minus sign in the denominator depends on the sign of the difference of the occupation
factors fi. In this basis, the BSE becomes :

Ln4n2
n1n3

=

[
L−1

0 +
i

2
Ξ

]−1 n4n2

n1n3

= 2i
[
H2p − I(ω ± iη)

]−1 n4n2

n1n3
(fn2 − fn4), (2.90)

where I is the identity matrix and H2p is the two-particle Hamiltonian

H2p n4n2
n1n3

= (εn2 − εn1)δn1n4δn2n3 + (fn1 − fn3)Ξn4n2
n1n3

. (2.91)

The matrix elements of the kernel are :

Ξn4n2
n1n3

= 2vn3n2
n1n4
−W n4n2

n1n3
(2.92)
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In our derivation we consider a semiconductor or an insulator with well-separated valence
and conduction bands. Therefore the difference of the occupation factors, at T = 0, in
the above equations guarantees that only pairs of an occupied and an empty state are
contributing in the interaction. We can use the indices v, c for valence and conduction
states, respectively. Then

Ξv′c′

vc = 2vcc
′

vv′ −W v′c′

vc (2.93)

The first term above is often referred to as electron-hole exchange and is repulsive. The
second term is called the direct electron-hole interaction, and it is an attractive interaction
between the electron and the hole that binds them in a pair. We can decompose the
Hamiltonian into four blocks :

H2p =

(
Hres Hcoupl

−[Hcoupl]∗ Hares

)
(2.94)

where the resonant part is

Hres ≡ H2p v′c′

vc = (εc − εv)δvv′δcc′ + Ξv′c′

vc (2.95)

This subpart is hermitian and corresponds to transitions from the valence to the conduction
band, with positive frequencies. The coupling part is :

Hcoupl ≡ H2p c′v′

vc = Ξc′v′

vc = [Ξv′c′

cv ]∗ (2.96)

which is symmetric. The antiresonant part is :

Hares ≡ H2p c′v′

vc = (εv − εc)δvv′δcc′ − Ξc′v′

cv = −[Hres]∗ (2.97)

The whole Hamiltonian H2p is pseudo-hermitian, which means that its eigenvalues are
always real. For the calculations in this thesis, we used the Tamm-Dancoff approximation,
which consists in neglecting the coupling part of the Hamiltonian. It works best with bulk
semiconductors and insulators, where the energy of the transitions is large compared to
the interaction matrix elements inHcoupl. [74] With this approximation, we only consider
transitions with positive energies for the resonant term, and the full Hamiltonian becomes
hermitian. It also simplifies the solution of the BSE since we can calculate only the
resonant term, and the antiresonant follows by taking its complex conjugate. In the
Tamm-Dancoff approximation, we can build a two-particle Schrödinger equation :∑

n3n4

H2p n3n4
n1n2

An3n4
λ = EλA

n1n2
λ (2.98)

where Eλ is the eigenenergy of the exciton λ. We change from the quasiparticle basis
{n} to the exciton basis {λ} where we can write the exciton wave function as :

Ψλ(r1, r2) =
∑
n1n2

An1n2
λ ψ∗n1

(r1)ψn2(r2) (2.99)
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where Aλ are the coefficients of the expansion in the exciton basis. We will see later that
they are also related to the oscillator strength of the transitions. Finally we can write the
two-particle propagator using these quantities :

Ln3n4
n1n2

(ω) = 2i
∑
λλ′

An1n2
λ A∗n3n4

λ′

ω − Eλ + iη
(fn4 − fn3) (2.100)

Each couple (nn′) corresponds to a pair (vc) or (cv) of an occupied and an empty state.
We remark that the exciton energies replaced the difference of quasiparticle energies
εc − εv in the denominator, which are the quasiparticle transition energies. The screened
interaction contributes to the attraction between the electron and the hole, lowering the
transition energy below the gap. The Coulomb interaction includes the local field effects,
which have a significant contribution for inhomogeneous systems. Overall, the exciton
energy will lie below the minimal quasiparticle transition energy, which is the energy of
the gap. The difference between the transition energy and the quasiparticle gap is called
the exciton binding energy. Excitonic effects can be extremely important in the optical
properties of semiconductors, as we will see in the next section.

2.4. Optics
Optics experiments involve an external field interacting with the electronic density of

the material. In the regime of low intensity field where we can describe it as a perturbation,
the formalism presented above is a perfectly suited simulation tool. The key quantity
to reproduce the results of these experiments is the electronic screening of the material,
which is linked to the dielectric matrix and to the response function or polarizability
χ. Pertubatively, the response of the electronic density with respect to an external field
can be described in terms of the neutral excitations of the system, i.e. by the formation
and propagation of electron-hole pairs. In optics experiments, the external fields have
wavelength that are far larger than the characteristic length of the unit cells of the crystals
we simulate. Typically, the wavelengths are in the visible or ultraviolet range, from 180
nm to 1200 nm, while the crystal unit cells are of the order of a few nm. In order to obtain
optical spectra that are comparable to those measured experimentally, we need to average
the microscopic variations in the response functions and related quantities we introduced
so far. Hence we can obtain macroscopic quantities, which are the ones accessible in
experiments.
To make the distinction between short-range, microscopic variations and long-range,

macroscopic variations of the quantities of interest in a periodic and infinite crystal, it is
easier to make use of the space Fourier transform and to work in reciprocal space. For a
function f of two space variables and one frequency (or one time difference), its space
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Fourier transform is :

f(r, r′;ω) =
1

Ω

BZ∑
k

∑
GG′

exp{i(k + G) · r}f(k + G,k′ + G′;ω) exp{−i(k + G′) · r′}

(2.101)
whereΩ is the volume of the crystal (more precisely of the Born-von Karmann supercell in
the case of an infinite crystal), k is a Bloch wavevector confined to the first BZ andG,G′
are reciprocal lattice vectors. With this definition, we can write the inverse dielectric
matrix in reciprocal space :

ε−1
GG′(q;ω) = δGG′ + v(q + G)χGG′(q;ω) (2.102)

where q is a vector in the first BZ. The Fourier transform of the Coulomb potential is
v(q + G) = 4π

|q+G|2 . The matrix elements of the screened interactionW in reciprocal
space are

WGG′(q;ω) = ε−1
GG′(q;ω)v(q + G′) = v(q + G) + v(q + G)χGG′(q;ω)v(q + G′)

(2.103)
It is useful to make the separation between long-range and short-range terms in the
Coulomb potential v = v0 + v̄, where v0 is the long-range component with G = 0 and v̄
contains all the G 6= 0 components. We have

v̄(G) = 0 forG = 0
v̄(G) = v(G) forG 6= 0,

(2.104)

and we can define the corresponding polarizability, called the proper response function :

χ̄GG′(q, ω) = χGG′(q, ω)− χGG′(q, ω)v̄(q + G)χ̄GG′(q, ω) (2.105)

Now if we use v̄ instead of v in the Bethe-Salpeter kernel Ξ, we can compute the two-
particle propagator without the long-range component of the Coulomb interaction, and
we have the usual relationship :

χ̄(1, 2) = −iL̄(1, 2, 1+, 2+) (2.106)

L̄ is the most commonly computed quantity for the calculation of optical spectra in the
context of the BSE.[75]
The response function enters both reciprocal space expressions in Eqs. (2.102) and

(2.103). Depending on which level of theory the electron-hole interaction is treated, its
expression will be different and will lead to different spectra. Before writing its expression
we need to define the matrix elements of pairs of orbitals, that we call generalized dipoles
:

ρvkck+q(G) = 〈ck + q| ei(q+G)·r |vk〉 (2.107)

where v, c denote for valence and conduction states. These matrix elements describe the
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transition from a valence state at k to a conduction state at k + q mediated by an electric
field with momentum q. At this point we note that, for momentum conservation, the
vector q which lies in the first BZ has to be equal to the difference of two crystal momenta
k.

For independent particles, the response function has the form χ0 = −iG0G0, whereG0

are non-interacting Green’s functions. The first matrix element of this response function
can be written :

χ0
00(q→ 0, ω) = 2 lim

q→0

∑
vck

|ρvkck+q|2
ω − (εck+q − εvk) + iη

(2.108)

This response function will give a spectrum with peaks at the independent-particle
transition energies. Due to momentum conservation, only transitions with momentum
transfer q between the hole in state vk and the electron in state ck + q contribute.
To account properly for the electron-hole interaction, which is crucial to accurately

simulate optical spectra, we can compute the response function at the BSE level The
diagonalization of the two-particle Hamiltonian H2p in Eq. (2.91) with v̄ gives the
excitonic eigenvectors Āλ (in the following, we will omit the bar for simplicity). Using
this, the head of the response function matrix is :

χ̄00(q→ 0, ω) = 2 lim
q→0

∑
λ

∣∣∣∑vck Ā
vkck+q
λ ρvkck+q

∣∣∣2
ω − Eλ + iη

(2.109)

Compared to Eq. (2.108), the transition energies are replaced by the excitonic energies,
meaning the positions of the peaks will be changed with respect to independent-particle
calculations. Also, the Aλ coefficients participate in the mixing of the dipole matrix
elements,[75] which will give rise to different structures in the spectra.

2.4.1. Optical absorption
As mentioned at the start of this section, we need to relate the many-body quantities we

compute with the ones measured experimentally. To this end, we first write the relation
between the microscopic inverse dielectric function and the proper response function :

1

ε−1
00 (q, ω)

= 1− v0(q)χ̄00(q, ω) (2.110)

where it should be understood that the 00 indices mean that we take the first component
of the inverse, and not the inverse of the first component. We now define the macroscopic
dielectric function as :

εM(ω) ≡ lim
q→0

1

ε−1
00 (q, ω)

(2.111)
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and using the relation from Eq. (2.110) :

εM(ω) = 1− lim
q→0

4π

q2
χ̄00(q, ω) (2.112)

Taking the optical limit q→ 0 is justified because the longitudinal external field carries
a very small momentum with respect to the extent of the Brillouin Zone. This equation
is well-behaved at the small-q limit because χ̄00 has a q2 dependence. Here we see the
advantage of using the proper response function χ̄ because it gives us direct access to the
macroscopic dielectric function without the need to average or to invert the microscopic
one. The macroscopic dielectric function is a complex function εM(ω) = ε1(ω) + iε2(ω)
and the absorption spectrum will be given by its imaginary part. Let us express it in a
computable way.
In the optical limit, we can expand the generalized dipoles from Eq. (2.107) to first

order in q, and the first non-zeo term is ∝ |iq · 〈c| r− r′ |v〉|2 = q2 |n̂ · 〈c| r |v〉|2 where
n̂ is the versor pointing in the direction of q. We then define the dipole matrix elements
as :

dcvk = n̂ · 〈ck| r |vk〉 (2.113)

Now by making use of Eqs. (2.112) and (2.108), we can write the imaginary part of
the macroscopic dielectric function in terms of the dipoles. For independent particles, it
writes :

ε2(ω) =
8π2

V

∑
cvk

|dcvk|2 δ(ω − (εck − εvk)) (2.114)

At the BSE level, the dipole matrix elements are replaced by their linear combination
with exciton eigenvectors. Using Eq. (2.109), it gives :

ε2(ω) =
8π2

V

∑
λ

∣∣∣∣∣∑
cvk

Acvkλ dcvk

∣∣∣∣∣
2

δ(ω − Eλ) (2.115)

As one can see in the delta functions of the two versions, the peaks are not given by the
same excitations. Hence the spectra will exhibit different features, whether we consider
independent particles or we include the electron-hole interaction with the BSE. This is
illustrated in Fig. 2.3.
We now have access to another relevant quantity which is the absorption coefficient

α(ω) :

α(ω) =
ω

c

ε2(ω)

n1(ω)
(2.116)

It is the ratio of the imaginary part of the dielectric function and the real part of the
refractive index which writes n(ω) = n1(ω) + in2(ω). The refractive index is obtained
with εM(ω) = n2(ω) The absorption coefficient is completely determined by ε2(ω) and
it is the quantity that yields the absorption spectra that we compare to experiments.[16]

Moreover, we see that the absorption is proportional to the quantityT λ =
∑

cvkA
cvk
λ dcvk
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Figure 2.3. – Absorption spectrum of bulk hBN, computed at the independent particle
level (orange) and at theBSE level (blue) of theory, compared to the experiment
(red dots) of Ref. [30]. The vertical line is at the supposed gap energy. The orange
curve watch shifted to match it. The inclusion of excitonic effects makes a striking
difference from the independent particle level and gives a much better agreement
with experiment, where peaks appear below the gap energy. Note that the blue curve
is calculated to match only the first peak and all curves are normalized.

that we define as the exciton dipole, also known as exciton oscillator strength. Each exci-
ton has a dipole associated to it. If the dipole is large, then peaks will be visible in the
absorption spectra at the corresponding exciton energy. For this reason these excitons are
called bright. Instead if the excitons have a dipole equal to zero, which can be the case
for transitions forbidden by spin or momentum conservation, then the excitons are not
visible in absorption and are called dark.

2.4.2. Luminescence
In general, luminescence is the spontaneous emission of light from an excited state of

the material. Depending on how the system is excited, a prefix is added. For instance, if the
system is excited by a laser, the process is called photoluminescence. It is called cathodo-
luminescence when the excitation is made by a beam of electrons, electroluminescence
when an electric field is applied, an so on.[17]

Photoluminescence is the process that can be seen as the inverse of absorption : photo-
excited carriers de-excite from the bottom of the conduction band to an empty state in the
valence band by emitting light with a frequency corresponding to the gap energy. For
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direct semiconductors or insulators, considering that the light emission is the inverse
process of the absorption is generally an acceptable approximation. In this case, the
spectra for the two process should look identical 1. However, for materials with indirect
gaps, this simple picture does not hold anymore. Indeed, one needs to consider the
phonon-assisted transitions, which give rise to phonon satellites in both the absorption
and the luminescence spectra, as will be discussed later.

Here I will present an approximation to derive the spontaneous emission rate, which
is the key quantity to compute luminescence spectra, for any kind of gapped material,
starting from the absorption rate. We use the van Roosbroeck–Shockley relation, derived
in 1954 to describe the light emission in Germanium [76] and follow Refs [29, 77]. This
relation is based on a steady-state approximation, that is to say we consider the absorption
rate and the spontaneous emission rate to be in detailed balance. We start by giving the
relations for the case of independent particles and direct transitions only. For indirect
transitions, the same kind of relations hold but they need to be slightly modified to include
the phonon-assisted transitions, which will be done in the body of this thesis. Here we
consider a quasi-equilibrium situation where excited electron and holes are relaxed at
the band extrema after scattering with phonons, electrons or other relaxation processes.
Hence we reach a quasi-equilibrium distribution of particles where some electrons have
been removed from the top valence band and promoted in conductions bands. These
electron and hole distributions are described by two Fermi-Dirac functions with two
different chemical potentials (for a discussion see section 12.2.1 of Ref. [78]). The
absorption rate is :

Rabs(ω) = 2πK(ω)
N (ω)

Nk

∑
cvk

|dcvk|2 [fvk(1− fck)− fck(1− fvk)] δ(εck − εvk − ω)

(2.117)
where fnk =

[
1 + eεnk−µe/h/kBT

]−1 is the Fermi-Dirac occupation function for the state n
at point k, µe/h being the chemical potential for electrons or holes. K(ω) is a dimensional
factor depending on electromagnetic quantities. The rate of spontaneous emission writes
:

Rsp(ω) = 2πK(ω)
G(ω)

Nk

∑
cvk

|dcvk|2 fck(1− fvk)δ(εck − εvk − ω) (2.118)

These two expressions differ by the occupation functions of the electrons and holes, but
also by the presence of the photon density of states G(ω) in one and the photon density
per unit energy N (ω) in the other. The two are linked by the relation

∫
N (ω)dω =∫

N̄G(ω)dω where N̄ is the average photon number.
If we define the incoming photon flux as F(ω) = N (ω) c

n1(ω)
, we can use the following

relation :
Rabs(ω) = F(ω)α(ω) (2.119)

1. In reality there are differences such as the Stokes shift, which is caused by the broadening of
electronic states by phonons.
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Finally, we can derive a Bose-Einstein type of occupation function by noticing that the
following relation holds independently of which (cvk) transition is considered :

fck(1− fvk)

fvk(1− fck)− fck(1− fvk)
=

1

eω−(µe−µh)/kBT − 1
≈ e−(ω−∆µ)/kBT (2.120)

where in the last step we approximated the Bose-Einstein function with a Boltzmann
distribution. Finally, by comparing the absorption and the spontaneous emission rates,
we obtain :

Rsp(ω) =
n1(ω)2ω2

π2c2
α(ω) e−(ω−∆µ)/kBT

=
n1(ω)ω3

π2c3
ε2(ω) e−(ω−∆µ)/kBT

(2.121)

We now have the spontaneous emission rate expressed in terms of absorption-related
quantities that we are able to compute. Depending on which level of theory we consider,
we can plug in either Eq. (2.114) at the independent particle level or Eq. (2.115) to
include the excitonic effects. Note that in the latter case, the refractive index is calculated
differently :

nexc1 (ω) =

√
1
2

√
εexc1 (ω)2 + εexc2 (ω)2 + εexc1 (ω). (2.122)

We can slightly anticipate the following parts of this thesis and mention how this relation
is modified in the case of indirect transitions, assisted by phonons :

Rsp,exc
µq (ω) =

nexc1 (ω)ω(ω − 2Ωqµ)2

π2c3
εexc2 (ω − 2Ωqµ)nB(ω), (2.123)

where Ωqµ refers to a phonon frequency for the phonon mode µ at momentum q, which
will be introduced in the next section and nB is the Boltzmann distribution.

2.5. Phonons and electron-phonon coupling
In solids, the collective motion of atoms can be treated as quasiparticles, called phonons.

They represent the vibrational eigenmodes of atoms in the crystal. In this thesis we use
the harmonic approximation, which means that we approximate the potential acting on the
atoms as a sum of coupled harmonic oscillators. In this approximation the phonons are
eigenstates of the system with infinite lifetime. Corrections due to the anharmonicity or
to the coupling between electronic and atomic motions introduce a finite lifetime for the
atomic vibrations, but these effects are not considered here.[66] A phonon is a quantum
of lattice vibrations and similarly to the crystal momentum k of the electrons, phonons
have a crystal momentum that we call q. In a unit cell containing multiple atoms, there
are two types of phonons based on the relative motion of the atoms. When the atoms
oscillate in phase, the resulting vibration propagates as a sound wave, and these phonons
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are known as acoustic phonons. On the other hand, if the atoms oscillate in opposition of
phases, the phonons are referred to as optical phonons.
Vibrational modes and their frequencies can be calculated classically by modelling

the crystal by atoms linked with springs with different rigidities. One can also solve the
problem analytically for simpler systems in the second quantization formalism.[79] Here
I will present a scheme based on DFT which allows to compute the phonon frequencies
and eigenvectors from the variation of the Kohn-Sham potential with respect to the atomic
displacements. The following formulation is mainly adapted from Refs. [39, 77, 80].
We are still in the Born-Oppenheimer approximation presented in Sec. 2.1, i.e. the

ionic Hamiltonian depends on the electronic potential evaluated only at the static ionic
positions. Reciprocally, the electronic Hamiltonian depends parametrically on the ionic
positions {R}. The vibrational problem can be solved starting from the Taylor expansion
of the total energy of the solid around the equilibrium positions of the atoms. We truncate
the expansion at the second order, which is the harmonic approximation. It reads :

E({R}) = E({R0})

+
∑
Lsα

∂E({R})
∂R0

Lsα

∣∣∣∣∣
0

(RLsα−R0
Lsα

)

+
1

2

∑
Lsα
Mtβ

∂2E({R})
∂R0

Lsα∂R
0
Mtβ

∣∣∣∣∣
0

(RLsα −R0
Lsα)(RMtβ −R0

Mtβ) + . . .

(2.124)

where {R} and {R0} are the set of positions and equilibrium positions of all the nuclei
in the system. They depend on three indices : s, t count the nuclei in the unit cell, L,M
denote for the unit cell index in the whole crystal and α, β are for the Cartesian directions.
The first line of the above expression is the total energy evaluated at equilibrium positions,
which in our case is calculated within DFT. The second line is the force acting on a
nucleus when displaced around its equilibrium position. It is defined as :

FLsα ≡ −
∂E({R})
∂R0

Lsα

. (2.125)

The third term is the Hessian of the Born-Oppenheimer energy surface, or the force acting
on the nucleus (Ls) induced by the displacement of another nucleus (Mt). We define
the matrix of interatomic force constants as :

CLsα
Mtβ ≡

∂2E({R})
∂R0

Lsα∂R
0
Mtβ

= − ∂FLsα
∂R0

Mtβ

(2.126)

The higher order terms are anharmonic and are relevant for the calculation of phonon
lifetimes or temperature dependence of lattice constants for instance. We do not consider
them in this thesis and work only in the harmonic approximation.
We now reformulate the problem in term of the atomic displacements, defined as

66



2. State of the art theory – 2.5. Phonons and electron-phonon coupling

uLs = RLs −R0
Ls. Then the total energy writes :

E({R}) = E({R0})−
∑
Lsα

FLsαuLsα +
1

2

∑
Lsα
Mtβ

CLsα
Mtβ uLsαuMtβ +O(u3) (2.127)

In practice, we calculate the phonon properties on relaxed structures, which means the
forces acting on the atoms are zero. Hence we only need the information from the C
matrix. The size of the interatomic force constants matrix is 3NcNat where Nc is the
number of unit cells in the periodic supercell considered andNat is the number of atoms in
the unit cell. However we can use the invariance of the force constants under a translation
by a lattice vector τ , which means they only depend on the difference τI = τL− τM . This
allows us to take the Fourier transform and solve the problem in reciprocal space, where
only a unit cell is needed and the sum over supercells is replaced by a sum over a grid of
q-points in the Brillouin Zone. We define the dynamical matrix as :

Dsα
tβ (q) =

1√
MsMt

∑
I

CIsα
tβ eiq·τI (2.128)

whereMs is the mass of atom s. The square of the phonon frequencies are eigenvalues
of the dynamical matrix with the following eigenvalue problem :∑

sα

Dsα
tβ (q)ξµsα(q) = ω2

µ(q)ξµtβ(q) (2.129)

with the eigenvectors ξµ(q) associated with the mode µ, that are the normal modes of the
oscillating system and obey the orthogonality relations :∑

sα

ξµ∗sαξ
ν
sα = δµν ,

∑
ν

ξµ∗sαξ
µ
tβ = δstδαβ. (2.130)

Here we see the picture of collective motion emerge. Indeed the problem is no longer
described as the sum of individual displacements, but rather in terms of 3Nat collective,
periodic oscillations of the crystal with a momentum q and a frequency ωµ(q), which
are independent of each other.
From this, we can obtain an expression for the atomic displacements in real-space and
time, which have the form of standing waves :

uLsα(t) =
1

2
√
NcMs

∑
µq

eiq·τL ξµsα(q)
[
Aµ(q, T )e−iωµt + A∗µ(q, T )eiωµt

]
(2.131)

where the temperature-dependent amplitudes of the oscillations are given by the equipar-
tition theorem Aµ(q, T ) =

√
2kBT/ωµ(q) with kB the Boltzmann constant.[81] In

summary, we see that the crucial vibrational quantities are obtained after calculating the
interatomic force constants matrix, and then diagonalizing the dynamical matrix. One
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way to do the former starting from DFT is presented in the next section.

2.5.1. Density Functional Perturbation Theory
This theory is a general formulation of the linear response of the Kohn-Sham wavefunc-

tions and charge density obtained in DFT with respect to a perturbation. It is presented
by Baroni et al. in Ref. [39], where they show that the linear response can be calculated
in a self-consistent manner in reciprocal space, independently of the wavelength of the
perturbation. This means that the use of supercells is not needed. In the case of phonons,
one needs to compute the Hessian of the Born-Oppenheimer energy surface, which is the
second derivative of the ground-state energy with respect to atomic displacements. One
can show that the force constants matrix can be obtained from DFT with the following
expression [82] :

CLs
Mt =

∂2E({R})
∂RLs∂RMt

∣∣∣∣∣
R=R0

= − ∂FLs

∂RMt

∣∣∣∣∣
R=R0

=

∫
∂n(r)

∂RLs

∂vext(r)

∂RLs

d3r +

∫
n(r)

∂2vext(r)

∂RLs∂RMt

d3r +
∂2EN(R0)

∂RLs∂RMt

(2.132)

where vext and EN are the ionic potential acting on the electrons and the nucleus-nucleus
interaction, defined in Sec. 2.1, and n is the DFT groundstate electronic density. Its first
derivatives are computed in a self-consistent way with the linearization of Eq. (2.11) :

∂n(r)

∂RLs

= 4 Re
∑
n

〈ψn|
∂

∂RLs

|ψn〉 (2.133)

The change of the Kohn-Sham states is in turn obtained from first-order perturbation
theory and summing over all the eigenstates :

∂ |ψn〉
∂RLs

=
∑
m 6=n

|ψm〉
〈ψm| ∂veff∂RLs

|ψn〉
εn − εm

(2.134)

This problem can be reformulated such that no empty states are needed :

(Ĥ − εn)
∂ |ψn〉
∂RLs

= −
(
∂veff
∂RLs

− ∂εn
∂RLs

)
|ψn〉 . (2.135)

Eq. (2.135) corresponds to a reformulation of the DFT response of the system to an
atomic displacement in the form of a Sternheimer equation.[83]
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Long wavelength limit

Care has to be taken in the long wavelength limit, or equivalently the q→ 0 limit. In
this limit, the periodicity of the phonons tends to infinity, and it has consequences on
both acoustic and optical modes. There will always be 3 acoustic modes in any crystal,
one for each degree of freedom of the atom. When there are two or more atoms in the
unit cell, there are 3Nat − 3 optical modes.

The acoustic modes have a linear dispersion at small momenta, and they are constrained
by the translational invariance of the crystal : at q = 0 an acoustic phonon mode
corresponds to a rigid translation of all atoms in the crystal in the same direction. This
translation should have a frequency identically equal to zero. It might not be rigorously
respected when computing the phonon dispersion numerically. For this reason, the
acoustic sum rule is enforced to maintain the linear dispersion :∑

t

CIsα
tβ (|τI | → ∞) = 0 (2.136)

In the case of non-2D polar semiconductors and insulators – hBN, the material we
study in this thesis, falls in this category – the difference of electronegativity between
the two types of atom creates electric dipoles, which in turn create long range electric
fields when the atoms are oscillating out of phase. This is the case for optical phonons,
whose frequencies are finite at q = 0. At small momenta, the transverse optical (TO)
modes, whose direction of propagation is orthogonal to the momentum q, are unaffected.
However the longitudinal optical (LO) modes can interact with the long range electric
fields and their frequencies become larger. Hence there is a LO-TO frequency splitting
at q = 0 which can only be accounted for by adding a non-analytical term to the force
constants matrix, given by :

C̃NAsα
tβ (q→ 0) =

4π

Ω
e2 (q · Z∗s)α(q · Z∗t )β

q · ε∞ · q (2.137)

The Born effective charges Z∗ and the electronic contribution to the dielectric permittivity
tensor ε∞ can be obtained from Density Functional Perturbation Theory (DFPT) with a
macroscopic electric field as the perturbation.[39]

2.5.2. Electron-phonon coupling
In the previous sections, we solved the problem of electrons and ions independently

of one another. Here we will reintroduce the coupling between these two systems. The
coupled system of electrons and phonons is described by a three-part Hamiltonian :

Ĥ = Ĥe + Ĥp + Ĥep (2.138)

The electron-electron interactions are contained in the Kohn-Sham Hamiltonian, that
can be written in second quantization Ĥe =

∑
nk εnkâ

†
nkânk. We can define the nuclear
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Hamiltonian as a sum of quantum harmonic oscillators, which has the following second-
quantized form :

Ĥp =
∑
qµ

~ωµ(q)

(
b̂†qµb̂qµ +

1

2

)
(2.139)

where b̂ and b̂† are annihilation and creation operators of a phonon with momentum q

and branch index µ. They follow the commutation relations
[
b̂qµ, b̂

†
q′µ′

]
= δq,q′δµ,µ′ and[

b̂qµ, b̂q′µ′
]

=
[
b̂†qµ, b̂

†
q′µ′

]
= 0. We see that in the Born-Oppenheimer and harmonic

approximations, lattice vibrations are quantized as perfect bosons.
With these we can construct the electron-phonon Hamiltonian as the first order expan-

sion of the effective potential in terms of the atomic displacements :

H(1)
ep =

∑
Lsα

∂veff
∂RLsα

uLsα =
∑
nmµkq

gµqnmkâ
†
nkâmk−q(b̂qµ + b̂†−qµ). (2.140)

In the last equality, the electron-phonon coupling matrix element g is introduced. It is
the probability that a phonon of branch index µ and momentum q scatters a Kohn-Sham
electron from a state |mk− q〉 = |ψmk−q〉 into another state |nk〉. It is written in a
simplified form as :

gµqnmk = uc〈nk|∆qµveff |mk− q〉uc (2.141)

or in a more complete form, following the notation adopted by Giustino in Ref. [66] :

gµqnmk = gµnm(k,k− q) =
∑
Ls

eiq·RLs
ξµs (q)√

2Msωµ(q)
uc〈nk|

∂veff
∂RLs

|mk− q〉uc (2.142)

where the subscript uc signifies that the integral is taken over a unit cell of the crystal,
using the lattice-periodic parts of the Kohn-Sham wavefunctions unk. These matrix
elements are the one we will use throughout this thesis to compute the magnitude of the
interaction between electrons and phonons. They are also a key ingredient to define the
exciton-phonon coupling ab initio.

Note that one can go beyond the first order and compute for instance the matrix elements
generated by the second derivative of the effective potential with respect to the atomic
displacements. One would obtain the so-called Debye-Waller term, which can be used in
a self-energy framework to compute the renormalization of the electronic bands by the
lattice vibrations.[66, 84, 85]
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Summary of Chapter 2

Summary of Section 2.2
— Density Functional Theory allows to compute the ground state density n(r)

and the equilibrium crystal structure of materials.
— The Kohn-Sham eigenvalues εi(r) obtained from DFT give an estimation of

the band structure.
— Along with the Kohn-Sham wavefunctions ψi(r), these are the starting

quantities for the more involved calculations presented in the following
sections.

Summary of Section 2.3
— TheGW approximation includes many-electron effects for weakly correlated

systems, that are absent in DFT.
— We obtain from this the quasiparticle corrections that give more accurate

electronic band structures.
— We switch to a basis of bound electron-hole pair, the so-called excitons,

better suited to describe optical processes.
— We compute the exciton properties with the Bethe-Salpeter equation, from

which we obtain exciton energies and eigenvectors.
Summary of Section 2.4

— We simulate optical spectra with the linear response function obtained from
MBPT, including excitonic effects.

— The imaginary part of the dielectric function, calculated ab initio, gives
access to the optical absorption spectrum.

— We use a steady state approximation to obtain the luminescence spectrum
from the absorption one.

Summary of Section 2.5
— Phonons are quanta of vibrations of the lattice.
— They are quasiparticles with frequencies and eigenvectors that we obtain

from DFPT.
— The coupling between electrons and phonons enters an Hamiltonian in

second quantization, in the form of matrix elements.
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3. Hexagonal Boron Nitride under
strain

This chapter is partly based on our publication Ref. [86]. Some of the text and figures
contained in this Chapter are adapted from this reference.

Contents
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3.5. Exciton-phonon coupling from finite differences . . . . . . . . . . . . . 80
3.6. Luminescence results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1. Introduction and experimental motivations
Strain is a powerful tool to engineer electronic and optical properties of materials. It is

possible to modify the electronic dispersion of strained crystals, in particular the position
of the conduction and valence band extrema. In some cases it can even lead to direct to
indirect bandgap transitions, as it was shown for Germanium [87, 88] and more recently
for transition metal dichalcogenides.[89, 90, 91] Regarding hBN, the effect of strain on
vibrational properties was investigated experimentally in exfoliated samples with various
thicknesses,[92] while theoretically biaxial tensile strain was considered for the mono-
and bilayer hBN [93, 94] as well as its role on hBN quantum emitters.[95] However, little
is known about the effect of strain on the optical properties of bulk hBN, which is the
simplest mean to characterize this material.
A recent experiment showed a remarkable modification of the cathodoluminescence

spectrum of hBN under strain.[96] In this experiment Léonard Schué and colleagues
suspended a nanosheet of hexagonal Boron Nitride over a trench carved out from an SiO2

substrate. The nanosheet is about 100 nm thick and curves under the effect of gravity,
as illustrated in Fig. 3.1(a), and was imaged by Atomic Force Microscopy (AFM) (Fig.
3.1(b)). When measuring the cathodoluminescence spectra at different positions on the
sample, one can see that the intensity ratios between different peaks are varying. Their
interpretation is that the deformation of the sample induces uniaxial (compressive) strain,
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3. Hexagonal Boron Nitride under strain – 3.2. Structure and phonons

Figure 3.1. – (a) Sketch of the deposited hBN nanosheet on the trench. (b) AFM profile
and relative intensity ratios of different emission peaks with respect to spatial region.
(c) Cathodoluminescence intensity measured on different regions of the sample.
Courtesy of Léonard Schué and Julien Barjon

perpendicular to the trench. This strain could have an effect on the recombination process
of excitons or their scattering with phonons, leading to a change in the luminescence
intensity. They measured an intensity ratio between the S1/2 and the S3/4 peaks varying
from ≈ 4 at equilibrium to almost 1 at the bottom of the trench. In this Chapter we
try to simulate this phenomenon and use a finite difference method to reproduce the
phonon-assisted luminescence in strained structures from first principles.

3.2. Structure and phonons
In order to simulate the hBN sample in suspension, we consider an infinite bulk crystal

under uniaxial strain. In the experiment, the beam of electron penetrates only on the
upper part of the nanosheet, where the strain is compressive. However we study a range
of strain including both stretching and compression around the equilibrium structure.
First, we obtain the strained structure by taking an orthorombic cell of the pristine crystal,
larger than the hexagonal unit cell. Because it has three orthogonal lattice vectors, the
orthorombic cell is more suited for the application of a uniaxial strain for the geometry
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Figure 3.2. – Left : top view of the equilibrium crystal with the unit cell and the
corresponding hexagonal Brillouin Zone below. Right : top view of the strained
crystal, for a compression of 10% of the equilibrium bond length. The pseudo-
hexagonal diamond-shaped unit cell is shown with the corresponding deformed
hexagonal Brillouin Zone. The orthorombic unit cell, more practical to apply uniaxial
strain as discussed in the text, is also drawn.

relaxation. To do so, we simply alter the length of one cell vector, up to an arbitrary
length corresponding to a value of strain. We studied different strain values, in an interval
going from a +2.5% to a −2.5% variation of the equilibrium length. In this work we
applied strained in the armchair direction, the one parallel to the B-N bond. After setting
the length of the cell to the desired length corresponding to a strain value, we let the
atom positions and the other two cell vectors relax, using a damped molecular dynamics
algorithm where the forces acting on the atoms are computed in DFT using the Hellmann–
Feynman theorem. This procedure in implemented in the Quantum ESPRESSO suite.[56,
57] More computational details can be found in Appendix C. We found that once the two
cell vectors orthogonal to the strained one are relaxed, their length is linearly proportional
to the strain value.

Once we have the relaxed strained orthorombic cells, we construct a pseudo-hexagonal
unit cell containing only four atoms. This way, we can compare the structures obtained for
different strain values with the equilibrium structure in a consistent way and proceed with
the calculation of electronic and optical properties. To construct the pseudo-hexagonal
cells from the strained orthorombic ones, we followed the procedure described in Ap-
pendix B. We computed the phonon-related properties using DFPT in the four-atom
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Figure 3.3. – Phonon dispersion versus uniaxial strain. Blue lines are at equilibrium,
green lines at 2.5% stretch and orange lines at 2.5% compression.

strained cells. In the strained crystal, whatever the value of strain, the 120° rotational
symmetry is broken and this makes theM and K points in the BZ nonequivalent to the
M ′ and K ′ points. The path between high-symmetry points containing all four of these
points can be seen in Fig. 3.2. The resulting phonon dispersions are shown in Fig. 3.3,
for three strain values : a +2.5% stretch, a −2.5% compression and the equilibrium one.
For the unstrained dispersion we can notice the splitting of the highest branch at Γ with
the two branches below. This is the LO-TO splitting mentioned in Sec. 2.5.1.
We found that the optical modes (the branches with the highest energies) are the

most affected by strain. With compressive strain, their frequencies are increased at all q
points and they are decreased for tensile strain. We also observe the splitting of the E2g

modes, whose frequencies are degenerate at Γ just below 175 meV (1400 cm−1) for the
unstrained structure. They split as soon as a strain is applied. This is in agreement with
Raman measurements and previous calculations.[97, 92] It is also interesting to notice
that depending on the direction along which the Γ point is approached, the splitting of
the two E2g modes has different magnitudes.
On the mid-energy range of the dispersion, the LA, TA and TO modes are not very

affected by strain. This will be important in the discussion about luminescence in the
following.

At the lower frequency end, the acoustic modes are affected in an opposite way. Under
compression, their frequencies are decreased and increased under stretch. The orange
curve shows a softening of the lowest branch close to Γ. We noticed that increasing the
value of compressive strain leads to the appearance of negative frequencies. This happens
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Figure 3.4. – Quasiparticle corrections to the direct and indirect bandgaps at the G0W0

level with respect to strain.

when the geometry is unstable. Then the second derivative in Eq. (2.126) is negative and
the eigenvalues ω2 in Eq. (2.129) are negative. The imaginary solutions would be plotted
as negative, by convention. We did not investigate this instability caused by compression,
since the range of strain we are interested in is below +2.5% of strain. Nonetheless, the
phonon dispersions show that our systems are stable in the range of strain considered.

3.3. Electronic band structure
In order to study the electronic band structure of strained hBN, we first computed the

Kohn-Sham eigenvalues in DFT and then we performed a one-shot G0W0 calculation
to compute the quasiparticle corrections using the yambo code.[58] We found that these
corrections are a rigid shift in energy of the KS eigenvalues, independently of the strain
applied in the range we considered. In Fig. 3.4 we report the variation of the direct gap
(at M ) and of the indirect gap (between K and M ) with respect to strain. The direct
gap decreases linearly with increasing relative values of strain, while the indirect gap is
maximal for the unstrained system and decreases both for compression and stretch.
The electronic dispersions along the path in reciprocal space shown in Fig. 3.2 are

plotted in Fig. 3.5 for the two maximally strained systems and for the unstrained one. At
equilibrium, the direct gap is located between states atM . The indirect gap is between
a point close to K for the valence band and theM point for the conduction band. As
discussed above, strain breaks one of the symmetries of the crystal and this effect is
visible on the dispersions at high-symmetry points. Under compression, the conduction
band is shifted down atM while it is increased atM ′. This trend is reversed under stretch.
Hence, the conduction band minimum is atM for the compressed crystal and atM ′ for
the stretched crystal. These variations can be explained in term of the variation of the
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Figure 3.5. – Details of the electronic band structure under the maximum stretch and
compression considered in the manuscript. Blue lines are at equilibrium, green lines
at +2.5% stretch and orange lines at -2.5% compression. We report also the location
of the new indirect gaps in the two cases. Notice that at equilibrium all indirect
transitions between the different K andM points are equivalent.

orbital properties. The π∗ atomic-like orbitals atM andM ′ have a different shape, as

Figure 3.6. – π∗ atomic-like orbitals of the conduction band minima on one of the layers
for a compression of 0.5%. AtM ′, the components of the wavefunctions are oriented
along the compressed B-N bond. AtM , they are oriented along one of the other bonds.

illustrated in Fig. 3.6 for a compression of 0.5%. While they are degenerated in energy
for the unstrained crystal, this degeneracy is lifted due to the symmetry breaking. The
state with orbital components along the strained bond is the one whose energy changes
with strain atM ′. Moreover these orbitals have a strong dependence on the interlayer
interactions,[98] which in turns depends on the interlayer distance. This distance varies
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linearly with the strain applied to the system in our relaxation process. These two effects,
the breaking of the in-plane symmetries and the change in the interlayer interaction,
explain the splitting and shift of the bands induced by strain at theM ′ point.

The valence states around K and K ′ are only slightly changed in energy. This can be
explained because the orbitals corresponding to these states are protected from interlayer
interactions by symmetry, as shown in the theoretical study of Ref. [98]. There is
nonetheless a slight change in energy, which causes the valence band maximum to be
located at the point called T2 under compression and at T1 under stretch. These two
points are close toK. All these modifications of the band structure induce a change in
the position of the minimal indirect band gaps for compressive and tensile strain that are
indicated by the dotted lines in Fig. 3.5.

3.4. Excitons and absorption
At the low-energy end of the excitonic spectrum of bulk hBN, we find two pairs of

degenerate excitons. The splitting between the pairs is caused by the interlayer interactions
and is called the Davydov splitting.[99] The two pairs transform differently under inversion
operation (i.e. taking r→ −r or k→ −k), as explained in Appendix D. The pair with
the lowest energy is even for inversion symmetry, which means it is dark in absorption.
The second lowest pair instead is odd for inversion symmetry and thus bright. Note that
this is true for one-photon absorption, at the linear response level. In non-linear optics,
for instance two-photon absorption, the dark and bright characters are reversed.[100]
The 120° rotational symmetry breaking induced by uniaxial strain has an effect on the
degeneracy of the Davydov pairs. First, looking at the energies of the four lowest excitons
at Γ, as displayed in panel (a) of Fig. 3.7, we see that the energies are split, both for
compression and stretching. These changes in energy are mainly due to the change in
electronic gap reported in the above section. Indeed, they follow the same linear trend as
the strain value increases and are of the same magnitude, about ±0.1 eV. We could also
verify that the binding energies of the direct excitons remain approximately constant on
the strain range considered, varying only by 10 to 15 meV.

The associated absorption spectra are displayed in panel (b) of Fig. 3.7. As the inversion
symmetry is not broken by uniaxial strain, the lowest two excitons remain dark when
strain is applied. For the third and fourth lowest excitons in the strained systems, they are
not degenerate anymore, as it is the case in the pristine crystal, due to the breaking of
rotational symmetry. This gives both excitons a non-zero dipole, and we see two peaks
appearing in the absorption spectra.
The change of peak energy induced by strain is quantified by the strain gauge factor,

which is defined as the spectral shift per % of uniaxial strain. From our calculations, we
find a value of≈ 43meV/%, which is in the same range as transition metal dichalcogenides
as reported in Ref. [101].

The splitting is also visible on the exciton wavefunctions in real space. It is displayed
in Fig. 3.8 for the lowest two excitons at Γ, for a stretch of +2.5%. In the pristine
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Figure 3.7. – (a) Energies of the lowest 4 excitons at Γ (b) Absorption spectra associated
with the direct excitons. Both excitons of the bright Davydov pair have a non-zero
dipole matrix element and we can distinguish two peaks in the spectra for the strained
crystals. (c) Energies of the lowest 4 indirect excitons. Blue lines are for equilibrium
crystal, orange is for compression and green is for stretch.

crystal, these two wavefunctions are mixed and have a circular shape. Here the splitting
is clearly visible on the shape of the distribution, with one of the wavefunctions having
its components along the strained B-N bond or the armchair direction, while the other
has its components along the zigzag direction.

Figure 3.8. – Electron distribution when the hole is fixed near the central Nitrogen atom,
that we call exciton wavefunction. Left is the lowest dark exciton at Γ, right is
the second lowest dark exciton at Γ, taken for a stretch of +2.5%. Note that the
wavefunctions of the lowest bright excitons, not shown here, have the same structure
as the dark ones

We observe the same trend for the lowest-lying excitons with non-zero momentum,
which we will call indirect excitons because they are formed by indirect electronic
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transitions. Their change in energy with strain is reported in Fig. 3.7 (c). It follows the
same variation as the indirect gap and here again their binding energy is almost invariant
with strain. The indirect excitons of hBN play an important role in light emission by
luminescence. These changes in energy combined with the change in phonon frequencies
will have an impact on the luminescence spectra of the strained crystals. This will be
discussed in the next two sections.

3.5. Exciton-phonon coupling from finite
differences

As presented in the introduction of the thesis, the inclusion of lattice vibrations in our
computational framework is necessary to describe accurately the phonon-assisted features
in the luminescence spectrum of hBN. In particular the exciton-phonon coupling is the
central quantity to take into account. To do so, I present in this section how to calculate
the macroscopic dielectric function with a static correction due to lattice vibrations, in a
finite-difference scheme. The method can be found in Ref. [29] and in a slightly different
approach in Ref. [28].
The key idea is to take the Taylor expansion of the macroscopic dielectric function

with respect to atomic displacements. By displacing the atoms around their equilibrium
positions along the phonon eigenvectors obtained earlier with DFPT and calculating
the response function with the BSE in the displaced configurations, we will obtain the
coupling between the exciton responsible for the optical response and the phonons. The
link between the response function and the macroscopic dielectric function is given by
Eq. (2.112).
Our goal is to write the dielectric constant as a term at equilibrium plus a correction

due to the atomic motion as ε(ω) ≈ ε(0)(ω) + ε
st,(2)
q̄ (ω), where the second term is

the static correction induced by the atomic displacements, and it will be averaged over
the displacements along all phonon modes.[49] The contribution from exciton λ to the
response function writes :

χλR=0(ω) =
|T λR=0|2

Eλ
R=0 − ω + iη

(3.1)

where the subscript R = 0 indicates that the quantities are evaluated at clamped ion
positions. The infinitesimal η is taken independent ofR for simplicity. The single-exciton
contribution can be highlighted by writing :

χR=0(ω) =
∑
λ

χλR=0(ω), (3.2)

εM(ω) = 1− 4πχR=0(ω) = 1− 4π
∑
λ

|T λR=0|2
ω − Eλ

R=0 + iη
, (3.3)
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The exciton dipoles are defined as T λ =
∑

cvk Ā
cvk
λ dcvk, with the dipole matrix elements

dcvk = 〈vk|r̂|ck〉. The first derivative entering in the Taylor expansion will be :

∂χλR(ω)

∂R

∣∣∣∣
R=0

=
∂|T λR|
∂R

∣∣∣∣
R=0

2|T λR=0|
Eλ
R=0 − ω + iη

+
∂
[
Eλ
R − ω + iη

]−1

∂R

∣∣∣∣
R=0

|T λR=0|2. (3.4)

This expression has a term linear in the exciton dipole and a term at the second power,
both taken at clamped ion positions. It means that for dark excitons, the first derivative
in the Taylor expansion will be zero, but it can have a non-zero contribution for bright
excitons, for a discussion see Refs. [49, 102]. Dark excitons are labelled λ′, and we have
∂χλ
′
R (ω)

∂R

∣∣
R=0

= 0. In hBN, the excitons involved in luminescence are the ones with the
lowest energies in the finite momentum dispersion. Because of momentum conservation,
they cannot recombine and emit light which has almost zero momentum, hence they are
dark at clamped ion positions. Phonons are needed to transfer momentum and assist their
recombination.

Similar arguments hold for the second derivative in the Taylor expansion and the only
non-vanishing term that remains is :

∂2χλ
′
R (ω)

∂R2
=
∂2|T λ′R |2
∂R2

∣∣∣∣
R=0

[
Eλ′

R=0 − ω + iη
]−1

(3.5)

This equation shows that it is equivalent to compute the finite-difference derivative of the
full response function or only of the exciton dipoles if we are only interested in corrections
up to the second order. This was verified numerically in Ref. [29]. In our calculations,
we compute the derivative of the dipoles since they can be obtained more easily in the
code. This above second derivative is evaluated numerically with the finite difference
formula :

∂2χλ
′
R (ω)

∂R2
≈ χ(∆R;ω)− 2χ0(ω) + χ(−∆R;ω)

∆R2
(3.6)

Since we are interested in phonon-assisted luminescence and we know where the
minima lie in the excitonic dispersion, we know the phonon momentum q̄ necessary to
satisfy momentum conservation. Therefore we calculate the derivatives of the excitonic
dipoles only for a momentum q̄ that connect the minimum of the exciton dispersion to
Γ. Then we label the displacements R → Rµq̄. They are along the eigenvector of a
particular phonon mode µ taken at the momentum q̄. The displacement magnitudes are
given, similarly to Eq. (2.131) taken for t = 0, by the real part of the phonon eigenvector
multiplied by a scaling factor c :

uµq̄Lsα(t = 0) =
c√
Ms

Re
{
eiq̄·τLξµq̄sα

}
(3.7)

The c parameter is a scaling factor which needs to be converged. Indeed for the finite
difference derivative, we want to keep the displacements as small as possible. However if
they are too small, their effect will be indistinguishable from numerical noise, but if they
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are too large, effects beyond the second-order derivatives will start to appear. For this
work, we converged the displacements to a value of |∆R| = 0.05 Å. To accommodate
the periodicity of the phonon at q̄, we construct supercells that map the q̄ point at Γ by
folding the Brillouin Zone. These supercells are non-diagonal in general,[103] and we
built them using the yambopy Python tool.[58] Note that we approximate the momentum
q̄ so that its vector coordinates are accommodable in reasonably small supercells. The
second-order of the Taylor expansion of ε is:

ε
st,(2)
µq̄ (ω) =

∂2ε0

∂R2
µq̄

∆R2
µq̄ (3.8)

The expansion to finite temperature is done with a product of integrals over each phonon
mode, and since the phonon wavefunctions are Gaussian, the integrals are analytic. Com-
bined with the factor ∆R2

µq̄, we obtain the thermal average of the squared displacement
of the a quantum harmonic oscillator for each phonon mode, given by :

σ2
µq̄(T ) = l2µq̄(2nµq̄(T ) + 1). (3.9)

nµq̄(T ) is the Bose-Einstein occupation function, and l2µq̄ = 1/(2Mµq̄Ωµq̄) is the zero-
temperature squared displacement (from now on we refer to phonon frequencies with
capital Omega). In our case the reference mass isMµq̄ =

∑Nions
s Ms|ξµq̄s |2. More details

on the derivation of this factor can be found in Ref. [104]. Finally the second-order
correction to the full dielectric function due to the transitions assisted by a single phonon
of momentum q̄ is :

ε
st,(2)
q̄ (ω) =

1

2

∑
µ

[
Nq̄∑
i

1

2

2∑
j

∂2ε
(0)
j (ω)

∂R2
µq̄

∣∣∣∣
eq

]
σ2
µq̄ (3.10)

where j is the polarization direction of the incoming light. We average over two orthogonal
in-plane directions. The index i runs over the equivalent q̄ points in the BZ where the
exciton energies are minimal. For a perfect hBN crystal, Nq̄ = 6 but in our case, Nq̄ = 4.
Finally the imaginary part of the dielectric function follows from Eqs. (3.5),(3.1) and
(2.112) :

Im
∂2ε(0)(ω)

∂R2
µq̄

∣∣∣∣
eq

=
8π

NkV

∑
λ′

∂2|T λ′ |2
∂R2

µq̄

∣∣∣∣
eq

Im

{
1

ω − Eλ′ + iη

}
. (3.11)

At this point we can reintroduce the dependence on the phonon frequency coming from
the energy conservation in perturbation theory, which was neglected above (more details
can be found in Ref. [77]). Two terms appear, one coming from the process of phonon
emission which is proportional to 1 + nµq̄ and one from phonon absorption proportional
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to nµq̄. We have the transformation :

2nµq̄ + 1

ω − Eλ′ + iη
→ nµq̄ + 1

ω − Eλ′ − Ωµq̄ + iη
+

nµq̄
ω − Eλ′ + Ωµq̄ + iη

(3.12)

At low temperature, nµq̄ � 1 which means that absorbing a phonon is much less likely
than emitting one. The final expression writes :

ε
(2)
q̄2 (ω) =

8π

NkV

∑
λ′

∂2|T λ′|2
∂R2

µq̄

∣∣∣∣
eq

l2µq̄ [nµq̄ + 1/2∓ 1/2] δ(ω − Eλ′ ± Ωµq̄). (3.13)

The upper (lower) sign refers to the process of phonon absorption (emission). One thing
to note here is that we neglect the variation of the exciton energies induced by the coupling
with phonon, which is an effect beyond second order derivative for indirect excitons,
so we expect this renormalization to be minor.[105] Moreover we know that due to the
approximations adopted in this work we will not be able to get the correct absolute
position[30] of the exciton but only the relative position of indirect emission with respect
to the direct one.

3.6. Luminescence results
In order to compute the luminescence spectra, we used the van Roosbroeck–Shockley

relation from Eq. (2.123) combined with the expression of the dielectric function in Eq.
(3.13). We simulate a crystal at low temperature, which we set at 55K in agreement with
the experimental measurements. At this temperature, the phonon emission processes
widely dominate the absorption ones and we have nµq̄ � 1. Therefore we set these
factors to zero in the numerator. We get a final expression for the luminescence as :

I(ω) = DRsp(ω) = D
∑
µ,q̄

ω(ω − 2Ωµq̄)
2

πc3
n1(ω)

∑
λ′

∂2|T λ′|2
∂R2

µq̄

∣∣∣∣
eq

× Im

{
1

ω − (Eλ′ − Ωµq̄) + iη

}
nB(Eλ′

q̄ , Texc) (3.14)

where D is a dimensional factor, n1(ω) is the refractive index given by Eq. (2.122),
nB(Eλ′

q̄ , Texc) = e−(Eλ
′−Emin)/kBTexc is the Boltzmann occupation for excitons where the

energy difference is taken with the minimal exciton energy over the whole Brillouin Zone
Emin. Except for a multiplicative factor, the formula for the luminescence is equivalent
to the phonon-assisted absorption one, with the difference that excitons are weighted by
an occupation factor. It means that the lowest valleys in the exciton dispersion will be
populated by relaxed excitons, while the higher states will have exponentially decaying
populations.
The excitonic temperature Texc is higher than the lattice temperature because we
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consider a steady-state process in which the excitons do not thermalize, since they are
constantly pumped by the laser. We obtained the value by fitting the experimental data of
Ref. [27] which gave us the value of Texc = 105 K for a lattice temperature of TL = 55
K. The effect of temperature is also taken into account in the broadening parameter
of the peaks with the Lorentzian model : η = Γ0 + aT + bB(T ) where the values of
the parameters can be found in Refs. [29, 106]. Another approximation we made is to
compute the dipoles at the displaced configurations with the statically screened interaction
W evaluated at the equilibrium configurations :

∂2|T λ′(W,L)|2
∂R2

µq̄

' ∂2|T λ′(W (R = Req), L)|2
∂R2

µq̄

. (3.15)

It has been shown previously that this has negligible effects for the calculation of electron-
phonon matrix elements,[107] and we verified that our results are not modified by this
approximation.

Now comes the discussion about the choice of q̄. For the pristine hBN crystal, the indi-
rect electronic gap is between two points close to theK point and theM point. The usual
approximation is to consider that the gap lies on theK point, and that the momentum that
connects the two points is q = (1

3
,−1

6
, 0) and that the minimum of the exciton dispersion

is also at this momentum. This approximation has been shown to produce reliable results
in similar systems.[28, 29] This simplifies the construction of the supercells needed to
accommodate the phonon modes at this q-vector. In our case, because of the symmetry
breaking in the electronic dispersion, there are several indirect gaps which have a very
similar energy, especially for low values of strain. This could lead to a broadening of the
peaks in the luminescence spectra. In order to verify this hypothesis, we constructed the
supercells which accommodate all the vectors corresponding to the transitions M−K,
M−K′,M′ −K ,M′ −K′. Then we performed a BSE calculation for all these non-
diagonal supercells containing 24 displaced atoms and summed the dipoles. Because of
the displacement of atoms, some symmetries are broken and the dark excitons which are
folded at Γ acquire a finite dipole, hence contributing to the luminescence spectra if they
are populated by the Boltzmann occupation function.

The resulting spectra for various values of strained are displayed in Fig. 3.9. First, we
can see on the top plot that the equilibrium luminescence spectrum is quite well reproduced
compared to experiment. At low values of strain, the excitons originating from the different
M(′) −K(′) transitions have a very close energy and therefore all of them contribute to
the luminescence spectra as they are not suppressed by the Boltzmann function. These
excitons scatter with phonons who also have their frequencies modified. These combined
effects create a splitting of the peaks which increases with strain, materialized by the
gray dashed lines. There is also a slight increase in the intensity of the S1 and S2 peaks,
coming from scattering with LA and TA modes. At equilibrium, we found that the S3/S1
intensity ratio is ≈ 3.7 and it decreases down to ≈ 2.7 with strain. This result is in line
with those of Léonard Schué in Ref. [96], however they found a ratio going down to ≈ 1

84



3. Hexagonal Boron Nitride under strain – 3.6. Luminescence results

5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00
Energy [eV]

I
(ω

)
[a

.
u

.]

S1
S2

S3

S4

0% strain

0.03125% strain

0.0625% strain

0.125% strain

0.25% strain

2.5% strain

Figure 3.9. – Luminescence spectra for selected values of compressive strain. Plots are
shifted vertically for clarity. On the top plot, experimental data from Ref. [25] is
represented by the black dots. The spectra have been shifted to match the position
of the indirect exciton at equilibrium, and compensate the numerical error of the
GW approximation.[30] Dashed lines are a guide for the eye.

in their compressed samples.
This discrepancy could be explained by the lack of fine sampling of the exciton and

phonon dispersions. Indeed with a larger density of states to scatter to, the intensity
of some peaks could be increased even more. The differences could also come from
experimental factors not accounted for in our simulation methods, such as surface effects
or the fact that the strain field could be non-uniform and with an unknown direction,
which we cannot reproduce with the uniaxial and homogeneous strain that we simulated.

Finally, for larger values of strain, the exciton energies split so much that the peaks com-
ing from the higher one are suppressed by the Boltzmann function in the van Roosbroeck–
Shockley relation. The spectrum thus acquires the same shape as the equilibrium one but
translated to lower energies due to the closure of the indirect gap, and the change in the
phonon frequencies. Note that the 2.5% value of strain is extreme and is probably out of
reach in the experimental conditions we try to reproduce. The results are similar for the
tensile strain.
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Conclusion of the chapter
In this chapter, I presented our results about the electronic, phononic and optical

properties of bulk hBN under uniaxial strain, both tensile and compressive, along the
armchair direction. We observed a splitting of the exciton at Γ due to the breaking
of the threefold rotational symmetry. This splitting could be measured in reflectivity
experiments.[26] We also found that the direct excitons energies vary linearly with the
applied strain, while the indirect exciton energies decrease both with compression and
stretch. We were also able to evaluate the strain gauge factor, which was found to be
similar to that of transition metal dichalcogenides. I presented a method to include
the exciton-phonon coupling in the response function and hence in the optical spectra
of the strained crystals. It is based on a finite-difference derivative approach and is
well-suited for materials with a indirect and deep exciton dispersion minimum. The
coupling of excitons and phonons is calculated only for a few momenta in the Brillouin
Zone. Since this method requires the use of supercells, it is particularly adapted to the
study of defects such as was done in Ref. [108]. We employed this method to compute
the phonon-assisted luminescence spectrum and how it changes with strain. We found
that at low strain, additional peaks appear in the spectra due to the breaking of the
degeneracy between the differentK andM points in the Brillouin Zone. These additional
peaks decrease the intensity ratio between the acoustic- and the optical-phonon assisted
transitions, in agreement with recent measurements. For large compressive strain we
found that only one valley contributes to the luminescence, and the spectra return to a
shape similar to the equilibrium one but shifted at lower energies. This prediction could
be verified by means of luminescence measurements in highly strained hBN.[97]

Summary of Chapter 3

— The coupling between excitons and phonons was included in the second
derivative of the response function with respect to the atomic displacements
along phonon eigenvectors, in Sec. 3.5

— We evaluated this derivative numerically by building supercells and displac-
ing the atoms along all phonon modes.

— We then computed the response function with a BSE calculation on the
displaced configurations.

— We obtained the luminescence spectra via the van Roosbroeck–Shockley rela-
tion for several values of strain and compared our results to the experimental
spectra in Sec. 3.6.
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4. Ab initio exciton-phonon
coupling

This Chapter is partly based on our publication Ref. [109]. Some of the text and
figures contained in this Chapter are adapted from this reference.
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4.1. Introduction
In recent years, single or few-layer materials have attracted a great deal of attention

due to their peculiar properties, often different from their bulk counterparts. For example,
MoS2 undergoes an indirect-to-direct band gap transition when reducing its thickness to
the monolayer limit.[110, 111] This transition was discovered thanks to the increase in
the luminescence signal, since it is well-known that indirect materials tend to be poor
light emitters due to higher-order processes mediating the electron-hole recombination.
A similar band gap transition was also predicted for hBN.[99]

For many years it was not possible to measure the luminescence signal of a single hBN
layer,[33] and this was attributed either to the increase of the exciton-exciton annihilation
rate in low-dimensional structures[112, 113] or to other quenching mechanisms. How-
ever, recent experiments reported a photoluminescence signal from direct excitons in
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single-layer hexagonal Boron Nitride (mBN) epitaxially grown on Graphite, showing the
existence of a fine two-peak structure.[1, 3] These experiments were later repeated using
exfoliated hBN on a silicon oxide substrate,[2] where only one dominant peak was found.
Very recently, a group achieved the technical prowess of measuring the cathodolumines-
cence signal of a monolayer of hBN grown on a Graphite substrate.[34] Their results have
a very low signal-to-noise ratio, but it seems that only one peak appears. However care
has to be taken since this article is still in the process of peer-reviewing. The various mBN
spectra that appeared in the literature present notable differences which were attributed
first to coupling with phonon modes and later to the presence of bubbles in the mBN
structure. In addition, the first luminescence measurements of another polytype of BN
with an AB stacking, the so-called Bernal Boron Nitride (bBN) was reported recently.[31,
32] These measurements seemed to show the coexistence of emission peaks from both
direct and indirect excitons in the same spectrum.

From a theoretical point of view, mBN has been always considered a direct band gap
materials in models,[114] while the nature of its gap in ab initio approaches depends
on the approximation used in the calculations.[115, 116] Regarding bulk hBN, models
and ab initio calculations agree on its nature as an indirect gap insulator.[12] For the
intermediate situation, for few-layers hBN, the magnitude and nature of the quasiparti-
cle band gap depends both on the number of layers and on the stacking order.[12, 116, 117]

In light of these results, we decided to investigate the luminescence of mBN using a
novel approach that includes the coupling between excitons and phonons within an ab
initio framework and allows for an accurate treatment of both direct and phonon-assisted
peaks in the spectra. The motivation of this study is threefold. First, mBN could present
both direct and indirect peaks in its luminescence spectra, which is an ideal test for our
theory, while its well-known bulk counterpart provides an excellent benchmark. Second,
the presence of new and partially unclear experiments on mBN makes the application
of this new methodology interesting and timely. Third, a detailed study of the relation
between the lattice structure and phonon and exciton dispersions could pave to way to an
experimental tuning of the intensity of various features in the luminescence spectra.

At variance with older theoretical works on exciton-phonon coupling, where the values
of the coupling matrix elements were taken as parameters, recent formulations focused
on accurate ab initio numerical simulations, either tackling the exciton-phonon problem
by means of finite-difference displacements in supercells as it was done in the previous
chapter, or, more recently, by combining DFPT with BSE simulations, in order to avoid
the need of large supercells.[118] In the first two sections of this chapter we put forward
a formal derivation within MBPT which captures phonon mediated photoluminescence
in a steady-state approximation, and combine it with DFPT to perform accurate ab initio
numerical simulations in a single unit cell. The great advantage of this formulation is the
possibility of integrating over exciton momenta in the full Brillouin Zone, thus calculating
the renormalization of the direct peak induced by the indirect transitions. This is essential
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when studying an emission spectrum that may have competing direct and indirect peaks,
such as the case investigated here. We test this method on the well-documented bulk hBN
and then apply it to mBN, which constitute the main result of this Chapter. Finally, we
present preliminary results on bBN.

4.2. Theory of the ab initio exciton-phonon
coupling

In this section we present an ab initio approach to obtain the exciton-phonon coupling
matrix elements, that goes beyond the finite-difference approach presented in Sec. 3.5.
The great advantage of this formulation is the possibility to integrate over exciton mo-
menta in the full Brillouin Zone and to obtain the coupling between all excitons and all
phonon modes.

In this work in order to study optical response we start from an exciton-phonon Hamil-
tonian where excitons are independent quasi-particle, and the coupling with phonons acts
as an interaction term between excitons mediated by phonons. This Hamiltonian can be
assumed as a model [46, 119] or formally derived as it was by our collaborator Fulvio
Paleari in his PhD thesis, [77] itself stemming from the theoretical work of Pierluigi
Cudazzo published in Ref. [55]. In this approach, the electron-phonon interaction is
included in the BSE kernel via a phonon propagator. The induced dynamical perturbation
induced adds a term to the BSE kernel and it yields a general dynamical Bethe-Salpeter
Equation :

L(1234) = L(1234) +

∫
d5678 L(1625) Ξ̃D(5867) L(7483) (4.1)

where L is the two-particle propagator solution of the static BSE in Eq. (2.79). The
kernel Ξ̃D has an additional dynamical term induced by the electron-phonon interaction.
The dynamical kernel does not allow a direct inversion of the dynamical BSE since
it depends self-consistently on L and cannot be written in terms of two times. Then,
after a few approximations, the problem can be formally inverted and mapped onto an
exciton-phonon Hamiltonian, which gives the exciton-phonon matrix elements. I refer
the interested reader to Ref. [55, 77], where the rigorous derivation can be found.

In this thesis, I will present another way to derive the same exciton-phonon matrix
elements, adapted from Ref. [118]. It uses first-order perturbation theory for the excitonic
Hamiltonian, the perturbation being a displacement of atoms along phonon modes. It
introduces an additional interaction term due to the electron-phonon coupling, from
which the exciton-phonon matrix elements can be identified.
Note that another, more general approach exists in litterature. It consists in treating the
electron-electron, the electron-phonon interactions and the external field on the same
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footing,[54] which lifts some of the approximation we use, but it does not introduce
relevant changes for the systems investigated here.

We consider a system with displacements from equilibrium positions uLs (L labels
the unit cell and s the atom). We start from the DFT level and take the Taylor expansion
of the Kohn-Sham potential, labelled as veff in Eq. (2.14), which we call V KS here. The
expansion around the equilibrium positions reads :

V KS({uLs}) = V KS
0 +

∑
Lsα

∂V KS

∂uLsα
uLsα +O({uLs}2) (4.2)

The electronic wave functions and eigenvalues of the perturbed system depend on the
atomic displacements {uLs}. To obtain their change in the perturbed system, we apply
first-order perturbation theory by keeping terms linear in {uLs}. To first order, the
correction to the eigenvalues vanishes while the correction to the Kohn-Sham wave
functions ψi (solutions of Eq. (2.10)) can be written as :

δ |ψi〉 =
∑
j 6=i

〈ψj|∆V |ψi〉
εi − εj

|ψj〉 , with ∆V =
∑
Lsα

∂V KS

∂uLs
· uLs (4.3)

In the following, we use the tilde to label quantities of the perturbed system and write the
perturbed wave function as :∣∣∣ψ̃i〉 = |ψi〉+ δ |ψi〉 = |ψi〉+

∑
j 6=i

∆ij |ψj〉 (4.4)

with
∆ij ≡

〈ψj|∆V |ψi〉
εi − εj

(4.5)

We set ourselves in the Tamm-Dancoff approximation and we use the resonant Hamilto-
nian from Eq. (2.95) as the Hamiltonian of the unperturbed systemH ≡ H2p({uLs} = 0).
For the perturbed system, we have H̃ ≡ H2p({uLs}). The perturbed Hamiltonian matrix
element is :

H̃ṽc̃,ṽ′c̃′ = 〈ṽc̃| H̃ |ṽ′c̃′〉 = (ε̃c − ε̃v)δṽṽ′δc̃c̃′ + Ξ̃ṽ′c̃′

ṽc̃ (4.6)

where v, c refer to valence and conduction bands, respectively. The perturbed Bethe-
Salpeter kernel is defined just as in Eq. (2.93), except that it is evaluated with the
screened interaction of the perturbed system W̃ , and its matrix elements are expressed in
the perturbed basis.

Solving the BSE in Eq. (2.98) gives the exciton wave functions that we will name |λ〉
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and energies Eλ : ∑
v′,c′

Hvc,v′c′A
v′c′

λ = EλA
vc
λ (4.7)

|λ〉 =
∑
vc

Avcλ |vc〉 (4.8)

To derive the exciton-phonon interaction, we project the perturbed BSE Hamiltonian onto
the unperturbed basis set and keep only the terms to first-order in the phonon perturbation.
By such a process, the terms that will arise and be different from the unperturbed BSE
Hamiltonian will define the exciton-phonon interaction. One can show that to first order,
the perturbed and unperturbed electronic energies coincide, so we will use ε̃i = εi. The
perturbed Hamiltonian in the unperturbed basis is :

H̃λλ′ = 〈λ′| H̃ |λ〉 =
∑
ṽc̃,ṽ′c̃′

〈λ′|ṽc̃〉 〈ṽc̃| H̃ |ṽ′c̃′〉 〈ṽ′c̃′|λ〉

=
∑
vc,v′c′

∑
ṽc̃,ṽ′c̃′

〈λ′|vc〉 〈vc|ṽc̃〉 〈ṽc̃| H̃ |ṽ′c̃′〉 〈ṽ′c̃′|v′c′〉 〈v′c′|λ〉

where we used the completeness relations of both basis sets,
∑

vc |vc〉 〈vc| = 1 and∑
ṽ,c̃ |ṽc̃〉 〈ṽc̃| = 1. By definition of the BSE wave functions 〈v′c′|λ〉 = Av

′c′

λ , then we
can write the above equation as :

H̃λλ′ = 〈λ′| H̃ |λ〉 =
∑
vc,v′c′

Avc∗λ′ A
v′c′

λ ×
[∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉 〈ṽc̃| H̃ |ṽ′c̃′〉 〈ṽ′c̃′|v′c′〉
]

(4.9)

The term inside the square brackets can be separated in two :∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉 〈ṽc̃| H̃ |ṽ′c̃′〉 〈ṽ′c̃′|v′c′〉 =
∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉
[
(ε̃c̃ − ε̃ṽ)δṽṽ′δc̃c̃′ + Ξ̃ṽ′c̃′

ṽc̃

]
〈ṽ′c̃′|v′c′〉

=
∑
ṽc̃

〈vc|ṽc̃〉 (εc̃ − εṽ) 〈ṽc̃|v′c′〉+
∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉 Ξ̃ṽ′c̃′

ṽc̃ 〈ṽ′c̃′|v′c′〉

We make the choice to approximate the perturbed kernel with the unperturbed one,
Ξ̃ṽ′c̃′
ṽc̃ ≈ 〈ṽc̃|Ξ |ṽ′c̃′〉, that is to say the effect of atomic displacements on the screened

interaction can be neglected andW ≈ W̃ . This is the same approximation we took in
Chapter 2 when we evaluated the response function by finite difference derivative.[86,
29, 28] With this approximation we have :∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉 Ξ̃ṽ′c̃′

ṽc̃ 〈ṽ′c̃′|v′c′〉 ≈
∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉 〈ṽc̃|Ξ |ṽ′c̃′〉 〈ṽ′c̃′|v′c′〉 = 〈vc|Ξ |v′c′〉 = Ξv′c′

vc

(4.10)
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and thus the term in square brackets in Eq. (4.9) becomes∑
ṽc̃,ṽ′c̃′

〈vc|ṽc̃〉 〈ṽc̃| H̃ |ṽ′c̃′〉 〈ṽ′c̃′|v′c′〉 =
∑
ṽc̃

〈vc|ṽc̃〉 (εṽ − εc̃) 〈ṽc̃|v′c′〉+ Ξv′c′

vc (4.11)

Next, we use Eq. (4.4) to expand
∑

ṽc̃ 〈vc|ṽc̃〉 (εc̃ − εṽ) 〈ṽc̃|v′c′〉 to order O(∆). Since
we work within the Tamm-Dancoff approximation and keep only the resonant part of the
BSE Hamiltonian, only valence-valence and conduction-conduction phonon-mediated
scattering are allowed, that is to say ∆vc = ∆cv = 0 where the operator ∆ was defined in
Eq. (4.5). Using Eq. (4.4) we get :

〈vc|ṽc̃〉 = 〈v|ṽ〉 〈c|c̃〉 =

(
δvṽ +

∑
v′′ 6=ṽ

∆ṽv′′δvv′′

)(
δcc̃ +

∑
c′′ 6=c̃

∆c̃c′′δcc′′

)

=

(
δvṽδcc̃ + δvṽ

∑
c′′ 6=c̃

∆c̃c′′δcc′′ + δcc̃
∑
v′′ 6=ṽ

∆ṽv′′δvv′′

)
+O(∆2)

(4.12)

and similarly

〈ṽc̃|v′c′〉 = 〈v′|ṽ〉∗ 〈c′|c̃〉∗ =

(
δv′ṽδc′c̃ + δv′ṽ

∑
c′′ 6=c̃

∆∗c̃c′′δc′c′′ + δc′c̃
∑
v′′ 6=ṽ

∆∗ṽv′′δv′v′′

)
+O(∆2)

(4.13)
With these expressions, there are five first-order terms in

∑
ṽc̃ 〈vc|ṽc̃〉 (εc̃ − εṽ) 〈ṽc̃|v′c′〉

that we can simplify using the Kronecker delta :∑
ṽc̃

〈vc|ṽc̃〉 (εc̃ − εṽ) 〈ṽc̃|v′c′〉

≈ (εc − εv)δvv′δcc′ + δcc′
∑
ṽ

(εc − εṽ)
∑
v′′ 6=ṽ

(∆∗ṽv′′δvv′′δv′ṽ + ∆ṽv′′δv′v′′δvṽ)

+ δvv′
∑
c̃

(εc̃ − εv)
∑
c′′ 6=c̃

(∆c̃c′′δcc′′δc′c̃ + ∆∗c̃c′′δc′c′′δcc̃)

= (εc − εv)δvv′δcc′ + δcc′

[∑
v′′ 6=v′

(εc − εv′)∆∗v′v′′δvv′′ +
∑
v′′ 6=v

(εc − εv)∆vv′′δv′v′′

]

+ δvv′

[∑
c′′ 6=c′

(εc′ − εv)∆c′c′′δcc′′ +
∑
c′′ 6=c

(εc − εv)∆∗cc′′δc′c′′
]

= (εc − εv)δvv′δcc′ + δcc′(εv′ − εv)∆vv′ + δvv′(εc − εc′)∆∗cc′ (4.14)

where we used ∆ij = −∆∗ji to obtain the last line. Finally, the perturbed Hamiltonian in
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the excitonic basis in Eq. (4.9) becomes :

H̃λλ′ =
∑
vc,v′c′

Avc∗λ′ A
v′c′

λ ×
{[

(εc − εv)δvv′δcc′ + Ξv′c′

vc

]
+ δcc′(εv′ − εv)∆vv′ + δvv′(εc − εc′)∆∗cc′

}
= Eλ′δλλ′ +

∑
vc,v′c′

Avc∗λ′ A
v′c′

λ · (δcc′(εv′ − εv)∆vv′ + δvv′(εc − εc′)∆∗cc′) (4.15)

where we use the fact that the unperturbed Hamiltonian is diagonal in the excitonic space:

Eλ′δλλ′ =
∑
vc,v′c′

Avc∗λ′ A
v′c′

λ ×
(

(εc − εv)δvv′δcc′ + Ξv′c′

vc

)
. (4.16)

Therefore, the first term in the second line of Eq. (4.15) is the unperturbed Hamiltonian,
while the second term is the exciton-phonon interaction,

H̃exc-ph =
∑
vc,v′c′

Avc∗λ′ A
v′c′

λ · (δcc′(εv′ − εv)∆vv′ + δvv′(εc − εc′)∆∗cc′) . (4.17)

To obtain the final result, we reintroduce the periodicity of the Kohn-Sham states stemming
from Bloch theorem :

|φi〉 → |φnk〉 (4.18)

and the transition basis set for an exciton with center of mass momentum Q is |vc〉 =
|vkv, ckc〉 = |vkv, ckv + Q〉. We write the change in potential due to atomic displace-
ments in second quantization using the phonon normal coordinates :

∆V =
∑
µq

√
1

2Ωµq

∂µqV
KS(b̂µq + b̂†µ−q) (4.19)

where the operator ∂µq should be understood as the derivative with respect to a displace-
mentRµq along a phonon mode µ at momentum q. Then the ∆ij describing the transition
from i-th to j-th state becomes :

∆nkn′k′ =
〈n′k′|∆V |nk〉
εnk − εn′k′

=
∑
µq

gnn′µ(k,q)δ(k′ − k− q)

εnk − εn′k′
(b̂µq + b̂†µ−q) (4.20)

where gnn′µ(k,q) are the electron-phonon matrix elements defined in Eq. (2.142), namely
the probability amplitude for an electron in band n with crystal momentum k to transition
to a final state in band n′ and momentum k′ = k + q by absorbing or emitting a phonon
with mode index µ and wave vector q. The slight difference with Eq. (2.142) is that we
change the arguments to have a more compact form : the first argument is the momentum
of the initial state and the second argument is the phonon momentum.
To proceed further we have to make on additional approximation on the nature of

excitons : they are considered as independent bosons. This way, we can define a bosonic
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Hamiltonian for excitons as :

Hexc =
∑
λ

Eλ(Q)â†λQâλQ (4.21)

where â†λQ, âλQ are the creation/annihilation operators for an exciton λ with center-of-
mass momentumQ and energy Eλ(Q). The full Hamiltonian also includes the phonon
term, which is ignored here without loss of generality since it is only an additive constant.
The bosonic approximation for excitons ignores the fact that excitons are a pair of two
bound fermions, this is why it works best at low exciton density so that the exciton
are weakly interacting. It has been shown to correctly reproduce several experimental
results.[29, 46] However, there are theoretical evidence that the fermionic character
of excitons cannot always be neglected.[120] Using this approximation we rewrite the
exciton-phonon interaction from Eq. (4.17) in second quantization :

H̃exc-ph =
∑

λλ′µ,Qq

Gµλλ′(Q,q)â†λQ+qâλ′Q(b̂µq + b̂†µ−q). (4.22)

where we defined the exciton-phonon matrix elements as :

Gµλλ′(Q,q) =
∑
vcv′c′

kvkck′v′k
′
c′

AλQ+q(vkv, ckc)A
∗
λ′Q(v′k′v′ , c

′k′c′)

× [δvv′gc′cµ(k′c′ ,q)δ(kc − k′c′ − q) −δcc′gvv′µ(kv,q)δ(k′v′ − kv − q)] . (4.23)

Let us make momentum conservation explicit to obtain the final expression. The exciton-
phonon coupling constant Gλλ′µ(Q,q) is the probability amplitude for scattering from an
exciton with band index λ with center-of-mass momentumQ+q to an exciton with band
index λ′ and center-of-mass momentum Q. This convention will be clarified later. Since
AλQ(vkv, ckc) 6= 0 only for kc − kv = Q, in Eq. (4.23) we can impose three constraints
: kc− kv = Q, k′c− k′v = Q+ q and k′c− kc = q (or k′v − kv = q). As a consequence,
we drop three k-point BZ summations and the final result for the exciton-phonon matrix
element for a given exciton momentum Q and phonon momentum q is :

Gµλλ′(Q,q)

=
∑
k

[∑
vcc′

AλQ+q(vk, ck + Q + q)A∗λ′Q(vk, c′k + Q)gc′cµ(k + Q + q,−q)

−
∑
cvv′

AλQ+q(vk− q, ck + Q)A∗λ′Q(v′k, ck + Q)gvv′µ(k− q,q)

]
. (4.24)

This is the general expression which was implemented in the yambo code. This expression
is made of two contributions relative to the coupling of phonons with either the electron in
the conduction band or the hole in the valence band constituting the exciton. It corresponds
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to a rotation of the electron-phonon coupling in the exciton basis. This basis shifts the
picture from electrons and holes scattering with phonons to transitions between excitonic
states mediated by phonons.
This formula allows to compute various quantities depending on the exciton-phonon

matrix elements, such as the exciton lifetimes or more interestingly for us, the response
functions including phonon-assisted transitions. Then from the optical response function
we will obtain a formula for the luminescence intensity.

4.3. Phonon-assisted response function
Now we can proceed to the solution of the exciton-phonon Hamiltonian. A direct

diagonalization is out of reach because the transitions at different Q are mixed by the
electron-phonon scattering, therefore the dimension of the Hilbert space becomes too
large. Hence we will make use of MBPT to find an approximate solution to Eq. (4.22).

We chose an approach that consists in taking the electron-phonon interaction only up
to first order. This way, we define the two-particle propagator with a first-order dynamical
correction L(1) as the solution of Eq. (4.1), obtained by replacing L on the right hand
side of Eq. 4.1 by the static L :

L(1)(1234) = L(1234) +

∫
d5678 L(1625) Ξ̃(5867) L(7483) (4.25)

where Ξ̃ is the kernel perturbed by first-order electron-phonon interaction, the same
introduced in the above section in Eq. (4.6). With this equation can consider only
interaction mediated with a single phonon. Extension to multiple-phonon scattering exists
in literature,[119] but the present formulation is the first order of a cumulant expansion
and its generalization to coupling with phonons at all orders is straightforward.[55]
Using the relation Eq. (2.84), we can obtain the response function in the excitonic basis
in terms of one frequency (or two times), including the first-order correction due to
exciton-phonon coupling :

χ
(1)
λλ′(ω) = χλλ′(ω) + χλ(ω) Πexcp-ph

λλ′ (ω) χλ′(ω) (4.26)

where we used the short-hand notation χλ(ω) = χλλ′(ω)δλλ′ . On the right hand side, the
quantity Πexcp-ph

λλ′ (ω) is the exciton self-energy describing dynamical effects induced by
the electron-phonon interaction. We will refer to it as exciton-phonon self-energy. It can
be computed starting from the exciton-phonon Hamiltonian Eq. 4.17 in MBPT[121] in
a similar way as for the electron-phonon case.[66] Owing to the fact that we consider
the first order only in exciton-phonon scattering, we will have a self-energy similar to
the Fan-Migdal one for the electron-phonon problem : Πexcp-ph = G2DL where the
exciton propagator L replaces the electron one,D is the phonon propagator and G are the
exciton-phonon matrix elements derived in the previous section given by Eq. (4.24).
Keeping only the first order dynamical correction allows scattering with only one
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phonon at a time, but this scattering can be re-summed at higher order solving the Dyson
equation with a dynamical self-energy, that allows to formally write two different ways of
summing contributions to infinite orders, hence scattering with any number of phonons.
The first one is to take a Dyson equation χD = χ + χΠexcp-phχ which corresponds to
a partial re-summation of the general Eq. (4.1).[122] It will yield the correction to
the exciton energies due to coupling with phonons but will fail to describe the phonon
satellites in the optical spectra, just as the PES satellites given by the GW approximation
are inaccurate. Another infinite summation is the cumulant expansion χC = χeC with
the cumulant coefficient of the form Cλ(t) =

∫
dtΠexcp-ph

λλ (t)eiEλt, determined by the
diagonal components of the self-energy.[55] The cumulant ansatz is able to capture the
physics giving rise to phonon satellites.
Notice that the first order of these two summations is identical and is given by Eq. (4.26).
It is the one we use for the rest of this thesis. We will focus on the description of the
satellite structures in optical spectra and neglect the corrections to exciton energies. The
exciton-phonon self-energy writes :

Πexcp-ph
λλ′ (Q, ω) =

1

Nq

∑
µβq

Gµβλ(Q,q)Gµ∗βλ′(Q,q)

×
[

1− nβ(Q + q) + nqµ

ω − EQ+q,β − Ωqµ − iη
+

nβ(Q + q) + nqµ

ω − EQ+q,β + Ωqµ − iη

]
(4.27)

where Nq is the number of q-points summed over in the Brillouin Zone, Ωqµ is the
frequency of phonon mode µ at momentum q, nqµ and nβ(Q) are the temperature-
dependent occupation factors for phonons and excitons, respectively. The imaginary
infinitesimal −iη comes from the analytic continuation in the Matsubara formalism for
finite-temperature extension.[121] From here on, we label β the finite-momentum, lowest
lying excitons states that are populated. The internal sum over β excitons includes every
possible exciton level EQ+q,β that can be connected to the external exciton levels EQ,λ

by emitting or absorbing one phonon with frequency Ωqµ.

Since we are interested in optical properties, only excitons at zero momentumQ = 0
are involved in the response functions, therefore we specialize the self-energy only for
Q = 0. To simulate the process of luminescence, we assume that the sample is constantly
pumped with a laser and that there is a quasi-equilibrium population of excited carriers.
In the excitonic picture, it means that the minima of the exciton dispersion are populated.
When these minima are at indirect momenta, the process of light emission will start from
an exciton β at finite momentum q that will be scattered by a phonon with the same
momentum q and frequency Ωq into a direct exciton λ atQ = 0. This direct exciton is
allowed to recombine radiatively but it is a virtual, intermediate state. The frequency of
the emitted light will be ~ωPL = ~Eqβ±~Ωqµ. This allows us to simplify the expression
of the exciton-phonon matrix elements in Eq. (4.24) as Gµλλ′(Q = 0,q) = Gµλλ′(q). Then,
we make two approximations to compute the self-energy in Eq. (4.27). The first one is to
neglect the excitonic occupations nβ compared to the phonon ones nqµ. This is realistic
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for an equilibrium and even for the quasi-equilibrium situation we are interested in (see
Supplemental Materials of Ref. [25] for an estimation of the excitonic density in hBN).
The second is to use only the diagonal components of the self-energy. This means that
an exciton λ that scatters with a phonon µq can only end up in an excitonic state of the
same branch λ. In our case this approximation is valid because for luminescence we are
only interested in the lowest excitons at finite momentum, that are not degenerate. In the
general case one has to take into account the off-diagonal terms that are also responsible
for the asymmetric Lorentzian shape of the excitonic peaks in the spectrum.[41] The
simplified expression for the self-energy reads :

Πexcp-ph
λ (Q = 0, ω) =

1

Nq

∑
µβq

|Gµβλ(q)|2

×
[

1 + nqµ

ω − Eqβ − Ωqµ − iη
+

nqµ

ω − Eqβ + Ωqµ − iη

]
. (4.28)

Plugging Eq. (4.28) in Eq. (4.26), we obtain for the diagonal case :

χ
(1)
λ (ω) =

|T λ|2(1− Zλ)
ω − Eλ + iη

+
|T λ|2
Nq

∑
µβq

|Gµβλ(q)|2
(Eqβ − Eλ ± Ωqµ)2

1/2± 1/2 + nqµ

ω − Eqβ ∓ Ωqµ − iη
(4.29)

where the upper (lower) sign refer to phonon emission (absorption). The above expression
contains two terms : the first one describes the response coming from direct transitions. Its
weight is reduced by the renormalization factorZλ compared to the static case. The second
term gives the phonon satellites coming from transitions assisted by the absorption or
emission of a single phonon. They appear at the energy of the finite-momentum excitons
plus or minus on phonon frequency Eqβ ± Ωqµ. The renormalization factor Zλ is given
by :

Zλ = −∂Πexcp-ph
λλ (ω)

∂ω

∣∣∣∣
ω=Eλ

(4.30)

=
1

Nq

∑
µβq

|Gµβµ(q)|2
[

nqµ + 1

(Eqβ − Eλ + Ωqµ)2
+

nqµ

(Eqβ − Eλ − Ωqµ)2

]
(4.31)

It is the derivative of the self-energy with respect to incoming light frequency. It is a
measure of how much weight is transferred from the direct peak to the satellites structures
in the optical spectra when including the exciton-phonon coupling. Notice that there is a
divergence when the phonon frequency is resonant with the exciton energy difference in
the denominators. This unphysical behavior is an artifact of the finite-order perturbation
theory.[40] If higher order terms are included, as in the cumulant expansion for instance,
then a correction to the exciton energies and a broadening enter then denominators, which
removes the divergence. This fictitious divergence could be particularly important for the
material studied in this Chapter, mBN. In fact one of the experimental interpretation is

97



4. Ab initio exciton-phonon coupling – 4.3. Phonon-assisted response function

that a phonon satellite caused by a transition between two zero-momentum excitons is
visible in the photoluminescence spectrum of mBN. Hence we have to take special care
when performing the q integration around Γ. To avoid divergences, we excluded the three
acoustic modes with zero frequency at Γ in the sum over phonon modes. 1 Moreover to
have a precise description of the phonon and exciton dispersions at small momentum, we
used a double-grid scheme as explained in Appendix E.

Nowwe use Eq. (2.112) to get the imaginary part of the macroscopic dielectric function
Eq. (4.29). Then we can derive a formula for the luminescence intensity using the van
Roosbroeck–Shockley relations from Eqs. (2.121) and (2.123). This formula will include
both the direct and the phonon assisted emission terms in the form :

Rsp(ω) = Rsp
0 (ω) +

1

Nq

∑
qµ

Rsp
qµ(ω) (4.32)

where Rsp
0 (ω) is the spontaneous emission rate for direct transitions only given by Eq.

(2.121) and the second term includes the phonon-assisted transition is given by Eq.
(2.123). Note that here the refractive index entering the two term n1(ω) can be excel-
lently approximated by Eq. (2.122) with just the static BSE result for εexc. Our final
luminescence intensity formula up to a multiplicative constant reads :

I(ω) = DRsp(ω) = D Im
∑
λ

|T λ|2
{
ω3n1(ω)

1− Zλ
ω − Eλ + iη

e
−Eλ−Emin

kBTexc

+
1

Nq

∑
µβq

ω(ω ∓ 2Ωqµ)2n1(ω)
|Gµβλ(q)|2

(Eqβ − Eλ ± Ωqµ)2

1/2± 1/2 + nqµ

ω − Eqβ ± Ωqµ − iη
e
Eqβ−Emin
kBTexc

}
(4.33)

whereD is a dimensional factor, n1(ω) is the refractive index. Notice that the excitonic
occupation that appears in the luminescence formula cannot be disregarded as in the
self-energy, because fundamentally it gives the weight of the indirect transitions. We use a
Boltzmann occupation function whose parameters are Emin, the minimum of the exciton
dispersion and Texc, the effective excitonic temperature. The latter is the only parameter
in the whole process that needs to be fitted and we estimated it from the experimental
measurements of Ref. [27]. For a lattice temperature of 10 K, the fit gives an excitonic
temperature of Texc = 24 K. The Boltzmann function for excitons is an approximation of
the Bose-Einstein assumption that we made earlier, but it is valid for low excitonic density
and reproduces correctly the experimental exponential decay of the phonon satellite
peaks.

In this thesis we also tried to use an occupation factor made out of the single-particle
fermionic occupations rotated in the exciton basis, just as it is done in Refs. [28, 123,
108], with an occupation function given by nλ =

∑
cvk 〈λ|cvk〉 fck(1 − fvk) 〈cvk|λ〉,

1. Notice that the electron-phonon coupling for acoustic modes goes to zero for q→ 0, and so do the
corresponding exciton-phonon coupling.
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where f is the Fermi-Dirac function. However it gives rise to unphysical occupations as
can be seen in Fig. 4.1 for three different BN nanostructures, namely mBN, hBN and
bBN. Indeed, the lowest excitonic state is populated, but so are the higher states coming
from the same transitions, that are the analogous of the Wannier exciton’s excited states.
Hence we stuck to the Boltzmann occupation instead of that derived from non-equilibrium
Green’s functions.
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Figure 4.1. – Comparison of Boltzmann (blue areas) and quasi-Fermi (red areas) excitonic
occupations for mBN (first column), hBN (second column) and bBN (third column).
See main text for the definition of the occupation functions and section 4.5.1 for the
definition of the R1 and R2 points. The black lines are the Fourier interpolation of
exciton dispersions, calculated at the G0W0+BSE level.

The final expression for luminescence intensity Eq. (4.33) is to be compared with
the one obtained with the finite difference method in Chapter 2, Eq. (3.14). Unlike the
previous method where only the indirect transitions were included, in the present formula
we have both the term coming from direct transitions and the term related to phonon
satellites. The major theoretical advance here is that the renormalization factor from
Eq. (4.31) allows to compare the relative intensities of the direct and the satellite peaks.
Besides, the satellite weight denominators include the addition or removal of the phonon
frequency not present in the static approximation of Eq. (3.14). Finally, thanks to this ab
initio formulation we can perform the whole workflow necessary to evaluate Eq. (4.33)
in the unit cell, which is also an improvement with respect to the previous method.
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4.4. Excitons in mBN and exciton-phonon
coupling

In this section we will apply the theoretical development presented in the two previous
sections to the case of monolayer hBN. We will first present its electronic and excitonic
properties then we will include phonons and their coupling with excitons.

4.4.1. Excitonic properties of a monolayer of hexagonal
Boron Nitride

The electronic and optical properties of monolayer hexagonal Boron Nitride (mBN)
have been the subject of numerous studies using both ab initio and semi-empirical
methods.[114] Within DFT, with the LDA exchange-correlation functionals, mBN is a
direct band gap material at high-symmetry point K, but the G0W0 corrections change its
gap from direct to indirect, going from K to Γ.[115] We verified that the system remains
indirect even at the semi-self-consistent “eigenvalue-GW” level (evGW ). We plot the
electronic band structure in Fig. 4.2 at different levels of theory : DFT within the LDA,
G0W0 and evG4W4. The latter means that we iterated the Hedin’s equation in the GW
approximation four times, modifying only the poles of G at every iteration.[124] This
process is compensating the lack of higher order correction of the G0W0 approximation
and usually improves the agreement with experiments regarding the bandgap values.[125]
In mBN the indirect gap is due to the presence of nearly-free electron states at Γ. In
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Figure 4.2. – Electronic bands of freestanding monolayer BN with different levels of
theory : DFT (orange), G0W0 (green) and evG4W4 (red)
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fact, the GW self-energy does not correct the σ∗-like states at Γ as much as the π∗-like
states around K and M and this makes the system indirect. The nearly-free electron
states have been investigated in the past in BN nanotubes and mBN,[126, 127] but only
at the independent-particles, DFT level. They may provide a possible mechanism for
luminescence quenching.[33]
Despite the presence of these states at Γ, the optical properties of BN-based systems

are actually dictated by the π bands around K andM , and this remains true for mBN.
The optical spectrum of mBN is characterized by a strong doubly degenerate excitonic
peak of symmetry E at about 6 eV. Exciton dispersions have been reported in several
articles.[128, 129, 12] In Fig. 4.3 we also report our calculated dispersion along selected
high-symmetry lines, starting both from the quasiparticle band structure and the DFT one
plus a scissor operator. The scissor shift is chosen in such a way that the lowest exciton
energy at Q = 0 matches the one obtained starting from the GW quasiparticle band
structure. Our exciton dispersion compares well with previously publicated results.[129,
12]
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Figure 4.3. – Calculated exciton dispersion for monolayer hBN, starting from either the
DFT-LDA eigenvalues with a scissor operator (blue) or the G0W0 quasiparticle ener-
gies (red). Dots represent our calculated BSE data, lines are Fourier interpolations

We found that excitons at momentum q = K have a lower energy than the direct exciton
at q = 0 when starting from the G0W0, a feature inherited from the indirectness of the
quasiparticle structure. In fact, these low-energy excitons are due to transitions towards
the nearly-free electron states at Γ. These new excitonic states are clearly distinguishable
from the “standard” BN excitons by plotting their wavefunctions in real space, as it is done
in the insets of Fig. 4.4 for several different center-of-mass momenta of the various states.
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We plot the electron distribution in real space when fixing the hole just above a Nitrogen
atom, like it would be in a pz orbital. This is what we call the exciton wavefunction in
real space.

We tracked the exciton wavefunction of the lowest two bands the high-symmetry lines.
We can see that the exciton momentum confers the wavefunction a shape according to
the symmetry of the point, e.g. it has a straight shape atM but is circular at Γ and K.
While the usual π → π∗-derived states (green exciton bands in the figure) display the
electronic density strongly localized on the Boron sublattice, when the hole is fixed on top
of a Nitrogen, the π → σ∗-derived states (red exciton band) present an electron density
strongly delocalized away from the layer plane. This is a clear signature of nearly-free
electron character.

Figure 4.4. – Details of the exciton dispersion of monolayer hexagonal BN. The insets
show the spatial localization of the exciton wavefunction at several different q-points
and branches (this is obtained by fixing the hole position on top of a Nitrogen atom,
i.e. on a valence π orbital, and plotting the resulting electron density). As evidenced
in the insets, the red branch in the dispersion plot is due to the nearly-free electron
states (involving conduction bands with σ∗ character), while the green branches
originate from the optically active π − π∗ band transitions.

With this analysis and for other reasons that will be explained in Sec. 4.6, we de-
cided to use the DFT eigenvalues with a scissor operator as a starting point of the BSE
and the subsequent steps, namely the calculation of exciton-phonon coupling and the
luminescence spectrum.
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4.4.2. Exciton-phonon matrix elements resolved in
momentum

We can plot the calculated matrix elements over the Brillouin Zone thanks to the
q-dependence in Eq. (4.24).

3D bulk hBN

For the bulk hBN, we plot in Fig. 4.5 the exciton-phonon coupling modulus for the
lowest-lying finite-momentum excitons β = 1 and β = 2 scattered into the bright excitons
λ = 3 and λ = 4 for all phonon modes. We sum over degenerate excitons and phonon
modes. We average over the qz points belonging to discrete planes orthogonal to the ΓA
line in order to have a two-dimensional plot. The quantity we plot is :

|G3+4,1+2(q‖)| =
1

Nqz

∣∣∣∣∣∑
µ,qz

Gµ3+4,1+2(qz,q‖)

∣∣∣∣∣ (4.34)

We also plot the same quantity but keeping only ZA and ZO phonon modes in the sum. It
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Figure 4.5. – Magnitude of the coupling between the finite-momentum excitons and the
lowest-lying bright excitons in bulk hexagonal BN. Color bar is the modulus of G(q)
in eV, for a 18×18 q-points grid.

is the probability that the excitons β = 1 and β = 2 are scattered into the zero-momentum
excitons λ = 3 and λ = 4 by all phonon modes with the corresponding momentum. The
information we can extract from this plot is that the coupling has the same symmetry as
the crystal, where the 3-fold rotation symmetry is clearly visible. From the panel (a) of
Fig. 4.5, we see that the scattering is maximal with excitons close to the ΓA line. From
the panel (b), we see that the ZA and ZO modes couple more with the minimum excitons
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on the ΓK lines. This coupling contributes to about ten percent of the sum of all modes,
as can be seen with the color bars.

2D mBN

For the monolayer BN, we plot a similar quantity in Fig. 4.6, except there is no need of
averaging over planes since the BZ is two-dimensional. We plot the scattering of finite-
momentum excitons β = 1 and β = 2 into the two degenerate bright excitons λ = 1 and
λ = 2 at Γ (where the β and λ indices coincide). Here the situation is different since most
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Figure 4.6. – Magnitude of the coupling between the finite-momentum excitons and the
lowest-lying bright excitons in monolayer hBN. Color bar is the modulus of G(q) in
eV for a q-points grid of 36×36 grid.

of the coupling happens around Γ and is about 4 times stronger than in the bulk materials.
The 3-fold hexagonal pattern can still be distinguished but with a lower coupling strength.
This result is a first hint that in mBN, it is less likely to see phonon-satellites coming
from the scattering of an exciton at the BZ edge than at the center.

4.5. Luminescence spectra

4.5.1. Benchmark on bulk hBN
We now put to the test our method by calculating the luminescence spectra of bulk hBN

which will serve as a benchmark. Indeed we can compare it to our finite difference method
as well as existing calculations in the literature and most importantly to experiments. We
plot in Fig. 4.7 the phonon and exciton dispersion of bulk hexagonal Boron Nitride. The
phonon dispersion has the labels of the different modes. The exciton dispersion exhibits
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Figure 4.7. – Phonon (left) and exciton (right) dispersions of bulk hBN.

a double local minimum on the ΓK line with the Fourier interpolation. However the true
minimum is on a point that is not on the ΓK line. This is verified in Ref. [130]. With our
coarse 18×18×6 momentum grid, the points with the minimum excitonic energies are
labelled R1 and R2 and their reduced coordinates are fractions of the reciprocal lattice
vectors R1 = (1

9
, 2

9
, 0) and R2 = (1

9
, 5

18
, 0). With the double-grid approach explained in

Appendix E, the sampling of the exciton dispersion is much finer and the true minimum
momentum is more accurately located.

In the left panel of Fig. 4.8, we plot the luminescence spectra obtained with the exciton-
phonon coupling from finite difference, as presented in Chapter 2, compared with the
present ab initio method. The peaks are given by a Dirac delta function with a finite
broadening added to follow a Lorentzian shape and match the experimental peak shapes
(more numerical details can be found in Appendix E). The shape of the LA/TA phonon
satellites on the high energy side of the spectrum, computed with the present ab initio
method, are broader than the single Lorentzian peaks of the finite difference method. This
is a consequence of the integration on the full q-grid present in the former method and
not in the latter. In addition, we used a double-grid for the exciton energies, the phonon
frequencies but keeping the exciton-phonon matrix elements on the coarse grid, so that
the numerical instabilities of the renormalization factor in Eq. (4.31) are smoothed out
and the dispersions are accurately described. We verified that we obtain similar spectra
when we restrict the sum on q in Eq. (4.33) to the q̄ points used in Chapter 2. The
difference comes from the renormalization due to the denominators in the self-energy
Eq. (4.28) which is missing in the finite difference formula. It should also be noted
that the inclusion of phonon absorption processes does not give additional peaks in the
spectrum. Indeed, the satellites due to phonon absorption have an intensity proportional
to the Bose-Einstein occupation of phonons, which is low for the lattice temperature of 6
K we simulated. We have verified that these peaks appear when the lattice temperature is
increased. Similarly, we have verified that higher-energy excitons become populated by
the Boltzmann occupation function when we increased Texc and produce satellite peaks
in the spectrum.

In the right panel of Fig. 4.8, we also compare our result with the spectrum obtained by
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Chen et al. in Ref. [118]. As mentioned previously, the exciton-phonon matrix elements
we compute are the same than in their formulation, if we do the correct change of variable
to account for their different momentum conservation convention. We implemented their
convention in yambo and verified that the spectra do not changewhen using one or the other.
They compute the luminescence intensity differently than the van Roosbroeck–Shockley
relation, this is why the spectra look different. Our spectrum reproduces correctly the
position of the satellites measured in Ref. [25] (note that all spectra have been shifted
to match the energy of the experimental peaks) and the intensity of the LA/TA doublet
on the high energy side, which is an improvement compared to the results of Chen et
al.. However, the intensity of the LO/TO doublet on the low energy side is not well
reproduced. It is in fact inverted, with the TO peak being less intense than the LO one.
Since this inaccuracy in the intensity is still in the correct order of magnitude, we decided
to proceed with this implementation.
We can also notice that the experimental peaks have phonon overtones due to the

scattering with multiple phonon which give them an asymmetric shape,[106] and this is
not included in our framework.

Besides, another issue in the spectrum is the presence of a low intensity peak at 5.93 eV,
which appear neither in other numerical spectra, nor in experimental measurements. To
investigate the origin of this peak, we can separate the contribution of each phonon mode
to the spectrum. We plot said contributions in Fig. 4.9 We see that the additional peaks
come from scattering of excitons with ZO and ZA phonon modes. In our simulations, we
set the light polarization to be in-plane. Hence optically created excitons are in-plane,
and their scattering with out-of-plane phonons (namely the ZA and ZO modes) and their
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Figure 4.8. – Comparisons of the normalized luminescence spectrum obtained with the
exciton-phonon matrix elements obtained from our ab initio method (blue line) and
the finite difference method (green line) on the left panel. On the right, we compare
it to the result of Ref. [118] (red dashed line). In both panels, the experimental data
(black dots) comes from Ref. [25].
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Figure 4.9. – Luminescence spectrum of bulk hBN (black curve) with separated phonon
contributions.

successive recombination is forbidden by symmetry.[29, 27] If the crystal symmetries
are changed, then these forbidden peaks can appear in photoluminescence. It is the case
for rhombohedral BN.[130] In our case, the problem arises from the construction of the
exciton-phonon matrix elements in Eq. (4.24). The electron-phonon matrix elements and
the exciton eigenvectors have different random phases that depend on the different sets of
Kohn-Sham wavefunctions that were used to generate them in the first place. It is a non-
trivial technical and numerical issue to account for these phases consistently. Indeed, some
DFPT implementations (like Quantum ESPRESSO) recalculate the KS wavefunctions at
k + q for each q. Instead, a single set of wavefunctions is used to define the BSE matrix
at any momentum Q in the yambocode, where the k + q wavefunctions are obtained by
symmetry transformations, thus imposing a specific choice of the relative phase between
the wavefunctions. This difference causes a phasemismatch in the definition of the exciton-
phonon matrix elements, Eq. (4.24), because both the electron-phonon matrix element
and the excitonic coefficients enter as full complex numbers. This is likely the reason why
the magnitude of the coupling with ZA and ZO phonon modes is as large as displayed in
Fig. 4.8 (b). This issue remains also if the electron-phonon matrix elements are obtained
via Wannier interpolation[118], since the wavefunction used to construct the excitonic
matrix would be different from the ones resulting via the Wannier procedure. 2 In this
case the interpolation process should be modified by fixing the wavefunction phases[131].
The phase mismatch is not present in calculations based on finite differences[99, 86]

2. Notice the curve of Chen et al. in panel (b) of Fig.4.8 ends at 5.9 eV, therefore we cannot compare
the results for the ZA/ZO case.

107



4. Ab initio exciton-phonon coupling – 4.5. Luminescence spectra

because in this case exciton-phonon coupling is directly calculated as a derivative of the
exciton dipole matrix elements on a supercell. However, these types of calculations are
restricted to a single q-vector. In the case of hBN luminescence, we verified that the
phase mismatch only gives small changes in the numerical results (by testing different
sets of wavefunctions with different random phases).
A workaround of these issues was used by Zanfrognini et al. in Ref. [130] where the

same implementation was used to compute the luminescence of bulk hBN and rhombohe-
dral BN. They did not use the crystal symmetries to reduce the size of the BZ and wrote
an interface with a third simulation code in order to build the exciton-phonon matrix
elements without the phase issue. Overall, this was a much heavier numerical calculation
but it allowed to solve two issues in the spectrum. The spectrum they obtained for hBN
does not contain the ZA/ZO satellite and has improved relative intensities for the LO/TO
and LA/TA doublet with respect to experiments.

Overall, our spectrum is in fairly good agreement with the experimental one. Keeping in
mind the issues discussed above, we turn to the study of a case where the main advantage
of our method is fully exploited : the fact that we can compare the relative intensities of
direct peaks and phonon satellites.

4.5.2. Results on mBN
In this section we report the luminescence spectrum of monolayer hBN calculated

using the method presented in Sec. 4.3 with the computational parameters reported in
Appendix E. Here we consider an isolated monolayer and compared our results with
different experiments reported in the literature. The effect of the substrate will be discussed
in the next sections.
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Figure 4.10. – Calculated luminescence spectrum of monolayer hBN (a) compared to
the experimental results of Ref. [1](b), Ref. [2](c) and Ref. [3](d). The theoretical
spectrum has been shifted to match the main experimental peak (c). For clarity, we
have plotted the theoretical spectrum next to each experimental result. In the inset
of panel (a) we show the theoretical spectrum in a logarithmic scale, revealing the
presence of a small phonon satellite.

We plot the central result of this chapter in Fig. 4.10. In panel (a) we report our
luminescence calculations of a single layer m-hBN compared to the measurements of
Refs. [1, 3, 2], panels (b),(c),(d). Beside the main direct emission peak, we found a
satellite at lower energy that has a small intensity, about two orders of magnitude lower
than the direct peak (see inset in logarithmic scale in the panel (a)). We were able to
identify the different terms contributing to the satellite intensity by analyzing the single
terms of the sum in Eq. (4.33), both in terms of phonons modes and in momenta. Thus
we identify the satellite as a scattering from a zero-momentum exciton due to the LO and
TO phonons.

We also included possible indirect transition from excitons with momentum corre-
sponding to theK point due to the π → π∗ transitions (relative minimum of the green
curve in Fig. 4.4). However, we found that due to the relatively large energy difference
of 0.14 eV between direct and indirect excitons, the contribution of these latter states to
the luminescence spectrum is null. 3 Therefore, the additional peaks seen in some of the
experiments are not explained by our calculations.
Finally as a sanity check, we considered the possibility that the distance between the

3. We did not consider polaritonic effects that could slightly modify the luminescence spectra, see Ref.
[132] for a discussion.
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exciton K and Γ is not well reproduced by our calculations and analyzed the matrix
elements of the phonon-assisted transitions between K and Γ. We found that these are
in any case too small to explain the additional peak seen close to the main one in the
experiments with a Graphite substrate.
In the light of these results, let us now discuss the different experiments. The details

of the three luminescence spectra reported in the literature, see Fig. 4.10 (b-d), are the
following: two of them feature mBN grown by molecular beam epitaxy on Graphite,[1,
3] and one mechanically exfoliated on Silicon Oxide.[2] With the Graphite substrate,
multiple peaks are visible. These peaks have been attributed to various causes, which we
will briefly summarized here. In the work of Elias et al.,[1] the possibility of additional
satellites appearing due to scattering of the indirect excitons atK was considered. We
also mention that in a very recent article, not peer-reviewed yet,[34] cathodoluminescence
measurements of mBN on Graphite revealed a faint peak at 6.04 eV, that was attributed
to the phonon-assisted recombination of the K exciton assisted with a ZA phonon. In
the work of Rousseau et al.[2] they put forward the possible presence of bubbles in the
sample as cause of the additional peaks. Finally, in the article of Wang et al.[3], these
additional peaks were attributed to the presence of multilayer BN regions and the peak at
the middle of the three should be caused by defects that would allow the triplet excitons
(out of the scope of this thesis) to recombine radiatively.

Our theoretical work allows us to rule out the first hypothesis since, as shown above,
the energy difference between Γ andK is large and the phonon-assisted transitions have
too low an intensity to have indirect excitons visible in luminescence in the energy range
where the second experimental peak appears, while the π → σ∗ transitions seem to play
no role. Regarding the effect of bubbles in the sample on the luminescence spectra, we
have shown in the previous Chapter that strain can induce shifts of the luminescence
spectra.[86] Yet, in order to obtain a significant effect, the strain must be very large, and
in addition it is difficult to explain with strain the presence of two well-defined peaks, like
those visible in the experimental spectra. Finally, there is the hypothesis of defects or
multi-layers BN. We think this is the most plausible hypothesis, because it has been shown
that some defects can produce levels close to the main exciton,[133] and multi-layers BN
induce splittings of the main peak.[99] Finally, note that the presence of defects or edges,
which break translational symmetry, could make the indirect exciton visible without the
need for phonon mediation.[134]

4.6. Effects of the substrate on the electronic gap
and excitons of mBN

In the previous section we considered the isolated mBN and its luminescence spectrum.
However it is well known that the interaction of 2D materials with a substrate can strongly
modify their electronic and optical properties. In this section we analyze how the presence
of a Graphite substrate could modify the picture presented in the previous section. In
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particular, we will investigate the role of nearly-free electron states and of indirect excitons.
In order to see if we can really expect an optical experimental signature from the exciton
made of nearly-free electron states – that will make the system functionally indirect –
we decided to investigate how the presence of a substrate modifies their position with
respect to the direct gap, compared to the freestanding mBN. We included a graphitic
substrate in the simulation, analogous to the one used in some of the experiments. Since
we are not able to include a full bulk Graphite in the simulation, we modelled it with one
and two layers of Graphene. We found that the presence of a graphitic substrate lowers
the direct gap atK much more than the indirect one, actually making the system a true
direct band gap insulator again. This is most likely due to the stronger interaction of the
pz orbitals of boron with those of Graphene while the planar σ∗ states are less affected.
The dependence of the mBN gaps on the number of substrate Graphene layers is shown
in Fig. 4.11 (calculation details are given in Appendix E).
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Figure 4.11. – Band gaps of mBN as a function of the number of Graphene layers included
in the simulation cell. The large direct gap at Γ is in blue, the indirect π → σ∗, i.e.
K → Γ, is in green and the smallest K → K direct gap is in red.

Therefore, we expect that these states at Γ will not contribute to the luminescence
in a realistic experiment where mBN is deposited or grown on a substrate. In order to
simulate luminescence from an ideal mBN deposited on a substrate we started from the
LDA band structure and applied a scissor operator that allows us to maintain the direct
nature of mBN (i.e. removing the red “band” in Fig. 4.4).

Next, we investigate the effect of a substrate on the indirect excitons of mBN. As
computing the excitonic dispersion in the presence of a substrate would be computationally
prohibitive, we decided to use a simple model to study the impact on luminescence. We
know that the difference in energy between the excitons at Γ andK is due to correlation
effects. Therefore with the substrate increasing the screening, we expect this gap to
decrease. Indeed, with increased screening the atractive term in the BSE kernel is stronger,
hence increasing the finite-momentum excitons binding energy. By adding a parameter
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that renormalizes the exciton energies proportionally to their momentum with the formula
E(q) = E0(q) + α|q|, we can roughly simulate this effect and bring the exciton at K
lower in energy than the one at Γ. Hence, this new minimum gets more populated with the
Boltzmann occupation function and it might increase the intensity of phonon satellites.
An ab initio treatment of the Graphite substrate is possible at theGW and BSE level with
recent numerical developments,[135] but it remains too expansive computationally for
our way of calculating the exciton-phonon coupling, given the number of k and q points
needed to accurately describe the sharp electronic dispersion of Graphene layers. More
advanced numerical procedures to include the screening of a substrate or any external
environment exist,[136, 137] but they are beyond the scope of this thesis.
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Figure 4.12. – Left column : plots of the Fourier interpolated lowest excitonic band in
the dispersion of mBN, between Γ and K, when momentum-dependent distortion
is applied to decrease the energy at K. The Boltzmann occupation function is
represented in green. Right column : corresponding luminescence plots, normalized
to 1. The main peak is always visible and the phonon satellite gain intensity when
the distortion brings the energy at K lower than at Γ.

We plot the undistorted exciton dispersion and luminescence spectrum in the two
upper panels of Fig. 4.12. In this case the phonon-assisted satellite coming from the K
valley is invisible due to the energy separation. In the middle panels, we see that when
∆KΓ ≡ E1(K)− E1(Γ) = 1meV , the valley atK gets populated, but the corresponding
luminescence plots still show a phonon satellite barely visible compared to the direct
peak. It is an overlap of the satellites from Γ and from K, that scatter with the same
phonon modes and hence have the same energy here. Finally, in the bottom panels when
∆KΓ = −27 meV, the K valley is much more populated than the Γ one and thus the
phonon satellite becomes visible.
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Notice that we did not modify the exciton-phonon matrix elements unchanged for this
particular plot, which is probably an inadequate approximation since the screening of the
Graphite substrate screening also influences the electron-phonon coupling.[138] It means
that the change in the luminescence spectra with the distortion is only due to the change
in exciton energies at finite-momentum and to the Boltzmann occupation function. As
a consequence, the satellite in the bottom-right panel of Fig. 4.12 appears because the
direct exciton is less populated. In any case, to see this effect theK valley needs to be
renormalized of about 170 meV, which seems unrealistic for a Graphite substrate. This is
another indication to rule out the possibility that the satellite coming fromK could be as
bright as the direct peak in the experiments.

4.7. Preliminary results on bBN
The Bernal form as a similar crystal structure as hBN, but the stacking of the layers is

AB instead of AA’, with a Boron atom lying above the center of an hexagon, as illustrated
in Fig. 1.1. This part of the thesis is a preliminary study for a larger work where we
will also investigate the effect of different DFT functionals and convergence parameters
on bBN properties. As a start, we used the same computational parameters as the more
studied bulk hBN, that can be found in Table. E.1 of Appendix E.

The Bernal stacking type exhibits an identical phonon dispersion with hBN, meaning
that the stacking has no influence on the energies of the phonons. However it has quite
a different exciton dispersion compared to hBN, as displayed in Fig. 4.13. The relative
minimum along ΓK now has an higher energy than the one at Γ. The energy of the
exciton at Γ is 5.39 eV and the minimum at q = (1

6
, 1

6
, 0), which is |ΓK|/2, is 5.41

eV. This 20 meV difference means that the indirect exciton will be populated at large
effective temperatures by the Boltzmann occupation function, but only sparsely in a
low-temperature measurement. We then expect most of the photoluminescence intensity
to come from the direct exciton, with very little phonon-assisted satellite peaks in the
spectrum.
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Figure 4.13. – Calculated exciton dispersion in Bernal BN

We plot the exciton-phonon matrix elements for bBN in Fig. 4.5. The coupling for all
phonon modes is very similar than for hBN, with a snowflake shape. The maximum of
the coupling is around Γ with some coupling along the ΓK lines. Concerning the ZA
and ZO modes, the matrix elements are more homogeneous with maxima at the middle
of the ΓK lines and the coupling is non-zero over the whole BZ, although the magnitude
is slightly lower than for hBN.
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Figure 4.14. – Magnitude of the coupling between the finite-momentum excitons and the
lowest-lying bright excitons in Bernal BN. Color bar is the modulus of G(q‖) in eV,
for a 18×18 q-points grid.
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We found most of the contribution to the luminescence came from excitonic states at Γ
and along the ΓA line which has a low dispersion (see Fig. 4.13). This is in agreement
with the exciton-phonon matrix elements showing a higher coupling around Γ.
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Figure 4.15. – Plots of the calculated luminescence spectrum of Bernal BN, with and with-
out exciton energy distortion, compared to experiments. We shifted the calculated
spectra to match the experimental peaks.

As in the mBN case, we now investigate how a small distortion of the excitonic
dispersion modifies the luminescence spectra. We expect that some satellite peaks
will appear with intensities comparable to the direct one. In Fig. 4.15 we report the
luminescence spectra with and without distortion of the excitonic dispersion. We applied
a distortion such that the valley at the middle of the ΓK line T = |ΓK|/2 gets a few meV
lower that the Γ excitonic state : ∆ΓT = −13 meV. This corresponds to a renormalization
of ∆E(T ) = 35 meV.
The luminescence plot with separated phonon contributions in Fig. 4.16 allows to identify
the peaks that are absent in the experiments and that are made visible with the distortion.
Here we plot only the satellite contributions to luminescence. These satellites come from
scattering with excitons in the new minimal T valley on the ΓK line. We see that one of
the major contribution comes from a ZO phonon mode, which should be forbidden by
symmetry. This is the same numerical issue that was explained above, for the ZA and ZO
peaks in the spectra of hBN.

Since a change in the exciton energies can change drastically the luminescence spectrum,
we need to perform a careful study of all the numerical parameters involved in the workflow.
This is still ongoing work.
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Conclusion of the chapter
In this Chapter, I presented a first-principles methodology to calculate phonon-assisted

luminescence in exciton-dominated materials. It is based on a dynamical correction to
the static Bethe-Salpeter Hamiltonian given by an excitonic self-energy term describing
exciton-phonon interaction. Using this self-energy, we obtained a formula for the optical
response that contains corrections up to first order in the exciton-phonon coupling. Unlike
previous formulations, we are also able to calculate the renormalization factor for direct
transitions, which allows for a quantitative comparison between direct and phonon-
assisted emission signatures. From the optical response function, and employing a
steady-state approximation, we obtained a formula for the phonon-assisted luminescence.
All ingredients that enter in this formulation have been calculated ab initio, except for
the excitonic temperature relative to the occupation of excitonic states. We first validate
our approach on bulk hBN, where clear and well-established experiments exist. We then
applied this approach to the BN single layer, where recent discordant photoluminescence
measurements were reported independently by different groups. In mBNwe found that the
luminescence spectrum is dominated by the single direct peak only and phonon replicas,
while present, have negligible intensity. In addition, phonon-assisted transitions from
the lowest indirect exciton remain too low in intensity to explain the measured spectra.
Therefore, we rule out phonon-assisted processes as the cause of the additional spectral
fine structure sometimes seen in experiment. We support the interpretation that this fine
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Figure 4.16. – Plots of the satellite contributions to the luminescence spectrum of Bernal
BN, where the different phonon mode contributions are separated (shifted to match
the experimental peaks). The black curve is the total luminescence signal.
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structure is not intrinsic, nor due only to substrate effects, but depends on sample quality.
Regarding bBN, our first numerical studies suggest a direct luminescence. Despite

considering a small distortion of the excitonic dispersion, our spectrum still differs from
the experimental one. We are investigating the role of van der Waals correction and the
possible numerical problems in our procedure to provide an accurate interpretation for
the experimental results.
Finally, we would like to mention that our methodology based on the dynamical self-

energy has been fully implemented in the yambo code and is applicable to other systems
of interest. This formulation allows one to compute more observables than just the lu-
minescence presented here, such as phonon-assisted absorption, exciton linewidths and
relaxation rates.

Added note. We have become aware of a recently published article, Ref. [139], in
which a formula for the phonon-assisted luminescence was derived using non-equilibrium
Green’s functions theory. It includes renormalization factors in a very similar way to our
approach.

Summary of Chapter 4.

— The coupling between excitons and phonons was computed ab initio in Sec.
4.2 by treating the electron-phonon interaction as a dynamical perturbation.

— This approach allowed to compute the interaction between all excitons and
all phonon modes in the full Brillouin Zone.

— Within MBPT, we could formally build an exciton-phonon self-energy that
corrected the response function dynamically in Sec. 4.3.

— Using the van Roosbroeck–Shockley relation, we were able to compute lumi-
nescence spectra with contributions from both direct excitons and phonon-
assisted transitions, with a renormalization factor that allowed their relative
intensities to be compared.

— We benchmarked the method on bulk hBN and applied it to the monolayer
mBN and to the Bernal phase bBN, and compared our results with available
experimental measurements.
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Conclusion

The scope of this thesis was to reproduce and predict the luminescence spectra of
distinct hBN nanostructures. To do so, we used and developed various theoretical and
numerical approaches to the study of phonon-assisted luminescence. Additionally it
provides an insightful interpretation of the different features appearing in experimental
measurements thanks to first-principles calculations of the exciton-phonon coupling.
These calculations are built upon the state-of-the-art ab initio theories presented in the
second Chapter.

Main results
In the third Chapter, we applied an existing approach where the response function

gets a static correction due to the phonon-assisted transitions. This correction is cal-
culated through finite-difference derivatives, wherein we build supercells and displace
the contained atoms along all the phonon modes. We applied this method to compute
the luminescence spectra of bulk hBN under uniaxial strain. We found that multiple
nonequivalent excitonic valleys in the Brillouin Zone contribute to luminescence due to
rotational symmetry breaking. Therefore the phonon-assisted peaks split for low values
of strain. This splitting also broadens the peaks and increases the intensity of the LA/TA
doublet in relation to the LO/TO. This partially agrees with recent experimental measure-
ments of cathodoluminescence of strained hBN.

In the fourth Chapter, we went beyond the finite-difference method and presented
the derivation of an ab initio method to obtain exciton-phonon coupling.This method
enables the treatment of the coupling of all excitons with all phonon modes in the entire
Brillouin Zone and represents an improvement in both numerical and theoretical aspects.
It yields the renormalization of the direct peak by the appearance of phonon-assisted
satellites in the luminescence spectrum, originating from the dynamical correction to
the response function. We implemented this approach in the yambo code and applied
it to the calculation of phonon-assisted luminescence of a monolayer of hBN. We ob-
tained the first results of calculated luminescence from first-principles, encompassing
both direct and phonon-assisted emission signatures. We were able to compare their
relative intensities and ruled out the possibility of distinguishing phonon satellites due
to the bright intensity of the direct peak. This possibility was one of the interpretations
proposed in very recently published experimental measurements displaying features of
debated origin. We also investigated the role of the screening of a graphitic substrate on
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the intensity of the indirect exciton peak and found that it is likely not sufficient to reveal
the phonon-assisted processes in the experiments.

We finally showed the preliminary results of an ongoing study on the Bernal phase of
BN. Theoretical and experimental evidence suggest that both direct and phonon-assisted
emission processes could be visible with comparable intensities. This makes it an ideal
testing ground for our approach. First results suggest a direct luminescence, but a deeper
investigation is necessary as the results have a strong dependence on small changes in the
numerical parameters used in the simulations.

Future work and perspectives
We expect that the work of this thesis will spark numerous future developments, both

in terms of applications, new theoretical models and collaborations between theory and
experience. The subsequent paragraphs outline the future developments pertaining to
each part of the thesis.

Regarding the results of strained hBN, the agreement with experimental data could
be improved by sampling the excitonic dispersion with a finer grid in reciprocal space.
A tight-binding model adjusted on coarse ab initio data could help refine this sampling.
Moreover, the strain could be included as a parameter of the model. Experimentally, the
strain applied to the sample could be estimated with reflectance and optical absorption
experiments. These could be compared with our results for the variation of exciton energy
and the splitting of the absorption main peak. We plan to start a new joint experimental
and theoretical study of the effect of strain on the optical properties of hBN to get further
insight on this topic.

Regarding the ab initio calculation of the exciton-phonon coupling, a workaround to
the wrong intensities and to the phase problem was found by Zanfrognini et al in Ref.
[130]. However their approach necessitates the use of a third simulation code and does
not exploits the crystal symmetries to reduce the size of the Brillouin Zone. This signifi-
cantly increases the computational load and the disk space necessary for the workflow. A
promising solution to the phase problem is currently being developed, which involves a
different way of calculating the electron-phonon interaction.

For the study of the Bernal phase of BN, we are investigating ways to reduce the
disk space required, which can be prohibitive for more complex materials, without com-
promising the accuracy of the workflow. The study of bBN and the dependence of its
luminescence spectrum with respect to the position of the excitonic valleys could pave the
way for engineering its optical properties and potentially build devices that take advantage
of the direct and indirect nature of this material. We expect a new article to be submitted
on this subject before the end of the year.
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Although in this thesis the exciton-phonon coupling has been calculated with two dif-
ferent methods, the luminescence intensity has been obtained using the van Roosbroeck–
Shockley relation in both cases. On the one hand, assuming we are in a steady state
situation, it allows to compute the luminescence from the knowledge of the macroscopic
dielectric function that we obtain ab initio. It is much simpler both numerically and
theoretically than considering the out-of-equilibrium interplay between electrons, holes,
phonons and photons. On the other hand, it requires an external parameter, the excitonic
temperature, hence the workflow is not fully ab initio. It should be possible to avoid
this and derive an exciton conversion rate from the exciton-phonon coupling we have
computed. We could then include the exciton relaxation from higher energy to the lower
valley and their thermalization and replace the ad hoc excitonic temperature by an ab
initio one. While I was writing this thesis, a new pre-published work was released where
the authors derived an equation for the phonon-mediated thermalization of excitons,[120]
but it is at present limited to a simple model.

In the current state, the knowledge of the ab initio exciton-phonon matrix elements
can be used to study exciton dynamics.[140] The exciton-phonon self-energy also allows
to compute the exciton lifetimes which are helpful for the ultrafast spectroscopy, a field
of relevance in Condensed Matter Physics.

Moreover, this ab initio method could be extended to the scattering with multiple
phonons, also including renormalization of the exciton energies by dynamical interaction
with phonons, thanks to the cumulant expansion as shown theoretically by Cudazzo in
Ref. [55]. Our implementation in the yambo code can be readily extended to this more
general case. It would then allow one to simulate the temperature dependence of the
exciton energies and of the optical spectra on the same footing.

Finally, a rigorous treatment of the exciton-lattice interaction is the first step towards a
description of the excited state geometry of periodic solids. It could used to the calculation
of forces in a GW-BSE framework for instance, with applications to exciton self-trapping
or charge separation, essential phenomena for optoelectronic devices and photovoltaics.
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A. Derivation of equations of motion for field
operators

Here we derive the equations of motion for the field operators in Heisenberg picture,
based on [38, 64, 65, 37]. In the main text however, the interaction picture is used. The
following derivation is left unchanged if one considers the unperturbed Hamiltonian to
be the time-independent Ĥ and any other time-dependent external perturbation, which
is exactly what was done in the main text. We shall make explicit the time dependence
of every term appearing in the Green’s function in Eq. (2.27). We start with the time
evolution of the field operators. We recall some useful properties of the field operators
for fermions in the Schrödinger picture :

{ψ̂(x), ψ̂†(x′)} = δ(x− x′)
{ψ̂(x), ψ̂(x′)} = {ψ̂†(x), ψ̂†(x′)} = 0

n(x) = ψ̂†(x)ψ̂(x)

(A.1)

The total Hamiltonian enters the Heisenberg equation of motion for an operator Ô:

i
d

dt
ÔH(t) = Û †S(t)

[
Ô(t), Ĥ

]
ÛS(t) + Û †S(t)(i

d

dt
ÔS(t))ÛS(t) (A.2)

where the subscriptH and S denote respectively the Heisenberg and Schrödinger pictures,
and the transformation from the latter to the former is given by :

ψ̂H(x, t) = Û †S(t)ψ̂S(x)ÛS(t)

ψ̂†H(x, t) = Û †S(t)ψ̂†S(x)ÛS(t)
(A.3)

and ÛS(t) = exp
(
−iĤt

)
is the time evolution operator. In the following we drop

the subscript H for the field operators, as their time dependence will be explicit. The
Heisenberg equation of motion for the field operator is then :

i
d

dt
ψ̂(x, t) = Û †S(t)

[
ψ̂(x), Ĥ

]
ÛS(t) (A.4)

and similarly for ψ̂†. To compute the commutator, we split the two terms of the Hamilto-
nian and we use the identity[

ψ̂(x), ÂB̂
]

= {ψ̂(x), Â}B̂ − Â{ψ̂(x), B̂} (A.5)
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where we take

Â = ψ̂†(x1)

B̂ = h(x1)ψ̂(x1)
(A.6)

Since {ψ̂(x), B̂} = 0, then [
ψ̂(x), Ĥ0

]
= h(x)ψ̂(x) (A.7)

Now we notice that the second term in the commutator contains[
ψ̂(x), ψ̂†(x1)ψ̂†(x2)ψ̂(x2)ψ̂(x1)

]
=
[
ψ̂(x), ψ̂†(x1)ψ̂†(x2)

]
ψ̂(x2)ψ̂(x1)

=
(
ψ̂†(x1)δ(x1 − x2) + ψ̂†(x2)δ(x− x1)

)
ψ̂(x2)ψ̂(x1).

(A.8)

Therefore,[
ψ̂(x), Ĥint

]
=

1

2

∫
dx1ψ̂

†(x1)ψ̂(x)ψ̂(x1)v(x, x1) +
1

2

∫
dx2ψ̂

†(x2)ψ̂(x2)ψ̂(x)v(x, x2)

=

∫
dx2v(x, x2)ψ̂†(x1)ψ̂(x2)ψ̂(x)

(A.9)

where in the second line we used the symmetry property of the Coulomb interaction
v(x, x′) = v(x′, x). Finally, with the compact notation 1 ≡ (r1, σ, t1), we get the
equations of motion for the field operators :

∂

∂t1
ψ̂(1) = −i

[
h(1) +

∫
d3v(1, 3)ψ̂†(3)ψ̂(3)

]
ψ̂(1)

∂

∂t2
ψ̂†(2) = i

[
h(2)ψ̂†(2) + ψ̂†(2)

∫
d3v(2, 3)ψ̂†(3)ψ̂(3)

] (A.10)
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B. From orthorombic strained cell to
pseudo-hexagonal unit cell

In our case we a have a crystal with a two-atom basis. We simulate uni-axial strain by
elongating or shortening the bond length in only one cartesian direction and letting the
atoms relax along the other two orthogonal directions. It is straightforward to impose such
a constraint to a lattice with orthogonal vectors, but more complicated if we had kept the
equilibrium hexagonal unit cell. This is why we chose to do the relaxation of structures
under strain with orthorombic cells containing 8 atoms (4 per plan). We want to build a
unit cell that preserves the symmetry and periodicity of the strained crystal, with as few
atoms as possible. The following is a geometrical generalization of the transformation
from orthorombic to hexagonal lattice unit cell in cartesian coordinates.
Take an orthorombic unit cell whose matrix in cartesian coordinates is :a 0 0

0 b 0
0 0 c

 (B.1)

with a, b, c being arbitrary lengths. Nowwewant to build a strained unit cell that resembles
the equilibrium hexagonal cell the most, so that we can compare the different Brillouin
zones and the paths on which we plot the electronic structure and the phonon dispersion.
The rhombus representing the unit cell of the pseudo-hexagonal cell, viewed from the
top, is drawn in Fig. B.1. Then we have :

a′ =
√
d2 + p2 (B.2)

β = π − 2 tan−1
(p
d

)
(B.3)

where d, p are the half diagonals of the rhombus, a′ is the side length and β the angle
as shown in Fig B.1. This is a regular rhombus in the sense that all sides have equal
length and the diagonals are orthogonal. The length of the diagonals is obtained from
the knowledge of the orthorombic cell, as shown in Fig. 3.2 in the main text. Then the

Figure B.1. – Rhombus used as the unit cell for the pseudo-hexagonal lattice with the
atom positions indicated with crosses, viewed from top.
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matrix of this rhombus unit cell, expressed in cartesian coordinates, is : a′ 0 0
a′ cos β a′ sin β 0

0 0 c

 (B.4)

The first two lines are the vectors in green in Fig. B.1. The third vector c is the one
perpendicular to the atomic planes and is the same than the orthorombic c. In the
equilibrium case, we have β = 120°, then this matrix reduces to : a′ 0 0

−a′/2 a′
√

3/2 0
0 0 c

 (B.5)

which is the standard hexagonal-lattice unit cell. We now have built a 2-atom unit cell
which we used to compute electronic, phononic and optical properties of our strained
materials. We checked that both the orthorombic and the pseudo-hexagonal unit cells
form the same strained crystal when periodically repeated in all directions.
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C. Computational parameters for Chapter 2
We applied different strains along the x-direction, the one parallel to the B-N bond,

ranging from −2.5% to +2.5% of the equilibrium cell vector. Then we allowed the cell
vectors and atomic positions to relax only in the other two orthogonal directions, keeping
the arbitrarily strained length fixed. The relaxation is done using Density Functional The-
ory and a dampedmolecular dynamics algorithm as implemented in the QuantumEspresso
code,[56] with norm-conserving pseudo-potentials in the Local Density Approximation
(LDA), a kinetic energy cutoff of 120 Ry and an equivalent Monkhorst-Pack grid of
18× 18× 6 k-points. The forces acting on the cell and atoms were converged to be lower
than 10−6 a.u.
Once the strained orthorhombic cells were relaxed, we have constructed strained

pseudo-hexagonal cells in order to proceed with the electronic and optical calculations.
On these pseudo-hexagonal 2-atom cells we performed phonon calculations using

DFPT,[56] with q-points and k-sampling respectively of 6× 6× 2 and 18× 18× 6, in
order to verify the stability of our structure and the effect of strain on phonon modes.

The quasi-particle band structure was obtained within the G0W0 approximation, using
again a 18×18×6 k-points sampling, with 210 bands plus a terminator[141] for G andW
in order to speed up convergence. We used a cutoff of 7 Ha for the dielectric constant that
was calculated within the plasmon-pole approximation. Excitons and optical absorption
were studied solving the Bethe-Salpeter equation[65] using 4 valence and 4 conduction
bands, as implemented in the yambocode,[58] using the same k-points grid as for the
G0W0 calculations.
Luminescence was calculated following the approach described in Ref. [29]. We

searched for the minima of the indirect gap within the independent particle approximation
and we used the corresponding q-vectors to construct a supercell that map these points atΓ.
We displaced atoms along all possible phonon modes having a periodicity commensurate
with the different q-points of the indirect gap minima, and calculated the derivatives of the
excitonic optical matrix elements. 1 With these ingredients plus the phonon frequencies
we reconstructed the spectra using the van Roosbroeck–Shockley relation.[29]

1. In the luminescence calculations we used a smaller k-point sampling, 12 × 12 × 4 and a scissor
operator to speed up calculations in the supercells, similar to Refs. [28, 29]. These parameters are sufficient
to describe the lowest exciton that is responsible for the luminescence.
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D. Analysis of first excitons in bulk hBN
In bulk hBN due to the strong exciton localization the three fold symmetry cannot be

disregarded and this makes the usual hydrogenic model inadequate to describe exciton
series.[100] Therefore we analyze the nature of the first excitons in bulk hBN using the
solution of the full Bethe-Salpeter equation. Our analysis is based on direct comparison
of exciton wave-functions with the results of Refs. [99, 114, 100]. By means of this
comparison we were able to recognize different excitonic states. However for a deeper
analysis a tight-binding model and the plot of exciton phase is necessary [114] that is
beyond the scope of this thesis. In Table D.1 we report the first 13 excitonic states.
For each state we report its binding energy both in self-consistent evGW and G0W0

approximation, its symmetry, and the inter-layer (IL) or in-plane pair (IP) character,
using the same notation than Ref. [114]. All these excitons are formed by π → π∗

transition, that correspond to an hopping from nitrogen atom to the boron. For this
reason the excitonic wave-function in Table D.1 are obtained by fixing the position of
the hole slightly above a nitrogen atom. Similarly to the bi-layer case,[114] in bulk hBN
excitons undergo a Davydov splitting in even and odd states with respect to the inversion
symmetry. The parity with respect to the inversion symmetry is important for optical
properties because transitions are allowed only with odd parity states.[100] This parity
cannot be inferred from the plot of electron density at fixed hole position as in the figures
of Table D.1 but requires an analysis of the exciton wave-function phase. Therefore
we assigned parity by looking at the dipole matrix elements. The first excitonic states
from 1 to 4 correspond to the 1s exciton split in two degenerate pairs. Then we found
a series of excitons similar to the monolayer case[99]: two with A1 and A2 symmetry,
followed by a pair with E symmetry. At higher energy we have interlayer excitons and
then the degenerate states 12,13 that are the fist pair responsible for the second peak in
the absorption spectra. At higher energy identification is more difficult but we expect to
find all the Davydov pair of the lowest excitons presented here.
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Figure D.1. – The first 13 excitons in bulk hBN. In this table we report both the binding
energy in evGW and in G0W0 approximation.
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E. Computational details for Chapter 3
In this section we present our computational workflow for the calculation of the exciton-

phonon coupling and all the computational details needed to reproduce the results. A
sketch of the workflow is reported in Fig. 1.3. We start from the crystal structure, which
was optimized within DFT for the monolayer and taken from Ref. [12] for bulk hBN. The
relevant lattice parameters are shown in Table E.1. We performed all DFT calculations
using the Quantum ESPRESSO code[56], with norm-conserving pseudopotentials[142]
in the LDA.[143] In the monolayer case, a supercell was used with a length of 21 Å
along the z-direction – in such a way to avoid spurious interactions between periodic
images – along with the 2D cutoff for the Coulomb interaction implemented in Quantum
Espresso.[144] Energy cutoff and other parameters that enter the DFT calculations are
reported in Tab. E.1. Phonons and electron-phonon couplings were calculated within
DFPT starting from the DFT results. The transferred momenta grid for the phonons is
reported in Tab. E.1. The correct long-range behavior of the electron-phonon coupling in
2D was obtained by applying a cutoff of the Coulomb interaction in the z-direction.[145]
The electron-phonon matrix elements were calculated on the same q-grid as the phonons
and the excitons, for all the electronic bands entering in the BSE kernel.
Using the Kohn-Sham band structure as a starting point, we employed MBPT as

implemented in the yambo code[58] to calculate quasiparticle band structures within
the G0W0 approximation[37] and the excitonic optical response functions using the
BSE.[65] All the many-body operators that enter in these calculations are expanded in
a Kohn-Sham basis set. Therefore, in order to have converged results, we diagonalized
the Kohn-Sham Hamiltonian for a large number of bands that were then used to build
the electronic Green’s function G and the dielectric matrix ε. In table E.1 we also report
the cutoff used in the construction of the dielectric matrix. Finally, in order to speed up
convergence with respect to the empty states, we used a terminator for both ε andG.[141]
The BSE was constructed using a static kernel derived from the GW self-energy within
the Tamm-Dancoff approximation.[65] We include only the lowest conduction and the
highest valence bands in such a way to get converged absorption and emission spectra.
The BSE was solved for a grid of transferred momentaQ identical to the phonons grid.

Luminescence spectra were calculated using Eq. (4.33). We first built the exciton-
phonon matrix elements using the results obtained from BSE and DFPT, as indicated in
the scheme in Fig. 1.3. We selected a number of “initial” excitons at finite Q (indices β
in Eq. (4.33)), that scatter with phonons (indices µ,q) and end up in the “final” excitonic
states atQ = 0 (indices λ). All phonon modes and transferred momenta were included
in these calculations. Note that both the electronic and transferred momenta (k-grid and
q-grid, respectively), were computed on the irreducible parts of the respective Brillouin
zones (BZs). The exciton-phonon coupling matrix elements G from Eq. (4.24) were then
expanded in the full BZs by symmetry transformations applied to the electron-phonon
matrix elements g and the excitonic coefficientsA. In this way, we are able to significantly
speed up exciton-phonon calculations, which would otherwise require the switching off
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Parameter/System m-hBN hBN (and bBN)
q/k-grid 36× 36× 1 18× 18× 6

a 2.48 Å 2.50 Å
c - 3.25 Å

GW/ ε(ω) bands 200 210
ε(ω) cutoff 10 Ha 8 Ha
BSE bands 3-6 5-12

Excitons (β → λ) 8→ 2 12→ 4
Double grid 108× 108× 1 54× 54× 18

Table E.1. – List of the relevant computational parameters entering the calculation of
excitons, phonons and their coupling (a is the planar lattice parameter and c
the interlayer distance).

of all crystal symmetries at the DFPT and MBPT levels.

Then, we interpolated both exciton dispersions – using a smooth Fourier interpola-
tion[146] – and phonon energies – using the force constants method implemented in
Quantum ESPRESSO – on a finer grid to speed up convergence of the luminescence
spectra with respect to the transferred momenta grid. Then these finer grids are used to
average out the denominators appearing in the luminescence formula as:

1

W±
λ,β,q,µ

=
1

Nq̃

∑
q̃∈q

1/2± 1/2 + nq̃,µ
ω − (Eq̃,β ∓ Ωq̃µ) + iη

e−
Eq̃,β−Ẽmin

kTexc (E.1)

where Ẽmin is the minimum exciton energy on the double-grid, than will likely be different
from the one on the coarse grid. Using the average denominators implemented as a sum
over the fine-grid q̃-points in the neighborhood of each coarse-grid q-point, we can rewrite
the luminescence intensity formula Eq. (4.33) as :

I(ω) = D Im
∑
λ

|T λ|2
{
ω3n1(ω)

1− Zλ
ω − Eλ + iη

e
−Eλ−Emin

kBTexc

+
1

Nq

∑
µβq

ω(ω ∓ Ωqµ)2n1(ω)
|Gµβλ(q)|2

(Eqβ − Eλ ± Ωqµ)2

1

W±
λ,β,q,µ

}
. (E.2)

The calculations of mBN on top of one and two Graphene layers have been performed
using a 36×36× 1 grid, plus a shifted double-grid of 90×90×1 for the screened interaction
W as described in Ref. [147] and the slab cutoff in the out-of-plane direction, 7 Ha cutoff
for the dielectric constant, and conduction bands up to 120 eV.
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