Bastien Berret 
  
Jean-Paul Gauthier 
  
Charalambos Papaxanthis 
  
How humans control arm movements

Je tiens à remercier les personnes que j'ai rencontrées durant ces trois années de thèse et qui m'ont aidé sur le plan scientifique ou moral.

Je désire tout d'abord remercier mes directeurs de recherche. Merci à Thierry Pozzo de m'avoir accueilli dans son laboratoire pour travailler sur des problématiques de recherche que je ne connaissais pas. Grâce à lui, j'ai pu faire mes travaux de recherche dans d'excellentes conditions et découvrir le monde des neurosciences comportementales. Je le remercie pour ses compétences neurophysiologiques qui m'ont permis de m'imprégner des questions importantes en sciences de la vie. Je souhaite également remercier Jean-Paul Gauthier pour ses compétences en mathématiques. C'est une chance d'avoir pu travailler avec lui. A chacune de mes questions, il a su m'apporter une réponse avisée. Je le remercie aussi pour sa franchise et son optimisme durant toutes ces années, y compris l'année de Master 2.

Parmi les autres personnes avec qui j'ai pu collaborer, je remercie chaleureusement Christian Darlot, Charalambos "Harris" Papaxanthis, Frédéric Jean et Eric Busvelle pour leur aide. Grâce à eux j'ai pu faire aboutir mes travaux et réfléchir à des problématiques intéressantes. Je remercie également Elizabeth Thomas et François Bonnetblanc pour leur soutien et leur sympathie.

Comme une thèse est un travail de longue haleine, je tiens à remercier mes collègues et amis qui m'ont permis de travailler au quotidien dans la bonne humeur. Je remercie : Christos, pour sa gentillesse, son amitié et... ses connaissances en pêche au poulpe ! Jérémie et Lilian, mes deux voisins de bureau avec qui j'ai eu le plaisir de travailler durant leur Master et à qui je souhaite beaucoup de réussite pour leur thèse ; Max pour son humour ; Laurent pour les bons moments passés lors des vols paraboliques ; mais aussi, Ghislain alias "Gisinho", Nicolas dit "Gueuns", Pascaline, Antoine, Guillaume, Davy, Banty,

à ma grand-mère, Gervaise,

Première partie

Introduction générale 1.1 Introduction

De par sa nature omniprésente et immatérielle, la gravitation a été l'objet d'un grand intérêt en sciences depuis les études philosophiques et intuitives d'Aristote. L'histoire de la gravitation a nourri à chaque étape de son évolution bien des débats, en passant par les expériences de Galilée et les découvertes de Newton, jusqu'à la courbure de l'espace-temps prédite par Einstein.

Si les lois physiques de la gravitation sont maintenant bien connues, il n'en est pas de même en biologie. Le système neuro-musculo-squelettique des animaux et des humains a évolué au cours des temps et la gravité semblent avoir conditionné ce développement. Comprendre comment le système nerveux central (SNC) s'est adapté pour permettre aux espèces animale et humaine de se mouvoir avec aisance dans le champ gravitaire est un problème important en raison de ses applications médicales et en vue de longs séjours en apesanteur. Une hypothèse relativement bien admise par la communauté scientifique est que le processus de l'évolution biologique permet à toute espèce de tirer au mieux parti des contraintes de l'environnement. Les facultés sensorimotrices de l'Homme semblent donc résulter des solutions adaptatives sélectionnées au cours de l'évolution. Le passage 1 Neurophysiologie du contrôle moteur à la posture bipède de l'Homme est sans doute l'exemple le plus marquant d'une adaptation à la gravité terrestre.

Dans la vie quotidienne, saisir un livre sur une étagère ou ramasser un objet tombé au sol sont des actions réalisées aisément par le SNC. Pourtant, la gravité influence ces actions et engendre des contraintes complexes sur les membres du corps. Dès la naissance d'un individu et lors de sa croissance, le SNC apprend à contrôler son système biomécanique afin de réaliser des gestes précis et variés, et ce, dans le champ gravitaire terrestre.

Dans la section 1.2, nous décrirons brièvement le rôle de certaines parties du système neuromusculaire impliquées dans la motricité. Ensuite, dans la section 1.3, nous donnerons un aperçu des transformations sensorielles nécessaires à l'élaboration d'un mouvement volontaire.

La section 1.4 mettra en avant un des problèmes fondamentaux qui est à la base des études sur le contrôle moteur (le problème de dimensionnalité). La section 1.5 montrera que les mesures expérimentales des mouvements humains et animaux plaident en faveur de l'existence de lois biologiques du mouvement, au même titre qu'il existe des lois du mouvement des objets en physique. Pour terminer, nous ferons une revue de la littérature concernant la problématique posture/mouvement en neurosciences (section 1.6) qui permettra de présenter les problématiques abordées dans cette thèse.

Système neuromusculaire

Le système neuromusculaire englobe le SNC et le système périphérique. Le système périphérique est constitué entre autres des muscles et des nerfs sensoriels et a pour rôle l'acheminement des informations afférentes et efférentes, entre les effecteurs/récepteurs et le SNC. Le SNC permet quant à lui de donner les ordres aux muscles et d'intégrer les retours sensoriels pour produire des mouvements. Comprendre quel est le rôle de chaque partie du système dans la planification et le contrôle des mouvements est une question importante. Notamment, on ne sait pas encore précisément à quel niveau du système neuromusculaire est intégrée la force gravitaire.

Le corps humain est composé de plus de 640 muscles agissant sur un squelette qui compte au moins 150 degrés de liberté cinématiques. Le déplacement des membres en réponse à un stimulus neuronal dépend des propriétés mécaniques des muscles (insertion sur les articulations, propriété des tendons, type des fibres musculaires excitées, temps de réponse des muscles etc.) et des membres eux-mêmes (masse, moment d'inertie, longueur, axe de rotation etc.). Il est à noter que ces propriétés évoluent au cours de la vie, par exemple avec l'âge ou la fatigue musculaire.

Beaucoup de recherches en neurosciences s'intéressent aux processus neuronaux à la base 1.2 Système neuromusculaire FIGURE 1.1: Système neuromusculaire (d'après Scott, 2004) des mouvements. D'après Scott (2004), le SNC est généralement considéré comme ayant une organisation hiérarchique (figure 1.1) : la moelle épinière, le tronc cérébral et le cortex cérébral.

• La moelle épinière est le plus bas niveau de la hiérarchie. Elle comprend les motoneurones qui sont le passage final obligatoire de tous les ordres moteurs générés par le SNC et les interneurones qui intègrent les retours sensoriels et les signaux provenant des centres nerveux situés plus haut. Les mouvements produits par cette région sont des mouvements réflexes et basiques. Cette zone code des mouvements synergiques et des primitives motrices (voir Mussa-Ivaldi et al., 1994 et section 2.3 pour plus de détails). Par exemple, une microstimulation de la moelle épinière provoque des déplacements de plusieurs segments vers une position d'équilibre de l'espace. La moelle épinière peut aussi moduler et adapter les commandes neuronales envoyées par les centres nerveux plus en amont. Elle est aussi capable de générer des mouvements plus sophistiqués et de résoudre des problèmes complexes du contrôle moteur sans l'aide du cortex, comme cela est démontré dans [START_REF] Poppele | Sophisticated spinal contributions to motor control[END_REF].

• Au second niveau se trouvent les régions du tronc cérébral qui sont adjacentes aux deux autres mentionnées. Cette région assure en partie le contrôle de la posture ou bien adapte les cycles de marches contrôlés dans la moelle épinière (faire varier la vitesse ou la précision des pas...). Une étude concernant la régulation de l'équilibre postural chez le chat, lorsque des perturbations impromptues de la base de support apparaissent, suggère que cette zone pourrait assurer de tels mécanismes [START_REF] Lockhart | Optimal sensorimotor transformations for balance[END_REF].

Neurophysiologie du contrôle moteur

• Plus en amont se trouve le cortex cérébral qui permet la production volontaire des mouvements. Plusieurs zones du cerveau sont impliquées très fortement dans la planification et le contrôle des mouvements volontaires. Par exemple, le cortex moteur primaire (M1) est largement impliqué dans l'exécution des mouvements. Il reçoit des informations d'autres zones telles que le cortex primaire somatosensoriel, le cortex prémoteur, l'aire motrice supplémentaire, le cortex pariétal et les connections cérébelleuses. Ces régions semblent définir les aspects les plus en amont de la production d'un mouvement volontaire, comme notamment l'objectif du mouvement ou le choix d'un certain critère de performance. Les ganglions de la base et le cervelet sont aussi impliqués dans la production des mouvements et de leur exécution. Les ganglions de la base sont liés au déclenchement, à l'enchaînement et à l'arrêt des mouvements volontaires. Le cervelet semble être essentiel dans l'exécution de mouvements fluides et coordonnés, comme le montrent de nombreuses études réalisées en comparant des sujets sains avec des sujets ayant un dysfonctionnement du cervelet [START_REF] Brown | Disturbances in human arm movement trajectory due to mild cerebellar dysfunction[END_REF][START_REF] Flament | Movement and electromyographic disorders associated with cerebellar dysmetria[END_REF][START_REF] Hallett | Physiological analysis of simple rapid movements in patients with cerebellar deficits[END_REF][START_REF] Hore | Cerebellar dysmetria at the elbow, wrist, and fingers[END_REF][START_REF] Bastian | Cerebellar ataxia : abnormal control of interaction torques across multiple joints[END_REF].

Il sert aussi à la détection et à la correction des erreurs motrices associées à tout mouvement et, par conséquence, à l'apprentissage des mouvements. Son rôle de prédicteur des effets mécaniques (inertie, gravité...) a aussi été montré chez des sujets cérébelleux, arrivant à produire des mouvements dans la bonne direction mais dont l'amplitude est exagérée ou sous-évaluée (hypermétrie, e.g. [START_REF] Bibliographie | Cerebellar hypermetria is larger when the inertial load is artificially increased[END_REF]. Le cervelet permet aussi le contrôle du tonus postural de divers muscles pour des tâches de maintien de posture. Par ailleurs, le sulcus intra-pariétal et le cerveau vestibulaire sont des zones du cortex fortement impliquées dans le codage des informations liées à la gravité et pourraient contenir un modèle interne de la gravité [START_REF] Mcintyre | LACQUANITI : Does the brain model newton's laws ?[END_REF][START_REF] Indovina | Representation of visual gravitational motion in the human vestibular cortex[END_REF] ; pour les modèles internes, voir section 2.4).

Puisque les travaux de cette thèse ne se situent pas au niveau neuronal mais au niveau comportemental, il est inutile de donner davantage de détails. Ici, il est simplement intéressant de garder à l'esprit que les comportements humains que nous enregistrerons et que nous tenterons d'expliquer résultent d'un cheminement complexe des signaux neuronaux dans le SNC. Pour plus de détails sur cette partie, nous renvoyons le lecteur au livre de Shadmehr et Wise (2005).

Transformations sensorimotrices

Le mathématicien Henri Poincaré disait : "imaginer un point dans l'espace c'est imaginer le mouvement qu'il faut faire pour l'atteindre". Ce lien entre mouvement et position de la cible dans l'espace est en effet indispensable pour réaliser une tâche de saisie d'objet avec succès. Un autre système sensoriel crucial est le système vestibulaire qui est le système principal de la perception du mouvement et de l'orientation par rapport à la verticale. Il est à la base du sens de l'équilibre et pourrait être utilisé lors de la locomotion pour maintenir la tête approximativement à l'horizontale [START_REF] Pozzo | Head stabilization during various locomotor tasks in humans. i. normal subjects[END_REF]. Il est possible que l'évolution biologique ait trouvé un intérêt particulier à placer ce capteur dans la tête, afin de garder un référentiel oculocentré approximativement fixe lors des mouvements. Cela pourrait simplifier le contrôle et l'observation des mouvements. Les récepteurs sensoriels du système vestibulaire sont situés dans l'oreille interne.

Le maintien de l'équilibre en stature bipède est essentiellement assuré par ce capteur qui détecte de façon assez précise les oscillations du corps humain. Le SNC est donc renseigné sur l'accélération gravitaire grâce, notamment, aux otolithes (voir figure 1.3) qui rendent compte par leur fréquence de décharge de l'accélération linéaire subie. En microgravité, ces capteurs ne mesurent plus que les accélérations inertielles de la tête et informent les autres parties du cerveau de l'absence de gravité.

Notons que la position de ce capteur dans l'encéphale en fait un récepteur sensoriel particulièrement Ils peuvent aider à contrôler ou à corriger les mouvements. Cependant, la mesure, la transmission et le traitement des informations ne sont pas instantanés. L'aspect temporel des transformations sensorimotrices est donc une caractéristique importante de la motricité. Ces délais sont appelés délais sensorimoteurs. Il existe bien entendu des délais dans le sens descendant, i.e. entre le moment où le cerveau envoie ses ordres moteurs et le moment où les segments corporels se déplacent réellement. A l'inverse, pour qu'un mouvement très rapide dirigé vers une cible soit possible, le cerveau doit être capable de planifier toute la séquence motrice sans attendre les retours sensoriels (contrôle proactif, en opposition au contrôle rétroactif). En fait, le SNC utilise des modes de contrôle en boucle ouverte ou en boucle fermée en fonction de la durée du mouvement (nous y reviendrons dans la section 2.4).

Problème de dimensionnalité

Lorsque le SNC a évalué la position d'une cible, la posture initiale du corps et les forces présentes dans l'environnement, il lui devient possible de planifier un mouvement, c'est-à-dire d'activer les motoneurones provoquant la contraction des muscles et le déplacement des segments désiré.

Cependant, même la tâche motrice la plus simple est un problème complexe dans le sens où elle peut être réalisée d'une infinité de façons différentes. Bernstein (1967) a été l'un des premiers à poser ce problème, appelé problème de dimensionnalité ou des degrés de liberté (ddl) et [START_REF] Saltzman | Levels of sensorimotor representation[END_REF] l'a traité en détail. Pour l'illustrer, prenons l'exemple d'un mouvement du bras où un individu 1.5 Invariants moteurs

Invariants moteurs

On pourrait penser que le cerveau choisit aléatoirement une solution parmi toutes celles qui sont possibles ou que les comportements moteurs observés sont directement liés aux propriétés biomécaniques du système moteur humain avec une faible intervention corticale (voir section 2.2).

Dans ce cas, on devrait s'attendre à mesurer de grandes différences inter-individus ou à trouver que de légères perturbations provoquent des changements importants du comportement moteur. La stabilité et la robustesse de certains paramètres du mouvement malgré l'ajout de contraintes et de perturbations laissent penser que les stratégies motrices élaborées par le SNC sont issues d'un plan moteur spécifique.

La présence d'invariants cinématiques a été démontrée pour divers types de mouvements. Par exemple, pour des tâches de pointage effectuées avec le bras, d'une cible à une autre, les profils de vitesse de la main sont en forme de cloche ("bell-shaped"), c'est-à-dire avec une unique valeur maximale apparaissant au milieu du mouvement [START_REF] Soechting | Invariant characteristics of a pointing movement in man[END_REF]Morasso, 1981;[START_REF] Abend | Human arm trajectory formation[END_REF]. Les trajectoires du doigt mesurées sont approximativement droites pour des mouvements effectués dans le plan horizontal, et plus courbées pour des mouvements dans le plan vertical (Atkeson et Hollerbach, 1985). Malgré des changements de position de départ, de vitesse et/ou d'amplitude du mouvement et en dépit de l'ajout d'une masse, ces caractéristiques principales restent inchangées, notamment grâce à une modulation de l'activité des muscles de la part du SNC [START_REF] Flanders | Basic features of phasic activation for reaching in vertical planes[END_REF][START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF]. Un paramètre cinématique du mouvement important est le ratio entre le temps au pic de vitesse de la main et la durée totale du mouvement. Ce paramètre est fortement invariant dans la cinématique de nombreux mouvements (Soechting, 1984;[START_REF] Ostry | Velocity curves of human arm and speech movements[END_REF]. De par sa stabilité intra et inter-individus, ce paramètre a souvent été considéré comme caractéristique de la stratégie motrice utilisée par le SNC. D'ailleurs, un résultat ayant motivé les travaux de cette thèse est sa dépendance directionnelle pour des mouvements réalisés dans le plan vertical : la durée d'accélération est constamment plus courte pour un mouvement dirigé vers le haut que pour un mouvement dirigé vers le bas [START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF]Gentili et al., 2007;Seac'h et McIntyre, 2007).

En parallèle, des preuves tangibles pour une organisation rationnelle des mouvements a aussi été découverte au niveau musculaire. Par exemple, les activations musculaires pour des mouvements mono-articulaires sont caractérisées par l'existence de trois phases (triphasic pattern en anglais).

Typiquement, pour des mouvements rapides, une activation du muscle agoniste est suivie par une activation du muscle antagoniste et enfin une dernière activation du muscle agoniste pour stabiliser le bras est présente (voir Hallett et Marsden, 1979;[START_REF] Cooke | Movement-related phasic muscle activation. ii. generation and functional role of the triphasic pattern[END_REF]. Les mêmes séquences d'activité musculaire sont modulées en temps et en amplitude lorsque des changements de distance entre les cibles, de direction du mouvement ou de vitesse d'exécution sont demandés au sujets 1 Neurophysiologie du contrôle moteur [START_REF] Brown | Amplitude-and instruction-dependent modulation of movement-related electromyogram activity in humans[END_REF][START_REF] Buneo | Muscle activation patterns for reaching: the representation of distance and time[END_REF][START_REF] Flanders | Spatial/temporal characteristics of a motor pattern for reaching[END_REF][START_REF] Flanders | Basic features of phasic activation for reaching in vertical planes[END_REF].

En conclusion, énormément de données expérimentales plaident en faveur d'un comportement moteur spécifique qui n'est que faiblement soumis à des phénomènes aléatoires. Le mot "faiblement" rappelle qu'il est irréfutable que la présence de bruit dans le système moteur humain cause une légère variabilité dans l'exécution d'une même tâche motrice par un individu. Malgré les différences inter-individus et inter-essais, les mouvements mesurés sont très reproductibles et il apparaît clair que le SNC n'utilise naturellement qu'une partie restreinte de son répertoire moteur potentiel. Les propriétés de stabilité et robustesse décrites ci-dessus sont des indices suggérant l'existence de principes fondamentaux pour le contrôle moteur. Un des objectifs de cette thèse est de tenter de déterminer ces principes. Afin d'introduire de façon plus précise la problématique liée à la gravité, il est nécessaire de rappeler la littérature neurophysiologique concernant la coordination entre posture et mouvement.

Posture et Mouvement

La présence du champ gravitaire est intimement liée à la problématique posture/mouvement.

La posture est une notion statique, comme un arrêt sur image mais qui ne peut être dissociée du mouvement. Le terme posture est défini comme la configuration géométrique des segments corporels à un instant donné, c'est-à-dire comme un état d'équilibre du système dynamique que constitue le corps humain.

Cependant, le terme posture, tel qu'il est utilisé par les neurophysiologistes, est aussi fortement connoté par les fonctions qui lui sont associées, comme le maintien de l'équilibre corporel, le contrôle de l'immobilité des segments par rapport à une référence extrinsèque (verticale gravitaire) ou intrinsèque (autre segment corporel) [START_REF] Massion | Why and how are posture and movement coordinated ?[END_REF]. Ces trois fonctionnalités nécessitent, pour leur réalisation, l'élaboration de processus neuronaux spécifiques activant certains muscles de façon adéquate.

Le tonus postural de nombreux muscles est autocontrôlé par la boucle myotatique (boucle réflexe de bas niveau, i.e., impliquant la moelle épinière). Il permet aux muscles d'avoir continuellement le tonus musculaire nécessaire au maintien d'une posture naturelle (i.e., à la création d'une force antigravitaire pour contrer les effets de la gravité ou bien d'une force anti-élastique pour lutter contre les forces élastiques induites par les propriétés des muscles). Sans ces mécanismes automatiques, la tête, par exemple, ne pourrait pas être maintenue horizontale et chuterait inlassablement vers l'avant. Ainsi, les muscles du cou compensent automatiquement les couples gravitaires s'exerçant sur la tête. C'est la première fonction posturale : contrôler les forces anti-gravitaires (ou plus généralement les forces statiques) en donnant au muscle un tonus musculaire nécessaire au Lors de la locomotion, les muscles du cou doivent aussi compenser les forces d'interactions inertielles afin de maintenir la tête horizontale et de fournir un référentiel fixe [START_REF] Pozzo | Head stabilization during various locomotor tasks in humans. i. normal subjects[END_REF].

C'est la deuxième fonction posturale : maintenir des parties du corps stables par rapport à d'autres parties du corps. Par exemple, pour un mouvement de pointage en position assise, l'épaule doit constituer un point d'ancrage stable pour faciliter l'exécution et la précision du mouvement du bras, et pour cela, des commandes motrices spécifiques doivent être envoyées à certains muscles du tronc et des jambes.

La troisième fonction est de contrôler l'équilibre du corps (ou d'une partie du corps). En stature bipède, l'équilibre de l'Homme est assuré si la projection du centre de masse du corps (i.e., le barycentre des centres de masse de chaque segment corporel, trouvé dans les tables anthropométriques et noté CdM) se situe à l'intérieur de la base d'appui fournie par les pieds.

L'équilibre statique "parfait" est atteint si la projection du CdM est confondue avec la position du centre de pression (i.e., le point d'application de la résultante des forces de réactions du support, noté CdP). Le pied possède à lui seul 80% des récepteurs sensoriels de tout le membre inférieur et des mécanismes posturaux semblent avoir pour rôle la régulation de variables telles que le CdP et le CdM. Remarquons que ces trois fonctions ne sont pas totalement indépendantes puisque la compensation des forces gravitaires ou d'interactions inertielles peut être un moyen pour le SNC de contrôler l'équilibre corporel plus simplement.

Il est intéressant de noter qu'il existe de nombreuses distinctions entre posture et mouvement au sein du SNC. Il existe des preuves au niveau neuronal montrant que des tâches de contrôle postural et de mouvement dirigé vers une cible ne sont pas traitées au même niveau du SNC. Si des tâches de maintien de posture semblent être principalement contrôlées au niveau du tronc cérébral et du cervelet [START_REF] Deliagina | Comparative neurobiology of postural control[END_REF], pour une revue), il est maintenant bien connu que la planification d'un mouvement volontaire est en partie élaborée dans les cortex prémoteur et moteur (Scott, 2004, pour une revue). [START_REF] Kurtzer | Random change in cortical load representation suggests distinct control of posture and movement[END_REF] ont montré par une étude de l'activité des neurones de M1 que les mécanismes de contrôle de la posture étaient distincts de ceux du mouvement. Ces auteurs ont testé l'ajout d'une charge sur le bras de singes, lors de tâches, soit de maintien de posture, soit de mouvement, et ont conclu à des modes de contrôle neuronaux bien distincts dans le cortex moteur primaire (car l'ajout d'une charge sur le bras implique une intervention de M1). Cependant, ces résultats sont à relativiser car le mouvement et le maintien Lorsque des perturbations posturales imprévues apparaissent lors de tâches de maintien de posture, des mouvements réactionnels sont produits par le SNC. Ces mouvements ne sont pas seulement réflexes. Des interventions cognitives sur le cervelet, le tronc cérébral et la moelle épinière semblent nécessaires à la sélection d'ordres moteurs pour réguler l'équilibre, qui sont en fait organisés sous forme de synergies musculaires (voir aussi section 2.3). La réponse motrice terminale semble être le résultat d'une organisation hiérarchisée complexe (Ting, 2007, pour une revue). De tels ajustements posturaux réactionnels (APR, voir aussi Horak et McPherson, 1996) peuvent s'apparenter à des mouvements stimulés par les retours sensoriels intégrés dans les régions supraspinales, où l'objectif n'est pas de positionner le doigt mais de contrôler le CdM [START_REF] Ting | Neuromechanics of muscle synergies for posture and movement[END_REF][START_REF] Lockhart | Optimal sensorimotor transformations for balance[END_REF]. Lors de tâches motrices nécessitant un contrôle postural et la création d'un mouvement dirigé, Schepens et Drew (2004) ont montré que certains neurones de la formation réticulaire pontomédullaire chez le chat déchargent de manière tonique, phasique ou tonique/phasique3 , contribuant ainsi au contrôle postural, du mouvement ou des deux simultanément (voir figure 1.4). Ces différences concernant les activités neuronales du contrôle moteur de la posture et du mouvement sont aussi accompagnées par des différences anatomiques directement liées à 1.6 Posture et Mouvement l'évolution : capteurs sensoriels du système vestibulaire pour l'inertie et la gravité distincts ou récepteurs musculaires sensibles à l'allongement ou la variation de l'allongement des muscles (fibres Ia et II des fuseaux neuromusculaires).

En fait, tout mouvement volontaire est composé d'une partie posturale et d'une autre partie focale (liée au mouvement dirigé). En effet, toute tâche motrice a pour objectif de déplacer certains segments et de préserver la stabilité d'autres segments corporels ou de faire la transition entre deux postures fixes. En général, tous les mouvements volontaires sont précédés par des phénomènes musculaires, appelés ajustements posturaux anticipés (APA) [START_REF] Horak | Central programming of postural movements : adaptation to altered support-surface configurations[END_REF]Bouisset et Zattara, 1990;[START_REF] Massion | Movement, posture and equilibrium: interaction and coordination[END_REF]. Par exemple, lors de mouvements du bras effectués en position debout, ces APA (des activités musculaires des jambes et du tronc) apparaissent avant le début des activités musculaires du bras. Ceci prouve qu'ils ne peuvent pas être déclenchés de manière réflexe grâce à des signaux afférents induits par le mouvement volontaire. Les mécanismes posturaux anticipés ne sont pas réactifs mais proactifs : ils sont donc issus d'une commande centrale programmée. La fonction de ces APA a été longtemps débattue.

D'un coté, il s'avère que pour des tâches motrices séparant explicitement les composantes focales et posturales du mouvement, ces APA servent à stabiliser le CdM. Parmi les études qui expliquent les APA de la sorte, on peut trouver des mouvements d'élévation du bras autour de l'épaule ou de flexion rapide dans le plan sagittal (arm raising, [START_REF] Belenkii | Elements of control of voluntary movements[END_REF][START_REF] Lee | Effects of arm acceleration and behavioral conditions on the organization of postural adjustments during arm flexion[END_REF][START_REF] Bouisset | Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement[END_REF], la tâche bimanuelle de décharge comme la tâche du garçon de café (load lifting, [START_REF] Gahery | Coordination between posture and movement[END_REF][START_REF] Hugon | Anticipatory postural changes induced by active unloading and comparison with passive unloading in man[END_REF], des mouvements d'élévation du membre inférieur [START_REF] Rogers | Influence of task dynamics on the organization of interlimb responses accompanying standing human leg flexion movements[END_REF][START_REF] Mouchnino | Coordination between equilibrium and head-trunk orientation during leg movement : a new strategy build up by training[END_REF] ou encore des mouvements rapides d'inclinaison du tronc (trunk bending, [START_REF] Crenna | Forward and backward axial synergies in man[END_REF]. [START_REF] Bouisset | Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement[END_REF] et [START_REF] Lee | Effects of arm acceleration and behavioral conditions on the organization of postural adjustments during arm flexion[END_REF] ont justement constaté, lors de mouvements d'élévation du bras, que les APA sont seulement présents lorsque la force requise par la tâche focale est suffisamment importante pour perturber la stabilité posturale.

Au niveau musculaire, il a été montré que le SNC utilise des synergies reproductibles des paires de muscles agonistes/antagonistes comme rectus femoris/biceps femoris et rectus abdominis/erector spinae avant le début du mouvement volontaire [START_REF] Zattara | Posturo-kinetic organisation during the early phase of voluntary upper limb movement. 1. normal subjects[END_REF][START_REF] Aruin | Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements[END_REF]. Crenna et Frigo (1991) ont montré que pour différents types de mouvements dirigés vers l'avant, plusieurs muscles opposés (e.g., soleus/tibialis) présentent une séquence inactivation/activation caractéristique.

D'un autre coté, les APA peuvent aussi aider à la production du mouvement de pointage dirigé vers une cible. Pour des mouvements impliquant tous les segments corporels, partant d'une position debout et visant une cible placée près du sol, [START_REF] Stapley | The role of anticipatory postural adjustments during whole body forward reaching movements[END_REF] ont montré que le CdM du corps était constamment projeté vers l'avant. Les études de Stapley et al. (1999) et [START_REF] Pozzo | Coordination between equilibrium and hand trajectories during whole body pointing movements[END_REF] ont corroboré ce résultat en démontrant que les synergies entre le haut et le bas du corps n'ont 1 Neurophysiologie du contrôle moteur pas pour objectif d'assurer une stabilisation du CdM mais plutôt d'initier le mouvement vers la cible. Pour ces tâches où le corps peut être modélisé à l'initiation du mouvement par un pendule inversé avec une base de support fournie par les pieds, il a été observé que le déplacement vers l'arrière du CdP est toujours associé à une accélération vers l'avant du CdM. Or, ceci est une loi de la mécanique du mouvement [START_REF] Winter | Stiffness control of balance in quiet standing[END_REF]Morasso et Schieppati, 1999). Par conséquent, le SNC pourrait volontairement contrôler la force nette développée à la cheville afin de déplacer le CdP vers le talon et d'initier plus facilement le mouvement vers l'avant. Dans ce type de tâche, les APA n'auraient pas un rôle postural mais un rôle focal. La stratégie inactivation/activation des muscles soleus/tibialis au niveau de la cheville peut donc être réinterprétée en suggérant que le SNC utilise volontairement la gravité pour accélérer le CdM en direction de la cible, prouvant que les APA font partie intégrante du plan moteur. Cette observation est en accord avec le phénomène de Hufschmidt montrant une désactivation générale des muscles extenseurs pour des mouvements dirigés vers le bas (Hufschmidt et Hufschmidt, 1954, voir aussi Cheron et al., 1997), de manière à débloquer la posture initiale et amorcer le mouvement de façon efficace plutôt que de co-contracter les muscles extenseurs et fléchisseurs.

Une question fondamentale en neurosciences est alors la suivante : lors d'un mouvement volontaire, comment le SNC coordonne-t-il les commandes motrices assurant les fonctions posturale et focale ? De par son intérêt médical, cette question est récurrente dans la littérature des neurosciences.

Focalisons-nous maintenant sur les muscles directement impliqués dans le déplacement de l'effecteur vers la cible. Une question naturelle est la suivante : puisqu'il existe des activités toniques au départ et à la fin des mouvements, que deviennent ces mécanismes toniques au cours du mouvement ? Sont-ils toujours présents ou sont-ils inhibés ? Cette question est directement liée à la coordination posture/mouvement dans le sens où contrôler séparément les forces gravitaires et inertielles pourrait permettre au SNC de réaliser plus facilement les fonctions posturales citées précédemment.

A l'équilibre, les muscles anti-gravitaires compensent la gravité à l'aide d'une activité musculaire tonique. Si une commande phasique vient s'ajouter à la commande tonique sur un muscle agoniste (par l'activation de nouveaux motoneurones et donc de nouvelles fibres musculaires), alors le segment se déplace. De nombreux auteurs ont fait l'hypothèse que le SNC utilisait ce mode de contrôle, soit pour traiter les données EMG, soit pour modéliser les mouvements humains (e.g., [START_REF] Flanders | Basic features of phasic activation for reaching in vertical planes[END_REF][START_REF] Avella | Control of fast-reaching movements by muscle synergy combinations[END_REF][START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF][START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF]d'Avella et al., 2008). Cette hypothèse est soutenue par plusieurs études, montrant que les données EMG enregistrées lors de mouvements du bras sont composées d'une activité tonique (liée à la compensation des couples gravitaires) et d'une autre phasique (liée au mouvement) (Flanders 1.6 Posture et Mouvement et Herrmann, 1992) ou que le SNC tend à compenser la présence de forces externes constantes agissant sur la main afin de maintenir la cinématique des mouvements invariante [START_REF] Welter | Initial muscle activity in planar ballistic arm movements with varying external force directions[END_REF]. Des résultats similaires sur l'additivité entre une activité tonique et une activité phasique ont aussi été relevés dans les neurones du cortex moteur chez le singe [START_REF] Kalaska | HOMME : A comparison of movement directionrelated versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task[END_REF].

L'utilisation d'une telle stratégie pourrait permettre au SNC de simplifier à la fois le contrôle postural et la planification motrice qui se ferait alors sans tenir compte des forces statiques agissant sur les membres. Cependant, si le SNC utilisait un tel mode de contrôle, les mouvements humains ne devraient pas dépendre de la gravité. Or, de nombreux exemples prouvent qu'il existe un effet gravitaire sur le mouvement et que des expositions en microgravité changent significativement la cinématique des mouvements humains [START_REF] Papaxanthis | Hand trajectories of vertical arm movements in one-g and zero-g environments. evidence for a central representation of gravitational force[END_REF](Papaxanthis et al., ,b, 2003b(Papaxanthis et al., , 2005;;Gentili et al., 2007;Seac'h et McIntyre, 2007).

Par conséquent, la coordination entre posture et mouvement est une question encore très controversée. Cette thèse est une contribution tentant d'apporter quelques éléments de réponses, en étudiant l'influence de la gravité sur le contrôle moteur.

Pour résumer, les principales questions posées dans cette thèse sont les suivantes :

Problématique générale :

Quelles sont les principes moteurs utilisés par le cerveau pour planifier les mouvements ?

Problématique spécifique :

Comment la gravité est-elle intégrée par le SNC lors de la planification motrice et du contrôle des mouvements humains ? 

Théorie du point d'équilibre

Cette théorie propose que le mouvement est en grande partie expliqué par les propriétés mécaniques du système périphérique.

L'équilibre mécanique se réfère ici à l'état d'un système dans lequel la résultante des forces et des couples qui agissent est nulle ; le système est au repos. L'idée fondatrice de cette théorie a été lancée par [START_REF] Feldman | Functional tuning of the nervous system with control of movement or maintenace of a steady posture, ii : Controllable parameters of the muscles[END_REF] : cet auteur a observé que le système muscle-réflexe avait des caractéristiques statiques similaires à celles d'un ressort non-linéaire.

Pour exprimer clairement l'idée de base de la théorie du point d'équilibre, considérons un exemple simple (d'après Desmurget et al., 1998). Prenons deux ressorts identiques R 1 et R 2 de coefficient de raideur k. Supposons qu'une masse se trouve entre les deux ressorts qui exercent des forces opposées (F = k∆l). Nous avons alors un état d'équilibre (Fig. Il a été trouvé que les trajectoires virtuelles reconstruites à partir des données expérimentales sont justement complexes [START_REF] Gomi | Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement[END_REF], et donc une question qui se pose est la suivante :

comment sont choisies ces trajectoires virtuelles par le SNC, selon quels critères ? Cette critique a été modérée par certains auteurs car ces trajectoires complexes pourraient provenir des approximations faites sur certains paramètres et sur la modélisation du système neuromusculaire [START_REF] Kistemaker | Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories[END_REF][START_REF] Gribble | Are complex control signals required for human arm movement ?[END_REF]. Malgré tout, cette théorie est considérée comme obsolète par de nombreux scientifiques ; certains arguments irréfutables montrent qu'elle est erronée. Notamment, un des problèmes majeur de la théorie du point d'équilibre résulte du fait que les mouvements très rapides nécessitent une raideur des muscles qui devient physiologiquement impossible [START_REF] Gomi | Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement[END_REF]. Ajoutons qu'il faut aussi considérer d'autres principes moteurs pour résoudre totalement le problème des degrés de libertés (car, en lui-même, le principe de base de la théorie du point d'équilibre ne le résout pas). Par exemple, le principe d'interaction minimal semble permettre de définir une solution unique au niveau musculaire, parmi l'ensemble des solutions fournies par la théorie du point d'équilibre [START_REF] Feldman | Threshold position control and the principle of minimal interaction in motor actions[END_REF]. Ceci indique qu'un principe d'optimalité doit malgré tout guider le choix de certaines propriétés du mouvement. [START_REF] Avella | Combinations of muscle synergies in the construction of a natural motor behavior[END_REF][START_REF] Ivanenko | LACQUANITI : Five basic muscle activation patterns account for muscle activity during human locomotion[END_REF][START_REF] Weiss | Muscular and postural synergies of the human hand[END_REF][START_REF] Ivanenko | Coordination of locomotion with voluntary movements in humans[END_REF][START_REF] Ivanenko | LACQUANITI : Motor control programs and walking[END_REF][START_REF] Avella | Control of fast-reaching movements by muscle synergy combinations[END_REF]d'Avella et al., , 2008)), grâce à des méthodes telles que l'ACP.

Théorie des primitives motrices et des synergies

Il est à noter que divers algorithmes ont été testés afin de comparer les activités musculaires de référence extraites. Il a été montré que toutes les méthodes donnent des résultats concordants. Par conséquent, les synergies musculaires trouvées ne sont pas un artefact de la méthode d'extraction utilisée [START_REF] Ivanenko | Coordination of locomotion with voluntary movements in humans[END_REF][START_REF] Tresch | Matrix factorization algorithms for the identification of muscle synergies : evaluation on simulated and experimental data sets[END_REF] (Shadmehr et Mussa-Ivaldi, 1994;[START_REF] Gandolfo | Motor learning by field approximation[END_REF] (d'après Scott, 2004) à une copie d'efférence des ordres moteurs a été démontrée dans des tâches d'imagerie mentale.

Ainsi sans bouger leurs membres, des sujets peuvent améliorer significativement la performance de tâches motrices uniquement par simulation mentale [START_REF] Gentili | Improvement and generalization of arm motor performance through motor imagery practice[END_REF].

Une théorie basée sur ce concept de modèle interne a émergé et est appelée théorie du contrôle par optimisation des retours sensoriels (optimal feedback control theory) (Todorov, 2004;Scott, 2004). Elle permet de prendre en compte les délais et le bruit toujours présents dans un système afin de minimiser leurs effets sur le mouvement. Dans ce contexte, le concept du modèle interne a un sens plus précis : ces auteurs préfèrent parler de contrôleur optimal des retours sensoriels (optimal feedback controller) pour le modèle inverse et d'estimateur optimal de l'état du système (optimal state estimator) pour le modèle direct, en utilisant le formalisme de la théorie du contrôle optimal.

Il est à noter que la présence du modèle direct se réfère plus particulièrement au contrôle en boucle fermée, alors que le modèle inverse pourrait permettre un contrôle en boucle ouverte. Même s'il est bien admis que les deux types de modèles co-existent, il n'est pas évident de savoir à partir de quelle vitesse de mouvement ou à quel moment les retours sensoriels sont intégrés et influencent réellement la sortie motrice. Par exemple, le modèle de Desmurget et Grafton (2000) et al., 2001;[START_REF] Indovina | Representation of visual gravitational motion in the human vestibular cortex[END_REF]. Par exemple, au début de leur séjour en microgravité, les astronautes ont des difficultés pour attraper une balle lancée dans leur direction et il leur faut plusieurs jours d'adaptation pour évaluer correctement l'absence de gravité sur le mouvement de la balle. En fait, sans un modèle interne des lois de la physique, les seules informations données par les retours sensoriels visuels et proprioceptifs seraient peu efficaces pour la réalisation de telles tâches motrices. Ceci est appuyé par les difficultés que l'on a à évaluer le mouvement accéléré de segments corporels qui violent les règles du répertoire moteur [START_REF] Pozzo | Kinematic features of movement tunes perception and action coupling[END_REF]. En conséquence, ce modèle interne de la gravité, qui a de profonds fondements biologiques, pourrait aussi être utilisé lors de la planification et du contrôle des mouvements. Cette idée constitue le fil conducteur des travaux présentés dans cette thèse.

Théorie du contrôle optimal

Toutes les approches de modélisation du contrôle moteur présentées ci-dessus nécessitent à un Nous allons faire ici une brève revue de méthodes existantes dans la théorie du contrôle optimal. Nous renvoyons à Todorov (2006) pour une approche en rapport avec les neurosciences comportementales, à [START_REF] Kirk | Optimal control theory : An Introduction[END_REF] ou [START_REF] Trélat | Contrôle optimal : Théorie & applications[END_REF] Bellman [START_REF] Bellman | Dynamic Programming[END_REF]. Cette méthode est basée sur l'idée suivante : le choix du contrôle optimal dans le futur est indépendant du choix du contrôle optimal dans le passé, ayant conduit à l'état présent. Cependant, cette méthode souffre du problème de la « course des dimensions », ce qui 

ẋ = ∂H ∂p (x, p, u) ṗ = - ∂H ∂x (x, p, u) (2.5.1)
où H(x, p, λ, u) =< p, f (x, u) > +λg(x, u) est le hamiltonien du système et de plus :

H(x, p, λ, u) = max v H(x, p, λ, v) (2.5.2)
Remarque 1 • Le symbole <, > dénote le produit scalaire canonique de R n .

• Il existe des versions plus générales où les espaces impliqués sont des variétés (e.g., [START_REF] Agrachev | Control theory from the geometric viewpoint[END_REF]).

• Ce théorème ne donne seulement qu'une condition nécessaire d'optimalité.

• Si le contrôle n'est pas borné ou qu'il se trouve à l'intérieur du domaine U des contrôles admissibles, alors l'équation 2.5.2 devient ∂H ∂u (x, p, λ, u) = 0 (en s'assurant que l'extremum trouvé est bien un maximum).

• Le vecteur adjoint étant défini à un scalaire multiplicatif près, on peut choisir en général λ = -1 ou λ = -1 /2 (dans le cas des extrémales régulières). Dans le cas où λ = 0, on dit que l'extrémale est singulière.

• En temps fixe T , le hamiltonien ne s'annule pas forcément. Par contre, si le temps est libre, il faut rajouter une condition de nullité du hamiltonien (H ≡ 0). sans tenir compte de la dynamique du corps humain [START_REF] Rosenbaum | Planning reaches by evaluating stored postures[END_REF][START_REF] Vaughan | Finding final postures[END_REF][START_REF] Elsinger | End posture selection in manual positioning : evidence for feedforward modeling based on a movement choice method[END_REF]. Par exemple, la posture finale pourrait être choisie de façon à minimiser les forces statiques nécessaires pour maintenir l'équilibre de la posture finale.

•

Théorie du contrôle optimal

Deux critères célèbres

Dans le cadre de la théorie du contrôle optimal, de nombreux auteurs ont émis l'hypothèse selon laquelle les mouvements minimisent un certain coût intégral. Cela est dû aux observations expérimentales sur les invariants moteurs (voir section 1.5). Les modèles les plus utilisés dans la littérature sont le minimum jerk et le minimum torque-change. Ci-dessous, nous rappelons brièvement ces problèmes ainsi que leur résolution.

Minimum de secousse (minimum jerk )

Dans l'idée de Flash et Hogan (1985), les mouvements humains présentent la caractéristique fondamentale d'être lisses, i.e., avec de faibles secousses. Produire de très faibles secousses au niveau du doigt pourrait être un des objectifs du SNC afin de gagner en précision et de protéger les articulations et les tendons. Le minimum jerk est donc fondé sur l'idée que le SNC produit des mouvements lissés qui minimisent les secousses de l'effecteur dans l'espace de la tâche (Cartésien).

La formulation initiale de ce problème fut donc la suivante :

Problème 1 Minimum Jerk Soit (x, y) la trajectoire d'un point dans un plan (e.g., le bout du doigt qui sert à pointer la cible).

Le problème est d'aller d'un point d'équilibre (x 0 , y 0 ) à un autre (x F , y F ) en temps fixé T , et en minimisant le coût suivant : .5.3) Clairement, le problème 1 est d'origine cinématique : il ne dépend ni des propriétés dynamiques du système, ni de l'environnement.

C Jerk = 1 2 T 0 ( d 3 x dt 3 ) 2 + ( d 3 y dt 3 ) 2 dt. ( 2 
La résolution de ce problème est relativement simple et ne nécessite pas l'utilisation du PMP.

Dans Flash et Hogan (1985), le problème est résolu directement grâce aux équations d'Euler-Lagrange. Notons L(x, y, ẋ, ẏ, ẍ, ÿ, x (3) , y (3) ) l'intégrande de C Jerk , appelé Lagrangien.

Pour minimiser C Jerk , on peut utiliser la forme généralisée de l'équation d'Euler-Lagrange (une équation pour chaque variable) :

∂L ∂x - d dt ∂L ∂ ẋ + ... + (-1) n d n dt n ∂L ∂x (n) = 0 (2.5.4) ∂L ∂y - d dt ∂L ∂ ẏ + ... + (-1) n d n dt n ∂L ∂y (n) = 0 (2.5.5)
2 Théories du contrôle moteur Dès lors, la condition d'extrémalité de C Jerk donne :

d 3 dt 3
∂L ∂x (3) = 0 et

d 3 dt 3 ∂L ∂y (3) = 0 C'est-à-dire : d 6 x dt 6 = 0 et d 6 y dt 6 = 0.
Les solutions du problème sont donc des polynômes de degré 5, dont les coefficients sont déterminés par les données du problème (point de départ (x 0 , y 0 ), point d'arrivée (x F , y F ) et durée T ).

Précisément, on obtient :

   x(τ ) = x 0 + (x 0 -x F )(15τ 4 -6τ 5 -10τ 3 ) y(τ ) = y 0 + (y 0 -y F )(15τ 4 -6τ 5 -10τ 3 ) (2.5.6) où τ = t T .
Le modèle de minimisation de la secousse prédit donc des trajectoires droites du doigt dans l'espace Pour être complet, on peut rappeler que le minimum jerk a aussi été utilisé avec succès pour reproduire la loi de la puissance un-tiers dans ce même article (stipulant que lorsque l'on dessine une ellipse par exemple nous le faisons suivant la loi v = ακ -1 /3 , où v est la vitesse de la pointe du crayon, α une constante et κ la courbure de l'ellipse). Prenons l'exemple d'un bras pluri-articulé avec un couple moteur à chaque degré de liberté.

C TC = 1 2 T 0 n i=1 ( dτ i dt ) 2 dt. ( 2 
Appelons x le vecteur position (n dimensions), y le vecteur vitesse (n dimensions), τ le vecteur des couples moteurs (n dimensions). On pose u = τ pour la variable contrôlée. On peut réécrire les équations de la dynamique ainsi :

Ẋ = f (X, u) où X = (x, y, τ ).
La fonction de coût augmentée, où p(t) le vecteur des multiplicateurs de Lagrange (3n lignes), s'écrit alors :

Ĵ = 1 2 ˆT 0 u T u + p(t) T .( Ẋ -f (X, u))dt.
On construit alors la fonction suivante :

H(X, p, u) = 1 2 u T u + p T (t).f (X, u)
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Les équations nécessaires d'optimalité sont alors données par les équations suivantes :

           Ẋ = f (X, u) ṗ = -( ∂f ∂X ) T .p u = p τ
Au final, le problème consiste à résoudre un système différentiel du premier ordre, et à trouver la valeur initiale des multiplicateurs de Lagrange (3n valeurs, à partir de 3n conditions initiales).

Les solutions du MTC donnent des trajectoires du doigt courbes et des profils de vitesse asymétriques dans le plan horizontal. Cependant, pour certains mouvements, ce modèle donne comme solution des profils de vitesse avec deux pics (comme relevé par [START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF].

Or, en pratique, dans toutes les expériences de pointage sans contrainte entre deux cibles, les enregistrements montrent que le profil de vitesse du doigt est en forme de cloche, avec une seule valeur maximale. Il arrive de trouver des profils de vitesse avec deux maxima locaux lors de tâches de pointages avec des via-points (Viviani et Flash, 1995).

Autres critères d'optimalité

Le minimum jerk et le minimum torque-change constituent deux choix largement exploités dans la littérature. Cependant, beaucoup d'autres critères d'optimisation ont été proposés. Des revues sur ce sujet peuvent être trouvées dans Engelbrecht (2001) et Todorov (2004). Pour être complet et justifier l'originalité des travaux présentés dans le chapitre 3, il est nécessaire de rappeler ici les autres critères d'optimalité déjà proposés dans la littérature.

Critères cinématiques

Le critère cinématique le plus simple est sans doute celui du temps minimum (Nelson, 1983).

Le problème est que la plupart de nos mouvements ne sont pas effectués en temps minimum et que la forme des solutions dépend assez clairement des bornes imposées sur les contrôles (les solutions sont bang-bang, i.e., les couples maximaux que les muscles peuvent développer sont atteints). Même si ce critère est considéré comme fort plausible pour les saccades de l'oeil, il semble clairement inapproprié pour les mouvements des segments corporels que nous considérons ici. D'autres critères cinématiques incluent toute la gamme des fonctions de coûts qui proposent d'expliquer l'aspect lisse des mouvements. Les critères minimisés sont donc de la forme (pour des 2.5 Théorie du contrôle optimal mouvements dans un plan (x, y)) : 

C n = 1 2 T 0 ( d n x dt n ) 2 + ( d n y dt n ) 2 dt.
C AJ = 1 2 T 0 n i=1 ( d 3 θ i dt 3 ) 2 dt.
Le minimum angle jerk prédit des trajectoires droites dans l'espace des angles, reliant une posture initiale à une posture finale. Les solutions sont données par l'équation :

Θ(τ ) = Θ s + (Θ s -Θ f )(-10τ 3 + 15τ 4 -6τ 5 ) où τ = t /T et Θ = (θ i ) i=1..n .
Comme nous l'avons déjà noté, si en général la posture initiale Θ s est connue lors de la planification des mouvements humains, la sélection de la posture finale Θ f est un problème complémentaire.

Pour des études à ce sujet, voir les articles de Rosenbaum et al. (1995) 

C TC = 1 2 T 0 n i=1 ( dτ i dt ) 2 dt.
Antérieurement, Nelson (1983) avait considéré le minimum de couple (minimum torque) comme critère d'optimisation possible pour les mouvements humains, en le qualifiant de critère énergétique.

La quantité à minimiser s'exprimait alors : Nelson (1983) n'a cependant considéré que des mouvements à un seul degré de liberté. Ce critère a été qualifié d'énergétique en raison de certaines études montrant que la puissance requise par les muscles pour déplacer le membre est proportionnelle au carré de la force produite et donc de τ 2 [START_REF] Hatze | Energy-optimal controls in the mammalian neuromuscular system[END_REF]. Cependant, il faut noter que ce critère, malgré son apparence énergétique, ne correspond pas à l'énergie mécanique réellement dépensée par le système dynamique pour déplacer les segments corporels.

C To = 1 2 T 0 n i=1 τ 2 i dt.
Par ailleurs, [START_REF] Kashima | Trajectory formation based on physiological characteristics of skeletal muscles[END_REF] ont proposé le minimum de variation des couples isométriques (minimum isometric muscle torque-change). Ces auteurs ont proposé que le SNC 2.5 Théorie du contrôle optimal puisse contrôler cette variable. A partir du modèle des muscles de Hill (1951), ils utilisent une relation du type τ i = f (τ iso i , θi ), exprimant que les couples aux articulations τ i dépendent des couples provenant de la force contractile τ iso i et de la vitesse angulaire θi . La force nette produite par un muscle dépend en effet de la force contractile (force produite quand le segment est fixe et qui pourrait être contrôlée par le SNC) mais aussi de la vitesse angulaire du segment. En outre, la force contractile est directement liée à la consommation en énergie métabolique (voir l'appendice de Kashima et Isurugi, 1998). Le critère considéré est alors :

C iso = 1 2 T 0 n i=1 ( dτ iso i dt ) 2 dt.
Il est à noter que ce modèle fait explicitement l'hypothèse du principe de séparation, directement lié à la problématique de cette thèse.

Principe de séparation

Ce principe postule que le SNC sépare le contrôle des couples dynamiques (i.e. couples inertiel, de

Coriolis et centrifuge etc.) de celui des couples statiques (i.e., couples gravitaires etc.).

Ainsi la variable contrôlée par le SNC lors de la planification serait en fait τ dyn = τ -τ stat où : (Harris et Wolpert, 1998).

τ

Critères énergétiques

Intuitivement, il paraît raisonnable de penser que des contraintes de minimisation du coût énergétique sont probablement apparues au cours de l'évolution (cf. [START_REF] Bramble | Endurance running and the evolution of homo[END_REF].

Il existe plusieurs modèles proposant la minimisation de critères énergétiques pour la planification des mouvements.

Malgré la pertinence supposée de ce type de critères, il n'existe que peu de résultats très probants les concernant. Il faut d'abord définir ce que l'on entend par "énergie dépensée". On peut penser à l'énergie mécanique ou l'énergie métabolique produite par les muscles durant un mouvement, les deux quantités étant certainement liées. Il existe aussi de l'énergie dépensée sous forme de chaleur (voir Nishii et Murakami, 2002).

En fait, la quantité mesurant l'énergie fournie par une force lors [START_REF] Nishii | Legged insects select the optimal locomotor pattern based on the energetic cost[END_REF](Nishii, , 2006)). Cependant, ces auteurs ont choisi de négliger le travail négatif et de considérer essentiellement des mouvements lents. Le fait de déclarer a priori que le travail négatif ne coûte pas d'énergie est néanmoins une hypothèse assez restrictive. Quoiqu'il en soit, cette étude met en valeur un détail technique qui sera crucial dans la suite de nos travaux concernant la planification des mouvements du bras. Nishii et Murakami (2002) proposent donc le critère suivant pour un bras à un degré de liberté (l'angle θ) :

C Nishii = T 0 w(τ θ) + ατ 2 dt,
où τ est le couple moteur net, θ est la vitesse angulaire et αest une constante.

La fonction w utilisée par ces auteurs est définie de la sorte : w(x) = 0 pour x < 0 et w(x) = x pour x ≥ 0. Elle ne compte donc que le travail positif des forces et néglige le travail négatif En faisant cela, les auteurs introduisent une non-dérivabilité de la fonction de coût en x = 0, i.e., en τ = 0.

Fonction de coût non-lisse

La plupart des critères d'optimalité cités dans cette section présentent une caractéristique commune.

Les fonctions de coût sont lisses (i.e., des fonctions infiniment dérivables).

Au contraire, le critère proposé par Nishii et Murakami (2002) l'inertie du bras est approximativement constante pour de tels mouvements (Gentili et al., 2007). Il est intéressant de noter que les mêmes mouvements produits dans le plan horizontal ne présentent pas de différence gauche-droite que ce soit dans une position assise ou inclinée (Gentili et al., 2007;Seac'h et McIntyre, 2007) 

J θ = u -mglx cos θ (3.2.1)
où :

• J est le moment d'inertie du bras par rapport au centre de masse (constant car on considère le segment comme rigide). Environ égal à 0.8 kg.m 2 ,

• u est le couple moteur développé à l'articulation de l'épaule (en N.m),

• m est la masse du bras (environ 3.5 kg en pratique),

• g est la gravité (9.81 m.s -2 ),

• l est la longueur du bras en mètre (environ 0.75 m en pratique),

• x est le ratio entre la distance du centre de masse par rapport à l'extrémité proximale et la longueur totale du bras (0 < x < 1), environ égal à 0.53,

• θ est l'angle que fait le bras avec l'horizontale : -

π 2 ≤ θ ≤ π 2
(compté positif dans le sens trigonométrique).

Nous négligeons les frottements qui introduiraient un terme en θ mais qui ne changeraient pas significativement les résultats.

Pour simplifier les notations, nous réécrivons l'équation 3.2.1 ainsi :

θ = u -k cos θ (3.2.2) où k = mglx J ≈ 17 et u ↔ u J .
Une valeur de k comprise entre 10 et 20 semble correspondre à la majorité de la population. On notera qu'en l'absence de gravité (k = 0), on retrouve le minimum jerk (dans l'espace Cartésien ou des configurations, cela étant la même chose pour le cas 1 ddl). Dans le cas 0g, le profil de vitesse de la solution optimale sera donc en forme de cloche et parfaitement symétrique (voir sous-section 2.5.2.1). Notre objectif est de savoir si la présence du champ gravitaire (k = 0) implique des asymétries dans les solutions optimales du MTC lorsqu'on compare des mouvements dirigés vers le haut et des mouvements dirigés vers le bas.

Nous allons résoudre ce problème par application du PMP (voir théorème 1 et Pontryagin et al., 1964).

On pose maintenant x = θ.

Problème 3 Minimum Torque-Change, influence de la gravité Soit le système de contrôle suivant :

       ẋ = y ẏ = z -k cos x ż = u (3.2.3)
Le problème est de trouver le contrôle u et la trajectoire associée (x, y, z) du système 3.2.3, permettant de connecter un point source (x 0 , 0, k cos x 0 ) à un point terminal (ω, 0, k cos ω) en temps fixé T , et minimisant le coût suivant :

C T C = 1 2 ˆT 0 u 2 dt
3.2 Le minimum torque-change dans le champ gravitaire ?

Remarquons qu'aucune borne n'est imposée sur u.

Notons (p, q, r) le vecteur adjoint. Le hamiltonien s'écrit :

H = -λ 1 2 u 2 + py + q(z -k cos x) + ru
Considérons d'abord les extrémales singulières correspondant au cas λ = 0.

Dans ce cas, la maximisation de H par rapport à u implique r ≡ 0. Or, ṙ = -q ≡ 0 et q = -p ≡ 0.

Le vecteur adjoint étant nul, ce cas est impossible. Il n'y a donc que des extrémales régulières.

Par un argument classique de normalisation, on peut poser λ = 1.

Le hamiltonien s'écrit alors :

H = - 1 2 u 2 + py + q(z -k cos x) + ru
La maximisation de H par rapport à u donne immédiatement : r = u.

Le hamiltonien s'écrit dorénavant :

H = 1 2 r 2 + py + q(z -k cos x)
Le système augmenté à intégrer est donc :

                       ẋ = y ẏ = z -k cos x ż = r ṗ = -qk sin x q = -p ṙ = -q (3.2.4)
Par conséquent, si l'on connaît les valeurs de p 0 , q 0 et r 0 , le système différentiel ci-dessus donne une solution unique (théorème de Cauchy). Le problème est donc de déterminer le vecteur adjoint à l'instant initial pour qu'il nous permette d'atteindre la cible voulue (ω, 0, k cos ω) à partir de la position initiale (x 0 , 0, k cos x 0 ) . indication sur la valeur initiale du vecteur adjoint qui pourra être utilisée dans la résolution du cas général afin de faire converger la méthode de tir (voir ci-dessous).

                                     x(t) = -6t 5 x 0 + 6t 5 ω + 15t 4 T x 0 -15t 4 T ω -10t 3 T 2 x 0 + 10t 3 T 2 ω + x 0 T 5 T 5 y(t) = -30(x 0 -ω)t 2 (T -t) 2 T 5 z(t) = -120t 3 x 0 + 120t 3 ω + 180t 2 T x 0 -180t 2 T ω -60tT 2 x 0 + 60tT 2 ω + kT 5 T 5 p(t) = -720(x 0 -ω) T 5 q(t) = -360(x 0 -ω)(-2t + T ) T 5 r(t) = -60(x 0 -ω)(6t 2 -6tT + T 2 ) T 5 (3.2.5) avec à l'instant t = 0 :                              x 0 = x 0 y 0 = 0 z 0 = k p 0 = -720(x 0 -ω) T 5 q 0 = -360(x 0 -ω) T 4 r 0 = -60(x 0 -ω) T 3 ( 

Cas général

Pour traiter le cas général, il suffit dans un premier temps d'écrire la fonction cosinus comme une série.

Nous allons faire les calculs pour cos x ≈ 1 -

x 2 2
, mais on pourrait ajouter autant de termes que l'on souhaite dans la série. Le système à intégrer devient alors :

                         ẋ = y ẏ = z -k(1 - x 2 2 ) ż = r ṗ = -qkx q = -p ṙ = -q (3.2.7)
En prenant des notations vectorielles, on peut écrire :

Ẋ =             y z r 0 -p -q             + k              0 -(1 - x 2 2 ) 0 -qx 0 0              (3.2.8)
Ou bien encore :

Ẋ = AX + kQ(X) (3.2.9)
3 Études des mouvements du bras avec

A =             0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0             et Q(X) =              0 -(1 - x 2 2 ) 0 -qx 0 0             
L'intégration d'un tel système donne la solution sous forme d'intégrales itérées : Une fonction de coût envisageable pour des mouvements biologiques est donc le "travail absolu"

X(t) = e At X 0 + k ˆt 0 e A(t-s) Q (X(

Minimum de travail absolu

T F = Ĉ - → F . - → dl = Ĉ - → F . - → v dt.
de la force, défini par :

T abs F = Ĉ -→ |F . - → v |dt.
Pour un système activé par plusieurs forces, nous serons naturellement amenés à considérer la somme des travaux absolus des forces.

Trois remarques méritent d'être faites :

1. Maintenir le bras dans une posture fixe consomme de l'énergie au niveau musculaire alors qu'aucune des forces ne travaille (en effet, il n'y a aucun déplacement, la vitesse est nulle).

Le travail absolu ne compte donc pas ce type de fatigue musculaire. Un terme proportionnel à l'intégrale du carré des forces peut caractériser l'énergie dépensée sous forme de chaleur dans ce type de tâches (Nishii et Murakami, 2002).

2. Minimiser le travail absolu peut être un problème mal posé dans certains cas particuliers.

Par exemple, considérons le cas d'un bras à un degré de liberté, contrôlé par une force u. Le hamiltonien s'écrit (avec θ = x, l'angle et θ = y , la vitesse angulaire, voir équation 3.2.2) :

H = 1 2 y 2 + k sin x -ux,
et l'équation du mouvement obtenue avec les équations de Hamilton-Jacobi est :

   ẋ = y, ẏ = u -k cos x.
Le travail de la force contrôlée, lors d'un mouvement du bras reliant des points x(t 0 ) = x 0 à x(t F ) = x F avec des vitesses initiales et finales nulles est :

T = ˆxF x 0 udx = ˆxF x 0 uydt = ˆxF x 0 ẏy + ky cos xdt = ˆtF t 0 ẏydt + k ˆxF x 0 cos xdx = = 1 2 (y 2 (t F ) -y 2 (t 0 )) + k(sin x F -sin x 0 ) = k(sin x F -sin x 0 )
Dans ce cas, le travail de la force contrôlée ne dépend que des positions initiales et finales du Ceci veut donc dire que le problème de contrôle optimal sera mal posé au moins pour des mouvements lents à un degré de liberté. 

Article A : How humans control arm movements

Dans cet article, le problème de contrôle optimal que l'on considère est le suivant.

Minimum de travail absolu

Problème 4 Minimum de Travail Absolu et de Confort (cas 1 degré de liberté)

Soit le système différentiel suivant (x étant la position, y la vitesse), caractérisant le mouvement d'un bras à un degré de liberté :

ẋ = y ẏ = u -k cos x (3.3.1)
Le problème est de trouver le contrôle u et la trajectoire correspondante (x, y) du système permettant de passer d'une position d'équilibre à une autre en temps fixé T , et minimisant le coût suivant :

C(u) = ˆT 0 |yu| + M (x, y, u)dt,
où M est un terme dit de "confort".

Notons que des contraintes biologiques sur u sont prises en compte :

u ∈ [-u min , u max ].
Dans l'article suivant, le terme de confort sera le suivant : 

M (x, y, u) = α(y) ẏ2 = α(y)(u -k cos x) 2 , avec α(y) = α U = cte si y > 0 et α(y) = α D = cte ≥ α U si y < 0.

Introduction

This work lies in the following very general context: we want to understand motor control for human-beings. We want also to understand how humans learn to control the movements of the eyes, arms, legs... In particular, and in the perspective of long spatial trips, we want to elucidate the role of gravity (or of changes of gravity) in this setting. This study, partly supported by the French National Center of Spatial Studies (CNES) concerns one of the most basic problems: the (vertical) pointing (or point-to point) movements of a human arm.
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In the paper of Todorov (2004), there is a recent review about "optimality principles in sensorimotor control", and although it is the only general reference we give here from the neurobiology literature, there is an enormous amount of such literature.

Many of the contributions are like that: chose some criterion (most classical are called minimum jerk, minimum torque-change, and, in a stochastic context, minimum variance). The criterion being chosen, make certain numerical computations to solve the corresponding optimal control problem, and compare to some experiments.

Let us assume, all along our discussion that the experiments are in fixed time T. It means that the prisoner is required to make a point-to-point movement of the arm, specified by the initial position of the arm, by some target point in the space to be pointed at the end of the motion, and by two sound bips giving the beginning and the end of the motion.

For the sake of simplicity we consider single-joint movements around the shoulder joint. It means that the prisoner is also required to keep the arm straight Depending on what we want to study, the prisoner may learn the problem as a first step, or, on the contrary, he may be subject to changes of the target position or of the gravity field.

Just as an example, the minimum jerk problem is the following: minimize the rate of change of angular acceleration of the arm, i.e.

min T 0 ( d 3 θ dt 3 (t)) 2 dt. (1.1)
Immediate computation shows that the optimal velocity profile is given by:

1 ω θ(τ ) = τ 2 (1 -τ ) 2 ,
where τ = t T is the normalized time and ω is a constant depending on the target angle. This is a completely symmetric profile with zero derivatives at the endpoints, the maximum being reached at τ M = 0.5.

In fact real velocity profiles of vertical arm movements don't fit well with this profile (see Papaxanthis et al., 2003, Gentili et al., 2007), and with any of those from the literature. Figure 1 shows two experimental profiles. Measurements are made with sensors planted on the muscles of the prisoner (electromyographic signals). The first column is an upward motion and the second column corresponds to a downward motion.

In both cases, the triceps is always activated: one of the reasons is that the arm needs to keep straight (no motion at the level of the elbow). For downward movements, after 2 the beginning of the motion, there is always some activation (at least of the posterior deltoid). For the upward motion, one checks very clearly inactivation of all muscles (except triceps) during some time interval in the second part of the motion.

Remark 1. This inactivity sequence appears exactly where it is predicted in the paper (a bit after the maximum velocity). However, it does not reflect, on this picture on the acceleration profile. What is reported on the picture is just the brute acceleration measured by accelerometer, which is not very precise, already smoothed, and has to be corrected. moreover, there could be some residual component due to activity of the triceps.

The main qualitative behaviors that are not reproduced by classical models (criteria) are:

1. The asymmetry in the velocity profile (maximum is a bit before the half of the interval) from 0.45 T to 0.49 T , and the difference between upward and downward movements. 2. As we have explained just above, there is some time interval after the middle of the interval on which activation of the muscles is almost zero. This is very clear for movements in the upper direction, although it is not visible for downward movements.

Experiments have been made for gravity 1g or 0g. In the zero gravity case, the velocity profiles are symmetric (as in the case of minimum jerk).

In the paper, we investigate a criterion that seems to explain more or less everything, in a qualitative and quantitative way. We mean that both these unexpected asymmetries and the zero excitation interval are explained, even quantitatively. In the zero gravity case, we still get symmetric motions.

The criterion is the following:

J(u) = J 1 (u) + J 2 (u) = T 0 | θ(t)u(t)|dt + T 0 α( θ) θ(t) 2 dt,
where α(y) = α U for y > 0, and α(y) = α D for y < 0, with α D > α U > 0. The variable u is the torque applied by the muscles to the arm (the control variable). Of course, we also assume absolute bounds -u min ≤ u ≤ u max on the control u.

The significance of this criterion is the following: it is a compromise between J 1 (u) and J 2 (u). The term J 1 (u) represents the absolute work of the forces developed by the muscles (remember that the infinitesimal work of a torque u is dw = udθ = u θ(t)dt). The term J 2 (u) is a comfort term, expressing that the human articulations don't like high acceleration (anyone can check this very easily). The fact that α D > α U is not very important (although it causes certain technical complications here) and could be omitted in the exposition. It means that the articulations are more sensitive to high acceleration for motions in accordance to gravity than for motions against the gravity. Without this fact α D = α U , certain quantitative differences between upward and downward motions cannot be explained.

For this criterion, contrarily to what is done usually in computational neuroscience (numerical experiments), it is not a so hard exercise to solve explicitly the minimization problem for a rigid arm in a gravity field. It is what we do in the paper, using Pontryagin's Maximum Principle (PMP, Pontryagin et al., 1964). Analyzing the results, the reader will easily understand that it is certainly unexpectable to get these results just by numerical investigation.

4 Let us briefly describe the optimal synthesis we get. The most complicated optimal trajectories (in fact, those that occur in practice) are of the type bang-singular-bang (for upward motion: maximum control, singular control, minimum control). Due to the term | θ(t)u(t)| in the energy part J 1 of the criterion, the singular piece is divided in three pieces: usual singular piece, inactivation interval, usual singular piece (by "usual singular", we mean a piece along which the Hamiltonian is differentiable w.r.t. the control u, although the "special singular" piece, i.e. the inactivation piece, corresponds to the fact that the maximum of the Hamiltonian is attained at a point of nonsmoothness w.r.t. u).

In Fig. 2, we have depicted the results we get for an upward motion (in this figure, we have also taken into account inertial control, which is clearly the case in practice in Fig. 1; see Section 4 for details). It is the reason why we have moreover a gradient constraint reached at the beginning and at the end of the motion. In this picture, one can see very clearly the inactivation interval. For downward motion, it appears less clearly.

The paper is divided as follows.
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In Section 2, we state our basic optimal control problem. We deal with well posedness (which is not obvious) and with existence of solutions.

Section 3 summarizes completely the results of our study, without proof.

In Section 4, we deal with a real "smoothed version" (inertial control) of our results that seems to be more in accordance with practical observations (we add gradient constraints on the control to get the zero derivatives at endpoints of the velocity profiles). We show that, provided that these constraints are large enough, the only effect is a smoothing of the strategy at the endpoints of the optimal trajectories, i.e. we get, as expected, zero derivatives at the endpoints of the velocity profiles (which is always observed in practice), but all the other intermediate behaviors remain unchanged.

In Section 6 we give all the detailed computations and proofs needed to state the results of Section 3.

Statement of the problem 2.1 Introduction

Consider a one degree-of-freedom (dof) rigid arm, moving in a vertical (w.r.t. gravitational force) plane, subject to the following equations, in which we neglect the friction terms:

ẋ = y ẏ = u -k cos(x) ,
where:

• x is the position of the arm (angle between horizontal axis and the arm),

• y is the angular velocity,

• k is a constant (depending on the gravity, the mass of the arm, its inertial moment and the position of its center of mass).

It is a Hamiltonian system with external force (torque) u, the corresponding Hamiltonian being:

H = y 2 2 + k sin(x) -ux,
where the term y 2 2 corresponds to the kinetic energy, the term k sin(x) is the potential term and ux is the action of external forces.
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Considering only small angles, we write sin(x) = x + O(x 3 ) and we approximate the Hamiltonian by:

H = y 2 2 + (k -u)x.
We get the following standard linear control-system:

ẋ = y ẏ = u -k . (2.1)

Problem under consideration

Along trajectories of the system that connect a certain "source-point" X s = (x s , 0), to a certain "target-point" X t = (x t , 0), we want to minimize the following cost J(u(.)), in fixed time T :

J(u(.)) = T 0 |yu| + α(y) ẏ2 dt, (2.2)
subject to the constraints:

-u min ≤ u ≤ u max , (2.3) 
and .4) This problem, denoted by (P), has been discussed in Section 1. However, notice that considering the case α(y) = α U = α D is also possible and simplifies the problem.

α(y) = α U > 0 , if y > 0, α(y) = α D > α U , if y < 0 . ( 2 
The optimal cost is denoted by J * , and the corresponding minimizers (if any) will be denoted by u * , X * , with X * = (x * , y * ).

Remark 2. In the problem (P), neither the dynamics nor the constraints nor the cost depend on x. Hence the solutions depend only on the difference ∆ x = x tx s . Therefore J will be denoted by J T,∆x wherever it will be necessary to consider this dependence.

Well-posedness of the problem

A priori our problem is an ill-posed problem since the value α(y) for y = 0 is not given.
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Theorem 1. (A). Problem (P) is well posed, i.e. the values J(u(.)) do not depend on the value α( 0), (B). J * T,∆x is a decreasing function of T, (C). Given a trajectory (u(.), X(.)), with X(.) = (x(.), y(.)), we may consider that there is 0 ≤ T ≤ T with: (C.1) for T ≥ t ≥ T , y = 0 and u = k, (C.2) On the interval [0, T ], y = 0 on a subset of null Lebesgue measure only.

Proof. For (A), let E = {t ∈ [0, T ] such that y(t) = 0}. Let Ẽ ⊂ E the set of times that are not accumulation points of E. The set Ẽ is countable. Let Ē = E\ Ẽ. We have:

Ē |yu| + α(y) ẏ2 dt = Ē |yu| + α(0) ẏ2 dt = Ē 0dt = 0, (2.5) 
because ẏ exists on a subset of total measure in Ē since y is absolutely continuous, and at such a point t where ẏ exists, ẏ = 0 also (arbitrarily close to t, there is another time t with y(t ) = 0). This shows that J(u(.)) does not depend on α(0). Let us assume the existence of minimizers, which will be shown in the next section 2.4.

The point (B) is obvious: assume we found

T 2 > T 1 with J * T 2 ,∆x > J * T 1 ,∆x , then consider the control u 3 defined as follows: u 3 is u 1 from time 0 up to time T 1 and is k from T 1 on. Clearly, J T 2 (u 3 ) = J * T 1 ,∆x < J * T 2 ,∆x . A contradiction.
To prove (C) we start from any trajectory (u(.), X(.)) connecting X s to X t in time T. We will construct another trajectory (ũ(.), X(.)) connecting the same endpoints and reaching X t at time T , such that the cost is the same and y is zero only on a subset with zero measure of [0, T ]. Let us define the function ϕ by ϕ(θ) =measure{t; 0 ≤ t ≤ θ, y(t) = 0}. Set T = ϕ(T ). The function ϕ is well defined, increasing on the interval [0, T ]. We leave for the reader to check that ϕ is measurable. We define ũ up to some irrelevant subset of measure zero of the interval [0, T ] by ũ(ϕ(θ)) = u(θ). By construction, this control produces the same trajectory X(.) as X up to some measurable reparametrization.

Existence of minimizers

It is not a so easy task to show that minimum is reached in this problem. We follow more or less the scheme of a proof in Lee and Markus (1967), with some additional problems due to non smoothness, and even noncontinuity of our cost. -k) such that, for Problem (P), minimizers exist for all T ≥ T c .

Theorem 2. There is a certain critical time

T c = 2∆x(u min +umax) (u min +k)(umax
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Proof. First, it is easily seen that for T < T c there is no admissible trajectory at all connecting the source to the target. Second, for T = T c there is a single trajectory (described later in Section 3.2) connecting the source to the target. Therefore this trajectory is necessarily optimal. Hence in this proof, we assume T > T c , and claim that the set of admissible trajectories doing the job is nonempty. We will show the existence of some optimal one. Notations: 1. Changing uk for u, our linear control system is denoted by Ẋ = AX+Bu. As usual in this machinery, we add an extra variable z(t) = J t (u). The extended control system is written as ξ = G(ξ, u), ξ = (z, X). Notice that G is nonsmooth, and even non-continuous. We use also the convexification of the extended system. By a classical result of Caratheodory, it is the following system:

ż = ωλϕ(u 1 ) + ω(1 -λ)ϕ(u 2 ) + (1 -ω)ϕ(u 3 ), (2.6) ẋ = y, ẏ = ωλu 1 + ω(1 -λ)u 2 + (1 -ω)u 3 .
where the controls are

U = (u 1 , u 2 , u 3 , ω, λ), such that -u min ≤ u 1 , u 2 , u 3 ≤ u max and 0 ≤ ω, λ ≤ 1. The function ϕ is defined by ϕ = |y(u + k)| + α(y)u 2 .
We write this convexified system in abbreviated notation:

(Σ c ) ξ = F (ξ, U ), (2.7) 
where U ∈ U.

Let U k be any minimizing sequence for (Σ c ) and ξ k be the corresponding state sequence.

Clearly ξ k is equicontinuous, and by Ascoli, ξ k converges uniformly to ξ * . We want to show that ξ * (t) is actually a trajectory of (Σ c ), corresponding to some control U * .

In fact ξk converges *-weakly to some Φ * (t). It is enough to show that Φ * (t) ∈ F (ξ * (t), U).

Let O be the open set O ⊂[0, T ] where y * (t) = 0.
Firstly O is nonempty: for the subsystem in X = (x, y), which is just the linear system ( ẋ = y, ẏ = v) by standard arguments (see Gauthier and Kupka, 2001 for instance), we have continuity of the map

v → X, L ∞ [O,T ] , * -weak → C 0 [0,T ] , unif orm.
Therefore if O =∅, whatever a large k, the vector X k (T ) cannot approach the target point X t .
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Secondly, for almost all t ∈ O, Φ * (t) is equal to a certain F (ξ * (t), U * ).

Where it otherwise, we could find some subset S ⊂ O of > 0 measure such that Φ * (t) / ∈ F (ξ * (t), U) for all t ∈ S. We can assume that S is contained in some interval I ⊂ [0, T ] on which y * (t) has constant sign (y * (t) > 0, say). Let us say that the measure of S is ε and the measure of I is l > 0. Then, we can find (by Lusin's criterion) a continuous function Φ(t) on I which is different from Φ * (t) on a set of measure less than ε 2 . It follows that there is a set S (of strictly positive measure) of I such that Φ * (t) = Φ(t) / ∈ F (ξ * (t), U) for all t ∈ S. To finish, there is some t 0 ∈ S such that for all δ small enough, the set of

t ∈ I δ = [t 0 -δ, t 0 + δ] such that Φ * (t) = Φ(t) / ∈ F (ξ * (t), U) is denoted by S δ ⊂ I δ , and the measure of S δ is > 0.
Hence, by the separation of convexes, there is a

P ∈ (R n ) * such that P Φ * (t 0 ) = P Φ(t 0 ) > P F (ξ * (t 0 ), U). Since y * (t 0 ) = 0, since F (., .
) is continuous (remind y * > 0) and since Φ is continuous, it follows that δ can be chosen small enough for P Φ(t) > P F (ξ * (t), U) for all t ∈ I δ . In particular, P Φ * (t) > P F (ξ * (t), U k (t)) for all t ∈ S δ . This last property is denoted by (A). Also, since ξ k converges uniformly to ξ * ,

(B) lim sup k→+∞ P (Φ * (t) -F (ξ k (t), U k (t))) > 0 for all t ∈ I δ .
Denoting by κ the indicatrix function of S δ in [0, T ], we have, by the *-weak convergence of ξk to ξ * : lim sup

k→+∞ P T 0 κ(t)(Φ * (t) -F (ξ k (t), U k (t)))dt = 0.

This contradicts (B).

We conclude that ξ * is an admissible trajectory of the convexification (Σ c ) : Φ * (t) = F (ξ * (t), U * (t)) for almost all t ∈ [0, T ], for some measurable U * (.), U * (t) ∈ U (the measurability of U * is a standard exercise).

Thirdly, let us show that (C) ξ * is in fact an admissible trajectory of the original (non convexified) extended system.

Let us consider any fixed t 0 ∈ [0, T ] such that y * (t) = 0. Then on some neighborhood of t 0 , our trajectory (of the convexified system (Σ c )) has to meet the maximum principle. Hence, the Hamiltonian H(t) = P F (ξ * (t), U * (t)) has to be maximum with respect to

U. H(t) = p ż + qy + r ẏ. Moreover, p(t) = p(t 0 ) = p. If p = 0 (singular case) this leads obviously to: u = ωλu 1 + ω(1 -λ)u 2 + (1 -ω)u 3 = -u min or u max ,
which implies obviously u 1 = u 2 = u 3 = -u min or u max , and ż = ϕ(y, u), and therefore ξ * is a trajectory of the original extended system.
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Let us now examine the case where p = 0. The modified Hamiltonian H = p ż + r ẏ is maximum w.r.t U . But: ωλϕ(u 1 ) + ω(1λ)ϕ(u 2 ) + (1ω)ϕ(u 3 )) + r(ωλu 1 + ω(1λ)u 2 + (1ω)u 3 ) = ωλ(pϕ(u 1 ) + ru 1 ) + ω(1λ)(pϕ(u 2 ) + ru 2 ) + (1ω)(pϕ(u 3 ) + ru 3 ).

H = p(
We shall only examine the case ωλ = 0. The other cases (ω(1λ) = 0 or (1ω) = 0) are similar. The function pϕ(u) + ru is strictly concave since p < 0. But (pϕ(u 1 ) + ru 1 ) has to be maximum and the maximum is reached at a unique u * (depending on y only). At the end H = (pϕ(u * ) + ru * ), ẏ = u * , ż = ϕ(u * ). This shows that the piece of trajectory (ξ * (t), U * (t)) around t 0 is in fact a trajectory of the non-convexified extended system.

At almost all points t 0 where y * (t 0 ) = 0 (that is, at non isolated points of O where ξ * (t 0 ) is differentiable, then ẏ * (t 0 ) = 0 also, and

u(t 0 ) = (ωλu 1 +ω(1-λ)u 2 +(1-ω)u 3 )(t 0 ) = 0.
By Theorem 1, we can assume α(0) = 0. This implies that ż(t 0 ) = 0, ẋ(t 0 ) = 0, ẏ(t 0 ) = u * (t 0 ) = 0, and at the end, at almost all t, ξ * (t) = G(ξ * (t), u * (t)), which means that ξ * (t) is a trajectory of our nonconvexified extended system.

Summary of the results

Different classes of optimal trajectories

We classify the different types of optimal trajectories in terms of the duration T of the motion. Whence T increases from the critical time T c towards infinity, we get the successive strategies. The critical time T c corresponds to minimum time necessary to connect the source to the target. Also, it is a consequence of this study that the optimal strategies remain in one of the half-planes H 1 (resp. H 2 ), corresponding to y ≥ 0 (resp. y ≤ 0). Moreover, the optimal trajectories consist of a single piece connecting {y = 0} to {y = 0}. These optimal arcs are described here for the upper plane H 1 only, the case of H 2 leading to completely symmetric formulas:

Remark 3. Up to the change of variables x(t) = x(T -t), ỹ(t) = -y(T -t) and ũ(t) = u(T -t)
, the problems that consist of moving from x s to x t (e.g. upward) and from x t to x s (e.g. downward) are equivalent and consequently the optimal controls u lead to the optimal controls ũ (for the fixed value α D of the parameter α). Therefore, up to this exchange of α D and α U , the solutions for upward and downward motions are formally exactly the same. The quantitative difference between downward and upward motions is only determined by the practical value of α. However, it is a crucial fact that α D = α U for the quantitative results, while the qualitative behaviour is well explained even in the case α U = α D .
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In the following, (p, q) will denote the adjoint vector of (x, y). Hence, (p 0 , q 0 ) is the initial value of the adjoint vector.

We obtain the following 7 different optimal strategies that are presented in more details in Section 3.2 and the equations of which are established from the PMP in Section 6. Each of them is an optimal solution of the problem (P ), depending on the explicit values of the parameters.

The 7 qualitative types of optimal strategies are denoted by S j , j = 1, ..., 7 and correspond to the following sequences of controls:

• (S 1 ), (bang-max, bang-min):

(u = u max ) → (u = -u min );

• (S 2 ), The most general strategy (bang, singular, special-singular, singular, bang):

(u = u max ) → (u = q -y 2α + k) → (u = 0) → (u = q + y 2α + k) → (u = -u min );
• (S 3 ) (singular, special-singular, singular, bang):

(u = q -y 2α + k) → (u = 0) → (u = q + y 2α + k) → (u = -u min );
• (S 4 ) (bang, singular, special-singular,singular):

(u = u max ) → (u = q -y 2α + k) → (u = 0) → (u = q + y 2α + k);
• (S 5 ) (singular, special-singular,singular):

(u = q -y 2α + k) → (u = 0) → (u = q + y 2α + k);
• (S 6 ) (bang, singular):

(u = u max ) → (u = q -y 2α + k);
• (S 7 ) (singular only):

(u = q -y 2α + k).
The "special-singular" pieces corresponding to "inactivity sequences" u = 0, are due to the term |u| in the criterion, as we said.

In the following sections we describe in details these different strategies.

Notation 1. In the following section, we will use the notations u i (t), q i (t), x i (t), y i (t), for t [0, τ i ] and i ≥ 1 for the functions u, q, x, y on the interval

[ i-1 j=0 τ j , i j=0 τ j ] with τ 0 = 0. For instance, u 2 (t) means u(t + τ 1 ) for t ∈ [0, τ 2 ] and u 3 (t) means u(t + τ 1 + τ 2 ) for t ∈ [0, τ 3 ]. 12

Case S 1 : fastest possible movements, critical time T c

We consider first the "abnormal" 1 case, corresponding to the quickest possible movement. This solution depends only upon the constraints u max , u min .

The corresponding equations for the solutions are the following:

• For t ∈ [0, τ 1 ]            u 1 = u max y 1 = (u max -k)t q 1 = q 0 -p 0 t x 1 = x s + (u max -k) t 2 2 , • For t ∈ [0, T c -τ 1 ] (τ 2 = T c -τ 1 )            u 2 = -u min y 2 = y 1 (τ 1 ) -(u min + k)t q 2 = q 1 (τ 1 ) -p 0 t x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t -(u min + k) t 2 2 , with T c = 2∆ x (u min + u max ) (u min + k)(u max -k) ,
and commutation time τ 1 ,

τ 1 = (u min + k)T c 2u max -k + u min .

Case S 2 : five-piece trajectories.

When T ∈ [T c , T 1 ], the solutions are:

1 Those trajectories corresponding to λ = 0 (λ the adjoint vector to the cost) are called "abnormal". Note that they are candidate for optimality whatever the cost. Remind that in the paper, we consider also regular (or bang) and singular trajectories (the control is not bang). Singular are divided into usual-singular and special-singular.
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• For t ∈ [0, τ 1 ]            u 1 = u max y 1 = (u max -k)t q 1 = q 0 + (u max -p 0 )t x 1 = x s + (u max -k) t 2 2 . • For t ∈ [0, τ 2 ]                      u 2 = u max + k -p 0 2α t y 2 = y 1 (τ 1 ) + (u max -k)t + k -p 0 4α t 2 q 2 = q 1 (τ 1 ) + (u max -p 0 )t + k -p 0 4α t 2 x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t + u max -k 2 t 2 + k -p 0 12α t 3 . • For t ∈ [0, τ 3 ]            u 3 = 0 y 3 = y 2 (τ 2 ) -kt q 3 = q 2 (τ 2 ) -p 0 t x 3 = x 2 (τ 2 ) + y 2 (τ 2 )t - kt 2 2 . • For t ∈ [0, τ 4 ]                      u 4 = - k -p 0 2α t y 4 = y 3 (τ 3 ) -kt - k + p 0 4α t 2 q 4 = q 3 (τ 3 ) -p 0 t - k + p 0 4α t 2 x 4 = x 3 (τ 3 ) + y 3 (τ 3 )t - k 2 t 2 - k + p 0 12α t 3 . • For t ∈ [0, τ 5 ]            u 5 = -u min y 5 = y 4 (τ 4 ) -(u min + k)t q 5 = q 4 (τ 4 ) + (u min -p 0 )t x 5 = x 4 (τ 4 ) + y 4 (τ 4 )t -(u min + k) t 2 2
.
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The commutation times τ i meet:

τ 1 = q 0 + 2α(k -u max ) p 0 -k , τ 2 = 2αu max p 0 -k , τ 3 = 2 (2αk + q 0 )(u max -k) -αu 2 max (p 0 -k)(p 0 + k) , τ 4 = 2αu min k + p0 , τ 5 = (q 0 + 2αk)(u max -k) -α(u 2 max + u 2 min + 2ku min ) (p 0 + k)(k + u min )
.

Of course, we have τ i > 0 for all i and 5 i=1 τ i = T . This implies several constraints on p 0 and q 0 . Initial adjoint vector can be computed by requiring that y 5 (τ 5 ) = 0 and x 5 (τ 5 ) = x t . Explicit formulas for p 0 and q 0 can't be obtained but it's numerically easy to compute these values, and to check if they are compatible with the conditions above.

The time T 1 after which this strategy is not actual can be easily determined numerically. S 3 andS 4 : bang only in u max or only in -u min .

Cases

The disappearance of the saturation u = u max is determined by τ 1 = 0 which implies q 0 = q a 0 = -2kα + 2αu max . Similarly the disappearance of the saturation u = -u min is determined by τ 5 = 0 which

implies q 0 = q b 0 = -2kα + α(u 2 max + u 2 min + 2ku min ) u max -k .
It follows that

q a 0 ≥ q b 0 ⇐⇒ u max -u min ≥ 2k.
If u maxu min ≥ 2k it is easy to see that we have to choose q 0 = q a 0 and τ 1 = 0 before τ 5 = 0. Conversely if u maxu min ≤ 2k we should take q 0 = q b 0 and τ 5 = 0 appears first. We set T = T a 1 in the first case and T = T b 1 in the second case.

• Case S 3 : u maxu min ≥ 2k.
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In this case, the end-time of the saturation u = u max appears first and occurs when

T ∈ [T a 1 , T 2 ]
, T 2 being a certain time after which this strategy is not available. Note that in this case

T 1 = T a 1 .
The optimal solution is given by:

• For t ∈ [0, τ 1 ]                      u 1 = q 0 2α + k + k -p 0 2α t y 1 = q 0 2α t + k -p 0 4α t 2 q 1 = q 0 + ( q 0 2α + k -p 0 )t + k -p 0 4α t 2 x 1 = x s + q 0 4α t 2 + k -p 0 12α t 3 . • For t ∈ [0, τ 2 ]            u 2 = 0 y 2 = y 1 (τ 1 ) -kt q 2 = q 1 (τ 1 ) -p 0 t x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t - kt 2 2 . • For t ∈ [0, τ 3 ]                      u 3 = - k -p 0 2α t y 3 = y 2 (τ 2 ) -kt - k + p 0 4α t 2 q 3 = q 2 (τ 2 ) -p 0 t - k + p 0 4α t 2 x 3 = x 2 (τ 2 ) + y 2 (τ 2 )t - k 2 t 2 - k + p 0 12α t 3 . • For t ∈ [0, τ 4 ]            u 4 = -u min y 4 = y 3 (τ 3 ) -(u min + k)t q 4 = q 3 (τ 3 ) + (u min -p 0 )t x 4 = x 3 (τ 3 ) + y 3 (τ 3 )t -(u min + k) t 2 2 
.
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In this case, the commutation times τ i meet:

τ 1 = q 0 + 2αk p 0 -k , τ 2 = (q 0 + 2αk)(q 0 -2αk) 2α(p 0 -k)(p 0 + k) , τ 3 = 2αu min p 0 + k , τ 4 = (q 0 + 2α(k + u min ))(q 0 -2α(k + u min )) 4α(k + p 0 )(k + u min ) .
As above we have the additional constraints τ i > 0 for all i and 4 i=1 τ i = T.

• Case S 4 : u max -u min ≤ 2k.
In this case, the end of the saturation u = -u min first appears.

Thus, the optimal solutions can be written as follows, with

T ∈ [T b 1 , T 2 ] (note that T 1 = T b 1 ): • For t ∈ [0, τ 1 ]            u 1 = u max y 1 = (u max -k)t q 1 = q 0 + (u max -p 0 )t x 1 = x s + (u max -k) t 2 2 . • For t ∈ [0, τ 2 ]                      u 2 = u max + k -p 0 2α t y 2 = y 1 (τ 1 ) + (u max -k)t + k -p 0 4α t 2 q 2 = q 1 (τ 1 ) + (u max -p 0 )t + k -p 0 4α t 2 x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t + u max -k 2 t 2 + k -p 0 12α t 3 . • For t ∈ [0, τ 3 ]            u 3 = 0 y 3 = y 2 (τ 2 ) -kt q 3 = q 2 (τ 2 ) -p 0 t x 3 = x 2 (τ 2 ) + y 2 (τ 2 )t - kt 2 2
. 17

• For t ∈ [0, τ 4 ]                      u 4 = - k -p 0 2α t y 4 = y 3 (τ 3 ) -kt - k + p 0 4α t 2 q 4 = q 3 (τ 3 ) -p 0 t - k + p 0 4α t 2 x 4 = x 3 (τ 3 ) + y 3 (τ 3 )t - k 2 t 2 - k + p 0 12α t 3
.

In this case, the commutation times τ i meet:

τ 1 = q 0 + 2α(k -u max ) p 0 -k , τ 2 = 2αu max p 0 -k , τ 3 = 2 (2αk + q 0 )(u max -k) -αu 2 max (p 0 -k)(p 0 + k) , τ 4 = 2 -kα + α(k -u max )(α(u max -k) -q 0 ) k + p0 .
Again τ i > 0 for all i and 4 i=1 τ i = T In both sub-cases, p 0 and q 0 are computed by solving y 4 (τ 4 ) = 0 and x 4 (τ 4 ) = x t .

Case S 5 : three-piece trajectories.

Note that this situation can appear only if u max ≥ 2k. Therefore, it may appear after each of the above situations (since we can have u maxu min ≤ 2k or u maxu min ≥ 2k).

When T ∈ [T 1 , T a 2 ], with T a 2 = 6∆ x k
, we get the following optimal solutions:

• For t ∈ [0, τ 1 ]                      u 1 = q 0 2α + k + k -p 0 2α t y 1 = q 0 2α t + k -p 0 4α t 2 q 1 = q 0 + ( q 0 2α + k -p 0 )t + k -p 0 4α t 2 x 1 = x s + q 0 4α t 2 + k -p 0 12α t 3 . 18 • For t ∈ [0, τ 2 ]            u 2 = 0 y 2 = y 1 (τ 1 ) -kt q 2 = q 1 (τ 1 ) -p 0 t x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t - kt 2 2 . • For t ∈ [0, τ 3 ]                      u 3 = - k -p 0 2α t y 3 = y 2 (τ 2 ) -kt - k + p 0 4α t 2 q 3 = q 2 (τ 2 ) -p 0 t - k + p 0 4α t 2 x 3 = x 2 (τ 2 ) + y 2 (τ 2 )t - k 2 t 2 - k + p 0 12α t 3 .
The commutation times τ i meet:

τ 1 = q 0 + 2αk p 0 -k , τ 2 = (q 0 + 2αk)(q 0 -2αk) 2α(p 0 -k)(p 0 + k) , τ 3 = q 0 -2αk (p 0 + k) .
We still have τ i > 0 for all i and 3 i=1 τ i = T Here, p 0 and q 0 are computed by solving y 3 (τ 3 ) = 0 and x 3 (τ 3 ) = x t .

Case S 6 : two-piece trajectories.

It can be proven that this situation is only possible when u max ≤ 2k. Consequently this

situation occurs when T ∈ [T b 1 , T b 2 ], with T b 2 = 6∆ x u max -k . 19 • For t ∈ [0, τ 1 ]            u 1 = u max y 1 = (u max -k)t q 1 = q 0 + (u max -p 0 )t x 1 = x s + (u max -k) t 2 2 . • For t ∈ [0, τ 2 ]                      u 2 = u max + k -p 0 2α t y 2 = y 1 (τ 1 ) + (u max -k)t + k -p 0 4α t 2 q 2 = q 1 (τ 1 ) + (u max -p 0 )t + k -p 0 4α t 2 x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t + u max -k 2 t 2 + k -p 0 12α t 3 .
The commutation times τ i meet:

τ 1 = q 0 + 2α(k -u max ) p 0 -k , τ 2 = -2α(k -u max ) + 2 α(k -u max )(-q 0 -α(k -u max )) (p 0 -k) .
Here τ i > 0 for all i and 2 i=1 τ i = T and p 0 and q 0 are computed by solving y 2 (τ 2 ) = 0 and x 2 (τ 2 ) = x t .

Case S 7 : one-piece trajectory. Symmetric Velocity profiles.

This situation appears for

T ∈ [T a 2 , +∞] (if u max ≥ 2k) or T ∈ [T b 2 , +∞] (if u max ≤ 2k). • For t ∈ [0, T ]                      u = q 0 2α + k + k -p 0 2α t y = q 0 2α t + k -p 0 4α t 2 q = q 0 + ( q 0 2α + k -p 0 )t + k -p 0 4α t 2 x = x s + q 0 4α t 2 + k -p 0 12α t 3
.
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It turns out that in this case, velocity profiles are symmetric (acceleration time equals deceleration time).

Remark 4. The values p 0 and q 0 satisfy a system of 2 algebraic equations. The constraints τ i > 0 for all i and i τ i = T imply a unique choice among the above 7 possible strategies.

Examples of each optimal trajectories.

Figures illustrate the different As expected S 4 appears when u maxu min ≤ 2k whereas S 3 appears when u maxu min ≥ 2k. The strategy S 6 only occurs when u max ≤ 2k.

We illustrate in each figure the phase portrait in the plane (x, y), the corresponding optimal control u, the angular position x and the angular velocity y.

For convenience we choose the following drawing specifications: solid-black line when u = u max , doted-black line when u max > u > 0, solid-red line when u = 0, doted-blue line when 0 > u > -u min , and solid-blue line when u = -u min .

Qualitative analysis of the results

Asymmetry of velocity profiles. We denote by τ M the ratio t * T , where t * is the time at which the velocity y is maximum. • For the situation S 7 only, it is easy to see that the ratio τ M always equals 1 2 . It corresponds to the case of slow movements (approximately T > 0.7 s).

• For the situation S 5 , we can see that the ratio τ M tends to a certain lower bound when α tends to zero. When α tends to infinity, τ M tends to 1 2 . Remind the very important point that varying α doesn't allow to obtain all possible values for τ M . 
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• For other cases, the explicit study of the factor τ M becomes hard. But we can see numerically that τ M can only vary in a certain interval around 1 2 , which depends on the parameters used, notably on u max and u min .

Duration of inactivation

Moreover, it is noticeable that the duration of the inactivation period depends on α. Generally, the more α is small, the more the time-interval of inactivation is large. It is depicted in Figure 10 (right graph).

Smoothing the optimal strategy

As one can note in the practical experiments (moreover, this is clear whatever), the control has to be inertial, i.e. the control is absolutely continuous, with gradient bounds. Let us assume:

| du dt | ≤ U. (4.1)
This section being not very crucial for what we want to show, and the results being intuitively clear but proofs being rather technical and long (using the Maximum principle for inertial controls), we just state a few results and don't give the proofs.

We will focus on the situation S 2 (the most suitable in practice), and assume (H s ) that

T ∈]T c , T 1 [ (open interval).
Theorem 3. Under assumption (H s ), optimal constrained solutions do exist, provided that the bound U is large enough.

Theorem 4. When U tends to infinity, under assumption (H s ) :

1. Optimal controls converge *-weakly to unconstrained optimal controls, 2. Constrained optimal state trajectories converge uniformly to unconstrained optimal state trajectories, 3. Optimal controls are 7 pieces (counted here for upward motion): Bounded maximum derivative, maximum bang, usual singular, inactivation, usual singular, minimum bang, bounded maximum derivative.

An example of such a smoothed trajectory has been depicted in the introduction on Figure 2.

5 The Inactivation principle

Let us consider the original system, without the "small-angle" assumption, or even more generally any potential ϕ(x) with constant sign.

Let us fix everything (the source, target, bounds) except the duration T of the experiment. We assume also that u min , u max ≥ sup x ϕ (x).

Then, we have still a critical (minimum) time T c . Notice that for T = T c , the optimal control u * (t) changes sign: assuming the contrary, since u * (t) = -u min or u max (minimum time and no abnormal), then the motion would be monotonous, and therefore cannot connect the source to the target.

Easy continuity argument show that the same happens (u * changes sign) on some time interval ]T c , T 2 [. Lemma 1. Let us assume that T ∈]T c , T 2 [. Then, the optimal control u * is continuous.

Proof. Along an optimal trajectory with p 0 = -1, since T > T c is non-minimum-time (p 0 is the adjoint additional variable), the hamiltonian H is:

H = -|yu| -α(y) ẏ2 + py + q(u -ϕ (x)).
Here we assume that α is > 0 and continuous. In our case, along the optimal tarajectories, y does not change sign, hence α(y) is continuous. Therefore, H(t) is a strictly concave Lipschitz-continuous function of u(t). It has to be maximum all along the trajectory and the u reaching the maximum is unique. The result follows.

Moreover, u is uniquely determined by the inclusion:

0 ∈ ∂ u H,
where ∂ u is the subdifferential of convex analysis (w.r.t. u). This condition can be rewritten as:

u ∈ |y|ε + 2α(y)ϕ (x) + q 2α(y) = I, where: (5.1) ε = sign(u) if u = 0 [-1, 1] if u = 0 .
Now, since u is a continuous function of t, changing sign (for y = 0), u has to cross the continuously-time-varying interval I. Therefore, u has to be zero on some time interval.

We have shown the following: 27 Theorem 5. (Total Inactivation principle) Under the assumptions of this section (in particular, in the case of our system without "small angle" assumption), for

T ∈]T c , T 2 [
, there is a non-degenerate subinterval of [0, T ] on which u = 0 (total inactivation).

The time T 2 at which total inactivation disappears is of importance for neurobiologists.

We have computed it under the "small angle" assumption:

T 2 = 6∆ x u max -k for u max ≤ 2k, T 2 = 6∆ x k elsewhere.

Main computations and proofs

We present here the computation of the optimal solutions of our problem (P) from the maximum principle. This is more or less standard, but long. Despite the nonsmoothness of our criterion, there is no need here of a nonsmooth maximum principle: we compute assuming that the whole optimal trajectories are entirely in {y ≥ 0}. The case {y ≤ 0} is similar, and we give less details.

This restriction can be justified a posteriori by an argument of "dynamic programming type": an optimal trajectory has to be a concatenation of such pieces. Then comparison of the costs of these pieces, and dynamic programming principle show that optimal trajectories are one piece. Now, the Lipschitz non-smoothness |y| in the criterion occurs only at endpoints of the time interval (see the proof of Theorem 1). Hence, we can apply the usual PMP on the interval ]O, T [ and this is enough.

Remark 5. Another way to see that optimal trajectories are just one piece y ≥ 0 or y ≤ 0, with y = 0 at endpoints only, is like that: use a maximum principle for systems defined discontinuously in two regions of the state space (this is possible with the standard PMP). The regions are {y ≥ 0} and {y ≤ 0}. Therefore, the jumps on adjoint vector will be on the q-component only. Hence, p will be a constant along the whole optimal trajectory. Examining the phase portraits below, and using this fact (p constant) allows to conclude.

However, to be perfectly correct, because of the Lipschitz nonsmoothness |y| we would need a Clarke's (Lipschitz version) of the PMP Clarke (1983), with discontinuities moreover.

Let us choose the case of an optimal trajectory entirely contained in the half-plane y ≥ 0. It follows that ∆ x > 0, i.e. we consider upward movements.
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The Hamiltonian H of the problem can be written.

H = -λ(y|u| + α(u -k) 2 ) + py + q(u -k), (6.1)
where λ ≥ 0 is the constant additional adjoint variable, and (p, q) is the adjoint vector to (x, y).

Two cases may occur:

1. Trajectories of type S 1 .

In that case, λ = 0 (abnormal trajectories). Note also that these trajectories correspond to minimum time to connect the source to the target.

In this case the Hamiltonian H reduces to the minimum time one:

H = py + q(u -k).
Standard computations show that, by our assumption y ≥ 0, our optimal trajectory starts with u = u max and the only commutation appears for the time τ = q 0 p 0 .

The value of the critical time T c is obtained by solving the following system of two equations: y(τ, T c ) = 0 and x(τ, T c ) = x t .we get:

T c = 2∆ x (u min + u max ) (u min + k)(u max -k) , τ = (u min + k)T c 2u max -k + u min .
As a consequence, no motion from X s to X t can be achieved in time less than T c .

Normal trajectories

In this case the Hamiltonian is:

H = -(y|u| + α(u -k) 2 ) + py + q(u -k),
and the adjoint equations are:

ṗ = 0 q = |u| -p . (6.2)
29

Here, we have to maximize (w.r.t u) the quantity:

H = -y|u| -α(u -k) 2 + qu.
Remark 6. Our trajectory is a (countable) concatenation of elementary arcs, each of them connecting {y = 0} to {y = 0} and along which y = 0. Otherwise, nonsmoothness w.r.t. y appears only at y = 0 (through |y|). Therefore, in fact, for these elementary arcs we don't write a differential inclusion for the adjoint vector, but the standard ordinary differential equation. As we said already, proving optimality requires just comparing the cost of trajectories that are concatenation of two such arcs, with the cost of a single such arc.

Five cases happen when y ≥ 0 (resp. y ≤ 0):

Note that:

       ∂ H(u) ∂u = (q -y) -2α(u -k) if u > 0 ∂ H(u) ∂u = (q + y) -2α(u -k) if u < 0 (6.3)
For the sake of simplicity, we set z = qy and w = q + y. The condition y ≥ 0 is now

w ≥ z.
Thus, max u H(u) is obtained for the following values of u:

• if z + 2kα > 0 and z + 2kα < 2αu max , then u = z 2α + k > 0. • if z + 2kα ≥ 2αu max , then u = u max . • if w + 2kα < 0 and w + 2kα > -2αu min , then u = w 2α + k < 0. • if w + 2kα ≤ -2αu min , then u = -u min .
• if z + 2kα ≤ 0 and w + 2kα ≥ 0, then u = 0.

30 Therefore, we have a Lipschitz vector field in the plane (z, w), that corresponds to the extremal trajectories in the part where w ≥ z. In these expressions, α = α U .

For y ≤ 0, this Lipschitz vector-field corresponds to α = α D :

• if w + 2kα > 0 and w + 2kα < 2αu max , then u = w 2α + k. • if w + 2kα ≥ 2αu max , then u = u max . • if z + 2kα < 0 and z + 2kα > -2αu min , then u = z 2α + k. • if z + 2kα < 0 and z + 2kα ≤ -2αu min , then u = -u min .
• if z + 2kα ≥ 0 and w + 2kα ≤ 0, then u = 0.

Remark 7.

The fact that we get, for p 0 fixed, a well defined vector field in the (z, w) plane is due to the fact that along our elementary trajectories, p(t) = p 0 , which is itself a consequence of the independence of the Hamiltonian w.r.t. x.

In the following, we study the flow of this vector field.

In the domain y ≥ 0 (i.e. w ≥ z) we get the following different expressions:

• {w ≥ z} {z ≥ 2α U (u max -k)}, 1 ż = k -p 0 ẇ = 2u max -k -p 0 . • {w ≥ z} {z + 2kα U > 0} {z < 2α U (u max -k)}, 2    ż = k -p 0 ẇ = z α U + k -p 0 . 31 • {w ≥ z} {w ≤ -2α U (k + u min )}, 3 ż = 2u min + k -p 0 ẇ = -k -p 0 . • {w ≥ z} {w + 2kα U < 0} {w > -2α U (k + u min )}, 4    ż = - w α U -k -p 0 ẇ = -k -p 0 . • {w ≥ z} {z + 2kα U ≤ 0} {w + 2kα U ≥ 0}, 5 ż = k -p 0 ẇ = -k -p 0 .
The formulas for y ≤ 0 are:

• {w ≤ z} {w ≥ 2α D (u max -k)}, 6 ż = -2u max + k -p 0 ẇ = -k -p 0 . • {w ≤ z} {w + 2kα D > 0} {w < 2α D (u max -k)}, 7    ż = - w α D -k -p 0 ẇ = -k -p 0 . • {w ≤ z} {z ≤ -2α D (u min + k)}, 8 ż = k -p 0 ẇ = -2u min -k -p 0 . • {w ≤ z} {z + 2kα D < 0} {z > -2α D (u min + k)}, 9    ż = k -p 0 ẇ = z α D + k -p 0 . 32 • {w ≤ z} {z + 2kα D ≥ 0} {w + 2kα D ≤ 0}, 10 ż = k -p 0 ẇ = -k -p 0 .
Remark 8. 1. Note that we have three cases of phase portraits, corresponding to the respective three situations:

p 0 > k, -k ≤ p 0 ≤ k and p 0 < -k.

2.

We ignore the problems due to eventual discontinuity of the adjoint vector at y = 0, since we treat only elementary arcs in the sense of remark 6. As we said in Remark 5, these discontinuities are w.r.t. q only, which means jumps along the diagonal of the (z, w) plane, since y = 0 means w = z. Now, we treat successively the three cases.

First Case: -k < p 0 < k (See Figure 11)

We omit the two cases p 0 = k and p 0 = -k. A Similar reasoning can be done for these cases and we can show that no optimal trajectory arises from them.

We proceed by considering the different possible initial conditions q 0 for q. Here, q 0 is a point on the diagonal {w = z}, and the diagonal is denoted by (D). Each region i corresponds to a vector field on which it is valid. Consequently we also use the notation i to refer to the vector field in the corresponding region of the (z, w) plane.

Case 1. y ≥ 0 : We look for trajectories which are pertinent for our problem, i.e. starting at t = 0 on (D), returning at a certain positive time t on the diagonal (D) and remaining in the half-plane {y ≥ 0} (i.e. {z ≤ w}).

• q 0 > 0 : In this case, trajectories can start in region 1 or 2 . They always are divergent toward infinity.

-Region 1 : the vector field 1 leads to trajectories which never reach (D) twice. Indeed, żẇ = -2u max so that zw is a strictly decreasing function, starting from 0. Moreover, z and w are strictly increasing and consequently these kind of trajectories always stay in the region 1 and are divergent toward infinity. Remark that whatever the starting point in region 1 we obtain such kind of divergent trajectories.

-Region 2 : the trajectories starting at t = 0 with the vector field 2 verify 

z -w = -t α U (q 0 + k -p 0 2 t). Since q 0 ≥ 0,
z = -2kα U z = 2α U (u max -k) w = -2kα U w = -2α U (u min + k) w = -2kα D w = 2α D (u max -k) z = -2kα D z = -2α D (u min + k) z = w w ≥ z w ≤ z 0 Figure 11: Phase portrait for -k < p 0 < k in the plane (z, w)
34 t ≥ 0. Moreover, since z increases for trajectories in region 2 , trajectories always cross the line {z = 2kα U (u maxk)} and arrive in the region 1 where they are divergent and never reach (D), as previously seen.

• q 0 < 0 : In this case, trajectories can a priori start in region 2 , 5 , 4 or 3 . In all these cases, trajectories starting at t = 0 on (D) are not such that y ≥ 0 (i.e.

z ≤ w) for t ≥ 0. Hence, they are unavailable for our purpose:

-Region 2 : trajectories corresponding to the vector field 2 verify z ≥ w for

t ∈ [0, -2q 0 k -p 0 ].
Hence, starting from (D) at t = 0, trajectories corresponding to this vector field never conducts to the region 2 for t ≥ 0.

-Region 5 : trajectories verify żẇ = 2k > 0. Consequently, trajectories corresponding to vector field 5 are such that z ≥ w for all t ≥ 0.

-Region 4 : trajectories in this case correspond to arcs of parabolas. However these trajectories corresponding to vector field 4 and starting from (D) at

t = 0 verify z -w = -t α U (q 0 - k + p 0 2 t). Hence, z ≥ w for t ∈ [0, -2q 0 k + p 0 ].
-Region 3 : -2α U (k + u min ) ≥ q 0 : trajectories corresponding to the vector field 3 are unavailable. Indeed, żẇ = 2u min > 0, and consequently z ≥ w for t ≥ 0. .

Case 2. y ≤ 0:

We look for trajectories which are admissible, i.e. starting at t = 0 on (D), returning at a certain positive time t on the diagonal (D) and remaining in the half-plane {y ≤ 0} (i.e. {z ≥ w}).

• q 0 > 0 : In this case, we have to consider the admissibility of trajectories corresponding to the vector fields 6 and 7 . It is easy to check that none among these trajectories is admissible.

-Region 6 : trajectories in region 6 are such that żẇ = -2(u maxk) < 0. Therefore, trajectories starting on (D) verify: for times t ≥ 0, z ≤ w. Hence, these trajectories are unavailable for our purpose.

-Region 7 : trajectories starting at the point (z 0 , w 0 ) = (q 0 , q 0 ) at time t = 0

verify: z -w = t α D (-q 0 + k + p 0 2 t). Consequently, for t ∈ [0, 2q 0 k + p 0 ], they
verify z ≤ w and thus these trajectories are unavailable.

• q 0 < 0 : In this case, we can see that all trajectories starting on (D) are divergent and never reach (D) twice.
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-Region 7 : trajectories are arcs of parabolas. Equation of vector field 7 leads to zw = t α D (-q 0 + k + p 0 2 t). Since q 0 < 0, trajectories are such that z ≥ w for all t ≥ 0. Moreover, since w decreases, these trajectories always cross the line {w = -2kα D } and go on in region 10 where trajectories are clearly divergent toward infinity and never reach (D) again.

-Region 10 : trajectories are clearly divergent because w is strictly decreasing and z is strictly increasing toward infinity. Moreover, these trajectories are divergent even if the starting point is not on (D). Whatever the starting point such that z 0 ≥ w 0 , we clearly have the same result on the divergence of the trajectories.

-Region 9 : trajectories of the vector field 9 starting on (D) at t = 0 verify

z -w = -t α D (q 0 + k -p 0 2 t). Hence, for t ∈ [0, -2q 0 k -p 0 ] they verify z ≥ w.
Moreover the time to attain the line {z

= -2kα D } is -2kα D -q 0 k -p 0 .
As a consequence, trajectories considered in this case always reach the line {z = -2kα D } before (D). Since trajectories that enter into the region 10 are divergent, these trajectories are unavailable for our purposes. It is easy to see that this divergence is independent of the starting point chosen in the region 9 .

-Region 8 : trajectories of the vector field 8 are such that z increases and w decreases. Moreover they verify z ≥ w for times t ≥ 0. These trajectories always reach the line {z = -2α D (u min + k)} and enter into the region 9 where they are divergent and never reach (D) again.

In conclusion, when -k < p 0 < k and whatever the value of q 0 , there is no trajectory available for our purposes. It is straightforward to read this result on the figure 11. The above proof is quite immediate when looking at the equations of the vector field in the different regions.

The cases p 0 = k and p 0 = -k can also be treated in the same way. We leave the precise proofs to the reader and we give only the corresponding figures. Figure 12 shows the particular case p 0 = k and Figure 13 shows the case p 0 = -k.

Second Case: p 0 > k A phase portrait corresponding to p 0 > k is displayed on Figure 14. 

z = -2kα U z = 2α U (u max -k) w = -2kα U w = -2α U (u min + k) w = -2kα D w = 2α D (u max -k) z = -2kα D z = -2α D (u min + k) z = w w ≥ z w ≤ z 0
z = -2kα U z = 2α U (u max -k) w = -2kα U w = -2α U (u min + k) w = -2kα D w = 2α D (u max -k) z = -2kα D z = -2α D (u min + k) z = w w ≥ z w ≤ z 0
z = -2kα U z = 2α U (u max -k) w = -2kα U w = -2α U (u min + k) w = -2kα D w = 2α D (u max -k) z = -2kα D z = -2α D (u min + k) z = w w ≥ z w ≤ z 0 Figure 14: Phase portrait for p 0 > k.
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• q 0 > 0 : in this case, trajectories of the vector fields 6 and 7 are unavailable.

-Region 6 : As previously seen, these trajectories are unavailable since they verify: z ≤ w for times t ≥ 0.

-Region 7 : trajectories starting on (D) at t = 0 verify:

z -w = t α D (-q 0 + k + p 0 2 t). Consequently, for t ∈ [0, 2q 0 k + p 0 ],
z ≤ w and thus these trajectories are unavailable.

• q 0 < 0 : in this case, all trajectories starting on (D) at time t = 0 are divergent toward infinity and never reach (D) twice.

-Region 7 : trajectories are arcs of parabola verifying z ≥ w for all times t ≥ 0. However since w is strictly decreasing, these trajectories always change of region and go on in the region 10 .

-Region 10 : trajectories in this region are such that z and w both strictly decrease, since kp 0 and -kp 0 are both negative. Consequently these trajectories always change of region and go to the region 9 , because they always reach the line {z = -2kα D }.

-Region 9 : trajectories from a point (z 0 , w 0 ) in this region are arcs of parabolas. They verify ẇ < ż since z = z 0 + (kp 0 )t < 0 for all t > 0 because in this region we ever have z 0 < -2kα D . As a consequence, w decreases strictly more quickly than z. Hence, these arcs of parabolas never reach (D), always reach the line {z = -2α D (u min + k)} and move to region 8 .

-Region 8 : trajectories in this region verify żẇ = 2k > 0. Therefore, these trajectories never reach (D) since in this region we always have initially z 0w 0 ≥ 0. Moreover z and w are decreasing so that these trajectories are divergent toward infinity.

Case 2. y ≥ 0:

• q 0 < 0 : in this case, the trajectories starting from (D) at the time t = 0 are not available.

-Region 2 : trajectories of the corresponding vector field are such that z -w = -t α U (q 0 + kp 0 2 t). Since q 0 < 0, the root -2q 0 kp 0 is negative and thus we have necessary z ≥ w for times t ≥ 0. Therefore these trajectories are unavailable, when starting from (D).
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-Region 5 : trajectories starting from (D) in this region are such żẇ = 2k > 0. Hence z ≥ w for times t ≥ 0. These trajectories are unavailable.

-Region 4 : trajectories in this region are arcs of parabolas starting from (D)

at t = 0. They verify z -w = -t α U (q 0 - k + p 0 2 t).
Hence, the root 2q 0 k + p 0 is negative and z ≥ w for t ≥ 0.

-Region 3 : trajectories in this case are unavailable because they verify ż-ẇ = 2(u min + k) > 0. As a consequence, z ≥ w for all t ≥ 0.

• q 0 > 0 : in this case, there are several available trajectories.

-The 6 possible types of admissible trajectories are given below. It is easy to check that these trajectories are all available for our purpose (i.e. touch (D) twice only). Note that the abnormal case does not appear here. We describe the 6 possible strategies as a successive change of regions for the vector fields.

(S 2 ) 1 → 2 → 5 → 4 → 3 (S 3 ) 2 → 5 → 4 → 3 (S 4 ) 1 → 2 → 5 → 4 (S 5 ) 2 → 5 → 4 (S 6 ) 1 → 2 (S 7 ) 2 only.
To summarize, the candidates to be the unique optimal solution of our problem (P) are such that q 0 > 0 and p 0 > k for upward movements.

Third Case: p 0 < -k
The study is the same as the previous one. The situation is depicted on Figure 15. This figure illustrates an elementary arc of solution for negative velocities (and thus, downward movements).

Once one has determined the candidates to be the optimal solutions, one can find the only one solving our problem (P).

Finally, concerning the classification given in Section 3, we add here some details about the estimates of the times T i (duration of the experiment) where the strategy qualitatively changes. In particular, these estimates are absolutely necessary to make comparisons in order to show that the optimal trajectories are our elementary arcs only. We limit the study to the case y ≥ 0 in virtue of remark 3. 

z = -2kα U z = 2α U (u max -k) w = -2kα U w = -2α U (u min + k) w = -2kα D w = 2α D (u max -k) z = -2kα D z = -2α D (u min + k) z = w w ≥ z w ≤ z 0 Figure 15: Phase portrait for p 0 < -k 42
Case S 2 : it is easy to compute the times τ i in terms p 0 and q 0 by studying geometrically the trajectories on figure 14.

Cases S 3 and S 4 : the reasoning in Section 3 (the choice between q a 0 and q b 0 ) can be easely read on the figure 14. 14). Computations give z(T ) = -q 0 . Hence, this leads to

Case S 5 : this strategy is available if -2kα U < q 0 < 2α U (u max -k). Moreover z is constrained to be such that z(T ) ∈ [-2α U (k + u min ), -2kα U ] (see Figure
q 0 ∈ [2kα U , 2α U (k + u min )] and q 0 ∈ [-2kα U , 2α U (u max -k)]. This is only possible if u max ≥ 2k. Case S 6 : this strategy is available if q 0 > 2α U (u max -k). Moreover z is constrained to be such that z(T ) ≥ -2kα U at the final time T. It is easy to show that z(T ) = -2 α U (k -u max )(α U (u max -k) -q 0 ). The above con- straints give u max ≤ 2k.
Case S 7 : the times T a 2 and T b 2 are obtained using the strategies S 5 and S 6 respectively. Indeed, the strategy S 7 stands when τ 2 = τ 3 = 0 for S 5 , and τ 1 = 0 for S 6 . Each of these equations provides a particular value of q 0 that enables to find the corresponding p 0 and T that solve our problem (P). Le problème est de trouver le contrôle u et la trajectoire correspondante (x, ẋ) connectant un point source (x 0 , 0) à un point terminal (x F , 0), en temps fixé T et minimisant le coût suivant :

C(u) = ˆT 0 n i=1 | ẋi u i | + M (x, ẋ, u)dt,
où M est un terme dit de "confort" que l'on prendra, dans nos exemples, égal à :

M (x, x, u) = n i=1 α i ẍ2 i , (α i ) 1≤i≤n étant des constantes positives.
Notons que des contraintes biologiques sur u sont prises en compte :

u i ∈ [u - i , u + i ], pour i = 1, .., n, avec u - i < 0 et u + i > 0.
On remarquera que ce problème diffère légèrement du problème précédent puisque la discontinuité de α par rapport à y disparaît. de Clarke, 1983). Ce résultat a déjà été abordé dans l'article A.

L'aspect suffisant résulte quant à lui de l'application de la théorie de la transversalité de René Thom (voir par exemple Abraham et Robbin, 1967;Hirsch, 1976). Quelques rappels mathématiques concernant la transversalité sont donnés dans l'annexe de cette thèse (section A.1). 

Abstract

An important question in the literature focusing on motor control is to determine which laws drive biological limb movements. This question has prompted numerous investigations analyzing arm movements in both humans and monkeys. Many theories assume that among all possible movements, the one actually performed satisfies an optimality criterion. In the framework of optimal control theory, a first approach is to choose a cost function and test whether the proposed model fits with experimental data. A second approach (generally considered as the more difficult) is to infer the cost function from behavioral data.

The cost proposed here includes a term called the absolute work of forces, reflecting the mechanical energy expenditure. Contrary to most investigations studying optimality principles of arm movements, this model has the particularity of using a cost function which is not smooth.

Firstly, a mathematical theory related to both direct and inverse optimal control approaches is presented. The first theoretical result is the Inactivation Principle, according to which minimizing a term similar to the absolute work implies simultaneous inactivation of agonistic and antagonistic muscles acting on a single joint, near the time of peak velocity. The second theoretical result is that, conversely, the presence of non-smoothness in the cost function is a necessary condition for the existence of such inactivation.

Secondly, during an experimental study, participants were asked to perform fast vertical arm movements with one, two, and three degrees of freedom. Observed 1

Introduction

In order to perform accurate goal-directed movements, the Central Nervous System (CNS) has to compute neural commands according to the initial state of the body, the location of the target, and the external forces acting on the limbs. Arm movement planning requires solving redundancy problems related to angular displacements, joint torques, muscular patterns, and neural inputs [START_REF] Bernstein | The Coordination and Regulation of Movements[END_REF].

Experimental studies reported stereotypical kinematic features during pointing and reaching arm movements (e.g., quasi-straight finger paths, bell-shaped finger velocity profiles [START_REF] Morasso | Spatial control of arm movements[END_REF][START_REF] Soechting | Invariant characteristics of a pointing movement in man[END_REF][START_REF] Abend | Human arm trajectory formation[END_REF]). These features were found to be robust despite changes in mass, initial/final positions, amplitudes, and speeds of displacements [START_REF] Hollerbach | Dynamic interactions between limb segments during planar arm movement[END_REF][START_REF] Atkeson | Kinematic features of unrestrained vertical arm movements[END_REF][START_REF] Boessenkool | A comparison of curvatures of left and right hand movements in a simple pointing task[END_REF][START_REF] Nishikawa | Do arm postures vary with the speed of reaching?[END_REF][START_REF] Hermens | Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements[END_REF].

Therefore, many studies have attempted to identify the principles of motion planning and control, hypothesizing that movements were optimal with respect to some criteria. The present article addresses the question whether motor planning is optimal according to an identifiable criterion.

A promising approach to answer this question, called inverse optimal control, is to record experimental data and try to infer a cost function with regard to which the observed behavior is optimal [START_REF] Todorov | Optimal control theory, Bayesian Brain: Probabilistic Approaches to Neural Coding[END_REF]. In the theory of linear-quadratic control, the question of which quadratic cost is minimized in order to control a linear system along certain trajectories was already raised by R. Kalman [START_REF] Kalman | When is a linear control system optimal?[END_REF]. Some methods allowed deducing cost functions from optimal behavior in system and control theory (linear matrix inequalities, [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]) and in Markov decision processes (inverse reinforcement learning, [START_REF] Ng | Algorithms for inverse reinforcement learning[END_REF]). In the field of sensorimotor control and learning, some authors suggested that motor learning results from the optimization of some "loss function" related to the task (e.g., pointing accuracy) providing, therefore, a technique allowing to measure such function from experimental data [START_REF] Körding | The loss function of sensorimotor learning[END_REF].

Nevertheless, in most optimal control studies focusing on arm movements, a cost function is chosen and used in a mathematical model to check its validity a posteriori by comparing the theoretical predictions to the experimental observations. Kinematic models include minimum hand acceleration [START_REF] Ben-Itzhak | Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements[END_REF] and minimum hand jerk criteria [START_REF] Flash | The coordination of arm movements: an experimentally confirmed mathematical model[END_REF]. These models produce horizontal arm movements that globally fit well with 2 experimental data, providing smooth symmetric velocity profiles and straight trajectories in space. Dynamic models include minimum torque-change [START_REF] Uno | Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model[END_REF] and minimum commanded torque-change [START_REF] Nakano | Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model[END_REF] criteria. They also accurately reproduce certain types of movements (point-to-point and via-point movements performed in the horizontal plane) but in several cases provide non-realistic double-peaked speed profiles (see for instance Figure 11 in [START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF]). In the Riemannian geometry framework, a model used geodesics to separately determine the geometrical and temporal movement features, allowing therefore a unification of previous computational models [START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF]. Specifically, the geodesic model accurately predicts the spatiotemporal features of three dimensional arm movements. However it results in hand paths that are excessively curved for planar movements. Additional criteria have also been considered, such as energy-like criteria [START_REF] Nelson | Physical principles for economies of skilled movements[END_REF][START_REF] Soechting | Moving effortlessly in three dimensions: does donders' law apply to arm movement?[END_REF][START_REF] Alexander | A minimum energy cost hypothesis for human arm trajectories[END_REF][START_REF] Nishii | Energetic optimality of arm trajectory[END_REF][START_REF] Admiraal | Modeling kinematics and dynamics of human arm movements[END_REF][START_REF] Kang | Determining natural arm configuration along a reaching trajectory[END_REF] and effort related criteria [START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF], which minimize the peak value of the work, the metabolic energy expenditure, or the amount of neural control signals necessary to drive the arm. These models quantitatively reproduce some specific features of reaching and grasping, such as trajectories, velocity profiles, or final postures. Stochastic models, which are grounded on the hypothesis that noise in the nervous system corrupts command signals, have also been proposed. The minimum variance model was aimed at minimizing endpoint errors and provides not only accurate simulated trajectories of both eye saccades and arm pointing movements in the horizontal plane, but also the speed-accuracy trade-off described by Fitt's law [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF]. In the optimal feedback control theory, noise is assumed to induce movement inaccuracy. If errors interfere with task goals, then the controller corrects deviations from the average trajectory. Otherwise the errors are ignored and, thus, variability in task-irrelevant dimensions is allowed [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][29][START_REF] Scott | Optimal feedback control and the neural basis of volitional motor control[END_REF].

Despite extensive literature concerning direct optimal control of arm movements, the hypotheses seem too restrictive in some models. For instance, in several models [START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF][START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF], the static (gravity-related) and dynamic (speed-related) torques are calculated separately; therefore their predictions are independent from the gravity field. This assumption partly relies on the physiological observations that muscle activity patterns show two components: a tonic one (gravity-related) and a phasic one (speed-related) [START_REF] Flanders | Two components of muscle activation: scaling with the speed of arm movement[END_REF][START_REF] Buneo | Muscle activation patterns for reaching: the representation of distance and time[END_REF]. Nevertheless, some authors reported difficulties in solving optimal control problems while taking into account gravitational forces in the optimization process [33,34]. Thus, this assumption was also aimed at simplifying computations. Furthermore, the models previously cited are generally not consistent with the observation that the kinematics of arm movements performed in the sagittal plane depends on the direction with respect to gravity (i.e., upward versus downward movements) [START_REF] Papaxanthis | Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man[END_REF][START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF][START_REF] Gentili | Motor planning of arm movements is direction-dependent in the gravity field[END_REF][START_REF] Seac'h Abl | Multimodal reference frame for the planning of vertical arms movements[END_REF] whereas such a directional difference is significantly attenuated in microgravity [START_REF] Papaxanthis | Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity[END_REF].

A possible explanation of these findings would be that the CNS uses the gravity to move the limbs efficiently, rather than simply offset it at each instant. This idea guided the development of the theoretical model presented here. During a movement, the energetic consumption is related to the work of muscular forces. However, work is a signed physical 3 quantity that may cancel itself out, even though both active and resistive forces consume energy in muscles. Therefore, work has to be always counted positive in order to express the energy expenditure of a movement: this is the absolute work of forces. The problem of minimizing this absolute work was never solved previously, despite its apparent simplicity and its potential interest for neurophysiologists. A reason might be the mathematical difficulty due to the non-differentiability of the cost function (induced by the absolute value function). Thus, while most existing models deal with smooth cost functions (i.e., functions that have continuous derivatives up to some desired order), this study relies on this non-smoothness property. The cost chosen here includes two terms: the first represents the absolute work and the second is proportional to the integral of the squared acceleration.

In this article, two theoretical results are reported. Firstly, an "Inactivation Principle" states that minimizing a cost similar to the absolute work implies the presence of simultaneous inactivation of both agonistic and antagonistic muscles acting on a joint during fast movements. Secondly, a reciprocal result is that the presence of such inactivation along optimal trajectories implies the non-smoothness of the cost function. Therefore, by using transversality arguments from Thom's Differential Topology [START_REF] Hirsch | Differential topology[END_REF], Pontryagin's Maximum Principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF], and Non-smooth Analysis [START_REF] Clarke | Optimisation and nonsmooth analysis[END_REF], an equivalence between the non-smoothness of the cost function and the presence of simultaneous inactivation of both agonistic and antagonistic muscles is established. The proposed model permits to simulate accurately the kinematics of fast vertical arm movements with one, two, and three degrees of freedom. Moreover, experimental observations actually show simultaneous silent periods on the electromyographic (EMG) signals of opposing muscles during fast arm movements.

Results

The main results of this study are presented in the next two subsections. The theoretical analysis is exposed in the first subsection. In order to check the model, features of human arm movements were measured and are compared with the model predictions in the second subsection.

Theoretical Analysis

The current subsection summarizes the mathematical theory which is more fully presented in the Materials and Methods Section. The reader who may not be interested in the full mathematical development of the model may read this subsection only, as a general survey.
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Control systems

The mechanical systems of articulated segments considered here move in the gravity field and are controlled by external forces produced by muscles. In practice, vertical arm movements are considered with one, two, and three degrees of freedom (denoted by 1-dof, 2-dof, and 3-dof, respectively).

The equation describing a fully-actuated mechanical system (Σ) has the general form:

(Σ) ẍ = φ(x, ẋ, u), ( 1 
)
where the control u (the forces or torques) acts on the acceleration vector of generalized coordinates ẍ, with at least as many control variables (u i ) i=1..m as the number n of degrees of freedom of the system. When considering agonistic-antagonistic pairs of muscles, it will happen that m > n, precisely m = 2n, i.e., one agonistic and one antagonistic muscle for each degree of freedom.

However, for the sake of simplicity, in the rest of the study, the assumption will be that m = n which means that the control variables consist of the net forces or torques acting on each joint.

Moreover, we assume that:

• x belongs to R n (or to a more general object: a n-dimensional differentiable manifold).

• u belongs to a subset U of R m with 0 ∈ int U (the notation int U means the "interior" of the subset U ).

Since there are physiological bounds on the forces produced by muscles, U is a product of intervals of the type:

U = [u - 1 , u + 1 ] × ... × [u - n , u + n ],
if the system is exactly-fully-actuated, or:

U = [0, u + 1 ] × ... × [0, u + n ] × [u - 1 , 0] × ... × [u - n , 0]
, in the case of a pair of agonistic-antagonistic muscles for each degree of freedom.

In both cases u

- i < 0, u + i > 0, i = 1, ..., n. • In the case m = n, φ is smooth, i.e., φ ∈ C ∞ (R 3n , R n ),
and such that the Jacobian matrix ∂φ ∂u (x, ẋ, u) is always invertible.
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Then, in order to get the general control systems, we set X = (x, y) = (x, ẋ) and rewrite the system as:

(Σ) Ẋ = Φ(X, u), X ∈ R 2n , u ∈ U ⊂ R n . ( 2 
)
Optimal control problem Here, pointing movements between two targets are defined by their duration T and by a pair of initial and final conditions (x s , x t ) in the configuration space. The limb moves from x s to x t , starting and ending with zero velocity.

Movements are assumed to be optimal with respect to a certain integral cost of the form:

J(u) = T 0 f (x, y, u)dt. ( 3 
)
In the paper f is referred to as the cost function. The term J is called the integral cost or simply the cost. It is sometimes referred to as the optimality criterion.

The aim is to find the control u (e.g., the torques) and the corresponding admissible trajectory X that minimizes the above integral cost. An efficient way to solve this kind of problem is to use Pontryagin's Maximum Principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]. A statement of this principle is provided in the mathematical part of the Materials and Methods Section.

Remark 1. 1. A simplifying assumption is that the duration T of the motion is fixed. This is not essential, since: i) Pontryagin's Maximum Principle also allows to deal with free movement durations: the time T is then determined by a supplementary condition of optimality, see [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]; ii) as in [START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF], one could search for the time T that leads to a given amount of the integral cost. Here, the latter approach is better suited because the optimal cost will be a strictly decreasing function of T (see Theorem 1 in [START_REF] Berret | How humans control arm movements[END_REF]). 2.

Movements are driven in the configuration space, and positions of targets are defined in practice by their coordinates in the Cartesian space. There is a one-to-one relationship between target coordinates and limb configuration for 1-dof and 2-dof planar movements, but not for 3-dof planar movements. In this case, an infinity of final postures is compatible within the reach of a target in task-space. Nevertheless a solution can be found once again by mean of Pontryagin's Maximum Principle using transversality conditions [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]. 3. Since this study focuses on the command of transient movements, the questions of transition between posture and movement and stability of the final posture are not addressed. Nevertheless, it will happen that we consider the dynamics of muscles in the Mathematical Theory Subsection. In this case, the controls become motor orders sent by the motoneurons to each muscle. Thus, the initial and final torques necessary to maintain the arm at equilibrium are specified in this optimal control problem.
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In order to study the control of movements by means of optimal control theory, various functions f were proposed previously in the literature. These functions, such as the famous minimum jerk [START_REF] Flash | The coordination of arm movements: an experimentally confirmed mathematical model[END_REF] and minimum torque change [START_REF] Uno | Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model[END_REF], were generally smooth functions. Nevertheless in our case a non-smooth cost function appeared more suitable.

For actuated mechanical systems, the physical quantity that measures energy is the work of forces. However, the work of a force pulling in the direction arbitrarily defined as positive may cancel with the work of the force pulling in the opposite direction. Thus, the absolute work measures the energy expenditure of a movement. Indeed, the work of both the agonistic and antagonistic muscles requires a consumption of energy, provided by the hydrolysis of ATP to ADP, a physiological process taking place in muscle cells.

The Mathematical Theory Subsection gives a precise definition of the absolute work Aw, which can be expressed as:

Aw(u) = T 0 ϕ(y, u)dt,
but the function ϕ is not smooth: it contains some "absolute values" that are Lipschitzcontinuous, but non-differentiable at u = 0. For instance in the 1-dof case, ϕ(y, u) = |yu| where y is the angular velocity and u is the net torque. The absolute work term counts the mechanical energy actually spent to control the system (Σ).

Such a similar non-smooth cost function has been proposed by other authors [START_REF] Nishii | Energetic optimality of arm trajectory[END_REF] and thus it appears that the non-smoothness of the cost function arises naturally in motion planning problems. It is worthy to note that this is not an artificial mathematical construction.

Remark 2. An intuitive (but different) reason for considering non-smooth (or even discontinuous) cost functions in optimal control studies of arm movements could be that the forces acting on a joint result from distinct muscles.

In this study, the integral cost is assumed to have the general form:

J(u) = T 0 f (x, y, u)dt + Aw. ( 4 
)
This expression represents a compromise between the absolute work Aw and some other comfort term defined by the function f . The terminology comfort term is purposely left vague. For instance (non-exhaustive list), one may choose the acceleration squared (as in [START_REF] Ben-Itzhak | Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements[END_REF]) or the torque squared (as in [START_REF] Nishii | Energetic optimality of arm trajectory[END_REF]) for the function f . This additional term is not crucial. One could assume that the CNS only minimizes the absolute work, but it seems to also minimize some integral costs accounting for 7 the smoothness or precision of the movements [START_REF] Ben-Itzhak | Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements[END_REF][START_REF] Flash | The coordination of arm movements: an experimentally confirmed mathematical model[END_REF][START_REF] Uno | Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model[END_REF][START_REF] Harris | Signal-dependent noise determines motor planning[END_REF]. While the definition of the mechanical energy spent is well established, what should be the comfort term is more subjective. It may suggest that the motor system would avoid large accelerations, so as not to expose tendons and articulations to large jerks.

Here, in all examples and simulations, we will assume that f is proportional to the acceleration squared. For instance in the 1-dof case, f = α ẏ2 where α is a strictly positive constant. In that case, the term T 0 f (x, y, u)dt is just the acceleration energy in the sense of signal processing and will be denoted by Ae.

Theoretical Results

An important concept in this study is that of inactivation. Definition 1. A partial inactivation (or simply inactivation) is an occurrence during a certain strictly positive time-interval of an optimal trajectory corresponding to u i = 0 for some i, i.e., the i th control is zero during this time-interval. A total inactivation is a simultaneous inactivation of all controls.

Here, the controls (u i ) i=1..n are just the net torques applied at each joint.

An important theoretical result is what we call the Inactivation Principle. In mathematics, a principle is more than just a theorem. It is a statement of a general result that can be made true in different contexts, or more precisely transformed into a theorem under rather different types of technical assumptions.

Inactivation Principle: Minimizing a cost of type given by Equation 4implies the presence of stable partial inactivation in all nontrivial (nonequilibria) pointing movements for T sufficiently short (i.e., there is a time threshold for partial inactivation to occur). Moreover, there are stable optimal trajectories that contain total inactivation. This principle can be made very general and requires rather weak assumptions (see Remark 3 in the Mathematical Theory Subsection). The proof relies on arguments from non-smooth analysis [START_REF] Clarke | Optimisation and nonsmooth analysis[END_REF], and is in the spirit of singularity theory (see for instance [START_REF] Golubitsky | Stable mappings and their singularities[END_REF]). Non-smoothness of the cost function implies the presence of inactivation along optimal trajectories. This principle becomes a regular theorem under the two following hypotheses: 1) the strict convexity of the cost function; and 2) the change of sign of the optimal control. Although technical, the convexity hypothesis is reasonable since: a) most of the cost functions considered in the literature are actually strictly convex; b) the set of strictly convex cost functions is very large; and c) it ensures that what is minimized has a unique minimum. The change of sign assumption is clearly necessary (and actually observed), during fast point-to-point movements: indeed, after the agonistic muscles have been activated to accelerate the limb toward the target, they have to be deactivated in mid-flight and the antagonistic muscles activated in turn, to brake the movement.
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Notably, this theoretical result is also valid for much more detailed models, which take into account viscoelastic properties of the muscular system and which specify the terminal equilibrium signals (e.g., muscle forces that compensate for elastic and gravitational forces, as in [START_REF] Dornay | Minimum muscle-tension change trajectories predicted by using a 17-muscle model of the monkey's arm[END_REF]).

In particular, the Inactivation Principle applies in two important cases. Firstly, it holds when considering that the net torque actually comes from agonistic and antagonistic torques. The result is that both torques are zero during the inactivation period. Secondly, this principle also holds when assuming that the torques are produced by muscles with non-zero response times, i.e., when the torques cannot immediately reach their maximum value. For instance, when the control is the derivative of torques (called gradient constraints case) or when the dynamics of muscles is modeled, the inactivation period is still present for fast movements minimizing the cost given in Equation 4.

These results are crucial for interpreting the inactivation on net torques as simultaneous inactivation of both agonistic and antagonistic muscles in practice.

A reciprocal question is whether partial or total inactivation could be predicted by other kinds of cost functions, notably by the smooth cost functions of the minimum jerk or torque change models.

Thus, does the presence of such periods of inactivation along optimal trajectories determine specific properties of the cost function?

In answer to this question, the following proposition is demonstrated: Necessity of non-smoothness: if some optimal trajectories contain inactivation, then the term f in Equation 3 cannot be smooth w.r.t. u at u = 0. This necessity of non-smoothness is stated in mathematical terms in the Mathematical Theory Subsection and the proof is given in Supporting Information (Text S1).

More precisely, it can be shown without any special assumption on the system (Σ), that the occurrence of total inactivation implies the generic non-smoothness of cost functions given in Equation 3. For partial inactivation, the set of terms f must be restricted to an open set of cost functions, strictly convex with respect to u. However, the set of strictly convex functions is very large and contains most of the cost functions from the literature. The signal u corresponds to the ratio between the net torque acting at shoulder joint and the arm's moment of inertia. 10 gradient constraint. Adding such a constraint allows us to control the derivative of joint torques in order to get smoother motor patterns, i.e., speed profiles with zero-acceleration at the initial and terminal times.

Optimal solutions

Notably, two important results hold in all instances of the model.

Firstly, in accordance with the Inactivation Principle, an inactivation period is observed slightly after the time of peak velocity during an upward movement (emphasized by a rectangular frame in Figure 1). During inactivation, the net torque acting at the shoulder is zero.

Secondly, speed profile is asymmetric, i.e., for an upward movement, the acceleration duration is shorter than the deceleration duration.

Although not illustrated, similar features appear during downward movements: the inactivation occurs slightly before the time of peak velocity, and more time is spent to accelerate the movement than to brake it.

Simulated 2-dof vertical arm movements are also depicted in Figure 2. Partial inactivation, illustrating the Inactivation Principle, occurs at each joint separately (elbow and shoulder). Moreover, fingertip velocity profiles are asymmetric during upward and downward movements, as for the 1-dof case. Since the response time of muscles was not modeled in this case, jumps on the joint torques occur at the initial and final times, leading to non-zero accelerations on the corresponding velocity profiles.

Experimental Verification

Although human vertical arm movements are studied here, the above theoretical results may apply to locomotion, whole-body reaching, and more generally to any mechanical system described in the Mathematical Theory Subsection.

Firstly, we show that minimizing the compromise Aw/Ae is consistent with temporal and spatial features of biological arm movements. Secondly, we report simultaneous inactivation of agonistic and antagonistic muscles during arm movements. This suggests that the proposed criterion is also relevant at the muscular level and gives insights concerning the optimality criterion minimized during fast arm movements.

Kinematic level analysis

In previous works [START_REF] Papaxanthis | Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man[END_REF][START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF], during upward and downward arm movements performed in the sagittal plane, fingertip velocity profiles showed asymmetries depending on movement direction and speed, and fingertip paths were slightly curved. For 2-dof vertical arm movements (targets T2-T2', see Fig. 3), movement duration (MD) was equal to 0. 
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± 0.04 for upward (U) and downward (D) directions respectively. These asymmetries were significant (t-tests, p < 0.001). Figure 4 (upper row) illustrates typical tangential velocity profiles of fingertip motion.

Simulations by means of the model proposed in the present study were consistent with these experimental results (see Fig. 2), since TPV is 0.46 and 0.54 for U and D directions, respectively.

Typical fingertip paths can be observed on the stick diagrams (depicted in Fig. 4). Fingertip paths were curved: average fingertip path curvature (FPC) was equal to 0.14 ± 0.04. These values were close to those (0.20) simulated by means of the model. Figure 5 illustrates typical 3-dof arm movements (targets T3-T1' and targets T1-T3'). This experiment was designed to test the influence of the initial arm configuration upon finger kinematics as well as the influence of movement direction (U versus D) upon final arm posture. Indeed, in a redundant system such as a 3-dof arm movement, the CNS must select the final posture of the arm among an infinite number of possibilities. The MD recorded in this condition was on average 0.38 ± 0.06 s, and finger kinematics, as in the experiments described above, were significantly asymmetric (p < 0.001) with respect to the movement direction (U: FPC=0.13 ± 0.03, TPV=0. Thus, the proposed optimality criterion seems to be well suited for the planning of redundant vertical arm movements.

Interestingly, optimizing the compromise Aw/Ae allows us to reproduce the kinematic asymmetries observed in vertical arm movements. However, this does not prove whether these directional asymmetries are caused by gravity, inertia, or both. Indeed, according to some authors, the difference in initial arm configurations between upward and downward movements would determine different inertial interactions between the upper arm and the forearm, which would in turn cause the observed asymmetries [START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF][START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF].

Nevertheless, similar directional asymmetries were observed during 1-dof movements (i.e., fully-extended arm) performed in the sagittal plane, while the distribution of the masses around the shoulder joint remained approximately constant [START_REF] Gentili | Motor planning of arm movements is direction-dependent in the gravity field[END_REF][START_REF] Seac'h Abl | Multimodal reference frame for the planning of vertical arms movements[END_REF].

In this 1-dof case, arm kinematic features in the sagittal plane were well explained by the model. The MD recorded in this condition was on average 0.36 ± 0.04 s. Since the fingertip path was necessarily a circular arc, the TPV was the only significant measure. The experimental results confirmed those of previous studies (see Fig. 6). The and in downward (right) directions. Finger velocity profiles (upper part) and four electromyographic signals (lower part) are reported. Note the asymmetries of the speed profiles and the simultaneous inactivation of all muscles which occurs near the velocity peak. Data are amplitude normalized and the horizontal axis denotes time (in seconds). Same abbreviations than in Fig. 3.

The same abbreviations as in Fig. 3 are used. 17

123

TPV parameter was significantly smaller for upward than downward movements (0.42 ± 0.02 versus 0.54 ± 0.04, respectively, p < 0.001). In accordance with this, simulations by means of the proposed model predicted smaller TPV values for arm movements performed against gravity compared to movements performed with gravity (0.47 versus 0.53, respectively).

Moreover, this asymmetry did not result from the additional term Ae but from the absolute work term Aw. Indeed, the minimization of the absolute work alone ( f = 0 in Equation 4) in the 1-dof case inherently led to lower TPV values of upward compared to downward movements. Interestingly, the difference between U and D movements in the gravity field was caused by the zero-torque period, during which the arm is approximately in free fall.

Muscular level analysis

In previous studies [START_REF] Papaxanthis | Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man[END_REF][START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF], during vertical arm movements performed at slow speeds (movement durations longer than 0.7 s), only flexor muscles were active: mainly the anterior deltoid, which initiated the action during upward movements or braked the action during downward movements. However, at fast speeds (movement durations shorter than 0.7 s), extensor muscles were also active, since gravity alone was not sufficient to accelerate downward and decelerate upward movements.

Here, simultaneous inactivity of muscles during rapid arm movements, near the time of peak velocity of the fingertip, was specially examined, to check the Inactivation Principle.

From an experimental point of view, silent phases should simultaneously appear on the EMG signals of opposing muscles, if the proposed cost function is relevant at the muscular level (this is related to the direct optimal control approach). Conversely, if such an inactivation is checked, then, under the assumption that motor planning minimizes a criterion, one can conclude that this criterion contains a term similar to the absolute work. Thus, the presence of inactivation will imply certain properties of the cost function (this is related to the inverse optimal control approach).

Before considering new results, it is worthy to note that, in accordance with the theoretical predictions, simultaneous inactivation may not appear in practice if movements are too slow, too small, or involve muscles with large response times. However, the appearance of inactivation is a phenomenon theoretically independent of the following factors: gravity and number of degrees of freedom of the motion.

The presence of inactivation periods was first investigated by measuring EMG signals of different muscles during rapid pointing movements performed with the arm fully extended (1-dof case). Figure 6 shows typical experimental results.

The first and second columns show upward and downward movements, respectively. Muscle silent phases are noticeable in this figure (emphasized by a rectangular frame), in agreement with the theory. The main flexor and extensor muscles acting on the 18 shoulder joint are simultaneously inactive, so that the net torque resulting from their actions is almost zero during this short period.

For upward movements, simultaneous inactivation of all muscles appeared clearly during a short time interval in the second half of the motion. In some trials, the triceps remained slightly contracted, thus actively maintaining the arm fully extended. For downward movements, an inactivation also appeared, although less clearly, during the first half of the movement. This simultaneous inactivation of all muscles lasted on average for approximately 30 ms and was clearly observed in 85 % of trials, for upward movements. During this period the arm was almost in free fall, an energetically costless movement. Notably, the activities of all muscles stopped at the same instant. This synchronization suggests that muscle inactivation results from an active optimal motor strategy. Taking into account the electromechanical delay which elapses between the muscle bundle depolarization and the actual force production, this period of inactivation appeared as was expected from the theory (i.e., slightly before and after the maximum velocity for upward and downward movements, respectively).

A typical muscular pattern for the vertical 2-dof case is depicted in Figure 4. Here also, simultaneous inactivation of pairs of muscles acting on each joint occurred. Notice the lag between the inactivation at the elbow joint and at the shoulder joint, illustrating that in the 2-dof case the inactivation occurred at each joint separately. This is in agreement with the corresponding numerical simulations (see Fig. 2) and the theoretical results concerning partial inactivation.

The appearance of simultaneous inactivation was also checked in movements starting from different initial arm configurations (i.e., starting from various initial arm postures; targets T1-T3' and targets T1'-T3).

For both upward and downward movements, this inactivation phenomenon is shown in Figure 5, where muscular activities and simulated net torques can be compared.

To summarize, for the set of movements and conditions tested, both movement kinematics and muscles activities confirm the relevancy of the theoretical model.

Discussion

Limb movement planning theory, presented in this study, focuses on fast, open-loop, vertical arm movements, and is based upon the assumption that such movements are optimal with respect to a certain integral cost. Within this framework, the question was to characterize possible cost functions.

Direct optimal control

A model that minimizes a cost based upon the absolute work (i.e., an energetic optimality 19 criterion) has been shown to allow simulating plausible arm movements in the sagittal plane. This was checked by means of three relevant kinematic features: fingertip path curvature, asymmetry of fingertip velocity profiles, and final arm posture.

Since this cost function is non-smooth, the Inactivation Principle can be stated: for a large class of non-smooth cost functions, the net torque acting on a joint is zero during a short period occurring around the mid-path movements that are sufficiently rapid. This principle is also valid if a pair of agonistic-antagonistic actuators is considered, exerting opposite torques. Each of the torques is zero during an inactivation period which still appears if the biomechanics of the muscles is considered, when response times are brief (a few tens of milliseconds). For longer response times, complete inactivation is progressively replaced by low-levels of muscular activities.

Such quiet periods in the EMGs of opposing muscles were observed during fast arm movements (see Figures 4,[START_REF] Hollerbach | Dynamic interactions between limb segments during planar arm movement[END_REF][START_REF] Atkeson | Kinematic features of unrestrained vertical arm movements[END_REF], which suggests that this optimality criterion is suitable.

The suitability of a similar non-smooth cost function was also found for animals in a recent study [START_REF] Nishii | An analytical estimation of the energy cost for legged locomotion[END_REF]. The author concludes that the locomotor pattern of legged animals is optimized with respect to an energetic cost based upon the "positive work" of forces.

However, the direct optimal control approach does not prove that the motor planning process actually minimizes energy expenditure. It just shows that such a criterion is plausible because it provides realistic behavior. Indeed, several other cost functions or theories may lead to similar results.

For instance, muscle inactivation was also interpreted as a consequence of the Equilibrium Point hypothesis [START_REF] Feldman | Threshold position control and the principle of minimal interaction in motor actions[END_REF]. According to this interpretation, the threshold position control and the principle of minimal interaction would, together, determine the "Global EMG minima" which appear simultaneously in all muscles during rhythmic movements, near the point of direction reversals. Nevertheless, in the theory proposed here, inactivation is somewhat different: it appears near the time of peak velocity, and the precise interval of inactivity may be different at different joints. Moreover, inactivation is still predicted even if biomechanics of muscles, inertia and external forces are taken into account, which is not the case in Equilibrium Point theory [START_REF] Feldman | Threshold position control and the principle of minimal interaction in motor actions[END_REF].

Alternatively, it could be also considered that the CNS simply activates and deactivates the muscles, explicitly determining inactivation phases. However, this would be an argument against our main assumption that the brain tries to minimize some costs.

Here, under this assumption, inactivation provides information on the cost function.

Inverse optimal control

The theoretical results also allow us to characterize the non-smoothness of the cost function once the simultaneous inactivation of opposing muscles is measured in practice, during movements presumed as optimal.
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Using mathematical transversality arguments from differential topology we proved that the minimization of an absolute-work-like cost during arm movements is a necessary condition to obtain inactivation phases along optimal trajectories. In other words, assuming that human movements are optimal with respect to a certain integral cost, the simultaneous inactivation of muscles that we observed provides evidence for an absolute-work-like cost.

Notably, this simultaneous inactivation of opposing muscles, which is a singular phenomenon, cannot be predicted by models using smooth cost functions, such as the minimum endpoint variance [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF], the minimum jerk [START_REF] Flash | The coordination of arm movements: an experimentally confirmed mathematical model[END_REF], or the minimum torque-change [START_REF] Uno | Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model[END_REF].

Those models would predict deviations from "zero torque", whereas singularity analysis proves the existence of an exact inactivation period.

Simultaneous inactivation periods also appeared on intra-muscular EMG traces recorded from monkeys when performing horizontal arm movements (see Figure 5 in [START_REF] Flament | Braking of fast and accurate elbow flexions in the monkey[END_REF]). These findings suggest that the minimization of the energy expenditure may be a basic motor principle for both humans and animals.

It should be emphasized that such an equivalence between specific movement features and well-identified properties of the cost function is not common in studies using optimal control approach for movement planning.

Validity of the model

The simulated movements replicated the experimental records accurately, except, obviously, for the bang-bang command signals which provide non-zero accelerations at the beginning and end of the movement (see Fig. 5). The patterns of motor command are actually smoothed by the biomechanical characteristics (low-pass filters) of the muscles.

As pointed out by several authors some models have been rejected hastily due to the lack of biological validity of their optimal solutions (bang-bang behaviors) [START_REF] Ben-Itzhak | Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements[END_REF][START_REF] Engelbrecht | Minimum principles in motor control[END_REF]. This problem was also discussed in a study where the authors used a similar non-smooth cost function based upon the "positive work" of forces [START_REF] Nishii | Energetic optimality of arm trajectory[END_REF]. They noticed that the abrupt velocity profiles predicted by their model were non-realistic but might actually be smoothed by modeling muscles dynamics. In fact, depending on the precision of modeling, different conclusions may be drawn. This is illustrated in Figure 1 where gradient constraints on the torques lead to smoother motor patterns whereas Figure 10 shows solutions in a simpler case of torque control. In the first case the acceleration is continuous while in the second case the acceleration jumps at the initial and final times (to make the transition between posture and movement). Nevertheless, in both cases, inactivation is present and fingertip velocity profiles reproduce the experimental directional asymmetries. Thus, these relevant features of movements are not affected by such changes in modeling. The reason for not systematically considering more precise levels of modeling is twofold. Firstly, it causes important additional computational difficulties, and secondly, many more parameters, which are not always well-known, appear in the model.
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Here, the model depends on a few parameters. Firstly, the maximum torque that can be developed by each muscle is finite. In particular, this determines the shortest possible movement duration in order to complete the pointing task. Nevertheless these maximum torques did not seem to be reached in practice (at least during the movements tested here) so that their precise values were not important for the present study. Secondly, the weighting parameters that appear in the cost could depend on the individual and the task goal. However, they are not critical with respect to the qualitative behavior of the optimal solutions and, although their values could be discussed, the simulations obtained using this model were accurate for a large range of these parameters. Importantly, the whole theory holds without precise constraints on these parameters. A first example is given by the strongly consistent kinematic difference in the 1-dof case for movements performed in the upward versus the downward direction. For instance, for an upward movement (1-dof, 45°and 400 ms), the relative time to peak velocity (TPV) ranged between 0.43 and 0.5 for weighting parameters ranging between 0 and 10. For the corresponding downward movement, TPV ranged between 0.57 and 0.5. The classical models [START_REF] Flash | The coordination of arm movements: an experimentally confirmed mathematical model[END_REF][START_REF] Uno | Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model[END_REF][START_REF] Nakano | Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model[END_REF] were not able to reproduce this directional difference in the speed profiles observed in vertical arm movement executed with 1-dof [START_REF] Gentili | Motor planning of arm movements is direction-dependent in the gravity field[END_REF]. Moreover, it has been found that this difference disappeared for movements performed in the horizontal plane, either in upright or reclined postures [START_REF] Gentili | Motor planning of arm movements is direction-dependent in the gravity field[END_REF][START_REF] Seac'h Abl | Multimodal reference frame for the planning of vertical arms movements[END_REF]. This behavior is experimentally well established and can be easily verified with simulations. Interestingly, it is predicted by our optimality criterion, whatever the choice of the tuning parameters. A second example concerns the final posture selected by the model. The exact terminal limb configuration depends on these weighting parameters. However, we tested several instances of the model, for weighting parameters ranging between 0.05 and 1. In all instances, the simulated terminal postures were in the range of those measured in practice.

In order to check the validity of the present model, its predictions were also compared with well-known experimental findings, without trying to fit the data. The tuning parameters used are defined in the Materials and Methods Section.

Movement curvature is known to depend on movement duration [START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF][START_REF] Pellegrini | Force path curvature and conserved features of muscle activation[END_REF]. Here, the 2-dof model predicts a change in the fingertip path curvature (FPC) when movement duration varies. For the movements tested in Figure 2, the FPC ranged between 0.18 and 0.23 for movement durations of between 0.2 s and 1 s.

Moreover, the final postures have been found to be invariant with respect to the speed of the movement [START_REF] Nishikawa | Do arm postures vary with the speed of reaching?[END_REF] and to the addition of a mass of 600 g on the forearm [START_REF] Hermens | Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements[END_REF]. Here, in the 3-dof case, the final posture does not significantly vary with movement duration. For instance, the final postures changed by less than 3°(maximum change at each joint) while the movement duration ranged between 0.2 s and 1 s (tested for U and D movements that appeared in the left column of Figure 5). Also, adding a mass of 600 g to the 22

Figure 7: Simulated fingertip paths in the 2-dof case. A. Finger trajectories for different movements toward targets located on a circle. Initially the finger position is at the center of the circle. For more details about the task and to compare the results, see [33] or [START_REF] Flanders | Basic features of phasic activation for reaching in vertical planes[END_REF]. B. Finger trajectories for four different movements performed in the sagittal plane (T1 to T5, T2 to T6, T3 to T7, and T4 to T8).

For more details about the task and to compare the results, see [START_REF] Atkeson | Kinematic features of unrestrained vertical arm movements[END_REF].

forearm did not change the simulated final limb configuration: the model predicted less than 0.5°of variation at each joint.

In the proposed model, the final posture is selected as the final limb configuration that minimizes the amount of the compromise Aw/Ae necessary to bring the finger to the target. Movements directed toward a single target were tested for various starting configurations of the arm. It resulted in changes in the final posture (about 1°, 10°, and 15°of variability at the shoulder, the elbow, and the wrist levels, respectively). Thus, the final posture depends on the initial configuration of the arm, in agreement with experimental results [START_REF] Soechting | Moving effortlessly in three dimensions: does donders' law apply to arm movement?[END_REF].

It must be noted that the minimum torque-change and the minimum force-change models failed to predict the curvature of movements when antigravity torques were implied in the optimization process, according to Figure 3 in [33]. In contrast, the finger trajectory for a 2-dof arm predicted by our model (for the same movements of duration equal to 400 ms) was quite realistic (Figure 7A). This was also in agreement with the experimental finger paths observed in Figure 4 in [START_REF] Atkeson | Kinematic features of unrestrained vertical arm movements[END_REF] for other movements performed in the sagittal plane (see Figure 7B).

Integration of gravity

Several investigators have proposed that the CNS optimizes inertial forces and compensates gravitational forces at each instant [START_REF] Biess | A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics[END_REF][START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF]. Static and dynamic forces were 23 assumed to be controlled separately. Although plausible, this idea is hardly compatible with several experimental results. For instance, when considering an upward movement in the sagittal plane performed with the arm fully-extended (1-dof case), according to such a viewpoint, agonistic (anti-gravitational) muscles should be active throughout the movement (corresponding to a tonic component of EMGs) [START_REF] Flanders | Two components of muscle activation: scaling with the speed of arm movement[END_REF]. In this case, a muscular activity counteracting the gravity would be necessary to continuously maintain the arm, as if it were at equilibrium at each instant, and would be noticeable in EMGs. However, EMG recordings showed that the activities of the agonistic muscles were quasi-null near the time of peak velocity suggesting, thus, that no muscle was acting against gravity at this instant. Moreover, it may explain why, after subtracting the tonic activity from rectified EMG data, some authors obtained negative phasic activities of some muscles (e.g., see [START_REF] Flanders | Basic features of phasic activation for reaching in vertical planes[END_REF][START_REF] Avella | Control of fast-reaching movements by muscle synergy combinations[END_REF]). Rather than resulting from errors in the evaluation of the tonic component of muscles activity, the gravitational and inertial forces could just be integrated into the same motor plan, within the minimization of energy expenditure. In that case, an explicit separation between tonic and phasic activities of muscles could be impossible, at least for fast movements.

It must be noted that separating static and dynamic forces is not the same as separating posture and movement. Indeed, static and dynamic forces are present during posture maintaining. Neuro-anatomical and experimental evidences for distinct controls of posture and movement were reported in [START_REF] Kurtzer | Random change in cortical load representation suggests distinct control of posture and movement[END_REF]. Thus, the present results concerning inactivation do not contradict the hypothesis that, while maintaining posture, anti-gravity control seems to be tightly related to the muscular system's viscoelastic properties (see [START_REF] Loram | Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?[END_REF] for a study of equilibrium control during quiet standing). This problem was not addressed here since we focused on the control of the transient phase of fast movements.

Conclusions

In conclusion, from a methodological point of view, the novelty of the present work is to introduce a hypothetical-deductive approach in studies focusing on motor planning of arm movements. The possible existence of the inactivation phenomenon was deduced from a mathematical analysis which aimed to reproduce directional asymmetries in arm movements performed in the sagittal plane. Then, the presence of these inactivation periods produced by the model was confirmed by the EMG signals obtained from experimental data. The mathematical analysis showed that this inactivation was a necessary and sufficient condition for the minimization of an absolute-work-like cost. As far as we know, this is the first time that such a condition has been proved in studies investigating optimality principles in human movement. These results suggest that, considering that inactivation is a short and quite singular phenomenon, more attention should be paid to this specific movement feature in future studies.

Two major conclusions can be drawn: 24 1. Both inertial forces (necessary to accelerate movements) and gravitational forces (acting on the limbs) appear to be integrated in motor planning within the minimization of an absolute-work-like cost.

2. The connectivity of the command circuits and the signals that they process should result in synchronized periods of muscles inactivation.

Materials and Methods

Experimental Procedures

Participants Six male participants (mean age 29.6 ± 8.9) volunteered to participate in the experiment. All were healthy, right-handed, and with normal or corrected-to-normal vision.

The experimental protocol used was in accordance with the principles expressed in the Declaration of Helsinki.

Motor tasks

From a sitting position, participants performed 1-dof (shoulder rotation), 2-dof (shoulder and elbow rotations), and 3-dof (shoulder, elbow and wrist rotations) pointing movements in the sagittal plane. The experimental apparatus and the pointing movements are illustrated in the Figure 3. In all experimental conditions, participants were instructed to execute visually-guided, fast arm movements towards the targets without final correction (here denoted T i or T i , i = 1..3, and that consisted of a small sphere of 5 mm in diameter). The duration of these movements was about 0.4 s. In order to familiarize themselves with the motor tasks and the experimental apparatus, they were trained (5 movements in each experimental condition) by means of a metronome set at 0.4 s. During the experiments, a single data acquisition file consisted of an upwarddownward sequence of pointing movements between paired targets. A significant pause (> 1 second) was requested between two pointing movements. Participants performed 10 trials in each condition (i.e., a total of 60 pointing movements per participant). After data analysis, all pointing movement durations were found to range between 0.3 s and 0.5 s and the final precision was similar (error less than 3 cm) between conditions. Thus, all participants were considered to have successfully performed the requested tasks.

Single-joint arm pointing (targets T1-T1'). The two targets were placed in the sagittal plane (shoulder abduction equal to 0°) and symmetrically (40°above and below) from the participants' right shoulder joint. The participants performed upward and downward pointing movements (amplitude: 80°), with the arm fully extended (i.e., rotation around the shoulder joint only). Movements started either from an upward or downward position 25 (50 %). Note, that participants' elbow and wrist joints were motionless during this experiment.

Two-degree of freedom arm pointing (targets T2-T2'). The initial configuration of the arm, for the target T2, was the following: shoulder 0°flexion and 0°abduction; elbow 90°fl exion and 90°pronation. The two targets (inter-target distance: 90 cm) were placed symmetrically in the sagittal plane (45 cm above and below) from the participants' right shoulder joint. The horizontal distance of the lower target from the participants' right shoulder joint corresponded to the length of the forearm-wrist-finger horizontal alignment. Movements started either from an upward or downward position (50 %). In this condition, the wrist was artificially immobilized by means of straps.

Three-degree of freedom arm pointing (targets T1-T3' and targets T1'-T3). The participants were asked to start from a fully-extended arm position (in the sagittal plane, shoulder abduction equal to 0°) and to reach a target placed in a position such that an elbow flexion was necessary, in addition to a shoulder joint rotation (see gray trajectories in Fig. 3). In this condition, the wrist was free to move. The target T3 was placed with respect to the target T1 (15 cm backward and 15 cm upward). The inter-target distance was 70 cm. The target T3' was placed symmetrically with respect to the target T1'. Movements started either from an upward or downward position (50 %).

Material

The system used to capture arm movements was an optoelectronic device (SMART-BTS, Milan, Italy). Nine cameras were used to capture the movement of four retro reflective markers (15 mm in diameter), placed at well-defined anatomical locations on the right side of the body (acromial process, humeral lateral condyle, ulnar styloid process, and the apex of the index finger). Surface electrodes which captured muscular activity were placed on the following muscles: the biceps, the triceps, the anterior deltoid, and the posterior deltoid (see Fig. 3 for an illustration of the placement of electrodes and markers). Two silver-chloride surface electrodes of 10-mm diameter were positioned on the belly of the muscle (with the skin previously shaved and cleaned) with an interelectrode distance (center to center) of 2 cm. The reference electrode was placed on the left ankle. The placement of surface electrodes was then checked by asking subjects to produce isometric contractions at each joint and in various directions. Sampling frequencies were 120 Hz and 960 Hz for kinematics and EMGs, respectively.

Data processing

Data processing was performed using custom software written in Matlab (Mathworks, Natick, MA). Recorded kinematic signals were low-pass filtered using a digital fifth-order Butterworth filter at a cut-off frequency of 10 Hz. Finger movement onset was defined as the moment at which linear tangential velocity of the index fingertip exceeded 5% of its peak and the end of movement as the point at which the same velocity dropped below 26 the 5% threshold. Movement duration (MD) was defined as the time-interval between the onset and the offset times.

The following kinematic parameters were then calculated: the relative time to peak velocity (TPV), defined as the ratio of acceleration duration to total movement duration, and the fingertip path curvature (FPC), defined as the ratio of maximum path deviation from a straight line connecting the initial and the final points of the trajectory. Both FPC and TPV parameters were often considered as relevant indices for the planning of arm movements [START_REF] Papaxanthis | Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed[END_REF][START_REF] Gentili | Motor planning of arm movements is direction-dependent in the gravity field[END_REF][START_REF] Soechting | Effect of target size on spatial and temporal characteristics of a pointing movement in man[END_REF].

Stick diagrams were also reconstructed to depict the initial and final arm configurations in the vertical plane.

EMG data were band-pass filtered . The root mean square (RMS) of EMG data was computed over 5 ms intervals. The electromechanical delay was evaluated by synchronizing the first agonistic onset time with the onset time of the fingertip. The onset time of an EMG burst was defined as the moment at which the smoothed RMS signal (low-pass filtered at 5 Hz) exceeded 10% of its peak. A muscle was considered as inactive when the corresponding RMS was below 10% of its maximum value. Individual, rather than averaging, EMG inspections were performed because of the briefness of the phenomenon searched for.

Statistical analysis

All variables (i.e., MD, TPV and FPC) were normally distributed (Shapiro-Wilk's test) and their variance was equivalent (Levene's test). Statistical comparisons were performed by means of paired t-tests.

Simulations

Simulations were performed using custom software written in Maple (Maplesoft, Waterloo, ON) for the formal calculations and in Matlab for the numerical computations. The optimal solutions were actually found by adjusting the "adjoint vector" (see next section) by means of the fsolve Matlab function (Gauss-Newton method).

The Mathematical Theory

This section is devoted to technical details and proofs of the results presented in the Theoretical Analysis Subsection. It is organized as follows.

Firstly, we present the general setting of the optimal control problem under consideration. Secondly, we present the examples that will be used to illustrate the theory. After presenting some prerequisites that may be helpful to understand the main mathematical results, we state two theorems concerning the Inactivation Principle and the necessity of non-smoothness. Then, some details on the computation of the optimal solutions 27 using Pontryagin's Maximum Principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF] are reported (for the 1-dof and 2-dof cases). Finally, three extensions of the model are given in the case of i) gradient constraints on the control; ii) distinct control of agonistic and antagonistic torques; and iii) modeling the dynamics of agonistic and antagonistic muscles.

The general setting and the optimal control problem

We consider mechanical systems with generalized coordinates x ∈ R n and Lagrangian:

L(x, ẋ) = 1 2 ẋT M (x) ẋ -V (x),
where M (x) is the inertia matrix (which we assume to be symmetric and invertible) and V (x) is the potential energy (here due to gravity). We divide the external generalized forces acting on the system into two components: the first one, denoted by τ = S(x)u, resulting from the input u and the second one, denoted by N (x, ẋ) representing any other forces acting on the system, mainly friction forces.

We assume that the control acts on every degree of freedom, that is, u ∈ R n and S(x) is invertible. Moreover, in the exactly-fully-actuated case that we consider first, we assume to directly control each degree of freedom, that is S(x) = Id. This is assumption is always verified up to some feedback. Indeed, we can always add a "feedback pre-compensator" of the type τ = S(x)u. From a theoretical point of view it is just a change of variable. From a practical point of view, it requires the knowledge of the state x of the system, or some estimation of it.

The equations of motion are given by substituting the value of L into Lagrange's equation,

d dt ∂L ∂ ẋ - ∂L ∂x = S(x)u + N (x, ẋ) = τ + N (x, ẋ).
They are exactly of the form given by Equation 1, with

φ(x, ẋ, u) = M (x) -1 (N (x, ẋ) -∇V (x) -C(x, ẋ) ẋ + τ ), (5) 
where the Coriolis matrix C(x, ẋ) ∈ M n (R) is defined as:

C ij (x, ẋ) = 1 2 n k=1 ( ∂M ij ∂x k + ∂M ik ∂x j - ∂M kj ∂x i ) ẋk .
Then, in order to get the control system, we set X = (x, y) = (x, ẋ) and rewrite the system as:

(Σ) Ẋ = Φ(X, u), X ∈ R 2n , u ∈ U ⊂ R n .
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We can also write the equations of motion in the Hamiltonian formalism.

We define the Legendre transform: (x, ẋ) → (x, p), by p = ∂L ∂ ẋ , and we introduce the Hamiltonian h(x, p) of the problem:

h(x, p) =< p, ẋ > -L(x, p).
Then, we get the equations of the motion via the characteristic field of the Hamilton-Jacobi equation:

ẋ = ∂h ∂p , ṗ = - ∂h ∂x + τ + N (x, p).
As a consequence, the work w of external forces, w = (τ + N (x, p))dx is identically equal to the variation of the Hamiltonian:

ẇ = ḣ.
In particular, if there is no friction (N = 0), the variation of the Hamiltonian is equal to the work of controlled forces τ during the motion.

Thus, the work of controlled forces is:

w = τ dx = n i=1 τ i dx i = n i=1 τ i ẋi dt.
Here, the work of controlled forces is counted algebraically: a motion in one direction followed by a motion in the opposite direction may give zero work.

In the following, we will consider the absolute work Aw of controlled forces, which corresponds to the energy spent to control the system:

Aw = n i=1 |τ i ẋi |dt. ( 6 
)
In coordinates X = (x, y), Ȧw is the function:

Ȧw = n i=1 |τ i y i |.
The cost we will minimize is a compromise of the form:

J(u) = Aw + T 0 M (X, u)dt, (7) 
in which M (X, u) is a comfort term that for technical reasons we will assume to be smooth and strictly convex w.r.t. the control u (assumption A).
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Remark 3. 1. More generally we could consider an integral cost of the form:

J(u) = T 0 ϕ( Ȧw, X, u)dt, ( 8 
) ∂ϕ ∂ Ȧw = 0 (never vanishes), ( 9 
)
where ϕ is smooth and ϕ( Ȧw(u), X, u) is strictly convex w.r.t. u. 2. The assumption of strict convexity, although technical, is natural: it implies that the function ϕ has a unique minimum with respect to u. The weakest possible hypothesis to obtain the Inactivation Principle (see Theorem 2) is precisely that ϕ has a unique minimum w.r.t.

u. In that case, existence of a minimizing trajectory will not be guaranteed (it has to be assumed). Assuming strict convexity is a way to assume both a unique minimum w.r.t. u and the existence of a minimizing trajectory (see [START_REF] Berret | How humans control arm movements[END_REF] for a precise proof of this last fact). 3. Due to the absolute work term, the proposed cost function is non-smooth (non-differentiable) w.r.t. u at u = 0. However it is Lipschitz-continuous at u = 0. This slight difference is important in our study. 4. In fact the typical non-smoothness (Lipschitz) is that of the absolute value function. But it can be easily taken into account the fact that "negative work" costs less than "positive work" (this last fact was stressed by a referee): in place of the function |u|, one has to consider the Lipschitz function λ|u| for u > 0 and µ|u| for u ≤ 0. We decided here to limit ourselves to the "non-weighted" absolute work, for the sake of simplicity in exposition.

We now define our optimal control problem. We consider the following controlled system (Σ):

(Σ) Ẋ = Φ(X, u), X ∈ R 2n , u ∈ U ⊂ R n .
Fix a source point X s = (x s , 0) ∈ R 2n , a target point X t = (x t , 0) ∈ R 2n and a time T .

Then, the optimal control problem is:

(P) minimize the cost J(u) in Equation 8among all the trajectories of (Σ) connecting X s to X t in time T .

The following theorem proves that this problem is well-posed.

Theorem 1. (existence of optimal trajectories)

The minimum is reached by some optimal trajectory. This is shown in [START_REF] Berret | How humans control arm movements[END_REF] in the 1-dof case, and is a consequence of boundedness of the controls and convexity with respect to u of both the cost function and the system (Σ).

The idea is that a minimizing sequence of trajectories converges for some compactness reason of Ascoli type, and the limit is a trajectory of the system by convexity. General results of this type may be found in [START_REF] Lee | Foundations of Optimal Control Theory[END_REF].
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The main examples

We will consider different examples of mechanical systems throughout the paper.

In all these examples, the cost is the compromise between the absolute work Aw and the acceleration energy Ae, i.e., a compromise of type given by Equation 7with:

M (X, u) = n i=1 α i (ẍ i ) 2 . ( 10 
)
The parameters (α i ) i=1..n are strictly positive constants. This comfort term expresses the fact that sensorimotor system penalizes large accelerations (thanks to learning) in order to protect articulations and tendons. Such an optimality criterion was used in [START_REF] Ben-Itzhak | Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements[END_REF].

In the 1-dof case, this weighting parameter was set to 0.25. We set α 1 = 0.25, α 2 = 0.25 and α 1 = 0.05, α 2 = 0.1, and α 3 = 0.25 in the 2-dof and 3-dof cases, respectively. Nevertheless, we also simulated movements with weighting parameters ranged between 0.05 and 1, and all these instances of the model lead to plausible movements. Therefore, these parameters may be considered as tuning parameters to improve the quantitative fitting of the model to each participant.

Note that this term M (X, u) is strictly convex with respect to u (in accordance with assumption A).

We will now consider the different mechanical systems describing vertical movements of an arm with 1-dof and 2-dof.

Example 1. The one-degree of freedom arm.

We consider a 1-dof arm moving in the vertical plane, in the gravity field, and without friction.

The control system is:

(Σ 1d ) ẋ = y (11) ẏ = u -k cos(x).
Here, the constant k reflects the action of the gravity field, u ∈ R is the net torque acting at the joint, and

u is bounded (u -≤ u ≤ u + with u -< 0 < u + ).
Example 2. The two-degree of freedom arm.

We consider a 2-dof arm moving in the vertical plane, in the gravity field, and with friction forces.

31 The mechanical equation of the movement is:

τ = H(θ) θ -ĥ(θ)r( θ) + G(θ) + B θ, ( 12 
)
in which H is the (symmetric positive definite) matrix of principal inertia moments, ĥ(θ)r( θ) is the Coriolis term, G is the vector of gravitational torques, and B is the matrix of friction terms (a constant here). The term τ is the vector of external torques (the controls in our case), i.e., τ = u. We get (see also Fig. 8):

τ 1 = H 11 θ1 + H 12 θ2 -ĥ θ2 2 -2 ĥ θ1 θ2 +G 1 + B 11 θ1 + B 12 θ2 , τ 2 = H 21 θ1 + H 22 θ2 + ĥ θ2 1 +G 2 + B 21 θ1 + B 22 θ2 , ( 13 
)
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with

H 11 = m 1 l 2 c1 + I 1 + m 2 l 2 c2 + I 2 + m 2 (l 2 1 + 2l 1 l c2 cos θ 2 ), H 12 = m 2 l 2 c2 + I 2 + m 2 l 1 l c2 cos θ 2 , H 21 = H 12 , H 22 = m 2 l 2 c2 + I 2 , ĥ = m 2 l 1 l c2 sin θ 2 , G 1 = g{m 1 l c1 cos θ 1 + m 2 (l c2 cos(θ 1 + θ 2 ) +l 1 cos θ 1 )}, G 2 = gm 2 l c2 cos(θ 1 + θ 2 ), B ij = constants following [18],
in which the following notations are set and the numerical values come from [START_REF] Winter | Biomechanics and Motor Control of Human Movement[END_REF]: The variables will be denoted as follows:

M s total
x 1 = θ 1 , y 1 = θ1 , x 2 = θ 2 , y 2 = θ2 , u 1 = τ 1 , u 2 = τ 2 .
Let H and B denote the matrices:

H(x 2 ) = H 11 H 12 H 21 H 22 and B = B 11 B 12 B 21 B 22 .
Then, the control system can be rewritten as:

         ẋ1 = y 1 ẋ2 = y 2 ẏ1 ẏ2 = H -1 u 1 -G 1 + ĥ(y 2 2 + 2y 1 y 2 ) u 2 -G 2 -ĥy 2 1 -B y 1 y 2 .
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For all x 2 H is invertible. We set

H -1 = H11 H12 H21 H22 .
The explicit expression of the elements of H -1 is:

d = m 1 l 2 c1 m 2 l 2 c2 + (m 1 l 2 c1 + m 2 l 2 1 )I 2 + I 1 (m 2 l 2 c2 + I 2 ) +m 2 2 l 2 1 l 2 c2 (1 -cos 2 x 2 ),
and:

H11 = m 2 l 2 c2 + I 2 d , H12 = H21 (x 2 ) = - m 2 l 2 c2 + m 2 l 1 l c2 cos x 2 + I 2 d , H22 = m 1 l 2 c1 + I 1 + m 2 l 2 1 + m 2 l 2 c2 + 2m 2 l 1 l c2 cos x 2 + I 2 d .
For both Examples 1 and 2 it will be interesting to consider the "small angles assumption", i.e., the linearization of the system around some reference angles and zero velocity.

Since in the paper we only consider pointing movements, i.e., going (in short time T ) from some initial condition (x, ẋ) = (x s , 0) to some terminal condition (x t , 0) (both equilibria of the system), this assumption corresponds to the fact that x t is close to x s .

With this assumption, both examples become much simpler, as expressed by Equations 14 and 15 below, and calculations can be done explicitly. Without it, some numerical steps remain. Nevertheless in these numerical steps it is of great interest to know a priori the qualitative scenario for the optimal controls, which is of course the same as with the small angles assumption. Thus, although the small angles assumption may be irrelevant from an experimental point of view, it is useful for finding the optimal solution of the complete systems given in Examples 1 and 2.

Example 3. One-degree of freedom, small angles assumption.

Assuming the arm to be horizontal at the initial condition, we get cos(x s ) = 1 and the linearized system around (x s , 0) is the following standard linear control system:

(Σ 1dl ) ẋ = y (14) ẏ = u -k.
Example 4. Two-degree of freedom, small angles assumption.
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As in the previous example, we neglect friction terms. Therefore, in the linearization around an equilibrium point (x, ẋ) = (x, y) = (x s , 0), we get no occurrence of y: the linear part is zero and the quadratic part in y disappears at y = 0. Therefore, the linearized system is of the following form:

(Σ 2dl ) Ẋ = AX + Bu + F, ( 15 
)
where X = (x, y) and A, B, F are of the form:

A = 0 Id 2 Ã 0 , B = 0 B , F = 0 F .
Here, Ã, B are 2 × 2 matrices, B is invertible and F ∈ R 2 . It follows that (Σ 2dl ) is a controllable linear system. Note also that the original system (Σ 2d ) is feedbacklinearizable. This last point is important at several places in the paper.

Mathematical prerequisites

Our theory of inactivation relies on three mathematical facts:

1. Thom's transversality theory, 2. The classical Pontryagin's Maximum Principle, 3. The characterization of the extrema of non-smooth (but Lipschitz-continuous) functions.

For the sake of completeness, we restate here the main points 2 and 3. Well-written introductions to Transversality theory may be found in [START_REF] Hirsch | Differential topology[END_REF], [START_REF] Abraham | Transversal mappings and flows[END_REF], and [START_REF] Gauthier | Deterministic observation theory and applications[END_REF].

Extrema of a strictly-convex (locally) Lipschitz-continuous function. Let f (u) be a locally Lipschitz function of the variable u ∈ R n . It means that, in restriction to any compact set Ω of R n :

||f (u) -f (v)|| ≤ K Ω ||u -v||, for a certain constant K Ω depending on Ω.
Here, we use any arbitrary norm over R n . A locally Lipschitz function is clearly continuous. It is a less obvious fact that it is also almost everywhere differentiable. Following F. Clarke [START_REF] Clarke | Optimisation and nonsmooth analysis[END_REF], we define the generalized gradient of f at u 0 , denoted by ∂ u f (u 0 ), as the convex envelop of all possible limits of derivatives of f at points u n ∈ R n , and u n → u 0 . Note that, in general, ∂ u f (u 0 ) is a set. Of course, if f is continuously 35 differentiable on a neighborhood of u 0 , its generalized gradient at u 0 coincides with the usual one and the set is reduced to a singleton.

For instance, if f (u) = |u|, f : R → R, then f is everywhere continuously differentiable except at u = 0, and possible values for the derivative are ±1. Then the generalized gradient ∂ u f is:

∂ u f (u 0 ) = {f (u 0 )} for u 0 = 0, = [-1, 1] for u 0 = 0.
The important facts for us will be the following:

(F1) In restriction to an arbitrary compact subset, a strictly convex function has a minimum which is attained uniquely;

(F2) A necessary and sufficient condition for u * to be the point where f reaches its (absolute) minimum is:

0 ∈ ∂ u f (u * ). ( 16 
)
Note that, at a point where f is continuously differentiable in the classical sense, this condition is equivalent to the classical one: the gradient must be zero.

Pontryagin's and Clarke's Maximum principle. The Maximum Principle gives necessary conditions of optimality for optimal control problems. For our problem (P), when Φ(X, u) and ϕ( Ȧw, X, u) are smooth w.r.t. X, we can use the original Pontryagin's version whose statement is as follows.

Denote by h(λ, X(t), P (t), u(t)) = λϕ( Ȧw, X, u) + P.Φ(X, u), the Hamiltonian of the problem, where λ ≤ 0.

If (X(t), u * (t)) is an optimal trajectory of the problem, then there exists P (t) ∈ (R n ) * (dual space of R n ), P (t) being absolutely continuous, (λ, P (t)) never vanishing, such that:

1. optimal trajectories meet the Hamiltonian equations:

(1) Ẋi = ∂h ∂P i , (2) Ṗi = - ∂h ∂X i , ( 17 
)
2. the Hamiltonian h(λ, X(t), P (t), u * (t)) reaches its maximum with respect to u at each time t ∈ [0, T ].
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Note that (λ, P (t)) is called the adjoint vector and that, in fixed time T , the Hamiltonian h does not necessarily vanish.

When moreover Φ(X, u) or ϕ( Ȧw, X, u) is non-smooth with respect to X (but at least Lipschitz continuous), which will happen in the section where we consider the case of gradient constraints on the control, the adjoint Equation 17(2), has to be replaced by its non-smooth version (see [START_REF] Clarke | Optimisation and nonsmooth analysis[END_REF]):

Ṗ ∈ -∂ X h(λ, X(t), P (t), u(t)),
where ∂ X h denotes Clarke's generalized gradient of h with respect to X.

Also, even in the classical case, since we assume the cost function ϕ( Ȧw(u), X, u) to be strictly convex w.r.t. u, the condition of maximizing the Hamiltonian h w.r.t. u can be replaced by (if the maximum is not attained on the constraints):

0 ∈ ∂ u h. ( 18 
)
In any case, even if the cost function is not strictly convex w.r.t. u, this condition is necessary in order to maximize the Hamiltonian.

Nonexistence of abnormal trajectories. In this section we consider a general exactlyfully-actuated system. An extremal is a trajectory of the system meeting the necessary conditions provided by the Maximum Principle. A singular extremal is an extremal corresponding to λ = 0 (or equivalently, to the minimum-time problem). Extremals corresponding to λ < 0 are called regular.

A bang extremal is an extremal such that for almost all t ∈ [0, T ], one of the control variables u i can take the two values u i = u - i or u i = u + i only. Here, an abnormal extremal is a singular extremal which is not bang.

Since our system is feedback-linearizable, it admits no such abnormal extremal. To the best of our knowledge, this fact has been noticed for the first time in [START_REF] Bonnard | Invariants in the feedback classification of nonlinear systems[END_REF]. Let us briefly recall its proof.

Setting ẋ = y, P = (p, q) and X = (x, y), our Hamiltonian h, with λ = 0, can be rewritten as:

h = py + qφ(x, y, u). ( 19 
)
Note also that, for our mechanical systems, φ is linear with respect to u, and u enters via the term M (x) -1 (Equation 5).

Therefore the condition of maximum of the Hamiltonian for an abnormal extremal gives q = 0. This has to be true along the abnormal trajectory (not pointwise): q(t) = 0 37 for all t . Therefore, differentiating, we get that q(t) = 0 also, but by the Hamiltonian equations:

0 = q = - ∂h dy = p.
Then, p(t) has also to be zero. This is a contradiction with the maximum principle, which prescribes that (λ, p(t), q(t)) never vanishes.

The statement of the Inactivation Principle

A rough statement of the Inactivation Principle is as follows: provided that the total duration T of the motion is not too large (compared to the minimum time T min ), then there is partial inactivation along an optimal trajectory minimizing a compromise J(u) between the absolute work and a comfort term (J(u) of the form given by Equation 7, or more generally Equation 8). Moreover, simultaneous periods of inactivation of all controls may appear in a stable way (stable w.r.t small smooth perturbations of the cost, or of the system).

Note that T min is the minimum time to reach the target from the source. It does exist and it is reached by a bang-bang control, due to absolute bounds on the values of controls. This is not a theorem, but a principle. To transform the statement into a theorem, we need precise technical assumptions.

Let us consider some optimal trajectory (X, u * ) defined on [0, T ], and meeting the following two technical assumptions (H 1 , H 2 ) :

(H 1 ) X is a regular extremal (therefore u * (t) is continuous on [0, T ], see Lemma 1), (H 2 ) Change of sign for optimal control: some component u * i of optimal control changes sign at some time t c ∈]0, T [, while y i (t) keeps constant sign. It means that there are some times t 1 , t 2 , t 1 < t c < t 2 , such that u * i (t 1 )u * i (t 2 ) < 0 and y i (t) = 0 for t 1 ≤ t ≤ t 2 . Theorem 2. (Inactivation Principle) Along an optimal trajectory of (P) meeting hypotheses (H 1 , H 2 ) there is partial inactivation. Moreover, some of the regular extremals passing through an arbitrary X ∈ R 2n have total inactivation. Proof. Along the optimal trajectory, the Hamiltonian h of the optimal control problem has to be maximum, which means by Equation 18 that 0 ∈ ∂ u i h for all i = 1, ..., p. But, h(λ, X(t), P (t), u * (t)) = λϕ( Ȧw, X, u * ) + P.Φ(X, u * ), and λ < 0 since we consider regular trajectories only. The maximum condition for the Hamiltonian gives:

0 ∈ ∂ u i h(X(t), P (t), u * (t)). ( 20 
)
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The variables X(t) and P (t) being also continuous, the quantity ∂ u i h(X(t), P (t), u * (t)) is an interval I(t) (degenerating to a point as soon as u * i (t) = 0) and moving continuously with the time t. At a time t c when u * i (t c ) = 0, it is a nontrivial time interval I(t c ), since ∂ϕ ∂ Ȧw and λ are both different from zero. Hence, since u * i (t) changes sign at t c , it takes a certain strictly positive amount of time to cross I(t c ). Then u * i (t) remains exactly equal to zero during some nontrivial time interval. This is partial inactivation. Continuing, we take an arbitrary X = (x, y), with y i = 0 for all i = 1, ..., n and λ = -1. We denote by (M (x) -1 ) i the i th column of the invertible matrix M (x) -1 . Then, for u = 0, we compute the set S = ∂ u h(X, P, u). If we set P = (p, q), then due to the fact that ∂P.Φ(X,u) ∂u i = q ∂φ(x,y,0) ∂u i = q(M (x) -1 ) i , we can choose q in order that 0 be exactly the center of the set S ⊂ R n , which is a hypercube with nonempty interior. It is clear by construction that the extremals starting from this point (X, P, 0), if continuous, have total inactivation. This proof is illustrated in Figure 9.

Let us examine now the validity of the assumptions (H 1 , H 2 ) above. We have first the following result.

Lemma 1. The optimal controls u * (t) corresponding to regular trajectories of (P) are continuous w.r.t. t.

Proof. The lemma 11 in [START_REF] Gauthier | On the one-step bracket generating motion planning problem[END_REF] states the following. Consider a function f : R p × X → R + , where X is a manifold and f is continuous, with the additional property that for each compact K ⊂ X, the restriction

f K = f |R p ×K is proper. Then, ϕ(x) = inf v∈R p f (v, x)
is a well defined mapping, continuous over X. Examination of the proof of this result shows that it holds also for f : R p × X → R. We apply this lemma to our Hamiltonian h. Due to assumption A and to the fact that λ < 0, h(t, u) = h(X(t), P (t), u) is a strictly concave function of u. Moreover, it is continuous since X(t) and P (t) are continuous functions of t. Let u(t 0 ) be a discontinuity value of the optimal control u(t). It means that we can find a sequence t n → t 0 such that u(t n ) → û = u(t 0 ). Applying the abovementioned lemma to -h(t, u), where u here is the variable v in the lemma, we get that t → -h(t, u(t)) is a continuous map. But the minimum being unique, this contradicts the assumption u(t n ) → û = u(t 0 ).

As for assumption (H 1 ), note that a singular extremal of (P) is an extremal of the minimum-time problem. Thus, when T > T min , assumption (H 1 ) is a consequence of the stronger hypothesis that there is a unique extremal of the minimum-time problem 39 u u = 0 u > 0 : while u > 0, t H (the Hamiltonian) is differentiable w.r.t. u and ∂H ∂u = 0 in the classical sense.

At u = 0 : ∂H ∂u is an interval that has to be crossed continuously by 0. This implies that u has to remain 0 along some u < 0 : while u < 0, H is differentiable w.r.t.

u and ∂H ∂u = 0 in the classical sense. non-trivial time interval. connecting two given points. This last hypothesis is easily checkable and seems to hold generically. For instance, when (Σ) is linear and n = 1, this is proved in [START_REF] Berret | How humans control arm movements[END_REF]Example 1].

Assumption (H 2 ) (the change of sign of the optimal control) is also true in general. This can be proved in the following way.

The input-state mapping

P Σ : L ∞ [0,T ],R n → C 0 [0,T ],R 2n , is continuous for the *-weak topology over L ∞ [0,T ],R n [59].
When T → T min from above, we consider the restriction u T of the optimal control to the interval [0, T min ]. This defines a sequence of controls that (by boundedness) we can assume to be *-weak convergent to some control u * (t). By construction, this u * (t) is a minimum time control. Since u T (t) is continuous, if T is close enough to T min , u T (t) has sign changes close to the sign changes of the minimum-time control u * (t).

The fact that the minimum time control u * (t) has changes of sign can be checked directly.

For instance, in Example 1, minimum time control can only commute between the values u -, u + . These values are large enough. Hence if there is no commutation, the control is constant and large. Therefore ẏ(t) has constant sign and y(t) cannot go from zero to zero.

Remark 4. The previous reasoning shows that in general inactivation is located around instants that are close to the instants where the minimum time-control changes sign (commutes). This reasoning also shows that inactivation occurs automatically for a duration T of the motion sufficiently close to the minimum time T min . This is coherent with practical observations showing that for larger T , simultaneous inactivation of agonistic and antagonistic muscles disappear.

The necessity of the absolute work term for inactivation

The purpose of this section is to show that, for the occurrence of inactivation in optimal trajectories, it is necessary that the minimized integral cost contains a term "like the absolute work". This means a term with some non-smoothness at u = 0 (remind that u i = 0 corresponds to inactivation at the level of the i th degree of freedom).

We fix a "source-point" X s ∈ R 2n , a "target-point" X t ∈ R 2n , and a time T > 0. The points X s and X t correspond to zero velocity, i.e., are of the form (x, ẋ) with ẋ = 0. Given a function f on R 3n , we define the following optimal control problem:

(P f ) minimize the cost J(u) = T 0 f (X, u)dt, among the trajectories of Equation 2 joining X s to X t .
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We also set F (X) = Φ(X, 0).

Theorem 3.

There exists an open and dense subset O of C ∞ (R 3n , R) (endowed with the C ∞ Whitney topology) such that, if f ∈ O, then (P f ) does not admit minimizing controls which vanish on a subinterval of [0, T ], except maybe if the associated trajectory is an equilibrium point of F . In addition, for every integer m, the set O can be chosen so that its complement has codimension larger than m. Remark 5. 1. In the previous theorem, we use the Whitney topology over the set of cost functions f to be minimized. It is the usual topology in this setting. If we restrict to a fixed compact set, it is equivalent to consider the usual topology of C ∞ convergence over this compact set. 2. The fact that the bad set (the set of exceptional cost functions for which inactivation can be optimal) has codimension infinity (i.e., codimension larger than m, for all m) means that the good set is extremely large.

The proof of this theorem is given in Supporting Information (Text S1).

The gist of the proof is the following: we assume that the cost function is smooth, and we show that (up to exceptional and unstable cases for the cost), the only optimal trajectories that are constant can be either equilibria trajectories or bang trajectories (i.e., trajectories lying in the boundary of the control set). This is done by using transversality arguments: Thom's transversality theorem simply states in precise mathematical terms that, "generically", mathematical objects are in "general position". For instance (see Page 67 in [START_REF] Hirsch | Differential topology[END_REF]), consider the following statement: if f is a continuously differentiable function, "almost all" horizontal lines are nowhere tangent to the graph of f . This statement illustrates a type of reasoning that is common in differential topology. Transversality gives the necessary framework to justify such kinds of properties.

Roughly speaking, for inactivation to be optimal in a stable way (i.e., remain optimal while not overly perturbing the cost to be minimized) then it is necessary that the cost function f is non-smooth at u = 0.

A similar theorem holds also for partial inactivation (inactivation of one control at least, on some nontrivial time-interval). But in that case, for technical reasons, we have to restrict to the open set SC of C ∞ -smooth functions all f that are moreover strictly convex with respect to u. Here and only here, by strictly convex, we mean the assumption that the Hessian of f w.r.t. u is everywhere positive-definite. This assumption clearly defines an open subset SC ⊂C ∞ (R 3n , R) for the Whitney topology.

Theorem 4. There exists an open and dense subset O of SC such that, if f ∈ O , then (P f ) does not admit minimizing controls, a component of which vanishes on a subinterval of [0, T ] (again except maybe if the associated trajectory is an equilibrium point of F ).

The proof of this more difficult result is also given in Supporting Information (Text S1).
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(S 5 ) (regular non-bang, inactive, regular non-bang):

(u = q -y 2α + k) → (u = 0) → (u = q + y 2α + k);
(S 6 ) (regular-bang, regular non-bang):

(u = u + ) → (u = q -y 2α + k);
(S 7 ) (regular non-bang only):

(u = q -y 2α + k).
The "inactive" pieces are inactivation periods, u = 0.

In the following we describe in details the strategies (S 1 ) (minimum time) and (S 2 ).

We will use the notations u i (t), q i (t), x i (t), y i (t), for t [0, τ i ] and i ≥ 1 for the functions u, q, x, y on the interval [ i-1 j=0 τ j , i j=0 τ j ] with τ 0 = 0. For instance, u 2 (t) means u(t+τ 1 ) for t ∈ [0, τ 2 ] and u 3 (t) means u(t

+ τ 1 + τ 2 ) for t ∈ [0, τ 3 ].
Case S 1 . Fastest possible movements, critical time T c = T min : This is the singular case, corresponding to the quickest possible movement. This solution is bang, i.e., depends only upon the constraints u + , u -.

The corresponding equations for the solutions are the following, assuming the small angles approximation:

• For t ∈ [0, τ 1 ]            u 1 = u + y 1 = (u + -k)t q 1 = q 0 -p 0 t x 1 = x s + (u + -k) t 2 2 • For t ∈ [0, T c -τ 1 ] (τ 2 = T c -τ 1 )            u 2 = u - y 2 = y 1 (τ 1 ) -(k -u -)t q 2 = q 1 (τ 1 ) -p 0 t x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t -(k -u -) t 2 2 44
with

T c = T min = 2∆ x (u + -u -) (k -u -)(u + -k) ,
and commutation time τ 1 ,

τ 1 = (k -u -)T c 2u + -k -u -.
Case S 2 . The most general strategy, five-piece trajectories: this case is also the most complicated scenario and it appears when movement duration is close to T min , but with T > T min .

• For t ∈ [0, τ 1 ]            u 1 = u + y 1 = (u + -k)t q 1 = q 0 + (u + -p 0 )t x 1 = x s + (u + -k) t 2 2 • For t ∈ [0, τ 2 ]                      u 2 = u + + k -p 0 2α t y 2 = y 1 (τ 1 ) + (u + -k)t + k -p 0 4α t 2 q 2 = q 1 (τ 1 ) + (u + -p 0 )t + k -p 0 4α t 2 x 2 = x 1 (τ 1 ) + y 1 (τ 1 )t + u + -k 2 t 2 + k -p 0 12α t 3 • For t ∈ [0, τ 3 ]            u 3 = 0 y 3 = y 2 (τ 2 ) -kt q 3 = q 2 (τ 2 ) -p 0 t x 3 = x 2 (τ 2 ) + y 2 (τ 2 )t - kt 2 2 • For t ∈ [0, τ 4 ] 45                      u 4 = - k -p 0 2α t y 4 = y 3 (τ 3 ) -kt - k + p 0 4α t 2 q 4 = q 3 (τ 3 ) -p 0 t - k + p 0 4α t 2 x 4 = x 3 (τ 3 ) + y 3 (τ 3 )t - k 2 t 2 - k + p 0 12α t 3 • For t ∈ [0, τ 5 ]            u 5 = u - y 5 = y 4 (τ 4 ) -(k -u -)t q 5 = q 4 (τ 4 ) -(u -+ p 0 )t x 5 = x 4 (τ 4 ) + y 4 (τ 4 )t -(k -u -) t 2 2 
The commutation times τ i meet:

τ 1 = q 0 + 2α(k -u + ) p 0 -k , τ 2 = 2αu + p 0 -k , τ 3 = 2 (2αk + q 0 )(u + -k) -α(u + ) 2 (p 0 -k)(p 0 + k) , τ 4 = - 2αu - k + p0 , τ 5 = (q 0 + 2αk)(u + -k) -α((u + ) 2 + (u -) 2 -2ku -) (p 0 + k)(k -u -) .
Of course, we have τ i > 0 for all i and 5 i=1 τ i = T . This implies several constraints on p 0 and q 0 . The initial adjoint vector can be computed by requiring that y 5 (τ 5 ) = 0 and x 5 (τ 5 ) = x t . Explicit formulae for p 0 and q 0 cannot be obtained but it is numerically easy to compute these values, and to check if they are compatible with the conditions above.

Figure 10 illustrates the different strategies, except the most general, strategy (S 2 ), which was depicted in Figure 1 in the case of gradient constraints on the control.

As shown in this figure, inactivation occurs for T not too large. The time T 2 at which total inactivation disappears may be of importance for experimenters. ). An inactivation phase corresponds to the period where the control signal u is zero. When T becomes large (T ≥ 0.6 s in this case), the inactivation disappears (S6 and S7 strategies) according to experimental findings. The angular position and velocity and the control signal are given in radians, rad/s, and rad/s 2 , respectively. Note that the control signal u corresponds to the ratio between the net torque acting at shoulder joint and the arm's moment of inertia.
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We have computed it using the small angles assumption:

T 2 = 6∆ x u + -k for u + ≤ 2k, T 2 = 6∆ x k elsewhere.
In this analysis, computations are tedious, but quite easy: optimal control of a linear system with strictly convex (piecewise quadratic) cost function. Hence all the results in this section are obtained directly with the Maximum Principle.

Importantly, it can be shown (by comparisons) that the whole optimal trajectories are entirely in {y ≥ 0} or {y ≤ 0}. Therefore, there is just non-smoothness w.r.t. u, and we need only the usual Pontryagin's Maximum Principle (no necessity of Clarke's version in this case).

Let us give more insights concerning the optimal synthesis. Consider the Hamiltonian H of the problem:

H = -λ(y|u| + α(u -k) 2 ) + py + q(u -k), ( 21 
)
where λ ≥ 0 is the constant additional adjoint variable, and (p, q) is the adjoint vector to (x, y). We can take λ = 1 since singular extremals do not appear for T > T min .

We set z = qy and w = q + y. The condition y ≥ 0 is now w ≥ z.

Figure 11 shows the (z, w) phase portrait of the optimal trajectories obtained from the maximization of the Hamiltonian w.r.t. u when p 0 > k. The typical trajectory drawn in the half-plane y ≥ 0 (i.e., w ≥ z) corresponds to the most general trajectories (S 2 ).

The 2-dof case. Again, we want to minimize the compromise Aw/Ae.

We write the Hamiltonian in the 2-dof case, omitting dependence of different terms w.r.t. variables x 1 , x 2 . The adjoint vector is denoted here (p 1 , p 2 , q 1 , q 2 ). 

H= -λ{|y

1 u 1 | + |y 2 u 2 | + α 1 ẏ1 2 + α 2 ẏ2 2 } + p 1 y 1 + p 2 y 2 + q 1 ẏ1 + q 2 ẏ2 .
z = -2kα U z = 2α U (u + -k) w = -2kα U w = -2α U (k -u -) w = -2kα D w = 2α D (u + -k) z = -2kα D z = -2α D (k -u -) w ≤ z z = w w ≥ z 0 Figure 11:
Phase portrait for p 0 ≥ k in the plane (z, w). The bisector (z = w) corresponds to the set of velocities equal to zero. The upper and lower semi-plane corresponds to positive and negative angular velocities, respectively. An optimal path starts and ends on this line. This figure illustrates the optimal phase portrait corresponding to the S2 strategy (for an upward motion).

Regions are denoted by boxed numbers and the commutation times correspond to switches between regions. For instance Region 5 corresponds to the inactivation region (i.e., the control signal is zero here). Note that the different strategies illustrated in Figure 10 are easily understood with this phase portrait, since optimal paths may start and end in different regions.

The constants k, α U , α D , and u + and u -are parameters depending respectively on the mechanical model of the arm, the coefficients involved in our cost function, and the boundary values imposed on the control u.

49 Then Pontryagin's equations of the Maximum Principle are:

ẋ1 = y 1 ẋ2 = y 2 ẏ1 = H11 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ] ẏ2 = H21 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ] ṗ1 = ( H11 ∂G 1 ∂x 1 + H12 ∂G 2 ∂x 1 )(-2α 1 ẏ1 + q 1 ) +( H21 ∂G 1 ∂x 1 + H22 ∂G 2 ∂x 1 )(-2α 2 ẏ2 + q 2 ) ṗ2 = (2α 1 ẏ1 -q 1 ){ H11 [-∂G 1 ∂x 2 + ∂h ∂x 2 (y 2 2 + 2y 1 y 2 )] + ∂ H11 ∂x 2 [u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 [-∂G 2 ∂x 2 -∂h ∂x 2 y 2 1 ] + ∂ H12 ∂x 2 [u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]} +(2α 2 ẏ2 -q 2 ){ H21 [-∂G 1 ∂x 2 + ∂h ∂x 2 (y 2 2 + 2y 1 y 2 )] + ∂ H21 ∂x 2 [u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 [-∂G 2 ∂x 2 -∂h ∂x 2 y 2 1 ] + ∂ H22 ∂x 2 [u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]} q1 = sign(y 1 )|u 1 | -p 1 + (2α 1 ẏ1 -q 1 ) ×[ H11 (h.2y 2 -B 11 ) + H12 .(-h.2y 1 -B 21 )] +(2α 2 ẏ2 -q 2 )[ H21 (h.2y 2 -B 11 ) + H22 .(-h.2y 1 -B 21 )] q2 = sign(y 2 )|u 2 | -p 2 + (2α 1 ẏ1 -q 1 ) ×[ H11 (h.(2y 2 + 2y 1 ) -B 12 ) + H12 .(-B 22 )] +(2α 2 ẏ2 -q 2 )[ H21 (h.(2y 2 + 2y 1 ) -B 12 ) + H22 .(-B 22 )]
Singular extremals (λ = 0) again do not appear for T > T min . Hence we take λ = 1 and 50 we have to maximize the following w.r.t. u 1 , u 2 :

H(u 1 , u 2 )= -{|y 1 u 1 | + |y 2 u 2 | + α 1 ( H11 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) 2 + α 2 ( H21 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) 2 } + q 1 ( H11 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 2 ( H21 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ])
We discuss this maximization in terms of the 9 regions in the u 1 , u 2 plane corresponding to the "stratification by the sign of coordinates". This is done in Supporting Information (Text S1) where we explain how to compute the extremals.

Notice that, as in the 1-dof case, many different strategies can occur, with or without inactivation at each joint. The case of total inactivation of both controls is also possible.

Numerical solutions are depicted in Figure 2.

The case of gradient constraints on the torques

This is a rather simple extension of the theory. The results obtained in the 1-dof case have already been depicted in Figure 1. Here, we explain what happens in this case only, however the case of 2-dof is similar.

In this problem, we require moreover that the derivative of the torque u is bounded.

We introduce the new control v = u and the problem may be rewritten, as (taking 51 possibly frictions into account):

ẋ = y, ẏ = ϕ(x, y) + u, u = v v -≤ v ≤ v + , v -< 0, v + > 0, min v J(v) = Aw + T 0 f (X, u)dt.
Now the cost function is not differentiable anymore with respect to the state (in place of the control in previous sections). Therefore, Clarke's non-smooth version of the Maximum Principle is needed [START_REF] Clarke | Optimisation and nonsmooth analysis[END_REF].

If (p, q, r) denotes now the adjoint variables, we get:

H = -λ(y|u| + f (x, y, u)) + py + q(u -k cos x) + rv.
Once again, x, y, p, q, r, u are continuous (by nature now, just as classical solutions of differential equations). The a priori fact that y remains positive is just checked numerically. However, it is expectable from the results obtained without gradient constraints on the torques.

Also, for similar reasons as in a previous subsection, the abnormal extremals may be excluded: maximality of the Hamiltonian for non-bang trajectories implies that r is identically zero, which implies, with two successive differentiations, that q and p respectively are also identically zero. Total adjoint vector is zero, which contradicts the maximum principle. Hence we may assume λ = 1.

We assume that the gradient constraints v -and v + are large enough for the optimal control to be of the following type: gradient constraints which are active only at the beginning and at the end of the motion. If we refer to the scenario occurring in 1-dof case, this should be what happens: without the gradient constraints, the gradient is never large. Then, there will be saturation of the gradient constraints only because of the jumps at the beginning and at the end of the motion. Numerical computations confirm this scenario, as illustrated in Fig. 1.

For instance, consider that x t > x s , i.e., an upward movement. Then, to connect (in optimal way) the source (x s , 0, u s ) to the target (x t , 0, u t ), where u s and u t are the stationary torques corresponding respectively to the equilibrium positions x s and x t , the strategy must be as follows: 

v = v + , for 0 ≤ t < T 1 ; v -< v < v + for T 1 ≤ t ≤ T 2 ; v = v -for T 2 < t ≤ T . Therefore, inside the interval [T 1 , T 2 ],
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Since dr dt = 0, we conclude:

0 ∈ -∂ u H = yI + ∂ f ∂u -q.
This equation was exactly the cause of the presence of inactivation when we proved the Inactivation Principle: it is Equation 20.

Therefore, the inactivation phenomenon persists under torque gradient constraints.

Notice that, adding gradient constraints also permits getting smoother velocity profiles with zero-acceleration at the initial and final times.

The Inactivation Principle for agonistic-antagonistic torques

The purpose here is to show that the Inactivation Principle persists when considering that two opposing torques act at each joint (one agonistic and one antagonistic). This is the case m = 2n of the Theoretical Analysis Subsection.

For this analysis, we consider that u = u 1u 2 , where 0 ≤ u 1i ≤ u + i and 0 ≤ u 2i ≤ -u - i . Then u 1i (resp. u 2i ) are the agonistic (resp. antagonistic) generalized torque applied at the i th degree of freedom.

For the case of net torque u, the cost that we consider is the compromise given by Equation 4, i.e.,

J(u) = T 0 f (x, y, u)dt + Aw, with: Aw = T 0 n i=1 |u i y i |dt.
It means that, for agonistic-antagonistic torques, we shall minimize:

J (u 1 , u 2 ) = T 0 f (x, y, u 1 -u 2 )dt + Aw ,
where Aw is the total absolute work of external torques:

Aw = T 0 ( n i=1 |u 1i y i | + n i=1 |u 2i y i |)dt.
Firstly, let us assume that u 1 , u 2 , minimize J , with optimal value J * . Consider u = u 1u 2 .
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Clearly, u applied to the system: ẍ = φ(x, ẋ, u), [START_REF] Alexander | A minimum energy cost hypothesis for human arm trajectories[END_REF] and, u 1 , u 2 applied to the system:

ẍ = φ(x, ẋ, u 1 -u 2 ), ( 23 
)
produce identical x-trajectories.

Therefore,

J(u) = T 0 ( f (x, y, u 1 -u 2 ) + n i=1 |(u 1i -u 2i )y i |)dt, ≤ T 0 ( f (x, y, u 1 -u 2 ) + n i=1 |u 1i y i | + n i=1 |u 2i y i |))dt, = J (u 1 , u 2 ) = J *
This shows that the minimum

J * = min u J(u) ≤ J * .
Conversely, assume that u attains the minimum J * of J(u). We define u 1 , u 2 from u as follows (for i = 1..n):

u 1i (t) = u i (t) if u i (t) > 0, (24) 
= 0 elsewhere, and

u 2i (t) = -u i (t) if u i (t) < 0, = 0 elsewhere.
Again u 1u 2 = u. Hence applying u to Equation 22produces the same x-trajectory as applying u 1u 2 to Equation 23. Therefore, by definition of u 1 , u 2 , we have:

J (u 1 , u 2 ) = T 0 ( f (x, y, u 1 -u 2 ) + n i=1 |u 1i y i | + |u 2i y i |)dt, = T 0 ( f (x, y, u 1 -u 2 ) + n i=1 |(u 1i -u 2i )y i |)dt,
It means that:

J (u 1 , u 2 ) = J * , ( 25 
)
54 which implies that J * ≤ J * . It is now clear that J * = J * , and also by Equation 25the minimum is reached by u 1 , u 2 in Equation 24.

Notably, by construction, the torques u 1i , u 2i have simultaneous inactivation only when

u i = 0, for i = 1..n.
We have proved the following theorem:

Theorem 5. (Simultaneous inactivation for agonistic-antagonistic torques)

In the case of agonistic-antagonistic torques, minimizing a cost containing the absolute work leads to a simultaneous inactivation of both torques, exactly at the same times where the optimal net torque is inactive.

Dynamics of the muscles and the triphasic pattern

In this section, we still consider agonistic-antagonistic torques, but we assume some dynamics on each muscle. For the sake of simplicity, we assume a first order dynamics on the muscles, but this restriction is not crucial. Also, we present the results in the 1-dof case (n = 1) and we make the small angles assumption, in order to make the computations more tractable.

As in previous subsections, we minimize the compromise Aw/Ae.

Then, adding the first order time constants σ 1 , σ 2 on both muscles, we get the following control system: [START_REF] Guigon | Computational motor control: redundancy and invariance[END_REF] with v 1 , v 2 ≥ 0.

         ẋ = y ẏ = u 1 -u 2 -k u1 = -u 1 σ 1 + v 1 u2 = -u 2 σ 2 + v 2 ( 
We look for the minimum min

v 1 ,v 2 T 0 yu 1 + yu 2 + α ẏ2 dt.
For this, we use the a priori fact (which is checked numerically) that, as in the case of torque control, y remains positive during the upward motion [START_REF] Berret | How humans control arm movements[END_REF]. The Hamiltonian may be written as:

H = -y(u 1 + u 2 ) -α(u 1 -u 2 -k) 2 + py +q(u 1 -u 2 -k) + r 1 (-u 1 σ 1 + v 1 ) + r 2 (-u 2 σ 2 + v 2 )
At this point, there is an important technical detail that physiologically makes sense. It can be understood as muscular co-activation at the end of the motion, a well know phenomenon in physiology.
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Due to the first order linear dynamics on the muscles, and the constraints u i ≥ 0, we can only go back to zero asymptotically. Therefore, the terminal condition u t 2 = k is impossible, i.e., the antagonistic torque cannot go back to exactly zero at the end of the movement.

Hence we require, with ε > 0:

(I) u s 1 = k and u s 2 = 0, ( 27 
) (II) u t 1 = k + ε and u t 2 = ε.
Notice that when modeling muscles dynamics, the initial and final values of both agonistic and antagonistic torques must be specified in order to maintain the arm at equilibrium.

Requirement (II) is the co-activation at terminal time T . Then, explicit computations with the Maximum Principle, together with a numerical research of the commutation times, show that the optimal scenario is as shown in Figure 12.

One can recognize the classical scenario called "triphasic pattern" [START_REF] Hallett | Ballistic flexion movements of the human thumb[END_REF], namely: an agonistic burst followed by an antagonistic burst followed again by an agonistic burst (the scenario ends with the above mentioned co-contraction of the muscles) .

In fact, our theory shows that it may be called "quadriphasic pattern" since there is an inactivation interval between the first agonistic pulse and the antagonistic one. Illustration of the optimal behavior of a 1-dof arm, under the small angles assumption and with a pair of agonistic and antagonistic muscles, modeled by first-order dynamics. The subscripts 1 and 2 denote the flexor and extensor muscles, respectively. The triphasic pattern is an agonistic burst, followed by an antagonistic burst, and again an agonistic burst. The inactivation occurs between the first agonistic and antagonistic bursts. The times t i denote the commutation times. The left graphs illustrates the behavior of the angular torques (u). The right graphs illustrate the behavior of the control signals (v), that are the input signals for muscles contractions (i.e., the signals driven by motoneurons). All signals are plotted with respect to time t varying between 0 and T .
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Supporting Information (Text S1)

Proof of Theorem 3

The proof is based upon Thom's transversality theorem. We will then make the computations in the spaces of jets. For a positive integer m and a pair (X, u) ∈ R 2n × R n , we denote by J m (X,u) the space of m-jets at (X, u) of functions in C ∞ (R 3n , R). Fix now a point X 0 ∈ R 2n which is not an equilibrium of the vector field F . We define

A m (X 0 ) ⊂ J m (X 0 ,0) as the set of m-jets of functions f ∈ C ∞ (R 3n , R
) such that the trajectory of Equation 2issued from X 0 and associated to the control u = 0 is locally minimizing for the optimal control problem (P f ).

Lemma 2. A m (X 0 ) is contained in a vector subspace of J m (X 0 ,0) of codimension n(m-2).
Proof. Without lack of generality we assume X 0 = 0. Let j m 0 f be a m-jet in A m (0). By definition of A m (0), the trajectory X(•) of F issued from 0 minimizes the problem (P f ) on an interval I = [0, s]. Thus X(•) satisfies Pontryagin's Maximum Principle on I: there exists a smooth function P = (p, q) : I → R n × R n (the smoothness of P results from that of X) and λ ≥ 0 such that, for all t ∈ I, (P (t), λ) = 0 and:

(P1) Ṗ (t) T = -∂H ∂X (X(t), P (t), λ, 0), (P2) H(X(t), P (t), λ, 0) = max v∈U H(X(t), P (t), λ, v),
where the Hamiltonian of the problem is:

H(X, P, λ, u) = p T y + q T φ(X, u) -λf (X, u).
Note that, since 0 ∈ int U , property (P2) implies ∂H ∂u (X(t), P (t), λ, 0) = 0. It follows:

q(t) T = λ ∂f ∂u (X(t), 0) ∂φ ∂u (X(t), 0) -1 .
If λ = 0, then q ≡ 0. From q ≡ 0 and (P1) we deduce p ≡ 0 and then (P, λ) ≡ 0, which is impossible. Thus λ is positive and a standard argument of homogeneity allows normalizing it to λ = 1. Finally, from respectively (P1) and (P2), the following holds on the interval I:

ṗT = -q T ∂φ ∂x (X, 0) - ∂f ∂x (X, 0), qT = -p T -q T ∂φ ∂y (X, 0) - ∂f ∂y (X, 0) (28) 58 and 
,

q T = ∂f ∂u (X, 0) ∂φ ∂u (X, 0) -1 . (29)
Now, recall that on I the dynamic is Ẋ = F (X). Since X 0 = 0 is not an equilibrium point of F , we assume, up to a local change of the coordinates X = (X 1 , . . . , X 2n ) on R 2n , that F = ∂ ∂X 1 . Differentiating Equation 28with respect to time leads to:

qT = -ṗT -qT ∂φ ∂y -q T ∂ ∂X 1 ∂φ ∂y -∂ ∂X 1 ∂f ∂y = -q T ∂φ ∂x -∂f ∂x -qT ∂φ ∂y -q T ∂ ∂X 1 ∂φ ∂y -∂ ∂X 1 ∂f ∂y , (30) 
in which we omit the evaluation at (X, 0).

On the other hand, we can also obtain qT and qT by differentiation of Equation 29:

qT = ∂ ∂X 1 ∂f ∂u × ( ∂φ ∂u ) -1 + ∂f ∂u × ∂ ∂X 1 ( ∂φ ∂u ) -1 qT = ∂ 2 ∂X 2 1 ∂f ∂u × ( ∂φ ∂u ) -1 + 2 ∂ ∂X 1 ∂f ∂u × ∂ ∂X 1 ( ∂φ ∂u ) -1 + ∂f ∂u × ∂ 2 ∂X 2 1
( ∂φ ∂u ) -1 . Substituting these expressions and Equation 29 into Equation 30, we eliminate q T , qT , and qT and we obtain:

∂ 2 ∂X 2 1 ∂f ∂u + R X ∂ ∂X 1 ∂f ∂u , ∂f ∂u , ∂ ∂X 1 ∂f ∂X i , ∂f ∂X i = 0 on I,
where, for every X, R X is a linear mapping and X → R X is smooth. Successive derivations and evaluation of the derivatives at t = 0 (recall that X(0) = 0) lead to a system of equations of the form:

∂ k ∂X k 1 ∂f ∂u (0) + R k ∂ j ∂X j 1 ∂f ∂u (0), ∂ j ∂X j 1 ∂f ∂X i (0); j < k, 1 ≤ i ≤ 2n = 0, k ≥ 2,
where each R k is a linear mapping.

Thus we have proved A m (0) ⊂ ker ψ, where ψ : 2) is the linear mapping which associates

J m 0 → R n(m-
   ∂ k ∂X k 1 ∂f ∂u (0) + R k ∂ j ∂X j 1 ∂f ∂u (0), ∂ j ∂X j 1 ∂f ∂X i (0); j < k, 1 ≤ i ≤ 2n    2≤k≤m-1
to a m-jet j m 0 f . This linear mapping being obviously surjective, the conclusion follows. 59 Theorem 3 follows from Lemma 2 combined with the classical Thom's transversality Theorem. Remark 6. In the computations in the jet space, only f (X, 0), ∂f ∂u (X, 0), and their derivatives with respect to X appear. Thus the statement of Theorem 3 still holds if we replace C ∞ (R 3n , R) by the set of polynomial functions of u with coefficients in C ∞ (R 2n , R), or, even better, by the space of functions f (X, u) differentiable with respect to u at u = 0 (and such that f (X, 0) and ∂f ∂u (X, 0) are smooth). On the other hand, since the set O is open, it is also possible to replace C ∞ (R 3n , R) by any of its open subsets, for instance by the set of strictly convex functions w.r.t. u in C ∞ (R 3n , R).

Proof of Theorem 4

We consider a control system where the control acts linearly on the acceleration, with as many inputs as degrees of freedom:

ẍ = φ(x, ẋ) + N (x)u, where • x belongs to R n (or to a n-dimensional differentiable manifold); • the control u ∈ R n is bounded: u - i ≤ u i ≤ u + i with u - i < 0, u + i > 0; • φ ∈ C ∞ (R 2n , R n ); • for every x the (n × n) matrix N (x) is invertible and x → N (x) is C ∞ .
Setting X = (x, y), we rewrite the system as:

Ẋ = F (X) + n i=1 u i b i (X), X ∈ R 2n , u ∈ U ⊂ R n , (31) 
where F and b 1 , . . . , b n are vector fields on R 2n .

An equilibrium of this system is a stationary trajectory X ≡ X 0 , associated to a control u ≡ u 0 with:

F (X 0 ) + i u 0 i b i (X 0 ) = 0. Fix a "source-point" X 0 ∈ R 2n , a "target-point" X 1 ∈ R 2n
, and a time T > 0. Given a function f on R 3n , we define the following optimal control problem:

(P f ) minimize the cost J(u) = T 0 f (X, u)dt among the trajectories of Equation 31 joining X 0 to X 1 .
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We will restrict to functions f (X, u) in SC, the set of C ∞ functions from R 2n × R n to R which are strictly convex with respect to u (in the strong sense, of course, that the Hessian is positive definite). The precise result we show is more than Theorem 4: it shows that the bad subset is very small (has infinite codimension).

Theorem 6.

There exists an open and dense subset O of SC (endowed with the C ∞ Whitney topology) such that, if f ∈ O , then (P f ) does not admit minimizing controls u with a component u i vanishing on a subinterval of [0, T ], except maybe if the associated trajectory on the subinterval is an equilibrium of the system. In addition, for every integer N , the set O can be chosen so that its complement has codimension greater than N .

Of course we assume T > T min , the minimum time. Again the proof is based upon Thom's transversality theorem, we will then make the computations in the spaces of jets. For a positive integer N and a pair (X, u) ∈ R 2n × R n , we denote by J N (X,u) the space of N -jets at (X, u) of functions in C ∞ (R 3n , R).

Lemma 3. Let f ∈ C ∞ sc (R 3n , R).
Assume that the trajectory (X, u) minimizing (P f ) satisfies, on a subinterval I of [0, T ]:

• u i 0 ≡ 0 for some i 0 ∈ {1, . .

. , n};

• Ẋ = 0 (i.e., the restriction X |I contains no equilibrium of the system).

Then there exists t ∈ I such that the N -jet j N (X(t),u(t)) f belongs to a semi-algebraic subset of J N (X(t),u(t)) of codimension greater than N -2n.

Proof. Recall that, under the hypothesis of the lemma, there is a trajectory (X, u) minimizing (P f ). Moreover this trajectory is not the projection of a singular extremal, and its associated control u is continuous. Thus, applying Pontryagin's Maximum Principle on I, there exists a C 1 function P = (p, q) : I → R n × R n such that, for all t ∈ I:

(P1) Ṗ (t) T = -∂H ∂X (X(t), P (t), u(t)), (P2) H(X(t), P (t), u(t)) = max v∈U H(X(t), P (t), v),
where H is the normal Hamiltonian of the problem,

H(X, P, λ, u) = p T y + q T (φ(X) + N (x)u) -f (X, u).
From (P1), the following holds on the interval I:

   ṗT = -q T ∂φ ∂x (X) -∂f ∂x (X, u), qT = -p T -q T ∂φ ∂y (X) -∂f ∂y (X, u). ( 32 
)
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On the other hand, (P2) implies that, for every t ∈ I, u(t) satisfies the Karush-Kuhn-Tucker conditions: there exist Lagrange multipliers λ + (t), λ -(t) in R n such that:

         N (x(t)) T q(t) - ∂f ∂u (X(t), u(t)) T -λ + (t) -λ -(t) = 0, λ + i (t), λ - i (t) ≥ 0, i = 1, . . . , n, λ + i (t)(u i (t) -u + i ) = λ - i (t)(u i (t) -u - i ) = 0, i = 1, . . . , n.
Since the control u is continuous, we may assume without lack of generality that there exist a nonempty subinterval J of I and an integer m ∈ {0, . . . , n -1} such that:

• for i = 1, . . . , m, we have u i (t) ∈]u - i , u + i [ for every t ∈ J; in this case λ + i ≡ λ - i ≡ 0 and, (N (x) T q) i = ∂f ∂u i (X, u) on J; • for i = m + 1, . . . , n -1, u i is constant on J and equals to u - i or u + i ; • u n ≡ 0 vanishes on J (i.e., i 0 = n); as a consequence, λ + n = λ - n = 0 and, (N (x) T q) n = ∂f ∂u n (X, u) on J.
Denote by v = (v 1 , . . . , v m ) the first m coordinates of a vector v ∈ R n . Then the minimizing control can be written as u(t) = (ū(t), u 0 ), where u 0 ∈ R n-m is constant, and,

N (x) T q = ∂f ∂ ū (X, u) T on J. ( 33 
)
Case 1. The matrix

∂ 2 f ∂ ū2 (X, u) is invertible on a subinterval J of J.
It results from the Implicit Functions Theorem applied to Equation 33 that ū is C 1 on J and, for all t ∈ J ,

u(t) = ∂ 2 f ∂ ū2 (X(t), u(t)) -1 d dt N (x(t)) T q(t) -(L F -i u i (t)L b i ) ∂f ∂ ū (X(t), u(t)) T ,
where L F and L b i denote the Lie derivative with respect to respectively F and b i . We use Equation 32to eliminate q(t) in the expression

d dt N (x(t)) T q(t) = DN (x(t)) T (y)q(t) + N (x(t)) T q(t), 62 
and we obtain:

u(t) = Q X(t) p(t), q(t), u(t); ∂ 2 f ∂ ūi ∂ ūj , ∂ 2 f ∂ ūi ∂X j , ∂f ∂X i at (X(t), u(t)) , (34) 
where Q X is a rational function depending smoothly on X.

Fix now s ∈ J . Since Ẋ(t) = F (X(t)) + i u i (t)b i (X(t)
) is never vanishing on J , we may assume, up to a local change of the coordinates X = (X 1 , . . . , X 2n ) on R 2n near

X(s), that F (X) + i u i (s)b i (X) = ∂ ∂X 1 . Differentiating (N (x) T q) n = ∂f ∂un (X, u) with respect to time near t = s leads to d dt (N (x(t)) T q(t)) n = ∂ 2 f ∂un∂X 1 (X(t), u(t)) + i ∆u s i (t)L b i ∂f ∂un (X(t), u(t)) + m i=1 ∂ 2 f
∂un∂ ūi (X(t), u(t)) ui (t), where ∆u s (t) = u(t)u(s). We substitute the expressions Equation 34of u(t) and Equation 32of qn into this equation, and we obtain, for t near s,

∂ 2 f ∂un∂X 1 + R 1 X (∆u s ∂ 2 f ∂un∂X i , ∂ 2 f ∂u i ∂u j , ∂ 2 f ∂ ūi ∂X j , ∂f ∂α i , p, q, u) = 0, where R 1
X is a rational function with coefficients depending smoothly on X, and α i , 1 ≤ i ≤ 3n, denotes the i th component of the vector α = (X, u).

Successive derivations (with substitution of u(t) by Equation 34and of ṗ and q by Equation 32 at each step) and evaluation of the derivatives at t = s lead to a system of equations of the form, for k ≥ 1,

∂ k+1 f ∂un∂X k 1 (X(s), u(s)) + R k (P (s), ∂ j f ∂α i 1 •••∂α i j (X(s), u(s)); j ≤ k + 1) = 0,
where R k is a rational function, and if j = k + 1 then at least one of the α i is a ūi .

Let Ω N 1 be the set of N -jets j N (X(s),u(s)) f such that det( ∂ 2 f ∂ ū2 (X(s), u(s))) = 0. It is an open subset of J N (X(s),u(s)) . We have proved that (j N (X(s),u(s)) f, P (s)) belongs to ψ -1 1 (0), where ψ 1 : Ω N 1 ×R 2n → R N -1 is the rational mapping which to a N -jet j N (X(s),u(s)) g ∈ Ω N 1 and a vector P ∈ R 2n associates   ∂ k+1 g ∂un∂X k 1 (X(s), u(s)) + R k (P, ∂ j g ∂α 1 •••∂α j (X(s), u(s)); j ≤ k + 1)   1≤k≤N -1 . 63 This mapping is clearly surjective, therefore ψ -1 1 (0) is a semi-algebraic subset of J N (X(s),u(s)) × R 2n of codimension N -1. The projection of ψ -1 1 (0) on J N (X(s),u(s)
) is then a semialgebraic subset of codimension greater than N -2n, which moreover contains the N -jet

j N (X(s),u(s)) f . Case 2. The matrix ∂ 2 f ∂ ū2 (X, u) is never invertible on J.
In order to show that ū is C 1 and to derive an expression for u, we need to introduce some notations. We define inductively a sequence of mappings V : R 2n × R n → R m by:

• V 0 = ∂f ∂ ū T
• for a positive integer , the components of V are:

V k =        V -1 k if 1 ≤ k ≤ r , det ∂V -1 i ∂ ūj i,j=1,...,r ,k if r + 1 ≤ k ≤ m,
where r = r (X, u) is the rank of the matrix ∂V -1 ∂ ū (X, u). By hypothesis, r 1 (X(t), u(t)) is smaller than m for t ∈ J. Since X(•) and u(•) are continuous, up to a permutation of the indices {1, . . . , m}, there is a subinterval J of J such that, for any ≥ 1,

• the rank r (X(t), u(t)) is constant on J ;

• the function

δ (X(t), u(t)) = det ∂V -1 i ∂ ūj (X(t), u(t))
1≤i,j≤r is never vanishing on J ;

• if r < m, then V (X(t), u(t)) = ((N (x(t)) T q(t)) 1 , . . . , (N (x(t)) T q(t)) r 1 , 0, . . . , 0) for all t ∈ J .
Notice that an easy induction shows the following expression:

V k = δ 1 . . . δ ∂ +1 f ∂ ū +1 k + G k, , (35) 
where G k, is a polynomial function of the derivatives of the form

∂ j f ∂ ūi 1 •••∂ ūi j , with j ≤ + 1, each i l ≤ k, and l i l < k( + 1).
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Denote by L the largest integer such that r L < m (we set L = +∞ if the latter condition is always satisfied). Then, for = 1, . . . , L, V m (X, u) ≡ 0 on J . If moreover L < ∞, there holds on J , V L (X, u) = ((N (x) T q) 1 , . . . , (N (x) T q) r 1 , 0, . . . , 0) and ∂V L ∂ ū (X, u) invertible, with u(•) = (ū(•), u 0 ). It then results from the Implicit Functions Theorem that ū is C 1 on J . Following exactly the argument of Case 1, we obtain a system of equations of the form, for a fixed s ∈ J ,

∂ k+1 f ∂u n ∂X k 1 (X(s), u(s)) + R k = 0, k ≥ 1,
where R k is a rational function of P (s) and of derivatives

∂ j f ∂α i 1 •••∂α i j (X(s), u(s)) such that j ≤ k + L and, if one of the α i is u n , then j ≤ k + 1 and j = k + 1 implies that at least one of the other α i is a ūi . Set M = min(L, N -1). Let Ω N 2 be the set of N -jets j N (X(s),u(s)) f such that: δ 1 (X(s), u(s)) . . . δ M (X(s), u(s)) = 0.
It is thus an open subset of J N (X(s),u(s)) . We have proved that (j N (X(s),u(s)) f, P (s)) belongs to ψ -1 2 (0), where ψ 2 : Ω N 2 ×R 2n → R N -1 is the rational mapping which to (j N (X(s),u(s)) f, P (s)) associates

  δ 1 . . . δ ∂ +1 f ∂ ū +1 k (X(s), u(s)) + G k, 1≤ ≤M , ∂ k+1 f ∂u n ∂X k 1 (X(s), u(s)) + R k 1≤k≤N -M -1   .
This mapping is clearly surjective, therefore

ψ -1 2 (0) is a semi-algebraic subset of J N (X(s),u(s)) × R 2n of codimension N -1. The projection of ψ -1 2 (0) on J N (X(s),u(s)
) is then a semialgebraic subset of codimension greater than N -2n, which contains the N -jet j N (X(s),u(s)) f . Theorem 6 follows from Lemma 3 combined with standard transversality arguments.
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Computation of Extremals in the 2-dof Case

We use the stratification of the (u 1 , u 2 )-plane with respect to the "sign of coordinates". Thus we have the following analysis.

1. In the strata u 1 , u 2 > 0, the maximum of H(u 1 , u 2 ) is solution of the following system (setting

s 1 = -1, s 2 = -1) : 0 = ∂ H ∂u 1 = s 1 .|y 1 | -2α 1 H11 ( H11 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H21 ( H21 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H11 + q 2 H21 and, 0 = ∂ H ∂u 2 = s 2 .|y 2 | -2α 1 H12 ( H11 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H22 ( H21 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H12 + q 2 H22 .
Regrouping the u i s all together, we get: 66

(2α 1 H2 11 + 2α 2 H2 21 )u 1 + (2α 1 H11 H12 + 2α 2 H21 H22 )u 2 = s 1 .|y 1 | -2α 1 H11 ( H11 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H21 ( H21 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H11 + q 2 H21
and,

(2α 1 H12 H11 + 2α 2 H22 H21 )u 1 + (2α 1 H2 12 + 2α 2 H2 22 )u 2 = s 2 .|y 2 | -2α 1 H12 ( H11 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H22 ( H21 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H12 + q 2 H22 ,
Which is a system of the general form:

s 1 .|y 1 | + C 1 = (2α 1 H2 11 + 2α 2 H2 21 )u 1 +(2α 1 H11 H12 + 2α 2 H21 H22 )u 2 s 2 .|y 2 | + C 2 = (2α 1 H12 H11 + 2α 2 H22 H21 )u 1 +(2α 1 H2 12 + 2α 2 H2 22 )u 2 .
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The solutions follow:

u 1 = (α 1 H2 12 + α 2 H2 22 )(C 1 + s 1 .|y 1 |) 2α 1 α 2 ( H11 H22 -H12 H21 ) 2 - (α 2 H21 H22 + α 1 H12 H11 )(C 2 + s 2 .|y 2 |) 2α 1 α 2 ( H11 H22 -H12 H21 ) 2 u 2 = -(α 1 H11 H12 + α 2 H21 H22 )(C 1 + s 1 .|y 1 |) 2α 1 α 2 ( H11 H22 -H12 H21 ) 2 + (α 1 H2 11 + α 2 H2 21 )(C 2 + s 2 .|y 2 |) 2α 1 α 2 ( H11 H22 -H12 H21 ) 2 (36)
2. In the strata u 1 > 0 and u 2 < 0, the maximum is solution of the same system, and has the same expression (Equation 36), but taking s 1 = -1 and s 2 = +1.

3-4.

In the stratas S 3 , S 4 , corresponding respectively to (u 1 < 0, u 2 < 0), ( u 1 < 0, u 2 > 0), we get the same expression taking respectively (s 1 = +1, s 2 = -1), (s 1 = +1, s 2 = +1). 5. For the strata u 1 = 0 and u 2 > 0, we set s 2 = -1. The maximum is given by:

0 = ∂ H ∂u 2 = s 2 .|y 2 | -2α 1 H12 ( H11 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H22 ( H21 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[u 2 -G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H12 + q 2 H22 .
Regrouping the terms in u 2 :

(2α 1 H2 12 + 2α 2 H2 22 )u 2 = s 2 .|y 2 | -2α 1 H12 ( H11 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H22 ( H21 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H12 + q 2 H22 , 68 or, (2α 1 H2 12 + 2α 2 H2 22 )u 2 = s 2 .|y 2 | + C 2 . Therefore: u 2 = s 2 .|y 2 | + C 2 2α 1 H2
12 + 2α 2 H2

22 .

6.

In the strata u = 0 and u 2 < 0 the expression is similar, with s 2 = +1.

7.

In the strata u > 0 and u 2 = 0, we set s 1 = -1.

0 = ∂ H ∂u 1 = s 1 .|y 1 | -2α 1 H11 ( H11 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H21 ( H21 .[u 1 -G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H11 + q 2 H21 .
Regrouping the u 1 terms:

(2α 1 H2 11 + 2α 2 H2 21 )u 1 = s 1 .|y 1 | -2α 1 H11 ( H11 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H12 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) -2α 2 H21 ( H21 .[-G 1 + h.(y 2 2 + 2y 1 y 2 ) -B 11 y 1 -B 12 y 2 ] + H22 .[-G 2 -h.y 2 1 -B 21 y 1 -B 22 y 2 ]) + q 1 H11 + q 2 H21 , or, (2α 1 H2 11 + 2α 2 H2 21 )u 1 = s 1 .|y 1 | + C 1 .
From what:

u 1 = s 1 .|y 1 | + C 1 2α 1 H2 11 + 2α 2 H2 21 .
8. In the strata u < 0 and u 2 = 0, we get the same expression with s 1 = +1. 69 9. On the last strata u 1 = u 2 = 0, the maximum is obviously u 1 = u 2 = 0.

Notice also that we know (Theorem 2) that the optimal control is continuous.

Then, we integrate Pontryagin's equations by finding the maximum of the Hamiltonian within the 9 expressions above, and checking in which region it is.

A trial and error procedure on the initial adjoint vector does the job. 

Article C : Modular control of pointing beyond arm's length

Introduction

Most of our daily life activities involve the entire body. However, the two traditional ways to investigate human motor control either focus on the equilibrium mechanisms (see [START_REF] Horak | Postural orientation and equilibrium[END_REF] for a review) without considering hand trajectory formation or, conversely, on reaching movements by artificially restricting the motion of the lower body parts (see [START_REF] Shadmehr | The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning[END_REF] for a review). Nevertheless, the picture of how the central nervous system (CNS) plans goal-oriented action may probably be clarified by asking how all body parts are coordinated during a pointing task. For instance, when reaching beyond arm's length from a standing posture, the trunk-plus-arm action causes a displacement of the whole body with respect to the direction of gravity. Thus, besides arm trajectory formation and target reaching, the CNS must anticipate the potential loss of balance.

An open question is whether these two subtasks are controlled as one single central command or separately [START_REF] Hess | Teleokinetisches und ereismatisches kräftesystem in der biomotorik[END_REF][START_REF] Belenkii | Elements of control of voluntary movements[END_REF][START_REF] Cordo | Properties of postural adjustments associated with rapid arm movements[END_REF][START_REF] Schepens | Strategies for the integration of posture and movement during reaching in the cat[END_REF]. A classical approach is to consider the two mechanisms in a hierarchical manner: equilibrium maintenance would be subordinated to reaching and lower limbs would offset the displacement of the Centre of Mass (CoM) accompanying voluntary arm movement [START_REF] Massion | Movement, posture and equilibrium: interaction and coordination[END_REF]. According to this interpretation, lower and upper body parts would ensure respectively equilibrium preservation and finger trajectory formation. Alternatively, a grouping of body angles was proposed as a kinematic solution to reduce the effective number of degrees of freedom and simplify the motor command (Bernstein, 1967;[START_REF] Alexandrov | Axial synergies during human upper trunk bending[END_REF][START_REF] Lacquaniti | Motor patterns in walking[END_REF]Alexandrov et al., 2001a,b;[START_REF] Thomas | Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements[END_REF]. In this case equilibrium and reaching subtasks would be integrated in the same module, a term that we use to denote the covariation of a specific set of angles. To check whether the CNS would control one or several functional modules regrouping or dissociating focal and equilibrium task objectives, we tested the hypothesis that, according to the task demand, the CNS controls the whole body either as one single or two distinct modules. The finding of both global and local kinematic synergies would support a flexible modular organization [START_REF] Bizzi | Combining modules for movement[END_REF] able to integrate or dissociate, if necessary, equilibrium maintenance and target reaching rather than a subordinate mode of control. On the left part, the rectangle represents the basic motor strategy (A) composed of a single module. Due to experimental task restrictions (spatial and equilibrium constraints) applied to A, two possible cases can be considered: a new motor strategy composed of one module, different from A or similar to A, can be elaborated by the CNS; alternatively, a new motor strategy C composed of 2 or more modules (c i ) can be elaborated. However, two possibilities can be considered in such a case: C can be composed of new modules, task dependents and different from any sub-module (a sub-module corresponds to the covariation of some body parts initially included in a module) of A, or, some of these modules can be task independent and come from the initial motor strategy A.

Our approach consisted of applying equilibrium and spatial constraints on a natural unstable hand reaching and analyze the kinematics of the resulting movements to infer the mechanisms underlying the coordination of the two subtasks. In one condition reaching was performed from a reduced base of support or without knee flexion to limit the capacity of producing horizontal or vertical CoM displacements. In another condition, subjects were asked to reach the target following a straight or semi-circular finger trajectory. The priority given to one of the subtasks may clarify how the different body parts enter into coordination. Figure 1 sums up the possible motor strategies in response to these experimental restrictions. Reaching a target under postural or focal constraints could produce a global effect where all body parts are integrated into one module, supporting the idea of a synergic control of postural and goal-oriented aspects of the action. Alternatively, the motor planning could be split in two distinct modules, one driving arm reaching and one maintaining equilibrium; the two modules could be new or be derived from the basic motor strategy initially present in the free condition. The results show 3 that when priority is given to hand trajectory, a second module originates from the basic kinematic strategy suggesting a flexible coordination of posture and movement.

Materials and Methods

Participants

Twenty-six adults (all males, 18-29 years, mean height 1.76 ± 0.08 m, mean weight 68 ± 9 kg) agreed voluntarily to participate in the experiments. All were healthy with no previous neurological disease and normal or corrected-to-normal vision. The experiments conformed to the Declaration of Helsinki and informed consent was obtained from all the participants according to the protocol of the Ethics Committee of the Université de Bourgogne. The experimental protocol is illustrated in Figure 2. The participants were divided in two groups: the first one carried out the "basic" and "equilibrium" experimental tasks (Fig. 2a, 2b, and 2b') while the second group performed the "basic" and "spatial" experimental tasks (Fig. 2a,2c, and 2c'). 

Basic motor task

All the participants performed the basic motor task (B condition, see Fig. 2a) and the recorded results served as reference to compare the results of the other experimental tasks. A similar protocol was already used in recent studies [START_REF] Pozzo | Coordination between equilibrium and hand trajectories during whole body pointing movements[END_REF][START_REF] Schmid | Effect of fatigue on the precision of a whole-body pointing task[END_REF]. Participants were asked to point with the two arms simultaneously towards a pair of targets placed at two different distances (lateral coordinates: Z = ± 0.2 m, vertical coordinates: Y=15% of each participant's height, antero-posterior (A-P) coordinates: X, depending on the target distance). The first target distance corresponded to 5% (short distance, D1) and the second to 30% (long distance, D2) of the participants' height. Both distances were measured from the distal end of the participants' great toe. Participants started from an upright standing position and their hands were located initially at the external side of the thighs and thus induced hand pointing movements in a semipronated position. The whole movement was performed in the sagittal plane, with each sides of the body moving together. Target accuracy was not the primary constraint imposed upon the participants during the experiments and no instruction was given to them regarding the movements to be effected by the body segments. Each participant achieved, at a natural (self-selected) speed, a block of 10 pointing movements for each condition of distance.

Equilibrium constraint

Twelve participants took part in the experiment in which equilibrium constraints were added to the basic motor task (see Fig. 2b and2b'). Equilibrium constraints were introduced in two different ways. Participants were asked to point towards the targets (i) by freezing their knee joints, a condition which imposed a high inverted pendulum configuration reducing stability (K condition, extended knee condition, see Fig. 2b), and (ii) from a reduced base of support (R condition) defined by a 40 cm large horizontal square (wooden board) fixed on a thin piece of wood (5 cm high, 5 cm large and 40 cm length, see Fig. 2b'). In both conditions, they were asked to perform the motor task without falling from the small support or loosing equilibrium control. Participants stayed on the wooden board with the vertical projection of the malleolus of each foot 5 at the backward limit of the thin piece of wood. Both motor tasks (K and R) were executed at a natural pace . Within each motor task, the number of trials and the order of execution of the two distances were similar to those of the basic motor task. One or two preliminary trials allowed participants to familiarize themselves with the experimental restrictions.

Spatial constraint

Fourteen participants took part in the experiment (see Fig. 2c and2c') in which spatial constraints were added to the basic motor task. Participants were asked to point to the targets by using a straight finger trajectory (S condition, see Fig. 2c). Participants initially performed three non-recorded trials by following a straight wire connecting the initial finger position to the target. After this short period, they were asked to perform the task without wire and to keep the same speed as in previous experiments.

Participants were also requested to reach the targets with large finger path curvatures (C condition, semi-circular finger trajectory, see Fig. 2c'). The imposed path was concave in the sagittal plane (semi-circle whose diameter was equal to the distance between the initial finger position and the target). Again the participants performed three nonrecorded trials by tracking a curved wire connecting the initial finger position and the targets. Then, they were asked to perform the task without wire. Both tasks were performed at a natural pace. Within each motor task, the number of trials and the order of execution of the two distances were similar to those of the basic motor task. The participants were allowed to rest one minute between each condition and the total duration of the whole experiment was one hour and a half.

Data Collection and Processing

Movement kinematics was captured using an optoelectronic device (SMART-BTS, Milan, Italy). Nine cameras were used to measure the position of eleven retro-reflective markers (15 mm in diameter), which were placed at various anatomical locations on the right side of the body (external cantus of the eye, auditory meatus, acromial process, humeral lateral condyle, ulnar styloid process, apex of the index finger, D1 vertebra, greater trochanter, knee interstitial joint space, external malleolus, and fifth metatarsal head of the foot).

All analyses were performed with custom software written in Matlab (Mathworks, Natick, MA) from the recorded three-dimensional (3D) position of the eleven markers (sampling frequency 120 Hz). Recorded signals were low-pass filtered using a digital fifthorder Butterworth filter at a cut-off frequency of 7.5 Hz (Matlab filtfilt function). The whole-body motion was performed in the sagittal plane. In order to verify the planarity hypothesis of the movement, we used a Principal Component Analysis (PCA, Jolliffe, 1986) on the whole 3D dataset of each participant (grouping all markers as individual observations). The variance accounted for (VAF) by the two first principal components (PC) was more than 98% for all participants, indicating that most markers trajectories 6

were approximately lying on one plane. In particular, this plane was nearly the one defined by the reference frame of the acquisition system (XY, where X was the A-P axis and Y was the vertical axis). The angle between normal vectors of the planes was less than 4°± 1.5°. Therefore, we projected the 3D data on the plane XY (X=antero-posterior axis, Y=vertical axis) defined by our recording system.

Movement analysis

An estimation of CoM displacements was used to characterize the equilibrium performance. We estimated the position of the CoM using an eight-segment mathematical model consisting of the following rigid segments: head, trunk, thigh, shank, foot, upper arm, forearm, and hand. Using this model, the position of the CoM was calculated via standard procedures and using documented anthropometric parameters (Winter, 1990). The model used to determine the whole-body CoM position has previously been validated for similar whole-body reaching movements [START_REF] Stapley | Does the coordination between posture and movement during human whole-body reaching ensure center of mass stabilization?[END_REF]. The final whole-body momentum (WBM) was also evaluated using an inverse pendulum model in which the whole-body mass was concentrated in its CoM. It was evaluated using the standard formula mgx A-P where m was the subject mass, g is the gravity acceleration (≈ 9.81 m.s -2 ), and x A-P was the distance between the ankle (fixed point) and the projection of the CoM on the A-P axis.

The finger kinematics was used to analyze the pointing performance. Finger movement onset time was defined as the instant at which the linear tangential velocity of the index fingertip exceeded 5% of its peak and the end of movement as the point at which the same velocity dropped below the 5% threshold. Standard kinematic parameters usually described in arm pointing studies (e.g., Papaxanthis et al., 2005) were calculated: movement duration (MD), peak velocity (PV), mean velocity (MV), relative time to peak velocity (TPV) defined as the ratio of the duration of acceleration and MD, index of finger path curvature (IPC=Dev/LD) defined as the ratio of the maximum path deviation (Dev) from a straight line connecting the initial and final finger positions (linear distance, LD), and curvilinear distance of the finger (CD) defined by the integral over time from 0 to MD of the norm of the finger velocity vector (in plane XY). In order to evaluate the consistency of the final finger position, we calculated the 95% confidence ellipses in plane XY. Constant errors were defined as the distance between the finger position and the target in 3D.

Eight elevation angles (with respect to the vertical axis Y; Sk=Shank, Th=Thigh, Pe=Pelvis, Tr=Trunk, He=Head, Hu=Humerus, Fo=Forearm, Ha=Hand) were defined (see Fig. 2, inset). Arm angles will be referred to as upper limbs angles in opposition to the angles of leg, trunk, and head which will be referred to as lower limbs angles, for the sake of simplicity. The temporal window used for analyzing the angular displacement was based upon the finger onset and ending times defined above. We visually verified that the finger marker was the first and the last to move compared to the other markers 7 placed on the body. The angular time series are depicted in Figure 3. These time series were then used to compute i) the amplitude of each angular displacement (defined as the absolute value of difference between the initial and final angle) and ii) an index of the whole-body coordination using PCA (see below). 

Principal component analysis

PCA was applied to the angular displacements. Each sample of time was considered as a single observation lying in an ambient vector space whose dimension was given by the number of time series included in the analysis.
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For instance, consider a simple input dataset composed of 8 columns (the angular displacements recorded during one trial) and 200 rows (normalized time). PCA could be thought as a generalization of a correlation analysis in a high dimensional space. In this case, PCA extracted the commonality between the angular displacements, which was sometimes referred to as waveforms since it especially focused on the shape of the angular time series.

Let Θ be the matrix of time-normalized angular displacements (200 rows × 8 columns).

For each i ∈ {1, ..., 8}, the i th column of Θ (denoted by Θ i ) was centered and normalized in amplitude using the formula Θi = (Θ i -m i )/s i where m i and s i were the mean and standard deviation of Θ i , respectively, and thus, we got a new matrix Θ. Then, the covariance matrix of Θ was computed (i.e., the correlation matrix of Θ) and decomposed on the basis of eigenvectors (by orthogonal diagonalization). We preferentially used the correlation matrix in order to take into account the different ranges of motion of each segment. After reordering the eigenvalues by decreasing order (and thus rearranging the corresponding eigenvectors), the matrix of eigenvectors was denoted by W = (w ij ) 1≤i,j≤8 . This matrix contained the weighting coefficients, i.e., the loadings of PCA. Then, the principal components (denoted by Π, and referred to as PCs) which represented the most common waveforms contained in the input dataset, were defined as the following linear combination:

Π = ΘW.
For instance, the first PC (also referred to as PC1) was obtained by the formula: Π 1 = i=8 i=1 w i1 Θi (the first column of Π, i.e., a vector with 200 rows corresponding to the time).

When performing PCA, it was useful to examine the loadings in order to uncover how angular displacements were captured by each PC. To this aim, we thus analyzed each column of W (i.e., each eigenvector) which defined a 1-dimensional vector subspace (i.e., a certain direction in the 8-dimensional vector space). These eigenvectors represented a well-adapted basis of the 8-dimensional vector space, characterizing the most important directions (in the sense of the variance accounted for, VAF) and, in this setting, a principal component was simply the projection of the data onto a subspace spanned by a certain eigenvector. The ratio between the first eigenvalue and the sum of all eigenvalues could be viewed as an index of the whole-body coordination (this value is commonly called the VAF by the PC1 and is referred to as PC1%). A PC1% value equal to 100% meant that the trajectory in the space of angles was a straight line, i.e., all angles were linearly correlated together. On the other hand a low PC1% value indicated that only one principal component could not describe precisely the whole-body movement, i.e., the observations lied in a subspace whose dimension was higher than 2, and thus, non-linear relationships between angles existed. Therefore, we also reported the second 9 PC whose VAF is denoted by PC2%. Large PC2% values expressed that at least one angular displacement differed from the most common waveform given by PC1.

Here, instead of using 1560 independent PCA (a PCA for each trial, each condition, and each participant), we used a PCA whose input dataset consisted of 800 or 960 columns (8 angles × 10 trials × 10 or 12 participants) and 200 rows (normalized time) for each experimental condition. The analysis was exactly the same than the one depicted above, except that the number of column of the input dataset changed. By doing this we let the PCA automatically extracted the commonality between all these angular waveforms (as in [START_REF] Thomas | Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements[END_REF]. Nevertheless, individual PCA were also performed when necessary in order to seek inter-trials adaptation, especially during the experiments with equilibrium or spatial constraints.

Reconstruction from PCs

A useful feature of PCA is the possibility to reconstruct an approximated whole-body movement from the data projected on the vector subspace spanned by the first eigenvector (or by more eigenvectors), using the inverse (or equivalently the transpose in our case) of the matrix W . Here, the reconstructed centered and normalized angular displacements were simply obtained by the formula:

ΘRec = ΠW -1 .
For instance, the reconstruction from PC1 only was obtained by using the first column of Π and the first row of W -1 of the above formula. Then, the reconstructed angular displacements Θ Rec were given, for each column i, by the following equation:

Θ Rec i = s i ΘRec i + m i .
The same procedure was used to reconstruct movements from both PC1 and PC2 (by taking the appropriate rows and columns of Π and W -1 , respectively). Notice that the reconstructed angular displacements Θ Rec were exactly equal to Θ when all PCs were used. Otherwise we just got an approximation of the original angular displacements.

Once the reconstructed angular waveforms were obtained, the position of markers in plane XY were then recalculated. To reconstruct the markers kinematics, we assumed that the foot was fixed (which was approximately the case in practice). Head movement was reconstructed assuming that the trajectory of the auditory meatus marker was the one recorded in practice. Notice that this approximation had no influence on the finger trajectory and little influence on the CoM position.

Finally, the same analyses were performed using the covariance matrix rather than the correlation matrix. In particular, this did not change the main results presented below. Here, we considered that the correlation matrix was better suited because angular displacements had significant different amplitudes.
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Correlation analyses

Covariation between angles was also estimated by means of a pairwise correlation analysis. Although loadings gave information concerning the joint coupling between pairs of angles (indeed, if loadings were the same for two angles, one could expect that these angles were highly correlated), a more direct method to analyze the coupling between pairs of angles was to compute the correlation coefficients between each pair of angles.

In the 2-dimensional case (i.e., if we observe only two angles), PC1% value was correlated to the coefficient of correlation. Thus, this analysis could be viewed as a local analysis compared to the global joint coupling given by the PC1% value. For a total of 8 angles, 28 correlations were computed on all pairs of angles, which corresponded to the correlation matrix coefficients analysis, for each single movement. Statistically significant correlation coefficients (p < 0.05) were only retained by means of Matlab corrcoef function.

Numerical simulation

In order to test the feasibility of a strategy combining an angular covariation with the production of a desired finger trajectory in the Cartesian space (S and C conditions), we conducted a numerical simulation. To this aim, we hypothesized that the movement was optimal according to the minimum angle jerk criterion in the space of elevation angles [START_REF] Wada | Quantitative examinations for multi joint arm trajectory planning-using a robust calculation algorithm of the minimum commanded torque change trajectory[END_REF]. Under this assumption, the angles covariation was perfect, i.e., the VAF by PC1 was exactly equal to 100%. This meant that all body angles were driven by one single principal component, or in other words, that one single module ensured both spatial and equilibrium subtasks. This was a plausible assumption according to previous results [START_REF] Alexandrov | Axial synergies during human upper trunk bending[END_REF][START_REF] Thomas | Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements[END_REF] which indicated that a single PC captured similar whole-body reaching tasks. In such a task, there was an infinity of final postures allowing to put the fingertip on the target and to preserve equilibrium since there were 8 degrees of freedom. In this simulation, the initial posture was fixed and we used a numerical optimization procedure aimed at finding the final posture such that the resulting finger trajectory fitted at best to the imposed finger path in task-space (either a straight line or a circular arc, as in the S and C conditions). This was possible because, once a final posture was selected, the minimum angle jerk criterion allowed us to determine all limb displacements, and therefore, the finger path. The detailed procedure is given in the appendix.

Statistical analysis

All variables were normally distributed (Shapiro-Wilk W test) and their variance was equivalent (Levene's test). Statistical effects were tested by performing analyses of variance (ANOVA, repeated measures) when appropriate (either a 5 (B, K, R, S, C) × 2 (D1, D2), a 3 (B, K, R) × 2 (D1, D2), or a 3 (B, S, C) × 2 (D1, D2) analysis). Post-hoc analyses were conducted with Scheffé's test and Student t-tests were also used.
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Angular variability

We verified, for each participant and each angle, the consistency of angular displacements, in each experimental condition. The maximum intra-subject standard deviation of amplitudes was less than 4°.

Movement duration

We found similar movement durations for all the experimental conditions (ANOVA, p > 0.2 for all conditions), except for the semi-circular finger path condition in which the movement duration was significantly longer (40%, ANOVA, p < 0.05) compared to the other experimental conditions (see Table 1). This result is logical since the finger path imposed in this condition was obviously longer. However, the average velocities recorded in this condition were similar to those of all the other conditions (p = 0.23, see Table 1).

Specific experimental constraints

All participants succeeded in performing the constrained motor tasks (K, R, S, and C conditions). Concerning the equilibrium constraints, as expected, the average knee joint amplitudes recorded in the extended knee condition (5°± 2°) were significantly lower (t-tests, p < 13 0.001, for both distances) than those recorded during the basic motor task (B condition, 50°± 20°). Furthermore, the CoM position remained significantly higher (+0.1 m), compared to the basic motor task, when participants were requested to keep their knees extended, as a consequence of the lack of knee flexion. The extended knee condition was characterized by an important forward trunk bending (see the green histograms for Pe and Tr in Fig. 3). Moreover, all participants significantly decreased the A-P CoM displacements in the reduced base of support condition (t-tests, p < 0.01, for both distances). The average decrease was 25% for the short distance and 50% for the long distance (see Table 2 and Fig. 4). Table 2: CoM displacements along antero-posterior (A-P) and vertical axes and final whole-body momentum (WBM).

Concerning the spatial constraints, the index of finger path curvature increased significantly (t-tests, p < 0.001) by about 400% in the imposed semi-circular trajectory condition compared to the basic one and remained concave in the sagittal plane (see Table 1 and Fig. 4). Analysis of index of finger path curvature in the imposed straight finger path condition confirmed that approximately straight paths were produced by all participants. Path curvature significantly decreased by 75% compared to those measured in the unconstrained condition (t-tests, p < 0.001).

Finally, no statistical difference between the two groups of participants which carried out the basic motor task was found.

Effect of equilibrium constraints

Figures 2a, 2b, and 2b' qualitatively depict the initial and final whole-body configurations, as well as the CoM and finger trajectories, in the basic (B) and equilibrium 14 constraints conditions (K and R) for both target distances.

Finger paths in the sagittal plane were strictly concave and roughly similar between the different experimental conditions (ANOVA, B × K × R × 2 distances, p = 0.52, see Table 1 and Fig. 4), although a slight decrease of the index of path curvature was noticed in the reduced base of support condition. Tangential finger velocity profiles were bell-shaped in these conditions, as depicted in Figure 4. The velocity profiles recorded in the basic motor task were strongly asymmetric: the acceleration duration was shorter than the deceleration duration (average TPV value was equal to 0.45 ± 0.05 in the basic condition, see Table 1). A significant difference was found between the basic and equilibrium conditions (ANOVA, p < 0.05) and a post-hoc analysis showed that TPV values significantly tended to 0.5 in the extended knee condition (p < 0.05) while they remained invariant in the reduced base of support condition (p = 0.57).

Forward CoM displacements in the basic and extended knee conditions were approximately 40% and 70% of the foot length for the short and long distances, respectively. In contrast, as already noticed, the participants limited the forward A-P CoM displacement (less than 4 cm, i.e., less than 30% of the foot length) in the reduced base of support condition (R), due to the experimental restriction; significant statistical differences (p < 0.01) were obtained when comparing the reduced base of support condition with the basic and extended knee conditions. Despite these modifications in amplitude, CoM path was task-independent and kept the same characteristic two components: an initial curvilinear and goal-oriented forward displacement followed by a straight downward movement [START_REF] Stapley | Does the coordination between posture and movement during human whole-body reaching ensure center of mass stabilization?[END_REF][START_REF] Pozzo | Coordination between equilibrium and hand trajectories during whole body pointing movements[END_REF]. Downward displacements of CoM were larger in the basic and reduced base of support conditions compared to the knee extended condition (p < 0.01, see Table 2). Notice that forward and downward displacements of the CoM significantly increased for the long distance (p < 0.01) as a consequence of a greater contribution of shank, pelvis, and humerus segments, necessary to reach the target (see Fig. 3, histograms). The velocity profiles of the CoM were single-peaked in all conditions (Fig. 4) and exhibited the same trend as finger TPV values.

15 Interestingly, participants were able to keep their equilibrium in both conditions. The changes in angular displacements were not detrimental to the covariation of elevation angles. Indeed, PCA showed that the VAF by PC1 was constantly more than 85% for all the conditions (p = 0.45, see black histograms in Fig. 5a), that is comparable to the values calculated in previous similar motor tasks [START_REF] Alexandrov | Axial synergies during human upper trunk bending[END_REF][START_REF] Thomas | Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements[END_REF]. The PC1% value increased significantly (+3%) at the long distance compared to the short distance (p < 0.01). Moreover, the principal component waveforms did not change significantly as indicated by the large correlation coefficients computed when comparing PC1 and PC2 between conditions (Fig. 5b). The PC1 captured the monotonic angular displacements with bell-shaped velocity profiles, whereas the second PC captured non-monotonic angular displacements with double-peaked speed profiles (see also Fig. 3a and 3b, middle column). In addition, an inspection of the loadings did not reveal significant changes in the reduced base of support condition for both distances (average r 2 equal to 0.97). At variance, in the extended knee condition, the angles were differently distributed among PC1 and PC2, and showed changes mainly in the leg angles (e.g., shank and thigh), due to the joint restriction imposed at the knee (see Fig. 5c). However, PC1% value remained high despite these changes.

Effect of spatial constraints

Figures 2c and2c' qualitatively illustrate the initial and final whole-body configurations, as well as the CoM and finger trajectories, under spatial constraints (S and C) for both target distances.

As already noticed, participants performed approximately straight and semi-circular finger paths in these conditions. The velocity time courses tended to become more symmetric in the imposed straight finger trajectory condition (TPV value was in average 17 0.49 ± 0.04, p = 0.06), being close to what would be predicted by a minimum Cartesian jerk model (straight trajectory and symmetric speed profile, see Flash and Hogan, 1985).

In contrast the velocity profiles recorded in the semi-circular condition were doublepeaked (see Table 1 and Fig. 4) similar to these obtained during via point movement [START_REF] Viviani | Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning[END_REF].

The analysis of CoM displacements revealed significant changes across the experimental conditions (see Table 2, but also Fig. 4). Specifically, in the imposed finger trajectory conditions, A-P and vertical CoM displacements respectively increased (+22%, p < 0.05) and decreased (-12%, p < 0.01) compared to the basic condition. These changes led the participants to adopt a more risky inverted pendulum configuration due to (i) the A-P CoM displacement close to the forward limit of the BoS and (ii) a longer level arm inducing a larger potential energy and a greater whole-body momentum (approximately +22%, see Table 2) compared to the basic experiment. In contrast to finger trajectory, the CoM velocity remained single-peaked in C condition.

Remarkably, the covariation of elevation angles was strongly affected by spatial constraints onto the finger path. The statistical analysis revealed a significant decrease of the PC1% value in these conditions (respectively -8% and -13%, p < 0.01) compared to the basic condition. This was compensated by a drastic increase of the PC2% value that was about twice larger than the values computed in the basic condition (see Fig. 5, grey histograms). Similarly to the basic motor task, the covariation of elevation angles was greater (+6%) for the long distance compared to the short distance (p < 0.05) in the motor tasks with spatial constraints. The inspection of principal components revealed that their waveforms were unchanged compared to the basic condition (see the large correlation coefficients, Fig. 5b). Nevertheless, the loadings analysis revealed changes in their distribution among the PC1 and especially the PC2. A noticeable effect was an increase (in absolute value) of the loadings for the arm angles (humerus, forearm and hand): the upper limb angles were more strongly captured by the PC2 in the imposed finger trajectory conditions compared to the basic one. This result was quite striking since these changes were accompanied by a significant decrease and increase of the PC1% and PC2% values, respectively. Thus spatial but not equilibrium constraints modified significantly the relative importance of PC1 and PC2.

In particular, an interesting result was the decrease of the PC1% and the increase of PC2% values (14/14 participants for the short distance and 12/14 participants for the long distance) consecutively to the straight finger path constraint. To evaluate a possible effect of a learning process on this change in the covariation of elevation angles, we asked 4 among the 14 participants to perform 50 successive trials in the straight Cartesian trajectory condition for the long distance. To avoid the potential influence of fatigue, participants took a rest of one minute after each block of 10 trials (see [START_REF] Schmid | Effect of fatigue on the precision of a whole-body pointing task[END_REF]. Figure 6 shows average results for the PC1% value. A linear regression analysis on the average PC1% values among the 50 repetitions showed slope and r 2 coefficients 18 lesser than 10 -3 indicating a lack of adaptation among the 50 trials in the imposed straight finger trajectory condition, for the long distance (SD2). Furthermore, a betweenparticipants t-test comparison among the PC1% average values of the 10-first and 10-last trials did not give significant differences (p = 0.29). 

Motion reconstruction from PCs

In order to better elucidate the respective roles of the PC1 and PC2 on the movement, we reconstructed the angular displacements and then the kinematic features of the body markers, from either the first or both the first and the second principal components (see the Materials and Methods section). 19

Firstly, the whole movement was reconstructed based upon the data contained in the first principal component. Figure 7 shows that the reconstructed movement was very similar to the one recorded in the basic condition (B), for a typical participant. The characteristic features of the basic motor task were captured well by the PC1 (e.g., the forward CoM projection and the concave finger trajectory, see Table 3, but also [START_REF] Pozzo | Coordination between equilibrium and hand trajectories during whole body pointing movements[END_REF]. In particular, the CoM and finger trajectories were close to the recorded ones (Fig. 7a), the angular displacements were also similar as indicated by the large correlation coefficients (see Fig. 7b), and the velocity profiles of both the finger and the CoM were single-peaked (see Fig. 7c). Secondly, when the motion was reconstructed using the data contained in the PC1 and PC2, the whole-body movements became extremely close to the recorded ones, whatever the experimental conditions (as proved by the high correlation coefficients reported in Fig. 7b and7c). However, the main result lies in the differences observed when reconstructing motions from PC1 in the motor tasks with spatial constraints imposed on finger trajectory. Movements reconstructed in these conditions showed that the requested Cartesian constraints were not captured by the PC1 (i.e., the straight and semi-circular finger paths constraints were not encoded in the PC1, see Fig. 7a, second and third columns). Table 3 shows, on specific parameters, that the A-P CoM displacement was well reconstructed by the use of PC1 in all experimental conditions, in contrast to the finger trajectory. Indeed, the index of finger path curvature did not fit well with those recorded experimentally (or, equivalently, obtained when reconstructing the motion from all PCs). Whatever the condition, the reconstructed finger path was constantly slightly concave and, in particular, did not fit with the spatial constraints. The addition of PC2 in the reconstruction process was necessary to recover the spatial requirements imposed to the motor task (Table 3). Therefore, the PC2 appeared to be strongly implied in a fine control of the fingertip path whereas the PC1 encoded the main characteristics of the wholebody motion performed in the basic condition, including the forward CoM displacement and the slightly concave finger path. Correlation analyses between the recorded and reconstructed angular displacements were also performed in order to quantify in which proportion each angular displacement was reconstructed. Lower correlation coefficients were measured between angular displacements for the angles of upper limbs, especially in the semi-circular condition. This result suggests that PC1 primarily described the equilibrium and free reaching subtasks, whereas PC2 (for which PC2% values increased significantly in the spatial constraints conditions) adjusted the finger trajectory to the task requirement (S and C conditions). Such a reorganization was mainly achieved by means of the hand, forearm, and humerus angular displacements. These findings were 22 consistent for both distances and across participants, even for those who maintained a relatively high joint coupling during the straight finger trajectory condition.

Local coupling

To uncover specific angles covariations at different levels of the whole body, we performed a correlation analysis between each pair of angles (see the Materials and Methods section and Figure 8a). Since 8 angles were measured, a total of 28 correlation coefficients were analyzed. In most cases, the results showed that all correlation coefficients were greater than 0.7 in the basic and equilibrium constraint motor tasks (see upper left polar graph), as expected from the results given by PCA in the B, K, and R conditions (Fig. 5). An ANOVA performed on the 28 coefficients (28 factors), for each condition separately, showed a significant main effect (p < 0.001), i.e., at least two correlation coefficients were significantly different among the 28 comparisons. Despite the fact that all correlation coefficients were larger than 0.7, it was noticeable that, when calculating correlations between angles of the upper limbs with angles of the lower limbs, the correlation coefficients were slightly lower (see M1 to M15, Fig. 8) than the coefficients corresponding to L1 to L10. Nevertheless a post-hoc analysis did not reveal important differences (in general p > 0.05), for the basic and equilibrium constraints conditions. At variance, in the spatial constraints conditions (see Fig. 8a, upper right polar graph), the correlation coefficients significantly decreased for the mixed pairs of angles (M1 to M15, < 0.7). Post-hoc analysis proved that all coefficients of this group (L/U, M1 to M15) were significantly different from both U/U (U1 to U3) and L/L (L1 to L10) comparisons (p < 0.05 at D1), illustrating a change in the whole-body motor strategy (a significant separation between upper and lower limbs). For the long distance (Fig. 8a, lower right part), correlation coefficient values increased compared to the short distance condition (p < 0.01), indicating a stronger coupling of upper and lower limbs when the task required a fine equilibrium control (D2). It should be noted that the decrease of the covariation of elevation angles, observed in the S and C conditions, was less pronounced at D2 compared to D1, remaining however below the values obtained in the basic and equilibrium constraints motor tasks (Fig. 8a, left).

To verify the idea of a dissociation of reaching limbs (arm segments) from a robust equilibrium module during spatial constraint, we computed the average correlation coefficients between the waveforms measured in the basic motor task (B) and the other experimental conditions, for each of the eight angles (Figure 8b). In this way, we quantified the changes in the angular displacements induced by the experimental conditions with respect to the basic condition. A repeated measure ANOVA showed that these changes were significantly concentrated in the hand, forearm, and humerus angles compared to the leg, trunk, and head angles (p < 0.001 and r 2 values equal to 0.92 and 0.72 for respectively lower limbs and upper limbs). Thus, besides the drastic reorganization of upper limbs in response to the spatial constraints, the lower limbs displacements remained invariant (i.e., highly correlated to the ones observed in the B condition).

Overall, these analyses revealed one PC that captured lower limbs and CoM displacements and resisted to spatial constraints exerted on the finger, and another one, taskdependent, that emerged when focal subtask became a priority.
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Simulation

The previous results showed that in the basic condition, equilibrium and focal subtasks were integrated in the same module from which emerged an additional module when specific finger path had to be planned. Because priority was given to finger trajectory without requirement concerning the joint strategy to be used (i.e., one could have asked the participants to produce a straight finger path and to move all body segments at the same time), the dissociation of equilibrium and focal task goals in two modules could be inherent to the spatial constraints. Thus, in order to test the plausibility of one single module to produce simultaneously a straight path in angle-space and a specific finger trajectory in Cartesian space, we performed a simulation (see Materials and Methods section and the appendix for details).

Therefore, we simulated the integration of both the equilibrium and reaching task objectives in one single module during WBP under spatial restriction. The result of this simulation showed that the production of a perfectly straight trajectory in the elevation angles space, combined with an almost straight or semi-circular finger path in Cartesian space is (i) possible with respect to the physiological ranges of joint angular displacement but (ii) detrimental to equilibrium control. In particular the spatial constraints led to a CoM displacement close to the boundaries of the base of support (90% and 100% of the base of support, respectively, see Fig. 9a, 9b, and 9c). Indeed, the backward CoM displacement toward the heel recorded in the straight finger path simulation (Fig. 9b) reduced the balance safety margin. Further, a second forward CoM acceleration toward the target to reach requires a large energy consumption. At last, a back and forth CoM displacements drastically differed from the robust monotonic CoM forward displacements presently recorded in all experimental conditions. 

Discussion

Our results show that reaching and equilibrium subtasks are integrated in one single coordinative structure (i.e., one single module) when subjects reached beyond arm's length without any particular spatial or equilibrium constraint. In contrast, when the CNS has to explicitly plan the finger path, the basic kinematic strategy was separated in two modules enabling fast adaptation to equilibrium and focal task demands. Here we discuss the possible origins of arm and lower limbs covariation and thus we emphasize the decomposition of the single kinematic module in equilibrium and reaching modules.

A single coordinative structure resilient under equilibrium constraints

Several factors can contribute to build a strong joint covariation. During the present task, the whole body moves downward mainly under the action of gravity. An anticipative inhibition of the tonic activity of the trunk and lower limb extensors has been described during a similar downward whole-body motion [START_REF] Cheron | Evidence of a preprogrammed deactivation of the hamstring muscles for triggering rapid changes of posture in humans[END_REF], as a general deactivation of extensor muscles (the so called Hufschmidt phenomenon, Hufschmidt and Hufschmidt, 1954). Passive mechanical effects might additionally help in joint coupling. Indeed, previous studies showed that the mechanical consequences of forward arm reaching from an upright stance position consisted of passive forward trunk bending and knee flexion [START_REF] Ramos | Postural maintenance during fast forward bending: a model simulation experiment determines the "reduced trajectory[END_REF][START_REF] Eng | Interaction of the reactive moments and center of mass displacement for postural control during voluntary arm movements[END_REF][START_REF] Pozzo | Simulating mechanical consequences of voluntary movement upon whole-body equilibrium: the arm-raising paradigm revisited[END_REF], similar to these observed during the present WBP task. Coordinative structures of redundant degrees of freedom can also be accounted for by attractor dynamics, operating on an internal model of the underlying kinematic system [START_REF] Mussa-Ivaldi | Kinematic networks. a distributed model for representing and regularizing motor redundancy[END_REF][START_REF] Mohan | A forward / inverse motor controller for cognitive robotics[END_REF]. At last, neural organization as well could determine the present angular covariation. [START_REF] Ivanenko | Coordination of locomotion with voluntary movements in humans[END_REF] for instance identified only one synergy from the recorded activity of 32 muscles during a stoop in place task. Moreover, it has been shown that trunk bending (as an important aspect of the present task) was under the 27 control of "axial synergies", i.e., a coordinated and opposing displacements of trunk and lower body segments [START_REF] Babinski | De l'asymmétrie cérébelleuse[END_REF][START_REF] Alexandrov | Axial synergies during human upper trunk bending[END_REF]Alexandrov et al., , 2001b)). The present joint coupling is compatible with the functional mechanism previously proposed by which descending neural command related to the desired CoM trajectories and final finger position are transformed into a specific joint angle covariation (Ting, 2007;[START_REF] Ivanenko | Coordination of locomotion with voluntary movements in humans[END_REF][START_REF] Avella | Control of fast-reaching movements by muscle synergy combinations[END_REF]. For instance, when knee extension was imposed (K condition), the pointing was mainly due to forward trunk bending to compensate for the lack of knee flexion. This new joint configuration induced a higher level of the CoM's position as a consequence of the lack of knee flexion, and represented an additional source of postural instability. Surprisingly, these changes did not affect joint coupling compared to the basic condition (B), revealing a significant flexibility of the motor command to keep joint covariation and consecutive similar finger and CoM trajectories in the sagittal plane. Furthermore, when placed on a thin support (R condition), subjects still exhibited strong covariation of elevation angles. Thus, the well-preserved joint covariation, the associated stereotypical CoM, and finger trajectories are compatible with a process that would map low dimensional task-variables (the final finger position and the CoM trajectory) onto high-dimensional anatomical details (individual limbs) (Ting, 2007). In the same vein, covariation of limb rotation in extrinsic space points to a simple organization previously identified for the lower limbs [START_REF] Lacquaniti | Motor patterns in walking[END_REF] or the head segment [START_REF] Pozzo | Head stabilization during various locomotor tasks in humans. i. normal subjects[END_REF] during locomotion that both reduces the high dimensionality of the kinematic chain and allows the control of the CoM displacement with respect to gravity. This strategy likely facilitates the integration of reaching and equilibrium subtasks in the same motor plan. Further, due to the mechanical link existing between upper and lower body parts, separate controllers seem not functionally appropriate to predict and compensate the interaction torques inherent to multijoint movements. [START_REF] Pigeon | Coordinated turn-and-reach movements. i. anticipatory compensation for self-generated coriolis and interaction torques[END_REF] also demonstrated that during turn and reach movement involving the trunk the different body parts are integrated in a single frame of reference to predict appropriate joint torque and prevent disturbing effect on hand path. Finally, the strong temporal coupling between times to peak velocity of the finger and the whole-body centre of mass, regardless of drastic change in sensory and mechanical context (earth versus microgravity) previously described for the same task (Patron et al., 2005, present Fig. 7, and Tables 1 and2) support the idea that the two task objectives may to some degree share common neural commands.

Decomposition of the coordinative structure in two modules under spatial constraints

An important result is that when subjects were forced to move the finger along a straight (S condition) or a semi-circular (C condition) path, a second coordinative structure dedicated to arm segment coordination emerged from the initial kinematic strategy. For 28 the exaggerated C condition, one could have expected such a dissociation, due to the large discrepancy between natural and imposed finger trajectories. In contrast, it was more unlikely for the S condition that imposed a straight line close to the basic slightly curved finger path. This result demonstrates that the curved finger path recorded in the free condition was not the result of an error in trajectory planning. Thus, if desired, participants could execute the WBP task by adopting another reaching movement, a straight hand path for instance that is not the one chosen in the free condition.

In S and C conditions priority was given to the control of hand movement, as during object manipulation or object avoidance while reaching performed from a standing posture. Thus, inefficiency in controlling the finger path and the current highly redundant body joint system at the same time rather than a voluntary strategy adopted by the participants, could explain arm and lower limbs decoupling. Several arguments contradict with such a hypothesis. First, the unstable high inverted pendulum posture adopted by the participants when spatial restrictions were present required an efficient equilibrium control. Thus, a precise prediction of the mechanical effect of the CoM acceleration must be incorporated in the inverse model of the motor plan in order to produce a continuous smooth and linear finger path. Because participants succeeded after only two or three trials, without increasing movement duration compared to the free condition or any adaptation after several repetitions (see Fig. 6), we conclude that kinematic decoupling was actively performed. Second, simulation procedures have clearly shown that the two subtasks could be integrated in the same motor plan with only few changes in experimentally recorded body geometry, supporting the biomechanical feasibility of keeping both joint covariation and straight finger path. However, CoM analysis revealed that such a strategy was detrimental to equilibrium control, a likely reason for the CNS not to adopt this way. Additionally, this postural solution contrasts with the stereotyped trajectory recorded whatever the condition (Fig. 4) and characterized by an initial forward CoM acceleration. The robustness of this pattern, existing among a wide range of voluntary movements [START_REF] Crenna | A motor programme for the initiation of forward-oriented movements in humans[END_REF][START_REF] Stapley | The role of anticipatory postural adjustments during whole body forward reaching movements[END_REF], could represent a neural constraint contributing to preserve the equilibrium module invariant when reaching under finger path restriction. Consequently, rather than revealing inefficient coordination of the multijoint system due to the experimental condition, we propose that the dissociation of the basic coordinative structure in two modules would correspond to an intended strategy.

Finally, the spatial constraints did not destroy the local coupling of lower segments indicating that postural module was task independent. Instead, a new module used to produce an optional finger trajectory (S or C) was added up to the module found in the basic whole-body reaching condition as predicted in the upper right part of Figure 1.

The present addition of a new kinematic module to an existing one is consistent with the proposal that compound movements are produced by means of a combination of motor programs [START_REF] Bizzi | Combining modules for movement[END_REF]. Similarly, other studies have demonstrated modularity of 29 muscle use in cat [START_REF] Ting | A limited set of muscle synergies for force control during a postural task[END_REF][START_REF] Krouchev | Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition[END_REF], in frogs [START_REF] Hart | Modular premotor drives and unit bursts as primitives for frog motor behaviors[END_REF]d'Avella and Bizzi, 2005), and in man [START_REF] Ivanenko | Coordination of locomotion with voluntary movements in humans[END_REF][START_REF] Avella | Control of fast-reaching movements by muscle synergy combinations[END_REF]. Basic synergies built during development are probably slowly adjusted and differ slightly their expression to tolerate a wide range of tasks inducing various CoM and endpoint trajectories. However, in unusual condition it seems that they can adapt very rapidly or can be completed with additional ones to provide more behavioral flexibility. At which stage of the CNS the motor synergies are adapted to environmental demands or combined remains an open question. Even far from the scope of this study, we would like to discuss briefly some points according to the literature. [START_REF] Capaday | The integrated nature of motor cortical function[END_REF] has emphasized the functional linking of motor cortical points based on disinhibition process. Thus, synergies could emerge from the recruitment of various motor cortical points by selected excitation as well as by selected release from inhibition. At the level of the spinal cord, central descending pathways could influence and modulate reflex pathways depending on the context within which we must act (see [START_REF] Dietz | Human neuronal control of automatic functional movements: interaction between central programs and afferent input[END_REF] for a review). Various descending pathways can then modulate the spinal cord for greater flexibility of basic reflexes. For instance, recent data recorded in cat showed that neurons in pontomedullary reticular formation can both ensure integrated or independent control of posture and reaching [START_REF] Schepens | Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat[END_REF][START_REF] Schepens | Neurones in the pontomedullary reticular formation signal posture and movement both as an integrated behaviour and independently[END_REF]. Altogether, one can speculate that the basic coordinative structure could first emerge at the level of M1 depending on task demands. To provide flexibility, the motor commands could be adapted at the level of spinal cord via excitation or inhibition processes channeling appropriate contexts to the kinematic strategy and thus constructing the reaching and equilibrium subtasks by using one or two modules. Nevertheless, without a detailed analysis of patterns of focal and postural muscle activity, definite conclusions relating to the organization of descending neural commands are difficult to make. An upcoming study of muscle activation patterns should reveal how many muscle synergies are required for task performance and their robustness to different contexts.

First, we assumed that the trajectory in angle-space resulted from the minimum anglejerk criterion which minimized the following integral cost [START_REF] Wada | Quantitative examinations for multi joint arm trajectory planning-using a robust calculation algorithm of the minimum commanded torque change trajectory[END_REF]:

1 2 ´MD 0 k=8 k=1 ( d 3 Θ k dt 3 ) 2 dt,
where Θ k was the k th component of Θ and t denoted the time.

In the following, the movement duration was normalized (MD = 1). It is well-known that the optimal solutions are straight lines in the 8-dimensional vector space connecting the initial configuration of segments (Θ i ) to the final one (Θ f ) with the formula:

Θ(t) = Θ i + t 3 (10 -15t + 6t 2 )(Θ f -Θ i ) (0.1)
Notice that, therefore, the PC1% value was equal to 100%.

Then, the finger trajectory was given by an equation of the form f (x, y) = 0. Since the initial position (x 0 , y 0 ) and the final position (x f , y f ) of the finger were known, we defined two functions:

• For the straight finger path case, we set f

S (x, y) = (y -y 0 ) - y f -y 0 x f -x 0 (x -x 0 ).
• For the semi-circular finger path case, we set f

C (x, y) = (x-x c ) 2 +(y-y c ) 2 -( LD 2 ) 2
and kept only the part of the curve in the semi-plane defined by f S (x, y) ≥ 0. The latter equation described an arc of a circle. The point (x c y c ) was the middle of the segment of length LD that was defined in the Materials and Methods section.

The relation between the elevation angles and the finger position was given by: The l i parameter corresponded to the segment length of each segment and (x Ak , y Ak ) corresponded to the ankle marker position. Notice that the Equation 0.2 did not depend on the head angle.

                                 x = x Ak -l Sk sin θ Sk -l T h sin θ T h -l P
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The optimal problem was to find a final configuration Θ f minimizing the error between the imposed finger path (given by equations f (x, y) = 0) and the path resulting from the choice of Θ f , given by the Equation 0.2. Notice that the initial limb configuration was already known and fixed in this procedure.

For the imposed straight finger path, the cost under minimization was defined as the straightness of the finger trajectory which was measured with the correlation coefficient of the finger coordinates (x, y).

For the imposed semi-circular finger path, the cost was defined as the index of path curvature (IPC parameter) that had to tend to 0.5 if the finger trajectory was a circular arc.

For both conditions, we also tested to directly minimize the root mean squared error between the simulated and the imposed finger path and this did not change significantly the kinematic strategy found by the optimal process.

To conserve a degree of biological validity the following non-linear constraints were added to the optimal problem:

• The A-P position of the CoM was forced to be inside the base of support provided by the foot. This length was evaluated as the distance between the foot markers plus 6 cm in both forward and backward directions.

• The final body configuration was requested to be compatible with the reach of the target (using the finger marker position) and such that biological articular limits were respected (using the biological ranges of joint angles).

This problem was solved numerically by using the optimization Matlab toolbox. A sequential quadratic programming (SQP) method was used (fmincon Matlab function).

The minimization of the above costs was subject to nonlinear inequalities (position of the CoM and articular limits) and equalities (position of the finger on the target) defined in a user-supplied function.

Basically, the procedure was initialized to the final limb configuration recorded during the basic motor task (Fig. 9a). We also initialized the process with 10 other admissible final limbs configurations selected randomly to limit the problem of local minima and the resulting kinematic solutions were strongly similar whatever the chosen initial limb configuration. The solutions that we got are depicted in Figures 9b, 9c [START_REF] Berardelli | Single-joint rapid arm movements in normal subjects and in patients with motor disorders[END_REF]. Récemment, une étude par stimulation magnétique transcranienne a permis d'environ 60°(d'après Britton et al., 1994). Droite : allure de la séquence d'activation triphasique pour un mouvement de l'avant-bras (d'après Köster et al., 2002). musculaire qui reste invariante même lorsqu'on modifie artificiellement l'inertie et la masse du segment déplacé : l'activation triphasique est la stratégie motrice utilisée dès le premier essai dans ces cas et le SNC module simplement en temps et en amplitudes les bouffées musculaires agoniste et antagoniste [START_REF] Gottlieb | Strategies for the control of voluntary movements with one mechanical degree of freedom[END_REF][START_REF] Cooke | Movement-related phasic muscle activation. iii. the duration of phasic agonist activity initiating movement[END_REF]. Cette désorganisation importante trouvée en microgravité lors des premiers essais semble indiquer l'importance de la force gravitaire dans la planification des mouvements et son implication profonde au sein du SNC pour le contrôle 1 Ces résultats ne sont pas encore publiés à ce jour mais sont issus de vols paraboliques effectués grâce au CNES et Novespace. Un premier aperçu des résultats peut être trouvé dans le mémoire de J. [START_REF] Gaveau | Forces gravito-inertielles et contrôle des mouvements du bras[END_REF]. Ceci pourrait expliquer pourquoi nous avons mesuré autant de similarités entre les diverses tâches motrices étudiées.

Intégration de la gravité dans la planification motrice

Ces stratégies motrices robustes malgré l'ajout de contraintes variées suggèrent aussi l'existence de modèles internes précis au sein du cerveau et des capacités de contrôle variées permettant de combiner des modules existants avec de nouveaux modules. Ceci est en accord avec les études montrant l'existence de synergies musculaires stables et robustes dans de nombreux mouvement humains et animaux (Bizzi et al., 2008, pour Le but de cette section est seulement de rappeler les notions utilisées dans l'article B (pour démontrer que la présence d'inactivation dans les trajectoires optimales implique de façon générique la nondérivabilité de la fonction de coût). La démonstration utilise les outils suivants : l'espace des k -jets et la transversalité.

Perspectives

Pour plus de détails concernant ces notions, nous renvoyons à Hirsch (1976) et Abraham et Robbin (1967).

Pour définir les k -jets, nous allons nous restreindre au cas d'applications lisses entre espaces euclidiens. On notera [x, f, U ] k = j k x f un élément de J k (R m , R n ), l'ensemble des k-jets de R m dans R n .

L'ensemble des k -jets de R m dans R n au point x sera noté :

J k x (R m , R n ) déf = σ -1 (x), où σ : J k (R m , R n ) → M , j k x f → x.

A Annexes

Dans notre cas (euclidien), un k -jet de f au point x ∈ U peut clairement être identifié de façon canonique au polynôme de Taylor de f à l'ordre k défini par : Une variante utile est donnée par le théorème suivant, qui fait appel à l'espace des k -jets.

P f (z) = f (x) + D x f.z + 1 2 D 2 x f.z ⊗2 + ... + 1 k! D k x f.z ⊗k . Ainsi J k x (R m , R n ) est un espace vectoriel isomorphe à l'espace vectoriel P k (R m , R n ) = R n × k i=1 L i sym (R m , R n ), où L i sym (R m , R n ) est l'ensemble des applications i-linéaires symétriques de R m dans R n . Par conséquent, J k (R m , R n ) = R m × P k (R m , R n ) est
Théorème 3 Théorème de la transversalité de Thom (cas euclidien)

Soit A une sous-variété de J k (R n , R m ). L'ensemble des applications f de C ∞ (R m , R n ) dont le k -jet défini par :

j k f : R n → J k (R m , R n ) x → j k x f
est transverse à A est résiduel (et donc dense) dans C ∞ (R m , R n ). Si de plus, A est fermé alors cet ensemble est ouvert pour la topologie forte de C ∞ (R m , R n ).

Ces notions de topologies différentielles sont utilisées dans l'article B pour prouver que l'ensemble des fonctions de coût lisses telles qu'il existe des inactivations dans les trajectoires optimales est le complémentaire d'un ouvert dense de C ∞ (R m , R n ) muni de la topologie forte. SOLUTION OF TYPE S7 (no "commutation") # Preliminary computations t1:=solve(subs(C1=q0,subs(C2=q0,z2=w2)),t) [START_REF] Morasso | Spatial control of arm movements[END_REF]: u0:=subs(subs(C1=q0,t=0,u2)): wP1:=factor(simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,w2))))): zP1:=subs(t=t1,subs(C1=q0,subs(C2=q0,z2))): xP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,subs(C3=x0,x2))))): uP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,u2)))): yP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,y2)))):

A.2 Code

# Solving in p0_ and q0_ 

# Corresponding cost

cost:=int(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2*u2+alpha*(u2-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t1)));

# Graphics

t1_:=subs(p0=p0_,subs(q0=q0_,t1)); plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2)))),t=0..t1_]],thickness=2, color=[blue]); # Relative time to peak velocity (TPV) FactorB:=evalf(solve(diff(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2 # Third piece of trajectory t3:=solve(subs(C1=zP2,subs(C2=wP2,w4=z4)),t) [START_REF] Bernstein | The Coordination and Regulation of Movements[END_REF]: zP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,z4)))): wP3:=factor(simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,w4))))): xP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,subs(C3=xP2,x4))))): yP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,y4)))): uP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,u4)))):

O O O O O O O O O O O O O O O O O O
t1_:=subs(p0=p0_,subs(q0=q0_,t1)); t2_:=subs(p0=p0_,subs(q0=q0_,t2)); t3_:=subs(p0=p0_,subs(q0=q0_,t3));

plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2)))),t=0..t1_], [t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y3)))),t=0..t2_], [t+t1_+t2_,subs(p0=p0_, subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,y4)))),t=0..t3_]],thickness=2,color=[blue,green, red]); epsilon:=T/199: c:=1: profil:=Vector(200): for i from 0 by epsilon to T do if i<=t1_ then profil[c]:=subs(t=i,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs (C2=q0,y2)))));c:=c+1; elif i<=(t1_+t2_) then profil[c]:=subs(t=(i-t1_),subs(p0=p0_,subs(q0=q0_,subs (C1=zP1,subs(C2=wP1,y3)))));c:=c+1;

else profil[c]:=subs(t=(i-t1_-t2_),subs(p0=p0_,subs(q0=q0_,subs(C1=zP2,subs (C2=wP2,y4)))));c:=c+1; end if: od;

# TPV FactorB:=evalf(solve(diff(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2)))),t)=0,t) )/T; end if; # Fourth piece of trajectory t4:=simplify(solve(subs(C1=zP3,subs(C2=wP3,w4=z4)),t) [START_REF] Bernstein | The Coordination and Regulation of Movements[END_REF]): zP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,z4)))): wP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,w4)))): xP4:=simplify (subs(t=t4,subs(C1=zP3,subs(C2=wP3,subs(C3=xP3,x4))))): yP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,y4)))): uP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,u4)))):

# Solving in p0_ and q0_ [START_REF] Nishikawa | Do arm postures vary with the speed of reaching?[END_REF] 

# Corresponding cost

cost:=int(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2*u2+alpha*(u2-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t1)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y3*u3+alpha*(u3-k)^2)))),t=0..subs (p0=p0_,subs(q0=q0_,t2)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,-y4*u4+ alpha*(u4-k)^2)))),t=0..subs(p0=p0_,subs(q0=q0_,t3)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP3,subs(C2=wP3,-y5*u5+alpha*(u5-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t4)));

# Graphics

t1_:=subs(p0=p0_,subs(q0=q0_,t1)); t2_:=subs(p0=p0_,subs(q0=q0_,t2)); t3_:=subs(p0=p0_,subs(q0=q0_,t3)); t4_:=subs(p0=p0_,subs(q0=q0_,t4)); plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2)))),t=0..t1_], [t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y3)))),t=0..t2_], [t+t1_+t2_,subs(p0=p0_, subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,y4)))),t=0..t3_], [t+t1_+t2_+t3_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP3,subs(C2=wP3,y5)))),t=0..t4_]],thickness=2,color= [blue,green,red, violet]); # TPV FactorB:=evalf(solve(diff(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2 

# Corresponding cost

cost:=int(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y1*u1+alpha*(u1-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t1)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2*u2+alpha*(u2-k)^2)))),t=0..subs (p0=p0_,subs(q0=q0_,t2)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,y3*u3+ alpha*(u3-k)^2)))),t=0..subs(p0=p0_,subs(q0=q0_,t3)))+ int (subs(p0=p0_,subs(q0=q0_,subs(C1=zP3,subs(C2=wP3,-y4*u4+alpha*(u4-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t4)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP4,subs(C2=wP4,-y5*u5+alpha*(u5-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t5)));

# Graphics

t1_:=subs(p0=p0_,subs(q0=q0_,t1)); t2_:=subs(p0=p0_,subs(q0=q0_,t2)); t3_:=subs(p0=p0_,subs(q0=q0_,t3)); t4_:=subs(p0=p0_,subs(q0=q0_,t4)); t5_:=subs(p0=p0_,subs(q0=q0_,t5)); % Let's take the maximum on the 9 regions % If you want take into account boundedness of the control, the code must % be adapted here.

[ tmp1 , tmp2 ] = maxham ( -1 , -1 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) ; i f tmp1 >0 && tmp2 >0 c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 1 ] ; end [ tmp1 , tmp2 ] = maxham ( -1 ,1 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) ; i f tmp1 >0 && tmp2 <0 c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 2 ] ; end [ tmp1 , tmp2 ] = maxham (1 , -1 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) ; i f tmp1 <0 && tmp2 >0 c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 3 ] ; end [ tmp1 , tmp2 ] = maxham ( 1 , 1 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) 1 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) ; i f tmp2 <0 c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 6 ] ; end [ tmp1 , tmp2 ] = maxham ( -1 ,0 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) ; i f tmp1 >0 (d'après Britton et al., 1994). Droite : allure de la séquence d'activation triphasique pour un mouvement de l'avant-bras (d'après Köster et al., 2002). . . . . . . . . 5.3 D'après Flament et al. (1984) 

1. 3

 3 FIGURE 1.2: Représentation des organes tendineux de Golgi avec le nerf sensitif partant vers la moelle épinière puis le cerveau.

1. 4

 4 Problème de dimensionnalité rapide puisque l'information n'a qu'une très courte distance à parcourir pour atteindre les centres clés du contrôle moteur. On peut aussi citer le système auditif qui, dans certaines situations, peut donner des informations supplémentaires sur la position d'une cible. Enfin, tous ces capteurs nécessitent des transformations, i.e. des changements de coordonnées et des combinaisons d'informations diverses. Par exemple, la position d'une cible ponctuelle dans l'espace est donnée par ses coordonnées (en 3 dimensions). La rétine de l'oeil donne quant à elle des informations bidimensionnelles. Les capteurs sensoriels mesurent certaines variables dans des dimensions qui leurs sont propres, et donc, des transformations compliquées sont nécessaires pour que le SNC puisse fusionner toutes les informations et leur donner un sens. Pour donner un autre exemple, un signal auditif peut aussi être utilisé pour localiser la distance à l'objet qui produit le signal sonore. Dans ce cas, la combinaison des informations auditives et visuelles peut permettre au SNC d'améliorer sa connaissance de la position de la cible. Nous reviendrons aussi sur les problèmes que posent ces transformations dans la section 1.4. Il est intéressant de noter que ces récepteurs fonctionnent en continu et sont donc opérationnels au cours d'un mouvement.

1. 6

 6 Posture et Mouvement maintien d'une posture fixe. Pour expérimenter soi-même ce phénomène, il suffit de mettre au repos sa main et de s'apercevoir que les doigts tendent à se rétracter naturellement vers la paume de la main en raison des propriétés d'élasticité des tissus.

  FIGURE 1.4: D'après Schepens et Drew (2004). A gauche : une activité phasique d'un neurone de la formation réticulaire pontomédullaire du chat. Au milieu : une activité tonique d'un neurone. A droite : une activité tonique/phasique d'un neurone.

  vu dans le chapitre précédent la complexité des systèmes neuromusculaire et sensorimoteur, ainsi que les problèmes qui se posent pour le contrôle des mouvements dans le champ gravitaire. Quatre théories principales se distinguent dans la littérature du contrôle moteur : la théorie du point d'équilibre (section 2.2), la théorie des primitives motrices (section 2.3), la théorie des modèles internes et la théorie du contrôle optimal (section 2.5). Ces théories ne sont pas totalement indépendantes et se recouvrent partiellement. La première théorie citée propose que les propriétés visco-élastiques des muscles génèrent le mouvement. La deuxième théorie suggère que le SNC produit ses mouvements en utilisant des primitives motrices stockées dans certains centres nerveux et les combine de manière adéquate afin de simplifier le contrôle des milliers de degrés de liberté du système musculo-squelettique. La troisième théorie propose un formalisme pour expliquer comment le SNC arrive à produire des commandes motrices de façon proactive et à corriger les erreurs en intégrant des retours sensoriels. Enfin, la dernière théorie stipule que nos mouvements sont issus d'un processus d'optimisation et que le mouvement sélectionné parmi tous les mouvements possibles satisfait un certain critère d'optimalité. C'est ce dernier point de vue que nous adopterons dans le chapitre 3 de la partie II. Par conséquent, cette dernière section sera plus largement développée afin de mettre en évidence où se situe la nouveauté des travaux présentés dans cette thèse.

FIGURE 2 . 1 :

 21 FIGURE 2.1: Illustration de l'idée fondamentale de la théorie du point d'équilibre. A gauche, les deux ressorts sont à l'équilibre (les raideurs sont identiques, et donc la masse est au centre). A droite, la raideur d'un des deux ressort a été changée subitement, cela a produit un mouvement vers une nouvelle position d'équilibre.

  moment ou à un autre l'utilisation d'un critère d'optimalité, pour faire le choix d'une solution particulière parmi un grand nombre de possibilités. La théorie du contrôle optimal est l'outil idéal pour répondre à ce type de problème. Cette théorie permet de résoudre en partie le problème de la redondance du système sensorimoteur en imposant des contraintes d'optimalité des mouvements. Les contraintes biomécaniques et anatomiques sont d'autres contraintes sélectionnées par l'évolution et qui réduisent également les possibilités motrices. Une hypothèse que nous faisons est que le SNC a intégré toutes ces contraintes au niveau neuronal.

  Dans le cas d'un problème qui n'est pas point-point dans l'espace des configurations, il faut rajouter les conditions de transversalité : par exemple, supposons le point initial connu et le point final inconnu : x F ∈ S, l'espace S étant une variété lisse de dimension finie. Alors, le contrôle u est optimal si le vecteur adjoint final p(T ) est orthogonal au plan tangent au point x F (point final de la trajectoire associé à u). L'idée sous-jacente est que, si le point final est libre, alors parmi tous les problèmes point-point possibles, il faut choisir celui (ou ceux) qui minimise(nt) le coût. Le dernier point de la remarque précédente n'est pas anodin. En fait, lors d'un mouvement humain, si la posture initiale est connue par le SNC (car les retours sensoriels ont le temps d'être intégrés avant le début du mouvement), il n'en est pas de même de la posture finale qui est a priori indéterminée. La position d'une cible ponctuelle dans l'espace Cartésien est tri-dimensionnelle alors que la plupart des mouvements humains que nous réalisons dans la vie mettent en jeu plus de trois degrés de liberté. Le PMP permet donc de choisir la posture finale comme le résultat d'une optimisation (par les conditions de transversalité). Par exemple, Soechting et al. (1995) ont proposé que la posture finale était sélectionnée de telle façon à minimiser la "quantité de travail" nécessaire pour amener le bras dans cette configuration et proviendrait d'une optimisation dynamique. D'autres auteurs ont suggéré que la posture finale pouvait aussi être choisie avant le début du mouvement, transformant alors le problème de contrôle optimal en un problème point-point dans l'espace des configurations. Le choix de la posture finale proviendrait alors d'une optimisation statique réalisée

  de la tâche. Il est facile de voir que les profils de vitesse sont symétriques et lisses. Ce modèle suggère une planification cinématique du mouvement, et par conséquent, il ne résout que le plus bas niveau du problème des degrés de liberté, à savoir trouver la trajectoire de l'effecteur. En théorie, si le SNC utilisait ce type de planification, il lui faudrait encore résoudre d'autres problèmes mal posés au niveau des angles et des activités musculaires. D'autres critères d'optimalité dans l'espace des angles et des muscles seraient donc nécessaires pour arriver à une planification complète du mouvement.Il est à noter que la formulation initiale du minimum jerk met en jeu des mouvements plans pour un bras avec deux degrés de liberté. Dans ce cas, la trajectoire (x jerk , y jerk ) imposée à l'effecteur permet justement d'obtenir les deux angles (à l'épaule et à l'avant-bras, puisque l'avant-bras n'a pas la possibilité de faire un tour complet autour du coude) et de trouver aussi les forces agissant aux articulations par dynamique inverse. Des variantes et généralisations de ce minimum jerk existent.Le minimum jerk est un critère d'ordre 3 (dérivée troisième).[START_REF] Richardson | Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis[END_REF] ont testé des critères similaires jusqu'à l'ordre 10 et ont trouvé en fait que le minimum jerk était celui qui correspondait le mieux aux mouvements humains.

2. 5 2 . 5 . 2 . 2 Problème 2

 525222 Théorie du contrôle optimal Minimum de variation des couples (minimum torque-change)[START_REF] Uno | Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model[END_REF] ont proposé un autre type de critère, prenant en compte la dynamique du système. Ce modèle propose la minimisation des variations des couples agissant aux articulations pour protéger le système musculo-squelettique et produire des mouvements lisses. Minimum Torque-Change Considérons un bras articulé de n segments, défini par le système dynamique Ẋ = f (X, τ ) où X et τ = (τ i ) i=1..n sont respectivement le vecteur d'état (position, vitesse) et le vecteur des couples moteurs agissant à chaque articulation, respectivement. Le problème est d'aller d'une position d'équilibre X 0 à une autre X F , en un temps T fixé et en minimisant la quantité suivante :

  et al. (1989) ont considéré des mouvements dans le plan horizontal d'un bras bi-articulé. Ici aussi, ce problème a initialement été résolu sans le PMP, mais avec la méthode des multiplicateurs de Lagrange, puisque aucune contrainte n'est imposée sur les contrôles ou sur les états. Nous pouvons renvoyer le lecteur àKirk (1970, chap. 5) pour une introduction à cette méthode.

FIGURE 3 . 3 :

 33 FIGURE 3.3: Simulations pour le MTC, pour un mouvement de 45°vers le haut en 1g (partie supérieure) et en 4g (partie inférieure), en 0.5 s. Le temps est en abscisse et les ordonnées sont données en radians (position x), rad/s (vitesse y) et rad/s² (couple moteur z).

3. 3

 3 Minimum de travail absolu où -→ dl est un déplacement infinitésimal le long de la trajectoire C pendant une durée dt et -→ v est le vecteur vitesse en un point de C. En physique, le travail est défini de manière algébrique et donc il peut s'annuler comme nous l'avons déjà remarqué. En réalité, les forces proviennent de la contraction des muscles et le travail peut être nul alors que plusieurs muscles ont consommé de l'énergie pour produire le mouvement. Le travail peut donc paraître comme étant une quantité peu pertinente dans le cadre d'un problème de contrôle optimal ainsi que pour mesurer l'énergie réellement fournie par les contractions musculaires. L'idée la plus simple pour résoudre ce problème consiste à toujours compter positif le travail d'une force, quelque soit son action sur le mouvement (active ou résistive).

  bras. Par conséquent, la force contrôlée fournit la même énergie quelque soit le mouvement reliant le point départ au point d'arrivée (avec des vitesses nulles). Si uy a un signe constant, ce qui est le cas pour des mouvements du bras assez lents (i.e., ne nécessitant pas l'activation combinée des muscles agoniste et antagoniste lors du mouvement), alors le résultat reste identique en considérant le travail absolu.

3 .

 3 Plusieurs études ont noté que les mouvements humains avaient la particularité d'être "lisses", c'est-à-dire avec peu de secousses. On peut supposer que le cerveau a aussi l'objectif de minimiser certaines quantités comme les variations de vitesse aux articulations afin de protéger les tendons et le squelette. Par conséquent, le critère d'optimalité pourrait être un compromis entre plusieurs objectifs. Ici, nous allons seulement considérer le cas de mouvements rapides du bras. Ceci a l'avantage d'éliminer les problèmes mis en avant dans les deux premiers points. Le troisième point trouve lui aussi plus de sens puisque lors d'un mouvement rapide, le SNC a plus de raisons de tenter de protéger son système musculo-squelettique. En outre, un avantage est de minimiser l'influence des retours sensoriels sur le contrôle moteur et donc de pouvoir modéliser les mouvements en boucle ouverte de façon raisonnable. Nous présentons ici deux articles proposant la minimisation d'un compromis entre le travail absolu des forces et l'intégrale du carré de l'accélération comme critère d'optimalité. Le premier est une approche mathématique de la résolution du problème dans le cas d'un bras à 1 ddl. Le second article présente une théorie plus complète pour des mouvements effectués avec plusieurs degrés de liberté. Il donne des résultats à la fois mathématiques et expérimentaux.

FIGURE 3 . 4 :

 34 FIGURE 3.4: Allure générale des solutions. Deux résultats sont essentiels : les profils de vitesse sont asymétriques (haut = bas) et il existe des phases d'inactivation (où le contrôle est nul).

Figure 1 :

 1 Figure 1: Experimental raw data: time and amplitude of kinematics and electromyographics measurements were normalized.
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Figure 2 :

 2 Figure 2: The results we get for an upward motion. The phase of inactivation of the muscles is shown.

  Figures illustrate the different strategies we can obtain. The figures 3, 4, 6, 7 and 9 were obtained using the settings: {u max = 44, u min = 16, k = 17} whereas the figures 5 and 8 were obtained using the data {u max = 60, u min = 16, k = 17} and {u max = 25, u min = 16, k = 17} respectively.

  Figure 3: Illustration of the strategy S 1

Figure 4 :

 4 Figure 4: Illustration of the strategy S 2

Figure 6 :

 6 Figure 6: Illustration of the strategy S 4

Figure 7 :

 7 Figure 7: Illustration of the strategy S 5

Figure 8 :Figure 9 :Figure 10 :

 8910 Figure 8: Illustration of the strategy S 6

  we have necessarily z ≤ w for times 33

Figure 12 :

 12 Figure 12: Phase portrait for p 0 = k

Figure 13 :

 13 Figure 13: Phase portrait in the case p 0 = -k.
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3. 3 . 2 Problème 5

 325 Article B : The Inactivation Principle : Mathematical Solutions minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements Cet article reprend la théorie débutée dans l'article précédent et l'approfondit. Minimum de Travail Absolu et de Confort (cas général) Soit le système dynamique suivant ẍ = φ(x, ẋ, u) (x étant la position, ẋ la vitesse, et ẍ l'accélération), caractérisant le mouvement d'un bras pluri-articulé avec n degrés de liberté et contrôlé par autant de forces généralisées, dénotées par u.

Figure 1 :

 1 Figure1: Results for a simulated 1-dof upward movement, with gradient constraints on the torque. The theoretical phase of inactivation of the muscles is shown (rectangular frame). Note that the time to peak velocity (TPV) is 0.47 in this case. It would be equal to 0.53 for the corresponding downward movement, according to experimental findings showing the same directional asymmetries. The signal u corresponds to the ratio between the net torque acting at shoulder joint and the arm's moment of inertia.

Figure 2 : 12 Figure 3 :

 2123 Figure 2: Results for a simulated 2-dof arm movement. A. Upward direction. B. Downward direction. Torques and angular velocities, respectively noted u (N.m) and y (rad/s), are plotted with respect to time (seconds), along with the finger velocity (m/s). The successive inactivation periods at each joint and the asymmetries of the velocity profiles are clearly visible.

  47 ± 0.02; D: FPC=0.09 ± 0.03, TPV=0.51 ± 0.02). The simulated movements fitted quite well with those recorded in practice (U: FPC=0.15, TPV=0.46; D: FPC=0.14, TPV=0.53). Moreover, the simulated final arm postures (wrist: 14°, elbow: 68°, shoulder: -23°for U and wrist: 25°, elbow: 74°, shoulder: -88°for D) were similar to those measured experimentally (wrist: 19 ± 3°, elbow: 63 ± 4°, shoulder: -25 ± 3°for U and wrist: 20 ± 3°, elbow: 90 ± 5°, shoulder: -99 ± 5°for D).

Figure 4 : 15 Figure 5 :Figure 6 :

 41556 Figure 4: Typical experimental data of a 2-dof arm movement performed in upward (left) and downward (right) directions. Finger velocity profiles (upper part) and four EMGs (lower part) are amplitude normalized. The periods of muscular inactivation are emphasized by means of rectangular frames. The same abbreviations as in Fig. 3 are used.

Figure 8 :

 8 Figure 8: Mechanical model of the 2-dof human arm. The subscripts 1 and 2 denote the shoulder and elbow joints respectively. Generalized coordinates θ, joint torque τ , moment of inertia I, segment mass m, segment length to the center of mass lc, and gravity acceleration g are denoted.

  mass of the subject (kg), L s height of the subject (m), m 1 mass of the arm (≈ M s × 0.028 kg), m 2 mass of the forearm (+hand) (≈ M s × 0.022 kg), l 1 length of the arm (≈ 0.186 × L s m) or measured on the subject, l 2 length of the forearm (≈ (0.146 + 0.108) × L s m) or measured on the subject, l c1 length from shoulder to center of mass of the arm (≈ l 1 × 0.436 m), l c2 length from shoulder to center of mass of the forearm (≈ l 2 × 0.682 m), g gravity field (≈ 9.81 m.s -2 ), I 1 inertia of the arm w.r.t center of mass (≈ m 1 × (l 1 × 0.322) 2 kg.m 2 ), I 2 inertia of the forearm w.r.t center of mass (≈ m 2 × (l 2 × 0.468) 2 kg.m 2 ).

Figure 9 :

 9 Figure 9: Intuitive illustration of the Inactivation Principle proof.
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Figure 10 :

 10 Figure 10: Different optimal strategies in the 1-dof case, depending on the movement duration T . The strategy S1 depicts the fastest movement w.r.t. the bounds imposed on the control. Strategy S2 was depicted in Figure 1 with gradient constraints on the control u. Strategies S3, S4, and S5 show inactivation phases (as well as S2). An inactivation phase corresponds to the period where the control signal u is zero. When T becomes large (T ≥ 0.6 s in this case), the inactivation disappears (S6 and S7 strategies) according to experimental findings. The angular position and velocity and the control signal are given in radians, rad/s, and rad/s 2 , respectively. Note that the control signal u corresponds to the ratio between the net torque acting at shoulder joint and the arm's moment of inertia.

  the Hamiltonian is maximum w.r.t. v and we must have r(t) = 0. Therefore dr dt = 0. But by Clarke's maximum principle, it means that dr dt ∈ -∂ u H = yI + ∂ f ∂uq, in which I is the Clarke's gradient of the absolute value function at zero, i.e., I = [-1, 1].
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Figure 12 :

 12 Figure12: Optimal Triphasic Pattern. Illustration of the optimal behavior of a 1-dof arm, under the small angles assumption and with a pair of agonistic and antagonistic muscles, modeled by first-order dynamics. The subscripts 1 and 2 denote the flexor and extensor muscles, respectively. The triphasic pattern is an agonistic burst, followed by an antagonistic burst, and again an agonistic burst. The inactivation occurs between the first agonistic and antagonistic bursts. The times t i denote the commutation times. The left graphs illustrates the behavior of the angular torques (u). The right graphs illustrate the behavior of the control signals(v), that are the input signals for muscles contractions (i.e., the signals driven by motoneurons). All signals are plotted with respect to time t varying between 0 and T .

  précédente s'est intéressée en détail aux mouvements du bras et a montré qu'un critère d'optimalité basé sur l'énergie était pertinent. L'étude de mouvements encore plus complexes et mettant en jeu des contraintes d'équilibre ou de précision est aussi nécessaire pour mieux analyser les solutions motrices trouvées par le SNC. En effet, tous les mouvements réalisés dans la vie courante impliquent plusieurs objectifs (voir section 1.6 par exemple). Dans cet article, nous utilisons une approche expérimentale et nous évaluons les stratégies cinématiques utilisées pour des tâches nécessitant un contrôle plus précis de l'équilibre ou de la trajectoire du doigt. L'ajout de telles contraintes sur le mouvement pourrait permettre d'enrichir notre connaissance sur les stratégies motrices utilisées par le SNC lors de mouvements combinant d'autres objectifs en plus de celui d'aller pointer la cible avec succès.

Figure 1 :

 1 Figure1: Schema illustrating the framework hypotheses. On the left part, the rectangle represents the basic motor strategy (A) composed of a single module. Due to experimental task restrictions (spatial and equilibrium constraints) applied to A, two possible cases can be considered: a new motor strategy composed of one module, different from A or similar to A, can be elaborated by the CNS; alternatively, a new motor strategy C composed of 2 or more modules (c i ) can be elaborated. However, two possibilities can be considered in such a case: C can be composed of new modules, task dependents and different from any sub-module (a sub-module corresponds to the covariation of some body parts initially included in a module) of A, or, some of these modules can be task independent and come from the initial motor strategy A.

4 Figure 2 :

 42 Figure 2: Stick Diagrams of the task performed under normal condition (a), equilibrium constraints (b, b'), and spatial constraints (c, c'), for the near (D1) and the distant (D2) target. (a) Basic condition (BD1, BD2). (b) Kneeextended condition (KD1, KD2). (b') Reduce base of support condition (RD1, RD2). (c) Imposed straight finger trajectory condition (SD1, SD2). (c') Imposed semi-circular trajectory condition (CD1, CD2). Dark-grey and lightgrey traces respectively depict the CoM and the finger trajectories in the sagittal plane. The inset box defines the 8 elevation angles under consideration (abbreviations: Sk=Shank, Th=Thigh, Pe=Pelvis, Tr=Trunk, He=Head, Hu=Humerus, Fo=Forearm, Ha=Hand).

Figure 3 :

 3 Figure 3: Angular kinematic values. (a) Basic (B), extended knee (K), and reduced base of support (R) conditions. From the left to the right: mean time series of the angular displacements, velocity profiles and mean values of peak to peak angular displacements (histograms). (b) Same data for the basic (B), straight trajectory (S), and semi-circular trajectory (C) conditions. Same abbreviations as in Figure 2. All time series were time-normalized to 200 points by using Matlab routines of interpolation (Matlab spline function).

Figure 4 :

 4 Figure 4: Average CoM and finger trajectories and tangential velocity profiles, in the sagittal plane, for all experimental conditions: basic (B), extended knee (K), reduced base of support (R), straight finger trajectory (S), and semi-circular finger trajectory (C). Standard deviations are not depicted for the sake of clarity.

Figure 5 :

 5 Figure 5: (a) PC1% and PC2% values. Means and standard deviations of the percentage of variance explained by the first two principal components computed for the elevation angles, for the two target distances (D1, left histograms ; D2, right histograms) and for each experimental condition. Black and grey bars represent respectively the VAF by the first PC and the VAF by the second PC (cumulative histogram). (b) Principal components. The PC1 is the most common angular waveform found in the dataset and PC2 is the second angular waveform. Each principal component obtained in the basic (B), equilibrium (K and R), and spatial (S and C) constraints motor task is depicted. (c) Loadings. Mean values, for both PC1 (black) and PC2 (grey), and for all experimental conditions. Error bars show the standard deviation. Correlation coefficients (r 2 ) are reported between the loadings of the basic condition and the loadings of a constrained condition.

Figure 6 :

 6 Figure 6: Typical PC1% values of one typical subject for 50 successive trials. The continuous black line corresponds to the PC1% baseline measured during the basic condition. The dashed line indicates the linear regression calculated on the 50 records performed in the straight finger trajectory condition, at long distance (SD2).
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Figure 7 :

 7 Figure 7: (a) For left to right, stick diagrams depicting the finger and CoM trajectories of a recorded and typical movement, the corresponding reconstruction from PC1, and from both PC1 and PC2 for the following conditions: basic task (B), imposed straight finger trajectory condition (S), and semi-circular finger path condition (C). (b) Recorded and reconstructed angular displacements from PC1, and both PC1 and PC2, across the spatial constraints condition. For the reconstruction from PC1 and PC2, the displacements are almost superimposed and not always visible. Correlation coefficients (r 2 ) are reported: the first and second values are the results of comparisons between the basic angular displacement and the reconstructed angular displacement from PC1 and from both PC1 and PC2, respectively. (c) Comparison between recorded velocity profiles and reconstructed velocity profiles from either PC1 or both PC1 and PC2. Correlation coefficients are reported, measuring the similarity between these velocity profiles. The first and second values correspond to a comparison with the reconstructed movement from PC1 and from both PC1 and PC2, respectively.

24 Figure 8 :

 248 Figure 8: (a) Polar diagrams of average correlation coefficients computed for the 28 pairs of elevation angles. The centre and the external border of each polar diagram correspond respectively to a minimal (=0.1) and maximal correlation (=1). Standard deviations are not displayed on the figure for the sake of clarity. Values for the two target distances (D1, upper part and D2, lower part) and for the two main experimental constraints (left part: K and R for the two equilibrium constraints; right part: S and C for the two trajectory constraints). The legend on the right part indicates the angles defining each pair considered. (b) Average correlation coefficients computed between the time series of angular displacement recorded during the basic condition (B) and the other conditions (K, R, S, and C), for each angle, at D1 (left) and D2 (right). Error bars represent the standard deviation between participants. Same abbreviations as in Figure 2.

26 Figure 9 :

 269 Figure 9: Recorded data. (a) Typical stick diagram of a whole-body pointing task performed in the basic condition, at long distance (BD2). Red and grey traces depict respectively the CoM and the finger trajectory in the sagittal plane. Simulated data. (b) Motor strategy obtained by imposing both a perfect covariation of the elevation angles and a straight finger path. (c) Motor strategy obtained by imposing both a perfect covariation of the elevation angles and an exaggerated curved finger path. (d) Angular displacements of elevation angles obtained for the (dark line) recorded data, and simulated data of the straight (S) and semi-circular (C) conditions (dotted line). Same abbreviations as in Figure 2.
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 1 Optimisation énergétique des mouvements L ES ARTICLES A et B ont donné plusieurs arguments en faveur d'une optimisation énergétique des mouvements humains. D'un coté, nous avons montré que les mouvements rapides du bras étaient très bien expliqués aux niveaux cinématique et musculaire par la minimisation d'un critère contenant le travail absolu des forces développées aux articulations. D'un autre coté, la présence d'inactivations simultanées (vérifiées expérimentalement) des muscles agonistes et antagonistes est une condition suffisante à la minimisation d'un tel critère grâce aux théorèmes mathématiques que nous avons démontrés dans l'article B, prouvant l'équivalence entre inactivation et minimisation d'un terme similaire au travail absolu des forces. Ceci est un résultat important mais qui ne prétend pas que les mouvements humains n'optimisent que l'énergie. Nos résultats montrent seulement que le SNC inclut l'énergie dépensée dans la planification des mouvements.

  de montrer que les 3 bouffées d'activité musculaire seraient planifiées en boucle ouverte par le cortex moteur (Irlbacher et al., 2006) : la bouffée d'activité antagoniste ne serait alors pas d'origine réflexe et générée en réaction à l'activation du muscle agoniste. D'après nos résultats, il peut arriver que cette séquence devienne quadriphasique : une période de silence entre les activations des muscles agoniste et antagoniste peut apparaître. Des illustrations de cette séquence triphasique sont données dans la figure 5.2.

FIGURE 5 . 2 :

 52 FIGURE 5.2: Gauche : allure de la séquence d'activation triphasique pour un mouvement du poignet d'environ 60°(d'après Britton et al., 1994). Droite : allure de la séquence d'activation triphasique pour un mouvement de l'avant-bras(d'après Köster et al., 2002).

FIGURE 5 . 3 :

 53 FIGURE 5.3: D'après Flament et al. (1984). Mouvement d'un singe dans le plan horizontal. La phase d'inactivation est mise en valeur par le rectangle.

  une revue). Ceci prouve que la structure des mouvements dans l'espace des muscles respecte certaines règles. De plus, le SNC encode des primitives motrices que ce soit dans la moelle épinière (Mussa-Ivaldi et[START_REF] Mussa-Ivaldi | Motor learning through the combination of primitives[END_REF] ou dans M1(Graziano et al., 2002, étude sur le singe). Des microstimulations de certaines de ces zones génèrent des activations des muscles précises et déplaçant les segments corporels de manière coordonnée vers une certaine position d'équilibre, et ce, quelle que soit la position initiale du membre. Pour générer un plus grand nombre de mouvement, le SNC peut combiner ces signaux de référence à différents niveaux et de manière hiérarchisée, jusqu'aux motoneurones. Une définition rigoureuse d'une primitive motrice a été donnée par Nori et Frezza (2005) dans le formalisme de la théorie du contrôle. Les primitives motrices pourraient être choisies par le SNC comme des stratégies optimales par rapport à certains critères et permettraient de conserver la contrôlabilité du système. Essayer de voir le degré de compatibilité entre une telle théorie et nos résultats concernant l'optimalité des mouvements humains par rapport à l'énergie dépensée serait intéressant. le SNC contrôle et intègre la gravité est important pour plusieurs raisons. Premièrement, le vieillissement engendre des problèmes d'équilibre et de planification du mouvement. Des maladies neuronales perturbent parfois l'équilibre ou les mouvements des personnes âgées. Des techniques de réadaptation et rééducation plus performantes pourraient voir le jour si l'on arrive à mieux comprendre comment sont codés la posture et le mouvement dans le SNC. Améliorer notre connaissance sur la façon dont le SNC utilise la gravité est un moyen de mieux appréhender les maladies qui sont associées. Le vieillissement affecte les systèmes central et périphérique. Savoir où et comment est codée la gravité pourrait permettre de trouver des solutions pour empêcher les chutes chez les personnes âgées, par exemple, phénomène qui est une cause de mortalité importante. Un autre intérêt est celui de la conquête spatiale dans la perspective de vols de longues durées en apesanteur. Le CNES porte un grand intérêt au devenir de ses spationautes lors de missions spatiales. L'absence de gravité provoque une importante perte de masse musculaire et osseuse modifiant non seulement les capacités motrices mais aussi touchant le fonctionnement des organes vitaux. Pour le moment, le fait de forcer les spationautes à réaliser des exercices de maintien en forme dans les navettes ne permet pas de régler ces problèmes. D'après nos résultats, si le SNC s'adapte en quelques jours et choisit de générer des mouvements consommant le moins d'énergie possible, on peut comprendre qu'il sera très difficile d'empêcher à certains muscles de s'atrophier (par exemple tous les muscles anti-gravitaires et posturaux). Il est bien connu que les spationautes qui reviennent sur terre montrent des symptômes similaires à un vieillissement accéléré et trouver des solutions pratiques (soit par entraînement, soit par médication) pourrait se révéler crucial 6 Applications et perspectives pour tenter d'aller sur d'autres planètes. La durée de vie de l'Homme en apesanteur reste encore inconnue, mais puisque les symptômes semblent correspondre à un vieillissement accéléré, la question est très importante dans ces perspectives. Enfin, le domaine de la robotique cherche de plus en plus à s'inspirer des solutions trouvées par la nature pour contrôler un système moteur aussi complexe : le SNC est un contrôleur encore inégalé, efficace et plastique. Dans la perspective des robots humanoïdes beaucoup de chercheurs essaient de développer des théories nouvelles basées sur des observations expérimentales issues du vivant. Dans une approche plus médicale, on peut citer le cas des prothèses intelligentes qui pourraient permettre à certains individus ayant perdu un membre de retrouver une certaine autonomie motrice. Le décryptage des stratégies motrices choisies par le SNC semble important pour mener à bien de tels projets à long terme. Récemment, et encourageant encore plus les recherches dans cette direction, Velliste et al. (2008) 1 ont montré qu'un singe pouvait apprendre à contrôler un bras robotique artificiel avec son cortex moteur et des afférences visuelles dans le but de se nourrir lui-même.
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 1 Tout d'abord, la théorie développée dans les articles A et B pourrait être généralisée et certains points mériteraient d'être approfondis :• Étendre le modèle actuel en trouvant les solutions pour des bras à plusieurs ddl, se déplaçant en 3D et lorsque la dynamique des muscles est modélisée. Il serait aussi intéressant de calculer les solutions optimales pour un critère "tout énergétique" du type compromis entre travail absolu et intégrale des carrés des couples (assimilé à l'énergie dépensée sous forme de chaleur). Si ce critère était développé avec succès, cela permettrait notamment d'avoir un critère commun pour les mouvements du bras et la locomotion(voir Nishii, 2006).• Tester le modèle pour d'autres tâches avec plus de degrés de libertés et mettant en jeu des contraintes d'équilibre (comme la tâche proposée dans l'article C). Ceci imposerait des contraintes d'état et compliquerait l'application du PMP. Ceci pourrait permettre d'expliquer les observations faites dans l'article C (trajectoires courbées du doigt et projection vers l'avant du CdM). Un modèle avec 4 degrés de liberté modéliserait raisonnablement le squelette humain (jambe, cuisse, tronc, bras) et donnerait d'importantes informations sur les stratégies utilisées par le SNC pour ce type de mouvement.6.2 Perspectives• Étudier très précisément les inactivations musculaires avec une étude expérimentale dédiée, évaluant les délais électromécaniques 2 de chaque muscle, leur temps de réponse et pourquoi pas effectuée chez le singe avec des électrodes intramusculaires comme[START_REF] Flament | Braking of fast and accurate elbow flexions in the monkey[END_REF], afin d'avoir des signaux de meilleure qualité et de mesurer aussi l'activité de muscles plus éloignés de la surface de la peau.Par ailleurs, dans le cadre de la théorie des primitives motrices (par exemple, cellede Nori et Frezza, 2005), il serait intéressant de voir comment l'on pourrait sélectionner les primitives sur la base d'un critère d'optimalité énergétique et d'extraire automatiquement les primitives utilisées par le SNC à partir de données expérimentales (par des méthodes de contrôle optimal inverse). Notamment, le degré de compatibilité entre l'utilisation de primitives motrices et l'optimalité des mouvements humains reste inconnu. Le SNC utilise-t-il un compromis entre la simplification du contrôle des ddl et l'optimalité des mouvements ? En conséquence, produit-il des mouvements sous-optimaux ?Est-ce la répétition d'une même tache motrice qui permet au SNC d'affiner et d'optimiser encore plus ses plans d'actions ? Par exemple, il a été prouvé que la répétition d'une même mouvement permet au SNC d'affiner encore plus la commande motrice (activations musculaires), même pour des mouvements très simples de flexion de l'avant-bras, afin de gagner en précision[START_REF] Gottlieb | Practice improves even the simplest movements[END_REF]. Une autre question qui demeure sans réponse est de comprendre comment le SNC a appris à produire des mouvements quasi-optimaux, d'un point de vue énergétique. En effet, il est peu probable que le SNC utilise la même méthode que celle issue de notre formalisme mathématique pour calculer les commandes motrices optimales. De plus, il n'est possible que le SNC recalcule à chaque fois la commande motrice nécessaire à l'élaboration d'un nouveau mouvement. Comprendre les processus neuronaux d'apprentissage des mouvements, le rôle des différentes voies nerveuses et expliquer comment le SNC a pu apprendre à produire de tels mouvements avec la structure neuroanatomique que l'on connaît sont des aspects importants pour améliorer notre connaissance du contrôle moteur. Pour une étude tentant de reproduire l'apprentissage et la réalisation de mouvements pour un segment à 1 ddl et se basant sur les voies nerveuses réellement utilisées par le SNC, nous pouvons renvoyer le lecteur à Eskiizmirliler et al. (2002). Enfin, il serait intéressant d'étudier le comportement du SNC quand ce dernier perçoit des conflits sensoriels. En effet, le SNC se base sur les retours sensoriels pour planifier les mouvements à l'aide de ses modèles internes et il a été montré qu'un conflit sensoriel entre la vision et la proprioception perturbe fortement le mouvement. Par exemple, des expériences ont été réalisées dans lesquelles des sujets produisent des mouvements verticaux tout en voyant leur bras de déplacer horizontalement Espace des k -jets, transversalité et théorèmes de transversalité.

Définition 1

 1 Définition des k -jets (cas euclidien)Un k -jet de R m dans R n est une classe d'équivalence [x, f, U ] k du triplet (x, f, U ) où U ⊂ R m est un ouvert, x ∈ R m et f : U → R n est une application lisse de C ∞ (U, R n ). La relation d'équivalence est définie par : [x, f, U ] k = [x , f , U ] k si x = x et f et f ont lesmêmes dérivées au point x jusqu'à l'ordre k.

Théorème 2

 2 un aussi un espace vectoriel. Définition 2 Définition de la transversalité Soit f : M → N une application C ∞ d'une variété lisse M dans une variété lisse N et A ⊂ N une sous-variété.On dit que f est transverse à A en un pointx de M si f (x) / ∈ A ou si f (x) ∈ A et T x f (T x M ) + T f (x) A = T f (x) N .La notation T x X dénote l'espace tangent à la variété X au point x. Rappelons que T x X possède une structure d'espace vectoriel. La notation T x f dénote l'application linéaire tangente évaluée au point x. L'application f est dite transverse à A si elle est transverse à A en tout point x de M . Par exemple, soit f une fonction lisse (f : R → R 2 , t → f (t)) et A une sous-variété de dimension 1 de R 2 donnée par la fonction γ : R → R 2 , t → γ(t), alors f est transverse à A signifie simplement que, soit les graphes de f et γ ne s'intersectent pas, soit, s'ils s'intersectent en un point t alors les tangentes à f et γ en ce point ne sont pas colinéaires. Intuitivement, on peut penser que si l'on choisit deux courbes f et γ, on sera, en général, dans le cas où elles ne s'intersectent pas ou bien dans le cas où elles ne s'intersectent, mais pas de façon tangente. Le théorème de la transversalité permet notamment d'énoncer ce résultat intuitif en termes mathématiques précis. A.2 Code Maple pour la résolution formelle du compromis minimum de travail absolu -énergie de l'accélération (1 degré de liberté) Théorème de la transversalité Soit M , N des variétés lisses et A ⊂ N une sous-variété. L'ensemble des applications f de C ∞ (M, N ) transverses à A est résiduel (et donc dense) dans C ∞ (M, N ) pour la topologie forte. Si de plus A est fermé [resp. compact] dans N alors cet ensemble est dense et ouvert dans C ∞ (M, N ) muni de la topologie faible [resp. forte]. Un espace résiduel est le complémentaire d'une union dénombrable d'ensemble nulle part dense.

  (k-p0)*t: w1:=C2+(2*umax-k-p0)*t: y1:=(w1-z1)/2: x1:=int(y1,t)+C3: u1:=diff(y1,t)+k:# ZONE 2z2:=C1+(k-p0)*t: w2:=C2+(C1/alpha+k-p0)*t+(k-p0)/(2*alpha)*t^2: y2:=(w2-z2)/2: x2:=int(y2,t)+C3: u2:=diff(y2,t)+k: -(C2/alpha+k+p0)*t+(p0+k)/(2*alpha)*t^2: w4:=C2-(p0+k)*t: y4:=(w4-z4)/2: x4:=int(y4,t)+C3: u4:=diff(y4,t)+k:

  (t1=T,q0): p0_:=fsolve(subs(q0=q0_,xP1=omega),p0,p0=k..1e6); q0_:=subs(p0=p0_,q0_); p0_ := 37.19997430 q0_ := 3.635995374 # Necessary conditions on p0_ et q0_ evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0 ; q0_ < -2*k*alpha+2*alpha*umax ; q0_ > -2*k*alpha ; evalf(subs(p0=p0_,subs(q0=q0_,zP1))) > -2*k*alpha ; evalf(subs(p0=p0_,subs(q0=q0_,u0))) <=umax ; evalf(subs(p0=p0_,subs(q0=q0_,uP1))) >= -umin; if evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0 and q0_ < -2*k*alpha+2*alpha*umax and q0_ > -2*k*alpha and evalf(subs(p0=p0_,subs(q0=q0_,zP1))) > -2*k*alpha and evalf(subs(p0=p0_,subs(q0=q0_,u0))) <=umax and evalf(subs(p0=p0_,subs(q0=q0_,uP1))) >= -umin then printf("solution possible \n "); Sol1:=1; else printf("solution NOT possible \n ")

  (subs(C1=q0,z2=-2*k*alpha),t): u0:=subs(subs(C1=q0,t=0,u2)): wP1:=factor(simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,w2))))): zP1:=subs(t=t1,subs(C1=q0,subs(C2=q0,z2))): xP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,subs(C3=x0,x2))))): yP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,y2)))): uP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,u2)))): (subs(C1=zP1,subs(C2=wP1,w3=-2*k*alpha)),t): zP2:=subs(t=t2,subs(C1=zP1,subs(C2=wP1,z3))): wP2:=factor(simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,w3))))): xP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,subs(C3=xP1,x3))))): yP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,y3)))): uP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,u3)))):

  (subs(C1=q0,z1=-2*k*alpha+2*alpha*umax),t): wP1:=factor(simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,w1))))): zP1:=subs(t=t1,subs(C1=q0,subs(C2=q0,z1))): xP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,subs(C3=x0,x1))))): yP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,y1)))): uP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,u1)))):# Second piece of trajectory t2:=solve(subs(C1=zP1,z2=-2*k*alpha),t): zP2:=subs(t=t2,subs(C1=zP1,subs(C2=wP1,z2))): wP2:=factor(simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,w2))))): xP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,subs(C3=xP1,x2))))): yP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,y2)))): uP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,u2)))):# Third piece of trajectory t3:=solve(subs(C1=zP2,subs(C2=wP2,w3=-2*k*alpha)),t): zP3:=subs(t=t3,subs(C1=zP2,subs(C2=wP2,z3))): wP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,w3)))): xP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,subs(C3=xP2,x3))))): yP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,y3)))): uP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,u3)))):

  (subs(C1=q0,z2=-2*k*alpha),t): u0:=subs(subs(C1=q0,t=0,u2)): wP1:=factor(simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,w2))))): zP1:=subs(t=t1,subs(C1=q0,subs(C2=q0,z2))): xP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,subs(C3=x0,x2))))): yP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,y2)))): uP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,u2)))):# Second piece of trajectory t2:=solve(subs(C1=zP1,subs(C2=wP1,w3=-2*k*alpha)),t): zP2:=subs(t=t2,subs(C1=zP1,subs(C2=wP1,z3))): wP2:=factor(simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,w3))))): xP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,subs(C3=xP1,x3))))): yP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,y3)))): uP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,u3)))):# Third piece of trajectory t3:=solve(subs(C1=zP2,subs(C2=wP2,w4=-2*alpha*k-2*alpha*umin)),t): zP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,z4)))): wP3:=factor(simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,w4))))): xP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,subs(C3=xP2,x4))))): yP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,y4)))): uP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,u4)))):# Fourth piece of trajectory t4:=solve(subs(C1=zP3,subs(C2=wP3,w5=z5)),t): zP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,z5)))): wP4:=factor(simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,w5))))): xP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,subs(C3=xP3,x5))))): yP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,y5)))): uP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,u5)))):

  )))),t)=0,t) )/T; end if; SOLUTION OF TYPE S2( 4 commutations and saturation w.r.t. umin AND umax) unassign('p0_','q0_'); (subs(C1=q0,z1=-2*k*alpha+2*alpha*umax),t):wP1:=factor(simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,w1))))): zP1:=subs(t=t1,subs(C1=q0,subs(C2=q0,z1))): xP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,subs(C3=x0,x1))))): yP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,y1)))): uP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,u1)))):# Second piece of trajectory t2:=solve(subs(C1=zP1,z2=-2*k*alpha),t): zP2:=subs(t=t2,subs(C1=zP1,subs(C2=wP1,z2))): wP2:=factor(simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,w2))))): xP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,subs(C3=xP1,x2))))): yP2:=simplify(subs(t=t2,subs(C1=zP1,subs(C2=wP1,y2)))): (subs(t=t2,subs(C1=zP1,subs(C2=wP1,u2)))): # Third piece of trajectory t3:=solve(subs(C1=zP2,subs(C2=wP2,w3=-2*k*alpha)),t): zP3:=subs(t=t3,subs(C1=zP2,subs(C2=wP2,z3))): wP3:=factor(simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,w3))))): xP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,subs(C3=xP2,x3))))): yP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,y3)))): uP3:=simplify(subs(t=t3,subs(C1=zP2,subs(C2=wP2,u3)))): # Fourth piece of trajectory t4:=solve(subs(C1=zP3,subs(C2=wP3,w4=-2*k*alpha-2*alpha*umin)),t): zP4:=subs(t=t4,subs(C1=zP3,subs(C2=wP3,z4))): wP4:=factor(simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,w4))))): xP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,subs(C3=xP3,x4))))): yP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,y4)))): uP4:=simplify(subs(t=t4,subs(C1=zP3,subs(C2=wP3,u4)))): # Fifth piece of trajectory t5:=solve(subs(C1=zP4,subs(C2=wP4,w5=z5)),t): zP5:=simplify(subs(t=t5,subs(C1=zP4,subs(C2=wP4,z5)))): wP5:=factor(simplify(subs(t=t5,subs(C1=zP4,subs(C2=wP4,w5))))): xP5:=simplify(subs(t=t5,subs(C1=zP4,subs(C2=wP4,subs(C3=xP4,x5))))): yP5:=simplify(subs(t=t5,subs(C1=zP4,subs(C2=wP4,y5)))): uP5:=simplify(subs(t=t5,subs(C1=zP4,subs(C2=wP4,u5)))): # Solving in p0_ and q0_ q0_:=solve(t1+t2+t3+t4+t5=T,q0): p0_:=fsolve(subs(q0=q0_,xP5=omega),p0,p0=k..1e5,fulldigits); q0_:=subs(p0=p0_,q0_);p0_ := 54.03297214 q0_ := 6.249828217 # Necessary conditions on p0_ et q0_ if evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t2))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t3))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t4))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t5))) >= 0 and q0_ >= -2*k*alpha+2*alpha*umax and evalf(subs(p0=p0_,subs(q0=q0_,zP4))) <= -2*k*alpha-2*alpha*umin then printf("solution possible \n "

FactorB

  := 0.4687885667 SOLUTION OF TYPE S6 ( 1 commutation: umax at the beginning and u remaining positive) unassign('p0_','q0_'); # Preliminary computations # First piece of trajectory t1:=solve(subs(C1=q0,z1=-2*k*alpha+2*alpha*umax),t): wP1:=factor(simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,w1))))): zP1:=subs(t=t1,subs(C1=q0,subs(C2=q0,z1))): xP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,subs(C3=x0,x1))))): yP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,y1)))): uP1:=simplify(subs(t=t1,subs(C1=q0,subs(C2=q0,u1)))): # Second piece of trajectory A.3 Code Matlab pour la résolution numérique du compromis minimum de travail absolu -énergie de l'accélération (2 degrés de liberté) find control.m : cette fonction permet le calcul de la valeur du contrôle optimal à un instant donné. f u n c t i o n [ C o n t r o l e , u1_ , u2_ ] = f i n d _ c o n t r o l ( v e c t )

  ; i f tmp1 <0 && tmp2 <0 c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 4 ] ; end [ tmp1 , tmp2 ] = maxham (0 , -1 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) ; i f tmp2 >0 c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 5 ] ; end [ tmp1 , tmp2 ] = maxham ( 0 ,

  

  

  

  Théorie des primitives motrices et des synergies le point d'arrivée. Dans ce cas, les mouvements théoriques du bras sont courbes et relativement proches de ce que l'on observe en pratique (la courbure provenant de l'action des forces inertielles qui sont négligées dans la trajectoire des points d'équilibre, appelée aussi trajectoire virtuelle).Cependant, pour avoir des résultats convenables, les coefficients de raideur doivent être environ 3 fois supérieurs aux valeurs physiologiques réelles. Sans cela, le réalisme biologique du modèle est mis en défaut. Une alternative possible consisterait en la planification d'une trajectoire virtuelle plus complexe qu'une simple ligne droite reliant le point de départ à la cible.

2.1, partie gauche). Imaginons que l'on puisse diminuer subitement la raideur du ressort de droite. La masse va se déplacer vers une nouvelle position d'équilibre (Fig. 2.1, partie droite). La raideur des muscles pourrait donc être une variable contrôlée par le SNC pour réaliser des mouvements de pointage du bras. Selon cette hypothèse, un mouvement serait créé par un changement soudain des raideurs musculaires des muscles agonistes et antagonistes. Le mouvement résultant (la trajectoire du doigt, les déplacements angulaires des segments etc.) seraient alors une conséquence de ce changement de point d'équilibre et des propriétés dynamiques du bras (force d'inertie, forces de Coriolis et centrifuge, frictions...). En fait, ce changement brutal du point d'équilibre est une version un peu simpliste de la théorie du point d'équilibre et est en désaccord avec plusieurs résultats expérimentaux, comme par exemple, la relative invariance des trajectoires du doigt, lorsqu'on ajoute une masse sur le bras d'un sujet

(Atkeson et Hollerbach, 1985)

. Une version plus élaborée de cette théorie est de suggérer que le SNC spécifie une trajectoire de point d'équilibre, qui déplace graduellement le doigt vers une position finale. Dans cette optique, Flash (1987) a supposé que le SNC pouvait planifier une trajectoire rectiligne entre le point de départ et 2.3

  Théories du contrôle moteur empêchant de varier indépendamment les uns des autres. D'autres études ont mis en évidence ce type d'organisation dans des mouvements humains de tout le corps[START_REF] Thomas | Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements[END_REF][START_REF] Kaminski | The coupling between upper and lower extremity synergies during whole body reaching[END_REF] au moyen de techniques d'analyse statistique ou de réduction de dimensionnalité (telle que l'ACP,Jolliffe, 1986).[START_REF] Thomas | Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements[END_REF] ont trouvé de plus grandes covariations dans l'espace des angles que dans l'espace des forces appliquées aux articulations. Pour la locomotion, de nombreux auteurs ont trouvé que lors d'un cycle de marche, les trois angles d'élévation à la jambe (fémur, tibia, pied) covarient dans un plan et y décrivent une courbe typique, que ce soit chez l'Homme ou chez le chat[START_REF] Lacquaniti | Motor patterns in walking[END_REF].Cette coordination des différents segments corporels pourrait être d'origine musculaire. En effet, les mêmes types de résultats ont été extraits de données EMG. Par exemple, Torres-Oviedo et al.

Bernstein (1967) 

a été l'un des premiers à introduire le concept des synergies. En général, on parle de synergies musculaires, mais le concept peut s'appliquer à des variables cinématiques, dynamiques et neuronales. La définition d'une synergie peut varier selon les auteurs. Par exemple, pour fixer les idées, l'activation d'une synergie musculaire peut provoquer une séquence d'activation typique de plusieurs muscles, conduisant à un déplacement coordonné de plusieurs segments vers une certaine position. La séquence d'activation triphasique (cf. section 1.5) est un exemple de synergie musculaire. Une très bonne revue du sujet peut être trouvée dans Flash et Hochner (2005). Au niveau cinématique, Alexandrov et al. (1998) ont mesuré de fortes covariations des angles à la cheville, au genou et à la hanche lors de mouvements du tronc et des jambes (expérience dite de trunk bending). Tout se passe comme si le SNC imposait des contraintes sur ces trois angles, les 2 (2006) ont défini une synergie musculaire comme le vecteur contenant l'amplitude des bouffées des muscles impliqués dans les APR. Ils ont trouvé que 5 synergies permettent la régulation de l'équilibre postural chez le chat suite à des perturbations dans des directions variées et de types différents (translation ou rotation de la base de support sur laquelle se trouve le chat). D'autres études ont défini les synergies musculaires comme des signaux temporels de référence à partir desquels il est possible de reproduire l'activation EMG de nombreux muscles. Pour diverses tâches motrices telles que la locomotion, les mouvements du bras ou la posture de la main, des études ont montré que l'activité musculaire de plusieurs dizaines de muscles peut être résumée par une poignée d'activations typiques

  Théorie des primitives motrices et des synergies de l'espace de la tâche[START_REF] Mussa-Ivaldi | Motor learning through the combination of primitives[END_REF]. Il est intéressant de noter que le même type de fonctionnement a été prouvé au niveau cortical chez le singe (voir la revuede Graziano et al., Comment le SNC procède-t-il pour produire des mouvements de façon proactive et pour les contrôler en intégrant des commandes correctives, même au cours du mouvement lui-même ? Produire un mouvement précis en boucle ouverte nécessite la connaissance des propriétés mécaniques du corps, au même titre que la connaissance des propriétés physiques de l'environnement. Un concept a émergé dans le champ des neurosciences ces dernières années. C'est le concept de modèle interne (pour une revue, voir[START_REF] Wolpert | Computational principles of movement neuroscience[END_REF]. Un modèle interne est une représentation de l'environnement ou du corps accessible dans le cerveau et permettant de prédire des évènements de l'action. Ce concept semble idéal pour élaborer des théories du contrôle moteur mais l'existence

	2002).
	Cette organisation du mouvement en primitives motrices pourrait permettre au SNC de simplifier le
	contrôle des milliers de ddl que comporte le système musculo-squelettique. En fait, des modulations
	en amplitudes (et parfois en temps) des activités musculaires typiques permettent de produire
	une large gamme de mouvements, comme l'ont suggéré Mussa-Ivaldi et Giszter (1992). Ainsi,
	l'existence d'un répertoire moteur limité stocké dans certains réseaux neuronaux pourrait permettre

mais plutôt la preuve d'une organisation structurée des mouvements biologiques dans l'espace des muscles. Des revues sur les synergies musculaires peuvent être trouvées dans

[START_REF] Poppele | Sophisticated spinal contributions to motor control[END_REF] 

et

[START_REF] Bizzi | Combining modules for movement[END_REF]

, où plusieurs résultats empiriques sont rappelés.

Ces structures cinématiques et musculaires typiques trouvées dans les données expérimentales semblent aussi avoir une cause neuronale. En effet, certaines études ont montré que la moelle épinière code des mouvements pré-programmés (appelés primitives motrices). Notamment, une expérience de Mussa-Ivaldi et

[START_REF] Mussa-Ivaldi | Motor learning through the combination of primitives[END_REF] 

a trouvé l'existence de primitives motrices localisées dans la moelle épinière de la grenouille. Chaque primitive motrice permet au membre (une patte composée de plusieurs segments) de se déplacer vers un même point de l'espace Cartésien quel que soit la position de départ du membre. En fait, un réseau neuronal de la moelle épinière code en général un champ de forces convergeant vers un seul point d'équilibre. La combinaison linéaire de ces primitives motrices peut engendrer un plus grand nombre de mouvements, vers d'autres zones

2.3

au SNC de générer des mouvements complexes, dans l'hypothèse où ce dernier a la capacité de combiner les primitives motrices de façon adéquate. Afin de mieux appréhender cette éventualité, des efforts de formalisation du problème dans le contexte de la théorie du contrôle ont été faits par

[START_REF] Nori | A control theory approach to the analysis and synthesis of the experimentally observed motion primitives[END_REF]

. Ces auteurs donnent une définition rigoureuse à la notion de primitive motrice et proposent des méthodes permettant de choisir un nombre minimal de primitives motrices, permettant de garder la contrôlabilité du système (i.e., de pouvoir aller où l'on veut en un temps donné). Cette approche est intéressante puisqu'elle permet d'utiliser les outils puissants de la théorie du contrôle afin de tester la faisabilité d'une telle approche pour le contrôle des mouvements biologiques. Il a été montré par

[START_REF] Nori | A control theory approach to the analysis and synthesis of the experimentally observed motion primitives[END_REF] 

que le choix des primitives motrices pouvait provenir du choix d'un critère d'optimalité afin de répondre à la question : pourquoi le SNC a-t-il choisi ces primitives motrices, selon quel critère ? Pour résumer, l'idée d'une superposition des signaux prototypiques pour créer des mouvements complexes est appuyée par de nombreuses études et pourrait permettre d'expliquer comment le SNC arrive à contrôler un nombre si important de muscles et de segments avec facilité et flexibilité. Le SNC est organisé de façon hiérarchique mais il existe des similarités entre ses différents niveaux : la moelle épinière stocke des solutions prêtes à l'emploi qui sont sélectionnées et modulées grâce aux afférences sensorielles et aux efférences corticales. Le cortex mémorise aussi certaines solutions toutes faites mais possède en plus la capacité d'en générer de nouvelles, très sophistiquées et selon certains plans d'action. Ce mode de contrôle qui consiste à construire des commandes à partir de blocs pré-existants est fortement ancré au sein du SNC et semble fondamental pour décrypter les solutions trouvées par la nature pour contrôler des systèmes dynamiques aussi complexes. Pour terminer, il est intéressant de faire le parallèle avec le fonctionnement du langage : à partir d'un alphabet, nous formons des mots puis, à partir des mots, des phrases. La théorie des primitives motrices et des synergies reprend le même principe mais appliqué au contrôle moteur.

concrète de modèles internes dans le cerveau provoque encore de nombreux débats au sein de la communauté des neuroscientifiques. Cependant, le formalisme associé à ces modèles internes est issu de l'automatique et de la théorie du contrôle, et paraît adéquat pour étudier les questions de la planification et du contrôle des mouvements.

Nous allons brièvement rappeler les idées sur lesquelles repose la théorie des modèles internes.

Par exemple, pour produire un mouvement sans retour sensoriel, le SNC a besoin de trouver la bonne séquence d'activation musculaire à partir des informations initiales (posture, cible et/ou durée). C'est le modèle inverse qui donnerait au cerveau cette compétence

[START_REF] Kawato | A hierarchical neural-network model for control and learning of voluntary movement[END_REF]

.

Ce modèle est capable de s'adapter au cours de la croissance de l'individu, mais aussi au contexte de l'action. Par exemple, des études ont testé les capacités d'adaptation motrice de sujets quand les mouvements sont perturbés par la présence d'une force imprévue. Lorsqu'un sujet déplace son bras dans le plan horizontal (à l'aide d'un manipulandum) et qu'une force extérieure s'ajoute aux forces naturellement en présence, une phase d'adaptation est nécessaire au sujet pour réaliser la tâche de pointage avec succès. Après plusieurs tentatives, les sujets arrivent à compenser cette force, et produisent le mouvement sans difficulté. Si on enlève cette force supplémentaire, une période de "désadaptation" est nécessaire et est la preuve de la construction d'un modèle interne du champ de force dans le SNC

  2.5 Théorie du contrôle optimalsignifie qu'elle demande trop de ressources et de temps de calcul pour des problèmes avec beaucoup de dimensions. Dans le cas continu, ce même principe se généralise sous la forme des équations de Hamilton-Jacobi-Bellman qui conduisent généralement à la résolution d'équations aux dérivées partielles non-linéaires et du second-ordre. Parallèlement, en Union Soviétique et dans la lignée du calcul des variations et de la méthode des multiplicateurs de Lagrange, Lev Pontryagin et ses collègues ont développé le Principe du Maximum permettant de donner un formalisme puissant pour résoudre une large gamme de problèmes(Pontryagin et al., 1964). Le PMP donne des conditions nécessaires d'optimalité, alors que les équations de HJB donnent des conditions nécessaires et suffisantes d'optimalité.

2.5.1 Principe du Maximum de Pontryagin (PMP)

Ce principe sera l'outil à la base de nos travaux de modélisation. Ce résultat mathématique est appelé principe car il peut être transformé en des théorèmes différents suivant les contraintes du problème. Nous allons rappeler son énoncé dans le cas qui nous intéresse (voir

Pontryagin et al., 1964 

pour plus de détails).

Ici, x est une fonction du temps t à valeur dans R n (état du système) et u est le contrôle, fonction du temps à valeur dans R m . On dénote par U l'ensemble des contrôles admissibles, qui est en général un sous-ensemble des fonctions continues par morceaux.

Théorème 1 Principe du Maximum de Pontryagin

Considérons le système de contrôle ẋ = f (x, u) avec un coût de la forme C(u) = ´T 0 g(x, u)dt où f et g sont des fonctions lisses par rapport à x, i.e., infiniment dérivables. Le problème est d'aller d'un point x 0 de l'espace des configurations à un point x F en un temps fixé T . Si le contrôle u ∈ U est optimal alors il existe une application non-triviale (p(.), λ) : [0, T ] → R n × R -absolument continue appelée vecteur adjoint, où λ est une constante négative, telle que la trajectoire associée au contrôle u vérifie les équations suivantes :

  [START_REF] Richardson | Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis[END_REF] ont étudié ce type de critère : le cas n = 3 semble être le plus approprié pour les mouvements humains et correspond au minimum jerk, détaillé ci-dessus. De manière générale, les solutions prédites par ces critères sont des polynômes d'ordre 2n -1.

	conclu que les critères qui maximisent l'aspect
	lisse des trajectoires de la main constituent des principes moteurs assez généraux.
	Ce type de critère peut aussi s'appliquer dans l'espace des angles (θ i ) i=1..n pour un bras avec
	n degrés de liberté. Wada et al. (2001) ont proposé le minimum angle jerk qui correspond à la
	minimisation d'un critère du type :

Le cas n = 2 est le minimum d'accélération. Ce critère a été rejeté parce qu'il ne reproduit pas les tangentes horizontales observées expérimentalement sur les profils de vitesse au début et à la fin des mouvements

[START_REF] Stein | What is optimized in muscular movements ? Human Kinetics[END_REF]

. Le cas n = 5 a aussi été traité par Dingwell et al. (2004) (minimum crackle) pour expliquer le contrôle d'objets non-rigides. En particulier, ces auteurs ont testé leur modèle lors d'une tâche de manipulation d'une masse reliée à un ressort et ont

2.5.3.2 Critères dynamiques Le

  critère le plus connu dans cette catégorie a été décrit ci-dessus (minimum torque change, MTC).

	2 Théories du contrôle moteur
	troisième de la position) (Ben-Itzhak et Karniel, 2007, MAC) a permis de réconcilier le minimum
	d'accélération avec les données expérimentales. En modifiant légèrement le problème de contrôle
	optimal, on peut en effet "lisser" les solutions optimales et finalement, il a été trouvé que ce
	modèle correspondait plutôt bien aux mouvements enregistrés en pratique. Ceci élimine en
	particulier les problèmes de non-dérivabilité présents aux extrémités des trajectoires, comme
	souligné antérieurement par Stein et al. (1986).
	L'accélération étant une variable cinématique directement liée à la dynamique du système humain,
	nous allons maintenant nous intéresser aux critères dynamiques suggérés dans la littérature.
	Nakano et al. (1999) a légèrement modifié la version de Uno et al. (1989) en incluant les termes
	de frottement dans la quantité à minimiser. Cela a donné lieu à ce que les auteurs ont nommé le
	minimum commanded torque change (MCTC). Dans ces deux cas, le critère s'exprime de la façon
	suivante, où (τ i ) i=1..n sont les couples nets agissant à chaque articulation :
	et Vaughan et al. (1998). On
	peut noter que le minimum angle jerk permet de sélectionner un mouvement pour des systèmes à n
	degrés de liberté au niveau cinématique, alors que les critères dans l'espace Cartésien (tel que le
	minimum jerk) impliquent encore des étapes de cinématique inverse et dynamique inverse pour
	déterminer tout le mouvement au niveau des angles.
	Récemment, un principe de minimum d'accélération avec contraintes sur le contrôle (la dérivée

.3.3 Critères musculaires ou neuronaux

  

	2 Théories du contrôle moteur	2.5 Théorie du contrôle optimal
	Déplacement des segments directement contrôlées par le SNC) et de résoudre plusieurs problèmes de dimensionnalité en des extensions dans le cas de la présence de bruit dans la commande et propose d'y intégrer les
	proposant la minimisation d'un seul critère. Mais ces modèles présentent aussi l'inconvénient idées de Todorov et Jordan (2002) (optimal feedback control theory). Notamment, dans le cas de
	d'introduire de nombreux paramètres sur les propriétés du système neuromusculaire humain (e.g., présence de bruit dans le système dynamique, le minimum de variance propose une solution pour
	temps de réponse des muscles, muscles mono ou bi-articulaires, insertions des muscles etc.) et la minimiser l'erreur sur la position du point final du doigt
	complexité calculatoire qui en découle peut être rédhibitoire. En effet, les dimensions des espaces
	Coude de travail deviennent très élevées et la résolution du problème de contrôle optimal devient alors un Doigt
	challenge difficile afin d'éviter les problèmes de minima locaux souvent causés par l'utilisation de
	résolutions purement numériques.	Décours temporel
	Une étude utilisant un modèle détaillé du système neuromusculaire a été développée par Guigon
	et al. (2007). Ces auteurs suggèrent que la majorité des problèmes de redondance présents
	dans la planification des mouvements humains peuvent être résolus par l'utilisation d'un unique
	critère d'optimalité. Le critère proposé est la minimisation de la quantité de commande neuronale
	nécessaire pour déplacer le bras jusqu'à la cible. Cet article modélise la biomécanique du bras FIGURE 2.3: Exemple de solution donnée par le modèle géodésique pour un mouvement plan de 400 ms, avec un bras bi-articulé. Le chemin le plus court par rapport à la métrique humain de façon précise. Le procédé utilisé pour le calcul des mouvements simulés est le suivant.
	donnée par la matrice d'inertie est d'abord trouvé sur la sphère, puis le décours Premièrement, ce modèle utilise le principe de séparation : les forces gravitaires et les forces
	temporel du doigt est celui du minimum jerk. inertielles sont contrôlées séparément par le SNC. Deuxièmement, dans son implémentation
	actuelle, ce modèle propose la minimisation de l'énergie des motoneurones, au sens de la théorie du
	et la seconde étape planifie l'aspect temporel du mouvement. Ce modèle s'appelle le modèle signal. Dans ce modèle, les objets contrôlés sont les activités des motoneurones (u i ) i=1..N . Ainsi, le
	"géodésique" (GEO). Le problème spatial est posé dans le contexte de la géométrie Riemannienne. but est de trouver l'activation optimale des motoneurones excitant les muscles de façon à déplacer
	Pour aller d'une posture initiale à une posture finale, Biess et al. (2007) proposent que le SNC le doigt vers la cible (en considérant un système dynamique dans lequel les forces gravitaires sont
	pourrait choisir le chemin le plus court sur une variété Riemannienne (l'espace des coordonnées négligées). Les muscles sont modélisés par des filtres passe-bas du second ordre. La quantité à
	généralisées, i.e. les angles articulaires), munie d'une métrique particulière. Cette métrique est en fait la matrice d'inertie du système mécanique, qui définit naturellement une forme quadratique en chaque point de l'espace des configurations. L'aspect temporel est quand à lui planifié en stipulant minimiser est : E 2 = N i=1 ˆT 0 u 2 i dt
	que la trajectoire résultante de la main est parcourue en suivant un décours temporel dicté par le où les u i sont les signaux envoyés aux motoneurones. C'est une quantité énergétique au sens de la
	minimum jerk (profil de vitesse en cloche et symétrique). Une solution prédite par ce modèle est théorie du signal, mais la signification physique réelle d'un tel critère est plus obscure. C'est pour
	illustrée dans la figure 2.3 pour le cas d'un bras bi-articulé se déplaçant dans un plan. Cependant le cela que l'on se réfère souvent à ce type de modèle par la terminologie plus arbitraire "minimum
	cas des mouvements plans ne semble pas être le plus favorable pour ce modèle puisqu'il prédit des d'effort". En effet, les solutions optimales produites ne minimisent pas l'énergie réellement dépensée
	trajectoires du doigt en général trop courbées par rapport aux données expérimentales. En fait, ce lors du mouvement. Une fois le mouvement planifié, les forces statiques viennent s'ajouter aux
	modèle a été validé pour des mouvements naturels dans l'espace à trois dimensions (Biess et al., forces dynamiques qui proviennent du processus de contrôle optimal.
	2007).	
	Il est à noter que la durée T du mouvement peut être fixée ou non. Par exemple, si la valeur de l'effort
	E 2 est fixée à une constante, on peut trouver le temps T correspondant. Ceci permet par exemple aux auteurs d'expliquer comment le SNC pourrait choisir une vitesse naturelle de mouvement, 2.5D'autres études utilisent des modèles beaucoup plus détaillés du système neuromusculaire. Ceci a consigne verbale souvent utilisée par les expérimentateurs en neurosciences comportementales.
	l'énorme avantage de coller de plus près à la réalité (les motoneurones sont les données d'entrées Pour terminer, ce modèle est en fait plus général et ne se limite pas à la boucle ouverte. Il prévoit

Deuxième partie Études : modélisation et expérimentation 3 Chapitre 3 Études des mouvements du bras 3.1 Introduction

  

	2 Théories du contrôle moteur
	planification des mouvements du bras, ainsi qu'à la manière dont la gravité pourrait être traitée par 1g 0g
	Cette propriété n'est pas anodine et conduit à des phénomènes très intéressants, comme nous le verrons dans le chapitre 3 (articles A et B). Ce cadre théorique a donc permis d'exposer les principales théories existantes sur le thème de la le SNC. Dans le chapitre 4, nous étudierons de manière expérimentale les stratégies motrices utilisées par le SNC pour des mouvements plus complexes impliquant tous les segments corporels et mettant en jeu des contraintes d'équilibre (article C). 1 4 Vit esse (m/s) H aut Bas
	planification motrice et du contrôle des mouvements corporels. La théorie du contrôle optimal 0 t emps nor malisé t emps nor malisé
	semble la plus complète et la mieux adaptée pour répondre à la problématique présentée plus haut. FIGURE 3.1: Figure illustrative de données obtenues en vols paraboliques. Comparaison des profils En effet, nous avons vu qu'un élément récurrent de toutes ces théories est de trouver des raisons de vitesse entre des mouvements vers le haut et des mouvements vers le bas, effectués
	pour expliquer pourquoi le SNC utilise une stratégie plutôt qu'une autre. D'ailleurs, pour Ting bras tendu dans le plan sagittal, en gravité normale (à gauche) et en microgravité
	(2007), "des avancées doivent révéler pourquoi une séquence d'activation particulière des muscles (à droite) après adaptation (environ 30 mouvements effectués au préalable en 0g).
	est choisie par le SNC pour réaliser une tâche motrice". Mouvements de 60°durant environ 500 ms.
	Dans ce contexte du contrôle optimal, nous pouvons reformuler la problématique présentée à la fin
	du chapitre 1, en partant du postulat général suivant :
	Postulat général : N OUS AVONS mentionné dans la section 1.5 que la trajectoire décrite par le doigt lors d'un mouvement de pointage entre deux cibles est légèrement courbe et que les profils de vitesse
	sont en forme de cloche. Nous avons rappelé dans le chapitre 2 que les modèles cinématiques Les mouvements humains sont optimaux et résultent du choix d'un certain critère d'optimalité. prédisent assez bien ces caractéristiques invariantes du mouvement. Néanmoins, pour ces modèles, Ainsi, la planification motrice a pour objectif d'élaborer les lois de contrôle optimal afin de résoudre ainsi que pour tous ceux basés sur le principe de séparation, la gravité n'a pas d'influence directe le problème de redondance des mouvements humains (section 1.4). sur la planification des mouvements.
	La problématique présentée dans le chapitre 1 peut alors se reformuler ainsi : Or, des études expérimentales réalisées pour des mouvements verticaux du bras ont montré qu'il
	Problématique générale : existe un effet lié à la gravité. En particulier, des mouvements effectués dans le plan sagittal
	Quel est le principe d'optimalité utilisé par le SNC pour la planification des mouvements ? présentent des asymétries liées à la direction du mouvement : la durée d'accélération de la main
	est constamment plus faible que sa durée de décélération pour un mouvement dirigé vers le
	Problématique particulière : haut et inversement pour un mouvement vers le bas (voir Papaxanthis et al., 1998b, 2003b). Ces
	Les forces gravitaires et inertielles sont-elles intégrées dans le même processus d'optimisation ? résultats se sont avérés encore vrais malgré des changements de vitesse, d'amplitude ou de position
	Le maintien de l'équilibre est-il seulement une contrainte d'état sur le processus d'optimisation ou initiale/finale. Des asymétries directionnelles statistiquement significatives ont été relevées sur le
	bien constitue-t-il un objectif parallèle au mouvement dirigé ? temps au pic d'accélération et son amplitude, ainsi que sur la courbure des trajectoires de la main.
	En outre, des asymétries nettes sur les données EMG sont présentes pour des mouvements du bras
	dirigés vers le haut ou vers le bas. Ces asymétries pourraient constituer une loi motrice générale
	La partie II présente les résultats qui ont été obtenus à la suite des travaux effectués durant cette (similaire à la loi de puissance deux-tiers, voir fin de la sous-section 2.5.2.1) puisqu'on les observe
	n'est pas dérivable aux endroits aussi pour des mouvements de tout le corps (Papaxanthis et al., 2003a). thèse.
	de changement de signe du couple moteur. La minimisation du travail absolu présente la même Dans le chapitre 3, nous étudierons les mouvements du bras. Nous commencerons avec le cas Pour des mouvements effectués avec un seul degré de liberté 1 , la différence directionnelle haut/bas caractéristique, en raison de la présence de la fonction valeur absolue qui n'est pas dérivable à l'origine. d'un bras à un degré de liberté (article A). Ensuite, nous généraliserons la théorie amorcée à des existe encore et donc ces asymétries semblent être causées par l'action de la force gravitaire puisque
	bras comportant 2 ou 3 degrés de liberté (article B). Nous tenterons de répondre à la question de

3.2 Le minimum torque-change dans le champ gravitaire ?

  

	3.2 Le minimum torque-change dans le champ gravitaire ?
	FIGURE 3.2: Aperçu de type de mouvement modélisé. Définition des variables.
	. Ceci suggère que les asymétries observées dans le plan vertical ne
	sont pas dues exclusivement aux forces inertielles résiduelles, ni aux propriétés biomécaniques du un des modèles existant explique parfaitement les asymétries directionnelles observées lors des
	système musculo-squelettique du bras, mais bien à la présence de la gravité. Cependant, la preuve mouvements verticaux, alors il n'apparaîtrait pas nécessaire d'en développer un nouveau. Il est déjà
	n'est pas totale même après ces expériences puisque le deltoïde antérieur doit contrer la gravité clair que tous les modèles cinématiques et tous ceux utilisant le principe de séparation n'expliquent
	pour garder le bras dans le plan horizontal et produire le mouvement : il doit explicitement assumer pas les résultats expérimentaux décrits ci-dessus.
	une fonction posturale et une fonction focale. Pour confirmer plus rigoureusement ces résultats, Le problème est le suivant : on étudie les mouvements d'un bras humain tendu, dans le plan vertical l'idéal serait de réaliser les mêmes mouvements en microgravité. Des expériences ont donc été (voir fig. 3.2). La modélisation de ce système est obtenue en appliquant le théorème du moment réalisées au cours de vols paraboliques (grâce au CNES et sa filiale Novespace) et ont permis de montrer que ces asymétries diminuent significativement en microgravité (selon des données non cinétique pour un pendule inversé.
	publiées et le rapport de Master de J. Gaveau, 2007, voir aussi Figure 3.1). L'équation différentielle décrivant le mouvement d'un tel système est la suivante :
	Ces observations sont donc le point de départ de nos travaux de modélisation et notre but est
	d'expliquer ces phénomènes qui n'ont pas fait l'objet d'une grande attention pour le moment.
	Une question qui n'a pas été traitée dans la littérature est de savoir si un modèle comme le MTC
	(que nous avons présenté dans la sous-section 2.5.2.2) est sensible au champ gravitaire. En effet, si
	conservant l'angle du coude fixe. Le centre de rotation est situé à l'articulation de l'épaule. Pour une illustration, voir
	la figure 3.2.

3 Études des mouvements du bras 3.2.1 Cas où cos

  x ≈ 1.

	Il est toujours intéressant de traiter d'abord un problème simplifié, dans le but d'obtenir des formules
	explicites permettant une meilleure compréhension des résultats. Dans le cas des petits angles
	(x ≈ 0 et donc cos x ≈ 1), on peut trouver formellement la solution du problème. Des calculs
	effectués avec Maple donnent :

  Cet article présente l'originalité d'utiliser les deux aspects direct et inverse pour établir le résultat suivant :Équivalence entre inactivation et fonction de coût non-lisse L'existence de période d'inactivation dans le mouvement (i.e., des intervalles tels que u i = 0 pour un certain i) est une condition nécessaire et suffisante pour que le critère d'optimalité utilisé par le SNC soit une fonction de coût non-dérivable en u = 0.Autrement dit, il existe des inactivations dans les mouvements si, et seulement si, le critère
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	mêmes prédictions théoriques et donc nos interprétations neurophysiologiques sur les objectifs du
	SNC pourraient différer. Une approche nécessaire pour compléter le raisonnement est l'utilisation
	d'une méthode de type "contrôle optimal inverse", où une fonction de coût (ou au moins certaines
	de ces propriétés) est déduite directement à partir d'observations expérimentales. En général, cette
	approche est considérée comme beaucoup plus délicate à utiliser.

Ici, les valeurs α i sont des valeurs fixées. Cependant, vu le caractère non-lisse du problème (dû à la fonction valeur absolue), le principe du maximum version Clarke (1983) apparaît encore nécessaire. Dans l'article A, ainsi que dans la plupart des modèles existants dans la littérature, la méthode utilisée est du type "contrôle optimal direct" : on formule une hypothèse (le choix d'un critère d'optimalité). Ensuite la plausibilité de ce critère est vérifiée en comparant des données expérimentales aux prédictions théoriques (méthode hypothético-déductive). Si les prédictions sont avérées alors cela argumente en faveur de l'hypothèse faite initialement, autrement l'hypothèse est falsifiée. Le problème majeur de cette méthode est qu'elle ne prouve pas que l'hypothèse est vraie, mais seulement qu'elle est plausible. De nombreuses autres hypothèses pourraient mener aux d'optimalité inclut un terme du type "travail absolu". Ce qui rend ce résultat particulièrement attrayant est l'existence de preuves expérimentales montrant l'existence de telles périodes d'inactivation des muscles, lors de mouvements rapides. Ce résultat est énoncé en termes mathématiques dans l'article présenté ci-dessous. Brièvement, on peut noter que l'aspect nécessaire est ce que l'on a nommé le principe d'inactivation, dont le résultat découle essentiellement du Principe du Maximum de Pontryagin et de la caractérisation des extrema d'une fonction Lipschitz-continue en utilisant la notion de gradient généralisé (au sens

The Inactivation Principle: Mathematical Solutions minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements
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  Ak + l Sk cos θ Sk + l T h cos θ T h +l P e cos θ P e + l T r cos θ T r -l Hu cos θ Hu -l F o cos θ F o -l Ha cos θ Ha

	(0.2)

e sin θ P e -l T r sin θ T r +l Hu sin θ Hu + l F o sin θ F o +l Ha sin θ Ha y = y

  Le critère que nous avons testé dans les articles A et B comprend aussi un terme de confort. Ce dernier peut permettre de minimiser les grosses variations de vitesses aux articulations afin de protéger le système musculo-squelettique. Ainsi, la fonction de coût que nous avons proposée est hybride dans le sens où elle est un compromis entre plusieurs critères d'optimalité. Ce type de fonction de coût "multi-composite" semble bien adapté à la planification des mouvements humains et en accord avec des études préalables[START_REF] Tagliabue | Evaluation of theories of complex movement planning in different levels of gravity[END_REF] Gentili et al., 2007) ayant émis l'hypothèse selon laquelle les mouvements humains pourraient satisfaire plusieurs critères d'optimalité. Ceci est aussi en accord avec les résultats de l'article C illustrant que le SNC utilise des stratégies motrices particulières quand il doit réaliser des tâches comportant plusieurs objectifs explicites (e.g., avoir un contrôle précis du doigt tout en conservant l'équilibre et en minimisant l'énergie dépensée). Une question peu évidente est de savoir si le SNC prend explicitement en compte la protection du système musculo-squelettique dans de la phase de planification ou si cela résulte des propriétés dynamiques des muscles, qui agissent comme des filtres passe-bas. Par exemple, si on néglige le terme de confort de notre coût et que l'on modélise Effet de la dynamique des muscles (cas 1 ddl). A. Mouvement (vers le haut, 60°et 350 ms) minimisant uniquement le travail absolu dans le cas où la variable contrôlée est le couple net à l'articulation de l'épaule. L'accélération fait des sauts et est donc discontinue. B. Même mouvement avec la modélisation des muscles agoniste et antagoniste (dynamique du 1er ordre avec des temps de réponses égaux à 20 ms). Le profil de vitesse est maintenant continûment dérivable et le mouvement résultant est plus lisse et donc plus proche de ceux enregistrés en pratique. Ces simulations ont été obtenues avec le système linéarisé afin de rendre les calculs plus accessibles. Dans ce cas, on peut noter que la phase d'inactivation exacte trouvée dans l'article B est remplacée par une période de très faible activité musculaire et que le profil de vitesse devient plus lisse 5.1 Optimisation énergétique des mouvements comme prévu. La minimisation de l'énergie dépensée lors d'un mouvement ou d'un compromis entre énergie et un autre terme sont donc des critères d'optimalité qui paraissent tous les deux plausibles d'après ces résultats. Un point important qui n'a pas été discuté dans l'article B est le fait de démontrer que la séquence d'activation triphasique est optimale vis-à-vis de l'énergie dépensée. Cette séquence d'activité est un principe moteur fondamental trouvé expérimentalement pour de nombreux mouvements à 1 ddl, que ce soit chez l'Homme ou le singe Hallett et Marsden (1979). La séquence triphasique est constituée de l'activation successive, du muscle agoniste pour accélérer le membre (AG1), du muscle antagoniste pour le freiner (ANT) et enfin du muscle agoniste pour stabiliser le bras (AG2). Cette succession d'activités musculaires est très robuste malgré l'ajout d'une masse sur le bras et des changements de vitesse ou de direction (voir Cooke et Brown, 1990). Elle peut être générée sans retour sensoriel proprioceptif et se trouve perturbée chez des patients souffrant de diverses maladies telles que Parkinson ou Huntington, suggérant qu'elle est d'origine centrale et modulée par les ganglions de la base et le cervelet (voir la revue de

	les propriétés dynamiques des muscles (filtre passe-bas du 1er ordre) alors les mouvements produits
	sont effectivement lissés. Pour un bras à 1 ddl, un exemple de solution optimale minimisant
	seulement le travail absolu des forces produites par des muscles agoniste et antagoniste est donné
	dans la figure 5.1.		
	A	vitesse (rad/s)	couple (rad/s²)
			temps (s)
		temps (s)	
	B		couple (rad/s²)
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	FIGURE 5.1:		

  Si pour des mouvements rapides du poignet une légère période d'inactivation semble présente entre les bouffées AG1 et ANT, on ne voit pas en général d'inactivation pour des mouvements de l'avantbras. Cela peut être expliqué parce que les mouvements sont trop lents, de trop petites amplitudes ou bien parce qu'ils impliquent des muscles dont les propriétés dynamiques ne permettent pas cette présence d'inactivation (temps de réponse trop long). Le fait d'utiliser des électrodes EMG de surfaces limite aussi la précision et la finesse des mesures. Remarquons aussi que de nombreuses études analysent des signaux EMG moyennés sur plusieurs essais, or ceci a pour effet d'élargir la durée des bouffées musculaires[START_REF] Sherwood | Trial-by-trial analysis or averaging : implications for electromyographic models of rapid limb control[END_REF]. Travailler sur des données EMG moyennées n'est évidemment pas souhaitable pour la détection de phénomènes transitoires aussi brefs dans les muscles. Nos résultats montrent qu'il est préférable d'analyser les signaux EMG individuellement, c'est-à-dire essai par essai. dire là où il y a une transition entre la posture et le mouvement. Cette coactivation peut être expliquée par les problèmes engendrés par cette transition qui pose de véritables difficultés au SNC pour passer d'un contexte postural stable à une initiation de mouvement soumise à de grosses accélérations. Elle peut aussi être due à la volonté du SNC de protéger le système neuromusculaire. Malheureusement, il est difficile de quantifier l'énergie dépensée par la co-

	5 Conclusions
	activation. Peu d'études se sont intéressées à ces phénomènes durant des mouvements rapides,
	car : (i) la relation force-EMG est complexe, donc il est difficile de relier précisément l'activité
	EMG aux couples agoniste et antagoniste développés à l'articulation et (ii) la plupart des études
	qui s'intéressent à quantifier les co-activations et à trouver des relations force-EMG utilisent des

Par ailleurs, des inactivations musculaires semblent aussi exister chez le singe suggérant que le principe d'optimalité énergétique des mouvements s'étend aussi aux animaux. Notamment, la figure 5.3 illustre des mouvements de l'avant-bras dans le plan horizontal chez le singe où l'on peut noter la présence d'inactivations à l'endroit prédit par la théorie (i.e., entre les bouffées d'activation des muscles agoniste et antagoniste). Autrement dit, si le cerveau du singe planifie effectivement des mouvements optimaux, alors, d'après notre théorème concernant la nécessité de non-dérivabilité de la fonction de coût (Article B), il minimise nécessairement un critère du type "travail absolu des forces".

En pratique, il arrive de mesurer des co-activations des muscles qui apparaissent au début et à la fin des mouvements. Même si sur cette dernière figure il n'y en a pas, chez l'Homme, elles peuvent être plus prononcées notamment lorsque les masses mises en jeu sont assez importantes. Cette co-activation va à l'encontre d'une minimisation énergétique mais n'apparaît qu'aux extrémités du mouvement, c'est-àprotocoles expérimentaux "statiques", à l'aide d'ergomètres.

  La gravité est un cas particulier de force statique puisqu'elle est toujours présente au cours de la vie d'un individu et qu'il est impossible de s'en défaire dans des expériences simples. Le SNC semble s'être façonné par rapport à la présence du champ gravitaire terrestre. Il semble que l'hypothèse d'un contrôle séparé de la gravité dans la planification de mouvements rapides en boucle ouverte soit erronée. Par exemple, considérons l'étudede Flanders et al. (1996) Au milieu : premier mouvement chez un sujet naïf en microgravité. On observe plusieurs bouffées d'activité des muscles et la stratégie motrice est assez différente de ce qu'on observait en 1g. Plutôt que de reprendre une ancienne stratégie et de la moduler, le cerveau s'adapte en partant d'un stratégie assez éloignée de ce qu'il faisait auparavant. A droite : après 30 mouvements, la séquence des activations musculaires semble retourner progressivement vers celle habituellement choisie en gravité terrestre. Abréviations : DA, deltoïde antérieur, DP, deltoïde postérieur, BI, biceps, TR, triceps.

		5.2 Intégration de la gravité dans la planification motrice
	la gravité. On pourrait donc s'attendre à une adaptation du comportement avec la répétition des
	essais. Or, les asymétries haut-bas sont invariantes malgré la répétition d'un grand nombre de
	mouvements. De plus, des résultats obtenus en microgravité 1 montrent une adaptation notable de
	la cinématique des mouvements après une dizaine d'essais (comme illustré précédemment dans
	la figure 3.1). Il est intéressant de noter que le premier mouvement en microgravité montre un
	contrôle moteur plutôt désordonné, avec des activations musculaires asynchrones et s'éloignant
	de la séquence classique habituellement mesurée pour des mouvements à 1 ddl (qualitativement,
	voir figure 5.5). Or, plusieurs auteurs ont montré la robustesse de cette séquence d'activation
	1g typique	0g essai #1	0g essai #30
	Vitesse		
	DA DA		
	DP		
	BI		
	TR		
	FIGURE 5.5: Exemple de données enregistrées en microgravité chez un sujet typique. A gauche :
	activité musculaire typique pour un mouvement effectué bras tendu (comme dans
	la figure 3.2) et dirigé vers le haut, d'amplitude et de durée environ égales à 60°e
	t 500 ms.		
	Au niveau cinématique, les expériences de Gentili et al. (2007) et Seac'h et McIntyre (2007)
	montrent que des mouvements à 1 ddl diffèrent selon qu'ils sont effectués dans le plan vertical
	suggérant que les signaux EMG mesurés comportent des composantes tonique et phasique (figure ou horizontal (et ce, même en couchant l'individu sur le coté afin d'utiliser les mêmes groupes
	5.4). Si le signal musculaire mesuré était l'addition d'une commande tonique (donnant un signal musculaires qu'en position assise). Cette différence cinématique semble montrer qu'une stratégie
	EMG tonique positif) et d'une commande phasique (donnant un signal EMG phasique positif), alors dans laquelle le SNC compense simplement les forces gravitaires agissant sur les membres est
	la méthode utilisée par Flanders et al. (1996) devrait permettre de retrouver ces deux composantes peu réaliste. Si le SNC utilisait effectivement une telle stratégie, alors ces différences seraient
	seulement dues à une mauvaise exécution du mouvement ou à une compensation imprécise de

Les études présentées dans cette thèse ont suggéré que les forces gravitaires et inertielles sont intégrées dans le même processus d'optimisation du mouvement. Ce problème du contrôle séparé ou non des forces anti-gravitaires et inertielles est important puisqu'il constitue une des problématiques fondamentales à laquelle doit faire face le SNC lors de la planification et du contrôle d'un mouvement. Même s'il semble indéniable, d'après les expériences décrites dans la section 1.6, que le SNC adopte parfois une solution de compensation des forces statiques, la gravité semble être traitée différemment. du signal à partir du signal EMG global, simplement par soustraction. Or, il est courant d'obtenir 5 Conclusions des signaux EMG phasiques négatifs en utilisant cette méthode (voir figure 5.4, mais aussi d'Avella et al., 2006), ce qui est en contradiction avec l'hypothèse d'additivité des commandes tonique et phasique. Plutôt qu'une erreur d'approximation dans les mesures, nos résultats suggèrent que le SNC ne produit pas une activité tonique compensant la gravité au cours du mouvement. Il apparaît que la décomposition est erronée au moins pour des mouvements rapides et qu'elle pourrait engendrer de mauvaises interprétations des données expérimentales.

FIGURE 5.4: D'après Flanders et al. (1996). Décomposition phasique/tonique des données EMG. Les signaux EMG totaux (haut) seraient la somme de signaux EMG tonique (codant les forces anti-gravitaires, milieu) et phasique (codant les forces inertielles, bas). Dans l'hypothèse où cette décomposition est vraie, les activités EMG totales, phasique et tonique devraient toujours être positives. Or, une phase de négativité est illustrée dans l'activité phasique, ce qui semble en désaccord avec l'hypothèse initiale d'une séparation tonique/phasique dans les signaux EMG et donc la commande motrice envoyée par le SNC.
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  Conclusionsdes mouvements. Par ailleurs, lorsqu'un sujet produit un mouvement en étant allongé sur le flanc, dans le plan horizontal (ce qui est assez inhabituel), la séquence d'activation musculaire n'est pas non plus perturbée. Pour expliquer ces phénomènes nous pouvons émettre l'hypothèse que le cerveau possède un modèle interne de la gravité sophistiqué. Ce modèle interne pourrait servir à la prédiction des déplacements des objets qui nous entourent (lois physiques du mouvement) mais aussi à l'élaboration de nos propres mouvements ("lois biologiques" du mouvement). Les étudesde Indovina et al. (2005) et McIntyre et al. (2001) donnent des preuves complémentaires de l'existence d'un modèle interne de la gravité, qui semble situé proche du cortex vestibulaire. Ces réseaux neuronaux ont certainement été façonnés lors de l'évolution avec la présence d'un vecteur gravité constant. En apesanteur, les premières tentatives d'activations musculaires initiées par la fusion des retours sensoriels indiquant l'absence de gravité semblent refléter l'apprentissage d'un nouveau modèle interne dans lequel la gravité est cette fois une grandeur variable. Dans leur ensemble, nos résultats montrent que le SNC contrôle les forces gravitaires et dynamiques dans un même processus d'optimisation et précisent que cette optimisation est basée sur l'énergie tirant partie des forces présentes. Le contrôle des mouvements utilisés par le SNC apparaît subtil, comme le suggèrent les inactivations synchronisées de plusieurs muscles distincts. Cela met en avant les capacités motrices du cerveau à interagir efficacement avec l'environnement externe. 'ajout de contraintes spatiales sur le mouvement a aussi permis de mettre en évidence une réorganisation du mouvement au niveau cinématique : le bras peut être contrôlé indépendamment du reste du corps quand la tâche le nécessite. Cette réorganisation du mouvement apparaît surtout au niveau des bras alors que le tronc et les jambes utilisent des synergies robustes. Cette réponse motrice permet un contrôle précis et quasiment inchangé du CdM alors que plus de flexibilité est allouée aux segments du bras. Cela suggère qu'en conservant une commande posturale connue assurant l'équilibre corporel, le SNC a la capacité d'envoyer des commandes motrices plus élaborées aux segments du bras afin de contrôler les déplacements du doigt avec précision. Les observations faites sur ces mouvements du corps nous laissent penser que les contraintes d'équilibre sont bien intégrées dès la phase de planification des mouvements. En effet, lorsqu'on 5.3 Organisation modulaire du mouvement réduit artificiellement la base de support fournie par les pieds, le SNC ne crée pas une nouvelle stratégie mais module une stratégie existante. Ceci est aussi confirmé au niveau musculaire par une autre étude encore non publiée. Par conséquent, dans le cadre du contrôle optimal, il est possible que le SNC cherche à minimiser des quantités telle que l'énergie dépensée tout en respectant des contraintes d'état particulières. Si le SNC planifiait ses actions de la sorte, alors les covariations angulaires trouvées, la trajectoire du doigt et les déplacements du CdM pourraient provenir d'une stratégie de contrôle optimal satisfaisant un critère ayant un sens physique pour le système moteur.

5.3 Organisation modulaire du mouvement

Pour des mouvements plus complexes de tout le corps impliquant des problèmes d'équilibre et de dimensionnalité importants, l'article C a permis de montrer que les mouvements humains ont une structure cinématique caractéristique assez robuste par rapport à des perturbations posturales et spatiales. Cela confirme les résultats d'invariance des mouvements humains à la base de l'hypothèse selon laquelle le SNC possède des principes moteurs spécifiques. L

Table des figures

 des 1.1 Système neuromusculaire(d'après Scott, 2004) . . . . . . . . . . . . . . . . . . . . . . . 1.2 Représentation des organes tendineux de Golgi avec le nerf sensitif partant vers la moelle épinière puis le cerveau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Représentation de l'effet de la gravité sur les otolithes. . . . . . . . . . . . . . . . . . . . 1.4 D'après Schepens et Drew (2004). A gauche : une activité phasique d'un neurone de la formation réticulaire pontomédullaire du chat. Au milieu : une activité tonique d'un neurone. A droite : une activité tonique/phasique d'un neurone. . . . . . . . . . . . . . . . . . . . . 2.1 Illustration de l'idée fondamentale de la théorie du point d'équilibre. A gauche, les deux ressorts sont à l'équilibre (les raideurs sont identiques, et donc la masse est au centre). A droite, la raideur d'un des deux ressort a été changée subitement, cela a produit un mouvement vers une nouvelle position d'équilibre. . . . . . . . . . . . . . . . . . . . . . 2.2 Modèles internes selon la théorie "Optimal feedback control" (d'après Scott, 2004) . . . . 2.3 Exemple de solution donnée par le modèle géodésique pour un mouvement plan de 400 ms, avec un bras bi-articulé. Le chemin le plus court par rapport à la métrique donnée par la matrice d'inertie est d'abord trouvé sur la sphère, puis le décours temporel du doigt est celui du minimum jerk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Figure illustrative de données obtenues en vols paraboliques. Comparaison des profils de vitesse entre des mouvements vers le haut et des mouvements vers le bas, effectués bras tendu dans le plan sagittal, en gravité normale (à gauche) et en microgravité (à droite) après adaptation (environ 30 mouvements effectués au préalable en 0g). Mouvements de 60°durant environ 500 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Aperçu de type de mouvement modélisé. Définition des variables. . . . . . . . . . . . . . 3.3 Simulations pour le MTC, pour un mouvement de 45°vers le haut en 1g (partie supérieure) et en 4g (partie inférieure), en 0.5 s. Le temps est en abscisse et les ordonnées sont données en radians (position x), rad/s (vitesse y) et rad/s² (couple moteur z). . . . . . . . . . . . . 3.4 Allure générale des solutions. Deux résultats sont essentiels : les profils de vitesse sont asymétriques (haut = bas) et il existe des phases d'inactivation (où le contrôle est nul). . .

  Table des figures 5.1 Effet de la dynamique des muscles (cas 1 ddl). A. Mouvement (vers le haut, 60°et 350 ms) minimisant uniquement le travail absolu dans le cas où la variable contrôlée est le couple net à l'articulation de l'épaule. L'accélération fait des sauts et est donc discontinue. B. Même mouvement avec la modélisation des muscles agoniste et antagoniste (dynamique du 1er ordre avec des temps de réponses égaux à 20 ms). Le profil de vitesse est maintenant continûment dérivable et le mouvement résultant est plus lisse et donc plus proche de ceux enregistrés en pratique. Ces simulations ont été obtenues avec le système linéarisé afin de rendre les calculs plus accessibles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Gauche : allure de la séquence d'activation triphasique pour un mouvement du poignet d'environ 60°

  . Mouvement d'un singe dans le plan horizontal. La phase d'inactivation est mise en valeur par le rectangle. . . . . . . . . . . . . . . . . . . . . . .5.4 D'après Flanders et al. (1996). Décomposition phasique/tonique des données EMG. Les signaux EMG totaux (haut) seraient la somme de signaux EMG tonique (codant les forces anti-gravitaires, milieu) et phasique (codant les forces inertielles, bas). Dans l'hypothèse où cette décomposition est vraie, les activités EMG totales, phasique et tonique devraient toujours être positives. Or, une phase de négativité est illustrée dans l'activité phasique, ce qui semble en désaccord avec l'hypothèse initiale d'une séparation tonique/phasique dans les signaux EMG et donc la commande motrice envoyée par le SNC. . . . . . . . . . . . . 5.5 Exemple de données enregistrées en microgravité chez un sujet typique. A gauche : activité musculaire typique pour un mouvement effectué bras tendu (comme dans la figure 3.2) et dirigé vers le haut, d'amplitude et de durée environ égales à 60°et 500 ms. Au milieu : premier mouvement chez un sujet naïf en microgravité. On observe plusieurs bouffées d'activité des muscles et la stratégie motrice est assez différente de ce qu'on observait en 1g. Plutôt que de reprendre une ancienne stratégie et de la moduler, le cerveau s'adapte en partant d'un stratégie assez éloignée de ce qu'il faisait auparavant. A droite : après 30 mouvements, la séquence des activations musculaires semble retourner progressivement vers celle habituellement choisie en gravité terrestre. Abréviations : DA, deltoïde antérieur, DP, deltoïde postérieur, BI, biceps, TR, triceps. . . . . . . . . . . . . . . . . . . . . . . . . . .

Premièrement, le SNC doit être capable de localiser l'objet (la cible) dans l'espace (dans un référentiel de son choix). Deuxièmement, le SNC doit connaître la position initiale (ou posture initiale) dans laquelle se trouve le corps. Plusieurs capteurs sensoriels donnent les informations nécessaires au SNC à l'élaboration d'une commande motrice permettant de réaliser un mouvement de pointage 1 avec précision.Le système visuel permet la localisation à la fois de l'objet cible, mais aussi de certains segments corporels (position de la main par exemple). Ce système donne des informations sur l'orientation de la verticale gravitaire, par référence aux constructions qui nous entourent. Le SNC peut utiliser ces signaux sensoriels pour évaluer l'orientation du corps ou de certains de ses membres. La vision permet également la reconnaissance des objets, l'évaluation des distances, c'est-à-dire autant de paramètres nécessaires à la réalisation d'une tâche motrice. Notamment, les capacités du système visuel font l'objet de nombreux travaux en reconnaissance de forme et d'objet où les chercheurs tentent de comprendre comment le SNC réussit à simplifier et à coder l'information afin d'extraire le contenu essentiel de données pourtant très complexes[START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF] Seung et Lee, 2000, par exemple).En outre, même avec les yeux fermés, l'être humain réussit à avoir une très bonne connaissance de la position relative et absolue de ses segments. C'est en partie dû à ce qu'on appelle la proprioception.Les informations proprioceptives naissent de multiples capteurs situés dans les muscles, les tendons,[START_REF] Bernstein | The Coordination and Regulation of Movements[END_REF] Un mouvement de pointage est une tâche motrice souvent utilisée en neurosciences comportementales. Cela consiste à faire un mouvement dirigé vers une cible placée dans l'espace où le sujet qui participe à l'expérience a pour objectif d'amener l'index de sa main sur la cible.

Neurophysiologie du contrôle moteur doit aller viser une cible avec son index. Il y a plusieurs niveaux à distinguer. Premièrement, il y a une infinité de chemins possibles du doigt compatibles avec l'atteinte de la cible. Un sujet peut choisir la plus courte distance dans l'espace Cartésien

ou bien n'importe quel autre chemin connectant le point de départ au point d'arrivée. Deuxièmement, plusieurs profils de vitesse sont compatibles avec le suivi d'une même trajectoire du doigt, même si la durée du mouvement est fixée à l'avance. Troisièmement, un bras humain a 7 degrés de liberté cinématiques alors qu'une cible ponctuelle dans l'espace de la tâche est donnée par seulement

dimensions. De ce fait, plusieurs configurations angulaires du bras permettent au sujet de réaliser la tâche (cinématique inverse). Les déplacements angulaires étant déterminés, le problème de dimensionnalité reste entier.En effet, même si les forces agissant aux articulations peuvent être évaluées par les équations de la dynamique (dynamique inverse), il reste néanmoins de nombreuses solutions pour activer les muscles de façon à produire les forces désirées. Ceci est principalement dû à la présence de muscles agonistes et antagonistes, qui peuvent avoir des niveaux de co-contractions plus ou moins élevés produisant une même force nette à une articulation. La présence de muscles bi-articulaires est aussi une des causes du problème des ddl.Ces observations, aussi simples soient elles, posent clairement des problèmes du point de vue de la planification des mouvements et de leur contrôle. Pourtant le SNC semble avoir trouvé des solutions. Une idée naïve est de supposer que le SNC a appris chaque mouvement et l'a mémorisé à un endroit précis, grâce à une cartographie somatotopique corticale (homonculus). Cependant, ce mode de contrôle est impossible en raison du nombre de neurones et des capacités de mémoire que cela nécessiterait (Mussa-Ivaldi et[START_REF] Mussa-Ivaldi | Motor learning through the combination of primitives[END_REF]. En outre, il a été montré via des études par microstimulations que la moelle épinière et le cortex ne codent qu'un nombre limité de mouvements (appelés primitives motrices, voir section 2.3, mais aussi Mussa-Ivaldi et[START_REF] Mussa-Ivaldi | Motor learning through the combination of primitives[END_REF] Graziano et al., 2002 pour des revues). Au lieu d'être le résultat d'une auto-organisation ayant convergé plus ou moins aléatoirement vers la sélection de certains mouvements plutôt que d'autres (on appelle ce point de vue théorie dynamique), on peut penser que les mouvements réalisés par l'Homme sont le résultat de plans moteurs et d'intentions spécifiques. Les faits expérimentaux décrits dans la section suivante suggèrent en effet que les mouvements humains sont régis par des lois du mouvement, optimisant certains critères de performances et répondant à certains désirs définis au niveau cognitif.[START_REF] Morasso | Spatial control of arm movements[END_REF] Le plus court chemin correspond évidemment à des trajectoires rectilignes du doigt. Ce type de mouvement est prédit en particulier par le modèle du minimum jerk, voir sous-section 2.5.2.1.

Ces termes apparaissent souvent dans la littérature. Une activité tonique est un signal temporel qui joint progressivement deux niveaux différents d'activité constante ou bien un signal tout simplement constant. Ce type d'activité est souvent associé au contrôle des forces statiques (e.g. anti-gravitaires) ou à la production d'un tonus musculaire. Le muscle passe progressivement et de façon monotone d'un niveau de contraction donné à un autre ou maintient un niveau de contraction stable. Une activité phasique est un signal temporel qui présente un pic d'activité et dont les activités initiales et finales sont identiques. Ce type d'activité est souvent associé au contrôle des forces inertielles. Le muscle produit ce qu'on appelle une bouffée d'activité et revient dans son état initial. Voir figure 1.4.

Théories du contrôle moteur2.4 Théorie des modèles internes

Dans cette thèse, les mouvements à 1 ddl considérés seront des mouvements réalisés avec le bras tendu, c'est-à-dire

Pour une illustration en images et vidéo, voir cet article du NY Times : http://www.nytimes.com/2008/05/

29/science/29brain.html

Délais entre la dépolarisation des fibres musculaires (signal électrique capté par les électrodes EMG) précédant la contraction des muscles et la production de force.

Applications et perspectives sur un écran placé en face d'eux. Des efforts sont nécessaires pour expliquer les réactions du SNC face à de tels conflits et pour comprendre comment le SNC fusionne les différents retours sensoriels pour se représenter la position du corps et les propriétés de l'environnement.

Voici le code Maple utilisé par la résolution formelle du problème de la minimisation d'un compromis travail absolu et intégrale de l'accélération au carré, dans le cas d'un bras à un degré de liberté (approximation petits angles). Ceci est en rapport direct avec les détails mathématiques présentés dans l'article A.

cost:=int(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y2*u2+alpha*(u2-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t1)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y3* u3+alpha*(u3-k)^2)))),t=0..subs(p0=p0_,subs(q0=q0_,t2)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,-y4*u4+alpha*(u4-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t3)));# Graphics

q0_:=solve(t1+t2+t3+t4=T,q0)[START_REF] Bernstein | The Coordination and Regulation of Movements[END_REF]: p0_:=fsolve(subs(q0=q0_,xP4=omega),p0,p0=k..1e4,fulldigits); q0_:=subs(p0=p0_,q0_);

# TPVFactorB:=evalf(t1_+solve(diff(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2)))), t)=0,t))/T; end if;

then printf("solution possible \n "); sol4:=1: else printf("solution NOT possible \n "); sol4:=0:

d v a r ( 5 ) = p 1 d o t ; d v a r ( 6 ) = p 2 d o t ; d v a r ( 7 ) = q 1 d o t ; d v a r ( 8 ) = q 2 d o t ; end

Remerciements

# Solving in p0_ and q0_

q0_:=solve(t1+t2+t3+t4=T,q0) [START_REF] Bernstein | The Coordination and Regulation of Movements[END_REF]: p0_:=fsolve(subs(q0=q0_,xP4=omega),p0,p0=k..1e6,fulldigits); q0_:=subs(p0=p0_,q0_); p0_ := 43.96921069 q0_ := 4.277576283 # Necessary conditions on p0_ et q0_ evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0; evalf(subs(p0=p0_,subs(q0=q0_,t2))) >= 0; evalf(subs(p0=p0_,subs(q0=q0_,t3))) >= 0; evalf(subs(p0=p0_,subs(q0=q0_,t4))) >= 0; q0_ < -2*k*alpha+2*alpha*umax; q0_ > -2*k*alpha; evalf(subs(p0=p0_,subs(q0=q0_,zP4))) <= -2*k*alpha-2*alpha*umin; evalf(subs(p0=p0_,subs(q0=q0_,u0))) <= umax; if evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t2))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t3))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t4))) >= 0 and q0_ < -2*k*alpha+2*alpha*umax and q0_ > -2*k*alpha and evalf(subs(p0=p0_,subs(q0=q0_,zP4))) <= -2*k*alpha-2*alpha*umin and evalf(subs(p0=p0_,subs(q0=q0_,u0))) <= umax t3_], [t+t1_+t2_+t3_,subs(p0=p0_,subs(q0=q0_,subs(C3=xP3,subs(C1=zP3,subs(C2=wP3,x4)))) ),t=0..t4_], [t+t1_+t2_+t3_+t4_,subs(p0=p0_,subs(q0=q0_,subs(C3=xP4,subs(C1=zP4,subs (C2=wP4,x5))))),t=0..t5_]],thickness=2,color= [black,blue,green,red,violet]); plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y1)))),t=0..t1_],[t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2)))),t=0..t2_],[t+t1_+t2_,subs(p0=p0_, subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,y3)))),t=0..t3_],[t+t1_+t2_+t3_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP3,subs(C2=wP3,y4)))),t=0..t4_], [t+t1_+t2_+t3_+t4_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP4,subs(C2=wP4,y5)))),t=0..t5_]],thickness=2,color= [black,blue,green, red,violet]); plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,u1-k)))),t=0..t1_],[t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,u2-k)))),t=0..t2_],[t+t1_+t2_,subs(p0=p0_, subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,u3-k)))),t=0..t3_], [t+t1_+t2_+t3_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP3,subs(C2=wP3,u4-k)))),t=0..t4_], [t+t1_+t2_+t3_+t4_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP4,subs(C2=wP4,u5-k)))),t=0..t5_]],thickness=2,color= [black,blue, green,red,violet]); plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,u1)))),t=0..t1_], [t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,u2)))),t=0..t2_], [t+t1_+t2_,subs(p0=p0_, subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,u3)))),t=0..t3_], [t+t1_+t2_+t3_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP3,subs(C2=wP3,u4)))),t=0..t4_], [t+t1_+t2_+t3_+t4_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP4,subs(C2=wP4,u5)))),t=0..t5_]],thickness=2,color= [black,blue,green, red,violet]);

Detailed results for the one and two-degree of freedom arms

The 1-dof case, n = 1. This case has been extensively studied in [START_REF] Berret | How humans control arm movements[END_REF]. Here we just revisit the main results. Notice that the following results are obtained with Example 3 by minimizing the compromise Aw/Ae.

In Figure 1, we have depicted the results we get for an upward motion in the case of gradient constraints on the control. This is the reason why we have moreover a gradient constraint reached at the beginning and at the end of the motion. However, in this figure, one can see very clearly the inactivation interval which illustrates the Inactivation Principle.

We obtained the following seven different optimal strategies for an upward movement, the equations of which are established from Pontryagin's Maximum Principle. Each of them is an optimal solution of the problem, depending on the explicit values of the parameters, like the movement duration T or the weighting parameter α.

In the following, (p, q) will denote the adjoint vector, and (p 0 , q 0 ) will denote its initial value at t = 0.

The 7 qualitative types of optimal strategies are denoted by S j , j = 1, ..., 7 and correspond to the following sequences of controls:

(S 1 ) (bang-max, bang-min):

(u = u + ) → (u = u -);

(S 2 ) The most general strategy (regular-bang, regular non-bang, inactive, regular nonbang, regular-bang):

(u = u + ) → (u = qy 2α + k) → (u = 0)

(S 3 ) (regular non-bang, inactive, regular non-bang, regular-bang):

(S 4 ) (regular-bang, regular non-bang, inactive, regular non-bang):
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Modular control of pointing beyond arm's length
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Abstract

Hand reaching and bipedal equilibrium are two important functions of the human motor behaviour. However, how the brain plans goal-oriented actions combining target reaching with equilibrium regulation is not yet clearly understood. An important question is whether postural control and reaching are integrated in one single module or controlled separately. Here, we show that postural control and reaching motor commands are processed by means of a modular and flexible organization. Principal component and correlation analyses between pairs of angles were used to extract global and local coupling during a whole-body pointing beyond arm's length. A low-dimensional organization of the redundant kinematic chain allowing simultaneous target reaching and regulation of the centre of mass (CoM) displacement in extrinsic space emerged from the first analysis. In follow up experiments, both the CoM and finger trajectories were constrained by asking participants to reach from a reduced base of support with or without knee flexion, or, by moving the endpoint along a predefined trajectory (straight or semi-circular trajectories). Whereas joint covaried during free conditions and under equilibrium restrictions, it was decomposed in two task-dependent and task-independent modules, corresponding respectively to a dissociation of arm versus legs, trunk, and head coordination, under imposed finger path conditions. A numerical simulation supported the idea that both postural and focal subtasks are basically integrated into the same motor command, and that the central nervous system is able to combine or to separate the movement into autonomous functional synergies according to the task requirements.

1

Results

Experimental task achievement

Endpoint accuracy

Endpoint accuracy of the fingertip was first measured by means of 95% confidence ellipse analysis, in the sagittal plane. The area of the ellipses was equal to 6 ± 2.5 cm on average, and their major and minor axes had similar lengths. The inspection of all individual ellipses' areas across all experimental conditions did not reveal significant differences (area of ellipses, ANOVA, p = 0.82). Moreover, the mean endpoint error was 3 ± 2 cm in 3D, and the linear distance (LD) between the initial finger position and the target were consistent among the different experimental conditions (p = 0.61, see Table 1). 

Appendix

This appendix gives details concerning the kinematic simulation that we briefly described in the Materials and Methods section.

Let us consider a rigid nine-segment model of the body and define eight elevation angles (see Fig. 2, inset):

The foot angle was neglected since ankle marker coordinates remained constant. [START_REF] Boessenkool | A comparison of curvatures of left and right hand movements in a simple pointing task[END_REF] p0_ := 49.97777788 q0_ := 5.626522058 # Necessary conditions on p0_ et q0_ evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0; evalf(subs(p0=p0_,subs(q0=q0_,t2))) >= 0; evalf(subs(p0=p0_,subs(q0=q0_,t3))) >= 0; evalf(subs(p0=p0_,subs(q0=q0_,t4))) >= 0; q0_ > -2*k*alpha+2*alpha*umax; evalf(subs(p0=p0_,subs(q0=q0_,zP4))) < -2*k*alpha; evalf(subs(p0=p0_,subs(q0=q0_,zP4))) > -2*k*alpha-2*alpha*umin; evalf(subs(p0=p0_,subs(q0=q0_,uP4))) >= -umin; if evalf(subs(p0=p0_,subs(q0=q0_,t1))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t2))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t3))) >= 0 and evalf(subs(p0=p0_,subs(q0=q0_,t4))) >= 0 and q0_ > - 

# Corresponding cost

cost:=int(subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y1*u1+alpha*(u1-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t1)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2*u2+alpha*(u2-k)^2)))),t=0..subs (p0=p0_,subs(q0=q0_,t2)))+ int (subs(p0=p0_,subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,y3*u3+ alpha*(u3-k)^2)))),t=0..subs(p0=p0_,subs(q0=q0_,t3)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,-y4*u4+alpha*(u4-k)^2)))),t=0.. subs(p0=p0_,subs(q0=q0_,t4)));

# Graphics

t1_:=subs(p0=p0_,subs(q0=q0_,t1)); t2_:=subs(p0=p0_,subs(q0=q0_,t2)); t3_:=subs(p0=p0_,subs(q0=q0_,t3)); t4_:=subs(p0=p0_,subs(q0=q0_,t4)); plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y1)))),t=0..t1_], [t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2)))),t=0..t2_], [t+t1_+t2_,subs(p0=p0_, subs(q0=q0_,subs(C1=zP2,subs(C2=wP2,y3)))),t=0..t3_], [t+t1_+t2_+t3_,subs(p0=p0_,subs (q0=q0_,subs(C1=zP3,subs(C2=wP3,y4)))),t=0..t4_]],thickness=2,color= [black,blue,green, red,violet]); # TPV FactorB:=evalf(t1_+solve(diff(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2)))), t)=0,t))/T; end if; cost := 22.83884732 t1_ := 0.09585588227 t2_ := 0.1188130400 t3_ := 0.08959709629 t4_ := 0.02252475085 t5_ := 0.03320923069 0 0,1 0,2 0,3 0 subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,t=0.. subs(p0=p0_,subs(q0=q0_,t1)))+ int(subs(p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,)),t=0..subs (p0=p0_,subs(q0=q0_,t2)));

# Graphics

t1_:=subs(p0=p0_,subs(q0=q0_,t1)); t2_:=subs(p0=p0_,subs(q0=q0_,t2));

plot ([[t,subs(p0=p0_,subs(q0=q0_,subs(C1=q0,subs(C2=q0,y1)))),t=0..t1_],[t+t1_,subs (p0=p0_,subs(q0=q0_,subs(C1=zP1,subs(C2=wP1,y2)))),t=0. 

A Annexes c o u p l e ( s i z e ( c o u p l e , 1 ) + 1 , : ) = [ tmp1 tmp2 7 ] ; end [ tmp1 , tmp2 ] = maxham ( 1 , 0 , x1 , x2 , y1 , y2 , p1 , p2 , q1 , q2 ) 

Abstract

This thesis is aimed at better understanding how the Central Nervous System (CNS) plans and controls movements and, in particular, how the gravity field is integrated within these processes. To perform rapid movements, the CNS must anticipate the effects of gravity on the moving limb. To tackle this, experiments in humans and modeling works have been undertaken. The experimental paradigms used here are pointing movements toward a target involving only the arm or the whole body.

Concerning the arm movements, our work was grounded on a singular observation showing that upward and downward movements exhibit significant differences, suspected to be due to gravity. In order to test this hypothesis, a theory based upon the minimization of the absolute work of forces produced by muscles has been developed. It postulates that human movements are optimal and minimize in particular an energetic quantity. The main theoretical result is the demonstration of an equivalence between the minimization of a criterion including the absolute work of forces and the presence of simultaneous inactivation periods of agonistic and antagonistic muscles acting at a joint. Experiments have confirmed the existence of such periods of silence in muscular activities at the times predicted by the model. Therefore, we have concluded that the optimality criterion used by the brain to plan movements includes a term similar to the absolute work. A by-product of this result is that both gravitational and inertial forces are integrated into the same motor plan, within the minimization of energy expenditure.

However, in most daily-life motor tasks, minimizing energy can not be the only goal of the action; preserving balance or be precise must also be taken into account. An experimental protocol has been elaborated in order to clarify how the CNS coordinates the control of posture and movement for whole-body pointing tasks. Our results confirm the idea of a modular organization of movements for such multi-goal tasks, i.e. performed from the combination of pre-programmed sequences.

In conclusion, this work suggests that the CNS integrates the biomechanical properties of the body and the environmental constraints within a single motor plan. Depending on the task, the CNS could optimize a compromise between energy consumption, safety, or movement precision. Moreover, these results reinforce the idea that an internal model of gravity exists and is strongly implied in human motricity.

Résumé

Ces travaux de thèse ont pour objectif de mieux comprendre comment le système nerveux central Cependant, pour la plupart des mouvements de la vie courante, minimiser l'énergie ne peut être le seul objectif ; maintenir l'équilibre ou optimiser la précision doivent aussi être pris en compte. Un protocole expérimental a été élaboré dans le but de mieux comprendre comment le SNC coordonne le contrôle de la posture et du mouvement pour des tâches plus complexes, impliquant le corps entier. Nos résultats confirment l'idée d'une organisation modulaire du mouvement, c'est-à-dire réalisée par la combinaison de séquences pré-programmées.

En conclusion, ces travaux suggèrent que le SNC intègre les propriétés mécaniques du corps et les contraintes de l'environnement dans un même plan moteur. En fonction de la tâche, le SNC pourrait choisir d'optimiser un compromis entre l'énergie consommée, la sûreté ou la précision du mouvement. En outre, ces résultats renforcent l'idée qu'un modèle interne de la gravité existe et est fortement impliqué dans la motricité humaine.