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Méthodes de sélection de variables dans des modèles GLARMA parcimonieux

d'abord les coefficients de la partie ARMA du modèle, puis d'utiliser une approche régularisée, à savoir le Lasso, pour estimer les coefficients de régression de la partie GLM du modèle. Dans le cas du modèle binomial négatif, nous estimons également le paramètre de surdispersion avant d'estimer les coefficients de régression.

La performance des méthodes proposées a été évaluée par des études de simulation dans différents cadres et sur différents jeux de données de biologie moléculaire. Nos approches présentent de très bonnes performances statistiques, et obtiennent de meilleurs résultats que les autres méthodes dans l'identification des coefficients de régression non nuls. En outre, leur faible temps de calcul permet de les appliquer à des jeux de données de grande dimension. Les méthodes proposées sont implémentées dans les packages R GlarmaVarSel, MultiGlarmaVarSel et NBtsVarSel, qui sont accessibles sur le CRAN (Comprehensive R Archive Network).

variable selection methods for sparse GLARMA (Generalised Linear Autoregressive Moving Average) models, which can be used for modelling discrete-valued time series. These models allow us to introduce some dependence in a Generalised Linear Model (GLM). Specifically, in Chapter 2, we present an estimation procedure for sparse GLARMA Poisson models. Furthermore, in Chapter 4, we establish a sign-consistency result for the estimator of the regression coefficients in a sparse Poisson model without time dependence. In Chapter 3, we extend our estimation procedure to the multivariate case, while in Chapter 5, we expand it to the negative binomial setting. The key idea behind our estimation procedure is first to estimate the coefficients of the ARMA part of the GLARMA model and then use a regular-ised approach, namely the Lasso, to estimate the regression coefficients of the GLM part of the model. In the case of the negative binomial setting, we also estimate the overdispersion parameter prior to estimating the regression coefficients of the model.

The performance of our proposed methods was assessed on simulation studies in different frameworks and on several datasets in the field of molecular biology. Our approaches exhibit very good statistical performance, surpassing other methods in identifying non-null regression coefficients. Secondly, their low computational burden enables their application to relatively large datasets. Our proposed methods are implemented in the R packages GlarmaVarSel, MultiGlarmaVarSel, and NbtsVarSel, which are publicly available on the Comprehensive R Archive Network (CRAN).
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Chapter 1 Introduction

Context and motivation

The interest in modelling discrete data has increased over the past decades. It is mainly driven by the fact that many classical continuous models cannot accurately interpret discrete data. However, with the abundance of such data in various application fields, the necessity of efficiently describing discrete data becomes apparent. The modelling becomes more challenging when one needs to take into account the dependence in the data, such as temporal dependence. An example of such data is count time series. Considerable research has been done in the study of count time series lately. Several recent review articles and books on this subject include but are not limited to the works by [START_REF] Davis | Count time series: A methodological review[END_REF]; [START_REF] Fokianos | Multivariate count time series modelling[END_REF]; [START_REF] Weiss | An introduction to discrete-valued time series[END_REF]; Davis et al. (2016).

Some examples of count time series data

Count time series represent a record of the number of occurrences of events over time and, consequently, are nonnegative and integer-valued. They arise in numerous applied scientific areas, from economics and finance to epidemiology and molecular biology. An example of such data in epidemiology is the contagion dynamics of COVID-19, see, e.g., Agosto and Giudici (2020). Here, the data represents the daily new cases of the infection. One of the purposes of processing this data is to predict the periods of contagion peaks to prevent the spread of the disease by proposing measures, such as mobility restrictions.

Count time series can also be found in criminology, representing the number of crimes committed over a specific period, see, e.g., [START_REF] Kim | Robust estimation for bivariate Poisson INGARCH models[END_REF]. Due to count time series models, criminologists can identify patterns and trends in this data, such as seasonal variations and unforeseen increases in criminal activity. This information can be used for crime prevention and law enforcement. Another example is the number of transactions in stocks in finance, see, e.g., [START_REF] Brännäs | Integer-valued moving average modelling of the number of transactions in stocks[END_REF]. By efficiently modelling transaction data, it is possible to have a more thorough understanding of market trends and, consequently, have improved financial performance.

An example of count time series in molecular biology is RNA sequencing (RNA-Seq) time series data. RNA-Seq is a genomic approach for identifying and quantifying Ribonucleic acid (RNA) fragments in a biological sample. Linking these RNA fragments to genes allows determining the expression level of genes as integer counts. Studying this data is very attractive since the RNA-Seq technique contributed significantly to biology and medicine during the past years, see [START_REF] Haque | A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[END_REF]. A particular interest is centred on statistical methods for analysing RNA-Seq data, see [START_REF] Nguyen | RNA-seq count data modelling by grey relational analysis and nonparametric gaussian process[END_REF]. In RNA-seq time series data gene expression levels are measured at different time points. By processing such data, one can study how biological and environmental conditions influence gene expression changes over time. Additionally, RNAseq time series data can be used to investigate the dependence and temporal patterns between different genes. 6

Studying RNA-Seq time series data has many important applications. Identifying gene expression patterns over time is crucial for understanding dynamic biological processes such as development and disease progression. For example, [START_REF] Oh | Time series expression analyses using RNA-seq: A statistical approach[END_REF] apply different statistical approaches to study zebrafish development and bone healing for a sheep model. [START_REF] Thorne | Approximate inference of gene regulatory network models from RNA-Seq time series data[END_REF] proposes a statistical method to study gene regulatory networks from RNA-seq time series data, due to which it is possible to identify key genes and regulatory relationships that play a role in biological processes. Overall, in the biomedical community, there is an emerging importance in using temporal dynamic methods to understand the underlying biological processes that drive gene expression changes over time, see [START_REF] Oh | Temporal dynamic methods for bulk RNA-seq time series data[END_REF]. In this thesis, one of the applications of our interest is modelling RNA-Seq time series.

Models for count time series

The models for count time series can be grouped into two main classes: Integer Autoregressive Moving Average (INARMA) models and generalised state space models. In the following, we give a general introduction to these two model classes.

INARMA models

McKenzie (1985) and Al-Osh and [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) process[END_REF] were the first to study the Integer Autoregressive process of order 1 (INAR(1)). INARMA models are constructed with thinning operators. Let us consider a non-negative integer-valued random variable Y . For α ∈ (0, 1), the binomial thinning operator, denoted by , is defined as

α Y = Y k=1 Z k , (1.1) 
where {Z k } is a sequence of i.i.d. Bernoulli random variables, independent of Y , with P(Z k = 1) = α.

The INAR(1) model is defined as follows: for non-negative integer-valued observations Y t , with t = 1, . . . , n

Y t = α Y t-1 + ε t , (1.2)
where {ε t } is a sequence of i.i.d. non-negative integer random variables with mean µ ε and variance σ 2 ε . The INAR(1) model was extended to pth order process by [START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF] and [START_REF] Du | The integer-valued autoregressive (INAR(p)) model[END_REF]. Both of the methods are based on the following recursion

Y t = α 1 Y t-1 + • • • + α p Y t-p + ε t , (1.3)
where it is assumed that p j=1 α j < 1. The Integer Moving Average model is the integer valued extension of MA model. The first-order model (INMA(1)) was proposed by Al-Osh and [START_REF] Al-Osh | Integer-valued moving average (INMA) process[END_REF]. It uses the following recursion

Y t = ε t + β ε t-1 ,
where β ∈ [0, 1] and {ε t } is a sequence of i.i.d. non-negative integer random variables with mean µ ε and variance σ 2 ε . We refer the reader to [START_REF] Weiss | An introduction to discrete-valued time series[END_REF] for the definition of INMA(q) model and further details on INARMA models. An advantage of INARMA processes is their autocorrelation structure, which is similar to the one of the autoregressive moving average (ARMA) models. However, as explained by [START_REF] Davis | Count time series: A methodological review[END_REF], the statistical inference in INARMA models is more complex, particularly in higher order models. It requires intensive computational approaches, such as the efficient MCMC algorithm by [START_REF] Neal | MCMC for integer-valued ARMA processes[END_REF], developed for INARMA processes of known AR and MA orders.

Generalised state space models

Generalised state space models, introduced by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF], are one of the most commonly used approaches for time series analysis, see [START_REF] Davis | Count time series: A methodological review[END_REF]. A state space model for time series consists of two equations, known as observation and state equations. As explained by [START_REF] Davis | Modeling time series of count data[END_REF], the state equation describes the evolution of the state process {S t } at time t, whereas the observation equation describes the distribution of the observations Y t at time t, given the state process {S t }. Generalised state space models can be classified as parameterdriven and observation-driven models. The observation equation is the same for these two model classes. However, in parameter-driven models, the state process {S t } evolves independently of past history of observations, while in observation-driven models, it depends on past observations. More precisely, let us denote Y Y Y (t) = (Y 1 , Y 2 , . . . , Y t ) and S S S (t) = (S 1 , S 2 , . . . , S t ) , where u denotes the transpose of the vector u, then the observation equation is given by the conditional probability density P Y t |S t , S S S (t-1) , Y Y Y (t-1) = P (Y t |S t ) , t = 1, 2, . . . .

In parameter-driven models, the state equation is P S t+1 |S t , S S S (t-1) , Y Y Y (t) := P (S t+1 |S t ) , t = 1, 2, . . . , and in observation-driven models, the state equation is specified by the conditional densities P Y t |S S S (t) , Y Y Y (t-1) = P (Y t |S t ) , t = 1, 2, . . . , P S t+1 |Y Y Y (t) = P S t+1 |Y Y Y (t) S t+1 |Y Y Y (t) , t = 0, 1, . . . . Zeger (1988) introduced one of the first parameter-driven models, the Poisson log-linear regression, defined as follows. Conditional on a latent process {ε t }, Y t is a sequence of independent counts with mean and variance given by

u t = E (Y t |ε t ) = exp(x t β)ε t , w t = var (Y t |ε t ) = u t ,
where the x t,i 's are the p regressor variables (p ≥ 1). Suppose also that {ε t } is an unobserved stationary process with E(ε t ) = 1. [START_REF] Blais | Limit theorems for regression models of time series of counts[END_REF] extended this model to the case where observations are assumed to have a distribution from the exponential family. An overview of parameter-driven models can be found in [START_REF] Davis | Modeling time series of count data[END_REF]. Despite their simple construction, parameter-driven models are computationally expensive in the parameter estimation, as explained by [START_REF] Jung | Estimating time series models for count data using efficient importance sampling[END_REF].

The observation-driven models do not suffer from the computational downside. Following the introduction by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF], they were further studied by [START_REF] Zeger | Markov regression models for time series: A quasi-likelihood approach[END_REF]. In the literature, there are two types of observation-driven models: the Generalised Linear Autoregressive Moving Average (GLARMA) models and the (log-)linear Poisson autoregressive models. The linear Poisson autoregressive models, see [START_REF] Fokianos | Poisson autoregression[END_REF], is based on the evolution of the mean of the Poisson distribution. More precisely, given the past history F t-1 = σ(Y s , s ≤ t -1), we assume that Y t |F t-1 ∼ P (µ t ) ,

(1.4)

where P(µ) denotes the Poisson distribution with mean µ and t ≥ 1. In (1.4),

µ t = d + aµ t-1 + bY t-1 ,
where d, a, and b are positive. The log-linear Poisson autoregression by [START_REF] Fokianos | Log-linear poisson autoregression[END_REF] is modelled with a canonical link process {ν t }, where ν t = log µ t . Thus, for the observations in (1.4) and t ≥ 1 the autoregression is

ν t = d + aν t-1 + b log (Y t-1 + 1) ,
where d, a, and b are in R. There are also the nonlinear Poisson autoregression models, which are studied by [START_REF] Fokianos | Nonlinear poisson autoregression[END_REF].

The main subject of this thesis will be GLARMA models, which were introduced by [START_REF] Davis | Modeling time series of count data[END_REF] and further studied by [START_REF] Davis | Observation-driven models for Poisson counts[END_REF], [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], and [START_REF] Dunsmuir | Generalized Linear Autoregressive Moving Average Models[END_REF]. We shall define the GLARMA model with additional covariates, introduced by [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF]. For observations in (1.4),

µ t = exp(W t ) with W t = β 0 + p i=1 β i x t,i + Z t ,
(1.5) where the x t,i 's are the p regressor variables (p ≥ 1),

Z t = q j=1 γ j E t-j with E t = Y t -µ t µ t = Y t exp(-W t ) -1, (1.6)
with 1 ≤ q ≤ ∞ and E t = 0 for all t ≤ 0. Here, the E t 's correspond to the working residuals in classical generalised linear models (GLM). The model defined by (1.4), (1.5) and (1.6) in the following is referred to as a GLARMA model.

Driven by numerous application areas that require methods for processing count time series, this thesis proposes efficient variable selection approaches in various sparse GLARMA models. where x i is the ith row of a n × p design matrix X, β β β is a sparse vector of regression coefficients in R p , and the errors ε 1 , . . . , ε n are i.i.d. random variables with mean 0 and variance σ 2 . Sparsity means that many β i 's are null; thus, just a few of the regressor variables are explanatory. We are particularly interested in sparse models since, in many scientific applications, sparsity is a commonly observed characteristic [START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF][START_REF] Johnstone | Statistical challenges of high-dimensional data[END_REF]. In other words, only a small fraction of variables are significant in the modelling. By performing variable selection, one can obtain a sparse estimator of β β β , where the estimated non-null coefficients determine the selected variables.

The methods in the first category are based on a basic model called Stepwise Regression proposed by [START_REF] Breaux | On stepwise multiple linear regression[END_REF], which has two approaches. In the forward approach, stepwise regression starts from a null model (having only an intercept). At each step, one new variable is introduced to the model. This procedure continues until having a complete model with all the variables. On the contrary, the backward approach starts with the full model with all the variables, and at each step, one variable is removed from the model. The selection in these approaches is performed with criteria, such as hypothesis tests, as explained by [START_REF] Heinze | Variable selection -a review and recommendations for the practicing statistician[END_REF], adjusted R 2 , and information criteria methods, including AIC by [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], BIC by [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF], and Mallows's C p by [START_REF] Mallows | Some comments on CP[END_REF].

The methods of the second category are the regularised methods. In these approaches, the idea is to apply a penalty on parameters to obtain sparse estimation and consequently perform variable selection. One of the most widely used regularised approaches is the least absolute shrinkage and selection operator (Lasso), which was introduced by [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. The Lasso estimator for performing variable selection in Model (1.7) is (1.8) where u 2 = n k=1 u 2 k for a vector u = (u 1 , . . . , u n ), v 1 = p k=1 |v k | for a vector v = (v 1 , . . . , v p ), and λ > 0. The Lasso penalisation can be applied to any generalised linear model. In these models, Lasso estimator is based on minimising the penalised log-likelihood function, see, e.g. [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. More precisely, it consists in replacing the 2 norm in Equation (1.8) by the log-likelihood function.

β β β = arg min β β β Y Y Y -X X Xβ β β 2 2 + λ β β β 1 ,

Consistency of the Lasso estimator

Considerable research has been done to study the theoretical properties of the Lasso estimator in the Gaussian setting, when in Equation (1.7) ε 1 , . . . , ε n are i.i.d. Gaussian random variables. In particular, several studies establish sign-consistency results for the Lasso estimator, namely they investigate under which conditions the sign of the estimated β β β coincides with the sign of β β β . For example, [START_REF] Knight | Asymptotics for Lasso-type estimators[END_REF] show estimation consistency of Lasso for fixed p and fixed β β β ; [START_REF] Meinshausen | High-dimensional graphs and variable selection with the Lasso[END_REF] show that Lasso is consistent in estimating the dependence between variables even when p grows faster than n; [START_REF] Zhao | On model selection consistency of Lasso[END_REF] show model selection consistency both for fixed p and large p. The latter is based on the Irrepresentable Condition, which is necessary and sufficient for model selection consistency of Lasso, in other words, for retrieving the null and non-null elements of β β β . The Irrepresentable Condition requires that the correlation between active (corresponding elements of β β β are non-null) and non-active (corresponding elements of β β β are null) variables is smaller than the correlation between active variables.

The previously discussed results may not necessarily be true for discrete-valued data. To fill in the gap, in the scope of this thesis, we shall study the sign-consistency of Lasso estimator for Poisson observations. This is the contribution of Chapter 4.

Variable selection methods for count time series

The variable selection methods can be applied to count time series models discussed in Section 1.1.2. However, the literature on variable selection methods in count time series is very limited. There are several approaches that use penalty-based methods. [START_REF] Zhang | Regularized estimation in GINAR(p) process[END_REF] introduced the regularised estimation methodology for generalised pth-order integervalued autoregressive (GINAR(p)) process. GINAR(p) models are an extension of the INAR(p) models defined in Equation (1.3). However, instead of the binomial thinning operator, they consider a generalised thinning operator, defined analogously to Equation (1.1). In the generalised thinning operator, the sequence {Z k } represents non-negative integer-valued random variables with mean α and variance σ 2 . Unlike the binomial thinning operator, the values of Z k are not limited to the set {0, 1}. The authors propose penalised estimation by adding a penalty function to the conditional least squares criterion function. They consider different penalty functions, among which the adaptive Lasso of [START_REF] Zou | The adaptive Lasso and its oracle properties[END_REF]. The adaptive Lasso estimator is defined as follows:

β AD β AD β AD = arg min β β β Y Y Y -X X Xβ β β 2 2 + λ p j=1 w j |β j | ,
where w j = 1/| β j | τ , β j being, for instance, the jth component of the least squares estimator and τ > 0.

Another variable selection approach is proposed by [START_REF] Wang | Variable selection for first-order poisson integer-valued autoregressive model with covariables[END_REF] in first-order Poisson integer-valued autoregressive (PINAR(1)) models. Here the model in Equation (1.2) is considered in the Poisson setting. Variable selection is performed by considering the penalised conditional least squares criterion function, where adaptive Lasso is one of the penalisation approaches. [START_REF] Wang | Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure[END_REF] consider the Poisson autoregressive model and perform variable selection with the penalised conditional log-likelihood function. Similar to the previous methods, they consider several penalty functions, including the adaptive Lasso.

To date, there is no study that adapts GLARMA models to perform variable selection. The contribution of Chapter 2 will be the introduction of a variable selection approach in sparse GLARMA Poisson models. In the following, we consider the usual estimation procedure in GLARMA models.

Classical estimation in GLARMA models

As explained by [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], the parameter δ = (β , γ ) in GLARMA models defined in (1.4), (1.5) and (1.6) can be estimated by using the following criterion based on the conditional log-likelihood, where β = (β 0 , β 1 , . . . , β p ) is the vector of regressor coefficients in (1.5) and γ = (γ 1 , . . . , γ q ) is the vector of the ARMA part coefficients in (1.6). This criterion consists in maximising with respect to δ = (β , γ ), with β = (β 0 , β 1 , . . . , β p ) and γ = (γ 1 , . . . , γ q ) :

L(δ) = n t=1 (Y t W t (δ) -exp(W t (δ))) .
(1.9)

In (1.9),

W t (δ) = β x t + Z t (δ) = β 0 + p i=1 β i x t,i + q j=1 γ j E t-j (δ), (1.10) 
with x t = (x t,0 , x t,1 , . . . , x t,p ) , x t,0 = 1 for all t and

E t (δ) = Y t exp(-W t (δ)) -1, if t > 0 and E t (δ) = 0, if t ≤ 0.
To obtain δ defined by δ = arg max δ L(δ), the first derivatives of L are considered:

∂L ∂δ (δ) = n t=1 (Y t -exp(W t (δ)) ∂W t ∂δ (δ), (1.11) 
where

∂W t ∂δ (δ) = ∂β x t ∂δ + ∂Z t ∂δ (δ),
β, x t , and Z t being given in (1.10).

Based on Equation (1.11), which is non-linear in δ and which has to be recursively computed, it is not possible to obtain a closed-form formula for δ. Thus δ is computed by using the Newton-Raphson algorithm. More precisely, starting from an initial value for δ denoted by δ (0) , the following recursion for r ≥ 1 is used:

δ (r) = δ (r-1) - ∂ 2 L ∂δ ∂δ (δ (r-1) ) -1 ∂L ∂δ (δ (r-1) ), (1.12)
where ∂ 2 L ∂δ ∂δ corresponds to the Hessian matrix of L. The implementation of the presented method is in the GlarmaVarSel R package available on the CRAN.

We are interested in performing variable selection in sparse GLARMA models defined in (1.4), (1.5) and (1.6), where many components of β are null. The classical estimation procedure explained in Section 1.2.1, based on the recursive estimation defined in Equation (1.12), provides poor estimation results in the sparse setting. This is the reason why we devised a new estimation procedure. We propose a novel two-step variable selection approach in the deterministic part (covariates) of sparse GLARMA models. Our approach consists in combining a procedure for estimating the ARMA part coefficients to take into account the temporal dependence that may exist in the data with regularised methods designed for GLM.

We consider the conditional log-likelihood L(δ δ δ) defined in Equation (1.9). In the first step, to estimate γ we use

γ = arg max γ L(β (0) , γ ),
where

β (0) = (β (0) 0 , . . . , β (0) 
p ) is a given initial value for β and γ = (γ 1 , . . . , γ q ) . We use the Newton-Raphson algorithm to obtain γ based on the following recursion for r ≥ 1 starting from the initial value γ (0) = (γ

(0) 1 , . . . , γ (0) q ) : γ (r) = γ (r-1) - ∂ 2 L ∂γ ∂γ (β (0) , γ (r-1) ) -1 ∂L ∂γ (β (0) , γ (r-1) ).
In the second step, to perform variable selection in the β i of Model (1.5) aimed to obtain a sparse estimator of β i , we use a methodology inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting generalised linear models with 1 penalties. It consists in penalising a quadratic approximation to the log-likelihood obtained by a Taylor expansion. Using β (0) and γ defined above, the quadratic approximation is

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ)U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ),
where U ΛU is the singular value decomposition of the positive semidefinite symmetric matrix

-∂ 2 L ∂β∂β (β (0) , γ) and ν -ν (0) = U (β -β (0) ).
In order to obtain a sparse estimator of β , we propose using β(λ) defined by

β(λ) = arg min β -L Q (β) + λ β 1 ,
for a positive λ, where β 1 = p k=0 |β k | and L Q (β) denotes the quadratic approximation of the log-likelihood defined by

-L Q (β) = 1 2 Y -X β 2 2 , with Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ) , X = Λ 1/2 U and • 2 denoting the 2 norm in R p+1 .
To obtain the final estimator β of β , we use the stability selection procedure devised by [START_REF] Meinshausen | Stability selection[END_REF], which guarantees the robustness of the selected variables.

In practice, we can improve the estimation by iterating the Newton-Raphson algorithm and variable selection steps. The details of the algorithm are in Section 2.2.3.

In Theorem 2.2.1, we establish the consistency of the parameter γ 1 in the case where q = 1 from Y 1 , . . . , Y n defined in (1.4) and (1.6), where (1.5) is replaced by

µ t = exp(W t ) with W t = β 0 + Z t ,
under the assumption that γ 1 ∈ Γ where Γ is a compact set of R which does not contain 0. More precisely, let γ 1 = arg max γ 1 ∈Γ L(β 0 , γ 1 ). We prove that γ 1 converges in probability to γ 1 , as n tends to infinity. The main tools used for proving the consistency of γ 1 are the Markov property and the ergodicity of (W t ).

To evaluate the performance of the proposed method, the implementation of which is available in the GlarmaVarSel R package on the CRAN, we conducted many experiments with simulated data in different simulation settings. Our method benefits from a low computational load and outperforms the Lasso approach proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] in recovering the non-null regression coefficients. Additional details can be found in Section 2.3.

In Section 2.4, we applied our method to the study of some RNA-Seq time series data. Conventionally, most RNA sequences derive from genes called protein-coding genes. They make a very small percentage of DNA, see, e.g, [START_REF] Harrow | Identifying protein-coding genes in genomic sequences[END_REF]. The rest of the genes, called non-coding genes, do not give instructions for making proteins. However, as explained by [START_REF] Wu | The diversity of long noncoding RNAs and their generation[END_REF], non-coding genes are emerging as potential key regulators of the expression of coding genes. In this framework, only a few among many non-coding genes are likely to be involved in explaining the expression of the coding genes. We applied our variable selection approach to identify the relevant non-coding genes which explain the expression of coding genes. Moreover, thanks to our method, we take into account the temporal dependence that may exist between gene expression levels of a coding gene measured at different time points.

Contribution of Chapter 4: Sign-consistent estimation in the sparse Poisson model

This subsection summarises the article: Gomtsyan, M., Lévy-Leduc, C., Ouadah, S., Sansonnet, L. (2023). Sign-consistent estimation in a sparse Poisson model. Submitted. arXiv:2303.14020.

As mentioned previously, the sign-consistency results of the Lasso estimator discussed in Section 1.2.1 are established only in the Gaussian setting. However, they may not hold for discrete-valued data. In this work, we establish a novel sign consistency result for the sparse Poisson model. Let Y 1 , . . . , Y n be independent random variables such that for all i,

Y i ∼ Poisson(λ i ) with λ i = exp(x i β β β ),
(1.13) where x i is the ith row of a n × p design matrix X and β β β is a sparse vector of regression coefficients in R p . To estimate β β β in Model (1.13), we consider an estimation method inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], which consists in maximising with respect to β β β the second order Taylor approximation of the log-likelihood l at the current estimate β β β, namely:

l( β β β) + n i=1 p k=1 x ik (Y i -λi )(β k -βk ) - 1 2 n i=1 1≤k, ≤p λi x ik (β k -βk )x i (β -β ),
where λi = exp(x i β β β). This is the same as minimising

n i=1 λi x i β β β -β β β - Y i -λi λi 2 .
This can be viewed as the minimisation with respect to β β β of the least-squares criterion Y -

X β β β 2 2 , with Y = X β β β + Λ-1/2 (Y -λ) and X = Λ1/2 X,
Λ denoting the diagonal matrix having the λi 's as diagonal elements, λ being a column vector having the λi 's as components, and Y denoting a column vector having the Y i 's as components. Thus, in order to obtain a sparse estimation of β β β , we will focus on finding β β β(α) defined for α > 0 by:

β β β(α) = arg min β β β∈R p Y -X β β β 2 2 + α β β β 1 . (1.14)
We establish the sign consistency of β β β in Theorem 4.3.1, namely

P sign( β β β) = sign(β β β ) → 1, when n → ∞.
Here the function sign(•) maps positive entry to 1, negative entry to -1, and zero entry to 0.

The previous result holds under mild conditions, including the following strong irrepresentable condition, which states that there exists τ > 2/3 such that

C 21 C -1 11 sign(β β β 1 ) ≤ 1 -τ, (1.15)
with a probability tending to 1 when n tends to infinity. This inequality has to be understood component by component. In Equation (1.15) C 21 and C 11 are defined as follows:

C = X T 1 X 1 /n X T 1 X 2 /n X T 2 X 1 /n X T 2 X 2 /n = C 11 C 12 C 21 C 22 .
The main tool of the proof of this theorem is the use of a Bernstein inequality, see (Boucheron et al., 2013, Corollary 2.11).

Extension to other settings

Modelling multivariate count time series

State of the art

Considerable work has been done in modelling multivariate count time series in recent years. Most of the multivariate count time series models are extensions of the univariate models discussed in Section 1.1.2. A detailed review of the main approaches for modelling multivariate count time series is done by [START_REF] Fokianos | Multivariate count time series modelling[END_REF].

The multivariate INAR model (MINAR) is based on the multivariate thinning operator. Consider a d-dimensional random vector X = (X 1 , . . . , X d ) , where each element represents an integer-valued non-negative variable. Let A = (α ij ) be a n × n matrix of thinning operators, where each element is obtained using the generalised thinning operator discussed in Section 1.2.1, along with corresponding array of counting series {Z ij;k , k ∈ N}, which are i.i.d integer-valued random variables independent of X. Here,

E (Z ij;k ) = α ij and Var (Z ij;k ) = β ij .
The multivariate thinning operator is defined as

A X =    d j=1 α 1j X j . . . d j=1 α dj X j    .
Let (Y t ) be a d-dimensional time series. The MINAR(p) models is defined as

Y t = n i=1 A i Y t-i + ε t ,
where {ε t } is a sequence of i.i.d. integer-valued random vectors with mean µ t and variance Σ, which is independent of all thinning operators. The properties of the MINAR were derived by [START_REF] Franke | Multivariate first-order integer values autoregressions[END_REF] and [START_REF] Latour | The multivariate GINAR(p) process[END_REF]. Further studies of MINAR were done by Pedeli and Karlis (2013a) and Pedeli and Karlis (2013b).

There are several studies which address parameter-driven state space models in the multivariate setting, including [START_REF] Jørgensen | State-space models for multivariate longitudinal data of mixed types[END_REF], [START_REF] Jung | Dynamic factor models for multivariate count data: An application to stock-market trading activity[END_REF][START_REF] Ravishanker | Hierarchical dynamic models for multivariate times series of counts[END_REF]. [START_REF] Wang | Modelling non-stationary multivariate time series of counts via common factors[END_REF] extended the univariate model of Zeger (1988) discussed in Section 1.1.2 to the multivariate setting by considering a d-dimensional latent process {ε t }.

Many multivariate observation-driven count time series models are based on the copula approach, see, e.g., [START_REF] Inouye | A review of multivariate distributions for count data derived from the Poisson distribution[END_REF]. An example is the Multivariate Autoregressive Conditional Double Poisson model by [START_REF] Heinen | Multivariate autoregressive modeling of time series count data using copulas[END_REF], based on the double Poisson distribution with the mean vector being a vector autoregressive moving average process (VARMA). Another model using copula is developed by [START_REF] Bien | An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics[END_REF] for count time series with a domain Z n , n ∈ N. Here the conditional probabilities of the direction of the process (whether the process is negative, positive or equal to zero) is modelled with the autoregressive conditional multinomial model (ACM). [START_REF] Fokianos | Multivariate count autoregression[END_REF] impose a copula function on a vector of related continuous random variables to determine the joint distribution of the count time series. Finally, [START_REF] Held | A statistical framework for the analysis of multivariate infectious disease surveillance data[END_REF] propose an approach that can be seen as a Poisson branching process model with immigration. In this model, at time t, the mean of each series is specified by covariates that are the counts of other series at time t -1.

Similar to the univariate setting, very few methods exist for performing variable selection in multivariate count time series. An example is the variable selection method for multivariate Poisson data using spike and slab approach of [START_REF] Giese | Modeling nematode population dynamics using a multivariate poisson model with spike and slab variable selection[END_REF], which is based on extending the Poisson Lognormal model in [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF] to the multivariate case and relaxing the mean-equal-variance property of the Poisson distribution. The latter is a parameter-driven model. Another study by [START_REF] Lee | Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data[END_REF] performs Bayesian variable selection in multivariate zero-inflated count data. The contribution of Chapter 3 will be the introduction of a variable selection approach in sparse multivariate GLARMA models.

Contribution of Chapter 3: Multivariate setting

This subsection summarises the methodology and the numerical experiments contained in the article: Gomtsyan, M., Lévy-Leduc, C., Ouadah, S., Sansonnet, L., Bailly, C., Rajjou, L. (2023). Variable selection in sparse multivariate GLARMA models: Application to germination control by environment. Submitted. arXiv:2208.14721.

The implementation of the presented method is in the MultiGlarmaVarSel R package available on the CRAN.

We develop an observation-driven variable selection model, which is an extension of the approach discussed in Section 1.2.2 to the multivariate case by considering the following multivariate GLARMA model. Given the past history F i,j,t-1 = σ(Y i,j,s , s ≤ t -1), we assume that Y i,j,t |F i,j,t-1 ∼ P(µ i,j,t ), (1.16)

where P(µ) denotes the Poisson distribution with mean µ,

1 ≤ i ≤ I, 1 ≤ j ≤ n i and 1 ≤ t ≤ T .
For instance, Y i,j,t can be seen as a random variable modelling the tth observation of the jth replication of the time series obtained in condition i. In (1.16)

µ i,j,t = exp(W i,j,t ), with W i,j,t = η i,t + Z i,j,t , (1.17) 
where

Z i,j,t = q k=1 γ k E i,j,t-k , with 1 ≤ q ≤ ∞, (1.18)
and η i,t , the non random part of W i,j,t , does not depend on j.

Let us denote η η η = (η 1,1 , . . . , η I,1 , η I,2 , . . . , η I,T ) the vector of coefficients corresponding to the effect of a qualitative variable on the observations. For instance, η i,t can be seen as the effect of condition i on the response at time t. Assume moreover that γ γ γ = (γ 1 , . . . , γ q ) is such that k≥1 |γ k | < ∞. By considering the different conditions i in (1.16) simultaneously, it is possible to better estimate γ γ γ . Additionally,

E i,j,t = Y i,j,t -µ i,j,t µ i,j,t = Y i,j,t exp -W i,j,t -1, (1.19)
with E i,j,t = 0 for all t ≤ 0 and 1 ≤ q ≤ ∞. E i,j,t in (1.19) corresponds to the particular case of working residuals in classical generalised linear models usually defined by E i,j,t = (Y i,j,t -µ i,j,t )µ i,j,t -λ with λ = 1. The resulting model defined by Equations (1.16), (1.17), (1.18) and (1.19) is referred to as multivariate GLARMA model.

Our approach consists in estimating δ δ δ = (η η η , γ γ γ ), where γ γ γ is the vector of the ARMA part coefficients. We consider the conditional log-likelihood defined by:

L(δ δ δ) = I i=1 n i j=1 T t=1 (Y i,j,t W i,j,t (δ δ δ) -exp(W i,j,t (δ δ δ)),
where W i,j,t (δ δ δ) is defined as in (1.17)-(1.19):

W i,j,t (δ δ δ) = η i,t + q k=1 γ k E i,j,t (δ δ δ) with E i,j,t (δ δ δ) = Y i,j,t exp -W i,j,t (δ δ δ) -1.
In the first step of our estimation procedure, we use the Newton-Raphson algorithm to obtain γ γ γ based on the following recursion. For r ≥ 1, starting from the initial value γ γ γ (0) = (γ (0) 1 , . . . , γ (0) q ) and η η η (0) = (η 0) , γ γ γ (r-1) -1 ∂L ∂γ γ γ η η η (0) , γ γ γ (r-1) .

γ γ γ (r) = γ γ γ (r-1) - ∂ 2 L ∂γ γ γ ∂γ γ γ η η η (
In the second step, we perform variable selection in the η η η of Model (1.17)-(1.19) by using a regularised approach inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting sparse generalised linear models. We penalise with an 1 penalty a quadratic approximation to the log-likelihood obtained by a second order Taylor expansion. Using η η η (0) and γ γ γ defined above, the quadratic approximation is

L(η η η) = L(η η η (0) ) + ∂L ∂η η η (η η η (0) , γ γ γ)U (ν ν ν -ν ν ν (0) ) - 1 2 (ν ν ν -ν ν ν (0) ) Λ(ν ν ν -ν ν ν (0) ),
where U ΛU is the singular values decomposition of the positive semidefinite symmetric matrix

-∂ 2 L ∂η η ηη η η (η η η (0) , γ γ γ) and ν ν ν -ν ν ν (0) = U (η η η -η η η (0) ).
In order to obtain a sparse estimator of η η η we use η η η(λ) defined by minimizing the following criterion:

η η η(λ) = arg min η η η {-LQ (η η η) + λ η η η 1 },
for a positive λ, where LQ (η η η) denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by

-LQ (η η η) = 1 2 Y -X η η η 2 2 with Y = Λ 1/2 U η η η (0) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) , X = Λ 1/2 U .
To obtain the final estimator η η η of η η η , we shall consider the stability selection approach by [START_REF] Meinshausen | Stability selection[END_REF], which guarantees the robustness of the selected variables. In practice, we can improve the estimation by iterating the Newton-Raphson algorithm and variable selection steps. The details of the algorithm are in Section 3.2.3.

To evaluate the performance of the proposed method, the implementation of which is available in the MultiGlarmaVarSel R package on the CRAN, we conducted many experiments with simulated data in different simulation settings. Our method benefits from a low computational load and outperforms the Lasso approach proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] in recovering the non-null regression coefficients. Additional details can be found in Section 3.3.

Modelling count time series with overdispersion

State of the art

As noted by [START_REF] Davis | Count time series: A methodological review[END_REF], count time series are often overdispersed, i.e. the variance is larger than the mean. Most of the time, the Poisson distribution is not suitable for modelling overdispersed data since the mean and variance of the Poisson distribution are equal. The negative binomial distribution is a natural extension of the Poisson distribution, which allows overdispersion.

In modelling overdispersed count time series, a commonly used approach is the integervalued generalised autoregressive conditional heteroscedastic (INGARCH) model, see [START_REF] Ferland | Integer-valued garch process[END_REF]. It belongs to the class of INARMA models. For the observations in Equation (1.4), the INGARCH(p,q) models is defined as [START_REF] Zhu | A negative binomial integer-valued GARCH model[END_REF] extended this model to the negative binomial case, meaning that the conditional distribution of Y t in Equation (1.4) is specified by the negative binomial distribution.

µ t = γ 0 + q i=1 γ i Y t-i + p j=1 δ j µ t-j .
In generalised state space models, the parameter-driven model of Zeger (1988) discussed in Section 1.1.2 is also extended to the negative binomial setting by [START_REF] Davis | A negative binomial model for time series of counts[END_REF]. In observation-driven models, one can consider negative binomial response distribution in GLARMA models, see [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF] . The estimation procedure in these models is similar to the one discussed in Section 1.2.1: the overdispersion parameter denoted by α is estimated in the same way as the other parameters of the model by setting δ = (β , γ , α) in Equation (1.12). The negative binomial GLARMA model introduced with additional covariates is defined as follows: given the past history F t-1 = σ(Y s , s ≤ t -1), we assume that

Y t |F t-1 ∼ NB (µ t , α ) , (1.20)
where NB(µ, α) denotes the negative binomial distribution with mean µ and overdispersion parameter α. In (1.20),

µ t = exp(W t ) with W t = p i=0 β i x t,i + Z t .
(1.21)

Here the x t,i 's represent the p regressor variables (p ≥ 1) and

Z t = q j=1 γ j E t-j with E t = Y t -µ t µ t + µ t 2 /α , (1.22)
where 1 ≤ q ≤ ∞ and E t = 0 for all t ≤ 0. The E t 's correspond to the working residuals in classical generalised linear models. The resulting model defined in (1.20), (1.21) and (1.22) is the negative binomial GLARMA model.

In Chapter 5 we will introduce a variable selection approach in sparse GLARMA negative binomial models.

Contribution of Chapter 5: Negative binomial setting

This subsection summarises the article: Gomtsyan, M. (2023). Variable selection in a specific regression time series of counts. Submitted. arXiv:2307.00929.

The implementation of the presented method is in the NBtsVarSel R package available on the CRAN.

Let us consider the negative binomial GLARMA model defined in (1.20), (1.21) and (1.22), with the parameter δ = (β , γ ), where β = (β 0 , β 1 , . . . , β p ) represents the vector of regressor coefficients defined in (1.21), and γ = (γ 1 , . . . , γ q ) is the vector of the ARMA part coefficients defined in (1.22). Furthermore, let δ = (β , γ ), with β = (β 0 , β 1 , . . . , β p ) and γ = (γ 1 , . . . , γ q ) . The conditional log-likelihood is:

L(δ, α) = n t=1 log Γ(α + Y t ) -log Γ(Y t + 1) -log Γ(α) + α log α + Y t W t -(α + Y t ) log(α + exp(W t )) , (1.23)
where Γ(•) is the gamma function. In (1.23),

W t (δ, α) = β x t + Z t (δ, α) = β 0 + p i=1 β i x t,i + q j=1
γ j E t-j (δ, α), with x t = (x t,0 , x t,1 , . . . , x t,p ) , x t,0 = 1 for all t and

E t (δ, α) = Y t exp(-W t (δ, α)) -1 1 + exp(Wt(δ δ δ,α)) α , if t > 0 and E t (δ, α) = 0, if t ≤ 0.
In the first step of our method, we obtain the estimate of γ by using

γ = arg max γ γ γ L(β (0) , γ , α (0) ),
where L is defined in (1.23), β (0) = (β

(0) 0 , . . . , β (0) 
p ) and α (0) are given initial estimations of β and α , respectively, and γ = (γ 1 , . . . , γ q ) . In practice, for β (0) we take the estimator of β obtained by fitting a GLM to the observations Y 1 , . . . , Y n , thus ignoring the ARMA part of the model. For α (0) , we take the maximum likelihood estimator of α of the same GLM model. We use the Newton-Raphson algorithm to obtain γ. For r ≥ 1, starting from the initial value

γ (0) = (γ (0) 1 , . . . , γ (0) 
q ) , for which we take the null vector in practice: 0) , γ (r-1) , α (0) ).

γ (r) = γ (r-1) - ∂ 2 L ∂γ ∂γ (β (0) , γ (r-1) , α (0) ) -1 ∂L ∂γ (β ( 
In the second step, to perform variable selection in the β i 's of Model (1.21), we penalise with 1 penalties a quadratic approximation to the log-likelihood obtained by a Taylor expansion. Using β (0) , γ, and α (0) defined above, the quadratic approximation is

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ, α (0) )U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ),
where U ΛU is the singular value decomposition of the positive semidefinite symmetric matrix

-∂ 2 L ∂β∂β (β (0) , γ, α (0) ) and ν -ν (0) = U (β -β (0) ).
In order to obtain a sparse estimator β β β of β , we use the criterion β(λ) defined by

β(λ) = arg min β -L Q (β) + λ β 1 ,
for a positive λ, where L Q (β) denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by

-L Q (β) = 1 2 Y -X β 2 2 ,
where

Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ, α (0) ) , X = Λ 1/2 U.
In the third step, to estimate α we shall use a maximum likelihood approach in the classical GLM model, see, e.g., [START_REF] Piegorsch | Maximum likelihood estimation for the negative binomial dispersion parameter[END_REF], meaning that in (1.21) the ARMA part is ignored. In the GLM model we take the design matrix X composed of regressor variables x t,i , for 1 ≤ t ≤ n and i such that the corresponding βi was estimated to be non-null in the variable selection step.

To obtain the final estimator β β β of β β β , we shall consider the stability selection approach devised by [START_REF] Meinshausen | Stability selection[END_REF], which guarantees the robustness of the selected variables. We can improve the estimation by iterating these three steps. The details of the algorithm are in Section 5.2.3.

To evaluate the performance of the proposed method, the implementation of which is available in the NBtsVarSel R package on the CRAN, we conducted many experiments with simulated data in different simulation settings. Our method benefits from a low computational load and outperforms the Lasso approach proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] in recovering the non-null regression coefficients. Additional details can be found in Section 5.3.

In Section 5.4, we applied our method to the study of the same RNA-Seq time series data discussed in Section 1.2.2. We applied our variable selection approach to identify the relevant non-coding genes which explain the expression of coding genes. We compared the results with the ones obtained with the Poisson model of Section 1.2.2. Our method was applied to 145 RNA-Seq time series using the same set of non-coding genes. The negative binomial model identified 37 out of the 95 non-coding genes, all of which were also identified by the Poisson model. However, it is worth noting that the Poisson model selected a larger number of noncoding genes, specifically 93. The implementation of the presented method is in the GlarmaVarSel R package available on the CRAN.

Abstract

In this chapter, we propose a novel and efficient two-stage variable selection approach for sparse GLARMA models, which are pervasive for modelling discrete-valued time series. Our approach consists in iteratively combining the estimation of the autoregressive moving average (ARMA) coefficients of GLARMA models with regularised methods designed for performing variable selection in regression coefficients of Generalised Linear Models (GLM). We first establish the consistency of the ARMA part coefficient estimators in a specific case. Then, we explain how to efficiently implement our approach. Finally, we assess the performance of our methodology using synthetic data, compare it with alternative methods and illustrate it on an example of real-world application. Our approach, which is implemented in the GlarmaVarSel R package and available on the CRAN, is very attractive since it benefits from a low computational load and is able to outperform the other methods in terms of coefficient estimation, particularly in recovering the non-null regression coefficients.

Introduction

Discrete-valued time series arise in a wide variety of fields ranging from finance to molecular biology and public health. For instance, we can mention the number of transactions in stocks in the finance field, see [START_REF] Brännäs | Integer-valued moving average modelling of the number of transactions in stocks[END_REF]. In the field of molecular biology, modelling RNA-Seq kinetics data is a challenging issue, see [START_REF] Thorne | Approximate inference of gene regulatory network models from RNA-Seq time series data[END_REF] and in the public health context, there is an interest in the modelling of daily asthma presentations in a given hospital, see [START_REF] Souza | Principal components and generalized linear modeling in the correlation between hospital admissions and air pollution[END_REF].

The literature on modelling discrete-valued time series is becoming increasingly abundant, see Davis et al. (2016) [START_REF] Al-Osh | Integer-valued moving average (INMA) process[END_REF]. One of the attractive features of INARMA processes is that their autocorrelation structure is similar to the one of autoregressive moving average (ARMA) models. However, it has to be noticed that statistical inference in these models is generally complicated and requires to develop intensive computational approaches such as the efficient MCMC algorithm devised by [START_REF] Neal | MCMC for integer-valued ARMA processes[END_REF] for INARMA processes of known AR and MA orders. This strategy was extended to unknown AR and MA orders by [START_REF] Enciso-Mora | Efficient order selection algorithms for integer-valued ARMA processes[END_REF]. For further references on INARMA models, we refer the reader to [START_REF] Weiss | An introduction to discrete-valued time series[END_REF].

The other important class of models for discrete-valued time series is the one of generalised state space models which can have a parameter-driven and an observation-driven version, see [START_REF] Davis | Modeling time series of count data[END_REF] for a review. The main difference between these two versions is that in parameter-driven models, the state vector evolves independently of the past history of the observations whereas the state vector depends on the past observations in observation-driven models. More precisely, in parameter-driven models, let (ν t ) be a stationary process, the observations Y t are thus modelled as follows: conditionally on (ν t ), Y t has a Poisson distribution of parameter exp(β 0 + p i=1 β i x t,i + ν t ), where the x t,i 's are the p regressor variables (or covariates). Estimating the parameters in such models has a very high computational load, see [START_REF] Jung | Estimating time series models for count data using efficient importance sampling[END_REF].

Observation-driven models initially proposed by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF] and further studied by [START_REF] Zeger | Markov regression models for time series: A quasi-likelihood approach[END_REF] do not have this computational drawback and are thus considered as a promising alternative to parameter-driven models. Different kinds of observation-driven models can be found in the literature: the Generalised Linear Autoregressive Moving Average (GLARMA) models introduced by [START_REF] Davis | Modeling time series of count data[END_REF] and further studied by [START_REF] Davis | Observation-driven models for Poisson counts[END_REF], [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], and [START_REF] Dunsmuir | Generalized Linear Autoregressive Moving Average Models[END_REF] and the (log-)linear Poisson autoregressive models studied by [START_REF] Fokianos | Poisson autoregression[END_REF], [START_REF] Fokianos | Multivariate count time series modelling[END_REF][START_REF] Fokianos | Log-linear poisson autoregression[END_REF][START_REF] Fokianos | Multivariate count time series modelling[END_REF][START_REF] Fokianos | Nonlinear poisson autoregression[END_REF]. Note that GLARMA models cannot be seen as a particular case of the log-linear Poisson autoregressive models.

In the following, we shall consider the GLARMA model introduced by Davis et where P(µ) denotes the Poisson distribution with mean µ. In (2.1),

µ t = exp(W t ) with W t = β 0 + p i=1 β i x t,i + Z t , (2.2) 
where the x t,i 's are the p regressor variables (p ≥ 1),

Z t = q j=1 γ j E t-j with E t = Y t -µ t µ t = Y t exp(-W t ) -1, (2.3)
with 1 ≤ q ≤ ∞ and E t = 0 for all t ≤ 0. Here, the E t 's correspond to the working residuals in classical Generalised Linear Models (GLM), which means that we limit ourselves to the case λ = 1 in the more general definition: -λ . Note that in the case where q = ∞, (Z t ) satisfies the ARMA-like recursions given in Equation (4) of [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF]. The model defined by (2.1), (2.2) and (2.3) is thus referred as a GLARMA model.

E t = (Y t -µ t )µ t
The main goal of this chapter is to introduce a novel variable selection approach in the deterministic part (covariates) of sparse GLARMA models that is in (2.1), (2.2) and (2.3) where the vector of the β i 's is sparse. Sparsity means that many β i 's are null and thus just a few of regressor variables are explanatory. The novel approach that we propose consists in combining a procedure for estimating the ARMA part coefficients to take into account the temporal dependence that may exist in the data with regularised methods designed for GLM as those proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and [START_REF] Hastie | Statistical learning with sparsity: The Lasso and generalizations[END_REF]. Our procedure can be useful for modelling RNA-Seq time series data, sometimes referred to as RNA-Seq kinetics data in molecular biology. It allows monitoring the entire gene expression inside a biological sample along a time course. In this application, as explained by [START_REF] Wu | The diversity of long noncoding RNAs and their generation[END_REF], non-coding genes are emerging as potential key regulators of the expression of coding genes, namely the part of the genes coding for proteins. In this framework, only a few among a lot of non-coding genes are likely to be involved for explaining the expression of the coding genes. Hence, designing a variable selection approach for sparse GLARMA models will allow us to identify the relevant non-coding genes. Note that existing variable selection approaches for discrete observations such as [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] indeed do not take into account the temporal dependence that may exist in this kind of data.

The chapter is organised as follows. Firstly, in Section 2.2.1, we describe the classical estimation procedure in GLARMA models and in Section 2.2.4, establish a consistency result in a specific case. Secondly, we propose a novel two-stage estimation procedure which is described in Section 2.2.2. It consists in first estimating the ARMA coefficients and then in estimating the regression coefficients by using a regularised approach. The practical implementation of our approach is given in Section 2.2.3. The R language implementation of the method is provided in the GlarmaVarSel package which is available on the CRAN. Thirdly, in Section 2.3, we provide some numerical experiments to illustrate our method and to compare its performance to alternative approaches on finite sample size data. More precisely, we compared our approach to two different methods: the regularised methods designed for GLM of [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and the standard estimation procedure in non necessarily sparse GLARMA models implemented in the R glarma package. Additionally, in Section 4, we illustrate our method on RNA-Seq time series that follows the temporal evolution of gene expression. Finally, we give the proofs of the theoretical results in Section 2.5.

Statistical inference

Classical estimation procedure in GLARMA models

As explained by [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], the parameter δ = (β , γ ), u denoting the transpose of u, can be estimated by using the following criterion based on the conditional log-likelihood, where β = (β 0 , β 1 , . . . , β p ) is the vector of regressor coefficients defined in (2.2) and γ = (γ 1 , . . . , γ q ) is the vector of the ARMA part coefficients defined in (2.3). This criterion consists in maximizing with respect to δ = (β , γ ), with β = (β 0 , β 1 , . . . , β p ) and γ = (γ 1 , . . . , γ q ) :

L(δ) = n t=1 (Y t W t (δ) -exp(W t (δ))) .
(2.4)

In (2.4), W t (δ) = β x t + Z t (δ) = β 0 + p i=1 β i x t,i + q j=1
γ j E t-j (δ), (2.5) with x t = (x t,0 , x t,1 , . . . , x t,p ) , x t,0 = 1 for all t and

E t (δ) = Y t exp(-W t (δ)) -1, if t > 0 and E t (δ) = 0, if t ≤ 0. (2.6)
To obtain δ defined by δ = Argmax δ L(δ), the first derivatives of L are considered:

∂L ∂δ (δ) = n t=1 (Y t -exp(W t (δ)) ∂W t ∂δ (δ), (2.7)
where

∂W t ∂δ (δ) = ∂β x t ∂δ + ∂Z t ∂δ (δ),
β, x t and Z t being given in (2.5). The computations of the first derivatives of W t are detailed in Section 2.5.1. Based on Equation (2.7) which is non linear in δ and which has to be recursively computed, it is not possible to obtain a closed-form formula for δ. Thus δ is computed by using the Newton-Raphson algorithm. More precisely, starting from an initial value for δ denoted by δ (0) , the following recursion for r ≥ 1 is used:

δ (r) = δ (r-1) - ∂ 2 L ∂δ ∂δ (δ (r-1) ) -1 ∂L ∂δ (δ (r-1) ), (2.8)
where ∂ 2 L ∂δ ∂δ corresponds to the Hessian matrix of L and is defined in (2.9) given below. Hence, it requires the computation of the first and second derivatives of L. We already explained how to compute the first derivatives of L. As for the second derivatives of L, it can be obtained as follows:

∂ 2 L ∂δ ∂δ (δ) = n t=1 (Y t -exp(W t (δ)) ∂ 2 W t ∂δ ∂δ (δ) - n t=1 exp(W t (δ)) ∂W t ∂δ (δ) ∂W t ∂δ (δ).
(2.9)

The computations of the second derivatives of W t are detailed in Section 2.5.1. However, in our sparse framework where many components of β are null, this procedure provides poor estimation results, see Section 2.3.1 for numerical illustration. This is the reason why we devised a novel estimation procedure described in the next section.

Our estimation procedure

For selecting the most relevant components of β , we propose the following two-stage procedure: Firstly, we estimate γ by using the Newton-Raphson algorithm described in Section 2.2.2 and secondly, we estimate β by using the regularised approach detailed in Section 2.2.2.

Estimation of γ

To estimate γ , we propose using

γ = arg max γ L(β (0) , γ ), where L is defined in (2.4), β (0) = (β (0) 0 , . . . , β (0)
p ) is a given initial value for β and γ = (γ 1 , . . . , γ q ) . Similar to the approach proposed in Section 2.2.1, we use the Newton-Raphson algorithm to obtain γ based on the following recursion for r ≥ 1 starting from the initial value

γ (0) = (γ (0) 1 , . . . , γ (0) q ) : γ (r) = γ (r-1) - ∂ 2 L ∂γ ∂γ (β (0) , γ (r-1) ) -1 ∂L ∂γ (β (0) , γ (r-1) ), (2.10)
where the first and second derivatives of L are obtained using the same strategy as the one used for deriving Equations (2.7) and (2.9) in Section 2.2.1.

Variable selection: Estimation of β

To perform variable selection in the β i of Model (2.2) aimed to obtain a sparse estimator of β i , we shall use a methodology inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting generalised linear models with 1 penalties. It consists in penalizing a quadratic approximation to the log-likelihood obtained by a Taylor expansion. Using β (0) and γ defined in Section 2.2.2, the quadratic approximation is obtained as follows:

L(β) := L(β 0 , . . . , β p , γ) = L(β (0) ) + ∂L ∂β (β (0) , γ)(β -β (0) ) + 1 2 (β -β (0) ) ∂ 2 L ∂β∂β (β (0) , γ)(β -β (0) ),
where

∂L ∂β = ∂L ∂β 0 , . . . , ∂L ∂β p and ∂ 2 L ∂β∂β = ∂ 2 L ∂β j ∂β k 0≤j,k≤p .
Thus,

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ)U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ), (2.11)
where U ΛU is the singular value decomposition of the positive semidefinite symmetric matrix

-∂ 2 L ∂β∂β (β (0) , γ) and ν -ν (0) = U (β -β (0) ).
In order to obtain a sparse estimator of β , we propose using β(λ) defined by

β(λ) = arg min β -L Q (β) + λ β 1 , (2.12)
for a positive λ, where

β 1 = p k=0 |β k | and L Q (β)
denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by

-L Q (β) = 1 2 Y -X β 2 2 , (2.13) 
with

Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ) , X = Λ 1/2 U (2.14)
and • 2 denoting the 2 norm in R p+1 . Computational details for obtaining the expression (2.13) of L Q (β) appearing in Criterion (2.12) are provided in Section 2.5.2.

To obtain the final estimator β of β , we shall consider two different approaches:

• Standard stability selection. It consists in using the stability selection procedure devised by [START_REF] Meinshausen | Stability selection[END_REF] which guarantees the robustness of the selected variables. This approach can be described as follows. The vector Y defined in (2.14) is randomly split into several subsamples of size (p + 1)/2, which corresponds to half of the length of Y. The number of subsamples is equal to 1000 in our numerical experiments.

For each subsample Y (s) and the corresponding design matrix X (s) , the LASSO criterion (2.12) is applied with a given λ, where Y and X are replaced by Y (s) and X (s) , respectively. For each subsampling, the indices i of the non-null β i are stored. At the end, we calculate a frequency of index selection, namely the amount of times each index was selected divided by the number of subsamples. For a given threshold, we keep in the final set of selected variables the ones whose indices have a frequency larger than this threshold. Concerning the choice of λ, we shall consider the one obtained by cross-validation (Chapter 7 of [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]) called ss_cv in the following and the smallest element of the grid of λ provided by the R glmnet package called ss_min in the following.

• Fast stability selection. It consists in applying the LASSO criterion (2.12) for several values of λ. For each λ, the indices i of the non-null β i (λ) are stored. Then, we calculate a frequency of index selection, namely the amount of times each index was selected divided by the number of λ's considered. For a given threshold, we keep in the final set of selected variables the ones whose indices have a frequency larger than this threshold. This approach is called fast_ss in the following.

These approaches will be further investigated in Section 2.3.

Practical implementation

In practice, the previous approach can be summarised as follows.

• Initialization. We take for β (0) the estimator of β obtained by fitting a GLM to the observations Y 1 , . . . , Y n thus ignoring the ARMA part of the model in the case where n > p. If p is larger than n, then a regularised criterion for GLM models can be used, see for instance [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. For γ (0) , we take the null vector.

• Newton-Raphson algorithm. We use the recursion defined in (2.10) with the initialisation (β (0) , γ (0) ) obtained in the previous step and we stop at the iteration R such that γ (R)γ (R-1) ∞ < 10 -6 .

• Variable selection. To obtain a sparse estimator of β , we use the criterion (2.12) where β (0) and γ appearing in (2.14) are replaced by β (0) and γ (R) obtained in the previous steps. We thus get β by using one of the three approaches described at the end of Section 2.2.2.

This procedure can be improved by iterating the Newton-Raphson algorithm and Variable selection steps. More precisely, let us denote by β

(0) 1 , γ (R 1 ) 1
and β 1 the values of β (0) , γ (R) and β obtained in the three steps described above at the first iteration. At the second iteration, (β (0) , γ (0) ) appearing in the Newton-Raphson algorithm step is replaced by

( β 1 , γ (R 1 ) 1
). At the end of this second iteration, β 2 and γ

(R 2 ) 2
denote the obtained values of β and γ (R) , respectively. This approach is iterated until the stabilisation of γ

(R k ) k .

Consistency results

In this section, we shall establish the consistency of the parameter γ 1 in the case where q = 1 from Y 1 , . . . , Y n defined in (2.1) and (2.3) where (2.2) is replaced by

µ t = exp(W t ) with W t = β 0 + Z t .
(2.15)

We limit ourselves to this framework since in the more general one the consistency is much more tricky to handle and is beyond the scope of this chapter. Note that some theoretical results have already been obtained in this framework (no covariates and q = 1) by [START_REF] Davis | Observation-driven models for Poisson counts[END_REF] and [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF]. However, here, we provide, on the one hand, a more detailed version of the proof of these results and on the other hand, a proof of the consistency of γ 1 based on a stochastic equicontinuity result.

Theorem 2.2.1. Assume that Y 1 , . . . , Y n satisfy the model defined by (2.1), (2.15) and (2.3) with q = 1 and γ 1 ∈ Γ where Γ is a compact set of R which does not contain 0. Assume also that (W t ) starts with its stationary invariant distribution. Let γ 1 be defined by:

γ 1 = arg max γ 1 ∈Γ L(β 0 , γ 1 ),
where

L(β 0 , γ 1 ) = n t=1 (Y t W t (β 0 , γ 1 ) -exp(W t (β 0 , γ 1 )) , (2.16) with W t (β 0 , γ 1 ) = β 0 + Z t (γ 1 ) = β 0 + γ 1 E t-1 (γ 1 ),
(2.17)

E t-1 (γ 1 ) = Y t-1 exp(-W t-1 (β 0 , γ 1 )) -1, if t > 1 and E t-1 (γ 1 ) = 0, if t ≤ 1.
Then γ 1 p -→ γ 1 , as n tends to infinity, where p -→ denotes the convergence in probability.

The proof of Theorem 2.2.1 is based on the following propositions which are proved in Section 2.5. These propositions are the classical arguments for establishing consistency results of maximum likelihood estimators. Note that we shall explain in the proof of Proposition 2.2.2 why a stationary invariant distribution for (W t ) does exist. The main tools used for proving Propositions 2.2.2 and 2.2.4 are the Markov property and the ergodicity of (W t ).

Proposition 2.2.2. For all fixed γ 1 , under the assumptions of Theorem 2.2.1,

1 n L(β 0 , γ 1 ) p -→ L(γ 1 ) := E [Y 3 W 3 (β 0 , γ 1 ) -exp(W 3 (β 0 , γ 1 )] ,
as n tends to infinity. (2.18)

Proposition 2.2.3. The function L defined in (2.18) has a unique maximum at the true parameter γ 1 = γ 1 .

Proposition 2.2.4. Under the assumptions of Theorem 2.2.1

sup γ 1 ∈Γ L(β 0 , γ 1 ) n -L(γ 1 ) p -→ 0, as n tends to infinity,
where L(γ 1 ) is defined in (2.18).

Numerical experiments

This section aims to investigate the performance of our method, the implementation of which is available in the R package GlarmaVarSel. We study it both from a statistical and a numerical point of view, using synthetic data generated by the model defined by (2.1), (2.2), and (2.3).

Statistical performance

Estimation of the parameters when p = 0

In this section, we investigate the statistical performance of our methodology in the model defined by (2.1), (2.2) and (2.3) for n in {50, 100, 250, 500, 1000} in the case where p = 0, namely when there are no covariates and for q in {1, 2, 3}. The performance of our approach for estimating β 0 and the γ k are displayed in Figures 2.1, 2.2 and 2.3. We can see from these figures that the accuracy of the parameter estimations is improved when n increases, which corroborates the consistency of γ 1 given in Theorem 2.2.1 in the case q = 1. q q q q q q q 2.8 2.9 3.0 3.1 3.2 50 100 250 500 1000 n q q q q q q q 2.90 2) with no regressor and q = 1 (left), q = 2 (middle) and q = 3 (right). The horizontal lines correspond to the value of β 0 .

Moreover, it has to be noticed that in this particular context where there are no covariates (p = 0), the performance of our approach in terms of parameters estimation is similar to the one of the package glarma described by [START_REF] Dunsmuir | The glarma package for observation-driven time series regression of counts[END_REF].

q q q q q q q 0.2 0.4 0.6 0.8 50 100 250 500 1000 n q q q q 0.0 0.2 0.4 0.6 0.8 50 100 250 500 1000 n q q q q q q 0.25 0.50 0.75 50 100 250 500 1000 n Figure 2.2: Boxplots for the estimations of γ 1 = 0.5 in Model (2.2) with no regressor and q = 1 (left), q = 2 (middle) and q = 3 (right). The horizontal lines correspond to the value of γ 1 . q q q q 0.0 0.2 0.4 0.6 50 100 250 500 1000 n q q q q q q q q q q q q q -0.3 0.0 0.3 0.6 50 100 250 500 1000 n q q q q q q q q q q q q 0.0 0.5 50 100 250 500 1000 n Figure 2.3: Boxplots for the estimations of γ 2 = 1/4 in Model (2.2) with no regressor and q = 2 (left), γ 2 = 1/3 in Model (2.2) with no regressor and q = 3 (middle) and of γ 3 = 1/4 in Model (2.2) with no regressor and q = 3 (right). The horizontal lines correspond to the true values of the parameters.

Estimation of the parameters when p ≥ 1 and β is sparse

In this section, we assess the performance of our methodology in terms of support recovery, namely the identification of the non-null coefficients of β , and of the estimation of γ . We shall consider Y 1 , . . . , Y n satisfying the model defined by (2.1), (2.2) and (2.3) with covariates chosen in a Fourier basis defined by x t,i = cos(2πitf /n), when i = 1, . . . , [p/2] and x t,i = sin(2πitf /n), when i = [p/2] + 1, . . . , p, with t = 1, . . . , n and f = 0.7. Note that [x] denotes the integer part of x. Here n = 1000 in the first two paragraphs ("Estimation of the support of β " and "Estimation of γ "), q ∈ {1, 2, 3}, p = 100 and two sparsity levels (5% or 10% of non-null coefficients in β ). More precisely, when the sparsity level is 5% (resp. 10%) all the β i 's are assumed to be equal to zero except for five (resp. ten) of them: β 1 = 1.73, β 3 = 0.38, β 17 = 0.29, β 33 = -0.64 andβ 44 = -0.13 (resp. β 1 = 1.73, β 3 = 1.2, β 5 = 0.67, β 10 = 0.5, β 14 = -0.38, β 17 = 0.29, β 30 = -0.64, β 33 = -0.13, β 38 = -0.1 and β 44 = -0.07). Other values of n (150, 200, 500, 1000) will be considered in the third paragraph ("Impact of the value of n") to evaluate the impact of n on the performance of our approach.

Estimation of the support of β

In this paragraph, we focus on the performance of our approach for retrieving the support of β by computing the TPR (True Positive Rates, namely the proportion of non-null coefficients correctly estimated as non-null) and FPR (False Positive Rates, namely the proportion of null coefficients estimated as non-null). We shall consider the two methods that are proposed in Section 2.2.2: standard stability selection (ss_cv and ss_min) and fast stability selection (fast_ss). For comparison purpose, we shall also consider the standard Lasso approach proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] in GLM where the parameter λ is either chosen thanks to the standard cross-validation (lasso_cv) or by taking the optimal λ which maximises the difference between the TPR and FPR (lasso_best).

Figures 2.4, 2.5 and 2.6 display the TPR and FPR of the previously mentioned approaches with respect to the threshold defined at the end of Section 2.2.2 when n = 1000, the sparsity level is equal to 5% and q = 1, 2 and 3, respectively. We can see from these figures that when the threshold is well tuned, our approaches outperform the classical Lasso even when the parameter λ is chosen in an optimal way. More precisely, the thresholds 0.4, 0.7 and 0.8 achieve a satisfactory trade-off between the TPR and the FPR for fast_ss, ss_cv and ss_min, respectively. The conclusions are similar in the case where the sparsity level is equal to 10%, the corresponding figures (2.19, 2.20 and 2.21) are given in the Appendix. We can observe from these figures that the performance of fast_ss are slightly better than ss_cv and ss_min when the sparsity level is equal to 5% but it is the reverse when the sparsity level is equal to 10%.

We also compare our approach with the method implemented in the glarma package of [START_REF] Dunsmuir | The glarma package for observation-driven time series regression of counts[END_REF] in the case where q = 1 and when the sparsity level is equal to 5%. Since this method is not devised for performing variable selection, we consider that a given component of β is estimated by 0 if its estimation obtained by the glarma package is smaller than a given threshold. The results are displayed in Figure 2.7 for different thresholds ranging from 10 -9 to 0.1. We can see from this figure that for the best choice of the threshold the results of the variable selection provided by the glarma package underperform our method.

Estimation of γ Figures 2.8, 2.9 and 2.10 display the boxplots for the estimations of γ in Model (2.2) with a 5% sparsity level and q = 1, 2, 3 obtained by ss_cv, fast_ss and ss_min, respectively. The threshold chosen for each of these methods is the one achieving a satisfactory trade-off between the TPR and the FPR, namely 0.7, 0.4 and 0.8. We can see from these figures that all these approaches provide accurate estimations of γ from the second iteration. The conclusions are similar in the case where the sparsity level is equal to 10%, the corresponding figures 2.22, 2.23 2.2) with a 5% sparsity level and q = 1, 2, 3 obtained by ss_cv. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's. 6 Iteration q q q q q q q q q q q 0.05 Figure 2.9: Boxplots for the estimations of γ in Model (2.2) with a 5% sparsity level and q = 1, 2, 3 obtained by fast_ss. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's. 2) with a 5% sparsity level and q = 1, 2, 3 obtained by ss_min. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's.

Impact of the value of n

In this paragraph, we study the impact of the value of n on the TPR and the FPR associated to the support recovery of β and on the estimation of γ for ss_min, the other approaches providing similar results.

Based on Figures 2.11 and 2.12, we chose a threshold equal to 0.7 for both sparsity levels (5% and 10%) which provides a good trade-off between TPR and FPR for all values of n. We can see from Figure 2.13 that ss_min with this threshold outperforms lasso_cv when the sparsity level is equal to 5% and all the values of n considered. In the case where the sparsity level is equal to 10%, lasso_cv has a slightly larger TPR for n = 150 and n = 200. However, the FPR of ss_min is much smaller.

Figure 2.14 displays the boxplots for the estimations of γ in Model (2.2) for q = 1, p = 100, different values of n (150, 200, 500, 1000) and sparsity levels (5% and 10%) obtained by ss_min with a threshold of 0.7 for six iterations. We can see from this figure that this approach provides accurate estimations of γ 1 from Iteration 2 especially when n is larger than 200. q q q q q q q q q q q q q q q q q 150 200 500 1000 n Figure 2.15 displays the means of the computational times for ss_min and fast_ss. The timings were obtained on a workstation with 8GB of RAM and Dual-Core Intel Core i5 (2.7GHz) CPU. The performance of ss_cv are not displayed since they are similar to the one of ss_min. We can see from this figure that it takes around 1 minute to process observations Y 1 , . . . , Y n satisfying Model (2.1) for a given threshold and one iteration, when n = 1000 and p = 100. Moreover, we can observe that the computational burden of fast_ss is slightly smaller than the one of ss_min. q q q q q q q q q q q q 20 40 60 150 200 500 1000 n Average time in seconds Method q q fast_ss ss_min q q q q q q q q=1 q=2 q=3

Figure 2.15: Means of the computational times in seconds for ss_min and fast_ss in the case where p = 100, and different values of n and q, a given threshold and one iteration.

Application to the analysis of RNA-Seq kinetics data

Biological context and modelling

RNA sequencing (RNA-Seq) allows identifying and counting the numbers of RNA fragments present in a biological sample. By linking these RNA fragments to genes, one can determine the expression level of genes as integer counts. Over the past decades, advances in RNA-Seq analysis have revealed that many eukaryotic genomes were transcribed outside of protein-coding genes. These thousands of new transcripts have been named non-coding RNAs (ncRNAs, [START_REF] Ariel | Battles and hijacks: noncoding transcription in plants[END_REF]) as opposed to coding RNAs, which code for proteins. Among these ncRNAs, long non-coding RNAs (lncRNAs) are a heterogeneous group of RNA molecules greater than 200 nucleotides, transcribed from non-coding genes, that regulate genome expression. This application aims at identifying the lncRNAs, the expression of which affects the expression of coding genes, by using the temporal evolution of the expression of both coding genes and lncRNAs.

Here, we applied the methodology proposed in this chapter to 9000 RNA-seq kinetics (or time series) of coding genes, each having a length n = 15, to find which lncRNAs among p = 95 affect their values. Note that the Poisson modelling is adapted since the expression of coding genes are integer-valued. More precisely, for each coding gene, the time series is described by its expression (values) at 15 temporal points. In Model (2.1), (2.2), and (2.3) the expression of a given coding gene at time t is denoted by Y t with t = 1, 2, . . . , n = 15 and the expression of the jth lncRNAs at time t is denoted by x j,t with j = 1, 2, . . . , p = 95. Our goal is to find which lncRNAs affect the values of (Y t ) which boils down to finding which β k are non-null.

Additional numerical experiments

In order to tune the threshold of ss_cv in the specific context of this application (n = 15 and p = 95), we ran additional numerical experiments. We used the x j,t corresponding to the expression data of the lncRNAs for generating the Y t 's following the model described in (2.1), (2.2), and (2.3) with q = 1, γ 1 = 0.5 and 5 non-null β k 's. We can see from Figure 2.16 that ss_cv outperforms lasso_cv even in this framework where n is much smaller than p and that the best threshold for our approach is 0.4. We shall thus use this value in the following.

Results

In Figure 2.17 the results are displayed only for 10 coding genes out of 9000. Our approach selected 46 out of 95 lncRNAs as being relevant for explaining the expression of these 10 coding genes.

In Figure 2.17, if a coefficient β k is estimated as non-null, meaning that the associated lncRNA affects the values of a given coding gene, there is a dot in the plot. If the influence is negative, the dot is blue and if it is positive, the dot is red. The brighter the color of the dot, the larger is the influence.

Moreover, Figure 2.18 displays the estimation of γ 1 obtained for the 10 series associated to the coding genes. Since n is very small and the model has to estimate many parameters, it is unrealistic to expect better results by taking a value of q larger than 1. After 4 iterations for all 10 coding genes, all but one estimates of γ 1 converge to a value in the interval from -1 to 0.1. .17: Estimation of β β β with ss_cv for explaining the values of 10 coding genes (Y t ) by some of the lncRNAs (x t,i ).
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Figure 2.18: Estimation of γ 1 with ss_cv for explaining the values of 10 coding genes (Y t ) by some of the lncRNAs (x t,i ).

2.5 Proofs 2.5.1 Computation of the first and second derivatives of W t defined in (2.5)

The computations given below are similar to those provided by [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF] but are specific to the parametrization δ = (β , γ ) considered in this chapter.

Computation of the first derivatives of W t

By the definition of W t given in (2.5), we get

∂W t ∂δ (δ) = ∂β x t ∂δ + ∂Z t ∂δ (δ),
where β, x t and Z t are defined in (2.5). More precisely, for all k ∈ {0, . . . , p}, ∈ {1, . . . , q} and t ∈ {1, . . . , n}, by (2.6),

∂W t ∂β k = x t,k + ∂Z t ∂β k = x t,k + q∧(t-1) j=1 γ j ∂E t-j ∂β k = x t,k - q∧(t-1) j=1 γ j Y t-j ∂W t-j ∂β k exp(-W t-j ) = x t,k - q∧(t-1) j=1 γ j (1 + E t-j ) ∂W t-j ∂β k , (2.19) ∂W t ∂γ = E t-+ q∧(t-1) j=1 γ j ∂E t-j ∂γ = E t-- q∧(t-1) j=1 γ j Y t-j ∂W t-j ∂γ exp(-W t-j ) = E t-- q∧(t-1) j=1 γ j (1 + E t-j ) ∂W t-j ∂γ , (2.20) 
where we used that E t = 0, ∀t ≤ 0.

The first derivatives of W t are thus obtained from the following recursive expressions. For all k ∈ {0, . . . , p}

∂W 1 ∂β k = x 1,k , ∂W 2 ∂β k = x 2,k -γ 1 (1 + E 1 ) ∂W 1 ∂β k ,
where

W 1 = β x 1 and E 1 = Y 1 exp(-W 1 ) -1. (2.21) Moreover, ∂W 3 ∂β k = x 3,k -γ 1 (1 + E 2 ) ∂W 2 ∂β k -γ 2 (1 + E 1 ) ∂W 1 ∂β k , where W 2 = β x 2 + γ 1 E 1 , E 2 = Y 2 exp(-W 2 ) -1, (2.22)
and so on. In the same way, for all ∈ {1, . . . , q}

∂W 1 ∂γ = 0, ∂W 2 ∂γ = E 2-, ∂W 3 ∂γ = E 3--γ 1 (1 + E 2 ) ∂W 2 ∂γ
and so on, where 

E t = 0, ∀t ≤ 0 and E 1 , E 2 are
= - q∧(t-1) i=1 γ i (1 + E t-i ) ∂ 2 W t-i ∂β j ∂β k - q∧(t-1) i=1 γ i ∂E t-i ∂β j ∂W t-i ∂β k = - q∧(t-1) i=1 γ i (1 + E t-i ) ∂ 2 W t-i ∂β j ∂β k + q∧(t-1) i=1 γ i (1 + E t-i ) ∂W t-i ∂β j ∂W t-i ∂β k , ∂ 2 W t ∂β k ∂γ = -(1 + E t-) ∂W t- ∂β k - q∧(t-1) i=1 γ i ∂W t-i ∂β k ∂E t-i ∂γ + (1 + E t-i ) ∂ 2 W t-i ∂β k ∂γ = -(1 + E t-) ∂W t- ∂β k - q∧(t-1) i=1 γ i -(1 + E t-i ) ∂W t-i ∂β k ∂W t-i ∂γ + (1 + E t-i ) ∂ 2 W t-i ∂β k ∂γ , ∂ 2 W t ∂γ ∂γ m = ∂E t- ∂γ m -(1 + E t-m ) ∂W t-m ∂γ - q∧(t-1) i=1 γ i ∂W t-i ∂γ ∂E t-i ∂γ m + (1 + E t-i ) ∂ 2 W t-i ∂γ ∂γ m = -(1 + E t-) ∂W t- ∂γ m -(1 + E t-m ) ∂W t-m ∂γ - q∧(t-1) i=1 γ i -(1 + E t-i ) ∂W t-i ∂γ ∂W t-i ∂γ m + (1 + E t-i ) ∂ 2 W t-i ∂γ ∂γ m .
To compute the second derivatives of W t , we shall use the following recursive expressions for all j, k ∈ {0, . . . , p}

∂ 2 W 1 ∂β j ∂β k = 0, ∂ 2 W 2 ∂β j ∂β k = γ 1 (1 + E 1 )x 1,j x 1,k ,
where E 1 is defined in (2.21) and so on. Moreover, for all k ∈ {0, . . . , p} and ∈ {1, . . . , q}

∂ 2 W 1 ∂β k ∂γ = 0, ∂ 2 W 2 ∂β k ∂γ = -(1 + E 2-) ∂W 2- ∂β k ,
where E t = 0 for all t ≤ 0 and the first derivatives of W t are computed in (2.19). Note also that

∂ 2 W 1 ∂γ ∂γ m = 0, ∂ 2 W 2 ∂γ ∂γ m = 0
and so on.

2.5.2 Computational details for obtaining Criterion (2.12)

By (2.11), L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ)U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ),
where νν (0) = U (β -β (0) ). Hence,

L(β) = L(β (0) ) + p k=0 ∂L ∂β (β (0) , γ)U k (ν k -ν (0) k ) - 1 2 p k=0 λ k (ν k -ν (0) k ) 2 = L(β (0) ) - 1 2 p k=0 λ k ν k -ν (0) k - 1 λ k ∂L ∂β (β (0) , γ)U k 2 + p k=0 1 2λ k ∂L ∂β (β (0) , γ)U 2 k ,
where the λ k 's are the diagonal terms of Λ.

Since the only term depending on β is the second one in the last expression of L(β), we define L Q (β) appearing in Criterion (2.12) as follows:

-L Q (β) = 1 2 p k=0 λ k ν k -ν (0) k - 1 λ k ∂L ∂β (β (0) , γ)U k 2 = 1 2 Λ 1/2 ν -ν (0) -Λ -1 ∂L ∂β (β (0) , γ)U 2 2 = 1 2 Λ 1/2 U (β -β (0) ) -Λ -1/2 U ∂L ∂β (β (0) , γ) 2 2 = 1 2 Λ 1/2 U (β (0) -β) + Λ -1/2 U ∂L ∂β (β (0) , γ) 2 2 = 1 2 Y -X β 2 2 ,
where 

Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ) , X = Λ 1/2 U .

Proofs of

W t = (β 0 -γ 1 ) + γ 1 Y t-1 exp(-W t-1 ). (2.23) Thus, F t-2 = F W t-1 := σ(W s , s ≤ t -1). By (2.1), the distribution of Y t-1 conditionally to F t-2 is P(exp(W t-1 )).
Hence, the distribution of W t conditionally to F W t-1 is the same as distribution of W t conditionally to W t-1 , which means that (W t ) has the Markov property.

Let us now prove that (W t ) is strongly aperiodic which implies that it is aperiodic.

P(W t = β 0 -γ 1 |W t-1 = β 0 -γ 1 ) = P(Y t-1 = 0|W t-1 = β 0 -γ 1 ) = exp(-exp(β 0 -γ 1 )) > 0,
where the first equality comes from (2.23) and the last equality comes from (2.1) since

F t-2 = F W t-1 .
To prove that (W t ) satisfies Doeblin's condition namely that there exists a probability measure ν with the property that, for some m ≥ 1, ε > 0 and δ > 0,

ν(B) > ε =⇒ P(W t+m-1 ∈ B, W t+m-2 ∈ B . . . , W t+1 ∈ B, W t ∈ B|W t-1 = x) ≥ δ,
(2.24) for all x in the state space X of W t and B in the Borel sets of X, we refer the reader to the proof of Proposition 2 in [START_REF] Davis | Observation-driven models for Poisson counts[END_REF].

Proof of Proposition 2.2.2. For proving Proposition 2.2.2, we shall use Theorems 1.3.3 and 1.3.5 of [START_REF] Taniguchi | Asymptotic theory of statistical inference for time series[END_REF]. In order to apply these theorems it is enough to prove that (W t ) is a strictly stationary and ergodic process since Y t W t (β 0 , γ 1 ) -exp(W t (β 0 , γ 1 )) is a measurable function of W t+1 , W t , . . . , W 2 . Note that the latter fact comes from (2.15) and (2.3) for Y t and from (2.5) with q = 1 and p = 0 for W t .

In order to prove that (W t ) is a strictly stationary and ergodic process, we have first to prove that (W t ) is an aperiodic Markov process satisfying Doeblin's condition, see Lemma 2.5.1. The statement of Lemma 2.5.1 corresponds to Assertion (iv) of Theorem 16.0.2 of [START_REF] Meyn | Markov chains and stochastic stability[END_REF] which is equivalent to Assertion (i) of this theorem, and implies that (W t ) is uniformly ergodic.

Hence, by Definition (16.6) of uniform ergodicity given by [START_REF] Meyn | Markov chains and stochastic stability[END_REF], there exists a unique stationary invariant measure for (W t ), see also the paragraph below Equation (1.3) of [START_REF] Sandrić | A note on the Birkhoff ergodic theorem[END_REF] for an additional justification. Combining that existence of a unique stationary invariant measure for (W t ) with the following arguments shows that (W t ) is a strictly stationary process and also an ergodic Markov process.

By Theorem 3.6.3, Corollary 3.6.1 and Definition 3.6.6 of [START_REF] Stout | Almost sure convergence[END_REF], if the process (W t ) is started with its unique stationary invariant distribution, (W t ) is a strictly stationary process.

By Definition 3.6.8 of [START_REF] Stout | Almost sure convergence[END_REF], the existence of a unique stationary invariant measure for (W t ) means that (W t ) is an ergodic Markov process, see also the paragraph below (b) (Sandrić, 2017, p. 717).

Finally, by Theorem 3.6.5 of [START_REF] Stout | Almost sure convergence[END_REF], since (W t ) is an ergodic Markov process and a strictly stationary process, (W t ) is an ergodic and strictly stationary process in the sense of the assumption of Theorem 1.3.5 of [START_REF] Taniguchi | Asymptotic theory of statistical inference for time series[END_REF].

Proof of Proposition 2.2.3

Note that for all γ 1 ,

L(γ 1 ) = E [Y 3 W 3 (β 0 , γ 1 ) -exp(W 3 (β 0 , γ 1 ))] = E [E [Y 3 W 3 (β 0 , γ 1 ) -exp(W 3 (β 0 , γ 1 ))|F 2 ]] = E [exp(W 3 )W 3 (β 0 , γ 1 ) -exp(W 3 (β 0 , γ 1 ))] = E [exp(W 3 ) (W 3 (β 0 , γ 1 ) -W 3 + W 3 -exp(W 3 (β 0 , γ 1 ) -W 3 ))] ≤ E [exp(W 3 ) (W 3 -1)] = L(γ 1 ),
where the inequality comes from the following inequality x -exp(x) ≤ -1, for all x ∈ R. This inequality is an equality only when x = 0 which means that γ 1 = γ 1 .

Proof of Proposition 2.2.4

The proof of this proposition comes from Proposition 2.2.2 and the stochastic equicontinuity of n -1 L(β 0 , γ 1 ). Thus, it is enough to prove that there exists a positive δ such that

sup |γ 1 -γ 2 |≤δ L(β 0 , γ 1 ) n - L(β 0 , γ 2 ) n p -→ 0, as n tecvnds to infinity.
Observe that, by (2.16),

L(β 0 , γ 1 ) n - L(β 0 , γ 2 ) n ≤ 1 n n t=1 Y t |W t (β 0 , γ 1 ) -W t (β 0 , γ 2 )| + 1 n n t=1 |exp (W t (β 0 , γ 1 )) -exp (W t (β 0 , γ 2 ))| .
Let us first focus on bounding the following expression for t ≥ 2 (since W 1 (β 0 , γ) = β 0 , for all γ). By (2.17)

|W t (β 0 , γ 1 ) -W t (β 0 , γ 2 )| = |Z t (γ 1 ) -Z t (γ 2 )| = |γ 1 E t-1 (γ 1 ) -γ 2 E t-1 (γ 2 )| = |γ 1 [Y t-1 exp(-W t-1 (β 0 , γ 1 )) -1] -γ 2 [Y t-1 exp(-W t-1 (β 0 , γ 2 )) -1]| = Y t-1 e -β 0 [γ 1 exp(-Z t-1 (γ 1 )) -γ 2 exp(-Z t-1 (γ 2 ))] + γ 2 -γ 1 ≤ Y t-1 e -β 0 [|γ 1 -γ 2 | exp(-Z t-1 (γ 1 )) + |γ 2 | |exp(-Z t-1 (γ 1 )) -exp(-Z t-1 (γ 2 ))|] + |γ 2 -γ 1 | ≤ Y t-1 e -β 0 |γ 1 -γ 2 | exp(-Z t-1 (γ 1 )) + Y t-1 e -β 0 |γ 2 | exp(-Z t-1 (γ 1 )) |Z t-1 (γ 1 ) -Z t-1 (γ 2 )| exp(|Z t-1 (γ 1 ) -Z t-1 (γ 2 )|) + |γ 2 -γ 1 | ,
where we used in the last inequality that for all x and y in R,

|e x -e y | = e x |1 -e y-x | ≤ e x |y -x|e |y-x| . (2.25) Observing that exp(-Z t (γ 1 )) = exp -γ 1 Y t-1 e -β 0 exp(-Z t-1 (γ 1 )) -1 , (2.26) and |Z 2 (γ 1 ) -Z 2 (γ 2 )| ≤ δ[Y 1 e -β 0 + 1] we get, for γ 1 and γ 2 such that |γ 1 -γ 2 | ≤ δ, that |W t (β 0 , γ 1 ) -W t (β 0 , γ 2 )| ≤ δ F (Y t-1 , Y t-2 , . . . , Y 1 ), (2.27)
where F is a measurable function. By (2.25),

|exp (W t (β 0 , γ 1 )) -exp (W t (β 0 , γ 2 ))| ≤ exp (W t (β 0 , γ 1 )) |W t (β 0 , γ 1 ) -W t (β 0 , γ 2 )| exp (|W t (β 0 , γ 1 ) -W t (β 0 , γ 2 )|) ≤ δG(Y t-1 , Y t-2 , . . . , Y 1 )
where the last inequality comes from (2.27), (2.26) and (2.17) and where G is a measurable function. Thus, we get that 

L(β 0 , γ 1 ) n - L(β 0 , γ 2 ) n ≤ δ n n t=1 H(Y t , Y

Conclusion

In this chapter we propose a novel and efficient two-stage variable selection approach for sparse GLARMA models, which are pervasive for modelling discrete-valued time series. It consists in first estimating the ARMA coefficients and then in estimating the regression coefficients by using a regularised approach. In the course of this study we have shown that our method has two main features which make it very attractive. Firstly, our approach showed very good statistical performance since it is able to outperform the other methods in recovering the non-null regression coefficients. Secondly, its low computational load makes its use possible on relatively large data. 2) with a 10% sparsity level and q = 1, 2, 3 obtained by ss_cv. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's. 2) with a 10% sparsity level and q = 1, 2, 3 obtained by fast_ss. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's. 2) with a 10% sparsity level and q = 1, 2, 3 obtained by ss_min. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's. (1981), parameter-driven models are time series driven by an unobserved process. It means that the state vector evolves independently of the past history of the observations. Multivariate state space models are studied by [START_REF] Jørgensen | State-space models for multivariate longitudinal data of mixed types[END_REF] and [START_REF] Jung | Dynamic factor models for multivariate count data: An application to stock-market trading activity[END_REF]. Additional developments are found by [START_REF] Ravishanker | Hierarchical dynamic models for multivariate times series of counts[END_REF]. Although these models are simple to construct, the parameter estimation is computationally expensive, see [START_REF] Jung | Estimating time series models for count data using efficient importance sampling[END_REF].

The third class of models, observation-driven models, do not suffer from computational drawback and are an alternative to parameter-driven models. In these models, the state vector depends on past observations and some additional noise. Univariate observation-driven models were first proposed by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF] and further studied by [START_REF] Zeger | Markov regression models for time series: A quasi-likelihood approach[END_REF]. Different kinds of observation-driven models can be found in the literature: the Generalised Linear Autoregressive Moving Average (GLARMA) models introduced by [START_REF] Davis | Modeling time series of count data[END_REF] and further studied by [START_REF] Davis | Observation-driven models for Poisson counts[END_REF], [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], and [START_REF] Dunsmuir | Generalized Linear Autoregressive Moving Average Models[END_REF] and the (log-)linear Poisson autoregressive models studied by [START_REF] Fokianos | Poisson autoregression[END_REF], [START_REF] Fokianos | Log-linear poisson autoregression[END_REF], and [START_REF] Fokianos | Nonlinear poisson autoregression[END_REF]. Note that GLARMA models cannot be seen as a particular case of the log-linear Poisson autoregressive models. In the past years many studies were conducted in the framework of multivariate observation-driven count time series models, many of which are based on the copula approach. An example is the Multivariate Autoregressive Conditional Double Poisson model by [START_REF] Heinen | Multivariate autoregressive modeling of time series count data using copulas[END_REF], based on the double Poisson distribution with the mean vector being a VARMA process. Another model using copula by [START_REF] Bien | An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics[END_REF] is developed for count time series with a domain Z n , n ∈ N.

Here the conditional probabilities of the direction of the process (whether the process is negative, positive or equal to zero) is modelled with the autoregressive conditional multinomial model (ACM). [START_REF] Fokianos | Multivariate count autoregression[END_REF] impose a copula function on a vector of related continuous random variables to determine the joint distribution of the count time series. Finally, the model by [START_REF] Held | A statistical framework for the analysis of multivariate infectious disease surveillance data[END_REF] can be seen as a Poisson branching process model with immigration. It takes as covariates for the mean of each series at time t the counts of other series at time t -1.

In our context, we are interested in performing variable selection in multivariate count time series. However, this problem is not addressed in the exact framework of our interest so far. There exist methods for variable selection for multivariate Poisson data using spike and slab approach by [START_REF] Giese | Modeling nematode population dynamics using a multivariate poisson model with spike and slab variable selection[END_REF]. The method is based on extending the Poisson Lognormal model by [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF], which is a parameter-driven model, to the multivariate case and relaxing the mean-equal-variance property of the Poisson distribution. Another study by [START_REF] Lee | Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data[END_REF] performs Bayesian variable selection in multivariate zero-inflated count data.

In this chapter, we develop an observation-driven variable selection model, which is an extension of [START_REF] Gomtsyan | Variable selection in sparse GLARMA models[END_REF] to the multivariate case by considering the following multivariate GLARMA model. Given the past history

F i,j,t-1 = σ(Y i,j,s , s ≤ t -1), we assume that Y i,j,t |F i,j,t-1 ∼ P(µ i,j,t ), (3.1) 
where P(µ) denotes the Poisson distribution with mean µ,

1 ≤ i ≤ I, 1 ≤ j ≤ n i and 1 ≤ t ≤ T .
For instance, Y i,j,t can be seen as a random variable modelling the tth observation of the jth replication of the time series obtained in condition i. In (3.1)

µ i,j,t = exp(W i,j,t ) with W i,j,t = η i,t + Z i,j,t , (3.2) 
where

Z i,j,t = q k=1 γ k E i,j,t-k , with 1 ≤ q ≤ ∞, (3.3) 
and η i,t , the non random part of W i,j,t , does not depend on j.

Let us denote η η η = (η 1,1 , . . . , η I,1 , η I,2 , . . . , η I,T ) the vector of coefficients corresponding to the effect of a qualitative variable on the observations. For instance, η i,t can be seen as the effect of condition i on the response at time t. Assume moreover that γ γ γ = (γ 1 , . . . , γ q ) is such that k≥1 |γ k | < ∞, where u denotes the transpose of u. By considering the different conditions i in (3.1) simultaneously, it is possible to better estimate γ γ γ . Additionally,

E i,j,t = Y i,j,t -µ i,j,t µ i,j,t = Y i,j,t exp -W i,j,t -1. (3.4)
with E i,j,t = 0 for all t ≤ 0 and 1 ≤ q ≤ ∞. When q = ∞, Z i,j,t satisfies an ARMA-like recursion in (3.4), because causal ARMA can be written as MA process of infinite order. E i,j,t in (3.4) corresponds to the particular case of working residuals in classical Generalised Linear Models (GLM) usually defined by E i,j,t = (Y i,j,t -µ i,j,t )µ i,j,t -λ with λ = 1. The resulting model defined by Equations (3.1), (3.2), (3.3) and (3.4) is referred to as multivariate GLARMA model.

The main goal of this chapter is to introduce a novel variable selection approach in the deterministic part (η η η ) of the sparse multivariate GLARMA model that is defined in Equations (3.1), (3.2), (3.3) and (3.4), where the vector of the η i,t 's is sparse. Sparsity means that many η i,t 's are null, and thus just a few coefficients are significant. The novel approach that we propose combines a procedure for estimating the ARMA part coefficients to take into account the dependence that may exist in the data with regularised methods designed for GLM as those proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and [START_REF] Hastie | Statistical learning with sparsity: The Lasso and generalizations[END_REF].

The chapter is organised as follows. Firstly, we propose a novel two-stage estimation procedure in multivariate GLARMA models in Section 3.2.1 and Section 3.2.2. It consists of first estimating the ARMA coefficients and then estimating the η i,t 's by using a regularised approach. The practical implementation of our approach is given in Section 3.2.3. Next, in Section 3.3, we provide numerical experiments to illustrate our method and compare its performance to alternative approaches on finite sample size data.

Statistical Inference

Extending the estimation procedure existing in standard univariate GLARMA models described by [START_REF] Davis | Observation-driven models for Poisson counts[END_REF] and [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF] to the multivariate case would consist in estimating δ δ δ = (η η η , γ γ γ ), where η η η is the vector of coefficients and γ γ γ is the vector of the ARMA part coefficients by δ δ δ, which is defined as follows:

δ δ δ = arg max δ δ δ L(δ δ δ).
(3.5)

In (3.5), L is based on the conditional log-likelihood and is defined by:

L(δ δ δ) = I i=1 n i j=1 T t=1 (Y i,j,t W i,j,t (δ δ δ) -exp(W i,j,t (δ δ δ)),
where W i,j,t (δ δ δ) is defined as in (3.2)-(3.4):

W i,j,t (δ δ δ) = η i,t + q k=1 γ k E i,j,t (δ δ δ) with E i,j,t (δ δ δ) = Y i,j,t exp -W i,j,t (δ δ δ) -1. (3.6)
However, this procedure is not designed for dealing with a sparse framework where many components of η η η are null. This is the reason why we propose hereafter a novel two-stage estimation procedure described in the following sections.

Estimation of γ γ γ

In our estimation procedure, we use the Newton-Raphson algorithm to obtain γ γ γ based on the following recursion. For r ≥ 1, starting from the initial value γ γ γ (0) = (γ 0) , γ γ γ (r-1) -1 ∂L ∂γ γ γ η η η (0) , γ γ γ (r-1) .

(0) 1 , . . . , γ (0) q ) and η η η (0) = (η (0) 1,1 , . . . , η (0) I,1 , η (0) I,2 , . . . , η (0) I,T ) : γ γ γ (r) = γ γ γ (r-1) - ∂ 2 L ∂γ γ γ ∂γ γ γ η η η (
(3.7)

To obtain ∂L ∂γ γ γ , we shall use that

∂L ∂γ γ γ (η η η (0) , γ γ γ) = I i=1 n i j=1 T t=1 (Y i,j,t -exp(W i,j,t (η η η (0) , γ γ γ))) ∂W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ,
where details for computing the first derivative of W i,j,t (η η η (0) , γ γ γ) with respect to γ γ γ are given in Appendix 3.A.1.

Concerning the Hessian of L, it can be obtained as follows:

∂ 2 L ∂γ γ γ ∂γ γ γ (η η η (0) , γ γ γ) = I i=1 n i j=1 T t=1 (Y i,j,t -exp(W i,j,t (η η η (0) , γ γ γ))) ∂ 2 W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ∂γ γ γ - I i=1 n i j=1 T t=1 exp(W i,j,t (η η η (0) , γ γ γ)) ∂W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ∂W i,j,t (η η η (0) , γ γ γ) ∂γ γ γ ,
where details for computing the second derivative of W i,j,t (η η η (0) , γ γ γ) with respect to γ γ γ are given in Appendix 3.A.1.

Variable selection in η η η estimation

Variable selection criterion

To perform variable selection in the η η η of Model (3.2)-(3.4), namely to obtain a sparse estimator of η η η , we shall use a regularised approach inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting sparse generalised linear models. It consists in penalising (with an 1 penalty) a quadratic approximation to the log-likelihood obtained by a second order Taylor expansion. Using η η η (0) and γ γ γ defined in Section 3.2.1, we obtain the quadratic approximation as follows:

L(η η η) := L(η 1,1 , . . . , η I,1 , η I,2 , . . . , η I,T , γ γ γ) = L(η η η (0) ) + ∂L ∂η η η (η η η (0) , γ γ γ)(η η η -η η η (0) ) + 1 2 (η η η -η η η (0) ) ∂ 2 L ∂η η η∂η η η (η η η (0) , γ γ γ)(η η η -η η η (0) ),
where

∂L ∂η η η = ∂L ∂η 1,1 , . . . , ∂L ∂η I,1 , ∂L ∂η I,2 , . . . , ∂L ∂η I,T and ∂ 2 L ∂η η η∂η η η = ∂ 2 L ∂η i 0 ,t 0 ∂η i 1 ,t 1 1≤i 0 ,i 1 ≤I 1≤t 0 ,t 1 ≤T .
Let U ΛU be the singular values decomposition of the positive semidefinite symmetric matrix -∂ 2 L ∂η η ηη η η (η η η (0) , γ γ γ) and ν ν ν -ν ν ν (0) = U (η η η -η η η (0) ). Therefore, the quadratic approximation is

L(η η η) = L(η η η (0) ) + ∂L ∂η η η (η η η (0) , γ γ γ)U (ν ν ν -ν ν ν (0) ) - 1 2 (ν ν ν -ν ν ν (0) ) Λ(ν ν ν -ν ν ν (0) ). (3.8)
In order to obtain a sparse estimator of η η η we use η η η(λ) defined by minimising the following criterion:

η η η(λ) = arg min η η η {-LQ (η η η) + λ η η η 1 }, (3.9)
for a positive λ, where η 1 = I i=1 T t=1 |η i,t | and LQ (η η η) denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by

-LQ (η η η) = 1 2 Y -X η η η 2 2 (3.10) with Y = Λ 1/2 U η η η (0) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) , X = Λ 1/2 U , (3.11)
where • 2 is the 2 norm.

Criterion derivation

Let us now explain how the expression of LQ given in (3.10) was obtained. By (3.8), we get

L(η η η) = L(η η η (0) ) + I i=1 T t=1 ∂L ∂η η η (η η η (0) , γ γ γ)U i,t (ν i,t -ν (0) i,t ) - 1 2 I i=1 T t=1 λ i,t (ν i,t -ν (0) i,t ) 2 = L(η η η (0) ) - 1 2 I i=1 T t=1 λ i,t ν i,t -ν (0) i,t - 1 λ i,t ∂L ∂η η η (η η η (0) , γ γ γ)U i,t 2 + I i=1 T t=1 1 2λ i,t ∂L ∂η η η (η η η (0) , γ γ γ)U 2 i,t , (3.12) 
where the λ i,t 's are the diagonal terms of Λ.

Since only the second term of (3.12) depends on η η η,

-LQ (η η η) = 1 2 I i=1 T t=1 λ i,t ν i,t -ν (0) i,t - 1 λ i,t ∂L ∂η η η (η η η (0) , γ γ γ)U i,t 2 = 1 2 Λ 1/2 ν ν ν -ν ν ν (0) -Λ -1 ∂L ∂η η η (η η η (0) , γ γ γ)U 2 2 = 1 2 Λ 1/2 U (η η η -η η η (0) ) -Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) 2 2 = 1 2 Λ 1/2 U (η η η (0) -η η η) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) 2 2 = 1 2 Y -X η η η 2 2 ,
where

Y = Λ 1/2 U η η η (0) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) , X = Λ 1/2 U .

Stability selection

To obtain the final estimator η η η of η η η , we shall consider an approach called stability selection devised by [START_REF] Meinshausen | Stability selection[END_REF], which guarantees the robustness of the selected variables. This approach can be described as follows. The vector Y defined in (3.11) is randomly split into several subsamples of size IT /2, corresponding to half of the length of Y. The number of subsamples is equal to 1000 in our numerical experiments. For each subsample Y (s) and the corresponding design matrix X (s) , Criterion (3.9) is applied with a given λ, where Y and X are replaced by Y (s) and X (s) , respectively. For each subsampling, the indices i and t of the non-null η i,t are stored. In the end, we calculate the frequency of index selection, namely the number of times each couple of indices was selected divided by the number of subsamples. For a given threshold, in the final set of selected variables, we keep the ones whose indices have a frequency larger than this threshold. Concerning the choice of λ, we shall consider the smallest element of the grid of λ provided by the R glmnet package. It is also possible to use the one obtained by cross-validation (Chapter 7 of [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]). However, based on our experiments, choosing the minimal λ of the grid led to better results.

Practical implementation

In practice, the previous approach can be summarised as follows.

• Initialisation. We take for η (0) the estimator of η obtained by fitting a GLM to the observations Y 1,1,1 , . . . , Y I,n I ,T thus ignoring the ARMA part of the model. For γ (0) , we take the null vector.

• Newton-Raphson algorithm. We use the recursion defined in (3.7) with the initialization (η (0) , γ (0) ) obtained in the previous step and we stop at the iteration R such that γ (R)γ (R-1) ∞ < 10 -6 .

• Variable selection. To obtain a sparse estimator of η , we use Criterion (3.9), where η (0) and γ appearing in (3.11) are replaced by η (0) and γ (R) obtained in the previous steps. We thus get η by using the stability selection approach described in Section 3.2.2.

This procedure can be improved by iterating the Newton-Raphson algorithm and Variable selection steps. More precisely, let us denote by η

(0) 1 , γ (R 1 ) 1
and η 1 the values of η (0) , γ (R) and η obtained in the three steps described above at the first iteration. At the second iteration, (η (0) , γ (0) ) appearing in the Newton-Raphson algorithm step is replaced by ( η 1 , γ (R 1 ) 1

). At the end of this second iteration, η 2 and γ (R 2 ) 2 denote the obtained values of η and γ (R) , respectively. This approach is iterated until the stabilisation of γ (R k ) k .

Numerical experiments

This section aims at investigating the performance of our method, which is implemented in the R package MultiGlarmaVarSel available on the CRAN (Comprehensive R Archive Network). We study it both from a statistical and a numerical point of view, using synthetic data generated from the model defined by (3.1)-(3.4), where n i = J for all i. The different simulation settings that we considered are given in Table 3.1. In all the experiments we set the number of non-null coefficients in η η η to 10 and the number of simulations to 50. The non-null values of η η η range from 0.41 to 2.62.

T J

I q γ 50 10 3 1 0.5 50 100 3 1 0.5 200 10 3 1 0.5 200 100 3 1 0.5 50 10 3 2 0.2, 0.5 50 100 3 2 0.2, 0.5 200 10 3 2 0.2, 0.5 200 100 3 2 0.2, 0.5 Table 3.1: Parameters of simulated datasets used in the experiments.

Statistical performance

Estimation of η η η Support recovery of η η η In this section, we assess the performance of our methodology in terms of support recovery, namely the identification of the non-null coefficients of η , and of the estimation of γ .

Figures 3.1 and 3.3 display the maximum difference between TPR (True Positive Rates, namely the proportion of non-null coefficients correctly estimated as non-null) and FPR (False Positive Rates, namely the proportion of null coefficients estimated as non-null) for q = 1 and q = 2 correspondingly. For each simulation, we considered 9 thresholds ranging from 0.1 to 0.9 in the stability selection step. For each threshold, we calculated the maximum difference between TPR and FPR. Then, from the 9 differences, we took the largest one, which is the best result. It means we did not use the same threshold from one simulation to another. We considered five different approaches: our method with q = 0, q = 1 and q = 2, classical LASSO for Poisson distribution, and our method where we took γ instead of estimating it. More precisely, classical LASSO for Poisson distribution consists in applying the glmnet R package dedicated to Poisson distribution to the Y i,j,t 's for each t. We did not compare our method with glarma package because it does not support the multivariate setting.

In Figures 3.1 and 3.3 the closer the maximum difference between TPR and FPR is to 1, the better is the performance of the method. Our approach with q = 1 and q = 2 outperforms classical LASSO and the estimation with q = 0. We notice that when J is larger, the estimation is better both for T = 50 and T = 200. Additionally, the performance for the simulation frameworks with T = 50 is better than for the ones with T = 200. In general, our estimation is close to the one with the true value of γ .

Figures 3.2 and 3.4 display the error bars of TPR and FPR of our method with respect to the threshold for q = 1 and q = 2, respectively. More precisely, the threshold 0.6 achieves a satisfactory trade-off between the TPR and the FPR. The best trade-offs are achieved for T = 50 and J = 100, for both q = 1 and q = 2. q q q q q q q q q q q q q q q q q q q q 0.25 0.50 0.75 1.00 lasso q=0 q=1 q=2 true max(TPR-FPR) Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100 Error bars of the TPR and FPR for different thresholds associated to the support recovery of η estimated with q = 1 for 4 different simulation frameworks with respect to the thresholds when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations. q q q q q q q q q q q q q q q q q q q q 0.25 0.50 0.75 1.00 lasso q=0 q=1 q=2 true max(TPR-FPR) Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100 Sign consistency of the estimation of η η η In Figures 3.5 and 3.6 we illustrate the TPR of sign recovery of η. For these figures, we looked at the estimation with the threshold of 0.6. The sign recovery is considered as true positive if for negative (positive) it is estimated with a negative (positive) sign and if 0 is estimated as 0. Here again, we can conclude that the best results are obtained for J = 100, similar to the support recovery of η . In this section we investigate the performance of the method for the estimation of γ for the simulation frameworks of Table 3. 1. In Figures 3.7 (resp. 3.8), boxplots for the estimations of γ in (3.3) are displayed for q = 1 (resp. q = 2). We can see from these figures that when J = 10, both for T = 50 and T = 200, iterating our approach does not improve the results. However, this is not the case for J = 100: the estimation of γ improves at the second iteration. In the Appendix 3.A.2, we present additional figures for the settings T = 50 with J = 10 and J = 100, and 10 iterations. These plots justify that for a small value of J iterating the method does not improve the estimation, whereas for a large value of J the estimation stabilises and results become better. q q q q q q q q 0.4 0.5 1 2 Iteration γ ^1 q=1 q q q q q q q q 0.40 0.45 0.50 1 2 Iteration γ ^1 q=2 q q q q q q q q -0.06 -0.04 -0.02 0.00 1 2 Iteration γ ^2 q=2 Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100

Figure 3.7: Boxplots for the estimations of γ in Model (3.3) for 4 different simulation frameworks when I = 3, q = 1, γ = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1 and q = 2. The horizontal lines correspond to the values of the γ i 's.

q q q q q q q q 0.10 0.15 0.20 1 2 Iteration γ ^1 q=1 q q q q q q q q 0.175 0.200 0.225 0.250 0.275 1 2 Iteration γ ^1 q=2 q q q q q q q q 0.40 0.45 0.50 0.55 0.60 1 2 Iteration γ ^2 q=2 Data q q q q q q q q q q q q q q q q T=50, J=10 T=50, J=100 T=200, J=10 T=200, J=100

Figure 3.8: Boxplots for the estimations of γ in Model (3.3) for 4 different simulation frameworks when I = 3, q = 2, γ 1 = 0.2, γ 2 = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1 and q = 2. The horizontal lines correspond to the values of the γ i 's.

Numerical performance

Figure 3.9 displays the means of the computational times of our approach implemented in the R package multiGlarmaVarSel for different simulation frameworks. The timings were obtained on a workstation with 32GB of RAM and Intel Core i7-9700 (3.00GHz) CPU. We can see from this figure that the computational time goes from 10 seconds to 5 minutes to process the data for a given threshold and one iteration, when we increase T from 50 to 200 and when q = 1, 2 or 3. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 1.0 Figure 3.9: Boxplots of the log 10 computational times in seconds in the case where I = 3, J = 10, q = q , 10 non-null coefficients in η η η , and different values of T and q , a given threshold and one iteration. We performed 50 simulations. For all i 0 ∈ {1, . . . , I} and t 0 ∈ {1, . . . , T } we have

3.A Appendix

∂W i,j,t ∂η i 0 ,t 0 = ∂ ∂η i 0 ,t 0 η i,t + Z i,j,t = ∂η i,t ∂η i 0 ,t 0 + q∧(t-1) k=1 γ k ∂E i,j,t-k ∂η i 0 ,t 0 = ∂η i,t ∂η i 0 ,t 0 - q∧(t-1) k=1 γ k Y i,j,t-k ∂W i,j,t-k ∂η i 0 ,t 0 exp(-η i,t-k -Z i,j,t-k ) = ∂η i,t ∂η i 0 ,t 0 - q∧(t-1) j=k γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂η i 0 ,t 0 ,
where E i,j,t = 0 for any t ≤ 0. For all q 0 ∈ {1, . . . , q}

∂W i,j,t ∂γ q 0 = ∂ ∂γ q 0 η i,t + Z i,j,t = ∂η i,t ∂γ q 0 + ∂ ∂γ q 0 q k=1 γ k E (i) j,t-k = E (i) j,t-q 0 + q∧(t-1) k=1 γ k ∂E i,j,t-k ∂γ q 0 = E i,j,t-q 0 - q∧(t-1) k=1 γ k Y i,j,t-k ∂W i,j,t-k ∂γ q 0 exp(-W i,j,t-k ) = E i,j,t-q 0 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂γ q 0 ,
where we used the fact that E i,j,t-q 0 = 0 for any t ≤ 0 . We obtain the first derivatives of W i,j,t from the following recursive expressions. For all i 0 ∈ {1, . . . , I} and t 0 ∈ {1, . . . , T }

∂W i,j,1 ∂η i 0 ,t 0 = ∂η i,1 ∂η i 0 ,t 0 = 1, if i = i 0 and t 0 = 1 0, otherwise , ∂W i,j,2 ∂η i 0 ,t 0 = ∂η i,2 ∂η i 0 ,t 0 -γ 1 (1 + E i,j,1 ) ∂W i,j,1 ∂η i 0 ,t 0 =      1, if i = i 0 and t 0 = 2 -γ 1 (1 + E i,j,1 ), if i = i 0 and t 1 = 1 0, otherwise ,
In the same way, for all q 0 ∈ {1, . . . , q} we have

∂W i,j,1 ∂γ q 0 = 0, ∂W i,j,2 ∂γ q 0 = E i,j,2-q 0 , ∂W i,j,3 ∂γ q 0 = E i,j,3-q 0 -γ 1 (1 + E i,j,2 ) ∂W i,j,2 ∂γ q 0 ,
and so on. Note that

W i,j,1 = η i,1 + Z i,j,1 = η i,1 + q k=1 γ k E i,j,1-k = η i,1 , E i,j,1 = Y i,j,1 exp(-W i,j,1 ) -1 = Y i,j,1 exp(-η i,1 ) -1, W i,j,2 = η i,2 + Z i,j,2 = η i,2 + q k=1 γ k E i,j,2-k = η i,2 + γ 1 E i,j,1 , E i,j,2 = Y i,j,2 exp(-W i,j,2 ) -1 = Y i,j,2 exp(-η i,2 -γ 1 E i,j,1 ) -1.
Computation of the second derivatives of W t For all i 0 , i 1 ∈ {0, . . . , I} and t 0 , t 1 ∈ {1, . . . , T }

∂ 2 W i,j,t ∂η i 0 ,t 0 ∂η i 1 ,t 1 = ∂ ∂η i 1 ,t 1 ∂η i,t ∂η i 0 ,t 0 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂η i 0 ,t 0 = - q∧(t-1) k=1 γ k ∂E i,j,t-k ∂η i 1 ,t 1 ∂W i,j,t-k ∂η i 0 ,t 0 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂η i 0 ,t 0 ∂η i 1 ,t 1 = q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂W i,j,t-k ∂η i 0 ,t 0 ∂W i,j,t-k ∂η i 1 ,t 1 - q∧(t-1) k=1 γ k (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂η i 0 ,t 0 ∂η i 1 ,t 1 .
For all q 0 , q 1 ∈ {1, . . . , q}

∂ 2 W i,j,t ∂γ q 0 ∂γ q 1 = ∂E i,j,t-q 0 ∂γ q 1 -(1 + E i,j,t-q 1 ) ∂W i,j,t-q 1 ∂γ q 0 - q∧(t-1) k=1 γ k ∂W i,j,t-k ∂γ q 0 ∂E i,j,t-k ∂γ q 1 + (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂γ q 0 ∂γ q 1 = -(1 + E i,j,t-q 0 ) ∂W j,t-q 0 ∂γ q 1 -(1 + E i,j,t-q 1 ) ∂W i,j,t-q 1 ∂γ q 0 - q∧(t-1) k=1 γ k -(1 + E i,j,t-k ) ∂W i,j,t-k ∂γ q 0 ∂W i,j,t-k ∂γ q 1 + (1 + E i,j,t-k ) ∂ 2 W i,j,t-k ∂γ q 0 ∂γ q 1 .
To obtain the second derivatives of W t we use the following recursive expressions for all i 0 , i 1 ∈ {0, . . . , I} and t 0 , t 1 ∈ {1, . . . , T }

∂ 2 W i,j,1 ∂η i 0 ,t 0 ∂η i 1 ,t 1 = 0, ∂ 2 W i,j,2 ∂η i 0 ,t 0 ∂η i 1 ,t 1 = γ 1 (1 + E i,j,1 ), if i = i 0 = i 1 and t 0 = t 1 = 1 0, otherwise . 
We also have that for all q 0 , q 1 ∈ {1, . . . , q} ∂ 2 W i,j,1 ∂γ q 0 ∂γ q 1 = 0, ∂ 2 W i,j,2 ∂γ q 0 ∂γ q 1 = 0, and so on.

3.A.2 Additional numerical experiments q q q q q q q q q q q q q q q q q q q q 0.3 0.4 0.5 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q q q q q q -0.025 0.000 0.025 0.050 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q 1 2 Figure 3.10: Error bars for the estimations of γ in Model (3.2) for I = 3, T = 50, J = 10, q = 1, γ = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1. The horizontal lines correspond to the values of the γ i 's. q q q q q q q q q q q q q q q q q q q q 0.4 0.5 0.6 0.7 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q q q q q q -0.03 -0.02 -0.01 0.00 1 2 3 4 5 6 7 8 9 10 Iteration γ ^1 q q q q q 1 2 

Abstract

In this work, we consider an estimation method in sparse Poisson models inspired by Friedman et al. ( 2010) and provide novel sign consistency results under mild conditions.

Introduction

Discrete-valued data arise in diverse applied scientific areas, ranging from finance to molecular biology and epidemiology. For example, as discussed by [START_REF] Wu | The diversity of long noncoding RNAs and their generation[END_REF], in molecular biology, non-coding genes are emerging as potential key regulators of the expression of proteincoding genes. Yet, among numerous non-coding genes, only a few are likely to be involved for explaining the expression of the coding genes. Consequently, variable selection will help to identify the relevant non-coding genes by obtaining sparse estimators, meaning that most of them are zero. A popular approach in statistics for performing variable selection is the Lasso proposed by [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. Besides, [START_REF] Zhao | On model selection consistency of Lasso[END_REF] showed that Lasso has theoretical guarantees, under some mild conditions. More particularly, Lasso is model selection consistent, meaning that Lasso chooses the true model. However, the consistency results are established in a Gaussian setting, which may not hold for discrete-valued data.

In this work we consider the following sparse Poisson model. Let Y 1 , . . . , Y n be independent random variables such that for all i,

Y i ∼ Poisson(λ i ) with λ i = exp(x i β β β ), (4.1)
where x i is the ith row of a n × p design matrix X and β β β is a sparse vector of regression coefficients in R p . The non-null coefficients correspond to the predictors that are relevant to explain the response. In the following we will consider an estimation method inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and provide a novel sign consistency result. This chapter is organised as follows. Firstly, in Section 2 we present the statistical approach for estimating β β β . Next, in Section 3 we establish its sign-consistency. The detailed proof is available in the Appendix.

Statistical approach

To estimate β β β defined in Model (4.1), we shall use the approximation proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] which consists in maximising with respect to β β β the second order Taylor approximation of the log-likelihood l at the current estimate β β β, namely:

l( β β β) + n i=1 p k=1 x ik (Y i -λi )(β k -βk ) - 1 2 n i=1 1≤k, ≤p λi x ik (β k -βk )x i (β -β ),
where λi = exp(x i β β β), which means maximising n i=1

(Y i -λi )x i (β β β -β β β) - 1 2 n i=1 λi x i (β β β -β β β) 2 = n i=1 (Y i -λi ) λi λi x i (β β β -β β β) - 1 2 n i=1 λi x i β β β -β β β 2 .
This boils down to minimising

n i=1 λi x i β β β -β β β - Y i -λi λi 2 .
Minimising this criterion can be viewed as the minimisation with respect to β β β of the following least-squares criterion:

Y -X β β β 2 2 where u 2 2 = n i=1 u 2 i for a vector u = (u 1 , . . . , u n ) in R n , Y = X β β β + Λ-1/2 (Y -λ) and X = Λ1/2 X, (4.2)
Λ denoting the diagonal matrix having the λi 's as diagonal elements, λ being a column vector having the λi 's as components and Y denoting a column vector having the Y i 's as components. Thus, in order to obtain a sparse estimation of β β β , we will focus on finding β β β(α) defined for α > 0 by:

β β β(α) = arg min β β β∈R p Y -X β β β 2 2 + α β β β 1 , (4.3)
where v 1 = p k=1 |v k | for a vector v = (v 1 , . . . , v p ) in R p . We shall establish the sign consistency of β β β in Theorem (4.3.1) of the following section.

Sign consistency

Let C = X T X n and W = X T ε ε ε n , (4.4)
where A T denotes the transpose of the matrix A,

ε = (ε 1 , . . . , εn ) T with εk = Y k -λk λk for all 1 ≤ k ≤ n. (4.5)
Without loss of generality, suppose that β β β = (β 1 , . . . β q , β q+1 , . . . β p ) T , where β j = 0 when 1 ≤ j ≤ q and β j = 0 when q + 1 ≤ j ≤ p and denote

β β β 1 = (β 1 , . . . , β q ) T and β β β 2 = (β q+1 , . . . , β p ) T . (4.6) Then, C = X T 1 X 1 /n X T 1 X 2 /n X T 2 X 1 /n X T 2 X 2 /n = C 11 C 12 C 21 C 22 and W = W 1 W 2 . (4.7)
Theorem 4.3.1. Assume that Y 1 , . . . , Y n are independent random variables such that for all i, Y i ∼ Poisson(λ i ) with λ i = exp(x i β β β ), where x i is the ith row of a design matrix X and β β β is defined in (4.6). Assume also that there exist positive constants M 1 , M 2 , M 3 , M 4 , M 5 , M 6 , M 7 and c 1 such that 0 < c 1 ≤ 1, that p does not depend on n and that the following assumptions hold.

(T1) For all k in {1, . . . , n}, x k 2 ≤ M 1 and for all in {1, . . . , p}, x ( ) 2 ≤ M 7 , where x ( ) denotes the th column of X. (T5) n

1-c 1 2 min 1≤i≤q |β i | ≥ M 6 .
Let us also suppose that the following condition called strong irrepresentable condition holds: there exists τ > 2/3 such that

C 21 C -1 11 sign(β β β 1 ) ≤ 1 -τ, (4.8)
with a probability tending to 1 when n tends to infinity, where the inequality has to be understood component by component. Then, for all α = α n such that

α n = O n c 2 +1 2 , where 0 < c 2 < c 1 ≤ 1, β β β defined in (4.3) satisfies P sign( β β β) = sign(β β β ) → 1, when n → ∞.
The proof of Theorem 4.3.1 relies on the following proposition.

Proposition 4.3.2. Under the assumptions of Theorem 4.3.1, let

R 1 = (C(β β β -β β β)) 1 and R 2 = (C(β β β -β β β)) 2 .
(4.9)

Then,

P sign( β β β) = sign(β β β ) ≥ P A n ∩ B n ,
where

A n = |C -1 11 W 1 | < |β β β 1 | - α 2n |C -1 11 sign(β β β 1 )| -|C -1 11 R 1 | and B n = |C 21 C -1 11 W 1 -W 2 | ≤ α 2n 1 -|C 21 C -1 11 sign(β β β 1 )| -|C 21 C -1 11 R 1 -R 2 | .
The proof of Proposition 4.3.2 is in 4.A.1. Proving Theorem 4.3.1 consists in showing that P(A c n ) and P(B c n ) go to zero as n tends to infinity where S c denotes the complementary set of the set S. The proof is given in 4.A.2.

4.A Proofs

4.A.1 Proof of Proposition 4.3.2

First observe that we get from (4.2) and (4.5) that Y = X β β β + ε.

(4.10)

Let us denote β β β the estimator β β β(α) defined in (4.3), it satisfies the following Karush-Kuhn-Tucker conditions described in (Giraud, 2021, Section 4.2.2):

X T (Y -X β β β) i = α 2 sign( βi ), if βi = 0, X T (Y -X β β β) i ≤ α 2 , if βi = 0,
which can be rewritten as follows by using (4.4) and (4.10) 

C( β β β -β β β ) -W + C(β β β -β β β) i = - α 2n sign( βi ), if βi = 0, (4.11) C( β β β -β β β ) -W + C(β β β -β β β) i ≤ α 2n , if βi = 0. (4.12) If A n holds then -|β β β 1 | < C -1 11 W 1 - α 2n C -1 11 sign(β β β 1 ) -C -1 11 R 1 < |β β β 1 |. (4.13) Let β β β = ( β β βT 1 , 0 T ) T where β β β1 = β β β 1 + C -1 11 W 1 - α 2n C -1 11 sign(β β β 1 ) -C -1 11 R 1 . ( 4 
C 21 C -1 11 W 1 -C -1 11 R 1 - α 2n C -1 11 sign(β β β 1 ) -W 2 + R 2 ≤ α 2n ,
which by (4.14) corresponds to (4.12) for β β β and concludes the proof of Proposition 4.3.2.

4.A.2 Proof of Theorem 4.3.1

Let us first prove that P(A c n ) tends to zero as n tends to infinity. By denoting

ξ = (ξ 1 , . . . , ξ q ) T = C -1 11 W 1 and b = (b 1 , . . . , b q ) T = C -1 11 sign(β β β 1 ), (4.15)
we get that

P(A c n ) = P |C -1 11 W 1 | + |C -1 11 R 1 | + α 2n C -1 11 sign(β β β 1 ) ≥ |β β β 1 | ≤ q j=1 P |ξ j | + |(C -1 11 R 1 ) j | + α 2n b j ≥ |β j | ≤ q j=1 P |ξ j | ≥ |β j | 3 + P |(C -1 11 R 1 ) j | ≥ |β j | 3 + P α 2n b j ≥ |β j | 3 .
By the Cauchy-Schwarz inequality, we get that for all j in {1, . . . , q}

|b j | ≤ q j=1 |b j | ≤ √ q b 2 = √ q C -1 11 sign(β β β 1 ) 2 ≤ q C -1 11 2 = qλ max (C -1 11 ).
By using (T5), (T3), α = O(n (c 2 +1)/2 ) and 0 < c 2 < c 1 ≤ 1, we obtain that

P(A c n ) ≤ q j=1 P |ξ j | ≥ M 6 n c 1 -1 2 3 + q j=1 P |(C -1 11 R 1 ) j | ≥ M 6 n c 1 -1 2 3 + o(1). (4.16)
Let us first prove that the second term in the r.h.s of (4.16) tends to 0 as n tends to infinity. Observing that R 1 defined in (4.9) satisfies: R 1 = C 11 β β β 1 -β β β1 + C 12 β β β 2 -β β β2 , we get by the Cauchy-Schwarz inequality that

(C -1 11 R 1 ) j ≤ √ q C -1 11 R 1 2 ≤ √ q β β β 1 -β β β1 2 + √ q C -1 11 C 12 β β β 2 -β β β2 2 .
By (T2), ( T3), ( T4), (C -1 11 R 1 ) j = O P (n -1 ), for all j, where the O P does not depend on j, which proves that the second term in the r.h.s of (4.16) tends to 0 as n tends to infinity.

Let us now prove that the first term in the r.h.s of (4.16) tends to 0 as n tends to infinity. By (4.15), (4.4) and (4.5), denoting λ the column vector of the λ i 's, ξ can be rewritten as follows

ξ j = (C -1 11 W 1 ) j = C -1 11 X T 1 ε ε ε n j = 1 n C -1 11 X T 1 Λ-1/2 (Y -λ) j = 1 n C -1 11 X T 1 Λ-1/2 (Y -λ ) j + 1 n C -1 11 X T 1 Λ-1/2 (λ -λ) j .
(4.17) For all j in {1, . . . , q}, all k in {1, . . . , n}, by (2.3.8) of [START_REF] Golub | Matrix Computations[END_REF], we have that

1 n C -1 11 X T 1 Λ-1/2 jk ≤ 1 √ n C -1 11 X T 1 √ n jk sup k∈{1,...,n} λ-1/2 k ≤ 1 √ n C -1 11 X T 1 √ n 2 sup k∈{1,...,n} λ-1/2 k = 1 √ n ρ C -1 11 X T 1 √ n T C -1 11 X T 1 √ n 1/2 sup k∈{1,...,n} λ-1/2 k , (4.18)
where ρ(A) is the spectral radius of the matrix A. Note that, by Theorem 1.3.22 of [START_REF] Horn | Matrix Analysis[END_REF],

ρ C -1 11 X T 1 √ n T C -1 11 X T 1 √ n = ρ C -1 11 X T 1 √ n C -1 11 X T 1 √ n T = ρ C -1 11 X T 1 X 1 n C -1 11 = ρ C -1 11 . (4.19)
From ((T1)) and ((T2)), we get that 

λ-1/2 k = 1 exp(x k β β β) = 1 exp(x k β β β ) exp(x k ( β β β -β β β )) = λ k -1/2 1 + O P (n -1 ) , where λ k -1/2 ≤ exp(-x k β /2) ≤ exp( x k 2 β 2 /2) ≤ exp(M 1 β 2 /2),
1 n C -1 11 X T 1 Λ-1/2 jk = O P (n -1/2 ).
Moreover, by (T1) and ( T2)

λ k -λk = exp(x k β β β ) -exp(x k β β β) = exp(x k β β β ) 1 -exp(x k ( β β β -β β β )) = -exp(x k β ) ≥1 (x k ( β -β )) ! = O P (1/n). (4.21)
Thus, the second term in the r.h.s of (4.17

) is O P (1/ √ n). Note that 1 n C -1 11 X T 1 Λ-1/2 (Y -λ ) j = 1 n C -1 11 X T 1 (Y -λ ) j = 1 n (C 11 ) -1 X T 1 (Y -λ ) j + 1 n (C -1 11 -(C 11 ) -1 )X T 1 (Y -λ ) j , (4.22)
where C = X T X /n with X = (Λ ) 1/2 X, Λ being a diagonal matrix having as diagonal entries the λ k 's. Hence, the second term in the r.h.s of (4.22) is bounded by 

C -1 11 -(C 11 ) -1 2 X T 1 2 1 n n k=1 |Y k -λ k | = C -1 11 -(C 11 ) -1 2 O P (1), by 
(C 11 ) -1 = Id + C -1 11 (C 11 -C 11 ) -1 C -1
11 and thus by Corollary 5.6.16 of [START_REF] Horn | Matrix Analysis[END_REF], we get that

C -1 11 -(C 11 ) -1 2 = O P ( C 11 -C 11 2 ) = O P (1/n 2 ) (4.23)
since by Equation (2.3.8) of [START_REF] Golub | Matrix Computations[END_REF], the Cauchy-Schwarz inequality and (4.21)

C 11 -C 11 2 ≤ q n max 1≤ ≤q x ( ) 2 2 sup 1≤k≤n |λ k -λk | = O P (1/n 2 ). (4.24)
Thus, the second term in the r.h.s of (4.22) is O P (1/n 2 ). To address the first term in the r.h.s of (4.22), we shall use the following result.

Theorem 4.A.1. (Bernstein's Inequality, (Boucheron et al., 2013, Corollary 2.11)) Let X 1 , . . . , X n be independent real random variables. Suppose that there exist ν > 0 and c > 0 such that

n k=1 E X 2 k ≤ ν, and n k=1 E |X k | ≤ ! 2 νc -2
for all integers ≥ 3. Then, for all t > 0,

P n k=1 X k -E X k ≥ t ≤ 2 exp - t 2 2(ν + ct)
.

Denoting G = n -1 (C 11 ) -1 X T 1 (Λ ) 1/2 , we get that 1 n (C 11 ) -1 X T 1 (Y -λ ) j = n k=1 G jk (Y k -λ k ) λ k .
Let us now apply the Bernstein's inequality to

X k = G jk Y k / λ k then n k=1 E[X 2 k ] = n k=1 G 2 jk (1 + λ k ) ≤ n sup 1≤k≤n (1 + λ k ) G 2 2 ≤ n sup 1≤k≤n (1 + λ k ) ρ(GG T ) ≤ sup 1≤k≤n (1 + λ k ) ρ((C 11 ) -1 ).
By Weyl's inequalities (Horn and Johnson, 2013, Corollary 4.3.15) and (T3), we get that with a probability tending to 1,

λ min (C 11 ) ≥ λ min (C 11 ) + λ min (C 11 -C 11 ) ≥ λ min (C 11 ) -ρ(C 11 -C 11 ) ≥ M 2 -C 11 -C 11 2 ,
Denoting λ = max(sup 1≤k≤n λ k , 1) and M 2 the positive constant such that ρ((C 11 ) -1 ) ≤ 1/M 2 for large enough n, which exists by (4.24), we get by (T3) that ν = 2 λ/M 2 . Observe that

n k=1 E |X k | = n k=1 E   G jk λ k Y k   = n k=1 |G jk | λ k i=1 λ k i , (4.25)
where i denotes the Stirling number of the second kind and the last equality is due to the definition of the -th moment of a Poisson random variable. Then we have, for all ≥ 3, by Equation (2.3.8) of [START_REF] Golub | Matrix Computations[END_REF],

n k=1 |G jk | λ k i=1 λ k i ≤ n k=1 1 n /2 ρ((C 11 ) -1 ) /2 λ /2 i=1 i ≤ n 1-/2 M -/2 2 λ /2 ! = n 1-/2 M 1-/2 2 λ /2-1 ! 2 ν ≤ ! 2 ν √ λ nM 2 -2 = ! 2 νc -2 , (4.26) with c = λ/(nM 2 ) since i=1 i ≤ !.
Hence, for t = n (c 1 -1)/2 ,

t 2 2(ν + ct) = n c 1 -1 2(ν + n -1/2 λ/M 2 n (c 1 -1)/2 ) = O(n c 1 /2 ),
which gives the expected result. Let us then prove that P(B c n ) tends to zero as n tends to infinity. By denoting

ζ = (ζ 1 , . . . , ζ p-q ) T = C 21 C -1 11 W 1 -W 2 and d = (d 1 , . . . , d p-q ) T = C 21 C -1
11 sign(β β β 1 ), (4.27) we get that

P(B c n ) = P |C 21 C -1 11 W 1 -W 2 | + |C 21 C -1 11 R 1 -R 2 | + α 2n C 21 C -1 11 sign(β β β 1 ) > α 2n ≤ p-q j=1 P |ζ j | + |(C 21 C -1 11 R 1 -R 2 ) j | + α 2n d j ≥ α 2n ≤ p-q j=1 P |ζ j | ≥ α 6n + P |(C 21 C -1 11 R 1 -R 2 ) j | ≥ α 6n + P d j ≥ 1 3 . (4.28)
By the strong irrepresentable condition (4.8), we get that p-q j=1 P d j ≥ 1 3 = o(1). Let us now prove that the second term in the r.h.s of (4.28) tends to 0 as n tends to infinity. Observing that R 1 defined in (4.9) satisfies: R 1 = C 11 β β β 1 -β β β1 + C 12 β β β 2 -β β β2 , we get by the Cauchy-Schwarz inequality that

(C 21 C -1 11 R 1 ) j ≤ √ p -q C 21 C -1 11 R 1 2 ≤ √ p -q C 21 (β β β 1 -β β β1 ) 2 + √ p -q C 21 C -1 11 C 12 β β β 2 -β β β2 2 .
By (T2), ( T3) and ( T4), (C 21 C -1 11 R 1 ) j = O P (n -1 ) for all j. Using similar arguments we get |(R 2 ) j | = O P (n -1 ). Then since α = O n (c 2 +1)/2 , we get that the second term in the r.h.s of (4.28) tends to 0 as n tends to infinity.

Let us now prove that the first term in the r.h.s of (4.28) tends to 0 as n tends to infinity. By (4.27), (4.4), (4.5) and (4.2), ζ can be rewritten as follows for all j ∈ {1, . . . , p -q}

ζ j = (C 21 C -1 11 W 1 -W 2 ) j = C 21 ξ - X T 2 n ε j = C 21 ξ - X T 2 n (Y -λ ) j , (4.29)
where we recall that λ denotes the column vector of the λ i 's and ξ = C -1 11 W 1 .

Let us consider the first term in (4.29) and prove that P |(C 21 ξ) j | ≥ α 12n tends to 0 as n tends to infinity. Let us note that the term ξ j is handled previously in the proof concerning A c n . Therefore we use the same arguments and adapt it to the term

(C 21 ξ) j = 1 n C 21 C -1 11 X T 1 Λ-1/2 (Y -λ ) j + 1 n C 21 C -1 11 X T 1 Λ-1/2 (λ -λ) j .
(4.30)

The second term of (4.30) is still

O P (1/ √ n) since in (4.19), ρ(C 21 C -1 11 C T 21 ) = ρ(C 21 C -1 11 C 12
) is bounded by using (T3) and (T4). The first term of (4.30) can be decomposed in the same way as (4.22):

1 n C 21 C -1 11 X T 1 Λ-1/2 (Y -λ ) j = 1 n C 21 (C 11 ) -1 X T 1 (Y -λ ) j + 1 n (C 21 C -1 11 -C 21 (C 11 ) -1 )X T 1 (Y -λ ) j . (4.31)
The second term of (4.31) is bounded in the same manner as the second term of (4.22) was handled. By observing that

C 21 C -1 11 -C 21 (C 11 ) -1 = (C 21 -C 21 )C -1 11 + C 21 (C -1 11 -(C 11 ) -1 ) = (C 21 -C 21 )C -1 11 + (C 21 -C 21 )(C -1 11 -(C 11 ) -1 ) + C 21 (C -1 11 -(C 11 ) -1 ),
and by using (4.23), (T1), (T3), (T4) and the fact that

C 21 -C 21 2 = O P (1/n 2 ), (4.32)
where we used the same arguments as in (4.24) we get that

C 21 C -1 11 -C 21 (C 11 ) -1 2 = O P (1/n 2
). Thus, the second term of(4.31) is O P (1/n 2 ). To handle the first term of (4.31), let us apply the Bernstein's inequality to

X k = G jk Y k / λ k with G = n -1 C 21 (C 11 ) -1 X T 1 (Λ ) 1/2 . Then n k=1 E[X 2 k ] = n k=1 G 2 jk (1 + λ k ) ≤ n sup 1≤k≤n (1 + λ k ) ρ( G G T ) ≤ sup 1≤k≤n (1 + λ k ) ρ(C 21 (C 11 ) -1 (C 21 ) T ).
By Weyl's inequalities (Horn and Johnson, 2013, Corollary 4.3.15)

λ max (C 21 (C 11 ) -1 (C 21 ) T ) ≤ λ max ((C 21 -C 21 )((C 11 ) -1 -C -1 11 )((C 21 ) T -C T 21 )) + λ max ((C 21 -C 21 )((C 11 ) -1 -C -1 11 )C T 21 ) + λ max ((C 21 -C 21 )C -1 11 ((C 21 ) T -C T 21 )) + λ max ((C 21 -C 21 )C -1 11 C T 21 ) + λ max (C 21 ((C 11 ) -1 -C -1 11 )((C 21 ) T -C T 21 )) + λ max (C 21 ((C 11 ) -1 -C -1 11 )C T 21 ) + λ max (C 21 C -1 11 ((C 21 ) T -C T 21 )) + λ max (C 21 C -1 11 C T 21 ). 70 
By (4.23), (4.32), ( T3) and (T4), we get that for a large enough n, ρ(C 21 (C 11 ) -1 (C 21 ) T ) ≤ M 3 , where M 3 is a positive constant. Hence, ν = (2 λ)/M 3 . Using the same bounds as in (4.25) and (4.26), we get that c = λ/(nM 3 ). Thus, with t = n (c 2 -1)/2 in the Bernstein's inequality

t 2 2(ν + ct) = n c 2 -1 2(ν + n -1/2 λ/M 3 n (c 2 -1)/2 ) = O(n c 2 /2 ).
Consequently, we conclude that for α = O n (c 2 +1)/2 , P |(C 21 ξ) j | ≥ α 12n tends to 0 as n tends to infinity. Finally, let us consider the second term in (4.29) and prove that

P X T 2 n (Y -λ ) j ≥ α 12n tends to 0 as n tends to infinity. Denoting H = n -1 X T 2 (Λ ) 1/2 , we observe that 1 n X T 2 (Y -λ ) j = n k=1 H jk (Y k -λ k ) λ k
and we apply the Bernstein's inequality to

X k = H jk Y k / λ k . Then we have n k=1 E[X 2 k ] = n k=1 H 2 jk (1 + λ k ) ≤ n sup 1≤k≤n (1 + λ k ) H 2 2 ≤ n sup 1≤k≤n (1 + λ k ) ρ(HH T ) ≤ sup 1≤k≤n (1 + λ k ) ρ(C 22 ).
By Weyl's inequalities (Horn and Johnson, 2013, Corollary 4.3.15)

λ max (C 22 ) ≤ λ max (C 22 ) + λ max (C 22 -C 22 ).
By using the same arguments as in (4.24) and (T4), we get that ρ(C 22 ) ≤ M 4 for large enough n and by denoting λ = max(1, sup 1≤k≤n λ k ), we get that ν = 2 λM 4 . Then, using exactly the same argument as before we get

n k=1 E |X k | ≤ ! 2 νc -2 ,
with c = λ/(nM 4 ). Hence, for t = n (c 2 -1)/2 in the Bernstein's inequality, we obtain the expected result, which concludes the proof.

Introduction

In recent years, the interest in the study of count time series has increased. These series represent a record of the number of occurrences of events over time and, consequently, are nonnegative and integer-valued. They find practical applications in various fields, such as the contagion dynamics of COVID-19 in epidemiology, see, e.g, Agosto and Giudici (2020), the number of transactions in stocks in finance, see, e.g, [START_REF] Brännäs | Integer-valued moving average modelling of the number of transactions in stocks[END_REF], and RNA sequencing (RNA-Seq) kinetics data in molecular biology, see, e.g, [START_REF] Thorne | Approximate inference of gene regulatory network models from RNA-Seq time series data[END_REF].

Count time series require special treatment since many continuous models cannot interpret discrete data, see Davis et al. (2016). In addition, as mentioned by [START_REF] Davis | Count time series: A methodological review[END_REF], count time series are often overdispersed, i.e. the variance is larger than the mean. One can capture the overdispersed nature of such data with negative binomial distribution models. In particular, they efficiently interpret RNA-Seq data, see [START_REF] Love | Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[END_REF]; [START_REF] Robinson | edgeR: a bioconductor package for differential expression analysis of digital gene expression data[END_REF].

Numerous models exist for count time series, with a detailed review by [START_REF] Davis | Count time series: A methodological review[END_REF].

These models can be grouped into two main classes: Integer Autoregressive Moving Average (INARMA) and generalised state space models. [START_REF] Mckenzie | Some simple models for discrete variate time series[END_REF] and Al-Osh and [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) process[END_REF] were the first to study the Integer Autoregressive process (INAR(1)). Later [START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF] extended it to pth order process. The Integer-valued Moving Average (INMA) process is introduced by Al-Osh and [START_REF] Al-Osh | Integer-valued moving average (INMA) process[END_REF]. [START_REF] Weiß | Modelling time series of counts with overdispersion[END_REF] and [START_REF] Zhu | A negative binomial integer-valued GARCH model[END_REF] study integervalued generalised autoregressive conditional heteroskedasticity (INGARCH) models that can handle overdispersion. An advantage of INARMA processes is their autocorrelation structure, which is similar to the one of the autoregressive moving average (ARMA) models. However, the statistical inference in INAR models is more complex, as explained by [START_REF] Davis | Count time series: A methodological review[END_REF].

It requires intensive computational approaches, such as the efficient MCMC algorithm by [START_REF] Neal | MCMC for integer-valued ARMA processes[END_REF], developed for INARMA processes of known AR and MA orders. We refer the reader to [START_REF] Weiss | An introduction to discrete-valued time series[END_REF] for further details on INARMA models. Generalised state space models, introduced by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF], are one of the most commonly used approaches for time series analysis, see [START_REF] Davis | Count time series: A methodological review[END_REF]. These models can be classified as parameter-driven and observation-driven models. The main difference between these two model groups is that the state vector evolves independently of past observations in parameter-driven models. In contrast, in observation-driven models, the state vector depends on the past history of the observations. An overview of parameter-driven models can be found by [START_REF] Davis | Modeling time series of count data[END_REF]. Zeger (1988) introduced the Poisson log-liner regression, which [START_REF] Blais | Limit theorems for regression models of time series of counts[END_REF] extended to the case where observations are assumed to have a distribution from the exponential family. [START_REF] Davis | A negative binomial model for time series of counts[END_REF] considered a negative binomial model, where the serial dependence is introduced through a dependent latent process in the link function. Despite the simple construction of these models, the parameter estimation in parameter-driven models is computationally expensive, as explained by [START_REF] Jung | Estimating time series models for count data using efficient importance sampling[END_REF].

The observation-driven models do not suffer from this computational downside. Following the introduction by [START_REF] Cox | Statistical analysis of time series: Some recent developments [with discussion and reply[END_REF], they were further studied by [START_REF] Zeger | Markov regression models for time series: A quasi-likelihood approach[END_REF]. In the literature, there are two types of observation-driven models: the Generalised Linear Autoregressive Moving Average (GLARMA) models introduced by [START_REF] Davis | Modeling time series of count data[END_REF] and further studied by [START_REF] Davis | Observation-driven models for Poisson counts[END_REF], [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], and [START_REF] Dunsmuir | Generalized Linear Autoregressive Moving Average Models[END_REF] and the (log-)linear Poisson autoregressive models studied by [START_REF] Fokianos | Poisson autoregression[END_REF], [START_REF] Fokianos | Multivariate count time series modelling[END_REF][START_REF] Fokianos | Log-linear poisson autoregression[END_REF][START_REF] Fokianos | Multivariate count time series modelling[END_REF][START_REF] Fokianos | Nonlinear poisson autoregression[END_REF]. Note that GLARMA models cannot be seen as a particular case of the log-linear Poisson autoregressive models.

In this chapter, we will consider the negative binomial GLARMA model introduced by [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF] with additional covariates. More precisely, given the past history

F t-1 = σ(Y s , s ≤ t -1), we assume that Y t |F t-1 ∼ NB (µ t , α ) , (5.1) 
where NB(µ, α) denotes the negative binomial distribution with mean µ and overdispersion parameter α. In (5.1),

µ t = exp(W t ) with W t = p i=0 β i x t,i + Z t .
(5.2)

Here the x t,i 's represent the p regressor variables (p ≥ 1) and

Z t = q j=1 γ j E t-j with E t = Y t -µ t µ t + µ t 2 /α , (5.3) 
where 1 ≤ q ≤ ∞ and E t = 0 for all t ≤ 0. The E t 's correspond to the working residuals in classical Generalised Linear Models (GLM). There are several types of residuals but in our model we consider score-type residuals, as proposed by [START_REF] Koopman | A general framework for observation driven time-varying parameter models[END_REF]. It is important to mention that when q = ∞, (Z t ) satisfies the ARMA-like recursions provided in Equation (4) of [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF]. The resulting model defined by (5.1), (5.2) and (5.3) is the negative binomial GLARMA model. The main goal of this chapter is to introduce a novel approach for variable selection in the deterministic part (covariates) of sparse negative binomial GLARMA models defined in Equations (5.1), (5.2) and (5.3). Here the vector of the β i 's is sparse, i.e. many β i 's are null, and thus only a few regressor variables are explanatory. The novel approach that we propose consists in combining a procedure for estimating the ARMA part coefficients (to take into account the temporal dependence that may exist in the data) with regularised methods designed for GLM, as those proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] and [START_REF] Hastie | Statistical learning with sparsity: The Lasso and generalizations[END_REF]. The existing variable selection approaches for discrete data, such as [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], do not consider temporal dependence.

Our approach can be applied in modelling RNA-Seq time series data in molecular biology. With RNA-Seq, it is possible to count the numbers of RNA fragments present in a biological sample. Linking these RNA fragments to genes allows for determining the expression level of genes as integer counts. As explained by [START_REF] Wu | The diversity of long noncoding RNAs and their generation[END_REF], non-coding genes are potential key regulators of the expression of coding genes. In this framework, only a few among many non-coding genes are likely to be involved in explaining the expression of the coding genes. Since, as discussed earlier, the nature of RNA-Seq data is captured well with negative binomial models, a variable selection approach for sparse negative binomial GLARMA models can be efficient in identifying the relevant non-coding genes.

This chapter is organised as follows. Firstly, in Section 5.2.1, we describe the properties of the likelihood of negative binomial GLARMA models. Secondly, in Section 5.2.2 we propose a novel three-stage estimation procedure. It consists in first estimating the ARMA coefficients, then in estimating the regression coefficients by using a regularised approach, and estimating overdispersion parameter with a maximum likelihood approach. The algorithmic implementation of the methodology is given in Section 5.2.3. Next, in Section 5.3, we provide some numerical experiments on simulated data in order to illustrate our method and to compare its performance to the regularised methods of [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] designed for GLM. Finally, in Section 5.4, we illustrate our method on RNA-Seq data that follows the temporal evolution of gene expression.

Variable selection in sparse negative binomial GLARMA models

In this section we introduce our variable selection approach in sparse negative binomial GLARMA models. We start by discussing the properties of the likelihood of negative binomial GLARMA models in Section 5.2.1. Next, in Section 5.2.2 we explain how our approach estimates the parameters of the model. We conclude by the description of the algorithm of our methodology in Section 5.2.3.

Properties of the likelihood of negative binomial GLARMA models

As stated by [START_REF] Dunsmuir | The glarma package for observation-driven time series regression of counts[END_REF], the probability mass function of negative binomial distribution is

f (Y t |W t , α) = Γ(α + Y t ) Γ(α)Γ(Y t + 1) α α + µ t α µ t α + µ t Yt .
Note that it converges to the Poisson probability mass function when α → ∞.

Let us consider the parameter δ = (β , γ ), where u denotes the transpose of the vector u, β = (β 0 , β 1 , . . . , β p ) represents the vector of regressor coefficients defined in (5.2), and γ = (γ 1 , . . . , γ q ) is the vector of the ARMA part coefficients defined in (5.3). Inspired by 74 [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], we will estimate δ by maximising with respect to δ = (β , γ ), with β = (β 0 , β 1 , . . . , β p ) and γ = (γ 1 , . . . , γ q ) the following criterion based on the conditional log-likelihood:

L(δ, α) = n t=1 log Γ(α + Y t ) -log Γ(Y t + 1) -log Γ(α) + α log α + Y t W t -(α + Y t ) log(α + exp(W t )) .
(5.4)

In (5.4),

W t (δ, α) = β x t + Z t (δ, α) = β 0 + p i=1 β i x t,i + q j=1
γ j E t-j (δ, α), (5.5) with x t = (x t,0 , x t,1 , . . . , x t,p ) , x t,0 = 1 for all t and

E t (δ, α) = Y t exp(-W t (δ, α)) -1 1 + exp(Wt(δ δ δ,α)) α , if t > 0 and E t (δ, α) = 0, if t ≤ 0. (5.6)
To obtain δ defined by δ = arg max

δ δ δ L(δ, α),
we consider the first derivatives of L:

∂L ∂δ (δ, α) = n t=1 Y t ∂W t (δ, α) ∂δ - (α + Y t ) exp(W t (δ, α)) α + exp(W t (δ, α)) ∂W t ∂δ (δ, α) = n t=1 Y t - (α + Y t ) exp(W t (δ, α)) α + exp(W t (δ, α)) ∂W t ∂δ , (5.7) 
where

∂W t ∂δ (δ, α) = ∂β x t ∂δ + ∂Z t ∂δ (δ, α),
β, x t and Z t being given in (5.5). The computations of the first derivatives of W t are detailed in Appendix 5.A.1. The Hessian of L can be obtained as follows:

∂ 2 L ∂δ ∂δ (δ, α) = n t=1 Y t - (α + Y t ) exp(W t (δ, α)) α + exp(W t (δ, α)) ∂ 2 W t ∂δ ∂δ (δ, α) - n t=1 (α + Y t ) exp(W t (δ, α)) α + exp(W t (δ, α)) 1 - exp(W t (δ, α)) α + exp(W t (δ, α)) ∂W t ∂δ (δ, α) ∂W t ∂δ (δ, α).
(5.8)

The details for computing the second derivatives of W t are given in Appendix 5.A.1. Since in the sparse framework, with many components of β being null, this procedure provides poor estimation results, we devised a novel estimation procedure described in the next section.

Parameter estimation and variable selection

To select the most relevant elements of β , we propose a three-stage procedure. Firstly, we estimate γ by using the Newton-Raphson algorithm described in Section 5.2.2. Next, we estimate β by using the regularised approach outlined in Section 5.2.2. Finally, we estimate α by a maximum likelihood approach as explained in Section 5.2.2. Additionally, in Section 5.2.2 we explain how to guarantee the robustness of the selected variables.

Estimation of γ

In order to obtain the estimate of γ , we propose using

γ = arg max γ γ γ L(β (0) , γ , α (0) ),
where L is defined in (5.4), β (0) = (β (0) 0 , . . . , β (0) p ) and α (0) are given initial estimations of β and α , respectively, and γ = (γ 1 , . . . , γ q ) . In Section 5.2.3 we explain how we choose these initial values. We use the Newton-Raphson algorithm to obtain γ. For r ≥ 1, starting from the initial value γ (0) = (γ

(0) 1 , . . . , γ (0) q ) : γ (r) = γ (r-1) - ∂ 2 L ∂γ ∂γ (β (0) , γ (r-1) , α (0) ) -1 ∂L ∂γ (β (0) , γ (r-1) , α (0) ), (5.9) 
where the first and second derivatives of L are obtained using the same strategy as the one used for deriving Equations (5.7) and (5.8) in Section 5.2.1.

Variable selection: Estimation of β

In order to obtain a sparse estimator of the β i 's in Model (5.2), we use a regularised variable selection approach proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting generalised linear models.

To perform variable selection in the β i 's of Model (5.2), in other words, to obtain a sparse estimator of β β β , we shall use a methodology inspired by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] for fitting generalised linear models. This approach penalises with 1 penalties a quadratic approximation to the log-likelihood obtained by a Taylor expansion. Using β (0) , γ, and α (0) defined in Section 5.2.2 the quadratic approximation is obtained as follows:

L(β) := L(β 0 , . . . , β p , γ, α (0) ) = L(β (0) ) + ∂L ∂β (β (0) , γ, α (0) )(β -β (0) ) + 1 2 (β -β (0) ) ∂ 2 L ∂β∂β (β (0) , γ, α (0) )(β -β (0) ),
where

∂L ∂β = ∂L ∂β 0 , . . . , ∂L ∂β p and ∂ 2 L ∂β∂β = ∂ 2 L ∂β j ∂β k 0≤j,k≤p .
Hence we get,

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ, α (0) )U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ), (5.10) 
where U ΛU is the singular value decomposition of the positive semidefinite symmetric matrix

-∂ 2 L ∂β∂β (β (0) , γ, α (0) ) and ν -ν (0) = U (β -β (0) ).
In order to obtain a sparse estimator β β β of β , we use the criterion β(λ) defined by

β(λ) = arg min β -L Q (β) + λ β 1 , (5.11) 
for a positive λ, where β 1 = p k=0 |β k | and L Q (β) denotes the quadratic approximation of the log-likelihood. This quadratic approximation is defined by

-L Q (β) = 1 2 Y -X β 2 2 , (5.12) 
where

Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ, α (0) ) , X = Λ 1/2 U , (5.13) with • 2 denoting the 2 norm in R p+1 .
The detailed computations for obtaining the expression (5.12) of L Q (β) are provided in Section 5.A.2. Table 5.1: Means of the differences of TPR and FPR with corresponding standard deviations given in parenthesis associated to the support recovery of β β β for four methods, different values of n, q, α = 2, p = 100, and 10 simulations. The column t is the threshold for which the corresponding TPR and FPR are obtained. In each setting the best results are highlighted in pink. 

Estimation of γ and α

This section is dedicated to the estimation of γ and α with our methodology. All the results are obtained by the ss_cv approach and in each setting we chose the threshold from Table 5.1.

Figure 5.4 illustrates the impact of n on the estimation of γ when q = 2. Similar to the results in the previous section, the estimation improves when n increases, and the estimations of both γ 1 and γ 2 are closer to the true values. Iterating the algorithm has positive effects: the estimation of later iterations is better than the estimation at the first iteration.

Figure 5.5 demonstrates the estimation of α in the settings with two different values of q. While for smaller values of n α is overestimated, the results are very close to the true value for n = 500 and n = 1000, both for q = 1 and q = 2. Once again, iterating the algorithm improves and stabilises the estimation. 2) for q = 2, p = 100, α = 2, a 5% sparsity level, and different values of n obtained by ss_cv. For each n, the threshold is chosen corresponding to Table 5.2. Different colours refer to different iterations of the algorithm (iter). The horizontal lines correspond to the values of the γ i 's. 2) for p = 100, α = 2, a 5% sparsity level, and different values of n, q = 1 (left), q = 2 (right), and obtained by ss_cv. For each n, the threshold is chosen corresponding to Table 5.2. Different colours refer to different iterations of the algorithm (iter). The horizontal line corresponds to the values of the α .

Figure 5.6 displays the means of the computational times of our methodology in the simulation frameworks discussed previously. We present only the results of ss_cv since they are identical to the ones of ss_min. The timings were obtained on a workstation with 32GB of RAM and Intel Core i7-9700 (3.00GHz) CPU. For a given threshold and one iteration, the algorithm needs less than one minute to process a dataset when n = 1000, p = 100 and q = 2. Moreover, it is slightly faster when q is smaller. Clearly, when n is smaller, the algorithms needs less time to execute. .6: Boxplots of the computational times in seconds in the case where p = 100, α = 2, a 5% sparsity level, different values of n and q, a given threshold and one iteration.

Application to RNA-Seq time series data

With RNA sequencing (RNA-Seq) it is possible to identify and count the numbers of RNA fragments present in a biological sample. Linking these RNA fragments to genes allows determining the expression level of genes as integer counts. Over the past decades, advances in RNA-Seq analysis have revealed that many eukaryotic genomes were transcribed outside of protein-coding genes. These new transcripts have been named non-coding RNAs (ncRNAs, see [START_REF] Ariel | Battles and hijacks: noncoding transcription in plants[END_REF]) as opposed to coding RNAs, which code for proteins. Among these ncRNAs, long non-coding RNAs (lncRNAs) are a heterogeneous group of RNA molecules regulating genome expression. The purpose of this application is to identify the lncRNAs, the expression of which affects the expression of coding genes, by using the temporal evolution of the expression of both coding genes and lncRNAs.

For the application of our methodology, we consider 145 RNA-Seq time series of coding genes each having a length n = 15. The purpose of the application is to find which lncRNAs among p = 95 affect the expression values of coding genes. Figure 5.7 shows the relation between the log of the mean and the log of the variance of each RNA-Seq time series. As it can be seen, the variances of the observations are much larger than their means. In addition, the expression of coding genes are integer-valued, therefore we are modelling the RNA-Seq time series with a negative binomial GLARMA model. Strictly speaking, for each coding gene, the time series is described by its expression (values) at 15 temporal points. In Model (5.1), (5.2), and (5.3) the expression of a given coding gene at time t is denoted by Y t with t = 1, 2, . . . , n = 15 and the By the definition of W t given in (5.5), we get

∂W t ∂δ (δ) = ∂β x t ∂δ + ∂Z t ∂δ (δ),
where β, x t and Z t are defined in (5.5). First we will calculate the derivatives of E t defined in (5.6). More precisely, for all k ∈ {0, . . . , p}, ∈ {1, . . . , q} and t ∈ {1, . . . , n}

∂E t ∂β k = -Y t ∂W t ∂β k exp(-W t ) • 1 1 + exp(Wt) α -(Y t exp(-W t ) -1) ∂W t ∂β k • exp(W t ) • 1 α 1 + exp(Wt) α 2 = -E t - 1 1 + exp(Wt) α - E t exp(Wt) α 1 + exp(Wt) α ∂W t ∂β k = -E t + 1 + E t exp(Wt) α 1 + exp(Wt) α ∂W t ∂β k , ∂E t ∂γ = -Y t ∂W t ∂γ exp(-W t ) • 1 1 + exp(Wt) α -(Y t exp(-W t ) -1) ∂W t ∂γ • exp(W t ) • 1 α 1 + exp(Wt) α 2 = -E t - 1 1 + exp(Wt) α - E t exp(Wt) α 1 + exp(Wt) α ∂W t ∂γ = -E t + 1 + E t exp(Wt) α 1 + exp(Wt) α ∂W t ∂γ ,
and thus

∂W t ∂β k = x t,k + ∂Z t ∂β k = x t,k + q∧(t-1) j=1 γ j ∂E t-j ∂β k = x t,k - q∧(t-1) j=1 γ j E t-j + 1 + E t-j exp(W t-j ) α 1 + exp(W t-j ) α ∂W t-j ∂β k , (5.14) ∂W t ∂γ = E t-+ ∂Z t ∂γ = E t-+ q∧(t-1) j=1 γ j ∂E t-j ∂γ = E t-- q∧(t-1) j=1 γ j E t-j + 1 + E t-j exp(W t-j ) α 1 + exp(W t-j ) α ∂W t-j ∂γ , (5.15) 
where we used that E t = 0, ∀t ≤ 0.

The first derivatives of W t are thus obtained from the following recursive expressions. For all k ∈ {0, . . . , p}

∂W 1 ∂β k = x 1,k , ∂W 2 ∂β k = x 2,k -γ 1 E 1 + 1 + E 1 exp(W 1 ) α 1 + exp(W 1 ) α ∂W 1 ∂β k ,
where

W 1 = β x 1 and E 1 = Y 1 -exp(W 1 ) exp(W 1 ) + exp(W 1 ) 2 /α .
(5.16) Moreover,

∂W 3 ∂β k = x 3,k -γ 1 E 2 + 1 + E 2 exp(W 2 ) α 1 + exp(W 2 ) α ∂W 2 ∂β k -γ 2 E 1 + 1 + E 1 exp(W 1 ) α 1 + exp(W 1 ) α ∂W 1 ∂β k ,
where

W 2 = β x 2 + γ 1 E 1 , E 2 = Y 2 -exp(W 2 ) exp(W 2 ) + exp(W 2 ) 2 /α ,
(5.17) and so on. In the same way, for all ∈ {1, . . . , q}

∂W 1 ∂γ = 0, ∂W 2 ∂γ = E 2-, ∂W 3 ∂γ = E 3--γ 1 E 2 + 1 + E 2 exp(W 2 ) α 1 + exp(W 2 ) α ∂W 2 ∂γ
and so on, where E t = 0, ∀t ≤ 0, and E 1 and E 2 are defined in (5.16) and (5.17), respectively.

Computation of the second derivatives of W t By using (5.14) and (5.15), we get that for all j, k ∈ {0, . . . , p}, , m ∈ {1, . . . , q} and t ∈ {1, . . . , n},

∂ 2 W t ∂β j ∂β k = - q∧(t-1) i=1 γ i E t-i + 1 + E t-i exp(W t-i ) α 1 + exp(W t-i ) α ∂ 2 W t-i ∂β k ∂β j + q∧(t-1) i=1 γ i    E t-i + 2 E t-i exp(2W t-i ) α + Y t-i α 1 + exp(W t-i ) α 2 + 1 -E t-i exp(W t-i ) α 1 + exp(W t-i ) α    ∂W t-i ∂β j ∂W t-i ∂β k , ∂ 2 W t ∂γ ∂γ m = ∂E t- ∂γ m -E t-m + 1 + E t-m exp(W t-m ) α 1 + exp(W t-m ) α ∂W t-m ∂γ - q∧(t-1) i=1 γ i E t-i + 1 + E t-i exp(W t-i ) α 1 + exp(W t-i ) α ∂ 2 W t-i ∂γ ∂γ m + q∧(t-1) i=1 γ i    E t-i + 2 E t-i exp(2W t-i ) α + Y t-i α 1 + exp(W t-i ) α 2 + 1 -E t-i exp(W t-i ) α 1 + exp(W t-i ) α    ∂W t-i ∂γ ∂W t-i ∂γ m = -E t-+ 1 + E t- exp(W t-) α 1 + exp(W t-) α ∂W t- ∂γ m -E t-m + 1 + E t-m exp(W t-m ) α 1 + exp(W t-m ) α ∂W t-m ∂γ - q∧(t-1) i=1 γ i E t-i + 1 + E t-i exp(W t-i ) α 1 + exp(W t-i ) α ∂W 2 t-i ∂γ ∂γ m + q∧(t-1) i=1 γ i    E t-i + 2 E t-i exp(2W t-i ) α + Y t-i α 1 + exp(W t-i ) α 2 + 1 -E t-i exp(W t-i ) α 1 + exp(W t-i ) α    ∂W t-i ∂γ ∂W t-i ∂γ m .
To compute the second derivatives of W t , we shall use the following recursive expressions for all j, k ∈ {0, . . . , p}

∂ 2 W 1 ∂β j ∂β k = 0, ∂ 2 W 2 ∂β j ∂β k = γ 1    E 1 + 2 E 1 exp(2W 1 ) α + Y 1 α 1 + exp(W 1 ) α 2 + 1 -E 1 exp(W 1 ) α 1 + exp(W 1 ) α    ∂W 1 ∂β j ∂W 1 ∂β k ,
where E 1 is defined in (5.16) and so on. Moreover, for all , m ∈ {1, . . . , q}

∂ 2 W 1 ∂γ ∂γ m = 0, ∂ 2 W 2 ∂γ ∂γ m = 0
and so on with E t = 0 for all t ≤ 0 and the first derivatives of W t computed in (5.15).

5.

A.2 Computational details for obtaining Criterion (5.11) By (5.10),

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ, α)U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ),
where νν (0) = U (β -β (0) ). Hence,

L(β) = L(β (0) ) + p k=0 ∂L ∂β (β (0) , γ, α)U k (ν k -ν (0) k ) - 1 2 p k=0 λ k (ν k -ν (0) k ) 2 = L(β (0) ) - 1 2 p k=0 λ k ν k -ν (0) k - 1 λ k ∂L ∂β (β (0) , γ, α)U k 2 + p k=0 1 2λ k ∂L ∂β (β (0) , γ, α)U 2 k ,
where the λ k 's are the diagonal terms of Λ.

Since the only term depending on β is the second one in the last expression of L(β), we define L Q (β) appearing in Criterion (5.11) as follows:

-L Q (β) = 1 2 p k=0 λ k ν k -ν (0) k - 1 λ k ∂L ∂β (β (0) , γ, α)U k 2 = 1 2 Λ 1/2 ν -ν (0) -Λ -1 ∂L ∂β (β (0) , γ, α)U 2 2 = 1 2 Λ 1/2 U (β -β (0) ) -Λ -1/2 U ∂L ∂β (β (0) , γ, α) 2 2 = 1 2 Λ 1/2 U (β (0) -β) + Λ -1/2 U ∂L ∂β (β (0) , γ, α) 2 2 = 1 2 Y -X β 2 2 ,
where Chapter 6

Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ, α) , X = Λ 1/2 U .

5.B Additional results

Conclusion and Perspectives

Conclusion

In this thesis, we have developed novel variable selection methods for sparse GLARMA models, which can be used for modelling discrete-valued time series. Specifically, Chapter 2 presents an estimation procedure for sparse GLARMA Poisson models. Furthermore, in Chapter 4, we establish a sign-consistency result for the estimator of the regression coefficients in a Poisson model without time dependence, subject to mild conditions. In Chapter 3, we extend our estimation procedure to the multivariate case, while in Chapter 5, we expand it to the negative binomial setting. The key idea behind our estimation procedure is to first estimate the ARMA coefficients, and then employ a regularised approach, namely the Lasso, to estimate the regression coefficients. In the case of the negative binomial setting, we also estimate the overdispersion parameter prior to estimating the regression coefficients.

Throughout our investigations across different frameworks, our methods have demonstrated two compelling features that enhance their appeal. Firstly, our approach exhibits very good statistical performance, surpassing other methods in accurately identifying non-null regression coefficients. Secondly, its low computational burden enables its application to relatively large datasets.

The methodologies proposed in this thesis hold significant potential in various application fields. We have applied our approaches to RNA-Seq data, characterised by dependencies such as temporal dependence.

In the forthcoming section, we will present some perspectives that can be a continuation of this research.

Perspectives

Extension to the zero-inflated setting

One of the perspectives of this work is its extension to the zero-inflated setting. Zero-inflated models are used to analyse data that exhibit an excessive number of zero values. These models are commonly employed when traditional models, such as Poisson or negative binomial, fail to adequately capture the excess zeros observed in the data. Zero-inflated models are advantageous in analysing RNA-Seq data, primarily due to their ability to effectively handle the abundant number of zero counts commonly observed in these datasets. In the context of RNA-Seq, these zero counts typically represent genes that are not expressed or have extremely low expression levels in the analysed sample. In recent years, there has been a growing interest in modelling RNA-Seq data using zero-inflated models, see, e.g., [START_REF] Alam | Zero-inflated models for RNA-Seq count data[END_REF].

A zero-inflated ARMA model for count time series was studied by [START_REF] Sathish | Autoregressive and moving average models for zero-inflated count time series[END_REF]. They consider the zero-inflated negative binomial model, which also accounts for overdispersion. Given the past history F t , the conditional distribution of the counts Y t at time t is modelled by a hierarchical mixture distribution,

Y t |F t =      0 with probability π t + (1 -π t ) k k+λt k , m with probability (1 -π t ) Γ(m+k) m! Γ(k) λt k+λt m k k+λt k ,
where m = 1, 2, 3, . . . , k ≥ 0 is the overdispersion parameter, F t is the information available on responses till time t -1 and on covariates till time t, λ t is the intensity parameter, and π t is the zero-inflated parameter. The conditional mean and variance of

Y t |F t are E(Y t |F t ) = λ t (1 -π t ) =: µ t and Var(Y t |F t ) = λ t (1 -π t ) (1 + λ t π t + λ t /k) =: σ 2
t , respectively. λ t and π t are modelled as

λ t = exp(W t ), π t = exp(M t ) 1 + exp(M t )
,

where the state processes

W t = x t β + Z t , M t = u t δ + V t
are assumed to depend on covariates x t and u t of length p 1 and p 2 , respectively. Moreover,

Z t = q 1 j=1 θ j E t-j , V t = q 2 j=1 γ j E t-j ,
where the standardised error E t is defined as

E t = Y t -µ t σ t .
Note that when q = ∞, (Z t ) and (V t ) satisfy the ARMA-like recursions given in Equation (4) of [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF].

Let us denote Θ = (β, θ, δ, γ, k) to be the set of all parameters. Θ is estimated with maximum likelihood approach, by considering the partial log-likelihood function given by [START_REF] Fokianos | Partial likelihood inference for time series following generalized linear models[END_REF]:

PL(Θ) = N t=1 PL t (Θ) = Yt=0 log π t + (1 -π t )p k t + Yt>0 log(1 -π t ) + log Γ(k + y t ) -log Γ(k) log Y t ! + k log pt + Y t log (1 -pt ) ,
where pt =: k/(k + λ t ). Since it is not possible to obtain a closed-form formula for the estimate of Θ, [START_REF] Sathish | Autoregressive and moving average models for zero-inflated count time series[END_REF] use iterative algorithms, such as Newton-Raphson and expectationmaximisation.

For selecting the non-null coefficients in β, one could adapt our two-step estimation procedure proposed in Chapter 2 to the zero-inflated ARMA model for the count time series described above. However, it will require additional developments since the number of parameters to estimate in the zero-inflated setting is much larger, and their estimation is not straightforward.

Further extensions to the multivariate setting

In Chapter 3, we discussed a multivariate model that considers simultaneously multiple time series. For example, one can consider RNA-Seq time series, where gene expressions are considered under different temperature conditions and for several replications. However, our current method only considers the dependence between observations within the same time series, assuming independence between different time series recorded in parallel. To further enhance our model described in Chapter 3, it is worth considering a potential extension to accommodate more complex dependence structures. More precisely, we should aim to incorporate the dependence that may exist both between the observations of the same time series and between the observations recorded in different conditions and replications. This generalisation allows achieving more comprehensive data analysis and a more accurate representation of the underlying relationships between variables.

In the class of observation-driven models, the majority of studies have primarily focused on linear and log-linear count time series models within a multivariate framework. However, as highlighted by [START_REF] Fokianos | Multivariate count time series modelling[END_REF], this particular research area remains relatively underdeveloped, presenting numerous opportunities for novel advancements. The exciting multivariate observation-driven approaches are modelled with Poisson distribution with marginal means. More precisely, let λ t = (λ 1,t , . . . , λ d,t ) be a d-dimensional vector of intensity parameters and Y t = (Y 1,t , . . . , Y d,t ) be a multivariate count time series at time t. Given the past history

F t-1 = σ(Y s , s ≤ t -1), we assume that Y i,t |F t-1 ∼ P (λ i,t ) .
For a simple illustration, let us consider the multivariate vector autoregression process of order 1 (VAR(1)), which is defined by

λ t = ω + B 1 Y t-1 ,
where ω is a d-dimensional vector, and B 1 is a d × d matrix. To ensure that λ i,t > 0, for all i and t, we assume that the elements of ω and B 1 are positive. In the simple case when d = 2, we have

λ 1t = ω 1 + b 11 1 Y 1,t-1 + b 12 1 Y 2,t-1 , λ 2t = ω 2 + b 21 1 Y 1,t-1 + b 22 1 Y 2,t-1 ,
where ω i is the i'th element of ω and b ij 1 is the (i, j)th element of B 1 . b 12 1 shows the effect of Y 2,t-1 on Y 1,t and b 21 1 shows the effect of Y 1,t-1 on Y 2,t . A recent study by [START_REF] Fokianos | Multivariate count time series modelling[END_REF] highlights that the inference process is complex in this model, especially when d is large. To address this challenge, several studies have suggested the utilisation of copulas. When applying a copula, marginal distributions are combined to give a joint distribution. For a detailed introduction to copulas, we recommend referring to the work of [START_REF] Nelsen | An introduction to copulas[END_REF].

The above mentioned approach lays the groundwork for extending GLARMA models into a broader multivariate context. It is worth emphasising that, as of now, there have been no dedicated studies focusing on the inference methods for multivariate GLARMA models. Consequently, this area represents a promising subject for further research. Exploring the inference techniques for such models can potentially contribute significantly to the field.

Chapter 7

Synthèse en français 7.1 Contexte et motivation L'intérêt pour la modélisation des données discrètes s'est accru au cours des dernières décennies. Il s'explique principalement par le fait que de nombreux modèles continus classiques ne peuvent pas interpréter avec précision les données discrètes. Cependant, avec l'abondance de ces données dans divers domaines d'application, la nécessité de décrire efficacement les données discrètes devient évidente. La modélisation devient plus difficile lorsqu'il faut prendre en compte la dépendance dans les données, telle que la dépendance temporelle. Un exemple de ce type de données sont les séries temporelles à valeurs discrètes. L'étude des séries temporelles à valeurs discrètes a récemment fait l'objet de nombreux travaux de recherche. Plusieurs articles de synthèse et livres récents sur ce sujet incluent, sans s'y limiter, les travaux de [START_REF] Davis | Count time series: A methodological review[END_REF]; [START_REF] Fokianos | Multivariate count time series modelling[END_REF]; [START_REF] Weiss | An introduction to discrete-valued time series[END_REF]; Davis et al. (2016).

Quelques exemples de données de séries temporelles à valeurs entières

Les séries temporelles à valeurs entières sont utilisées dans de nombreux domaines scientifiques, tels que : l'économie, la finance, l'épidémiologie et la biologie moléculaire. Un exemple de ces données en épidémiologie est la dynamique de contagion de la COVID-19, voir, par example, Agosto and Giudici (2020). Dans ce cas, les données représentent les nouveaux cas quotidiens d'infection. L'un des objectifs du traitement de ces données est de prévoir les périodes de pics de contagion afin de prévenir la propagation de la maladie en proposant des mesures, telles que des restrictions de mobilité.

On trouve également des séries temporelles à valeurs entières en criminologie, représentant le nombre de crimes commis au cours d'une période spécifique, voir, par exemple, [START_REF] Kim | Robust estimation for bivariate Poisson INGARCH models[END_REF]. Grâce aux modèles de séries temporelles à valeurs discrètes, les criminologues peuvent identifier des modèles et des tendances dans ces données, tels que les variations saisonnières et les augmentations imprévues de l'activité criminelle. Ces informations peuvent être utilisées pour la prévention de la criminalité. Un autre exemple est le nombre de transactions sur les actions en finance, voir, par exemple, [START_REF] Brännäs | Integer-valued moving average modelling of the number of transactions in stocks[END_REF]. En modélisant efficacement les données des transactions, il est possible de mieux comprendre les tendances du marché et, par conséquent, d'améliorer les performances financières.

Un exemple de série temporelle à valeurs entières en biologie moléculaire sont les séries temporelles de données de séquençage de l'ARN (RNA-Seq). Le RNA-Seq est une approche technique qui permet d'identifier et de quantifier les fragments d'acide ribonucléique (ARN) dans un échantillon biologique. L'association de ces fragments d'ARN à des gènes permet de déterminer le niveau d'expression des gènes sous forme de nombres entiers. L'étude de ces données est très intéressante car la technique RNA-Seq a contribué de manière significative à la biologie et à la médecine au cours des dernières années, voir [START_REF] Haque | A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[END_REF]. Un intérêt particulier est porté aux méthodes statistiques pour analyser les données RNA-Seq, voir [START_REF] Nguyen | RNA-seq count data modelling by grey relational analysis and nonparametric gaussian process[END_REF]. Dans séries temporelles de données RNA-seq, les niveaux d'expression des gènes sont mesurés à différents moments. En traitant ces données, il est possible d'étudier comment les conditions biologiques et environnementales influencent les changements d'expression des gènes au fil du temps. En outre, les séries temporelles de données RNA-seq peuvent être utilisées pour étudier la dépendance temporelle entre différents gènes.

L'étude des données de séries temporelles de type RNA-Seq a de nombreuses applications importantes. L'identification des modèles d'expression génique au fil du temps est cruciale pour comprendre les processus biologiques dynamiques tels que le développement et la progression des maladies. Par exemple, [START_REF] Oh | Time series expression analyses using RNA-seq: A statistical approach[END_REF] appliquent différentes approches statistiques pour étudier le développement du poisson-zèbre et la cicatrisation des os pour un modèle de mouton. [START_REF] Thorne | Approximate inference of gene regulatory network models from RNA-Seq time series data[END_REF] propose une méthode statistique pour étudier les réseaux de régulation des gènes à partir de données de séries temporelles RNA-seq, grâce à laquelle il est possible d'identifier les gènes principaux et les relations de régulation qui jouent un rôle dans les processus biologiques. De manière générale, la communauté biomédicale accorde de plus en plus d'importance à l'utilisation de méthodes dynamiques temporelles pour comprendre les processus biologiques sous-jacents qui déterminent les changements d'expression des gènes au cours du temps, voir, par example, [START_REF] Oh | Temporal dynamic methods for bulk RNA-seq time series data[END_REF]. Dans cette thèse, une des applications qui nous intéresse est la modélisation des séries temporelles RNA-Seq.

Modèles pour les séries temporelles à valeur discrètes

Les modèles pour les séries temporelles à valeur discrètes peuvent être regroupés en deux classes principales : les modèles integer-valued autoregressive moving-average (INARMA) et les modèles à espaces d'états généralisés. Dans ce qui suit, nous présentons une introduction générale à ces deux classes de modèles. (1985) et Al-Osh and [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) process[END_REF] [START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF] et [START_REF] Du | The integer-valued autoregressive (INAR(p)) model[END_REF]. Les deux méthodes sont basées sur la récursivité suivante

Modèles INARMA

McKenzie

Y t = α 1 Y t-1 + • • • + α p Y t-p + ε t , (7.3) 
où l'on suppose que p j=1 α j < 1. Le modèle de la moyenne mobile entière est l'extension à valeurs entières du modèle MA. Le modèle de la moyenne mobile entière à l'ordre 1 (INMA(1)) a été proposé par Al-Osh and [START_REF] Al-Osh | Integer-valued moving average (INMA) process[END_REF]. Il utilise la récursivité suivante [START_REF] Fokianos | Nonlinear poisson autoregression[END_REF].

Y t = ε t + β ε t-
Le sujet principal de cette thèse sera les modèles GLARMA, qui ont été introduits par [START_REF] Davis | Modeling time series of count data[END_REF] et étudiés plus en détail par [START_REF] Davis | Observation-driven models for Poisson counts[END_REF], [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], et [START_REF] Dunsmuir | Generalized Linear Autoregressive Moving Average Models[END_REF]. Nous définissons le modèle GLARMA avec covariables, introduites par [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF] comme suit : pour les observations dans (7.4),

µ t = exp(W t ) où W t = β 0 + p i=1 β i x t,i + Z t ,
(7.5) les x t,i sont p variables explicatives (p ≥ 1) et [START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF][START_REF] Johnstone | Statistical challenges of high-dimensional data[END_REF]. En d'autres termes, seulement une petite fraction des variables est significative dans la modélisation. En sélectionnant les variables, on peut obtenir un estimateur parcimonieux de β β β , où les coefficients non nuls estimés déterminent les variables sélectionnées. Au cours des dernières années, de nombreuses méthodes de sélection de variables pour les modèles linéaires ont été développées, qui peuvent être classées en plusieurs catégories. Bien que nous donnions ici une brève description de ces méthodes, pour plus de détails, nous référons le lecteur aux articles de synthèse récents de Heinze et al. (2018[START_REF] Desboulets | A review on variable selection in regression analysis[END_REF]. Les méthodes de la première catégorie reposent sur un modèle de base appelé régression stepwise proposé par [START_REF] Breaux | On stepwise multiple linear regression[END_REF], qui comporte deux approches. Dans l'approche forward, la régression stepwise part d'un modèle nul (sans aucune variable explicative). À chaque étape, une nouvelle variable est introduite dans le modèle. Cette procédure se poursuit jusqu'à l'obtention d'un modèle complet avec toutes les variables. Au contraire, l'approche backward commence par le modèle complet avec toutes les variables, et à chaque étape, une variable est retirée du modèle. La sélection dans ces approches est effectuée à l'aide de critères, tels que les tests d'hypothèse, comme expliqué par [START_REF] Heinze | Variable selection -a review and recommendations for the practicing statistician[END_REF], R 2 ajusté, et les critères d'information, y compris AIC par [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], BIC par [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF], et C p de Mallows par Mallows (1973).

Z t = q j=1 γ j E t-j avec E t = Y t -µ t µ t = Y t exp(-W t ) -1, (7.6) où 1 ≤ q ≤ ∞ et E t = 0 pour tout t ≤ 0. Ici,
Y Y = (Y 1 , . . . , Y n ) sont générées par Y i = x i β β β + ε i , 1 ≤ i ≤ n, ( 7 
Les méthodes de la deuxième catégorie sont les méthodes régularisées. Dans ces approches, l'idée est d'appliquer une pénalité sur les paramètres afin d'obtenir une estimation parcimonieuse et, par conséquent, d'effectuer une sélection de variables. L'une des approches régularisées les plus utilisées est le least absolute shrinkage and selection operator (Lasso), introduit par [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. L'estimateur Lasso pour la sélection de variables dans le modèle (7.7) est le suivant :

β β β = arg min β β β Y Y Y -X X Xβ β β 2 2 + λ β β β 1 , (7.8) où u 2 2 = n k=1 u 2 k pour un vecteur u = (u 1 , . . . , u n ), v 1 = p k=1 |v k | pour un vecteur v = (v 1 , . . . , v p ), et λ > 0.
La pénalisation Lasso peut être appliquée à n'importe quel modèle linéaire généralisé. Dans les modèles de Poisson, l'estimateur Lasso est basé sur la minimisation de la fonction de log-vraisemblance pénalisée, voir par, exemple, [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. Plus précisément, il consiste en le remplacement de la norme 2 dans l'équation (7.8) par l'opposé de la fonction de log-vraisemblance.

Consistance en signe de l'estimateur Lasso

Des recherches considérables ont été faites pour étudier les propriétés théoriques de l'estimateur Lasso dans le cadre gaussien, lorsque dans l'équation (7.7) ε 1 , . . . , ε n sont des variables aléatoires gaussiennes i.i.d. En particulier, plusieurs études établissent des résultats de consistance en signe pour l'estimateur Lasso, c'est-à-dire qu'elles examinent dans quelles conditions le signe de l'estimateur β β β est le même que cellui de β β β . Par exemple, [START_REF] Knight | Asymptotics for Lasso-type estimators[END_REF] montrent la consistance de l'estimateur Lasso pour p fixé ; [START_REF] Meinshausen | High-dimensional graphs and variable selection with the Lasso[END_REF] montrent que l'estimateur Lasso est consistant même lorsque p croît plus vite que n ; [START_REF] Zhao | On model selection consistency of Lasso[END_REF] montrent la consistance de la sélection de modèle à la fois pour p fixé et pour p plus grand que n. Celle-ci est fondée sur la condition d'irreprésentabilité, qui est nécessaire et suffisante pour la consistance de la sélection de modèle de l'estimateur Lasso, en d'autres termes, pour retrouver les éléments nuls et non nuls de β β β . La condition d'irreprésentabilité exige que la corrélation entre les variables actives (correspondant aux coefficients non nulls de β β β ) et non actives (correspondant aux coefficients non nulls de β β β ) soit inférieure à la corrélation entre les variables actives.

Les résultats discutés précédemment n'ont pas été prouvés pour les observations à valeurs discrètes. C'est ce que nous prouvons dans le chapitre 4 dans lequel nous établissons la consistance en signe de l'estimateur Lasso pour les observations de loi de Poisson.

Méthodes de sélection de variables pour les séries temporelles à valeurs discrètes

Les méthodes de sélection de variables peuvent être appliquées aux modèles de séries temporelles à valeurs discrètes discutés dans la section 7.1.2. Cependant, la littérature sur les méthodes de sélection de variables dans les séries temporelles à valeurs discrètes est très limitée. Il existe plusieurs approches qui utilisent des méthodes pénalisées. [START_REF] Zhang | Regularized estimation in GINAR(p) process[END_REF] ont présenté une méthode régularisée pour les processus généralisés auto-régressifs à valeurs entières d'ordre p (GINAR(p)). Les modèles GINAR(p) sont une extension des modèles INAR(p) définis dans l'équation (7.3). Cependant, au lieu du binomial thinning operator, ils considèrent le generalised thinning operator, défini de manière analogue à l'équation (7.1).

Dans le generalised thinning operator, la séquence {Z k } représente des variables aléatoires non négatives à valeurs entières avec une moyenne α et une variance σ 2 . Contrairement au generalised thinning operator, les valeurs de Z k ne sont pas limitées à l'ensemble {0, 1}. Les auteurs proposent une estimation pénalisée en ajoutant une pénalité au critère des moindres carrés conditionnels. Ils considèrent différentes fonctions de pénalité, dont le Lasso adaptatif de Zou (2006). L'estimateur Lasso adaptatif est défini comme suit :

β AD β AD β AD = arg min β β β Y Y Y -X X Xβ β β 2 2 + λ p j=1 w j |β j | , où w j = 1/| β j | τ , β j étant,
par exemple, la j-ème composante de l'estimateur des moindres carrés et τ > 0.

Une autre approche de sélection de variables est proposée par Wang (2020) dans les modèles auto-régressifs de Poisson à valeurs entières du premier ordre (PINAR(1)). Le modèle de l'équation (7.2) est ici considéré dans le cadre de Poisson. La sélection de variables est effectuée en utilisant le critère des moindres carrés conditionnels pénalisés, le Lasso adaptatif étant l'une des approches de pénalisation. [START_REF] Wang | Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure[END_REF] considèrent le modèle auto-régressif de Poisson et effectuent la sélection de variables à l'aide de la log-vraisemblance conditionnelle pénalisée. Comme les méthodes précédentes, ils considèrent plusieurs fonctions de pénalisation, y compris le Lasso adaptatif.

À ce jour, aucun article n'a adapté les modèles GLARMA à la sélection de variables. Nous introduisons dans le chapitre 2 une approche de sélection de variables dans les modèles GLARMA de Poisson parcimonieux. Dans ce qui suit, nous présentons la procédure d'estimation habituelle dans les modèles GLARMA.

Estimation classique dans les modèles GLARMA

Comme l'expliquent [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF], le paramètre δ = (β , γ ) dans les modèles GLARMA défini dans (7.4), (7.5) et (7.6) peut être estimé en utilisant le critère suivant fondé sur la log-vraisemblance conditionnelle, où β = (β 0 , β 1 , . . . , β p ) est le vecteur des coefficients de régression dans (7.5) et γ = (γ 1 , . . . , γ q ) est le vecteur des coefficients de la partie ARMA dans (7.6). Ce critère consiste à maximiser par rapport à δ = (β , γ ), avec β = (β 0 , β 1 , . . . , β p ) et γ = (γ 1 , . . . , γ q ) :

L(δ) = n t=1 (Y t W t (δ) -exp(W t (δ))) .
(7.9) Dans (7.9),

W t (δ) = β x t + Z t (δ) = β 0 + p i=1 β i x t,i + q j=1
γ j E t-j (δ), (7.10) avec x t = (x t,0 , x t,1 , . . . , x t,p ) , x t,0 = 1 pour tout t et

E t (δ) = Y t exp(-W t (δ)) -1, si t > 0 et E t (δ) = 0, si t ≤ 0.
Pour obtenir δ défini par δ = arg max δ L(δ), on considère les dérivées premières de L : Sur la base de l'équation (7.11), qui n'est pas linéaire en δ et qui doit être calculée de manière récursive, il n'est pas possible d'obtenir une formule pour δ. Par conséquent, on calcule δ en utilisant l'algorithme de Newton-Raphson. Plus précisément, en partant d'une valeur initiale pour δ notée δ (0) , on utilise la récursion suivante pour r ≥ 1 : Nous nous intéressons à la sélection de variables dans les modèles GLARMA parcimonieux définis dans (7.4), (7.5) et (7.6), où de nombreuses composantes de β sont nulles. La procédure d'estimation classique expliquée dans la section 7.2.1, fondée sur l'estimation récursive définie dans l'équation (7.12), donne des résultats d'estimation médiocres dans le cadre parcimonieux. C'est la raison pour laquelle nous avons conçu une nouvelle procédure d'estimation. Nous proposons une nouvelle approche de sélection de variables en deux étapes dans la partie déterministe (covariables) des modèles GLARMA parcimonieux. Notre approche consiste à combiner une procédure d'estimation des coefficients de la partie ARMA pour prendre en compte la dépendance temporelle qui peut exister dans les données avec des méthodes régularisées conçues pour les GLM.

∂L ∂δ (δ) = n t=1 (Y t -exp(W t (δ)) ∂W t ∂δ ( 
δ (r) = δ (r-1) - ∂ 2 L ∂δ ∂δ (δ (r-1) ) -1 ∂L ∂δ (δ (r-1) ), ( 
Nous considérons la log-vraisemblance conditionnelle L(δ δ δ) définie dans l'équation (7.9). Dans la première étape, pour estimer γ nous utilisons

γ = arg max γ L(β (0) , γ ), où β (0) = (β (0) 0 , . . . , β (0) 
p ) est une valeur initiale donnée pour β et γ = (γ 1 , . . . , γ q ) . Nous utilisons l'algorithme de Newton-Raphson pour obtenir γ sur la base de la récursion suivante pour r ≥ 1 à partir de la valeur initiale γ (0) = (γ 0) , γ (r-1) ).

(0) 1 , . . . , γ (0) q ) : γ (r) = γ (r-1) - ∂ 2 L ∂γ ∂γ (β (0) , γ (r-1) ) -1 ∂L ∂γ (β ( 
Dans la deuxième étape, pour effectuer une sélection de variables dans les β i du modèle (7.5) visant à obtenir un estimateur parcimonieux de β i , nous utilisons une méthodologie inspirée de Friedman et al. (2010) pour l'ajustement de modèles linéaires généralisés avec des pénalités de 1 . Elle consiste à pénaliser une approximation quadratique de la log-vraisemblance obtenue par un développement de Taylor. En utilisant β (0) et γ définis ci-dessus, l'approximation quadratique est la suivante :

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ)U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ),
où U ΛU est la décomposition en valeurs singulières de la matrice symétrique semi-définie positive 0) ). Afin d'obtenir un estimateur parcimonieux de β , nous proposons d'utiliser β(λ) défini par

-∂ 2 L ∂β∂β (β (0) , γ) et ν -ν (0) = U (β -β ( 
β(λ) = arg min β -L Q (β) + λ β 1 , pour un λ positif, où β 1 = p k=0 |β k | et L Q (β) désigne l'approximation quadratique de la log-vraisemblance définie par -L Q (β) = 1 2 Y -X β 2 2 , avec Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ) , X = Λ 1/2 U et • 2 représente la norme 2 dans R p+1 .
Pour obtenir l'estimateur final β de β , nous utilisons la procédure de stability selection conçue par [START_REF] Meinshausen | Stability selection[END_REF], qui garantit la robustesse des variables sélectionnées. En pratique, nous pouvons améliorer l'estimation en itérant l'algorithme de Newton-Raphson et l'étape de sélection de variables. Les détails de l'algorithme sont présentés dans la section 2.2.3.

Dans le théorème 2.2.1, nous établissons la consistance du paramètre γ 1 dans le cas où q = 1 et où Y 1 , . . . , Y n sont définis dans (7.4) et (7.6) et où (7.5) est remplacé par

µ t = exp(W t ) with W t = β 0 + Z t ,
sous l'hypothèse que γ 1 ∈ Γ, où Γ est un ensemble compact de R qui ne contient pas 0. Plus précisément, soit γ 1 = Argmax γ 1 ∈Γ L(β 0 , γ 1 ). Nous prouvons que γ 1 converge en probabilité vers γ 1 , lorsque n tend vers l'infini. Les principaux outils utilisés pour prouver la consistance de γ 1 sont la propriété de Markov et l'ergodicité de (W t ).

Pour évaluer les performances de la méthode proposée, dont l'implémentation est disponible dans le package R GlarmaVarSel sur le CRAN (Comprehensive R Archive Network), nous avons effectué de nombreuses simulations numériques dans différents contextes. Notre méthode a montré de très bonnes performances d'un point de vue numérique et statistique. Des détails supplémentaires peuvent être trouvés dans la section 2.3.

Dans la section 2.4, nous avons appliqué notre méthode à l'étude de certaines données de séries temporelles de type RNA-Seq. Par convention, la plupart des séquences d'ARN proviennent de gènes appelés gènes codants pour des protéines. Ils représentent un très faible pourcentage de l'ADN, comme expliqué, par exemple, dans [START_REF] Harrow | Identifying protein-coding genes in genomic sequences[END_REF]. Le reste des gènes, appelés gènes non codants, ne donne pas d'instructions pour la construction de protéines. Cependant, comme l'explique [START_REF] Wu | The diversity of long noncoding RNAs and their generation[END_REF], les gènes non codants apparaissent comme des régulateurs importants potentiels de l'expression des gènes codants. Dans ce cadre, seuls quelques gènes non codants parmi de nombreux autres sont susceptibles d'être impliqués dans l'explication de l'expression des gènes codants. Nous avons appliqué notre approche de sélection de variables aux séries temporelles de type RNA-Seq afin d'identifier les gènes non codants importants qui expliquent l'expression des gènes codants. De plus, grâce à notre méthode, nous prenons en compte la dépendance temporelle qui peut exister entre ces gènes codants.

Contribution du chapitre 4 : estimation consistante en signe dans le modèle de Poisson parcimonieux

Comme indiqué précédemment, les résultats de consistance en signe de l'estimateur Lasso discuté dans la section 7.2.1 ne sont établis que dans le cadre gaussien. Cependant, ils peuvent ne pas être valables pour des données à valeurs discrètes. Dans ce travail, nous établissons un nouveau résultat de consistance en signe dans le modèle de Poisson parcimonieux. Soient Y 1 , . . . , Y n des variables aléatoires indépendantes telles que pour tout i, 

= X T 1 X 1 /n X T 1 X 2 /n X T 2 X 1 /n X T 2 X 2 /n = C 11 C 12 C 21 C 22 .
L'outil principal de la preuve de ce théorème est l'utilisation de l'inégalité de Bernstein donnée dans (Boucheron et al., 2013, Corollary 2.11).

Extension à d'autres cadres

Modélisation de séries temporelles à valeurs discrètes multivariées

État de l'art

La modélisation des séries temporelles à valeurs discrètes multivariées a fait l'objet d'un travail considérable ces dernières années. La plupart des modèles de séries temporelles à valeurs discrètes multivariées sont des extensions des modèles univariés discutés dans la section 7.1.2. Un aperçu détaillé des principales approches de la modélisation des séries temporelles à valeurs discrètes multivariées est présenté par [START_REF] Fokianos | Multivariate count time series modelling[END_REF].

Le modèle INAR multivarié (MINAR) est basé sur le multivariate thinning operator. Considérons un vecteur aléatoire de dimension d : X = (X 1 , . . . , X d ) , où chaque élément représente une variable non négative à valeur entière. Soit A = (α ij ) une matrice de taille n × n des multivariate thinning operators, où chaque élément est obtenu en utilisant le generalised thinning operator discuté dans la section 7.2.1, ainsi que le tableau correspondant de séries temporelles à valeurs discrètes {Z ij;k , k ∈ N}, qui sont des variables aléatoires i.i.d à valeurs entières indépendantes de X. Ici, E (Z ij;k ) = α ij et Var (Z ij;k ) = β ij . Le multivariate thinning operator est défini comme suit

A X =    d j=1 α 1j X j . . . d j=1 α dj X j    .
Soit (Y t ) une série temporelle à d dimensions. Le modèle MINAR(p) est défini comme suit

Y t = n i=1 A i Y t-i + ε t ,
où {ε t } est une séquence de vecteurs aléatoires i.i.d à valeurs entières, de moyenne µ t et de matrice de la variance Σ, qui est indépendante de tous les thinning operators. Les propriétés du MINAR ont été établies par [START_REF] Franke | Multivariate first-order integer values autoregressions[END_REF]Rao (1995) et Latour (1997). D'autres études sur les MINAR ont été réalisées par Pedeli and Karlis (2013a) et Pedeli and Karlis (2013b). Plusieurs études traitent des modèles à espaces d'états parameter-driven dans un cadre multivarié, notamment [START_REF] Jørgensen | State-space models for multivariate longitudinal data of mixed types[END_REF], [START_REF] Jung | Dynamic factor models for multivariate count data: An application to stock-market trading activity[END_REF][START_REF] Ravishanker | Hierarchical dynamic models for multivariate times series of counts[END_REF]. [START_REF] Wang | Modelling non-stationary multivariate time series of counts via common factors[END_REF] a étendu le modèle univarié de Zeger (1988) discuté dans la section 7.1.2 au cadre multivarié en considérant un processus latent {ε t } de dimension d.

De nombreux modèles de séries temporelles à valeurs discrètes multivariées observationdriven utilisent l'approche des copules, voir, par exemple, [START_REF] Inouye | A review of multivariate distributions for count data derived from the Poisson distribution[END_REF]. Un exemple est le modèle multivarié conditionnel auto-régressif double Poisson de [START_REF] Heinen | Multivariate autoregressive modeling of time series count data using copulas[END_REF], basé sur la loi double Poisson où le vecteur moyen étant un processus VARMA. Un autre modèle utilisant la copule est développé par [START_REF] Bien | An inflated multivariate integer count hurdle model: an application to bid and ask quote dynamics[END_REF] pour les séries temporelles à valeurs discrètes avec un domaine Z n , n ∈ N. Ici, les probabilités conditionnelles de la direction du processus (si le processus est négatif, positif ou égal à zéro) sont modélisées avec le modèle multinomial conditionnel auto-régressif (ACM). [START_REF] Fokianos | Multivariate count autoregression[END_REF] imposent une fonction copule sur un vecteur de variables aléatoires continues liées pour déterminer la loi conjointe de la série temporelle à valeurs discrètes. Enfin, [START_REF] Held | A statistical framework for the analysis of multivariate infectious disease surveillance data[END_REF] proposent une approche qui peut être considérée comme un modèle de processus de branchement de Poisson avec immigration. Dans ce modèle, au temps t, la moyenne de chaque série est spécifiée par des covariables qui sont les observations à valeurs entières d'autres séries au temps t -1.

Comme dans le cas des données univariées, il existe très peu de méthodes permettant d'effectuer une sélection de variables dans les séries temporelles à valeurs discrètes multivariées. Un exemple est la méthode de sélection de variables pour les données de Poisson multivariées 103 utilisant l'approche de spike and slab de [START_REF] Giese | Modeling nematode population dynamics using a multivariate poisson model with spike and slab variable selection[END_REF], qui est basée sur l'extension du modèle de Poisson Lognormal de [START_REF] Aitchison | The multivariate poisson-log normal distribution[END_REF] Nous mettons en place une méthode de sélection de variables, qui est une extension de l'approche présentée dans la section 7.2.2 au cas multivarié, en considérant le modèle GLARMA multivarié suivant. Étant donné l'historique F i,j,t-1 = σ(Y i,j,s , s ≤ t -1), nous supposons que Y i,j,t |F i,j,t-1 ∼ P(µ i,j,t ), (7.16) où P(µ) représente la loi de Poisson de moyenne µ, 1 ≤ i ≤ I, 1 ≤ j ≤ n i et 1 ≤ t ≤ T . Par exemple, Y i,j,t peut être considéré comme une variable aléatoire modélisant la t-ème observation de la j-ème réplication de la série temporelle obtenue dans la condition i. Dans (7.16) µ i,j,t = exp(W i,j,t ), avec W i,j,t = η i,t + Z i,j,t , (7.17) où Z i,j,t = q k=1

γ k E i,j,t-k , avec 1 ≤ q ≤ ∞, (7.18) et η i,t , la partie non aléatoire de W i,j,t , ne dépend pas de j. Notons η η η = (η 1,1 , . . . , η I,1 , η I,2 , . . . , η I,T ) le vecteur de coefficients correspondant à l'effet d'une variable qualitative sur les observations. Par exemple, η i,t peut être considéré comme l'effet de la condition i sur la réponse au temps t. Supposons en outre que γ γ γ = (γ 1 , . . . , γ q ) soit tel que k≥1 |γ k | < ∞. En considérant simultanément les différentes conditions i dans (7.16), il est possible de mieux estimer γ γ γ . En outre, E i,j,t = Y i,j,t -µ i,j,t µ i,j,t = Y i,j,t exp -W i,j,t -1, (7.19) avec E i,j,t = 0 pour tout t ≤ 0 et 1 ≤ q ≤ ∞. E i,j,t dans (7.19) correspond au cas particulier des working residuals dans les modèles linéaires généralisés (GLM) classiques définis habituellement par E i,j,t = (Y i,j,t -µ i,j,t )µ i,j,t -λ avec λ = 1. Le modèle résultant défini par les équations (7.16), (7.17), (7.18) et (7.19) est appelé modèle GLARMA multivarié.

Notre approche consiste à estimer δ δ δ = (η η η , γ γ γ ), où γ γ γ est le vecteur des coefficients de la partie ARMA. Nous considérons la log-vraisemblance conditionnelle définie par :

L(δ δ δ) = I i=1 n i j=1 T t=1
(Y i,j,t W i,j,t (δ δ δ) -exp(W i,j,t (δ δ δ)), 104 où W i,j,t (δ δ δ) est défini comme dans (7.17)-(7.19) par : W i,j,t (δ δ δ) = η i,t + q k=1 γ k E i,j,t (δ δ δ) avec E i,j,t (δ δ δ) = Y i,j,t exp -W i,j,t (δ δ δ) -1.

Dans la première étape de notre procédure d'estimation, nous utilisons l'algorithme de Newton-Raphson pour obtenir γ γ γ sur la base de la récursion suivante. Pour r ≥ 1, à partir de la valeur initiale γ γ γ (0) = (γ γ γ γ (r) = γ γ γ (r-1) -∂ 2 L ∂γ γ γ ∂γ γ γ η η η (0) , γ γ γ (r-1) -1 ∂L ∂γ γ γ η η η (0) , γ γ γ (r-1) .

Dans la deuxième étape, nous effectuons une sélection de variables dans le η η η du modèle (7.17)-(7.19) en utilisant une approche régularisée inspirée par [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] pour l'ajustement de modèles linéaires généralisés parcimonieux. Nous pénalisons avec une pénalité 1 l'approximation quadratique de la log-vraisemblance obtenue par un développement de Taylor du second ordre. En utilisant η η η (0) et γ γ γ définis ci-dessus, l'approximation quadratique est la suivante L(η η η) = L(η η η (0) ) + ∂L ∂η η η (η η η (0) , γ γ γ)U (ν ν ν -ν ν ν (0) ) -1 2 (ν ν ν -ν ν ν (0) ) Λ(ν ν ν -ν ν ν (0) ), où U ΛU est la décomposition en valeurs singulières de la matrice symétrique semi-définie positive -∂ 2 L ∂η η ηη η η (η η η (0) , γ γ γ) et ν ν ν -ν ν ν (0) = U (η η η -η η η (0) ). Afin d'obtenir un estimateur parcimonieux de η η η , nous utilisons η η η(λ) défini par la minimisation du critère suivant : avec Y = Λ 1/2 U η η η (0) + Λ -1/2 U ∂L ∂η η η (η η η (0) , γ γ γ) , X = Λ 1/2 U .

Pour obtenir l'estimateur final η η η de η η η , nous utilisons l'approche stability selection de Meinshausen and Bühlmann (2010), qui garantit la robustesse des variables sélectionnées. En pratique, nous pouvons améliorer l'estimation en itérant l'algorithme de Newton-Raphson et la sélection de variables. Les détails de l'algorithme sont présentés dans la section 3.2.3.

Pour évaluer les performances de la méthode proposée, dont l'implémentation est disponible dans le package R MultiGlarmaVarSel sur le CRAN, nous avons mené de nombreuses simulations numériques dans différents contextes. Notre méthode a montré de très bonnes performances statistiques et numériques. Les détails sont présentés dans la section 3.3.

Modélisation de séries temporelles à valeurs discrètes avec surdispersion

État de l'art

Comme le notent [START_REF] Davis | Count time series: A methodological review[END_REF], les séries temporelles à valeurs discrètes sont souvent surdispersées, i.e. la variance est plus grande que la moyenne. La plupart du temps, la loi de Poisson n'est pas adaptée à la modélisation des données surdispersées, car la moyenne et la variance de la loi de Poisson sont égales. La loi binomiale négative est une extension naturelle de la loi de Poisson, qui permet de prendre en compte la surdispersion. 105

Dans la modélisation des séries temporelles à valeurs discrètes surdispersées, une approche couramment utilisée est le modèle INGARCH (integer-valued generalized autoregressive conditional heteroscedastic), voir [START_REF] Ferland | Integer-valued garch process[END_REF]. Il appartient à la classe des modèles INARMA. Pour les observations de l'équation (7.4), le modèle INGARCH(p,q) est défini comme suit

µ t = γ 0 + q i=1 γ i Y t-i + p j=1 δ j µ t-j .
Zhu (2011) a étendu ce modèle au cas binomial négatif, ce qui signifie que la loi conditionnelle de Y t dans l'équation (7.4) est spécifiée par la loi binomiale négative.

Dans les modèles à espaces d'états généralisés, le modèle parameter-driven de Zeger (1988) discuté dans la section 7.1.2 est également étendu au cadre binomial négatif par [START_REF] Davis | A negative binomial model for time series of counts[END_REF]. Dans les modèles observation-driven, on peut considérer une loi de réponse binomiale négative dans les modèles GLARMA, voir [START_REF] Davis | Maximum likelihood estimation for an observation driven model for Poisson counts[END_REF]. La procédure d'estimation dans ces modèles est similaire à celle examinée dans la section 7.2.1 : le paramètre de surdispersion désigné par α est estimé de la même manière que les autres paramètres du modèle en fixant δ = (β , γ , α) dans l'équation (7.12). Le modèle GLARMA binomial négatif introduit avec des covariables supplémentaires est défini comme suit : étant donné l'historique passé F Gomtsyan, M. (2023). Variable selection in a specific regression time series of counts. À soumettre.

La méthode proposée sera implémentée dans le package R NBtsVarSel bientôt disponible sur le CRAN.

Nous considérons le modèle GLARMA binomial négatif défini dans (7.20), (7.21) et (7.22), avec le paramètre δ = (β , γ ), où β = (β 0 , β 1 , . . . , β p ) représente le vecteur des coefficients de régression défini dans (7.21), et γ = (γ 1 , . . . , γ q ) est le vecteur des coefficients 106 de la partie ARMA définis dans (7.22). En outre, nous considérons que δ = (β , γ ), avec β = (β 0 , β 1 , . . . , β p ) et γ = (γ 1 , . . . , γ q ) . La log-vraisemblance conditionnelle est : γ j E t-j (δ, α), avec x t = (x t,0 , x t,1 , . . . , x t,p ) , x t,0 = 1 pour tout t et 

p ) et α (0) sont respectivement des estimations initiales données de β et α et γ = (γ 1 , . . . , γ q ) . En pratique, pour β (0) , nous prenons l'estimateur de β obtenu en ajustant un GLM aux observations Y 1 , . . . , Y n , en ignorant la partie ARMA du modèle. Pour α (0) , nous prenons l'estimateur du maximum de vraisemblance de α du même modèle GLM. Nous utilisons l'algorithme de Newton-Raphson pour obtenir γ. Pour r ≥ 1, à partir de la valeur initiale γ (0) = (γ (0) 1 , . . . , γ (0) q ) , pour laquelle nous prenons le vecteur nul en pratique : γ (r) = γ (r-1) -∂ 2 L ∂γ ∂γ (β (0) , γ (r-1) , α (0) ) -1 ∂L ∂γ (β (0) , γ (r-1) , α (0) ).

Dans la deuxième étape, pour effectuer la sélection de variables dans les β i du modèle (7.21), nous pénalisons avec des pénalités 1 une approximation de Taylor à l'ordre 2 de la log-vraisemblance. En utilisant β (0) , γ, et α (0) définis ci-dessus, l'approximation à l'ordre 2 est la suivante

L(β) = L(β (0) ) + ∂L ∂β (β (0) , γ, α (0) )U (ν -ν (0) ) - 1 2 (ν -ν (0) ) Λ(ν -ν (0) ),
où U ΛU est la décomposition en valeurs singulières de la matrice symétrique semi-définie positive -∂ 2 L ∂β∂β (β (0) , γ, α (0) ) et νν (0) = U (β -β (0) ). Afin d'obtenir un estimateur parcimonieux β β β de β , nous utilisons le critère β(λ) défini par β(λ) = arg min β -L Q (β) + λ β 1 , pour λ > 0, où L Q (β) désigne l'approximation quadratique de la log-vraisemblance. Cette approximation quadratique est définie par

-L Q (β) = 1 2 Y -X β 2 2 , où Y = Λ 1/2 U β (0) + Λ -1/2 U ∂L ∂β (β (0) , γ, α (0) ) , X = Λ 1/2 U.
Dans la troisième étape, pour estimer α , nous utiliserons une approche de maximum de vraisemblance dans le modèle GLM classique, voir, par exemple, [START_REF] Piegorsch | Maximum likelihood estimation for the negative binomial dispersion parameter[END_REF], ce qui signifie que dans (7.21) la partie ARMA est ignorée. Dans le modèle GLM, nous prenons la matrice de design X composée de variables de régression x t,i , pour 1 ≤ t ≤ n et i tel que βi a été estimé comme étant non nul lors de l'étape de sélection de variables.

Pour obtenir l'estimateur final β β β de β β β , nous considérons l'approche de stability selection de [START_REF] Meinshausen | Stability selection[END_REF], qui garantit la robustesse des variables sélectionnées. Nous pouvons améliorer l'estimation en itérant ces trois étapes. Les détails de l'algorithme sont présentés dans la section 5.2.3.

Pour évaluer la performance de la méthode proposée, dont l'implémentation est disponible dans le package R NBtsVarSel sur le CRAN, nous avons mené différentes simulations numériques dans différents contextes. Notre méthode a montré de très bonnes performances statistiques et numériques. Elle est detaillée dans la section 5.3.

Dans la section 5.4, nous avons appliqué notre méthode à l'étude des mêmes données de séries temporelles RNA-Seq que celles de dans la section 7.2.2. Nous avons appliqué notre approche de sélection de variables pour identifier les gènes non codants importants qui expliquent l'expression des gènes codants. Nous avons comparé les résultats avec ceux obtenus avec le modèle de Poisson de la section 7.2.2. Notre méthode a été appliquée à 145 séries temporelles RNA-Seq utilisant le même ensemble de gènes non codants. Le modèle binomial négatif a identifié 37 des 95 gènes non codants, qui ont tous été identifiés par le modèle de Poisson. Toutefois, il faut noter que le modèle de Poisson a sélectionné un plus grand nombre de gènes non codants, à savoir 93. Cela peut indiquer un risque plus élevé de taux de faux positifs associé à la sélection faite par le modèle de Poisson.
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 2 Variable selection in sparse GLARMA Poisson models 1.2.1 State of the art Let us consider the usual linear regression setting where the observations Y Y Y = (Y 1 , . . . , Y n ) are generated by Y i = x i β β β + ε i , (1.7)

  Figure2.1: Boxplots for the estimations of β 0 = 3 in Model (2.2) with no regressor and q = 1 (left), q = 2 (middle) and q = 3 (right). The horizontal lines correspond to the value of β 0 .
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 24 Figure 2.4: Error bars of the TPR and FPR associated to the support recovery of β for five methods with respect to the thresholds when n = 1000, q = 1, p = 100 and a 5% sparsity level. The error bars of the TPR of lasso_cv and lasso_best coincide.
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 2 Figure 2.5: Error bars of the TPR and FPR associated to the support recovery of β for five methods with respect to the thresholds when n = 1000, q = 2, p = 100 and a 5% sparsity level. The error bars of the TPR of lasso_cv and lasso_best coincide.
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 26 Figure 2.6: Error bars of the TPR and FPR associated to the support recovery of β for five methods with respect to the thresholds when n = 1000, q = 3, p = 100 and a 5% sparsity level. The error bars of the TPR of lasso_cv and lasso_best coincide.
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 2 Figure2.7: Error bars of the TPR and FPR associated to the support recovery of β obtained with the glarma package for different thresholds when n = 1000, q = 1, p = 100 and a 5% sparsity level.

  Figure2.10: Boxplots for the estimations of γ in Model (2.2) with a 5% sparsity level and q = 1, 2, 3 obtained by ss_min. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's.
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 2 Figure 2.11: Error bars of the TPR and FPR associated to the support recovery of β for ss_min with respect to the thresholds for different values of n, q = 1, p = 100 and a 5% sparsity level.
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 2 Figure2.12: Error bars of the TPR and FPR associated to the support recovery of β for ss_min with respect to the thresholds for different values of n, q = 1, p = 100 and a 10% sparsity level.

  Figure 2.13: Error bars of the TPR and FPR associated to the support recovery of β for ss_min and lasso_cv for different values of n, q = 1, p = 100 and different sparsity levels.
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 2 Figure2.14: Boxplots for the estimations of γ in Model (2.2) for q = 1, p = 100, different values of n and sparsity levels (left: 5%, right: 10%) obtained by ss_min with a threshold of 0.7 for different iterations (iter).
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 2 Figure2.16: Error bars of the difference between TPR and FPR associated to the support recovery of β for ss_cv with 4 iterations and lasso_cv with respect to the thresholds when n = 15, q = 1, p = 95 and 5 non-null coefficients.

Figure 2 Figure 2 Figure 2 Figure 2

 2222 Figure2.19: Error bars of the TPR and FPR associated to the support recovery of β for five methods with respect to the thresholds when n = 1000, q = 1, p = 100 and a 10% sparsity level.

  Figure2.23: Boxplots for the estimations of γ in Model (2.2) with a 10% sparsity level and q = 1, 2, 3 obtained by fast_ss. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's.

Figure 2

 2 Figure2.24: Boxplots for the estimations of γ in Model (2.2) with a 10% sparsity level and q = 1, 2, 3 obtained by ss_min. Top: q = 1 and γ 1 = 0.5 (left), q = 2 and γ 1 = 0.5 (middle), q = 2 and γ 2 = 0.25 (right). Bottom: q = 3 and γ 1 = 0.5 (left), q = 3 and γ 2 = 1/3 (middle), q = 3 and γ 3 = 0.25 (right). The horizontal lines correspond to the values of the γ i 's.
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 31 Figure3.1: Error bars of the maximum difference between TPR and FPR for different thresholds associated to the support recovery of η with 5 approaches for 4 simulation frameworks when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations.

  Figure3.2: Error bars of the TPR and FPR for different thresholds associated to the support recovery of η estimated with q = 1 for 4 different simulation frameworks with respect to the thresholds when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations.
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 33 Figure3.3: Error bars of the maximum difference between TPR and FPR for different thresholds associated to the support recovery of η with 5 approaches for 4 simulation frameworks when I = 3, q = 2, 10 non-null coefficients in η η η , and 50 simulations.

Figure 3

 3 Figure3.4: Error bars of the TPR and FPR for different thresholds associated to the support recovery of η estimated with q = 2 for 4 different simulation frameworks with respect to the thresholds when I = 3, q = 2, 10 non-null coefficients in η η η , and 50 simulations.

  Figure3.5: Error bars of the TPR of sign recovery of η estimated with q = 1 for 4 simulation frameworks when I = 3, q = 1, 10 non-null coefficients in η η η , and 50 simulations.

Figure 3

 3 Figure3.6: Error bars of the TPR of sign recovery of η estimated with q = 2 for 4 simulation frameworks when I = 3, q = 2, 10 non-null coefficients in η η η , and 50 simulations.

Figure 3 .

 3 Figure 3.11: Error bars for the estimations of γ in Model (3.2) for I = 3, T = 50, J = 100, q = 1, γ = 0.5, 10 non-null coefficients in η η η , and 50 simulations obtained by q = 1. The horizontal lines correspond to the values of the γ i 's.
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  T2) β β β is a preliminary estimator of β β β such that |β i -βi | = O P (1/n), as n tends to infinity, for all i = 1, . . . , p.(T3) With a probability tending to 1 as n tends to infinity, λ min (C 11 ) ≥ M 2 , where λ min (A)denotes the smallest eigenvalue of the matrix A and C 11 is defined in (4.7).(T4) With a probability tending to 1 as n tends to infinity, λ max (C 12 ) ≤ M 3 , λ max (C 21 ) ≤ M 4 , and λ max (C 22 ) ≤ M 5 , where λ max (A) denotes the largest eigenvalue of the matrix A.

  13), | β β β1 -β β β 1 | < |β β β 1 | which implies that sign( β β β1 ) = sign(β β β 1 ). Hence, β β β satisfies (4.11). If B n holds then

  Markov's inequality and (T1). Since, C 11 = C 11 + (C 11 -C 11 ) , we have
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 525 Figure5.2: Error bars of the TPR and FPR associated to the support recovery of β for four methods with respect to the thresholds when n = 1000, q = 2, p = 100, α = 2, and a 5% sparsity level.

Figure 5 . 4 :

 54 Figure5.4: Boxplots for the estimations of γ in Model (5.2) for q = 2, p = 100, α = 2, a 5% sparsity level, and different values of n obtained by ss_cv. For each n, the threshold is chosen corresponding to Table5.2. Different colours refer to different iterations of the algorithm (iter). The horizontal lines correspond to the values of the γ i 's.

Figure 5

 5 Figure5.5: Boxplots for the estimations of α in Model (5.2) for p = 100, α = 2, a 5% sparsity level, and different values of n, q = 1 (left), q = 2 (right), and obtained by ss_cv. For each n, the threshold is chosen corresponding to Table5.2. Different colours refer to different iterations of the algorithm (iter). The horizontal line corresponds to the values of the α .

  Figure5.6: Boxplots of the computational times in seconds in the case where p = 100, α = 2, a 5% sparsity level, different values of n and q, a given threshold and one iteration.

Figure 5

 5 Figure 5.8: Difference between error bars of the TPR and FPR associated to the support recovery of β obtained by ss_cv and lasso_cv with respect to the thresholds when n = 15, q = 1, p = 95, α = 2, and a 5 non-null coefficients.
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 5 Figure5.9: Estimation of β β β with ss_cv for explaining the values of 10 coding genes (Y t ) by some of the lncRNAs (x t,i ).

Figure 5

 5 Figure5.10: Estimation of γ γ γ with ss_cv for explaining the values of 10 coding genes (Y t ) by some of the lncRNAs (x t,i ).

Yx.

  i ∼ Poisson(λ i ) avec λ i = exp(x i β β β ), (7.13) où x i est la i-ème ligne d'une matrice de design X de taille n×p et β β β est un vecteur parcimonieux de coefficients de régression dans R p . Pour estimer β β β dans le modèle (7.13), nous considérons une méthode d'estimation inspirée par[START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], qui consiste à maximiser par rapport à β β β l'approximation de Taylor du second ordre de la log-vraisemblance l à evaluée en l'estimation actuelle deβ β β , β β β, à savoir : ik (Y i -λi )(β k -βk ) -λi x ik (β k -βk )x i (β -β ), où λi = exp(x i β β β). Cela revient à minimiser n i=1 λi x i β β β -β β β -Y i -λi λi 2 Cela peut être considéré comme la minimisation par rapport à β β β du critère des moindres carrés Y -X β β β 2 2 , avec Y = X β β β + Λ-1/2 (Y -λ) et X = Λ1/2 X,Λ notant la matrice diagonale ayant les λi comme éléments diagonaux, λ étant un vecteur colonne ayant les λi comme composantes et Y notant le vecteur colonne ayant les Y i comme composantes.Ainsi, afin d'obtenir une estimation parcimonieuse de β β β , nous nous focaliserons sur la recherche de β β β(α) défini pour α > 0 par :β β β(α) = arg min β β β∈R p Y -X β β β 2 2 + α β β β 1 .(7.14) Nous établissons la consistance en signe de β β β dans le théorème 4.3.1, à savoirP sign( β β β) = sign(β β β ) → 1, lorsque n → ∞.Ici, la fonction sign(•) est tq : sign(x) = 1 si x > 0, sign(x) = -1 si x < 0 et sign(0) = 0. Le résultat précédent est valable sous certaines conditions, notamment la condition d'irreprésentabilité forte suivante, qui établit qu'il existe τ > 2/3 tel queC 21 C -1 11 sign(β β β 1 ) ≤ 1 -τ, (7.15) avec une probabilité tendant vers 1 lorsque n tend vers l'infini. Cette inégalité doit être comprise composante par composante. Dans l'équation (7.15) C 21 et C 11 sont définis comme suit : C

  η η η(λ) = arg min η η η {-LQ (η η η) + λ η η η 1 },pour un λ positif, où LQ (η η η) désigne l'approximation quadratique de la log-vraisemblance. Cette approximation quadratique est définie par -LQ (η η η)

E

  t (δ, α) = Y t exp(-W t (δ, α)) -1 1 + exp(Wt(δ δ δ,α)) α , si t > 0 et E t (δ, α) = 0, si t ≤ 0.Dans la première étape de notre méthode, nous obtenons l'estimation de γ en utilisantγ = arg max γ γ γ L(β (0) , γ , α (0) ),où L est défini dans (7.23), β(0) 

  

  This subsection summarises the article: Gomtsyan, M., Lévy-Leduc, C., Ouadah, S., Sansonnet, L., Blein, T. (2022). Variable selection in sparse GLARMA models. Statistics 56(4), 755-784.

1.2.2 Contribution of Chapter 2: Sparse GLARMA Poisson model

It may indicate that the negative binomial model has a smaller false positive rate compared to the Poisson model's selection.

  

	Chapter 2
	Variable selection in sparse GLARMA
	models
	This chapter presents the work of the article:
	Gomtsyan, M., Lévy-Leduc, C., Ouadah ,S., Sansonnet, L., Blein, T. (2022). Variable
	selection in sparse GLARMA models. Statistics 56(4), 755-784.

  Computation of the second derivatives of W t Using (2.19) and (2.20), we get that for all j, k ∈ {0, . . . , p}, , m ∈ {1, . . . , q} and t ∈ {1, . . . , n}, ∂ 2 W t ∂β j ∂β k

defined in (2.21) and (2.22), respectively.

Table 2

 2 

	n	q sparsity (in %)	ss_cv	ss_min	fast_ss	lasso_cv lasso_best
	1000 1	5	1(0)	1(0)	1(0)	0.8(0)	0.8(0)
	1000 2	5	0.94(0.09) 0.96(0.08) 0.98(0.06)	0.8(0)	0.8(0)
	1000 3	5	0.94(0.1)	1(0)	1(0)	0.8(0)	0.8(0)
	500 1	5	0.96(0.08)	1(0)	1(0)	0.8(0)	0.8(0)
	500 2	5	0.9(0.14) 0.96(0.08)	1(0)	0.8(0)	0.8(0)
	500 3	5	0.92(0.1) 0.98(0.06)	1(0)	0.8(0)	0.8(0)
	200 1	5	0.88(0.17) 0.94(0.1) 0.98(0.06)	0.8(0)	0.8(0)
	200 2	5	0.98(0.06)	1(0)	1(0)	0.8(0)	0.8(0)
	200 3	5	0.92(0.14) 0.94(0.13)	1(0)	0.8(0)	0.8(0)
	150 1	5	0.96(0.13) 0.94(0.13)	1(0)	0.8(0)	0.8(0)
	150 2	5	0.84(0.16) 0.94(0.09)	1(0)	0.76(0.08) 0.78(0.06)
	150 3	5	0.82(0.15) 0.92(0.1) 0.96(0.08) 0.76(0.08) 0.76(0.08)
	1000 1	10	0.92(0.08) 0.95(0.05) 0.94(0.05) 0.89(0.03) 0.88(0.04)
	1000 2	10	0.91(0.09) 0.96(0.05) 0.93(0.05)	0.9(0)	0.9(0)
	1000 3	10	0.88(0.08) 0.92(0.08) 0.96(0.05) 0.88(0.04) 0.88(0.04)
	500 1	10	0.88(0.09) 0.93(0.05) 0.97(0.04)	0.9(0)	0.89(0.03)
	200 1	10	0.8(0.09) 0.83(0.07) 0.94(0.07) 0.87(0.07) 0.86(0.07)
	150 1	10	0.88(0.08) 0.88(0.06) 0.97(0.05) 0.87(0.05) 0.86(0.05)
	n	q sparsity (in %)	ss_cv	ss_min	fast_ss	lasso_cv	lasso_best
	1000	5	0.001(0.003) 0.005(0.005) 0.003(0.005) 0.42(0.16)	0(0)
	1000	5	0.002(0.004)	0.01(0.01)	0.013(0.01) 0.76(0.09) 0.007(0.02)
	1000	5	0.003(0.005)	0.01(0.008)	0.04(0.01)	0.83(0.09) 0.01(0.02)
	500	5	0.002(0.004)	0.01(0.01)	0.04(0.02)	0.55(0.13) 0.005(0.01)
	500	5		0(0)	0.009(0.007)	0.07(0.02)	0.76(0.12) 0.02(0.04)
	500	5	0.002(0.004)	0.01(0.01)	0.12(0.01)	0.77(0.12) 0.02(0.03)
	200	5	0.002(0.004) 0.014(0.014)	0.19(0.04)	0.46(0.22) 0.05(0.06)
	200	5	0.003(0.005)	0.02(0.01)	0.24(0.08)	0.39(0.12) 0.06(0.04)
	200	5	0.008(0.009)	0.02(0.01)	0.23(0.06)	0.39(0.14) 0.05(0.04)
	150	5	0.001(0.003)	0.02(0.018)	0.22(0.05)	0.2(0.1)	0.05(0.06)
	150	5		0.006(0.01)	0.04(0.04)	0.28(0.08)	0.2(0.09)	0.08(0.05)
	150	5	0.003(0.005)	0.03(0.007)	0.3(0.1)	0.2(0.08)	0.05(0.04)
	1000	10		0(0)	0.008(0.01)	0.008(0.01) 0.51(0.14) 0.04(0.02)
	1000	10	0.004(0.005) 0.008(0.008)	0.03(0.02)	0.78(0.13) 0.06(0.01)
	1000	10	0.004(0.007)) 0.012(0.01)	0.04(0.02)	0.82(0.05) 0.05(0.01)
	500	10	0.004(0.005) 0.019(0.016)	0.06(0.01)	0.67(0.19) 0.05(0.02)
	200	10	0.008(0.008)	0.09(0.08)	0.34(0.23)	0.5(0.2)	0.07(0.04)
	150	10		0.01(0.01))	0.11(0.07)	0.38(0.16)	0.33(0.16) 0.07(0.02)

.1: Mean of TPR and corresponding standard deviation given in parenthesis associated to the support recovery of β * for five methods, for different values of n, q, sparsity levels and p = 100. For 5% sparsity the thresholds of ss_cv and ss_min are 0.8 and the threshold of fast_ss is 0.4. For 10% sparsity the thresholds of ss_cv and ss_min are 0.7 and the threshold of fast_ss is 0.3.

Table 2

 2 

.2: Mean of FPR and corresponding standard deviation given in parenthesis associated to the support recovery of β * for five methods, for different values of n, q, sparsity levels and p = 100. For 5% sparsity the thresholds of ss_cv and ss_min are 0.8 and the threshold of fast_ss is 0.4. For 10% sparsity the thresholds of ss_cv and ss_min are 0.7 and the threshold of fast_ss is 0.3.

  3.A.1 Computation of the first and second derivatives of W t defined in (3.6)

	Computation of the first derivatives of W t			
	By the definition of W t given in (3.6), we have			
	∂W i,j,t ∂δ δ δ	=	∂η i,t ∂δ δ δ	+	∂Z i,j,t ∂δ δ δ	.

  Error bars of the difference between the TPR and FPR associated to the support recovery of β for four methods with respect to the thresholds when n = 1000, q = 2, p = 100, α = 2, and a 5% sparsity level.
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	Figure 5.1: ss_cv n q TPR-FPR t TPR-FPR t TPR-FPR TPR-FPR ss_min lasso_cv lasso_best
		150		0.8 (0.12)	0.5	0.75 (0.11)	0.6	0.56 (0.14)	0.66 (0.1)
		250		0.77 (0.13)	0.6	0.79 (0.09)	0.7	0.54 (0.16)	0.64 (0.1)
		500	1	0.9 (0.09)	0.7	0.87 (0.12)	0.7	0.6 (0.11)	0.75 (0.08)
		1000		0.92 (0.1)	0.7	0.94 (0.07)	0.7	0.57 (0.09)	0.77 (0.04)
		150		0.71 (0.13)	0.5	0.76 (0.1)	0.6	0.47 (0.1)	0.62 (0.08)
		250		0.83 (0.12)	0.6	0.82 (0.14)	0.8	0.59 (0.11)	0.69 (0.1)
		500	2	0.91 (0.1)	0.7	0.9 (0.09)	0.7	0.59 (0.09)	0.72 (0.09)
		1000		0.93 (0.03)	0.6	0.9 (0.1)	0.7	0.57 (0.1)	0.75 (0.05)
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 5 2: Means of TPR and FPR with corresponding standard deviations given in parenthesis associated to the support recovery of β β β for four methods, different values of n, q, α = 2, p = 100, and 10 simulations. The column t is the threshold for which the corresponding TPR and FPR are obtained.

	n	q	ss_cv TPR FPR	t	ss_min TPR FPR	t	lasso_cv TPR FPR TPR FPR lasso_best
	150		0.86 (0.1)	0.06 (0.04)	0.5	0.86 (0.13)	0.15 (0.02)	0.6	0.58 (0.15)	0.02 (0.02)	0.72 (0.1)	0.06 (0.06)
	250	1	0.8 (0.09)	0.03 (0.02)	0.6	0.84 (0.08)	0.05 (0.02)	0.7	0.62 (0.15)	0.08 (0.05)	0.7 (0.11)	0.06 (0.07)
	500		0.86 (0.13)	0.02 (0.02)	0.7	0.94 (0.1)	0.06 (0.02)	0.7	0.76 (0.08)	0.16 (0.1)	0.76 (0.08)	0.01 (0.02)
	1000		0.94 (0.1)	0.02 (0.02)	0.7	0.98 (0.06)	0.04 (0.01)	0.7	0.8 (0)	0.23 (0.09)	0.8 (0)	0.03 (0.04)
	150		0.84 (0.13)	0.08 (0.05)	0.5	0.9 (0.11)	0.15 (0.03)	0.6	0.52 (0.14)	0.05 (0.07)	0.68 (0.1)	0.06 (0.05)
	250	2	0.88 (0.14)	0.04 (0.02)	0.6	0.86 (0.13)	0.02 (0.02)	0.8	0.68 (0.14)	0.09 (0.05)	0.78 (0.06)	0.09 (0.1)
	500		0.92 (0.1)	0.02 (0.02)	0.7	0.94 (0.1)	0.05 (0.02)	0.7	0.74 (0.1)	0.15 (0.07)	0.78 (0.06)	0.06 (0.08)
	1000		0.96 (0.08)	0.06 (0.03)	0.6	0.94 (0.1)	0.03 (0.01)	0.7	0.78 (0.06)	0.21 (0.13)	0.8 (0)	0.05 (0.05)

  ont été les premiers à étudier le processus auto-régressif d'ordre 1 à valeurs entières (INAR(1)). Les modèles INARMA sont construits avec des thinning operators. Considérons une variable aléatoire non négative à valeurs entières Y . Pour α ∈ (0, 1), le binomial thinning operator, désigné par , est défini comme suit } est une séquence de variables aléatoires i.i.d. de loi de Bernoulli, indépendantes de Y, avec P(Z k = 1) = α. Le modèle INAR(1) est défini comme suit. Pour des observations à valeurs entières non négatives Y t , avec t = 1, . . . , n Y t = α Y t-1 + ε t ,

	Y		
	α Y =	Z k ,	(7.1)
	k=1		
	où {Z k (7.2)
	où {ε t } est une séquence de variables aléatoires i.i.d. entières non négatives de moyenne µ ε et
	de variance σ 2 ε .		
	Le modèle INAR(1) a été étendu au processus d'ordre p par	

  1 , où P(µ) représente la loi de Poisson de moyenne µ et t ≥ 1. Dans (7.4), µ t = d + aµ t-1 + bY t-1 , où d, a et b sont positifs. L'auto-régression de Poisson log-linéaire de Fokianos and Tjøstheim (2011) est modélisée par un processus de liaison canonique {ν t }, où ν t = log µ t . Ainsi, pour les observations dans (7.4) et t ≥ 1 l'auto-régression est ν t = d + aν t-1 + b log (Y t-1 + 1) , où d, a et b sont dans R. Il existe également des modèles d'auto-régression de Poisson non linéaires, étudiés par

  .7) où x i est la i-ème ligne d'une matrice de design X de taille n × p, β β β est un vecteur parcimonieux de coefficients de régression dans R p , et les erreurs ε 1 , . . . , ε n sont des variables aléatoires i.i.d., de moyenne 0 et de variance σ 2 . La parcimonie signifie que de nombreux β i sont nuls ; ainsi, seulement quelques variables de régression sont explicatives. Nous nous intéressons particulièrement aux modèles parcimonieux car, dans de nombreuses applications scientifiques, la parcimonie est une caractéristique fréquemment observée

  , x t et Z t étant donnés dans (7.10).

	où	∂W t ∂δ	(δ) =	∂β x t ∂δ	+	∂Z t ∂δ	(δ),
							δ),	(7.11)

β

  au cas multivarié et l'assouplissement de la propriété de moyenne-égalité-variance de la loi de Poisson. Il s'agit d'un modèle parameter-driven. Une autre étude réalisée par[START_REF] Lee | Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data[END_REF] effectue une sélection bayésienne des variables dans des données à valeurs discrètes multivariées avec excès de zéros. La contribution du chapitre 3 sera l'introduction d'une approche de sélection de variables dans les modèles GLARMA multivariés parcimonieux.Cette section résume la méthodologie et les simulations numériques contenues dans l'article : Gomtsyan, M., Lévy-Leduc, C., Ouadah, S., Sansonnet, L., Bailly, C., Rajjou, L. (2023). Variable selection in sparse multivariate GLARMA models : Application to germination control by environment. Soumis. arXiv :2208.14721. La méthode proposée est implémentée dans le package R MultiGlarmaVarSel disponible sur le CRAN.

	Contribution du chapitre 3 : cadre multivarié

  t-1 = σ(Y s , s ≤ t -1), nous supposons queY t |F t-1 ∼ NB (µ t , α ) ,(7.20) où NB(µ, α) désigne la loi binomiale négative avec une moyenne µ et un paramètre de surdispersion α. Dans (7.20),µ t = exp(W t ) avec W t = ≤ q ≤ ∞ et E t = 0 pour tout t ≤ 0.Les E t correspondent aux working residuals dans les modèles linéaires généralisés classiques (GLM). Le modèle résultant défini par (7.20), (7.21) et (7.22) est le modèle GLARMA binomial négatif.Dans le chapitre 5, nous présentons une approche de sélection de variables dans les modèles binomiaux négatifs GLARMA parcimonieux.

	q j=1	γ j E t-j with E t =	Y t -µ t µ t + µ t 2 /α	,	(7.22)
	où 1 Contribution du chapitre 5 : cadre binomial négatif		
	Cette section résume l'article :				

p i=0 β i x t,i + Z t .

(7.21)

Ici, les x t,i représentent les p variables de régression (p ≥ 1) et

Z t =

  Y t ) -log Γ(Y t + 1) -log Γ(α) + α log α + Y t W t -(α + Y t ) log(α + exp(W t )) , (7.23)où Γ(•) est la fonction gamma. Dans (7.23),W t (δ, α) = β x t + Z t (δ, α) = β 0 +

		n		
	L(δ, α) =	t=1	log Γ(α + p	q
			β i x t,i +	
			i=1	j=1

Cette section résume l'article : Gomtsyan, M., Lévy-Leduc, C., Ouadah, S., Sansonnet, L. (2023). Sign-consistent estimation in a sparse Poisson model. Soumis. arXiv :2303.14020.
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Appendix

This appendix contains additional results for the support recovery of β and for the estimation of γ discussed in Section 2.3.1. In addition to the error bar plots for 10% sparsity, Tables 2.1 and2.2 summarise the information for all the experiments that we conducted.

Chapter 3

Variable selection in sparse multivariate GLARMA models

This chapter presents the methodology and the numerical experiments contained in the article: Gomtsyan, M., Lévy-Leduc, C., Ouadah, S., Sansonnet, L., Bailly, C., Rajjou, L. (2023). Variable selection in sparse multivariate GLARMA models: Application to germination control by environment. Submitted. arXiv:2208.14721.

The implementation of the presented method is in the MultiGlarmaVarSel R package available on the CRAN.

Abstract

We propose a novel and efficient iterative two-stage variable selection approach for multivariate sparse GLARMA models, which can be used for modelling multivariate discrete-valued time series. Our approach consists in iteratively combining two steps: the estimation of the autoregressive moving average (ARMA) coefficients of multivariate GLARMA models and the variable selection in the coefficients of the Generalised Linear Model (GLM) part of the model performed by regularised methods. We explain how to implement our approach efficiently. Then we assess the performance of our methodology using synthetic data and compare it with alternative methods. Our approach, which is implemented in the MultiGlarmaVarSel R package and available on the CRAN, is very attractive since it benefits from a low computational load and is able to outperform the other methods for recovering the null and non-null coefficients.

Introduction

In this chapter we consider a novel multivariate count time series model. A detailed review of the main approaches for modelling multivariate count time series is available by [START_REF] Fokianos | Multivariate count time series modelling[END_REF]. These approaches can be classified into three model classes described hereafter.

The first class includes integer-valued autoregressive (INAR) models. The first introduction of INAR(1) processes was done by [START_REF] Mckenzie | Some simple models for discrete variate time series[END_REF] and [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) process[END_REF]. Later it was extended to pth order process by [START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF]. The properties of the multivariate INAR (MINAR) were derived by [START_REF] Franke | Multivariate first-order integer values autoregressions[END_REF] and [START_REF] Latour | The multivariate GINAR(p) process[END_REF]. Further studies of MINAR were done by Pedeli and Karlis (2013a) and Pedeli and Karlis (2013b). However, even in the univariate INAR models, the statistical inference is not straightforward, as explained by [START_REF] Davis | Count time series: A methodological review[END_REF], and this is all the more true for higher-order INAR models.

The second class are parameter-driven models. Following the first introduction by Cox et al.

Chapter 5

Variable selection in a specific regression time series of counts The implementation of the presented method is in the NBtsVarSel R package available on the CRAN.

Abstract

Time series of counts occurring in various applications are often overdispersed, meaning their variance is much larger than the mean. This chapter proposes a novel variable selection approach for processing such data. Our approach consists in modelling them using sparse negative binomial GLARMA models. It combines estimating the autoregressive moving average (ARMA) coefficients of GLARMA models and the overdispersion parameter with performing variable selection in regression coefficients of Generalised Linear Models (GLM) with regularised methods. We describe our three-step estimation procedure, which is implemented in the NBtsVarSel package. We evaluate the performance of the approach on synthetic data and compare it to other methods. Additionally, we apply our approach to RNA sequencing data. Our approach is computationally efficient and outperforms other methods in selecting variables, i.e. recovering the non-null regression coefficients.

Estimation of α

To estimate α we shall use a maximum likelihood approach in the classical GLM model, as described by [START_REF] Piegorsch | Maximum likelihood estimation for the negative binomial dispersion parameter[END_REF], meaning that in (5.2) the ARMA part is ignored. In the GLM model we take the design matrix X composed of regressor variables x t,i , for 1 ≤ t ≤ n and i such that the corresponding βi was estimated to be non-null in the variable selection step.

Stability selection

In order to guarantee the robustness of the selected variables, we use the stability selection approach by [START_REF] Meinshausen | Stability selection[END_REF] for obtaining the final estimator β β β of β β β . The idea of stability selection is the following. The vector Y defined in (5.13) is randomly split into a number of subsamples of size (p + 1)/2, corresponding to half of the length of Y. In our numerical experiments the number of subsamples is equal to 1000. For each subsample Y (s) and the corresponding design matrix X (s) , we apply Criterion (5.11) with a given λ, where Y and X are replaced by Y (s) and X (s) , respectively. For each subsampling, we store the indices i of the non-null β i . In the end, we calculate the frequency of index selection, namely the number of times each i was selected divided by the number of subsamples. For a given threshold, in the final set of selected variables, we keep the ones whose indices have a frequency larger than this threshold. Concerning the choice of λ, we consider the smallest element of the grid of λ provided by the R glmnet package, and this approach is called ss_min in the following. It is also possible to use the λ obtained by cross-validation (Chapter 7 of [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]), called ss_cv in the following.

Description of the algorithm

The algorithmic implementation of the methodology can be summarised as follows:

• Initialization. For β (0) we take the estimator of β obtained by fitting a GLM to the observations Y 1 , . . . , Y n , thus ignoring the ARMA part of the model. For α (0) , we take the ML estimate of α of the same GLM model. For γ (0) , we take the null vector.

• Newton-Raphson algorithm. We use the recursion defined in (5.9) with the initialization (β (0) , γ (0) , α (0) ) obtained in the previous step and we stop at the iteration R such that γ (R) -γ (R-1) ∞ < 10 -6 .

• Variable selection. To obtain a sparse estimator of β , we use Criterion (5.11), where β (0) , γ, and α (0) appearing in (5.10) are replaced by β (0) , γ (R) , and α (0) obtained in the previous steps. We get the indices i by using the stability selection approach described in Section 5.2.2.

• Reestimation. We fit a GLM to the observations Y 1 , . . . , Y n and the design matrix X, in which we leave only the columns corresponding to the indices i that we got in the previous step. We obtain β and α as the final estimates of β and α .

This procedure can be improved by iterating the Newton-Raphson algorithm, Variable selection, and Reestimation steps. More precisely, let us denote by β 1 , γ (R 1 ) , and α 1 the values of β, γ (R) , α obtained in the four steps described above at the first iteration. At the second iteration, we replace (β (0) , γ (0) , α (0) ) appearing in the Newton-Raphson algorithm step with ( β 1 , γ (R 1 ) , α 1 ) and continue the steps. At the end of this second iteration, β 2 , γ (R 2 ) and α 2 denote the obtained values of β, γ (R) , and α, respectively. This approach is iterated until the stabilisation of γ (R k ) .

Numerical experiments

In this section we study the performance of our method, which is implemented in the R package NBtsVarSel available on the CRAN (Comprehensive R Archive Network), using synthetic data generated from the model defined by (5.1), (5.2) and (5.3). We study its performance in terms of support recovery, which is the identification of the non-null coefficients of β β β , and the estimation of γ γ γ and α . We generate observations Y 1 , . . . , Y n satisfying the model in (5.1), (5.2) and (5.3) with covariates chosen in a Fourier basis defined by x t,i = cos(2πitf /n), when i = 1, . . . , [p/2] and x t,i = sin(2πitf /n), when i = [p/2]+1, . . . , p, with t = 1, . . . , n and f = 0.7, where [x] denotes the integer part of x.

We consider different settings, where we vary the number of observations n and q, namely the length of the γ γ γ vector. More precisely, in our experiments n takes values in {150, 250, 500, 1000} and q in {1, 2}. When q = 1, γ = 0.5 and when q = 2, γ γ γ = (0.5, 0.25). The value of p is fixed to be 100 with 5% sparsity level (only 5% of the coefficients in β β β is not zero). The non-null values of β β β range from -0.64 to 1.73. We take α = 2, in order to ensure that the standard deviation of the observations is much larger than the mean. In each setting we performed 10 simulations with 4 iterations of the algorithm. In the following, we shall see that the estimation results stabilise starting from the second iteration. Hence there is no need to have more than four iterations.

Estimation of the support of β

In this section, we evaluate the performance of the proposed approach in terms of support recovery of β . To do so, we calculate the TPR (True Positive Rates, namely the proportion of non-null coefficients correctly estimated as non-null) and FPR (False Positive Rates, namely the proportion of null coefficients estimated as non-null). Figure 5.1 shows the error bars of the difference of TPR and FPR with respect to different thresholds of the stability selection step presented in Section 5.2.2. Here, we consider both the estimation with ss_min and ss_cv. Additionally, we perform variable selection with the classical Lasso approach proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. As for the λ parameter of Lasso, we either take the λ of standard cross-validation (lasso_cv) or the λ that maximises the difference between TPR and FPR (lasso_best). Note that in practice it is impossible to obtain the results of lasso_best.

From Figure 5.1 we can see that our approach, both with ss_min and ss_cv, outperforms lasso_cv and lasso_best when the threshold is 0.6 and larger. In particular, the best result of ss_min and ss_cv are reached with the threshold 0.7 and 0.6, respectively. This figure presents results only in one simulation setting that we considered. The averages of the differences of TPR and FPR with corresponding standard deviations in all other settings are presented in Table 5.1. Here, for each dataset we show the results obtained with the threshold for which the difference of TPR and FPR is the largest. Similar to Figure 5.1, in all datasets ss_min and ss_cv give better results than lasso_cv and lasso_best. Although the results of ss_min and ss_cv are quite similar, in the majority of cases ss_cv gives slightly better results than ss_min. Hence, in the study of estimation of other parameters we will focus on the results of ss_cv.

Depending on the application, one might be interested in having TPR as large as possible, or on the contrary, in minimising the FPR. Based on the objective, one can choose the optimal threshold by looking at TPR and FPR separately. In Figure 5.2 we illustrate the error bars of TPR and FPR of the same dataset as in Figure 5.1. For example, if the aim is to have an estimation with the smallest possible FPR, instead of taking the threshold 0.6 in ss_cv one can take the threshold 0.7. The TPR with this threshold is still larger than the ones of lasso_cv and lasso_best, whereas the FPR is smaller. The averages of TPR and FPR with corresponding standard deviations in all other settings are presented in Table 5.2 in Appendix 5.B.

In Figure 5.3 we illustrate how the error bars of the difference between the TPR and FPR depend on n and q. As it can be expected, the methodology has better performance when there are more observations in the dataset and it has always better results than lasso_cv . expression of the jth lncRNAs at time t is denoted by x j,t with j = 1, 2, . . . , p = 95. Our goal is to find which lncRNAs affect the values of (Y t ) for each coding gene. In other words, we aim at finding which β k are non-null.

Choice of the threshold

In this section we conduct additional experiments for choosing the threshold of ss_cv in our methodology. We consider simulated data in the specific context of this application with n = 15 and p = 95. We take the x j,t corresponding to the gene expression data of the lncRNAs and generate the Y t 's by the model described in (5.1), (5.2), and (5.3) with q = 1, γ 1 = 0.5, α = 2, and 5 non-null coefficients in β β β .

From Figure 5.8 we can see that for the thresholds 0.5 and larger, ss_cv outperforms lasso_cv even in this high-dimensional framework with n being much smaller than p. The best results are obtained with the threshold 0.7. Hence, in the application we shall use this value.

Results

In Figure 5.9, we present results for a sample of 10 coding genes. Our method selected 16 lncRNAs out of 95 as being relevant for explaining the expression of these 10 coding genes. In this figure, a dot signifies the effect of the associated lncRNA on a given coding gene. That is, the coefficient β k corresponding to the lncRNA is estimated as non-null. If the influence of a lncRNA on a given coding gene is negative, the dot is blue, and if it is positive, it is red. The brighter the dot's colour, the more significant the influence. For the 145 coding genes, there are in total 37 lncRNAs selected to be relevant. If we consider the Poisson model instead of the negative binomial model, the method selects 93 lncRNAs. All the selected 37 lncRNAs of the negative binomial model coincide with the lncRNAs selected by the Poisson model, which may imply that the negative binomial model has a smaller false positive rate.

Figure 5.10 displays the estimation of γ 1 obtained for the 10 series associated with the coding genes. We take q = 1 (number of parameters in γ γ γ ) since n is very small, and it is unrealistic to expect better results for a larger q. After 4 iterations for the 10 coding genes, all the estimates of γ 1 converge to a value in the interval from -2.5 to 5.