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Short content overview

Consider the optimization (i.e. maximization or minimization) of a real valued function f, defined
on a subset of R", subject to some set of constraints on the variables. The present document
gathers and summarizes part of the work I could carry out on such optimization problems when
the objective function is either linear or quadratic and when the constraints set on the variables
are linear and/or integrity constraints.

In the first part, methods are presented for dealing with general families of mathematical pro-
grams: (mixed-integer) linear programs and unconstrained binary quadratic programs, namely.
Chapter 1 is concerned with different types of cutting-plane methods for (mixed-integer) linear
programs. In Chapter 2 we present a combinatorial algorithm to solve a particular family of un-
constrained binary quadratic programs in polynomial time. General unconstrained quadratic bi-
nary programs are then considered in Chapter 3, for which we show how information related to
the spectrum of the matrix defining the objective may be used to derive bounds on the optimal
objective value.

In the second part, we present our contributions w.r.t. several classical combinatorial opti-
mization problems. They namely contain studies on descriptions of polytopes related to the max-
imum cut problem when the sizes of the shores are fixed (Chapter 4). Given an edge weighted
graph, this problem consists in identifying a node subset S of prescribed size, such that the sum
of the weights of the edges having exactly one endpoint in S is maximized. Another very classical
problem in combinatorial optimization is the one which consists in identifying a minimum car-
dinality dominating set. Recall that given a graph, a dominating set is a node subset S such that
each node not in S has at least one neighbor in S. Polyhedral investigations have been carried out
w.r.t. the weighted version of the problem and for different generalizations of the domination con-
cept (Chapter 5). A graph partitioning problem called the k-separator problem is then dealt with
from different perspectives (complexity, approximations and polyhedral descriptions) in Chapter
6. Basically it consists in identifying a node subset in a graph whose removal induces a graph hav-
ing connected components of bounded size. Finally, in Chapter 7, we present several features of
an original orientation problem in graphs, including the identification of polynomial time solvable
cases, several formulations and connections with the maximum cut problem.
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Chapter 1

Cutting-planes in linear programming

Nowadays, cutting-plane methods constitute a classical approach when dealing with difficult (pos-
sibly mixed integer) linear programs (LPs). The term difficult employed here may refer to different
kinds of situations. A first situation is when a complete description of the set of feasible solutions
is known, but its size (in terms of the number of variables and/or constraints involved) is too im-
portant to be given directly as input to an LP solver (due to huge memory requirements and/or
computation times). Another classical situation (not exclusive from the former) is when the feasi-
ble region is not known explicitly but some procedure is known that is able to generate inequalities
that are satisfied by all the feasible solutions (details are given hereafter).

In this chapter, we give a synthesis of some of our works that could lead to improvements over
classical cutting plane schemes and/or provide some additional insights on existing ones. After
we describe the setting and briefly review cutting plane methods from the literature in Section 1.1,
we introduce original cutting plane schemes in the following three sections.

Sections 1.2 and 1.3 are a joint work with Prof. Ben-Ameur.

1.1 Dealing with large size LPs via cutting-plane algorithms

In this introductory section, we briefly describe the overall setting and review the main types of
cutting-plane algorithms present in the literature: boundary point methods, interior point meth-
ods, center point methods and mixed methods. Throughout this and the next chapters, the reader
is assumed to be familiar with linear programming, see, e.g., [66, 181,194, 205].

Alinear program consists of a linear objective function to be maximized or minimized, subject
to linear constraints. It may be expressed as follows.
max c'x
s.t.  x€S,

(PB) {

with ¢ € R”, n is a positive integer, x denotes the vector of variables and S is a polyhedron repre-
senting the set of all feasible solutions (also called the feasible region): S = {x € R": Ax < b}, where
AeR™" for some positive integer m.

LPs provide a suitable framework for modeling a wide diversity of optimization problems stem-
ming from many applications. Difficulties for solving formulations such as (PB) may arise, e.g.,
when the description of S comprises a huge number of constraints (and/or variables), or (not ex-
clusively) when the set S is known implicitly by means of an exact separation oracle [121], that is, a
procedure solving the following exact separation problem.

Definition. Exact separation problem.
Given a vector y € R, determine whether y € S and, if not, find a vector (a, b) € R"**! such that the
inequality a' x < b is valid for S and violated by y (i.e. a'y > b).
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In fact - as is the case with NP-hard problems [111] - another common situation is when a com-
plete formulation of S is not even known, but only some restricted set of inequalities defining a
relaxation of (PB), i.e. a linear program differing from (PB) in the feasible region that is enlarged
to some setS' 2 8.

In this chapter and for our purposes, we shall only consider feasible regions described by exact
separation oracles. (Note that, trivially, if a complete formulation of S is known, the situation can
be reduced to that of an implicit description by means of an exact separation oracle.)

Presently, a common way of dealing with difficult instances of LPs as described before, rests on
the iterative resolution of a relaxation that is enriched with inequalities stemming from a separa-
tion oracle. The basic functioning of a cutting plane algorithm may be summarized as follows (see
also Figure 1.1). Iteratively, a linear relaxation of problem (PB) is solved and a separation oracle is
applied to the solution found. Then, two cases follow. If a violated inequality is returned by the
oracle, it is added to the current linear relaxation that will be solved anew and the whole process
is reiterated. Otherwise, the solution found is feasible, and thus optimal for the original problem,
so that the resolution stops.

Figure 1.1 — Description of a cutting plane algorithm

Basic layout of a cutting plane algorithm

0. Initialize a relaxation of (PB).

1. Solve current relaxation — x*.

2. Apply separation oracle to x*.

3. If (at least) one violated inequality is found, add it to
the current relaxation and go to step 1.

4. Otherwise, x* is an optimal solution of (PB). Stop.

In fact, as we shall see next, more involved procedures -still making use of an exact separation
algorithm- appear in the literature. We review them shortly, classifying them into four families
depending on the nature of the point that is given as input to the separation oracle.

Boundary point methods

In boundary point cutting-plane algorithms, the point that is given as input to the separation ora-
cle is an optimal solution of the current linear relaxation, that is located on the boundary of its fea-
sible region (or, more precisely, at an extreme point, if one makes use of a simplex type algorithm).
Early works fitting into this framework notably include Dantzig, Fulkerson and Johnson'’s algo-
rithm for the TSP (Traveling Salesman Problem) [76], Chvéatal’s [64] and Gomory’s algorithm [118]
for integer linear programs, Benders’ decomposition [37, 112] for mixed problems, Kelley’s [141]
or Cheney and Goldstein’s [58] methods for more general convex problems.

Since then, many works have appeared aiming at improving the convergence of the former
methods. These notably include Magnanti and Wong’'s method [161] for Bender’s decomposition,
stabilization techniques [153,217] for convex problems, among which bundle algorithms [107].

Interior point methods

Interior point cutting plane algorithms give as input to the separation oracle a solution of the
current relaxation, provided by an interior point algorithm (see, e.g., [160]). So, this point s interior
to the feasible region of the current relaxation. Though experimentally interior point algorithms
seem rather limited with respect to the size of the problems they can deal with (by comparison with
the simplex algorithm), they have been very important for establishing fundamental theoretical
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results (such as the polynomial-time equivalence between optimization and separation [121]). For
more information on the use of interior point methods within cutting-plane algorithms, see, e.g.,
[170-174].

Center point methods

The first cutting plane methods involving the notion of center seem to have been proposed by
Levin [154], Elzinga and Moore [96] (see also Betro [41] for some improvements of the latter). Cen-
ter point methods substantially differ from the former (boundary/interior point methods) in the
following aspects:

 the problem that is solved iteratively is not a relaxation of the original problem. It rather
consists in minimizing a convex potential function over a convex feasible region containing
the intersection of S with a set of the form {x € R”: ¢' x < V} for some value V € R, i.e. the set
of points satisfying some inequality w.r.t. the objective value.

¢ the result from the separation process with the center (the solution of the problem involving
the potential function mentioned above) as input is either an optimality cut (i.e. a constraint
with respect to its objective value) for the case that the center belongs to S, or a feasibility
cut (i.e. a linear inequality valid for S and violated by the center) otherwise.

So, w.r.t. the general presentation of cutting plane methods given earlier (Figure 1.1 and before),
S is to be interpreted here as the set of optimal solutions of the original problem. Note that the
ellipsoid method by Khachiyan [142], which is the first polynomial time algorithm known to solve
LPs, belongs to this family of methods. For further information and a state of the art on analytical
center methods, the reader may consult, e.g., [115,220].

Mixed methods

The last family of cutting plane methods we consider and that we will call mixed methods, consists
intuitively in combining somehow the former approaches by making use of an interior point and a
boundary point in the separation process. Such an approach appears in a work due to Veinott [214]
for solving convex programs, making use of linear relaxations. Assuming a point x;, in the interior
of the feasible region is known, and that x,,; is an optimal solution of the current relaxation, a
point x4 which belongs to the line segment [x;,, X,,;] and to (or is close to) the boundary of the
feasible region is determined (see Figure 1.2). The generated inequality (denoted by C in Figure
1.2) then corresponds to (or is somehow close to) a supporting hyperplane of S at x;4. A drawback
of this methods lies in the computational work needed to compute xp.

Before we conclude this section let us mention that, by adopting a dual perspective, the former
approaches may be useful in the context of column (rather than constraint) generation in order
to solve LPs involving a large number of columns. For a more in-depth discussion on these two
frameworks and their connections, see [33].
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Figure 1.2 —Illustration of Veinott’s method

1.2 The [n/Out algorithm: a new mixed cutting-plane scheme

In this section we present the In/Out algorithm: a new cutting-plane method fitting into the family
of the mixed methods introduced earlier. After we describe the method and present some of its
properties, we summarize results from our computational experiments. Details about the work
from this section can be found in [33].

1.2.1 Description

Consider the problem (PB) introduced in Section 1.1: max{c’x: x € S}, and assume an exact sep-
aration oracle is known for the set S. The In/Out algorithm, which may be interpreted as a gen-
eralization of Veinott’s method [214] proceeds as follows for the separation step. Assume that the
current relaxation of (PB) that is used is given by max{c'x: x € P}, with P 2 S Three points are
considered:

* xin €8S : afeasible solution of the original problem (PB) (differently from Veinott's method,
this point may change in the course of the algorithm),

* Xour € P : an optimal solution of the current relaxation, and

* Xsep : a point which is a convex combination of x;, and xoys:
Xsep = QXour + (1 =) Xip,
with a €]0, 1], a parameter whose value may change in the course of the algorithm.

It is the point x,p, that is given as input to the separation oracle. This point will also be called
separation point in what follows. Then, there are two cases left in the separation process:

1. Case xsp ¢ S: a violated inequality is returned by the separation oracle. This inequality is
added to the current relaxation.

2. Case Xgep €S: x;p is updated with xgp.

The iterations are stopped when the relative gap between the objective values of x;, and x,;;
falls below some given precision parameter value e. Algorithm 1 hereafter describes the overall
procedure.
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Algorithm 1. In/Out cutting-plane algorithm
Step 0.
(a) Define a polyhedral relaxation P2 S.
(b) Find x;, €S.
(c) Compute X, such that ¢ x,,; = max{c'x: x € P}.
Step 1.
(a) Select a €]0, 1].
(b) Set Xsep 1= AXour + (1 — Q) Xjp.
(c) Give xgp as input for the separation oracle.

(d) If a violated inequality is found, then
- Add a violated inequality to the description of P.
- Compute x,;; such that cT xpur = maxicTx: x € P}.
(e) Else
- Set Xin 1= Xsep-
End_If;
Step 2.
Iflc"xip = ¢ Xouel <€lc? x| then
Stop.
Else
Go to’Step 1.
End_If;
END.

Note the flexibility of the algorithm w.r.t. the method used to compute x,,; (in the steps 0.c
and 1.d). In fact (see [33] for induced modifications in the rest of the algorithm) we may allow x,,;
to be an approximate solution or to be obtained by an interior point method. These features may
be potentially attractive w.r.t. computation times.

The In/Out algorithm may also be adapted for the case when an exact separation oracle is
not available. In such a case the point x;, should not be modified when no violated inequality
is found: rather, the value of a should be increased to compute another separation point. The
stopping criterion should also be changed to handle the inexactness of the separation oracle.

1.2.2 Some convergence properties

Convergence properties of the In/Out algorithm have been studied in a context more general than
linear programming: convex optimization. To present some of these results, we may assume in
this section that the original problem to be solved is of the form (PB) with S a convex set (in lieu
of a polyhedron) for which an exact separation oracle is known. (Definition of an exact separation
oracle for a convex set is the same as the one given in Section 1.1 for a polyhedron).

Assume that the number of constraints that can be generated is finite. Then, since any con-
straint cannot be generated twice, the number of iterations for which an inequality is generated is
finite. In order to conclude on the convergence of the In/Out algorithm, we must also consider the
iterations for which no inequality is generated (or equivalently, when the point x;, is modified).
Let ay €]0,1] denote the value of the parameter «a at iteration k. Assume the convex optimization
problem to be solved has a finite optimal solution and that the precision parameter € is set with
value 0. Then, a simple sufficient condition ensuring the convergence of the In/Out algorithm is
as follows.

Proposition 1.2.1. [33] Assuming that the number of constraints that can be generated is finite and
that the series Y ;. &y diverges, then the points xi, and X,y of the In/fOut algorithm both converge to
an optimal solution. |
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Now, let a convex optimization problem be of the form below:

min c¢'x
S.t. gl(X)SO,lE{l»--,p};
x € R",

where the functions g; are continuously differentiable, strictly convex, p is a positive integer and
¢ # 0. Among the first proposed methods to deal with such problems, Kelley’s cutting-plane algo-
rithm [141] relies on the use of linear inequalities induced by the convexity of the functions g; of
the form:

8i(Xsep) + V] (Xsep) (x = Xsep) <0, (1.1)

where Vg;(xs¢p) denotes a subgradient vector of the function g; at xep.

Consider now the use of inequalities (1.1) within the framework of the In/Out algorithm. Let
xk xfep, xfn denote the points used at iteration k (see Algorithm 1 above). Further assume a
compact set Q containing the set of optimal solutions is known. We may assume Q is a polyhedron

and that all the points xf)“ut belong to Q. The inequality added to the linear relaxation at iteration k

is the one corresponding to the function g; with j = argmax{ gi (xfe p) lie{l,..., p}} The global
convergence of Kelley’s method (see, e.g., [159]) suggests a similar property for the In/Out algo-
rithm. This is indeed the case under some assumptions, as stated by the next proposition, where
O min Stands for a given constant value satisfying 0 < o, < 1.

Proposition 1.2.2. [33] Ife =0, the functions g; are continuously differentiable, strictly convex and
if there exists K € N such that ay = 0 yin, for all k = K, then the sequence (x’gut)keN converges to an
optimal solution.

The only cases when the sequence (xll“n) may fail to converge to an optimal solution is when
o = 1 over an infinite number of iterations. Excluding such situations we deduce the next result,
in which a4y stands for a given value satisfying 0 < anin < 0max < 1.

Corollary 1.2.3. [33] If the functions g; are continuously differentiable, strictly convex, and if there
exists K such that 0 < apip < g < Qmax < 1, for all k = K, then the sequences (x(’ful) and (xl’.‘n)
converge to an optimal solution.

The last corollary may explain some observations stemming from computational experiments
that we carried out [33]: for some problem instances we observed that a very little change in the
value of the parameter a (for example a = 0.99 by comparison with a = 1) could greatly impact
the performance of the In/Outalgorithm. Also note that when o = 1 the algorithm stops only when
Xour becomes feasible. By contrast, choosing o4y < 1, the algorithm may terminate when the gap
between the objective values of x,,; and x;, becomes lower than some given precision e.

1.2.3 Applications

In this section we report different types of problems on which the In/Out algorithm has been eval-
uated: survivable network design, multicommodity flow problems, and randomly generated LPs.
After their presentation we briefly sketch the mains observations resulting from our experiments
(see [33] for details).

Survivable network design

Let a network be represented by an undirected graph G = (V,E) where V denotes the set of nodes
and E the set of edges. Let K denote a set of demands: for each k € K some amount of traffic dj
should circulate between two specific nodes. The demands are satisfied by using the capacities
available on the links of the network. Let x, denote the maximum amount of traffic which may
circulate on link e € E. Here, the link capacities (x.).cg are variables, whereas the demands (d) ek
are part of the data. The unit capacity installation cost on edge e € E is c,. A traffic demand may



CHAPTER 1. CUTTING-PLANES IN LINEAR PROGRAMMING

be satisfied using several paths. In addition, a requirement w.r.t. the network survivability must
be taken into account, and can be formulated as follows. Let R denote a set of possible states of
the network, each state r € R being characterized by a subset of edges E, € E that can be used. It is
then required that the installed capacities allow the satisfaction of all demands for all the states in
R. The objective is to minimize the total cost of the capacities to be installed while satisfying the
latter survivability requirement. The problem can be formulated under the form (PB) (see Section
1.1) where S stands for a polyhedron for which an exact separation oracle can be designed (that
generates semimetric inequalities [136, 189] by solving auxiliary linear programs).

Multicommodity network flows

A second family of problem we considered are Multicommodity Min Cost Flow (MMCEF) problems
(see, e.g., [1,149,169]), which were solved using a column generation approach.

Given a graph G = (V,E), a set K of demands, unit flow costs (s[;) ecE, kek and edge capacities
(Ce)eck, the objective is to find a minimum cost flow satisfying all the demands and all the capacity
constraints. It may be formulated as follows.

minZkeKijepk Sj/cfjk
S.t.

(MP) Z]’kepk f]k =d, VkeK, (mg)
ZkeKijaefjk <y Ve€eE, (vo)
fix =0, VkeK, jFePy,

with the following notation:

Py: set of paths joining the extremities of the demand k,

* Sjk=Yeejk s¥: unit flow cost on path j¥ € Py,

fjx: flow on path j k € Py to satisfy the demand k,

(M) ke (Ve)eer: dual variables associated with the first and second type of constraints of
formulation (MP).

In order to deal with a potentially very large number of columns, methods based on a Dantzig-
Wolfe decomposition are classically used. A restriction (w.r.t. the set of columns) of the master
problem (MP) is initialized with a set of columns P such that the feasible region is nonempty.
Then, iteratively, the current restricted master problem (RMP) is solved and the dual optimal val-
ues are used to generate new columns. For the case of (MMCF) problems this column generation
step reduces to finding shortest paths. So, differently from the presentation of Section 1.1, in that
case we apply the I[n/Out algorithm in the dual space of the current restricted master problem.

Random linear programs

A third type of problem instances used to evaluate the In/Out approach were randomly generated
LPs of the following form.

min ¢! x

s.t.

Ax= T,

xeRY,

where 1 denotes an all ones vector of appropriate dimension. The entries of the matrix A are real
numbers (with no sign restriction) randomly generated, so that the feasible region is nonempty.
The coefficients of the objective function are nonnegative random real numbers. The matrix A
is dense, with no peculiar structure, and its number of rows is always much larger than that of
columns.
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Main observations

For the different problems described above, different variants of separation oracles have been im-
plemented, summarizing: one variant generating quickly weak inequalities and another one gen-
erating stronginequalities but requiring more important computation times. Here the terms weak
and strong denote the fact that when considering the basic classical cutting plane scheme (i.e. set-
ting a = 1), the strongvariant converges more rapidly to an optimal solution than the weak version.
Main observations from the experiments may be synthesized as follows.

Consider firstly the case when a strong separation oracle is used. Decreasing the value of a
to low values (below 0.5) tends to augment the total computation time (multiple relaxations are
solved which do not lead to the generation of violated inequalities) by comparison with the clas-
sical scheme (x = 1). On the positive side, when decreasing a below 1, the total number of gen-
erated constraints tends to decrease (which contributes to reduce the time spent on solving the
relaxation at each iteration), so that, for values of a from 0.99 down to = 0.8, improvements on the
total computation time could be observed in many cases.

Consider now the case when a weak separation oracle is used. Spending less time on sepa-
ration at each iteration can make it attractive for sufficiently large instances, together with values
strictly lower than 1 for the parameter a. In particular, it may even become competitive with the
strong variant (considering any value of « for the strong variant): total computation times could
be more than halved for some instances of network design problems (by comparison with the best
results obtained using the strongoracle).

We also observed that tiny modifications of the parameter a (considering in particular the
cases a = 0.99 and o = 1), could greatly impact the global performance (both w.r.t. the total com-
putation time and the total number of generated inequalities). Thus far, we do not have any rule
of thumb to determine for some given problem the best value for this parameter. On the whole, a
value of a below but close to 1 (about 0.8) seems to be a robust choice. Further investigations may
be directed towards an efficient setting of this parameter (possibly dynamic, i.e. changing in the
course of the algorithm).

1.3 A multiple-points cutting-plane scheme

This section is dedicated to multiple-points separation: a generalization of classical constraint
generation algorithms. Basically, it consists in finding an hyperplane separating a polyhedron
from a given set of points X. So the cutting plane schemes we dealt with in the preceding sections
correspond to the particular case when the set X is reduced to a single point (i.e. |X| = 1).

Related works appear in the literature, in particular in the field of analytical geometry dealing
with classification or discrimination problems [15, 164-166,203]. In such problems, the objective
consists in finding a discriminating function f : R" — R, separating two point sets A and B con-
tained in R", i.e. such that f(x) > 0, for all x € A and f(x) < 0, for all x € B. This function may
correspond to an affine function, a polynomial, etc. (see, e.g., Section 8.6 in [54]).

Here, we restrict ourselves to linear separation (i.e. the case when f is an affine function),
one difference with classical classification problems being that the separation is to be done here
between some given set of points and a polyhedron S which is described by an exact separation
oracle. Another difference is our objective: generate an inequality which is valid for S (and, if
possible, facet-defining), whereas in classification problems there is some equivalence in the way
the points are considered with an objective that is often related to the misclassified points, see
[38,50].

The purpose of our investigations, summarized hereafter, were twofold: better understand
the complexity of different problems inherent to the multiple-points separation framework, and
evaluate the computational performance of such an approach by carrying out experiments on
different family of optimization problems.

The rest of this section is organized as follows. After we discuss some particular features inher-
ent to multiple-points separation and establish its polynomial equivalence with a classical single
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separation procedure, we present a generic algorithm in order to generate constraints, making use
of several separation points. Then, we briefly sketch our complexity results w.r.t. diverse problems
related to this kind of separation. Finally, we shortly comment on the computational experiments
we carried out and the obtained results. Further details on the work reported in this section can
be found in [32].

1.3.1 Polynomial equivalence of single- and multiple-points separations

In what follows, let X*¢” stand for the set of points that we aim at separating from a polyhedron S
with some hyperplane.

In the classical (i.e. single-point) separation process, if we know an explicit formulation of S,
(i.e. a finite set of linear inequalities and/or equations), then an obvious way to answer the exact
separation problem (see Section 1.1) consists in computing the violation of the given separation
point w.r.t. each constraint in the formulation. Such an approach fails, in general, if we want to
find an hyperplane separating several points from S. For, assume that we wish to separate the set
of points {x!, x?} from the region S as illustrated in Figure 1.3. Note that, in this example, none of

Figure 1.3 - Using the polar to generate a constraint separating several points from S.

the points, x! nor x2, belongs to the feasible region S since each of them violates a constraint that
is valid for S: C; and C; respectively. Also, the single constraint C; (or Cz) cannot separate both
x! and x? from S. However, in the present case, this could be achieved by a constraint such as C’
(dashed line), which corresponds to a convex combination of C; and C, (and thus, is valid for S).
This illustrates the necessity of working with the polar of S for separating several points from this
region. In general, obviously, it is not always possible to generate an inequality separating some set
of points X*°” from S, even in the case when S N X*%” # @: this precisely occurs if the intersection
conv(X*¢P) NS is nonempty.

From the discussion above, it may seem much more difficult to proceed to multiple-points
separation by comparison with single-point separation. In fact, relying on the fundamental ground-
work by Groétschel et al. [121], we could prove that multiple-points separation has a particularly
desirable feature w.r.t. the single-point counterpart: both are polynomially equivalent. We shall
report hereafter the proof of this result since it provides some interesting insights, and the algorith-
mic structure of a procedure to perform a separation making use of several points easily follows. So
let us now mention more precisely the results obtained, starting with the formal definition of the
exact (or strong) multiple-points separation problem, denoted [MSEP], and two important formal
assumptions to be used in our proofs.

Definition. Exact multiple-points separation problem [MSEP].
Given a point set X*¢” = {x!,..., x"}, find

(i) a vector in conv(X*¢?) NS, or

(ii) a valid inequality for S, that is violated by all the points in X*¢”.

Assumption 1. S is a polyhedron in R" with facet complexity at most ¢, i.e. there exists a system of
inequalities with rational coefficients admitting S for solution set and such that the encoding length
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of each inequality is at most ¢. LetS = {x e R" | Ax < b}, withAe R"™", me 7, b € R™ stand for
such a formulation.

Assumption 2. Each point in X*¢P has an encoding length which is upper bounded by a polyno-
mial in n and ¢. Also p = |X*¢P| is upper bounded by some polynomial in n and .

In order to find a constraint separating all the points in X*¢” from S for the case when conv(X*¢F)n
S = @, we introduce the following LP whose feasible region corresponds to the valid inequalities
for S, and w.r.t. which each point in X*¢¥ has a violation larger than or equal to some value € > 0.

min 0
(PSEP)S st X Nilaix' =b) =e, 1e{l,2,...,p},  (w)
Ai =0, iefl,2,...,m},

where a; denotes the i-th row of the matrix A introduced in Assumption 1. After multiplying the
objective function by the scalar %, the dual problem writes as follows.

Zhspp = Max X u
(DSEP) st X ulaix'-b) <0, i€fl,2,...,m}, (A;)
u; =0, lef{l,2,...,p}.

Proposition 1.3.1. [32] There exists an hyperplane separating all the points in X*¢P from S if and
only if z{pp = 0.

By Proposition 1.3.1, it follows that part (i) of problem [MSEP] can be reduced to solving
(DSEP). This is used to establish the next result on the complexity of multiple-points separation.

The notion of polynomiality we use refers to polynomiality in the parameters 7, ¢ and the time
used by the separation oracle. Note in particular that this is independent from the parameter m
introduced in Assumption 1. In what follows, by oracle-polynomial time we mean a duration (for
our purposes we may assume this is an integer number of time units), that is upper bounded by a
polynomial depending only on n and ¢, assuming each call to the separation oracle takes one unit
of time, and the same for each elementary operation.

Proposition 1.3.2. [32] Under the assumptions 1 and 2, if S is given by an exact (single-point) sep-
aration oracle, then the exact multiple-points separation problem [MSEP] can be solved in oracle-
polynomial time.

Proof. Assume S is given by a strong single-point separation oracle. Let Fypsgp stand for the fea-
sible set of the problem (MDSEP) introduced above. From now on, we work with an implicit de-
scription of Fyppsgp by means of a strong separation oracle. The latter can be derived from the sep-
aration oracle for S. To be more precise, if the separation oracle is called with input u = (0,...,0)T,
it returns that u € Fypsgp. Else, for a given point u € Rf \ {0}, the known strong separation oracle
for S is called with the vector Zle uxt/ 27=1 u;. If an inequality is returned by the latter oracle, it
can be used to separate u, else u € Fypsgp. This separation oracle can be used to solve (MDSEP)
by traditional constraint generation. Then, it follows from the polynomial equivalence between
optimization and separation established by Grotschel et al. [121], that (MDSEP) can be solved in
oracle-polynomial time. From Proposition 1, we have two cases: either zynqpp = 0 01 2y ycpp = 1.
Let u* stand for an optimal solution.

If zyngpp = 1, then, from Proposition 1, we know that there exists no valid inequality cutting
off all the points in X%¢”,

Consider now the case zy;,;;p = 0. Note that Fypsgp has facet-complexity bounded above
by a polynomial in n and ¢. This follows from Assumptions 1 and 2, the fact that a representa-
tion of Fypsep can be derived from a formulation of S whose inequalities have encoding length
bounded by ¢, and the following property: (x'y) < (x) + (y), for all x, y € R, where (x) denotes
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the encoding length of x. Define now a basic optimum standard dual solution to be an opti-
mum dual solution corresponding to a standard representation of the primal feasible set. Since
Fmpscp is given by a strong separation algorithm, it follows that a basic optimum standard dual
solution ()\*,A;,...,)\I’Q)T can be found in oracle-polynomial time (see Theorem 6.5.14 in [121]),
together with the corresponding constraints (g', '), ..., (g", hN) arising in a standard formulation
of Fypsgp. For our purposes, we consider that equality constraints of the form g' x = h are repre-
sented by two inequalities with coefficients corresponding to the row vectors (g, h) and (-g,—h),
so that the dual values A* are nonnegative. Note that the dual solution found A* satisfies the fol-

lowing relation denoted by (R*): (1,...,1,0) = ¥} A (g{,gﬁ,...,g;, hi). In fact, we namely have
hi=0,forallie{l,2,...,N}, since for that case Fypspp = {0}. Furthermore, given a valid inequality

(g, h) e RP*! for Fypsep, a valid inequality for S from which (g, h) is derived, can be computed in
oracle-polynomial time. Consider for this the polyhedron

Q= {(n,no) eR"™!: (,mp) is valid for S;g; < mx/ — 7, j € {1,...,p}}.

Since (g, h) is valid for Fypsgp , it is equivalent to or dominated by a constraint derived from a
linear combination of constraints valid for Fypsgp, i.e. there exist nonnegative coefficients (y l);; 1
(for nonnegativity contraints), and (8;)}", (for constraints with coefficient vectors (si,0) derived
from inequalities valid for S) such that (g, h) is dominated by (— Zf;l Yier+Xn, Bist ,0), where
e; stands for the i-th unit vector. The latter implies g; < Y- p; (si)j, for all j € {1,2,...,p} (in
case all the coefficients p are equal to zero we may consider the valid inequality 0" x < 0 for S,
(where 0 stands for the zero vector) so that we may assume that there always exists at least one
positive coefficient ). It follows that Q" is nonempty, and from Assumptions 1 and 2, Q" has
facet-complexity bounded above by a polynomial in n and ¢. Also, a strong separation algo-
rithm for Q' can easily be derived from a strong violation algorithm for S. Then, since the latter
can be solved in oracle-polynomial time (by Theorem 6.4.9 in [121]), it follows that a point in Q’
can be computed in oracle-polynomial time (by Theorem 6.4.1 in [121]). Hence, for any (g%, h’),
i=12,...,N, a constraint (ni,n(’;) that is valid for S and from which (g/, k') is derived can be
computed in oracle-polynomial time. Finally, it follows from the relation (R*) that the inequality
Zli\I:l )\;fnix < Zli\I:l )\;fn(i), which is valid for S, separates all the points in X*¢” (since it corresponds
to a feasible solution for (PSEP)¢-;). O

1.3.2 A generic multiple-points separation procedure

After we discuss on the two situations which may occur in the multiple-points separation (i.e.
conv(X*P) NS is empty or not) a general multiple-points separation scheme is introduced.

Case conv(X’¢P)nS = @.

In case conv(X*¢P)n S = @, (according to the linear discrimination alternative, see Section 8.6.1
in [54]) there exists an hyperplane separating all the points in X*¢” from S and consequently the
feasible region of problem (PSEP¢) is nonempty (for all € > 0). This is illustrated by Figure 3.2(a).

Case conv(X*¢P)nS # @.

When it is not possible to separate all the points in X*¢? (as illustrated by Figure 3.2(b)), one way
to proceed may consist in iteratively removing points from X*¢” before resuming separation with
remaining points. For example, consider the case when X*¢” contains an optimal solution x* for
the current relaxation. Then, unless x* is feasible (and thus optimal) for the original problem,
applying the former idea by keeping x* in X*¢”, will always lead to the generation of a constraint.

In addition, when conv(X*?)nS # @, following the methodology adopted for the proof of
Proposition 1.3.2 (see [32]), we can obtain a feasible solution of the original problem that can be
used to update a primal bound on the optimal objective value.
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(@) (b)

Figure 1.4 - Illustration of the cases: (a) conv(X**P)NS = @ and (b) conv(X**P)NS # @

Another way to proceed, instead of removing points from X*¢”, could consist in looking for
valid constraints separating subsets of points of X*?P. For example, assuming all the points in X*¢”
lie outside the feasible region, it is then possible to decompose X*¢P as the union of subsets of
points Y/ € X*¢” (non-necessarily disjoint) satisfying:

s Snconv(Y/)=g,
» Snconv (Y u{z}) # @, Yz e (X¢P\Y/).

Such a decomposition is illustrated by Figure 1.5. We provide later (Section 1.3.3) complexity re-
sults related to this kind of procedures.

Figure 1.5 - Using several sets of infeasible points to generate several constraints

Algorithmic structure

Let x* denote an optimal solution of the current relaxation of problem (PB). We shall not give
here an accurate definition for the points contained in X*¢” in order to present the method in its
full generality. However, we will make the assumption that the optimal solution of the current
relaxation x* always belongs to this set.

The algorithm only differs from classical constraint generation procedures at the separation
step. Assuming a set of points X*¢” is given, the separation procedure looks for a constraint that is
violated by all those points. In case none is found, (i.e. conv(X*¢”) NS # @) with |[X%¢”| > 1, points
different from x* are removed from X*¢P and separation is resumed on the set of remaining points.
Otherwise, if the separation procedure does no find any violated inequality with X*¢7 = {x*}, then
the algorithm stops with x* as optimal solution for the original problem. In case the separation
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procedure finds an inequality separating all the points in X*¢” from the feasible region, it is added
to the current relaxation that will be solved anew and the whole process is iterated.

Algorithm 2. Generic multiple-points separation (GMPS)

1. Solve the current relaxation — x* ;
2. Update X*¢P (x* € X5¢P);
3. While no inequality separating all the points in X*¢” is found and x* is not optimum do:
3.1. Find an inequality separating X*¢” from S ;
3.2. If an inequality has been found, then
- Add this inequality to the current relaxation. Go to step 1;
3.3. Else if [X*¢P| > 1 then
- Remove from X*¢” a subset of points Q with x* ¢ Q,
XSeP .= X5eP\ QQ;
3.4. Else
- x* is an optimal solution for the original problem ;
End_If;
End_while;
END.

Remark. If the point x* is not included in X*¢”, one cannot guarantee that the solution of the
current iteration will change in the next iteration. Anyway, different algorithmic schemes may be
elaborated with point sets X**” not including x* initially.

Remark. For the case when the multiple-points separation procedure fails to determine an in-
equality separating all the points in X*”, one may generate several inequalities, each separating a
subset of points of X%¢7,

Two elements of the procedure (GMPS) remain to be described before proceeding to an imple-
mentation: an accurate definition of the point set X*¢” that is used at each iteration, and of the
points which may be iteratively removed from X*?”. We have not yet investigated deeply these
parts, but started dealing with theoretical matters w.r.t. the complexity of problems related to
these two points.

1.3.3 Complexity results

The problems considered in this section are related to the way the set of points X*°” can be dealt
with in step 3 of procedure (GMPS). Throughout this section we assume that multiple-points
separation can be done in polynomial-time. We start with some useful definitions.

Definition. A set of points X = {x',x%,...,x"} is said to be separable if there exists a constraint
a' x < b separating all the points in X from the feasible region S, i.e. a'x’ > b, foralli € {1,..., p}.

Otherwise this set is said to be non-separable.

Definition. Given a set of non-separable points X = {x!,x?,...,x"}, a subset Y < X is said to be
maximal separableif Y is separable and, for all x € (X\Y),Y U {x} is non-separable.

Definition. Given a set of points X = {x!,x?,...,x"}, a subset Y < X is said to be minimal non-
separableif |Y| =2, Y is non separable, and for all x € Y, Y \ {x} is separable.

Next, complexity results dealing with problems related to maximal separable sets are reported.
These are followed by their non-separable counterparts.
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Maximal separable set with maximum cardinality

Given a non-separable point set X*%”, a possible criterion for evaluating the quality of the con-
straint generated could be the number of points of X%¢P that this constraint separates. The de-
cision version of the problem which consists in looking for a constraint separating a maximum
number of points contained in X*¢” can be formulated as follows.

[SEP_MAX]

Instance: a set of p points in R” : X5 = {x!, x2,..., xP}, an integer K < p.

Question: Does there exist a separable set Y < X*¢P satisfying |Y| =K ?

With a reduction from the stable set problem in a graph [111], we could prove the following
result on the complexity status of [SEP_MAX].

Proposition 1.3.3. [32] Problem [SEP_MAX] is N/ 27 -complete.

Minimum cardinality maximal separable set

Depending on the used separation procedure, handling several points may induce non negligible
additional computations. One may then be interested in looking for a good constraint in the sense
that it would separate a maximal separable set, but with the latter having minimum cardinality
to limit computation times. W.r.t. the decision version of the corresponding problem denoted
by [SEP_MIN], we could establish the next result, by reduction from the stable dominating set
problem in a graph [111].

Proposition 1.3.4. [32] Problem [SEP_MIN] is &/ 27 -complete.

Correspondence between a minimum partition into separable sets and the minimum number
of constraints for separation

Given a set of points X*¢”, all of which lying out of the feasible region, in order to limit the num-
ber of constraints in the current relaxation, one may be interested in the minimum number of
constraints needed to separate all the points in X%¢P. We could show this problem corresponds to
determining a minimum cardinality partition of X*¢” into separable sets.

Proposition 1.3.5. [32] The minimum cardinality of a partition of X*°P into separable sets is equal

to the minimum number of constraints which are necessary to separate all the points contained in
Xsep .

Also, we can show that the problem which consists in partitioning a node set of a graph into k
stable sets (the so-called graph k-colourability or chromatic number) is polynomially reducible to
the problem of partitioning a set of infeasible points into k separable sets. And since the decision
problem graph k-colourability is A Z?-complete [111], it follows that the minimum cardinality
partition of a set of infeasible points into separable sets is A Z?-hard.

Minimum cardinality minimal non-separable set

We start with the decision version of the problem which consists in determining a minimum car-
dinality non-separable set.

[NON_SEP_MIN]

Instance: a set of p points X*¢” = {x!, x?,..., x"} in R", a positive integer K < p.

Question: Does there exist a minimal non-separable set Y < X*¢? with |Y| < K?

By reduction from the minimum cardinality dominating set problem in a graph [111], we de-
duce the next result.

Proposition 1.3.6. [32] Problem [NON_SEP_MIN] is N 27 -complete.
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Maximum cardinality minimal non-separable set

Wr.t. the complexity of problem [NON_SEP_MAX] - whose formulation differs from [NON_SEP_-
MIN] only in the question, replacing |Y| < K by |Y| = K - we have the following result (obtained by
reduction from the maximum cardinality minimal dominating set problem in a graph [59]).

Proposition 1.3.7. [32] Problem [NON_SEP_MAX] is & &P -complete.

Partition into non-separable sets

The partition of a set of non-separable points into several non-separable sets could be used to
obtain several primal bounds. The corresponding decision problem may be formulated as follows.
[NON_SEP_PART]
Instance: a set of p points X*¢” = {x!, x?,..., x"}, a positive integer K < p.
Question: Does there exist a partition of X*¢” into k = K non-separable sets ?

The next result follows by reduction from the domatic number problem [111].

Proposition 1.3.8. [32] Problem [NON_SEP_PART] is &/ 27 -complete.

1.3.4 An overview of computational experiments

Computational experiments have been performed on LPs of the following form.

max clx
P){ s.t. Ax<bh,
xeR?,

where the feasible region S = {x € R” | Ax < b} is assumed to be bounded, A € R"™*", b € R™ and
m > n. The multiple-points separation procedure evaluated, denoted by /-RELAX consists in
defining X*¢” as the set of the [ last optimal solutions of the relaxations solved. Experiments have
been carried out on randomly generated LPs and survivable network design problems (such as
the ones used to evaluate the In/Out approach we described before) for different values of the
parameter /. The reader is referred to [32] for more details.

Randomly generated linear programs

We summarize hereafter the main observations from our experiments on random LPs.

¢ The final number of constraints of the relaxations supplying an optimal solution for the
original problem stand rather close for the whole set of separation procedures evaluated
(including the classical single-point separation).

* However, the total number of iterations may vary considerably, depending on the number
of points used in the separation process: handling more points tends to decrease the to-
tal time spent on solving relaxations. To illustrate this, for an instance corresponding to a
formulation with 600 variables and 10000 constraints, the number of iterations was more
than divided by six between a single-point separation and the variant 50-RELAX. However,
handling more points in the set X*¢/ induces a longer time spent on the separation at each
iteration. And if the number of points used becomes too high, the total computation time
increases.

¢ The obtained results suggest an increasing interest for multiple-points separation for an in-
creasing size of the instances. For example, the total computation times have been more
than halved for the largest instances solved (considering the procedure 20-RELAX by com-
parison with single-point separation).
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Survivable network design

We now briefly sketch the main observations from experiments on survivable network design in-
stances.

¢ Results tend to display an increasing interest for multiple-points separation for problems
with an increasing number of states (and a fixed number of demands).

* If the number of states becomes too small, the performance of the single-point separation
scheme tends to dominate that of multiple-point procedures.

* On the contrary, for a sufficiently high number of states, a reduction of the total computation
time could be observed, through a decrease of the total number of iterations due to the
generation of more constraints by the separation procedure. For example, the total number
of iterations is more than divided by 6 between the cases of single-point separation and oo-
RELAX (which consists in making use of all previous optimal solutions of the relaxations
solved) for an instance with 40 nodes, 200 edges, 110 demands and 30 states.

1.4 Asimple finite cutting-plane algorithm for (mixed-) integer LPs

In this section we present a cutting plane algorithm in order to solve integer linear programs in a
finite number of iterations, under the assumption that the feasible region is bounded. The method
also applies to the resolution of mixed-integer linear programs in a finite number of iterations,
under the additional assumption that the optimal objective value is integral. This work has been
published in Operations Research Letters [183].

1.4.1 General introduction and related work

For an up-to-date and much broader review of cutting plane algorithms for (mixed-)integer pro-
gramming (and some related implementation issues), the reader may consult, e.g., [87]. The first
cutting plane algorithm to solve integer linear programs with a proof of finite convergence was
proposed by Gomory in the 1950’s [117, 118, 181]. Since then, other finitely convergent cutting
plane methods have emerged in the literature, e.g., [5, 26,53, 191]. Next, we present a simple such
algorithm relying on the generation of special constraints that are iteratively added to a relaxation
of the original integer program formulated as a lexicographic optimization problem. A particu-
lar feature of the method by comparison with Gomory’s original algorithm [117,118] is that it does
not require knowledge of the LP-tableau to generate cutting-planes: only the values of the compo-
nents of the optimal solution found for a relaxation of the problem are used at each iteration. The
optimal LP-basis was also used in the algorithm introduced later by Bell [26]. There, the cutting-
planes used essentially rely on the integrality of the optimal objective value and they are iteratively
applied to linear relaxations of the problem having an objective function that may be modified by
the procedure. As is the case in Orlin’s algorithm [191] the method presented here involves the iter-
ative resolution of a lexicographic optimization problem. However it differs from the former in that
it may be applied to mixed-integer programs under the assumptions mentioned hereafter (instead
of 0/1-mixed integer programs) and it does not involve additional auxiliary variables in the objec-
tive function of the lexicographic formulation. As some of the methods just mentioned above, the
algorithm presented here may be viewed as a particular enumerative process and a counterpart
to its simplicity may be that the polyhedral structure of the feasible region of the problem is not
exploited for a potentially better efficiency.

Before we present the method we introduce some notation. Given two vectors x, y € R"*1, the
vector x = (xp, X1, ..., Xp) is said to be lexicographically lower than the vector y = (yo, y1,..., ¥»n) and
we write x <p, y if there exists an integer k € {0,1,..., n} with x; < yx and x; = y; forall i < k. And
similarly, we write x <y yif x < yor x = y.
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Given a set S € R"*!, consider the following problem
(PBLEX) lexmax {zy, z1,...,2,: 2 € S}

which consists in finding a lexicographically maximum vector in S.
Any integer linear program in the following form

(IP) maxic' x: xe PnZ™}

with ¢ € R"” and where P stands for a polyhedron in R”, may be expressed as a problem of the type
(PBLEX), setting zg := c'x, zj:=x;, forallie{l,2,...,n}and S:=R x (PN Z").

In what follows, we consider solving a problem of the form (IP) under the assumptions that the
objective function is defined by an integer vector: ¢ € Z", and that the feasible region P is bounded:
P < [0,d]", for some positive integer d.

1.4.2 Cutting-plane algorithm

In this section we describe the proposed method after we introduce the cutting planes used by the
latter.

Proposition 1.4.1. Let z = (29, z1,...,25) € Rx [0,d]". Then, the following inequalities are satisfied
by any integer vector x € Z x ([0, d] n Z)" which is lexicographically lower than z (i.e. x <1 z)

i-1
xi+ ) aij(xj—[z;]) < lail, (1.2)
Jj=0

forallie{0,1,...,n} witha; =d and ar = d(1 +Z?;i aj) for any integer k € {2,3,..., n}.

Proof. Let ye Z x ([0,d] nZ)" satisfying y <1 z. The proposition is obvious if y = z or for the index
value i =0 (i.e. yo < lzol).

So assume now y # z and k = 1 with k = argmin;{y; <z;: j=0,1,..., n}. Notice that the defi-
nition of k and the assumption y <1, z imply y, = z4, forall g € {0,1,..., k- 1}. Thus the inequality
(1.2) is trivially satisfied for all i € {0, ..., k}.

Consider the left hand-side of the inequality (1.2) for the case i > k. We have for the vector y:

Vit Z};}) ai-j(yi=1lzj]) =yi+ Z};lk ai-j(yj—[z;])
SYi—ai-+t Z;‘;lk+1 ai-j(y; =[]
SYi— @i+ dZ};l_l aj=yi—d
<0
<l|zl.

The first equation follows from the observation mentioned above that y; = z4, for all g €
{0,..., k—1}. The first inequality follows from the definition of the index k which implies y; —[z;] <
—1. The second inequality is due to the fact that y; and z; belong to the interval [0, d] for all
jefl,..., nk O

In what follows, the inequality (1.2) corresponding to some particularindexvalue i € {0, 1,..., n}
will be denoted (1.2);. We now present an algorithm to solve (IP) under the assumptions men-
tioned above. Also, for simplicity in the presentation, we consider the case when S is nonempty,
i.e. the polyhedron P contains at least one integral point. The case when S is empty may be han-
dled by the routine which solves the relaxation of the lexicographical problem at each iteration
(Step 1 in Algorithm 3 below), and if this occurs the whole procedure is stopped.
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Algorithm 3.

Step 0. S%:= {(xo, x) e R"1: x' = (x1,...,x,) € Bxg = c' x'}.
t:=0.
Step 1. Solve lexmax {z, z1,...,2n: 2€S'}.
Step 2. If z; € Z, forall i € {1, ..., n} then
Stop. An optimal solution for (IP) is (zy,..., z5).
Else
k:=argmin;{z;¢7: j=0,...,n}
S'*1:={xeS’: x satisfies (1.2);}.
t:i=t+1.
Go to Step 1.
End_If.

END.

One may notice that the key feature of the inequalities of the form (1) that are used in Step 2 of
the Algorithm 3 is that they allow to separate the current fractional solution (zg, z1,..., 2,) while
not cutting off any lexicographically smaller integral solution. In the next section we provide some
further specifications on the set of vectors that are contained in S’ and are not cut off by the gen-
erated constraint (Lemma 1.4.3).

1.4.3 Finiteness

We now prove that the Algorithm 3 solves (IP) in a finite number of iterations. Given a vector
(Y0, Y1,---, ¥n) ER % [0,d]", d € Z, let a(y) denote the integral vector defined as follows: a(y); =
|yi] if i < k and a(y); = d otherwise, for all i € {0,1,..., n}, with k := argmin {y; ¢ Z: j =0,..., n}.
So a(y) is the lexicographically largest integral vector in R x [0, d]” that is lexicographically smaller
than y.

Lemma 1.4.2. Letz = (z,...,zn) be an optimal solution of the problem lexmax {xg, X1,..., X, X' =
(X1,...,%,) € P and xq = c' x'} whereP stands for a polyhedron such thatP < [0,d]". LetX = (X, ..., Xp)
be an optimal solution of the problem lexmax {xo, x1,...,Xn: X' = (x1,...,X,) € P' and xo = cTx'}
with P’ =P N Z". Then the following inequalities hold

n
d) min(0,¢;),0,...,0| =L X< (7).
i=1

Proof. The case when z is integral is trivial. So let us consider the case when z is not integral. The
first inequality (on the left) stems from the bounds on the variables x,..., x,. The other inequality
is due to the fact that z solves a relaxation of the problem solved by X, thus implying x < z, and
since X is integral we have X < «(z). O

Lemma 1.4.3. LetQ SR x [0,d]" denote a polyhedron and let z = (zy, z1,...,2,) € Rx [0,d]" denote
a vector such thatQ < {x € R"*': x <, z}. Then the following inclusion holds

{x€Q: x satisfies (1.2);} < {x€ Q: x <L a(2)},
with k := argmin; {zj¢z: j=0,1,...,n}.
Proof. Let y € Q and assume a(z) <1 y. From the assumption Q < {x € R"*!: x <1 z} we have

yi =z;forall i €{l1,2,...,k—1}. So the inequality a(z) <i y implies y; > |zx] and y violates the
inequality (1.2). O
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Lemma 1.4.4. Let z' denote an optimal solution of the problem lexmax {z, z1, ..., zn: z € S'} (that
is solved at iteration t in Step 1 of Algorithm 3). Then, if z' and z'™' are not integral vectors, the
following inequality holds: a(z"1) <, o (2").

Proof. Since the vectors z' and z'*! are not integral we have a(z7) <1, 29 for ¢ = ¢, +1. Also,
from the definition of the set S*! in Step 2 of the Algorithm 3, the Lemma 1.4.3 and the fact that
z'*! is not integral, we deduce z'*! < a(z'). So we get a(z'™!) <1 2" < a(z!) <1 2, and the
proposition follows. (N

Theorem 1.4.5. Algorithm 3 finds an optimal solution of the problem maxic'x: x € PnZ"} (with
ceZ", P<cl0,d]") in afinite number of iterations.

Proof. LetX stand for an optimal solution of the problem lexmax {zg, z1,...,2,: 2’ = (21,22,...,2p) €
PnZz"andz = c'Zz'}. From Lemma 4.2.1 (d¥/, min(0,¢;), 0,...,0) < X < «(z') for each it-
eration t, where Z' stands for an optimal solution of the problem that is solved in Step 1 of Al-
gorithm 3 at iteration . Since the number of integer vectors that are lexicographically between
(dX’, min(0,¢),0,...,0) and «(z") is finite and since from Lemma 4.2.2 we have « (z"*!) <1 a(z")
whenever z/*! is not an integer vector, we get that an integer solution is found in a finite number of
iterations. From Lemma 4.2.1, the number of iterations is @ ((d + 1)"C) withC =1 + dZ?:l lc;l. O

Similarly to Gomory’s original cutting-plane algorithm the method presented may be used
to solve mixed-integer programs (for a mixed-integer program with n integer and p continuous
variables one may use a formulation in which the variables are ordered such that xy corresponds
to the objective value, then x;, x»,..., X, correspond to the integer variables and x;+1,...,X;+p t0
the continuous ones, see e.g., [117, 181]) under the assumptions that the optimal objective value
is integral, bounded and that the integer variables are bounded.

1.5 Some perspectives

In this chapter, we presented different developments brought to cutting plane methods. The
In/Outalgorithm and multiple-points approach generalize classical cutting-plane methods for LPs
in the separation process, while the last presented method may be viewed as a simplification of
Gomory’s original algorithm for some mixed-integer programs.

For all the presented methods, further research may be directed towards much deeper compu-
tational experiments, evaluating them to solve different families of problems and compare them
with other approaches.

More particularly w.r.t. the [n/Out algorithm, it would be interesting to study the impact of a
dynamic setting of the parameter a defining the separation point at each iteration, and (ideally)
be able to propose an efficient and robust general rule.

W.r.t. the multiple-points approach, so far, only very restricted choices for the set of separation
points have been used. Then, a natural research direction is the identification of sets of separation
points leading to the generation of strong inequalities or to the derivation of interesting bounds
on the optimal objective value (making use of the iterations when the separation fails).

Another potential future work may consist in adjusting the In/Out and multiple-points ap-
proaches for dealing with integer programs.
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Chapter 2

A recursive algorithm for some
unconstrained (—1, 1)-quadratic
optimization problems

In this chapter we present a combinatorial algorithm to solve a special family of unconstrained
quadratic optimization problems with variables taking their values in the set {—1,1}. This work,
joint with Prof. Ben-Ameur, allowed us to identify a family of instances of such problems that
can be solved in polynomial time, slightly extending previous results from the literature. Further
details on this approach, including some computational experiments can be obtained in our pub-
lication [36].

2.1 Introduction

Consider a quadratic function g : R” — R given by: g(x) = x' Qx, with Q € R”*"*. An unconstrained
(-=1,1)-quadratic optimization problem can be expressed as follows:

(QP) Z* = min{q(x) | x€ {-1,1}""},

where {—1,1}" denotes the set of n-dimensional vectors with entries in the set {—1,1}. We assume
here that the matrix Q is symmetric and given by its spectrum, i.e. the set of its eigenvalues and the
associated unit and pairwise orthogonal eigenvectors. For our purposes, we further assume that
all the values occurring in the spectrum, i.e. eigenvalues and entries of eigenvectors are rational.

Problem (QP) is a classical combinatorial optimization problem with many applications, e.g.,
in statistical physics and circuit design [23, 119, 197]. It is well-known that any (0,1)-quadratic
problem expressed as: min{xTAx+ cfx | xeio, 1}”}, A € R™" ¢ e R", can be formulated in the
form of problem (QP) (with dimension n + 1 instead of n) and conversely [78,123].

Problem (QP) is known to be NP-hard in general [139]. Previously to our work [36], the follow-
ing cases were known to be solvable in polynomial time:

1. when the matrix Q has nonpositive off-diagonal entries only [196],

2. when the matrix Q has fixed rank and the continuous relaxation of (QP) has an optimal
solution in {—1,1}" [4,56].

We could extend the known polynomially solvable cases of (QP) to when the matrix Q has fixed
rank and the number of positive diagonal entries is @ (log (n)). To be more precise, we introduced
a new polynomial-time recursive algorithm for solving instances of problem (QP) corresponding
to this case and could proceed to some computational experiments.

In Section 2.2 we introduce properties that are verified by all optimal solutions of (QP). A geo-
metrical interpretation of these properties is then presented in Section 2.3 where we also describe
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a recursive procedure for determining the cells of an arrangement of hyperplanes. This is the ba-
sis of the proposed algorithm for solving the afore mentioned polynomially solvable cases of (QP)
which is introduced in Section 2.4. We finally draw some perspectives in Section 2.5.

2.2 Properties of optimal solutions for particular instances of (QP)

Let us firstly introduce some notation to be used hereafter. The rank of matrix Q is denoted by
p < n. The p non-zero eigenvalues of Q are denoted by A;(Q) < A2(Q) =< ... < )\p(Q) (or more
simply A; < Ay <... <A, when clear from the context) and the corresponding unit (in Euclidean
norm) and pairwise orthogonal eigenvectors: vy,...,v,. The jth entry of the vector v; is denoted
by v;;. Given some set of vectors ai,...,a; € R", g € N, Lin(ay,..., a4) represents the subspace
spanned by these vectors.

In this section we shall make the following assumptions on the matrix Q:

(i) Qhasrank p <n,
(ii) Q has nonpositive diagonal entries only, and
(iii) Q is given by its set of rational eigenvalues and eigenvectors: Q = Zf=1 Aiv; v;.f.
Consideravector y € {—1,1}" sat_isfying Zle Aia;vij>0and y; = 1, forsomeindex j € {1,..., n},
with o; = yTv;, Vi € {1,...,n}. Let y/ € {~1,1}" denote the vector differing from y only at the jth
— —\T
entry: (yf) =-landsetaq; = (yf) vi, i €{1,...,n}. Then we have a; = a; —2v;j. From the latter
J
—\T — _
we deduce: (yJ) Q (yf) = Zle A = Zle )\,70(?+4Zf:1 A vfj—4Zf:1 i vij < Zle Ao =y'Qy,
where the last inequality follows from Zf=1 Aia;vij>0and Zf=1 A v?j =Q;; =0 (assumption (ii)).
Hence we have the following proposition.
Proposition 2.2.1. Any optimal solution y* to the problem min ey 1y y'Qy satisfies the following
implications:

p
ZAi(XiUij>03y;f=—1 2.1
i=1 ’

e

)\i(xl‘ Vij <0=> y]* =1. (2.2)

i=1

Implications of Proposition 2.2.1 can also be seen to correspond to first order optimality con-
ditions. If we now assume that, for some index j € {1,...,n}, an optimal solution y satisfies:
Zle)\iocivij = 0, with y; = 1 and consider the vector y/ € {=1,1}" that is obtained by multi-
plying the jth entry of vector y by -1. Then we have: ¥"_| AiaG = Yr Nt 4yl )\ivfj. The
optimality of y namely implies Zf=1 Ai vfj =Qj; =0, i.e. the jth entry of the diagonal of the matrix
Q is zero. In case v;; = 0, for all i € {1,..., p}, then row j can be ignored (i.e. an optimal solution
y can take value y; = +1 and changing the sign of its jth entry we get another optimal solution).
So w.l.o.g., we shall assume hereafter that for each index j € {1,..., n} there exists at least one index
i €{1,..., pt with v;; # 0. To deal with this situation one can proceed as follows. Assume that in
the former representation of the matrix Q the eigenvalues A; and all the entries of the eigenvectors
vi, 1 €11,...,n} are expressed with a common denominator D. Let € > 0 and consider the matrix

p
Qe=X!_, (A\;—€)v;v}. In other words, (Qc);; = Qjj —¢€ El vl?j. By the assumption above, Q. has no

zero diagonal entry, so that the case Zf=1 A;a;vij = 0 cannot occur for any optimal solution y of
the problem min ye(—1,13n {x" Qex}.

Proposition 2.2.2. [36] Setting ye := Argminye—1,1yn (x' Qex) and y* := Argminyei-1,1» (x'Qx),
then, fore > 0 sufficiently small, the equation (y*)TQy* = y!Qye holds.
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Proof. LetV € R"*P denote the matrix whose columns correspond to the vectors vy,...,v,. From
the definition of y. and y* we have: yTQcyc < (y*)" Qey* and yIQye = (y*)" Qy* (recall that Q. =
Q-eVVY). This leads to: —¢ ((y*)TVVTy* - y;fVVTye) > y1Qye— (y")TQy* = 0. Using the common
denominator D of the entries of vectors v; and eigenvalues A;, ¥ Qy. — (y*)T Qy”* is an integer
multiple of 1/D? while (( y*)TVVT y* —ydvvT ye) is an integer multiple of 1/D?. Let M denote the

sum in absolute value of all the numerators of the entries of the matrix VV'. Then taking for € the
value s, we get that necessarily 0 < yd Qye — () Qy* < o7 implying that ()" Qy* = ¥IQeye,
i.e. the vectors y. and y* are optimal solutions for problem (QP). Note that € can be encoded
polynomially in the size of the instance that is defined by the representation mentioned in point
(iii) above. O

From Propositions 2.1 and 2.2.2 it follows that in order to find an optimal solution of prob-
lem (QP) (potentially considering the matrix Q. instead of Q as mentioned above), it suffices
to enumerate over all vectors y € {—1,1}" for which there exists a vector a € R” such that y; =
—sign(Zle)\icxivij) (or equivalently y; = sign(Zle)\i(xivij), see hereafter), Zle)\icxivij £0,
forall j € {1,...,n}, with sign(x) = 1if x > 0 and —1 if x < 0. In the next section we investigate on
finding such a set of vectors.

2.3 Determining cells in an arrangement of 7 hyperplanes

Let vy,...,vp € R" denote p independent vectors. Let V € R"*P denote the matrix whose columns
correspond to the vectors vy,..., v, and V; the ith row of V. From this set of vectors we define n
hyperplanes in R”: Hj = {a € R” | V;.a = 0} with j € {1,...,n}. Then we can notice that there is a
one-to-one correspondence between the set of vectors in {—1,1}" for which there exists a vector
o € R” such that y; = sign (Zle o;vjj), with Zle o;vij #0,forall j € {1,...,n} and the cells (i.e. the
full dimensional regions) in R” of the hyperplane arrangement «¢ (H) that is defined by the family
of hyperplanes (H j);.lzl. To see this, just interpret the sign vector y as the position vector of the
corresponding cell ¢ w.r.t. an orientation of the space by the vector V;: cell ¢ is above hyperplane
H; iff y; > 0 and under otherwise.

For a general arrangement in R” that is defined by n hyperplanes (see, e.g., [93,223] for further
elements on arrangements), the number of cells is upper bounded by Zf:o () (which s in @ (n")).
(For a proof, we refer the reader, e.g., to Lemma 1.2 in [93]). In our case, since all the hyperplanes
considered contain the origin (i.e. the arrangement is central), this number reduces to G (n”™!)
(see Section 1.7 in [93]).

Two main approaches seem to emerge in the literature for determining the cells in a central
arrangement:

* One is based on the incremental algorithm [93,94]. Here the basic idea consists in iteratively
adding an hyperplane to the current arrangement. At each iteration all the regions inter-
sected by the currently added hyperplane are determined and the arrangement is updated
accordingly. This algorithm has time complexity @ (n”~!). The main disadvantage is a large
memory requirement: the space required is proportional to the output size.

* Another approach is based on the reverse search algorithm [16]. Although it has higher time
complexity (in @ (n LP (n, p) C) where C denotes the number of cells in ¢ (H) and LP (1, p)
is the time needed to solve a linear program with n inequalities and p variables) it seems
to be of more practical interest because of a reduced space complexity that is polynomially
bounded in the input size [101].

We describe hereafter a simple procedure with time complexity lying between these two ap-
proaches in order to compute a set of vectors in {—1,1}" corresponding to a description of a set
containing the cells of the arrangement < (H). Space complexity is shown to be polynomially
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bounded by the ouput size. Then one may ask for the interest of this method by comparison with
the former ones. To our view it is 2-fold:

1. itis easy to understand and implement,

2. computationally, by using proper data structures (introduced later) we could solve instances
of the same magnitude as the ones reported in [101], without parallelization and efficient
computation times.

A vector y € {—1,1}" will correspond to the polyhedron that is defined by {(x eRP|V;ax=<0,
Viel andVi.a=0, Viel*}, withI* ={ie{l,...,n} | y; =1} and I" ={1,...,n}\I*. So recall that
the cells in o/ (H) exactly correspond to the full dimensional polyhedra of the latter type. For our
purposes, a set of vectors describing the cells is represented in the following way: we have an
initial vector y° € {~1,1}" and % : a chained list of sets of indices Ind, where Ind denotes a set
of indices in {1,...,n} corresponding to variables y; that are multiplied by —1. Starting with yO
and considering the first subset of indices Ind in the list £ we get a vector y € {—1,1}" such that
Ind={i€{l,...,n} | yi #7;}. Then, replacing y° by y and iterating this way over all the elements in
%, we get a set of vectors in {—1, 1}"* describing polyhedra in the arrangement .« (H) as mentioned
above.

Next, we introduce two procedures for determining the cells of an arrangement of n hyper-
planes in R”: they will correspond to the cases p =2 and p = 2, respectively. In order to simplify
the presentation, we will assume that for each call of these procedures, the input matrix V as intro-
duced before contains no zero nor collinear rows or columns. Such cases can be easily handled:

¢ azero row or column in the original matrix V can be ignored. The coefficient associated with
a zero row can be set with any value +1.

¢ among a set of collinear columns just keep a single one.

¢ among a set of collinear rows just keep a "representative" one in the system and remove all
the others after their indices and associated scalar signs w.r.t. the "representative" row have
been stored.

We start introducing the procedure for computing a list containing a representation of all the
cells in o/ (H) for the case p =2.

The case p=2

The procedure is based on the observation that since the arrangement considered here is central,
ifa vector y € {—1,1}" represents a cell, the same holds for the vector —y. It follows that in order to
determine all the vectors associated with cells it suffices to know all the ones on one side of some
hyperplane, since all the others can be obtained by the componentwise opposite vectors.

Assume that we are given two vectors vy, v, € R"” and that we want to determine the full dimen-
sional polyhedra in the arrangement ./ (H) they define. From the afore mentioned observation, we
may firstly find all the full dimensional polyhedra that are above the hyperplane H;, by considering
the arrangement that is defined by Hy, ..., H,, in the affine subspace H| = {x € R? | Vi = 1} which
is of dimension 1: hence the cells of this arrangement are intervals whose extremities are either
unbounded or correspond to an intersection H; N H; for some j € {2,...,n}.

These intersections may be easily determined: using the equation defining H} and assuming
w.l.o.g. that v»; # 0 (possibly by permuting rows and/or columns), we may eliminate variable
ay from the system of equations Vja = 0, j € {2,..., n}, thus obtaining a system Vjoq = bj, with
(% jirbj) € R?, j € {2,...,n}. Notice that the assumption on the non-collinearity of the rows namely

implies V j#0,Yj,sothatthesetF = {\% ljef2,..., n}} is properly defined. Note furthermore that

since all the hyperplanes Hy,...,H;, pass through the origin, all the values % are distinct.
1
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b; oy .
Assume now that we order the values in F: V’Z <...< \_%, with iy,...,i, € {2,..., n}. These values

in

define n intervals in R: —oo, +oo[ And note in addition that any cell of </ (H) above

AL
H; contains a point a € R? with a; belonging to any such interval. Let I denote any one of these
intervals. For any value «; € I we have either Vj(xl >bjor \_/joq <bj (forany j € {2,...,n}) and these
order relations remain invariant in the interval . This means that any such interval I corresponds
to a cell of the arrangement considered in H} and it can be seen that the converse also holds.

The whole procedure is described in Pseudo-code 1. We have just explained above the two first
steps of the procedure.

Step 3 of Pseudo-code 1 sets the values of the integral vector y° corresponding to the cell of

bi .
&/ (H) whose intersection with H’ corresponds to points a € R? with a; € |—oo, V2 [ Then increas-
2
ing a;, the integral vector denoting the cell of </ (H) whose intersection with H corresponds to

__2__3

vectors a € R? with a; € is determined by simply changing the i»-th component of y°.

ip i3
This is applied iteratively in order to determine all the cells intersecting H}. In order to get all the
other cells of o/ (H) it is then left to add to the integral vectors in {—1,1}" currently represented the
opposite of each (which is the last part of step 4 when adding to £ the set of indices {1, ..., n} and

the subsets that were already present in £ before this last insertion, in reverse order).

Pseudo-code 1. Determination of the cells of the arrangement </ (H) for p =2.

Input: vy, v» € R", defining a system of equations as presented above (no zero nor collinear
rows/columns) and w.l.0.g. such that v,; # 0.
Output: ( yO, %£): arepresentation of a set of vectors in {—1, 1} containing a representation of
all the cells of the arrangement defined by vy, v.

1. Express each equation V;.ax =0, j € {2,..., n} in the affine subspace H = {ae R?|Via= 1},
eliminating variable a.
We getVj.aq =bj, j€12,...,n}, bj €R.
2. Compute the set & = {(%, j) lj=2,..., n} and order its elements by increasing value %’ ;
J

J

3. Set the initial vector y° corresponding to the interval a; € |—oo, min j \_7’ :
i

Sety¥:=1;
Set y? i=—sgn(V;),Vje2,...,n};
Initialize £ with the ordered indices in &;
4. Add {1,..., n} to the end of the list £. Then add all the elements of £ except the last one
(i.e. {1,...,n}) in reverse order at its end.
END.

Example. We illustrate Pseudo-code 1 on a small example with p =2 and n = 3. The original
system of equations is as follows:
a =0
(041 =0
a— a =0

The situation is depicted in Figure 1.

There is no zero nor collinear rows in the original system of equations %, = {V;.a =0, j € {1,2,3},
o € R?}. Eliminating variable ay by considering the equation a; = 1 corresponding to the hyper-
plane represented with a dotted line in Figure 2.1, we obtain the vector y° = (1,—1,—1). The set
& is given by: {(0,{2}),(1,{3})}. The output list we get is therefore: £ = ({2},{3},{1,2,3},{3},{2}).
Hence the set of vectors corresponding to cells and represented by ( Y, £)isi(1,-1,-1),(1,1,-1)
(1,1, (-1,-1,-1), (-1,-1,1), (-1,1,1)}. So the first half of vectors represented correspond to
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Figure 2.1 - Illustration for Example 1

the cells of the arrangement intersecting the hyperplane H| = {a € R? | V. = 1} (represented with
a dotted line in Figure 2.1), whereas the second half corresponds to the cells intersecting HY =
{aeR* | Vi.a=—1}.

The case p=2

Next we introduce the procedure for the general case p = 2. As for the case p = 2, in order to
simplify the presentation we do not consider in the given pseudo-code the case when a zero row
or collinear rows/columns occur in the input matrix V.

The basic principle lying behind Pseudo-code 2 can be expressed as follows. Given some in-
teger g € {1,...,n}, let «/7(H) denote the arrangement in the subspace {a € R” | V a = 0} that is
defined by the hyperplanes (in R?™!) {H; nHg | j€{l,...,n}, j # q}. Any cell of «/9(H) (which is a
region of dimension p —1) corresponds to a facet of exactly two cells ¢; and ¢, of & (H). Since each
cell of o/ (H) intersects at least one hyperplane H, it is clear that by varying the value of g, all cells
will be generated at least once.
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Pseudo-code 2. Determination of the cells of the arrangement .« (H) for p = 2.

Input: vy,...,v, €R"
Output: (3°, Zp): arepresentation of a set of vectors in {—1,1}" containing a representation of
all the cells of the arrangement defined by vy, ..., v).

1. If p =2 then
Apply pseudo-code 1 — (3°, Zp) and return ;
2. Else
For i from 1 to n do
Express the system of equations {V;a =0, j € {1,...,n}, j # i, € R”} in the subspace
H; = {a € R” | V;a = 0} and let {Va@ = 0,& € RP~!} be the resulting system after row i and some
column have been removed (V € R"~1>(P=1),
Make a recursive call to pseudo-code 2 with input parameters the columns of V — (??,gi) ;
Express ?? in R” by adding one entry set to 1 (corresponding to index i) removed from V to
get V above) using the equation defining H; ;
For each subset of indices Ind that is represented in Z; do
Increment by one all the indices in Ind that are greater than or equal to i ;
Insert {i} before Ind ;
End_for;
Insert {i} in the last position of the list Z;
End._for;
3.Forifrom1lton—1do
Add to &; in the last position the set Ind where Ind denotes the set of entries of 77, that
are different from those of the last element represented by (_y?,gi)
End_for;
4, Set yo = ?(1) and concatenate the lists #1,..., %, (in this order) — ZLy;
End_if;
END.

Let us state more precisely what is done in step 2. Each equation of the system V. = 0 defines
an hyperplane of the subspace H;. Then, the recursive calls result in a description (??,g,-) of the
cells in H; that are induced by the hyperplanes H; nH;, j # i. The addition of the singleton i
after each element in the list representing some cell ¢ in H;, leads to the generation of one cell
above and another one under H; in the original space, each having c as a facet. Also, and since
the description of the cells in H; corresponds to a set of vectors in R”~! we have to consider one
additional entry corresponding to the ith component of the description vectors of the cells in the
original space R”. Since the jth row of the system V. = 0 corresponds to the jth (resp. (j + 1)th)
hyperplane of the original system V.a = 0 if j < i (resp. j = i), indices greater than or equal to 7 in
the list £; have to be incremented by one.

2.4 Polynomially solvable cases for problem (QP)

Recall that given Q = 25;1 Aiv; v;.f satisfying the assumptions introduced at the beginning of Sec-
tion 2.2, an optimal solution of problem (QP) corresponds to a cell of the central arrangement
&/ (H) that is defined by the vectors (A; vl-)f;l. Using this feature, the Pseudo-code 3 describes how
to compute Z*. For shortness, we do not mention the code for returning an optimal solution in
the output since this is trivial and does not affect the complexity results to be given next.
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Pseudo-code 3. Solving (QP)
Input: a matrix (given by its spectral decomposition) Q = Zf=1 Aiv; vlT
Output: the value Z*

1. Apply Pseudo-code 2 with input the vectors (A;v)}_, — (%, &) ;
2.Sety:=y";
3. Compute oy := (yO)T vi, Vkell,...,p};
4.SetZ:=Y7_ Apod;
5. For each index set Ind that is represented in £ do
For each index j € Ind do

Yi="Yj;
g ;:(xk+2yjl}kj, Vkefl,...,p};
End_for;

SetZ:= Z’,:zl Ao ;
IfZ < Z then set Z:=Z; End_if ;
End_For;
ReturnZ;
END.

Remark. The approach presented here for solving (QP) is suitable for parallelization. Also Pseudo-
code 2 can be sequentially applied on the projection of the original system on each each hyper-
plane H;, i € {1,---,n—1} and the n — 1 lists of integer vectors stemming from these calls could be
processed sequentially between each such call and removed immediately, thus reducing memory
requirements.

We next show that for fixed p, problem (QP) with a matrix Q satisfying the conditions intro-
duced in Subsection 2.2 can be solved in strongly polynomial time. We start giving a preliminary
result on the size of the output from recursive calls to Pseudo-code 2.

Lemma 2.4.1. [36] For p = 2, the total number of indices (i.e. the sum of the cardinalities of all the
sets of indices) that are present in any list £ ; in step 4 of Pseudo-code 2 is © (nP~").

Proof. We give a proof by induction on p.

Initialization: p = 2. It can be easily shown that the total number of indices (with multiplicities)
that are contained in the ouput list of any call to Pseudo-code 1 is upper bounded by 3n and is thus
O (n).

Now assume p > 2 and that the proposition holds until p — 1 instead of p. In step 2 of Pseudo-
code 2 the number of indices contained in each list £;,i € {1,..., n—1} increases by Igi |+1 (where
|§,~| stands for the total number of sets of indices in §,~), which is @ (nP~2) by the induction as-
sumption. In step 4, by concatenating the lists £, ..., £, results in a list containing @ (nP1)
indices. O

Proposition 2.4.2. [36] For fixed p = 2, if the matrix Q (given by its nonzero eigenvalues and asso-
ciated eigenvectors) has rank at most p and nonpositive diagonal entries only, then problem (QP)
can be solved in time © (n”~'log (n)).

Proof. The proof we give is by induction on p.
Initialization: p = 2. In Pseudo-code 1 the steps 1 and 3 can be performed in time & (n), while step 2

can be done in time @ (nlog(n)): For each index j € {2,---, n}, we compute \_% and then order these
J

values. The latter takes time @ (nlog(n)). Step 4 can be performed in time ¢ (n), which follows
from Lemma 2.4.1. Considering now Pseudo-code 3, trivially the steps 2, 3 and 4 can be performed
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in time @ (n) while using Lemma 2.4.1 we can see that step 5 can be done in time @ (n”~!) (p is
here equal to 2).

Now assume p > 2 and that the proposition holds until p—1 instead of p. Let us firstly consider
the steps involved in Pseudo-code 2. By the induction assumption, in step 2 each recursive call
takes © (n’”‘z log(n)) time. In addition, from Lemma 2.4.1 the total number of indices contained
in any list &Z; is © (nP~2). It follows that all the other steps of Pseudo-code 2 but also those of
Pseudo-code 3 can be performed in time € (n”~!1log(n)).

From the former we get that the number of elementary arithmetic operations is polynomi-
ally bounded. It is then left to show that the size of the numbers occurring in the course of the
algorithm is polynomially bounded by the size of the input. As to the numbers occurring in the
systems considered in step 2 of Pseudo-code 2, the latter can be shown analogously to the proof
of polynomiality of the Gaussian elimination method [95]. In fact, there are at most p—1 consecu-
tive projections that are performed when our procedure is applied (since the value of p decreases
after each projection). This is why the numbers involved in the algorithm remain under control
(remember that p is fixed). O

In case the matrix Q has positive diagonal entries, let,,; stand for the set of indices in {1, ..., n}
corresponding to positive diagonal entries in Q. Then both implications (1) — (2) may not hold for
indices j € I,55. To deal with this situation 2/Tosl=1 calls to Pseudo-code 3 would suffice: for each
combination of values in {-1, 1} for the entries with index in I,,,5 (except one, since by a symmetry
argument we can take any fixed entry with index in I, to take value 1), previously to each call,
fix the corresponding entries of the vectors to be considered in Pseudo-code 3. Then we get the
following result.

Theorem 2.4.3. [36] For a fixed integer p = 2, if the matrix Q (given by its nonzero eigenvalues and
associated eigenvectors) has rank at most p and O (log(n)) positive diagonal entries, then problem
(QP) can be solved in strongly polynomial time.

Cela, Klinz and Meyer [56] independently showed that problem (QP) can be solved in poly-
nomial time if, for p fixed, the matrix Q has rank at most p and all the optimal solutions of the
continuous relaxation are in {—1,1}". The latter case namely contains the instances of (QP) with
Q having rank p and all diagonal entries strictly negative (see Proposition 2.2.1 and the discussion
following it).

Detailed computational experiments are reported in [36]. Summarizing, the recursive ap-
proach presented above appears to be more efficient than reverse search w.r.t. computation times.
The main drawback of our method w.r.t. the former are important memory requirements which
limit the size of the instances to which the method applies (instances with n <200 for p =3, n <30
for p =6,...see [36] for details).

2.5 Some perspectives

We introduced a new approach for solving in polynomial time unconstrained quadratic optimiza-
tion problems of the form: min{x' Qx| x € {-1,1}"}, with Q a symmetric matrix with fixed rank
and whose number of positive diagonal entries is @ (log(n)). The recursive procedure presented
here can be a valuable approach on some instances by comparison with a reverse search w.r.t.
computation times. However, for the time being, due to important memory requirements, it could
only be applied to rather small instances.

Further computational studies could be carried out, involving a parallelization of the code as
mentioned in Section 2.4 in order to deal with larger instances.

Also, one may look for other families of quadratic optimization problems that can be solved in
polynomial time (possibly containing the one described in this chapter ?).
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Chapter 3

Spectral bounds for unconstrained
(=1, 1)-quadratic optimization problems

In this chapter we review works we carried out dealing with the problem which consists in opti-
mizing a quadratic function, subject to variables taking their values in the set {—1,1}, and some
extensions. Differently from the last chapter, we shall not make any particular assumption on the
matrix defining the objective, so that the recursive method we previously introduced cannot be
applied in general to solve the problem exactly. We shall see, however, that it can be used in dif-
ferent ways to get approximations on the optimal objective value for general instances. After we
formally introduce a new family of bounds (Sections 3.1 and 3.2), we mention some connections
with a semidefinite bound from the literature in Section 3.3. Then we draw our attention to the
spectral bounds more thoroughly when applied to the weighted maximum cut problem (Section
3.4) and its generalization: the weighted maximum k-cut problem (Section 3.5). We then briefly
sketch some observations from the computational experiments that could be done so far (Section
3.6), before we terminate with some perspectives in Section 3.7.

The work presented in this chapter is joint with Prof. Ben-Ameur [34-36], except for Section
3.5 which stems from a joint work with Prof. Anjos [6].

3.1 Introduction

Just like in Chapter 2, we shall focus here on unconstrained (-1, 1)-quadratic optimization prob-
lems expressed as follows:

(QP) Z* =min{q(x) | x € {-1,1}"}.

where g : R” — R stands for a quadratic function given by: g(x) = x" Qx, with Q representing an 7 x
n rational and symmetric matrix (the assumption of being symmetric is with no loss of generality).
We refer to the beginning of Chapter 2 for further references on this problem. Differently from the
last chapter, however, we shall not consider particular conditions on Q (so that problem (QP) may
not be solvable in polynomial time assuming P # NP), and we are now interested in computing
bounds on the optimal objective value Z* of (QP) (rather than solving it exactly).

Different methods for computing bounds for problems such as (QP) have been proposed in the
literature. An early reference is Hammer and Rubin’s paper [124] in which the authors proposed a
method convexifying the objective function by making use of the smallest eigenvalue of the matrix
Q. This approach has then been generalized and improved by many people (see, e.g., [44, 85, 86,
198] leading to bounds equivalent to the ones obtained by a semidefinite formulation presented
in [114]. Further improvements over the latter have been introduced by Malik et al. [163].

Let the eigenvalues of the matrix Q be denoted by A1(Q) < A2(Q) < ... = A,(Q) (or more sim-
ply A1 < Ay <... < A, when clear from the context). The corresponding unit (in Euclidean norm)
and pairwise orthogonal eigenvectors are denoted by vy,...,v,. For our purposes, we shall as-
sume in the rest of the chapter, unless otherwise stated, that all the eigenvalues and eigenvectors
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are given and rational. The jth entry of the vector v; is denoted by v;;. Given some set of vec-
tors ai,...,a; € R", g €N, let Lin(ay,...,a,) represent the subspace spanned by these vectors.
Given some vector y € {—1,1}", dist(y,Lin(vy,..., vp)) stands for the Euclidean distance between
the vector y and Lin(vy,...,v}), i.e. dist(yLin(vy,...,vp)) = lly—ypl2 where y, stands for the
orthogonal projection of y onto Lin(vy,...,v,) and .||z represents the Euclidean norm. Given
some index j € {1,..., n}, d; denotes the distance between the set {—1,1}" and the subspace that is
spanned by the eigenvectors vy, ..., v}, i.e. min{dist(y,Lin(v1,...,v;)) | y € {-1,1}"}. Notice that
dj depends on a particular spectral decomposition of the matrix Q when there is an eigenvalue
with multiplicity greater than one: considering different orders for the eigenvectors associated
with the same eigenvalue generally leads to different values of d;. Analogously, d j will denote the
distance between the set {—1,1}" and Lin(v},..., vj).

By using the property x? =1,Yi € {1,...,n} for any vector x € {—1,1}", we notice that the set
of optimal solutions of the problem (QP) remains unchanged if diagonal entries of the matrix
Q are modified. More precisely, let u € R”, Diag(u) € R™*" stand for the matrix with diagonal u
and all the other entries set equal to zero, and denote by (QP), the (-1, 1)-quadratic problem:
Z = min{x" (Q+ Diag(w)) x | x € {~1,1}"}. Then trivially, we have: Z* =Z—-Y"_ u;. However al-
tering the diagonal entries of the matrix Q generally changes its spectrum, i.e. eigenvalues and
eigenvectors. The bounds that we introduce hereafter rely on the spectrum of the matrix Q, and
applying them to the matrix Q + Diag(u) instead of Q, we can still derive bounds that are valid for
the original problem. Naturally they depend on the vector u that is used and a still open question
consists in determining the best such vector.

In order to simplify the presentation we consider Q (rather than Q+Diag(u)) as an input matrix
for which we compute bounds for the corresponding problem (QP), since for the case we use
Q + Diag(w) it is then trivial to derive bounds for the original problem. In the next section, we
present some methods for computing spectral bounds on the optimal objective of (QP).

3.2 Computing bounds for problem (QP)

In this section we introduce three different ways of computing bounds for problem (QP), all using
the eigenvalues and eigenvectors of the matrix Q (possibly with modified diagonal entries). The
basic spectral bounds of Section 3.2.1 have an expression involving eigenvalues among (A;)"_, and
distances among (d,-);’:‘f. Another method for computing bounds from a substitution of the matrix
Q by a sum of particular matrices is proposed in Section 3.2.2. Basic idea here is to replace the
original problem (QP) by several instances each satisfying Proposition 2.4.2. A different approach
is undertaken in Section 3.2.3 where the original matrix Q is replaced by a single matrix satisfying
Proposition 2.4.2 and whose spectrum differs from Q in some subset of eigenvalues.

3.2.1 Basic spectral bounds

Using the smallest eigenvalue of the matrix Q the following lower bound trivially holds: Z* = A n.
This bound can be strengthened by using the whole spectrum of the matrix Q.

Proposition 3.2.1. [35] The following inequality holds: Z* = A1 n + Z;?:'ll djz. Ajr1—=Aj).

Proof. Consider a vector y € {~1,1}", and its expression in a basis of eigenvectors: y = Y1 | a;v;.
Then we namely have: y'y = n=¥;a?. Also from the definition of the distances d;, j € {1,...,n},

the following inequality holds: d]g =y" o

i=j+17i"
We have y'Qy =Y | ofA; = A+ ifl:z (A; — Ao, Now, from the last inequality mentioned
above with j =1 we get: a4 = di —Y.""_, a?. Hence we have:
Y'Qy=hin+ A —Ade — A=A Xl 02 + X1 (A — Ao,
< yIQy=Mn+ Az —A)d? + X1, (N —A)o,
and, inductively (by using analogously the inequality cx? > djz._1 -Xilia of), we get:

y'Qy=Mn+ X A —A)dz. O
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In the same way that we derived lower bounds on the optimal objective value, upper bounds
can be obtained. Using the largest eigenvalue A, of the matrix Q we get: Z* < nA,,. A better upper
bound using the whole spectrum is as follows.

Proposition 3.2.2. [35] The following inequality holds: Z* < Ayn+Y_ 7;11 Ei 1A =Aj41).

Thus the results from Propositions 3.2.2 and 3.2.1 lead to the spectral gap:

n-1 .
A=A n= 3 (Ao =Ap) (@2 +d ) 3.1)
=1

Let Z7 stand for the optimal objective value of the following (continuous) relaxation of problem
(QP): min{xTQx | xe[-1, 1]”} denoted (QPC) in what follows. In the particular case when the
matrix Q has at least one negative eigenvalue, then by computing the objective value of a properly
scaled eigenvector associated with a negative eigenvalue, we get the simple upper bound given
hereafter.

Proposition 3.2.3. [35] If the matrix Q has at least one negative eigenvalue then this upper bound
holds:

* . )\6]
Z. Smln{ 5 I)\q<0}, (3.2)
lvglles

with || Vg oo = MaXjeq,... 0 |ti|~
An upper bound for problem (QP) can be obtained similarly.

Proposition 3.2.4. [35] The following upper bound holds for problem (QP):

/

A n
Z* smin{ — " [\, <0+ q;, (3.3)
AR &

where\\,\),,..., N}, denote the eigenvalues of the matrix Q— Diag(q), v}, V5, ..., v, are corresponding
unit eigenvectors and q = (qy,-- , q,,) stands for the diagonal of the matrix Q.

A geometric view to the spectral bound of Proposition 3.2.1 in a special case is provided by the
following result.

Proposition 3.2.5. [35] If a vector y € {—1,1}" satisfies: dist(y,Lin(vy,...,vx)) = di for all indices
ke{l,...,n—1} such that Ay, > Ay then y is an optimal solution of problem (QP).

From Proposition 3.2.5 and its proof, it follows that the spectral bound from Proposition 3.2.1
coincides with the optimal objective value Z* iff there exists a vector y verifying the assumptions
formulated there. We mention hereafter an easy special case for which the spectral bound coin-
cides with Z*.

Corollary 3.2.6. [35] If the matrix Q has at most two distinct eigenvalues then the spectral bound
of Proposition 3.2.1 coincides with the optimal objective value Z*.

The following Proposition shows that it is generally NP-hard to compute the distances involved
in the expression of the bound from Proposition 3.2.1.

Proposition 3.2.7. [34] Computing the distance d,,—, is NP-hard.

Proof. We may consider the following decision problem (2) that is related to d,,—;: given unit and
pairwise orthogonal vectors vy, vy, ..., vy, isit true that d,—; = 0 ? (Or equivalently, does there exist
avector y in {—1,1}" such that y'v,, =0?)

We show this problem is NP-complete by reduction from the partition problem (also called
number partitioning problem) which consists in determining whether some given set of positive
numbers aj, ay,...,a, can be partitioned into two subsets S; and S, such that the sum of the
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numbers in S; equals the sum of the numbers in S,. The partition problem is a well-known NP-
complete problem and its optimization version which consists in finding a partition (S;,S2) of
the numbers such that the difference between the sum of the elements in S; and the sum of the
elements in S, is minimized, is NP-hard.

Let us consider the squared matrix of order n having all the entries equal to zero. All the eigen-
values are equal to zero. We can consider that the vector a € R” having a; for ith entry, is (up to
a multiplicative factor) the eigenvector corresponding to A,: v, = ﬁ Let vi,Vvy,..., v, denote
any set of unit and pairwise orthogonal vectors in R” that are also orthogonal to v,,. Then, if there
were a polynomial algorithm for (2), one could determine whether there exists a vector y € {—1,1}"

which is orthogonal to a. Thus the partition problem could be solved in polynomial time. d

Despite the fact that it is generally difficult to compute all the distances (d;) je[1,n-1], some
of them can be computed in polynomial time. We can easily get the following expression for
the squared distance df, = n+minye;-1 1y yT(—Zf:1 v vl.T) y. Since the matrix that is given by
- Zf=1 v; vl.T satisfies the conditions of Theorem 2.4.3, we get the following result.

Corollary 3.2.8. [35] For fixed p, the terms df, . .,d,% can be computed in polynomial time.

3.2.2 Spectral bounds by decomposing the matrix Q

Recall that v1,..., v, denote the unit and pairwise orthogonal eigenvectors of the matrix Q € R™*"
and A <... = A, the corresponding eigenvalues. Consider some set of r matrices (Qq)(rqu ren,
Qg € R™" of the following form: Q, = g Yier, Vi viT, with I; € {1,...,n} and a4 € R a constant

associated to Iy, ¢ =1,2,---,r,such that }_ ;.1 g < Aj, forall i e {1,..., n}.
Then for any vector y € R” we have y'Qy =Y,y Qqy. /' Qy =X A (' vi)’ = Y Ygiier, g (v" v;)’ =
Y% Yier, (V' vi)z =Y ,7"'Qqy), thus leading to the lower bound:
* . T
223, Qe 6

An observation to be made here is that a subproblem minye(- 13 yTQq y is easy, in the sense
of polynomial time solvability, when:

() Il < pand o <0 (minye 110 y'Qqy = g (n=dist ((=1,11", Lin ((vihier,))*))

(i) I1gl = n=panday >0 (minyei-1,1n y'Qqy = agdist (-1, 11", Lin ({vi}e1,))’)

for some fixed integer p, since both cases reduce to solving a problem satisfying the conditions
of Theorem 2.4.3. (In case (i) the matrix Q, has rank at most p and nonpositive diagonal entries
only. For case (ii) note that for any vector y € {~1,1}" we have y'Qy = na, + y'Q,y with Q}, =
—0g Lig1, Vi vl.T: a matrix with rank at most p and nonpositive diagonal entries only).

We shall now consider the problem that consists in looking for the best bound that can be
obtained from formula (3.4) by using matrices Q fitting into the cases (i), (i) for some prescribed
value p. This value is introduced in order to limit the computations, and trivially the larger p is,
the better the bound one may expect to obtain by using (3.4), considering all potential candidate
matrices Q.

Let us introduce some additional notation. We define S, = {I ci{l,...,n} 1< =< p}, and set
I=11,...,m\], dI2 = dist({—l,1}",Lin({v,-},~€1))2. Given some matrix Qg = g ¥ er, Vi vl.T, I; €S,
g € R_, we have minye—1,13» y'Qqy = g (n - dlzq). Then, in order to get the best bound in (3.4)
over all possible decompositions involving matrices Q as described above the following program
can be solved:
maxY(es, (agdf — o (n—df))

s.t.
Tres, (o —aux!) <A,
ap, o €Ry,VIES),

(LP1)
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where A denotes the column vector (A1,...,A,)", XI € {0,1}" stands for the incidence vector of the
set I (and inequalities for vectors are taken componentwise).
We may notice that (LP1) has the same objective value as the following formulation with one

variable added:
maxY s, (ogdf — o (n—df')) - n

@wpr1H{ - -
Yies, (opx —aaxt) - 0T <A,

apa; €Ry,VIES ), 0 €Ry,

where 1 stands for the n-dimensional all ones vector. Considering any feasible solutions (a, 0) of
(LP1") with 0 > 0, then by decreasing a; and increasing o; of an amount 6 we get a feasible solution
for (LP1) with an identical objective value.

Now, if we consider a feasible solution (a, 0) of (LP1") with o > 0 for some set I, then by increas-
ing o5 and 6 by an amount o and setting ag to value zero we get another feasible solution with the
same objective value. This observation leads to the following equivalent reformulation of (LP1):

maxY (s, ogd; — 16
(DECOMP —LP) ' T
ZIeSp O(TXI —-0l<A
DeRs, 0 R, VIES),,
(i.e. all former variables of the form o are now somehow implicitly considered through the sin-
gle variable 0). For p fixed, since the set S, is of polynomial cardinality (in & (n”)), it follows that
(DECOMP—LP) is of polynomial size and hence that it can be solved in polynomial time. However,
considering the fact that its total number of columns grows exponentially with p, it may be conve-
nient to solve it using a column generation procedure (see, e.g., [158] and the references therein).
(We did so for our computational experiments.)

3.2.3 Spectral bounds by restricted eigenvalue selection

Theorem 2.4.3 may suggest computing upper and lower bounds for general (-1, 1)-quadratic op-
timization problems as follows.

For some fixed integer p, 1 < p < n—1, select a set I of n— p indices in {1,...,n}, set I =
{1,...,m}\ 1, Amin := Minjer Ay, Amax := max;er A; and define Q; € Q"*" as the matrix given by Q; =
Yicghivi vl.T. Then, setting me = Q7+ Amin Xier Vi vl.T and QSYP .= Q+ )\r.nax YielVi vlT, for any vector
y € {=1,1}"", we have: y'Q™y < y'Qy < y'Q*"Py. Note also that y'Q"'y = yTQ%nfy + NApin With
Q%“f =2 ;i Ai = Amin) Vi v;.f and that the matrix Q%“f has rank at most p. In case all the entries on
the diagonal of the matrix Q%nf are nonpositive, then it follows from Theorem 2.4.3 that the lower

bound minye1,13n y"Q"y can be computed in polynomial time. An analogous result holds for an
upper bound, by considering the matrix Q"P.

Note that, differently from the spectral bounds introduced above, both the upper and lower
bounds introduced here converge to the optimal objective value Z* when the value of the param-
eter p increases.

Remark. We may notice that for any value of the parameter p, the bounds provided by the latter
approach by taking I = {p + 1,..., n} improve over the restriction of the basic bound to the first
p terms in the sum involving the distances (see Proposition 3.2.1). To see this, considering the
bound obtained using Q™ with 1= {p +1,..., n}, for any vector y € {—1,1}" we have:

VIQRy =X Ny + Ap B, (0] )
=Mn-M X, WLy + X, Ay v + Apa Yiopi1 (v y)?
=Mn=-M X, WE P+ A E D = (M X T e?)
+Ap+1 Zzzpﬂ (UiJ/)Z
=nA+ X, i1 — A0, Wi n?)
=nA; + Zf;l N1 —Aj)d?
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where the last inequality follows from the fact that d% < Y (vpy)? =dist(yLin(vy,..., ),

forany y € {-1,1}".

n
k=i+1

Let (QP™™) denote the problem minye(—1,1; ' Q™y and Z™ stand for its optimal objective
value. The following result indicates some cases when the bound Z™ is exact.

Proposition 3.2.9. [35] If Amin = Minjer Az, Imin = {j €11 Aj = Amin}, then the lower bound 7™ is
exact iff the set of optimal solutions of (QP™) is contained in Lin({v; | i € TUTiyin}).

3.3 Improvement over a classical semidefinite bound

Given any vector u € R”, analogously to Proposition 3.2.1, we can show:
n n-1 2
z = Nn=Y wi+ Y (dj) (N -2 (3.5)
i=1 j=1

with d} = min{dist (y, Lin (vi, oy v;)) | yei-1, 1}”}, v},..., Uy, denote unit and pairwise orthogo-
nal vectors of the matrix Q + Diag(u) and A} < ... < A, stand for the corresponding eigenvalues.

Notice that replacing u by u + &1, & € R, leaves the right-hand side of the last inequality un-
changed (since the eigenvectors remain unchanged and each eigenvalue is increased by an amount
&), so that any bound provided by the last formula can always be obtained by considering either of
the two following restrictions:

i) A} =0,0r
i) X7, u;=0.

Trivially the following lower bound holds for the problem (QP):
n
Z'=\in-) uj. (3.6)
i=1

A vector u leading to the best bound that can be derived from this formula can be obtained by
solving the following problem:

maxnA; (Q+Diag(w)) - X7 u;
ueR?

(Pl){

which can be reformulated as the following semidefinite program:

Q+ Diag(u) = Aminl,

(P2)
u€R™ Amin €R,

where I denotes the identity matrix with order n. (To see that (P2) is equivalent to (P1), note
that since the constraint in (P2) expresses that the matrix Q + Diag(u) — Aminl must be positive
semidefinite, it follows that in any optimal solution Ain will correspond to the smallest eigenvalue
of the matrix Q + Diag(u)). Now, considering the restriction A = 0 in the last formulation (which
does not change the optimal objective value), the dual problem can be expressed as follows:

minTrace(Y' Q)

diag(¥) =1,
(P3) Y=0,

Y e,

where %, denotes the set of symmetric matrices with order n. It is easy to see that Slater’s condi-
tions are satisfied (see, e.g., [208]), so that the optimal objective values of problems (P2) and (P3)
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coincide. Then the formula (3.6) can be seen to provide a classical semidefinite bound for (QP).
It hence follows that if #* stands for an optimal solution of problem (P2), then the basic spectral
bound stemming from formula (3.5) by setting u:= u* is better than, or equal to this semidefinite
bound. Note that for u = u* and r := argmax; {)\’] | )\;. = 0} the restriction of the formula (3.5) to
the first r terms in the last sum coincides with the bound introduced by Malik et al. [163].

3.4 Applications to the weighted maximum cut problem

Given an undirected edge-weighted and simple graph G = (V,E) with node set V = {1,...,n}, and
edge weights (w,)cg, the (weighted) maximum cut problem can be formulated as follows:

* _ 1 1.T
w —maXQZISstnwij_Zy Wy

where W stands for the weight matrix of the graph G, i.e. for the entry corresponding to the ith
row and jth column of the matrix W we have: W;; = w;; if i j € E and 0 otherwise. The particular
case when w;; =1if i j € E and 0 otherwise will be called unweighted.

In this section, we consider with some more details the application of the basic spectral bounds
introduced in Section 3 to the maximum cut problem. The reader is referred to Section 4 for a
general introduction to this problem and linear programming approaches to solve it.

In their seminal paper [114], Goemans and Williamson introduced a 0.87856-approximation
algorithm for the maximum cut problem with nonnegative weights only. It is based on the follow-
ing semidefinite relaxation of the problem:

1 1
max s lei<jsn Wij— §lei<jsn WijYij
Yi;i=1,Vi,
Y >0,
Y e %,.

(MC_SDP)

Let Z,, stand for the optimal objective value of (MC_SDP). Itis proved in [199] that the eigenvalue
bound of [85] is equal to Z(,,. It is known that the integrality gap (i.e. the ratio of the upper
bound Z,,, to the optimum weight) of the formulation (MC_SDP) can approach 1.139 (= WIB%)
arbitrarily closely as the size of the graph increases [98]. The semidefinite relaxation (MC_SDP) is
strengthened, for example in [103,131,201], and in [7] by using a lift-and-project technique.

Considering the matrix W + Diag(u) for any vector u € R”, and resuming the notation given in
Section 3.3 with Q := W, the spectral bound corresponding to formula (3.5) leads to the following
upper bound for the optimal objective value of the formulation (MC) (see [34]).

- 2
(MC_BD)y w* <3 ¥icjwij+yXiy ui=N4§ -3 X7 (d])” (N, = A) 3.7

Notice that considering the formulation (P3) introduced in Section 3.3 (setting Q := W), we
can derive the classical SDP relaxation of the maximum-cut problem [86, 198], namely used by
Goemans and Williamson [114] in their approximation algorithm. Note also that, from the obser-
vation mentioned in Section 3.3 concerning the invariance of the optimal objective value of the
formulation (P1), by translation along the all-ones vector solutions, we can easily see that we can
equivalently work with the Laplacian matrix L of the graph (L = Diag(d) - W, with d; = Z}Ll w;;)
instead of the weight matrix, i.e. the eigenspaces of the matrices W + Diag(u*) (for some opti-
mal solution u* of (P1)) and L+ Diag(z™) coincide, where z* denotes an optimal solution of the
following eigenvalue optimization problem introduced by Mohar and Poljak [17]:

min § A, (L + Diag(z))
S.T.
(LMQ)
i=1%2i =0,
zeR™,
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*

(Given z*, it can be easily shown that an optimal solution of (P1) is given by the vector u = —z* —
d). In particular all the properties that Delorme and Poljak [85, 86] established relatively to the
eigenspace associated with the largest eigenvalue of L+ Diag(z*) apply in our case as well (i.e. rel-
atively to the eigenspace associated with the smallest eigenvalue of W + Diag(u*)). Among others,
their work directly leads to the following result. (An automorphism of a graph G = (V,E) is a per-
mutation m of the vertices such that (i, j) e E < (n(i),n(j)) € E. Two vertices i, j € V belong to
the same orbit of G iff (i) = j for some m in the automorphism group of the graph G.)

Proposition 3.4.1. /86, 198] Let u* stand for an optimal solution of the formulation (P1) with
Q:=W. Ifthe vertices i and j belong to the same orbit of the graph, then u; = u;‘ In particular for

the case of vertex-transitive graphs we have u* = o1, o € R.

We mention hereafter a simple result that may be useful in some particular cases, in order to
get a lower bound on some of the distances involved in the expressions of the spectral bounds
introduced above.

Lemma 3.4.2. [35] The following relation holds:

1 =
+ ifn odd,

) (3.8)
0 otherwise.

minidist*(y, Lin)Y) | y € 1-1,1}"} ={
Proof. Let y € {—1,1}"" with exactly p entries having the same value, p € {1,...,n}. W.lLo.g. assume
yi=Y2=...=yp=1land yps1 =... = yp = —1. We are looking for a vector u € (Lin(T))l that is
closest in Euclidean distance to y.
Note that if 7 is even, setting p = 5 the vector y defined above solves the problem:

dist?*(y,Lin()4) =o0.

_ 12p—n|

— Wwe see that the

Assuming now 7 is odd, and noting that dist? ( ¥, Lin (T)l) = &nly"
minimum is obtained with p € {| 2|, [ 51}, and the result follows. O

Anotable consequence of Lemma 3.4.2 is given by the following proposition that could be used
in some particular cases so as to get a positive lower bound on some distances dj.

Corollary 3.4.3. [35] Assume n is odd and 1 is an eigenvector of Q with associated eigenvalue \y.
Then the following inequality holds: d? = %, Vied{l,...,k—-1}.

In what follows we will call a bound exact whenever it coincides with the optimal objective
value of the maximum cut problem w*.

Proposition 3.4.4. [35] The bound (MC_BD),—¢ is exact for complete graphs (unweighted case).

Notice that from Proposition 3.4.1 vertex-transitive and regular graphs with odd order are suit-
able for the application of Proposition 3.4.3. This way, though the exact distance values may be
unknown, a potential improvement of the semidefinite bound may still be obtained using this in-
formation. Another relevant case for which the spectral bound is exact is the graph Cs (i.e. cycle
of length 5).

Proposition 3.4.5. The spectral bound (MC_BD) = is exact for Cs.

The Proposition 3.4.5 definitely draws a strong contrast between the spectral and classical
semidefinite bounds. Indeed, for Cs the ratio between the optimal objective value of the classi-
cal semidefinite relaxation and the optimum of the maximum cut problem is about ~ 1.131. (It
was even conjectured for some time that Cs would give the worst case ratio for the semidefinite
bound in the unweighted case, which was however disproved later by Feige and Schechtman [98].)

More generally for odd cycles, the following proposition gives an upper bound (generally weaker
than the exact value of the spectral bound but) strictly improving over the upper bound provided
by the classical SDP relaxation (and that is given by: £ (1 +cos(2))).
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Proposition 3.4.6. [35] The spectral bound (MC_BD),,—¢ for an odd cycle C,, is lower than or equal
to the following quantity:

(1+cos(%))—%sin(%)mj_é/zsin (ZJTT[) (3.9)

NS

Another interesting particular case is given hereafter illustrating the fact that the lower bound
on w* that may be derived from formula (3.2), i.e.

1 1 A
w*z—Zwij——min{ 1 } (3.10)
2 47,<0 | vgl2,

where the minimum is taken over all the negative eigenvalues of the matrix W, may coincide with
the optimal objective value.

Proposition 3.4.7. [35] The lower bound (3.10) is exact in the unweighted case for wheels with an
even number of spokes.

3.5 Further extensions for the weighted maximum k-cut problem

In this section we introduce spectral bounds for the (weighted) maximum k-cut problem (or max
k-cut) which generalizes the maximum cut problem, where k denotes an integer larger than one.
The objective is to find a partition of the node set into k subsets so as to maximize the sum of the
weights of the edges having endpoints in different subsets. (So maximum cut is nothing but max
2-cut.)

Among the main developed approaches for dealing with this problem, some works [188,213]
aimed at deriving bounds on the optimal objective value by making use of the spectrum of the
Laplacian or of the weighted adjacency matrix. We summarize hereafter a recent work investi-
gating further this line of research. Despite the fact that (differently from the maximum cut prob-
lem) for k = 3 max k-cut cannot be formulated as an unconstrained (-1, 1)-quadratic optimization
problem, we shall see, however that the approach developed above to get spectral bounds may be
simply extended for this problem.

In what follows, we make use of (and not recall all) the notation introduced in the former sec-
tions of this chapter. Let us just mention some additional one and recall some elements to avoid
any ambiguity. Given a positive integer ¢, let [g] stand for the set of integers {1,2,...,g}. Given
any partition (V1,Va,...,Vy) of V into k subsets V1, Vs, ...,V (some of which may be empty), the
k-cut defined by this partition is the set 5(Vy,Vs,..., Vi) of edges in E having their endpoints in
different sets of the partition, and the weight of the k-cut is the sum of the weights of the edges it
contains. The maximum weight of a k-cut in G is denoted w,’:. Given two disjoint node subsets
A, B, let w[A, B] denote the sum of the weights of the edges having one endpoint in A and the other
in B: w[A,B] = }.(; jeaxB: ijeE Wij- Similarly, w[A] denotes the sum of the weights of the edges with
both endpoints in A: w[A] =} ; jeaz: Wij. Recall that A} <Ay <... <A, denote the eigenvalues of

ijeR,i<j
W and vy, va,..., Vv, the corresp(])ndin]g unit and pairwise orthogonal eigenvectors. The maximum
eigenvalue of the weighted Laplacian matrix is denoted by A, (L).

For the particular case when k = 2, Mohar and Poljak [17] proved the inequality w} < 4 X,(L).
More recently, van Dam and Sotirov [213] proved the following upper bound on w’c‘, still making
use of the largest eigenvalue of the Laplacian and providing in the same reference several graphs
for which this bound is tight together with some comparisons with other bounds stemming from
semidefinite formulations.

Theorem 3.5.1. [213]
nk—-1)

2k

An(L). (3.11)

S
=t
IA
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Also recently, Nikiforov [188] introduced an upper bound for the maximum cardinality of a
k-cut in G (i.e., the maximum k-cut problem with w, = 1,Ve € E) that is easily extended to the
weighted case and can be expressed as follows.

Theorem 3.5.2. [188]

k-1 )\171
- 222) o1

*
wy S—k w[V]_T .
As noted in [188], the bounds from Theorems 3.5.1 and 3.5.2 are equivalent for regular graphs
but different in general.
In what follows we extend the result in Theorem 3.5.2 by using the full spectral information of

W, following the approach described in Section 3.4 for the maximum cut problem.

3.5.1 Spectral bounds

Given r € R\ {0, 1}, let d; , denote the distance between the set of vectors {r, 1} and the subspace
Lin(vy, va,...,v;) that is generated by the first j eigenvectors of W:

djr=min{|z—y|: ze{r,1}",y € Lin(v1,vz,...,vj)}. (3.13)

Theorem 3.5.3. [6] For anyr € R\ {0, 1},

rP+k-DEwNVI-AMn -k Y Api-Add;, | (3.14)

*
w, < ———
k 2
2(r=1) le[n-1]

Proof. Let (V1,V>,...,Vi) denote a partition of V corresponding to an optimal solution of the max-
imum k-cut problem. For all i € [k], let the vector y’ € {r,1}" be defined as follows: y,=rifleV;
and 1 otherwise. We have:

. T .
() Wyt = 2r*wlVil +2 X jepng WV +2r Y jeprn wIVi, Vil+
2% (jnehnin?: WV VI (3.15)
j<l

Let us now compute the sum of each term occurring in the right-hand-side of (3.15) over all i € [k].

Zi(—:[k]zrzw[vi] :2r2(w[V]—w,’C‘),
Yieth 2 jetkva wIVjl =2 (k-1 (wIVl - wy),
Yielk 27 Xjerkngy wIVi, Vil =4r w,
Zie[k]ZZ(jyl)e([k]\{i})Z; wlV;, Vil =2(k—2)w]:-
j<l
Thus, we deduce
3 (yi)TWyi = 2wy (-r’+2r-1)+2wVI(* + k- 1). (3.16)
ielk]

We now derive a lower bound on (y)' Wy’ making use of the spectrum of W. First, we mention
some preliminary properties. Note that since W is symmetric we may assume (vy, va,..., Vv,) forms
an orthonormal basis, and consider the expression of y* in this basis: y* =} ;e[ a;v; with a € R”.
Then, we have ||y’ |* = ¥ je(, &f = n+|V;](r*~1). From the definition of the distance defined above
we deduce djz.,r < Z;’:jﬂ of,V j € [n—1]. Thus, we have
Ny 2

(J’ ) Wy' = Yiemn )\lo‘l
A (n+IVil(r? =1 =X, of) + X0, Aol
A (r+ Vil (rF = D)+ X0, (A — Ao

n . o2for j=2,...,n, we deduce

Then, iteratively making use of the inequality a? > djz'-1, DI

AT . .
(yl) Wy = (n+IVIP - D)+ Y Aw—ADdz,.
le[n—-1]
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Summing up these inequalities for all i € [k] we obtain

AT
)y (yl) Wy = n(k+r2-1)+k[ ¥ 0a-Apd?,|. 3.17)
iclkl le[n—1] ’

Combining (3.16) and (3.17), the result follows. O

Remark. Enforcing the value ‘1’ among the two possible values for the components of the vectors
used in the definition of the distances (3.13) is done only for simplicity of the presentation. We are
basically interested in the distance between Lin(vy, vz,...,V;) and a set of vectors whose compo-
nents are restricted to take any of two nonzero values. If we denote by d;,r, r, the distance between
Lin(vi,vz,...,v;) and the set of vectors {ry, 2}" with (r1, 2) € (R\ {0})?, then djrr,= Irlldj':_z,Vj €
[n], and the results obtained by using such vectors are equivalent to the ones presented. 1

Note that all the terms occurring in the last sum of the inequality (3.14) are nonnegative, so
that even after removing from the right-hand side some or all of the terms involved in this sum,
the expression obtained still provides an upper bound on w,’;.

In view of the bound (3.14) on w, one may ask for the best choice for the parameter r. If we
consider the truncated bound obtained from (3.14) by removing the last sum, it is straightforward
to check that the ratio r(zrt’i)_zl is minimized for r = 1 — k, which is the value used by Nikiforov [188]
and leads to Theorem 3.5.2. One may ask for the best choice of r when considering the whole
expression of the bound in (3.14). Preliminary computational experiments show that other values
of r may lead to strictly better bounds than Theorems 3.5.1 and 3.5.2, depending on the instance.

The approach for proving Theorem 3.5.3 can also be used to obtain lower bounds on the weight
of any k-cut. Let I denote the minimum weight of a k-cut in G and let d j,r denote the distance
between the set of vectors {r,1}" and the subspace Lin(v;, v;41,...,V;) thatis generated by the last
n— j+1 eigenvectors of W:

dj,=min{|z-y|:ze{rn}", yeLin(v;,vjs1,...,Vn)} - (3.18)
Theorem 3.5.4. [6]
1 —
r> |2 k=DewVI-Am+k Y M= AT, |- (3.19)
2(r=1 le[n—1]

Theorems 3.5.3 and 3.5.4 lead to the definition of the spectral bound gap sy, which is the dif-
ference between the upper and lower spectral bounds:

1

Sk=———
k= 5 —1)2

—2
(FP+k=-1)nh-AD)—k Y A=A (dl+1',+d§,)} :

le[n-1]

3.5.2 On some particular cases

Computing the distances (d j,r);?:‘l involved in the expression of the bound (3.14) is NP-hard in
general (see Proposition 4.4 in [34]). In this section we specialize Theorem 3.5.3 for the particular
case when T is an eigenvector of W. This is notably the case when considering the max k-cut
problem in regular graphs with unit edge weights. Its expression does not involve distances and
leads to an upper bound on w,’s that is lower than or equal to the bounds of Theorems 3.5.1 and
3.5.2.

We start with an auxiliary result on the minimum squared distance between any vector in

1, 7}" and the subspace in R" that is orthogonal to Lin(,,), denoted by Lin(1)".
Proposition 3.5.5. [6]

n ifr=1,
. RN .
m1n{||y—z||2:ye{l,r}”,zeLm(ln) }: nr2 ifo<r<i,
min (&= rn—1)2 , % otherwise,

withn=s mod(1-r),0<s<1-r, forthe case whenr <0.
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Taking r = 1 - k, using Theorem 3.5.3 and Proposition 3.5.5 together with the fact that d; , =
djs1,r, forall j € [n—1] leads to the next result.

Corollary 3.5.6. [6] IfG is a complete graph and W is its weighted adjacency matrix, then

wy < i ((k—1) n* —min((s - k)% 5%), (3.20)

withn=s modk,0<s<k.

Corollary 3.5.6 gives an infinite class of graphs (complete graphs such that min((s — k)2, s?) > 0)
where Theorem 3.5.3 strictly improves on Theorem 3.5.2. The bound (3.20) has also the feature
of coinciding with the optimal objective value of max k-cut for some cases. Before we give an
example, let us firstly mention the next result w.r.t. the number of edges in Turdn’s graphs, i.e.
complete k-partite graphs for integer k = 2 whose partition sets differ in cardinality by at most
one.

Proposition 3.5.7. The number of edges of a k-partite Turdn graph with n vertices is
1

2k((k—l)nz+32—sk),

withn=s modk,0<s<k.

By Turdn’s theorem [212] and Proposition 3.5.7, the maximum cardinality of a k-cut in the
complete graph K, is ﬁ (k=1 n?+s®—-sk), withn=s modk, 0 < s < k. This coincides with the
bound (3.20) if n =0 mod k or n = £ mod k and k is even. For k = 2 and unit edge weights it
follows that the bound (3.20) coincides with w,: for all complete graphs (see also Proposition 3.4.4
in [35]), whereas this fails for the bounds of Theorems 3.5.1 and 3.5.2 for complete graphs having
an odd number of vertices.

3.6 Some elements on computational experiments

Some computational experiments involving the spectral bounds introduced in Section 3.2 have
been carried out on small weighted maximum cut problem instances (with up to 20 nodes), see
[35] for details. From these, it appears that, in order to observe improvements (by comparison
with the classical semidefinite bound), it is important to make use of modified diagonal entries
for the weight matrix (as mentioned in Section 3.3 by solving the semidefinite program (P2)). This
observation holds for all the bounds that have been presented in Section 3.2. For a fixed value
of the parameter p, the bound provided by the decomposition approach tends to be better than
the one obtained by restricted eigenvalue selection. The quality of the bounds given by the basic
approach when restricting the last sum in formula (3.5) to the first p terms (so that the distances
computed to evaluate the bound involve matrices of rank at most p) and the one given by the
decomposition approach tend to be comparable, slightly better for the decomposition approach.
Note however that the latter seems computationally viable only for very moderate values of the
parameter p and that the computational effort grows quickly with this parameter.

3.7 Some perspectives

In this chapter we introduced new families of bounds for unconstrained (-1, 1)-quadratic opti-
mization problems and considered more closely their application to the max-cut and further ex-
tensions to the max k-cut problems.

Present joint work with Prof. Anjos is being dedicated to computational experiments on spec-
tral bounds for max k-cut. This research works covers two main features. One is that we wish to
deal with larger instances than the ones considered in our former experiments for the max-cut
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problem (up to 20 nodes). To achieve this aim a different approach for computing the distances
will be carried out: convert the problem which consists in computing the distances into a maxi-
mum cut problem and apply Rendl et al.’s method [201] method (a branch-and-cut type algorithm
relying namely on the use of strengthened semidefinite relaxations). The second and natural fea-
ture of this research is to study the parameterizations (i.e. the setting of diagonal entries for the
weight matrix, as mentioned in Section 3.3 and of the parameter r used in the definition of the
distances as presented in Section 3.5) leading to the best results.

Another research perspective is to look for other possible extensions of the techniques we used
to derive spectral bounds. We namely started to obtain results for the graph partitioning problem
in a graph, which consists in partitioning the node set into subsets of prescribed sizes, so as to
minimize or maximize the sum of the weights of the edges having their endpoints in the same
subset.

In a probably longer term, and depending on the results obtained along the different research
directions we just mentioned above, it may be worth studying the potential use of such spectral
bounds within the framework of branch-and-bound or branch-and-cut type algorithms.
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related polyhedral structures
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Chapter 4

Uniform cut polytopes

In this chapter, we draw our attention to the polyhedral structure of uniform cut polytopes. The
latter correspond to the convex hull of the incidence vectors of all the cuts that are defined by a
node subset of given cardinality. We gather and summarize selected results from our three pa-
pers [182,184,185]. The layout is as follows. After we formally introduce this family of polytopes
together with some related works from the literature, we sketch our contributions w.r.t. linear
descriptions (providing several new families of facet-defining inequalities) and studies on the di-
ameter of such polytopes.

4.1 Introduction

Let G denote an undirected graph with node set V(G) = {v}, vy,...,v,} and edge set E(G) = {ej, e, ...,
em}. Given a node set S € V(G), let 6g(S) (or 8(S) when G is clear from the context) stand for
the cut that is defined by S, i.e. the set of edges in E(G) with exactly one endpoint in S: 8g(S) =
{e€ E(G): |enS| =1}. The node sets S and V(G) \ S are called the shores or sides of the cut §(S) and
the size of the cut §(S) is the cardinality of the node set of one shore: |S| or n—|[S|. If 0 < |S| < |V],
the cut 6(S) is said to be proper. The set of edges in the graph G = (V,E) with both endpoints in
S €V is denoted by Eg(S). Given two sets A and B, the notation AAB represents their symmetric
difference, i.e. AAB = (AUB) \ (AnB). For any node subsets T,U <V, §(T)A8(U) = §(TAU), hence
the collection of cuts is closed under taking symmetric differences (see for example [206]). A cut 1
is said to be minimal if there does not exist any cut ] C I.

Given a set F of edges in G, its incidence vector x' € RE© is defined by x£ = 1 if e € F and 0
otherwise. Given a node v € V(G), N(v) denotes the set of nodes in V(G) \ {v} that are adjacent to v
in G. Given S €V, G[S] denotes the subgraph of G that is induced by the node set S.

The convex hull of the incidence vectors of all the cuts in G defines the cut polytope CUT(G) =
conv({x%®): S cV}). Optimization problems over cut polytopes arise, e.g., in statistical physics
[22,80] or circuit design [119] (for further information on properties and applications of these fam-
ilies of polytopes the reader may consult, e.g., [88]). For an introduction to polytopes and related
notions for which we shall not recall the definition, the reader may consult, e.g., the textbooks by
Griinbaum [122] and Ziegler [223]. Let us just recall here few basic elements on polytopes. Let
P # @ denote a polyhedron defined as follows: P = {x € R": Ax < b} with (A, b) € R"™*" xR™, m
and n stand for positive integers. A set F is a faceof P ifand only if F # ¢ and F = {x € P: Ax = E},
for some subsystem Ax < b of Ax < b. A face of P having dimension 0 (resp. 1, dim(P) — 1) is also
called a vertex (resp. an edge, a facet) of P. Two vertices of a polyhedron P are called adjacent or
neighboring if they are both contained in an edge of P.

In this chapter we shall focus on restrictions of the cut polytope defined as follows. A uniform
cut polytope is the convex hull of all cuts with a prescribed size. Given some integer k satistying
k< |_§J, CUT(G) denotes the convex hull of the incidence vectors of all the cuts for which one
shore has cardinality k, i.e. CUTL(G) = conv({x%¢®: S<V(G),IS| = k}), where, for some given
subset of edges F € E(G), ' € RE(© denotes the incidence vector of F (i.e. i =1ifee Fand 0
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otherwise). In the particular case when the graph G is K,;: the complete graph with order n, we
shall use the notation V), (resp. E,) for the node set (resp. edge set) and write CUT}! in lieu of
CUTk (G)

A motivation underlying our investigations on uniform cut polytopes is to develop knowledge
with respect to the polyhedral structure of cut polyhedra with potential applications to solve dif-
ficult graph partitioning problems. Among the latter we can namely cite the maximum cut and
equipartition problems. Both may be formulated by linear programs having for feasible region
the cut polytope and the equipartition polytope (i.e. CUTL% 1 (G)), respectively. Another related
polytope is the bisection cut polytope: given nonnegative integer node weights (w,) ey and a
nonnegative integer ¢, the bisection cut polytope BC(G) is defined as the convex hull of the inci-
dence vectors of all the cuts 8(S) satisfying the inequalities }_ es wy < g and ¥ ey G)\s Wy < g. For
the particular case when all the node weights have value 1, BC(G) coincides with the cut polytope
if ¢ 2 ¥ yev(G) Wy and the equipartition polytope CUT x| if g = [4].

Given that optimizing a linear function over these polytopes is NP-hard in general [111], there
is no decent complete descriptions for them, in the sense that the separation problem associated
to these polytopes is NP-hard. This aroused many polyhedral studies (e.g., (3,10, 24, 25,70-72,79,
81,82,88,99,100] aiming at determining families of facet-defining inequalities for these polytopes
(and some extensions) which could then be used in order to obtain tight relaxations in order to
solve optimization problems involving them.

Obviously, as uniform cut polytopes are all contained in the cut polytope, any inequality that
is valid for the cut polytope is also valid for all uniform cut polytopes (and naturally, the con-
verse does not hold in general). However, in some cases, uniform cut polytopes may have a much
simpler linear description, so that it may be valuable, when solving optimization problems on
uniform cut polytopes (or potentially in order to solve an optimization problem on the cut poly-
tope by decomposing it according to different sizes of the shores), to investigate more thoroughly
their precise polyhedral structure. As an illustration, consider the Table 4.1 where we reported
the number of facets of some small uniform cut polytopes CUT}! (k = 1,2,3), cut cones cut”

and cut polytopes CUT,,, where CUT " stands for the conic hull of the incidence vectors of cuts in
K. The results concerning CUT" and CUT" are from [88], the others have been obtained using
PORTA [61].

Table 4.1 - Number of facets of some small cut polyhedra

n CUT” cuT” CUT}

k

112 |3 4

8 | 217,093,472 | 49,604,520 | 8 | 28 | 52,367 | 896
7 116,764 38,780 7121 | 896
6 368 210 6|15 10
5 56 40 5110
4 16 12 4| 3

The polytope CUT| 1] was studied by Conforti et al. [70,71]. They introduced several classes of
inequalities and showed that some are facet-defining. Their work was extended by de Souza and
Laurent [82], who introduced several classes of facets arising from generalizations of an inequality
from [70, 71] that is based on a cycle. Otherwise, we are presently not aware of other polyhedral
studies dedicated to uniform cut polytopes such as the ones we carried out and summarize here-
after.

The rest of this chapter is organized as follows. We firstly introduce some preliminaries on
the dimension together with some key properties which allowed us to prove the facet definite-
ness property for many families of inequalities. Then, we exhibit diverse families of facet-defining
inequalities. They extend works by Conforti et al. [70,71] (on the equipartition polytope) to uni-
form cut polytopes of the form CUT} with k < [gJ . Then, the polyhedral structure of uniform cut
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polytopes is investigated from the perspective of their diameter according to two different defini-
tions of the latter present in the literature. For more details and omitted proofs, the reader may
consult [182, 184, 185].

4.2 Properties of facet defining inequalities and dimension

In this section, we report our results on the dimension of uniform cut polyhedra (and some of
their natural extensions) together with some important lemmas that are the cornerstone in the
proofs establishing that some families of inequalities are facet defining. We start with some useful
notation.

For some vector indexed on the edges: y € RF, and two disjoint node subsets S1,S, < V(G),let
y[S1: S2] denote the expression }.;jcg(G):ics,, jes, Vij- Given a set F of edges in G and a vector x €
RE©), we let x(F) denote ¥ ,cp X.. The dimension of a polyhedron P (i.e. the maximum number of
affinely independent points in P minus 1) is denoted by dim(P).

Lemma 4.2.1. [182] Let G be a graph with n nodes, and let o' x < «y be a valid inequality for
CUT(G). LetY,Y', Z and 7' denote pairwise disjoint subsets of V(G) such that |Y| = |Z, |[Y'| =1Z/|,
and |Y|+|Y'| = k. Set W = V(G)\ (YUY'UZUZ). If the incidence vectors of the cuts §(ZuZ/), 5(YUY),
8(Z' UY) and 8(Y' UZ) satisfy o' x = ag, then «[W :Z] = a[W:Y].

Proof. Set Ay =8(ZuUZ'), A, =8 UY), A3 =8 uY) and A, = 8(Y' UZ). Since the incidence
vectors of the cuts A, and A3 satisfy a’ x = ap, we have 0 = a'x® —a"x® = a[Y' : Z'] + a[Y' : Z] +
alY: Z'N+alY: Zl +aW:Z'+oW:Z] —a[Y : Z' —alY : Y] —a|Z: Z') —a[Z: Y] —a[W : Z'] —a[W : Y].
Analogously, considering now the incidence vectors of the cuts A, and A4, we have 0 = a x2 —
ol YA =alY : ZT+alY : Zl +aY W] +a[Y: Z]+alY: Z] +«[Y : W] —a[Y : Z'] —afY' : Y] —a[Y : W] —
alZ:Z'N —alZ: Y] —alZ:W].

Subtracting one equation from the other leads to: «[W : Z] = a[W : Y]. d

Lemma 4.2.2. [182] In the setting of Lemma 4.2.1, suppose also that 1 < k < |%51|. Fixz inY'.
ForweW, letY), = (Y u{w}) \{z}. In addition to the cuts listed in Lemma 4.2.1, if 3(YUY,,) and
8(ZuY,,) also satisfy o™ x = ag forallw e W, thenalz:Y) = alz: Z].

Proof. Application of Lemma 4.2.1 directly leads to the following relations:
alY : W] =«al[Z: W],

and
oY : Wufzh\{w} =alZ: Wu{zh \{w}],weW.

Therefore,
alY:zl—alY:w]l=alZ:z]—a[Z: w], w e W.

Now, summing the last equations over all w € W leads to
[WlalY: z] = [W|a[Z: 2],

and the assertion follows. O

We mention hereafter another important result reported in [70] that is useful for showing that
some inequalities are facet defining.

Lemma 4.2.3. [70] Let G be a graph and k € {2, ..., [gJ} Leti,j,l,meV(G),S=V(G)\{i,j I, m}
and (S11S2) be a partition of S with|S1|=k—-2 and|Sy| =n—k—2. Let a®x < b be a valid inequality
for CUT((G). If the incidence vectors of the cuts below

0(S1Udi, jb), O(S1uil,m}), O6(S1ufi,l}),
6(SIU{]) m})y 6(S]U{l,m}), 6(SIU{Jrl})»

satisfy a' x = b, then
aij+aim=aj+ajm = aim +aji.
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We now give the dimension of uniform cut polytopes for complete graphs: CUT}! with k €

{2, "]}
Proposition 4.2.4. [182] Ik {2,..., | 25|}, then dim(CUT}) = (3) - 1.

Proposition 4.2.5. [182] Forn =3, dim(CUT}')=n-1.

Propositions 4.2.4, 4.2.5 and the results obtained by Conforti et al. [70] on the dimension of the
equipartition polytope lead to the following proposition.

Proposition 4.2.6. [70, 182] The following relations hold:
,)—n ifnisevenandk=1%,

dim(CUT}) =<3 n-1  ifk=1,

(’2’) —1 otherwise.

Similarly, we can show that slight extensions of uniform cut polytopes are full-dimensional.
Given some set of integers Q {1, . [g] }, and defining CUTq (G) = conv ({XSG(S) :ScV(G),IS| € Q}),
we have the following result.

Proposition 4.2.7. [182] If Q is composed of pairwise distinct elements from {1,..., [g] } and satis-
fies|Ql = 2, then for any graph G, the polytope CUTq(G) is full-dimensional.

4.3 A walk through some families of facet-defining inequalities

We list hereafter families of facet-defining inequalities for uniform cut polytopes. Their proofs
heavily rely on the three lemmas from Section 4.2 and tend to be often technical and lengthy; they
are thus omitted from the current document and can be retrieved from the given references.

4.3.1 Basic facet-defining inequalities

Proposition 4.3.1. [182] Let uv be an edge in E(G) that is not contained in any triangle of the graph
G. Let G’ be the subgraph of G induced by V' =V(G) \{u, v} and k be an integer with3 < k < |1 |.
Suppose that

o G is complete,
e every node inV' is adjacent to either node u or node v but not both,

* ny = n, where n, and n, denote the number of nodes in V' that are adjacent to u and v
respectively, and define n, = min(n,, k — 1), n, = min(n,, n—k-1).

Then the following inequality defines a facet of CUT(G):

Yo oxij+2 ) xuwt2 Y, Xpw+(n—1-20,—27)xu < k(n—k). 4.1)
ijeE(G) weN(u)nV’ weN(v)nV'

Proposition 4.3.2. [182] Let uv € E and G’ be the subgraph of G that is induced by V' = V(G)\{u, v}.
Then the inequality
Xup =0 (4.2)

defines a facet of CUT(G) with k€ {3,...,| 25 |} if and only if

i) edgeuv is not in any triangle, and

ii) either G’ is not a complete graph or there exists a node w € V' which is not adjacent to u nor
v.
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Proposition 4.3.3. [182] Let uv denote an edge of the graph G and let G' stand for the subgraph of
G thatis induced by V' =V(G) \ {u, v}. For an integer k with3 < k < | 51 | the inequality

Xup <1 (4.3)
defines a facet of CUT(G) if and only if
* edge uv is not contained in any triangle, and
* G' is not a complete graph.

Proposition 4.3.4. [182] Let G be a graph with no isolated node. Let v € V(G), G’ denote the sub-
graph of G that is induced by V' = V(G)\{v} and G’ stand for the complementary graph of G'. Then,
the inequalities

xO®)=n-k, (4.4)

and
x(0(v) = k, (4.5)

define facets of CUT(G) with3 < k < ["T'IJ if and only if node v is adjacent to every node inV' and
G’ has no bipartite component.

4.3.2 Facets from subgraphs

Let {el, e e(rzz)} denote the set of edges of K, and G be the subgraph of K, that is induced by the
edges {ey, ..., e;}. We start with the following result that can be derived from Theorem 5.1 in [71]. It
states that facet defining inequalities of the polytope CUT(K,) with support (i.e. the set of edges
with nonzero coefficients) E’ are also facet defining for the cut polytope CUT(G) of any subgraph
G containing E/, with k€ {2,..., [”T‘IJ }. It follows that many facet defining inequalities presented
later for CUT(K,,) are valid not only for K,, but for more general graph classes.

Proposition 4.3.5. Leta' x < b denote a facet defining inequality for CUT”, k € {2,..., ["T—lj }. Then
for any graph G that is obtained from K, by removing edges which do not belong to the support of
the vector a, a' x < b is facet defining for CUT(G).

Proposition 4.3.6. [182] Given a nonempty subgraph K of K, with | 2| < k-1, the inequality

x(E(K,)) < gJ [g} (4.6)

defines a facet of CUT} with ke {3,...,| %5 |} ifand only if q is odd.

Definition. A bicycle h-wheelis a graph (W, E) consisting of a cycle Cj, with length / and two nodes
(v, w) € (W\V(Cp))? (also called universal nodes) that are adjacent to each other and to all the
nodes of C;,.

A bicycle 5-wheel is represented in Figure 4.1 with dashed lines for edges incident to any of the
universal nodes v, w.

Proposition 4.3.7. [182] Let W be a bicycle h-wheel, h = 5 odd, which is a subgraph of K,,. Then
the inequality

x(E(W)) <2h 4.7)

defines a facet of CUT?, k€ {”35,---, LnT_lJ}
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Figure 4.1 — A bicycle 5-wheel.

4.3.3 Nonboolean facets

Differently from the last two sections, we now introduce several facet-defining inequalities for the
polytope CUT}! whose coefficients on the variables may take values outside the set {0, 1}, hence
the name nonboolean facets.

LetT < V(K,), R=V(K,)\T, t=|T| =2, reven, ke {4 +2,...,| |}, and consider the following
inequality
=2k, 1,

(4.8)

ZZx,-j+(n—2k+2) Z Xij =

ieR jeT ijeT

The support of an inequality of the form (4.8) is represented in Figure 4.2, where a dashed line
between two node sets represents all the edges with exactly one endnode in each of these sets.

R
Car )
@5
@6
o7
- o .8
®°
@® 10
o

Figure 4.2 — An illustration of the support of an inequality (4.8)
defining a facet for CUT}!

Proposition 4.3.8. [182] Inequality (4.8) defines a facet of CUT}’.

Proposition 4.3.9. [182] Let K, be an induced subgraph of X,,. Let w; be a system of integer
weights on the nodes of K, such that w; = 1, Z?=1 w;=2r+1,r=z3,Y,eww; <r—-1, withw =

{ieVKy): w;j =22}, k=2r+2, k< [”T_IJ, q<n-Yicw w;+|W|. Then the inequality

Y wiwjxij<r(r+1) (4.9)
ijeK,

induces a facet of CUT}..
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4.3.4 Homogeneous triangle inequalities

Proposition 4.3.10. [184] The homogeneous triangle inequalities defined by:
Xij—Xi]— Xj] <0,Vi,j,le{l,...,njwithi<jandi#l# j, (4.10)

are facet-defining for uniform cut polytopes CUT}, with k € {3,..., [”T_IJ ;.

4.3.5 Cycleinequalities

The next proposition extends to uniform cut polytopes a family of facet-defining inequalities for
the equipartition polytope presented in [71].

Proposition 4.3.11. Let C = (V(C),E(C)) denote a chordless cycle in the graph G = (V,E) and letF be
an odd set of edges in E(C). SetL:= |[E(C)| — 'FlT_l ifFcE(C)andL:=|V(C)|+2ifF=E(C). Ifk=L
and G contains either two nonadjacent nodes in V\V(C) or a node in V(C) not adjacent to a node
in V\V(C), then the inequality

Y Xe— Y, Xes|Fl-1 (4.11)

eeF ecE(C)\F
. ; n
is facet-defining for CUT}.

4.3.6 (1 Stable set/ 1 Clique) facets

Another family of facet-defining inequalities having the same support as (4.8) can be derived in a
similar way.

Proposition 4.3.12. [184] LetT <V, R=V,\T, t=|T| 22, t even, ke {4 +1,...,| %1 |}, then the
inequality
n—-2k n
Zin,-—(n—zk—z)in,-_—( n )t2+5t (4.12)

ieRjeT ijeT
. . n
is facet-defining for CUT}.

Remark. We may notice that the difference of the two inequalities (4.8)—(4.12) gives the inequality
Xup < 1 (with T = {u, v}), thus implying the latter is redundant in any description of CUT}!. A
characterization of the graphs for which the trivial constraint x,,, < 1is facet-defining for CUT}! is
reported in [182] (see Proposition 3.3 in this reference).

4.3.7 (2 stable sets/ 1 Clique) facets

Before we introduce the general form of the next family of facet-defining inequalities for uniform
cut polytopes, let us firstly illustrate some aspects of their intrinsic structure on a small example.
For, consider the uniform cut polytope CUTS, a partition (L, T,R) of the node set Vg with |L| = 2,
IT| =2 and |R| = 4, and an edge weight function (wy;) uveg, defined as follows:

4if (u,v)eTxT,
lif (u,v) €T xR,
-lif(u,v)eTxL,
0 otherwise.

Wyy =

The situation is depicted in Figure 4.3, where an edge between two node sets A and B represents
the set of all the edges of the complete bipartite graph with bipartition (A, B). The value reported
close to an edge corresponds to the associated weight defined above. Edges with zero weight are
not represented. For this particular example, we can easily check that the maximum weight of
any cut (considering no constraint on the size) is 8, whereas it is 6 for cuts with size 3. (Given
a cut 6(S), its weight w(8(S)) is defined as the sum of the weights of the edges it contains, i.e.
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Figure 4.3 — An illustration of the support of a facet-defining inequality of type (4.13) for CUTg
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w(d(S)) = X yves(s) Wuv). Thus the inequality with a left-hand side corresponding to this weight
function and a right-hand side with value 6: w’x < 6, is valid for CUTg (whereas it is not for CUTE
since it is violated by the incidence vector of the cut §(R)). More generally, we could obtain the
next result.

Lemma 4.3.13. [184] Let k = 3 denote an integer and (L, T,R) denote a partition of the vertex setV,
such that |T| = t is a positive even integer, |L| = 1> k—4—1,[Rl=r>k-%+1andk>%+1. Then
the following inequality is valid for CUT?, k€ {4 +2,...,| &1 |}.

Z Xyw T YL Z Xuv T YT Z Xuz = Yo, (4.13)
(u,w)eT xR (u,v)eTxL (u,2)eTxT:u#tz
with

_2r+t-2k-2 i

Y v or+i+2k—2 '
_ (n—2k+2)(t—2k—2) +4r w5

T v 2rvi+2k—2 '

? t

Yo = Z(YT—ZYLHE[(n—r)YLH]. (4.16)

Proposition 4.3.14. [184] Inequality (4.13) defines a facet of CUT}.

4.4 On the diameter of cut polytopes

4.4.1 Introduction

Given a nonempty polytope P, the I-skeleton of P is the graph whose nodes correspond to the
vertices of P, and having an edge joining two nodes iff (if and only if) the corresponding vertices
of P are adjacent on P. Given two vertices vy, v» of P, let d(vy,v,) denote the length (w.r.t. the
number of edges) of a shortest path between the nodes representing v; and v, in the 1-skeleton
of P. The diameter of P, which is denoted by diameter(P) is the maximum distance between any
two vertices of P, i.e. max{d (v, 1») : v, 1, are vertices of P}.

The notion of diameter of a polyhedron presents, among others, some connections with linear
programming and linear optimization methods that are based on the fact that if a linear program
having for feasible region a pointed polyhedron has a finite optimal objective value, then there
exists an optimal vertex solution. For example, consider the simplex algorithm applied to such a
linear program: starting from a particular vertex v, of the feasible region F, this method consists
in iteratively moving from a vertex (the current basic feasible solution) of F to an adjacent vertex
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(with better or equal objective value), until an optimal vertex solution is found. Given a nonempty
polytope P, any vertex v of P is the unique minimizer of some linear function over P. For such an
objective function, if the simplex method is applied starting from a vertex vy satisfying d(v, vy) =
diameter(P), then the number of iterations required is at least diameter(P).

To our knowledge, the first study of the 1-skeleton of the cut polytope appears in the paper by
Barahona and Mahjoub [25], where the following characterization of vertex adjacency on the cut
polytope is provided (Theorem 4.1 in [25]).

Theorem 4.4.1. [25] Let G = (V,E) be a connected graph, and let 1,] denote two cuts in G. Set
F =E\ (IA)). Then x' andy’ are adjacent on CUT(G) iff the graph Hiay = (V,F) has two connected
components.

The proof the authors give relies on the property that the extreme points x' and x’ are adjacent
on CUT(G) iff there exists a vector ¢ such that they are the only two vertices optimizing max{c" x :
x € CUT(G)}. Many of the results reported hereafter rely on this proof technique.

In the same reference [25], it is also established that the Hirsch property holds for CUT(G). (A
d-dimensional polytope P with f facets is said to satisfy the Hirsch property if its diameter verifies
the inequality: diameter(P) < f —d). In fact, Naddef [177] proved later that this property holds
for all (0, 1)-polytopes, and thus also for CUT(G) and the uniform cut polytopes. What also follows
from Theorem 4.4.1 and its proof is that CUT(G) is a so-called combinatorial polyhedron [167,178],
a family of polyhedra for which Matsui and Tamura established further different properties related
to the Hirsch property [167]. Hereafter we mention part of our results w.r.t. the diameter of the cut
polytope and uniform cut polytopes.

4.4.2 On the diameter of the cut polytope

For the particular case of complete graphs, Barahona and Mahjoub [25] showed that the cut poly-
tope has diameter 1: this is a direct consequence of Theorem 4.4.1. For general graphs they pro-
vided the following upper bound on the diameter that is given by the next theorem (Theorem 4.3
in [25]). Before stating the result we give some additional terminology and notation. Let G = (V,E)
be an undirected graph containing an edge {u, v}. Contracting edge e = {u, v} is the operation of
replacing u and v by a single node whose incident edges are the edges other than e that were in-
cident to u or v. Formally, the edge contraction w.r.t. {u, v} results in the graph G’ = (V/,E’) with
V' =V\i{y,viu{wlandE ={e€E: [eniu, v}|=0u{iw,z}: {u,z} €E or {v,z} € Ewith z € V\ {u, v}}.
Given a connected graph G and a cut C in G, let T(C) denote the graph obtained from G by con-
tracting edges not in C and replacing multiple edges by single edges. Let m(C) be the number of
edges of T(C). Given two cuts ] of G, let d(1,]) stand for the distance in the 1-skeleton of CUT(G)
between the nodes corresponding to the incidence vectors of I and J. With a slight abuse of termi-
nology, we will say that two cuts I and J are adjacent on CUT(G) if d(I,]) = 1.

Theorem 4.4.2. [25] If 1 and] are two cuts in any graph G, then d(1,]) < m(1A]).

Given a subset of edges I of the graph G, let H; denote the graph obtained from G by removing
all the edges in I. Given a graph G, let k(G) denote the number of connected components in G. A
generally better bound on the distance between the incidence vectors of two cuts in the 1-skeleton
of CUT(G) is as follows.

Proposition 4.4.3. [185] Let G be a connected graph. If 1 and] are two cuts in G, then d(1,]) <
K(H]A]) -1.

Corollary 4.4.4. [185] For any graph G = (V,E) we have diameter(CUT(Q)) < |V| -x(G).

The upper bounds given by Theorem 4.4.2 and Corollary 4.4.4 on the diameter of the cut poly-
tope are both tight for trees. However, for general graphs, both may strongly differ. We namely
reported cases (complete bipartite graphs) for which the bound from Theorem 4.4.2 is quadratic
in the number of vertices of the graph whereas the one from Corollary 4.4.4 is linear, see [185].
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For any subgraph G’ of G, we could prove that the 1-skeleton of CUT(G') is a subgraph of the
1-skeleton of CUT(G), leading to the next result.

Proposition 4.4.5. [185] Let G’ = (V,E) be a connected subgraph of G = (V,E). Then
diameter(CUT(G")) = diameter(CUT(Q)).

A special graph family for which our investigations led to the exact value of the diameter of
the cut polytope is that of complete bipartite graphs. Given two positive integers ki, k, let K, f,
represent the complete bipartite graph with node bipartition (Vy, V») such that |V;| = k;, fori =1, 2.

Proposition 4.4.6. [185] For any two integers ki, k» =2, diameter (CUT (Kg, x,)) = 2.

4.4.3 On the diameter of uniform cut polytopes
Sufficient conditions for adjacency on uniform cut polytopes

Notice first that if two cuts §(S1),8(S2) with |S;| = |S2| = k < |V|/2 are adjacent on CUT(G), then
they are adjacent also on CUT(G), since there exists an objective function ¢ € RF(©® that is opti-
mized exactly by the closed line segment joining x5! and x%2 on both polytopes. However, it is easy
to see that the condition of Theorem 4.4.1 is not necessary for adjacency on uniform cut poly-
topes (see [185] for one example). The following proposition formulates a sufficient conditions for
adjacency relations on uniform cut polytopes which may not hold in the cut polytope.

Proposition 4.4.7. [185] Let G = (V,E) be a graph and let (C1,Cp,S, W) denote a partition of V such
that |C1] = |Cal, |IC1] +1S| = k < {%J, and the graph G' = (V,E\ 8(Cy U Cy)) has three connected
components. Then, if different, the cuts 8(C; US) and 6(Cy US) are adjacent on CUT(G) if one of

the following two conditions holds.

(i) G'[SUW] is connected and G'[Cy U C,] has two connected components G'y and G', such that
[V(G'1) nCil #IV(G'1) NCal and [V(G'2) N Cil +1S| # [V(G'2) N Ca| + [W].

(ii) G'[Cy UCy] is connected and G'[S UW] has two connected components G'y and G', such that
IVG')NSI#IVG ) NW|,i=1,2.

On particular cases

A direct consequence of Theorem 4.4.1 is that the cut and uniform cut polytopes of complete
graphs have diameter one.

Corollary 4.4.8. Forallintegersn=1 andk < [gj , the uniform cut polytopes CUT}. have diameter
1.

For a general graph G, the cut polytope CUT(G) and uniform cut polytopes may have a diam-
eter strictly larger than one. In fact, with respect to the cut polytope, it follows by Theorem 4.4.1
that CUT(G) has a diameter strictly larger than one for any connected graph G = (V,E) that is not
complete and having at least three nodes. This contrasts with the case of uniform cut polytopes
and is illustrated by the following proposition.

Proposition 4.4.9. [185] If the graph G is a star, then CUT; (G) has diameter 1.

Recall that for a star having 7 nodes the cut polytope CUT(G) has diameter . — 1 (see Remark
2 above). So this illustrates the fact that in some cases the gap between the diameters of the cut
polytope and uniform cut polytopes can be linear in the number of nodes of the graph.

A graph G = (V,E) is said to be k-node connected if, for any node subset Q <V with cardinality
|Q| < k, the induced subgraph G[V \ Q] is connected. The next result provides a simple upper
bound on the diameter of uniform cut polytopes for 3-node connected graphs.
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Proposition 4.4.10. [185] If the graph G is 3-node connected, then
diameter(CUTL(G)) < k.

In addition to the results mentioned before, some connections between the 1-skeletons of uni-
form cut polytopes and bipartition polytopes [77,145] could be established, see [185] for details.

4.5 Some perspectives

In this chapter we tried to provide an overview of the main results we could establish w.r.t. partic-
ular variants of the cut polytope defined as the convex hull of the incidence vectors of cuts having
some fixed size. We could introduce many families of facet defining inequalities, some of which
generalize facets of the equipartition polytope. Also we provided some of our contributions w.r.t.
the diameter of the classical cut polytope and uniform ones.

We could see that uniform cut polytopes have a very rich structure as is illustrated above by
many families of facet-defining inequalities. It would be interesting to look for further facets, and
in particular for families generalizing some of the ones presented. Complete formulations could
be obtained for the uniform cut polytopes CUT} for k = 1,2 [184]. A natural research direction is
to look for complete formulations for larger values of k.

Recently, there has been some interest of the community in combinatorial optimization to in-
vestigate the extension complexity of some polytopes (the extension complexity of a polytope P is
the smallest number of facets of any polyhedron whose affine image is P), see [102] and the refer-
ences therein for an introduction. In particular, Kaibel and Weltge [137] gave an elegant proof of
an exponential lower bound (in the number of nodes of the graph) on the extension complexity
of the cut polytope. (In fact, their result is w.r.t. the correlation polytope, but the latter is linearly
isomorphic to a cut polytope [79]). It seems likely that the extension complexity of uniform cut
polytopes CUT}! is worth investigating, as this would provide us with another comparative view
(i.e. different from the consideration of known families of facet defining inequalities) of the struc-
ture complexity of uniform versus (non-uniform) cut polytopes.

Another research direction is the study of the quality of approximations obtained depending
on the families of inequalities considered in the relaxations, together with the analysis of the com-
plexity status for the separation problem associated with the newly introduced families of inequal-
ities and the development of efficient separation procedures (possibly heuristics for the case when
the separation problem is difficult).
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Chapter 5

Generalized domination concepts

This chapter presents results from our investigations on polyhedral structures that are related to
generalized concepts of domination in graphs. For the three considered concepts, complete for-
mulations could be obtained for stars, a complete formulation for trees (in the original space of
variables which is indexed on the node set) for two of them, and several families of facet defining
inequalities could be identified (for all of the three concepts).

The results related to f-dominating sets and total f-dominating sets stem from joint works
with Prof. Dell’Amico [83, 84]. More information on the presented elements, together with some
additional results can be obtained in [83, 84, 186, 187].

5.1 Introduction

Let G = (V,E) denote a simple undirected graph having node set V = {1,2,...,n} and edge set E.
For our purpose we may assume that G is connected and n = 2, unless otherwise stated. For each
veV,letd, denote its degree in G and let f, be a given nonnegative integer value. Let % stand for
the set of vectors {f € ZV:0<f,<d,Vve V}. Given a node subset S <V, its open neighborhood
isthe set N(S) ={r € V\S: Ju e S such that {u, v} € E}, and its closed neighborhood is the set N[S] =
N(S)US. In case S consists of a single node v € V we may write N(v) (resp. N[v]) instead of N({v})
(resp. N[{v}]).

Anode subset D €V is called an f-dominating setif each node v € V\D (resp. v € V) has at least
fv neighbor(s) in D. If, in addition, each node v in D also has at least f;, neighbors in D, then D is
called a total f-dominating set. Anode subset D € V is called an f-tuple dominating setif the closed
neighborhood of each node v in G intersects D in at least f;, nodes.

In the special case when f;, =1, for all v € V, an f-dominating set D is more simply called a
dominating set. Similarly, in the same case, a total f-dominating set is call a fotal dominating set
and an f-tuple dominating set is nothing but a dominating set, see (127,128, 134]. The notion of
k-tuple dominating set, for some given positive integer k, corresponds to the particular case of
f-tuple dominating set, when f;, = k, for all v € V [110, 126], [128, p. 189].

Consider then optimization problems which consist in determining a minimum weight { f-tuple,
total f- or f-} dominating set. The minimum weight total f-dominating set problem, denoted
by [MWT/] can be formulated as follows: Given positive node weights (¢,) yey, find a minimum
weight total f-dominating set of G, i.e. find anode subset D € V such that D is a total f-dominating
set and the weight of D: }_,cp ¢y, is minimum. The problems w.r.t. f-dominating sets and f-tuple
dominating sets can be defined similarly. They will be denoted by (MW ] and [MWU rl, respec-
tively. The problems [MWT ], [MW¢] and [MWU ¢] may be formulated as the integer programs:

min ) ey CyXy
(Ip - MWTf) ZueN(v) Xy = fl/’ vey,
xe{0,1}Y,
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min ) ey CyXy
(IP—MWf) fyXy'l'ZueN(v) Xu Efy, vey,
xef{0,11Y,

min ) ey CyXy
(IP—MWUf) ZuEN[U] Xu Zf,,,l/EV,
x€{0,1}V.

The linear relaxations of these formulations (obtained replacing the constraints x € {0,1}V by
x € [0,1]V) will be denoted by (LP-MWT 1), (LP-MW/) and (LP-MWU ), respectively. Given a node
subset S €V, let x5 € {0, 1}V denote its incidence vector: x5 = 1if v € S, and x5 = 0 otherwise. Let
g, Gf denote the total f-dominating set polytope, i.e. the convex hull of all the incidence vectors

of the total f-dominating sets in G. Then, problem [MWT/] can be reformulated as the linear

program: min{ch: xXeg, Gf } Similarly, we define the polytopes @é and %g w.r.t. f-dominating

sets and f-tuple dominating sets; which can be used to reformulate [MW ] and [MWU /] as linear
programs.
One can easily check the following inclusions hold:

glculcg!" cal™ andg! cul <2/,

where T stands for the n-dimensional all-ones vector.

Optimization problems involving dominating sets and some of their many variants arise in
several important applications, in particular for the strategic placement of resources in network
infrastructures (see, e.g., [127,128]). The f-domination concept seems to appear first in the papers
by [129,210]. For further results related to the domination, total domination or multiple domina-
tion concepts and variants the reader may consult, e.g., [127,128,132,134,207,222].

Complexity results

Many works on domination focus on minimum cardinality problems involving non-generalized
concepts, i.e., with f, = ¢, =1, for all v € V. Let [DT] (resp. [DD]) stand for the decision prob-
lem associated with the minimum cardinality total dominating set problem (resp. the minimum
cardinality dominating set problem). [DD] was shown to be NP-complete [111] for undirected
path graphs in [48] using a reduction from the 3-dimensional matching problem. A variation of
this reduction was used in [151] to prove the same result holds for [DT]. Further graph classes for
which [DT] is known to be NP-complete include, e.g., split (and thus also chordal) graphs [150],
line graphs of bipartite graphs [168] and circle graphs [140]. Connections between [DD] and [DT]
are investigated in [147] which presents a linear time many-one reduction from [DT] to [DD].
This transformation allows the derivation of complexity results for one of the two decision prob-
lems from complexity results on the other for some particular graph families (closed for the graph
transformation that is introduced there), among which the fact that the minimum cardinality total
dominating set problem can be solved in polynomial time in permutation graphs, dually chordal
graphs and k-polygon graphs. The decision problem corresponding to the minimum cardinality
k-tuple dominating set is known to be NP-complete, even when considering restrictions on the
input graph (split or bipartite) [91, 156].

Laskar et al. [151] gave the first linear time algorithm to find a minimum cardinality total domi-
nating setin a tree. Their greedy algorithm uses a particular node labeling and iteratively processes
aleave and removes it from the current tree, which is initialized with the input graph. We extended
their result in [84] by showing [MWT /] can be solved in linear time for trees (see Proposition 11
in the last mentioned reference). Other graph classes for which the minimum cardinality total
dominating set problem can be solved in polynomial time include strongly chordal graphs [57]
and cocomparability graphs [146]. In [40] a ©(nlogn) algorithm is presented for solving the min-
imum weight total dominating set problem in interval graphs. A notable graph family for which
the complexity status of the problems [DD] and [DT] differs is that of chordal bipartite graphs:
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when restricted to this graph family [DD] is NP-complete whereas [DT] can be solved in polyno-
mial time [75]. Let y;(G) (resp. Y;,r(G)) denote the minimum cardinality of a total dominating set
(resp. total f-dominating set) in a graph G = (V,E). Given the complexity of the problem for com-
puting y,(G), some works focused on getting bounds. Lower and upper bounds on y,(G) appear
in [68, 134]. To our present knowledge, a lower bound on vy, r(G) only appears in [221], while the
upper bound 67" is reported in [133] for the particular case f, =2, forall ve V.

The minimum cardinality dominating set problem can be solved in linear time if the graph G
is series-parallel [143] or a cactus [130]. It is known to be NP-hard in planar graphs with maxi-
mum node degree 3, regular planar graphs with nodes of degree 4 [111], chordal graphs [47] and
undirected path graphs [48]. Also, for this problem, there exists a polynomial time (Ha41 — %)-
approximation algorithm, where A stands for the maximum degree in G, and, for some given posi-
tive integer g, H, = Z?:l % denotes the gth harmonic number [60,92]. But it is NP-hard to approx-
imate within a factor of In(n) — cInln A for general graphs with A = Ay, where ¢ > 0 and Ay = 3 are
absolute constants [60]. For the minimum cardinality f-dominating set in block graphs, Hwang
and Chang [135] presented a linear time algorithm. We extended their results to the weighted case
for trees [83]. For the case when f, = k, v € V, for some positive integer k, Foerster [104] showed
that the minimum cardinality f-dominating set problem is NP-hard to approximate with a factor
better than 0.2267/k In(n/k), and he also provided a greedy-type algorithm with an approxima-
tion ratio of In(A + k) + 1 <In(A) + 1.7. For the case of unit disk graphs and f,, = k, v € V, Couture
etal. [74] introduced an incremental algorithm having a constant deterministic performance ratio
of six (see also the references therein).

The minimum cardinality k-tuple dominating set problem can be solved in linear time when
the graph is a tree [90, 155]. For any f € # = {f€Z}: 0< f, <d, +1,Yv € V}, a minimum cardi-
nality f-tuple dominating set can be found in polynomial time in strongly chordal graphs, and in
linear time if a strong ordering of the nodes is given [156]. Dobson et al. [91] have shown that the
minimum cardinality k-tuple dominating set problem can be solved in polynomial time in P4-tidy
graphs. Several bounds on the k-tuple domination number, some of which involve other domina-
tion parameters, are reported in [126]; other upper bounds obtained with probabilistic approaches
are reported, e.g., in [109,200,218]. The hardness of approximation for finding a minimum cardi-
nality k-tuple dominating set is investigated in [144], which presents a (In(n) + 1)-approximation
algorithm. It is also shown that this problem cannot be approximated within a ratio of (1 —€)ln(n)
for any € > 0 unless NP< DTIME (n°8108"),

Polyhedral approaches

The polyhedral structures of polytopes related to domination problems seem to have received
rather little attention. With respect to the classical domination concept relevant works on such
aspects are namely [52,97]. Farber [97] proved that a complete description of @(13 = %é, i.e. the
dominating set polytope, is given by the linear relaxation (LP-MW/{) for strongly chordal graphs.
This follows from the fact that the closed neighborhood matrix of strongly chordal graphs is totally
balanced, see [8,97] and Theorem 6.13 in [73]. Bouchakour and Mahjoub’s paper [52] provides
properties and characterizations of facet defining inequalities, and also presents a peculiar de-
composition result which may be formulated as follows. If G = (V,E) is the 1-sum of the graphs
G, = (V1,E)) and Gy = (Vy,Ep) (i.e. V=V, UV, E=EjUE, and [V} N V| = 1), then a complete
formulation of 9 can be deduced from the ones of Y, and 9g,. We proceeded to similar inves-
tigations w.r.t. E/—fG (84].

A complete description of @é for the case of domishold graphs appears in [162]. A graph is said
to be domishold [39] if there exist real positive weights associated to the nodes so that a node sub-
set is a dominating set if and only if the sum of the corresponding weights exceeds some threshold
value. A complete formulation for cycles firstly appears in [51]. This work was extended in [42],
leading to complete description for particular webs. Also recently, an exact extended formulation
for cacti graphs was introduced in [18], together with a polynomial-time algorithm to solve [MWj]
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for cacti. Let us mention another particular, but interesting case: when f, = dS, forall ve V, a
node subset S €V is an f-dominating set if and only if its complementary set V\ S is a stable set.
This implies that for this case it is equivalent to look for a maximum weight stable set and a mini-
mum weight f-dominating set. From results on the stable set problem, it follows that [MW ] can
be solved in polynomial time in perfect graphs for the particular case when f, =d,, forallv eV,
and that also a complete description of Qé is known for that case [65, 193].

In the rest of the chapter we summarize part of the results from our investigations on the struc-

tures of the polytopes I Gf (Section 5.2), @é (Section 5.3) and %é (Section 5.4).

5.2 On the polyhedral structure of I, Gf

5.2.1 Basic polyhedral results on I Gf

Let G = (V,E) denote an undirected graph, and let f € g such that f,, < d,, for all v € V. In this
section we give basic polyhedral properties like dimension and facet-defining inequalities of J Gf .

Proposition 5.2.1. [84] The following statements hold.
(i) The polytope I, Gf has dimension n, i.e. it is full dimensional.

(ii) The trivial inequality x, = 0 is facet deﬁningforﬂ—Gf ifandonlyif f, <dy—1, forallw e N(v)
such thatd,, = 2.

(iii) The trivial inequality x, < 1 is facet deﬁningforﬂ'g, forallveV.

5.2.2 Decomposition results

In this section we provide results that allow us, in some cases, to decompose the search for a for-
mulation of J Gf into several such searches but on graphs having a smaller order.

We start by introducing some simple auxiliary properties. Firstly, we show that when there
exists a node for which the domination requirement equals its degree, in order to get a complete
formulation of Gf , we can easily reduce the situation to the case when f;, < d,, forallve V.
Proposition 5.2.2. [84] Let f € % and assume there exists some node v €V such that f, = d,. De-
fine f' € Z¢ as follows: ', = fu, forall w e V\{v} and f',, = 0. Then, a complete formulation offfcf

can be obtained by adding to a complete formulation of I, Gf ' the set of equations {x, =1: ue N(v)}.

Trivially, if the graph G is not connected, then a complete formulation of J c{ is obtained by
aggregating the complete formulations corresponding to its connected components. So, in what
follows, we can assume w.l.o.g. that G is connected. Given a graph G = (V,E) and a node subset
S <V, let G[S] denote the subgraph of G that is induced by S, i.e. G[S] = (S, E’), where E’ stands for
the subset of edges in E having both endpoints in S.

Proposition 5.2.3. [84] Let G = (V,E) be an undirected graph, f € g, and assume that, for some
node u € V, the following holds: f, = dy, and f, < IN(v) " N(w)|, for all v € N(u). LetG = (V,E) =
G[V\Nlul] and let f, = f,, forallv e V\S and f, = f,—IN(v)"\N(w)|, forallv € S with$S =N (N[ul).

Then, a complete description of I Gf ' is obtained by adding to a complete description of - E{ the equa-
tions x, = 1, for all v e N(u) and the trivial inequalities 0 < x, < 1.

The next result holds for the case when the node u used for decomposition is such that the
number of connected components in G [V \ {u}] equals d,,.

Proposition 5.2.4. [84] Let G = (V,E) be an undirected graph, f € g, such that f, < d,, for all
v e V. Consider some nodeu €V, let Cy,Cy,...,Cy, denote all the different connected components of
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G[V\{u}] and assume that|C; "N (w)| =1, foralli € {1,2,..., p} (i.e. all the neighbors of u belong
to different connected components of G[V\{u}]). Foreachi € {1,2,...,p}, let C; = (V;,E;), define
Ci=GIV;ulull = (V;,E;) and f € F¢, such that (%), = fu, forallw € V; and ('), = 0. Then, for
any § € {0, 1}, the polytope Q? defined by the aggregation of complete formulations of the polytopes

S’Tg fori=1,2,..., p, together with the constraints ¥_ yen(y) Xv = fu and x, = 6 is integral.

If the conditions for its application are satisfied, Proposition 5.2.4 together with Balas’ result
[19] allows the derivation of a simple extended formulation of 7 Gf from complete formulations

related to the components (C;)"_, .

Proposition 5.2.5. [84] In the setting of Proposition 5.2.4, I, c{ is the projection onto the x-space of
variables of the polytope defined by the following system.

Ayl >\ bl Vie(1,2,...,p},Vke (1,2},
ZUEN(M) y]lf = Akaka € {1)2})
Yu=0,ya=Ay Ai+Aa=1,

x=y' +y?%

x, 5,4 e (RY)", A eR2,

where y*i e RV denotes the restriction of y* to the entries indexed onV;, and such that "J“éf’ ={ze
RVi: Az > b}, forallieil,2,...,p}.

In the more particular case when, in addition to the setting of Proposition 5.2.4, we also have
fv =0, forall v € N(u), then a complete formulation of I Gf in the original space of variables can be
easily determined.

Proposition 5.2.6. [84] In the setting of Proposition 5.2.4, assume in addition that f, = 0, for all
veN(u). Foreachie€ {1,2,...,p}, let f! stand for the restriction of f to its entries indexed by V;.

Then, a complete formulation of I Cf is given by the aggregation of complete formulations of the

polytopes P]‘Cf fori=1,2,..., p, together with the constraints }_ yenp Xv = fu, 0= x, < 1.

5.2.3 Complete formulations of 7 Gf for some special graph families

In this section we mention the graphs for which the trivial and neighborhood inequalities give a
complete formulation of J Gf forall f € g, and then we provide complete formulations for cycles.

Given a graph G = (V,E), its adjacency matrix is the matrix A € {0,1}V*V satisfying A, = 1 if
and only if {u, v} € E. A graph is said to be totally unimodular (2] if its adjacency matrix is totally
unimodular. Given f € &g, let P(f) denote the polytope corresponding to the feasible region of
(LP-MWT), i.e. P(f) = {x€RY: Ax = f and x € [0,1]V} (where A € {0,1}¥*V stands for the adja-
cency matrix of G). The next proposition characterizes the graphs for which P(f) is integral for all
f € gG-

Proposition 5.2.7. [84] The polytope P(f) is integral for all f € & if and only if G is totally uni-
modular.

We now provide a complete description of Gf , when G is a cycle, for any f € {0,1}V.

Proposition 5.2.8. [84] Let G = (V,E) denote a cycle with node setV ={0,1,...,n— 1}, edge set E =
{{i,i+1 modn}:icV}, and let f € {0,1}V. Then, a complete description off’TGf is given by the
system (Soqq) (resp. (Seven)) if n is odd (resp. even) with:
1_1
Zz_ Xok = 81 min n_ k+1>
ZUEV Xy = [%-I min ey fv» I';__(i ’ |_4-|n {CE[[OVZ 1]] fz o
3 > | M ks
(Soad) ZuEN(U) Xy = fv»VU eV, and  (Seyen) Zk:O Y2kl = [4-' mmke[[o’f_l]] fak
X€ [O,I]V, ZueN(v) xu=f,,Yvey,
x€[0,11V.
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5.3 On the polyhedral structure of @é

The results we give hereafter w.r.t. the polytope @é include different families of facet defining

inequalities and a complete description for trees. In general, this formulation may contain an
exponential number of constraints (whereas it is linear in the number of nodes for @é), but we can
show that the corresponding separation problem can be solved in polynomial time, thus implying
the polynomial time solvability of [MW/] for trees, by the well-known results on the polynomial
equivalence between optimization and separation established by Grétschel et al. [120]. In fact,
for this case (of trees), we could also dedign a linear time combinatorial algorithm (via a dynamic
programming approach) we do not discuss here (see [83] for details).

After some basic polyhedral properties are introduced, we present some nontrivial facet defin-
ing inequalities of @é and a complete formulation for trees.

5.3.1 Basic polyhedral properties of @é
Proposition 5.3.1. [83] Let f € %g. Then the following holds.

(i) The polytope @g has dimension n, i.e., it is full dimensional.
(ii) The trivial inequality x,, = 0 is facet defining for QZ{; iffdy > fw, forallw e N[v], veV.
(iii) The trivial inequality x, < 1 is facet defining for E'Zf, forallveV.

(iv) Every facet defining inequality of @é which is not trivial is of the form Y ,cy ayx, = b, with
ay =0, forallveV. Moreoverb>0,|V,={veV: a, >0} =2.

Let a' x = b denote a non trivial facet-defining inequality of 2! ‘, and let G, = G[V,] be the sub-
graph of G that is induced by the node subset V,. The following property was shown to hold for the
dominating set polytope [52], and its extension to f-dominating set polytopes is straightforward.

Proposition 5.3.2. [52] The graph G, is connected.

5.3.2 Non trivial facet-defining inequalities

We start with a definition that will be useful for presenting different families of inequalities that
are valid for @é.

Definition. Given an undirected simple graph G = (V,E) and f € %G, an f-clique is a node subset
Q <V, such that |Q| = 2 and satisfying the following two conditions:

(i) the nodes in Q are pairwise adjacent (i.e. Q is a clique in G), and

(i) {veQ: fy=dy}|=1QI-1.

The next three propositions deal with cases when some nodes of the graph satisfy f,, = d,,. No-
tice that, if for each edge {u, v} € E we have f;, = d,, or (not exclusively) f, = d,, then the following
holds: D €V is an f-dominating set iff D is a vertex cover. So in that case, the vertex cover and
f-dominating set polytopes coincide (and are both affinely equivalent to the stable set polytope).
The next proposition directly follows from this correspondence, see, e.g., [180].

Proposition 5.3.3. [83] Let the graph € = (V(€),E(%€)) be an odd cycle such that each edge {u, w} €
E(€) is an f-clique. Then, the inequality

V(&)

> va" 5 w (5.1)

VEV ()

is facet defining for @!C; iff € has no chord. (A chord is an edge joining two nonconsecutive nodes of
the cycle).
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The next two propositions illustrate the fact that, even though the property that “f;, = d,, or
fv = d, for each edge {u, v} € E“ may hold only on some parts of the graphs, some well-known
families of inequalities valid for the vertex cover polytope, may, under some conditions, define
facets of f-dominating set polytopes. We now formulate a simple sufficient condition for an in-
equality of type (5.1) corresponding to a node-induced subgraph of an arbitrary graph to define a
facet of @é.

Proposition 5.3.4. [83] Let f € &g, and let € = (V(€),E(¥€)) denote a node induced odd cycle
in G = (V,E) with no chord and such that each edge {u, w} € E(€) corresponds to an f-clique. If
IN(w)NV(€)| <2, forall w e V\V(F), then the inequality (5.1) is facet-defining for @é.

Proposition 5.3.5. [83] Let Q =V denote an f-clique. Then, the following inequality is valid for
/
ZF
2 xw=1Ql-1, (5.2)
veQ
and it is facet-defining if and only if Q is maximal (w.r.t. inclusion).

We now introduce another family of valid inequalities for @é that we will call partial neighbor-
hood inequalities, a denomination that is suggested by their support which is a subset of a closed
neighborhood of a node having a positive domination requirement. These inequalities may be
seen as a generalization of the classical neighborhood inequalities (obtained by setting g = f, = 1
in (5.3) given hereafter) used in linear formulations of the dominating set problem. Recall that
these inequalities, together with the trivial inequalities, are sufficient to completely describe the
dominating set polytope (f, = 1, for all v € V) in the case of strongly chordal graphs [97]. Their rele-
vance will be further stressed later, when considering complete formulations of the f-dominating
set polytope for trees.

Proposition 5.3.6. [83] Let G = (V,E) denote an undirected simple graph, let f € g and u €V such
that1 < f, < d,. Then, the following partial neighborhood inequality is valid for @é:

gxu+ Y, xp=q, (5.3)
veN(u)\Z,

withq € {1,2,..., fu}, Zq S N(u) such that|Z4| = fu—q.

We now formulate a simple sufficient condition for an inequality of type (5.3) to be facet-
defining for @é.
Proposition 5.3.7. [83] Let G = (V,E) denote an undirected simple graph and f € %g. Letu eV
such thatl < f,, < dy, and assume that IN(v)\N[u]| = f,, forall v e V\{u}. Then the inequality (5.3)
isfacet-deﬁningfor@f,forall qefl,2,..., fut andZ,; < N(u) such that|Z4| = fu—q.

5.3.3 Complete descriptions of @é for trees

Theorem 5.3.8. [83] If the graph G = (V,E) is a tree and f € &g, then a complete formulation of@é
is given by the following set of inequalities.

0<x,=<1, vey,

Xytxy=1, f-clique {u, v},

GXu+ Y peNw)z, ¥v 24, u€Vsuchthatls f, <dy,qeil,2,..., fu},
Z4<N(u) with|Z4l = fu—q.

5.4 On the polyhedral structure of %é

In this section we present some general properties on the polyhedral structure of f-tuple dominat-
ing set polytope. Then, we provide a complete formulation for the case of stars before we introduce
anew family of valid inequalities, which led us to disprove a conjecture on a complete formulation
for the 2-tuple dominating set polytope of trees. Finally, we conclude with some perspectives.

67



CHAPTER 5. GENERALIZED DOMINATION CONCEPTS

5.4.1 Basic polyhedral properties

Let Z denote the set of the nodes whose closed neighborhood belongs to all feasible solutions of
(IP-MWU): Z={veV: f, =d, +1}.

Proposition 5.4.1. [186] Let G = (V,E) denote an undirected simple graph and f € F. Then %é
has dimension |V| — IN[Z]].

Proposition 5.4.2. [186] Let f € g and u € V. Then, the inequality x,, = 0 is facet defining for %é
iff (ifand only if) f, < d, — 1, for all v € N[u].

Proposition 5.4.3. [186] Let f € g and u V. Then, the inequality x,, < 1 is facet defining for%é~ .
Definition. Let f € 5. Anode v €V is said to be critical if f, = d,,.

Proposition 5.4.4. [186] Let f € %g and let u denote a critical node such that f, < d,— 1, for all
ze€N(u) such thatd, = 2. Then, the neighborhood inequality

Y xp= ful=dy), (5.4)

veN[u]
is facet defining for 021(’;

Proposition 5.4.5. [186] Let a' x = b denote a non trivial facet-defining inequality of w! , with
[ € &g, and let its support be denoted by S = {v € V: a, # 0}. Then, the following holds:

@ IS|=2,

(ii) a, =0, forallveV,andb > 0.

5.4.2 Complete formulation for stars

For the case when the graph G = (V,E) is a star having for center the node 1 and f; € {0,1}, the
trivial inequalities together with the neighborhood inequalities provide a complete formulation
of the polytope @/({ . This follows from the total balancedness of the closed neighborhood matrix
(see [8,69]). So, in the rest of this section we assume that the center 1 satisfies f; =2 and that n = 3.

Proposition 5.4.6. Let G = (V,E) denote a star having node 1 for center. Let f € Fg such that f; =2
and let (Ly,L,) denote a partition of set of the leaves {2,3,...,n} with Ly = {v evV: fv =0}, (and
Ly =V\ ({1} uLy)) (possibly Ly = @ or Ly = @). Then, a complete description of%é is given by the set
of the trivial inequalities, the neighborhood inequalities of the nodes in L,, the following inequality:

[max(ILil, )= fi+1]x1+ Y. xy=max(|Lil, fi), (5.5)
veV\{1}
and the inequalities
(ILil-A+1ZI+1)x+ ) xpzLl, (5.6)
velLiuLo\Z)

for all node subsets Z.c L satisfyingmax (0, fi —|L11) < |Z| < fi — 1 (in case such a set exists).

As an example of type (5.6) inequality, consider the star on eleven nodes illustrated by Fig-
ure 5.1, together with the domination requirements (f;),ev reported close to each node. For
the represented subsets Lo, L1 and Z of the leaves, the corresponding facet defining inequality is
4x1 + Y per,u1,\7) Xv = 5. We can show all the inequalities of type (5.6) are facet defining for %é

Proposition 5.4.7. [186] Under the setting of Proposition 5.4.6, each inequality of the type (5.6) is
facet defining for OZJCJ;
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Figure 5.1 — Example to illustrate type (5.6) inequalities

Also, note that since %é is full dimensional (assuming f € &¢), the facets defined by the in-
equalities of type (5.6) are all distinct. Given this, a relevant consequence of Proposition 5.4.7 is the
fact that there exist families of dominating set polytopes for which the number of facets grows ex-
ponentially with the number of nodes of the corresponding graph. This contrasts with the classical
dominating set polytope %g for which the number of facets is @ (n).

In the next proposition, we address the relevance of the inequalities (5.5)-(5.6) from an op-
timization point of view by considering the integrality gap of the formulation (LP1) for the case
when G is a star and the weight function corresponds to the left-hand-side of an inequality of the
type (5.5). The same result can be shown to hold if we consider a weight function corresponding
to an inequality of type (5.6).

Proposition 5.4.8. [186] Let G = (V,E) denote a star having for center node 1, n = 3. Let f € &g,
Ly ={veV\{l}: f, =1}, Lo = V\({1}UL)), and let w € R" be defined as follows: i, = max(|L1|, fi) —
fi+1,and w, =1, forall v e V\{1}. Then, the integrality gap of (LP1) with an objective function
corresponding to W is upper bounded by % and this bound is asymptotically tight.

5.4.3 Further valid inequalities

In this section, we introduce valid inequalities which extend the families (5.5) and (5.6) for stars.
We also investigate on their facet-defining properties, disproving a conjecture on a complete for-
mulation of the 2-tuple dominating set polytope for trees. We start with a simple extension of the
inequalities (5.5).

Proposition 5.4.9. [186] Let G = (V,E) denote an undirected simple graph and f € . Given any
node u, let Lg = {v eN(u): fy<d,- 1}, and L’l‘ = N(u)\ LB‘. Then, the following inequalities are
valid for %é

[max (ILY], fu) = fu+ 1] xu+ Y., xp=max(|LY|, fu), forallueV. (5.7)
veN(u)

Proposition 5.4.10. [186] Let G = (V,E) be an undirected simple graph and let f € . Letu eV
denote an articulation point such that f,, = 2 and all the neighbors of u in G belong to different
connected components in G[V \{u}]. Then the inequality (5.7) is facet defining w.r.t. %é

We now introduce a new family of inequalities generalizing (5.6).

Proposition 5.4.11. [186] Let G = (V,E) denote an undirected simple graph and let f € . Let
u €V denote an articulation point such that f,, = 2 and all the neighbors of u in G belong to different
connected components in G[V \{u}]. Let (Z,Ly, L) denote a tripartition of N(u) such that

(i) fu_lLll <|Z|<fu_1r
@ii) fy<dy,—1,forallveZuly,

(iii) for each node w € Ly, fiy =1 and |Qy| = dyy — fu, withQy, ={ve Nw) \{u} : f, <d,—1}.
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For each node w € Ly, let N(u, w) denote a subset of QU iw} such that w € N(u, w) and |N(u, w)| =
dy — fuw + 1. Then, the following inequality is valid for%é .

(ILil=fu+1ZI+ ) xu+ Y. > xp+ ) xp=IL4l. (5.8)

WELI VEN(M, w) UELO

Proposition 5.4.12. [186] If the graph G is a tree, then the inequality (5.8) is facet defining w.r.t.
f

U
G

For an example of a facet defining inequality of type (5.8), consider the graph G’ of Figure 5.2-
(a) where the node domination requirements ( f;) Ley correspond to the values close to the nodes.
Then the inequality 2x; + X2 + x3 + X4 + X5 + X7 + xg = 3 is facet-defining for %g .

A conjecture formulated by Argiroffo (see Section 3 in [9]) on the formulation of the 2-dominating
set polytope of trees (i.e. the f-tuple dominating set polytope of trees for the particular case when
fv =2, forall v e V) stated that a complete formulation of the 2-tuple dominating set polytope was
given by a set of inequalities, each one having a support included in the closed neighborhood of
a single node. From Proposition 5.4.12, it follows that this conjecture does not hold: the instance
illustrated in Figure 5.2-(b) provides a counterxample since a complete formulation of JZ/({ can be
obtained by adding to the one of the instance from Figure 5.2-(a), the set of equations x, = 1, for
all v e N[Z].

Figure 5.2 - Illustrations for a facetdefining inequality of type (5.8)

(a) (b)

5.5 Some perspectives

In this chapter, we presented part of our results on polytopes related two three different kinds of
domination in graphs. In particular, complete formulations could be obtained for some particular
cases. On the algorithmic side, for conciseness, we did not presented it above but we can design
linear time (dynamic programming type) algorithms to solve the weighted optimization problems
related to the three concepts of domination for the case of trees.

Further research work may be directed towards the polyhedral structure of the polytopes re-
lated to the three concepts (and potentially others) for other graph families such as cacti and
(strongly) chordal graphs. One may also look for (extended) compact formulations for such graph
families and others.

On the algorithmic side, we should look for polynomial time algorithms to deal with the weighted
optimization problems related to all of the generalized concepts for other graph families than
trees.

Another aspect we started to study w.r.t. the f-tuple domination concept is the determination
of the integrality gap of different formulations of the corresponding (weighted or not) optimization
problem. This has to be pursued further and does no seem to have been tackled yet w.r.t. the other
generalized concepts.
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In addition to the results reported above, we also started to study the structure of the f-tuple
dominating set polytope from another perspective, looking for characterizations of adjacency re-
lations in its 1-skeleton graph. Such aspects seem to be almost uninvestigated yet in the literature

for all of the generalized concepts.
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Chapter 6

The k-separator problem

This chapter deals with a graph optimization problem that is called the k-separator problem, where
k represents a positive integer value. It consists in identifying a node subset S in a node weighted
undirected graph, such that the sum of the weights of the nodes in S is minimum and the removal
of S induces a subgraph having connected components of size at most k only. We investigated this
problem from different perspectives. In particular connections with the stable set problem could
be established leading to an interesting LP relaxation and to the identification of many graph fam-
ilies for which the problem can be solved in polynomial time. Many efforts have also been directed
towards the determination of new families of facet-defining inequalities, and complete formula-
tions for some special cases. Exact combinatorial algorithms for some specific instances but also
approximate algorithms have been developed. We summarize our contributions hereafter, mainly
focusing on LP based or related approaches.

The content of this chapter stems from joint works with Prof. Walid Ben-Ameur and Mohamed-
Ahmed Mohamed-Sidi. Further results and details are contained in our publications [30, 31].

6.1 Introduction

Basic definitions

Let G = (V,E, w) denote a node-weighted undirected graph, where w € RV, and let k be a positive
integer. A node subset S whose removal leads to a graph (i.e. the subgraph of G that is induced
by V\'S), such that the size of each connected component is less than or equal to k is called a
k-separator. The weight of a k-separator is the quantity w(S) = Y ,cs w,. We consider the follow-
ing natural generalization of the well-known vertex cover problem, that we name the k-separator
problem: compute a minimum weight k-separator in G. (The vertex cover problem corresponds
to the case k=1.)

Motivations

The k-separator problem has many applications. If the vertex weights are all equal to 1, the size of
aminimum k-separator can be used to evaluate the robustness of a graph or a network. Intuitively,
a graph for which the size of the minimum k-separator is large, is more robust. Unlike the clas-
sical robustness measure given by the connectivity, the new one seems to avoid to underestimate
robustness when there are only some local weaknesses in the graph.

In the context of social networks, many approaches are proposed to detect communities. By
solving a minimum k-separator problem, we get different connected components that may repre-
sent communities. The k-separator vertices represent persons making connections between com-
munities. The k-separator problem can then be seen as a special partitioning/clustering graph
problem.

Computing a k-separator can also be useful to build algorithms based on divide-and-conquer
approaches. In some cases, a problem defined on a graph can be decomposed into many sub-
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problems on smaller subgraphs obtained by the deletion of a k-separator (see, e.g., [209]). Other
applications related to matrix decompositions and other fields are mentioned in [190].

Related works

To our knowledge, prior to our work, the only paper where the k-separator problem is considered
in its general form seems to be [190]. The following extended formulation is proposed in [190].
In addition to binary variables (x;);cy expressing whether a vertex i belongs to the k-separator, a
binary variable x;; is considered for each pair of vertices {i, j} to indicate whether i and j belong
to the same component (x;; = 0) or not (x;; = 1). Then, triangle inequalities (the first ones in the
LP formulation given hereafter) are clearly valid. Moreover, to express the fact that a connected

component does not contain more than k vertices, they added the constraints Y x;; 2n-k,
jeviii

for all i € V. Finally, other constraints are added to impose that if two adjacent vertices are not in

the k-separator, then they belong to the same component: x; + xj — x;; = 0, for all {i, j} € E. The

formulation is given below.

min Y ey WyXy
Xij = Xik+Xjk, i,j,kEV,
y xijZn—k, 1€V,
) jeV\gi}
xi+xj—x,-j20, {i,jt€E,
xijE[O,l], i,jey,
x; €{0,1}, ieV.

Observe that the x;; variables are not required to be integer. In fact, as noticed in [190], relaxing
the integrity constraint of x;; variables does not modify the solution of the integer program. The
polytope related to the formulation above is studied in [190] and many valid inequalities and facets
are presented there.

The case k = 1 corresponds to the vertex cover problem (or the stable set problem) that re-
ceived a lot of attention in the literature. When weights are unitary and k = 2, the k-separator
problem is equivalent to compute the dissociation number of the graph [219]. A subset of ver-
tices in a graph is called a dissociation set if it induces a subgraph so that each vertex has degree
at most 1, and the dissociation number is the size of a largest dissociation set. In what follows, if
the graph G does not contain an induced subgraph isomorphic to some given graph H, then G is
said to be H-free. Computing the dissociation number is NP-hard if the graph is bipartite [219].
The NP-hardness still holds for K; 4-free bipartite graphs [46], C4-free bipartite graphs with a max-
imum vertex degree of 3 [46], planar graphs with a maximum vertex degree of 4 [195], and line
graphs [192]. Several cases where the dissociation problem can be solved in polynomial time have
been shown in the literature: chordal and weakly chordal graphs, asteroidal triple-free graphs [55],
(Px,K1,n)-free graphs (for any positive numbers k and n) [157] and (G, G2, G3)-free graphs [192].
We recall the graphs G;, G2, G3 and Py for k = 6 (an elementary path of length k-1 = 5) in Figure
6.1. Some inapproximability results related to the problem of computing the dissociation number

MAS |

Figure 6.1 — The graphs G1, Gz, G3 and Pg
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are also provided in [192].

The k-separator problem is closely related to the vertex-separator problem where we aim to
remove a minimum-weight set of vertices such that each connected component in the remaining
graph has a size less than «|V| (for a fixed a < 1). A polyhedral study of this problem is proposed
in [20] (see also the references therein). When the vertex-separator problem is considered, the
graph is generally partitioned into 3 subgraphs: the separator, and two subgraphs each of size less
than a|V]. The philosophy is different in the case of the k-separator where the graph is partitioned
into many components each of size at most k.

Additional notation

Given a vertex subset U c V, the complement of U in G, i.e. the vertex subset V\ U is denoted by
U. The set of vertices (resp. edges) of the graph G may also be denoted by V(G) (resp. E(G)). An
edge e € E with endpoints u and v is denoted by {u, v}.

Given a vertex subset S c V, the set of vertices in S that are adjacent to at least one vertex in S is
denoted by N(S). Given two subsets of vertices A and B, they are called adjacentif either ANB # @
or N(A)NB # @.

Given a subset of vertices S c V, x5 € {0, 1}V denotes the incidence vector of S. The convex hull
of all the incidence vectors of k-separators in the graph G is denoted by .#(G). We also use GI[S]
to denote the subgraph of G that is induced by a subset of vertices S c V.

The size of a graph denotes its number of vertices. Given some integer m, K,,;, denotes a com-
plete graph with size m, mK, denotes a matching with m edges, P, denotes a simple path contain-
ing m vertices, C,, denotes an elementary cycle of size m and K, denotes a complete bipartite
graph with partition classes of cardinalities 1 and m (a star).

If G is a simple path with vertex set {vy,..., v,} and edge set {{v;,v;41}:i=1,...,n—1}, then
the notation [v;, v;] (resp. lv;, v;l, (v, vjl, lvi, v;]) with i < j, i, j € {1,..., n} stands for the vertex
set {vy, Viy1,..., V5t (esp. {viy1,..., Vj-1}, {05, Vigr, ..., Vj-1h {Vig1, ..., Vj1). The set of all the simple
paths joining i and j will be denoted P;; . Given a simple path p joining i and j, x(p) stands for
the sum of the x, values over all vertices belonging to p (including i and j).

Organization

The rest of this chapter is organized as follows. We startintroducing several results exhibiting some
polynomially solvable cases of the k-separator problem in Section 6.2. Then, we delve in Section
6.3 into a polyhedral study of the convex hull of the incidence vectors of all the k-separators. Ap-
proximability results are presented in Section 6.4, before we conclude in Section 6.5.

6.2 Polynomially solvable cases

6.2.1 Graphs with bounded treewidth

A tree-decomposition of a graph G = (V, E) is defined by a pair (¥, T) where & = (X;) ;ev, is a set of
vertex subsets of G indexed by vertices of a tree T = (V, Er) satisfying the following:

(i) for each vertex v €V, there is some f € Vy such that v € X;;
(ii) for each edge (u,v) € E, there is some t € Vy such that u € X, and v € X;;

(iii) for each vertex v eV, if v € X, and v € X, then v belongs to X, for each ¢ € V1 on the path
between f; and f.

Property (iii) implies that the subgraph of T induced by the vertices ¢ such that X, contains v
is a subtree. The width of the decomposition is given by max;ey; {IX;| —1}. The treewidth of G is
the minimum width over all tree-decompositions of G.
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We assume here that G has a treewidth bounded by a constant /. It is well-known that com-
puting the treewidth of a graph and a corresponding minimum-width tree-decomposition can
be done in linear time (assuming that / is constant) [45]. Many NP-hard optimization problems
can be solved in polynomial time for bounded-treewidth graphs. The algorithms are generally
based on dynamic programming and a tree-decomposition of the graph (see, e.g., [11,49, 211]).
Though the approaches in [11,211] cannot be used to obtain a polynomial time algorithm for the
k-separator problem, we could devise a polynomial time dynamic programming algorithm mak-
ing use of a particular tree decomposition of G, leading to the next result (see Section 4.1 in [30]
for details).

Proposition 6.2.1. [30] The k-separator problem can be solved in polynomial time for bounded-
treewidth graphs. This holds even if k is part of the input.

6.2.2 Connections with the stable set problem and consequences

In this subsection, we firstly present a construction to reduce the k-separator problem to a max-
imum weight stable set problem. Then, we compare the feasible regions of two LP relaxations of
the k-separator problem, one of them being derived from our reduction to the stable set problem.
Finally we report complexity results that could be obtained, making use of this reduction.

Reducing the k-separator problem to a stable set problem

Given a vertex-weighted graph G, we build a vertex-weighted extended graph G* = (V*,E*, w) as
follows. Each subset of vertices S  V such that 1 < |S| < k and G[S] is connected, is represented by
a vertex in G*. In others words, V* = {S cV,|S| < k, G[S] is connected}. The edge set is defined as
follows: E* = {(S,T),SeV*,TeV*,S#T, such thateitherSNT # @, or uv € E for some u €S and
v € T}. Said another way, S € V* and T € V* are connected by an edge if they are adjacent in G. The
weight of a vertex S € V* is defined by ws =Y ,,c5 wy.

Let R be a maximum weight stable set of G*. If two nodes S € V* and T € V* belong to this
stable set R, then SNT = @, and there are no edges in G with one endpoint in S and another in
T. In other words, if we consider UscrS, we get a node set in V inducing a subgraph, where each
connected component has a size less than or equal to k. The complementary set of UserS in V
is a k-separator for the graph G. This graph construction can be seen as a generalization of a
construction proposed by [157] for the dissociation problem (k = 2).

On the feasible region of an LP relaxation derived from a reduction to the stable set problem

Let us now illustrate the fact that the graph transformation we just described may be used to derive
interesting formulations for the k-separator problem. Hereafter is an initial formulation which
straightforwardly follows from the original problem statement: the objective is to find a set of
nodes with minimum cost such that it intersects each set of nodes inducing a connected compo-
nent having size k + 1 in the original graph. The Boolean variable x, represents the fact that the
node v belongs (x, = 1) or not (x, = 0) to the k-separator.

min Y ey WyXy
(IP1) YesXxy =1, ScV,|S|=k+1,G[S] connected,
Xy €10,1}, veV.

From the graph transformation described above, we can easily derive another formulation that
we may express as follows: find a stable set in G* (this corresponds to the set of variables (ys)sey*
and the constraints ys + yr <1, V(S,T) € E*), so that the set of nodes in V that are not represented
in this stable set (i.e. a k-separator in G, from our discussion above) has minimum total cost. The
Boolean variable ys,S € V*, represents the fact that the node S € V* in G* either belongs to the
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stable set (ys = 1) or not (ys = 0).

min Y ey WyXy
Xp=1-% ys5, vey,

(IP2) S€Q,
ys+yr<1, {S,T} e E*,
ys €10,1}, Sev*,

with Q, ={T € V* : v € T}. Let F1 (resp. F2) stand for the set of feasible solutions of the linear
relaxation of (IP1) (resp. (IP2)) with respect to variables (x;) yev.

Proposition 6.2.2. [30] The following inclusion holds: F2 < F1.

Proof. Let (x, y) stand for a feasible solution of the linear relaxation of (IP2). Let C denote a con-
nected component of size k + 1 in the original graph G = (V,E). So we have: ) ,ecxy = k+1—
> vec 2seq, ¥s- Notice that in the last expression each variable ys such that S has a nonempty in-
tersection with C occurs exactly |S N C| times.
Let T denote a spanning tree of C (in the original graph) and consider the following quantity:
Y (nw)eT XseQ,uQ,, ¥s- Notice that in the last expression, the number of times a variable ys oc-
curs is equal to the number of edges of T that intersect with S, and thus is larger than or equal
to [SNC|. From this we deduce that }_,cc 2 scq, Vs = 2 (s,w)eT X5€Q,uQ,, ¥s- Moreover, using the
feasibility of (x, y), we can write that 3", ,)eT Xs¢Q,uqQ, ¥s < k.

Combining the two previous inequalities leads t0 }_ ,ec X.seq, Vs < k. Consequently, inequality
Y vec Xy = 1 holds. In other words, x is a feasible solution of the linear relaxation of (IP1). O

Both linear relaxations of (IP1) and (IP2) may be easily strengthened with many families of
inequalities. In Section 6.3 a polyhedral study of the convex hull of the feasible region to (IP1) is
reported, with several families of facet-defining inequalities and complete formulations for some
particular cases.

Complexity results from connections with the maximum weight stable set problem

The reduction of the k-separator problem to the stable set problem presented in Section 6.2.2 can
be used to derive complexity results on the former from known results on the latter. The starting
point to get the results mentioned in the next proposition, is a graph family for which it is known
that the maximum weight stable set problem can be solved in polynomial time. Assuming k is fixed
(so that G* has a polynomial size), it then suffices to show that, under some suitable assumptions
on the original graph G, the transformed graph G* belongs to this family.

Proposition 6.2.3. [30] Assume that k = 2 is fixed. Then, the k-separator problem can be solved in
polynomial time in the following cases:

o mKj,-free graphs, assuming m is a fixed positive integer.

¢ (G1,Gg,Gs, Pg)-free graphs, assuming k = 3.

e interval filament, asteroidal triple-free, and weakly chordal graphs.

Removing the assumption that k is fixed, the transformed graph G* may no longer have poly-
nomial size. However, for the case of circular-arc graphs, we could reduce the k-separator problem

to a stable set problem in an auxiliary graph of polynomial size, leading to the next result.

Proposition 6.2.4. [30] The k-separator problem can be solved in polynomial time in circular-arc
graphs.
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6.3 Polyhedral results

In this section, we provide results from our investigations on the polyhedral structure of the poly-
tope #(G). After we present some general properties, we focus on the path and cycle cases. Fi-
nally, further families of valid inequalities are described.

6.3.1 Some general properties

We start our polyhedral study of .#;(G) giving its dimension, some elementary facets and general
features that are satisfied by any facet defining inequality for .#% (G).

Proposition 6.3.1. [30] The k-separator polytope % (G) is full-dimensional.

Proposition 6.3.2. [30] If k = 2, the trivial inequalities x, <1 and x, = 0, for all v € V are facet
defining for % (G).

Proposition 6.3.3. [30] Ifa' x = a denotes a facet defining inequality for #(G) different from the
trivial inequalities (i.e. 0 < x, <1, for all v € V) then necessarily a, = 0, forallv e V and o > 0.

Recall that the support of a valid inequality a® x = « is the set of vertices v € V such that a,, # 0.

Proposition 6.3.4. [30] The support of any non-trivial facet of #(G) necessarily corresponds to a
connected component of G having at least k + 1 vertices.

The following proposition characterizes when a facet defining inequality for .#(G) is also facet
defining for #(G'), where G’ is obtained from G by adding a vertex (and a set of edges between
this additional vertex and vertices in G).

Proposition 6.3.5. [30] Let a' x = b define a facet of the k-separator polytope #;.(G) with G = (V,E).
LetG' = (V' =Vu{v}, E') denote a graph obtained from G by adding a vertex v and some edges of the
form {v, w}, w € V. Then the inequality a* x = b defines a facet of #(G') iff there exists a k-separator
S €V in G’ whose incidence vectorx(S) € RY satisfies aTx(S) =b.

Proposition 6.3.6. [30] Let the inequality atx=b be facet inducing for #.(G), G = (V,E). Then it
is also facet defining for #.(G') where G' = (V',E') denotes the subgraph of G that is induced by the
vertex setV' €V and such that a, =0, forallv e V\V'.

6.3.2 The path and cycle cases

The linear relaxation of (IP1) does not provide a complete formulation of #(G), even when re-
stricting G to belong to the class of trees, and determining a complete formulation even in this
very particular case is still an open problem. However, we were able to provide a complete formu-
lation for some special cases and the purpose of this section is to illustrate such results. They are
related to paths and cycles.

Let us assume first that G = (V, E) is a path where V = {11, v2, ..., v} and E = {v1 v, ..., vp—1 U}
The connected components of size k + 1 considered in LP1 (the linear relaxation of the integer
program (IP1)) are denoted by S;,...,S;,...S;—¢, where S; = {v;, vi11,..., Vi+x}. The constraints of
LP1 related to connected components of size k+ 1 can be written in the matrix form Ax = I, where
the i-th row of A corresponds to the incidence vector of S;. By showing that the constraint matrix
is totally unimodular we obtained the next result.

Proposition 6.3.7. [30] If G is a path, then formulation LP1 is exact (i.e. any optimal solution of
(IP1) is also an optimal solution of (LP1)).

Letus now assume that G = (V,E) isacyclewhereV = {v, v,..., vy} and E = {{vy, v2}, ..., {vi, Vis1}
y oo {Un=1, Un}, {vy, v1}}. Itis clear that, if we know that x,, = 1 for some vertex v; (i.e. v; belongs to
the k-separator), then any k-separator of the cycle should contain a k-separator of the path V\ v;.
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Using Proposition 6.3.7, we deduce that a minimum weight k-separator containing vertex v; can
be computed by solving the following linear program.

min Y ey WyXy

S.t.
YoesXxy =1, VS,|S|=k+1,G[S] connected and v; ¢ S,
Xy =1,
Xy €[0,1], VveV.

Let P; be the polytope corresponding to the feasible region of the formulation above. Then,
P; = conv({x® €10,1}",S is a k-separator containing v;}), where conv(X) stands for the convex
hull of X, for any set X < RY. Let T be an arbitrary subset of vertices such that |T| = k + 1 and
GIT] is connected. Since at least one vertex of T belongs to the k-separator, we can write that
S (G) = conv({ U Pi}).

v;eT

Using the projection result of Balas [19], we get the following equivalent formulation for the

k-vertex separator problem when the graph is a cycle:

min ) ey WyXy
s.t.
x:ZieTz_l»
) Osz}szll., VvieT,vjeV,
Yues z;’. >z!, VS,|S|=k+1,GIS] connected, and v; € T\S,
Zvieng = 1'

In the formulation above, z’ is a vector of dimension n whose components are given by z§ for
vj € V. Let us now focus on some special cases. Let C denote a cycle with length k.

Proposition 6.3.8. [30] % (Cis1) = {x€ [0, 1]51: ¥, x; = 1}

The formulations for % (Cr.1) and #% (Pk+1) are the same (where Py, stands for an elemen-
tary path obtained from C,; by removing an edge).

Proposition 6.3.9. [30] % (C12) = {x €[0,1]%+2: Yix;= 2}.

Note that differently from the case of Ci. , the formulations of .#;(Ci.») and #(P¢2) do not
coincide (since the constraint }_; x; = 2 is not valid for & (Py+2)).

For the particular case of C; and k = 2 the following proposition shows that the addition of the
constraints on all simple paths containing k + 1 vertices provides an exact formulation.

Proposition 6.3.10. [30] % (Cs) = {x € [0, 11k+1: YiXi=2,)epXxi =1,V p € P}, where Ps stands
for the set of all simple paths on Cs containing 3 vertices.

6.3.3 Some families of valid inequalities for .7} (G)
Hitting set inequalities
Hitting set inequalities are the basic inequalities, already mentioned above in the formulation

(IP1):
Y xy=1, ¥ScV,|S| = k+1,GI[S] connected. (6.1)

ves

Proposition 6.3.11. [30] Let S be a subset of vertices such that G[S] is connected and |S| = k + 1.
Then the inequality y ,cs X, = 1 defines a facet of #4(G) if each vertex w € V\S is adjacent to at most
one vertex inS.

If G is a tree and S is a subtree of G, then each vertex v € S has at most one neighbor in G. This
leads to the following corollary.

Corollary 6.3.12. [30] If G is a tree, then each inequality (6.1) induces a facet of % (G).
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Connectivity inequalities

Proposition 6.3.13. [30] Let S < V be a subset of vertices such that |S| = k+ g, q = 1 and GI[S] is
q-vertex-connected. Then the following inequality is valid for #(G):

Y xy=q. (6.2)
ves
Notice that inequalities (6.2) were also considered in [190] but in a more restricted form (it is
required in [190] that |S| = k+ g). Let us focus on the special case where [S| = k+ g. The next result
can be seen as a generalization of Proposition 6.3.11 where g was equal to 1.

Proposition 6.3.14. [30] LetS c 'V be a subset of vertices such that|S|=k+q, g =1 and G[S] is q-
vertex-connected. Then inequality (6.2) induces a facet of #(G) if each vertex w € V\S is adjacent
to at most q vertices in S.

If we consider the more restrictive assumption: G[S] is g + 1-vertex-connected, then the con-
dition related to the number of neighbors in S becomes necessary and sufficient to obtain a facet.

Proposition 6.3.15. [30] LetS c V be a subset of vertices such that|S| = k+q,q =1 andG[S] isq+1-
vertex-connected. Then inequality (6.2) induces a facet of #(G) if and only if each vertex w e V'S
is adjacent to at most q vertices in S.

The case where G[S] is a clique was considered in [190]. The previous proposition can be seen
as a generalization of the clique case.

Cycle inequalities

Proposition 6.3.16. [30] LetS be a subset of vertices such that|S| = k+ 1 and GI[S] is an elementary
cycle, then the following inequality is valid for #(G):

Y xp= [ﬂw : (6.3)
byyer k+1

Notice that when |S| = k+ 1, Proposition 6.3.15 can be applied with g = 1 to know under which
conditions inequality (6.3) induces a facet. Let us then focus on the case where |S| > k+ 1. Ttis
clear thatif [S|=0 mod (k+ 1), then (6.3) is just the sum of inequalities of type (6.1).

Proposition 6.3.17. [30] Let S be a subset of vertices such that |S| > k+ 1, |S| is not a multiple of
k+1, and [S] is an elementary cycle, then inequality (6.3) induces a facet of #¢(G) if and only if for
each vertex w €S, there is a k-separator of size [%1 inG[Su{w}].

Further inequalities

Let S be a set of vertices with |S| = k, G[S] connected and let i € S. For each JE€S,letp;jeP;jbea
path joining i and j. Notice that p;; \ {i} is a path joining j and the neighbor of i in p;;. Consider
the following inequality
ISI+1-K)(1-x) < ) x(pij\ ). (6.4)
jes
Lemma 6.3.18. [30] Inequalities (6.4) are valid for #.(G).

Observe that inequalities (6.4) can be separated in polynomial time as follows. The subset S
is initially empty. For each vertex i € V, we first compute the shortest path p;; for each j # i.
Then, we add to S the k closest vertices to i. We also add to S all the vertices j 3 S for which
xX(pij i) < (L=x). If(SI+1-k)(1—x;) > Y jes X(pij\{i}) then we add the corresponding violated
inequality and repeat this procedure for each vertex i. The complexity of the algorithm is obvi-
ously polynomial.
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Inequalities (6.4) can be generalized as follows. Vertex i is replaced by a subset of vertices Ac 'V
such that G[A] is connected and |A| < k. Let S be a subset of vertices S ¢V such that SN A = @ and
IS| +|Al = k + 1. For each vertex j € S, let pa; be a path connecting j to one vertex from A. The
internal vertices of p,; can be assumed to be in A. We use pp j VA to denote the path connecting j
to the last vertex of pa; not belonging to A. It is then easy to see that the following inequalities are
valid:

ISI+IAI= k) (1 = x(A)) < ) x(paj \ A). 6.5)
jesS

Inequalities (6.5) can be written in a different way by making two observations. First, the paths
pa;j for j € S should be shortest paths from j to A (with respect to vertex weights (x,)yev). Sec-
ond, we can assume that each path pa;\ A is included in S since otherwise inequality (6.5) can
be strengthened by deleting j from S, adding to S a vertex I from p; \ A and replacing pa; by the

subpath of pa; connecting [ to A . These two observations imply that we can assume that U pa;
jes

is in fact the disjoint union of some trees rooted at vertices in A. All vertices of each rooted tree

(except the root) belong to S. Figure 6.2 illustrates the situation.

A N

Figure 6.2 —Illustration of inequality (6.6)

Observe that in the sum ) x(paj\A), the variable x, related to vertex v € S appears as many
jeS
times as the number of vertices in the subtree rooted at v. Let us use d}, to denote this number.
Then inequality (6.5) can be written as follows:
(ISI+IAI- k)1 -x(A) < ) d;x, (6.6)
VES

where A € V and S c A such that: G[A] is connected, |A| < k, and |S| + |A| = k + 1. In the situation
depicted by Figure 6.2, inequality (6.6) can be written as follows: (|S|+ |A| - k)(1 —x, —xp — X¢) <
(X +Xg+Xp+Xj+ Xp) +2xg + 3(Xe + X;).

If we consider the special case where S < N(A), then inequality (6.6) becomes

(SI+1Al= k) (1 = x(A) < x(S). (6.7)
Since the exhibition of all cases where inequality (6.6) induces a facet requires some tedious
proofs, we will only focus on a special case of inequality (6.7).

Proposition 6.3.19. [30] Let A = {i} and S < N(A) be such that |S| = k+1, and G[SuU{j}] does

not contain a connected component of size greater than or equal to k + 1 for any j € SUA. Then
inequality (6.7) induces a facet of % (G).

6.4 Approximations

In this section we present two approximation algorithms for the k-separator problem, one of them
relying on an LP relaxation, an another one which is of greedy type, with the same approximation
guarantee. We also mention an inapproximability result.
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The first approximation algorithm we give relies on the linear relaxation (LP1) of the integer
program (IP1) introduced in Section 6.2.2. Notice that the separation of the inequalities (6.1)
present in (IP1) is NP-hard even if all vertex-weights belong to {0,1} when k is part of the in-
put [116]. If k is constant, the separation is obviously easy. It is also known that a maximum-weight
connected subgraph of size k + 1 can be computed easily if the graph is a tree [116].

An LP-based approximation algorithm (Algorithm 1) is obtained by generalizing the basic ap-
proximation algorithm for the vertex cover problem. Hereafter, a connected subgraph G[S] is said
to be largeif |S| = k + 1.

Algorithm 1 LP-based Approximation Algorithm

: Input: A vertex-weighted undirected graph G = (V,E, w) and an integer k.
Output: A k-separator S.
Solve (LP1) and let x be an optimal solution of (LP1).
SetS:=@.
while G[V\S] contains large connected components do
Select R V\S such that |R| = k + 1 and G[R] is connected.
Select v € R such that x; is maximum and set S := S U {v}.

X NSO R N

end while

Proposition 6.4.1. [30] The LP-based approximation algorithm (Algorithm 1) is a (k+1) -approximation
algorithm.

Observe that the presented Algorithm 1 is a polynomial time algorithm if we assume that k
is bounded by a constant. This is necessary to guarantee that the size of (LP1) is polynomial.
The primal-dual approach (see, e.g., [216]) leads also to a (k + 1)-approximation. In fact, the k-
separator problem is a special-case of the hitting set problem where we want to hitlarge connected
components.

If all vertex weights are equal to 1, then there is another simple (k+1)-approximation algorithm
(Algorithm 2).

Algorithm 2 Greedy Approximation Algorithm

Input: A graph G = (V,E) and an integer k.

Output: A k-separator S.

SetS:=¢@.

while G[V\S] contains large connected components do
Select R < V\S such that |R| = k + 1 and G[R] is connected.
S:=SuUR.

end while

AR

Proposition 6.4.2. [30] For the case when all the vertex weights are equal to 1, the greedy algorithm
(Algorithm 2) is a (k + 1) -approximation algorithm for the k-separator problem.

The greedy algorithm obviously has a polynomial time complexity even if k is part of the input.

Notice that we should not expect much better approximation algorithms since it is shown that
the vertex cover (corresponding with k = 1) cannot be approximated within a factor of 1.3606 [89]
unless P = NP.

Finally, since computing a minimum weight k-separator is equivalent to maximizing the weight
of the vertices that are not in the k-separator, one can also study the approximability of the max-
imization problem. Let us call this problem the maximum k-coseparator problem. For k = 2,
it is shown in [192] that this problem cannot be approximated within a factor of [V|'/27¢ for any
constant € > 0. We could extend their results for any k using the same reduction technique.

Proposition 6.4.3. [30] Assuming that P # NP, the maximum k-coseparator problem cannot be

approximated in polynomial time within a factor of ( IVI) for any constante > 0.
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6.5 Some perspectives

In this chapter we introduced and investigated different aspects of the k-separator problem. Con-
nections with the stable set problem led us to a linear relaxation generally stronger than the one
stemming from the natural IP formulation. These connections also permitted us to identify fami-
lies of graphs for which the problem can be solved efficiently. With respect to the polytope .#(G)
we established general properties that are satisfied by its facet defining inequalities, and we intro-
duced many families of valid inequalities which may be facet defining (under some conditions).
These can be used to strengthen relaxations of the problem. Preliminary computational results in
this research direction are reported in Mohamed Sidi’s PhD thesis [175].

A matter for future research work is the exhibition of some new classes of graphs for which the
k-separator problem can be solved efficiently. It would be interesting to complete the polyhedral
description when the problem can be solved in polynomial time (such as for trees). Also, the com-
putational experiments carried out so far remain at a very preliminary status. Providing further
insights on the quality of the approximations and the computation times, depending on the fami-
lies of inequalities used, is also a substantial matter for future work. Another research direction is
to look for approximation algorithms with better approximation guarantees.
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Chapter 7

Orientation problems and connections to
max-cut

In this chapter we present some of our results stemming from investigations on two graph orien-
tation problems. Both problems involve the notion of imbalance of a node in a directed graph that
is defined as the absolute difference between its outdegree and indegree. In one case, we wish to
determine an orientation maximizing the minimum imbalance (taken over all the nodes). In the
other, we wish to find an orientation maximizing the sum of the imbalances (over all the nodes).
We investigate the complexity of the first problem, propose several MIP formulations and analyze
some of their features. The second problem was shown to be equivalent to the maximum cardi-
nality cut problem and this connection led us to study several new formulations for the latter.

The elements gathered in this chapter originate from joint works with Prof. Ben-Ameur and
Antoine Glorieux; further details can be obtained in the publications [27-29, 113].

7.1 Introduction and notation

Let G = (V,E) be an undirected simple graph with node set V and edge set E. We denote by §¢g
the minimum degree of the vertices of G. An orientation A of G is an assignment of a direction to
each undirected edge uv € E, i.e. any function on E of the form A(uv) € {uv, vu}, for all {uv} € E,
where uv denotes the edge uv oriented from u to v. For each vertex v of G, we denote by dg(v)
or d(v) the degree of v in G and by dj (v) or d*(v) (resp. dj (v) or d™(v)) the outdegree (resp.
indegree) of v in G w.r.t. A. Given two integers a, b with a < b, let [a, b] stand for the set of integers
fa,a+1,...,b}.

Graph orientation is a well studied area in graph theory and combinatorial optimization. A
large variety of constrained orientations as well as objective functions have been considered so
far. Frank & Gydrfés [108] gave a simple characterization of the existence of an orientation such
that the outdegree of every vertex is between a lower and an upper bound given for each vertex.
Asahiro et al. in [12-14] proved the NP-hardness of the weighted version of the problem where
the maximum outdegree is minimized, gave some inapproximability results, and studied similar
problems for different classes of graphs. Chrobak & Eppstein proved that for every planar graph
a 3-bounded outdegree orientation and a 5-bounded outdegree acyclic orientation can be con-
structed in linear time [62]. Other problems involving other criteria on the orientation have been
studied such as acyclicity, diameter or connectivity [63,67, 105,179, 202]

For an orientation A of G = (V,E) and a vertex v we call |dj{ (v)-d, (v)| the imbalanceof vin G
w.r.t A and we call min ey |dj((v) —d, (v)| the imbalance of A. Biedl et al. [43] studied the problem
of finding an acyclic orientation of unweighted graphs minimizing the sum of the imbalances of
all the vertices: they proved that it is solvable in polynomial time for graphs with maximum degree
at most three but is NP-complete in general. Then Kara et al. closed the gap proving the NP-
completeness for graphs with maximum degree four. Furthermore, they proved that the problem
remains NP-complete for planar graphs with maximum degree four and for 5-regular graphs [138].
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Landau’s theorem [148] gives a condition for a sequence of non-negative integers to be the
score sequence or outdegree sequence of some tournament (i.e. oriented complete graph) and
later, Harary & Moser characterized score sequences of strongly connected tournaments [125].
Analogous results for the “imbalance sequences” of directed graphs are given by Mubayi et al.
[176]. In 1962, Ford & Fulkerson characterized the mixed graphs (i.e. partially oriented graphs)
whose orientation can be completed in an eulerian orientation, that is to say, an orientation for
which the imbalance of each vertex equals zero [106]. Many other results related to orientation
have been proposed. Some of them are reviewed in [21].

Let us denote by 0(G) the set of all the orientations of G, we consider the problem of finding
an orientation with maximized imbalance:

(MaxIM) MAXIM(G) = max min|d} (v) —dj (v)],
A€O(G) V€Y
and we call MAXIM(G) the value of MAXIM for G. The minimum degree 8¢ of a graph G is a trivial
upper bound for MAXIM(G).

We tackled the problem MAxIM from different angles, characterizing the graphs for which this
problem has an optimal objective value equal to zero, establishing complexity and inapproxima-
bility results, providing a polynomial time algorithm for the graphs that are cacti, proposing and
evaluating different formulations of the problem [29]. After we summarize some of our results pro-
viding new insights on the complexity of MaXIM in Section 7.2, we present contributions related
to linear programming formulations of the problem in Section 7.3. Then, we discuss connections
with the maximum cardinality cut problem in Section 7.4, before we conclude with some perspec-
tives in Section 7.5.

7.2 A sketch of new complexity results on MAXIM

Since the value of MAXIM for a graph is the minimum of the values of MAXIM on its connected
components, from here on out, all the graphs we consider are assumed to be connected. For a
graph G and a subgraph H of G, we will use the notations V(H) and E(H) to refer to the set of
vertices of H and the set of edges of H, respectively.

7.2.1 Characterizing the graphs for which MAXIM(G) =0

By investigating properties of orientations with zero imbalance, we could obtain characterizations
of the graphs for which MaXIM(G) = 0. One of them involves a particular class of graphs: €°%4,
defined as follows.

Definition. A simple graph G is in € odd if there exists n odd cycles Cy,---,C, (for some positive
integer n), such that

e U ,C; =G, and
(7.1)

o [VUIZLCONV(Cy| =1, forall i € [2,n].

A simple characterization of the graphs for which MAxIM(G) = 0 is given by the next theorem.
Theorem 7.2.1. [29] For any simple graph G, MAXIM(G) = 0 iff G € €°%? iff G is eulerian with no
even cycle.

7.2.2 Complexity and (in)approximability

Concerning the complexity of MaxIM, we showed that the problem is NP-complete. More pre-
cisely, that answering if MAXIM(G) equals 2 for a graph G such that g = 2 is NP-complete. The
proof relies on a reduction of a particular variant of the satisfiability problem. This reduction was
also used to obtained the inapproximability result stated in the next theorem.
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Theorem 7.2.2. [29] MAXIM is NP-complete and inapproximable within % + € where e € R, \ {0},
unless P = NP.

Given a node subset A €V, let §(A) stand for the cut defined by A. In case the graph G is
bipartite with node bipartition (V1,V>), then the orientation that consists in assigning to each edge
in E the orientation from its endpoint in V; to its endpoint in V, has an imbalance equal to g, i.e.
optimal. This simple case enabled us to obtain the following lower bound.

Theorem 7.2.3. [29] For every graph G,

MaAXIM(G) = P;G-‘ -1.

Proof. Let (V1,V2) be a partition of V corresponding to a cut C = §(V;) such that [6({v}) nC| =
[#-‘, for all v € V. Such a cut an be easily found in polynomial time (for example, start with
an arbitrary cut and iteratively switch from V; to V» or from V, to V; vertices not satisfying this
condition). Then for any i € {1,2}, we orient the edges of the subgraph G[V;] of G that is induced
by V;. Anewvertex vy is added and an edge between vy and each vertex with an odd degree in G[V;]
ifit is not Eulerian and we consider a decomposition of its edges into edge-disjoint cycles. Each of
these cycles is oriented as directed cycle. Removing vy if necessary, the imbalance of each vertex

in G[V;] is now in {~1,0,1} which implies that, for all v € V, we have |d} (v) - d (v)| = [@-‘ -1,

hence, MAXIM(G) = [ %] - 1. O

The proof of the last result provides us with a polynomial time algorithm in order to find an
orientation satisfying the inequality in the statement of Theorem 7.2.3. Note that, since MAXIM <
d¢, this algorithm has approximation ratio at least % - %.

A special graph family for which we were able to design a polynomial time algorithm to com-
pute MaxIM(G) is that of cacti, which properly includes the class €°%? introduced above. (Recall
that a cactus is a connected simple graph for which every edge belongs to at most one elementary

cycle.)
Theorem 7.2.4. [29] Let G be a cactus graph, then MAXIM(G) can be computed in polynomial time.

The proof of Theorem 7.2.4 is algorithmic. Tt uses the fact that for cacti graphs MAXIM(G) < 2,
thus implying MAXIM(G) € {0,1,2}. Then, the result follows from a characterization of the cacti
graphs for which MAXIM(G) = 2, together with Theorem 7.2.1.

7.3 MIP formulations for MAXxIM

In this section, we introduce two MIP (Mixed-Integer Programming) formulations for the MAXIMm
problem. For our purposes, we shall consider the original graph G is directed (considering any
arbitrary orientation), and let B € {—1,0,1}¥*F stand for its incidence matrix, i.e. the column cor-
responding to the arc uv (or, equivalently, to the edge uv directed from node u to node v) has
only nonzero entries in the rows corresponding to the nodes v and v: B, ;,, =1 and B,,;,, = -1,
respectively.

In order to describe an orientation of the graph G, we use orientation variables x € {—1,1}F
interpreted as follows. For each edge uv € E which is originally directed from node u to node v: if
Xyup = 1 then uv is directed from u to v (i.e. the orientation is the same as the original one) and is
directed from v to u otherwise (i.e. the edge is “reversed” with respect to the original orientation).
Then, taking the product of B with an orientation vector x € {—1,1}¥, we obtain B,x = d (v) -
dy (v), for all v € V, where d} (v) (resp. dj (v)) is the outdegree (resp. indegree) of v € V wir.t. the
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orientation described by x, and B, denotes the row of the matrix B which corresponds to the node
v. Hence the MaXIM problem can be expressed as the following nonlinear program.

maxh

s.t.

h<|B,x|, VveV,
xe{-1,1}E

An equivalent linear formulation can be obtained as follows. Remove the absolute value of the
inequality constraints by squaring: h? < (B,x)?, for all v € V. Then, replace the x variables in
{—1,1} by their binary “counterparts” and introduce variables representing the products of two
variables. Developing, we obtain

(By(2x—l))2 =d(v)+2 Z Bo,uvBowv 4XupXwy —2Xyp — 22Xy + 1),
uv,wvek
UVEFWV

=d(v)+2 Z Bv,uva,wv(4Zuv,wv_2xuv_2xwv+1)»
uv,wvek
uv#Fwv

where the variable z,,,,, represents the product x;,x,,,. Furthermore, maximizing h is equiv-
alent to maximizing its square root. Then substituting h? by h leads us to the next formulation
where we added the constraints zyy,wp < Xuv, Zuv,wp < Xwp and Zyp,wp = Xyp + Xwp — 1 in order to
ensure Zuy,wp = xuyxwp.

maxh
S.t.
I’lSd(V)+22uv,wv€EBv,uqu,wv(4Zuv,wv_2xuv_2xwu+1)» Yvey,
UVAWwv
(MIP1) 1 Zuv,wp = Xuv, Yuv,wpekE, uv# wp,
Zuvwp = Xwp) Yuv,wpek, uv# wp,
Zupwp = Xup + Xwp—1, Yuv,wp€E, uv# wp,
x€{0, 3%, zypup =0, Vuv,wp € E, uv# wp, heR.

Theorem 7.3.1. [29] For any graph G,
MIP1(G) = MaxImM(G),
where MIP1(G) is the square root optimal of the objective value of (MIP1) for G.

Unfortunately and in contrast with Theorem 7.3.1, the linear relaxation of (MIP1) is generally

weak. Indeed, let the triplet (x'?, z!?, h'P) be defined as follows: Xl = 1, forall uv € E; z,lﬁ,ywp =0

for all pairs of edges uv, wp € E that sharing no endpoint; zif,',,w,, = %{BW for all pairs of edges

uv, wv € E (i.e. all the pairs of edges sharing an endpoint), and h'? = 5?}. Then, the following holds.

Proposition 7.3.2. [29] (xlp ,zlP, ntp ) is a feasible solution of the linear relaxation of (MIP1) with
objective value 57,

The last proposition shows that the optimal objective value of the linear relaxation of (MIP1)
is at least the minimum degree of the input graph squared, which corresponds to the trivial upper
bound of MAX2(G).

We now present a second formulation with a reduced number of variables and constraints.
It involves orientation variables x € {—1,1}F and binary indicator variables y,’c’ with veV,and k€
[-d(v),d(v)]. They have the following interpretation: y; = 1 ifand only if B, x = d (v)~d; (v) = k,
so that the following equations trivially hold.

ZkE[[—al(v),d(y)]] ky, =Byx, VveV. 7.2)
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Given the interpretation for the variables y, among the ones of the form y/, for some fixed node
v eV, exactly one of them has value 1. Thus,

2 ke-dw,da) Yk =L Y EV. (7.3)

Notice that for a vertex v € V, the difference between its oudegree and indegree w.r.t. any orien-
tation and its degree have the same parity. Thus instead of running k through [-d(v),d(v)], we
can limit to k € [-d(v),d(v)], s.t. k = d(v) mod2, i.e. the only possible values of d} (v) — d; (v)
when x € {—1,1}F. Then we can show the MAXIM problem may be formulated as the mixed integer
program

maxh
S.t.
h < ¥ ke[-dw),aw) min(kl, 86)y}, YveV
k=d(v) mod2
(MIP2)< ZICGlI—d(U),d(U)]] yllé — 1, VV EV
k=d(v) mod2
Yke[-dw).dw] ky; =Byx, Vv EV
k=d(v) mod2
xe[-1; 1]E,y;€/ €{0,1}, (1, k) eVx [-d(v),d(v)], s.t. k=d(v) mod2,heR.

Theorem 7.3.3. [29] For any graph G,
MIP2(G) = MaxIM(G),

where MIP2(G) is the optimal objective value of (MIP2) for G.

;:’lp =0, forall (v, k) €

Vx [-d(v)+1,d(v)-1], s.t. k=d(v) mod2; and yf’fifv) = yZ’(IS = 3, forall v € V. Observe that
(x!P, y'P, h!P) is a feasible solution of the linear relaxation of (MIP2) with objective value 8. So, the
linear relaxation is generally weak, which led us to look for families of inequalities strengthening
it. We restrict our presentation hereafter to two such families, see [29] for some others.

If [ is a known lower bound for MAXIM (G), then all variables y,’c’ for which | k| < I can be fixed to
0. To find such a lower bound, we may use a greedy algorithm to find a locally maximum cut and
orient edges as described in the proof of Theorem 7.2.3. Let u be an upper bound for MAXIM(G).
We already know that MAXIM(G) < dg, so we can assume that u < §g. Consider the following
inequality.

Let us consider the triplet (xl”,yl”, hlp) where xllfl’, =0, foralluveE; y

n
h=u-3Y Y ANW+ry"%), VAeA,, (7.4)
v=1 ke[0,u—1]
k=d(v) mod 2

where the vertices of G are numbered from 1 to |[V| = n, and

AV =AY, V(v k) e[[1,n] x[0,u—-2
Au= {)\ = ()\Ilé)(u,k)e[[l,n]]x[[o,u—l]] enN™ k:;l+=11 AV = uf k, Lk[[e [[0»]]”_[[1]] ]] }
Observe that the coefficients A} are nonnegative integer numbers and are non increasing in k. For
each k, there exists only one v such that A}, = A/ —1while A}/, = A} forany w # v. We can show
that inequalities (7.4) are valid w.r.t. the convex hull of the feasible solutions of (MIP2) denoted by
22, in what follows.

Proposition 7.3.4. [29] Inequalities (7.4) are valid for %, and can be separated in polynomial time.

In fact, the search for linear inequalities strengthening (MIP2) let us to investigate more closely
the convex hull of polytopes related to extensions of assignment matrices. We were able to provide
complete formulations for them; and it appeared that these descriptions essentially consist of the
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inequalities (7.4) (and very few further constraints) and that they are all facet defining for theses
polytopes, see [28].

Let us now introduce another family of inequalities for (MIP2). Given any clique .# and any
number p € [1,|.%]], we consider the two following inequalities.

min(p-1,d(v)) (p+1)
Y Y -k < P vpe L], (7.5)
VEX k=0

min(p-1,d(v)) (p+1)
Y Y (p-Vawm = EE vpe L] (7.6)
vVEX k=0

Inequalities (7.5) can be seen as a generalization of the obvious inequalities }_ ¢ » y(’j’(y) <1,
obtained when p = 1.

Proposition 7.3.5. [29] Inequalities (7.5) and (7.6) are valid for %,.

Inequalities such as the ones introduced above have been tested within the framework of a
cutting-plane algorithm followed by a branch-and-bound. Roughly summarizing results from
our preliminary computational experiments, it appears that the formulation (MIP2) together with
some inequalities added (including the two families presented above) leads to the best results,
both in terms of the quality of the obtained bound for the linear relaxation, and the total com-
putation times for its exact resolution. Also, due to important memory requirements for some
instances (the graphs tested had between 10 and 3750 nodes and between 33 and 22500 edges),
the formulation (MIP1) given as input to a MIP solver (CPLEX) did not permit to solve many of
the largest ones, whereas they could be solved within 15 minutes using (MIP2) (strengthened with
some inequalities). See [29] for details.

7.4 New formulations for unweighted max-cut

We now introduce new formulations for the maximum cardinality cut problem, i.e. the maximum
cut problem (also called “max-cut”) for the case when all the edge weights are equal to 1: w, =1,
for all e € E. The optimal objective value is denoted by w*. For our purposes, the original graph
G = (V,E) is assumed to be directed and we shall resume the notation used in the Section 7.3.
Consider the following MIP involving the set of variables y;’ and x having the same interpreta-

tion as for (MIP2).
MCI1(G) = %maXZueVZZV:_dJkU’;é

s.t. (7.2),(7.3),

xe[-1;11F,

yp€{0,1}, veV, ke[~dy, d,].

The next result evidences the fact that looking for the maximum cardinality of a cut is equivalent
to looking for an orientation maximizing the sum of the imbalances taken over all the nodes of the
graph.

(MC1)

Proposition 7.4.1. [27] The optimal objective value of MC1) equals the maximum cardinality of
a cut in the graph G: MC1(G) = w*.

Proof. First, note that it is equivalent to take x € [-1;1]F or x € {—1;0;1}F, given that B is totally
unimodular and y is integral. implies the integrity of x. Observe that introducing sign variables
z € {~1,1}" with the following interpretation: z, is the sign of the only k for which Vi 70, MCD) is
equivalent to the following

]E

max3 ¥ ey 2o Xyl kVY

s.t. (7.2),(7.3),

ypef0,1}, veV, ke [-dy, dy],
ze{-1,1}V, xe[-1;1]E.

S.t.

{ maxy ¥ ey 2yByx = 32" Bx
ze{-1,1}V, xe{-1,0, 1}E.
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maX%ZuveExuy(Zv zy) = TBT maX%ZuveElzv_zzA
= S.t. = S.t.
ze{-1,1}V, xe {-1,1}E. zei{-1,1}V.

Noting that, for any z € {-1,1}", the quantity Y, x| zy — 24| equals twice the number of edges in
8(S), with S = {vr e V: z, = 1}, the proposition follows. O

Given a cut 6(S) with maximum cardinality, we can associate to it the following feasible solu-
tion of (MC1): the vector x corresponds to an orientation of all edges in the cut from S to V\'S,
all other edges are not oriented (x, = 0,Yuv € E\3(S)), and y; = 1 if and only if k is equal to
the outdegree minus the indegree w.r.t. the orientation given by x (ignoring edges which are not
oriented). Then, for any edge uv € E which has the original orientation from u to v (i.e. the one
given by the matrix B), the following equation holds: x,,;, = Zzil Ve~ ZZ”:I Yy~ From the latter we
deduce (developing the expression B, x):

dU dl/ du
Y kyl=Byx= ), (Z y,’é—Zy,’c‘). (7.7
k=-d, uvek \ k= k=1
Note that, since each vertex v is incident to at least [ ”-‘ edges in a maximum cut, the variables

¥y with k € {1 - [71 Yoo [%-I - 1} may be removed from the formulation (MC1), while Proposi-

tion 7.4.1 remains valid. It follows that, in place of (MIP1), we may consider a formulation in-
volving variables of the form y,’ only: replace equations (7.2) by (7.7). For each vertex v, we only

consider y; variables for k € T, =T, UT; with T;, = [[—dy, - [@-H] = [H@-‘ ,dy]] .

2
MC2(G) = 3 maxy yey ¥ ker, | klyY
s.t.
MC2){ Zker, V=1 VEV,
Y ker, kKV{ = Xuver (Zkelj; Vi = Lkert y;:)» vey,
y]lc’e {0,1}, veV, kel,.

Formulation (MC2) may be strengthened using reformulation-linearization techniques. Let
Y”l , with (1, v) € V2, (k, 1) € I, x 1, denote a binary variable representing the product ¥y, Then,
given that the variables y/ are binary and satisfy (7.3) we have Y}!/' = 0, for all u € V for all k # L.
Considering then the product of the left side of (7.3) with itself we deduce } e, Yy = 1. Using
other equations obtained by multiplying variables of the form y; with equations (7.3) and others
obtained from (7.7), we can deduce from (MC2) the following exact formulation for the maximum
cardinality cut problem.

1

MC3(G) = —max ), ) Ile

2 veVkel,
s.t.
Y Y’”’—l VeV, (7.8a)
kely
Y Y= X (XY= XY veV, (7.8b)
kel, uvek kely kel
Y= Z Ykl, u,vev, kel,, (7.8¢)

(MC3)
( U—k)Y =Y ZYV ,veV, kelf, (7.8d)
uv€E1<.:1+

—kYi= X LY veV kel (7.8¢)

uveEl€1+
LIV = X (XY= XY, vAuey, kely, (7.80)
leTy, uUweE [elf, leTf,
YZ;’ = Y;lkv, u,veV, (k,1)el, xI, (7.89)
Y;é;’ €{0,1}, u,veV, (k,)el, x1I, (7.8h)

Proposition 7.4.2. [27] The optimal objective value of MC3) equals the maximum cardinality of
a cut in the graph G: MC3(G) = w*
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(MC3) was derived from (MC2) using lifting. Other formulations may be obtained using some
other well-known lifting techniques such as the one of Lasserre, the Sherali-Adams technique or
the lifting of Lovasz-Schrijver [152,204,215]. An interesting feature w.r.t. the formulation (MC3)
that we proved, is that a semidefinite relaxation derived from it provides an upper bound on w*
that is lower than or equal to the one given by Goemans and Williamson’s relaxation [114]. Fur-
ther formulations of the maximum cardinality cut problem, together with some numerical exper-
iments are presented in [27].

7.5 Some perspectives

While computing the most imbalanced orientation of a graph is generally difficult, the problem
turns out to be easy for cacti. It may be the same for other graph classes: It would be nice to get a
characterization of them.

Two mixed integer linear programming formulations of MAXIM have been presented. It may be
worth to pursue further investigations to determine efficient families of constraints to be added to
their linear relaxations (different from the ones presented in [29]) in the framework of cutting plane
algorithms. It would also be interesting to study the weighted version of the most imbalanced
orientation problem.

Then, w.r.t. the maximum cardinality cut problem, starting from graph orientations, we have
seen that it could be modeled in several new ways. In particular, one may get bounds that at least
as strong as the ones given by the standard semidefinite bound of Goemans and Williamson [114].
We could identify cases when bounds stemming from semidefinite relaxations of our new formu-
lation were strictly better than the latter. (This notably occurs for complete graphs with odd order,
see [27].) It would be nice if one could characterize the graphs for which such a strict improvement
holds.

Also, further efforts could be dedicated to determine if the results obtained for the maximum
cardinality cut problem can be extended to the weighted case.
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