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Abstract

Current neural machine translation systems have reached close-to-human quality in trans-
lating stand-alone sentences. When it comes to translating documents, instead, machine
translation has a significant margin of improvement ahead. In fact, some ambiguous
elements of the discourse have multiple valid translations at the sentence level but only one
at the document level, where they lose their ambiguity in the presence of extra-sentential
context. Retrieving and exploiting such context to produce consistent document-level
translations represents a challenging task. Many researchers have taken up this challenge
in recent years and proposed approaches to context-aware neural machine translation. A
common taxonomy divides them into two families: multi-encoding and single-encoding
approaches, also known as concatenation approaches. The former family includes all
the approaches that employ the standard encoder-decoder architecture to produce latent
representations of the current sentence and that introduce additional learnable modules
to encode and integrate its context, i.e., the previous or following sentences. Concate-
nation approaches, instead, rely entirely on the encoder-decoder architecture, but they

concatenate the context to the current sentence before feeding it into the system.

In this work, we analyze both families of approaches to context-aware neural machine
translation, identify some of their weaknesses, and address them with novel solutions. For
multi-encoding systems, we identify two learning challenges faced by the modules that
handle context: the sparsity of the training signal and the sparsity of disambiguating
contextual elements. We introduce a novel pre-training setting in which sparsity is alleviated
and demonstrate its effectiveness in fostering the learning process. For concatenation
approaches, we address the challenge of dealing with long sequences by proposing a training
objective that encourages the model to focus on the most relevant parts of each sequence.
We couple this training objective with a novel technique to strengthen sentence boundaries
and analyze their impact on the learned attention mechanism. Finally, we present a
comparative study of various methods for discerning segments in the concatenation

sequence, including novel variants of segment embeddings.



Résumé

Les systemes actuels de traduction automatique neuronale ont atteint une qualité proche
de celle d’'un traducteur humain pour la traduction de phrases isolées. En revanche,
lorsqu’il s’agit de traduire des documents, la traduction automatique dispose d’une marge
d’amélioration importante. En fait, certains éléments ambigus du discours ont plusieurs
traductions valides au niveau de la phrase mais une seule au niveau du document, car
ils perdent leur ambiguité en présence du contexte extra-sententiel. L’identification et
I’exploitation du contexte utile pour produire des traductions cohérentes au niveau du
document représentent une tache difficile. De nombreux chercheurs ont relevé ce défi ces
derniéres années et ont proposé des approches de traduction automatique neuronale sensible
au contexte. On peut les classer en deux familles : les approches a encodage multiple
et les approches a encodage unique, également appelées approches de concaténation.
La premiere famille comprend toutes les approches qui utilisent 'architecture standard
d’encodeur-décodeur pour produire des représentations latentes de la phrase courante
et qui introduisent des modules supplémentaires pour encoder et intégrer son contexte,
c’est-a~dire les phrases précédentes ou suivantes. Les approches par concaténation, au
contraire, reposent entierement sur l'architecture standard d’encodeur-décodeur, mais elles

concatenent le contexte a la phrase actuelle avant de I'introduire dans le systeme.

Dans ce travail, nous analysons les deux familles d’approches de traduction automatique
neuronale sensible au contexte, nous identifions certaines de leurs faiblesses et nous y
remédions par des solutions originales. Pour les systemes a encodage multiple, nous
identifions deux défis d’apprentissage auxquels sont confrontés les modules qui gerent le
contexte : la rareté du signal d’apprentissage et la rareté des éléments contextuels de
désambiguisation. Nous introduisons un nouveau cadre de pré-entrainement dans lequel
la rareté est atténuée et nous démontrons son efficacité expérimentalement. Pour les
approches de concaténation, nous relevons le défi de traiter de longues séquences en
proposant un objectif d’entrainement qui encourage le modele a se concentrer sur les
parties les plus pertinentes de chaque séquence. Nous couplons cet objectif d’entrainement
avec une nouvelle technique pour renforcer la séparation des phrases dans séquence traitée.
Nous analysons 'impact de ces solutions sur le mécanisme d’attention appris. Enfin, nous
présentons une étude comparative de diverses méthodes pour discerner les segments dans la

séquence de concaténation, y compris des nouvelles variantes de plongement de segments.
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Chapter 1

Introduction

Machine Translation (MT) is a field of computational linguistics that studies the automatic
translation of a source text into a target language. In the past decades, globalization of
information and economies has fueled the need for translations at a large-scale, fostering
advancements in MT. Three paradigms have guided the investigation of novel MT systems
along the way: Rule-based Machine Translation (RMT), Statistical Machine Translation
(SMT), and Neural Machine Translation (NMT). While RMT is based on linguistic rules
formulated by experts, SMT and NMT consist of machine learning methods that learn
the translation task directly from a large amount of bitext data. In particular, NMT
systems are based on neural networks that learn in a supervised fashion. Each training
example consists of a source sentence and a reference translation, usually performed by a
human translator. The network tries to translate the source, and its output is compared
with the reference translation. A measure of the distance between the output and the
reference quantifies the so-called training loss, the “error” of the system. Then, the
learnable parameters of the network are adjusted based on the loss, employing standard
optimization techniques like stochastic gradient descent so as to minimize the difference
between the output and the reference translation in future iterations. NMT has seen
substantial improvements in recent years, primarily fostered by the advent of the attention
mechanism (Bahdanau et al., 2015a) and the Transformer model (Vaswani et al., 2017).
While current NMT systems have reached close-to-human quality in the translation of
de-contextualized sentences (Wu et al., 2016), they still have a wide margin of improvement
ahead when it comes to translating documents (Laubli et al., 2018) such as articles, books,

chats, transcripts of live events, or video subtitles.
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1.1 Problem statement

Translating a document requires considering the linguistic relationships between its sen-
tences. In other words, to contextualize them. Given a sentence in a document, we can
refer to the rest of the document as the extra-sentential context of the sentence or, shortly,
its context. The need to contextualize the translation of a given source sentence x‘ can

emerge even in concise documents. For example, if we take the English sentence:

' (EN): How are you today ?
There exist multiple French translations that are valid if the context is not provided, such
as y*! and y*?:

z' (EN):  How are you today ?
y“! (FR): Comment vas-tu auwjourd hui?

y“? (FR):  Comment allez-vous aujourd hui?

However, when we put «* into context by providing the previous sentence ‘=1, it becomes

clear that y%? is the only valid option:

z'~! (EN): Good morning Mr. President.
x' (EN): How are you today ?

y“! (FR):  Comment vas-tu awjourd hui?

y"? (FR):  Comment allez-vous aujourd hui?

The title of the interlocutor ("Mr. President") requires the use of the formal "you" (T-V

distinction) and, accordingly, the correct conjugation of the related verb.

The NMT paradigm has evolved around the task of context-agnostic translation. As such,
until recently, many state-of-the-art NMT systems could not contextualize the current
sentence beyond sentence boundaries (Bojar et al., 2017a,b). Unfortunately, context-
agnostic NMT systems systematically produce inter-sentential inconsistencies, hindering
the overall quality of the translation (Laubli et al., 2018; Toral et al., 2018; Voita et al.,
2019b). As an example, until the end of December 2022, Google Translate, one of the
most popular automatic translation systems globally, was still translating =* with y*!,
even when x'~! was provided as context. To address this limitation, researchers have been
studying Context-Aware Neural Machine Translation (CANMT) since early 2017 (Jean
and Cho, 2019; Tiedemann and Scherrer, 2017; Wang et al., 2017). Today this line of
research is still vibrant, and no consensus has yet been reached on the best context-aware

approaches and methods of evaluation.
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1.2 Contributions

Our research aims to provide insights into some of the challenges faced by current ap-

proaches to CANMT and to propose new solutions.

Our contribution is threefold:

o In Chapter 3, we provide insights on the training challenges faced by multi-encoding
translation models, a broad family of CANMT architectures, presented in Sec-
tion 2.4.2. To overcome these challenges, we propose and analyze a pre-training
method that enables consistent improvements in context-aware translation. The
implementation of the experiments discussed in this chapter is publicly available at
https://github.com/lorelupo/divide-and-rule.

o In Chapter 4, we tackle the learning complexity that is faced by concatenation ap-
proaches, another dominant family of CANMT approaches, discussed in Section 2.4.4.
As a solution, we propose a training paradigm that focuses on the translation of
the current sentence while considering the translation of context as a secondary
task. We also propose introducing explicit information to differentiate the various
sentences concatenated in the input sequence, with the goal of helping the model to
optimize the new training objective. Both solutions are evaluated and analyzed on
different domains and language pairs, showing consistent improvements in discourse
phenomena disambiguation. The implementation of the experiments discussed in

this chapter is publicly available at https://github.com/lorelupo/focused-concat.

o In Chapter 5, we deepen our study of the methods for differentiating the various
sentences concatenated in concatenation approaches. We compare the method
proposed in the previous chapter with three variants of segment embeddings and
propose new ways to integrate them into the Transformer architecture. Our solutions
are evaluated and analyzed on different domains and language pairs, showing that,
despite being a very intuitive solution, they do not benefit the baselines except in a
specific setting. The implementation of the experiments discussed in this chapter is

publicly available at https://github.com/lorelupo/focused-concat.

In the Conclusions (§6), we present some research directions that emerge naturally from

our work and that we deem valuable for the advancement of CANMT.

1.2.1 Publications

Most of the contributions presented in Chapter 3 are published in:


https://github.com/lorelupo/divide-and-rule
https://github.com/lorelupo/focused-concat
https://github.com/lorelupo/focused-concat
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Lupo et al. (2022a) - Lupo, L., Dinarelli, M. and Besacier, L. (2022). Divide
and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation
Models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 4557-4672, Dublin,
Ireland.

Most of the contributions presented in Chapter 4 are published in:

Lupo et al. (2022b) - Lupo, L., Dinarelli, M. and Besacier, L. (2022). Focused
Concatenation for Context-Aware Neural Machine Translation. In Proceedings
of the Seventh Conference on Machine Translation (WMT), pages 830-842,
Abu Dhabi, December 7-8, 2022. Association for Computational Linguistics.

The contributions presented in Chapter 5 will be submitted to the Fourth Workshop on
Insights from Negative Results in NLP, co-located with EACL 2023.


https://aclanthology.org/2022.acl-long.312/
https://aclanthology.org/2022.acl-long.312/
https://aclanthology.org/2022.acl-long.312/
https://www.statmt.org/wmt22/pdf/2022.wmt-1.77.pdf
https://www.statmt.org/wmt22/pdf/2022.wmt-1.77.pdf

Chapter 2
Background

In this chapter, we introduce the reader to the tasks of NMT, including details on the data
used for training translation systems, the evaluation methods, and the state-of-the-art
neural architectures for this task. Subsequently, we provide an overview of CANMT,
starting with its motivation and formal definition, then moving to the datasets, the
evaluation methods, and the CANMT approaches proposed in the literature. We conclude

with a discussion on the strengths and weaknesses of such approaches.

2.1 Neural machine translation

2.1.1 Definition

A NMT system is a neural network with parameters 6 that is trained end-to-end to model
the conditional probability Py(y|x) of a translation y = {y1, 2, ..., Yy}, given a sentence

in the source language = {x1, s, ...,z }. This probability can be expressed as follows:

lyl

Py(y|z) = ]j[Pe(yt|y<t,w), (2.1)

where y—; = {y1, Y2, ..., y1_1} are the previously generated words. Given a parallel training
corpus C = {(z!,y'), (2, y?), ..., (2l yI’I)}, where =’ is the jth source sentence of the
corpus and 4’ its reference translation, the standard training objective is to find parameter

values # that maximize the log-likelihood of the training data:

0 = argmax L(C;0). (2.2)
0
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By assuming that every sentence pair in the corpus is independent from the others, the

log-likelihood can be written as follows:

IC]
C;6 \C| Z log Py(y’|2?) (2.3)
\CI Iy
=7 Zlglog Py(yllyLy, ). (2.4)
J

At inference time, it is standard practice to use beam search (Graves, 2012; Luong et al.,
2015) to find a translation hypothesis y that approximately maximizes Equation 2.1 for a
given source x:

y = argmax Py(y|x), (2.5)

yebeam(x,0)

2.1.2 Data

Many training corpora C with aligned sentence pairs are freely available online for over
200 languages and dialects (Tiedemann, 2016). On top of this, the MT community has
produced standardized datasets to compare different systems under similar experimental

conditions. In this section, we describe the datasets adopted in our experiments.

WMT - Every year, the Conference on Machine Translation (WMT)! releases standardized
datasets for many language pairs and specific domains, comprising multiple corpora that
have been cleaned and pre-processed. The main goal is to incentivize the benchmarking
of new M'T models on specific translation domains. In our case, we employ the datasets
that have been released for the news translation task. The testing and development sets
are created from a sample of online newspapers, while data for training include different

sources:

(i) Common Crawl,? consisting of sentences crawled from web pages of various domains.

(ii) Europarl (Koehn, 2005), extracted from the proceedings of the European Parliament.
The sentences are organized in documents, each corresponding to a topic discussed

in a parliamentary sitting.

(iii) News Commentary (Tiedemann, 2012), a corpus with political and economic com-
mentaries crawled from the website Project Syndicate®. Each commentary represents

a document.

'E.g., WMT22: https://www.statmt.org/wmt22/
Zhttps://commoncrawl.org
3https://www.project-syndicate.org/
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(iv) UN Parallel Corpus (Ziemski et al., 2016), composed of official records and other

parliamentary documents of the United Nations.

IWSLT - The International Conference on Spoken Language Translation (IWSLT)*
organizes evaluation campaigns focused on spoken language translation. Among others,
they provide corpora consisting of parallel subtitles of TED and TEDx Talks (Cettolo
et al., 2012), including document boundaries. The organizers provide standardized training,

development, and testing splits.

OpenSubtitles2018 - OpenSubtitles2018 (Lison et al., 2018) is a corpus of movie and
TV subtitles in a variety of languages, for which training, development, and testing splits
are not available. Every subtitle file can be considered as a document, although other
document boundaries can be identified. For instance, by considering each movie scene as
a standalone document (c.f. Voita et al. (2019b)).

Details on data splits, language pairs, data versions, and statistics will be described in the

following chapter’s sections devoted to experiments.

2.1.3 Evaluation

The translation objective of a NMT system at inference time can be rewritten by means

of the Bayes’ rule as follows:

P(y)P(x|y
argmasx P(§l@) = argmax = 9L (@lF)

y y P(z) (2:6)

We can distinguish two concurrent components in this objective function:

(i) Fluency: argmax, P(y) selects for translation hypotheses that are syntactically

appropriated and meaningful in the target language;

(ii) Adequacy: argmaxy P(z|y) selects for translation hypotheses that preserve the
meaning of the source.

The most accurate translation evaluation along these two axes is that performed by
bi-lingual readers, possibly professional translators. Humans can embrace the possibly vast
diversity of alternative translations that can stem from the same source, accounting for
meaning and style nuances. However, human evaluation is resource-intensive and is only

sometimes worth it at the research and development stage. Here, automatic evaluation

4https://iwslt.org/
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comes to the rescue. The most widespread automatic metrics are reference-based: they
compute the similarity between the system output and one or more reference translations
produced by humans. Some popular examples are BLEU (Papineni et al., 2002), which is
the standard metric for MT, METEOR (Banerjee and Lavie, 2005) and TER (Snover et al.,
2006). More recently, another family of metrics relying on contextualized embeddings
(Devlin et al., 2019) trained on large non-parallel corpora has been shown to be better
correlated with human judgments. Among the most popular metrics belonging to this family
are BERTscore (Zhang et al., 2020b), BLEURT (Sellam et al., 2020) and COMET (Rei
et al., 2020).

2.1.3.1 BLEU

BLEU is based on the degree of overlap between the n-grams of a candidate translation
y and those of the human reference y. To compute an n-gram precision, we divide the
number of correct n-grams by the total number of n-grams in the hypothesis. Evaluating
a precision score per sequence leads to noisy scores. Therefore n-gram precision is macro-
averaged by dividing the sum of correct n-grams by their total number in the overall
corpus:

_ IJC=|1 den—grams(yj) #(9,9’)

= s —,
Z‘hil g’en-grams(y") #(9/7 yh)

(2.7)

Pn

where n-grams(y”) is the set of unique n-grams that are present in the jth translation
hypothesis y’, and #(g,y) is the number of times an n-gram g appears in a sentence y.
BLEU is then calculated as follows:

max

1 Nmax
BLEU = BP - exp ( > log pn) , (2.8)

n=1

where BP is a brevity penalty against short translations, which would otherwise be unduly
rewarded by n-gram precisions. Typically, the maximum n-gram size is n,,,, = 4.> Given
the word count r of the reference corpus and ¢ of the machine-translated text, the brevity

penalty is calculated as follows:

1 ifex>r
BP = (2.9)
ed=nle ife <

Hence, the final BLEU score lies between 0 and 1. The upper boundary is reached in

case of a perfect match between hypothesis and reference. Despite being universally cited

5We use this value across all of our experiments.
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across the literature, BLEU is often inadequate for M'T evaluation. For instance, BLEU is
unreliable by design for scoring a single sentence, or just a few of them, instead of a large
corpus where the n-gram matches are averaged over large numbers. Averaging over many
n-grams makes BLEU unfit also in the evaluation of discourse phenomena consisting in few
words spanning over multiple sentences, as we will discuss in Section 2.3. Moreover, BLEU
is usually calculated against a single reference, although it can support multiple references.
Using a single reference leads to significant fluctuations in the score depending on the
wording of the translation hypothesis. For example, if the hypothesis and the reference
use different phrasings to express the same message, the BLEU score would be low despite

the translation being equivalent.

Despite these problems, BLEU is an efficient metric to capture substantial differences
between translation systems. Throughout this thesis, we shall use BLEU to illustrate the
average translation quality of MT approaches under similar conditions, but mainly as a
starting point for a more fine-grained evaluation. In Chapters 4 and 5, we couple BLEU

with a more costly but better-performing metric for average translation quality called
COMET (Rei et al., 2020).

2.1.3.2 COMET

COMET (Rei et al., 2020) is a learnable metric for machine translation evaluation based on
large pre-trained multilingual language models like mBERT (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020). The language model encodes the source, hypothesis, and
reference sentences separately. The resulting word embeddings are passed through a pooling
layer to create a sentence embedding for each input sentence. Given the concatenation
of these sentence embeddings, a feed-forward network is trained to estimate the quality
score that a human has assigned to the translation hypothesis. Being a learnable metric,
COMET can be constantly improved and fine-tuned on specific translation quality metrics.
In the recent shared tasks on metrics for machine translation evaluation, COMET has
been ranked high for correlation with human judgment (Freitag et al., 2021). This success
is probably attributable to its ability to model subtle translation quality properties that
lexical overlapping methods like BLEU can not capture, as well as its ability to leverage

the source text to inform its predictions.

2.1.4 Architectures

A NMT network is usually structured as an encoder-decoder architecture (Bahdanau

et al., 2015b; Vaswani et al., 2017). The encoder reads the source sentence & and maps
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it into a continuous representation S = [s1, 82, ..., S|g|| € R¥I#l where the ith token is
represented by a vector s; of size d. The decoder then exploits this latent representation
to generate the corresponding translation one word at a time. Until recently, encoders and
decoders were generally composed of stacked Recurrent Neural Networks (RNN), using
either Long Short-Term Memory (Hochreiter and Schmidhuber, 1997) or Gated Recurrent
Units (Cho et al., 2014). The introduction of the attention mechanism (Bahdanau et al.,
2015b) brought major improvements by enabling the joint learning of source-target word
alignments and translation, and later by learning better word representations by means of
self-attention (Lin et al., 2017). In 2017, Vaswani et al. (2017) proposed an encoder-decoder
architecture entirely based on self-attention, which is state-of-the-art in NMT (Bojar et al.,
2017b), as well as in many other Natural Language Processing (NLP) tasks (Devlin et al.,
2019; Brown et al., 2020; Yang et al., 2019). Meanwhile, other research works proposed
NMT architectures based on convolutional neural networks (Kalchbrenner et al., 2016;
Gehring et al., 2017; Wu et al., 2019), but they were not as successful.

2.1.4.1 Attention

Attention is a function that takes in input a query vector g € R%, and two matrices: the
keys and values K,V € R™" Then it computes a weighted sum of the value vectors,
where a similarity function of the query with a key vector computes the weight assigned

to the corresponding value:

Attention(q, K, V) =V - Similarity(q, K) € R%. (2.10)
A common similarity function is the scaled dot-product (Vaswani et al., 2017):

KTq
Similarity(q, K) = softmax <\/E> e R", (2.11)

where the softmax operator (Bridle, 1990), applied column-wise, normalizes the column
vectors into probability distributions. Attention is commonly used to contextualize the
query vector (the representation of a token belonging to the target sentence) with the

source sentence, represented by the key-value pairs.

Self-attention - Attention can also be used to compute a representation of the tokens
that encodes information from the whole sequence. For doing so, we can employ each token
as a query and all the tokens belonging to the sequence (included itself) as key-value pairs.
In practice, given the continuous representation of a sentence of |x| tokens, S € Rl we

can transform each token representation into query-key-value triplets by means of three
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Figure 2.1 — The Transformer - model architecture (Vaswani et al., 2017)

learnable matrices Wo, Wi, Wy, € R4l and perform scaled dot-product self-attention as

follows:

(WkS)T(WgS)
Vd

Attention(WoS, WS, Wy S) = WyS - softmax < > e R™l=l(2.12)

Self-attention allows the learning of token representations that are contextualised with the

other tokens within the sentence, which is essential to capture their meaning.

2.1.4.2 The Transformer

The Transformer encoder-decoder architecture (Vaswani et al., 2017) is a stack of 2 x N
building blocks, depicted in Figure 2.1. On top of the decoder, there is a learned linear

transformation and a softmax function to convert the decoder output to predicted token
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probabilities. Each component of the encoder and decoder blocks is described below.

Token and position embeddings - Both the encoder and the decoder take in input a
sum of learned token embeddings and position embeddings. The token embedding layer
consists in a lookup table that stores a learnable vectorial representation for each token in
the vocabulary. The input to this layer is a list of indices identifying the tokens of the input
sequence, and the output is their word embeddings. The embedding layer can be shared
between the encoder and the decoder. Position embeddings enable the model to capture
the input sentence’s sequentiality in the absence of recurrence. They are non-learnable
parameter vectors of size d,oq4e1, On€ for each token position ¢ = {1,2,...,|S|}, where S
is the continuous representation of either the source x or translation hypothesis y. The
resulting position embedding matrix P € RémederxI5| is defined as:

PE a1 = sin(t/10000?% dmodc) (2.13)
PFE(g2:41) = cos(t/100003 dmedet)) (2.14)

Thus, each encoding dimension d = {1, 2, ..., d;0de1} corresponds to two intertwined sinu-
soidal waves: a sine and a cosine. Some open-source implementations adopt a similar
definition,® which, instead of intertwining the sinusoidal waves, assigns the first half of

encoding dimensions d = {1,2, ..., %} a sine wave, and the second half a cosine wave:

sin (/1000034 dmede) ) if 1 < < Gmedel
PE@y) = &/ ) 2 (2.15)

c0s(t/10000C34/ dmoder) ) if dmodel < @ < dy e

1000 0.9
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-0.3
200 -0.6
-0.9
O T T
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d

Figure 2.2 — Sinusoidal position embedding of 1024 positions with 512 encoding dimensions.

6The fairseq implementation (Ott et al., 2019) we employ in our experiments follows this definition.
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Figure 2.3 — The dot-product between sinusoidal position embedding is symmetrical and

decays quickly with the distance between two positions (t; — o).

Figure 2.2 represents the encoding of |S| = 1024 positions over d,oe; = 512 encoding
dimensions, following this definition. Sinusoidal position embeddings have two interesting

properties:

e PE+k) can be represented as a linear function of PE,) for any fixed offset .
Therefore, the Transformer can easily learn to model relative distances between
tokens (Vaswani et al., 2017; Denk, 2019).

e The dot-product between position embeddings is symmetrical and decays quickly
with relative distance, as shown in Figure 2.3. Since the dot-product is the default
similarity function used in the Transformer’s attention mechanism (2.11), this
property can be easily reflected in the attention output, resulting in a discounting of

the weights attributed to distant values.

Multi-head attention - Instead of performing a single (self-)attention function with
dmoder-dimensional keys, values, and queries, multi-heading consists in projecting the
query-key-value triplets h times, with different linear projections into R%. Subsequently,
scaled dot-product attention is applied to each triplet. The output of each (self-)attention
is called head:

head; = Attention(W),S, Wi.S', Wi,S") e R3] (2.16)

where Wé e R%*ISI and Wi, Wi € R%*IS'l are the projection matrices. The resulting
vectors are then concatenated and linearly projected from RdexIS| to RémeaerxIS| with

another learnable matrix W¢:

MultiHead(Q, K, V) = Concat(head,, heads, . . ., head;,)W?° € Rmederx|5] (2.17)
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This process allows to jointly employ different attention patterns over the processed
sequences, hence extracting different linguistic features. The Transformer uses multi-head

attention in three different ways:

(i) Encoder blocks employ self-attention, applying the linear projections WiQ, WK and
WY to the same matrix S = S’, which is formed by the token representation output

from the previous block.

(ii) Decoder blocks employ masked self-attention, a variant of self-attention in which all
the elements of the target sequence that have not been decoded yet are masked out.
The masking is implemented by setting to —oo the values in input of the softmax that
need to be masked. The rationale for such masking is to preserve the auto-regressive

property of the decoder.

(iii) Decoder blocks also employ encoder-decoder cross-attention, after the masked self-
attention layer. Here, the queries come from the previous decoder layer, while the keys
and values come from the output of the encoder. Thus, every token representation
in the decoder can attend to the tokens representations in the encoder. In this case,
S # 5.

Feed-forward - After the multi-head attention layers, each block in the Transformer
applies two affine transformations with a ReLU activation (Nair and Hinton, 2010) in

between:
FF(S) = Wy(ReLU(W1S + by)) + by € Rbmoder 151, (2.18)

The learnable matrix W, € R4rF>*dmodet maps to a larger space, usually dpr = 4 X dnoder,
and then Wy € R%medet*drr projects back to R%medet

Add and normalize - Around each multi-head attention and feed-forward layer, there is

a skip-connection (He et al., 2016), followed by a layer normalization (Ba et al., 2016):

AddNorm(S) = Layer Norm(S + Layer(S)) (2.19)

2.1.4.3 Properties

The success of the Transformer is mainly ascribable to the use of self-attention for
sequential learning and modeling. In fact, a self-attention layer compares favorably to its
main alternatives, recurrent and convolutional layers, with respect to the three properties

described below.
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Layer Type Max Path Length Sequential Ops  Complexity

Self-attention O(1) O(1) O(|S? - dimoder)
Recurrent O(]5]) O(|S]) O(|S| - d,p4er)
Convolution O(logr(]S])) O(1) O(k - |S] - d2,0ier)

Table 2.1 — Maximum path length, sequential operations, and computational complexity
of the three main neural architectures for sequence modeling. |S| is the length of the
sequence to be modeled, d,,,qe; is the representation dimensionality, and & the kernel size

of convolutions.

Learnability of long-range dependencies - In many sequence modeling tasks, it is
crucial to model temporal contingencies that span long intervals in the sequences. The
ability to learn such dependencies depends on the length of the paths that forward and
backward signals have to traverse in the network. The shorter these paths, the easier it
is to learn long-range dependencies (Hochreiter et al., 2003). While self-attention relates
all positions to one another in a single forward pass, a recurrent layer needs a number
of forward passes equal to the sequence length |S| to relate the sequence’s last position
to the first one. Moreover, information flows in one single direction for a recurrent layer.
Therefore, relating the first and last positions to each other requires a bi-directional layer,
which increases complexity. In the case of convolutions, we need a stack of O(|S|/k) layers
to relate all the positions to one another, where k is the kernel size. With a careful choice
of dilations, the longest path can be shortened to O(logk(|S|)) (Kalchbrenner et al., 2016).

Parallelizability - The fewer sequential operations are necessary for the forward pass,
the faster it will be. Faster computation means faster training and inference. Self-attention
and convolution operations can be fully parallelized to process the whole sentence, while

each recurrent layer needs O(|S|) sequential operations.

Computational complexity - Whenever the sequence length 7' is smaller than the
representation dimensionality d,,.qci, self-attention layers are less complex than recurrent
and convolutional layers in terms of computation. Therefore, the Transformer is usually
the winning architecture to process textual sentences, but it becomes unpractical to process

long sequences such as full textual documents.

Table 2.1 represents these three properties with three variables: the maximum path length
as a proxy of the difficulty to learn long-range dependencies; the number of sequential
operations required to encode the sequence as a proxy of non-parallelizability; per-layer

computational complexity.
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Lexical ambiguity

EN-1: She is looking for a match.

EN-1.1:  She is looking for a partner.

EN-1.2:  She is looking for a wooden stick to set the fire.

Structural ambiguity

EN-2: Put the bottle on the table in the kitchen.
EN-2.1:  Put the bottle that is on the table in the kitchen.
EN-2.2:  Put the bottle on the table that is in the kitchen.

Scope ambiguity
EN-3: Every man loves a woman.
EN-3.1: For every man, there is a loved woman.

EN-3.2: There is one particular woman who is loved by every man.

Figure 2.4 — Linguistic ambiguity in its three main forms. Each ambiguous English sentence

is followed by two legit disambiguations in the same language.

2.2 Context-aware neural machine translation

2.2.1 Motivation: the ambiguity in translation

Natural language can be ambiguous and open to multiple interpretations. As formulated
by Chierchia and McConnell-Ginet (2000), "ambiguity arises when a single word or string
of words is associated in the language system with more than one meaning"'. Ambiguity
can be lexical, related to sentence structure, or to the multiplicity of possible scopes, as

illustrated in Figure 2.4:

When it comes to translating a source language, the problem of ambiguity gets more
complex because three sources of ambiguity interweave: the source language, the target

language, and the cross-lingual interface (Bawden, 2018).

Ambiguity from the source language. As we have just seen, a sentence can be
ambiguous for many reasons. In some cases, such as in poetic or comic language, the
ambiguity is intentional, and it is desirable to preserve it during translation. However,
preserving the same ambiguity in the target language is difficult and sometimes impossible
because there is no analogous wording. For instance, the first example in Figure 2.4
cannot be translated into French with the same level of ambiguity. It must therefore be

disambiguated in order to ensure the fluidity and adequacy of the translation:

Ambiguity from the target language. Specularly, an unambiguous expression in the
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EN-1: She is looking for a match.
FR-1.1: Elle cherche un partenaire.
FR-2.1: Elle cherche une allumette.

source language may become ambiguous in the target language. Again, ambiguities can
be lexical, structural, or of scope. For example, when a source word is translated with a

polysemous word in the target language, a lexical ambiguity appears. E.g. :

EN-1:  She fought for the best price.
FR-1: Elle s’est battue pour le meilleur prix.
Gloss:  She fought for the best price/prize.

Ambiguity from the cross-lingual transfer. This type of ambiguity is specific to
translation and concerns the mismatches in the conceptual spaces of the source and target
languages. The ambiguity becomes problematic when transferring meaning from one
language to another because it can hinder the translation’s adequacy and fluency. For
instance, the conceptual spaces of formality and familiarity are often problematic because
they vary from one language to another. For example, English does not support the T-V
(Tu-Vos) distinction, while French does. Therefore, the translation of the you pronoun
into the French tu (familiar) or vous (formal) requires more contextual elements for the
disambiguation. Inversely, the formality conveyed by the appropriate use of a French
pronoun can not be entirely translated into English, where formality is conveyed by other
morphological or discourse features, without there being a bijective mapping between

formal French pronouns and formal English expressions.

In translation, it is generally desirable to correctly solve the ambiguities arising from the
source sentence and the cross-lingual transfer of meaning. This is essential to guarantee
the translation’s fluency and adequacy. Sometimes, the ambiguities arising from the
target language also need to be disambiguated, if the context available in the target text
is insufficient for disambiguation by the reader. Usually, the longer the available text,
the easier the task of disambiguation, thanks to the enlarged linguistic context, i.e., any
linguistic information present in the text. Picking the right translation for a single word is
hard without intra-sentential context, and this is why NMT systems produce word-by-
word translations conditioned on the whole source sentence. However, these systems are
trained in a context-agnostic fashion, relying on a strong independence assumption: each
sentence of a document is independent from the others. In other words, every sentence
in a document contains the information needed to solve the ambiguities that arise when
translating it. Although this assumption holds for most sentences, it is wrong for others.

For instance, in the examples above, the intra-sentential context is insufficient to select an
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adequate translation.

Recently, Laubli et al. (2018) and Toral et al. (2018) showed that the ability to exploit
extra-sentential context is a crucial challenge for NMT to reach human parity. Voita et al.
(2019b) studied the output of a Transformer translating 2000 pairs of consecutive sentences
from English to Russian. They found that at least 7% of the sentence pairs were not
correctly translated because the system was agnostic to extra-sentential context.

In conclusion, we need a definition of NMT that is more aligned with how humans translate,
i.e., by exploiting all the linguistic information available to guarantee the most adequate

and fluent document translation.

2.2.2 Definition

A document-level NMT system models the conditional probability of the target document
Y = {y',y?, ...y} given the source document X = {z', =2, ..., !X}

IX] |yl

(Y|X HHP9 yt|y<t7Y<]7X) (220)

j=1t=1

where {yit, Y_;, X'} is the collection of all the sentences available in the source document,
and the document translated so far. While for the target document, we usually have access
to the past context only (<j), the future context (>7) is always available on the source side,
except for the last sentence of the document. In practice, most of the existing CANMT
systems make use of a smaller context than the available one, limiting themselves to a
few sentences in the past or the future (see Section 2.4). Therefore, we prefer to employ
the term context-aware NMT instead of document-level NMT. Using the neighbouring
context is a legit approximation, as it contains most of the valuable contextual information
(c.f. Miiller et al. (2018); Lopes et al. (2020); see also Section 3.3.2), i.e., the one that
helps disambiguate among similar translation alternatives. As for standard NMT, the
source and target tokens are mapped to continuous representations before decoding, and

the neural architecture is trained by maximizing the log-likelihood of the parallel corpus,

1 D
L£EC.0) =+ Z log Pp(Y¥| X% (2.21)
=1
D X |y’
=D Z > Zlog Po(yl [yl Y25, X9, (2.22)
d 1j=1t=

over a document-level parallel corpus C = {(X!, Y1), (X2, Y?),...,(XP,YP)} consisting of
D documents. The main difference with the NMT training objective (Equation 2.3) is

that the translation of each sentence is considered to be dependent on the context.
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The generation of the translation is achieved by optimizing the context-aware translation

probability of the document through beam search:

V = argmax Pp(V|X), (2.23)

Yebeam(X,0)

2.2.3 Data

In Section 2.1.2 we have seen that some popular NMT corpora are organized in documents,
like Europarl, News Commentary, IWSLT and OpenSubtitles2018. These corpora can
also be employed for CANMT. In general, however, document-level corpora are rarer
than sentence-level ones. Although the natural source of written texts is documents,
many sentence-level datasets are assembled by scraping sentences from web pages with
algorithms that do not preserve the information about document boundaries. This is
the case for Common Crawl for example. Since deep learning models benefit from large
training data (Hestness et al., 2017; Kaplan et al., 2020), researchers usually resort to a
number of techniques to increase the total amount of training signal for learning CANMT.
The two most common techniques adopted are: pre-training the model on large sentence-
level corpora to perform context-agnostic NMT (also see the two-step training strategy
presented in Section 2.4.2), and back-translation of monolingual data (Junczys-Dowmunt,
2019; Sugiyama and Yoshinaga, 2019; Ma et al., 2021b). In fact, large document-level
monolingual corpora are freely available on the web, such as BookCorpus (Zhu et al., 2015)
and PG-19 (Rae et al., 2020).

Details on data splits, language pairs, data versions, and statistics are described in the

following chapter’s sections devoted to experiments.

2.3 Evaluation

As for NMT (Section 2.1.3), the context-aware translation objective can be rewritten to

highlight two concurrent desiderata, fluency and adequacy:

> Py(Y)Py(X|Y
argmax Py(Y|X) = argmax (YY) Py(X|Y)

g L Py(X) (2.24)

The translation objective being extended to the whole document, also fluency Pp(Y') and
adequacy Ps(X|Y) now refer to the document-level translation. This document-level
objective is more aligned to the one of a human translator, who strives to contextualize

each translated sentence with all the available information. As discussed in Section 2.2.1,



Chapter 2. Background 20

the extra-sentential linguistic context positively impacts fluency and adequacy by solving a
range of ambiguities that affect translation. Such ambiguities pertain to a few words only,
usually a tiny fraction of the whole document, but are nonetheless crucial to translation
quality (Li et al., 2014). Consequently, most average translation quality metrics like
BLEU are ill-equipped to measure improvements in solving them. Nevertheless, if such
translation ambiguities are not handled correctly, the document-level translation quality is
heavily damaged. Therefore, researchers in the field of CANMT have adopted evaluation
methods that specifically target the translation of ambiguous inter-sentential linguistic
phenomena (Popescu-Belis, 2019; Maruf et al., 2021). In this section, we discuss the
discourse phenomena that may be ambiguous in translation, and then outline the existing

evaluation methods for CANMT targeting such phenomena.

2.3.1 Translation ambiguities and discourse

In the linguistic literature, discourse is a general term for examples of language use,
which usually refers to large units of language such as paragraphs, conversations, and
interviews (Richards and Schmidt, 2013). Discourse can also be defined as a text that
exhibits two properties across sentences: cohesion and coherence. Following this definition,
every textual document amounts to a collage of discourse pieces, characterized by inter-
sentential linguistic phenomena that contribute to making it coherent and cohesive. As
it will be clear soon, cohesion and coherence during translation equates to resolving the
translation ambiguities that arise at the sentence level thanks to context. In the absence
of an appropriate use of context, cohesion and coherence in the target document are
hampered by the ambiguities arising from the source language or the cross-lingual transfer,
discussed in Section 2.2.1. Therefore, besides average translation quality scores, CANMT
systems can be evaluated by analyzing how the inter-sentential linguistic phenomena’
contributing to the cohesion and coherence of the source document are preserved in the

translated document.

2.3.1.1 Cohesion

Cohesion is a surface property of text that refers to the relationships between its ele-

ments (Richards and Schmidt, 2013). These relationships can be grammatical or lexical.

Lexical cohesion is guaranteed by the usage of semantically related words. Two discourse

"The reader shall note that the linguistic phenomena discussed here are not purely inter-sentential.
Our focus is on discourse phenomena, which span across multiple sentences by definition. However, the

same kind of phenomena, can also be present within a single sentence.
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phenomena contributing to lexical cohesion are lexical repetition and collocation. The
former consists in the repeated use of synonyms or hyponyms. The latter consists in using
series of words that co-occur more often than would be expected by chance (e.g., "Come to
an end"). These phenomena might generate lexical discrepancies during translation, that
only the context can solve. For instance, if the source repeats a word with multiple legit

translations, the same translation must be used in the target sentence at every repetition.

z'=! // ' (EN):  Would you like some soup? // Some soup?
y' // y"' (FR): Tu veux de la soupe? // De la soupe?
y=' // y** (FR): Tu veux de la soupe? // Du potage?

Notably, in this case, the MT system can not rely on source-side context to disambiguate
the English "soupe" into either "soupe" or "potage" (which is a French hyponym of "soupe'),

but it needs target-side context.

Grammatical cohesion, instead, is guaranteed by discourse phenomena like deizis and

ellipsis.

Deixis - The use of an expression that directly relates to a time, place, person(s), or part
of the same text and whose denotation depends upon context. In other words, deixis
consists in the use of words and phrases such as "me" or "here" or "later" or "good question!".
These phrases cannot be fully understood without additional contextual information: in
this case, the identity of the speaker ("me"), the speaker’s location ("here"), the time of
the conversation ("later"), and a previous segment of the discourse ("good question!").
During translation, source-side deixis can generate ambiguities leading to translation errors.
A typical case of problematic deixis is the one of coreferential pronouns (anaphoric or
cataphoric) (Dylgjeri and Kazazi, 2013), that can raise discrepancies related to the gender
or the T-V distinction. A translation ambiguity arises if the source language pronoun
is neutral concerning gender or formality, but the target language requires to make the

distinction. For instance:

! (EN): His cat eats so much.

' (EN): It always has a voracious appetite.
y“l (FR): 1] est towjours d’un appétit vorace.
y“? (FR):  Elle est toujours d’un appétit vorace.

Here, the neuter pronoun ("It") refers to an entity that was mentioned in the previous
linguistic context ("His cat") and it raises a gender ambiguity for a translator that does
not have access to it. In fact, French requires "It" to be translated into either "I1" or "Elle",

according to the gender of the coreferent.
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Ellipsis - The omission of words or phrases from sentences where they are unnecessary
because they have already been referred to or mentioned. For example, when the subject
of the verb in two co-ordinated clauses is the same, it may be omitted to avoid repetition.
In translation, elliptical constructions in the source language raise ambiguity in two cases.
Firstly, if the elided material affects the syntax of the sentence, which can lead to an
incorrect inflection of some translated words. Secondly, if the target language does not
allow the same types of ellipsis. For instance, French does not allow ellipsis with repetition
of an auxiliary like in English. Hence the auxiliary has to be translated using an alternative
expression that conveys the same meaning, which is different from the literal translation

that a translator would pick in case context was unknown:

2! (EN): T have met many people there.
' (EN):  Have you?

y“! (FR):  FEt toi?

y“? (FR):  As tu?

2.3.1.2 Coherence

Coherence is the ability of a text to convey meaning through the organization of its
sentences, each conveying a part of the overall meaning. A coherent text can express a
simple idea, a complex one, or even a whole narrative, without the necessity of either
grammatical or lexical cohesion between its sentences (Richards and Schmidt, 2013). For

instance, no cohesion devices are linking A’s question and B’s answer in this example:

A: What is the analysis of the software?
B:  Unfortunately, I still have some bugs.

However, the exchange is coherent since the reader understands that the analysis depends
on some software developed by B, which still suffers from some errors. This example
highlights a critical facet of coherency: lexical coherency. Lexical coherency concerns
how well a particular lexical choice fits semantically within the current discourse. Here,
coherency is guaranteed by the use of the word "bugs', which is semantically related
to "software" and makes us understand the situation. However, the word "bugs" can
mean both "insects" or "errors in the code" and could raise a lexical discrepancy during
translation should context not be adequately leveraged. Besides the appropriate use of
the lexicon, coherency is guaranteed by how information is organized within the text. A
meaningful organization requires appropriate sentence order and discourse connectives.

While an NMT system usually preserves the number and order of sentences of a text,
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Source:
context:  Oh, I hate flies. Look, there’s another one!
current:  Don’t worry, I'll kill it for you.

Target:

1 context: O je déteste les mouches. Regarde, il y en a une autre !
correct: T’inquiete, je la tuerai pour toi.

incorrect: T’inquiete, je [e tuerai pour toi.

2 context: O je déteste les moucherons. Regarde, il y en a un autre !
correct: T’inquiete, je le tuerai pour toi.

incorrect: T’inquiete, je la tuerai pour toi.

Figure 2.5 — Example block from the contrastive test set on coreference by Bawden et al.
(2018). "Mouches" and "moucherons" are alternative translations for "flies". The former

alternative is feminine (requires "la"), while the latter is masculine (requires 'le").

it might struggle with some discourse connectives whose meaning and function depend
heavily upon context. For instance, the English word "since" can represent both causal
or temporal discourse relation, according to the units of text that it is connecting, and

therefore its translation needs contextual disambiguation.

2.3.2 Test Suites

Improvements in CANMT can be measured with targeted test sets. In the literature, we
can find three kinds of test suites for this task: manual test suites, specialized test sets,

and contrastive test suites.

Manual test suites - Standardized procedures or templates for the manual evaluation
of a number of test cases based on a given machine translation task. For instance,
WMT19 provided not only ratings for each system output but also detailed human analysis
performed with manual test suites, such as the test suite on the coherence of English—Czech
translations by Rysova et al. (2019). Manual test suites are the most accurate way to judge
the quality of CANMT since human translators’ knowledge, and savoire faire represent
its target. However, manual evaluation is costly considering the volumes required by the
ongoing research and development of novel CANMT systems, each trained on a different

language pair.

Specialized test sets - The discourse phenomena that engender translation ambiguities
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are sparse. Therefore, the quality of their translation has a minor impact on the average
translation quality. Specialized test sets consist of sentences that are more densely
populated with specific discourse phenomena than the average document. Consequently,
average translation quality metrics like BLEU can be employed on these sets to evaluate
context-aware translation. Usually, sentences are grouped in minimal documents where
the target phenomenon is present at least once. For example, Voita et al. (2018) built
a specialized English—Russian test set by extracting from OpenSubtitles2016 (Lison
and Tiedemann, 2016) all the sentences containing at least an anaphoric pronoun whose
nominal antecedent belongs to the previous sentence. As a result, this specialized test
set consists of several minimal documents of two sentences, whose first sentence contains
a nominal antecedent and the second a coreferential pronoun. Similarly, Cai and Xiong
(2020) built a specialized test set focused on the English—Chinese translation of pronouns,
discourse connectives, and ellipsis, while Wong et al. (2020) focused on the translation of

cataphoric pronouns.

Contrastive test sets - Collections of contrastive examples, like those depicted in Fig-
ure 2.5. Each example consists of a source sentence paired with a reference translation and
some corrupted versions of the reference. The reference is corrupted by substituting specific
words representing the targeted discourse phenomenon (e.g., the third-person pronouns).
The substitution is made with some pre-established alternatives (e.g., the third-person
pronouns with a different gender than the reference). Models are assessed on their ability
to rank the correct translation before the incorrect ones. The successful ranking depends
on the ability of the system to exploit the relevant linguistic context, which is provided
for both the source and the target side. In other words, the ranking accuracy reflects
the ability of the CANMT system to disambiguate a specific kind of discourse-related
translation ambiguity by leveraging context. However, a system that correctly ranks a
contrastive example is not guaranteed to generate the uncorrupted reference. The system
may well generate a different translation from all those provided in the contrastive example.
In conclusion, contrastive sets provide a direct measure of a system’s context-modeling
ability but shall be used in conjunction with average translation quality metrics like BLEU
or COMET. Unfortunately, contrastive test sets are expensive to build and are available

for a limited set of discourse phenomena and language pairs.

2.3.2.1 Contrastive test sets in our experiments

Described below are the test suites that we employed for the experiments presented in the

following chapters.

En—De ContraPro (Miiller et al., 2018). A large-scale test set from OpenSubti-



Chapter 2. Background 25

Source

context-5: I'm positive.

context-4:  Well, maybe our hacker removed the device.
context-3: Wanted it to remain undetected.

context-2:  Wait, wait, guys, it just showed up.
context-1: And... now it’s gone.

current: That means it’s moving.

Target

context-5:  Sir et certain.

context-4: Peut-étre que notre hacker a déplacé 'appareil.
context-3:  Voulant qu’il reste indétectable.

context-2: Le voila.

context-1: Maintenant il n’est plus la.

correct: Ca veut dire qu’i/ bouge.

incorrect:  Ca veut dire qu’elle bouge.

Figure 2.6 — Contrastive example from the En—Fr ContraPro by Lopes et al. (2020).
"Device" is masculine, as well as its French translation "appareil'. Therefore, the correct
translation of the pronoun "it", appearing in the current sentence, is the masculine pronoun
"il". The disambiguating context in underlined. Interestingly, this example showcases how
the target-side context can be more informative than the source side in contrastive test

sets.

tles2018 (Lison et al., 2018) that measures translation accuracy of the English anaphoric
pronoun 7t into the corresponding German translations er, sie or es. Examples are bal-
anced across the three pronoun classes (4,000 examples each). Each example requires
identifying the nominal antecedent for a successful ranking. The nominal antecedent
can be found either in the current sentence or in its context, which consists of up to
five sentences in the past. Contrastive examples are created by changing the pronoun
of the reference translation with wrong pronouns, while the nominal antecedent is kept
unchanged. Therefore, this test suite can evaluate all kinds of CANMT systems (modeling

either source-side context, target-side, or both).

En—Fr ContraPro (Lopes et al., 2020). A large-scale test set from OpenSubtitles2018,
analogous to the previous one but focused on the translation of two English pronouns: it
and they. It consists of 3,500 examples for each target pronoun type: il or elle for it, ils or

elles for they. Figure 2.6 portrays an example from this test set.
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Set Total d=0 d=1 d=2 d=3 d>3
En—De ContraPro 12000 2400 7075 1510 573 442
En—Fr ContraPro 14000 5986 4566 1629 880 939
Voita’s Deixis 3000 0 1000 1000 1000 O
Voita’s Lexical Cohesion 2000 0 865 630 515 0
Voita’s Ellipsis inf 500 0 n.a. n.a. n.a. 0
Voita’s Ellipsis vp 500 0 n.a. n.a. n.a. 0

Table 2.2 — Number of test istances of each contrastive set, and their distribution according
to the distance (in number of sentences) of the disambiguating context. This detail is

unknown for the subsets on ellipsis of Voita’s contrastive set.

En—Ru Voita’s test set (Voita et al., 2019b). It is a collection of sentence-pairs from
OpenSubtitles2018 organized in 4 subsets that test for different discourse phenomenona
needing contextual disambiguation: a test set for deixis with 3000 examples, one for
lexical cohesion with 2000 examples, and two test sets for ellipsis. The first contains 500
contrastive examples on verb phrase ellipsis, the second 500 examples on "inflection" ellipsis,
which refers to the kind of ellipsis affecting the morphological form of some words of the
sentence with the elided content. Each contrastive example comes along with the three
previous sentences, where the translation system can find the context necessary to the
disambiguation of the discourse phenomenon. The contrastive examples are constructed by
modifying the antecedent in the target context provided, as done for the examples shown
in Figure 2.5, except for the verb phrase ellipsis subset. Therefore, CANMT systems
modeling source-side context only can not be evaluated on deixis, lexical cohesion, and
"inflection" ellipsis.

Table 2.2 summarizes some details about each of the above contrastive sets.

2.3.3 Automatic Metrics

Along the years, researchers have proposed some automatic metrics for machine translation
targeting discourse phenomena. Back in the days of SMT, Hardmeier and Federico (2010)
proposed an automatic evaluation metric for pronomial anaphora inspired by BLEU, called
AutoPRF. Following their work, Miculicich Werlen and Popescu-Belis (2017) conceived
APT, a metric to evaluate the accuracy of pronoun translation by aligning a candidate and
a reference translation. The metric counts the number of identical and different pronouns,
accounting for legitimate variations and omitted pronouns, and then combines all counts

into one score. APT is language-specific and pronoun-specific, since it is based on specific
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alignment software and heuristics. Unfortunately, (Guillou and Hardmeier, 2018) showed
that these automatic metrics suffer from noisy alignments between the reference and the
candidate translations, to the detriment of their correlation with human judgments. Later,
Jwalapuram et al. (2019) open-sourced an automatic metric for context-aware pronoun
translation from many source languages to English. The reference translations are coupled
with a noisy version in which the reference pronoun has been replaced with a potentially
incorrect one. The authors trained a neural model on this dataset that learns to rank
English pronoun pairs, discerning the good from bad pronoun translations independently
from the source language and the reference. Other metrics have been proposed for the
evaluation of lexical cohesion (Wong and Kit, 2012) and discourse connectives (Hajlaoui
and Popescu-Belis, 2013). Wong and Kit (2012) proposed to evaluate the document-level
abundance of lexical cohesion devices with two simple metrics. A stemming algorithm
(Porter, 1980) is used to identify word stems for each content word. Words with the
same stem are identified and counted as repetitions. Then, synonyms and superordinates
are clustered into semantic groups with WordNet (Fellbaum, 1998). Words belonging to
the same semantic group or close semantic groups are counted as synonyms. The two
metrics on lexical coherence and cohesion are then defined as repetitions/contentwords

and synonyms/contentwords, respectively.

Automatic metrics are inexpensive compared to human evaluation, and they can also be
used for tuning CANMT systems besides evaluation. Moreover, despite being language-
specific, automatic metrics can be extended to other language pairs, given the availability of
the needed software like language parsers, alignment software, stemmers, lexical databases.
However, such software is intrinsically prone to errors, especially for less common language
pairs, and the heuristics guiding these metrics are often too simplistic. These two elements
often entail poor correlation with human judgments (Wong and Kit, 2012; Guillou and
Hardmeier, 2018).

2.3.4 Statistical significance testing

When comparing the performance of different trained systems, following one of the above
evaluation techniques, we must ensure that performance differences are not coincidental
before stating that one system is better. System evaluation is always performed on a
reduced sample of translation pairs, which is meant to represent a larger, and potentially
boundless population of documents to be translated. Therefore, should we measure a
difference between two systems’ performance, it might be simply due to the specific
sample that we have selected. A slightly different sample might have produced the

opposite result, even if both samples represent the same population with the same degree
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of representativeness. Statistical significance tests are used to decide whether we can
reject the null hypothesis, stating that the performance difference between two trained
systems is null on the population represented by the sample, under the assumption that
the sample is indeed representative of it. In order to do so, significance tests compute
the probability (p-value) of obtaining a performance difference greater or equal to the
observed difference, on another sample from the same population, if the null hypothesis
were true. If the p-value is lower than a certain threshold, usually 0.05, then we can reject
the null hypothesis and affirm that the difference in performance measured between the
two systems is statistically significant. Evidently, the p-value is inversely proportional
to both sample size and performance difference. The closer the size of the sample to the
size of the population, the more representative it is presumably. The wider the difference
between two systems on the sample, the more likely we will measure a similar difference

on similar samples.

In practice, several tests exist for statistical significance, some of which are based on
certain hypotheses about the distribution of the performance differences observed in the
sample. When comparing to CANMT systems, we do not have any prior knowledge about
such distribution, and therefore we must resort to so-called non-parametric tests (Dror
et al., 2018). In particular, in our experiments, we will use two different non-parametric

tests:

« McNemar’s test McNemar (1947) for comparing accuracy results on the contrastive
test sets. This test is specifically designed for paired nominal observations, which
is exactly the situation encountered in contrastive test sets: each system obtains a
binary outcome (correct/incorrect ranking) for each contrastive example where it

has to rank the correct translation higher than the incorrect ones.

« Approximate randomization (Riezler and Maxwell, 2005) for all the other cases,

e.g., for comparing BLEU scores, with the sole exception of COMET scores.®
Approximate randomization is based on resampling and it can be applied to non-
binary, non-paired scores without requiring compliance to any hypothesis about their

distribution (contrarily to, for instance, the Wilcoxon test (Wilcoxon, 1946)).

It is worth noticing that, a statistically significant improvement of a trained system over
another, on a particular test set, is not enough to affirm that the first system is superior
to the second (Carver, 2012). The reason is twofold. First, a single test set might not be

representative of the population that we target with our approach. Second, a single trained

8Whose official library offers a built-in tool for the calculation of statistical significance with the paired
T-Test and bootstrap resampling (Koehn, 2004).
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system can not be fully representative of an approach such as a neural architecture or a
training strategy because randomness affects it at various levels, from the initialization of
the trainable parameters to the shuffling of the data. For this reason, we always adopt
more than one test set, possibly sampled from different linguistic domains and language
pairs. In cases where we measure minor differences between concurring systems, before
making conclusions about the superiority of one system over the other, we run multiple
experiments with different random seeds and then average the results. This procedure

should alleviate the noise affecting a single experiment.

2.4 Approaches

In this section, we outline the approaches and architectures to context-aware NMT that
have been proposed in the literature. According to a popular taxonomy (Kim et al.,
2019), we group them in two families: concatenation approaches (Section 2.4.1) and
multi-encoding approaches (Section 2.4.2), following . In Section 2.4.3 we will overview

some approaches that do not fit in either of these families.

2.4.1 Concatenation approaches

Strategy Training Inference

Sliding2tol y’ Yy’
Sliding2to2 Yy lS>yl gyl
Jumping2to2 y/l<S>y’ yi <S>y’

Figure 2.7 — System output of the three main concatenation strategies with x’/~1<S>x’
as input. <S> is a special token that marks the boundaries between sentences. For
simplicity, we omit the end-of-sequence tag <E>. At inference time, the output reported
for SlidingKtoK is what is kept after discarding the translation of the context.

The most straightforward approach to CANMT consists in concatenating the context to
the current sentence before feeding it to the standard encoder-decoder architecture (Tiede-
mann and Scherrer, 2017; Agrawal et al., 2018; Junczys-Dowmunt, 2019). Concatenation
approaches have the advantage of using the same architecture of standard context-agnostic
NMT, so that all the parameters can be easily initialized with those of a pre-trained
context-agnostic NMT system. Besides the end-of-sequence token <E>, a special token <S>

is introduced to mark the boundaries between the concatenated sentences. Both past and
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future sentences can be concatenated to the current sentence &/, until document boundaries
are reached. In practice, concatenating the full document X might be impossible with
the Transformer model since self-attention’s complexity scales quadratically with sequence
length (see Section 2.1.4.3). Usually, only a fixed number of sentences K : K < |X] is
concatenated. Decoding can then follow three strategies: SlidingKtol, SlidingKtoK, or
JumpingKtoK.

SlidingKtol (Tiedemann and Scherrer, 2017; Agrawal et al., 2018) - The model decodes
a single sentence: the current one. In this case, the model does not have access to the

target-side context.

SlidingKtoK (Tiedemann and Scherrer, 2017; Agrawal et al., 2018) - The model generates
the translation of a window of K source sentences: the current (jth) sentence and the
K — 1 sentences concatenated as context on the source side. By decoding the full sequence,
the model also has access to the target-side past context. Despite the increased complexity,
exploiting target-side context proved useful in most of the studies on concatenation
approaches (Agrawal et al., 2018; Scherrer et al., 2019a; Lopes et al., 2020; Ma et al.,
2021b). The training loss is calculated over the whole output. However, the translation
of the context is discarded at inference time. Then, the window is slid by one position
forward to repeat the process for the (7 + 1)th sentence and its context. The downside of
this approach is the necessity to translate every sentence in the document as many times

as the size K of the sliding window (except for sentences close to document boundaries).

JumpingKtoK (Junczys-Dowmunt, 2019) - Similarly to the SlidingKtoK strategy, the
whole concatenated sequence is translated by the model. However, the translated context
is not discarded at inference time: the entire translated sequence of K sentences is kept.
Then, the model jumps K positions forward, to the next window of K sentences, and
repeats the process. Therefore, every sentence is translated a single time at inference,
differently from SlidingKtoK. Instead, the training phase can be identical. The input
sequences can be formed by either sliding a window of K sentences over the training data
or by jumping K positions forward for each example. The former training strategy is
arguably more convenient because it results in more training instances. The downside of
JumpingKtoK is not distinguishing between current and context sentences. Each sentence
in the window is “current” because it is kept at inference time. Hence, the available context
is different for each sentence in the translated window. The first sentence in the window
has only access to K — 1 source sentences in the future, while the last sentence can see the
past K — 1 sentences, both source and target, but no future. This strategy is suboptimal
whenever the size of the window K < |X| because the model loses access to important

context for some sentences.
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Figure 2.7 outlines these three concatenation approaches, in the case of one previous

sentence as context (K = 2).

Concatenation approaches are trained by optimizing the same objective function as
standard NMT, defined in Equation 2.3:

IC]

1
L0 =172 Zlog Py(yiclao) (2.25)
c| lvk|
\C| Z Z log Py( th‘yK ) (2.26)
j=11t=1

The only difference consists in the source and target sequences under consideration, which
are concatenations of K source and target sentences, respectively, so that the likelihood of

the current source and target sentences is conditioned on their context:

J—K+1 J—K+2

; i1 .
ID]K = <s>T <s>...<s>x7 <S>CC]<E>, (227)

J—K+1 J—K+2

yﬂ =Y <s>Y <s>...<s>yj_1<s>'y‘j<E>. (2.28)
Both past and future context can be concatenated to the current pair 7, ¢?, although here
we consider only the past context for simplicity. In the case of SlidingKtol, the likelihood

of the target sequence is not conditioned on contextual translations, i.e., y% = 9.

2.4.2 Multi-encoding approaches

Multi-encoding models couple a self-standing sentence-level NMT system, with parameters
fs, with additional parameters for modeling the context either on the source side, target
side, or both. We refer to these parameters as the contextual parameters 6. The complete
context-aware architecture has parameters © = [0s; 0], and it can model context from
the past, future, or both. Most of the literature focuses on a few previous sentences, where
the relevant context is concentrated.

Most of the multi-encoding models can be described as instances of two architectural
families (Kim et al., 2019), which only differ in how the encoded representations of the
context and the current sentence are integrated. These two families are depicted in
Figure 2.8.

Outside integration - In this approach, the encoded representations are merged outside
the decoder (Maruf et al., 2018; Voita et al., 2018; Zhang et al., 2018; Miculicich et al.,
2018; Maruf et al., 2019; Zheng et al., 2020). Merging can happen in different ways, such

as by simply concatenating the encodings, by summing them with a gate, or with an
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Figure 2.8 — General outline of multi-encoding models with outside (left) and inside (right)
context integration. Modules with sentence-level parameters 6 have a red background,

while the green background is for contextual parameters 6¢.

attention mechanism whose queries from the current sentence attend to context token
representations. A popular multi-encoding architecture with outside integration is one
proposed by Miculicich et al. (2018). They adopt a hierarchical attention network to
encode the context and integrate it with the information processed by the standard NMT

encoder, as depicted in Figure 2.9.

Inside integration - The decoder attends to the context representations directly, using
its internal representation of the decoded history as queries (Tu et al., 2018; Kuang et al.,
2018; Bawden et al., 2018; Voita et al., 2019b; Tan et al., 2019). The attention layers in
charge of integrating the context are usually embedded in the decoder and intertwined

with its other layers.

Including past target-side context can be harmful because of the error propagation
problem (Zhang et al., 2018, 2020a), but most of the literature shows it to be important
to make the most out of context. Past works have successfully included target-side context

information in two ways:

(i) Translating past sentences along with the current one and then discarding them, as
in SlidingKtoK (Bawden et al., 2018).

(ii) By making the decoder attend the target-side hidden representations or embeddings
of previously decoded sentences (Miculicich et al., 2018; Voita et al., 2019b; Maruf

et al., 2019; Zheng et al., 2020). In this case, some extra parameters can be added
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Figure 2.9 — Ilustration of the hierarchical attention network (HAN) adopted by Mi-
culicich et al. (2018) to encode context and integrate it with the context-agnostic token
representations. The + symbol denotes attention, while ¢ is a gate function. The context-
agnostic representation h; of the token x; is transformed into two queries: ¢, and g,. The
former is employed to attend the tokens h{ of the jth context sentence. As a result, a
contextualized representation s; of h; is generated for each context sentence. g5 attends
to these representations to form a more global contextual representation d;. This is then
merged with the context-agnostic representation h; by means of a gate, resulting in the

context-aware representation hy.
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to encode and integrate target-side context. The disadvantage of this approach is
that sentences can not be batched at inference time, but they have to be translated

one at a time, following the order of the document.

Many works have found it helpful to share parameters between the standard encoder
and the context encoder (Voita et al., 2018; Li et al., 2020), which is equivalent to
having a single encoder for both current and context sentences. Thus, the number of
contextual parameters to learn, |6c|, is drastically reduced. Moreover, sharing parameters
allows caching token representations from the current sentence to employ them in later
steps as context representations. Two-pass approaches represent an extreme variant of

representation caching with multi-encoding models (Voita et al., 2019a; Zheng et al., 2020).

Two-pass approaches - A context-agnostic model (or encoder) makes a first sentence-
level translation (or encoding) of the entire document. All the context-agnostic token
representations are cached. Then, a second pass is performed with the context-integration
modules, which exploit the context-agnostic drafts as contextual information for the current
sentence. This technique has the advantage of making future target-side context available,

while usually, it is not.

Two-step training - Multi-encoding models are commonly trained following a two-step
strategy (Tu et al., 2018; Zhang et al., 2018; Miculicich et al., 2018; Li et al., 2020), in
order to exploit sentence-level parallel corpora before document-level training. The first
step involves training f¢ independently on a sentence-level parallel corpus Cg. Secondarily,
contextual parameters 6o are trained on a document-level parallel corpus Cp while fine-

tuning or freezing 6g. Note that Cg can also include sentences from Cp.

Encoding sentence position - Multi-encoding CANMT can benefit from knowing the
distance of context sentences from the current one. Knowing the order of contextual
information is essential to understand the context fully and to select between alternative
contextual clues. The standard positional encoding proposed by Vaswani et al. (2017)
is insufficient because sentences are encoded separately, re-initializing token positions.
Different strategies have been proposed in the literature to include sentence position

information in multi-encoding architectures:

(i) Adding a sentence distance embedding to each token, that tells the model how far

away tokens are from the current sentence (Voita et al., 2019b).

(ii) Adding a sentence position embedding, similar to classical positional encoding but

for the position of the segment within the document (Zheng et al., 2020).

(iii) Assign token positional embeddings progressively to the current sentence, then to
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the previous one, and so on, so that far away sentences have high values of positional
embeddings (Li et al., 2019).

2.4.3 Other approaches

A few CANMT approaches do not fall into either of the two families presented above.
For instance, some approaches focus on leveraging document-level monolingual data to
learn to contextualize NMT. Martinez Garcia et al. (2019) and Yu et al. (2020) train a
context-aware language model on a target-language corpus and then generate translations
by fusioning the softmax output of the NMT decoder and the language model. Voita et al.
(2019a) devised an automatic post-editing system called DocRepair, trained to turn the
context-agnostic translation of a document into a contextualized, consistent translation.
Training data for DocRepair are generated in two steps, each involving a context-agnostic
NMT system. First, the target-language monolingual documents are translated into the
source language. Then, they are translated back from the source to the target language.
Thus, the training set consists of document pairs comprising the original document and a
context-agnostic translation of it. Being an automatic post-editing system, DocRepair can

work on top of whatever MT system.

Some concatenation or multi-encoding approaches try to integrate discourse-related in-
formation as additional input features. Examples of extra features are lexical chains of
semantically similar words to promote word sense disambiguation (Rios Gonzales et al.,

2017), or coreference chains to promote coreference resolution (Stojanovski and Fraser,
2018).

Finally, other research works looked at the problem of CANMT from a learning perspective,
trying to include context in the standard learning objective (Saunders et al., 2020; Jean
and Cho, 2019). For example, Jean and Cho (2019) designed a regularisation term that is
applied at the token, sentence, and corpus levels and that is based on a pair-wise ranking
loss that pushes the model to assign a higher log-probability to a translation paired with
the correct context than to a translation without context. More recently, (Hwang et al.,

2021) proposed a similar approach based on a contrastive loss.

2.4.4 Challenges

Both concatenation and multi-encoding approaches have strengths and weaknesses, that
are almost complementary. Concatenation approaches have the advantage of employing the

standard encoder-decoder architecture without any additional learnable parameter. Hence,
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learning intra-sentential contextualization can be easily transfered to extra-sentential
token contextualization. In fact, translating a concatenation of sentences is equivalent to
translating a long sentence from an architectural standpoint. Nonetheless, concatenating

sentences results in processing longer sequences, which brings three main downsides.

Error accumulation - If a standard NMT system generates some wrong tokens, these
will negatively impact the generation of the rest of the sequence because generation follows
an auto-regressive strategy (Ranzato et al., 2016). The longer the sequence to generate,
the higher the risk of accumulating errors. In the case of SlidingKtoK and JumpingKtoK,

the risk of error accumulation increases with K (Zhang et al., 2020a).

Computational complexity - Self-attention’s complexity increases quadratically with
sequence length, as discussed in Section 2.1.4.3, slowing down training and forcing the
selection of smaller batch sizes, which may be sub-optimal for Transformers (Popel and
Bojar, 2018). Ma et al. (2020) proposed to lighten the computational burden of processing
long sequences by adopting a SlidingKtol approach where the K-1 source context sentences
are treated in the first self-attention block of the encoder only. Subsequently, the latent
representations of the context sentences are discarded, and the remaining layers deal with
the representation of the current sequence. Another possible solution is the adoption of
self-attention approximations with sub-quadratic complexity (Kitaev et al., 2020; Rae
et al., 2020; Beltagy et al., 2020; Wang et al., 2020; Zaheer et al., 2020). In a preliminary
analysis, we have trained and tested the Luna architecture (Ma et al., 2021a), which is
equivalent to the Transformer apart from the adoption of Luna attention, as a drop-in
replacement for the regular self-attention. Luna attention’s complexity is linear with
respect to sequence length, although it requires sequential computation for each time-step.
Although Luna is not the first self-attentive alternative with linear complexity (Tay et al.,
2020), it compares favorably in terms of performance on long-sequence tasks to other
linearly-complex architectures such as the Linear Transformer (Katharopoulos et al., 2020)
and the Performer (Choromanski et al., 2021). Unfortunately, our preliminary results were
not encouraging since we measured degraded performance with Luna attention both on
short and long concatenations, in line with Petrick et al. (2022)’s work on CANMT with

sub-quadratic attention.

Learning challenge - When sequences are long, it is challenging for the attention
mechanism to match tokens within the sequence correctly, and the risk of paying at-
tention to irrelevant elements increases. Paying attention to the "wrong tokens" can
harm intra-sentential and extra-sentential contextualization, associating queries with the
wrong latent features. Liu et al. (2020b) showed that learning to translate long sequences
comprised of many sentences fails without the employment of large-scale pre-training

or data-augmentation (Junczys-Dowmunt, 2019). Bao et al. (2021) provided some ev-
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Figure 2.10 — Hlustration of the Long-Short Term Masking Self-Attention by Zhang et al.
(2020a). Green nodes: global self-attention,which is the same as the standard self-attention.
Pinknodes: local self-attention, which does not have access to the information from the

document context. The red dash lines are removed in the decoder attention.
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idence about this learning challenge. They analyzed the distribution of the attention
weights in concatenation models stuck in local minima with a high validation loss. Their
attention weights distribution is flat (with high entropy), both in the encoder and the
decoder. In other words, attention struggles to learn the locality properties of language,
i.e., the principles of proximity between linguistic elements characterizing many linguistic
structures (Rizzi, 2013; Hardmeier, 2012). Instead, successful models converging to low
validation loss present a distribution of the attention weights that is less flat and more
peaked on a few tokens within the sequence. As a solution, Zhang et al. (2020a) and Bao
et al. (2021) proposed two modifications of the standard Transformer architecture that
encourage a certain degree of local focus of the attention module, at the cost of adding some
learnable parameters. Zhang et al. (2020a) introduced a self-attention mask to enable local
self-attention on top of the standard self-attention. They refer to standard self-attention
as global self-attention because each token can attend to all the tokens belonging to the
concatenation. Instead, the proposed masking prevents queries to attend the tokens
outside their own sentence, as pictured in Figure 2.10. Thus, two hidden representations
are produced for every token: the local representation that is context-agnostic and the
global representation that is context-aware but noisier, "distracted" by the aboundant
contextual information. The two representations are then concatenated, and the model
learns how to trade off between them with a linear projection. Bao et al. (2021) proposed
a very similar solution, which extends the idea of local self-attention to cross-attention.
Instead of using the combination of local and global attention in every layer, they use
local attention in every layer and global attention only in the top layers of the decoder.
They explain this choice by mentioning that the standard NMT Transformer architecture
models long distance syntactic relations in its top layers, while the lower layers mostly
catch local syntactic relations (Jawahar et al., 2019). In Chapters 4 and 5 we will propose

and evaluate some light-weight approaches to tackle this learning challenge.

Multi-encoding architectures are more flexible considering context length. First, computa-
tional complexity does not grow quadratically with context length, which can translate into
increased efficiency during inference. Second, they all separate the local encoding of the
current sentence from the global, contextualized encoding, thus preventing self-attention
from getting too "distracted" by context. Finally, they usually generate the current sentence
alone, avoiding the problem of error accumulation. Another advantage of multi-encoding
models is that they can encode context with a different network than the one used for
the current sentence, potentially in a more efficient way. Intuitively, encoding the context
does not require the same sophistication as encoding the current sentence. We do not
need to translate context but only extract a few features that are helpful for the current

sentence. Therefore, the contextual encoder could be a shallower, more efficient version
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of the current-sentence encoder (Zhang et al., 2018). Alternatively, it could be based
on a different architecture, such as one that approximates attention with sub-quadratic
complexity, while the current sentence could still be processed with the original attention
mechanism (see Section 6.2.2).

However, multi-encoding architectures also present some non-trivial challenges related
to the fact of having to learn additional parameters. These parameters are in charge of
contextualization, which requires to learn three different tasks:

(i) encoding the context meaningfully;
(ii) identifying the relevant context;

(iii) merging the relevant context with the local information.

The first task can be bypassed by sharing the parameters between the standard and context
encoder. Instead, the selection and integration of context have to be learned from scratch
on document-level data. However, learning to identify the relevant tokens among the many
available in the context is challenging and presents a significant obstacle: the available
training signal is as sparse as the discourse phenomena involved. We will formalize and

discuss this learning challenge thoroughly in Chapter 3.

In conclusion, it is not yet clear which approach is best, and the scientific community is
still researching both concatenation, and multi-encoding approaches (Ma et al., 2021b;
Zhang et al., 2021; Yin et al., 2021; Zhang et al., 2022; Sun et al., 2022; Guo et al., 2022;
Tan et al., 2022). We hope to contribute to this collective effort with this thesis.
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3.1 Introduction

As discussed in Section 2.4.4, multi-encoding models are more flexible than concatenation
approaches and potentially more efficient, but they have been criticized for acting as
mere regularization methods (Kim et al., 2019; Li et al., 2020). In some cases, they have
even been shown to perform worse than sentence-level systems on contrastive test sets
for the disambiguation of discourse phenomena (Lopes et al., 2020). In this chapter, we
address this criticism by showing that training multi-encoding models is challenging for

two reasons:

o the sparsity of contextual training signal, i.e., the signal that pushes systems to
translate in a context-aware fashion, which comes from the words that need context

to be correctly translated;

 the sparsity of relevant context words, the ones needed to disambiguate translation.

A trivial way to improve context-aware learning is by increasing the amount of document-
level training data. Large document-level parallel corpora are not always available, but
some works have proposed data augmentation techniques to remedy this lack (Sugiyama
and Yoshinaga, 2019; Stojanovski et al., 2020; Huo et al., 2020). However, as we will show
in our experimental section, this solution is not efficient and often sub-optimal. Therefore,
we introduce a novel pre-training strategy, divide and rule (dér), that is based on a simple
and yet powerful technique to augment the contextual training signal and to ease learning
efficiently: splitting parallel sentences into segments (see Figure 3.1). Simply put, feeding
a context-aware model with a sequence of incomplete, shorter, consecutive segments forces
it to look for context (i.e., surrounding segments) more frequently and makes it easier to
retrieve relevant context because segments are shorter. This results in faster and improved
learning. We pre-train multi-encoding models on split datasets and evaluate them in two

ways: BLEU score and a contrastive evaluation of translation of discourse phenomena.
Our main contributions are the following:
o we show that context-aware multi-encoding models need to be trained carefully

because the contextual training signal is sparse, as well as the context elements

useful for contextualization;

o we propose the dér pre-training strategy, which facilitates the training of contextual

parameters by splitting sentences into segments, with four splitting variants;

« we support this strategy with an analysis of the impact of splitting on the distribution

of discourse phenomena;
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il

X He said that it was a project of peace
x»2 and unity and that it brought people together .
yol Il disait que ¢’ était un projet de paix
yi2 et d’ unité et qu’ il réunissait les gens .
~x?! 1 think single-cell organisms are
x7?  possible within two years .
yt Je pense que les organismes unicellulaires
y’2  sont possibles dans 2 ans .

Figure 3.1 — Example of sentence pairs from En—Fr IWSLT17, after being tokenized and
split in the middle. After the splitting, some syntactic relations span across two segments

(underlined). Also, some source-side words are not parallel with their reference (in bold).

« we demonstrate that this strategy is both effective and efficient, as it allows multi-
encoding models to learn better and faster than by simply increasing the training
data.

3.2 The double challenge of sparsity

Some works criticized multi-encoding methods (Kim et al., 2019; Li et al., 2020), arguing
that they do not improve sentence-level baselines in terms of BLEU when the baseline
is well regularized. When there are improvements, it is argued that the context-encoder
works as a noise generator, making training more robust. The improvements are not to
be attributed to better context modeling. Along this path, Lopes et al. (2020) showed
that multi-encoding architectures struggle to model contextual information and even
deteriorate the performance of a sentence-level baseline on contrastive test sets. Many
proponents of multi-encoding models only show BLEU improvements without providing
any discourse-targeted evaluation. This does not allow an assessment of their context-
modeling capability. We posit that training the contextual parameters of multi-encoding
models is non-trivial because of two challenges: (i) the sparsity of the training signal,
which comes from the words that need context to be correctly translated (most of the
words of a sentence can be translated without context); (ii) the sparsity of context words
that are useful for contextualization (most of the context is useless). As such, missing the

right experimental setting can bring unsuccessful training and unconvincing results.
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Algorithm 1: Split parallel corpus

1: input: Parallel corpus C, minimum source length [,,;,, function wheresplit()
2: fori=1,...,|C| do

3. if len(x') = [, then

4 m,,m, = wheresplit(x’, y*, ...)
5: x" =x"and x"? =x,
6 y* =yl and y? =y,
7. end if

8: end for

9: return Split corpus Cp

3.2.1 More data?

A trivial way to offset sparsity is to increase the volume of training data. In fact, existing
works that report strong results with discourse-targeted evaluation train their contextual
parameters with millions of document-level sentence pairs (Bawden et al., 2018; Miiller
et al., 2018; Voita et al., 2019b; Zheng et al., 2020; Wong et al., 2020; Kang et al., 2020). In
contrast, many works in the literature train models with the TED talks’ subtitles released
by the IWSLT shared tasks (Cettolo et al., 2012), which only consist of a couple of hundred
thousand parallel sentences. In the experimental section (3.5), we will show that IWSLT’s
subtitles are not sufficient to train multi-encoding models effectively. It follows that one
cannot make fair comparisons between alternative architectures in such experimental
settings. On the other hand, we will provide empirical confirmation of the intuition that
increasing the volume of training data helps in learning contextual parameters. However,
this solution is inefficient and only partial to the double sparsity problem. Moreover, it
is not always possible: large document-level training sets may not be available in many
languages. In the following section, we propose a pre-training solution that makes efficient

use of the available data for learning contextual parameters effectively.

3.3 Proposed approach

One way to simulate document-level data is to split sentences into two or more segments
(Luong et al., 2016). In this way, intra-sentential syntactic relations are broken, and a
word previously disambiguated by looking at its neighbors in the sentence now requires
contextual information to be correctly translated. Moreover, splitting sentences increases

the concentration of relevant context words, as shown in Section 3.3.2. Within the
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framework of M'T, if we split the source sentence, its corresponding reference has to be
split too. The proposed approach, divide and rule (dé/r), consists in pre-training the model
on a dataset Cp that results from splitting all the sentences of a parallel corpus C that
have at least ,,;, tokens, as described by Algorithm 1. Each source-side sentence x¢, with
index i = 1, ...,|C|, is split into x*!* and x*?. Tts corresponding reference y’ is split into
y“! and y*2. The resulting corpus is a document-level parallel corpus Cp, such that, if the
original corpus C' was itself document-level, then Cp keeps the same document boundaries
than C. Figure 3.1 illustrates two examples of parallel sentences split in the middle. In
both instances, a CANMT system needs to look at x*! for translating x? correctly, i.e.,
to look at the past context. In the first one, the English neuter pronoun “it" could be
translated into “il" or “elle" according to the gender of its antecedent (there is no singular
neuter 3rd-person in French). The antecedent “a project", which is in the previous segment,
allows for disambiguating it into “il". In the second example, the adjective “possible” can
be correctly translated into its plural version “possibles” by looking back at the noun it

refers to: “organisms”.

3.3.1 Splitting methods

In Algorithm 1, the wheresplit function returns the token indices m, and m, of x* and y*,
where the sentence is split. In this work, we propose and experiment with four variants of

this function.

Middle-split. The simplest strategy is to split the source and the target in the middle. In
this case, wheresplit = middlesplit(x’, y*) returns m, = |len(x")/2] and m, = |len(y*)/2].
Following this method, it can happen that x* and y*/, with j = 1,2, are not parallel,
as illustrated in the second example of Figure 3.1. The verb “are” belongs to x“!, but
its translation “sont” does not belong to its corresponding reference segment y“!'. This
problem arises whenever the splitting separates a set of words from their reference, which
end up in the other segment. Evidently, this method requires that the two languages do
not have strong syntactic divergence, to avoid too large mismatches between x*/ and y*7,
with j = 1,2.

Aligned-split. As a solution to the misalignment problem between source and target
segments, we can calculate word alignments A° and use them to inform our splitting
strategy by setting wheresplit = alignedsplit(x’,y*, A*), where alignedsplit splits each
sentence close to the middle while avoiding to separate aligned words in different segments.

The word alignments of the ith sentence are a set of tuples:

A" = {(j, k)|} and y; are aligned},
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where j = 1,...,|x'| and k = 1, ..., |y’| are the indices of the words belonging to x* and
y', respectively. The alignedsplit method sets m, = |len(x")/2] and m, = max{k: (j,k) €
A' j < mg}. Then, it checks whether this choice is not breaking apart two aligned words.
Formally, it checks that:

T € x" Ayt eyt or T € x"? Ayt e y™?. (3.1)

If this condition is not encountered, it tries to split the sentence pairs closely, where
condition (3.1) is met. If the condition cannot be met (e.g., because one of the two

segments would be too short (<3 tokens)), alignedsplit falls back on middlesplit.

Synt-split. Splitting aims at breaking intra-sentential discourse phenomena in order to
force the model to exploit the context more frequently. Therefore, we propose a splitting
method that maximizes this objective. This method consists in retrieving syntactic
and semantic relations L (i.e., syntactic dependencies and some discourse phenomena)
in the training set, and leveraging this information to split sentences as close to the
middle as possible while breaking at least a relation, if present. Since not all discourse
phenomena raise translation ambiguities when broken, one can choose which phenomena
should be prioritized; in this work, we chose pronominal coreferences. The function
wheresplit = syntsplit(x’,y*, L") takes as input the coreference relation L’ detected by
CoreNLP (Manning et al., 2014) on the source sentence i. If L’ is not empty, a relevant
intra-sentential coreferential relation is present (in our experiments, we look at pronominal
coreferences). In this case, the algorithm checks whether splitting in the middle (mg =
|len(x%)/2]) allows breaking L', i.e., to separate the two syntactically-related tokens in
different segments. If middle-split does not achieve this goal, m, is set to the closest index
from the middle that breaks the relation, except for the case in which breaking the relation
would mean generating a too-short segment (<3 tokens). In this case, the algorithm falls
back to middle-split.

Multi-split. The methods above can be extended to splitting sentences into more than
two segments. The more we split sentences, the more likely it is that context is needed for

each segment, thus increasing the training signal for contextual parameters.

For more details, refer to Section 3.5.3.

3.3.2 Impact on discourse phenomena

To give an explicit picture of how and why splitting sentences helps to learn contextual
parameters, we processed the source training data of En—Fr IWSLT17 with CoreNLP (Man-

ning et al., 2014), and we computed some statistics on coreference chains and dependency
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Figure 3.2 — En—Fr IWSLT17: number of antecedents of anaphoric pronouns at a given
distance in terms of sentences or segments, normalized by the number of tokens the model

needs to attend to resolve the coreference.

parse trees, before and after applying the middle-split method. Statistics show how

splitting the sentences of a document helps in two ways:

More cases. Splitting generates new cases that require context for disambiguation,
making training signal more abundant. When syntactic dependencies are split into two
segments, the model needs to access the context for reconstructing the syntactic structure
of the source sentence and correctly translate it, as shown in Figure 3.1. To have an
idea of the magnitude of this effect, we calculated the percentage of the sentences where
the splitting method breaks at least one syntactic dependency between the main verb
of the sentence (the root) and : (i) the subject or object (18.1% of the sentences); (ii)
any complement (9.5%); (iii) any modifier (9.3%). Considering all the dependencies with
the root, except punctuation, we find that in 84.8% of the sentences at least a syntactic
dependency is broken. Given such a high proportion, the middle-split variant is a good
approximation of a syntactically supported splitting approach. These cases add up to
the many other cases of broken relations, such as coreferences, which make the overall

contextual training signal more abundant.

Denser cases. The splitting also shortens the average length of text sequences, which
eases the job of CANMT systems because they have to attend to fewer words while looking
for context. In Figure 3.2, we show how many antecedents of an anaphoric pronoun are
present in the data at a given distance d, expressed in number of sentences from the
current one for original data, and in number of segments for split data. d = 0 means
that both the pronoun and its antecedent are in the same sentence (or segment); d = 1

means that the antecedent is in the previous sentence (or segment), and so on. We show
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statistics up to d = 3, the maximum context distance we experiment with. The absolute
number of antecedents is normalized by the average length of a sentence or segment.
The resulting bar plot shows that splitting sentences into segments makes pronominal
antecedents denser in the set of context tokens the model is attending, which fosters
the learning of contextual parameters. The same effect applies to the other discourse

phenomena that require contextual disambiguation.

Coreferences - original data

d #tokens Occurrences

All Pronouns
0 21.01 67,864 (3230) 50,556 (2406)
1 42.02 68,703 (1635) 43,220 (1029)
2 63.03 35,780 (568) 21,234 (337)
3 84.04 25,533 (304) 14,284 (170)

Coreferences - split data

d #tokens Occurrences

All Pronouns
0 10.51 32,190 (3063) 24,328 (2315)
1 21.02 54,424 (2589) 37,966 (1806)
2 31.53 37,837 (1200) 23,732 (753)
3 42.04 22,529 (536) 14,035 (334)

Dependency trees

Split dependency Occurrences
subj or obj 41,065
complement 21,726
modifier 21,144
any 147,066

Table 3.1 — Occurrences of coreferential antecedents at a given distance d (in number of
sentences) from a mention in the current sentence, in the En—Fr IWSLT17 training data.
In brackets, the same figure is normalized by the average number of tokens the model has
to attend to resolve the coreference (#tokens). At the bottom, the number of sentences
for which at least one syntactic dependency is split into two segments when using the split
data.
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Coreferences - original data

d Ftokens Occurrences

All Pronouns

0 8.32 36,628 (4402) 27,179 (3267)
1 16.64 60,204 (3618) 41,652 (2503)
2 24.96 26,397 (1058) 647)
3 )

16,142 (
33.28 11,571 (348) 6,654 (200
Coreferences - split data
d #tokens Occurrences
All Pronouns
0 4.16 13,322 (3202) 9,134 (2196)
1 8.32 46,227 (5556) 34,104 (4099)
2 12.48 33,566 (2690) 22,676 (1817)
3 16.64 18,961 (1139) 12,248 (736)

Table 3.2 — Occurrences of coreferential antecedents at a given distance d (in number of
sentences) from a mention in the current sentence, in a sample of 1/10th of the En—Ru
OpenSubstitles2018 data curated by Voita et al. (2019b). In brackets, the same figure
is normalized by the average number of tokens the model has to attend to resolve the
coreference (#tokens). At the bottom, the number of sentences for which at least one

syntactic dependency is split into two segments when using the split data.

In Table 3.1, we provide details on the syntactic features and the impact of splitting (with
middle-split) for En—Fr IWSLT17, while Table 3.2 shows the equivalent figures for a
subset of the En—Ru OpenSubtitles2018 prepared by Voita et al. (2019b). The subset
was built by randomly selecting 1/10th of the available documents. Figure 3.3 portrays a
visual comparison of the two datasets. This complementary information confirms that the
middle-split method effectively strengthens the contextual training signal and facilitates

its exploitation by CANMT systems in different text domains.
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Figure 3.3 — En—Fr IWSLT17 and 1/10th of En—Ru OpenSubtitles2018: comparison of
the number of antecedents of anaphoric pronouns at a given distance in terms of sentences
or segments, normalized by the number of tokens that the model needs to attend for
resolving the coreference. Since sentences are much shorter in the En-Ru corpus than
En-Fr (8.32 vs. 21.02 tokens on average), the density of discourse phenomena within the

sentence is much higher.

3.4 Experimental setup

3.4.1 Data

We conduct experiments for three language pairs, English—Russian, English—German,
and English—French, on different domains. Following Kim et al. (2019), we pre-train
sentence-level baselines on large sentence-level parallel data to make them as robust as
possible. In particular, we employ data released by Voita et al. (2019b) for En—Ru (6.0M
sentences from OpenSubtitles2018), data from the WMT17' news translation shared task
for En—De (~5.2M sentences), and data from WMT14? for En—Fr (~35.8M sentences).
We train the contextual parameters of context-aware models in two settings while freezing
the rest of their parameters:

High resource. For En—Ru, it consists of the documents extracted from OpenSubti-
tles2018 and pre-processed by Voita et al. (2019b). For the other two language pairs, we
build the training set by assembling (i) News-Commentary-v12 for En—De and News-
Commentary-v9 for En—Fr; (ii) Europarl-v7 for En—De/Fr; (iii) TED talks subtitles

Thttp://www.statmt.org/wmt17 /translation-task.html
Zhttp:/ /www.statmt.org/wmt14/translation-task.html
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En—Ru En—De En—Fr

Low Res Hig Res Low Res Hig Res Low Res Hig Res

Sentence-level OpenSubs2018 OpenSubs2018 WMT17 WMT17 WMT14 WMT14
train

Context-aware 1/10th of OpenSubs2018 IWSLT17 News-v12 IWSLT17 News-v9

train OpenSubs2018 Europarl-v7 Europarl-v7
IWSLT17 IWSLT17

Fine-tuning - - - IWSLT17 - IWSLT17

Test (BLEU) OpenSubs2018 OpenSubs2018 IWSLT17 IWSLT17 IWSLT17 IWSLT17

Contrastive EllipsisVP EllipsisVP ContraPro ContraPro  ContraPro ContraPro
test

Table 3.3 — Summary of the datasets used at each stage of training and evaluation of the

models.

released by IWSLT17 (Cettolo et al., 2012) for En—De/Fr.

Low resource. For En—Ru, it consists of a sample of 1/10th of the data from a random
shuffle of the high-resource setting. For En—De/Fr, we use IWSLT17’s TED talks alone.

We recap in Table 3.3 the datasets adopted at each stage of training and evaluation. The
sentence-level training concerns the baselines, whose parameters are also used to initialize
the encoder and decoder of the context-aware models (©g). Concerning En—Ru, Voita
et al. (2019b) released two datasets extracted from OpenSubtitles2018: a document-level
dataset of 1.5M sentences with context and document boundaries (used for document-level
training) and a sentence-level dataset of 6M sentences (used for sentence-level training),
which includes the sentences of the document-level dataset. Since these data have already
been pre-processed, we only apply Byte Pair Encoding (BPE) (Sennrich et al., 2016)
with 32k merge operations jointly for English and Russian. For the other two language
pairs, instead, we tokenize data with the Moses toolkit (Koehn et al., 2007), clean them
by removing long sentences, and encode them with byte pair encoding, using 32k merge
operations jointly for source and target languages.

While IWSLT provides document boundaries for TED subtitles, the WMT releases of
New-Commentary and Europarl do not provide them. Therefore, a small fraction of
sentences in the High Resource setting will be paired with incoherent context. However,
we found the models to be robust against occasional incoherent context (see also Voita
et al. (2018) and Miiller et al. (2018)). In order to teach the models to translate headlines

(the first line in a document), we need to have headlines in the training set. As such, we
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Corpus Tgt Docs Sents Doc Length Sent Length Sent Length (BPE)

mean std max mean std max mean std max

Low De 1.7k 02M 117.0 584 386 20.8 14.3 153 233 163 195
Low Fr 19k 02M 1186 56.7 390 21.0 14.3 153 235 16.3 202
Low Ru 150k 0.6M 4.0 0.0 4 8.3 47 64 8.6 4.9 69
High De 122k 23M 1884 36.2 38 273 16.1 249 29.1 174 408
High Fr 124k 23M 1873 37.0 390 276 163 250 29.2 173 503
High Ru 15M 6.0M 4.0 0.0 4 8.3 4.7 64 8.6 4.9 69

Both De 62 54k 876 535 296 19.0 125 114 21.1 14.0 132
Both Fr 66 5.8k 882 515 297 193 125 90 21.6 14.1 106
Both Ru 10k 40k 4.0 0.0 4 8.2 4.8 50 8.5 5.0 58

Both  De 12 1.1k 90.0 29.2 151 193 127 102 21.6 143 116
Both Fr 12 1.2k 100.8 285 156 198 13.2 89 222 149 105
Both  Ru 10k 40k 4.0 0.0 4 8.2 4.8 42 8.5 5.0 50

Table 3.4 — Statistics for the training (1st block), validation (2nd block) and test set (3rd
block) after pre-processing, and after BPE tokenization. All figures refer to the English

text (source side).

set artificial document boundaries in News-Commentary and Europarl every 200 sentences.
Details on the datasets after pre-processing are reported in Table 3.4. In the case of
En—De/Fr, baselines and context-aware models trained on high resources are also fine-
tuned on the low-resource setting (IWSLT17) so that both high and low-resource settings
can be bench-marked on the IWSLT17’s test set 2015. Test sets 2011-2014 are used as
development sets. For En—Ru, we use the validation and test sets provided by Voita et al.
(2019b).

3.4.1.1 Evaluation

Besides evaluating average translation quality with BLEU (Papineni et al., 2002),® we
employ three contrastive test sets for the evaluation of translation of discourse phenomena
(described in details in Section 2.3.2.1):

En—Ru EllipsisVP: the subset on verb phrase ellipsis of the broader Voita’s contrastive
set (Voita et al., 2019b). The subset contains 500 examples of verb phrase ellipsis from

OpenSubtitles2018. Each example contains multiple contrastive hypotheses to evaluate

3Moses’ multi-bleu-detok (Koehn et al., 2007) for De/Fr, multi-bleu on lowercased Ru as Voita et al.
(2019b).



Chapter 3. Divide and rule pre-training for multi-encoding approaches 52

the translation of the ellipsis. Source sentences contain an auxiliary verb (e.g., "do")
and an omitted main verb, which can be imputed thanks to one of the three context
sentences. The complete test suite released by Voita et al. (2019b) contains other subsets
for evaluating other discourse phenomena. Still, we restrain our evaluation to verb phrase

ellipsis because the other examples are conceived for systems using target-side context too.

En—De ContraPro (Miiller et al., 2018) - A large-scale test set from OpenSubti-
tles2018 (Lison et al., 2018), that measures translation accuracy of the English anaphoric
pronoun 7t into the corresponding German translations er, sie or es. Examples are bal-
anced across the three pronoun classes (4,000 examples each). Each example requires
identification of the pronominal antecedent, either in the source or target side, that can

be found in the current sentence or any of the previous ones.

En—Fr ContraPro (Lopes et al., 2020) - A large-scale test set from OpenSubtitles2018,
completely analogous to the previous one but focused on the translation of two English
pronouns: it and they. It consists of 3,500 examples for each target pronoun type: il or

elle for it, ils or elles for they.

We verify the statistical significance of the differences between models’ accuracies with the
paired McNemar test (McNemar (1947); see Section 2.3.4 for more details on statistical

hypothesis testing).

3.4.2 Models

We experiment with a context-agnostic baseline and two multi-encoding models:

(i) base: A sentence-level baseline, following the Transformer-base by Vaswani et al.
(2017).

(ii) K2: A context-aware multi-encoding architecture with outside integration (see

Section 2.4.2) that encodes a single past source sentence as context.
(iii) K4: A context-aware multi-encoding architecture with outside integration, that

encodes three past source sentences as context.?

It should be noted that we experiment with multi-encoding systems that exploit the

source-side context only. Some works in the literature have found that target-side context

4Although the splitting does not increase the number of inter-segment phenomena for d > 1, it
strengthens the signal by making it denser (see Section 3.3.2). Thus, K/ and any wider-context model

can profit from the proposed approach.
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boosts the performance of multi-encoding systems (Bawden et al., 2018; Miculicich et al.,
2018; Voita et al., 2019b; Maruf et al., 2019; Zheng et al., 2020). However, including
target-side context requires adding contextual parameters that integrate it into the decoder.
Besides adding complexity to the architecture, these parameters are as much affected by the
double challenge of sparsity as the contextual parameters that integrate source-side context.
Therefore, while having access to target-side context can facilitate the disambiguation of
inter-sentential discourse phenomena, it can also represent a further learning complexity.
In fact, critical works in the literature have targeted both source-side-only multi-encoding
systems (Kim et al., 2019; Li et al., 2020) and systems including target context too (Lopes
et al., 2020), showing that they also suffer from learning difficulties. Thus, the minimum
viable experimental setting for the proposed approach is to apply it to source-side-only
multi-encoding systems. This setting is free from the confounding factors that would
derive from including target context and it allows to draw conclusions that can reasonably

be transferred to target-side multi-encoding systems too.

For both K2 and K/, sentence-level parameters #g follow the Transformer-base configu-
ration (hidden size of 512, feed-forward size of 2048, 6 layers, 8 attention heads, total of
60.7M parameters), while contextual parameters 0 follow a hierarchical architecture with
source-side encoder proposed by Miculicich et al. (2018) (hidden size of 512, feed-forward
size of 2048, 8 attention heads, total of 4.7M parameters). Context-aware models are
trained following the two-step strategy described in Section 2.4.2. Sentence-level parameters
Os of both K2 and K4 are initialized with base and frozen. This has the advantage of
saving time and computation since only a small fraction of parameters (6¢) is trained
(4.7M over a total of 65.2M).

More details about the models’ implementation and training are discussed in the Ap-
pendix A.1.

3.5 Results and analysis

3.5.1 Training contextual parameters is hard

In this section, we provide evidence about the difficulty of training contextual parameters
on document-level data. In the second block of Table 3.5, below the results of the sentence-
level baseline base, we report the performance of context-aware models trained on original
document-level data, comparing low and high-resource settings. When trained on little
resources, models display good BLEU on the test set, generally without any significant

degradation with respect to base, or even with some improvements. However, such marginal
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En—Ru En—De En—Fr

Model Setting BLEU EllipsisVP BLEU ContraPro BLEU ContraPro Hours
Concat2tol Low Res  31.12 31.00 33.41 47.38 41.27 80.42 2.17
Concat2tol High Res  29.92 62.6 33.05 59.49 40.99 85.57 35.32
Zhang2018  Low Res n.a. n.a. 31.03 42.60 40.95 59.00 n.a.
base - 31.37 25.40 32.97 46.37 41.44 79.46 -
K2 Low Res  30.89 32.20 33.14 47.05 41.87 79.24 2.40
K/ Low Res  31.00 29.20 32.86 46.48 41.32 80.53 2.80
K2 High Res 31.15 44.00 33.16 57.75 41.49 84.32 19.10
K/ High Res 31.23 39.20 33.10 51.14 41.73 82.94 21.50
K2-dér Low Res  31.09 47.00* 33.44 60.21* 41.78 84.06 6.5
K-dér Low Res  32.12 46.60* 33.36 56.22* 41.68 85.50* 6.8
K2-dér High Res 31.09 59.40* 32.82 61.09* 41.81 84.17 32.8

K4-désr High Res 31.27 60.40* 33.07 59.56* 41.91 85.66* 33.1

Table 3.5 — BLEU score on testsets and accuracy (%) on contrastive sets. The last column
reports the total context-aware training time spent on En—Fr, including the time for défr
pre-training. The symbol * denotes statistically significant (p<0.01) improvements w.r.t

non-dér counterparts (second block) and base.

fluctuations in BLEU are difficult to interpret, as they do not necessarily correspond to
better or worse translations (Freitag et al., 2020). Accuracy on the contrastive test sets
also increases only marginally over the baseline, if at all, for En—De/Fr. K2 even shows
a slight degradation of performance over the sentence-level baseline for En—Fr. These
results highlight the struggle of contextual parameters to learn to exploit context for better

translations, other than acting as mere regularizers, as it was suggested by Kim et al.
(2019) and Li et al. (2020).

Instead, En—Ru models trained on low resources improve over base, in line with our
expectations. In fact, the sentences belonging to the En—Ru Low Res setting are 2.5x
shorter than those belonging to the En—Fr/De Low Res setting. This mitigates the
double challenge of sparsity since useful contextual elements can be retrieved more easily

in shorter sentences.

When passing from a low-resource setting to a high-resource setting, we measure substantial
improvements in context-modeling capabilities across all language pairs. These results
confirm the intuition discussed in Section 3.2: increasing the volume of data compensates
for sparsity. Instead, BLEU improves by a few decimal points only in the high-resource

setting, showing its inefficacy in measuring improvements in context-aware translation.
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For the sake of benchmarking, we report in the first block the results obtained by two
other source-side context-aware models trained on low resources following the same
procedure.” Concat2to1® is a single-encoder approach that concatenates the previous
context sentence to the current one and outputs the translation of the current sentence.
Zhang2018 is a multi-encoding model that looks at 2 previous sentences as context,
proposed by Zhang et al. (2018).” Concat2tol’s performance on test suites are comparable
to K2/K/ on low resources, or slightly better since concatenation models are less affected
by the problem of sparsity. In fact, they do not have to learn parameters that are
specialized in contextualization. This advantage is better highlighted in the high-resource
setting, where Concat2tol is stronger on the test suites (although BLEU lacks behind).
Zhang2018 performs very poorly, confirming the difficulty of multi-encoding models to

learn contextualization on low resources without any help against the problem of sparsity.

3.5.2 Main results

In this section, we show that the proposed pre-training strategy is an effective solution
to the double challenge of sparsity and an efficient one compared to simply increasing
the training data. The third block of Table 3.5 reports the performance of models that
have undergone dér pre-training on the same document-level data as the models in the
previous block, but where sentences were split into two segments following the middle-split
method with [,,;, = 7. After dér pre-training, models have been finetuned on the original,
non-split data. The pre-training proves to be very effective, as all models belonging to the
third block show substantial improvements in accuracy on the test suites, with the sole
exception of K2-d¢r on En—Fr High Res. The average gain is of +10.79 accuracy points
on Low Res, 4+8.49 on High Res, showing that dér brings substantial improvements
even when data are abundant. Interestingly, gains are not uniformly distributed across
language pairs and domains: +17.20 on average for En—Ru, +8.67 for En—De, +3.09
for En—Fr. While context-aware translation measurements improve significantly, we keep

measuring minor fluctuations in BLEU.

It is clear that a proper comparison between single and multi-encoding models cannot
be made without proper training of the multi-encodings’ contextual parameters, which
targets the problem of sparsity. Here, dé9r pre-training allows K2/4 to achieve results on
test suites comparable to Concat2tol (K4 is consistently better), along with better BLEU

scores (except for K2 on german).® A comparison between -dér models trained on Low

5We do not compare with target-side approaches as we experimented with source-side only.

5The implementation is our own.

"Results reported are by Lopes et al. (2020)

8 A detailed comparison between single and multi-encoding models is beyond this chapter’s scope.



Chapter 3. Divide and rule pre-training for multi-encoding approaches 56

ContraPro d=0 d=1 d=2 d=3 d>3

base 46.37 83.3 324 448 489 719
K2 47.05 82.5 33.9 453 48.0 699
K4 46.48 82.4 32.8 45.0 489 T1.7
K2-d&r 60.21 81.1  56.5 449 487 73.3
K4-dér 56.22 81.7 46.8 55.2 56.2 724

Sample Size 12000 2400 7075 1510 573 442
Relative Size 100.0% 20.0% 59.0% 12.6% 4.8% 3.7%

Table 3.6 — Accuracy (%) by pronoun antecedent distance of Low Res models on ContraPro
(En—De). The first column represents the weighted average, calculated based on the

sample size of each group.

Res against models trained on High Res without dé/r shows another quality of the dé/r
pre-training strategy: efficiency. In fact, the same context-aware models achieve superior
performances with 1/10th of the document-level data and 1/3rd of the total training time
(see time reported in the last column of Table 3.5, which includes pre-training time when

present).

To strengthen the empirical evidence about the improved context-modeling capacity of the
systems pre-trained with dér, we present in the following sections an analysis of pronoun
translation by antecedent distance and an ablation study in which we test models on

ContraPro with inconsistent context.

3.5.2.1 Accuracy by antecedent distance

We investigate more in detail the performance of the proposed approach on pronoun
translation disambiguation. We report in Table 3.6 the accuracy on En—De ContraPro,
detailed by varying antecedent distance. We notice that all the improvements achieved
by -dér models are related to those pronouns whose antecedent is in the context (d > 1),
which is in line with the expectations of context-aware models exploiting context for
disambiguation. K2-dér is very strong in translating pronouns with antecedent distance
d = 1, surpassing base and K2 baselines by 22+ points of accuracy. Similarly, K/-dér
surpasses baselines by a large margin on 0 < d < 3, beating all the other models on
d = 2,3, as expected. We notice however that K/-dér lacks behind K2-dér on d = 1.
On one side, this could be explained by the fact that K2-dér is more specialized at

modeling a single past sentence. On the other side, we also notice that the hierarchical



Chapter 3. Divide and rule pre-training for multi-encoding approaches o7

context-encoding architecture by Miculicich et al. (2018) of our multi-encoding systems
does not encode context distance with any kind of embedding”. Hence, K/-dér might
perform worse on d = 1 than K2-déJr because it gives the same importance to further
away context (d = 2,3). Since pronouns with antecedent distance d = 1 are the most
frequent in the test set, K2-dé9r has the highest average result (reported in “Total"). To
test this hypothesis, we perform an ablation study by adding different kinds of segment
embeddings to K4-dér, presented in the Appendix A.2. Unfortunately, we do not see
major changes in performance when enabling the model to discriminate segment distances.
Therefore, we posit that K4 underperforms K2 on d = 1 mostly because it is more affected
by the challenge of sparsity. In fact, it has to spot relevant context among 3x more tokens,
on average. This might be the reason why K4 starts catching up K2 when the training
conditions are the most favorable to context-aware learning: with dér pre-training plus

high resources (see Table 3.5).

3.5.2.2 Ablation: shuffling context

Here we describe an ablation study that again suggests that the proposed approach pushes
the models to exploit context more frequently. Table 3.7 shows the performance of models
trained on Low Res when the evaluation is undertaken by randomly shuffling the context
of every sentence with other sentences from the same dataset (c.f. Scherrer et al. (2019b)).
In brackets, the delta w.r.t. the results with consistent context, presented in Table 3.5.
A random context is inconsistent with the current sentence and thus misleading for a
context-aware system. Indeed, -dér models display a significant drop in accuracy when
evaluated with inconsistent context, which confirms that they rely on context information
to improve pronoun translations. However, their performance doesn’t drop below baselines,

which suggests that dér doesn’t make multi-encoding models over-reliant on context.

Instead, BLEU is not affected by shuffled context, showing once again that average

translation quality metrics are ill-equipped to detect changes in context-aware translation.

3.5.3 Impact of the splitting method

Following Section 3.3.1, we study the impact of using a different splitting method other
than middle-split. All the variants are applied to the En—De/Fr low-resource setting
(IWSLT), with l,,;, = 7, and the dé&r pre-trained models are evaluated on ContraPro.
The aligned-split method is based on alignments learned with fast_align (Dyer et al.,

2013). For the synt-split method, we retrieve intra-sentential pronominal coreferences with

9See Section 2.4.2 for a brief presentation of the techniques adopted in the literature.
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En—De En—Fr
Model BLEU ContraPro BLEU ContraPro
base 32.97 (+0.00) 46.37 (0.00) 41.44 (-0.00)  79.46 (0.00)
K2 33.06 (+0.06) 46.7 (-0.35)  41.75 (-0.12)  79.05 (-0.19)
K/ 32.73 (-0.13)  46.21 (-0.27) 41.47 (4+0.15) 79.24 (-1.29

(-1.29)
K2-dér 331 (-0.34)  47.6 (-12.61) 41.64 (-0.14) 78.94 (-5.12)
Kj-d&r  33.05 (-0.31)  47.96 (-8.26) 41.55 (-0.13)  79.05 (-6.45)

Table 3.7 - BLEU and accuracy results on ContraPro when the context provided to the
model is inconsistent. In brackets, their changes w.r.t. the results achieved with consistent

context presented in Table 3.5. All models are trained in the low-resource setting.

En—De
Middle-split  Aligned-split Synt-split Multi-split
K2-désr 60.21 +0.69* -2.67* -
K/-désr 56.22 -1.38%* +1.33* +1.13%*
En—Fr
K2-désr 84.06 +0.27 +0.15 -
K4-désr 85.50 +0.20 +0.33%* -0.09

Table 3.8 — Comparison between the middle-split method and the other splitting methods
(relative difference) on ContraPro. *: p < 0.01, **: p < 0.05.

CoreNLP (Manning et al., 2014), and we try to split them whenever possible. If there are
multiple occurrences in the same sentence, we split as close to the middle as possible while
attempting to break the maximum number of coreferences.!’ Finally, for the multi-split
method, we split sentence-pairs in a half for len(x’) > 7, and also in three segments of
identical size for len(x') > 15. The performance differences between models pre-trained

with middle-split and the other variants are reported in Table 3.8.

As we can see, splitting variants allow small improvements in 7 cases out of 10, although
variations are marginal: the simple middle-split method seems to be close to optimal
already. Multiple elements can explain this observation. Firstly, middle-split produces
segment pairs that are already well aligned: most of the source and target segments are

aligned except for one or two words. Having only a few misplaced words might act as

10More sophisticated synt-split methods could be devised, targeting other discourse phenomena, or

several simultaneously, with different degrees of priority.
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a regularization factor. Secondly, middle-split breaks a syntactic relation for the vast
majority of sentences already, as explained in Section 3.3.1, which means that improvements
achieved with syntactically driven splitting can only be marginal. Thirdly, splitting in
more than one segment can be beneficial in some cases, because it allows to break more
syntactic relations and increase the density of training signal, but it also increases the risk
of misalignment between source and target and might make the task too hard. Finally,
tools like fast_align and CoreNLP are characterized by a certain language-dependent
error rate, which affects the performance of the splitting methods. In conclusion, dér
pre-training with middle-split seems to be the most convenient alternative for most use
cases because of its efficacy, its simplicity, and its language independence. Nonetheless, one
variant (or a combination of them!) could be more convenient for some specific applications

that strive for optimal performance.

3.5.4 On the scope of middle-split

Even though middle-split relies on the syntactic similarity between the source and the
target languages, we argue that this condition is met by a large number of language
pairs, in the order of millions. In fact, there are around 4,000 written languages in the
world (Eberhard et al., 2021), and most of them can be grouped into a few types with
similar word orders, as shown by the ample literature on word order typologies (Tomlin,
2014; Dryer and Haspelmath, 2013).

The most significant structural feature in a language is the constituent order, concerning
the relative order of subject (S), object (O), and verb (V) in a clause. There are seven
possible language types concerning the constituent order (Dryer, 2013b): SOV, SVO, VSO,
VOS, OVS, OSV, and NDO (non-dominant order). Tomlin (2014) estimates that more
than 40% of the world languages belong to the SOV type (languages adopting the SOV
order), another 40% belong to the SVO type, while almost 10% of languages adopt VSO
order. The other types are rarer. In this chapter, we have shown that the middle-split
method is beneficial both in the case of language pairs of the same type that deploy the
same constituent order, like En-Fr/Ru, which all adopt SVO order, as well as for languages
that belong to different types, as for En-De, where English is SVO and German is NDO,
deploying both SOV and SVO according to the use cases (Dryer, 2013b).

Similar observations also apply when we look at other word order categories. For instance,
when looking at the order of modifiers or adverbials, languages can be clustered into a
few types. Here again, the top two types represent the vast majority of languages (Dryer,
2013a,c). Therefore, we believe that our method could be beneficial for millions of language

pairs, including many low-resource languages belonging not only to the same word order
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types but also to slightly different ones (as in the case of SOV and SVO).

3.6 Conclusions

3.6.1 Takeaways

Multi-encoding models are a broad family of context-aware NMT models. In this work we
have discussed the difficulty of training contextual parameters due to the sparsity of the
tokens in need of context, and their relevant context. We have proposed a pre-training
approach called divide and rule, based on splitting the training sentences, with four
variants. After having analyzed the implications of splitting on discourse phenomena,
we have shown empirically that dé/r pre-training allows to learn contextual parameters
better and faster than by simply adding training data. We have shown that the simplest
and language-independent splitting variant, middle-split, is a strong baseline that can
be easily applied for pre-training any multi-encoding NMT model in settings with weak
(like En-Fr/Ru) or moderate (like En-De) word order divergence. Arguably, to millions of

language pairs.

3.6.2 Limitations and future works

The main limitation of our experimental section is the lack of experiments with multi-
encoding systems that integrate target-side context on top of source-side context. We
have explained in Section 3.4.2 the reasons for this choice. Having measured substantial
improvements with the application of the proposed approach to multi-encoding systems
that handles different lengths of source-side context, on a varied set of training conditions
(languages, domains, volumes of data, structures of documents), we can reasonably expect
improvements for multi-encoding systems handling target-side context too. However, an
empirical quantification of the gains achievable in that setting would be valuable. Likewise,
it would be valuable to conduct experiments with multi-encoding architectures other than
(Miculicich et al., 2018)’s.

Our experiments are limited to language pairs with weak or moderate word order divergence
because of the unavailability of discourse-targeted test suites for language pairs with a
substantial word order divergence. As we have repeatedly shown in the paper, targeted
evaluation is essential for evaluating context-aware NM'T systems, which cannot be
undertaken solely with average translation quality metrics (e.g., BLEU). One possible

solution for employing dé/r pre-training on language pairs with strong syntactic divergence
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could be a preliminary application of word ordering tools before splitting. This solution
can be easily implemented for low-resource languages too, and it has been proven very

effective for improving machine translation in these settings (Zhou et al., 2019).

Recently, (Fernandes et al., 2021) have proposed a training strategy for context-aware
models that pushes them to exploit context more consistently. The idea is to randomly
mask tokens in the current sentence in order to encourage the model to use extra-sentential
information to compensate for them. It would be valuable to compare dér with this
approach and to analyze the possibility to combine the two approaches. This would require
a re-implementation of (Fernandes et al., 2021)’s approach, since the results reported
in their published paper refer to a target-context-only multi-encoding system and to

concatenation systems. Thus, they are not directly comparable with our work.

Finally, future works could also explore the impact of dé/r pre-training on other tasks, such
as next-sentence prediction or document-level coreference resolution, which also require

models to be context-aware.

In the next chapter, we will study the other family of approaches to CANMT": concatenation
approaches. Similarly to the work conducted on multi-encoding systems, we will propose
solutions to tackle some key limitations of concatenation and shed light on some of its

aspects through the analysis of the proposed approaches.
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Focused concatenation

Most of the contributions presented in this chapter are published in:

Lupo, L., Dinarelli, M. and Besacier, L. (2022). Focused Concatenation for
Context-Aware Neural Machine Translation. In Proceedings of the Seventh Con-
ference on Machine Translation (WMT), pages 830-842, Abu Dhabi, December
7-8, 2022. Association for Computational Linguistics.
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1 2 3 4 15 16 1718 19
Hey there ! <S> How are you ? <E>

CD- Lcontext + ﬁcur?‘ent

Figure 4.1 — Example of the proposed approach applied over a window of 2 sentences, with

context discount CD and segment-shifted positions by a factor of 10.

4.1 Introduction

As discussed in Section 2.4.1, concatenation approaches have the advantage of treating
the task of CANMT in the same way as context-agnostic NMT, which eases learning
because the learnable parameters responsible for extra-sentential contextualization are the
same that undertake intra-sentential contextualization. Indeed, as we have seen in the
previous chapter, learning the parameters responsible for extra-sentential contextualization
in multi-encoding approaches (6¢) has been shown to be challenging because the training
signal is sparse and the task of retrieving useful context elements is difficult. Despite its
simplicity, the concatenation approach has been shown to achieve competitive or superior
performance than more sophisticated, multi-encoding systems (Lopes et al., 2020; Ma
et al., 2021b).

Nonetheless, encoding current and context sentences together comes at a cost, as discussed
in Section 2.4.4. Transformer-based NMT systems struggle to learn locality proper-
ties (Rizzi, 2013) of both the language itself and the source-target alignment when the
input sequence grows in length, as in the case of concatenation. Unsurprisingly, the pres-
ence of context makes learning harder for concatenation models by distracting attention.
Moreover, we know from Chapter 3 that NMT systems only require context for a sparse set
of inter-sentential discourse phenomena. Therefore, it is desirable to make concatenation
models more focused on local linguistic phenomena to improve performance. Recent works
(Zhang et al., 2020a; Bao et al., 2021) have demonstrated that a viable solution is the
introduction of strong inductive biases on locality in the NMT architecture, such as the
partial masking of context (see Section 2.4.4 for more details). Based on these premises,
we propose an improved concatenation approach to CANMT that is more focused on the

translation of the current sentence by means of two simple, parameter-free solutions:

o context discounting: a simple modification of the NMT loss that improves context-
aware translation of a sentence by making the model less distracted by its concate-

nated context;
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o Segment-shifted positions: a simple, parameter-free modification of position em-
beddings that facilitates the achievement of the context-discounted objective by

supporting the learning of locality properties in the document translation task.

We support our solutions with extensive experiments, analysis, and benchmarking.

4.2 Proposed approach

As discussed in Section 2.4.1, a typical strategy to train a concatenation approach and
generate translations is using sliding windows (SlidingKtoK). For the sake of clarity, we
outline this approach here once again. The model decodes the translation yﬁ{ of a source
window m]}(, formed by K consecutive sentences belonging to the same document: the
current (jth) sentence and K — 1 sentences concatenated as source-side context. A special

token <S> is introduced to mark sentence boundaries in the concatenation:

J—K+1 J—K+2

. 1 .
ac]K =& <s>&T <S>...<s>T’ <S>$]<E>,

J—K+1 J—K+2

Y =y <s>Y <ssonessy Hossyl s

Both past and future contexts can be concatenated to the current pair x7, y’, although in
the above equations we consider the past context only o/ ~K<i<J oJ=K<i<i for simplicity.
At training time, the loss is calculated over the whole output y}< At inference time, the
translation of the entire sequence mJK is generated, but only the translation y’ of the
current sentence is eventually kept. In contrast, the translation of the context is discarded.
Then, the window is slid by one position forward to repeat the process for the x/*!, y/*!
sentence pair and its context. Concatenation approaches are trained by optimizing the

same objective function as standard NM'T over a window of sentences, i.e., Equation 2.25:
|

L(he,yk) = > log Pyl |y opn Th). (4.1)

t=1
so that the likelihood of the current target sentence is conditioned on the source and target
context.

4.2.1 Context discounting

The above objective function does not factor in the fact that we only care about the

translation of the current sentence, y’, because the translation of the context will be
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discarded during inference. Moreover, in practical terms, we only need the translation of
the context for disambiguating relatively sparse inter-sentential discourse phenomena that
are ambiguous at sentence level (Voita et al. (2019b), Chapter 3). Hence, we propose to
encourage the model to focus on the translation of the current sentence x/ by applying a

discount 0 < CD < 1 to the loss generated by context tokens:

‘CCD(CBJI.O y%{) = CD'Lcontext + Lcurrent (42)

This is equivalent to considering a SlidingKtoK concatenation approach as the result of a
multi-task sequence-to-sequence setting (Luong et al., 2016), where a SlidingKtol model
performs the reference task of translating the current sentence given a concatenation of its
source with K-1 context sentences, while the translation of the context sentences is added as
a secondary, complementary task. The reference task is assigned a more significant weight
than the secondary task in the multi-task composite loss. As we will see in Section 4.3.5.2,
this simple modification of the loss allows the model to learn a self-attentive mechanism
that is less distracted by noisy context information, thus achieving net improvements in
the translation of inter-sentential discourse phenomena occurring in the current sentence
(Section 4.3.3), and helping concatenation systems to generalize to broader context after

training (Section 4.3.5.4).

4.2.2 Segment-shifted positions

Context discounting pushes the model to discriminate between the current sentence and
the context. Such discrimination can be undertaken by cross-referencing the information
provided by two elements: sentence separation tokens <S> and sinusoidal position encodings,
as defined in (Vaswani et al., 2017). To facilitate this task, we propose to provide the
model with extra information about sentence boundaries and their relative distance.
(Devlin et al., 2019) achieve this goal by adding segment embeddings to every token
representation in input to the model, on top of token and position embeddings, such that
every segment embedding represents the sentence position in the window of sentences.
We propose an alternative solution that does not require any extra learnable parameter
or memory allocation: segment-shifted positions. As shown in Figure 4.1, we apply a
constant shift after every separation token <S> so that the resulting token position is
equal to its original position plus a total shift depending on the chosen constant shift
and the index k = 1,2, ..., K of the sentence the token belongs to: ¢’ =t + k = shift. As
a result, the position distance between tokens belonging to different sentences increases.

For example, the distance between the first token of the current sentence and the last
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Src  Tgt Docs Sents Doc Length Sent Length Sent Length (BPE)

mean std max mean std max mean std max

En Ru 15M 6.0M 4.0 0.0 4 83 47 64 8.6 49 69
En De 1.7k 02M 117.0 584 38 20.8 14.3 153 233 163 195

En Ru 10k 40k 4.0 0.0 4 8.2 4.8 50 8.5 5.0 o8
En De 62 54k 87.6 535 296 19.0 125 114 21.1 14.0 132

En Ru 10k 40k 4.0 0.0 4 8.2 4.8 42 8.5 5.0 20
En De 12 1.1k 90.0 29.2 151 19.3 127 102 21.6 143 116

Table 4.1 — Statistics for the training set (1st block), development set (2nd block) and test
set (3rd block) after pre-processing, and after BPE tokenization. All figures refer to the
English text.

token of the preceding context sentence increases from 1 to 1 + shift. By increasing
the distance between sinusoidal position embeddings' of tokens belonging to different
sentences, their dot product, which is at the core of the attention mechanism, becomes
smaller (Figure 2.3), possibly resulting in smaller attention weights. In other words, the
resulting distribution of attention weights could become more localized, as demonstrated
by the empirical analysis reported in Section 4.3.6.1. In Section 4.3.3, we present the
impact of segment-shifted positions on performance. In Chapter 5, we will also study their
impact on non-context-discounted concatenation models, and compare them with a bunch

of segment embedding variants.

4.3 Experiments

4.3.1 Setup

We experiment with three models:

o base: a context-agnostic baseline following Transformer-base (Vaswani et al., 2017)
(see Section 2.1.4.2);

e s4tol: short for Sliding4tol, a context-aware baseline, consisting of a concatenation

approach with the same architecture as base, but that processes sliding windows of

1Positions can be shifted by segment also in the case of learned position embeddings, both absolute

and relative. We leave such experiments to future works.
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4 concatenated sentences as the source, and it translates the 4th sentence into the

target language (see Section 2.4.1);

e s4to4: short for Slidingdto4, a context-aware concatenation approach with the
same architecture as base, but that processes sliding windows of 4 concatenated
sentences as the source, and it decodes the whole window into the target language (see
Section 2.4.1). We will study the impact of context discounting and segment-shifted

positions on this architecture.

Models are trained and evaluated on two language pairs covering two different domains.
For En—Ru, we adopt the document-level corpus released by Voita et al. (2019b) and
based on OpenSubtitles2018, comprising training, development, and test set. For En—De,
we train models on the TED talks subtitles released by IWSLT17 (Cettolo et al., 2012)
and test them on the IWSLT17’s test set 2015, while test-sets 2011-2014 are used for
development, following prior works in the literature. Detailed figures about the data sets
are reported in Table 4.1.

Interestingly, the document structure differs greatly between the two language pairs. The
En—Ru data set is comprised of very short documents, each consisting of four sentences.
As a consequence, the sequences processed by the sliding window model are concatenations
of 1, 2, 3, or 4 consecutive sentences, in equal volume.? Instead, the En—De dataset is
comprised of long documents of dozens of sentences, and therefore the majority of training

and test sequences processed by Sliding4to4 consists of 4-sentence-long windows.

Besides evaluating average translation quality with BLEU?® (Papineni et al., 2002) and
COMET"? (Rei et al., 2020), we employ two contrastive test suites to evaluate the translation
of inter-sentential discourse phenomena. For En—Ru, we adopt Voita et al. (2019b)’s
test suite for evaluating deixis, lexical cohesion, verb-phrase ellipsis, and inflection ellipsis
(details in Section 2.3.2.1). This test suite contains also a development set with examples
of deixis and lexical cohesion, which we adopted for a preliminary analysis of context
discounting. For En—De, we evaluate models on ambiguous pronoun translation with
ContraPro (Miiller et al., 2018), a large contrastive set of ambiguous pronouns whose
antecedents belong to context (see Section 2.3.2.1). To validate the improvements achieved

by our approaches on the test sets, we perform statistical hypothesis tests following the

2The 1st sentence of the document is translated without past context (because it doesn’t exist), then
the 2nd sentence is translated using the 1st as context, then the 3rd using the 1st and 2nd as context, and

finally the 4th sentence is translated, with the remaining 3 sentences concatenated as past context.
3Moses’ multi-bleu-detok (Koehn et al., 2007) for De, multi-bleu for lowercased Ru as Voita et al.

(2019Db).
4Default model: wmt20-comet-da.
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Figure 4.2 — Evaluation of En—Ru s4to4 trained with various levels of context discounting,
ranging from 1 to 0. We plot the best current loss obtained by each model on the
development set (red) and its average accuracy on the development portion of Voita’s
contrastive set on discourse phenomena (blue). In yellow is the average portion of attention

that is focused on the current sentence (see Section 4.3.5.2).

methodology presented in Section 2.3.4. Appendix B.1 and B.1.1 report more details on

the experimental setup and the statistical significance testing, respectively.

4.3.2 Preliminary analysis

As a preliminary analysis, we evaluate the impact of various values of context discounting
on the performance of concatenation approaches with sliding windows, in order to choose
one value for all the subsequent experiments. We train s4to4 models with context discounts
ranging from 1 (no context discounting) to 0 (context loss is completely ignored): CD =
1.0,0.9,0.7,0.5,0.3,0.1,0.01, 0. We evaluate these models on the En—Ru development set
by means of their average loss calculated over the current target sentence (current loss, i.e.
Leurrent) and the average accuracy on the disambiguation of discourse phenomena. The
results are plotted in Figure 4.2. We find out that the stronger the context discounting, the
better the performance, with an improving trend from CD = 1 to CD = 0.01. Performance
drops on the extreme case of CD = 0, likely because too much training signal is lost in this
situation. Therefore, we set CD = 0.01 for all our following experiments. In Section 4.3.5.3,
we expand this analysis with ez-poste results, confirming that a strong context discounting

translates into improved performance.



Chapter 4. Focused concatenation 69

En—Ru
System Deixis  Lex co. Ell inf Ell. vp , Voita BLEU COMET
base 50.00 45.87 51.80 27.00 | 46.64 31.98 0.321
sdtol 50.00 45.87 57.60 71.40 | 51.66 32.64 0.322
sdtod 85.80 46.13 79.60 73.20 1 72.02 32.45 0.329
sd4tod + CD 87.16* 46.40 81.00 78.20% 1 73.42% 32.37 0.328
s4to4 + shift + CD 85.76 48.33* 81.40 80.4*% 1 73.56%* 32.45 0.334*

En—De

d=1 d=2 d=3 d>3 ContraPro BLEU COMET

base 32.89 43.97 47.99 70.58 1 37.27 29.63 0.546
s4tol 36.90 46.55 49.38 69.68 ' 40.67 29.28 0.526
s4tod 68.89 74.96 79.58 87.78 ' 71.35 29.48 0.536
s4to4 + CD 72.86* 75.96 80.10 84.38 74.31% 29.32 0.522
sdtod + shift + CD 72.56* 77.15% 80.27 86.65 74.39%* 29.20 0.528

Table 4.2 — Accuracy on the contrastive sets for the evaluation of discourse phenomena;
BLEU and COMET scores on the corresponding test sets. The accuracy on discourse
phenomena is detailed on the left with the accuracy on each subset. For Voita, each subset
corresponds to a specific discourse phenomenon. For ContraPro, each subset contains
examples of anaphoric pronouns with antecedents at a specific distance d € [1,2,...]
(in number of sentences). The symbol * denotes statistically significant (p < 0.05)

improvements w.r.t. baselines (base, sdtol, sdto4).

4.3.3 Main results

Table 4.2 illustrates the main evaluation results measured in terms of accuracy on con-
trastive test sets (Voita’s and ContraPro), BLEU, and COMET, for the En—Ru and
En—De language pairs. We first observe that s4to4 is a strong context-aware baseline as it
improves accuracy on contrastive sets by a large margin compared to the context-agnostic
base and the context-aware s4tol. This is in line with the findings of previous works (Voita
et al., 2019b; Zhang et al., 2020a; Lopes et al., 2020).

As measured by BLEU, the average translation quality is virtually the same for all models.
Indeed, our primary focus is on the contrastive evaluation of discourse translation since
average translation quality metrics like BLEU have been repeatedly shown to be scarcely
sensitive to improvements in CANMT (Hardmeier, 2012). Learned average translation
quality metrics like COMET might be more sensitive to inter-sentential discourse phenom-

ena when applied at the document level, as we do. However, COMET differences are also
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System base sd4tod s4to4+CD s4to4+shift4+CD
Deixis  50.00 — 50.00 84.37 — 86.13 86.42 — 87.69  85.98 — 88.06
Lex co. 45.87 —45.87 46.04 —46.32 46.30 —47.12  46.15 — 47.80
Ell. inf 51.59 —53.01 76.71 —79.56 79.00 —81.94  79.38 — 81.29
Ell. vp 26.41 —28.72 71.77 -73.90 76.32 - 78.15  75.55 — 79.45
Voita  46.61 —46.80 71.12 - 72.04 7298 - 73.64 73.10 - 73.68
BLEU 31.96 — 32.07 32.29 — 32.50 32.38 —32.52  32.34 — 32.50

Table 4.3 — 95% confidence intervals for the mean accuracy on the contrastive set (Voita,
%) and the mean BLEU score on the test set. The intervals are based on 6 training and

evaluation runs for each model, with a different random seed at each run.

negligible. On En—Ru, all models perform on par according to statistical significance
tests, with the sole exception of s4to4 + shift + CD. On En—De, our approaches perform
slightly worse than baselines in terms of COMET, but again by a small margin.

Instead, we remark relevant performance improvements when evaluating the accuracy of
inter-sentential discourse phenomena. Adding a 0.01 context discounting (+ CD) improves
the accuracy on all of the four discourse phenomena under evaluation in En—Ru, and for
all distances of pronoun’s antecedents in En—De, with the sole exception of d > 3, proving
to be an effective solution. Adding segment-shifted positions further improves performance
for three discourse phenomena out of four and for pronouns with antecedents at distances
d = 1,2, showing that sliding windows systems often benefit from enhanced sentence
position information to achieve the discounted CANMT objective. For both language
pairs, we adopt a segment-shifting equal to the average sentence length, calculated over
the entire training corpus, i.e., +8 positions for En—Ru and +21 positions for En—De.

Experiments with other shifting values are reported in Section 4.3.6.2.

In order to strengthen the evidence on the significance of the improvements achieved by
our solutions, we trained each En—Ru model (except s4tol) six times, each time with a
different random seed® for the initialization of the learnable parameters and the shuffling
of the training data (c.f. section 2.3.4). We present in Table 4.3 the 95% confidence level
interval for the mean performance achieved by each model on the test sets. These intervals
confirm that context discounting consistently improves the performance of the s4to4 model
on the contrastive set. Instead, for segment-shifted positions, the conclusion is not so
clear-cut. The s4to4+shift4+CD system has a confidence interval that is slightly higher
than s4to4+CD’s, but with ample overlapping with it.

5The selected seeds are {0, 12, 54,345, 876, 6789}.
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System Voita ~ BLEU
s2t02 59.10 32.73
s2to2 + CD 60.28%  32.69
s2to2 + shift + CD 60.54* 32.41
s3to3 65.58 32.34
s3to3 + CD 67.02* 32.42

s3to3 + shift + CD  66.98*  32.45

Table 4.4 — Accuracy on the En—Ru contrastive set for the evaluation of discourse
phenomena (Voita, %), and BLEU score on the test set. The symbol * denotes statistically
significant (p < 0.05) improvements w.r.t. s2to2/s3to3. Our approach can be applied
effectively to different concatenation windows.

System Deixis Lex co. Ell inf Ell. vp . Voita
Chen et al. (2021) 62.30 4790 6490  36.00 1 55.61
Sun et al. (2022) 64.70  46.30  65.90  53.00 1 58.13

|
|
|
l
|
Zheng et al. (2020) 61.30  58.10 72.20 80.00 | 63.30
|
|
|
|
|
|

Kang et al. (2020)  79.20 6200 71.80  80.80 ' 73.46
Zhang ct al. (2020a) 91.00 46.90 7820 82.20 ' 75.61
sdtod + shift + CD 8576 48.33 81.40 80.40 | 73.56

Table 4.5 — Benchmarking on En—Ru: accuracy on the contrastive sets for the evaluation

of discourse phenomena (Voita, %).

As a further experiment, we apply our solutions to En—Ru concatenation models
trained with concatenated windows shorter than four sentences.® The results presented
in Table 4.4 show that context discounting is effective for s2to2 and s3to3 too, while
adding segment-shifted positions only helps s2t02+CD. As in the case of s4to4, BLEU only
displays minor fluctuations.
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System d=1 d=2 d=3 d>3 . ContraPro
|
Maruf et al. (2019) 3470 4640 5110 70.10 1 39.15
|
Voita et al. (2018) 39.00  48.00 54.00 66.00 1 42.55
Stojanovski and Fraser (2019)  53.00 46.00 50.00 71.00 ' 52.55
Lupo et al. (2022a) 56.50 44.90 48.70 73.30 |  54.98
Miiller et al. (2018) 58.00  55.00 55.00 75.00 |  58.13
s4to4 + shift + CD 72.56 T77.15 80.27 86.65, 74.39

Table 4.6 — Benchmarking on En—De: accuracy on the contrastive sets for the evaluation

of pronominal anaphora (ContraPro, %).

4.3.4 A comparison with the literature

For a wider contextualization of our results, we compare in Tables 4.5 and 4.6 our best
systems with other CANMT systems from the literature. For the En—Ru language pair
(Table 4.5), we compare with all the systems from the literature that were trained and
evaluated under the same experimental conditions as ours, to the best of our knowledge.
In particular, we report the results by Chen et al. (2021), Sun et al. (2022)’s MR Doc2Doc,
Zheng et al. (2020), Kang et al. (2020)’s CADec + DCS-pf and Zhang et al. (2020a).
All of them are sophisticated CANMT systems that add extra trainable parameters to
the Transformer architecture. Despite being the simplest and the only parameter-free
approach, our method outperforms all the others on lexical cohesion and noun phrase
inflection based on elided context. At the same time, it is only second to Zhang et al.
(2020a) on deixis and verb-phrase ellipsis. BLEU scores were not available for comparison
on the same test set, except for Zhang et al. (2020a), which scored 31.84 BLEU points
against the 32.45 BLEU points of our method.

For the En—De language pair (Table 4.6), we compare to the works in the literature
that adopts Miiller et al. (2018)’s test set and provide details about their accuracy on
pronouns with antecedents at d > 1. In particular: Maruf et al. (2019)’s best offline system,
Stojanovski and Fraser (2019)’s pron-25—pron-0% Lupo et al. (2022a)’s K1-d&r, Miiller
et al. (2018)’s s-hier-to-2.tied and their evaluation of Voita et al. (2018)’s architecture.”

65We cannot evaluate with more sentences because 4 is the maximum size of documents in the contrastive

set specialized on discourse phenomena Voita et al. (2019b).
"Whenever the cited works present and evaluate multiple systems, we compare to the best performing

one. To the best of our knowledge, we are including all the relevant works available in the literature.
BLEU scores are not compared because, besides using different training data, the cited works don’t adopt

the same test set either, with the sole exception of (Lupo et al., 2022a).
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All of these works but Maruf et al. (2019) adopt the much larger WMT17® dataset for
training. Despite this advantage, our system outperforms each of them on all the discourse

phenomena under evaluation by a large margin.

Notably, from this comparison, it might seem that our approach is proposed in opposition to
those used as benchmarks. Instead, it can be complementary to many of these approaches,
such as (Zhang et al., 2020a)’s, hopefully in a synergistic way. We encourage future

research to investigate this possibility.

4.3.5 Analysis of context discounting

In this section, we analyze the proposed context discounting method to widen our under-
standing of it and draw lessons on the concatenation approach more generally. To this aim,
we undertake a threefold analysis of the context-discounted training objective, investigating
its impact on training, on the learned attention function, and on the robustness of the

learned CANMT system with respect to conditions unseen during training.

4.3.5.1 Loss distribution

In this section, we analyze the impact of context discounting on the ability of the model
to predict the translation of the current sentence. In Figure 4.3 we plotted the evolution
along training epochs of the loss calculated on the current target sentence (current loss)
for the En—Ru language pair. The plot shows that context discounting enables better
predictions of the current correction and that substantial discounting works best. This
evidence empirically supports our idea of context discounting as a solution to improve

model performance on the current sentence.

Figure 4.4, instead, represents the ratio between the current loss and the average loss-
per-sentence calculated on the context sentences belonging to the same sliding window.
Interestingly, predictions are improved on the current sentence (Figure 4.3) partially as a
result of a trade-off with context quality (Figure 4.4). In fact, the current/context loss
ratio of context-discounted models increases along training even when the current loss is
decreasing, indicating that, at the beginning of training, context discounting pushes the
model to only care about predictions of the tokens belonging to the current sentence. Still,
later it allows for good predictions of the context too. Such behavior is in line with the
intuition that a good translation of the current sentence, even if strongly prioritized, also

requires a good translation of the context. Otherwise, it is not possible to systematically

8http://www.statmt.org/wmt17/translation-task.html
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Figure 4.3 — Context discounting enables better predictions of the current sentence (lower
validation loss). Language pair: En—Ru.
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Figure 4.4 — Context discounting encourages the model to improve predictions of the current

sentence relative to the context (lower current/context validation loss ratio). Language

pair: En—Ru.
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CD Loss Voita® % Attn Entropy

1.00  1.580  66.50 65.72 2.218
0.90 1.583  66.20 63.65 2.314
0.70 1.580  66.40 64.62 2.289
0.50 1.579  66.10 66.47 2.248
0.30 1.573  66.30 68.29 2.199
0.10 1.564  67.00 66.65 2.199
0.01 1.563 67.40 70.82 2.109
0.00 1.574  66.80 63.32 2.280

Table 4.7 — Numerical values corresponding to Figure 4.2, plus the corresponding average
entropy of self-attention weights. A strong context discount of 0.01 results in the best
current loss and average accuracy on the contrastive development and test set on discourse
phenomena. Current queries attend more consistently to current tokens in self-attention
(higher % Attn). The distribution of self-attention weights is generally more focused (lower
entropy).

solve the translation ambiguities referring to context.

Equivalent insights can be drawn from the same analyzes on the En—De language pair,
visualized in Figures 4.5 and 4.6. Another consequence of context discounting becomes
evident in this case: the stronger the context discounting, the longer training takes.
Unsurprisingly, weakening the training signal coming from a portion of the processed

sequence (i.e., the context) slows down the learning process.

4.3.5.2 Attention distribution

In this section, we show some empirical evidence in favor of our intuition that context
discounting improves performance by helping the self-attentive mechanism to be more
focused on the current sentence (less distracted by context). We analyzed the distribution
of self-attention weights generated when the queries are tokens belonging to the current
sentence (current queries) and how it is impacted by context discounting. Figure 4.2
clearly shows that context discounting impacts the distribution of self-attention weights by
skewing it towards the current sentence: a higher percentage of the total attention from
current queries is directed towards tokens belonging to the (same) current sentence. As
expected, the higher the context discounting, the higher the portion of attention weights
not dispersed toward context. This is also reflected by the average entropy of the distribu-

tion of self-attention weights, which is minimal in the case of C'D = 0.01, as reported in
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Figure 4.5 — Context discounting enables better predictions of the current sentence (lower
validation loss). Language pair: En—De.
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Figure 4.6 — Context discounting encourages the model to improve predictions of the current

sentence relative to the context (lower current/context validation loss ratio). Language
pair: En—De.
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En—Ru En—De
CD Loss Voita*®* Voita?’ TLoss ContraPro

1.000  1.580 69.99 66.50 1.097 70.43
0.900 1.583 70.26 66.20 1.096 69.44
0.700  1.580 70.96 66.40 1.093 70.52
0.500  1.579 70.89 66.10 1.092 70.38
0.300 1.573 71.59 66.30 1.089 72.49
0.100 1.564 71.86 67.00 1.086 69.58
0.010 1.563 73.19 67.40 1.090 74.31
0.009 1.563 67.30 67.30 1.086 71.93
0.007 1.562  67.90 67.90 1.091 72.72
0.005 1.562  67.00 67.00 1.110 71.25
0.003  1.563 67.20 67.20 1.105 71.13
0.001  1.563 67.50 67.50 1.104 64.53
0.000 1.574 70.34 66.80 1.191 61.14

Table 4.8 — Ex-poste analysis of context discounting with different intensities. A strong
context discounting results in the best performances of s4to4, both in terms of current loss
on the development set and accuracy on contrastive sets for the evaluation of discourse

phenomena.

Table 4.7. However, the limit case of C'D = 0 is not aligned with this trend. We suspect
that the self-attention distribution is flatter in this case because the model encounters
learning difficulties due to the training signal from the context being completely ignored

(c.f. Bao et al. (2021) on non-fully-converged models having a flatter attention distribution).

4.3.5.3 Discounting value

In Figure 4.2 and Table 4.7, we have documented the impact of different values of context
discounting on the performance of a model over a development set in terms of best current
loss and accuracy on discourse phenomena. As we have seen, the performance improves
between C'D = 1 and CD = 0.01, then drops at CD = 0. Here, we provide a more
fine-grained analysis of discounting values in the [0.01, 0] range and report accuracy on
the test set. Moreover, we expand the analysis to the En—De language pair. Results are
presented in Table 4.8. For both language pairs, all the best performance measurements

correspond to context discounting values in the range [0.1,0.005], confirming the conclusion
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En—Ru
System Deixis Lex co. Ell inf EIL vp Voita BLEU
sdtol 50.00 45.87 57.60 71.40 51.66 32.64
sdtod + CD=0 86.48 46.27 70.00 78.60 71.98 28.55
En—De
System d=1 d=2 d=3 d>3  ContraPro BLEU
sdtol 36.90  46.55 49.38  69.68 40.67 29.28

sdtod + CD=0 57.35 67.81 71.72 85.29 61.14 11.85

Table 4.9 — Complete context discounting is better than no target context at all.

of the preliminary analysis (Section 4.3.2): a substantial discounting of context works best.

The extreme case of C'D = 0 is worth additional investigation, especially compared to an
s4tol system trained in the same conditions. In Table 4.9 we compare the performance of
a fully context-discounted s4tod system (sdtod+CD=0) and s4tol. Despite both systems
being trained without including the loss from the context in the training signal, the former
strongly outperforms the latter in terms of accuracy on the contrastive sets. Indeed, there
is a significant difference between the s4tod+ CD=0 approach and s4tol: the former is
allowed to decode the target context, even if the context is discarded before calculating the
loss, while the latter is penalized from any decoding of the context. The whole sequence
decoded by s4tol is compared with the reference translation of the current sentence only.
Therefore, contrary to sdtod+ CD=0, the trained s4tol system is not used to decode any
context, which penalizes it in terms of accuracy on the contrastive test sets because they
contain target context. However, when it comes to generating a translation (instead of
simply scoring sentences from a contrastive set), sdtod+CD=0 largely lags behind. This is
because s4tod+ CD=0 is not trained to produce a meaningful translation of the context
nor to avoid the translation of the context. Therefore it translates context poorly, and
the errors propagate to the current sentence too. We can conclude that while substantial
context discounting works well, full context discounting (C'D = 0) results in systems that

can model inter-sentential phenomena but can not generate consistent translations.

4.3.5.4 Robustness

In this section, we provide evidence showing that context discounting increases the
robustness of concatenation approaches to context sizes unseen during training. This
outcome is in line with the analysis of the attention distribution presented above (4.3.5.2)

since more robustness to context variations is expected from a model that relies less
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Figure 4.7 — Our approach improves the robustness of En—Ru s2to2 to window sizes

unseen during training.

on context. Figure 4.7 shows that the s2to2 model is not robust to the translation of
concatenation windows longer than those seen during training, i.e. longer than 2 sentences.
Indeed, s2to2 loses 9.23 BLEU points when translating the same test set with windows
of 3 sentences, and 12.14 BLEU points when translating with windows of 4. Instead,
the context discounted model (blue bars) is very robust to unseen context lengths, being
capable of translating them with minor degradation in average translation quality (—0.68
and —1.06 BLEU points for windows of 3 and 4, respectively). Similarly, s3to3 loses 1.74
BLEU points when tested with windows of size 4, while s3to3+CD is perfectly robust (see
Table B.5 in the Appendix).

4.3.6 Analysis of segment-shifted positions

In this section, we analyze the impact of adding segment-shifted positions on top of context

discounting, along with some alternatives to this approach.

4.3.6.1 Attention distribution

Segment-shifted positions are meant to help context-discounted models to learn the locality
properties of the processed languages (Hardmeier, 2012). In other words, we expect
segment-shifted positions to increase the localization of the distribution of self-attention
weights, i.e., to make it less uniform. We can evaluate this effect by computing the average
entropy of the distribution of self-attention weights generated by all queries (both from

current and context sentences), equivalently to what we have done for Table 4.7. Table 4.10
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System Attn entropy
sdto4 2.218
s4to4d + CD 2.109

s4to4 + shift + CD 2.062

Table 4.10 — The average entropy of self-attention weights decreases with context discount-
ing and segment-shifted positions. All of the three values are different from one another

with statistical significance (p<0.01).

System Shift Voita BLEU

sdtod + shift + CD 100 73.46 3241
s4tod + shift + CD avg-sequence 73.86 32.37
s4tod + shift + CD  avg-corpus  73.56  32.45

Table 4.11 — Accuracy on the En—Ru contrastive set for the evaluation of discourse
phenomena (Voita, %), and BLEU score on the test set. Differences across models are not
statistically significant (p>0.05).

shows the results: context discounting slightly reduces the average entropy, which is further
lowered with the adoption of segment-shifted positions. Segment-shifted positions make
self-attention more focused locally, as intended, which also explains why the job of context

discounting is eased by this solution.

4.3.6.2 Segment-shifting variants

In the experiments reported above, we have adopted a shifting value equal to the average
sentence length calculated over the entire training corpus (avg-corpus). le., +8 positions

for En—Ru, 421 positions for En—De. In this section, we evaluate two alternatives:

e 100: applying a big shift of 100 units, one order of magnitude bigger than the

average sentence length in the corpus;

o avg-sequence: applying a shift equal to the average sentence length of the window,

calculated dynamically for each window of 4 concatenated sentences.

The results of this study are reported in Table 4.11. We do not observe relevant differences in

average translation quality (BLEU) or accuracy in the translation of discourse phenomena.
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Therefore, we confirm that selecting a shift equal to the average sentence length calculated

on the corpus (avg-corpus) approach is a good alternative.

4.3.7 Synergies with divide and rule

Before concluding this chapter, we investigate possible synergies between the focused
concatenation approach and the divide and rule (dé/r) pre-training technique discussed
in Chapter 3. The déJr technique facilitates the learning process of multi-encoding
approaches, which encode current and context sentences separately, and does not apply to
plane concatenation approaches. In fact, feeding a standard concatenation approach with
a concatenation of split sentences would be virtually the same as feeding it with complete
sentences. Nonetheless, the focused concatenation approach acts more like multi-encoding
systems and could benefit from dé/r pre-training. Indeed, the context-discounted model is
encouraged to process context and current sentences differently, as we have observed in
Section 4.3.5.1.

Thus, we pre-train on the training data with sentences split in a half (middle-split) both the
concatenation baseline s4tod and its focused counterparts (s4to4-+CD and s4tod+shift+CD).
After dé9r pre-training, we keep training the models on the original document-level data
(see Appendix B.1 for details). We compare the performances of these systems with the
same models trained on original data only (see also Table 4.2). The results, displayed
in Table 4.12, are mixed. As expected, dé¥r is not helpful for the standard s4to4. Its
performance is slightly degraded in terms of accuracy on the contrastive sets and BLEU
for both language pairs. Instead, the context-discounted approach (s4to4-+CD) improves its
performance on Voita and ContraPro after undergoing déJr pre-training. Interestingly, for
En—Ru, this improvement is entirely driven by the gain on deixis, while the performance
on the other discourse phenomena is degraded. Deixis is the most frequent phenomenon in
the contrastive set (see Section 2.3.2.1 or Appendix B.2.1), and therefore the most impactful
on the overall accuracy on Voita. We do not have a clear explanation for this behavior,
except noticing that in our experiments, we have often measured an inverse correlation
between the performance on deixis and the performance on the other discourse phenomena
present in the contrastive set. The BLEU score is slightly degraded on En—Ru, while it
is slightly improved in En—De. Surprisingly, the beneficial effects of déron s4to4+CD
do not transfer on s4to4-+shift+CD. In conclusion, dé/rimproves the performance of the
context-discounted model only on certain discourse phenomena (deixis and pronominal
anaphora), for both language pairs. The pre-trained s4to4+CD achieves the best results on
the contrastive sets presented so far while maintaining a comparable average translation

quality. However, this synergy dissolves with the adoption of segment-shifted positions.
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En—Ru
System dé9r Deixis Lex co. Ell inf EIll vp Voita BLEU
sdtod no 85.80 46.13 79.60  73.20 } 72.02 32.45
sdto4 + CD no 87.16 46.40 81.00 7820 |, 73.42 32.37
sdtod + shift + CD no 85.76 48.33 81.40 80.40 , 73.56 32.45
Csdtod yes 8620 46.07 7220 6700 . 7084 3207
sdto4 + CD yes 90.24  45.93 80.00 76.00 1 74.50 31.95
stod + shift + CD yos 87.08 46.33 81.60 77.60 ' 7336  32.08
En—De 3
System désr  d=1 d=2 d=3 d>3 ; ContraPro BLEU
sdtod no 68.89  74.96 79.58  87.78 | T71.35 29.48
s4tod 4 CD no 72.86 75.96 80.10 84.38 | 74.31 29.32
stod 4 shift + €D mo 7256 77.05  80.27 8665 | TA30 2020
sdtod yes 6749  73.90 78.53  87.10 |  70.06 29.08
sdto4 + CD yes 7297 77.01 78.88 87.55 , 74.63 29.78
sdto4d + shift + CD  yes 71.15  75.89 76.43  86.42 |, 7291 28.98

Table 4.12 — Comparison between the systems presented in Table 4.2 and the same models
pre-trained with the approach presented in Chapter 3: divide and rule (dér). Metrics:
accuracy on the contrastive sets for evaluating discourse phenomena (Voita and ContraPro)
and BLEU. The accuracy on contrastive sets is detailed on the left with the accuracy on
each subset. For En—Ru, each subset corresponds to a specific discourse phenomenon.
For En—De, each subset contains examples of anaphoric pronouns with antecedents at a

specific distance d € [1,2,...] (in number of sentences).
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4.4 Conclusions

4.4.1 Takeaways

We presented a simple, parameter-free modification of the NMT objective for context-aware
translation with sliding windows of concatenated sentences: context discounting. We
analyzed the impact of our approach in the trade-off between current sentence predictions
and context sentence predictions, showing that context discounting helps the model to focus
on the current sentence, as intended. As a result, the concatenation model significantly
improves its ability to disambiguate inter-sentential discourse phenomena, and becomes
more robust to new context sizes. As an additional inductive bias towards locality, we equip
our model with segment-shifted positions, marking clearer boundaries between sentences.
This solution brings further improvements on contrastive test sets, although only marginal.
In the attempt to explain the proposed solutions’ empirical functioning, we investigated
their impact on the distribution of the self-attention weights, showing that they make
it more focused and skewed toward the current sentence, as intended. Finally, we have
analyzed the impact of divide and rule pre-training on focused concatenation approaches.
We found it beneficial for the context-discounted model without segment-shifted positions,

which achieves the best performance on contrastive sets obtained so far in our work.

4.4.2 Limitations and future works

Our experiments are limited to the use case of short concatenated windows (up to 4
sentences). This is enough for capturing most of the ambiguous inter-sentential discourse
phenomena that usually span across a few sentences only (Miiller et al., 2018; Voita et al.,
2019b; Lupo et al., 2022a). However, recent works suggest that longer context windows
might be helpful to increase the average translation quality (BLEU) of concatenation
approaches (Junczys-Dowmunt, 2019; Bao et al., 2021; Sun et al., 2022), and long-range
discourse phenomena could be handled. We hope to investigate the impact of context
discounting on longer sequences in future works. We also encourage to test the effectiveness
of our approach on a wider range of data scenarios: from very limited document-level data to
very abundant, including back translation (Ma et al., 2021b) and monolingual pre-training
techniques (Junczys-Dowmunt, 2019; Sun et al., 2022), to understand whether these
methods are only alternative to context discounting or there exist synergies. Furthermore,

experimenting with future context is also needed (c.f. Wong et al. (2020)).
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The contributions presented in this chapter will be submitted to the Fourth Workshop on
Insights from Negative Results in NLP, co-located with EACL 2023.
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5.1 Introduction

In the previous chapter, we have introduced the segment-shifted position embeddings as a
way to help context-discounted concatenation approaches to discern the sentences in the
concatenation window. Explicitly telling the model which tokens belong to the different
sentences of the processed sequence is not a new idea, but a pretty intuitive one that
has already been tested successfully in other tasks and approaches (Devlin et al., 2019;
Voita et al., 2018; Zheng et al., 2020). We believe that providing explicit information
about the position of the sentences at the token level helps concatenation approaches to
overcome the learning challenge presented in Section 2.4.4. In fact, if the tokens’ latent
representations contain information about the position of the sentences they belong to,
they can be processed by the attention function accordingly. For instance, attention can
recognize more readily the tokens belonging to the same sentence, which have higher
chances to be related to one another, as well as the distance of their context. As it
is fundamental for the Transformer model to have a notion of the sequentiality of the
tokens, it is also valuable to know the order of the sentences in the window. The temporal
structure of the document constitutes essential information for its understanding and the
correct disambiguation of inter-sentential discourse phenomena. It could be argued that
the information needed to determine which sentence a token belongs to, and its position
within the window, is already available thanks to token position embeddings. However, the
position embeddings do not constitute direct information about their sentence membership
because such information can only be retrieved through a comparison with the position
of separator tokens. We propose to inject sentence-membership information directly into

token representations in order to bypass the need to learn and perform such a comparison.

This chapter presents a comparative study of various approaches to encoding sentence
membership and position in concatenation approaches. Besides segment-shifted position
embeddings, we will evaluate three different kinds of segment embeddings: one hot,
sinusoidal (Vaswani et al., 2017) and learned (Devlin et al., 2019). Inspired by the
literature on position embeddings (Chen et al., 2021; Liu and Zhang, 2020), we propose to
make segment embeddings persistent over layers, adding them to the input of every layer
in addition to the first. Moreover, we propose fusing position and segment embeddings
into a single vector where token and segment positions are encoded in two orthogonal sets

of dimensions, allowing a clearer distinction between them, along with memory savings.

To the best of our knowledge, this is the first comparative study on the employment
of sentence position encodings for concatenation approaches to CANMT. Although a
few studies in the literature have adopted fixed or learned segment embeddings for
multi-encoding approaches (Voita et al., 2018; Zheng et al., 2020; Bao et al., 2021), a
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comprehensive comparison is missing in this case too.

5.2 Proposed approach

Besides segment-shifted position embeddings, described in Section 4.2.2, we propose to
equip SlidingKtoK with three different kinds of segment embeddings, described below.
Segment embeddings encode the position k of each sentence within the window of K
concatenated sentences into a vector of size d. We attribute sentence positions k =
1,2, ..., K starting from right to left. The first sentence of the window is given the position
k = K, while the sentence following the last separation token is given k = 1. The
underlying rationale is always to attribute the position £ = 1 to the current sentence, no
matter how many sentences are combined. Indeed, the SlidingKtoK approach is trained
with concatenation windows formed by up to K sentences, according to the available
context. This methodology is equivalent to attributing sentence distance embeddings to
each token, where the distance is expressed in terms of the number of sentences from the

current sentence plus one.

One-hot encoding - This is a standard method to encode a categorical variable into a
d-dimensional vector. The one-hot encoding of position £ is a vector where all the elements

equal zero except the kth element, which equals one.

Sinusoidal encoding - This method encodes every sentence position with d sinusoids,
one for each embedding dimension. The same approach is employed to encode token
positions in the Transformer model (Vaswani et al., 2017). Intuitively, the sinusoidal
representation is a continuous equivalent of the binary representation. For a detailed

description of sinusoidal embeddings and their properties, refer to Section 2.1.4.2.

Learned embedding - The d-dimensional embedding is randomly initialized and then
learned with the rest of the model, like in Devlin et al. (2019).

The simplest strategy to integrate segment embeddings (SE) with position embeddings
(PE) and token embeddings (T'F) is by adding them up, as in Devlin et al. (2019). For a
given token x¥ at position ¢, belonging to the kth source sentence of the concatenation
window X = {x!, 22 ..., 2%}, its continuous representation input to the model results

from the sum of the token, position, and segment embeddings:

sf =TE, + PE, + SEy

where v € V is a token belonging to the model’s vocabulary V. This operation requires

that all three embeddings have the same dimensionality d = d,,04¢. In the next section,
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we present an alternative strategy for integrating segment and position embeddings in a
unique vector before adding it to the token embedding. Both strategies will be evaluated

in the experimental section (5.3).

We propose to encode the sentence position with absolute position embeddings instead
of relative ones (Shaw et al., 2018) because the literature suggests that both perform
similarly in applications like ours (Liu et al., 2020a; Rosendahl et al., 2019; Likhomanenko
et al., 2021; Chen et al., 2021). Moreover, absolute position embeddings can be fixed, as
in the case of one-hot and sinusoidal encodings, while relative ones are always learned.
While early works leaned in favor of relative encodings (Shaw et al., 2018), later research
suggested that relative encodings might be advantageous only in the case of long sequences
or unseen sequence lengths (Rosendahl et al., 2019; Likhomanenko et al., 2021). However,
Chen et al. (2021) found that the argued superiority of relative position embeddings might
simply be due to their being added to each attention head. When applying the same
procedure with absolute position embeddings, they find the best performance across a
range of natural language understanding tasks. Liu et al. (2020a) also found an increased
performance of absolute sinusoidal position embeddings when adding them to the input of

each block in the Transformer architecture.

5.2.1 Persistent encodings

For a SlidingKtoK model, the maximum amount of concatenated sentences K is usually
tiny and fixed between training and inference. Therefore, in view of the above findings,
we believe that absolute positions are adapted for marking sentence positions within a
concatenation window. In addition, we propose to test the efficacy of making sentence
position encodings persistent across Transformer’s blocks, as (Liu et al., 2020a) did
for position embeddings. In other words, we propose adding segment-shifted position
embeddings or segment embeddings to each block’s input instead of just the first. This
option will be tested empirically in Section 5.3 and benchmarked against persistent token

position embeddings in Section 5.3.3.

5.2.2 Position-segment embeddings

The usual sum of token and position embeddings in the Transformer is based on the
premise that the model can still distinguish both signals after being added up. This is
likely accomplished by learning token embeddings in a way that guarantees they can be
distinguished from non-learnable position representations. However, adding a third non-

learnable representation (segment embedding) to the same vector could make distinguishing
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Figure 5.1 — Cumulative ratio of the variance explained by the principal components of

the 1024 x 512 sinusoidal position embedding matrix.

between the token, position, and segment embeddings hard, if not impossible, for the
model. For instance, if both segment and position embeddings are sinusoidal, distinguishing
between PFE; + SEy, and PE, + SE; is impossible. Instead, if position and segment
embeddings were concatenated to one another, they would be perfectly distinguishable
because they would belong to orthogonal spaces. Unfortunately, concatenating two
embeddings with d,,,qe; dimensions would then oblige to project the concatenated vector
back to a d,,.qe;-dimensional space. To avoid this expensive operation, we propose to reduce
the dimensionality of position and segment embeddings from dpg = dsg = dnoder t0 values
that sum up to the model dimension, i.e., dpg + dsg = dyoder- Thus, position and segment
embeddings can be concatenated into a unique vector that we call Position-Segment
Embedding (PSE), of size dpsg = dmoder:

PSEt,k - [PEt7SEk:|

Reducing the embedding dimensionality for both token and sentence positions can be
made without loss of information. As mentioned earlier, sinusoidal embeddings are the
continuous counterpart of the binary representation for natural numbers. Being continuous,
they can represent a much larger set of positions with the same number of dimensions. In
practice, for the Transformer-base architecture (Vaswani et al., 2017), with d,,0qe; = 512,
all the positions t = 1,2, ..., ;. can be modeled with unique embeddings in the usual
applications, where t,,,, = 1024. Even in the case of much longer sequences, the bottleneck
is attention’s complexity rather than sinusoidal embeddings’ representativeness. This can
be easily shown with a Principal Component Analysis (Jolliffe and Cadima, 2016) of the

R1024 x512

sinusoidal position embedding matrix PE € representing 1024 positions with

512 dimensions. In Figure 5.1, we plot the cumulative ratio of the variance explained by
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each component. Less than half of the principal components can explain the entirety of
the variance represented in the sinusoidal embeddings.! In other words, 1024 positions

can be represented with the same resolution using less than half the dimensions.

In the experimental section, we will empirically evaluate the impact of representing token
and sentence positions with PSE, where the former are encoded with sinusoids and the

latter with either one-hot, sinusoidal or learned encodings.

5.3 Experiments

5.3.1 Setup

The experimental setup in this chapter follows closely the previous chapter’s. We briefly

outline it here again. We experiment with two models:

o base: a context agnostic baseline following Transformer-base (Vaswani et al., 2017)
(see section 2.1.4.2);

e s4to4: short for Sliding4to4, a context-sensitive concatenation approach with the
same architecture as base, processing sliding windows of 4 concatenated sentences
as the source, and decoding the whole window into the target language (see Sec-
tion 2.4.1).

We equip the s4to4 model with the various sentence position encodings proposed above in
order to evaluate their impact and compare them. When experimenting with PSE, we
allocate four dimensions to segment embeddings (dsg = 4), which is enough to encode the
position of each of the four sentences in the concatenation window, with both one-hot and
sinusoidal encodings. Since d,,oq¢; = 512, this leaves dpp = dpoder — dsg = 508 dimensions

available to encode token positions.

The models are trained and evaluated on two language pairs covering two different domains:
movie subtitles for En—Ru Voita et al. (2019b), IWSLT17’s TED talk subtitles for En—De.
In addition to evaluating the average translation quality with BLEU, we employ two
contrastive sets to evaluate the translation of inter-sentential discourse phenomena. For
En—Ru, we adopt Voita et al. (2019b)’s set for the evaluation of deixis, lexical cohesion,
verb-phrase ellipsis, and inflectional ellipsis (details in Section 2.3.2.1). For En—De, we

evaluate the models on the translation of ambiguous pronouns with ContraPro (Miiller

'With dpp = 128, 94% of the variance is still explained; with dpg = 155, the entirety of it.
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et al., 2018), a large contrastive set of ambiguous pronouns whose antecedents belong to the

context (see Section 2.3.2.1). More details are reported in Section 4.3.1 and Appendix B.1.

5.3.2 Results

We first study the impact of sentence position encodings on the s4to4 model trained on
En—De data. In Table 5.1, we compare models equipped with a combination of the

following elements:

 encoding method (Enc.): either segment-shifted positions, one-hot, sinusoidal or

learned encodings;

o persistence (Pers.): sentence position encodings are added to the input of each
model’s block, or just to the first (if the option is not checked);

« position-segment embeddings (PSE): position and segment embeddings are concate-

nated into a unique vector, or added together (if the option is not checked).

As usual, we primarily focus on the accuracy on contrastive test sets, as BLEU displays
minor fluctuations throughout the whole table. However, the performance on the con-
trastive sets is not encouraging either: non of the encoding variants proposed outperform
s4to4 consistently. The one-hot encoding helps, but only by a thin margin. Making
encoding persistent or fusing them into PSE does not help either. The only exception is
sdtod+Irn+pers+pse (last line), which gains more than two accuracy points over baseline.
However, this result is solely driven by the net improvement on deixis disambiguation
(almost +5 points), while the performance is degraded on the other three discourse phe-
nomena. In conclusion, sentence position encodings do not seem to benefit the vanilla

s4to4 approach.

5.3.2.1 With context discounting

Encouraged by the outcomes of segment-shifted positions in the previous chapter, we
hypothesize that context-discounted concatenation approaches could leverage sentence
position encodings more effectively. Indeed, the context-discounted objective function
incentivizes distinguishing among different sentences. Table 5.2 displays the results of the
s4to4+4-CD model equipped with the various combinations of encodings tested before, except

the non-persistent PSE.? In this case too, vanilla encoding methods do not significantly

2Since preliminary experiments where not encouraging, we do not provide results for the non-persistent

PSE combination in order to economize experiments.
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System Enc. Pers. PSE Deixis Lex co. Ell inf EIl. vp Voita BLEU

base 50.00  45.87 51.80 27.00 . 46.64 31.98
|

sdto4 85.80  46.13 79.60 73.20 | 72.02  32.45

sdto4 shift 85.24  46.07 77.20 7120 | 71.28  32.27
|

sdto4 shift v 85.96 46.33 7520 74.00 ' 71.80 31.93
|

s4to4 lhot 86.08 47.07 78.00 75.60 | 72.52 32.61
|

s4tod lhot v 83.76  47.53  78.00 75.00 1+ 71.44  32.42
|

sdto4 lhot v 84.56  46.13 78.20 73.00 | 71.24  32.33

sdto4 lhot v v 84.56  46.47 76.00 7340 1 7116 32.41

s4tod sin 86.36  45.80 76.40 73.60 i 71.92 32.39

s4to4 sin v 84.96  46.13 74.80 74.00 ' 7120 32.38

s4to4 sin v 84.64 46.40  76.60 73.60 | 71.26  32.56

sdto4 sin v v 85.24  46.33 76.40  75.20 | 71.68 32.38
T

sdto4 Irn 85.48  46.27 76.20  75.60 | 71.80  32.56

s4tod Irn v 84.84  45.93 77.60 74.40 | 71.40  32.50

s4to4 Irn v 83.60 46.67  74.80 70.80 | 70.36  32.37

sdto4 Irn v v 90.52  46.00 74.80 66.60 |, 73.20 32.38

Table 5.1 — s4to4 trained on En—Ru OpenSubtitles with different sentence position
encodings (Enc.) and two options: persistency of the encodings (Pers.) and concatenation
of position and segment embeddings (PSE). Accuracy on Voita’s En—Ru contrastive set
and BLEU on the test set. The accuracy on the contrastive set is detailed on the left,
with the accuracy on each subset corresponding to a specific discourse phenomenon. The
values in bold obtain the best performance within their block of rows and outperform the
baselines (first block).
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System Enc. Pers. PSE Deixis Lex co. Ell inf EIll. vp Voita BLEU

base 50.00  45.87 51.80 27.00 . 46.64 31.98
|
sdto4 85.80  46.13 79.60 73.20 | 72.02  32.45
s4to4+-CD 87.16  46.40 81.00 7820 ' 7342 32.37
s4to4+CD  shift 85.76  48.33 81.40 80.40 i 73.06  32.45
s4to4+CD shift v 88.76 52.13 83.00 76.20 | 75.94 31.98
s4to4+-CD  1lhot 86.40  46.73 82.00 76.40 3 73.06  32.35
s4to4+CD 1lhot Vv 87.68  46.80 81.60  78.60 ! 73.90  32.56
s4to4+CD 1lhot VvV v’ 88.88 47.67 82.20 7540 | 74.50 32.33
|
s4to4+CD  sin 87.96  46.80 78.00 76.60 ' 73.48  32.53
s4to4+CD  sin v 86.80  47.00  80.80 78.20 | 73.40  32.52
s4to4+-CD  sin v v 89.28 46.67 83.20 77.20 | 74.68 32.27
s4to4+CD  Irn 88.12  46.47 81.20 75.60 | 73.68 3245
s4tod4+-CD  Irn v 86.84 52.27 84.60 80.00 | 75.56 32.43
s4to4d4+CD  Irn v v 93.20 47.40 72.20 64.40 | 74.48 32.35

Table 5.2 — Context-discounted s4to4 trained on En—Ru OpenSubtitles with different
sentence position encodings (Enc.) and two options: persistency of the encodings (Pers.)
and concatenation of position and segment embeddings (PSE). Accuracy on Voita’s En—Ru
contrastive set and BLEU on the test set. The accuracy on the contrastive set is detailed on
the left, with the accuracy on each subset corresponding to a specific discourse phenomenon.
The values in bold obtain the best performance within their block of rows and outperform
the baselines (first block).
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System Enc. Pers. PSE d=1 d=2 d=3 d>3 ContraPro BLEU

base 3280 43.97 47.99 7058 | 3727  29.63

sdtod 68.80 7496 7958 87.78 | 7135  29.48

s4to4+CD 7286 75.96  80.10 84.383 7431 29.32

s4to4+CD  shift 72.56 77.15 80.27 86.651 74.39  29.20
|

sdtod+CD shift v 60.15 7423 7713 8642 1 7122 2750

s4t04+CD  sin 71.83 76.82 80.97 87.551 73.88 29.23
|

sdtod+CD  sin v 7208 7635 79.23 8597 | 7382  20.26

sdtod+CD  sin v v 7122 7642 7888 8687 | 7322 2873
|

sdtod+CD I 70.21 7529 7T7.66 85.06 ' 7214 2835

sdtod+CD lm v 68.53 7251 7574 86.65' 7042  27.87

sdtod+CD  Im v« 6840 79.07 80.27 8348 ' 7148  28.63

Table 5.3 — Context-discounted s4to4 trained on En—De IWSLT17 with different sentence
position encodings (Enc.) and two options: persistency of the encodings (Pers.) and
concatenation of position and segment embeddings (PSE). Accuracy on ContraPro and
BLEU on the test set. The accuracy on pronoun translation is detailed on the left with the
accuracy on each subset, corresponding to pronouns with a specific antecedent’s distance
(in number of sentences). The values in bold obtain the best performance within their

block of rows and outperform the baselines (first block).

help the s4to4+4-CD model. However, making the encodings persistent boosts performance
in all cases but for sinusoidal embeddings. Employing shift+pers improves performance by
2.52 accuracy points over s4to4+CD, while Irn+pers brings a +2.14 improvement. Instead,
one-hot segment embeddings benefit only slightly (+0.48) from being persistent. We
believe that the reason is the same as the reason why sinusoidal segment embeddings
do not benefit from persistence. As discussed in Section 5.2.2, one-hot or sinusoidal
segment embeddings might not be distinguishable from sinusoidal position embeddings
once they are added together. Instead, when one-hot and sinusoidal segment embeddings
are concatenated to position embeddings into a unique PSE and made persistent, they
boost the performance of s4to4+CD by +1.08 and +1.26 accuracy points, respectively.

With the aim of evaluating the generalizability of these results to another language pair
and domain, we train and test the context-discounted approach on the En—De IWSLT17
dataset. In this case, we avoid experimenting with one-hot encodings since it was found to
be the less promising approach on the En—Ru setting. Table 5.3 summarizes the results

on En—De. Unfortunately, the improvements achieved on En—Ru do not transfer to
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System Enc. Pers. PSE d=1 d=2 d=3 d>3 . ContraPro BLEU

s4to4+CD 81.79 82.11 8219 90.04, 82.24 31.69
sdtod+CD shift v 79.61 81.45 8342 86.65, 80.45 30.71
sdtod+CD  sin v v 7985 82.38 84.46 86.87, 80.85 31.40
sdtod+CD lIm Vv 79.13  79.73 82.19 88.00 ,  79.82 31.58

Table 5.4 — Context-discounted s4to4 trained on the En—De high-resource setting with
different sentence position encodings (Enc.) and two options: persistency of the encodings
(Pers.) and concatenation of position and segment embeddings (PSE). Accuracy on
ContraPro and BLEU on the test set. The accuracy on pronoun translation is detailed
on the left with the accuracy on each subset, corresponding to pronouns with a specific

antecedent’s distance (in number of sentences).

this setting. The context-discounted s4to4 slightly benefits from segment-shifted position

embeddings, but the other approaches degrade its performance.

5.3.2.2 Increasing training data for the English to German pair

We hypothesize that the model does not undergo sufficient training in this setting to reap
the benefits of segment embeddings. In En—De IWSLT17, the training data volume is
smaller than in the En—Ru setting: 0.2 million sentences versus 6 millions (see Table 4.1).
Therefore, we choose to experiment with the En—De high-resource training set employed
in Chapter 3 and presented in Section 3.4.1. This setting expands the IWSLT17 training
data (Cettolo et al., 2012) by adding the News-Commentary-v12 and Europarl-v7 sets
released by WMT173. The resulting training set comprises 2.3M sentences.* Training on
this data is more expensive than training on the En—Ru setting, considering that the
average sentence length is of 27.3 tokens versus 8.3 tokens, respectively. Therefore, we only
train the most promising approaches.” Their performances are compared in Table 5.4. As
expected, the s4to4+CD model drastically improves its performance compared to training
on IWSLT17 alone: +7.93 accuracy points on ContraPro and +2.37 BLEU points on the
test set (c.f. Table 5.3). However, even with larger training volumes, segment position

encodings do not seem to help s4t04+4-CD on the En—De language pair.

3http://www.statmt.org/wmt17 /translation-task.html

4More data statistics are presented in Table 3.4.

SWe set shift= 27 for segment-shifted position embeddings, consistently with the average sentence
length of the training data.
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System Enc.  Pers. PSE Deixis Lex co. El inf EIl vp Voita BLEU

sdtod 85.80  46.13 79.60 73.20 i 72.02  32.45

sdto4 v 86.08 47.27 7940 7280 | 72.44 32.29
T

sd4tod + CD 87.16  46.40 81.00  78.20 | 73.42 3237

s4to4 + CD v 88.24  46.87 81.40  77.80 | 74.10 32.12

s4tod + CD segshift v 88.76 52.13 83.00 76.20 , 75.94 31.98

Table 5.5 — Making positions persistent across Transformer’s blocks improve discourse
disambiguation performance both for vanilla and context-discounted s4to4. Segment-

shifting positions further improve performance.

5.3.3 Persistent positions

Making sentence position encodings persistent across the layers have been found beneficial
for context-discounted models on the En—Ru setting (Table 5.2). The best-performing
model, s4tod+CD+shift+pers, shifts token positions by a constant factor every time we
pass from one sentence to the next and makes the resulting position embeddings persistent
throughout Transformer’s blocks. In Table 5.5, we benchmark this model against models
employing persistent token position embeddings but without segment-shifting. Both
vanilla and context-discounted s4to4 perform better when positions are persistent across
Transformer’s blocks, as suggested by Liu et al. (2020a) and Chen et al. (2021). Segment-
shifting further enhances performance, which confirms that the model benefits from a

sharper distinction between sentences.

5.4 Conclusions

5.4.1 Takeaways

In this chapter, we proposed to encode into token representations their sentence member-
ship and its position within a window of concatenated sentences, intending to improve
concatenation approaches to CANMT. Besides adopti