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Résumé
L'objectif  principal  de  cette  thèse  est  d'examiner  les  échelles  de  temps  associées  aux

variations de la concentration en phytoplancton dans l'Océan Austral et de fournir des données clés
pour comprendre comment les forçages externes conditionnent la croissance du phytoplancton à
différentes  échelles  spatio-temporelles.  En  outre,  cette  thèse  ouvre  la  voie  à  l'évaluation  de
l’influence des variations de production primaire sur l’écosystème. Le premier objectif  de cette
thèse  visait  à  isoler  les  différentes  échelles  temporelles  de  variation  présentes  dans  les  séries
temporelles à long terme de concentration en chlorophylle a estimées à partir de données satellite.
Le  premier  objectif  consistait  spécifiquement  à  caractériser  les  différents  types  de  phénologies
phytoplanctoniques dans l'Océan Austral, à étudier leur distribution spatiale ainsi qu’à évaluer de
leur évolution dans le temps. Deuxièmement, les travaux de cette thèse se sont concentrés sur le
secteur Indien de l'Océan Austral afin d'étudier plus spécifiquement les liens entre la dynamique de
la production primaire et le fonctionnement de l'écosystème. Dans le deuxième objectif, nous avons
défini des biorégions basées sur la phénologie la chlorophylle a telle qu’estimée par satellite. La
dymanique de ces biorégions a été dans un premier temps étudiée en termes de composition de la
communauté phytoplanctonique à partir d'un modèle satellitaire. Puis des données caractérisant le
comportement  de  recherche de  nourriture  d’un prédateur  supérieur  -  l'éléphant  de  mer  du Sud
(Mirounga  leonina)  ont  permis  d’étudier  la  dynamique  des  biorégions  aux  niveaux  trophiques
supérieurs.  Enfin,  dans  un  troisième  objectif,  nous  avons  proposé  une  méthode  basée  sur  une
variable optique de base - l'atténuation de la lumière dans la colonne d'eau - pour améliorer la
précision et la résolution spatiale des mesures de fluorescence de la chlorophylle a dérivées du bio-
logging.  Dans  le  contexte  de  missions  satellitaires  à  venir  focalisées  sur  l’observation  à  haute
résolution de circulation océanique, la méthode que nous présentons est prometteuse pour l'étude
des interactions bio-physiques à (sub)mésoéchelle dans l'océan Austral.

Abstract
The main objective of this thesis is to examine the timescales associated with variations in

phytoplankton  concentration  in  the  Southern  Ocean  and provide  key  data  to  understand  how
external forcing conditions phytoplankton growth at various spatio-temporal scales. Furthermore,
this thesis opens the way to the assessment of the influence of variations in primary production on
the  ecosystem.  The first  objective  of  this  thesis  was  to  disentangle  the  different  timescales  of
variation present in long-term time series of chlorophyll-a concentration estimated from satellite
data. Specifically this work characterized the different types of phytoplankton phenologies in the
Southern Ocean, to study their spatial distribution and to assess their evolution in time. Secondly,
the work in this thesis focused on the Indian sector of the Southern Ocean to study more specifically
the  linkages  between  primary  production  dynamics  and  ecosystem  function.  Here  we  defined
bioregions based on phenology of satellite chlorophyll-a concentration estimates. The dynamics of
these bioregions were first studied in terms of phytoplankton community composition estimated
using a satellite model. Then, indicators derived from tracking data of a top predator - the southern
elephant seal (Mirounga leonina) - were used to infer potential influence of variations in primary
production on higher trophic levels. Finally, in a third objective, we proposed a method based on a
cost-effective optical variable - namely, light attenuation in the water column - to improve accuracy
and  spatial  resolution  of  bio-logging-derived  chlorophyll  a  fluorescence  measurements.  In  the
context  of  upcoming  high-resolution  ocean-circulation  satellite  missions,  the  method  shows
promising for the studying of bio-physical interactions at (sub)mesoscale in the Southern Ocean.
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General Introduction

The Southern Ocean (SO): A key component of the Earth climate system

Connected to the Atlantic, Pacific and Indian Oceans, the Southern Ocean (SO) is a major
component of the Earth system. The SO is an essential link in the closure of the global overturning
circulation (Talley et al., 2011; Marshall & Speer 2012; Talley, 2013; Rintoul, 2018), as represented
in the schematic of  Figure 1, adapted from Talley et al., 2011. The circulation scheme of the SO
influences the global heat balance and biogeochemical cycles in the world’s oceans (Toggweiler &
Samuels, 1995; Rintoul et al., 2011; Morrison et al., 2015). Indeed, SO ventilation processes (Sallée
et al., 2010; Morrison et al., 2022) are key drivers of air-sea CO2 fluxes in the SO (Bushinsky et al.,
2019), which prove to be strongly supported by biological activity (Huang et al., 2023). Therefore,
SO processes are central to the climate system and play a key role in planetary responses to climate
change (Williams et al., 2023).

- 17 -

Figure 1: Schematic of the overturning circulation from a Southern Ocean perspective (from
Talley et al., 2011).



General Introduction

SO processes affected by climate change

Revealed over the past few decades, significant changes attributed to human activities are
currently critically affecting the SO (Fyfe, 2006; Sigmond et al., 2011; Shi et al., 2018; Swart et al.,
2018). These changes include warming of the SO (Gille, 2008; Sallée et al., 2018; Shi et al., 2021),
with direct consequences on SO heat uptake (Shi et al., 2018; Bourgeois et al., 2022). However, the
large contribution of the SO to global ocean heat uptake (Frölicher et al., 2015; Shi et al., 2018) is
crucial in the context of climate change. The SO is also the main oceanic sink of CO 2 (Mikaloff
Fletcher et al., 2006; Gruber et al., 2019a). Yet, the SO carbon cycle is affected by climate change
through modification of the ocean’s physico-chemical properties and biological activity (Sarmiento
et al., 1998; Le Quere et al., 2007; Hauck & Volker, 2015; Hauck et al., 2015; Bourgeois et al.,
2022; Williams et al., 2023). Finally, Antarctic sea ice might as well be impacted by SO warming
(Stammerjohn et al., 2008; Eayrs et al., 2021), with potential large-scale consequences on water
masses properties (Sadai et al., 2020), and hence, on heat uptake and ocean circulation.

Focusing attention on the circulation scheme of the SO

The circulation scheme of the SO (Figure 2) is dominated by the Antarctic Circumpolar
Current (ACC) system (Rintoul et al., 2001; Sokolov & Rintoul 2009a). Wind forcing by Southern
Hemisphere  westerlies  is  considered  the  main  driver  of  the  circumpolar  eastward  ACC  flow
(Wunsch, 1998; Lovenduski & Gruber, 2005; Allison et al., 2010). The Southern Annular Mode
(SAM), the leading mode of climate variability in the Southern Hemisphere (Thompson & Wallace,
2000), is closely related to the intensity of winds in the Southern Hemisphere. Positive phases of the
SAM (or Antarctic Oscillation, AAO) are associated with significant strengthening of the westerlies
(Lovenduski  &  Gruber,  2005).  Changes  in  SAM (and/or  in  the  El  Niño-Southern  Oscillation,
ENSO, see Sallée et al., 2008) therefore strongly influence the position of ACC fronts (Sallée et al.,
2008; Gille, 2008; Sokolov & Rintoul 2009b). Influence of SAM on SO physical processes was
even described at smaller scale through impact on eddy activity (Meredith & Hogg, 2006). Climate
change-induced modifications of the ACC were recently pointed out, as a consequence of both an
intensification of westerly winds (Böning et al.,  2008; Beech et al.,  2022; Behrens & Bostock,
2023) and ocean warming (Toggweiler & Russell, 2008; Shi et al., 2021). The key role of ACC
fronts in physical processes and ocean biology in the SO (Lovenduski & Gruber, 2005; Chapman et
al.,  2020)  emphasizes  the  critical  link  between  atmospheric  variability,  ocean  circulation  and
ecosystem functioning (Figure 3) in the current context of a changing climate system.
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General Introduction

SO ecosystems: a compromised equilibrium

On global scales, SO processes largely support the functioning of marine ecosystems due to
the worldwide connectivity of SO ecosystems (Murphy et al., 2021). Notably through the transport
of nutrients to other regions of the world’s oceans (Sarmiento et al., 2004; Vernet et al., 2019), the
SO circulation scheme is key in sustaining a large range of ecosystems. In addition, SO ecosystems
rely  on a large (threatened)  SO biodiversity  (Ropert-Coudert  et  al.,  2014;  Chown et  al.,  2015;
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Figure  2: Main oceanographic features in the Southern Ocean (from Vernet et al., 2019). ACC:
Antarctic Circumpolar Current; SAF: Subantarctic Front; SB: southern limit of Upper Circumpolar
Deep Water or Southern Boundary; DWBC: Deep Western Boundary Currents; R.: ridge; K. Pl.:
Kerguelen Plateau; F. Pl.: Falkland/Malvinas Plateau; and G.: gyre.



General Introduction

Hughes et al., 2020). However, SO warming and changes in Antarctic sea ice cover compromise the
equilibrium of SO ecosystems (Ducklow et al., 2012, 2013).

In the sea ice zone, breeding success of species like Adélie penguin (Pygoscelis adeliae)
highly depend on sea ice cover (Cimino et al., 2014, 2019; Barreau et al., 2019; Watanabe et al.,
2020).  Antarctic  birds  like  the  Adélie  penguin  or  Antarctic  seals  like  the  Weddell  seal
(Leptonychotes  weddellii)  are  considered  sentinel  species  as  changes  in  their  breeding success,
foraging effort or body condition can be used to study occurring environmental changes (Ropert-
Coudert et al., 2015; Wege et al., 2021). The impact of climate warming on populations of antarctic
birds has been clearly demonstrated (Forcada et al., 2006; Barbraud & Weimerskirch, 2006; Ropert-
Coudert et al., 2015). Although poorly known, the sea ice zone also hosts a large phytoplankton
biomass, that supports ecosystem functioning and has a significant role in sea ice biogeochemical
cycles (Ducklow et al., 2007, 2013; Taylor et al., 2013; Vancoppenolle et al., 2013; Deppeler &
Davidson, 2017; Moreau et al., 2020). As a consequence of warming in the sea ice zone, modified
(enhanced) primary production has already been evidenced (Moreau et al., 2015).

In the open ocean, the effects of climate change also impact the ecosystem at various levels,
from primary production (Deppeler & Davidson, 2017; Pinkerton et al., 2021; Henson et al., 2021),
to zooplankton (Loeb & Santora 2015; Johnston et al., 2022) up to top predators (e.g. Volzke et al.
2021).  Due  to  the  importance  of  synchronization  processes  between  functional  groups  within
ecosystems (Edwards & Richardson, 2004), any impact on one compartment of the trophic network
has ecosystem-wide consequences. Studying ecosystem changes through analysis of variability in
the areal extent of biomes (Boyd & Doney, 2002; Sarmiento et al., 2004; Fay & McKinley, 2014) is
an efficient way to identify both pivotal regions and key drivers of ecosystem changes.
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Figure 3: Key biogeochemical and ecosystem processes in the Southern Ocean (from Henley et al.,
2020)
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Drivers of ecosystem changes

The drivers of ecosystem changes in the SO are linked to changing physical environment as
well  as  direct  pressure  from human activities  (Morley  et  al.,  2020).  As previously  mentioned,
factors linked to changes in the physical environment mainly include increased heat content in the
SO due to warming, alteration of SO circulation through intensification of westerly winds,  and
modification of water properties due to increased sea ice melt. Direct pressures by human activities
are mainly linked to increased marine traffic and intensification of fishing effort (Morley et al.,
2020). The demand for activities related to tourism might also increase in the future (Bender et al.,
2016; Rogers et al, 2020; Cavanagh et al., 2021).

As  a  consequence,  a  long  list  of  ecosystem  services,  including  food  security,  climate
regulation and recreation (Murphy & Hofmann, 2012; Murphy et al., 2021; Cavanagh et al., 2021),
with large socio-economic impact on human societies, are likely to be affected by climate change
(Rogers et al., 2020; McCormack et al., 2021; Steiner et al., 2021; Cavanagh et al., 2021).

Phytoplankton: a pivotal role

As  a  consequence,  through  modification  of  habitats,  concurrent  pressure  on  resources,
introduction  of  non-indigenous  species  and  finally,  transport  of  anthropogenic  pollutants,  SO
marine biota might be critically affected in the future (Constable et al., 2014; Poloczanska et al.,
2016; Morley et al, 2020). Yet, the response of SO ecosystems to climate change largely depends on
how primary production will be affected by future changes (Smith et al., 1998; Smetacek & Nicol.,
2005; Deppeler & Davidson, 2017; Henley et al., 2020). Indeed, phytoplankton is at the base of
antarctic food webs (Deppeler & Davidson, 2017) and plays a pivotal role in SO biogeochemical
cycles (Arrigo et al., 2008; Henley et al., 2020). A key driver of the spatio-temporal variability of
SO biogeochemistry, the biological carbon pump (BCP) is the oceanic process through which - by
gravity, diurnal and seasonal vertical migration of living organisms or advection by water masses -
the organic matter is transferred to depth (Volk & Hoffert, 1985; Boyd et al., 2019; Siegel et al.,
2023).  Primary  producers,  by  converting  inorganic  carbon  into  organic  carbon,  hence  have  an
essential function in the BCP. However, the little agreement in climate models projections regarding
sensitivity of the SO BCP to climate change reveals our lack of understanding in the sequence of
processes that drive the BCP (Thomalla et al., 2023).

Therefore, to address future challenges implied by the strong environmental changes that
deeply affect the Earth system and human societies, monitoring phytoplankton is essential to (i)
better describe the link between SO processes and primary production, and (ii) assess the future
response of phytoplankton to climate change in the SO.
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Monitoring phytoplankton concentration

Phytoplankton concentration is commonly monitored through detection of chlorophyll-a, an
essential pigment involved in photosynthesis (Butler, 1978). High Pressure Liquid Chromatography
(HPLC) is a reliable method to assess phytoplankton pigment composition in a water sample, and
hence, chlorophyll-a concentration.

In  addition,  detection  of  chlorophyll-a  fluorescence  -  the  fluorescence  emitted  by
chlorophyll-a  pigments  following light  excitation  -  is  widely  used as  a  non-destructive  tool  to
estimate  in-situ sea  water  chlorophyll-a  concentration  (Lorenzen,  1966;  Huot  &  Babin,  2010;
Roesler  &  Barnard,  2013).  Therefore,  although  chlorophyll-a  fluorescence  is  not  directly
proportional  to  phytoplankton  biomass  as  it  reflects  the  overall  physiological  state  of  the
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Figure  4: Food-web diagram illustrating the three export pathways of the biological pump, their
regulating processes,  and the timescales for carbon sequestration (a) in the euphotic zone,  (b)
beneath the euphotic zone (from Siegel et al., 2023).
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phytoplankton  (Falkowski  and  Raven,  1995;  Serôdio  and  Lavaud,  2011;  Xing  et  al.,  2012;
Schallenberg,  et  al.,  2022),  it  is  commonly  and  widely  used  as  a  proxy  for  phytoplankton
concentration to monitor ocean biogeochemistry at large scale (e.g. Chai et al., 2020).

The content in chlorophyll-a in the ocean can also be assessed from space with ocean-colour
data. The remote sensing reflectance of sea water measured by ocean-colour sensors enable retrieval
of chlorophyll-a concentration (Morel & Gordon, 1980; Morel & Gentili, 1996). However, satellite-
based estimates of chlorophyll-a concentration (CHL) are only representative of ocean the surface
layer (Gordon and McCluney, 1975; Morel, 1988), generally assumed to be ~15-20 m thick. 

Chlorophyll-a fluorescence: a signal with multiple time scales of variation

Estimates  of  chlorophyll-a  concentration  from ship-based  measurements  combined  with
remote sensing data (e.g. Blain et al., 2008), augmented by the large development of autonomous
platforms equipped with a fluorescence sensor (e.g. Eriksen et al.,  2001; Schofield et al.,  2007;
Blain et al., 2013; Guinet et al., 2013; Testor et al., 2019; Claustre et al., 2020; Chai et al., 2020),
enable observation of the spatio-temporal variability in chlorophyll-a concentration in the SO at
various time scales. Describing phytoplankton dynamics at suitable spatio-temporal resolution is
crucial to dissociate spatial variability from temporal variability and examine the linkages between
SO processes and primary production. Variations in phytoplankton concentration in the SO extend
over a wide spectrum of time scales: from paleoclimatic time scales (Hillenbrand & Cortese, 2006)
to sub-seasonal variations (e.g. Pellichero et al., 2020). In addition, the fluorescence signal emitted
by  phytoplankton  cells  naturally  varies  -  spatially  and  temporally  -  according  to  species
composition and physiological state (Bricaud et al., 2004). In particular, physiological processes
involved  in  phytoplankton  photoacclimation  can  occur  on  time  scales  of  seconds  to  minutes
(Demmig-Adams & Adams, 1992; Li et  al.,  2009). Consequently,  due to the complexity of the
measured  chlorophyll-a  fluorescence  signal,  disentangling  the  time  scales  of  variation  in
phytoplankton concentration in the SO constitutes a real challenge.

Objectives of the study

The objectives of the present study are:

(i) examine the time scales of variation in phytoplankton concentration in the SO,

(ii) assess the propagation of variations in primary production throughout the ecosystem,

(iii)  provide  key  data  to  understand  how  external  forcing  conditions  phytoplankton  growth  at
various spatio-temporal scales.
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For this purpose, we propose to analyze variations in chlorophyll-a fluorescence at specific
spatio-temporal  scales,  suitable  to  examine  the  linkages  between  phytoplankton  dynamics  and
oceanic processes, and their influence at ecosystem level. In Chapter I, we firstly investigate multi-
annual variations in satellite-based estimates of chlorophyll-a concentration (CHL) in the SO. We
show that the confidence level associated with estimates of long-term CHL biomass trends in the
SO  is  low.  We  then  focus  on  smaller  time  scales  of  variation  through  examination  of  CHL
phenology.  We  show  that  besides  seasonal  cycles,  sub-seasonal  variations  are  determinant  in
shaping annual cycles of CHL, giving high importance to (sub)mesoscale processes. In Chapter II,
we propose a bioregionalization of the SO to investigate at regional scale the linkages between CHL
biomass,  CHL phenology  and  phytoplankton  community  composition.  We  then  use  indicators
derived from tracking data of a top predator - the southern elephant seal (Mirounga leonina) - to
infer potential influence of variations in primary production at ecosystem level. In Chapter III, we
show the promising potential of data derived from bio-logging devices placed on marine mammals
for applications linked to the study of the interaction between physical and biological processes at
(sub)mesoscale.
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Analysis of Phytoplankton Phenology in the

Southern Ocean from Ocean-Colour Data
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I.1. Introduction

The Southern Ocean (SO) is a major contributor to global carbon export (Sabine et al., 2004;
Khatiwala et al., 2009; Gruber et al., 2019; Long et al., 2021), to which phytoplanktonic organisms
critically contribute through their role in the biological carbon pump (Boyd et al., 2019; Siegel et
al.,  2021;  Thomalla  et  al.,  2023).  Moreover,  primary  production  has  direct  influence  on  the
ecosystem function (Saba et al., 2014; Deppeler & Davidson; Henley et al., 2020; McCormack et
al., 2021). Long term monitoring of phytplankton in the SO is hence crucial to study climate change
impacts and assess its role in future climate scenarios (Hauck & Volker, 2015; Hauck et al., 2015;
Krumhardt et al., 2022).

Ocean-colour sensors use remote sensing reflectance to infer chlorophyll-a concentration
(CHL) from space, a proxy for phytoplankton concentration.  With first  deployment launched in
1978,  satellite  ocean-colour  (OC)  sensors  have  proved  essential  for  monitoring  phytoplankton
distribution  at  large  scale  (McClain  et  al.,  2009,  Groom et  al.,  2019).  Nonetheless,  achieving
exploitable long term time series of remotely-sensed CHL is constrained by discontinuities due to
successive generations of OC sensors (Antoine et al., 2005; Pope et al., 2017; Henson et al., 2017,
Groom et al., 2019). Disentangling discontinuities due to OC sensor change from true ecological
changes is hard to resolve. Some studies overcome the issue by taking advantage of overlapping
operating periods of different OC sensors (Mélin et al., 2017; Del Castillo et al., 2019), using the
data of only one specific sensor (e.g. Vantrepotte & Mélin, 2011), developing a specific algorithm
per  OC sensor  “era”  (e.g.  Xi  et  al.,  2020),  or  using  coupled  physical-biogeochemical  models
(Hammond et al., 2020). The way discontinuities are handled is decisive in the results provided by
long-term analysis, and notably, estimates of long term trends (Beaulieu et al. 2013; Saulquin et al.,
2013;  Mélin  2016;  Gregg et  al.,  2017;  Hammond et  al.,  2020;  Lim et  al.,  2022).  Evidence of
instrumental issues for assessment of long term changes in CHL biomass is illustrated in Figure I.1.
The  use  of  two  analogous  ocean-colour  CHL  products,  namely  the  products  distributed  by
Copernicus  Marine  Service GlobColour  and the  European Space Agency Ocean Color  Climate
Change Initiative (ESA OC-CCI) (see Section I.2.d) reveal similar shape, but a different mean value
(~15%), and above all, opposite long-term trends.

Consequently, attempting to detect and quantify raw biomass trends in the SO is subject to
strong limitations due to the above-mentioned continuity issues. In the present study, we propose to
circumvent the issue by characterizing CHL variations at shorter time scales: from seasonal to sub-
seasonal.
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The study of  the timing of  periodic biological  events  in  relation  to  their  environmental
conditions (i.e. phenology, see Schwarz et al., 2003; Ji et al, 2010) is a common-sense approach to
detect repeatability as well as to track changes in the ecology of species (Rosenzweig et al., 2007).
The detection of various types of phytoplankton seasonal cycles across world’s oceans is enabled at
large  scale  by remote-sensing  of  CHL (e.g.  Racault  et  al.,  2011).  Several  studies  characterized
seasonal dynamics of phytoplankton from space using metrics derived from the annual cycle of
CHL (e.g.  Vargas  et  al.,  2009)  or  relied  on  bloom phenology  to  define  trophic  regimes  (e.g.
D’Ortenzio & Ribera d’Alcalà, 2009, Ardyna et al., 2017). Phenology of phytoplankton (the shape
of phytoplankton seasonal cycle) is a key ecological indicator (Platt & Sathyendranath, 2008) to
track  climate  change-driven  trends  (D’Ortenzio  et  al.,  2012;  Henson  et  al.,  2017).  Monitoring
phytoplankton  seasonal  dynamics  also  provides  valuable  indicators  for  marine  resources
management due to the trophic interactions (through synchronization) of the primary producers’
compartment with higher trophic levels (Platt et al., 2003; Edwards & Richardson, 2004).
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Figure  I.1. Assessment of long term changes in CHL biomass. Comparison of the multi-annual
component (see details in Section I.3.a) of two analogous ocean-colour CHL products, namely the
products distributed by Copernicus Marine Service GlobColour (blue circles) and the European
Space Agency Ocean Color Climate Change Initiative (OC-CCI, red circles) (see details in Section
I.2.d). Continuous lines show climatological 1998-2022 value and dashed lines show long-term
trends, with same color code as circles. Continuous gray line shows the ratio between CHL from
GlobColour and CHL from OC-CCI. At each date, the data displayed in Figure I.1 corresponds to
the mean value computed  for  the study zone (Southern  Ocean,  south  of  30ªS).  Trends in  CHL
biomass  are estimated as  differences  in  CHL per year and were only displayed for qualitative
appreciation of diverging trends (no absolute values of trends were provided).



Chapter I

Many methods were proposed to “quantify” phytopklankton phenology with timing indices
such as bloom initiation date, apex date, season duration (Ji et al., 2010). However important issues
regarding the accuracy and precision of these timing indices were highlighted (Cole et al., 2012;
Ferreira et al., 2014). Accuracy issues, notably strong in case of missing data (Brody et al., 2013),
are central to the studying of phytoplankton phenology in the SO, where satellite coverage is highly
constrained by the presence of clouds. As a response to the low accuracy of classical metrics at high
latitudes (Cole et al., 2012), the use of functional data, by including (spatial or temporal) relations
between variables,  is particularly adapted in case of missing data (Ramsay & Silverman, 2005;
Nerini  et  al.,  2010).  Here  we  propose  a  method  based  on  functional  data  analysis  (FDA)  to
characterize phytoplankton phenology in the SO.

In the present study, we demonstrate that studying CHL phenology appears as a robust way
to investigate long-term time series in the presence of discrepancies at multi-annual scale. Firstly,
we use a comparison between two different OC products (namely GlobColour and ESA OC-CCI),
to emphasize discrepancies related to multi-annual variations (Section I.1). We then study seasonal
to sub-seasonal time scales of variation through examination of CHL phenology and its evolution in
time. The functional approach proposed in the present study reveals the main modes of variation of
CHL phenology, from seasonal to sub-seasonal scales, their spatial distribution and their evolution
in time (Section I.4). The main seasonal patterns identified in our study were validated through a
series of case studies in the SO (Section I.5.a). The case studies scrutinized in our study also support
the proposed underlying processes and the hypothesized role of (sub)mesoscale processes in sub-
seasonal  variations  in  CHL. We then investigate more closely the sub-seasonal  component  and
discuss its influence on CHL phenology (Section I.5.b). Finally, we discuss long-term variations in
CHL phenology and the potential induced implications for CHL biomass in the SO (Section I.5.c).
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I.2. Data

I.2.a. Study period, area of interest and geographic sectors

The study period extends from 1998 to 2022. The area of interest of the present study is the
Southern Ocean. The Southern Ocean was defined as the oceanic region located South of the 30ºS
parallel. The region was divided into geographic sectors, named after the ocean they are connected
to.  The sectors of the Southern Ocean defined in the present study were the Pacific sector,  the
Atlantic sector and the Indian sector (see supplementary material, Figure I.7).

All data processed in the present study were mapped with a 0.25º x 0.25º resolution (~20 km
in the region of the study), which we judged adapted for the purpose of the study.

I.2.b. Coastline and bathymetry data

We used the 50 m resolution coastline data product (version 5.1.0) distributed by Natural
Earth (available at https://www.naturalearthdata.com/downloads/50m-physical-vectors/). The ocean
bathymetry data was based on ETOPO1 1 Arc-Minute Global Relief Model data from National
Centers for Environmental Information at the National Oceanic and Atmospheric Administration
(NCEI NOAA; available at https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/).

Grid points with bathymetry shallower than -1000 m were not considered in the study. In
total, 210 893 grid points (81%) were retained (out of 260 821 grid points in the study zone).

I.2.c. Fronts in the Southern Ocean

Three  main  fronts  are  commonly  used  to  delineate  water  masses  boundaries  within  the
Antarctic Circumpolar Current (ACC) (Orsi et al., 1995; Rintoul et al., 2001; Kim & Orsi, 2014;
Park et al.,  2019). These fronts are the Subantarctic Front (SAF), the Polar Front (PF) and the
Southern ACC Front (SACCF). In the present study, the location of the three major fronts of the
ACC  was  based  on  the  fronts  proposed  in  Park  et  al.  (2019)  (available  at
https://www.seanoe.org/data/00486/59800/).  An  additional  front  was  added  north  of  the  SAF,
namely the Subtropical Front (STF), based on the definition by Orsi, Whitworth & Nowlin (1995)
applied to the sea temperature 1998-2022 climatology computed from Multi Observation Global
Ocean  3D  Temperature  Salinity  Height  Geostrophic  Current  and  MLD  ARMOR3D  product
distributed  by  the  Copernicus  Marine  Service  (ARMOR3D;  available  at
https://doi.org/10.48670/moi-00052).  In reference to the eastward flow direction of the ACC, the
terms “upstream” and “downstream” were further used as equivalents to west and east, respectively.
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I.2.d. Chlorophyll-a concentration (CHL) satellite data

We used 8-day averaged Level 3 CHL products from January 1998 to December 2022 from
two  different  data  archives:  the  CHL product  distributed  by  the  Copernicus  Marine  Service
GlobColour project (available at  http://www.globcolour.info/) and the CHL product distributed by
the European Space Agency Ocean Color Climate Change Initiative (ESA OC-CCI; available at
http://www.oceancolour.org/).  Both  products  merge  the  data  from multiple  sensors.  The  native
resolution of both satellite-derived CHL products is 4 km. We mapped the CHL data with a 0.25º x
0.25º resolution. At each grid point, the Chla record constitutes a time series. Time series with more
than 50% missing values over the full record were removed and the corresponding grid points were
not considered in the study. In total, 124 627 grid points (48%) were retained (out of 260 821 grid
points in the study zone). Therefore, most of the data are located North of 60ºS (see white mask
around Antarctic continent in Figure I.3). Time series of CHL were linearly interpolated for missing
values.
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I.3. Methods

I.3.a. Temporal Decomposition

A time  series  decomposition  was  applied  at  each  grid  point.  We  used  the  temporal
decomposition described in Keerthi et al. (2020). The method is based on the Census X11 algorithm
developed by the US Bureau of the Census. The Census X11 algorithm was initially developed for
the seasonal adjustment of economic time series (Shiskin et al., 1967). The decomposition method
was then re-adapted for global time series of sea surface temperature (Pezzulli et al., 2005) and,
more recently, for time series of CHL (see Vantrepotte & Mélin, 2009; Keerthi et al., 2020). Briefly,
the method is  based on the iterative application of bandpass filters  (including moving average,
Henderson filter) that aim at decomposing the time series into several components. Each component
of the time series corresponds to a different time scale of variation. The time series of CHL was
decomposed  into  a  multi-annual  (CHLMA),  a  seasonal  (CHLSeas)  and  a  sub-seasonal  (CHLSS)
components, such that

CHL(t) = CHLMA(t) + CHLSeas(t) + CHLSS(t) (I.1)

where t is time. A detailed description of the decomposition method is provided in Keerthi et al.
(2020).

The time series decomposition allows to describe and analyze separately the time scales of
variations in the CHL signal, with the multi-annual CHLMA describing time scales greater than one
year, the seasonal CHLSeas describing time scales between a year and 3 months, and the sub-seasonal
CHLSS describing time scales  shorter  than three months  (see examples  of corresponding power
spectra  in  Keerthi  et  al.,  2022,  Extended  Data  Fig.  2).  The  components  of  the  temporal
decomposition fed specific analyses, with a purpose specific to each component. The multi-annual
CHLMA was used to analyze long-term variations in CHL (see Section I.1 and Figure I.1) but most
of the focus was placed on shorter time scales. The analysis of CHL phenology was performed with
the seasonal component CHLSeas. Time scales shorter than seasonal were analyzed by assessing the
contribution of the sub-seasonal component CHLSS to the total variance of the CHL signal. The
specific methods applied to each component of the time series are described below.

I.3.b. CHL Phenology

The phenology of CHL was characterized by analyzing the seasonal component of the CHL
time series (CHLSeas). Removing the multi-annual component prior to FPCA allows for an objective
shape analysis that remains independent of long-term variations (e.g. trends in CHL biomass). The
sub-seasonal component CHLSS was also removed to analyze separately the part of the CHL signal
related to time scales shorter than seasonal (i.e. shorter than 3 months, see previous section).
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Normalization and segmentation into annual cycles

Seasonal time series CHLSeas were normalized so that the signal of all grid points vary in a
comparable range, independently of the biomass. At each grid point, normalization of the seasonal
time  series  CHLSeas was  obtained  by  subtracting  the  mean  and  then  dividing  by  the  standard
deviation  of  CHLSeas.  For  each  grid  point  with  seasonal  time  series  CHLSeas(t),  the  normalized
seasonal time series NCHLSeas is expressed as

NCHLSeas=
(CHLSeas−CHLSeas)

STD (CHLSeas)
(I.2)

where STD is the standard deviation. NCHLSeas has mean zero and standard deviation equal to one.

Additionally,  the  time series  NCHLSeas(t)  were segmented  into successive  annual  cycles.
Annual cycles of CHL are defined from July to July, with a time resolution of 8 days. Consequently,
each grid point is associated with a time series composed of 24 annual cycles, extending from 1st

July 1998 to 30th June 2022.

Functional Principal Component Analysis (FPCA)

The time series were normalized and segmented into individual annual  cycles to  enable
focusing only on CHL phenology (i.e.  shape of the annual  cycle)  through  Functional  Principal
Component  Analysis  (FPCA).  FPCA is  a  tool  used  in  Functional  Data  Analysis  (FDA).  FDA
consists in handling the objects of interest as continuous curves (Ramsay & Silverman, 2005). The
curves  are  generated  from  the  raw  data  with  specific  constraints  (e.g.  smoothing).  The
parametrizable  level  of  roughness  of  the  curves  (Meyer,  2012)  introduces  point-to-point
relationship,  which  enables  extraction  of  data  properties  related  to  shape.  FDA has  proved  an
efficient tool in oceanography and marine ecology for the studying of a large panel of variables
(Pauthenet et al., 2017, 2018, 2019; Assunção et al., 2020; Godard et al., 2020; Tournier et al., 2021;
Nerini  et  al.,  2022; Ariza et  al.,  2022, 2023;  Fontvieille  et  al.,  2023).  In the present  study, the
handling of the objects of interest (annual cycles) as curves (functional data) enable the extraction
of  their  shape,  particularly adapted to  the studying of CHL phenology.  Each annual  cycle was
considered as an individual object in the functional analysis described in the present section. The
annual cycles (N = 124 627 grid points x 24 years = 2 991 048 annual cycles) were all defined on
the same time interval (i.e. a time vector with a duration of one year and a resolution of 8 days) and
were expressed in  a  functional  basis  as  a  linear  combination of  continuous curves.  FPCA was
performed for the 2 991 048 annual cycles from the normalized seasonal time series SN(t).

FPCA outputs and terminology

The  main  results  of  the  FPCA are  the  Functional  Principal  Components  (FPCs).  FPCs
describe  the  main  modes  of  variation  in  CHL annual  cycles (FPCs  are  hereafter  indifferently
referred to as FPCs, modes of variation and FPCA axes). FPCs are numbered from 1 to the number
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of selected FPCA axes, in descending order of the associated explained variance. The number of
FPCA axes to be retained is determined according to the variance explained by each axis. Below a
user-defined threshold of explained variance, FPCs may be discarded.

FPCA enables the creation of a new basis defined by the FPCs. Projection of an annual cycle
on a FPC is hereafter referred to as its score. Absolute value of the score is not directly interpretable
in terms of CHL.

FPCA-derived time series

Each grid point is assigned a score each year based on the phenology of the annual cycle
recorded at the corresponding location. To each grid point hence corresponds a time series of 24
score values for each FPC (see example in supplementary material,  Figure I.11). The evolution of
CHL annual cycles phenology over time was examined at each grid point using the time series of its
FPC  scores  and  classical  metrics  derived  from  these,  namely  mean  (hereafter  referred  to  as
“climatological score”), standard deviation, and trend (see Section I.3.c).

I.3.c. Trend analysis

The  methods  described  in  the  present  section  produced  time  series  of  FPC  scores
characterizing the phenology of the annual cycle (see Section I.3.b). The time series were composed
of  one scalar  for  seasonal  cycle  of  the  study period  (1998-2022,  i.e.  24  values).  Detection  of
significant trends in the time series was performed using Mann-Kendall trend test with significance
level  alpha  =  0.05.  Trends  were  quantified  using  an  ordinary  least  squares  (OLS)  regression.
Uncertainties in computed trends were defined based on the width of the 95% confidence interval.
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I.4. Results

In this section we develop our interpretation of the modes of variation obtained after running
the  FPCA.  We  then  examine  the  geographical  distribution  of  each  mode  of  variation  on  a
climatological basis. Finally, we examine changes over time of the geographical distribution of the
main modes of variation (see Section I.3.b for terminlogy of FPCA-derived variables).

I.4.a. Interpretation of the Functional Principal Components (FPCs)

The FPCs obtained after running the FPCA (Figure I.2) correspond to the main modes of
variation that determine the phenology of CHL annual cycles in the SO. The mode of variation that
explains  most  of  the  variance  (FPC1,  54%)  opposes  annual  cycles  further  referred  to  as
“subtropical” and “subpolar” phenological types.

The subtropical phenological type (red curve in Figure I.2, left panel) is characterized by an
annual  maximum in early spring (around September)  and annual  minimum in summer (around
January). Subtropical-like annual cycles show slow increase from summer minimum to early spring
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Figure I.2. Three first FPCs (modes of variation) obtained after running FPCA (see Section I.3.b).
The  value  in  brackets  above  each  panel  is  the  percentage  of  variance  explained  by  the
corresponding FPC.  In each panel,  the  curve depicted by “-” (“+”) symbols  shows a typical
phenology  associated  with  a  negative  (positive)  FPC  score.  Negative  (positive)  scores  are
represented  in  blue,  purple  and  cyan  (red,  orange  and  green)  for  FPC1,  FPC2  and  FPC3,
respectively.  The  continuous  black  line  displayed  in  every  panels  correspond  to  the  average
phenology in the study zone (Southern Ocean, south of 30ªS).
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maximum with relative high CHL abundance in winter, followed by a sharp decrease during late
spring.

The subpolar phenological type (blue curve in Figure I.2, left panel) is characterized by an
annual maximum around summer solstice (December-January) and annual minimum in late winter
(around September). Subpolar-like annual cycles show a steep increase before the summer annual
maximum and a slower decrease towards the late winter annual minimum, with even a break in the
slope in late summer/early autumn (February-March). FPC1 hence not only differentiates annual
cycles according to the timing of the annual maximum, but also highlights distinct annual cycle
shapes between subpolar and subtropical phenologies.

Following the seasonal differentiation obtained with FPC1, the second mode of variation
(FPC2,  20%)  discriminates  at  finer  temporal  scale  the  timing  of  the  summer  annual  maxima.
Negative (positive) scores relatively to FPC2 indicate an earlier (later) annual maximum, occurring
around November/December (February/March), represented by the blue (red) curve in  Figure I.2
(middle panel).

From the third axis of the FPCA (FPC3, 12%) and beyond, interpretations of associated
modes  of  variations  becomes  more  delicate  due  to  the  less  clear  shape  of  the  annual  cycles
described by the corresponding FPCs (Figure I.2, right panel, see also further axes of FPCA in
supplementary  material,  Figure  I.8).  Although the  phenology analysis  was carried out  with the
seasonal  component  of  the CHL time series  only  (Section  I.3.b),  influence  of  the sub-seasonal
component on CHL phenology may be noticeable,  as discussed in Section  I.5.b.  In the present
study, only the first and the second modes of variation were interpreted and examined, totaling 74%
of explained variance.

I.4.b. Geographical distribution of FPC scores

Following the interpretation of the FPCs, the geographical distribution of the climatological
scores (1998-2022) of each grid point relative to the two first modes of variation were examined.
Spatial distribution of FPC1 and FPC2 climatological scores are shown in Figure I.3 and Figure I.4,
respectively (see supplementary material, Figure I.12, right panel for FPC3 climatological scores).
Grid points with highly positive average FPC1 score depict an outer ring that covers the subtropical
region. Highly negative FPC1 scores are mainly found in the Atlantic and in the Indian sectors of
the SO, in an inner ring delimited by the STF to the north, and the SAF to the south. South of the
SAF, FPC1 scores are less negative. In the Pacific sector, the zone delineated by the STF and the
SAF appears as a large transition area between positive and negative values of FPC1 scores. In the
Atlantic and Indian sectors, the transition from subtropical to subpolar phenologies is sharper than
in the Pacific sector and occurs north of the STF. The spatial structure of the phenologies described
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by FPC1 scores were further  examined through regional  studies  to  support  the spatial  patterns
described in the present section (see Section I.5.a).

Examination of grid points’ contribution to the creation of the first axis of the FPCA (see
supplementary material,  Text S2) reveal that subtropical phenologies are the main contributors to
the  creation  of  FPC1 (see  supplementary  material,  Figure  I.9,  left  panel).  Map of  grid  points’
contribution to the creation of the first axis of the FPCA suggests that the FPC1 axis primarily
distinguishes  subtropical  phenologies  from the  rest  of  the represented  phenologies.  Conversely,
subtropical-like grid points generally have a low score and low contribution relatively to FPC2 (see
supplementary material, Figure I.9, right panel). Therefore, no refined interpretation of FPC2 scores
for subtropical-like grid points  should be sought.  Indeed, as highlighted in  Section  I.4.a,  FPC2
mainly discriminates subpolar-like annual cycles according to the timing of their annual summer
maximum. The geographical distribution of FPC2 scores (Figure I.4) clearly reveals large areas
with an earlier summer annual maximum (e.g. south of the SAF in the Indian sector), compared
with other areas associated with a later summer annual maximum (e.g. between the SAF and the
STF in the in the Atlantic sector and in the eastern part of the Indian sector, south of the STF in the
eastern part of the Pacific sector).
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Figure  I.3.  Spatial  distribution  of  FPC1  climatological  scores  (see  Section  I.3.b). Black  lines
represent the major fronts of the SO defined in Section  I.2.c (from north to south): Subtropical
Front (STF), Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF). The
areas filled with gray color are land areas. The areas filled with black color depict marine areas
with bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL values in the
1998-2022 time series (see Section I.2.d) are represented in white (white area around Antarctica,
south of ~60ºS).
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I.4.c. Time series of FPC scores

Time series  of  FPC1 scores  were  used  to  examine the  behavior  of  CHL annual  cycles
phenology  over  time.  Firstly,  the  steadiness  of  the  annual  cycle  phenology  over  time  was
characterized at each grid point through the computation of the standard deviation of its FPC1 score
time series (FPC1STD). Secondly changes in CHL phenology were further examined through analysis
of trends associated with FPC1 scores.
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Figure  I.4.  Spatial  distribution  of  FPC2  climatological  scores  (see  Section  I.3.b).  Black  lines
represent the major fronts of the SO defined in Section  I.2.c (from north to south): Subtropical
Front (STF), Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF). The
areas filled with gray color are land areas. The areas filled with black color depict marine areas
with bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL values in the
1998-2022 time series (see Section I.2.d) are represented in white (white area around Antarctica,
south of ~60ºS).
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Detecting seasonal instability over time

The standard deviation of FPC score time series was computed at each grid point. High
standard deviation in the time series of FPC scores is associated with unsteady (weak) seasonal
pattern.  The  areas  identified  by  the  sutropical  (subpolar)  phenological  type  were  generally
associated with lower (higher) seasonal instability, revealed by examination of FPC1 score time
series (Figure  I.5). Geographical  regions  at  the  interface  between  the  zones  defined  by  the
subtropical and subpolar phenological types (see Section I.4.b) were generally associated with high
standard  deviations  relatively to  FPC1 score  time series.  Thus,  a  large area of  strong seasonal
instability, located between the STF and the SAF, is clearly identified in the Pacific sector, while in
the Atlantic and in the Indian sectors the zone of seasonal instability is located north of the STF.
Geographical patterns of unsteadiness relatively to the modes of variation described by FPC1 and
FPC2 were generally very similar (Figure I.5 and supplementary material,  Figure I.13). However,
detailed examination of the geographical region located between the SAF to the north and the PF to
the south (only visible in the Atlantic and the Indian sector, due to lack of data in the Pacific sector,
see Section I.2.d) reveal an area marked by a relative stability with respect to FPC1 scores, whereas
FPC2 scores show high instability. Such contrasted behavior highlights the finer temporal resolution
of the modes captured by FPC2. Thus, the continuous distribution of scores along the FPC1 and
FPC2 axes allows assessment of seasonal to sub-seasonal changes in phenology over time.
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Assessing long-term changes in CHL phenology

The characterization of CHL phenology enabled by projection on FPC1 axis was further
investigated through analysis  of  trends  associated with FPC1 scores.  Locations  associated  with
significant positive (negative) trend along FPC1 axis tend  to tend to have a changing phenology
towards  more  subtropical-like  (subpolar-like)  annual  cycles.  Trends in  FPC1 scores  show large
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Figure I.5. Spatial distribution of FPC1STD, the standard deviation of the time series of FPC1 scores
(see Section I.3.b).  Black lines represent the major fronts of the SO defined in Section I.2.c (from
north to south): Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF) and Southern
ACC Front (SACCF). The areas filled with gray color are land areas. The areas filled with black
color depict marine areas with bathymetry shallower than -1000 meters. Pixels with less than 50%
valid CHL values in the 1998-2022 time series (see Section I.2.d) are represented in white (white
area around Antarctica, south of ~60ºS).
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spatial coherence (Figure I.6). In the Indian sector of the SO, the geographical distribution of FPC1
trends is complex but it broadly depicts positive trends in the east and negative trends in the west. In
the Atlantic sector, positive FPC1 trends were mostly detected north of the SAF, while the area
located between the SAF and the PF was generally associated with negative FPC1 trends, notably in
the eastern part. FPC1 trends in the Pacific sector are marked by the presence of a geographical
band of highly negative trends south of the STF, which extends north of the STF in the east. North
and south of this geographical band, FPC1 trends in the Pacific sector of the SO are mainly positive.
At the scale of the SO, it should be noted that some areas locally discord with the broad spatial
patterns of FPC1 trends described in the present section (e.g.  the Great Australian Bight in the
Indian sector). In total, 16.3% of grid of points were associated with negative FPC1 trend, 16.2%
with positive FPC1 trend, and 67.5% with no significant trend, which globally for the SO results in
no FPC1 trend (see Figure I.6). Finally, it is also worth noting that the geographical areas associated
with  the  highest  climatological  mean  values  of  CHL  (see  1998-2022  CHL  climatology  in
supplementary material, Figure I.7), namely the Patagonian Plateau, South Georgia, Crozet Islands,
the Kerguelen Plateau, up- and downstream New Zealand, and offshore Chile, were all associated
with positive FPC1 trends.
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Figure  I.6.  Spatial  distribution  of  (left  panel)  FPC1  trend  estimates  and  (right  panel)  their
uncertainties (width of 95% confidence interval) for the 1998-2022 GlobColour CHL record. Light
gray regions indicate that the trend is not statistically different from zero. Black lines represent the
major fronts of the SO defined in Section  I.2.c (from north to south): Subtropical Front (STF),
Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF). The areas filled
with  gray  color  are  land  areas.  The  areas  filled  with  black  color  depict  marine  areas  with
bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL values in the 1998-
2022 time series (see Section I.2.d) are represented in white (white area around Antarctica, south of
~60ºS).
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I.5. Discussion

I.5.a. Processes supporting CHL production in the SO: a descriptive 

approach based on case studies

The analysis based on the shape of the annual cycle of CHL proposed in the present study
highlights the main modes of variation that drive the phenology of annual CHL concentration in the
SO. A clear contrast between two major phenological types, defined as subtropical and subpolar
phenologies (Section I.4.a), is highlighted by projection on the first axis of the FPCA (see Figure I.3
and  supplementary  material,  Figure  I.14 ).  At  first  order,  the  two  phenological  types  can  be
differentiated by the timing of their annual CHL maximum (Figure I.2, left panel). However, there
is  a  continuum  between  the  two  extremes  of  the  FPC1  axis,  spanning  different  regimes  of
phytoplankton dynamics in the SO. These regimes are the result of specific regional processes. In
this section, we use case studies focused on different regions of the SO to illustrate the phenological
types described in the present study (Section I.4.a) and their spatial distribution (Section I.4.b). The
case studies support our results and provide hypotheses for understanding the processes driving
CHL dynamics in the SO.

Region of New Zealand: A transition from subtropical to subpolar 
phenologies

The geographical distribution of FPC1 scores can partially be described using the major
fronts of the SO (see Section I.4.b). However, some obvious geographical discrepancies between a
transition  based  on  a  purely  biological  criterion  (phenology)  and  water  masses  boundaries
(climatological position of the fronts) were highlighted in Section I.4.b. These discrepancies could
possibly be due to the year-to-year meandering of the SO fronts (Sallée et al., 2008; Sokolov &
Rintoul, 2009b; De Boer et al., 2013; Kim & Orsi, 2014; Pauthenet et al., 2017). Focusing on the
STF,  one  way  to  describe  the  subtropical/subpolar  phenological  transition,  while  removing
variability  in  STF position,  is  to  examine specific  zones  where  isolated  high bathymetry areas
constrain the transport of water (Rintoul et al., 2018) and act as a real lock for major fronts (e.g.
Roquet et al., 2009; Sokolov & Rintoul, 2009a; Forcén-Vázquez et al., 2017; Park et al., 2019).
Such a  zone is  encountered  around New Zealand,  where  an  extension  of  the  continental  shelf
eastward from South Island, materialized by the Chatham Rise, constitutes a real bathymetry lock
for the STF (Hadfield et al., 2007). Extensively described in Murphy et al. (2001) using SeaWiFS
ocean color images, CHL dynamics around New Zealand reveal three main patterns, referred to as
subtropical, subtropical frontal, and subantarctic waters.

Firstly, the region associated with highly positive FPC1 scores located north of New Zealand
(Figure I.3), characterized by elevated CHL abundance during winter reaching a maximum during
spring, and falling to a minimum during summer (see Section I.4.a and red curve in Figure I.2, left
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panel), is in line with the subtropical oligorophic regime identified in Murphy et al. (2001) in the
same area. The processes that support the CHL dynamics associated with the subtropical phenology
are  typically  a  nutrient  enrichment  of  the  surface  layer  by  winter  mixing,  followed  by  rapid
consumption  of  nutrients  in  spring,  while  winter  production  is  limited  by  light  availability
(Longhurst, 2007; Fay & McKinley, 2014).

Secondly,  subtropical  frontal  waters  are found at  the interface between subantarctic  and
subtropical waters, where the mixing of cold, nutrient-rich, iron-depleted subantarctic waters with
warm,  nutrient-poor,  iron-rich  subtropical  waters  is  hypothesized  to  support  CHL production
(Pinkerton et al., 2005; Chriswell et al., 2013; Behrens & Bostock, 2023). As a consequence of their
frontal position, these waters are characterized with possible presence of CHL almost throughout
the year (Boyd et al., 1999), which translates into intermediate phenologies, and therefore FPC1
scores close to zero. Combination of low absolute values of FPC1 scores (white, light red and light
blue regions in Figure I.3) and low standard deviation of FPC1 scores (Figure I.5) on either sides of
the Chatham Rise confirm the quasi-permanent regime of relatively high CHL abundance detected
in subtropical frontal waters at the STF in Murphy et al. (2001). It is worth to note that the evidence
of a bathymetry lock at the Chatham Rise is reinforced by the notably low standard deviation of
FPC1 scores north and south of the STF around new Zealand, in contrast to the rest of the Pacific
sector (Figure I.5).

Thirdly, the region south of New Zealand is characterized by the presence of subantarctic
waters (Boyd et al.,  1999). CHL dynamics in subantarctic waters present low annual amplitude,
with a CHL minimum in the late winter and a maximum in summer (Banse & English, 1997; Boyd
et al., 1999; Murphy et al., 2001). Phytoplankton growth in subantarctic waters seems to be clearly
limited by light in winter, while during other seasons, light, iron and silicate can limit (or co-limit)
CHL production (Boyd et al., 1999; Boyd et al., 2001; Hutchins et al., 2001), leading to a variety of
phenologies, from highly marked solstice annual maximum, to phenologies with multiple peaks
(Murphy  et  al.,  2001).  Annual  variations  in  CHL  in  subantarctic  waters  correspond  to  the
phenologies described by negative FPC1 scores (see Section I.4.a and blue curve in Figure I.2, left
panel).  In the southern part  of  the region located between the STF and the SAF, FPC1 scores
ranging  from negative  to  highly  negative  (see  Figure  I.3)  are  consistent  with  the  presence  of
subantarctic  waters.  At  the  scale  of  the  SO,  subantarctic  waters  are  further  investigated  and
differentiated into two main regimes describing annual CHL concentration (see next section).

South of the Subtropical Front: a HNLC system with local exceptions

As described in the previous section, it was demonstrated that CHL production in the area
downstream New Zealand is highly dependent on iron delivery (Banse & English, 1997). More
generally, the open Southern Ocean south of the STF is mainly a High Nitrate - Low Chlorophyll
(HNLC) system. By definition, HNLC waters are characterized by low CHL biomass despite high
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macro-nutrient (nitrate) concentrations (Chisholm & Morel, 1991). The limitation of phytoplankton
growth by iron availability in HNLC regions has been largely demonstrated (Martin et al., 1990;
Sedwick et al.,1999; Boyd et al., 2000; Boyd & Law 2001; Blain et al., 2007; Venables & Moore,
2010). Nevertheless, the control of micro-nutrients (iron) availability on CHL production is released
downstream of some shallow bathymetry areas and subantarctic islands of the SO, due to natural
iron enrichment. The main exceptions to the general HNLC regime of the subantarctic SO are the
regions  downstream of  South  Georgia  (Korb  & Whitehouse,  2004;  Prend et  al.,  2019),  Crozet
(Planquette et al., 2007), and the Kerguelen Plateau (Blain et al., 2001). Based on FPC1 score, we
highlight in the present section two main regimes of CHL concentration dynamics south of the STF,
namely open-ocean HNLC regions and naturally iron-fertilized regions.

Firstly, regions with very negative FPC1 scores (dark blue, FPC1 score ~-15 in Figure I.3)
were identified as typical open-ocean HNLC regions. As described in Section I.4.a, very negative
FPC1 scores are associated with a steep increase in CHL biomass in spring and an annual maximum
at the summer solstice. In the absence of land inputs, iron delivery in open-ocean HNLC regions is
highly dependent on vertical mixing (Llort et al., 2015; du Plessis et al., 2019). The iron supply to
surface waters ensured by the seasonal deep winter mixing (Thomalla et al., 2011; du Plessis et al.,
2017, 2019) is an essential driver for phytoplankton growth in HNLC regions (Tagliabue et al.,
2014; Mtshali et al., 2019). Following the winter mixing, the seasonal stratification is synonym of
increased light availability, which results in enhanced CHL concentration in spring (Swart et al.,
2015; Thomalla et al., 2015; du Plessis et al., 2019). The duration of the productive season is highly
dependent on the iron stocks brought to the surface layer by winter mixing (Boyd et al.,  2001;
Thomalla et al., 2011; Mtshali et al., 2019), which can be assessed by comparing the relative depths
of the ferricline and of the mixed layer in winter (i.e. the intensity of the winter mixing). In addition,
examples of spring bloom being delayed (du Plessis et al., 2019), or summer CHL concentration
being  maintained  (Swart  et  al.,  2015  ;  Carranza  &  Gille,  2015;  Nicholson  et  al.,  2016)  by
(sub)mesoscale activity reveal the importance of (sub)mesoscale physical dynamics in supporting
CHL production in HNLC waters. The progressive decline of CHL concentration after the summer
maximum described  for  the  subpolar  phenological  type  (see  Section  I.4.a)  or  the  presence  of
subsidiary peaks (Murphy et al., 2001) could be a marker of disruption at sub-seasonal temporal
scales of the subpolar-like annual cycle by (sub)mesoscale activity. Finally, in a given year and
locally, less negative FPC1 scores observed in typical HNLC regions could result from stronger
modifications of the annual cycle induced by (sub)mesoscale activity (see supplementary material,
Figure  I.10).  Such  year-to-year  variations  were  highlighted  in  du  Plessis  et  al.  (2019)  in  the
SOSCEx experiment where gliders were deployed for several years on a fixed site located between
the STF and the SAF in the eastern part of the Atlantic sector of the SO to monitor the seasonal
evolution of the vertical stratification.

Secondly, regions with slightly less negative FPC1 scores than the HNLC regions described
above depict an inner ring south of the SAF (blue, FPC1 score ~-10 in Figure I.3). The inner ring
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south of the SAF characterized by less negative FPC1 scores (Section  I.4.b) was identified as a
region with similar limiting factors to phytoplankton growth than the HNLC regions in winter, but
with significantly increased iron inputs due to interactions of the ACC with shallow bathymetry
areas and islands (Blain et al., 2001; Korb & Whitehouse, 2004; Lucas et al., 2007; Venables et al.,
2007).  Similarly  to  HNLC  waters,  the  (sub)mesoscale  activity-induced  modifications  at  sub-
seasonal temporal scale of the subpolar-like annual cycle might result in a less marked phenology,
and hence, less extreme (negative) FPC1 scores. Downstream of the Kerguelen Plateau, natural iron
fertilization supports an annual phytoplankton bloom roughly starting in November, reaching CHL
maximum in December and January, and collapsing in February, as captured during the KEOPS
study  (Blain  et  al.,  2007).  KEOPS2 experiment  focused  on  the  same  region  and  revealed  the
structuring  role  of  (sub)mesoscale  horizontal  stirring  in  the  phytoplankton  bloom  observed
downstream of the Kerguelen Plateau (d’Ovidio et al., 2015). Evidence of (sub)mesoscale physical
dynamics supports the spatial patterns described by the first axis of the FPCA, with less negative
values of FPC1 scores observed east of the Kerguelen Plateau (blue, FPC1 score ~-10 in Figure I.3).
Furthermore, investigations into the Crozet bloom carried out during the CROZEX (Pollard et al.,
2007) and KEOPS2 (Sanial et al., 2014) experiments revealed the occurrence of an earlier bloom
compared with other regions like the Kerguelen Plateau. North of the Crozet Plateau, bloom onset
was detected in early-mid September, maximum CHL levels were encountered in October, followed
by a rapid decrease in November (Venables et al., 2007; Pollard et al., 2009). Although the factors
that control CHL annual production north of the Crozet Plateau are very similar to those described
in the region of the Kerguelen Plateau (Lucas et al., 2007; Sanial et al., 2014), the typical CHL
phenological type encountered around Crozet, with an annual maximum in October, appears to be
closer to the subtropical phenology (with annual maximum in September, see Section I.4.a), which
results in slightly positive FPC1 scores observed north of the Crozet Plateau (Figure I.3).

As discussed in Abott et al. (2000), other biotic or abiotic processes influence the dynamics
of  CHL concentration  in  the  HNLC SO.  The  succession  of  the  different  factors  driving  CHL
production in the SO leads to a diversity of phenologies, directly induced by local and temporary
characteristics,  which manifest  at  sub-seasonal  scale  in  the CHL signal.  Although these factors
cannot be directly identified by inspecting the spatial distribution of FPC scores, we propose a list
of possible underlying processes and discuss them in the next section.

Processes with sub-seasonal influence on CHL annual cycle

Interaction between water masses and landmass, vertical mixing, and horizontal advection of
water masses were the main drivers of surface-water iron enrichment described in the previous
section.  However,  open-ocean  iron  supplies  can  be  induced  by  other  mechanisms  such  as
atmospheric  dust  input  (Duce  & Tindale,  1991;  Jickells  et  al.  2005;  Boyd & Ellwood,  2010),
hydrothermal vents (Tagliabue et al., 2010; Guieu et al., 2018; Ardyna et al., 2019) and internal
metal transformation (Boyd et al., 2017). These localized or intermittent mechanisms of natural iron
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enrichment in the HNLC SO manifest at sub-seasonal level in the phenology of the annual cycle of
CHL.

In  addition,  other  co-limitations  interact  with  iron  limitation  in  the  dynamics  of
phytoplankton growth in HNLC waters. These limitations are mainly driven by light (Boyd et al.,
2001; Edwards et al. 2004; Venables & Moore, 2010; Blain et al., 2013; Arteaga et al., 2014) and
silicic acid (Boyd et al., 1999; Hutchins et al., 2001; Sedwick et al., 2002; Lannuzel et al., 2011)
availability.

Furthermore, other ecological processes such as grazing (Banse, 1996; Abott et al., 2000;
Gutiérrez-Rodríguez et al., 2020; Arteaga et al., 2020) or control by microbial activity (Boyd et al.,
2012) might be responsible for sub-seasonal variations of CHL concentration.

Finally,  the  sensitivity  of  CHL dynamics  to  variations  at  sub-seasonal  scales  in  the  SO
(discussed  in  the  previous  section  for  the  HNLC SO)  is  reinforced  by  the  important  role  of
(sub)mesoscale  physical  processes  in  enhancing  CHL  production  (Lévy  et  al.,  2012,  2018;
McGillicuddy et al.,  2016; Uchida et al.,  2020), with is expressed in the CHL signal from sub-
seasonal (Keerthi et al., 2020) to seasonal (Uchida et al., 2020) and inter-annual (Lévy et al., 2014;
Keerthi et al., 2022) time scales.

The phenological types identified in the present study (Section I.4.a) and their sub-seasonal
variations  (discussed in  the present  section)  were obtained on the unique basis  of the seasonal
component  of  the  decomposed  time  series  (see  Sections  I.3.a and  I.3.b).  The  sub-seasonal
component of the time series of CHL (see Section I.3.a), with potential role in driving both CHL
phenology and inter-annual CHL variability (Prend et al.,  2022; Keerthi et  al.,  2022) is  further
investigated in Section I.5.b.

I.5.b. Investigating the sub-seasonal component

The weight of high-frequency variability

Time series decomposition (Section I.3.a) was used to disentangle the different time scales
of variation contributing to the CHL signal. Long term variations were analyzed using the multi-
annual component (Figure I.1), while the phenology of CHL annual cycle was studied through the
seasonal component (Section I.3.b). As the main objective of the present study was to identify the
predominant  seasonal  patterns  that  drive  annual  cycles  of  CHL in  the  SO,  the  sub-seasonal
component was not included in the phenology analysis.
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A sensitivity test to the inclusion of the sub-seasonal component in the FPCA analysis was
performed  to  identify  the  weight  of  the  sub-seasonal  component  in  the  phenology  analysis.  A
similar FPCA analysis to that applied to the seasonal component (Section I.3.b) was performed with
annual cycles of CHL defined by the sum of the seasonal plus the sub-seasonal components. The
first  two FPCs obtained in both FPCA analyses were very similar (see supplementary material,
Figure  I.16),  which demonstrates  the  efficacy of  the  functional  approach (see  Section  I.3.b)  in
extracting  the  main  modes of  variation  in  annual  cycles  of  CHL (Section  I.4.a).  However,  the
variance associated with the FPCs was differently shared. In the FPCA analysis including the sub-
seasonal component, FPC1 and FPC2 were associated with 37% and 16% of explained variance,
respectively (see supplementary material, Figure I.16, first two panels), while in the FPCA analysis
including only the seasonal component,  FPC1 and FPC2 were associated with 54% and 20% of
explained variance (see Figure I.2, first two panels). The lower explained variance of the first two
modes of variation indicates the presence of the sub-seasonal component in the analyzed signal.
Similarly, the variance explained by the other axes (FPC3 and beyond) was higher in the FPCA that
included the sub-seasonal. The sensitivity test  described in the present section demonstrates the
considerable proportion of variability attributable to the sub-seasonal component in the CHL signal.
However the sensitivity test also highlights that the phenology analysis developed in the present
study is inadequate for detecting accurate patterns of high-frequency variability.

Nonetheless,  a  possible  expression  of  the  sub-seasonal  variability  is  detectable  in  the
seasonal patterns of CHL identified in the FPCA, as presented in the next section.

The role of the sub-seasonal component in defining CHL phenology

The  time  series  decomposition  method  applied  in  the  present  study  is  not  obtained  by
application of strict frequency bandpass filters, but instead, by iterative filtering of the time series
(Section I.3.a). This allows for a slight overlap in the frequency domains covered by the different
components (Keerthi et al., 2022), which leads to potential interaction between seasonal and sub-
seasonal scales and the role of the latter in defining the phenology of the annual cycle.

In  this  section,  interactions  between  phenology  of  annual  cycle  of  CHL,  and  relative
contribution of the seasonal component to total CHL variability were examined. For this purpose,
the percentage of variance explained by the components of the time series were computed for each
grid point in the study zone (see supplementary material, Text S3. The relative contribution of the
seasonal component (versus the sub-seasonal and the multi-annual), expressed as a percentage of
the total CHL variance, was hereafter denoted VARSeas.

Interestingly,  the  standard  deviation  associated  with  the  time  series  of  FPC1  scores
(FPC1STD) was well correlated with the percentage of variance explained by the seasonal component
(R2=0.43, N=124 627, see supplementary material, Figure I.15). Correlation was negative, meaning

- 50 -



Chapter I

that grid points associated with high standard deviation relatively to time series of FPC1 scores
(high FPC1STD values), previously identified as locations with high seasonal instability (see Section
I.4.c),  generally  have low values  of  VARSeas (i.e.  low contribution of  the seasonal  component).
Conversely, high relative contribution of the seasonal component to total CHL variance corresponds
to steady seasonal patterns (low FPC1STD values).

Geographical distribution of FPC1STD (Figure I.5) suggests higher seasonal repeatability at
subtropical latitudes, while high latitudes are associated with more unsteady seasonal patterns. Our
results are in line with previous studies (Demarcq et al., 2012; Thomalla et al., 2011; Jönsson et al.,
2023). Moreover, Prend et al. (2022) and Keerthi et al. (2022) demonstrated that in the SO, non-
seasonal  variability  at  high  latitudes  was  mainly  attributable  to  sub-seasonal  time  scales.  The
proportion of variance carried by the sub-seasonal component can hence indirectly be assessed by
examining FPC1STD.

The relative high contribution of the sub-seasonal component to total CHL variance at high
latitudes was revealed in our study by the spatial distribution of FPC1STD values (Figure I.5). Sub-
seasonal variations in CHL have been linked to (sub)mesoscale processes (Swart et al., 2015;  du
Plessis et al., 2017), with wind stress from synoptic storm events (< 10 days) considered the main
forcing factor (Carranza & Gille, 2015; Thomalla et al., 2015; du Plessis et al., 2019; Keerthi et al.,
2021). However, the chaotic nature of small-scale physical processes should not be ignored (Lévy et
al., 2014; Keerthi et al., 2021; Cravatte et al., 2021; Hogg et al., 2022) to explain part of the high-
frequency variability of CHL.

In  this  section,  we  demonstrated  that  contribution  of  sub-seasonal  variations  to  the
phenology of the annual cycle of CHL is effective, with implications on inter-annual CHL biomass
dynamics. Evolution of seasonal patterns of phytoplankton growth should hence be considered to
study long term trends of primary production in the SO, discussed in the next section.

I.5.c. Trends in phenology and implications for phytoplankton biomass

The  optical  signal  interpreted  as  CHL (chlorophyll-a  concentration)  can  be  subject  to
variations that may not be linked to an effective change in phytoplankton biomass. In this section
we discuss the difficulties involved in assessing long-term trends in phytoplankton biomass from
CHL measurements  and  how the  phenology  approach  developed  in  the  present  study partially
circumvents these difficulties.
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Factors of biological origin

Uncertainties related to the measurement of chlorophyll-a concentration with ocean-colour
radiometry can affect long term estimates of phytoplankton biomass due to a series of factors that
are  inherent  to  phytoplankton  biology.  Firstly,  long-term  variations  of  measured  chlorophyll-a
concentration might include variations related to phytoplankton community composition (Henson et
al.,  2016;  Sathyendranath  et  al.,  2017;  Sun  et  al.,  2023)  with  direct  implications  on  biomass
estimates due to different carbon : chlorophyll ratios (Bradford-Grieve et al., 1997; Henson et al.,
2016). Moreover, long-term monitoring of phytoplankton biomass through phytoplankton spectral
absorption (ocean colour) might be affected by varying phytoplankton physiological response to
light  due  to  environmental  conditions  (Brewin  et  al.,  2019).  Finally,  the  estimates  of  CHL
concentration provided by ocean-colour sensors are limited to the surface. However, variations in
surface CHL do not necessarily reflect integrated biomass change due to lag between surface and
depth-integrated biomass (Sallée et al., 2015) or non homogeneity of phytoplankton concentration
in the mixed layer (Carranza et al., 2018).

Instrumental biases

The overall  CHL record used in  the present  study is  the result  of  different  ocean-color
sensors eras (Section I.1). Despite the overlap between the different periods and all the efforts made
by the scientific  community to  homogenize the data,  the measurements were carried out using
different instruments with their own biases. Whether the differences (or the absence of differences)
regarding decadal variations (Figure I.1) are to be attributed to different ocean-color sensors eras or
to  true  biological  changes,  the  question  remains  in  some  way  open.  Additionally,  beyond  the
instrumental issue, Sathyendranath et al. (2017) point out the crucial role of implemented ocean-
colour algorithms for detection of ecosystem response to climate change. In view of the diverging
(product-dependent)  trends  highlighted  in  Section  I.1,  we  emphasize  the  relevance  of  using  a
method that removes the quantitative aspect of the data (i.e.  a “dimensionless” CHL) for more
robust results with regard to sensor interoperability issues.

Robustness of the phenology analysis

Given the difficulty of disentangling the above-mentioned factors,  we judged relevant to
work with a normalized CHL with no unit and focus on changes related to CHL phenology rather
than biomass. To test the robustness of the phenology analysis proposed in the present study, we
performed a similar analysis to that described in Section  I.3.b, however using the ESA OC-CCI
ocean-colour data (see Section I.2.d). Phenology analyses based on GlobColour data (Section I.4)
and OC-CCI data (this section) produced similar results. The modes of variation obtained with both
FPCA (see  Figure I.2 and supplementary material,  Figure I.17),  the spatial  distribution of FPC
scores (see Figures I.3-I.4 and supplementary material, Figure I.18, left panel), as well as trends in
FPC1  scores  (see  Figure  I.6 and  supplementary  material,  Figure  I.18,  right  panel)  were  very
analogous. As a consequence, while trends in CHL biomass proved to be product-dependent, both in
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terms of amplitude (our study, see Section  I.1) and geographical distribution (Lim et al., 2022),
analyzing phenology independently of biomass removed the dependence on the product used.

The  retrieval  of  quasi-identical  FPCA results  with  two  different  ocean-colour  products
emphasizes the strength of the phenology analysis proposed in the present study in the absence of
reliable  long-term conclusions  regarding  CHL biomass.  However,  monitoring  the  evolution  of
phytoplankton biomass in the SO from a quantitative perspective - whether for questions related to
ecosystem functioning,  carbon  export  or  biogeochemical  cycles  (Deppeler  &  Davidson,  2017;
Henley et al., 2020) - remains essential. In the following section we discuss the fitness for purpose
of the phenology analysis proposed in the present study for long-term CHL biomass assessments.

Can FPCA results be retrospectively linked to biomass?

To assess the link between phenology and biomass, FPC1 scores were compared to the CHL
biomass accumulated at each location during the year, computed as the integral over time of each
annual cycle (ΣCHL,  see supplementary material,  Text S6.). Although the two variables were not
strongly  correlated,  comparison  of  FPC1  scores  and  ΣCHL clearly  revealed  two  clusters  (see
supplementary material,  Figure I.19, top panel). Primarily induced by the bi-modal distribution of
FPC1 scores  (see  Sections  I.4.a,  I.5.a and  supplementary  material,  Figure  I.14),  these  clusters
distinguish a first group with higher values of  ΣCHL and low FPC1 scores (the so-called subpolar
phenology, see Section I.4.a), from a second one with lower values of ΣCHL and higher FPC1 scores
(the so-called subtropical phenology).

Combining the trends observed for FPC1 scores (Section I.4.c), with the results presented in
the  present  section,  we  can  hypothesize  that  migration  from  one  cluster  to  another  could  be
synonym of a change in annual CHL biomass. For example,  grid points with decreasing FPC1
scores over time (i.e. negative trend in FPC1, blue color in Figure I.6) could on average experience
an increase in CHL biomass. Conversely, grid points with increasing FPC1 scores over time (i.e.
positive trend in FPC1, red color in  Figure I.6) could on average experience a decline in CHL
biomass.

To test the hypothesis that migration from one cluster (e.g. subtropical, less productive)  to
another (e.g. subpolar, productive) could be seen as proxy for a presumed change in CHL biomass,
we  recommend  to  concomitantly  analyze  trend  in  phenology  and  trend  in  CHL biomass  on  a
“stable” period with respect to ocean-colour sensor configuration (e.g. 2002-2012, see gray line in
Figure I.1). Nonetheless, it is worth to note that an important fraction of the grid points may remain
associated with non significant trend, either for FPC1 (67.5% in the case of FPC1 score on the
1998-2022 period, gray color in Figure I.6) or for CHL.

- 53 -



Chapter I

No direct causality was sought  through the matching between change in phenology and
change in biomass. We merely considered that a trend observed not on the absolute value of CHL
but on its phenology is a stronger result when issues related to sensor type are encountered (see
previous section).  However, drivers of such changes are specific to each region (Racault  et  al.,
2011, Thomalla et al., 2011, 2023). For this reason, we recommend to adopt a more local approach
to  improve observations  of  ongoing changes  and enhance  the  understanding  of  the  underlying
processes.
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I.6. Conclusion

Monitoring  primary  production  in  the  SO  is  essential  but  obtaining  reliable  long-term
quantitative assessments of CHL biomass evolution is challenging (Henson et al.,  2016). In the
present study, analyzing phenology independently of biomass was proposed as a robust way to
study the dynamics of CHL in the SO and changes inferred from long-term ocean color time series.
Time series of CHL were decomposed and segmented into annual cycles to separately observe the
various time scales expressed in the remotely-sensed CHL signal. A shape-based functional analysis
was performed on the segmented, normalized CHL annual cycles to disentangle apparent changes in
CHL biomass (Figure I.1) from changes in phytoplankton phenology (Figure I.6). Firstly, our results
highlighted the potential of the applied functional methodology (FPCA) to extract the main seasonal
patterns driving CHL dynamics in the study area. In the SO, two main phenological types were
identified, characterized by subtropical-  and subpolar-like annual cycles of CHL (Section  I.4.a).
Although pointing out these two seasonal patterns is apparently trivial, the strength the results lies
in  the  unsupervised  nature  of  the  method  (i.e.  identification  of  the  main  phenologies  was  not
imposed). Moreover, robustness of the results was reinforced by their insensitivity to a change in
ocean-colour algorithm (Section I.5.c). As a result, the phenology analysis proposed in the present
study enables efficient examination of the spatial distribution of seasonal patterns of CHL (Figure
I.3), as well as their variability over time (Figure I.5).

The continuum of shapes  used to  characterize CHL phenology revealed the presence of
various different seasonal patterns of CHL dynamics in the SO. The identified seasonal patterns
were supported locally by case studies (Section I.5.a). The case studies used to support the results of
the phenology analysis also provided key elements for the understanding of possible underlying
processes  and the time scales  at  which they affect  CHL production.  In  particular,  although the
proposed methodology focused on CHL dynamics  through analysis  of  the  seasonal  component
(Section  I.3.b), sub-seasonal variations were clearly detected and described in the present study
(Section  I.5.b).  Highlighted  in  recent  studies  (Prend  et  al.,  2022;  Keerthi  et  al.,  2022),  the
substantial contribution of small-scale, sub-seasonal forcing in driving inter-annual variations in
CHL in the SO, emphasizes the crucial need to study more closely the interactions at meso- to
submeso-scales  between  physical  processes  and  primary  production  (Lévy  et  al.,  2012;
McGillicuddy et al., 2016). Attribution of specific (sub)mesoscale processes to variations in CHL
(e.g.  d’Ovidio et al., 2015;  Uchida et al., 2020) and detection biological hotspots associated with
fine-scale  structures  (e.g.  Siegelman  et  al.,  2019;  Rivière  et  al.,  2019;  Baudena  et  al.,  2021)
emphasize the structuring role of fine-scale processes in sustaining marine ecosystems (Lévy et al.,
2018).

Our study suggests that regional approaches scrutinizing phytoplankton dynamics at high
spatial and temporal resolution, using a relevant combination of high-resolution in-situ and remote-
sensing data (d’Ovidio et al., 2019) are necessary to understand long-term variations in primary
production and underlying mechanisms.
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Text S1. CHL climatology

CHL climatology was computed for each pixel as the mean value of CHL during the overall
CHL record of the study period (1998-2022). CHL climatology was derived from GlobColour 8-day
averaged Level 3 product and computed with a 0.25º x 0.25º resolution.

Figure I.7: CHL climatology (1998-2022) in the Southern Ocean derived from GlobColour 8-day
averaged Level 3 product with 0.25º x 0.25º resolution. Sectors of the SO are separated by thick,
straight black lines. Sectors of the SO are PAC: Pacific, ATL: Atlantic, IND: Indian. Continuous
black lines represent the major fronts of the SO defined in Section  I.2.c (from north to south):
Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front
(SACCF). The areas filled with gray color are land areas. The areas filled with black color depict
marine areas with bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL
values in the 1998-2022 time series (see Section I.2.d) are represented in white (white area around
Antarctica, south of ~60ºS).
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Text S2. FPCA outputs and terminology (2)

FPCA enables the creation of a new basis defined by the FPCs (see main FPCs in Figure I.2
and extended representation of the ten first FPCs in Figure I.8). Projection of an annual cycle on a
FPC is referred to as its score. The contribution of a grid point relatively to the creation of a FPC
can be assessed through the ratio between the sum of the absolute value of its scores and the sum of
the absolute values of the scores of all other grid points (see Figure I.9). Each grid point is assigned
a  score  each  year  based  on  the  phenology  of  the  annual  cycle  recorded  at  the  corresponding
location. To each grid point hence corresponds a time series of 24 score values for each FPC (see
example in supplementary data, Figure I.11). The evolution of CHL annual cycles phenology over
time was examined at each grid point using the time series of its FPC scores and classical metrics
derived from these, namely mean (referred to as “climatological score”, see FPC1, FPC2 and FPC3
climatological  scores  in  Figures  I.3-I.4,  and  supplementary  material  Figure  I.15,  respectively),
standard deviation (Figures I.5 and I.13), and trend (see Section I.3.c).
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Figure  I.8: Ten first FPCs (modes of variation) obtained after running FPCA (see Section  I.3.b).
The  value  in  brackets  above  each  panel  is  the  percentage  of  variance  explained  by  the
corresponding FPC. In each panel, the blue (red) curve depicted by “-” (“+”) symbols shows a
typical  phenology  associated  with  a  negative  (positive)  FPC score.  The continuous  black  line
displayed in every panels correspond to the average phenology in the study zone (Southern Ocean,
south of 30ªS).
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Figure I.9: Contribution of grid points to the creation of first (left panel) and second (right panel)
axes of FPCA (see computation details in Text S2). Black lines represent the major fronts of the SO.
Gray areas represent land areas. Black areas represent marine areas with bathymetry shallower
than -1000 meters. White areas represent regions with less than 50% valid CHL values in the 1998-
2022 time series (see details in caption of Figure I.7).
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Figure  I.10: Example of inter-annual variability of spatial distribution of FPC1 scores. Spatial
distribution of FPC1 scores for years 1998 (top left), 2008 (bottom left), 2011 (top right), 2018
(bottom right). Black lines represent the major fronts of the SO. Gray areas represent land areas.
Black areas represent marine areas with bathymetry shallower than -1000 meters. White areas
represent regions with less than 50% valid CHL values in the 1998-2022 time series (see details in
caption of Figure I.7).
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Figure  I.11:  Example  of  time  series  of  CHL with  FPC1  score.  Interpolated  CHL time  series
(continuous gray line) are represented together with their seasonal component (CHLSeas, continuous
black line) and FPC1 score (dotted black line with colored circles) for a grid point located in the
Pacific sector of the SO (LAT 45ºS, LON 87ºW). The color of the circles code the sign of FPC1
score each year, with blue (red) circles representing negative (positive) FPC1 scores. The change in
CHL phenology is highlighted by decreasing values of FPC1 score over time.

Figure  I.12: Spatial distribution of FPC1 (left), FPC2 (middle) and FPC3 (right) climatological
score. The colors used to represent FPC scores are the same as in Figure I.2. Black lines represent
the major fronts of the SO. Gray areas represent land areas. Black areas represent marine areas
with bathymetry shallower than -1000 meters. White areas represent regions with less than 50%
valid CHL values in the 1998-2022 time series (see details in caption of Figure I.7).
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Figure  I.13: Standard deviation of FPC1 (left panel) and FPC2 (right panel) scores.  Black lines
represent the major fronts of the SO. Gray areas represent land areas. Black areas represent marine
areas with bathymetry shallower than -1000 meters. White areas represent regions with less than
50% valid CHL values in the 1998-2022 time series (see details in caption of Figure I.7).

Figure  I.14: Histogram of FPC1 scores. The horizontal colorbar repeats the
colors used in Figure I.3.
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Text S3. Contribution of seasonal component to the total CHL variance

The sub-seasonal time series CHLSS(t) of each grid point were segmented into 24 time series
on the same basis as the individual annual cycles defined in Section I.3.b. The total variance of each
CHL annual cycle can be expressed as the sum of the variance in the multi-annual, the seasonal and
the sub-seasonal components of the time series (see Section  I.3.a), and the covariances between
these  components.  The  covariance  terms  between  the  components  of  the  time  series  are  -  by
construction  -  small  because  they  describe  variations  in  the  signal  corresponding  to  different
frequency domains. Consequently, most of the variance of an annual cycle can be examined through
the individual variances of the time series components (Prend et al. 2022). The contribution of the
seasonal component relatively to the total CHL annual cycle variance was therefore defined as:

VARSeas= var (CHLSeas) / (var (CHLMA)+var (CHLSeas)+var (CHLSS)) (I.3)

where VARSeas reflects the contribution of the seasonal component, expressed as percentage of the
total CHL annual cycle variance. One value of VARSeas is computed for each annual cycle, so that
each grid point is  associated with a  time series of 24 VARSeas values.  As for FPC1 scores,  the
climatological mean value of VARSeas was computed for each grid point.

We then compare for each grid point the mean percentage of variance explained by the
seasonal component to the standard deviation of the time series of FPC1 scores (supplementary
material, Figure I.15).
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Figure  I.15:  Scatter  plot  of  FPC1STD   versus
climatological mean VARSeas
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Text S4. Sensitivity test to the inclusion of the sub-seasonal component in the FPCA

A sensitivity test to the inclusion of the sub-seasonal component in the FPCA analysis was
performed  to  identify  the  weight  of  the  sub-seasonal  component  in  the  phenology  analysis
(discussed in Section  I.5.b). A similar FPCA analysis to that applied to the seasonal component
(Section  I.3.b)  was performed with  annual  cycles  of  CHL defined by the  sum of  the  seasonal
(CHLSeas) plus the sub-seasonal (CHLSS) components.  For each grid point, the normalized sum of
the seasonal plus sub-seasonal time series NCHLSeas + SS is expressed as

NCHLSeas+SS =
(CHLSeas+CHLSS−CHLSeas+CHLSS)

STD (CHLSeas+CHLSS)
(I.4)

where STD is the standard deviation. NCHLSeas +SS has mean zero and standard deviation equal to
one. The results of the sensitivity test are examined through the modes of variation resulting from
the FPCA and their associated explained variance (Figure I.16).
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Figure I.16: Ten first FPCs (modes of variation) obtained after running FPCA with sub-seasonal
component included in the time series (see Section I.5.b). The value in brackets above each panel is
the percentage of variance explained by the corresponding FPC. In each panel, the blue (red) curve
depicted by “-” (“+”) symbols shows a typical phenology associated with a negative (positive)
FPC  score.  The  continuous  black  line  displayed  in  every  panels  correspond  to  the  average
phenology in the study zone (Southern Ocean, south of 30ªS).
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Text S5. Robustness of the phenology analysis

To test the robustness of the phenology analysis proposed in the present study, we performed
a similar analysis to that described in Section I.3.b, however using the ESA OC-CCI ocean-colour
data (see Section I.2.d). Results of phenology analyses based on GlobColour data (Section I.4) and
OC-CCI data (Section  I.5.c) were compared through the modes of variation resulting from both
FPCAs and their associated explained variance (Figure I.17), the spatial distribution of the scores on
the first axis (Figure I.18, left panel) and the long-term trend of the scores on the first axis (Figure
I.18, right panel).
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Figure I.17: Ten first FPCs (modes of variation) obtained after running FPCA with OC-CCI ocean-
colour  data  (see  Section  I.2.d).  The  value  in  brackets  above  each  panel  is  the  percentage  of
variance explained by the corresponding FPC. In each panel, the blue (red) curve depicted by “-”
(“+”) symbols shows a typical phenology associated with a negative (positive) FPC score. The
continuous black line displayed in every panels correspond to the average phenology in the study
zone (Southern Ocean, south of 30ªS).
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Figure  I.18: Comparison between phenology analyses performed with GlobColour and OC-CCI
data. Spatial distribution of FPC1 scores (top panels) and trend in FPC1 score for the 1998-2022
period  (bottom  panels)  obtained  with  GlobColour  (GC,  left  panels)  and  OC-CCI  data  (right
panels).  Black lines represent the major fronts of the SO. Gray areas represent land areas. Black
areas represent marine areas with bathymetry shallower than -1000 meters. White areas represent
regions with less than 50% valid CHL values in the 1998-2022 time series (see details in caption of
Figure I.7).
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Text S6. CHL biomass accumulated at each location during the year

To account for the CHL biomass accumulated at each location during the year, the integral
over time of each annual cycle (ΣCHL) was computed. The annual cycles used for the computation of
ΣCHL were  the  sum  of  all  the  components  of  the  time  series.  To  account  for  the  log-normal
distribution of CHL values, the integral over time of each annual cycle (ΣCHL) was log-transformed.

ΣCHL= log ( ∫
seasonal cycle

CHLMA(t) + CHLSeas(t ) +CHLSS(t) dt) (I.5)

where CHLMA, CHLSeas and CHLSS are the multi-annual, seasonal, sub-seasonal components of the
time series of CHL, respectively (see Section  I.3.a).  To assess the link between phenology and
biomass, FPC1 scores were compared to ΣCHL (see Figure I.19).
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Figure  I.19:  Comparison  between  FPC1  score  and  CHL  biomass
accumulated during the year.  (top) Scatter plot  with all  points of  the
study zone (bottom) same data, in the form of a boxplot grouping FPC1
scores  into three bins:  FPC1 score < -5 (left),  -5  <FPC1 score < 5
(middle), 5 < FPC1 score, and associated values of ΣCHL .
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A phenological bioregionalization of the Indian

Sector of the Southern Ocean

- 73 -



- 74 -



Contents of Chapter II

Chapter II  A phenological bioregionalization of the Indian Sector of the Southern Ocean.....63

II.1. Introduction..........................................................................................................................65

II.2. Data.......................................................................................................................................67
II.2.a. Study period and area of interest....................................................................................67
II.2.b. Coastline and bathymetry data.......................................................................................67
II.2.c. Fronts in the Southern Ocean.........................................................................................67
II.2.d. Chlorophyll-a concentration (CHL) satellite data..........................................................67
II.2.e. Phytoplankton Size Classes (PSC) model......................................................................68
II.2.f. Phytoplankton pigment database....................................................................................68
II.2.g. Southern Elephant Seal (SES) dataset............................................................................68

II.3. Methods................................................................................................................................70
II.3.a. CHL Phenology..............................................................................................................70
II.3.b. Clustering.......................................................................................................................70

II.4. Results and Discussion........................................................................................................72
II.4.a. Phenology analysis.........................................................................................................72
II.4.b. Bioregionalization..........................................................................................................72
II.4.c. Comparison with existing bioregionalizations of the SO...............................................76
II.4.d. Use of phenological clusters to derive ecosystem-based analysis..................................77

II.5. Conclusion............................................................................................................................87

Supplementary material for Chapter II....................................................................................89

- 75 -



- 76 -



Chapter II

II.1. Introduction

The Southern Ocean (SO) is a vast, dynamic ocean, that connects with the other oceans of
the globe (Marshall & Speer 2012; Talley, 2013; Rintoul, 2018). Its flow, driven by the Antarctic
Circumpolar Current (ACC), circles the Antarctic continent, unblocked by continents. The ACC
constitutes the main component of the SO circulation scheme (Rintoul et al., 2001). For its high
connectivity with the other oceans, the SO has a major role in marine ecosystem functioning on
global scales (Murphy et al., 2021). Therefore, understanding how SO biomes are distributed and
how they respond to environmental forcing is crucial to assess and manage the impacts of climate
change (Sarmiento et al.,  2004; Constable et al.,  2014; Poloczanska et al.,  2016; Henson et al.,
2020).

Bioregionalization of the oceanic biomes enables grouping of oceanic zones with similar
characteristics.  These characteristics may be derived from abiotic (Rosso et al.,  2020) or biotic
(Fabri-Ruiz et al., 2020) variables, or both (Reygondeau et al., 2013). Longhurst’s biogeographical
provinces (Longhurst, 2007) are often cited as a reference for classification of the world’s oceans
into main biomes.  Longhurst provinces comprise open-ocean biomes and coastal biomes.  Other
bioregionalizations  only  focus  on  open-ocean  areas  (Fay  &  McKinley,  2014).  While  many
bioregionalizations proposed to divide the world’s oceans using both abiotic and biotic criteria,
other  bioregionalizations  were  purely  based  on  the  phenology  of  remote-sensed  chlorophyll-a
(CHL) (D'Ortenzio & Ribera d'Alcalà,  2009).  Bioregionalization is  a  powerful  tool  to  examine
different biomes and explore the key mechanisms implied in ecosystem functioning (Ardyna et al.,
2017).  Bioregionalization  is  also  a  method  to  detect  changes  in  time,  through  examination  of
variations over time in spatial distribution of described clusters (Fay & Mc Kinley, 2014; Mayot et
al., 2016).

Ecosystem dynamics highly rely on primary production pathways, in the sense that different
dominant species of primary producers might trigger different trophic responses (Schofield et al.,
2017; Henley et al., 2020). Phytoplankton community composition can be described by so-called
Phytoplankton  Functional  Types  (PFT).  Phytoplankton  Size  Classes  (PSC)  are  also  used  to
characterize  phytoplankton community  composition  (IOCCG, 2014).  A series  of  PFT (or  PSC)
models were recently developed to infer phytoplankton community composition-related information
from satellite data (Mouw et al., 2017). While some PFT models are purely based on remote sensing
reflectance (Uitz et al., 2006; Alvain et al., 2008; El Hourany et al., 2019; Xi et al., 2020), others
also include environmental data to derive estimates of PFT concentrations (Brewin et al., 2017; Sun
et al., 2023).
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At the opposite end of the trophic chain, top predators also provide precious information for
characterization  of  ecosystem  dynamics  (Cherel  and  Hobson,  2007;  Hindell  et  al.,  2020).
Particularly notable since the early 2000s, the development of miniaturized animal-attached data
loggers has dramatically increased the capacity for scientists to study animal behavior and derive
variables to characterize their environment (Ropert-Coudert & Wilson, 2005; Bograd et al., 2010).
Bio-logging techniques can be defined as ‘the use of miniaturized animal-attached tags for logging
and/or relaying of data about an animal’s movements, behaviour, physiology and/or environment’
(Rutz and Hays, 2009). Over the past two decades, bio-logging techniques, particularly valuable in
remote areas like the SO, have become major tools to monitor marine ecosystems, study ocean
dynamics and address conservation issues (Watanabe and Papastamatiou, 2023).

In the present study, we proposed a phenological bioregionalization of the Indian sector of
the SO based on satellite CHL. We defined different bioregions in the Indian sector of the SO,
characterized by distinct CHL dynamics. We validated our results with previous bioregionalization
studies performed at global scale or specific to the SO. We also highlighted the advantages brought
by the phenology analysis in determining different bioregions in the SO. Finally, we discussed the
potential links that could be established between the defined bioregions and ecosystem functioning
with variables related to ecosystem composition (PFT) and spatial distribution of organisms (animal
bio-logging data).
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II.2. Data

This section provides detailed information about the data processed in the present chapter
and associated methods. Part of the data and methods used in the present study are common to
Chapter I (see Sections I.2 and I.3) and Chapter II (present chapter). Therefore, these sections were
hereafter summarized and when necessary, references to the corresponding sections in  Chapter I
were provided for detailed information.

II.2.a. Study period and area of interest

The study period extends from 1998 to 2022. The area of interest of the present study is the
Indian sector  of the SO. The SO was defined as the oceanic region located South of the 30ºS
parallel. In the present study, the Indian sector of the SO was delimited to the west by the 20ºE
meridian and to the east by the 150ºE meridian (see supplementary material, Figure II.10).

All data processed in the present study were mapped with a 0.25º x 0.25º resolution (~20 km
in the region of the study), which we judged adapted for the purpose of the study.

II.2.b. Coastline and bathymetry data

The coastline and bathymetry data used in the present chapter were identical to those used in
Chapter One (see Section I.2.b), namely, the 50 m resolution coastline data product (version 5.1.0)
distributed  by  Natural  Earth  (available  at  https://www.naturalearthdata.com/downloads/50m-
physical-vectors/) and the ETOPO1 1 Arc-Minute Global Relief Model data from National Centers
for Environmental  Information at  the National  Oceanic and Atmospheric  Administration (NCEI
NOAA; available at https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/), respectively.

Grid points with bathymetry shallower than -1000 m were not considered in the study. In
total, 70 251 grid points (84%) were retained (out of 83 881 grid points in the study zone).

II.2.c. Fronts in the Southern Ocean

The fronts used in the present chapter to delineate water masses boundaries within the SO
were identical to those used in Chapter One (see Section  I.2.c), namely,  the Subantarctic Front
(SAF),  the  Polar  Front  (PF)  and  the  Southern  ACC  Front  (SACCF)  from  Park  et  al.  (2019)
(available at https://www.seanoe.org/data/00486/59800/) and the the Subtropical Front (STF), based
on the definition by Orsi, Whitworth & Nowlin (1995).

II.2.d. Chlorophyll-a concentration (CHL) satellite data

We used 8-day averaged Level 3 CHL products from January 1998 to December 2022 from
the CHL product distributed by the Copernicus Marine Service GlobColour project (available at
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http://www.globcolour.info/). The Copernicus Marine Service GlobColour product merges the data
from multiple  sensors.  The native resolution of  the satellite-derived CHL product  is  4 km. We
mapped the data with a 0.25º x 0.25º resolution.

The CHL data used in the present chapter was restricted to the southern spring and summer
seasons, defined as the period from October to March.  Time series with more than 50% missing
values over the spring-summer record were removed and the corresponding grid points were not
considered in the study. In total, 60 446 grid points (72%) were retained (out of 83 881 grid points
in  the study zone).  The relevance of  focusing on CHL concentration in  the SO during spring-
summer  period  is  discussed  further  in  this  chapter  (see  Section  II.4.d).  CHL spring-summer
climatology (1998-2022) was computed for each pixel as the mean value of CHL for the period
extending from October to March from 1998 to 2022 (see supplementary material Figure II.10).

II.2.e. Phytoplankton Size Classes (PSC) model

We used PSC data  from the  ecological  model  developed in  Sun et  al.  (2023).  The 17-
parameters PSC model developed by Sun et al. (2023) used in the present study is based on ocean-
color and Sea Surface Temperature (SST) data. The model provides relative concentration of three
PSCs (micro-, nano, picophytoplankton) compared to the total CHL concentration. The PSC model
uses [CHL] data from European Space Agency Ocean Color Climate Change Initiative (ESA OC-
CCI; available at  http://www.oceancolour.org) and monthly composites of Optimal Interpolation
Sea  Surface  Temperature  (OISST,  version  2)  data  at  1º  resolution  distributed  by  the  Physical
Sciences  Laboratory  at  the  National  Oceanic  and  Atmospheric  Administration  (PSL NOAA;
available at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html).

II.2.f. Phytoplankton pigment database

Phytoplankton pigment data obtained by High Pressure Liquid Chromatography (HPLC)
was used to validate PSC products. To optimally cover the study zone with HPLC samples, we
gathered  data  from  the  Service  d'Analyses  de  Pigments  par  HPLC  of  the  Laboratoire
d’Océanographie  de  Villefranche  (LOV)  at  the  Institut  de  la  Mer  de  Villefranche  (SAPIGH;
https://lov.imev-mer.fr/web/facilities/sapigh/),  from  SeaWiFS  Bio-optical  Archive  and  Storage
System distributed by the National Aeronautics and Space Administration (NASA) Ocean Biology
Processing  Group  (OBPG)  (SeaBASS;  available  at  https://seabass.gsfc.nasa.gov/)  and  from the
Australian Ocean Data Network (AODN) Portal of Australia’s Integrated Marine Observing System
(IMOS)  (AODN;  available  at  https://portal.aodn.org.au/).  The  spatial  distribution  of  the  HPLC
samples  included  in  the  present  study  was  provided  in  supplementary  material  Figure  II.19.
Fractions  of  the  three  PSCs  (micro-,  nano,  picophytoplankton)  were  obtained  from diagnostic
pigments using the model described in Brewin et al. (2015) (see also Sun et al., 2023).
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II.2.g. Southern Elephant Seal (SES) dataset

In the present study, we used data from seal-borne data loggers placed on southern elephant
seals  (SES).  The  SES  data  were  collected  as  part  of  the  Système  National  d’Observation
Mammifères Echantillonneurs du Milieu Océanique (SNO-MEMO) and made freely available by
the  International  Mammals  Exploring  the  Oceans  Pole  to  Pole  Consortium  and  the  national
programs that contribute to it (MEOP; available at www.meop.net/database/meop-databases).

The so-called  bio-logging devices  typically  record  behavioral  data  (e.g.  location,  diving
depth,  prey  capture).  Bio-logging  devices  are  also  useful  to  characterize  the  SES’s  oceanic
environment through the measurement of variables like temperature, salinity, light, chlorophyll-a
fluorescence. The present study focuses on SRDLs’ depth and accelerometry data. The location of
the SES dives as well as the bottom depth of each SES dive were computed. The accelerometer data
were processed at MEOP following the method described in Viviant et al. (2010) and Gallon et al.
(2013) to detect prey capture attempts (PreyCAs). We mapped the SES data with a 0.25º x 0.25º
resolution according to the grid defined in the present section. We computed for each equipped
animal (i) the mean number of dives per grid point in the animal trip (further referred to as number
of dives), (ii) the maximum depth per dive (further referred to as dive depth), and (iii) the mean
number of PreyCA per dive (further referred to as number of PreyCA). 

The MEOP database is divided into two different datasets according to data resolution. Low-
resolution SES data is transmitted by satellite approximately every 15 dives of the animal, with
relatively low vertical resolution (~10 m in the surface layer, ~100 m at depth). High-resolution data
depend on bio-logging device recovery, has high vertical resolution (1 m) and contains every dive
of  the animal.  High-  and low-resolution data hence differ  both by their  vertical  and horizontal
resolution. Including datasets with different horizontal resolution was a concern for the counting of
number of dives per grid point. High-resolution data introduces a bias compared to low-resolution
data  by  necessarily  accounting  for  more  dives  per  grid  point.  Yet,  high-resolution  bio-logging
devices are generally used for specific research purposes, and do not equally cover all months of the
year (typical deployments are from October to January), nor the SES population (high-resolution
devices are mainly placed on female SES) (Guinet et al., 2014). Therefore, for homogeneity of the
data examined in the present study, the mean number of dives per grid point in each SES trip at sea
was computed with the low-resolution dataset, gathering in total 67 335 SES profiles in the study
zone. The high-resolution dataset processed for computation of SES dive depth contained 307 159
SES profiles in the study zone. The PreyCA data were computed with 97 377 SES profiles (for
geographical  distribution of SES profiles per dataset,  see supplementary material  Figures  II.21-
II.23).
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II.3. Methods

II.3.a. CHL Phenology

Phenology analysis of CHL spring-summer cycles

The  analysis  of  CHL phenology  was  performed  following  the  method  described  in  the
previous chapter  (see Section  I.3.b). In summary, the analysis of CHL phenology consisted in (i)
temporal decomposition of CHL time series into multi-annual (CHLMA), seasonal (CHLSeas) and sub-
seasonal (CHLSS) components, (ii) normalization of CHL time series, (iii) yearly segmentation of
CHL time series, (iv) Functional Principal Component Analysis (FPCA) performed on the seasonal
component of CHL time series. In the present chapter, the phenology of CHL was characterized by
analyzing the dynamics of CHL during the spring-summer period (October to March).

Reminder of FPCA terminology

The  main  results  of  the  FPCA are  the  Functional  Principal  Components  (FPCs).  FPCs
describe  the  main  modes  of  variation  in  CHL  spring-summer  cycles (FPCs  are  hereafter
indifferently referred to as FPCs, modes of variation and FPCA axes). FPCs were numbered from 1
to 10, in descending order of the associated explained variance. FPCA enables the creation of a new
basis defined by the FPCs. Projection of an annual cycle on a FPC is hereafter referred to as its
score. Absolute value of the score is not directly interpretable in terms of CHL.

Each grid point is assigned a score each year based on the phenology of the annual cycle
recorded at the corresponding location. To each grid point hence corresponds a time series of 24
score values for each FPC. The evolution of CHL annual cycles phenology over time was examined
at each grid point using the time series of its FPC scores and classical metrics derived from these,
namely mean (hereafter referred to as “climatological score”), and standard deviation.

II.3.b. Clustering

A clustering analysis was performed on the time series. The computed clustering consists in
a K-means clustering analysis. The K-means clustering was based both on  CHL spring-summer
phenology (FPCA analysis) and CHL spring-summer biomass (CHL spring-summer climatology).
More precisely, the inputs of the clustering were for each grid point (i) FPC1 score, (ii) standard
deviation  of  FPC1 score (FPC1STD),  and (iii)  the  log-transformed spring-summer climatological
value of CHL. Prior to performing K-means clustering, all the input data were normalized (mean
equal to zero, standard deviation equal to one).

Number of clusters is a user-defined input in the K-means clustering method. The optimum
number of clusters was determined using the elbow method. Briefly, the elbow method consists in
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successively performing clustering with increasing number of clusters. By assessing at each step
within-cluster similarity between points, the elbow method aims at detecting the point from which
no more significant improvement is brought by addition of a new cluster. Extended description and
graphical support for the method summarized in the present paragraph is provided in supplementary
material Text SII.2 and Figure II.14.

Ecosystem-level characteristics of the obtained clusters were derived from PSC and SES
data. For each ecosystem variable, Kruskal-Wallis test was performed to test whether the obtained
clusters differed in their ecosystem characteristics. A significant result of the Kruskal-Wallis test
implies that the distribution of the data of at least one cluster differs from all others.
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II.4. Results and Discussion

II.4.a. Phenology analysis

The phenology analysis developed in the present study enables examination of the main
modes of variation of CHL spring-summer cycles and of their spatial distribution. Graphical support
for the obtained modes of variation, the spatial distribution of FPC scores and standard deviation of
FPC scores are provided in supplementary material Figures II.11, II.12, and II.13, respectively.

The FPCs (modes of variation) obtained in the present chapter were at first order equivalent
to the FPCs obtained with annual cycles of CHL (Section I.4.a). Briefly, the mode of variation that
explains most of the variance (FPC1, 45%) highlights an opposition between CHL cycles with
maximum in summer and CHL cycles with minimum in summer (supplementary material  Figure
II.11, first panel). The second mode of variation (FPC2, 37%) discriminates at finer temporal scale
the  timing of  the  summer annual  maxima (supplementary material  Figure  II.11,  second panel).
From the third axis of the FPCA (FPC3, 12%) and beyond, interpretations of associated modes of
variations becomes more delicate because the shapes depicted by the corresponding FPCs are more
complex (supplementary material Figure II.11, third to tenth panels).

Additionally,  the  spatial  distribution  of  FPC scores  obtained  by  analyzing  CHL spring-
summer phenology (supplementary material  Figure II.12) were comparable to those obtained by
analyzing CHL annual cycles (Figures  I.3-I.4). The first axis (FPC1) mainly depicted a general
latitudinal  gradient  from subtropical  to  subpolar  latitudes.  The  other  FPCs (FPC2 and  further)
presented more complex distributions with higher zonal diversity.

Thus, the phenology analysis performed in the present study provided similar results to the
phenology  analysis  presented  in  the  previous  chapter.  However,  because  focus  of  the  present
analysis was placed on spring-summer months, the range of phenologies described by FPC scores
did  not  encompass  the  same diversity  as  in  when  including  winter  dynamics.  For  this  reason,
“spring-summer” FPC1 scores (this chapter) notably appear shifted compared to “annual cycle”
FPC1 scores  (previous  chapter).  The shift  in  FPC1 scores  is  clearly  visible  through the  larger
proportion of red-coloured pixels - notably south of the SAF - in the spatial distribution of spring-
summer FPC1 scores (supplementary material Figure II.12) compared to annual cycle FPC1 scores
(Figure I.3).
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II.4.b. Bioregionalization

Based on the similarity of both their spring-summer CHL phenology and the magnitude of
their spring-summer CHL concentration, grid points were grouped into six clusters (hereafter also
referred to as bioregions). The optimal number of clusters was set at six by application of the elbow
method to our dataset (for detailed description of the method, see supplementary material Text SII.2
and  Figure II.14). Our analysis provides information on CHL biomass (climatological CHL), on
CHL phenological type (FPC1), and on the variability of CHL phenology (FPC1STD), a proxy for
sub-seasonal variability in CHL time series (see Section  I.5.b and supplementary material  Figure
I.15).

It is worth to note that FPC2 scores were not included in the clustering because we judged
that the diversity of phenologies depicted by the sole interpretation of FPC1 scores (see Section
I.5.a) was sufficient to provide an efficient bioregionalization in the study zone. Additionally, opting
for a reduced number of inputs in the K-means analysis enabled a simplified description of the main
characteristics of the clusters. Finally, FPC2STD was not included in the clustering inputs because
largely redundant with FPC1STD (see Section I.4.c).
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Figure  II.1: Phenological bioregionalization of the Indian sector of the Southern Ocean. Spatial
distribution of clusters based on CHL biomass and CHL phenology. Black lines represent the major
fronts  of  the  SO  defined  in  Section  I.2.c (from  north  to  south):  Subtropical  Front  (STF),
Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF). The areas filled
with  gray  color  are  land  areas.  The  areas  filled  with  black  color  depict  marine  areas  with
bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL values in the 1998-
2022 spring-summer time series (see Section I.2.d) are represented in white.
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The geographical distribution of the six bioregions (Figure II.1) highlights the variety of
CHL dynamics in the Indian sector of the SO derived from CHL time series. Based cluster centroid
FPC1  score,  FPC1STD,  and  spring-summer  climatological  CHL,  the  average  phenology  and
amplitude  of  the  spring-summer  CHL  cycle  per  bioregion  can  be  reconstructed.  Specific
characteristics of each bioregion can be hence inferred from cluster centroid data (Figure II.2), as
described hereafter. Bioregion numbers were assigned in descending order of geographical extent
(number of grid points per cluster, see Figure II.3).

The most oligotrophic regions

Bioregion 3 (Figure II.1, magenta) was mainly characterized by a combination of very low
CHL concentration and clearly positive FPC1 score. Grid points of bioregion 3 are associated with
typical  subtropical  phenology (see Section  I.4.a).  Typical  subtropical  phenology corresponds to
relatively high levels of CHL concentration in winter, an annual maximum in September, and a
rapid decrease of CHL levels after the annual CHL maximum towards an annual CHL minimum in
winter. The subtropical phenological type reflects high limitation by nutrients. Moreover, bioregion
3 is associated with very low FPC1STD, which reflects low variation in CHL phenology.

Early-bloom, low-productivity regions

Bioregion 2 (Figure II.1, light blue)  was the second most represented cluster in the study
zone (Figure II.3).  Bioregion 2 was characterized by moderate FPC1STD,  moderate to low CHL
concentrations, but a notably high FPC1 score (although still lower than FPC1 scores in bioregion
3).  High  FPC1  score  reflects  a  relatively  early  annual  maximum,  compared  to  most  of  the
phenologies present south of the STF. The moderate values of FPC1STD bioregion 2. may reflect
non-negligible contribution of the the sub-seasonal component to CHL variability.
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Figure  II.2: Clustering inputs and cluster centroids. Histograms of clustering inputs (grey bars)
and coordinates of centroid for each clustering input (colored vertical lines). The color used for
each cluster is the same as in Figure II.1. Clustering inputs were FPC1 score (FPC1, left panel),
standard deviation of FPC1 score (FPC1STD, middle panel), and log-transformed spring-summer
climatological value of CHL (log([CHL]spring-summer), right panel). Note that the displayed values are
normalized values (see Section II.3.b).



Chapter II

High productivity regions

Bioregion 6 (Figure II.1, yellow)  was the least represented bioregion in the study zone. The
main characteristic of grid points in bioregion 6 was high CHL concentrations. Bioregion 6 groups
the most productive areas of the Indian sector of the SO (see spring-summer CHL climatology in
supplementary  material  Figure  II.10).  These  areas  are  mainly  located  downstream subantarctic
islands  (e.g.  Crozet,  Kerguelen)  or  low bathymetry  areas  (e.g.  southern  Kerguelen  Plateau),  in
coastal (e.g. South African coast) and frontal (e.g. northwest Crozet) zones. FPCSTD in bioregion 6
revealed that contribution of the sub-seasonal component in bioregion 6 was moderate.

Steady HNLC regions

Bioregion 1 (Figure II.1, dark blue)  was the most represented cluster in the study zone.
Bioregion  1  was  mainly  characterized  by  very  negative  FPC1  score  (Figure  II.2),  the  typical
phenology  of  HNLC  waters.  As  discussed  in  Chapter  I (see  Section  I.5.a) summer  CHL
concentration in HNLC waters is highly limited by by iron delivery.  The spatial distribution of
bioregion 1 confirms this hypothesis, with grid points corresponding to bioregion 1 being mainly far
from any shallow bathymetry areas, or located westward (i.e. “upstream” when considering the flow
of the ACC) of those. The average FPCSTD in grid points of bioregion 1 is moderate to low.

HNLC regions with influence of sub-seasonal variability

Bioregion 4 (Figure II.1, green)  had similar FPC1 score to bioregion 1, which classified
bioregion 4 also in HNLC regime. However, the values of FPC1STD in bioregion 4 were on average
higher  than  in  bioregion  1,  which  reflects  higher  sub-seasonal  variability  in  the  grid  points
belonging to bioregion 4 compared to bioregion 1. Moreover, spring-summer climatological values
of CHL were also higher  in bioregion 4 than in bioregion 1.  Two main patches of grid points
belonging  to  bioregion  4  were  located  downstream  subantarctic  islands  (namely,  Crozet  and
Kerguelen, see Figure II.1), which reinforces the hypothesis of summer CHL production supported
by (sub)mesoscale activity (d’Ovidio et al., 2015).

Highly variable CHL phenology

Finally, bioregion 5 (Figure II.1, red)  was mainly characterized by high FPCSTD, reflecting
highly variable seasonal cycle. CHL phenology bioregion 5 may be highly influenced by variations
in CHL at sub-seasonal and inter-annual scales. CHL concentrations in bioregion 5 were moderate.
Spatial distribution of grid points belonging to bioregion 5 revealed two main sub-groups. The first
sub-group is located in the frontal zone at the interface between the subtropical and the subantarctic
phenologies (see Section II.4.a). The second sub-group is located at the sea-ice edge. Grid points of
bioregion  5  were  grouped  because  they  present  highly  variable  CHL phenology,  however  the
drivers of variability in CHL phenology may be different in each sub-group. While the first sub-
group (subtropical frontal) may be subject to higher influence of meandering of the STF, the second
one (sea-ice edge sub-group) may be highly dependent on sea ice cover.
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Previous  studies  proposed other  bioregionalizations  of  the  SO (Longhurst,  2007;  Fay &
McKinley, 2014; Ardyna et al., 2017). In the next section we compare our results with these existing
bioregionalizations.

II.4.c. Comparison with existing bioregionalizations of the SO

The bioregionalization of the Indian sector of the SO proposed in the present study is in line
with  other  proposed  bioregionalizations  of  the  global  ocean  that  globally  depict  a  latitudinal
separation of biomes following the main fronts of the SO (Longhurst,  2007;  Fay & McKinley,
2014). Although the spatial distribution of the six CHL-derived bioregions described in the present
study  can  obviously  not  be  explained  by  SO  fronts  only,  clear  patterns  of  SO  fronts  being
boundaries for bioregions are visible in our bioregionalization (Figure II.1). Notably, the SACCF
operates in the west part of the study zone a clear delimitation between the area associated with
highly variable CHL phenology (bioregion 5) and the HNLC zone (bioregion 4). In addition, the
SAF also locates at the interface between bioregions (e.g. bioregions 1 and 2 in the east, bioregions
2 and 4 north of the Kerguelen Plateau).

As previously mentioned, the subtropical zone differs from the subantarctic zone,  which
itself has different characteristics than the polar zone, making the STF, the SAF and the PF very
relevant  when spatially  analyzing CHL phenology in the  SO (see Section  I.5.a).  However,  our
analysis provides finer distinction regarding CHL phenology. On top of the meridional classification
mainly driven by environmental variables such as sea surface temperature or mixed layer depth,
already highlighted in previous studies (Longhurst, 2007; Fay & McKinley, 2014), we highlight in
our study clear zonal patterns driven by CHL dynamics (Figure II.1). Including phenology analysis
in our classification and focusing on CHL data only was indeed performed with the aim to highlight
zonal patterns of CHL productivity.

Bioregionalization of the SO by Ardyna et al., 2017 reveal a global meridional pattern, but
also, a clear zonal differentiation throughout the SO is highlighted their study. Their classification,
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Figure II.3: Number of grid points in each bioregion (cluster). The color used of each cluster is the
same as in Figure II.1. In total, 60 446 grid points were included in the study.
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following the method developed in the Mediterranean Sea in D'Ortenzio & Ribera d'Alcalà (2009),
is based on CHL phenology only, with no addition of environmental variables. In our study, also
based on CHL data only, we obtained different distribution of the bioregions. Firstly, we used a
different number of clusters (seven in Ardyna et al. (2017), six in our study). Secondly, different
distribution  of  the  bioregions  resulted  from the  addition  of  an  input  related  to  CHL biomass.
Secondly, the addition of a criteria based on the variability of the phenology (namely, FPC1STD) in
our  analysis  brings another  insight  into phenology analysis.  The addition of FPC1STD   provides
information related to sub-seasonal variability (see Section I.5.b and supplementary material Figure
I.15).

II.4.d. Use of phenological clusters to derive ecosystem-based analysis

In the present section we discuss the potential of the phenology analysis based on functional
data and resulting classification to derive ecosystem-based analysis of the SO. Ecosystem-based
analysis is useful to derive relevant proxies characterizing the entire ecosystem, as well as to study
the evolution in time of the SO ecosystems.

Focusing on the spring-summer period

Cloud  cover  is  a  strong  limiting  factor  for  remote-sensing  CHL estimates  in  the  SO,
especially  in  winter.  Focusing  on  the  spring-summer  period  enables  extension  of  the  validity
domain  of  ocean-colour  observations  to  the  south,  compared  to  the  analysis  presented  in  the
previous chapter (i.e. a reduced number of discarded grid points). The greater number of available
observations can be visually assessed by comparing the extent of white-coloured areas (discarded
grid  points)  in  spring-summer  CHL climatology  (supplementary  material  Figure  II.10)  and  in
annual CHL climatology (supplementary material Figure I.7). By extending the geographical extent
of included observations, a greater number of ecosystem variables could be included. However, part
of the annual CHL production is obviously missed when only considering the spring-summer period
only.  To investigate the part  of the annual  CHL production that  is  concentrated on the spring-
summer months, we computed the ratio between spring-summer-integrated CHL concentration and
annually-integrated CHL concentration (see supplementary material Figure II.15). In low latitudes,
the  ratio  between  spring-summer  and  annually-integrated  CHL concentration  falls  below  50%,
which is in line with FPC1 scores depicting higher CHL levels in winter at subtropical latitudes (see
supplementary material  Figure II.12).  The ratio  between spring-summer and annually-integrated
CHL concentration increases in high latitudes. South of 45ºS, the ratio between spring-summer and
annually-integrated  CHL concentration  is  above  60%.  In  the  present  study,  important  focus  is
placed on ecosystem dynamics at subantarctic to subpolar latitudes (i.e. south of 45ºS). The main
objective of including subtropical latitudes was to constitute a baseline for CHL phenology and
CHL concentration. Therefore, based on the examination of the ratio between spring-summer and
annually-integrated CHL concentration, we consider that focusing on spring-summer months for
bioregionalization  was  relevant  and  adapted  for  the  purpose  of  the  study.  Nevertheless,  the
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ecosystem variables examined in the present section included data from periods covering the entire
annual cycle.

Primary production pathways: phytoplankton community composition

Bioregionalization of the SO based on CHL phenology and climatological CHL enables
efficient visualization of main phenologies, while keeping a metric related to CHL biomass. The
information  of  bioregion membership  was related  to  phytoplankton size  classes  (PSC) to  infer
potential  link  between  amplitude  and  phenology  of  CHL  concentration,  and  phytoplankton
community composition. The dynamics of fractions of PSC (pico-, nano-, microphytoplankton) was
examined  for  each  cluster  (Figures  II.4-II.6).  Kruskal-Wallis  test  was  performed  on  the
climatological values of PSC fractions and absolute concentrations to test  whether the obtained
clusters differed in their PSC composition (Section II.3.b). All tests resulted significant (all p values
< 10-4). In the examination of PSC data, we judged relevant to analyze the entire annual cycle to
catch the seasonal dynamics of PSC including winter dynamics. In addition, we judged relevant to
analyze fractions of PSC to disentangle CHL biomass dynamics from phytoplankton community
composition dynamics. However, the absolute concentrations of PSC were computed and provided
in supplementary material Figures II.16-II.18.
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Figure  II.4:  Fraction  of  picophytoplankton  per  bioregion  and  per  month.  Cluster  number
(bioregion) is displayed above each panel and the color of each panel refers to the colors used in
Figure II.1. Fraction of picophytoplankton (fpico) is given in percentage of the total CHL. Months
in  the  abscissa  are  displayed  with  annual  cycle  centered  on  Austral  summer  (i.e.  month  of
December,  number  12).  Each  black  box  represents  the  distribution  of  the  PSC  data  for  the
corresponding month of the year. The horizontal black line inside each box represents the median.
The top and bottom limits of each box are the 25th and 75th percentiles, respectively. The vertical
dashed black lines extending above and below each box represent the full range of non-outlier
observations.
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Figure  II.5:  Fraction  of  nanophytoplankton  per  bioregion  and  per  month.  Cluster  number
(bioregion) is displayed above each panel and the color of each panel refers to the colors used in
Figure II.1. Fraction of nanophytoplankton (fnano) is given in percentage of the total CHL. Months
in  the  abscissa  are  displayed  with  annual  cycle  centered  on  Austral  summer  (i.e.  month  of
December,  number  12).  Each  black  box  represents  the  distribution  of  the  PSC  data  for  the
corresponding month of the year. The horizontal black line inside each box represents the median.
The top and bottom limits of each box are the 25th and 75th percentiles, respectively. The vertical
dashed black lines extending above and below each box represent the full range of non-outlier
observations.
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Annual  variations  in  the  fraction  of  the  nanophytoplankton  class  shows  relatively  low
amplitude  (fraction  of  nanophytoplankton  generally  varied  between  ~30%  and  ~45%  in  all
bioregions). In contrast, dynamics of the pico-and microphytoplankton classes are clearly different
between bioregions.  Bioregion 3 is  clearly marked by high proportion of picophytoplankton (>
40%) and a maximum in summer (~60%), while fraction of microphytoplankton in bioregion 3 is
low (< 20%) all-year long. Oppositely, fraction of microphytoplankton is above 20% in all other
bioregions, with maximum values in bioregion 5 (associated with Highly variable CHL phenology).
In all bioregions but bioregion 3, the typical annual cycle seems to describe lower levels of fraction
of  microphytoplankton  in  winter  and  highest  levels  in  summer,  while  the  dynamics  of
picophytoplankton are opposite. Interestingly, the opposition appears to be especially marked in
bioregions 2 and 5.

We demonstrated in the present section that the bioregions defined by CHL phenology and
CHL biomass were meaningful regarding phytoplankton community composition and their annual
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Figure  II.6:  Fraction  of  microphytoplankton  per  bioregion  and  per  month.  Cluster  number
(bioregion) is displayed above each panel and the color of each panel refers to the colors used in
Figure  II.1.  Fraction  of  microphytoplankton (fmicro)  is  given  in  percentage of  the  total  CHL.
Months in the abscissa are displayed with annual cycle centered on Austral summer (i.e. month of
December,  number  12).  Each  black  box  represents  the  distribution  of  the  PSC  data  for  the
corresponding month of the year. The horizontal black line inside each box represents the median.
The top and bottom limits of each box are the 25th and 75th percentiles, respectively. The vertical
dashed black lines extending above and below each box represent the full range of non-outlier
observations.
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dynamics. Nonetheless, it is worth to note that the PSC model is CHL-dependent. Hence, there
could be some circularity in the connection between bio-regions and size-class structure. One way
to investigate and potentially partly remove the circularity between bioregionalization process and
size-class structure could be to define bioregions based on CHL phenology only (and no CHL
biomass). Moreover, a limitation of the PSC model used in the present study emanates from the fact
that the microphytoplankton class is set directly equivalent to the diatom phytoplankton functional
type. However, the diatom group spans a wide range of cell sizes (IOCCG, 2014). Classifying all
diatoms in the microphytoplankton compartment may hence lead to model errors. Additionally, SO
high latitude waters are known to have different bio-optical properties (Robinson et al., 2021). The
PSC model used in the present study is trained at global scale. Results derived in SO waters should
hence be interpreted with caution. To examine the validity of the PSC data used in the present study,
we  performed  a  matchup  exercise  between  HPLC  samples  and  PSC  model  outputs  (see
supplementary material  Figure II.19). In total 676 successful matchups were performed between
HPLC  data  and  PSC  data  (see  supplementary  material  Figure  II.20).  The  HPLC  data  firstly
confirms the north-south gradient in the proportion of pico- and micro phytoplankton size classes
(more pico phytoplankton in the north, more micro phytoplankton in the south). The model tends to
overestimate phytoplankton concentration in their lower range of values (below ~2.10-2 mg.m-3).
Nonetheless, HPLC data and PSC model data are in good agreement. Finally, it is worth to note that
our study highlights the importance of sub-seasonal variations (FPC1STD) as a key criteria in the
differentiation  of  CHL phenologies  (see  Section  II.4.b).  However,  variations  in  CHL and  in
environmental conditions (e.g. SST) respond to different time scales of variations (Dunstan et al.,
2018). For this reason, “ecological” PFTs (i.e. derived from ocean colour data plus environmental
variables, such as SST), might be biased and not fully reliable at small scales (Keerthi et al., 2022).
Therefore,  the  elements  listed  in  the  present  paragraph  validate  the  model  outputs,  with  some
limitations that cannot be overlooked, particularly in the study zone of the present study.

Higher trophic levels: top predator foraging behaviour

The foraging behaviour of a top predator such as the SES was used to examine whether the
phenology and composition of the primary producer’s compartment influence higher trophic levels.
SESs typically  breed  at  subantarctic  latitudes  (e.g.  Crozet  Islands,  Kerguelen  Archipelago)  and
forage in the open ocean, between subantarctic latitudes and the Antarctic continent (Guinet et al.,
2014). SESs mainly feed on mesopelagic fish (myctophyds, Cherel et al., 2008). Bio-loggers placed
on SESs provide useful information to both characterize their behaviour (e.g. localization through
GPS, body movement through accelerometry), their abiotic (e.g. temperature, salinity) and biotic
environment (e.g.  chlorophyll-a  fluorescence)  (McGovern et  al.,  2019).  We used in  the present
analysis SES dive statistics (number of dives and dive depth per grid point) as well as movement
data (number of PreyCA) to characterize SES foraging effort and foraging success in the study zone
(Section II.2.g). SES foraging behaviour indirectly enables characterization of SES prey distribution
and availability. Kruskal-Wallis test was performed on the mean values of (i) number of dives, (ii)
dive depth and (iii) number of PreyCA per grid point to test whether the distribution of these SES
data differed between bioregions (Section II.3.b). The three tests resulted significant (p values < 10-
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4).  Bioregion 3 (subtropical) was almost no represented in the statistical analysis of the section,
coherent with the foraging area of the SES mentioned above (see graphical support to geographical
distribution of SES profiles per dataset in supplementary material Figures II.21-II.23).

Distribution of  the mean number of  dives  per grid point  in  each SES trip  reveals  clear
differences between bioregions (Figure II.7). Bioregions 4 and 6 (the most productive bioregions in
terms of CHL, see Section II.4.b) were clearly associated with the highest number of dives per grid
point,  followed by bioregions  2  and 1  (HNLC).  The mean  number  of  dives  per  grid  point  in
bioregion 5 (highly variable CHL phenology) was low. Bioregion 3 (subtropical) was almost no
represented in this dataset.
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Figure II.7: Number of SES dives per grid point for each bioregion. Each black box represents the
distribution of the SES data for the corresponding bioregion. The horizontal black line inside each
box represents the median. The top and bottom limits of each box are the 25 th and 75th percentiles,
respectively. The vertical dashed black lines extending above and below each box represent the full
range of non-outlier observations. Black dots in the center of colored circles represent the mean.
The color of each circle refers to the colors used in  Figure II.1. The size of colored circles is
proportional  to  the  number  of  data  points  (SES  profiles).  The  number  of  data  points  used  to
compute the distribution of the data in each cluster is indicated in the top-right inset. N i is the
number of data points available in cluster i (i = 1,2,...6). N tot is the total number of SES profiles
used to compute number of SES dives per grid point.
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Examination of dive depths per cluster suggests better prey accessibility (shallower dives) in
bioregion 1 (HNLC) compared to other bioregions (Figure II.8). Distribution of dive depths were
spread over a larger interval in clusters 4 and 6, a potential indicator of the larger variety in the
environments  encountered  by  SES  in  these  bioregions  Oppositely,  dive  depth  distributions  in
bioregions 2 and 5 were more tightly centered around their median. Excluding bioregion 3 for being
probably too fewly represented, bioregion 2 (low CHL productivity) was the bioregion with deepest
mean dive depth. Interestingly, bioregions 4 and 6 were associated with mean deeper dive depths
than bioregion 1, however the mean number of dives per grid point discussed above suggests that
SESs dived with higher frequency in bioregions 4 and 6 than in bioregion 1.
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Figure  II.8:  SES dive  depth  per  grid point  for  each bioregion.  Each black  box represents  the
distribution of the SES data for the corresponding bioregion. The horizontal black line inside each
box represents the median. The top and bottom limits of each box are the 25 th and 75th percentiles,
respectively. The vertical dashed black lines extending above and below each box represent the full
range of non-outlier observations. Black dots in the center of colored circles represent the mean.
The color of each circle refers to the colors used in  Figure II.1. The size of colored circles is
proportional  to  the  number  of  data  points  (SES  profiles).  The  number  of  data  points  used  to
compute the distribution of the data in each cluster is indicated in the top-right inset. N i is the
number of data points available in cluster i (i = 1,2,...6). N tot is the total number of SES profiles
used to compute SES dive depth per grid point.
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The  number  of  PreyCA per  bioregion  (Figure  II.9)  supports  the  opposition  between
bioregions 4 and 6 on one side and bioregion 1 on the other. In bioregions 4 and 6, deeper dives and
higher dive frequency are associated with higher number of PreyCA. Oppositely, shallower dives
and lower dive frequency in bioregion1 are associated with lower number of PreyCA. The highest
mean number of PreyCA was recorded for bioregion 5, suggesting that areas with highly changing
environment -inferred from highly variable CHL phenology - may be favorable to the development
of SES’s preys. Finally, bioregion 2, previously identified as a bioregion with less frequent and
deepeer dives compared to other bioregions, was associated with low number of PreyCA per dive,
and indicator of low foraging success for the SES.

It is worth to note that the sampling performed with SES bio-logging data has biases, as
mentioned previously (Section  II.2.g and  supplementary material Figures  II.21-II.23), due to the
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Figure  II.9: Number of SES prey capture attempts per grid point for each bioregion. Each black
box represents the distribution of the SES data for the corresponding bioregion. The horizontal
black line inside each box represents the median. The top and bottom limits of each box are the 25 th

and 75th percentiles, respectively. The vertical dashed black lines extending above and below each
box represent the full range of non-outlier observations. Black dots in the center of colored circles
represent the mean. The color of each circle refers to the colors used in  Figure II.1. The size of
colored circles is proportional to the number of data points (SES profiles). The number of data
points used to compute the distribution of the data in each cluster is indicated in the top-right inset.
Ni is the number of data points available in cluster i (i = 1,2,...6). N tot is the total number of SES
profiles used to compute number of SES prey capture attempts (PCA) per grid point.
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specific  scientific  questions  bio-logging  devices  are  supposed  to  address.  Bio-logging  devices
deployment spans a large range of diversified objectives, from identification of important foraging
areas (Hindell et al., 2016; Mestre et al., 2020), to collection of oceanographic data (Siegelman et
al.  2020).  For  this  reason,  the  sampling  is  inherently biased  because equipped animals  are  not
randomly chosen. However, even if the sample of SES profiles processed in the present study could
to some extent be considered as biased, its large size underlines the fact that it  contains useful
information for ecosystem-derived metrics. Therefore, by combining the information provided by
clustering analysis based on CHL data with bio-logging-derived SES foraging behaviour data, we
clearly highlighted in the present section bioregions with specific properties in terms of higher-
trophic level ecosystem dynamics.
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II.5. Conclusion

In the present study, we proposed a bioregionalization of the Indian sector of the SO from a
combination of biomass- and phenology-based criteria, all based on the sole use of remote sensing
CHL data. Six clusters with distinct characteristics were described, from oligotrophic subtropical
open-ocean  biomes,  to  typical  subpolar  HNLC  biomes.  Compared  to  existing  global
bioregionalizations of the ocean (Longhurst,  2007; Fay & McKinley,  2014),  our study brings a
closer insight into primary production dynamics and enables zonal differentiation. In addition to
CHL biomass,  studying CHL phenology proved efficient in  revealing large zones in the Indian
sector  of  the  SO with  distinct  seasonal  patterns.  Also,  the  addition  of  a  criteria  depicting  the
variability  in  CHL phenology over  time enables  finer  discrimination  of  main  seasonal  patterns
driving CHL dynamics in the Indian sector of the SO.

Establishing a link between CHL concentration, phenology, and phytoplankton community
composition is not trivial. As discussed in Chapter I (see Section I.5.c), interpretation of variations
in CHL is subject to limitations due to a series of both biological and instrumental factors. However
we  suggest  through  our  study  that  distinct  phenologies  could  be  associated  with  distinct
phytoplankton community composition (Henson et al., 2017). Investigating the link between CHL
phenology  and  phytoplankton  functional  types  (or  phytoplankton  size  classes)  in  different
bioregions of the SO, as proposed in the present study, is essential for assessing the future impacts
of climate change on SO primary production and its implications for ecosystem functioning and
carbon export.

Moreover, we suggest in our study that potential changes in terms of primary production
could  propagate  throughout  the  trophic  network towards  higher  trophic  levels.  Observing mid-
trophic levels in the ocean is a real challenge which requires intense sampling. A good indicator of
fish abundance can be derived from a top predator’s foraging success, measurable through bio-
logging techniques (Goulet et al., 2020, Tournier et al., 2021). Also, the foraging behaviour of a top
predator  provides useful  information to  characterize prey distribution.  The examination of  SES
foraging behaviour in relation to SO bioregions based on CHL characteristics is proposed as a way
to study the propagation of primary production dynamics throughout the ecosystem.

Grouping  and  combining  indicators  derived  from  various  trophic  levels  is  essential  to
describe  SO  ecosystem  functioning  and  define  main  SO  biomes.  Furthermore,  assessing  the
sensitivity  of  SO  ecosystems  to  environmental  changes  through  ecosystem-derived  metrics  is
crucial to establish sustainable resource management strategies in the SO (Chown & Brooks, 2019;
Hindell et al., 2020). In the present study, we established clear links between primary production
dynamics ecosystem composition. Moreover, in the previous chapter, we discussed the importance
of  sub-seasonal  variations  in  the  control  of  annual  CHL dynamics  (see  Section  I.5.b).  As  a
consequence of the results obtained in  Chapter I and  Chapter II, intensified sampling of metrics
characterizing CHL production in the SO emerges as a crucial necessity to better understand the
processes that drive primary production in the SO. This issue is addressed in Chapter III.
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Chapter II - Supplementary Material

Text SII.1. CHL spring-summer climatology for the Indian sector of the SO

CHL spring-summer climatology (1998-2022) for the Indian sector of the SO was computed
for each pixel as the mean value of CHL for the period extending from October to March from 1998
to 2022. CHL spring-summer  climatology was derived from GlobColour 8-day averaged Level 3
product and computed with a 0.25º x 0.25º resolution.

Figure  II.10: CHL spring-summer climatology (1998-2022) in the Indian sector of the Southern
Ocean derived from GlobColour 8-day averaged Level 3 product with 0.25º x 0.25º resolution.
Black lines represent the major fronts of the SO defined in Section  I.2.c (from north to south):
Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front
(SACCF). The areas filled with gray color are land areas. The areas filled with black color depict
marine areas with bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL
values in the 1998-2022 spring-summer time series (see Section I.2.d) are represented in white.
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Figure  II.11:  Ten first FPCs (modes of variation) obtained after running FPCA for CHL spring-
summer cycles (see Section  II.3.a). The value in brackets above each panel is the percentage of
variance explained by the corresponding FPC. FPC1-5 (FPC6-10) were represented in the top
(bottom) panels. In each panel, the blue (red) curve depicted by “-” (“+”) symbols shows a typical
phenology associated with a negative (positive) FPC score. The continuous black line displayed in
every panels correspond to the average phenology in the study zone (Indian sector of the Southern
Ocean)
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Figure II.12: Spatial distribution of FPC climatological scores. Spatial distributions of FPC1 (left
panel) and FPC2 (right panel) climatological scores (see Section II.3.a) were represented with the
same color code as in  Figure II.11. Black lines represent the major fronts of the SO defined in
Section I.2.c (from north to south): Subtropical Front (STF), Subantarctic Front (SAF), Polar Front
(PF) and Southern ACC Front (SACCF). The areas filled with gray color are land areas. The areas
filled with black color depict marine areas with bathymetry shallower than -1000 meters. Pixels
with less than 50% valid CHL values in the 1998-2022 spring-summer time series (see Section
I.2.d) are represented in white.
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Text SII.2. Optimum number of clusters

Number of clusters is a user-defined input in the K-means clustering method. The optimum
number of clusters was determined using the elbow method. Briefly, the elbow method consists in
successively performing clustering with increasing number of clusters. At each step, each point is
attributed a cluster. Each cluster has a centroid (cluster mean). At each step, the within-cluster sum
of squares (WCSS) is computed as the sum of squares of the distance of each data point from the
center point of the cluster it belongs to. Euclidian distance was used to calculate WCSS. A proxy for
within-cluster similarity between points, WCSS decreases with increasing number of clusters. The
elbow method  consists  in  detecting  the  point  from which  no more  significant  improvement  is
brought  by  addition  of  a  new cluster  in  terms  of  within-cluster  similarity  between  points.  We
applied the elbow method for number of clusters varying from one to twelve. For robustness of the
results, we performed 30 iterations of the clustering at each step of the method (i.e. for each tested
number of clusters, from one to twelve). The optimum number of clusters in the present analysis
was fixed at six. Graphical support for the method described in the present paragraph is provided in
Figure II.14.
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Figure  II.13: Spatial distribution of standard deviation of FPC scores. The standard deviation of
the time series of FPC scores (see Section II.3.a) were represented for the first (FPC1STD, left panel)
and the second (FPC2STD, right panel) axes of the FPCA. Black lines represent the major fronts of
the SO defined in Section I.2.c (from north to south): Subtropical Front (STF), Subantarctic Front
(SAF), Polar Front (PF) and Southern ACC Front (SACCF). The areas filled with gray color are
land areas. The areas filled with black color depict marine areas with bathymetry shallower than -
1000 meters. Pixels with less than 50% valid CHL values in the 1998-2022 spring-summer time
series (see Section I.2.d) are represented in white.
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Figure II.14: Determination of optimum number of clusters with elbow method. (top panel) Within-
cluster sum of squares (WCSS) as a function of number of clusters and (bottom panel)  ΔWCSS
represents the difference in WCSS between step n (n clusters) and step n-1 (n-1 clusters).  The
vertical red dashed line represents the optimum number of clusters (six) fixed for the present study.
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Figure  II.15: Proportion of CHL production in the spring-summer period. Mean spring-summer
integrated CHL ([CHL]spring-summer) and mean annual integrated CHL ([CHL]year) were computed for
each grid point and represented as a function of latitude. The proportion of CHL production in the
spring-summer period is the ratio between [CHL]spring-summer and [CHL]year and was expressed as
percentage of [CHL]year.
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Figure  II.16: Concentration of picophytoplankton per bioregion and per month. Cluster number
(bioregion) is displayed above each panel and the color of each panel refers to the colors used in
Figure II.1. Concentration of picophytoplankton ([pico]) is given in mg.m-3. Months in the abscissa
are displayed with annual cycle centered on Austral summer (i.e. month of December, number 12).
Each black box represents the distribution of the PSC data for the corresponding month of the year.
The horizontal black line inside each box represents the median. The top and bottom limits of each
box are the 25th and 75th percentiles, respectively. The vertical dashed black lines extending above
and below each box represent the full range of non-outlier observations.
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Figure  II.17: Concentration of nanophytoplankton per bioregion and per month. Cluster number
(bioregion) is displayed above each panel and the color of each panel refers to the colors used in
Figure  II.1.  Concentration  of  nanophytoplankton  ([nano])  is  given  in  mg.m-3.  Months  in  the
abscissa are displayed with annual cycle centered on Austral summer (i.e.  month of December,
number 12).  Each black box represents the distribution of the PSC data for the corresponding
month of the year. The horizontal black line inside each box represents the median. The top and
bottom limits of each box are the 25th and 75th percentiles, respectively. The vertical dashed black
lines extending above and below each box represent the full range of non-outlier observations.
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Figure II.18: Concentration of microphytoplankton per bioregion and per month. Cluster number
(bioregion) is displayed above each panel and the color of each panel refers to the colors used in
Figure  II.1.  Concentration  of  microphytoplankton  ([micro])  is  given  in  mg.m-3.  Months  in  the
abscissa are displayed with annual cycle centered on Austral summer (i.e.  month of December,
number 12).  Each black box represents the distribution of the PSC data for the corresponding
month of the year. The horizontal black line inside each box represents the median. The top and
bottom limits of each box are the 25th and 75th percentiles, respectively. The vertical dashed black
lines extending above and below each box represent the full range of non-outlier observations.
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Figure II.20: Validation of PSC model with HPLC data. Comparison of concentrations in pico- (left
panel),  nano-  (middle  panel)  and  microphytoplankton  (right  panel)  from  HPLC samples  with
concomitant model estimate. Abscissa are HPLC data (see Section  II.2.f) and ordinates are PSC
model data (see Section II.2.e). The color of the points represent the latitude of the samples , from
high latitudes (dark blue) to low latitudes (yellow).The dashed black line represents the 1:1 line.
Note that the data is represented in log scale.

Figure II.19: Spatial distribution of HPLC samples. Pigment data obtained from HPLC was used to
validate  PSC products  (Section  II.2.f).  In  total,  N = 676 HPLC samples  were  included in the
validation  exercise.  The  background  map  is  the  climatological  fraction  of  microphytoplankton
(fmicro) in the study zone, computed as the mean value of fmicro from 1998 to 2022. Black lines
represent the major fronts of the SO defined in Section  I.2.c (from north to south): Subtropical
Front (STF), Subantarctic Front (SAF), Polar Front (PF) and Southern ACC Front (SACCF). The
areas filled with gray color are land areas. The areas filled with black color depict marine areas
with bathymetry shallower than -1000 meters. Pixels with less than 50% valid CHL values in the
1998-2022 spring-summer time series (see Section I.2.d) are represented in white.
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Figure II.21: Geographical distribution of SES profiles used to compute number of SES dives per
grid point. In total, 67 335 SES profiles were processed to compute number of SES dives per grid
point.

Figure  II.22: Geographical distribution of SES profiles used to compute SES dive depth per grid
point. In total, 307 159 SES profiles were processed to compute SES dive depth per grid point.
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Figure II.23: Geographical distribution of SES profiles used to compute number of SES PCA per
grid point. In total, 97 377 SES profiles were processed to compute number of SES PCA per grid
point.
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Abstract

The  ocean’s  meso-  and  submeso-scales  (1-100  km,  days  to  weeks)  host  features  like
filaments and eddies that have a key structuring effect on phytoplankton distribution, but that due to
their ephemeral nature, are challenging to observe. This problem is  exacerbated in  regions with
heavy  cloud  coverage  and/or  difficult  access  like the  Southern  Ocean,  where  observations  of
phytoplankton distribution by satellite are sparse, manned campaigns costly, and automated devices
limited by power consumption. Here, we address this issue by considering high-resolution  in-situ
data from 18 bio-logging devices deployed on southern elephant seals (Mirounga leonina)  in the
Kerguelen Islands between 2018 and 2020. These devices have submesoscale-resolving capabilities
of light profiles due to the high spatio-temporal frequency of the animals’ dives (on average 1.1 +-
0.6 km between consecutive dives, up to 60 dives per day), but observations of fluorescence are
much coarser due to power constraints. Furthermore, the chlorophyll a concentrations derived from
the (uncalibrated) bio-logging devices’ fluorescence sensors lack a common benchmark to properly
qualify the data and allow comparisons of observations. By proposing a method based on functional
data analysis, we show that a reliable predictor of chlorophyll a concentration can be constructed
from light profiles (14 686 in our study). The combined use of light profiles and matchups with
satellite ocean-color data enable effective (1) homogenization then calibration of the bio-logging
devices’ fluorescence  data  and  (2)  filling  of  the  spatial  gaps  in  coarse-grained  fluorescence
sampling.  The  developed  method  improves  the  spatial  resolution  of  the  chlorophyll  a  field
description from ~30 km to ~12 km. These results open the way to empirical study of the coupling
between physical forcing and biological response at submesoscale in the Southern Ocean, especially
useful in the context of upcoming high-resolution ocean-circulation satellite missions.
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III.1. Introduction

Primary  producers  are  key  elements  in  the  structuring  of  marine  food  webs  and  their
distribution in the ocean largely drives ecosystem dynamics (Lévy et al., 2018; Henley et al., 2020).
Primary production also plays a critical role in biogeochemical cycles given its involvement in CO2

sequestration through the process of the biological carbon pump (DeVries et al., 2012; Siegel 2014;
Boyd et al.,  2019).  Resolving phytoplankton distribution in the ocean is however a challenging
issue due to the extreme heterogeneity of environmental conditions and the short time scales of
events relative to phytoplankton growth. From the mesoscale (O(100 km)) to the submesoscale
(O(10 km)), the oceanic landscape is shaped by dynamic processes such as filaments or eddies
which directly impact phytoplankton distribution (Mahadevan, 2016; Lévy et al., 2018). Complex
shapes and high patchiness, observable from space with ocean-color radiometry, result from these
processes (d’Ovidio et al., 2010; Lehahn et al., 2018), with consequences on the variability of the
associated biogeochemical processes (Resplandy et al., 2009).

Remote sensing of ocean-color enables monitoring of the distribution of chlorophyll a (Chla
hereafter), a proxy for phytoplankton biomass, with the advantage of providing a synoptic view of
the processes occurring at the surface of the ocean. Yet the reflectance signal upcoming from the
ocean surface is subject to obstruction by clouds or masking by sea ice (at high latitudes), which
requires coupling satellite data with in-situ sampling. Furthermore, the critical need for collecting
in-situ data is reinforced by the fact that the vertical distribution of Chla escapes remote detection.
Indeed,  ocean-color  measurements  are  restricted  to  the  near-surface.  Satellite  observations
consequently only include part of the productive layer and omit potential subsurface features (e.g.
deep chlorophyll maxima, see Baldry et al., 2020; Cornec et al., 2021).

While  the  mesoscale  is  quite  well  covered  by current  satellite  observations  of  physical
dynamics coupled with in-situ platforms sampling biogeochemical variables (McGillicuddy, 2016),
recent missions like the Surface Water and Ocean Topography (SWOT) mission enable access to
spatial scales down to 15-30 km (Morrow et al., 2019) but there is no in-situ counterpart to support
the  remotely-sensed  observations  (d’Ovidio  et  al.,  2019).  Phytoplankton  distribution  at
submesoscale is hence inadequately resolved due to the gap between satellite observations and in-
situ data.

One  region  where  an  enhanced  submesoscale  observation  of  phytoplankton  distribution
would be particularly valuable is the Southern Ocean (SO). Considered as a main contributor to
global air-sea CO2 exchange (Ardyna et al., 2017; Devries et al., 2019; Bushinsky et al., 2019), the
SO hosts a large variety of ecosystems, from unicellular organisms up to charismatic megafauna,
that rely greatly on ocean biogeochemistry (Deppeler and Davidson, 2017; Henley et al., 2020). In
addition to  displaying marked seasonal  and regional  features (Blain et  al.,  2008;  Deppeler  and
Davidson, 2017), the spatio-temporal variability of phytoplankton concentration in the SO is subject
to  the  heavy  structuring  effect  of  the  (sub)mesoscale  (Bachman  et  al.,  2017)  and  is  strongly
influenced  by  sub-seasonal  forcings  (Prend  et  al.,  2022).  Monitoring  the  distribution  of
phytoplankton at such short spatial and temporal scales is therefore crucial. However the monitoring

- 118 -



Chapter III

of primary production in the SO through in-situ sampling by research vessels is highly limited by
harsh  meteorological  conditions  and  by  the  presence  of  sea  ice.  In  addition,  satellite-based
observations  in  the  SO  are  frequently  restricted  by  cloud  coverage.  As  a  result,  despite  the
preeminent position of the SO in the Earth’s climate system and ecosystem functioning, it remains
undersampled compared to other ocean basins.

The limitations associated with research vessel-based sampling in the SO lead to opting for
autonomous measuring platforms like AUVs (Autonomous Underwater Vehicles). However, both
the large extent and the remoteness of the zone highly constrain any AUV deployment and recovery.
Nonetheless,  large  efforts  have been made  in  the  past  two decades  to  increase  the  number  of
autonomous platforms monitoring the SO through the measurement of biogeochemical variables
(Chai et al., 2020). While Biogeochemical-Argo (BGC-Argo) floats enable the sampling of a region
over  several  years  (Claustre  et  al.,  2020),  gliders  (Testor  et  al.,  2019)  and  marine  mammals
equipped with bio-logging devices (Blain et al., 2013; Guinet et al., 2013; Treasure et al., 2017) are
more suitable for the observation of short-lived (sub)mesoscale processes. Gliders are indisputably
a powerful tool for characterizing phytoplankton distribution at these scales due to the high spatio-
temporal density they can achieve in the sampling (0.5–6 km, 0.5–6 h between 2 vertical profiles,
Rudnick et al., 2016a; Testor et al., 2019). However, despite some examples of successful glider
deployments in the SO providing an insight into phytoplankton distribution at high resolution (e.g.
Alex Kahl et  al.,  2010), high-frequency data remain rare in the SO because of the deployment
constraints mentioned above. By comparison, bio-logging devices mounted on deep-diving animals
such as southern elephant seals (Mirounga leonina, SES hereafter) offer the possibility of acquiring
as many as 60 profiles per day at depths regularly exceeding 500 m (Siegelman et al., 2019). Bio-
logging devices hence have the potential to address the (sub)mesoscale sampling issue in zones as
remote and turbulent as the SO.

The Satellite Relayed Data Logger (SRDL, see Boehme et al., 2009) developed by the Sea
Mammal Research Unit (SMRU, UK) is a bio-logging device designed for marine mammals like
the SES. SRDLs commonly include a Conductivity, Temperature and Depth (CTD) sensor head.
Optionally, SRDLs may include a light sensor, and a fluorometer to measure Chla fluorescence
(Fluo  hereafter).  SRDLs  can  also  act  as  high-frequency  sampling  loggers  which  need  to  be
recovered when the SESs are back ashore in order to obtain access to the data.  The present study
focuses on SRDLs (referred to as “tags” hereafter) measuring light (L hereafter) and Fluo. Although
High  Pressure  Liquid  Chromatography  (HPLC)  is  the  reference  technique  for  accurate  Chla
concentration estimates  ([Chla],  mg.m-3)  (Wright  et  al.,  1991;  Ras  et  al.,  2008),  it  requires  the
collection of water samples whereas fluorometers provide a real-time estimate of in-situ [Chla]. Due
to their ease of use and the relative simplicity of their integration, fluorescence-based sensors have
recently been largely implemented in autonomous platforms. As a consequence, Fluo has become a
universal standard variable for the estimate of [Chla]. The measurement of Fluo is based on the
optical  properties  of  the  Chla  photosynthetic  pigments  present  in  the  sampled  water  volume
(Lorenzen,  1966;  Huot  and  Babin,  2010;  Roesler  and  Barnard,  2013).  Fluo  is  at  first  order
proportional  to  [Chla].  However,  more  precise  examinations  of  the  Fluo signal  reveal  that  the
relationship  between the observed fluorescence  and the actual  phytoplankton biomass  can  vary
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according  to  phytoplankton  community  composition,  physiological  factors  or  light  conditions
(Serôdio and Lavaud, 2011; Xing et al., 2012; Roesler et al., 2017; Schallenberg, et al., 2022). Fluo
is hence an imperfect proxy which does not straightforwardly reflect phytoplankton concentration,
but remains to date the best means to obtain widespread estimates of in-situ [Chla].

Previous studies have already shown that Fluo data quality can be enhanced by the use of
concomitant radiometric measurements, and vice versa (Morel and Maritorena, 2001; Morel et al.,
2007; Xing et al., 2011). These methods rely on the hypothesis that light absorption in the water
column is mainly due to the presence of phytoplankton. Such a hypothesis is commonly made for
oceanic waters with no direct terrestrial influence, classified as “case 1” waters (Morel and Prieur,
1977; Morel, 1988). Based on the same hypothesis but more specifically for inference purposes in
the framework of functional data analysis, it has been proved that the vertical diffuse attenuation
coefficient for L (KL hereafter) can be a good predictor for Fluo (Bayle et al., 2015). In the present
study we propose to exploit the predictive capabilities of a linear functional model (LFM) similar to
the  one  described  by  Bayle  et  al.  (2015)  (who  limited  their  analysis  to  the  inference  of  low
resolution Fluo data)  to adjust the (uncalibrated) Fluo data provided by multiple tags (18 in our
study).  The  tags’ intercalibration  does  not  resolve  the  issue  of  the  absolute  Fluo  to  [Chla]
conversion. Consequently, following the merging of all the intercalibrated tags,  we have selected
[Chla] estimated by ocean-color radiometry as the benchmark to carry out absolute Fluo calibration.

Another key issue regarding Fluo measurements in the context of bio-logging is related to
energy consumption. Not only is energy consumption a major concern for autonomous platforms in
general but Fluo measurements are also particularly energy-demanding as they rely on an active
optical sensor. The issue is especially critical for bio-logging tags due to the reduced size of such
loggers and therefore the highly limited volume of their batteries. A trade-off between the vertical
and temporal resolutions of the acquisitions is necessary to best optimize battery lifetime. As a
consequence, despite the high sampling resolution of the tags enabled by SES diving behaviour (up
to ~60 dives per day), suitable for the observation of submesoscale processes, the spatial resolution
of the SRDL’s Fluo measurements was reduced (~4 profiles per day) and becomes insufficient for a
proper description of phytopankton distribution at that scale. To address this observation gap, a
LFM  was  designed  to  infer  [Chla]  from  KL and  increase  the  resolution  of  the  [Chla]  field
description towards the submesoscale.

To summarize, the method developed in the present study aims at enhancing the quality of
the [Chla]  estimates provided by a set of multiple  SRDLs in terms of accuracy and horizontal
resolution  through  the  use  of  KL derived  from  vertical  light  profiles,  combined  with  satellite
estimates of [Chla]. The objective of the present study is to propose and to validate a method based
on  bio-logging  SRDL data  to  retrieve  (1)  a  calibrated  measurement  of  in-situ [Chla]  (2)  at
submesoscale  (O(10  km)).  The  main  steps  of  the  method  described  in  the  present  study  are
summarized in Figure III.1. An application of the method is presented with the data from two tags
deployed in the Kerguelen Islands region.
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Figure III.1: Flowchart summarizing the main steps of the method described in the present study.
The method aims at enhancing the quality  of the  in-situ [Chla] estimates provided by a set  of
multiple bio-logging devices (SRDLs) in terms of accuracy and horizontal resolution. Based on
SRDL data (Fluo and L  in-situ measurements,  blue boxes) combined with concomitant satellite
estimates of [Chla] ([ChlaSat], purple box), the method firstly enables the constitution of calibrated
datasets of in-situ [Chla] estimates ([ChlaFluo], green box). The method then extends the description
of the [Chla] field to (sub)mesoscale ([ChlaLFM], gray box) through the use of KL as a predictor for
[Chla].
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III.2. Material and Methods

III.2.a. Tag data

The present analysis is based on the data from 18 tags deployed on female SESs in the
Kerguelen Islands region. The study area is located in the Indian sector of the SO and extends from
43ºS to 62ºS and from 35ºE to 101ºE. The 18 tags were deployed during the SESs’ post-breeding
foraging trip, which occurs from October of year N to January of year N + 1. In the present study,
post-breeding deployments from years 2018 to 2020 were analyzed, totaling 89 197 vertical profiles
(for detailed metadata per tag, see supplementary material, Table III.2).

The tags were glued on the fur of the SESs’ head using a two component industrial epoxy
(see McMahon et al. 2008; Boehme et al. 2009 for animal capture and tag attachment details). After
their  post-breeding  foraging  trip,  the  female  SESs  were  located,  recaptured  and the  tags  were
retrieved. The tags measure and record pressure (dbar), temperature (ºC), salinity (dimensionless), L
(μmol quanta.mmol quanta.m-2.s-1) and Fluo (mg.m-3) at 0.5 Hz (note that the different variables used in this study
and their associated symbols, definitions and units are detailed in  Table 1). The tags’ sensor data
were continuously sampled during the SESs’ trip, with the exception of the Fluo sensor, which was
intermittently switched off to save battery power (see details in Section 2.2.3). The archived time
series were processed to produce only one vertical profile per dive, corresponding to the ascent
phase of the dive, starting from the deepest part of the dive  (down to ~1000 m depth), up to the
surface.  The SRDL data were interpolated at 1 m resolution.  The vertical resolution of 1 m is
consistent with the sampling rate of the tags (0.5 Hz) and the vertical speed of the SES during the
ascent (~1.5 m.s-1, see Richard et al., 2014; McGovern et al., 2019).

For each surfacing phase (i.e. each time the animal emerges to breathe), when available, the
location  of  the  animal  was  recorded,  using  by default  the  Argos  satellite  system,  operated  by
Collecte Localisation Satellites (CLS). When no positioning was transmitted, the location was a
posteriori estimated by linearly interpolating the trajectory of the animal. During the interpolation
process, the horizontal speed of the animal was taken into account to ensure the spatio-temporal
coherency of the location data. Ten of the studied SESs were also equipped with a biometric sonar
and movement tag (DTAG). The DTAG placed on the animal’s head picks up the GPS position
using the Snapshot GPS acquisition algorithm (Goulet et al., 2019) and enables a more accurate
GPS positioning of the profiles than with the Argos system. The positioning accuracy is 2-3 km for
Argos, ~50 m for GPS (see Dragon et al., 2012; Irvine et al., 2020).

To avoid the influence of coastal waters and specifically focus on open-ocean so-called case
1 waters (Morel and Prieur, 1977; Morel, 1988), only profiles for which the seabed was deeper than
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-1 500 m were kept. The ocean bathymetry data was based on ETOPO1 1 Arc-Minute Global Relief
Model data from NOAA National Centers for Environmental Information and downloaded from
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/. Following the filtering of the profiles
according to the bathymetry criterion, the analysis included 63 791 light profiles and 4 404 Fluo
profiles (see Table III.1 for a summary of the number of selected profiles).

Table III.1: Dataset selection criteria and number of selected PAR profiles

Filtering criterion Number of profiles

All profiles 89 197
Bathymetry > 1 500 m 63 791
Day profiles 39 595
Depth interval ([Zinf ; Zsup]) 14 686
Concomitant L + Fluo 1387

III.2.b. Data processing

Light profiles and derived quantities

The light sensor embedded in the SRDL is a Hamamatsu S1227-1010BR photodiode (340-
1000 nm spectral response range, 100 mm2 effective photosensitive area). The photodiode points to
the right side of the animal with a 90º angle compared to the frontward axis of the animal. The
SRDL light sensor provides an estimate of the diffused light level in the animal’s environment (L,
expressed in μmol quanta.mmol quanta.m-2.s-1). The vertical profiles of light ranged from the maximum diving
depth of the animal up to the surface. The processing steps of the raw vertical profiles of light
include (for detailed description of the processing steps and graphical support, see supplementary
material, Text S1 and Figure III.9): detection of the dark depth; dark-offset correction; removal of
saturated  values  at  the  surface;  application  of  a  piecewise  cubic  polynomial  fit.  The  applied
piecewise polynomial fit is constrained, so that L monotonously decreases with depth. The vertical
diffuse attenuation coefficient for L (KL , m-1) was derived from the processed light profiles. Vertical
profiles  of  KL were  defined  with  the  same  vertical  resolution  as  light  profiles  (i.e. 1  m)  and
computed as follows:

K L(z )=
d
dz

(log ( L(z))) (III.1)

where z refers to the depth of the measurement.

The present analysis focuses on daylight periods only. According to the location and time of
each profile, the solar angle was computed and only light profiles with positive solar angle (i.e.
above the horizon) were retained. Profiles with no location available (23%) were still examined to
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recover the day/night information from the mean surface values of L. This was enabled by the
significant difference observed in the mean surface values of L between day (35 μmol quanta.mmol quanta.m -2.s-1

+-14) and night  (0.65 μmol quanta.mmol  quanta.m-2.s-1 +-3.7).  As a  result,  39 395 day profiles  (62%) were
retained after the filtering of the light profiles based on the daylight period criterion (see  Table
III.1).

Following  the  processing  of  the  raw  light  profiles,  the  euphotic  depth  (Zeu)  and  the
penetration depth (Zpd) were computed. Zeu is defined as the depth at which L is reduced to 1% of its
value just below the surface. Zeu was only computed for light profiles with no sensor saturation in
the surface layer. Zpd (also called first optical depth) characterizes the thickness of the superficial
layer of the ocean “seen” by satellites and was defined as Zeu/4.6 (Gordon and McCluney, 1975;
Morel, 1988).

Temperature, salinity and mixed layer depth

SRDLs carry a Conductivity, Temperature and Depth (CTD) sensor head. Temperature (T)
and salinity (S) profiles, defined from the maximum diving depth of the animal up to the ocean
surface,  were  quality  controlled  and  corrected  to  prevent  density  inversions  according  to  the
algorithm  proposed  in  Siegelman  et  al.  (2019).  Density  profiles  were  computed  based  on
temperature and salinity  profiles.  The mixed layer  depth  (ZMLD)  was computed using a density
threshold of 0.03 kg.m-3 with respect to a near-surface value at 10 m depth (de Boyer Montégut et
al., 2004).

Fluorescence profiles and derived quantities

SRDLs also include a fluorometer (Valeport Hyperion 470 nm/696 nm emission/reception)
that sample Fluo at 0.5 Hz. However, to optimize tags’s energy consumption, their Fluo sampling
resolution was reduced so that the onset of the fluorescence sensor was triggered only every ~15
dives and Fluo was only sampled during the ascending phase of the dives from Zinf = 200 m to the
surface. Accordingly, the SRDLs performed around four fluorescence profiles every 24 hours. The
processing  steps  of  the  raw  vertical  profiles  of  Fluo  include  (for  detailed  description  of  the
processing steps and graphical support, see supplementary material,  Text S2 and  Figure III.10):
dark-offset correction; Non-Photochemical Quenching (NPQ) correction; spikes smoothing with a
piecewise  cubic  polynomial  fit.  Finally,  the  smoothed,  dark-  and  NPQ-corrected  Fluo  data
(hereafter denoted [FFluo]) were converted into [Chla]. The actual Chla concentration derived from
[FFluo] ([ChlaFluo] hereafter), was obtained by applying a calibration coefficient to the [FFluo] data. A
specific calibration coefficient was computed for each tag, based on both KL and the comparison of
in-situ data with concomitant satellite-based [Chla] observations (see details in Section 2.4).
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A series of metrics was computed from the vertical profiles of [ChlaFluo]. Defined for each
profile, the metrics were (see Figure III.2):

- <ChlaFluo>, the water-column integrated value of [ChlaFluo] defined as

⟨ ChlaFluo⟩=∫
Z inf

0

[ChlaFluo ] ( z ) dz (III.2)

- [ChlaFluo]max, the maximum value of [ChlaFluo]

- Zmax
Fluo , the depth where [ChlaFluo] (z) = [ChlaFluo]max,

- [ChlaFluo]surf, the surface value of [ChlaFluo] defined as

[ChlaFluo]surf =[ChlaFluo] 0⩽ z⩽Zpd
(III.3)

Additionally, the percentage of Chla within the mixed layer was defined as

⟨ ChlaFluo⟩%ML=
100

⟨ ChlaFluo ⟩
∫
ZMLD

0

[ChlaFluo ] ( z ) dz (III.4)

When relevant, the same metrics were computed for any other variable defined on the vertical in the
present study (e.g. [FFluo]) with the same notations.
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Figure III.2: Graphical representation of the metrics defined on a vertical profile
of [ChlaFluo]: <ChlaFluo>, [ChlaFluo]max, Zmax

Fluo , [ChlaFluo]surf (see Section 2.2.3). The
solid green line represents the [ChlaFluo] data (for detailed information about the
Fluo data processing, see Section 2.2.3 and supplementary material, Text S2 and
Figure S2). The gray area represents <ChlaFluo>, the vertically-integrated amount
of  Chla.  The  dashed  blue  line  represents  ZMLD.  The  dashed  area  materializes
<ChlaFluo>%ML, the proportion of <ChlaFluo> located above ZMLD. The red dotted
line represents the corresponding predicted [ChlaLFM] profile (see Section 2.5).
When necessary, the metrics were identically computed on the vertical profiles of
[FFluo], [F], [FLFM] and [ChlaLFM].
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III.2.c. Linear Functional Model principle

The Linear Functional Model (LFM) developed in the present study is a statistical model
based on Functional  Data  Analysis  (Ramsay and Silverman,  1997).  The  LFM was  used  as  an
inference  tool  to  predict  [Chla]  from  KL.  The  model  is  constructed  from  a  statistical  sample
composed of concomitant vertical profiles of KL (predictor) and [Chla] (observations), following the
method described in Bayle et al. (2015). With the statistical sample at hand, the LFM is designed to
minimize  the  error  between  model  predictions  and  observations.  The  functional  approach,  by
handling  the  vertical  profiles  as  functional  variables  (i.e.  curves),  presents  the  advantage  of
integrating the shape of the profiles in the analysis (for detailed information about the construction
of the model, see Bayle et al., 2015 and supplementary material, Text S4 and Figures III.12-III.13).

The statistical sample was composed of vertical profiles continuously defined on a depth
interval ranging at least from Zsup = 5 m to Zinf = 200 m. The predicted profiles were defined on the
same  depth  interval.  The  main  limiting  factor  for  the  determination  of  Zsup was  the  recurrent
saturation of the light sensor at the surface (39% of the light profiles were saturated down to at least
5  m  depth,  see  Table  III.1 and  supplementary  material,  Figure  III.9).  The  choice  of  Zinf was
determined by the maximum depth of the Fluo measurements. For a proper interpretation of the
results, the values in the upper 0-5 m layer of the predicted profiles were extrapolated from z = Zsup

to  the  surface  with  their  value  at  z  =  Zsup.  [FFluo]  and  [ChlaFluo]  values  issued  from  Fluo
measurements in the 0-Zsup layer, meanwhile, were generally available. Following the filtering of
the profiles based on the depth-interval criterion, the dataset contains 14 686 light profiles  (from
which KL is derived, see Equation III.1), which includes 1 387 concomitant L and Fluo (i.e. [FFluo] or
[ChlaFluo  ]) profiles. The number of L profiles following the application of the successive selection
criteria is summarized in Table III.1.

In the present study, the LFM approach was used to predict either [FFluo] or [ChlaFluo] from
KL, with different objectives, described hereafter (see Sections 2.4 and 2.5).

III.2.d. Fluo calibration

The  calibration  procedure  applied  to  the  in-situ [FFluo]  data  aims  at  ensuring  (1)  the
interoperability of the tags through the intercalibration of the Fluo sensors and (2) the consistency
of the outputs of the model developed in the present study in terms of absolute values of  in-situ
[Chla] compared to satellite estimates. This two-step sequence is described hereafter (see flowchart,
Figure III.1).
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Step 1: LFM-based (relative) calibration

The predictive capabilities of the LFM approach were first exploited to intercalibrate the
Fluo sensors.  The LFM-based intercalibration step consists  in predicting [FFluo]  from KL with a
model that merges observations from all the tags. The predicted variable is hereafter denoted [FLFM ].
Within this step, the focus is not on the reconstruction of vertical profiles of [FFluo] but the intended
goal is to examine and quantify the relative biases between the Fluo sensors. Consequently, rather
than retrieving the parametric definition of the KL-to-[FFluo] functional relationship, the comparison
between <FLFM> (predictions) and <FFluo> (observations) enables derivation of a correction factor,
proper to each tag, that addresses inter-tag variability, with KL as a common benchmark. The choice
of <FLFM> (i.e. indirectly, KL) as the reference variable for Fluo intercalibration is discussed further

(see Section 4.1). The [FFluo] data of Tag e were re-calibrated with the correction factor Γe
LFM  so that

<F> = Γe
LFM. <FFluo> (III.5)

where <F> is the re-calibrated <FFluo> data and e refers to the tag number (see list of tags by tag
number in supplementary material, Table III.2).

In practical terms, the coefficient Γe
LFM  (unitless) is the slope of the linear regression between

the values of <FFluo> and the corresponding predicted values of <FLFM> for Tag e. To compute the

Γe
LFM  coefficients, the sample of concomitant [FFluo] and KL observations was merged and randomly

split  into two subsets: 70% of the profiles were used to construct the LFM (970 profiles). The

remaining 30% (417 profiles) were used to  evaluate the  Γe
LFM coefficients.  The sample used to

evaluate the  Γe
LFMcoefficients was hence independent from the statistical sample used to construct

the model. A bootstrap procedure was performed to gain robustness in the determination of the
calibration  coefficients:  the  LFM-based  calibration  was  repeated  one  thousand  times  with  a

different random sampling at each iteration. At each iteration, a  Γe
LFM  calibration coefficient was

calculated.  Finally, the  Γe
LFM  calibration coefficient retained for Tag e corresponds to the median

value of the Γe
LFM coefficients iteratively calculated for Tag e.

Step 2: Satellite-based (absolute) calibration

In a second phase of the calibration procedure, a single calibration factor ΓSat common to all

tags  was  computed.  ΓSat was  based  on  ocean-color  data  as  a  benchmark  to  convert  [F]  into

[ChlaFluo]. Surface measurements of in-situ [F] ([F]surf) of all the tags were merged and compared to
the corresponding satellite-derived estimates of surface [Chla] ([ChlaSat]surf).

Matchups  between  satellite  and  in-situ data  were  performed  following  the  procedure
described in Bailey and Werdell (2006) using normalized satellite remote sensing reflectance (Rrs)
daily  Level-3  (L3)  products  from multiple  sensors,  with  a  4  km resolution.  The  use  of  more
stringent matchup protocols improves the quality of the matchup exercise (Concha et al., 2021), but
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critically decreases the number of matchups (Haëntjens et al. 2017; Xi et al. 2020; Terrats et al.
2020), especially in the SO where cloud cover is a strong limiting factor. The narrow time window
defined  in  Bailey  and  Werdell  (2006)  (+-3  h)  was  widened  to  a  24-hour  time  window
(corresponding to the maximum temporal resolution of L3 ocean-color products). Haëntjens et al.
(2017) show that expanding the temporal window from +-3 h to a 24-hour window increases the
number of matchups, without significantly impacting the quality of the matchups. Accordingly, the
matchup protocol used in the present study was based on the averaged data of a 3 x 3 pixel box
centered on in-situ measurement with a 1-day time window. Satellite-derived estimates of surface
[Chla]  were  obtained  from  the  Copernicus  Marine  Service’s  GlobColour  data  archive

(http://www.globcolour.info/). The coefficient ΓSat was defined as the slope of the linear regression
between [F]surf and [ChlaSat]surf. Finally, the satellite-corrected data [ChlaFluo] was defined as follows

[ChlaFluo] = ΓSat . [F] (III.6)

III.2.e. [Chla] prediction

Following the calibration procedure described in the previous section, the LFM approach
was applied for inference purposes. A new LFM was designed to infer [ChlaFluo] from KL. Being
constructed  with  [ChlaFluo]  profiles,  the  resulting  LFM  model  hence  inherently  contains  the

calibration  of  the  [FFluo]  data  (i.e.  Γe
LFM and  ΓSat coefficients).  The  output  variable  is  denoted

[ChlaLFM]  (see flowchart,  Figure III.1).  The objective of the prediction phase is  to  increase the
spatial resolution of the [ChlaFluo] field description with [ChlaLFM]. The prediction is made on the
basis of the 14 686 available light profiles (see  Table III.1). Prior to the retrieval of the [ChlaFluo]
field at (sub)mesoscale, the performance of the LFM was assessed.

Performance assessment

The sample of concomitant [ChlaFluo] and KL observations was likewise randomly split into
two subsets: 70% of the profiles for the construction of the LFM (970 profiles) and 30% to assess
the  performance  of  the  LFM  (validation  sample,  417  profiles).  Assessments  regarding  LFM
prediction error and model performance were carried out on the validation sample by comparing the
metrics previously defined for [ChlaFluo] (see Section 2.2.3) with the same metrics derived from the

predicted [ChlaLFM] profiles, namely <ChlaLFM>, [ChlaLFM]surf, [ChlaLFM]max, and Zmax
LFM .

(Sub)mesoscale prediction

Following the assessment of the model itself via the analysis performed on the validation
sample, the LFM was constructed with the entire sample of concomitant [ChlaFluo] and KL profiles
(1 387 profiles, see Table III.1). Subsequently, a prediction exercise was carried out with the 14 686
available KL profiles (i.e. including KL profiles which were not associated with any [ChlaFluo] data).
The aim of the prediction exercise is to predict [Chla] at (sub)mesoscale.

- 129 -



Chapter III

III.2.f. Spectrum analysis

To further assess the improvement brought by the LFM in terms of spatial resolution, the
variance spectra of the tags signals were analyzed. For a surface tracer measured with variable  V
(e.g. <ChlaFluo>), the variance spectrum is calculated as the Fourier transform of the squared spatial
anomaly of  V. As a result, the power spectrum for  variable V along the trajectory of an equipped
animal depicts the energy of the signal as a function of the spatial frequency in the horizontal plane
defined by the ocean surface. The variable on the horizontal axis of the computed power spectra is
called wave number (m-1). Increasing wave numbers correspond to smaller spatial scales.

In the present study, the variance spectra of <ChlaFluo> and <ChlaLFM> were computed for
each tag  and compared.  An additional  variable  (hereafter  denoted  darkKL)  was  included  in  the
spectrum analysis, defined as the vertical diffuse attenuation coefficient for L, restricted only to the
dark signal of L (see Section 2.2.1 and supplementary material, Text S1 and Figure III.9). For each
profile,  darkKL corresponds  to  the  mean  vertical  diffuse  attenuation  coefficient  for  L  (i.e.  the
derivative of the log-transformed light profile) from the dark depth to the bottom of the dive. While
darkKL contains no useful information for the inference of <Chla>, it was included in the spectrum
analysis as a benchmark in terms of spectral behavior. Since darkKL is computed from dark noise,
the corresponding power spectrum theoretically depicts the behavior of pure instrumental noise.
The comparison with darkKL offers a means to determine if  the observed tracers (<ChlaFluo> or
<ChlaLFM>) indeed contain useful signals and depict coherent structures, or conversely, behave like
noise.

- 130 -



Chapter III

III.3. Results

III.3.a. Calibration

Step 1: LFM-based tag intercalibration

The LFM-based tag intercalibration was performed based on the comparison of <FFluo> and
<FLFM> for the validation sample.  The calibration coefficients were obtained after one thousand
iterations of the LFM-based calibration procedure (see Section 2.4). An illustration of one iteration
is presented in Figure III.3. Graphical examination of the residuals reveals that they are organized

and persistent for a given tag, thus confirming the relevance of the intercalibration method.  Zmax
Fluo

values  ranged  from  0.29  for  Tag  2  to  1.55  for  Tag  17  (see  complete  list  of  Γe
LFM  values  in

supplementary material,  Table III.3). Small samples have the highest variability because they are
not  always  well  represented  with  the  random  sampling.  Essentially,  gaining  robustness  in  the
determination  of  the  coefficient  is  the  reason  for  performing  a  bootstrap  procedure  with  one
thousand  iterations  of  the  random  sampling.  The  LFM-based  calibration  procedure  enables
computing of the [F] data, which ensures the interoperability of all the tags.
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Figure III.3: Comparison between <FFluo> and <FLFM > (a) before the LFM-based intercalibration
step (b) after the LFM-based intercalibration step. Three tags are highlighted (red triangle, green
dots and blue squares, for tags 8, 15 and 17, respectively). Data from all other tags are displayed
by gray dots. The black dashed line represents the 1:1 reference line.

(a) (b)
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Step 2: Satellite-based calibration

The satellite-based calibration procedure was performed after the inter-tag calibration and by
merging  the  [F]  data  of  all  the  tags.  The  merging  of  the  tags  after  the  intercalibration  step
strengthens the power of the satellite-based calibration. Among the 5 791 [F] profiles available, 1

332 successful matchups (23%) were achieved (Table III.1). ΓSat = 5.9 was obtained from the slope

of the linear regression between [F]surf and [ChlaSat]surf. The regression had a satisfactory significance
level (F-test, p-value < 10-15).
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Figure III.4: Illustration of the second step of the [FFluo] data calibration
(see Section 2.4). Estimates of surface [Chla] derived from intercalibrated
[F]  data  ([F]surf)  compared  to  satellite  estimates  of  surface  [Chla]
([ChlaSat]surf). The black circles represent the sample points (in total: 1 332
matchups  are  displayed)  and  the  black  line  materializes  the  linear
regression of all the sample points (slope = 5.95; R2 = 0.45; N = 1 332
matchups).
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III.3.b. LFM Assessment

Following  the  conversion  of  the  homogenized  variable  [F]  into  [ChlaFluo]  with  the  ΓSat

correction factor (Equation III.6), a new LFM model was constructed on the basis of concomitant
[ChlaFluo]  and  KL profiles,  with  [ChlaLFM]  as  the  output  variable. For  assessment  purposes,  the
statistical sample of 1 387 concomitant [ChlaFluo] and KL profiles was randomly split (see Section
2.5), so that the LFM was constructed with 70% of the statistical sample and assessed with the
remaining 30% (validation sample). The performance of the model was assessed on the validation
sample through examination of the metrics defined in Section 2.2.3 (see  Figure III.2), for both
[ChlaFluo] and [ChlaLFM] (Figure III.5).

<Chla>

The predicted <ChlaLFM> differs very little from the targeted <ChlaFluo> (on average 0.9% +-

21.1). Within a factor ΓSat, the performance of the model in predicting <ChlaFluo> both in terms of

accuracy and precision is exemplified in  Figure III.3. The sound agreement between <FFluo> and
<FLFM> observed in the intercalibration phase firstly confirms the inference capabilities of the model
in terms of accuracy (Figure III.3a). Additionally, by correcting the inter-tag variability, the LFM-
based calibration procedure (Equation  III.5) inherently increases the precision of the predictions
regarding the estimation of the water-column integrated Chla biomass (Figure III.3b). Finally, no

further change in terms of accuracy and precision is implied by applying the Γe
LFM  factor, common

to all tags, to obtain [ChlaFluo] from [F] (Equation III.6).

<Chla>%ML

The distribution of the Chla biomass in the vertical is further investigated with the variable
<Chla>%ML. <Chla>%ML represents the ratio between the Chla content in the 0-ZMLD layer and the
total  Chla  content  in  the  water  column  (<Chla>).  The  slope  of  the  linear  regression  between
<ChlaLFM>%ML and <ChlaFluo>%ML reveals that the model renders, with a satisfactory preciseness, the
proportion of the vertically-integrated Chla amount located above and below ZMLD (slope = 0.92, R2

= 0.89). On average, the LFM underestimates <Chla>%ML by only 4.8% (+-7.2).

[Chla]surf, [Chla]max and Zmax

The ability of the model to retrieve the exact vertical distribution of Chla is examined with
variables  [Chla]surf,  [Chla]max and  Zmax.  [ChlaLFM]surf and  [ChlaLFM]max are  compliant  with  the
corresponding  observations  of  [ChlaFluo]surf and  [ChlaFluo]max, although  slightly  underestimated
(Figure III.5b-c). The retrieval of Zmax (Figure III.5d) is however not satisfying and in some way

reveals the limits of the LFM. The poor correlation between Zmax
Fluo  and Zmax

LFM  highlights the weak

accuracy of the LFM for retrieving the exact vertical structure of the [Chla] profile.
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These results of the model assessment lead to the conclusion that the LFM performs quite
well in detecting the amount of Chla in a given profile. The rough vertical distribution of [Chla] in
relation to the location of ZMLD is also well achieved by the model. However metrics on the vertical
such as Zmax are not accurately rendered and present high variability.
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Figure III.5: Assessment of the LFM performance on the validation sample. Values in the horizontal
axis are metrics derived from the observations ([Chlafluo]). Values in the vertical axis are metrics
derived from the predictions ([ChlaLFM]). The metrics examined to assess the performance of the
LFM are (a)  [ChlaFluo]%ML,  the percentage of  Chla in the mixed layer  (b) the surface value of
[Chla], [ChlaFluo]surf (c) the maximum value of [Chla], [ChlaFluo]max and (d) Zmax

Fluo , the depth of the
maximum value of [Chla]. The dashed black lines in each plot represent the 1:1 reference line. The
metrics (R2, slope) associated with the linear regression performed between model predictions and
observations are indicated in each plot.

(a) (b)

(d)
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III.3.c. Validation with satellite data

Following the assessment of  the LFM performance,  the model  was constructed with all
available profiles of [ChlaFluo] and KL (1 387 profiles, see  Table III.1). A prediction exercise was
then carried out with all the available KL profiles (derived from the 14 686 light profiles).

The  validity  of  the  LFM  predictions  was  tested  through  examination  of  the  satellite
matchups  corresponding  to  the  predicted  [ChlaLFM]  profiles  (see  Section  2.4  for  the  matchup
procedure), i.e. by comparing [ChlaLFM]surf with the co-located [ChlaSat]surf estimates. In total, 3 320
successful matchups were achieved (23%). As a direct consequence of the calibration procedure
previously performed on the [FFluo] data (see Section 3.2), the slope factor of the linear regression of
[ChlaLFM]surf with [ChlaSat]surf (slope = 1.01) confirms the consistency of the model outputs in relation
to satellite-derived estimates of [Chla] (Figure III.6). The compliance of the predicted values with
the corresponding [ChlaSat]surf estimates validates the LFM predictions. However, a clear divergence
is noticeable for low values of [ChlaLFM]surf ([ChlaLFM]surf < 0.1 mg.m-3). To further investigate the
validity  of the low values of [ChlaLFM]surf,  the available concomitant  values of [ChlaFluo]surf were
examined and compared to [ChlaSat]surf (the 14 686 KL profiles of the prediction exercise include the
sample of concomitant [ChlaFluo] and KL profiles, i.e. 1 387 [ChlaLFM] profiles with an available
concomitant  value  of  [ChlaFluo]).  The  comparison of  [ChlaFluo]surf values  with  the  corresponding
[ChlaSat]surf estimates (N = 329 successful matchups),  also represented in  Figure III.6,  reveals a
similar divergence to that observed for [ChlaLFM] below ~ 0.1 mg.m-3 . The difference between low
values of [ChlaLFM]surf and the corresponding [ChlaSat]surf estimates is therefore attributable to the
discrepancy between  in-situ and satellite measurements of [Chla] (discussed further, see Sections
4.2 and 4.3.2) rather than to a model deviation. Low values of [ChlaLFM]surf are hence valid in the
sense that they match with the targeted [ChlaFluo]surf.
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III.3.d. Application: (sub)mesoscale retrieval

Transect of a SES equipped in Kerguelen

A subset of the SES dataset corresponding to a single individual transect (Tag 3) is shown in
Figure III.7. The transect is 5 746 km long and covers 70 days at sea, between 25-Oct-2019 and 02-
Jan-2020 (Figure III.7a). The transect comprises 234 profiles of [ChlaFluo] and 879 light profiles.
One notable detail regarding the transect of Tag 3 is the malfunctioning of the fluorescence sensor
during a certain period of the deployment. As a consequence, no Fluo data were available for the

- 136 -

Figure  III.6:  Estimates of surface [Chla] derived from LFM predictions
([ChlaLFM]surf)  compared  to  satellite  estimates  of  surface  [Chla]
([ChlaSat]surf). The color of the pixels represent the density of the points in
the plot (in total: 3 320 matchups are displayed). The dashed black line
materializes  the  linear  regression  including  all  matched  samples  of
[ChlaLFM]surf and  [ChlaSat]surf (slope  =  1.01;  R2 =  0.47;  N  =  3  320
matchups). The black circles represent the available concomitant values
of [ChlaFluo]surf (N = 329 successful matchups within the 1 387 [ChlaFluo]
profiles used to construct the model, see Section 3.3).
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time interval extending from 09-Nov-2019 to 02-Dec-2019 (over the same period, 342 T, S and
light profiles were sampled by the SRDL).

The comparison of <ChlaFluo> and <ChlaLFM> along the animal’s trajectory clearly reveals
that  the  <Chla>  signal  is  well  captured  by  the  model.  KL-based  LFM  predictions  faithfully
reproduce [ChlaFluo] observations at water-column level. Additionally, as previously observed when
merging all the tags (Figure III.6) the general strong correlation between [ChlaSat]surf and [ChlaLFM]surf
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Figure III.7: Transect of a SES equipped in Kerguelen in October 2019 with SRDL referred to as
Tag 3 including (a) a map of the trajectory described by the SES from 25-Oct-2019 to 02-Jan-2020
departed from- and arrived at Kerguelen (b) comparison of [ChlaLFM]surf with [ChlaSat]surf for Tag 3
and (c) <Chla> as measured (<ChlaFluo>) and predicted (<ChlaLFM>) along the transect of Tag 3,
where green (blue) squares represent the <ChlaFluo> data measured during the day (night)  and
black circles represent <ChlaLFM>. The inset in (c) highlights the data on a section of the animal
transect (~200 km). The red star in (a) and (c) represents the furthest location from Kerguelen in
the trajectory of the animal equipped with Tag 3. Light gray dots in (a) and (b) represent the data of
all the other tags included in the present study.  The dashed black line in (b) represents the 1:1
reference  line.  The  background  map  in  (a)  is  the  climatology  of  [ChlaSat]surf derived  from
GlobColour  computed  for  each  pixel  as  the  mean  value  of  [ChlaSat]surf during  the  month  of
November 2019.

(b)

(c)
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(Figure III.7b) confirms the validity of the LFM predictions. [ChlaLFM] data are especially valuable
during  the  period  for  which  no  Fluo  data  were  available  due  to  the  malfunctioning  of  the
fluorescence sensor: the missing block (23-days long) of [ChlaFluo] data was retrieved thanks to the
[ChlaLFM]  predictions.  Inversely,  [ChlaFluo]  estimates  are  available  at  night  when  no  [ChlaLFM]
profiles could be derived from variable L (see inset in Figure III.7c). Both situations emphasize the
complementary assets of [ChlaFluo] and [ChlaLFM] estimates. Due to the fact that <ChlaLFM> estimates
are available at a higher spatial resolution than that of <ChlaFluo> (see inset in Figure III.7c) during
daylight periods, LFM predictions performed between two consecutive [ChlaFluo] profiles enable the
scale of the observations to be refined.  The gain relative to the spatial resolution of <ChlaLFM>
estimates compared to <ChlaFluo> is examined hereafter.

Variance spectra

The variance spectra of <ChlaFluo> and <ChlaLFM> were computed for each tag included in
the present study (see Section 2.6). A specific focus was placed on Tag 11 for which the recordings
of  both  Fluo  and  L were  continuous  (uninterrupted)  during  the  studied  transect.  The  variance
spectrum of darkKL for Tag 11 was also computed. The highlighted transect corresponding to Tag 11
is 2 231 km long and covers 43 days at sea (between 19-Oct-2018 and 30-Nov-2018). The transect
comprises 209 profiles of [ChlaFluo] and 851 light profiles.

The variance spectra of both observations and predictions of <Chla> along the transect of
Tag  11  were  compared  (Figure  III.8).  The  extension  of  the  <ChlaLFM>  signal  towards  the
(sub)mesoscale  is  clearly  visible  through comparison of  the  variance  spectra  of  <ChlaFluo> and
<ChlaLFM>. While the smallest spatial scale reached with [ChlaFluo] observations is ~21 km in the
example of Tag 11, the spectrum of the LFM predictions extends to a spatial scale of ~2 km.

On the interval where both signals are defined, a clear energy decay is visible in the variance
spectra of <ChlaFluo> and <ChlaLFM>, following a power-law behavior in  k-a (where  k is the wave
number, and -a the spectral slope on a log-log plot). For scales larger than ~21 km, the spectral
slope of the <ChlaLFM> signal (k-1.17) is in line with the spectral slope of <ChlaFluo> (k-1.22), attesting to
the good agreement between observations and model predictions (for interpretation of the spectral
slopes, see Section 4.3.4). From ~21 km to ~7 km, the <ChlaLFM> signal similarly follows a power-
law behavior with a spectral slope equal to -2.3 (i.e. a steeper decrease than at larger spatial scales).
From ~7 km down to ~2 km the spectral slope is -5.2, but this part of the spectrum appears to be
much noisier.
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The spectrum of darkKL derived from the dark noise of L, computed for Tag 11 (see Section
2.6), was added in Figure III.8 to illustrate the spectral characteristics of dark noise. The variance
spectrum of darkKL is almost flat for wave numbers smaller than ~3 10 -4 m-1, meaning that all spatial
frequencies larger than ~3 km are equally represented within the darkKL signal. Such a spectrum is
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Figure III.8: Variance spectrum of <Chla> from observations and model predictions along
the trajectory of Tag 11. Increasing wave numbers correspond to smaller spatial scales (see
Section  2.6).  The green (black)  solid  line  represents  the  variance  per  waveband of  the
<ChlaFluo> (<ChlaLFM>) signal.  The blue  solid  line represents  the variance spectrum of
darkKL. The green (gray) shaded area represents the envelope of the <ChlaFluo> (<ChlaLFM>)
spectra.  The  envelope  encompasses  the  minimum  and  the  maximum  variances  per
waveband obtained in the dataset of the 18 SES tags included in the present study.  The
green  (black)  dashed  line  represents  the  linear  regression  of  the  variance  spectra  of
<ChlaFluo> (<ChlaLFM>) on the spatial scale interval between ~2 000 km and ~21 km, with
a spectral slope equal to -1.22 (-1.17). The dashed (dotted) red line represents the linear
regression of the variance spectrum of <ChlaLFM> on the spatial scale interval between ~21
km and ~7 km (~7 km and ~2 km).  The exact corresponding wave numbers are 5 10-7 m-1

(~2 000 km), 4.7 10-5 m-1 (~21 km), 1.4 10-4 m-1 (~7 km) and 5 10-4 m-1 (~2 km). (For the
determination of the thresholds used for the piecewise linear regressions calculated on the
variance spectra of <ChlaFluo> and <ChlaLFM>, see supplementary material, Text S7 and
Figures S8-S9).
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coherent with the definition of pure noise and contrasts with the power-law behavior of <ChlaFluo>
and <ChlaLFM>.

For spatial scales smaller than ~21 km, where only <ChlaLFM> is defined, two distinct wave
number intervals are clearly discernible, separated by a pronounced drop in the energy of the signal,
located at around ~7 km in the case of Tag 11. The signal gets much noisier after the energy drop. A
similar behavior was observed for every tag included in the present study, namely a pronounced
energy drop materializing a spatial scale threshold below which the spectrum follows a power-law
behavior, and above which the signal loses coherency (i.e. gets much noisier). It is consequently
reasonable to consider that the interpretations of the structures depicted by the <ChlaLFM> signal are
valid  up  to  the  scale  of  the  energy-drop  threshold  and  should  be  discarded  for  higher  spatial
frequencies. In the case of Tag 11 (specifically highlighted in Figure III.8), the spatial resolution of
the observations hence extends from ~21 km with Fluo to at least ~7 km with LFM predictions. The
energy-drop threshold was different for each tag. The shaded gray area in Figure III.8 represents the
envelope of the <ChlaLFM> spectra, encompassing the minimum and the maximum variances per
waveband obtained in the dataset of the 18 SES tags included in the present study. The envelope of
the <ChlaLFM> spectra reveals that the spatial scale of the energy drop spreads from ~30 km to ~4
km (corresponding to wave numbers of ~3 10-5 m-1 and ~2.5 10-4 m-1, respectively).

Similarly,  a comparable energy drop was observed in the <ChlaFluo> spectrum for some,
though not all, of the tags included in the present study (see green shaded area in Figure III.8). The
energy drop in the <ChlaFluo> spectra occurred at larger spatial scales than in the <ChlaLFM> spectra,
starting from ~45 km.
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III.4. Discussion

III.4.a. Exploiting light-Fluo synergies through LFM: data 

intercalibration and homogenization

Including data from multiple tags in a study raises the issue of the intercalibration of the
fluorescence  sensors,  a  critical  point  when  [Chla]  estimates  are  to  be  derived  from  Fluo
measurements.  Evidences of inter-sensor variability  have already been pointed out  for different
fluorometer models (e.g. Guinet et al., 2013; Xing et al., 2014; Keates et al., 2020), emphasizing the
necessity of homogenizing the Fluo data from one tag to another before any further analysis. A
common benchmark which provides an absolute Fluo to [Chla] conversion theoretically resolves the
inter-tag calibration issue. However, the fluorescence sensors embedded in the tags examined in the
present  study  did  not  undergo  any  in-situ calibration  process  and  not  all  of  them  could  be
successfully independently calibrated with concomitant satellite estimates of [Chla] (see Section
4.2).

The lack of any direct comparative benchmark for Fluo led to an investigation of the in-situ
data concomitantly sampled by the SRDLs in order to best take advantage of them. Accordingly, the
first step of the Fluo calibration procedure relies on variable KL as a common variable to all the tags
and  exploits  the  predictive  assets  of  the  LFM  to  intercalibrate  the  Fluo  sensors.  It  has  been
previously demonstrated (Morel, 1988; Morel and Maritorena, 2001) that the optical properties of
open-ocean waters (so-called case 1 waters) are essentially driven by their phytoplankton content
(depicted  by  the  concentration  in  Chla)  and  their  associated  living  or  inanimate  materials
(heterotrophic organisms, including bacteria;  various debris;  and excreted organic matter).  Such
relationships between the water-column algal content and optical properties have also been used to
deeper examine the data acquired by electronic tags deployed on pelagic animals (Teo et al., 2009;
Jaud et al., 2012; Bayle et al., 2015). Here, we further exploit the synergy between KL and Fluo by
proposing  a  method  to  make  the  Fluo  data  from different  (and  not  intercalibrated)  tags  inter-
comparable. As KL depicts gradients (derivative) of light in the water column rather than absolute
light  levels,  it  is  much  less  dependent  on  the  light  sensor  design,  calibration  or  drift  (e.g.
biofouling). Therefore, KL is a highly robust measurement that can potentially serve as a reference
measurement  for  long-term observations  like  those  obtained  via  autonomous  platforms  (floats,
gliders) or animals.

In this context, a method based on an analytical relationship linking the diffuse attenuation
for downward irradiance Kd to [Chla] (Morel and Maritorena, 2001) was first proposed in Xing et
al. (2011) to take advantage of fluoresence profiles acquired by BGC-Argo floats simultaneously
with radiometric profiles of downward irradiance. The relationship between [Chla] and downward
irradiance is investigated at three specific wavelengths and enables the calibration of Fluo data in
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terms of [Chla] as well as the handling of any potential drift of the Fluo sensor over time. In our
study, the SRDL provides a measurement on a large spectral interval (340 to 1000 nm, see Section
2.2.1). Additionally the quality of the radiometric measurements performed with the SRDL is not
comparable to those of BGC-Argo floats, for which the verticality of the sensor as well at the exact
time of the sampling are monitored to optimize the quality of the radiometry data (see Organelli et
al. 2016; Xing et al. 2011). As a consequence, we judged relevant to adopt a less strictly analytical
method for the matching between KL and [Chla] but instead, encompass the variability in the entire
visible  spectrum  with  a  shape-based  approach  (LFM).  The  LFM  imposes  no  a  priori  model
regarding the relationship between KL and [Chla] during the construction of the model, leaving the
calibration of Fluo in terms of [Chla] for a later stage of the procedure. Accordingly, the first step of
the Fluo calibration procedure solely relies on variable KL as a common variable to all the tags and
exploits the predictive assets of the LFM to intercalibrate the Fluo sensors.

Finally, it is worth noting that the power and robustness of the LFM depend on the size of
the statistical sample used to construct the model (for results regarding the robustness of the model
in  relation  to  the  composition  of  the  statistical  sample  used  to  construct  the  model,  see
supplementary material, Text S5 and Figure III.14). The amount of data available to feed the model
is limited by the fact that KL is only exploitable during daytime (in the present study, only light
profiles associated with a positive solar angle were selected). During daytime, the determination of
KL is partially influenced by the solar angle (Morel et al., 2007). Nevertheless, the model’s accuracy
appears not to be influenced by solar angle as the prediction error presented a similar dispersion for
all positive values of the solar angle (see supplementary material, Text S6. and Figure III.15).

III.4.b. Matching in-situ and satellite measurements for absolute 

calibration

A per-tag  satellite-based calibration  procedure  comparing  surface  measurements  of  Fluo
with concomitant satellite estimates of [Chla] is an alternative way to convert [FFluo] into actual
[Chla] (e.g. Lavigne et al., 2012; Terrats et al., 2020), in particular when no pre-deployment HPLC
[Chla]  data  are  available  for  the  calibration  of  the  tags.  However,  although  surface  Fluo
measurements could be quite successfully matched with satellite data for some of the tags, others
critically lacked sufficient satellite coverage to permit trustworthy calibration. The per-tag satellite
matchup procedure hence could not be generalized to all the tags. Therefore the LFM-based step
discussed above was an essential requirement to correct for inter-tag variability and to render all the
[FFluo]  data  interoperable,  thus  constituting  a  homogeneous  data  base  from  which  absolute
calibration (i.e. conversion from [F] into [Chla], see flowchart, Figure III.1) could subsequently be
established.  The  merging  of  all  the  intercalibrated  tags  indeed  reinforces  the  quality  of  the
comparison with satellite data and increases the robustness of the calibration procedure.
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The second step of the Fluo calibration therefore converts the fluorescence signal into an
estimate  of  [Chla],  based  on  concomitant  satellite  measurements.  Satellite-based  ocean-color
algorithms for the retrieval of [Chla] do not perform equally in all regions of the globe (Szeto et al.,
2011).  Specifically  for  the  SO,  the  need for  having  regionally-tuned  algorithms is  a  matter  of
debate, with some arguing that satellite-derived [Chla] is underestimated by a 2-3 factor (Johnson et
al., 2013; Guinet et al., 2013), while others reporting that standard algorithms for the global ocean
perform well (Haëntjens et al., 2017). The standard satellite [Chla] product used here (namely, the
Copernicus Marine Service’s GlobColour ocean-color  data) is  a global  scale product which we
consider to be adapted in the context of the main study purposes. Furthermore, merging all the tags’
data prior to the satellite calibration was relevant because all the tags were deployed in the same
region, namely the Kerguelen Islands, which reinforces the interoperable nature of the various tag
observations.

III.4.c. Assessment of the method

Retrieval of the vertical distribution of Chla

Following the constitution of calibrated [Chla] datasets, the LFM was developed such that
the  modeled  [ChlaLFM]  matched  as  closely  as  possible  the  targeted  [ChlaFluo].  The  retrieval  of
<ChlaFluo> was generally well  achieved with the LFM predictions (see Section 3.2). The model
however lacks accuracy along the vertical dimension. In the SO, ZMLD is  a  major driver in the
vertical distribution of Chla. For a large majority of profiles, the mixed layer contains most of the
Chla biomass and [Chla] is homogeneous within this layer (Cornec et al., 2021). Yet a remainder of
the  vertically-integrated  Chla  can  be  present  below  ZMLD.  Since  the  model  also  proved  to
successfully  estimate <ChlaLFM>%ML (Figure III.5a),  an estimate of  this  remainder  is  achievable.
Here, we make the hypothesis that this remainder may not be present deeper than 1.5 times Zeu. As a
consequence, by associating <ChlaLFM> predictions with <ChlaLFM>%ML, ZMLD and Zeu, an insight into
the  distribution  of  Chla  in  the  vertical  is  still  achievable  even  in  the  absence  of  properly
reconstructed vertical profiles.

Fluo uncertainty

The LFM is based on estimates derived from fluorescence measurements, with the aim of
reproducing them. Nevertheless, uncertainties exist regarding the algal biomass estimates derived
from fluorescence  measurements.  The  relationship  between  Chla  fluorescence  and  actual  Chla
concentration  is  in  particular  governed by the  fluorescence  quantum yield  (expressed  as:  mole
emitted  photons  (mole  of  absorbed  photons)-1) which  depends  on  many  factors,  including
phytoplankton community composition, photo-physiological as well as nutrient status (Roesler et
al., 2017; Schallenberg, et al., 2022). The tags included in the present study were all deployed from
the Kerguelen Islands, but the trajectories of the equipped animals spread in the ocean from East to
West of the Kerguelen Plateau. The Kerguelen plateau region is highly contrasted between the iron-
limited western part and the iron-fertilized eastward zone (Blain et al., 2008). The merging of [FFluo]
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data  of  all  the  tags  as  part  of  the  Fluo  calibration  procedure  could  thus  be  in  some  ways
questionable.  However,  the intercalibration coefficients derived from the LFM predictions were
examined and no significant  difference was observed between East  and West  of the Kerguelen
Plateau (Mann-Whitney-Wilcoxon test, p-value of 0.63).

Model - observation discrepancies

The LFM is based on the assumption that the presence of phytoplankton is the main source
of light attenuation in the water column, as commonly hypothesized when studying oceanic case 1
waters.  Accordingly,  a  minimum bathymetry  criterion  was  fixed  to  avoid  dealing  with  coastal
waters (depth > 1 500 m). However, persistent overestimates of the Chla content are observed in
some short portions of the predicted signal (Figure III.7c). Such deviations are of special interest for
analyzing specific issues or limitations regarding the LFM. Generally however, locally persistent
deviations may result from small-scale variations in the bio-optical properties of the corresponding
water masses. These could  be due the presence of other covarying substances contributing to light
attenuation  and/or  affecting  the  fluorescence  signal  (Bricaud  et  al.,  1998;  Loisel  et  al.,  2002;
Bellacicco et al., 2019). Such small-scale variations were however not investigated in the present
study.

Towards filling [Chla] observational gaps at the (sub)mesoscale

One of the potentially interesting outcomes of the development of the present method is that
it becomes obvious that measurements of light rather than fluorescence represent a cost-effective
alternative for filling [Chla] observational gaps. The observation gap originates from the limitations
relative to the power consumption of SRDLs mounted on SESs, which impedes Fluo sampling at a
scale compatible with (sub)mesoscale observations. By contrast, measurements of light require less
energy and can be performed at much higher spatio-temporal resolution. Comparing the variance
spectra of both observations and predictions (Figure III.8) corroborates the gain brought by the
LFM in terms of spatial resolution. The gain in terms of spatial resolution is also visible on the
transect presented in Figure III.7c. In the case of the SRDLs, <ChlaLFM> is the only variable defined
at (sub)mesoscale and higher to describe phytoplankton dynamics, opening up a new way to fill the
(sub)mesoscale observational gap.

The analysis of the variance spectrum of <ChlaLFM> was further used as a means to validate
the  consistency  of  the  predictions  at  different  spatial  scales.  At  spatial  scales where  both  the
measured (<ChlaFluo>) and the predicted (<ChlaLFM>) signals were available (e.g. from ~2 000 km to
~21 km in the case of Tag 11), the predictions were validated by the similarity between the spectral
slopes  of  <ChlaFluo> and <ChlaLFM> (Section 3.4.2).  At  spatial  scales  where  <ChlaFluo> was not
defined (e.g.  smaller  than  ~21 km in  the  case  of  Tag 11),  the  variance  spectra  of  dark KL and
<ChlaLFM>  resulted  in  clearly  distinct  shapes  (Figure  III.8),  hence  ensuring  that  <ChlaLFM>
predictions did not result from pure observational noise.
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The predicted signal therefore constitutes a  useful signal with a coherent energy decrease
across the observed spatial scales. From large-scale (~2 000 km) to (sub)mesoscale (O(10-100 km)),
the energy decay of the spatial variance observing a power-law behavior in k-a (for the definition of
wave number k and spectral slope -a, see Section 3.4.2) is consistent with the expected behavior of
a tracer such as [Chla] (Bracco et al., 2009; Lévy et al., 2018). Furthermore, spectral slopes become
more negative as the wave number increases (i.e. the spectrum has a steeper decrease at smaller
spatial scales), from ~k-1 at mesoscale to ~k-2 at submesoscale (see Section 3.4.2). These slopes are
highly consistent with the expected decay slopes of a signal depicting phytoplankton distribution at
(sub)mesoscale (Martin and Srokosz, 2002; Callies and Ferrari, 2013; Van Gennip et al., 2016).

The energy-drop threshold materializing the validity domain of the predictions (see Section
3.4.2) corresponded for each tag to twice the mean spatial frequency of the tags’ light measurements
(for detailed theoretical interpretation of the validity domain, see supplementary material,  Text S7
and Figures  III.16-III.17). The energy-drop threshold is hence directly dependent on the inherent
properties of the corresponding transect. In the dataset of the 18 SES tags included in the present
study, the mean distance between two valid consecutive Fluo profiles is 14.9 km +- 4.1, whereas for
light profiles this distance is reduced to 5.9 km +- 3.1. As a result, while on average the SRDL Fluo
measurements enable observation of phytoplankton dynamics at spatial scales up to ~30 km, LFM
predictions extend the spatial scale of the observations up to ~12 km. In the present study, the gain
enabled by the use of <ChlaLFM> as a proxy for <ChlaFluo> is on average a factor 2.8 +- 0.9 towards
finer observation scales.

Although light  measurements  are  obviously  restricted  to  the  daytime period  it  is  worth
noting that in high-latitude environments with extended day lengths during the productive season,
light  measurements  provided  by  SES  tags  might  represent  a  unique  tool  to  better  address
(sub)mesoscale  coupling  between  physical  forcing  and  biological  response.  However,
independently of  the  bio-physical  processes  occurring  along the transect  of  the tag,  the spatial
resolution of the light measurements performed by the tag directly depends on the horizontal speed
of the SES (i.e. the distance between the consecutive dives of the SES, see previous paragraph), and
also quite frequently, on the quality and validity of the measurements. For example, in the present
study,  the  saturation  issue  (see  Section  2.2.1  and supplementary  material,  Figure  III.9)  clearly
lowers the spatial resolution achieved by the light measurements. Therefore, our recommendation
regarding SRDLs is to implement a less sensitive light sensor to limit sensor saturation under high
light levels (mainly occurring around noon, in the surface layer). Theoretically, if the light sensor is
free from the saturation issue and all daylight profiles can hence be included in the LFM, the gain in
terms of spatial resolution could potentially reach a factor 9, meaning that the method developed in
the present study would enable observation of phytoplankton dynamics at a scale of ~3-4 km.
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III.5. Conclusion and perspectives

The present study highlights the benefits of using the LFM both to homogenize the Fluo data
from different sensors and to infer the Chla content in the water column. The interest of a model
such as the LFM using KL to describe the dynamics of Chla along the trajectory of an equipped SES
stands out especially for a device with severe power consumption constraints such as the SRDL.
The substantially low mean error associated with LFM predictions (see Section 3.2) emphasizes the
accuracy of the LFM-based method for retrieving the variability of the <Chla> field and extending
the spatio-temporal scale of observations (see Section 4.3.4). While the sole use of fluorescence
measurements  might  not  be  sufficient  to  access  (sub)mesoscale  processes,  the  finer  horizontal
resolution achievable with LFM predictions unlocks the (sub)mesoscale observation gap of SRDLs.

Examples of SES foraging behavior being influenced by the environmental oceanographic
conditions at (sub)mesoscale have already been described (Campagna et al., 2006; Della Penna et
al., 2015; Siegelman et al., 2019). In parallel, while recent missions like SWOT aim at describing
the ocean surface dynamics at an unprecedented resolution (15-30 km, see Morrow et al., 2019), the
use of <ChlaLFM> as a proxy for <ChlaFluo> enables the resolution of in-situ biological tracers to be
aligned with the spatial  scales targeted in  such recent  missions.  Because primary production is
largely driven by ephemeral physical processes occurring from the mesoscale (O(100 km)) to the
submesoscale (O(10 km)),  in-situ information at such scales is critical to describe phytoplankton
dynamics (Mahadevan, 2016; McGillicuddy, 2016; Lévy et al., 2018). The improvements brought
by the LFM in terms of spatial scales hence contribute key elements for deepening study of the
coupling between phytoplankton distribution and the ocean’s physical structure at (sub)mesoscale
(including Lagrangian studies, Lehahn et al., 2018), and also provide novel data for studying SES
behavior and the horizontal exploration of the ocean by such marine predators.

In this  way, the dynamics of phytoplankton along the trajectories of SESs are optimally
described  by  merging  satellite-calibrated  [ChlaFluo]  data  derived  from  the  tags’  fluorescence
measurements (covering both day and night periods) with [ChlaLFM] estimates (only available during
daylight hours), which improves the spatio-temporal resolution of the data. In the present study, the
data  from  tag  deployment  campaigns  performed  between  2018  and  2020  were  included.  The
predictive capabilities of the LFM can possibly be extended towards a larger range of tags, e.g. tags
deployed in the past measuring light but not Fluo. Indeed, bio-logging data have proved to be a
considerable source of in-situ data at (sub)mesoscale in the SO in the past two decades. Every light
profile,  despite not providing truly reliable metrics  on the vertical,  is  useful,  under the method
developed in the present study, to feed biogeochemical models with an estimate of the vertically-
integrated Chla amount and the proportion of the Chla amount present  within the mixed layer.
Datasets comprising hundreds of thousands of in-situ vertical profiles sampled by equipped animals
in the SO hence constitute a possible insight into the ocean subsurface to extend the quasi-synoptic -
but surface-only - vision provided by satellite data. These numerous profiles are potentially highly
valuable data for developing our knowledge about [Chla] variability at different spatio-temporal
scales in the under-sampled SO, from short-lived processes to decadal variability.
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This supporting information:
- Presents the metadata of the tags included in the present study (Table S1);
- Gives the calibration coefficients (unitless) from LFM-based tag inter-calibration for all the tags 
included in the present study (Table S2);
- Provides graphical support for the processing of the light (Text S1, Figure S1) and Fluo (Text S2, 
Figure S2) data;
- Provides graphical support for the examination of the consistency of the NPQ correction applied 
in the present study (Text S3, Figure S3);
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Table III.2: Summary of tag metadata

Tag
Number

SMRU
Tag

Reference
Date Start Date End

Min
Latitude

Max
Latitude

Min
Longitude

Max
Longitude

Number
of Profiles

1 ct152-059-
19

29-Oct-
2019

28-Dec-
2019

51ºS 47ºS 63ºE 72ºE 3 012

2 ct152-060-
19

26-Oct-
2019

12-Nov-
2019

52ºS 49ºS 70ºE 80ºE 1 266

3 ct152-873-
BAT-19

25-Oct-
2019

02-Jan-
2020

58ºS 49ºS 70ºE 97ºE 4 365

4 ct152-876-
BAT-19

29-Oct-
2019

05-Jan-
2020

55ºS 48ºS 70ºE 95ºE 5 113

5 ct152-943-
19

23-Oct-
2019

06-Jan-
2020

54ºS 48ºS 70ºE 89ºE 5 452

6 ct159-873-
BAT2-19

22-Oct-
2020

03-Jan-
2021

54ºS 45ºS 70ºE 90ºE 5 087

7 ct159-881-
BAT2-19

23-Oct-
2020

30-Dec-
2020

57ºS 49ºS 70ºE 93ºE 4 447

8 ct159-943-
BAT-19

21-Oct-
2020

06-Jan-
2021

54ºS 49ºS 70ºE 101ºE 4 642

9 ct159-
F905-

BAT2-19

23-Oct-
2020

09-Jan-
2021

62ºS 48ºS 70ºE 95ºE 5 780

10 ft22-686-
18

21-Oct-
2018

02-Jan-
2019

50ºS 43ºS 55ºE 71ºE 4 501

11 ft22-873-
18

19-Oct-
2018

08-Jan-
2019

56ºS 49ºS 55ºE 71ºE 6 028

12 ft22-874-
18

21-Oct-
2018

05-Jan-
2019

57ºS 49ºS 35ºE 71ºE 6 430

13 ft22-875-
18

21-Oct-
2018

09-Jan-
2019

57ºS 48ºS 70ºE 96ºE 4 999

14 ft22-876-
18

20-Oct-
2018

08-Jan-
2019

51ºS 48ºS 70ºE 96ºE 6 720

15 ft22-878-
18

22-Oct-
2018

01-Jan-
2019

53ºS 46ºS 70ºE 87ºE 4 834

16 ft22-879-
18

21-Oct-
2018

08-Jan-
2019

55ºS 49ºS 70ºE 90ºE 5 554

17 ft22-881-
18

25-Oct-
2018

06-Jan-
2019

53ºS 49ºS 70 97 5 473

18 ft22-882-
18

21-Oct-
2018

31-Dec-
2018

54ºS 46ºS 51 71 5 494
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Table III.3: Calibration coefficients (unitless) from LFM-based tag inter-calibration

Tag
Number

Median Γe
LFM

coefficient
(1 000 iterations)

Std

1 1.00 0.09
2 0.29 0.19
3 1.05 0.25
4 1.01 0.20
5 0.90 0.11
6 1.24 0.09
7 1.02 0.12
8 0.94 0.05
9 0.88 0.07
10 0.81 0.06
11 1.15 0.07
12 1.25 0.09
13 1.38 0.13
14 1.39 0.13
15 0.65 0.05
16 1.18 0.13
17 1.55 0.74
18 0.79 0.09
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Text S1. Processing of the light data

The following steps describe the processing of the raw light vertical profiles (for graphical
support, see Figure S1).

(i)  A correction was applied to  the light profiles on a per-profile  basis  according to  the
method described in  Organelli  et  al.  (2016)  to  deal  with  deep values  of  measured  radiometric
profiles and eliminate sensor noise. The method consists in detecting, for each profile, the depth
below which no more information is present in the signal, called “dark depth”. Data below the
detected “dark depth” may contain only pure noise and were discarded from the analysis.  The
median value of L below the dark depth is called “dark value” and characterizes the noise level of
the sensor. The offset due to the noise present in the signal (i.e. dark value) was subtracted from the
raw signal in order to systematically set to zero the light values corresponding to depths greater than
the dark depth (see IOCCG Protocol Series, 2019). The dark value offset for a given sensor may
change with time due to sensor drift and because environmental conditions can have an impact on
the sensor response (mainly temperature). For the analysis to be robust against such changes, the
dark values time series of dark values were computed on a daily basis for each tag by averaging the
dark values of the 5 deepest profiles per day. It is important to note that the main variable derived
from L in the present study (namely KL) is not sensitive to the offset of the light signal. Absolute
light values were only required for the correction of the Fluo profiles (see Section 2.2.3) and were
picked up in relatively shallow portions of the profile  where the dark value was very small  in
relation to the light signal itself (<<1%).

(ii)  Vertical  profiles  of  light  were often  subject  to  sensor  saturation  in  the  near-surface.

Saturated portions of the light signal (i.e. where 
d L(z )

dz
=0) were discarded.

(iii)  To  ensure  physical  and  optical  consistency  of  the  light  data  in  relation  to  classic
radiometry sensing issues such as the passage of a cloud or a wave focusing at surface (see for
example Mueller et al.,  2003; Xing et al., 2011; Organelli et al., 2016; IOCCG Protocol Series,
2019), as well as animal head movements, a constrained fit was applied to the light profiles so that
L monotonously decreases with depth. The fit was performed on the log-transformed vertical profile
of light and defined as a piecewise cubic polynomial (see details in Section 2.3.1).

(iv) KL vertical profiles were computed as the derivative of the fitted (log-transformed) light
profiles. Vertical profiles of KL were defined with the same vertical resolution as light profiles (i.e. 1
m).

K L(z )=
d
dz

(log ( L(z)))
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(a) (b)

Figure  III.9:  Example  of  light  (L)  and  corresponding  KL vertical  profiles  summarizing  the
processing of the irradiance data. (a) The raw light profile is represented with the gray dots, the
black continuous line represents the fit applied to the raw L data, the upper and lower red dotted
lines represent the Saturation Depth and the Dark Depth, respectively. The sections of the light
profile  located  above the  Saturation  Depth  or  below the  Dark Depth  were  discarded.  (b)  The
corresponding KL profile profile is represented with the continuous black line, the upper and lower
gray dashed lines represent the shallower (Zsup) and deeper (Zinf) boundaries of the LFM prediction.
Note that the profile of the present figure was only displayed to illustrate the processing of the light
data but was not included in the LFM because the Saturation Depth (9 m) was deeper than Zsup = 5
m.
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Text S2. . Processing of the Fluo data

The raw Fluo vertical profiles were processed and quality controlled using the following
procedure (for graphical support, see supplementary material, Figure S2):

(i) The raw Fluo was firstly corrected to remove instrumental noise, namely the fluorescence
dark  signal  (darkFluo).  A single  value  of  darkFluo was  computed  for  every  tag.  The  procedure
described in Schmechtig et al. (2014) (originally designed for BGC-Argo floats) that deals with
non-zero values of  Fluo observed at  depth was applied to  SRDL Fluo data.  However,  because
SRDLs do not sample Fluo as deep as BGC-Argo floats do, Schmechtig et al. (2014) was adapted to
match SRDL data characteristics. The intensity of the fluorescence dark signal was calculated on a
per-profile basis by computing the median value of Fluo between 190 m and 200 m. For a given tag,
darkFluo corresponds  to  the  median  value  of  all  the  successive  fluorescence  dark  signal  values
computed in the tag’s time series. The fluorescence dark signal was subsequently subtracted from
the Fluo signal for the entire tag data set. Given the distribution of Zeu and ZMLD, computing darkFluo

between 190 m and 200 m was appropriate and suitable for the studied zone (on average, ZMLD = 78
+- 37 m and Zeu = 84 +- 19 m).

(ii) Vertical profiles of Fluo were corrected for the Non-Photochemical Quenching (NPQ)
effect  according  to  the  method  described  in  Xing  et  al.  (2018).  The  method  relies  on  the
identification of a so-called “NPQ layer” from the surface to the shallowest value between ZMLD and
ZNPQ. ZNPQ corresponds to the depth above which the light signal is greater than a given threshold,
fixed at 15 μmol quanta.mmol quanta.m-2.s-1. For each profile, the maximum value of Fluo encountered within the
“NPQ layer” was thus extrapolated up to the surface.

(iii) The dark- and NPQ-corrected Fluo profiles were fitted to smooth any spikes. The fit is
similar  to  the  fit  applied  to  light  profiles  (i.e.  a  piecewise  cubic  polynomial,  except  that  no
monotonicity constraint was imposed on the Fluo fit).

(iv) Finally, the smoothed, dark- and NPQ-corrected Fluo data (hereafter denoted [FFluo])
were  converted  into  [Chla].  [ChlaFluo],  the  actual  Chla  concentration  derived  from  [FFluo],  was
obtained by applying a calibration coefficient  to the [FFluo]  data.  A calibration coefficient  is  by
default provided by manufacturer Valeport, based on factory calibration tests performed on samples
with  known  concentrations  of  [Chla].  However,  in  the  present  study,  a  specific  calibration
coefficient was computed for each tag, based on both KL and the comparison of  in-situ data with
concomitant satellite-based [Chla] observations (see details in Section 2.3.2).

- 156 -



Chapter III - Supplementary Material

- 157 -

Figure  III.10:  Example  of  Fluo  vertical  profile  summarizing  the
processing of the Fluo data. The gray dots represent the raw Fluo
data (Fluo), the thin black dots represent the Fluo data corrected
from the fluorescence dark signal (darkFluo) and from the NPQ (Non-
Photochemical  Quenching),  denoted  Fluo*,  the  continuous  black
line represents FFluo, and finally, the continuous green line represents
the [ChlaFluo] data obtained after calibration. Note that the profile
displayed in Figure S2 corresponds to the profile displayed in Figure
S1 (i.e. was concomitantly sampled).
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Text S3. NPQ correction

Vertical profiles of Fluo were corrected for the Non-Photochemical Quenching (NPQ) effect
according to the method described in Xing et al. (2018). The method relies on the identification of a
so-called “NPQ layer”, which takes into account ZMLD and the depth above which the light signal is
greater than a threshold fixed at 15 μmol quanta.mmol quanta.m-2.s-1 (see Text S2 and Figure S2). Xing et al.
(2018) use the downwelling irradiance to determine the light threshold. Given that the light sensor
of the SRDL does not strictly measure the downwelling irradiance but a diffused light level in the
animal’s environment, the threshold value of 15 μmol quanta.mmol quanta.m-2.s-1 used in the present study for the
quenching correction needs to be verified. For this purpose, we compared the values of <ChlaFluo>
between day and night profiles to assess the consistency of the NPQ correction. The distribution of
the values differ very few between day and night, which reinforces the validity of the quenching
correction applied to the Fluo profiles in the present study.
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(a) (b)

Figure III.11: Comparison of water-column integrated values of [ChlaFluo] between day and night.
The histogram of the values of <ChlaFluo> are shown in (a) and the estimates of the probability
density function are shown in (b). In both panels, green color refers to day profiles and blue color
refers to night profiles.
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Text S4. Number of basis functions and Smoothing parameter

To develop the LFM, the handled variables (i.e. vertical profiles of KL and [Chla]Fluo) are
converted into functional objects. In a functional space, vertical profiles are not classically defined
as vectors expressed along a geo-referenced vertical axis (of  j discrete  depth values), but instead,
they are expressed as a linear combination of m basis functions (m < j). The basis functions are the
same for all profiles, meaning that the functional basis is unique for all the profiles. The m (m = 30
in our study) basis functions define the reference frame of the study. The m profiles’ coefficients can
be considered as their coordinates in that frame.

The  basis  functions  in  the  present  study  are  B-spline  functions.  B-spline  functions  are
piecewise polynomials of degree  n (in the present study,  n = 3) with continuity and derivability
constraints on some well-suited depths called knots. We chose a uniform distribution of the fit knots
along the vertical. The regularity of the B-spline fit is ensured by a smoothing parameter (λ) that
enables dampening high local variations in the vertical dimension.

The fit performed on the raw vertical profiles of L and Fluo (see Sections 2.2.1 and 2.2.3)
therefore has two functions: (1) smoothing the data with, eventually, some constraints applied to the
fitted data (e.g. monotonicity for L) and (2) converting the vertical profiles into functional objects,
i.e. expression of each vertical profile as a linear combination of the m B-spline basis functions.

Once placed in  a  functional  workspace,  many classic  statistical  tools  can be  adapted  to
functional data (see Ramsay and Silverman, 1997). In the present study, the core operator of the
LFM is obtained after computing a Functional Principal Component Analysis (FPCA) based on the
m coefficients (i.e. coordinates in the functional space) of the predictor and the predicted variables.

From the FPCA, a linear functional relationship is derived between the functional objects
associated with the vertical profiles of KL (the derivative of the log-transformed light profile, also
expressed as a functional object) and [Chla]Fluo.

The (invertible) linear functional relationship on which the LFM relies is subsequently used
as an inference tool to predict [Chla]Fluo from KL.

Converting vertical profiles into functional objects using a B-spline basis is achieved when
fitting the data with piecewise polynomials of degree n (in the present study, n = 3), with specific
constraints imposed to the fit (Meyer 2012), such as the smoothness of the curve or monotonicity.

The smoothing parameter (λ) enables to constrain the distance between raw data and the
functional  fit.  Although  the  LFM models  used  in  the  present  study  were  developed  following
precisely the same method as described in Bayle et al. 2015, the vertical profiles processed in the
present study have a much higher vertical resolution (1 m resolution in the present study versus 10
m in Bayle et  al.  2015). The number  m of B-spline basis functions had consequently to be re-
adjusted, as well as the smoothing parameter  λ. The optimization of  m and  λ is addressed in this
section.
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The  optimum  number  of  basis  functions  was  m =  30  and  the  optimum  value  for  the
smoothing  parameter  was  λ =  0.03.  The knots  of  the  fit  were  uniformly  distributed  along  the
vertical.

The  prediction  error  was  defined  as  the  difference  between  [ChlaLFM]  and  [ChlaFluo].
Subsequently,  the  root-mean-square  error  of  the  LFM  (RMSELFM)  was  defined  based  on  the
prediction performed on the independent validation sample (see Sections 2.4 and 2.5) by positively
summing the prediction error at  every point (i.e.  every depth of every profile of the validation
sample) and then dividing by the number of profiles included in the prediction exercise. RMSELFM

(expressed in mg.m-2) is positive and characterizes the distance between the prediction [ChlaLFM]
and the targeted [ChlaFluo]. RMSELFM is explicitly defined as follows:

RMSELFM=
1

nval

∑
i=1

nval

∫
z=Z inf

z=0

√([ChlaLFM ](i)(z)−[ChlaFluo](i )(z))2dz (III.7)

Where V (i ) is the ith profile of variable V in the validation sample, nval is the number of validation
profiles (nval = 417) and z is the depth of the measurement (Zinf < z < 0 m).

Similarly, we define RMSEFluo, the root-mean-square error of the fit applied to the Fluo data
(see Section 2.2.3) by positively summing the difference between the raw Fluo* data (the dark- and
NPQ-corrected Fluo data, see Figure S2) and FFluo, the functional fit of Fluo*, at every point (i.e.
every depth of every profile of the validation sample) and then dividing by the number of profiles
included in the prediction exercise. RMSEFluo (expressed in mg.m-2) is positive and characterizes the
distance between the smoothed Fluo* data and the raw Fluo data. RMSEFluo is explicitly defined as
follows:

RMSEFluo=
1

nval

∑
i=1

nval

∫
z=Z inf

z=0

√(FChlaFluo(i)(z )−Fluo*(i)(z))2dz (III.8)

The number m of basis functions was adjusted by testing equally spaced values of m ranging
from 5 to 50 and computing RMSELFM for each resulting model, based on the prediction performed
on the independent validation sample. The effect of the number m of basis functions on RMSELFM is
displayed in Figure S4. The lowest RMSELFM value corresponds to m = 5. However the associated
value of RMSEFluo is at its highest. This means that when the number of basis functions is reduced
(m = 5-6), although [ChlaLFM] appears to be quite close to [ChlaFluo], the Fluo fit (FFluo) is coarse and
far away from the Fluo* data. It is hence preferable to consider higher values of m so that the Fluo*
is not too degraded when computing FFluo.  For  m  > 12, RMSELFM decreases continuously as  m
increases, however it appears clearly that the gain becomes negligible for m > 30. One idea beneath
the model is to reduce as much as possible the dimension of the problem, hence the number m of
parameters necessary to express the handled objects, while minimizing the prediction error.
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As a result, a functional space defined with m = 30 basis functions was found to be the best
compromise to jointly minimize RMSEFluo, RMSELFM and model complexity.

The  smoothing  parameter  λ was  adjusted  by  testing  values  of  λ equally  spaced  on  a
logarithmic scale from 10-4 to 101.5 (i.e. approximately from 0.0001 to 30). The testing of  λ was
performed with a fixed number of basis functions m = 30, as previously adjusted. A high smoothing
parameter means that the fit will be highly constrained and thus local variations of the raw data will
be highly smoothed. While the RMSE seems to be quite constant for low values of λ, it increases
rapidly for λ > 1, after reaching an optimum around 0.03 (Figure S5). For this reason, we chose λ =
0.03.
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Figure  III.12: Root-mean-square error of the LFM (RMSELFM) according to number  m of basis
functions. The continuous red vertical line represents the number of basis functions selected for the
model (m = 30). The color of the points refer to the value of RMSEFluo.
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Figure III.13: Root-mean-square error of the LFM (RMSELFM) according to smoothing parameter λ.
The continuous red vertical line represents the value selected for the model (λ = 0.03).
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Text S5. Bagging procedure

To test the robustness of the model against modifications of the statistical sample used to
construct  the  LFM, a  bagging (bootstrap  aggregating)  validation  procedure  was  carried  out.  In
addition to testing the sensibility of the model to slight changes in the composition of the statistical
sample of concomitant [ChlaFluo] and KL profiles , the bagging procedure, by averaging numerous
versions of a given model, can potentially bring a substantial gain in accuracy to the bagged model
(Breiman 1996, Nerini and Ghattas 2007). The bagging procedure consists in conducting a series of
N iterations,  where  at  each  step  a  new statistical  sample  is  created  from the  existing  one  by
randomly sampling the set of available  concomitant [ChlaFluo] and KL profiles (1 387 profiles, see
Table 2). The modification of the statistical sample used to construct the LFM creates a new version
of the LFM. The sampling is performed with replacement so that (i) the sample has always the same
number of profiles but (ii) the set of selected profiles slightly differs from one iteration to the next.
At step  j (1  ⩽  j ⩽  N),  the procedure is  repeated  j times so that  j versions of the LFM are
produced, each one corresponding to a different sample. A unique model LFM(j) is computed as the
average of the j versions of the LFM created at step j. At each iteration of the bagging procedure,
model LFM(j)  was applied to the  validation sample and RMSELFM(j)  was computed.  The same
dataset split as previously used was kept for the bagging (70% for the construction of the model /
30% for validation). N = 500 iterations of this procedure were carried out.

The dependency of the LFM relatively to the composition of the statistical sample used to
construct the model (970 profiles) was examined through the RMSELFM resulting from the bagging
procedure. The values of RMSELFM(j) computed at each iteration of the bagging procedure (N = 500
iterations in total) were reported in Figure S6. The convergence of the model in terms of prediction
error primarily testifies to the robustness of the aggregated model against the presence of potential
outlier profiles in the statistical sample (assuming that the sample is large enough). But mostly, the
gain in accuracy enabled by the bagging procedure of less than 2% after 500 iterations points out
the initial stability inherent to the LFM method developed in this study.

- 163 -



Chapter III - Supplementary Material

- 164 -

Figure III.14: RMSELFM of the bagged predictions based on the bootstrap
replicates of the statistical sample of 970 (70%) concomitant [ChlaFluo] and
KL profiles,  with  N =  500  iterations.  The  dashed  line  represents  the
convergence  value  of  RMSELFM,  computed  as  the  median  value  of
RMSELFM(j) between the 300th and 500th iterations.
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Text S6. Distribution of the prediction error according to the solar angle

The prediction error, computed as the difference (positive of negative) between <ChlaLFM>
and  <ChlaFluo>,  was  computed  on the  sample used  to  assess  the  LFM performance (validation
sample, nval = 417 profiles, see Section 2.3.3). The distribution of the prediction error was examined
in Figure S7. The solar angle intervals were 0º to 15º, 15º to 30º, 30º to 45º, and higher than 45º.
The prediction error presented a similar distribution for all positive values of the solar angle (note
that no predictions were computed for negative solar angles, i.e. at night, see Section 2.2.1). The
significance of the difference between the distributions of the prediction error for different intervals
of solar angle was tested. The four distributions corresponding to the four solar angle intervals were
not significantly different from one another (Mann-Whitney-Wilcoxon test, lowest p-value of 0.13).
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Figure III.15: Distribution of the prediction error for each (positive) solar angle intervals (0º to 15º,
15º to 30º, 30º to 45º and higher than 45º). For each box (i.e. each solar angle interval) the upper
and lower limits of the box represent the 25th and 75th percentiles, respectively, the central line in
the box represents the median value, the whiskers extend from the minimum to the minimum values
of the data (excluding outliers) and the black circles represent the outliers.
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Text S7. Assessing the upper limit of the observable wave number domain

In the present study, the variance spectra of <ChlaFluo> and <ChlaLFM> were computed for
each tag and compared. Prior to the calculation of the Fourier transform, a symmetric Hamming
window was applied to the analyzed signals.  A pronounced drop in the energy of the <ChlaLFM>
signal was observed for each tag at a different spatial scale (see Section 3.4.2), marking a threshold
above which the spectrum was much noisier and lost the clear power-law behavior described for
larger  spatial  scales  (see  Section  4.3.4).  It  is  consequently  reasonable  to  consider  that  the
interpretations of the structures depicted by the <ChlaLFM> signal are valid up to the scale of the
energy-drop threshold and should be discarded for higher wave numbers.

The spatial scale corresponding to the energy-drop threshold (fE-drop) was computed for each
tag. For this purpose, the variance spectrum of <ChlaLFM> was smoothed using B-splines functions.
More precisely, the smoothed variance spectrum was computed independently for each tag and was
defined as a piecewise cubic polynomial. The smoothed variance spectrum of <ChlaLFM> is hence
derivable and fE-drop corresponds to the minimum of its derivative (i.e. the wave number for which
the  variance  spectrum  is  the  steepest).  An  example  with  Tag  11  is  shown  in  Figure  8.  The
consistency of the obtained value of fE-drop was visually checked for the 18 tags.

In order to characterize the spatial frequency of the light sampling of each tag, fmean was
defined  as  the  inverse  of  the  mean  distance  between  two  consecutive  light  profiles  and  was
computed for each equipped SES.
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As exemplified in Figure S8 for Tag 11, fE-drop was subsequently compared to fmean for all the
tags (Figure S9).  The spatial  scale of the <ChlaLFM> signal energy drop appeared to be closely
linked to the spatial frequency of the light sampling of each tag (i.e. the mean distance between two
consecutive valid vertical profiles of light) and corresponds to twice the mean spatial frequency of
the SRDL light measurements that were included in the model (see Figure S9, slope = 1.07, R2 =
0.99).  This  result  is  to  be  linked with the  Nyquist-Shannon theorem,  that  relates  the  sampling
frequency of a signal  with the maximum observable frequency in the sampled signal (Nyquist,
1928; Shannon, 1949; Jerri, 1977). The Nyquist-Shannon theorem states that for the reconstruction
of a periodic signal with no loss,  the sampling frequency must be at  least twice the maximum
frequency of the signal to be reconstructed. Here, the signal to be reconstructed is the <Chla> field
along the trajectory of the animal and <ChlaLFM>, based on the vertical profiles of light sampled
during the trip of the animal, is equivalent to a spatial subsampling of the <Chla> field. Interpreting
reversely the Nyquist-Shannon theorem leads to the conclusion that it may be reasonable to give a
much lower confidence level to the method when trying to detect structures in the <ChlaLFM> signal
at a scale smaller than twice the mean spatial frequency of the SRDL light measurements (< ~7 km
in the case of Tag 11).
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Figure III.16: Computation of fE-drop and comparison with fmean through the example of Tag 11. The
continuous gray (red) line represents the (smoothed) variance spectrum of <ChlaLFM>. The black
dashed vertical line represents fE-drop and the black dotted vertical line represents twice fmean. In the
present example, fE-drop = 1.6 10-4 m-1, which corresponds to a spatial scale of ~6.2 km and 2*fmean =
1.4 10-4 m-1,  which corresponds to a spatial scale of ~7.0 km.
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The threshold materializing the validity domain of the predictions directly depends on the
inherent  properties  of  the  corresponding  transect.  Indeed,  independently  of  the  bio-physical
processes occurring along the transect of the tag, the spatial scale of the energy drop is inherent to
the spatial resolution of the measurements performed by the tag, which directly depends on the
horizontal  speed  of  the  SES  and  also  quite  frequently,  on  the  quality  and  validity  of  the
measurements (e.g. the saturation issue clearly lowers the spatial resolution achieved by the light
measurements). The mean distance between two valid consecutive Fluo profiles is 14.9 km +- 4.1
and this distance is reduced to 5.9 km +- 3.1 for light profiles.  As a result, while on average the
SRDL Fluo measurements enable observation of phytoplankton dynamics at spatial scales up to ~30
km, LFM predictions extend the spatial scale of the observations up to ~12 km. In the present study,
the gain enabled by the use of <ChlaLFM> as a proxy for <ChlaFluo> is on average a factor 2.8 +- 0.9
towards finer observation scales.
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Figure III.17: Energy-drop threshold (fE-drop) versus mean distance between
two consecutive valid light profiles (fmean). The black circles represent the
data from the 18 tags included in the present study, the continuous black
line materializes the linear regression of all  the sample points (slope =
1.07; R2 = 0.99; N = 18 points) and the black dashed line represents the 1:1
reference line. The red point represents the data from Tag 11, highlighted
in Figure S8.
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IV.1. Reminder of the objectives and main results

The  main  objective  of  the  present  thesis  was  to  examine  the  linkages  between  CHL
dynamics and SO processes, as well as their influence on ecosystem functioning, through analysis
of  variations  in  chlorophyll-a  fluorescence  at  suitable  spatio-temporal  scales.  Throughout  the
chapters of the present thesis, we focused on CHL dynamics in the SO, from large scale and long-
term changes, to small-scale, short-term variations. Firstly, we took advantage of two decades of
ocean-colour data to examine at large spatial scale the time scales of variation in phytoplankton
concentration in the SO (Chapter I). Then, through a regional study focused on the Indian sector of
the SO, we assessed the propagation of variations in primary production throughout the ecosystem
(Chapter  II).  Finally,  we developed a  method  aimed at  providing key data  to  understand how
external forcing conditions phytoplankton growth at fine spatio-temporal scale (Chapter III). The
objectives and main results of each chapter are detailed below.

The study presented in  Chapter  I aimed at  disentangling the time scales  of variation in
satellite-based estimates of chlorophyll-a concentration (CHL) by decomposing CHL time series
into a sum of components. Each component corresponded to a different time scale of variation,
namely multi-annual, seasonal and sub-seasonal. Firstly, we investigated multi-annual variations in
CHL in the SO. We demonstrated that the confidence level associated with estimates of long-term
CHL biomass trends in the SO is low. The difficulty in obtaining long-term time series of CHL
biomass estimates from space was probably highly linked to ocean-colour sensor inter-calibration
issues. We then focused on smaller time scales of variation through examination of CHL phenology.
To study CHL phenology, we developed a method focused on the seasonal component of CHL time
series and based on normalized CHL. We described CHL dynamics in the SO at seasonal to sub-
seasonal time scales. Our findings were validated with regional case studies from previous studies.
Moreover, the joined regional case studies brought insights into the physical processes supporting
CHL production in the different zones of the SO highlighted in our study. Finally, by studying the
different components of CHL time series, we highlighted an overlap in their spectrum, resulting in
the influence of one component on the others. Notably, we showed that besides seasonal cycles,
sub-seasonal variations are determinant in shaping annual cycles of CHL, giving high importance to
(sub)mesoscale processes.

In  Chapter  II,  we focused on the Indian sector  of  the SO to examine linkages  between
primary production dynamics and ecosystem functioning. We took benefit of the phenology analysis
developed in Chapter I to define coherent bioregions in relation to primary production. We proposed
a bioregionalization of the Indian sector of the SO based on CHL biomass and CHL phenology to
investigate at regional scale the influence of CHL dynamics on ecosystem functioning. We thus
defined six bioregions in the study zone. Then, we studied ecosystem characteristics of bioregions
and highlighted significant differences between those. Ecosystem-level characteristics were derived
(i) from model data providing information on phytoplankton community composition and (ii) from
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bio-logging data providing information on the foraging behaviour  of  a  top predator  in  the SO.
Firstly,  we  analyzed  the  dynamics  of  each  bioregion  in  terms  of  phytoplankton  community
composition.  We  demonstrated  that  the  distribution  of  phytoplankton  size  classes  (PSC)  were
significantly different between bioregions. To summarize, the most productive regions were mainly
associated  with  microphytoplankton,  sub-tropical  regions  had  proportionally  more
picophytoplankton, while nanophytoplankton was relatively ubiquitous. Then, we used indicators
derived from tracking data of a top predator - the southern elephant seal (Mirounga leonina) - to
infer potential influence of variations in primary production on higher trophic levels. We showed
that  elephant  seal  foraging  behaviour  was  significantly  different  between  bioregions,  with
productive  regions  being  associated  with  less  accessible  preys  but  higher  foraging  success.
Therefore,  by  merging  ecosystem  variables  characterizing  CHL  biomass,  CHL  phenology,
phytoplankton community composition and top predator behaviour, the analysis of Chapter II opens
the way to ecosystem-level analysis of the SO.

In  Chapter  III,  we  proposed  a  tool  for  applications  linked  to  the  study  of  interactions
between physical and biological processes at (sub)mesoscale. We developed a method based on
vertical  profiles  of  light  obtained  from  bio-logging  data  to  derive  estimates  of  water-colum
integrated CHL. The estimates of water-colum integrated CHL were calibrated with satellite CHL
estimates. The developed method was presented as a cost-effective, energy-efficient way to obtain
high-resolution  in-situ CHL data  in  the  SO.  In  addition,  the  proposed  method  suggests  that
systematic  implementation  of  light  sensors  on  autonomous  platforms  measuring  chlorophyll-a
fluorescence is a way to ensure sensor interoperability. We demonstrated the potential of the study
with an application of the method on the transect of a southern elephant seal departed from the
Kerguelen  Archipelago.  Application  of  the  method  enabled  improvement  of  the  horizontal
resolution of CHL data from ~21 km to ~7 km . Observing both physics (e.g. sea surface height)
and biology (e.g. phytoplankton concentration) the SO at fine spatial (submesoscale) and temporal
(sub-seasonal) scales is necessary to identify the processes supporting primary production in the
euphotic zone. Therefore, by enabling examination CHL dynamics at submesoscale, the proposed
method contributes to filling the observation gap in the SO and highlights the promising potential of
data derived from bio-logging devices placed on marine mammals to study polar environments.
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IV.2. General discussion

IV.2.a. Context

The key (and threatened) function of the Southern Ocean in the climate 
system

A vast, dynamic region of the world’s oceans, the SO is central to climate studies. The SO is
an important sink of CO2 (Mikaloff Fletcher et al., 2006; Gruber et al., 2019a), driven by complex
spatio-temporal  patterns  of  the  air-sea  CO2 flux  (Landschützer  et  al.,  2015,  2016).  Within  the
fraction  of  anthropogenic  emissions  sequestered  by  the  world’s  oceans  -  estimated  ~25%
(Khatiwala et al., 2009) - an important part (~40%) is attributed to the SO (Khatiwala et al., 2009;
Gruber et al., 2019b; DeVries, 2022; Friedlingstein et al., 2022). Furthermore, the world’s oceans
are a major contributor of the Earth’s energy budget since ~90% of the excess of heat is estimated to
be absorbed by the ocean (Church et al., 2011; Levitus et al., 2012; Trenberth et al., 2014; IPCC,
2013; von Schuckmann et al., 2016). Furthermore, the SO circulation scheme is a key element in
the Earth climate system, notably because it connects the main ocean basins of the world (Talley et
al., 2011; Marshall & Speer 2012; Talley, 2013; Rintoul, 2018).

In the context of climate change, SO circulation is affected by both warming (Toggweiler &
Russell, 2008; Shi et al., 2021), and modified wind regime (Böning et al., 2008; Beech et al., 2020;
Behrens & Bostock, 2023). These changes result in modified air-sea CO2 fluxes (Séférian et al.,
2012; Bushinsky et al., 2019) and affect biological activity (Lovenduski & Gruber, 2005; Chapman
et  al.,  2020).  Moreover,  the  SO  is  subject  to  increasing  direct  pressure  from  human  activity,
including increased  marine  traffic,  intensification  of  fishing  effort  and development  of  tourism
(Chown  et  al.,  2012;  Morley  et  al.,  2020;  Grant  et  al.,  2021),  which  strongly  threatens  SO
ecosystems (Pinkerton et al., 2021; Volzke et al. 2021; Johnston et al., 2022).

A crucial need to monitor phytoplankton in the SO

Therefore,  monitoring  phytoplankton  dynamics  in  the  SO  is  crucial  because  primary
production in the SO mitigates climate change and supports SO ecosystems. Firstly, phytoplankton
dynamics  play  a  key  role  in  SO processes  that  mitigate  global  warming,  notably  through  the
essential function primary producers play in the biological carbon pump (BCP). The BCP is the
process by which organic matter is transported from the surface ocean to the ocean interior (Siegel
et al., 2023). By photosynthesis, phytoplankton organisms transform inorganic carbon into organic
carbon. Phytoplankton growth predominantly occurs in the well-lit surface ocean. Mainly induced
by gravity, ocean mixing or vertical migration of animals, a series of processes are responsible for
the transport of organic carbon from the surface to depth, where it is sequestered away from the
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atmosphere on decadal to millennial timescales (Boyd et al., 2019a). Through the biological carbon
pump,  the  biogenic  carbon  pool  initiated  by  phytoplankton  growth  was  identified  as  a  major
contributor  to  the  oceanic  carbon  sink  in  the  SO  (Huang  et  al.,  2023).  In  a  lesser  extent,
phytoplankton  organisms  were  also  shown  to  have  an  effect  on  the  ocean  heat  balance
(Sathyendranath et al., 1991; Asselot et al., 2022). Secondly, besides its role in mitigating global
warming, phytoplankton is the base of SO marine food webs (Boyd et al., 2019b). Formation of
organic matter by autotroph organisms is  the initial  trigger  for the transfer of energy to  higher
trophic  levels.  At  every  level  (from  phytoplankton  to  zooplankton,  fish  and  SO  charismatic
megafauna), the response of SO ecosystems to climate change highly depends on future SO primary
production (Deppeler and Davidson, 2017; Henley et al., 2020). As such, proxies of phytoplankton
abundance, distribution and diversity are hence considered essential ocean variables (EOV) in the
frame of ocean biodiversity and ecosystem monitoring (Constable et al., 2016; Miloslavich et al.,
2018).

To respond to future needs in ocean management, we must address challenges related to the
monitoring  of  phytoplankton  according  to  three  main  pillars:  observe,  explain,  model.  These
challenges are described in the following section.

IV.2.b. Limitations of the study and perspectives

Observing: unavoidable biases

Significant efforts are made to monitor SO primary production dynamics through  in-situ
water sampling (e.g. Nardelli et al., 2023), using proxies like chlorophyll-a fluorescence (e.g. Chai
et al., 2020) or analyzing ocean-colour data (e.g. Henson et al., 2017). These efforts are needed to
assess the response of SO ecosystems to global  change.  However,  although the techniques and
proxies  used  to  characterize  primary  production  are  constantly  developed  and  improved  (e.g.
Claustre  et  al.,  2020),  objective  interpretation  of  observed  variations  in  phytoplankton  are
compromised by fundamental issues related to available observations.

Remote-sensing-based observations of phytoplankton use natural light (Clarke et al., 1970).
Phytoplankton dynamics  as  seen  from space  are  hence  necessarily  biased  because  only  sensed
during day time. This implies an observational bias both on daily (day versus night) and seasonal
(towards summer) timescales. Moreover, ocean-colour data is only reliably obtained under clear-sky
conditions, which, by undersampling other (harsher) weather conditions, sums an additional bias to
satellite  observations.  Another  bias  of  satellite  observations  is  that  they  only  reflect  surface
dynamics (Gordon and McCluney, 1975) and do not render the vertical structure of phytoplankton.
However,  variations  in  surface  chlorophyll  do  not  necessarily  accurately  reflect  its  vertically-
integrated biomass  (Sallée et  al.,  2008; Uitz  et  al.,  2009;  Baldry et  al.,  2020).  Additionally,  as
discussed in Chapter I, long-term satellite time series are complex to interpret due to ocean-colour
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sensor inter-calibration issues (Pope et al., 2017; Henson et al., 2017). Finally, despite many efforts
in developing regionally-tuned algorithms (Szeto et al., 2011; Johnson et al., 2013; Robinson et al.,
2021), it remains essential to collect more in-situ samples to adequately tune SO-specific satellite
products (Pope et al., 2017).

Pairing remote-sensing observations with in-situ time series is therefore necessary, but the
latter also raise their share of issues. While fixed SO moorings like the Southern Ocean Time Series
Observatory moored south of Tasmania (SOTS,  imos.org.au/facilities/deepwatermoorings/sots) or
the KERFIX mooring located southwest of the Kerguelen Islands (see Jeandel et al., 1998), offer
the  possibility  to  acquire  high-resolution  data  for  time  periods  generally  exceeding  seasonal
timescales, they lack geographical coverage and the representativeness of their measurements must
be discussed. Oppositely, autonomous free-drifting platforms like BGC-Argo floats (Chai et  al.,
2020) can capture phytoplankton dynamics on larger spatial scales and for several years, but their
measurements  do  mix  time  and  space  variability.  While  remotely-controlled  gliders  enable  to
partially keep control on the location of the measurements, they are rapidly subject to limitations in
energy (Testor et al., 2019). Power consumption usually constrains duration of glider developments
from a few days to several months, depending on the sampling strategy (e.g. du Plessis et al., 2019).
A potential way to overcome the constraint related to power limitation for sensor displacement is to
use  animal-borne sensors  (Harcourt  et  al.,  2019,  McMahon et  al.,  2021).  However,  due  to  the
reduced  size  of  the  devices,  bio-logging  deployments  remain  strongly  limited  by  energy
consumption,  with  notable  impact  on  the  number  of  measured  variables  and  on  the  sampling
frequency. Finally, sampling onboard research vessels remain the best way to obtain reliable and
accurate  in-situ estimates of phytoplankton abundance and diversity. However, the seasonal bias
previously mentioned is also present in oceanographic campaign data due to logistical constraints
and meteorologic conditions in the SO, especially harsh in winter.

Explaining: the difficulties in identifying underlying processes

Identifying the processes that support phytoplankton growth is key to assess the response of
SO primary production to climate change. However,  direct attribution of a given process to an
increase or a decrease in phytoplankton biomass, or a change in its composition, is complex because
our  observations  -  on  top  of  being  biased  (see  previous  section)  -  inherently  contain  various
timescales of variation. As discussed in Chapter I, the growth and fate of phytoplankton in the SO
can respond to a large range of processes on sub-seasonal time scales. Phytoplankton growth in the
SO can be triggered (Thomalla et al., 2015; Pellichero et al., 2020) or maintained (Carranza & Gille
2015;  d'Ovidio  et  al.  2015)  by  short-term,  submesoscale  features.  Similarly,  the  fate  of
phytoplankton  was  shown  to  be  driven  by  diverse  processes,  including  physical  advection,
downward transport and grazing, each one responding to different timescales (Moreau et al., 2020).
Phytoplankton growth can also be enhanced by punctual events like atmospheric dust deposition
(Duce & Tindale, 1991) or, conversely, limited by intense submesoscale activity (du Plessis et al.
2019).  These sub-seasonal  variations  strongly influence phytoplankton phenology (Prend et  al.,
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2022), together with the natural seasonal cycles of environmental factors such as mixed layer depth
(Swart et al., 2015). On seasonal timescales, the annual occurrence of deep winter mixing drives the
amount of dissolved iron available to phytoplankton in the surface layer, and consequently, has also
an important  role  in  phytoplankton phenology (Mtshali  et  al.,  2019).  On sub-seasonal  to inter-
annual timescales,  climate indices like Southern Annular Mode (SAM) influence phytoplankton
growth (Lovenduski and Gruber 2005). On inter-annual (Vantrepotte and Mélin, 2011) to decadal
(Gregg e al., 2003) timescales and above, climate change comes into play and must be taken into
account  to  assess  long-term changes  in  phytoplankton dynamics  (Deppeler  & Davidson,  2017;
Pinkerton et al., 2021; Henson et al., 2021).

Besides  the  complexity  that  resides  in  disentangling  the  timescales  of  variation  in
phytoplankton  concentration  to  link  it  with  physical,  biogeochemical  or  biological  processes,
fluorescence-based proxies are subject to biases, that are inherent to the measurement technique.
These biases lead the observers to question their  data: is our observation a true signal, is it an
artefact  due  to  our  instrument,  are  we  misinterpreting  our  instrument’s  signal?  Autonomous
platforms and satellites commonly use chlorophyll-a fluorescence to characterize phytoplankton
abundance,  diversity  and  distribution.  However,  fluorescence  remains  an  imperfect  proxy  for
phytoplankton  concentration,  notably  because  sensitive  to  variations  in  phytoplankton  species
composition and physiological state (Bricaud et al., 2004). Photoacclimation of phytoplankton cells
can modify the fluorescence-to-chlorophyll ratio, both in low (Cornec et al., 2021) and high (Xing
et al., 2018) light conditions. Physiological changes in phytoplankton due to photoacclimation can
occur on timescales of seconds (Li et al., 2009). This implies that day and night, deep and shallow,
fluorescence data won’t be interpreted the same way (Doblin et al., 2011). Furthermore, the bias
induced by variations in phytoplankton species composition has a notable impact on the study of
long-term variations in phytoplankton concentration, notably for studies based on satellite estimates
of chlorophyll-a concentration (Sun et al., 2023).

Remote-sensing estimates of phytoplankton concentration remain a powerful tool to study
long-term changes at wide spatial scale. Nonetheless, emergence times of climate-driven changes
are  potentially  larger  than  space-borne  time  series  of  ocean-colour  data,  especially  in  the  SO
(Henson et al., 2016, 2017). Time series of ~25 years as examined in the present study might be too
short to distinguish climate change-driven trends from background natural variability (Henson et al.,
2016,  2017).  As a  consequence,  to  enlarge our  vision on the occurring changes  and foster  our
comprehension  of  the  Earth  system,  there  is  an  evident  necessity  to  develop  suitable
biogeochemical models, based on our (partial) understanding of the interactions between physical,
biogeochemical and biological processes in the ocean.
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Modeling: the fine-scale challenge

The use of models is a powerful tool to isolate the response of ecosystems to specific drivers
(Asselot et al., 2022), study a region where observations are scarce (Taylor et al., 2013) or project
into future climate scenarios (Boyd & Doney, 2002; Frölicher et al.,  2015; Behrens & Bostock,
2023).  In  our  study,  we  highlighted  the  importance  of  fine-scale,  short-term  processes.  The
resolution of the sampling has an influence on the observed variability, as demonstrated both for
observations (Hales & Takahashi, 2004; Monteiro et al., 2015; Kaufman et al., 2018) and models
(Lévy et al., 2014; Aumont et al., 2015). The impact of model resolution on our ability to assess or
not the effect of a range of processes emphasizes the need to develop and better constrain high-
resolution biogeochemical  models  capable of resolving fine-scale (submesoscale),  short-term (<
sub-seasonal) variability (Lévy et al., 2018).

However, the complexity of climate system mechanisms is far from simple to model. Our
lack of understanding of the full range of processes that drive a key biogeochemical process such as
the BCP (see Section IV.2.a) is revealed by the little agreement of climate models in assessing the
sensitivity of SO BCP to climate change (Henson et al., 2022; Thomalla et al., 2023). In addition,
uncertainties associated with projections of the Coupled Model Intercomparison Project Phase 6
(CMIP6) models in terms of primary production for the 21st century are large, with some models
projecting positive anomalies relative to the reference period, while other projecting negative ones
(Kwiatkowski et al., 2020). Therefore, divergence between climate models highlight the complexity
of the climate system and our difficulty to accurately model its functioning.

Which ocean management for sustainable future?

As discussed in the previous paragraphs, SO equilibrium is maintained through a complex
network of interactions between physical, biogeochemical and biological processes (Lévy et al.,
2018; Boyd et al., 2019; Siegel et al., 2023). The processes affecting the state of the SO can even be
extended to socio-economic, cultural and ethical questions (Murphy et al., 2021), but these aspects
were out of the scope of the present manuscript. To resolve the interactions between SO processes,
we need to observe and model the Earth system at suitable spatio-temporal scales, according to the
question  at  hand.  Understanding  biogeochemical  cycles  and ecosystem dynamics  in  the  SO is
necessary to support sustainable ocean management policies (Murphy & Hofmann, 2012).

Future conservation of the Antarctic raises important challenges, emanating from increasing
threats on SO ecosystems due to climate change. In addition, increasing stress due to human activity
in the region - including marine resource harvesting, tourism and growing pressure for mineral and
hydrocarbon resource - results in a crucial need for sustainable, internationally-approved, ocean
management policies (Chown and Brooks, 2019). Set by the Antarctic Treaty System, the Antarctic
regulatory framework promotes “peaceful purposes” and international cooperation in the Antarctic
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(Berkman  et  al.,  2012).  However,  these  principles  are  threatened  by  the  sometimes  divergent
interests of participating (or more problematically: non-participating) nations (Chown et al., 2012).

SO ecosystems are changing (Constable et  al.,  2014; Rogers et  al.,  2020).  Mitigation of
human-induced impacts on Antarctic ecosystems, and notably interaction with fisheries (Ropert-
Coudert et al., 2018), require identification of areas of ecological significance (Hindell et al., 2020)
to protect key regions of the SO under the status of marine protected areas (e.g. Douglass et al.,
2014), as defined by the Commission for the Conservation of Antarctic Marine Living Resources
(CCAMLR; ccamlr.org). Identification of these areas of ecological significance (e.g. using animal
tracking data, see Hindell et al., 2003; Ropert-Coudert et al., 2018; Hindell et al., 2020) require
continuous effort of the scientific community in such an extreme environment as the SO. However,
long-term time series are critical for the monitoring and assessment of the impact of environmental
change on SO species (e.g. Jenouvrier et al., 2018). It is therefore essential to extend the spatial and
temporal resolution of biotic and abiotic variables measured in the SO through continued sampling
effort  to  ensure  sustainable  management  of  human  activities  in  the  SO.  More  generally,
management  of  human  activities  in  relation  to  their  environment  appears  as  a  necessary  -  yet
apparently not obvious to all parties - condition for sustainable human presence on Earth.
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Table of Acronyms

Table 1: Acronyms, definitions and units

Symbol Explicit description unit

ACC Antarctic Circumpolar Current
AES Areas of Ecological Significance
AODN Australian Ocean Data Network (IMOS)
ATL Atlantic sector of the Southern Ocean
BCP Biological Carbon Pump
BGC Biogeochemical
CCAMLR Commission for the Conservation of Antarctic Marine Living

Resources
Chla Chlorophyll a
[Chla] Chlorophyll a concentration mg.m-3

[ChlaFluo] [Chla] derived from fluorescence measurement, satellite-
corrected

mg.m-3

[ChlaLFM] LFM prediction of [ChlaFluo] mg.m-3

[ChlaSat] [Chla] derived from satellite measurement mg.m-3

CHL [Chla] derived from satellite measurement mg.m-3

CHLMA Multi-annual component of CHL time series mg.m-3

CHLSeas Seasonal component of CHL time series mg.m-3

CHLSS Sub-seasonal component of CHL time series mg.m-3

[CHL]spring-summer Spring-summer climatological value of CHL mg.m-3

CROZEX  Crozet Natural Iron Bloom and Export Experiment
CTD Conductivity, Temperature, Depth
darkFluo Fluorescence dark signal mg.m-3

darkKL Vertical diffuse attenuation coefficient for the dark signal of L m-1

ΣCHL Integral over time of CHL annual cycle mg.m-3.year
EOV Essential Ocean Variables
ESA European Space Agency
[FFluo] Smoothed, dark- and NPQ-corrected Fluo data mg.m-3

[F] LFM-calibrated signal of [FFluo] mg.m-3

[FLFM] LFM prediction of [Fluo] mg.m-3

FDA Functional Data Analysis
Fluo Chla fluorescence (raw) mg.m-3

Fluo* Unsmoothed, dark- and NPQ-corrected Fluo data mg.m-3

FPC Functional Principal Component
FPCA Functional Principal Component Analysis
FPCi ith axis of FPCA
FPCiSTD Standard deviation of FPCi score
fmicro Fraction of microphytoplankton %
fnano Fraction of nanophytoplankton %
fpico Fraction of picophytoplankton %
fE-drop Spatial frequency of SES tag spectrum energy-drop m-1

fmean Mean spatial frequency of SES tag light profiles m-1

Γe
LFM LFM-derived Fluo calibration coefficient for tag e
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ΓSat Satellite-derived Fluo calibration coefficient 

HNLC High Nitrate - Low Chlorophyll
HPLC High Pressure Liquid Chromatography
IMOS Integrated Marine Observing System
IND Indian sector of the Southern Ocean
KL Vertical diffuse attenuation coefficient for L m-1

KEOPS Kerguelen Ocean and Plateau Study
L Light μmol quanta.mmol quanta.m-2.s-1

λ Smoothing parameter of functional fit
LFM Linear Functional Model
MEOP Mammals Exploring the Oceans Pole to Pole
[micro] Concentration of microphytoplankton mg.m-3

MLD Mixed Layer Depth
MERIS Medium Resolution Imaging Spectrometer 
MODIS Moderate Resolution Imaging Spectroradiometer
MPA Marine Protected Area
[nano] Concentration of nanophytoplankton mg.m-3

NASA National Aeronautics and Space Administration
NCHLSeas Normalized seasonal component of CHL time series dimensionless
NCHLSeas + SS Normalized sum of seasonal plus sub-seasonal component of

CHL time series
dimensionless

NCEI National Centers for Environmental Information (NOAA)
NOAA National Oceanic and Atmospheric Administration
NPQ Non-Photochemical Quenching
OBPG Ocean Biology Processing Group (NASA)
OC Ocean Colour
OC-CCI Ocean Color Climate Change Initiative (ESA)
OISST Optimal Interpolation Sea Surface Temperature (NOAA)
OLCI Ocean and Land Colour Imager
OLS Ordinary Least Squares
PAC Pacific sector of the Southern Ocean
PreyCA Prey Capture Attempt
PF Polar Front
PFT Phytoplankton Functional Type
[pico] Concentration of picophytoplankton mg.m-3

PSC Phytoplankton Size Class
PSL Physical Sciences Laboratory (NOAA)
RMSEFluo Root-mean-square error of the functional fit applied to Fluo data mg.m-2

RMSELFM Root-mean-square error of the LFM mg.m-2

S Salinity
SACCF Southern ACC Front
SAF Subantarctic Front
SAPIGH Service d'Analyses de Pigments par HPLC (LOV)
SeaWIFS Sea-viewing Wide Field-of-view Sensor
SES Southern Elephant Seal
SNO-MEMO Système National d’Observation Mammifères Echantillonneurs

du Milieu Océanique
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SO Southern Ocean
SOSCEx Southern Ocean Seasonal Cycle Experiment
SOTS Southern Ocean Time Series (IMOS)
SRDL Satellite Relayed Data Logger
SST Sea Surface Temperature ºC
STF Subtropical Front
SWOT Surface Water and Ocean Topography
T Temperature ºC
<V> Water-column integrated content of variable V, calculated from

z=Zinf to the surface (z=0)
mg.m-2

<V>%ML Percentage of <V> contained within the mixed layer %
V(z) Value of variable V at depth z mg.m-3

Vmax Maximum value of variable V between z=Zinf and the surface
(z=0)

mg.m-3

Vsurf Surface value of variable V, computed as the mean between
z=Zpd and the surface (z=0)

mg.m-3

VARSeas Relative contribution of CHLSeas to total CHL variance %
VIIRS Visible Infrared Imaging Radiometer Suite
WCSS Within-cluster sum of squares
Zeu Euphotic Depth m

Zmax
Fluo Depth of the maximum value of [ChlaFluo] m

Zinf Deeper bound of the LFM predictions m

Zmax
LFM Depth of the maximum value of [ChlaLFM] m

ZMLD Mixed Layer Depth m
ZNPQ “NPQ-layer” depth m
Zpd Penetration Depth m
Zsup Shallower bound of the LFM predictions m
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