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Résumé. Cette thèse porte sur des aspects mathématiques et numériques de la tomogra-
phie ré�ective et de l'approximation sur la sphère. Le premier sujet concerne le calcul de
reconstructions tri-dimensionnelles en imagerie optique à l'aide de transformées de type
Radon. Les travaux présentés, en partie issus de collaborations avec des entreprises, inclu-
ent des aspects appliqués comme le développement et l'implémentation d'algorithmes, des
tests numériques, ainsi qu'une méthode brevetée. D'un point de vue plus théorique, nous
étayons mathématiquement le sujet en examinant les singularités ; notamment, l'analyse
microlocale de la transformation de Radon établit une correspondance entre les singu-
larités de la reconstruction et celles des données. En�n, nous relions di�usion Lamber-
tienne et transformation de Radon au sens des distributions. La deuxième partie porte
sur l'approximation sur la sphère dans des bases d'harmoniques sphériques, dans le cas
où la grille de discrétisation est la Cubed Sphere. On construit un interpolant de La-
grange qui est minimal pour un certain ordre lexicographique, avec pour application une
formule de quadrature précise. On étudie également des problèmes de moindres carrés non
régularisés, avec pour application une transformation de Funk-Radon discrète stable. En
parallèle, di�érents résultats d'invariance par le groupe de symétrie du cube sont montrés
et exploités, tandis que la structure en grands cercles de la grille est mise à pro�t dans
l'étude de matrices de Vandermonde.

Abstract. This thesis deals with mathematical and numerical aspects of re�ective to-
mography and approximation on the sphere. The �rst topic concerns the calculation of
three-dimensional reconstructions in optical imaging using Radon-type transforms. The
work presented, which is partly the result of collaborations with companies, includes ap-
plied aspects such as the development and implementation of algorithms, numerical tests
and a patented method. From a more theoretical point of view, we provide mathematical
support for the subject by examining the singularities; in particular, the microlocal anal-
ysis of the Radon transform establishes a correspondence between the singularities of the
reconstruction and those of the data. Finally, we link Lambertian di�usion and the Radon
transform extended to distributions. The second part deals with approximation on the
sphere in spherical harmonics bases, in the case where the discretization grid is the Cubed
Sphere. We construct a Lagrange interpolant which is minimal for a certain lexicographic
order, and we use it to design an accurate quadrature rule. We also study non-regularized
least squares problems, in particular to de�ne a stable discrete Funk-Radon transform. In
parallel, various results on invariance by the symmetry group of the cube are shown and
exploited, while the great circles associated to the grid are used to study Vandermonde
matrices.
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Introduction

This habilitation thesis is a synthesis of works realized since I was hired as an associate professor
(Maître de Conférences) in 2011. Two independent parts are presented. The manuscript is organized
as follows.

Part I: Mathematical and numerical aspects of three-dimensional op-

tical imaging based on the Radon transform

The �rst part deals with mathematical and numerical aspects of three-dimensional (3D) optical
imaging based on Radon-kind transforms. This subject has been motivated by collaborations with
companies which design innovative imaging systems in visible and infrared optics. My main collab-
orator on this topic is G. Berginc from the company Thales Optronique S.A.

In Chapter 1, we introduce 3D re�ective tomography, which includes an acquisition in visible to
near-infrared optics (VIS-NIR), the inversion of a Radon-kind transform from X-ray tomography,
and 3D visualization. We present the speci�c context of this work, and we exhibit various numerical
results, including 3D reconstructions from real images. This chapter refers to the project report [21],
the proceedings [16,17], the working document [20], the article [8], and the patent [18].

Chapter 2 deals with a mathematical analysis of re�ective tomography. The chosen presentation
follows the chronological order of the results. Firstly, some intuitive understanding is presented; a
parallel with edge detection by the Hough transform is drawn. Secondly, asymptotic models are
sketched to describe the reconstructed geometry and the artifacts. Thirdly, some results extracted
from microlocal analysis justi�es the method in term of singularities. Lastly, we exhibit a framework
where the Radon transform extended to distributions models pure di�use re�ection. This chapter
refers to the letter [12], the note [15], the working document [19], and the articles [3, 8].

In Chapter 3, we propose two unconventional algorithms for problems inspired by re�ective
tomography: a multiresolution greedy algorithm which increases computational e�ciency, and an
algebraic solver for multi-view reconstruction in a general setting. This chapter is based on the
articles [1, 2], and contains new reconstructions obtained by a home-made scanner.

In Chapter 4, we conclude this �rst part with some perspectives.

Appendix A summarizes standard mathematical results about the Radon transform; they include
an inversion formula, reconstruction algorithms, and results from microlocal analysis. These results
provide the main mathematical background for tomography.

Appendix B deals with some physical background about electromagnetic imagery, image forma-
tion in VIS-NIR optics, and X-ray tomography.

Part II: Mathematical and numerical aspects of spectral computing

on the Cubed Sphere

The second part of the thesis deals with the Cubed Sphere, which is a spherical grid widely used
for numerical computation on the sphere, in climatology and meteorology. More speci�cally, my
subjects of interest concern geometrical and metric properties of the equiangular Cubed Sphere, and
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12 INTRODUCTION

computing with spherical harmonics on this grid, including the study of Vandermonde matrices. I
have been working on the subject since 2020, with J.-P. Croisille (UL) and M. Brachet from the
Université de Poitiers.

Chapter 5 deals with mathematical properties of the Cubed Sphere. The shortest geodesic
arcs, whose length is the separation distance of the grid, are given: they especially match with the
vertices of a cuboctahedron. As a consequence of this metric property, the symmetry group of the
Cubed Sphere coincides with the octahedral group. This chapter summarizes the main results of
the article [4].

Chapter 6 tackles Lagrange interpolation on the Cubed Sphere by a spherical harmonic. The
approach especially factorizes a suitable Vandermonde matrix under an echelon form, in order to
eliminate undersampled spherical harmonics. This chapter is a reworking of the article [10] and
contains new results; we have improved the theoretical lower bound on the degree which guarantees
the existence of an interpolating function, and we now describe the interpolating function as the
solution of a lexicographical optimization problem.

In Chapter 7, we design and we study a new octahedral quadrature rule on the Cubed Sphere,
taking bene�t from Lagrange interpolation. Contrary to Gaussian quadrature, where the set of
nodes and weights is solution of a nonlinear system, only the weights are unknown here. Despite this
conceptual simplicity, the new quadrature displays an accuracy comparable to optimal quadratures,
such as the Lebedev rules. This chapter is extracted from the article [9].

In Chapter 8, we study least squares �tting by a spherical harmonic on the Cubed Sphere. The
most important observation is that selecting a degree compatible with the Shannon-Nyquist's fre-
quency along the equatorial great circle provides an approximation problem that is well-conditioned,
whereas violating this condition implies that the condition number explodes when the number of
nodes tends to in�nity. Another point concerns the block diagonal structure of the normal ma-
trix, based on octahedral symmetry consideration; this result permits to improve the computational
e�ciency. The chapter is extracted from the article [11].

In Chapter 9, we de�ne some discrete Funk-Radon transform in a spectral framework based
on least squares �tting on the Cubed Sphere, without regularizing. We exhibit the pseudoinverse
and, as above, we argue that the transform is expected to be stable as soon as the Shannon-Nyquist
condition is ful�lled along the equator. Various numerical experiments attest to the accuracy and the
convergence of the approach, in particular for toy models from di�use Magnetic Resonance Imaging.
This chapter is extracted from the article [5].

Lastly, Chapter 10 concludes this work by a series of perspectives.
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Chapter 1

Three-dimensional re�ective tomography

1.1 Introduction

This chapter introduces three-dimensional (3D) re�ective tomography. We present various aspects of
the subject, including the context of our study, the principle of the method, implementation aspects,
and a wide variety of numerical experiments on synthetic and real data.

1.2 Context

The subject has been motivated by collaborations with companies which work on novel imaging
modalities, in the context described hereafter.

1.2.1 Technological context: three-dimensional active laser imaging

Thales Optronique S.A. (TOSA) is a company specialized in the design and development of inno-
vative optronic systems, in particular in visible and infrared optics. TOSA has patented in 2009
a technology concerning the 3D reconstruction of a scene, based on active laser imagery, [32�35].
Basically, the principle is the following. For the acquisition, a laser source illuminates the scene to
be imaged, for several angular position with respect to the scene. At the same time, some camera
co-located with the source records backscattered intensities. This provides one bi-dimensional (2D)
image of the scene per angular position. In order to clarify expectations, the orders of magnitude
for the characteristic lengths are:

� VIS-NIR wavelengths: 0.4-3 µm;

� diameter of the imaged scene: 10 m;

� distance between the device and the scene: 5 km.

Next, the collected images are injected into processing algorithms, in order to compute a 3D recon-
struction of the scene. The reconstruction step is based on the Feldkamp-Davis-Kress algorithm [48],
from X-ray tomography. Lastly, the reconstructed 3D volume is explored in order to model objects
of interest from the scene, for instance under the form of surfaces. In particular, TOSA has worked
on surface representations [28,29,31], with the Small and Medium Enterprise SISPIA, specialized in
algorithms.

1.2.2 Contractual context

The following contractual context is the initial motivation for my studies on 3D optical imaging.
A collaboration between TOSA and the Université de Lorraine (UL) started in 2012. This

collaboration was formalized by means of a one-year project, entitled Algorithmes de reconstruction
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18 CHAPTER 1. THREE-DIMENSIONAL REFLECTIVE TOMOGRAPHY

et imagerie laser tomographique, supported by the Agence pour les Mathématiques en Interaction
avec les Entreprises et la Société (AMIES)1. I leaded the project; the other participants were G.
Berginc from TOSA and J.-P. Croisille from UL. The project served as a starting point for my works
about 3D active laser imaging based on algorithms from tomography.

For UL, a second collaboration concerning 3D laser imaging started in 2013; it was formalized
by a consortium agreement between SISPIA, TOSA, and UL. The associated two-year project,
entitled DatDriv3D+, was supported by the Direction Générale de la Compétitivité de l'Industrie
et des Services (Ministère du Redressement productif) and the Direction Générale de l'Armement
(Ministère de la Défense). The leader of the project was I. Berechet from SISPIA, G. Berginc was the
leader for TOSA's part, I was the leader for the UL's part; the other participants were S. Berechet
from SISPIA, and G. Rigaud as a postdoctoral researcher UL.

1.3 Principle of re�ective tomography

Three-dimensional (3D) re�ective tomography deals with the reconstruction of a 3D scene, by a
combination of visible to near-infrared (VIS-NIR) optics and algorithms from X-ray tomography.

1.3.1 Acquisition: cone beam scan in VIS-NIR optics

Figure 1.1: Onboard camera.

The acquisition consists in measuring a set of bi-dimensional
(2D) optical images in the VIS-NIR band. It especially collects
images of �re�ecting� surfaces under several angles of view; we
refer to Appendix B.2 for a modeling of VIS-NIR images, includ-
ing the integral equation (B.7) for re�ecting surfaces. Typically,
a motionless scene is observed by a camera with a continuous
motion, such as the onboard camera in Figure 1.1. The wave-
length range is considered as a parameter of the acquisition de-
vice, which can be passive (without light source), or active (with
its own light source).

From a geometrical point of view, the acquisition is a cone beam scan, similar to a tomographic
X-ray scan described in Appendix B.3. Indeed, an ideal camera realizes a perspective projection
(Figure B.4); hence, each 2D optical image contains projections along a cone beam of rays, analogous
to the cone beam of a radiography (Figure B.10).

We assume that this acquisition geometry is known. In other words, any recorded image is
assumed to be calibrated, which means that the intrinsic and extrinsic matrices of the camera are
known in (B.1). In practice, this may require additional measurements or pre-processing steps. For
instance, in [32], some correcting algorithms calibrate the images in order to approach some known
geometry (circular cone beam scan). Also, we refer to textbooks in computer vision for calibration
procedures [57, 73]; this is outside the scope of the presented thesis.

1.3.2 Solver: cone beam computed tomography

The so-called re�ective tomography is an ingenious principle based on the geometrical similarity of a
tomographic scan and the acquisition described above. It consists in injecting 2D re�ective images
into a solver of cone beam computed tomography, in order to compute some 3D reconstruction of the
initial scene. In this way, re�ective tomography is a qualitative inversion procedure which captures
the 3D geometry of re�ecting surfaces. From a physical point of view, a reconstruction from radiant
incidance on pixels [W.m−2] represents a power per unit volume [W.m−3]. Furthermore, the method
is not based on a model of the brightness (incidance) of the recorded pixels; so, pre-processing such
as rescaling the brightness is tolerated.

1https://www.agence-maths-entreprises.fr

https://www.agence-maths-entreprises.fr
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Figure 1.2: Circular cone beam scan. Left: perspective ray (x0, u) through a �xed point x0 = x0(β),
with direction u = u(β, y⊥, y3); the parametrization of the ray considers that the image is formed on
a point y = y⊥θ⊥+y3e3 (in a virtual screen). Right: by rotation around the axis e3, the point x0(β)
scans a horizontal circle. The total set of rays is LCB de�ned in (1.1). In cone beam tomography,
x0(β) is the position of an X-ray source; in re�ective tomography, x0(β) is the position of the optical
center of a camera.

The assumed acquisition geometry impacts the choice of the solver. In this chapter, we focus on
the Feldkamp-Davis-Kress (FDK) algorithm [48], dedicated to a circular cone beam scan (Figure 1.2).
In 3D re�ective tomography [32�35,64], the FDK algorithm computes e�ciently a 3D reconstruction,
sampled on a 3D grid of voxels, from 2D VIS-NIR images.

1.3.3 Reconstruction algorithm for a circular scan: FDK algorithm

The FDK algorithm [48] is one of the most widely used methods in 3D computed tomography. This
method has been designed to �invert� e�ciently the X-ray transform X de�ned by (B.11), in the
case of a circular cone beam scan. The FDK algorithm is a heuristic extension of the 2D Radon
inversion (A.9) and the FBP formula (A.14). It provides some �ltered backprojection operator BΦ
such that

BΦX [f ]|LCB(r,a,b) ≈ f, f : R3 → R.

Here, LCB(r, a, b) denotes the set of rays of a circular cone beam scan, parametrized by

LCB(r, a, b) := {(x0(β), u(β, y⊥, y3)), β ∈ [0, 2π], (y⊥, y3) ∈ [−a, a]× [−b, b]}; (1.1)

the position x0(β) and the direction u(β, y⊥, y3) of a ray are speci�ed in Figure 1.2. The weighted
�ltering Φ and the backprojection operator B are de�ned in the descriptive of the algorithm on the
following page. We refer to [48,78] for a comprehensive derivation of these operators. The practical
implementation of the FDK algorithm is analogous to the FBP algorithm on page 67.

Among the properties of the algorithm, for r →∞, any horizontal cross-section (BΦX [f ])(·, ·, z)
looks like a 2D �ltered backprojection (A.14) from the Radon transform R[f(·, ·, z)], in the plane
x3 = z. In particular, the FDK algorithm is relevant in X-ray tomography, at least if r is large
enough.

1.4 Positioning of the method

1.4.1 Laser reconstruction

Re�ective tomography uses algorithms from transmission tomography for re�ective data, despite the
VIS-NIR wavelengths are much larger than the X-ray ones. To the author's knowledge, this principle
emerged at the end of the 1980s for laser radars [67, 68, 82], and more particularly for laser range
pro�ling. The original re�ective tomography reconstructs a 2D image from one-dimensional (1D)
range pro�les of a rotating target; the solver is a 2D �ltered backprojection. Laser range pro�ling
has been further studied since the 1990s. Various solvers have been tested [74]. The applications
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FDK algorithm.

Input. X-ray transform F : LCB(r, a, b)→ R, measured by the cone beam scan of Figure 1.2.

Step 1.a: weighting. Compute the weighted data set Fw:

Fw(β, y⊥, y3) = w(y⊥, y3)F (x0(β), u(β, y⊥, y3)), w(y⊥, y3) = r
(r2+y⊥2+y32)0.5

.

Step 1.b: �ltering. Compute the horizontal �ltering ΦF :

ΦF (β, y⊥, y3) := F−1
1 {|σ|ĥ(σ)F1[Fw(β, ·, y3)](σ)}, y3 ∈ [−b, b], β ∈ [0, 2π],

where F1(g)(σ) =
∫
g(y⊥)e−iσy⊥dy⊥ is the Fourier transform, and ĥ is an even windowing

function with compact support.

Step 2: backprojection. Compute the backprojection on a grid of voxels: for each voxel
location x, compute BΦF (x) where B is a weighted summation over lines through x,

BG(x) :=

∫ 2π

0

r2

(r − x · θ)2
G(β, y⊥, y3)dβ,

with y⊥ = rx·θ⊥
r−x·θ , y3 = rx3

r−x·θ , θ = (cosβ, sinβ, 0).

Output. FDK reconstruction BΦF , evaluated on a grid of voxels.

include range-resolved imaging of satellites [71,75,76]. See also [30,40,59,102] for works realized in
the past decade.

In 3D active laser imaging [32�35], the reconstruction principle shares similarities with range
pro�ling, but the input data are 2D optical images instead of 1D range pro�les, and the output
is a 3D reconstruction, computed with a 3D solver from tomography. This is very similar with
the method of [52], where 3D models of an object are computed from photographs in the visible
band; the method relies on one 2D �ltered backprojection per horizontal cross-section, assuming
orthographic rays for a large focal length.

1.4.2 Geometric tomography

Essentially, an optical image contains a perspective projection of a scene. Reconstructing the geom-
etry of the scene from such data enters into the framework of geometric tomography :

�Geometric tomography is the area of mathematics dealing with the retrieval of
information about a geometric object from data about its sections, or projec-
tions, or both�, [51].

In 3D re�ective tomography, the data are related to the geometry of the scene, but also to physical
parameters such as the BRDF (described in (B.6) and Figure B.7). Using algorithms from X-ray
tomography such as the FDK algorithm appears to be an e�cient way of combining these data for
recovering the geometry.

1.4.3 Multi-view stereo

3D re�ective tomography enters also in the framework of multi-view stereo:

�The goal of multi-view stereo is to reconstruct a complete 3D object model from
a collection of images taken from known camera viewpoints�, [95].

There exists a huge variety of methods for multi-view stereo; see for instance [57, 73, 98] and the
references therein. We can clarify the position of the method discussed so-far, following the six-point
taxonomy of [95]:
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1. Scene representation: the reconstruction is computed on a grid of 3D voxels.

2. Photoconsistency measure: the method does not need the comparison of pixel values in di�erent
images.

3. Visibility model: the method does not need to predict visibility and occlusions.

4. Shape priors: the method does not need shape priors.

5. Reconstruction algorithm: the FDK algorithm from cone beam computed tomography is the
solver.

6. Initialization requirements: the FDK algorithm is direct and does not need an initialization.

This list emphasizes that 3D re�ective tomography is robust.
Furthermore, re�ective tomography is related to the shape from silhouette, where a visual hull of

the scene [26,72] is obtained by some backprojection of binarized images containing the silhouettes.
In comparison, the FDK algorithm is a backprojection, but it is combined with a �ltering, and
the images are not required to be binary. The shape from silhouette is a common initialization in
multi-view stereo; one may imagine 3D re�ective tomography as an alternative method.

1.5 Visualization

We have discussed so far 3D re�ective tomography as the computation of a 3D grid of voxels, based
on algorithms from transmission tomography. In this section, we further analyze such a 3D volume
in order to represent, visualize, or extract some objects of interest. In Figure 1.3, we display a
reconstruction using three usual techniques [101]:

(a) Slicing: a 2D cross-section is extracted and directly displayed. This method is exact and simple,
but it is di�cult to appreciate 3D structures.

(b) Surface rendering: a surface is extracted by the means of thresholding, and a 2D synthesis
image, eventually based on radiometric concepts, is displayed. The computation is e�cient and
3D solids are nicely represented, but thresholding may be tricky and lacunarities may appear.

(c) Volume rendering: the 2D displayed image is a �projection� of the whole 3D volume. The
projection is more or less sophisticated and eventually based on models of light propagation
such as radiative transfer. A single view somehow captures simultaneously any 3D structure.

(a) Slice. (b) Surface rendered. (c) Volume rendered (MIP).

Figure 1.3: Three visualizations of a 3D re�ective tomography reconstruction.

In re�ective tomography, the surfaces of the original scene are observed to be located near the
peaks of the reconstruction. In order to extract the objects of interest, we need especially to extract
the brightest voxels. Using the coordinates of such voxels in a reference frame, we obtain a point
cloud of the scene. Using the extracted voxels, or the point cloud, surfaces are deduced, by processes
such as interpolation (or data approximation).
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The rest of this section is devoted to volume rendering and the extraction of point clouds. We
relate these two �elds as in the international patent [18].

1.5.1 Volume rendering

Figure 1.4: Image formation
through a MIP camera.

Concerning volume rendering, it appears that we want espe-
cially to visualize surfacic points, represented by bright voxels.
This motivates the use of the Maximum Intensity Projection
(MIP), as it is performed in [52], [16, 17], [18]. Indeed, the
MIP projects a volumetric �intensity� onto a screen of pixels
along straight rays; each pixel records the maximum intensity
along the corresponding ray, as in Figure 1.4. Hence, in 3D re-
�ective tomography, the MIP e�ciently computes a contrasted
image of the reconstructed surfaces (up to artifacts), as in Fig-
ure 1.3(c). The simplest form of MIP is free of parameters, and improvements are available, such as
removal of unexpected voxels by thresholding, or perception of distance improved by the means of
an attenuation coe�cient [101]. In practice, the rendered image is often adjusted by the means of
thresholding, rescaling, or color mapping.

More formally, after some eventual processing such as restriction to a sub-volume of interest,
thresholding, rescaling, sign reversal, or whatever, the 3D reconstruction de�nes a compactly sup-
ported function F : R3 → R. As in Figure 1.4, we display such a volumetric reconstruction F using
a perspective MIP camera, de�ned for a geometry of projection as in Figure B.4. More precisely, the
MIP of F , at a pixel located at x̂, is de�ned by

ΠF (x̂) := max
x∈[c,x̂)

F (x) = max
λ≥0

F (c+ λuc,x̂). (1.2)

Here, c represents an optical center, [c, x̂) is the ray through the pixel x̂ (half-line), uc,x̂ = x̂−c
|x̂−c| is

the direction of the ray, λ ≥ 0 is the depth of a point x = c+ λuc,x̂ of the ray. Such a MIP camera
has an intrinsic matrix, and an extrinsic matrix, similarly as (B.1); changing the focal length in
the intrinsic matrix enables zooming in/out, while changing the position and the orientation in the
extrinsic matrix provides several points of view. In practice, automatized scenario of visualization
can be used, such as displaying a (MIP) cone beam scan of the whole reconstruction, with a pre-
de�ned threshold. It is also possible to proceed interactively.

Remark 1.1. Other volume rendering methods can be obtained analogously: �x ΠF (x̂) := ‖F |[c,x̂)‖p
with p ∈ [1,∞] (for p = 1, this is an X-ray transform, for p =∞, this is a MIP).

1.5.2 Point clouds

To go further with the extraction of objects from the reconstruction, representations based on point
clouds are also of particular interest. The most intuitive way of extraction is based on thresholding;
a point cloud is obtained by the coordinates of voxels with intensity between thresholds. In order
to densify the point cloud, this procedure is iterated, on several sub-volumes and with several
thresholds. More inventively, an e�cient selection of voxels can be operated by the MIP [18]. As
explained previously, the MIP displays an intensity map corresponding essentially to surfacic voxels.
We select some pixels of the displayed image by thresholding; then, the associated voxels/points are
extracted. See Figure 1.5 for an example. Formally, for a MIP image (1.2), this process de�nes some
points under the form

x̄ = arg max
x∈[c,x̂)

F (x) ∈ R3; (1.3)

the corresponding pixel of the MIP image (1.2) has the position x̂ and the intensity ΠF (x̂) = F (x̄).
Here again, the procedure is iterated, for various sub-volumes, and various thresholds. This method,
which uses the MIP as a compression method to extract a point cloud, is performed interactively,
or some automatic scanning scenario is pre-de�ned.
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Figure 1.5: Superposition of three point clouds extracted from three (orthographic) MIPs.

1.6 Implementation

As far as X-ray inversion and 3D volume rendering are concerned, I have developed various codes
in various languages. Brie�y, some codes are essentially dedicated to tests in Matlab. Another
code developed in CUDA C demonstrates the e�ciency of the combination FDK-MIP in re�ective
tomography.

1.6.1 Matlab codes for testing

Numerical tests and numerical illustrations are often performed in Matlab, eventually interfaced
with compiled codes to reduce the computational time.

In particular, I have developed Matlab codes for FBP algorithms in various acquisition geometries
[21], following [78, Chap. 5]. These codes include the inversion of the Radon transform by the FBP
algorithm for a parallel scan in 2D, and the FDK algorithm for a circular cone beam scan in 3D.
Various strategies have been used to reduce the computational time. The �rst one consists in
avoiding loops using vectorization. The second one deals with distributing the computation on
several cores (with the function parcellfun in Octave). The third one tackles the bottleneck of
the FDK algorithm: the most time-consuming task is the backprojection step (typically in O(N4)
operations), so I have developed a Fortran code dedicated to this task. It signi�cantly reduces the
computational time.

Concerning 3D visualization of a 3D grid of voxels, I have developed a ray tracer in Matlab for
3D volume rendering such as the MIP, the X-ray transform, or the attenuated X-ray transform.
Also, the Matlab code of the MIP has been translated into a C code and a CUDA C code; here again,
calling one of these compiled codes can accelerate the computation (which typically requires O(N4)
operations for video rendering).

1.6.2 Interactive software in CUDA C

In 2014, I developed an interactive software in CUDA C, using [92] as a reference for CUDA pro-
gramming. The code especially combines the FDK algorithm and a MIP rendering on a Graphics
Processing Unit (GPU).

The FDK reconstruction is a grid of voxels which is computed and stored on the GPU. The
weighted �ltering is based on the Fast Fourier Transform of the cuFFT library. For the backprojection,
the computations are massively parallelized; the voxels are computed independently. Note that
programming e�ciently the FDK algorithm on a GPU is a subject of concern by itself; see for
example [36, 81,89,91,93].

Concerning the display of the FDK reconstruction, any MIP view is computed directly on the
GPU and is displayed on the computer screen using OpenGL. Furthermore, the GLUT library is used
to manage interactions with mouse/keyboard. This provides a rendering software that enables to
move as a virtual observer inside the reconstructed volume. The displacements of the camera are
managed by the mouse, whereas some other parameters such as thresholding or the limits of the
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region of interest are managed by the keyboard. Last but not least, the display is updated in �real
time�; the rendering software is interactive.

The resulting home-made software has demonstrated the e�ciency of FDK-MIP on various test
cases from TOSA, during the DatDriv3D+ project. In 2015, some video clips, produced by means
of this software, have been shown during a research exhibition at Thales (Thales Research Days).

1.7 Reconstruction from real data

We demonstrate the strength of re�ective tomography on two test cases with real data. The 2D
images have been measured by TOSA, using active laser imagery in the VIS-NIR band. The acqui-
sition is assimilated to a circular cone beam scan such as Figure 1.2. The tomography solver is the
FDK algorithm, and the display is a perspective MIP as in Figure 1.4. The computation and the
display are performed with the home-made software described in Subsection 1.6.2.

1.7.1 Circular cone beam scan

For the �rst test case, displayed in Figure 1.6 and published in [8], we consider a sequence of 360
images of size 181×342; see (a) for some samples. The acquisition geometry is similar with Figure 1.2;
the angle β scans a uniform grid, with a one degree step. A FDK tomographic reconstruction
181 × 181 × 342 is computed in 2.6 seconds on a GPU Nvidia Tesla C2075. As can be observed in
the snapshots (b) of the interactive display, the reconstruction contains surfaces of the original scene
with many features and details, useful for identi�cation purposes.

(a) Input dataset (courtesy of TOSA): 360 VIS-NIR active images of size 181 × 342. Here, six
samples of the sequence are displayed.

(b) Volume rendering of a 3D tomographic reconstruction (home-made software). The reconstruction
is a grid of 181× 181× 342 voxels; it is computed by the FDK algorithm in 2.6 seconds on a GPU
Nvidia Tesla C2075. The display is a MIP computed interactively.

Figure 1.6: First test case: 3D re�ective tomography from a circular cone beam scan in VIS-NIR
optics.

1.7.2 Limited view with occlusions

The second test case, displayed in Figures 1.7-1.8 and published in [16, 17], is more challenging.
The scene is a car partially occluded by branches and foliage, and the cone beam scan is performed
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only over a half-circle. Some images of the sequence and slices through the dataset are displayed in
Figure 1.7. The dataset contains 181 images of size 421 × 342; in degrees, the angle β ranges from
0 to 180, with a one degree step. Two kinds of incompleteness are noticed: incompleteness due to
occlusions, and angular incompleteness due to a restriction of the angular range.

(a) Samples of the input sequence (color mapped).

(b) Slices through the input dataset 181× 421× 342.

Figure 1.7: Second test case: 3D re�ective tomography from limited view with occlusions in VIS-NIR
optics. The input dataset (courtesy of TOSA) contains 181 VIS-NIR active images of size 421×342,
associated to a half-circular cone beam scan.

Despite incompleteness, a tomographic reconstruction can still be computed by the FDK al-
gorithm; here, the backprojection integrates only over the known angular range. The home-made
software, executed on a Nvidia Tesla C2075, computes the weighted �ltering by cuFFT in 0.4 second,
and the backprojection on a grid of 421 × 421 × 342 voxels, in 3.6 seconds. The reconstruction is
displayed in Figure 1.8. Two di�erent MIP views of the whole scene are represented in (a). We
have also interactively separated some regions of interest: branches are isolated at the right of (a),
whereas the car is displayed alone in (b), after removal of branches and foliage. This test case shows
that 3D re�ective tomography can automatically overcome issues due to occultation.

1.8 Numerical experiments

We test the principle of 3D re�ective tomography on several classes of images, from a numerical point
of view; we consider a Gouraud model, cartoon images with discontinuities, images of a randomized
pattern, and noisy images. Overall, these tests show that the method computes the initial geometry,
displays it under the form of contrasted images, in a robust and stable way. These results are
extracted from [20] and we refer to [17] for similar results.

1.8.1 Reconstruction from a Gouraud model of the Stanford Bunny

We test 3D re�ective tomography on the Stanford Bunny [100], enlightened by a Gouraud model [53].
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(a) Whole 3D reconstruction, and interactively extracted branches.

(b) Interactively extracted car.

Figure 1.8: Second test case: 3D re�ective tomography from limited view with occlusions in VIS-
NIR optics. See Figure 1.7 for the input dataset (courtesy of TOSA). The reconstruction is a grid
of 421× 421× 342 voxels, computed by the FDK algorithm in 4.0 seconds on a GPU Nvidia Tesla
C2075 (home-made software). Here, the interactive MIP is used to display and to extract objects of
interest from the reconstruction (home-made software).

At a �rst step, we read the full resolution Stanford Bunny (69451 faces) with the read_ply

function from [83]. We �color� the faces of the object with the smooth pattern x 7→ 1+0.5 sin(20π|x|)
(in some system of coordinates), computed at the vertices and extended to the faces by interpolation.
We generate 1605 images of size 397× 312 with the Gouraud model of Matlab; a black background
is considered. A circular scan is performed: vertical images are obtained by a rotation of the Bunny
over 360 degrees, with a constant angular step. We display 6 images of this sequence in Figure 1.9.

Figure 1.9: Gouraud images of a patterned Stanford Bunny. Here, 6 samples (step of 60 degrees) of
a circular cone beam scan comprising 1605 images of size 397× 312.

Next, we compute a 3D tomographic reconstruction F . In Figure 1.10, we display a MIP render-
ing of the reconstruction from several angles of view. The �rst line of this �gure is some re-projection
associated to Figure 1.9 since the rays of projection are similar. The second line contains novel views
of the scene. Contrasted representations of the scene are obtained.

We evaluate now the reconstruction-visualization procedure. In Figure 1.11, we examine the
quality of an aerial MIP view ΠF , displayed in (a). We focus here on an horizontal aerial view, since
forming such a view from vertical images is the core of the prediction problem. We discriminate
the pixels corresponding to surfacic points of the initial object, as follows. For any pixel x̂ of the
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Figure 1.10: 3D tomographic reconstruction from a Gouraud model of a patterned Stanford Bunny.
Two sequences of MIP views are displayed. Top: a rotation around the vertical axis (60 degrees step)
generates re-projected views, associated to the original images of Figure 1.9. Bottom: a rotation
around a horizontal axis (30 degrees step) predicts novel views of the scene.

MIP image, we compute an estimation of the distance d(x̂) between the visualized voxel x̄ selected
by (1.3) and (the initial faces of) the Stanford Bunny. Then, x̄ is considered as a surface point of
the initial object if and only if d(x̂) < δ, where δ denotes the edge length of a voxel. Therefore,
we form two images based on this criterion: in (b), the map x̂ 7→ 1d(x̂)<δΠF (x̂) is an extraction of
relevant pixels representing surface points, and in (c), the complementary map x̂ 7→ 1d(x̂)≥δΠF (x̂)
contains pixels which do not represent the initial object.

(a) (b) (c)

Figure 1.11: Discrimination of pixels representing surface points. (a) Aerial MIP image of a 3D
reconstruction from vertical images of the Stanford Bunny. (b) Pixels of (a) associated to surface
points of the Bunny. (c) Pixels of (a) which do not correspond to the Bunny. Here, (a) is an output
of the visualization procedure, (b) contains a �true� information about the initial scene, (c)=(a)−(b)
represents an error.

We compute some statistics in order to quantify the quality of the aerial MIP image: 15% of
the pixels in ΠF correspond to voxels associated to surface points, they explain 43% of the total
intensity of the image. The ratio of these values de�nes a concentration of the intensity among the
�true� pixels; the value is 2.91. In comparison, among the other pixels, the concentration of the
intensity is 0.66. Therefore, in average, the intensity of a true pixel is 4.38 times the intensity of
another pixel. This supports the following claim: for a MIP rendering in re�ective tomography, the
bright points correspond to the surfaces of the initial scene.

1.8.2 Reconstruction from cartoon images of a non-convex object

We test the principle of 3D re�ective tomography in the case of cartoon images of a non-convex
object. In particular, we illustrate the impact of discontinuities.

We consider a sphere with a dent, de�ned in spherical coordinates by

ρ = 1 + 0.75(r − 1)1r<1, r := 1
0.08 [(ψπ + 1

4)2 + (2φ
π + 1

6)2], ψ ∈ [−π, π], φ ∈ [−π
2 ,

π
2 ],
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where ψ is the azimuth, φ is the elevation, and ρ > 0 is the radius; we compute this object in Matlab

from a discrete version of the sphere, discretized with 6402 patches. For a �xed parameter m ≥ 0,
we de�ne on this surface a piecewise constant pattern in spherical coordinates:

(ψ, φ) 7→ pm(ψ)pm(φ), with pm(s) = 0.5 + 0.251(ms−bmsc)<0.5. (1.4)

We simulate a circular scan of this patterned object; we generate 801 images of size 201 × 201
(constant angular step), using plot of surfaces in Matlab. Cartoon images are considered: the
brightness of a pixel is directly the value of the pattern at the visible point. Next, we compute a
MIP of a tomographic reconstruction (restricted to a half-space) from this scan. In Figure 1.12, we
display one image of the scan and the corresponding MIP re-projection, for severals values of the
parameter m.

For m = 0, any image of the scan is binary, and contains the silhouette of the object. In this case,
the concavity cannot be recovered, since the visual hull [72] has the same silhouettes than the object
itself. On the contrary, for m > 0, the discontinuous pattern permits to reconstruct the object with
a pattern whose structure is similar. In particular, the concavity appears clearly. Also, it is worth
noting that the boundary of the concavity, which corresponds to some geometrical discontinuity, is
emphasized in any case.

Figure 1.12: 3D tomographic reconstruction from 801 cartoon images 201 × 201, for a non-convex
object with a discontinuous pattern. Top: one image of the input sequence. Bottom: MIP re-
projection of the reconstruction. From left to right: the pattern (1.4) on the object has more and
more discontinuities, m = 0, 1, 2, 4, 8, 16.

1.8.3 Reconstruction from a randomized pattern

We test the principle of re�ective tomography on cartoon images of a randomized pattern, which
draws some parallel with an active surface whose re�ectance varies.

We consider some circular scan Fσ(β, y⊥, y3) of the Stanford Bunny, where σ ≥ 0 is a �xed
parameter. This dataset comprises 801 images of size 200 × 157. For any angle β, we consider a
pattern on the Bunny, de�ned by

x 7→ 1 + (0.2 + ση1(β)) sin(πση2(β) + 20π|x|), (1.5)

where the ηi(β) are independent realizations of the GaussianN (0, 1). The image Fσ(β, ·, ·) is assumed
to be a cartoon image obtained by projection of this pattern. Note that the projected pattern depends
on β; this dependence is severe if σ is large. On the �rst line of Figure 1.13, we represent a slice in
the dataset, (β, y⊥) 7→ Fσ(β, y⊥, 0), for several values of σ. In this �gure, for σ = 0, a point which
is visible through some angular range appears along a level set. For σ > 0, this point appears along
the same curve, but this is no longer a level set since it is projected with values depending on β.
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We compute a tomographic reconstruction from each of these datasets, and we display a MIP
image of the reconstruction on the second line of Figure 1.13. As can be observed, the scene is
successfully recovered, despite randomized projections. In particular, some �coherent� information
such as the silhouette is automatically extracted. In fact, the principle of re�ective tomography is
robust; it captures the structure of a dataset without measuring photoconsistency.

Figure 1.13: 3D tomographic reconstruction from the randomized pattern (1.5). From left to right,
the angular dependency of the pattern becomes more and more severe: σ = 0, 2j , −2 ≤ j ≤ 2. Top:
horizontal slice (β, y⊥) 7→ Fσ(β, y⊥, 0) in the dataset. Bottom: MIP view of the reconstruction.

1.8.4 Reconstruction from noisy images

We realize a stability test considering reconstruction from noisy datasets, for speckle noise.
We consider a Gouraud model of the Stanford Bunny as in Subsection 1.8.1; we denote by F

the dataset, comprising here 801 images of size 200× 157. For normalization purposes, we apply a
linear scaling such that the range of F becomes [1, 2] (F := 1 + F−minF

maxF−minF ). For a �xed parameter
σ ≥ 0, we introduce a dataset Fσ with a speckle noise of magnitude σ,

Fσ = F (1 + ση), (1.6)

where η contains 801×200×157 independent realizations of the GaussianN (0, 1) (and the operations
are de�ned component wise). Then we compute a tomographic reconstruction from the dataset Fσ.
In Figure 1.14, we display one image of the input sequence and the corresponding MIP re-projection,
for several values of σ. We observe that the visual perception of the reconstructed scene is stable.

Figure 1.14: 3D tomographic reconstruction from a Gouraud model disturbed by a speckle
noise (1.6). From left to right, the level of speckle noise is σ = 0, 0.3, 0.6, 0.9, 1.2, 1.5. Top:
one noisy image of the input sequence. Bottom: MIP re-projection of the reconstruction.
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Chapter 2

Mathematical analysis of re�ective

tomography

2.1 Introduction

Three-dimensional re�ective tomography relies on algorithms from X-ray transmission tomography,
applied on optical images in the VIS-NIR band; 2D VIS-NIR images are injected into a 3D to-
mography solver, such as the FDK algorithm, in order to compute a 3D reconstruction. From a
mathematical point of view, image formation in VIS-NIR optics may be described by a re�ective
model, such as the rendering equation (B.7) for the radiance; the records are radiant incidances,
modeled by (B.5), whereas the solver aims at inverting the X-ray transform (B.11). This principle
of reconstruction introduces some points to be mathematically clari�ed.

Indeed, there is no guarantee that the recorded data belong to the range of the X-ray transform.
A visible point of the scene may appear with di�erent incidances on di�erent images; this is di�erent
from the X-ray transform, where a point contributes in the same manner on di�erent rays (by the
means of an attenuation coe�cient independent from the ray). Furthermore, many materials are
opaque for VIS-NIR wavelengths, which produces occlusions. This is a source of non-linearity and it
implies that optical images are not expected to be directly in the range of the linear X-ray transform.

Therefore, some mathematical gap to be �lled can be expressed as follows: what is the meaning of
an X-ray inversion of data which do not belong to the range of the X-ray transform? Moreover, any
occlusion introduces some incompleteness in the data [12]. Hence, another question arises concerning
the artifacts; the artifacts resulting from the occlusions must be clari�ed. Such questions are the
initial motivation of the works presented in this chapter.

We emphasize some mechanisms of re�ective tomography in order to understand the meaning
of the reconstruction and to describe the artifacts. We analyze some model problems, where the
solver is an X-ray inversion, but the data are not assumed to be in the range of the X-ray transform.
To simplify the analysis, we restrict our attention to 2D models, where the X-ray transform is the
Radon transform, the acquisition geometry is a parallel scanning, and the inversion procedure is a
�ltered backprojection (FBP). This is some limit case of the FDK algorithm (r →∞): for a camera
with a large focal length in far �eld, and a horizontal circular cone beam scan, the FDK algorithm
reduces to such a 2D inversion for each horizontal cross-section, analogously to [52], [12]. We refer
to Sections 1.3.3 and A.6 for details concerning the FDK algorithm and the FBP.

At a �rst step, we propose some intuitive interpretation of the FBP as an accumulator array;
each pixel value represents an accumulation of �coherent� contrasts along a sinusoid [15]. In this
way, re�ective tomography looks like a �dual� approach to edge detection by the Hough transform in
image processing [44]. In a second step, we formulate a geometrical model of re�ective tomography,
in the case of piecewise smooth re�ective projections [19]. It includes some description of expected
artifacts. The model relies on a high frequency asymptotics of the FBP, when the cuto� pulsation
tends to in�nity. In a third step, we discuss re�ective tomography using microlocal analysis of the
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Radon transform, as described in Section A.8. This analyzes the problem in term of singularities.
The reconstructed geometry, and the artifacts, are encoded by a wavefront set, in correspondence
with the wavefront set of the dataset [8]. Lastly, we consider the speci�c case of a Lambertian convex
re�ector [3]. In this case, we have more than a correspondence of singularities: a suitable processing of
the projections satis�es an exact Radon formula, based on the extension to distributions described in
Section A.4; therefore, re�ective tomography can be understood here as an extension of transmission
tomography, obtained mathematically by extending the Radon transform to distributions.

2.2 Accumulator array of coherent contrasts

2.2.1 Projection of opaque objects

Figure 2.1: Projection of
opaque objects.

In this section, we consider a model of projection as Figure 2.1. In
a plane, we represent the boundary of a collection of opaque objects
by a bounded set Γ ⊂ R2; we assume that Γ is a disjoint union of
piecewise smooth Jordan curves. The scene Γ is projected towards a
screen of sensors aligned with a direction θ = (θ1, θ2) ∈ S1, along the
orthogonal direction θ⊥ = (θ2,−θ1) ∈ S1; for instance, the two dotted
lines of Figure 2.1 represent two rays of projection. On a line x ·θ = s,
where s ∈ R is a parameter, the visible point y(θ, s) ∈ Γ is such that
the ray from y(θ, s) does not meet Γ. In this case, the sensor records
an information F (θ, s), which depends on the visible point and on the
angle,

F (θ, s) = f(y(θ, s), θ). (2.1)

The function f is analogous to the radiant incidance, or the radiance of the visible point, in (B.5);
f(y, θ) represents the brightness of the visible point y on a screen de�ned by θ. If the line x · θ = s
does not meet Γ, we �x F (θ, s) = 0 (�background�). To �nish with, the same process is repeated
for several orientations of the screen; the angle θ scans a �nite set Θ ⊂ S1. In this way, the dataset
is F (θ, s), θ ∈ Θ, s ∈ R. By de�nition, for any angle θ ∈ Θ, the projection s ∈ R 7→ F (θ, s) is a
compactly supported function, de�ned by (2.1) on the support.

Figure 2.2: Example of dataset.

For illustration purposes, an example is con-
sidered in Figure 2.2. To simplify, the surface
function f(y) of this example does not depend
on the angle (as for cartoon images). On the
left, we display the projection F (θ0, s) of f(y),
for a �xed angle θ0. On the right, we display the
dataset F (θ, s); the angle θ ∈ Θ scans a uniform
discretization of S1,

Θ = {(cos iδθ, sin iδθ), 0 ≤ i ≤ 359}, δθ = π
180 .

Any point y ∈ Γ appears in F along pieces of
the sinusoid y · θ = s, with brightness f(y); in general, y ∈ Γ does not appear along the whole
sinusoid, due to occlusions.

2.2.2 Assumptions: piecewise smoothness

In this section, we assume for technical reasons that for any θ ∈ Θ, the projection F (θ, ·) : s 7→ F (θ, s)
is a piecewise smooth function, with a �nite number of singularities. In particular, this assumption
tolerates the following discontinuities.
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� At the boundary of the support of the projection F (θ, ·), F (θ, ·) jumps from the value 0 of
the background to the value f(y(θ, s), θ) of the visible point y(θ, s) ∈ Γ. For instance, on the
left of Figure 2.2, such a discontinuity occurs for the value of s associated to the bottom-left
corner of the triangle. This kind of jump is directly related to the geometry of Γ.

� In the support of the projection F (θ, ·), the visible point s 7→ y(θ, s) may jump. For instance,
in Figure 2.1, there exists a critical ray x · θ = s such that y(θ, s) jumps from the triangle to
the star. Such a jump for y(θ, s) may imply a discontinuity for F (θ, s) = f(y(θ, s), θ), even if
f is smooth. This kind of jump is directly related to the geometry of Γ.

� In the support of the projection F (θ, ·), even if s 7→ y(θ, s) is continuous, the surface function
y ∈ Γ 7→ f(y, θ) may be discontinuous, which may introduce discontinuities in the projection
F (θ, s) = f(y(θ, s), θ). For example, in Figure 2.2, a jump of f on the triangle introduces a
jump for F (θ0, s). This kind of jump can depend on the geometry of Γ; it can also be related
to physical parameters (discontinuities at the interface between separate materials).

Notice that our considerations does not use any equation on f(y, θ); in particular, f is not constrained
to satisfy a rendering equation such as (B.7).

2.2.3 A reconstruction formula

Following the principle of re�ective tomography, we introduce an X-ray transform for the considered
acquisition geometry. Here, the scene is projected along lines x·θ = s with (θ, s) ∈ S1×R. Therefore,
the well-suited X-ray transform is the Radon transform R de�ned by (A.1),

Ra(θ, s) =

∫
x·θ=s

a(x) d` =

∫
R
a(sθ + tθ⊥) dt, (θ, s) ∈ S1 × R, a : R2 → R. (2.2)

Then, we reconstruct the scene from the dataset F de�ned in (2.1), by a FBP inspired from the
Radon formula (A.9) and the FBP (A.14). Indeed, we de�ne a reconstruction formula by

I[F ](x) := B[F ? ψΩ](x), x ∈ R2, (2.3)

where, ? denotes the convolution with respect to the variable s, the convolution kernel ψΩ(s) is
de�ned by (A.13), and the operator B is the discrete backprojection

Bg(x) =
∑
θ∈Θ

g(θ, x · θ), x ∈ R2. (2.4)

In comparison with the original FBP (A.14), the tomographic projection Rf has been replaced by
the re�ective projection F , and the backprojection R∗ de�ned in (A.5) has been replaced by an
analogous discrete operator. Note that the reconstruction (2.3) is a smooth function

I[F ] ∈ E(R2).

Indeed, for any θ ∈ Θ, the projection F (θ, ·) is a function with compact support, and is assumed to
be piecewise smooth. Then, for similar reasons than (A.16),

F (θ, ·) ? ψΩ = F−1
1 {F1[F (θ, ·)]F1[ψΩ]} ∈ E(R) ∩ S ′(R),

where F1 denotes the Fourier transform (A.2). Therefore, x 7→ F (θ, ·) ? ψΩ(x · θ) ∈ E(R2), and we
conclude by a �nite summation over θ.

Equivalently, the reconstruction formula (2.3) is given by

I[F ](x) = B[ 1
4π∂sF ? φΩ](x), x ∈ R2, (2.5)
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Figure 2.3: Reconstruction by FBP from the projection F of Figure 2.2. The FBP from a single
projection F (θ0, ·) is a backprojection (c) from the �ltered projection F (θ0, ·) ? ψΩ (a). The total
FBP I[F ](x) (d) is a summation through the sinusoid x · θ = s in the �ltered dataset F ? ψΩ (b).

where φΩ is a regularization of the Hilbert transform, de�ned by

φΩ = F−1
1 [−i sign(σ)ĥΩ(σ)] ∈ E(R) ∩ S ′(R); (2.6)

here, ĥΩ : R → [0, 1] denotes a windowing function which is even with compact support [−Ω,Ω].
In (2.5), 1

4π∂sF ? φΩ = F ? ψΩ, and for any θ ∈ Θ, ∂sF (θ, ·) ∈ E ′(R) is a distributional derivative
with compact support.

For illustration purposes, Figure 2.3 deals with the reconstruction from the projection of Fig-
ure 2.2. Filtering is illustrated for a single projection in (a), and for the whole dataset in (b). The
backprojection from a single �ltered projection is displayed in (c), superimposed with the initial Γ.
The �nal reconstruction is the backprojection from the full �ltered dataset, displayed in (d).

2.2.4 Accumulation of coherent contrasts

We discuss the proposed formula (2.5), using Figure 2.3 as an illustration. The �rst comments deal
with �ltering. Due to piecewise smoothness, a �ltered projection is equal to

1
4π∂sF (θ, ·) ? φΩ(t) = 1

4π

∫
R
{∂sF (θ, s)}φΩ(t− s)ds+ 1

4π

∑
s∈j(θ)

[F (θ, s)]φΩ(t− s), (2.7)

where {∂sF (θ, s)} denotes the usual derivative of F (θ, s) (de�ned almost everwhere), the �nite set
j(θ) contains the points s where F (θ, ·) jumps, and [F (θ, s)] = F (θ, s+)− F (θ, s−) is the amplitude
of a jump. Therefore, �ltering especially enhances variations and discontinuities, as in (a-b). Also,
due to the shape of the kernel φΩ, the right term in (2.7) behaves like a zero-crossing detection of
contours in the projection F (θ, ·), as in (a); recall that some associated jumps are directly related
to the initial geometry Γ, as described in Subsection 2.2.2.

Secondly, the backprojection of a single �ltered projection de�nes a plane wave

x 7→ 1
4π∂sF (θ, ·) ? φΩ(x · θ),
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as in (c). Due to the structure of ∂sF (θ, ·) ? φΩ, the most signi�cant values of this plane wave are
related to contrasts in F (θ, ·). Next, the reconstruction I[F ] is a summation of these plane waves
(d). It contains essentially �small� values. Nevertheless, �large� values appear when the summation
contains signi�cant values which are constructively added. These values correspond to �coherent�
signi�cant contrasts, and this explains intuitively why some part of Γ is bright in the reconstruction.

This phenomenon appears clearly in (b) and (d). Indeed, for any reconstruction point x, I[F ](x)
represents a summation along the sinusoid x · θ = s in the �ltered dataset 1

4π∂sF ? φΩ (b). For
a �generic� point x1, the �ltered values, along the sinusoid x1 · θ = s, are �incoherent�, and their
summation I[F ](x1) is �small�. On the contrary, for some speci�c points x0, the sinusoid x0 · θ = s
contains a portion of signi�cant values which are �coherent�; in this case, I[F ](x0) is �large�. These
speci�c points especially include points which are close to Γ, because if x0 ∈ Γ, then x0 is visible
along some portions of the sinusoid x0 · θ = s, so �coherence� is expected along these portions.

Finally, the reconstruction looks like some �accumulation of coherent contrasts, backprojected
at their initial location in space�. Peaks are expected near the initial surfaces, and especially near
points which appear along coherent contrasts in the projections. For the considered example, one
reconstruct some contrasted image of Γ, even for non-convex portions. Also, the right of the star
appears uniformly in the dataset (f is constant); such a lack of contrast implies that the associated
geometry is not reconstructed.

2.2.5 Parallel with edge detection by the Hough transform

We draw some parallel between re�ective tomography and edge detection by the Hough transform.
In image processing, the Hough transform is a standard way of �nding edges in an image.

Basically, a binary image of contours is computed. Then an accumulator array A(θ, s) is computed
by the Hough transform: along any line x · θ = s, A(θ, s) counts the number of pixels labeled as
contour. Any peak in the array A(θ, s) is associated to a line x · θ = s that may contain an edge of
the original image.

Re�ective tomography looks like a similar approach for sinusoid detection. Filtering enhances
contrasts and contours in the known image F (θ, s). Then the backprojection B sums along sinusoids
x · θ = s. The resulting reconstruction I[F ](x) plays the role of an accumulator array; the peaks are
associated to sinusoids which may correspond to visible points of the initial scene.

Both methods start by enhancing the desired structures. And both methods compute some
accumulator array by a summation along sets x · θ = s. For edge detection, the summation is per-
formed by the Hough transform, along lines with parameter (θ, s). For tomography, the summation
is performed by the backprojection B, along sinusoids with parameter x. Therefore, a FBP looks
like a �dual� approach to edge detection by the Hough transform.

2.3 Asymptotic and geometrical modeling

2.3.1 Introduction

In Section 2.2, we have essentially interpreted some model of re�ective tomography as an accumu-
lation/cancellation of coherent/incoherent waves. We further investigate this point, from a quan-
titative point of view. Summation of waves is often studied in a framework of high frequency
asymptotics. Arguments such as stationary phase approximation lead to geometrical modeling; this
is for instance the basis of geometrical optics. We follow such a strategy in order to study a FBP
on some models of re�ective projections.

For that purpose, we consider projections F (θ, ·) of opaque objects, similarly as Figure 2.1. and
Subsection 2.2.1. We assume now that the angle θ scans the continuous circle S1, and we still assume
that F has a compact support. Following the principle of re�ective tomography, we reconstruct the
scene by a FBP such as (A.14). Therefore, we consider

IΩ(x) := R∗[F ? ψΩ](x), (2.8)
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where R∗ is the backprojection (A.5), and ψΩ is the Ram-Lak �lter de�ned by (A.13), with ĥΩ(σ) =
1[−Ω,Ω](σ). In practice, the cut-o� frequency Ω is bounded above by the Shannon-Nyquist frequency
associated to the radial discretization (variable s). It plays the role of a resolution parameter
which is ideally very large. That is the reason why we look for an asymptotic expansion of the
reconstruction (2.8), when Ω tends to in�nity.

Overall, the asymptotic behavior of (2.8) is especially related to the geometry of the dataset
F , and it provides some geometrical model of the reconstruction. It is obtained by asymptotic
expansion of suitable integrals. In this section, we summarize the shape of the leading order terms,
and we insist on the results for two toy models.

2.3.2 Highly oscillatory integrals

Deriving an asymptotics for IΩ(x), Ω→∞, means studying the oscillatory integral

IΩ(x) =

∫
S1

∫
R
F (θ, s)ψΩ(x · θ − s)dsdθ = Ω2

4π2

∫ 1

0
ν

∫
S1

∫
R
F (θ, s) cos(Ων(x · θ − s))dsdθdν, (2.9)

because the Ram-Lak �lter (A.13) satis�es ψΩ(s) = Ω2

4π2

∫ 1
0 ν cos(Ωνs)dν.

Such integrals are studied in the working document [19], from asymptotic techniques described
in the textbook [37]. The results are obtained in three steps. The �rst step establishes some
asssumptions about the geometrical structure of F , especially concerning the location of singularities.
The second step derives an asymptotic expansion of

g(λ) =

∫
S1

∫
R
F (θ, s) cos(λ(x · θ − s))dsdθ, λ→∞;

the proof is based on an iterated divergence formula and a stationary phase method. The third step
derives an asymptotic expansion of

4π2

Ω2 IΩ(x) =

∫ 1

0
νg(Ων)dν, Ω→∞;

this is a study of a g-transform, based on the Mellin transform and a calculation of residues.

The asymptotic expansions are used in order to predict the expected orders of magnitude of the
reconstruction IΩ(x), depending on x. Roughly speaking, the expected orders are the following:

� O(
√

Ω) on some convex portions of the original scene Γ;

� O(log Ω) for some isolated points of the original scene Γ, such as corners;

� O(log Ω) on some straight lines, which generally represent artifacts;

� O(1) almost everywhere, which represents a noise.

In particular, some parts of the initial scene Γ are expected to be bright in the reconstruction IΩ(x),
with order O(

√
Ω). Moreover, some description of the artifacts resulting from the occlusions is

obtained; straight lines (associated to corners in F ) appear with order O(log Ω).

Remark 2.1. Artifacts due to a limited angle (when θ scans only a portion of S1) or a spatial
truncation (when s scans only an interval [−R,R]) are also considered in [19]; the associated order
of magnitude is again O(log Ω).
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2.3.3 Toy models

We present expected asymptotics of the reconstruction IΩ = R∗[F ?ψΩ], for two toy models extracted
from [19]. Also, we check some results from a numerical point of view.

The �rst case deals with the reconstruction from silhouettes of a smooth convex object, as in
Figure 2.4. The projected function is f(y, θ) = 1, y ∈ Γ, θ ∈ S1, and the set Γ is an ellipse. Denoting
the curvature of Γ by κ, the reconstruction (essentially) satis�es

IΩ(x) =

{(
1

π3/2

√
κ(x) + O(1)

)√
Ω, if x ∈ Γ,

O(1), if x /∈ Γ.
(2.10)

Due to this model, the ellipse Γ is expected to appear bright in the reconstruction; this is observed
in Figure 2.5(a). Up to a factor, the brightness of the ellipse is expected to be the square root of
the curvature; this is con�rmed in Figure 2.5(b). Lastly, the residuals O(1) and O(1) are observed
in Figure 2.5(c), for some x = x0 ∈ Γ, and x = x1 /∈ Γ.

The second toy model, displayed in Figures 2.6-2.7, deals with occlusions. The set Γ is a union of
two disjoint circles. Cartoon projections are considered: the �rst circle, resp. second circle, appears
in the projections with f(y, θ) = f1, resp. f(y, θ) = f2, where f1 and f2 are two �xed values. In
comparison with Figure 2.4(b), the dataset 2.6(b) looks like two interlaced weighted silhouettes. For
the reconstruction IΩ, several asymptotic regimes are expected. In brief, the circles should appear
with order O(

√
Ω), the four straight lines which are tangent to the two circles should appear with

order O(log Ω), whereas the order is O(1) almost everywhere. Therefore, the circles are expected to
be peaks in the reconstruction IΩ. So are the four mentioned tangent lines; these lines are expected
artifacts. This is in agreement with the numerical reconstruction of Figure 2.7(a). Furthermore, in
Figure 2.6(c) and Figure 2.7(a), we have selected four points, xi, 0 ≤ i ≤ 3, in order to illustrate the
shape of the asymptotics. The point x0 belongs to the �rst circle; in the singularities of Figure 2.6(b),
x0 appears independently of the second circle. Then, analogously to 2.10,

IΩ(x0) =

(
f1
√
κ1

π3/2
+ O(1)

)√
Ω, (2.11)

where κ1 denotes the curvature of the �rst circle. The point x1 belongs also to the �rst circle,
but appears only once in the singularities of Figure 2.6(b), with a jump f1 − f2; the associated
asymptotics is given by

IΩ(x1) =

(
(f1 − f2)

√
κ1

2π3/2
+ O(1)

)√
Ω. (2.12)

The point x2 = (1−λ)a+λb belongs to a line which is tangent to the �rst and the second circle, on
a point a and a point b; this line corresponds to two corners in Figure 2.6(b). The asymptotics is

IΩ(x2) =

(
−(f1 + f2)

4π2|a− b|λ(1− λ)
+ O(1)

)
log Ω. (2.13)

Lastly, the point x3 is neither on the circles, neither on the four tangent lines. The asymptotics is

IΩ(x3) = O(1). (2.14)

These four asymptotic regimes are numerically checked in Figure 2.7(b).
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(a) Initial scene Γ (b) Projection F (θ, s)
(silhouette)

(c) Asymptotic model of
IΩ

Figure 2.4: Asymptotic model (2.10) of the reconstruction IΩ from the silhouette F of an ellipse Γ
with curvature κ. The ellipse Γ is expected to be bright in the reconstruction.

(a) (b) (c)

Figure 2.5: Numerical check of the asymptotic model (2.10) of Figure 2.4, for an ellipse Γ with
curvature κ.
(a) Reconstruction IΩ, computed with Ω = 300. The ellipse Γ is bright.
(b) Check of the asymptotic constant

√
κ along Γ = {γ(t), 0 ≤ t ≤ 2π}, for Ω = 211.

(c) For x0 ∈ Γ, resp. x1 /∈ Γ, plotted in (a), the computed residual is O(1), resp. O(1), as expected.

(a) Initial scene Γ (b) Projection F (θ, s)
(cartoon)

(c) Geometrical model of the
reconstruction IΩ

Figure 2.6: Modeling of the reconstruction IΩ from cartoon projections F of two circles. The
circles are expected to be bright in the reconstruction; the lines tangent to both circles are expected
artifacts.
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(a) (b)

Figure 2.7: Numerical check of the asymptotic model, for the two circles of Figure 2.6.
(a) Reconstruction IΩ, computed with Ω = 167.55. Peaks appear for the circles and the four common
tangent lines, as expected.
(b) Numerical residuals of the asymptotic models (2.11)-(2.14), at xi, 0 ≤ i ≤ 3.

2.4 Imaging of singularities

2.4.1 Introduction

Chapter 1 and Sections 2.2-2.3 reveal that singularities play a central role in re�ective tomography.
This suggests to take a closer look at the singularities of a Radon transform. Hence, we propose
now a study based on the microlocal analysis of the Radon transform. We refer to Appendix A.8
for a summary of the mathematical background, including some bibliographic references.

In this section, we de�ne a general principle of imaging which extends the principle of re�ective
tomography to generic projections, as in [8]. This principle includes incomplete data tomography [38]
and is analyzed analogously; the deep mathematical support is Theorem A.8, about the singularities
of a tomographic reconstruction. We illustrate the principle on a toy model of re�ective tomography,
comprising two Lambertian disks.

2.4.2 A general principle

We formulate a general principle to recover a scene from projections along lines.

Principle (Tomographic reconstruction from generic projections). Let F ∈ L1(S1×R)∩E ′(S1×R)
be a function with compact support. Let R∗ denote the backprojection de�ned in (A.8), and let
Λ : E ′(S1×R)→ D′(S1×R) be a pseudodi�erential operator. Assuming that F (θ, s) represents some
projection along the ray x ·θ = s, (θ, s) ∈ S1×R, the FBP R∗ΛF is considered as a reconstruction of
the projected scene. If f ∈ E ′(R2) is a suitable representation of the initial scene, R∗ΛF is expected
to share similarities with f .

In this generic principle, F (θ, s) can represent any kind of projection with parameter (θ, s). In
general, the projection F (θ, s) depends on the geometry of the projected scene, and eventually on
physical parameters. It can be given by a measurement or a computation. Eventually, F is known
on a compact subset of S1 × R and is extended by 0. In particular, the principle includes:

� re�ective tomography in optics, where F (θ, s) represents a radiant incidance such as (B.5),
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� tomography from silhouettes or from cartoon images, such as the toy models of Subsec-
tion 2.3.3,

� X-ray tomography, where F = Rf is a Radon transform,

� incomplete data tomography, where F = 1ARf is a truncated Radon transform (A ( S1×R).

Concerning the operator Λ, here are some classical choices:

� in X-ray tomography, with F = Rf and Λ = 1
4πHs∂s, one inverts the Radon transform due

to (A.12), R∗ΛF = f ;

� in local tomography [88], with F = Rf and Λ = − 1
4π∂

2
s , one reconstructs R∗ΛF =

√
−∆f ,

which has the same wavefront set than f , but sharper singularities;

� in re�ective tomography, ones usually considers the FBP from X-ray tomography, Λ = 1
4πHs∂s.

In general, a function F (θ, s), (θ, s) ∈ S1 × R, belongs to the range of the Radon transform R
only under exceptional conditions, and we do not have an explicit formula to describe the content
of a tomographic reconstruction R∗ΛF . Nevertheless, we claim that a FBP R∗ΛF , as proposed by
the principle, is expected to be relevant.

2.4.3 Mathematical background

We motivate the principle by an analysis of singularities, based on Theorem A.8. For that purpose,
we assume that F ∈ L1(S1 × R) ∩ E ′(S1 × R) contains some projection of a scene, we assume
that f ∈ E ′(R2) is a suitable representation of this scene, and we �x a pseudodi�erential operator
Λ : E ′(S1 × R)→ D′(S1 × R).

Firstly, F and the Radon transform Rf ∈ E ′(S1 × R) de�ne two projections of the same scene,
along the same rays. Despite F and Rf may not represent the same quantities, there is a hope
that they have geometrical similarities. More precisely, the wavefront sets WFF and WFRf should
have a signi�cant intersection. Using (A.19), the intersection WFF ∩WFRf should capture some

(θ, s; θ̂, ŝ) such that (sθ+ θ̂
ŝθ
⊥; ŝθ) ∈WF(f). This is a precise way of de�ning similarities between F

and Rf , and it explains why F is �not so far� from the range of R. On the contrary, if (θ, s; θ̂, ŝ) ∈
WFF \WFRf with ŝ 6= 0, then (sθ + θ̂

ŝθ
⊥; ŝθ) /∈WF(f).

Secondly, we deduce from (A.21) that the reconstruction R∗ΛF is such that

WF(R∗ΛF ) ⊂
{

(sθ + θ̂
ŝθ
⊥; ŝθ), with (θ, s; θ̂, ŝ) ∈WF(F ) and ŝ 6= 0

}
.

We split the right member into the two following subsets.

� The �rst subset contains singularities of f captured by F ,

SF,f :=
{

(sθ + θ̂
ŝθ
⊥; ŝθ), with (θ, s; θ̂, ŝ) ∈WF(F ) ∩WFRf, ŝ 6= 0

}
⊂WF f.

� The second subset does not correspond to any singularity of f ,

AF,f :=
{

(sθ + θ̂
ŝθ
⊥; ŝθ), with (θ, s; θ̂, ŝ) ∈WF(F ) \WFRf, ŝ 6= 0

}
⊂ R4 \WF f.

As a result, the wavefront set of the reconstruction R∗ΛF contains two complementary parts.

� The �rst one is WF(R∗ΛF ) ∩ SF,f ⊂WF f ; it contains the singularities of the scene f which
are successfully recovered by the imaging process (�S� for success).

� The second one is WF(R∗ΛF ) ∩AF,f ⊂ R4 \WF f ; the singularities of this set correspond to
artifacts of the imaging process, because they are not related to the representation f of the
scene (�A� for artifacts).
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Finally, this framework gives a meaning to a FBP R∗ΛF , even if F does not belong to the range
of the Radon transform. A reconstruction R∗ΛF has a wavefront set WFR∗ΛF which contains
partially the wavefront set of the initial scene, augmented by a set which represents artifacts. Re-
markably, the process captures e�ciently the initial geometry, without modeling the content of F
(F could represent a Radon transform, an incomplete Radon transform, a time of �ight, a radiant
incidance, a geometrical quantity, and so on).

2.4.4 Re�ective tomography of two Lambertian disks

We present the principle of tomographic reconstruction for a toy model of re�ective tomography,
with occlusions [8].

We consider a projection F which models the radiant incidance from two Lambertian disks. The
scene K = K1 ∪ K2 contains two disjoint disks K1 and K2. They de�ne Lambertian re�ectors
with constant albedo ρ1, ρ2 > 0. The projection is analogous to the projection of Figure 2.1, with
f(y(θ, s), θ) given by a Lambert's cosine law (B.8),

F (θ, s) =

{
ρ(y(θ, s)) θ⊥ · ν(θ, s), if {x · θ = s} ∩K 6= ∅,
0, if {x · θ = s} ∩K = ∅.

(2.15)

Here, y(θ, s) ∈ ∂K denotes the visible point (i.e. y(θ, s) maximizes x ·θ⊥ on the set {x ·θ = s}∩K),
ν(θ, s) ∈ S1 denotes the exterior normal vector to ∂K at y(θ, s), the cosine θ⊥ · ν(θ, s) represents
the cosine of an angle of incidence, and ρ(y) ∈ {ρ1, ρ2} denotes the albedo of the point y ∈ ∂K,

ρ(y) = ρ11K1(y) + ρ21K2(y), y ∈ K = K1 ∪K2. (2.16)

Note that the Lambert's model (2.15) coincides with a cartoon projection of the albedo coe�cient,
ρ(y(θ, s)), but weighted by the cosine θ⊥ · ν(θ, s); the cartoon projection ρ(y(θ, s)) is a piecewise
constant function analogous to the cartoon projection of Figure 2.6(b), whereas the weight is a
function depending on the geometry of the scene K.

Following the strategy of Subsection 2.4.3, we analyze the singularities of F , which results in
a theorem which estimates the singularities of the reconstruction R∗F . The approach is especially
based on a comparison with the singularities of the Radon transform R1K ; it identi�es artifacts due
to the occlusions. We refer to Appendix A.A for preliminary results about R1K .

Theorem 2.2. Let K be the union of two Lambertian disjoint disks, with albedo (2.16). Let TK
denote the union of the four straight lines which are tangent to the two disks. Then, the reconstruction
R∗F from the Lambert's cosine law F de�ned in (2.15) is such that

WF1K ⊂WFR∗F ⊂WF1K ∪AK , (2.17)

where WF1K contains the circles in ∂K with their normal vectors,

WF1K = {(x; x̂) ∈ ∂K × R2 \ {0} : x̂ is a normal vector to ∂K at x ∈ ∂K},

and AK is de�ned by the lines in TK and their normal vectors,

AK := {(x; x̂) ∈ TK × R2 \ {0} : {y : y · x̂ = x · x̂} ⊂ TK}.

In particular, any singularity of the initial geometry K is reconstructed, whereas AK represents a
set of possible artifacts corresponding to additional singularities located in TK .

Proof. Fix two disjoint disks Ki = {x ∈ R2 : |x − zi| ≤ ri}, with radius ri > 0 and center zi ∈ R2,
i = 1, 2, such that K = K1 ∪K2. If the visible point is on Ki, i.e. y(θ, s) ∈ ∂Ki, then the normal
vector and the cosine of the angle of incidence are given by

ν(θ, s) = s−zi·θ
ri

θ + [1− ( s−zi·θri
)2]1/2θ⊥, θ⊥ · ν(θ, s) = [1− ( s−zi·θri

)2]1/2.
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Here, we recognize that the cosine coincides with a Radon transform of a disk (A.22); therefore, the
Lambert's model (2.15) satis�es

F (θ, s) =
[
1− 1|s−z2·θ|≤r21(z2−z1)·θ⊥≥0

]
ρ1
2r1
R[1K1 ](θ, s)

+
[
1− 1|s−z1·θ|≤r11(z1−z2)·θ⊥≥0

]
ρ2
2r2
R[1K2 ](θ, s), (2.18)

where the occlusion of Ki by Kj (i 6= j) is encoded by

1− 1|s−zj ·θ|≤rj1(zj−zi)·θ⊥≥0 =

{
0, if the disk Kj is visible for the ray (θ, s),

1, otherwise.

Remark 2.3. The expression (2.18) reveals that F looks like the Radon transformR[ ρ12r1
1K1+ ρ2

2r2
1K2 ],

but with modi�cations which takes into account occlusions. Therefore, this toy model is very closed
to a problem of transmission tomography with incomplete data.

The function F is bounded with compact support, so F ∈ L1
loc(S1 × R) and the backprojection

R∗F is de�ned by (A.5),

R∗F ∈ L1
loc(R2), R∗F (x) =

∫
S1
F (θ, x · θ) dθ.

Without loss of generality, we rather analyze the backprojection of the even part

F ′(θ, s) = 1
2 [F (θ, s) + F (−θ,−s)] ∈ L1

loc(S1 × R), (2.19)

since it satis�es R∗F ′ = R∗F . By Theorem A.8 and Remark A.9, we can already claim that

WFR∗F = WFR∗F ′ = {(sθ + θ̂
ŝθ
⊥; ŝθ) : ŝ 6= 0 and (θ, s; θ̂, ŝ) ∈WFF ′}. (2.20)

Therefore, we analyze WFF ′.
We deduce from (2.18) that

F ′(θ, s) =
[
1− 1

21|s−z2·θ|≤r2
] ρ1

2r1
R[1K1 ](θ, s) +

[
1− 1

21|s−z1·θ|≤r1
] ρ2

2r2
R[1K2 ](θ, s). (2.21)

Here, the products by 1− 1
21|s−zi·θ|≤ri , i = 1, 2, are a consequence of the initial occultations. Such

a factor has the same singularities than R[1Ki ] given in (A.22); the corresponding wavefront set is
given by (A.23). By Proposition A.12.(iii), the sum of products in (2.21) has a wavefront set such
that

WFF ′ ⊂WFR1K1 ∪WFR1K2 ∪
[
(sing suppR1K1 ∩ sing suppR1K2)× (R2 \ {0})

]
,

and we deduce from Proposition A.12.(i-ii) that

WFF ′ ⊂WFR1K ∪ {(θ, s; θ̂, ŝ) ∈ (S1 × R)× (R2 \ {0}) : {x · θ = s} ⊂ TK}. (2.22)

We prove now that
WFR1K ⊂WFF ′. (2.23)

Firstly,
WFR1K \

[
(sing suppR1K1 ∩ sing suppR1K2)× (R2 \ {0})

]
⊂WFF ′. (2.24)

In other words, the functions F ′ and R1Ki are singular in the same directions, except for a few
points. To prove this result, �x (θ0, s0) ∈ sing suppR1Ki \ sing suppR1Kj , i.e. |s0 − zi · θ0| = ri
and |s0 − zj · θ0| 6= rj , with 1 ≤ i 6= j ≤ 2. Then, it can be seen that

{(θ̂, ŝ) : (θ0, s0; θ̂, ŝ) ∈WFF ′} = {(θ̂, ŝ) : (θ0, s0; θ̂, ŝ) ∈WFR1Ki}.
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Indeed, if |s0 − zj · θ0| > rj , which is equivalent to (θ0, s0) /∈ suppR1Kj , then F ′ coincides with
ρi
2ri
R1Ki in a neighborhood of (θ0, s0). On the contrary, if |s0 − zj · θ0| < rj , then (θ0, s0) is

in the interior of suppR1Kj , but is not in sing suppR1Kj . In this case, F ′(θ, s) coincides with
1
2
ρi
2ri
R[1Ki ](θ, s) + [1− 1

21|s−zi·θ|≤ri ]
ρj
2rj
R[1Kj ](θ, s) in some neighborhood of (θ0, s0), which achieves

the proof of (2.24). Secondly, a wavefront set is closed, so (2.23) is a consequence of (2.24).

We conclude with (A.19), (2.23), (2.20), and (2.22),

WF1K = {(sθ + θ̂
ŝθ
⊥; ŝθ) : ŝ 6= 0 and (θ, s; θ̂, ŝ) ∈WFR1K} ⊂WFR∗F ′ ⊂WF1K ∪AK .

Note that the usual tomographic reconstruction R∗ΛF satis�es also

WFR∗ΛF ⊂WF1K ∪AK , Λ := 1
4πHs∂s. (2.25)

Indeed, R∗ΛF = R∗ΛF ′, where F ′ is de�ned by (2.19); as in (A.21), we have the inclusion
WFR∗ΛF ′ ⊂WFR∗F ′, and (2.25) follows from (2.20) and (2.17).

(a) (b) (c) (d)

Figure 2.8: Re�ective tomography for two Lambertian disks K1, K2. (a) Albedo ρ = ρ11K1 +ρ21K2 .
(b) Lambertian projection F = ρ(y) θ⊥ · ν. (c) Tomographic reconstruction R∗ΛF , Λ = 1

4πHs∂s.
(d) Zoom on R∗ΛF . In any case, the white arrows are elements of a wavefront which is compatible
with the representation ρ of the scene, whereas the blue arrows are additional singularities which
introduce artifacts. Any singularity of the circles ∂K1 and ∂K2 is recovered, whereas artifacts appear
on the four lines which are tangent to K1 and K2. These four lines are associated to eight corners in
F . The observed results are in agreement with the theoretical inclusion (2.25) (and Theorem 2.2).

In Figure 2.8, we display an albedo function ρ such as (2.16), the associated Lambert's cosine
law F de�ned in (2.15), and a tomographic reconstruction R∗ΛF . As can be observed, and as
expected, the reconstruction contains any singularity of the initial circles ∂K1 and ∂K2; it contains
also elements of AK , on the four lines which are tangent to the two circles.

2.4.5 Re�ective tomography from cartoon images of two disks

It is instructive to consider the cartoon projection of ρ de�ned in (2.16). It is analogous to (2.15),
but without the geometrical weight,

F (θ, s) =

{
ρ(y(θ, s)), if {x · θ = s} ∩K 6= ∅,
0, if {x · θ = s} ∩K = ∅.

If ρ1 6= ρ2, a proof similar with the proof of Theorem 2.2 shows that the estimation (2.17) is still
valid. This is in agreement with the geometrical model of Figure 2.6. Note that here, Lambertian
projections and cartoon projections result in the same kind of singularities.

On the contrary, if ρ1 = ρ2, the cartoon projection becomes a silhouette. This annihilates some
part of the wavefront set. As a consequence, the inclusion WF1K ⊂ R∗F is no longer valid and some
part of the circles is lost in the reconstruction. This case is enlightening. Indeed, a standard approach
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Figure 2.9: Geometrical setup corresponding to the Lambertian projection in De�nition 2.4. For
any angle θ ∈ S1, the set S(θ) contains the values s ∈ R such that the line x · θ = s intersects D.
For any s ∈ S(θ), ∂D ∩ {x · θ = s} = {y(θ, s), y(−θ,−s)} with ν(y(θ, s)) · θ⊥ > 0. For s ∈ ∂S(θ),
the line x · θ = s is tangent to ∂D at a unique y(θ, s), and ν(y(θ, s)) · θ⊥ = 0. For any s /∈ S(θ),
D̄ ∩ {x · θ = s} = ∅. The bold curve represents a set of visible points, {y(θ, s), s ∈ S(θ)}.

in computer vision binarizes images in order to get silhouettes at a �rst step, and computes some
backprojection to get a visual hull in a second step. On this test case, we see that a backprojection
(or FBP) directly applied on Lambertian projections can reconstruct more relevant singularities than
the visual hull.

We refer to [8] for more details about cartoon projections and silhouettes.

2.5 An exact Radon formula for a Lambertian re�ector

2.5.1 Introduction

In this section, we summarize the article [3]. We restrict our attention to a Lambertian convex
re�ector, as depicted in Figure B.9. We consider purely di�use re�ection, modeled by the Lambert's
cosine law (B.8), in a 2D setup. We exhibit an explicit Radon formula which relates the geometry
∂D ⊂ R2, the albedo coe�cient ρ : ∂D → R, and values of the �radiance� ρ(y) cosα. This formula
is based on the extension of the Radon transform that is described in Section A.4. In particular,
it models di�use re�ection as the Radon transform of a distribution. This is to be contrasted with
transmission tomography from Section B.3, where transmission is modeled by the Radon transform
of a classical function (described in Section A.3).

2.5.2 Lambert's cosine law with convexity assumption

We specify the model of di�use re�ection that is considered. It is a parametrization of some Lambert's
cosine law, under convexity assumption.

Unless otherwise stipulated, we assume in the reminder of this section:

(H1) D ⊂ R2 is a bounded open set with C 1 boundary ∂D, such that the closure D̄ is strictly
convex, i.e. ∀x, y ∈ D̄, ∀t ∈ (0, 1), tx + (1 − t)y ∈ D; ν(y) ∈ S1 denotes the exterior unit
normal vector to D at y ∈ ∂D, and µ denotes the length measure on ∂D.

(H2) ρ ∈ L∞(∂D) is a positive function, bounded and bounded away from zero, i.e. ρ(∂D) ⊂ [c, C]
where c, C are two positive constants.

These assumption permit to project the object as in Figure 2.9, and to de�ne a Lambertian projection
parametrized as follows.

De�nition 2.4. Assume (H1-H2). The Lambertian projection of (D, ρ), denoted by L[D, ρ], is a
function de�ned on S1 × R as follows. For every (θ, s) ∈ S1 × R,

� if the line x · θ = s does not intersect D̄, then L[D, ρ](θ, s) := 0;
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� if the line x · θ = s intersects D̄, the visible point y(θ, s) is de�ned as the unique point
y ∈ ∂D ∩ {x · θ = s} such that ν(y) · θ⊥ ≥ 0, and

L[D, ρ](θ, s) := ρ(y(θ, s)) ν(y(θ, s)) · θ⊥.

2.5.3 Di�use re�ection as the Radon transform of a distribution

The Lambertian projection is related to the Radon transform of a distribution as follows.

Theorem 2.5. Assume (H1-H2). Let L[D, ρ] denote the Lambertian projection of De�nition 2.4,

and let 1
ρdµ ∈ E ′(R2) be the Radon measure de�ned by

〈
1
ρdµ, ψ

〉
=
∫
∂D

ψ(y)
ρ(y) dµ(y), ψ ∈ E(R2). Then,

R
[

1

ρ
dµ

]
=
1L[D,ρ](θ,s)>0

L[D, ρ](θ, s)
+

1L[D,ρ](θ,s)>0

L[D, ρ](−θ,−s)
, (2.26)

where R : E ′(R2)→ E ′(S1 × R) denotes the extended Radon transform (A.7), and the right member
takes the value 0 if L[D, ρ](θ, s) = 0 (by convention).

Proof. The function 1
ρ is bounded on ∂D, so the Radon measure 1

ρdµ ∈ E ′(R2) is de�ned. Then, the

Radon transform of 1
ρdµ is a distribution in E ′(S1 × R) de�ned by (A.7); it is such that〈

R
[

1

ρ
dµ

]
, φ

〉
=

〈
1

ρ
dµ,R∗φ

〉
=

∫
∂D

R∗φ(y)

ρ(y)
dµ(y), φ ∈ E(S1 × R).

Here, for any test function φ ∈ E(S1 × R), the smooth function R∗φ ∈ E(R2) is the backprojection
de�ned in (A.5). By Fubini's theorem, we obtain that〈

R
[

1

ρ
dµ

]
, φ

〉
=

∫
S1

∫
∂D

φ(θ, y · θ)
ρ(y)

dµ(y)dθ.

In this expression, we can prove with [3, Lemma 3] that for any θ ∈ S1, the inner integral satis�es∫
∂D

φ(θ, y · θ)
ρ(y)

dµ =

∫
S(θ)

(
φ(θ, s)

ρ(y(θ, s))ν(y(θ, s)) · θ⊥
+

φ(θ, s)

ρ(y(−θ,−s))ν(y(−θ,−s)) · (−θ)⊥

)
ds,

where S(θ) = {x · θ, x ∈ D} ⊂ R represents a projection of D to a line oriented by θ, as depicted in
Figure 2.9. Therefore,〈

R
[

1

ρ
dµ

]
, φ

〉
=

∫
S1

∫
R
φ(θ, s)

(
1s∈S(θ)

L[D, ρ](θ, s)
+

1s∈S(θ)

L[D, ρ](−θ,−s)

)
dsdθ.

This computation shows that the compactly supported (non-negative) function

1s∈S(θ)

L[D, ρ](θ, s)
+

1s∈S(θ)

L[D, ρ](−θ,−s)
,

is in L1(S1 ×R) and coincides as a distribution with R
[

1
ρdµ

]
∈ E ′(S1 ×R). To conclude the proof,

we remark that 1s∈S(θ) = 1L[D,ρ](θ,s)>0.

We can deduce an inversion formula which expresses some representation of the scene in term of
its Lambertian projection. It is a �ltered backprojection extended to distributions, as follows.

Corollary 2.6. Assume (H1-H2). Then, the Radon measure 1
ρdµ ∈ E ′(R2) is uniquely determined

by the Lambertian projection L[D, ρ]; moreover, it satis�es the inversion formula

1

ρ
dµ = 2R∗Λ

1L[D,ρ](θ,s)>0

L[D, ρ](θ, s)
.

Here, the dual transform R∗ : D′(S1 × R) → D′(R2) is de�ned in (A.8), and the operator Λ :
E ′(S1 × R)→ D′(S1 × R) is the one from the extended inversion formula (A.12).
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2.5.4 Discussion

Theorem 2.5 provides a way to extract a Radon transform from a Lambert's cosine law ρ(y) cosα,
for a Lambertian convex re�ector (D, ρ) in two dimensions. The formula (2.26) exhibits an ap-
propriate pre-processing to obtain an element in the range of the transform R from the cosine law
L[D, ρ]: L[D, ρ] must be inverted, and must be made symmetrical in a second step. In this case, the
relevant mathematical object to represent the scene is the Radon measure dµ

ρ . This object contains
simultaneously the geometry and the physics of the problem. The support of this Radon measure is
exactly the boundary ∂D of the re�ector, while the density is directly the inverse of the albedo ρ.

2.6 Conclusion

We have enlightened various mathematical aspects of a principle dealing with the tomographic
reconstruction from projections outside the range of the Radon transform, which includes re�ective
tomography. Intuitively, for discontinuous projections, such a method looks like a contour detection
based on coherent contrasts; this is con�rmed by asymptotic models. More rigorously, the microlocal
analysis of the Radon transform provides a deep insight: the principle enters into the framework
of imaging by the means of a Fourier Integral Operator. The singularities of the reconstruction
correspond to singularities of the data. In re�ective tomography, they are expected to contain
partially the geometry of the initial scene, with artifacts resulting from the occultations; on some
toy models, we have seen that artifacts appear along lines corresponding to corners in the dataset.
Lastly, we have also found an exact Radon formula to support re�ective tomography in a canonical
framework dealing with a model of pure di�use re�ection in 2D.



Chapter 3

Unconventional algorithms in re�ective

tomography

3.1 Introduction

Re�ective tomography deals with the reconstruction of a scene from VIS-NIR images, using algo-
rithms from X-ray tomography. So far, we have especially encountered the FBP algorithm, or the
FDK algorithm, in the case of a parallel scan, or a circular cone-beam scan. In general, the surfaces
of the original scene are extracted from a reconstruction computed on a whole grid of pixels, or
voxels. Two natural questions arise.

The �rst question concerns the computational e�ciency. A whole reconstruction contains many
useless voxels. There is a desire to compute only the voxels in a neighborhood of the wanted surfaces.
A multiresolution algorithm dedicated to such a problem has been proposed in [1]; it takes bene�t
from the asymptotic models of Section 2.3. This algorithm, which is a lead to increase e�ciency, is
presented in the �rst part of this chapter.

The second question concerns the geometry of acquisition. We would like algorithms which
tolerate general situations, where the calibration parameters of the camera can be arbitrary. This
could, for instance, tolerate the merge of datasets from several distinct cameras. That is the reason
why an algebraic technique based on the X-ray transform and Kaczmarz-type iterations has been
proposed in [2]. This method is an unconventional way of tackling the problem of multi-view
reconstruction; it is summarized and tested in the second part of the chapter.

3.2 Multiresolution greedy algorithm

3.2.1 Introduction

Assume that an imaging functional JΩ : R2 → R is given, where Ω > 0 represents a resolution
parameter, and assume that JΩ has the following asymptotic behavior, when Ω→∞,

JΩ(x) =

{
O(1), x ∈ S,
O(1), x /∈ S,

(3.1)

where S ⊂ R2 is a wanted set. Considering such an imaging functional is directly motivated by
Section 2.3, where some asymptotic models of re�ective tomography are discussed. In this case,
JΩ(x) = Ω−1/2R∗[F ?ψΩ](x) is an adequate normalization of IΩ de�ned in (2.8), and S corresponds
to a portion of surfaces to be reconstructed.

A natural way to estimate the set S is the following. The evaluation of JΩ on a regular cartesian
grid, with step associated to the resolution Ω, provides a pixelized image. Due to (3.1), S is expected
to appear under the form of bright pixels. Therefore, S is estimated by an extraction of the brightest
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Figure 3.1: Principle of the multiresolution algorithm: compute an image with coarse pixels, then
re�ne sets of bright pixels, iteratively. From left to right: initialization, iteration 1, 2, 3.

pixels. In this procedure, JΩ is computed on a whole grid, even if the wanted set S is very small.
Therefore, limiting the computational e�ort for the pixels far from the unknown set S is a desire to
increase e�ciency.

This problem is tackled in [1] by a multiresolution algorithm based on the asymptotic behav-
ior (3.1). In this section, we describe the principle of this multiresolution algorithm, and we propose
numerical experiments on toy models. We refer to the original text [1] for more details.

3.2.2 Principle

We consider (JΩ, S) satisfying (3.1). The set S is unknown but we assume that we can evaluate
Jω(x), for any resolution 0 < ω ≤ Ω, where the maximal resolution Ω > 0 is �xed. In this case, we
aim at computing an estimation S′ of S, with �ne pixels associated to the maximal resolution Ω. In
order to clarify expectations, we �x an area A for the wanted estimation S′ of S. To reach this goal
without computing JΩ on a whole �ne grid, we propose the algorithm described on this page, and
illustrated in Figure 3.1. Basically, the method increases iteratively the resolution of bright pixels.

Multiresolution greedy algorithm, for (JΩ, S) satisfying (3.1).

Input. Area A for the wanted estimation S′ of S, maximal resolution Ω, coarse resolution
Ω0 = 2−kΩ.

Initialization.

(a) Evaluate JΩ0 on a coarse grid of pixels, associated to the resolution Ω0.
(b) Estimate S by a set S′ of area A, obtained by selection of the brightest pixels.

Iterations.

While the estimation S′ contains pixels with resolution < Ω,
(a) re�nement: in S′, double the resolution of any pixel with resolution < Ω, i.e., if
ω < Ω is the resolution of a pixel, replace the pixel by four sub-pixels computed with J2ω;
(b) update the estimation S′ of S: select any pixel with resolution Ω, and the brightest
pixels with resolution < Ω, so that the total area of S′ is A.

Output. Estimation of S by a set S′ of pixels with resolution Ω, and with total area A.

The initialization computes a coarse image JΩ0(x), where x scans a coarse grid; the mesh size
is associated to a given initial resolution Ω0 = 2−kΩ. Then we iteratively re�ne some pixels. Due
to (3.1), the bright pixels are expected to belong to S, whereas the other pixels are expected to be
noise. Therefore, we select a set of bright pixels. We divide them into four (sub-)pixels. For all of
the new pixels, the imaging functional Jω is computed with an adequate value of ω: from a pixel to
a sub-pixel, ω is doubled. Then we iterate. Obviously, this method is multiresolution, because the
resolution parameter ω varies between Ω0 and Ω.

Concerning the pixels to be re�ned, each iteration re�nes the brightest pixels, among the pixels
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whose resolution is not maximal, and we constrain the total area: adding these pixels with the
pixels at maximal resolution (already computed) must �ll approximately an area A. In this way,
the method is a greedy algorithm to compute a set S′ of �ne pixels, with prescribed area A, and
whose accumulated intensity is maximal. See Figure 3.1, where A represents the area of the 12 �nest
pixels.

Concerning the area A to be �lled, it is de�ned in practice as a percentage α of the area of a full
reconstruction. Eventually, after convergence, it is possible to increase the value of A (or α) and to
continue the iterations.

3.2.3 Comments

According to the asymptotic assumption (3.1), re�ning the brightest pixels should especially re�ne
the O(1), so the method is expected to focus on S. Also, the pixels should have the same order of
magnitude near S, even if they correspond to several values of ω. Furthermore, if a pixel is not closed
to S but is selected for re�nement (false positive), it is expected that the corresponding brightness
decreases, due to the behavior in O(1); somehow, re�ning a �noisy� pixel reduces the associated
noise, which should avoid further re�nement at the corresponding position.

Note that the method does not eliminate pixels during the process. The algorithm decides itself
which zones must be re�ned, and it has a desired behavior for noise (false positive mentioned above).
For any computed pixel, there may exist a future iteration which re�nes it. This has two advantages.
This avoids eliminating prematurely pixels that should be preserved. Secondly, if the aimed area
A corresponds to the whole �ne grid, then the algorithm converges exactly to JΩ evaluated on the
whole �ne grid.

3.2.4 Numerical results for cartoon projections

We perform numerical experiments concerning the FBP from cartoon projections. Analogously to
Figure 2.6, we consider the cartoon projection F (θ, s) of two circles, displayed in Figure 3.2. The
projected values are f1 = 1 (on the smallest circle) and f2 = 0.77 (on the other one); the dataset
contains 1609 images of size 512. The imaging functional is de�ned by a FBP

Jω(x) = ω−1/2R∗[F ? ψω](x), ω ≤ Ω, (3.2)

where Ω corresponds to the Shannon-Nyquist frequency associated to the discretization in s; due
to(2.11)-(2.14), JΩ is expected to satisfy (3.1). The corresponding multiresolution algorithm has
been implemented in Fortran, and is executed on a workstation HP Z820, processors Intel Xeon
E5-2609, 2.40 GHz.

Figure 3.2: Toy model for the multiresolution greedy algorithm. Left: scene containing two circles
with values f1 = 1 and f2 = 0.77. Right: cartoon projection 1609× 512 of the scene.

First, we execute the algorithm for several sizes of the initial grid. The areaA is de�ned as α = 1%
of the area of a whole reconstruction. The computational times are reported in Table 3.1, and the
reconstructions are displayed in Figure 3.3. The �rst main observation is that the multiresolution
greedy algorithm succeeds in extracting the scene with an improvement of the computational time.
The second one is that dividing by two or by four the full resolution for the initialization achieves a
good compromise between speed and quality.
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Figure 3.3: Multiresolution reconstructions from the cartoon projection displayed in Figure 3.2.
From top to bottom, the size of the initial grid is 16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256,
and 512 × 512 (full resolution). From left ro right: initial reconstruction, �nal multiresolution
reconstruction, extracted thin pixels. The number of �nal pixels has been set to α · 5122, α = 1%.
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Initial grid 16× 16 32× 32 64× 64 128× 128 256× 256 512× 512
Time (s) 0.728 0.752 0.784 1.12 4.14 31.8

Table 3.1: Computational time in function of the initial grid, for the reconstructions of Figure 3.3.

Figure 3.4: Reconstructions with α ·5122 pixels from the cartoon projection of Figure 3.2, computed
with the multiresolution greedy algorithm. The initial grid is �xed, with 128× 128 pixels. From left
to right, and top to bottom, the rate of pixels is α = 0.32 · 2β , −8 ≤ β ≤ 0.

Second, we consider an initial size 128 × 128, and we execute the algorithm for various areas
A, de�ned by various percentages α = 0.32 · 2β of a total area. The extracted reconstructions are
displayed in Figure 3.4, and the computational times are reported in Table 3.2. As expected with
(2.11)-(2.14), the multiresolution process extracts in priority the circles, then the artifacts, and then
the noise. Here, the values α = 1%, 2%, realize a good compromise to get e�ciently a complete
reconstruction of the circles without artifacts; the reconstruction has missing parts for smaller values
of α, and captures artifacts for larger values. Also, the computational time signi�cantly increases
for larger values of α, but is not really reduced for smaller values (some costs are incompressible).

Rate of pixels α (%) 0.125 0.25 0.5 1 2 4 8 16 32
Time (s) 0.676 0.736 0.860 1.12 1.61 2.57 4.62 8.41 16.2

Table 3.2: Computational time in function of the rate α, for the reconstructions of Figure 3.4.
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3.2.5 Numerical test of a 3D extension

The multiresolution greedy algorithm based on the FBP (3.2) has been extended in 3D for some
orthographic1 scan [1]. Here, we present some numerical reconstructions from noisy Gouraud images.

The dataset is obtained as follows, in Matlab. Analogously to Subsection 1.8.1 and Figure 1.9,
we start with a series F of 805 noisy images 512 × 512 of the Stanford Bunny; on these images,
the surface contains a pattern projected with the Gouraud model of Matlab. Next, exactly as in
Subsection 1.8.4, we add a speckle noise (1.6), with σ = 1 for the magnitude of the noise. A few
images of the resulting sequence are displayed in Figure 3.5. Reconstructing the surface with such
a level of noise is quite challenging.

We compute two reconstructions from the noisy dataset, using a Fortran implementation of the
3D multiresolution greedy algorithm, on a workstation HP Z820, processors Intel Xeon E5-2609,
2.40 GHz. First, we compute a reference reconstruction on a 3D grid of 512×512×512 voxels, using
one FBP per horizontal cross-section. Then we extract 1�5123 voxels (the brigthest ones). Second,
we use the multiresolution greedy algorithm, even if, strictly speaking, the asymptotic behavior of
JΩ has not been studied for the Gouraud model. The size of the initial grid is 64 × 64 × 512 (the
vertical step is not reduced), and the wanted volume corresponds to the volume of 1�5123 voxels.

In both cases, three orthogonal MIPs of the obtained voxels are displayed in Figure 3.6. The
reconstruction of the greedy method looks less di�use. In fact, the multiresolution method starts
from a regularized reconstruction, since it contains a low-pass �lter related to the initial resolution;
therefore, the �nal reconstruction is computed as a re�nement of a �cleaned� reconstruction. Con-
cerning the computational time, 8760 seconds for the reference versus 237 seconds for the greedy
method; the ratio of time is about 37.

3.3 Flexible algebraic reconstruction

3.3.1 Introduction

This section deals with tomography for 3D multi-view reconstruction from 2D images in VIS-NIR
optics. The images are assumed to be calibrated: the intrinsic and extrinsic matrices of the cameras,
in (B.1), are assumed to be known, but they can be arbitrary. This last property is the main
di�erence with the experiments considered so far, where the geometry of acquisition was assumed to
be a parallel scan, or a circular cone beam scan (after an eventual pre-processing [32]). As a result,
it is not possible anymore to use an analytical formula such as a FBP or FDK formula.

In X-ray tomography, projections for a general geometry of acquisition can be inverted by an
Algebraic Reconstruction Technique (ART) with Kaczmarz iterations, as described in Section A.7.
Such an approach, based on linear algebra, is �exible and tolerates any setting for the rays of
projection; the main requirement is the knowledge of the rays. Therefore, the principle of re�ective
tomography suggests to use such a solver for calibrated VIS-NIR images, since the rays are known
in this case. This has been achieved in [2], with a Kaczmarz-type method based on the X-ray
transform. In this section, we present the principle of this method, and we apply this principle on
real photographs. We refer to the original text [2] for a more comprehensive study and tests on CCD
images extracted from the Middlebury datasets [94, 95].

3.3.2 Algebraic iterative solver

Consider a collection of N calibrated 2D images, bj , 1 ≤ j ≤ N . For any image bj , the pixels values
are arranged in a vector, so that bj ∈ Rmj , where mj denotes the total number of pixels; for any
pixel 1 ≤ p ≤ mj , the associated ray of projection is a known straight line, denoted by Lpj .

1The considered orthographic scan, with parallel rays, is a simpli�cation of a circular cone-beam scan for a camera
in far �eld.
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Figure 3.5: Samples of a sequence of 805 Gouraud images 512× 512, with a speckle noise.

Figure 3.6: Reference method (top) versus multiresolution greedy algorithm (bottom) for 3D recon-
struction. The display is a MIP of 1�5123 voxels reconstructed from 805 noisy Gouraud images
512 × 512 (Figure 3.5). Top: voxels extracted from a FBP 512 × 512 × 512, in 8760 s. Bottom:
voxels computed by a 3D multiresolution greedy algorithm with initial grid 64× 64× 512, in 273 s.
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We aim at computing some 3D reconstruction of the scene which appears on the images bj .
Therefore, we introduce a 3D grid of n voxels, and we look for a reconstruction de�ned on this grid.
Equivalently, we introduce basis functions φi, 1 ≤ i ≤ n, associated to the voxels, so that φi denotes
the characteristic function of the voxel numbered i; we look for a reconstruction φ ∈ span{φi, 1 ≤
i ≤ n}. We denote by x = (xi)1≤i≤n ∈ Rn the values of φ on the voxels, i.e. φ =

∑n
i=1 xiφi.

Following the principle of re�ective tomography, we propose to model the images bj , 1 ≤ j ≤ N ,
by the means of the X-ray transform de�ned in (B.11). For that purpose, for any 1 ≤ j ≤ N , we
de�ne Aj ∈ Rmj×n as the matrix of the X-ray transform, in the basis φi, 1 ≤ i ≤ n, and for the rays
Lpj associated to the image bj ,

Aj :=

[∫
Lpj

φi d`

]
1≤p≤mj , 1≤i≤n

;

the element at position (p, i) of Aj corresponds to the length (in [m]) of the intersection of the voxel
i with the ray associated to the pixel p of the image bj . Ideally, we would like to �nd a reconstruction
φ =

∑
i xiφi such that

Ajx = bj , 1 ≤ j ≤ N,
which would mean that each image bj is a cone beam radiography of φ. Note that here, there is no
guarantee that this linear system is compatible; in particular, we rather look for some generalized
solution.

We recognize a problem decomposed into block of rows as in (A.17), which suggests to use Kacz-
marz iterations described on page 68. Also, for safety reasons, we slightly regularize the recurrence
relation (A.18). Therefore, we de�ne one cycle of iterations by{

x(0) ∈ Rn,
x(j) := x(j−1) + ωA∗j (AjA

∗
j + σI)−1(bj −Ajx(j−1)), 1 ≤ j ≤ N ;

(3.3)

with σ > 0 and ω > 0. Then, the iterate x(N) is used to initialize a second cycle of iterations
(x(0) := x(N)). And so on.

The recurrence relation can be explained as follows. At step j, x(j−1) represents a 3D model of
the scene, deduced from x(0) and the calibrated images bi, i ≤ j − 1. We update this model using a
constraint based on the calibrated image bj . In the case ω = 1, the new model x(j) is de�ned as the
unique solution of

min
x∈Rn

‖Ajx− bj‖2 + σ‖x− x(j−1)‖2; (3.4)

therefore, the X-ray transform of φ(j) =
∑

i x
(j)
i φi must reproduce the data bj (as much as possible),

with x(j) close to the previous model x(j−1). If ω 6= 1, x(j) is de�ned as a barycenter between the
solution of (3.4) and x(j−1).

In practice, the images bj are arranged in a �randomized� order. We start (3.3) with x(0) = 0. For
any iteration j, the matrices Aj and A

∗
j are not stored; we rather evaluate products matrix-vector,

by ray tracing. The vectors (AjA
∗
j + σI)−1(bj − Ajx(j−1)) are computed approximately, with a few

iterations of the conjugate gradient method. Usually, a few cycles of iteration are enough to get
satisfactory results; numerical convergence can be checked by a control of the Root Mean Square
Error,  1∑N

j=1mj

N∑
j=1

‖Ajx− bj‖2
1/2

[pixel intensity], (RMSE)

at the end of each cycle of iteration.

3.3.3 Home-made scanner: reconstruction from passive digital photographs

We realize an experiment from scratch to test the algebraic technique (3.3) on our own images.
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Acquisition

A face has been photographed without �ash from 72 angles of view. Each photograph is a RGB
image 384×480; see Figure 3.7 for an image of the sequence. This acquisition enters in the framework
of passive imagery. The photographer is between the light sources and the scene, which explains
why some shadows appear on the images. This increases the di�culty of the reconstruction task: as
observed in the initial samples of Figure 3.8, the brightness of a portion of the face strongly varies
from an image to another one.

Calibration

For calibration purpose, the scene is equipped with a calibration pattern (a checkerboard with
squares of 8.45 size [mm]). This pattern is used to estimate the extrinsic and intrinsic parameters
of the camera with the Camera Calibrator App in Matlab, in a reference frame; the distorsions
are estimated simultaneously, then corrected. Finally, the original RGB images are converted into
grayscale undistorted calibrated images (values in [0,255]), and the calibration pattern is removed
by means of a mask. See Figure 3.7; a pre-preprocessed image is displayed, so are the estimated
locations/orientations of the camera.

Implementation

The full algorithm has been sequentially implemented in Fortran 2003, in double precision. It
includes the frame-driven Kaczmarz iterations (3.3), combined with the conjugate gradient. It also
includes ray tracing on a grid of voxels, for the computation of X-ray images, for the backprojection,
and for MIP rendering. We measure the total time dedicated to the computation of the reconstruc-
tion, which includes the initialization, the iterative updates of the model, iterative loading of the
images, and evaluations of RMSEs.

Reconstruction

We de�ne a box which roughly estimates the face (see Figure 3.7), and we compute a 3D recon-
struction inside this box, from the grayscale calibrated images. In the reference frame, the box is
[−120, 170] × [−300,−30] × [−180, 100] [mm], and is decomposed into voxels of size h = 1.5 [mm];
hence the reconstruction contains about 1863 voxels.

We perform one cycle of iterations (3.3) with x(0) = 0, ω = 0.5, and σ = 5dh [m2], where d [m]

is the diagonal of the box. On a laptop Dell Precision M4400, processor Intel Core 2 Duo T9600,
2.80 GHz, the Fortran code mentioned above returns the reconstruction in 1220 seconds. The initial
RMSE, with x = x(0) is equal to 67.2; the �nal RMSE, with x = x(72), is equal to 33.8. In Figure 3.8,
six initial calibrated views are visually compared with MIP re-projections of the reconstruction x(72);
here, the reconstruction has been restricted to the box [−110, 160]× [−300,−30]× [−170, 100] [mm],
and a lower threshold �xed to 700 has been applied. In Figure 3.9, we display a circular cone-beam
scan of the reconstruction x(72); here again, thresholded MIPs of a box are used. As observed, the
method succeeds in catching automatically some features and details.

Cross validation

The algebraic method (3.3) can be understood as online machine learning from calibrated images
in optics [2]. This suggests to evaluate the quality of a reconstruction by means of a generalization
error [25]. That is the reason why we perform a four-fold cross-validation, as follows.

The dataset with 72 images is randomly divided into four subsets with 18 images. We select
one of these subsets. We consider it as a test set, while the three other ones de�ne a training
set. We compute a reconstruction exactly as before, but from the training set only (54 images).
Then, we evaluate the quality of the reconstruction with a RMSE computed on the training set,
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Figure 3.7: Setup of an acquisition to test the algebraic technique (3.3). A face, equipped with a
calibration pattern, is photographed from several angles of view without �ash; 72 RGB images of size
384× 480 are captured. The sequence is calibrated with Camera Calibrator App in Matlab. Left:
one recorded image. Middle: this image is converted into grayscale, after correction of distorsion;
the calibration pattern is masked. Right: the position/orientation of any calibrated camera is
represented by a cone, the box is a rough estimation of the face.

Figure 3.8: Reconstruction with the algebraic technique (3.3), from 72 calibrated images 384× 480
(see Figure 3.7 for the acquisition). Top: six images of the input sequence. Bottom: MIP �re-
projection�. The computation is performed on voxels of size h = 1.5 [mm].

Figure 3.9: Reconstruction with the algebraic technique (3.3), from 72 calibrated images 384× 480
(see Figure 3.7 for the acquisition). Here, a circular cone beam scan of an algebraic reconstruction
(voxels of size h = 1.5 [mm]) �predicts� twelve novel views; the rendering is a MIP.
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Test number 1 2 3 4

Time [s] 909 912 951 905
RMSE [pixel intensity] on the training set (54 images) 34.0 34.3 33.9 34.4
RMSE [pixel intensity] on the test set (18 images) 35.9 34.5 36.3 35.5

Table 3.3: Four-fold cross validation of one cycle of algebraic iterations (3.3), from 72 calibrated
images 384× 480 (see Figure 3.7 for the acquisition).

and a RMSE computed on the test dataset. Lastly, we repeat this procedure four times: the test
set browses the four subsets selected at the beginning. The RMSEs on the test sets correspond to
some generalization error of the method; the variation of the RMSEs indicates the sensitivity of the
quality with respect to the training set. Numerical results are summarized in Table 3.3.

Furthermore, we have selected one image per test set. For each trained reconstruction, we
compute a MIP view associated to each one of these images. In this way, the MIP view of the
i'th reconstruction, associated to the image of the i'th test set, is a prediction; the other views are
re-projections. Here, the full box is projected, with a lower threshold �xed to 500. See Figure 3.10.

The main conclusion here is that the RMSE does not strongly depend on the training set.
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Figure 3.10: Four-fold cross validation of one cycle of algebraic iterations (3.3), from 72 calibrated
images 384 × 480 (see Figure 3.7 for the acquisition). A line 1 ≤ i ≤ 4 contains MIP views of the
i'th reconstruction, trained with 54 images; the views are predictions on the diagonal, re-projections
otherwise. The last line contains initial images for visual comparison.



Chapter 4

Conclusion and perspectives

4.1 Synthesis of the results

Three-dimensional (3D) re�ective tomography reconstructs a motionless 3D scene, from several
calibrated bi-dimensional (2D) optical images injected into a Radon-kind inversion. For N calibrated
images, denoted by bj ∈ Rmj , 1 ≤ j ≤ N , the reconstruction on a grid of n voxels, denoted by x ∈ Rn,
is computed such that

Ajx ≈ bj , 1 ≤ j ≤ N, (4.1)

where the matrix Aj ∈ Rmj×n represents the X-ray transform along the mj rays associated to the
mj pixels of the image bj . The reconstruction is then rendered by suitable 3D visualization methods.

At a �rst sight, re�ective tomography is an empirical method, because the data [bj ]1≤j≤N ∈
Rm1+···+mN is not in the range of the transform [Aj ]1≤j≤N ∈ R(m1+···+mN )×n. But the principle
has been further motivated by mathematical arguments. We have proved how the Radon transform
extended to distributions models pure di�use re�ection from a Lambert's cosine law on a 2D convex
re�ector. And more generally, the microlocal analysis of the Radon transform reveals that the
singularities of the reconstruction may be expected to be relevant (up to artifacts).

Concerning the practice, a variety of numerical experiments, on real or synthetic images, attests
to the relevance of the approach. It reveals that the method automatically captures the geometry
of the initial scene, even if the scene has occlusions, or if the dataset is corrupted by noise. Various
solvers have been tested; they include solvers based on analytical inversion formulas such as the
FDK algorithm implemented on a Graphics Processing Unit, and an iterative algebraic method
based on a block Kaczmarz's method. Various rendering methods have been investigated, including
the Maximum Intensity Projection (MIP), and the extraction of point clouds.

The rest of the chapter describes some perspectives.

4.2 Learning dynamical geometry in vision

4.2.1 Re�ective tomography and arti�cial intelligence

In a modern langage, re�ective tomography �learns� the geometry of a 3D scene from multiple-view
projections in optics. The topic is related to �elds of active research such as machine learning and
vision, which suggests going further.

Re�ective tomography such as (4.1) proceeds as follows. A reconstruction step captures relevant
singularities, by means of a Fourier Integral Operator that is tuned for a projection geometry. The
reconstruction is rendered by the MIP, so that the global procedure �predicts� novel views of the
initial scene. In this case, the MIP appears to compress the 3D reconstruction onto suitable 2D
images and point clouds. This approach has some similarities with neural networks, since it injects
some �non-physical� model into a non-linear compression method for prediction purposes. This
suggests �optimizing� the reconstruction algorithm, or the matrices Aj , in order to improve the
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�nal rendering (if possible). One may also wonder what learning approach could be inspired, or
initialized, by re�ective tomography.

Such a topic is related to recent works on imaging and machine learning. Indeed, digital wavefront
sets and limited-angle tomography based on deep learning have been introduced in [23,24], whereas
the MIP has been introduced in deep learning algorithms for imaging in [103, 104]. Combining or
tuning such approaches could be a �rst step to mimic re�ective tomography in deep learning.

4.2.2 Image calibration for multiple-view reconstruction

Camera calibration is an important subject in multiple-view geometry: the location and the orienta-
tion of the used cameras, and more generally the rays of projection, must be suitably approximated.
For instance, the matrix Aj in (4.1) is based on the rays corresponding to the image bj . Clas-
sical methods based on correspondences between features are available [57, 73], whereas modern
approaches based on deep learning are still being developed [27]. In this thesis, camera calibration
has been almost skiped. So, a natural question concerns the use, or the design, of a state-of-the-art
method, in the speci�c framework of re�ective tomography.

4.2.3 Four-dimensional reconstruction of a dynamical 3D scene in optics

In practical applications, a scene to be imaged is often dynamical. This includes the case of de-
formable materials, such as a patient who is breathing in the �eld of medical imaging; this also
includes moving rigid solids, such as a moving car in road safety. Furthermore, the subject meets
the problem of image calibration: in a coordinate system attached to a moving camera, the location
and the orientation of the camera become known and �xed, while the scene appears as a moving
one.

Taking into account the motion is a current hot subject; we refer for instance to [66] for a recent
book about various topics in time-dependant inverse problems, and to [80] for motion correction
in Magnetic Resonance Imaging. This suggests studying re�ective tomography in the case of a
dynamical scene, in order to recover the geometry and the motion. In this case, the problem (4.1)
becomes

Aj(t)x(t) = bj(t), 1 ≤ j ≤ N, (4.2)

where bj(t) is the image of the camera j at time t, Aj(t) is the matrix of the associated X-ray
transform, and the unknown x(t) represents the scene a time t. Note that the case N = 1 deals with
a single moving camera that observes a dynamical scene.

A �naive� approach consists in recording videos of the scene, with several cameras which are �xed,
calibrated and synchronized; in this case, a 3D reconstruction can be computed at every time step.
To go further, the redundancies and the di�erences between the several time steps must be taken
into account. Finally, the ultimate goal (or dream) would consist in considering moving cameras
which are neither calibrated nor synchronized (in this case, t and Aj(t) are somehow unknown).

4.3 New Radon-kind transforms in radiometry

Over the past decade, there has been a considerable interest in developing new imaging modalities
based on scattering of light and extensions of the Radon transform, such as Compton scattering
tomography [79, 90] and Bragg scattering tomography [105]. Re�ective tomography for a Lamber-
tian re�ector, as described by Theorem 2.5, enters in this framework, since it considers the Radon
transform extended to distributions for modeling di�use re�ection. This result potentially opens
new perspectives concerning optical tomographic imaging in a more general context.

A natural question concerns the extension to more general models in radiometry. For instance,
studying the following question is of particular interest: given a set of 2D optical images of a 3D scene
with occlusions, is there a distribution supported by surfaces, and some Radon-like transform (or
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X-ray transform), which can model some transformation of the optical images? This topic is related
to image formation in vision; it has its own mathematical interest, and may open new practical
applications in vision, in optics, or in any �eld dealing with radiation. This could potentially lead
to novel reconstruction algorithms of physical properties such as the albedo.

4.4 Maximum Intensity Projection in Convolutional Neural Net-

works

The MIP appears to be an e�cient way of compressing some 3D volumes; this has motivated the
patent [18], and recent deep learning methods [103, 104]. Some parallel can be drawn with max-
pooling in Convolutional Neural Networks (in CNN), which downsamples the input by selection
of the maximum value over patches. The MIP may be an alternative or complementary way for
downsampling/compressing. Further investigations may be needed to develop extensively such a
principle.
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Appendix A

Radon transform

A.1 Introduction

The Radon transform emerged at the beginning of the XXth century in pioneering works of Lorentz,
Funk and Radon [43], and has been extensively studied since the advent of computed tomography
in the 1970s. By de�nition, the Radon transform R integrates a reasonable function f over straight
lines in a plane,

Rf(θ, s) =

∫
x·θ=s

f(x) d` =

∫
R
f(sθ + tθ⊥) dt, θ ∈ S1, s ∈ R. (A.1)

Here, ` denotes the length measure on the line of integration {x ∈ R2 : x · θ = s}; this line is
orthogonal to the vector θ ∈ S1, with signed distance s ∈ R from the origin, and oriented by
θ⊥ ∈ S1.

In this chapter, we summarize some classical results about the Radon transform (A.1), since
they lay the foundation for the works presented in this thesis. We present the Radon transform as a
continuous linear map on various classes of functions, and we extend it on distributions with compact
support. We recall an exact inversion formula, and its practical implementation by the �ltered
backprojection algorithm. We describe the principle of the algebraic reconstruction technique, which
has the advantage of �exibility. Then, we mention microlocal properties, including correspondences
of singularities between a distribution and its Radon transform. To �nish with, we apply such
properties in the speci�c case of characteristic functions supported by disks.

A.2 Notation

The Fourier transform on Rn, with n = 1, 2 is denoted by Fn, its inverse is denoted by F−1
n ; they

are normalized as follows:

F1g(σ) =

∫
R
g(s)e−iσs ds, F−1

1 ĝ(s) =
1

2π

∫
R
ĝ(σ)eiσs dσ, g, ĝ ∈ L1(R), (A.2)

F2f(ξ) =

∫
R2

f(x)e−ix·ξ dξ, F−1
2 f̂(x) =

1

4π2

∫
R2

f̂(ξ)eix·ξ dξ, f, f̂ ∈ L1(R2). (A.3)

The notation for test function spaces and their dual is usual: D for C∞ functions with compact
support, S for the Schwartz space of rapidly decreasing C∞ functions, E for C∞ functions, E ′ for
distributions with compact support, S ′ for tempered distributions, D′ for distributions.

For any θ = (θ1, θ2) ∈ S1, we �x θ⊥ := (θ2,−θ1) ∈ S1.

A.3 Radon transform for functions

Several fundamental properties can be deduced from Fubini's theorem. In particular, the Radon
transformR in (A.1) de�nes a continuous linear mapR : L1(R2)→ L1(S1×R) [69, Theorem 8]. This
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map is closely related to Fourier transforms, as stated by the Fourier slice theorem [69, Theorem 2].

Theorem A.1 (Fourier slice theorem). Let f ∈ L1(R2), and θ ∈ S1. Then, the Fourier transform
of Rf(θ, ·) coincides with the Fourier transform of f , along the radial line σθ, σ ∈ R, i.e.

F1[Rf(θ, ·)](σ) =

∫
R
Rf(θ, s)e−isσds =

∫
R2

f(x)e−iσθ·xdx = F2[f ](σθ), σ ∈ R.

Proof. Fix σ ∈ R. By de�nition, F2[f ](σθ) =
∫
R2 f(x)e−iσθ·xdx. Therefore, by Fubini's theorem,

with x = sθ + tθ⊥, F2[f ](σθ) =
∫
R
∫
R f(sθ + tθ⊥)e−iσsdtds =

∫
RRf(θ, s)e−iσsds = F1[Rf(θ, ·)](σ),

with s ∈ R 7→ Rf(θ, s) =
∫
R f(sθ + tθ⊥)dt ∈ L1(R).

Another consequence of Fubini's theorem is the duality relation [58, Chap. I, Lemma 5.1]∫
S1×R

∫
x·θ=s

f(x)d` g(θ, s) dθds =

∫
R2

f(x)

∫
S1
g(θ, x · θ)dθ dx, (A.4)

valid for several classes of functions; in particular, it is true if f ∈ L1(R2) is compactly supported
and g ∈ E(S1 × R), or if f ∈ D(R2) and g ∈ L1

loc(S1 × R). The duality relation motivates the
introduction of a backprojection operator R∗, which integrates a line function over lines through a
�xed x ∈ R2:

R∗ : L1
loc(S1 × R)→ L1

loc(R2), R∗g(x) =

∫
S1
g(θ, x · θ) dθ. (A.5)

The Radon transform an the backprojection act continuously on smooth functions as follows [77,
Chap. 2].

Theorem A.2. By restriction, the Radon transform R in (A.1) de�nes a continuous linear map
R : D(R2) → D(S1 × R), the backprojection R∗ in (A.5) de�nes a continuous linear map R∗ :
E(S1 × R)→ E(R2), which is the transpose of R, i.e.∫

S1×R
Rf(θ, s)g(θ, s) dθds =

∫
R2

f(x)R∗g(x) dx, f ∈ D(R2), g ∈ E(S1 × R). (A.6)

A.4 Radon transform on distributions

The Radon transform and the backprojection are extended to distributions by duality [58, Chap. I],
[77, Chap. 2].

De�nition-Theorem A.3. Extending the duality relation (A.6) by

〈Rf, g〉 := 〈f,R∗g〉, f ∈ E ′(R2), g ∈ E(S1 × R), (A.7)

〈R∗g, f〉 := 〈g,Rf〉, g ∈ D′(S1 × R), f ∈ D(R2), (A.8)

de�nes the unique continuous linear extension R : E ′(R2) → E ′(S1 × R) of the Radon transform
R : D(R2) → D(S1 × R), and the unique continuous linear extension R∗ : D′(S1 × R) → D′(R2) of
the backprojection R∗ : E(S1 × R)→ E(R2).

Note that for any function f ∈ L1(R2) with compact support, identi�ed with a distribution
f ∈ E ′(R2), the Radon transform Rf ∈ E ′(S1 × R) coincides with the integrable function de�ned
by (A.1), because the duality relation (A.4) is valid for any g ∈ E(S1 × R). Analogously, for
any function g ∈ L1

loc(S1 × R), identi�ed with a distribution g ∈ D′(S1 × R), the backprojection
R∗g ∈ D′(R2) coincides with the locally integrable function de�ned in (A.5), because (A.4) is valid
for any f ∈ D(R2).
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A.5 Inversion of the Radon transform

The following result provides an inversion formula to deduce a function f ∈ D(R2) from the Radon
transform Rf ; it is a consequence of the Fourier slice theorem. See for instance [78, Theorem 2.6]
(where the formula is given for f ∈ S(R2)), [87, Theorem 2.5].

Theorem A.4 (Radon inversion formula). The Radon transform can be inverted by the formula

f = R∗ΛRf, with Λ := 1
4πHs∂s, f ∈ D(R2); (A.9)

here, Hs denotes the Hilbert transform with respect to s, de�ned by the Cauchy principal value

H : D(R)→ E(R), Hg(s) =
1

π
p. v.

∫
R

g(t)

s− t
dt. (A.10)

Note that the operator Λ de�nes a continuous linear map Λ : D(S1×R)→ E(S1×R) such that

Λg(θ, s) =
1

4π
F−1

1 {|σ|F1[g(θ, ·)](σ)} =
1

8π2

∫
R

∫
R

e−iσ(t−s)|σ|g(θ, t) dtdσ, g ∈ D(S1 × R). (A.11)

The inversion formula extends to distributions [58, Chap. I, Theorem 5.5].

Theorem A.5. The inversion formula (A.9) is valid in E ′(R2), i.e.

f = R∗ΛRf, f ∈ E ′(R2), (A.12)

where Λ : E ′(S1×R)→ D′(S1×R) is the continuous linear extension of Λ : D(S1×R)→ E(S1×R),
de�ned by 〈Λg, φ〉 := 〈g,Λφ〉, g ∈ E ′(S1 × R), φ ∈ D(S1 × R).

A.6 Filtered backprojection algorithm

The �ltered backprojection algorithm is the most important algorithm in tomography [78, Chap. 5].
It is a practical implementation of the Radon formula (A.9), with a regularization performed by a
low-pass �lter. More precisely, the operator Λ, satisfying (9.3), is replaced by a convolution with a
smooth �lter ψΩ such that

ψΩ(s) =
1

4π
F−1

1 {|σ|ĥΩ(σ)}(s) =
1

8π2

∫ Ω

−Ω
|σ|ĥΩ(σ)eiσs dσ ∈ E(R); (A.13)

the parameter Ω > 0 de�nes a cuto� pulsation, and ĥΩ : R → [0, 1] denotes an even windowing
function with compact support [−Ω,Ω]. Therefore, the reconstruction formula becomes R∗[Rf ?ψΩ],
which is the so-called �ltered backprojection (FBP). The following theorem justi�es this regularization
procedure. We prove this fundamental result, which is similar with [78, Eq. (5.1)], but with weaker
assumptions.

Theorem A.6 (FBP). Let ψΩ be a �lter with a windowing function ĥΩ, as (A.13). For any function
f ∈ L1(R2) with compact support,

R∗[Rf ? ψΩ] = f ?ΨΩ ∈ E(R2), f ∈ L1(R2) ∩ E ′(R2), (A.14)

where ΨΩ denotes the �lter

ΨΩ ∈ E(R2), ΨΩ(x) = F−1
2 {ĥΩ(|ξ|)}(x) =

1

4π2

∫
|ξ|≤Ω

ĥΩ(|ξ|)eiξ·xdξ.
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Proof. Fix f ∈ L1(R2) ∩ E ′(R2). Firstly, consider the right-hand side of (A.14). The kernel ΨΩ is
de�ned by ΨΩ = F−1

2 (ĥΩ ◦ | · |), with ĥΩ ◦ | · | ∈ E ′(R2) ⊂ S ′(R2). Therefore, ΨΩ ∈ E(R2) ∩ S ′(R2)
and the convolution f ?ΨΩ ∈ E(R2) satis�es

f ?ΨΩ(x) = F−1
2 {F2[ΨΩ]F2[f ]}(x) =

1

4π2

∫
|ξ|≤Ω

ĥΩ(|ξ|)F2[f ](ξ)eix·ξdξ.

Introducing polar coordinates ξ = σθ, once with σ > 0 and once with σ < 0, we obtain

f ?ΨΩ(x) =
1

8π2

∫
S1

∫ Ω

−Ω
|σ|ĥΩ(σ)F2[f ](σθ)eiσx·θdσdθ. (A.15)

Secondly, consider the convolution of the left-hand side of (A.14). The Radon transform is an
integrable function Rf ∈ L1(S1 × R) with compact support, since f ∈ L1(R2) ∩ E ′(R2). Also,
for any θ ∈ S1, the integrable function Rf(θ, ·) ∈ L1(R) is compactly supported. The kernel
ψΩ = 1

4πF
−1
1 {|σ|ĥΩ(σ)}, with |σ|ĥΩ ∈ E ′(R), is in E(R) ∩ S ′(R); therefore, for any θ ∈ S1, the

convolution Rf(θ, ·) ? ψΩ ∈ E(R) ∩ S ′(R) satis�es

Rf(θ, ·) ? ψΩ(s) = F−1
1 {F1[Rf(θ, ·)]F1[ψΩ]}(s) =

1

8π2

∫ Ω

−Ω
|σ|ĥΩ(σ)F1[Rf(θ, ·)]eiσsdσ, (A.16)

where F1[Rf(θ, ·)](σ) = F2[f ](σθ) by the Fourier slice theorem. Since f ∈ E ′(R2), we obtain that
F2[f ] ∈ E(R2) and

(θ, s) 7→ Rf(θ, ·) ? ψΩ(s) =
1

8π2

∫ Ω

−Ω
|σ|ĥΩ(σ)F2[f ](σθ)eiσsdσ ∈ E(S1 × R).

To �nish with, the backprojection R∗[Rf(θ, ·) ? ψΩ] ∈ E(R2) of this smooth function coincides with
the right-hand side of (A.15).

The FBP formula (A.14) has the following practical consequences. Assume that we know line
integrals Rf(θ, s), (θ, s) ∈ S1×R, of an integrable function f with compact support. At a �rst step,
we compute a �ltering Rf ? ψΩ, for some cuto� pulsation Ω > 0 and some windowing function ĥΩ.
In a second step, we compute the backprojection R∗[Rf ? ψΩ]. The formula (A.14) proves that this
process computes f ? ΨΩ. In particular, if ĥΩ(s) → 1 (pointwise convergence) when Ω → ∞, then
ΨΩ → δ and R∗[Rf ?ψΩ]→ f in S ′(R2). Furthermore, if the function f is essentially Ω-bandlimited,
i.e. if |F2f(ξ)| is negligible for |ξ| > Ω, then the formula (A.14), with the ideal low-pass ĥΩ = 1[−Ω,Ω],
proves that R∗[Rf ? ψΩ] ≈ f .

Finally, the FBP algorithm on the facing page implements a discretization of (A.14), for an
integrable function f , with support in a disk |x| < S, and with essential bandwidth Ω [78, Algorithm
5.1], [88, pp. 91-92]. Various choices of the windowing function ĥΩ can be found in the literature;
e.g. the Ram-Lak �lter corresponds to the ideal low-pass ĥΩ = 1[−Ω,Ω]. The convolution is often
computed by Fast Fourier Transforms, using a discrete version of (A.16). Concerning sampling
conditions, the radial step must satisfy δs ≤ π

Ω in order to get acceptable results for the convolution.
Furthermore, if δθ > π

ΩS , then artifacts may appear outside the disk |x| < π
Ωδθ . We refer to [78] for

more details.

A.7 Algebraic Reconstruction Technique

Tomography deals especially with a linear system, because the Radon transform is a linear operator.
Unsurprisingly, some common inversion methods are iterative techniques based on linear algebra,
or optimization. In this section, we present the principle of the famous Algebraic Reconstruction
Technique (ART), based on the so-called Kaczmarz iterations [22, 60, 78]. We refer to [46, 56] (and
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FBP algorithm.

Input. Radon transform Rf on a regular grid, with steps δθ = 2π
p and δs = S

q > 0,

Rf(θj , sl), θj := (cos jδθ, sin jδθ), sl := lδs, 0 ≤ j ≤ p− 1, −q ≤ l ≤ q.

Step 1. For any 0 ≤ j ≤ p− 1, compute the discrete convolution

gj,k = δs

q∑
l=−q

ψΩ(sk − sl)Rf(θj , sl) [≈ Rf(θj , ·) ? ψΩ(sk)], −q ≤ k ≤ q.

Step 2. For each reconstruction point x, compute the discrete backprojection

fFBP(x) = δθ

p−1∑
j=0

(1− ω)gj,k + ωgj,k+1, [≈ R∗[Rf ? ψΩ](x)],

where k = k(j, x) and ω = ω(j, x) ∈ [0, 1) are chosen such that x · θj = (1−ω)sk +ωsk+1.

Output. FBP reconstruction x 7→ fFBP(x) ≈ f ?ΨΩ(x).

the references therein) for historical remarks, several variants of the principle, and some convergence
results.

Consider a linear system decomposed into blocks of rows,
A1

A2
...
AN

x =


b1
b2
...
bN

 , (A.17)

where, x ∈ Rn is the unknown, and for any 1 ≤ j ≤ N , the j-th block is such that Aj ∈ Rmj×n has
full row rank, and bj ∈ Rmj . The Kaczmarz iterations consider the blocks of rows, block after block.
The procedure is initialized with some x0 ∈ Rn. Then, for any 1 ≤ j ≤ N , the iterate xj ∈ Rn is
de�ned as an average between xj−1 and its orthogonal projection onto the a�ne subspace Ajx = bj ,
with respective weights (1− ω) and ω > 0,

xj := xj−1 + ωAᵀ
j (AjA

ᵀ
j )
−1(bj −Ajxj−1). (A.18)

After a cycle of N iterations, an estimation xN of a solution of (A.17) is obtained; the constraint of
each block of rows has been used once. Then, another cycle of iterations can be performed, using
xN as initial state x0.

In tomography, each block Aj ∈ Rmj×n corresponds typically to the matrix of the Radon trans-
form, expressed in a collection of n �xed basis functions, and evaluated on a collection of mj rays
depending on j (one line per ray, one column per basis function). The vector bj ∈ Rmj contains
tomographic projections of a function f along these rays, and x represents the decomposition of f in
the selected basis. It is known that an ART is computationnally expensive, but it has the advantage
of �exibility. In comparison, the FBP algorithm, deduced from the analytical formula (A.14), is very
e�cient but is dedicated to a particular acquisition geometry.

A.8 Microlocal analysis of the Radon transform

The microlocal analysis of the Radon transform has been extensively studied for various purposes
in X-ray tomography, since the 1980s. It is a relevant framework for a description of limited data
tomography, as it is detailed in numerous works of E.T. Quinto [38, 50, 69, 85�87]. We can also
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Kaczmarz iterations, for the linear system (A.17).

Input. Full row rank matrices Aj ∈ Rmj×n, vectors bj ∈ Rmj , 1 ≤ j ≤ N ,
initialization x0 ∈ Rn, weight ω > 0.

Fix x
(0)
0 := x0.

For k = 0, 1, 2, . . ., realize a cycle

x
(k)
j := x

(k)
j−1 + ωAᵀ

j (AjA
ᵀ
j )
−1(bj −Ajx(k)

j−1), 1 ≤ j ≤ N,

and �x x
(k+1)
0 := x

(k)
N .

Output. Approximate solution x
(k+1)
0 to the linear system Ajx = bj , 1 ≤ j ≤ N (A.17),

obtained after k + 1 cycles of iterations.

mention local tomography [47, 70, 97], [88, Chap. 5], pseudolocal tomography [88, Chap. 6], and
geometrical tomography [88, Chap. 7], which deal with �nding singularities of a function from the
knowledge of tomographic data; these subjects are studied in depth in [88].

A crucial point is that the Radon transform de�nes a Fourier integral operator [55, Chap. VI],
[84]. As a consequence, there is a canonical relation which implies correspondences between the
singularities of a distribution and the singularities of its Radon transform [85,86], [88, Chap. 4]. We
refer to standard references of microlocal analysis for a comprehensive description of Fourier integral
operators, such as [54,61,99].

Theorem A.7. The Radon transform R and the transpose R∗ de�ne Fourier integral operators with
Schwartz kernel δ(s− x · θ) =

∫
R

1
2π eiσ(s−θ·x)dσ,

Rf(θ, s) =

∫
R2

δ(s− x · θ)f(x) dx, (θ, s) ∈ S1 × R, f ∈ D(R2);

R∗g(x) =

∫
S1×R

δ(s− x · θ)g(θ, s) dθds, x ∈ R2, g ∈ E(S1 × R).

Theorem A.8 (Correspondence of singularities). The wavefront sets satisfy:

WF(Rf) =
{

(θ, s; θ̂, ŝ) ∈ S1 × R× R2 : ŝ 6= 0 and (sθ + θ̂
ŝθ
⊥; ŝθ) ∈WF(f)

}
, f ∈ E ′(R2), (A.19)

WF(R∗g) ⊂
{

(sθ + θ̂
ŝθ
⊥; ŝθ), with (θ, s, θ̂, ŝ) ∈WF(g) and ŝ 6= 0

}
, g ∈ D′(S1 × R). (A.20)

Remark A.9. If g ∈ L1
loc(S1 × R) satis�es the symmetry g(−θ,−s) = g(θ, s), the inclusion (A.20) is

an equality [38].

Recall that an element of a wavefront set encodes a singularity de�ned by a location and a
direction. For instance, for a distribution in R2, the wavefront set is de�ned as follows.

De�nition A.10. A distribution f ∈ D′(R2) is smooth at x0 ∈ R2 in direction ξ0 ∈ R2 \ {0} if, and
only if, there are a cuto� ψ ∈ D(R2) with ψ(x) = 1 in a neighbourhood of x0, and an open cone
V containing ξ0, such that the Fourier transform F2[ψf ](ξ) = 〈f, e−ix·ξψ(x)〉 is rapidly decaying
at in�nity for ξ ∈ V , i.e. ∀m ≥ 0, ∃cm ∈ R, ∀ξ ∈ V, |F2[ψf ](ξ)| ≤ cm

(1+|ξ|)m . The wavefront set of

f , denoted by WF(f), is the set of (x0, ξ0) ∈ R2 × (R2 \ {0}) such that f is not smooth at x0 in
direction ξ0.

Theorem A.8 is a deep framework about singularities in tomography. Firstly, the relation (A.19)
claims that f and Rf have the �same� singularities; in particular, any singularity of a function f
with compact support can be deduced from the singularities of the tomographic projection Rf .
Secondly, the inclusion (A.20) claims that the backprojection R∗ does not add any singularity. It
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implies that for any pseudodi�erential operator Λ : E ′(S1 × R) → D′(S1 × R), e.g. for Λ = 1
4πHs∂s

as in (A.12),

WF(R∗Λg) ⊂
{

(sθ + θ̂
ŝθ
⊥; ŝθ), with (θ, s, θ̂, ŝ) ∈WF(g) and ŝ 6= 0

}
, g ∈ E ′(S1 × R), (A.21)

because WF Λg ⊂ WF g. This has consequences in incomplete data tomography. In this case, the
dataset is a truncated Radon transform, g = 1ARf with A ( suppRf . The singularities of f
correspond to those of Rf . Some of them may be invisible in g due to the truncation 1A; they
are also invisible in any reconstruction R∗Λg, by (A.21). Furthermore, the abrupt truncation 1A

may introduce singularities in g which do not correspond to singularities of Rf (or f). By (A.21),
artifacts corresponding to these additional singularities are expected in R∗Λg. See, for instance, [38].

A.A Radon transform of disks

In this subappendix, we consider the speci�c case of the Radon transform of disks; these results are
used in the proof of Theorem 2.2 in Subsection 2.4.4.

Proposition A.11 (Radon transform of a disk). Let K = {x ∈ R2 : |x − z| ≤ r} be a disk with
radius r > 0 and center z ∈ R2.
(i) The wavefront set of 1K represents the lines which are tangent to the circle ∂K:

WF1K = {(x; x̂) ∈ ∂K × (R2 \ {0}) : x̂ is a normal vector to ∂K at x ∈ ∂K}.

(ii) The Radon transform of the disk K is given by

1
2rR[1K ](θ, s) = [1− ( s−z·θr )2]1/21|s−z·θ|≤r. (A.22)

(iii) The wavefront set of R[1K ] is given by

WFR1K =
{

(θ, s; θ̂, ŝ) ∈ S1 × R× R2 : ŝ 6= 0 and θ is normal to ∂K at sθ + θ̂
ŝθ
⊥ ∈ ∂K

}
. (A.23)

Proof. (i) is a classical result. (ii) results from a classical computation which measures the length of
the intersection of the line x · θ = s and the disk K. (iii) is a consequence of (i) and (A.19).

Proposition A.12 (Radon transform of two disks). Let K = K1 ∪K2 be a union of two disjoint
disks K1 and K2. Let TK ⊂ R2 denote the union of the four straight lines which are tangent to K1

and K2.
(i) The wavefront sets of 1K and R1K are given by the disjoint unions

WF1K = WF1K1 ∪WF1K2 , WFR1K = WFR1K1 ∪WFR1K2 .

(ii) The eight couples of parameters (θ, s) associated to the four lines in TK , are given by the inter-
section of the singular supports of R1K1 and R1K2,

sing suppR1K1 ∩ sing suppR1K2 = {(θ, s) ∈ S1 × R : {x · θ = s} ⊂ TK}.

(iii) If (θ, s, θ̂i, ŝi) ∈WFR1Ki , i = 1, 2, then (θ̂1, ŝ1) and (θ̂2, ŝ2) are linearly independent.

Proof. (i) 1K = 1K1+1K2 where 1K1 and 1K2 have disjoint supports, so WF1K = WF1K1∪WF1K2

and this union is disjoint; we deduce WFR1K = WFR1K1 ∪WFR1K2 from (A.19). This union is
disjoint due to the point (iii) hereafter. (ii-iii) are a consequence of Proposition A.11.(iii): (θ, s) ∈
sing suppR1Ki ⇔ the line x ·θ = s is tangent to ∂Ki, hence the intersection of the singular supports;

moreover, for (θ, s, θ̂i, ŝi) ∈WFR1Ki , i = 1, 2, the line x·θ = s is tangent to ∂Ki at sθ+ θ̂i
ŝi
θ⊥ ∈ ∂Ki,

hence θ̂1
ŝ1
6= θ̂2

ŝ2
, because ∂K1 ∩ ∂K2 = ∅.
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Appendix B

Physical background

B.1 Electromagnetic imagery

The �rst part of this habilitation thesis enters in the framework of imagery based on electromagnetic
waves. In this �eld, the goal is to produce images of a scene from records of electromagnetic radiation,
in some wavelength range of the electromagnetic spectrum. Various ranges are recalled in Table B.1.
Also, for illustration purposes, Figure B.1 contains several images, corresponding to several types of
radiation. Image (a) has been obtained using microwaves, with a Synthetic Aperture Radar in the
Ka-band (7.5-11.1 mm). Image (b) is a thermal image, in the infrared band (1-14 µm). Image (c) is
a radiography, obtained with X-rays (0.01-10 nm).

(a) (b) (c)

Figure B.1: Images from various types of electromagnetic radiation.
(a) Synthetic Aperture Radar image of C-130s, in the Ka-band. Courtesy of Sandia National Labo-
ratories, Radar ISR, https://www.sandia.gov/radar/imagery/index.html
(b) Thermal view of the Space Shuttle Atlantis. Source: https://commons.wikimedia.org/wiki/
File:STS-135_thermal_view.jpg

(c) Lung radiography.

Radiation Wavelength range [m]

Gamma Rays < 1 · 10−11

X-Rays 1 · 10−11 − 1 · 10−8

Ultraviolet 1 · 10−8 − 4 · 10−7

Visible 4 · 10−7 − 7 · 10−7

Infrared 7 · 10−7 − 1 · 10−3

Microwaves 1 · 10−3 − 1 · 10−1

Radio > 1 · 10−1

Table B.1: Approximate wavelength ranges of the electromagnetic spectrum.
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Concerning the acquisition, two categories of recording methods are usually distinguished. In
active imaging, the acquisition device emits an incident electromagnetic wave, and records an in-
teraction of this incident wave with the scene. In passive imaging, the acquisition device records
some radiation, without emitting any wave. Concerning the use of the records, algorithms based on
a suitable modeling are often applied in order to compute a reconstruction of the observed scene.
The reconstruction encodes the geometry of the scene, and/or the spatial distribution of some phys-
ical parameters. Without being exhaustive, here are three examples, associated with three types of
radiation.

1. Radar imaging aims at computing the re�ectivity of a target, from measurements of scattered
electric �elds; see [41].

2. X-ray computerized tomography aims at computing the spatial attenuation of a medium, from
the intensity attenuation between an X-ray source and detectors; see [60,78].

3. In computer vision, one builds a geometric model of a scene, from several photographs in the
visible band; see [57,73].

To put this thesis in context, we are especially interested in visible to near-infrared (VIS-NIR)
optics, in the visible (0.4-0.7 µm) to near-infrared (0.7-3 µm) band. This band includes, but is
not limited to, photographs with current digital cameras, with a CCD (charge coupled device) or
CMOS (complementary metal�oxide�semiconductor) sensor. Concerning the algorithmic part, we
take bene�t from algorithms from X-ray tomography, such as the inversion of the Radon transform,
or the Feldkamp-Davis-Kress algorithm. That is the reason why we present a modeling of image
formation in VIS-NIR optics in Section B.2, and a modeling of cone beam tomography in Section B.3.

B.2 Image formation

B.2.1 Introduction

In VIS-NIR optics, an image is generally formed according to the process displayed in Figure B.2.
Light sources, such as the sun, a lamp or a laser, emit light. This light interacts with the illuminated
scene; hence, some light emanates from the scene. A portion of that light passes through the optics
of a camera, such as lenses, and �nally reaches the camera's sensor, such as a digital sensor array.

Figure B.2: Image formation in VIS-NIR optics. Light is emitted by light sources and interacts with
the illuminated scene. A portion of the light passes through the camera's optics and reaches the
camera's sensor.

Since light is an electromagnetic wave, the propagation of light and its behavior at interfaces
between media is governed by the Maxwell equations. In VIS-NIR optics, the wavelength is very
small in comparison with some characteristic distances of the scene, while the surfaces often appear
as rough surfaces. Hence, �e�ective� models are rather considered. In this section, we present some
model commonly used in computer vision; see for instance [45,62,73,98] and the references therein.
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This modeling concerns the brightness of an optical image, and is related to geometrical modeling
based on rays (geometrical optics). For deeper aspects, we refer to standard textbooks in optics,
such as [39].

B.2.2 Pinhole camera model

A camera is often modeled as an ideal pinhole camera, which realizes a perspective projection of
the observed scene [57, 73]; this provides a geometric model of an image by the means of rays of
projection. We describe this ideal model.

Figure B.3: Ideal camera.

A digital camera contains an optical system and
an array of light sensors. The optical system, made
of lenses, aims at directing the incident light onto the
sensors, as in Figure B.3. The optical system has a
rotational axis of symmetry, called the optical axis;
the light sensors are contained in a plane orthogonal
to the optical axis, called the focal plane. In general,
a point x ∈ R3 of the scene scatters light in any di-
rection. Therefore, the optics of the camera receives
a cone of light incident from x. Ideally, the optical system focuses that light from x onto a unique
point x̂ in the focal plane; furthermore, the straight line between the point x and the image point x̂
intersects the optical axis at a point c independent from x, called the optical center. In particular,
the ray through the optical center c is not deviated and determines the image point x̂, by intersection
of the straight line (x, c) with the focal plane. From a geometrical point of view, the focal plane
receives some perspective projection of the scene, through the optical center c. This is the model of
an ideal pinhole camera.

Figure B.4: Per-
spective projection.

For convenience, the perspective projection is often represented as in Fig-
ure B.4, where the focal plane is in front of the optical center c (the real one is
obtained by central inversion with respect to c). In a world reference frame, a
point x has coordinates x = (x1, x2, x3). We usually represent the location of
the camera by the coordinates of the optical center c = (c1, c2, c3), whereas the
orientation is represented by an orthogonal matrix Q = [Q1, Q2, Q3] ∈ R3×3.
The vector Q3 is the direction of the optical axis, oriented from the camera
towards the scene, while Q1 and Q2 represent the horizontal and vertical di-
rections in the image. Then, in the camera frame (c,Q), the coordinates of
the projection x̂ are given by the vector

f
λQ

ᵀ(x− c), with λ = Qᵀ
3(x− c);

here, Qᵀ(x−c) contains the coordinates of x in the camera frame, λ represents
the depth of x in this frame, and the focal length f represents the distance
from the optical center c to the focal plane.

The projection is collected by the array of light sensors in the focal plane, under the form of a
pixelized image. Assume that the pixels are rectangles with sides aligned with Q1, Q2, and lengths
s1, s2. Then, in pixel coordinates, the projection x̂ is given by (i1, i2) such that

λ

i1i2
1

 = K[Qᵀ −Qᵀc]


x1

x2

x3

1

 , K =

 f
s1

0 o1

0 f
s2

o2

0 0 1

 , (B.1)

where (o1, o2) represents the pixel coordinates of the projection of the optical axis. The extrinsic
matrix [Qᵀ − Qᵀc] depends only on the position and the orientation of the camera. The intrinsic
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matrix K depends on the camera itself; it depends on the focal length and on the shape of a pixel
on the receiver array, but does not depend on the position, nor on the orientation. In this thesis,
the projections are idealized as (B.1). In particular, we assume that the eventual radial distortion
have been removed, as in [73].

The relation (B.1) describes a geometrical model of image formation, from the visible scene to
the light sensors of a camera. The brightness of a pixel depends on the amount of light received by
the associated sensor. Modeling this brightness falls within the scope of radiometry.

B.2.3 Elements of radiometry

The �eld of radiometry deals with measuring or calculating electromagnetic radiation, which in-
cludes modeling image formation in VIS-NIR optics. The transfer of radiation among and between
various objects, including sources and optical systems, is of particular concern. So is quantifying
the mechanisms of emission, absorption, re�ection and transmission of light. We refer to [106] for a
tutorial text.

Radiance

The fundamental quantity is the radiance [W.m−2.sr−1], which represents the amount of light
radiated from a surface; it is de�ned as the power (energy per time unit) radiated along a certain
direction, per unit projected area, and per unit solid angle. More precisely, as in Figure B.5, consider
an in�nitesimal piece of surface, located at x ∈ R3, with area dσx, and unit normal νx ∈ S2. Consider
an in�nitesimal solid angle dΩ around a direction u ∈ S2. The radiance at x in the direction u,
denoted by L(x, u), is related to the power dΦ radiated from the piece of surface dσx through the
solid angle dΩ by

dΦ = L(x, u) νx · udσx dΩ. (B.2)

Here, νx · u is the cosine of the angle between the normal νx and the direction u; the projected area
νx · udσx represents the apparent area of the surface dσx seen from a point on the axis (x, u).

Figure B.5: Power dΦ radiated by a surface element dσx through a solid angle dΩ. Left: the radiance
L(x, u) satis�es dΦ = L(x, u) νx · udσx dΩ. Right: the area dσy seen from x de�nes the solid angle

dΩ; the corresponding radiated power is dΦ = L(x, ux,y)
νx·ux,ydσx νy ·uy,xdσy

|x−y|2 .

Radiative transfer

As the right of Figure B.5, consider now a second piece of surface, located at y ∈ R3, with unit
normal νy ∈ S2, and in�nitesimal area dσy. Consider the direction u from x to y, and the solid angle
dΩ of the surface dσy seen from x:

u = ux,y = y−x
|y−x| = −uy,x, dΩ =

νy ·uy,x
|x−y|2 dσy,

where |x−y| is the euclidean distance between x and y, and the projected area νy ·uy,x dσy represents
the apparent area of dσy seen from x. By de�nition (B.2) of the radiance, we obtain the di�erential
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form of the fundamental equation of radiative transfer [106]:

dΦ = L(x, ux,y)
νx·ux,ydσx νy ·uy,xdσy

|x−y|2 . (B.3)

Assuming that the medium between the two pieces of surface is transparent, with no absorption, the
radiated power dΦ is transferred from dσx to dσy along the direction ux,y; this transfer expresses
energy preservation. Therefore, dΦ represents also the amount of incident light on dσy, along the
direction ux,y.

Irradiance

The fundamental quantity concerning incident light is the irradiance [W.m−2], which represents the
amount of light incident on a surface. The irradiance is de�ned as the power received by a surface,
along a certain direction, and per unit area. In Figure B.5, the irradiance dI(y, ux,y) received by y,
from dσx in the direction ux,y, is deduced from (B.3):

dI(y, ux,y) = dΦ
dσy

= L(x, ux,y)
νx·ux,ydσx νy ·uy,x

|x−y|2 . (B.4)

Radiant incidance

Concerning the detectors, the basic measurement of a detector, such as a light sensor in a camera,
is the received power (energy per time unit) [106]. The radiant incidance [W.m−2], de�ned as the
power received by unit area, can be deduced. The measure is especially related to the power radiated
from the visible surfaces. For an ideal camera, the optical system completely transfers the received
energy to the sensor, and the incidance on a pixel is mainly proportional to the radiance of the
visible point [63].

Figure B.6: Modeling of the radiant incidance on a pixel, by (B.5).

Indeed, consider a camera model as Figures B.3-B.4, and a light sensor associated to a pixel,
as Figure B.6. The sensor, located at x̂ in the focal plane, with area dσx̂, receives a power from a
visible surface dσx around a point x. The surface dσx radiates a power dΦ through the solid angle
associated with the optical system seen from x. For a circular aperture with diameter d << |x− c|,
assuming that the optical system completely transfers the received energy dΦ to the sensor, the
radiant incidance on the sensor is given after simpli�cation by

dΦ

dσx̂
=
π

4

(
d

f

)2

(Q3 · uc,x)4 L(x, ux,c). (B.5)

Up to some normalization, the measured incidance dΦ
dσx̂

coincides with the radiance L(x, ux,c) of the
visible point x, in the direction ux,c from x to the optical center c.
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B.2.4 Re�ection of light

Bidirectional Re�ectance Distribution Function

Figure B.7: BRDF f(y, u, v).

VIS-NIR light often appears as being scattered from surfaces,
due to the rugosity of the surfaces. This scattering is described
from a macroscopic point of view by e�ective models. For opaque
surfaces, usual models consider that light re�ects o� surfaces by
the means of the Bidirectional Re�ectance Distribution Function
(BRDF). The BRDF is a surfacic function de�ned as the ratio of
radiance to irradiance; it expresses how a surface re�ects light to-
ward a radiation direction when it is illuminated from an incident
direction. More precisely, as in Figure B.7, assume that dI(y, u) is
the incident irradiance received by the surfacic point y ∈ R3, along
the incident direction u ∈ S2. Consider the radiance dL(y, v), radiated from y in the direction
v ∈ S2, as a surfacic response to the incident irradiance dI(y, u). The BRDF f(y, u, v) is such that

dL(y, v) = f(y, u, v) dI(y, u). (B.6)

The BRDF encodes the specular re�ection on a perfect mirror by the means of a Dirac distribution;
the corresponding direction is given by the Snell-Descartes law. On the contrary, an ideal matte
surface, called a Lambertian surface, is encoded by a uniform BRDF, independent of the radiation
angle v.

Rendering equation

Figure B.8: A point y ∈ S re-
ceives an irradiance dI(y, ux,y)
from every visible point x ∈ S.

The radiance satis�es an integral equation based on the BRDF.
Assume that a set S ⊂ R3 represents the smooth boundary of a
collection of opaque objects and consider the total radiance L(y, v)
at y ∈ S, in the direction v ∈ S2, as in Figure B.8. Firstly, the
radiance emitted by a light source is represented by a source term
Lε(y, v); Lε(y, v) = 0 if y does not emit in the direction v. Secondly,
introduce a visibility function,

∀x, y ∈ S, V (x, y) = 1]x,y[∩S=∅ =

{
1, if x is visible from y,

0, otherwise;

�x x ∈ S visible from y, and the associated direction ux,y = y−x
|y−x| .

Then, y receives an irradiance dI(y, ux,y); hence, the surface re�ects
a radiance f(y, ux,y, v)dI(y, ux,y) in the direction v. Assuming lin-
earity, the total radiance is modeled by the sum of the source term
with such re�ected radiances:

L(y, v) = Lε(y, v) +

∫
x∈S

V (x, y)f(y, ux,y, v) dI(y, ux,y).

By (B.4), we obtain �nally an integral equation, the so-called rendering equation [65],

L(y, v) = Lε(y, v) +

∫
x∈S

V (x, y)f(y, ux,y, v)L(x, ux,y)
νx·ux,y νy ·uy,x
|x−y|2 dσx, y ∈ S, v · νy ≥ 0, (B.7)

where νx ∈ S2 denotes the exterior unit normal to S, at the point x ∈ S. In this expression,
dΩx =

νx·ux,y
|x−y|2 dσx is a surface element on the hemisphere u · νy ≥ 0 and represents the solid angle of

dσx seen from y.
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The rendering equation (B.7) is a model which emphasizes some mechanisms due to scattering
of light by opaque objects, with extended light sources, in a transparent media. It does not take
into account each possible e�ect of light propagation, such as transmission, subsurface di�usion,
absorption, polarization, spectral dependency, and so on. For instance, we refer to [30,42,49,96] for
e�ects concerning polarization.

Lambert's cosine law

The Lambert's cosine law

ρ(y) cosα (B.8)

models uniform di�usion of light from an ideal matte opaque surface, called a Lambertian re�ector.
It is established as follows. Assume that the surface ∂D of a Lambertian re�ector is illuminated by
an isotropic point source located at z, as in Figure B.9. Denote by Φ the power of this source (in
[W]). The associated power per unit solid angle is Φ/(4π) (in [W.sr−1]). Therefore, an illuminated
point y ∈ ∂D, with angle of incidence α, receives an irradiance I(y, u) = Φ cosα/(4π|z − y|2)
(in [W.m−2]). By assumption, this incident irradiance is uniformly re�ected o� the surface: the
BRDF f(y, u, v) and the re�ected radiance L(y, v) = f(y, u, v)I(y, u) (in [W.m−2.sr−1]) do not

depend on the radiation angle v. In this case, it can be shown that f(y, u, v) = ρ(y,u)
π , where

ρ(y, u) ∈ [0, 1], called the albedo, is a dimensionless coe�cient which represents the percentage of
the incident irradiance which is re�ected in any direction. Hence, the radiance is modeled by

L(y, v) =
Φ

4π2|z − y|2
ρ(y) cosα, (cosα = uy,z · νy), (B.9)

where we have further assumed that ρ(y, u) = ρ(y) does not depend on the incident angle, as many
models in computer vision. Assuming that z in far �eld with |z− y| ≈ R a large constant, we obtain
that the radiance is given by (B.8), up to a constant factor.

Figure B.9: Di�use re�ection by the Lambert's cosine law. Here, an isotropic point source z emits
light with a power per unit solid angle Φ/(4π). On the surface ∂D, an illuminated point y re�ects
light uniformly; for an angle of incidence α, the point y re�ects a radiance Φ/(4π2|z− y|2) ρ(y) cosα
in any direction above the tangent plane. The dimensionless coe�cient ρ(y) ∈ [0, 1] is the albedo,
de�ned as the percentage of incident irradiance which is re�ected.

B.3 X-ray tomography

B.3.1 Beer-Lambert's law

In transmission tomography, one usually probes a medium using X-rays [22, 78]. Assuming that
the wavelengths of X-rays are very short on the scale of variation of the probed medium1, the

1This is the case for a human body.
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propagation can be described by geometrical optics [39]. More precisely, an X-ray is transmitted
through the medium along a straight line. Along this ray, the intensity I is attenuated due to
absorption. The variation dI(s) of the intensity, between the curvilinear abscissae s and s + ds, is
modeled by dI(s) = −a(s)I(s)ds; the inverse length a(s) represents an attenuation coe�cient of the
traversed medium. Therefore, if an X-ray source, located at position x0, emits towards a sensor,
located at position x1, then the received intensity I1 is related to the emitted intensity I0, by the
Beer-Lambert's law:

I1 = I0 exp

(
−
∫

[x0,x1]
a(x)d`

)
.

The integral
∫

[x0,x1] a(x)d`, where d` is the length measure, represents the total attenuation of the
medium between the source x0 and the receiver x1. The value of this integral is considered to be the
measurement associated to the ray [x0, x1], since it is deduced from the knowledge of I1 and I0:∫

[x0,x1]
a(x)d` = log I0

I1
. (B.10)

B.3.2 Cone beam computed tomography

Figure B.10: Cone
beam radiography.

In practice, ray integrals such as (B.10) are collected for several rays,
associated to various positions of the source and the sensors. The cone
beam projection is among the most famous geometry of acquisition. As
displayed in Figure B.10, it is a perspective projection, obtained for a
conic beam of X-rays emanating from a �xed position; the object is located
between the source and a �screen� of sensors. The resulting image is a
radiography, where each pixel contains the ray integral (B.10) between the
source and the sensor associated to the pixel. The contrasts in the image
are due to variations in the attenuation pro�les, from a ray to another one.
Next, this kind of cone beam radiography can be taken under several angles
of view, for instance by rotation of the device source-screen around a �xed axis, as it is performed
in Figure 1.2. This is the principle of a cone beam scan.

Computed tomography aims at computing a 3D reconstruction of the attenuation a(x), from the
measurement of line integrals (B.10). The computed spatial attenuation is used to represent the
scene; in this way, materials with di�erent attenuations can be separated.

B.3.3 Mathematical framework

From a mathematical point of view, the X-ray transform of a : x ∈ R3 7→ a(x) ∈ R is de�ned by

X [a] : R3 × S2 → R
(x0, u) 7→ X [a](x0, u) =

∫
R a(x0 + tu)dt.

(B.11)

Analogously to the ray integral (B.10), X [a](x0, u) is a line integral, along the ray through x0 and ori-
ented by u; under obvious assumption, the ray integral (B.10) coincides exactly with X [a](x0,

x1−x0
|x1−x0|).

If the rays are in a plane, the X-ray transform coincides with the Radon transform (A.1); for instance,
in the plane x3 = 0,

R[a](θ, s) = X [a]((sθ, 0), (θ⊥, 0)), θ ∈ S1, s ∈ R.

Finally, the mathematical problem of X-rays tomography deals with inverting the X-ray trans-
form; the goal is to compute a function a from the knowledge of X [a](x0, u), for a collection of rays
(x0, u). In a plane, this problem consists in inverting the Radon transform; see Appendix A.
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Chapter 5

Symmetry group of the Cubed Sphere

5.1 Equiangular Cubed Sphere

Various �elds in computational physics, for instance climatology modelling [180], involve numerical
computations on the sphere. This includes the use of spherical grids [181]. The grids obtained
by radial projection of a circumscribed cube on the sphere, as in Figure 5.1, are among the most
employed. These Cubed Sphere grids have been originally introduced in [171], and further studied, for
example in [153,158�160,164,165,168]. A wide variety of numerical methods have been successfully
adapted to Cubed Sphere grids, e.g. in [115,116,118,120,127,140,142,143,151,154,161,169,176,179]
and the references therein.

Figure 5.1: Construction of a Cubed Sphere grid, by radial projection from a circumscribed cube
onto a sphere. Some cartesian grid (black dots) is de�ned on the faces of the cube; the Cubed
Sphere grid (white dots) is de�ned as the radial projection of this cartesian grid, on the sphere. This
construction meshes the sphere with arcs of great circles: cartesian grid lines (dotted straight lines)
are projected from the cube onto arcs of great circle (white arcs). The Cubed Sphere displayed here
is the equiangular Cubed Sphere CS3 (5.1).

In this thesis, we focus on a Cubed Sphere structured by equiangular great circles: the equiangular
Cubed Sphere CSN ⊂ S2, [115,160], with resolution parameter N ≥ 1, de�ned by

CSN :=
{
ρ(±1, u, v), ρ(u,±1, v), ρ(u, v,±1); u = tan iπ

2N , v = tan jπ
2N , −

N
2 ≤ i, j ≤

N
2

}
, (5.1)

where ρ(x) = x
‖x‖ denotes the radial projection, from the faces of the cube [−1, 1]3 onto the sphere

S2. As suggested by Figure 5.1, where CS3 is displayed, the Cubed Sphere CSN is quasi-uniform,
is not polarized along a speci�c axis, and is shaped by the cube, including discontinuities accross
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�edges� (radial projection of the edges of the circumscribed cube). Furthermore, some symmetry
properties, such as invariance under permutation of the cartesian coordinates, are noticed.

The success of the grid CSN may be explained by mathematical properties, such as metric prop-
erties (quasi-uniformity) and symmetry (rotational invariance); we refer for instance to [115, 156,
157, 168], where the symmetry has been used. That is the reason why we have clearly identi�ed
the shortest geodesic arcs and the symmetry group of CSN in [4]. Such results deepen the mathe-
matical knowledge of CSN and provide a valuable mathematical background for the applications; in
particular, knowing the symmetry group of a grid supports the design of numerical schemes, such
as interpolation methods [166], quadrature rules [175], or Discrete Fourier Transforms [155].

In the rest of this chapter, we summarize some mathematical results from [4]. We refer to the
original text for some (tedious) proofs.

5.2 Symmetry group of the Cubed Sphere

We make explicit the symmetry, or rotational invariance, of the Cubed Sphere, by means of its
symmetry group [112], de�ned as follows.

De�nition 5.1. The symmetry group of a set E ⊂ R3 is the group G of all orthogonal matrices
that leave E invariant:

G =
{
Q ∈ R3×3 : QᵀQ = QQᵀ = I3 and QE = {Qu, u ∈ E} = E

}
.

For N = 1, CS1 = {−1/
√

3, 1/
√

3}3 is a scaling of {−1, 1}3. Therefore, it is clear that the
symmetry group of CS1 coincides with the symmetry group of the cube {−1, 1}3. This group is well
known: it is isomorphic to the group S4 × Z/2Z [112, pp. 37,38,55]; any symmetry of the cube
is indeed identi�ed with a permutation of the four principal diagonals, combined with a toggle for
inversion of the cube, or not. For completeness, a matrix description is recalled hereafter.

Lemma 5.2 (Octahedral group). The symmetry group of the cube {−1, 1}3 coincides with the sym-
metry group the octahedron {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1)}, given by

G =
{[
ε1eσ1 ε2eσ2 ε3eσ3

]
, σ ∈ S3, ε ∈ {−1, 1}3

}
, (5.2)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and S3 denotes the group of all permutations of
{1, 2, 3}.

In fact, the octahedral group (5.2) determines the group of any equiangular Cubed Sphere, as
stated by the main result of [4].

Theorem 5.3 (Symmetry group of the equiangular Cubed Sphere). Let N ≥ 1. The symmetry
group of the Cubed Sphere CSN coincides with the symmetry group G of the cube {−1, 1}3. In other
words, an orthogonal matrix Q leaves CSN invariant if, and only if, it leaves {−1, 1}3 invariant.

The combination of (5.1) with (5.2) shows relatively easily that any symmetry of the cube, Q ∈ G,
leaves the Cubed Sphere CSN invariant. Therefore, the most di�cult part of the theorem is the
converse. This part can be deduced from a classi�cation of �nite subgroups of orthogonal groups,
such as [112, Theorem 19.2]. Another approach consists in introducing some geometrical pattern,
whose symmetry group is G, and which is left invariant by any symmetry of CSN . We prove in [4]
that the cuboctahedron

Ω := {(0, ε, η), (ε, 0, η), (ε, η, 0), ε = ±1, η = ±1} (5.3)

is such a pattern. The proof is based on the shortest geodesic arcs, described in the next section.
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Figure 5.2: Shortest geodesic arcs on CSN , described by Theorem 5.4. Here, minimal arcs on CSN ,
solution to (5.4), are displayed in bold, around midpoints on edges. Left: N is odd (N = 3); right: N
is even (N = 4). The location of the minimal arcs match with the vertices (5.3) of the cuboctahedron
displayed with a black line.

5.3 Shortest geodesic distance on the Cubed Sphere

In this section, we consider the shortest geodesic arcs on the Cubed Sphere CSN , de�ned as the
solutions to the problem

min{arccosu · v;u ∈ CSN , v ∈ CSN , u 6= v}. (5.4)

This problem deals with metric properties of a widely used grid, so it has its own interest. One
original feature of (5.4) is that u and v are allowed to belong to distinct grid lines, or even dis-
tinct panels; in particular, any spherical diagonal of the mesh is realizable. The main di�culty of
problem (5.4) comes from this speci�city, and this is somehow the lock of Theorem 5.3.

The problem (5.4) has been solved in [4], with the following theorem (see Figure 5.2).

Theorem 5.4 (Shortest geodesic arcs on the equiangular Cubed Sphere). Let N ≥ 1, and consider
the problem (5.4) of the minimal arc-length between separate points on CSN .

(i) If N is odd, there are precisely 12 minimal arcs on CSN (one per edge):

{ρ(−δ, ε1, ε2), ρ(δ, ε1, ε2)}, {ρ(ε1,−δ, ε2), ρ(ε1, δ, ε2)}, {ρ(ε1, ε2,−δ), ρ(ε1, ε2, δ)},
δ = tan π

4N , ε1 = ±1, ε2 = ±1.

(ii) If N is even, there are precisely 24 minimal arcs on CSN (two per edge):

{ρ(0, ε1, ε2), ρ(δ, ε1, ε2)}, {ρ(ε1, 0, ε2), ρ(ε1, δ, ε2)}, {ρ(ε1, ε2, 0), ρ(ε1, ε2, δ)},
δ = ± tan π

2N , ε1 = ±1, ε2 = ±1.

Theorem 5.4 is proved in [4]; some algorithm decreases (if possible) the distance arccosu ·v, from
any inital arc {u, v} ⊂ CSN . The proof is tedious, because many cases must be considered (u, v can
be on distinct panels, on the same panel, on a common grid line, or not, and so on). Some cases
are easy; some other ones are more di�cult. To mention two cases, the easiest case deals with an
arc along an edge, with N even, u = ρ(1, 0, 1), v = ρ(1, Z, 1), and Z > 0, whereas one of the most
di�cult one deals with a diagonal, u = ρ(1, X, Y ), v = ρ(1, Z, T ), 0 ≤ X < Z ≤ 1, 0 ≤ Y < T ≤ 1.

To �nish with, the minimal arcs are the �short arcs around the midpoints on the edges�, as
displayed in Figure 5.2. Therefore, their location matches with the cuboctahedron Ω de�ned in (5.3).
Then, it can be proved that Ω is invariant under the group of CSN , which �nally implies Theorem 5.3.
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5.4 Conclusion and perspectives

The symmetry group of the equiangular Cubed Sphere coincides with the symmetry group of the
cube. The proposed approach to prove this result studies geodesic distances between points of the
grid. Such results provide some theoretical foundation for numerical computation on the Cubed
Sphere.

The symmetry group of a grid plays a central role in several contexts. It can be used to build
spherical quadrature rules which are valid for as many spherical harmonics as possible [175]. Our
main result shows that the group of the cube is the suitable symmetry group for the determination of
quadrature weights on the Cubed Sphere. This background somehow supports the quadrature rule
presented in Chapter 7. Moreover, for quadrature rules, the geometric distribution of the nodes is
often examinated. Our study of the geodesic distance includes the theoretical value of the separation
distance, and could serve as a tool to quantify the �uniformity� of the Cubed Sphere grid.

Another subject of interest concerns the building of a discrete Fourier analysis on the Cubed
Sphere, based on the invariance under the action of the symmetry group, in the spirit of [155]. Here
again, our result is a �rst step in this direction, since it identi�es the group to be considered.



Chapter 6

Interpolation on the Cubed Sphere with

spherical harmonics

6.1 Introduction

In this chapter, we consider the problem of Lagrange interpolation on the Cubed Sphere, as in [10].

Problem (Lagrange interpolation on the Cubed Sphere). Let CSN = {xi, 1 ≤ i ≤ N̄} denote the
Cubed Sphere grid (5.1), where N ≥ 1 is �xed, and N̄ = 6N2 + 2 denotes the cardinal number.
Assume that a grid function f ∈ RCSN is known, which means that f(xi), 1 ≤ i ≤ N̄ , are values
given at the nodes of CSN . The problem of Lagrange interpolation of f consists in �nding a spherical
function u : S2 → R such that

u(xi) = f(xi), 1 ≤ i ≤ N̄ . (6.1)

We de�ne a new subspace of spherical harmonics in which such a problem has a unique solution u.
This subspace is such that the solution u is minimal with respect to a reverse lexicographical order
(on the degree). This implies that the components of u with high degrees are as small as possible,
which avoids the high-frequency oscillations as much as possible. Our method of construction is
based on an unusual factorization algorithm.

Other methods for multivariate interpolation have already been introduced to build minimal
degree interpolation spaces enjoying various properties; we refer for instance to [122,123,166,167,172,
173] and the references therein. But the minimal property of our interpolating function, mentioned
above, seems new. Also, we can mention the most standard approach in inverse problems: it would
tackle (6.1) with a generalized inverse to de�ne a solution which has the minimal norm (based on a
Singular Value Decomposition - SVD), but would not constrain the high degree components.

In fact, our approach, introduced in [10], is some combination of minimal degree interpolation
and generalized inversion. In our case, the method deals especially with sampling on the Cubed
Sphere: �undersampled� spherical harmonics are determined and eliminated, since they cannot be
reconstructed. This is achieved by a reduction of a Vandermonde matrix associated to (6.1), under
some special echelon form. The reduction is based on an orthogonal factorization, deduced from the
SVD of suitable matrices. It builds simultaneously an orthonormal basis of the desired interpolation
space, an orthonormal basis of undersampled spaces (orthogonal to the interpolation space), and
a QR factorization of the linear system associated to the Lagrange problem (in the interpolation
space).

The chapter is organized as follows. In Section 6.2, we de�ne some notation about spherical
harmonics and grid functions. In Section 6.3, we propose an algebraic de�nition of an interpolation
space, suitable for the Lagrange problem on the Cubed Sphere (Theorem 6.2). This section includes
Lemma 6.1, which de�nes an explicit interpolating spherical harmonics with degree at most 4N − 1
(or 4N − 2); this new result, based on the geometrical structure of CSN , has never been published.
In Section 6.4, we formulate an algorithm to compute this space, and to solve (6.1) (Corollary 6.8),
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as in [10]. We also mention a novel characterization of the solution: it is the minimal interpolation
spherical harmonics with respect to a reverse lexicographical order (Corollary 6.9). In Section 6.5, we
propose some numerical study. We indicate some empirical structure of the interpolation space, we
examinate the distance of the Legendre basis functions to this space, and we interpolate various test
functions with our scheme. In Appendix 6.A, we propose and we study an orthogonal factorization
of a block matrix, under some special echelon form (Theorem 6.11). We prove that is suitable
to compute the least squares approximation which is minimal for a reverse lexicographical order
(Corollary 6.13). This framework is general and can be used for any block least squares problem
for which some lexicographical order on the blocks is desired. In fact, similar algorithms have been
developed in robotics to solve lexicographical least-squares [126].

6.2 Background and notation

6.2.1 Spherical harmonics

On the unit sphere S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}, the spherical coordinates are given

by

x(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ) ∈ S2, θ ∈ [−π
2 ,

π
2 ], φ ∈ R, (6.2)

where θ is the latitude and φ is the longitude. In these coordinates, the real Legendre spherical
harmonics of degree n ≥ 0 are de�ned by

Y m
n (x(θ, φ)) =

√
(n+1/2)(n−|m|)!

π(n+|m|)! P (|m|)
n (sin θ) · cos|m| θ ·


− sinmφ, −n ≤ m < 0,

1√
2
, m = 0,

cosmφ, 0 < m ≤ n,
(6.3)

where P
(|m|)
n (t) = d|m|

dt|m|
Pn(t) is the |m|-th derivative of the Legendre polynomial of degree n, de�ned

by

Pn(t) = 1
2nn!

dn

dtn (t2 − 1)n.

The in�nite family (Y m
n )|m|≤n, n∈N is a Hilbert basis of the space L2(S2), which is equipped with the

usual inner product and the associated norm,

〈f, g〉L2(S2) =

∫
S2
f(x)g(x)dσ, ‖f‖L2(S2) = 〈f, f〉1/2

L2(S2)
.

In this basis, any f ∈ L2(S2) admits a unique spectral expansion,

f =
∑
|m|≤n

f̂mn Y
m
n , with f̂mn = 〈f, Y m

n 〉L2(S2) . (6.4)

The space

Yn = span{Y m
n , |m| ≤ n}

represents the restriction to S2 of the homogeneous harmonic polynomials of degree n (in R3),
whereas for every degree D ≥ 0, the space de�ned by

YD = Y0 ⊕ · · · ⊕ YD = span{Y m
n , |m| ≤ n, 0 ≤ n ≤ D} (6.5)

contains all the spherical harmonics with degree less than or equal to D.
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6.2.2 Grid functions

The space of real functions de�ned on CSN is denoted by

RCSN = {f : CSN → R}.

The canonical basis (δxi)1≤i≤N̄ of RCSN is de�ned by

δxi(xj) = δij =

{
1, if i = j,

0, otherwise,
1 ≤ i, j ≤ N̄ .

In this basis, any f ∈ RCSN has the decomposition

f =
N̄∑
i=1

f(xi)δxi .

For any real function de�ned on the sphere, u : x ∈ S2 7→ u(x) ∈ R, the restriction of u on CSN is
the function de�ned by

u|CSN :=

N̄∑
i=1

u(xi)δxi ∈ RCSN , u|CSN (xi) = u(xi), 1 ≤ i ≤ N̄ . (6.6)

In this way, u interpolates a grid function f ∈ RCSN if (and only if), u|CSN = f .

6.3 Lagrange interpolation space

We tackle the Lagrange interpolation problem on the Cubed Sphere CSN , in an algebraic way.
We de�ne a subspace of spherical harmonics, UN ⊂ L2(S2), such that, in the space UN , the set
of equations (6.1) has always a unique solution u ∈ UN . Following the procedure of [10] and the
presentation of [9], the most natural way consists in eliminating any spherical harmonic of degree
n which is undersampled, and in keeping only the orthogonal complement, by induction on the
degree n. We summarize this procedure in this section, with a proof that is di�erent from the one
of [10]. In particular, the following lemma builds an interpolating function in a novel way.

Lemma 6.1 (Interpolating spherical harmonic with degree at most 4N − 1). Any grid function
f ∈ RCSN can be interpolated by a spherical harmonics u ∈ YD with

D =

{
4N − 1, if N is odd,

4N − 2, if N is even.
(6.7)

Proof. We de�ne functions Lxi ∈ YD such that Lxi(xj) = δij , 1 ≤ i, j ≤ N̄ ; this implies by linearity
that

u =

N̄∑
i=1

f(xi)Lxi ∈ YD

interpolates f , i.e. u(xi) = f(xi), 1 ≤ i ≤ N̄ .
Fix ξ ∈ CSN . Assume that ξ = 1

r (1, tan iπ
2N , tan jπ

2N ), with r > 0, −N
2 ≤ i, j ≤ N

2 (similar
arguments apply otherwise). We cover the Cubed Sphere CSN by means of great circles as in
Figure 6.1,

CSN ⊂
⋃
α∈A
{x ∈ S2 : x · α = 0}, (6.8)

where the normal vector α browses the set
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A = {(− sin kπ
2N , cos kπ

2N , 0), −N
2 ≤ k ≤

3N
2 − 1} ∪ {(− sin lπ

2N , 0, cos lπ
2N ), −N

2 ≤ l ≤
3N
2 − 1}. (6.9)

The number of such circles is given by D+ 1 = 4N, 4N − 1 if N is odd, even. Indeed, the indices k
and l browse 2N values; the corresponding circles are distinct, except if N is even and k = l = N .
Among these D+ 1 circles, there are exactly two circles which contain {ξ,−ξ} (one with k = i, and
one with l = j). The remaining D − 1 circles, parametrized by α ∈ A such that ξ · α 6= 0, cover
CSN \ {ξ,−ξ}. As a result, we de�ne the spherical function

Lξ(x) =
1 + ξ · x

2

∏
α∈A
ξ·α 6=0

x · α
ξ · α

, x ∈ S2.

In this expression, we recognize the tangent plane at −ξ (1+ξ ·x = 0), and theD−1 great circles that
do not contain {ξ,−ξ} (x ·α = 0, with α ∈ A such that ξ ·α 6= 0). In particular, Lξ ∈ YD, Lξ(ξ) = 1,
Lξ(−ξ) = 0, and the covering of CSN \ {ξ,−ξ} implies Lξ(ξ

′) = 0 for every ξ′ ∈ CSN \ {ξ,−ξ}.

Theorem 6.2 (Interpolation space). Let the orthogonal decomposition{
Yn =Wn

⊥
⊕W⊥n , n ≥ 0,

with W0 := {0}, Wn := {w ∈ Yn : ∃v ∈ Y0 ⊕ · · · ⊕ Yn−1, w|CSN = v|CSN }, n ≥ 1.
(6.10)

Let T denote the evaluation operator on CSN ,

T : C 0(S2) −→ RCSN

u 7−→ u|CSN

. (6.11)

Then, there exists a smallest degree d = d(N) ≥ 0 such that the linear map Td := T |W⊥0 ⊕···⊕W⊥d is

isomorphic. The space W⊥0 ⊕ · · · ⊕ W⊥d(N) is called the interpolation space, and is denoted by UN ;
the invert of Td(N) is called the interpolation operator and is denoted by IN : RCSN → UN .

Proof. Firstly, we prove, by induction on the degree n ≥ 0, that

T (Y0 ⊕ · · · ⊕ Yn) = T (W⊥0 ⊕ · · · ⊕W⊥n ). (6.12)

For n = 0, this is due to Y0 =W⊥0 . Fix now n ≥ 1 such that (6.12) is realized for the degree n− 1
(induction). By de�nition of Wn, Yn =Wn ⊕W⊥n , with T (Wn) ⊂ T (Y0 ⊕ · · · ⊕ Yn−1). We deduce
that

T (Y0 ⊕ · · · ⊕ Yn) = T (Y0 ⊕ · · · ⊕ Yn−1 ⊕W⊥n ) = T (W⊥0 ⊕ · · · ⊕W⊥n ),

Figure 6.1: Covering of the Cubed Sphere as in (6.8). For a given ξ ∈ CSN , we cover CSN (black
dots) by D + 1 great circles parametrized by a normal vector α ∈ A, with D de�ned in (6.7), and
A de�ned in (6.9). Two circles contains {ξ,−ξ} (black circles); the D − 1 remaining ones cover
CSN \ {ξ,−ξ} (gray circles). Here, N = 5.



6.4. MATRIX COMPUTATION 95

which achieves the induction.

Secondly, �x

d =

{
4N − 1, if N is odd

4N − 2, if N is even.

Then, Lemma 6.1 shows that the linear map T |Y0⊕···⊕Yd is surjective; hence, (6.12) with n = d
implies that the restriction Td is surjective too.

To conclude, we prove that Td is also injective. Assume that there is w ∈ W⊥0 ⊕ · · · ⊕W⊥d \ {0}
such that Tw = 0. Let n ≤ d be the degree of w. The unique constant function u ∈ Y0 such that
u|CSN = 0 is null, so n ≥ 1. Then, there are wn ∈ W⊥n \ {0} and y ∈ Y0 ⊕ · · · ⊕ Yn−1 such that
w = wn − y. Since Tu = 0, wn|CSN = y|CSN , so wn ∈ Wn, which is a contradiction.

The subspace Wn represents spherical harmonic of degree n which are undersampled on CSN ,
since they coincide with a spherical harmonic of smaller degree. On the contrary, any spherical
harmonics in the orthogonal supplementary W⊥n is properly sampled on CSN , since it can be recon-
structed by interpolation. The resulting space UN is intrinsicly de�ned, with an algebraic description.
Unfortunately, we do not have at disposal an analytical description of UN , nor of the spaces Wn,
W⊥n (apart from some special cases).

Remark 6.3. Our proof shows that the optimal degree d(N) satis�es d(N) ≤ 4N−1 if N is odd, and
d(N) ≤ 4N − 2 if N is even. This is an improvement of the bound proposed in the initial paper [10]
(≈ 21N), which was based on the shortest geodesic distance of Theorem 5.4 and [146, Theorem 2.4]-
[147, Lemma 3.13].

To conclude, by de�nition of the interpolation space UN and the interpolation operator IN , the
Lagrange interpolation problem on CSN has a unique solution in UN , and for every f ∈ RCSN ,
INf ∈ UN denotes the unique element u ∈ UN such that u|CSN = f . The following result establishes
that the degree of INf is minimal.

Corollary 6.4 (Minimal degree). Let f ∈ RCSN be a grid function interpolated by INf ∈ UN . Let
u ∈ Y0 ⊕ · · · ⊕ YD be a spherical harmonic of degree D which interpolates f , i.e. u|CSN = f . Then,
the degree D of u is greater than or equal to the degree of INf . In other words, the degree of the
interpolation spherical harmonics INf is minimal.

Proof. If D > d(N), the result is obvious. Otherwise, f = Tu ∈ T (Y0 ⊕ · · · ⊕ YD). We deduce
from (6.12) that there is some v ∈ W⊥0 ⊕ · · · ⊕W⊥D such that f = Tv. Here, D ≤ d(N), so v ∈ UN ,
which implies v = INf . Therefore, the degree of INf coincides with the degree of v, which is itself
less than or equal to D.

6.4 Matrix computation

In this section, we propose an algorithm to compute the interpolation space UN , and an interpolation
function INf , using numerical linear algebra. The approach deals with a numerical matrix analysis of
the evaluation operator T de�ned in (6.11); it is based on the special echelon orthogonal factorization
described in Appendix 6.A.

De�nition 6.5 (Vandermonde matrix). For any n ≥ 0, the Vandermonde matrix An is de�ned as
the matrix of the operator T |Y0⊕···⊕Yn ,

An := [Y m
k (xj)]1≤j≤N̄, |m|≤k≤n ∈ RN̄×(n+1)2 ,

where the column index (k,m) is sorted in lexicographical order.
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By de�nition, the Vandermonde matrix An, has a block structure, where each block corresponds
to the matrix of T |Yk , where k is a �xed degree,

An =
[
A0 A1 · · · An

]
∈ RN×(n+1)2 , with Ak := [Y m

k (xj)]1≤j≤N̄, |m|≤k ∈ RN̄×(2k+1). (6.13)

As a result, Theorem 6.11 applies; there is an echelon form (6.19) such that An = VnEnU
ᵀ
n, where

� the matrix Vn ∈ RN̄×N̄ is orthogonal,

� the matrix Un = diag(Uk, 0 ≤ k ≤ n) is block diagonal, with orthogonal matrices Uk ∈
R(2k+1)×(2k+1), as in (6.20),

� the matrix En ∈ RN̄×(n+1)2 is in echelon form as in (6.21), with g0, . . . , gn for the dimensions
of the blocks of rows.

Next, we recognize that (6.25) is the matrix representation of the decomposition (6.10). There-
fore, the matrix Un contains orthonormal bases of the spaces W⊥k and Wk.

De�nition 6.6 (Basis functions). Let n ≥ 0 be a �xed degree, and a special echelon form (6.19) of
An. For all 0 ≤ k ≤ n and 1 ≤ i ≤ 2k + 1, the basis function uik ∈ Yk is de�ned by

uik ∈ Yk, uik(x) = [Y m
k (x)]ᵀ|m|≤kUk(:, i), x ∈ S2,

so that, for any 0 ≤ k ≤ n,

� the set {uik, gk + 1 ≤ i ≤ 2k + 1} de�nes an orthonormal basis of the undersampled space Wk

(de�ned in (6.10)),

� the set {uik, 1 ≤ i ≤ gk} de�nes an orthonormal basis of the space W⊥k .

Remark 6.7. Here, the spaces Wk and W⊥k are intrinsicly de�ned, but it is not the case for the
orthonormal bases {uik} (as it is often the case for orthonormal bases).

Therefore, the matrixAnŨn, where Ũn is given by (6.26), represents the opertator T |W⊥0 ⊕···⊕W⊥n ,
in the basis {uik, 1 ≤ i ≤ gk, 0 ≤ k ≤ n}. This matrix has full column rank rn = g0 + · · · + gn
and has the QR factorization (6.27). We deduce from Theorem 6.2 that AdŨd is invertible for the
degree d = d(N), but that the row rank of AnŨn is de�cient if n < d (rn < N̄). This suggests
to compute incrementally the factorization (6.19), for increasing values of n, until the value of
rn = g0 + · · ·+gn reaches the value N̄ . Following the proof of Theorem 6.11, we obtain the practical
algorithm described on the next page.

The algorithm provides the optimal degree d = d(N) (Theorem 6.2), a special echelon form (6.19)
of Ad. We readily get an orthonormal basis {uik, 1 ≤ i ≤ gk, 0 ≤ k ≤ d} of the interpolation space
UN , and a QR form of the evaluation operator Td : UN → RCSN ,

AdŨd = VdẼd, (6.14)

where Vd is orthogonal, and the upper triangular matrix Ẽd ∈ RN̄×N̄ is nonsingular. Then, any
interpolation problem (6.1) can be solved with this factorization as follows.

Corollary 6.8. Assume that the factorization (6.14) has been pre-computed. Let f ∈ RCSN be a
grid function on CSN . Then, the unique element u ∈ UN such that u(xj) = f(xj), 1 ≤ j ≤ N̄ , is
given by

IN [f ](x) = [Y m
n (x)]ᵀ|m|≤n≤dŨd α, with α = (Ẽd)

−1Vᵀ
d [f(xj)]1≤j≤N̄ ;

here, the vector α is obtained by backward substitution in the upper triangular system

Ẽd α = Vᵀ
d [f(xj)]1≤j≤N̄ .
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Incremental special echelon orthogonal factorization of Vandermonde matrices

Input. Parameter N of the Cubed Sphere CSN .

Initialization. For n = 0, compute the factorization A0 = V0E0U
ᵀ
0:

1. compute the matrix A0 de�ned in (6.13);
2. compute the matrices V0, E0 and U0 by SVD of A0;
3. evaluate the number of nonzero diagonal coe�cients in E0, r0 = g0.
Iterations. For n ≥ 1, compute the factorization An = VnEnU

ᵀ
n:

1. compute the matrix An de�ned in (6.13);
2. compute matrices Vn,

(
Λn
0

)
and Un by SVD (6.23);

3. assemble the matrices Vn, En and Un with (6.24);
4. evaluate the number gn of nonzero diagonal coe�cients in

(
Λn
0

)
, and evaluate the rank

of An with rn = rn−1 + gn.
Stopping criterion. Exit when rn = N̄ , and set d = n.

Output. Smallest degree d such that the Vandermonde matrix Ad has full row rank,
and associated factorization Ad = VdEdU

ᵀ
d.

Proof. The matrix of IN = T−1
d is given by (AdŨd)

−1 = (Ẽd)
−1Vᵀ

d, due to (6.14).

To �nish with, Corollary 6.4 proves that the degree of the interpolation function INf is minimal.
As an immediate consequence to Corollary 6.13, we have in fact a stronger result: INf is the minimal
interpolation spherical harmonics, with respect to some reverse lexicographical order. Roughly
speaking, this result means that the components of INf with large degrees are as small as possible.

Corollary 6.9 (Minimal interpolation spherical harmonic, for a reverse lexicographical order). Let
f ∈ RCSN be interpolated by u = INf ∈ UN . Assume that v ∈ Y0⊕ · · · ⊕Yd is another interpolation
function of f , i.e. u 6= v and u|CSN = v|CSN = f . Let un, vn ∈ Yn, 0 ≤ n ≤ d, be such that
u = u0 + · · ·+ ud, v = v0 + · · ·+ vd. Then,

∃ 0 ≤ n ≤ d, ‖ud‖ = ‖vd‖, . . . , ‖un+1‖ = ‖vn+1‖, ‖un‖ < ‖vn‖.

In other words, the function INf is the minimal spherical harmonics which interpolates f , with
respect to a reverse lexicographical order on the degree.

6.5 Numerical experiments

6.5.1 Numerical dimensions

We have introduced an interpolation space UN =W⊥0 ⊕ · · · ⊕W⊥d(N), where Wn represents spherical

harmonics of degree n which are undersampled on CSN , de�ned in (6.10). Following our matrix
analysis, the dimension of the subspace W⊥n is given by

gn = dimW⊥n , n ≥ 0.

It corresponds to the number of nonzero singular values in the matrix Sn =
(

Λn
0

)
from the SVD (6.23).

In practice, the value of gn can be estimated numerically by some thresholding of the diagonal terms
of Sn. For a given threshold 0 < τ < 1, one considers that

gn =

{
0, if Sn(1, 1) ≤ τ ,
the number of Sn(i, i) such that Sn(i, i) > τSn(1, 1), otherwise.

(6.15)

We have tabulated the numerical values of gn, using the rule (6.15) and various thresholds τ . This
has led to the following claim.
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Claim 6.10. The following assertions hold.

(i) The matrix A2N−1 has full column rank. Equivalently, r2N−1 = 4N2.

(ii) The matrix A3N has full row rank. Equivalently, r3N = N̄ .

This claim, whose proof is still open, has the following consequences.

1. Any spherical harmonics of degree smaller than 2N is properly sampled on CSN , i.e.

W⊥n = Yn, n ≤ 2N − 1.

Note that the critical degree 2N coincides exactly with the Shannon-Nyquist angular frequency
if we consider trigonometric polynomials along an equatorial grid1 with step π

2N .

2. The optimal degree d(N) of Theorem 6.2 satis�es

d(N) ≤ 3N ;

this implies that any spherical harmonics of degree larger than 3N is undersampled on CSN , i.e.

Wn = Yn, n ≥ 3N + 1.

From now on, Claim 6.10 is assumed to perform further numerical approximations. Then, we
need to select values of gn in the range 2N ≤ n ≤ 3N . When using the threshold τ = 10−4, with N
increasing from N = 1 to N = 6, the observed values of gn obey the rule

gn =


2n+ 1, 0 ≤ n ≤ 2N − 1,

4(3N − n)− 2, 2N ≤ n ≤ 3N − 2,

3, n = 3N − 1,

1, n = 3N.

(6.16)

This suggests using (6.16) as an ansatz to infer the values of gn in the algorithm on the preceding page,
instead of thresholding singular values. In the sequel, we proceed in this way, so the ansatz (6.16)
gives the values corresponding to our numerical spaces.

The ansatz (6.16) is stronger than Claim 6.10. It further implies that d(N) = 3N , and that
for the intermediate degrees 2N ≤ n ≤ 3N , less and less spherical harmonics are correctly sampled
when the degree increases. We insist on the fact that contrary to Claim 6.10, the ansatz (6.16)
depends on the particular choice of the selected threshold τ in (6.15). However, it has proven to be
worth to be retained in the sequel to numerically evaluate a spherical harmonics Lagrange basis.

6.5.2 Least-squares approximation of Legendre spherical harmonics

To go further with the numerical analysis of the interpolation space, we consider the distance of any
Legendre spherical harmonic Y m

n to the interpolation space UN ,

d(Y m
n ,UN ) = min

u∈UN
‖Y m

n − u‖ =

[∫
S2

(Y m
n (x)− u(x))2 dσ

]1/2

, |m| ≤ n ≤ 3N. (6.17)

The distances are computed as the norms of the columns of the projector I− Ũ3NŨ
ᵀ
3N ,

[d(Y m
n ,UN )]|m|≤n≤3N =

[
‖(I− Ũ3NŨ

ᵀ
3N )(:, j)‖2

]
1≤j≤(3N+1)2

;

1On the equiangular grid {−π
4
+j π

2N
, 0 ≤ j ≤ 4N−1}, any trigonometric polynomial θ 7→ exp(ikθ), with |k| < 2N ,

is correctly sampled. For k = 2N , θ 7→ sin kθ is undersampled.
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Figure 6.2: Distance (6.17) of the real Legendre spherical harmonics Y m
n to the interpolation space

of CSN : d(Y m
n ,UN ), |m| ≤ n ≤ 3N , with N = 64.

They are displayed in Figure 6.2, for the grid CSN with N = 64 (N̄ = 24 578 nodes); similar results
are displayed in [10] for other values of N . The blue color corresponds to the distance zero (up to
rounding errors), which means that the function Y m

n belongs to the interpolation space UN . We
see again that any spherical harmonics of degree smaller than 2N is correctly sampled on CSN .
On the contrary, the red color corresponds to the distance 1, which means that the function Y m

n is
orthogonal to the interpolation space UN , and is therefore completely undersampled. We observe
some pattern which is reminiscent to a rhomboid ; roughly speaking,

� Y m
n is accurately approximated in the space UN if Mn ≤ |m| < 2N , where n 7→ Mn is some

increasing function;

� Y m
n is orthogonal to UN , for |m| > 2N and for |m| < Mn.

We refer to [10] for further results, including various statistics of the distance, and a comparison
with an interpolation space built by a direct SVD2 of the full Vandermonde matrix A3N .

6.5.3 Interpolation test cases

To �nish with, we interpolate the following set of test functions on the sphere S2:

f1(x, y, z) = 1 + x+ y2 + yx2 + x4 + y5 + x2y2z2,

f2(x, y, z) = 3
4 exp

[
− (9x−2)2

4 − (9y−2)2

4 − (9z−2)2

4

]
,

+ 3
4 exp

[
− (9x+1)2

49 − 9y+1
10 −

9z+1
10

]
,

+ 1
2 exp

[
− (9x−7)2

4 − (9y−3)2

4 − (9z−5)2

4

]
,

− 1
5 exp

[
−(9x− 4)2 − (9y − 7)2 − (9z − 5)2

]
,

f3(x, y, z) = 1
9 [1 + tanh(−9x− 9y + 9z)],

f4(x, y, z) = 1
9 [1 + sign(−9x− 9y + 9z)].

The function f1 is polynomial and f1 ∈ ⊕n≤6Yn. The functions f2 and f3 are regular and they
have many Legendre spherical harmonics in their expansion. The function f4 is discontinuous. In
Figure 6.3, the interpolation errors with N = 2 and N = 4 for this set of functions is displayed.
Furthermore, we display in Figure 6.4 the uniform error and the root mean squared error (RMSE)

2A SVD of A3N permits to de�ne an interpolation function whose L2 norm is minimal, but whose degree is not
minimal (in general).
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Figure 6.3: Interpolation of the test functions f1, f2, f3 and f4. Left column: the four test functions.
Middle column: interpolation error on CS2. Right column: interpolation error on CS4.
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Figure 6.4: Interpolation error of test functions on CSN , for 1 ≤ N ≤ 32. Left: uniform error e∞;
right: RMSE e2. Each error is evaluated on CS65, and represented in logarithmic scale.

on CSM , with M = 65; they are de�ned by

e∞(N, fi) := ‖fi|CSM − INfi|CSM ‖∞ = max
x∈CSM

|fi(x)− (INfi)(x)|,

e2(N, fi) := 1
(6M2+2)1/2

‖fi|CSM − INfi|CSM ‖2 =
(

1
6M2+2

∑
x∈CSM

|fi(x)− (INfi)(x)|2
)1/2

.

For N large enough, f1 ∈ UN , which gives a null error. The smooth function f2 is interpolated with
an error decreasing with N . This is also the case for the function f3, with a decreasing rate smaller
than the one for f2. This re�ects the C

p regularity of the functions f2 and f3. Finally, as expected,
the discontinuous function f4 is not well interpolated. The RMSE decreases very slowly, and the
uniform error does not decrease.

6.6 Conclusion

In this study, a methodology to associate a spherical harmonics subspace to the Cubed Sphere CSN
has been introduced. The particular subspace is based on a speci�c echelon factorization of the
Vandermonde matrix. This space seems promising in terms of approximation power. It is used in
Chapter 7 to design the new quadrature rule from [9].
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Finally, this work took its origin in the numerical observation of the rank stated in Claim 6.10 and
the ansatz (6.16). A full proof of this claim is an objective of further studies. Similarly, an analysis
of the condition number of the matrix An is required as well. Partial answers are given in Chapter 8,
dealing with least squares as in [11]. Also, further investigation of the symmetry properties may yield
to some discrete Fourier analysis on the Cubed Sphere. Using the new interpolation procedure to
various contexts is another future goal. An important goal is the application of this new framework
to PDE's in meteorology.

6.A Special echelon orthogonal factorization

6.A.1 Main result

We propose some factorization, which reduces a block matrix into an echelon matrix, using orthog-
onal transformations only; it has the special property that the blocks of the �diagonal� are full row
rank diagonal matrices.

Theorem 6.11 (Special echelon orthogonal factorization of a block matrix). Let n ≥ 0. Let An be
a matrix de�ned by n+ 1 blocks of columns, Ak ∈ RN×mk , 0 ≤ k ≤ n,

An =
[
A0 A1 · · · An

]
∈ RN×Mn , with Mn = m0 + · · ·+mn. (6.18)

Then, An admits an echelon orthogonal factorization,

An = VnEnU
ᵀ
n, (6.19)

such that

� the matrix Vn ∈ RN×N is orthogonal,

� the matrix Un ∈ RMn×Mn is orthogonal and block diagonal, so that

Un =

U0

. . .
Un

 ∈ RMn×Mn , with orthogonal matrices
Uk ∈ Rmk×mk , 0 ≤ k ≤ n,

(6.20)

� the matrix En ∈ RN×Mn is in echelon form, and such that

En =


Λ0 ∗ · · · ∗

0 Λ1
. . .

...
...

. . . . . . ∗
0 · · · 0 Λn
0 · · · · · · 0

 ∈ RN×Mn ,


with full row rank diagonal matrices

Λk =

[
. . . 0

]
∈ Rgk×mk (for some gk ≥ 0,

and a nonincreasing positive diagonal),
0 ≤ k ≤ n.

(6.21)

Remark 6.12. Similar factorization have already been introduced in the �eld of robotics: see [126]
for a problem of lexicographical least-squares, solved by a factorization that looks like (6.19).

Proof. The proof constructs the desired factorization (6.19), by induction on the number of blocks.
For n = 0 (one block), it is achieved by a singular value decomposition (SVD) of the matrixA0 = A0.
In this case, the matrix V0 contains left singular vectors, the matrix U0 = U0 contains right singular
vectors, and the diagonal of the matrix Λ0 contains g0 nonincreasing positive singular values, with
g0 = rankA0 ≥ 0.

Assume now (induction step) that the result holds for some n− 1 ≥ 0 (n blocks). Then,

An =
[
An−1 An

]
=
[
Vn−1En−1U

ᵀ
n−1 An

]
= Vn−1

[
En−1 Vᵀ

n−1An
] [Uᵀ

n−1 0
0 Imn

]
. (6.22)
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Here, the matrix En−1 has a suitable echelon form, and its number of �diagonal� coe�cients is given
by rn−1 = g0 + · · · + gn−1. Then, we diagonalize the last N − rn−1 lines of the matrix Vᵀ

n−1An.
More precisely, we consider an SVD of the matrix Vn−1(:, rn−1 + 1 : N)ᵀAn; there are orthogonal
matrices Vn ∈ R(N−rn−1)×(N−rn−1), Un ∈ Rmn×mn , and a full row rank diagonal matrix Λn, with gn
nonincreasing positive values on the diagonal, such that

Vn−1(:, rn−1 + 1 : N)ᵀAn = Vn

[
Λn
0

]
Uᵀ
n . (6.23)

We deduce from (6.22) that

An = Vn−1

En−1(1 : rn−1, :) Vn−1(:, 1 : rn−1)ᵀAn

0 Vn

[
Λn
0

]
Uᵀ
n

[Uᵀ
n−1 0
0 Imn

]

= Vn−1

[
Irn−1 0

0 Vn

]En−1(1 : rn−1, :) Vn−1(:, 1 : rn−1)ᵀAnUn

0

[
Λn
0

] [Uᵀ
n−1 0
0 Uᵀ

n

]
= VnEnU

ᵀ
n,

with

Vn = Vn−1

[
Irn−1 0

0 Vn

]
, Un =

[
Un−1 0

0 Un

]
, En =

En−1(1 : rn−1, :) Vn−1(:, 1 : rn−1)ᵀAnUn
0 Λn
0 0

 ,
(6.24)

which provides the factorization (6.19) with the desired structure.

The proof of Theorem 6.11 provides an iterative algorithm to compute the factorization (6.19).
The initialization is an SVD A0 = V0E0U

ᵀ
0; the number g0 of nonzero diagonal coe�cients in E0

gives the value r0 = g0. The iteration n computes the SVD (6.23) and deduces Vn, Un and En
with (6.24). The number gn of additionnal nonzero diagonal coe�cients determines the total number
of �diagonal� coe�cients in En, rn = rn−1 + gn. Note that the values of gn represent a number of
nonzero singular values; in practice, either, they are theoretically known, either they are predicted,
with some thresholding for instance.

The algorithm on page 97 is an implementation of this method in the case of Vandermonde
matrices, for interpolation by spherical harmonics on the Cubed Sphere. In fact, the special structure
of the factorization (6.19) has been designed to implement Theorem 6.2.

6.A.2 Consequences of the special echelon factorization

The special echelon orthogonal factorization (6.19) in Theorem 6.11, and its equivalent formAnUn =
VnEn, are very rich. We enumerate below a list of information which is directly extracted from these
decompositions.

� For any 0 ≤ k ≤ n, consider the following orthogonal decomposition of the target space RN ,

RN = RanAk

⊥
⊕KerAᵀ

k;

the �rst Mk columns in AnUn = VnEn give

AkUn(1 : Mk, 1 : Mk) = VnEn(:, 1 : Mk),

where we can deduce the range RanAk:
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� the number rk := g0 + · · ·+gk of nonzero �diagonal� terms in En(:, 1 : Mk) coincides with
rankAk, i.e. rk = rankAk;

� the rk columns of Vn(:, 1 : rk) represent an orthonormal basis of the range RanAk;

� the N − rk columns of Vn(:, rk + 1 : N) represent an orthonormal basis of the null space
KerAᵀ

k.

� For any 0 ≤ k ≤ n, consider the following decomposition of the input block Rmk ,

Rmk = Wk

⊥
⊕W⊥k , Wk := {u ∈ Rmk : Aku ∈ RanAk−1}, W⊥k = {u ∈ Rmk : u ⊥Wk}, (6.25)

(with the convention W0 = KerA0);

� the number gk of diagonal terms in Λk coincides with the dimension ofW⊥k , gk = dimW⊥k ;

� the gk columns of Uk(:, 1 : gk) represent an orthonormal basis of the subspace W⊥k ;

� the mk − gk columns of Uk(:, gk + 1 : mk) represent an orthonormal basis of Wk.

� Consider the following matrix, extracted from Un,

Ũn =

U0(:, 1 : g0)
. . .

Un(:, 1 : gn)

 ∈ RMn×rn ; (6.26)

� the matrix AnŨn has full column rank rn and admits the QR factorization

AnŨn = VnẼn, where Ẽn ∈ RN×rn is an upper triangular matrix,
with full column rank;

(6.27)

here, Ẽn is deduced from En by removal of �redundant� columns (only the non-zeros
columns of Λk, 0 ≤ k ≤ n, are kept).

� Fix b ∈ RN and consider the least squares problem

inf
x∈RMn

‖Anx− b‖2; (6.28)

� any vector x ∈ RMn is a solution to (6.28), if and only if,

En(1 : rn, :)U
ᵀ
n x = Vn(:, 1 : rn)ᵀ b; (6.29)

� in Ran Ũn, the minimal value (6.28) is reached exactly once: for x = Ũnα, where α is
the unique solution to

Ẽn(1 : rn, :)α = Vn(:, 1 : rn)ᵀ b. (6.30)

The least squares study above, combined with the special structure of the blocks Λk, shows that
the least squares approximation in Ran Ũn is the minimal one for some reverse lexicographical order.

Corollary 6.13 (Least squares approximation minimal for the reverse lexicographical order). Con-
sider the least squares problem (6.28), with the notation of Theorem 6.11. Let x = (x0, . . . , xn) ∈
Rm0 × · · · × Rmn be the least squares approximation that belongs to Ran Ũn, i.e. x = Ũnα, where
Ũn is de�ned in (6.26), and α denotes the unique solution to (6.30). Then, x is the unique minimal
solution to (6.28) in RMn, for the reverse lexicographical order in Rn+1, which means that for any
other least squares approximation x′ = (x′0, . . . , x

′
n), solution to (6.28) with x 6= x′,

∃ 0 ≤ k ≤ n, ‖xn‖2 = ‖x′n‖2, ‖xn−1‖2 = ‖x′n−1‖2, . . . , ‖xk+1‖2 = ‖x′k+1‖2, ‖xk‖2 < ‖x′k‖2.
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Proof. The least squares approximations x = (x0, . . . , xn) are parametrized using the linear sys-
tem (6.29). Any coe�cient of Uᵀ

nx which is associated to a null column in a diagonal block Λk,
0 ≤ k ≤ n, is a free parameter. The other coe�cients of Uᵀ

nx are given in Ũᵀ
nx; they are associated

to positive terms in the diagonal blocks, and they are uniquely determined in term of free parameters
with larger indices (backward substitution).

The n'th block of lines determine xn; the special structure of Λn implies that the coe�cients of
Un(:, gn + 1 : mn)ᵀxn are free parameters, but that the coe�cients of Un(:, 1 : gn)ᵀxn are uniquely
determined. Write

‖xn‖2 = ‖Un(:, 1 : gn)ᵀxn‖2 + ‖Un(:, gn + 1 : mn)ᵀxn‖2;

therefore, building a minimal norm ‖xn‖ for the n'th block of equations means canceling the free
parameters, i.e. setting Un(:, gn + 1 : mn)ᵀxn = 0.

More generally, as soon as xk+1, . . . , xn are �xed, the k'th block of lines determine xk. The
special structure of Λk implies that the coe�cients of Uk(:, gk + 1 : mk)

ᵀxk are free, but that the
coe�cients of Uk(:, 1 : gk)

ᵀxk are uniquely determined in term of xk+1, . . . , xn. Here again, the free
parameters Uk(:, gk + 1 : mk)

ᵀxk must be zero to minimize ‖xk‖, due to

‖xk‖2 = ‖Uk(:, 1 : gk)
ᵀxk‖2 + ‖Uk(:, gk + 1 : mk)

ᵀxk‖2.

Lastly, if all of the conditions Uk(:, gk + 1 : mk)
ᵀxk = 0, 0 ≤ k ≤ n, are ful�lled, then x = Ũnα ∈

Ran Ũn and is the unique solution determined with (6.30).
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Chapter 7

Octahedral quadrature rule on the

Cubed Sphere

7.1 Introduction

This chapter deals with a recent spherical quadrature rule, de�ned on the equiangular Cubed Sphere.
This rule, originally introduced in [9], is based on Lagrange interpolation described in Chapter 6.
The study takes bene�t from the symmetry group given in Chapter 5.

Numerical integration on the sphere has been considered by several authors. We refer to the
review [137]. The set of nodes and/or the associated weights are commonly identi�ed by requiring
exactness for a set of spherical harmonics, such as the spherical harmonics of degree smaller than
a given value. For some optimal methods similar to Gauss quadratures, the nodes and the weights
are both unknown; the associated set of equations is di�cult. Some modern methods deal with
the theory of t-designs, whose main purpose is to optimize the distribution of nodes, so that the
quadrature rule with equal weights has degree of precision t. This theory has a mathematical and
physical interest in itself. We refer to [117] for a review. For another class of methods, the weights
are unknown, but the nodes are prescribed; this paper falls into this category.

Here the Cubed Sphere nodes are selected from the beginning as �good� quadrature nodes, and
therefore, only the weights have to be identi�ed. In [156], two examples of weights have been
suggested. The �rst one was based on some extended trapezoidal rule, attributing some area to each
node. The second one was thought as a perturbation of the �rst one with a design based on some
optimization principle. See also [115] for another rule, including a Simpson like formula. Here we
come back to the general question of the �best choice� of weights associated to the Cubed Sphere
nodes. As in the general approach, we require exactness of the quadrature for a particular set of
spherical harmonics. Using the space UN de�ned in Theorem 6.2 immediately delivers a quadrature
rule. This quadrature is di�erent from the ones mentioned above. The space UN remarkably enjoys
invariance under the action of the group of the cube. This is somehow expected, since the group
of CSN is in fact the group of the cube, (or of the octahedron), as stated in Theorem 5.3. As will
be shown below, the new quadrature rule inherits this invariance. This property is highly desirable.
It is well known that group invariance is the backbone for the design of highly accurate spherical
quadratures, [107,149,150,175]. Refer for this to the review [137].

The chapter is organized as follows. Section 7.2 establishes several rotational invariance proper-
ties of the interpolation space UN . In Section 7.3, the new quadrature is introduced. By construction,
this quadrature is exact on the space UN . In addition, it is invariant under the octahedral group.
This in particular implies that it is exact for a proportion of 15/16 of all (real) Legendre spherical
harmonics. In Section 7.4, we display numerical results for a large series of test cases. It is observed
that the new rule is only slightly suboptimal, when compared to the optimal Lebedev rules. This
somehow supports the main Ansatz of this study, namely that the Cubed Sphere nodes are good
quadrature nodes on the sphere. Lastly, Appendix 7.A reports URLs with some available quadrature
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rules, including an open archiv for the new rule.

7.2 Rotational invariance of the interpolation space

In this section, we study the invariance of the interpolation space UN under the symmetry group G
of the Cubed Sphere CSN . (Recall that UN is de�ned in Theorem 6.2, and that G is the octahedral
group (5.2), due to Theorem 5.3). We call �rotated� a function de�ned as follows.

De�nition 7.1 (�Rotated� function). Assume that Q ∈ G leaves a set E invariant, i.e. QᵀE = E.
Let f : E → R be a function de�ned on E. The �rotated� function, denoted by f(Qᵀ·), is the
function

f(Qᵀ·) : x ∈ E 7→ f(Qᵀx) ∈ R.

Our main invariance result is the following theorem.

Theorem 7.2 (Invariance of the interpolation space). Let n ≥ 0.
(i) The undersampled subspace Wn de�ned in (6.10) is invariant under G, i.e.

∀Q ∈ G, ∀u ∈ Wn, u(Qᵀ·) ∈ Wn.

(ii) The subspace W⊥n is invariant under G, i.e.

∀Q ∈ G, ∀u ∈ W⊥n , u(Qᵀ·) ∈ W⊥n .

(iii) The interpolation space UN is invariant under G, i.e.

∀Q ∈ G, ∀u ∈ UN , u(Qᵀ·) ∈ UN .

Proof. Fix Q ∈ G, i.e. Q ∈ R3×3 is an orthogonal matrix such that QᵀCSN = CSN .
(i) If n = 0, W0 = {0} is invariant under G. Fix now u ∈ Wn ⊂ Yn with n ≥ 1. There exists
v ∈ Y0⊕ · · ·⊕Yn−1 such that u|CSN = v|CSN , or equivalently, (u− v)|CSN = 0. Firstly, u(Qᵀ·) ∈ Yn
and v(Qᵀ·) ∈ Y0⊕· · ·⊕Yn−1. Secondly, (u(Qᵀ·)− v(Qᵀ·)) |CSN = (u−v)|CSN (Qᵀ·) = 0, and therefore
u(Qᵀ·)|CSN = v(Qᵀ·)|CSN ; here, the commutation between rotation and restriction is justi�ed by the
following lemma.

Lemma 7.3 (Rotation commutes with restriction). For all Q ∈ G, n ≥ 0, and u ∈ Y0 ⊕ · · · ⊕ Yn,

u(Qᵀ·)|CSN = u|CSN (Qᵀ·) ∈ RCSN .

We postpone the proof of the lemma until the end of this section.
(ii) The result is a consequence of (i). Indeed, �x u ∈ W⊥n ⊂ Yn with n ≥ 0. Then u(Qᵀ·) ∈ Yn.
Furthermore, for every v ∈ Wn,

〈u(Qᵀ·), v〉L2(S2) =

∫
S2
u(Qᵀx)v(x)dσ =

∫
S2
u(y)v(Qy)dσ = 〈u, v(Q·)〉L2(S2) ; (y := Qᵀx).

Wn is invariant under G, so v(Q·) ∈ Wn. Then v(Q·) is orthogonal to u because u ∈ W⊥n . We obtain
〈u(Qᵀ·), v〉 = 〈u, v(Q·)〉 = 0, which proves u(Qᵀ·) ∈ W⊥n .
(iii) The space UN =W⊥0 ⊕ · · · ⊕W⊥d is a sum of invariant subspaces due to (ii).

Corollary 7.4 (Interpolation and symmetry). (i) The interpolation operator commutes with any
symmetry of the group G:

∀f ∈ RCSN , ∀Q ∈ G, [INf ](Qᵀ·) = IN [f(Qᵀ·)].

(ii) The interpolation operator preserves the invariance property; in other words, if f ∈ RCSN is in-
variant under G, i.e. ∀Q ∈ G, f(Qᵀ·) = f , then INf is invariant under G, i.e. ∀Q ∈ G, [INf ](Qᵀ·) =
INf .
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Proof. (i) Firstly, f(Qᵀ·) ∈ RCSN and u = IN [f(Qᵀ·)] ∈ UN is the unique element of UN such that
u|CSN = f(Qᵀ·). Secondly, v = INf ∈ UN is the unique element of UN such that v|CSN = f . Due to
Theorem 7.2.(iii), v(Qᵀ·) ∈ UN . By Lemma 7.3, v(Qᵀ·)|CSN = v|CSN (Qᵀ·) = f(Qᵀ·), which proves
u = v(Qᵀ·). (ii) is an immediate consequence of (i).

Proof of Lemma 7.3. Firstly, Y0 ⊕ · · · ⊕ Yn is invariant under the action of Q. Therefore [u(Qᵀ·) :
x ∈ S2 7→ u(Qᵀx)] ∈ Y0 ⊕ · · · ⊕ Yn, and u(Qᵀ·)|CSN is de�ned by

u(Qᵀ·)|CSN =
N̄∑
i=1

u(Qᵀxi)δxi ∈ RCSN .

On the other hand, [u|CSN : x ∈ CSN 7→ u(x)] ∈ RCSN , with CSN left invariant by Q. Then the
function u|CSN (Qᵀ·) is well-de�ned and is given by

u|CSN (Qᵀ·) : x ∈ CSN 7→ u(Qᵀx) ∈ RCSN .

At every x = xi ∈ CSN , the two functions have the same value, u(Qᵀxi).

7.3 A new quadrature on the Cubed Sphere

In this section, we study a new quadrature rule on CSN ; it is de�ned by interpolation as follows.

Theorem 7.5 (Quadrature rule). Let u : S2 → R be a given function. The quadrature rule QN is
de�ned by

QNu :=

∫
S2
IN [u|CSN ](x)dσ,

where IN : RCSN → UN is the interpolation operator de�ned in Theorem 6.2.
(i) Without loss of generality, assume that the �rst basis function in UN is u1

0 = 1√
4π

(see De�ni-
tion 6.6). Then, the formula QN can be expressed as follows:

QNu =
N̄∑
j=1

ωN (xj)u(xj), with ωN ∈ RCSN such that [ωN (xj)] = Vd(Ẽ
ᵀ
d)
−1[
√

4π 0 · · · 0]ᵀ; (7.1)

here, the lower triangular matrix Ẽᵀ
d and the orthogonal matrix Vd are given by the QR factoriza-

tion (6.14).
(ii) The formula QN is exact on UN , i.e.

∀u ∈ UN , QNu =

∫
S2
u(x)dσ.

(iii) The rule QN and the weight ωN are invariant under G, i.e.

∀Q ∈ G, ∀u ∈ UN , QN (u(Qᵀ·)) = QN (u), and ωN (Qᵀ·) = ωN .

Proof. (i-ii) Firstly, if u ∈ UN , QN exactly integrates u, since u coincides with INu. In particular,
for each basis function, denoted here by uj ∈ UN with 1 ≤ j ≤ N̄ , QNuj =

∫
S2 uj(x)dσ. For

u1 = 1√
4π
,
∫
S2 u1(x)dσ =

√
4π. For every 2 ≤ j ≤ N̄ , uj ⊥ u1, which means

∫
S2 uj(x)dσ = 0. Then,

[QNuj ]1≤j≤N̄ = [
√

4π 0 · · · 0]ᵀ. Secondly, �x ωN ∈ RCSN such that

ωN (xi) =

∫
S2
IN [δxi ]dσ, 1 ≤ i ≤ N̄ . (7.2)
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By linearity, we deduce from (6.6) that

QNu =

N̄∑
i=1

ωN (xi)u(xi) = [u(xi)]
ᵀ[ωN (xi)].

Using the basis functions, we obtain

(AdŨd)
ᵀ[ωN (xi)]1≤i≤N̄ = [QNuj ]1≤j≤N̄ = [

√
4π 0 · · · 0]ᵀ,

where the matrix AdŨd ∈ RN̄×N̄ , de�ned in Section 6.4, is non singular, and admits the QR
factorization (6.14).
(iii) Fix Q ∈ G and u ∈ UN . By Theorem 7.2, u(Qᵀ·) ∈ UN . Thus, by (ii) and change of variable,

QN (u(Qᵀ·)) =

∫
S2
u(Qᵀx)dσ =

∫
S2
u(x)dσ = QN (u) (x := Qᵀx).

Fix now 1 ≤ i ≤ N̄ and u = INδxi ∈ UN . By Corollary 7.4, u(Qᵀ·) = IN [δxi(Q
ᵀ·)] ∈ UN , with

δxi(Q
ᵀ·) = δQxi . Therefore by (7.2), QN (u) = ωN (xi) and QN (u(Qᵀ·)) = ωN (Qxi). Then, by

invariance of QN ,
ωN (xi) = QN (u) = QN (u(Qᵀ·)) = ωN (Qxi).

The quadrature rule exactly integrates the N̄ spherical harmonics of UN . Taking bene�t from the
rotational invariance, we prove furthermore that it exactly integrates an in�nite number of spherical
harmonics.

Corollary 7.6. The quadrature rule QN exactly integrates 15
16 of all real Legendre spherical harmon-

ics. More precisely, for all |m| ≤ n,

QN (Y m
n ) =

∫
S2
Y m
n (x)dσ, if


n ≡ 1 (2),

or, m < 0,

or, m ≥ 0 and m ≡ 1, 2, 3 (4);

equivalently, QN (Y m
n ) 6=

∫
S2 Y

m
n (x)dσ ⇒ n ≡ 0 (2), m ≥ 0 and m ≡ 0 (4).

Proof. Fix n ≥ 1 and |m| ≤ n. Then
∫
S2 Y

m
n (x)dσ = 0. For well chosen n, m, we build a sym-

metry Q ∈ G such that Y m
n (Qᵀ·) = −Y m

n . In such cases, we obtain QN (Y m
n ) = QN (Y m

n (Qᵀ·)) =
−QN (Y m

n ), which proves QN (Y m
n ) = 0 =

∫
S2 Y

m
n (x)dσ. Recall the spherical coordinates x(θ, φ) =

(cos θ cosφ, cos θ sinφ, sin θ), φ ∈ [−π, π], θ ∈ [−π
2 ,

π
2 ], and Y m

n (x(θ, φ)) := Y m
n (θ, φ).

Case 1: n ≡ 1 (2) and m ≡ 0 (4). Then θ 7→ P
|m|
n (sin θ) is odd, so is θ 7→ Y m

n (x(θ, φ)); hence,

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(−θ, φ)) = −Y m
n (x(θ, φ)), for Q :=

1 0 0
0 1 0
0 0 −1

 .
Case 2: m < 0. Then φ 7→ Y m

n (x(θ, φ)) is odd, so,

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(θ,−φ)) = −Y m
n (x(θ, φ)), for Q :=

1 0 0
0 −1 0
0 0 1

 .
Case 3: m ≡ 1, 3 (4). Then m(φ+ π) ≡ mφ+ π (2π), and

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(θ, φ+ π)) = −Y m
n (x(θ, φ)), for Q :=

−1 0 0
0 −1 0
0 0 1

 .
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Case 4: m ≡ 2 (4). Then m(φ+ π
2 ) ≡ mφ+ π (2π), and

Y m
n (Qᵀx(θ, φ)) = Y m

n (x(θ, φ+ π
2 )) = −Y m

n (x(θ, φ)), for Q :=

 0 1 0
−1 0 0
0 0 1

 .
Remark 7.7. In Corollary 7.6 (and its proof), the quadrature rule QN can be replaced by any linear
form Q : L2(S2) → R which is invariant under the octahedral group G. In particular, the 15/16-
property of the corollary holds for any spherical quadrature with octahedral symmetry. Therefore
Corollary 7.6 also holds for the Lebedev rules [149].

Remark 7.8. The ratio 15/16 of the real Legendre basis is obtained asymptotically. In [115, 156], a
similar approach based on invariance properties reported an asymptotic ratio of 7/8 of the complex
Legendre basis exactly integrated. Here, in the proof of Corollary 7.6, the real Legendre basis is
used instead. Using this basis allows to prove that exact quadrature actually holds up to 15/16 of
all spherical harmonics.

7.4 Numerical results

7.4.1 Symmetry invariance assessment

We begin by two numerical assessments related to interpolation in UN .
First, we illustrate that the interpolation operator IN preserves the invariance property, as

stated in Corollary 7.4.(ii). Fix N = 6 and consider the series of symmetric functions gi ∈ RCSN ,
described in Table 7.1. By construction, each function gi, 1 ≤ i ≤ 6, is constant along any orbit,
i.e. ∀Q ∈ G, gi(Qᵀ·) = gi, and is supported by a set of symmetric nodes. For i ≤ 5, gi takes
the value 1 along the orbit of ai ∈ CSN , and the value 0 otherwise. The orbit of a1 contains the
vertices of an octahedron. The orbit of a2 contains the vertices of a cube. The orbit of a3 contains
the vertices of a cubaoctahedron. The orbit of a4 is included in the edges of an octahedron. The
orbit of a5 is �generic�, with cardinal number 48. In Figure 7.1, we visualize how the symmetry is
re�ected in the interpolating functions INgi ∈ UN , 1 ≤ i ≤ 6. The octahedral symmetry predicted
by Corollary 7.4.(ii) can be observed; the functions INgi are constant along any orbit.

i gi ai | supp gi|

1 1
8

∑
Q∈G δQa1 [1 0 0]ᵀ 6

2 1
6

∑
Q∈G δQa2

1√
3
[1 1 1]ᵀ 8

3 1
4

∑
Q∈G δQa3

1√
2
[1 0 1]ᵀ 12

4 1
2

∑
Q∈G δQa4 (1 + tan2 π

6 )−1/2[1 0 tan π
6 ]ᵀ 24

5
∑

Q∈G δQa5 (1 + tan2 π
12 + tan2 π

6 )−1/2[1 tan π
12 tan π

6 ]ᵀ 48

6 g1 + g2 + g3 + g4 + g5 98

Table 7.1: Grid functions with octahedral symmetry. The function gi, 1 ≤ i ≤ 6, takes the value 1
on its support and is invariant under G.

Second, we assess the invariance of the interpolation space, stated in Theorem 7.2, and the
commutation between interpolation and rotation, stated in Corollary 7.4.(i). For that purpose, for
each basis function uj ∈ UN , we compare uj(Q

ᵀ·) = [INuj ](Qᵀ·) with IN [uj(Q
ᵀ·)]. Indeed, by

linearity, Corollary 7.4.(i) is equivalent to:

∀1 ≤ j ≤ N̄ , ∀Q ∈ G, [INuj ](Qᵀ·) = IN [uj(Q
ᵀ·)].

If this condition is achieved, then for each basis function uj , uj(Q
ᵀ·) = [INuj ](Qᵀ·) ∈ Ran IN = UN ,

which implies Theorem 7.2.(iii) by linearity. This also implies Theorem 7.2.(ii), due to uj(Q
ᵀ·) ∈
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Figure 7.1: Interpolation with octahedral symmetry. For every 1 ≤ i ≤ 6, the symmetric function
INgi is represented by the surface (1.5 + INgi(x))x, x ∈ S2.

Yn ∩ UN = Vn. We compare the functions on a �ne grid CSM (M = 33), by computing the relative
error

εN,j(Q) :=
maxx∈CSM |uj(Qᵀx)− IN [uj(Q

ᵀ·)](x)|
maxx∈CSM |uj(x)|

.

Then we compute the maximal error εN , and we repeat the procedure for several values of N :

εN := max{εN,j(Q), Q ∈ G, 1 ≤ j ≤ N̄}, 1 ≤ N ≤ 16. (7.3)

The results reported in Table 7.2 are in agreement with the invariance stated in Theorem 7.2 and
Corollary 7.4.(i).

N 1 2 3 4 5 6 7 8
εN 2.5e-15 3.4e-15 7.8e-15 1.4e-14 9.7e-15 9.3e-15 1.3e-14 1.1e-14

N 9 10 11 12 13 14 15 16
εN 1.4e-14 1.5e-14 1.9e-14 1.7e-14 3.4e-14 2.2e-14 1.8e-14 2.9e-14

Table 7.2: Numerical invariance: uj(Q
ᵀ·) = IN [uj(Q

ᵀ·)], Q ∈ G, up to relative error εN (7.3).

7.4.2 Quadrature weight

We have computed the quadrature weight ωN ∈ RCSN for 1 ≤ N ≤ 32, and N = 64. Some of
them are displayed in Figure 7.2. As can been observed, the weight is positive, ωN > 0, and the
maximum value is reached at the center of a panel. Moreover, some statistics of the weights are
given in Figure 7.3. It reveals that the distribution of the weights ωN is quasi-uniform. In particular,

maxωN
minωN

≈
√

2.

We recognize the ratio between the surface element at the center of a panel of CSN , and the smallest
surface element of a panel, as it is derived in [168, Eq. (20)].
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Figure 7.2: Representation of the weight values ωN , for the eight Cubed Spheres with 1 ≤ N ≤ 8.

Figure 7.3: Statistical distribution of the weight values ωN in (7.1), 1 ≤ N ≤ 32. The maximum,
minimum, and mean values satisfy maxωN ≈ 1.41 minωN , maxωN ≈ 1.18 ω̄N , and minωN ≈
0.83 ω̄N .

7.4.3 Quadrature of test functions

We test the accuracy of the quadrature formula QN on the series of functions reported in Table 7.3.
They are displayed in Figure 7.4. These functions serve as testing functions for quadrature assess-
ment. References are indicated in Table 7.3. The exponential function f1 is a smooth, non trivial
function. The Franke function f2 is a standard test case. The function f3 is smooth, except near
the South pole, where it has an in�nite spike. The cosine cap function f4 is continuous but is not

di�erentiable on the circle z =
√

3
2 . The function f5 is the characteristic function of a spherical

cap; it is not continuous. Similarly, the discontinuous function f6 represents an hemisphere; it is a
standard test function.

We report in Table 7.4 the quadrature error

ηN (fi) =

∣∣∣∣∫
S2
fidσ −QNfi

∣∣∣∣ , N = 1, 2, 4, 8, 16, 32, 64, 1 ≤ i ≤ 6.

Moreover, Table 9.1 reports a rate of convergence rN (fi), de�ned by the equation

η2N (fi) =
ηN (fi)

2rN (fi)
.

Note that the computations have been performed with Matlab, in double precision. In particular the
machine epsilon is approximately 2.2 × 10−16; we do not compute the rate when the relative error
is close to this value. For the smooth function f1, the error rapidly reaches a value which is about
10−14. For the Franke function f2, a thinner grid is required to reach such values, but a very fast
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i fi(x, y, z)
∫
S2 fi(x, y, z)dσ Ref.

1 exp(x) 14.7680137457653 · · · [113,128]

2 3
4 exp[− (9x−2)2

4 − (9y−2)2
4 − (9z−2)2

4 ] 6.6961822200736179523 · · · [109,114,115,129,156]

+ 3
4 exp[− (9x+1)2

49 − 9y+1
10 −

9z+1
10 ]

+ 1
2 exp[− (9x−7)2

4 − (9y−3)2
4 − (9z−5)2

4 ]
− 1

5 exp[−(9x− 4)2 − (9y − 7)2 − (9z − 5)2]

3 1
10

exp(x+2y+3z)
(x2+y2+(z+1)2)1/2

1(z > −1) 4.090220018862976 · · · [109]

4 cos(3 arccos z)1(3 arccos z ≤ π
2 ) π

8 inspired from [109]
5 1(z ≥ 1

2 ) π
6 1

9 [1 + sign(−9x− 9y + 9z)] 4π
9 [114,115,129,156]

Table 7.3: Test functions and exact integration values.

Figure 7.4: Test functions of Table 7.3.

convergence is still observed. For the spike function f3, the convergence rate is rN (f3) ≈ 1. For the
continous cap function f4, and the discontinuous one f5, the error slowly decrease, at a convergence
rate which depends on the grid size. For the cap function f6, which is discontinous and �symmetric�
(supported by a hemisphere), the error is close to the machine epsilon, independently of the grid
size.
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N N̄ ηN (f1) ηN (f2) ηN (f3) ηN (f4) ηN (f5) ηN (f6)

1 8 4.8e-02 8.2e-01 2.4e-01 3.9e-01 3.1e+00 6.7e-16
2 26 2.0e-06 1.5e-02 1.7e-02 2.1e-01 9.9e-01 0.0e+00
4 98 1.2e-14 2.2e-03 7.8e-03 2.0e-02 6.7e-02 2.2e-16
8 386 1.8e-15 9.0e-06 3.8e-03 4.8e-03 6.4e-02 6.7e-16
16 1538 7.1e-15 5.5e-09 1.9e-03 3.0e-04 1.5e-02 6.7e-16
32 6146 5.3e-15 1.8e-15 9.5e-04 3.1e-04 7.9e-03 6.7e-16
64 24578 3.6e-15 1.8e-15 4.8e-04 1.9e-07 2.6e-03 4.4e-16

Table 7.4: Quadrature error ηN (fi) = |
∫
S2 fidσ −QNfi|.

N rN (f1) rN (f2) rN (f3) rN (f4) rN (f5) r̄N (f1) r̄N (f2) r̄N (f3) r̄N (f4) r̄N (f5)

1 15 5.8 3.9 0.93 1.7 15 2.8 5.4 2.5 -0.0033
2 27 2.7 1.1 3.4 3.9 26 3.3 1.1 3.3 1.8
4 2.8 7.9 1 2.1 0.077 2.1 4.1 1 1.9 1.3
8 11 1 4 2.1 13 1.2 2.8 1.7
16 22 1 -0.047 0.92 24 0.92 2.2 1.4
32 1 11 1.6 0.93 2.7 1.6

Table 7.5: Convergence rate rN (fi) of the error ηN (fi), and convergence rate r̄N (fi) of the average
error ε̄N (fi), over 1000 random orthogonal transformations of the grid.

7.4.4 Sensitivity to the grid orientation

Here we consider more closely the accuracy of the rule QN : we modify randomly the orientation of
the grid, [129,156]. We compute

εN (fi, Q) =

∣∣∣∣∫
S2
fidσ −QNfi(Qᵀ·)

∣∣∣∣ ,
where Q browses a set of 1000 randomly selected orthogonal matrices (uniform law in [0, 2π] for the
Euler angles, and uniform law in {−1, 1} for the orientation). The worst error, the average error
and their ratio are de�ned by

εN (fi) = max
Q

εN (fi, Q), ε̄N (fi) = 1
1000

∑
Q

εN (fi, Q), ρN (fi) =
ε̄N (fi)

εN (fi)
.

The worst error εN (fi) and the ratio ρN (fi) are displayed
1 in Figure 7.5. We report in Table 9.1 a

convergence rate r̄N (fi) of the average error ε̄N (fi), de�ned by

ε̄2N (fi) =
ε̄N (fi)

2r̄N (fi)
.

The worst errors εN (f1) and εN (f2) fastly decrease, and εN (f6) is zero, up to rounding errors.
This indicates that the quadrature rule QN e�ciently integrates the smooth functions f1, f2, and
the symmetric cap function f6, independently of the grid orientation. For the function f4, which is
continuous and non di�erentiable, the worst error εN (f4) decreases at constant rate. The decrease
of the worst error εN (f5) of the �generic� cap function f5, which is discontinuous, is slower. And for
the spike function f3, the worst error εN (f3) slowly decreases, with oscillations.

1In order to clarify the �gure, we have elimated the following ratios: ρN (f1), N > 3, and ρN (f6). Indeed, these
ratios are �large�, because the associated errors are almost zero.



116 CHAPTER 7. OCTAHEDRAL QUADRATURE RULE ON THE CUBED SPHERE

Figure 7.5: Statistics of the quadrature error εN (fi, Q) = |
∫
S2 fidσ−QNfi(Q

ᵀ·)|, where Q scans a set
of 1000 random orthogonal matrices. Left: worst error εN (fi). Right: ratio ρN (fi) = ε̄N (fi)/εN (fi)
of the average error divided by the worst one.

Roughly speaking, Figure 7.5 indicates that

ε̄N (fi) ≈ 0.25εN (fi), i 6= 3, ε̄N (f3) ≈ 0.025εN (f3).

Except for f3, the worst error is not very large in comparison with the average error (factor 4). This
indicates that the result is almost insensitive to the grid orientation. For the function f3 with a spike,
the situation is di�erent (factor 40); the error is sensitive to the grid orientation. Concerning the
speed of convergence, we note r̄N (f3) ≈ 1 for the spike function, r̄N (f5) ≈ 1.4 for the discontinuous
cap function, r̄N (f4) ≈ 2.6 for the continuous one. The average errors for f1, f2 and f6 converge
fastly, since it was already the case for the worst errors.

7.4.5 Comparison with other quadrature rules

We compare our quadrature rule QN with some spherical quadrature rules of the literature, sum-
marized in Table 7.6.

Abbr. Description Ref.

CS-BBC21 Interpolation on the Cubed Sphere by spherical harmonics This work (QN )
CS-CP18 Octahedral quadrature on the Cubed Sphere, by least-square [156]
CS-BC18 Corrected bivariate trapezoidal on the Cubed Sphere [115]
Lebedev Gauss quadrature, invariant under the octahedral group [149,150]
t-design Spherical t-design [182,183]

Table 7.6: Quadrature of the literature used for comparison.

Rules on the Cubed Sphere We use two other rules on the Cubed Sphere; CS-BC18 is a correc-
tion of some bivariate trapezoidal rule, CS-CP18 is an octahedral rule which minimizes some
least-square error concerning the integration of Legendre spherical harmonics.
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Optimal quadrature rules We also use �optimal� quadrature rules, whose distribution of nodes
is �optimized�. Firstly, our rule is invariant under the octahedral group G, so we compare
with the Lebedev rule, which is an optimal octahedral rule. Indeed, the optimal grids/weights
of Lebedev maximize the degree of precision, under the constraint of invariance under G.
Secondly, our weights are quasi-uniform, so we compare with spherical t-designs. This rules
have equal weights and degree of precision t; the associated spherical grids have ∼ t2

2 nodes,
which is the optimal order.

Results are given on Figure 7.6. The worst error after 1000 random orthogonal matrices is plotted
related to the number of grid points using di�erent quadrature rules.

Figure 7.6: Worst quadrature error (for 1000 random orthogonal transformations of the grid), versus
the number of grid points.

Comparison on the Cubed Sphere Among the quadrature rules on CSN , the new rule QN out-
performs CS-BC18 for the smooth functions f1 and f2, and for the symmetric cap function



118 CHAPTER 7. OCTAHEDRAL QUADRATURE RULE ON THE CUBED SPHERE

f6. The rules QN and CS-CP18 give similar accuracy for most of the cases, with the following
exceptions. The rule QN integrates f1 more accurately than CS-CP18 before convergence, and
QN converges slightly faster than CS-CP18 for f2.

Comparison with optimal rules For the smooth functions f1 and f2, the rules QN and t-design
have similar accuracy, whereas the Lebedev rule converges slightly faster. For the function
f3 with a spike, the worst errors are almost similar; they decay slowly with oscillations. For
the cap functions f4 and f5, the methods converge slowly with similar accuracy. For the
�symmetric� cap function f6, QN and the Lebedev rule are exact (up to rounding errors) and
give better accuracy than the t-design rule.

Overall, the rule QN on a �xed grid CSN displays remarkable accuracy, compared to �optimal�
quadrature methods, which require �optimal� grids (Lebedev and t-design rules).

7.4.6 Accuracy of the new quadrature rule

The quadrature rule QN is designed to integrate exactly any spherical harmonics belonging to the
space UN . In addition, it integrates 15/16 of all Legendre spherical harmonics (see Corollary 7.6).
Here, we numerically display detailed accuracy properties of the rule QN .

First, for a selected set of tolerances ε = 10−p, we give the degree of precision dN (ε), de�ned as
the largest integer such that

∀|m| ≤ n ≤ dN (ε),

∣∣∣∣∫
S2
Y m
n dσ −QNY m

n

∣∣∣∣ ≤ ε.
The results are reported in Table 7.7. It is observed that except for N = 3, 4, 64, the degree
dN (10−14) is 2N+1 if N is odd, and 2N+3 if N is even. For the three exceptions, the degree is found
higher than the generic one. We have dN (10−14) = 4N−1 for N = 3, 4, and d64(10−14) = 2 ·64+11.
Furthermore, the Table 7.7 implicitly displays an accuracy information obtained for some of the
Legendre spherical harmonics that are not exactly integrated. For example in the case N = 8, the
�rst error above the threshold 10−14 belongs to the interval (10−6, 10−4]. This error is obtained for
the degree n = 20 (since the rule is exact for odd degrees).

Second, we focus on the quadrature errors

η(Y m
n ) =

∣∣∣∣∫
S2
Y m
n dσ −QNY m

n

∣∣∣∣ , n ≡ 0 (2), m ≥ 0 and m ≡ 0 (4). (7.4)

Here, we consider the series of the 1/16 of all the Legendre spherical harmonics which are possibly
non exactly integrated by QN , (see Corollary 7.6). We have computed the quadrature error for this
series for n ≤ 1024, and for the two grids CSN with N = 8 (386 nodes), and N = 31 (5768 nodes).
The computed errors are displayed in Figure 7.7 using both an histogram form, and a cumulative
distribution function. As observed, some errors are zero (up to rounding errors). This is consistent
with the data in Table 7.7 (if n ≤ dN (10−14), η(Y m

n ) ≤ 10−14). Note also that the largest obverved
errors belong to the interval (1, 10).

Finally, we further develop these observations by comparing the rule QN with the Lebedev rules.
As noted in Remark 7.7 above, errors with the Lebedev quadrature can occur only with the same
set of Legendre functions (referred to as the �1/16 serie�). Therefore we numerically compare the
accuracy of the Lebedev rules with the rule QN on this series. Figure 7.7 reports a comparison
between the two Lebedev grids with 434 nodes and 5810 nodes and the Cubed Sphere rule QN with
386 nodes (N = 8) and 5810 nodes (N = 31), respectively. It is observed that the Lebedev rules
exactly integrate a larger set of spherical harmonics; this was somehow expected, since the Lebedev
rules are de�ned to maximize the degree of precision over octahedral grids. But surprisingly, the
distribution of the largest errors of the Lebedev rule is very similar with the one of the rule QN .
In particular, the largest errors of QN , de�ned on the �xed octahedral grid CSN , are not above the
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largest errors of the Lebedev's optimal grid. We even notice on the cumulative density function plots
that the number of errors below a moderate tolerance ε can be slightly larger with the rule QN ; this
is observed in particular with N = 31 and ε = 10−7. These observations indicate the interest of the
rule QN when compared with an optimal rule.

N N̄ dN (10−14) dN (10−12) dN (10−10) dN (10−8) dN (10−6) dN (10−4)
1 8 3 3 3 3 3 3
2 26 7 7 7 7 7 7
3 56 11 11 11 11 11 11
4 98 15 15 15 15 15 15
5 152 11 11 11 11 11 11
6 218 15 15 15 15 15 17
7 296 15 15 15 15 15 17
8 386 19 19 19 19 19 21
9 488 19 19 19 19 19 23

10 602 23 23 23 23 23 27
11 728 23 23 23 23 23 27
12 866 27 27 27 27 29 33
13 1016 27 27 27 27 29 33
14 1178 31 31 31 31 33 39
15 1352 31 31 31 31 33 41
16 1538 35 35 35 35 39 45
17 1736 35 35 35 35 39 47
18 1946 39 39 39 41 43 51
19 2168 39 39 39 41 45 55
20 2402 43 43 43 45 49 59
21 2648 43 43 43 45 49 65
22 2906 47 47 47 49 53 65
23 3176 47 47 47 51 55 71
24 3458 51 51 51 55 59 75
25 3752 51 51 51 55 61 79
26 4058 55 55 57 59 65 85
27 4376 55 55 57 59 65 89
28 4706 59 59 61 65 69 95
29 5048 59 59 61 65 71 97
30 5402 63 63 65 69 75 101
31 5768 63 63 65 69 77 105
32 6146 67 67 71 73 81 111
64 24578 139 143 147 155 183 255

Table 7.7: Quadrature rule QN : observed degree of precision dN (ε) for various tolerances ε.
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Figure 7.7: Comparison of the errors on the 1/16 series of spherical harmonics (see Corollary 7.6) be-
tween the rule QN and Lebedev's rules for two pairs of grids. Left column: CS (386 nodes)/Lebedev
(434 nodes). Right column: CS (5768 nodes)/Lebedev (5810 nodes). The quadrature error η is
reported for the spherical harmonics Y m

n , with n ≡ 0 (2), m ≡ 0 (4), 0 ≤ m ≤ n ≤ 1024. Top:
an histogram with logarithmic rescaling of the errors η (7.4) is displayed for both rules. Bottom:
the cumulative density function (cdf) in logarithmic scale for both rules is reported. On these
plots, the range of the logarithmic error log(η + 10−15) has been uniformly divided into 128 classes;
for any class [c1, c2), the probability (top line) represents the percentage of errors η such that
10c1 ≤ η + 10−15 < 10c2 , whereas the cumulative density (bottom line) represents the percentage
of errors η such that η + 10−15 < 10c2 . As a conclusion, the Lebedev's rules exactly integrate
more spherical harmonics, but the distributions of the largest errors are similar; moreover, for a
large grid, the percentage of errors below a moderate threshold (ε = 10c2) is larger for the rule QN
(bottom-right with ε > 10−7).
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7.5 Conclusion

We have designed a new quadrature rule QN on the Cubed Sphere CSN . It has the property to
be quasi-uniform with positive weights. The numerical results can be compared in accuracy with
optimal rules such as t-designs and Lebedev rules. This supports the claim of the �approximation
power� of the Cubed Sphere. Among the questions open, a better convergence analysis must be
performed. Proving the positivity of the weights is also an important goal. Overall, the symmetry
properties of the Cubed Sphere as a support for quadrature seems a promising topic.

7.A Quadrature rules data

The data for the various rules used in this study can be found as follows:

� The new rule associated to the Cubed Sphere nodes is available on the open archiv
https://hal.archives-ouvertes.fr/hal-03223150/file/xyzwCSN.zip

� For the Lebedev rules, we have used the Matlab function getLebedevSphere (by R.M. Parrish).
The code is available on
https://fr.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere

� The t-designs have been found on R.S. Womersley webpage
https://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/sf.html

https://hal.archives-ouvertes.fr/hal-03223150/file/xyzwCSN.zip
https://fr.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere
https://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/sf.html
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Chapter 8

Least squares approximation on the

Cubed Sphere

8.1 Introduction

This chapter, extracted from [11], studies least squares �tting by a spherical harmonic on the Cubed
Sphere grid.

We consider the approximation of functions de�ned on the Cubed Sphere by means of spherical
harmonics. Assume that a grid function y ∈ RCSN is known, which means that y(ξ), ξ ∈ CSN , are
values given at the nodes ξ of CSN . We approximate these data by a spherical harmonic f ∈ YD,
where YD = Y0⊕· · ·⊕YD is the space of spherical harmonics with degree at most D. The standard
least squares approximation problem is

inf
f∈YD

∑
ξ∈CSN

|f(ξ)− y(ξ)|2. (LS)

Our main observation is that the choice D = 2N − 1 leads to a well posed and well condi-
tioned problem. In addition, the resulting spherical harmonic possesses interesting properties for
approximating a function given at the nodes of CSN only. These facts are assessed theoretically and
numerically hereafter.

In [10], we have introduced a spherical harmonics subspace dedicated to Lagrange interpolation
on the Cubed Sphere, as presented in Chapter 6. In practice, this space is a direct sum Y2N−1⊕Y ′.
The second subspace Y ′ complements Y2N−1; it is such that Y ′ ( Y2N⊕· · ·⊕Y3N . This interpolation
framework has been used in [9] to de�ne new spherical quadrature rules of accuracy comparable to
optimal ones (Lebedev rules), as presented in Chapter 7. Here, we show that the �rst subspace
Y2N−1 is a suitable choice if one wants a least squares approximant instead of an interpolant.

Approximating and interpolating data on the sphere by spherical harmonics is an old and im-
portant topic. It is still widely used nowadays in many areas in physics such as quantum chemistry,
numerical climatology, cosmology, gravitation, neutronic, etc. It is also central in harmonic analy-
sis on spheres and balls since it is the three dimensional counterpart of trigonometric approxima-
tion. For fundamental and applied aspects of spherical harmonics analysis, refer to the two recent
monographs [113,121] (theory and applications). Concerning applications in geomathematics, many
chapters in the reference [130] are concerned with spherical harmonics. Regarding speci�cally least
squares, recent works include [111,136].

The outline is as follows. In Section 8.2 the setup of the problem is given. A general positive
weight function is included to de�ne the least squares functional. Theoretical results are given in
Section 8.3. These results in particular concern estimates of the condition number of the collocation
matrix. Section 8.4 is devoted to the structure of the matrix involved in the least squares problem
(LS). In particular, the attractive block structure of this matrix is described in case of a rotationally
invariant weight function. Finally, various numerical results are reported in Section 8.5.

123
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8.2 Setup of the Least Squares problem

Our notation is as follows. For any N ≥ 1, the equiangular Cubed Sphere CSN is a set of N̄ =
6N2 + 2 nodes ξ ∈ S2, de�ned in (5.1). The space of grid functions RCSN has been introduced in
Subsection 6.2.2; for any function g : x ∈ S2 7→ g(x) ∈ R, the grid function g|CSN ∈ RCSN is de�ned
by g|CSN (ξ) = g(ξ), ξ ∈ CSN .

The spherical harmonic Y m
n with index (n,m) is de�ned in spherical coordinates (θ, φ) by (6.3);

it is such that

Y m
n (x(θ, φ)) = qmn (sin θ) · (cos θ)|m| ·

{
sinmφ, m < 0,

cosmφ, m ≥ 0,
(8.1)

where x(θ, φ) is de�ned in (6.2), and qmn is the polynomial of degree n − |m|, with the parity of
n+ |m|, de�ned by

qmn (t) =
√

(n+1/2)(n−|m|)!
π(n+|m|)! ·

(
d|m|+n

dt|m|+n
1

2nn!(t
2 − 1)n

)
·


−1, m < 0,

1√
2
, m = 0,

1, m > 0.

(8.2)

For any D ≥ 0, the space YD of spherical harmonics with degree at most D, given by (6.5), has
dimension dimYD = (D + 1)2.

Let ω(ξ) > 0, ξ ∈ CSN , be a given positive weight function. Let y(ξ), ξ ∈ CSN , be a set of data
given at the nodes of the CSN . We de�ne a functional L by

f 7→ L(f) =
∑

ξ∈CSN

ω(ξ)|f(ξ)− y(ξ)|2. (8.3)

We consider the least squares problem: �nd f ∈ YD solution of

inf
f∈YD

L(f). (WLS)

We also use the quadrature rule Q associated to ω: for f : S2 → R,

Q(f) =
∑

ξ∈CSN

ω(ξ)f(ξ)

=

∫
S2
f(x)dσ − eN (f),

(8.4)

where eN denotes the quadrature error. In the particular case where the data y are such that
y = g|CSN for a given function g, we have

L(f) = ‖f − g‖2L2(S2) − eN (|f − g|2). (8.5)

For �xed values of N and D, we call the Vandermonde matrix of the problem the rectangular matrix
ADN de�ned by

ADN =
[
Y m
n (ξ)

]
ξ∈CSN
|m|≤n≤D

∈ RN̄×(D+1)2 . (8.6)

We de�ne the diagonal matrix ΩN ∈ RN̄×N̄ by

ΩN = diag(ω(ξ))ξ∈CSN ∈ RN̄×N̄ . (8.7)

In vector form, the problem (WLS) is expressed as

inf
f̂∈R(D+1)2

‖Ω1/2
N

(
ADN f̂ − y

)
‖2, (8.8)
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where y = [y(ξ)]ξ∈CSN ∈ RN̄ . Uniqueness for (8.8), or equivalently for (LS) or (WLS), is equivalent
to the injectivity of ADN . In this case, (8.8) is equivalent to the linear system

ADN
ᵀ
ΩNA

D
N f̂ = ADN

ᵀ
ΩN y. (8.9)

A natural interpretation of (8.9) is as follows. Consider the following analog of the Discrete Fourier
Transform (DFT) of the data y = g|CSN , located at the nodes of CSN instead of at the θj = 2jπ/N ∈
[0, 2π), j = 0, . . . , N , in the standard DFT. The Fourier-like coe�cients are the components of the
vector

DFT(y) =
[ ∑
ξ∈CSN

ω(ξ)Y m
n (ξ)y(ξ)

]
(n,m)

= ADN
ᵀ
ΩN y.

(8.10)

On the other hand, the analog of the Inverse Discrete Fourier Transform (IDFT) of a set of data
f̂ = [f̂mn ]0≤|m|≤n≤D is the grid function

IDFT[f̂ ](ξ) =
∑

0≤|m|≤n≤D

f̂mn Y
m
n (ξ), ξ ∈ CSN ,

=
[
(ADN )f̂

]
(ξ).

This means that in matrix form, ADN coincides with the IDFT operator. Therefore in terms of

DFT/IDFT transforms, the solution f ∈ YD of (8.9) has coe�cients f̂ = [f̂mn ] solution of

DFT
(

IDFT[f̂ ]− y
)

= 0.

For any N , there is a maximal degree D such that the matrix ADN is injective (full column rank), thus
guaranteeing that (WLS) has a unique solution. The proof consists in observing that such degrees
D form a nonempty set of integers. We have rankADN ≤ min

(
(N̄ , (D + 1)2

)
. Therefore assuming

that ADN has full column rank implies that (D + 1)2 ≤ N̄ which means

D ≤ N̄1/2 − 1 ≈ 2.45N − 1.

Fix a value N , and consider the Cubed Sphere CSN . How to select N 7→ DN in order for the two
following conditions to hold?

(i) For every degree D ≤ DN , the Vandermonde matrix ADN is injective so that
the least squares problem (LS) has a unique solution.

(ii) The condition number cond(ADNN ) is bounded above for N → +∞.

(P)

In other words, the matrix ADNN is required to satisfy both injectivity and asymptotic stability. In
what follows, we assess that

DN = 2N − 1 (8.11)

is a natural candidate for (P) to be full�lled.

Remark 8.1. Note that the value D = 2N−1 corresponds to the Nyquist cuto� angular frequency of
a signal sampled with stepsize π/(2N) (one dimensional problem). Note also that for a given integer
N , it may exist D > 2N − 1 such that ADN is injective. However, we are interested in a generic value
of D, expressed in function of N such that the property (P) holds.

In Section 8.3, several theoretical results are proved, supporting (8.11). And Section 8.5 reports
numerical results further supporting this claim.
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8.3 Theoretical results

In this section we prove several facts supporting that D = 2N − 1 is a truncation value full�lling
the property (P). Speci�cally we will show that

1. For 1 ≤ N ≤ 4, the condition D ≤ 2N − 1 is equivalent to the injectivity of the matrix ADN ,
(Proposition 8.4).

2. For N ≥ 5, we show that D ≤ N + 2 implies injectivity of the matrix ADN (Proposition 8.5).
Combined with (8.2), this gives that a condition on the largest D for ADN to be injective is that

N + 2 ≤ D ≤
√

6N2 + 2− 1

3. Finally, Theorem 8.7 shows that D = 2N gives that the condition number of A2N
N is asymp-

totically unbounded. Thus D ≥ 2N does not satisfy (ii) in (P) and therefore one must select
D ≤ 2N − 1.

Remark 8.2. A full proof of the fact that the matrix A2N−1
N is injective for all N is not yet available.

8.3.1 The case 1 ≤ N ≤ 4

The case 1 ≤ N ≤ 4 corresponds to a small Cubed Sphere grid ranging from N̄ = 8, (N = 1) nodes
to N̄ = 98, (N = 4) nodes. Consider the spherical harmonic Y −2N

2N ∈ Y2N , given by, see (8.1)

Y −2N
2N (x(θ, φ)) = q−2N

2N (sin θ) · cos2N θ · sin(2Nφ).

By shifting the angle φ by π/4 we obtain fN ∈ Y2N de�ned by

fN (x(θ, φ)) = Y −2N
2N (x(θ, φ− π

4 )). (8.12)

Lemma 8.3 (Function fN restricted to CSN for N ≤ 4). For 1 ≤ N ≤ 4, the function fN ∈ Y2N

vanishes at all nodes of CSN (f |CSN ≡ 0). This implies that ADN has not full column rank if N ≤ 4
and D ≥ 2N .

Proof. The spherical harmonic fN is deduced from Y −2N
2N by a rotation of π/4 around the pole axis.

By invariance of Y2N by rotation, we have fN ∈ Y2N . In addition, for any N ≤ 4, it turns out that
CSN is contained in the set MN of meridians de�ned by

MN :=
{
x(θ, φ) : θ ∈ [−π

2 ,
π
2 ], φ ≡ π

4 ( π
2N )
}
. (8.13)

Along these meridians, the longitude angle φ is such that 2N(φ− π
4 ) ≡ 0 (π), hence

fN (x(θ, φ)) = q−2N
2N (sin θ) · cos2N θ · sin

(
2N(φ− π

4 )
)

= 0. (8.14)

This implies that f(ξ) = 0 for all ξ ∈ CSN . In particular, for any D ≥ 2N , the linear map
f ∈ Y2N 7→ f |CSN is not injective. Therefore for D ≥ 2N , the matrix ADN is not injective.

Proposition 8.4 (Full column rank in the case 1 ≤ N ≤ 4). Let ADN be the Vandermonde ma-
trix (8.6). If 1 ≤ N ≤ 4, then

ADN has full column rank ⇔ D ≤ 2N − 1;

In particular, the largest degree DN such that ADNN has full column rank is DN = 2N − 1.
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Proof. Fix N ≤ 4. Lemma 8.3 proves that if ADN has full column rank then D ≤ 2N − 1. For the

converse, we �x D ≤ 2N − 1 and we prove that the linear map f ∈ YD 7→ [f(ξ)]ξ∈CSN ∈ R6N2+2 is
injective. So we �x f ∈ YD such that f(ξ) = 0 for every ξ ∈ CSN and we prove that f = 0. First,
we introduce 2N meridian circles associated to the longitudes φ ≡ π

4 ( π
2N ),

C (ψ) = {x(θ, ψ), θ ∈ [−π
2 ,

π
2 ]} ∪ {x(θ, ψ + π), θ ∈ [−π

2 ,
π
2 ]}, ψ ≡ π

4 ( π
2N ),

and we prove that f is null on these great circles, i.e.

f |C (ψ) = 0, ψ ≡ π
4 ( π

2N ), (8.15)

where f |C (ψ) denotes the restriction of f to C (ψ). The assumption N ≤ 4 implies that each great
circle C (ψ) contains 4N points of CSN . Since f vanishes on CSN , these points give 4N zeros for
f |C (ψ). Since f |C (ψ) represents a trigonometric polynomial with degree at most D, with 4N zeros,
and 4N ≥ 2D + 1, we obtain f |C (ψ) = 0.

Second, any great circle C not containing the pole (0, 0, 1), contains 4N points in the set
∪ψ≡π4 (

π
2N )C (ψ). Therefore (8.15) implies that f has 4N zeros on C . It results that f |C repre-

sents a trigonometric polynomial with degree at most D and 4N zeros; since 4N ≥ 2D + 1, we
obtain

f |C = 0, (0, 0, 1) /∈ C . (8.16)

Since the great circles in (8.15) and (8.16) cover the sphere, we have f = 0 on S2.

8.3.2 The case N ≥ 5

Lemma 8.3 and Proposition 8.4 give a full answer to the injectivity of A2N−1
2N in the case 1 ≤ N ≤ 4.

Consider now the case N ≥ 5. We have

Proposition 8.5 (Case N ≥ 5). Suppose N ≥ 5. We have

D ≤ N + 2⇒ ADN has full column rank,

Therefore, the largest degree D such that ADN has full column rank satis�es

N + 2 ≤ D ≤ N̄1/2 − 1 (≈ 2.45N − 1).

Proof. Fix N ≥ 5 and D ≤ N + 2. Consider f ∈ YD such that f(ξ) = 0 for every ξ ∈ CSN . For
ψ = −π

4 ,
π
4 , C (ψ) contains 4N points from CSN , which implies

f |C (ψ)=0, ψ = ±π
4 .

The two considered circles intersect at the poles (0, 0,±1). Therefore any tangential derivative of f
is zero at the poles, and each pole is a zero of order at least 2. Next, for any other angle ψ ≡ π

4 ( π
2N ),

C (ψ) contains at least 2N + 2 zeros of f on CSN , and the poles as two additional zeros of order 2.
Rolle's Theorem implies that the derivative of f |C (ψ) (identi�ed with a trigonometric polynomial)
has 2N+6 zeros. Since it is a trigonometric polynomial with degree at most D and 2N+6 ≥ 2D+1,
we obtain (8.15). And we conclude as in the proof of Lemma 8.3.

Remark 8.6. In the proof with N ≥ 5, the bottleneck on the degree comes from the meridian circles
that do not contain 4N points of CSN . If there were 4N points per meridian circle, one would obtain
the degree 2N − 1.

As in the proof of Lemma 8.3, the function fN de�ned in (8.12) vanishes on the set MN de�ned
in (8.13). This implies that fN vanishes at all nodes of the four equatorial panels (I)�(IV) of CSN .
Regarding panels (V) and (VI), fN satis�es the estimate

|fN (x(θ, φ))| ≤ γN · cos2N θ, θ ∈ [−π
2 ,

π
2 ], φ ∈ R. (8.17)
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Figure 8.1: Equiangular Cubed Sphere and equiangular meridians. The Cubed Sphere CSN (black
dots) meshes S2 with equiangular arcs of great circles (dotted lines), including the radial projection
of the edges of [−1, 1]3 (bold gray lines). The set MN of equiangular meridians with longitude
φ ≡ π

4 ( π
2N ) (gray lines) contains �many� points of CSN ; the remaining points of CSN belong to the

set HN (indicated with star symbols) de�ned in (8.19). The size of HN is given in (8.21), and is
estimated by |HN | ∼ 1

3N̄ . Left panel: N is odd (N = 5), right panel: N is even (N = 6).

The constant γN is

γN =
√

4N+1
2π ·

√
(4N)!

22N (2N)!
∼ 1

π1/2

(
2N
π

)1/4
(≈ 0.504N1/4). (8.18)

(The Stirling formula has been used). The behaviour of fN on the north panel (V) and south panel
(VI) is obtained by inspecting the nodes located outside the set MN in (8.13), where the estimate
(8.17) holds. Let HN ⊂ CSN be the set of nodes de�ned by

HN :=
{

1
r (u, v,±1) : r = (1 + u2 + v2)1/2, u = tan iπ

2N , v = tan jπ
2N ,

− N
2 < i, j < N

2 , |i| 6= |j| and i 6= 0 and j 6= 0
}
. (8.19)

It turns out (see Figure 8.1) that
CSN \MN ⊂ HN . (8.20)

Furthermore, the number of nodes in the set HN is given by

|HN | =

{
2(N − 1)(N − 3), if N is odd,

2(N − 2)(N − 4), if N is even.
(8.21)

In the next theorem it is proved that fN |CSN �almost vanishes� at all the Cubed Sphere nodes
ξ ∈ CSN . This will show that when taking D = 2N , the Vandermonde matrix A2N

N cannot have full
column rank (injective) while keeping a bounded condition number.

Theorem 8.7 (Asymptotics for the condition number of ADN ). Fix N ≥ 1 and D ≥ 2N .

(i) The smallest singular value of the matrix ADN , denoted by σmin(ADN ), satis�es

σmin(ADN )2 ≤ γ2
N · |HN | ·

(
2

3

)2N

∼
N→+∞

N

(
2N

π

)3/2(2

3

)2N

→
N→+∞

0,
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where γN is given by (8.18), and |HN | is the estimation (8.21) of the size of CSN \MN . In
particular

lim
N→+∞

σmin

(
(A2N

N )ᵀA2N
N

)
= 0.

(ii) In the case where ADN is injective, the condition number of ADN , denoted by cond(ADN ), satis�es

cond(ADN )2 ≥ N̄

|HN |
· 1

4πγ2
N

·
(

3

2

)2N

∼
N→+∞

1

4

( π

2N

)1/2(3

2

)2N+1
→

N→+∞
+∞,

where N̄ = 6N2 + 2. In particular,

lim
N→+∞

cond
(

(A2N
N )ᵀA2N

N

)
= +∞.

Proof. (i) Let D ≥ 2N be �xed. Consider �rst the case N̄ < (D + 1)2, the matrix ADN cannot
have full column rank. In this case σmin(ADN ) = 0 and the result is obvious. Next consider the case
N̄ ≥ (D + 1)2. Then σmin(ADN )2 is the smallest eigenvalue of the symmetric matrix ADN

ᵀ
ADN . It is

expressed as the minimum Rayleigh quotient

σmin(ADN )2 = inf
f̂∈R(D+1)2

‖f̂‖=1

(
f̂ᵀADN

ᵀ
ADN f̂

)
.

With the Fourier-like expansion (6.4), we obtain f̂ᵀADN
ᵀ
ADN f̂ = ‖ADN f̂‖2 =

∑
ξ∈CSN

f(ξ)2, so that

σmin(ADN )2 = inf
f∈YD

‖f‖L2(S2)=1

 ∑
ξ∈CSN

f(ξ)2

 .

Let fN be the function de�ned in (8.12); then fN is a rotation of the unitary function Y −2N
2N ∈ YD,

so fN ∈ YD with ‖f‖ = 1, which proves that

σmin(ADN )2 ≤
∑

ξ∈CSN

f(ξ)2.

Using CSN = (CSN ∩MN ) ∪ (CSN ∩HN ) and that fN ≡ 0 on MN , we deduce

σmin(ADN )2 ≤
∑

ξ∈CSN∩HN

f(ξ)2.

If HN = ∅, we have σmin(ADN )2 = 0 and (i) is proved. Otherwise,

σmin(ADN )2 ≤ |HN | max
ξ∈HN

f(ξ)2,

where |HN | is given by (8.21). Using (8.17), we have

max
ξ∈HN

f(ξ)2 ≤ γ2
Nc

2N , with c = max
ξ∈HN

cos2 θ(ξ).

For any ξ = 1
(1+u2+v2)1/2

(u, v,±1) ∈ HN , with |u|, |v| < 1, the latitude angle θ(ξ) is such that

cos2 θ(ξ) = 1− sin2 θ(ξ) = 1− 1
1+u2+v2

< 2
3 , which proves that c < 2

3 .

(ii) If ADN is injective, the condition number is the ratio

cond(ADN ) =
σmax(ADN )

σmin(ADN )
,
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where σmin(ADN ) has been bounded from below in (i), and σmax(ADN ) denotes the largest singular
value of ADN . The square σmax(ADN )2 is the largest eigenvalue of ADN

ᵀ
ADN and it is the maximum

Rayleigh ratio

σmax(ADN )2 = sup
f̂∈R(D+1)2

‖f̂‖=1

(
f̂ᵀADN

ᵀ
ADN f̂

)
= sup

f∈YD
‖f‖L2(S2)=1

∑
ξ∈CSN

f(ξ)2.

With the particular choice f(x) = Y 0
0 (x) = 1√

4π
we obtain the lower bound σmax(ADN )2 ≥ N̄

4π .

8.4 Structure of the normal matrix

In this section, we consider the problem (WLS) and the matching quadrature rule (8.4). Recall
that the matrix attached to (WLS) is the matrix ADN

ᵀ
ΩNA

D
N in (8.9). We show in Theorem 8.8

below how close to an orthonormal system the set of functions (Y m
n ) is, for D a �xed integer. Next,

Section 8.4.2 considers the particular case where the weight function ω(ξ) has the cubic symmetry.
In this case, a suitable ordering of the indices n and m leads to a particular block diagonal structure
of the matrix ADN

ᵀ
ΩNA

D
N , which is fully speci�ed.

8.4.1 Least squares and quadrature rule accuracy

Suppose the integer D �xed and consider the least squares problem (WLS) in Section 8.2. Proving
the well posedness of (WLS) amounts to establish bounds for the condition number of the matrix
ADN

ᵀ
ΩNA

D
N . We have

ADN
ᵀ
ΩNA

D
N =

 ∑
ξ∈CSN

ω(ξ)Y m
n (ξ)Y m′

n′ (ξ)


|m|≤n≤D
|m′|≤n′≤D

∈ R(D+1)2×(D+1)2 . (8.22)

This matrix contains inner products involving the gridfunctions (Y m
n )|CSN , for the discrete weighted

inner product de�ned by

(y1, y2)ω :=
∑

ξ∈CSN

ωN (ξ)y1(ξ)y2(ξ), y1, y2 : CSN → R. (8.23)

The functions Y m
n are orthonormal for the inner product 〈·, ·〉L2(S2). However, for the discrete product

(., .)ω, we only have (Y m
n , Y m′

n′ )ω ≈ δnn′δmm′ . Let EDN be the symmetric matrix de�ned by

EDN =
[
eN (Y m

n Y m′
n′ )

]
|m|≤n≤D
|m′|≤n′≤D

∈ R(D+1)2×(D+1)2 . (8.24)

The entries of the matrix EDN are the quadrature errors of the products Y m
n Y m′

n′ .

Theorem 8.8. Fix N ≥ 1 and D ≥ 0. Let ADN be the Vandermonde matrix with degree D on CSN ,
de�ned in (8.6). Let ω : CSN → (0,∞) be the weight of a spherical quadrature rule on CSN , with
error eN ; let ΩN be the associated diagonal matrix, de�ned in (8.7). Then

ADN
ᵀ
ΩNA

D
N = I(D+1)2 − EDN . (8.25)

In particular, assume that (ωN )N≥1 is a sequence of weight functions de�ning a convergent quadrature
rule on Y2D, i.e. ∀f ∈ Y2D, eN (f) −−−−→

N→∞
0, then

ADN
ᵀ
ΩNA

D
N −−−−→

N→∞
I(D+1)2 .
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Moreover, if the rule converges with order p > 0, i.e. ∀f ∈ Y2D, ∃Cf ≥ 0, ∀N ≥ 1, |eN (f)| ≤
CfN

−p, then

ADN
ᵀ
ΩNA

D
N = I(D+1)2 +O

(
1

Np

)
.

The relation (8.25) expresses the fact that the matrix ADN
ᵀ
ΩNA

D
N is close to the identity, assuming

that the error matrix entries are small. This is in particular the case when ω de�nes an accurate
quadrature rule on the space Y2D. This will require that D is not too large compared to N . On the
contrary, for large values of D, the entries in EDN are not a priori small.

Proof. In the matrix ADN
ᵀ
ΩNA

D
N , the entry with row index (n,m) and column index (n′,m′) contains

the discrete inner product
(
Y m
n |CSN , Y

m′
n′ |CSN

)
ωN

, as described in (8.22) and (8.23). Using the

quadrature rule (8.4) with g = Y m
n Y m′

n′ shows that this element is expressed as

(
Y m
n |CSN , Y

m′
n′ |CSN

)
ωN

=

∫
S2
Y m
n (x)Y m′

n′ (x) dσ − eN (Y m
n Y m′

n′ ).

Since the family (Y m
n )0≤|m|≤n≤D is orthonormal in L2(S2), we have∫

S2
Y m
n (x)Y m′

n′ (x) dσ =
〈
Y m
n , Y m′

n′

〉
L2(S2)

=

{
1, if (n,m) = (n′,m′),

0, otherwise.

This proves (8.25). The symmetry of EDN is obvious.
Finally for a convergent rule, for all |m| ≤ n ≤ D and |m′| ≤ n′ ≤ D, the entry of EDN with

indices (n,m) and (n′,m′) is related to f = Y m
n Y m′

n′ ∈ Y2D, so that by hypothesis eN (Y m
n Y m′

n′ )→ 0.

For a convergence of order p > 0, there is furthermore a constant Cn
′,m′

n,m such that |eN (Y m
n Y m′

n′ )| ≤
Cn
′,m′

n,m N−p.

8.4.2 Block structure of (AD
N)ᵀΩNA

D
N for a symmetric weight function

The weight function ξ ∈ CSN 7→ ω(ξ) plays the role of a parameter in the problem (WLS). Here we
consider the particular case where ω(ξ) has the cubic symmetry. This property has been considered
in [156], [9].

Theorem 8.9. Assume that ω : CSN → (0,∞) is invariant under the symmetry group G of the cube
{−1, 1}3. Consider a nonzero entry eN (Y m

n Y m′
n′ ) in the matrix EDN de�ned in (8.24), with row index

(n,m), and column index (n′,m′). Then the following conditions hold

(i) n ≡ n′ (2) (same parity for the degrees);

(ii) m,m′ ≥ 0, or m,m′ < 0 (same sign for the orders);

(iii) m ≡ m′ (2) (same parity for the orders);

(iv) if m,m′ ≡ 0 (2), then m ≡ m′ (4).

Proof. The principle of the proof is close to the one of Corollary 7.6 ( [9, Corollary 10]). By
Theorem 5.3, the group of the Cubed Sphere coincides with the group G of the cube, given by (5.2).
Therefore, the quadrature error de�nes a linear form

eN : Y2D → R, eN (g) =

∫
S2
g(x) dσ −

∑
ξ∈CSN

ω(ξ)g(ξ),

which is invariant under G, i.e. ∀Q ∈ G, eN (g(Qᵀ·)) = eN (g). In the sequel, for all (n,m) and (n′,m′)
violating at least one of the conditions (i)-(iv) in Theorem 8.9, we consider g = Y m

n Y m′
n′ ∈ Y2D, and
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we exhibit a matrix Q ∈ G satisfying g(Qᵀx) = −g(x). This is a su�cient condition to ensure that
eN (g) = 0, due to eN (g) = eN (g(Qᵀ·)) = eN (−g) = −eN (g). The proof is a calculation in spherical
coordinates, based on the expression

g(x(θ, φ)) = (qmn q
m′
n′ )(sin θ) · cos|m| θ cos|m

′| θ

· (sin(mφ)1m<0 + cos(mφ)1m≥0)(sin(m′φ)1m′<0 + cos(m′φ)1m′≥0).

Case 1: (ii) is violated. Assume m < 0 and m′ ≥ 0 (without loss of generality), then

g(Qᵀx(θ, φ)) = g(x(θ,−φ)) = −g(x(θ, φ)), for Q :=

1 0 0
0 −1 0
0 0 1

 .
Case 2: (iii) is violated. Assume that m ≡ 1 (2) and m′ ≡ 0 (2) (without loss of generality).

Then m(φ+ π) ≡ mφ+ π (2π), m′(φ+ π) ≡ m′φ (2π), and

g(Qᵀx(θ, φ)) = g(x(θ, φ+ π)) = −g(x(θ, φ)), for Q :=

−1 0 0
0 −1 0
0 0 1

 .
Case 3: (iii) is satis�ed but (i) is violated. Assume that n + |m| ≡ 1 (2) and n′ + |m′| ≡ 0 (2)

(without loss of generality). Then θ 7→ (qmn q
m′
n′ )(sin θ) is odd, hence

g(Qᵀx(θ, φ)) = g(x(−θ, φ)) = −g(x(θ, φ)), for Q :=

1 0 0
0 1 0
0 0 −1

 .
Case 4: (iv) is violated. Assume that m ≡ 2 (4) and m′ ≡ 0 (4) (without loss of generality).

Then m(φ+ π
2 ) ≡ mφ+ π (2π), m′(φ+ π

2 ) ≡ m′φ (2π), and

g(Qᵀx(θ, φ)) = g(x(θ, φ+ π
2 )) = −g(x(θ, φ)), for Q :=

 0 1 0
−1 0 0
0 0 1

 .
Roughly speaking, if the weight function ω is symmetric, then at most a percentage of

100× 3

32
(= 9.375%) (8.26)

of all the entries in EDN are nonzero. Indeed, Case (i) divides by 2 the number of possible nonzero
entries. Then Case (ii) further divides by 2 this number. And �nally Cases (iii-iv) multiply this
number by 3

8 . At this point, two facts suggest the approximation

ADN
ᵀ
ΩNA

D
N ≈ I(D+1)2 :

� an approximate ratio of 29
32 of all entries are zero if the weight function ω is assumed symmetric

(Theorem 8.9);

� the remaining entries (approximate ratio of 3
32) are small assuming that ω de�nes an accurate

spherical quadrature rule in Y2D, (see Theorem 8.8).

In particular, the condition number of the matrix ADN
ᵀ
ΩNA

D
N is expected to be close to 1, so

that (WLS) is expected to be well-posed. This point is further investigated numerically in SubSection
8.5.3.

Next, we go one step further in the analysis taking bene�t from the orthogonality relations in
Theorem 8.9. Indeed, Theorem 8.9 suggests to sort the indices (n,m) using the following criteria,
ordered by decreasing priority:



8.4. STRUCTURE OF THE NORMAL MATRIX 133

Figure 8.2: Classi�cation tree for partioning the set of indices {(n,m) : |m| ≤ n ≤ D} as a disjoint
union J1 ∪ . . . ∪ J12; for instance, J4 = {|m| ≤ n ≤ D, n ≡ 0 (2), m ≥ 0, m ≡ 0 (4)}.

� case n ≡ 0 (2) and case n ≡ 1 (2);

� case m < 0 and case m ≥ 0;

� case m ≡ 0 (4), then case m ≡ 2 (4), and �nally case m ≡ 1 (2).

This particular ordering expresses the set of indices as a disjoint union of the twelve sets Jk, 1 ≤
k ≤ 12. Figure 8.2 displays the resulting classi�cation tree. It is an expression of the orthogonality
relations in Theorem 8.9.

Corollary 8.10. Fix N ≥ 1, D ≥ 0. Fix a weight function ω : CSN → (0,∞) invariant under
the group G of {−1, 1}3 in (5.2). Let Jk, 1 ≤ k ≤ 12, denotes a partioning of the set of indices
|m| ≤ n ≤ D, displayed in Figure 8.2.

(i) Assume that the indices (n,m) ∈ Jk, 1 ≤ k ≤ 12 in the Vandermonde matrix ADN are sorted
along increasing k (for the rows and for the columns). Then ADN

ᵀ
ΩNA

D
N is block diagonal, as

shown in Figure 8.3.

(ii) The following orthogonal decomposition holds for the discrete inner product (8.23),

{
f |CSN , f ∈ YD

}
=

12⊕
k=1

Span{Y m
n |CSN , (n,m) ∈ Jk}.

Assuming a symmetric weight function ω, Corollary 8.10 reveals that the matrix ADN
ᵀ
ΩNA

D
N ,

associated to (WLS), is block diagonal for a particular ordering of the indices. This has the following
consequence to solve the system (8.9). Instead of solving a linear system with (D + 1)2 unknowns,
the system is solved by blocks. It consists in solving 8 square linear systems with approximately
1
16(D+ 1)2 unknowns, and 4 square linear systems with approximately 1

8(D+ 1)2 unknowns. These
resolutions can be obviously performed in parallel.

Remark 8.11. In Corollary 7.6 , the �15/16� property is coined as meaning exactness of a symmetric
quadrature rule for a certain proportion of 15/16 of all spherical harmonics. This property can
be deduced from Corollary 8.10. Indeed, consider a symmetric weight function ω, a row index
(n,m) /∈ J4, and the column index (n′,m′) = (0, 0) ∈ J4; then Y

m′
n′ ≡ (4π)−1/2, and we deduce from

Corollary 8.10.(i) that

Q(Y m
n ) =

∑
ξ∈CSN

ω(ξ)Y m
n (ξ) = 0 =

∫
S2
Y m
n (x) dσ.
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Figure 8.3: Block diagonal structure of the matrix ADN
ᵀ
ΩNA

D
N , assuming that ω is invariant under

G; the sets of indices Jk are de�ned in Figure 8.2. The white cells contains only null coe�cients;
they represent an approximate ratio of 29

32 of the entries.

Since J4 contains about 1/16 of the indices, we see that the quadrature rule Q associated to ω
exactly integrates an approximate proportion of 15/16 of all the Y m

n .

8.5 Numerical results

8.5.1 Condition number of the Vandermonde matrix

In this section, we assess numerically that the problem (LS) is well-posed for the degree D = 2N−1,
but not for D = 2N . We proceed as follows. For all 1 ≤ N ≤ 32, with D = 2N − 1 and D = 2N , we
�rst compute a singular value decomposition of the Vandermonde matrix ADN in (8.6). Second, we
extract the minimal singular value σmin(ADN ) and the maximal one σmax(ADN ). Then the condition
number cond(ADN ) = σmax(ADN )/σmin(ADN ) is evaluated. The computation has been performed in
double precision in Matlab, using the svd function. The results in Figure 8.4 are as follows

1. For D = 2N − 1 (left panel in Figure 8.4), we observe that the minimal singular value is �far�
from 0, and that cond(ADN ) ≈ 1.19 is close to 1. This is a numerical indication that the matrix
A2N−1
N is injective, that the problem (LS) is well-posed for D = 2N − 1, which implies that

the critical degree DN in (P) is such that DN ≥ 2N − 1.

2. For D = 2N (right panel in Figure 8.4), σmin(ADN ) is observed to be close to 0 for N ∈
{1, 2, 3, 4, 5, 7, 9} (the machine epsilon is about 2.2 · 10−16); for N ≥ 10, it is positive and
decays to 0 when N increases. Hence, for N ∈ {1, 2, 3, 4, 5, 7, 9}, A2N

N is not injective. This
suggests DN ≤ 2N − 1. This is consistent with Proposition 8.4 which proves the result for
N ≤ 4. This numerical observation, combined with the discussion above, supports the fact
that

DN = 2N − 1, N ∈ {1, 2, 3, 4, 5, 7, 9}.

For the other values of N , it is numerically apparent that A2N
N is injective. Nevertheless,

for these values of N , cond(A2N
N ) > 104, and blows-up when N increases. This implies that

cond(A2N
N

ᵀ
A2N
N ) > 108 and blows-up as well. Therefore, for D = 2N , these numerical results

are in agreement with the theoretical result in Theorem 8.7 and indicates that the ill-posedness
of (LS) is true in all cases. In addition, the ill-posedness level increases with N .
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Figure 8.4: Smallest singular value (σmin) and condition number (cond) of the Vandermonde matrices
ADN , 1 ≤ N ≤ 32, with D = 2N − 1 (left panel), and D = 2N (right panel, in log-scale). Left panel:
A2N−1
N is injective (σmin >> 0) and well-conditioned (cond ≈ 1.19). Right panel: A2N

N is observed to
be not numerically injective if N is small (σmin ≈ 0), and is ill-conditioned otherwise (cond > 104).

i fi(x, y, z) Comment

1 exp(x) Very smooth

2 3
4 exp[− (9x−2)2

4 − (9y−2)2
4 − (9z−2)2

4 ] Smooth

+ 3
4 exp[− (9x+1)2

49 − 9y+1
10 −

9z+1
10 ]

+ 1
2 exp[− (9x−7)2

4 − (9y−3)2
4 − (9z−5)2

4 ]
− 1

5 exp[−(9x− 4)2 − (9y − 7)2 − (9z − 5)2]

3 1
10

exp(x+2y+3z)
(x2+y2+(z+1)2)1/2

1(z > −1) In�nite spike at the south pole (z = −1)

4 cos(3 arccos z)1(3 arccos z ≤ π
2 ) Continuous, not di�erentiable (z =

√
3
2 )

5 1(z ≥ 1
2 ) Discontinuous spherical cap (z = 1

2 )

Table 8.1: A series of test functions representative of various regularity properties.

The numerical study above suggests that for any N ≥ 1, the value of DN in Property (P) is
DN = 2N − 1. This in particular means that any f ∈ Y2N−1 is correctly sampled on the Cubed
Sphere CSN with angular step π

2N , since (LS) can reconstruct f from f |CSN in a stable way. If
f ∈ YD with D ≥ 2N , this property is not guaranteed.

8.5.2 Accuracy of the least squares approximation

The results in Section 8.3 assess the fact that Y2N−1 is the largest spherical harmonics subspace
leading to well-posedness and well-conditioning of the problem (LS). Here we further assess this
property by evaluating the accuracy of least-squares approximations of a series of test functions.

First, we report in Table 8.1 �ve functions extracted from Table 7.3 (and plotted in Figure 7.4).
This series of functions is representative of various regularity properties. For each 1 ≤ N ≤ 32 and
for each test function fi, 1 ≤ i ≤ 5, we compute the least-squares approximation f̃i ∈ Y2N−1 of fi
from the grid function fi|CSN : f̃i is evaluated as the unique solution to (LS), for D = 2N − 1 and
y = fi|CSN . The accuracy is measured by the relative discrete error, on a �xed �ne grid CSM . We
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Figure 8.5: Least-squares approximation (LS) of the test functions fi in Table 8.1. Left panel: for
any 1 ≤ N ≤ 32, the approximation f̃i ∈ Y2N−1 is computed from fi|CSN , and the relative `2-error
ε(fi) de�ned in (8.27) is plotted. Right panel: for any level of noise σ = 2j ,−31 ≤ j ≤ 2, the
approximation f̃i ∈ Y63 is computed from a noisy dataset fi|CSN + σN (0, 1) with N = 32, and ε(fi)
is plotted.

have chosen M = 65. The relative error is de�ned by

ε(fi) :=

(∑
ξ∈CSM

|fi(ξ)− f̃i(ξ)|2∑
ξ∈CSM |fi(ξ)|

2

)1/2

, M = 65. (8.27)

The errors ε(fi) are displayed in Figure 8.5 (left panel). For the smooth functions f1 and f2, the error
rapidly converges to 0 when N increases; this is especially true for f1. For the continuous but not
di�erentiable function f4, the convergence is slow. For the spike function f3 and the discontinuous
function f5, the convergence cannot be claimed from the plot. These observations are not surprising:
it is expected that the convergence rate depends on the decay of the Fourier coe�cients, which is
related to the smoothness.

Second, �x the grid resolution to N = 32. For each test function fi, 1 ≤ i ≤ 5, for any
σ = 2j , −31 ≤ j ≤ 2, we corrupt the grid function fi|CSN with a gaussian noise with zero mean, and
standard deviation σ. We compute an approximation f̃i ∈ Y63 of fi as the unique solution to (LS),
for D = 2N−1 and y(ξ) = fi(ξ)+σu(ξ), ξ ∈ CS32, where [u(ξ)] contains independent realizations of
the normal law N (0, 1). Here again, we evaluate the accuracy of this approximation by the relative
error (8.27); this error depends on σ (and on the experiment), and we denote it by ε(fi)(σ). These
errors are displayed in Figure 8.5 (right panel). One observes that

ε(fi)(σ) ≈ ε(fi)(0) + σ,

where ε(fi)(0) is the error without noise for N = 32 (displayed on the left panel). In other words, a
level of noise σ in the dataset increases the error by σ. This reveals that approximating a function
by least-squares on CSN in the space Y2N−1 is very stable.

Third, we show numerically that di�erentiating the least-squares approximation (LS) in Y2N−1

(D = 2N − 1) permits to approximate derivatives. Assume that f is a di�erentiable function on S2,
known by the grid function f |CSN . The least squares approximation (LS) of f with D = 2N − 1 is

f̃ =
∑

|m|≤n≤2N−1

f̃mn Y
m
n ∈ Y2N−1, (8.28)
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Figure 8.6: Spectral di�erentiation on CSN with respect to the longitude angle φ. For f = f1, f2

from Table 8.1, for any 1 ≤ N ≤ 32, the approximate derivative ∂φf̃ is computed from the least-
squares approximation f̃ ∈ Y2N−1. Relative `

2-errors de�ned in (8.30) are plotted.

and y = f |CSN . Consider for instance the derivative with respect to the longitude φ,

∂φf̃(x(θ, φ)) =
∑

|m|≤n≤2N−1

m · f̃−mn Y m
n (x(θ, φ)) ∈ Y2N−1. (8.29)

We test this principle on the smooth functions de�ned in Table 8.1: f = f1, f2. For each value
of 1 ≤ N ≤ 32, we approximate ∂φf by ∂φf̃ satisfying (8.29), and we calculate the relative `2-errors
on the grid CSN :

ηN (f, f̃) =

(∑
ξ∈CSN

|f(ξ)− f̃(ξ)|2∑
ξ∈CSN |f(ξ)|2

)1/2

, ηN (∂φf, ∂φf̃) =

(∑
ξ∈CSN |∂φf(ξ)− ∂φf̃(ξ)|2∑

ξ∈CSN |∂φf(ξ)|2

)1/2

;

(8.30)
here, the exact derivative is given by

∂φf(x(θ, φ)) = −x2(θ, φ)∂x1f(x(θ, φ)) + x1(θ, φ)∂x2f(x(θ, φ),

where x1(θ, φ) and x2(θ, φ) denote the horizontal coordinates of x(θ, φ). As can be observed in
Figure 8.6, the error for the derivative and the error for the function itself have a similar behavior
in function of N . The least squares approximation converges to the exact function and the spectral
derivative converges to the exact derivative; the observed convergence rates are similar.

8.5.3 Pseudo-orthogonality for the discrete inner product

We evaluate numerically the relation (8.25); it represents some �pseudo-orthogonality� of the Leg-
endre basis, for the discrete inner product (8.23).

First, we consider the uniform quadrature rule on CSN , de�ned by ω(x) = 4π/N̄ . In this case,
the matrix ADN

ᵀ
ΩNA

D
N in (8.9) is expressed as

ADN
ᵀ
ΩNA

D
N =

4π

N̄
ADN

ᵀ
ADN .
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Figure 8.7: Matrix EDN = [eN (Y m
n Y m′

n′ )] from (8.25)-(8.24), with the uniform weight ω = 4π/N̄ ,
D = 2N − 1, N = 4 (left panel) and N = 32 (right panel). The indices are arranged by the
classi�cation tree of Figure 8.2. The displayed value is 10−15 + |eN (Y m

n Y m′
n′ )|, in logarithmic scale.

The observed structure is the block diagonal structure predicted by Figure 8.3 (Corollary 8.10). The
sparsity score is 9.961% (left panel), resp. 9.387% (right panel), which is close to a ratio of 3/32.

Figure 8.8: Maximal entry max |eN (Y m
n Y m′

n′ )| of the matrix E2N−1
N , 2 ≤ N ≤ 32. The result depends

on the accuracy of the quadrature rule ω. It is smaller for the trapezoidal weight than for the uniform
weight.

The uniform weight is invariant under G. Thus Theorem 8.9 predicting a sparse structure of EDN =
I(D+1)2 −ADN

ᵀ
ΩNA

D
N can be applied. More precisely, Corollary 8.10 predicts that EDN has the block

diagonal structure in Figure 8.3, for a suitable ordering of the indices. Figure 8.7 reports this
structure, where E2N−1

N is displayed for N = 4 and N = 32. In these matrices, the percentage
of coe�cients above 10−14 is respectively 9.961% and 9.387%, which is close to the ratio (8.26).
Furthermore, we compute the largest entry of E2N−1

N for 1 ≤ N ≤ 32. As displayed in Figure 8.8,
this value is about 0.1 (except for N = 1, for which the observed value is the machine epsilon).
Therefore, the matrix corresponding to (LS) (without weight) is close to be proportional to the
identity matrix.

A2N−1
N

ᵀ
A2N−1
N ≈ N̄

4π
(I4N2 ± 0.1).

Second, we consider the weight ω of the trapezoidal rule in [156, De�nition 3.1]. It is invariant
under G, so EDN has a sparse structure as before. This rule is second order accurate; so it is more
accurate than the uniform one, and the entries of EDN are expected to be smaller, due to Theorem 8.8.
This is con�rmed in Figure 8.8; the maximal entry of E2N−1

N is below 0.1, and it decays to zero when
N increases.
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8.6 Conclusion

This chapter considers weighted least-squares approximation by spherical harmonics on the equian-
gular Cubed Sphere CSN . From a theoretical point of view, the symmetric positive semi-de�nite
matrix of the normal equations is expected to be a pertubation of the identity matrix; the magnitude
of the pertubation depends on the accuracy of the quadrature rule associated to the weight. This
indicates that the Legendre spherical harmonics should be almost orthogonal for some discrete inner
product on CSN . In the case of a symmetrical weight, the matrix is block diagonal; this structure
directly provides subspaces of spherical harmonics which are exactly orthogonal for the discrete inner
product, disregarding the magnitude of the pertubation.

From a numerical point of view, the matrix has a condition number close to 1 if the cuto�
(angular) frequency is �xed to 2N − 1, whereas it is not anymore the case if higher frequencies are
considered. Numerical results indicate that Y2N−1 is a suitable approximation space for �tting or
di�erentiating a smooth function from values on CSN .

Future work also includes further mathematical analysis on the one hand. On the other hand,
the block structure and the well conditioning of the matrix shown in Section 8.4.2 opens the way to
a parallel Conjugate Gradient solver. This is a preliminary step before to investigate a genuine fast
solver.
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Chapter 9

A discrete Funk-Radon transform on the

Cubed Sphere

9.1 Introduction

The Funk transform from [131], also called the Funk-Minkowski transform, the Funk-Radon trans-
form, or the spherical Radon transform, is an integral transform which averages a function along
great circles on the unit sphere S2. This transform, similar integral transforms, and associated in-
verse problems, are the subject of many mathematical studies, such as [138,144,152,162,170] and the
references therein. These transforms play an important role in various applications, including pho-
toacoustic tomography [139,185], Synthetic Aperture Radar [184] and di�usion Magnetic Resonance
Imaging (dMRI) [141,178].

To specify one successful example from medicine, Q-Ball Imaging images the orientation of
�bers in biological tissues [178]. The key step of this method computes the Funk transform of
dMRI signals recorded on discrete spherical grids. The original computation [178] is a trapezoidal
quadrature rule, applied on an interpolating function. The numerical scheme has been improved
in [125, 135], using a spectral method on a regularized least squares approximation. The success1

of the articles [125, 135, 178] attests that it is crucial to master the Funk transform in discrete
con�gurations.

This chapter, which has been extracted from the paper [5], is devoted to a mathematical study
of a discrete Funk transform, in order to provide theoretical and numerical guarantees. The studied
transform is a particular case of the approaches introduced in [125, 135]; it is based on a spectral
method combined with a least squares �tting. The main feature of this work is that we restrict our
attention to least squares �tting without any regularization, so as to get a mathematical framework
which is as clear as possible. The least squares functional comprises a �tting term, but it does not
contain any arti�cial penalty. In particular, no regularization functional nor regularization weight
have to be tuned in our approach.

The least squares problem �ts values given on a spherical grid by a spherical harmonics with
prescribed degree. The grid and the degree must be carefully chosen to insure that the problem
is well-conditioned, which means that the corresponding matrix must have full column rank and a
suitable condition number. This matrix, called a Vandermonde matrix as in [146, 147], [10], or an
alternant matrix as in [108, p. 112], contains spherical harmonics restricted to the grid. In general,
�nding theoretically the rank and the condition number of such a matrix enters into the framework
of harmonic analysis and is not an easy task. Geometrical and metric properties of the grid, as
de�ned in [134, 137], come into play. For example, [146, Theorem 2.4]� [147, Lemma 3.13] give a
lower bound on the degree to insure a full row rank property; this bound is inversely proportional
to the separation distance. Another example is [110, Theorem 3.5], which proves a full column rank

1The website of the journal Magnetic Resonance in Medicine mentions 1430 citations for [178], 283 citations
for [135], and 559 citations for [125], on January 05, 2023.
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property, assuming that the mesh norm is smaller than the inverse of the degree.
Choosing or de�ning a spherical grid with suitable properties is itself an important subject. We

refer to [181] for a historical presentation of several grids, and to [134] for a comparison of many
popular grids, such as spiral grids, polyhedral grids, random grids, and so on. Some approaches
compute an �optimal� grid as the numerical solution to an optimization problem; see for instance [119]
for various optimization criteria, including the conditioning of a least squares problem. Some other
approaches de�ne grids in an elementary explicit way. Among these simple grids, the equiangular
Cubed Sphere [168, 171] is obtained by radial projection of a circumscribed cube, from cartesian
lines on the faces of the cube towards great circles on the sphere.

This Cubed Sphere (and some variants) is very popular and is widely studied in numerical
climatology and meteorology; see for instance [120, 140, 142, 143, 151, 153, 154, 159, 161, 164, 176].
We have recently studied various approximation schemes on this grid using spherical harmonics.
Lagrange interpolation has been considered in [10], a spherical quadrature rule in [9], and least
squares approximation in [11], as presented in the previous chapters. Among the results, [11] gives
the largest degree which numerically guarantees a condition number that is uniformly bounded. In
this chapter, we propose a further study concerning spectral computing on the Cubed Sphere. We
investigate the use of this grid for computing Funk transforms.

Our methodology contains two steps. In a �rst step, we de�ne a family of discrete Funk trans-
forms which act between spaces of grid functions, for a general grid. They are obtained as in [125,135],
but without any regularization, and with an evaluation of the (continuous) transform on the initial
grid. We prove new properties satis�ed by these transforms, in order to give some mathematical
background. In particular, we show that the pseudoinverse of such a transform represents an inverse
discrete Funk transform very analogous to the direct one. We also provide a theoretical estimation
of stability, which mainly depends on the conditioning of the least squares problem. It implies that
stability is guaranteed as soon as the least squares problem is well-conditioned.

Then, in a second step, we focus on a framework which guarantees this condition of stability. We
select the equiangular Cubed Sphere for the grid and we introduce a rule on the degree such that the
conditioning is kept under control. The study is similar with [11], but the dimensions of the least
squares problem have been reduced due to our speci�c problem. Indeed, the null space of the Funk
transform contains any odd function, so we assume from the beginning that the approximation space
contains only even spherical harmonics. Also, symmetry consideration allows to halve the grid, so
we restrict the Cubed Sphere to an hemisphere.

The paper is organized as follows. In Section 9.2, we summarize some notation and background
concerning spherical computation. In Section 9.3, we study a discrete Funk transform, based on a
spectral method applied on a least squares �tting. In Section 9.4, we focus on the case where the
grid is the equiangular Cubed Sphere. In Section 9.5, the relevance of the approach is shown by
various numerical tests, such as test of accuracy and stability on synthetic dMRI signals.

9.2 Background and notation

9.2.1 Even spherical harmonics

We keep the notation of Chapter 6 for the spherical harmonics. For every D ≥ 0, the functions
(Y m
n )|m|≤n≤D, given by (6.3), de�ne an orthonormal basis of the space YD of the spherical harmonics

with degree at most D. We introduce the subspace of the even functions in YD, denoted by Yev
D ; it

is spanned by the even degrees, i.e.

Yev
D = span{Y m

2n , 0 ≤ n ≤ D
2 , |m| ≤ 2n}.

In the sequel, we always assume that the degreeD is even when considering Yev
D (because Yev

D = Yev
D−1

otherwise); under this assumption, the dimension of Yev
D is given by

dD = 1
2(D + 1)(D + 2).
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9.2.2 Funk transform

The Funk transform, denoted by F , maps a spherical function f : S2 → R to a spherical function
Ff : S2 → R as follows. For any unit vector α ∈ S2, Ff(α) is de�ned as the average of f along the
great circle that is orthogonal to α, i.e.

Ff(α) =
1

2π

∫
{x∈S2:x·α=0}

f ds, α ∈ S2, f : S2 → R, (9.1)

where s denotes the length measure on the circle {x ∈ S2 : x ·α = 0}; in this de�nition, the function
f is required to be integrable along any great circle (with respect to the length measure), so that
the integrals are de�ned.

The Funk transform Ff is an even function, i.e. Ff(−α) = Ff(α), α ∈ S2. If f is odd, i.e.
f(−x) = −f(x), x ∈ S2, then Ff = 0. In any case, Ff = Ff ev, where f ev(x) = 1

2(f(x) + f(−x))
denotes the even part of f . For these reasons, the Funk transform can be considered between spaces
of even functions, without loss of generality. We follow this convention throughout the article. Hence,
in the sequel, we consider even functions only.

Spherical harmonics are eigenfunctions of the Funk transform F [131], so that it de�nes an
isomorphism on Yev

D ,

F : Yev
D → Yev

D , FY m
2n = P2n(0)Y m

2n , with P2n(0) = (−1)n 1·3·5···(2n−1)
2·4·6···(2n) ,

|m| ≤ 2n, 0 ≤ n ≤ D
2 . (9.2)

The associated nonsingular matrix is the block diagonal matrix

Λ = diag
[
(−1)n 1·3·5···(2n−1)

2·4·6···(2n) I4n+1, 0 ≤ n ≤ D
2

]
∈ RdD×dD . (9.3)

This structure suggests the spectral method for computing Funk transforms, as it has been introduced
in [125,135].

9.2.3 Grid functions

In Subsection 6.2.2, we have introduced grid functions in the case of the Cubed Sphere grid. We
extend the notation to other grids as follows. A spherical grid is de�ned as a �nite subset of the
unit sphere, G ⊂ S2. A grid function on G is a function b : G→ R de�ned on G. The space of such
functions is denoted by

RG = {b : G→ R}.

Numbering the elements of G by ξ1, . . . , ξM , where M denotes the cardinal number, the canonical
basis (δξi)1≤i≤M of RG is de�ned by

δξi(ξj) =

{
1, if i = j,

0, otherwise,
1 ≤ i, j ≤M.

In this basis, any b ∈ RG is represented by the column vector b = [b(ξi)]1≤i≤M ∈ RM , due to

b =
M∑
i=1

b(ξi)δξi .

For any real function de�ned on the sphere, f : S2 → R, the restriction of f on the grid G is the
grid function f |G ∈ RG de�ned by

f |G :=
M∑
i=1

f(ξi)δξi , f |G(ξi) = f(ξi), 1 ≤ i ≤M.
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9.3 Discrete Funk transform on a spherical grid

In this section, we study a discrete Funk transform on a general grid. We assume that

� G = {ξ1, . . . , ξM} ⊂ S2 is a spherical grid with cardinal number M ,

� b ∈ RG is a given grid function on G,

� D ≥ 0 is a �xed even degree.

9.3.1 Least squares �tting

One looks for an even spherical harmonics f ∈ Yev
D which �ts the grid function b. The least squares

problem minimizes a �tting error as follows,

inf
f∈Yev

D

M∑
i=1

(f(ξi)− b(ξi))2. (LSev)

Remark 9.1. For the particular case G = CSN , the problem (LSev) is similar to (LS), with the
speci�city that the approximation space is restricted to even spherical harmonics.

We introduce the basis (Y m
2n) of Yev

D . Then any f ∈ Yev
D admits a spectral expansion (6.4),

f =
∑

0≤n≤D/2, |m|≤2n

f̂m2nY
m

2n ∈ Yev
D , with f̂ = [f̂m2n]0≤n≤D/2, |m|≤2n ∈ RdD ;

the matrix of the linear map f ∈ Yev
D 7→ [f(ξi)]1≤i≤M ∈ RM is given by the Vandermonde matrix

A = [Y m
2n(ξi)] 1≤i≤M

0≤n≤D/2, |m|≤2n

∈ RM×dD . (9.4)

Here, the row index is i, and the column index is the couple (n,m). Assuming a lexicographic
ordering for (n,m), an expanded form of A is given by

A =


Y 0

0 (ξ1) · · · Y −2n
2n (ξ1) · · · Y m

2n(ξ1) · · · Y 2n
2n (ξ1) · · · Y D

D (ξ1)
...

...
...

...
...

Y 0
0 (ξi) · · · Y −2n

2n (ξi) · · · Y m
2n(ξi) · · · Y 2n

2n (ξi) · · · Y D
D (ξi)

...
...

...
...

...

Y 0
0 (ξM ) · · · Y −2n

2n (ξM ) · · · Y m
2n(ξM ) · · · Y 2n

2n (ξM ) · · · Y D
D (ξM )

 .

Then, the problem (LSev) can be written in matrix form as

inf
f̂∈RdD

‖Af̂ − b‖2,

where ‖ · ‖ denotes the euclidean norm in RM .
In this chapter, we assume that the grid G and the degree D are such that the Vandermonde

matrix A has full column rank. Then the problem (LSev) admits a unique solution. This solution,
denoted2 by

`[b] ∈ Yev
D , `[b] = arg inf

f∈Yev
D

M∑
i=1

(f(ξi)− b(ξi))2, (9.5)

is given by

`[b] = [Y m
2n(·)]ᵀ0≤n≤D/2, |m|≤2n

̂̀[b], with ̂̀[b] = (AᵀA)−1Aᵀb ∈ RdD . (9.6)

2` as the �rst letter of �least squares�.
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Here, the vector ̂̀[b] of the spectral coe�cients satis�es a linear system, whose matrix is symmetric
and positive-de�nite:

AᵀA ̂̀[b] = Aᵀb.

For the matrix norm induced by the euclidean norm, the condition number of this linear system is
given by

cond(AᵀA) = cond(A)2, with cond(A) =
σmax(A)

σmin(A)
,

where σmax, resp. σmin, denote the maximum, resp. minimum, singular value. In Section 9.4, we
propose a choice of G and D which guarantees (at least numerically) that the condition number of
the Vandermonde matrix is close to 1 (condA ≈ 1).

Remark 9.2. If the condition number is large (condA >> 1), or if A has not full column rank, then
regularization is needed. This is outside the scope of this work, so we refer in this case to [133]
for a general reference about ill-posed problems, [111] for various regularization operators dealing
with spherical harmonics on the sphere, and [125, 135] for regularization in a framework of Funk
transforms.

We conclude this subsection by a simple result which permits to halve the grid in the case of a
central symmetry, provided that the grid function is replaced by its even part.

Proposition 9.3. Assume that G in invariant with respect to the central symmetry, so that M is
even, and ξM/2+i = −ξi, 1 ≤ i ≤ M/2 (up to a reordering). Then the problem (LSev) is equivalent
to

inf
f∈Yev

D

M/2∑
i=1

(f(ξi)− bev(ξi))
2, with bev(ξi) = 1

2(b(ξi) + b(−ξi)), 1 ≤ i ≤M/2.

Proof. The grid is invariant under the central symmetry −I3 (ξ ↔ −ξ), so we split the grid function
b into b = bev + bodd, where bev(ξ) = 1

2(b(ξ) + b(−ξ)) is an even grid function (bev(−ξ) = bev(ξ)),
and bodd(ξ) = 1

2(b(ξ)− b(−ξ)) is odd (bodd(−ξ) = −bodd(ξ)). Therefore, for any f ∈ Yev
D ,

M∑
i=1

(f(ξi)− b(ξi))2 =

M∑
i=1

(f(ξi)− bev(ξi))
2 +

M∑
i=1

bodd(ξi)
2 − 2

M∑
i=1

(f(ξi)− bev(ξi))b
odd(ξi).

In the right hand side, the �rst term is twice the sum indexed by 1 ≤ i ≤ M/2, because (f − bev)2

is an even grid function. The second term is a constant C which does not depend on f . The third
term is null, because (f − bev)bodd is an odd grid function. Therefore,

M∑
i=1

(f(ξi)− b(ξi))2 = 2

M/2∑
i=1

(f(ξi)− bev(ξi))
2 + C,

which proves the result.

9.3.2 Discrete Funk transform

We study various mathematical properties of a discrete Funk transform de�ned as follows.

De�nition 9.4 (Discrete Funk transform). Let G = {ξ1, . . . , ξM} ⊂ S2 be a spherical grid and
D ≥ 0 be an even degree, such that the Vandermonde matrix A in (9.4) has full column rank. The
discrete Funk transform F is de�ned as a linear mapping between spaces of grid functions, by

F : RG −→ RG

b 7−→ F[b] =
(
F(`[b])

)∣∣∣
G
,

(9.7)

where `[b] is the least squares �tting in (9.5), and F is the Funk transform in (9.1). In other words,
the discrete Funk transform of a grid function is the Funk transform applied on the least squares
�tting, then restricted to the initial grid.
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Property 9.5. In the basis (δξi)1≤i≤M of RG, the matrix of the discrete Funk transform F is given
by

F = AΛ (AᵀA)−1Aᵀ ∈ RM×M . (9.8)

Proof. The matrix of the least squares operator, ` : RG → Yev
D , in the bases (δξi) and (Y m

2n), is given
by (AᵀA)−1Aᵀ, due to (9.6). The matrix of the Funk transform F : Yev

D → Yev
D , in the basis (Y m

2n),
is the matrix Λ in (9.3). And the matrix of f ∈ Yev

D 7→ f |G ∈ RG, in the bases (Y m
2n) and (δξi), is

given by the Vandermonde matrix A. The discrete Funk transform F is the composition of these
linear maps, so its matrix F is given by the product of the matrices.

The following result establishes that the spherical function F(`[b]) can be exactly recovered from
its restriction Fb on G (so that the restriction is �lossly�).

Proposition 9.6. The discrete Funk transform F : RG → RG and the Funk transform F : Yev
D → Yev

D

are related by
` ◦ F = F ◦ `.

In other words, the least squares �tting of the discrete Funk transform coincides with the Funk
transform of the least squares �tting,

`[Fb](α) = F(`[b])(α), b ∈ RG, α ∈ S2.

Proof. Similarly as the proof of Property 9.5, the matrix of ` ◦ F is given by

(AᵀA)−1Aᵀ ·AΛ (AᵀA)−1Aᵀ = Λ (AᵀA)−1Aᵀ,

where we recognize the matrix of F ◦ ` on the right hand side.

In practice, f : S2 → R is a spherical function that is sampled on the grid G, so that the given
data is b = f |G. One uses the discrete Funk transform F[f |G], or equivalently F(`[f |G]), in order
to approximate some values Ff(α) of the Funk transform Ff . The following result shows that this
method is exact if f ∈ Yev

D .

Theorem 9.7 (Exactness on Yev
D ). The discrete Funk transform is exact on Yev

D , which means that

F[f |G] = (Ff)|G, f ∈ Yev
D . (9.9)

More generally, for every f ∈ Yev
D , the Funk transform Ff can be computed exactly from the grid

function f |G, with

Ff(α) = [Y m
2n(α)]ᵀ0≤n≤D/2, |m|≤2nΛ (AᵀA)−1Aᵀ [f(ξi)]1≤i≤M , α ∈ S2, f ∈ Yev

D . (9.10)

Proof. Any function f ∈ Yev
D �ts exactly the grid values [f(ξi)]1≤i≤M , so that the unique solution

of (LSev) with b = f |G is the initial function f itself,

`[f |G] = f, f ∈ Yev
D .

Injecting this equality into the de�nition of F[f |G] proves (9.9). Also, we obtain Ff = F(`[f |G]);
hence, we have (9.10) due to the matrix of F ◦ ` (see the proof of Proposition 9.6).

Now, we investigate the inversion of the discrete Funk transform F. We introduce the Moore-
Penrose pseudoinverse F† of the matrix F, since it is not expected to be nonsingular. We refer to [132,
pp. 257-258] for usual consideration about such a pseudoinverse. In our case, the pseudoinverse
F† maps any c ∈ RM to the minimum norm solution b = F†c ∈ RM of the least squares problem
infb∈RM ‖Fb−c‖2. We prove that the pseudoinverse F† represents an inverse discrete Funk transform
that is analogous to the direct transform F.
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Theorem 9.8 (Pseudoinversion). The Moore-Penrose pseudoinverse of F is given by

F† = AΛ−1 (AᵀA)−1Aᵀ ∈ RM×M . (9.11)

Therefore, the pseudoinverse F† represents the inverse discrete Funk transform F†, de�ned by

F† : RG −→ RG

c 7−→ F†[c] =
(
F−1(`[c])

)∣∣∣
G
.

(9.12)

Proof. The matrix F† is the Moore-Penrose pseudoinverse of F (and conversely), because (9.8)
and (9.11) imply that the four Moore-Penrose conditions [132, p. 257] are satis�ed:

FF†F = F, F†FF† = F†, (FF†)ᵀ = FF†, (F†F)ᵀ = F†F.

Furthermore, the matrix of the transform F† de�ned in (9.12) is given by F†. This result and its
proof are analogous to Property 9.5. The di�erence is that the diagonal matrix Λ of the isomorphic
Funk transform F : Yev

D → Yev
D is replaced by the inverse diagonal matrix Λ−1, since it represents

the inverse transform F−1.

The relations (9.7) and (9.12) are very similar, so are (9.8) and (9.11). More generally, as soon
as some result is established for one of the transforms F and F†, some counterpart is expected for
the other one. For instance, the counterpart of Proposition 9.6 is given hereafter.

Proposition 9.9. The inverse discrete Funk transform F† : RG → RG and the inverse Funk trans-
form F−1 : Yev

D → Yev
D satisfy

` ◦ F† = F−1 ◦ `.

In other words, the least squares �tting of the inverse discrete Funk transform coincides with the
inverse Funk transform of the least squares �tting,

`[F†c](ξ) = F−1(`[c])(ξ), c ∈ RG, ξ ∈ S2.

Proof. Analogous to the proof of Proposition 9.6.

Now, we express mapping properties of F and F† in term of the Vandermonde matrix A.

Proposition 9.10. The following assertions hold.

(i) The composition of F and F† coincides with the orthogonal projection on RanA,

FF† = F†F = A(AᵀA)−1Aᵀ. (9.13)

In particular,
∀b ∈ RanA, F†F b = FF† b = b. (9.14)

(ii) The null space and the range of F satisfy

KerF = KerAᵀ = (RanA)⊥, RanF = RanA, RM = KerF
⊥
⊕ RanF.

(iii) The null space and the range of F† satisfy KerF† = KerF, RanF† = RanF.

Proof. (i) Since A has full column rank, the orthogonal projection on RanA is given by the matrix
Π = A(AᵀA)−1Aᵀ. Then FF† = F†F = Π can be easily checked with (9.8) and (9.11). And this
implies (9.14) due to Πb = b, for any b ∈ RanA.
(ii) The orthogonal decomposition RM = KerAᵀ⊕RanA is a consequence of classical linear algebra.
Secondly, KerAᵀ ⊂ KerF is easily seen in (9.8), and KerF ⊂ KerF†F = Ker Π, with Ker Π =
(RanA)⊥ = KerAᵀ. Thirdly, RanF ⊂ RanA is easily seen in (9.8); furthermore, (9.14) proves that
RanA ⊂ RanFF†, with RanFF† ⊂ RanF. The last equality is a consequence of the �rst two ones.
(iii) The null space and the range of F† are obtained analogously as those of F.
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Translating this proposition to grid functions results in the following corollary.

Corollary 9.11. The following asssertions hold.

(i) The composition of F and F† coincides with the restriction of the least squares �tting,

F ◦ F† = F† ◦ F : RG −→ RG
b 7−→ `[b]|G .

(9.15)

(ii) The transform F† is the usual inverse transform of F, if the spaces are restricted to the subspace
Yev
D |G := {f |G, f ∈ Yev

D }, i.e., the linear mappings

b ∈ Yev
D |G 7→ Fb ∈ Yev

D |G, c ∈ Yev
D |G 7→ F†c ∈ Yev

D |G,

are two isomorphisms which are inverses of each other.

Proof. (i) The relation (9.15) is the translation of (9.13), from matrices to their linear maps.
(ii) The subspace Yev

D |G ⊂ RG is the translation to grid functions of the space RanA. Translat-
ing (9.14) shows that

∀b ∈ Yev
D |G, (F ◦ F†)(b) = (F† ◦ F)(b) = b.

The combination of this result with Proposition 9.10.(ii-iii) shows the result.

To �nish with, we provide estimations of stability. They show that stability is expected if the
condition number of the Vandermonde matrix A is suitable.

Theorem 9.12 (Stability). The maximum singular value of F, resp. F†, satis�es

σmax(F) ≤ condA, σmax(F†) ≤ condA

|P2N−2(0)|
∼

N→∞

√
πN condA. (9.16)

Remark 9.13. The largest singular values represent stability constants, since perturbing a vector
b ∈ RM by ε ∈ RM induces a perturbation on the transform Fb, resp. F†b, which satis�es ‖F(b+
ε)− Fb‖ ≤ σmax(F)‖ε‖, ‖F†(b+ ε)− F†b‖ ≤ σmax(F†)‖ε‖.

Proof. The maximum singular value σmax coincides with the matrix norm induced by the euclidean
norm and is therefore sub-multiplicative. Hence, we deduce from (9.8) that

σmax(F) ≤ σmax(A)σmax(Λ)σmax(A†),

where A† = (AᵀA)−1Aᵀ is the Moore-Penrose pseudoinverse of the injective matrix A. On the right
hand-side, σmax(Λ) = P0(0) = 1, and σmax(A†) = 1

σmin(A) is the inverse of the minimum singular
value of A. Therefore,

σmax(F) ≤ σmax(A)

σmin(A)
= cond(A).

For similar reasons, we see with (9.11) that

σmax(F†) ≤ σmax(A)σmax(Λ−1)σmax(A†) =
cond(A)

|P2N−2(0)|
.

Here, σmax(Λ−1) = 1
|P2N−2(0)| , with P2N−2(0) given by (9.2); the asymptotics 1

|P2N−2(0)| ∼
√
πN can

checked with the Stirling formula n! ∼
√

2πn exp(−n)nn.

9.4 Discrete Funk transform on the Cubed Hemisphere

In this section, we investigate the discrete Funk transform in the case of the equiangular Cubed
Sphere CSN .
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9.4.1 Cubed Hemisphere

To begin with, for every N ≥ 1, the grid CSN is invariant under the central symmetry (see Theo-
rem 5.3). Hence, Proposition 9.3 shows that any least squares problem (LSev) on this grid can be
reduced to a problem on a half-grid, without changing the solution. Therefore, we restrict the grid
CSN to the Northern hemisphere and a half of the equator circle, without loss of generality. The
resulting grid is displayed in Figure 9.1 and is de�ned below.

De�nition 9.14. Let N ≥ 1. The Cubed Hemisphere CHN is de�ned by

CHN = CSN ∩ {x(θ, φ) ∈ S2, (θ > 0 and 0 ≤ φ < 2π) or (θ = 0 and 0 ≤ φ < π)}, (9.17)

so that CSN splits into CSN = CHN ∪ (−CHN ), and CHN has the cardinal number 3N2 + 1.

Figure 9.1: Cubed Sphere and Cubed Hemisphere. The Cubed Sphere CSN (black dots) de�ned
in (5.1) is obtained by intersecting equiangular meridian circles (gray lines). The Cubed Hemisphere
CHN (gray circles) de�ned in (9.17) is located in the Northern hemisphere; it contains half of the
points from CSN . Left: N is odd (N = 5). Right: N is even (N = 6).

In the remainder of this section, we consider the grid

G = CHN = {ξi, 1 ≤ i ≤M}, M = 3N2 + 1,

where N ≥ 1 is �xed.

9.4.2 Degree

We tune the degree D in term of the parameter N , so that the problem (LSev) is well-conditioned.
We argue that the value D = 2N − 2 is a suitable choice.

The main motivation is the following claim, which is related to the study in Chapter 8.

Claim 9.15. Let N ≥ 1, G = CHN , and D = 2N − 2. Then, the corresponding Vandermonde
matrix A ∈ R(3N2+1)×(2N−1)N de�ned in (9.4) has full column rank and is well-conditioned, with a
condition number uniformly bounded with N .

Unfortunately, a complete proof of Claim 9.15 is not available yet. The most convincing argument
that we have at disposal is the numerical evidence displayed in Figure 9.2. These numerical results
indicate that

condA ≤ 21/4 ≤ 1.2, 1 ≤ N ≤ 64,

and they suggest that condA grows to 21/4 when N →∞. We also have a partial proof, concerning
the full column rank property in the case N ≤ 4.

Proposition 9.16. Assume that 1 ≤ N ≤ 4, G = CHN , and consider the degree D = 2N − 2.
Then, the Vandermonde matrix A in (9.4) has full column rank.
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Figure 9.2: Numerical evidence of Claim 9.15: the condition number of the Vandermonde matrix A
is plotted for G = CHN , D = 2N − 2, and 1 ≤ N ≤ 64. Left: condA is bounded from above by 1.2.
Right: 21/4 − condA decays to zero (plot in log-scale).

Proof. Equivalently, we prove the injectivity of the linear map f ∈ Yev
D 7→ [f(ξi)]1≤i≤M ∈ RM . This

result is an immediate consequence of Proposition 8.4. Indeed, if f ∈ Yev
D is such that f |CHN = 0,

then f ∈ YD satis�e f |CSN = 0, because the symmetry of f implies that f(−ξi) = f(ξi) = 0, for
every 1 ≤ i ≤M . Since N ≤ 4 and D ≤ 2N − 1, Proposition 8.4 implies that f = 0.

Also, the following theorem proves that degrees larger than 2N−2 must be proscribed in general;
hence, the degree D = 2N − 2 in Claim 9.15 is the largest �recommended� one.

Theorem 9.17. For the grid G = CHN , and an even degree D ≥ 2N , let ADN be the Vandermonde
matrix (9.4). Let σmin(ADN ), cond(ADN ), denote its smallest singular value, resp. condition number.

(i) For all N ≤ 4 and D ≥ 2N , the matrix ADN has not full column rank (hence, σmin(ADN ) = 0,
and cond(ADN ) = +∞).

(ii) There exists a sequence (εN )N≥1 with asymptotics εN ∼
N→+∞

N
2

(
2N
π

)3/2 (2
3

)2N →
N→+∞

0, such

that
∀N ≥ 1, ∀D ≥ 2N, σmin(ADN )2 ≤ εN .

(iii) There is a sequence (KN )N≥1 with asymptotics KN ∼
N→+∞

1
4

(
π

2N

)1/2 (3
2

)2N+1 →
N→+∞

+∞,

such that, for all N ≥ 1 and D ≥ 2N such that ADN has full column rank,

cond(ADN )2 ≥ KN .

Proof. We refer to the proofs of Proposition 8.4 and Theorem 8.7 which establish similar results for
the matrix

[Y m
n (ξ)] ξ∈CSN

|m|≤n≤D
∈ R(6N2+2)×(D+1)2 .

The proofs are based on the examples fN = Y −2N
2N (x(θ, φ − π

4 )) ∈ Y2N , and Y0 ∈ Y2N . The same
strategy applies for ADN , since fN , Y0 ∈ Yev

2N , so we get almost the same estimations. The slight
di�erence is a factor 1

2 in (ii), due to the restriction of CSN to CHN . This factor disappears in the
estimation of the condition number in (iii), since it is a ratio.

Remark 9.18. The critical degree 2N corresponds usually to oscillations at the Nyquist's frequency
for a uniform one-dimensional grid with step π

2N . Here, the critical example fN oscillates at this
frequency along the (equatorial) grid φ ≡ π

4 ( π
2N ), so that fN is undersampled along the equator.
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In the sequel, if the grid is G = CHN , then we select the degree D = 2N − 2, as a consequence
of Claim 9.15 and Theorem 9.17.

9.4.3 Discrete Funk transform

Assuming that Claim 9.15 is true, we consider the discrete Funk transform F, in the case G = CHN ,
D = 2N − 2, where N ≥ 1 is �xed. Of course, any result of Subsection 9.3.2 applies. In particular,
Theorem 9.12 guarantees estimations of stability based on the condition number plotted in Figure 9.2.
We check this point in Figure 9.3, where we observe that the maximum singular values satisfy

σmax(F) ≈ 1.00218, σmax(F†) ≈
√

2(2N − 2), 1 ≤ N ≤ 32;

this is in agreement with the theoretical bounds (9.16).

Figure 9.3: Stability constants associated to the discrete transforms F and F†, in the case G = CHN ,
D = 2N − 2. Left: the maximum singular values σmax(F) and σmax(F†) are plotted in term of N .
Right: the same singular values are plotted, but with �normalization� factors.

9.5 Numerical results

We perform various numerical experiments, in order to assess the quality and the e�ciency of the
discrete Funk transform on the Cubed Hemisphere.

9.5.1 Accuracy and convergence of the discrete Funk transform

We evaluate the accuracy of the discrete Funk transform when it is used to approximate Funk
transforms from values on CHN .

For that purpose, we introduce test functions,

g(k) :=
∑

0≤n≤100
n≡0 (2)

∑
−n≤m≤n

ĝ(k)
n (2 + 0.5 cos(m) + 0.25 sin(m))Y m

n ∈ Yev
100, (9.18)

ĝ(−∞)
n := 1

n! , ĝ(k)
n := (n+ 1)k, k = −6, −4, −2, −1, 0, (9.19)

where the various rates of decay of the spectral coe�cients encode various �smoothness� properties.
Here, g(k) ∈ Yev

100, so we compute the Funk transform Fg(k) by Theorem 9.7, with G = CHN , N = 51
and D = 2N − 2. For any α ∈ S2, we use the relation (9.10) to compute Fg(k)(α) from the values
of g(k) on the grid CH51. This computation is exact, up to rounding errors.
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Consider now the discrete Funk transform F, associated to the grid G = CHN = {ξi, 1 ≤ i ≤M}
and the degree D = 2N − 2. For any function g, we approximate the vector [(Fg)(ξi)]1≤i≤M by
F[g(ξi)]1≤i≤M with a relative error ηN [g] de�ned by

ηN [g] :=
‖F[g(ξi)]1≤i≤M − [(Fg)(ξi)]1≤i≤M‖

‖[(Fg)(ξi)]1≤i≤M‖
; (9.20)

here, ‖ · ‖ denotes the euclidean norm in RM . For g = g(k), the reference vector [(Fg(k))(ξi)]1≤i≤M
is computed as mentioned in the previous paragraph (relation (9.10) with CH51 for the data grid,
and α ∈ CHN for the evaluation). In particular, η51[g(k)] is zero (up to rounding errors).

We have plotted the errors ηN [g(k)] in Figure 9.4 (left panel), for 1 ≤ N ≤ 32. Overall, the
behavior of the observed error depends on the rate of decay of the spectral coe�cients; the error
converges fastly to zero for rapidly decaying coe�cients. We quantify this phenomenon in Table 9.1,
where we report numerical convergence rates rN [g] such that

η2N [g] = ηN [g] 2−rN [g], with rN [g] = log2 ηN [g]− log2 η2N [g]. (9.21)

N rN [g(−∞)] rN [g(−6)] rN [g(−4)] rN [g(−2)] rN [g(−1)] rN [g(0)]

1 3.7 4.5 2.9 0.28 -1.4 1.8
2 11 4.9 3.1 1.3 0.3 -0.19
4 29 5.4 3.4 1.5 0.78 -0.11
8 5.3 5.4 3.4 1.8 1.2 0.093
16 0.83 5.5 3.6 2.2 1.8 1

Table 9.1: Convergence rates (9.21) of the errors (9.20), for the test functions from (9.18-9.19).

For g(−∞), with a factorial decay of the coe�cients, ĝ
(−∞)
n = 1/n!, the very fast convergence

appears as a blow up of the rate rN [g(−∞)]. For the functions g(−k), k = 6, 4, 2, with a decay

ĝ
(−k)
n = 1/(n + 1)k, the rate looks like rN [g(−k)] ≈ k − 0.5. For g(−1), with the slow decay ĝ

(−1)
n =

1/(n+ 1), and g(0) with constant values ĝ
(0)
n = 1, the convergence analysis is not so clear.

In a word, the discrete Funk transform F (or its matrix F) approximates the Funk transform
from values on a Cubed Hemisphere. It converges fastly for smooth functions, for which the spectral
coe�cients decay rapidly to zero. The observed rates of convergence suggests to analyze theoretically
the speed of convergence in Sobolev spaces. We defer this point to further studies.

9.5.2 Funk transform of Gaussian models

We study the accuracy of the discrete Funk transform on Gaussian models from dMRI, for the grid
G = CHN and the degree D = 2N − 2.

We consider Gaussian models in the following form,

S(x) = exp(−b xᵀDx), x ∈ S2, (9.22)

where b ≥ 0, and D ∈ R3×3 is a symmetric positive de�nite matrix. Such models describe the dMRI
signal S in Di�usion Tensor Imaging. The so-called di�usion tensor D models intrinsic di�usion
properties of biological tissues. The parameter b is the so-called b-value, and is a parameter of the
acquisition. The unit vector x, represents a gradient direction, and browses a hemispherical grid
during the acquisition. Gaussian models such as (9.22) appear also in High Angular Resolution
Di�usion Imaging [124]. In this �eld, a weighted average of several Gaussian models can be intro-
duced to model the signal from crossing �bers. The orientation of the �bers can be imaged using an
Orientation Distribution Function, which is computed approximately as the Funk transform of the
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Figure 9.4: Approximation of the Funk transform [(Fg)(ξi)]1≤i≤M by the discrete transform
F[g(ξi)]1≤i≤M , for the grid CHN , and the degree 2N − 2. The relative error ηN [g] in (9.20) is
plotted, for each test function g = g(k) from (9.18-9.19).

recorded signal S [125,178]. Hence, it is crucial to be able to compute accurately the Funk transform
of a Gaussian model, from a discrete set of values.

In this paper, we consider Gaussian signals

Sj(x) = exp(−bj xᵀDjx), x ∈ S2, 1 ≤ j ≤ 6. (9.23)

The b-values bj and the di�usion tensors Dj are de�ned in Table 9.2. Our values are inspired by the
values from [125]. The b-value b = 1000 [s/mm2] is an usual clinical value, whereas b = 3000 [s/mm2]

is considered as relatively high. For the di�usion tensors, we have chosen diagonal matrices Di,
de�ned by the eigenvalues µ1, µ2, µ3 > 0. The matrix D3 has been found in the synthetic data
generation in [125]. The other matrices have been de�ned as �variations� of this matrix, in order to
obtain more or less anisotropy; see the last column of Table 9.2, where anisotropy is measured by
means of the fractional anisotropy (FA),

FA = 1√
2

√
(µ1−µ2)2+(µ1−µ3)2+(µ2−µ3)2

µ21+µ22+µ23
∈ [0, 1]. (9.24)

Firstly, we assume that the (even) signal Sj is recorded on G = CHN , with N ≥ 1 and 1 ≤ j ≤ 6.
We compute reference values [(FSj)(ξi)]1≤i≤M using trapezoidal rules3. Then, we compute the
discrete Funk transform F[Sj(ξi)]1≤i≤M . It approximates [(FSj)(ξi)]1≤i≤M , with a relative error
ηN [Sj ], where ηN is de�ned in (9.20). We have plotted these errors in Figure 9.5 (left panel) to
evaluate the accuracy of the procedure. Overall, a fast convergence due to the smoothness of the
Gaussian signals is observed. For the isotropic functions S1 and S4, the error is always zero (up

3Here, an integral along a great circle x ·α = 0 is an integral of a smooth 2π-periodic function over a period, so the
trapezoidal rule converges exponentially to the true integral [177]. Therefore, we apply successive trapezoidal rules as
follows. We start with an angular step π

8
. We evaluate the associated trapezoidal rule; then, we divide the angular

step by two, and we iterate. The iterations are stopped as soon as the relative increase of the value between two
successive iterations is below the tolerance 10−13.
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j bj [s/mm
2] Dj [mm

2/s] FA

1 1000 10−6 diag(300, 300, 300) 0
2 1000 10−6 diag(300, 600, 900) 0.46
3 1000 10−6 diag(300, 300, 1700) 0.80
4 3000 10−6 diag(300, 300, 300) 0
5 3000 10−6 diag(300, 600, 900) 0.46
6 3000 10−6 diag(300, 300, 1700) 0.80

Table 9.2: Parameters of the Gaussian signals (9.23). The anisotropy is measured by the fractional
anisotropy (FA), de�ned in (9.24).

to rounding errors), because S1, S4 ∈ Y0 ⊂ Yev
2N−2, so (9.9) applies. With S2, S5, and S3, S6, we

observe that increasing the b-value induces a loss in accuracy; this is because a Gaussian becomes
sharper with high b-values.

Secondly, we show that the orientation of the grid does not matter. For that purpose, we consider
�rotations� of the signals Sj :

Sj(Q
ᵀ·) : x 7→ Sj(Q

ᵀx) = exp(−b xᵀQDjQ
ᵀ x),

where Q ∈ R3×3 is a random orthogonal matrix. The relative error of approximation of the Funk
transform becomes ηN [Sj(Q

ᵀ·)], and can be computed as before. For each function Sj , we repeat
this procedure for 30 random orthogonal matrices Q, and we plot the maximum error

max
Q

ηN [Sj(Q
ᵀ·)] (9.25)

in Figure 9.5 (right panel). We obtain a similar conclusion than before, so that the conclusion does
not depend on the orientation of the grid.

Thirdly, we investigate the e�ect of noise. We corrupt the signals as follows. We �x a value of
N . For any 1 ≤ j ≤ 6, for any σ = 2−p, with 2 ≤ p ≤ 31, we corrupt Sj , by a �speckle� noise and
an additive noise with level σ:

Sσj (ξi) = |Sj(ξi)(1 + σui) + σvi|, 1 ≤ i ≤M,

where the ui, vi, are 2M = 6N2 +2 independent realizations of the normal law N (0, 1). In this case,
the relative error on the signal is given by

‖[Sσj (ξi)− Sj(ξi)]1≤i≤M‖
‖[Sj(ξi)]1≤i≤M‖

. (9.26)

We compute the discrete Funk transform F[Sσj (ξi)]1≤i≤M , which approximates [(FSj)(ξi)]1≤i≤M
with a relative error

‖F[Sσj (ξi)]1≤i≤M − [(FSj)(ξi)]1≤i≤M‖
‖[(FSj)(ξi)]1≤i≤M‖

. (9.27)

In Figure 9.6, we have plotted the relative error (9.27) on the transform against the relative er-
ror (9.26) on the signal. Two values of N are considered. On the left, N = 5, so that the grid CHN

contains 76 points, and the approximation space is Yev
8 . On the right, N = 10, so that the grid

CHN contains 301 points, and the approximation space is Yev
18 . Roughly speaking, we observe that

the relative error on the transform is the maximum between the relative error on the signal, and the
relative error on the transform from the noise-free case (displayed in Figure 9.5). This result is in
agreement with the stability constant of the transform F, σmax(F) ≈ 1 in Figure 9.3.

To conclude, the Funk transform of Gaussian models can be accurately evaluated by the discrete
transform on the Cubed Hemisphere, and in a very stable way.
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Figure 9.5: Accuracy of the discrete Funk transform on CHN with degree 2N − 2, for the Gaussian
signals Sj in (9.23) and Table 9.5. Left: F[Sj(ξi)]1≤i≤M approximates [(FSj)(ξi)]1≤i≤M with relative
error ηN [Sj ] in (9.20); we plot ηN [Sj ] with 1 ≤ N ≤ 32. Right: for any orthogonal matrix Q ∈ R3×3,
the same procedure applied to the �rotated� Gaussian Sj(Q

ᵀ·) results in a relative error ηN [Sj(Q
ᵀ·)];

we plot the maximum error (9.25), where Q scans a set of 30 random orthogonal matrices.

Figure 9.6: Accuracy of the discrete Funk transform on CHN (degree 2N − 2), for Gaussian signals
Sj corrupted by noise. The relative error (9.27) on the transform is plotted against the relative
error (9.27) on the signal (logarithmic scale). Left: N = 5; right: N = 10.
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9.5.3 Comparison of the Cubed Sphere and the icosahedral grid

We compare discrete Funk transforms on Cubed Hemispheres with discrete Funk transforms on
icosahedral grids.

For the Cubed Sphere, we consider the Cubed Hemisphere CHN with cardinal number M =
3N2 + 1. As an alternative grid, we consider an icosahedral grid. It is based on a regular triangular
lattice onto each face of an icosahedron inscribed in S2. The icosahedral grid is de�ned as the
projection of the vertices of this lattice onto S2. We further halve the grid by symmetry consideration
(Proposition 9.3), in the same way as CSN has been halved. Assuming that each edge of the original
icosahedron has been divided into N parts, the resulting half-grid contains M = 5N2 + 1 points;
we still call this grid an icosahedral grid, and we denote it by IcoN . Such grids have already been
used for computing Funk transforms in [125] withM = 81, 321 (which correspond to the parameters
N = 2, 8).

Firstly, in order to obtain a stable discrete Funk transform, the degree D must be carefully tuned.
For CHN , we use the rule D = 2N − 2, as it has been introduced in Section 9.4. For the icosahedral
grid IcoN , we do not know such a rule on the degree. To overcome this disadvantage, we compute
numerically D as the largest degree D such that condA ≤ 2, where A denotes the Vandermonde
matrix (9.4) with G = IcoN . In Figure 9.7, we plot the obtained degree D against the number
of points of the grid, for the grid CHN with 1 ≤ N ≤ 32, and the grid IcoN with 1 ≤ N ≤ 25.
We observe that for equivalent number of grid points, the degree associated to the icosahedral grid
is larger than the degree associated to the Cubed Hemisphere. Therefore, the icosahedral grid
permits to work in a larger approximation space Yev

D , while keeping a very small condition number
(condA ≤ 2).

Figure 9.7: Degree D for least squares �tting on the Cubed Hemisphere CHN , resp. the Icosahedral
grid IcoN . For CHN , the number of grid points is M = 3N2 + 1, the degree is D = 2N − 2, and
1 ≤ N ≤ 32. For IcoN ,M = 5N2 +1, D is the largest degree such that condA ≤ 2, and 1 ≤ N ≤ 25.

Secondly, we consider successively the discrete Funk transform associated to the grids

G = CHN , 1 ≤ N ≤ 32, G = IcoN , 1 ≤ N ≤ 25,

with the degree D discussed above. We evaluate the accuracy on the test function g = g(k) de�ned
in (9.18-9.19), for k = −∞,−6,−4,−2, by means of the relative error

η[g] = max
Q

‖F[g(Qᵀξi)]1≤i≤M − [(Fg)(Qᵀξi)]1≤i≤M‖
‖[(Fg)(Qᵀξi)]1≤i≤M‖

, (G = {ξi, 1 ≤ i ≤M}); (9.28)

here the �orientation� Q browses a set of 30 random orthogonal matrices. The computed errors are
displayed in Figure 9.8. Overall, the two grids de�ne transforms with similar accuracy, and similar
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properties of convergence. This test reveals also that for very smooth functions and very small grids,
the isosahedral grid de�nes a more accurate transform.

Lastly, we repeat the same procedure, but we corrupt the data with a level of noise σ = 10−6.
We compute the relative error

ηnoise[g] = max
(Q,u,v)

‖F[g(Qᵀξi)(1 + σui) + σvi]1≤i≤M − [(Fg)(Qᵀξi)]1≤i≤M‖
‖[(Fg)(Qᵀξi)]1≤i≤M‖

, σ = 10−6, (9.29)

where the maximum is taken over 30 experiments; each experiment �xes Q as a random orthogonal
matrix, and the ui, vi as 2M independent realizations of the normal law N (0, 1). The obtained
errors are depicted in Figure 9.9. The observations of the noise-free case still apply. We further
observe that the errors are almost the same as soon as the noise becomes dominant.

To conclude, considering the Cubed Sphere is simpler than considering an icosahedral grid, for
which further studies (or computation) are needed to keep the conditioning under control. Moreover,
the resulting accuracy is almost the same, except for very smooth functions on very small grids; in
this case, the icosahedral grid is more advantageous if the noise is small enough.

9.5.4 Computation time

As a further indicator of e�ciency, we measure the computation time of discrete Funk transforms,
for the grid G = CHN , and the degree D = 2N − 2. For each value of N , we �x a random vector
b, and we measure the time dedicated to the assembly of the matrix A and the computation of Fb.
The code is written in Matlab, and `[b] is computed with a simple command such as (A'*A)\(A'*b).
The program is executed on a laptop Dell Precision 7540; the processor is an Intel i9-9880H@2.30
GHz. The experiment is repeated six times, and we report the average values of the running times
in Table 9.3.

Parameter N 1 2 4 8 16 32 64

Number of grid points M 4 13 49 193 769 3073 12289
Degree D 0 2 6 14 30 62 126

CPU time (s) 1.8e-04 1.2e-04 3.7e-04 2.3e-03 2.2e-02 5.0e-01 1.5e+01

Table 9.3: Running time dedicated to the computation of a discrete Funk transform Fb, for the grid
G = CHN , and the degree D = 2N − 2.

These preliminary results show that our transform is computed relatively fastly for small grids,
despite our �brute force� implementation has not been optimized. Further studies are required to
decrease these times. Combining symmetry consideration and an iterative solver such as Conjugate
Gradient Least Squares (CGLS) is an option to consider in the future.
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Figure 9.8: Accuracy of the Funk transform associated to the Cubed Hemisphere (CH), resp. the
Icosahedral grid (Ico). The relative error η[g] in (9.28) is plotted against

√
M , with M the number

of grid points. The degree D is plotted in Figure 9.7.

Figure 9.9: Accuracy of the Funk transform associated to the Cubed Hemisphere (CH), resp. the
Icosahedral grid (Ico), with a level of noise σ = 10−6. The relative error ηnoise[g] in (9.29) is plotted
against

√
M , with M the number of grid points. The degree D is plotted in Figure 9.7.
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9.6 Conclusion and perspectives

This chapter deals with mathematical and numerical properties of some discrete Funk transforms,
including their (pseudo)inversion. As a special case, the study includes a simple framework based
on the Cubed Sphere. Our theoretical and numerical results indicate that stability and suitable
convergence properties are expected in this context, despite regularization has not been applied.
This mathematical background about discrete Funk transforms could potentially have applications
in any �eld where integrals along great circles on a sphere are considered.

This work opens problems to be addressed in the future. Finding the �best� spherical grid and
the �best� degree is an open question. For the case of the Cubed Hemisphere CHN , proving that
our rule on the degree (D = 2N − 2) results in a small condition number is still open. Another
point concerns the speed of convergence, which should be quanti�ed, for instance in Sobolev spaces.
Concerning implementation aspects, writing a �fast� algorithm has still to be done. A �rst step in
this direction could be an e�cient solver for the least squares problem, taking into account further
symmetry consideration. To �nish with, comparing our transform with time-tested transforms on
real experiments is a goal for further studies; in particular, testing the Cubed Hemisphere in Q-ball
imaging may be instructive.
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Chapter 10

Conclusion and perspectives

10.1 Sampling and spectral computing on the Cubed Sphere

10.1.1 Metric properties of the Cubed Sphere

Geometrical and metric properties, as de�ned in [134, 137], are usually introduced to quantify the
quality of a mesh. For the Cubed Sphere, we can mention the mesh norm and the separation
distance, de�ned by

hN = sup
y∈S2

min
x∈CSN

arccos y · x, δN = min
y 6=x∈CSN

arccos y · x.

Our results permit to give an analytical expression of the separation distance δN ; it implies the
asymptotics δN ∼ π

2
√

2N
.

Concerning the mesh norm, a preliminary numerical study has revealed that it is achieved at the
center of a panel, for

y = (1, 0, 0), x = ρ(1,± tan π
4N ,± tan π

4N ), if N is odd,
y = ρ(t, (1 + 2t2)1/2 − (1 + t2)1/2,−1 + (1 + t2)1/2),

x ∈ {(1, 0, 0), ρ(1, 0, t), ρ(1, t, t)},
with t := tan π

2N ,

if N is even,

where ρ denotes the radial projection. To the author's knowledge, this result is new and has never
been proved. Proving such a result, or more generally studying metric properties, is an important
subject since it could provide a valuable background for the analysis of some approximation problems
on the Cubed Sphere.

Another open problem related to areas deals with covering S2 by cells Tj , with areas |Tj |, 1 ≤
j ≤ N̄ , such that each cell Tj contains exactly one point xj ∈ CSN , and such that the spherical

quadrature rule Qf =
∑N̄

j=1 |Tj |f(xj) is optimal, for some criterion to be de�ned.

10.1.2 Approximation and Vandermonde matrices on the Cubed Sphere

Data approximation on the Cubed Sphere CSN by a spherical harmonic can be formulated as the
least squares problem (LS). From a matrix point of view, the problem especially depends on the
Vandermonde matrice ADN de�ned in (8.6),

ADN = [Y m
n (x)] x∈CSN

|m|≤n≤D
.

Taking bene�t from the geometrical structure of the Cubed Sphere, based on great circles, we have
obtained some theoretical results about this matrix and the �tting problem (LS):

161
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(i) for N ≤ 4, ADN has full column rank if, and only if, D ≤ 2N − 1, so (LS) has a unique solution
only if D ≤ 2N − 1;

(ii) for N ≥ 5, and D = N + 2, ADN has full column rank, so (LS) has a unique solution;

(iii) for N → ∞, and D = 2N , condADN → ∞, so (LS) becomes ill-conditioned if the degree
corresponds to the Shannon-Nyquist's frequency along the equator;

(iv) for D = 4N − 1, or D = 4N − 2 if N is even, ADN has full row rank, so every solution of (LS)
is an interpolating function.

Moreover, numerical results show that:

(i) for D = 2N − 1, ADN has full column rank with a small condition number, which implies
that (LS) is well-posed and well-conditioned if the Shannon-Nyquist's condition is strictly
respected along the equator;

(ii) for D = 3N , ADN has full row rank, which implies the existence of interpolating functions.

Proving these last two results from a theoretical point of view is still open; there is indeed some gap
between the numerical observations and the known theoretical results.

10.1.3 Special functions dedicated to the Cubed Sphere

We have considered the following space, dedicated to Lagrange interpolation by a spherical harmonic
on the Cubed Sphere,

UN = ⊕n≥0W⊥n , Wn := {f ∈ Yn : ∃g ∈ Yn−1, f |CSN = g|CSN }, n ≥ 1, W0 := {0}.

Interpolating in this space is analogous to the usual trigonometric interpolation on [0, 2π]. But here,
the practical computation of such a space is based on numerical linear algebra, and is biased by
truncation of singular values of some matrices.

To go further, we would like to �nd special functions on the sphere in order to describe analytically
this space, or a variation of it. This would be an improvement towards a suitable sampling theory
on the Cubed Sphere, and new approximation algorithms may emerge.

10.1.4 Quadrature rules on the Cubed Sphere

Various quadrature rules on the Cubed Sphere, such as∫
S2
f(x) dσ ≈

∑
x∈CSN

ω(x)f(x), ω : CSN → R, f : S2 → R,

have already been introduced; in particular, an octahedral rule which is almost as accurate as optimal
octahedral rules has been deduced from interpolation. There are still directions to be explored,
for instance to get accurate quadrature rules that can be computed fastly. Moreover, studying
quadrature errors is related to the study of the singular values of the Vandermonde matrices ADN ,
which is a further motivation to deepen the subject.

Several works are in progress. As an application of least square �tting by a spherical harmonic,
we can de�ne a new quadrature rule by integration of our least square approximation. Preliminary
numerical results indicate that this approach is an interesting option to be strengthened.

Another method, introduced in [156], can be summarized by

ω(x) = δ2 · (1+tan2 α)(1+tan2 β)(1+tan2 γ)

2(tan2 α+tan2 β+tan2 γ)3/2
, withx = 1

(tan2 α+tan2 β+tan2 γ)1/2
(tanα, tanβ, tan γ); (10.1)
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here, x browses CSN when (α, β, γ) browses a uniform grid on the faces of the cube [−π
4 ,

π
4 ]3,

with angular step δ = π
2N . This rule can be understood as a bivariate trapezoidal rule on the

faces of [−π
4 ,

π
4 ]3, with a correction on the eight corners in order to get a �uniform formula�; the

expression of the weight is especially due to a change of variable from the sphere to the faces of the
cube. Remarkably, the simple correction on the corners permits to reach a fourth-order numerical
accuracy with respect to δ [156]. But proving theoretically this result is still open.

Moreover, I have found a further correction which is sixth-order accurate in numerical experi-
ments. This rule is the octahedral rule given by (10.1), except for the corners, where the weight is
de�ned to exactly integrate the constant function x ∈ S2 7→ 1, i.e.

ω(3−1/2(±1,±1,±1)) =
1

8

[
4π −

∑
x∈CSN\{3−1/2(±1,±1,±1)}ω(x)

]
.

The resulting rule has never been published so far, and proving the sixth-order accuracy is still open.

10.1.5 Fast algorithms on the Cubed Sphere

There is still a need of data approximation based on a fast algorithm that is analogous to the Fast
Fourier Transform, in the speci�c framework of the Cubed Sphere. The inclusion

CSN ⊂ CS2N , N ≡ 0 (2),

may be trick to achieve such a goal.

In the absence of such an algorithm and in a �rst step, one may develop an e�cient solver in a
framework of (weighted) least squares �tting (WLS). An option consists in solving the set of normal
equations by an iterative solver, such as the so-called CGLS (Conjugate Gradient Least Squares).
The problem can be solved within a few iterations, due to the very small condition number. Also,
this solver can be accelerated taking bene�t from symmetry consideration, since it implies a block
diagonal structure. Preliminary numerical results con�rm the relevance of this approach.

A further option to accelerate the iterations of CGLS would consist in computing the products
matrix-vector with fast spherical Fourier algorithms from [145,148]. At the end, a few fast spherical
Fourier transforms should result in an accurate least-squares �tting, which should be itself evaluated
by means of a fast spherical Fourier transform. This strategy, which may require some tuning, has
not been tested yet.

10.1.6 New representations of the octahedral group

The symmetry group of the Cubed Sphere is given by the octahedral group G in (5.2). This implies
various invariance and orthogonality properties related to data approximation on CSN . Among
them, we can de�ne octahedral quadrature rules on CSN , for which 15/16 of the real spherical
harmonics are automatically integrated. Also, the normal matrix associated to the (octahedral)
weighted least squares (WLS) has the block diagonal structure displayed in Figure 8.3.

To go further, one can introduce the Cubed Sphere in a framework of representation theory. Here,
the space of grid functions RCSN is invariant under the octahedral group G, so is the interpolation
space UN . These spaces de�ne two new (equivalent) representations of G:

µ(Q)(f) := f(Qᵀ·), f ∈ RCSN , µ̃(Q)(u) := u(Qᵀ·), u ∈ UN , Q ∈ G.

Our interpolation scheme preserves symmetry, as de�ned in [166, 167]; numerical linear algebra
permits to compute some orthonormal basis of UN which contains bases of the isotypic components,
and whose evaluation on CSN provides an orthogonal basis of RCSN and its isotypic components.
But de�ning analytically this basis, or a similar one, is still open. Lastly, another remark to be
explored is that representation theory gives a framework to de�ne Fourier-kind transforms [155].
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10.1.7 Comparison with other grids

The presented works especially focus on the Cubed Sphere grid, but some approaches can be ex-
tended to other spherical grids. For instance, the same interpolation procedure, based on the echelon
factorization of the Vandermonde matrix, still applies for other grids. For the discrete Funk trans-
form based on least square �tting, our numerical results show that the Icosahedral grid slightly
outperforms the Cubed Sphere in the case of very smooth functions and small grids. Therefore, it
seems interesting to continue the comparison between the Cubed Sphere and the Icosahedral grid.

10.1.8 Spherical computation in image and vision

Spectral computation on the Cubed Sphere can be related to the �rst part of this thesis, and more
generally to image and vision.

In medical imaging, and more speci�cally in di�usion Magnetic Resonance Imaging, Q-ball imag-
ing consists in imaging the orientation of �bers in biological tissues by computation of some discrete
Funk-Radon transform. We have tested the principle of such a transform, in the case of the Cubed
Sphere. To go further, our transform should be tested on real data; such a work would be the very
�rst study in medical imaging with the Cubed Sphere used for the acquisition grid.

In computer graphics, radiative transfer models, such as the rendering equation (B.7), contain
angular parameters among the variables. This suggests sampling on spherical grids or using spherical
harmonics, as in spherical harmonic lighting [163,174]. One may wonder if the Cubed Sphere could
have an interest in this kind of framework, or more generally in any radiative models with scattering.

10.2 Special echelon factorization and lexicographical least-squares

10.2.1 Numerical analysis of the special echelon factorization

Our interpolating spherical harmonic on the Cubed Sphere is computed by means of the matrix
factorization (6.19), applied on a suitable matrix. This factorization solves various optimization
problems which enter into the framework of lexicographical least-squares, where a sequence of least-
squares �tting are performed. This approach can be understood as some generalization of Moore-
Penrose inversion based on the Singular Value Decomposition (SVD), and it is similar to some
methods from robotics [126].

Therefore, there is some interest in studying such methods from a numerical analysis point of
view. Studying the stability and the accuracy of our algorithm is still open. Also, writing an e�cient
algorithm that is similar to the iterative methods dedicated to the SVD is open. Ideally, we would
like to �nd suitable matrices, Vj , Uj and Ej , j ≥ 0, such that (6.19) is obtained at the limit j →∞,
in a fast stable accurate way.

10.2.2 Application of lexicographical least-squares in learning

In this work, lexicographical optimization has been introduced to build an interpolation space on
the Cubed Sphere, based on spherical harmonics ordered by increasing degree. Similar approaches
can be introduced for other interpolation problems, such as multivariate polynomial interpolation
in Rd. Also, the usual trigonometric interpolation can be understood as an implementation of our
approach, considering one block per (increasing) frequency.

The proposed formalism relies especially on linear algebra, which paves the way towards various
applications. Overall, one can build models where there is some ranking between several blocks
of variables, or where successive linear mis�ts are minimized. This kind of subject has already
appeared in robotics [126]. One may wonder if there are other �elds where the approach has an
interest. Developing new learning algorithms based on this principle has still to be explored. In
particular, writing an e�cient algorithm which builds a lexicographical linear model from a huge
amount of data is still a challenge.
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