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Introduction

This habilitation thesis is a synthesis of works realized since I was hired as an associate professor (Maître de Conférences) in 2011. Two independent parts are presented. The manuscript is organized as follows.

Part I: Mathematical and numerical aspects of three-dimensional optical imaging based on the Radon transform INTRODUCTION computing with spherical harmonics on this grid, including the study of Vandermonde matrices. I have been working on the subject since 2020, with J.-P. Croisille (UL) and M. Brachet from the Université de Poitiers.

Chapter 5 deals with mathematical properties of the Cubed Sphere. The shortest geodesic arcs, whose length is the separation distance of the grid, are given: they especially match with the vertices of a cuboctahedron. As a consequence of this metric property, the symmetry group of the Cubed Sphere coincides with the octahedral group. This chapter summarizes the main results of the article [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF].

Chapter 6 tackles Lagrange interpolation on the Cubed Sphere by a spherical harmonic. The approach especially factorizes a suitable Vandermonde matrix under an echelon form, in order to eliminate undersampled spherical harmonics. This chapter is a reworking of the article [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF] and contains new results; we have improved the theoretical lower bound on the degree which guarantees the existence of an interpolating function, and we now describe the interpolating function as the solution of a lexicographical optimization problem.

In Chapter 7, we design and we study a new octahedral quadrature rule on the Cubed Sphere, taking benet from Lagrange interpolation. Contrary to Gaussian quadrature, where the set of nodes and weights is solution of a nonlinear system, only the weights are unknown here. Despite this conceptual simplicity, the new quadrature displays an accuracy comparable to optimal quadratures, such as the Lebedev rules. This chapter is extracted from the article [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF].

In Chapter 8, we study least squares tting by a spherical harmonic on the Cubed Sphere. The most important observation is that selecting a degree compatible with the Shannon-Nyquist's frequency along the equatorial great circle provides an approximation problem that is well-conditioned, whereas violating this condition implies that the condition number explodes when the number of nodes tends to innity. Another point concerns the block diagonal structure of the normal matrix, based on octahedral symmetry consideration; this result permits to improve the computational eciency. The chapter is extracted from the article [START_REF] Bellet | vest qures pheril rrmonis epproximtion on the gued phere[END_REF].

In Chapter 9, we dene some discrete Funk-Radon transform in a spectral framework based on least squares tting on the Cubed Sphere, without regularizing. We exhibit the pseudoinverse and, as above, we argue that the transform is expected to be stable as soon as the Shannon-Nyquist condition is fullled along the equator. Various numerical experiments attest to the accuracy and the convergence of the approach, in particular for toy models from diuse Magnetic Resonance Imaging. This chapter is extracted from the article [START_REF] Bellet | e disrete punk trnsform on the gued phere[END_REF]. Three-dimensional reective tomography

Introduction

This chapter introduces three-dimensional (3D) reective tomography. We present various aspects of the subject, including the context of our study, the principle of the method, implementation aspects, and a wide variety of numerical experiments on synthetic and real data.

Context

The subject has been motivated by collaborations with companies which work on novel imaging modalities, in the context described hereafter. Basically, the principle is the following. For the acquisition, a laser source illuminates the scene to be imaged, for several angular position with respect to the scene. At the same time, some camera co-located with the source records backscattered intensities. This provides one bi-dimensional (2D) image of the scene per angular position. In order to clarify expectations, the orders of magnitude for the characteristic lengths are:

VIS-NIR wavelengths: 0.4-3 µm; diameter of the imaged scene: 10 m; distance between the device and the scene: 5 km.

Next, the collected images are injected into processing algorithms, in order to compute a 3D reconstruction of the scene. The reconstruction step is based on the Feldkamp-Davis-Kress algorithm [START_REF] Feldkamp | rtil oneEem lgorithm[END_REF], from X-ray tomography. Lastly, the reconstructed 3D volume is explored in order to model objects of interest from the scene, for instance under the form of surfaces. In particular, TOSA has worked on surface representations [START_REF] Berechet | edvned lgorithms for identifying trgets from threeE dimensionl reonstrution of sprse Qh vdr dt[END_REF][START_REF] Berechet | ttering omputtion for Qh lser imgery nd reonstrution lgorithms[END_REF][START_REF] Berginc | htEdriving elgorithms for Qh eonstruE tion from vdr ht[END_REF], with the Small and Medium Enterprise SISPIA, specialized in algorithms.

Contractual context

The following contractual context is the initial motivation for my studies on 3D optical imaging.

A collaboration between TOSA and the Université de Lorraine (UL) started in 2012. This collaboration was formalized by means of a one-year project, entitled elgorithmes de reonstrution Berginc from TOSA and J.-P. Croisille from UL. The project served as a starting point for my works about 3D active laser imaging based on algorithms from tomography.

For UL, a second collaboration concerning 3D laser imaging started in 2013; it was formalized by a consortium agreement between SISPIA, TOSA, and UL. The associated two-year project, entitled hthrivQhC, was supported by the Direction Générale de la Compétitivité de l'Industrie et des Services (Ministère du Redressement productif ) and the Direction Générale de l'Armement (Ministère de la Défense). The leader of the project was I. Berechet from SISPIA, G. Berginc was the leader for TOSA's part, I was the leader for the UL's part; the other participants were S. Berechet from SISPIA, and G. Rigaud as a postdoctoral researcher UL.

Principle of reective tomography

Three-dimensional (3D) reective tomography deals with the reconstruction of a 3D scene, by a combination of visible to near-infrared (VIS-NIR) optics and algorithms from X-ray tomography.

1.3.1 Acquisition: cone beam scan in VIS-NIR optics We assume that this acquisition geometry is known. In other words, any recorded image is assumed to be calibrated, which means that the intrinsic and extrinsic matrices of the camera are known in (B.1). In practice, this may require additional measurements or pre-processing steps. For instance, in [START_REF] Berginc | yptroni system nd method dedited to identi(tion for formulting threeEdimensionl imges[END_REF], some correcting algorithms calibrate the images in order to approach some known geometry (circular cone beam scan). Also, we refer to textbooks in computer vision for calibration procedures [START_REF] Hartley | wultiple iew qeometry in gomputer ision[END_REF][START_REF] Ma | en invittion to QEh ision[END_REF]; this is outside the scope of the presented thesis.

Solver: cone beam computed tomography

The so-called re)etive tomogrphy is an ingenious principle based on the geometrical similarity of a tomographic scan and the acquisition described above. It consists in injecting 2D reective images into a solver of cone beam computed tomography, in order to compute some 3D reconstruction of the initial scene. In this way, reective tomography is a qualitative inversion procedure which captures the 3D geometry of reecting surfaces. From a physical point of view, a reconstruction from radiant incidance on pixels [W.m

-2 ] represents a power per unit volume [W.m -3 ]. Furthermore, the method is not based on a model of the brightness (incidance) of the recorded pixels; so, pre-processing such as rescaling the brightness is tolerated.

1 https://www.agence-maths-entreprises.fr with direction u = u(β, y ⊥ , y 3 ); the parametrization of the ray considers that the image is formed on a point y = y ⊥ θ ⊥ + y 3 e 3 (in a virtual screen). Right: by rotation around the axis e 3 , the point x 0 (β) scans a horizontal circle. The total set of rays is L CB dened in (1.1). In cone beam tomography, x 0 (β) is the position of an X-ray source; in reective tomography, x 0 (β) is the position of the optical center of a camera.

The assumed acquisition geometry impacts the choice of the solver. In this chapter, we focus on the Feldkamp-Davis-Kress (FDK) algorithm [START_REF] Feldkamp | rtil oneEem lgorithm[END_REF], dedicated to a circular cone beam scan (Figure 1.2).

In 3D reective tomography [3235,[START_REF] Johnson | hreeE dimensionl surfe reonstrution of optil vmertin ojets using oneEem tomogrphy[END_REF], the FDK algorithm computes eciently a 3D reconstruction, sampled on a 3D grid of voxels, from 2D VIS-NIR images.

Reconstruction algorithm for a circular scan: FDK algorithm

The FDK algorithm [START_REF] Feldkamp | rtil oneEem lgorithm[END_REF] is one of the most widely used methods in 3D computed tomography. This method has been designed to invert eciently the X-ray transform X dened by (B.11), in the case of a circular cone beam scan. The FDK algorithm is a heuristic extension of the 2D Radon inversion (A.9) and the FBP formula (A. [START_REF]wodèle életromgnétique d9ojet dissimulé[END_REF]. It provides some ( (1.1) the position x 0 (β) and the direction u(β, y ⊥ , y 3 ) of a ray are specied in Figure 1.2. The weighted ltering Φ and the backprojection operator B are dened in the descriptive of the algorithm on the following page. We refer to [START_REF] Feldkamp | rtil oneEem lgorithm[END_REF][START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF] for a comprehensive derivation of these operators. The practical implementation of the FDK algorithm is analogous to the FBP algorithm on page 67.

Among the properties of the algorithm, for r → ∞, any horizontal cross-section (BΦX [f ])(•, •, z) looks like a 2D ltered backprojection (A.14) from the Radon transform R[f (•, •, z)], in the plane x 3 = z. In particular, the FDK algorithm is relevant in X-ray tomography, at least if r is large enough.

Positioning of the method 1.4.1 Laser reconstruction

Reective tomography uses algorithms from transmission tomography for reective data, despite the VIS-NIR wavelengths are much larger than the X-ray ones. To the author's knowledge, this principle emerged at the end of the 1980s for laser radars [START_REF] Knight | woEdimensionl tomogrphs using rnge mesurements[END_REF][START_REF] Knight | omogrphi ehniques epplied to vser dr e)etive wesurements[END_REF][START_REF] Parker | etive tomogrphyX imges from rngeEresolved lser rdr mesurements[END_REF], and more particularly for lser rnge pro(ling. The original reective tomography reconstructs a 2D image from one-dimensional (1D) range proles of a rotating target; the solver is a 2D ltered backprojection. Laser range proling has been further studied since the 1990s. Various solvers have been tested [START_REF] Magee | gomprison of tehniques for imge reonstruE tion using re)etive tomogrphy[END_REF]. The applications FDK algorithm.

Input. X-ray transform F : L CB (r, a, b) → R, measured by the cone beam scan of Figure 1.2.

Step 1.a: weighting. Compute the weighted data set F w : F w (β, y ⊥ , y 3 ) = w(y ⊥ , y 3 )F (x 0 (β), u(β, y ⊥ , y 3 )), w(y ⊥ , y 3 ) = r (r 2 +y ⊥ 2 +y 3 2 ) 0.5 .

Step 1.b: ltering. Compute the horizontal ltering ΦF : ΦF (β, y ⊥ , y 3 ) := F -1 1 {|σ| ĥ(σ)F 1 [F w (β, •, y 3 )](σ)},

y 3 ∈ [-b, b], β ∈ [0, 2π],
where F 1 (g)(σ) = g(y ⊥ )e -iσy ⊥ dy ⊥ is the Fourier transform, and ĥ is an even windowing function with compact support.

Step 2: backprojection. Compute the backprojection on a grid of voxels: for each voxel location x, compute BΦF (x) where B is a weighted summation over lines through x,

BG(x) := 2π 0 r 2 (r -x • θ) 2 G(β, y ⊥ , y 3 )dβ, with y ⊥ = rx•θ ⊥ r-x•θ , y 3 = rx 3 r-x•θ , θ = (cos β, sin β, 0).
Output. FDK reconstruction BΦF , evaluated on a grid of voxels.

include range-resolved imaging of satellites [START_REF] Lasche | etive tomogrphy for imging stellitesX experimentl results[END_REF][START_REF] Matson | tellite feture reonstrution using re)etive tomogrphyX (eld results[END_REF][START_REF] Matson | etive tomogrphy reonstrution of stellite fetures E (eld results[END_REF]. See also [START_REF] Berginc | ttering models for rnge pro(ling nd PhEQh lser imgery[END_REF][START_REF] Chen | ypil in)uening ftors nlysis of lser re)etion tomogrphy imging[END_REF][START_REF] Henriksson | yptil re)etne tomogrphy using gg lser rdr[END_REF][START_REF] Wang | smge qulity nlysis nd improvement of ldr re)etive tomogrphy for spe ojet reognition[END_REF] for works realized in the past decade.

In 3D active laser imaging [3235], the reconstruction principle shares similarities with range proling, but the input data are 2D optical images instead of 1D range proles, and the output is a 3D reconstruction, computed with a 3D solver from tomography. This is very similar with the method of [START_REF] Gering | yjet wodeling using omogrphy nd hotogrphy[END_REF], where 3D models of an object are computed from photographs in the visible band; the method relies on one 2D ltered backprojection per horizontal cross-section, assuming orthographic rays for a large focal length.

Geometric tomography

Essentially, an optical image contains a perspective projection of a scene. Reconstructing the geometry of the scene from such data enters into the framework of geometri tomogrphy:

qeometri tomogrphy is the area of mathematics dealing with the retrieval of information about a geometric object from data about its sections, or projections, or both, [START_REF] Gardner | qeometri tomogrphy[END_REF].

In 3D reective tomography, the data are related to the geometry of the scene, but also to physical parameters such as the BRDF (described in (B.6) and Figure B.7). Using algorithms from X-ray tomography such as the FDK algorithm appears to be an ecient way of combining these data for recovering the geometry.

Multi-view stereo

3D reective tomography enters also in the framework of multiEview stereo:

The goal of multi-view stereo is to reconstruct a complete 3D object model from a collection of images taken from known camera viewpoints, [START_REF] Seitz | e omprison nd evlution of multiEview stereo reonstrution lgorithms[END_REF].

There exists a huge variety of methods for multi-view stereo; see for instance [START_REF] Hartley | wultiple iew qeometry in gomputer ision[END_REF][START_REF] Ma | en invittion to QEh ision[END_REF][START_REF] Szeliski | gomputer visionX lgorithms nd pplitions[END_REF] and the references therein. We can clarify the position of the method discussed so-far, following the six-point taxonomy of [START_REF] Seitz | e omprison nd evlution of multiEview stereo reonstrution lgorithms[END_REF]:

1. Scene representation: the reconstruction is computed on a grid of 3D voxels.

2. Photoconsistency measure: the method does not need the comparison of pixel values in dierent images.

3. Visibility model: the method does not need to predict visibility and occlusions.

4. Shape priors: the method does not need shape priors.

5. Reconstruction algorithm: the FDK algorithm from cone beam computed tomography is the solver.

6. Initialization requirements: the FDK algorithm is direct and does not need an initialization.

This list emphasizes that 3D reective tomography is robust.

Furthermore, reective tomography is related to the shpe from silhouette, where a visul hull of the scene [START_REF] Baumgart | qeometri modeling for omputer vision[END_REF][START_REF] Laurentini | he visul hull onept for silhouetteEsed imge understnding[END_REF] is obtained by some backprojection of binarized images containing the silhouettes.

In comparison, the FDK algorithm is a backprojection, but it is combined with a ltering, and the images are not required to be binary. The shape from silhouette is a common initialization in multi-view stereo; one may imagine 3D reective tomography as an alternative method.

Visualization

We have discussed so far 3D reective tomography as the computation of a 3D grid of voxels, based on algorithms from transmission tomography. In this section, we further analyze such a 3D volume in order to represent, visualize, or extract some objects of interest. In Figure 1.3, we display a reconstruction using three usual techniques [START_REF] Wallis | hreeEhimensionl hisply in xuler wediine nd diology[END_REF]:

(a) Slicing: a 2D cross-section is extracted and directly displayed. This method is exact and simple, but it is dicult to appreciate 3D structures. In reective tomography, the surfaces of the original scene are observed to be located near the peaks of the reconstruction. In order to extract the objects of interest, we need especially to extract the brightest voxels. Using the coordinates of such voxels in a reference frame, we obtain a point cloud of the scene. Using the extracted voxels, or the point cloud, surfaces are deduced, by processes such as interpolation (or data approximation).

The rest of this section is devoted to volume rendering and the extraction of point clouds. We relate these two elds as in the international patent [START_REF] Berechet | wethod for disrimiE ntion nd identi(tion of ojets of sene y QEh imging[END_REF]. Concerning volume rendering, it appears that we want especially to visualize surfacic points, represented by bright voxels.

Volume rendering

This motivates the use of the wximum sntensity rojetion (MIP), as it is performed in [START_REF] Gering | yjet wodeling using omogrphy nd hotogrphy[END_REF], [START_REF] Bellet | vser sntertive Qh gomputer qrphis[END_REF][START_REF] Berginc | yptil Qh imging nd visuliztion of oneled ojets[END_REF], [START_REF] Berechet | wethod for disrimiE ntion nd identi(tion of ojets of sene y QEh imging[END_REF]. Indeed, the MIP projects a volumetric intensity onto a screen of pixels along straight rays; each pixel records the maximum intensity along the corresponding ray, as in Figure 1.4. Hence, in 3D reective tomography, the MIP eciently computes a contrasted image of the reconstructed surfaces (up to artifacts), as in Fig-

ure 1.3(c). The simplest form of MIP is free of parameters, and improvements are available, such as removal of unexpected voxels by thresholding, or perception of distance improved by the means of an attenuation coecient [START_REF] Wallis | hreeEhimensionl hisply in xuler wediine nd diology[END_REF]. In practice, the rendered image is often adjusted by the means of thresholding, rescaling, or color mapping.

More formally, after some eventual processing such as restriction to a sub-volume of interest, thresholding, rescaling, sign reversal, or whatever, the 3D reconstruction denes a compactly supported function F : R 3 → R. As in Figure 1. [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF], we display such a volumetric reconstruction F using a perspetive ws mer, dened for a geometry of projection as in (

Here, c represents an optical center, [c, x) is the ray through the pixel x (half-line), u c,x = x-c |x-c| is the direction of the ray, λ ≥ 0 is the depth of a point x = c + λu c,x of the ray. Such a MIP camera has an intrinsic matrix, and an extrinsic matrix, similarly as (B.1); changing the focal length in the intrinsic matrix enables zooming in/out, while changing the position and the orientation in the extrinsic matrix provides several points of view. In practice, automatized scenario of visualization can be used, such as displaying a (MIP) cone beam scan of the whole reconstruction, with a predened threshold. It is also possible to proceed interactively. emrk 1.1F Other volume rendering methods can be obtained analogously: x ΠF (x) := F | [c,x) p with p ∈ [1, ∞] (for p = 1, this is an X-ray transform, for p = ∞, this is a MIP).

Point clouds

To go further with the extraction of objects from the reconstruction, representations based on point clouds are also of particular interest. The most intuitive way of extraction is based on thresholding; a point cloud is obtained by the coordinates of voxels with intensity between thresholds. In order to densify the point cloud, this procedure is iterated, on several sub-volumes and with several thresholds. More inventively, an ecient selection of voxels can be operated by the MIP [START_REF] Berechet | wethod for disrimiE ntion nd identi(tion of ojets of sene y QEh imging[END_REF]. As explained previously, the MIP displays an intensity map corresponding essentially to surfacic voxels.

We select some pixels of the displayed image by thresholding; then, the associated voxels/points are extracted. See F (x) ∈ R 3 ;

(1.3) the corresponding pixel of the MIP image (1.2) has the position x and the intensity ΠF (x) = F (x).

Here again, the procedure is iterated, for various sub-volumes, and various thresholds. This method, which uses the MIP as a compression method to extract a point cloud, is performed interactively, or some automatic scanning scenario is pre-dened. 

Matlab codes for testing

Numerical tests and numerical illustrations are often performed in Matlab, eventually interfaced with compiled codes to reduce the computational time.

In particular, I have developed Matlab codes for FBP algorithms in various acquisition geometries [START_REF] Bellet | elgorithmes de reonstrution et imgerie lser tomogrphique[END_REF], following [START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF]Chap. 5]. These codes include the inversion of the Radon transform by the FBP algorithm for a parallel scan in 2D, and the FDK algorithm for a circular cone beam scan in 3D.

Various strategies have been used to reduce the computational time. The rst one consists in avoiding loops using vectorization. The second one deals with distributing the computation on several cores (with the function parcellfun in Octave). The third one tackles the bottleneck of the FDK algorithm: the most time-consuming task is the backprojection step (typically in O(N 4 ) operations), so I have developed a Fortran code dedicated to this task. It signicantly reduces the computational time.

Concerning 3D visualization of a 3D grid of voxels, I have developed a ray tracer in Matlab for 3D volume rendering such as the MIP, the X-ray transform, or the attenuated X-ray transform.

Also, the Matlab code of the MIP has been translated into a C code and a CUDA C code; here again, calling one of these compiled codes can accelerate the computation (which typically requires O(N 4 ) operations for video rendering).

Interactive software in CUDA C

In 2014, I developed an interactive software in CUDA C, using [START_REF] Sanders | ghe y ixmpleX en sntrodution to qenerlEurpose q rogrmming[END_REF] as a reference for CUDA programming. The code especially combines the FDK algorithm and a MIP rendering on a Graphics Processing Unit (GPU).

The FDK reconstruction is a grid of voxels which is computed and stored on the GPU. The weighted ltering is based on the Fast Fourier Transform of the cuFFT library. For the backprojection, the computations are massively parallelized; the voxels are computed independently. Note that programming eciently the FDK algorithm on a GPU is a subject of concern by itself; see for example [START_REF] Biguri | sqiX wevefEq toolox for gfg imge reonstrution[END_REF][START_REF] Okitsu | righEperformne one em reonstrution using ud omptile gpus[END_REF][START_REF] Riabkov | eelerted oneEem kprojetion using qEg hrdwre[END_REF][START_REF] Rit | he eonstrution oolkit @uAD n openEsoure oneEem g reonstrution toolkit sed on the snsight oolkit @suA[END_REF][START_REF] Scherl | pst qEsed g reonE strution using the ommon uni(ed devie rhiteture @gheA[END_REF].

Concerning the display of the FDK reconstruction, any MIP view is computed directly on the GPU and is displayed on the computer screen using OpenGL. Furthermore, the GLUT library is used to manage interactions with mouse/keyboard. This provides a rendering software that enables to move as a virtual observer inside the reconstructed volume. The displacements of the camera are managed by the mouse, whereas some other parameters such as thresholding or the limits of the region of interest are managed by the keyboard. Last but not least, the display is updated in real time; the rendering software is interactive.

The resulting home-made software has demonstrated the eciency of FDK-MIP on various test cases from TOSA, during the hthrivQhC project. In 2015, some video clips, produced by means of this software, have been shown during a research exhibition at Thales (Thales Research Days).

Reconstruction from real data

We demonstrate the strength of reective tomography on two test cases with real data. The 2D images have been measured by TOSA, using active laser imagery in the VIS-NIR band. The acquisition is assimilated to a circular cone beam scan such as Figure 1.2. The tomography solver is the FDK algorithm, and the display is a perspective MIP as in Figure 1. [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF]. The computation and the display are performed with the home-made software described in Subsection 1.6.2.

Circular cone beam scan

For the rst test case, displayed in 

Limited view with occlusions

The second test case, displayed in Figures 1.7-1.8 and published in [START_REF] Bellet | vser sntertive Qh gomputer qrphis[END_REF][START_REF] Berginc | yptil Qh imging nd visuliztion of oneled ojets[END_REF], is more challenging.

The scene is a car partially occluded by branches and foliage, and the cone beam scan is performed only over a half-circle. Some images of the sequence and slices through the dataset are displayed in 

Numerical experiments

We test the principle of 3D reective tomography on several classes of images, from a numerical point of view; we consider a Gouraud model, cartoon images with discontinuities, images of a randomized pattern, and noisy images. Overall, these tests show that the method computes the initial geometry, displays it under the form of contrasted images, in a robust and stable way. These results are extracted from [START_REF] Bellet | ulity ontrol of Qh re)etive tomogrphy[END_REF] and we refer to [START_REF] Berginc | yptil Qh imging nd visuliztion of oneled ojets[END_REF] for similar results.

Reconstruction from a Gouraud model of the Stanford Bunny

We test 3D reective tomography on the Stanford Bunny [START_REF] Turk | ippered polygon meshes from rnge imges[END_REF], enlightened by a Gouraud model [START_REF] Gouraud | gontinuous hding of gurved urfes[END_REF]. At a rst step, we read the full resolution Stanford Bunny (69451 faces) with the read_ply function from [START_REF] Peyré | oolox grph[END_REF]. We color the faces of the object with the smooth pattern x → 1+0.5 sin(20π|x|) (in some system of coordinates), computed at the vertices and extended to the faces by interpolation.

We generate 1605 images of size 397 × 312 with the Gouraud model of Matlab; a black background is considered. A circular scan is performed: vertical images are obtained by a rotation of the Bunny over 360 degrees, with a constant angular step. We display 6 images of this sequence in Figure 1.9. We evaluate now the reconstruction-visualization procedure. In Figure 1.11, we examine the quality of an aerial MIP view ΠF , displayed in (a). We focus here on an horizontal aerial view, since forming such a view from vertical images is the core of the prediction problem. We discriminate the pixels corresponding to surfacic points of the initial object, as follows. For any pixel x of the We compute some statistics in order to quantify the quality of the aerial MIP image: 15% of the pixels in ΠF correspond to voxels associated to surface points, they explain 43% of the total intensity of the image. The ratio of these values denes a onentrtion of the intensity among the true pixels; the value is 2.91. In comparison, among the other pixels, the concentration of the intensity is 0.66. Therefore, in average, the intensity of a true pixel is 4.38 times the intensity of another pixel. This supports the following claim: for a MIP rendering in reective tomography, the bright points correspond to the surfaces of the initial scene.

Reconstruction from cartoon images of a non-convex object

We test the principle of 3D reective tomography in the case of cartoon images of a non-convex object. In particular, we illustrate the impact of discontinuities.

We consider a sphere with a dent, dened in spherical coordinates by

ρ = 1 + 0.75(r -1)1 r<1 , r := 1 0.08 [( ψ π + 1 4 ) 2 + ( 2φ π + 1 6 ) 2 ], ψ ∈ [-π, π], φ ∈ [-π 2 , π 2 ],
where ψ is the azimuth, φ is the elevation, and ρ > 0 is the radius; we compute this object in Matlab from a discrete version of the sphere, discretized with 640 2 patches. For a xed parameter m ≥ 0, we dene on this surface a piecewise constant pattern in spherical coordinates:

(ψ, φ) → p m (ψ)p m (φ), with p m (s) = 0.5 + 0.251 (ms-ms )<0.5 .

(1.4)

We simulate a circular scan of this patterned object; we generate 801 images of size 201 × 201 (constant angular step), using plot of surfaces in Matlab. grtoon images are considered: the brightness of a pixel is directly the value of the pattern at the visible point. Next, we compute a MIP of a tomographic reconstruction (restricted to a half-space) from this scan. In Figure 1.12, we display one image of the scan and the corresponding MIP re-projection, for severals values of the parameter m.

For m = 0, any image of the scan is binary, and contains the silhouette of the object. In this case, the concavity cannot be recovered, since the visul hull [START_REF] Laurentini | he visul hull onept for silhouetteEsed imge understnding[END_REF] has the same silhouettes than the object itself. On the contrary, for m > 0, the discontinuous pattern permits to reconstruct the object with a pattern whose structure is similar. In particular, the concavity appears clearly. Also, it is worth noting that the boundary of the concavity, which corresponds to some geometrical discontinuity, is emphasized in any case. 

Reconstruction from a randomized pattern

We test the principle of reective tomography on cartoon images of a randomized pattern, which draws some parallel with an active surface whose reectance varies.

We consider some circular scan F σ (β, y ⊥ , y 3 ) of the Stanford Bunny, where σ ≥ 0 is a xed parameter. This dataset comprises 801 images of size 200 × 157. For any angle β, we consider a pattern on the Bunny, dened by

x → 1 + (0.2 + ση 1 (β)) sin(πση 2 (β) + 20π|x|), (1.5) where the η i (β) are independent realizations of the Gaussian N (0, 1). The image F σ (β, •, •) is assumed to be a cartoon image obtained by projection of this pattern. Note that the projected pattern depends on β; this dependence is severe if σ is large. On the rst line of Figure 1.13, we represent a slice in the dataset, (β, y ⊥ ) → F σ (β, y ⊥ , 0), for several values of σ. In this gure, for σ = 0, a point which is visible through some angular range appears along a level set. For σ > 0, this point appears along the same curve, but this is no longer a level set since it is projected with values depending on β.

We compute a tomographic reconstruction from each of these datasets, and we display a MIP image of the reconstruction on the second line of Figure 1.13. As can be observed, the scene is successfully recovered, despite randomized projections. In particular, some coherent information such as the silhouette is automatically extracted. In fact, the principle of reective tomography is robust; it captures the structure of a dataset without measuring photoconsistency. Figure 1.13: 3D tomographic reconstruction from the randomized pattern (1.5). From left to right, the angular dependency of the pattern becomes more and more severe: σ = 0, 2 j , -2 ≤ j ≤ 2. Top: horizontal slice (β, y ⊥ ) → F σ (β, y ⊥ , 0) in the dataset. Bottom: MIP view of the reconstruction.

Reconstruction from noisy images

We realize a stability test considering reconstruction from noisy datasets, for speckle noise.

We consider a Gouraud model of the Stanford Bunny as in Subsection 1.8.1; we denote by F the dataset, comprising here 801 images of size 200 × 157. For normalization purposes, we apply a linear scaling such that the range of F becomes [START_REF] Bellet | wultiresolution greedy lgorithm dedited to re)etive tomogrphy[END_REF][START_REF]plexile lgeri tehnique for multiview reonstrutionX inrementl lerning in re)etive tomogrphy[END_REF] (F := 1 + F -min F max F -min F ). For a xed parameter σ ≥ 0, we introduce a dataset F σ with a speckle noise of magnitude σ, F σ = F (1 + ση), (1.6) where η contains 801×200×157 independent realizations of the Gaussian N (0, 1) (and the operations are dened component wise). Then we compute a tomographic reconstruction from the dataset F σ .

In Figure 1.14, we display one image of the input sequence and the corresponding MIP re-projection, for several values of σ. We observe that the visual perception of the reconstructed scene is stable. Indeed, there is no guarantee that the recorded data belong to the range of the X-ray transform.

A visible point of the scene may appear with dierent incidances on dierent images; this is dierent from the X-ray transform, where a point contributes in the same manner on dierent rays (by the means of an attenuation coecient independent from the ray). Furthermore, many materials are opaque for VIS-NIR wavelengths, which produces occlusions. This is a source of non-linearity and it implies that optical images are not expected to be directly in the range of the linear X-ray transform.

Therefore, some mathematical gap to be lled can be expressed as follows: what is the meaning of an X-ray inversion of data which do not belong to the range of the X-ray transform? Moreover, any occlusion introduces some incompleteness in the data [START_REF] Rigaud | e)etive smgE ing olved y the don rnsform[END_REF]. Hence, another question arises concerning the artifacts; the artifacts resulting from the occlusions must be claried. Such questions are the initial motivation of the works presented in this chapter.

We emphasize some mechanisms of reective tomography in order to understand the meaning of the reconstruction and to describe the artifacts. We analyze some model problems, where the solver is an X-ray inversion, but the data are not assumed to be in the range of the X-ray transform.

To simplify the analysis, we restrict our attention to 2D models, where the X-ray transform is the Radon transform, the acquisition geometry is a parallel scanning, and the inversion procedure is a ltered backprojection (FBP). This is some limit case of the FDK algorithm (r → ∞): for a camera with a large focal length in far eld, and a horizontal circular cone beam scan, the FDK algorithm reduces to such a 2D inversion for each horizontal cross-section, analogously to [START_REF] Gering | yjet wodeling using omogrphy nd hotogrphy[END_REF], [START_REF] Rigaud | e)etive smgE ing olved y the don rnsform[END_REF]. We refer to Sections 1.3.3 and A.6 for details concerning the FDK algorithm and the FBP.

At a rst step, we propose some intuitive interpretation of the FBP as an accumulator array;

each pixel value represents an accumulation of coherent contrasts along a sinusoid [START_REF]e)etive (ltered kprojetion[END_REF]. In this way, reective tomography looks like a dual approach to edge detection by the Hough transform in image processing [START_REF] Duda | se of the rough trnsformtion to detet lines nd urves in pitures[END_REF]. In a second step, we formulate a geometrical model of reective tomography, in the case of piecewise smooth reective projections [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF]. It includes some description of expected artifacts. The model relies on a high frequency asymptotics of the FBP, when the cuto pulsation tends to innity. In a third step, we discuss reective tomography using microlocal analysis of the CHAPTER 2. MATHEMATICAL ANALYSIS OF REFLECTIVE TOMOGRAPHY Radon transform, as described in Section A.8. This analyzes the problem in term of singularities.

The reconstructed geometry, and the artifacts, are encoded by a wavefront set, in correspondence with the wavefront set of the dataset [START_REF]reuristi imging from generi projetionsX kprojetion outside the rnge of the don trnsform[END_REF]. Lastly, we consider the specic case of a Lambertian convex reector [START_REF] Bellet | en ext don formul for vmertin tomogrphy[END_REF]. In this case, we have more than a correspondence of singularities: a suitable processing of the projections satises an exact Radon formula, based on the extension to distributions described in Section A.4; therefore, reective tomography can be understood here as an extension of transmission tomography, obtained mathematically by extending the Radon transform to distributions. For illustration purposes, an example is considered in Figure 2.2. To simplify, the surface function f (y) of this example does not depend on the angle (as for cartoon images). On the left, we display the projection F (θ 0 , s) of f (y), for a xed angle θ 0 . On the right, we display the dataset F (θ, s); the angle θ ∈ Θ scans a uniform discretization of S 1 ,

Θ = {(cos iδθ, sin iδθ), 0 ≤ i ≤ 359}, δθ = π 180 .
Any point y ∈ Γ appears in F along pieces of the sinusoid y • θ = s, with brightness f (y); in general, y ∈ Γ does not appear along the whole sinusoid, due to occlusions.

Assumptions: piecewise smoothness

In this section, we assume for technical reasons that for any θ ∈ Θ, the projection F (θ,

•) : s → F (θ, s)
is a piecewise smooth function, with a nite number of singularities. In particular, this assumption tolerates the following discontinuities.

At the boundary of the support of the projection F (θ, •), F (θ, •) jumps from the value 0 of the background to the value f (y(θ, s), θ) of the visible point y(θ, s) ∈ Γ. For instance, on the left of Figure 2.2, such a discontinuity occurs for the value of s associated to the bottom-left corner of the triangle. This kind of jump is directly related to the geometry of Γ.

In the support of the projection F (θ, •), the visible point s → y(θ, s) may jump. For instance, in Figure 2.1, there exists a critical ray x • θ = s such that y(θ, s) jumps from the triangle to the star. Such a jump for y(θ, s) may imply a discontinuity for F (θ, s) = f (y(θ, s), θ), even if f is smooth. This kind of jump is directly related to the geometry of Γ.

In the support of the projection F (θ, •), even if s → y(θ, s) is continuous, the surface function y ∈ Γ → f (y, θ) may be discontinuous, which may introduce discontinuities in the projection F (θ, s) = f (y(θ, s), θ). For example, in Figure 2.2, a jump of f on the triangle introduces a jump for F (θ 0 , s). This kind of jump can depend on the geometry of Γ; it can also be related to physical parameters (discontinuities at the interface between separate materials).

Notice that our considerations does not use any equation on f (y, θ); in particular, f is not constrained to satisfy a rendering equation such as (B.7).

A reconstruction formula

Following the principle of reective tomography, we introduce an X-ray transform for the considered acquisition geometry. Here, the scene is projected along lines x•θ = s with (θ, s) ∈ S 1 ×R. Therefore, the well-suited X-ray transform is the Radon transform R dened by (A.1),

Ra(θ, s) = x•θ=s a(x) d = R a(sθ + tθ ⊥ ) dt, (θ, s) ∈ S 1 × R, a : R 2 → R. (2.2) 
Then, we reconstruct the scene from the dataset F dened in (2.1), by a FBP inspired from the Radon formula (A.9) and the FBP (A.14). Indeed, we dene a reconstruction formula by

I[F ](x) := B[F ψ Ω ](x), x ∈ R 2 , (2.3) 
where, denotes the convolution with respect to the variable s, the convolution kernel ψ Ω (s) is dened by (A.13), and the operator B is the discrete backprojection

Bg(x) = θ∈Θ g(θ, x • θ), x ∈ R 2 . (2.4)
In comparison with the original FBP (A.14), the tomographic projection Rf has been replaced by the reective projection F , and the backprojection R * dened in (A.5) has been replaced by an analogous discrete operator. Note that the reconstruction (2.3) is a smooth function

I[F ] ∈ E(R 2 ).
Indeed, for any θ ∈ Θ, the projection F (θ, •) is a function with compact support, and is assumed to be piecewise smooth. Then, for similar reasons than (A.16),

F (θ, •) ψ Ω = F -1 1 {F 1 [F (θ, •)]F 1 [ψ Ω ]} ∈ E(R) ∩ S (R),
where F 1 denotes the Fourier transform (A.2). Therefore, x → F (θ,

•) ψ Ω (x • θ) ∈ E(R 2
), and we conclude by a nite summation over θ.

Equivalently, the reconstruction formula (2.3) is given by where φ Ω is a regularization of the Hilbert transform, dened by The nal reconstruction is the backprojection from the full ltered dataset, displayed in (d).

I[F ](x) = B[ 1 4π ∂ s F φ Ω ](x), x ∈ R 2 , (2.5) 
φ Ω = F -1 1 [-i sign(σ) ĥΩ (σ)] ∈ E(R) ∩ S (R);

Accumulation of coherent contrasts

We discuss the proposed formula (2.5), using Figure 2.3 as an illustration. The rst comments deal with ltering. Due to piecewise smoothness, a ltered projection is equal to

1 4π ∂ s F (θ, •) φ Ω (t) = 1 4π R {∂ s F (θ, s)}φ Ω (t -s)ds + 1 4π s∈j(θ) [F (θ, s)]φ Ω (t -s), (2.7) 
where {∂ s F (θ, s)} denotes the usual derivative of F (θ, s) (dened almost everwhere), the nite set j(θ) contains the points s where F (θ, •) jumps, and [F (θ, s)] = F (θ, s + ) -F (θ, s -) is the amplitude of a jump. Therefore, ltering especially enhances variations and discontinuities, as in (a-b). Also, due to the shape of the kernel φ Ω , the right term in (2.7) behaves like a zero-crossing detection of contours in the projection F (θ, •), as in (a); recall that some associated jumps are directly related to the initial geometry Γ, as described in Subsection 2.2.2.

Secondly, the backprojection of a single ltered projection denes a plane wave 4π ∂ s F φ Ω (b). For a generic point x 1 , the ltered values, along the sinusoid x 1 • θ = s, are incoherent, and their summation I[F ](x 1 ) is small. On the contrary, for some specic points x 0 , the sinusoid x 0 • θ = s contains a portion of signicant values which are coherent; in this case, I[F ](x 0 ) is large. These specic points especially include points which are close to Γ, because if x 0 ∈ Γ, then x 0 is visible along some portions of the sinusoid x 0 • θ = s, so coherence is expected along these portions.

x → 1 4π ∂ s F (θ, •) φ Ω (x • θ),
Finally, the reconstruction looks like some accumulation of coherent contrasts, backprojected at their initial location in space. Peaks are expected near the initial surfaces, and especially near points which appear along coherent contrasts in the projections. For the considered example, one reconstruct some contrasted image of Γ, even for non-convex portions. Also, the right of the star appears uniformly in the dataset (f is constant); such a lack of contrast implies that the associated geometry is not reconstructed.

Parallel with edge detection by the Hough transform

We draw some parallel between reective tomography and edge detection by the Hough transform.

In image processing, the Hough transform is a standard way of nding edges in an image.

Basically, a binary image of contours is computed. Then an accumulator array A(θ, s) is computed by the Hough transform: along any line x • θ = s, A(θ, s) counts the number of pixels labeled as contour. Any peak in the array A(θ, s) is associated to a line x • θ = s that may contain an edge of the original image.

Reective tomography looks like a similar approach for sinusoid detection. Filtering enhances contrasts and contours in the known image F (θ, s). Then the backprojection B sums along sinusoids x • θ = s. The resulting reconstruction I[F ](x) plays the role of an accumulator array; the peaks are associated to sinusoids which may correspond to visible points of the initial scene.

Both methods start by enhancing the desired structures. And both methods compute some accumulator array by a summation along sets x • θ = s. For edge detection, the summation is performed by the Hough transform, along lines with parameter (θ, s). For tomography, the summation is performed by the backprojection B, along sinusoids with parameter x. Therefore, a FBP looks like a dual approach to edge detection by the Hough transform.

Asymptotic and geometrical modeling 2.3.1 Introduction

In Section 2.2, we have essentially interpreted some model of reective tomography as an accumulation/cancellation of coherent/incoherent waves. We further investigate this point, from a quantitative point of view. Summation of waves is often studied in a framework of high frequency asymptotics. Arguments such as stationary phase approximation lead to geometrical modeling; this is for instance the basis of geometrical optics. We follow such a strategy in order to study a FBP on some models of reective projections.

For that purpose, we consider projections F (θ, •) of opaque objects, similarly as Figure 2.1. and Subsection 2.2.1. We assume now that the angle θ scans the continuous circle S 1 , and we still assume that F has a compact support. Following the principle of reective tomography, we reconstruct the scene by a FBP such as (A.14). Therefore, we consider

I Ω (x) := R * [F ψ Ω ](x), (2.8)
where R * is the backprojection (A.5), and ψ Ω is the Ram-Lak lter dened by (A.13), with ĥΩ (σ) = 1 [-Ω,Ω] (σ). In practice, the cut-o frequency Ω is bounded above by the Shannon-Nyquist frequency associated to the radial discretization (variable s). It plays the role of a resolution parameter which is ideally very large. That is the reason why we look for an asymptotic expansion of the reconstruction (2.8), when Ω tends to innity.

Overall, the asymptotic behavior of (2.8) is especially related to the geometry of the dataset F , and it provides some geometrical model of the reconstruction. It is obtained by asymptotic expansion of suitable integrals. In this section, we summarize the shape of the leading order terms, and we insist on the results for two toy models.

Highly oscillatory integrals

Deriving an asymptotics for I Ω (x), Ω → ∞, means studying the oscillatory integral

I Ω (x) = S 1 R F (θ, s)ψ Ω (x • θ -s)dsdθ = Ω 2 4π 2 1 0 ν S 1 R F (θ, s) cos(Ων(x • θ -s))dsdθdν, (2.9)
because the Ram-Lak lter (A.13) satises ψ Ω (s) = Ω 2 4π 2 1 0 ν cos(Ωνs)dν.

Such integrals are studied in the working document [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF], from asymptotic techniques described in the textbook [START_REF] Bleistein | esymptoti ixpnsions of sntegrls[END_REF]. The results are obtained in three steps. The rst step establishes some asssumptions about the geometrical structure of F , especially concerning the location of singularities.

The second step derives an asymptotic expansion of

g(λ) = S 1 R F (θ, s) cos(λ(x • θ -s))dsdθ, λ → ∞;
the proof is based on an iterated divergence formula and a stationary phase method. The third step derives an asymptotic expansion of

4π 2 Ω 2 I Ω (x) = 1 0 νg(Ων)dν, Ω → ∞;
this is a study of a g-transform, based on the Mellin transform and a calculation of residues.

The asymptotic expansions are used in order to predict the expected orders of magnitude of the reconstruction I Ω (x), depending on x. Roughly speaking, the expected orders are the following:

O( √ Ω) on some convex portions of the original scene Γ; O(log Ω) for some isolated points of the original scene Γ, such as corners; O(log Ω) on some straight lines, which generally represent artifacts; O(1) almost everywhere, which represents a noise.

In particular, some parts of the initial scene Γ are expected to be bright in the reconstruction I Ω (x), with order O( √ Ω). Moreover, some description of the artifacts resulting from the occlusions is obtained; straight lines (associated to corners in F ) appear with order O(log Ω). emrk 2.1F Artifacts due to a limited angle (when θ scans only a portion of S 1 ) or a spatial truncation (when s scans only an interval [-R, R]) are also considered in [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF]; the associated order of magnitude is again O(log Ω).

Toy models

We present expected asymptotics of the reconstruction I Ω = R * [F ψ Ω ], for two toy models extracted from [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF]. Also, we check some results from a numerical point of view.

The rst case deals with the reconstruction from silhouettes of a smooth convex object, as in Figure 2.4. The projected function is f (y, θ) = 1, y ∈ Γ, θ ∈ S 1 , and the set Γ is an ellipse. Denoting the curvature of Γ by κ, the reconstruction (essentially) satises

I Ω (x) = 1 π 3/2 κ(x) + O(1) √ Ω, if x ∈ Γ, O(1), if x / ∈ Γ.
(2.10)

Due to this model, the ellipse Γ is expected to appear bright in the reconstruction; this is observed in Figure 2.5(a). Up to a factor, the brightness of the ellipse is expected to be the square root of the curvature; this is conrmed in Figure 2.5(b). Lastly, the residuals O(1) and O(1) are observed in Figure 2.5(c), for some x = x 0 ∈ Γ, and x = x 1 / ∈ Γ. √ Ω), the four straight lines which are tangent to the two circles should appear with order O(log Ω), whereas the order is O(1) almost everywhere. Therefore, the circles are expected to be peaks in the reconstruction I Ω . So are the four mentioned tangent lines; these lines are expected artifacts. This is in agreement with the numerical reconstruction of Figure 2.7(a). Furthermore, in Figure 2.6(c) and Figure 2.7(a), we have selected four points, x i , 0 ≤ i ≤ 3, in order to illustrate the shape of the asymptotics. The point x 0 belongs to the rst circle; in the singularities of Figure 2.6(b), x 0 appears independently of the second circle. Then, analogously to 2.10,

I Ω (x 0 ) = f 1 √ κ 1 π 3/2 + O(1)
√ Ω, (2.11) where κ 1 denotes the curvature of the rst circle. The point x 1 belongs also to the rst circle, but appears only once in the singularities of Figure 2.6(b), with a jump f 1 -f 2 ; the associated asymptotics is given by

I Ω (x 1 ) = (f 1 -f 2 ) √ κ 1 2π 3/2 + O(1)
√ Ω.

(2.12)

The point x 2 = (1 -λ)a + λb belongs to a line which is tangent to the rst and the second circle, on a point a and a point b; this line corresponds to two corners in Figure 2.6(b). The asymptotics is

I Ω (x 2 ) = -(f 1 + f 2 ) 4π 2 |a -b|λ(1 -λ) + O(1) log Ω.
(2.13)

Lastly, the point x 3 is neither on the circles, neither on the four tangent lines. The asymptotics is 2.4 Imaging of singularities for a summary of the mathematical background, including some bibliographic references.

I Ω (x 3 ) = O(1).
In this section, we dene a general principle of imaging which extends the principle of reective tomography to generic projections, as in [START_REF]reuristi imging from generi projetionsX kprojetion outside the rnge of the don trnsform[END_REF]. This principle includes incomplete data tomography [START_REF] Borg | enlyzing eonstrution ertiE fts from eritrry snomplete Ery g ht[END_REF] and is analyzed analogously; the deep mathematical support is Theorem A.8, about the singularities of a tomographic reconstruction. We illustrate the principle on a toy model of reective tomography, comprising two Lambertian disks.

A general principle

We formulate a general principle to recover a scene from projections along lines.

Principle (Tomographic reconstruction from generic projections). vet

F ∈ L 1 (S 1 × R) ∩ E (S 1 × R)
e funtion with ompt supportF vet R * denote the kprojetion de(ned in (A.8)D nd let Λ :

E (S 1 × R) → D (S 1 × R) e pseudodi'erentil opertorF essuming tht F (θ, s) represents some projetion long the ry x • θ = sD (θ, s) ∈ S 1 × RD the pf R * ΛF is onsidered s reonstrution of the projeted seneF sf f ∈ E (R 2
) is suitle representtion of the initil seneD R * ΛF is expeted to shre similrities with f F In this generic principle, F (θ, s) can represent any kind of projection with parameter (θ, s). In general, the projection F (θ, s) depends on the geometry of the projected scene, and eventually on physical parameters. It can be given by a measurement or a computation. Eventually, F is known on a compact subset of S 1 × R and is extended by 0. In particular, the principle includes: reective tomography in optics, where F (θ, s) represents a radiant incidance such as (B.5), tomography from silhouettes or from cartoon images, such as the toy models of Subsection 2.3.3, X-ray tomography, where F = Rf is a Radon transform, incomplete data tomography, where F = 1 A Rf is a truncated Radon transform (A S 1 × R).

Concerning the operator Λ, here are some classical choices: in X-ray tomography, with F = Rf and Λ = 1 4π H s ∂ s , one inverts the Radon transform due to (A.12), R * ΛF = f ; in local tomography [START_REF] Ramm | he don trnsform nd lol tomogrphy[END_REF], with F = Rf and Λ = -1 4π ∂ 2 s , one reconstructs R * ΛF = √ -∆f , which has the same wavefront set than f , but sharper singularities; in reective tomography, ones usually considers the FBP from X-ray tomography, Λ = 1 4π H s ∂ s .

In general, a function F (θ, s), (θ, s) ∈ S 1 × R, belongs to the range of the Radon transform R only under exceptional conditions, and we do not have an explicit formula to describe the content of a tomographic reconstruction R * ΛF . Nevertheless, we claim that a FBP R * ΛF , as proposed by the principle, is expected to be relevant.

Mathematical background

We motivate the principle by an analysis of singularities, based on Theorem A.8. For that purpose, we assume that F ∈ L 1 (S 1 × R) ∩ E (S 1 × R) contains some projection of a scene, we assume that f ∈ E (R 2 ) is a suitable representation of this scene, and we x a pseudodierential operator Λ :

E (S 1 × R) → D (S 1 × R).
Firstly, F and the Radon transform Rf ∈ E (S 1 × R) dene two projections of the same scene, along the same rays. Despite F and Rf may not represent the same quantities, there is a hope that they have geometrical similarities. More precisely, the wavefront sets WF F and WF Rf should have a signicant intersection. Using (A. [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF]), the intersection WF F ∩ WF Rf should capture some (θ, s; θ, ŝ) such that (sθ + θ ŝ θ ⊥ ; ŝθ) ∈ WF(f ). This is a precise way of dening similarities between F and Rf , and it explains why F is not so far from the range of R. On the contrary, if (θ, s; θ, ŝ) ∈ WF F \ WF Rf with ŝ = 0, then (sθ + θ ŝ θ ⊥ ; ŝθ) / ∈ WF(f ). Secondly, we deduce from (A.21) that the reconstruction R * ΛF is such that WF(R * ΛF ) ⊂ (sθ + θ ŝ θ ⊥ ; ŝθ), with (θ, s; θ, ŝ) ∈ WF(F ) and ŝ = 0 .

We split the right member into the two following subsets.

The rst subset contains singularities of f captured by F ,

S F,f := (sθ + θ ŝ θ ⊥ ; ŝθ), with (θ, s; θ, ŝ) ∈ WF(F ) ∩ WF Rf, ŝ = 0 ⊂ WF f.
The second subset does not correspond to any singularity of f ,

A F,f := (sθ + θ ŝ θ ⊥ ; ŝθ), with (θ, s; θ, ŝ) ∈ WF(F ) \ WF Rf, ŝ = 0 ⊂ R 4 \ WF f.
As a result, the wavefront set of the reconstruction R * ΛF contains two complementary parts.

The rst one is WF(R * ΛF ) ∩ S F,f ⊂ WF f ; it contains the singularities of the scene f which are successfully recovered by the imaging process (S for success).

The second one is WF(R * ΛF ) ∩ A F,f ⊂ R 4 \ WF f ; the singularities of this set correspond to artifacts of the imaging process, because they are not related to the representation f of the scene (A for artifacts).

Finally, this framework gives a meaning to a FBP R * ΛF , even if F does not belong to the range of the Radon transform. A reconstruction R * ΛF has a wavefront set WF R * ΛF which contains partially the wavefront set of the initial scene, augmented by a set which represents artifacts. Remarkably, the process captures eciently the initial geometry, without modeling the content of F (F could represent a Radon transform, an incomplete Radon transform, a time of ight, a radiant incidance, a geometrical quantity, and so on).

Reective tomography of two Lambertian disks

We present the principle of tomographic reconstruction for a toy model of reective tomography, with occlusions [START_REF]reuristi imging from generi projetionsX kprojetion outside the rnge of the don trnsform[END_REF].

We consider a projection F which models the radiant incidance from two Lambertian disks. The scene K = K 1 ∪ K 2 contains two disjoint disks K 1 and K 2 . They dene Lambertian reectors with constant albedo ρ 1 , ρ 2 > 0. The projection is analogous to the projection of Figure 2.1, with f (y(θ, s), θ) given by a Lambert's cosine law (B.8),

F (θ, s) = ρ(y(θ, s)) θ ⊥ • ν(θ, s), if {x • θ = s} ∩ K = ∅, 0, if {x • θ = s} ∩ K = ∅.
(2.15)

Here, y(θ, s) ∈ ∂K denotes the visible point (iFeF y(θ, s) maximizes x • θ ⊥ on the set {x • θ = s} ∩ K), ν(θ, s) ∈ S 1 denotes the exterior normal vector to ∂K at y(θ, s), the cosine θ ⊥ • ν(θ, s) represents the cosine of an angle of incidence, and ρ(y) ∈ {ρ 1 , ρ 2 } denotes the albedo of the point y ∈ ∂K,

ρ(y) = ρ 1 1 K 1 (y) + ρ 2 1 K 2 (y), y ∈ K = K 1 ∪ K 2 .
(2.16)

Note that the Lambert's model (2.15) coincides with a cartoon projection of the albedo coecient, ρ(y(θ, s)), but weighted by the cosine θ ⊥ • ν(θ, s); the cartoon projection ρ(y(θ, s)) is a piecewise constant function analogous to the cartoon projection of Figure 2.6(b), whereas the weight is a function depending on the geometry of the scene K.

Following the strategy of Subsection 2.4.3, we analyze the singularities of F , which results in a theorem which estimates the singularities of the reconstruction R * F . The approach is especially based on a comparison with the singularities of the Radon transform R1 K ; it identies artifacts due to the occlusions. We refer to Appendix A.A for preliminary results about R1 K . Theorem 2.2. vet K e the union of two vmertin disjoint disksD with ledo (2.16)F vet T K denote the union of the four stright lines whih re tngent to the two disksF henD the reonstrution R * F from the vmert9s osine lw F de(ned in (2.15) is suh tht

WF 1 K ⊂ WF R * F ⊂ WF 1 K ∪ A K , (2.17)
where WF 1 K ontins the irles in ∂K with their norml vetorsD

WF 1 K = {(x; x) ∈ ∂K × R 2 \ {0} : x is norml vetor to ∂K t x ∈ ∂K}, nd A K is de(ned y the lines in T K nd their norml vetorsD A K := {(x; x) ∈ T K × R 2 \ {0} : {y : y • x = x • x} ⊂ T K }.
sn prtiulrD ny singulrity of the initil geometry K is reonstrutedD wheres A K represents set of possile rtifts orresponding to dditionl singulrities loted in

T K F roofF Fix two disjoint disks K i = {x ∈ R 2 : |x -z i | ≤ r i }, with radius r i > 0 and center z i ∈ R 2 , i = 1, 2, such that K = K 1 ∪ K 2 .
If the visible point is on K i , iFeF y(θ, s) ∈ ∂K i , then the normal vector and the cosine of the angle of incidence are given by

ν(θ, s) = s-z i •θ r i θ + [1 -( s-z i •θ r i ) 2 ] 1/2 θ ⊥ , θ ⊥ • ν(θ, s) = [1 -( s-z i •θ r i ) 2 ] 1/2 .
Here, we recognize that the cosine coincides with a Radon transform of a disk (A.22); therefore, the Lambert's model (2.15) satises

F (θ, s) = 1 -1 |s-z 2 •θ|≤r 2 1 (z 2 -z 1 )•θ ⊥ ≥0 ρ 1 2r 1 R[1 K 1 ](θ, s) + 1 -1 |s-z 1 •θ|≤r 1 1 (z 1 -z 2 )•θ ⊥ ≥0 ρ 2 2r 2 R[1 K 2 ](θ, s), (2.18)
where the occlusion of K i by K j (i = j) is encoded by

1 -1 |s-z j •θ|≤r j 1 (z j -z i )•θ ⊥ ≥0 = 0, if the disk K j is visible for the ray (θ, s), 1, otherwise.
emrk 2.3F The expression (2.18) reveals that F looks like the Radon transform R[ ρ 1

2r 1 1 K 1 + ρ 2 2r 2 1 K 2 ],
but with modications which takes into account occlusions. Therefore, this toy model is very closed to a problem of transmission tomography with incomplete data.

The function F is bounded with compact support, so F ∈ L 1 loc (S 1 × R) and the backprojection R * F is dened by (A.5),

R * F ∈ L 1 loc (R 2 ), R * F (x) = S 1 F (θ, x • θ) dθ.
Without loss of generality, we rather analyze the backprojection of the even part

F (θ, s) = 1 2 [F (θ, s) + F (-θ, -s)] ∈ L 1 loc (S 1 × R), (2.19) 
since it satises R * F = R * F . By Theorem A.8 and Remark A.9, we can already claim that WF R * F = WF R * F = {(sθ + θ ŝ θ ⊥ ; ŝθ) : ŝ = 0 and (θ, s; θ, ŝ) ∈ WF F }.

(2.20)

Therefore, we analyze WF F .

We deduce from (2.18) that

F (θ, s) = 1 -1 2 1 |s-z 2 •θ|≤r 2 ρ 1 2r 1 R[1 K 1 ](θ, s) + 1 -1 2 1 |s-z 1 •θ|≤r 1 ρ 2 2r 2 R[1 K 2 ](θ, s).
(2.21)

Here, the products by 1 - 

1 2 1 |s-z i •θ|≤r i , i = 1,
WF F ⊂ WF R1 K 1 ∪ WF R1 K 2 ∪ (sing supp R1 K 1 ∩ sing supp R1 K 2 ) × (R 2 \ {0}) ,
and we deduce from Proposition A.12.(i-ii) that

WF F ⊂ WF R1 K ∪ {(θ, s; θ, ŝ) ∈ (S 1 × R) × (R 2 \ {0}) : {x • θ = s} ⊂ T K }. (2.22)
We prove now that WF R1 K ⊂ WF F .

(2.23)

Firstly, WF R1 K \ (sing supp R1 K 1 ∩ sing supp R1 K 2 ) × (R 2 \ {0}) ⊂ WF F . (2.24)
In other words, the functions F and R1 K i are singular in the same directions, except for a few points. To prove this result, x (θ 0 , s 0 ) ∈ sing supp

R1 K i \ sing supp R1 K j , iFeF |s 0 -z i • θ 0 | = r i and |s 0 -z j • θ 0 | = r j , with 1 ≤ i = j ≤ 2.
Then, it can be seen that

{( θ, ŝ) : (θ 0 , s 0 ; θ, ŝ) ∈ WF F } = {( θ, ŝ) : (θ 0 , s 0 ; θ, ŝ) ∈ WF R1 K i }.
Indeed, if |s 0 -z j • θ 0 | > r j , which is equivalent to (θ 0 , s 0 ) / ∈ supp R1 K j , then F coincides with ρ i 2r i R1 K i in a neighborhood of (θ 0 , s 0 ). On the contrary, if |s 0 -z j • θ 0 | < r j , then (θ 0 , s 0 ) is in the interior of supp R1 K j , but is not in sing supp R1 K j . In this case, F (θ, s) coincides with

1 2 ρ i 2r i R[1 K i ](θ, s) + [1 -1 2 1 |s-z i •θ|≤r i ] ρ j 2r j R[1 K j ](θ, s
) in some neighborhood of (θ 0 , s 0 ), which achieves the proof of (2.24). Secondly, a wavefront set is closed, so (2.23) is a consequence of (2.24).

We conclude with (A. [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF]), (2.23), (2.20), and (2.22), WF 1 K = {(sθ + θ ŝ θ ⊥ ; ŝθ) : ŝ = 0 and (θ, s; θ, ŝ)

∈ WF R1 K } ⊂ WF R * F ⊂ WF 1 K ∪ A K .
Note that the usual tomographic reconstruction R * ΛF satises also

WF R * ΛF ⊂ WF 1 K ∪ A K , Λ := 1 4π H s ∂ s .
(2.25) In Figure 2.8, we display an albedo function ρ such as (2.16), the associated Lambert's cosine law F dened in (2.15), and a tomographic reconstruction R * ΛF . As can be observed, and as expected, the reconstruction contains any singularity of the initial circles ∂K 1 and ∂K 2 ; it contains also elements of A K , on the four lines which are tangent to the two circles.

Indeed, R * ΛF = R * ΛF ,

Reective tomography from cartoon images of two disks

It is instructive to consider the cartoon projection of ρ dened in (2.16). It is analogous to (2.15), but without the geometrical weight,

F (θ, s) = ρ(y(θ, s)), if {x • θ = s} ∩ K = ∅, 0, if {x • θ = s} ∩ K = ∅.
If ρ 1 = ρ 2 , a proof similar with the proof of Theorem 2.2 shows that the estimation (2.17) is still valid. This is in agreement with the geometrical model of Figure 2.6. Note that here, Lambertian projections and cartoon projections result in the same kind of singularities.

On the contrary, if ρ 1 = ρ 2 , the cartoon projection becomes a silhouette. This annihilates some part of the wavefront set. As a consequence, the inclusion WF 1 K ⊂ R * F is no longer valid and some part of the circles is lost in the reconstruction. This case is enlightening. Indeed, a standard approach in computer vision binarizes images in order to get silhouettes at a rst step, and computes some backprojection to get a visual hull in a second step. On this test case, we see that a backprojection (or FBP) directly applied on Lambertian projections can reconstruct more relevant singularities than the visual hull.

We refer to [START_REF]reuristi imging from generi projetionsX kprojetion outside the rnge of the don trnsform[END_REF] for more details about cartoon projections and silhouettes.

An exact Radon formula for a Lambertian reector 2.5.1 Introduction

In this section, we summarize the article [START_REF] Bellet | en ext don formul for vmertin tomogrphy[END_REF]. We restrict our attention to a Lambertian convex reector, as depicted in Figure B.9. We consider purely diuse reection, modeled by the Lambert's cosine law (B.8), in a 2D setup. We exhibit an explicit Radon formula which relates the geometry ∂D ⊂ R 2 , the albedo coecient ρ : ∂D → R, and values of the radiance ρ(y) cos α. This formula is based on the extension of the Radon transform that is described in Section A. [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF]. In particular, it models diuse reection as the Radon transform of a distribution. This is to be contrasted with transmission tomography from Section B.3, where transmission is modeled by the Radon transform of a classical function (described in Section A.3).

Lambert's cosine law with convexity assumption

We specify the model of diuse reection that is considered. It is a parametrization of some Lambert's cosine law, under convexity assumption.

Unless otherwise stipulated, we assume in the reminder of this section: These assumption permit to project the object as in Figure 2.9, and to dene a vmertin projetion parametrized as follows.

(H1) D ⊂ R 2 is a bounded open set with C 1 boundary ∂D, such that the closure D is strictly convex, iFeF ∀x, y ∈ D, ∀t ∈ (0, 1), tx + (1 -t)y ∈ D; ν(y) ∈ S 1
Denition 2.4. Assume (H1-H2). The vmertin projetion of (D, ρ), denoted by L[D, ρ], is a function dened on S 1 × R as follows. For every (θ, s)

∈ S 1 × R, if the line x • θ = s does not intersect D, then L[D, ρ](θ, s) := 0; 2.5. AN EXACT RADON FORMULA FOR A LAMBERTIAN REFLECTOR if the line x • θ = s intersects D, the visile point y(θ, s) is dened as the unique point y ∈ ∂D ∩ {x • θ = s} such that ν(y) • θ ⊥ ≥ 0, and L[D, ρ](θ, s) := ρ(y(θ, s)) ν(y(θ, s)) • θ ⊥ .

Diuse reection as the Radon transform of a distribution

The Lambertian projection is related to the Radon transform of a distribution as follows.

Theorem 2.5. essume @rIErPAF vet L[D, ρ] denote the vmertin projetion of he(nition PFRD nd let 1

ρ dµ ∈ E (R 2 ) e the don mesure de(ned y 1 ρ dµ, ψ = ∂D ψ(y) ρ(y) dµ(y), ψ ∈ E(R 2 ). henD R 1 ρ dµ = 1 L[D,ρ](θ,s)>0 L[D, ρ](θ, s) + 1 L[D,ρ](θ,s)>0 L[D, ρ](-θ, -s) , (2.26) 
where R :

E (R 2 ) → E (S 1 × R) denotes the extended don trnsform (A.7)D nd the right memer tkes the vlue 0 if L[D, ρ](θ, s) = 0 @y onventionAF roofF The function 1 ρ is bounded on ∂D, so the Radon measure 1 ρ dµ ∈ E (R 2 ) is dened. Then, the Radon transform of 1 ρ dµ is a distribution in E (S 1 × R) dened by (A.7); it is such that R 1 ρ dµ , φ = 1 ρ dµ, R * φ = ∂D R * φ(y) ρ(y) dµ(y), φ ∈ E(S 1 × R).
Here, for any test function φ

∈ E(S 1 × R), the smooth function R * φ ∈ E(R 2 ) is the backprojection dened in (A.5). By Fubini's theorem, we obtain that R 1 ρ dµ , φ = S 1 ∂D φ(θ, y • θ) ρ(y) dµ(y)dθ.
In this expression, we can prove with [3, Lemma 3] that for any θ ∈ S 1 , the inner integral satises

∂D φ(θ, y • θ) ρ(y) dµ = S(θ) φ(θ, s) ρ(y(θ, s))ν(y(θ, s)) • θ ⊥ + φ(θ, s) ρ(y(-θ, -s))ν(y(-θ, -s)) • (-θ) ⊥ ds,
where S(θ) = {x • θ, x ∈ D} ⊂ R represents a projection of D to a line oriented by θ, as depicted in Figure 2.9. Therefore,

R 1 ρ dµ , φ = S 1 R φ(θ, s) 1 s∈S(θ) L[D, ρ](θ, s) + 1 s∈S(θ) L[D, ρ](-θ, -s) dsdθ.
This computation shows that the compactly supported (non-negative) function

1 s∈S(θ) L[D, ρ](θ, s) + 1 s∈S(θ) L[D, ρ](-θ, -s) , is in L 1 (S 1 × R) and coincides as a distribution with R 1 ρ dµ ∈ E (S 1 × R). To conclude the proof, we remark that 1 s∈S(θ) = 1 L[D,ρ](θ,s)>0 .
We can deduce an inversion formula which expresses some representation of the scene in term of its Lambertian projection. It is a ltered backprojection extended to distributions, as follows.

Corollary 2.6. essume @rIErPAF henD the don mesure 1

ρ dµ ∈ E (R 2 ) is uniquely determined y the vmertin projetion L[D, ρ]Y moreoverD it stis(es the inversion formul 1 ρ dµ = 2R * Λ 1 L[D,ρ](θ,s)>0 L[D, ρ](θ, s) . rereD the dul trnsform R * : D (S 1 × R) → D (R 2 ) is de(ned in (A.8)D nd the opertor Λ : E (S 1 × R) → D (S 1 × R)
is the one from the extended inversion formul (A.12)F

Discussion

Theorem 2.5 provides a way to extract a Radon transform from a Lambert's cosine law ρ(y) cos α, for a Lambertian convex reector (D, ρ) in two dimensions. The formula (2.26) exhibits an appropriate pre-processing to obtain an element in the range of the transform R from the cosine law L[D, ρ]: L[D, ρ] must be inverted, and must be made symmetrical in a second step. In this case, the relevant mathematical object to represent the scene is the Radon measure dµ ρ . This object contains simultaneously the geometry and the physics of the problem. The support of this Radon measure is exactly the boundary ∂D of the reector, while the density is directly the inverse of the albedo ρ.

Conclusion

We have enlightened various mathematical aspects of a principle dealing with the tomographic reconstruction from projections outside the range of the Radon transform, which includes reective tomography. Intuitively, for discontinuous projections, such a method looks like a contour detection based on coherent contrasts; this is conrmed by asymptotic models. More rigorously, the microlocal analysis of the Radon transform provides a deep insight: the principle enters into the framework of imaging by the means of a Fourier Integral Operator. The singularities of the reconstruction correspond to singularities of the data. In reective tomography, they are expected to contain partially the geometry of the initial scene, with artifacts resulting from the occultations; on some toy models, we have seen that artifacts appear along lines corresponding to corners in the dataset.

Lastly, we have also found an exact Radon formula to support reective tomography in a canonical framework dealing with a model of pure diuse reection in 2D.

Chapter 3

Unconventional algorithms in reective tomography

Introduction

Reective tomography deals with the reconstruction of a scene from VIS-NIR images, using algorithms from X-ray tomography. So far, we have especially encountered the FBP algorithm, or the FDK algorithm, in the case of a parallel scan, or a circular cone-beam scan. In general, the surfaces of the original scene are extracted from a reconstruction computed on a whole grid of pixels, or voxels. Two natural questions arise.

The rst question concerns the computational eciency. A whole reconstruction contains many useless voxels. There is a desire to compute only the voxels in a neighborhood of the wanted surfaces.

A multiresolution algorithm dedicated to such a problem has been proposed in [START_REF] Bellet | wultiresolution greedy lgorithm dedited to re)etive tomogrphy[END_REF]; it takes benet from the asymptotic models of Section 2.3. This algorithm, which is a lead to increase eciency, is presented in the rst part of this chapter.

The second question concerns the geometry of acquisition. We would like algorithms which tolerate general situations, where the calibration parameters of the camera can be arbitrary. This could, for instance, tolerate the merge of datasets from several distinct cameras. That is the reason why an algebraic technique based on the X-ray transform and Kaczmarz-type iterations has been proposed in [START_REF]plexile lgeri tehnique for multiview reonstrutionX inrementl lerning in re)etive tomogrphy[END_REF]. This method is an unconventional way of tackling the problem of multi-view reconstruction; it is summarized and tested in the second part of the chapter.

Multiresolution greedy algorithm 3.2.1 Introduction

Assume that an imaging functional J Ω : R 2 → R is given, where Ω > 0 represents a resolution parameter, and assume that J Ω has the following asymptotic behavior, when Ω → ∞,

J Ω (x) = O(1), x ∈ S, O(1), x / ∈ S, (3.1) 
where S ⊂ R 2 is a wanted set. Considering such an imaging functional is directly motivated by Section 2.3, where some asymptotic models of reective tomography are discussed. In this case,

J Ω (x) = Ω -1/2 R * [F ψ Ω ](x) is an adequate normalization of I Ω dened in (2.8
), and S corresponds to a portion of surfaces to be reconstructed.

A natural way to estimate the set S is the following. The evaluation of J Ω on a regular cartesian grid, with step associated to the resolution Ω, provides a pixelized image. Due to (3.1), S is expected to appear under the form of bright pixels. Therefore, S is estimated by an extraction of the brightest pixels. In this procedure, J Ω is computed on a whole grid, even if the wanted set S is very small. Therefore, limiting the computational eort for the pixels far from the unknown set S is a desire to increase eciency. This problem is tackled in [START_REF] Bellet | wultiresolution greedy lgorithm dedited to re)etive tomogrphy[END_REF] by a multiresolution algorithm based on the asymptotic behavior (3.1). In this section, we describe the principle of this multiresolution algorithm, and we propose numerical experiments on toy models. We refer to the original text [START_REF] Bellet | wultiresolution greedy lgorithm dedited to re)etive tomogrphy[END_REF] for more details.

Principle

We consider (J Ω , S) satisfying (3.1). The set S is unknown but we assume that we can evaluate J ω (x), for any resolution 0 < ω ≤ Ω, where the maximal resolution Ω > 0 is xed. In this case, we aim at computing an estimation S of S, with ne pixels associated to the maximal resolution Ω. In order to clarify expectations, we x an area A for the wanted estimation S of S. To reach this goal without computing J Ω on a whole ne grid, we propose the algorithm described on this page, and illustrated in Figure 3.1. Basically, the method increases iteratively the resolution of bright pixels.

Multiresolution greedy algorithm, for (J Ω , S) satisfying (3.1). Input. Area A for the wanted estimation S of S, maximal resolution Ω, coarse resolution

Ω 0 = 2 -k Ω.
Initialization. (a) Evaluate J Ω 0 on a coarse grid of pixels, associated to the resolution Ω 0 . (b) Estimate S by a set S of area A, obtained by selection of the brightest pixels.

Iterations.

While the estimation S contains pixels with resolution < Ω, (a) renement: in S , double the resolution of any pixel with resolution < Ω, iFeF, if ω < Ω is the resolution of a pixel, replace the pixel by four sub-pixels computed with J 2ω ;

(b) update the estimation S of S: select any pixel with resolution Ω, and the brightest pixels with resolution < Ω, so that the total area of S is A.

Output. Estimation of S by a set S of pixels with resolution Ω, and with total area A.

The initialization computes a coarse image J Ω 0 (x), where x scans a coarse grid; the mesh size is associated to a given initial resolution Ω 0 = 2 -k Ω. Then we iteratively rene some pixels. Due to (3.1), the bright pixels are expected to belong to S, whereas the other pixels are expected to be noise. Therefore, we select a set of bright pixels. We divide them into four (sub-)pixels. For all of the new pixels, the imaging functional J ω is computed with an adequate value of ω: from a pixel to a sub-pixel, ω is doubled. Then we iterate. Obviously, this method is multiresolution, because the resolution parameter ω varies between Ω 0 and Ω.

Concerning the pixels to be rened, each iteration renes the brightest pixels, among the pixels whose resolution is not maximal, and we constrain the total area: adding these pixels with the pixels at maximal resolution (already computed) must ll approximately an area A. In this way, the method is a greedy algorithm to compute a set S of ne pixels, with prescribed area A, and whose accumulated intensity is maximal. See Figure 3.1, where A represents the area of the 12 nest pixels.

Concerning the area A to be lled, it is dened in practice as a percentage α of the area of a full reconstruction. Eventually, after convergence, it is possible to increase the value of A (or α) and to continue the iterations.

Comments

According to the asymptotic assumption (3.1), rening the brightest pixels should especially rene the O(1), so the method is expected to focus on S. Also, the pixels should have the same order of magnitude near S, even if they correspond to several values of ω. Furthermore, if a pixel is not closed to S but is selected for renement (flse positive), it is expected that the corresponding brightness decreases, due to the behavior in O(1); somehow, rening a noisy pixel reduces the associated noise, which should avoid further renement at the corresponding position.

Note that the method does not eliminate pixels during the process. The algorithm decides itself which zones must be rened, and it has a desired behavior for noise (false positive mentioned above).

For any computed pixel, there may exist a future iteration which renes it. This has two advantages. This avoids eliminating prematurely pixels that should be preserved. Secondly, if the aimed area A corresponds to the whole ne grid, then the algorithm converges exactly to J Ω evaluated on the whole ne grid.

Numerical results for cartoon projections

We perform numerical experiments concerning the FBP from cartoon projections. Analogously to 

J ω (x) = ω -1/2 R * [F ψ ω ](x), ω ≤ Ω, (3.2)
where Ω corresponds to the Shannon-Nyquist frequency associated to the discretization in s; due to(2.11)-(2.14), J Ω is expected to satisfy (3.1). The corresponding multiresolution algorithm has been implemented in Fortran, and is executed on a workstation HP Z820, processors Intel Xeon E5-2609, 2.40 GHz. First, we execute the algorithm for several sizes of the initial grid. The area A is dened as α = 1%

of the area of a whole reconstruction. The computational times are reported in Table 3.1, and the reconstructions are displayed in Figure 3.3. The rst main observation is that the multiresolution greedy algorithm succeeds in extracting the scene with an improvement of the computational time.

The second one is that dividing by two or by four the full resolution for the initialization achieves a good compromise between speed and quality. Second, we consider an initial size 128 × 128, and we execute the algorithm for various areas A, dened by various percentages α = 0.32 • 2 β of a total area. The extracted reconstructions are displayed in Figure 3.4, and the computational times are reported in Table 3.2. As expected with (2.11)-(2.14), the multiresolution process extracts in priority the circles, then the artifacts, and then the noise. Here, the values α = 1%, 2%, realize a good compromise to get eciently a complete reconstruction of the circles without artifacts; the reconstruction has missing parts for smaller values of α, and captures artifacts for larger values. Also, the computational time signicantly increases for larger values of α, but is not really reduced for smaller values (some costs are incompressible).

Rate of pixels α (%) 0.125 0.25 

Numerical test of a 3D extension

The multiresolution greedy algorithm based on the FBP (3.2) has been extended in 3D for some orthographic 1 scan [START_REF] Bellet | wultiresolution greedy lgorithm dedited to re)etive tomogrphy[END_REF]. Here, we present some numerical reconstructions from noisy Gouraud images.

The dataset is obtained as follows, in Matlab. Analogously to Subsection 1.8.1 and Figure 1.9, we start with a series F of 805 noisy images 512 × 512 of the Stanford Bunny; on these images, the surface contains a pattern projected with the Gouraud model of Matlab. Next, exactly as in Subsection 1.8.4, we add a speckle noise (1.6), with σ = 1 for the magnitude of the noise. A few images of the resulting sequence are displayed in Figure 3.5. Reconstructing the surface with such a level of noise is quite challenging.

We compute two reconstructions from the noisy dataset, using a Fortran implementation of the 3D multiresolution greedy algorithm, on a workstation HP Z820, processors Intel Xeon E5-2609, 2.40 GHz. First, we compute a reference reconstruction on a 3D grid of 512 × 512 × 512 voxels, using one FBP per horizontal cross-section. Then we extract 1512 3 voxels (the brigthest ones). Second, we use the multiresolution greedy algorithm, even if, strictly speaking, the asymptotic behavior of J Ω has not been studied for the Gouraud model. The size of the initial grid is 64 × 64 × 512 (the vertical step is not reduced), and the wanted volume corresponds to the volume of 1512 3 voxels.

In both cases, three orthogonal MIPs of the obtained voxels are displayed in Figure 3.6. The reconstruction of the greedy method looks less diuse. In fact, the multiresolution method starts from a regularized reconstruction, since it contains a low-pass lter related to the initial resolution; therefore, the nal reconstruction is computed as a renement of a cleaned reconstruction. Concerning the computational time, 8760 seconds for the reference versus 237 seconds for the greedy method; the ratio of time is about 37.

Flexible algebraic reconstruction 3.3.1 Introduction

This section deals with tomography for 3D multi-view reconstruction from 2D images in VIS-NIR optics. The images are assumed to be calibrated: the intrinsic and extrinsic matrices of the cameras, in (B.1), are assumed to be known, but they can be arbitrary. This last property is the main dierence with the experiments considered so far, where the geometry of acquisition was assumed to be a parallel scan, or a circular cone beam scan (after an eventual pre-processing [START_REF] Berginc | yptroni system nd method dedited to identi(tion for formulting threeEdimensionl imges[END_REF]). As a result, it is not possible anymore to use an analytical formula such as a FBP or FDK formula.

In X-ray tomography, projections for a general geometry of acquisition can be inverted by an Algebraic Reconstruction Technique (ART) with Kaczmarz iterations, as described in Section A.7.

Such an approach, based on linear algebra, is exible and tolerates any setting for the rays of projection; the main requirement is the knowledge of the rays. Therefore, the principle of reective tomography suggests to use such a solver for calibrated VIS-NIR images, since the rays are known in this case. This has been achieved in [START_REF]plexile lgeri tehnique for multiview reonstrutionX inrementl lerning in re)etive tomogrphy[END_REF], with a Kaczmarz-type method based on the X-ray transform. In this section, we present the principle of this method, and we apply this principle on real photographs. We refer to the original text [START_REF]plexile lgeri tehnique for multiview reonstrutionX inrementl lerning in re)etive tomogrphy[END_REF] for a more comprehensive study and tests on CCD images extracted from the Middlebury datasets [START_REF] Seitz | wultiEview stereo evlution we pge[END_REF][START_REF] Seitz | e omprison nd evlution of multiEview stereo reonstrution lgorithms[END_REF].

Algebraic iterative solver

Consider a collection of N calibrated 2D images, b j , 1 ≤ j ≤ N . For any image b j , the pixels values are arranged in a vector, so that b j ∈ R m j , where m j denotes the total number of pixels; for any pixel 1 ≤ p ≤ m j , the associated ray of projection is a known straight line, denoted by L p j .

1 The considered orthographic scan, with parallel rays, is a simplication of a circular cone-beam scan for a camera in far eld. We aim at computing some 3D reconstruction of the scene which appears on the images b j . Therefore, we introduce a 3D grid of n voxels, and we look for a reconstruction dened on this grid. Equivalently, we introduce basis functions φ i , 1 ≤ i ≤ n, associated to the voxels, so that φ i denotes the characteristic function of the voxel numbered i; we look for a reconstruction φ ∈ span{φ i , 1 ≤ i ≤ n}. We denote by x = (x i ) 1≤i≤n ∈ R n the values of φ on the voxels, iFeF φ = n i=1 x i φ i . Following the principle of reective tomography, we propose to model the images b j , 1 ≤ j ≤ N , by the means of the X-ray transform dened in (B.11). For that purpose, for any 1 ≤ j ≤ N , we dene A j ∈ R m j ×n as the matrix of the X-ray transform, in the basis φ i , 1 ≤ i ≤ n, and for the rays L p j associated to the image b j ,

A j := L p j φ i d 1≤p≤m j , 1≤i≤n
;

the element at position (p, i) of A j corresponds to the length (in [m]) of the intersection of the voxel i with the ray associated to the pixel p of the image b j . Ideally, we would like to nd a reconstruction

φ = i x i φ i such that A j x = b j , 1 ≤ j ≤ N,
which would mean that each image b j is a cone beam radiography of φ. Note that here, there is no guarantee that this linear system is compatible; in particular, we rather look for some generalized solution.

We recognize a problem decomposed into block of rows as in (A.17), which suggests to use Kaczmarz iterations described on page 68. Also, for safety reasons, we slightly regularize the recurrence relation (A.18). Therefore, we dene one cycle of iterations by

x (0) ∈ R n , x (j) := x (j-1) + ωA * j (A j A * j + σI) -1 (b j -A j x (j-1) ), 1 ≤ j ≤ N ; (3.3) 
with σ > 0 and ω > 0. Then, the iterate x (N ) is used to initialize a second cycle of iterations (x (0) := x (N ) ). And so on.

The recurrence relation can be explained as follows. At step j, x (j-1) represents a 3D model of the scene, deduced from x (0) and the calibrated images b i , i ≤ j -1. We update this model using a constraint based on the calibrated image b j . In the case ω = 1, the new model x (j) is dened as the unique solution of

min x∈R n A j x -b j 2 + σ x -x (j-1) 2 ; (3.4)
therefore, the X-ray transform of φ (j) = i x (j) i φ i must reproduce the data b j (as much as possible), with x (j) close to the previous model x (j-1) . If ω = 1, x (j) is dened as a barycenter between the solution of (3.4) and x (j-1) .

In practice, the images b j are arranged in a randomized order. We start (3.3) with x (0) = 0. For any iteration j, the matrices A j and A * j are not stored; we rather evaluate products matrix-vector, by ray tracing. The vectors (A j A * j + σI) -1 (b j -A j x (j-1) ) are computed approximately, with a few iterations of the conjugate gradient method. Usually, a few cycles of iteration are enough to get satisfactory results; numerical convergence can be checked by a control of the Root Mean Square Error,

  1 N j=1 m j N j=1 A j x -b j 2   1/2
[pixel intensity],

(RMSE) at the end of each cycle of iteration.

Home-made scanner: reconstruction from passive digital photographs

We realize an experiment from scratch to test the algebraic technique (3.3) on our own images. is the diagonal of the box. On a laptop Dell Precision M4400, processor Intel Core 2 Duo T9600, 2.80 GHz, the Fortran code mentioned above returns the reconstruction in 1220 seconds. The initial RMSE, with x = x (0) is equal to 67.2; the nal RMSE, with x = x (72) , is equal to 33.8. In Figure 3.8, six initial calibrated views are visually compared with MIP re-projections of the reconstruction x (72) ; here, the reconstruction has been restricted to the box [-110, 160]

× [-300, -30] × [-170, 100] [mm],
and a lower threshold xed to 700 has been applied. In Figure 3.9, we display a circular cone-beam scan of the reconstruction x (72) ; here again, thresholded MIPs of a box are used. As observed, the method succeeds in catching automatically some features and details.

Cross validation

The algebraic method (3.3) can be understood as online machine learning from calibrated images in optics [START_REF]plexile lgeri tehnique for multiview reonstrutionX inrementl lerning in re)etive tomogrphy[END_REF]. This suggests to evaluate the quality of a reconstruction by means of a generalization error [START_REF] Azencott | sntrodution u whine verning[END_REF]. That is the reason why we perform a four-fold cross-validation, as follows.

The dataset with 72 images is randomly divided into four subsets with 18 images. We select one of these subsets. We consider it as a test set, while the three other ones dene a trining set. We compute a reconstruction exactly as before, but from the training set only (54 images).

Then, we evaluate the quality of the reconstruction with a RMSE computed on the training set, The main conclusion here is that the RMSE does not strongly depend on the training set. Three-dimensional (3D) reective tomography reconstructs a motionless 3D scene, from several calibrated bi-dimensional (2D) optical images injected into a Radon-kind inversion. For N calibrated images, denoted by b j ∈ R m j , 1 ≤ j ≤ N , the reconstruction on a grid of n voxels, denoted by x ∈ R n , is computed such that

A j x ≈ b j , 1 ≤ j ≤ N, (4.1) 
where the matrix A j ∈ R m j ×n represents the X-ray transform along the m j rays associated to the m j pixels of the image b j . The reconstruction is then rendered by suitable 3D visualization methods. At a rst sight, reective tomography is an empirical method, because the data

[b j ] 1≤j≤N ∈ R m 1 +•••+m N is not in the range of the transform [A j ] 1≤j≤N ∈ R (m 1 +•••+m N )×n . But the principle
has been further motivated by mathematical arguments. We have proved how the Radon transform extended to distributions models pure diuse reection from a Lambert's cosine law on a 2D convex reector. And more generally, the microlocal analysis of the Radon transform reveals that the singularities of the reconstruction may be expected to be relevant (up to artifacts).

Concerning the practice, a variety of numerical experiments, on real or synthetic images, attests to the relevance of the approach. It reveals that the method automatically captures the geometry of the initial scene, even if the scene has occlusions, or if the dataset is corrupted by noise. Various solvers have been tested; they include solvers based on analytical inversion formulas such as the FDK algorithm implemented on a Graphics Processing Unit, and an iterative algebraic method based on a block Kaczmarz's method. Various rendering methods have been investigated, including the Maximum Intensity Projection (MIP), and the extraction of point clouds.

The rest of the chapter describes some perspectives.

Learning dynamical geometry in vision 4.2.1 Reective tomography and articial intelligence

In a modern langage, reective tomography learns the geometry of a 3D scene from multiple-view projections in optics. The topic is related to elds of active research such as machine learning and vision, which suggests going further.

Reective tomography such as (4.1) proceeds as follows. A reconstruction step captures relevant singularities, by means of a Fourier Integral Operator that is tuned for a projection geometry. The reconstruction is rendered by the MIP, so that the global procedure predicts novel views of the initial scene. In this case, the MIP appears to compress the 3D reconstruction onto suitable 2D images and point clouds. This approach has some similarities with neural networks, since it injects some non-physical model into a non-linear compression method for prediction purposes. This suggests optimizing the reconstruction algorithm, or the matrices A j , in order to improve the nal rendering (if possible). One may also wonder what learning approach could be inspired, or initialized, by reective tomography. Such a topic is related to recent works on imaging and machine learning. Indeed, digital wavefront sets and limited-angle tomography based on deep learning have been introduced in [START_REF] Andrade-Loarca | heep mirolol reE onstrution for limitedEngle tomogrphy[END_REF][START_REF] Andrade-Loarca | ixtrtion of higitl vefront ets sing epplied rrmoni enlysis nd heep xeurl xetworks[END_REF], whereas the MIP has been introduced in deep learning algorithms for imaging in [START_REF] Wang | tointesselxetX toint olumeErojetion gonvolutionl imedding xetworks for Qh gereE rovsulr egmenttion[END_REF][START_REF]gExetX heep olumeEgomposition xetworks for egmenttion nd isuliztion of righly prse nd xoisy smge ht[END_REF]. Combining or tuning such approaches could be a rst step to mimic reective tomography in deep learning.

Image calibration for multiple-view reconstruction

Camera calibration is an important subject in multiple-view geometry: the location and the orientation of the used cameras, and more generally the rays of projection, must be suitably approximated.

For instance, the matrix A j in (4.1) is based on the rays corresponding to the image b j . Classical methods based on correspondences between features are available [START_REF] Hartley | wultiple iew qeometry in gomputer ision[END_REF][START_REF] Ma | en invittion to QEh ision[END_REF], whereas modern approaches based on deep learning are still being developed [START_REF] Bazin | gmer lirtion nd pE prtus sed on deep lerning[END_REF]. In this thesis, camera calibration has been almost skiped. So, a natural question concerns the use, or the design, of a state-of-the-art method, in the specic framework of reective tomography.

Four-dimensional reconstruction of a dynamical 3D scene in optics

In practical applications, a scene to be imaged is often dynamical. This includes the case of deformable materials, such as a patient who is breathing in the eld of medical imaging; this also includes moving rigid solids, such as a moving car in road safety. Furthermore, the subject meets the problem of image calibration: in a coordinate system attached to a moving camera, the location and the orientation of the camera become known and xed, while the scene appears as a moving one.

Taking into account the motion is a current hot subject; we refer for instance to [START_REF]imeEdependent rolems in smging nd rmeter sdenti(tion[END_REF] for a recent book about various topics in time-dependant inverse problems, and to [START_REF] Odille | wotionEorreted reonstrution[END_REF] for motion correction in Magnetic Resonance Imaging. This suggests studying reective tomography in the case of a dynamical scene, in order to recover the geometry and the motion. In this case, the problem (4.1) becomes

A j (t) x(t) = b j (t), 1 ≤ j ≤ N, (4.2)
where b j (t) is the image of the camera j at time t, A j (t) is the matrix of the associated X-ray transform, and the unknown x(t) represents the scene a time t. Note that the case N = 1 deals with a single moving camera that observes a dynamical scene.

A naive approach consists in recording videos of the scene, with several cameras which are xed, calibrated and synchronized; in this case, a 3D reconstruction can be computed at every time step.

To go further, the redundancies and the dierences between the several time steps must be taken into account. Finally, the ultimate goal (or dream) would consist in considering moving cameras which are neither calibrated nor synchronized (in this case, t and A j (t) are somehow unknown).

New Radon-kind transforms in radiometry

Over the past decade, there has been a considerable interest in developing new imaging modalities based on scattering of light and extensions of the Radon transform, such as Compton scattering tomography [START_REF] Nguyen | snversion of new irulrEr don trnsform for gompton sttering tomogrphy[END_REF][START_REF] Rigaud | Qh gompton sttering imging nd ontour reonstrution for lss of don trnsforms[END_REF] and Bragg scattering tomography [START_REF] Webber | wirolol enlysis of qenerlized don rnsforms from ttering omogrphy[END_REF]. Reective tomography for a Lambertian reector, as described by Theorem 2.5, enters in this framework, since it considers the Radon transform extended to distributions for modeling diuse reection. This result potentially opens new perspectives concerning optical tomographic imaging in a more general context.

A natural question concerns the extension to more general models in radiometry. For instance, studying the following question is of particular interest: given a set of 2D optical images of a 3D scene with occlusions, is there a distribution supported by surfaces, and some Radon-like transform (or X-ray transform), which can model some transformation of the optical images? This topic is related to image formation in vision; it has its own mathematical interest, and may open new practical applications in vision, in optics, or in any eld dealing with radiation. This could potentially lead to novel reconstruction algorithms of physical properties such as the albedo.

Maximum Intensity Projection in Convolutional Neural Networks

The MIP appears to be an ecient way of compressing some 3D volumes; this has motivated the patent [START_REF] Berechet | wethod for disrimiE ntion nd identi(tion of ojets of sene y QEh imging[END_REF], and recent deep learning methods [START_REF] Wang | tointesselxetX toint olumeErojetion gonvolutionl imedding xetworks for Qh gereE rovsulr egmenttion[END_REF][START_REF]gExetX heep olumeEgomposition xetworks for egmenttion nd isuliztion of righly prse nd xoisy smge ht[END_REF]. Some parallel can be drawn with mxE pooling in Convolutional Neural Networks (in CNN), which downsamples the input by selection of the maximum value over patches. The MIP may be an alternative or complementary way for downsampling/compressing. Further investigations may be needed to develop extensively such a principle.

Appendix A

Radon transform

A.1 Introduction

The Radon transform emerged at the beginning of the XXth century in pioneering works of Lorentz, Funk and Radon [START_REF] Deans | he don rnsform nd ome of sts epplitions[END_REF], and has been extensively studied since the advent of computed tomography in the 1970s. By denition, the Radon transform R integrates a reasonable function f over straight lines in a plane,

Rf (θ, s) = x•θ=s f (x) d = R f (sθ + tθ ⊥ ) dt, θ ∈ S 1 , s ∈ R. (A.1)
Here, denotes the length measure on the line of integration {x ∈ R 2 : x • θ = s}; this line is orthogonal to the vector θ ∈ S 1 , with signed distance s ∈ R from the origin, and oriented by θ ⊥ ∈ S 1 .

In this chapter, we summarize some classical results about the Radon transform (A.1), since they lay the foundation for the works presented in this thesis. We present the Radon transform as a continuous linear map on various classes of functions, and we extend it on distributions with compact support. We recall an exact inversion formula, and its practical implementation by the ltered backprojection algorithm. We describe the principle of the algebraic reconstruction technique, which has the advantage of exibility. Then, we mention microlocal properties, including correspondences of singularities between a distribution and its Radon transform. To nish with, we apply such properties in the specic case of characteristic functions supported by disks.

A.2 Notation

The Fourier transform on R n , with n = 1, 2 is denoted by F n , its inverse is denoted by F -1 n ; they are normalized as follows:

F 1 g(σ) = R g(s)e -iσs ds, F -1 1 ĝ(s) = 1 2π R ĝ(σ)e iσs dσ, g, ĝ ∈ L 1 (R), (A.2) F 2 f (ξ) = R 2 f (x)e -ix•ξ dξ, F -1 2 f (x) = 1 4π 2 R 2 f (ξ)e ix•ξ dξ, f, f ∈ L 1 (R 2 ). (A.3)
The notation for test function spaces and their dual is usual: D for C ∞ functions with compact support, S for the Schwartz space of rapidly decreasing C ∞ functions, E for C ∞ functions, E for distributions with compact support, S for tempered distributions, D for distributions.

For any θ = (θ 1 , θ 2 ) ∈ S 1 , we x θ ⊥ := (θ 2 , -θ 1 ) ∈ S 1 .

A.3 Radon transform for functions

Several fundamental properties can be deduced from Fubini's theorem. In particular, the Radon transform R in (A.1) denes a continuous linear map R : 

L 1 (R 2 ) → L 1 (S
F 1 [Rf (θ, •)](σ) = R Rf (θ, s)e -isσ ds = R 2 f (x)e -iσθ•x dx = F 2 [f ](σθ), σ ∈ R. roofF Fix σ ∈ R. By denition, F 2 [f ](σθ) = R 2 f (x)e -iσθ•x dx. Therefore, by Fubini's theorem, with x = sθ + tθ ⊥ , F 2 [f ](σθ) = R R f (sθ + tθ ⊥ )e -iσs dtds = R Rf (θ, s)e -iσs ds = F 1 [Rf (θ, •)](σ), with s ∈ R → Rf (θ, s) = R f (sθ + tθ ⊥ )dt ∈ L 1 (R).
Another consequence of Fubini's theorem is the duality relation [58, Chap. I, Lemma 5.1]

S 1 ×R x•θ=s f (x)d g(θ, s) dθds = R 2 f (x) S 1 g(θ, x • θ)dθ dx, (A.4) valid for several classes of functions; in particular, it is true if f ∈ L 1 (R 2 ) is compactly supported and g ∈ E(S 1 × R), or if f ∈ D(R 2 ) and g ∈ L 1 loc (S 1 × R).
The duality relation motivates the introduction of a kprojetion operator R * , which integrates a line function over lines through a xed x ∈ R 2 : R * : Rf,

L 1 loc (S 1 × R) → L 1 loc (R 2 ), R * g(x) = S 1 g(θ, x • θ) dθ.
E(S 1 × R) → E(R 2 )D whih is the trnspose of RD i.e. S 1 ×R Rf (θ, s)g(θ, s) dθds = R 2 f (x)R * g(x) dx, f ∈ D(R 2 ), g ∈ E(S 1 × R).
g := f, R * g , f ∈ E (R 2 ), g ∈ E(S 1 × R), (A.7) R * g, f := g, Rf , g ∈ D (S 1 × R), f ∈ D(R 2 ), (A.8)
denes the unique continuous linear extension R :

E (R 2 ) → E (S 1 × R) of the Radon transform R : D(R 2 ) → D(S 1 × R)
, and the unique continuous linear extension R * :

D (S 1 × R) → D (R 2 ) of the backprojection R * : E(S 1 × R) → E(R 2 ).
Note that for any function f ∈ L 1 (R 2 ) with compact support, identied with a distribution f ∈ E (R 2 ), the Radon transform Rf ∈ E (S 1 × R) coincides with the integrable function dened by (A.1), because the duality relation (A.4) is valid for any g ∈ E(S 1 × R). Analogously, for any function g ∈ L 1 loc (S 1 × R), identied with a distribution g ∈ D (S 1 × R), the backprojection R * g ∈ D (R 2 ) coincides with the locally integrable function dened in (A.5), because (A.4) is valid for any f ∈ D(R 2 ).

A.5 Inversion of the Radon transform

The following result provides an inversion formula to deduce a function f ∈ D(R 2 ) from the Radon transform Rf ; it is a consequence of the Fourier slice theorem. See for instance [START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF]Theorem 2.6] (where the formula is given for f ∈ S(R 2 )), [START_REF]en introdution to Ery tomogrphy nd don trnsforms[END_REF]Theorem 2.5].

Theorem A.4 (Radon inversion formula). he don trnsform n e inverted y the formul

f = R * ΛRf, with Λ := 1 4π H s ∂ s , f ∈ D(R 2 ); (A.9)
hereD H s denotes the rilert trnsform with respet to sD de(ned y the guhy prinipl vlue

H : D(R) → E(R), Hg(s) = 1 π p. v. R g(t) s -t dt.
(A.10)

Note that the operator Λ denes a continuous linear map Λ :

D(S 1 × R) → E(S 1 × R) such that Λg(θ, s) = 1 4π F -1 1 {|σ|F 1 [g(θ, •)](σ)} = 1 8π 2 R R e -iσ(t-s) |σ|g(θ, t) dtdσ, g ∈ D(S 1 × R). (A.11)
The inversion formula extends to distributions [58, Chap. I, Theorem 5.5].

Theorem A.5. he inversion formul (A.9) is vlid in

E (R 2 )D i.e. f = R * ΛRf, f ∈ E (R 2 ), (A.12)
where Λ :

E (S 1 × R) → D (S 1 × R) is the ontinuous liner extension of Λ : D(S 1 × R) → E(S 1 × R)D de(ned y Λg, φ := g, Λφ D g ∈ E (S 1 × R), φ ∈ D(S 1 × R)F

A.6 Filtered backprojection algorithm

The ltered backprojection algorithm is the most important algorithm in tomography [START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF]Chap. 5].

It is a practical implementation of the Radon formula (A.9), with a regularization performed by a low-pass lter. More precisely, the operator Λ, satisfying (9.3), is replaced by a convolution with a smooth lter ψ Ω such that

ψ Ω (s) = 1 4π F -1 1 {|σ| ĥΩ (σ)}(s) = 1 8π 2 Ω -Ω
|σ| ĥΩ (σ)e iσs dσ ∈ E(R); which is the so-called (ltered kprojetion (FBP). The following theorem justies this regularization procedure. We prove this fundamental result, which is similar with [78, Eq. (5.1)], but with weaker assumptions.

Theorem A.6 (FBP). vet ψ Ω e (lter with windowing funtion ĥΩ D s (A.13)F por ny funtion

f ∈ L 1 (R 2 ) with ompt supportD R * [Rf ψ Ω ] = f Ψ Ω ∈ E(R 2 ), f ∈ L 1 (R 2 ) ∩ E (R 2 ), (A.14)
where Ψ Ω denotes the (lter

Ψ Ω ∈ E(R 2 ), Ψ Ω (x) = F -1 2 { ĥΩ (|ξ|)}(x) = 1 4π 2 |ξ|≤Ω ĥΩ (|ξ|)e iξ•x dξ. roofF Fix f ∈ L 1 (R 2 ) ∩ E (R 2 )
. Firstly, consider the right-hand side of (A.14). The kernel Ψ Ω is dened by

Ψ Ω = F -1 2 ( ĥΩ • | • |), with ĥΩ • | • | ∈ E (R 2 ) ⊂ S (R 2 ). Therefore, Ψ Ω ∈ E(R 2 ) ∩ S (R 2 ) and the convolution f Ψ Ω ∈ E(R 2 ) satises f Ψ Ω (x) = F -1 2 {F 2 [Ψ Ω ]F 2 [f ]}(x) = 1 4π 2 |ξ|≤Ω ĥΩ (|ξ|)F 2 [f ](ξ)e ix•ξ dξ.
Introducing polar coordinates ξ = σθ, once with σ > 0 and once with σ < 0, we obtain

f Ψ Ω (x) = 1 8π 2 S 1 Ω -Ω |σ| ĥΩ (σ)F 2 [f ](σθ)e iσx•θ dσdθ. (A.15)
Secondly, consider the convolution of the left-hand side of (A.14). The Radon transform is an

integrable function Rf ∈ L 1 (S 1 × R) with compact support, since f ∈ L 1 (R 2 ) ∩ E (R 2 ). Also, for any θ ∈ S 1 , the integrable function Rf (θ, •) ∈ L 1 (R) is compactly supported. The kernel ψ Ω = 1 4π F -1 1 {|σ| ĥΩ (σ)}, with |σ| ĥΩ ∈ E (R), is in E(R) ∩ S (R); therefore, for any θ ∈ S 1 , the convolution Rf (θ, •) ψ Ω ∈ E(R) ∩ S (R) satises Rf (θ, •) ψ Ω (s) = F -1 1 {F 1 [Rf (θ, •)]F 1 [ψ Ω ]}(s) = 1 8π 2 Ω -Ω |σ| ĥΩ (σ)F 1 [Rf (θ, •)]e iσs dσ, (A.16)
where

F 1 [Rf (θ, •)](σ) = F 2 [f ](σθ) by the Fourier slice theorem. Since f ∈ E (R 2 ), we obtain that F 2 [f ] ∈ E(R 2 ) and (θ, s) → Rf (θ, •) ψ Ω (s) = 1 8π 2 Ω -Ω |σ| ĥΩ (σ)F 2 [f ](σθ)e iσs dσ ∈ E(S 1 × R).
To nish with, the backprojection R * [Rf (θ, 

•) ψ Ω ] ∈ E(R
f Ψ Ω . In particular, if ĥΩ (s) → 1 (pointwise convergence) when Ω → ∞, then Ψ Ω → δ and R * [Rf ψ Ω ] → f in S (R 2 ). Furthermore, if the function f is essentially Ω-bandlimited, iFeF if |F 2 f (ξ)| is negligible for |ξ| > Ω, then the formula (A.14), with the ideal low-pass ĥΩ = 1 [-Ω,Ω] , proves that R * [Rf ψ Ω ] ≈ f .
Finally, the pf lgorithm on the facing page implements a discretization of (A. Ω in order to get acceptable results for the convolution.

Furthermore, if δθ > π ΩS , then artifacts may appear outside the disk |x| < π Ωδθ . We refer to [78] for more details.

A.7 Algebraic Reconstruction Technique

Tomography deals especially with a linear system, because the Radon transform is a linear operator.

Unsurprisingly, some common inversion methods are iterative techniques based on linear algebra, or optimization. In this section, we present the principle of the famous Algebraic Reconstruction Technique (ART), based on the so-called Kaczmarz iterations [START_REF] Ammari | en sntrodution to wthemtis of imerging fiomedil smging[END_REF][START_REF] Herman | omogrphy[END_REF][START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF]. We refer to [START_REF] Elfving | emiEonvergene properties of uzmrz9s method[END_REF][START_REF] Hansen | es ools E e wevef pkge of lgeri iterE tive reonstrution methods[END_REF] (and FBP algorithm.

Input. Radon transform Rf on a regular grid, with steps δθ = 2π p and δs = S q > 0, Rf (θ j , s l ), θ j := (cos jδθ, sin jδθ), s l := lδs, 0 ≤ j ≤ p -1, -q ≤ l ≤ q.

Step 1. For any 0 ≤ j ≤ p -1, compute the discrete convolution

g j,k = δs q l=-q ψ Ω (s k -s l )Rf (θ j , s l ) [≈ Rf (θ j , •) ψ Ω (s k )], -q ≤ k ≤ q.
Step 2. For each reconstruction point x, compute the discrete backprojection

f FBP (x) = δθ p-1 j=0 (1 -ω)g j,k + ωg j,k+1 , [≈ R * [Rf ψ Ω ](x)],
where k = k(j, x) and ω = ω(j, x)

∈ [0, 1) are chosen such that x • θ j = (1 -ω)s k + ωs k+1 . Output. FBP reconstruction x → f FBP (x) ≈ f Ψ Ω (x).
the references therein) for historical remarks, several variants of the principle, and some convergence results.

Consider a linear system decomposed into blocks of rows,

     A 1 A 2 . . . A N      x =      b 1 b 2 . . . b N      , (A.17)
where, x ∈ R n is the unknown, and for any 1 ≤ j ≤ N , the j-th block is such that A j ∈ R m j ×n has full row rank, and b j ∈ R m j . The Kaczmarz iterations consider the blocks of rows, block after block.

The procedure is initialized with some x 0 ∈ R n . Then, for any 1 ≤ j ≤ N , the iterate x j ∈ R n is dened as an average between x j-1 and its orthogonal projection onto the ane subspace A j x = b j , with respective weights (1 -ω) and ω > 0,

x j := x j-1 + ωA j (A j A j ) -1 (b j -A j x j-1 ). (A.18)
After a cycle of N iterations, an estimation x N of a solution of (A.17) is obtained; the constraint of each block of rows has been used once. Then, another cycle of iterations can be performed, using

x N as initial state x 0 . In tomography, each block A j ∈ R m j ×n corresponds typically to the matrix of the Radon transform, expressed in a collection of n xed basis functions, and evaluated on a collection of m j rays depending on j (one line per ray, one column per basis function). The vector b j ∈ R m j contains tomographic projections of a function f along these rays, and x represents the decomposition of f in the selected basis. It is known that an ART is computationnally expensive, but it has the advantage of exibility. In comparison, the FBP algorithm, deduced from the analytical formula (A.14), is very ecient but is dedicated to a particular acquisition geometry.

A.8 Microlocal analysis of the Radon transform

The microlocal analysis of the Radon transform has been extensively studied for various purposes in X-ray tomography, since the 1980s. It is a relevant framework for a description of limited data tomography, as it is detailed in numerous works of E.T. Quinto [START_REF] Borg | enlyzing eonstrution ertiE fts from eritrry snomplete Ery g ht[END_REF][START_REF] Frikel | ghrteriztion nd redution of rtifts in limited ngle tomogrphy[END_REF][START_REF] Krishnan | wirolol enlysis in omogrphy[END_REF]8587]. We can also Kaczmarz iterations, for the linear system (A.17). andx x (k+1) 0

Input. Full row rank matrices

A j ∈ R m j ×n , vectors b j ∈ R m j , 1 ≤ j ≤ N , initialization x 0 ∈ R n , weight ω > 0. Fix x (0) 0 := x 0 . For k = 0, 1, 2, . . ., realize a cycle x (k) j := x (k) j-1 + ωA j (A j A j ) -1 (b j -A j x (k) j-1 ), 1 ≤ j ≤ N,
:= x (k) N .
Output. Approximate solution x (k+1) 0 to the linear system A j x = b j , 1 ≤ j ≤ N (A.17), obtained after k + 1 cycles of iterations. mention lol tomogrphy [START_REF] Faridani | vol tomogrphy[END_REF][START_REF] Kuchment | yn lol tomogrphy[END_REF][START_REF] Smith | wthemtil foundtions of omputed tomogrphy[END_REF], [START_REF] Ramm | he don trnsform nd lol tomogrphy[END_REF]Chap. 5], pseudolol tomogrphy [START_REF] Ramm | he don trnsform nd lol tomogrphy[END_REF]Chap. 6], and geometril tomogrphy [START_REF] Ramm | he don trnsform nd lol tomogrphy[END_REF]Chap. 7], which deal with nding singularities of a function from the knowledge of tomographic data; these subjects are studied in depth in [START_REF] Ramm | he don trnsform nd lol tomogrphy[END_REF].

A crucial point is that the Radon transform denes a pourier integrl opertor [55, Chap. VI], [START_REF] Quinto | he dependene of the generlized rdon trnsform on de(ning mesures[END_REF]. As a consequence, there is a nonil reltion which implies correspondences between the singularities of a distribution and the singularities of its Radon transform [START_REF]omogrphi reonstrutions from inomplete dtEnumeril inversion of the exterior don trnsform[END_REF][START_REF]ingulrities of the Ery trnsform nd limited dt tomogrphy in ¢P nd ¢Q[END_REF], [START_REF] Ramm | he don trnsform nd lol tomogrphy[END_REF]Chap. 4]. We refer to standard references of microlocal analysis for a comprehensive description of Fourier integral operators, such as [START_REF] Grigis | wirolol nlysis for di'erentil opertorsX n introdution[END_REF][START_REF] Hörmander | pourier integrl opertorsF i[END_REF][START_REF] Trèves | Fourier integral operators of The University Series in Mathematics[END_REF].

Theorem A.7. he don trnsform R nd the trnspose R * de(ne pourier integrl opertors with

hwrtz kernel δ(s -x • θ) = R 1 2π e iσ(s-θ•x) dσD Rf (θ, s) = R 2 δ(s -x • θ)f (x) dx, (θ, s) ∈ S 1 × R, f ∈ D(R 2 ); R * g(x) = S 1 ×R δ(s -x • θ)g(θ, s) dθds, x ∈ R 2 , g ∈ E(S 1 × R).
Theorem A.8 (Correspondence of singularities). he wvefront sets stisfyX

WF(Rf ) = (θ, s; θ, ŝ) ∈ S 1 × R × R 2 : ŝ = 0 nd (sθ + θ ŝ θ ⊥ ; ŝθ) ∈ WF(f ) , f ∈ E (R 2 ), (A.19) WF(R * g) ⊂ (sθ + θ ŝ θ ⊥ ; ŝθ), with (θ, s, θ, ŝ) ∈ WF(g) nd ŝ = 0 , g ∈ D (S 1 × R). (A.20) emrk A.9F If g ∈ L 1 loc (S 1 × R) satises the symmetry g(-θ, -s) = g(θ, s), the inclusion (A.20) is
an equality [START_REF] Borg | enlyzing eonstrution ertiE fts from eritrry snomplete Ery g ht[END_REF].

Recall that an element of a wavefront set encodes a singulrity dened by a location and a direction. For instance, for a distribution in R 2 , the wavefront set is dened as follows.

Denition A.10.

A distribution f ∈ D (R 2 ) is smooth t x 0 ∈ R 2 in diretion ξ 0 ∈ R 2 \ {0} if, and
only if, there are a cuto ψ ∈ D(R 2 ) with ψ(x) = 1 in a neighbourhood of x 0 , and an open cone V containing ξ 0 , such that the Fourier transform

F 2 [ψf ](ξ) = f, e -ix•ξ ψ(x) is rapidly decaying at innity for ξ ∈ V , iFeF ∀m ≥ 0, ∃c m ∈ R, ∀ξ ∈ V, |F 2 [ψf ](ξ)| ≤ cm (1+|ξ|) m . The wvefront set of f , denoted by WF(f ), is the set of (x 0 , ξ 0 ) ∈ R 2 × (R 2 \ {0}) such that f is not smooth at x 0 in direction ξ 0 .
Theorem A.8 is a deep framework about singularities in tomography. Firstly, the relation (A. [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF] claims that f and Rf have the same singularities; in particular, any singularity of a function f with compact support can be deduced from the singularities of the tomographic projection Rf . Secondly, the inclusion (A.20) claims that the backprojection R * does not add any singularity. It implies that for any pseudodierential operator Λ :

E (S 1 × R) → D (S 1 × R), eFgF for Λ = 1 4π H s ∂ s as in (A.12),
WF(R * Λg) ⊂ (sθ + θ ŝ θ ⊥ ; ŝθ), with (θ, s, θ, ŝ) ∈ WF(g) and ŝ = 0 , g ∈ E (S 1 × R), (A.21)

because WF Λg ⊂ WF g. This has consequences in incomplete data tomography. In this case, the dataset is a truncated Radon transform, g = 1 A Rf with A supp Rf . The singularities of f correspond to those of Rf . Some of them may be invisible in g due to the truncation 1 A ; they are also invisible in any reconstruction R * Λg, by (A.21). Furthermore, the abrupt truncation 1 A may introduce singularities in g which do not correspond to singularities of Rf (or f ). By (A.21), artifacts corresponding to these additional singularities are expected in R * Λg. See, for instance, [START_REF] Borg | enlyzing eonstrution ertiE fts from eritrry snomplete Ery g ht[END_REF].

A.A Radon transform of disks

In this subappendix, we consider the specic case of the Radon transform of disks; these results are used in the proof of Theorem 2.2 in Subsection 2.4.4.

Proposition A.11 (Radon transform of a disk). vet K = {x ∈ R 2 : |x -z| ≤ r} e disk with rdius r > 0 nd enter z ∈ R 2 F @iA he wvefront set of 1 K represents the lines whih re tngent to the irle ∂KX

WF 1 K = {(x; x) ∈ ∂K × (R 2 \ {0}) : x is norml vetor to ∂K t x ∈ ∂K}.
@iiA he don trnsform of the disk K is given y

1 2r R[1 K ](θ, s) = [1 -( s-z•θ r ) 2 ] 1/2 1 |s-z•θ|≤r . (A.22) @iiiA he wvefront set of R[1 K ] is given y WF R1 K = (θ, s; θ, ŝ) ∈ S 1 × R × R 2 : ŝ = 0 nd θ is norml to ∂K t sθ + θ ŝ θ ⊥ ∈ ∂K . (A.23)
roofF (i) is a classical result. (ii) results from a classical computation which measures the length of the intersection of the line x • θ = s and the disk K. (iii) is a consequence of (i) and (A. [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF]).

Proposition A.12 (Radon transform of two disks). vet K = K 1 ∪ K 2 e union of two disjoint disks K 1 nd K 2 F vet T K ⊂ R 2 denote the union of the four stright lines whih re tngent to K 1 nd K 2 F @iA he wvefront sets of 1 K nd R1 K re given y the disjoint unions

WF 1 K = WF 1 K 1 ∪ WF 1 K 2 , WF R1 K = WF R1 K 1 ∪ WF R1 K 2 .
@iiA he eight ouples of prmeters (θ, s) ssoited to the four lines in T K D re given y the interE setion of the singulr supports of

R1 K 1 nd R1 K 2 D sing supp R1 K 1 ∩ sing supp R1 K 2 = {(θ, s) ∈ S 1 × R : {x • θ = s} ⊂ T K }. @iiiA sf (θ, s, θi , ŝi ) ∈ WF R1 K i D i = 1, 2D then ( θ1 , ŝ1 ) nd ( θ2 , ŝ2 ) re linerly independentF roofF (i) 1 K = 1 K 1 +1 K 2 where 1 K 1 and 1 K 2 have disjoint supports, so WF 1 K = WF 1 K 1 ∪WF 1 K 2
and this union is disjoint; we deduce WF

R1 K = WF R1 K 1 ∪ WF R1 K 2 from (A.19
). This union is disjoint due to the point (iii) hereafter. (ii-iii) are a consequence of Proposition A.11.(iii): (θ, s) ∈ sing supp R1 K i ⇔ the line x•θ = s is tangent to ∂K i , hence the intersection of the singular supports; moreover, for (θ, s, θi , ŝi )

∈ WF R1 K i , i = 1, 2, the line x•θ = s is tangent to ∂K i at sθ+ θi ŝi θ ⊥ ∈ ∂K i , hence θ1 ŝ1 = θ2 ŝ2 , because ∂K 1 ∩ ∂K 2 = ∅.
Concerning the acquisition, two categories of recording methods are usually distinguished. In tive imaging, the acquisition device emits an incident electromagnetic wave, and records an interaction of this incident wave with the scene. In pssive imaging, the acquisition device records some radiation, without emitting any wave. Concerning the use of the records, algorithms based on a suitable modeling are often applied in order to compute a reconstruction of the observed scene.

The reconstruction encodes the geometry of the scene, and/or the spatial distribution of some physical parameters. Without being exhaustive, here are three examples, associated with three types of radiation.

1. Radar imaging aims at computing the reectivity of a target, from measurements of scattered electric elds; see [START_REF] Cheney | yntheti eperture dr smging[END_REF].

2. X-ray computerized tomography aims at computing the spatial attenuation of a medium, from the intensity attenuation between an X-ray source and detectors; see [START_REF] Herman | omogrphy[END_REF][START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF].

3. In computer vision, one builds a geometric model of a scene, from several photographs in the visible band; see [START_REF] Hartley | wultiple iew qeometry in gomputer ision[END_REF][START_REF] Ma | en invittion to QEh ision[END_REF].

To put this thesis in context, we are especially interested in visible to near-infrared (VIS-NIR) optics, in the visible (0.4-0.7 µm) to near-infrared (0.7-3 µm) band. This band includes, but is not limited to, photographs with current digital cameras, with a CCD (charge coupled device) or Since light is an electromagnetic wave, the propagation of light and its behavior at interfaces between media is governed by the Maxwell equations. In VIS-NIR optics, the wavelength is very small in comparison with some characteristic distances of the scene, while the surfaces often appear as rough surfaces. Hence, eective models are rather considered. In this section, we present some model commonly used in computer vision; see for instance [START_REF] Durou | eonstrution Qh à prtir des omrges[END_REF][START_REF] Horn | oot vision[END_REF][START_REF] Ma | en invittion to QEh ision[END_REF][START_REF] Szeliski | gomputer visionX lgorithms nd pplitions[END_REF] and the references therein.

This modeling concerns the brightness of an optical image, and is related to geometrical modeling based on rays (geometrical optics). For deeper aspects, we refer to standard textbooks in optics, such as [START_REF] Born | riniples of optisX eletromgneti theory of propgtionD interferE ene nd di'rtion of light[END_REF].

B.2.2 Pinhole camera model

A camera is often modeled as an ideal pinhole camera, which realizes a perspective projection of the observed scene [START_REF] Hartley | wultiple iew qeometry in gomputer ision[END_REF][START_REF] Ma | en invittion to QEh ision[END_REF]; this provides a geometric model of an image by the means of rays of projection. We describe this ideal model. 

Q = [Q 1 , Q 2 , Q 3 ] ∈ R 3×3 .
The vector Q 3 is the direction of the optical axis, oriented from the camera towards the scene, while Q 1 and Q 2 represent the horizontal and vertical directions in the image. Then, in the camera frame (c, Q), the coordinates of the projection x are given by the vector

f λ Q (x -c), with λ = Q 3 (x -c);
here, Q (x-c) contains the coordinates of x in the camera frame, λ represents the depth of x in this frame, and the fol length f represents the distance from the optical center c to the focal plane.

The projection is collected by the array of light sensors in the focal plane, under the form of a pixelized image. Assume that the pixels are rectangles with sides aligned with Q 1 , Q 2 , and lengths s 1 , s 2 . Then, in pixel coordinates, the projection x is given by (i

1 , i 2 ) such that λ   i 1 i 2 1   = K[Q -Q c]     x 1 x 2 x 3 1     , K =    f s 1 0 o 1 0 f s 2 o 2 0 0 1    , (B.1)
where (o 1 , o 2 ) represents the pixel coordinates of the projection of the optical axis. The extrinsi mtrix [Q -Q c] depends only on the position and the orientation of the camera. The intrinsi mtrix K depends on the camera itself; it depends on the focal length and on the shape of a pixel on the receiver array, but does not depend on the position, nor on the orientation. In this thesis, the projections are idealized as (B.1). In particular, we assume that the eventual radial distortion have been removed, as in [START_REF] Ma | en invittion to QEh ision[END_REF].

The relation (B.1) describes a geometrical model of image formation, from the visible scene to the light sensors of a camera. The brightness of a pixel depends on the amount of light received by the associated sensor. Modeling this brightness falls within the scope of radiometry.

B.2.3 Elements of radiometry

The eld of radiometry deals with measuring or calculating electromagnetic radiation, which includes modeling image formation in VIS-NIR optics. The transfer of radiation among and between various objects, including sources and optical systems, is of particular concern. So is quantifying the mechanisms of emission, absorption, reection and transmission of light. We refer to [START_REF] Wolfe | sntrodution to rdiometry[END_REF] for a tutorial text.

Radiance

The fundamental quantity is the rdine [W.m -2 .sr -1 ], which represents the amount of light radiated from a surface; it is dened as the power (energy per time unit) radiated along a certain direction, per unit projected area, and per unit solid angle. More precisely, as in Figure B.5, consider an innitesimal piece of surface, located at x ∈ R 3 , with area dσ x , and unit normal ν x ∈ S 2 . Consider an innitesimal solid angle dΩ around a direction u ∈ S 2 . The radiance at x in the direction u, denoted by L(x, u), is related to the power dΦ radiated from the piece of surface dσ x through the solid angle dΩ by dΦ = L(x, u) ν x • u dσ x dΩ.

(B.2)
Here, ν x • u is the cosine of the angle between the normal ν x and the direction u; the projected area ν x • u dσ x represents the apparent area of the surface dσ x seen from a point on the axis (x, u). Assuming that the medium between the two pieces of surface is transparent, with no absorption, the radiated power dΦ is transferred from dσ x to dσ y along the direction u x,y ; this transfer expresses energy preservation. Therefore, dΦ represents also the amount of incident light on dσ y , along the direction u x,y .

Irradiance

The 

Radiant incidance

Concerning the detectors, the basic measurement of a detector, such as a light sensor in a camera, is the received power (energy per time unit) [START_REF] Wolfe | sntrodution to rdiometry[END_REF]. The rdint inidne [W.m -2 ], dened as the power received by unit area, can be deduced. The measure is especially related to the power radiated from the visible surfaces. For an ideal camera, the optical system completely transfers the received energy to the sensor, and the incidance on a pixel is mainly proportional to the radiance of the visible point [START_REF] Horn | glulting the re)etne mp[END_REF]. Then, y receives an irradiance dI(y, u x,y ); hence, the surface reects a radiance f (y, u x,y , v)dI(y, u x,y ) in the direction v. Assuming linearity, the total radiance is modeled by the sum of the source term with such reected radiances:

L(y, v) = L (y, v) + x∈S V (x, y)f (y, u x,y , v) dI(y, u x,y ).
By (B.4), we obtain nally an integral equation, the so-called rendering eqution [START_REF] Kajiya | he endering iqution[END_REF],

L(y, v) = L (y, v) + x∈S V (x, y)f (y, u x,y , v)L(x, u x,y ) νx•ux,y νy•uy,x |x-y| 2 dσ x , y ∈ S, v • ν y ≥ 0, (B.7)
where ν x ∈ S 2 denotes the exterior unit normal to S, at the point x ∈ S. In this expression,

dΩ x = νx•ux,y |x-y| 2 dσ
x is a surface element on the hemisphere u • ν y ≥ 0 and represents the solid angle of dσ x seen from y.

The rendering equation (B.7) is a model which emphasizes some mechanisms due to scattering of light by opaque objects, with extended light sources, in a transparent media. It does not take into account each possible eect of light propagation, such as transmission, subsurface diusion, absorption, polarization, spectral dependency, and so on. For instance, we refer to [START_REF] Berginc | ttering models for rnge pro(ling nd PhEQh lser imgery[END_REF][START_REF] Chipman | olrimetry[END_REF][START_REF] Flynn | olrized surfe sttering expressed in terms of idireE tionl re)etne distriution funtion mtrix[END_REF][START_REF] Shell | olrimetri remote sensing in the visile to ner infrred[END_REF] for eects concerning polarization.

Lambert's cosine law

The Lambert's cosine law ρ(y) cos α (B.8) models uniform diusion of light from an ideal matte opaque surface, called a vmertin re)etor.

It is established as follows. Assume that the surface ∂D of a Lambertian reector is illuminated by an isotropic point source located at z, as in Figure B.9. Denote by Φ the power of this source (in [W]). The associated power per unit solid angle is Φ/(4π) (in [W.sr -1 ]). Therefore, an illuminated point y ∈ ∂D, with angle of incidence α, receives an irradiance I(y, u) = Φ cos α/(4π|z -y| 2 ) (in [W.m -2 ]). By assumption, this incident irradiance is uniformly reected o the surface: the BRDF f (y, u, v) and the reected radiance L(y, v) = f (y, u, v)I(y, u) (in [W.m -2 .sr -1 ]) do not depend on the radiation angle v. In this case, it can be shown that f (y, u, v) = ρ(y,u) π , where ρ(y, u) ∈ [0, 1], called the ledo, is a dimensionless coecient which represents the percentage of the incident irradiance which is reected in any direction. Hence, the radiance is modeled by

L(y, v) = Φ 4π 2 |z -y| 2 ρ(y) cos α, (cos α = u y,z • ν y ), (B.9)
where we have further assumed that ρ(y, u) = ρ(y) does not depend on the incident angle, as many models in computer vision. Assuming that z in far eld with |z -y| ≈ R a large constant, we obtain that the radiance is given by (B.8), up to a constant factor. Here, an isotropic point source z emits light with a power per unit solid angle Φ/(4π). On the surface ∂D, an illuminated point y reects light uniformly; for an angle of incidence α, the point y reects a radiance Φ/(4π 2 |z -y| 2 ) ρ(y) cos α in any direction above the tangent plane. The dimensionless coecient ρ(y) ∈ [0, 1] is the albedo, dened as the percentage of incident irradiance which is reected.

B.3 X-ray tomography B.3.1 Beer-Lambert's law

In transmission tomography, one usually probes a medium using X-rays [START_REF] Ammari | en sntrodution to wthemtis of imerging fiomedil smging[END_REF][START_REF] Natterer | wthemtil methods in imge reonstrution[END_REF]. Assuming that the wavelengths of X-rays are very short on the scale of variation of the probed medium 1 , the 1 This is the case for a human body.

propagation can be described by geometrical optics [START_REF] Born | riniples of optisX eletromgneti theory of propgtionD interferE ene nd di'rtion of light[END_REF]. More precisely, an X-ray is transmitted through the medium along a straight line. Along this ray, the intensity I is attenuated due to absorption. The variation dI(s) of the intensity, between the curvilinear abscissae s and s + ds, is modeled by dI(s) = -a(s)I(s)ds; the inverse length a(s) represents an attenuation coecient of the traversed medium. Therefore, if an X-ray source, located at position x 0 , emits towards a sensor, located at position x 1 , then the received intensity I 1 is related to the emitted intensity I 0 , by the Beer-Lambert's law:

I 1 = I 0 exp - [x 0 ,x 1 ] a(x)d .
The integral [x 0 ,x 1 ] a(x)d , where d is the length measure, represents the total attenuation of the medium between the source x 0 and the receiver x 1 . The value of this integral is considered to be the measurement associated to the ray [x 0 , x 1 ], since it is deduced from the knowledge of I 1 and I 0 : Next, this kind of cone beam radiography can be taken under several angles of view, for instance by rotation of the device source-screen around a xed axis, as it is performed in Figure 1.2. This is the principle of a cone beam scan.

[x 0 ,x 1 ] a(x)d = log I 0 I 1 .
Computed tomography aims at computing a 3D reconstruction of the attenuation a(x), from the measurement of line integrals (B.10). The computed spatial attenuation is used to represent the scene; in this way, materials with dierent attenuations can be separated.

B.3.3 Mathematical framework

From a mathematical point of view, the Ery trnsform of a :

x ∈ R 3 → a(x) ∈ R is dened by X [a] : R 3 × S 2 → R (x 0 , u) → X [a](x 0 , u) = R a(x 0 + tu)dt. (B.11)
Analogously to the ray integral (B.10), X [a](x 0 , u) is a line integral, along the ray through x 0 and oriented by u; under obvious assumption, the ray integral (B.10) coincides exactly with X [a](x 0 , x 1 -x 0 |x 1 -x 0 | ).

If the rays are in a plane, the X-ray transform coincides with the Radon transform (A.1); for instance, in the plane

x 3 = 0, R[a](θ, s) = X [a]((sθ, 0), (θ ⊥ , 0)), θ ∈ S 1 , s ∈ R.
Finally, the mathematical problem of X-rays tomography deals with inverting the X-ray transform; the goal is to compute a function a from the knowledge of X [a](x 0 , u), for a collection of rays (x 0 , u). In a plane, this problem consists in inverting the Radon transform; see Appendix A.

Part II

Mathematical and numerical aspects of spectral computing on the Cubed Sphere Chapter 5

Symmetry group of the Cubed Sphere

Equiangular Cubed Sphere

Various elds in computational physics, for instance climatology modelling [START_REF] Washington | he omputtionl future for limte nd erth system modelsX on the pth to pet)op nd eyond[END_REF], involve numerical computations on the sphere. This includes the use of spherical grids [START_REF] Williamson | he evolution of dynmil ores for glol tmospheri models[END_REF]. The grids obtained by radial projection of a circumscribed cube on the sphere, as in Figure 5.1, are among the most employed. These gued phere grids have been originally introduced in [START_REF] Sadourny | gonservtive (niteEdi'erene pproximtions of the primitive equtions on qusiEuniform spheril grids[END_REF], and further studied, for example in [START_REF] Mcgregor | emiEvgrngin edvetion on gonformlEgui qrids[END_REF]158160,[START_REF] Ran£i¢ | e glol shllowEwter model using n expnded spheril ueX qnomoni versus onforml oordintes[END_REF][START_REF] Ran£i¢ | e xonhydrostti wulE tisle wodel on the niform toin gued phere[END_REF][START_REF] Ronchi | he ued sphereX new method for the soE lution of prtil di'erentil equtions in spheril geometry[END_REF]. A wide variety of numerical methods have been successfully

adapted to Cubed Sphere grids, eFgF in [START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF][START_REF] Brachet | pheril hllow ter simultion y ued sphere (nite di'erene solver[END_REF][START_REF] Chen | hllow wter model on uedEsphere y multiEmoment (nite volume method[END_REF][START_REF] Chevrot | yptimized disrete wvelet trnsforms in the ued sphere with the lifting sheme"implitions for glol (niteEfrequeny tomogrphy[END_REF][START_REF] Faham | ekly yrthogonl pheril rrmonis in xonEolr pheriE l goordintes nd its epplition to puntions on guedEphere[END_REF][START_REF] Ivan | wultiEdimensionl (niteEvolume sheme for hyperoli onservtion lws on threeEdimensionl solutionEdptive uedEsphere grids[END_REF][START_REF] Jones | gomprison of the guedEphere qrvity wodel with the pheril rrmonis[END_REF][START_REF] Kang | en e0ient implementtion of highEorder (lter for uedEsphere spetrl element model[END_REF][START_REF] Lee | e mixed mimeti spetrl element model of the rotting shllow wter equtions on the ued sphere[END_REF][START_REF] Nair | e hisontinuous qlerkin rnsport heme on the gued phere[END_REF][START_REF] Putman | hevelopment of the (niteEvolume dynmil ore on the uedEsphere[END_REF][START_REF] Rossmanith | e wve propgtion method for hyperoli systems on the sphere[END_REF][START_REF] Thomas | e hwrz preonditioner for the uedEsphere[END_REF][START_REF] Ullrich | ome onsidertions for highE order inrementl remp9Esed trnsport shemesX edgesD reonstrutionsD nd re integrE tion[END_REF] and the references therein. In this thesis, we focus on a Cubed Sphere structured by equiangular great circles: the equingulr gued phere CS N ⊂ S 2 , [START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF][START_REF] Purser | e minor modi(tion of the gnomoni uedEshped sphere grid tht o'ers dvntges in the ontext of implementing moving hurrine nests, Oce note[END_REF], with resolution parameter N ≥ 1, dened by

CS N := ρ(±1, u, v), ρ(u, ±1, v), ρ(u, v, ±1); u = tan iπ 2N , v = tan jπ 2N , -N 2 ≤ i, j ≤ N 2 , (5.1) 
where ρ(x) = x x denotes the radial projection, from the faces of the cube [-1, 1] 3 onto the sphere S 2 . As suggested by Figure 5.1, where CS 3 is displayed, the Cubed Sphere CS N is quasi-uniform, is not polarized along a specic axis, and is shaped by the cube, including discontinuities accross edges (radial projection of the edges of the circumscribed cube). Furthermore, some symmetry properties, such as invariance under permutation of the cartesian coordinates, are noticed.

The success of the grid CS N may be explained by mathematical properties, such as metric properties (quasi-uniformity) and symmetry (rotational invariance); we refer for instance to [START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF][START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF][START_REF] Purser | ets of optimlly diversi(ed polyhedrl orienttions, Oce note[END_REF][START_REF] Ronchi | he ued sphereX new method for the soE lution of prtil di'erentil equtions in spheril geometry[END_REF], where the symmetry has been used. That is the reason why we have clearly identied the shortest geodesic arcs and the symmetry group of CS N in [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF]. Such results deepen the mathematical knowledge of CS N and provide a valuable mathematical background for the applications; in particular, knowing the symmetry group of a grid supports the design of numerical schemes, such as interpolation methods [START_REF] Rodriguez Bazan | wultivrite interpoltionX reserving nd exploiting symmetry[END_REF], quadrature rules [START_REF] Sobolev | guture formuls on the sphere invrint under (nite groups of rottions[END_REF], or Discrete Fourier Transforms [START_REF] Peyré | v9lgère disrète de l trnsformée de pourier[END_REF].

In the rest of this chapter, we summarize some mathematical results from [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF]. We refer to the original text for some (tedious) proofs.

Symmetry group of the Cubed Sphere

We make explicit the symmetry, or rottionl invrine, of the Cubed Sphere, by means of its symmetry group [START_REF] Armstrong | qroups nd symmetry[END_REF], dened as follows.

Denition 5.1. The symmetry group of a set E ⊂ R 3 is the group G of all orthogonal matrices that leave E invariant:

G = Q ∈ R 3×3 : Q Q = QQ = I 3 and QE = {Qu, u ∈ E} = E . For N = 1, CS 1 = {-1/ √ 3, 1/ √ 3} 3 is a scaling of {-1, 1} 3
. Therefore, it is clear that the symmetry group of CS 1 coincides with the symmetry group of the cube {-1, 1} 3 . This group is well known: it is isomorphic to the group S 4 × Z/2Z [112, pp. 37,38,55]; any symmetry of the cube is indeed identied with a permutation of the four principal diagonals, combined with a toggle for inversion of the cube, or not. For completeness, a matrix description is recalled hereafter. Lemma 5.2 (Octahedral group). he symmetry group of the ue {-1, 1} 3 oinides with the symE metry group the othedron {(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0), (0, 0, -1)}D given y

G = 1 e σ 1 2 e σ 2 3 e σ 3 , σ ∈ S 3 , ∈ {-1, 1} 3 , (5.2) 
where e 1 = (1, 0, 0)D e 2 = (0, 1, 0)D e 3 = (0, 0, 1)D nd S 3 denotes the group of ll permuttions of {1, 2, 3}F

In fact, the octahedral group (5.2) determines the group of any equiangular Cubed Sphere, as stated by the main result of [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF].

Theorem 5.3 (Symmetry group of the equiangular Cubed Sphere). vet N ≥ 1F he symmetry group of the gued phere CS N oinides with the symmetry group G of the ue {-1, 1} 3 F sn other wordsD n orthogonl mtrix Q leves CS N invrint ifD nd only ifD it leves {-1, 1} 3 invrintF

The combination of (5.1) with (5.2) shows relatively easily that any symmetry of the cube, Q ∈ G, leaves the Cubed Sphere CS N invariant. Therefore, the most dicult part of the theorem is the converse. This part can be deduced from a classication of nite subgroups of orthogonal groups, such as [START_REF] Armstrong | qroups nd symmetry[END_REF]Theorem 19.2]. Another approach consists in introducing some geometrical pattern, whose symmetry group is G, and which is left invariant by any symmetry of CS N . We prove in [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF] that the uothedron Ω := {(0, , η), ( , 0, η), ( , η, 0), = ±1, η = ±1} (5.3) is such a pattern. The proof is based on the shortest geodesic arcs, described in the next section. 

Shortest geodesic distance on the Cubed Sphere

In this section, we consider the shortest geodesic arcs on the Cubed Sphere CS N , dened as the solutions to the problem

min{arccos u • v; u ∈ CS N , v ∈ CS N , u = v}. (5.4)
This problem deals with metric properties of a widely used grid, so it has its own interest. One original feature of (5.4) is that u and v are allowed to belong to distinct grid lines, or even distinct panels; in particular, any spherical diagonal of the mesh is realizable. The main diculty of problem (5.4) comes from this specicity, and this is somehow the lock of Theorem 5.3.

The problem (5.4) has been solved in [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF], with the following theorem (see Figure 5.2). Theorem 5.4 (Shortest geodesic arcs on the equiangular Cubed Sphere). vet N ≥ 1D nd onsider the prolem (5.4) of the miniml rElength etween seprte points on CS N F @iA sf N is oddD there re preisely IP miniml rs on CS N @one per edgeAX

{ρ(-δ, 1 , 2 ), ρ(δ, 1 , 2 )}, {ρ( 1 , -δ, 2 ), ρ( 1 , δ, 2 )}, {ρ( 1 , 2 , -δ), ρ( 1 , 2 , δ)}, δ = tan π 4N , 1 = ±1, 2 = ±1.
@iiA sf N is evenD there re preisely PR miniml rs on CS N @two per edgeAX

{ρ(0, 1 , 2 ), ρ(δ, 1 , 2 )}, {ρ( 1 , 0, 2 ), ρ( 1 , δ, 2 )}, {ρ( 1 , 2 , 0), ρ( 1 , 2 , δ)}, δ = ± tan π 2N , 1 = ±1, 2 = ±1.
Theorem 5.4 is proved in [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF]; some algorithm decreases (if possible) the distance arccos u • v, from any inital arc {u, v} ⊂ CS N . The proof is tedious, because many cases must be considered (u, v can be on distinct panels, on the same panel, on a common grid line, or not, and so on). Some cases are easy; some other ones are more dicult. To mention two cases, the easiest case deals with an arc along an edge, with N even, u = ρ(1, 0, 1), v = ρ(1, Z, 1), and Z > 0, whereas one of the most dicult one deals with a diagonal, u

= ρ(1, X, Y ), v = ρ(1, Z, T ), 0 ≤ X < Z ≤ 1, 0 ≤ Y < T ≤ 1.
To nish with, the minimal arcs are the short arcs around the midpoints on the edges, as displayed in Figure 5.2. Therefore, their location matches with the cuboctahedron Ω dened in (5.3). Then, it can be proved that Ω is invariant under the group of CS N , which nally implies Theorem 5.3.

Conclusion and perspectives

The symmetry group of the equiangular Cubed Sphere coincides with the symmetry group of the cube. The proposed approach to prove this result studies geodesic distances between points of the grid. Such results provide some theoretical foundation for numerical computation on the Cubed Sphere.

The symmetry group of a grid plays a central role in several contexts. It can be used to build spherical quadrature rules which are valid for as many spherical harmonics as possible [START_REF] Sobolev | guture formuls on the sphere invrint under (nite groups of rottions[END_REF]. Our main result shows that the group of the cube is the suitable symmetry group for the determination of quadrature weights on the Cubed Sphere. This background somehow supports the quadrature rule presented in Chapter 7. Moreover, for quadrature rules, the geometric distribution of the nodes is often examinated. Our study of the geodesic distance includes the theoretical value of the separation distance, and could serve as a tool to quantify the uniformity of the Cubed Sphere grid.

Another subject of interest concerns the building of a discrete Fourier analysis on the Cubed Sphere, based on the invariance under the action of the symmetry group, in the spirit of [START_REF] Peyré | v9lgère disrète de l trnsformée de pourier[END_REF]. Here again, our result is a rst step in this direction, since it identies the group to be considered.

as in [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF]. We also mention a novel characterization of the solution: it is the minimal interpolation spherical harmonics with respect to a reverse lexicographical order (Corollary 6.9). In Section 6.5, we propose some numerical study. We indicate some empirical structure of the interpolation space, we examinate the distance of the Legendre basis functions to this space, and we interpolate various test functions with our scheme. In Appendix 6.A, we propose and we study an orthogonal factorization of a block matrix, under some special echelon form (Theorem 6.11). We prove that is suitable to compute the least squares approximation which is minimal for a reverse lexicographical order (Corollary 6.13). This framework is general and can be used for any block least squares problem for which some lexicographical order on the blocks is desired. In fact, similar algorithms have been developed in robotics to solve lexicographical least-squares [START_REF] Escande | rierrhil qudrti progrmmingX pst online humnoidEroot motion genertion[END_REF].

Background and notation 6.2.1 Spherical harmonics

On the unit sphere S 2 = {(x 1 , x 2 , x 3 ) ∈ R 3 : x 2 1 + x 2 2 + x 2 3 = 1}, the spherical coordinates are given by x(θ, φ) = (cos θ cos φ, cos θ sin φ, sin θ)

∈ S 2 , θ ∈ [-π 2 , π 2 ], φ ∈ R, (6.2) 
where θ is the latitude and φ is the longitude. In these coordinates, the real Legendre spherical harmonics of degree n ≥ 0 are dened by 

Y m n (x(θ, φ)) = (n+1/2)(n-|m|)! π(n+|m|)! P (|m|) n (sin θ) • cos |m| θ •      -sin mφ, -n ≤ m < 0, 1 √ 2 , m = 0, cos mφ, 0 < m ≤ n, (6.3) 
P n (t) = 1 2 n n! d n dt n (t 2 -1) n .
The innite family (Y m n ) |m|≤n, n∈N is a Hilbert basis of the space L 2 (S 2 ), which is equipped with the usual inner product and the associated norm,

f, g L 2 (S 2 ) = S 2 f (x)g(x)dσ, f L 2 (S 2 ) = f, f 1/2 L 2 (S 2 ) .
In this basis, any f ∈ L 2 (S 2 ) admits a unique spectral expansion,

f = |m|≤n f m n Y m n , with f m n = f, Y m n L 2 (S 2 ) . (6.4) 
The space

Y n = span{Y m n , |m| ≤ n} represents the restriction to S 2 of the homogeneous harmonic polynomials of degree n (in R 3 ), whereas for every degree D ≥ 0, the space dened by

Y D = Y 0 ⊕ • • • ⊕ Y D = span{Y m n , |m| ≤ n, 0 ≤ n ≤ D} (6.5)
contains all the spherical harmonics with degree less than or equal to D.

Grid functions

The space of real functions dened on CS N is denoted by

R CS N = {f : CS N → R}.
The canonical basis (δ x i ) 1≤i≤ N of R CS N is dened by

δ x i (x j ) = δ ij = 1, if i = j, 0, otherwise, 1 ≤ i, j ≤ N .
In this basis, any f ∈ R CS N has the decomposition

f = N i=1 f (x i )δ x i .
For any real function dened on the sphere, u : x ∈ S 2 → u(x) ∈ R, the restriction of u on CS N is the function dened by

u| CS N := N i=1 u(x i )δ x i ∈ R CS N , u| CS N (x i ) = u(x i ), 1 ≤ i ≤ N . (6.6)
In this way, u interpolates a grid function f ∈ R CS N if (and only if ), u| CS N = f .

Lagrange interpolation space

We tackle the Lagrange interpolation problem on the Cubed Sphere CS N , in an algebraic way. We dene a subspace of spherical harmonics, U N ⊂ L 2 (S 2 ), such that, in the space U N , the set of equations (6.1) has always a unique solution u ∈ U N . Following the procedure of [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF] and the presentation of [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF], the most natural way consists in eliminating any spherical harmonic of degree n which is undersampled, and in keeping only the orthogonal complement, by induction on the degree n. We summarize this procedure in this section, with a proof that is dierent from the one of [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF]. In particular, the following lemma builds an interpolating function in a novel way. Lemma 6.1 (Interpolating spherical harmonic with degree at most 4N -1). eny grid funtion

f ∈ R CS N n e interpolted y spheril hrmonis u ∈ Y D with D = 4N -1, if N is odd, 4N -2, if N is even. (6.7) roofF We dene functions L x i ∈ Y D such that L x i (x j ) = δ ij , 1 ≤ i, j ≤ N ; this implies by linearity that u = N i=1 f (x i )L x i ∈ Y D interpolates f , iFeF u(x i ) = f (x i ), 1 ≤ i ≤ N . Fix ξ ∈ CS N . Assume that ξ = 1 r (1, tan iπ 2N , tan jπ 2N ), with r > 0, -N 2 ≤ i, j ≤ N
2 (similar arguments apply otherwise). We cover the Cubed Sphere CS N by means of great circles as in Figure 6.1,

CS N ⊂ α∈A {x ∈ S 2 : x • α = 0}, (6.8) 
where the normal vector α browses the set

A = {(-sin kπ 2N , cos kπ 2N , 0), -N 2 ≤ k ≤ 3N 2 -1} ∪ {(-sin lπ 2N , 0, cos lπ 2N ), -N 2 ≤ l ≤ 3N 2 -1}. (6.9)
The number of such circles is given by D + 1 = 4N, 4N -1 if N is odd, even. Indeed, the indices k and l browse 2N values; the corresponding circles are distinct, except if N is even and k = l = N . Among these D + 1 circles, there are exactly two circles which contain {ξ, -ξ} (one with k = i, and one with l = j). The remaining D -1 circles, parametrized by α ∈ A such that ξ • α = 0, cover CS N \ {ξ, -ξ}. As a result, we dene the spherical function

L ξ (x) = 1 + ξ • x 2 α∈A ξ•α =0 x • α ξ • α , x ∈ S 2 .
In this expression, we recognize the tangent plane at -ξ (1+ξ •x = 0), and the D-1 great circles that do not contain {ξ, -ξ}

(x • α = 0, with α ∈ A such that ξ • α = 0). In particular, L ξ ∈ Y D , L ξ (ξ) = 1, L ξ (-ξ) = 0
, and the covering of CS N \ {ξ, -ξ} implies L ξ (ξ ) = 0 for every ξ ∈ CS N \ {ξ, -ξ}.

Theorem 6.2 (Interpolation space). vet the orthogonl deomposition 

Y n = W n ⊥ ⊕ W ⊥ n , n ≥ 0, with W 0 := {0}, W n := {w ∈ Y n : ∃v ∈ Y 0 ⊕ • • • ⊕ Y n-1 , w| CS N = v| CS N }, n ≥ 1.
T : C 0 (S 2 ) -→ R CS N u -→ u| CS N . (6.11) 
henD there exists smllest degree d = d(N ) ≥ 0 suh tht the liner mp

T d := T | W ⊥ 0 ⊕•••⊕W ⊥ d is isomorphiF he spe W ⊥ 0 ⊕ • • • ⊕ W ⊥ d(N )
is lled the interpolation spaceD nd is denoted y U N Y the invert of T d(N ) is lled the interpolation operator nd is denoted y I N : R CS N → U N F roofF Firstly, we prove, by induction on the degree n ≥ 0, that

T (Y 0 ⊕ • • • ⊕ Y n ) = T (W ⊥ 0 ⊕ • • • ⊕ W ⊥ n ).
(6.12)

For n = 0, this is due to Y 0 = W ⊥ 0 . Fix now n ≥ 1 such that (6.12) is realized for the degree n -1 which achieves the induction.

(induction). By denition of W n , Y n = W n ⊕ W ⊥ n , with T (W n ) ⊂ T (Y 0 ⊕ • • • ⊕ Y n-1 ). We deduce that T (Y 0 ⊕ • • • ⊕ Y n ) = T (Y 0 ⊕ • • • ⊕ Y n-1 ⊕ W ⊥ n ) = T (W ⊥ 0 ⊕ • • • ⊕ W ⊥ n ),
Secondly, x

d = 4N -1, if N is odd 4N -2, if N is even.
Then, Lemma 6.1 shows that the linear map T | Y 0 ⊕•••⊕Y d is surjective; hence, (6.12) with n = d implies that the restriction T d is surjective too.

To conclude, we prove that T d is also injective. Assume that there is w ∈ W

⊥ 0 ⊕ • • • ⊕ W ⊥ d \ {0} such that T w = 0. Let n ≤ d be the degree of w. The unique constant function u ∈ Y 0 such that u| CS N = 0 is null, so n ≥ 1. Then, there are w n ∈ W ⊥ n \ {0} and y ∈ Y 0 ⊕ • • • ⊕ Y n-1 such that w = w n -y. Since T u = 0, w n | CS N = y| CS N , so w n ∈ W n , which is a contradiction.
The subspace W n represents spherical harmonic of degree n which are undersampled on CS N , since they coincide with a spherical harmonic of smaller degree. On the contrary, any spherical harmonics in the orthogonal supplementary W ⊥ n is properly sampled on CS N , since it can be reconstructed by interpolation. The resulting space U N is intrinsicly dened, with an algebraic description. Unfortunately, we do not have at disposal an analytical description of U N , nor of the spaces W n , W ⊥ n (apart from some special cases). emrk 6.3F Our proof shows that the optimal degree d(N ) satises d(N ) ≤ 4N -1 if N is odd, and d(N ) ≤ 4N -2 if N is even. This is an improvement of the bound proposed in the initial paper [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF] (≈ 21N ), which was based on the shortest geodesic distance of Theorem 5. To conclude, by denition of the interpolation space U N and the interpolation operator I N , the Lagrange interpolation problem on CS N has a unique solution in U N , and for every f ∈ R CS N , I N f ∈ U N denotes the unique element u ∈ U N such that u| CS N = f . The following result establishes that the degree of I N f is minimal. Corollary 6.4 (Minimal degree). vet f ∈ R CS N e grid funtion interpolted y

I N f ∈ U N F vet u ∈ Y 0 ⊕ • • • ⊕ Y D e
spheril hrmoni of degree D whih interpoltes f D i.e. u| CS N = f F henD the degree D of u is greter thn or equl to the degree of I N f F sn other wordsD the degree of the interpoltion spheril hrmonis

I N f is minimlF roofF If D > d(N ), the result is obvious. Otherwise, f = T u ∈ T (Y 0 ⊕ • • • ⊕ Y D ).
We deduce from (6.12) that there is some

v ∈ W ⊥ 0 ⊕ • • • ⊕ W ⊥ D such that f = T v.
Here, D ≤ d(N ), so v ∈ U N , which implies v = I N f . Therefore, the degree of I N f coincides with the degree of v, which is itself less than or equal to D.

Matrix computation

In this section, we propose an algorithm to compute the interpolation space U N , and an interpolation function I N f , using numerical linear algebra. The approach deals with a numerical matrix analysis of the evaluation operator T dened in (6.11); it is based on the special echelon orthogonal factorization described in Appendix 6.A. Denition 6.5 (Vandermonde matrix). For any n ≥ 0, the Vandermonde matrix A n is dened as

the matrix of the operator T | Y 0 ⊕•••⊕Yn , A n := [Y m k (x j )] 1≤j≤ N , |m|≤k≤n ∈ R N ×(n+1) 2 ,
where the column index (k, m) is sorted in lexicographical order.

By denition, the Vandermonde matrix A n , has a block structure, where each block corresponds to the matrix of T | Y k , where k is a xed degree,

A n = A 0 A 1 • • • A n ∈ R N ×(n+1) 2 , with A k := [Y m k (x j )] 1≤j≤ N , |m|≤k ∈ R N ×(2k+1) . (6.13)
As a result, Theorem 6.11 applies; there is an echelon form (6.19) such that A n = V n E n U n , where

the matrix V n ∈ R N × N is orthogonal, the matrix U n = diag(U k , 0 ≤ k ≤ n) is block diagonal, with orthogonal matrices U k ∈ R (2k+1)×(2k+1) , as in (6.20), the matrix E n ∈ R N ×(n+1) 2
is in echelon form as in (6.21), with g 0 , . . . , g n for the dimensions of the blocks of rows.

Next, we recognize that (6.25) is the matrix representation of the decomposition (6.10). Therefore, the matrix U n contains orthonormal bases of the spaces W ⊥ k and W k . Denition 6.6 (Basis functions). Let n ≥ 0 be a xed degree, and a special echelon form (6.19) of

A n . For all 0 ≤ k ≤ n and 1 ≤ i ≤ 2k + 1, the sis funtion u i k ∈ Y k is dened by

u i k ∈ Y k , u i k (x) = [Y m k (x)] |m|≤k U k (:, i), x ∈ S 2 ,
so that, for any 0 ≤ k ≤ n, the set {u i k , g k + 1 ≤ i ≤ 2k + 1} denes an orthonormal basis of the undersampled space W k (dened in (6.10)), the set {u i k , 1 ≤ i ≤ g k } denes an orthonormal basis of the space W ⊥ k . emrk 6.7F Here, the spaces W k and W ⊥ k are intrinsicly dened, but it is not the case for the orthonormal bases {u i k } (as it is often the case for orthonormal bases). Therefore, the matrix A n Ũn , where Ũn is given by (6.26), represents the opertator

T | W ⊥ 0 ⊕•••⊕W ⊥ n , in the basis {u i k , 1 ≤ i ≤ g k , 0 ≤ k ≤ n}.
This matrix has full column rank r n = g 0 + • • • + g n and has the QR factorization (6.27). We deduce from Theorem 6.2 that A d Ũd is invertible for the degree d = d(N ), but that the row rank of A n Ũn is decient if n < d (r n < N ). This suggests to compute incrementally the factorization (6. [START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF], for increasing values of n, until the value of r n = g 0 + • • • + g n reaches the value N . Following the proof of Theorem 6.11, we obtain the practical algorithm described on the next page.

The algorithm provides the optimal degree d = d(N ) (Theorem 6.2), a special echelon form (6.19) of A d . We readily get an orthonormal basis {u i k , 1 ≤ i ≤ g k , 0 ≤ k ≤ d} of the interpolation space U N , and a QR form of the evaluation operator T d :

U N → R CS N , A d Ũd = V d Ẽd , (6.14)
where V d is orthogonal, and the upper triangular matrix Ẽd ∈ R N × N is nonsingular. Then, any interpolation problem (6.1) can be solved with this factorization as follows. Corollary 6.8. essume tht the ftoriztion (6.14) hs een preEomputedF vet f ∈ R CS N e grid funtion on CS N F henD the unique element u ∈ U N suh tht u(

x j ) = f (x j )D 1 ≤ j ≤ N D is given y I N [f ](x) = [Y m n (x)] |m|≤n≤d Ũd α, with α = ( Ẽd ) -1 V d [f (x j )]
1≤j≤ N ; hereD the vetor α is otined y kwrd sustitution in the upper tringulr system

Ẽd α = V d [f (x j )] 1≤j≤ N .

Incremental special echelon orthogonal factorization of Vandermonde matrices

Input. Parameter N of the Cubed Sphere CS N . Initialization. For n = 0, compute the factorization A 0 = V 0 E 0 U 0 :

1. compute the matrix A 0 dened in (6.13); 2. compute the matrices V 0 , E 0 and U 0 by SVD of A 0 ; 3. evaluate the number of nonzero diagonal coecients in E 0 , r 0 = g 0 .

Iterations. For n ≥ 1, compute the factorization A n = V n E n U n :

1. compute the matrix A n dened in (6.13); 2. compute matrices V n , Λn To nish with, Corollary 6.4 proves that the degree of the interpolation function I N f is minimal. As an immediate consequence to Corollary 6.13, we have in fact a stronger result: I N f is the minimal interpolation spherical harmonics, with respect to some reverse lexicographical order. Roughly speaking, this result means that the components of I N f with large degrees are as small as possible. Corollary 6.9 (Minimal interpolation spherical harmonic, for a reverse lexicographical order). vet

f ∈ R CS N e interpolted y u = I N f ∈ U N F essume tht v ∈ Y 0 ⊕ • • • ⊕ Y d is nother interpoltion funtion of f D i.e. u = v nd u| CS N = v| CS N = f F vet u n , v n ∈ Y n D 0 ≤ n ≤ dD e suh tht u = u 0 + • • • + u d D v = v 0 + • • • + v d F henD ∃ 0 ≤ n ≤ d, u d = v d , . . . , u n+1 = v n+1 , u n < v n .
sn other wordsD the funtion I N f is the miniml spheril hrmonis whih interpoltes f D with respet to reverse lexiogrphil order on the degreeF 6.5 Numerical experiments

Numerical dimensions

We have introduced an interpolation space

U N = W ⊥ 0 ⊕ • • • ⊕ W ⊥ d(N )
, where W n represents spherical harmonics of degree n which are undersampled on CS N , dened in (6.10). Following our matrix analysis, the dimension of the subspace W ⊥ n is given by

g n = dim W ⊥ n , n ≥ 0.
It corresponds to the number of nonzero singular values in the matrix S n = Λn 0 from the SVD (6.23).

In practice, the value of g n can be estimated numerically by some thresholding of the diagonal terms of S n . For a given threshold 0 < τ < 1, one considers that

g n = 0, if S n (1, 1) ≤ τ , the number of S n (i, i) such that S n (i, i) > τ S n (1, 1), otherwise. (6.15)
We have tabulated the numerical values of g n , using the rule (6.15) and various thresholds τ . This has led to the following claim.

Claim 6.10. he following ssertions holdF @iA he mtrix A 2N -1 hs full olumn rnkF iquivlentlyD r 2N -1 = 4N 2 F @iiA he mtrix A 3N hs full row rnkF iquivlentlyD r 3N = N F This claim, whose proof is still open, has the following consequences.

1. Any spherical harmonics of degree smaller than 2N is properly sampled on CS N , iFeF

W ⊥ n = Y n , n ≤ 2N -1.
Note that the critical degree 2N coincides exactly with the Shannon-Nyquist angular frequency if we consider trigonometric polynomials along an equatorial grid 1 with step π 2N .

2. The optimal degree d(N ) of Theorem 6.2 satises

d(N ) ≤ 3N ;
this implies that any spherical harmonics of degree larger than 3N is undersampled on CS N , iFeF

W n = Y n , n ≥ 3N + 1.
From now on, Claim 6.10 is assumed to perform further numerical approximations. Then, we need to select values of g n in the range 2N ≤ n ≤ 3N . When using the threshold τ = 10 -4 , with N increasing from N = 1 to N = 6, the observed values of g n obey the rule

g n =            2n + 1, 0 ≤ n ≤ 2N -1, 4(3N -n) -2, 2N ≤ n ≤ 3N -2, 3, n = 3N -1, 1, n = 3N. (6.16)
This suggests using (6.16) as an ansatz to infer the values of g n in the algorithm on the preceding page, instead of thresholding singular values. In the sequel, we proceed in this way, so the ansatz (6.16) gives the values corresponding to our numerical spaces.

The ansatz (6.16) is stronger than Claim 6.10. It further implies that d(N ) = 3N , and that for the intermediate degrees 2N ≤ n ≤ 3N , less and less spherical harmonics are correctly sampled when the degree increases. We insist on the fact that contrary to Claim 6.10, the ansatz (6.16) depends on the particular choice of the selected threshold τ in (6.15). However, it has proven to be worth to be retained in the sequel to numerically evaluate a spherical harmonics Lagrange basis.

Least-squares approximation of Legendre spherical harmonics

To go further with the numerical analysis of the interpolation space, we consider the distance of any Legendre spherical harmonic Y m n to the interpolation space U N ,

d(Y m n , U N ) = min u∈U N Y m n -u = S 2 (Y m n (x) -u(x)) 2 dσ 1/2
, |m| ≤ n ≤ 3N.

(6.17)

The distances are computed as the norms of the columns of the projector They are displayed in Figure 6.2, for the grid CS N with N = 64 ( N = 24 578 nodes); similar results are displayed in [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF] for other values of N . The blue color corresponds to the distance zero (up to rounding errors), which means that the function Y m n belongs to the interpolation space U N . We see again that any spherical harmonics of degree smaller than 2N is correctly sampled on CS N . On the contrary, the red color corresponds to the distance 1, which means that the function Y m n is orthogonal to the interpolation space U N , and is therefore completely undersampled. We observe some pattern which is reminiscent to a rhomoid ; roughly speaking,

I -Ũ3N Ũ 3N , [d(Y m n , U N )] |m|≤n≤3N = (I -Ũ3N Ũ 3N )(:, j) 2 1≤j≤(3N +1) 2 ;
Y m n is accurately approximated in the space U N if M n ≤ |m| < 2N , where n → M n is some increasing function; Y m n is orthogonal to U N , for |m| > 2N and for |m| < M n .
We refer to [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF] for further results, including various statistics of the distance, and a comparison with an interpolation space built by a direct SVD 2 of the full Vandermonde matrix A 3N .

Interpolation test cases

To nish with, we interpolate the following set of test functions on the sphere S 2 :

f 1 (x, y, z) = 1 + x + y 2 + yx 2 + x 4 + y 5 + x 2 y 2 z 2 , f 2 (x, y, z) = 3 4 exp -(9x-2) 2 4 -(9y-2) 2 4 -(9z-2) 2 4 , + 3 4 exp -(9x+1) 2 49 -9y+1 10 -9z+1 10 , + 1 2 exp -(9x-7) 2 4 -(9y-3) 2 4 -(9z-5) 2 4 , -1 5 exp -(9x -4) 2 -(9y -7) 2 -(9z -5) 2 , f 3 (x, y, z) = 1 9 [1 + tanh(-9x -9y + 9z)], f 4 (x, y, z) = 1 9 [1 + sign(-9x -9y + 9z)].
The function f 1 is polynomial and f 1 ∈ ⊕ n≤6 Y n . The functions f 2 and f 3 are regular and they have many Legendre spherical harmonics in their expansion. The function f 4 is discontinuous. In Figure 6.3, the interpolation errors with N = 2 and N = 4 for this set of functions is displayed.

Furthermore, we display in Figure 6.4 the uniform error and the root mean squared error (RMSE)

2 A SVD of A3N permits to dene an interpolation function whose L 2 norm is minimal, but whose degree is not minimal (in general). 

f i ) := f i | CS M -I N f i | CS M ∞ = max x∈CS M |f i (x) -(I N f i )(x)|, e 2 (N, f i ) := 1 (6M 2 +2) 1/2 f i | CS M -I N f i | CS M 2 = 1 6M 2 +2 x∈CS M |f i (x) -(I N f i )(x)| 2 1/2 .
For N large enough, f 1 ∈ U N , which gives a null error. The smooth function f 2 is interpolated with an error decreasing with N . This is also the case for the function f 3 , with a decreasing rate smaller than the one for f 2 . This reects the C p regularity of the functions f 2 and f 3 . Finally, as expected, the discontinuous function f 4 is not well interpolated. The RMSE decreases very slowly, and the uniform error does not decrease.

Conclusion

In this study, a methodology to associate a spherical harmonics subspace to the Cubed Sphere CS N has been introduced. The particular subspace is based on a specic echelon factorization of the Vandermonde matrix. This space seems promising in terms of approximation power. It is used in Chapter 7 to design the new quadrature rule from [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF].

Finally, this work took its origin in the numerical observation of the rank stated in Claim 6.10 and the ansatz (6.16). A full proof of this claim is an objective of further studies. Similarly, an analysis of the condition number of the matrix A n is required as well. Partial answers are given in Chapter 8, dealing with least squares as in [START_REF] Bellet | vest qures pheril rrmonis epproximtion on the gued phere[END_REF]. Also, further investigation of the symmetry properties may yield to some discrete Fourier analysis on the Cubed Sphere. Using the new interpolation procedure to various contexts is another future goal. An important goal is the application of this new framework to PDE's in meteorology.

6.A Special echelon orthogonal factorization 

A k ∈ R N ×m k D 0 ≤ k ≤ nD A n = A 0 A 1 • • • A n ∈ R N ×Mn , with M n = m 0 + • • • + m n . (6.18)
henD A n dmits n ehelon orthogonl ftoriztionD

A n = V n E n U n , (6.19) 
suh tht

the mtrix V n ∈ R N ×N is orthogonlD the mtrix U n ∈ R Mn×Mn is orthogonl nd lok digonlD so tht U n =    U 0 F F F U n    ∈ R Mn×Mn , with orthogonl mtries U k ∈ R m k ×m k , 0 ≤ k ≤ n, (6.20) 
the mtrix E n ∈ R N ×Mn is in ehelon formD nd suh tht

E n =         Λ 0 * • • • * 0 Λ 1 F F F F F F F F F F F F F F F * 0 • • • 0 Λ n 0 • • • • • • 0         ∈ R N ×Mn ,           
with full row rnk digonl mtries

Λ k = F F F 0 ∈ R g k ×m k @for some g k ≥ 0D nd noninresing positive digonlAD 0 ≤ k ≤ n.
(6.21) emrk 6.12F Similar factorization have already been introduced in the eld of robotics: see [START_REF] Escande | rierrhil qudrti progrmmingX pst online humnoidEroot motion genertion[END_REF] for a problem of lexicographical least-squares, solved by a factorization that looks like (6.19).

roofF The proof constructs the desired factorization (6.19), by induction on the number of blocks.

For n = 0 (one block), it is achieved by a singular value decomposition (SVD) of the matrix A 0 = A 0 . In this case, the matrix V 0 contains left singular vectors, the matrix U 0 = U 0 contains right singular vectors, and the diagonal of the matrix Λ 0 contains g 0 nonincreasing positive singular values, with g 0 = rank A 0 ≥ 0. Assume now (induction step) that the result holds for some n -1 ≥ 0 (n blocks). Then,

A n = A n-1 A n = V n-1 E n-1 U n-1 A n = V n-1 E n-1 V n-1 A n U n-1 0 0 I mn . (6.22)
Here, the matrix E n-1 has a suitable echelon form, and its number of diagonal coecients is given by r n-1 = g 0 + • • • + g n-1 . Then, we diagonalize the last N -r n-1 lines of the matrix V n-1 A n . More precisely, we consider an SVD of the matrix V n-1 (:, r n-1 + 1 : N ) A n ; there are orthogonal matrices V n ∈ R (N -r n-1 )×(N -r n-1 ) , U n ∈ R mn×mn , and a full row rank diagonal matrix Λ n , with g n nonincreasing positive values on the diagonal, such that

V n-1 (:, r n-1 + 1 : N ) A n = V n Λ n 0 U n . (6.23)
We deduce from (6.22) that

A n = V n-1   E n-1 (1 : r n-1 , :) V n-1 (:, 1 : r n-1 ) A n 0 V n Λ n 0 U n   U n-1 0 0 I mn = V n-1 I r n-1 0 0 V n   E n-1 (1 : r n-1 , :) V n-1 (:, 1 : r n-1 ) A n U n 0 Λ n 0   U n-1 0 0 U n = V n E n U n , with V n = V n-1 I r n-1 0 0 V n , U n = U n-1 0 0 U n , E n =   E n-1 (1 : r n-1 , :) V n-1 (:, 1 : r n-1 ) A n U n 0 Λ n 0 0   , (6.24) 
which provides the factorization (6.19) with the desired structure.

The proof of Theorem 6.11 provides an iterative algorithm to compute the factorization (6.19).

The initialization is an SVD A 0 = V 0 E 0 U 0 ; the number g 0 of nonzero diagonal coecients in E 0 gives the value r 0 = g 0 . The iteration n computes the SVD (6.23) and deduces V n , U n and E n with (6.24). The number g n of additionnal nonzero diagonal coecients determines the total number of diagonal coecients in E n , r n = r n-1 + g n . Note that the values of g n represent a number of nonzero singular values; in practice, either, they are theoretically known, either they are predicted, with some thresholding for instance.

The algorithm on page 97 is an implementation of this method in the case of Vandermonde matrices, for interpolation by spherical harmonics on the Cubed Sphere. In fact, the special structure of the factorization (6.19) has been designed to implement Theorem 6.2.

6.A.2 Consequences of the special echelon factorization

The special echelon orthogonal factorization (6.19) in Theorem 6.11, and its equivalent form A n U n = V n E n , are very rich. We enumerate below a list of information which is directly extracted from these decompositions.

For any 0 ≤ k ≤ n, consider the following orthogonal decomposition of the target space R N ,

R N = Ran A k ⊥ ⊕ Ker A k ; the rst M k columns in A n U n = V n E n give A k U n (1 : M k , 1 : M k ) = V n E n (:, 1 : M k ),
where we can deduce the range Ran A k :

the number r k := g 0 + • • • + g k of nonzero diagonal terms in E n (:, 1 : M k ) coincides with rank A k , iFeF r k = rank A k ;
the r k columns of V n (:, 1 : r k ) represent an orthonormal basis of the range Ran A k ; the N -r k columns of V n (:, r k + 1 : N ) represent an orthonormal basis of the null space Ker A k .

For any 0 ≤ k ≤ n, consider the following decomposition of the input block R m k , A n x -b 2 ;

R m k = W k ⊥ ⊕ W ⊥ k , W k := {u ∈ R m k : A k u ∈ Ran A k-1 }, W ⊥ k = {u ∈ R m k : u ⊥ W k }, ( 6 
(6.28)

any vector x ∈ R Mn is a solution to (6.28), if and only if,

E n (1 : r n , :) U n x = V n (:, 1 : r n ) b; (6.29)
in Ran Ũn , the minimal value (6.28) is reached exactly once: for x = Ũn α, where α is the unique solution to

Ẽn (1 : r n , :) α = V n (:, 1 : r n ) b.

(6.30)

The least squares study above, combined with the special structure of the blocks Λ k , shows that the least squares approximation in Ran Ũn is the minimal one for some reverse lexicographical order. Corollary 6.13 (Least squares approximation minimal for the reverse lexicographical order). gonE sider the lest squres prolem (6.28)D with the nottion of heorem TFIIF vet x = (x 0 , . . . , x n ) ∈ R m 0 × • • • × R mn e the lest squres pproximtion tht elongs to Ran Ũn D i.e. x = Ũn αD where Ũn is de(ned in (6.26)D nd α denotes the unique solution to (6.30)F henD x is the unique miniml solution to (6.28) in R Mn D for the reverse lexiogrphil order in R n+1 D whih mens tht for ny other lest squres pproximtion x = (x 0 , . . . , x n )D solution to (6.28) 

with x = x D ∃ 0 ≤ k ≤ n, x n 2 = x n 2 , x n-1 2 = x n-1 2 , . . . , x k+1 2 = x k+1 2 , x k 2 < x k 2 .
roofF The least squares approximations x = (x 0 , . . . , x n ) are parametrized using the linear system (6.29). Any coecient of U n x which is associated to a null column in a diagonal block Λ k , 0 ≤ k ≤ n, is a free parameter. The other coecients of U n x are given in Ũ n x; they are associated to positive terms in the diagonal blocks, and they are uniquely determined in term of free parameters with larger indices (backward substitution).

The n'th block of lines determine x n ; the special structure of Λ n implies that the coecients of U n (:, g n + 1 : m n ) x n are free parameters, but that the coecients of U n (:, 1 : g n ) x n are uniquely determined. Write

x n 2 = U n (:, 1 : g n ) x n 2 + U n (:, g n + 1 : m n ) x n 2 ;
therefore, building a minimal norm x n for the n'th block of equations means canceling the free parameters, iFeF setting U n (:,

g n + 1 : m n ) x n = 0.
More generally, as soon as x k+1 , . . . , x n are xed, the k'th block of lines determine x k . The special structure of Λ k implies that the coecients of U k (:, g k + 1 : m k ) x k are free, but that the coecients of U k (:, 1 : g k ) x k are uniquely determined in term of x k+1 , . . . , x n . Here again, the free parameters U k (:, g k + 1 : m k ) x k must be zero to minimize x k , due to

x k 2 = U k (:, 1 : g k ) x k 2 + U k (:, g k + 1 : m k ) x k 2 .
Lastly, if all of the conditions U k (:, g k + 1 : m k ) x k = 0, 0 ≤ k ≤ n, are fullled, then x = Ũn α ∈ Ran Ũn and is the unique solution determined with (6.30).

Chapter 7

Octahedral quadrature rule on the Cubed Sphere

Introduction

This chapter deals with a recent spherical quadrature rule, dened on the equiangular Cubed Sphere. This rule, originally introduced in [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF], is based on Lagrange interpolation described in Chapter 6.

The study takes benet from the symmetry group given in Chapter 5.

Numerical integration on the sphere has been considered by several authors. We refer to the review [START_REF] Hesse | xumeril integrtion on the sphere[END_REF]. The set of nodes and/or the associated weights are commonly identied by requiring exactness for a set of spherical harmonics, such as the spherical harmonics of degree smaller than a given value. For some optimal methods similar to Gauss quadratures, the nodes and the weights are both unknown; the associated set of equations is dicult. Some modern methods deal with the theory of t-designs, whose main purpose is to optimize the distribution of nodes, so that the quadrature rule with equal weights has degree of precision t. This theory has a mathematical and physical interest in itself. We refer to [START_REF] Brauchart | histriuting mny points on spheresX winiml energy nd designs[END_REF] for a review. For another class of methods, the weights are unknown, but the nodes are prescribed; this paper falls into this category.

Here the Cubed Sphere nodes are selected from the beginning as good quadrature nodes, and therefore, only the weights have to be identied. In [START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF], two examples of weights have been suggested. The rst one was based on some extended trapezoidal rule, attributing some area to each node. The second one was thought as a perturbation of the rst one with a design based on some optimization principle. See also [START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF] for another rule, including a Simpson like formula. Here we come back to the general question of the best choice of weights associated to the Cubed Sphere nodes. As in the general approach, we require exactness of the quadrature for a particular set of spherical harmonics. Using the space U N dened in Theorem 6.2 immediately delivers a quadrature rule. This quadrature is dierent from the ones mentioned above. The space U N remarkably enjoys invariance under the action of the group of the cube. This is somehow expected, since the group of CS N is in fact the group of the cube, (or of the octahedron), as stated in Theorem 5.3. As will be shown below, the new quadrature rule inherits this invariance. This property is highly desirable.

It is well known that group invariance is the backbone for the design of highly accurate spherical quadratures, [START_REF] Ahrens | ottionlly invrint qudrtures for the sphere[END_REF][START_REF] Lebedev | udrtures on sphere[END_REF][START_REF] Lebedev | e qudrture formul for the sphere of the IQIst lgeri order of ury[END_REF][START_REF] Sobolev | guture formuls on the sphere invrint under (nite groups of rottions[END_REF]. Refer for this to the review [START_REF] Hesse | xumeril integrtion on the sphere[END_REF].

The chapter is organized as follows. Section 7.2 establishes several rotational invariance properties of the interpolation space U N . In Section 7.3, the new quadrature is introduced. By construction, this quadrature is exact on the space U N . In addition, it is invariant under the octahedral group. This in particular implies that it is exact for a proportion of 15/16 of all (real) Legendre spherical harmonics. In Section 7.4, we display numerical results for a large series of test cases. It is observed that the new rule is only slightly suboptimal, when compared to the optimal Lebedev rules. This somehow supports the main Ansatz of this study, namely that the Cubed Sphere nodes are good quadrature nodes on the sphere. Lastly, Appendix 7.A reports URLs with some available quadrature rules, including an open archiv for the new rule.

Rotational invariance of the interpolation space

In this section, we study the invariance of the interpolation space U N under the symmetry group G of the Cubed Sphere CS N . (Recall that U N is dened in Theorem 6.2, and that G is the octahedral group (5.2), due to Theorem 5.3). We call rotated a function dened as follows.

Denition 7.1 (Rotated function). Assume that Q ∈ G leaves a set E invariant, iFeF Q E = E. Let f : E → R be a function dened on E. The rotated function, denoted by f (Q •), is the function f (Q •) : x ∈ E → f (Q x) ∈ R.
Our main invariance result is the following theorem. Theorem 7.2 (Invariance of the interpolation space). vet n ≥ 0F @iA he undersmpled suspe W n de(ned in (6.10) is invrint under GD i.e.

∀Q ∈ G, ∀u ∈ W n , u(Q •) ∈ W n . @iiA he suspe W ⊥ n is invrint under GD i.e. ∀Q ∈ G, ∀u ∈ W ⊥ n , u(Q •) ∈ W ⊥ n . @iiiA he interpoltion spe U N is invrint under GD i.e. ∀Q ∈ G, ∀u ∈ U N , u(Q •) ∈ U N . roofF Fix Q ∈ G, iFeF Q ∈ R 3×3 is an orthogonal matrix such that Q CS N = CS N . (i) If n = 0, W 0 = {0} is invariant under G. Fix now u ∈ W n ⊂ Y n with n ≥ 1. There exists v ∈ Y 0 ⊕ • • • ⊕ Y n-1 such that u| CS N = v| CS N , or equivalently, (u -v)| CS N = 0. Firstly, u(Q •) ∈ Y n and v(Q •) ∈ Y 0 ⊕• • •⊕Y n-1 . Secondly, (u(Q •) -v(Q •)) | CS N = (u-v)| CS N (Q •) = 0, and therefore u(Q •)| CS N = v(Q •)| CS N ;
here, the commutation between rotation and restriction is justied by the following lemma.

Lemma 7.3 (Rotation commutes with restriction). por ll

Q ∈ GD n ≥ 0D nd u ∈ Y 0 ⊕ • • • ⊕ Y n D u(Q •)| CS N = u| CS N (Q •) ∈ R CS N .
We postpone the proof of the lemma until the end of this section.

(ii) The result is a consequence of (i). Indeed,

x u ∈ W ⊥ n ⊂ Y n with n ≥ 0. Then u(Q •) ∈ Y n . Furthermore, for every v ∈ W n , u(Q •), v L 2 (S 2 ) = S 2 u(Q x)v(x)dσ = S 2 u(y)v(Qy)dσ = u, v(Q•) L 2 (S 2 ) ; (y := Q x). W n is invariant under G, so v(Q•) ∈ W n . Then v(Q•) is orthogonal to u because u ∈ W ⊥ n . We obtain u(Q •), v = u, v(Q•) = 0, which proves u(Q •) ∈ W ⊥ n . (iii) The space U N = W ⊥ 0 ⊕ • • • ⊕ W ⊥
d is a sum of invariant subspaces due to (ii).

Corollary 7.4 (Interpolation and symmetry). @iA he interpoltion opertor ommutes with ny

symmetry of the group GX ∀f ∈ R CS N , ∀Q ∈ G, [I N f ](Q •) = I N [f (Q •)].
@iiA he interpoltion opertor preserves the invrine propertyY in other

wordsD if f ∈ R CS N is inE vrint under GD i.e. ∀Q ∈ G, f (Q •) = f D then I N f is invrint under GD i.e. ∀Q ∈ G, [I N f ](Q •) = I N f F roofF (i) Firstly, f (Q •) ∈ R CS N and u = I N [f (Q •)] ∈ U N is the unique element of U N such that u| CS N = f (Q •). Secondly, v = I N f ∈ U N is the unique element of U N such that v| CS N = f . Due to Theorem 7.2.(iii), v(Q •) ∈ U N . By Lemma 7.3, v(Q •)| CS N = v| CS N (Q •) = f (Q •), which proves u = v(Q •). (ii) is an immediate consequence of (i). roof of vemm UFQF Firstly, Y 0 ⊕ • • • ⊕ Y n is invariant under the action of Q. Therefore [u(Q •) : x ∈ S 2 → u(Q x)] ∈ Y 0 ⊕ • • • ⊕ Y n , and u(Q •)| CS N is dened by u(Q •)| CS N = N i=1 u(Q x i )δ x i ∈ R CS N .
On the other hand, [u| 

CS N : x ∈ CS N → u(x)] ∈ R CS N ,
u| CS N (Q •) : x ∈ CS N → u(Q x) ∈ R CS N .
At every x = x i ∈ CS N , the two functions have the same value, u(Q x i ).

A new quadrature on the Cubed Sphere

In this section, we study a new quadrature rule on CS N ; it is dened by interpolation as follows.

Theorem 7.5 (Quadrature rule). vet u : S 2 → R e given funtionF he qudrture rule Q N is de(ned y

Q N u := S 2 I N [u| CS N ](x)dσ,
where I N : R CS N → U N is the interpoltion opertor de(ned in heorem TFPF @iA ithout loss of generlityD ssume tht the (rst sis funtion in U N is u 1 0 = 1 √ 4π @see he(niE tion TFTAF henD the formul Q N n e expressed s followsX

Q N u = N j=1 ω N (x j )u(x j ), with ω N ∈ R CS N suh tht [ω N (x j )] = V d ( Ẽ d ) -1 [ √ 4π 0 • • • 0] ; (7.1)
hereD the lower tringulr mtrix Ẽ d nd the orthogonl mtrix V d re given y the ftorizE

tion (6.14)F @iiA he formul Q N is ext on U N D i.e. ∀u ∈ U N , Q N u = S 2 u(x)dσ. @iiiA he rule Q N nd the weight ω N re invrint under GD i.e. ∀Q ∈ G, ∀u ∈ U N , Q N (u(Q •)) = Q N (u), nd ω N (Q •) = ω N .
roofF (i-ii) Firstly, if u ∈ U N , Q N exactly integrates u, since u coincides with I N u. In particular, for each basis function, denoted here by

u j ∈ U N with 1 ≤ j ≤ N , Q N u j = S 2 u j (x)dσ. For u 1 = 1 √ 4π , S 2 u 1 (x)dσ = √ 4π. For every 2 ≤ j ≤ N , u j ⊥ u 1 , which means S 2 u j (x)dσ = 0. Then, [Q N u j ] 1≤j≤ N = [ √ 4π 0 • • • 0] . Secondly, x ω N ∈ R CS N such that ω N (x i ) = S 2 I N [δ x i ]dσ, 1 ≤ i ≤ N . (7.2)
By linearity, we deduce from (6.6) that

Q N u = N i=1 ω N (x i )u(x i ) = [u(x i )] [ω N (x i )].
Using the basis functions, we obtain

(A d Ũd ) [ω N (x i )] 1≤i≤ N = [Q N u j ] 1≤j≤ N = [ √ 4π 0 • • • 0] ,
where the matrix A d Ũd ∈ R N × N , dened in Section 6.4, is non singular, and admits the QR factorization (6.14).

(iii) Fix Q ∈ G and u ∈ U N . By Theorem 7.2, u(Q •) ∈ U N . Thus, by (ii) and change of variable,

Q N (u(Q •)) = S 2 u(Q x)dσ = S 2 u(x)dσ = Q N (u) (x := Q x). Fix now 1 ≤ i ≤ N and u = I N δ x i ∈ U N . By Corollary 7.4, u(Q •) = I N [δ x i (Q •)] ∈ U N , with δ x i (Q •) = δ Qx i . Therefore by (7.2), Q N (u) = ω N (x i ) and Q N (u(Q •)) = ω N (Qx i ). Then, by invariance of Q N , ω N (x i ) = Q N (u) = Q N (u(Q •)) = ω N (Qx i ).
The quadrature rule exactly integrates the N spherical harmonics of U N . Taking benet from the rotational invariance, we prove furthermore that it exactly integrates an innite number of spherical harmonics.

Corollary 7.6. he qudrture rule Q N extly integrtes 15 16 of all rel vegendre spheril hrmonE isF wore preiselyD for ll |m| ≤ nD

Q N (Y m n ) = S 2 Y m n (x)dσ, if      n ≡ 1 (2), orD m < 0, orD m ≥ 0 nd m ≡ 1, 2, 3 (4); equivlentlyD Q N (Y m n ) = S 2 Y m n (x)dσ ⇒ n ≡ 0 (2), m ≥ 0 nd m ≡ 0 (4)F roofF Fix n ≥ 1 and |m| ≤ n. Then S 2 Y m n (x)dσ = 0. For well chosen n, m, we build a sym- metry Q ∈ G such that Y m n (Q •) = -Y m n . In such cases, we obtain Q N (Y m n ) = Q N (Y m n (Q •)) = -Q N (Y m n ), which proves Q N (Y m n ) = 0 = S 2 Y m n (x)dσ. Recall the spherical coordinates x(θ, φ) = (cos θ cos φ, cos θ sin φ, sin θ), φ ∈ [-π, π], θ ∈ [-π 2 , π 2 ], and Y m n (x(θ, φ)) := Y m n (θ, φ). gse IX n ≡ 1 (2) nd m ≡ 0 (4)F Then θ → P |m| n (sin θ) is odd, so is θ → Y m n (x(θ, φ)); hence, Y m n (Q x(θ, φ)) = Y m n (x(-θ, φ)) = -Y m n (x(θ, φ)), for Q :=   1 0 0 0 1 0 0 0 -1   . gse PX m < 0F Then φ → Y m n (x(θ, φ)) is odd, so, Y m n (Q x(θ, φ)) = Y m n (x(θ, -φ)) = -Y m n (x(θ, φ)), for Q :=   1 0 0 0 -1 0 0 0 1   .
gse QX m ≡ 1, 3 (4)F Then m(φ + π) ≡ mφ + π (2π), and

Y m n (Q x(θ, φ)) = Y m n (x(θ, φ + π)) = -Y m n (x(θ, φ)), for Q :=   -1 0 0 0 -1 0 0 0 1   . gse RX m ≡ 2 (4)F Then m(φ + π 2 ) ≡ mφ + π (2π), and Y m n (Q x(θ, φ)) = Y m n (x(θ, φ + π 2 )) = -Y m n (x(θ, φ)), for Q :=   0 1 0 -1 0 0 0 0 1   .
emrk 7.7F In Corollary 7.6 (and its proof ), the quadrature rule Q N can be replaced by any linear form Q : L 2 (S 2 ) → R which is invariant under the octahedral group G. In particular, the 15/16property of the corollary holds for any spherical quadrature with octahedral symmetry. Therefore Corollary 7.6 also holds for the Lebedev rules [START_REF] Lebedev | udrtures on sphere[END_REF].

emrk 7.8F The ratio 15/16 of the real Legendre basis is obtained asymptotically. In [START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF][START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF], a similar approach based on invariance properties reported an asymptotic ratio of 7/8 of the complex Legendre basis exactly integrated. Here, in the proof of Corollary 7.6, the real Legendre basis is used instead. Using this basis allows to prove that exact quadrature actually holds up to 15/16 of all spherical harmonics.

7.4 Numerical results

Symmetry invariance assessment

We begin by two numerical assessments related to interpolation in U N . First, we illustrate that the interpolation operator I N preserves the invariance property, as stated in Corollary 7.4.(ii). Fix N = 6 and consider the series of symmetric functions g i ∈ R CS N , described in Table 7.1. By construction, each function g i , 1 ≤ i ≤ 6, is constant along any orbit, iFeF ∀Q ∈ G, g i (Q •) = g i , and is supported by a set of symmetric nodes. For i ≤ 5, g i takes the value 1 along the orbit of a i ∈ CS N , and the value 0 otherwise. The orbit of a 1 contains the vertices of an octahedron. The orbit of a 2 contains the vertices of a cube. The orbit of a 3 contains the vertices of a cubaoctahedron. The orbit of a 4 is included in the edges of an octahedron. The orbit of a 5 is generic, with cardinal number 48. In Figure 7.1, we visualize how the symmetry is reected in the interpolating functions I N g i ∈ U N , 1 ≤ i ≤ 6. The octahedral symmetry predicted by Corollary 7.4.(ii) can be observed; the functions I N g i are constant along any orbit.

i g i a i | supp g i | 1 1 8 Q∈G δ Qa 1 [1 0 0] 6 2 1 6 Q∈G δ Qa 2 1 √ 3 [1 1 1] 8 3 1 4 Q∈G δ Qa 3 1 √ 2 [1 0 1] 12 4 1 2 Q∈G δ Qa 4 (1 + tan 2 π 6 ) -1/2 [1 0 tan π 6 ] 24 5 Q∈G δ Qa 5 (1 + tan 2 π 12 + tan 2 π 6 ) -1/2 [1 tan π 12 tan π 6 ] 48 6 g 1 + g 2 + g 3 + g 4 + g 5 98 
Table 7.1: Grid functions with octahedral symmetry. The function g i , 1 ≤ i ≤ 6, takes the value 1 on its support and is invariant under G.

Second, we assess the invariance of the interpolation space, stated in Theorem 7.2, and the commutation between interpolation and rotation, stated in Corollary 7.4.(i). For that purpose, for each basis function u j ∈ U N , we compare u j (Q 

•) = [I N u j ](Q •) with I N [u j (Q •)]. Indeed,
∀1 ≤ j ≤ N , ∀Q ∈ G, [I N u j ](Q •) = I N [u j (Q •)].
If this condition is achieved, then for each basis function u j , u j (Q

•) = [I N u j ](Q •) ∈ Ran I N = U N ,
which implies Theorem 7.2.(iii) by linearity. This also implies Theorem 7.2.(ii), due to u j (Q •) ∈ Y n ∩ U N = V n . We compare the functions on a ne grid CS M (M = 33), by computing the relative error

N,j (Q) := max x∈CS M |u j (Q x) -I N [u j (Q •)](x)| max x∈CS M |u j (x)| .
Then we compute the maximal error N , and we repeat the procedure for several values of N :

N := max{ N,j (Q), Q ∈ G, 1 ≤ j ≤ N }, 1 ≤ N ≤ 16. (7.3) 
The results reported in 

u j (Q •) = I N [u j (Q •)], Q ∈ G, up to relative error N (7.3).

Quadrature weight

We have computed the quadrature weight ω N ∈ R CS N for 1 ≤ N ≤ 32, and N = 64. Some of them are displayed in Figure 7.2. As can been observed, the weight is positive, ω N > 0, and the maximum value is reached at the center of a panel. Moreover, some statistics of the weights are given in Figure 7.3. It reveals that the distribution of the weights ω N is quasi-uniform. In particular,

max ω N min ω N ≈ √ 2.
We recognize the ratio between the surface element at the center of a panel of CS N , and the smallest surface element of a panel, as it is derived in [START_REF] Ronchi | he ued sphereX new method for the soE lution of prtil di'erentil equtions in spheril geometry[END_REF]Eq. (20)]. 

Quadrature of test functions

We test the accuracy of the quadrature formula Q N on the series of functions reported in Table 7.3.

They are displayed in Figure 7.4. These functions serve as testing functions for quadrature assessment. References are indicated in Table 7.3. The exponential function f 1 is a smooth, non trivial function. The Franke function f 2 is a standard test case. The function f 3 is smooth, except near the South pole, where it has an innite spike. The cosine cap function f 4 is continuous but is not dierentiable on the circle z = √ 3

2 . The function f 5 is the characteristic function of a spherical cap; it is not continuous. Similarly, the discontinuous function f 6 represents an hemisphere; it is a standard test function.

We report in Table 7.4 the quadrature error

η N (f i ) = S 2 f i dσ -Q N f i , N = 1, 2, 4, 8, 16, 32, 64, 1 ≤ i ≤ 6.
Moreover, Table 9.1 reports a rate of convergence r N (f i ), dened by the equation

η 2N (f i ) = η N (f i ) 2 r N (f i ) .
Note that the computations have been performed with Matlab, in double precision. In particular the machine epsilon is approximately 2.2 × 10 -16 ; we do not compute the rate when the relative error is close to this value. For the smooth function f 1 , the error rapidly reaches a value which is about 10 -14 . For the Franke function f 2 , a thinner grid is required to reach such values, but a very fast 

N N η N (f 1 ) η N (f 2 ) η N (f 3 ) η N (f 4 ) η N (f 5 ) η N (f 6 ) 1 
η N (f i ) = | S 2 f i dσ -Q N f i |. N r N (f 1 ) r N (f 2 ) r N (f 3 ) r N (f 4 ) r N (f 5 ) rN (f 1 ) rN (f 2 ) rN (f 3 ) rN (f 4 ) rN (f 5 ) 1 

Sensitivity to the grid orientation

Here we consider more closely the accuracy of the rule Q N : we modify randomly the orientation of the grid, [START_REF] Fornberg | yn spheril hrmonis sed numeril qudrture over the surfe of sphere[END_REF][START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF]. We compute

N (f i , Q) = S 2 f i dσ -Q N f i (Q •) ,
where Q browses a set of 1000 randomly selected orthogonal matrices (uniform law in [0, 2π] for the Euler angles, and uniform law in {-1, 1} for the orientation). The worst error, the average error and their ratio are dened by

ε N (f i ) = max Q N (f i , Q), ¯ N (f i ) = 1 1000 Q N (f i , Q), ρ N (f i ) = ¯ N (f i ) ε N (f i ) .
The worst error ε N (f i ) and the ratio ρ N (f i ) are displayed1 in Figure 7.5. We report in Table 9.1 a convergence rate rN (f i ) of the average error ¯ N (f i ), dened by

¯ 2N (f i ) = ¯ N (f i ) 2 rN (f i ) .
The worst errors ε N (f 1 ) and ε N (f 2 ) fastly decrease, and ε N (f 6 ) is zero, up to rounding errors. This indicates that the quadrature rule Q N eciently integrates the smooth functions f 1 , f 2 , and the symmetric cap function f 6 , independently of the grid orientation. For the function f 4 , which is continuous and non dierentiable, the worst error ε N (f 4 ) decreases at constant rate. The decrease of the worst error ε N (f 5 ) of the generic cap function f 5 , which is discontinuous, is slower. And for the spike function f 3 , the worst error ε N (f 3 ) slowly decreases, with oscillations. 

(f i , Q) = | S 2 f i dσ-Q N f i (Q •)|, where Q scans a set of 1000 random orthogonal matrices. Left: worst error ε N (f i ). Right: ratio ρ N (f i ) = ¯ N (f i )/ε N (f i )
of the average error divided by the worst one.

Roughly speaking, Figure 7.5 indicates that

¯ N (f i ) ≈ 0.25ε N (f i ), i = 3, ¯ N (f 3 ) ≈ 0.025ε N (f 3 ).
Except for f 3 , the worst error is not very large in comparison with the average error (factor 4). This indicates that the result is almost insensitive to the grid orientation. For the function f 3 with a spike, the situation is dierent (factor 40); the error is sensitive to the grid orientation. Concerning the speed of convergence, we note rN (f 3 ) ≈ 1 for the spike function, rN (f 5 ) ≈ 1.4 for the discontinuous cap function, rN (f 4 ) ≈ 2.6 for the continuous one. The average errors for f 1 , f 2 and f 6 converge fastly, since it was already the case for the worst errors.

Comparison with other quadrature rules

We compare our quadrature rule Q N with some spherical quadrature rules of the literature, summarized in Table 7 Rules on the Cubed Sphere We use two other rules on the Cubed Sphere; CS-BC18 is a correction of some bivariate trapezoidal rule, CS-CP18 is an octahedral rule which minimizes some least-square error concerning the integration of Legendre spherical harmonics.

Optimal quadrature rules We also use optimal quadrature rules, whose distribution of nodes is optimized. Firstly, our rule is invariant under the octahedral group G, so we compare with the Lebedev rule, which is an optimal octahedral rule. Indeed, the optimal grids/weights of Lebedev maximize the degree of precision, under the constraint of invariance under G.

Secondly, our weights are quasi-uniform, so we compare with spherical t-designs. This rules have equal weights and degree of precision t; the associated spherical grids have ∼ t 2 2 nodes, which is the optimal order.

Results are given on Figure 7.6. The worst error after 1000 random orthogonal matrices is plotted related to the number of grid points using dierent quadrature rules. Comparison on the Cubed Sphere Among the quadrature rules on CS N , the new rule Q N outperforms CS-BC18 for the smooth functions f 1 and f 2 , and for the symmetric cap function f 6 . The rules Q N and CS-CP18 give similar accuracy for most of the cases, with the following exceptions. The rule Q N integrates f 1 more accurately than CS-CP18 before convergence, and Q N converges slightly faster than CS-CP18 for f 2 .

Comparison with optimal rules For the smooth functions f 1 and f 2 , the rules Q N and t-design have similar accuracy, whereas the Lebedev rule converges slightly faster. For the function f 3 with a spike, the worst errors are almost similar; they decay slowly with oscillations. For the cap functions f 4 and f 5 , the methods converge slowly with similar accuracy. For the symmetric cap function f 6 , Q N and the Lebedev rule are exact (up to rounding errors) and give better accuracy than the t-design rule.

Overall, the rule Q N on a xed grid CS N displays remarkable accuracy, compared to optimal quadrature methods, which require optimal grids (Lebedev and t-design rules).

Accuracy of the new quadrature rule

The quadrature rule Q N is designed to integrate exactly any spherical harmonics belonging to the space U N . In addition, it integrates 15/16 of ll Legendre spherical harmonics (see Corollary 7.6).

Here, we numerically display detailed accuracy properties of the rule Q N .

First, for a selected set of tolerances = 10 -p , we give the degree of precision d N ( ), dened as the largest integer such that

∀|m| ≤ n ≤ d N ( ), S 2 Y m n dσ -Q N Y m n ≤ .
The results are reported in Table 7.7. It is observed that except for N = 3, 4, 64, the degree d N (10 -14 ) is 2N +1 if N is odd, and 2N +3 if N is even. For the three exceptions, the degree is found higher than the generic one. We have d N (10 -14 ) = 4N -1 for N = 3, 4, and d 64 (10 -14 ) = 2 • 64 + 11.

Furthermore, the Table 7.7 implicitly displays an accuracy information obtained for some of the Legendre spherical harmonics that are not exactly integrated. For example in the case N = 8, the rst error above the threshold 10 -14 belongs to the interval (10 -6 , 10 -4 ]. This error is obtained for the degree n = 20 (since the rule is exact for odd degrees).

Second, we focus on the quadrature errors

η(Y m n ) = S 2 Y m n dσ -Q N Y m n , n ≡ 0 (2), m ≥ 0 and m ≡ 0 (4). (7.4) 
Here, we consider the series of the 1/16 of all the Legendre spherical harmonics which are possibly non exactly integrated by Q N , (see Corollary 7.6). We have computed the quadrature error for this series for n ≤ 1024, and for the two grids CS N with N = 8 (386 nodes), and N = 31 (5768 nodes).

The computed errors are displayed in Figure 7.7 using both an histogram form, and a cumulative distribution function. As observed, some errors are zero (up to rounding errors). This is consistent with the data in Table 7.

7 (if n ≤ d N (10 -14 ), η(Y m n ) ≤ 10 -14
). Note also that the largest obverved errors belong to the interval [START_REF] Bellet | wultiresolution greedy lgorithm dedited to re)etive tomogrphy[END_REF][START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF].

Finally, we further develop these observations by comparing the rule Q N with the Lebedev rules.

As noted in Remark 7.7 above, errors with the Lebedev quadrature can occur only with the same set of Legendre functions (referred to as the 1/16 serie). Therefore we numerically compare the accuracy of the Lebedev rules with the rule Q N on this series. Figure 7.7 reports a comparison between the two Lebedev grids with 434 nodes and 5810 nodes and the Cubed Sphere rule Q N with 386 nodes (N = 8) and 5810 nodes (N = 31), respectively. It is observed that the Lebedev rules exactly integrate a larger set of spherical harmonics; this was somehow expected, since the Lebedev rules are dened to maximize the degree of precision over octahedral grids. But surprisingly, the distribution of the largest errors of the Lebedev rule is very similar with the one of the rule Q N .

In particular, the largest errors of Q N , dened on the xed octahedral grid CS N , are not above the largest errors of the Lebedev's optimal grid. We even notice on the cumulative density function plots that the number of errors below a moderate tolerance can be slightly larger with the rule Q N ; this is observed in particular with N = 31 and = 10 -7 . These observations indicate the interest of the rule Q N when compared with an optimal rule. the cumulative density function (cdf ) in logarithmic scale for both rules is reported. On these plots, the range of the logarithmic error log(η + 10 -15 ) has been uniformly divided into 128 classes; for any class [c 1 , c 2 ), the probability (top line) represents the percentage of errors η such that 10 c 1 ≤ η + 10 -15 < 10 c 2 , whereas the cumulative density (bottom line) represents the percentage of errors η such that η + 10 -15 < 10 c 2 . As a conclusion, the Lebedev's rules exactly integrate more spherical harmonics, but the distributions of the largest errors are similar; moreover, for a large grid, the percentage of errors below a moderate threshold ( = 10 c 2 ) is larger for the rule Q N (bottom-right with > 10 -7 ).

N N d N (10 -14 ) d N (10 -12 ) d N (10 -10 ) d N (10 -8 ) d N (10 -6 ) d N (10 -

Conclusion

We have designed a new quadrature rule Q N on the Cubed Sphere CS N . It has the property to be quasi-uniform with positive weights. The numerical results can be compared in accuracy with optimal rules such as t-designs and Lebedev rules. This supports the claim of the approximation power of the Cubed Sphere. Among the questions open, a better convergence analysis must be performed. Proving the positivity of the weights is also an important goal. Overall, the symmetry properties of the Cubed Sphere as a support for quadrature seems a promising topic.

7.A Quadrature rules data

The data for the various rules used in this study can be found as follows:

The new rule associated to the Cubed Sphere nodes is available on the open archiv https://hal.archives-ouvertes.fr/hal-03223150/file/xyzwCSN.zip For the Lebedev rules, we have used the Matlab function getLebedevSphere (by R.M. Parrish).

The code is available on https://fr.mathworks.com/matlabcentral/fileexchange/27097-getlebedevsphere The t-designs have been found on R.S. Womersley webpage https://web.maths.unsw.edu.au/~rsw/Sphere/EffSphDes/sf.html Chapter 8 Least squares approximation on the Cubed Sphere

Introduction

This chapter, extracted from [START_REF] Bellet | vest qures pheril rrmonis epproximtion on the gued phere[END_REF], studies least squares tting by a spherical harmonic on the Cubed Sphere grid.

We consider the approximation of functions dened on the Cubed Sphere by means of spherical harmonics. Assume that a grid function y ∈ R CS N is known, which means that y(ξ), ξ ∈ CS N , are values given at the nodes ξ of CS N . We approximate these data by a spherical harmonic f ∈ Y D , where

Y D = Y 0 ⊕ • • • ⊕ Y D is the space of spherical harmonics with degree at most D. The standard least squares approximation problem is inf f ∈Y D ξ∈CS N |f (ξ) -y(ξ)| 2 . (LS)
Our main observation is that the choice D = 2N -1 leads to a well posed and well conditioned problem. In addition, the resulting spherical harmonic possesses interesting properties for approximating a function given at the nodes of CS N only. These facts are assessed theoretically and numerically hereafter.

In [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF], we have introduced a spherical harmonics subspace dedicated to Lagrange interpolation on the Cubed Sphere, as presented in Chapter 6. In practice, this space is a direct sum

Y 2N -1 ⊕ Y . The second subspace Y complements Y 2N -1 ; it is such that Y Y 2N ⊕• • •⊕Y 3N . This interpolation
framework has been used in [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF] to dene new spherical quadrature rules of accuracy comparable to optimal ones (Lebedev rules), as presented in Chapter 7. Here, we show that the rst subspace Y 2N -1 is a suitable choice if one wants a least squares approximant instead of an interpolant.

Approximating and interpolating data on the sphere by spherical harmonics is an old and important topic. It is still widely used nowadays in many areas in physics such as quantum chemistry, numerical climatology, cosmology, gravitation, neutronic, etc. It is also central in harmonic analysis on spheres and balls since it is the three dimensional counterpart of trigonometric approximation. For fundamental and applied aspects of spherical harmonics analysis, refer to the two recent monographs [START_REF] Atkinson | pheril hrmonis nd pproximtions on the unit sphereX n introdution[END_REF][START_REF] Dai | epproximtion theory nd hrmoni nlysis on spheres nd lls[END_REF] (theory and applications). Concerning applications in geomathematics, many chapters in the reference [START_REF] Freeden | rndook of qeomthemtis[END_REF] are concerned with spherical harmonics. Regarding specically least squares, recent works include [START_REF]egulrized lest squres pproximtions on the sphere using spheril designs[END_REF][START_REF] Hesse | L 2 error estimtes for polynomil disrete penlized lestE squres pproximtion on the sphere from noisy dt[END_REF].

The outline is as follows. In Section 8.2 the setup of the problem is given. A general positive weight function is included to dene the least squares functional. Theoretical results are given in Section 8.3. These results in particular concern estimates of the condition number of the collocation matrix. Section 8.4 is devoted to the structure of the matrix involved in the least squares problem (LS). In particular, the attractive block structure of this matrix is described in case of a rotationally invariant weight function. Finally, various numerical results are reported in Section 8.5. 123

Setup of the Least Squares problem

Our notation is as follows. For any N ≥ 1, the equiangular Cubed Sphere CS N is a set of N = 6N 2 + 2 nodes ξ ∈ S 2 , dened in (5.1). The space of grid functions R CS N has been introduced in Subsection 6.2.2; for any function g :

x ∈ S 2 → g(x) ∈ R, the grid function g| CS N ∈ R CS N is dened by g| CS N (ξ) = g(ξ), ξ ∈ CS N .
The spherical harmonic Y m n with index (n, m) is dened in spherical coordinates (θ, φ) by ( 6.3);

it is such that

Y m n (x(θ, φ)) = q m n (sin θ) • (cos θ) |m| • sin mφ, m < 0, cos mφ, m ≥ 0, (8.1) 
where x(θ, φ) is dened in (6.2), and q m n is the polynomial of degree n -|m|, with the parity of n + |m|, dened by

q m n (t) = (n+1/2)(n-|m|)! π(n+|m|)! • d |m|+n dt |m|+n 1 2 n n! (t 2 -1) n •    -1, m < 0, 1 √ 2 , m = 0, 1, m > 0. (8.2) 
For any D ≥ 0, the space Y D of spherical harmonics with degree at most D, given by (6.5), has dimension dim Y D = (D + 1) 2 .

Let ω(ξ) > 0, ξ ∈ CS N , be a given positive weight function. Let y(ξ), ξ ∈ CS N , be a set of data given at the nodes of the CS N . We dene a functional L by

f → L(f ) = ξ∈CS N ω(ξ)|f (ξ) -y(ξ)| 2 . (8.3) We consider the least squares problem: nd f ∈ Y D solution of inf f ∈Y D L(f ). (WLS)
We also use the quadrature rule Q associated to ω: for f : S 2 → R,

Q(f ) = ξ∈CS N ω(ξ)f (ξ) = S 2 f (x)dσ -e N (f ), (8.4) 
where e N denotes the quadrature error. In the particular case where the data y are such that y = g| CS N for a given function g, we have

L(f ) = f -g 2 L 2 (S 2 ) -e N (|f -g| 2 ). (8.5) 
For xed values of N and D, we call the ndermonde mtrix of the problem the rectangular matrix A D N dened by

A D N = Y m n (ξ) ξ∈CS N |m|≤n≤D ∈ R N ×(D+1) 2 . (8.6) 
We dene the diagonal matrix Ω N ∈ R N × N by

Ω N = diag(ω(ξ)) ξ∈CS N ∈ R N × N . (8.7) 
In vector form, the problem (WLS) is expressed as

inf f ∈R (D+1) 2 Ω 1/2 N A D N f -y 2 , (8.8) 8.2 
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where y = [y(ξ)] ξ∈CS N ∈ R N . Uniqueness for (8.8), or equivalently for (LS) or (WLS), is equivalent to the injectivity of A D N . In this case, (8.8) is equivalent to the linear system 

A D N Ω N A D N f = A D N Ω N y.
IDFT[ f ](ξ) = 0≤|m|≤n≤D f m n Y m n (ξ), ξ ∈ CS N , = (A D N ) f (ξ).
This means that in matrix form, A D N coincides with the IDFT operator. Therefore in terms of DFT/IDFT transforms, the solution f ∈ Y D of (8.9

) has coecients f = [ f m n ] solution of DFT IDFT[ f ] -y = 0.
For any N , there is a maximal degree D such that the matrix A D N is injective (full column rank), thus guaranteeing that (WLS) has a unique solution. The proof consists in observing that such degrees D form a nonempty set of integers. We have rank A D N ≤ min ( N , (D + 1) 2 . Therefore assuming that A D N has full column rank implies that (D + 1) 2 ≤ N which means (ii) The condition number cond(A D N N ) is bounded above for N → +∞.

D ≤ N 1/2 -1 ≈ 2.45N -1.
(P)

In other words, the matrix A D N N is required to satisfy both injectivity and asymptotic stability. In what follows, we assess that

D N = 2N -1 (8.11)
is a natural candidate for (P) to be fulllled. emrk 8.1F Note that the value D = 2N -1 corresponds to the Nyquist cuto angular frequency of a signal sampled with stepsize π/(2N ) (one dimensional problem). Note also that for a given integer N , it may exist D > 2N -1 such that A D N is injective. However, we are interested in a generic value of D, expressed in function of N such that the property (P) holds.

In Section 8.3, several theoretical results are proved, supporting (8.11). And Section 8.5 reports numerical results further supporting this claim.

Theoretical results

In this section we prove several facts supporting that D = 2N -1 is a truncation value fulllling the property (P). Specically we will show that 1. For 1 ≤ N ≤ 4, the condition D ≤ 2N -1 is equivalent to the injectivity of the matrix A D N , (Proposition 8.4).

2. For N ≥ 5, we show that D ≤ N + 2 implies injectivity of the matrix A D N (Proposition 8.5).

Combined with (8.2), this gives that a condition on the largest D for A D N to be injective is that 

N + 2 ≤ D ≤ 6N 2 + 2 -1 3 
Y -2N 2N (x(θ, φ)) = q -2N 2N (sin θ) • cos 2N θ • sin(2N φ).
By shifting the angle φ by π/4 we obtain f N ∈ Y 2N dened by

f N (x(θ, φ)) = Y -2N 2N (x(θ, φ -π 4 
)). 

M N := x(θ, φ) : θ ∈ [-π 2 , π 2 ], φ ≡ π 4 ( π 2N ) . (8.13) 
Along these meridians, the longitude angle φ is such that 2N (φ -π 4 ) ≡ 0 (π), hence For the converse, we x D ≤ 2N -1 and we prove that the linear map f ∈ Y D → [f (ξ)] ξ∈CS N ∈ R 6N 2 +2 is injective. So we x f ∈ Y D such that f (ξ) = 0 for every ξ ∈ CS N and we prove that f = 0. First, we introduce 2N meridian circles associated to the longitudes φ ≡ π 4 ( π 2N ),

f N (x(θ, φ)) = q -2N 2N (sin θ) • cos 2N θ • sin 2N (φ -π 4 ) = 0.
C (ψ) = {x(θ, ψ), θ ∈ [-π 2 , π 2 ]} ∪ {x(θ, ψ + π), θ ∈ [-π 2 , π 2 ]}, ψ ≡ π 4 ( π 2N ),
and we prove that f is null on these great circles, iFeF

f | C (ψ) = 0, ψ ≡ π 4 ( π 2N ), (8.15) 
where f | C (ψ) denotes the restriction of f to C (ψ). 

N + 2 ≤ D ≤ N 1/2 -1 (≈ 2.45N -1). roofF Fix N ≥ 5 and D ≤ N + 2. Consider f ∈ Y D such that f (ξ) = 0 for every ξ ∈ CS N . For ψ = -π 4 , π 4 , C (ψ) contains 4N points from CS N , which implies f | C (ψ)=0 , ψ = ± π 4 .
The two considered circles intersect at the poles (0, 0, ±1). Therefore any tangential derivative of f is zero at the poles, and each pole is a zero of order at least 2. Next, for any other angle ψ ≡ π 4 ( π 2N ), C (ψ) contains at least 2N + 2 zeros of f on CS N , and the poles as two additional zeros of order 2. Rolle's Theorem implies that the derivative of f | C (ψ) (identied with a trigonometric polynomial) has 2N +6 zeros. Since it is a trigonometric polynomial with degree at most D and 2N +6 ≥ 2D +1, we obtain (8.15). And we conclude as in the proof of Lemma 8.3. emrk 8.6F In the proof with N ≥ 5, the bottleneck on the degree comes from the meridian circles that do not contain 4N points of CS N . If there were 4N points per meridian circle, one would obtain the degree 2N -1.

As in the proof of Lemma 8.3, the function f N dened in (8.12) vanishes on the set M N dened in (8.13). This implies that f N vanishes at all nodes of the four equatorial panels (I)(IV) of CS N . Regarding panels (V) and (VI), f N satises the estimate

|f N (x(θ, φ))| ≤ γ N • cos 2N θ, θ ∈ [-π 2 , π 2 ], φ ∈ R.
(8.17) The constant γ N is

γ N = 4N +1 2π • √ (4N )! 2 2N (2N )! ∼ 1 π 1/2
2N π 1/4 (≈ 0.504 N 1/4 ).

(8.18) (The Stirling formula has been used). The behaviour of f N on the north panel (V) and south panel (VI) is obtained by inspecting the nodes located outside the set M N in (8.13), where the estimate (8.17) holds. Let H N ⊂ CS N be the set of nodes dened by It turns out (see Figure 8.1) that

H N := 1 r (u, v, ±1) : r = (1 + u 2 + v 2 ) 1/2 , u = tan iπ 2N , v = tan jπ 2N , -N 2 < i, j < N 2 ,
CS N \ M N ⊂ H N . (8.20)
Furthermore, the number of nodes in the set H N is given by 

|H N | = 2(N -1)(N -3), if N is odd, 2(N -2)(N -4), if N is even. ( 8 
σ min (A D N ) 2 ≤ γ 2 N • |H N | • 2 3 2N ∼ N →+∞ N 2N π 3/2 2 3 2N → N →+∞ 0,
cond(A D N ) 2 ≥ N |H N | • 1 4πγ 2 N • 3 2 2N ∼ N →+∞ 1 4 π 2N 1/2 3 2 2N +1 → N →+∞

+∞,

where N = 6N 2 + 2F sn prtiulrD lim 

N →+∞ cond (A 2N N ) A 2N N = +∞.
σ min (A D N ) 2 = inf f ∈R (D+1) 2 f =1 f A D N A D N f .
With the Fourier-like expansion (6.4), we obtain f

A D N A D N f = A D N f 2 = ξ∈CS N f (ξ) 2 , so that σ min (A D N ) 2 = inf f ∈Y D f L 2 (S 2 ) =1   ξ∈CS N f (ξ) 2   .
Let f N be the function dened in (8.12); then f N is a rotation of the unitary function

Y -2N 2N ∈ Y D , so f N ∈ Y D with f = 1, which proves that σ min (A D N ) 2 ≤ ξ∈CS N f (ξ) 2 .
Using CS N = (CS N ∩ M N ) ∪ (CS N ∩ H N ) and that f N ≡ 0 on M N , we deduce

σ min (A D N ) 2 ≤ ξ∈CS N ∩H N f (ξ) 2 . If H N = ∅, we have σ min (A D N ) 2 = 0 and (i) is proved. Otherwise, σ min (A D N ) 2 ≤ |H N | max ξ∈H N f (ξ) 2 ,
where |H N | is given by (8.21). Using (8.17), we have

max ξ∈H N f (ξ) 2 ≤ γ 2 N c 2N , with c = max ξ∈H N cos 2 θ(ξ). For any ξ = 1 (1+u 2 +v 2 ) 1/2 (u, v, ±1) ∈ H N , with |u|, |v| < 1, the latitude angle θ(ξ) is such that cos 2 θ(ξ) = 1 -sin 2 θ(ξ) = 1 - 1 1+u 2 +v 2 < 2
3 , which proves that c < 2 3 .

(ii) If A D N is injective, the condition number is the ratio

cond(A D N ) = σ max (A D N ) σ min (A D N )
, where σ min (A D N ) has been bounded from below in (i), and σ max (A D N ) denotes the largest singular value of A D N . The square σ max (A D N ) 2 is the largest eigenvalue of A D N A D N and it is the maximum Rayleigh ratio

σ max (A D N ) 2 = sup f ∈R (D+1) 2 f =1 f A D N A D N f = sup f ∈Y D f L 2 (S 2 ) =1 ξ∈CS N f (ξ) 2 .
With the particular choice f

(x) = Y 0 0 (x) = 1 √ 4π
we obtain the lower bound σ max (A D N ) 2 ≥ N 4π .

Structure of the normal matrix

In this section, we consider the problem (WLS) and the matching quadrature rule (8.4). Recall that the matrix attached to (WLS) is the matrix A D N Ω N A D N in (8.9). We show in Theorem 8.8 below how close to an orthonormal system the set of functions (Y m n ) is, for D a xed integer. Next, Section 8.4.2 considers the particular case where the weight function ω(ξ) has the cubic symmetry. In this case, a suitable ordering of the indices n and m leads to a particular block diagonal structure of the matrix A D N Ω N A D N , which is fully specied.

Least squares and quadrature rule accuracy

Suppose the integer D xed and consider the least squares problem (WLS) in Section 8.2. Proving the well posedness of (WLS) amounts to establish bounds for the condition number of the matrix The functions Y m n are orthonormal for the inner product •, • L 2 (S 2 ) . However, for the discrete product (., .) ω , we only have (Y m n , Y m n ) ω ≈ δ nn δ mm . Let E D N be the symmetric matrix dened by 

A D N Ω N A D N . We have A D N Ω N A D N =   ξ∈CS N ω(ξ)Y m n (ξ)Y m n (ξ)   |m|≤n≤D |m |≤n ≤D ∈ R (D+1) 2 ×(D+1) 2 .
E D N = e N (Y m n Y m n ) |m|≤n≤D |m |≤n ≤D ∈ R (D+1) 2 ×(D+1) 2 .
A D N Ω N A D N ----→ N →∞ I (D+1) 2 .
woreoverD if the rule onverges with order p > 0D

i.e. ∀f ∈ Y 2D , ∃C f ≥ 0, ∀N ≥ 1, |e N (f )| ≤ C f N -p D then A D N Ω N A D N = I (D+1) 2 + O 1 N p .
The relation (8.25) expresses the fact that the matrix A D N Ω N A D N is close to the identity, assuming that the error matrix entries are small. This is in particular the case when ω denes an accurate quadrature rule on the space Y 2D . This will require that D is not too large compared to N . On the contrary, for large values of D, the entries in E D N are not a priori small. 

Y m n | CS N , Y m n | CS N ω N = S 2 Y m n (x)Y m n (x) dσ -e N (Y m n Y m n ).
Since the family (Y m n ) 0≤|m|≤n≤D is orthonormal in L 2 (S 2 ), we have

S 2 Y m n (x)Y m n (x) dσ = Y m n , Y m n L 2 (S 2 ) = 1, if (n, m) = (n , m ), 0, otherwise.
This proves (8.25). The symmetry of E D N is obvious. The weight function ξ ∈ CS N → ω(ξ) plays the role of a parameter in the problem (WLS). Here we consider the particular case where ω(ξ) has the cubic symmetry. This property has been considered in [START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF], [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF].

Theorem 8.9. essume tht ω : CS N → (0, ∞) is invrint under the symmetry group G of the ue {-1, 1} (n, m)D nd olumn index (n , m )F hen the following onditions hold @iA n ≡ n (2) @sme prity for the degreesAY @iiA m, m ≥ 0D or m, m < 0 @sme sign for the ordersAY @iiiA m ≡ m (2) @sme prity for the ordersAY @ivA if m, m ≡ 0 (2)D then m ≡ m (4)F roofF The principle of the proof is close to the one of Corollary 7.6 ( [9, Corollary 10]). By Theorem 5.3, the group of the Cubed Sphere coincides with the group G of the cube, given by (5.2).

Therefore, the quadrature error denes a linear form

e N : Y 2D → R, e N (g) = S 2 g(x) dσ - ξ∈CS N ω(ξ)g(ξ),
which is invariant under G, iFeF ∀Q ∈ G, e N (g(Q •)) = e N (g). In the sequel, for all (n, m) and (n , m ) violating at least one of the conditions @iAE@ivA in Theorem 8.9, we consider g = Y m n Y m n ∈ Y 2D , and we exhibit a matrix Q ∈ G satisfying g(Q x) = -g(x). This is a sucient condition to ensure that e N (g) = 0, due to e N (g) = e N (g(Q •)) = e N (-g) = -e N (g). The proof is a calculation in spherical coordinates, based on the expression g(x(θ, φ)) = (q m n q m n )(sin θ) • cos |m| θ cos |m | θ • (sin(mφ)1 m<0 + cos(mφ)1 m≥0 )(sin(m φ)1 m <0 + cos(m φ)1 m ≥0 ).

gse IX @iiA is violtedF Assume m < 0 and m ≥ 0 (without loss of generality), then

g(Q x(θ, φ)) = g(x(θ, -φ)) = -g(x(θ, φ)), for Q :=   1 0 0 0 -1 0 0 0 1   .
gse PX @iiiA is violtedF Assume that m ≡ 1 (2) and m ≡ 0 (2) (without loss of generality). Then m(φ + π) ≡ mφ + π (2π), m (φ + π) ≡ m φ (2π), and

g(Q x(θ, φ)) = g(x(θ, φ + π)) = -g(x(θ, φ)), for Q :=   -1 0 0 0 -1 0 0 0 1   .
gse QX @iiiA is stis(ed ut @iA is violtedF Assume that n + |m| ≡ 1 (2) and n + |m | ≡ 0 (2) (without loss of generality). Then θ → (q m n q m n )(sin θ) is odd, hence

g(Q x(θ, φ)) = g(x(-θ, φ)) = -g(x(θ, φ)), for Q :=   1 0 0 0 1 0 0 0 -1   .
gse RX @ivA is violtedF Assume that m ≡ 2 (4) and m ≡ 0 (4) (without loss of generality). Then m(φ + π 2 ) ≡ mφ + π (2π), m (φ + π 2 ) ≡ m φ (2π), and

g(Q x(θ, φ)) = g(x(θ, φ + π 2 )) = -g(x(θ, φ)), for Q :=   0 1 0 -1 0 0 0 0 1   .
Roughly speaking, if the weight function ω is symmetric, then at most a percentage of 100 × 3 32 (= 9.375%) (8.26) of all the entries in E D N are nonzero. Indeed, Case @iA divides by 2 the number of possible nonzero entries. Then Case @iiA further divides by 2 this number. And nally Cases @iiiEivA multiply this number by 3 8 . At this point, two facts suggest the approximation

A D N Ω N A D N ≈ I (D+1) 2 :
an approximate ratio of 29 32 of all entries are zero if the weight function ω is assumed symmetric (Theorem 8.9); the remaining entries (approximate ratio of 3 32 ) are small assuming that ω denes an accurate spherical quadrature rule in Y 2D , (see Theorem 8.8).

In particular, the condition number of the matrix A D N Ω N A D N is expected to be close to 1, so that (WLS) is expected to be well-posed. This point is further investigated numerically in SubSection 8.5.3.

Next, we go one step further in the analysis taking benet from the orthogonality relations in Theorem 8.9. Indeed, Theorem 8.9 suggests to sort the indices (n, m) using the following criteria, ordered by decreasing priority: This particular ordering expresses the set of indices as a disjoint union of the twelve sets J k , 1 ≤ k ≤ 12. associated to (WLS), is block diagonal for a particular ordering of the indices. This has the following consequence to solve the system (8.9). Instead of solving a linear system with (D + 1) 

Q(Y m n ) = ξ∈CS N ω(ξ)Y m n (ξ) = 0 = S 2
Y m n (x) dσ. 8.5 Numerical results

Condition number of the Vandermonde matrix

In this section, we assess numerically that the problem (LS) is well-posed for the degree D = 2N -1, but not for D = 2N . We proceed as follows. For all 1 ≤ N ≤ 32, with D = 2N -1 and D = 2N , we rst compute a singular value decomposition of the Vandermonde matrix A D N in (8.6). Second, we extract the minimal singular value σ min (A D N ) and the maximal one σ max (A D N ). Then the condition number cond(A D N ) = σ max (A D N )/σ min (A D N ) is evaluated. The computation has been performed in double precision in Matlab, using the svd function. The results in Figure 8.4 are as follows 1. For D = 2N -1 (left panel in Figure 8.4), we observe that the minimal singular value is far from 0, and that cond(A D N ) ≈ 1.19 is close to 1. This is a numerical indication that the matrix A 2N -1 N is injective, that the problem (LS) is well-posed for D = 2N -1, which implies that the critical degree D N in (P) is such that D N ≥ 2N -1.

2. For D = 2N (right panel in Figure 8.4), σ min (A D N ) is observed to be close to 0 for N ∈ {1, 2, 3, 4, 5, 7, 9} (the machine epsilon is about 2.2 • 10 -16 ); for N ≥ 10, it is positive and decays to 0 when N increases. Hence, for N ∈ {1, 2, 3, 4, 5, 7, 9}, A 2N N is not injective. This suggests D N ≤ 2N -1. This is consistent with Proposition 8.4 which proves the result for N ≤ 4. This numerical observation, combined with the discussion above, supports the fact that D N = 2N -1, N ∈ {1, 2, 3, 4, 5, 7, 9}.

For the other values of N , it is numerically apparent that A 2N N is injective. Nevertheless, for these values of N , cond(A 2N N ) > 10 4 , and blows-up when N increases. This implies that cond(A 2N N A 2N N ) > 10 8 and blows-up as well. Therefore, for D = 2N , these numerical results are in agreement with the theoretical result in Theorem 8.7 and indicates that the ill-posedness of (LS) is true in all cases. In addition, the ill-posedness level increases with N . 

(f i ) := ξ∈CS M |f i (ξ) -fi (ξ)| 2 ξ∈CS M |f i (ξ)| 2 1/2
, M = 65.

(8.27)

The errors (f i ) are displayed in Figure 8.5 (left panel). For the smooth functions f 1 and f 2 , the error rapidly converges to 0 when N increases; this is especially true for f 1 . For the continuous but not dierentiable function f 4 , the convergence is slow. For the spike function f 3 and the discontinuous function f 5 , the convergence cannot be claimed from the plot. These observations are not surprising:

it is expected that the convergence rate depends on the decay of the Fourier coecients, which is related to the smoothness.

Second, x the grid resolution to N = 32. For each test function f i , 1 ≤ i ≤ 5, for any σ = 2 j , -31 ≤ j ≤ 2, we corrupt the grid function f i | CS N with a gaussian noise with zero mean, and standard deviation σ. We compute an approximation fi ∈ Y 63 of f i as the unique solution to (LS), for D = 2N -1 and y(ξ) = f i (ξ)+σu(ξ), ξ ∈ CS 32 , where [u(ξ)] contains independent realizations of the normal law N (0, 1). Here again, we evaluate the accuracy of this approximation by the relative error (8.27); this error depends on σ (and on the experiment), and we denote it by (f i )(σ). These errors are displayed in Figure 8.5 (right panel). One observes that

(f i )(σ) ≈ (f i )(0) + σ,
where (f i )(0) is the error without noise for N = 32 (displayed on the left panel). In other words, a level of noise σ in the dataset increases the error by σ. This reveals that approximating a function by least-squares on CS N in the space Y 2N -1 is very stable.

Third, we show numerically that dierentiating the least-squares approximation (LS) in Y 2N -1 (D = 2N -1) permits to approximate derivatives. Assume that f is a dierentiable function on S 2 , known by the grid function f | CS N . The least squares approximation (LS) of We test this principle on the smooth functions dened in Table 8.1: f = f 1 , f 2 . For each value of 1 ≤ N ≤ 32, we approximate ∂ φ f by ∂ φ f satisfying (8.29), and we calculate the relative 2 -errors on the grid CS N :

f with D = 2N -1 is f = |m|≤n≤2N -1 f m n Y m n ∈ Y 2N -1 , (8.28) 
η N (f, f ) = ξ∈CS N |f (ξ) -f (ξ)| 2 ξ∈CS N |f (ξ)| 2 1/2 , η N (∂ φ f, ∂ φ f ) = ξ∈CS N |∂ φ f (ξ) -∂ φ f (ξ)| 2 ξ∈CS N |∂ φ f (ξ)| 2 1/2 ; (8.30)
here, the exact derivative is given by

∂ φ f (x(θ, φ)) = -x 2 (θ, φ)∂ x 1 f (x(θ, φ)) + x 1 (θ, φ)∂ x 2 f (x(θ, φ),
where x 1 (θ, φ) and x 2 (θ, φ) denote the horizontal coordinates of x(θ, φ). As can be observed in Figure 8.6, the error for the derivative and the error for the function itself have a similar behavior in function of N . The least squares approximation converges to the exact function and the spectral derivative converges to the exact derivative; the observed convergence rates are similar.

Pseudo-orthogonality for the discrete inner product

We evaluate numerically the relation (8.25); it represents some pseudo-orthogonality of the Legendre basis, for the discrete inner product (8.23).

First, we consider the uniform quadrature rule on CS N , dened by ω(x) = 4π/ N . In this case, the matrix A D N Ω N A D N in (8.9) is expressed as N is displayed for N = 4 and N = 32. In these matrices, the percentage of coecients above 10 -14 is respectively 9.961% and 9.387%, which is close to the ratio (8.26). Furthermore, we compute the largest entry of E 2N -1 N for 1 ≤ N ≤ 32. As displayed in Figure 8.8, this value is about 0.1 (except for N = 1, for which the observed value is the machine epsilon).

A D N Ω N A D N = 4π N A D N A D N .
Therefore, the matrix corresponding to (LS) (without weight) is close to be proportional to the identity matrix.

A 2N -1 N A 2N -1 N ≈ N 4π (I 4N 2 ± 0.1).
Second, we consider the weight ω of the trapezoidal rule in [START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF]Denition 3.1]. It is invariant under G, so E D N has a sparse structure as before. This rule is second order accurate; so it is more accurate than the uniform one, and the entries of E D N are expected to be smaller, due to Theorem 8.8. This is conrmed in Figure 8.8; the maximal entry of E 2N -1 N is below 0.1, and it decays to zero when N increases.

Conclusion

This chapter considers weighted least-squares approximation by spherical harmonics on the equiangular Cubed Sphere CS N . From a theoretical point of view, the symmetric positive semi-denite matrix of the normal equations is expected to be a pertubation of the identity matrix; the magnitude of the pertubation depends on the accuracy of the quadrature rule associated to the weight. This indicates that the Legendre spherical harmonics should be almost orthogonal for some discrete inner product on CS N . In the case of a symmetrical weight, the matrix is block diagonal; this structure directly provides subspaces of spherical harmonics which are exactly orthogonal for the discrete inner product, disregarding the magnitude of the pertubation.

From a numerical point of view, the matrix has a condition number close to 1 if the cuto (angular) frequency is xed to 2N -1, whereas it is not anymore the case if higher frequencies are considered. Numerical results indicate that Y 2N -1 is a suitable approximation space for tting or dierentiating a smooth function from values on CS N . Future work also includes further mathematical analysis on the one hand. On the other hand, the block structure and the well conditioning of the matrix shown in Section 8.4.2 opens the way to a parallel Conjugate Gradient solver. This is a preliminary step before to investigate a genuine fast solver.

Chapter 9

A discrete Funk-Radon transform on the Cubed Sphere

Introduction

The Funk transform from [START_REF] Funk | Üer plähen mit luter geshlossenen geodätishen vinien[END_REF], also called the Funk-Minkowski transform, the Funk-Radon transform, or the spherical Radon transform, is an integral transform which averages a function along great circles on the unit sphere S 2 . This transform, similar integral transforms, and associated inverse problems, are the subject of many mathematical studies, such as [START_REF] Hielscher | eonstruting funtion on the sphere from its mens long vertil slies[END_REF][START_REF] Kazantsev | punk!winkowski trnsform nd spheril onvolution of rilert type in reE onstruting funtions on the sphere[END_REF][START_REF] Louis | snversion lgorithms for the spheril rdon nd osine trnsform[END_REF][START_REF] Quellmalz | e generliztion of the punk!don trnsform[END_REF][START_REF] Rubin | snversion formuls for the spheril don trnsform nd the generlized osine trnsform[END_REF] and the references therein. These transforms play an important role in various applications, including photoacoustic tomography [START_REF] Hristova | e rdonEtype trnsform rising in photoE ousti tomogrphy with irulr detetorsX spheril geometry[END_REF][START_REF] Zangerl | ixt reonstrution in photoousti tomogrphy with iruE lr integrting detetors ssX pheril geometry[END_REF], Synthetic Aperture Radar [START_REF] Yarman | snversion of girulr everges using the punk rnsform[END_REF] and diusion Magnetic Resonance Imaging (dMRI) [START_REF] Jensen | pier fll smging[END_REF][START_REF] Tuch | Efll smging[END_REF]. To specify one successful example from medicine, Efll smging images the orientation of bers in biological tissues [START_REF] Tuch | Efll smging[END_REF]. The key step of this method computes the Funk transform of dMRI signals recorded on discrete spherical grids. The original computation [START_REF] Tuch | Efll smging[END_REF] is a trapezoidal quadrature rule, applied on an interpolating function. The numerical scheme has been improved in [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF][START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF], using a spectral method on a regularized least squares approximation. The success 1 of the articles [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF][START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF][START_REF] Tuch | Efll smging[END_REF] attests that it is crucial to master the Funk transform in discrete congurations. This chapter, which has been extracted from the paper [START_REF] Bellet | e disrete punk trnsform on the gued phere[END_REF], is devoted to a mathematical study of a discrete Funk transform, in order to provide theoretical and numerical guarantees. The studied transform is a particular case of the approaches introduced in [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF][START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF]; it is based on a spectral method combined with a least squares tting. The main feature of this work is that we restrict our attention to least squares tting without any regularization, so as to get a mathematical framework which is as clear as possible. The least squares functional comprises a tting term, but it does not contain any articial penalty. In particular, no regularization functional nor regularization weight have to be tuned in our approach.

The least squares problem ts values given on a spherical grid by a spherical harmonics with prescribed degree. The grid and the degree must be carefully chosen to insure that the problem is well-conditioned, which means that the corresponding matrix must have full column rank and a suitable condition number. This matrix, called a Vandermonde matrix as in [START_REF] Kunis | e note on stility results for sttered dt interpoltion on euliden spheres[END_REF][START_REF] Kunis | rony9s method on the sphere[END_REF], [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF], or an alternant matrix as in [108, p. 112], contains spherical harmonics restricted to the grid. In general, nding theoretically the rank and the condition number of such a matrix enters into the framework of harmonic analysis and is not an easy task. Geometrical and metric properties of the grid, as dened in [START_REF] Hardin | e gomprison of opulr oint gon(gurE tions on ¢P[END_REF][START_REF] Hesse | xumeril integrtion on the sphere[END_REF], come into play. For example, [START_REF] Kunis | e note on stility results for sttered dt interpoltion on euliden spheres[END_REF]Theorem 2.4] [147, Lemma 3.13] give a lower bound on the degree to insure a full row rank property; this bound is inversely proportional to the separation distance. Another example is [START_REF] An | ell gonditioned pheril hesigns for sntegrtion nd snterpoltion on the woEphere[END_REF]Theorem 3.5], which proves a full column rank 1 The website of the journal Magnetic Resonance in Medicine mentions 1430 citations for [START_REF] Tuch | Efll smging[END_REF], 283 citations for [START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF], and 559 citations for [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF], on January 05, 2023.

property, assuming that the mesh norm is smaller than the inverse of the degree.

Choosing or dening a spherical grid with suitable properties is itself an important subject. We refer to [START_REF] Williamson | he evolution of dynmil ores for glol tmospheri models[END_REF] for a historical presentation of several grids, and to [START_REF] Hardin | e gomprison of opulr oint gon(gurE tions on ¢P[END_REF] for a comparison of many popular grids, such as spiral grids, polyhedral grids, random grids, and so on. Some approaches compute an optimal grid as the numerical solution to an optimization problem; see for instance [START_REF] Chen | winimizing the ondition numer of qrm mtrix[END_REF] for various optimization criteria, including the conditioning of a least squares problem. Some other approaches dene grids in an elementary explicit way. Among these simple grids, the equiangular Cubed Sphere [START_REF] Ronchi | he ued sphereX new method for the soE lution of prtil di'erentil equtions in spheril geometry[END_REF][START_REF] Sadourny | gonservtive (niteEdi'erene pproximtions of the primitive equtions on qusiEuniform spheril grids[END_REF] is obtained by radial projection of a circumscribed cube, from cartesian lines on the faces of the cube towards great circles on the sphere. This Cubed Sphere (and some variants) is very popular and is widely studied in numerical climatology and meteorology; see for instance [START_REF] Chevrot | yptimized disrete wvelet trnsforms in the ued sphere with the lifting sheme"implitions for glol (niteEfrequeny tomogrphy[END_REF][START_REF] Ivan | wultiEdimensionl (niteEvolume sheme for hyperoli onservtion lws on threeEdimensionl solutionEdptive uedEsphere grids[END_REF][START_REF] Jones | gomprison of the guedEphere qrvity wodel with the pheril rrmonis[END_REF][START_REF] Kang | en e0ient implementtion of highEorder (lter for uedEsphere spetrl element model[END_REF][START_REF] Lee | e mixed mimeti spetrl element model of the rotting shllow wter equtions on the ued sphere[END_REF][START_REF] Mcgregor | emiEvgrngin edvetion on gonformlEgui qrids[END_REF][START_REF] Nair | e hisontinuous qlerkin rnsport heme on the gued phere[END_REF][START_REF] Purser | mooth qusiEhomogeneous gridding of the sphere[END_REF][START_REF] Putman | hevelopment of the (niteEvolume dynmil ore on the uedEsphere[END_REF][START_REF] Ran£i¢ | e glol shllowEwter model using n expnded spheril ueX qnomoni versus onforml oordintes[END_REF][START_REF] Thomas | e hwrz preonditioner for the uedEsphere[END_REF].

We have recently studied various approximation schemes on this grid using spherical harmonics.

Lagrange interpolation has been considered in [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF], a spherical quadrature rule in [START_REF] Bellet | udrture nd symmetry on the gued phere[END_REF], and least squares approximation in [START_REF] Bellet | vest qures pheril rrmonis epproximtion on the gued phere[END_REF], as presented in the previous chapters. Among the results, [START_REF] Bellet | vest qures pheril rrmonis epproximtion on the gued phere[END_REF] gives the largest degree which numerically guarantees a condition number that is uniformly bounded. In this chapter, we propose a further study concerning spectral computing on the Cubed Sphere. We investigate the use of this grid for computing Funk transforms.

Our methodology contains two steps. In a rst step, we dene a family of discrete Funk transforms which act between spaces of grid functions, for a general grid. They are obtained as in [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF][START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF], but without any regularization, and with an evaluation of the (continuous) transform on the initial grid. We prove new properties satised by these transforms, in order to give some mathematical background. In particular, we show that the pseudoinverse of such a transform represents an inverse discrete Funk transform very analogous to the direct one. We also provide a theoretical estimation of stability, which mainly depends on the conditioning of the least squares problem. It implies that stability is guaranteed as soon as the least squares problem is well-conditioned.

Then, in a second step, we focus on a framework which guarantees this condition of stability. We select the equiangular Cubed Sphere for the grid and we introduce a rule on the degree such that the conditioning is kept under control. The study is similar with [START_REF] Bellet | vest qures pheril rrmonis epproximtion on the gued phere[END_REF], but the dimensions of the least squares problem have been reduced due to our specic problem. Indeed, the null space of the Funk transform contains any odd function, so we assume from the beginning that the approximation space contains only even spherical harmonics. Also, symmetry consideration allows to halve the grid, so we restrict the Cubed Sphere to an hemisphere.

The paper is organized as follows. In Section 9.2, we summarize some notation and background concerning spherical computation. In Section 9.3, we study a discrete Funk transform, based on a spectral method applied on a least squares tting. In Section 9.4, we focus on the case where the grid is the equiangular Cubed Sphere. In Section 9.5, the relevance of the approach is shown by various numerical tests, such as test of accuracy and stability on synthetic dMRI signals.

Background and notation 9.2.1 Even spherical harmonics

We keep the notation of Chapter 6 for the spherical harmonics. For every D ≥ 0, the functions (Y m n ) |m|≤n≤D , given by (6.3), dene an orthonormal basis of the space Y D of the spherical harmonics with degree at most D. We introduce the subspace of the even functions in Y D , denoted by Y ev D ; it is spanned by the even degrees, iFeF

Y ev D = span{Y m 2n , 0 ≤ n ≤ D 2 , |m| ≤ 2n}.
In the sequel, we always assume that the degree D is even when considering

Y ev D (because Y ev D = Y ev D- 1 
otherwise); under this assumption, the dimension of Y ev D is given by

d D = 1 2 (D + 1)(D + 2).

Funk transform

The Funk transform, denoted by F, maps a spherical function f : S 2 → R to a spherical function Ff : S 2 → R as follows. For any unit vector α ∈ S 2 , Ff (α) is dened as the average of f along the great circle that is orthogonal to α, iFeF

Ff (α) = 1 2π {x∈S 2 :x•α=0} f ds, α ∈ S 2 , f : S 2 → R, (9.1) 
where s denotes the length measure on the circle {x ∈ S 2 : x • α = 0}; in this denition, the function f is required to be integrable along any great circle (with respect to the length measure), so that the integrals are dened.

The Funk transform Ff is an even function, iFeF Ff ( x)) denotes the even part of f . For these reasons, the Funk transform can be considered between spaces of even functions, without loss of generality. We follow this convention throughout the article. Hence, in the sequel, we consider even functions only.

-α) = Ff (α), α ∈ S 2 . If f is odd, iFeF f (-x) = -f (x), x ∈ S 2 , then Ff = 0. In any case, Ff = Ff ev , where f ev (x) = 1 2 (f (x) + f (-
Spherical harmonics are eigenfunctions of the Funk transform F [START_REF] Funk | Üer plähen mit luter geshlossenen geodätishen vinien[END_REF], so that it denes an isomorphism on Y ev

D , F : Y ev D → Y ev D , FY m 2n = P 2n (0) Y m 2n , with P 2n (0) = (-1) n 1•3•5•••(2n-1) 2•4•6•••(2n) , |m| ≤ 2n, 0 ≤ n ≤ D 2 . (9.
2)

The associated nonsingular matrix is the block diagonal matrix

Λ = diag (-1) n 1•3•5•••(2n-1) 2•4•6•••(2n) I 4n+1 , 0 ≤ n ≤ D 2 ∈ R d D ×d D . (9.3) 
This structure suggests the spectral method for computing Funk transforms, as it has been introduced in [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF][START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF].

Grid functions

In Subsection 6.2.2, we have introduced grid functions in the case of the Cubed Sphere grid. We extend the notation to other grids as follows. A spherical grid is dened as a nite subset of the unit sphere, G ⊂ S 2 . A grid function on G is a function b : G → R dened on G. The space of such functions is denoted by

R G = {b : G → R}.
Numbering the elements of G by ξ 1 , . . . , ξ M , where M denotes the cardinal number, the canonical basis (δ ξ i ) 1≤i≤M of R G is dened by

δ ξ i (ξ j ) = 1, if i = j, 0, otherwise, 1 ≤ i, j ≤ M. In this basis, any b ∈ R G is represented by the column vector b = [b(ξ i )] 1≤i≤M ∈ R M , due to b = M i=1 b(ξ i )δ ξ i .
For any real function dened on the sphere, f : S 2 → R, the restriction of f on the grid G is the grid function

f | G ∈ R G dened by f | G := M i=1 f (ξ i )δ ξ i , f | G (ξ i ) = f (ξ i ), 1 ≤ i ≤ M.

Discrete Funk transform on a spherical grid

In this section, we study a discrete Funk transform on a general grid. We assume that G = {ξ 1 , . . . , ξ M } ⊂ S 2 is a spherical grid with cardinal number M , b ∈ R G is a given grid function on G, D ≥ 0 is a xed even degree.

Least squares tting

One looks for an even spherical harmonics f ∈ Y ev D which ts the grid function b. The least squares problem minimizes a tting error as follows,

inf f ∈Y ev D M i=1 (f (ξ i ) -b(ξ i )) 2 .
(LS ev ) emrk 9.1F For the particular case G = CS N , the problem (LS ev ) is similar to (LS), with the specicity that the approximation space is restricted to even spherical harmonics.

We introduce the basis (Y m 2n ) of Y ev D . Then any f ∈ Y ev D admits a spectral expansion (6.4),

f = 0≤n≤D/2, |m|≤2n f m 2n Y m 2n ∈ Y ev D , with f = [ f m 2n ] 0≤n≤D/2, |m|≤2n ∈ R d D ; the matrix of the linear map f ∈ Y ev D → [f (ξ i )] 1≤i≤M ∈ R M is given by the Vandermonde matrix A = [Y m 2n (ξ i )] 1≤i≤M 0≤n≤D/2, |m|≤2n ∈ R M ×d D . (9.4)
Here, the row index is i, and the column index is the couple (n, m). Assuming a lexicographic ordering for (n, m), an expanded form of A is given by

A =         Y 0 0 (ξ 1 ) • • • Y -2n 2n (ξ 1 ) • • • Y m 2n (ξ 1 ) • • • Y 2n 2n (ξ 1 ) • • • Y D D (ξ 1 ) . . . . . . . . . . . . . . . Y 0 0 (ξ i ) • • • Y -2n 2n (ξ i ) • • • Y m 2n (ξ i ) • • • Y 2n 2n (ξ i ) • • • Y D D (ξ i ) . . . . . . . . . . . . . . . Y 0 0 (ξ M ) • • • Y -2n 2n (ξ M ) • • • Y m 2n (ξ M ) • • • Y 2n 2n (ξ M ) • • • Y D D (ξ M )        
.

Then, the problem (LS ev ) can be written in matrix form as

inf f ∈R d D A f -b 2 ,
where

• denotes the euclidean norm in R M . In this chapter, we assume that the grid G and the degree D are such that the Vandermonde matrix A has full column rank. Then the problem (LS ev ) admits a unique solution. This solution, denoted 2 by

[b] ∈ Y ev D , [b] = arg inf f ∈Y ev D M i=1 (f (ξ i ) -b(ξ i )) 2 , ( 9.5) 
is given by

[b] = [Y m 2n (•)] 0≤n≤D/2, |m|≤2n [b], with [b] = (A A) -1 A b ∈ R d D . (9.6)
2 as the rst letter of least squares.

Here, the vector [b] of the spectral coecients satises a linear system, whose matrix is symmetric and positive-denite:

A A [b] = A b.

For the matrix norm induced by the euclidean norm, the condition number of this linear system is given by cond

(A A) = cond(A) 2 , with cond(A) = σ max (A) σ min (A) ,
where σ max , resp. σ min , denote the maximum, resp. minimum, singular value. In Section 9.4, we propose a choice of G and D which guarantees (at least numerically) that the condition number of the Vandermonde matrix is close to 1 (cond A ≈ 1). emrk 9.2F If the condition number is large (cond A > > 1), or if A has not full column rank, then regularization is needed. This is outside the scope of this work, so we refer in this case to [START_REF] Hansen | nkEde(ient nd disrete illEposed prolemsX numeril spets of liner inversion[END_REF] for a general reference about ill-posed problems, [START_REF]egulrized lest squres pproximtions on the sphere using spheril designs[END_REF] for various regularization operators dealing with spherical harmonics on the sphere, and [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF][START_REF] Hess | Efll eonE strution of wultimodl pier yrienttions sing he pheril rrmoni fsis[END_REF] for regularization in a framework of Funk transforms.

We conclude this subsection by a simple result which permits to halve the grid in the case of a central symmetry, provided that the grid function is replaced by its even part.

Proposition 9.3. essume tht G in invrint with respet to the entrl symmetryD so tht M is 

evenD nd ξ M/2+i = -ξ i , 1 ≤ i ≤ M/2 @up to reorderingAF hen the prolem (LS ev ) is equivlent to inf f ∈Y ev D M/2 i=1 (f (ξ i ) -b ev (ξ i )) 2 , with b ev (ξ i ) = 1 2 (b(ξ i ) + b(-ξ i )), 1 ≤ i ≤ M/2.
(f (ξ i ) -b(ξ i )) 2 = M i=1 (f (ξ i ) -b ev (ξ i )) 2 + M i=1 b odd (ξ i ) 2 -2 M i=1 (f (ξ i ) -b ev (ξ i ))b odd (ξ i ).
In the right hand side, the rst term is twice the sum indexed by 1 ≤ i ≤ M/2, because (f -b ev ) 2 is an even grid function. The second term is a constant C which does not depend on f . The third term is null, because (f -b ev )b odd is an odd grid function. Therefore,

M i=1 (f (ξ i ) -b(ξ i )) 2 = 2 M/2 i=1 (f (ξ i ) -b ev (ξ i )) 2 + C,
which proves the result.

Discrete Funk transform

We study various mathematical properties of a discrete Funk transform dened as follows.

Denition 9.4 (Discrete Funk transform). Let G = {ξ 1 , . . . , ξ M } ⊂ S 2 be a spherical grid and D ≥ 0 be an even degree, such that the Vandermonde matrix A in (9.4) has full column rank. The discrete Funk transform F is dened as a linear mapping between spaces of grid functions, by

F : R G -→ R G b -→ F[b] = F( [b]) G , (9.7) 
where [b] is the least squares tting in (9.5), and F is the Funk transform in (9.1). In other words, the discrete Funk transform of a grid function is the Funk transform applied on the least squares tting, then restricted to the initial grid.

Translating this proposition to grid functions results in the following corollary.

Corollary 9.11. he following sssertions holdF @iA he omposition of F nd F † oinides with the restrition of the lest squres (ttingD

F • F † = F † • F : R G -→ R G b -→ [b]| G . (9.15) 
@iiA he trnsform F † is the usul inverse trnsform of FD if the spes re restrited to the suspe

Y ev D | G := {f | G , f ∈ Y ev D }D i.e.D the liner mppings b ∈ Y ev D | G → Fb ∈ Y ev D | G , c ∈ Y ev D | G → F † c ∈ Y ev D | G ,
re two isomorphisms whih re inverses of eh otherF roofF (i) The relation (9.15) is the translation of (9.13), from matrices to their linear maps.

(ii) The subspace Y ev D | G ⊂ R G is the translation to grid functions of the space Ran A. Translating (9.14) shows that

∀b ∈ Y ev D | G , (F • F † )(b) = (F † • F)(b) = b.
The combination of this result with Proposition 9.10.(ii-iii) shows the result.

To nish with, we provide estimations of stability. They show that stability is expected if the condition number of the Vandermonde matrix A is suitable.

Theorem 9.12 (Stability). he mximum singulr vlue of FD respF F † D stis(es 

σ max (F) ≤ cond A, σ max (F † ) ≤ cond A |P 2N -2 (0)| ∼ N →∞ √ πN cond A.
-Fb ≤ σ max (F) , F † (b + ) -F † b ≤ σ max (F † ) .
roofF The maximum singular value σ max coincides with the matrix norm induced by the euclidean norm and is therefore sub-multiplicative. Hence, we deduce from (9.8) that

σ max (F) ≤ σ max (A) σ max (Λ) σ max (A † ),
where A † = (A A) -1 A is the Moore-Penrose pseudoinverse of the injective matrix A. On the right hand-side, σ max (Λ) = P 0 (0) = 1, and σ max (A † ) = 1 σ min (A) is the inverse of the minimum singular value of A. Therefore,

σ max (F) ≤ σ max (A) σ min (A) = cond(A).
For similar reasons, we see with (9.11) that

σ max (F † ) ≤ σ max (A) σ max (Λ -1 ) σ max (A † ) = cond(A) |P 2N -2 (0)| .
Here, σ max (Λ -1 ) = roofF Equivalently, we prove the injectivity of the linear map f

∈ Y ev D → [f (ξ i )] 1≤i≤M ∈ R M . This result is an immediate consequence of Proposition 8.4. Indeed, if f ∈ Y ev D is such that f | CH N = 0, then f ∈ Y D satise f | CS N = 0, because the symmetry of f implies that f (-ξ i ) = f (ξ i ) = 0, for every 1 ≤ i ≤ M . Since N ≤ 4 and D ≤ 2N -1, Proposition 8.4 implies that f = 0.
Also, the following theorem proves that degrees larger than 2N -2 must be proscribed in general; hence, the degree D = 2N -2 in Claim 9.15 is the largest recommended one. Theorem 9.17 ), so that f N is undersampled along the equator.

∼ N →+∞ N 2 2N π 3/2 2 3 2N → N →+∞ 0, suh tht ∀N ≥ 1, ∀D ≥ 2N, σ min (A D N ) 2 ≤ N . @iiiA here is sequene (K N ) N ≥1 with symptotis K N ∼ N →+∞ 1 4 π 2N 1/2 3 2 2N +1 → N →+∞ +∞, suh thtD for ll N ≥ 1 nd D ≥ 2N suh tht A D N hs full olumn rnkD cond(A D N ) 2 ≥ K N .
In the sequel, if the grid is G = CH N , then we select the degree D = 2N -2, as a consequence of Claim 9.15 and Theorem 9.17 We check this point in Figure 9.3, where we observe that the maximum singular values satisfy σ max (F) ≈ 1.00218, σ max (F † ) ≈ 2(2N -2), 1 ≤ N ≤ 32;

this is in agreement with the theoretical bounds (9.16). 

Numerical results

We perform various numerical experiments, in order to assess the quality and the eciency of the discrete Funk transform on the Cubed Hemisphere.

Accuracy and convergence of the discrete Funk transform

We evaluate the accuracy of the discrete Funk transform when it is used to approximate Funk transforms from values on CH N .

For that purpose, we introduce test functions, where the various rates of decay of the spectral coecients encode various smoothness properties.

g (k) := 0≤n≤100 n≡0 (2 
Here, g (k) ∈ Y ev 100 , so we compute the Funk transform Fg (k) by Theorem 9.7, with G = CH N , N = 51 and D = 2N -2. For any α ∈ S 2 , we use the relation (9.10) to compute Fg (k) (α) from the values of g (k) on the grid CH 51 . This computation is exact, up to rounding errors.

Consider now the discrete Funk transform F, associated to the grid G = CH N = {ξ i , 1 ≤ i ≤ M } and the degree D = 2N -2. For any function g, we approximate the vector [(Fg)(ξ i )] 1≤i≤M by F[g(ξ i )] 1≤i≤M with a relative error η N [g] dened by η N [g] := F[g(ξ i )] 1≤i≤M -[(Fg)(ξ i )] 1≤i≤M [(Fg)(ξ i )] 1≤i≤M ;

(9.20) here,

• denotes the euclidean norm in R M . For g = g (k) , the reference vector [(Fg (k) )(ξ i )] 1≤i≤M is computed as mentioned in the previous paragraph (relation (9.10) with CH 51 for the data grid, and α ∈ CH N for the evaluation). In particular, η 51 [g (k) ] is zero (up to rounding errors).

We have plotted the errors η N [g (k) ] in Figure 9.4 (left panel), for 1 ≤ N ≤ 32. Overall, the behavior of the observed error depends on the rate of decay of the spectral coecients; the error converges fastly to zero for rapidly decaying coecients. We quantify this phenomenon in Table 9. N r N [g (-∞) ] r N [g (-6) ] r N [g (-4) ] r N [g (-2) ] r N [g (-1) ] r N [g (0) ] For g (-∞) , with a factorial decay of the coecients, ĝ(-∞) n = 1/n!, the very fast convergence appears as a blow up of the rate r N [g (-∞) ]. For the functions g (-k) , k = 6, 4, 2, with a decay ĝ(-k) n = 1/(n + 1) k , the rate looks like r N [g (-k) ] ≈ k -0.5. For g (-1) , with the slow decay ĝ(-1) n = 1/(n + 1), and g (0) with constant values ĝ(0) n = 1, the convergence analysis is not so clear. In a word, the discrete Funk transform F (or its matrix F) approximates the Funk transform from values on a Cubed Hemisphere. It converges fastly for smooth functions, for which the spectral coecients decay rapidly to zero. The observed rates of convergence suggests to analyze theoretically the speed of convergence in Sobolev spaces. We defer this point to further studies.

Funk transform of Gaussian models

We study the accuracy of the discrete Funk transform on Gaussian models from dMRI, for the grid G = CH N and the degree D = 2N -2.

We consider Gaussian models in the following form, S(x) = exp(-b x Dx), x ∈ S 2 , (9.22) where b ≥ 0, and D ∈ R 3×3 is a symmetric positive denite matrix. Such models describe the dMRI signal S in Diusion Tensor Imaging. The so-called di'usion tensor D models intrinsic diusion properties of biological tissues. The parameter b is the so-called Evlue, and is a parameter of the acquisition. The unit vector x, represents a grdient diretion, and browses a hemispherical grid during the acquisition. Gaussian models such as (9.22) appear also in High Angular Resolution Diusion Imaging [START_REF] Descoteaux | righ engulr esolution hi'usion smging @rehsA[END_REF]. In this eld, a weighted average of several Gaussian models can be introduced to model the signal from crossing bers. The orientation of the bers can be imaged using an Orientation Distribution Function, which is computed approximately as the Funk transform of the 9.2. Our values are inspired by the values from [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF]. The b-value b = 1000 [s/mm 2 ] is an usual clinical value, whereas b = 3000 [s/mm 2 ] is considered as relatively high. For the diusion tensors, we have chosen diagonal matrices D i , dened by the eigenvalues µ 1 , µ 2 , µ 3 > 0. The matrix D 3 has been found in the synthetic data generation in [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF]. The other matrices have been dened as variations of this matrix, in order to obtain more or less anisotropy; see the last column of Table 9.2, where anisotropy is measured by means of the frtionl nisotropy (FA),

FA = 1 √ 2 (µ 1 -µ 2 ) 2 +(µ 1 -µ 3 ) 2 +(µ 2 -µ 3 ) 2 µ 2 1 +µ 2 2 +µ 2 3 ∈ [0, 1]. (9.24)
Firstly, we assume that the (even) signal S j is recorded on G = CH N , with N ≥ 1 and 1 ≤ j ≤ 6. We compute reference values [(FS j )(ξ i )] 1≤i≤M using trapezoidal rules 3 . Then, we compute the discrete Funk transform F[S j (ξ i )] 1≤i≤M . It approximates [(FS j )(ξ i )] 1≤i≤M , with a relative error η N [S j ], where η N is dened in (9.20). We have plotted these errors in Figure 9.5 (left panel) to evaluate the accuracy of the procedure. Overall, a fast convergence due to the smoothness of the Gaussian signals is observed. For the isotropic functions S 1 and S 4 , the error is always zero (up 3 Here, an integral along a great circle x • α = 0 is an integral of a smooth 2π-periodic function over a period, so the trapezoidal rule converges exponentially to the true integral [START_REF] Trefethen | he ixponentilly gonvergent rpezoidl ule[END_REF]. Therefore, we apply successive trapezoidal rules as follows. We start with an angular step π 8 . We evaluate the associated trapezoidal rule; then, we divide the angular step by two, and we iterate. The iterations are stopped as soon as the relative increase of the value between two successive iterations is below the tolerance 10 -13 . For the Cubed Sphere, we consider the Cubed Hemisphere CH N with cardinal number M = 3N 2 + 1. As an alternative grid, we consider an ioshedrl grid. It is based on a regular triangular lattice onto each face of an icosahedron inscribed in S 2 . The icosahedral grid is dened as the projection of the vertices of this lattice onto S 2 . We further halve the grid by symmetry consideration (Proposition 9.3), in the same way as CS N has been halved. Assuming that each edge of the original icosahedron has been divided into N parts, the resulting half-grid contains M = 5N 2 + 1 points; we still call this grid an ioshedrl grid, and we denote it by Ico N . Such grids have already been used for computing Funk transforms in [START_REF] Descoteaux | egulrizedD pstD nd oust enlytil Efll smging[END_REF] with M = 81, 321 (which correspond to the parameters N = 2, 8).

Firstly, in order to obtain a stable discrete Funk transform, the degree D must be carefully tuned. For CH N , we use the rule D = 2N -2, as it has been introduced in Section 9.4. For the icosahedral grid Ico N , we do not know such a rule on the degree. To overcome this disadvantage, we compute numerically D as the largest degree D such that cond A ≤ 2, where A denotes the Vandermonde matrix (9.4) with G = Ico N . In Figure 9.7, we plot the obtained degree D against the number of points of the grid, for the grid CH N with 1 ≤ N ≤ 32, and the grid Ico N with 1 ≤ N ≤ 25.

We observe that for equivalent number of grid points, the degree associated to the icosahedral grid is larger than the degree associated to the Cubed Hemisphere. Therefore, the icosahedral grid permits to work in a larger approximation space Y ev D , while keeping a very small condition number (cond A ≤ 2). with the degree D discussed above. We evaluate the accuracy on the test function g = g (k) dened in (9.18-9.19), for k = -∞, -6, -4, -2, by means of the relative error

η[g] = max Q F[g(Q ξ i )] 1≤i≤M -[(Fg)(Q ξ i )] 1≤i≤M [(Fg)(Q ξ i )] 1≤i≤M
, (G = {ξ i , 1 ≤ i ≤ M }); (9.28) here the orientation Q browses a set of 30 random orthogonal matrices. The computed errors are displayed in Figure 9.8. Overall, the two grids dene transforms with similar accuracy, and similar properties of convergence. This test reveals also that for very smooth functions and very small grids, the isosahedral grid denes a more accurate transform.

Lastly, we repeat the same procedure, but we corrupt the data with a level of noise σ = 10 -6 .

We compute the relative error

η noise [g] = max (Q,u,v) F[g(Q ξ i )(1 + σu i ) + σv i ] 1≤i≤M -[(Fg)(Q ξ i )] 1≤i≤M [(Fg)(Q ξ i )] 1≤i≤M , σ = 10 -6 , (9.29) 
where the maximum is taken over 30 experiments; each experiment xes Q as a random orthogonal matrix, and the u i , v i as 2M independent realizations of the normal law N (0, 1). The obtained errors are depicted in Figure 9.9. The observations of the noise-free case still apply. We further observe that the errors are almost the same as soon as the noise becomes dominant.

To conclude, considering the Cubed Sphere is simpler than considering an icosahedral grid, for which further studies (or computation) are needed to keep the conditioning under control. Moreover, the resulting accuracy is almost the same, except for very smooth functions on very small grids; in this case, the icosahedral grid is more advantageous if the noise is small enough.

Computation time

As a further indicator of eciency, we measure the computation time of discrete Funk transforms, for the grid G = CH N , and the degree D = 2N -2. For each value of N , we x a random vector b, and we measure the time dedicated to the assembly of the matrix A and the computation of Fb.

The code is written in Matlab, and [b] is computed with a simple command such as (A'*A)\(A'*b).

The program is executed on a laptop Dell Precision 7540; the processor is an Intel i9-9880H@2.30

GHz. The experiment is repeated six times, and we report the average values of the running times in Table 9 These preliminary results show that our transform is computed relatively fastly for small grids, despite our brute force implementation has not been optimized. Further studies are required to decrease these times. Combining symmetry consideration and an iterative solver such as Conjugate Gradient Least Squares (CGLS) is an option to consider in the future. 

Conclusion and perspectives

This chapter deals with mathematical and numerical properties of some discrete Funk transforms, including their (pseudo)inversion. As a special case, the study includes a simple framework based on the Cubed Sphere. Our theoretical and numerical results indicate that stability and suitable convergence properties are expected in this context, despite regularization has not been applied.

This mathematical background about discrete Funk transforms could potentially have applications in any eld where integrals along great circles on a sphere are considered. This work opens problems to be addressed in the future. Finding the best spherical grid and the best degree is an open question. For the case of the Cubed Hemisphere CH N , proving that our rule on the degree (D = 2N -2) results in a small condition number is still open. Another point concerns the speed of convergence, which should be quantied, for instance in Sobolev spaces.

Concerning implementation aspects, writing a fast algorithm has still to be done. A rst step in this direction could be an ecient solver for the least squares problem, taking into account further symmetry consideration. To nish with, comparing our transform with time-tested transforms on real experiments is a goal for further studies; in particular, testing the Cubed Hemisphere in Q-ball imaging may be instructive. Geometrical and metric properties, as dened in [START_REF] Hardin | e gomprison of opulr oint gon(gurE tions on ¢P[END_REF][START_REF] Hesse | xumeril integrtion on the sphere[END_REF], are usually introduced to quantify the quality of a mesh. For the Cubed Sphere, we can mention the mesh norm and the separation distance, dened by h N = sup Concerning the mesh norm, a preliminary numerical study has revealed that it is achieved at the center of a panel, for y = (1, 0, 0), x = ρ(1, ± tan π 4N , ± tan π 4N ), if N is odd,      y = ρ(t, (1 + 2t 2 ) 1/2 -(1 + t 2 ) 1/2 , -1 + (1 + t 2 ) 1/2 ), x ∈ {(1, 0, 0), ρ(1, 0, t), ρ(1, t, t)}, with t := tan π 2N ,

if N is even, where ρ denotes the radial projection. To the author's knowledge, this result is new and has never been proved. Proving such a result, or more generally studying metric properties, is an important subject since it could provide a valuable background for the analysis of some approximation problems on the Cubed Sphere.

Another open problem related to areas deals with covering S 2 by cells T j , with areas |T j |, 1 ≤ j ≤ N , such that each cell T j contains exactly one point x j ∈ CS N , and such that the spherical quadrature rule Qf = N j=1 |T j |f (x j ) is optimal, for some criterion to be dened. Taking benet from the geometrical structure of the Cubed Sphere, based on great circles, we have obtained some theoretical results about this matrix and the tting problem (LS):

(i) for N ≤ 4, A D N has full column rank if, and only if, D ≤ 2N -1, so (LS) has a unique solution only if D ≤ 2N -1;

(ii) for N ≥ 5, and D = N + 2, A D N has full column rank, so (LS) has a unique solution;

(iii) for N → ∞, and D = 2N , cond A D N → ∞, so (LS) becomes ill-conditioned if the degree corresponds to the Shannon-Nyquist's frequency along the equator;

(iv) for D = 4N -1, or D = 4N -2 if N is even, A D N has full row rank, so every solution of (LS) is an interpolating function.

Moreover, numerical results show that:

(i) for D = 2N -1, A D N has full column rank with a small condition number, which implies that (LS) is well-posed and well-conditioned if the Shannon-Nyquist's condition is strictly respected along the equator;

(ii) for D = 3N , A D N has full row rank, which implies the existence of interpolating functions.

Proving these last two results from a theoretical point of view is still open; there is indeed some gap between the numerical observations and the known theoretical results.

10.1.3 Special functions dedicated to the Cubed Sphere

We have considered the following space, dedicated to Lagrange interpolation by a spherical harmonic on the Cubed Sphere,

U N = ⊕ n≥0 W ⊥ n , W n := {f ∈ Y n : ∃g ∈ Y n-1 , f | CS N = g| CS N }, n ≥ 1, W 0 := {0}.
Interpolating in this space is analogous to the usual trigonometric interpolation on [0, 2π]. But here, the practical computation of such a space is based on numerical linear algebra, and is biased by truncation of singular values of some matrices.

To go further, we would like to nd special functions on the sphere in order to describe analytically this space, or a variation of it. This would be an improvement towards a suitable sampling theory on the Cubed Sphere, and new approximation algorithms may emerge. which is a further motivation to deepen the subject.

Several works are in progress. As an application of least square tting by a spherical harmonic, we can dene a new quadrature rule by integration of our least square approximation. Preliminary numerical results indicate that this approach is an interesting option to be strengthened.

Another method, introduced in [START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF], can be summarized by ω(x) = δ 2 • (1+tan 2 α)(1+tan 2 β)(1+tan The presented works especially focus on the Cubed Sphere grid, but some approaches can be extended to other spherical grids. For instance, the same interpolation procedure, based on the echelon factorization of the Vandermonde matrix, still applies for other grids. For the discrete Funk transform based on least square tting, our numerical results show that the Icosahedral grid slightly outperforms the Cubed Sphere in the case of very smooth functions and small grids. Therefore, it seems interesting to continue the comparison between the Cubed Sphere and the Icosahedral grid.

Spherical computation in image and vision

Spectral computation on the Cubed Sphere can be related to the rst part of this thesis, and more generally to image and vision.

In medical imaging, and more specically in diusion Magnetic Resonance Imaging, Ell imgE ing consists in imaging the orientation of bers in biological tissues by computation of some discrete Funk-Radon transform. We have tested the principle of such a transform, in the case of the Cubed Sphere. To go further, our transform should be tested on real data; such a work would be the very rst study in medical imaging with the Cubed Sphere used for the acquisition grid.

In computer graphics, radiative transfer models, such as the rendering equation (B.7), contain angular parameters among the variables. This suggests sampling on spherical grids or using spherical harmonics, as in spherical harmonic lighting [START_REF] Ramamoorthi | en e0ient representtion for irrdine environment mps[END_REF][START_REF] Schneider | i0ient qlol sllumintion for worphle wodels[END_REF]. One may wonder if the Cubed Sphere could have an interest in this kind of framework, or more generally in any radiative models with scattering. 10.2 Special echelon factorization and lexicographical least-squares 10.2.1 Numerical analysis of the special echelon factorization Our interpolating spherical harmonic on the Cubed Sphere is computed by means of the matrix factorization (6.19), applied on a suitable matrix. This factorization solves various optimization problems which enter into the framework of lexicographical least-squares, where a sequence of leastsquares tting are performed. This approach can be understood as some generalization of Moore-Penrose inversion based on the Singular Value Decomposition (SVD), and it is similar to some methods from robotics [START_REF] Escande | rierrhil qudrti progrmmingX pst online humnoidEroot motion genertion[END_REF].

Therefore, there is some interest in studying such methods from a numerical analysis point of view. Studying the stability and the accuracy of our algorithm is still open. Also, writing an ecient algorithm that is similar to the iterative methods dedicated to the SVD is open. Ideally, we would like to nd suitable matrices, V j , U j and E j , j ≥ 0, such that (6.19) is obtained at the limit j → ∞, in a fast stable accurate way.

Application of lexicographical least-squares in learning

In this work, lexicographical optimization has been introduced to build an interpolation space on the Cubed Sphere, based on spherical harmonics ordered by increasing degree. Similar approaches can be introduced for other interpolation problems, such as multivariate polynomial interpolation in R d . Also, the usual trigonometric interpolation can be understood as an implementation of our approach, considering one block per (increasing) frequency.

The proposed formalism relies especially on linear algebra, which paves the way towards various applications. Overall, one can build models where there is some ranking between several blocks of variables, or where successive linear mists are minimized. This kind of subject has already appeared in robotics [START_REF] Escande | rierrhil qudrti progrmmingX pst online humnoidEroot motion genertion[END_REF]. One may wonder if there are other elds where the approach has an interest. Developing new learning algorithms based on this principle has still to be explored. In particular, writing an ecient algorithm which builds a lexicographical linear model from a huge amount of data is still a challenge.

  Lastly, Chapter 10 concludes this work by a series of perspectives. Part I Mathematical and numerical aspects of three-dimensional optical imaging based on the Radon transform Chapter 1
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 21 Technological context: three-dimensional active laser imaging Thales Optronique S.A. (TOSA) is a company specialized in the design and development of innovative optronic systems, in particular in visible and infrared optics. TOSA has patented in 2009 a technology concerning the 3D reconstruction of a scene, based on active laser imagery, [3235].
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 181 THREE-DIMENSIONAL REFLECTIVE TOMOGRAPHY et imgerie lser tomogrphique, supported by the Agence pour les Mathématiques en Interaction avec les Entreprises et la Société (AMIES) 1 . I leaded the project; the other participants were G.

Figure 1 . 1 :

 11 Figure 1.1: Onboard camera.

1. 4 .Figure 1 . 2 :

 412 Figure 1.2: Circular cone beam scan. Left: perspective ray (x 0 , u) through a xed point x 0 = x 0 (β), with direction u = u(β, y ⊥ , y 3 ); the parametrization of the ray considers that the image is formed on a point y = y ⊥ θ ⊥ + y 3 e 3 (in a virtual screen). Right: by rotation around the axis e 3 , the point x 0 (β) scans a horizontal circle. The total set of rays is L CB dened in (1.1). In cone beam tomography, x 0 (β) is the position of an X-ray source; in reective tomography, x 0 (β) is the position of the optical

  ltered kprojetion operator BΦ such that BΦX [f ]| L CB (r,a,b) ≈ f, f : R 3 → R. Here, L CB (r, a, b) denotes the set of rays of a circular cone beam scan, parametrized by L CB (r, a, b) := {(x 0 (β), u(β, y ⊥ , y 3 )), β ∈ [0, 2π], (y ⊥ , y 3 ) ∈ [-a, a] × [-b, b]};

  (b) Surface rendering: a surface is extracted by the means of thresholding, and a 2D synthesis image, eventually based on radiometric concepts, is displayed. The computation is ecient and 3D solids are nicely represented, but thresholding may be tricky and lacunarities may appear. (c) Volume rendering: the 2D displayed image is a projection of the whole 3D volume. The projection is more or less sophisticated and eventually based on models of light propagation such as radiative transfer. A single view somehow captures simultaneously any 3D structure. (a) Slice. (b) Surface rendered. (c) Volume rendered (MIP).

Figure 1 . 3 :

 13 Figure 1.3: Three visualizations of a 3D reective tomography reconstruction.

Figure 1

 1 Figure 1.4: Image formation through a MIP camera.

Figure B. 4 .F

 4 More precisely, the MIP of F , at a pixel located at x, is dened byΠF (x) := max x∈[c,x) F (x) = max λ≥0 (c + λu c,x ).
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 1 5 for an example. Formally, for a MIP image (1.2), this process denes some points under the form x = arg max x∈[c,x)

Figure 1 . 5 :

 15 Figure 1.5: Superposition of three point clouds extracted from three (orthographic) MIPs.

Figure 1 .

 1 6 and published in[START_REF]reuristi imging from generi projetionsX kprojetion outside the rnge of the don trnsform[END_REF], we consider a sequence of 360 images of size 181×342; see (a) for some samples. The acquisition geometry is similar with Figure1.2; the angle β scans a uniform grid, with a one degree step. A FDK tomographic reconstruction 181 × 181 × 342 is computed in 2.6 seconds on a GPU Nvidia Tesla C2075. As can be observed in the snapshots (b) of the interactive display, the reconstruction contains surfaces of the original scene with many features and details, useful for identication purposes. (a) Input dataset (courtesy of TOSA): 360 VIS-NIR active images of size 181 × 342. Here, six samples of the sequence are displayed. (b) Volume rendering of a 3D tomographic reconstruction (home-made software). The reconstruction is a grid of 181 × 181 × 342 voxels; it is computed by the FDK algorithm in 2.6 seconds on a GPU Nvidia Tesla C2075. The display is a MIP computed interactively.

Figure 1 . 6 :

 16 Figure 1.6: First test case: 3D reective tomography from a circular cone beam scan in VIS-NIR optics.

Figure 1 . 7 .

 17 Figure 1.7. The dataset contains 181 images of size 421 × 342; in degrees, the angle β ranges from 0 to 180, with a one degree step. Two kinds of incompleteness are noticed: incompleteness due to occlusions, and angular incompleteness due to a restriction of the angular range.

Figure 1 . 7 :

 17 Figure 1.7: Second test case: 3D reective tomography from limited view with occlusions in VIS-NIR optics. The input dataset (courtesy of TOSA) contains 181 VIS-NIR active images of size 421 × 342, associated to a half-circular cone beam scan.

  (a) Whole 3D reconstruction, and interactively extracted branches. (b) Interactively extracted car.
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 18 Figure 1.8: Second test case: 3D reective tomography from limited view with occlusions in VIS-NIR optics. See Figure 1.7 for the input dataset (courtesy of TOSA). The reconstruction is a grid of 421 × 421 × 342 voxels, computed by the FDK algorithm in 4.0 seconds on a GPU Nvidia Tesla C2075 (home-made software). Here, the interactive MIP is used to display and to extract objects of interest from the reconstruction (home-made software).
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 19 Figure 1.9: Gouraud images of a patterned Stanford Bunny. Here, 6 samples (step of 60 degrees) of a circular cone beam scan comprising 1605 images of size 397 × 312.

Figure 1 .Figure 1 . 11 :

 1111 Figure 1.10: 3D tomographic reconstruction from a Gouraud model of a patterned Stanford Bunny. Two sequences of MIP views are displayed. Top: a rotation around the vertical axis (60 degrees step) generates reEprojeted views, associated to the original images of Figure 1.9. Bottom: a rotation around a horizontal axis (30 degrees step) predits novel views of the scene.

Figure 1 . 12 :

 112 Figure 1.12: 3D tomographic reconstruction from 801 cartoon images 201 × 201, for a non-convex object with a discontinuous pattern. Top: one image of the input sequence. Bottom: MIP reprojection of the reconstruction. From left to right: the pattern (1.4) on the object has more and more discontinuities, m = 0, 1, 2, 4, 8, 16.
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 114 Figure 1.14: 3D tomographic reconstruction from a Gouraud model disturbed by a speckle noise (1.6). From left to right, the level of speckle noise is σ = 0, 0.3, 0.6, 0.9, 1.2, 1.5. Top: one noisy image of the input sequence. Bottom: MIP re-projection of the reconstruction.
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 2 Figure 2.1: Projection of opaque objects.

(2. 1 )

 1 The function f is analogous to the radiant incidance, or the radiance of the visible point, in (B.5); f (y, θ) represents the brightness of the visible point y on a screen dened by θ. If the line x • θ = s does not meet Γ, we x F (θ, s) = 0 (background). To nish with, the same process is repeated for several orientations of the screen; the angle θ scans a nite set Θ ⊂ S 1 . In this way, the dataset is F (θ, s), θ ∈ Θ, s ∈ R. By denition, for any angle θ ∈ Θ, the projection s ∈ R → F (θ, s) is a compactly supported function, dened by (2.1) on the support.

Figure 2 . 2 :

 22 Figure 2.2: Example of dataset.

Figure 2 . 3 :

 23 Figure 2.3: Reconstruction by FBP from the projection F of Figure 2.2. The FBP from a single projection F (θ 0 , •) is a backprojection (c) from the ltered projection F (θ 0 , •) ψ Ω (a). The total FBP I[F ](x) (d) is a summation through the sinusoid x • θ = s in the ltered dataset F ψ Ω (b).

(2. 6 )

 6 here, ĥΩ : R → [0, 1] denotes a windowing function which is even with compact support [-Ω, Ω]. In (2.5), 1 4π ∂ s F φ Ω = F ψ Ω , and for any θ ∈ Θ, ∂ s F (θ, •) ∈ E (R) is a distributional derivative with compact support. For illustration purposes, Figure 2.3 deals with the reconstruction from the projection of Figure 2.2. Filtering is illustrated for a single projection in (a), and for the whole dataset in (b). The backprojection from a single ltered projection is displayed in (c), superimposed with the initial Γ.

  as in (c). Due to the structure of ∂ s F (θ, •) φ Ω , the most signicant values of this plane wave are related to contrasts in F (θ, •). Next, the reconstruction I[F ] is a summation of these plane waves (d). It contains essentially small values. Nevertheless, large values appear when the summation contains signicant values which are constructively added. These values correspond to coherent signicant contrasts, and this explains intuitively why some part of Γ is bright in the reconstruction.This phenomenon appears clearly in (b) and (d). Indeed, for any reconstruction point x, I[F ](x) represents a summation along the sinusoid x • θ = s in the ltered dataset1 

(2. 14 )

 14 These four asymptotic regimes are numerically checked in Figure2.7(b).
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 24252627 Figure 2.4: Asymptotic model (2.10) of the reconstruction I Ω from the silhouette F of an ellipse Γ with curvature κ. The ellipse Γ is expected to be bright in the reconstruction.
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 28 Figure 2.8: Reective tomography for two Lambertian disks K 1 , K 2 . (a) Albedo ρ = ρ 1 1 K 1 + ρ 2 1 K 2 . (b) Lambertian projection F = ρ(y) θ ⊥ • ν. (c) Tomographic reconstruction R * ΛF , Λ = 1 4π H s ∂ s . (d) Zoom on R * ΛF . In any case, the white arrows are elements of a wavefront which is compatible with the representation ρ of the scene, whereas the blue arrows are additional singularities which introduce artifacts. Any singularity of the circles ∂K 1 and ∂K 2 is recovered, whereas artifacts appear on the four lines which are tangent to K 1 and K 2 . These four lines are associated to eight corners in F . The observed results are in agreement with the theoretical inclusion (2.25) (and Theorem 2.2).

Figure 2 . 9 :

 29 Figure 2.9: Geometrical setup corresponding to the Lambertian projection in Denition 2.4. For any angle θ ∈ S 1 , the set S(θ) contains the values s ∈ R such that the line x • θ = s intersects D. For any s ∈ S(θ), ∂D ∩ {x • θ = s} = {y(θ, s), y(-θ, -s)} with ν(y(θ, s)) • θ ⊥ > 0. For s ∈ ∂S(θ), the line x • θ = s is tangent to ∂D at a unique y(θ, s), and ν(y(θ, s)) • θ ⊥ = 0. For any s / ∈ S(θ), D ∩ {x • θ = s} = ∅. The bold curve represents a set of visible points, {y(θ, s), s ∈ S(θ)}.

  denotes the exterior unit normal vector to D at y ∈ ∂D, and µ denotes the length measure on ∂D. (H2) ρ ∈ L ∞ (∂D) is a positive function, bounded and bounded away from zero, iFeF ρ(∂D) ⊂ [c, C] where c, C are two positive constants.
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 31 Figure 3.1: Principle of the multiresolution algorithm: compute an image with coarse pixels, then rene sets of bright pixels, iteratively. From left to right: initialization, iteration 1, 2, 3.

Figure 2 . 6 ,

 26 Figure 2.6, we consider the cartoon projection F (θ, s) of two circles, displayed in Figure 3.2. The projected values are f 1 = 1 (on the smallest circle) and f 2 = 0.77 (on the other one); the dataset contains 1609 images of size 512. The imaging functional is dened by a FBP

Figure 3 . 2 :

 32 Figure 3.2: Toy model for the multiresolution greedy algorithm. Left: scene containing two circles with values f 1 = 1 and f 2 = 0.77. Right: cartoon projection 1609 × 512 of the scene.
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 3331 Figure 3.3: Multiresolution reconstructions from the cartoon projection displayed in Figure 3.2. From top to bottom, the size of the initial grid is 16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512 (full resolution). From left ro right: initial reconstruction, nal multiresolution reconstruction, extracted thin pixels. The number of nal pixels has been set to α • 512 2 , α = 1%.
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 34 Figure 3.4: Reconstructions with α • 512 2 pixels from the cartoon projection of Figure 3.2, computed with the multiresolution greedy algorithm. The initial grid is xed, with 128 × 128 pixels. From left to right, and top to bottom, the rate of pixels is α = 0.32 • 2 β , -8 ≤ β ≤ 0.
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 35 Figure 3.5: Samples of a sequence of 805 Gouraud images 512 × 512, with a speckle noise.

Figure 3 . 6 :

 36 Figure 3.6: Reference method (top) versus multiresolution greedy algorithm (bottom) for 3D reconstruction. The display is a MIP of 1512 3 voxels reconstructed from 805 noisy Gouraud images 512 × 512 (Figure 3.5). Top: voxels extracted from a FBP 512 × 512 × 512, in 8760 s. Bottom: voxels computed by a 3D multiresolution greedy algorithm with initial grid 64 × 64 × 512, in 273 s.

AcquisitionA

  face has been photographed without ash from 72 angles of view. Each photograph is a RGB image 384×480; see Figure3.7 for an image of the sequence. This acquisition enters in the framework of passive imagery. The photographer is between the light sources and the scene, which explains why some shadows appear on the images. This increases the diculty of the reconstruction task: as observed in the initial samples of Figure3.8, the brightness of a portion of the face strongly varies from an image to another one.CalibrationFor calibration purpose, the scene is equipped with a calibration pattern (a checkerboard with squares of 8.45 size[mm]). This pattern is used to estimate the extrinsic and intrinsic parameters of the camera with the Camera Calibrator App in Matlab, in a reference frame; the distorsions are estimated simultaneously, then corrected. Finally, the original RGB images are converted into grayscale undistorted calibrated images (values in [0,255]), and the calibration pattern is removed by means of a mask. See Figure3.7; a pre-preprocessed image is displayed, so are the estimated locations/orientations of the camera.ImplementationThe full algorithm has been sequentially implemented in Fortran 2003, in double precision. It includes the frame-driven Kaczmarz iterations (3.3), combined with the conjugate gradient. It also includes ray tracing on a grid of voxels, for the computation of X-ray images, for the backprojection, and for MIP rendering. We measure the total time dedicated to the computation of the reconstruction, which includes the initialization, the iterative updates of the model, iterative loading of the images, and evaluations of RMSEs.ReconstructionWe dene a box which roughly estimates the face (see Figure3.7), and we compute a 3D reconstruction inside this box, from the grayscale calibrated images. In the reference frame, the box is [-120, 170] × [-300, -30] × [-180, 100] [mm], and is decomposed into voxels of size h = 1.5 [mm]; hence the reconstruction contains about 186 3 voxels. We perform one cycle of iterations (3.3) with x (0) = 0, ω = 0.5, and σ = 5dh [m 2 ], where d [m]

Figure 3 . 7 :

 37 Figure 3.7: Setup of an acquisition to test the algebraic technique (3.3). A face, equipped with a calibration pattern, is photographed from several angles of view without ash; 72 RGB images of size 384 × 480 are captured. The sequence is calibrated with Camera Calibrator App in Matlab. Left: one recorded image. Middle: this image is converted into grayscale, after correction of distorsion; the calibration pattern is masked. Right: the position/orientation of any calibrated camera is represented by a cone, the box is a rough estimation of the face.
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 38 Figure 3.8: Reconstruction with the algebraic technique (3.3), from 72 calibrated images 384 × 480 (see Figure 3.7 for the acquisition). Top: six images of the input sequence. Bottom: MIP reprojection. The computation is performed on voxels of size h = 1.5 [mm].
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 39 Figure 3.9: Reconstruction with the algebraic technique (3.3), from 72 calibrated images 384 × 480 (see Figure 3.7 for the acquisition). Here, a circular cone beam scan of an algebraic reconstruction (voxels of size h = 1.5 [mm]) predicts twelve novel views; the rendering is a MIP.

Figure 3 . 4 Conclusion and perspectives 4 . 1

 3441 Figure 3.10: Four-fold cross validation of one cycle of algebraic iterations (3.3), from 72 calibrated images 384 × 480 (see Figure 3.7 for the acquisition). A line 1 ≤ i ≤ 4 contains MIP views of the i'th reconstruction, trained with 54 images; the views are predictions on the diagonal, re-projections otherwise. The last line contains initial images for visual comparison.

(A. 5 )

 5 The Radon transform an the backprojection act continuously on smooth functions as follows [77, Chap. 2]. Theorem A.2. fy restritionD the don trnsform R in (A.1) de(nes ontinuous liner mp R : D(R 2 ) → D(S 1 × R)D the kprojetion R * in (A.5) de(nes ontinuous liner mp R * :

(A. 6 )A. 4

 64 Radon transform on distributions The Radon transform and the backprojection are extended to distributions by duality [58, Chap. I], [77, Chap. 2]. Denition-Theorem A.3. Extending the duality relation (A.6) by

(A. 13 )

 13 the parameter Ω > 0 denes a uto' pulsation, and ĥΩ : R → [0, 1] denotes an even windowing function with compact support [-Ω, Ω]. Therefore, the reconstruction formula becomes R * [Rf ψ Ω ],

  [START_REF]wodèle életromgnétique d9ojet dissimulé[END_REF], for an integrable function f , with support in a disk |x| < S, and with essential bandwidth Ω [78, Algorithm 5.1],[88, pp. 91-92]. Various choices of the windowing function ĥΩ can be found in the literature; eFgF the mEvk (lter corresponds to the ideal low-pass ĥΩ = 1 [-Ω,Ω] . The convolution is often computed by Fast Fourier Transforms, using a discrete version of (A.16). Concerning sampling conditions, the radial step must satisfy δs ≤ π

  CMOS (complementary metaloxidesemiconductor) sensor. Concerning the algorithmic part, we take benet from algorithms from X-ray tomography, such as the inversion of the Radon transform, or the Feldkamp-Davis-Kress algorithm. That is the reason why we present a modeling of image formation in VIS-NIR optics in Section B.2, and a modeling of cone beam tomography in Section B.3. B.2 Image formation B.2.1 Introduction In VIS-NIR optics, an image is generally formed according to the process displayed in Figure B.2.Light sources, such as the sun, a lamp or a laser, emit light. This light interacts with the illuminated scene; hence, some light emanates from the scene. A portion of that light passes through the optics of a camera, such as lenses, and nally reaches the camera's sensor, such as a digital sensor array.

Figure B. 2 :

 2 Figure B.2: Image formation in VIS-NIR optics. Light is emitted by light sources and interacts with the illuminated scene. A portion of the light passes through the camera's optics and reaches the camera's sensor.

Figure B. 3 :

 3 Figure B.3: Ideal camera.
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  Figure B.4: Perspective projection.

Figure B. 5 :y| 2 .

 52 Figure B.5: Power dΦ radiated by a surface element dσ x through a solid angle dΩ. Left: the radiance L(x, u) satises dΦ = L(x, u) ν x • u dσ x dΩ. Right: the area dσ y seen from x denes the solid angle dΩ; the corresponding radiated power is dΦ = L(x, u x,y ) νx•ux,ydσx νy•uy,xdσy |x-y| 2 .

2 .

 2 fundamental quantity concerning incident light is the irrdine [W.m -2 ], which represents the amount of light incident on a surface. The irradiance is dened as the power received by a surface, along a certain direction, and per unit area. In Figure B.5, the irradiance dI(y, u x,y ) received by y, from dσ x in the direction u x,y , is deduced from (B.3): dI(y, u x,y ) = dΦ dσy = L(x, u x,y ) νx•ux,ydσx νy•uy,x |x-y|
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 6423 Figure B.6: Modeling of the radiant incidance on a pixel, by (B.5).
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 24 Figure B.7: BRDF f (y, u, v).

(B. 6 )

 6 Figure B.8: A point y ∈ S receives an irradiance dI(y, u x,y ) from every visible point x ∈ S.

Figure B. 9 :

 9 Figure B.9: Diuse reection by the Lambert's cosine law.Here, an isotropic point source z emits light with a power per unit solid angle Φ/(4π). On the surface ∂D, an illuminated point y reects light uniformly; for an angle of incidence α, the point y reects a radiance Φ/(4π 2 |z -y| 2 ) ρ(y) cos α in any direction above the tangent plane. The dimensionless coecient ρ(y) ∈ [0, 1] is the albedo,

  Figure B.10: Cone beam radiography.
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 51 Figure 5.1: Construction of a Cubed Sphere grid, by radial projection from a circumscribed cube onto a sphere. Some cartesian grid (black dots) is dened on the faces of the cube; the Cubed Sphere grid (white dots) is dened as the radial projection of this cartesian grid, on the sphere. This construction meshes the sphere with arcs of great circles: cartesian grid lines (dotted straight lines) are projected from the cube onto arcs of great circle (white arcs). The Cubed Sphere displayed here is the equiangular Cubed Sphere CS 3 (5.1).
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 52 Figure 5.2: Shortest geodesic arcs on CS N , described by Theorem 5.4. Here, minimal arcs on CS N , solution to (5.4), are displayed in bold, around midpoints on edges. Left: N is odd (N = 3); right: N is even (N = 4). The location of the minimal arcs match with the vertices (5.3) of the cuboctahedron displayed with a black line.
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 6 .10) vet T denote the evlution opertor on CS N D

Figure 6 . 1 :

 61 Figure 6.1: Covering of the Cubed Sphere as in(6.8). For a given ξ ∈ CS N , we cover CS N (black dots) by D + 1 great circles parametrized by a normal vector α ∈ A, with D dened in (6.7), and A dened in (6.9). Two circles contains {ξ, -ξ} (black circles); the D -1 remaining ones cover CS N \ {ξ, -ξ} (gray circles). Here, N = 5.

  4 and [146, Theorem 2.4]-[147, Lemma 3.13].

0

  and U n by SVD (6.23); 3. assemble the matrices V n , E n and U n with (6.24); 4. evaluate the number g n of nonzero diagonal coecients in Λn 0 , and evaluate the rank of A n with r n = r n-1 + g n . Stopping criterion. Exit when r n = N , and set d = n. Output. Smallest degree d such that the Vandermonde matrix A d has full row rank, and associated factorization A d = V d E d U d . roofF The matrix of I N = T -1 d is given by (A d Ũd ) -1 = ( Ẽd ) -1 V d , due to (6.14).

Figure 6 . 2 :

 62 Figure 6.2: Distance (6.17) of the real Legendre spherical harmonics Y m n to the interpolation space

Figure 6 . 3 :

 63 Figure 6.3: Interpolation of the test functions f 1 , f 2 , f 3 and f 4 . Left column: the four test functions. Middle column: interpolation error on CS 2 . Right column: interpolation error on CS 4 .

Figure 6 . 4 :

 64 Figure 6.4: Interpolation error of test functions on CS N , for 1 ≤ N ≤ 32. Left: uniform error e ∞ ; right: RMSE e 2 . Each error is evaluated on CS 65 , and represented in logarithmic scale.

. 25 )

 25 (with the convention W 0 = Ker A 0 ); the number g k of diagonal terms in Λ k coincides with the dimension ofW ⊥ k , g k = dim W ⊥ k ; the g k columns of U k (:, 1 : g k ) represent an orthonormal basis of the subspace W ⊥ k ; the m k -g k columns of U k (:, g k + 1 : m k ) represent an orthonormal basis of W k .Consider the following matrix, extracted from U n , :, 1 : g 0 ) . . .U n (:, 1 : g n )    ∈ R Mn×rn ;(6.26) the matrix A n Ũn has full column rank r n and admits the QR factorization A n Ũn = V n Ẽn , where Ẽn ∈ R N ×rn is an upper triangular matrix, with full column rank; (6.27) here, Ẽn is deduced from E n by removal of redundant columns (only the non-zeros columns of Λ k , 0 ≤ k ≤ n, are kept). Fix b ∈ R N and consider the least squares problem inf x∈R Mn

Figure 7 . 1 :

 71 Figure 7.1: Interpolation with octahedral symmetry. For every 1 ≤ i ≤ 6, the symmetric function I N g i is represented by the surface (1.5 + I N g i (x))x, x ∈ S 2 .

Figure 7 . 2 :

 72 Figure 7.2: Representation of the weight values ω N , for the eight Cubed Spheres with 1 ≤ N ≤ 8.

Figure 7 . 3 :

 73 Figure 7.3: Statistical distribution of the weight values ω N in (7.1), 1 ≤ N ≤ 32. The maximum, minimum, and mean values satisfy max ω N ≈ 1.41 min ω N , max ω N ≈ 1.18 ωN , and min ω N ≈ 0.83 ωN .

Figure 7 . 5 :

 75 Figure 7.5: Statistics of the quadrature error N(f i , Q) = | S 2 f i dσ-Q N f i (Q •)|, where Q scans a set of 1000 random orthogonal matrices. Left: worst error ε N (f i ). Right: ratio ρ N (f i ) = ¯ N (f i )/ε N (f i )

Figure 7 . 6 :

 76 Figure 7.6: Worst quadrature error (for 1000 random orthogonal transformations of the grid), versus the number of grid points.

Figure 7 . 7 :

 77 Figure 7.7: Comparison of the errors on the 1/16 series of spherical harmonics (see Corollary 7.6) between the rule Q N and Lebedev's rules for two pairs of grids. Left column: CS (386 nodes)/Lebedev (434 nodes). Right column: CS (5768 nodes)/Lebedev (5810 nodes). The quadrature error η is reported for the spherical harmonics Y m n , with n ≡ 0 (2), m ≡ 0 (4), 0 ≤ m ≤ n ≤ 1024. Top: an histogram with logarithmic rescaling of the errors η (7.4) is displayed for both rules. Bottom:

(8. 9 )

 9 A natural interpretation of (8.9) is as follows. Consider the following analog of the Discrete Fourier Transform (DFT) of the data y = g| CS N , located at the nodes of CS N instead of at the θ j = 2jπ/N ∈ [0, 2π), j = 0, . . . , N , in the standard DFT. The Fourier-like coecients are the components of the vector

(8. 10 )

 10 On the other hand, the analog of the Inverse Discrete Fourier Transform (IDFT) of a set of data f = [ f m n ] 0≤|m|≤n≤D is the grid function

Fix a

  value N , and consider the Cubed Sphere CS N . How to select N → D N in order for the two following conditions to hold? For every degree D ≤ D N , the Vandermonde matrix A D N is injective so that the least squares problem (LS) has a unique solution.

  . Finally, Theorem 8.7 shows that D = 2N gives that the condition number of A 2N N is asymp- totically unbounded. Thus D ≥ 2N does not satisfy (ii) in (P) and therefore one must select D ≤ 2N -1.

emrk 8 . 1 N 4 The case 1 ≤

 8141 2F A full proof of the fact that the matrix A 2N -is injective for all N is not yet available.8.3.1The case 1 ≤ N ≤ N ≤ 4 corresponds to a small Cubed Sphere grid ranging from N = 8, (N = 1) nodes to N = 98, (N = 4) nodes. Consider the spherical harmonic Y -2N 2N ∈ Y 2N , given by, see(8.1) 

(8. 12 )Lemma 8 . 3 (

 1283 Function f N restricted to CS N for N ≤ 4). por 1 ≤ N ≤ 4D the funtion f N ∈ Y 2N vnishes t ll nodes of CS N @f | CS N ≡ 0AF his implies tht A D N hs not full olumn rnk if N ≤ 4 nd D ≥ 2N F roofF The spherical harmonic f N is deduced from Y -2N2N by a rotation of π/4 around the pole axis. By invariance of Y 2N by rotation, we have f N ∈ Y 2N . In addition, for any N ≤ 4, it turns out that CS N is contained in the set M N of meridians dened by

(8. 14 )Proposition 8 . 4 (

 1484 This implies that f (ξ) = 0 for all ξ ∈ CS N . In particular, for any D ≥ 2N , the linear map f ∈ Y 2N → f | CS N is not injective. Therefore for D ≥ 2N , the matrix A D N is not injective. Full column rank in the case 1 ≤ N ≤ 4). vet A D N e the ndermonde mE trix (8.6)F sf 1 ≤ N ≤ 4D then A D N hs full olumn rnk ⇔ D ≤ 2N -1; sn prtiulrD the lrgest degree D N suh tht A D N N hs full olumn rnk is D N = 2N -1F roofF Fix N ≤ 4. Lemma 8.3 proves that if A D N has full column rank then D ≤ 2N -1.

1 2Nin the case 1 ≤ N ≤ 4 .

 114 [START_REF] Bellet | ymmetry group of the equingulr ued sphere[END_REF] give a full answer to the injectivity of A 2N -Consider now the case N ≥ 5. We have Proposition 8.5 (Case N ≥ 5). uppose N ≥ 5F e hve D ≤ N + 2 ⇒ A D N hs full olumn rnk, hereforeD the lrgest degree D suh tht A D N hs full olumn rnk stis(es

Figure 8 . 1 :

 81 Figure 8.1: Equiangular Cubed Sphere and equiangular meridians. The Cubed Sphere CS N (black dots) meshes S 2 with equiangular arcs of great circles (dotted lines), including the radial projection of the edges of [-1, 1] 3 (bold gray lines). The set M N of equiangular meridians with longitude φ ≡ π 4 ( π 2N ) (gray lines) contains many points of CS N ; the remaining points of CS N belong to the set H N (indicated with star symbols) dened in (8.19). The size of H N is given in (8.21), and is estimated by |H N | ∼ 1 3 N . Left panel: N is odd (N = 5), right panel: N is even (N = 6).

  |i| = |j| and i = 0 and j = 0 . (8.[START_REF] Bellet | enlyse symptotique et géométrique de l tomogrphie ré)etive[END_REF] 

. 21 )

 21 In the next theorem it is proved that f N | CS N almost vanishes at all the Cubed Sphere nodes ξ ∈ CS N . This will show that when taking D = 2N , the Vandermonde matrix A 2N N cannot have full column rank (injective) while keeping a bounded condition number. Theorem 8.7 (Asymptotics for the condition number of A D N ). pix N ≥ 1 nd D ≥ 2N F @iA he smllest singulr vlue of the mtrix A D N D denoted y σ min (A D N )D stis(es

  where γ N is given y(8.18)D nd |H N | is the estimtion (8.21) of the size of CS N \ M N F sn prtiulr lim N →+∞ σ min (A 2N N ) A 2N N = 0. @iiA sn the se where A D N is injetiveD the ondition numer of A D N D denoted y cond(A D N )D stis(es

  roofF (i) Let D ≥ 2N be xed. Consider rst the case N < (D + 1) 2 , the matrix A D N cannot have full column rank. In this case σ min (A D N ) = 0 and the result is obvious. Next consider the case N ≥ (D + 1) 2 . Then σ min (A D N ) 2 is the smallest eigenvalue of the symmetric matrix A D N A D N . It is expressed as the minimum Rayleigh quotient

(8. 22 )

 22 This matrix contains inner products involving the gridfunctions (Y m n )| CS N , for the discrete weighted inner product dened by (y 1 , y 2 ) ω := ξ∈CS N ω N (ξ)y 1 (ξ)y 2 (ξ), y 1 , y 2 : CS N → R.

(8. 24 )

 24 The entries of the matrix E D N are the quadrature errors of the products Y m n Y m n . Theorem 8.8. pix N ≥ 1 nd D ≥ 0F vet A D N e the ndermonde mtrix with degree D on CS N D de(ned in (8.6)F vet ω : CS N → (0, ∞) e the weight of spheril qudrture rule on CS N D with error e N Y let Ω N e the ssoited digonl mtrixD de(ned in (8.7)F hen A D N Ω N A D N = I (D+1) 2 -E D N . (8.25) sn prtiulrD ssume tht (ω N ) N ≥1 is sequene of weight funtions de(ning onvergent qudrture rule on Y 2D D i.e. ∀f ∈ Y 2D , e N (f ) ----→ N →∞ 0D then

roofF

  In the matrix A D N Ω N A D N , the entry with row index (n, m) and column index (n , m ) contains the discrete inner product Y m n | CS N , Y m n | CS N ω N , as described in (8.22) and (8.23). Using the quadrature rule (8.4) with g = Y m n Y m n shows that this element is expressed as

Finally for a convergent

  rule, for all |m| ≤ n ≤ D and |m | ≤ n ≤ D, the entry of E D N with indices (n, m) and (n , m) is related to f = Y m n Y m n ∈ Y 2D , so that by hypothesis e N (Y m n Y m n ) → 0. For a convergence of order p > 0, there is furthermore a constant C n ,m n,m such that |e N (Y m n Y m n )| ≤ C n ,m n,m N -p .8.4.2 Block structure of (A D N ) Ω N A D N for a symmetric weight function

Figure 8 . 2 :

 82 Figure 8.2: Classication tree for partioning the set of indices {(n, m) : |m| ≤ n ≤ D} as a disjoint union J 1 ∪ . . . ∪ J 12 ; for instance, J 4 = {|m| ≤ n ≤ D, n ≡ 0 (2), m ≥ 0, m ≡ 0 (4)}.

Figure 8 .

 8 2 displays the resulting classication tree. It is an expression of the orthogonality relations in Theorem 8.9. Corollary 8.10. pix N ≥ 1D D ≥ 0F pix weight funtion ω : CS N → (0, ∞) invrint under the group G of {-1, 1} 3 in @SFPAF vet J k , 1 ≤ k ≤ 12D denotes prtioning of the set of indies |m| ≤ n ≤ DD displyed in pigure VFPF @iA essume tht the indies (n, m) ∈ J k , 1 ≤ k ≤ 12 in the ndermonde mtrix A D N re sorted long inresing k @for the rows nd for the olumnsAF hen A D N Ω N A D N is lok digonlD s shown in pigure VFQF @iiA he following orthogonl deomposition holds for the disrete inner produt (8.23)D f | CS N , f ∈ Y D = 12 k=1 Span{Y m n | CS N , (n, m) ∈ J k }. Assuming a symmetric weight function ω, Corollary 8.10 reveals that the matrix A D N Ω N A D N ,

Figure 8 . 3 :

 83 Figure 8.3: Block diagonal structure of the matrix A D N Ω N A D N , assuming that ω is invariant under G; the sets of indices J k are dened in Figure 8.2. The white cells contains only null coecients; they represent an approximate ratio of 29 32 of the entries.

Figure 8 . 5 :

 85 Figure 8.5: Least-squares approximation (LS) of the test functions f i in Table 8.1. Left panel: for any 1 ≤ N ≤ 32, the approximation fi ∈ Y 2N -1 is computed from f i | CS N , and the relative 2 -error (f i ) dened in (8.27) is plotted. Right panel: for any level of noise σ = 2 j , -31 ≤ j ≤ 2, the approximation fi ∈ Y 63 is computed from a noisy dataset f i | CS N + σN (0, 1) with N = 32, and (f i ) is plotted.

Figure 8 . 6 : 1 m

 861 Figure 8.6: Spectral dierentiation on CS N with respect to the longitude angle φ. For f = f 1 , f 2 from Table 8.1, for any 1 ≤ N ≤ 32, the approximate derivative ∂ φ f is computed from the leastsquares approximation f ∈ Y 2N -1 . Relative 2 -errors dened in (8.30) are plotted.

Figure 8 . 7 :

 87 Figure 8.7: Matrix E D N = [e N (Y m n Y m n )] from (8.25)-(8.24), with the uniform weight ω = 4π/ N , D = 2N -1, N = 4 (left panel) and N = 32 (right panel). The indices are arranged by the classication tree of Figure 8.2. The displayed value is 10 -15 + |e N (Y m n Y m n )|, in logarithmic scale. The observed structure is the block diagonal structure predicted by Figure 8.3 (Corollary 8.10). The sparsity score is 9.961% (left panel), resp. 9.387% (right panel), which is close to a ratio of 3/32.

Figure 8 . 8 : 1 N, 2 ≤ N ≤ 32 .

 881232 Figure 8.8: Maximal entry max |e N (Y m n Y m n )| of the matrix E 2N -1 N , 2 ≤ N ≤ 32. The result depends on the accuracy of the quadrature rule ω. It is smaller for the trapezoidal weight than for the uniform weight.

roofF

  The grid is invariant under the central symmetry -I 3 (ξ ↔ -ξ), so we split the grid function b into b = b ev + b odd , where b ev (ξ) = 1 2 (b(ξ) + b(-ξ)) is an even grid function (b ev (-ξ) = b ev (ξ)), and b odd (ξ) = 1 2 (b(ξ) -b(-ξ)) is odd (b odd (-ξ) = -b odd (ξ)). Therefore, for any f ∈ Y ev D , M i=1

(9. 16 )emrk 9 .

 169 13F The largest singular values represent stability constants, since perturbing a vector b ∈ R M by ∈ R M induces a perturbation on the transform Fb, resp. F † b, which satises F(b + )

Figure 9 . 2 :

 92 Figure 9.2: Numerical evidence of Claim 9.15: the condition number of the Vandermonde matrix A is plotted for G = CH N , D = 2N -2, and 1 ≤ N ≤ 64. Left: cond A is bounded from above by 1.2. Right: 2 1/4 -cond A decays to zero (plot in log-scale).

  . por the grid G = CH N D nd n even degree D ≥ 2N D let A D N e the ndermonde mtrix (9.4)F vet σ min (A D N )D cond(A D N )D denote its smllest singulr vlueD respF ondition numerF @iA por ll N ≤ 4 nd D ≥ 2N D the mtrix A D N hs not full olumn rnk @heneD σ min (A D N ) = 0D nd cond(A D N ) = +∞AF @iiA here exists sequene ( N ) N ≥1 with symptotis N

roofF 2 . 1 2

 21 We refer to the proofs of Proposition 8.4 and Theorem 8.7 which establish similar results for the matrix[Y m n (ξ)] ξ∈CS N |m|≤n≤D ∈ R (6N 2 +2)×(D+1)The proofs are based on the examplesf N = Y -2N 2N (x(θ, φ -π 4 )) ∈ Y 2N , and Y 0 ∈ Y 2N . The same strategy applies for A D N , since f N , Y 0 ∈ Y ev2N , so we get almost the same estimations. The slight dierence is a factor in (ii), due to the restriction of CS N to CH N . This factor disappears in the estimation of the condition number in (iii), since it is a ratio. emrk 9.18F The critical degree 2N corresponds usually to oscillations at the Nyquist's frequency for a uniform one-dimensional grid with step π 2N . Here, the critical example f N oscillates at this frequency along the (equatorial) grid φ ≡ π 4 ( π 2N

  .

9. 4 . 3

 43 Discrete Funk transform Assuming that Claim 9.15 is true, we consider the discrete Funk transform F, in the case G = CH N , D = 2N -2, where N ≥ 1 is xed. Of course, any result of Subsection 9.3.2 applies. In particular, Theorem 9.12 guarantees estimations of stability based on the condition number plotted in Figure 9.2.

Figure 9 . 3 :

 93 Figure 9.3: Stability constants associated to the discrete transforms F and F † , in the case G = CH N , D = 2N -2. Left: the maximum singular values σ max (F) and σ max (F † ) are plotted in term of N . Right: the same singular values are plotted, but with normalization factors.

  n! , ĝ(k) n := (n + 1) k , k = -6, -4, -2, -1, 0,

1 ,

 1 where we report numerical convergence rates r N[g] such that η 2N [g] = η N [g] 2 -r N [g] , with r N [g] = log 2 η N [g] -log 2 η 2N [g].

Figure 9 . 4 :

 94 Figure 9.4: Approximation of the Funk transform [(Fg)(ξ i )] 1≤i≤M by the discrete transform F[g(ξ i )] 1≤i≤M , for the grid CH N , and the degree 2N -2. The relative error η N [g] in (9.20) is plotted, for each test function g = g (k) from (9.18-9.19).

( 9 . 23 )

 923 The b-values b j and the diusion tensors D j are dened in Table

Figure 9 . 5 :

 95 Figure 9.5: Accuracy of the discrete Funk transform on CH N with degree 2N -2, for the Gaussian signals S j in (9.23) and Table 9.5. Left: F[S j (ξ i )] 1≤i≤M approximates [(FS j )(ξ i )] 1≤i≤M with relative error η N [S j ] in (9.20); we plot η N [S j ] with 1 ≤ N ≤ 32. Right: for any orthogonal matrix Q ∈ R 3×3 , the same procedure applied to the rotated Gaussian S j (Q •) results in a relative error η N [S j (Q •)]; we plot the maximum error (9.25), where Q scans a set of 30 random orthogonal matrices.

Figure 9 . 6 :

 96 Figure 9.6: Accuracy of the discrete Funk transform on CH N (degree 2N -2), for Gaussian signals S j corrupted by noise. The relative error (9.27) on the transform is plotted against the relative error (9.27) on the signal (logarithmic scale). Left: N = 5; right: N = 10.

9. 5 . 3

 53 Comparison of the Cubed Sphere and the icosahedral grid We compare discrete Funk transforms on Cubed Hemispheres with discrete Funk transforms on icosahedral grids.

Figure 9 . 7 :

 97 Figure 9.7: Degree D for least squares tting on the Cubed Hemisphere CH N , resp. the Icosahedral grid Ico N . For CH N , the number of grid points is M = 3N 2 + 1, the degree is D = 2N -2, and 1 ≤ N ≤ 32. For Ico N , M = 5N 2 +1, D is the largest degree such that cond A ≤ 2, and 1 ≤ N ≤ 25.

3 :

 3 Running time dedicated to the computation of a discrete Funk transform Fb, for the grid G = CH N , and the degree D = 2N -2.

Figure 9 . 8 :

 98 Figure 9.8: Accuracy of the Funk transform associated to the Cubed Hemisphere (CH), resp. the Icosahedral grid (Ico). The relative error η[g] in (9.28) is plotted against √ M , with M the number of grid points. The degree D is plotted in Figure 9.7.

Figure 9 . 9 :

 99 Figure 9.9: Accuracy of the Funk transform associated to the Cubed Hemisphere (CH), resp. the Icosahedral grid (Ico), with a level of noise σ = 10 -6 . The relative error η noise [g] in (9.29) is plotted against √ M , with M the number of grid points. The degree D is plotted in Figure 9.7.
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 1 Sampling and spectral computing on the Cubed Sphere 10.1.1 Metric properties of the Cubed Sphere

  y • x, δ N = min y =x∈CS N arccos y • x.Our results permit to give an analytical expression of the separation distance δ N ; it implies the asymptotics δ N ∼ π 2 √ 2N .

10. 1 . 2

 12 Approximation and Vandermonde matrices on the Cubed Sphere Data approximation on the Cubed Sphere CS N by a spherical harmonic can be formulated as the least squares problem (LS). From a matrix point of view, the problem especially depends on the Vandermonde matrice A D N dened in (8.6), A D N = [Y m n (x)] x∈CS N |m|≤n≤D .

10. 1 . 4 2 f

 142 Quadrature rules on the Cubed SphereVarious quadrature rules on the Cubed Sphere, such asS (x) dσ ≈ x∈CS N ω(x)f (x), ω : CS N → R, f : S 2 → R,have already been introduced; in particular, an octahedral rule which is almost as accurate as optimal octahedral rules has been deduced from interpolation. There are still directions to be explored, for instance to get accurate quadrature rules that can be computed fastly. Moreover, studying quadrature errors is related to the study of the singular values of the Vandermonde matrices A D N ,

  

  

  

  The second toy model, displayed in Figures 2.6-2.7, deals with occlusions. The set Γ is a union of two disjoint circles. grtoon projections are considered: the rst circle, resp. second circle, appears in the projections with f (y, θ) = f 1 , resp. f (y, θ) = f 2 , where f 1 and f 2 are two xed values. In

	comparison with Figure 2.4(b), the dataset 2.6(b) looks like two interlaced weighted silhouettes. For
	the reconstruction I Ω , several asymptotic regimes are expected. In brief, the circles should appear
	with order O(

  where F is dened by(2.19); as in (A.21), we have the inclusion WF R * ΛF ⊂ WF R * F , and (2.25) follows from (2.20) and (2.17

Table 3 .

 3 

				0.5	1	2	4	8	16	32
	Time (s)	0.676	0.736	0.860	1.12	1.61	2.57	4.62	8.41	16.2

2: Computational time in function of the rate α, for the reconstructions of Figure 3.4.

Table 3 .

 3 3: Four-fold cross validation of one cycle of algebraic iterations(3.3), from 72 calibrated images 384 × 480 (see Figure3.7 for the acquisition). and a RMSE computed on the test dataset. Lastly, we repeat this procedure four times: the test set browses the four subsets selected at the beginning. The RMSEs on the test sets correspond to some generalization error of the method; the variation of the RMSEs indicates the sensitivity of the quality with respect to the training set. Numerical results are summarized in Table3.3. Furthermore, we have selected one image per test set. For each trained reconstruction, we compute a MIP view associated to each one of these images. In this way, the MIP view of the i'th reconstruction, associated to the image of the i'th test set, is a prediction; the other views are re-projections. Here, the full box is projected, with a lower threshold xed to 500. See Figure3.10.

	Test number

  This map is closely related to Fourier transforms, as stated by the Fourier slice theorem [69, Theorem 2].Theorem A.1 (Fourier slice theorem). vet f ∈ L 1 (R 2 )D nd θ ∈ S 1 F henD the pourier trnsform of Rf (θ, •) oinides with the pourier trnsform of f D long the rdil line σθ, σ ∈ RD i.e.

1 

×R)

[START_REF] Krishnan | wirolol enlysis in omogrphy[END_REF] Theorem 8]

.

  with CS N left invariant by Q. Then the function u| CS N (Q •) is well-dened and is given by

Table 7

 7 

				.2 are in agreement with the invariance stated in Theorem 7.2 and
	Corollary 7.4.(i).						
	N	1	2	3	4	5	6	7	8
	N	2.5e-15	3.4e-15	7.8e-15	1.4e-14	9.7e-15	9.3e-15	1.3e-14	1.1e-14
	N	9	10	11	12	13	14	15	16
	N	1.4e-14	1.5e-14	1.9e-14	1.7e-14	3.4e-14	2.2e-14	1.8e-14	2.9e-14

Table 7 . 2

 72 

: Numerical invariance:

Table 7 . 4

 74 

		8	4.8e-02	8.2e-01	2.4e-01	3.9e-01	3.1e+00	6.7e-16
	2	26	2.0e-06	1.5e-02	1.7e-02	2.1e-01	9.9e-01	0.0e+00
	4	98	1.2e-14	2.2e-03	7.8e-03	2.0e-02	6.7e-02	2.2e-16
	8	386	1.8e-15	9.0e-06	3.8e-03	4.8e-03	6.4e-02	6.7e-16
	16	1538	7.1e-15	5.5e-09	1.9e-03	3.0e-04	1.5e-02	6.7e-16
	32	6146	5.3e-15	1.8e-15	9.5e-04	3.1e-04	7.9e-03	6.7e-16
	64	24578	3.6e-15	1.8e-15	4.8e-04	1.9e-07	2.6e-03	4.4e-16

: Quadrature error

Table 7 .

 7 5: Convergence rate r N (f i ) of the error η N (f i ), and convergence rate rN (f i ) of the average error ¯ N (f i ), over 1000 random orthogonal transformations of the grid.

		15	5.8	3.9	0.93	1.7	15	2.8	5.4	2.5	-0.0033
	2	27	2.7	1.1	3.4	3.9	26	3.3	1.1	3.3	1.8
	4	2.8	7.9	1	2.1	0.077	2.1	4.1	1	1.9	1.3
	8		11	1	4	2.1		13	1.2	2.8	1.7
	16		22	1	-0.047	0.92		24	0.92	2.2	1.4
	32			1	11	1.6			0.93	2.7	1.6

Table 7 .

 7 .6.

	Abbr.	Description

6: Quadrature of the literature used for comparison.

Table 7 .

 7 7: Quadrature rule Q N : observed degree of precision d N ( ) for various tolerances .

	4 )

  The assumption N ≤ 4 implies that each great circle C (ψ) contains 4N points of CS N . Since f vanishes on CS N , these points give 4N zeros for f | C (ψ) . Since f | C (ψ) represents a trigonometric polynomial with degree at most D, with 4N zeros, and 4N ≥ 2D + 1, we obtain f | C (ψ) = 0.Second, any great circle C not containing the pole (0, 0, 1), contains 4N points in the set ∪ ψ≡ π Therefore(8.15) implies that f has 4N zeros on C . It results that f | C represents a trigonometric polynomial with degree at most D and 4N zeros; since 4N ≥ 2D + 1, we Since the great circles in (8.15) and (8.16) cover the sphere, we have f = 0 on S 2 . 8.3.2 The case N ≥ 5

	4 ( 2N ) C (ψ). obtain π	
	f | C = 0, (0, 0, 1) / ∈ C .	(8.16)
	Lemma 8.3 and Proposition 8.	

Table 9 .

 9 1: Convergence rates (9.21) of the errors (9.20), for the test functions from (9.18-9.19).

	1	3.7	4.5	2.9	0.28	-1.4	1.8
	2	11	4.9	3.1	1.3	0.3	-0.19
	4	29	5.4	3.4	1.5	0.78	-0.11
	8	5.3	5.4	3.4	1.8	1.2	0.093
	16	0.83	5.5	3.6	2.2	1.8	1

Table 9 .

 9 .3.

	Parameter N	1	2	4	8	16	32	64
	Number of grid points M	4	13	49	193	769	3073	12289
	Degree D	0	2	6	14	30	62	126
	CPU time (s)	1.8e-04	1.2e-04	3.7e-04	2.3e-03	2.2e-02	5.0e-01	1.5e+01

  2 γ) 2(tan 2 α+tan 2 β+tan 2 γ) 3/2 , with x = 1 (tan 2 α+tan 2 β+tan 2 γ) 1/2 (tan α, tan β, tan γ); (10.1) 10.1. SAMPLING AND SPECTRAL COMPUTING ON THE CUBED SPHERE 10.1.7 Comparison with other grids

On the equiangular grid {-π 4 +j π

2N , 0 ≤ j ≤ 4N -1}, any trigonometric polynomial θ → exp(ikθ), with |k| < 2N , is correctly sampled. For k = 2N , θ → sin kθ is undersampled.

In order to clarify the gure, we have elimated the following ratios: ρN (f1), N > 3, and ρN (f6). Indeed, these ratios are large, because the associated errors are almost zero.

Remerciements

Appendix B

Physical background B.1 Electromagnetic imagery

The rst part of this habilitation thesis enters in the framework of imagery based on electromagnetic waves. In this eld, the goal is to produce images of a scene from records of electromagnetic radiation, in some wavelength range of the electromagnetic spectrum. Various ranges are recalled in Table B Interpolation on the Cubed Sphere with spherical harmonics

Introduction

In this chapter, we consider the problem of Lagrange interpolation on the Cubed Sphere, as in [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF].

Problem (Lagrange interpolation on the Cubed Sphere). Let CS N = {x i , 1 ≤ i ≤ N } denote the Cubed Sphere grid (5.1), where N ≥ 1 is xed, and N = 6N 2 + 2 denotes the cardinal number. Assume that a grid function f ∈ R CS N is known, which means that f (x i ), 1 ≤ i ≤ N , are values given at the nodes of CS N . The problem of Lagrange interpolation of f consists in nding a spherical function u :

We dene a new subspace of spherical harmonics in which such a problem has a unique solution u. This subspace is such that the solution u is minimal with respect to a reverse lexicographical order (on the degree). This implies that the components of u with high degrees are as small as possible, which avoids the high-frequency oscillations as much as possible. Our method of construction is based on an unusual factorization algorithm.

Other methods for multivariate interpolation have already been introduced to build miniml degree interpoltion spes enjoying various properties; we refer for instance to [START_REF] Boor | yn multivrite polynomil interpoltion[END_REF][START_REF]gomputtionl spets of polynomil interpoltion in severl vriles[END_REF][START_REF] Rodriguez Bazan | wultivrite interpoltionX reserving nd exploiting symmetry[END_REF]167,[START_REF] Sauer | olynomil interpoltion of miniml degree[END_REF][START_REF] Sauer | yn multivrite vgrnge interpoltion[END_REF] and the references therein. But the minimal property of our interpolating function, mentioned above, seems new. Also, we can mention the most standard approach in inverse problems: it would tackle (6.1) with a generalized inverse to dene a solution which has the minimal norm (based on a Singular Value Decomposition -SVD), but would not constrain the high degree components.

In fact, our approach, introduced in [START_REF]snterpoltion on the gued phere with pheril rrmonis[END_REF], is some combination of minimal degree interpolation and generalized inversion. In our case, the method deals especially with sampling on the Cubed Sphere: undersampled spherical harmonics are determined and eliminated, since they cannot be reconstructed. This is achieved by a reduction of a Vandermonde matrix associated to (6.1), under some special echelon form. The reduction is based on an orthogonal factorization, deduced from the SVD of suitable matrices. It builds simultaneously an orthonormal basis of the desired interpolation space, an orthonormal basis of undersampled spaces (orthogonal to the interpolation space), and a QR factorization of the linear system associated to the Lagrange problem (in the interpolation space).

The chapter is organized as follows. In Section 6.2, we dene some notation about spherical harmonics and grid functions. In Section 6.3, we propose an algebraic denition of an interpolation space, suitable for the Lagrange problem on the Cubed Sphere (Theorem 6.2). This section includes Lemma 6.1, which denes an explicit interpolating spherical harmonics with degree at most 4N -1 (or 4N -2); this new result, based on the geometrical structure of CS N , has never been published. In Section 6.4, we formulate an algorithm to compute this space, and to solve (6.1) (Corollary 6.8),

Ref. [START_REF] An | xumeril sntegrtion over the nit phere y using spheril tEdesign[END_REF][START_REF] Beentjes | udrture on spheril surfe[END_REF][START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF][START_REF] Fornberg | yn spheril hrmonis sed numeril qudrture over the surfe of sphere[END_REF][START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF]]

inspired from [START_REF] An | xumeril sntegrtion over the nit phere y using spheril tEdesign[END_REF] 5 1(z ≥ 1 2 ) π 6 1 9 [1 + sign(-9x -9y + 9z)] 4π 9 [START_REF] Beentjes | udrture on spheril surfe[END_REF][START_REF] Brachet | héms ompts hermitiens sur l phèreX pplitions en limtologie et oénogrphie numérique[END_REF][START_REF] Fornberg | yn spheril hrmonis sed numeril qudrture over the surfe of sphere[END_REF][START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF] Table 7.3: Test functions and exact integration values. convergence is still observed. For the spike function f 3 , the convergence rate is r N (f 3 ) ≈ 1. For the continous cap function f 4 , and the discontinuous one f 5 , the error slowly decrease, at a convergence rate which depends on the grid size. For the cap function f 6 , which is discontinous and symmetric (supported by a hemisphere), the error is close to the machine epsilon, independently of the grid size. 

19). Right panel: A 2N

N is observed to be not numerically injective if N is small (σ min ≈ 0), and is ill-conditioned otherwise (cond > 10 4 ).

Very smooth

Innite spike at the south pole (z = -1)

2 )

Discontinuous spherical cap (z = 1 2 )

Table 8.1: A series of test functions representative of various regularity properties.

The numerical study above suggests that for any N ≥ 1, the value of D N in Property (P) is

this property is not guaranteed.

Accuracy of the least squares approximation

The results in Section 8.3 assess the fact that Y 2N -1 is the largest spherical harmonics subspace leading to well-posedness and well-conditioning of the problem (LS). Here we further assess this property by evaluating the accuracy of least-squares approximations of a series of test functions.

First, we report in Table 8.1 ve functions extracted from Table 7.3 (and plotted in Figure 7.4). This series of functions is representative of various regularity properties. For each 1 ≤ N ≤ 32 and for each test function f i , 1 ≤ i ≤ 5, we compute the least-squares approximation fi ∈ Y 2N -1 of f i from the grid function f i | CS N : fi is evaluated as the unique solution to (LS), for D = 2N -1 and y = f i | CS N . The accuracy is measured by the relative discrete error, on a xed ne grid CS M . We Property 9.5. sn the sis (δ ξ i ) 1≤i≤M of R G D the mtrix of the disrete punk trnsform F is given y

roofF The matrix of the least squares operator, : R G → Y ev D , in the bases (δ ξ i ) and (Y m 2n ), is given by (A A) -1 A , due to (9.6). The matrix of the Funk transform F :

) and (δ ξ i ), is given by the Vandermonde matrix A. The discrete Funk transform F is the composition of these linear maps, so its matrix F is given by the product of the matrices.

The following result establishes that the spherical function F( [b]) can be exactly recovered from its restriction Fb on G (so that the restriction is lossly). Proposition 9.6. he disrete punk trnsform F :

sn other wordsD the lest squres (tting of the disrete punk trnsform oinides with the punk trnsform of the lest squres (ttingD

roofF Similarly as the proof of Property 9.5, the matrix of • F is given by

where we recognize the matrix of F • on the right hand side.

In practice, f : S 2 → R is a spherical function that is sampled on the grid G, so that the given 

wore generllyD for every f ∈ Y ev D D the punk trnsform Ff n e omputed extly from the grid funtion f | G D with

roofF Any function f ∈ Y ev D ts exactly the grid values [f (ξ i )] 1≤i≤M , so that the unique solution of (LS

Injecting this equality into the denition of F[f | G ] proves (9.9). Also, we obtain Ff = F( [f | G ]); hence, we have (9.10) due to the matrix of F • (see the proof of Proposition 9.6). Now, we investigate the inversion of the discrete Funk transform F. We introduce the Moore-Penrose pseudoinverse F † of the matrix F, since it is not expected to be nonsingular. We refer to [132, pp. 257-258] for usual consideration about such a pseudoinverse. In our case, the pseudoinverse F † maps any c ∈ R M to the minimum norm solution b = F † c ∈ R M of the least squares problem inf b∈R M Fb-c 2 . We prove that the pseudoinverse F † represents an inverse disrete punk trnsform that is analogous to the direct transform F. Theorem 9.8 (Pseudoinversion). he wooreEenrose pseudoinverse of F is given y

hereforeD the pseudoinverse F † represents the inverse discrete Funk transform F † D de(ned y

roofF The matrix F † is the Moore-Penrose pseudoinverse of F (and conversely), because (9.8) and (9.11) imply that the four Moore-Penrose conditions [132, p. 257] are satised:

Furthermore, the matrix of the transform F † dened in (9.12) is given by F † . This result and its proof are analogous to Property 9.5. The dierence is that the diagonal matrix Λ of the isomorphic Funk transform F : Y ev D → Y ev D is replaced by the inverse diagonal matrix Λ -1 , since it represents the inverse transform F -1 .

The relations (9.7) and (9.12) are very similar, so are (9.8) and (9.11). More generally, as soon as some result is established for one of the transforms F and F † , some counterpart is expected for the other one. For instance, the counterpart of Proposition 9.6 is given hereafter. Proposition 9.9. he inverse disrete punk trnsform

sn other wordsD the lest squres (tting of the inverse disrete punk trnsform oinides with the inverse punk trnsform of the lest squres (ttingD

roofF Analogous to the proof of Proposition 9.6. Now, we express mapping properties of F and F † in term of the Vandermonde matrix A.

Proposition 9.10. he following ssertions holdF @iA he omposition of F nd F † oinides with the orthogonl projetion on Ran AD

@iiA he null spe nd the rnge of F stisfy

@iiiA he null spe nd the rnge of F † stisfy Ker F † = Ker FD Ran F † = Ran FF roofF (i) Since A has full column rank, the orthogonal projection on Ran A is given by the matrix Π = A(A A) -1 A . Then FF † = F † F = Π can be easily checked with (9.8) and (9.11). And this implies (9.14) due to Πb = b, for any b ∈ Ran A.

(ii) The orthogonal decomposition R M = Ker A ⊕ Ran A is a consequence of classical linear algebra. Secondly, Ker A ⊂ Ker F is easily seen in (9.8), and Ker F ⊂ Ker F † F = Ker Π, with Ker Π = (Ran A) ⊥ = Ker A . Thirdly, Ran F ⊂ Ran A is easily seen in (9.8); furthermore, (9.14) proves that Ran A ⊂ Ran FF † , with Ran FF † ⊂ Ran F. The last equality is a consequence of the rst two ones.

(iii) The null space and the range of F † are obtained analogously as those of F.

Cubed Hemisphere

To begin with, for every N ≥ 1, the grid CS N is invariant under the central symmetry (see Theorem 5.3). Hence, Proposition 9.3 shows that any least squares problem (LS ev ) on this grid can be reduced to a problem on a half-grid, without changing the solution. Therefore, we restrict the grid CS N to the Northern hemisphere and a half of the equator circle, without loss of generality. The resulting grid is displayed in Figure 9.1 and is dened below. CH N (gray circles) dened in (9.17) is located in the Northern hemisphere; it contains half of the points from CS N . Left: N is odd (N = 5). Right: N is even (N = 6).

In the remainder of this section, we consider the grid

where N ≥ 1 is xed.

Degree

We tune the degree D in term of the parameter N , so that the problem (LS ev ) is well-conditioned. We argue that the value D = 2N -2 is a suitable choice.

The main motivation is the following claim, which is related to the study in Chapter 8. 

and they suggest that cond A grows to 2 1/4 when N → ∞. We also have a partial proof, concerning the full column rank property in the case N ≤ 4. 10 -6 diag(300, 300, 300) 0 2 1000 10 -6 diag(300, 600, 900) 0.46 3 1000 10 -6 diag(300, 300, 1700) 0.80 4 3000 10 -6 diag(300, 300, 300) 0 5 3000 10 -6 diag(300, 600, 900) 0.46 6 3000 10 -6 diag(300, 300, 1700) 0.80 to rounding errors), because S 1 , S 4 ∈ Y 0 ⊂ Y ev 2N -2 , so (9.9) applies. With S 2 , S 5 , and S 3 , S 6 , we observe that increasing the b-value induces a loss in accuracy; this is because a Gaussian becomes sharper with high b-values.

Secondly, we show that the orientation of the grid does not matter. For that purpose, we consider rotations of the signals S j :

where Q ∈ R 3×3 is a random orthogonal matrix. The relative error of approximation of the Funk transform becomes η N [S j (Q •)], and can be computed as before. For each function S j , we repeat this procedure for 30 random orthogonal matrices Q, and we plot the maximum error

in Figure 9.5 (right panel). We obtain a similar conclusion than before, so that the conclusion does not depend on the orientation of the grid.

Thirdly, we investigate the eect of noise. We corrupt the signals as follows. We x a value of N . For any 1 ≤ j ≤ 6, for any σ = 2 -p , with 2 ≤ p ≤ 31, we corrupt S j , by a speckle noise and an additive noise with level σ:

where the u i , v i , are 2M = 6N 2 + 2 independent realizations of the normal law N (0, 1). In this case, the relative error on the signal is given by

We compute the discrete Funk transform F[S σ j (ξ i )] 1≤i≤M , which approximates [(FS j )(ξ i )] 1≤i≤M with a relative error

(9.27)

In Figure 9.6, we have plotted the relative error (9.27) on the transform against the relative error (9.26) on the signal. Two values of N are considered. On the left, N = 5, so that the grid CH N contains 76 points, and the approximation space is Y ev 8 . On the right, N = 10, so that the grid CH N contains 301 points, and the approximation space is Y ev 18 . Roughly speaking, we observe that the relative error on the transform is the maximum between the relative error on the signal, and the relative error on the transform from the noise-free case (displayed in Figure 9.5). This result is in agreement with the stability constant of the transform F, σ max (F) ≈ 1 in Figure 9.3.

To conclude, the Funk transform of Gaussian models can be accurately evaluated by the discrete transform on the Cubed Hemisphere, and in a very stable way. here, x browses CS N when (α, β, γ) browses a uniform grid on the faces of the cube [-π 4 , π 4 ] 3 , with angular step δ = π 2N . This rule can be understood as a bivariate trapezoidal rule on the faces of [-π 4 , π 4 ] 3 , with a correction on the eight corners in order to get a uniform formula; the expression of the weight is especially due to a change of variable from the sphere to the faces of the cube. Remarkably, the simple correction on the corners permits to reach a fourth-order numerical accuracy with respect to δ [START_REF] Portelenelle | en e0ient qudrture rule on the gued phere[END_REF]. But proving theoretically this result is still open.

Moreover, I have found a further correction which is sixth-order accurate in numerical experiments. This rule is the octahedral rule given by (10.1), except for the corners, where the weight is dened to exactly integrate the constant function

The resulting rule has never been published so far, and proving the sixth-order accuracy is still open.

Fast algorithms on the Cubed Sphere

There is still a need of data approximation based on a fast algorithm that is analogous to the Fast Fourier Transform, in the specic framework of the Cubed Sphere. The inclusion

may be trick to achieve such a goal.

In the absence of such an algorithm and in a rst step, one may develop an ecient solver in a framework of (weighted) least squares tting (WLS). An option consists in solving the set of normal equations by an iterative solver, such as the so-called CGLS (Conjugate Gradient Least Squares).

The problem can be solved within a few iterations, due to the very small condition number. Also, this solver can be accelerated taking benet from symmetry consideration, since it implies a block diagonal structure. Preliminary numerical results conrm the relevance of this approach.

A further option to accelerate the iterations of CGLS would consist in computing the products matrix-vector with fast spherical Fourier algorithms from [START_REF] Keiner | pst evlution of qudrture formule on the sphere[END_REF][START_REF] Kunis | pst spheril pourier lgorithms[END_REF]. At the end, a few fast spherical Fourier transforms should result in an accurate least-squares tting, which should be itself evaluated by means of a fast spherical Fourier transform. This strategy, which may require some tuning, has not been tested yet.

New representations of the octahedral group

The symmetry group of the Cubed Sphere is given by the octahedral group G in (5.2). This implies various invariance and orthogonality properties related to data approximation on CS N . Among them, we can dene octahedral quadrature rules on CS N , for which 15/16 of the real spherical harmonics are automatically integrated. Also, the normal matrix associated to the (octahedral) weighted least squares (WLS) has the block diagonal structure displayed in Figure 8.3.

To go further, one can introduce the Cubed Sphere in a framework of representation theory. Here, the space of grid functions R CS N is invariant under the octahedral group G, so is the interpolation space U N . These spaces dene two new (equivalent) representations of G:

Our interpolation scheme preserves symmetry, as dened in [START_REF] Rodriguez Bazan | wultivrite interpoltionX reserving nd exploiting symmetry[END_REF]167]; numerical linear algebra permits to compute some orthonormal basis of U N which contains bases of the isotypic components, and whose evaluation on CS N provides an orthogonal basis of R CS N and its isotypic components.

But dening analytically this basis, or a similar one, is still open. Lastly, another remark to be explored is that representation theory gives a framework to dene Fourier-kind transforms [START_REF] Peyré | v9lgère disrète de l trnsformée de pourier[END_REF].