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Resumo

A classificação de tráfego Internet visa identificar o tipo de aplicação ou protocolo que

gerou um determinado pacote ou fluxo de pacotes na rede. Através da classificação de

tráfego, Fornecedores de Serviços de Internet (ISP), governos e administradores de rede

podem ter acesso às funções básicas e várias soluções, incluindo gestão da rede, monitora­

mento avançado de rede, auditoria de rede e deteção de anomalias. Classificar o tráfego é

essencial, pois assegura a Qualidade de Serviço (QoS) da rede, além de permitir planear

com eficiência o uso de recursos.

Como aumento de tráfego cifrado ou protocolo ofuscado na Internet e do encapsulamento

de dados multicamadas, alguns métodos clássicos da classificação perderam interesse de

investigação da comunidade científica. As limitações dos métodos tradicionais da clas­

sificação com base no número da porta e na inspeção de carga útil payload para clas­

sificar o tráfego de Internet cifrado ou ofuscado levaram a esforços significativos de in­

vestigação com foco em abordagens da classificação baseadas em técnicas de Aprendiza­

gemAutomática (ML) usando recursos estatísticos da camada de transporte. Na tentativa

de aumentar o desempenho da classificação, as estratégias de Aprendizagem Automática

ganharam o interesse da comunidade científica e se mostraram promissoras no futuro da

classificação de tráfego, principalmente no reconhecimento de tráfego cifrado.

No entanto, a abordagem em ML também têm as suas próprias limi­ tações, pois alguns

desses métodos possuem um elevado consumo de recursos computacionais, o que limita

a sua aplicação para classificação de grandes fluxos de tráfego ou em tempo real. As limi­

tações no âmbito da aplicação de ML levaram à investigação de abordagens alternativas,

incluindo procedimentos baseados em características e métodos estatísticos. Neste sen­

tido, os métodos de análise estatística, tais como distâncias e divergências, têm sido uti­

lizados para classificar tráfego em grandes fluxos e em tempo real.

A distância estatística possui como objetivo principal diferenciar os fluxos e permite en­

contrar um padrão nas características de tráfego através de propriedades estatísticas, que

possibilitam a classificação. As divergências são expressões funcionais frequentemente

relacionadas com a teoria da informação, que mede o grau de discrepância entre duas

distribuições quaisquer.

Esta tese foca­se na proposta de uma nova abordagemmetodológica para classificação de

tráfego cifrado ou ofuscado da Internet com base em métodos estatísticos que possibilite

avaliar o desempenho da classificação de tráfego de rede, incluindo a utilização de re­

cursos computacionais, em termos de CPU ememória. Foi proposto um conjunto de clas­

sificadores de tráfego baseados nas Divergências de Kullback­Leibler e Jensen­Shannon

e Distâncias Euclidiana, Hellinger, Bhattacharyya e Wootters. A seguir resumem­se os
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quatro principais contributos para o avanço do conhecimento científico reportados nesta

tese.

Primeiro, realizámos uma ampla revisão de literatura sobre classificação de tráfego ci­

frado e ofuscado de Internet. Os resultados sugerem que os métodos baseados em porta e

baseados em carga útil estão se tornando obsoletos em função do crescimento da utiliza­

ção de cifragem de tráfego e encapsulamento de dados multicamada. O tipo de métodos

baseados em ML também está se tornando limitado em função da complexidade com­

putacional. Como alternativa, pode­se utilizar a Máquina de Vetor de Suporte (SVM),

que também é um método de ML, e os testes de Kolmogorov­Smirnov e Qui­quadrado

como referência de comparação da classificação estatística. Em paralelo, surgiu na lite­

ratura a possibilidade de utilização de métodos estatísticos para classificação de tráfego

de Internet, com potencial de bons resultados na classificação sem aporte de grandes re­

cursos computacionais. Os métodos estatísticos potenciais são as Distâncias Euclidiana,

Hellinger, Bhattacharyya e Wootters, além das Divergências de Kullback–Leibler (KL) e

Jensen­Shannon.

Segundo, apresentamos uma proposta e implementação de um classificador baseado na

Máquina de Vetor de Suporte (SVM) para o tráfego multimédia P2P (Peer­to­Peer), com­

parando os resultados com os testes de Kolmogorov­Smirnov (KS) e Qui­quadrado. Os

resultados sugerem que a classificação da SVM com kernel Linear conduz a um melhor

desempenho da classificação do que os testes KS e Qui­quadrado, dependente do valor

atribuído ao parâmetro Self C. O método SVM com kernel Linear e com valores adequa­

dos para o parâmetro Self C pode ser uma boa escolha para identificar o tráfego Par a Par

(P2P) multimédia cifrado na Internet.

Terceiro, apresentamos uma proposta e implementação de dois classificadores baseados

na Divergência de KullbackLeibler (KL) e na Distância Euclidiana, sendo comparados

com a SVM com kernel Linear, configurado para o parâmestro Self C padrão, apresenta

reduzi­ da capacidade de classificar fluxos com base apenas nos tamanhos dos pacotes

em relação aos métodos KL e Distância Euclidiana. Os métodos KL e Euclidiano foram

capazes de classificar todas as aplicações testadas, destacando­se streaming e P2P, onde

para quase todos os casos foi eficiente identificá­las com alta precisão, com reduzido con­

sumo de recursos computacionais.Com base nos resultados obtidos, pode­se concluir que

os métodos KL e Distância Euclidiana são uma alternativa à SVM, porque essas aborda­

gens estatísticas podem operar em tempo real e não precisam de retreinamento cada vez

que surge um novo tipo de tráfego.

Quarto, apresentamos uma proposta e implementação de um conjunto de classificadores

para o tráfego de Internet cifrado, baseados na Divergência de Jensen­Shannon e nas Dis­

tâncias de Hellinger, Bhattacharyya e Wootters, sendo os respetivos resultados compara­

dos com os resultados obtidos com os métodos baseados na Distância Euclidiana, KL,
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KS e Qui­quadrado. Além disso, apresentamos uma análise qualitativa comparativa dos

métodos testados com base nos valores de Kappa e Curvas Característica de Operação do

Receptor (ROC). Os resultados sugerem valoresmédios de precisão acima de 90%para to­

dos osmétodos estatísticos, classificados como “confiabilidade quase perfeita” em valores

de Kappa, com exceçãode KS. Esse resultado indica que esses métodos são opções viáveis

para a classificação de tráfego cifrado da Internet, em especial a Distância de Hellinger,

que apresentou os melhores resultados do valor de Kappa em comparaçãocom os demais

classificadores. Conclui­se que osmétodos estatísticos considerados podem ser precisos e

económicos em termos de consumo de recursos computacionais para classificar o tráfego

da rede.

A nossa abordagem baseou­se na classificação de tráfego de rede Internet, focando em

distâncias e divergências estatísticas. Nós mostramos que é possível classificar e obter

bons resultados com métodos estatísticos, equilibrando desempenho de classificação e

uso de recursos computacionais em termos de CPU e memória. A validação da proposta

sustenta o argumento desta tese, que propõe a implementação de métodos estatísticos

como alternativa viável à classificação de tráfego da Internet em relação aos métodos com

base no número da porta, na inspeção de carga útil e de ML.

Palavras­chave

Classificação de tráfego, tráfego de Internet cifrado, Divergência de Kullback­Leibler, Dis­

tância Euclidiana, Máquina de Vetor de Suporte, métodos estatísticos, distribuição, Dis­

tância estatística, Divergência estatística, streaming de vídeo Par a Par, Divergência de

Jensen­Shannon, Distância deHellinger, Distância de Bhattacharyya, Distância deWoot­

ters.
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Resumo Alargado

Introdução

O presente resumo alargado, em língua Portuguesa, descreve a tese de doutoramento in­

titulada ”Timely Classification of Encrypted or Protocol­Obfuscated Internet Traffic Us­

ing Statistical Methods”. Começa por apresentar uma breve explicação sobre a classi­

ficação de tráfego Internet cifrado ou com protocolo ofuscado centrando­se, em seguida,

na apresentação do foco da tese no argumento da tese e nas temáticas mais relevantes

a serem abordadas. Este resumo alargado termina com uma breve conclusão e a apre­

sentação de futuras linhas de investigação.

Classificação de Tráfego Internet Cifrado e Protocolo Ofuscado

A classificação de tráfego pode determinar a classe de tráfego ou protocolo, agrupando­

os e relacionando­os de acordo com a categoria, tornando­se essencial como técnica para

controlar e proteger a rede, além de poder prever e identificar o comportamento do utili­

zador na rede. O objetivo da classificação de tráfego da Internet é facilitar a gestão de

rede. Os mecanismos existentes para classificação de tráfego usam diferentes métodos

para determinar o protocolo ou aplicação e correlacionar as propriedades de tráfego.

Os quatro principaismétodos para classificação são [1–3]: abordagens baseadas emportas,

abordagens baseadas em carga útil ou payload (DPI ­ Deep Packet Inspection), abor­

dagens baseadas em Aprendizagem Automatizada (ML) e abordagens baseadas em es­

tatísticas ou estatísticas comportamentais (conjuntos de heurísticas). Os métodos basea­

dos em portas permitem classificar o protocolo ou aplicação com referência ao número da

porta, que a aplicação ou protocolo usa com base na Autoridade de Números Atribuídos

da Internet (IANA) [1]. Os métodos baseados em DPI permitem classificar examinando

a carga útil [4]. Os métodos de ML baseiam­se na aprendizagem de padrões ou mode­

los das características de tráfego [5]. Os métodos baseados em estatísticas ou estatísticas

comportamentais permitem classificar através de propriedades de fluxo de tráfego das

camadas de rede e transporte, tais como tamanho do pacote, entropia, tempo de chegada

entre pacotes jitter, duração dos fluxos, dentre outros [6].

Os métodos de classificação tradicionais como os métodos baseados em portas possuem

limitações, pois não podem classificar protocolos ou aplicações que fazem uso de portas

com números aleatórios ou desconhecidos. Outro método tradicional que também pos­

sui limitações é a abordagem baseada em DPI. No cenário atual dominado pelo tráfego

de rede cifrado [7–9] ou pelo uso de protocolos ofuscados [10], os métodos baseados em

carga útil perdem interesse e geralmente são ineficazes. A cifragem de tráfego pode ser

definida como um conjunto de técnicas aplicadas para codificar o formato original dos da­
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dos da Internet, garantindoprivacidade e segurança [7]. A ofuscação de protocolo consiste

na modificação de propriedades que podem ser medidas em nível de carga ou fluxo, im­

possibilitando a identificação do protocolo [10]. Para ofuscação de carga útil, a cifragem é

normalmente usada para fazer com que os dados apareçam como aleatórios. A ofuscação

em nível de fluxo ocorre quando propriedades estatísticas, como tamanhos de pacotes e

tempos de chegada entre pacotes são modificadas [10–12].

Os métodos que utilizam a abordagem ML têm apresentado alta complexidade em sua

implementação e muitas vezes operam offline, tendo limitações para classificar o tráfego

Internet online. Além disso requerem retreino quando são usadas novas aplicações ou

protocolos [13].

A classificação baseada em estatísticas ou comportamento estatístico usa parâmetros das

camadas de rede e transporte e propriedades estatísticas de protocolos, fluxos e aplicações

[2, 14]. Usando propriedades estatísticas, o método pode classificar o tráfego da Internet

sem a necessidade de analisar a carga útil, mesmo que a carga útil do pacote seja cifrada,

e sem aumentar os problemas de segurança ou privacidade.

Foco da Tese

O foco da investigação descrita ao longo desta tese consiste na abordagem de métodos

estatísticos para classificação de tráfego na Internet. A fim de apresentar uma nova abor­

dagemmetodológica que exploramétodos estatísticos para classificar o tráfego cifrado ou

ofuscado, investigou­se o uso de análise estatística, nomeadamente distâncias e divergên­

cias estatísticas.

Argumento da Tese

Esta tese propõe uma nova abordagem metodológica para classificação de tráfego de In­

ternet cifrado ou usando protocolo ofuscado com base em métodos estatísticos. Assim,

é proposto um conjunto de classificadores baseados na Divergência de Kullback­Leibler,

Divergência de Jensen­Shannon, Distância Euclidiana, Distância de Hellinger, Distância

de Bhattacharyya e Distância de Wootters. O argumento da tese é o seguinte:

Aspropriedades estatísticas de tráfego Internet fornecemumaspecto característico rele­

vante para identificar as aplicações e protocolos, formandouma identificaçãoadequada,

nomeadamente a frequência relativa do tamanho de pacotes. Essa identificação é apro­

priadamente explorada ao usar métodos estatísticos, como distâncias e divergências.

Métodos de análise estatística, como Divergência de Kullback­Leibler, Divergência de

Jensen­Shannon, Distância Euclidiana, Distância deHellinger, Distância de Bhattacha­

ryya e Distância de Wootters, podem ser utilizados como uma boa alternativa na clas­

sificação de tráfego cifrado, sem a necessidade de utilização da carga útil do pacote e
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consumo adequado de recursos computacionais.

Processo da Classificação de Tráfego Baseado em Estatística

Como alternativa aosmétodos tradicionais, abordamosmétodos baseados emestatísticas.

De acordo com [15] mesmo que algumas técnicas de ofuscação sejam empregadas, é pos­

sível classificar o tráfego com base em características estatísticas. Os métodos baseados

em estatística podem ser categorizados em paramétricos e não paramétricos.

A categoria demétodos paramétricos inclui SVM com kernel Linear Distância Euclidiana,

Correlação de Pearson e Divergência de Jensen­Shannon. A categoria de métodos não

paramétricos inclui SVM não Linear, Distância de Bhattacharyya, Distância de Hellinger,

Divergência de KL, Distância de Wootters, e testes de Kolmogorov­Smirnov (KS) e Qui­

quadrado. Os classificadores baseados em métodos paramétricos possuem, para cada

classe, uma distribuição estatística de probabilidade. A distribuição estatística de proba­

bilidade descreve o comportamento aleatório de um fenómeno dependente do acaso.

Já os classificadores não paramétricos são usados para estimar a distribuição estatística

de probabilidade, ou casos em que a função densidade é desconhecida. A função densi­

dade é aquela que descreve o que aparenta ser ou é tido como verdadeiro de uma va­

riável aleatória. Para dar suporte metodológico ao nosso mecanismo da classificação, nós

propomos e usamos a taxonomia de métodos da classificação mostrada na Figura 1.

O processo da classificação de tráfego baseado em estatística consiste nas seguintes fases:

categorização de tráfego de Internet (coleta dos dados), conjunto de dados, recursos (fea­

tures), abordagemda classificação e validação. A coleta de dados emuma rede é umponto

crítico e serve como entrada para formar uma base de tráfego de rede. A extração e a

seleção da feature é um processo vital, pois pode afetar a eficiência e a eficácia da classi­

ficação. A feature é o conjunto de características necessárias para dar início ao processo da

classificação. A abordagem escolhida para classificar o tráfego é essencial para o sucesso

da classificação, assim como os critérios de avaliação de desempenho do classificador.

O tráfego Internet é categorizado de acordo com as seguintes classes: Administração,

Comunicações, Jogos, Partilha de FicheirosMercados, Redes Sociais, Entretenimento em

TempoReal, Armazenamento, Encapsulamento e Navegação naWeb. Cada categoria tem

uma descrição, que caracteriza o tráfego associado.

O conjunto de dados tem grande importância na avaliação e desempenho dos métodos.

Um conjunto de dados deve conter muitas e diversificadas amostras de cada classe de

tráfego de Internet. Se a amostra de dados é pequena, ou compoucas categorias de classes

de tráfego o classificador pode se ajustar a um número muito restrito e específico de

amostras, gerando um classificador com viés.
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Figura 1: Visão geral de métodos estatísticos para classificação de tráfego da Internet.

Uma etapa importante na classificação de tráfego de Internet é a seleção da feature. A

feature é definida como o processo de seleção do conjunto de características necessárias

para alcançar uma classificação precisa. A classificação de diferentes categorias de classe

de aplicações ocorre quando há algumas discrepâncias ou diferenças no comportamento

de tráfego com base nas features selecionadas. Para a classificação, podem ser escolhidas

uma ou mais features. Normalmente, a escolha da features muitas vezes ocorre apenas

de forma qualitativa.

Nesta tese, para classificar o tráfego cifrado ou ofuscado foram utilizadas cinco tuplas:

Protocolo deDatagramadeUtilizador (UDP)/Protocolo deControlo daTransmissão (TCP),

Protocolo de Internet (IP) de origem/destino e endereços e números de portas. São fea­

tures interessantes para abordagens estatísticas: i) tamanho dos pacotes, ii) número de

pacotes, iii) estatística descritiva do tamanho do pacote (desvio padrão, variância etc.), iv)

frequência acumulada do comprimento dos pacotes, v) frequência relativa do tamanho

dos pacotes, vi) número de contagem de fluxos, vii) comprimento médio de fluxo, viii)

comprimento máximo de fluxos, ix) tempo de chegada entre os pacotes e x) atraso entre

os pacotes. Além destas features, podem ser identificadas outras passíveis de mensu­

ração.

O processo de validação e avaliação do desempenho consiste em comparar os resultados
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obtidos a partir da classificação com resultados previamente conhecidos, de modo a obter

o desempenho da classificação.

Nesse sentido, os resultados da classificação obtidos são comparados com os resultados

reais da classificação, obtidos previamente e de formamanual, sendo este processo conhe­

cido como ground truth. O ground truth é a informação observada emedida, que permite

calcular as taxas de verdadeiro positivo, falso positivo, verdadeiro negativo e falso nega­

tivo. Muitas medidas de desempenho são usadas para avaliar se um método de clas­

sificação pode alcançar o desempenho esperado como Accuracy, Precision, Recall e F­

Measure, Curvas Característica de Operação do Receptor (ROC) e suas e respetivas Área

Sob asCurvas (AUCs). A seguir serão apresentados osmétodos utilizados para dar suporte

a esta tese e as métricas de desempenho para validação e avaliação de desempenho do

conjunto de classificadores.

Distância Euclidiana

A Distância Euclidiana, DE [x, y], entre dois pontos, x e y, em um, dois, três ou mais es­

paços dimensional é dada pela equação 1 [16], ondeDE [x, y] representa a funçãode distân­

cia, N define o número de amostras, k define o número da amostra inicial, xk representa

o primeiro conjunto de amostras e yk representa o segundo conjunto de amostras:

DE [x, y] =

√√√√ n∑
k=1

(xk − yk)
2. (1)

Divergência de Jensen­Shannon

Para duas distribuições de probabilidade discretas P = (p1, p2, ..., pn) eQ = (q1, q2, ..., qn)

com pi ≥ 0, qi ≥ 0, a Divergência de Jensen­Shannon (JSD) é representada pela equação

2 [17], onde N define o número de amostras, e i define o número da amostra inicial:

JSD (P,Q) =
1

2

{
N∑
i=1

pi log

(
2pi

pi+ qi

)
+

N∑
i=1

qi log

(
2qi

pi+ qi

)}
. (2)

Distância de Bhattacharyya

A Distância de Bhattacharyya é definida pela equação 3 [18], onde N é a quantidade de

partições e pi e qi são a quantidade demembros da amostra e i representa o número inicial
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da amostra:

BcD (P,Q) = − log

(
N∑
i=1

√
pi × qi

)
. (3)

Distância de Hellinger

A função de cálculo é obtida a partir de duas distribuições de probabilidade p e q dado

pela equação 4 [19], ondeN define o número de amostras, e i define o número da amostra

inicial.

HD (P,Q) =

√√√√1

2

N∑
i=1

(√
pi−

√
qi
)2

. (4)

Divergência de Kullback­Leibler

Considerando queDkl[p||q] é uma função e pi e qi são duas distribuições de probabilidade,
temos 5 [20]:

Dkl[p||q] =
∑

pi log

(
1

pi

)
−
∑

pi log

(
1

qi

)
. (5)

Então, podemos definir que a Divergência de Kullback­Leibler (KL) é representada pela

equação 6:

DkL[p||q] =
N∑
i=1

pi log

(
qi

pi

)
. (6)

Onde DKL[p||q] >= 0 e DKL[p||q] = 0 se e somente se pi(x) = qi(x), N define o número

de amostras, i define o número da amostra inicial, pi define as frequências relativas da

classe conhecida, qi define a frequência relativa da classe a ser comparada.

Distância deWootters

A Distância de Wootters é definida pelas distribuições de probabilidade pi e qi, repre­

sentada pela equação 7, onde o número de amostras é definido por N , e o número da

amostra inicial é definido por i, [21]:

WoD (P,Q) = arccos

(
N∑
i=1

√
pi × qi

)
. (7)
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Esta distância caracteriza­se por encontrar as diferenças das probabilidades inferiores aos

valores das flutuações.

Máquina de Vetor de Suporte

AMáquina deVetor de Suporte é ummétodopopular deAprendizagemAutomática super­

visionado, aplicado em classificação capaz de reconhecer padrões de amostras de classes

predefinidas e suportar classificaçãomulticlasse. Nós propomos, implementamos e avalia­

mos um classificador baseado na SVM para classificar o tráfego multimédia Peer­to­Peer

(P2P). Para obter resultados relevantes, é necessário ajustar adequadamente o parâmetro

Self C.

A SVM foi desenvolvida a partir da Teoria de Aprendizagem Estatística e tem como ob­

jetivo resolver problemas de classificação de padrões. A classificação baseada na SVM

utiliza funções de kernel Linear, kernel Radial Base Function (RBF), kernel Polynomial

e kernel Sigmoid. Para realizar a classificação de tráfego utilizando a SVM, é utilizada a

arquitetura proposta na Figura 2. A classificação foi dividida em 3 etapas, da seguinte

forma:

Etapa 1 ­ Tratamento dos dados ­ Geração da nova base de dados: para este passo, foi

criado um script cujo objetivo foi converter a base de dados original em uma nova base

de dados, que foi utilizada como entrada na SVM. Nós criamos buckets para calcular a

distribuição da frequência relativa.

Etapa 2 ­ Fase de treino e teste: a base de dados gerada pelo script na etapa 1, é utilizada

para gerar os modelos da SVM (fase de treino) e testar.

Etapa 3 ­ Validação e avaliação de desempenho.

ClassificaçãoUsandoDistância Euclidiana eDivergência deKullback­Leibler

As limitações dosmétodos tradicionais da classificação com base no número da porta e na

inspeção de carga útil para classificar o tráfego de Internet cifrado ou ofuscado levaram

a esforços significativos de investigação com foco em abordagens de classificação basea­

das em técnicas de Aprendizagem Automática usando recursos estatísticos da camada

de transporte. No entanto, essas abordagens também têm as suas próprias limitações,

levando à investigação de abordagens alternativas, tais como abordagens baseadas em

estatísticas.

As abordagens estatísticas podem ser uma alternativa às de Aprendizagem Automática

porque as abordagens estatísticas podem operar em tempo real e não precisam ser re­
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Figura 2: Arquitetura do classificador implementado com o método SVM.

treinadas cada vez que um novo tipo de tráfego aparece. Nesta etapa, propomos dois

classificadores estatísticos para tráfego cifrado na Internet com base na Divergência de

Kullback­Leibler e naDistância Euclidiana, que são calculados usando o fluxo e o tamanho

do pacote obtidos de alguns dos protocolos utilizados pelas aplicações.

Nós propomos uma arquitetura para a classificação usando a Distância Euclidiana e a Di­

vergência de KL. Esta arquitetura contém quatro módulos, conforme mostrado na Figura

3: captura e pré­processamento de pacotes, análise estatística e assinaturas armazenadas,

classificação e validação.

Captura de pacotes e pré­processamento: primeiro, separamos o nosso conjunto

de dados em ficheiros de fluxos individuais e ficheiros de fluxos coletivos. Classificamos

como ficheiros de fluxos individuais aqueles em que sabemos quais as aplicações que fo­

ram usadas para gerá­los. Em seguida, consideramos o fluxo da aplicação, endereço IP de

origem e endereço IP de destino, sequência de pacotes e número de pacotes pertencentes

à mesma aplicação e endereços IP.

Geração de modelo empírico: nesta etapa, são gerados ficheiros de frequência re­

lativa para alimentar a nova base de dados. Foi necessário criar um ficheiro com Fre­

quências Relativas (FR) correspondentes aos fluxos com o tráfego conhecido.

Geração de amostras: as amostras foram geradas a partir de ficheiros de fluxos indi­

viduais e coletivos. Cada amostra representa um arquivo de frequência relativa gerado

para cada protocolo. As frequências relativas dos fluxos individuais são armazenadas em

um conjunto de dados diferente, pois servirão para fins de identificação de assinatura
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Figura 3: Proposta do classificador implementado usando a Distância Euclidiana e a Divergência de KL.

durante a fase de comparação de fluxos.

Análise Estatística e Assinaturas Armazenadas: nesta etapa são calculadas a dis­

tância e a divergência com base nas frequências relativas de cada fluxo. Para saber se dois

fluxos de tráfego pertencem à mesma classe, usamos a distribuição empírica, no nosso

caso a frequência relativa que cada fluxo possui, e comparamos as duas frequências apli­

cando o cálculo KL ou Euclidiano, e obtendo uma distância como saída.

Classificação e validação: a classificação dos fluxos com base em regras é feita nesta

etapa. Observe que, nesta etapa, já temos todas as distâncias calculadas entre os fluxos.

Avaliação de desempenho: após o processo da classificação das amostras, verificamos

e validamos os resultados da classificação utilizando ground truth.

Classificação usando métodos Jensen­Shannon, Bhattacharyya, Hellinger e

Wootters

A classificação de tráfego Internet permite a identificação de protocolos utilizados em

diferentes serviços da Internet, com base nas características apresentadas em pacotes ou

fluxos gerados por esses serviços. Essa classificação e identificação de tráfego são realiza­

das através de diferentes técnicas, como Aprendizagem Automática (ML), Deep Packet

Inspection (DPI), ou métodos estatísticos como distâncias e divergências, que têm sido

usados para diferenciar objetos.

No entanto, os métodos de ML e DPI apresentam limitações nomeadamente para a clas­
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sificação atempada de tráfego de Internet cifrado. Neste etapa, investigamos o uso de

métodos estatísticos publicados na literatura que se mostraram bem­sucedidos para clas­

sificação em outras áreas, mas ainda não foram testados para classificação de tráfego de

rede. Assim, propomos, implementamos e avaliamos um classificador baseado nos méto­

dos de Jensen­Shannon, Hellinger, Bhattacharyya e Wootters para classificar o tráfego

cifrado da Internet.

Para formar um classificador baseado no comportamento de tráfego, foi necessário uma

amostra de distribuição de tráfego para que o algoritmo possa usar uma amostra de casos

para os quais as classificações verdadeiras são conhecidas.

Figura 4: Arquitetura implementada para classificação de tráfego usando distâncias e divergências.

A Figura 4 mostra a arquitetura adotada para o processo da classificação, onde os fluxos

forampré­processados, e a distribuiçãodo comprimentodos pacotes foi extraída de acordo

com os fluxos, formando uma nova base de dados denominado ”Base com FR”. A ar­

quitetura é composta por: ”Base com FR”, cálculo da distância, decisão da classificação e

cálculo de ROC e suas AUCs.

Para a classificação, foi necessário definir a distribuição a ser utilizada (Jensen­Shannon,

Hellinger, Bhattacharyya ouWootters). As divergências e distâncias entre as distribuições

de probabilidade foram calculadas por ”cálculos de distância” de acordo com o método

utilizado. As saídas foram os valores das distâncias entre as distribuições. As regras fo­
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ram aplicadas para a execução da ”decisão da classificação” após esses procedimentos,

obtendo­se as saídas da classificação e as comparações entre os métodos (via curvas ROC

e suas AUCs).

Desempenho dos Classificadores

Para avaliação de desempenho de cada um dos classificadores implementados nesta tese,

usamos as métricas de desempenho clássicas definidas em livros didáticos de Aprendi­

zagemAutomática, sendo elas: Accuracy, Precision, Recall e F­Measure [22]. Asmétricas

8, 9, 10, 11 estão relacionadas com o desempenho dos métodos, sendo que, TP significa

Verdadeiro Positivo, TN significa Verdadeiro Negativo, FP significa Falso Positivo e FN

significa Falso Negativo.

Accuracy =
TP + TN

TP + FP + TN + FN
, (8)

Recall =
TP

TP + FN
, (9)

Precision =
TP

FP + TP
, (10)

F −Measure =
2 ∗ Precision ∗ Recall

Precision +Recall
. (11)

Nesta tese também foi avaliado o desempenho computacional de todos osmétodos imple­

mentados em termos do consumo de memória e de CPU. O desempenho de um método

estatístico é considerado bomdesde que o uso daCPUpermaneça quase constante quando

os pacotes estão sendo processados e analisados. Quanto ao uso de memória, ela flutua

de acordo com as solicitações de cada método.

Os valores de Kappa foram usados para a avaliação qualitativa. O índice Kappa é um

método estatístico para avaliar o nível de concordância ou reprodutibilidade entre os con­

juntos de classificadores. Quanto maior a Accuracy, maior o índice Kappa. Os valores de

Kappa foram calculados de acordo com as equações 12, e 13 conforme [23,24]:

K =
P0 − Pe

1− Pe
. (12)

Sendo que K = índice Kappa, P0 é a taxa de aceitação relativa, Pe é a taxa hipotética de

aceitação. Para estimar P0, divide­se a soma das concordâncias (TP e TN) pela quan­
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tidade total de indivíduos da amostra, que representa exatamente a Accuracy, definida

pela equação 8.

Para estimar Pe é necessário calcular a probabilidade de ambos aleatoriamente aceitarem

ou rejeitarem uma classificação de dados. Para isso, tem­se a seguinte equação 13:

Pe =

(((TP+FP )∗(TP+FN))+((FN+TN)∗(FP+TN))
(FP+TN+FN+TP )

(FP + TN + FN + TP )
. (13)

Nós usamos duas interpretações diferentes: (1) [24] Landis e Koch e (2) McHugh [25].

As escalas não são totalmente sobrepostas, mas sugerem uma interpretação similar dos

resultados. Para Landis e Koch, valores deKappa acima de 0.41 já podem ser considerados

moderados, enquanto para McHugh o valor de Kappa precisa alcançar no mínimo 0.60

para ser considerado moderado.

Na escala de Landis e Koch, um valor de Kappa acima de 0.80 já pode ser considerado com

força de aceitação quase perfeita, enquanto para McHugh somente valores acima de 0.90

alcança nível de aceitação quase perfeita.

As escalas de Landis e Koch eMcHugh são referências importantes para identificar a força

e o nível de aceitação do conjunto de classificadores, sinalizando a qualidade das técnicas

utilizadas na classificação de tráfego Internet cifrado ou ofuscado. A Tabela 1 apresenta a

interpretação dos valores de Kappa sugeridos pelos autores Landis e Koch [24] e a Tabela

2 apresenta a interpretação dos valores de Kappa sugeridos pelo autor McHugh [25].

Tabela 1: Interpretação dos valores de Kappa de acordo com os autores Landis e Koch [24].

Estatística Kappa Força de Aceitação
> 0.81 Quase perfeita
Entre 0.61− 0.80 Considerável
Entre 0.41− 0.60 Moderada
Entre 0.21− 0.40 Razoável
Entre 0.00− 0.20 Pouca
< 0.00 Ruim

Tabela 2: Interpretação dos valores de Kappa de acordo com o autor McHugh [25].

Valor de Kappa Nível de Aceitação
> 0.90 Quase perfeita
Entre 0.80− 0.90 Forte
Entre 0.60− 0.79 Moderada
Entre 0.40− 0.59 Fraca
Entre 0.21− 0.39 Mínima
Entre 0.00− 0.20 Nenhuma
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Principais Resultados

Após a obtenção dos resultados (output) fornecidos pelos classificadores, os resultados fo­

ram validados através de ground truth e avaliados usando a matriz de confusão, através

das métricas Accuracy, Precision, Recall, e F­Measure. A Tabela 3 apresenta uma com­

paração entre os resultados da classificação obtidos com a SVMcomkernels Linear e RBF,

KS e testesQui­quadrado para o tráfego P2Pmultimédia comalterações no parâmetro Self

C.

Tabela 3: Resultados obtidos com a SVM Linear e RBF na melhor faixa do parâmetro Self C, KS e
Qui­quadrado.

Desempenho

Método
Kernel Linear
(C=[30 ­70])

Kernel RBF
(C=[50­70])

KS Qui­quadrado

P2P file­
sharing

P2P
Video

P2P file­
sharing

P2P
Video

P2P file­
sharing

P2P
Video

P2P file­
sharing

P2P
Vídeo

Precision 97% 99% 91% 94% 84% 100% 91% 100%
Recall 99% 100% 94% 99% 56% 56% 80% 74%
F­Measure 98% 99% 92% 97% 67% 70% 85% 85%

ATabela 4 apresenta os valores deKappa alcançados e as avaliações qualitativas de acordo

com Landis e Koch [24] e McHugh [25]. A Tabela 5 mostra a média e o desvio padrão da

Accuracy, Precision, Recall e F­Measure obtidos pelos classificadores com base no teste

KS, Distância Euclidiana, Divergência KL, Distância Wootters, Divergência de Jensen­

Shannon, Teste do Qui­quadrado, Distância de Bhattacharyya e Distância de Hellinger.

Tabela 4: Qualidade da Classificação Associada aos Valores Estatísticos Kappa.

Classificador Kappa Avaliação qualitativa do classificador
Landis e Koch McHugh

KS 0.72278 considerável moderado
Euclidiana 0.82447 quase perfeita forte
KL 0.83213 quase perfeita forte
Jensen­Shannon 0.84363 quase perfeita forte
Wootters 0.84371 quase perfeita forte
Bhattacharyya 0.84540 quase perfeita forte
Qui­quadrado 0.84910 quase perfeita forte
Hellinger 0.85225 quase perfeita forte

Os valores de Kappa foram usados para a avaliação qualitativa. Os valores obtidos através

de Curvas ROC e suas AUCs foram ferramentas úteis e poderosas para a avaliação dos

modelos de classificação.

Principais Conclusões e Linhas de Investigação Futura

Esta tese focou­se na proposta de uma nova abordagem metodológica para classificação

de tráfego Internet cifrado ou ofuscado baseada em métodos estatísticos que visaram ser

xxvii



Tabela 5: Resultados da Classificação Obtidos comMétodos Estatísticos.

Accuracy Precision Recall F­Measure

Classificador Média
Desvio
padrão

Média
Desvio
padrão

Média
Desvio
padrão

Média
Desvio
padrão

KS 0.99930 0.00062 0.80623 0.38551 0.48663 0.29667 0.58979 0.31884
Euclidiana 0.99967 0.00045 0.92188 0.26276 0.72309 0.27342 0.79668 0.26601
KL 0.99967 0.00049 0.92170 0.26284 0.73255 0.28943 0.79920 0.27535
Wootters 0.99967 0.00049 0.92222 0.26263 0.73646 0.28974 0.80191 0.27575
Jensen­Shannon 0.99969 0.00047 0.91442 0.26317 0.75649 0.28259 0.81441 0.27165
Qui­quadrado 0.99970 0.00046 0.92200 0.26271 0.75737 0.26271 0.81768 0.27121
Bhattacharyya 0.99971 0.00045 0.92160 0.26265 0.76178 0.28261 0.82043 0.27164
Hellinger 0.99971 0.00045 0.92280 0.26241 0.76293 0.28259 0.82175 0.27181

similar ou melhor que o desempenho da classificação usando a Máquina de Vetor de

Suporte (SVM) com recursos computacionais adequados, em termos de CPU e memória.

Foi proposto, implementado e avaliado um conjunto de classificadores estatísticos basea­

dos em distâncias e divergências, em específico, Distância Euclidiana, Divergência de

Kullback­Leibler (KL), Divergência de Jensen­Shannon, Distância de Wootters, Distân­

cia de Hellinger e Distância de Bhattacharyya. Para além disso, para fins de comparação,

foram propostos, implementados e avaliados um classificador baseado na SVM, um clas­

sificador baseado no teste de Kolmogorov­Smirnov e um classificador baseado no teste do

Qui­quadrado.

Verificámos que classificadores implementados através de métodos estatísticos são capa­

zes de superar algumas limitações como complexidade computacional de recursos, quan­

tidade das features utilizadas para classificação, operação em tempo real, grande quan­

tidade de fluxos ou tráfego intenso.

Concluímos que os métodos estatísticos baseados em divergências ou distâncias podem

ter uma boa precisão e uma utilização de recursos computacionais compatível com a clas­

sificação de tráfego Internet cifrado ou ofuscado, confirmando a hipótese inicial, vali­

dando o argumento apresentado nesta tese com expectativa que sejam reconhecidos como

ferramentas úteis e confiáveis na classificação de tráfego Internet.

Alguns pontos em aberto identificados na revisão de literatura não foram solucionados,

deixando espaço para avanços interessantes nesta área. Por exemplo, explorar a com­

binação do classificador SVM com divergências estatísticas. Na literatura encontramos

trabalhos que combinam a Distância Euclidiana com o algoritmo K­means para classi­

ficadores, e a divergência de Kullback­Leibler combinada com a SVM. No entanto, não

encontramos classificadores combinados com a Distância de Hellinger, com a Distância

de Wootters e nem com a Divergência de Jensen­Shannon. Uma outra possibilidade é

explorar a viabilidade do uso da similaridade de Manhattan, Mahalanobis e Minkowski

para classificação de tráfego Internet cifrado. Outra importante possibilidade é usar clas­

sificadores baseados em distâncias e divergências para identificar malware, intrusões e
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outros ataques.
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Abstract

Internet traffic classification aims to identify the type of application or protocol that gene­

rated a particular packet or stream of packets on the network. Through traffic classifi­

cation, Internet Service Providers (ISPs), governments, and network administrators can

access basic functions and several solutions, including network management, advanced

network monitoring, network auditing, and anomaly detection. Traffic classification is

essential as it ensures the Quality of Service (QoS) of the network, as well as allowing

efficient resource planning.

With the increase of encrypted or obfuscated protocol traffic on the Internet and multi­

layer data encapsulation, some classical classificationmethods have lost interest from the

scientific community. The limitations of traditional classification methods based on port

numbers and payload inspection to classify encrypted or obfuscated Internet traffic have

led to significant research efforts focused on Machine Learning (ML) based classification

approaches using statistical features from the transport layer. In an attempt to increase

classification performance,Machine Learning strategies have gained interest from the sci­

entific community and have shown promise in the future of traffic classification, specially

to recognize encrypted traffic.

However, ML approach also has its own limitations, as some of these methods have a

high computational resource consumption, which limits their applicationwhen classifying

large traffic or real­time flows. Limitations ofML application have led to the investigation

of alternative approaches, including feature­based procedures and statistical methods. In

this sense, statistical analysismethods, such as distances and divergences, have been used

to classify traffic in large flows and in real­time.

The main objective of statistical distance is to differentiate flows and find a pattern in

traffic characteristics through statistical properties, which enable classification. Diver­

gences are functional expressions often related to information theory, which measure the

degree of discrepancy between any two distributions.

This thesis focuses on proposing a new methodological approach to classify encrypted

or obfuscated Internet traffic based on statistical methods that enable the evaluation of

network traffic classification performance, including the use of computational resources

in terms of CPU and memory. A set of traffic classifiers based on Kullback­Leibler and

Jensen­Shannondivergences, andEuclidean,Hellinger, Bhattacharyya, andWootters dis­

tances were proposed. The following are the four main contributions to the advancement

of scientific knowledge reported in this thesis.

First, an extensive literature review on the classification of encrypted and obfuscated
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Internet traffic was conducted. The results suggest that port­based and payload­based

methods are becoming obsolete due to the increasing use of traffic encryption and multi­

layer data encapsulation. ML­basedmethods are also becoming limited due to their com­

putational complexity. As an alternative, Support Vector Machine (SVM), which is also

an ML method, and the Kolmogorov­Smirnov and Chi­squared tests can be used as refe­

rence for statistical classification. In parallel, the possibility of using statistical methods

for Internet traffic classification has emerged in the literature, with the potential of good

results in classification without the need of large computational resources. The potential

statistical methods are Euclidean Distance, Hellinger Distance, Bhattacharyya Distance,

Wootters Distance, as well as Kullback­Leibler (KL) and Jensen­Shannon divergences.

Second, we present a proposal and implementation of a classifier based on SVM for P2P

multimedia traffic, comparing the results with Kolmogorov­Smirnov (KS) and Chi­square

tests. The results suggest that SVM classification with Linear kernel leads to a better clas­

sification performance than KS and Chi­square tests, depending on the value assigned to

the Self C parameter. The SVMmethod with Linear kernel and suitable values for the Self

C parameter may be a good choice to identify encrypted P2P multimedia traffic on the

Internet.

Third, we present a proposal and implementation of two classifiers based on KL Diver­

gence andEuclideanDistance, which are compared to SVMwith Linear kernel, configured

with the standard Self C parameter, showing a reduced ability to classify flows based

solely on packet sizes compared to KL and Euclidean Distance methods. KL and Eucli­

deanmethods were able to classify all tested applications, particularly streaming and P2P,

where for almost all cases they efficiently identified them with high accuracy, with re­

duced consumption of computational resources. Based on the obtained results, it can be

concluded that KL and Euclidean Distance methods are an alternative to SVM, as these

statistical approaches can operate in real­time and do not require retraining every time a

new type of traffic emerges.

Fourth, we present a proposal and implementation of a set of classifiers for encrypted

Internet traffic, based on Jensen­Shannon Divergence and Hellinger, Bhattacharyya, and

Wootters Distances, with their respective results compared to those obtained withmetho­

ds based on Euclidean Distance, KL, KS, and Chi­Square. Additionally, we present a com­

parative qualitative analysis of the tested methods based on Kappa values and Receiver

Operating Characteristic (ROC) curves. The results suggest average accuracy values above

90% for all statistical methods, classified as ”almost perfect reliability” in terms of Kappa

values, with the exception of KS. This result indicates that these methods are viable op­

tions to classify encrypted Internet traffic, especially Hellinger Distance, which showed

the best Kappa values compared to other classifiers. We conclude that the considered

statistical methods can be accurate and cost­effective in terms of computational resource

consumption to classify network traffic.
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Our approach was based on the classification of Internet network traffic, focusing on sta­

tistical distances and divergences. We have shown that it is possible to classify and ob­

tain good results with statistical methods, balancing classification performance and the

use of computational resources in terms of CPU and memory. The validation of the pro­

posal supports the argument of this thesis, which proposes the implementation of statis­

tical methods as a viable alternative to Internet traffic classification compared tomethods

based on port numbers, payload inspection, and ML.
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Chapter 1

Introduction

1.1 Thesis Scope and Focus

Traffic classification has an important application on the current management of com­

puter networks. Classifying Internet traffic means identifying the protocols and applic­

ations that generated such Internet traffic. Traditional methods of Internet traffic clas­

sification are based on techniques that have limitations in scenarios where the Internet

traffic is encrypted [7–9] or the protocol is obfuscated [10]. Encrypted traffic has been

getting more space on the Internet, because online privacy and security are highly de­

pendent on encryption. Traffic encryption can be defined as a set of techniques applied to

encode the original format of Internet data, ensuring privacy and security [7]. Nonethe­

less, encryption can also be applied to malicious codes, making it hard to identify them

on networks and therefore allowing its traffic on the Internet if not classified and blocked.

Protocol­obfuscation is themodification or removal of properties that can bemeasured at

payload or flow level, which can even make impossible the identification of the protocol.

For payload obfuscation, encryption is normally used to make data look random. Flow

level obfuscation happens when statistical properties, such as packet lengths and time

between arrivals, are hidden [10–12].

There are four main types of approaches to classify Internet traffic [1–3]: approaches

based on ports, approaches based on payload, approaches based on Machine Learning

(ML) and approaches based on statistics. Port based approaches identify applications and

protocols through the ports mapped by the Internet Assigned Number Authority (IANA)

[1]. Payload based approaches, also known as Deep Packet Inspection (DPI), identify ap­

plications and protocols through signatures or a set of strings in the packet payload [4].

MLbased approaches identify applications and protocols through a learningmodel or pat­

terns of learning differentiation [5], and statistical based approaches identify applications

and protocols through statistical traffic parameters, statistical behavior, or heuristics and

they are based on the monitoring of connection patterns of IP, port pairs [26] or statistics

of packet lengths or at flow level [14].

Initially, Internet traffic identification was done through an easy way, using only port

numbers of the applications or protocols. However, many applications started to use un­

known or random ports, which is the case of Peer­to­Peer (P2P) protocols, or used well­

knownports used by other protocols, e.g., port 80 forHTTP (Hypertext Transfer Protocol)

traffic, making unfeasible the use of methods based on ports [26].
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From that moment on, new strategies have been explored to identify Internet traffic. A

proposed alternative were methods based on payload or DPI. DPI based methods have as

characteristic the examination of packet content, independently of which port number the

application uses to. However, DPI methods also have their own limitations, because they

cannot recognize or identify encrypted content or protocol­obfuscated signatures in the

payload [7]. Some studies and efforts were made to improve the efficiency of DPI based

methods [8, 27–29]. In [30–33], the target of the research was methods and techniques

that used payload or DPI to identify Internet traffic. Although many efforts have been

made, DPI methods have difficulty overcoming limitations resulting from traffic being

encrypted or obfuscated.

Aiming to overcome the limitations of DPI methods, studies and efforts were made based

onMLmethods applied to features at the packet or flow levels, as in [3,34–40]. However,

methods usingML approach have presented high complexity in their implementation and

many times they operate offline, being unable of classifying online Internet traffic.

Recently, attention has been paid to the development of approaches based on statistics

that can be computationally efficient and that can work online or in a timely manner [2,

14, 41]. Studies made in [42, 43] had as focus the statistical behavior. The ones made

in [26,44–47] focused on heuristic approaches.

Classification based on statistics or statistical behavior uses parameters from the network

and transport layers and statistical properties of protocols, flows and applications [2,14].

Using statistical properties, the method can classify the Internet traffic without needing

to analyze the payload, even if the packet payload is encrypted, and without rising se­

curity or privacy issues. Parameters of interest for this kind of classification include: i)

packet length, ii) packet number, iii) descriptive statistics of the packet size (standard de­

viation, variance, etc), iv) accumulated frequency of packets length, v) relative frequency

of packets size, vi) quantity of bursts, vii) average length of bursts, viii) maximum length

of a burst, ix) inter­arrival times and x) delay between packets. Besides those parameters,

others can be identified, also possible of being measured.

The focus of the research described along this thesis is to approach statistical methods for

Internet traffic classification. In order to present a new methodological approach which

explores statisticalmethods to classify encrypted or obfuscated traffic, the use of statistical

analysis was investigated, namely statistical distances and divergences. A distance may

allow the measurement of the difference between flows through statistical properties, dif­

ferentiating them numerically. A divergence may allow the measurement of the discrep­

ancy between probability distributions of the statistical properties of the flows. Therefore,

this thesis is dedicated to encrypted or protocol­obfuscated Internet traffic classification

using statistical methods.
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1.2 Problem Statement

Data flow in the Internet has increased exponentially and with a multiplicity of formats,

many of which makes the network control and security harder, such as protocols that use

random or unknown ports and encrypted or obfuscated packets. Despite allowing content

privacy, encrypted or obfuscated packetsmay containmalicious code, increasing the risks

for users and stable functioning of the network and their interconnected systems. As away

to face this dilemma, it becomesnecessary to developmethods for traffic classification that

operate timely and are efficient without compromising security and privacy.

As reported in the previous section, there are four types of methods for traffic classific­

ation. Methods based on port numbers are nowadays obsolete since they are unable to

correctly identify traffic that uses unknown or random ports or uses well­known ports

assigned to other protocols. Besides, since the beginning of the Enhanced SSL (ESSL)

service, which was originally created to be a separate network segment satisfying the re­

quirements of the Payment Card Industry Data Security Standards (PCI­DSS), the use of

encryption has become the standard for all kind of Internet traffic [48]. As a consequence,

nowadays, 95%of Internet traffic uses theHTTP Secure (HTTPS) protocol as estimated by

Google and around 80­90% of network traffic is encrypted, as reported by most industry

analysts [49]. In this scenario dominated by encrypted network traffic, payload­based

methods lose their strength and are often ineffective. This led to the search for newmeth­

ods based on ML or on statistical approaches.

Methods based on ML are computationally complex and the supervised ones require a

set of pre­classified data and a training phase, which requires retraining every time new

applications or protocols are used [13]. This kind of classifiers are suitable for offline

operation andmay require additionalmechanisms for timely or online classification, such

as a sliding window.

Classifiers such as Bayesian estimation, C4.5, and nearest­neighbor estimation may be

tied to local optimization and cannot work in real time due to their computational and

storage requirements [50]. Support Vector Machines (SVMs), which may be seen as both

an ML method and a statistical method, have also been widely investigated for classific­

ation of Internet traffic. SVMs have been used separately [37, 38, 51–54] or combined

with other ML methods in order to improve performance or operation speed, such as

Neural Network (NN) and Random Forest [55], Naive Bayes [56], k­Nearest Neighbors

(KNN) [57], least square SVM with hybrid optimization algorithm [58], grid search and

genetic algorithm [59] for SVM parameter optimization, nature inspired instance selec­

tion techniques [60] for SVM speed optimization, or multiclass SVM with active learn­

ing [61], or SVM used in a clustering based semi­supervised ML learning [62].

A few statistical methods have already been investigated for Internet traffic classifica­
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tion, such as the Euclidean Distance, Pearson Correlation (Correlation Information), and

Kolmogorov­Smirnov and Chi­square tests [63–69]. Despite being used separately, some

of these methods are also used in conjunction with other statistical or ML methods in

order to improve their performance.

By hypothesis, we believe that statistical models based on distances and divergences may

be able to classify encrypted Internet traffic in an efficient and timely manner, with suit­

able computational resource consumption, showing potential for usage as new Internet

traffic classification models. Therefore, the research question in the inception of the re­

search work leading to this thesis is the following:

“How to obtain classification results for encrypted Internet traffic, similar or better than

the ones obtained with ML­based models, namely with SVM, using statistical methods

in a timely way?”

1.3 Research Objectives

The research work described in this thesis has as its main objective proposing, imple­

menting, and evaluating a set of classifiers proposing, implementing and evaluating a set

of classifiers for encrypted and protocol­obfuscated Internet traffic based on statistical

methods, in specific Euclidean, Hellinger, Bhattacharyya and Wootters Distances, and

Kullback­Leibler and Jensen­Shannon Divergences.

The methods explore statistical features such as the packet lengths of the Internet traffic

flows and their performance can be evaluated in terms of Accuracy, Recall, Precision, F­

Measure, Kappa index and the Curve of Receiver Operating Characteristic (ROC) curves

with its Areas Under the Curves (AUCs), besides measuring the efficiency in computa­

tional terms, evaluating CPU elapsed time and necessary memory. To support the main

purpose of this thesis, the following specific objectives were set:

• Presenting a literature and state of art review about classification of encrypted and

protocol­obfuscated Internet traffic;

• Presenting a general view about statistical methods, in particular Euclidean Dis­

tance, Kullback­Leibler (KL) Divergence, Jensen­Shannon Divergence, Wootters

Distance, Hellinger Distance and Bhattacharyya Distance;

• Implementing a lab testbed for classification of encrypted and protocol­obfuscated

Internet traffic;

• Implementing a Support Vector Machine (SVM) based classifier;

• Implementing Chi­square and Kolmogorov­Smirnov test based classifiers;
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• Implementing a set of classifiers based on distances and divergences, more specific­

ally Euclidean Distance, Kullback­Leibler (KL) Divergence, Jensen­Shannon Diver­

gence, Wootters Distance, Hellinger Distance and Bhattacharyya Distance;

• Analyzing the performance of the set of classifiers in terms of Precision, Recall, F­

measure, Accuracy, Kappa index and ROC curves with its AUCs, and in terms of

computational efficiency (CPU and memory usage);

• Comparing the performance of the implemented classifiers to other classifiers, such

as SVM, Chi­square and Kolmogorov­Smirnov test through Kappa index and ROC

curves with its AUCs.

1.4 Thesis Statement

This thesis proposes a new methodological approach for classification of encrypted or

protocol­obfuscated Internet traffic based on statistical methods. Thus, it is proposed a

set of classifiers based on the Kullback­Leibler Divergence, Jensen­Shannon Divergence,

Euclidean Distance, Hellinger Distance, Bhattacharyya Distance, andWootters Distance.

The thesis statement is as follows:

Statistical properties of Internet traffic provide a characteristic aspect that hasmain rel­

evance to identifyingapplications andprotocols, the relative frequency of packet lengths,

which forms an appropriate identification. This identification can be suitably explored

by using statistical methods, such as distances and divergences. Methods of statistical

analysis, like Kullback­Leibler Divergence, Jensen­Shannon Divergence, Euclidean Dis­

tance, Hellinger Distance, Bhattacharyya Distance, andWootters Distance, can be used

for encrypted traffic classification with suitable consumption of computing resources.

1.5 Adopted Approach for Solving the Problem

The construction process of the object of this Ph.D. thesis started with a wide research in

several databases of academic articles, using as reference the key­words “encrypted and

obfuscated Internet traffic classification”.

The limitations of methods based on ports, payload, and ML motivated us to search for a

less complex approach that is able to provide good classification results, has a moderate

resource consumption and is able to operate in real time.

Through the initial literature review, we verified that there were some open issues about

traffic classification and that statisticalmethods, such as distances anddivergences, showed

themselves promising for classification in different areas, but have not been tested for en­

crypted or obfuscated Internet traffic classification yet. Like that, to each new reading
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the research on the database started containing the key words: “statistical methods, di­

vergences, distances, Kullback­Leibler, Jensen­Shannon, Euclidean, Hellinger,Wootters,

Bhattacharyya, SVM, Chi­square, Kolmogorov­Smirnov, Kappa index, ROC curve and its

AUCs, computational performance ”. Through the whole research, more than 700mater­

ials were consulted from international databases, being 248 of them selected and cited in

the bibliographic references.

With the purpose of this research well defined and aiming to solve the proposed question,

the efforts were directed to implementing, evaluating and comparing a set of classifiers

based on statistical methods with the potential to overcome dilemmas of random ports,

encryption, obfuscation and computational complexity. Kullback­Leibler and Jensen­

Shannon Divergences and Euclidean, Hellinger, Bhattacharyya and Wootters Distances

were chosen trying to classify encrypted and obfuscated Internet traffic. Traffic classific­

ation by SVM, Kolmogorov­Smirnov (KS) and Chi­square tests were also chosen as refer­

ence to compare the many classifiers based on divergences and distances.

To test the statistical methodology, a published and available database was used with ap­

proximately 25GB of network traffic flow generated by 28 different Internet services and

applications, captured using the tcpdump tool and stored in disk.

A script was built with all statistical models under study and implemented in Python,

which estimated the capacity of classification of those models for the database. The es­

timates were generated and run successfully, looking towards refining the script from the

statistical metrics suggested by literature, with interesting results when using accumu­

lated and relative frequencies of packet length.

The results were organized considering the Accuracy, Recall, Precision and F­Measure for

all 28 protocols and the eight statistical models that allowed the evaluation of the classi­

fication capacity of the different methods. An additional layer of evaluation was added

when using the Kappa index and the ROC curve and its AUCs as a way to quantify the

reliability and the strength of the classifiers.

With the results of the statistical methods capacity and the quality of classification, four

articles were produced that contemplated since the proposal conception up to the evalu­

ation of all methods, aiming to spread in the scientific community the potential of using

statistical tools as a classifier for encrypted and obfuscated Internet traffic.

Finally, all material was gathered in this thesis format, organizing the articles as chapters

in a coherent sequence, and having the methodology as the link among all the articles

from the identification of the possibility of using statistical techniques to the evaluation

of all the tested approaches.
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1.6 List of Scientific Publications

This Ph.D. thesis includes the following research papers, as appeared in the conference

proceedings or as recently submitted for review in international journals:

1. A Complete review on the application of statistical methods for evaluating Internet

traffic Usage, Vanice Canuto Cunha, Arturo Zavala Zavala, Damien Magoni, Pedro

R. M. Inácio, Mário M. Freire, IEEE Access, vol. 10, pp. 128433­128455, 2022.

DOI:10.1109/ACCESS.2022.3227073 [70].

2. Impact of Self C Parameter on SVM­based Classification of Encrypted Multimedia

Peer­to­Peer Traffic, Vanice Canuto Cunha, Damien Magoni, Pedro R. M. Inácio,

Mario M. Freire. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Informa­

tion Networking and Applications, AINA 2022, Lecture Notes in Networks and Sys­

tems, vol 449, Springer, Cham, pp. 180–193. DOI: https://doi.org/10.1007/978­3­

030­99584­3_16 [71] .

3. Classification of Encrypted Internet Traffic Using Kullback­Leibler Divergence and

Euclidean Distance, Vanice Canuto Cunha, Arturo A. Z. Zavala, Pedro R. M. Inácio,

Damien Magoni, Mario M. Freire. In: Barolli, L., Amato, F., Moscato, F., Enokido,

T., Takizawa, M. (eds) Advanced Information Networking and Applications, AINA

2020, Advances in Intelligent Systems and Computing, vol 1151, Springer, Cham,

pp. 883–897. DOI: https://doi.org/10.1007/978­3­030­44041­1_77 [72].

4. Classification of Encrypted Internet Traffic Using Statistical Methods, Vanice Ca­

nuto Cunha, Arturo A. Z. Zavala, Pedro R. M. Inácio, Damien Magoni, Mário M.

Freire, 2022, currently under submission.

Paper 1 [70] was published in a journal listed in Scimago Journal & Country Rank as Q1

and its original version, before revision, appears in Chapter 2 of this thesis.

Paper 2 [71] was presented in an international conference ranked as B in the CORE Con­

ference Portal and appears with some updates in Chapter 3 of this thesis.

Paper 3 [72] was presented in an international conference ranked as B in the CORE Con­

ference Portal and appears in Chapter 4 of this thesis.

Paper 4 is under submission in a journal listed in Scimago Journal & Country Rank as Q1

and appears in Chapter 5 of this thesis.

1.7 Main Scientific Contributions

This section briefly describes the main scientific contributions to the advancement of the

state of the art resulting from the research work presented in this thesis.
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The first contribution of this thesis consists of a wide literature review about the use of

statistical methods for encrypted or obfuscated Internet traffic classification. The res­

ults suggest that methods based on ports and payload inspection have become obsol­

ete because of the increase of P2P traffic using unknown or random ports, encrypted

traffic and encapsulations of multilayer data. ML based methods have become limited

because of their computational complexity. As an alternative, Support Vector Machine

(SVM) and Kolmogorov­Smirnov and Chi­square tests can be used as reference to com­

pare statistical classification. In parallel, it appeared in the literature the possibility of

using statistical methods for Internet traffic classification, with potential for good clas­

sification results without the need of large computational resources. Potential statist­

ical methods include Euclidean, Hellinger, Bhattacharyya and Wootters Distances, be­

sides Kullback–Leibler (KL) and Jensen­Shannon Divergences. This study is described

in chapter 2, which consists of the original version (before revision) of a paper published

in IEEE Access (volume:10) [70].

The second contribution of this thesis consists of the proposal, implementation, and eval­

uation of a classifier based on a Support VectorMachine (SVM) for P2Pmultimedia traffic

compared to the results of Kolmogorov­Smirnov (KS) and Chi­square tests. We proposed

an SVM­based classifier that uses the relative frequency of the packet lengths of the proto­

cols used by the application. The results suggest that the classification based on SVMwith

a Linear kernel is dependent on the value given to the Self C parameter and it presents

a better classification performance than KS and Chi­square tests. Therefore, the SVM

method with a Linear kernel and suitable values for the Self C parameter can be a good

choice to identify encrypted P2P multimedia traffic on the Internet. This study is de­

scribed in chapter 3, which is a paper included in the Proceedings of the 36th International

Conference on Advanced Information Networking and Applications (AINA2022), pub­

lished by Springer as part of the Lecture Notes in Networks and Systems book series [71].

The third contribution of this thesis consists of the proposal, implementation and evalu­

ation of two classifiers based on Kullback­Leibler (KL) or Euclidean Distance compared

to SVM. We proposed two statistical classifiers for encrypted Internet traffic based on

Kullback­Leibler Divergence and Euclidean Distance, that are calculated using the flow

and packet lengths obtained from some protocols used by applications. The results sug­

gest that SVM method with Linear kernel set to default Self C parameter presents a re­

duced capacity of classifying flows based only on packet lengths when compared to KL

and Euclidean methods. KL and Euclidean methods were capable of classifying all tested

applications, P2P and streamingmostly, where in almost all cases they were efficient with

a high precision level and a lower computational resource usage. It is shown that KL and

Euclidean methods are an alternative to SVM because those statistical approaches can

operate in real time and do not require to be retrained each time a new type of traffic

surfaces. This study is described in chapter 4, which is a paper that appeared in the Pro­

ceedings of the 34th International Conference on Advanced Information Networking and
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Applications (AINA 2020), published by Springer as part of the Advances in Intelligent

Systems and Computing book series [72].

The fourth contribution of this thesis consists of the proposal, implementation and evalu­

ation of a set of classifiers for encrypted Internet traffic based on Jensen­Shannon Diver­

gence and Hellinger, Bhattacharyya and Wootters Distances compared to Euclidian, KL,

KS and Chi­square tests. Besides that, a qualitative analysis comparing tested methods

was presented based on Kappa index and its ROC curves. Results suggest an average Pre­

cision value over 90% for all statistical methods, classified as “almost perfect confiability”

and “strong” in Kappa values, with the exception of KS (classified as “considerable” and

“moderate”). This result indicates that thosemethods are viable options for encrypted In­

ternet traffic classification, especially Hellinger, that presented the best results in Kappa

values when compared to the other classifiers. This study is described in chapter 5, which

consists of a paper under review in a scientific journal at the time of writing this Ph.D.

thesis.

1.8 Thesis Organization

This thesis consists of a collection of papers and follows a similar organization to other

theses based on papers, such as [73–78]. Therefore, except for the first and last chapters

devoted to introduction and conclusions, respectively, each chapter of this thesis consists

of a paper that has been published in conference proceedings or is under review in a peer­

reviewed journal, with minor formatting adjustments to fit the layout of the dissertation.

The remainder of this thesis is organized as follows:

• Introduction, the current chapter, introduces the scope and focus of the thesis, defines

the problem to be addressed and the research objectives for the research work to­

wards the PhD thesis, addresses the adopted approach for solving the problem, lists

the Scientific Publications resulting from this research work, and highlights mains

scientific contributions. This chapter ends with the organization of this document.

• Chapter 2 provides an overview of the most relevant existing statistical methods for

the classification of Internet traffic. An introduction to traffic classification and its

main applications is provided, as well as the proposed taxonomy and classification

methods. Section 2.2 presents an overview of the traffic classification process, as

well as the data sets, resources and types of resources required for classification ap­

proaches. Section 2.3 presents an overview of parametric and non­parametric mod­

els, the concept and types of distances such as Euclidean, Hellinger, Bhattacharrya,

Wootters and types of divergences such as Kullback­Leibler and Jensen­Shannon,

as well as general properties for qualifying distances and divergences. The purpose

of this section is to provide a brief description about the concepts of distance, di­

vergence and SVM. Section 2.4 presents a detailed review and comparison of the
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main studies found in the literature on traffic classification using statistical meth­

ods. Section 2.5 presents a brief discussion, and some important open issues for

new approaches.

• Chapter 3 addresses the classification of encrypted P2P multimedia traffic using

Support Vector Machines. Section 3.1 presents an introduction to video stream­

ing and the rationale for classifying encrypted multimedia P2P traffic. Section 3.2

presents recent studies to classify traffic based on SVMs. Section 3.3 provides back­

ground on SVM and presents the proposed methodology to the classifier based on

SVM. Section 3.4 presents the results and the usage of the computational resources

obtained for the traffic classification.

• Chapter 4 presents the classification of traffic using Kullback­Leibler Divergence

andEuclideanDistance. Section 4.1 presents an introduction to Internet traffic clas­

sification focused on statistical methods. Section 4.2 focuses on significant research

found in the literature, which explored traffic flows or packet lengths or character­

istics of packet lengths. Section 4.3 provides background onKullback­Leibler Diver­

gence and Euclidean Distance. The purpose of this section is to provide background

on distance and divergence for classification traffic. Section 4.4 presents details on

the approach to classifying Internet traffic, describing traffic features and classifier

architecture used for classification. Section 4.5 addresses the performance of the

classifier and the ground truth established.

• Chapter 5 addresses the proposal, implementation, and evaluation of a set of classi­

fiers based on Jensen­Shannon Divergence, Hellinger Distance, Bhattacharyya Dis­

tance, andWootters Distance. Section 5.1 presents the importance of Internet traffic

classification and the main activities and services used on the Internet. Section 5.2

summarizes the studies that use statistical information for classification. Section

5.3 presents an overview of statistical methods and flow statistical properties. Sec­

tion 5.4 describes the proposal and implementation of a set of classifiers, as well

as, the data sets and the used features. 5.5 discusses the main results of the set of

classifiers and provides ROC curves and their AUCs analyses for the set of classifi­

ers. This section provides classification results for the set of classifiers in terms of

Kappa, Precision, Recall, Accuracy, and F­Measure for 28 tested applications.

• Chapter 6 summarizes the main scientific contributions and presents the final con­

clusions of this thesis. In addiction, this chapter also presents research limitations

and direction for future work.
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Chapter 2

A Complete review on the application of
statistical methods for evaluating Internet
traffic Usage 1

Internet traffic classification aims to identify the kind of Internet traffic. With the rise of

traffic encryption andmulti­layer data encapsulation, some classic classificationmethods

have lost their strength. In an attempt to increase classification performance, Machine

Learning (ML) strategies have gained the scientific community interest and have shown

themselves promising in the future of traffic classification, mainly in the recognition of

encrypted traffic. However, some of these methods have a high computational resource

consumption, which make them unfeasible for classification of large traffic flows or in

real­time. Methods using statistical analysis have been used to classify real­time traffic or

large traffic flows, where the main objective is to find statistical differences among flows

or find a pattern in traffic characteristics through statistical properties that allow traffic

classification. The purpose of this chapter is to address statistical methods to classify

Internet traffic that were little or unexplored in the literature. This chapter is not generally

focused on discussing statistical methodology. It focuses on discussing statistical tools

applied to Internet traffic classification.

Thus, we provide an overview on statistical distances and divergences previously used or

with potential to be used in the classification of Internet traffic. Then, we review previous

works about Internet traffic classification using statistical methods, namely Euclidean,

Bhattacharyya, and Hellinger Distances, Jensen­Shannon and Kullback–Leibler (KL) Di­

vergences, Support Vector Machines (SVM), Correlation Information (Pearson Correla­

tion), Kolmogorov­Smirnov and Chi­square tests, and Entropy. We also discuss some

open issues and future research directions on Internet traffic classification using statist­

ical methods.

2.1 Introduction

Internet traffic classificationmaybeused to solve several kinds of network issues. Through

traffic classification, Internet Service Providers (ISP), governments, and network admin­

istrators can have access to network resource management, advanced network monitor­

ing, network audit, anomaly detection, and device filtering [79].

1The content of this chapter consists of the original version, before revision, of the paper published in the
following venue [70] Vanice Canuto Cunha, Arturo Zavala Zavala, DamienMagoni, Pedro R.M. Inácio, Mário
M. Freire, ”A Complete review on the application of statistical methods for evaluating Internet traffic Usage”,
IEEE Access, vol. 10, pp. 128433­128455, 2022. DOI:10.1109/ACCESS.2022.3227073.
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Classifying traffic by categorizing network traffic according to its appropriate class is vital

to many applications such as pricing, Quality of Service (QoS) control, malware/intrusion

detection, and resource usage planning [80].

Due to the importance of classification, several approacheswere thoughtwith the develop­

ment of different applications and scenarios. However, communication advances like en­

cryption and port obfuscation added new challenges to network traffic classification [80].

According to Zhao et al. [81], to manage, detect intrusion, monitor the network security

and classify the traffic in real time and in a precise way, the traffic classification is essen­

tial. Traffic classification determines the class of the data, grouping and relating them

according to the category, making it essential as technique to control and secure the net­

work, besides that, it can foresee and identify the user’s behavior in the network [82]. The

identification in the right way of traffic categories generated by different applications and

protocols help the network operators and administrators, besides supplying a high QoS

to the users [81].

Peng et al. [83] states that network traffic classification is a way to identify protocol and

application type, besides classifying the traffic. It is the most vital step to manage mod­

ern networks and improve network services [84]. The increase of efforts is essential to

improve the efficiency of classifiers based on applications and protocols when managing

computer networks [83].

According to Valenti et al. [85], the identification of network applications and protocols

is a process known as traffic classification. In the last two decades, this theme has gained

space in research and several studies have proposed techniques and methods to classify

traffic [82,84,86–88]. Among the more classical techniques, we can find payload­based

techniques, ML­based techniques and port­based techniques.

By looking at the port number which an application or protocol uses to, port­based tech­

niques enable us to classify those protocols and applications, based on the Internet As­

signed Number Authority (IANA) [1]. There are many problems on port­based tech­

niques, especially when dynamic port numbers are used on new applications to avoid

detection [89]. This problem is widely known by researchers and has already been ad­

dressed on other researches [89]. A proposed alternative was to search within the packets

for data sets that could be used as signature for a target application traffic [4,86].

Payload­based techniques are also known as Deep Packet Inspection (DPI) [4]. These

techniques are an alternative to the port­based techniques and are especially used in P2P

applications that use random port numbers to stream applications over the network [4].

One of the characteristics of these techniques is the examination of the packets content,
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regardless of the port number, to find attributes of network traffic protocols and applic­

ations [90, 91]. However, these techniques also have problems [42]. When faced with

traffic fromencryptednetwork applications, they are not efficient, having ahigh consump­

tion of hardware resources to inspect the payload of each application and protocol [89].

Due to this disadvantage, methods that do not require DPI, such as ”in the dark classific­

ation” have been developed [42].

In the dark classification sorts traffic by using behavioral and statistical patterns [42].

Gomez et al. [42] state that identifying the application without examining its packet is the

major advantage of in the dark classification. The flow statistical behavior and transport

layer information, such as packet length, packet inter­arrival time, Transmission Control

Protocol (TCP)/Internet Protocol (IP) flags, and checksums are used for protocol identi­

fication. This approach can use a training set of sample traffic as a mechanism to identify

and classify future traffic based on the application flow behavior [6]. Identification is done

through traffic flow properties, such as packet size, entropy, and so on [6].

Different techniques are used to deduce the applicationprotocol and correlate traffic prop­

erties, such as Machine Learning (ML) algorithms, sets of heuristics, or statistical meas­

ures [85]. For example, according toLiu [6],many researchers useML toperformstatistic­

based classification. Statistical classification methods can be divided into two categories:

parametric and non­parametric methods [92].

We propose and use the taxonomy of classification methods shown in Figure 2.1. We

address statistical­based methods covering both parametric and non­parametric meth­

ods. The category of parametricmethods includes Linear Support VectorMachines (SVM)

[93], Euclidean Distance [94], Pearson correlation [95] and Jensen­Shannon Divergence

[96]. The category of non­parametricmethods includes non­linear SVM[93], Bhattacharyya

Distance [97], Hellinger Distance [98], Kullback­Leibler (KL) Divergence [16], Wootters

Distance [99], and Kolmogorov­Smirnov (KS) [100] and Chi­square [100] tests. Classifi­

ers based in parametric methods have, for each class, a statistical probability distribution.

As for the non parametric classifiers, they are used to estimate the statistical probability

distribution, or in cases in which the density function is unknown [92].

Many surveyswerewritten about traffic classification. Those surveys summarize themeth­

ods and have different focuses as presented on Table 2.1. The main difference between

our research and other review works [2,3, 14, 15,40,42,80,81,84,86,88,101–113] is that

our proposal addresses solutions to solve traffic classification problems by using statist­

ical methods, focusing on distances or divergences. Table 2.1 presents a comparison with

other surveys published in the last ten years that were based on literature from previ­

ous decades. For this reason, we emphasized our work on the last ten years, since those

papers already considered previous works. Details about ML and Deep Learning can be
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Figure 2.1: Overview of statistical methods for Internet traffic classification.

found at [80], [109], [3] and [84].

In this work, we review the classification of Internet traffic based on statistical methods,

including classification methods applied ”in the dark”, observing the main objectives of

each survey. It is important to emphasize that we also describe the statisticalmethods and

distances proposed for classification in general, and specific traffic classification found in

the literature. Specifying the research method is a crucial step in literature reviews [114].

Our study was guided by the Preferred Reporting Items for Systematic Reviews andMeta­

Analyses (PRISMA) methodology [115], [116].

According to [116], the PRISMA methodology offers us an evidence­based collection of

items, which can be used as a basis for revision work. In addition, PRISMA provides us

with a flowchart that allows us to visualize the search strategies and eligibility of the art­

icles. The PRISMA flowchart describes the information cycle used in the different review

phases. In order to present and detail our selection process, the flowchart was prepared
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as shown in Figure 2.2. The flowchart has 3 phases: identification, screening and in­

cluded. Through the flowchart, we mapped the number of articles identified, included

and excluded, and the exclusions reasons.

Figure 2.2: The PRISMA flowchart.

The reviewed articles in this paper were chosen from the almost 507most relevant articles

found on a search in IEEE Xplore, Elsevier, ACM Digital Library, Google Scholar and

Scopus with the keywords: Internet Traffic Classification, Traffic Classification, Traffic

Identification, Encrypted Network Traffic, Network Monitoring, and Statistical Distribu­

tions. We also searched for papers with the keywords: Statistical Methods, Statistical

Distances, Statistical Analysis, Parametric, Non­Parametric, in the time period extending
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Table 2.1: Comparison of recent surveys on classification.

Work Year Objective Methods
Dunayts ev et
al. [101]

2012 Presents the best practices and approaches developed to deal with P2P file
sharing traffic, identifying those that may provide long­term benefits for
both ISPs and users.

­

Pradhan [102] 2012 Presents a theoretical aspect of SVM, its concepts and applications
overview.

SVM

Dainotti et al.
[103]

2012 Presents reviews and discuss future directions in traffic classification,
along with their applicability, reliability, and privacy.

Port/DPI/ML

Gomes et
al. [42]

2013 Presents the studies onPeer­to­Peer traffic detection and port­based, DPI­
based and ML­based classification approaches.

Port/DPI/ML

Se [104] 2013 Presents a survey on several ML techniques for IP traffic classification. ML
Li et al. [105] 2013 Presents studies surveyed about advanced methodologies, such as

machine learning datasets, and perspectives.
ML

Finsterbusch
et al. [86]

2013 Presents a survey focused on performance analysis, technical
requirements and accuracy in the DPI rating.

DPI

Dhote et al. et
al. [14]

2016 Presents a research that addresses feature selection algorithms, focusing
on: filter, wrapper, and embedded methods. It also provides an overview
of some of the feature selection techniques presented in the literature.

Features ­ ML

Mehta and
Shah [88]

2017 Presents a survey focusing on different types of network classification
approaches.

Port/DPI/ML

Yan and Yuan
[111]

2018 Examines emerging research on traffic classification techniques in
Software­Defined Networks (SDN)

ML

Garrett et al.
[107]

2018 Researches focused on finding tools and strategies to detect network traffic
differentiation

Nearest Neighbor
(NN)

Tavara [106] 2019 Presents a summary of parallel algorithmic approaches and parallel tools
for SVM implementations focused on efficient approaches and large­scale
problem solving.

SVM

Liu and Lang
[40]

2019 Classifies and summarize Intrusion Detection Systems (IDSs) based on
machine learning focused on solving network security issues.

ML

Rezaei and Liu
[80]

2019 Presents a survey on the general structure to rank traffic based on Deep
Learning, as well as the deep learning methods to rank traffic.

Deep Learning
(DL)

Nalepa and
Kawulok [112]

2019 Presents extensive research on existing methods to select SVM training
data from large datasets.

Features ­ ML

Wang et
al. [109]

2019 Presents a survey on the general Deep Learning­based mobile traffic
classification framework, research approaches to traffic classification
focused on mobile encrypted traffic classification in deep learning.

DL

Salman et al.
[15]

2020 Presents a review of several data representationmethods and the different
goals of Internet traffic classification.

ML

Alqudah
emphet al. [3]

2020 Presents a survey on different machine learning approaches for traffic
analysis.

ML

Shen et al. [2] 2020 Presents a survey focusing on the systematic approach to optimize feature
selection for an efficient classification of encrypted traffic.

Features ­ ML

Tahaei et
al. [108]

2020 Provides a review of Internet of Things (IoT) problems and solutions for
network traffic classification.

ML

Alam et
al. [110]

2020 Provides a review focusing on issues related to one­class support vector
classifiers.

SVM

Liu and
Yu [84]

2021 Presents a survey about encrypted traffic identification focusing on ML. ML

Zhao et al. [81] 2021 Provides a review of network traffic classification methods covering
correlation­based, port­based, behavior­based, statistics­based, and
payload­based classification.

correlation­based,
statistics­based,
behavior­based,
payload­based,
and port­based
classification.

Our survey 2022 Presents a study on statistical methods, overviewing statistical distances
and divergences for classification of Internet traffic.

Statistics­based,
distance­based,
and divergence­
based
classification.
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Figure 2.3: Selected studies on statistical methods for Internet traffic evaluation (2011 ­ 2021).

from 2011 to 2021. In total, 145 articles were reviewed for this work.

Our inclusion criteria were full papers published in journals, articles written in English,

and articles that address features used to classify Internet network traffic. Our exclu­

sion criteria were duplicate articles, whitepapers, articles shorter than two pages, studies

that did not address differences between parametric and non­parametric methods, art­

icles that do not address features used to classify Internet network traffic, articles that

do not address proposed statistical methods solutions, articles written in languages other

than English, and studies without full text available. After applying the keywords, articles

that were not related to the topic in question were excluded by reading the abstract and

title. We selected for full reading the articles that could be included after the exclusion

and inclusion criteria.

In the initial phase, 2129 articles were identified; of which 1622 were excluded because

they were duplicates, whitepapers, studies without full text available, and articles written

in languages other than English; 507 were pre­selected. In the screening phase, the ab­

stracts and titles of the articles were read and those unrelated to the topic were excluded,

totaling 200 excluded and 307 eligible. Out of the 307 articles, 76 were eventually re­

moved as they were too short, with only two pages. Finally, 231 articles were fully read,

of which 86 were excluded for not addressing statistical methods solutions proposed or

differences between parametric and non­parametric methods, totaling 145 that met our

eligibility criteria and were included in our study. In order to present the results of our

selection of articles, following our eligibility criteria, a statistical analytical visualization

chart was generated, as shown in Figure 2.3 with the number of articles per year.
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This survey was structured as: review of the classification processes on Section II. Over­

view of SVM and statistical methods focusing on distances and divergences on Section

III. Several methods to classify Internet traffic by using statistical methods on Section IV.

Discussion and list of open issues on Section V. Section VI concludes the survey.

2.2 Process of Traffic Classification: Overview

2.2.1 Classification Procedures

An overview of the traffic classification process was provided in this section as it follows:

Internet traffic categorization, data­set, features, classification approach, and validation.

Collecting data from a network is a critical point and serves as input to form a pool of

network traffic. Extracting and selecting features is an vital process as it can impact the

efficiency and effectiveness of classification. The approach chosen for traffic identifica­

tion is essential to the classification success, as well as ranking performance evaluation

criteria [81]. The Figure 2.4 shows the procedures for classification. As it follows, two

topics will be approached: 1) Internet traffic applications, and 2) Dataset.

Traffic 
Category

Dataset

Feature based 
on packet 

length

Classification
Approaches

 

Classification
results

Feature based 
on packet 
ordering

Feature based 
on packet 

timing

Figure 2.4: Classification procedure.

2.2.1.1 Internet Traffic Applications

Internet traffic describes the quantity of information or data presented throughout the

Web and on different applications, it can be considered a data flow on the Internet [80].

According to [117] Internet traffic is categorized and described according to Table 2.2. In­

ternet traffic is grouped forming a Dataset.

Internet traffic is divided into ten categories: Administration, Communications, Gaming,

Filesharing, Marketplaces, Social Networking, Real­Time Entertainment, Storage, Tun­

neling, Web Browsing. Each category has a description, that characterizes the associated
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Table 2.2: Description of traffic categories according to Global Internet Phenomena Report: 1H 2014 [117].

Category of Traffic Explanation Examples
Administration Services and applications used for network admin­

istration.
SNMP, DNS, NTP, ICMP.

Communications Protocols, applications and services that allow
chat, video and voice communications; information
sharing (photos, status, etc) between users.

FaceTime, WhatsApp, Skype,
iMessage.

Filesharing File distributionmodels ormodels that use Peer­to­
Peer file sharing.

Newsgroups, , BitTorrent
Ares, eDonkey, Gnutella.

Gaming Application console, game updates and PC gaming
download traffic of consoles.

PC games, Playstation 2,
Xbox Live, Playstation 3,
Nintendo Wii.

Marketplaces Marketplace apps where purchases of media, apps,
books, software,movie,music, andupdates are per­
formed by subscribers.

Windows Update, Apple
iTunes, Google Android
Marketplace.

Real­Time Enter­
tainment

Protocols and applications that provide “on­
demand” entertainment that is consumed (viewed
or heard) as it arrives.

Buffered or streamed video
and audio (RTP, RTSP,
MPEG, RTMP, Flash),
specific streaming sites,
peercasting (Octoshape,
PPStream), and services
(Spotify,YouTube, Hulu,
Netflix).

Social Web Services and websites that allow interaction such as
chats and other types of communication, as well as
sharing information between customers and users.

Instagram, Twitter, Face­
book, Linkedin.

Storage It allows transferring through the File Transfer Pro­
tocol amassive volume of data, in addition to allow­
ing file hosting, backup and download services.

Dropbox, FTP, zShare, Mozy,
Rapidshare, Carbonite.

Tunneling Services and protocols that mask application iden­
tity or allow remote access to network resources.

Remote Desktop, VNC, PC
Anywhere, Secure Sockets
Layer (SSL), SSH.

Web Browsing Specific websites and web protocols. WAP browsing, HTTP.

traffic. The Administration category can be described by services and applications used

to administrate the network, such as SNMP, and ICMP protocols. Gaming includes traffic

by PC gaming, console, download traffic of consoles, and game updates, like Xbox Live

and Playstation traffic. File­sharing includes applications that use distribution protocol

models or Peer­to­Peer, such as Gnutella, eDonkey, Bittorrent, Newsgroups, Ares. Web

Browsing includes specific websites, and Web protocols, like WAP browsing, and HTTP.
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2.2.1.2 Dataset

Dataset, in classification, has huge importance on evaluating and comparing the perform­

ance of different methods. A dataset must contain many diverse samples of each class. A

model can fit itself to a specific dataset, doing so, the worry around the probability of the

dataset having a deterministic behavior appears. That can happen when a model adjusts

itself too much to a specific type of traffic or to a dataset, either because of a lack of in­

teraction to group of users or even for interacting to a small group of users [80]. Usually,

for being diversified, traffic is observed on ISPs core, which means that the farther away

from the destiny the captured traffic set is, the smaller is the probability of having a de­

terministic behavior [80].

According to [118], and [3], a dataset is collected and used as an input for training and

classification purposes on an ML classifier. On statistical­based methods, statistical re­

sources are allowed to be extracted from flows. These resources are characteristics or

properties of flows calculated over many packets [118]. Normally, different features and

datasets are used classification­wise.

As stated by [15] a pre­processing phase happens after data collection to extract features

that are going to be included into the model. For traffic classification, it is required to

evaluate network flow with their main characteristics (packet inter­arrival time and size)

with their various statistical values (standard deviation, quartile, min, and max). A set of

packets that have the same connection parameters is defined as a flow. Those parameters

include port numbers and transport protocol, destination and source IP addresses.

As said in [119], a differentway of representing Internet traffic is through time series. They

are network flows represented by generating time series of communicated packets/bytes.

For each flow three­time series are generated: (1) for bytes channeled through input pack­

ets, (2) for bytes channeled through output packets, and (3) for bytes channeled through

input and output packets. A short description about feature selection will be present as

follows.

2.2.2 Feature Selection

Features are considered in the process of investigating methods and approaches to char­

acterize and classify traffic. Feature selection is a important step in Internet traffic clas­

sification. The author [120] sets it as the process of selecting the smallest set of features

needed to reach a precise classification. The classification of different application cat­

egories occurs when there are some discrepancies in traffic behavior based on the selected

features. However, [14] claims that researchers have chosen one or some features from

a set of characteristics to classify different traffic flows, basing it only on the qualitative

analysis of different features. For analysis purposes, according to [2], it is needed to clas­
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sify encrypted traffic into numerous flows based on five tuples: User Datagram Protocol

(UDP)/TCP, source/destination IP addresses and port numbers. Hereafter the following

features will be approached: 1) Packet­Length Based Features, 2) Packet­Ordering Based

Features, and 3) Packet­Timing Based Features.

2.2.2.1 Packet­Length Based Features

As packet length is a feature related to network packets, according to [2], and [121], its

information becomes a commonly used type of resource and it has demonstrated its ef­

fectiveness in analyzing traffic that has been encrypted. On packet­length based features,

the packet length, the cumulative length sequence and the statistics that can be drawn

out of the flow, such as minimum, maximum, average, median variance, standard devi­

ation, relative frequency, kurtosis, skew, packet size and variance can be statistical values

of packet length.

When obtaining the packet length, in each flow, the first length sequence of the X packets

can be used as a key resource. Those X packets can vary a lot length­wise from one web­

site to another, because of their different content and protocol parameters, like those in

handshake process, more specifically in the the Transport Layer Security (TLS)/SSL. We

can use lengths of distinctive packets to distinguish different traffic types.

In a flow, the packet lengths are distributed in intervals that depend on the transport layer

and on the MTU (Maximum Transmission Unit). To obtain statistical characteristics of

packet length in a flow, the packet length can be aggregated to a fixed number of buckets

or bags. To obtain the cumulative length sequence, considering the flow direction, the

length of up­link packets can be defined as negative, and as positive for down­link packets.

The length of the packets sent are then accumulated to obtain a sequence of the first X

cumulative packet lengths. Considering bidirectional flows, we can be define as positive

when the packet length is up or down­link. A sequence of cumulative length of the first X

packets on a flow seems to be a differentiating feature.

2.2.2.2 Packet­Ordering Based Features

In some cases, the lengths of packets are alike or even the same between different encryp­

ted traffic flows. Thatmakes so alternatives based only on packet length seen less efficient

because of the information used. For that, a counter or techniques based on packet count­

ing can be useful [2].

Somepacket counts can be considered, such as counting the quantity of up anddown­links

for each X packets. We can also count the amount of packets before each up­link. Besides

that, we can also extract a resource that indicates the number of down­links between two

up­link packets.

21



According to the literature, burst counting can also be useful. An up­link packet burst can

be used as example, since down­link packets are exposed to network delays. To do so, the

quantity, maximum and average of bursts were considered for each flow.

2.2.2.3 Packet­Timing Based Features

Several information about timestamps of packets can be used to characterize and clas­

sify traffic [2], [14]. Inter­Packet Delay is one of the examples. When packets are sent

through the network, they receive a timestamp of date and time. The difference between

timestamps is defined by the Inter­Packet Delay.

To determine the period of time a transmission is concentrated, the quantity of packets in

a time interval is calculated for every series of packets. Timing characteristics generally

have limitations, as we most often consider time distributions to be equal, when in real­

ity they are not. The timestamps of packets may experience network fluctuations. This

feature can be combined with control packets such as ACKs, CTSs reference points. Table

2.3 presents a summary of packet­based features.

Table 2.3: Summary of packet­based features.

Type Features

Packet­Length Based Packet length in bytes; packet size; packets number; Statistical values of
packet size; Sequences of cumulative length; Relative frequency; Statistical
features (mean, maximum, minimum, variance, standard deviation, median
absolute deviation, percentiles, kurtosis, skew).

Packet­Ordering
Based

Count the number of bursts; In each flow, mean and maximum burst length.

Packet­Timing Based Packet inter­arrival time; Inter­packet delays.

Even though some features were chosen to classify Internet traffic differently, they do not

have the same level of importance. To better understand, each selected feature can receive

a weight value that represents its importance. In order to select only important sets of

resources, the author in [14] discusses three methods, Wrapper method, Filter method,

and Embedded Method, which are briefly described below:

• Wrapper method ­ Makes use of machine algorithms to rate the performance of dif­

ferent subsets to aid learning. The results are not specific to theML algorithms used,

for this process Genetic Algorithm (GA), Sequential Forward Selection, Simulated

Annealing, Sequential Backward Selection, Randomized Hill Climbing are used.

• Filter Method ­ Makes an independent evaluation based on data characteristics and

depends on specific metrics to, before learning begins, rate and select the best sub­

set. For that Correlation based Feature Selection (CFS) algorithm is normally used

22



with Fast Correlation based Feature Selection (FCFS), and Markov Blanket Filter

method.

• Embedded Method ­ As part of the learning procedure, performs variable selection

and it is usually specific to some learning machines. For this process decision tree,

Naive Bayes, random forest, Support Vector Machine (SVM), and based methods

are normally used in regularization techniques, etc.

2.2.3 Classification Approaches and Validation

In the literature, we find four kinds of approaches to Internet traffic classification: port­

based approaches, payload­based approaches, ML­based and statistical approaches. We

provide in Table 2.4 a comparison among these kinds of approaches, which we briefly

describe in the following.

Table 2.4: Comparison of the main approaches for traffic classification.

Kind of Approaches Short Explanation Limitations

Port­based Associates port numbers to match applica­
tions.

Does not solve random or unknown
port numbers.

Payload­based Searches for protocol/application signa­
tures in the form of string(s) in packet pay­
load.

Cannot scan encrypted packets, en­
crypted payload and encrypted con­
nections.

Statistics­based Uses statistical values from the network or
transport layers.

Generally does not specify applica­
tion/client type.

ML­based Automated method that foresees and
makes a decision based on data analysis.

Set of pre­classified (also called pre­
labeled).

2.2.3.1 Port­Based Approaches

The oldest traffic classification method is the port­based approach. According to [1], this

method uses the association of well­known TCP/UDP port numbers assigned by IANA

with ports in the TCP/UDP header. It uses port numbers related to an application where

the application is related to a specific port number [2], some examples are SSH traffic that

relates to port 22, and SMTP to 25. Most applications use port numbers already “known”

so other hosts can start communication.

During handshake, an identifier is placed in the communication channel, right in the

middle of the network, awaiting for SYN packets. SYN packets have the destination port

number and are used during the handshake on TCP. The application is recognized by the

port number contained in the SYN packet. It becomes all possible because TCP is con­

nection orientated. Traffic identification through port numbers is also used on UDP, even

though this protocol does not have control packet in its connection.
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Implementing this method is quite simple and quick, once it does not involve calcula­

tions and requires only the number of ports to identify the application. Although its easy

implementation, this approach has limitations that have a huge negative impact on traffic

classification. Protocols that use tunnels, randomports, andNetworkAddress Port Trans­

lation (NAPT) cannot be identified by this approach [86]. One possibility to easily escape

detection by this method is to use port 80, which is generally open for HTTP traffic.

Some other protocols that cannot be identified by port­based approaches are the tele­

phony through Internet that uses encapsulated Session Initiation Protocol (SIP) on Real­

Time Transport Protocol (RTP), which sometimes use random port numbers, and P2P

protocols that use random ports or ports associated to other protocols aiming to mask the

traffic [86].

2.2.3.2 Payload­Based Approaches

This kind of approaches recognizes applications by analyzing payload or packets. Aiming

to find pre­defined byte sequences from the applications, payload is analyzed bit by bit.

After those sequences, called signatures, are found, they are stored and compared to ap­

plication packets for classification [2]. The great advantages of these methods are their

capacity to generate low rates of false negatives and a highly accurate traffic classification.

The biggest limitations of these methods are: The development and maintenance of a

database with application signatures. The high consumption of computational resources

for the development requiring a longer processing time and storage space. It is an in­

efficient method to identify and classify traffic and packet payloads that are encrypted,

unavailable payloads or on recognizing applications that have not been mapped yet. Be­

sides that, it involves legitimacy and privacy issues of packets and traffic [122], [65].

Approaches based on statistical characteristics for traffic classificationhave beendeveloped

aiming to overcome limitations presented by traditional approaches, and they have caught

the attention of researches. To identify and classify traffic, neural network and machine

learning algorithms have been used.

2.2.3.3 ML­Based Approaches

Machine Learning is known by supplying computers with the capacity to learn through

programming. It has been used to prepare machines to work with data in a more efficient

way. Machine learning is divided into unsupervised and supervised. On the unsupervised

learning, information is extracted through non labeled data. On the other hand, on super­

vised learning, the information depends necessarily on data lettering. Machine Learning

uses data patterns to label things [3,39,40].
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ML has the capacity to work and learn from big data volume by using specific algorithms.

Tasks as prevision, regression and classification ofmassive quantities of data canbe solved

through it. Machine Learning also has the capacity to deal with long and wide data.

Long data means that number of subjects exceeded the number of input variables. Wide

data corresponds to the number of input variables exceeding the numbers of subjects

[40, 123, 124].

As appointed by [39], ML has a different and specific algorithm to solve problems in­

volving data. Choosing the best algorithm to be used depends on which modal will better

suit the problem, what the problem is and the quantity of variables involved in it.

Besides Internet traffic classification, ML has also been used in network operations and

management, aiming to optimize the resources and improve the system performance. In

addition, ML can be applied to many different areas such as marketing, games, digital

images, intruders and malware detection, information security and data privacy.

2.2.3.4 Statistical Approaches

Statistical­based classification uses statistics from the network and transport layers. By

using parameters undependable of payload and payload analysis, statistical based classi­

ficationmethods go around payload, encrypted payloads and user privacy problems. They

use statistical properties unique of protocols, flows and applications, which helps to dif­

ferentiate the applications [2, 14].

Some examples of valid parameters of statistical­based network classification: packet

inter­arrival time, flow duration, packet size, among others [2, 14]. Besides those para­

meters, statistical characteristics of packet tracking are captured and used, such as Border

Gateway Protocol (BGP) updates and the unexpected rise of packet rate, which can also

be an indicative of P2P applications in the network.

Commonly, Machine Learning uses statistical­based strategies to calculate resource para­

meters that will be used as data input in the supervised method classification, like SVM

[2]. As stated by [41] techniques that are implemented based on statistical classification,

are capable of perceiving flow behaviors expected through observations. Statistical meth­

ods combined with methods grounded on rules might offer scalability, adaptability, flex­

ibility and robustness. Furthermore, to differentiate traffic that has any flaws from regular

traffic, statistical measurements can be used. However, the manual selection of statistical

resources can compromise the requirements of traffic classification, generating a lower

accuracy.
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2.2.4 Validation

The validating process consists on testing the obtained results from the classification, aim­

ing to acquired its performance. In this sense, obtained classification results are compared

to previously­known hand­based real data classification results, usually known as ground

truth, which allows to compute true positive, false positive, true negative and false neg­

ative rates. Another challenge during validation is to collect original data in real time to

obtain the ground truth [125].

Many performance measures are used to evaluate if a classification method could achieve

the expected performance. Table 2.5 represents an overview of the metrics used to eval­

uate traffic classifiers. Metrics widely used are: F­measure [22], Precision, Recall, Spe­

cificity, Area Under Curve (AUC), Completeness [120], and F­1 Score [126].

2.3 Statistical Methods

In this section, we address the concept and properties of the statistical distances and di­

vergence, as well as the SVM method based on statistics and widely used in traffic clas­

sification. Table 2.8 presents an overview of distances and divergences for quantitative

(non­negative) data. We group the methods according to parametric and non­parametric

approaches.

2.3.1 Overview of Parametric and Non­Parametric Models

On parametric models, datasets can be constructed by a probability distribution that has

a number or a fixed set of parameters, which only the applied to variables. It is con­

sidered to be a parametric model some statistical and learning models that use a quant­

ity of fixed parameters. For parametric ML, the quantity of parameters if fixed does

not matter the amount of training data. Some examples of parametric models are Lin­

ear SVM, Pearson correlation, denominated correlation information and Euclidean Dis­

tance [59,92, 127, 128].

Non­parametric modals represent data without a defined number of parameters, and

when modeling this data, they do not make presumptions about the probability distribu­

tion. Models implemented with this approach do not accept a specific mapping function

between input and output data as true. This kind of models assumes that parameters are

not only adjustable, but can also be altered. Parametricmodel also assumes that the larger

the quantity of training data is, the larger will be the number of parameters. The result of

this is that the non parametricmodel can take longer to perform the training [92,128,129].

Table 2.6 presents a comparison between parametric and non­parametric models. Bhat­

tacharyya Distance, Hellinger Distance, KL Divergence, Wootters Distance, KS and Chi­

square tests, and non­linear SVM are examples of non­parametric models. Hereafter the
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Table 2.5: Summary of the metrics often used to evaluate the traffic classifiers, where TP means True
Positive, TN means True Negative, FP means False Positive, FN means False Negative, TPR means True

Positive Rate, TNR means True Negative Rate.

Metrics Description Exemplification

Accuracy (A)
[22]

It is the ratio between cases classified as truly
positive and negative and the sum of all posit­
ive and negative cases predicted in the classific­
ation.

TN+TP
FP+TN+FN+TP

Precision (P)
[22]

It correctly evaluates how many cases are iden­
tified as positive.

TP
FP+TP

Recall
(R) [22]

It is known as true positive rate or hit rate, it
presents the rate of positive cases that were cor­
rectly identified by the classifier in the dataset.

TP
FN+TP

(= TPR)

Sensitivity
[120]

It is also known as Recall metric. TP
FN+TP

Specificity
[126]

It calculates the number of correctly classified
positive cases for the total positive cases found.

TNR = TN
TN+FP

or
TN

TN+FP
= 1− FPR

Completeness
[120]

For the total number of positive cases, the pro­
portion of correctly or incorrectly classified pos­
itive cases is measured.

FP+TP
FN+TP

F­Measure
[22]

It measures the effectiveness of debug testing,
it is considered harmonic calculation between
Precision and Recall.

2∗Recall * Precision
Recall + Precision

F1­Score
[126]

It is the harmonic mean between Precision and
Sensitivity.

2TP
2TP+FP+FN

Area Under
the Curve
AUC [120]

It is known as Receiver Operating Characterist­
ics (ROC)

1+TPR−FPR
2

or Sensitivity + Specificity
2

False Pos­
itive Rate
(FPR) [126]

It is the calculation of the rate of negatives in­
correctly classified as positives

FP
N

= FP
FP+TN

False Neg­
ative Rate
(FNR) [126]

It is the calculation of the rate of positives incor­
rectly classified as negatives

FN
P

= FN
FN+TP

Geometric
mean (G­
mean) [126]

It is the calculation of the correlation between
the rate of positives and the classified results

TP∗TN−FP∗FN√
(TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN)

following subtopics will be approached: 1) Statistical Distances and 2) Statistical Diver­

gences.

This section focus on Statistical Distances and Divergences. A brief description about
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Table 2.6: Side­by­side comparison of parametric and non­parametric classifiers.

Parametric classifier Non­Parametric classifier

The model is built using a fixed number of parameters.
The model is built using a flexible number of
parameters.

It can only be applied to variables. It can be applied to Attributes and Variables.

It makes strong data assumptions. It normally does not make data assumptions.

It needs less data. It needs much more data

It assumes a normal distribution. No distribution is assumed.

Data manipulation – Ratio or interval data. Original data is manipulated.

Outliers can seriously effect the results. Outliers cannot seriously affect the results.

Performance peaks when the spread of each group is
different.

Performance peaks when the spread of each
group is the same.

It has more statistical power. It has less statistical power.

It is faster, computationally speaking.
It is not so fast when compared to parametric
models

these kinds of methods follows. Details about other methods herein mentioned that do

not fall within those kind of statistical methods may be found elsewhere, namely details

about Correlation Information (Pearson correlation) can be found in [130], [131], details

about Kolmogorov­Smirnov and Chi­square tests can be found in [130], [132], and details

about Shannon entropy can be found in [133], [134].

2.3.1.1 Statistical Distances

The concept of distance betweenobjects or individuals allowsus to interpret, geometrically­

wise, many classical techniques of multivariate analysis, equivalent to representing these

objects as points in a metric space. In classification [135] of network traffic, the main

objective is to find statistical differences between flows or even a pattern in traffic char­

acteristics through statistical properties. It is possible to interpret this way because the

observed variables are considered of a more general category, and not only as quantitat­

ive variables or own variables. As it is, it makes sense to calculate the proximity between

objects or individuals [135, 136].

As stated by [135] the distance calculation is vital to many statistical inferences being

them theoretical or applied. Besides that, it has become essential to solve data processing

problems, such as classification, estimation, detection, regression, selection models, dia­

gnosis, identification, recognition, indexation and compression. Combining its properties

to statistical distance concepts, we have an essential instrument for science and data ana­

lysis [137].

Through the distance computation, it is possible to create hypotheses tests, study the
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Table 2.7: General properties of distances and divergences and qualification of a distance according to its
properties, where δij represents the distance between pairs.

Qualification of a distance according to its properties Distance property

Dissimilarity: 1, 2, 3 1 – δij ≥ 0

Metric distance: 1, 2, 3, 4, 5 2 – δij = 0

Ultrametric distance: 1, 2, 3, 6 3 – δij = δij

Euclidean distance: 1, 2, 3, 4, 8 4 – δij ≤ δik + δik

Additive distance: 1, 2, 3, 7 5 – δij = 0 ⇔ i = j

Divergence: 1, 2, 10 6 – δij ≤ maxδik, δik (ultrametric inequality)

7 – δij + δkl ≤ maxδik + δjl, δil + δjk (additive inequality)

8 ­ δij is euclidean

9 ­ δij is riemannian

10 –δij is a divergence

estimators properties, compare classes, objects and individuals. Furthermore, the dis­

tance offers the researcher an assistance to interpret the data, because it is a very intuitive

concept, allowing an easy comprehension and a harmonious representation [137, 138].

In general, we consider two classes of statistical distances between individuals and pop­

ulations. The individuals of each population are characterized by a random vector X =

(X1, ..., XP ), which follows a probability distribution f(xi, ..., xp; θ). The distance between

two individuals i, j, characterized by the points xi, xj , of Rp, is a non­negative symmetric

measure, δ (xi, xj), which will depend on θ, where θ represents the parameters and Rp is

the quantity of dimensions that theX variable may have. ThereforeX has n observations

and p variables.

Moreover, the distance between twopopulationswill bemeasuredby the divergence δ(θ1, θ2)

between the parameters that characterize them. Itmay also be convenient to enter the dis­

tance δ(xi, θ) between an individual i and the θ parameters. Non­parametric distances can

be defines by it functional divergence and the density functions. In some cases they are

related to entropy measurements.

A δ distance over an Ω set is an application of Ω x Ω over R so that each pair (i, j) corres­

ponds to a real number δ(i, j) = δij fulfilling some of the following properties, according

to the Table 2.7.

A distance must fulfill at least properties 1, 2, 3, presented in Table 2.7. When it fills these

properties, it is called dissimilarity. In general, δ only meets approximately some of the

stated properties. It is then a matter of representing (Ω, δ) through a model (V, d), ap­

proximating δ to d, where δ meets sufficient properties that are mandatory.

According to the representation technique, such as main component analysis, main co­

ordinate analysis, proximity, correspondence analysis, cluster analysis, the distance d can
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be Euclidean, ultrametric, additive, non­Euclidean, or Riemannian, among others.

2.3.1.2 Statistical Divergences

Non­parametric measures of divergence between probability distributions are defined as

functional expressions often related to information theory, which measures the degree of

discrepancy between any two distributions, not necessarily belonging to the same para­

metric family. Divergences have applications in statistical inference and in stochastic pro­

cesses.

Let p = (pi, ..., pn), q = (qi, ..., qn) be two multinomial distributions. The divergence

between q and p can be measured as the discrepancy between the quotient xi = qi/pi

and 1. Based on the meaning of Ho = (p) − entropy, ϕ− Csiszar divergence is defined

between p and q, where ϕ is a strictly convex function in which ϕ(1) = 0.Hϕ, and by

Jensen inequality we have:

Cϕ[p, q] =
∑

piϕ(xi) ≥ ϕ(
∑

pixi) = ϕ(1) = 0. (2.1)

The equation 2.1 reaches the value 0 if and only if p = q. It can be taken as a measure

of dissimilarity between p and q, but in general it is not a distance, as it is not always

symmetrical, or if it is, it may not meet the triangular inequality. Shannon entropy and

the ϕ− Csiszar divergence form the information measure known as the Kullback­Leibler

(KL) [16].

2.3.2 Parametric Distances and Divergences

2.3.2.1 Euclidean Distance

The most familiar distance between two individuals i, j is the Euclidean Distance de­

scribed by the equation [16]:

DE [i, j] =

√√√√ p∑
k=1

(xik − yjk)
2. (2.2)

Proposedby theGreekmathematicianEuclid, it is based on calculating the distance between

two points within the Euclidean space. whereDE [i, j] represents the distance function, p

defines the quantity of samples, k defines the initial value of the sample, xik represents

the first point and yjk represents the second point [17].

2.3.2.2 Jensen­Shannon Divergence

Jensen­Shannon Divergence (JSD) is the calculation of the difference between two series

of probability distributions [139]. It is known for being the limited symmetrization of
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KL [19].

JSD is a function that allows us to quantify the difference of two, maybe more, probab­

ility distributions [96]. JSD also has the additional advantage of not requiring absolute

continuity of the distributions to compare them. Thereby, JSD can be used to compare

the distribution of different packet sequences in a network flow, associating an appearing

frequency to each flow with probability distribution.

For two discrete probability distributions P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) with

pi ≥ 0, qi ≥ 0, JSD Divergence is represented by [139]:

JSD (P,Q) =
1

2

{
N∑
i=1

pi log

(
2pi

pi+ qi

)
+

N∑
i=1

qi log

(
2qi

pi+ qi

)}
. (2.3)

JSD function equals 0, if and only if (pi = qi). In this case, itmeans that they are the same

distribution, in other words, the same application. It is a delimited and symmetric metric

(0 ≤ JSD ≤ log(2)) for orthogonal distributions (pi.qi = 0). As traffic classification was

intended through the values of the distances between the application distributions, JSD

determines the divergence between two probability distributions P and Q.

2.3.3 Non­Parametric Distances and Divergences

2.3.3.1 Bhattacharyya Distance

Bhattacharyya Distance, also known as divergence, was proposed by a statistician called

Anil Kumar Bhattacharyya (1943 and 1946) working with Kailath (1967) [140]. This dis­

tance measures the dissimilarity between two probability distributions. It is very related

to Bhattacharyya coefficient, that is the calculation of the quantity of overlap of two stat­

istical population samples [141, 142]. In its first version, Bhattacharyya did not present

the calculation, he used a logarithm scale.

Bhattacharyya Distance is independent of the distribution function and it can be applied

to any data set or sample. This characteristic makes the distance appealing to be used in

models in which the distribution is undetermined [141].

Bhattacharyya coefficient can be used in classification as a measure of the separability

between classes [143], and to determine the relative proximity between samples that are

being taken under consideration.

When two probability distributions have similar averages, Bhattacharyya Distance rises

depending on the difference between standard deviations, in other words, the bigger the

difference between standard deviations, the bigger the probability distribution. Bhat­
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tacharyya statistical distribution is given by equation 2.4 [18]:

BcD (P,Q) = − log

(
N∑
i=1

√
pi × qi

)
, (2.4)

where N is the quantity of partitions and pi and qi is the quantity of members from the

sample in the I­th partition.

2.3.3.2 Hellinger Distance

Hellinger Distance was proposed by the Germanmathematician Ernst David Hellinger in

1909. It is a statistical divergence used to calculate the dissimilarity between two probab­

ility distributions. Hellinger Distance (HD) is related to Bhattacharyya Distance and it is

part of the f­divergences family [19].

Studies presented in [144], [145] showed that Hellinger Distance can be used in classi­

fication. On the current scenario, this distance has been very used in machine learning,

even as an alternative to methods such as entropy, aiming to detect failures in the clas­

sifiers [146] and breakpoints on the performance of those classifiers [147]. Furthermore,

according to the literature, Hellinger Distance has been used in many parametric models

being very successful on solving problems of statistical estimation [144], [145]. The cal­

culation function is obtained from two probability distributions p and q as follows [145]:

HD (P,Q) =

√√√√1

2

N∑
i=1

(√
pi−

√
qi
)2

. (2.5)

Hellinger Distance is non­negative and symmetric, and HD(P,Q) is in
[
0,

√
2
]
. Note

that the higher Hellinger Distance is, the better the differentiation between probabilities

will be.

2.3.3.3 Kullback­Leibler Divergence

Kullback­Leibler (KL) Divergence, well known as relative entropy, was defined by the

mathematicians SolomonKullback andRichardA. Leibler in 1951. It represents the calcu­

lation between two probability distributions [148], [149], [150], [20]. Through statistical

testing, thosemathematicians started from the principle that twoprobability distributions

are different, since there is a possibility of differentiation between them. KLmeasures the

information gain and has been used in statistics, specially in Bayesian statistics.

KL is considered a special class of divergence, being an asymmetric measurement of dif­

ference or not dissimilarity. Therefore KL allows us to deduce both the difference and the
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Table 2.8: Summary of distances and divergences for quantitative (non­negative) data.

Distance / Divergence Explanation

Bhattacharyya Distance [18] BcD (P,Q) = − log
(∑N

i=1

√
pi× qi

)
Euclidean Distance [16] DE [i, j] =

√∑p
k=1 (xik − yjk)

2

Hellinger Distance [18] HD (P,Q) =
√

1
2

∑N
i=1

(√
pi−

√
qi
)2

Jensen­Shannon Divergence [139] JSD (P,Q) = 1
2

{∑N
i=1 pi log

(
2pi

pi+qi

)
+

∑N
i=1 qi log

(
2qi

pi+qi

)}
Kullback–Leibler Divergence [148], [149], [150], [20] DkL[p||q] =

∑N
i=1 pi log

(
qi
pi

)
Wootters Distance [21] (P,Q) = arccos

(∑N
i=1

√
pi× qi

)

not dissimilarity between two distributions [20]. In KL, pi e qi are considered probability

distributions, where the function is represented byDkl[p||q].

Dkl[p||q] =
∑

pi log

(
1

pi

)
−
∑

pi log

(
1

qi

)
. (2.6)

It can also be given by the equation:

Dkl[p||q] =
∑

pi log

(
pi

qi

)
. (2.7)

On problems of data processing or classification, the result of the functionDkl[p||q] is the
calculation of the expected p value, essential on samples based on q. Normally, the data

is represented by p that assumes the real or current distribution of class, flow, application

or model that are represented by the q variable [151, 152].

Dkl[p||q] =
N∑
i=1

p(xi)log
p(xi)

q(xi)
, (2.8)

whereN defines the quantity of samples. See that the symmetric version of KL divergence

is the Jensen­Shannon Divergence [19, 153].

2.3.3.4 Wootters Distance

Wootters Distance was proposed by the American physicist William Wootters in 1981,

aiming to calculate the probability differences under the values of typical fluctuations.

The main idea of this distance is to properly consider the statistical fluctuations inherent

to any finite sample. It is purely and simply statistical and the concept can be used in any

probabilistic area [21].

Considering twoprobability distributions p and q, theminimal distance between twopoints

will be equivalent to the angle presented by them, represented by the equation 2.9 [18],
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[21]. Wootters can also define the not dissimilarity between two samples [154]. Given two

probability distributions Pi = {p(i)j , j = 1, ..., N} with i = 1, 2.

WoD (P,Q) = arccos

(
N∑
i=1

√
pi × qi

)
. (2.9)

Note that arccos() decreases in [0, 1], and that distances were used to discriminate traffic.

Table 2.8 presents a summary of distances anddivergences for quantitative (non­negative)

data.

2.3.4 Support Vector Machines

Support VectorMachine (SVM)was developed by Vapnik, Guyon, andHastie [155], based

on the Statistical Learning Theory and aims to solve pattern classification problems. Stat­

istical Learning Theory gives us mathematical conditions to choose an efficient classifier

to train and test a specific set of data. SVM is a supervised method focused on classifica­

tion and regression. To classify, initially, SVMwas developed seeking binary classification

capable of recognizing sample patterns in pre­defined classes [156].

Currently, SVM supports the task of multi­class learning and it is used to solve problems

such asmulti­classification. In addition, it has beenwidely used in the field of artificial in­

telligence. SVM is responsible for finding the best possible separation boundary between

classes/labels for a given set of data that is linearly separable. For SVM, the many separa­

tion boundaries that are capable of completely separating classes are called hyperplanes.

A decision plane that separates a set of objects with different class members is a hyper­

plane [157].

An important SVM aspect is the margin, which is seen as a breach between the two lines

closest to the class points. The margin is calculated as the perpendicular distance of the

support points closest to the vectors. A good margin is the one which has the greatest

distance between classes, a lowers margin is a bad one [157].

SVM seeks to find the best hyperplane for a given data set whose classes are linearly sep­

arable. SVM builds a classifier according to a set of patterns identified by it in the training

examples [158].

Classification problems tend to bemore elaborated, requiring optimal separation through

more complex structures. SVM proposes the classification of new objects (test) based on

available data (training). For that, a set of mathematical functions is used to map the new

objects, known as Kernels. SVM kernels are divided into two versions, linear and non­

linear [151].
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Kernel functions are intended to project vectors of input feature into a high­dimensional

feature space to classify issues which lie in non­linearly separable spaces. This is done

because as the problem of dimensional space increases, the probability of this problem

becoming linearly separable around a low­dimensional space also increases. However,

to obtain a good distribution of the complex problem, a training set with a high number

of instances is necessary. SVM­based classification uses kernel functions Linear, Radial

Base Function kernel(RBF), Polynomial, and Sigmoid [102, 159].

• Linear: it is the scalar product of observations. It is the sum of the multiplication of

every pair of input vectors.

• RBF: it maps an input space in a finite dimensional space. It is themost used Kernel

in SVM classification.

• Polynomial: This kernel distinguishes a non­linear input space from a curved one.

It is known for being more generalized than Linear kernel.

• Sigmoid: Neural networks use the Sigmoid kernel as the activation function. This

kernel is part of the class of differentiable, limited and crescent monotonically func­

tions.

Note that SVM­based classification kernel function Linear is considered a parametric

model, while the kernel functions RBF, Polynomial, and Sigmoid are considered a non­

parametric models.

RBF andPolynomial are both suggestive kernels to separate non­linear application classes

from curved ones. Through this choice, more precise classifiers can be obtained. RBF and

Polynomial Kernels calculate the separation line in the higher dimension to classify some

applications.

An important thing about SVM is the regulation parameters that can be used to configure

the SVM [102]. One of them is the C parameter, which is the penalty parameter that rep­

resents the classification error or the error term, and it is used to maintain the regulation

of the model. SVM optimization depends on controlling how much error can be handed.

It is this way that trade­off is controlled between incorrect classification terms and the

decision limit. See that the lower the value of C, the lower hyperplane margin and the

greater the value of C, the greater the margin will be [160].

Another parameter that also deserves attention on SVM is the Gamma parameter. Low

values of Gamma parameter makes so the data does not adapt much to the training data

set. Nowwhen the values are higher, the data adapts perfectly to the training set. See that

there must have a balance on Gamma values, because values too high can cause an over

adjustment and values too low may consider only points close to the margin.

35



2.4 Classificationof InternetTrafficUsingStatisticalMeth­

ods

This section addresses the use of statistical methods for Internet traffic classification.

Methods have been grouped by similarities. Tables 2.9 to 2.12 present an overview of

previously used statistical methods for Internet traffic classification, as well as their main

characteristics and performance.

In these tables, the performance values are given in %. The metrics are indicated as fol­

lows: Recall (R), Accuracy (A), Precision (P), F­Measure (FM), F­score (F1), Area Under

the Curves (AUC), Receiver Operating Characteristic (ROC), False Positive Rate (FPR),

True Positive Rate (TPR), Kappa (K), Geometric mean (G­mean), Specificity (Sp), Sensit­

ivity (S), Not Available (N/A).

To the best of our knowledge, Wootters Distance, addressed in the previous section, has

not yet been investigated for Internet traffic classification. Therefore it is not considered

in this section, being left as a possible future research direction in the next section.

Some methods have few applications and were little explored for classification, such as

Jansen­Shannon and KL. Others were quite explored, such as SVM, which has been ex­

tensively explored in this kind of classification, often presenting good accuracy values.

2.4.1 Distance­Based Methods

Table 2.9 details the papers describing distance­based methods for traffic statistical ana­

lysis.

2.4.1.1 Euclidean Distance

Euclidean Distance was addressed in several works found in the literature, including on

the implementation of some famous machine learning algorithms, such as K­mean, and

Nearest Neighbor (NN). In Table 2.9, there is a summary of works around this distance.

Zhu et al. in [67] proposed a method for classifying an unknown protocol of the applica­

tion layer based on theEuclideanDistance. In [65], Shi et al. discuss themethod of extrac­

tion and selection of features for classification, where K­Means algorithm with Euclidean

Distance were used to group the features. Pereira et al. in [63] developed a network traffic

classification system based on real­time flow usingNN technique and EuclideanDistance.

The focus of [66] was to use statistical resources of network flows to identify the gener­

ated application, and the Euclidean Distance was used to test the classification algorithm.

Singh in [64] used K­Means which calculates the distance between objects by using the

Euclidean Distance to group the network traffic applications.
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Table 2.9: Works related to distance­based statistical methods (Euclidean Distance, Bhattacharyya
Distance, Hellinger Distance).

Method Work Year Characteristics Performance

Euclidean
Distance

Pereira et al. [63] 2015 Features: number of packets, number of bytes, elapsed time
between the first and last packets, the number of all pack­
ets with at least a byte of TCP data payload, the median
and the variance of the number of bytes in IP packet, and
the number of all packets seen with the PUSH bit set in the
TCP header. Applications: HTTP and HTTPS, FTP, WWW,
XVTTP, and ISAKMP.

A:87.40­
89.86

Singh [64] 2015 Features: packet length and inter­arrival time including (av­
erage, maximum,minimum, and standard deviation), num­
ber of bytes transferred, total number of packet in flow and
Flow duration. Applications: HTTP, DHCP, ICMP, DNS,
and SMTP. Technique: correlation­based feature selection­
CFS.

A:55.00­
88.00

Shi et al. [65] 2017 Features: extract the multifractal features, multifractal
spectrum, largest wavelet coefficient, variance ratio, and
cumulative variance ratio. Applications: P2P, WWW,
flash+HTTP, IM, SMTP,VoIP, IMAP, andPOP. Techniques:
method of linear regressions, and Wavelet Leaders Multi­
fractal Formalism (WLMF).

A:55.70­
99.80

Schmidt et al. [66] 2017 Features: number of pushed data packets, Median of total
bytes in IP packets, port number at server, bytes in the ini­
tial window, average segment size, bytes in the initial win­
dow, packets with at least a byte of TCP data payload, the
total number of Round Trip Time (RTT) samples, variance
of bytes in Ethernet packet, packets with the PUSH bit set
in the TCP header, and the minimum segment size. Aplic­
ations: Postgres, FTP, Oracle, Sqlnet, IMAP, SSH, SMTP,
POP2/3, X11, WWW, LDAP, DNS, KaZaA, NTP, BitTorrent,
Games, Windows Media Player, and Worm and virus at­
tacks. Techniques:Manhattan Distance, Euclidean, Cheby­
shev Distance, and Cosine Distance.

A:88.00­
94.77,
FM:86.90

Zhu et al. [67] 2019 Features: number of labeled protocol in the dataset, pro­
tocol flow statistics, longest distance, and average distance.
Applications: SMTP, HTTP, FTP, Bittorrent, and POP3.
Techniques: clustering, and deep neural network.

A:96.00

Bhattacharyya
Distance

Zanin [161] 2013 Features: analysis of the statistical properties, andData Sci­
ence analysis.

N/A

Canali and Lan­
cellotti [162]

2013 Features: Statistical properties of Virtual Machine. N/A

Dinani et al. [163] 2015 Features: overall mean, averaged in a given time duration
of video, standard deviation, skew, R­inverse variance, uni­
formity, pixel length, and entropy.

N/A

Sadreazami et al.
[164]

2017 Features: signal statistics, mean, variance, and time. ROC:93.15­
99.75

Sameen and Pra­
dhan [165]

2017 Features: spectral, spatial, and texture properties. Tech­
nique: fuzzy logic for define rules.

N/A

Baskoro et
al. [166]

2017 Features: Probability Density Function (PDF), number of
pixel, and color pdf’s.

P:96.5,
R:96.3

Laz [167] 2017 Techniques: lagrange multipliers technique, and parallel
computing.

N/A

Shah and
Dang [168]

2019/
2020

Features: probability distribution, modulation pairs, and
maximum distance.

N/A

Hellinger
Distance

Liu et al. [169] 2014 Features: exponential distribution, Erlang distribution,
small average distribution distance, andmaximum entropy.

N/A

Safarik et al. [170] 2014 Applications: SIP message, SIP attack classification, IP ad­
dresses, and specific SIP header values or ports.

N/A

Luo et al. [171] 2015 Features: number of foreground pixels, number of back­
ground road pixels, and density ratio. Techniques: regres­
sion models, and Pearson correlation coefficient.

A:83

Wang et al. [172] 2017 Features: number of hash functions, size of hash tables, and
probability vector.

FPR:0­35,
TPR:38­80

Kumari and
Thakar [173]

2017 Features: probability distribution, and synthetic sample
value.

AUC: 69­94

Liu et al. [174] 2019 Features: Packet size sequences, and inter­arrival time. Ap­
plications: Social, Streaming, Web, and Download.

A: 77.77, G­
mean:0­90
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2.4.1.2 Bhattacharyya Distance

Shah and Dang in [168] used Bhattacharyya Distance to select the the highest distance

features from a test pool. In [164], the temporal analysis of the behavior of the network

is established by calculating this same distance. Aiming to calculate the difference among

solved and unsolved iEvents that correspond to the traffic density distributions, Zanin

[161] also used this distance. In [165], Class separability was maximized using the Bhat­

tacharyya Distance algorithm. In [162], the Bhattacharyya Distance is used to quantify

the not dissimilarity of the probability distributions of Virtual Machine (VM) resources

usage. In [163], the Bhattacharyya Distance is used to calculate changes of color histo­

gram. In [166], Baskoro et al. proposed an algorithm for counting and tracking vehicles

using the Bhattacharyya Distance. It is used by Laz in [167] to evaluate detection system

performance. In Table 2.9, there is a summary of works around Bhattacharyya Distance.

2.4.1.3 Hellinger Distance

In Table 2.9, there is a summary of works about the use of Hellinger Distance. In [172]

the Hellinger Distance was used by Wang et al. to find the deviations among sketches. A

sketch is a collection of hash tableswhereWang et al. propose the SkyShieldmethod using

the sketch technique aiming to detect anomalies. TheHellingerDistancewas used in [175]

to perform linear and non­linear transformations aiming the improvement of accuracy in

dataset classification. Derivation of the Hellinger square distance was used by Liu et al.

in [169]. In [173] Kumari and Thakar proposed an oversampling method based on the

Hellinger Distance to identify the minority class in the classification. In [170] it is used

to measure the not dissimilarity of two probability distributions to implement an attack

classifier in a monitoring network. It was also used in [171] on the Linear SVM kernel

implementation for the classifier training step. In [174] Hellinger Distance is used on

feature value distribution.

2.4.1.4 Wootters Distance

In the researchmade throughout the databases referred to in this article during the period

from2011 to 2022, applications ofWootters Distance as a classification technique, feature

selection and kernel increment in methods such as SVM, for example, were not found in

the literature.

2.4.2 Divergence­Based Methods

Table 2.10 details the papers describing divergence­based methods for traffic statistical

analysis.
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2.4.2.1 Jensen­Shannon Divergence

In Table 2.10, there is a summary of works around the use of Jensen­Shannon Divergence

(JSD). In [177] Zareapoor et al. applied JSD property to identify information deviation.

In [178], Zhi et al. proposed an Interest FloodingAttack (IFA), that consists of a resistance

mechanism based on JSD. This mechanism can help detect and mitigate Flooding Attack

on the network. The obtained values from the JSD calculation were used on [179] to select

the features. In [180] JSD was used to calculate the distribution not dissimilarity among

original discrete attributes and the generated ones, aiming to evaluate the Anti­Intrusion

Detection Autoencoder (AIDAE) performance. In [176], the difference between M1 and

M2 (the histogramsof twomixture distributions) is quantified using JSDof bin­placement

approaches.

2.4.2.2 Kullback­Leibler Divergence

Some works were found in the literature using Kullback­Leibler Divergence (KL) for In­

ternet traffic classification. In Table 2.10, there is a summary of works about the use of

this divergence. Kim et al. in [181] proposed a network classification with a KL criterion.

In [182], it was used to detect video clips. KL was also used in other fields of analysis,

such as agriculture. In [183] KL is employed to validate the not dissimilarity of unknown

pixels. In [72], KL is used to classification of encrypted internet traffic.

2.4.3 SVM

Several SVM applications for traffic classification were found in the literature. In Table

2.11, there is a summary of works around this statistical method. It was used in [38] with

the Linear, Polynomial, Sigmoid and Radial kernels for traffic classification on a Software

Defined Networking (SDN). Cao et al. in [52] proposed a real­time training model using

SVM. It was also used in [54] with denoising schemes to improve prediction accuracy.

In [55] Miao et al. used SVM to optimize feature selection. To distinguish data repres­

enting normal network traffic and Distributed Denial of Service (DDoS) flows, Aamir and

Zaidi [62] tested different combinations of parameters on SVM. In [184], Sentas et al. de­

veloped a video data detection and classification system.

Luo et al. in [58] proposed the Least Square SVM (LSSVM) hybrid optimized, a model for

short­term traffic flow forecasting. Suresh and Srijanee in [185] used SVM to analyze the

traffic data pattern and detect anomalies in order to secure high­volume confidential data

transmitted over wireless network. In [57], Xiao used this statistical method combined

with KNN to detect traffic incidents. In [61] Dong proposed optimizing SVM method to

improve training speed and classification, using this enhanced SVM called Cost­Sensitive

SVM (CMSVM) to solve imbalance in network traffic identification. Cao and Fang [186]

and Syarif et al. [59] optimized the SVMparameters based on the Genetic Algorithm (GA)

for Internet traffic classification. Mostafa et al. in [187] proposed a new version of this
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method named Relaxed Constraint Support VectorMachines (RSVMs) to optimize classi­

fication without needing source or destination IP addresses or port information. In [158]

Liu et al. addressed SVM for Traffic Identification and Classification (STIC) aiming to

identify applications, focusing on the duration and quality of YouTube streaming. Aggar­

wal and Singh in [56] made use of this method to categorize Internet traffic. In [188], a

distributed SVM framework was implemented to classify network traffic using Hadoop.

In [51], Hao et al. improve a variation of it called Directed Acyclic Graph­Support Vec­

torMachine (DAGSVM) to classify network traffic. In [37], SVMwas used to sort network

traffic by improving the algorithm to calculate its own resourceweights andparameter val­

ues for every individual binary classifier. It was also used in [60] to classify large amounts

of data. SVM was used in [53] as the basis to implement an optimized model in order to

reduce memory and CPU cost in the training phase, called Incremental SVM (ISVM), and

a modified version with Attenuation factor (AISVM).

2.4.4 Other Methods

Table 2.12 details the papers describing various other methods for traffic statistical ana­

lysis found in the literature.

2.4.4.1 Correlation Information

In Table 2.12, there is a summary of works around Correlation Information (Pearson Cor­

relation). Correlation was used in [22] to boost network traffic ranking performance.

In [56], Aggarwal and Singh used a Bag of Flow (BoF) to model correlation information

in traffic flows and SVM to categorize traffic by application. The correlation was also ob­

ject of research on [189], that presented a new traffic classification framework. For that,

Zhang et al. used the BoF to model information of traffic flow correlation. Besides that

they also used a model based on NN. A new classification method that took under con­

sideration the network traffic flow correlation was also proposed by Zhang et al. in [189].

In [68], Zhang et al. considered real traffic and classified the correlated flows together. In

Dong et al. [190] presented the disadvantages of using Pearson’s Correlation Coefficient

to measure the relationship between traffic flows. From the disadvantages, the authors

presented a new proposal based on metric correlation quantitatively and accurately.

2.4.4.2 Statistical Kolmogorov­Smirnov and Chi­square Tests

Statistics such asKolmogorov­Smirnov andChi­square tests have also beenused for traffic

classification. In Table 2.12, there is a summary of works around those tests. Neto et

al. [69] represented traffic classes by using empirical distributions that correspond to

the traffic classes signatures, aiming to develop a classifier based in the dark mechanism

that combined both Kolmogorov­Smirnov and Chi­square tests. Chi­square was also used

in [191] to test if a set of data follows a specific distribution with a degree of confidence.
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2.4.4.3 Entropy

Gomes et al. in [193] used entropy to emphasize and recognize VoIP P2P traffic flows that

belonged to a VoIP session. The developed classifier aimed to identify the flow used in

the conversation and focused on the specific characteristics of the voice codec instead of

the application used in the VoIP session. In [192], Wang et al. used entropy to classify

traffic more deeply. In [194], Zhou et al., used entropy for evaluation of encrypted traffic

classification. In Table 2.12, there is a summary of works about the use of entropy.

2.5 Discussion and Open Issues

2.5.1 Discussion

Distance and divergence computations are advanced methods of statistical analysis that

can be used for classification and, in our context, were used for Internet traffic classific­

ation. Through the statistical properties, statistical traffic classification models may be

created for a given application. For these methods, sometimes a learning phase is re­

quired to build a reference model that can be used to classify traffic.

Statistical classification, also known as logic based classification, allows traffic identifica­

tion through statistical attributes of the flow. The packet length and duration, the traffic

flow idle timing, and the time between packet arrivals are considered examples of stat­

istical traffic attributes or measurements of flow level. On sight of traffic, statistical clas­

sification tends to assume and explore unique resources of each application, using data

mining techniques to do so most of the time.

Statistical classifiers are light weight and do not require packet payload analysis. In addi­

tion, they can achieve the same precision as other methods found in the literature, even

using fewer features. These advantages make them suitable candidates for the most re­

stricted configurations. Also, given the current trend towards flow level monitors like

NetFlow [195], the ability to operate on statistical characteristics only is an advantageous

property for classifiers.

As for the computational complexity of statistical methods, Valenti et al. [85] show how

tree­based statistical classification can sustain high rate of transference on off­the­shelf

hardware.

Figure 2.5 shows the Network Visualization map created using the VosViewer tool. This

map was created from the references cited in this article, and based on bibliographic data.

The data was read from reference manager files .ris. We chose the co­authorship analysis

with fractional counting method, that is the strength of the document is divided by the

total number of authors. We do not ignore documents with a large number of authors.
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For the generation of our map, we chose at least 1 author per document and found 462

different authors and co­authors. For each author, the total number of co­authorswas cal­

culated and the authors with the greatest total link strength will be selected were selected

for the chart.
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Figure 2.5: VosViewer Network Visualization Map.

2.5.2 Open Issues

In the literature, several significant types of research have been done on traffic classi­

fication and how to improve the performance of the classifiers, but there are still some

challenges ahead. Considering the technologies and methods applied, most challenges

still lie in classifying encrypted, unknown, and P2P traffic in real­time or timely with high

precision and low processing power.

In this section, we outline some important open­ended research questions that need to be

addressed in this field of research as follows:

• Although SVM has been widely used to classify traffic, traditional traffic classifiers

based on SVMhave their limitations, among them the high computational cost when

it comes to memory, CPU, highly complex training and the difficulties to operate in

real time, which makes the real time and timely classification unfeasible. Possible

research directionsmay include the development of new SVMmodels to address the

above issues, following the work in [53].

• SVM still faces resource selection imbalance issues in its training phase. For [196],

solving the problems of imbalance in the SVM classification is kept an open issue.
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• SVM performance does not absolutely depend on the size of the training data, but

also on the quantity of Support Vectors (SV). An open question for research is bal­

ancing data volume and complexity because according to [53], with the increase in

training data, computational complexity and the occupation of computational re­

sources will also grow significantly.

• One of the issues to be worked on when implementing an Internet traffic classifier

using SVM, is choosing correctly the self parameter C because, according to [196],

the classification is sensitive to C, in which, if not chosen correctly, SVM, even op­

timized, produces worse classification results.

• Explore the feasibility of the use of the Wootters Distance for encrypted Internet

traffic classification, which, to the best of our knowledge, has not yet been investig­

ated.

• Investigate the use of less explored statistical distances and divergences for encryp­

ted Internet traffic classification, namely Bhattacharyya and Hellinger Distances

and Jensen­Shannon Divergence. Although these statistical methods have been in­

vestigated for network security and intrusion detection, among other, as reported in

this work, we did not find specific applications of these methods for classification of

encrypted Internet traffic.

• Explore the combination of the SVM classifier with statistical divergences. In the lit­

erature, we findworks that combineEuclideanDistancewith theK­means algorithm

for classifiers, and Kullback­Leibler combined with SVM. However, we did not find

classifiers combined with Hellinger Distance, Wootters Distance, Jensen­Shannon

Divergence, for example.

2.6 Conclusion

The main purpose of this work was to explore statistical methods and techniques recently

used orwith the potential to be used in Internet network traffic classification. Weprovided

an overview of the Internet traffic classification process as well as an insight into statist­

ical methods with potential interest to be used as classifiers for encrypted Internet traffic,

including those methods that have not yet been explored previously for Internet traffic

classification. Then, we reviewed previously used statistical methods for Internet traffic

classification, organized by distances, divergences, SVM, and other statistical methods.

Through the literature review, we identified that the most used statistical method for

traffic classification is the SVMmethod. In addition, we also identified several open issues

that could be the subject of further research on this topic. More specifically, we identified

statistical distances and divergences that have not beenmuch explored regarding to traffic
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classification. Actually, they could be used separately or combined with the SVM classi­

fier in order to address challenging problems such as real­time traffic classification and

encrypted traffic classification.
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Table 2.10: Works related to divergence­based statistical methods (Jensen­Shannon Divergence,
Kullback–Leibler Divergence).

Method Work Year Characteristics Performance

Jensen­
Shannon
Divergence

Garcia and
Korhonen
[176]

2018 Features: total amount of Bytes in packets, number of
packets in a flow, time between first and last packet sizes,
min/max of packet sizes, number of downlink pack­
ets, skew/kurtosis of packet sizes, mean of packet sizes,
standard deviation, and variance of packets. Technique:
Random forest.

A:96,
P:88, R:95,
ROC:94

Zareapoor et
al. [177]

2018 N/A

Zhi et
al. [178]

2019 Features: probability distribution, high entropy values
signify a more dispersed probability distribution, num­
ber of data packets, and sequential time interval.

ROC:98.88

Barut et al.
[179]

2020Features: distribution of each feature, average, length
numerical, and variable sizes. Techniques: correlation,
random forest algorithm, Principal Component Analysis
(PCA), the mean value of array, the length of the array,
the maximum value in array, and the minimum value in
array.

R:51­93,
P:0­100,
FM:69­90

Chen et
al. [180]

2020Features: Mean Square Error (MSE), distribution of con­
tinuous features, and number of discrete features.

N/A

Kullback­
Leibler
Divergence

Kim et
al. [181]

2016 Feature: Maximum Sequence Size (MSS) value. Applic­
ations: IMAP, and SMTP. Techniques: markov model,
and concept of bag based on port number.

R:20­70,
P:39.13­
99.85

Xu et
al. [182]

2016 Features: stationary stochastic, probability distribution,
discrete optical flow approach, number of frames in a
video, and length sequence. Application: video. Tech­
niques: bag­of­words paradigm, MPEG motion vectors,
and Fourier coefficients.

AUC:59.43­
78.80

Zhang et al.
[183]

2019 Features: reference time series data, and probability dis­
tribution of the NDVI. Application: video.

A:94.80,
K:85

Cunha et al.
[72]

2020Feature: Relative frequency. Applications: HTTP and
Flash­based, RTSP, MMS, P2P streaming, PPStream,
TVUPlayer and SopCast, P2P file­sharing: BitTorrent,
e­Donkey, and Gnutella, VoIP: Skype, Google Talk, SIP
traffic, FTP and SFTP transfers, Telnet, and SSH ses­
sions. Techniques: KLDivergence calculation, and heur­
istics.

A:99­100,
P:100,
FM:85­100,
R:74­100
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Table 2.11: Works related to Support Vector Machines (SVM) statistical methods.

Method Work Year Characteristics Performance

SVM

Hao et al. [51] 2015 Features: selection algorithm, and Chi­square values. Applications:
Mail, and WWW.

A:96.58

Hao et al. [37] 2015 Features: total number of bytes sent by client to server, Fast
Correlation­based Filter (FCBF), feature selection algorithm ­ server
port, maximum of bytes in Ethernet packet, average window ad­
vertisement, total number of bytes sent by server to client, aver­
age segment size, minimum window advertisement, minimum seg­
ment size, maximum segment size, andmaximum of total bytes in IP
packet. Applications: WWW,Mail, FTP­Control, FTP­PASV, Attack,
P2P, Database, FTP­Data, Multimedia, and Services.

A:57.38 ­97.00

Syarif et al. [59] 2016 Features: Particle SwarmOptimization (PSO), and Feature selection
algorithm­ Genetic Algorithm (GA). Dataset: Embryonal Tumours,
Leukemia, Dexter, Madelon, Internet_ads, Spambase, Musk, Intru­
sion NSL KDD, and SPECTF Heart.

FM: 76.67­
95.68

Fan and
Liu [38]

2017 Features: mean segment size, round trip time, and packet inter­
arrival time. Applications: Web, SMTP, POP3, IMAP, FTP, DNS,
X11, NTP, BitTorrent, eDonkey, Mysql, Oracle, Windows Media
Player, Virus, Worm, Telnet, SSH, and Games.

A:80.59­97.96,
P:12.5­99.24,
R:2.43­99.93,
FM:4.08­99.58

Cao et al. [52] 2017 Features: Feature dimension by principal component analysis
(PCA), and Number of folds. Applications: Mail, WWW, Attack,
FTP, Database, P2P, Services, and Multimedia. Technique: Correla­
tion�Based Feature Selection (CFS).

A:11.81­99.90

Aggarwal and
Singh [56]

2017 Features: Probability Density Function (PDF), size of the first pack­
ets of an SSL, and statistical features. Application: P2P­TV traffic.

A:88.87

Miao et al. [55] 2018 Features: bytes volume, packets quantity, packet size statistic in­
formation ( Min.,Max., Ave. and variance), duration, and inter­
packet time statistic features. Application: EBUDDY, DNS, eDon­
key, HTTP, FTP, MSN, IMAP, SMTP, POP3, RSP, RTSP, SMB,
XMPP, SSL2, SSL3, YAHOOMSG, and SSH. Techniques: NN, and
RandomForest.

A:25.01­92.92,
FM:6.14­99.70

Liu et al. [158] 2018 Features: sequence of packets from a source, unidirectional flow,
and bidirectional flow, and packets in a specific transport. Applic­
ations: Google page, Yahoo page, YouTube, Facebook, Line, BitTor­
rent, eDonkey, Skype, League of Legends, Twitter, Twitch,Messager,
Google Hangout, Instagram, Spotify, Dropbox, OneDrive, KKBOX,
MoPTT, Sanguosha, PPS, WooTalk, IRC, Garena Messager, Foxy,
Pokémon Go, and QQ,

A:92.54­99.00,
R:92.73­98.89,
P:92.21­99.00,
FM:92.23­
98.89

Sun et al. [53] 2018 Features: attributes of the traffic flow, dimension of features, packet
size, packet length, inter­packet timing, TCP window size, and in­
formation derived from traffic flows. Applications: WWW, P2P, and
FTP.

A:82.90­95.40

Akinyelu and
Absalom [60]

2019 Features: Wrapper­based technique, and Filter­based technique. A:55.11­99.86

Tang et al. [54] 2019 Features: sampling interval, distribution of denoised traffic flow,
and Number of forecasting. Techniques: Empirical Mode Decom­
position, Wavelet (WL), Ensemble Empirical Mode Decomposition
(EEMD), ButterWorth (BW) filter, and Moving Average (MA).

N/A

Aamir and Zaidi
[62]

2019 Features: Bwd Packet Length Std, cumulative entropies of clusters,
flow duration, average packet size, and flow.

AUC: 95.04­
96.75

Luo et al. [58] 2019 Features: total sample size, true value at period, prediction value at
period, particle swarm size, the maximum iteration number, cognit­
ive factor, Social factor, and probability. Techniques: Root Mean
Square Error (RMSE), the Equal Coefficient (EC), and Mean Abso­
lute Error (MAE).

N/A

Xiao [57] 2019 Technique: KNN N/A
Sentas et
al. [184]

2020 Features: image size in pixels, block size, block stride, and block
stride in pixel. Application: video, formats: by ImageNet. Tech­
nique: Region Of Interest (ROI).

R:78.81­98.55,
P:87.73­98.55

Dong [61] 2021 Features: high and low port number, flow transport protocol, and
flow duration, TCP header flag including (TCPflags1, TCPflags2), bi­
direction packets length ratio, bi­direction bytes, packets/duration
(second), bytes/duration (second), mean packets arrived time (dura­
tion/packets), bi­direction packets ratio, bi­direction packets, mean
packet length, and tos. Applications: FTP, HTTPS, HTTP, POP3,
IMAP, SMTP, SQLnet, Oracle, DNS, NTP, LDAP, Kazaa, Bittorrent,
Gnutella, eDonkey, Media Player, Real, SSH, klogin, Telnet, GAME
Halflife, SIP, and Skype.

R:60­94, P:60­
93, A:84­94,
G­mean: 58.30­
71.80
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Table 2.12: Works related to other statistical methods (Correlation information, Kolmogorov­Smirnov,
Chi­square, entropy).

Method Work Year Characteristics Performance

Correlation
Information

Zhang et al.
[189]

2012 Features: flows sharing, andperiod of time. Applic­
ations: DNS, P2P, SSH/SSL, and FTP. Technique:
BoF model­based.

FM:20­99,
A:90

Dong et al.
[190]

2012 Features: high port number, low port number,
bytes of flow, packets of flow, the average packet
payload length, the average packet length, the av­
erage packet header length, duration flow dura­
tion, the average packet arrival interval of flow, byte
number per second, packets number ratio of bid­
irectional flow, packets number per second, packet
length ratio of bidirectional flow and byte number
ratio of bidirectional flow. Applications: unspe­
cified.

N/A

Zhang et al.
[22]

2013 Features: volume of bytes, size and number of
packets, inter­packet time, andnumber of flow stat­
istical properties. Applications: SSL, SSH, and
HTTP.

A:58­90,
FM:60­95

Zhang et al.
[68]

2014 Features: client­to­server maximum packet bytes,
number of packets, client­to­server average packet
bytes, client­to­server minimum packet bytes,
client­to­server minimum inter­packet time, the
standard deviation of client­to­server packet bytes,
server­to­client number of packets, server­to­client
minimum packet bytes, and server­to­client max­
imum packet bytes.

A: 80­95,
FM:88­95

Aggarwal
and
Singh [56]

2017 Features: flow statistics technique: discrete statist­
ics.

A:65­95

Chi­square
test

Neto et
al. [69]

2013 Features: length of the packets; Applications:
HTTP, Skype, and P2P. Technique: sliding win­
dows.

P:89.36­100,
R:91.24­100

Casino et al.
[191]

2019 Feature: Chi­square Absolute value. Applications:
Compression method ZIP, RAR, BZIP2, and GZIP.

A:68.68­
94.72

Kolmogorov­
Smirnov

Neto et
al. [69]

2013 Features: length of the packets. Applications:
HTTP, Skype, and P2P. Technique: sliding win­
dows.

P:89.36­100,
R:91.24­100

Entropy

Wang et al.
[192]

2011 Features: frequencies of characters and entropy of
consecutive bytes. Applications: encrypted files
(AES, PGP and SSL) and compressed files (.gz, .rar,
.zip), P2P torrent packets, torrent protocol, SMTP,
and HTTP. Techniques: SVM and Sequential For­
ward Selection (SFS), KL and JSD.

A: 69­81

Gomes et al.
[193]

2012 Features: length of the packets. Applications:
VoIP, SIP, and Skype.

S:78.57­100,
Sp:99.51­
100

Zhou et
al. [194]

2019 Features: packet’s inter­arrival time, packet’s sizes,
and direction as the neural network’s input. Applic­
ations: classes (VoIP, Audio, browsing, chat, email,
FTP, P2P, video. Techniques: NN, SVM, Random
Forest, Naive Bayes, and Logistical regression.

ROC:0.73­
0.96, F1:33­
95, P: 36­93,
R:30­96.
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Chapter 3

Impact of Self C Parameter on SVM­based
Classification of Encrypted Multimedia
Peer­to­Peer Traffic 1

Home users are increasingly acquiring, at lower prices, electronic devices such as video

cameras, portable audio players, smartphones, and video game devices, which are all in­

terconnected through the Internet. This increase in digital equipment ownership induces

a massive production and sharing of multimedia content between these users. The super­

vised learning machine method Support Vector Machine (SVM) is vastly used in classific­

ation. It is capable of recognizing patterns of samples of predefined classes and supports

multi­class classification. The purpose of this chapter is to explore the classification of

multimedia P2P traffic using SVMs. To obtain relevant results, it is necessary to properly

adjust the so­called Self C parameter. Our results show that SVMwith Linear kernel leads

to the best classification results of P2P video with an F­Measure of 99% for C parameter

ranging from 10 to 70 and to the best classification results of P2P file­sharing with an F­

Measure of 98% for C parameter ranging from 30 to 70. We also compare these results

with the ones obtained with Kolmogorov­Smirnov (KS) tests and Chi­square tests. It is

shown that SVM with Linear kernel leads to a better classification performance than KS

and chi­square tests, which reached an F­Measure of 67% and 70% for P2P file­sharing

and P2P video, respectively, for KS test, and reached an F­Measure of 85% for both P2P

file­sharing and P2P video for chi­square test. Therefore, SVM with Linear kernel and

suitable values for the Self C parameter can be a good choice for identifying encrypted

multimedia P2P traffic on the Internet.

3.1 Introduction

According to the 2020 report from Sandvine [117], 80% of the current Internet traffic is

generated by three key application classes: video, gaming, and social sharing. Among

these applications, video corresponds to the largest traffic volume. More specifically,

video streaming grew its overall traffic share during lockdown, which included acceler­

ated video releases to streaming, binge­watching multiple seasons of TV shows, search

for entertainment and information on what is happening in the world and video traffic

1The content of this chapter was published in the following venue [71]: Vanice Canuto Cunha, Damien
Magoni, Pedro R. M. Inácio, and Mário M. Freire, ”Impact of Self C Parameter on SVM­based Classifica­
tion of Encrypted Multimedia Peer­to­Peer Traffic”, In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced
Information Networking and Applications, AINA 2022, Lecture Notes in Networks and Systems, vol 449,
Springer, Cham, pp. 180–193. DOI: https://doi.org/10.1007/978­3­030­99584­3_16.
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from social networks like TikTok. Among video streaming applications, we pay a particu­

lar attention in this paper to Peer to Peer (P2P) video streaming. According to the global

application total traffic share in 2020 reported by Sandvine [117], BitTorrent is the fourth

most used application/platform after YouTube, NetFlix and HTTP­based streaming.

For P2P media streaming, users can take advantage of their aggregated upload band­

width capacity for efficiently distributing video content among themselves. However, P2P

traffic, including BitTorrent traffic, is difficult to detect, prioritize or mitigate, namely in­

side organizations, specially when protocol obfuscation techniques are used.

Streaming sessions among peers can last for long periods, which can interfere with the

available network bandwidth in organizations required to perform critical network­based

enterprise tasks. For this reason, Internet Service Providers (ISPs) and network adminis­

trators in organizations consider the identification and classification this type of traffic as

an important matter, enabling to appropriately managing resource allocation and plan­

ning future network growth [197, 198].

On the other hand, nowadaysP2P traffic is often encrypted andhas varying packet lengths.

It is important to classify encrypted multimedia P2P traffic to properly manage the net­

work’s resources. In that context, recognizing the different types of apps that use the net­

work’s resources and classify them is a pre­requirement that contributes for an advanced

management of the network, such as providing Quality of Service (QoS) and price, besides

identifying anomalies.

P2Pmultimedia applications can affect the performance of servers, services or critical ap­

plications of organizations or tasks dependent on the network. In this situation, a network

administrator may need to impose limitations on P2P traffic, by limiting the transmission

rate, differentiating services or even blocking those connections, to ensure a good per­

formance of the internal applications, and / or to enforce rules to regulate the use of P2P

systems. The purpose of this article is to investigate the impact of both adjusting the Self

C parameter and selecting a particular SVM kernel for specifically classifying multimedia

P2P traffic.

3.2 RelatedWork

Recently, many studies have been carried out to classify traffic with the help of the SVMs

[54,56–60,62, 184, 196, 199–204]. Some of them have optimized the kernel settings and

SVM parameters to improve the classification results, such as in [59, 204]. Self C is one

of the parameters of SVM, also denominated as C Penalty, corresponding to the degree

of punishment and causing implications on the experimental results. It is important to

properly adjust this parameter, as it will directly affect the network traffic classification
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Table 3.1: Summary of the main points on traffic classification using SVM addressed in articles found in the
literature. In the Performance column: Precision ­ P, Recall – R, Accuracy – A, F­Measure – FM.

Work Method Real­time
Operation

Detection of
Encrypted
Traffic

Performance(%)

Mavroforakis et al. (2006) [199] SVM No No A: ­
Yuan et al. (2010) [200] SVM No Yes A: 81.75 and 95.98
Aggarwal et al. (2017) [56] SVM and Naïve

Bayes
Yes Yes A: 88.88

Aamir et al. (2019) [62] SVM + KNN + RF No No A: 95 – 96.66
Rezvani et al. (2019) [196] Fuzzy + SVM No No A: 99.44
Tang et al. (2019) [54] SVM +Wavelet (WL) No No A:­
Akinyelu et al.(2019) [60] SVM No No A: ­

Sankaranarayanan et al. (2019) [201] SVM No Yes
A: ­

Han et al. (2019) [202] Entropy + SVM No No ­

Luo et al. (2019) [58] SVM and Genetic
Algorithm

Yes No
A: 100;
FM: 61 – 66.67

Budiman et al. (2019) [204] SVM No No A:­
Şentaş et al. (2020) [184] SVM Yes No A:­
Raikar et al. (2020) [203] SVM, NB, Nearest

Centroid
Yes No A: 91 ­ 96

effectiveness. This parameter is responsible for the optimization of the SVM, avoiding an

incorrect classification, being thus a regularization parameter [160].

Several works addressed the classification of Internet traffic using SVM, as we show con­

cisely in Table 3.1. However, to our knowledge, the current literature is lacking a study

presenting the impact of the adjustment of specific SVM parameters for the classification

of multimedia P2P traffic. Therefore, this article addresses this issue.

3.3 Methodology

3.3.1 Classification Method

SVM takes ground on the static learning theory, which aims to provide requirements to

pick a classifier that has a good performance. SVM is a supervised learning machine con­

sisting of training and test phases for the available data groups.

It is capable of recognizing sample patterns of pre­defined classes, of supporting multi­

class learning, and of implementing the one­against­one approach. In this approach, for

k classes, k(k − 1)/2 classifiers are built. Depending on the number of classes, each clas­

sifier is trained as if there were two classes only: the intended one and all others. For the

implementation of this work, the one­against­one approach was used [156].
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The choice of the Kernel function is vital in the learning process and classification with

the SVM. This choice can have a meaningful role in the results. For Zhongsheng et al.

in [205], when we use SVM, and properly choose the kernel functions, better results are

reached.

As an example, in the training phase the SVM uses techniques to divide data that are not

divided with the Linear kernel function use. To determine the separation hyperplane, the

smoothmargin technique allows an error margin of the classification. In SVM’s training

phase, there is a parameter set by the user that specifies the allowed smoothness of this

margin.

Some parameters of the SVMmethod for classification are defined by the user, including

the Self C parameter. The C parameter is responsible for the optimization of the SVM,

preventing the classification from being done incorrectly. Self C is the main parameter

in the SVM, this parameter is responsible for the tolerance and the level of acceptance of

error in the classification [38].

The application of SVM for traffic identification requires fine­tuning the algorithmand the

adjustment of its parameters for the classification of multiclass traffic. A trade­off must

found between the efficiency and the Accuracy of the detection. The proposed method is

also applicable to encrypted network traffic.

One of the problems encountered in configuring the classification with the SVM method

was the selection of the kernel and its parameter values.

In this work, we explored the usage of four different kernels for SVM: the Linear kernel,

the Sigmoid kernel, the Radial Basis Function (RBF) kernel, and the Polynomial (degree

= 3) kernel. The higher the C value, the higher the probability to get all training points

classified correctly [206].

The main settings for the SVM algorithm are the kernel employed and the error or cost

penalty parameterC,which is beneficial in network traffic classificationproblems as shown

in [207]. With respect to the cost variable, we tried several values in the interval [0.1; 70.0].

In most implementations of an SVM technique (e.g., in Python), the Self C parameter

comes with a default value of 1.0. Table 3.2 shows the parameters used for the classifica­

tion.

Figure 3.1 shows the architecture of the classifier adopted to perform the classification.

Raw data were pre­processed, extracting the distribution of the size of the packets by

flows, forming a new database. This new base served as input for the SVMmethod, where

30% of the base sample was used for the training set, generating the training models and

the other 70% of the sample was used for the test set.
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Table 3.2: SVM parameters used for optimizing encrypted multimedia traffic detection.

Parameter Value
Self C [0.1; 70.0]

Kernel ’Linear’, ’Sigmoid’, ’RBF’, ’Poly’
Degree 3
Gamma auto deprecated
Coef 0 0.0
shrinking True
probability False
tol 0.001
cache size 200
class weight None
verbose False
max iter ­1
decision function shape ovr
random state None

For classification, SVM uses the models generated in the training set together with the

test set. After these procedures, we obtained the exit from the classification. The experi­

ments were executed on a desktop computer running Ubuntu 14.04.5 Operating System

and equipped with a 64­bit Intel core i7, 2.93GHz, 6GB of system memory.

Figure 3.1: Architecture of the classifier.

For classification with SVM, the sklearn module2 provided by the scikit­learn python lib­

rary [208] was used and applied to our data set. The classification was divided into 3

steps, as follows:

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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• Step 1 ­ Data treatment ­ Generation of the new database: For this step, a script

GeraBaseSVMNew.py was created using the python language, whose objective is

to convert the raw database into a new database, which was used as input in SVM.

First, we treat the flows using the tuple [source IP, destination IP, packet size] we

extract from the streams the distribution of the relative frequencies of the size of the

packets per stream, forming a new database.

We create buckets to calculate the distribution of the relative frequency. The fea­

tures, were the buckets, where each row, has 100 columns, considered a feature.

The conversion of the raw database into a new database of relative frequency was

necessary to improve computational performance.

Mapping the classes ­ The classes were defined based on the IP of each application,

for each collective file, formed a Target database with the protocols.

• Step 2 ­ Training and test phase ­ The database generated by the script in step 1,

was used to generate the models (training phase) and test. To perform the tests, the

models were created using the script SVM_Multiclass.py [209] also implemented

in python, in addition, this script was used to classify and return the classification

reports [210].

• Step 3 ­ Data validation and performance evaluation.

3.3.2 Dataset and Classification Features

In this research work, we use a dataset which was also described in a previously published

work [72]. The data set contains approximately 25 GB of network traffic traces generated

by different Internet applications and services, captured using the tcpdump tool and stored
on disk. Since the flows were previously stored in a database, all tests carried out in this

work have used offline classification only.

The data stored and generated by machines dedicated to a specific traffic, allowed us by

construction to obtain the ground truth for the classes.

To accomplish step 1, it is necessary to calculate or update the cumulative probability dis­

tribution of the size of the packets per each type of flow, so that we can later obtain the

values of the relative frequencies by type of flow, as shown in the Table 3.3.

With the amount of data obtained, the calculation of the distribution function was per­

formed as follows:

• 100 buckets were defined for counting the occurrences of packet sizes.

• In each bucket, the number of observed packets having a size falling within the

bounds of the bucket will be counted (Observed Frequency fi).
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• Once the observed frequencies are obtained, the relative frequencies are calculated

by Eq. (3.1).

fri =
fi
n
, (3.1)

where n represents the total number of transmissions observed in each “Traffic Class” or

“Application/Protocol”; Table 3.3 shows the distribution of flows. The classes considered

for the traffic analysis are commonly used on the Internet, and are briefly presented in

Table 3.4.

Table 3.3: Definition of the buckets for the distribution of packet sizes.

Bucket Packet size bounds Frequency Relative Frequency
1 0 ­ 15 f1 fr1
2 16 ­ 31 f2 fr2
3 32 ­ 47 f3 fr3
.
.
.

.

.

.

.

.

.

.

.

.
100 1584 ­ 1600 f100 fr100

Table 3.4: Analyzed traffic flows.

Application / Protocol Traffic Class Number of flows
Bittorrent P2P file­sharing 961
Edonkey P2P file­sharing 961
Gaming Runscape P2P Video 418
Gaming War of legends P2P Video 418
Ppstream P2P Video 419
Sopcast P2P Video 419
Tvu P2P Video 418
Http, web browsing, telnet Others a 179

aThe other classes are those that are not mapped.

3.4 Evaluation

3.4.1 Classification Results

After obtaining the results (output) provided by the classifier, the results were validated

through the ground truth and evaluated using the confusion matrix, the Recall, Precision

and F­measure metrics as defined in [211].

The features used as entrance to our classification were relative frequencies and accumu­

lated frequencies. The results obtained through SVMwere compared to the Kolmogorov­

Smirnov(KS) and Chi­squared tests [69]. KS was used with the aim to select the dis­
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tribution that best represents the applications (flows). On the other hand, Chi­squared

test [132]was used to compare the relative frequency distribution to the relative frequency

of a distribution previously selected that represents a traffic or application class. KS is

defined by [69]:

D = MAXx | F1,n(x)− F2,n′(x) |, (3.2)

where F1,n and F2,n′ are the accumulated distributions that were compared and for each

variable n, n′ were determined, that represents the observation numbers.

Chi­squared is defined by [132]:

X2 =
k∑

i=1

(xi − Ei)
2

Ei
, (3.3)

where xi and Ei (0 ≤ i ≤ k) are respectively the observed and expected frequencies, and

k ∈ N represents the number of buckets.

The resulting classifications using the SVM classifier with the Linear, RBF, Sigmoid and

Polynomial kernels are shown in Figures 3.2, 3.3 and 3.4. The amount of support was

2091 for the P2P video class and 1922 for the P2P file­sharing. The support is the number

of occurrences of the class specified in the data set. In the case of our article, it corres­

ponds to the number of items in the class (flows).

We observe that SVM can classify multimedia traffic and that we can optimize the results

by adjusting the C parameter, specifically for P2P multimedia traffic. The results demon­

strate that there is an impact of the parameter self C on the classification. The factor of

that impact for the values self C = [0.1; 70.0], are shown in Figures 3.2, 3.3 and 3.4

for each SVM kernel.

The results obtained in the Linear kernelwithC= (0.1, 0.5)were below the values obtained

with the default parameter, corresponding to 91% of Precision for the P2P video class with

the self C = 0.1 and 89% of Precision for the P2P class file­sharing. For both the P2P video

and P2P file­Sharing classes, we obtained the best results with the Linear kernel from

self C = 30.0, when the classifier reached its highest classification level for both classes,

reaching 99% for Precision, 100% for Recall, and 98% for F­Measure, as shown in 3.2, 3.3

and 3.4.

The results obtained with the RBF kernel showed a significant impact when compared to

values of self C lower than the default and values greater than the default, mainly for the

P2P file­sharing class. For this class, the impact was a 74% improvement in the perform­

ance of the F­measure with self C = 30.0, as shown in 3.4.
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Figure 3.2: Precision, as a function of Self C parameter, of SVM­based classification for P2P video and P2P
file sharing traffic.

Figure 3.3: Recall, as a function of Self C parameter, of SVM­based classification for P2P video and P2P file
sharing traffic.

Figure 3.4: F­Measure, as a function of Self C parameter, of SVM­based classification for P2P video and P2P
file sharing traffic.

The calculation of F­Measure was important to evaluate the efficiency of the classification,

since it represents the value of the harmonicmean between the values found forRecall and

Precision. For the P2P video and P2P file­sharing classes, Precision was higher than Re­

call, indicating that the methodology has greater ability to reduce false positive samples

(type II error), than false negative samples (type I error).

Analyzing the impact of self C, in the classificationwith the Sigmoid kernel, we can see that

the biggest impact was on the performance of the P2P file­sharing class. With the self C =

0.1 we have a performance so low that it reached 0% of Precision, Recall and F­measure.

For self C = 70.0, we reached the highest performance point for the P2P file­sharing class
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where we obtained 91% of Precision, 93% of Recall and 92% of F­measure.

For the classification with the Polynomial kernel, for both the P2P video class and the P2P

file­sharing class, there was no impact. The performance for both classes remained the

same for all tested self C values. We can conclude that given the analysis of Figures 3.2,

3.3 and 3.4 and for our test scenario, the self C in the Polynomial kernel did not have any

impact on the classification performance.

For results with C = 50, it can be seen by the analysis that the P2P video and P2P file­

sharing classes achieved 99% and 97% of Precision with the Linear kernel and 94% and

91% of Precision, respectively, with the RBF, showing an excellent performance to dis­

criminate how many instances are correctly classified in these classes. However, the Lin­

ear kernel exhibited higher Precision results for P2P video and a slightly better one for

P2P file­sharing.

The P2P video classes obtained 100% of Precision with the Linear and RBF kernels, and

99% of Recall, which means that both are able with high performance to identify how

many of this class are encounters across the number of elements of that class. For the

P2P file­sharing class, the Linear kernel presented a better result for the Recall, although

the result obtained for the RBF kernel is also considered.

The method using the Polynomial kernel obtained 49% of Precision for the P2P video

class. It could not classify the data set with the relative frequencies used in this article.

The results achieved for the P2P file sharing class were very low or close to 0, for all val­

ues of C in [0.1; 70.0].

Table 3.5 presents a comparison among classification results obtainedwith SVMwith Lin­

ear and RBF kernels, KS, and Chi­square tests. In the classification with the KS statistical

method, we obtained a Precision of 84% for P2P file­sharing and 100% for P2P Video.

For P2P file­sharing and P2P video, we obtained a Recall of 56%. The F­Measure values

were 67% for P2P file­sharing and 70% for P2P video. This means that the classification

with the statistical method KS had a lower average performance when compared to the

classification with the Linear kernel associated with a C parameter in the range of 30 to

70, and with the RBF kernel associated with a C parameter in the range of 50 to 70.

In the classificationwith the Chi­square statisticalmethod, we obtained a Precision of 91%

and a Recall of 80% for P2P file­sharing, and a Precision of 100%, and a Recall of 74% for

the P2P video. The F­Measure values achieved 85% for P2P file­sharing and P2P video.

This means that the Chi­square achieved performance average better than KS, with 15%

higher for P2P video and 18% higher for P2P file­sharing.

Although these values are better than compared to KS, the statistical method chi­square
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Table 3.5: Comparative table of the results obtained with SVM­Linear and RBF in the best range of C
parameter, KS and Chi­square.

Performance

Methods
Linear kernel
(C=[30 ­70])

RBF kernel
(C=[50­70])

KS Chi­square

P2P file­
sharing

P2P
Video

P2P file­
sharing

P2P
Video

P2P file­
sharing

P2P
Video

P2P file­
sharing

P2P
Video

Precision 97% 99% 91% 94% 84% 100% 91% 100%
Recall 99% 100% 94% 99% 56% 56% 80% 74%
F­Measure 98% 99% 92% 97% 67% 70% 85% 85%

was low to the mean performance when compared to Linear kernel and RBF kernel with

the adjusted C parameter. In Linear kernel with the parameter C in the range of 30 to 70,

we obtained 15% more than the performance average when compared to Chi­square. On

RBF kernel with C parameter in the range of 50­70, we obtained 7%more than Chi­square

for P2P file­sharing and 12% for P2P video.

Our results have shown that the Linear kernel leads to the best classification results of P2P

video with an F­Measure of 99%, which is achieved for C parameter ranging from 10 to

70. The Linear kernel also leads to the best classification results of P2P file­sharing with

an F­Measure of 98%, which is achieved for values of C parameter between 30 to 70.

3.4.2 Computational Performance

We evaluate the computational performance by measuring CPU consumption (in %) and

memory consumption (in MB) during the execution time needed to classify the database

using psrecord 3. Figures 3.5 and 3.6 show the computational performance of the Lin­

ear, RBF, Sigmoid, and Polynomial kernels which presented the most significant results

in the classification. During our tests, we have seen that the memory consumption was

more significant when compared to the CPU consumption.

Analyzing the results, it can be seen that the memory is released by the process at the end

of the execution of the Linear kernel. Note that the shortest execution time among the

four kernels was obtained for SVM with the Linear kernel, with an execution time of 1.45

seconds.

This does not happen in the RBF kernel at the end of the execution, as we can see in the

graph that the process does not release the memory. The execution time of the Linear

kernel is relatively shorter when compared to the RBF kernel. The CPU usage (in %) is

almost the same for both cases.

The computational performance of the Sigmoid kernel is lower when compared to the

Polynomial kernel. The Sigmoid kernel has an execution time which is 2 seconds shorter

3https://pypi.org/project/psrecord
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than the Polynomial kernel. However, it has a longer execution time when compared to

the Linear and RBF kernels. As with the Linear kernel, the memory is released as soon as

the process is released.

CPU consumption is about the same for both kernels. These results show that the Linear

kernel, in addition to showing better classification results, correctly identifies flows that

belong to the class and correctly identifies flows that do not belong to the class and has a

lower computational cost.

The computational costs of the classification using the KS and Chi­square methods were

higher compared to the Linear, RBF, Poly, and Sigmoid kernels. Memory consumption

exceeded 600MB for both, and execution time achieved 3000 seconds for the KS method

and almost 400 seconds for the Chi­square method. These execution times were con­

sidered high when compared to the ones of the SVM kernels.

3.5 Conclusion

SVM classification has shown significantly better results for the Linear kernel, RBF, and

Sigmoid, when compared to the Polynomial kernel for the data set presented in this paper.

These results can be attributed to the fact that SVMconsiders properties of themultimedia

P2P traffic flow, such as the distribution of packets per flow, an important characteristic

to differentiate it from the other protocols and classes found in internet traffic. With the

adjustment of the self C parameter, SVMhas demonstrated a high discrimination capacity

for P2P protocols.

Figure 3.5: Computational resource usage in terms of CPU (%) and memory (MB) of Linear and RBF
kernels.
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Figure 3.6: Computational resource usage in terms of CPU (%) and memory (MB) of Sigmoid and
Polynomial kernels.

Figure 3.7: Computational resource usage in terms of CPU (%) and memory (MB) of KS and Chi­square.

The more data for the training are entered, the better the classification will be. When we

increase the value of self C, we notice that the Precision and Recall values also increase.

We can conclude that increasing the values in parameter C reduces type I and II errors

and improves the ability to identify flows.

The computational cost for the execution of the SVM method was presented taking into

account the use of both CPU and memory during the classification. We have observed

that over time, the CPU usage remained the same, while the memory usage increased.

Our results show that SVM can indeed be a good choice for identifying multimedia P2P

traffic on the internet. In comparison with the statistical methods KS and Chi­square, the

Linear kernel has shown the best F­measure performance for both P2P file­sharing and

P2P video results.

For future work, we intend to implement new classifiers for the Internet traffic based on

statistical methods such as distances and divergences and compare them with the ones
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investigated in this article.
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Chapter 4

Classification of Encrypted Internet Traffic
Using Kullback­Leibler Divergence and
Euclidean Distance 1

The limitations of traditional classification methods based on port number and payload

inspection to classify encrypted or obfuscated Internet traffic have led to significant re­

search efforts focusing on classification approaches based on Machine Learning tech­

niques using Transport Layer Statistical features. However, these approaches also have

their own limitations, leading to the investigation of alternative approaches, including

statistics­based approaches. Statistical approaches canbe an alternative tomachine learn­

ing ones because statistical approaches can operate in real time and do not need to be

retrained each time a new type of traffic appears. In this chapter, we propose two stat­

istical classifiers for encrypted Internet traffic based on Kullback­Leibler Divergence and

Euclidean Distance, which are computed using the flow and packet size obtained from

some of the protocols used by applications. In our experiments, we evaluate the two pro­

posed classifiers and compare them with a classifier based on Support Vector Machine

(SVM). During our study, we were able to classify the traffic by using few features without

compromising the performance of the classifier. The experimental results illustrate the

effectiveness of our models used for traffic classification.

4.1 Introduction

Internet traffic classification has been the focus of significant research efforts in the past

two decades due to its importance for network management and security defense, since it

may provide valuable information about the traffic metadata and the eventual underlying

motivations [53], [89], [212]. The study of statistical methods to classify network traffic is

justified by the fact that many machine learning techniques are supervised and then have

limited applicability for real time classification, as they require a new training model be

created to a new classification each time new data is presented [53].

One of the major problems in classifying encrypted traffic is that the payload is encryp­

ted, which makes difficult the analysis of the packet contents [29]. Through statistical

1The content of this chapter was published in the following venue [72]: Vanice Canuto Cunha, Arturo A.
Z. Zavala, Pedro R. M. Inácio, DamienMagoni, Mário M. Freire, ”Classification of Encrypted Internet Traffic
Using Kullback­Leibler Divergence and Euclidean Distance”, In: Barolli, L., Amato, F., Moscato, F., Enokido,
T., Takizawa, M. (eds) Advanced Information Networking and Applications, AINA 2020, Advances in Intel­
ligent Systems and Computing, vol 1151, Springer, Cham, pp. 883–897. DOI: https://doi.org/10.1007/978­
3­030­44041­1_77.
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methods [213] we can estimate, by means of empirical distributions, the behavior of the

protocols, and with the help of divergences that show the similarities between two distri­

butions, we can try to efficiently classify the applications that generate the Internet traffic

under evaluation.

This article proposes and evaluates the performance of two classifiers for encrypted In­

ternet traffic using statistical methods applied to traffic flows: the Kullback­Leibler (KL)

Divergence and the Euclidian Distance. These two classifiers operate at a network flow

level and make use of the relative frequency of the packet size to identify applications.

KL Divergence has previously been used for speaker identification/verification and im­

age classification [151] and for detection of low­rate Distributed Denial of Service (DDoS)

attacks [214]. Euclidean Distance has previously been used for optimizing an artificial

immune system algorithm used for flow­based Internet traffic classification [66]. Here,

both KL Divergence and Euclidean Distance are used to build classifiers without the need

to combine them with other methods.

4.2 RelatedWork

Significant research efforts have been carried out on the subjects of identification and

classification of Internet traffic. Part of them rely on statistics, see, e.g, [69, 193]. Recent

research still focuses on making improvements using machine learning, such as [53].

In [89], a classification module focusing on video streaming traffic, based on machine

learning, is presented as a solution for networks that require real­time traffic analysis.

In our work, we use real­world traces of encrypted traffic, including traffic generated by

Peer­to­Peer (P2P) applications such as eDonkey, BitTorrent, and Gnutella.

Some research works propose classifiers based on learning methods and corresponding

signatures [215], [216]. A large number of research works, regardless of the classification

method, make use of traffic flows or packet sizes (e.g, [193], [217].

Statistical tests such as Chi­squared and Kolmogorov­Smirnov were used for traffic clas­

sification in [69], representing the classes through the corresponding signatures and the

empirical distributions. The entropy was also used to measure and represent import­

ant differences regarding packet heterogeneity [218]. Exploring the heterogeneity of the

packet sizes was accomplished by using samples obtained from a sliding window. For our

work, we explored the characteristics of packet sizes, using all the relative frequencies of

the size of packets of flows and not just samples of flows. Still in [218], Gomes et al. pro­

posed an online classifier to separate traffic generated by P2P and non­P2P applications

and a new method to identify VoIP sessions [193].

Peng et al. propose in [217] a statistical classification approach that uses theMessage Size
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Distribution (MSDC), which aims to identify the network flows precisely and theMessage

Size Sequence (MSSC) in real time. Such technique provided very good detection results,

making a decision after inspecting less than 300 packets with a 99.98% precision, but do

not display recall and F­Measure values.

In [219], Extreme LearningMachine (ELM)methodswere used to classify Internet traffic.

The Extreme Kernel LearningMachine (EKLM) approach was applied to the data. In par­

ticular, a Genetic Algorithm (GA)­based software was implemented for selecting the para­

meters used in the ExtremeKernel LearningMachinewithWavelet (WK­ELM) algorithm.

This approach reached a precision rate over 95%.

4.3 Statistical Methods

4.3.1 Kullback­Leibler Divergence

The KL Divergence or relative entropy is a distance measured between two probability

distributions and was introduced by the mathematicians S. Kullback and R.A. Leibler in

1951 [148], [149], [150], [20]. These researchers started with the assumption that two

probability distributions differ more or less according to the possibility of discrimination

between them by means of a statistical test.

The KL Divergence is a special case of a wider class of divergences. By using this method,

we can infer a similar behavior, or divergence between twodistributions [20]. Considering

thatDkl[p||q] is a function, pi and qi are two probability distributions, we have:

Dkl[p||q] =
∑

pi log

(
1

pi

)
−
∑

pi log

(
1

qi

)
. (4.1)

Then, it can be assumed that the Kullback­Leibler Divergence is represented by equa­

tion 4.2:

DkL[p||q] =
N∑
i=1

pi log

(
qi

pi

)
, (4.2)

where DKL[p||q] >= 0 and DKL[p||q] = 0 if and only if pi(x) = qi(x), N defines the

number of samples, i defines the number of the initial sample, pi defines the relative fre­

quencies of the known class, qi defines the class relative frequency to be compared.

Note that, despite being also known as a distance, KL Divergence cannot be considered

as a distance metric, since it does not meet the symmetry property, i.e., DKL[p||q] ̸=
DKL[q||p]. We mapped the behavior of some protocols through distributions (relative

frequency) and used this mapping to classify traffic, assuming that each known distribu­
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tion is pi and each unknown distribution is qi. KL Divergence was used to implement one

of the classifiers described in section 4, more specifically the Statistical Analysis module.

4.3.2 Euclidean Distance

To calculate the distance between two traffic classes, one must consider the probabilities

of each traffic class, in our case, pi defines the relative frequencies for all the discrete values

i (possible packet sizes) of the traffic class 1, representing the known traffic class, while

qi defines the relative frequencies for all the discrete values i (for possible packet sizes)

of traffic class 2, representing the unknown traffic class. Therefore, the distance between

both classes of traffic may be given by the following equation:

DE [p, q] =

√√√√ n∑
i=1

(pi − qk)
2. (4.3)

In this work, we use EuclideanDistance to compare its results with the ones obtainedwith

KL and to test the efficiency of this method, when mapping the behavior of the relative

frequency for each protocol. The Euclidean Distance is used to implement the second

classifier described in section 4.

4.4 TrafficClassificationUsingKullback­LeiblerDivergence

and Euclidean Distance

This section details our approach to classify Internet traffic. We describe the traffic fea­

tures used for the classification, the classifier architecture incorporating the divergence

or distance and system modules, as well as the rules implemented for traffic classifica­

tion. For the purposes of this work, calculating the distance refers both to calculating the

divergence or the distance.

4.4.1 Features

It is possible to create a new set of data from the original data, which contains import­

ant information obtained through the new features found [65]. This new set of data can

present a smaller number of attributes than those found in the original set, bringing us

as a benefit a lower dimensionality. In order to obtain this new set of data, we extract

some features of the original database, such as packet sequence numbers, IP source and

destination, packet size, and time [17], where we apply a different view of the original data

to reveal its important characteristics.

We call the original base, the trace of traffic that has been stored after collection of network

traffic. We consider each flow as a time series, which generates a standard characteristic:
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Figure 4.1: Relative frequency of packet size per application, extracted through the sampling process, for
SSH and HTTP Web Browsing.

the relative frequency of packet size per application.

We observe that the flow (source IP and destination IP) of the application would give us

a feature that could be extracted, the relative frequency of packet size in each flow. We

believe that the distribution of sizes is of great importance to characterize the traffic, since

it represents each protocol in a unique way, forming a signature for each one of them.

Figure 4.1 illustrates the relative frequency distribution of packets for some available ap­

plications in our new data set. As we can see, each protocol behaves in a unique way and

exhibits a unique distribution, which we call a signature. We can use such behavior to

measure the divergences to known distributions and to start the classification.

The X­axis of fig. 4.1 represents the number of buckets. Buckets were defined with the

purpose of creating a histogramwith intervals of 15 bytes. Themaximum size of the histo­

gram interval is 100. Buckets are required to calculate the relative frequencies of packets.

The Y­axis represents the calculated relative frequency of HTTPWeb browsing and SSH.

4.4.2 Classification Approaches

Divergence or distance is themeasure of separation between two distributions, it indicates

how similar or different two traces are. But for this we must insert some parameters so

that, with that there is the comparison. The architecture for our classification system

contains fourmodules, as shown in Fig. 4.2: packet capture andpre­processing, statistical

analysis and stored signatures, classification and validation.

4.4.2.1 Packet Capture and Pre­Processing

This step deals with the traffic capture and storage. Traffic generation was done in the

laboratory in a controlled environment, and the capture was performed with the tcpdump

and windump tools. The files were stored in the .pcap file format. Then these file were
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Figure 4.2: Proposed classifier: Architecture.

Figure 4.3: Flowchart of rules process.

converted to the .txt format. This conversion was done via command line with the com­

mand tshark− rsrcfile.pcap− t. Afterwards the files were separated into several files by

application with the command tcpdump− ettnnrfile.pcaphostIPorhostIP −wfile.pcap.

First, we separated our data set into individual trace files and collective trace files. We

68



classify as individual trace files those in which we know what applications have been used

to generate them. Then, we consider the application flow, source IP address and destina­

tion IP address, packet sequence and number of packets belonging to the same application

and IP addresses.

Empirical Model Generation In this step, relative frequency files are generated in

order to feed the new database. It was necessary to create a file with relative frequen­

cies corresponding to the traces with known traffic. These files were created by means of

samples. We developed a python script to create the files with relative frequencies. For

the generation of relative frequencies, it was taken into account the Maximum Transmis­

sion Unit (MTU), equivalent to 1514 bytes. This reference was crucial for the construction

of the packet size histogram.

Each byte packet was allocated in a sort of bucket. We take into account the size of 16

bytes to construct the histogram, so if we take the 1514 bytes and divide by 16 bytes, we

will have an approximate value of 100 buckets, or intervals. Applying this logic to each

flow, we are then able to calculate the empirical distributions ­ in our case, the relative

frequencies.

Samples Generation In this step, the program reads files from collective and indi­

vidual folders and separate flows. The samples were generated from both individual and

collective trace files. Each sample represents a relative frequency file generated for each

protocol. The relative frequencies of the individual traces are stored in a different data

set, since they will serve for signature identification purposes during the trace compar­

ison phase.

For flow grouping and separation, an application was built using the Python language,

which allowed us to follow the entire flow and extract, with the construction of the histo­

gram, the distributions of each flow. No feature was used to examine packets.

4.4.2.2 Statistical Analysis and Stored Signatures

In this step the distance and divergence based on the relative frequencies of each flow are

calculated. In order to know if two traffic traces belong to the same class, we use the em­

pirical distribution, in our case the relative frequency that each trace has, and compare

the two frequencies by applying the KL or Euclidean calculation, and obtaining a distance

as output.

We begin the comparison phase between the distributions, where in this phase, the di­

vergences are used, as shown in Figure 4.2. In this step we consider the generated and

separated files in the preprocessing module and rename these files in samples pi and qi.
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Now, pi for individual flow files and qi for collective flow files. Relative frequencies indi­

vidual are stored as a signature and compared to Relative Frequencies collective using the

distances of KL and Euclidean.

For calculating distances, we choose which method we will apply, either Kullback­Leibler

or Euclidean, and compare the relative frequency lists pi and qi generated. After this com­

parison, we have the values of the distances found between the two lists. This distance

alone does not represent anything, therefore, in the classification step it is necessary to

make use of heuristics. Note that, individual relative frequencies are stored as a signature

and compared to collective relative frequencies using the KL and Euclidean distances.

4.4.2.3 Classification and Validation

The classification of flows based on rules is made in this step. Note that, at this stage, we

already have all the distances calculated between the flows. For divergences, the closer to

0 the most similar the two protocols are, the closer to 1, the most different the two proto­

cols are likely to be. After the calculation, and having the values of the obtained distances,

classification rules have to be created so that the classifier can make a decision. These

rules are based on statistical heuristics after several iterations of distance calculation.

Initially, the rules for classification were based on dissimilarity values, where dissimilar­

ity can be defined as follows: 0 if the attribute values match and 1 if they do not match.

Since we will not always have distances equal to 0, or equal to 1, we need to find a cut­off

threshold for the classification to be done more efficiently. For the cut­off, after debiting

all distances, we created two lists to insert accepted and rejected flows according to estab­

lished rules.

As we mentioned earlier, we need a threshold to know when the flow could be accepted

or rejected. At first, we used a heuristic where we applied a range of intervals so that

flow distances could be accepted if they were within the interval or rejected otherwise.

After several tests, we found that in the rejected list there were flows that could have been

accepted, but given the cut­off threshold, had been rejected. So we found that this meth­

odology to accept or reject the flow would not work in our case. Next, we defined another

rule, this time making use of the average packet size found in each flow and also adding

their standard deviation. Unfortunately, the values on the rejected list remained high. It

is worth mentioning that when we checked the rejected lists, there were many flows that

should have been accepted instead.

After several analyses, we chose to include in our list of accepted flows, the shortest dis­

tances found among all calculated distances. We also decided to use the standard devi­

ation of the distances calculated by the samples as the cut­off threshold, inserting in our

distance list all flows that were in the interval [average, SD]. Using this technique, we
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were able to significantly reduce cases of false positives and false negatives, but it was not

enough to deliver satisfactory results.

In order to create an efficient rule, we calculate the relative frequency of a given known

protocol that is in our signature database, and compare it with all relative frequencies of

unknown protocols. After this comparison, several distances will be generated. The first

step is to select the minimum distance among the calculations to apply the classification

rule. The second step, after several and continuous tests with each protocol, was defining

acceptance baseline values that would define five different minimum ranges.

For each range value, the pre­calculated minimum distance of each protocol must neces­

sarily be within 0 and the current range of the loop. Once the classification is over, the one

yielding the best F­measurewill be returned, as per auxiliary variables within the classific­

ation loop. The MaxR variable was created to store the minimum range of the best result,

while MAxMatrix variable was created to store its confusion matrix. The maxFmeasure

variable, initially set as ­1, will then store the best f­measure among the results. Classific­

ation rules are illustrated in the flowchart shown in Figure 4.3.

4.5 Performance Evaluation

After the classification process of the samples, we checked and validated the results of the

classification using the ground truth. For this, we created two new lists: in the first list

we have the number of items classified as accepted and that were actually found in the

mapping dictionary according to the source IP and the destination IP addresses corres­

ponding to each protocol, and in the second list we have the number of items classified as

rejected.

Note that even though a distance is in the accepted list, the flow may not actually belong

to the corresponding protocol, and even though it is in the rejected list, the flow might

actually belong to the corresponding protocol.

4.5.1 Data set and Ground Truth

For the study and analysis of the traffic, it was necessary to collect traffic traces and to

build a database containing the traces to be analyzed. The data set is composed by traces,

generated by different Internet applications and services. Network traffic used in this

analysis was captured next to the source where it was generated, obtained in a controlled

environment, where only one application was running in a certain computer. All traces

were collected by using the TCPDUMP andWINDUMP tools, implemented by the capture

libraries: libpcap in the Linux platform, and Winpcap in the Windows platform.
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Table 4.1: Dataset Characteristics.

Data set Volume (GB) TCP (%) UDP (%)

Data set 1 8.80 78.35 21.59
Data set 2 8.60 82.77 17.18
Data set 3 7.97 77.13 22.84

This way, we observed the properties both scenarios and established the ground truth of

the traffic records. In order to analyze the empirical distribution of the traffic packet size,

an application was built to create the relative frequency distribution for each collected

traffic.

In this study, we chose services or applications that are widely used, heavy bandwidth

consumers or raise more challenges from the perspective of traffic and network manage­

ment, ending up with a set of services with varied characteristics. The classes considered

for the traffic analysis were commonly used in the Internet, as listed below:

• Web browsing: browsing of general web pages, excluding media streaming.

• On­demand and live streaming: HTTP and Flash­based, RTSP, MMS, etc.

• P2P streaming: PPStream, TVUPlayer and SopCast.

• P2P file­sharing: BitTorrent, e­Donkey, and Gnutella.

• VoIP: Skype, Google Talk, Session Initiation Protocol (SIP) traffic.

• File transfer: FTP and SFTP transfers.

• Remote session: Telnet and SSH sessions.

In this work, “HTTP download” is used to refer to a long and continuous download of a

large file using HTTP, while “Web navigation” is used to refer to the common activity of

visiting Web pages through aWeb Browser. As described in Table 4.1, we used three data

sets, which include a total number of 92.317 traffic flows, corresponding to 35.317.091

packets and approximately 25.37 GB of traffic. The time to acquire all the data sets was

approximately 61h.

Ground truth is widely used by researchers who collect their own traffic traces to test the

accuracy of their solutions. In our work it is possible to establish ground truth because

traffic was collected in a controlled environment where each computer was running only

one application.

With this, we can map exactly the trace for a given application, calculate the relative fre­

quency of the trace and compare it with the output of the classifier. The individual traces

were used for the generation of our ground truth and the files with the collective traces

were used for our tests.
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4.5.2 Performance of the Classifier

To address these issues, we used the confusion matrix, which allows us to obtain the per­

formance of the classifier, based on the values of TP (True Positive), TN (True Negative),

FP (False Positive) andFN (FalseNegative). For the values of TP, the classifier added them

to the list of accepted flows which, after the analysis and classification, are considered to

belong to that flow.

For FP values, we have the protocols erroneously classified as belonging to the flow. For

the values of TN, the classifier correctly understood that the protocol did not belong to the

flow, inserting it in the accepted list. Finally, for FN, the classifier erroneously understood

that the current protocol did not actually belong to the flow, inserting it in the rejected list.

For performance evaluation, we use the classical performancemetrics defined inmachine

learning textbooks: accuracy, precision, recall and F­measure.

Table 4.2 presents the accuracy, precision, recall and F­Measure for the Kullback­Leibler

and Euclidean methods for all 8 classes tested. After evaluating the performance of the

classification proposing the use of Kullback­Leibler Divergence, we compared the per­

formance with methods already found and tested in the literature [66], [106], [156].

Table 4.2: Performance results for Kullback­Leibler Divergence and Euclidean Distance. Acc: Accuracy,
Rec: Recall, Prec:Precision, F­M: F­Measure.

Traffic Category\Protocol
Methods

Kullback­Leibler Euclidean
Acc. Rec. Prec. F­M. Acc. Rec. Prec. F­M.

Web browsing 99% 74% 100% 85% 99% 67% 100% 80%
HTTP download 99% 83% 100% 90% 99% 66% 100% 80%
Streaming On­demand and live 100% 100% 100% 100% 100% 100% 100% 100%
P2P streaming 99% 86% 100% 92% 99% 85% 100% 91%
P2P file­sharing 99% 76% 100% 86% 99% 73% 100% 84%
VoIP 100% 100% 100% 100% 100% 100% 100% 100%
File Transfer 100% 100% 100% 100% 100% 100% 100% 100%
Remote session 100% 100% 100% 100% 100% 100% 100% 100%

For our comparison, we use of theEuclidianDistance and Support VectorMachine (SVM).

For testing with SVM we use the sklearn− import− svm [208] function provided by the

Python library and applied it to our data set with the default parameters, except for the

Self parameter, which for our case we use C = 50. The largest problems encountered in

setting up the SVMmodel were how to select the kernel function and its parameter values.

When there are large values of C, the optimization will choose a smaller­margin hyper­

plane if that hyperplane does a better job of getting all the training points classified cor­

rectly. We use four different kernels, which are Linear, Polynomial, Sigmoid, and RBF

kernels. For testing using SVM, we use the training module and change the Statistical

Analysis KL module to Classification­SVM.
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A summary of the results obtained from the classification using SVM is shown in Table

4.3. The method using the SVM RBF kernel and the Sigmoid kernel could not classify the

data set relative frequencies used in this article, presenting results too low or close to 0

(not shown in the table). For the category of Web browsing traffic, the SVM method has

a classification capability, the Euclidean and KL methods presented very similar results,

having Kullback­Leibler higher Recall and F­ Measure values.

Table 4.3: Performance results for SVM with Linear and Polynomial kernels. Acc: Accuracy, Rec: Recall,
Prec:Precision, F­M: F­Measure.

Traffic Category\Protocol
Support Vector Machine ­ SVM

Linear Polynomial
Acc. Rec. Prec. F­M. Acc. Rec. Prec. F­M.

Web browsing 74% 74% 74% 74% 0% 0% 0% 0%
HTTP download 81% 82% 35% 4,9% 0% 25% 10% 15%
Streaming On­demand and live 57% 58% 57% 57% 0,90% 1% 9% 2%
P2P streaming 99% 99% 99% 99% 0,57% 10% 97¨% 10%
P2P file­sharing 98% 98% 97% 98% 0,0005% 0% 100% 0%
VoIP 100% 100% 100% 100% 0,22% 2% 100% 4%
File Transfer 0% 0% 0% 0% 0% 0% 0% 0%
Remote session 0% 0% 0% 0% 0% 0% 0% 0%

For theHTTP download category, the SVMmethodwas unclear. Although the KLmethod

had higher values than the SVM method, the values of Recall and F­Measure are still be­

low acceptable values to state that for this type of application the method can classify this

traffic category efficiently.

For on­demand and live streaming, the SVM method obtained results below the values

found for the statistical methods. Analyzing the results, we realized that for this type of

traffic, both KL and Euclideanmethods, can classify efficiently and effectively. The results

show that both methods are far superior than any of the SVM kernels.

For P2P streaming, Linear, Polynomial, and Sigmoid SVM kernels have at least one met­

ric considered reasonable for classification, but overall they are insufficient. This leads us

to conclude that for video and video streaming traffic, the KL and Euclidean methods are

efficient for identification and classification of these applications.

For P2P file­sharing, the KL and Euclidean methods gave excellent results for the pre­

cision and F­Measure metrics and good results for the Recall metric. The SVM Linear

kernel yielded results that are considered excellent.

For VoIP classification, the Linear kernel SVM method presents significant results. KL

and Euclidean methods gave excellent results for this type of traffic, reaching 100 % pre­

cision, Recall and F­measure results, which means that for this application the KL and

Euclidean methods were very promising.
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For the File Transfer traffic category the KL and Euclidean methods can also, given the

obtained values, present an excellent classification capacity. For Remote session applica­

tions, the values achieved by the KL and Euclidean methods were 100% for the Accuracy

because, althoughwe have it mapped in our individual database, there are no correspond­

ing files in the collective test database. The classifier states that all tested files do not con­

tain Remote sessions, which in our analysis is correct, since we do not have any.

By making a comparative analysis between the statistical methods, we conclude that KL

and Euclidean methods obtain the same results for most cases. When comparing the F­

Measure results obtained in both, we see that for the HTTP Download andWeb Browsing

traffic only, the values obtained by the KL method were higher, but we cannot say that

this method is superior to the Euclidean one, given that for the other results, the values

were the same or relatively similar.

It is interesting to note that SVM is considered an excellent classifier in the literature, but

when we do not have many features, we notice from the results that SVM does provide

satisfying results. Therefore, building network traffic classifiers using statistical methods

can still be considered a viable alternative for encrypted traffic.

4.5.3 Resource Usage

The experiments were executed on a 64­bit Linux, desktop computer, equipped with an

Intel (R) Core (TM) i7 CPU 2.93GHz, 6GiB system memory and a PCI Express Gigabit

Ethernet Controller based on the RTL8111 chipset.

For computational analysis, the psrecord [220] tool is used. This tool records the core

and memory activities of a process. In order to measure the computational performance

of each method, we used the activity of the process that the method refers to.

We did not use packet number or host/port, as this data was used only as information to

convert the raw database into relative frequencies. When we look at fig. 4.4 and fig. 4.5,

we find that memory usage remains stable whatever the processing consumption of the

chosen classifier.

When the classifier is started, the CPU andmemory time start at 0. If we observe the CPU

usage over time, we see that KL and Euclidean classifiers both use a similar CPU per­

centage to process the information and compare the relative frequencies. Although not

shown, the SVM classifier requires more CPU especially at the beginning of the process.

Regarding the memory usage over time for each statistical classifier, they are very close,

being slightly larger for the KL classifier, because KL is more demanded.
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Figure 4.4: CPU and memory consumption from the beginning of the analysis of the trace to end of the
classification (execution time) for the classifiers based on: Euclidean Distance.

Figure 4.5: CPU and memory consumption from the beginning of the analysis of the trace to end of the
classification (execution time) for the classifiers based on: Kullback­Leibler Divergence.

4.6 Conclusion

Our results for Internet traffic classification were presented using Kullback­Leibler (KL)

Divergence, Euclidean Distance and SVM. According to the results obtained, we can con­

clude that the SVMmethodwith kernel set to default parameters is not effective to classify

flows based only on packet size: Linear SVMwas only efficient for classifying P2P stream­

ing and SVMPolynomial was efficient for classifying P2P streaming, P2P file sharing, and
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VoIP.

In contrast, the KL and Euclidean methods were able to classify all tested applications,

standing out in the streaming and P2P classification, where for almost all cases it was ef­

ficient to identify them with a high precision. We conclude that both the KL Divergence

and the Euclidean Distance were efficient and that, in cases where the KL Divergence was

superior, it was not significantly better than the Euclidean Distance. The performance

of the statistical method is considered good as long as CPU usage remains almost con­

stant when packets are being processed and analyzed. As for memory usage, it fluctuates

according to the requests of each method. For future work, we intend to evaluate other

statistical divergences indicators by performing new tests on encrypted traffic.
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Chapter 5

Classification of Encrypted Internet Traffic
Using Statistical Methods 1

Internet traffic classification allows the identification of protocols used in different ser­

vices on the Internet, based on features presented in packets or flows generated by those

services. Such traffic classification and identification are performed through different

techniques such as Machine Learning (ML), Deep Packet Inspection (DPI), or statistical

methods like distances and divergences, which have been used to differentiate objects.

However, ML and DPI methods present limitations namely for timely classification of

encrypted Internet traffic. In this chapter, we investigate the use of statistical methods

published in the literature that have proven successful for classification in other areas but

have not yet been tested for network traffic classification. Thus, we propose, implement

and evaluate a classifier based on Jensen­Shannon, Hellinger, Bhattacharyya, and Woot­

ters methods to classify encrypted Internet traffic.

Furthermore, we present a qualitative comparative analysis of the tested methods based

on their Kappa values (following the definition of Landis, Koch and McHugh) and their

Receiver Operating Characteristic (ROC) curves (via the Areas Under the Curves (AUCs)).

We present the Accuracy of each implemented classifier, obtaining average values above

90% for the Jensen­Shannon, Bhattacharyya, Hellinger andWoottersmethods. Our study

also includes a comparison of the computational costs of the evaluated methods. Thus,

these methods may be used as alternatives for the classification of encrypted Internet

traffic.

5.1 Introduction

In the information society, the movement of data packets in a network has become as rel­

evant as the movement of people and tangible goods in the physical world. Therefore, the

monitoring of network traffic and the understanding of traffic patterns have been attract­

ive research areas for decades [1].

Nowadays, people use the Internet for supporting their daily activities, including commu­

nications, transactions and entertainment. Communications include email and instant

messaging applications, transactions include e­commerce and online banking, and enter­

tainment includes downloading movies and listening to Internet radio.

Through these kinds of operations, a user can provide some personal information, making

1This chapter consists of a paper under review at the time of writing this Ph.D. thesis.
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it possible to know who he/she communicates with and what his/her interests are [221].

File sharing is one of the biggest sources of congestion on the Internet. Programs such as

BitTorrent [222] transform user machines into nodes in an overlay network, using their

connections to provide data to other users.

Access to sites such as YouTube and Spotify provides video and audio content to users

on demand, generating streaming media traffic [223]. Videoconferencing can also cause

congestion in end­user connections since several users connect simultaneously with video

and audio, resulting in many streams in each connection. Therefore, it is important to

learn how to identify [221] and classify traffic to maintain available bandwidth, prevent

congestion and avert security issues [224].

Classifying traffic is a way of identifying the application or protocol used; this involves

methods and techniques that go beyond simple traffic analyses for separating flows. The

process of classifying traffic observes features and behaviors in traffic and checks for con­

formation to the assigned traffic type. Faced with a growing network traffic scenario

[225, 226], many studies have been carried out within the scope of traffic classification

[5, 122,217,227–230].

Classification can be performed by using the number of ports [231], payload [232], Ma­

chine Learning (ML) [5], Deep Packet Inspection (DPI) and Heuristic [229] in both su­

pervised [50,122,228–230,232], and unsupervised (also known as clustering [217,228])

manners. These methods may operate online such as in [50, 225, 229] or offline such as

in [233].

Thesemethods involve the extraction of traffic features. For these features, it is quite com­

mon to use traffic patterns, jitter, latency, delays between packets, packet size, payload

identification, and flow source/destination identification, in combinationwith packet size

fragments and traffic flow resources such as packet sizes, the time between packets and

information derived from traffic flows [233].

The method of associating transport port numbers with known application protocols is

not efficient. Thus, several applications have started using port numbers employed by

other known protocols [232] or random port numbers.

DPI is also not efficient, as it requires many computational resources due to the pay­

load inspection process and the impossibility of analysis when payload encryption is util­

ized [50,232].

Methods associated with ML have limitations and require an initial data training step.

The Support VectorMachine (SVM), for example, is supervised and uses different kernels

to comprehend the classification data and then finds an ideal limit among the possible
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outputs. Algorithms such as Bayesian estimation, C4.5, and nearest­neighbor estimation

may be tied to local optimization and cannot work in real time due to their computational

and storage requirements [50].

Traffic classificationmethods based on flow statistics, on the other hand, offer varying de­

grees of success, including in real­time situations, and do not require high computational

resource usage. Methods based on statistical analysis are also able to process encrypted

traffic [122,233].

Several such methods have been proposed, making statistical use of the packets’ charac­

teristics, including their flow signatures, through the size of the payload by referring to

applications and application layer protocols.

Through this work, the results will be presented in the following sequence: Firstly, clas­

sifying traffic with statistical distances and divergences to obtain Precision, Recall and

F­Measure values. Secondly, after getting the classification values, we calculate ROC val­

ues to obtain which is the best classification method for a specific kind of traffic.

This article’s next sections are organized in: Section 5.2 presents the existing algorithms

and approaches applied to network classification. Section 5.3 details the methodology of

our approach and the design of our solution. We provide some experimental results in

Section 5.5. Section 5.6 is the conclusion of the paper.

5.2 RelatedWork

In this section, we provide a review of traffic classification techniques and statisticalmeth­

ods, focusing on the methods that are explored in this work for classification purposes.

5.2.1 Traffic Classification

Lots of efforts have beenmade to research Internet traffic identification and classification.

It was possible to see that some researches on the topic of Internet Traffic identification

and classification were conducted by exploring network statistics such as the size of pack­

ages, flow quantity, jitter, latency or packet inter­arrival time. e.g., [69,215,234–236].

Theworks of [234–236] as an example, used traffic flows or size of packages to classify the

traffic. TheTable 5.1 represents a summary of relatedworks, the types of traffic addressed,

whether traffic classification occurs in real time or not, and the performance achieved.

It is important tomention that calculating traffic flow statistics is a strategy to identify the

traffic in real time, because these statistics can be used in the classification model and by

using such statistical information it is possible to determine the ideal model to be used for

that classification [237].
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Table 5.1: Summary of the Most Relevant Related Works. P:Precision, R:Recall, A:Accuracy,
FM:F­Measure.

Work Method Type of Traffic
Real­time
operation

Detection of
encrypted
traffic

Performance(%)

Holanda Filho et
al. [235], 2008

Statistical discriminators,
cluster analysis and k­means
algorithm

P2P No Yes

A:16,87,
98,93
R:76.65,
100

Neto et al. [69],
2013

Kolmogorov­Smirnov test and
Chi­square test

Web,HTTP download, live
streaming, streaming on de­
mand, P2P video streaming,
P2P file sharing, VoIP, FTP,
SFTP, SSH

Yes Yes
P:77.78, 100
R:76.65, 100

Tongaonkar et
al. [215], 2015

Automated signature generation
based on the packet payload con­
tent

Web, SMTP, BitTorrent, DNS Yes Unable P:97

Li et al. [216],
2015

Fast multitask sparse feature
learning method using a non
convex capped l1

Shaikh et
al. [236], 2015

Flow­level statistical properties,
nearest clusters and k­means al­
gorithm

HTTP No No ­

Raveendran and
Menon [238],

2016

HNB and KStar (K*) lazy classi­
fier

BitTorrent, DNS, FTP. HTTP,
SMTP, Yahoomsg, SSH

Yes
P: 93.2, 100
R: 91.8, 100

Peng et al. [217],
2017

IDGC
FTP, POP3, SSH, Telnet, edon­
key, Skype, Cloud Disk

Yes ­ P: 99.98

Ertam and
Avci [219], 2017

WK­ELM and GA­WK­ELM
WWW, Email, bulk, attack, P2P,
database, services

A:95

Schmidt et
al. [66], 2017

Artificial immune system­
inspired classification

FTP, Databases, LDAP, BitTor­
rent, rlogin, DNS POP2/3, SSH,
telnet, SMTP, X11 klogin, NTP,
WWW, KaZaA IMAP, attacks,
games, WMP

A:95

Shi et al. [65],
2017

SVM using multifractal features
extracted by wavelet leaders
multifractal formalism and PCA

SMTP, IM, HTTP + Flash,
WWW VoIP and IMAP, P2P, IM
and POP

Yes A:74.67, 100

Wang et
al. [213], 2017

One­dimensional convolution
neural network

VPN­Chat, Chat, VPN­file, file
VPN­Email,Email, VPN­P2P,
P2P VPN­streaming, streaming,
VPN­VoIP, VoIP

Yes
P:78.2, 99.9
R: 81.3, 100

Sun et al. [5],
2018

ISVMs and an ISVMmodel with
an attenuation factor

WWW, mail, FTP, attack, P2P,
database, multimedia, services,
interactive

Yes Yes
A:91 FM: 97­
98

Aceto et al. [29],
2019

Deep learning & Mobile Yes A: ≥ 90

Dias et al. [89],
2019

Gaussian Naive Bayes & Video
streaming

Yes
A: 90
P:66.28

Tanet al. [239],
2019

Markovmodel, hidden Gaussian
mixture model and deep neural
network

HTTPS, social applications,
multimedia and game clients

Yes Yes A:92, 96

Chari et
al. [234], 2019

Packet length signatures/ de­
cision tree

Audio and video streaming,
browsing P2P, FTP and VOIP

Yes Yes A: 92, 96

Seddigh et
al. [240], 2019

Logistic regression, SVMs, de­
cision trees, Adaboost, neural
networks and naive Bayes classi­
fiers

YouTube, Netflix, Skype, Mes­
senger, Spotify, SoundCloud,
Dropbox, Google Drive, Gmail,
Yahoo, Firefox, Chrome, Bit­
Torrent, eDonkey, Facebook,
Telegram, Video streaming,
Web browsing

Yes Yes
A: 93.14,
91.61 R:88
P:88

Labayen et
al. [241], 2020

Balanced Iterative Reduction
Clustering using Hierarchies
(BIRCH), Gaussian Mixtures
(GMs) and K­means SVMs, RFs
and NNs

Remote shell session, SCP/FTP
Web browsing, Twitch and You­
Tube

Yes Unable A: 97.37
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In terms of protocol identification in application layer level, the author [65] approaches

techniques that use statistical characteristics of Transport Layer Security (TLS) and ML

techniques both for specific traffic and for conventional traffic.

The approaches used in most of the works presented here refer to methods that use ML.

Through the studies it was possible to see that the statistical approaches are often used

to create traffic signatures and foresee behaviors. From that information new techniques

are proposed to classify traffic.

Netoet al. [69] described a traffic classification approach based on signature correspond­

ence. Signatures are empirical distributions that represent the applications. To develop

the traffic classifier the authors used Kolmogorov­Smirnov e Chi­square statistical tests.

Anetwork traffic classifier based onPacket PayloadContent (PPC)was presentedbyTonga­

onkaret al. [215]. The classifier is capable of learning new signatures from the applications

being classified.

Chariet al. [234] also developed a classifier based on the extraction of package length sig­

nature to classify different classes of traffic such as audio streaming, video streaming,

navigation, chad and Peer to Peer traffic (P2P).

Liet al. [216] affirmed that to extract statistical resources it is necessary to have previ­

ous knowledge about network traffic. Usually, resources are considered alike in ML al­

gorithms, like SVMs or decision trees C4.5, and many use insufficient resources or meth­

ods to select/conduct primary resources. However, threshold­based algorithms (i.e., the

ISTMTFL algorithm) and iterative shrinkage have been optimized by this perspective to

solve multitask feature learning problems, and the model proposed was applied to learn

common characteristics among many tasks of traffic classification.

Sunet al. [53] explored the behavior and statistical characteristics of traffic flows through

ML methods to solve classification problems. The authors Implemented an Incremental

SVMsmodel (ISVMs) with the purpose to minimize memory and CPU cost when classify­

ing traffic in a rapid way. Besides that, with the ends to use the information from within

the series of training data, a new model of the ISVM, called AISVM with an Attenuation

factor was developed.

ML approaches were also used by Ertamet al. [219] who developed the Extreme Learning

Machine method (ELM) to classify Internet traffic. On the input data, the ELM method

based on Kernel (KELM) was applied. Besides that, the Generic Algorithm (GA) was used

to select the parameters and later on, a software was developed based on Wavelet Kernel

(GA­WK­ELM), in which the Wavelet function was used.
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The Gravitation­based Classification of Data (DGC) is a classification model for the treat­

ment of unbalanced data sets, and ImbalancedDGC (IDGC)was proposed in [217] to solve

identification problems with unbalanced Internet traffic. For the implementation of the

prototype, the authors also extracted the initial characteristics of Internet traffic accord­

ing to the observed packet sizes. The authors stated that identifying traffic is a normal

problem when classifying. Therefore, supervised learning techniques have been used to

solve it.

The focus of the article in [66]was to use statistical resources of the given network flows on

identifying the application generated. The authors reported that an SVM’s performance

is directly dependent to the kernel function used and its parameters; they also expanded

the research field by introducing several optimizations to the Artificial Immune Systems

(AIS) algorithm in its training and classification phases with respect to Internet traffic

flows. They further applied the algorithm to a data set and found that the algorithm per­

formed very well, making it valuable for embedded systems.

Other techniques have also been proposed for real­time traffic classification, such as that

in [65], which analyzed themultifractal characteristic differences betweendifferent classes

of traffic, provided the reasons for these differences and proposed a method of extracting

multifractal characteristics that was based on wavelet leaders and Multifractal Formal­

ism (WLMF). It is a robust method that can extract multifractal resources that are more

efficient to classify traffic when compared to TLS. In addition, the authors developed a re­

source selection approach based on the analysis of main components (PCABFS) to select

resources. Through the PCABFS method, it was possible to evaluate the impact and the

validity of the explored resources.

The combination of Hidden Naive Bayes (HNB) and KStar (K*) classifiers were proposed

by [238] with the purpose to explore traffic classification in real time. The authors used

the Correlation­based Selection and discretizationmethod (CFS) andEntropy­basedMin­

imum Description Length (ENT­MDL) techniques in the data preprocessing stage. The

author [193] also used the entropy technique to classify P2P traffic, extracting network re­

sources like the package size and resources from the header in the transport layer, using

the sliding window. The authors in [241] proposed a system to classify traffic by using a

hybrid method with a Random Forest (RF) and K­means.

5.3 Statistical Methods

Statisticalmethods usually dependonpriorities fromnetwork flow such as interval between

packages, size and duration of a flow, size and length of the packages in the flow [242,243].

To classify using statistical methods, the flow properties can be grouped or used individu­
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ally. When grouped, values are generated like average or variance ormore complexmeas­

ures such as calculating the function for probability density and package size frequencies

in each flow [85].

Distance and divergence calculations are advanced statistical analysis methods that can

be used for classification and, in our context, were used for Internet traffic classification.

Through these properties, statistical traffic models can be created for a given applica­

tion. For those techniques, it is necessary to develop a reference model of flow, protocol

or application that can be used in a training phase, for example to identify unexplored

traffic [244,245].

The distances between populations can be interpreted as the distances between two prob­

ability distributions; therefore, they essentially measure the distances between measures

of probability. A distance is the numerical calculation obtained between two classes or

objects that presents the degree of difference between them [246].

In some situations, distances are considered a special class of divergence [19]. This situ­

ation occurs when the measure satisfies 3 properties, namely, positivity, symmetry and

triangular difference [247]. Positivity occurs when the distance from a class to itself is

equal to 0. Symmetry occurs when the distance between compared classes I and II is the

same as that distance between II and I. However, some divergences do not satisfy this

property [245].

Based on these properties, we selected the Jensen­Shannon Divergence (JSD) for our

study, as as it is Kullback­Leibler (KL) Divergence based with some variances (such as

symmetry and the use of values that are always finite), Hellinger Distance (which is also

taken as a measure of statistical divergence), the Bhattacharyya Distance, and the Woot­

ters Distance (which is characterized by finding the differences in the probabilities below

the values of the typical fluctuations). For comparative study, we chose the Kolmogorov­

Smirnov (KS), Chi­square, Euclidean and KL Distances.

The Chi­square difference [246] shows a relationship between two categorical variables

and indicates the difference between the observed and expected counts; in other words,

it can be used to compare the expected values with those actually collected.

The KL Divergence also known as relative entropy is the result of the calculation of the

distance between two probability distributions [148–150, 150,248].

Proposed by the Greek mathematician Euclid, the Euclidean Distance is the result of the

calculation of the distanceDE [x, y] between points x e y in an Euclidean plan. The traffic

classification results using Euclidean Distances and KL were presented in [72,249].
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5.3.1 Jensen­Shannon Divergence

Jensen­Shannon Divergence (JSD) is known as limited symmetrization of the KL Diver­

gence [19]. JSD is the divergence between groups of probability values P and Q [139].

For 2 discrete probability distributions P andQ, JSD divergence is given as follows: with

pi ≥ 0, qi ≥ 0.

JSD (P,Q) =
1

2

{
N∑
i=1

pi log

(
2pi

pi+ qi

)
+

N∑
i=1

qi log

(
2qi

pi+ qi

)}
(5.1)

Where N represents the number of samples, i represents the initial samples, pi and qi

represent the relative frequency of known and unknown protocols respectively.

When the values of the calculation between distributions P and Q have 0 as a result or

something close to it, it means that the distributions are the same, which also means that

the applications are the same.

5.3.2 Hellinger Distance

Hellinger distance has the purpose to determine the similarity of the values of P and Q

probability distributions.

Hellinger Distance has been applied to solve several problems of statistical estimation. In

our it was used to calculate the distance between to relative frequencies of the protocols

and applications [144, 145, 250]. Hellinger statistical distance is given by [18] eq. 5.2,

defined by:

HD (P,Q) =

√√√√1

2

N∑
i=1

(√
pi−

√
qi
)2

(5.2)

where forHellingerN represents the number of samples, i represents the initial number of

samples, pi and qi represent the relative frequency of the known and unknown protocols,

respectively.

5.3.3 Bhattacharyya Distance

BhattacharyyaDistance usesBhattacharyya coefficient thatmeasures howalike to samples

are. The name was given in honor of the statistician Anil Kumar Bhattacharyya [141,142].

Bhattacharyya Distance is independent of the distribution function and because of that,

can be used in any sample group. It is a special distance, because it can be used to update

models in which the distribution cannot be defined by exact numbers [141].

The Bhattacharyya statistical Distance is given by [18] eq. 5.3:
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BcD (P,Q) = − log

(
N∑
i=1

√
pi × qi

)
(5.3)

whereN is the quantity of samples, P ,Q, pi, and qi represent the sample members in the

i­th partition, respectively.

5.3.4 Wootters Distance

Presented by Wootters in 1981, this distance is characterized by finding the differences

in probabilities that are below the values of typical fluctuations. Considering the prob­

abilities of two classes of traffic (p and q), the minimum distance between two points is

equivalent to the angle they present; this is represented by eq. 2.9 [18].

Wootters statistical Distance was used to detect data with duplicate characteristics [154].

The similarity between P andQ samples is measures Wootters Distance according to the

distance calculation between them. Where pi and qi represent the relative frequencies of

the applications. Wootters is given by [21] eq. 5.4:

WoD (P,Q) = arccos

(
N∑
i=1

√
pi × qi

)
(5.4)

Note that arccos() decreases in [0, 1]. Note also that distances are used to discriminate

traffic; in addition to distances, to make a more accurate classification, it is necessary to

use heuristics.

5.4 Proposed Approach and Implementation

To form a classifier based on traffic behavior, a traffic distribution sample is required so

that the algorithm can use a sample of cases for which the true classifications are known.

Each set of attributes (features) describes a case. To distinguish cases among possible

classifications, each case is labeled with a special attribute, called a class, whose values

refer to the true classifications of cases.

This section explains the characteristics used to design the traffic flowof each protocol/ap­

plication and how the statistical distance methods were used for traffic classification.

5.4.1 Dataset

The data set used to perform the classification tests was the one used in [72], and available

in [251]. With the help of the Wireshark tool, traffic traces were captured. Those traces
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were stored in “.pcap” files. Each traffic trace contains a data flow. Each flow is formed

by a bidirectional tuple composed by transport protocol and origin and destination IPs.

In total, 28 types of applications were captured and included in the “file.pcap”.

Several varieties of protocols and applications were selected to compose the database. In

this selection, many applications widely used were included, such as HTTP for web ap­

plications, VoIP, SSH besides BitTorrent, Gnutella and eDonkey.

For our work, the captured traffic traces were denominated as the original base and the

base containing Relative Frequencies (RF) was denominated as the new database. A data­

set was formed by traffic collected through the TCPDUMP and WINDUMP tools. Part of

the dataset was used to determine the ground truth.

5.4.2 Signature Traffic and Features

From the original trace database, it was possible to create a new data group. This new

group contains important and relevant information, being able to present fewer attributes

when compared to the original base, bringing us the benefit of a smaller dimensionality.

They are features that can be added as input to the classification.

With the purpose to generate a new data set, we extracted from our original database

some statistical properties from the flows (origin and destination IPs), being them the

total length, the number of all packets, origin and destination IPs and inter packet arrival

time.

Those properties that were extracted from the flows were vital for the relative frequency

calculation of the flows. The absolute and relative frequencies calculationwere performed

according to the following equation:

fri =
fi
n
, (5.5)

where fri represents the relative frequency, fi represents the absolute frequency (ob­

served value and n represents the total number of elements in the sample). Each flow

contains packages varying from 64 to 1514 in size. See that intending to create a histo­

gram with intervals of 16 bytes, we defined 100 buckets.

We believe that the packet length distribution is of great importance for characterizing

traffic because each protocol is presented in a singular way, forming a signature. To cal­

culate the distributions, a Python script was created; this script took individual trace files

as inputs and generated files with relative frequencies as outputs.

The relative frequency of the package lengthwas generated by application. To generate the
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relative frequency, we observed that each flow represented a temporal series. The Figures

5.1, 5.2, 5.3 and 5.4 illustrate the distribution of relative frequency of packages created

from our new database. Those graphs show some available applications in our new data

set. It was also possible to observe that each protocol presents a unique distribution and

behaviour, which is called signature. We applied those unique distributions to calculate

the divergences and start the process of classification. See that we used this behaviour

to measure the known divergences of distribution and to start the classification process.

According to the Figures 5.1, 5.2, 5.3 and 5.4 we have the number of buckets represented

by the Y axis, and the relative frequency is represented by the X axis.

According to Figures 5.1, 5.2, 5.3 and 5.4 each application has a distribution. We can see

that for applications such asP2P,which conduct transmissionwith varying packet lengths,

the graph lines do not show such high frequency peaks. For the other applications, such

as HTTP, which has larger packet lengths and a constant size transmission size, the graph

line presents greater relative frequency peaks.

5.4.3 Prototype for Classification

The proposed classifier combines the features described in 5.4.1, and 5.4.2, and with the

support of Figure 5.5, we describe the classificationmechanism and its operation. For the

implementation of the distances, an application was developed in Python [252]. The test

mechanism was divided into 3 steps: separating flows and creating signatures, choosing

the statistical distribution/methods to be used, and making the classification decision.

The ROC curve presents the successes and refinement of the model. The ROC curve is

described in the results analysis section.

Figure 5.5 shows the architecture adopted for the classification process, where the flows

were preprocessed, and the distribution of the packet length was extracted according to

flows, forming a new database called the ”Generate RF base”. This new base served as

input for the statistical methods, where 30% of the base samples were used for individual

RFs (generating the signatures to be used by the statistical methods) and the other 70%

of the samples were used for the test set (formed by the database).

For classification, it was necessary to define the distribution to be used (Jensen­Shannon,

Hellinger, Bhattacharyya orWootters). The divergences/distances among the probability

distributions were calculated by ”distance calculations” according to the utilized method.

The outputs were the values of the distances between the distributions.

The rules were applied for executing classification decisions after these procedures, and

the classification outputs and the comparisons between methods (via ROC curves) were

obtained.

Separating flows and creating signatures: The Python application was developed for this
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Figure 5.1: Relative frequency distributions of the packet lengths calculated for bittorrent, edonkey, flash
audio live flash audio on demand, flash video on demand, gaming war of legends, ftp, gaming run scape.
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Figure 5.2: Relative frequency distributions of the packet lengths calculated for gaming war of legends,
gnutella, http audio on demand, http download, http video on demand, mms audio live, mms video live,

ppstream.
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Figure 5.3: Relative frequency distributions of the packet lengths calculated for rtsp audio live, rtsp audio
on demand, rtsp video live, stfp, skype, sopcast, ssh, streaming 1.
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Figure 5.4: Relative frequency distributions of the packet lengths calculated for streaming 3, telnet, tvu,
and webbrowsing.

step. In the application, the individual distributions were called the pi samples and the

collective distributions of the qi samples. This step is best described in Section 5.4.2.

Choosing the statistical distribution/methods: For the calculation of the distances, we

chose the Jensen­Shannon, Hellinger, Bhattacharyya and Wootters methods and com­

pared the relative frequencies (pi and qi) generated.

The distance values were obtained after comparison between samples pi and qi. See that

we considered sample pi as individual relative frequencies and sample qi as collective re­

lative frequencies.

Classification decision: This part was the most complicated step since it was insufficient

to obtain the values of the distances through the statistical methods for classification pur­

poses. These distances alone do not represent anything; therefore, it was necessary to

make use of heuristics in addition to the rules.

Classification rules are necessary so that the classifier can make decisions based on dis­

tance calculations. According to distance rules, the closer to 0 the distance values are, the

more alike the protocols will be and the closer those values are from 1, the less similar

they will be.

After several iterations and basing on statistical heuristic, classification rules we created.
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Figure 5.5: Architecture implemented for traffic classification using distances and divergences.

The rules consist on selecting the minimal distance and defining the base values for ac­

ceptance. In our case, we defined five different minimal ranges as base. The minimal

distance is predicted to be between 0 and the current loop range for each value range.

Wrapping our classification process up, two variables were created MaxR, MaxMatrix.

The first one stores the minimal range with the best result and the second stores its con­

fusionmatrix. Besides that, inside the classification process, it was definedmaxFmeasure,

a variable that stores the best F­Measure.

5.5 Results and Discussion

5.5.1 Performance Metrics

The results provided by the classifiers based on statistical methods were compared to the

ground truth information to compute the number of True Negative (TN), True Positive

(TP), False Negative (FN) and False Positive (FP) cases. Based on these metrics, we eval­

uate the performance of the classifiers using Accuracy, Recall, Precision and F­Measure

defined by eqs. 5.6, 5.7, 5.8, and 5.9 [22]:

Accuracy =
TN + TP

FP + TN + FN + TP
, (5.6)
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Recall =
TP

FN + TP
, (5.7)

Precision =
TP

FP + TP
, (5.8)

F −Measure =
Precision ∗ Recall ∗ 2

Recall + Precision
. (5.9)

Kappa values were used for qualitative valuation. Kappa index is a statistical method

to evaluate the agreement or reproduction level among the set of classifiers. The higher

the accuracy, the higher the kappa index. Kappa values were calculated according to the

equation 5.10 as [23,24]:

K =
P0 − Pe

1− Pe
. (5.10)

Being K = Kappa index, P0 relative acceptance rate, Pe hypothetical acceptance rate. To

estimate P0, the concordance sum is divided (TP e TN) by the total quantity of items in

the sample, that represents exactly the accuracy, given by the equation 5.11:

P0 =
(TP + TN)

(FP + TN + FN + TP )
. (5.11)

To estimate Pe it is necessary to calculate the probability of both randomly accepting or

rejecting a data classification. For that we have the following equation 5.12:

Pe =

(((TP+FP )∗(TP+FN))+((FN+TN)∗(FP+TN))
(FP+TN+FN+TP )

(FP + TN + FN + TP )
. (5.12)

We used two different interpretations: (1) Landis and Koch [24], and (2) McHugh [25].

The scales are not all overlapped, but they suggested a similar interpretation of the res­

ults. For Landis and Koch [24], Kappa values above 0.41 are already considered moder­

ated, while for McHugh [25] Kappa values need to reach at least 0.60 to be considered

moderated.

For Landis and Koch [24] Kappa values over 0.80 can already be considered with accept­

ance strength almost perfect, while for McHugh [25] only values above 0.90 reach this
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level of acceptance strength.

The scales of Landis and Koch [24], andMcHugh [25] are important references to identify

the strength and acceptance level of a set of classifiers, showing the quality of the tech­

niques used to classify encrypted and obfuscated internet traffic. Table 5.2 presentsKappa

values interpretation suggested by Landis and Koch [24] and Table 5.3 presents Kappa

values interpretation suggested by McHugh [25].

Table 5.2: Kappa values interpretation according to Landis and Koch [24].

Kappa statistic Strength of Agreement
> 0.81 Almost Perfect
Between 0.61− 0.80 Substantial
Between 0.41− 0.60 Moderate
Between 0.21− 0.40 Fair
Between 0.00− 0.20 Slight
< 0.00 Poor

Table 5.3: Kappa values interpretation according to author McHugh [25].

Value of Kappa Level of Agreement
> 0.90 Almost Perfect
Between 0.80− 0.90 Strong
Between 0.60− 0.79 Moderate
Between 0.40− 0.59 Weak
Between 0.21− 0.39 Minimal
Between 0.00− 0.20 None

5.5.2 Classification Results

This section provides an evaluation of the classification methods for the data set under

study, reported in section 5.4.1. Table 5.4 shows the average and standard deviation of Ac­

curacy, Precision, Recall, and F­Measure obtained by the classifiers based on KS test, Eu­

clidean Distance, KL Divergence, Wootters Distance, Jensen­Shannon Divergence (JSD),

Chi­square test, Bhattacharyya Distance, and Hellinger Distance. The average corres­

ponds to the linear average of the results obtained by each classifier for the 28 applica­

tions.

The standard deviation is necessary to show the variations in the average values across

applications. Figures 5.6, 5.7, 5.8, 5.9 and 5.10 shows detailed classification results per

application, obtained with the above distances/divergences for the set of 28 applications

considered in the data set.

The lowest average values and the highest standard deviation values of the classification

results were obtained by the Kolmogorov­Smirnov (KS) method. We observed that the

highest average performance was obtained by theHellingermethod, which, inmost cases,
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Figure 5.6: Classification results obtained using the Bhattacharyya Distance.

Figure 5.7: Classification results obtained using the Chi­square test.

Table 5.4: Classification Results Obtained with Statistical Methods.

Accuracy Precision Recall F­Measure

Classifier Average
Standard
deviation

Average
Standard
deviation

Average
Standard
deviation

Average
Standard
deviation

KS 0.99930 0.00062 0.80623 0.38551 0.48663 0.29667 0.58979 0.31884
Euclidean 0.99967 0.00045 0.92188 0.26276 0.72309 0.27342 0.79668 0.26601
KL 0.99967 0.00049 0.92170 0.26284 0.73255 0.28943 0.79920 0.27535
Wootters 0.99967 0.00049 0.92222 0.26263 0.73646 0.28974 0.80191 0.27575
Jensen­Shannon 0.99969 0.00047 0.91442 0.26317 0.75649 0.28259 0.81441 0.27165
Chi­Square 0.99970 0.00046 0.92200 0.26271 0.75737 0.26271 0.81768 0.27121
Bhattacharyya 0.99971 0.00045 0.92160 0.26265 0.76178 0.28261 0.82043 0.27164
Hellinger 0.99971 0.00045 0.92280 0.26241 0.76293 0.28259 0.82175 0.27181

presented higher F­Measure and Precision values than those of the other approaches.

The results presented make us conclude that statistical classifiers are considered good

traffic discriminators for our scenario because with the exception of the KS method, all

approaches obtained Precision averages above 90%.

This means that 90% of the time, these classifiers were able to predict true instances as

actually being true and produce low FP values. We can conclude that, for our scenario,

the statistical classifiers correctly rejected the classified samples and concluded that they
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Figure 5.8: Classification results obtained using the Hellinger Distance.

Figure 5.9: Classification results obtained using the JSD.

were indeed not part of the class.

Table 5.5: Classification Quality Associated with the Kappa Statistic Values.

Classifier Kappa Qualitative evaluation of the classifier
Landis and Koch McHugh

KS 0.72278 substantial moderate
Euclidian 0.82447 almost perfect reliability strong
KL 0.83213 almost perfect reliability strong
Jensen­Shannon 0.84363 almost perfect reliability strong
Wootters 0.84371 almost perfect reliability strong
Bhattacharyya 0.84540 almost perfect reliability strong
Chi­square 0.84910 almost perfect reliability strong
Hellinger 0.85225 almost perfect reliability strong

Table 5.5 presents the achieved Kappa values and qualitative assessments according to

Landis and Koch [24] and McHugh [25]. For this evaluation, we observed that the low­

est Kappa value was obtained by the KS approach, which was assessed as substantial by

Landis and Koch and moderate by McHugh, which means that even though it did not

reach the best Kappa and performance results among the classifiers, the KS approach is

still considered a good method for classifying traffic in view of our scenario.
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Figure 5.10: Classification results obtained using the Wootters Distance.

We observed that the Kappa value obtained by the Hellinger Distance was the highest

when compared to those of the other classifiers, although the qualitative evaluation was

the same for seven of the eight evaluated classifiers. Given this scenario, we verify that

Hellinger qualitative analysismeets the performance values achieved by this classifier and

that the qualitative analysis of KS meets the performance values achieved in terms of the

F­Measure.

Table 5.6: Classification Results based on Bhattacharyya Distance in terms of Precision, Recall, Accuracy
and F­Measure.

Accuracy Precision Recall F­Measure
Bittorent 0.999810 0.813725 0.815725 0.814724
Edonkey 0.999802 1.000000 0.741176 0.851351

Flash audio live 1.000000 1.000000 1.000000 1.000000
Flash audio on demand 0.999366 0.000000 0.000000 0.000000

Flash video live 0.999683 1.000000 0.833333 0.909091
Flash video on demand 0.999827 1.000000 0.666667 0.800000

FTP 0.998416 1.000000 0.166667 0.285714
Gaming runscape 0.999482 1.000000 0.625000 0.769231

Gaming war of legends 0.999525 1.000000 0.750000 0.857143
Gnutella 0.999907 1.000000 0.761905 0.864865

HTTP audio on demand 1.000000 1.000000 1.000000 1.000000
HTTP download 0.999683 1.000000 0.833333 0.909091

HTTP video on demand 0.999620 1.000000 0.666667 0.800000
MMS audio live 0.999728 1.000000 0.666667 0.800000
MMS video live 1.000000 1.000000 1.000000 1.000000
PPStream 0.999973 0.990991 0.866142 0.924370

RTSP audio live 1.000000 1.000000 1.000000 1.000000
RTSP audio on demand 1.000000 1.000000 1.000000 1.000000

RTSP video live 1.000000 1.000000 1.000000 1.000000
SFTP 0.999525 1.000000 0.750000 0.857143
Skype 1.000000 1.000000 1.000000 1.000000
Soapcast 0.999890 1.000000 0.719008 0.836538
SSH 1.000000 1.000000 1.000000 1.000000

Streaming 1 1.000000 1.000000 1.000000 1.000000
Streaming 3 1.000000 1.000000 1.000000 1.000000
Telnet 0.998099 0.000000 0.000000 0.000000
TVU 0.999895 1.000000 0.725490 0.840909

Web browsing 0.999696 1.000000 0.741935 0.851852
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Table 5.7: Classification Results based on Chi­square in terms of Precision, Recall, Accuracy and F­Measure.

Accuracy Precision Recall F­Measure
Bittorent 0.999816 0.815981 0.828010 0.821951
Edonkey 0.999829 1.000000 0.776471 0.874172

Flash audio live 1.000000 1.000000 1.000000 1.000000
Flash audio on demand 0.999366 0.000000 0.000000 0.000000

Flash video live 0.999683 1.000000 0.833333 0.909091
Flash video on demand 0.999827 1.000000 0.666667 0.800000

FTP 0.998416 1.000000 0.166667 0.285714
Gaming runscape 0.999482 1.000000 0.625000 0.769231

Gaming war of legends 0.999525 1.000000 0.750000 0.857143
Gnutella 0.999907 1.000000 0.761905 0.864865

HTTP audio on demand 1.000000 1.000000 1.000000 1.000000
HTTP download 0.999366 1.000000 0.666667 0.800000

HTTP video on demand 0.999620 1.000000 0.666667 0.800000
MMS audio live 0.999728 1.000000 0.666667 0.800000
MMS video live 1.000000 1.000000 1.000000 1.000000
PPStream 0.999971 1.000000 0.850394 0.919149

RTSP audio live 1.000000 1.000000 1.000000 1.000000
RTSP audio on demand 1.000000 1.000000 1.000000 1.000000

RTSP video live 1.000000 1.000000 1.000000 1.000000
SFTP 0.999525 1.000000 0.750000 0.857143
Skype 1.000000 1.000000 1.000000 1.000000
Soapcast 0.999887 1.000000 0.710744 0.830918
SSH 1.000000 1.000000 1.000000 1.000000

Streaming 1 1.000000 1.000000 1.000000 1.000000
Streaming 3 1.000000 1.000000 1.000000 1.000000
Telnet 0.998099 0.000000 0.000000 0.000000
TVU 0.999902 1.000000 0.745098 0.853933

Web browsing 0.999696 1.000000 0.741935 0.851852

5.5.3 ROC Curves and their AUCs

ROC analysis was introduced in ML and Data Mining (DM) as a useful and powerful

tool for the evaluation of classification models. It is a graphic way to evaluate, organize

and select prevision systems. ROC analysis has also been used for building and refining

models [253, 254]. It is particularly useful in areas where there are large disproportions

between classes or when different costs/benefits yielded by the different classification er­

rors/successes are taken into account for model refinement [255].

A graphic approach is showing the balance between false positive rate FPR = TN rep­

resented by the X axis and the true positive rate TPR = TP represented by the Y axis.

Each model formed by the classifier corresponds to a point in the curve. Where TPR and

FPR that are equal to 0 belong to the negative class. TPR and FPR that are equal 1 belong

to the positive class and TPR=1 and FPR=0 denote the ideal model.

The perfect model is obtained when positive and negative examples are classified in the

right way, represented by the point (0, 100 %). The models that make wrong previsions

are represented by the point (100%, 0).
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The ascending diagonal line (0,0) ­ (100% .100%) represents a model with stochastic be­

havior. If one point is above another an to its left in the ROC space, it means that the

point is better than the other. The optimal model should be as close as possible to the

point (0.100%).

The size of the ROC curve impacts directly on how good the model will be, so the bigger

the curve the better the model will be, so the AUC value corresponds to the area delim­

ited by ROC curve and X e Y axis [256]. Once the AUC is a fraction of the area of a

square with side lengths of one, its value is always between 0 and 1. AUC =1 represents

the perfect model, and AUC= 0.5 represent that the model simply provides random as­

sumptions [257].

5.5.4 Discussions

In the classification process, the FPRs and TPRs of the applications were obtained, and

the results were plotted in the ROC space. This is because inmulticlassification, one of the

Table 5.8: Classification Results based on Hellinger Distance in terms of Precision, Recall, Accuracy and
F­Measure.

Accuracy Precision Recall F­Measure
Bittorent 0.999825 0.838384 0.815725 0.826899
Edonkey 0.999802 1.000000 0.741176 0.851351

Flash audio live 1.000000 1.000000 1.000000 1.000000
Flash audio on demand 0.999366 0.000000 0.000000 0.000000

Flash video live 0.999683 1.000000 0.833333 0.909091
Flash video on demand 0.999827 1.000000 0.666667 0.800000

FTP 0.998416 1.000000 0.166667 0.285714
Gaming run scape 0.999482 1.000000 0.625000 0.769231

Gaming war of legends 0.999525 1.000000 0.750000 0.857143
Gnutella 0.999907 1.000000 0.761905 0.864865

HTTP audio on demand 1.000000 1.000000 1.000000 1.000000
HTTP download 0.999683 1.000000 0.833333 0.909091

HTTP video on demand 0.999620 1.000000 0.666667 0.800000
MMS audio live 0.999728 1.000000 0.666667 0.800000
MMS video live 1.000000 1.000000 1.000000 1.000000
PPStream 0.999974 1.000000 0.866142 0.928270

RTSP audio live 1.000000 1.000000 1.000000 1.000000
RTSP audio on demand 1.000000 1.000000 1.000000 1.000000

RTSP video live 1.000000 1.000000 1.000000 1.000000
SFTP 0.999525 1.000000 0.750000 0.857143
Skype 1.000000 1.000000 1.000000 1.000000
Soapcast 0.999890 1.000000 0.719008 0.836538
SSH 1.000000 1.000000 1.000000 1.000000

Streaming 1 1.000000 1.000000 1.000000 1.000000
Streaming 3 1.000000 1.000000 1.000000 1.000000
Telnet 0.998099 0.000000 0.000000 0.000000
TVU 0.999895 1.000000 0.725490 0.840909

Web browsing 0.999734 1.000000 0.774194 0.872727
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classes can be marked as a positive class, and the other classes are all marked as negative

classes. The classification effect can be better reflected by the AUC. The classification ef­

fect gets better, the higher the AUC value is. The maximum value of the AUC is 1.

The data were treated as described in Section 5.4.1 and classified according to the proto­

type developed in Section 5.4.3. For eachmethod, we obtained classification and perform­

ance values. Analyzing the results of the ROC curves (AUCs), we can clearly verify which

is the best statistical method for discriminating and classifying each application mapped

in our data set.

Figures 5.11, 5.12, 5.13, and 5.14 show the ROC curve results (AUCs) obtained by the

Jensen­Shannon, Hellinger, Bhattacharyya, and Wootters methods, and we compared

them with the results achieved by the statistical methods implemented in some works

found in the literature, such as the KS, Chi­square [69], Euclidean Distance and KL Dis­

tance [72] methods. Note that for comparison purposes, the methods found in the liter­

ature were also implemented in this work.

Table 5.9: Classification Results based on JSD in terms of Precision, Recall, Accuracy and F­Measure.

Accuracy Precision Recall F­Measure
Bittorent 0.999807 0.812808 0.810811 0.811808
Edonkey 0.999811 1.000000 0.752941 0.859060

Flash audio live 1.000000 1.000000 1.000000 1.000000
Flash audio on demand 0.999366 0.000000 0.000000 0.000000

Flash video live 0.999683 1.000000 0.833333 0.909091
Flash video on demand 0.999827 1.000000 0.666667 0.800000

FTP 0.998416 1.000000 0.166667 0.285714
Gaming run scape 0.999482 1.000000 0.625000 0.769231

Gaming war of legends 0.999525 1.000000 0.750000 0.857143
Gnutella 0.999907 1.000000 0.761905 0.864865

HTTP audio on demand 1.000000 1.000000 1.000000 1.000000
HTTP download 0.999049 0.800000 0.666667 0.727273

HTTP video on demand 0.999620 1.000000 0.666667 0.800000
MMS audio live 0.999728 1.000000 0.666667 0.800000
MMS video live 1.000000 1.000000 1.000000 1.000000
PPStream 0.999971 0.990909 0.858268 0.919831

RTSP audio live 1.000000 1.000000 1.000000 1.000000
RTSP audio on demand 1.000000 1.000000 1.000000 1.000000

RTSP video live 1.000000 1.000000 1.000000 1.000000
SFTP 0.999525 1.000000 0.750000 0.857143
Skype 1.000000 1.000000 1.000000 1.000000
Soapcast 0.999890 1.000000 0.719008 0.836538
SSH 1.000000 1.000000 1.000000 1.000000

Streaming 1 1.000000 1.000000 1.000000 1.000000
Streaming 3 1.000000 1.000000 1.000000 1.000000
Telnet 0.998099 0.000000 0.000000 0.000000
TVU 0.999902 1.000000 0.745098 0.853933

Web browsing 0.999696 1.000000 0.741935 0.851852
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In the ROC space, the classification result gets better every time it gets closer to the upper

left corner. As we can see in figures 5.11, 5.12, 5.13, and 5.14, the classifiers implemented

in this work had good classification effects. The comprehensive analysis shows that the

FPRs of the classification results were very low; the TPRs were close to 1. We can deduce

that the probability of classifier judgment error was very low, and the existing samples

could be classified accurately.

TheAUCsof theHellinger, Jensen­Shannon, Bhattacharyya andChi­squaremethodswere

all 0.91, indicating that the discrimination accuracies of these methods for the bittorent

application were relatively high (superior to those of methods such as the Euclidean, KL,

Wootters and KS approaches). For the edonkey application, the method Chi­square was

the one that had the best discrimination Accuracy, with an AUC of 0.89.

For the flash video application, the method that indicated the best discrimination Accur­

acy was the KL approach, presenting an AUC of 1.00. This indicates that the KL method

achieved the best classification effect. For the flash audio on demand, FTP and telnet ap­

plications, all methods, despite having AUCs greater than or equal to 0.5, were very close

Table 5.10: Classification Results based on Wootters in terms of Precision, Recall, Accuracy and F­Measure.

Accuracy Precision Recall F­Measure
Bittorent 0.999811 0.822055 0.805897 0.813896
Edonkey 0.999802 1.000000 0.741176 0.851351

Flash audio live 1.000000 1.000000 1.000000 1.000000
Flash audio on demand 0.999366 0.000000 0.000000 0.000000

Flash video live 0.999683 1.000000 0.833333 0.909091
Flash video on demand 0.999827 1.000000 0.666667 0.800000

FTP 0.998416 1.000000 0.166667 0.285714
Gaming run scape 0.999482 1.000000 0.625000 0.769231

Gaming war of legends 0.999525 1.000000 0.750000 0.857143
Gnutella 0.999907 1.000000 0.761905 0.864865

HTTP audio on demand 1.000000 1.000000 1.000000 1.000000
HTTP download 0.999683 1.000000 0.833333 0.909091

HTTP video on demand 0.999620 1.000000 0.666667 0.800000
MMS audio live 0.999728 1.000000 0.666667 0.800000
MMS video live 1.000000 1.000000 1.000000 1.000000
PPStream 0.999974 1.000000 0.866142 0.928270

RTSP audio live 0.998733 1.000000 0.333333 0.500000
RTSP audio on demand 1.000000 1.000000 1.000000 1.000000

RTSP video live 1.000000 1.000000 1.000000 1.000000
SFTP 0.999525 1.000000 0.750000 0.857143
Skype 1.000000 1.000000 1.000000 1.000000
Soapcast 0.999890 1.000000 0.719008 0.836538
SSH 1.000000 1.000000 1.000000 1.000000

Streaming 1 1.000000 1.000000 1.000000 1.000000
Streaming 3 1.000000 1.000000 1.000000 1.000000
Telnet 0.998099 0.000000 0.000000 0.000000
TVU 0.999895 1.000000 0.725490 0.840909

Web browsing 0.999658 1.000000 0.709677 0.830189
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to the minimum acceptable limit, corresponding to random assumption classifiers. On

the other hand, for the SSH and http video on demand applications, all methods exhib­

ited the same capacity to provide high­performance instances.

The KS method presented the worst performance among the eight classifiers analyzed,

achieving the maximum performance in only 3 types of applications. Regarding the av­

erage AUC, this method predicted 74.29% of instances. Therefore, this method is not

suitable for classifying the application flows presented in this work.

The Euclidean, KL and Wootters methods achieved similar performance. Among the 28

applications analyzed, the Euclidean method achieved high performance in 14 applica­

tions, with the capacity to forecast 86.18% of the instances. In turn, KL and Wootters

achieved high performance in 19 applications and exhibited capacities to forecast 86.61%

and 86.79% of the instances, respectively. Therefore, these methods can be used in spe­

cific flows, where they showed high performance.

The Chi­square method expressed high performance in 22 of the 28 applications, while

theHellinger, Jensen­Shannon, and Bhattacharyyamethods expressed high performance

in 21 applications. Despite this, the Hellinger method stood out with the highest instance

prediction capacity (88.14%), while the Bhattacharyya method had the second­largest ca­

pacity at 88.07%, followed by Chi­square with 87.86% and Jensen­Shannonwith 87.82%.

Therefore, these 4 methods stood out as strictly better models.

Distances specify different ways of combining attributes. The results suggested that stat­

istical methods are capable of predicting instances with high performance. For traffic

classification, we have two statistical methods that stood out and solved the classification

problem: the Hellinger and Chi­square methods. However, we still have room to im­

prove the TPRs of these methods. The probabilistic problem found here is that the stat­

istical classifiers had an excellent ability to identify false positives, reaching 100% FPRs;

however, they were still unable to fully maximize the TPR. Among the methods tested in

this work, Hellinger is the most evolved, as it a refinement of distances such as the Bhat­

tacharyya and Jensen­Shannon Distances; this proves that improve upon a method can

increase its probability of success.

It is possible to observe that for the flash audio ondemand flow, the accuracywas0.999366

and for the telnet flow the accuracy was 0.998099, that means that the set of classifiers

implemented on this article rejects with high precision all the flow samples that are not

really flash audio on demand or Telnet. For the flash audio on demand flows and telnet,

the Recall, Precision and F­Measure presented values were 0.00, which means that the

set of classifiers reject all possible flow samples of flash audio on demand flows and telnet,

taking us to the conclusion that the rules to accept or reject the flow samples included on

the implemented classifiers were not enough to correctly accept flow samples that really
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belong to those two applications. Note that the rules inserted to the set of classifiers were

enough to get 26 kinds of applications right from the 28 used, whichmeans 92,85% of the

selected applications in this work were correctly classified. Observe that it can be a posit­

ive thing when the classifier rejects all samples that it is not sure of the flow characteristic,

because it prevents malicious code from entering the network. In addition, the possibility

for new research of classifiers that are able to sufficiently identify flash audio on demand

flows and telnet.

5.5.5 Computational Resource Usage

Every experiment described was performed on a machine with the following specifica­

tions: the Ubuntu 14.04.5 operating system; an Intel Core (TM) i7 870 CPU at 2.93 GHz;

a 64­bit desktop computer a file size of 1200MHz; 6 GB of system memory; and an Eth­

ernet interface gigabit Ethernet 100 Mbit/s with a capacity of 1 Gbit/s, a width of 64 bits,

and a clock of 33 MHz.

The computational cost was obtained with the help of the psrecord tool [220]. The com­

putational performance of KS, Chi­square, Euclidean and KL methods were presented

and described on the published work in [71, 72], shown in the chapters 3 and 4. Activity

files referring to each statistical method were used to measure computational resources

in terms of CPU and memory that were used through classification. Through the graphs

represented by Figure 5.15, we could analyze the computational costs of the methods im­

plemented in this work.

An important factor in decision taking and when choosing a classifier or algorithm is the

computational cost. It should be taken under consideration because on package pro­

cessing, accessing memory usually is the operation that has the highest computational

cost.

Computational performancewas presented according to the relationship between theCPU

consumption (in %) and memory consumption (in MB) spent during the database clas­

sification period. On the conversion of our original database to the new database with

relative frequency, we used the number of packages, hosts/ports only as information and

not to classify or identify the applications.

Analyzing the results, we can see that the longest execution time was yielded by the JSD,

which took more than twice the time of the other methods for execution. On the other

hand, the memory cost of the JSD was one of the lowest (at less than 70 MB) in com­

parison with that of theWootters, Bhattacharyya and Hellinger approaches. Thememory

cost for the Jensen­ShannonDistance, which was one of the lowest less than 70MB, when

compared to Wootters, Bhattacharyya and Hellinger.
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Figure 5.11: The ROC curves of the classifiers referring to applications bittorrent, edonkey, flash audio live
flash audio on demand, flash video on demand, gaming war of legends, ftp, gaming run scape.
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Figure 5.12: The ROC curves of classifiers referring to applications gaming war of legends, gnutella, http
audio on demand, http download, http video on demand, mms audio live, mms video live, ppstream.
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Figure 5.13: The ROC curves of the classifiers referring to applications rtsp audio live, rtsp audio on
demand, rtsp video live, stfp, skype, sopcast, ssh, streaming 1.
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Figure 5.14: The ROC curves of the classifiers referring to applications streaming 3, telnet, tvu, and
webbrowsing.

The computational costs of the methods were also calculated in terms of execution time,

CPU costs andmemory costs. The developed classifier classification effect was considered

robust by our results at a relatively competitive computational cost when compared those

of the other methods found.

5.6 Conclusion

The purpose of this article was to study, implement and test various statisticalmethods for

classifying encrypted network traffic. Traffic flows were mapped using relative frequen­

cies to characterize each application flow. Through the flow properties, statistical traffic

models were applied for the classification of traffic.

Our study was based on statistical JSD methods, Bhattacharyya Distance, Hellinger Dis­

tance, and Wootters Distance. We compared those implemented methods in means of

network traffic classification to already implemented and tested statistical methods such

as KS, Chi­square, KL approaches and Euclidean Distance.

In addition to implementing these methods, we also evaluated their performance on the

obtained Precision, Recall, Accuracy and F­Measure values. This analysis was important

to verify the prediction efficiency of each method based on the calculated distances.
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(a) Jensen­Shannon (b) Hellinger

(c) Bhattacharyya (d) Wootters

Figure 5.15: Representations of the CPU usage and memory consumption from the beginning of the
analysis of the trace to the classification step required for the statistical methods (Jensen­Shannon,

Hellinger, Bhattacharyya and Wootters).
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Wepresented theAccuracy of each implemented classifier, obtaining average values above

90% for the Jensen­Shannon, Bhattacharyya, Hellinger and Wootters methods. These

methods are viable options for the classification of encrypted Internet traffic.

The quantitative assessment performed by Kappa values showed that classifiers based on

Jensen­Shannon, Bhattacharyya, Hellinger e Wootters methods were presented as “al­

most perfect reliability” according to the Kappa scale [24] and “Strong” [25], because they

represent Kappa values higher than 0.8. Hellinger presented the best Kappa value results

in comparison with those of the other classifiers.

The obtained Kappa values were very close to the obtained F­Measure values. Although

they are computed differently, both yielded the same results. This led us to conclude that

for the quantitative evaluation of a classifier, both tests produced the same results, help­

ing to validate the implementedmethods and pointing toHellinger as a promisingmethod

for classifying encrypted traffic.

We present the results of the ROC curves (AUCs) for the Jensen­Shannon, Hellinger,

Bhattacharyya, and Wootters methods. We compared them with the results achieved by

statistical methods implemented in some works found, such as the KS, Chi­square , Eu­

clidean and KL Distance approaches. We conclude that distances are valuable, accurate

and economical methods of discrimination and that they have high predictive power for

network traffic. For future work, we intend to apply distances and divergences to identify

intrusions or attacks.
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Chapter 6

Conclusions and Future Work

This chapter presents a summary of the main scientific contributions and conclusions.

Furthermore, it discusses a few research topics related to the work developed in the doc­

toral program that may be addressed in the future.

6.1 Conclusions

This thesis focused on the proposal of a new methodological approach to classify encryp­

ted and protocol­obfuscated Internet traffic based on statistical methods that aim to be

similar or better performance than classification using Support Vector Machine (SVM)

with the adequate computational resources in terms of CPU and memory. A set of stat­

istical classifiers based on distances and divergences were proposed, implemented and

evaluated. They aremore specifically based on EuclideanDistance, Kullback­Leibler (KL)

Divergence, Jensen­Shannon Divergence, Wootters Divergence, Hellinger Distance and

Bhattacharyya Distance. Besides that, it was also proposed, implemented and evaluated

a classifier based on SVM, a classifier based on Kolmogorov­Smirnov tests and a classifier

based on Chi­square test for comparison means.

By hypothesis, we suggest that statistical models based on distances and divergences are

capable of classifying in an efficientway encrypted andobfuscated Internet traffic andpro­

tocol that use random or unknown ports, with adequate computational resources, show­

ing potential of usage for new Internet traffic classification models.

The first contribution of this thesis consisted of a wide literature review about encrypted

and obfuscated Internet traffic classification. Through this review, it was possible to see

that in the current literature the methods for Internet traffic classification based on ports

and payload have become obsolete because of the increase of P2P traffic using unknown

or random ports, encrypted traffic and encapsulations of multilayer data. It was also pos­

sible to see that ML based methods have become limited because of its computational

complexity and high costs.

The second contribution of this thesis consisted of the proposal, implementation and

evaluation of a classifier based on Support Vector Machine (SVM) for P2P multimedia

traffic compared to the results of Kolmogorov­Smirnov (KS) and Chi­square tests. In­

ternet traffic classification based on the SVM method with a Linear kernel with the right
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parameters for the Self C parameter presents good results to classify encrypted P2P mul­

timedia traffic on the Internet.

The third contribution of this thesis consisted of the proposal, implementation and eval­

uation of two classifiers based on Kullback­Leibler (KL) Distance or Euclidean Distance

compared to SVM. KL and Euclidean methods are capable of working in real time and do

not need to be retrained every time a new traffic type appears, being a good alternative to

SVM classification method for almost all evaluated protocols, P2P and streaming mostly,

with a high precision level and a lower computational resource usage.

The fourth contribution of this thesis consisted of the proposal, implementation and eval­

uation of a set of classifiers of encrypted Internet traffic based on Jensen­Shannon Diver­

gence and Hellinger, Bhattacharyya and Wootters Distances compared to Euclidean, KL,

KS and Chi­square results. All statistical methods used for classification of encrypted and

obfuscated Internet traffic presented an average Precision value over 90% classified as

“almost perfect confiability” and “strong” in Kappa values, with the exception of KS (clas­

sified as “considerable” and “moderate”). Hellinger Distance presented the best results in

Kappa values when compared to the other classifiers, being highlighted as a more robust,

strong and dependable method.

We identified that the classifiers implemented using statistical methods are capable of

overcoming some limitations such as the computational complexity, quantity of features

used during classification, real time operation, big quantity of flows and heavy traffic.

It is concluded that statistical methods based on divergences and distances can be valu­

able, precise and of low cost to implement to classify encrypted and obfuscated Internet

traffic, confirming the initial hypothesis and validating the argument presented in this

thesis with expectations that it can be recognized as a reliable and useful tool for Internet

traffic classification.

6.2 FutureWork

Although all specific purposes have been accomplished in this thesis, we realized that

there are limitations when distances and divergences are used for classification. We real­

ized that when selecting the classifier, after calculating the distances and divergences, the

debited values on their own would not be enough to make decisions and later the classi­

fication. That is when we understood that it would be necessary to create rules so that

the classifier could accept or reject flow samples. Those rules were based on distance and

divergence properties. We realized that the decision factor can influence when choosing

the classifier and on the classification results, making the classifier to reject everything or

accept all flows that do not belong to the true classes. Note that this limitation did not

invalid the evaluations and the results presented in this thesis. However, in order to in­
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crease the sensitivity of the decision factor of the set of classifiers, other rules based on

the properties of distances and divergences can be further investigated. The prototype

of the set of classifiers implemented in this thesis was developed using Python language

version 2.7 on a desktop computer. This set of classifiers was not tested on devices like

smartphones, tablets or Arduino.

The work developed through this thesis allowed us to foresee future research lines. Some

open issues identified during literature review were not solved, leaving an open space for

interesting developments in the area. One possible research direction is to explore the op­

timization of SVM, namely the Self C parameter, or explore the combination of SVM with

divergences and distances. In the literature we found works that combine Euclidean Dis­

tance with K­means algorithms for classifiers, and Kullback­Leibler combine with SVM.

However, we did not find classifiers that were a combination of Hellinger Distance, Woot­

ters Distance and Jensen­Shannon Divergence. A possibility is exploring the viability of

using Manhattan, Mahalanobis and Minkowski similarities for encrypted Internet traffic

classification. Another important possibility is using classifiers based on distances and

divergences to detect malware, intrusions and other kinds of attack.
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