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Preface

This document presents some aspects of the research I carried out after my
Ph.D. thesis, which I defended nearly eleven years ago. In fact, for the sake
of uniformity, I chose to focus on a single subject, that of polyadic approx-
imations and their applications to quantitative program analysis and com-
putational complexity, which means that the present document covers only
research developed in the past five or six years.

My research on other topics, such as the denotational semantics of interac-
tion nets and light subsystems of linear logic, graded comonads and quanti-
tative coeffects, linear explicit substitutions and abstract machines, as well as
logical approaches to process calculi, was intentionally left out. Aside from
uniformity, the choice is justified by the fact that the interaction between logic,
programming languages and computational complexity is my main research
interest at present and I feel much more motivated in making the effort of
organizing this material in a coherent form, rather than collecting a series of
disparate papers.

Precisely because I did not wish to make of this document a mere compila-
tion of previously published papers, I strove to present each result in the light
of my most recent advances, which often led to a quite different presentation
with respect to the published form. It is the case of Chapter 1, which takes the
ideas contained in [Maz12, Maz13, Maz17] and puts them in a higher multicat-
egorical context which is completely absent from those papers. I took a similar
approach with Chapter 4, in which I use the tools of Chapter 2 to remold my
paper [Maz16] and bring it closer to the world of “standard” computational
complexity. The closing section of that chapter, which is quite speculative, is
a sort of window into what I currently think of my future research.

Chapter 3 is the closest to its originally published form, containing sec-
tions taken verbatim from [Maz15], as well as results from a joint work with
Kazushige Terui [MT15]. However, I do make the techniques of Chapter 2
appear explicitly in the exposition, whereas these were only implicit in the
published presentation.

Finally, the above-mentioned Chapter 2 contains material which I devel-
oped with my Ph.D. students Luc Pellissier and Pierre Vial, and which is
going to appear in the Proceedings of the ACM issue associated with POPL
2018.
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Erratum for the HAL version

Making this thesis publicly available on HAL is a good excuse to point out
a mistake which I have known for some time but have always been too lazy
to correct in print. In Chapter 2, the definition of the bioperad Rel given just
before Theorem 17 is wrong, leading to the theorem itself being false. Here is
the correct definition of Rel:

• objects are small categories;
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• multimorphisms X1 . . . Xn −7→ Y are distributors, that is functors

X1 × · · · × Xn ×Yop → Set,

with composition defined via the usual coend formula (so associativity
holds only modulo isomorphism): given

G : Y1 . . . Ym −7→ Z and F : X1 . . . Xn −7→ Yi,

their composite G ◦i F is defined as the functor Y1 × · · · × Yi−1 × (X1 ×
· · · × Xn)×Yi+1 × · · · ×Ym × Zop → Set

(y1, . . . , yi−1, x1, . . . , xn, yi+1, . . . , ym; z) 7→∫ yi∈Yi
G(y1, . . . , yi, . . . , ym; z)× F(x1, . . . , xn; yi).

• 2-arrows θ : F ⇒ G : X1 . . . Xn → Y are relational natural transformations,
that is, if we let U : Set → Rel be the functor sending a set to itself and
a function to its graph, these are natural transformations U ◦ F ⇒ U ◦ G
(rememeber that F and G are functors into Set).

The difference with the definition given in Chapter 2 is that, according to
that definition, multimorphisms are relational distributors, that is, they are
functors into Rel, rather than Set. This is wrong because Rel lacks colimits
and, therefore, coends do not exist in general and composition is ill-defined.
However, it is fundamental that the 2-arrows of the bioperad are relational:
while a usual morphism of distributors θ : F ⇒ G would be a natural family
of functions θx⃗,y : F(x⃗, y) → G(x⃗, y), our setting requires this to be weakened
to a natural family of relations θx⃗,y ⊆ F(x⃗, y)× G(x⃗, y), which is achieved by
post-composing with the forgetful functor Set→ Rel. The ensuing definition
of Rel∗ must be adjusted similarly.

With these definitions in place, Theorem 17 holds as stated (but the cur-
rent proof is faulty, I will have to write down the corrected version at some
point). Fortunately, the rest of the thesis is not affected by this mistake be-
cause we only consider discrete categories of types (Definition 16). If X and
Y are discrete categories, a functor X × Yop → Rel is the same thing as a
functor X × Yop → Set, and if F, G : X × Yop → Rel are two such functors, a
natural transformation F ⇒ G is the same thing as a natural transformation
U ◦ F ⇒ U ◦ G with F and G seen as functors into Set. In other words, we
developed the theory of intersection types in a context in which the wrong
definition is equivalent to the correct one. If one wanted to apply the theory
in full generality (for example, if one wanted to consider subtyping, which
yields non-discrete categories of types), then the correction becomes techni-
cally relevant.

Villetaneuse, 12 October 2023
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Introduction

The notion of polyadic approximation originates in the very first paper on
linear logic [Gir87], where Girard proves a result, deemed Approximation
Theorem, supporting the “equation”

!A = lim
n→∞

n︷ ︸︸ ︷
(A & 1)⊗ · · · ⊗ (A & 1). (1)

We recall that the !(−) modality is the non-linear part of linear logic, i.e., it
mediates the introduction of the structural rules weakening and contraction.
From the Curry-Howard perspective, weakening and contraction correspond
to erasing and duplication, respectively, which are responsible (especially the
latter) for the presence of infinity in computation: without duplication, every
computation is bound to take place within a progressively shrinking space,
making it finite in a very strong sense.

The formulas on the right hand side of Equation 1, instead, are !-free as
long as A is. In other words, such formulas live in the “purely linear” frag-
ment of linear logic. Girard’s Approximation Theorem therefore hints at the
fact that the non-linear part of linear logic is the limit of its purely linear part.
We say that the result “hints” at such a relationship because, in fact, Equa-
tion 1 is never given a technical status in Girard’s paper, in that there is no
topology or other structure in which the limit may be taken in a formal sense.

The starting point of this thesis is the idea of taking Girard’s Approxima-
tion Theorem seriously, thus giving a fully formal content to Equation 1. We
will see that the consequences of such an endeavor are surprisingly rich, with
applications ranging from the construction of intersection type systems to the
development of a new viewpoint on the quantitative analysis of functional
programming languages, with some implications reaching as far as structural
complexity theory. We now proceed to give a quick overview of such results.

Polyadic approximations

Chapter 1 contains our formalization of the computational contents of Girard’s
Approximation Theorem. The idea is that Equation 1, which is given at the
level of formulas/types, should actually be read first and foremost at the level
of cut-elimination/execution.

The categorical view of the Curry-Howard correspondence sees formu-
las/types as objects and proofs/programs as morphisms. It is very natural
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to extend this up the dimensional ladder and see cut-elimination/execution
paths as 2-arrows. We take this approach, which is well-established in the
literature on term rewriting [See87, Hil96, CG01, Hir13, Mel17], as the basis of
our syntax for term calculi. This will allow us to define in a precise way what
it means for a reduction sequence to approximate another one.

The only twist that we add with respect to the common two-dimensional
approaches to term rewriting is the use of a higher multicategorical perspec-
tive rather than a 2-categorical one, i.e., we follow a mixed operadic/globular
approach rather than a fully globular one. This is inspired by Hyland’s recent
presentation of the λ-calculus in the framework of cartesian operads [Hyl17].
Although we take it in a rather different direction than Hyland’s (in particular,
we will never consider questions of denotational semantics, leaving them for
future work), we will find this viewpoint extremely fruitful for our exposition.

After introducing several variants of polyadic calculi (with a varying de-
gree of freedom as to the use of structural rules), we introduce the approxi-
mation order and show, via a general categorical construction, that the term
calculus of intuitionistic linear logic is isomorphic to a quotient of the ideal
completion of the affine polyadic calculus. In proof-theoretic terms, a linear
logic proof using the modality !(−) may be seen (modulo a quotient) as an
ideal of proofs in the purely linear fragment of linear logic.

More evocatively, we may say that the ideal completion is a process sim-
ilar to the completion of a metric space, which adds the “missing limits” of
Cauchy sequences. This is one of the standard ways, due to Cantor, of defin-
ing the real numbers R from the rational numbers Q. In our case, the space of
purely linear proofs is, like Q, incomplete; among the “missing limits” added
by the completion we find the proofs of usual linear logic. Moreover, these
may be characterized by a uniformity condition, which underlies the quotient
mentioned above.

The most important consequence of our computational version of Girard’s
Approximation Theorem is that it induces the notion of polyadic approximation:
linear logic reductions may be approximated arbitrarily well by polyadic re-
ductions which, by nature, are much finer and better suited for quantitative
analyses. Between terms, the approximation relation is written

t ⊏ M,

where t is a polyadic term and M a linear logic term (or a λ-term, depending
on the context).

We also observe that, although Girard’s Approximation Theorem is about
affine polyadic approximations, the notion actually makes sense in all the other
variants of polyadic calculi, with any combination of structural rules (linear,
relevant, cartesian). This is why, instead of speaking of “affine approxima-
tions”, we chose the broader terminology “polyadic approximation”: the key
aspect is that the constructions associated with the !(−) modality are approx-
imated by greater and greater polyadic constructions; affinity is just one (par-
ticularly useful) possibility.

2



Intersection types

In Chapter 2, we show how every well-known intersection type system, as
well as new potentially interesting examples, arises from a very general con-
struction involving polyadic approximations at its heart.

The starting point is an observation concerning simple types in polyadic
calculi (which are essentially fragments of propositional linear logic) and in-
tersection types. Without being precise about what particular system of inter-
section types we are talking about (we will give the details in Sect. 2.1), the
empirical remark is that:

• polyadic simple types and intersection types are isomorphic (so we iden-
tify them in what follows);

• if we take a derivation δ of

Γ ⊢ M : A

in intersection types (where M is a pure λ-term), then δ is isomorphic to
a Church-style (i.e., with type decorations) simply-typed polyadic term
δ : A with free variables of type Γ;

• moreover, if we denote by δ− the underlying polyadic term (i.e., the pure
term without type decorations), then δ− ⊏ M.

In order to explain the above observation, we are led to seek an ab-
stract definition of what an intersection type system is. A surprisingly sim-
ple, but extremely general proposal was recently given by Melliès and Zeil-
berger [MZ15], who argue that a type system (hence, in particular, an inter-
section type system) is nothing but a functor

E
p
��
B

where the source category E is seen as a (generalized) category of derivations
and the target category B as a (generalized) category of programs. This view-
point of course works just as well in our 2-operadic framework, so we take it
to be our working definition of type system. Accordingly, we seek a general
way of constructing morphisms of 2-operads

E
p
��

Λ

where Λ is the 2-operad presenting the pure λ-calculus.
To this effect, we show how, for any choice of suboperad D of polyadic

simple type derivations, the polyadic approximations as introduced in Chap-
ter 1 induce a morphism

Apx[D] : Λ! −→ Rel

3



where Λ! is the 2-operad presenting the term calculus of linear logic and
Rel is a certain bioperad based on relational distributors (i.e., functors A ×
Bop → Rel, where Rel is the category of sets and relations). We call this the
approximation presheaf (relative to D).

Now, the pure λ-calculus is well-known to embed in linear logic via Gi-
rard’s translation

G0 : Λ −→ Λ!.

Composing Girard’s translation with the approximation presheaf gives us an-
other presheaf

Apx[D] ◦G0 : Λ −→ Rel.

We then show how, using an operadic version of the Grothendieck construc-
tion (a standard categorical construction), this induces a type system (in the
sense of Melliès and Zeilberger)

E [D, G0]

p[D,G0]
��

Λ

It turns out that, by suitably varying D (and G0), we obtain in this way all the
major variants of intersection type systems, from the original one of Coppo
and Dezani [CDC80], to the later variant with intersections only to the left of
arrows [CDCV81]; from the various non-idempotent versions [Gar94, dC09] to
the several variants for characterizing different normalization properties (head
normalization, weak normalization, etc. [Kri93]), as well as any combination
of these.

This general construction has several interesting aspects:

• not only D, but also the morphism G0 is just a parameter; the construc-
tion applies to any calculus L admitting an encoding

G : L −→ Λ!

in linear logic. For instance, we will see examples where L is the call-
by-value λ-calculus or the λµ-calculus.

• There are sufficient conditions on Apx[D] ◦G which, if met, automati-
cally guarantee that the induced type system ensures certain normaliza-
tion properties. In this way, not only the usual systems of intersection
types, but also their properties may be recovered from the framework.

• In general, the construction shows how the structural properties of inter-
section types come from the structural rules of polyadic approximations:
contraction gives idempotency, weakening gives (basic) subtyping.

This leads to a framework for synthesizing, in a nearly automatic way, systems
of intersection types for a priori arbitrary calculi. It will prove its usefulness in
both of the subsequent chapters.

4



Parsimony

In Chapter 3 we turn our attention to quantitative aspects of reduction and, in
particular, find applications of polyadic approximations to implicit computa-
tional complexity. As in Chapter 1, we will focus on affine polyadic approxi-
mations.

One of the most important (and useful) properties of affine polyadic ap-
proximations is that reduction enjoys a continuity property with respect to
them: let

M→∗ N;

then, for all
u ⊏ N,

there exists
t ⊏ M

such that
t→∗ u.

In other words, if we are interested in an approximation of the result of a linear
logic/λ-calculus computation, it is enough to look at an affine computation
starting from a sufficiently big approximation of the initial term.

This immediately leads to the question: how big must t be? Supposing that
the size of u does not matter, for instance because N is a Boolean value and
we only need a constant amount of information from it (the head variable),
it is legitimate to expect that |t| (the size of t) is a function of the length of
the reduction M →∗ N. This is indeed the case; however, the dependency,
which we informally call “modulus of continuity”, is quite bad: it may be
exponential in general.

We are therefore led to introduce the parsimonious λ-calculus, a calculus
enjoying a polynomial modulus of continuity. The parsimonious paradigm is
quite robust: apart from the calculus, there is an underlying logical system, a
variant of linear logic called parsimonious logic, admitting a simple categorical
semantics, with everything fitting together nicely as in the prototypical “trin-
ity” of the λ-calculus, intuitionistic logic and cartesian closed categories. The
parsimonious paradigm may also be extended along the standard directions:
polymorphism (parsimonious system F) or simply-typed recursive definitions
(parsimonious PCF). In each case, the fact that parsimony is centered upon
the polynomial modulus of continuity has interesting consequences, which
we discuss in some depth.

The viewpoint of computational complexity is especially important for us.
In this respect, we show that parsimony is a fruitful context for the develop-
ment of both explicit and implicit computational complexity. In particular,
concerning the latter, parsimony brings forth a novel approach to linear-logic-
based characterization of complexity classes, radically different than those
obtained with the more established “light logics” [Gir98, Laf04].

5



Church meets Cook and Levin

In Chapter 4, we venture still farther into computational complexity territory,
and show how the techniques developed in the previous chapters may be
used to present in a novel way the proof of the Cook-Levin theorem, one of
the central results of structural complexity theory.

The Cook-Levin theorem, which is the famous statement that sat (satisfia-
bility of propositional formulas) is NP-complete, is usually proved by showing
how a formula or, better, a Boolean circuit may simulate the computation of
a Turing machine with only a polynomial overhead. It is implicit in the way
circuits are constructed in the proof that some notion of approximation is
actually being used, and complexity theorists are well aware of this intuition.

We are able to give a fully formal content to this intuition, once again
thanks to the notion of polyadic approximation and its connection with in-
tersection types. The novelty with respect to the previous chapters is that,
this time, we apply our machinery to a first-order language, not too distant
from Turing machines. Instead of being approximated by polyadic terms, the
programs of this language are approximated by actual Boolean circuits. Ap-
plying the construction of Chapter 2, we obtain an intersection type system
for “Turing machines” whose derivations are isomorphic to Boolean circuits
approximating them. The continuity of reduction and its polynomial modulus
of continuity become, in this setting, a quantitative subject expansion property
of the type system. From there, the proof of the Cook-Levin theorem unfolds
quite smoothly.

Having found a type-theoretic presentation of the proof of a major theo-
rem of computational complexity theory may seem like an interesting achieve-
ment, not because of the proof itself (it is essentially the same proof, presented
in a different language) but because it confronts the language of our commu-
nity with the needs of a different community, which is always an enriching
experience. However, one quickly realizes that the “confrontation” offered
by the Cook-Levin theorem is, in reality, still extremely limited and far from
being of any consequence. We therefore conclude our exposition with some
suggestions for further research in this direction, which is intended to stir
up the interaction between logic, programming languages and computational
complexity, hopefully bearing fruits for one of these domains.

6



Chapter 1

Polyadic Approximations

1.1 An Operadic Take on Syntax

1.1.1 Reduction terms

In the course of this thesis, we will often need to have a concise way of de-
noting reductions in term calculi. In the term rewriting community, such
notations are known as “proof terms” and are well developed for the first-
order case [Ter03]. In this section, we introduce a term notation for reductions
of λ-terms which may be easily generalized to other term calculi. We prefer
calling such notations reduction terms, because “proof terms” may be a source
of ambiguity in the Curry-Howard context.

The syntax of λ-terms is the usual one:

M, N ::= x
∣∣ λx.M

∣∣ MN.

Given n ∈ N, a context with n holes is a λ-term C with n special free variables
{·}1, . . . , {·}n, such that each {·}i appears exactly once in C. The case n = 0, in
which a context is just a term, is allowed. Substitution of n terms M1, . . . , Mn
to the holes in a context C is denoted by C{M1, . . . , Mn}, where it is assumed
that Mi is substituted to {·}i. As usual, the difference with respect to usual
substitution (of a term in a term) is that this substitution is not capture-free.

Definition 1 (reduction term) Reduction terms are defined as follows:

β ::= MLx ← NM basic steps;

ρ, τ ::= C{β1, . . . , βn}
∣∣ ρ; τ reduction terms.

In MLx ← NM, the variable x is bound in M. In C{β1, . . . , βn}, n = 0 is allowed,
so terms are also reduction terms.

Each basic step is assigned a source term and a target term, as follows:

MLx ← NM : (λx.M)N →∗ M{N/x}.

The definition of source and target is extended to reduction terms by means of the
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α1 : M1 →∗ M′1 . . . αn : Mn →∗ M′n
C{α1, . . . , αn} : C{M1, . . . , Mn} →∗ C{M′1, . . . , M′n}

ctxt

ρ : M→∗ P τ : P→∗ N
ρ; τ : M→∗ N

comp

Figure 1.1: Source and target for reduction terms.

ρ : M→∗ N τ : N →∗ P φ : P→∗ Q
(ρ; τ); φ ≡ ρ; (τ; φ)

assoc

ρ : M→∗ M′

M; ρ ≡ ρ
lunit

ρ : M′ →∗ M
ρ; M ≡ ρ

runit

Figure 1.2: Structural equivalence on reduction terms.

rules of Fig. 1.1. Reduction terms with the same source (resp. target) are called
coinitial (resp. cofinal). A reduction term is valid only if it may be assigned a
source and a target; we will implicitly consider only valid reduction terms.

Structural equivalence is the least congruence on reduction terms containing
the equations of Fig. 1.2.

The operation of (capture-free) substitution of a term N for a free variable x
in a reduction term ρ : M→∗ M′, denoted by ρ{N/x}, is defined as expected.
For what concerns substitution of a general reduction term τ : N →∗ N′ in ρ,
we first define it in case ρ = M, which is done by induction on τ:

• M{C{β1, . . . , βn}/x} is defined as expected;

• M{τ′; τ′′/x} := M{τ′/x}; M{τ′′/x}.

Then, we define
ρ{τ/x} := ρ{N/x}; M′{τ/x}.

Substitution behaves in the expected way with respect to sources and tar-
gets:

Lemma 1 If ρ : M→∗ M′ and τ : N →∗ N′, then

ρ{τ/x} : M{N/x} →∗ M′{N′/x}.

Proof. A straightforward induction. □

Definition 2 (permutation equivalence) We define a relation ∼, called permu-
tation equivalence, on pairs of coinitial and cofinal reduction terms, as the least
congruence containing structural equivalence (Fig. 1.2) and the equations of Fig. 1.3,
where α, β are basic steps and, in the par rule, C is a two-hole context. Lemma 1
guarantees that the reduction terms related by Fig. 1.3 are indeed coinitial and cofi-
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α : M→∗ M′ β : N →∗ N′

C{M, β};C{α, N′} ∼ C{α, β} ∼ C{α, N};C{M′, β}
par

α : C{x} →∗ M′ β : N →∗ N′

C{β}; α{N′/x} ∼ α{N/x}; M′{β/x}
unnest

Figure 1.3: Permutation equivalence.

nal.

We stress that the above definition is simply a rephrasing of the standard
definition of permutation equivalence. The three rules of Fig. 1.2 just take
care of formalizing the fact that reduction terms are sequences of atomic re-
ductions, with terms being identities; in Fig. 1.3, the par rule states the equiva-
lence of two reductions reducing two independent (“parallel”) redexes in two
different orders, and the unnest rule states the equivalence of the two ways of
reducing two nested redexes: first the inner one and then the outer one, or
first the outer one and then all the potential copies of the inner one.

The most important role of permutation equivalence is allowing Proposi-
tion 3 below, i.e., the interchange law between substitution and composition of
reductions. We start by generalizing the unnest rule:

Lemma 2 For all ρ : M→∗ M′ and τ : N →∗ N′, we have M{τ/x}; ρ{N′/x} ∼
ρ{N/x}; M′{τ/x}.

Proof. By diagram chasing (technically, a double induction on ρ and τ). □

Proposition 3 (interchange law) For all ρ : M →∗ M′, φ : M′ →∗ M′′, τ :
N′ →∗ N′ and ψ : N′ →∗ N′′, we have ρ{τ/x}; φ{ψ/x} ∼ (ρ; φ){τ; ψ/x}.

Proof. We have

ρ{τ/x}; φ{ψ/x} = ρ{N/x}; M′{τ/x}; φ{N′/x}; M′′{ψ/x} (def.)

∼ ρ{N/x}; φ{N/x}; M′′{τ/x}; M′′{ψ/x} (Lemma 2)

= (ρ; φ){N/x}; M′′{τ/x}; M′′{ψ/x} (def.)

= (ρ; φ){N/x}; M′′{τ; ψ/x} (def.)

= (ρ; φ){τ; ψ/x}, (def.)

as claimed. □

The following lemma, which states that permutation equivalence and sub-
stitution are compatible, is technically important but unsurprising. It will be
tacitly used in the sequel.

Lemma 4 If ρ ∼ ρ′ and τ ∼ τ′, then ρ{τ/x} ∼ ρ′{τ′/x}.
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Proof. By induction on the number of elementary transformations (of Fig. 1.2
and Fig. 1.3) used to obtain ρ ∼ ρ′ and τ ∼ τ′. □

It is worth mentioning that what we gave above is an alternative presen-
tation of the theory that Hilken calls 2-λ [Hil96], restricted to β-reduction
(Hilken considers also η-expansion). It is also covered by Hirschowitz’s gen-
eral theory [Hir13], although our syntax is different (it is specialized to our
purposes).

1.1.2 A strict 2-category of lambda-terms

Consider the set Λ1 of λ-terms with at most one free variable x. Let us write
M • N for M{N/x}; obviously, M, N ∈ Λ1 implies M • N ∈ Λ1. Moreover,
substitution is associative (M{N{P/x}/x} = M{N/x}{P/x}) and there is
a neutral element, namely x, so (Λ1, •, x) is a monoid or, more verbosely, a
category with only one object.

The set Λ1 may be equipped with another natural categorical structure,
namely it may be taken as the set of objects of the free category generated
by the graph of one-step β-reductions between λ-terms. The arrows of this
category are exactly the reduction terms introduced above (modulo structural
equivalence, which is always assumed implicitly): composition is the opera-
tion we denote by ; and identities are terms.

It is natural to wonder whether the monoid structure (Λ1, •, x) may be
extended to arrows. This means endowing the category of reductions with a
(strict) monoidal structure or, equivalently, promoting the one-object category
(Λ1, •, x) to a one-object (strict) 2-category. We already introduced general
substitution, so the obvious definition is ρ • τ := ρ{τ/x}. Here is where we
see the importance of permutation equivalence: this definition does not work
unless we take the quotient under permutation equivalence.

So the right way to combine the two structures is as follows: Λ1 is the strict
2-category with only one object whose

• 1-morphisms are λ-terms with at most one free variable x; composition
is given by •, the identity is the term x;

• 2-morphisms from M to N are reduction terms ρ : M →∗ N modulo
permutation equivalence; vertical composition is given by ; and its iden-
tities are the terms; horizontal composition is given by •, with identity
x (seen as a reduction term).

The fact that this defines a strict 2-category is ensured by Proposition 3 which,
with our current notations, becomes (ρ • τ); (φ • ψ) = (ρ; φ) • (τ; ψ).

The above 2-categorical presentation of the λ-calculus was first advocated
by Seely [See87]. The observation that permutation equivalence is necessary
is implicit in his Definition/“Lemma” 2.5.1 The category of pure λ-terms and
reductions modulo permutation equivalence is also described in some detail

1The quote marks in “Lemma” are Seely’s. What he meant is probably that, with more precise
definitions than those he considers in his extended abstract, such as the ones we gave here, his
definition should really be a lemma, indeed our Lemma 2.
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by Melliès in his habilitation thesis [Mel17]; for instance, it is shown therein
that it has pushouts, which is a strong form of confluence.

Although satisfactory in spirit, the 2-categorical framework is a bit artifi-
cial in practice, for the simple reason that λ-terms in general may have more
than one free variable. In this respect, it feels much more natural to use mul-
ticategories, which is what we do in this thesis.

1.1.3 Operads

We give here a brief survey of the categorical definitions used in the sequel.
We refer the reader to [Lei04] for more complete definitions.

Caveat on terminology: the definition of “operad” adopted in this thesis is
not the standard one; it differs in the following points:

• our “operads” are colored by default, i.e., seen as multicategories, they
may have more than one object; we will occasionally call monochromatic
an operad (in our sense) with only one object;

• our “operads” do not necessarily have identity operations; there is no
standard terminology for these structures, which are however useful
from the viewpoint of programming languages; an operad (in our sense)
with identities will be called unital.

Summarizing, we may give the following “dictionary”:

our terminology standard terminology
operad –
unital operad colored operad/symmetric multicategory
unital monochromatic operad operad

The reason why we chose to depart from standard terminology is simple: the
concepts in the above table are listed, from top to bottom, in decreasing order
of importance for our work; had we followed the standard terminology, we
would have ended up calling our most used structures something like “non-
unital colored operad” or “symmetric semimulticategory”, quite a mouthful
in both cases.

In what follows, B(n) denotes the group of permutations on n ele-
ments.

Definition 3 (V-operad) Let (V ,⊗, 1) be a symmetric monoidal category. A V-
operad C is given by the following:

• a set2 C0 of objects, also called colors;

• for every sequence of colors C1, . . . , Cn, A, an object C(C1, . . . , Cn; A) of V ;

• for every color A, sequence of colors ∆ = B1, . . . , Bn and sequence of sequences
of colors Γ = Γ1, . . . , Γn, a morphism of V

◦Γ;∆;A : C(∆; A)⊗ C(Γ1; B1)⊗ · · · ⊗ C(Γn; Bn) −→ C(Γ; A),
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called operadic composition;

• for each n ∈N, σ ∈ B(n) and colors A, Γ = C1, . . . , Cn, a morphism of V

exchΓ;A
σ : C(Γ; A) −→ C(σΓ; A)

where σΓ = Cσ(1), . . . , Cσ(n), satisfying exchσΓ;A
σ′ ◦ exchΓ;A

σ = exchΓ;A
σ′◦σ and

exchΓ;A
id = idC(Γ;A);

such that the operadic composition morphisms satisfy the obvious associativity laws
and compatibility laws with the exchange morphisms.

A unital V-operad is an operad equipped, for each color A, of a morphism of V

idA : 1 −→ C(A; A)

such that the obvious neutrality laws with respect to operadic composition hold.
An operad whose set of colors is a singleton will be called monochromatic. In

that case, if ∗ is the only color, we write C(n) for C(∗, . . . , ∗︸ ︷︷ ︸
n

; ∗).

Note that, in the unital case, operadic composition may also be defined
“pointwise”, i.e., one may instead consider morphisms

◦i
Γ;∆;A : C(∆; A)⊗ C(Γ; Bi) −→ C(B1, . . . , Bi−1, Γ, Bi+1, . . . , Bn; A)

where ∆ = B1, . . . , Bn, such that the suitable compatibility conditions hold. We
will sometimes resort to this equivalent definition. In any case, the subscripts
are omitted in practice because usually clear from the context.

Definition 4 (morphism of V-operads) A morphism F : C → D of V-operads
is given by:

• a function F0 : C0 → D0;

• for each color A and sequence of colors Γ of C, a morphism of V

FΓ;A : C(Γ; A)→ D(F0Γ; F0 A);

such that, for every color A, sequence ∆ = B1, . . . , Bn of colors and sequence of
sequences Γ = Γ1, . . . , Γn of colors of C, the following diagrams commute in V :

C(∆; A)⊗⊗n
i=1 C(Γi; Bi)

◦Γ;∆;A //

F∆;A⊗
⊗n

i=1 FΓi ;Bi
��

C(Γ; A)

FΓ;A
��

D(F0∆; F0 A)⊗⊗n
i=1D(F0Γi; F0Bi) ◦F0Γ;F0∆;F0 A

// D(F0Γ; F0 A)

2We only need small operads for managing the syntax. We will occasionally use large operads,
silently glossing over size issues.
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C(∆; A)
exch∆;A

σ //

F∆;A
��

C(σ∆; A)

Fσ∆;A
��

D(F0∆; F0 A)
exch

F0∆;F0 A
σ

// D(σF0∆; F0 A)

In practice, one denotes F0 and FΓ;A simply by F.
A unital morphism of unital V-operads is as above but further satisfies, for

every color A of C, FA;A ◦ idA = idF0 A.

We denote by V-Op the category of V-operads and their morphisms.
The plain term “operad” is usually understood to mean Set-operad (the

monoidal structure on Set is given by the cartesian product). For us, the most
important case of V-operad is when V = Cat, the category of categories, with
the monoidal structure given by the product of categories.

Definition 5 (2-operad, bioperad) A (strict) 2-operad is a Cat-operad. A bit
more explicitly, a 2-operad C consists of a set of colors and a family of categories
C(Γ; A), whose objects are called multimorphisms and whose arrows are called
2-arrows. Operadic composition is implemented by a family of functors between
these categories. Accordingly, a morphism of 2-operads is a family of functors suit-
ably commuting with the composition functors.

A weak 2-operad, or bioperad, is defined similarly to a 2-operad, but associa-
tivity and compatibility with exchange are only required to be satisfied up to coherent
natural isomorphisms.

We will occasionally use other hom-categories than Set and Cat, which is
why we gave the general definition. On the other hand, we will use the notion
of bioperad only in a very specific case, which is why the definition is not
given in detail. The details, which may be found in [CO17], are obtained by
following the standard yoga of weak enrichment: bioperads are a special case
of operads weakly enriched over a symmetric monoidal 2-category, namely
(Cat,×, 1).

Every unital V-operad C induces a V-enriched category C1 by restricting
to multimorphisms with only one source. For instance, if C is a unital 2-
operad, C1 is the strict 2-category whose objects are the colors of C, whose
1-morphisms A → B are the objects of C(A; B), and whose 2-morphisms
are the arrows of C(A; B); vertical composition is composition of C(A; B),
whereas horizontal composition is given by operadic composition restricted
to C(B; A)× C(B; C)→ C(A; C).

In fact, unital (Set-)operads generalize symmetric monoidal categories: ev-
ery such category (D,⊗, 1) induces a unital operad MD by letting

MD(C1, . . . , Cn; A) := D(C1 ⊗ · · · ⊗ C1, A).

Not every unital operad arises in this way (example: the unital operad T wo
with two objects a, b such that T wo(a; a) = T wo(b; b) is a singleton and every
other homset is empty). Those that do are called representable. It is a theorem
of Hermida [Her00] that a unital operad C is representable iff there is an object
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1 and, for every pair of objects A, B, there is an object A⊗ B such that, for all
Γ, C, there are bijections

C(Γ, 1; C) ∼= C(Γ; C) and C(Γ, A, B; C) ∼= C(Γ, A⊗ B; C),

natural in Γ, C. Such bijections exist by definition if C is representable. For
the converse, the proof shows that the existence of such a structure is enough
to make C1 (the induced category introduced above) symmetric monoidal,
and then checks that MC1 is equivalent to C. (Now we may prove why T wo
is not representable: if it were, T wo(a, b; a) would have to be isomorphic to
T wo(c; a) for some c; since T wo(a, b; a) = ∅ and T wo(a; a) ̸= ∅, we must
have c = b; but then T wo(a, b; b) ∼= T wo(b; b), which is false).

Similarly, the notion of 2-operad is a generalization of the notion of strict
symmetric monoidal 2-category. In this respect, we find 2-operads to be
slightly lighter to present: the associativity/exchange laws for operadic com-
position are in our opinion more intuitive than the coherence laws for sym-
metric monoidal 2-categories. This becomes even more conspicuous in the
weak case: although laborious (so much so that we preferred not to give it!),
the definition of bioperad seems to us less imposing than that of symmet-
ric monoidal bicategory, a fully detailed definition of which may be found
in [Sta16], where it occupies roughly 14 pages. . . But this may only be a mat-
ter of taste of course.

Usually, one introduces (Set-)operads to study their algebras. Given an
operad C and a symmetric monoidal category (D,⊗, 1), a C-algebra in D is a
morphism of operads

A : C −→ MD.

A motivating example: let 1 be the terminal unital monochromatic operad,
such that 1(n) is a singleton for all n ∈ N; then, a 1-algebra in a symmet-
ric monoidal category D is exactly a commutative monoid in D. Sometimes
(e.g. from the perspective of Lawvere theories) one is interested only in al-
gebras in a cartesian category. In that case, it is enough to consider algebras
in (Set,×, 1): indeed, the copresheaf D(1,−) : D → Set preserves products
and thus induces a morphism MD → M Set, so an algebra in D induces an
algebra in Set.

In this thesis, we will never study the algebras of the operads we intro-
duce.3 This does not mean that they are not interesting: on the contrary, they
correspond to denotational semantics, as we will explain momentarily.

1.1.4 Term calculi as 2-operads

From the point of view of a programming languages theorist, 2-operads are
probably best understood as an abstract way of speaking of (typed) term cal-
culi:

• colors are types;

3This is another reason why our use of the terminology “operad” is a bit at odds with tradition;
but we already explained that it is a choice dictated mostly by conciseness.
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• a multimorphism t : C1, . . . , Cn → A is a term in context

x1 : C1, . . . , xn : Cn ⊢ t : A;

operadic composition is substitution, i.e., t ◦i u = t{u/xi}, and the ac-
tion of the symmetric group corresponds to the possibility of injectively
renaming free variables or, equivalently, to the presence of an exchange
rule on typing contexts;

• a 2-arrow t ⇒ t′ is a type-preserving computation starting from t and
leading to t′ (e.g. term-rewriting, cut-elimination, etc.). Computations
are required to be compatible with substitution, in the sense that, for any
two computations t ⇒ t′ and u ⇒ u′, there is a computation t{u/x} ⇒
t′{u′/x} and such a computation is equal to both sides of the diagram

t{u/x} +3

��

t′{u/x}

��
t{u′/x} +3 t′{u′/x}

where the intermediate computations are obtained by considering the
identity computations on t and u. If we see variables as parameters,
so that terms are parametric programs, then the above is saying that
computations too are parametric.

In this perspective, a morphism f : D → C of 2-operads is just a modular,
semantic-preserving encoding/translation/compilation of term languages:

• a type A of D is encoded by f(A) in C;

• a term x1 : C1, . . . , xn : Cn ⊢ t : A of D is encoded by x1 : f(C1), . . . , xn :
f(Cn) ⊢ f(t) : f(A);

• we have a “substitution lemma” f(t{u/x}) = f(t){f(u)/x} (modular-
ity);

• if t ⇒ t′, then f(t) ⇒ f(t′) (preservation of operational semantics) and
modularity holds for computations too.

Following the above intuition, it is natural to consider unital operads: iden-
tities are just variables. However, unital morphisms are less anodyne: they
force the encoding of a variable to be necessarily a variable. We will see very
natural examples of translations of programming languages in which this re-
quirement is not met, leading us to consider 2-operads to be non-unital in
general. Indeed, although naturally occurring 2-operads are unital, includ-
ing the syntactic ones coming from programming languages, the category of
unital operads and non-unital morphisms is not well behaved (for instance, it
lacks pullbacks), justifying the relaxation of the notion of operad itself.

At this point, the reader will likely be able to guess how the 2-categorical
presentation of the pure λ-calculus of Sect. 1.1.2 may be promoted to a 2-
operadic one. We will do so in a slightly more general setting, that of simple

15



types (which is actually the one originally considered by Seely [See87]). By
simple types we mean of course those generated by

A, B ::= α
∣∣ A→ B;

it is immediate to adapt Definition 1 to the Church-style simply-typed λ-
calculus: just add type decorations as appropriate.

Definition 6 (2-operads of λ-terms) Let ΛST be the following (unital) 2-operad:

• its colors are the simple types;

• its multimorphisms C1, . . . , Cn → A are simply-typed Church-style λ-terms
M : A such that fv(M) ⊆ {x1 : C1, . . . , xn : Cn}; by Curry-Howard, this is
the same as saying that multimorphisms are type derivations of

x1 : C1, . . . , xn : Cn ⊢ M : A,

with M a pure term;

• its 2-arrows are Church-style reduction terms modulo permutation equiva-
lence;

• its operadic composition functors are defined by means of substitution: on
2-arrows, we let

ρ ◦ (τ1, . . . , τn) := ρ{τ1, . . . , τn/x1, . . . , xn},

whenever this makes sense with respect to sources and targets. The same def-
inition applies to multimorphisms (seen as identity reductions). The identity
multimorphism on A is x1 : A.

The (unital) 2-operad Λ of pure λ-terms is obtained by forgetting the colors:
Λ(n) is the category whose objects are λ-terms with free variables contained in
{x1, . . . , xn} and whose arrows are reduction terms modulo permutation equiva-
lence.

Note that the 2-category Λ1 of Sect. 1.1.2 arises from the 2-operad Λ precisely
by restricting to Λ(1), as described at the end of Sect. 1.1.3.

It is fairly evident that the λ-calculus, simply-typed or pure, is little more
than a parameter in the above definition. Indeed, suppose we are given:

• a set of types;

• rules for generating terms in typing contexts Γ ⊢C t : A;

• a set of basic steps with source and target α : t→∗ u, preserving types.

Multi-hole contexts may be defined from the term syntax in the obvious way;
from that, Definition 1 and Figures 1.1, 1.2 and 1.3 may be applied verbatim,
guaranteeing the development of Sect. 1.1.1 (we encourage the reader to check
that no result in there depends on the λ-calculus). Then, Definition 6 may be
adapted to define a 2-operad C whose colors, multimorphisms and 2-arrows
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are types, typed terms and reduction terms modulo permutation equivalence,
respectively, with operadic composition given by substitution. The calculi we
use in the sequel will be presented following the above specification.

We should stress that the above definition does not always yield the 2-
operad that one may want to associate with a given term calculus. Typically,
one may want to add more equations to Fig. 1.3 for permutation equivalence,
because some critical pairs may not be covered by that (very basic) definition.
However, for our purposes, the above definition works just fine.

It is important at this point to highlight that the operadic approach to
programming languages has non-trivial restrictions: presenting calculi whose
evaluation contexts do not coincide with every possible “program with a
hole” may be problematic and may require some tricky workaround. This
is because 2-arrows in a 2-operad must not only compose “vertically” (this is
concatenation of reductions, which is usually unproblematic) but also “hori-
zontally”, i.e., given ρ : t →∗ t′ and τ : u →∗ u′, one must be able to define
ρ{τ/x} : t{u/x} →∗ t′{u′/x}. This may bring trouble: if ρ = C{x} is an
identity reduction with only one free occurrence of x such that C is not an
evaluation context, then ρ{τ/x} = C{τ} will in general not be a “legal” re-
duction. For instance, restricting Λ to most typical reduction strategies (head
reduction, weak head reduction, leftmost reduction, non-erasing reduction,
Böhm reduction. . . ) does not yield a 2-operad (example for head reduction:
τ := xLx ← IM : I I → I is a head reduction but (zy){τ/y} : z(I I) → zI
is not). So, although operads are undoubtedly useful (as the coming chap-
ter will hopefully show), they have their limitations and are by no means the
ultimate answer to the question of modeling programming languages.

The (Set-enriched) operadic approach to term calculi of course is not new.
It was brought forth (at least) by Fiore, Plotkin and Turi [FPT99] and more
recently adopted by Hyland [Hyl17], whose work is our main source of inspi-
ration. We use a Cat-enriched setting because we want to be able to have a
direct account of computation.

Let (D,⊗, 1) be a symmetric monoidal category; we may see it as a strict
symmetric monoidal 2-category by promoting its hom-sets to discrete hom-
categories. Then, if C is a 2-operad, a C-algebra in D is a morphism

J·K : C −→ MD.

Spelling this out with the perspective of term calculi in mind, we have:

• for each type A, an object JAK;

• for each term x1 : C1, . . . , xn : Cn ⊢ t : A, a morphism

JtK : JC1K⊗ · · · ⊗ JC1K→ JAK;

• such that Jt{u/x}K = JtK ◦ JuK;

• and such that, whenever t→∗ t′, JtK = Jt′K.

The latter condition results from the fact that each hom-category of D (and
thus of MD) is discrete: every 2-arrow of C is mapped to an identity. So, if C
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is a term calculus, a C-algebra in D is precisely a denotational model of C in
D. In [Hyl17], Hyland studies in detail Λ-algebras in Set, proving that these
are equivalent to certain operadic structures he calls λ-theories, among which
Λ is initial. In the following, we give a quick overview of the Cat-enriched
version of such a structure.

1.1.5 Digression: logical structure

Most of the 2-operads we will consider in this thesis present a programming
language of some sort. In every case, such 2-operads do not “fall from the
sky” but originate from a precise logical structure, which generates them as a
whole, from the objects, to the multimorphisms, to the 2-arrows.

While we are unable at present to give a general definition of what we
mean by “logical structure”, we may give a first sketch of a definition, which
covers some very basic cases and gives a rough idea of what we are after. In
the following, we write

Γ ⊢C A

for the hom-category C(Γ; A) of a 2-operad C.

Definition 7 (naive propositional connective) Let C be a 2-operad. Given n ∈
N, p1, . . . , ph > 0 such that ∑ pi = n, a naive positive connective of arity n on
C is given by the following data:

• a function Φ : Cn
0 → C0;

• for every object C and sequences of objects Γ and

Ξ = ∆1, . . . , ∆h,

such that ∆i is of length pi, an adjunction

∏(Γ, ∆i ⊢C C)

FΓ;C

��

⊣

Γ, Φ(Ξ) ⊢C C

GΓ;C

CC

natural in Γ and C (in the obvious sense) and compatible with operadic com-
position.

Given n ∈ N, q1, . . . , qk > 0 such that ∑(qi + 1) = n, a negative connective
of arity n on C is given by the following data:

• a function Φ : Cn
0 → C0;

• for every sequences of objects Γ and Ξ = Σ1, A1, . . . , Σk, Ak, such that Σi is
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of length qi, an adjunction

∏(Γ, Σi ⊢C Ai)

FΓ

��

⊣

Γ ⊢C Φ(Ξ)

GΓ

CC

natural in Γ and compatible with operadic composition.

The family F of functors gives the reversible rule for the connective Φ in
sequent calculus: it is a left rule if Φ is positive, a right rule if Φ is negative.
The family G gives the irreversible rule. The counit β : GF ⇒ Id of the
adjunction is the cut-elimination step associated with Φ; the unit η : Id⇒ FG
is the corresponding η-expansion step.4

All propositional intuitionistic logical connectives that the author is aware
of, including those of linear logic, are captured by the above definition. For in-
stance, implication is a negative connective, whose corresponding adjunction
is

(Γ, A ⊢ΛST B)

FΓ

))
⊤ (Γ ⊢ΛST A⇒ B)

GΓ

ii

For simplicity, let us look at the details in the case of the pure λ-calculus. The
above adjunction becomes

Λ(n + 1)

λn
))

⊤ Λ(n)

@n

jj

where (for simplicity of notations, we will write x instead of xn+1):

• λn maps M to λx.M and a reduction M→∗ M′ to the obviously induced
reduction λx.M→∗ λx.M′;

• @n maps M to Mx and a reduction M →∗ M′ to Mx →∗ M′x in the
obvious way;

• the component βM of the counit must be an arrow (λx.M)x →∗ M,
which may obviously be taken as a single β-reduction step;

• the component ηM of the unit must be an arrow M →∗ λx.Mx, which
may obviously be taken as a single step of η-expansion (remember that
x = xn+1, which is not free in M because M ∈ Λ(n), hence fv(M) ⊆
{x1, . . . , xn}).

4A lucky coincidence of notations! It would have been unfortunate if the unit of the adjunction,
usually denoted by η, turned out to correspond to β-reduction. . .
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The usual β-reduction step (λx.M)N → M{N/x} is obtained from

βM ◦n+1 idN .

Compatibility of the adjunction with operadic composition ensures, for in-
stance, that (λx.M){N/y} = λx.M{N/y}.

The adjunction forces the 2-arrows

Mx →η (λx.Mx)x →β Mx

and
λx.M→η λx.(λx.M)x →β λx.M

to be identities. Albeit natural, this does not seem anodyne from a purely
syntactic standpoint. Of course, one usually does not even want to deal with
η-expansion; this is possible by stipulating that F and G form, instead of
an adjunction, a lax retraction, with the same naturality and compatibility
properties.

What Hyland calls a λ-theory in [Hyl17] is precisely the above structure,
but in a Set-enriched setting, so the retraction is a strict one (it cannot be lax
anymore).

Inductive datatypes also follow the above pattern. For instance, the type
Nat of unary integers is characterized by the following adjunction:

(Γ ⊢C A)× (Γ,Nat ⊢C A)

FΓ,A

))
⊤ (Γ,Nat ⊢C A)

GΓ,A

ii

Albeit admittedly superficial, we thought it was worthwhile to record these
observations here, because we think it will be interesting to develop them
more deeply. In particular, we made no attempt at defining our calculi as
initial 2-operads having a certain structure of the above form, but we think
this should be done at some point.

In a wider perspective, understanding logical structure at this level is un-
derstanding, in some sense, what the Curry-Howard isomorphism is an iso-
morphism of. It is definitely not an isomorphism of cartesian closed cate-
gories, as some may be tempted to say, for at least two reasons:

• the Set-enriched approach obviously looses a great deal of dynamic in-
formation;

• forcing λ-abstraction to be defined only in presence of pairing does not
seem to do justice to the syntax; Hyland’s approach is much more natu-
ral in this respect.

Understanding logical structure is also understanding what defines a con-
nective, its logical rules and its cut-elimination rules so that they form a cohe-
sive whole. This is especially relevant in type theory, where this kind of triple
(formation rules, introduction/elimination rules, computational rules) is an
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Colors: l, c (ranged over by C below).

Terms:

a : l ⊢ a : l
lvar

Γ, a : l ⊢ T : l
Γ ⊢ λa.T : l

lam
Γ ⊢ T : l ∆ ⊢ U : l

Γ, ∆ ⊢ TU : l
app

x : c ⊢ x : l
cvar

x : c ⊢ T : l
x : c ⊢ !T : c

box
∆ ⊢ U : l Γ, x : c ⊢ T : l

Γ, ∆ ⊢ T[!x := U] : l
let

Γ ⊢ T : c
Γ ⊢ T : l

lin
Γ ⊢ T : C

Γ, x : c ⊢ T : C
weak

Γ, x : c, y : c ⊢ T : C
Γ, x : c ⊢ T{x/y} : C

cntr

Basic steps:

TLa← UM[−] : (λa.T)[−]U →∗ T{U/a}[−]
TLx ← UM![−] : T[!x := !U[−]] →∗ T{U/x}[−]

The notation [−] is a metavariable for substitution contexts, defined as fol-
lows:

[−] ::= {·}
∣∣ [−][!x := U].

We write T[−] instead of [−]{T}.

Figure 1.4: The term calculus Λ! for intuitionistic linear logic.

essential building block which is currently lacking a precise mathematical for-
mulation. So there is perhaps something important to be uncovered here, and
further investigation seems necessary, although it will not be the subject of
this thesis.

1.2 Polyadic Variants of Linear Logic

1.2.1 A term calculus for intuitionistic linear logic

We start by presenting a calculus corresponding, via Curry-Howard, to the
proofs of the implicational fragment of intuitionistic multiplicative exponen-
tial linear logic. Apart from being a main actor in the sequel, it will be the
occasion to introduce our contextual treatment of rewriting in presence of let
binders, which we borrow from Accattoli [Acc12].

The 2-operad Λ! is defined in Fig. 1.4. There are two colors: l, for linear, and
c, for cartesian.To make the distinction between linear and cartesian variables
even more apparent, we use a, b to range over the former and x, y to range
over the latter. True to their name, cartesian variables may be weakened and
contracted, linear variables may not.
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Note that the only terms of color c are of the form !T; these are called boxes.
The lin rule coerces boxes to also have color l. Operadic composition for the
color c is defined as follows:

T′ ◦i
c !T := T′{T/xi},

i.e., the !(−) is removed when the substitution is performed. On the other
hand, operadic composition on l is plain substitution; therefore, when a box
!T is seen as a linear term, the !(−) is not removed:

T′ ◦i
l !T = T′{!T/ai}.

The operad is unital: a1 (resp. !x1) is the identity of color l (resp. c).
The term T[!x := U] would perhaps more traditionally be written let !x =

U in T. We use the explicit substitution notation because we define reduction
following the methodology that Accattoli developed for the linear substitution
calculus [Acc12]. This is essentially a way of importing the behavior of graph
rewriting (as exemplified, for instance, by proof nets) in term rewriting. Let
us look at an example. Let

T := (λa.(λb.xb)[!x := a])UW.

By reducing the redex (λa.−)U, we get

T → (λb.xb)[!x := U]W =: T1.

In proof nets, there is now another cut which may be reduced immediately,
corresponding to the λb applied to W. However, in the above term, there
is an explicit substitution between abstraction and argument which prevents
us from seeing a β-redex, at least not one of the usual form (λb.−)W. The
traditional approach to explicit substitutions (or to let binders) is to introduce
commutation rules thanks to which such “hidden” redexes may be unveiled.
Accattoli’s approach is entirely different: his idea is that terms should behave
like proof nets, i.e., there simply ought to be a β-redex in T1, without any
further rewriting being necessary. He found an extremely simple, consistent
way of doing this, which is to generalize the notion of β-redex to terms of the
form

(λb.−)[−]W,

where [−] is an arbitrary sequence of explicit substitutions/let binders, i.e., a
substitution context as defined in Fig. 1.4. So we have

T1 → xW[!x := U] =: T2.

Suppose now that
U := (λc.!y[!y := c])V.

We have
T2 → xW[!x := !y[!y := V]] =: T3.

Again, regardless of the shape of V, proof nets are able to “see” that the
value of x is the same as that of y, i.e., there is an immediately reducible
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cut performing this identification. And yet, T3 contains no let-redex, at least
not of the usual form −[!x := !Z] (we stress that !y[!y := V] is implicitly
parenthesized as (!y)[!y := V], i.e., it is not of the form !Z). So let-redexes too
must be generalized, namely to

−[!y := !Z[−]],

allowing us to further reduce, without commutation steps, as

T3 → yW[!y := V].

Accattoli’s formulation of reduction actually includes a further technical
adjustment (introduced in his work with Kesner [AK12]): the “global” reduc-
tion step

T[!x := !U[−]]→! T{U/x}[−]

is decomposed into

C{x}[!x := !U[−]]→ls C{U}[!x := !U][−],
T[!x := !U[−]]→gc T[−] x ̸∈ fv(T),

where C is an arbitrary context not capturing x. In other words, the copies
of U are created “on demand”, until U is no longer needed and is therefore
“garbage-collected”. This is of course semantically sound: →gc is just a spe-
cial case of →! and →ls relates two terms which are equivalent with respect
to →! (namely, T →ls T′ implies T →!

∗
! ← T′). This decomposition enables

a finer-grained study of normalization and allows Accattoli’s linear substitu-
tion calculus to neatly encode abstract machines (we will mention this again
below). It is also useful in terms of complexity (see Chapter 3), but for the mo-
ment we stick to the traditional formulation, on the grounds that it suffices for
our purposes and that Fig. 1.3 is enough to define permutation equivalence
(further equations would be needed for→ls).

Although we will never use it, for the sake of completeness we give the
standard simple type assignment for Λ! in Fig. 1.5. The types are

A, B ::= α
∣∣ A⊸ B

∣∣ !A.

Typing judgments are of the form Θ; Γ ⊢ T : A where, for typographic conve-
nience, all type declarations for cartesian (resp. linear) variables are collected
in Θ (resp. Γ). In those judgments, we always have T : l. When T : c, we
use judgments of the form Θ ⊢c T : A, in which all variables declared in
Θ are cartesian. We invite the reader to check that, after erasing the term
annotations, one obtains a natural deduction formulation of the implicational
fragment of propositional intuitionistic multiplicative exponential linear logic.

Accattoli’s rewriting methodology is sometimes called “rewriting at a dis-
tance”, because proximity in graphs (the truly relevant notion) is not reflected
in the corresponding terms, and subterms may form a redex even if they seem
far apart. It is grounded in work by Accattoli and Kesner [AK12] and was fore-
shadowed, although incompletely, by Milner [Mil07]. In spite of its apparent
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; a : A ⊢ a : A
lvar

Θ; Γ, a : A ⊢ T : B
Θ; Γ ⊢ λa.T : A⊸ B

lam
Θ; Γ ⊢ T : A⊸ B Υ; ∆ ⊢ U : A

Θ, Υ; Γ, ∆ ⊢ TU : B
app

x : A;⊢ x : A
cvar

Θ;⊢ T : A
Θ ⊢c !T : !A

box
Υ; ∆ ⊢ U : !A Θ, x : A; Γ ⊢ T : C

Θ, Υ; Γ, ∆ ⊢ T[!x := U] : C
let

Θ ⊢c T : A
Θ;⊢ T : A

lin
Θ; Γ ⊢ T : C

Θ, x : A; Γ ⊢ T : C
weak

Θ, x : A, y : A; Γ ⊢ T : C
Θ, x : A; Γ ⊢ T{x/y} : C

cntr

Figure 1.5: Term assignment for intuitionistic linear logic.

naiveness, this viewpoint has strikingly deep applications in rewriting the-
ory [Acc12, ABKL14], the complexity of λ-calculus evaluation [AL16] as well
as in programming languages theory, where it induces an extremely precise
connection with abstract machines [ABM14, ABM15]. It is also the basis of the
cleanest and most concise formulation of call-by-need that the author is aware
of [ABM14].

Although not strictly necessary to the work presented here, rewriting at
a distance still brings great simplifications, similar to the simplifications in-
duced on cut-elimination by moving from sequent calculus to proof nets: the
rewriting rules closely reflect the logical structure, without inessential syn-
tactic detours. In the case of Λ!, there are two connectives (⊸ and !), so we
have 2 rewriting rules, instead of the 6 required by the traditional approach.
Adding the remaining connectives of intuitionistic linear logic (⊗, 1, & and
⊕) would bring the number of rewriting rules to 6, whereas the traditional
approach would require several dozens (66, if we did not miscount).

1.2.2 Girard’s translations

Let us give a couple of (important) examples of encodings of term calculi seen
as morphisms of 2-operads. We start with inductively defining the following
map from λ-terms to terms of Λ!:

G0(x) := x

G0(λx.M) := λa.G0(M)[!x := a]

G0(MN) := G0(M)!G0(N).
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An immediate induction shows that G0(M{N/x}) = G0(M){G0(N)/x}. We
may extend this map on reduction terms by letting

G0(MLx ← NM) := G0(M)[!x := a]La← !G0(N)M
; G0(M)Lx ← G0(N)M!.

Note that

G0(MLx ← NM) : G0((λx.M)N) = (λa.G0(M)[!x := a])!G0(N)

→ G0(M)[!x := !G0(N)]

→ G0(M){G0(N)/x} = G0(M{N/x}),

as expected. Since the reduction terms of the λ-calculus are generated by
MLx ← NM, this is enough to define G0 everywhere. And yet, the above does
not define a morphism of 2-operads Λ→ Λ!, because of a subtle but important
point: Λ, as we defined it, is monochromatic, whereas Λ! has two colors. Now,
it is enough to inspect the definition to see that, for all M, fv(G0(M)) contains
only cartesian variables but is never of the form !T, so it is a morphism of
Λ!(c

n; l): source and target colors do not match, so no matter what we choose
as the image of ∗ (the only color of Λ), we are in trouble. The connoisseur
will have understood that, in terms of linear logic types, we have c = !l and
we are replacing the equation ∗ = ∗ → ∗ (intuitionistic arrow) with Girard’s
translation l = !l⊸ l, so the asymmetry is inevitable.

There are two ways out of this apparent dead-end. The first is to coerce
encodings to be of the form !T: we simply define

G!(φ) := !G0(φ),

for all reduction terms, including terms themselves. In this way, everything
becomes consistent with the choice G!(∗) := c. Indeed,

G!(M ◦i N) = G!(M{N/xi}) = !G0(M{N/xi})
= !(G0(M){G0(N)/xi}) = !G0(M){G0(N)/xi}
= G!(M) ◦i

c G!(N)

(remember that, in Λ!, T ◦i
c !U = T{U/xi}). We have thus defined a morphism

of 2-operads
G! : Λ −→ Λ!,

which amounts to using G0 with a useless !(−) around everything.
The other solution is to change the presentation of the λ-calculus, making it

bichromatic too. This amounts to taking seriously the idea that the λ-calculus
is the Kleisli category of the comonad !(−) of linear logic. So we have the
color of terms t and the color of values v (the terminology is chosen in view
of the call-by-value case, see below). Only variables of color v exists, whereas
terms are of color t by default. However, since we are in call-by-name, there
is a coercion rule saying that everything is (also) a value. The corresponding
operad Λk (“k” is for “Kleisli”) is presented in Fig. 1.6.
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Colors: t, v (ranged over by C below).

Terms:

x : v ⊢ x : t
var

Γ, x : v ⊢ M : t
Γ ⊢ λx.M : t

lam
Γ ⊢ M : t ∆ ⊢ N : t

Γ, ∆ ⊢ MN : t
app

Γ ⊢ M : t
Γ ⊢ M : v

val
Γ ⊢ M : C

Γ, x : v ⊢ M : C
weak

Γ, x : v, y : v ⊢ M : C
Γ, x : v ⊢ M{x/y} : C

cntr

Basic steps: as in the usual λ-calculus.

Figure 1.6: Bichromatic presentation of the (call-by-name) λ-calculus Λk.

It is clear that Λk is just a different presentation of the usual λ-calculus, just
with two copies of every λ-term, one of type t and one of type v. The latter
is the one we (silently, because there is no syntactic difference) use when we
substitute a λ-term for a variable.

Now it becomes possible to use G0 to define a morphism

Gk : Λk −→ Λ!.

It is enough to set Gk(t) := l, Gk(v) := c, Gk = G0 on λ-terms of type t and,
on λ-terms of type v, we define Gk(M : v) := !G0(M) (in fact, Gk(M : v) =
G!(M)). Note that, since only composition of color v exists in Λk (by the way,
this is a genuine example of non-unital operad: there is no identity of type t),
we have

Gk(M ◦i
v (N : v)) = G0(M{N/xi}) = G0(M){G0(N)/xi}

= G0(M) ◦i
c !G0(N) = Gk(M) ◦i

c Gk(N : v),

where we assume that a term has type t unless otherwise stated. The case
in which M : v works just as for the definition of G!. So we have, indeed, a
morphism of operads.

The bichromatic presentation of the λ-calculus is more general than the
monochromatic one: we have i : Λ ↪→ Λk by setting i(∗) := v, and G! = Gk ◦ i.
In fact, there is also a suboperad Λ0 ↪→ Λk obtained by keeping only λ-terms
of type t. This 2-operad is particularly degenerate because composition is
void; G0 becomes a well-defined morphism on it, which will have a remark-
able role when we will discuss intersection types (Chapter 2).

Before moving on, we should check that the above definition is compatible
with permutation equivalence: technically speaking, what we did above is
assigning a reduction term G0(ρ) of Λ! to a reduction term ρ of Λk (or Λ); it
is possible in principle that ρ ∼ τ and yet G0(ρ) ̸∼ G0(τ), in which case the
definition would be unsound. Fortunately, it is easy to check that this is not
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the case. For example, the diagram

(λx.M)N
MLx←NM //

(λx.M)τ
��

∼

M{N/x}

M{τ/x}
��

(λx.M)N′
MLx←N′M

// M{N′/x}

(which is essentially the unnest rule of Fig. 1.3) becomes

(λx.M)g!Ng
Mg [!x:=a]La←!NgM //

(λx.M)g!τ
��

∼

Mg[!x := !Ng]
MgLx←NgM! //

Mg [!x:=!τg ]

��
∼

Mg{Ng/x}

Mg{τg/x}
��

(λx.M)g!N′g Mg [!x:=a]La←!N′gM
// Mg[!x := !N′g] MgLx←N′gM!

// Mg{N′g/x}

(we abbreviated G0(−) by (−)g).
The above is usually referred to as the call-by-name translation of the λ-

calculus in linear logic. It was introduced of course by Girard in his seminal
paper [Gir87]. Anachronistically, we immediately see in it the relevance of
linear logic with respect to explicit substitutions: if we take λx.M and MN
merely as syntactic sugar for λa.M[!x := a] and M!N, respectively, we see that
linear logic decomposes the usual β-reduction step

(λx.M)N → M{N/x}

into
(λx.M)N → M[!x := !N]→ M{N/x}.

The intermediate step “escapes” λ-calculus syntax, but it is captured as soon
as we introduce the explicit substitution notation M[x ← N] as syntactic sugar
for M[!x := !N]. People of course became aware of this soon after the intro-
duction of linear logic. What took a long time to realize (basically not until
around 2010, with Accattoli and Kesner’s contribution [AK12]) is that the
behavior of proof nets could be directly imported into explicit substitutions,
yielding a great benefit to that theory.

In the same paper [Gir87], Girard also introduced another translation,
which, for reasons that escape us, he deemed “boring”, and which is usually
(and more suitably) dubbed the call-by-value translation. In order to define it,
we must first present the call-by-value λ-calculus as a 2-operad, which is done
in Fig. 1.7. The translation is then a morphism

Gv : Λv −→ Λ!

defined as follows:

• on colors, Gv(t) := l and Gv(v) := c;
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Colors: t, v (ranged over by C below).

Terms:

x : v ⊢ x : v
var

Γ, x : v ⊢ M : t
Γ ⊢ λx.M : v

lam
Γ ⊢ M : t ∆ ⊢ N : t

Γ, ∆ ⊢ MN : t
app

Γ ⊢ V : v
Γ ⊢ V : t

val
Γ ⊢ M : C

Γ, x : v ⊢ M : C
weak

Γ, x : v, y : v ⊢ M : C
Γ, x : v ⊢ M{x/y} : C

cntr

Basic steps:

MLx ← VM : (λx.M)V →∗ M{V/x} V : v

Figure 1.7: The call-by-value λ-calculus Λv.

• on terms, we must distinguish whether the λ-term being encoded is of
type t or v:

Gv(x : v) := !x

Gv(λx.M : v) := !(λa.Gv(M : t)[!x := a])

Gv(MN : t) := ξ[!ξ := Gv(M : t)]Gv(N : t)

Gv(V : t) := Gv(V : v).

In the last line, what we mean is that Gv(V : t) is defined by taking
Gv(V : v), which is of type c, and coercing it to the type l using the
lin rule of Fig. 1.4. It is easy to check that Gv(M{V/x} : t) = Gv(M :
t){Gv(V : v)/x};

• on reductions, we set

Gv(MLx ← VM) := ξLξ ← Gv(λx.M)M!!Gv(V)

; Gv(M)[!x := a]La← !Gv(V)M
; Gv(M)Lx ← Gv(V)M!,

which corresponds to the reduction

Gv((λx.M)V : t) = ξ[!ξ := !(λa.Gv(M : t)[!x := a])]!Gv(V : v)

→ (λa.Gv(M : t)[!x := a])!Gv(V : v)

→ Gv(M : t)[!x := !Gv(V : v)]

→ Gv(M : t){Gv(V : v)/x} = Gv(M{V/x} : t),

as desired.

As for the call-by-name translation, verifying that the definition on 2-arrows
is consistent with permutation equivalence poses no difficulty.

The definition of Λv is quite natural as it mimics the usual, mutually in-
ductive definition (V ::= x

∣∣ λx.M and M, N ::= V
∣∣ MN). Nevertheless, one
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may wonder whether a monochromatic presentation of call-by-value exists;
after all, the calculus is still untyped. For instance, what happens if we just
take the monochromatic 2-operad Λ and restrict it to 2-arrows corresponding
to call-by-value reductions? The answer is that such a restriction does not
define a sub-operad of Λ, for the reasons discussed at the end of Sect. 1.1.4.
To see why, take

ρ := xLx ← yM : Iy→ y,

τ := z(xLx ← IM) : z(I I)→ zI.

These are both valid call-by-value reductions; and yet,

ρ{τ/x} = xLx ← zI IM; z(xLx ← IM) ∼ I(z(xLx ← IM)); xLx ← zIM

is not, because it fires a redex whose argument is either z(I I) or zI, neither of
which is a value. Using a color v of values and declaring all variables to be
of color v allows us to state that only values may be substituted to variables,
thus preventing the above problem.

1.2.3 Polyadic calculi and simple polyadic types

We now introduce the main actors of the thesis, the polyadic calculi. The op-
erads presenting them are defined in Fig. 1.8. They have two colors and are
actually all suboperads of Λp

c : they are obtained from it by removing none,
one or both of the two structural rules (weak and cntr), yielding the cartesian
(Λp

c ), relevant (Λp
r , no weakening), affine (Λp

a , no contraction) or linear (Λp
l )

polyadic calculus, respectively. As in Λ!, there are linear variables (of type l),
which we distinguish by denoting them a, b, and polyadic variables (of type
p), which may be linear, affine, relevant or cartesian. Similarly to Λ!, the only
terms of type p are of the form ⟨t1, . . . , tn⟩; these are called boxes.

For reasons which will become clear when we will introduce approxima-
tions, the definition of the hom-categories of Λp

p is slightly different from
what one would expect. First, to each cartesian variable xi of Λ! we assign
a countably infinite sequence of polyadic variables xi

1, xi
2, xi

3, . . ., denoted by
xi and called supervariable. In the terms of the form t[⟨x1, . . . , xn⟩ := u] (and
tLx1, . . . , xn ← uM[−]) we use α-equivalence to assume that x1, . . . , xn are al-
ways an initial segment of a supervariable. We then define the hom-categories
of Λp

p as follows:

• the multimorphisms of Λp
p(p

m, ln; C) are polyadic terms t : C such that
the free linear variables of t are exactly {a1, . . . , an} and the free polyadic
variables are contained in x1, . . . , xm (and, from Fig. 1.8, we see that
C = p implies n = 0). Furthermore, in case p ∈ {l, r} (i.e., when we
do not have weakening), we require that, for all 1 ≤ i ≤ m and for all
j < k ∈N, if xi

k is free in t, then so is xi
j.

• The 2-arrows are defined similarly.
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Colors: l and p, where p is one of l, a, r, c (below, we use C for a generic
color).

Terms:

x : p ⊢ x : l
var

Γ, a : l ⊢ t : l
Γ ⊢ λa.t : l

lam
Γ ⊢ t ∆ ⊢ u : l

Γ, ∆ ⊢ tu : l
app

x1 : p ⊢ t1 : l . . . xn : p ⊢ tn : l
x1 : p, . . . , xn : p ⊢ ⟨t1, . . . , tn⟩ : p

box
Γ ⊢ t : p
Γ ⊢ t : l

lin

∆ ⊢ u : l Γ, x1 : p, . . . , xn : p ⊢ t : l
Γ, ∆ ⊢ t[⟨x1, . . . , xn⟩ := u] : l

let ⊢ ⊥ : l
undef

Γ ⊢ t : C
Γ, x : p ⊢ t : C

weak,p∈{a,c}
Γ, x : p, y : p ⊢ t : C

Γ, x : p ⊢ t{x/y} : C
cntr,p∈{r,c}

Basic steps:

tLa← uM[−] : (λa.t)[−]u →∗ t{u/a}[−]
tLx ← uM[−] : t[⟨x⟩ := ⟨u⟩[−]] →∗ t{u/x}[−]

In the second basic step, x = x1, . . . , xm, u = u1, . . . , un and p ∈ {l, r} implies
m ≥ n, whereas any value of m, n is allowed if p ∈ {a, c}.
The notation [−] is a metavariable for substitution contexts, defined as fol-
lows:

[−] ::= {·}
∣∣ [−][⟨x⟩ := u].

We write t[−] instead of [−]{t}.

Figure 1.8: Polyadic calculi Λp
p.

Operadic composition in Λp
p is defined in a similar way as in Λ!: on the

color l, it is plain substitution; on the color p, we set

t ◦i
p ⟨u1, . . . , un⟩ := t{u1, . . . , un/xi}

where the latter term is defined by simultaneously substituting, for 1 ≤ j ≤ n,
each uj to xi

j and, if there is j > n such that xi
j is free in t, then it is replaced

with ⊥. This is the notion of substitution used in the second basic step of
Fig. 1.8. We repeat the observation made for Λ!: when terms of the form
⟨u1, . . . , un⟩ are seen as of type l, composition does not remove the box:

t ◦i
l ⟨u1, . . . , un⟩ = t{⟨u1, . . . , un⟩/ai}.

Polyadic calculi may be naturally endowed with a discipline of simple
types, coming from linear logic via Curry-Howard. Polyadic types are defined
inductively as follows:

A, B ::= α
∣∣ A⊸ B

∣∣ ⟨A1, . . . , An⟩,
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Colors: as explained in the text.

Terms:
; a : A ⊢ a : A

lvar
x : A;⊢ x : A

pvar

Θ; Γ, a : A ⊢ t : B
Θ; Γ ⊢ λa.t : A⊸ B

lam
Θ; Γ ⊢ t : A⊸ B Υ; ∆ ⊢ u : A

Θ, Υ; Γ, ∆ ⊢ tu : B
app

Θ1;⊢ t1 : A1 . . . Θn;⊢ tn : An

Θ1, . . . , Θn ⊢p ⟨t1, . . . , tn⟩ : ⟨A1, . . . , An⟩
box

Θ ⊢p t : A
Θ;⊢ t : A

lin

Υ; ∆ ⊢ u : ⟨A1, . . . , An⟩ Θ, x1 : A1, . . . , xn : An; Γ ⊢ t : C
Θ, Υ; Γ, ∆ ⊢ t[⟨x1, . . . , xn⟩ := u] : C

let

Θ; Γ ⊢ t : C
Θ, x : A; Γ ⊢ t : C

weak p∈{a,c}
Θ, x : A, y : A; Γ ⊢ t : C
Θ, x : A; Γ ⊢ t{x/y} : C

cntr p∈{r,c}

Basic steps: The same as in Fig. 1.8, with the obvious typing.

Figure 1.9: The 2-operad Polyp of simply-typed polyadic terms.

where n = 0 is allowed. The type derivations are defined in Fig. 1.9, which
induces a 2-operad of (Church-style) simply-typed polyadic terms. The colors
are the polyadic types, plus a color ⟨A1, . . . , An⟩p for each sequence of types
A1, . . . , An. We use the following notations for typing judgments:

• Θ; Γ ⊢ t : A, in which all polyadic (resp. linear) variables are typed in Θ
(resp. Γ) and t : l;

• Θ ⊢p t : A, in which t : p, so in fact t = ⟨u1, . . . , un⟩ and this is just a
notation for Θ;⊢ ⟨u1, . . . , un⟩ : ⟨B1, . . . , Bn⟩p, with A = ⟨B1, . . . , Bn⟩.

The multimorphisms of the hom-category

Polyp(⟨B
1⟩p, . . . , ⟨Bm⟩p, C1, . . . , Cn; A),

where Ci is not of the form ⟨D⟩p, are defined in a similar way to the hom-
categories of Λp

p: they are Church-style terms/derivations of

x1
1 : B1

1 . . . , x1
k1

: B1
k1

, . . . , xm
1 : Bm

1 , . . . , xm
km

: Bm
km

; a1 : C1, . . . , an : Cn ⊢ t : A

with xi a supervariable as in the case of Λp
p (and, in case A = ⟨D1, . . . , Dk⟩p,

then n = 0 and t = ⟨u1, . . . , uk⟩). Again, for every p, Polyp is a sub-operad of
Polyc.

Note that ⊥ is not typable. As a consequence, a basic step like tLx ← M is
not typed unless x ̸∈ fv(t), which means we must have p ∈ {a, c}, i.e., we
must have weakening. The presence of ⊥ is technically necessary to achieve
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monotonicity of reduction, in the sense of Proposition 12. However, ⊥ is not
a “valid” term, which is why it is discarded when types are introduced.

The type system is a direct import from linear logic, in the following sense:
if we erase term annotations from Fig. 1.9, we obtain a system of natural
deduction such that:

• if p = l, every rule is derivable in intuitionistic multiplicative linear logic
by setting ⟨A1, . . . , An⟩ := A1 ⊗ · · · ⊗ An;

• if p = a, every rule is derivable in intuitionistic multiplicative additive
linear logic by setting ⟨A1, . . . , An⟩ := (A1 & 1)⊗ · · · ⊗ (An & 1);

• if p = c, every rule is derivable in intuitionistic multiplicative expo-
nential linear logic (the system of Fig. 1.5) by setting ⟨A1, . . . , An⟩ :=
!A1 ⊗ · · · ⊗ !An.

Moreover, the reduction rules also reflect the cut-elimination rules of linear
logic, via the above encodings of ⟨−⟩. So the simply-typed polyadic calculi
are nothing really new: they are just fragments of propositional intuitionistic
linear logic. Indeed, linear polyadic calculi similar to our own have already
appeared here and there in the literature [Kfo00, Mel04].

The reason why we are interested in simple types is the following:

Proposition 5 (strong normalization) Simply-typed polyadic terms are strongly
normalizing.

Proof. By the above encoding of Polyc in linear logic, this is an immediate
consequence of strong normalization of propositional linear logic, which is
well known [Gir87]. □

It is worth observing that in the linear and affine cases (i.e., p ∈ {l, a}),
strong normalization actually holds even in the untyped calculus (i.e., in Λp

l

and Λp
a), for trivial reasons: the size of terms strictly decreases under reduc-

tion.

1.3 The Approximation Theorem

1.3.1 Girard’s cue

In the concluding sections of his paper introducing linear logic [Gir87], Girard
observes that the formulas of propositional linear logic may be approximated
arbitrarily well by formulas of its “purely linear” fragment (multiplicative
additive linear logic, MALL). Let us quote directly from Sect. 5.6 of his paper:

[T]he approximation theorem [. . . ] is just the mathematical con-
tents of our slogan: usual logic is obtained from linear logic (without
modalities) by a passage to the limit.
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5.1. Definition (approximants). The connectives ! and ? are approx-
imated by the connectives !n and ?n (n ̸= 0):

!n A = (1 & A)⊗ · · · ⊗ (1 & A) (n times)

?n A = (⊥⊕ A)` · · ·` (⊥⊕ A) (n times)

5.2. Theorem (Approximation Theorem). Let A be a theorem of linear
logic; with each occurrence of ! in A, assign an integer ̸= 0; then it is
possible to assign integers ̸= 0 to all occurrences of ? in such a way that
if B denotes the result of replacing each occurrence of ! (respectively ?) by
!n (respectively ?n) where n is the integer assigned to it, then B is still a
theorem of linear logic.

Without entering into the technical details, the intuition is that !n A means
“A is available at most n times”, which is indeed an approximation of !A,
whose intuitive meaning is “A is available at will”. (The dual approximation
?n A means “A⊥ will be needed at most n times”). Let us observe that the
approximations !n A and ?n A are formulas of MALL as long as A is. Therefore,
the formula B of the Approximation Theorem is a MALL formula (i.e., it has
no modalities) and, by cut-elimination, its proof is also in MALL.

The proof of Girard’s Approximation Theorem is of little interest: it is a
straightforward induction on the cut-free proof of A, using the key property
that !m A ⊸ !n A with m ≥ n. In fact, from the computational viewpoint,
invoking cut-elimination sort of obscures the actual depth of the theorem. In
what follows we will take, so to speak, a complementary approach: we will
forget types and concentrate solely on the computational aspect.

Of course, ours is not the first attempt at providing a formal content to
the idea underlying Girard’s Approximation Theorem (i.e., Equation 1). For
instance, Melliès, Tabareau and Tasson interpreted it as a categorical limit,
giving sufficient conditions for the formula expressed by Equation 1 to yield
the free exponential modality in a model of linear logic [MTT09]. Our ap-
proach is similar to that of Ehrhard and Regnier [ER08], who also use a term
calculus (the resource λ-calculus) to approximate λ-terms. We will discuss a
bit more thoroughly the comparison with that work in Sect. 2.4.3, after having
developed a sufficient amount of technical material.

1.3.2 Affine approximations

Consider the system Polya defined in Sect. 1.2.3. As a logical system, this
is just intuitionistic multiplicative linear logic (IMLL) plus affine tensors of
arbitrary arity, i.e., it is exactly IMLL plus the approximation modalities !n de-
fined by Girard. Therefore, Λp

a (the polyadic calculus underlying Polya) is the
natural setting for formulating a computational version of the Approximation
Theorem.

Definition 8 (approximation order) We define the approximation order ⊏∼ on
reduction terms of Λp

a by means of the rules of Fig. 1.10. The order also applies on
terms, by considering them as identity reductions. It also extends to contexts, by
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x ⊑ x
var

ρ ⊑ ρ′

λa.ρ ⊑ λa.ρ′
lam

ρ ⊑ ρ′ τ ⊑ τ′

ρτ ⊑ ρ′τ′
app

ρ1 ⊑ ρ′1 . . . ρn ⊑ ρ′n n ≤ m

⟨ρ1, . . . , ρn⟩ ⊑ ⟨ρ′1, . . . , ρ′m⟩
box

⊥ ⊑ ρ
undef

ρ ⊑ ρ′ τ ⊑ τ′ n ≤ m xn+1, . . . , xm ̸∈ fv(ρ)
ρ[⟨x1, . . . , xn⟩ := τ] ⊑ ρ′[⟨x1, . . . , xm⟩ := τ′]

let

(λa.t)[−]u ⊑ (λa.t′)[−]′u′

tLa← uM[−] ⊑ t′La← u′M[−]′
beta

t[⟨x⟩ := ⟨u⟩[−]] ⊑ t′[⟨x′⟩ := ⟨u′⟩[−]′]
tLx ← uM[−] ⊑ t′Lx′ ← u′M[−]

theta

ρ ⊑ ρ′ τ ⊑ τ′

ρ; τ ⊑ ρ′; τ′
comp

ρ ∼ ρ′ ρ′ ⊑ τ′ τ′ ∼ τ

ρ ⊏∼ τ
permeq

Figure 1.10: Approximation order on affine polyadic reductions.

treating the hole just like the term ⊥.

It should be clear that the relation ⊑ of Fig. 1.10 is defined on reduction se-
quences in the strict syntactic sense, i.e., we are not taking any quotient, not
even under structural equivalence (contrarily to what we usually do). The
relation ⊏∼ takes permutation equivalence (and, therefore, structural equiva-
lence) into account. For instance, if ρ : t →∗ t′, τ : t′ →∗ t′′, t ⊑ ρ and τ ⊑ τ′,
then t; τ ⊑ ρ; τ′, from which we may deduce τ ⊏∼ ρ; τ′ but not τ ⊑ ρ; τ′.

Let us make two immediate observations, which will be tacitly used in the
sequel:

• every rule of Fig. 1.10 is valid with ⊏∼ in place of ⊑;

• on terms, ⊏∼ coincides with ⊑.

We also list a few properties which will be quite useful in the sequel (especially
points 3 and 6):

Lemma 6 1. For every context C and terms r and t′, C{r} ⊑ t′ implies t′ =
C′{r′} for some C ⊑ C′ and r ⊑ r′;

2. if t ⊑ t′ and u ⊑ u′, then t{u/x} ⊑ t′{u′/x};

3. if ρ : t→∗ t′, τ : u→∗ u′ and ρ ⊏∼ τ, then t ⊑ u and t′ ⊑ u′;

4. if ρ ⊑ ρ′ and u ⊑ u′, then ρ{u/x} ⊑ ρ′{u′/x};
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5. if v ⊑ v′ and τ ⊑ τ′ then v{τ/x} ⊑ v′{τ′/x};

6. if ρ ⊑ ρ′ and τ ⊑ τ′, then ρ{τ/x} ⊑ ρ′{τ′/x}; therefore,
if ρ ⊏∼ ρ′ and τ ⊏∼ τ′, then ρ{τ/x} ⊏∼ ρ′{τ′/x}.

Proof. Points 1 and 2 are obtained by straightforward inductions, on C and
t, respectively. For point 3, ρ ⊏∼ τ means ρ ∼ ρ′ ⊑ τ′ ∼ τ; the proof is then
by induction on the derivation of ρ′ ⊑ τ′, using point 2 in the beta and theta
cases. Point 4 is by induction on ρ (point 2 is one of the inductive cases).
For point 5, we observe that, by affinity, there is at most one occurrence of
x is v; if x ̸∈ fv(v), the result is trivial, so we may suppose v = C{x} with
x not appearing in C. At this point, the proof proceeds straightforwardly by
induction on τ. Finally, by definition of general substitution for reduction
terms, point 6 is an immediate consequence of points 4 and 5. □

It may not be obvious that ⊏∼ is, indeed, a partial order. In fact, this is
the case if we are willing to work modulo permutation equivalence, which is
what our operadic approach forces us to do anyway.

Lemma 7 For all reduction terms ρ, ρ, τ, τ′:

1. ρ ⊑ τ ∼ τ′ implies ρ ∼ ρ′ ⊑ τ′ for some ρ′;

2. ρ ⊑ τ ∼ τ′ ⊑ ρ implies ρ = τ = τ′.

Proof. Both points follow immediately by induction once they are established
in the particular case in which ∼ is replaced by ∼1, where by ∼1 we mean that
exactly one rule of Fig. 1.2 or Fig. 1.3 is applied (inside an arbitrary context).
For point 1, this is proved by an induction on the derivation of ρ ⊑ τ joint with
a case analysis on ∼1. Albeit tedious, this is not particularly problematic. For
point 2, we define the syntactic length of a reduction term ψ to be #ψ := n + 1
where n is the number of semicolons in ψ. Then, we observe that φ ⊑ ψ
implies #φ = #ψ, so under our hypotheses we have #ρ = #τ = #τ′. This puts
a heavy constraint on the step ∼1: there are only two possibilities, which are,
again, tedious but unproblematic. □

Proposition 8 The relation ⊏∼ is a preorder such that ρ ⊏∼ τ and τ ⊏∼ ρ imply
ρ ∼ τ.

Proof. That ⊑ is a partial order is immediate from the rules of Fig. 1.10.
Reflexivity of ⊏∼ trivially follows. Transitivity and antisymmetry modulo ∼
follow from Lemma 7. For the former, ρ ⊏∼ τ and τ ⊏∼ ψ imply the existence
of ρ′, τ′, τ′′, ψ′ such that ρ ∼ ρ′ ⊑ τ′ ∼ τ ∼ τ′′ ⊑ ψ′ ∼ ψ, and we conclude
ρ ⊏∼ ψ by point 1 and transitivity of ⊑ and ∼. For the latter, ρ ⊏∼ τ and τ ⊏∼ ρ
imply the existence of ρ′, ρ′′, τ′, τ′′ such that ρ′ ⊑ τ′ ∼ τ ∼ τ′′ ⊑ ρ′′ ∼ ρ ∼ ρ′,
so we apply point 1 and obtain some τ1 such that ρ′ ⊑ τ′ ∼ τ1 ⊑ ρ′, and we
conclude ρ ∼ τ by point 2. □
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The whole point of course is that ⊏∼ immediately lifts to a partial order on
∼-equivalence classes: if R, S are two such classes, just define R ≲ S iff there
exist ρ ∈ R, τ ∈ S such that ρ ⊏∼ τ. If we denote by [ρ] the ∼-equivalence class
of ρ, we have [ρ] ≲ [τ] iff ρ ⊏∼ τ, so≲ is indeed a partial order by Proposition 8,
and we may transparently use representatives instead of equivalence classes,
which is what we will always do in the sequel.

Before moving on, let us comment on the technical necessity of affinity and
of the term ⊥, which was mentioned in Sect. 1.2.3. Both are motivated by the
desire (which, as we will see, is actually also a technical necessity) of making
computation monotonic (Proposition 12): in a nutshell, if t →∗ u and t ⊑ t′,
then we must have t′ →∗ u′ such that u ⊑ u′. For affinity, consider

t := u[⟨⟩ := ⟨⟩], t′ := u[⟨⟩ := ⟨v⟩].

We have t → u and t ⊑ t′, but, in absence of weakening, v cannot be erased
and t′ is “stuck”. So rule theta of Fig. 1.10 uses weakening.

For what concerns ⊥, let t be as above, and let

t′ := u′[⟨x⟩ := ⟨⟩],

such that u ⊑ u′ and x ̸∈ fv(u). Again, we have t→ u and t ⊑ t′ and yet, if we
want to reduce t′, we do not know what to substitute for x, which may appear
in u′. This leads to the introduction of an “undefined” term in the reduction
t′ → u′{⊥/x}. Note that this is monotonic because u ⊑ u′{⊥/x} by a direct
application of point 2 of Lemma 6.

1.3.3 Ideal completion in posetal double categories

The approximation order may be formulated very naturally in the language of
double categories. Instead of considering 2-operads, we will consider DblPos-
operads, i.e., operads enriched in posetal double categories. Let us give a very
quick account of these notions.

Definition 9 (posetal double category) A double category is a category inter-
nal to Cat. We will mostly need the special case of posetal double categories,
which are categories internal to Pos, the category of posets and monotonic func-
tions. More explicitly, a posetal double category D consists of:

• a poset (D0,≤0), whose elements are called objects;

• a poset of (D1,≤1) of arrows between objects, whose composition, denoted
by ·, is strictly associative and has strict neutral elements ida, such that

– if f : a→ a′, g : b→ b′ and f ≤1 g, then a ≤0 b and a′ ≤0 b′;

– if a ≤0 b, then ida ≤1 idb;

– if f : a→ b, g : b→ c, f ′ : a′ → b′, g′ : b′ → c′ and f ≤1 f ′, g ≤1 g′,
then g · f ≤1 g′ · f ′;

A posetal double category D has two opposites: a vertical opposite Dop, in
which the order on the posets D0 and D1 is reversed, and a horizontal opposite
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Dco, in which the direction of the arrows is reversed. A general double category
D also has a transpose Dt, in which the role of vertical and horizontal arrows
is exchanged. The transpose of a posetal double category is not posetal in general
but exists as a double category, and we will use it. Of course, all of these three
involutions may be combined, which we denote by Dtcoop.

A morphism of posetal double categories F : D → D′ is a pair (F0 : D0 →
D′0, F1 : D1 → D′1) of monotonic functions satisfying the obvious functoriality
conditions:

• if f : a→ b, then F1( f ) : F0(a)→ F0(b);

• F1(g · f ) = F1(g) · F1( f ) and F1(ida) = idF0(a).

We denote by DblPos the category of posetal double categories and their morphisms.
This category has products, which are inherited from Pos.

The forgetful functor Pos→ Set immediately lifts to a functor

Hor : DblPos→ Cat

(our categories are small, hence they are categories internal to Set).5 This functor is
easily seen to preserve products.

The idea now is to promote Λp
a to a DblPos-operad by considering cells

of the form

t ∗ρ //

⊏∼ u⊑ ⊑

t′ ∗
ρ′

// u′

We will give the exact definition momentarily; for the time being, let us look
at a motivating example. Let I := λx.x, and let

tm,n := ⟨
m︷ ︸︸ ︷

I, . . . , I,

n︷ ︸︸ ︷
I I, . . . , I I⟩,

ρm,n := ⟨
m︷ ︸︸ ︷

I, . . . , I, xLx ← IM,

n︷ ︸︸ ︷
I I, . . . , I I⟩ : tm,n+1 → tm+1,n.

We invite the reader to check that ρm,n ⊏∼ ρm,n+1 and that tm,0 ⊏∼ ρm,0. Then,

5The reason behind the notation Hor is that this is a special case of the so-called horizontal edge
category of a double category.
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we may construct the following “patchwork” of cells:

t0,0 t0,0 t0,0 t0,0⊑ ⊑ ⊑ ⊑

t0,1 // t1,0 t1,0 t1,0⊑ ⊑ ⊑ ⊑

t0,2 // t1,1 // t2,0 t2,0⊑ ⊑ ⊑ ⊑
t0,3 // t1,2 // t2,1 // t3,0⊑ ⊑ ⊑ ⊑

...
...

...
...

This “patchwork” may be extended arbitrarily, both vertically and horizon-
tally. We are tempted to say that the increasing chain t0,n tends to the infini-
tary term t0,∞ := ⟨I I, I I, I I, . . .⟩ (with infinitely many copies of I I), whereas
tn,0 tends to t∞,0 := ⟨I, I, I, . . .⟩, and that the longer and longer reductions
t0,n →∗ tn,0 tend to a reduction t0,∞ → t∞,0. This idea may be formalized by
adapting to double categories the well-known notion of ideal completion.

We remind that a subset ∆ ⊆ P of a poset (P,≤) is directed if it is non-
empty and if x, y ∈ ∆ implies that there exists z ∈ ∆ such that x, y ≤ z.
A directed-complete poset (dcpo) is a poset in which every directed set has a
supremum. A monotonic function between dcpo’s is (Scott-)continuous if it
preserves suprema of directed sets. We denote by Dcpo the category of dcpo’s
and continuous functions, and by DblDcpo the category of categories internal
to Dcpo.

An ideal of a poset P is a downward-closed directed subset of P. We denote
by Ide(P) the set of all ideals of P. When ordered by inclusion, this may be
seen to be a dcpo, called the ideal completion of P [AC98]. In fact, this is
the object part of a functor Ide : Pos → Dcpo which is left adjoint to the
forgetful functor Dcpo → Pos. The action on morphisms is as follows: given
a monotonic f : P → Q and I ∈ Ide(P), Ide( f )(I) := f (I)↓ ∈ Ide(Q), where
(·)↓ denotes downward closure. We will use the fact that Ide is (lax) monoidal,
via the maps (I, I′) 7→ I × I′ (whereas Ide(1) ∼= 1).

Unfortunately, the above construction does not lift to posetal double cate-
gories: the forgetful functor DblDcpo→ DblPos does not have a left adjoint.
To see this, consider the following posetal double category D:

• (D0,≤0) = N + N + N ∼= N× {0, 1, 2}, i.e., three disjoint copies of N

with its usual order

• (D1,≤1) is isomorphic to five disjoint copies of N: three consisting of the
identity arrows, and two consisting of the following families of arrows:

fi : (i, 0)→ (2i, 1) fi ≤1 f j whenever i ≤ j

gi : (2i + 1, 1)→ (i, 2) gi ≤1 gj whenever i ≤ j

• composition is trivial (no pair of non-identity arrows is composable).
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Consider now the category E whose objects are {a, b, b′, c} and with two non-
identity arrows f : a → b and g : b′ → c. This may be seen as a category
internal to Dcpo by endowing objects and arrows with the discrete order. Let
now F : D → E be the morphism such that, for all i ∈N,

• on objects, F(i, 0) = a and F(i, 2) = c, whereas F(i, 1) = b if i is even,
otherwise F(i, 1) = b′;

• on morphisms, F( fi) = f and F(gi) = g.

Suppose that we have D′ ∈ DblDcpo with η : D → D′. By completeness, D′
must contain, for each j ∈ {0, 1, 2}, an object (ω, j) = supi∈N η(i, j), as well
as two arrows fω : x → y and gω : y′ → z such that fω = supi∈N η( fi) and
g = supi∈N η(gi). Since the source and target functions of D′ are continuous,
we must have x = (ω, 0), y = y′ = (ω, 1) and z = (ω, 2). Therefore, D′
must also contain an arrow g∞ · f∞ : (ω, 0) → (ω, 2). But there is no way
to map this arrow to E continuously and consistently with F. Indeed, let
G ∈ DblDcpo(D′, E) be such that F = G ◦ η. Since F(i, 0) = a and F(i, 2) = c
for all i ∈ N, by continuity we must have G(ω, 0) = a and G(ω, 2) = c, so
G(g∞ · f∞) must have source a and target c; but there is no such arrow in E .

We will now give sufficient conditions for the left adjoint to exist. Recall
that, as a category internal to Pos, a posetal double category D is given by the
following data:

D0

e
��
D1

t
oo

soo D1 ×s,t D1
c // D1

where everything lives in Pos and D1 ×s,t D1 denotes the pullback of the
cospan formed by s and t (of course, certain diagrams involving the above
data are required to commute). The naive idea to obtain an “ideal completion”
of D is to apply the Ide functor to the above morphisms. While this is fine
for s, t and e (we obtain a “quiver with pointed loops”), it does not work for
c (composition) because Ide does not preserve pullbacks (it is cocontinuous,
as every left adjoint of a forgetful functor, but not continuous). However, we
may hope to define a monotonic function ĉ : Ide(D1)×Ide(s),Ide(t) Ide(D1) →
Ide(D1) such that

Ide(D1 ×s,t D1)
Ide(c) //

u
��

Ide(D1)

Ide(D1)×Ide(s),Ide(t) Ide(D1)

ĉ

55 (1.1)

commutes, where u is given by the universal property of the pullback
Ide(D1) ×Ide(s),Ide(t) Ide(D1). This is what will be ensured by our next def-
inition.

In the following, we consider general double categories and we write p :
a 7→ b to denote vertical arrows (which in the posetal case are just order
relations a ≤0 b) and we denote by · and ∗ horizontal and vertical composition
of cells, respectively.
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Definition 10 (monotonic posetal double category) Let D be a double cate-
gory and let f : a → b and p : b′ 7→ b. A cartesian lifting of f with respect
to p is a cell α

a′
f̂ //

p̂
��

⇓α

b′

p
��

a
f

// b

such that, if α′ is any cell whose vertical target is p and whose horizontal target is
f · g for some g, then there exist unique cells

c′ //

��

⇓γ

a′1
q
��

a′

p̂
��

c g
// a

a′1 //

q
��

⇓δ

b′

a′
f̂

// b′

such that α′ = (α ∗ δ) · γ. Pictorially:

c′

--

��

**

⇓γ

a′1
��

//

⇓δ

b′

a′ //

��

⇓α

b′

p

��

c
f ·g

,,
g

**

⇓ α′

a
f

// b

A weak cartesian lifting is as above but γ, δ are not required to be unique. A double
category is (weakly) fibrational if every horizontal arrow has a (weak) cartesian
lifting with respect to every coterminal vertical arrow.

A posetal double category D is monotonic if Dtcoop is weakly fibrational (as
a double category). We denote by MntDblPos (resp. MntDblDcpo) the full
subcategory of DblPos (resp. DblDcpo) whose objects are monotonic.

The terminology “fibrational” is justified as follows.6 Let p : A → B be a
functor; one may define a double category D(p) such that:

• its objects are (the disjoint union of) the objects of A and B;

• its horizontal arrows are (the disjoint union of) the arrows of A and B;
6Note that this is unrelated to the notion of fibrant double category [Shu10], which is also

known as a framed bicategory [Shu08] and is essentially the same a proarrow equipment on a
bicategory.
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• there is a non-identity vertical arrow a 7→ b exactly when a ∈ A, b ∈ B
and b = p(a);

• there is a non-identity cell of horizontal source f : a → a′ and target
g : b→ b′ exactly when g = p( f );

• composition of horizontal arrows is as in A and B; from this, horizontal
composition of cells is defined in the obvious way, using the functoriality
of p; vertical composition is void, both for arrows and cells.

Then, D(p) is fibrational exactly when p is a fibration. In this particular case,
the cell δ is always the identity because D(p) is vertically degenerate (non-
identity vertical arrows are never composable).

Let us spell out what it means for a posetal double category D to be mono-
tonic. Remember that the horizontal arrows of D are “actual” arrows, whereas
the vertical arrows (and cells) are order relations ≤0 (and ≤1), and remember
that in Dtcoop horizontal and vertical arrows are swapped, and their direc-
tions reversed. So, when looking at the diagrams of Definition 10, horizontal
arrows → are to be read as ≥0, vertical arrows ↓ are to be read as arrows ↑,
and cells ⇓ are to be read as ≥1, yielding the following: for all b ≤0 a and
p : b → b′, there exists p̂ : a → a′ with p ≤1 p̂ such that, for all r : c → c′

such that p ≤1 r and a ≤0 c, there exists q : a′ → a′1 such that idb′ ≤1 q and
q · p̂ ≤1 r (and, therefore, p ≤1 p̂ · q ≤1 r). This is saying that “horizontal ar-
rows are monotonic” and, moreover, each arrow my be “overapproximated”
in a minimal way.

The property becomes especially conspicuous if we see objects as programs
and arrows as computations: if a program b may perform a computation
p, then an overapproximation a of b may perform an overapproximation p̂
of p (computation is monotonic!), which is minimal in the sense that every
overapproximation of p starting from an overapproximation of b “bigger”
than a is in fact an overapproximation of an extension of p̂.

The greater part of the rest of this section is devoted to proving the follow-
ing:

Theorem 9 The forgetful functor MntDblDcpo → MntDblPos has a left ad-
joint (̂·).

Let D be a monotonic posetal double category, and let (P,≤P) be the pull-
back Ide(D1)×Ide(s),Ide(t) Ide(D1) of the cospan formed by Ide(s) and Ide(t).
This may be described as

P = {(I, J) ∈ Ide(D1)× Ide(D1) | t(I)↓= s(J)↓}

with (I, J) ≤P (I′, J′) iff I ⊆ I′ and J ⊆ J′. If we see Ide(D1) as containing
the “limits” of all arrows of D, P is the poset of such limits which are com-
posable. It is easy to see that, given K ∈ Ide(D1 ×s,t D1) (i.e., an ideal of pairs
of composable arrows), the monotonic function u : Ide(D1 ×s,t D1) → P of
diagram 1.1 is defined by

u(K) := (π1(K), π2(K)).
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Now, we want to define a (monotonic) composition function

ĉ : P −→ Ide(D1)

making diagram 1.1 commute. The obvious definition is

ĉ(I, J) := {g · f | f ∈ I, g ∈ J, t( f ) = s(g)}↓,

which is easily seen to guarantee the commutation of diagram 1.1. However,
while certainly downward closed, the above set may fail to be directed; in
fact, it may very well be empty in general (the double category used above to
show that the ideal completion fails gives an example of such phenomenon).
This is where we need the fibrational hypothesis, which allows to prove the
following key technical result:

Lemma 10 Let D be monotonic and let (I, J) ∈ P (with P defined as above). Then,
for all f0 ∈ I and g0 ∈ J, there exist f ∈ I and g ∈ J which are composable and
such that f0 ≤1 f , g0 ≤1 g.

Proof. Let f0 ∈ I and g0 ∈ J, with f0 : a0 → b0 and g0 : b′0 → c0. Since
t(I)↓= s(J)↓, we have f ∈ I with f : a→ b such that b′0 ≤0 b. By directedness
of I, we may suppose f0 ≤1 f (if this is not the case, replace f with f ′ ∈ I
such that f0, f ≤1 f ′). By the same reasoning, we must have g′ ∈ J such that
g′ : b′ → c′, b ≤0 b′ and g0 ≤1 g′. Now, if we call ĝ : b→ ĉ the arrow obtained
by invoking the cartesian lifting of b′0 ≤ b with respect to g0, by minimality we
have g1 · ĝ ≤1 g′ for some g1 : ĉ → c. If we set g := g1 · ĝ, we have g : b → c
(so it is composable with f ) and g ∈ J by downward closure. □

Lemma 10 immediately implies that the set ĉ(I, J) defined above is an
ideal: first, it cannot be empty because I ̸= ∅ and J ̸= ∅; second, given
g1 · f1, g2 · f2 ∈ ĉ(I, J), by directedness of I and J we have f0 ∈ I and g0 ∈ J
such that f1, f2 ≤1 f0 and g1, g2 ≤1 g0, so we conclude by applying Lemma 10
to f0 and g0.

By way of similar applications of Lemma 10, it poses no particular prob-
lem to check that, taking ĉ as composition, one indeed obtains a mono-
tonic posetal double category D̂ on the quiver Ide(D0) ⇔ Ide(D1) resulting
from Ide(s), Ide(t), with identities Ide(e). The action of (̂·) on morphisms is
̂(F0, F1) := (Ide(F0), Ide(F1)); that this works is again an easy consequence

of Lemma 10. The fact that this is the left adjoint of the forgetful functor
MntDblDcpo → MntDblPos follows from the left adjointness of Ide. In a
sense, the definition of (̂·) is guaranteed to be universal, as long as the double
category actually exists, which is what the fibrational condition ensures.

We conclude this section by observing that (̂·) lifts to a functor
MntDblPos-Op → MntDblDcpo-Op. First, one uses the monoidality of
Ide to endow (̂·) with a lax monoidal structure in the obvious way. Then,
given a MntDblPos-operad C, we define Ĉ by keeping the same colors and

setting Ĉ(Γ; A) := Ĉ(Γ; A). Horizontal composition (and its identities) is de-
fined by precomposing the horizontal composition (and identities) with the
lax monoidal structure of (̂·).
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1.3.4 Infinitary affine polyadic terms

Let us prove that, indeed, computation in Λp
a is monotonic. We start by defin-

ing the notion of lift with respect to an overapproximation:

Definition 11 (lift) Let ρ : t →∗ u and t ⊑ t′. We define a reduction term ρ ↑ t′

of source t′ by induction on ρ:

• ρ = C{β}, with β a basic step: then, t = C{r} with r a redex, and point 1 of
Lemma 6 gives us t′ = C′{r′} with C ⊑ C′ and r ⊑ r′; by rule beta or theta
of Fig. 1.10 (according to the shape of r), there is a basic step β′ of source r′

such that β ⊑ β′, so we define ρ ↑ t′ := C′{β′};

• ρ = t (a term): we take ρ ↑ t′ := t′;

• ρ = ρ1; ρ2: if ρ1 ↑ t′ : t′ →∗ v′, we let ρ ↑ t′ := (ρ1 ↑ t′); (ρ2 ↑ v′).

It is immediate from the definition that ρ ⊑ ρ ↑ t′. It is easy to check that
ρ ∼ ρ′ implies ρ ↑ t′ ∼ ρ′ ↑ t′, i.e., the definition is consistent with permutation
equivalence.

Lemma 11 Let ρ′ : u′ →∗ u′′ be such that u ⊏∼ ρ′, with u a term (i.e., ρ′

overapproximates an identity reduction). Then, for all τ : u →∗ v, there exists
τ′ : u′ →∗ v′ such that v ⊑ τ′ and ρ′; (τ ↑ u′′) ∼ (τ ↑ u′); τ′.

Proof. First, we observe that the result follows from the special case in which
u ⊑ ρ′. Indeed, the general case is u ∼ φ ⊑ ψ ∼ ρ′; now, since u is a term,
we must have φ = u; · · · ; u with n > 0 occurrences of u (and some choice
of parentheses, which we omit), hence ψ = ρ′1; · · · ; ρ′n with ρ′i : u′i−1 →∗ u′i,
u′0 = u′ and u′n = u′′, and such that u ⊑ ρ′i for all 1 ≤ i ≤ n; then, if we admit
the (apparently) weaker version of the lemma, we have that, for all 1 ≤ i ≤ n,
there exists τ′i such that v ⊑ τ′i and ρ′i; (τ ↑ u′i+1) ∼ (τ ↑ u′i); τ′i ; therefore,
ρ′; (τ ↑ u′′) ∼ ρ′1; · · · ; ρ′n; (τ ↑ u′′) ∼ ρ1; · · · ; (τ ↑ u′n−1); τ′n ∼ · · · ∼ (τ ↑
u′); τ′1; · · · ; τ′n, so we conclude by letting τ′ := τ′1; . . . ; τ′n.

We may therefore assume u ⊑ ρ′. In that case, by definition of ⊑ (Fig. 1.10),
either ρ′ = u′ is also a term, in which case the result is trivial; or ρ′ = C{β}
such that the source of the redex β is not a subterm of u (e.g., u = ⟨I⟩ and
ρ′ = ⟨I, xLx ← IM⟩ : ⟨I, I I⟩ → ⟨I, I⟩). Therefore, the reduction τ cannot possi-
bly interfere with ρ′ (it reduces other redexes), and permutation equivalence
applies. This is formalized by a straightforward induction on u. □

Proposition 12 (monotonicity) Let ρ : t →∗ u, let t ⊑ t′ and let v′ be the target
of ρ ↑ t′. Then, for all ρ′′ : t′′ →∗ u′′ such that t′ ⊑ t′′ and ρ ⊏∼ ρ′′, there exists
ρ′ : u′ →∗ u′0 such that u ⊏∼ ρ′ and (ρ ↑ t′); ρ′ ⊏∼ ρ′′.

Proof. Again, it is enough to consider the special case ρ ⊑ ρ′′. In fact,
the general case is ρ ∼ ψ ⊑ ψ′′ ∼ ρ′′; if we admit the (apparently) weaker
statement, we get ψ′ such that u ⊏∼ ψ′ and (ψ ↑ t′); ψ′ ⊏∼ ψ′′; therefore, recalling
that ρ ∼ ψ implies ρ ↑ t′ ∼ ψ ↑ t′, we have (ρ ↑ t′); ψ′ ∼ (ψ ↑ t′); ψ′ ⊏∼ ψ′′ ∼ ρ′′,
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so we conclude by letting ρ′ := ψ′.
We now proceed by induction on the derivation of ρ ⊑ ρ′′. The key cases

are when the last rule is box or comp. In the first case, let us assume for
convenience of notations that t = ⟨t1⟩, t′ = ⟨t′1, t′2⟩ and t′′ = ⟨t′′1 , t′′2 , t′′3 ⟩. By
definition, we have t ↑ t′ = t′. Since t ⊑ ρ′′, we must be in one of the following
mutually exclusive cases:

1. ρ′′ = ⟨α′′1 , t′′2 , t′′3 ⟩,

2. ρ′′ = ⟨t′′1 , α′′2 , t′′3 ⟩,

3. ρ′′ = ⟨t′′1 , t′′2 , α′′3 ⟩,

with α′′i : t′′i →∗ u′′i an atomic reduction. Let us deal with each one of them:

1. we know that t1 ⊑ α′′1 , so we apply the induction hypothesis, which
gives us ρ′1 such that t1

⊏∼ ρ′1 and t′1; ρ′1
⊏∼ α′′1 ; we let the reader check that

ρ′ := ⟨ρ′1, t′2⟩ satisfies the desired properties;

2. we know that t′2 ⊑ t′′2 , the latter term being the source of α′′2 . There are
two possibilities:

• α′′2 reduces a redex not present in t′2; in that case, letting ρ′ := ⟨t′1, t′2⟩
meets the requirements;

• α′′2 reduces a redex which is also in t′2; in that case, we have a re-
duction α′2 : t′2 →∗ u′2 reducing that redex, so that α′2 ⊑ α′′2 , and we
conclude by letting ρ′ := ⟨t′1, α′2⟩.

3. Letting ρ′ := ⟨t′1, t′2⟩ (i.e., t′ itself) meets the requirements.

Suppose now that the derivation of ρ ⊑ ρ′′ ends with a comp rule. We
have ρ = ρ1; ρ2, with ρ1 : t →∗ v, and ρ′′ = ρ′′1 ; ρ′′2 , with ρ′′1 : t′′ →∗ v′′, such
that ρ1 ⊑ ρ′′2 and ρ2 ⊑ ρ′′2 . Let v′ be the target of ρ1 ↑ t′. We apply the
induction hypothesis to ρ1 ⊑ ρ′′1 , obtaining ρ′1 : v′ →∗ v′0 such that v ⊏∼ ρ′1 and
(ρ1 ↑ t′); ρ′1

⊏∼ ρ′′1 . This latter implies (by point 3 of Lemma 6) v′0 ⊑ v′′; hence,
if u′ is the target of ρ2 ↑ v′0, we apply the induction hypothesis to ρ2 ⊑ ρ′′2
and obtain ρ′2 : u′ →∗ u′0 such that u ⊏∼ ρ′2 and (ρ2 ↑ v′0); ρ′2

⊏∼ ρ′′2 . The fact
that v ⊏∼ ρ′1 allows us to apply Lemma 11: we get τ′ such that u ⊑ τ′ and
ρ′1; (ρ2 ↑ v′0) ∼ (ρ2 ↑ v′); τ′. We may then conclude by letting ρ′ := τ′; ρ′2.
Indeed, u ∼ u; u ⊏∼ τ′; ρ′2; and (ρ1; ρ2 ↑ t′); τ′; ρ′2 = (ρ1 ↑ t′); (ρ2 ↑ v′); τ′; ρ′2 ∼
(ρ1 ↑ t′); ρ′1; (ρ2 ↑ v′0); ρ′2 ∼ ρ′′1 ; ρ′′2 . □

It is straightforward to turn Λp
a into a MntDblPos-operad: simply pro-

mote each hom-category Λp
a(Γ; A) to a posetal double category using the ap-

proximation order; point 6 of Lemma 6 guarantees compatibility with op-
eradic composition. We denote by Λ⊑a the MntDblPos-operad thus obtained.

It is now possible to explain the reason behind the slightly quirky defini-
tion of Λp

a (and, in general, Λp
p): in view of applying ideal completion, we

need to be able to consider ideals as multimorphisms/2-arrows, and these
may have infinitely many free affine variables. Consider for instance the as-
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cending chain

x1⟨⟩ ⊑ x1⟨x2⟩ ⊑ x1⟨x2, x3⟩ ⊑ x1⟨x2, x3, x4⟩ ⊑ · · · (1.2)

Had we defined Λp
a in a more customary way, i.e., with each free affine variable

counting as an input of color a, the chain (1.2) would not belong to Λp
a(a

n; l)
for any n ∈ N and, therefore, the ideal completion would not introduce its
limit because it would simply fail to “see” the chain. With the definition we
adopted, the chain (1.2) is entirely in Λ⊑a (a; l), as long as we make sure that
all xi belong to the same supervariable (so, formally, we should write x1

i ).
Of course, Proposition 12 immediately gives us

Corollary 13 The operad Λ⊑a is in MntDblPos-Op, i.e., every Λ⊑a (Γ; C) is
monotonic.

We may therefore apply Theorem 9 (or, rather, its operadic version mentioned
at the end of the previous section) and define

Λ∞
a := Hor(Λ̂⊑a ),

i.e., we take the ideal completion of Λ⊑a and then forget the order, obtaining a
2-operad. Let us give some examples of how Λ∞

a may be seen as an infinitary
affine calculus. Let

∆n := λy.x0⟨x1, . . . , xn⟩[⟨x0, x1, . . . , xn⟩ := y],

Ωn := ∆n⟨∆n−1, . . . , ∆0, ∆0⟩.

If we denote by ρn the obvious reduction Ωn+1 →∗ Ωn, we have ρn ⊑ ρn+1 for
all n ∈ N. The ideal {ρn | n ∈ N}↓ has source and target equal to the ideal
{Ωn | n ∈ N}↓; clearly we are describing the reduction of the infinitary term
Ω∞ defined by

∆∞ := λy.x0⟨x1, x2, . . .⟩[⟨x0, x1, x2, . . .⟩ := y]

Ω∞ := ∆∞⟨∆∞, ∆∞, . . .⟩.

The term ∆∞ takes as input an infinite list, extracts the head and applies it to
the rest of the list. If we feed to ∆∞ an infinite list of copies of itself, we get
an infinite loop. Note that no duplication is performed during the reduction;
the calculus is still affine, it achieves non-termination thanks to its infinitary
character. Essentially, we have replaced a potential, non-linear infinity with
an actual, linear infinity.

The above is an example of term which is infinite “in width”. These are a
novelty in the context of infinitary term rewriting and are the most interest-
ing to us. Nevertheless, more traditional infinite terms (as in [KKSdV95]),
which are infinite “in height”, also exist in Λ∞

a . For instance, the ideal
{⟨⟩, ⟨⟨⟩⟩, ⟨⟨⟨⟩⟩⟩, . . .} corresponds to a term V satisfying the equation V = ⟨V⟩.
These two kinds of “infinities” may of course be combined, obtaining terms
satisfying equations such as U = ⟨U, U, U, . . .⟩.
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Let us look at a slightly more involved example: fix a sequence x0, x1, x2, . . .
of affine variables, and let u++ denote a term u in which each free xi is re-
placed by xi+1. Then, if we define

u0 := x0⟨⟩
un+1 := x0⟨u++

n ⟩
tn := λ f .un[⟨x0, . . . , xn−1⟩ := f ]

we have that the ideal {tn | n ∈ N} ↓ corresponds to the infinite term
λ f .x0⟨x1⟨x2⟨. . .⟩⟩⟩[⟨x0, x1, x2, . . .⟩ := f ]. This is essentially the Böhm tree of
a linear fixpoint combinator, linear in the sense that the function f takes as
argument a list with exactly one element. Note that, by contrast, the (per-
haps more natural) infinitary term λ f .x0(x1(x2(. . .)))[⟨x0, x1, x2, . . .⟩ := f ]
does not exist in Λ∞

a . The Böhm tree of the usual fixpoint combinator may
also be represented, although it is a bit more challenging from the notational
point of view. In fact, we will se that the infinitary λ-calculus Λ001 of Ken-
naway et al. [KKSdV97] may be embedded in Λ∞

a . Along with the usual
pure λ-calculus, this calculus contains also all Böhm trees, seen as infinitary
λ-terms.

It is possible to give an explicit description of Λ∞
a as a calculus of infini-

tary affine terms, as we did in [Maz12]. This amounts to allowing infinite
terms of the form ⟨t1, t2, t3, . . .⟩, in which the ti are furthermore allowed to
be defined coinductively. We will not indulge in the details but rather go
directly to the heart of the matter, which is recovering linear logic from Λ∞

a ,
thus achieving the computational reformulation of Girard’s Approximation
Theorem promised at the beginning of this section.

1.3.5 Recovering linear logic

Following Girard’s cue, it is intuitively clear how to construct an embedding
J−K of Λ! into Λ∞

a , the key case being the encoding of !T: if one supposes the
ideal JTK to be already defined, then J!TK should be an ideal of the form

{⟨t1, . . . , tn⟩ | ti ∈ JTK}.

Although morally correct, the above definition is technically wrong because
of affinity: we must make sure that t1, . . . , tn share no free variable. This is
obviously problematic, for instance, if T = x. It is clear that we should allow
JxK to be equal to {xi} for any i ∈ N (i.e., xi belongs to the supervariable
associated with x), so that J!xK may be any ideal of the form {⟨xi1 , . . . , xin⟩ |
n ∈ N, in arbitrary sequence}. So the embedding is not going to be uniquely
defined; but we may hope for it to be defined modulo an equivalence relation,
which is what we will aim at.

Before we continue, let us recall our convention that, for every term or
reduction term of Λp

a and for any of its subterms of the form ρ[⟨x1, . . . , xn⟩ :=
τ] or ρLx1, . . . , xn ← τM[−], we assume, using α-equivalence, that x1, . . . , xn is
the initial segment of a supervariable.
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We start by defining a map (−)• from Λp
a to Λp

c :

a• := a x•i := x

(λa.ρ)• := λa.ρ• ⟨ρ1, . . . , ρn⟩• := ⟨ρ•1 , . . . , ρ•n⟩
(ρτ)• := ρ•τ• (ρ[⟨x1, . . . , xn⟩ := τ])• := ρ•[⟨x⟩ := τ•]

(ρ; τ)• := ρ•; τ• (tLa← uM[−])• := t•La← u•M[−]•

(tLx1, . . . , xn ← u1, . . . , umM[−])• := t•Lx ← u•1 , . . . , u•mM[−]•

Note that this does not yield a morphism of operads: if ρ : t →∗ u, we do not
have in general that ρ• : t• →∗ u• (because of the last line of the definition). In
fact, saying that the target of (−)• is Λp

c is just a convenient way to say where
the images of (−)• belong, but such images will be used in a quite trivial way:
we just check them for equality.

Definition 12 (renaming equivalence) Let R, R′ be two ideals of Λ∞
a (multi-

morphisms or 2-arrows). We write R ≈ R′ just if there is an isomorphism of posets
ι : R→ R′ such that, for all ρ ∈ R, ρ• = ι(ρ)•.

In other words, two ideals are renaming equivalent when they are isomorphic
and the isomorphism relates terms which are equal once we forget the indices
of the affine variables, free or bound.

It is immediate that (ρ{τ/x})• = ρ•{τ•/x}, so R ≈ R′ and S ≈ S′ implies
R{S/x} ≈ R′{S′/x}; we also obviously have R; S ≈ R′; S′ (whenever this
makes sense), so we may form a 2-operad Λ∞

a /≈ by taking the quotient under
≈ in Λ∞

a . It is in this 2-operad that Λ! will be embedded, as follows:

JaK := {{a}↓}
Jλa.φK := {{λa.ρ | ρ ∈ R} | R ∈ JφK}

JφψK := {{ρτ | ρ ∈ R, τ ∈ S} | R ∈ JφK, S ∈ JψK, R # S}
JxK := {{xi}↓| i ∈N}

J!φK := {{⟨ρ1, . . . , ρn⟩ | ρi ∈ Ri, n ∈N} | (Ri)i∈N ∈ JφK,

Ri # Rj ∀i, j ∈N}
Jφ[!x := ψ]K := {{ρ[⟨x1, . . . , xm⟩ := τ] | ρ ∈ R, τ ∈ S,

m ≥ max i s.t. xi ∈ fv(ρ)}
| R ∈ JφK, S ∈ JψK, R # S}

JTLa← UM[−]K := {{tLa← uM[−]′ | t ∈ I, u ∈ J, [−]′ ∈ K}
| I ∈ JTK, J ∈ JUK, K ∈ J[−]K, I # J # K pairwise}

JTLx ← UM[−]K := {{tLx1, . . . , xm ← u1, . . . , unM[−]′ | t ∈ I, ui ∈ Ji, [−]′ ∈ K,

n ∈N,

m ≥ max i s.t. xi ∈ fv(t)}
| I ∈ JTK, (Ji)i∈N ∈ JUK, K ∈ J[−]K

I # Ji # Jj # K pairwise, ∀i, j ∈N}
Jφ; ψK := {{ρ; τ | ρ ∈ R, τ ∈ S} | R ∈ JφK, S ∈ JψK, R # S}
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where the notation R # S means fv(R) ∩ fv(S) = ∅, and each set in JφK is
understood to be closed under permutation equivalence.

By a straightforward induction on φ one may prove that, if φ : T →∗ U is
a 2-arrow of Λ!(l

m, cn; l), then for all R ∈ JφK, there exist I ∈ JTK, J ∈ JUK such
that R : I →∗ J is a 2-arrow of Λ∞

a (l
m, an; l). In particular, each R ∈ JφK is an

ideal. The approximation theorem will follow from a characterization of such
ideals.

The main point of a ⊏∼-ideal of terms is that it has an underlying syntactic
tree. Indeed, as pointed out in the previous section, ideals may be seen as
infinitary terms. In particular, an ideal R has a “kind”, which is the syntac-
tic constructor of its root (lvar, lam, app, etc.), and, when appropriate, it has
immediate “sub-ideals” corresponding to subterms: e.g., if R is of kind lam,
then there will be an ideal R1 such that R = {λa.ρ1 | ρ1 ∈ R1}; R1 is the
immediate sub-ideal of R. Of course, ideals of kind lvar, avar and undef do
not have immediate sub-ideals. Of special interest to us is the case of ideals
of kind box; such an ideal R has, for each i ∈ N, an immediate sub-ideal
πiR := {ρi | ⟨ρ1, . . . , ρn⟩ ∈ R, n ≥ i}↓. Note that πiR is defined for all i; at
worst, it will be equal to {⊥}. The same applies to ideals of kind theta.

Definition 13 (uniform, finitary ideal) We define the class of uniform ideals to
be the largest not containing {⊥}, closed under immediate sub-ideals and such that,
if R is uniform of kind box or theta, then πiR ≈ πjR for all i, j ∈N.

An ideal R is finitary if there is h ∈ N such that, for all ρ ∈ R, the height of ρ
(as a syntactic tree) is bounded by h.

Lemma 14 For every reduction term φ of Λ!, JφK is a ≈-equivalence class of fini-
tary uniform ideals.

Proof. A straightforward induction on φ, from the definition of J−K. □

Lemma 15 For every finitary uniform ideal R of Λ∞
a , there exists a unique reduc-

tion term φ of Λ! such that R ∈ JφK.

Proof. Note that finitary ideals have a well-defined notion of height: it is the
maximum height of their terms. We may therefore proceed by induction on
the height of R. The most interesting cases are the ones in which R is of kind
box or theta. We illustrate the first, the second is analogous. Being finitary
of course is stable under sub-ideals, so πiR is finitary uniform for all i ∈ N,
so by induction there is a unique φi such that Ri ∈ JφiK for all i ∈ N. But,
by uniformity, Ri ≈ Rj for all i, j ∈ N, so by Lemma 14 φi = φj =: φ for all
i, j ∈N, and this is obviously unique such that R = J!φK. □

Uniformity and being finitary are obviously preserved by substitution and
composition, and are stable under renaming equivalence. Therefore, we may
define a 2-operad Λ∞fu

a /≈ which is a suboperad of Λ∞
a /≈ in which we only

consider finitary uniform ideals. This is exactly linear logic:
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Theorem 16 (Girard’s approximation theorem, computational version)
There is an isomorphism of 2-operads

Λ∞fu
a /≈ ∼= Λ!.

Proof. We have basically already defined a morphism

J−K : Λ! −→ Λ∞fu
a /≈ .

Its behavior on colors has been specified implicitly: JlK := l and JcK := a. The
fact that this is indeed a morphism into Λ∞fu

a /≈ follows from Lemma 14. That
such a morphism is invertible is a consequence of Lemma 15. □

So a λ-term is an equivalence class of uniform infinitary affine terms. The
idea of uniformity is far from new: it is a staple of the denotational semantics
of linear logic, especially games semantics [Gir01, Mel04].

In [Maz12], some applications of Theorem 16 to the theory of the
λ-calculus are explored, most notably a proof of confluence via strong con-
fluence of Λp

a and a simple proof by “passage to the limit” of Wadsworth’s
result that head reduction terminates for solvable terms [Wad71].

We also observe that, if we drop the constraint on height, equivalence
classes of uniform ideals correspond to terms of an infinitary calculus in
which !(−) is coinductive, i.e., terms satisfying equations such as T = I!T
are allowed. The infinitary λ-calculus Λ001 of Kennaway et al. [KKSdV97]
may be embedded in such an infinitary version of linear logic, allowing one
to recover their whole theory on an affine basis.

For us, the most noteworthy consequence of Theorem 16 is that it gives rise
to a notion of affine approximation for (reduction) terms of Λ! and, therefore,
of the λ-calculus (via Girard’s embeddings). In fact, such a notion of approx-
imation makes sense in all polyadic calculi, not just the affine one. We give it
in Fig. 1.11, where the relation is defined by means of judgments of the form

Ξ ⊢ ρ ⊏ φ,

where:

• ρ is a reduction term of Λp
p (with p ∈ {l, a, r, c});

• φ is a reduction term of Λ!;

• Ξ is a sequence (permutable at will) of pairs y ⊏ x, with y a variable of
type p of Λp

p and x a cartesian variable of Λ!, such that y ⊏ x, y′ ⊏ x′ in
Ξ implies y ̸= y′; instead, x = x′ is allowed, it means that both y and y′

approximate x.

In the following chapters we will explore some interesting applications of
these polyadic approximations.

49



⊢ a ⊏ a
lvar

y ⊏ x ⊢ y ⊏ x
cvar

Ξ ⊢ ρ ⊏ φ

Ξ ⊢ λa.ρ ⊏ λa.φ
lam

Ξ ⊢ ρ ⊏ φ Υ ⊢ τ ⊏ ψ

Ξ, Υ ⊢ ρτ ⊏ φψ
app

Ξ1 ⊢ ρ1 ⊏ φ . . . Ξn ⊢ ρn ⊏ φ

Ξ1, . . . , Ξn ⊢ ⟨ρ1, . . . , ρn⟩ ⊏ !φ
box

Υ ⊢ τ ⊏ ψ Ξ, y1 ⊏ x, . . . , yn ⊏ x ⊢ ρ ⊏ φ

Ξ, Υ ⊢ ρ[⟨y1, . . . , yn⟩ := τ] ⊏ φ[!x := ψ]
let x ̸∈ Ξ

Ξ ⊢ (λa.t)[−]′u ⊏ (λa.T)[−]U
Ξ ⊢ tLa← uM[−]′ ⊏ TLa← UM[−]

beta

Ξ ⊢ t[⟨y1, . . . , ym⟩ := ⟨u1, . . . , un⟩[−]′] ⊏ T[!x := !U[−]]
Ξ ⊢ tLy1, . . . , ym ← u1, . . . , unM[−]′ ⊏ TLx ← UM[−]

theta (∗)

Ξ ⊢ ρ ⊏ φ Υ ⊢ τ ⊏ ψ

Ξ, Υ ⊢ ρ; τ ⊏ φ; ψ
comp

Ξ ⊢ ρ ⊏ φ

Ξ, y ⊏ x ⊢ ρ ⊏ φ
weak, p∈{a,c}

Ξ, y ⊏ x, y′ ⊏ x ⊢ ρ ⊏ φ

Ξ, y ⊏ x ⊢ ρ{y/y′} ⊏ φ
cntr, p∈{r,c}

Figure 1.11: Polyadic approximations. The side condition (∗) in the theta rule
is that, if p ∈ {l, r}, then m ≥ n.
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Chapter 2

Intersection Types

2.1 A Surprising Correspondence

Intersection types, originally introduced by Coppo and Dezani [CDC80] with
semantic motivations, are a well-known type-theoretic approach to expressing
and capturing dynamic properties of programs. Through the years, the theory
of intersection types has ramified along a host of different directions and taken
a number of different forms. One of these is the so-called non-idempotent
variant of intersection types. Intuitively, intersection is non-idempotent when
A→ A ∧ A does not hold. So, for instance, the typing judgment

f : A→ A→ B ⊢ λx. f xx : A→ B

is not derivable with a non-idempotent intersection; instead

f : A→ A→ B ⊢ λx. f xx : A ∧ A→ B

is derivable.
The first (and simplest) example of non-idempotent intersection type sys-

tem was introduced by Gardner [Gar94] and, independently and with a
slightly different formulation, by de Carvalho [dC09]. Types are defined by

A ::= α
∣∣ Θ⊸ A types,

Θ ::= A1 ∧ · · · ∧ An intersections.

Nullary intersections are authorized and denoted by ⊤. Intersections should
be seen as elements of the free monoid over types: Θ ∧Θ′ is defined by con-
catenation and ⊤ is the neutral element. Typing judgments are of the form
Γ ⊢ M : A, where M is a pure λ-term, A a type and Γ a list (permutable at
will) of type declarations of the form x : Θ. Gardner’s version of the typing
rules is recalled in Fig. 2.1. In rule app, the context Γ · ∆1 · · ·∆n is obtained by
concatenating the type declarations in Γ, ∆i, assuming that each variable ap-
pearing in any of Γ, ∆i actually appears in all of them, by adding the fictitious
declaration x : ⊤ when it does not.

The behavior of non-idempotent intersection of course hints to a connec-
tion with linear logic. Indeed, after Gardner, non-idempotent intersection
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x : A ⊢ x : A
var

Γ, x : A1 ∧ · · · ∧ An ⊢ M : C
Γ, x : Aσ(1) ∧ · · · ∧ Aσ(n) ⊢ M : C

perm

Γ ⊢ M : B
Γ ⊢ λx.M : ⊤⊸ B

lam0 x ̸∈ Γ
Γ, x : A1 ∧ · · · ∧ An ⊢ M : B

Γ ⊢ λx.M : A1 ∧ · · · ∧ An ⊸ B
lam

Γ ⊢ M : A1 ∧ · · · ∧ An ⊸ B ∆1 ⊢ N : A1 . . . ∆n ⊢ N : An

Γ · ∆1 · · ·∆n ⊢ MN : B
app

Figure 2.1: Gardner/de Carvalho’s non-idempotent intersection type system,
as presented in [Gar94].

types were considered again by Carlier et al. [CPWK04] and their relation-
ship with linear logic, and comparison with the idempotent case, expounded
by Neergaard and Mairson [NM04]. In his independent work, de Carvalho
unveiled the strong link between non-idempotent intersection types and the
relational semantics of linear logic [dC09], a line of work which was sub-
sequently extended by Bernadet and Lengrand [BL13] and by de Carvalho
himself with Pagani and Tortora [dCPTdF11]. We will see that there is an
even tighter correspondence between intersection types and linear logic (in its
polyadic form) which, in fact, goes well beyond the non-idempotent case.

Let us start by adapting the linear polyadic calculus to make it match more
closely the pure λ-calculus. One way of doing this is to internalize Girard’s
translation in the calculus, obtaining the following terms and reduction rule
(indeed, this is the syntax we used in [Maz12]):

t, u ::= x
∣∣ λ⟨x1, . . . , xn⟩.t

∣∣ t⟨u1, . . . , un⟩,

(λ⟨x1, . . . , xm⟩.t)⟨u1, . . . , un⟩ → t{ui/xi},

where x ranges over polyadic linear variables (of color l) and the reduction rule
requires m = n (otherwise the term is “stuck”). This, of course, is just a subcal-
culus of Λp

l : λ⟨x1, . . . , xn⟩.t is merely syntactic sugar for λa.t[⟨x1, . . . , xn⟩ := a],
the term ⊥ is excluded, and the reduction rule is consistent with all this. We
may therefore adapt the approximation relation (Fig. 1.11) to it, obtaining the
following rules (we consider only terms):

x0 ⊏ x ⊢ x0 ⊏ x
var

Γ, x1 ⊏ x, . . . , xn ⊏ x ⊢ t ⊏ M
Γ ⊢ λ⟨x1, . . . , xn⟩.t ⊏ λx.M

lam

Γ ⊢ t ⊏ M ∆1 ⊢ u1 ⊏ N . . . ∆n ⊢ un ⊏ N
Γ, ∆1, . . . , ∆n ⊢ t⟨u1, . . . , un⟩ ⊏ MN

app

where, in rule lam, x does not appear in Γ.
We said that the above subcalculus of Λp

l was obtained by internalizing
Girard’s translation; of course, this is above all a logical translation (intuition-
istic to linear), so it is valid at the level of types. In fact, the subcalculus results
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from considering the fragment of Polyl whose types are restricted to

A, B ::= α
∣∣ ⟨A1, . . . , An⟩⊸ B.

The induced typing rules (from those of Fig. 1.9) are the following:

x0 : A ⊢ x0 : A
var

Γ, x1 : A1 . . . xn : An ⊢ t : B
Γ ⊢ λ⟨x1, . . . , xn⟩.t : ⟨A1, . . . , An⟩⊸ B

lam

Γ ⊢ t : ⟨A1, . . . , An⟩⊸ B ∆1 ⊢ u1 : A1 . . . ∆n ⊢ un : An

Γ, ∆1, . . . , ∆n ⊢ t⟨u1, . . . , un⟩ : B
app

Now, the typing rules are so similar to the approximation rules that it is
tempting to superpose them:

x0 ⊏ x : A ⊢ x0 ⊏ x : A
var

Γ, x1 ⊏ x : A1, . . . , xn ⊏ x : An ⊢ t ⊏ M : B
Γ ⊢ λ⟨x1, . . . , xn⟩.t ⊏ λx.M : ⟨A1, . . . , An⟩⊸ B

lam

Γ ⊢ t ⊏ M : ⟨A1, . . . , An⟩⊸ B ∆1 ⊢ u1 ⊏ N : A1 . . . ∆n ⊢ un ⊏ N : An

Γ, ∆1, . . . , ∆n ⊢ t⟨u1, . . . , un⟩ ⊏ MN : B
app

where, in rule lam, x does not appear in Γ. If, in the above superposition,
we keep only the types and the purple decorations, we obtain a type sys-
tem for the λ-calculus, in which typing contexts may contain more than one
declaration for each variable. If we adopt the following changes of notation

⟨A1, . . . , An⟩ ⇝ A1 ∧ · · · ∧ An

Γ, x : A1, . . . , x : An ⊢ M : B ⇝ Γ, x : A1 ∧ · · · ∧ An ⊢ M : B x ̸∈ Γ

we see that this is exactly Gardner’s system:

• the rules var and app are identical;

• Gardner’s lam0 rule is just the case n = 0 of our lam rule;

• Gardner’s perm rule is given by the (implicit) exchange rule on contexts
of polyadic derivations.

If we repeat the above syntactic game with the other variants of our
polyadic calculi, we find other intersection type systems. For instance, us-
ing affine approximations gives us a relaxation of Gardner’s system with a
form of subtyping (e.g., the identity may be given type A∧ B→ A); with carte-
sian approximation we obtain a reformulation of Coppo, Dezani and Venneri’s
system [CDCV81] (which uses what are sometimes called “strict” intersection
types [vB95], i.e., with intersections only on the left of arrows, as opposed to

53



Coppo and Dezani’s original system [CDC80]), in its incarnation character-
izing solvability/head normalization, because of the unrestricted presence of
the type Ω, represented here by the type ⟨⟩ (the “non-strict” version of such a
system is what Krivine calls DΩ in [Kri93]). We therefore have what seems to
be a completely general correspondence between polyadic simple types and
intersection types:

δ :: Γ ⊢IT M : A iff δ− ⊏ M.

That is, an intersection type derivation δ for M is isomorphic to a (Church-
style) simply-typed polyadic term, such that the underlying pure term δ− is
a polyadic approximation of M. More snappily: a λ-term is typable in inter-
section types iff it admits a simply-typable polyadic approximation. Such a sharp
correspondence deserves to be treated more abstractly.

2.2 Fibrations

2.2.1 Type systems as morphisms of 2-operads

What is a type system? Melliès and Zeilberger [MZ15] recently suggested an
amazingly simple answer to this question: a type system is a functor, mapping
a category D of derivations to a monoid C of programs. This is of course in the
simple case in which programs are untyped; otherwise, C is also a category,
and we speak more generally of a type refinement system.

Melliès and Zeilberger’s idea naturally applies to our operadic approach:
for us, a type system is a morphism of 2-operads. Let us see how this works
in the case of the simply-typed λ-calculus, whose operadic presentation we
gave in Sect. 1.1.4.

Given a Church-style simply-typed λ-term δ, we denote by δ− its “era-
sure”, i.e., the underlying pure λ-term with all typing annotations removed.
Of course, a reduction sequence ρ : δ→∗ δ′ in ΛST induces a unique reduction
sequence ρ− : δ− →∗ δ′− in Λ; moreover, (δ{ε/x})− = δ−{ε−/x}, so we have
a morphism of 2-operads, and thus a type system

ΛST

(·)−
��

Λ

Although basic, this example showcases the essential idea behind Melliès
and Zeilberger’s view of type systems: ΛST is a 2-operad of type deriva-
tions “over” the monochromatic 2-operad Λ; the object part of each forgetful
functor (·)−Γ;A : ΛST(Γ; A) → Λ(n) (where n is the length of Γ) takes a type
derivation, i.e., a proof of a judgment of the form Γ ⊢ M : A, and gives its
subject, i.e., M.

Note that, while Church-style typing is used in the definition of ΛST, the
type system (·)− expresses simple typing in Curry style: a pure λ-term M is
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simply-typable (rather than simply-typed) if it is in the image of (·)−. More con-
spicuously, consider the 2-operad NJ presenting propositional minimal natu-
ral deduction. In our language, the Curry-Howard correspondence reduces
to the statement that there is an isomorphism of 2-operads CH : NJ ∼= ΛST,
yielding

NJ

(·)−◦CH
��

Λ

which is a reformulation of the above type system making no a priori use of
Church-style typing.

2.2.2 Subject reduction/expansion and opfibrations/fibrations

It is a classical result that the (Curry-style) system of simple types for λ-terms
enjoys subject reduction, i.e., typing is stable under reduction. Rephrased
in the above language, this means that if there is δ ∈ ΛST(Γ; A) such that
δ− = M and a reduction ψ : M →∗ M′, then there exists δ′ ∈ ΛST(Γ; A)
such that δ′− = M′. Of course, nothing in the definition of morphism of 2-
operads forces this to hold. However, in the case of simple types, by inspecting
the proof one notices that we actually have something stronger: there is a
reduction τ : δ →∗ δ′ such that τ− = ψ. Indeed, the typing derivation δ′ is
constructed from δ following the reduction sequence ψ. In categorical jargon,
one says that the morphism (·)− enjoys a form of oplifting property.

Dually, one may ask for a lifting property: if M = δ− and ψ : M′ →∗ M, then
there exists τ : δ′ →∗ δ such that τ− = ψ. The reader will have recognized
here what is usually called subject expansion. Although it fails in simple types,
many intersection type systems do enjoy it.

Lifting (resp. oplifting) properties are at the heart of the categorical notion
of fibration (resp. opfibration). However, one usually asks liftings and opliftings
to be canonical in some sense, e.g. cartesian for Grothendieck (op)fibrations,
or even unique for discrete (op)fibrations. In our case, type systems do not,
except in extremely rare cases, ensure any form of canonicity. Therefore, to
obtain the high level of generality we are aiming at, we are forced to consider
a weaker notion of (op)fibration.

Naively, we would be led to ask mere existence of (op)liftings. For instance,
we would define a weak fibration as a functor p : E → B such that, for all
f : b→ p(e′) in B, there exists g : e→ e′ in E such that p(g) = f (in a discrete
fibration, g is required to be unique; in a Grothendieck fibration, g is required
to satisfy a minimality property). However, this naive approach appears to be
inadequate. In fact, there does not seem to be a structure on the fibers p−1(b)
that encodes mere existence of liftings. For instance, if p : E → B is a discrete
fibration, then the map

∂p : B → Set
b 7→ p−1(b)
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actually yields a contravariant functor (i.e., a presheaf). In the case of a
Grothendieck fibration, the same map becomes a contravariant pseudofunc-
tor in Cat. Mere existence of liftings does not seem to yield any structure of
this sort. We do not claim that there is none; after all, plain functors, without
any lifting property, do induce normal lax 2-functors in the category Dist of
distributors (this is an old observation of Bénabou [Bén00]). So maybe there is
some subcategory of Dist which corresponds to mere existence of liftings. . .
we simply do not know. Luckily, there is an alternative approach offering a
very robust solution.

2.2.3 Type systems as Niefield fibrations

There is a notion of functor which encompasses both fibrations and opfi-
brations: it is called a Conduché functor or, in the terminology of John-
stone [Joh99], a Conduché fibration. These are functors enjoying a certain fac-
torization lifting property, i.e., they lift compositions of arrows (and identities),
rather than arrows themselves. Let us look at the discrete case, which was
first studied by Johnstone [Joh99].

A discrete Conduché fibration is a functor p : E → B such that, for every
arrow k of E :

identity lifting: if p(k) is an identity, then so is k;

factorization lifting: if p(k) = f ′ ◦ f for some arrows f , f ′ of B, then there
exists a unique pair g, g′ of arrows of E such that k = g′ ◦ g, p(g) = f
and p(g′) = f ′.

It is immediate to check that both discrete fibrations and discrete opfibrations
are particular cases of discrete Conduché fibrations. It turns out that, when
p is a discrete Conduché fibration, the fiber map ∂p has the structure of a
pseudofunctor

∂p : B −→ DiscDist,

where DiscDist is the bicategory of sets and discrete distributors. A discrete
distributor f : A −7→ B is just a map assigning an arbitrary set f (a, b) to
every pair (a, b) ∈ A× B. Composition of discrete distributors f : A −7→ B,
g : B −7→ C is defined by

(g ◦ f )(a, c) :=
⋃

b∈B

f (a, b)× g(b, c).

Because of the presence of the cartesian product, composition is only associa-
tive modulo a (natural) bijection, which is why DiscDist is a bicategory, not
a plain category. There is a faithful embedding j : Setop → DiscDist (resp.
i : Set → DiscDist) mapping every function to its opgraph (resp. graph).
It turns out that a discrete Conduché fibration p is a discrete (op)fibration
precisely when ∂p factors through j (resp. i).1

1A similar situation holds for Grothendieck fibrations, replacing Set and DiscDist with Cat
and Dist, respectively.
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What happens if we weaken the factorization lifting property to mere ex-
istence? It turns out that this has been studied by Niefield [Nie04], albeit in a
slightly different context, and with a different focus, than the one concerning
us: Niefield worked in a bicategorical framework and was interested in lax
functors, whereas we will concentrate on plain functors. Nevertheless, there
is a well-behaved notion of “weak discrete Conduché fibration”, which we
call more concisely Niefield fibration (even though the following definition is
not explicitly given in [Nie04]):

Definition 14 (Niefield fibration) Let B be a small category. A Niefield fibra-
tion on B is a functor p : E → B, with E an arbitrary small category, verifying:

faithfulness: p is faithful;

identity lifting: if p(k) is an identity, then so is k;

factorization lifting: if p(k) = f ′ ◦ f for some arrows f , f ′ of B, then there exists
a (not necessarily unique!) pair g, g′ of arrows of E such that k = g′ ◦ g,
p(g) = f and p(g′) = f ′.

Let p1 : E1 → B and p2 : E2 → B be Niefield fibrations. A relational mor-
phism from p1 to p2 is a relation R ⊆ E1 × E2 on the objects of E1, E2 such that:

• (e1, e2) ∈ R implies p1(e1) = p2(e2);

• for every arrow f : b → b′ of B and every e1 ∈ E1 such that p1(e1) = b and
e′2 ∈ E2 such that p2(e′2) = b′, the following conditions are equivalent:

– there exists g2 : e2 → e′2 such that p2(g2) = f and (e1, e2) ∈ R;

– there exists g1 : e1 → e′1 such that p1(g1) = f and (e′1, e′2) ∈ R.

Note that discrete Conduché fibrations are necessarily faithful. Here, the lack
of uniqueness forces us to require faithfulness explicitly.

If p is a Niefield fibration on B, then the fiber map of p may be turned into
a functor

∂p : B −→ Rel,

where Rel is the category of sets and relations. It is important to stress that
∂p is a plain 1-functor, not a lax functor into Rel seen as a 2-poset, which is
the situation considered more commonly in the literature, e.g. in [Nie04].

Niefield fibrations are a robust framework for speaking of mere existence
of liftings and oplifitings. Consider the subcategory EntRel of Rel whose
morphisms are entire relations, i.e., relations R ⊆ A× B such that, for all a ∈
A, there is b ∈ B such that (a, b) ∈ R. Then, (op)liftings exist (merely, not
uniquely or in an otherwise canonical way) for a Niefield fibration p precisely
when ∂p factors via the inclusion EntRelop ↪→ Rel (resp. EntRel ↪→ Rel).

Summing up, just as (discrete) fibrations are (discrete) Conduché fibrations
satisfying a lifting property, the fibrations we were looking for, which we may
call weak discrete fibrations, or wd-fibrations, are Niefield fibrations with an addi-
tional lifting property, except that, this time, nothing is asked of liftings other
than their existence. Curiously, the lifting properties of (discrete) fibrations are
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so strong that they imply the factorization lifting property of (discrete) Con-
duché fibration, whereas mere existence is in some sense too weak to “have a
life of its own”, and must be asked together with a weak factorization lifting
property (and faithfulness).

Although satisfactory (and the next section will give more reasons to be
satisfied), the notion of Niefield fibration is of no use per se in our approach:
for us, type systems are morphisms of 2-operads, not functors. So we need to
boost everything up to the 2-operadic level, obtaining the formal definition of
“type system” adopted in this thesis:

Definition 15 (type system) We say that a morphism of 2-operads p : E → B is
a type system if, for all objects e1, . . . , en, e of E , the functor pe1,...,en ;e is a Niefield
fibration.

A relational morphism R between two type systems p1 : E1 → B and p2 :
E2 → B is

• a relation R0 ⊆ E1 × E2 between the objects of E1 and the objects of E2;

• for all objects Γ1 = e1
1, . . . , en

1 and e1 of E1 and for all objects Γ2 = e1
2, . . . , en

2
and e2 of E2, such that for all 1 ≤ i ≤ n, (ei

1, ei
2) ∈ R0 and (e1, e2) ∈

R0, a relational morphism RΓ1;e1
Γ2;e2

between the Niefield fibrations (p1)Γ1;e1 and
(p2)Γ2;e2 .

Type systems over a 2-operad B and relational morphisms between them form a
category, which we denote TypeSys(B).

In terms of programming languages, faithfulness, identity lifting and fac-
torization lifting correspond to the following properties:

• given a reduction ρ : M →∗ M′ and type derivations δ of M and δ′ of
M′, there is at most one typed reduction ψ : δ→∗ δ′ typing ρ (there may
exist one such reduction for every couple of type derivations of M, M′);

• empty reductions are never typed by non-empty reductions;

• reductions are typed “modularly”: if a decomposable reduction is typed,
then so are its components.

These seem to be reasonable requirements to ask of a type system. By the
way, most common type systems do not even come with an explicit notion of
“typing a reduction”, so it does not make sense to ask whether they comply
with the above restrictions.

Before we move on, a side remark. The above notion of type system may
look somehow wrong from the operadic viewpoint: it is a naive pointwise
notion, the weak factorization lifting property is asked of horizontal compo-
sition of 2-arrows only, nothing is asked of operadic composition. There is a
well-behaved (in the sense of the next section) notion of “operadic” Niefield
fibration in which one also asks

• the weak factorization lifting property for vertical (i.e. operadic) compo-
sition of 2-arrows;
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• the unique factorization lifting property (i.e., that of discrete Conduché
fibrations) for composition of multimorphisms.

However, this notion (which corresponds to asking that the morphism of The-
orem 17 below be pseudo, rather than lax) turns out to be too strong for practi-
cal purposes: the factorization lifting property at the level of multimorphisms,
be it unique or not, implies that every type derivation of t{u/x} decomposes
(perhaps uniquely) in a type derivation for t and a type derivation for u; in
particular, derivations necessarily type every subterm of their subject. While
true in certain type systems (e.g. the systems of the λ-cube), this is definitely
false in some intersection types systems, and for good reasons: in a “strict”
(intersections only on the left of arrows) system characterizing head normal-
ization, one must be able to type xΩ without typing Ω.

2.2.4 An operadic Grothendieck construction

We motivated our search for an adequate notion of fibration by claiming that
any such notion should come with a way of endowing the fiber map with suit-
able structure. For instance, we said that a discrete fibration p on B induces a
presheaf ∂p : Bop → Set. Actually, we were telling only part of the story; the
full story is that the correspondence should also go the other way around: any
presheaf F : Bop → Set induces a discrete fibration

∫
F : E(F) → B, where

E(F) is the so-called category of elements of the presheaf F. This is known as
(the discrete case of) the Grothendieck construction. Moreover, the two functors∫
(−) and ∂(−) form an equivalence between the category of discrete fibra-

tions on B (with suitable morphisms) and the presheaf category SetB
op

.
When we said that the notion of Niefield fibration is robust, we meant in

particular that a version of the Grothendieck construction is available for it:
a Niefield fibration on B is the same thing as a presheaf B → Rel. We will
present directly the construction at the 2-operadic level.

It is known that the equivalence between discrete fibrations and presheaves
described above may be seen as a particular case of the “yoga” of classifying
objects. In a given category C, one says that arrows of a certain kind K are
classified by an object c endowed with a special arrow u : c∗ → c, if every
arrow p : e→ b of kind K arises as the pullback of u along an arrow f : b→ c
(usually referred to as “change of base”):

e //

p
��

c∗

u
��

b
f
// c

Let us list a few examples:

• the most famous case is perhaps that of a subobject classifier, in which K
is the class of monomorphisms. When C = Set, K becomes the class of
injections, c = {0, 1} and u : {∗} → {0, 1} is the map picking the truth
value 1.
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• If K = discrete fibrations, then C = Cat, c = Setop and u : Setop
∗ →

Setop is the forgetful functor from the category of pointed sets. In par-
ticular, given a presheaf f : Bop → Set, the discrete Grothendieck con-
struction builds a discrete fibration

∫
f simply by computing the pull-

back of u : Setop
∗ → Setop along f op, so the category of elements of f is

E( f ) = B f op×u Setop
∗ .

• For K = Grothendieck fibrations, a similar picture holds with Cat in
place of Set, and C is the category of 2-categories and pseudofunctors.

• In the case K = Niefield fibrations, we are back to C = Cat, the clas-
sifying object is Rel, and u : Rel∗ → Rel is the forgetful functor from
pointed sets and pointed relations.

What we do below essentially amounts to finding the classifying object for
type systems, which turns out to live in BiOp, the category of bioperads.

Let Rel be the following (large) bioperad:2

• objects are small categories;

• multimorphisms X1 . . . Xn −7→ Y are relational distributors, that is func-
tors

X1 × · · · × Xn ×Yop → Rel.

• composition of multimorphisms is defined as the composition of distrib-
utors: given

G : Y1 . . . Ym −7→ Z and F : X1 . . . Xn −7→ Yi,

their composite G ◦i F is defined as the functor Y1 × · · · × Yi−1 × (X1 ×
· · · × Xn)×Yi+1 × · · · ×Ym × Zop → Rel

(y1, . . . , yi−1, x1, . . . , xn, yi+1, . . . , ym; z) 7→∫ yi∈Yi
G(y1, . . . , yi, . . . , ym; z)× F(x1, . . . , xn; yi)

where the integral sign is the standard notation for a coend (it has noth-
ing to do with the Grothendieck construction). Composition in Rel is
associative only modulo isomorphism.

• 2-arrows θ : F ⇒ G : X1 . . . Xn → Y are natural transformations of the
underlying functors: a family of relations indexed by X1 × · · · × Xn ×
Yop:

∀(x1, . . . , xn, y) ∈ X1 × · · · × Xn ×Yop,

θx1,...,xn ,y ⊆ F(x1, . . . , xn, y)× G(x1, . . . , xn, y).

satisfying naturality conditions.

Let now Rel∗ be the following (large) bioperad:

2Warning: this definition of Rel (and Rel∗) is wrong, and Theorem 17 is false as stated. Please
see the Preface of this document for the correct definition and further comments about this issue.
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• objects are small pointed categories, that is couples (X, x) where X is a
small category and x ∈ X;

• multimorphisms (X1, x1) . . . (Xn, xn) −7→ (Y, y) are pointed relational
distributors (F, f ), that is functors

F : X1 × · · · × Xn ×Y → Rel.

together with a point ξ ∈ F(x1, . . . , xn, y).

• composition of multimorphisms is defined as the composition of distrib-
utors: given

(G, υ) : (Y1, y1) . . . (Ym, ym) −7→ (Z, z),

(F, ξ) : (X1, x1) . . . (Xn, xn) −7→ (Yi, yi),

the composite (G, υ) ◦i (F, ξ) is defined as the pair (G ◦i F, ζ), where ζ is
the element of (G ◦i F)(y1, . . . , yi−1, x1, . . . , xn, yi+1, . . . , ym; z) canonically
corresponding to (υ, ξ);

• 2-arrows θ : (F, ξ) ⇒ (G, υ) : (X1, x1) . . . (Xn, xn) → (Y, y) are natural
transformations of the underlying functors such that, moreover,

(ξ, υ) ∈ θx1,...,xn ,y.

There is an obvious forgetful functor U : Rel∗ → Rel.
A lax natural transformation between two lax morphisms θ : F ⇒ G : B →

Rel is defined as follows:

• for each b in B a distributor θb : Fb −7→ Gb;

• for each f : b1 . . . bn → b in B, a 2-arrow θ f : G f ◦ (θb1 , . . . , θbn)⇒ θb ◦ F f ,
that is a family of relations indexed by the objects of Fb1 × · · · × Fbn ×
Gbop,

∀(x1, . . . , xn, y) ∈ Fb1 × · · · × Fbn × Gbop,

(θ f )x1,...,xn ,y ⊆ (G f ◦ (θb1 , . . . , θbn))(x1, . . . , xn; y)× (θb ◦ F f )(x1, . . . , xn; y),

that satisfy naturality conditions.

We say that a lax natural transformation is relational if, for every object b, the
distributor θb is a relation, that is, it is valued in a subsingleton.

Theorem 17 Let B be a small 2-operad. The category TypeSys(B) is equivalent
to the category RelB of lax morphisms B → Rel and relational lax natural trans-
formations.

Proof.
∫

: RelB → TypeSys(B) is defined by:

• given a lax functor F : B → Rel,
∫

F is the pullback of the forgetful
functor U : Rel∗ → Rel along F. More explicitly, we denote by E(F) the
pullback category:

– the objects are pairs (b, x), where b is an object of B and x ∈ Fb;
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– a multimorphism (b1, x1) . . . (bn, xn) → (b′, x′) is a pair ( f , p)
where f : b1 . . . bn → b′ is a multimorphism in B and p ∈
F f (x1, . . . , xn; x′);

– given

(g, q) : (b1, y1) . . . (bm, ym)→ (c, z),

( f , p) : (a1, x1) . . . (an, xn)→ (bi, yi),

the composite (g, q) ◦i ( f , p) is the pair (g ◦i f , (q, p)).

– a 2-arrow θ : ( f , p)⇒ (g, q) : (a1, x1) . . . (an, xn)→ (b, y) is a family
of relations indexed by Fa1 × · · · × Fan × Fb:

∀(α1, . . . , αn, β) ∈ Fa1 × · · · × Fan × Fb,

θα1,...,αn ,β ⊆ F f (α1, . . . , αn, β)× Fg(α1, . . . , αn, β).

such that

(p, q) ∈ θx1,...,xn ,y.∫
F is just the first projection. It is not hard to check that it is a type

system.

• Given a relational lax natural transformation θ : F ⇒ G, we de-
fine the relation

∫
θ from the objects of E(F) to the objects of E(G)

by ((b, x), (b′, y)) ∈
∫

θ iff b = b′ and (x, y) ∈ θb. For every list
Γ = (a1, x1), . . . , (an, xn) of objects of E(F) and object (b, y) of E(F),
and list Γ′ = (a′1, x′1), . . . , (a′n, x′n) of objects of E(G) and object (b′, y′) of

E(G), the relation (
∫

θ)
Γ;(b,y)
Γ′ ;(b′ ,y′) is empty unless a1 = a′1, . . . , a′n = an and

b = b′, in which case, given

( f , p) : (a1, x1), . . . , (an, xn)→ (b, y)

(g, q) : (a1, x′1), . . . , (an, x′n)→ (b, y′)

we have (( f , p), (g, q)) ∈ (
∫

θ)
Γ;(b,y)
Γ′ ;(b′ ,y′) just if (x1, x′1) ∈ θa1 , . . . , (xn, x′n) ∈

θan , (y, y′) ∈ θb. One may check that
∫

θ is a relational morphism.

∂ : TypeSys(B)→ RelB is defined by:

• given a type system p : E → B, we set, for b an object of B,

– ∂p(b) := p−1(b), i.e., the subcategory of E1 whose objects are sent
to b and whose morphisms are sent to idb;

– for f : b1 . . . bn → b in B, ∂p( f ) is the distributor defined by:

∀(e1, . . . , en, e) ∈ p−1(b1)× · · · × p−1(bn)× p−1(b)op,
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∂p( f )(e1, . . . , en; e) := {g : e1, . . . , en → e | p(g) = f }

and, for all 1 ≤ i ≤ n, given ki : ei → e′i arrows of p−1(bi) and
k : e′ → e an arrow of p−1(b), respectively,

∂p( f )(k1, . . . , kn; k) := {(g, g′) | g = k ◦ g′ ◦ (k1, . . . , kn)};

– for θ : f ⇒ f ′ : b1 . . . bn → b in B, ∂p(θ)e1,...,en ;e is the relation

{(g, g′) ∈ ∂p( f )(e; e)× ∂p( f ′)(e; e) | ∃ρ : g⇒ g′, p(ρ) = θ}.

This defines a lax functor ∂p : B → Rel.

• Given a relational morphism R between type systems p1 : E1 → B and
p2 : E2 → B,

– for b an object of B, ∂Rb is R restricted to p−1
1 (b)× p−1

2 (b), i.e., the

relations R0 and Re1,e′1
e2,e′2

(with e1, e′1 ∈ p−1
1 (b) and e2, e′2 ∈ p−1

2 (b)) in-

duce a distributor ∂p1(b) −7→ ∂p2(b) which is a relation (i.e., valued
in a subsingleton), and we take this to be ∂Rb.

– with the above definition, given f : b1, . . . , bn → b in B, we have

∂Rb ◦ ∂p1( f ) ∼= {g1 : e1
1, . . . , en

1 → e1 | p1(g1) = f },
∂p2( f ) ◦ (∂Rb1 , . . . , ∂Rbn)

∼= {g′2 : e1
2, . . . , en

2 → e2 | p2(g′2) = f }.

The family of relations (∂R f )e1
1,...,en

1 ;e2
is then defined to contain all

pairs (g′2, g1) such that there exists g′1 and a 2-arrow g1 ⇒ g′1 such
that (g′1, g′2) ∈ Re1;e1

e2,e2
(which, by definition of relational morphism

of Niefield fibrations, is equivalent to the existence of g2 and a two
arrow g2 ⇒ g′2 such that (g1, g2) ∈ Re1;e1

e2,e2
).

This defines ∂R as a relational lax natural transformation between ∂p1
and ∂p2.

The fact that
∫
(−) and ∂(−) form an equivalence of categories follows from

elementary calculations, applying the above definitions. □

2.3 Intersection Types from Polyadic Approxima-
tions

2.3.1 The approximation presheaf

Technicalities aside, Theorem 17 is important because it gives us an alterna-
tive viewpoint on what a type system is. Fix a monochromatic 2-operad L
presenting an untyped programming language (the restriction to one color
is not necessary, it is just a simplifying assumption). As long as we accept
Definition 15, a type system on L is:

63



• a morphism p : E → L such that each functor pΓ;A is a Niefield fibration
(this is Melliès and Zeilberger’s original point of view);

• a lax morphism F : L → Rel.

The Grothendieck construction of Theorem 17 tells us that the two viewpoints
are equivalent. The first viewpoint is the most natural:

• the types are the colors of E ;

• a subtyping relation A <: B holds if the identity program id∗ is in the
image of pA;B;

• given types Γ, A, the multimorphisms of E(Γ, A) are derivations of judg-
ments of the form Γ ⊢ t : A, and the 2-arrows are typed computations
relating them;

• p sends a derivation to its subject (t in the above notation) and a typed
computation to the underlying computation;

• a program t is typable when it is in the image of pΓ;A for some types
Γ, A;

• subject reduction/expansion is oplifting/lifting of computations.

By contrast, in the presheaf viewpoint:

• the types are the objects of F(∗), where ∗ is the only color of L;

• a subtyping relation A <: B holds if there is an arrow A→ B in F(∗);

• given a program t and types Γ, A, F(t)(Γ; A) is the set of derivations of
Γ ⊢ t : A;

• given a computation ρ : t →∗ t′ and types Γ, A, F(ρ)Γ;A ⊆ F(t)(Γ; A)×
F(t′)(Γ; A) relates derivations typing t with derivations typing t′ along
ρ, i.e., it tells all possible ways in which ρ acts on a derivation typing t to
yield a derivation typing t′;

• a program t is typable when F(t)(Γ; A) ̸= ∅ for some types Γ, A;

• subject reduction (resp. expansion) corresponds to the fact that, for every
computation ρ and types Γ, A, the relation F(ρ)Γ;A is entire (resp. op-
entire, i.e., surjective).

It is thanks to this alternative view of type systems as (operadic, relational,
lax) presheaves that polyadic approximations come back to center stage.

In what follows, we fix an arbitrary suboperad D ↪→ Polyc, the 2-operad
of simply-typed polyadic cartesian terms, introduced in Fig. 1.9.

Definition 16 (category of types) We define the following sets, seen as discrete
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categories:

Tl[D] := {A | the polyadic type A is a color of D};
Tc[D] := {⟨A1, . . . , An⟩ | Ai ∈ Tl[D]}.

Definition 17 (approximation presheaf) We define a lax morphism of bioperads

Apx[D] : Λ! −→ Rel

as follows:

• on objects, Apx[D](l) := Tl[D] and Apx[D](c) := Tc[D];

• given T ∈ Λ!(c
m, ln; s) with s ∈ {l, c}, we must define a functor Apx[D](T) :

Tc[D]m × Tl[D]n × Ts[D]op → Rel; since the source categories are discrete,
this is just a map assigning a set to each element of Tc[D]m×Tl[D]n×Ts[D].
Let Θ ∈ Tc[D]m, i.e.,

Θ = ⟨B1
1, . . . , B1

k1
⟩, . . . , ⟨Bm

1 , . . . , Bm
km
⟩;

we define Θ to be the polyadic context containing exactly the judgments xi
j : Bi

j
for all 1 ≤ i ≤ m, 1 ≤ j ≤ ki. Then, for Γ ∈ Tl[D]n and A ∈ Ts[D], we set

Apx[D](T)(Θ, Γ; A) :=
{

δ ∈ D(Θ, Γ; A) | Ξ ⊢ δ− ⊏ T
}

,

where Ξ consists of exactly xi
j ⊏ xi for all 1 ≤ i ≤ m, 1 ≤ j ≤ ki.

• given T, T′ ∈ Λ!(c
m, ln; s) with s ∈ {l, c} and φ : T →∗ T′, Apx[D](φ)

must be a natural transformation from Apx[D](T) to Apx[D](T′); again,
since the source categories of these distributors are discrete, this is just a family
of relations indexed by Tc[D]m × Tl[D]n × Ts[D]; we define it as follows:

Apx[D](φ)Θ,Γ;A :=
{
(δ, δ′) ∈ Apx[D](T)(Θ, Γ, A)×Apx[D](T′)(Θ, Γ, A) |
∃τ : δ→∗ δ′ in D(Θ, Γ; A) s.t. Ξ ⊢ τ− ⊏ φ

}
,

with Θ and Ξ defined as above. So, (δ, δ′) ∈ Apx[D](φ)Θ,Γ;A if these are
related by a typed reduction approximating φ.

Observe that Apx[D] is only a lax morphism (not pseudo): consider a
closed term !T : c and a term T′ : l such that fv(T′) = {x} (so T′ ◦1 !T =
T′{!T/x}), and fix a type A. We have

Apx[D](T′ ◦1 T)(; A) =
{

ε ∈ (;⊢D A) | ε− ⊏ T′{!T/x}
}
=: E,

whereas, once composition of distributors is spelled out, we have(
Apx[D](T′) ◦1 Apx[D](T)

)
(; A) =

⋃
⟨B⟩∈Tc[D]

D′B × DB =: E′,
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where

D′B :=
{

δ′ ∈ (x : B;⊢D A) | x ⊏ x ⊢ δ′− ⊏ T′
}

,

DB :=
{
⟨δ⟩ ∈ (;⊢D ⟨B⟩) | ⟨δ⟩− ⊏ !T

}
.

Now, for each (δ′, ⟨δ⟩) ∈ E′, we have δ′{⟨δ⟩/x}− = δ′−{⟨δ⟩−/x} ⊏ T′{!T/x},
so E′ ↪→ E. However, such an injection is not reversible in general because
ε− ⊏ T{!T′/x} does not always induce a typed approximation of !T: x may
be in a box inside T′ which is approximated by ⟨⟩, meaning that the typing
derivation ε does not type T at all (think of T′ = !(xI) and ε− = ⟨⟩).

Note however that the definition of Apx[D] does not exploit the full gen-
erality of Theorem 17: the categories of types (i.e., the images of the colors of
Λ!) are always discrete. Introducing non-trivial arrows among polyadic types
would lead to non-trivial subtyping relations on intersection types. We leave
this possibility for future developments.

Nevertheless, the approximation presheaf is the cornerstone of a very gen-
eral framework for constructing intersection types systems. Indeed, suppose
we have a morphism of operads G : L → Λ!, i.e., L is a programming
language admitting a semantic-preserving embedding in intuitionistic linear
logic. Then, we have a lax morphism

L G−→ Λ!
Apx[D]−→ Rel

to which we may apply the Grothendieck construction of Theorem 17, which
gives a type system for L in the sense of Melliès and Zeilberger

E(Apx[D] ◦G)∫
(Apx[D] ◦G)

��
L

We claim that this is an intersection types system for L in the spirit of the
correspondence of Sect. 2.1 (the attentive reader will have noticed that the ap-
proximation presheaf was defined exactly with that correspondence in mind).
The suboperad D must be seen as an operad of “valid” derivations, i.e., in
certain intersection types systems we may want to exclude certain polyadic
approximations (for instance the empty approximation ⟨⟩). It is a parameter
of the construction, along with G. Actually, we will see later that Λ! (and
Polyc) is also, in a sense, a parameter, i.e., it is not the most general 2-operad
for which polyadic approximation presheaves may be defined.

Definition 18 ((D, G)-type system) Let D ↪→ Polyc and G : L → Λ!. We
define the abbreviations

p[D, G] :=
∫
(Apx[D] ◦G),

E [D, G] := E(Apx[D] ◦G),
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and say that a multimorphism M of L is (D, G)-typable if it is in the image of
p[D, G] or, equivalently, there are Γ, A such that (Apx[D] ◦G)(M)(Γ; A) ̸= ∅.

Let us give an idea of what the 2-operad E [D, G] looks like when L is
a monochromatic 2-operad of terms of an untyped calculus (e.g. L = Λ).
By definition of the Grothendieck construction, we know this results from
computing the following strict pullback in BiOp:

E [D, G]

p[D,G]

��

q // Rel∗

U
��

L
G

// Λ! Apx[D]
// Rel

Strict pullbacks in BiOp are computed much in the same way as in Set, i.e.,
the objects, multimorphisms and 2-arrows of E [D, G] are pairs of objects, mul-
timorphisms and 2-arrows of L×Rel∗ which are equalized by the above dia-
gram, where p[D, G] and q are just the projections. Therefore:

• an object of E [D, G] is a pair (a, b) with a ∈ L and b ∈ Rel∗, such that
Apx[D](G(a)) = U(b). Since L is monochromatic, a = ∗. On the other
hand, by definition, b = (X, A) where X is a set and A ∈ X. By the
pullback condition, we must have X = U(b) = Apx[D](G(∗)) = T[D],
where T[D] is one of Tl[D] or Tc[D], according to whether G(∗) is l or c.
Summing up, an object of E [D, G] has the form (∗, (T[D], A)), of which
only the type A ∈ T[D] is non-constant, so we conclude that the set of
objects of E [D, G] is isomorphic to T[D], i.e., the set of polyadic simple
types declared “valid” by D.

• Given types A, Γ = C1, . . . , Cn, a multimorphism of E [D, G](Γ; A)
is a pair (M, g) of a term M ∈ L(n) and a multimorphism g ∈
Rel∗((T[D], C1), . . . , (T[D], Cn); (T[D], A)), such that Apx[D](G(M)) =
U(g). By definition (cf. Sect. 2.2.4), g = (F, δ), with F : T[D]n × T[D] →
Rel a functor and δ ∈ F(Γ, A). By the pullback condition, F = U(g) =
Apx[D](G(M)), which means that δ ∈ D(Γ; A) such that δ− ⊏ G(M).
Since F is constant, the multimorphisms of E [D, G](Γ; A) are actually
pairs (M, δ) such that δ− ⊏ G(M); since p[D, G](M, δ) = M, the pair
(M, δ) must be seen as a derivation typing M, which consists of a “valid”
polyadic simply-typed derivation of Γ ⊢ t : A such that t ⊏ G(M).

• A similar analysis shows that, given types A, Γ as above and
(M, δ), (M′, δ′) ∈ E [D, G](Γ; A), a 2-arrow (M, δ) → (M′, δ′) is a pair
(ψ, τ) such that ψ : M →∗ M′ in L(n), τ : δ →∗ δ′ in D(Γ; A) and
τ− ⊏ G(ψ), i.e., M →∗ M′ via ψ and there is a polyadic reduction ap-
proximating ψ which may be given a “valid” type as a reduction δ→∗ δ′.

In particular,

M is (D, G)-typable iff there exists δ in D(Γ; A) such that δ− ⊏ G(M),

exactly as in the correspondence described at the end of Sect. 2.1.
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2.3.2 Capturing dynamic properties

Most well known intersection type systems for the λ-calculus (or minor refor-
mulations of them) arise from the above construction, i.e., they are isomorphic
to p[D, G] for some choice of D and G. For instance, p[Polyl, G0] (where
Polyl are linear derivations and G0 : Λ0 → Λ! is Girard’s call-by-name encod-
ing defined in Sect. 1.2.2) gives rise to Gardner’s system [Gar94] as discussed
in Sect. 2.1. Many more examples will be given in Sect. 2.4.2. What is more
important, however, is that this abstract setting also allows us to prove a quite
general theorem through which the usual properties of intersection type sys-
tems may be recovered.

Intersection types are known for their ability to capture dynamic (or run-
time) properties of programs, most notably various kinds of termination. We
will start by giving a somewhat general definition of what a “dynamic prop-
erty” may be in our context.

Definition 19 (dynamic property) Let L be a 2-operad. A strong dynamic
property for L is a set of 2-arrows of L. Given such a set R, we let S(R) be
the set of all multimorphisms M of L such that there is no sequence (ψi : Mi →∗
Mi+1)i∈N of non-identity 2-arrows of R with M0 = M.

A weak dynamic property of L consists of a triple (R,N , Ctxt) such that

• R is a set of 2-arrows of L;

• N is a set of multimorphisms of L;

• Ctxt is a set of functions on multimorphisms of L.

We write C{M} for the multimorphism of L resulting from the application of C ∈
Ctxt to a multimorphism M. Given such a triple, we let W(R,N , Ctxt) be the
set of all multimorphisms M of L such that there exist C ∈ Ctxt, N ∈ N and
ψ : C{M} →∗ N in R.

The intuition between strong and weak dynamic properties is that they
express some kind of strong or weak normalization. For what concerns the
first, this is clear from the definition: R represents a notion of reduction and
S(R) is the set of strongly R-normalizing terms (seen as multimorphisms).
For what concerns the latter, R is still a notion of reduction, N represents a
notion of normal form and Ctxt a notion of “legal” contexts, soW(R,N , Ctxt)
is the set of terms having a N -form reachable via a reduction in R, modulo
an initial manipulation in Ctxt.

Definition 20 (faithful reduction, full expansion) Let D ↪→ Polyc and G :
L → Λ!. Let R be a strong dynamic property for L. We say that the pair (D, G) is
faithfully reductive with respect to R if, for all ρ ∈ R and for all types Γ, A

subject reduction: (Apx[D] ◦G) (ρ)Γ;A is entire; equivalently, p[D, G] oplifts
every 2-arrow of R;

faithfulness: if (Apx[D] ◦G) (ρ)Γ;A ̸= ∅ and is the identity (i.e., the diagonal
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relation), then ρ is an identity.

Let (R,N , Ctxt) be a weak dynamic property for L. We say that the pair (D, G) is
fully expansive if, for all ρ ∈ R and for all types Γ, A

subject expansion: (Apx[D] ◦G) (ρ)Γ;A is op-entire (i.e., surjective); equiva-
lently, p[D, G] lifts every arrow of R;

fullness: for all u ∈ N , u is (D, G)-typable and, for all C ∈ Ctxt, if t is (D, G)-
typable, then so is C{t}.

Lemma 18 Let D ↪→ Polyc and G : L → Λ! and let R be a strong dynamic
property for L with respect to which (D, G) is faithfully reductive. Then, if ψ ∈ R
is not an identity, there is at least one oplifting (ψ, τ) of ψ with respect to p[D, G]
such that τ is not an identity.

Proof. Let ψ : M ⇒ M′ ∈ R be a non-identity arrow with M in the image of
p[D, G], i.e., there exist Γ, A and δ ∈ D(Γ; A) such that (M, δ) ∈ E [D, G](Γ; A),
which means that δ ∈ (Apx[D] ◦G)(M)(Γ; A). Now, by hypothesis, not only
(Apx[D] ◦G)(ψ)Γ;A is entire, which implies the existence of δ′ ∈ (Apx[D] ◦
G)(M′)(Γ; A) such that there is τ : δ ⇒ δ′, giving an oplifting (ψ, τ) of ψ,
but it is not the diagonal, which means that we may choose δ′ ̸= δ and, in
particular, τ ̸= idδ. □

Lemma 19 Let D ↪→ Polyc and G : L → Λ!.

1. Let R be a strong dynamic property for L and suppose that (D, G) is faith-
fully reductive with respect to it. Then, for every multimorphism M of L, M
(D, G)-typable implies M ∈ S(R).

2. Let (R,N , Ctxt) be a weak dynamic property for L and suppose that (D, G)
is fully expansive with respect to it. Then, for every multimorphism M of L,
M ∈ W(R,N , Ctxt) implies M (D, G)-typable.

Proof. Let us start with point 1. Let M be (D, G)-typable and suppose,
for the sake of absurdity, that there is a sequence (ψi : Mi ⇒ Mi+1)i∈N of
non-identity 2-arrows of R with M0 = M. Since M is (D, G)-typable, there
exist Γ, A and a derivation δ such that (M, δ) ∈ E [D, G](Γ; A). In particular,
M is the image of (M, δ) via p[D, G]Γ;A. Now, since ψ0 ∈ R, this functor
oplifts it by the subject reduction hypothesis, so there is (ψ0, τ0) : (M, δ) ⇒
(M1, δ1) in E [D, G](Γ; A). In particular, M1 too is in the image of p[D, G]Γ;A.
Furthermore, by Lemma 18, we may suppose τ1 not to be an identity. We
may now re-apply the reasoning to M1 and ψ1, then to M2 and ψ2, and so on,
obtaining a sequence (τi : δi ⇒ δi+1)i∈N of non-identity arrows in D(Γ; A),
with δ0 = δ. We have therefore shown that δ is not strongly normalizing,
contradicting Proposition 5 (remember that D ↪→ Polyc).

For what concerns point 2, suppose M ∈ W(R,N , Ctxt), i.e., there exist
C ∈ Ctxt, N ∈ N and ψ : C{M} ⇒ N in R. By fullness, there are types Γ, A
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and a derivation ε such that (N, ε) ∈ E [D, G](Γ; A). In particular, N is the
image of (N, ε) via p[D, G]Γ;A. Now, since ψ ∈ R, this functor lifts it by the
subject expansion hypothesis, so there is (ψ, τ) : (C{M}, δ)⇒ (N, ε), showing
in particular that C{M} is (D, G)-typable, so we conclude by fullness. □

Combined, the two parts of the above result immediately give what we
may call “the fundamental theorem of intersection types”:

Theorem 20 Let L be a 2-operad, let R and (R0,N , Ctxt) be a strong and a weak
dynamic property for it such that S(R) ⊆ W(R0,N , Ctxt), and suppose that
(D ↪→ Polyc, G : L → Λ!) is both faithfully reductive with respect to the former
and fully expansive with respect to the latter. Then, for every multimorphism M of
L, the following are equivalent:

1. M is (D, G)-typable;

2. M ∈ S(R);

3. M ∈ W(R0,N , Ctxt).

Observe that the proof of the implication (3)⇒(1) of Theorem 20, which
is given by point 2 of Lemma 19, is completely standard: we apply subject
expansion to typability of normal forms. On the other hand, the proof of
(1)⇒(2), which is point 1 of Lemma 19, is an abstraction of an argument of
Bucciarelli, Piperno and Salvo [BPS03], who reduced the soundness of Coppo,
Dezani and Venneri’s intersection types system [CDCV81] to the strong nor-
malization of the simply-typed λ-calculus. In Theorem 20, the soundness
of every well-known system of intersection types is, essentially, reduced to
the strong normalization of simply-typed polyadic calculi (Proposition 5)
which, in turn, reduces to the strong normalization of propositional linear
logic. This is interesting because it gives a simple, uniform proof, instead of
plenty of ad hoc reducibility/logical relation arguments (such as those found
in [Kri93]) or, in the non-idempotent case, ad hoc combinatorial arguments (e.g.
[Kfo00, BL13, KV16]).

Theorem 20 also tells us something interesting about intersection types dis-
ciplines: they always relate, albeit often in a hidden way, a dynamic property
of “universal” flavor (strong normalization) with one of “existential” flavor
(weak normalization).

2.4 Applications

2.4.1 A worked out example

We will now present a series of interesting instances of Theorem 20, starting
from a detailed example. First, however, let us give a sufficient condition for
faithfulness with respect to a strong dynamic property, which will turn out be
quite useful:
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Lemma 21 Let D ↪→ Polyc, G : L → Λ! and let R be a strong dynamic property
for L such that p[D, G] oplifts every 2-arrow of R. Suppose furthermore that, for
all ψ ∈ R:

1. if G(ψ) is an identity, then so is ψ;

2. if δ is an identity 2-arrow of D such that δ− ⊏ G(ψ), then G(ψ) is an
identity.

Then, (D, G) is faithfully reductive with respect to R.

Proof. Subject reduction holds by hypothesis, so we need to prove faithful-
ness. Let ψ ∈ R, let Γ, A be types and suppose (Apx[D] ◦ G)(ψ)Γ;A ̸= ∅
and to be the diagonal. This means that there exists δ such that τ : δ →∗ δ
and τ− ⊏ G(ψ). Now, since polyadic simply-typed terms normalize (Proposi-
tion 5), we must have τ = δ (the identity), so G(ψ) is an identity by hypothesis
2, hence ψ is an identity by hypothesis 1, as desired. □

Let us discuss Lemma 21. Its hypothesis (1) says that the embedding G
does not loose too much information, i.e., it does not map non-identity re-
ductions of R to identity reductions. This is a very mild requirement: in
fact, it is true in the most general way (i.e., with R = all 2-arrows) for all the
embeddings we consider. This is because Λ! is usually finer than L.

The interesting property is hypothesis (2): it says that we never type an
“important” non-identity reduction (i.e., one ofR) with the identity reduction.
How can this happen? Suppose that ψ is not an identity (so, by (1), φ :=
G(ψ) is not an identity) and suppose that δ− ⊏ φ, against hypothesis (2). By
functoriality, t := δ− is also an identity. By inspecting Fig. 1.11, we see that the
only way that t ⊏ φ may be derivable is by using the rules box and theta; more
specifically, φ : T →∗ T′ and the reduction happens “inside” a box of T which
is approximated by ⟨⟩ in t. So, the intuition behind hypothesis (2) is that we
must make sure that the typing derivations of D do not make “important”
redexes disappear by abusing empty approximations.

The above discussion is interesting because it gives the intuition behind
faithfulness: not only do we want subject reduction, we also want it to re-
flect the computation being performed. Indeed, subject reduction may hold
because, when M→ M′, the derivation δ typing M′ is the same as that typing
M. Typically, as explained above, this happens because the redex fired in M
to obtain M′ is not typed by δ, so the modifications induced by the reduction
are invisible to the typing. While this is not forbidden in general, it must not
happen for the reductions of which we are trying to capture termination (i.e.,
those in R).

Let us give an example, which we will work out in detail. Our goal
is to show that the multimorphisms of E [Polyl, G0] are isomorphic to the
derivations of Gardner-de Carvalho’s non-idempotent intersection type sys-
tem [Gar94] (Fig. 2.1). Before we dive in, let us point out that, for all types Γ, A
and for every reduction ψ of Λk, (Apx[Polyl] ◦G0)(ψ)Γ;A is bientire, which
means that this system will satisfy both subject reduction and subject expan-
sion with respect to every reduction. However, it is faithfully reductive only
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with respect to head reduction. For instance, let I := λy.y, M := x(I I) and
M′ := xI, and consider the (non-head) reduction ψ : M → M′. Let t := x⟨⟩
and let δ be the obvious linear derivation of x : ⟨⟩ ⊸ α;⊢ t : α (referring to
Fig. 1.9, δ is obtained by applying an app rule to the conclusions of a pvar rule
and a nullary box rule). Note that t ⊏ G0(M), because ⟨⟩ ⊏ !T for every T.
Now, G0(ψ) : x!(G0(I)!G0(I)) →∗ x!G0(I), i.e., the reduction happens inside
a !(−). Using the box rule of Fig. 1.11, we get t ⊏ G0(ψ). Since δ− = t, we
have (δ, δ) ∈ Apx[Polyl, G0](ψ)⟨⟩⊸α;α. In fact, δ is the only derivation with
that type, so the above relation is a non-empty diagonal, giving the desired
counterexample to faithfulness.

By contrast, head redexes never appear under a !(−) via G0, so they may
never be “forgotten” by approximations. Hence, by Lemma 21, (Polyl, G0) is
faithfully reductive for R = head reductions (we are of course working with
L = Λk). Note that S(R) is the set of terms whose head reduction terminates
(in fact, it is the of term whose head reduction strongly terminates, but that
makes no difference because head reduction is deterministic).

Let now

R0 = all reductions,

N = head normal forms,

Ctxt = {id}.

We have that W(R0,N , Ctxt) is the set of terms having a head normal form.
It is straightforward to see that head normal forms are typable (just assign
a type of shape ⟨⟩ ⊸ · · · ⊸ ⟨⟩ ⊸ α to the head variable), so (Polyl, G0)
is fully expansive. It is obviously the case that S(R) ⊆ W(R0,N , Ctxt) (if
head reduction terminates for M, then M certainly has a head normal form).
Therefore, by Theorem 20, (Polyl, G0)-typability characterizes having a head
normal form and, moreover, we get for free that having a head normal form
is the same as saying that head reduction terminates. This latter fact is not
immediate: syntactic proofs require a form of standardization.

So, we know we have a type system characterizing head normalization,
but what does it look like?3 Since no restrictions on Polyl are imposed, its set
of types is equal to all polyadic simple types. Its derivations are pairs (M, δ)
consisting of a λ-term M and a linear polyadic simply-typed derivation δ of
Θ;⊢ t : A such that t ⊏ G0(M). We know that the context Θ is entirely
polyadic because λ-terms only have variables of type v, and G0(v) = c. More-
over, we know that t : l because we are considering the restriction of G0 to
Λ0, the subcategory of Λk in which only terms of type t are considered, and
G0(t) = l.

Let fv(M) ⊆ {x1, . . . , xn}. If we make explicit the approximation context,
i.e., which free polyadic variables of t approximate which free variables of
G0(M) (which coincide with those of M), we get

x1 ⊏ x1, . . . , xn ⊏ xn ⊢ t ⊏ G0(M).

3This is a curious consequence of abstraction: we have shown a non-trivial property concerning
head reduction without even having seen the type system characterizing it!
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This also means that Θ = x1 : C1, . . . , xn : Cn. Superposing approximation
judgments and typing judgments (as we did in Sect. 2.1), we get judgments of
the form

x1 ⊏ x1 : C1, . . . , xn ⊏ xn : Cn ⊢ t ⊏ G0(M) : A,

where xi ⊏ xi : Ci abbreviates xi
1 ⊏ xi : Ci

1, . . . , xi
ki
⊏ xi : Ci

ki
. Now, by

inspecting Fig. 1.11 and Fig. 1.9, we see that linear approximations and linear
derivations are both syntax-directed. Therefore, the structure of M guides the
structure of δ, and we have only three possibilities:

x0 ⊏ x : A;⊢ x0 ⊏ G0(x) : A
pvar

; a : A⃗ ⊢ a : A⃗
var

Γ, x ⊏ x : A;⊢ t ⊏ G0(M) : B

Γ; a : A⃗ ⊢ t[⟨x⟩ := a] ⊏ G0(M)[!x := a] : B
let

Γ;⊢ λa.t[⟨x⟩ := a] ⊏ G0(λx.M) : A⃗⊸ B
lam

Γ;⊢ t ⊏ G0(M) : A⃗⊸ B

Γ1;⊢ u1 ⊏ G0(N) : A1 . . . Γn;⊢ un ⊏ G0(N) : An

Γ′1, . . . , Γ′n;⊢ ⟨u1, . . . , un⟩ ⊏ !G0(N) : A⃗
box

Γ, Γ′1, . . . , Γ′n;⊢ t⟨u1, . . . , un⟩ ⊏ G0(MN) : B
app

where A⃗ = ⟨A1, . . . , An⟩. If we only retain the purple decorations, forget
the intermediate steps not typing terms of the form G0(−) and if, in the
context, we write x : ⟨A1, . . . , An⟩ instead of x1 ⊏ x : A1, . . . , xn ⊏ x : An,
we obtain precisely Gardner’s system [Gar94]. Actually, we also have a fourth
rule allowing to permute types in sequences in the context, resulting from the
exchange rule on Polyl contexts (this is the perm rule of Fig. 2.1).

2.4.2 Other examples

Head normalization. It is easy to see that, more generally, (Polyp, G0) for
any p induces a type system characterizing head normalization. The most
general, when p = c, is depicted in Fig. 2.2. This is just a (strict, in the sense
of [vB95]) reformulation of the standard system called DΩ in [Kri93], the
variant with Ω of [CDCV81]. The other systems are obtained by discarding
one or both of the rules weak and cntr: the former enables basic subtyping (i.e.,
A ∧ B ≤ A) and makes the system non-relevant; the latter makes the system
idempotent. The rule weak0 cannot be discarded, it is necessary to make the
system complete (e.g. it is needed to type λx.y).

Solvability. The above systems actually characterize solvability. It is a clas-
sic result of Wadsworth [Wad71] that solvability and head normalization co-
incide, so this would be a trivial remark if it were not for the fact that we
may prove it independently of Wadsworth’s result, thus yielding an alterna-
tive, type-theoretic proof of his theorem. Indeed, let R be head reductions, as
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Types: A, B ::= α
∣∣ ⟨A1, . . . , An⟩⊸ B

Rules:

x : ⟨A⟩ ⊢ x : A
var

Γ, x : A⃗ ⊢ M : B

Γ ⊢ λx.M : A⃗⊸ B
lam

Γ ⊢ M : ⟨A1, . . . , An⟩⊸ B ∆1 ⊢ N : A1 . . . ∆n ⊢ N : An

Γ · ∆1 · · ·∆n ⊢ MN : B
app

Γ, x : ⟨A1, . . . , An⟩ ⊢ M : C
Γ, x : ⟨Aσ(1), . . . , Aσ(n)⟩ ⊢ M : C

exch
Γ ⊢ M : C

Γ, x : ⟨⟩ ⊢ M : C
weak0 x ̸∈ Γ

Γ, x : ⟨B1, . . . , Bn⟩ ⊢ M : C
Γ, x : ⟨B1, . . . , Bn, A⟩ ⊢ M : C

weak
Γ, x : ⟨B1, . . . , Bn, A, A⟩ ⊢ M : C

Γ, x : ⟨B1, . . . , Bn, A⟩ ⊢ M : C
cntr

Figure 2.2: Cartesian intersection type system characterizing head normaliza-
tion. In the app rule, Γ · ∆ is concatenation as in Fig. 2.1. Non-idempotent or
relevant variants are obtained by removing the rule cntr or weak, respectively
(but not weak0). Gardner’s system (Fig. 2.1) is obtained by removing both.

above, so that S(R) is the set of all λ-terms having a head normal form, and
let

R0 = all reductions,

N = {I},
Ctxt = applicative contexts,

where I is the identity λ-term and applicative contexts are of the form
{·}N1 · · ·Nn. By definition,W(R0,N , Ctxt) is the set of solvable λ-terms.

Now, it is immediate that S(R) ⊆ W(R0,N , Ctxt) (if a λ-term has a head
normal form, it is solvable). We know that any of the systems of Fig. 2.2 is
faithfully reductive with respect to R. It is easy to see that it is also fully
expansive with respect to (R0,N , Ctxt): we know we have subject expansion,
I is obviously typable and it is immediate to see that, if MN1 · · ·Nn is typable,
then so must be M. So Theorem 20 applies, and we have that a term is solvable
iff it has a head normal form iff it is typable in one of the systems of Fig. 2.2.
The possibility of using intersection type systems to give an alternative proof
of Wadsworth’s result was already pointed out by Bucciarelli, Kesner and
Ronchi Della Rocca [BKRDR14] (specifically, they used Gardner-de Carvalho’s
system).

Note that this particular application uses a non-trivial set of functions Ctxt.
In the sequel, we will always use Ctxt = {id} (the identity function), so we
will never specify it again, and we will writeW(R,N ) forW(R,N , {id}).
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Strong normalization. Let now D ∈ {Polyc, Polya} and let Dsn be its full
suboperad on the ⟨⟩-free types, i.e., the empty sequence ⟨⟩ is not allowed,
and consider the pair (Dsn, G0). The resulting type system is obtained from
Fig. 2.2 by disallowing the use of ⟨⟩ in types, which means that the weak0
rule must be modified to derive Γ, x : ⟨A⟩ ⊢ M : C from Γ ⊢ M : C (also, in
the affine case, the rule cntr must be dropped). The idempotent system (i.e.,
with contraction) is just a reformulation of the system originally introduced
by Coppo, Dezani and Venneri [CDCV81].

Since the type ⟨⟩ is the only way to type the term ⟨⟩, empty polyadic
approximations are not allowed in Dsn; in particular, whenever t ⊏ G0(M)
with t typable in Dsn, no redex of M may be “forgotten” by t. This means that
the identity reduction cannot approximate a non-identity reduction, ensuring
faithfulness with respect to all reductions (subject reduction is easy to show).

It is also easy to show that all normal forms are typable. However, subject
expansion fails in general (and for good reasons, see below); it only holds
for non-erasing reductions. In the λ-calculus, a reduction step firing a redex
(λx.M)N is non-erasing if x ̸∈ fv(M) implies N normal.

Indeed, if (λx.M)N → M because x ̸∈ fv(M), and if t ⊏ M is a ty-
pable approximation, we cannot use the approximation (λa.t[⟨⟩ := a])⟨⟩ ⊏
G0((λx.M)N) in order to expand, because this is not typable in Dsn. How-
ever, we know that N is normal, hence typable, hence there exists u ⊏ N
typable in Dsn, so we may use the approximation (λa.t[⟨z⟩ := a])⟨u⟩, where z
does not appear in t and may be given the type of u. This latter point shows
the necessity of weakening.

So, if R denotes the set of all reductions, R0 the set of non-erasing reduc-
tions and N the set of normal forms, we have that S(R) is the set of strongly
normalizable λ-terms, whereas W(R0,N ) is the set of λ-terms having a nor-
mal form via a non-erasing reduction. Since being strongly normalizable im-
plies having a normal form under any kind of reduction, Theorem 20 applies
and we have that a λ-term is strongly normalizable iff its normal form may be
found by non-erasing reduction iff it is (Dsn, G0)-typable.

Note that R0 may be restricted to any set of non-erasing reductions whose
normal forms are the normal forms tout court. In particular, we may take R0
to be what Barendregt calls the perpetual strategy [Bar84], and obtain the result
(shown therein) that the perpetual strategy terminates on M iff M is strongly
normalizable.

Weak normalization. Let Dwn be the suboperad of Polyp (for arbitrary p)
in which typing judgments Θ; Γ ⊢ t : A are restricted so that A (resp. a type
in Θ, Γ) may only contain occurrences of ⟨⟩ in negative (resp. positive) posi-
tion, and consider the pair (Dwn, G0). The corresponding type systems are
obtained from Fig. 2.2 in the obvious way (simply restrict typing judgments).

In this case, subject reduction and expansion are unproblematic for all
reductions. It is also easy to show that all normal forms are typable, so the
pair is fully expansive with respect to (R0,N ) where R0 is all reductions
and N are the normal forms. Note that W(R0,N ) is just the set of (weakly)
normalizable λ-terms.
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This time, what fails in general is faithfulness. Indeed, it holds for reduc-
tions which only fire redexes whose applicative depth is minimal among all
redexes, the applicative depth of a subterm N of M being the number of times
one must cross the argument position of an application to reach N from the
root of the syntactic tree of M. Such reductions are called Böhm reductions,
because they iterate head reduction and gradually reveal the Böhm tree of a
term: the head redex is at minimum depth; once the head variable is found,
one starts entering in its arguments, and so on.

The intuition behind faithfulness for Böhm reductions is the following. Let
ψ : M → M′ be a non-identity reduction such that Hψ is a Böhm reduction
and suppose that h is a polyadic term typable in Dwn such that h⟨⟩ ⊏ G0(Hψ),
contradicting faithfulness. Since Hψ is a Böhm reduction, H must be of the
form xN1 · · ·Nk (if instead of x we had an abstraction, there would be a redex
at strictly lower applicative depth). But then the type of x must be of the form
C⃗1 ⊸ · · ·⊸ C⃗k ⊸ ⟨⟩⊸ A with ⟨⟩ appearing negatively, which is not allowed
in a context of Dwn.

So, if we take R to be Böhm reductions, we have that S(R) is obviously
contained in the set of normalizable terms, and Theorem 20 gives us that
a term is (weakly) normalizable iff every Böhm reduction starting from it
terminates iff it is (Dwn, G0)-typable.

With a little bit of work, one may repeat the above with R equal to the
so-called leftmost strategy, which always reduces the leftmost redex. We thus
obtain as an application of Theorem 20 that a term has a normal form iff
the leftmost strategy terminates on it, a classical result whose syntactic proof
requires a non-trivial standardization theorem [Bar84].

Non-strict intersection types. So far we have always built systems in which
intersections appear only to the left of arrows. As mentioned above, these
are sometimes called “strict” intersection types and are a strict subset of the
intersection types originally introduced by Coppo and Dezani [CDC80], which
allow intersections everywhere (e.g., A→ A ∧ A is a valid intersection type).

As a matter of fact, this is a consequence of our choice of embedding of
the λ-calculus in linear logic: we are using the morphism G0 : Λ0 → Λ!,
where Λ0 is the sub-operad of Λk restricted to terms of type t (cf. Sect. 1.2.2).
Since variables only have type v, there is an input/output asymmetry which is
reflected at the level of intersection types into the “strict” discipline. Indeed,
none of the operads of derivations introduced above, which are all of the form
E [D, G0] for some D, is unital: this is visible in the var rule of Fig. 2.2, which
is asymmetric.

Systems using “non-strict” intersection types may be obtained by consid-
ering the unrestricted encoding

Gk : Λk −→ Λ!,

which takes as source the full bichromatic presentation of the λ-calculus, with
terms of type v as well. In this embedding, the image of a λ-term M seen
as value is !G0(M), so its approximations will all be of the form ⟨t1, . . . , t1⟩
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x : A ⊢ x : A
var

Γ1, x : A1 ⊢ N : B1 . . . Γn, x : An ⊢ N : Bn

Γ1 · · · Γn ⊢ λx.N : ⟨A1 ⊸ B1, . . . , An ⊸ Bn⟩
lam

Γ ⊢ M : ⟨A⊸ B⟩ ∆ ⊢ N : A
Γ · ∆ ⊢ MN : B

app

Figure 2.3: Intersection types for the call-by-value λ-calculus. The are also
rules exch, weak0, weak and cntr, not shown because identical to Fig. 2.2.

with ti ⊏ G0(M). In other words, we have systems with the rules of Fig. 2.2
augmented with

Γ1 ⊢ M : A1 . . . Γn ⊢ M : An

Γ1, . . . , Γn ⊢ M : ⟨A1, . . . , An⟩
inter

In particular, the derivations of E [Dsn, Gk], with Dsn as defined above (the
cartesian version), are just a different presentation of Coppo and Dezani’s
original system [CDC80].

The call-by-value λ-calculus. Our construction has two parameters: a sub-
operad D ↪→ Polyc and an embedding G : L → Λ! of a calculus L in linear
logic. The first wave of examples fixed G and showed several possibilities for
D; the last example provided a different G, but the calculus was essentially
the same.

Let us give an instance of our framework with a somewhat different cal-
culus. In Sect. 1.2.2, we recalled Girard’s call-by-value embedding

Gv : Λv −→ Λ!.

If R denotes head reduction in Λv (also known as the weak call-by-value strat-
egy, which is the standard evaluation strategy of many practical programming
languages), and if R0 denotes all reductions and N weak head normal forms
(i.e., arbitrary abstractions or terms of the form xN1 · · ·Nk with Ni arbitrary),
then the pair (Polyp, Gv) for any p is faithfully reductive with respect to R
and fully expansive with respect to (R0,N ), so Theorem 20 proves that weak
head normal forms are reachable with the weak call-by-value strategy iff they
are reachable at all, and gives us intersection type systems characterizing weak
call-by-value normalization.

The types for these systems are given by

A, B ::= ⟨A1 ⊸ B1, . . . , An ⊸ Bn⟩

(n = 0 is allowed, which gives the base case of the inductive definition). The
shape of types is justified by observing that Girard’s call-by-value translation
is based on the recursive type D = !(D ⊸ D), and remembering that ⟨−⟩
approximates !(−). The rules are given in Fig. 2.3. As usual, one has four
versions of the system, idempotent or not, relevant or not, by keeping or
discarding weak and cntr.
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The λµ-calculus. When we introduced the approximation presheaf
(Sect. 2.3.1), we mentioned that Λ! and the polyadic calculi that approximate
it are not the most general for which one may formulate this construction. In
fact, polyadic approximations exist in linear logic and this latter is broader
than the intuitionistic fragment represented by Λ!.

It is possible to reformulate the whole theory of polyadic approximations
(Chapter 1) using proof nets, which are the most general syntax for linear
logic proofs, without intuitionistic restrictions. The details of this have been
developed by Luc Pellissier in his forthcoming Ph.D. thesis. The development
is based on cyclic 2-operads, of which the proof net syntax is a paradigmatic
example. A cyclic operad is an operad in which inputs and outputs may be
permuted at will, which corresponds to the behavior of classical negation.
There is a cyclic 2-operad LL of untyped proof nets and cyclic 2-operads of
(simply-typed) polyadic proof nets, on which a notion of approximation may
be defined by straightforwardly extending Fig. 1.11.

The Grothendieck construction adapts without problems, too. For this,
one considers the full sub-operad DiscRel (resp. DiscRel∗) of Rel (resp. Rel∗)
whose objects are sets. This is a cyclic bioperad, and the Grothendieck
construction is computed by pulling back along the forgetful functor U :
DiscRel→ DiscRel∗. The approximation presheaf, for a choice of sub-operad
D of simply-typed polyadic proof nets, becomes then a lax morphism

Apx[D] : LL −→ DiscRel.

In fact, we have already observed that, even in the intuitionistic case, our
definition of approximation presheaf actually always lands in DiscRel. It is
interesting to remark that, in the classical case, we have no choice, because
Rel does not have a cyclic structure. A suitable reformulation of Theorem 20
holds.

In this augmented set-up, we may consider Parigot’s λµ-calculus [Par92],
a well-known extension of the λ-calculus capturing classical reasoning (and
control operators). This admits a natural presentation as a cyclic 2-operad
ΛM, which may be embedded in LL by means of Laurent’s translation [Lau03]

L : ΛM −→ LL.

Then, for any choice D of simply-typed polyadic proof nets, the Grothendieck
construction applied to Apx[D] ◦ L gives us a type system for the λµ-calculus.
Its types, ranged over by A, B, C, are as follows:

A, B, C ::= ⟨⟨P1, . . . , Pn⟩⟩,
P ::= Θ⊸ B,

Θ ::= ⟨A1, . . . , An⟩,

where ⟨⟨−⟩⟩ is the dual of ⟨−⟩, just like the modality ?(−) is dual to !(−) in
classical linear logic. The shape of the types is immediately justified by noting
that Laurent’s translation uses the recursive type D = ?(!D ⊸ D), keeping
in mind that ⟨−⟩ approximates !(−) and ⟨⟨−⟩⟩ approximates ?(−). In the
literature on intersection types for the λµ-calculus, these latter are known as
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x : ⟨A⟩ ⊢ x : A
var

Γ, x : Θ ⊢ M : B
Γ ⊢ λx.M : ⟨⟨Θ⊸ B⟩⟩ lam

Γ, α : A, β : B ⊢ M : C
Γ, α : C · A ⊢ µβ.⌈α⌉M : B

name

Γ ⊢ M : ⟨⟨Θ1 ⊸ B1, . . . , Θn ⊸ Bn⟩⟩ ∆j
i ⊢ N : Θi(j)

Γ · ∆1
1 · · ·∆

k1
1 · · ·∆1

n · · ·∆kn
n ⊢ MN : ⟨⟨B1, . . . , Bn⟩⟩

app
1 ≤ i ≤ n
1 ≤ j ≤ ki

Γ, ξ : [X1, . . . , Xn] ⊢ M : C
Γ, ξ : [Xσ(1), . . . , Xσ(n)] ⊢ M : C

exch
Γ ⊢ M : C

Γ, ξ : [] ⊢ M : C
weak0 ξ ̸∈ Γ

Γ, x : ⟨B1, . . . , Bn⟩ ⊢ M : C
Γ, x : ⟨B1, . . . , Bn, A⟩ ⊢ M : C

weak
Γ, x : ⟨B1, . . . , Bn, A, A⟩ ⊢ M : C

Γ, x : ⟨B1, . . . , Bn, A⟩ ⊢ M : C
cntr

Figure 2.4: Intersection types for the λµ-calculus. The notation Γ · ∆ is con-
catenation as in Fig. 2.1, extended to sequences of the form ⟨⟨−⟩⟩ as well. In
the exch and weak0 rules, [−] stands for either ⟨−⟩ or ⟨⟨−⟩⟩.

union types [Lau04]. Given a sequence Θ = ⟨A1, . . . , An⟩, we write Θ(i) for Ai.
Given two types A, B, which are always sequences, we write A · B for their
concatenation. The typing judgments are of the form

x1 : Θ1, . . . , xm : Θm, α1 : B1, . . . , αn : Bn ⊢ M : A,

where xi are λ-variables and αj are µ-variables. The typing rules are given in
Fig. 2.4.

One may check that the right conditions for applying (the augmented ver-
sion of) Theorem 20 are met by this system with respect to head reduction of
λµ-terms, which is therefore characterized by typability. Interestingly, the lin-
ear version of this system (without weak and cntr) turns out to coincide with
a system for the λµ-calculus recently introduced by Kesner and Vial [KV16].

2.4.3 Discussion and perspectives

It is has been known for a long time that intersection types and linear
logic are related. Regnier (crediting Duquesne) started this line of investi-
gation in his Ph.D. thesis [Reg92]; later on, Kfoury [Kfo00] discovered an
intriguing relationship between intersection types and a linearization of the
λ-calculus. Retrospectively, his is a sort of an embryo of our linear polyadic
calculus. In the meantime, as mentioned earlier, non-idempotent intersec-
tion types had been introduced by Gardner [Gar94] and investigated both
syntactically [CPWK04, NM04] and semantically [dC09], revealing their ties
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with linear logic. More recently, other connections were drawn in the work
of Pimentel et al. [PRR12], who developed a proof-theoretic analysis of in-
tersection types using ideas coming from linear logic. However, to the best
of our knowledge none of this previous work described the correspondence
between approximations and intersection types in the sharp, synthetic and
broad framework we propose.

Concerning (linear) approximations, the idea that the exponential modal-
ity of linear logic is a limit of its multiplicative approximations is of course as
old as linear logic itself, by analogy with classical constructions from linear
algebra. In the logical context, the intuition has been formalized in several
ways: as a Taylor expansion [ER08], as a categorical limit [MTT09] and as a
topological limit [Maz12], of which we gave an order-theoretic reformulation
in Chapter 1. It is also quite explicitly used in games semantic construc-
tions [AJM00, HO00], especially in the AJM version.

Ehrhard and Regnier’s approach [ER08] is very similar to ours: they too
express Girard’s approximations directly in a calculus containing terms of the
form ⟨t1, . . . , tn⟩, which morally correspond to the n-ary tensors of Girard’s
approximations. In their case, it is Boudol’s resource λ-calculus [Bou93]; we
favor polyadic calculi because they are syntactically simpler (there are no for-
mal sums of terms) and more faithful to Girard’s approximations (the tensor
is not literally commutative, unlike in the resource λ-calculus). Nevertheless,
the affinities between our approximations and the Taylor expansion of [ER08]
are obvious and we believe that our work may be entirely reformulated in
that context. As a starting point, it is immediate to define an embedding (−)◦
of Λp

l into the resource λ-calculus, and it is obvious that, for T in Λ! and t
linear, t ⊏ T iff t◦ ∈ Taylor(T), where Taylor(T) is the support of the Taylor
expansion of T.

Moving on to other work concerning intersection types, we already men-
tioned Bucciarelli, Piperno and Salvo’s paper [BPS03], in which they exhibit
an encoding from intersection types derivations to simply-typed λ-terms and
show the soundness (i.e., typable ⇒ SN) of Coppo, Dezani and Venneri’s
system [CDCV81] using this encoding. As already noted, our work (vastly)
generalizes this approach to proving soundness.

Finally, we can never put too much emphasis on the influence of Melliès
and Zeilberger’s paper [MZ15], without which this work could not exist in its
present form. It is worth mentioning that the fibrational perspective on type
systems is already explored to some depth in [MZ15]. In this respect, all we
do is “taking it to dimension two”, in the sense that we consider reduction
sequences and see (op)fibrations as witnesses of the subject expansion (reduc-
tion) properties. Melliès and Zeilberger’s work focuses on the Set-enriched
case and therefore fibrations have a different meaning there.

The main message of this chapter is perhaps the following: as soon as a
programming language may be meaningfully encoded in linear logic, there is an in-
tersection type discipline for it. Of course, what this intersection type discipline
may do depends on the encoding and its “meaningfulness”. However, we
hope that we have shown enough applications to justify the claim that our
approach is rather broad.
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Our framework also gives a systematic explanation to certain aspects of
intersection types:

• non-idempotency and relevance are just reflections of the absence of
structural rules (weakening and contraction, respectively) in polyadic
systems;

• strictness of intersections arises from the asymmetric version of Girard’s
encoding;

• as mentioned above, soundness is ultimately a consequence of strong
normalization of propositional linear logic.

We would also like to stress that our construction does not have only an “ex-
planatory” power but also has a “predictive” value: the last two instances
given in Sect. 2.4.2, albeit simple, exemplify how our framework may be used
to almost automatically synthesize intersection type systems without neces-
sarily knowing them in advance (the call-by-value system is possibly implicit
in the semantic study of [PRDRR99], but we did not know of it; the system
for λµ had been developed independently of our work). Another example,
which we did not develop here, concerns calculi with explicit substitutions:
these are well-known to be encodable in linear logic [KL07, AK12]; we there-
fore automatically get intersection type systems for such calculi, in the style
of [KV14]. More interestingly, we are currently studying the possibility of ap-
plying our construction to Ehrhard and Laurent’s encoding of the π-calculus
in proof nets [EL10], which would yield what is perhaps the first application
of intersection types to concurrent calculi.

An intriguing aspect of Theorem 20 is that it brings to light how, contrar-
ily to common understanding, intersection types systems do not characterize
dynamic properties per se but, rather, relate them to one another. That is, in-
tersection types are actually a bridge between a “universal” property (strong
normalization) and an “existential” property (weak normalization), and their
apparent ability to characterize dynamic properties results from judiciously
choosing such properties so that the “universal” implies the “existential”. Ad-
mittedly, our current formulation of dynamic property (Definition 19) is quite
naive and ad hoc, and was chosen only in view of making Theorem 20 applica-
ble in the cases we know of. It would be interesting to pursue a more general
approach in this direction.

In this respect, at some point above we observed how, in the case of the
pair (Dsn, G0), one cannot expect subject expansion to hold for any reduction.
Indeed, we have the following special case of Theorem 20:

Corollary 22 Let R be the set of all 2-arrows of a 2-operad L, and let N be the set
of its normal forms. Suppose that (D, G : L → Λ!) is faithfully reductive and fully
expansive with respect to R and (R,N ). Then, strong normalization and weak
normalization coincide in L.

So, since (Dsn, G0) is faithfully reductive everywhere, and since normal forms
are typable, if it also enjoyed subject expansion everywhere, we would have
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that a λ-term is strongly normalizable iff it is weakly normalizable! While ob-
viously false for pure λ-terms, this is true of many classes of typable λ-terms
(those of the λ-cube, for instance). In fact, it is a conjecture of Barendregt,
Geuvers and Klop that strong and weak normalization coincide in all so-called
pure type systems [Bar93]. It is unclear at present whether Corollary 22 is rele-
vant to this conjecture.

As a last point, let us mention that intersection types are of course well-
known for being the basis of a host of denotational models of the λ-calculus
(see [BDS13] for a general account, and [PPRDR17] for an in-depth study of
the relational case). We currently do not have a synthetic description of how
to build denotational models of the λ-calculus from our framework. Hyland’s
operadic perspective [Hyl17] will perhaps be of help here: in fact, Apx[D] ◦G!
is nothing but an algebra in Rel for the monochromatic 2-operad Λ, so the
question becomes finding a way of turning this into a Set-algebra for the
operad Λ/≃β.
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Chapter 3

Parsimony

3.1 A Quantitative Look at Approximations

3.1.1 The “modulus of continuity”

An immediate consequence of the computational version of Girard’s Approx-
imation Theorem (Theorem 16) is a form of (Scott-)continuity of computation
in the λ-calculus:

Proposition 23 (continuity) Suppose that

M→∗ N

in the λ-calculus. Then, for all u in Λp
a such that u ⊏ N, there exists t ⊏ M such

that
t→∗ u.

Proof. Any λ-calculus computation ψ : M →∗ N is an ideal JψK of compu-
tations of Λp

a such that, in particular, the set of its targets is the ideal JNK.
Therefore, given u ⊏ N, there is a computation ρ : t →∗ u in JψK and, by
definition, t ⊏ M. (For simplicity, we are ignoring renaming equivalence and
are transparently using Girard’s embedding, i.e., writing t ⊏ M instead of
t ⊏ G0(M)). □

In other words, if we want an approximation of the result of a λ-calculus
computation, all we need is to perform a computation in Λp

a starting from an
approximation of the initial term.

Suppose now that we are interested in computations ending with a
Boolean value b, i.e., λx.λy.x or λx.λy.y (this is so that the size of the output
is constant and we do not have to worry about it in the coming discussion).
Suppose that the computation

M→∗ b

takes l steps. Since G0(b) does not contain boxes (it is of the form λa.λb.z[!y :=
b][!x := a] with z ∈ {x, y}), it admits “itself” as approximation, i.e., the term
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λa.λb.z[⟨y⟩ := b][⟨x⟩ := a], which we still abusively denote by b. Applying
Proposition 23, we obtain t ⊏ M such that

t→∗ b.

What can we say about the size of t as a function of l? Observe that this is
roughly the same as asking an upper bound on the length of the reduction
t →∗ b, because t is affine and its size bounds the length of any reduction
starting from it.

The answer is that a relationship exists, but it is somewhat unreasonable:
the size of t may be exponential in l. This is due to the uncontrolled behav-
ior of duplication in the λ-calculus, which causes β-reduction to apparently
perform an exponential amount of work in a linear number of steps, even
under extremely minimalist reductions strategies, such as head reduction. A
computationally uninteresting but straightforward example is

XXI →→ XX(I I)→→ XX(I I(I I))→→ XX(I I(I I)(I I(I I)))→∗ · · ·

with X := λx.λa.xx(aa).
Informally, we may call the relationship between the length of reductions

and the size of affine approximations “modulus of continuity”. Although
technically wrong, this terminology is intuitively appropriate and useful.

So, why do we find it unreasonable that the λ-calculus has an exponential
modulus of continuity? First of all because this seems to happen for wrong
reasons: the fact that a β-reduction step MLx ← NM immediately dispatches
a copy of N to all occurrences of x in M does not mean that those copies are
actually needed right away, or needed at all. In fact, abstract machines and
practical implementations of functional programming languages tell us that
this is far from being the case.

Jokingly, we could say that a λ-term is a very inefficient representation
of itself. More seriously, the intermediate λ-terms in a β-reduction sequence
ψ : M →∗ b may be very inefficient representations of the states that a ma-
chine actually goes through when performing the computation expressed
by ψ. If one thinks directly in terms of how λ-terms and β-reduction may
be implemented on a machine, then it becomes possible to define reason-
able cost semantics directly on λ-terms, both for runtime and space us-
age [BG95, SBHG08].

Nevertheless, there are other reasons to be unhappy with an exponential
modulus of continuity. These are related to computational complexity and
motivate the search for a calculus with a polynomial modulus of continuity
regardless of its machine implementations, as we are about to discuss.

3.1.2 Higher order circuits

It is well known that the runtime of a Turing machine is strongly related to
the size of a Boolean circuit simulating it, where the size of a circuit is just
the number of its gates. Given a family (Cn)n∈N of Boolean circuits (on the
standard fan-in 2 basis {¬,∧,∨}), such that Cn has n inputs and 1 output,
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we say that it decides a language L ⊆ {0, 1}∗ if, for all x ∈ {0, 1}n, x ∈ L iff
C|x|(x) = 1.

Theorem 24 Let M be a Turing machine deciding a language L in time f (n). Then,
there is a family of circuits of size O( f (n)2) deciding L.

This may be seen as a quantitative version, for Turing machines and
Boolean circuits, of Proposition 23: it says that Turing machines have a poly-
nomial modulus of continuity.1 By contrast, Proposition 23 only implies that
a λ-term M deciding a language L in f (n) steps (of, say, head reduction) in-
duces a family of affine polyadic terms deciding L of size O(2 f (n)), and we
observed that the upper bound is tight.

The above theorem is a fundamental result of structural complexity the-
ory and has important implications, most notably the Cook-Levin theorem
(the statement that satisfiability of propositional formulas is NP-complete). It
seems morally wrong that the λ-calculus should be so desperately inadequate
to deal with such basic computational phenomena, even if one is willing to
admit (as we are) that quantitative reasoning is inherently less evident with
λ-terms then it is with Turing machines.

In fact, it is tempting to consider the following “equation”

affine λ-terms
λ-terms

=
Boolean circuits
Turing machines

(3.1)

and ask to what extent it may be taken as a guideline for importing quanti-
tative concepts from the world of Turing machines to that of the λ-calculus.
Equation 3.1 is supported by several analogies: like Boolean circuits, affine
λ-terms may only compute finite functions (on Church binary strings); like
Boolean circuits, the (sequential) runtime of an affine λ-term coincides with
its size; finally, Boolean circuits may be seen as morphisms of a free sym-
metric monoidal category (in fact, a PROP), while (normal) affine λ-terms are
morphisms in a free closed symmetric monoidal category (with terminal unit),
and closure is exactly the difference between first-order computation (Turing
machines) and higher-order computation.

One way of looking at Theorem 24 is as a sort of “transform” taking from
the domain of Turing machines, for which runtime analysis is highly non-
trivial, to the domain of circuits, where runtime is completely evident (it is the
size), in a way somewhat reminiscent of how the Fourier transform reveals the
fundamental frequencies of a signal, which are otherwise hidden in its time
development. So an exponential modulus of continuity sort of obfuscates
this perspective and, on the contrary, a polynomial modulus of continuity for
functional programs would be potentially interesting for quantitative static
analysis.

1The quadratic bound may actually be improved to f (n) log f (n), but this is irrelevant for the
discussion.
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3.1.3 Non-uniform computation

From the perspective of Equation 3.1, there is a third reason why an expo-
nential modulus of continuity is inadequate, which is related to the notion of
non-uniform computation, of central importance in complexity theory. Analyz-
ing this issue will actually point us in the direction of what we call parsimony, a
possible way of obtaining a calculus with a polynomial modulus of continuity.

The family of Boolean circuits (Cn)n∈N given by Theorem 24 has the prop-
erty of being uniform, i.e., there is an algorithm which, given n, outputs a de-
scription of Cn. This is because all these circuits come from the same Turing
machine. However, when considering circuit families as a model of compu-
tation of its own, it is more natural to disregard any uniformity requirement:
(Cn)n∈N is just a sequence of circuits, each Cn having n inputs and 1 output,
without any a priori relationship between them; the sequence may very well
be uncomputable.

In such non-uniform models of computation, size becomes a fundamental
parameter: if no restriction on the size of Cn is imposed, then any language
becomes decidable. In fact, any language L ⊆ {0, 1}∗ is decidable by a (non-
uniform) family of size O(2n): simply hard-wire in Cn the characteristic func-
tion of the finite set L ∩ {0, 1}n. By contrast, circuit families of polynomial
size are very important in complexity theory: Theorem 24 implies that they
correspond to a complexity class called P/poly, which, albeit containing un-
decidable languages, is widely believed not to contain any NP-hard problem
(this, of course, would imply P ̸= NP, because P ⊂ P/poly).

The class P/poly is an instance of a so-called advice class: the usual, uni-
form model (in this case, deterministic polytime Turing machines, hence the
letter P) is augmented with access to an advice string, which depends only
on the length of the input (not on the input itself) and which is restricted to
be of polynomial length (hence the poly). In the particular case of P/poly,
one may equivalently think in terms of a deterministic polytime Turing ma-
chine augmented with an infinite, read-only tape containing arbitrary (but
fixed) information. Since the machine is polytime, only an initial segment
of polynomial length of this string will be accessible to the machine. The
statement that P/poly does not contain any NP-hard problem is equivalent
to P/poly ̸= NP/poly. Although technically stronger that P ̸= NP, the non-
uniform version is currently believed not to be any harder to prove in practice,
which explains the relevance of non-uniform computation to structural com-
plexity. In fact, as curious as it may seem, no-one at present knows how to
use uniformity in proving lower bounds; in other words, no-one sees how one
could separate P from NP without actually separating P/poly from NP/poly.

Now, an interesting aspect of the viewpoint brought forth in Chapter 1
is that it nicely unifies the “family approach” and the “advice approach” to
non-uniform computation: in view of Equation 3.1, higher-order circuits are
(polyadic) affine terms, and a circuit family should be seen as an ideal of
such terms; but a (not necessarily uniform) ideal of polyadic affine terms
is an infinite λ-term, i.e., a program which is allowed to contain an infinite
string of advice as discussed above. Let us see how, in the context of the
λ-calculus, untamed non-uniformity trivializes computation (every language
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becomes decidable), and how this is related to the modulus of continuity being
exponential. We will use an infinitary syntax of polyadic affine terms as an
informal means of representing ideals (in fact, as already noted above, such a
syntax may be made formal [Maz12, Maz14]).

We may represent binary strings with a suitable adaptation of the standard
Church encoding; for instance,

0010 = λs0.λs1.λa.x0
0(x0

1(x1
2(x0

3a)))[⟨x1⟩ := s1][⟨x0⟩ := s0],

where, in general, y stands for the infinite sequence y0, y1, y2, . . . of affine
variables. Let w ∈ {0, 1}∗, let #w be the non-negative integer whose dyadic
representation is w, and let L ⊆ {0, 1}∗. We may represent L as an infinite
stream of Booleans

TL := ⟨b0, b1, b2, . . .⟩

where bi is 1 just if i = #w and w ∈ L. Consider now

even := λs.⟨x0, x2, x4, . . .⟩[⟨x⟩ := s],

odd := λs.⟨x1, x3, x5, . . .⟩[⟨x⟩ := s],

ML := λw.y1[⟨y⟩ := w⟨even, even, even, . . .⟩⟨odd, odd, odd, . . .⟩TL].

On input a binary string w (encoded as above), ML applies a number of times
odd or even to TL according to the bits of w, resulting in the extraction of bi
where i is the integer whose dyadic representation is w:

ML w→∗ b#w.

So ML decides L. Moreover, the length of the above reduction is O(n) where
n is the length of w; and yet, since the bit b#w is exponentially “far down” in
TL (i.e., at position Ω(2n)), any approximation t ⊏ ML such that t w →∗ b#w
will have to be of size Ω(2n). So this is a computationally non-trivial example
of exponential modulus of continuity.

It is interesting to observe that the terms even and odd result from con-
traction, which is the primitive behind indiscriminate duplication in the
λ-calculus. Indeed, contraction may be represented by the infinitary term

λa.⟨x0, x1, x2, . . .⟩ ⊗ ⟨x1, x3, x5, . . .⟩[⟨x⟩ := a] : !A⊸ !A⊗ !A

(although we never formally introduced it, the tensor may be added to the
syntax of all our calculi without problems). It is an instance of “Hilbert’s
hotel”: an infinity (of type !A) is split into two infinities. The terms even and
odd are obtained by splitting an infinity in two and then discarding one copy.
This is the fundamental insight leading to parsimony: in the non-uniform
setting, computation is not trivialized by the presence of infinite advice (like
the term TL) but by the fact that one may access an exponential amount of
such an advice. Since splitting an infinity in two seems to be the culprit, we
are led to think that forbidding such a behavior will result in a calculus with
a polynomial modulus of continuity. In the next section we will see that this
intuition is, indeed, correct.
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; a ▷ a avar
Θ; Γ ▷ M

Θ; Γ \ {a} ▷ λa.M
lam

Θ; Γ ▷ M Θ′; Γ′ ▷ N
Θ, Θ′; Γ, Γ′ ▷ MN

app

Θ; Γ ▷ M Θ′; Γ′ ▷ N
Θ, Θ′; Γ, Γ′ ▷ M⊗ N

tens
Θ; Γ ▷ M Θ′; Γ′ ▷ N

Θ, Θ′; Γ \ {a, b}, Γ′ ▷ M[a⊗ b := N]
let⊗

xi;▷ xi
evar

Θ; Γ ▷ M Θ′; Γ′ ▷ N
Θ \ {x}, Θ′; Γ, Γ′ ▷ M[!x := N]

let!

Θ;▷ M
↑Θ;▷ !M

box (∗)
Θ; Γ ▷ M Θ′; Γ′ ▷ N
Θ, Θ′; Γ, Γ′ ▷ M :: N

cons

Figure 3.1: Parsimonious terms. In rule bang, condition (∗) is that every
exponential variable has at most one occurrence in Θ.

3.2 The Parsimonious Lambda-Calculus

3.2.1 Terms and reduction

We let a, b (resp. x, y) range over a countably infinite set of affine (resp. expo-
nential) variables. The use of affine variables rather than linear is not essential
but simplifies programming. An occurrence of exponential variable is of the
form xi, where i ∈ N. Occurrences of exponential variables are naturally or-
dered by xi ≤ yj whenever x = y and i ≤ j. Let Θ be a set of occurrences of
exponential variables. We write ↑Θ for the upward closure of Θ. We denote
by Θ \ {x} the set obtained from Θ by removing all occurrences of the form
xi (if any).

Parsimonious terms are defined in Fig. 3.1. In Θ; Γ ▷ M, Γ is the set
of free affine variables of M and Θ is the set of free virtual occurrences of
exponential variables. This latter set may be infinite: the rule box causes this
to happen. The notation Θ, Θ′ (or Γ, Γ′) denotes, as usual, the union of the
two sets supposing that they are disjoint.

It is easy to see that a parsimonious term respects the following discipline
(modulo Barendregt’s convention):

• affine variables appear at most once;

• if xi, xj are different occurrences of the same exponential variable, then
i ̸= j;

• boxes (i.e., terms of the form !M) contain no free affine variable;

• an exponential variable occurs in at most one box, at most once therein
and with the highest index with respect to the rest of the term.
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(λa.M)[−]N →β M{N/a}[−]
M[a⊗ b := (N ⊗ P)[−]] →⊗ M{N, P/a, b}[−]

S∗{x0}[!x := (N :: P)[−]] →:: Sx−−
∗ {N}[!x := P][−]

S∗{x0}[!x := (!N)[−]] →d Sx−−
∗ {N}[!x := !N++][−] x∈fv(S∗{x0})

S{!S′{x0}}[!x := (!N)[−]] →! S{!S′{N}}[−]
M[!x := (!N)[−]] →w M[−] x ̸∈fv(M)

Figure 3.2: Reduction rules for the parsimonious λ-calculus.

We denote by M+k the term obtained from M by replacing each free oc-
currence of any exponential variable xi with xi+k. We simply write M++ for
M+1. Similarly, if x0 does not occur free in M, we denote by Mx−− the term
obtained from M by replacing each free occurrence xi of x (and of x only!)
with xi−1.

The intuition behind boxes is that they satisfy the equation

!M = M :: !(M++).

For instance, !x1 morally stands for the infinite term ⟨x1, x2, x3, . . .⟩. This is
the reason behind the parsimonious discipline: without it, the above equation
would violate affinity. Note that this corresponds to the intuition given in the
previous section: it is impossible to write a parsimonious term corresponding
to ⟨x0, x2, x4, . . .⟩.

We now define reduction. As usual, we define substitution contexts by

[−] ::= {·}
∣∣ [−][p := N],

where p stands for a⊗ b or !x. Shallow contexts, ranged over by S, are contexts
in which the hole does not appear under a !(−). We write S∗ to denote a
shallow context in which the hole may not appear at all (i.e., a shallow context
or a term). The reduction rules are as in Fig. 3.2, and they are closed under
shallow contexts (i.e., we do not reduce under a !(−)). We denote by pΛ the
calculus thus obtained.

Note that the three rules →d, →! and →w are not in superposition: the
latter applies only if x does not occur free at all; if x does occur, then one
checks if the occurrence x0 appears under a !(−); if it does, by parsimony it is
the only occurrence of x and rule→! is applied; otherwise, rule→d is applied,
whether or not x0 is present, and all the other occurrences are shifted down
by 1.

Note how the syntax allows one to recover unambiguously whether a vari-
able is affine or exponential. For this reason, we will occasionally use any
letter to denote any kind of variable. It will also be convenient to use the
abbreviations

λa⊗ b.M := λc.M[a⊗ b := c] λ!x.M := λa.M[!x := a],

as well as combinations such as λa⊗ !x.M := λc.M[!x := d][a⊗ d := c].
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The parsimonious λ-calculus may be seen as a programming language
with built-in manipulation of ultimately constant, affine streams. Exponen-
tial variables are stream variables; xi means that we are asking for the i-th
element of the stream, which we may only extract once. If we want to use a
whole stream as a parameter, we just write !x0, whereas !x1 shifts a stream
one position to the left and t :: !x0 shifts it one position to the right, adding t
on top.

It is easy to see that pΛ is Turing-complete. Indeed, one may define a linear
fixpoint combinator

X := λ!x.λ! f . f0(x0!x1! f1)

Yℓ := X!X

and the reader may check that

Yℓ!F →∗ F(Yℓ!F++).

This fixpoint combinator is linear because F must be of the form λa.F′, not
λ!y.F′, otherwise reduction gets stuck. This means that F uses its argument
once (it may use it zero times but it would be pointless). Anyhow, linear
fixpoints are enough to define while loops (indeed, a while loop is a linear tail
recursion), and while loops are enough to achieve Turing-completeness.

The reader may have noticed that, besides the situations in which a would-
be redex is stuck because of an obvious type mismatch (e.g., M[!x := λa.N]),
we have a well-typed redex (with respect to the types that we will introduce
in the next section)

S{!S′{x0}}[!x := (N :: P)[−]]
for which there is no reduction rule defined in Fig. 3.2. Indeed, to reduce a
term of the form M[!x := N :: P], we look for x0 in M: if this does not appear
or if it appears in shallow position (i.e., not in a box), then we apply the →::
rule; otherwise, the term is stuck, and the above redex is precisely this case.
The missing reduction rule is

S{!S′{x0}}[!x := (N :: P)[−]] →a S{S′{N} :: !(S′)++{x0}}[!x := P][−].

Since this rule is bit complex to write and is not needed for expressiveness,
we decided not to include it in the “official” set of rules, but it is otherwise
unproblematic to add it.

3.2.2 Affine approximations and quantitative continuity

The reader will have noticed that reduction in pΛ is more “atomic” than in
Λ!. In fact, it applies the decomposition of exponential reduction steps we
mentioned in Sect. 1.2.1. As stated therein, such a decomposition could be
applied to Λ! as well, but in that context we preferred the more synthetic,
global formulation. Here, the quantitative viewpoint pushes us to adopt the
finer grained definition. The consequence is that the polyadic calculus Λp

a

must also be slightly modified in order make its reduction semantics match
that of pΛ.
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(λa.t)[−]u →β t{u/a}[−]
t[a⊗ b := (u⊗ v)[−]] →⊗ t{u, v/a, b}[−]

C∗{x0}[⟨x, xm⟩ := (u :: v)[−]] →:: Cx−−
∗ {u}[⟨x⟩ := v][−]

t[⟨⟩ := ⟨u⟩[−]] →w t[−]

Figure 3.3: Reduction rules for the modified polyadic affine calculus. The hole
may not appear in C∗ (in which case u is discarded).

We give a quick overview of the syntax. The terms are given by

t, u ::= a
∣∣ λa.t

∣∣ tu
∣∣ t⊗ u

∣∣ t[a⊗ b := u]∣∣ x
∣∣ !⊥

∣∣ t :: u
∣∣ t[⟨x⟩ := u]

For convenience, we suppose that, in t[⟨x⟩ := u], the binder is always of
the form x = x0, x1, . . . , xm−1, so we may have an exact correspondence with
the occurrences of exponential variables in pΛ. The constructor t :: u too
is introduced to match that of pΛ. The usual notation for polyadic boxes
becomes syntactic sugar:

⟨t1, . . . , tn⟩ := t1 :: · · · :: tn :: !⊥ = t1 :: (· · · :: (tn :: !⊥)).

Another difference, of course, is that the linear variables (those ranged over
by a, b . . .) are replaced by affine ones.

The modified reduction rules are given in Fig. 3.3. The one-step reduction
t[⟨x0, . . . , xk−1⟩ := ⟨u1, . . . , un⟩] → t{ui+1/xi} of Λp

a is decomposed here into
k + 1 steps. Observe that, since we are not considering the term ⊥, we must
have n ≥ k, otherwise the term is “stuck”. Also note that the “reindexing”
performed in the →:: reduction is only needed to keep up with our naming
conventions, so pΛ reduction may be matched with minimal fuss in the no-
tations. Contrarily to pΛ, polyadic affine variables do not appear with any
index in terms, i.e., the rule may actually be written

t[⟨x, y1, . . . , ym⟩ := (u :: v)[−]] →:: t{u/x}[⟨y1, . . . , ym⟩ := v][−].

This is relevant for complexity purposes: no reindexing is needed to imple-
ment reduction of affine polyadic terms; it is just plain, affine β-reduction.

It is straightforward to adapt Fig. 1.11 and define affine approximations for
parsimonious λ-terms. This is done in Fig. 3.4. We dispose of approximation
contexts by adopting the convention that xi ⊏ xi always, i.e., the evar rule
actually derives y ⊏ xi ⊢ y ⊏ xi and we simply stipulate to denote y by xi. This
is consistent with our convention on let binders. As usual, the approximation
relation is extended to contexts by treating {·} as an affine variable.

We will now prove the result motivating parsimony: the parsimonious
λ-calculus has a polynomial “modulus of continuity”. First, a couple of tech-
nical definitions.

91



a ⊏ a avar
t ⊏ M

λa.t ⊏ λa.M
lam

t ⊏ M u ⊏ N
tu ⊏ MN

app

t ⊏ M u ⊏ N
t⊗ u ⊏ M⊗ N

tens
t ⊏ M u ⊏ N

t[a⊗ b := u] ⊏ M[a⊗ b := N]
let⊗

xi ⊏ xi
evar

t ⊏ M u ⊏ N
t[⟨x⟩ := u] ⊏ M[!x := N]

let!

!⊥ ⊏ !M
empty t ⊏ M u ⊏ !M++

t :: u ⊏ !M
cons!

t ⊏ M u ⊏ N
t :: u ⊏ M :: N

cons

Figure 3.4: The approximation relation for pΛ.

Definition 21 (rank, exponential depth) The rank of a polyadic affine term t,
denoted by rk(t), is the maximum k such that ⟨u1, . . . , uk⟩ is a subterm of t.

The exponential depth of a parsimonious term M, denoted by d(M), is the
maximum nesting level of its boxes.

In what follows, we denote by | · | the size of terms.

Lemma 25 Let S denote a shallow context.

1. S0 ⊏ S iff Sx++
0 ⊏ Sx++;

2. t ⊏ S{M} iff t = S0{u} for some u ⊏ M and S0 ⊏ S;

Proof. Both points are straightforward inductions. □

Proposition 26 (quantitative continuity) Let M ∈ pΛ and let M → N. Then,
for all u ⊏ N there exists t ⊏ M such that t→∗ u. Moreover, rk(t) ≤ rk(u) + 1.

Proof. By definition, we have M = S{M0} and N = S{N0}, with S a shallow
context and M0, N0 matching the left and right hand side, respectively, of
one of the rewriting rules of Fig. 3.2. The proof is by induction on S. The
only interesting case is C = {·}, the rest is straightforward, using point 2 of
Lemma 25.

We check the case of a rule→d; the other cases are similar and, in fact, yield
rk(t) = rk(u). We have M0 = S{x0}[!x := (!P)[−]] and u ⊏ Sx−−{P}[!x :=
!P++][−]. By definition of approximation and point 2 of Lemma 25, we have
u = S0{v}[⟨x⟩ := w][−]′ with S0 ⊏ Sx−−, v ⊏ P, w ⊏ !P++ and [−]′ ⊏ [−].
Now, by point 1 of Lemma 25, Sx++

0 ⊏ S, so Sx++
0 {x0} ⊏ S{x0} by point 2 of

Lemma 25. Then, if we let t := Sx++
0 {x0}[!x := (v0 :: w)[−]′], we have t ⊏ M0,

t→:: u and rk(t) = rk(u) + 1, as desired. □
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Lemma 27 (size bound) t ⊏ M implies |t| ≤ |M|(rk(t) + 1)d(M).

Proof. By induction on M. We only check the case M = !N, the rest is
straightforward. We claim that t ⊏ !N implies t = ⟨u0, . . . , un−1⟩ with ui ⊏
N+i for all 0 ≤ i < n, which is itself easily shown by induction (on the
derivation of t ⊏ !N). Using the induction hypothesis, the fact that rk(t)
bounds n as well as all rk(ui), and that |M| = |N|+ 1 and d(M) = d(N) + 1,
we have

|t| = 1 +
n−1

∑
i=0
|ui| ≤ 1 +

n−1

∑
i=0
|N|(rk(ui) + 1)d(N)

≤ 1 + |N|(rk(t) + 1)d(N)+1 ≤ |M|(rk(t) + 1)d(M),

as desired. □

The above results are already enough to prove that pΛ has a polynomial
modulus of continuity: if (Mi)i∈I is a family of terms of exponential depth
bounded by d and Mi →∗ bi of length l(i) and with bi a Boolean, Proposi-
tion 26 gives us a family (ti)i∈I such that ti ⊏ Mi, ti →∗ bi and rk(ti) ≤ l(i),
so Lemma 27 gives us |ti| = O(|Mi|l(i)d).

Although meaningful in the context of non-uniform computation, such
a result is not very useful when we care about uniformity, because it says
nothing about the family (ti)i∈I . For this, we need a slightly stronger ver-
sion.

Definition 22 (homogeneous approximations) Given k ∈ N and M ∈ pΛ,
the homogeneous approximation of M of rank k of M, denoted by ⌊M⌋k, is
defined by induction on M, as follows:

⌊a⌋k := a;

⌊λa.N⌋k := λa.⌊N⌋k;

⌊NP⌋k := ⌊N⌋k⌊P⌋k;

⌊N ⊗ P⌋k := ⌊N⌋k ⊗ ⌊P⌋k
⌊N[a⊗ b := P]⌋k := ⌊N⌋k[a⊗ b := ⌊P⌋k]

⌊xi⌋k := xi;

⌊!N⌋k := ⟨⌊N⌋k, . . . , ⌊N+(k−1)⌋k⟩;
⌊N[!x := P]⌋k := ⌊N⌋k[⟨x⟩ := ⌊P⌋k];
⌊N :: P⌋k := ⌊N⌋k :: ⌊P⌋k.

Lemma 28 For all M ∈ pΛ and t ⊏ M, t ⊑ ⌊M⌋k for all k ≥ rk(t).

Proof. A straightforward induction on M. □
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⊢ A⊥, A
⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ, ∆
⊢ Γ, A, B
⊢ Γ, A ` B

⊢ Γ, A ⊢ ∆, B
⊢ Γ, ∆, A⊗ B

⊢ Γ•, A
⊢ Γ•, A•

⊢ Γ, A
⊢ Γ, A•

⊢ Γ
⊢ Γ, A•

⊢ Γ, A
⊢ ?Γ, !A

⊢ Γ, A• ⊢ ∆, !A
⊢ Γ, ∆, !A

⊢ Γ, A•, ?A
⊢ Γ, ?A

⊢ Γ
⊢ Γ, ?A

Figure 3.5: Parsimonious logic.

Theorem 29 (polynomial “modulus of continuity”) Let (Mi)i∈I be a family
of parsimonious terms of exponential depth bounded by d, and let Mi →∗ bi in l(i)
steps and with bi a Boolean. Then, there exists a family of polyadic affine terms
(ti)i∈I such that, for all i ∈ I, ti ⊏ Mi, ti →∗ bi and |ti| = O(|Mi|l(i)d).
Moreover, we may take ti := ⌊Mi⌋l(i).

Proof. The first part is immediate from Proposition 26, Lemma 27. The
“moreover” part follows from Lemma 28 and monotonicity of reduction: if
ti →∗ bi, then ⌊Mi⌋l(i) →∗ bi as well because we know that rk(ti) ≤ l(i) and
so ti ⊑ ⌊M⌋l(i). □

3.2.3 Parsimonious logic

The parsimonious λ-calculus is not just an artificial language which happens
to have a nice quantitative property. It is the term calculus corresponding,
via Curry-Howard, to a well behaved logical system, a variant of linear logic
which we call parsimonious logic. Let us introduce its propositional fragment
(quantifiers of any order may be added using the standard rules).

The formulas are those of multiplicative exponential linear logic, plus two
extra modalities:

A, B ::= α
∣∣ α⊥

∣∣ A⊗ B
∣∣ A ` B

∣∣ !A
∣∣ ?A

∣∣ A•
∣∣ A•.

The dual of a formula A, denoted by A⊥, is defined by De Morgan duality, as
usual, with the addition that (−)• is dual to (−)•.

The rules of parsimonious sequent calculus are given in Fig. 3.5. The
connectives ` and ⊗ behave just as in linear logic. The modality (−)• is a
“weakening modality”, i.e., it behaves similarly to the modality !(−) of linear
logic, but allows only weakening and not contraction. The parsimonious ex-
ponentials are quite different from those of linear logic. There is a “functorial
promotion” rule, a weakening rule for ?(−), a sort of asymmetric contraction,
which is also known as absorption in linear logic, and a dual co-absorption rule
for !(−).
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All of the rules of Fig. 3.5 are derivable in linear logic with the definition
A• := A & 1 (and A• = A⊕⊥). However, to see the true nature of parsimo-
nious logic one has to look at the cut-elimination rules. The most important
one is

⊢ Γ, A• ⊢ ∆, !A
⊢ Γ, ∆, !A

⊢ Σ, A⊥• , ?A⊥

⊢ Σ, ?A⊥

⊢ Γ, ∆, Σ →
⊢ Γ, A•

⊢ ∆, !A ⊢ Σ, A⊥• , ?A⊥

∆, Σ, A⊥•
⊢ Γ, ∆, Σ

Thanks to this rule, one may prove the isomorphism

!A ∼= A• ⊗ !A,

meaning that there are proofs of

⊢ ?A⊥, A• ⊗ !A and ⊢ A⊥• ` ?A, !A

which, when cut against each other, normalize to an axiom (modulo η-
expansion). We call the above isomorphism Milner’s law because of the simi-
larity with the π-calculus law !P ≡ P | !P. Milner’s law is not valid in linear
logic, which is why parsimonious logic cannot be seen as a subsystem of lin-
ear logic, merely a variant of it. What makes parsimonious logic diverge from
linear logic is the co-absorption rule: without it, the system we obtain is a
subsystem of linear logic.

Speaking of co-absorption, the acquainted reader will have noticed a sim-
ilarity with differential linear logic [ER06], in which the rule

⊢ Γ, A ⊢ ∆, !A
⊢ Γ, ∆, !A

is cut-free derivable and represents the derivative (the operation which, from
a smooth map f : A ⇒ B, produces a map D f : A ⇒ (A ⊸ B) yielding,
for every vector a ∈ A, the best linear approximation D f (a) of f around a).
Albeit formally similar, this is not the same as co-absorption and Milner’s law
is not valid in differential linear logic either.

Although we will not do it here, one may of course define proof nets
for parsimonious logic and prove cut-elimination using them, which is much
nicer than sequent calculus. At the level of correctness criteria, the co-
absorption rule behaves as a tensor and the absorption rule as a par. The
promotion rule for (−)• and the functorial promotion rule for !(−) use boxes.
For the rest, nothing new happens. In particular, all of the annoying troubles
concerning weakenings (and the lack of connectedness it generates) remain.

One may of course consider intuitionistic parsimonious logic, which is
where pΛ comes from. In fact, pΛ corresponds to intuitionistic affine parsi-
monious logic, in which weakening is allowed on all formulas and we may
therefore discard the (−)• modality. Milner’s law then becomes

!A ∼= A⊗ !A,

which renders the similarity with the π-calculus even more apparent.
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; a : A ⊢ a : A
var

Θ; Γ, a : A ⊢ t : B
Θ; Γ ⊢ λa.t : A⊸ B

⊸I
Θ; Γ ⊢ M : A⊸ B Θ′; Γ′ ⊢ N : A

Θ, Θ′; Γ, Γ′ ⊢ MN : B
⊸E

Θ; Γ ⊢ M : A Θ′; Γ′ ⊢ N : B
Θ, Θ′; Γ, Γ′ ⊢ M⊗ N : A⊗ B

⊗I

Θ′; Γ′ ⊢ N : A⊗ B Θ; Γ, a : A, b : B ⊢ M : C
Θ, Θ′; Γ, Γ′ ⊢ M[a⊗ b := N] : C

⊗E

Θ; Γ ⊢ M : C
Θ; Γ, a : A ⊢ M : C

weak
Θ; Γ ⊢ M : C

Θ, x : A; Γ ⊢ M : C
!weak

; a : Γ ⊢ M : A
x : Γ;⊢ !M{x0/a} : !A

!I
Θ′; Γ′ ⊢ N : !A Θ, x : A; Γ ⊢ M : C

Θ, Θ′; Γ, Γ′ ⊢ M[!x := N] : C
!E

Θ, x : A; Γ, a : A ⊢ M : C
Θ, x : A; Γ ⊢ Mx++{x0/a} : C

abs
Θ; Γ ⊢ M : A Θ′; Γ′ ⊢ N : !A

Θ, Θ′; Γ, Γ′ ⊢ M :: N : !A
coabs

Figure 3.6: The simply typed parsimonious calculus.

Via Curry-Howard, propositional intuitionistic affine parsimonious logic
induces a discipline of simple types for pΛ. The simple types are the formulas
of intuitionistic propositional linear logic, generated by

A, B ::= α
∣∣ A⊸ B

∣∣ A⊗ B
∣∣ !A.

The typing rules are given in Fig. 3.6. As usual, typing judgments are of
the form Θ; Γ ⊢ M : A where Θ (resp. Γ) gathers all exponential (resp. affine)
variables. For this reason, it would be superfluous to write the !(−) modalities
in front of every type of Θ, so we omit them.

If we forget the term annotations, we get a natural deduction system for
intuitionistic affine parsimonious logic. Milner’s law is realized by the terms

λ!x.x0 ⊗ !x1 : !A⊸ A⊗ !A λa⊗ !x.a :: !x0 : A⊗ !A⊸ !A,

which use absorption and co-absorption, respectively. The first splits a stream
into head and tail; the second takes an element a, a stream x and pushes a
on top of x. The fact that these two terms induce an isomorphism is why
we speak of streams and not merely lists: the empty list would break the
isomorphism.

From the viewpoint of categorical logic, parsimonious logic corresponds
to an extremely simple structure: a category C with

• a ∗-autonomous structure (⊗, 1, (−)⊥);
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• free co-pointed objects, denoted by A•;

• a lax monoidal endofunctor !(−) with a natural isomorphism

!A ∼= A• ⊗ !A.

The intuitionistic affine case is even simpler: a symmetric monoidal closed
category with terminal unit and a lax monoidal endofunctor !(−) satisfying
Milner’s law !A ∼= A⊗ !A. In comparison, the categorical axiomatization of
(intuitionistic affine) multiplicative exponential linear logic is fairly impos-
ing [BBdPH93, Mel09].

The relationship between the categorical semantics and the parsimonious
λ-calculus is more easily seen if we use a different syntax, in which only affine
variables appear and there are explicit constructs for functorial promotion and
absorption (we also add the unit for completeness; we omitted it in the above
formulation because we never use it):

M, N ::= a
∣∣ λa.M

∣∣ MN
∣∣ M⊗ N

∣∣ M[a⊗ b := N]
∣∣ ∗ ∣∣ M[∗ := N]∣∣ !M[a1 := N1, . . . , an := Nn]

∣∣ M :: N
∣∣ M[a :: b := N]

with the constraint that, modulo Barendregt’s convention, variables appear
at most once. Furthermore, in !M[a1 := N1, . . . , an := Nn], which we also
abbreviate as !M[a := N], we must have fv(M) ⊆ {a1, . . . , an}, and all these
variables become bound.

The first line of the above grammar corresponds to the symmetric
monoidal closed structure (the fact that the unit is terminal is reflected in the
affinity of variables, which would otherwise be strictly linear). The constructs
in the second line correspond, from left to right, to the monoidal endofunc-
tor and the two directions of the natural isomorphism given by Milner’s law
(which we called co-absorption and absorption above).

The computational rules induced by the symmetric monoidal closed struc-
ture are obvious. The other rules are:

M[a :: b := (N :: P)[−]] → M{N, P/a, b}[−]
!M[a := (!N[b := P])[−], c := Q] → (!M{N/a}[b := P, c := Q])[−]

M[a :: b := (!N[c := P])[−]] → (M{N, !N[c := c′]/a, b})[c :: c′ := P][−]

!M[a := (N :: P)[−], b := Q] →

(M{b′/b}{N/a} :: !M[a := P, b := b
′′
])[b
′

:: b
′′

:= Q][−].
The first comes from Milner’s law; the second from the functoriality of !(−);
the last two come from the naturality of Milner’s law.

It is not too hard to translate from the syntax of pΛ to the “categorical”
syntax, and back. The categorical syntax shows that the use of indexed ex-
ponential variables in pΛ is just a notational convention and is by no means
intrinsic to parsimony. The rewriting rules in categorical syntax, which are
not particularly readable (especially the last, which corresponds to the rule
we omitted from pΛ, cf. the very end of Sect. 3.2.1), show on the other hand
the usefulness of indexed variables and motivate our presentation of pΛ.
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Nat := !(o⊸ o)⊸ o⊸ o

n := λ!s.λz.s0(. . . sn−1z . . .) : Nat

succ := λn.λ!s.λz.s0(n !(s1) z) : Nat⊸ Nat

pred := λn.λ!s.λz.n ((λa.a) :: !s0) z : Nat⊸ Nat

dup := λn.It(n, λm1 ⊗m2.(succ m1)⊗ (succ m2), 0⊗ 0) : Nat[]⊸ Nat⊗Nat

store := λn.It(n, λ!x.!(succ x0), !0) : Nat[]⊸ !Nat

Bool := o⊗ o⊸ o⊗ o

1 := λc⊗ d.c⊗ d : Bool

0 := λc⊗ d.d⊗ c : Bool

not := λb.λc⊗ d.b(d⊗ c) : Bool⊸ Bool

xor := λb.λb′.λc.b(b′c) : Bool⊸ Bool⊸ Bool

and := λb.λb′.c[c⊗ d := b(b′ ⊗ 0)] : Bool[]⊸ Bool⊸ Bool

Str := !(o⊸ o)⊸ !(o⊸ o)⊸ o⊸ o

Figure 3.7: Unary integers, Booleans and binary strings in pΛST.

3.3 Parsimony and Computational Complexity

3.3.1 Simply-typed parsimonious programming

We will now give some examples of how basic datatypes and operations may
be represented in the simply-typed parsimonious λ-calculus, which we call
pΛST for short. We will use only one atom, o, and, if A, B are simple types,
we will denote by A[B] the type A{B/o}. We will also use the notation A[] to
mean that some B which we do not want to specify is substituted to o in A. If
D and E are datatypes, we will represent a function D→ E by means of a term
of type D[]⊸ E, as is customary with simple types. Representations of type
D⊸ E (without type expansion), as well as the type itself, will be called flat.
Note that arbitrary type expansions do not affect composition: it is immediate
to check that, if ; a : A ⊢ M : B, then ; a : A[C] ⊢ M : B[C] for all C, so that
types A[]⊸ B and B[]⊸ C compose to yield A[]⊸ C.

The types Nat, Bool and Str of unary integers, Booleans and binary strings,
respectively, are defined in Fig. 3.7, together with the encoding of integers and
Booleans. For binary strings, the encoding is similar: if w = w1 · · ·wn ∈ W,
we have

w := λ!s0.λ!s1.λz.sw1
0 (. . . swn

i z . . .),

where the j-th occurrence of s0 from the left has index j− 1, and similarly for
s1. For instance, 001 = λ!s0.λ!s1.λz.s0

0(s
0
1(s

1
0z)).
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The type Nat supports iteration It(n, step, base) := n !(step′) base, typed as:

; ∆ ⊢ step : A⊸ A Γ; Σ ⊢ base : A

Γ, ∆′; Σ, n : Nat[A] ⊢ It(n, step′, base) : A

where ∆′ and step′ are the results of systematically replacing linear variables
by exponential ones. Note that the type of step must be flat.

Unary successor and predecessor are implemented as in Fig. 3.7. Since
their types are flat, they may be iterated to obtain addition and subtraction,
of type Nat[] ⊸ Nat ⊸ Nat. This is again flat with respect to the second
argument, so a further iteration on addition leads to multiplication, of type
Nat[]⊸ Nat[]⊸ Nat. Unary integers are duplicable and storable as shown in
Fig. 3.7. Using addition, multiplication, subtraction and duplication we may
represent any polynomial with integer coefficients as a closed term of type
Nat[]⊸ Nat.

These constructions can all be extended to the type Str, which also sup-
ports iteration, flat successors and predecessor, concatenation, and is duplica-
ble and storable.

For the Booleans, we adopt the multiplicative type Bool used in [Ter04].
This type too is duplicable and storable. An advantage of multiplicative
Booleans is that they support flat exclusive-or in addition to flat negation (see
Fig. 3.7). On the other hand, conjunction (and disjunction) has one non-flat
argument (see again Fig. 3.7). This would be the case of exclusive-or too if we
had chosen the traditional Boolean type o ⊸ o ⊸ o. We write if b then t else u
for c[c⊗ _ := b (t⊗ u)], which has type A if t, u : A and b : Bool[A].

In the sequel we will abusively use affine variables of duplicable types non-
linearly, e.g., if n : Nat[] we write n⊗ n meaning n′ ⊗ n′′[n′ ⊗ n′′ := dup[n]].
Similarly, if a term step contains a free affine variable a of storable type A,
we will abusively consider the result of its iteration to still have a free variable
a : A[] (instead of an exponential variable of type !A), by implicitly composing
with store.

It will be useful to consider for loops, derived from iteration. Given

step[i] : A⊸ A

containing a free affine variable i : Nat[], we define

step+ := λ!j⊗ a.!(succ j1)⊗ (step[j0/i] a) : !Nat[]⊗ A⊸ !Nat[]⊗ A

and, given base : A, we set

for i < n frombase do step := It(n, step+, !0⊗ base).

3.3.2 Expressing logspace computation

We will now see how pΛST is able to express logarithmic space computation.
More precisely, we will show that, for every L ∈ L, where L is the class of
problems solvable by deterministic Turing machines with a logarithmically
bounded work tape, there exists

ML : Str[]⊸ Bool
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len := λw.It(w, succ, succ, 0) : Str[]⊸ Nat

shift := λ!x.!x1 : !A⊸ !A

toStrm := λw.It(w, λs.(0 :: s), λs.(1 :: s), !0) : Str[]⊸ !Bool

leq := λm.λn.x0[!x := It(n, shift, It(m, λs.(0 :: s), !1))]

: Nat[]⊸ Nat[]⊸ Bool

isOne := λw.λn.x0[!x := It(n, shift, toStrmw)] : Str[]⊸ Nat[]⊸ Bool

Figure 3.8: Other basic logspace functions.

in pΛST which decides L. In order to do this, we will use a nice presenta-
tion of L in terms of descriptive complexity, due to Immerman [Imm99]: it
corresponds to first-order logic over totally ordered finite structures with the
addition of a deterministic transitive closure operator. This may be equiva-
lently presented in recursion-theoretic terms, as we do below.

Let B := {0, 1} and W := B∗. We consider the following set of basic
functions:

• the constant 0 ∈N;

• negation not : B→ B and conjunction and : B2 → B;

• the predicates leq : N2 → B, sum,mul : N3 → B corresponding to the
integer relations m ≤ n, m + n = k and m · n = k;

• the function len : W→N returning the length of a string;

• the predicate isOne : W×N → B such that isOne(w, i) = 1 iff the i-th
bit of w is 1.

Now call L the smallest set of functions containing the above basic functions
and closed by composition and the following schemata:

• universal quantification: if R : Γ×N2 → B ∈ L, then ∀R : Γ×N→ B

mapping (γ, m) 7→ 1 iff R(γ, m, i) = 1 for all i < m is also in L;

• deterministic transitive closure: let R : Γ ×N2k+1 → B ∈ L. This
induces a partial map R∗ : Γ×Nk+1 → Nk mapping (γ, m, n) 7→ n′ if
n′ is unique s.t. R(γ, m, n, n′) = 1, or undefined otherwise. Then, L also
contains DTC(R) : Γ×N2k+1 → B mapping (γ, m, n, n′) 7→ 1 iff there
exist n0, . . . , nl ∈ Nk, with n0 = n, nl = n′ and ni ∈ {0, . . . , m− 1}k for
all 0 < i ≤ l, such that R∗(γ, m, ni) = ni+1 for all 0 ≤ i < l.

The class L corresponds exactly to the predicates W→ B in L.
The basic functions are easily representable in pΛST: some are already

in Fig. 3.7 and what was not covered by the previous section may be found
in Fig. 3.8. The universal quantification scheme is represented by the higher
order term Univ defined in Fig. 3.9. The idea is the following: given R : N2 →
B and m ∈N, we use iteration to build a stream of Booleans whose first m bits

100



strmToW := λ!x.λm.m !(if x0 then succ
1 else succ0) ε : !Bool[]⊸ Nat[]⊸ Str

forall := λw.It(w, λb.0, λb.b, 1) : Str[]⊸ Bool

Univ := λ!R.λm.forall(strmToW(for k < m from !0 doλs.(R m k) :: s))

: !(Nat[]⊸ Nat[]⊸ Bool[])⊸ Nat[]⊸ Bool

Figure 3.9: Universal quantification.

contain R(m, 0), . . . , R(m, m− 1); then, we use strmToW to convert this into a
string and we check with forall that it consists entirely of ones.

Note that the variable !R representing the relation on which universal
quantification is applied is exponential because it appears free in the sub-
term λs.(R m k) :: s, which is iterated. This means that, when we want to
apply universal quantification to t : Γ ⊸ Nat[] ⊸ Nat[] ⊸ Bool repre-
senting a function in L, we will first have to convert it to a term of type
!Γ ⊸ !(Nat[] ⊸ Nat[] ⊸ Bool) and then apply Univ to obtain a term of type
!Γ⊸ Nat[]⊸ Bool. The extra modalities in !Γ may then be removed because
all types in Γ are storable (they are either Nat, Bool or Str). The same remark
tacitly applies below.

Let us turn to representing DTC(R) with R : Γ → N2k+1 → B. First
of all, we will restrict to the case k = 1. The general case may be treated
by encoding a pairing function, which we omit here for briefness.2 Second,
we observe that the particular determinization R∗ of R used in the definition
of DTC is inessential: we may as well define R∗(γ, m, i) to be the smallest
j such that R(γ, m, i, j) = 1, or undefined otherwise. Indeed, the important
case is when R is already deterministic (i.e., a partial function), in which the
determinization is irrelevant. We will adopt the second definition here; it is
possible to deal with the first at the expense of a more complex encoding.

The representation of deterministic transitive closure is given in Fig. 3.10,
which we now explain (in that figure, for aesthetic reasons we use the no-
tation let p := N in M instead of M[p := N]). If R : N3 → B, computing
DTC(R)(m, n, n′) amounts to determining whether there is a path from n to
n′ in a graph G whose nodes are [m] := {0, . . . , m − 1} and s.t. there is an
edge (n, n′) iff R∗(m, n) = n′, so the out-degree of G is at most 1 (i.e., it is
a forest). To do this, we imagine a token traveling in G, its position being
represented by a stream of type !Bool which is 0 everywhere except where
the token is. The edges of G may now be seen as a stream transformation
φ : !Bool⊸ !Bool. Initially, the stream is 1 at position n; applying φ will make
the token move, and we may determine the existence of a path by checking
the value at position n′ after at most m applications of φ.

The idea behind the definition of φ is best explained with an example.
Suppose that m = 4 and that the edges of G are {(0, 1), (1, 1), (3, 2)}. Then,
φ = λ!x.0 :: (xor x0 x1) :: x3 :: 0 :: !x4. This works because the input stream !x

2The curious reader may find an encoding of Cantor’s bijective pairing in the appendix of the
version of [Maz15] available on the author’s web page. It involves programming division by two
and square root.
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mkDepR := if (R m i j) thenλb⊗ !x⊗ !y.(xor b x0)⊗ !x1 ⊗ 0 :: !y0

elseλb⊗ !x⊗ !y.b⊗ !x1 ⊗ x0 :: !y0

: (Bool⊗ !Bool⊗ !Bool)⊸ (Bool⊗ !Bool⊗ !Bool)

rev := λs.s′[s′ ⊗ _ := It(m, λ!x⊗ !y.(y0 :: !x0)⊗ !y1, !0⊗ s)]

: !Bool⊸ !Bool

mkFunR := λs.let s′ ⊗ _ := for j < m from !0⊗ s do

λp⊗ q.let b⊗ _⊗ q′ := for i < m from (0⊗ q⊗ !0) do

mkDepR[m, i, j])

in (b :: p)⊗ (rev q′)

in rev s′

: !Bool⊸ !Bool

DTCR := λm.λn.λn′.for k < m from 0 do

let !x := It(n′, shift, It(k,mkFunR[m], It(n, λp.0 :: p, 1 :: !0)))

in if x0 thenλb.1 elseλb.b

: Nat[]⊸ Nat[]⊸ Nat[]⊸ Bool

Figure 3.10: Deterministic transitive closure.

contains exactly one bit set to 1, so at most one of x0, x1 will be 1 and exclusive-
or is equivalent to disjunction. We cannot use disjunction because it is not flat.
Observe by the way that the simultaneous presence of flat disjunction and flat
duplication (i.e., if dup had type Bool ⊸ Bool ⊗ Bool instead of its present
type Bool[Bool⊗ Bool] ⊸ Bool⊗ Bool) would allow this solution to work for
arbitrary relations (i.e., graphs of arbitrary out-degree) and we would be able
to compute arbitrary transitive closures, which, by the forthcoming results, is
impossible unless L = NL (non-deterministic logspace).

The tricky task now is to compute φ from R. This is realized by mkFunR,
which operates by manipulating two streams p and q, the latter being initial-
ized as the input stream s. For each j ∈ [m], we determine its dependencies,
i.e., those i ∈ [m] s.t. R(m, i, j) = 1. This is done by iterating over all i ∈ [m] the
term mkDepR: if R(m, i, j) = 0, the i-th element is saved in an auxiliary stream
(it may contain the token, so we must preserve it); otherwise, we xor the cur-
rent result with the i-th element and set this element to 0, so that it won’t be
considered later (if the token was there, it has now moved). This yields the
determinization of R we defined above. At the end of this, the result is pushed
to p and we start over with the (possibly) modified q (q also needs to be re-
versed because traversing it and pushing its elements into an auxiliary stream
reversed their order). When we exit the outer loop, p contains the desired
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Θ; Γ ⊢ M : A
Θ; Γ ⊢ M : ∀α.A

∀I, α ̸∈Γ,Θ
Θ; Γ ⊢ M : ∀α.A

Θ; Γ ⊢ M : A{B/α}
∀E, B !-free

Figure 3.11: Typing rules for linear polymorphism.

stream (but, again, in reverse order).
Finally, the term DTCR does nothing but looping through all 0 ≤ k < m to

determine whether, after k iterations of mkFunR, the token has moved from n
to n′.

3.3.3 Linear polymorphism and polytime computation

Polymorphism may be added to pΛST in the standard way, thus obtain what
we may call “parsimonious system F”. We will be particularly interested in a
limited form of polymorphism: in logical terms, we restrict the comprehen-
sion scheme to linear types, i.e., types not containing !(−).

The obvious typing rules for linear polymorphism, to be added to those of
Fig. 3.6, are given in Fig. 3.11. We call this augment system pΛℓ∀. In this more
powerful type system, the term and of Fig. 3.7 may be given a flat type:

and : Bool⊸ Bool⊸ Bool.

Since negation is already flat, disjunction may also be given a flat type. The
same is true of Boolean duplication:

dup := λb.if b then 1⊗ 1 else 0⊗ 0 : Bool⊸ Bool⊗ Bool.

This means that we may encode a Boolean circuit with n inputs and m out-
puts as a term of type Bool⊗n ⊸ Bool⊗m. From this, it is not too hard to
encode the transition function of an arbitrary Turing machine M by means
of a term transM : !Bool ⊸ !Bool (this is actually the main observation be-
hind the standard proof of Theorem 24). Since we may compute polynomials,
and since transM is flat, we may iterate transM a polynomial number of times
(in the size of the input) starting from the initial configuration (of type !Bool,
which may easily be built from an input of type Str using toStrm), thus simu-
lating any deterministic Turing machine whose running time is bounded by a
polynomial.

We have thus proved that, for any L ∈ P (the class of problems solvable in
polynomial time by a deterministic Turing machine), there exists a term

ML : Str[]⊸ Bool

deciding L typable in pΛℓ∀. In Sect. 3.3.6 we will show that the converse is
true. The following result will be instrumental in the proof:

Proposition 30 Let M : Bool be typable in pΛℓ∀. Then, M normalizes in a number
of steps bounded by |M|k, where k depends on the exponential depth of M (Defini-
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tion 21) and the exponential height of M, which is the maximum nesting level of
!(−) modalities in the types appearing in the derivation of M : Bool.

Proof. The proof is essentially a careful cut-elimination theorem. The key
technical point is that neither the exponential depth nor the exponential height
may increase under reduction: the first because of parsimony (for the reader
familiar with linear logic slang, parsimonious logic does not have “digging”),
the second because polymorphism is restricted to linear types, whose expo-
nential height is zero: the exponential height of A{B/α} is the same as that of
A if B is !-free. The requirement that M be of type Bool, which may actually
be replaced by any !-free type, is so that the set of rules of Fig. 3.2 is enough
to reach the normal form (i.e., we do not need the reduction rule mentioned
at the end of Sect. 3.2.1). The details are a bit too technical and not interesting
enough to be included here; the curious reader may find them in the version
of [MT15] available on the author’s web page. □

3.3.4 Polyadic geometry of interaction

The name “geometry of interaction”, or GoI, originally designated a re-
search program initiated by Girard [Gir89b] which aimed at interpreting cut-
elimination as the inversion of a certain operator in a suitable algebra: from
C∗-algebras [Gir89a] to von Neumann algebras [Gir11]. Over time, Girard’s
results were reformulated in different settings, from more concrete (token ma-
chines) to more abstract (traced monoidal categories). Today, the term GoI
encompasses a diverse body of techniques whose only common ground is,
perhaps, that they describe the execution of a program under a radically dif-
ferent form than the one adopted by more traditional operational semantics,
be it “big step”, “small step” or environment-based abstract machines.

In particular, and this is the main reason behind our interest in it, the
GoI allows one to execute a program without rewriting it and without explic-
itly computing closures, i.e., associating values to variables. This turns out to
be fundamental if one wants to develop a meaningful complexity theory of
space, in particular because neither rewriting nor environments are suitable
for dealing with sublinear bounds, a fundamental case in space complexity:

• rewriting is obviously out of the question (how do we not count the size
of the initial term?);

• explicitly computing the value of variables is also problematic: even
if done with pointers (to subterms of the initial term), the number of
variables is still linear in the size of the program under execution.

The GoI offers a scalable, general solution to the above issues. This was per-
haps first understood by Schöpp [Sch06, Sch07] and later fully developed by
Dal Lago and Schöpp [DLS10a], as well as Terui, who lectured several times
on the subject (but never published any related work as far as we know).

The approach we follow here is to see the GoI semantics as a token ma-
chine, in the style of the interaction abstract machine originally introduced by
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▲ a C{λa.C′} S ⇝ ▼ λa.C′{a} C p · S
▼ t C{λa.{·}} S ⇝ ▼ λa.t C q · S
▼ u C{t{·}} S ⇝ ▲ t C{{·}u} p · S
▲ tu C S ⇝ ▲ t C{{·}u} q · S
▼ t C{{·} ⊗ u} S ⇝ ▼ t⊗ u C p · S
▼ u C{t⊗ {·}} S ⇝ ▼ t⊗ u C q · S
▲ a C[a⊗b:=u] S ⇝ ▲ u C{a}[a⊗b:={·}] p · S
▲ b C[a⊗b:=u] S ⇝ ▲ u C{b}[a⊗b:={·}] q · S
▼ t C{{·} :: u} S ⇝ ▼ t :: u C 0 · S
▼ u C{t :: {·}} i · S ⇝ ▼ t :: u C (i + 1) · S
▲ xi C[⟨x⟩ := u] S ⇝ ▲ u C{xi}[⟨x⟩:={·}] i · S
▼ t C{{·}[p:=u]} S ⇝ ▼ t[p := u] C S

Figure 3.12: The transitions of the interaction abstract machine (IAM). In the
second to last last row, x = x0, . . . , xm with m ≥ i. In the last row, p stands for
either a⊗ b or x.

Danos and Regnier [DR99]. Danos and Regnier’s definition, as well as the
ones that followed it (including very recent developments extending it in all
sorts of directions [DLFVY17]), use proof nets. Here, we formulate the ma-
chine directly on terms, drawing inspiration from an unpublished note of
Accattoli and Dal Lago. The machine will execute affine polyadic terms, in
the modified syntax of Sect. 3.2.2.

Definition 23 (polyadic interaction abstract machine) The polyadic interac-
tion abstract machine, or pIAM, is a machine whose states are tuples of the form

d | t | C | S

where

• d ∈ {▲,▼} is a direction;

• t is a closed affine polyadic term;

• C is an affine polyadic context;

• S is a stack, which is a finite string over {p, q} ∪N. We write ε for the empty
stack and s · S for a stack whose first symbol is s.

The transitions of the pIAM are given in Fig. 3.12. In addition, for each transition

d | t | C | S⇝ d′ | t′ | C′ | S′

therein, there is a transition

d′ | t′ | C′ | S′ ⇝ d | t | C | S,
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where ▲ := ▼ and ▼ := ▲.
For a closed term t and stack S, we let

init(t, S) := ▲ | t | {·} | S,

fin(t, S) := ▼ | t | {·} | S.

The former are called initial states, the latter final states. Given a term t, we define
a binary relation on stacks by

S t
↭ S′ just if init(t, S)⇝∗ fin(t, S′).

Why is the pIAM a “token machine”? The intuition is that the pIAM has a
read-only memory in which the term-graph of a fixed closed affine polyadic
term is stored, and at any given time a token is placed on a node of this term-
graph. The token carries information consisting of one bit and a stack (as
defined above). A state d | t | C | S represents the machine with its memory
containing C{t} and the token placed at the root of the subterm t, carrying
the information (d, S). Depending on the current position of the token and
its current information, the transitions move the token on an adjacent node of
the term-graph and update the information. As a consistency check, we invite
the reader to verify that d | t | C | S⇝ d′ | t′ | C′ | S′ implies C{t} = C′{t′}.

Observe that the pIAM is bideterministic: given a state, there is at most

one future state and at most one past state. This makes the relation t
↭ sym-

metric. In Girard’s original viewpoint [Gir89a], it corresponds to the fact that
proofs/programs are hermitian operators.

Proposition 31 (soundness of the pIAM) Let t be a closed affine polyadic term.
Then,

t→ t′ implies t
↭ =

t′
↭ .

Proof. This is “the” standard result for GoI token machines. In this case, it
holds without restrictions because we are considering closed affine terms (no
exponential boxes). An equivalent result, stated for parsimonious proof nets,
may be found in [Maz15]. The proof in this context is morally identical and
consists of a case analysis of Fig. 3.12 (which is modeled on proof nets). □

3.3.5 The return of intersection types

The ideas of Chapter 2 turn out to be useful also in the context of space
bounds. The lesson we learned in there is that an intersection types discipline
arises as soon as we have a well-behaved notion of approximation. The parsi-
monious λ-calculus fits the bill, and we may build an intersection type system
for it by applying the Grothendieck construction to a suitable approximation
presheaf

pApx : pΛ −→ Rel

based on Fig. 3.4. The 2-operad pΛ should be obvious: its colors are a and
e (for affine and exponential variables), its multimorphisms terms with free
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⊢p !⊥ : ⟨⟩
empty

Θ;⊢ t : A0 Θ′ ⊢p u : ⟨A1, . . . , An⟩
Θ, Θ′ ⊢p t :: u : ⟨A0, A1, . . . , An⟩

cons!

Θ; Γ ⊢ t : A0 Θ′; Γ′ ⊢ u : ⟨A1, . . . , An⟩
Θ, Θ′; Γ, Γ′ ⊢ t :: u : ⟨A0, A1, . . . , An⟩

cons

Figure 3.13: Modified typing rules for polyadic simple types.

α ⊏ α
A ⊏ σ B ⊏ τ

A⊸ B ⊏ σ⊸ τ

A1 ⊏ σ . . . An ⊏ σ

⟨A1, . . . , An⟩ ⊏ !σ

⟨A⟩ ⊏ !σ

⟨A⟩p ⊏ #σ

Figure 3.14: Approximation relation for parsimonious types.

variables matching the types and its 2-arrows reductions modulo permutation
equivalence.

In reality, since we are interested in the simply-typed parsimonious
λ-calculus, we need something slightly different, namely a presheaf

pApxST : pΛST −→ Rel,

where pΛST is the 2-operad of (Church-style) simply-typed parsimonious
terms. We will denote simple types by σ, τ to avoid confusion with polyadic
simple types (which the construction “turns” into intersection types), for
which we use A, B. Let us recall them:

σ, τ ::= α
∣∣ σ⊸ τ

∣∣ σ⊗ τ
∣∣ !σ,

A, B ::= α
∣∣ A⊸ B

∣∣ A⊗ B
∣∣ ⟨A1, . . . , An⟩.

In the sequel, for the sake of brevity we will ignore tensors, their treatment
being unproblematic and in all respects similar to that of the linear arrow.

The 2-operad pΛST has as colors the simple types σ (refining the color a of
pΛ), plus colors of the form #σ with σ a simple type (refining the color e of
pΛ). Its multimorphisms and 2-arrows are (Church-style) terms and reduc-
tions, as usual.

Since we are using a slightly different syntax for polyadic terms than the
one introduced in Sect. 1.2.3 (in order to match parsimonious terms more
closely, we have the term !⊥ and the construct :: instead of just one construct
⟨. . .⟩, cf. Sect. 3.2.2), we need to adapt the typing rules of Fig. 1.9 to this syntax.
The typing rules for polyadic simple types are as in Fig. 1.9, except that:

• the box rule is removed and replaced with the rules given in Fig. 3.13;

• of course, we have the weak rule but not the cntr rule.

Now, the approximation relation between polyadic simple types and simple
types is presented in Fig. 3.14, and the approximation presheaf is defined as
follows:
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Θ; Γ, aσ : A ⊢ a : A
avar

Θ; Γ, aσ : A ⊢ M : B
Θ; Γ ⊢ λaσ.M : A⊸ B

lam
Θ; Γ ⊢ M : A⊸ B Θ; Γ′ ⊢ N : A

Θ; Γ, Γ′ ⊢ MN : B
app

m ≥ i
Θ, xσ : ⟨A0, . . . , Am⟩; Γ ⊢ xi : Ai

evar

!M{xφ} : !σ

xφ : Θ; Γ ⊢ !M : ⟨⟩
empty

Θ; Γ ⊢ M : A Θ; Γ′ ⊢ !M++ : ⟨B⟩
Θ; Γ, Γ′ ⊢ !M : ⟨A, B⟩

cons!

Θ; Γ ⊢ M : A Θ; Γ′ ⊢ N : ⟨B⟩
Θ; Γ, Γ′ ⊢ M :: N : ⟨A, B⟩

cons

Θ; Γ′ ⊢ N : ⟨A⟩ Θ, xσ : ⟨A⟩; Γ ⊢ M : C
Θ; Γ, Γ′ ⊢ M[!xσ := N] : C

let!

Figure 3.15: Intersection types for simply-typed parsimonious terms.

• on colors,
pApxST(σ) := {A | A ⊏ σ};

• on multimorphisms,

pApxST(M)(Θ, Γ; A) := {δ derivation of Θ; Γ ⊢ t : A | t ⊏ M},

where the approximation relation is that of Fig. 3.4 and derivations are
taken to be those of Fig. 1.9 amended as described above (with the rules
of Fig. 3.13);

• on 2-arrows, the definition is similar, using the obvious approximation
relation for reduction terms which may be inferred from Fig. 3.4.

The Grothendieck construction applied to pApxST yields the type system
shown in Fig. 3.15, let us call it ITpΛST. Typing judgments are of the form

Θ; Γ ⊢ M : A,

where

• Θ is composed of statements of the form xφ : ⟨B1, . . . , Bk⟩ such that, for
all 1 ≤ i ≤ k, Bi ⊏ φ;

• Γ is composed of statements of the form aτ : C such that C ⊏ τ;

• M is a (Church-style) simply-typed parsimonious term.
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One may check that, if M : σ and the above judgment is derivable, then A ⊏ σ.
This is the reason behind the premise of the empty rule, which means that !M
is a term of type !σ with free variables x = x1, . . . , xn of respective types
φ = φ1, . . . , φn.

By removing the simple-type decorations (i.e., σ, τ, etc.) and by discarding
the hypothesis of rule empty (which becomes nullary), we obtain from Fig. 3.15
the intersection type system for pΛ (i.e., pure parsimonious terms) mentioned
above, resulting from the Grothendieck construction applied to pApx. Let us
call this system ITpΛ. It is easy to see, using the techniques of Chapter 2,
that typability in ITpΛ characterizes head-normalizable parsimonious terms.
Since simply-typed parsimonious terms (strongly) normalize, they are all ty-
pable; moreover, they are actually typable in ITpΛST. This remark will be
useful later.

As introduced in the previous subsection, the pIAM executes untyped
terms. However, if fed a simply-typable term, it behaves consistently with
the type information. Albeit not so surprising (Girard originally conceived
the GoI in a typed context), this property will give intersection types a key
role in dealing with space complexity in the parsimonious λ-calculus.

Definition 24 (stack matching a type; well-typed state) A stack S of the
pIAM matches a simple polyadic type A if:

• S = ε and A is atomic;

• S = p · S′, A = A′⊸ B or A = A′ ⊗ B and S′ matches A′;

• S = q · S′, A = B⊸ A′ or A = B⊗ A′ and S′ matches A′;

• S = i · S′, A = ⟨A0, . . . , An⟩, 0 ≤ i ≤ n and S′ matches Ai.

Let δ be a closed simply-typed affine polyadic term and let d | t | C | S be a state
of the pIAM such that C{t} = δ−. We say that such a state is well-typed if S
matches the type of t within δ.

Lemma 32 The transitions of the pIAM preserve well-typedness.

Proof. A case-by-case inspection of Fig. 3.12. □

3.3.6 Implicit and explicit complexity via parsimony

Deterministic polynomial time (P) and deterministic logarithmic space (L) are
quite important classes in computational complexity theory because they are
taken to embody the concept of “feasible computation” with respect to run-
ning time and memory usage, respectively.

These classes are also very robust, in that they admit a host of alternative
characterizations by means of a variety of models of computation. In particu-
lar, both classes may be seen as the “uniformization” of a non-uniform model
of computation restricted to families of polynomial size:
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Theorem 33 We have:

1. P = POLYSIZEunif;

2. L = POLYBPunif.

In point 1, POLYSIZEunif is the class of problems decided by uniform poly-
size families of Boolean circuits. We will not enter into the the details of what
“uniform” means; it suffices to think of it in the terms described in Sect. 3.1,
i.e., as the fact that there is a (very efficient) algorithm computing the descrip-
tion of the n-th circuit of the family from n ∈ N. The key technical part is
proving Theorem 24 mentioned in Sect. 3.1. The reader may find the details
in any computational complexity textbook, e.g. [Pap94].

In point 2, one considers the non-uniform model of branching programs.
These may be intuitively described as “decision trees with sharing”, and
POLYBPunif is the class of languages decided by uniform families of polysize
branching programs. We will not need a formal definition, which the reader
may find e.g. in [Vol99], together with the proof that such a class equals L.

As mentioned in Sect. 3.1, results like Theorem 33 may be seen as “un-
raveling” the complexity analysis of a program, a highly non-trivial task, into
a family of “micro-programs” for which the complexity analysis is trivial (it
is given by their size). This is important because it opens the way to study
computational complexity from the non-uniform viewpoint, which is the pre-
dominant one in structural complexity theory. That is, once Theorem 33 is
established, one may forget about uniformity and try to prove lower bounds
directly on POLYSIZE and POLYBP, which are of purely combinatorial nature.
Although still formidably difficult, this approach is at present the only one for
which any viable technique has been developed.

In this section we will see how parsimony allows us to establish a simi-
lar framework in a higher-order setting. In particular, we will prove results
similar to Theorem 33, stating the equality of fours kinds of classes:

implicit = explicit = non-uniform = traditional,

where:

• by “traditional” we mean a complexity class in the usual definition, i.e.,
one of P or L.

• By “explicit” we mean the higher-order equivalent of the “traditional”
complexity class, i.e., the one we would define if we did not know Turing
machines and had to resort to notions which are purely internal to the
λ-calculus. This is especially tricky for space complexity and we will see
that our solution uses intersection types in a crucial way.

• By “non-uniform” we mean the higher-order equivalent of classes de-
fined in therms of non-uniform models (circuits, branching programs).
In our case, we will use families of affine polyadic terms, which are
“higher-order circuits” according to our Equation 3.1 (Sect. 3.1).
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• By “implicit” we mean a class defined without any explicit reference to
complexity bounds, of any sort. In our case, these classes will be defined
by means of standard type disciplines.

There are two novel aspects that the higher-order setting offers with respect
to the “traditional”, first-order setting. The first, of course, is the implicit char-
acterization. Much has already been said about that in the literature, we will
not insist any more here. The second aspect is more interesting. The charac-
terization in terms of the non-uniform model must necessarily employ some
uniformity condition; in the traditional case, we skipped the details but we
mentioned that uniformity is an algorithmic notion, i.e., it is about the existence
of an algorithm generating the members of the family of “microprograms” of
the non-uniform model (circuits, branching programs. . . ). In our setting, it
turns out that uniformity has a more algebraic flavor: a family (tn)n∈N of
affine polyadic terms (i.e., of “higher order circuits”) is uniform just if there is
a parsimonious term M such that tn ⊏ M for all n ∈ N (Definition 27). From
Chapter 1, we know that, intuitively, this means that all tn follow the same
“shape”. In other words, uniformity may be reformulated as a coherence rela-
tion between pairs of “microprograms”, rather than an algorithm generating
such “microprograms”. Such a coherence relation is explicitly defined, in the
context of resource λ-terms, by Ehrhard and Regnier [ER08]. It is nice to see it
resurface here; its role in computational complexity is still to be clarified, but
it seems worth further investigation in the future.

Let us implement the framework sketched above. We start with the defini-
tion of “explicit” complexity classes. In the following, we refer to the encoding
of Booleans and binary strings described in Fig. 3.7, which is of course avail-
able also in the untyped setting. We say that a closed term M ∈ pΛ decides a
language L if, for all w ∈ {0, 1}∗, we have

ψw : M w→∗ bw

with bw a Boolean and bw = 1 iff w ∈ L. We need to define how much time
and how much space M takes in deciding L. For what concerns time, the
length of reductions to normal form is the obvious choice. We will adopt an
equivalent but more sophisticated definition, which will give us the possibility
of dealing with space too.

Note that, for all w ∈ {0, 1}∗, we obviously have that

;⊢ bw : Bool

is derivable in the system of intersection types ITpΛ. By subject expansion
along ψw, we have a derivation of

;⊢ M w : Bool,

from which we deduce the existence of a family of derivations (δw)w∈{0,1}∗ of

;⊢ M : Aw ⊸ Bool,

for some types (Aw)w∈{0,1}∗ such that ;⊢ w : Aw is derivable. Observe that
the family δw depends on ψw, so it is not uniquely defined in general. For our
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purposes, we will take ψw to be a head reduction, which is unique and always
guaranteed to lead to bw. Other choices are possible if one wishes to. This
detail having been fixed, there is a unique family (δw)w∈{0,1}∗ associated with
a term M deciding a language, constructed as above. We call such a family
the execution envelope of M, and denote it by env(M), so that, if w ∈ {0, 1}∗,
env(M)w = δw.

Definition 25 (type depth) Let δ be a Church-style simply-typed affine polyadic
term. The type depth of δ, denoted by td(δ), is the maximum depth of the types (as
syntactic trees) appearing in it. Note that this definition also applies to intersection
types derivations of ITpΛ and ITpΛST, because by definition these are isomorphic
to Church-style simply-typed affine polyadic terms.

Recall that, given a Church-style simply-typed affine polyadic term, δ− is
the underlying pure polyadic term, without type annotations.

Definition 26 (complexity classes in pΛ) Let M ∈ pΛ decide a language. We
define:

• the running time of M to be the function

n 7→ max
|w|=n

|env(M)−w |;

• the execution space of M to be the function

n 7→ max
|w|=n

(
(td(env(M)w) + 1) · log |env(M)−w |

)
.

We then define:

• pλP to be the class of languages decided by closed parsimonious terms in
polynomial running time;

• pλL to be the class of languages decided by closed parsimonious terms in
logarithmic execution space.

Some comments are in order. For what concerns running time, the above
definition is actually unsurprising: in view of the polynomial modulus of
continuity, and of the fact that a derivation of ITpΛ is just an approximation,
modulo a polynomial (which is negligible in time complexity) bounding the
size is exactly the same as bounding the length of reductions to normal form.

The definition of execution space is justified by Lemma 36 below. Under-
lying it, there is the assumption that the GoI is a space-efficient execution
mechanism for λ-terms.

Let us move on to our non-uniform model. Observe that, for all w ∈
{0, 1}∗, w has no boxes, so ⌊w⌋k = ⌊w⌋0 for all k ∈ N. Because of this, in
the sequel we are going to abusively write w both for the parsimonious term
representing w and the affine polyadic term ⌊w⌋0.
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Definition 27 (higher order affine circuit classes) Let (tn)n∈N be a family of
affine polyadic terms. We say that such a family decides a language L if, for all
n ∈N and w ∈ {0, 1}n,

tn w→∗ bw

with bw a Boolean and bw = 1 iff w ∈ L.
We say that a family (tn)n∈N is uniform if there exists M ∈ pΛ such that

tn ⊏ M for all n ∈N.
We denote by

• HOPOLYSIZE (HOPOLYSIZEunif) the class of languages decided by (uni-
form) families of affine polyadic terms of polynomial size;

• HOAC0 (HOAC0
unif) the class of languages decided by (uniform) families of

simply-typable affine polyadic terms of polynomial size and bounded type
depth.

We may now prove the results announced above.

Lemma 34 The normal form of an affine polyadic term t may be computed in de-
terministic time O(|t|k), with k constant.

Proof. Let m := |t|. We know that m bounds the length of any reduction
sequence starting from t, so there is a naive quadratic deterministic algorithm
for finding the normal form: scan for a redex (e.g. from the left); halt if none
is found, otherwise reduce it; start over. This terminates in at most m rounds,
and the size of the terms shrinks at each round, so each round takes time
O(m), hence the quadratic bound. □

Theorem 35 Let C(pΛℓ∀) be the class of languages decided by terms of type

Str[]⊸ Bool

in pΛℓ∀ (i.e., parsimonious with linear polymorphism). Then,

C(pΛℓ∀) = pλP = HOPOLYSIZEunif = P.

Proof. We show the cycle of four inclusions:

• C(pΛℓ∀) ⊆ pλP: let M : Str[]⊸ Bool in pΛℓ∀ and let L be the language
it decides. We know that, for all w ∈ {0, 1}∗,

M w→l(w) bw,

where bw is a Boolean and l : {0, 1}∗ → N is the number of reduction
steps. By Proposition 30, we know that l(w) ≤ |M w|k. Now, |M w| =
O(|w|). For what concerns k, we have that:

– the exponential depth of M w is equal to the exponential depth of
M, because the exponential depth of w is zero;
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– the exponential height of M w is equal to the exponential height of
M, because the simple typing w : Str[] may be derived using only
subtypes of Str[].

Therefore, relative to w, k = O(1). So l(w) is polynomial in |w| and
we conclude L ∈ pλP by the polynomial modulus of continuity (more
precisely, Proposition 26 and Lemma 27).

• pλP ⊆ HOPOLYSIZEunif: let M ∈ pΛ decide L ∈ pλP and let, for n ∈N,

r(n) = max
|w|=n

rk(env(M)−w ).

By Lemma 28, we have env(M)w ⊑ ⌊M⌋r(|w|) for all w ∈ {0, 1}∗. So, if
we let tn := ⌊M⌋r(n), by monotonicity we have

t|w|w→∗ bw

for all w ∈ {0, 1}∗, which means that (tn)n∈N is a family of affine
polyadic terms deciding L, which is is uniform (tn ⊏ M for all n ∈ N)
and of polynomial size (by definition, r(n) = O(nk), so we conclude by
Lemma 27).

• HOPOLYSIZEunif ⊆ P: Let (tn)n∈N be uniform, of polynomial size and
decide L. We know there is a polynomial r such that rk(tn) = O(p(n)).
By Lemma 28, (⌊M⌋r(n))n∈N still decides L. It is now immediate to con-
struct a deterministic algorithm deciding L in polynomial time: on input
w ∈ {0, 1}n, compute ⌊M⌋r(n), which is obviously doable in polynomial
time in n, because r(n) is polynomial; then, construct ⌊M⌋r(n) w (which
takes O(n) time) and normalize it, which is polytime in n by Lemma 34.

• P ⊆ CpΛℓ∀: this was discussed in Sect. 3.3.3.

The proof is thus complete. □

Lemma 36 The normal form of a closed simply-typable affine polyadic term t = δ−

with δ : Bool may be computed in deterministic space

O ((td(δ) + 1) log |t|) .

Proof. We invite the reader to check that, if b is a Boolean, we have

b = 1 implies pp
b
↭ qp;

b = 0 implies pp
b
↭ qq.

Therefore, by Proposition 31 and determinism of the pIAM, computing the
normal form of t amounts to computing the final state of init(t, pp) on the
pIAM. Such a computation may obviously be simulated by a Turing machine
with a read-only input tape on which the input t is stored and with two work
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tapes, one containing a pointer to the current position of the token in t, the
other containing the information carried by the token.

The first work tape is obviously bounded by log |t|. For what concerns
the second work tape, it is enough to bound the space occupied by the stack.
Observe that init(t, pp) is well-typed, so by Lemma 32 every state encountered
during the execution of the pIAM will also be well-typed, which means that
the stack will always match the types of δ. Therefore, the length of the stack
will not exceed d. As for its elements, these are either bits or integers bounded
by |t|, hence the stated bound. □

Theorem 37 Let C(pΛST) be the class of languages decided by terms of type

Str[]⊸ Bool

in pΛST (i.e., parsimonious simple types). Then,

C(pΛST) = pλL = HOAC0
unif = L.

Proof. We show the cycle of four inclusions:

• C(pApxST) ⊆ pλL: we are given a closed simply-typed parsimonious
term M : Str[] ⊸ Bool. By the same reasoning of the proof of the first
inclusion of Theorem 35 (which invokes Proposition 30), we have, for all
w ∈ {0, 1}∗,

ψw : M w→l(w) bw

with l(w) polynomial in |w|. Therefore, by Proposition 26 and
Lemma 27, |env(M)−w | = O(|w|k) for some constant k. Now observe
that, for all w ∈ {0, 1}∗,

;⊢ bw : Bool

is derivable in ITpΛST, so the derivations of env(M) (which are com-
puted by expanding along ψw) are actually in ITpΛST. By definition
of ITpΛST, td(δw) is bounded by the depth of the simple types in the
derivation of M : Str[] ⊸ Bool, which is fixed, call it d. Therefore, the
execution space is O((d + 1) log(|w|k)) = O(log |w|), as desired.

• pλL ⊆ HOAC0
unif: let M ∈ pΛ decide L ∈ pλL. Since, by defi-

nition, (td(env(M)w) + 1) log |env(M)−w | = O(log |w|), we must have
td(env(M)w) = O(1) and |env(M)−w | = O(|w|k). Moreover, by defini-
tion of ITpΛ, env(M)−w ⊏ M. So we actually already have a polysize,
type-depth-bounded and uniform family of affine polyadic terms; the
only problem is that such a family is indexed by {0, 1}∗ and not N. This
is easily amended: we let, for n ∈N,

r(n) := max
|w|=n

rk(env(M)−w )

and we define tn := ⌊M⌋r(n). One may check that, for all w ∈ {0, 1}n,
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since env(M)−w is typable, then so is tn, so we conclude by Lemma 28
and monotonicity.

• HOAC0
unif ⊆ L: we are given a typable family (tn)n∈N of bounded type

depth and polynomial size such that there exists a parsimonious term M
such that tn ⊏ M for all n ∈ N. As in the proof of Theorem 35, we may
replace it with (⌊M⌋r(n))n∈N for a suitable polynomial r. Observe now
that, for fixed M (as in our case), ⌊M⌋k may be computed in logspace
in k. Indeed, in order to determine a given node in the syntactic tree of
⌊M⌋k(n) (or the absence of such), all we need is a pointer to the syntactic
tree of M and an integer counter bounded by k+m, where m is the max-
imum index of exponential occurrences in M (a constant). Storing this
counter in binary only occupies logarithmic space in k. So we compose
this algorithm with the one given by Lemma 36, and conclude.

• L ⊆ C(pApxST): this was shown in Sect. 3.3.2.

The proof is thus complete. □

3.4 Further results and perspectives

3.4.1 Non-uniform complexity

So far we only dealt with uniform complexity classes. And yet, in Sect. 3.1.3,
we motivated parsimony by an analysis of non-uniform computation in in-
finitary affine terms. In fact, by nature, the parsimonious λ-calculus admits
a non-uniform extension which is, in a sense, the λ-calculus equivalent of
Turing machines with advice. We will now make a brief survey of it.

The non-uniform parsimonious λ-calculus, or nupΛ, is defined similarly
to pΛ, except that boxes (i.e., terms of the form !M) are replaced by

!⟨M1, . . . , Mk⟩ f

where f : N→ {1, . . . , k} is arbitrary. This means of course that the syntax of
nupΛ is infinitary, which is to be expected if one has to somehow introduce
non-uniformity. The above is called a non-uniform box (or just box) and the
terms Mi are its components. The parsimonious requirements are always the
same: only free exponential variables are allowed in a box and, modulo Baren-
dregt’s convention, each exponential variable in a term appears in at most one
component of at most one box, with the highest index with respect to other
occurrences of the same variable in the term.

The intuitive meaning of non-uniform boxes is

!⟨M1, . . . , Mk⟩ f = M f (0) :: M++
f (1) :: M+2

f (2) :: M+3
f (3) :: · · · ,

that is, a non-uniform box is an arbitrary stream on the finite “alphabet”
M1, . . . , Mk. The reduction rules of nupΛ may be obtained from those of pΛ in
an obvious way by keeping in mind the above semantics. Of course, uniform
boxes !M are the special case in which k = 1, but now the infinite sequences
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of Booleans mentioned in Sect. 3.1.3 become available as well. Because of this,
every language is decidable in nupΛ.

The above fact does not prevent us from, on the one hand, restating Def-
inition 26 and Definition 27 in terms of nupΛ instead of pΛ, and, on the
other hand, to endow nupΛ with a discipline of simple types, with or with-
out linear polymorphism, like we did for pΛ. For the former, we obtain two
classes that we denote by nupλP and nupλL. For the latter, the typing rule for
non-uniform boxes is a straightforward generalization of the uniform case:

; a1Γ1 ⊢ M1 : A . . . ; ak : Γk ⊢ Mk : A

x1 : Γ1, . . . , xk : Γk;⊢ !⟨M1{x1
0/a1}, . . . , Mk{xk

0/ak}⟩ f : !A

We denote by nupΛST (nupΛ∀ℓ) the simply-typed (with linear polymorphism)
non-uniform parsimonious λ-calculus.

Every result of Sect. 3.3 smoothly extends to the non-uniform case. In
fact, the proofs are sometimes easier because we do not have to deal with
uniformity. We therefore have:

Theorem 38 Let C(nupΛST) (resp. C(nupΛ∀ℓ)) be the class of languages decided
by terms of type

Str[]⊸ Bool

in nupΛST (resp. nupΛ∀ℓ). Then:

1. C(nupΛ∀ℓ) = nupλP = HOPOLYSIZE = P/poly;

2. C(nupΛST) = nupλL = HOAC0 = L/poly.

Proof. The inclusions C(nupΛ∀ℓ) ⊆ nupλP ⊆ HOPOLYSIZE ⊆ P/poly and
C(nupΛST) ⊆ nupλL ⊆ HOAC0 ⊆ L/poly are proved much in the same way as
those of Theorem 35 and Theorem 37, respectively. The key technical points
are the polynomial modulus of continuity (i.e., Theorem 29), which of course is
enjoyed also by nupΛ, and the non-uniform version of Proposition 30, which
is the one originally proved in [MT15]. The only notable difference is in the
inclusions P/poly ⊆ C(nupΛ∀ℓ) and L/poly ⊆ C(nupΛST): the former has
been hinted at in Sect. 3.3.3 (Boolean circuits may be encoded in nupΛ∀ℓ);
the latter is proved by encoding polysize families of branching programs, as
detailed in [MT15]. □

To our knowledge, the above theorem is the first of its kind in implicit
computational complexity: non-uniform complexity classes were considered
previously (e.g. [Ter04]) but no implicit characterizations in logical terms were
given. This shows the fruitfulness of the parsimonious approach to implicit
complexity. Indeed, we want to stress that the best-known linear-logical ap-
proach to implicit complexity, namely Girard’s light linear logic [Gir98], is inad-
equate to deal with non-uniform computation, because it includes contraction.
In other words, if one took the infinitary affine λ-calculus Λ∞

a and imposed
on it the constraints of light linear logic (which is possible!), one would still
obtain a calculus in which every language is decidable. It is not clear whether
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Lafont’s alternative approach [Laf04] suffers from this problem and we do not
know whether one can develop all of the above results in it.

The equality HOAC0 = L/poly is interesting in its own right, for two rea-
sons. The first is that it clarifies Terui’s above mentioned result [Ter04], stating
that the class of languages decidable by bounded-depth, polysize families of
so-called Boolean proof nets, let us denote it by BPN0, is equal to AC0[ustcon2],
i.e., the class of languages decidable by bounded-depth, polysize families of
Boolean circuits with unbounded fan-in gates and the addition of a certain
kind of reachability gates (ustcon2).

These extra gates are quite ad hoc and their computational meaning rather
technical: a ustcon2 gate of order n has n(n + 1)/2 inputs, which are inter-
preted as the adjacency matrix of an undirected graph on the nodes {1, . . . , n};
assuming that such a graph has degree at most 2 (i.e., at most two incident
edges on each node), the gate outputs 1 iff the nodes 1 and n are in the same
connected component (if the input graph has degree greater than 2, the output
of the gate is arbitrary).

Now, it is very easy to see that BPN0 = HOAC0, so Theorem 38 immedi-
ately implies BPN0 = L/poly, showing, on the one hand, that Terui’s original
characterization was not optimal, and, on the other hand, that bounded-depth,
polysize Boolean proof nets correspond to a very well known and robust com-
plexity class, instead of a non-standard and rather ad hoc class.3

The second reason is more abstract: the fact that HOAC0 = L/poly tells
us that the presence of higher-order makes a huge difference in the world of
small complexity classes. Indeed, one of the very few unconditional lower
bounds known in complexity theory states that parity ̸∈ AC0 [Ajt83, FSS84],
where AC0 is the class of languages decidable by bounded-depth, polysize
families of Boolean circuits with unbounded fan-in gates and parity is the
following problem: on input a binary string, tell whether it contains an even
number of 1’s. Now, not only is parity extremely easy to implement with
higher order primitives,4 but bounded-depth higher-order circuits go well be-
yond that: they decide, for instance, majority (given a binary string, tell if
it contains strictly more 1’s than 0’s) and all the way up to the quintessential
logspace problem, i.e., reachability for directed forests, which we met under
the disguise of deterministic transitive closure in Sect. 3.3.2.

So there is a fairly big gap between AC0 and HOAC0, and it is unclear
how one may deal with complexities below logarithmic space in a λ-calculus

3Incidentally, we must note that, a few years after Terui’s characterization of [Ter04], Allender
et al. [ABC+09] proved that the problem ustcon2 described above is L-complete under AC0

reductions, which immediately implies AC0[ustcon2] = L/poly. We learned of this result only
after proving Theorem 38 in our joint work with Terui [MT15]. In fact, our theorem gives an
independent proof of the L-completeness of ustcon2.

4With the Church encoding of binary strings, parity is decidable by the simply-typed program

λw.w I not 1 : Str[Bool]⊸ Bool

as soon as negation is available with “flat” type

not : Bool⊸ Bool.

One must obviously do something tricky, with the calculus and/or with the definition of
Booleans, for this not to be the case.
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setting. By contrast, first-order “catches up” with higher-order as soon as we
allow the depth to be unbounded: if POLYSIZE denotes the class of languages
decidable by polysize families of Boolean circuits, then Theorem 38 tells us
that POLYSIZE = HOPOLYSIZE because it is well-known that POLYSIZE =
P/poly (this is Theorem 24 mentioned in Sect. 3.1).

3.4.2 The “logic of while loops”?

Implicit characterizations of L abound: of recursive-theoretic nature [Nee04,
Kri05], using imperative languages [Jon99, Bon06] and higher-order languages
[Sch06, Sch07, DLS10a]. Of these, only the latter are immediately comparable
to our work. Another paper explicitly relating streams and logarithmic space
is [RL11], which however does not have much of a connection with our work:
the authors consider there corecursive definitions, i.e., algorithms on infinite
streams (as opposed to finite strings) and the space complexity they refer to is
not the usual decision problem complexity.

The GoI plays a key role in both [Sch07, DLS10a]. The difference here is
not so much in the use of the GoI, which is quite similar, but in the underlying
programming language: in that work, the author(s) take the standpoint that
the fundamental primitive of sublinear space computation is interaction (a
point of view already taken in [Sch06]) and forge their programming language
around this. This leads, for instance, to the use of non-standard types for
encoding strings, namely Nat⊸ Three (a binary string x is seen as a function
mapping i to xi ∈ {0, 1} or to ⊥ if i ≥ |x|), whereas the language of [Sch06]
has an explicit list type.

With respect to the above, we believe that the highlight of our character-
ization is that it is closer to the original spirit of applying linear logic to im-
plicit complexity [Gir98]: it is purely logical (there is no primitive datatype)
and employs standard types. Our characterization also improves on previous
ones in terms of simplicity: the types of [Sch07] include full polymorphism
and indexed exponential modalities, whereas the categorical construction of
[DLS10a], while elegant, also yields a sort of indexed exponential modality
in types, making type inference not straightforward (see [DLS10b]). By con-
trast, our calculus is simply-typed, has only 11 typing rules (Fig. 3.6) which
are essentially syntax-directed, so type inference is easier. Programming is of
course restricted but, as hopefully showcased by Sect. 3.3.2, quite reasonably
so if we consider that all programs must run in logarithmic space.

We also want to stress (again) that parsimony offers a truly novel approach
to applying linear logic to implicit complexity, which is not just a variant of ex-
isting “light logics” (such as bounded, light or soft linear logic) or of systems
such as those of [Hof97, Hof03]. The most prominent difference with respect
to “light logics” is the absence of stratification or other structural principles
enforcing bounded-time cut-elimination: as mentioned above, the untyped
parsimonious λ-calculus is Turing-complete, whereas light λ-calculi normal-
ize with the same runtime independently of types. This is because parsimony
is not about the global complexity of normalization but the local complexity
of single reduction steps, via the notion of continuous linear approximations.
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This allows dealing with non-uniform computation, a perspective not offered
by previous work on implicit complexity.

An interesting research direction is to consider second-order quantifica-
tion, i.e., parsimonious system F. It is easy to encode primitive recursive
functions as terms of type Nat⊗n ⊸ Nat in such a system; however, all the
usual ways of encoding the Ackermann function fail. In fact, we conjecture
that parsimonious system F captures exactly primitive recursion, although at
present we do not even have a proof strategy for showing this. Apart from
our failed attempts at coding non-primitive recursive functions, our reason for
believing in such a conjecture is that we think parsimonious logic to be, in a
certain sense, the “logic of while loops”. We believe that system F forces every
while loop to terminate in a hereditary way which, in the end, is equivalent
to having only for loops.

The reason why we think of parsimonious logic as the “logic of while
loops” becomes clear if we extend simple parsimonious types along a differ-
ent direction, that of “parsimonious PCF”. The most peculiar feature of this
calculus is that recursive definitions are restricted to be linear, as described in
Sect. 3.2.1. In other words, we may only use recursive definitions that coincide
with a slightly liberalized form of while loops, where the unique recursive call
is not required to be in tail position.

For instance, a “parsimonious OCaml” programmer would be allowed to
write

let rec fun x = <BODY> ;;

only if <BODY> contains exactly one occurrence of fun in every execution
branch (e.g., fun may actually appear twice, once in each branch of an if
then else statement). Typically,

let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2);;

would be rejected. Instead, one would have to resort (for example) to the
following solution:

let rec fib_aux(n,m,d,s) =
if d = -1 & s = [] then m
else let (n’,m’,d’,s’) =

if d = 1 then
if n = 0 or n = 1 then (0,1,-1,s)
else (n-1,0,1,(n,-1)::s)

else let (a,b)::r = s in
if (b = -1) then (a-2,0,1,(a,m)::r)
else (0,m+b,-1,r)

in fib_aux(n’,m’,d’,s’);;

let fib_lin n = fib_aux(n,0,1,[]);;

The above code has been obtained, essentially, by linearizing the tree of the
recursive calls that fib generates. The function fib_aux, which is linear tail
recursive, manipulates the following arguments:
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• an integer n, which represents a question of the form “how much is
fib(n)?”;

• an integer m, which is an answer to a question as above;

• a bit d telling us which between the question and the answer is currently
meaningful: 1 indicates that we are asking for the value of fib(n), -1
that we are returning the answer m;

• a list s which represents the call stack, made of pairs of integers (a,m)
where a is a question and m an answer, or -1 if we do not yet have an
answer (because we are in between two recursive calls, i.e., we computed
fib(a-1) but are waiting for fib(a-2)).

We may call parsimonious programming “higher-order imperative pro-
gramming”: as in usual functional programming, higher-order functions are
basic primitives but, unlike functional programming, recursive calls are re-
stricted to being while loops. Retrospectively, this also justifies the nice behav-
ior of the parsimonious λ-calculus in terms of complexity: the size-explosion
problem is solved by forcing recursion to be linear.

Such a hybrid programming style may perhaps be of interest as a kind
of intermediate language in a compilation process. In this respect, while we
do think that the transformation leading from fib to fib_lin shown above
may be automatized, we do not know whether it corresponds to a canonical
semantic construction. Oddly, we have not been able to find anything in the
existing literature mentioning a systematic study of linearization of recursive
calls, at least not in the context of full-fledged functional programming.
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Chapter 4

Church Meets Cook and
Levin

4.1 The Cook-Levin Theorem

4.1.1 Motivation

The Cook-Levin theorem [Coo71, Lev73] is a central result of structural com-
plexity theory. It states that sat, i.e., the problem of deciding whether a given
propositional formula is satisfiable, is NP-complete. It is actually easy to show
the existence of artificially constructed NP-complete problems, i.e., problems
built with the sole purpose of being complete. However, the fact that there
are natural NP-complete problems, i.e., problems that have a practical interest
like sat, is far from immediate and is what makes the Cook-Levin theorem
valuable.

Let us give a quick review of the meaning of NP-completeness. First of
all, we recall that the class NP, although traditionally defined in terms of
non-deterministic Turing machines, is well-known to admit the following al-
ternative definition:

Definition 28 (the class NP) A problem L is in NP just if there exists another
problem Lwit ∈ P and a polynomial q such that, for all w ∈ {0, 1}∗, w ∈ L iff there
is m ≤ q(|w|) and w′ ∈ {0, 1}m such that (w, w′) ∈ Lwit.

The string w′ is called a witness, or membership certificate of w to L; so NP is
the class of problems admitting “short” and “quickly verifiable” membership
certificates, where “short” and “quick” both mean polynomially long in the
size of the instance. This brings to light the importance of NP in everyday
life: there are literally hundreds of naturally occurring search problems such
that, for a fixed instance w, the number of possible solutions is exponential in
|w| (i.e., possible solutions are “short” compared to w) and, given a purported
solution, it is easy (i.e., “quick”) to check whether this is indeed a solution or
not.

The idea of completeness is based on the notion of many-one reduction from
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a decision problem L to a decision problem L′ (which, we remind, are both
subsets of {0, 1}∗). This is a total recursive function

r : {0, 1}∗ → {0, 1}∗

such that, for all w ∈ {0, 1}∗, w ∈ L iff r(w) ∈ L′. Therefore, modulo r, solving
L reduces to solving L′. In the context of complexity theory, where one is
interested not only in solving a problem but also in doing it with some degree
of efficiency, the nature of r must be restricted further. For NP-completeness,
a natural choice is requiring r to be polynomial-time computable, yielding
so-called Karp reductions [Kar72].

Definition 29 (NP-completeness) We write L ≤K L′ if there exists a Karp re-
duction from L to L′ and we denote by L↓K the principal ideal of L with respect to
≤K. A problem L0 is NP-complete (under Karp reductions) if

L0↓K = NP.

In other words, L0 ∈ NP and, for all L ∈ NP, L ≤K L0.
In case NP ⊆ L0↓K, i.e., if L ≤K L0 for all L ∈ NP, we say that L0 is NP-hard.

The path that modern textbooks (e.g. [Pap94, Gol08, AB09]) take to prove
the Cook-Levin theorem passes through Boolean circuits. Indeed, it is fairly
easy to show that circuit sat ≤K sat, where circuit sat is the following
problem (which is obviously in NP, just as it is obvious that sat ∈ NP): given
a Boolean circuit C with n inputs and one output, decide whether there ex-
ist b1, . . . , bn ∈ {0, 1} such that C(b1, . . . , bn) = 1; the size of the instance is
the number of gates of C. Essentially, a Boolean circuit with one output is a
propositional formula which allows “sharing” of subformulas, so it is a gen-
eralization of sat. The above-mentioned reduction shows that, with respect to
complexity, the generalization is only apparent.

At this point, the heart of the Cook-Levin theorem is showing that all NP
problems reduce to circuit sat. The intuition is the following. Let L ∈ NP
and let Lwit be its associated witness language, with q the polynomial bound-
ing the length of witnesses. We know that there is a deterministic Turing
machine M running in polynomial time p such that, for all w ∈ {0, 1}∗ and
w′ ∈ {0, 1}q(|w|), M(w, w′) = 1 iff w′ is a membership certificate of w to L.
Now, for a fixed pair of inputs (w, w′), if the running time of M is t(w, w′)
and the space used is s(w, w′), the whole execution of M on input (w, w′) may
be represented by a t(w, w′)× s(w, w′) matrix δw,w′ such that δw,w′(i, j) = (s, q)
where s is the symbol contained at position j at the i-th step and q is the state
of the machine at step i if the head was at position j at that time, or ⊥ oth-
erwise. In other words, δw,w′ is the “space-time” of the execution of M on
(w, w′).1

The fundamental observation now is that, for all i, j, δw,w′(i + 1, j) only
depends on δw,w′(i, j− 1), δw,w′(i, j) and δw,w′(i, j + 1), i.e., if Σ is the alphabet

1Observe that our execution envelope of Sect. 3.3.6 is meant to be the corresponding notion, for
a higher-order program, of this idea of “space-time” of a Turing machine.
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Figure 4.1: The essence of the Cook-Levin theorem: “computation is local”.

of M and Q its set of states (assumed not to include ⊥), there is a function

fM : (Σ× (Q ∪ {⊥}))3 −→ Σ× (Q ∪ {⊥})

such that

δw,w′(i + 1, j) = fM(δw,w′(i, j− 1), δw,w′(i, j), δw,w′(i, j + 1)).

In other words, as complexity theorists often say, “computation is local”. Fur-
thermore, the function fM itself does not depend on any of w, w′, i, j, but only
on the transition table of M, i.e., we might add that “computation is isotropic”.
Therefore, if c is the least integer such that 2c ≥ |Σ|(|Q|+ 1), the function f
may be encoded by a constant (i.e., depending only on M) Boolean circuit CM
with 3c inputs and c outputs (see Fig. 4.1).

By the above discussion, one step of M on a tape of length s may be imple-
mented by a constant-depth circuit Cs

M consisting of s copies of CM, side by
side (with adjacent copies sharing some inputs), and a t-step computation of
M may be simulated by a circuit Ct,s

M composed of t copies of Cs
M stacked one

on top of the other. The size of Ct,s
M is thus k · t · s, where k is the size of CM.

We may therefore define a reduction from L to circuit sat as follows: on
input w ∈ {0, 1}, let m := p(|w|+ q(|w|)) and:

1. compute Cm,m
M ;

2. fix its inputs so that they represent the initial configuration with w on
the tape, leaving only q(|w|) inputs where w′ would be plugged in;

3. compose the obtained circuit with a circuit with m inputs and one output
which extracts the answer of M from the output of Cm,m

M .

By construction, the resulting circuit is satisfiable iff w ∈ L. Moreover, such a
circuit may obviously be computed in polynomial time in |w|, because Cm,m

M
is a polynomially big (more precisely, of size O(p(|w|+ q(|w|))2)) repetition
of a constant circuit, and the procedures (2) and (3) are obviously linear in m.

Although intuitively clear, the above proof sketch hides a host of technical
details: how is CM defined? How are the circuits at steps (2) and (3) of the
reduction defined? In the definition of Cs

M, what happens at the “edges” of
the array? Then, of course, several standardization assumptions on M must
be made in order for the idea to work at all, the most important ones being
that:

• the running time of M does not depend on the input but only on its size;
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• the length of witnesses for instances of size n is always exactly q(n).

To simplify the construction, some authors (e.g. [AB09]) make the further as-
sumption that M is oblivious, i.e., that also the position of the head at step i
does not depend on the input but only on its length. Of course, the proof that
all these assumptions may be made “for free”, albeit unproblematic, must be
taken into account in the global complexity of the proof of the Cook-Levin
theorem.

The point, of course, is not that some important insight is lurking in the
missing details or, worse, that some mistake may be hiding in them. No-one
doubts the correctness of the above proof and no-one claims that some deep
technique must be developed in order to fill in the details. However, this may
leave us wondering:

1. if the low-level details are so unimportant, maybe it is because there is
a proof in which those details are simply not needed? Or maybe the
details are still there, but under a form which is more easily amenable
to formalization?

2. Ignoring the details, the essence of the Cook-Levin theorem emerges as
being the idea that “computation is local”. This is an informal statement;
can it be given a more mathematically precise meaning?

It turns out that the techniques developed in Chapters 2 and 3 are also
useful to address the above two questions. In [Maz16] we gave a proof of the
Cook-Levin theorem taking the parsimonious λ-calculus, instead of Turing
machines, as the underlying model of computation. The key points are:

• the “locality” of computation becomes the quantitative continuity prop-
erty expressed by Proposition 26: if

M→l N and u ⊏ N,

there exists t ⊏ M such that

t→∗ u and rk(t) ≤ rk(u) + l.

• The “higher-order” version of the Cook-Levin theorem is then implied
by Theorem 35: a language in P admits a polystep parsimonious term
M deciding it, which in turn yields a family of affine polyadic terms, or
“higher-order circuits”. This family is uniform, which means that one
may build a Karp reduction from it.

• In this way, one obtains the NP-completeness of a higher-order version of
circuit sat, let us call it ho circuit sat: given an affine polyadic term
t : Bool⊗n ⊸ Bool, determine whether there exist inputs b1, . . . , bn ∈
{0, 1} such that t(b1 ⊗ · · · ⊗ bn) →∗ 1. To complete the proof, one must
then show that ho circuit sat ≤K circuit sat. In [Maz16], this is done
via proof nets: using ideas similar to those of [Ter04], one “compiles” a
proof net into an equivalent Boolean circuit.
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The proof presented in [Maz16] is already of significance with respect to
question (2) above: compared to the original proof, it certainly gives a more
satisfactory meaning to the “locality of computation”. However, it falls short
of addressing question (1): the compilation of higher-order circuits in first-
order circuits is still full of technical details of the same nature as those of the
original proof.

The latter reason pushes us to develop here a different proof, which does
not take the “higher-order route”: we work directly with a first-order pro-
gramming language, with basically nothing more than while loops, which
plays the role of Turing machines; then, we apply our techniques to such a
language, using directly Boolean circuits to approximate programs and thus
avoiding the higher-order-to-first-order compilation. This also offers us a fur-
ther example of how far the abstract construction of Chapter 2 can go: thanks
to it, we will be able to see a Boolean circuit (in the literal sense!) as an in-
tersection types derivation for a language which, after all, is not too far from
Turing machines.

The resulting proof is not bureaucracy-free: there are still plenty of tech-
nical, uninteresting details which are swept under the rag of lemmas proved
by “a straightforward induction”.2 However, we point out that these technical
details now concern term syntaxes and type systems which are much more
amenable to formalization (for instance, in a proof assistant) than those of the
Turing-machine-based proof. In this sense, we are dealing with question (1)
in a much more satisfactory way than before. At the same time, we stress that
ours is not really a “new” proof of the Cook-Levin theorem: it is merely a
different presentation of the original one, giving a (hopefully) mathematically
clearer meaning to its essence and making the details less low-level.

A final note: although the influence of the techniques developed in the
previous chapter is obvious (and will be explicitly pointed out at times), in
the following presentation we refrain from explicitly using any “advanced”
notion, and try to present the proof so that an undergraduate student with
basic knowledge in programming languages and type systems should be able
to follow it.

4.1.2 A minimalist programming language

In Fig. 4.2 we introduce the programming language that we will use to play
the role of Turing machines. We call it Mowl, for “monoidal while language”.
Indeed, it should be seen as the presentation of a symmetric monoidal cat-
egory with a Boolean object, a binary string object, and the ability to write
recursive programs. Since we do not need multiple outputs, we present it in
operadic style, although we do not introduce reduction terms explicitly (for
the sake of maintaining an introductory level, as mentioned above).

The other significant change with respect to a monoidal framework is that
the operad is actually cartesian. This is because, even in a strictly monoidal

2We may have overused the word “straightforward” in this document, but we never abused its
meaning: it is usually understood that a proof by induction is straightforward when it unravels
without any unexpected complication and the “obvious” way of doing things is the way that
works.
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Types: σ, τ ::= Bool
∣∣ Str

Terms:

Γ, x : σ ⊢ x : σ
var

Γ ⊢ N : σ Γ, x : σ ⊢ M : τ

Γ ⊢ M[x ← N] : τ
share

Γ ⊢ b : Bool
bool b∈{0,1} Γ ⊢ P : Bool Γ ⊢ M : σ Γ ⊢ N : σ

Γ ⊢ if P then M else N : σ
if then else

Γ ⊢ ε : Str
empty

Γ ⊢ M : Str
Γ ⊢ bM : Str

succ b∈{0,1}

Γ ⊢ Q : Str Γ ⊢ M : σ Γ, x : Str ⊢ N : σ Γ, x : Str ⊢ P : σ

Γ ⊢ case Q of ε.M | 0x.N | 1x.P : σ
case

Γ, x : σ, y : τ ⊢ P : τ Γ, x : σ ⊢ M : σ Γ ⊢ N : σ

Γ ⊢ while y.P do M to x := N : τ
while

Figure 4.2: The language Mowl.

(i.e., linear) framework, Booleans and strings are duplicable and erasable, as
are all inductive datatypes. For this reason, we adopt the more liberal carte-
sian syntax, but include a sharing construct which implements explicit dupli-
cation of Booleans and strings.

The evaluation rules are given in Fig. 4.3. They are completely standard,
except the evaluation of while, which is perhaps a bit different from what one
would expect. A more standard formulation would be to include a construct

while P do M to x := N

with P : Bool and a reduction rule

while P do M to x := v → if P{v/x} then (while P do M to x := M{v/x}) else v,

which unfolds the while loop in the usual way. Our formulation has the
advantage of not requiring any Boolean primitive, showing that the type Bool
is only a commodity and that Mowl makes sense even when restricted only to
the Str type.

It is more or less obvious that Mowl is Turing-complete and, more impor-
tantly, that its evaluation rules may simulate and may be simulated by Turing
machines with a polynomial slowdown:

Proposition 39 NP is the class of decision problems L ⊆ {0, 1}∗ such that there
exists a Mowl program

x : Str, y : Str ⊢ M : Bool
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Values: v ::= 0
∣∣ 1 ∣∣ ε

∣∣ 0v
∣∣ 1v.

For w ∈ {0, 1}∗, we write w for the obvious value of type Str representing
w.

Substitution contexts: [−] ::= {·}
∣∣ [−][x ← u].

Evaluation rules:

M[x ← v[−]] → M{v/x}[−] v value

if b[−] then M else N →
{

M[−] if b = 1
N[−] if b = 0

casew[−] of ε.M | 0x.N | 1x.P →


M[−] if w = ε
N{w′/x}[−] if w = 0w′

P{w′/x}[−] if w = 1w′

while y.P do M to x := (v[−]) →

P{v/x}[y← while y.P do M to x := M{v/x}][−]

Figure 4.3: The operational semantics of Mowl.

and two polynomials p, q such that, for all w, w′ ∈ {0, 1}∗

M[x ← w][y← w′]→l(w,w′) bw,w′

with l(w, w′) ≤ p(|w|+ |w′|) and, moreover, there exists m ≤ q(|w|) and w′ ∈
{0, 1}m such that bw,w′ = 1 iff w ∈ L.

In the sequel, we will take Proposition 39 as our definition of NP.

4.1.3 Boolean circuits

The most common definition of Boolean circuit in the setting of complexity
theory uses the binary and and or gates and the (unary) not gate. There would
be no problem in adopting that definition in our setting, but we prefer to
use if then else as a primitive because it is closer to the spirit of programming
languages and it is more minimalist. Of course, this changes nothing from
the point of view of complexity: one may translate between our circuits and
circuits on the basis {∧2,∨2,¬} with a constant overhead in size.

Our formal definition of Boolean circuits is given in Fig. 4.4. For the same
reasons mentioned in the case of Mowl, we adopt a cartesian syntax, although
circuits really form what some would call a PROP (a symmetric monoidal
category in which every object is a tensor power of a single generating ob-
ject, Bool in our case). Of course, we include a sharing construct, which is
fundamental in circuits. Contrarily to Mowl, we do need circuits with more
than one output, which is why we include n-ary tensors ⟨t1, . . . , tn⟩ and their
associated destructor t[⟨x1, . . . , xn⟩ := u], in perfect analogy with polyadic
calculi.

The syntax also includes a special symbol •, which may only appear in
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Types: A, B ::= Booln n ∈N

Terms:

Γ, x : Bool ⊢ x : Bool
var

Γ ⊢• • : A
undef

Γ ⊢ t : A
Γ ⊢• t : A

•

Γ ⊢• u : Bool Γ, x : Bool ⊢ t : A
Γ ⊢ t[x ← u] : A

share
Γ ⊢ t1 : Bool . . . Γ ⊢ tn : Bool

Γ ⊢ ⟨t1, . . . , tn⟩ : Booln
box

Γ ⊢ u : Booln Γ, x1 : Bool, . . . , xn : Bool ⊢ t : A
Γ ⊢ t[⟨x1, . . . , xn⟩ := u] : A

let

Γ ⊢ b : Bool
bool b∈{0,1}

Γ ⊢ p : Bool Γ ⊢• t : A Γ ⊢• u : A
Γ ⊢ if p then t else u : A

if then else

Figure 4.4: Boolean circuits.

Substitution contexts: [−] ::= {·}
∣∣ [−][x ← u]

∣∣ [−][⟨x⟩ := u].

Evaluation rules:

t[⟨x1, . . . , xn⟩ := ⟨u1, . . . , un⟩[−]] → t{u1, . . . , un/x1, . . . , xn}[−]
t[x ← b[−]] → t{b/x}[−] b ∈ {0, 1}

if b[−] then t else u →
{

t[−] if b = 1, t ̸= •
u[−] if b = 0, u ̸= •

Figure 4.5: Evaluation rules for Boolean circuits.

certain places, namely in sharing constructs t[x ← •] and as a branch of an
if then else statement. This symbol may be treated as a free variable impervious
to substitution; it is necessary in the definition of approximation order (to be
given below), but may otherwise be ignored.

The evaluation rules for Boolean circuits are given in Fig. 4.5 and are com-
pletely standard. The only non-standard point is the symbol •, whose pres-
ence blocks evaluation. Indeed, as the next definition will show, • stands for
an unknown circuit.

Now we start preparing in view of the Cook-Levin theorem.

Definition 30 (approximation order) The approximation order on Boolean
circuits, denoted by ⊑, is defined by the rules of Fig. 4.6.

Although we chose to keep advanced notions out of the presentation, the
reader who remembers Chapter 1 will read in Figures 4.4 and 4.5 the presen-
tation of a 2-operad. In this viewpoint, the above definition should be given
at the level of 2-arrows, so that one obtains a DblPos-operad and, in fact,
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x ⊑ x
var • ⊑• t bot

t ⊑ u
t ⊑• u

•

t ⊑ t′ u ⊑• u′

t[x ← u] ⊑ t′[x ← u′]
share

t1 ⊑ t′1 . . . tn ⊑ t′n
⟨t1, . . . , tn⟩ ⊑ ⟨t′1, . . . , t′m⟩

box m≥n

t ⊑ t′ u ⊑ u′

t[⟨x1, . . . , xn⟩ := u] ⊑ t′[⟨x1, . . . , xm⟩ := u′]
let m≥n, xn+1,...,xm ̸∈fv(t)

b ⊑ b
bool b∈{0,1}

p ⊑ p′ t ⊑• t′ u ⊑• u′

if p then t else u ⊑ if p′ then t′ else u′
if then else

Figure 4.6: Approximation order on Boolean circuits.

a MntDblPos-operad, to which the ideal completion of Sect. 1.3.3 may be
applied. Here, we will content ourselves whit the following key result:

Lemma 40 (monotonicity) If t→ u and t ⊑ t′, then t′ → u′ such that u ⊑ u′.

Proof. A straightforward induction on t. □

The next result is not needed for the Cook-Levin theorem but we mention
it anyway because it may be used to give a simple, conceptual proof of the
classic Theorem 24 (Sect. 3.1.2).

Lemma 41 (compatible suprema) Let t, t′ ⊑ u. Then their supremum t ⊔ t′

exists.

Proof. One defines t ⊔ t′ (as well as t ⊔• t′) by induction on u, in the obvious
way, and checks that it is indeed the least upper bound. □

4.1.4 Intersection types, again

We now introduce the main technical tool for the proof of the Cook-Levin
theorem. We already mentioned that Lemma 40 is actually the shadow of a
stronger result stating that the DblPos-operad of Boolean circuits is mono-
tonic. At this point, the reader will have guessed that the 2-operad presenting
Mowl embeds in the ideal completion of Boolean circuits much in the same
way as linear logic embeds in the ideal completion of the affine polyadic cal-
culus.

From the above-mentioned embedding, one may infer an approximation
relation t ⊏ M between Boolean circuits and Mowl programs (actually, be-
tween reductions of the former and reductions of the latter). On types, we
have the approximation relations

Bool ⊏ Bool Strn ⊏ Str
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m ≥ n
Γ, x : Strm ⊢⟨x⟩ x : Strn

var
Γ ⊢u N : Strn Γ, x : Strn ⊢t M : A

Γ ⊢t[x⇐u] M[x ← N] : A
share

Γ ⊢⟨0,0,...,0,0⟩ ε : Strn
empty

Γ ⊢t M : Strn
Γ ⊢⟨1,b,x⟩[⟨x⟩:=t] bM : Strn+1

succ b∈{0,1}

Γ ⊢q Q : Strn+1

[Γ ⊢t M : A][
Γ, x : Strn ⊢u N : A

][
Γ, x : Strn ⊢p P : A

]
Γ ⊢if x′0 then (if x0 then p else u) else t case Q of ε.M | 0x.N | 1x.P : A

case

. . . Γ, x : Ai, y : Bi+1 ⊢pi P : Bi . . .
. . . Γ, x : Aj−1 ⊢ti M : Aj . . . Γ ⊢u N : A0

Γ ⊢w while y.P do M to x := N : B0
while 0≤i≤k, 0<j≤k

where w = p0[y⇐ p1[y⇐ . . . pk[y⇐ •][x ⇐ tk] . . .][x ⇐ t1]][x ⇐ u]

Figure 4.7: Intersection types for Mowl. In the case rule, the premises in
brackets are not required to be present.

where Strn := Bool⊗(2n), n ≥ 1. The reason why Strn is defined in this way
will be explained momentarily.

At this point, we switch on the machinery of Chapter 2: we define an
approximation presheaf, we apply the Grothendieck construction, and we get
an intersection types system for Mowl programs, whose proofs are isomorphic
to Boolean circuits.

The type system in question is show in Fig. 4.7, ignoring the gray annota-
tions, whose meaning will be explained shortly. For brevity, we only show it
for the fragment of Mowl restricted to Str. As observed above, the language
keeps being meaningful and Turing-complete with this restriction, so this is
the non-trivial part of the type system. Indeed, Bool is approximated by itself
and the typing rules for the Boolean constructs of Mowl for intersection types
are identical to those for the “simple types” of Fig. 4.2.

It is important to observe that, strictly speaking, our proof of the Cook-
Levin theorem does not need the machinery of Chapter 2, in the sense that it
does not directly invoke any of the theorems shown therein. For the sake of
the proof, the type system of Fig. 4.7 “fell from the sky” and its properties are
proved independently of the results of Chapter 2.

Let us explain the meaning of the approximation Bool⊗(2n) ⊏ Str. This is
where we subtly insert the low-level coding required for circuits to simulate
programs (in some sense, the coding necessary for the definition of the circuit
CM of Fig. 4.1). In the limit, a binary string w (of type Str in Mowl) of arbitrary
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length is encoded by an infinite stream of Booleans. However, since strings
are finite, we need to know where the string actually ends, which is why we
use two bits to encode one bit:

w′1, w1, w′2, w2, w′3, w3, . . .

If w′i = 1, then wi is meaningful and contains the value of the i-th bit of w;
otherwise, it marks the end of the string, regardless of what comes next. The
finite approximations of type Strn = Bool⊗(2n) are therefore able to encode
strings of length at most n − 1, which is why we require n ≥ 1 (we always
need at least one pair containing the end-of-string marker).

In the above perspective, for facilitating the correspondence between
derivations in intersection types and Boolean circuits, we associate with
each variable x : Str of Mowl a fixed sequence of Boolean variables
x′0, x0, x′1, x1, x′2, x2, . . .. Such a sequence, or a suitable initial prefix of it (the
length of which will be explicitly given if not clear from the context) will be
denoted by x (this is similar to the notion of “supervariable” of Sect. 1.2.3).

In the following, we use the notation

t[x ⇐ u] :=
{

t[x ← y][⟨y⟩ := u] if u ̸= •
t[x ← •] otherwise

where by t[x ← v] we mean t[x′0 ← v′0][x0 ← v0] . . . [x′n ← v′n][xn ← vn].

Definition 31 (underlying approximation) We associate with each derivation δ
of the system of Fig. 4.7 a Boolean circuit, denoted by δ−, which is defined induc-
tively. The definition is given in Fig. 4.7 itself, as the gray annotation t in the
judgment Γ ⊢t M : A, with the following indications:

• in the var, share and succ rule, x is of length 2n;

• in the empty rule, there are 2n occurrences of 0;

• in the while rule, the lengths of the various occurrences of x and y are deter-
mined in each case by the various types Ai and Bi.

Of course, the above definition would be automatic (and pointless) if we
had introduced the approximation relation t ⊏ M and presented the type
system directly in terms of the Grothendieck construction. With our current
approach, it becomes necessary to give it explicitly.

We now show the main properties of the type system. The first is a quanti-
tative form of subject expansion, which is the type-theoretic version of quan-
titative continuity.

Definition 32 (rank and width) Let δ be an intersection types derivation. Its
rank, denoted by rk(δ), is the maximum k such that a while rule with arity 2k + 2
appears in δ. Its type width, denoted by tw(δ), is the maximum m such that the
type Strm appears in δ.
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Lemma 42 (quantitative subject expansion) Let δ be an intersection types
derivation of Γ ⊢ M : A and let

M′ → M.

Then, there exists a derivation δ′ of Γ ⊢ M′ : A such that

(δ′)− →∗ δ−.

Moreover, rk(δ′) ≤ rk(δ) + 1 and tw(δ′) ≤ tw(δ) + 1.

Proof. The proof follows a rather classic pattern. One first proves the follow-
ing auxiliary claim: for all Γ, A, N and w ∈ {0, 1}∗, if Γ ⊢ N{w/x} : A is
derivable, then there exists B such that Γ ⊢ w : B and Γ, x : B ⊢ N : A are
derivable, with rank and width bounded by those of the original derivation.
This is shown by induction on N.

The proof then proceeds by induction on the context C such that M′ =
C{M′0} and M = C{M0} with M′0 → M0 and M′0 a redex. The only really
interesting case is C = {·}, in which there are three subcases, corresponding
to the possible redexes. The verification, although somewhat lengthy, is com-
pletely unproblematic. The above claim is used in every case; subtyping (i.e.,
the fact that a declaration x : Strn in a typing context may always be replaced
with x : Strm for any m ≥ n, without affecting derivability) is used in the while
case. For what concerns the quantitative part, the rank increases in the case of
while reductions, whereas the width increases for case reductions. □

The second main property concerns the existence of uniform derivations,
which may be efficiently computed. These are to our proof what the circuits
Ct,s

M are to the original proof of the Cook-Levin theorem.

Definition 33 (uniform typings) Let M be a Mowl program, let

Γ = x1 : Strn1 , . . . , xp : Strnp

be a context such that fv(M) ⊆ {x1, . . . , xp} and let k, m ∈ N with m at least
equal to the number of binary successors in M (i.e., the number of succ rules in its
typing derivation, Fig. 4.2). The uniform typing of M in context Γ of rank k and
width m, denoted by ⌊M⌋Γk,m, is an intersection types derivation of the judgment

Γ ⊢ M : Strm

defined inductively as follows:

• ⌊x⌋Γ,x:Strn
k,m :

Γ, x : Strn ⊢ x : Strm
var
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• ⌊M[x ← N]⌋Γk,m:

.... ⌊N⌋
Γ
m,k

Γ ⊢ N : Strm

.... ⌊M⌋
Γ,x:Strm
m,k

Γ, x : Strm ⊢ M : Strm

Γ ⊢ M[x ← N] : Strm
share

• ⌊ε⌋Γk,m:

Γ ⊢ ε : Strm
empty

• ⌊bM⌋Γk,m:
.... ⌊M⌋

Γ
k,m−1

Γ ⊢ M : Strm−1

Γ ⊢ bM : Strm
succ

• ⌊case Q of ε.M | 0x.N | 1x.P⌋Γk,m:

.... ⌊Q⌋
Γ
k,m+1

Γ ⊢ Q : Strm+1

.... ⌊M⌋
Γ
k,m

Γ ⊢ M : Strm

.... ⌊N⌋
Γ,x:Strm
k,m

Γ, x : Strm ⊢ N : Strm

.... ⌊P⌋
Γ,x:Strm
k,m

Γ, x : Strm ⊢ P : Strm

Γ ⊢ case Q of ε.M | 0x.N | 1x.P : Strm
case

• ⌊while P do M to x := N⌋Γk,m:

.... ⌊P⌋
Γ,x:Strm ,y:Strm
k,m

Γ, x : Strm, y : Strm ⊢ P : Strm . . .

.... ⌊M⌋
Γ,x:Strm
k,m

Γ, x : Strm ⊢ M : Strm

.... ⌊N⌋
Γ
k,m

Γ ⊢ N : Strm

Γ ⊢ while P do M to x := N : Strm
while

with k + 1 premises typing P and k typing M. The uniformity is in the fact
these premises all come from the same two derivations, ⌊P⌋Γ,x:Strm ,y:Strm

k,m and

⌊M⌋Γ,x:Strm
k,m , respectively.

It is very important to observe the following: the above definition, which
works for all k and sufficiently large m, tells us that every Mowl program is
typable in intersection types. This should sound as extremely troublesome
to the reader acquainted with intersection types, because usually typability
implies normalization, and obviously not every Mowl program terminates.
Luckily, something goes wrong here in the usual soundness proof: the in-
tersection types system of Fig. 4.7 does not verify subject reduction; therefore,
the fact that every Mowl program is typable has no consequence concerning
termination.

Lemma 43 For a fixed Mowl program M, the Boolean circuit (⌊M⌋Γk,m)
− may be

computed in polynomial time in k and m.

Proof. First of all, one proves by induction on M that, if d is the number of
nested while constructs found in M, then the size of (⌊M⌋Γk,m)

− is bounded by
|M|(2m(k + 1))d. Then, we observe that the circuit in question is built from
a linear exploration of M, so the size of the circuit bounds the running time.
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Since |M| and d are both O(1) with respect to k and m, the result follows. □

Lemma 44 Let δ be an intersection types derivation of the judgment Γ ⊢ M : A,
with M containing c binary successors. Then, for all k ≥ rk(δ) and m ≥ tw(δ)+ c,
we have

δ− ⊑ (⌊M⌋Γ′k,m)
−,

where Γ′ is Γ in which every type is replaced by Strm.

Proof. A straightforward induction on δ. □

4.1.5 The proof

We already mentioned that there is a well-known Karp reduction from
circuit sat to sat (see for instance [Pap94]), so the Cook-Levin theorem re-
duces to proving the NP-completeness of circuit sat.

Such a proof should start with showing that circuit sat ∈ NP. As obvious
as it may be, a formal proof of this fact would require us to write a program for
circuit sat, prove it correct and prove that it has the right complexity prop-
erties. In this respect, using Mowl as programming language is a minuscule
improvement over Turing machines, so we leave this to the reader’s intuition
and concentrate on hardness. Besides, formal program verification and auto-
matic inference of complexity bounds have been and are mainstream research
topics in the theory of programming languages, so we are confident that this
part of the proof too may be fully “absorbed” into our paradigm.

Theorem 45 (Cook-Levin) circuit sat is NP-hard.

Proof. Let L ∈ NP; we must build a Karp reduction from L to circuit sat.
By definition, there are two polynomials p, q and a Mowl program

x : Str, y : Str ⊢ M : Bool

such that, for all w, w′ ∈ {0, 1}∗,

M[x ← w][y← w′]→l(w,w′) bw,w′

with l(w, w′) ≤ p(|w|+ |w′|) and, moreover, w ∈ L iff there exists w′ ∈ {0, 1}m

with m ≤ q(|w|) such that bw,w′ = 1. Obviously,

⊢ bw,w′ : Bool

is derivable in intersection types. By quantitative subject expansion
(Lemma 42), we have, for all w, w′ ∈ {0, 1}∗, a derivation

.... εw,w′

⊢ M[x ← w][y← w′] : Bool

and rk(εw,w′), tw(εw,w′) are both bounded by l(w, w′). The intersection types
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system is syntax directed, so from εw,w′ we infer the existence of derivations

.... δw,w′

x : Aw, y : Bw′ ⊢ M : Bool

.... ωw
⊢ w : Aw

.... ω′w′
⊢ w′ : Bw′

with rank and width still bounded by l(w, w′). Let c be the number of binary
successors in M, which is O(1) with respect to w and w′. For n, m ∈N, let

r(n, m) := max
|w|=n,|w′ |=m

rk(δw,w′),

s(n, m) := max
|w|=n,|w′ |=m

tw(δw,w′) + c.

With Γn,m := x : Strr(n,m), y : Strs(n,m), let

φn,m := ⌊M⌋Γn,m
r(n,m),s(n,m)

.

Note that this induces a Boolean circuit

2r(n,m)︷ ︸︸ ︷
. . . x′i : Bool, xi : Bool, . . .,

2s(n,m)︷ ︸︸ ︷
. . . , y′j : Bool, yj : Bool, . . . ⊢ φ−n,m : Bool.

By Lemma 44, δ−w,w′ ⊑ φ−|w|,|w′ | for all w, w′ ∈ {0, 1}∗. Now, remember that
Lemma 42 also tells us that

δ−w,w′ [x ⇐ ω−w ][y⇐ (ω′w′)
−]→∗ bw,w′ ,

(applying (·)− to a derivation typing a Boolean constant gives us that same
constant). Hence, by Lemma 40, we also have

φ−|w|,|w′ |[x ← uw][y← uw′ ]→∗ bw,w′ ,

with ⟨uw⟩ : Bool2r(n,m) and ⟨uw′⟩ : Bool2s(n,m) bit representations of w and w′.
We are now ready do define our reduction. For n ∈N, let

r1(n) := r(n, q(n)),

s1(n) := s(n, q(n)).

Note that both r1(n) and s1(n) are O(p(n + q(n))), i.e., they may be replaced
by two polynomials r̃1 and s̃1 which bound them from above for all n ≥ k
for some fixed k ∈ N. Moreover, r̃, s̃ and k depend only on M, so we may
consider them hard-wired, together with M itself, in our reduction, which is
defined follows. On input w ∈ {0, 1}∗, it outputs the description of

φ−r̃(|w|),s̃(|w|)[x ← uw]

which may be done in polynomial time in |w| by Lemma 43. This is a Boolean
circuit which, by definition, is satisfiable if and only if w ∈ L. □
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4.2 A Glimpse Beyond

4.2.1 What now?

Having reproved the Cook-Levin theorem with logic-related tools might be
seen, in itself, as a quite amusing but otherwise futile exercise, at least from
the standpoint of complexity theory. As a matter of fact, seeing this new proof
will hardly have any impact on one’s understanding of NP-completeness, and
for a good reason: as we already pointed out, this “new” proof is really the
usual one presented in a different language, so there is nothing in it that a
complexity theorist did not already know. Of course, one may object that it is
always good in principle to look at well-known matters from a new vantage
point, as significant insights may come from the least expected direction. But
what are we looking for?

Structural complexity theorists are looking for lower bounds. They want to
be able to prove results of the form: in the model of computation X, problem
L needs at least R(n) computational resources to be solved, where n is the size
of the problem instance. Some strong results are known when X is a restricted
model of computation (e.g. decision trees), but as soon as X has a minimum of
expressiveness, the question becomes so hard that it is generally considered
hopeless. For instance, when X = deterministic Turing machines and L = sat,
proving a superlinear time lower bound would already be considered a huge
breakthrough (yes, superlinear, not superpolynomial!).

In this respect, logical approaches have proved to be of no use so far. De-
scriptive complexity [Imm99], based on finite model theory, has been quite
successful at characterizing nearly every well-known complexity class. How-
ever, it has provided no workable ideas concerning lower bounds. Implicit
computational complexity, which is one of the topics we touched upon in
this thesis, is situated at the other end of the logical spectrum, at the inter-
face between recursion theory, type theory and the theory of programming
languages. This approach too seems to be worthless when it comes to lower
bound techniques.

Logical approaches to computational complexity usually focus on captur-
ing complexity classes: the classic result in these fields is that a language be-
longs to a complexity class C if, and only if, it may be decided by a program
of a given form or expressed by a formula of a certain sort. The non-triviality
of such results resides in the fact that, of course, neither the program nor the
formula make any reference to the complexity bounds defining the class C.
Moreover, since the algorithms for solving the problems of C are “normal-
ized” to a given form which is usually of logical nature, one may hope that a
new arsenal of tools becomes available for studying C.

However, by inspecting more closely the characterization results described
above, one realizes that they are composed of two parts bearing little relevance
with the question of lower bounds: a completeness part, which is generally
a programming exercise of limited theoretical interest; and a soundness part,
which is a global upper bound result, i.e., a statement saying that all programs
of the given form may be evaluated within the resources allotted by the defi-
nition of C. Now, if the question is showing that H ̸∈ C for some purportedly
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hard problem H, we see that such a characterization leaves us completely
clueless. If anything, it is the far-reaching conjectures of structural complexity
theory that tell us something about these characterizations, not the other way
around. For instance, we may safely conjecture that there is no simply-typed
parsimonious λ-term of type Str[]⊸ Bool deciding sat on no further ground
than the widespread belief that there is no logspace algorithm for sat, and
not because we have any deep intuition about the limits of what simply-typed
parsimonious λ-terms may do.

To make things worse, not only do we not gain any intuition on the limits
of computation with bounded resources but, more often than not, we actually
lose the ability to prove that such limits exist! For instance, it is a consequence
of the well-known space hierarchy theorem that L ⊊ PSPACE; and yet, if we
had to show that the quantified Boolean formula problem (the prototypical
PSPACE-complete problem) is not decidable by any simply-typed parsimo-
nious term of type Str[] ⊸ Bool, we would have absolutely no clue on how
to proceed by logical means. Note that we are not trying to follow some “pu-
rity of methods” craze here; we are saying that, if the definition of the class
L were “the problems solvable by simply-typed parsimonious terms of type
Str[]⊸ Bool”, we would have to resort to a characterization using determin-
istic logspace-bounded Turing machines in order to infer any non-trivial sep-
aration concerning L, while our hope with implicit computational complexity
was that such transfers of results would go in the opposite direction.

We must be realistic and admit that, for the time being, there is no hope
of making progress in structural complexity theory by use of tools from logic
and programming languages theory. This is particularly frustrating because
such tools, like types, categories and rewriting, seem to be at least as good as
the combinatorial ones in describing computation as a dynamic phenomenon.
If anything, having re-proved the Cook-Levin theorem in type-theoretic lan-
guage serves as an additional witness to this fact.

This motivates us to keep investigating the world of computational com-
plexity with a logical eye, with the goal of finding out whether the logical
approach may indeed bear fruits, or gain a clear understanding of why it can-
not. In the meantime, we are confident that the technical challenges we will
encounter will spur the development of finer tools for the quantitative study
of programming languages, which is a field of interest in its own right. The
key point is to go beyond the idea of using logic and programming languages
solely as a means of characterizing complexity classes. Below we describe a
possible research path in this direction.

4.2.2 Projections and the non-uniform perspective

One might say that the Cook-Levin theorem is the mother of all completeness
results: after showing the relevance of NP-completeness, and opening the door
to the wave of NP-complete problems that were found soon after [Kar72], it
also set the stage for investigating the notion of C-completeness for an ar-
bitrary complexity class C, and today we know the existence of non-artificial
complete problems for just about any standard complexity class that is known
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to have complete problems at all. Investigating this general notion of com-
pleteness seems like a natural direction to follow.

A somewhat annoying aspect of completeness is that it is not a fixed no-
tion, independent of complexity classes: for a given complexity class C, we
have a possibly quite large number of legitimate notions of many-one reduc-
tion to be used in the definition of C-completeness. Basically, any monoid of
functions on {0, 1}∗ which does not use more resources than those defining C
and which does not trivially give the full power of C itself will do.

For instance, NP-completeness was originally defined in terms of Karp
reductions (i.e., polytime computable functions), but it may also be considered
relative to logspace computable functions. For P-completeness, the latter are a
common choice, while the former are of little interest because any non-trivial
problem in P is P-complete under Karp reductions. The same issue appears
with logspace reductions if we wish to define L-completeness, for which an
even stricter notion of reduction must be used. There would be no problem
if these different notions of completeness coincided (e.g., NP-completeness
under Karp or logspace reductions), but it is of course wide open whether
this is the case or not, except in some limited cases.3

This lack of canonicity does not diminish the relevance of completeness:
as long as a notion of reduction R is legitimate for a class C which admits a
complete problem L0 relative to R, then, in presence of an inclusion B ⊆ C in
which B is closed under R-reductions:

• if one believes that B = C, one may concentrate on showing L0 ∈ B,
which suffices to prove equality;

• if one believes that B ̸= C, then one may concentrate on proving lower
bounds for L0, which is the “hardest” problem in C, in the sense that it
is the least likely to be in B (for the above reason).

So the non-canonicity may even be advantageous, in that it is a source of
flexibility.

Nevertheless, in all this arbitrariness there is a remarkable empirical phe-
nomenon: every known “natural” complete problem for every “natural” com-
plexity class is actually complete under an extremely weak form of reduction,
known as quantifier-free projection [Imm99]. This is a uniform version of a no-
tion of reduction originally introduced by Valiant [Val82], which we will call
projective reduction here:

Definition 34 (projective reduction) In the following, if n ∈ N, we let [n] :=
{1, . . . , n} and [n] := {1, . . . , n}. A projection of type n→ m is a tuple

(p1, . . . , pm) ∈ ([n] ∪ [n] ∪ {k0, k1})m.

This induces a function p : {0, 1}n → {0, 1}m defined as follows: given w =

3In [AAI+01], an artificially constructed NP-complete problem under Karp reductions (actu-
ally, under uniform ACC0 reductions) is shown not to be NP-complete under non-uniform AC0

reductions.
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w1 · · ·wn ∈ {0, 1}n and 1 ≤ j ≤ m,

p(w)m :=


wpm if pm ∈ [n]
¬wpm if pm ∈ [n]
b if pm = kb

where ¬0 = 1 and ¬1 = 0.
A projective reduction of degree k ∈ N is a sequence (pn)n∈N such that, for

all n ∈N, pn is a projection of type n→ nk.

A projection of type n → m is in fact nothing but an extremely spartan
Boolean circuit of depth 1, with n inputs and m outputs: each output is either
a copy of one of the inputs, or the negation of such, or a constant. A pro-
jective reduction is just a polysize family of such circuits, one for each input
length. Note that projective reductions are non-uniform: the family is allowed
to be arbitrary, including uncomputable, as long as the size is polynomially-
bounded.

Quantifier-free projections are “very uniform” projective reductions, i.e.,
the structure of the various pn is described by a single propositional formula,
parametric in n, in a certain language containing basic arithmetic primitives.
Such a language is so simple that quantifier-free projections are computable
within any resource bound defining any complexity class of interest, including
the smallest ones like AC0 (which is much smaller than L).

What is remarkable about this empirical phenomenon is not so much that
there is a sort of “smallest” notion of reduction which seems to fit all classes,
but that such a notion is computationally trivial. In fact, these reductions
are almost void of computational content: they merely copy the bits of their
input, perhaps flip some of them, and return them, perhaps mixed with some
constant bits. In comparison, a Karp reduction is capable of mind-bogglingly
sophisticated manipulations!

We are tempted to say that projections reveal the true nature of complete-
ness: it is not an algorithmic notion but an algebraic notion. This is espe-
cially evident with the projective reductions of Definition 34, in which even
the faint algorithmic content hidden in the uniformity condition disappears.
Adopting the non-uniform approach to complexity, which we first mentioned
in Sect. 3.1.3, we may state the following:

Proposition 46 P/poly = NP/poly iff there is a projective reduction from
circuit sat to circuit value.

In the above, circuit value is the problem of deciding whether a circuit
with no free input (i.e., in which all inputs have been assigned a value) eval-
uates to 1. This is the prototypical P-complete problem. In fact, P/poly =
NP/poly iff there exists a projective reduction from some NP-complete problem
to some problem in P, but picking two specific problems makes the statement
more concrete: it tells us that the answer to one of the deepest open problems
of computer science depends on whether or not the instances of circuit sat

may be transformed to equivalent instances of circuit value via a manipula-
tion that has basically zero algorithmic content. This is probably the best way
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of showing why, since the early days of complexity (essentially the mid-70s),
people found the non-uniform perspective attractive: it shifts the focus from
computation to algebra and combinatorics.

4.2.3 Reductions as monoidal functors

Complexity theorists often speak of “gadget reductions”. This is an informal
notion which roughly corresponds to the following situation. The instances
of a problem are usually composed of basic elements: the nodes and arcs of
a graph, the gates of a circuit, the clauses of a CNF formula, etc. We write
informally w = [e1, . . . , en] to express that the instance w is composed of the
basic elements e1, . . . , en. When reducing a problem L to a problem L′, it
often happens that each basic element e forming an instance of L is mapped
to a fixed configuration r(e) of basic elements of instances of L′; such fixed
configurations are called “gadgets”. So an instance w = [e1, . . . , en] of L is
reduced to an instance r(w) = [r(e1), . . . , r(en)] of L′ by “implementing” its
basic elements with gadgets, and then assembling them together.

Let us give an example. We saw that a key step in our proof of the Cook-
Levin theorem is exhibiting a Karp reduction from circuit sat to sat. In fact,
one may easily reduce circuit sat to 3sat, which is the satisfiability problem
restricted to formulas in conjunctive normal form (CNF), i.e., of the form

(α1
1 ∨ · · · ∨ α1

k1
) ∧ · · · ∧ (αn

1 ∨ · · · ∨ αn
kn
),

(where αi
j is either an atom or the negation of such) in which, additionally, we

require ki ≤ 3 for all 1 ≤ i ≤ n. A disjunction of the form α1
1 ∨ · · · ∨ αi

ki
above

is called a clause and its atomic components αi
j are called literals, so a 3CNF is

just a CNF in which all clauses have at most three literals.
The reduction r from circuit sat to 3sat is defined as follows. Let C

be a Boolean circuit. If C is a circuit with inputs x1, . . . , xn, whose gates are
g1, . . . , gm, our 3CNF formula r(C) will be over the atoms x1, . . . , xn, g1, . . . , gm.
We assign to each gate g a “gadget” r(g), which will be a set of clauses made
of at most three literals, depending on the type of g:

• g is an input gate associated with the variable x: r(g) := {(¬g ∨ x), (g ∨
¬x)} (corresponding to g⇔ x);

• g is a constant 0 gate: r(g) := {(¬g)} (corresponding to g⇔ 0);

• g is a not gate whose input is the output of the gate h: r(g) := {(¬g ∨
¬h), (g ∨ h)} (corresponding to g⇔ ¬h);

• g is an or gate whose inputs are the outputs of the gates h and h′: r(g) :=
{(¬h ∨ g), (¬h′ ∨ g), (h ∨ h′ ∨ ¬g)} (corresponding to g⇔ (h ∨ h′)).

In case g is also the output gate, we add the clause (g) to r(g). (For brevity,
we omit and and constant 1 gates, which may anyway be defined from or,
not and 0). It is immediate to see that C is satisfiable iff the 3CNF formed of
all the clauses r(g1), . . . , r(gm) is satisfiable. It is also fairly obvious that r is
polynomial-time computable in m (the size of C).

141



To try and formalize the intuition of “gadget reduction”, it is tempting to
consider problem instances as being the elements of some free algebra on the
basic elements e1, e2, e3, . . ., so that a gadget reduction becomes just a homo-
morphism. Interestingly, this seems to work seamlessly on all examples we
have have tried. Let us apply it to the above reduction.

The instances of circuit sat may be naturally presented as endomor-
phisms of the unit object of the free PRO (strict monoidal category whose
objects are all tensor powers of a single generating object) generated by

¬ ∨ δ
out

0 in

(We use string diagram notations to make the presentation more intuitive).
We denote such a category by Circ. The generator 0 represents the Boolean
constant “false”; the generators in and out represent an input and an output
gate, respectively; the other generators are hopefully self-explanatory. An
instance of circuit sat is a morphism in Circ(1, 1) (i.e., a string diagram with
no pending wires) containing one occurrence of out.

For 3sat, we may see its instances as endomorphisms of the unit object of
the following free strict symmetric monoidal category 3CNF. Its objects are
generated by p and n. Its morphisms are generated by

x

δ
atom

pn

cl

x1

. . .
xk

x x

The generator atom stands for an atom, with p (resp. n) representing its posi-
tive (resp. negative) form. The generators cl represent clauses with k ≤ 3 lit-
erals, with x1, . . . , xk ∈ {p, n} depending on whether a literal occurs positively
or negatively. Of course, we may define atoms with an arbitrary number of
positive and negative occurrences by using trees of δ generators:

· · ·

atom

δδ

pn

nn p p

:=

p

atom

pnn
· · ·· · ·

· · ·

It is now fairly straightforward to implement the reduction r described
above as a strict monoidal functor

r : Circ −→ 3CNF.

On objects, if we call ∗ the generating object of Circ, we define

r(∗) := n⊗ p.

142



On morphisms, it is of course enough to define r on the generators; without
being too verbose, let us give a few examples:

p

0
7→ n

cl

atom

n

nout
7→

cl cl

n

atom

p

p

p¬

cl cl

7→

atom

pn

pn

n

This hopefully gives the idea of how r is defined following the definition of
the “gadget reduction” introduced above.

The fact that the instances of a problem live in a monoidal category is justi-
fied by the well-known observation, originally made in the context of descrip-
tive complexity, that “everything is a graph” (see Exercise 3.7 of [Imm99]). In
other words, all computational structures may be seen, more or less naturally,
as graphs, which are two-dimensional objects corresponding to morphisms of
monoidal categories.

In this viewpoint, a decision problem on a type of instances C (a strict
monoidal category) is just a strict monoidal functor

L : C −→ Rel.

This is because instances are endomorphisms in C(1, 1) and the unit object of
Rel has only two endomorphisms (it acts as a classifier). For instance,

circuit sat : Circ −→ Rel

maps ∗ to the set {0, 1} and maps the generators to the following relations:

0 7→ {(∗, 0)},
in 7→ {(∗, 0), (∗, 1)},

out 7→ {(1, ∗)},
¬ 7→ {(0, 1), (1, 0)},
∨ 7→ {((b1, b2), b1 ∨ b2) | b1, b2 ∈ {0, 1}},
δ 7→ {(0, (0, 0)), (1, (1, 1))},

exch 7→ {((b1, b2), (b2, b1)) | b1, b2 ∈ {0, 1}},
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where ∗ denotes the only element of the monoidal unit 1 = {∗} of Rel. The
reader can check that, if C is a circuit seen as a morphism of Circ(1, 1), C is
satisfiable iff circuit sat(C) = {(∗, ∗)} = id1 (otherwise, circuit sat(C) =
∅, the only other endomorphism of 1 in Rel).

For what concerns
3sat : 3CNF −→ Rel,

it maps both p and n to {0, 1} and

atom 7→ {(∗, (0, 1)), (∗, (1, 0))},
cl 7→ {((b1, . . . , bk), ∗) | b1, . . . , bk ∈ {0, 1},

∨
bi = 1}.

and δ is as for circuit sat. Again, we invite the reader to check that, if
φ ∈ 3CNF(1, 1), then 3sat(φ) = id1 iff φ represents a satisfiable 3CNF.

The above functor r : Circ → 3CNF is a reduction because there is a
monoidal natural transformation

Circ

circuit sat

&&

r ,,

⇓ θ Rel

3CNF 3sat

;;

such that θ∗ = {(0, (1, 0)), (1, (0, 1))}, that is, the truth value b ∈ {0, 1} is
mapped to (¬b, b) ∈ {0, 1}2. Thanks to this, we have, for every circuit C,
circuit sat(C) = 3sat(r(C)), as desired.

It is not hard to see that, as a function r : {0, 1}∗ → {0, 1}∗, the gadget
reduction from circuit sat to 3sat introduced above is actually projective.
In fact, projective reductions may be considered as very restrictive forms of
gadget reductions. So one is naturally led to wonder whether, from the above
perspective, strict monoidal functors correspond to projective reductions. The
goal would be to reformulate Proposition 46 roughly as follows: the instances
of circuit value are obviously a subset of those of circuit sat (they have no
input), corresponding to the subcategory Circ0 of Circ without the in genera-
tor; then, one could hope that

P/poly = NP/poly iff
there is a strict monoidal functor r : Circ → Circ0
together with a monoidal natural transformation
θ : circuit sat⇒ circuit value ◦ r

holds. This hope is misguided: while the backward implication certainly
holds, it seems quite plausible that the right hand side is false, without this
having any bearing on the fact that P/poly ̸= NP/poly, as widely believed.

So the general picture, whatever it is, must be less naive. In particular:

• on the one hand, we cannot restrict to monoidal categories with a finite
number of generating objects, like Circ or CNF. Indeed, for the for-
ward implication of the above reformulation of Proposition 46 to hold,
every projective reduction must induce a strict monoidal functor, and
this cannot be the case if we have only finitely many generating objects.
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• On the other hand, if our monoidal categories must have infinitely many
generating objects, then strict monoidal functors will be too broad to
match projective reductions; we must impose a size restriction corre-
sponding to that of projective reductions.

We are currently working on a framework that seems to be able to yield the ex-
pected property, i.e., that P/poly = NP/poly iff there is no structure-preserving
functor from a certain category to another. This framework requires moving
to autonomous categories and makes, again, use of fibrations along similar
lines as Chapter 2. It is however too soon to present it here.

At any rate, we want to stress that such a framework would not provide
any new lower bound technique in itself. Just as for the Cook-Levin theorem,
it would merely be a translation of, in this case, basic complexity-theoretic
definitions in a new language, closer to the one we use in logic, type theory
and the theory of programming languages. It is impossible to say whether
this new language will inspire new ideas, but such ideas will certainly not
magically sprout from the translation.

The important point is that, compared with the logical routes followed so
far (descriptive complexity, implicit computational complexity) this approach
does not try to translate the definition of a complexity class, but the definition
of decision problem itself, i.e., it is at a fundamentally deeper level, which is
precisely the spirit the we intend to follow.
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