Preface

This document presents some aspects of the research I carried out after my Ph.D. thesis, which I defended nearly eleven years ago. In fact, for the sake of uniformity, I chose to focus on a single subject, that of polyadic approximations and their applications to quantitative program analysis and computational complexity, which means that the present document covers only research developed in the past five or six years.

My research on other topics, such as the denotational semantics of interaction nets and light subsystems of linear logic, graded comonads and quantitative coeffects, linear explicit substitutions and abstract machines, as well as logical approaches to process calculi, was intentionally left out. Aside from uniformity, the choice is justified by the fact that the interaction between logic, programming languages and computational complexity is my main research interest at present and I feel much more motivated in making the effort of organizing this material in a coherent form, rather than collecting a series of disparate papers.

Precisely because I did not wish to make of this document a mere compilation of previously published papers, I strove to present each result in the light of my most recent advances, which often led to a quite different presentation with respect to the published form. It is the case of Chapter 1, which takes the ideas contained in [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF][START_REF] Mazza | Non-linearity as the metric completion of linearity[END_REF][START_REF] Mazza | Infinitary affine proofs[END_REF] and puts them in a higher multicategorical context which is completely absent from those papers. I took a similar approach with Chapter 4, in which I use the tools of Chapter 2 to remold my paper [START_REF] Mazza | Church meets Cook and Levin[END_REF] and bring it closer to the world of "standard" computational complexity. The closing section of that chapter, which is quite speculative, is a sort of window into what I currently think of my future research.

Chapter 3 is the closest to its originally published form, containing sections taken verbatim from [START_REF] Mazza | Simple parsimonious types and logarithmic space[END_REF], as well as results from a joint work with Kazushige Terui [START_REF] Mazza | Parsimonious types and non-uniform computation[END_REF]. However, I do make the techniques of Chapter 2 appear explicitly in the exposition, whereas these were only implicit in the published presentation.

Finally, the above-mentioned Chapter 2 contains material which I developed with my Ph.D. students Luc Pellissier and Pierre Vial, and which is going to appear in the Proceedings of the ACM issue associated with POPL 2018. i Let me start by expressing my gratitude to Robert Harper, Martin Hyland and Paul-André Melliès for having accepted to review this work, a gratitude which extends to Patrick Baillot, Pierre-Louis Curien, Christophe Fouqueré, Stefano Guerrini and Simona Ronchi Della Rocca, for being part of my habilitation committee.

I also wish to thank my fellow researchers, coauthors and friends who shared with me this past decade of learning, discovering, proving and disproving, giving me much appreciated inspiration and support. An exhaustive list would be too long here, so I will restrict it to those who are somehow connected with the work presented here: Beniamino Accattoli, Flavien Breuvart, Ugo Dal Lago, Thomas Ehrhard, Marco Gaboardi, Yves Guiraud, Tom Hirschowitz, Michele Pagani, Andrew Polonsky, Kazushige Terui, Lorenzo Tortora de Falco and, last but not least, my students Luc Pellissier and Pierre Vial.

I am sincerely thankful to my colleagues at LIPN, particularly to all members of the logic group, for providing an amicable working environment. I also want to thank the administrative staff for their precious assistance, especially Aimé Bayonga, Marie Fontanillas and Brigitte Guéveneux.

I guess this is a good place to give credit to all the institutions who funded my research after my Ph.D.: the Agence Nationale de la Recherche, the Fondation Sciences Mathématiques de Paris and, of course, the Centre National de la Recherche Scientifique, my employer for the past nine years. I am particularly grateful to the members of the 2007 hiring committee who believed in my potential and granted me the amazing opportunity of a life-long career at CNRS. Although it is unlikely that any of them will ever read this, the present work is hopefully a testimony to their judgment not being entirely misled.

Let me also give my special thanks to my sister Elena and brother-in-law Giampaolo, as well as my mom and dad, who provided invaluable practical help during the final stages of writing this thesis (no daycare for my daughter in August. . .).

Finally, it is hopeless to convey how grateful I am to my wife Kristin and her inexhaustible support and understanding. I may be unsure about the value of this work but, thanks to her, I am sure there is something valuable in my life.

Villetaneuse, 17 October 2017

Erratum for the HAL version

Making this thesis publicly available on HAL is a good excuse to point out a mistake which I have known for some time but have always been too lazy to correct in print. In Chapter 2, the definition of the bioperad Rel given just before Theorem 17 is wrong, leading to the theorem itself being false. Here is the correct definition of Rel:

• objects are small categories; ii • multimorphisms X 1 . . . X n -→ Y are distributors, that is functors

X 1 × • • • × X n × Y op → Set,
with composition defined via the usual coend formula (so associativity holds only modulo isomorphism): given

G : Y 1 . . . Y m -→ Z and F : X 1 . . . X n -→ Y i , their composite G • i F is defined as the functor Y 1 × • • • × Y i-1 × (X 1 × • • • × X n) × Y i+1 × • • • × Y m × Z op → Set
(y 1 , . . . , y i-1 , x 1 , . . . , x n , y i+1 , . . . , y m ; z) → y i ∈Y i G(y 1 , . . . , y i , . . . , y m ; z) × F(x 1 , . . . , x n ; y i).

• 2-arrows θ : F ⇒ G : X 1 . . . X n → Y are relational natural transformations, that is, if we let U : Set → Rel be the functor sending a set to itself and a function to its graph, these are natural transformations U • F ⇒ U • G (rememeber that F and G are functors into Set).

The difference with the definition given in Chapter 2 is that, according to that definition, multimorphisms are relational distributors, that is, they are functors into Rel, rather than Set. This is wrong because Rel lacks colimits and, therefore, coends do not exist in general and composition is ill-defined. However, it is fundamental that the 2-arrows of the bioperad are relational: while a usual morphism of distributors θ : F ⇒ G would be a natural family of functions θ ⃗ x,y : F(⃗ x, y) → G(⃗ x, y), our setting requires this to be weakened to a natural family of relations θ ⃗ x,y ⊆ F(⃗ x, y) × G(⃗ x, y), which is achieved by post-composing with the forgetful functor Set → Rel. The ensuing definition of Rel * must be adjusted similarly. With these definitions in place, Theorem 17 holds as stated (but the current proof is faulty, I will have to write down the corrected version at some point). Fortunately, the rest of the thesis is not affected by this mistake because we only consider discrete categories of types (Definition 16). If X and Y are discrete categories, a functor X × Y op → Rel is the same thing as a functor X × Y op → Set, and if F, G : X × Y op → Rel are two such functors, a natural transformation F ⇒ G is the same thing as a natural transformation U • F ⇒ U • G with F and G seen as functors into Set. In other words, we developed the theory of intersection types in a context in which the wrong definition is equivalent to the correct one. If one wanted to apply the theory in full generality (for example, if one wanted to consider subtyping, which yields non-discrete categories of types), then the correction becomes technically relevant.

Introduction

The notion of polyadic approximation originates in the very first paper on linear logic [START_REF] Girard | Linear logic[END_REF], where Girard proves a result, deemed Approximation Theorem, supporting the "equation"

!A = lim n→∞ n (A & 1) ⊗ • • • ⊗ (A & 1). (1
)
We recall that the !(-) modality is the non-linear part of linear logic, i.e., it mediates the introduction of the structural rules weakening and contraction.

From the Curry-Howard perspective, weakening and contraction correspond to erasing and duplication, respectively, which are responsible (especially the latter) for the presence of infinity in computation: without duplication, every computation is bound to take place within a progressively shrinking space, making it finite in a very strong sense. The formulas on the right hand side of Equation 1, instead, are !-free as long as A is. In other words, such formulas live in the "purely linear" fragment of linear logic. Girard's Approximation Theorem therefore hints at the fact that the non-linear part of linear logic is the limit of its purely linear part. We say that the result "hints" at such a relationship because, in fact, Equation 1 is never given a technical status in Girard's paper, in that there is no topology or other structure in which the limit may be taken in a formal sense.

The starting point of this thesis is the idea of taking Girard's Approximation Theorem seriously, thus giving a fully formal content to Equation 1. We will see that the consequences of such an endeavor are surprisingly rich, with applications ranging from the construction of intersection type systems to the development of a new viewpoint on the quantitative analysis of functional programming languages, with some implications reaching as far as structural complexity theory. We now proceed to give a quick overview of such results.

Polyadic approximations

Chapter 1 contains our formalization of the computational contents of Girard's Approximation Theorem. The idea is that Equation 1, which is given at the level of formulas/types, should actually be read first and foremost at the level of cut-elimination/execution.

The categorical view of the Curry-Howard correspondence sees formulas/types as objects and proofs/programs as morphisms. It is very natural to extend this up the dimensional ladder and see cut-elimination/execution paths as 2-arrows. We take this approach, which is well-established in the literature on term rewriting [START_REF] Seely | Modelling computations: A 2-categorical framework[END_REF][START_REF] Barney | Towards a proof theory of rewriting: The simply typed 2lambda-calculus[END_REF][START_REF] Corradini | Categorical rewriting of term-like structures[END_REF][START_REF] Hirschowitz | Cartesian closed 2-categories and permutation equivalence in higher-order rewriting[END_REF][START_REF] Melliès | Une étude micrologique de la négation[END_REF], as the basis of our syntax for term calculi. This will allow us to define in a precise way what it means for a reduction sequence to approximate another one.

The only twist that we add with respect to the common two-dimensional approaches to term rewriting is the use of a higher multicategorical perspective rather than a 2-categorical one, i.e., we follow a mixed operadic/globular approach rather than a fully globular one. This is inspired by Hyland's recent presentation of the λ-calculus in the framework of cartesian operads [START_REF] Hyland | Classical lambda-calculus in modern dress[END_REF]. Although we take it in a rather different direction than Hyland's (in particular, we will never consider questions of denotational semantics, leaving them for future work), we will find this viewpoint extremely fruitful for our exposition.

After introducing several variants of polyadic calculi (with a varying degree of freedom as to the use of structural rules), we introduce the approximation order and show, via a general categorical construction, that the term calculus of intuitionistic linear logic is isomorphic to a quotient of the ideal completion of the affine polyadic calculus. In proof-theoretic terms, a linear logic proof using the modality !(-) may be seen (modulo a quotient) as an ideal of proofs in the purely linear fragment of linear logic.

More evocatively, we may say that the ideal completion is a process similar to the completion of a metric space, which adds the "missing limits" of Cauchy sequences. This is one of the standard ways, due to Cantor, of defining the real numbers R from the rational numbers Q. In our case, the space of purely linear proofs is, like Q, incomplete; among the "missing limits" added by the completion we find the proofs of usual linear logic. Moreover, these may be characterized by a uniformity condition, which underlies the quotient mentioned above.

The most important consequence of our computational version of Girard's Approximation Theorem is that it induces the notion of polyadic approximation: linear logic reductions may be approximated arbitrarily well by polyadic reductions which, by nature, are much finer and better suited for quantitative analyses. Between terms, the approximation relation is written

t ⊏ M,
where t is a polyadic term and M a linear logic term (or a λ-term, depending on the context).

We also observe that, although Girard's Approximation Theorem is about affine polyadic approximations, the notion actually makes sense in all the other variants of polyadic calculi, with any combination of structural rules (linear, relevant, cartesian). This is why, instead of speaking of "affine approximations", we chose the broader terminology "polyadic approximation": the key aspect is that the constructions associated with the !(-) modality are approximated by greater and greater polyadic constructions; affinity is just one (particularly useful) possibility.

Intersection types

In Chapter 2, we show how every well-known intersection type system, as well as new potentially interesting examples, arises from a very general construction involving polyadic approximations at its heart.

The starting point is an observation concerning simple types in polyadic calculi (which are essentially fragments of propositional linear logic) and intersection types. Without being precise about what particular system of intersection types we are talking about (we will give the details in Sect. 2.1), the empirical remark is that:

• polyadic simple types and intersection types are isomorphic (so we identify them in what follows);

• if we take a derivation δ of Γ ⊢ M : A in intersection types (where M is a pure λ-term), then δ is isomorphic to a Church-style (i.e., with type decorations) simply-typed polyadic term δ : A with free variables of type Γ;

• moreover, if we denote by δ -the underlying polyadic term (i.e., the pure term without type decorations), then δ -⊏ M.

In order to explain the above observation, we are led to seek an abstract definition of what an intersection type system is. A surprisingly simple, but extremely general proposal was recently given by Melliès and Zeilberger [START_REF] Melliès | Functors are type refinement systems[END_REF], who argue that a type system (hence, in particular, an intersection type system) is nothing but a functor

E p B
where the source category E is seen as a (generalized) category of derivations and the target category B as a (generalized) category of programs. This viewpoint of course works just as well in our 2-operadic framework, so we take it to be our working definition of type system. Accordingly, we seek a general way of constructing morphisms of 2-operads

E p Λ
where Λ is the 2-operad presenting the pure λ-calculus.

To this effect, we show how, for any choice of suboperad D of polyadic simple type derivations, the polyadic approximations as introduced in Chapter 1 induce a morphism Apx[D] : Λ ! -→ Rel where Λ ! is the 2-operad presenting the term calculus of linear logic and Rel is a certain bioperad based on relational distributors (i.e., functors A × B op → Rel, where Rel is the category of sets and relations). We call this the approximation presheaf (relative to D).

Now, the pure λ-calculus is well-known to embed in linear logic via Girard's translation G 0 : Λ -→ Λ ! .

Composing Girard's translation with the approximation presheaf gives us another presheaf Apx [D] • G 0 : Λ -→ Rel.

We then show how, using an operadic version of the Grothendieck construction (a standard categorical construction), this induces a type system (in the sense of Melliès and Zeilberger)

E [D, G 0] p[D,G 0] Λ
It turns out that, by suitably varying D (and G 0), we obtain in this way all the major variants of intersection type systems, from the original one of Coppo and Dezani [START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF], to the later variant with intersections only to the left of arrows [START_REF] Coppo | Functional characters of solvable terms[END_REF]; from the various non-idempotent versions [START_REF] Gardner | Discovering needed reductions using type theory[END_REF][START_REF] Daniel De | Execution time of lambda-terms via denotational semantics and intersection types[END_REF] to the several variants for characterizing different normalization properties (head normalization, weak normalization, etc. [START_REF] Krivine | Lambda Calculus, Types and Models[END_REF]), as well as any combination of these. This general construction has several interesting aspects:

• not only D, but also the morphism G 0 is just a parameter; the construction applies to any calculus L admitting an encoding G : L -→ Λ ! in linear logic. For instance, we will see examples where L is the callby-value λ-calculus or the λµ-calculus.

• There are sufficient conditions on Apx [D] • G which, if met, automatically guarantee that the induced type system ensures certain normalization properties. In this way, not only the usual systems of intersection types, but also their properties may be recovered from the framework.

• In general, the construction shows how the structural properties of intersection types come from the structural rules of polyadic approximations: contraction gives idempotency, weakening gives (basic) subtyping.

This leads to a framework for synthesizing, in a nearly automatic way, systems of intersection types for a priori arbitrary calculi. It will prove its usefulness in both of the subsequent chapters.

Parsimony

In Chapter 3 we turn our attention to quantitative aspects of reduction and, in particular, find applications of polyadic approximations to implicit computational complexity. As in Chapter 1, we will focus on affine polyadic approximations.

One of the most important (and useful) properties of affine polyadic approximations is that reduction enjoys a continuity property with respect to them: let M → * N;

then, for all u ⊏ N, there exists t ⊏ M such that t → * u.

In other words, if we are interested in an approximation of the result of a linear logic/λ-calculus computation, it is enough to look at an affine computation starting from a sufficiently big approximation of the initial term. This immediately leads to the question: how big must t be? Supposing that the size of u does not matter, for instance because N is a Boolean value and we only need a constant amount of information from it (the head variable), it is legitimate to expect that |t| (the size of t) is a function of the length of the reduction M → * N. This is indeed the case; however, the dependency, which we informally call "modulus of continuity", is quite bad: it may be exponential in general.

We are therefore led to introduce the parsimonious λ-calculus, a calculus enjoying a polynomial modulus of continuity. The parsimonious paradigm is quite robust: apart from the calculus, there is an underlying logical system, a variant of linear logic called parsimonious logic, admitting a simple categorical semantics, with everything fitting together nicely as in the prototypical "trinity" of the λ-calculus, intuitionistic logic and cartesian closed categories. The parsimonious paradigm may also be extended along the standard directions: polymorphism (parsimonious system F) or simply-typed recursive definitions (parsimonious PCF). In each case, the fact that parsimony is centered upon the polynomial modulus of continuity has interesting consequences, which we discuss in some depth.

The viewpoint of computational complexity is especially important for us. In this respect, we show that parsimony is a fruitful context for the development of both explicit and implicit computational complexity. In particular, concerning the latter, parsimony brings forth a novel approach to linear-logicbased characterization of complexity classes, radically different than those obtained with the more established "light logics" [START_REF] Girard | Light linear logic[END_REF][START_REF] Lafont | Soft linear logic and polynomial time[END_REF].

Church meets Cook and Levin

In Chapter 4, we venture still farther into computational complexity territory, and show how the techniques developed in the previous chapters may be used to present in a novel way the proof of the Cook-Levin theorem, one of the central results of structural complexity theory.

The Cook-Levin theorem, which is the famous statement that sat (satisfiability of propositional formulas) is NP-complete, is usually proved by showing how a formula or, better, a Boolean circuit may simulate the computation of a Turing machine with only a polynomial overhead. It is implicit in the way circuits are constructed in the proof that some notion of approximation is actually being used, and complexity theorists are well aware of this intuition.

We are able to give a fully formal content to this intuition, once again thanks to the notion of polyadic approximation and its connection with intersection types. The novelty with respect to the previous chapters is that, this time, we apply our machinery to a first-order language, not too distant from Turing machines. Instead of being approximated by polyadic terms, the programs of this language are approximated by actual Boolean circuits. Applying the construction of Chapter 2, we obtain an intersection type system for "Turing machines" whose derivations are isomorphic to Boolean circuits approximating them. The continuity of reduction and its polynomial modulus of continuity become, in this setting, a quantitative subject expansion property of the type system. From there, the proof of the Cook-Levin theorem unfolds quite smoothly.

Having found a type-theoretic presentation of the proof of a major theorem of computational complexity theory may seem like an interesting achievement, not because of the proof itself (it is essentially the same proof, presented in a different language) but because it confronts the language of our community with the needs of a different community, which is always an enriching experience. However, one quickly realizes that the "confrontation" offered by the Cook-Levin theorem is, in reality, still extremely limited and far from being of any consequence. We therefore conclude our exposition with some suggestions for further research in this direction, which is intended to stir up the interaction between logic, programming languages and computational complexity, hopefully bearing fruits for one of these domains.

Chapter 1

Polyadic Approximations 1.1 An Operadic Take on Syntax

Reduction terms

In the course of this thesis, we will often need to have a concise way of denoting reductions in term calculi. In the term rewriting community, such notations are known as "proof terms" and are well developed for the firstorder case [START_REF]Term Rewriting Systems[END_REF]. In this section, we introduce a term notation for reductions of λ-terms which may be easily generalized to other term calculi. We prefer calling such notations reduction terms, because "proof terms" may be a source of ambiguity in the Curry-Howard context.

The syntax of λ-terms is the usual one:

M, N ::= x λx.M MN.

Given n ∈ N, a context with n holes is a λ-term C with n special free variables {•} 1 , . . . , {•} n , such that each {•} i appears exactly once in C. The case n = 0, in which a context is just a term, is allowed. Substitution of n terms M 1 , . . . , M n to the holes in a context C is denoted by C{M 1 , . . . , M n }, where it is assumed that M i is substituted to {•} i . As usual, the difference with respect to usual substitution (of a term in a term) is that this substitution is not capture-free.

Definition 1 (reduction term) Reduction terms are defined as follows:

β ::= M x ← N basic steps;
ρ, τ ::= C{β 1 , . . . , β n } ρ; τ reduction terms.

In M x ← N , the variable x is bound in M. In C{β 1 , . . . , β n }, n = 0 is allowed, so terms are also reduction terms. Each basic step is assigned a source term and a target term, as follows:

M x ← N : (λx.M)N → * M{N/x}.
The definition of source and target is extended to reduction terms by means of the rules of Fig. 1.1. Reduction terms with the same source (resp. target) are called coinitial (resp. cofinal). A reduction term is valid only if it may be assigned a source and a target; we will implicitly consider only valid reduction terms.

Structural equivalence is the least congruence on reduction terms containing the equations of Fig. 1.2.

The operation of (capture-free) substitution of a term N for a free variable x in a reduction term ρ : M → * M ′ , denoted by ρ{N/x}, is defined as expected. For what concerns substitution of a general reduction term τ : N → * N ′ in ρ, we first define it in case ρ = M, which is done by induction on τ:

• M{C{β 1 , . . . , β n }/x} is defined as expected;

α : M → * M ′ β : N → * N ′ C{M, β}; C{α, N ′ } ∼ C{α, β} ∼ C{α, N}; C{M ′ , β} par α : C{x} → * M ′ β : N → * N ′ C{β}; α{N ′ /x} ∼ α{N/x}; M ′ {β/x} unnest Figure 1.3: Permutation equivalence.

nal.

We stress that the above definition is simply a rephrasing of the standard definition of permutation equivalence. The three rules of Fig. 1.2 just take care of formalizing the fact that reduction terms are sequences of atomic reductions, with terms being identities; in Fig. 1.3, the par rule states the equivalence of two reductions reducing two independent ("parallel") redexes in two different orders, and the unnest rule states the equivalence of the two ways of reducing two nested redexes: first the inner one and then the outer one, or first the outer one and then all the potential copies of the inner one.

The most important role of permutation equivalence is allowing Proposition 3 below, i.e., the interchange law between substitution and composition of reductions. We start by generalizing the unnest rule:

Lemma 2 For all ρ : M → * M ′ and τ : N → * N ′ ,

□

The following lemma, which states that permutation equivalence and substitution are compatible, is technically important but unsurprising. It will be tacitly used in the sequel.

Lemma 4 If ρ ∼ ρ ′ and τ ∼ τ ′ , then ρ{τ/x} ∼ ρ ′ {τ ′ /x}.
Proof. By induction on the number of elementary transformations (of Fig. 1.2 and Fig. 1.3) used to obtain ρ ∼ ρ ′ and τ ∼ τ ′ . □

It is worth mentioning that what we gave above is an alternative presentation of the theory that Hilken calls 2-λ [START_REF] Barney | Towards a proof theory of rewriting: The simply typed 2lambda-calculus[END_REF], restricted to β-reduction (Hilken considers also η-expansion). It is also covered by Hirschowitz's general theory [START_REF] Hirschowitz | Cartesian closed 2-categories and permutation equivalence in higher-order rewriting[END_REF], although our syntax is different (it is specialized to our purposes).

A strict 2-category of lambda-terms

Consider the set Λ 1 of λ-terms with at most one free variable x. Let us write

M • N for M{N/x}; obviously, M, N ∈ Λ 1 implies M • N ∈ Λ 1 . Moreover, substitution is associative (M{N{P/x}/x} = M{N/x}{P/x})
and there is a neutral element, namely x, so (Λ 1 , •, x) is a monoid or, more verbosely, a category with only one object.

The set Λ 1 may be equipped with another natural categorical structure, namely it may be taken as the set of objects of the free category generated by the graph of one-step β-reductions between λ-terms. The arrows of this category are exactly the reduction terms introduced above (modulo structural equivalence, which is always assumed implicitly): composition is the operation we denote by ; and identities are terms.

It is natural to wonder whether the monoid structure (Λ 1 , •, x) may be extended to arrows. This means endowing the category of reductions with a (strict) monoidal structure or, equivalently, promoting the one-object category (Λ 1 , •, x) to a one-object (strict) 2-category. We already introduced general substitution, so the obvious definition is ρ • τ := ρ{τ/x}. Here is where we see the importance of permutation equivalence: this definition does not work unless we take the quotient under permutation equivalence.

So the right way to combine the two structures is as follows: Λ 1 is the strict 2-category with only one object whose • 1-morphisms are λ-terms with at most one free variable x; composition is given by •, the identity is the term x;

• 2-morphisms from M to N are reduction terms ρ : M → * N modulo permutation equivalence; vertical composition is given by ; and its identities are the terms; horizontal composition is given by •, with identity x (seen as a reduction term).

The fact that this defines a strict 2-category is ensured by Proposition 3 which, with our current notations, becomes (ρ

• τ); (φ • ψ) = (ρ; φ) • (τ; ψ).
The above 2-categorical presentation of the λ-calculus was first advocated by Seely [START_REF] Seely | Modelling computations: A 2-categorical framework[END_REF]. The observation that permutation equivalence is necessary is implicit in his Definition/"Lemma" 2.5. 1 The category of pure λ-terms and reductions modulo permutation equivalence is also described in some detail by Melliès in his habilitation thesis [START_REF] Melliès | Une étude micrologique de la négation[END_REF]; for instance, it is shown therein that it has pushouts, which is a strong form of confluence.

Although satisfactory in spirit, the 2-categorical framework is a bit artificial in practice, for the simple reason that λ-terms in general may have more than one free variable. In this respect, it feels much more natural to use multicategories, which is what we do in this thesis.

Operads

We give here a brief survey of the categorical definitions used in the sequel. We refer the reader to [START_REF] Leinster | Higher Operads, Higher Categories[END_REF] for more complete definitions.

Caveat on terminology: the definition of "operad" adopted in this thesis is not the standard one; it differs in the following points:

• our "operads" are colored by default, i.e., seen as multicategories, they may have more than one object; we will occasionally call monochromatic an operad (in our sense) with only one object;

• our "operads" do not necessarily have identity operations; there is no standard terminology for these structures, which are however useful from the viewpoint of programming languages; an operad (in our sense) with identities will be called unital.

Summarizing, we may give the following "dictionary":

our terminology standard terminology operad unital operad colored operad/symmetric multicategory unital monochromatic operad operad

The reason why we chose to depart from standard terminology is simple: the concepts in the above table are listed, from top to bottom, in decreasing order of importance for our work; had we followed the standard terminology, we would have ended up calling our most used structures something like "nonunital colored operad" or "symmetric semimulticategory", quite a mouthful in both cases.

In what follows, B(n) denotes the group of permutations on n elements.

Definition 3 (V-operad) Let (V, ⊗, 1) be a symmetric monoidal category. A Voperad C is given by the following:

• a set 2 C 0 of objects, also called colors;

• for every sequence of colors C 1 , . . . , C n , A, an object C(C 1 , . . . , C n ; A) of V;

• for every color A, sequence of colors ∆ = B 1 , . . . , B n and sequence of sequences of colors

Γ = Γ 1 , . . . , Γ n , a morphism of V • Γ;∆;A : C(∆; A) ⊗ C(Γ 1 ; B 1) ⊗ • • • ⊗ C(Γ n ; B n) -→ C(Γ; A), called operadic composition; • for each n ∈ N, σ ∈ B(n) and colors A, Γ = C 1 , . . . , C n , a morphism of V exch Γ;A σ : C(Γ; A) -→ C(σΓ; A) where σΓ = C σ(1) , . . . , C σ(n) , satisfying exch σΓ;A σ ′ • exch Γ;A σ = exch Γ;A σ ′ •σ and exch Γ;A id = id C(Γ;A)
; such that the operadic composition morphisms satisfy the obvious associativity laws and compatibility laws with the exchange morphisms.

A unital V-operad is an operad equipped, for each color A, of a morphism of V

id A : 1 -→ C(A; A)
such that the obvious neutrality laws with respect to operadic composition hold. An operad whose set of colors is a singleton will be called monochromatic. In that case, if * is the only color, we write C(n) for C(* , . . . , * n ; *).

Note that, in the unital case, operadic composition may also be defined "pointwise", i.e., one may instead consider morphisms

• i Γ;∆;A : C(∆; A) ⊗ C(Γ; B i) -→ C(B 1 , . . . , B i-1 , Γ, B i+1 , . . . , B n ; A)
where ∆ = B 1 , . . . , B n , such that the suitable compatibility conditions hold. We will sometimes resort to this equivalent definition. In any case, the subscripts are omitted in practice because usually clear from the context.

Definition 4 (morphism of V-operads) A morphism F : C → D of V-operads is given by:

• a function F 0 : C 0 → D 0 ;

• for each color A and sequence of colors Γ of C, a morphism of V

F Γ;A : C(Γ; A) → D(F 0 Γ; F 0 A);
such that, for every color A, sequence ∆ = B 1 , . . . , B n of colors and sequence of sequences Γ = Γ 1 , . . . , Γ n of colors of C, the following diagrams commute in V:

C(∆; A) ⊗ n i=1 C(Γ i ; B i) • Γ;∆;A G G F ∆;A ⊗ n i=1 F Γ i ;B i C(Γ; A) F Γ;A D(F 0 ∆; F 0 A) ⊗ n i=1 D(F 0 Γ i ; F 0 B i) • F 0 Γ;F 0 ∆;F 0 A G G D(F 0 Γ; F 0 A) C(∆; A) exch ∆;A σ G G F ∆;A C(σ∆; A) F σ∆;A D(F 0 ∆; F 0 A) exch F 0 ∆;F 0 A σ G G D(σF 0 ∆; F 0 A)
In practice, one denotes F 0 and F Γ;A simply by F.

A unital morphism of unital V-operads is as above but further satisfies, for every color A of C,

F A;A • id A = id F 0 A .
We denote by V-Op the category of V-operads and their morphisms. The plain term "operad" is usually understood to mean Set-operad (the monoidal structure on Set is given by the cartesian product). For us, the most important case of V-operad is when V = Cat, the category of categories, with the monoidal structure given by the product of categories.

Definition 5 (2-operad, bioperad) A (strict) 2-operad is a Cat-operad. A bit more explicitly, a 2-operad C consists of a set of colors and a family of categories C(Γ; A), whose objects are called multimorphisms and whose arrows are called 2-arrows. Operadic composition is implemented by a family of functors between these categories. Accordingly, a morphism of 2-operads is a family of functors suitably commuting with the composition functors.

A weak 2-operad, or bioperad, is defined similarly to a 2-operad, but associativity and compatibility with exchange are only required to be satisfied up to coherent natural isomorphisms.

We will occasionally use other hom-categories than Set and Cat, which is why we gave the general definition. On the other hand, we will use the notion of bioperad only in a very specific case, which is why the definition is not given in detail. The details, which may be found in [START_REF] Curien | Categorified cyclic operads[END_REF], are obtained by following the standard yoga of weak enrichment: bioperads are a special case of operads weakly enriched over a symmetric monoidal 2-category, namely (Cat, ×, 1).

Every unital V-operad C induces a V-enriched category C 1 by restricting to multimorphisms with only one source. For instance, if C is a unital 2operad, C 1 is the strict 2-category whose objects are the colors of C, whose 1-morphisms A → B are the objects of C(A; B), and whose 2-morphisms are the arrows of C(A; B); vertical composition is composition of C(A; B), whereas horizontal composition is given by operadic composition restricted to C(B;

A) × C(B; C) → C(A; C).
In fact, unital (Set-)operads generalize symmetric monoidal categories: every such category (D, ⊗, 1) induces a unital operad MD by letting

MD(C 1 , . . . , C n ; A) := D(C 1 ⊗ • • • ⊗ C 1 , A).
Not every unital operad arises in this way (example: the unital operad T wo with two objects a, b such that T wo(a; a) = T wo(b; b) is a singleton and every other homset is empty). Those that do are called representable. It is a theorem of Hermida [START_REF] Hermida | Representable multicategories[END_REF] that a unital operad C is representable iff there is an object 1 and, for every pair of objects A, B, there is an object A ⊗ B such that, for all Γ, C, there are bijections

C(Γ, 1; C) ∼ = C(Γ; C) and C(Γ, A, B; C) ∼ = C(Γ, A ⊗ B; C),
natural in Γ, C. Such bijections exist by definition if C is representable. For the converse, the proof shows that the existence of such a structure is enough to make C 1 (the induced category introduced above) symmetric monoidal, and then checks that MC 1 is equivalent to C. Similarly, the notion of 2-operad is a generalization of the notion of strict symmetric monoidal 2-category. In this respect, we find 2-operads to be slightly lighter to present: the associativity/exchange laws for operadic composition are in our opinion more intuitive than the coherence laws for symmetric monoidal 2-categories. This becomes even more conspicuous in the weak case: although laborious (so much so that we preferred not to give it!), the definition of bioperad seems to us less imposing than that of symmetric monoidal bicategory, a fully detailed definition of which may be found in [START_REF] Stay | Compact closed bicategories[END_REF], where it occupies roughly 14 pages. . . But this may only be a matter of taste of course.

Usually, one introduces (Set-)operads to study their algebras. Given an operad C and a symmetric monoidal category (D, ⊗, 1), a C-algebra in D is a morphism of operads A : C -→ MD.

A motivating example: let 1 be the terminal unital monochromatic operad, such that 1(n) is a singleton for all n ∈ N; then, a 1-algebra in a symmetric monoidal category D is exactly a commutative monoid in D. Sometimes (e.g. from the perspective of Lawvere theories) one is interested only in algebras in a cartesian category. In that case, it is enough to consider algebras in (Set, ×, 1): indeed, the copresheaf D(1, -) : D → Set preserves products and thus induces a morphism MD → M Set, so an algebra in D induces an algebra in Set.

In this thesis, we will never study the algebras of the operads we introduce. 3 This does not mean that they are not interesting: on the contrary, they correspond to denotational semantics, as we will explain momentarily.

Term calculi as 2-operads

From the point of view of a programming languages theorist, 2-operads are probably best understood as an abstract way of speaking of (typed) term calculi:

• colors are types;

• a multimorphism t : C 1 , . . . , C n → A is a term in context x 1 : C 1 , . . . , x n : C n ⊢ t : A; operadic composition is substitution, i.e., t • i u = t{u/x i }, and the action of the symmetric group corresponds to the possibility of injectively renaming free variables or, equivalently, to the presence of an exchange rule on typing contexts;

• a 2-arrow t ⇒ t ′ is a type-preserving computation starting from t and leading to t ′ (e.g. term-rewriting, cut-elimination, etc.). Computations are required to be compatible with substitution, in the sense that, for any two computations t ⇒ t ′ and u ⇒ u ′ , there is a computation t{u/x} ⇒ t ′ {u ′ /x} and such a computation is equal to both sides of the diagram

t{u/x} C Q t ′ {u/x} t{u ′ /x} C Q t ′ {u ′ /x}
where the intermediate computations are obtained by considering the identity computations on t and u. If we see variables as parameters, so that terms are parametric programs, then the above is saying that computations too are parametric.

In this perspective, a morphism f : D → C of 2-operads is just a modular, semantic-preserving encoding/translation/compilation of term languages:

• a type A of D is encoded by f(A) in C; • a term x 1 : C 1 , . . . , x n : C n ⊢ t : A of D is encoded by x 1 : f(C 1), . . . , x n : f(C n) ⊢ f(t) : f(A);
• we have a "substitution lemma" f(t{u/x}) = f(t){f(u)/x} (modularity);

• if t ⇒ t ′ , then f(t) ⇒ f(t ′) (preservation of operational semantics) and modularity holds for computations too.

Following the above intuition, it is natural to consider unital operads: identities are just variables. However, unital morphisms are less anodyne: they force the encoding of a variable to be necessarily a variable. We will see very natural examples of translations of programming languages in which this requirement is not met, leading us to consider 2-operads to be non-unital in general. Indeed, although naturally occurring 2-operads are unital, including the syntactic ones coming from programming languages, the category of unital operads and non-unital morphisms is not well behaved (for instance, it lacks pullbacks), justifying the relaxation of the notion of operad itself.

At this point, the reader will likely be able to guess how the 2-categorical presentation of the pure λ-calculus of Sect. 1.1.2 may be promoted to a 2operadic one. We will do so in a slightly more general setting, that of simple types (which is actually the one originally considered by Seely [START_REF] Seely | Modelling computations: A 2-categorical framework[END_REF]). By simple types we mean of course those generated by

A, B ::= α A → B;
it is immediate to adapt Definition 1 to the Church-style simply-typed λcalculus: just add type decorations as appropriate.

Definition 6 (2-operads of λ-terms) Let Λ ST be the following (unital) 2-operad:

• its colors are the simple types;

• its multimorphisms C 1 , . . . , C n → A are simply-typed Church-style λ-terms M : A such that fv(M) ⊆ {x 1 : C 1 , . . . , x n : C n }; by Curry-Howard, this is the same as saying that multimorphisms are type derivations of

x 1 : C 1 , . . . , x n : C n ⊢ M : A,
with M a pure term;

• its 2-arrows are Church-style reduction terms modulo permutation equivalence;

• its operadic composition functors are defined by means of substitution: on 2-arrows, we let

ρ • (τ 1 , . . . , τ n) := ρ{τ 1 , . . . , τ n /x 1 , . . . , x n },
whenever this makes sense with respect to sources and targets. The same definition applies to multimorphisms (seen as identity reductions). The identity multimorphism on A is x 1 : A.

The (unital) 2-operad Λ of pure λ-terms is obtained by forgetting the colors: Λ(n) is the category whose objects are λ-terms with free variables contained in {x 1 , . . . , x n } and whose arrows are reduction terms modulo permutation equivalence.

Note that the 2-category Λ 1 of Sect. 1.1.2 arises from the 2-operad Λ precisely by restricting to Λ(1), as described at the end of Sect. 1.1.3.

It is fairly evident that the λ-calculus, simply-typed or pure, is little more than a parameter in the above definition. Indeed, suppose we are given:

• a set of types;

• rules for generating terms in typing contexts Γ ⊢ C t : A;

• a set of basic steps with source and target α : t → * u, preserving types.

Multi-hole contexts may be defined from the term syntax in the obvious way; from that, Definition 1 and Figures 1.1, 1.2 and 1.3 may be applied verbatim, guaranteeing the development of Sect. 1.1.1 (we encourage the reader to check that no result in there depends on the λ-calculus). Then, Definition 6 may be adapted to define a 2-operad C whose colors, multimorphisms and 2-arrows are types, typed terms and reduction terms modulo permutation equivalence, respectively, with operadic composition given by substitution. The calculi we use in the sequel will be presented following the above specification.

We should stress that the above definition does not always yield the 2operad that one may want to associate with a given term calculus. Typically, one may want to add more equations to Fig. 1.3 for permutation equivalence, because some critical pairs may not be covered by that (very basic) definition. However, for our purposes, the above definition works just fine.

It is important at this point to highlight that the operadic approach to programming languages has non-trivial restrictions: presenting calculi whose evaluation contexts do not coincide with every possible "program with a hole" may be problematic and may require some tricky workaround. This is because 2-arrows in a 2-operad must not only compose "vertically" (this is concatenation of reductions, which is usually unproblematic) but also "horizontally", i.e., given ρ : t → * t ′ and τ : u → * u ′ , one must be able to define ρ{τ/x} : t{u/x} → * t ′ {u ′ /x}. This may bring trouble: if ρ = C{x} is an identity reduction with only one free occurrence of x such that C is not an evaluation context, then ρ{τ/x} = C{τ} will in general not be a "legal" reduction. For instance, restricting Λ to most typical reduction strategies (head reduction, weak head reduction, leftmost reduction, non-erasing reduction, Böhm reduction. . .) does not yield a 2-operad (example for head reduction: τ := x x ← I : I I → I is a head reduction but (zy){τ/y} : z(I I) → zI is not). So, although operads are undoubtedly useful (as the coming chapter will hopefully show), they have their limitations and are by no means the ultimate answer to the question of modeling programming languages.

The (Set-enriched) operadic approach to term calculi of course is not new. It was brought forth (at least) by Fiore, Plotkin and Turi [START_REF] Fiore | Abstract syntax and variable binding[END_REF] and more recently adopted by Hyland [START_REF] Hyland | Classical lambda-calculus in modern dress[END_REF], whose work is our main source of inspiration. We use a Cat-enriched setting because we want to be able to have a direct account of computation.

Let (D, ⊗, 1) be a symmetric monoidal category; we may see it as a strict symmetric monoidal 2-category by promoting its hom-sets to discrete homcategories. Then, if C is a 2-operad, a C-algebra in D is a morphism

• : C -→ MD.
Spelling this out with the perspective of term calculi in mind, we have:

• for each type A, an object A ;

• for each term

x 1 : C 1 , . . . , x n : C n ⊢ t : A, a morphism t : C 1 ⊗ • • • ⊗ C 1 → A ; • such that t{u/x} = t • u ;
• and such that, whenever t → * t ′ , t = t ′ . The latter condition results from the fact that each hom-category of D (and thus of MD) is discrete: every 2-arrow of C is mapped to an identity. So, if C is a term calculus, a C-algebra in D is precisely a denotational model of C in D. In [START_REF] Hyland | Classical lambda-calculus in modern dress[END_REF], Hyland studies in detail Λ-algebras in Set, proving that these are equivalent to certain operadic structures he calls λ-theories, among which Λ is initial. In the following, we give a quick overview of the Cat-enriched version of such a structure.

Digression: logical structure

Most of the 2-operads we will consider in this thesis present a programming language of some sort. In every case, such 2-operads do not "fall from the sky" but originate from a precise logical structure, which generates them as a whole, from the objects, to the multimorphisms, to the 2-arrows.

While we are unable at present to give a general definition of what we mean by "logical structure", we may give a first sketch of a definition, which covers some very basic cases and gives a rough idea of what we are after. In the following, we write Γ ⊢ C A for the hom-category C(Γ; A) of a 2-operad C.

Definition 7 (naive propositional connective) Let C be a 2-operad. Given n ∈ N, p 1 , . . . , p h > 0 such that ∑ p i = n, a naive positive connective of arity n on C is given by the following data:

• a function Φ : C n 0 → C 0 ;
• for every object C and sequences of objects Γ and

Ξ = ∆ 1 , . . . , ∆ h ,
such that ∆ i is of length p i , an adjunction

∏(Γ, ∆ i ⊢ C C) F Γ;C Ó Ó ⊣ Γ, Φ(Ξ) ⊢ C C G Γ;C g g
natural in Γ and C (in the obvious sense) and compatible with operadic composition.

Given n ∈ N, q 1 , . . . , q k > 0 such that ∑(q i + 1) = n, a negative connective of arity n on C is given by the following data:

• a function Φ : C n 0 → C 0 ;
• for every sequences of objects Γ and

Ξ = Σ 1 , A 1 , . . . , Σ k , A k , such that Σ i is of length q i , an adjunction ∏(Γ, Σ i ⊢ C A i) F Γ Ó Ó ⊣ Γ ⊢ C Φ(Ξ) G Γ g g
natural in Γ and compatible with operadic composition.

The family F of functors gives the reversible rule for the connective Φ in sequent calculus: it is a left rule if Φ is positive, a right rule if Φ is negative. The family G gives the irreversible rule. The counit β : GF ⇒ Id of the adjunction is the cut-elimination step associated with Φ; the unit η : Id ⇒ FG is the corresponding η-expansion step. 4All propositional intuitionistic logical connectives that the author is aware of, including those of linear logic, are captured by the above definition. For instance, implication is a negative connective, whose corresponding adjunction is

(Γ, A ⊢ Λ ST B) F Γ A A ⊤ (Γ ⊢ Λ ST A ⇒ B) G Γ i i
For simplicity, let us look at the details in the case of the pure λ-calculus. The above adjunction becomes

Λ(n + 1) λ n A A ⊤ Λ(n) @ n j j
where (for simplicity of notations, we will write x instead of x n+1):

• λ n maps M to λx.M and a reduction M → * M ′ to the obviously induced reduction λx.M → * λx.M ′ ;

• @ n maps M to Mx and a reduction M → * M ′ to Mx → * M ′ x in the obvious way;

• the component β M of the counit must be an arrow (λx.M)x → * M, which may obviously be taken as a single β-reduction step;

• the component η M of the unit must be an arrow M → * λx.Mx, which may obviously be taken as a single step of η-expansion (remember that x = x n+1 , which is not free in M because M ∈ Λ(n), hence fv(M) ⊆ {x 1 , . . . , x n }). What Hyland calls a λ-theory in [START_REF] Hyland | Classical lambda-calculus in modern dress[END_REF] is precisely the above structure, but in a Set-enriched setting, so the retraction is a strict one (it cannot be lax anymore).

Inductive datatypes also follow the above pattern. For instance, the type Nat of unary integers is characterized by the following adjunction:

(Γ ⊢ C A) × (Γ, Nat ⊢ C A) F Γ,A A A ⊤ (Γ, Nat ⊢ C A) G Γ,A i i
Albeit admittedly superficial, we thought it was worthwhile to record these observations here, because we think it will be interesting to develop them more deeply. In particular, we made no attempt at defining our calculi as initial 2-operads having a certain structure of the above form, but we think this should be done at some point.

In a wider perspective, understanding logical structure at this level is understanding, in some sense, what the Curry-Howard isomorphism is an isomorphism of. It is definitely not an isomorphism of cartesian closed categories, as some may be tempted to say, for at least two reasons:

• the Set-enriched approach obviously looses a great deal of dynamic information;

• forcing λ-abstraction to be defined only in presence of pairing does not seem to do justice to the syntax; Hyland's approach is much more natural in this respect.

Understanding logical structure is also understanding what defines a connective, its logical rules and its cut-elimination rules so that they form a cohesive whole. This is especially relevant in type theory, where this kind of triple (formation rules, introduction/elimination rules, computational rules) is an Colors: l, c (ranged over by C below).

Terms:

a : l ⊢ a : l lvar Γ, a : l ⊢ T : l Γ ⊢ λa.T : l lam Γ ⊢ T : l ∆ ⊢ U : l Γ, ∆ ⊢ TU : l app x : c ⊢ x : l cvar x : c ⊢ T : l x : c ⊢ !T : c box ∆ ⊢ U : l Γ, x : c ⊢ T : l Γ, ∆ ⊢ T[!x := U] : l let Γ ⊢ T : c Γ ⊢ T : l lin Γ ⊢ T : C Γ, x : c ⊢ T : C weak Γ, x : c, y : c ⊢ T : C Γ, x : c ⊢ T{x/y} : C cntr Basic steps: T a ← U [-] : (λa.T)[-]U → * T{U/a}[-] T x ← U ! [-] : T[!x := !U[-]] → * T{U/x}[-]
The notation [-] is a metavariable for substitution contexts, defined as follows:

[-]

::= {•} [-][!x := U].
We write T[-] instead of [-]{T}. essential building block which is currently lacking a precise mathematical formulation. So there is perhaps something important to be uncovered here, and further investigation seems necessary, although it will not be the subject of this thesis.

Polyadic Variants of Linear Logic

A term calculus for intuitionistic linear logic

We start by presenting a calculus corresponding, via Curry-Howard, to the proofs of the implicational fragment of intuitionistic multiplicative exponential linear logic. Apart from being a main actor in the sequel, it will be the occasion to introduce our contextual treatment of rewriting in presence of let binders, which we borrow from Accattoli [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF].

The 2-operad Λ ! is defined in Fig. 1.4. There are two colors: l, for linear, and c, for cartesian.To make the distinction between linear and cartesian variables even more apparent, we use a, b to range over the former and x, y to range over the latter. True to their name, cartesian variables may be weakened and contracted, linear variables may not.

Note that the only terms of color c are of the form !T; these are called boxes. The lin rule coerces boxes to also have color l. Operadic composition for the color c is defined as follows:

T ′ • i c !T := T ′ {T/x i },
i.e., the !(-) is removed when the substitution is performed. On the other hand, operadic composition on l is plain substitution; therefore, when a box !T is seen as a linear term, the !(-) is not removed:

T ′ • i l !T = T ′ {!T/a i }.
The operad is unital: a 1 (resp. !x 1) is the identity of color l (resp. c).

The term T[!x := U] would perhaps more traditionally be written let !x = U in T. We use the explicit substitution notation because we define reduction following the methodology that Accattoli developed for the linear substitution calculus [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF]. This is essentially a way of importing the behavior of graph rewriting (as exemplified, for instance, by proof nets) in term rewriting. Let us look at an example. Let

T := (λa.(λb.xb)[!x := a])UW.
By reducing the redex (λa.-)U, we get

T → (λb.xb)[!x := U]W =: T 1 .
In proof nets, there is now another cut which may be reduced immediately, corresponding to the λb applied to W. However, in the above term, there is an explicit substitution between abstraction and argument which prevents us from seeing a β-redex, at least not one of the usual form (λb.-)W. The traditional approach to explicit substitutions (or to let binders) is to introduce commutation rules thanks to which such "hidden" redexes may be unveiled. Accattoli's approach is entirely different: his idea is that terms should behave like proof nets, i.e., there simply ought to be a β-redex in T 1 , without any further rewriting being necessary. He found an extremely simple, consistent way of doing this, which is to generalize the notion of β-redex to terms of the form (λb.

-)[-]W,

where [-] is an arbitrary sequence of explicit substitutions/let binders, i.e., a substitution context as defined in Fig. 1.4. So we have

T 1 → xW[!x := U] =: T 2 .
Suppose now that U := (λc.!y[!y := c])V.

We have

T 2 → xW[!x := !y[!y := V]] =: T 3 .
Again, regardless of the shape of V, proof nets are able to "see" that the value of x is the same as that of y, i.e., there is an immediately reducible cut performing this identification. And yet, T 3 contains no let-redex, at least not of the usual form -[!x := !Z] (we stress that !y[!y := V] is implicitly parenthesized as (!y)[!y := V], i.e., it is not of the form !Z). So let-redexes too must be generalized, namely to

-[!y := !Z[-]],
allowing us to further reduce, without commutation steps, as

T 3 → yW[!y := V].
Accattoli's formulation of reduction actually includes a further technical adjustment (introduced in his work with Kesner [START_REF] Accattoli | Preservation of strong normalisation modulo permutations for the structural lambdacalculus[END_REF]): the "global" reduction step

T[!x := !U[-]] → ! T{U/x}[-]
is decomposed into

C{x}[!x := !U[-]] → ls C{U}[!x := !U][-], T[!x := !U[-]] → gc T[-] x ̸ ∈ fv(T),
where C is an arbitrary context not capturing x. In other words, the copies of U are created "on demand", until U is no longer needed and is therefore "garbage-collected". This is of course semantically sound: → gc is just a special case of → ! and → ls relates two terms which are equivalent with respect to → ! (namely, T → ls T ′ implies T → ! * ! ← T ′). This decomposition enables a finer-grained study of normalization and allows Accattoli's linear substitution calculus to neatly encode abstract machines (we will mention this again below). It is also useful in terms of complexity (see Chapter 3), but for the moment we stick to the traditional formulation, on the grounds that it suffices for our purposes and that Fig. 1.3 is enough to define permutation equivalence (further equations would be needed for → ls).

Although we will never use it, for the sake of completeness we give the standard simple type assignment for Λ ! in Fig. 1.5. The types are

A, B ::= α A ⊸ B !A.
Typing judgments are of the form Θ; Γ ⊢ T : A where, for typographic convenience, all type declarations for cartesian (resp. linear) variables are collected in Θ (resp. Γ). In those judgments, we always have T : l. When T : c, we use judgments of the form Θ ⊢ c T : A, in which all variables declared in Θ are cartesian. We invite the reader to check that, after erasing the term annotations, one obtains a natural deduction formulation of the implicational fragment of propositional intuitionistic multiplicative exponential linear logic.

Accattoli's rewriting methodology is sometimes called "rewriting at a distance", because proximity in graphs (the truly relevant notion) is not reflected in the corresponding terms, and subterms may form a redex even if they seem far apart. It is grounded in work by Accattoli and Kesner [START_REF] Accattoli | Preservation of strong normalisation modulo permutations for the structural lambdacalculus[END_REF] and was foreshadowed, although incompletely, by Milner [START_REF] Milner | Local bigraphs and confluence: Two conjectures: (extended abstract)[END_REF]. In spite of its apparent naiveness, this viewpoint has strikingly deep applications in rewriting theory [START_REF] Accattoli | An abstract factorization theorem for explicit substitutions[END_REF][START_REF] Accattoli | A nonstandard standardization theorem[END_REF], the complexity of λ-calculus evaluation [START_REF] Accattoli | leftmost-outermost) beta reduction is invariant, indeed[END_REF] as well as in programming languages theory, where it induces an extremely precise connection with abstract machines [START_REF] Accattoli | Distilling abstract machines[END_REF][START_REF] Accattoli | A strong distillery[END_REF]. It is also the basis of the cleanest and most concise formulation of call-by-need that the author is aware of [START_REF] Accattoli | Distilling abstract machines[END_REF].

; a : A ⊢ a : A lvar Θ; Γ, a : A ⊢ T : B Θ; Γ ⊢ λa.T : A ⊸ B lam Θ; Γ ⊢ T : A ⊸ B Υ; ∆ ⊢ U : A Θ, Υ; Γ, ∆ ⊢ TU : B app x : A; ⊢ x : A cvar Θ; ⊢ T : A Θ ⊢ c !T : !A box Υ; ∆ ⊢ U : !A Θ, x : A; Γ ⊢ T : C Θ, Υ; Γ, ∆ ⊢ T[!x := U] : C let Θ ⊢ c T : A Θ; ⊢ T : A lin Θ; Γ ⊢ T : C Θ, x : A; Γ ⊢ T : C weak Θ, x : A, y : A; Γ ⊢ T : C Θ, x : A; Γ ⊢ T{x/y} : C cntr
Although not strictly necessary to the work presented here, rewriting at a distance still brings great simplifications, similar to the simplifications induced on cut-elimination by moving from sequent calculus to proof nets: the rewriting rules closely reflect the logical structure, without inessential syntactic detours. In the case of Λ ! , there are two connectives (⊸ and !), so we have 2 rewriting rules, instead of the 6 required by the traditional approach. Adding the remaining connectives of intuitionistic linear logic (⊗, 1, & and ⊕) would bring the number of rewriting rules to 6, whereas the traditional approach would require several dozens (66, if we did not miscount).

Girard's translations

Let us give a couple of (important) examples of encodings of term calculi seen as morphisms of 2-operads. We start with inductively defining the following map from λ-terms to terms of Λ ! :

G 0 (x) := x G 0 (λx.M) := λa.G 0 (M)[!x := a] G 0 (MN) := G 0 (M)!G 0 (N).
An immediate induction shows that G 0 (M{N/x}) = G 0 (M){G 0 (N)/x}. We may extend this map on reduction terms by letting

G 0 (M x ← N) := G 0 (M)[!x := a] a ← !G 0 (N) ; G 0 (M) x ← G 0 (N) ! .
Note that

G 0 (M x ← N) : G 0 ((λx.M)N) = (λa.G 0 (M)[!x := a])!G 0 (N) → G 0 (M)[!x := !G 0 (N)] → G 0 (M){G 0 (N)/x} = G 0 (M{N/x}),
as expected. Since the reduction terms of the λ-calculus are generated by M x ← N , this is enough to define G 0 everywhere. And yet, the above does not define a morphism of 2-operads Λ → Λ ! , because of a subtle but important point: Λ, as we defined it, is monochromatic, whereas Λ ! has two colors. Now, it is enough to inspect the definition to see that, for all M, fv(G 0 (M)) contains only cartesian variables but is never of the form !T, so it is a morphism of Λ ! (c n ; l): source and target colors do not match, so no matter what we choose as the image of * (the only color of Λ), we are in trouble. The connoisseur will have understood that, in terms of linear logic types, we have c = !l and we are replacing the equation * = * → * (intuitionistic arrow) with Girard's translation l = !l ⊸ l, so the asymmetry is inevitable. There are two ways out of this apparent dead-end. The first is to coerce encodings to be of the form !T: we simply define

G ! (φ) := !G 0 (φ),
for all reduction terms, including terms themselves. In this way, everything becomes consistent with the choice G ! (*) := c. Indeed,

G ! (M • i N) = G ! (M{N/x i }) = !G 0 (M{N/x i }) = !(G 0 (M){G 0 (N)/x i }) = !G 0 (M){G 0 (N)/x i } = G ! (M) • i c G ! (N) (remember that, in Λ ! , T • i c !U = T{U/x i }).
We have thus defined a morphism of 2-operads

G ! : Λ -→ Λ ! ,
which amounts to using G 0 with a useless !(-) around everything. The other solution is to change the presentation of the λ-calculus, making it bichromatic too. This amounts to taking seriously the idea that the λ-calculus is the Kleisli category of the comonad !(-) of linear logic. So we have the color of terms t and the color of values v (the terminology is chosen in view of the call-by-value case, see below). Only variables of color v exists, whereas terms are of color t by default. However, since we are in call-by-name, there is a coercion rule saying that everything is (also) a value. The corresponding operad Λ k ("k" is for "Kleisli") is presented in Fig. 1.6.

Colors: t, v (ranged over by C below).

Terms: It is clear that Λ k is just a different presentation of the usual λ-calculus, just with two copies of every λ-term, one of type t and one of type v. The latter is the one we (silently, because there is no syntactic difference) use when we substitute a λ-term for a variable. Now it becomes possible to use G 0 to define a morphism

x : v ⊢ x : t var Γ, x : v ⊢ M : t Γ ⊢ λx.M : t lam Γ ⊢ M : t ∆ ⊢ N : t Γ, ∆ ⊢ MN : t app Γ ⊢ M : t Γ ⊢ M : v val Γ ⊢ M : C Γ, x : v ⊢ M : C weak Γ, x : v, y : v ⊢ M : C Γ, x : v ⊢ M{x
G k : Λ k -→ Λ ! . It is enough to set G k (t) := l, G k (v) := c, G k = G 0 on λ-terms of type t and, on λ-terms of type v, we define G k (M : v) := !G 0 (M) (in fact, G k (M : v) = G ! (M)
). Note that, since only composition of color v exists in Λ k (by the way, this is a genuine example of non-unital operad: there is no identity of type t), we have

G k (M • i v (N : v)) = G 0 (M{N/x i }) = G 0 (M){G 0 (N)/x i } = G 0 (M) • i c !G 0 (N) = G k (M) • i c G k (N : v),
where we assume that a term has type t unless otherwise stated. The case in which M : v works just as for the definition of G ! . So we have, indeed, a morphism of operads. The bichromatic presentation of the λ-calculus is more general than the monochromatic one: we have i : Λ → Λ k by setting i(*) := v, and

G ! = G k • i.
In fact, there is also a suboperad Λ 0 → Λ k obtained by keeping only λ-terms of type t. This 2-operad is particularly degenerate because composition is void; G 0 becomes a well-defined morphism on it, which will have a remarkable role when we will discuss intersection types (Chapter 2).

Before moving on, we should check that the above definition is compatible with permutation equivalence: technically speaking, what we did above is assigning a reduction term G 0 (ρ) of Λ ! to a reduction term ρ of Λ k (or Λ); it is possible in principle that ρ ∼ τ and yet G 0 (ρ) ̸ ∼ G 0 (τ), in which case the definition would be unsound. Fortunately, it is easy to check that this is not the case. For example, the diagram

(λx.M)N M x←N G G (λx.M)τ ∼ M{N/x} M{τ/x} (λx.M)N ′ M x←N ′ G G M{N ′ /x}
(which is essentially the unnest rule of Fig. 1.3) becomes

(λx.M) g !N g M g [!x:=a] a←!N g G G (λx.M) g !τ ∼ M g [!x := !N g] M g x←N g ! G G M g [!x:=!τ g] ∼ M g {N g /x} M g {τ g /x} (λx.M) g !N ′ g M g [!x:=a] a←!N ′ g G G M g [!x := !N ′ g] M g x←N ′ g ! G G M g {N ′ g /x} (we abbreviated G 0 (-) by (-) g).
The above is usually referred to as the call-by-name translation of the λcalculus in linear logic. It was introduced of course by Girard in his seminal paper [START_REF] Girard | Linear logic[END_REF]. Anachronistically, we immediately see in it the relevance of linear logic with respect to explicit substitutions: if we take λx.M and MN merely as syntactic sugar for λa.M[!x := a] and M!N, respectively, we see that linear logic decomposes the usual β-reduction step [START_REF] Accattoli | Preservation of strong normalisation modulo permutations for the structural lambdacalculus[END_REF]) is that the behavior of proof nets could be directly imported into explicit substitutions, yielding a great benefit to that theory.

(λx.M)N → M{N/x} into (λx.M)N → M[!x := !N] → M{N/x}.
In the same paper [START_REF] Girard | Linear logic[END_REF], Girard also introduced another translation, which, for reasons that escape us, he deemed "boring", and which is usually (and more suitably) dubbed the call-by-value translation. In order to define it, we must first present the call-by-value λ-calculus as a 2-operad, which is done in Fig. 1.7. The translation is then a morphism

G v : Λ v -→ Λ !
defined as follows:

• on colors, G v (t) := l and G v (v) := c; Colors: t, v (ranged over by C below).

Terms:

x : v ⊢ x : v var Γ, x : v ⊢ M : t Γ ⊢ λx.M : v lam Γ ⊢ M : t ∆ ⊢ N : t Γ, ∆ ⊢ MN : t app Γ ⊢ V : v Γ ⊢ V : t val Γ ⊢ M : C Γ, x : v ⊢ M : C weak Γ, x : v, y : v ⊢ M : C Γ, x : v ⊢ M{x/y} : C cntr Basic steps: M x ← V : (λx.M)V → * M{V/x} V : v Figure 1.7: The call-by-value λ-calculus Λ v .
• on terms, we must distinguish whether the λ-term being encoded is of type t or v:

G v (x : v) := !x G v (λx.M : v) := !(λa.G v (M : t)[!x := a]) G v (MN : t) := ξ[!ξ := G v (M : t)]G v (N : t) G v (V : t) := G v (V : v).
In the last line, what we mean is that G v (V : t) is defined by taking G v (V : v), which is of type c, and coercing it to the type l using the lin rule of Fig. 1.4. It is easy to check that G v (M{V/x}

: t) = G v (M : t){G v (V : v)/x};
• on reductions, we set

G v (M x ← V) := ξ ξ ← G v (λx.M) ! !G v (V) ; G v (M)[!x := a] a ← !G v (V) ; G v (M) x ← G v (V) ! ,
which corresponds to the reduction

G v ((λx.M)V : t) = ξ[!ξ := !(λa.G v (M : t)[!x := a])]!G v (V : v) → (λa.G v (M : t)[!x := a])!G v (V : v) → G v (M : t)[!x := !G v (V : v)] → G v (M : t){G v (V : v)/x} = G v (M{V/x} : t),
as desired.

As for the call-by-name translation, verifying that the definition on 2-arrows is consistent with permutation equivalence poses no difficulty. The definition of Λ v is quite natural as it mimics the usual, mutually inductive definition (V ::= x λx.M and M, N ::= V MN). Nevertheless, one may wonder whether a monochromatic presentation of call-by-value exists; after all, the calculus is still untyped. For instance, what happens if we just take the monochromatic 2-operad Λ and restrict it to 2-arrows corresponding to call-by-value reductions? The answer is that such a restriction does not define a sub-operad of Λ, for the reasons discussed at the end of Sect. 1.1.4. To see why, take

ρ := x x ← y : Iy → y, τ := z(x x ← I) : z(I I) → zI.
These are both valid call-by-value reductions; and yet,

ρ{τ/x} = x x ← zI I ; z(x x ← I) ∼ I(z(x x ← I)); x x ← zI
is not, because it fires a redex whose argument is either z(I I) or zI, neither of which is a value. Using a color v of values and declaring all variables to be of color v allows us to state that only values may be substituted to variables, thus preventing the above problem.

Polyadic calculi and simple polyadic types

We now introduce the main actors of the thesis, the polyadic calculi. The operads presenting them are defined in Fig. 1.8. They have two colors and are actually all suboperads of Λ p c : they are obtained from it by removing none, one or both of the two structural rules (weak and cntr), yielding the cartesian (Λ p c), relevant (Λ p r , no weakening), affine (Λ p a , no contraction) or linear (Λ p l) polyadic calculus, respectively. As in Λ ! , there are linear variables (of type l), which we distinguish by denoting them a, b, and polyadic variables (of type p), which may be linear, affine, relevant or cartesian. Similarly to Λ ! , the only terms of type p are of the form ⟨t 1 , . . . , t n ⟩; these are called boxes.

For reasons which will become clear when we will introduce approximations, the definition of the hom-categories of Λ p p is slightly different from what one would expect. First, to each cartesian variable x i of Λ ! we assign a countably infinite sequence of polyadic variables x i 1 , x i 2 , x i 3 , . . ., denoted by x i and called supervariable. In the terms of the form t[⟨x 1 , . . . , x n ⟩ := u] (and t x 1 , . . . , x n ← u [-]) we use α-equivalence to assume that x 1 , . . . , x n are always an initial segment of a supervariable. We then define the hom-categories of Λ p p as follows:

• the multimorphisms of Λ p p (p m , l n ; C) are polyadic terms t : C such that the free linear variables of t are exactly {a 1 , . . . , a n } and the free polyadic variables are contained in x 1 , . . . , x m (and, from Fig. 1.8, we see that C = p implies n = 0). Furthermore, in case p ∈ {l, r} (i.e., when we do not have weakening), we require that, for all 1 ≤ i ≤ m and for all j < k ∈ N, if x i k is free in t, then so is x i j .

• The 2-arrows are defined similarly.

Colors: l and p, where p is one of l, a, r, c (below, we use C for a generic color).

Terms:

x

t a ← u [-] : (λa.t)[-]u → * t{u/a}[-] t x ← u [-] : t[⟨x⟩ := ⟨u⟩[-]] → * t{u/x}[-]
In the second basic step, x = x 1 , . . . , x m , u = u 1 , . . . , u n and p ∈ {l, r} implies m ≥ n, whereas any value of m, n is allowed if p ∈ {a, c}. The notation [-] is a metavariable for substitution contexts, defined as follows:

[-]

::= {•} [-][⟨x⟩ := u].
We write t[-] instead of [-]{t}. Operadic composition in Λ p p is defined in a similar way as in Λ ! : on the color l, it is plain substitution; on the color p, we set

t • i p ⟨u 1 , . . . , u n ⟩ := t{u 1 , . . . , u n /x i }
where the latter term is defined by simultaneously substituting, for 1 ≤ j ≤ n, each u j to x i j and, if there is j > n such that x i j is free in t, then it is replaced with ⊥. This is the notion of substitution used in the second basic step of Fig. 1.8. We repeat the observation made for Λ ! : when terms of the form ⟨u 1 , . . . , u n ⟩ are seen as of type l, composition does not remove the box:

t • i
l ⟨u 1 , . . . , u n ⟩ = t{⟨u 1 , . . . , u n ⟩/a i }. Polyadic calculi may be naturally endowed with a discipline of simple types, coming from linear logic via Curry-Howard. Polyadic types are defined inductively as follows:

A, B ::= α A ⊸ B ⟨A 1 , . . . , A n ⟩, Colors: as explained in the text.

Terms:

; a : A ⊢ a :

A lvar x : A; ⊢ x : A pvar Θ; Γ, a : A ⊢ t : B Θ; Γ ⊢ λa.t : A ⊸ B lam Θ; Γ ⊢ t : A ⊸ B Υ; ∆ ⊢ u : A Θ, Υ; Γ, ∆ ⊢ tu : B app Θ 1 ; ⊢ t 1 : A 1 . . . Θ n ; ⊢ t n : A n Θ 1 , . . . , Θ n ⊢ p ⟨t 1 , . . . , t n ⟩ : ⟨A 1 , . . . , A n ⟩ box Θ ⊢ p t : A Θ; ⊢ t : A lin Υ; ∆ ⊢ u : ⟨A 1 , . . . , A n ⟩ Θ, x 1 : A 1 , . . . , x n : A n ; Γ ⊢ t : C Θ, Υ; Γ, ∆ ⊢ t[⟨x 1 , . . . , x n ⟩ := u] : C let Θ; Γ ⊢ t : C Θ, x : A; Γ ⊢ t : C weak p∈{a,c} Θ, x : A, y : A; Γ ⊢ t : C Θ, x : A; Γ ⊢ t{x/y} : C cntr p∈{r,c}
Basic steps: The same as in Fig. 1.8, with the obvious typing. where n = 0 is allowed. The type derivations are defined in Fig. 1.9, which induces a 2-operad of (Church-style) simply-typed polyadic terms. The colors are the polyadic types, plus a color ⟨A 1 , . . . , A n ⟩ p for each sequence of types A 1 , . . . , A n . We use the following notations for typing judgments:

• Θ; Γ ⊢ t : A, in which all polyadic (resp. linear) variables are typed in Θ (resp. Γ) and t : l;

• Θ ⊢ p t : A, in which t : p, so in fact t = ⟨u 1 , . . . , u n ⟩ and this is just a notation for Θ; ⊢ ⟨u 1 , . . . , u n ⟩ : ⟨B 1 , . . . , B n ⟩ p , with A = ⟨B 1 , . . . , B n ⟩.

The multimorphisms of the hom-category

Poly p (⟨B 1 ⟩ p , . . . , ⟨B m ⟩ p , C 1 , . . . , C n ; A),
where C i is not of the form ⟨D⟩ p , are defined in a similar way to the homcategories of Λ p p : they are Church-style terms/derivations of

x 1 1 : B 1 1 . . . , x 1 k 1 : B 1 k 1 , . . . , x m 1 : B m 1 , . . . , x m k m : B m k m ; a 1 : C 1 , . . . , a n : C n ⊢ t : A
with x i a supervariable as in the case of Λ p p (and, in case A = ⟨D 1 , . . . , D k ⟩ p , then n = 0 and t = ⟨u 1 , . . . , u k ⟩). Again, for every p, Poly p is a sub-operad of Poly c .

Note that ⊥ is not typable. As a consequence, a basic step like t x ← is not typed unless x ̸ ∈ fv(t), which means we must have p ∈ {a, c}, i.e., we must have weakening. The presence of ⊥ is technically necessary to achieve monotonicity of reduction, in the sense of Proposition 12. However, ⊥ is not a "valid" term, which is why it is discarded when types are introduced.

The type system is a direct import from linear logic, in the following sense: if we erase term annotations from Fig. 1.9, we obtain a system of natural deduction such that:

• if p = l, every rule is derivable in intuitionistic multiplicative linear logic by setting ⟨A 1 , . . . ,

A n ⟩ := A 1 ⊗ • • • ⊗ A n ;
• if p = a, every rule is derivable in intuitionistic multiplicative additive linear logic by setting ⟨A 1 , . . . ,

A n ⟩ := (A 1 & 1) ⊗ • • • ⊗ (A n & 1);
• if p = c, every rule is derivable in intuitionistic multiplicative exponential linear logic (the system of Fig. 1.5) by setting ⟨A 1 , . . . ,

A n ⟩ := !A 1 ⊗ • • • ⊗ !A n .
Moreover, the reduction rules also reflect the cut-elimination rules of linear logic, via the above encodings of ⟨-⟩. So the simply-typed polyadic calculi are nothing really new: they are just fragments of propositional intuitionistic linear logic. Indeed, linear polyadic calculi similar to our own have already appeared here and there in the literature [START_REF] Assaf | A linearization of the lambda-calculus and consequences[END_REF][START_REF] Melliès | Asynchronous games 1: A grouptheoretic formulation of uniformity[END_REF].

The reason why we are interested in simple types is the following:

Proposition 5 (strong normalization) Simply-typed polyadic terms are strongly normalizing.

Proof. By the above encoding of Poly c in linear logic, this is an immediate consequence of strong normalization of propositional linear logic, which is well known [START_REF] Girard | Linear logic[END_REF]. □

It is worth observing that in the linear and affine cases (i.e., p ∈ {l, a}), strong normalization actually holds even in the untyped calculus (i.e., in Λ p l and Λ p a), for trivial reasons: the size of terms strictly decreases under reduction.

The Approximation Theorem

Girard's cue

In the concluding sections of his paper introducing linear logic [START_REF] Girard | Linear logic[END_REF], Girard observes that the formulas of propositional linear logic may be approximated arbitrarily well by formulas of its "purely linear" fragment (multiplicative additive linear logic, MALL). Let us quote directly from Sect. 5.6 of his paper:

[T]he approximation theorem [. . .] is just the mathematical contents of our slogan: usual logic is obtained from linear logic (without modalities) by a passage to the limit.

Definition (approximants)

. The connectives ! and ? are approximated by the connectives ! n and ? n (n ̸ = 0):

! n A = (1 & A) ⊗ • • • ⊗ (1 & A) (n times) ? n A = (⊥ ⊕ A) `• • • `(⊥ ⊕ A) (n times)
5.2. Theorem (Approximation Theorem). Let A be a theorem of linear logic; with each occurrence of ! in A, assign an integer ̸ = 0; then it is possible to assign integers ̸ = 0 to all occurrences of ? in such a way that if B denotes the result of replacing each occurrence of ! (respectively ?) by ! n (respectively ? n) where n is the integer assigned to it, then B is still a theorem of linear logic.

Without entering into the technical details, the intuition is that ! n A means "A is available at most n times", which is indeed an approximation of !A, whose intuitive meaning is "A is available at will". (The dual approximation ? n A means "A ⊥ will be needed at most n times"). Let us observe that the approximations ! n A and ? n A are formulas of MALL as long as A is. Therefore, the formula B of the Approximation Theorem is a MALL formula (i.e., it has no modalities) and, by cut-elimination, its proof is also in MALL.

The proof of Girard's Approximation Theorem is of little interest: it is a straightforward induction on the cut-free proof of A, using the key property that ! m A ⊸ ! n A with m ≥ n. In fact, from the computational viewpoint, invoking cut-elimination sort of obscures the actual depth of the theorem. In what follows we will take, so to speak, a complementary approach: we will forget types and concentrate solely on the computational aspect.

Of course, ours is not the first attempt at providing a formal content to the idea underlying Girard's Approximation Theorem (i.e., Equation 1). For instance, Melliès, Tabareau and Tasson interpreted it as a categorical limit, giving sufficient conditions for the formula expressed by Equation 1 to yield the free exponential modality in a model of linear logic [START_REF] Melliès | An explicit formula for the free exponential modality of linear logic[END_REF]. Our approach is similar to that of Ehrhard and Regnier [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambda-terms[END_REF], who also use a term calculus (the resource λ-calculus) to approximate λ-terms. We will discuss a bit more thoroughly the comparison with that work in Sect. 2.4.3, after having developed a sufficient amount of technical material.

Affine approximations

Consider the system Poly a defined in Sect. 1.2.3. As a logical system, this is just intuitionistic multiplicative linear logic (IMLL) plus affine tensors of arbitrary arity, i.e., it is exactly IMLL plus the approximation modalities ! n defined by Girard. Therefore, Λ p a (the polyadic calculus underlying Poly a) is the natural setting for formulating a computational version of the Approximation Theorem.

Definition 8 (approximation order)

We define the approximation order ⊏ ∼ on reduction terms of Λ p a by means of the rules of Fig. 1.10. The order also applies on terms, by considering them as identity reductions. It also extends to contexts, by It should be clear that the relation ⊑ of Fig. 1.10 is defined on reduction sequences in the strict syntactic sense, i.e., we are not taking any quotient, not even under structural equivalence (contrarily to what we usually do). The relation ⊏ ∼ takes permutation equivalence (and, therefore, structural equiva- lence) into account. For instance, if ρ : t → * t ′ , τ : t ′ → * t ′′ , t ⊑ ρ and τ ⊑ τ ′ , then t; τ ⊑ ρ; τ ′ , from which we may deduce τ ⊏ ∼ ρ; τ ′ but not τ ⊑ ρ; τ ′ . Let us make two immediate observations, which will be tacitly used in the sequel:

x ⊑ x var ρ ⊑ ρ ′ λa.ρ ⊑ λa.ρ ′ lam ρ ⊑ ρ ′ τ ⊑ τ ′ ρτ ⊑ ρ ′ τ ′ app ρ 1 ⊑ ρ ′ 1 . . . ρ n ⊑ ρ ′ n n ≤ m ⟨ρ 1 , . . . , ρ n ⟩ ⊑ ⟨ρ ′ 1 , . . . , ρ ′ m ⟩ box ⊥ ⊑ ρ undef ρ ⊑ ρ ′ τ ⊑ τ ′ n ≤ m x n+1 , . . . , x m ̸ ∈ fv(ρ) ρ[⟨x 1 , . . . , x n ⟩ := τ] ⊑ ρ ′ [⟨x 1 , . . . , x m ⟩ := τ ′] let (λa.t)[-]u ⊑ (λa.t ′)[-] ′ u ′ t a ← u [-] ⊑ t ′ a ← u ′ [-] ′ beta t[⟨x⟩ := ⟨u⟩[-]] ⊑ t ′ [⟨x ′ ⟩ := ⟨u ′ ⟩[-] ′] t x ← u [-] ⊑ t ′ x ′ ← u ′ [-] theta ρ ⊑ ρ ′ τ ⊑ τ ′ ρ; τ ⊑ ρ ′ ; τ ′ comp ρ ∼ ρ ′ ρ ′ ⊑ τ ′ τ ′ ∼ τ ρ ⊏ ∼ τ permeq
• every rule of Fig. 1.10 is valid with ⊏ ∼ in place of ⊑;

• on terms, ⊏ ∼ coincides with ⊑.

We also list a few properties which will be quite useful in the sequel (especially points 3 and 6):

Lemma 6 1. For every context C and terms r and t ′ ,

C{r} ⊑ t ′ implies t ′ = C ′ {r ′ } for some C ⊑ C ′ and r ⊑ r ′ ; 2. if t ⊑ t ′ and u ⊑ u ′ , then t{u/x} ⊑ t ′ {u ′ /x}; 3. if ρ : t → * t ′ , τ : u → * u ′ and ρ ⊏ ∼ τ, then t ⊑ u and t ′ ⊑ u ′ ; 4. if ρ ⊑ ρ ′ and u ⊑ u ′ , then ρ{u/x} ⊑ ρ ′ {u ′ /x}; 5. if v ⊑ v ′ and τ ⊑ τ ′ then v{τ/x} ⊑ v ′ {τ ′ /x}; 6. if ρ ⊑ ρ ′ and τ ⊑ τ ′ , then ρ{τ/x} ⊑ ρ ′ {τ ′ /x}; therefore, if ρ ⊏ ∼ ρ ′ and τ ⊏ ∼ τ ′ , then ρ{τ/x} ⊏ ∼ ρ ′ {τ ′ /x}.
Proof. Points 1 and 2 are obtained by straightforward inductions, on C and t, respectively. For point 3, ρ ⊏ ∼ τ means ρ ∼ ρ ′ ⊑ τ ′ ∼ τ; the proof is then by induction on the derivation of ρ ′ ⊑ τ ′ , using point 2 in the beta and theta cases. Point 4 is by induction on ρ (point 2 is one of the inductive cases). For point 5, we observe that, by affinity, there is at most one occurrence of x is v; if x ̸ ∈ fv(v), the result is trivial, so we may suppose v = C{x} with x not appearing in C. At this point, the proof proceeds straightforwardly by induction on τ. Finally, by definition of general substitution for reduction terms, point 6 is an immediate consequence of points 4 and 5. □

It may not be obvious that ⊏ ∼ is, indeed, a partial order. In fact, this is the case if we are willing to work modulo permutation equivalence, which is what our operadic approach forces us to do anyway.

Lemma 7 For all reduction terms ρ, ρ, τ, τ ′ :

1. ρ ⊑ τ ∼ τ ′ implies ρ ∼ ρ ′ ⊑ τ ′ for some ρ ′ ; 2. ρ ⊑ τ ∼ τ ′ ⊑ ρ implies ρ = τ = τ ′ .
Proof. Both points follow immediately by induction once they are established in the particular case in which ∼ is replaced by ∼ 1 , where by ∼ 1 we mean that exactly one rule of Fig. 1.2 or Fig. 1.3 is applied (inside an arbitrary context). For point 1, this is proved by an induction on the derivation of ρ ⊑ τ joint with a case analysis on ∼ 1 . Albeit tedious, this is not particularly problematic. For point 2, we define the syntactic length of a reduction term ψ to be #ψ := n + 1 where n is the number of semicolons in ψ. Then, we observe that φ ⊑ ψ implies #φ = #ψ, so under our hypotheses we have #ρ = #τ = #τ ′ . This puts a heavy constraint on the step ∼ 1 : there are only two possibilities, which are, again, tedious but unproblematic.

□

Proposition 8 The relation ⊏ ∼ is a preorder such that ρ ⊏ ∼ τ and τ ⊏ ∼ ρ imply ρ ∼ τ.
Proof. That ⊑ is a partial order is immediate from the rules of Fig. 1.10. Reflexivity of ⊏ ∼ trivially follows. Transitivity and antisymmetry modulo ∼ follow from Lemma 7. For the former, ρ ⊏ ∼ τ and τ ⊏ ∼ ψ imply the existence of ρ

′ , τ ′ , τ ′′ , ψ ′ such that ρ ∼ ρ ′ ⊑ τ ′ ∼ τ ∼ τ ′′ ⊑ ψ ′ ∼ ψ,
and we conclude ρ ⊏ ∼ ψ by point 1 and transitivity of ⊑ and ∼. For the latter,

ρ ⊏ ∼ τ and τ ⊏ ∼ ρ imply the existence of ρ ′ , ρ ′′ , τ ′ , τ ′′ such that ρ ′ ⊑ τ ′ ∼ τ ∼ τ ′′ ⊑ ρ ′′ ∼ ρ ∼ ρ ′ ,
so we apply point 1 and obtain some τ 1 such that ρ ′ ⊑ τ ′ ∼ τ 1 ⊑ ρ ′ , and we conclude ρ ∼ τ by point 2.

□

The whole point of course is that ⊏ ∼ immediately lifts to a partial order on ∼-equivalence classes: if R, S are two such classes, just define R ≲ S iff there

exist ρ ∈ R, τ ∈ S such that ρ ⊏ ∼ τ. If we denote by [ρ] the ∼-equivalence class of ρ, we have [ρ] ≲ [τ] iff ρ ⊏
∼ τ, so ≲ is indeed a partial order by Proposition 8, and we may transparently use representatives instead of equivalence classes, which is what we will always do in the sequel.

Before moving on, let us comment on the technical necessity of affinity and of the term ⊥, which was mentioned in Sect. 1.2.3. Both are motivated by the desire (which, as we will see, is actually also a technical necessity) of making computation monotonic (Proposition 12): in a nutshell, if t → * u and t ⊑ t ′ , then we must have t ′ → * u ′ such that u ⊑ u ′ . For affinity, consider

t := u[⟨⟩ := ⟨⟩], t ′ := u[⟨⟩ := ⟨v⟩].
We have t → u and t ⊑ t ′ , but, in absence of weakening, v cannot be erased and t ′ is "stuck". So rule theta of Fig. 1.10 uses weakening.

For what concerns ⊥, let t be as above, and let

t ′ := u ′ [⟨x⟩ := ⟨⟩],
such that u ⊑ u ′ and x ̸ ∈ fv(u). Again, we have t → u and t ⊑ t ′ and yet, if we want to reduce t ′ , we do not know what to substitute for x, which may appear in u ′ . This leads to the introduction of an "undefined" term in the reduction t ′ → u ′ {⊥/x}. Note that this is monotonic because u ⊑ u ′ {⊥/x} by a direct application of point 2 of Lemma 6.

Ideal completion in posetal double categories

The approximation order may be formulated very naturally in the language of double categories. Instead of considering 2-operads, we will consider DblPosoperads, i.e., operads enriched in posetal double categories. Let us give a very quick account of these notions.

Definition 9 (posetal double category)

A double category is a category internal to Cat. We will mostly need the special case of posetal double categories, which are categories internal to Pos, the category of posets and monotonic functions. More explicitly, a posetal double category D consists of:

• a poset (D 0 , ≤ 0), whose elements are called objects;

• a poset of (D 1 , ≤ 1) of arrows between objects, whose composition, denoted by •, is strictly associative and has strict neutral elements id a , such that

-if f : a → a ′ , g : b → b ′ and f ≤ 1 g, then a ≤ 0 b and a ′ ≤ 0 b ′ ; -if a ≤ 0 b, then id a ≤ 1 id b ; -if f : a → b, g : b → c, f ′ : a ′ → b ′ , g ′ : b ′ → c ′ and f ≤ 1 f ′ , g ≤ 1 g ′ , then g • f ≤ 1 g ′ • f ′ ;
A posetal double category D has two opposites: a vertical opposite D op , in which the order on the posets D 0 and D 1 is reversed, and a horizontal opposite D co , in which the direction of the arrows is reversed. A general double category D also has a transpose D t , in which the role of vertical and horizontal arrows is exchanged. The transpose of a posetal double category is not posetal in general but exists as a double category, and we will use it. Of course, all of these three involutions may be combined, which we denote by D tcoop .

A morphism of posetal double categories

F : D → D ′ is a pair (F 0 : D 0 → D ′ 0 , F 1 : D 1 → D ′ 1)
of monotonic functions satisfying the obvious functoriality conditions:

• if f : a → b, then F 1 (f) : F 0 (a) → F 0 (b); • F 1 (g • f) = F 1 (g) • F 1 (f) and F 1 (id a) = id F 0 (a) .
We denote by DblPos the category of posetal double categories and their morphisms. This category has products, which are inherited from Pos.

The forgetful functor Pos → Set immediately lifts to a functor

Hor : DblPos → Cat (our categories are small, hence they are categories internal to Set). 5 This functor is easily seen to preserve products.

The idea now is to promote Λ p a to a DblPos-operad by considering cells of the form

t * ρ G G ⊏ ∼ u ⊑ ⊑ t ′ * ρ ′ G G u ′
We will give the exact definition momentarily; for the time being, let us look at a motivating example. Let I := λx.x, and let We invite the reader to check that ρ m,n ⊏ ∼ ρ m,n+1 and that t m,0 ⊏ ∼ ρ m,0 . Then, we may construct the following "patchwork" of cells:

t 0,0 t 0,0 t 0,0 t 0,0 ⊑ ⊑ ⊑ ⊑ t 0,1 G G t 1,0 t 1,0 t 1,0 ⊑ ⊑ ⊑ ⊑ t 0,2 G G t 1,1 G G t 2,0 t 2,0 ⊑ ⊑ ⊑ ⊑ t 0,3 G G t 1,2 G G t 2,1 G G t 3,0 ⊑ ⊑ ⊑ ⊑
This "patchwork" may be extended arbitrarily, both vertically and horizontally. We are tempted to say that the increasing chain t 0,n tends to the infinitary term t 0,∞ := ⟨I I, I I, I I, . . .⟩ (with infinitely many copies of I I), whereas t n,0 tends to t ∞,0 := ⟨I, I, I, . . .⟩, and that the longer and longer reductions t 0,n → * t n,0 tend to a reduction t 0,∞ → t ∞,0 . This idea may be formalized by adapting to double categories the well-known notion of ideal completion. We remind that a subset ∆ ⊆ P of a poset (P, ≤) is directed if it is nonempty and if x, y ∈ ∆ implies that there exists z ∈ ∆ such that x, y ≤ z. A directed-complete poset (dcpo) is a poset in which every directed set has a supremum. A monotonic function between dcpo's is (Scott-)continuous if it preserves suprema of directed sets. We denote by Dcpo the category of dcpo's and continuous functions, and by DblDcpo the category of categories internal to Dcpo.

An ideal of a poset P is a downward-closed directed subset of P. We denote by Ide(P) the set of all ideals of P. When ordered by inclusion, this may be seen to be a dcpo, called the ideal completion of P [START_REF] Amadio | Domains and Lambdacalculi[END_REF]. In fact, this is the object part of a functor Ide : Pos → Dcpo which is left adjoint to the forgetful functor Dcpo → Pos. The action on morphisms is as follows: given a monotonic f : P → Q and I ∈ Ide(P), Ide(f)(I) := f (I)↓ ∈ Ide(Q), where (•)↓ denotes downward closure. We will use the fact that Ide is (lax) monoidal, via the maps (I, I ′) → I × I ′ (whereas Ide(1) ∼ = 1).

Unfortunately, the above construction does not lift to posetal double categories: the forgetful functor DblDcpo → DblPos does not have a left adjoint. To see this, consider the following posetal double category D:

• (D 0 , ≤ 0) = N + N + N ∼ = N × {0, 1, 2}, i.e., three disjoint copies of N with its usual order • (D 1 , ≤ 1
) is isomorphic to five disjoint copies of N: three consisting of the identity arrows, and two consisting of the following families of arrows:

f i : (i, 0) → (2i, 1) f i ≤ 1 f j whenever i ≤ j g i : (2i + 1, 1) → (i, 2) g i ≤ 1 g j whenever i ≤ j
• composition is trivial (no pair of non-identity arrows is composable).

Consider now the category E whose objects are {a, b, b ′ , c} and with two nonidentity arrows f : a → b and g : b ′ → c. This may be seen as a category internal to Dcpo by endowing objects and arrows with the discrete order. Let now F : D → E be the morphism such that, for all i ∈ N,

• on objects, F(i, 0) = a and F(i, 2) = c, whereas

F(i, 1) = b if i is even, otherwise F(i, 1) = b ′ ; • on morphisms, F(f i) = f and F(g i) = g.
Suppose that we have D ′ ∈ DblDcpo with η : D → D ′ . By completeness, D ′ must contain, for each j ∈ {0, 1, 2}, an object (ω, j) = sup i∈N η(i, j), as well as two arrows f ω : x → y and g ω :

y ′ → z such that f ω = sup i∈N η(f i) and g = sup i∈N η(g i).
Since the source and target functions of D ′ are continuous, we must have x = (ω, 0), y = y ′ = (ω, 1) and z = (ω, 2). Therefore, D ′ must also contain an arrow g ∞ • f ∞ : (ω, 0) → (ω, 2). But there is no way to map this arrow to E continuously and consistently with F. Indeed, let

G ∈ DblDcpo(D ′ , E) be such that F = G • η. Since F(i, 0) = a and F(i, 2) = c for all i ∈ N, by continuity we must have G(ω, 0) = a and G(ω, 2) = c, so G(g ∞ • f ∞)
must have source a and target c; but there is no such arrow in E .

We will now give sufficient conditions for the left adjoint to exist. Recall that, as a category internal to Pos, a posetal double category D is given by the following data:

D 0 e 1 1 D 1 t o o s o o D 1 × s,t D 1 c G G D 1
where everything lives in Pos and D 1 × s,t D 1 denotes the pullback of the cospan formed by s and t (of course, certain diagrams involving the above data are required to commute). The naive idea to obtain an "ideal completion" of D is to apply the Ide functor to the above morphisms. While this is fine for s, t and e (we obtain a "quiver with pointed loops"), it does not work for c (composition) because Ide does not preserve pullbacks (it is cocontinuous, as every left adjoint of a forgetful functor, but not continuous). However, we may hope to define a monotonic function c :

Ide(D 1) × Ide(s),Ide(t) Ide(D 1) → Ide(D 1) such that Ide(D 1 × s,t D 1) Ide(c) G G u Ide(D 1) Ide(D 1) × Ide(s),Ide(t) Ide(D 1) c S S (1.1)
commutes, where u is given by the universal property of the pullback Ide(D 1) × Ide(s),Ide(t) Ide(D 1). This is what will be ensured by our next definition.

In the following, we consider general double categories and we write p : a → b to denote vertical arrows (which in the posetal case are just order relations a ≤ 0 b) and we denote by • and * horizontal and vertical composition of cells, respectively. Definition 10 (monotonic posetal double category) Let D be a double category and let f : a → b and p

: b ′ → b. A cartesian lifting of f with respect to p is a cell α a ′ f G G p ⇓α b ′ p a f G G b such that, if α ′ is
any cell whose vertical target is p and whose horizontal target is f • g for some g, then there exist unique cells

c ′ G G ⇓γ a ′ 1 q a ′ p c g G G a a ′ 1 G G q ⇓δ b ′ a ′ f G G b ′ such that α ′ = (α * δ) • γ. Pictorially: c ′ E E B B ⇓γ a ′ 1 G G ⇓δ b ′ a ′ G G ⇓α b ′ p c f •g D D g B B ⇓ α ′ a f G G b
A weak cartesian lifting is as above but γ, δ are not required to be unique. A double category is (weakly) fibrational if every horizontal arrow has a (weak) cartesian lifting with respect to every coterminal vertical arrow. A posetal double category D is monotonic if D tcoop is weakly fibrational (as a double category). We denote by MntDblPos (resp. MntDblDcpo) the full subcategory of DblPos (resp. DblDcpo) whose objects are monotonic.

The terminology "fibrational" is justified as follows. 6 Let p : A → B be a functor; one may define a double category D(p) such that:

• its objects are (the disjoint union of) the objects of A and B;

• its horizontal arrows are (the disjoint union of) the arrows of A and B;

• there is a non-identity vertical arrow a → b exactly when a ∈ A, b ∈ B and b = p(a);

• there is a non-identity cell of horizontal source f : a → a ′ and target g : b → b ′ exactly when g = p(f);

• composition of horizontal arrows is as in A and B; from this, horizontal composition of cells is defined in the obvious way, using the functoriality of p; vertical composition is void, both for arrows and cells.

Then, D(p) is fibrational exactly when p is a fibration. In this particular case, the cell δ is always the identity because D(p) is vertically degenerate (nonidentity vertical arrows are never composable).

Let us spell out what it means for a posetal double category D to be monotonic. Remember that the horizontal arrows of D are "actual" arrows, whereas the vertical arrows (and cells) are order relations ≤ 0 (and ≤ 1), and remember that in D tcoop horizontal and vertical arrows are swapped, and their directions reversed. So, when looking at the diagrams of Definition 10, horizontal arrows → are to be read as ≥ 0 , vertical arrows ↓ are to be read as arrows ↑, and cells ⇓ are to be read as ≥ 1 , yielding the following: for all b ≤ 0 a and p : b → b ′ , there exists p : a → a ′ with p ≤ 1 p such that, for all r : c → c ′ such that p ≤ 1 r and a ≤ 0 c, there exists q : a ′ → a ′ 1 such that id b ′ ≤ 1 q and q • p ≤ 1 r (and, therefore, p ≤ 1 p • q ≤ 1 r). This is saying that "horizontal arrows are monotonic" and, moreover, each arrow my be "overapproximated" in a minimal way.

The property becomes especially conspicuous if we see objects as programs and arrows as computations: if a program b may perform a computation p, then an overapproximation a of b may perform an overapproximation p of p (computation is monotonic!), which is minimal in the sense that every overapproximation of p starting from an overapproximation of b "bigger" than a is in fact an overapproximation of an extension of p.

The greater part of the rest of this section is devoted to proving the following:

Theorem 9 The forgetful functor MntDblDcpo → MntDblPos has a left adjoint (•).

Let D be a monotonic posetal double category, and let (P, ≤ P) be the pullback Ide(D 1) × Ide(s),Ide(t) Ide(D 1) of the cospan formed by Ide(s) and Ide(t). This may be described as

P = {(I, J) ∈ Ide(D 1) × Ide(D 1) | t(I)↓ = s(J)↓}
with (I, J) ≤ P (I ′ , J ′) iff I ⊆ I ′ and J ⊆ J ′ . If we see Ide(D 1) as containing the "limits" of all arrows of D, P is the poset of such limits which are composable. It is easy to see that, given K ∈ Ide(D 1 × s,t D 1) (i.e., an ideal of pairs of composable arrows), the monotonic function u

: Ide(D 1 × s,t D 1) → P of diagram 1.1 is defined by u(K) := (π 1 (K), π 2 (K)).
c(I, J) := {g • f | f ∈ I, g ∈ J, t(f) = s(g)}↓,
which is easily seen to guarantee the commutation of diagram 1.1. However, while certainly downward closed, the above set may fail to be directed; in fact, it may very well be empty in general (the double category used above to show that the ideal completion fails gives an example of such phenomenon). This is where we need the fibrational hypothesis, which allows to prove the following key technical result:

Lemma 10 Let D be monotonic and let (I, J) ∈ P (with P defined as above). Then, for all f 0 ∈ I and g 0 ∈ J, there exist f ∈ I and g ∈ J which are composable and such that f 0 ≤ 1 f , g 0 ≤ 1 g.

Proof. Let f 0 ∈ I and g 0 ∈ J, with f 0 : a 0 → b 0 and g 0 : b ′ 0 → c 0 . Since t(I)↓ = s(J)↓, we have f ∈ I with f : a → b such that b ′ 0 ≤ 0 b. By directedness of I, we may suppose f 0 ≤ 1 f (if this is not the case, replace f with f ′ ∈ I such that f 0 , f ≤ 1 f ′). By the same reasoning, we must have g ′ ∈ J such that g ′ : b ′ → c ′ , b ≤ 0 b ′ and g 0 ≤ 1 g ′ . Now, if we call g : b → c the arrow obtained by invoking the cartesian lifting of b ′ 0 ≤ b with respect to g 0 , by minimality we have g 1 • g ≤ 1 g ′ for some g 1 : c → c. If we set g := g 1 • g, we have g : b → c
(so it is composable with f) and g ∈ J by downward closure. □

Lemma 10 immediately implies that the set c(I, J) defined above is an ideal: first, it cannot be empty because I ̸ = ∅ and J ̸ = ∅; second, given

g 1 • f 1 , g 2 • f 2 ∈ c(I, J)
, by directedness of I and J we have f 0 ∈ I and g 0 ∈ J such that f 1 , f 2 ≤ 1 f 0 and g 1 , g 2 ≤ 1 g 0 , so we conclude by applying Lemma 10 to f 0 and g 0 .

By way of similar applications of Lemma 10, it poses no particular problem to check that, taking c as composition, one indeed obtains a monotonic posetal double category D on the quiver Ide(D 0) ⇔ Ide(D 1) resulting from Ide(s), Ide(t), with identities Ide(e). The action of (•) on morphisms is (F 0 , F 1) := (Ide(F 0), Ide(F 1)); that this works is again an easy consequence of Lemma 10. The fact that this is the left adjoint of the forgetful functor MntDblDcpo → MntDblPos follows from the left adjointness of Ide. In a sense, the definition of (•) is guaranteed to be universal, as long as the double category actually exists, which is what the fibrational condition ensures.

We conclude this section by observing that (•) lifts to a functor MntDblPos-Op → MntDblDcpo-Op. First, one uses the monoidality of Ide to endow (•) with a lax monoidal structure in the obvious way. Then, given a MntDblPos-operad C, we define C by keeping the same colors and setting C(Γ; A) := C(Γ; A). Horizontal composition (and its identities) is defined by precomposing the horizontal composition (and identities) with the lax monoidal structure of (•).

Infinitary affine polyadic terms

Let us prove that, indeed, computation in Λ p a is monotonic. We start by defining the notion of lift with respect to an overapproximation: Definition 11 (lift) Let ρ : t → * u and t ⊑ t ′ . We define a reduction term ρ ↑ t ′ of source t ′ by induction on ρ:

• ρ = C{β}, with β a basic step: then, t = C{r} with r a redex, and point 1 of Lemma 6 gives us t ′ = C ′ {r ′ } with C ⊑ C ′ and r ⊑ r ′ ; by rule beta or theta of Fig. 1.10 (according to the shape of r), there is a basic step β ′ of source r ′ such that β ⊑ β ′ , so we define ρ ↑ t ′ := C ′ {β ′ };

• ρ = t (a term): we take ρ ↑ t ′ := t ′ ;

• ρ = ρ 1 ; ρ 2 : if ρ 1 ↑ t ′ : t ′ → * v ′ , we let ρ ↑ t ′ := (ρ 1 ↑ t ′); (ρ 2 ↑ v ′). It is immediate from the definition that ρ ⊑ ρ ↑ t ′ . It is easy to check that ρ ∼ ρ ′ implies ρ ↑ t ′ ∼ ρ ′ ↑ t ′ , i.e.
, the definition is consistent with permutation equivalence.

Lemma 11 Let ρ ′ : u ′ → * u ′′ be such that u ⊏ ∼ ρ ′ , with u a term (i.e., ρ ′ overapproximates an identity reduction). Then, for all τ : u → * v, there exists

τ ′ : u ′ → * v ′ such that v ⊑ τ ′ and ρ ′ ; (τ ↑ u ′′) ∼ (τ ↑ u ′); τ ′ .
Proof. First, we observe that the result follows from the special case in which u ⊑ ρ ′ . Indeed, the general case is u ∼ φ ⊑ ψ ∼ ρ ′ ; now, since u is a term, we must have φ = u; • • • ; u with n > 0 occurrences of u (and some choice of parentheses, which we omit), hence

ψ = ρ ′ 1 ; • • • ; ρ ′ n with ρ ′ i : u ′ i-1 → * u ′ i , u ′ 0 = u ′ and u ′ n = u ′′
, and such that u ⊑ ρ ′ i for all 1 ≤ i ≤ n; then, if we admit the (apparently) weaker version of the lemma, we have that, for all 1 ≤ i ≤ n, there exists

τ ′ i such that v ⊑ τ ′ i and ρ ′ i ; (τ ↑ u ′ i+1) ∼ (τ ↑ u ′ i); τ ′ i ; therefore, ρ ′ ; (τ ↑ u ′′) ∼ ρ ′ 1 ; • • • ; ρ ′ n ; (τ ↑ u ′′) ∼ ρ 1 ; • • • ; (τ ↑ u ′ n-1); τ ′ n ∼ • • • ∼ (τ ↑ u ′); τ ′ 1 ; • • • ; τ ′
n , so we conclude by letting τ ′ := τ ′ 1 ; . . . ; τ ′ n . We may therefore assume u ⊑ ρ ′ . In that case, by definition of ⊑ (Fig. 1.10), either ρ ′ = u ′ is also a term, in which case the result is trivial; or ρ ′ = C{β} such that the source of the redex β is not a subterm of u (e.g., u = ⟨I⟩ and ρ ′ = ⟨I, x x ← I ⟩ : ⟨I, I I⟩ → ⟨I, I⟩). Therefore, the reduction τ cannot possibly interfere with ρ ′ (it reduces other redexes), and permutation equivalence applies. This is formalized by a straightforward induction on u.

□

Proposition 12 (monotonicity) Let ρ : t → * u, let t ⊑ t ′ and let v ′ be the target of ρ ↑ t ′ . Then, for all ρ ′′ : t ′′ → * u ′′ such that t ′ ⊑ t ′′ and ρ ⊏ ∼ ρ ′′ , there exists ρ ′ : u ′ → * u ′ 0 such that u ⊏ ∼ ρ ′ and (ρ ↑ t ′); ρ ′ ⊏ ∼ ρ ′′ .
Proof. Again, it is enough to consider the special case ρ ⊑ ρ ′′ . In fact, the general case is ρ ∼ ψ ⊑ ψ ′′ ∼ ρ ′′ ; if we admit the (apparently) weaker statement, we get

ψ ′ such that u ⊏ ∼ ψ ′ and (ψ ↑ t ′); ψ ′ ⊏ ∼ ψ ′′ ; therefore, recalling that ρ ∼ ψ implies ρ ↑ t ′ ∼ ψ ↑ t ′ , we have (ρ ↑ t ′); ψ ′ ∼ (ψ ↑ t ′); ψ ′ ⊏ ∼ ψ ′′ ∼ ρ ′′ ,
so we conclude by letting ρ ′ := ψ ′ . We now proceed by induction on the derivation of ρ ⊑ ρ ′′ . The key cases are when the last rule is box or comp. In the first case, let us assume for convenience of notations that t = ⟨t 1 ⟩,

t ′ = ⟨t ′ 1 , t ′ 2 ⟩ and t ′′ = ⟨t ′′ 1 , t ′′ 2 , t ′′ 3 ⟩.
By definition, we have t ↑ t ′ = t ′ . Since t ⊑ ρ ′′ , we must be in one of the following mutually exclusive cases:

1. ρ ′′ = ⟨α ′′ 1 , t ′′ 2 , t ′′ 3 ⟩, 2. ρ ′′ = ⟨t ′′ 1 , α ′′ 2 , t ′′ 3 ⟩, 3. ρ ′′ = ⟨t ′′ 1 , t ′′ 2 , α ′′ 3 ⟩, with α ′′ i : t ′′ i → * u ′′ i an
:= ⟨t ′ 1 , α ′ 2 ⟩.
3. Letting ρ ′ := ⟨t ′ 1 , t ′ 2 ⟩ (i.e., t ′ itself) meets the requirements.

Suppose now that the derivation of ρ ⊑ ρ ′′ ends with a comp rule. We have ρ = ρ 1 ; ρ 2 , with ρ 1 : t → * v, and

ρ ′′ = ρ ′′ 1 ; ρ ′′ 2 , with ρ ′′ 1 : t ′′ → * v ′′ , such that ρ 1 ⊑ ρ ′′ 2 and ρ 2 ⊑ ρ ′′ 2 . Let v ′ be the target of ρ 1 ↑ t ′ . We apply the induction hypothesis to ρ 1 ⊑ ρ ′′ 1 , obtaining ρ ′ 1 : v ′ → * v ′ 0 such that v ⊏ ∼ ρ ′ 1 and (ρ 1 ↑ t ′); ρ ′ 1 ⊏ ∼ ρ ′′ 1 . This latter implies (by point 3 of Lemma 6) v ′ 0 ⊑ v ′′ ; hence, if u ′ is the target of ρ 2 ↑ v ′ 0 , we apply the induction hypothesis to ρ 2 ⊑ ρ ′′ 2 and obtain ρ ′ 2 : u ′ → * u ′ 0 such that u ⊏ ∼ ρ ′ 2 and (ρ 2 ↑ v ′ 0); ρ ′ 2 ⊏ ∼ ρ ′′ 2 . The fact that v ⊏ ∼ ρ ′ 1 allows us to apply Lemma 11: we get τ ′ such that u ⊑ τ ′ and ρ ′ 1 ; (ρ 2 ↑ v ′ 0) ∼ (ρ 2 ↑ v ′); τ ′ . We may then conclude by letting ρ ′ := τ ′ ; ρ ′ 2 . Indeed, u ∼ u; u ⊏ ∼ τ ′ ; ρ ′ 2 ; and (ρ 1 ; ρ 2 ↑ t ′); τ ′ ; ρ ′ 2 = (ρ 1 ↑ t ′); (ρ 2 ↑ v ′); τ ′ ; ρ ′ 2 ∼ (ρ 1 ↑ t ′); ρ ′ 1 ; (ρ 2 ↑ v ′ 0); ρ ′ 2 ∼ ρ ′′ 1 ; ρ ′′ 2 . □
It is straightforward to turn Λ p a into a MntDblPos-operad: simply promote each hom-category Λ p a (Γ; A) to a posetal double category using the approximation order; point 6 of Lemma 6 guarantees compatibility with operadic composition. We denote by Λ ⊑ a the MntDblPos-operad thus obtained. It is now possible to explain the reason behind the slightly quirky definition of Λ p a (and, in general, Λ p p): in view of applying ideal completion, we need to be able to consider ideals as multimorphisms/2-arrows, and these may have infinitely many free affine variables. Consider for instance the as-cending chain

x 1 ⟨⟩ ⊑ x 1 ⟨x 2 ⟩ ⊑ x 1 ⟨x 2 , x 3 ⟩ ⊑ x 1 ⟨x 2 , x 3 , x 4 ⟩ ⊑ • • • (1.2)
Had we defined Λ p a in a more customary way, i.e., with each free affine variable counting as an input of color a, the chain (1.2) would not belong to Λ p a (a n ; l) for any n ∈ N and, therefore, the ideal completion would not introduce its limit because it would simply fail to "see" the chain. With the definition we adopted, the chain (1.2) is entirely in Λ ⊑ a (a; l), as long as we make sure that all x i belong to the same supervariable (so, formally, we should write x 1 i). Of course, Proposition 12 immediately gives us Corollary 13 The operad Λ ⊑ a is in MntDblPos-Op, i.e., every Λ ⊑ a (Γ; C) is monotonic.

We may therefore apply Theorem 9 (or, rather, its operadic version mentioned at the end of the previous section) and define

Λ ∞ a := Hor(Λ ⊑ a),
i.e., we take the ideal completion of Λ ⊑ a and then forget the order, obtaining a 2-operad. Let us give some examples of how Λ ∞ a may be seen as an infinitary affine calculus. Let

∆ n := λy.x 0 ⟨x 1 , . . . , x n ⟩[⟨x 0 , x 1 , . . . , x n ⟩ := y], Ω n := ∆ n ⟨∆ n-1 , . . . , ∆ 0 , ∆ 0 ⟩.
If we denote by ρ n the obvious reduction Ω n+1 → * Ω n , we have ρ n ⊑ ρ n+1 for all n ∈ N. The ideal {ρ n | n ∈ N}↓ has source and target equal to the ideal {Ω n | n ∈ N}↓; clearly we are describing the reduction of the infinitary term Ω ∞ defined by

∆ ∞ := λy.x 0 ⟨x 1 , x 2 , . . .⟩[⟨x 0 , x 1 , x 2 , . . .⟩ := y] Ω ∞ := ∆ ∞ ⟨∆ ∞ , ∆ ∞ , . . .⟩.
The term ∆ ∞ takes as input an infinite list, extracts the head and applies it to the rest of the list. If we feed to ∆ ∞ an infinite list of copies of itself, we get an infinite loop. Note that no duplication is performed during the reduction; the calculus is still affine, it achieves non-termination thanks to its infinitary character. Essentially, we have replaced a potential, non-linear infinity with an actual, linear infinity. The above is an example of term which is infinite "in width". These are a novelty in the context of infinitary term rewriting and are the most interesting to us. Nevertheless, more traditional infinite terms (as in [START_REF] Kennaway | Transfinite reductions in orthogonal term rewriting systems[END_REF]), which are infinite "in height", also exist in Λ ∞ a . For instance, the ideal {⟨⟩, ⟨⟨⟩⟩, ⟨⟨⟨⟩⟩⟩, . . .} corresponds to a term V satisfying the equation V = ⟨V⟩. These two kinds of "infinities" may of course be combined, obtaining terms satisfying equations such as U = ⟨U, U, U, . . .⟩.

Let us look at a slightly more involved example: fix a sequence x 0 , x 1 , x 2 , . . . of affine variables, and let u ++ denote a term u in which each free x i is replaced by x i+1 . Then, if we define

u 0 := x 0 ⟨⟩ u n+1 := x 0 ⟨u ++ n ⟩ t n := λ f .u n [⟨x 0 , . . . , x n-1 ⟩ := f]
we have that the ideal {t n | n ∈ N} ↓ corresponds to the infinite term λ f .x 0 ⟨x 1 ⟨x 2 ⟨. . .⟩⟩⟩[⟨x 0 , x 1 , x 2 , . . .⟩ := f]. This is essentially the Böhm tree of a linear fixpoint combinator, linear in the sense that the function f takes as argument a list with exactly one element. Note that, by contrast, the (perhaps more natural) infinitary term λ f .x 0 (x

1 (x 2 (. . .)))[⟨x 0 , x 1 , x 2 , . . .⟩ := f] does not exist in Λ ∞ a .
The Böhm tree of the usual fixpoint combinator may also be represented, although it is a bit more challenging from the notational point of view. In fact, we will se that the infinitary λ-calculus Λ 001 of Kennaway et al. [START_REF] Kennaway | Infinitary lambda calculus[END_REF] may be embedded in Λ ∞ a . Along with the usual pure λ-calculus, this calculus contains also all Böhm trees, seen as infinitary λ-terms.

It is possible to give an explicit description of Λ ∞ a as a calculus of infinitary affine terms, as we did in [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF]. This amounts to allowing infinite terms of the form ⟨t 1 , t 2 , t 3 , . . .⟩, in which the t i are furthermore allowed to be defined coinductively. We will not indulge in the details but rather go directly to the heart of the matter, which is recovering linear logic from Λ ∞ a , thus achieving the computational reformulation of Girard's Approximation Theorem promised at the beginning of this section.

Recovering linear logic

Following Girard's cue, it is intuitively clear how to construct an embedding of Λ ! into Λ ∞ a , the key case being the encoding of !T: if one supposes the ideal T to be already defined, then !T should be an ideal of the form {⟨t 1 , . . . , t n ⟩ | t i ∈ T }.

Although morally correct, the above definition is technically wrong because of affinity: we must make sure that t 1 , . . . , t n share no free variable. This is obviously problematic, for instance, if T = x. It is clear that we should allow x to be equal to {x i } for any i ∈ N (i.e., x i belongs to the supervariable associated with x), so that !x may be any ideal of the form {⟨x i 1 , . . . , x i n ⟩ | n ∈ N, i n arbitrary sequence}. So the embedding is not going to be uniquely defined; but we may hope for it to be defined modulo an equivalence relation, which is what we will aim at.

Before we continue, let us recall our convention that, for every term or reduction term of Λ p a and for any of its subterms of the form ρ[⟨x 1 , . . . , x n ⟩ := τ] or ρ x 1 , . . . , x n ← τ [-], we assume, using α-equivalence, that x 1 , . . . , x n is the initial segment of a supervariable.

We start by defining a map (-

) • from Λ p a to Λ p c : a • := a x • i := x (λa.ρ) • := λa.ρ • ⟨ρ 1 , . . . , ρ n ⟩ • := ⟨ρ • 1 , . . . , ρ • n ⟩ (ρτ) • := ρ • τ • (ρ[⟨x 1 , . . . , x n ⟩ := τ]) • := ρ • [⟨x⟩ := τ •] (ρ; τ) • := ρ • ; τ • (t a ← u [-]) • := t • a ← u • [-] • (t x 1 , . . . , x n ← u 1 , . . . , u m [-]) • := t • x ← u • 1 , . . . , u • m [-]
• Note that this does not yield a morphism of operads: if ρ : t → * u, we do not have in general that ρ • : t • → * u • (because of the last line of the definition). In fact, saying that the target of (-) • is Λ p c is just a convenient way to say where the images of (-) • belong, but such images will be used in a quite trivial way: we just check them for equality.

Definition 12 (renaming equivalence) Let R, R ′ be two ideals of Λ ∞ a (multimorphisms or 2-arrows). We write R ≈ R ′ just if there is an isomorphism of posets

ι : R → R ′ such that, for all ρ ∈ R, ρ • = ι(ρ) • .
In other words, two ideals are renaming equivalent when they are isomorphic and the isomorphism relates terms which are equal once we forget the indices of the affine variables, free or bound.

It is immediate that

(ρ{τ/x}) • = ρ • {τ • /x}, so R ≈ R ′ and S ≈ S ′ implies R{S/x} ≈ R ′ {S ′
/x}; we also obviously have R; S ≈ R ′ ; S ′ (whenever this makes sense), so we may form a 2-operad Λ ∞ a /≈ by taking the quotient under ≈ in Λ ∞ a . It is in this 2-operad that Λ ! will be embedded, as follows:

a := {{a}↓} λa.φ := {{λa.ρ | ρ ∈ R} | R ∈ φ } φψ := {{ρτ | ρ ∈ R, τ ∈ S} | R ∈ φ , S ∈ ψ , R # S} x := {{x i }↓| i ∈ N} !φ := {{⟨ρ 1 , . . . , ρ n ⟩ | ρ i ∈ R i , n ∈ N} | (R i) i∈N ∈ φ , R i # R j ∀i, j ∈ N} φ[!x := ψ] := {{ρ[⟨x 1 , . . . , x m ⟩ := τ] | ρ ∈ R, τ ∈ S, m ≥ max i s.t. x i ∈ fv(ρ)} | R ∈ φ , S ∈ ψ , R # S} T a ← U [-] := {{t a ← u [-] ′ | t ∈ I, u ∈ J, [-] ′ ∈ K} | I ∈ T , J ∈ U , K ∈ [-] , I # J # K pairwise} T x ← U [-] := {{t x 1 , . . . , x m ← u 1 , . . . , u n [-] ′ | t ∈ I, u i ∈ J i , [-] ′ ∈ K, n ∈ N, m ≥ max i s.t. x i ∈ fv(t)} | I ∈ T , (J i) i∈N ∈ U , K ∈ [-] I # J i # J j # K pairwise, ∀i, j ∈ N} φ; ψ := {{ρ; τ | ρ ∈ R, τ ∈ S} | R ∈ φ , S ∈ ψ , R # S}
where the notation R # S means fv(R) ∩ fv(S) = ∅, and each set in φ is understood to be closed under permutation equivalence.

By a straightforward induction on φ one may prove that, if φ :

T → * U is a 2-arrow of Λ ! (l m , c n ; l), then for all R ∈ φ , there exist I ∈ T , J ∈ U such that R : I → * J is a 2-arrow of Λ ∞
a (l m , a n ; l). In particular, each R ∈ φ is an ideal. The approximation theorem will follow from a characterization of such ideals.

The main point of a ⊏ ∼ -ideal of terms is that it has an underlying syntactic tree. Indeed, as pointed out in the previous section, ideals may be seen as infinitary terms. In particular, an ideal R has a "kind", which is the syntactic constructor of its root (lvar, lam, app, etc.), and, when appropriate, it has immediate "sub-ideals" corresponding to subterms: e.g., if R is of kind lam, then there will be an ideal

R 1 such that R = {λa.ρ 1 | ρ 1 ∈ R 1 }; R 1 is the immediate sub-ideal of R.
Of course, ideals of kind lvar, avar and undef do not have immediate sub-ideals. Of special interest to us is the case of ideals of kind box; such an ideal R has, for each i ∈ N, an immediate sub-ideal

π i R := {ρ i | ⟨ρ 1 , . . . , ρ n ⟩ ∈ R, n ≥ i}↓.
Note that π i R is defined for all i; at worst, it will be equal to {⊥}. The same applies to ideals of kind theta.

Definition 13 (uniform, finitary ideal) We define the class of uniform ideals to be the largest not containing {⊥}, closed under immediate sub-ideals and such that, if R is uniform of kind box or theta, then π i R ≈ π j R for all i, j ∈ N.

An ideal R is finitary if there is h ∈ N such that, for all ρ ∈ R, the height of ρ (as a syntactic tree) is bounded by h. Lemma 14 For every reduction term φ of Λ ! , φ is a ≈-equivalence class of finitary uniform ideals.

Proof. A straightforward induction on φ, from the definition of -. □

Lemma 15 For every finitary uniform ideal R of Λ ∞ a , there exists a unique reduction term φ of Λ ! such that R ∈ φ .

Proof. Note that finitary ideals have a well-defined notion of height: it is the maximum height of their terms. We may therefore proceed by induction on the height of R. The most interesting cases are the ones in which R is of kind box or theta. We illustrate the first, the second is analogous. Being finitary of course is stable under sub-ideals, so π i R is finitary uniform for all i ∈ N, so by induction there is a unique φ i such that R i ∈ φ i for all i ∈ N. But, by uniformity, R i ≈ R j for all i, j ∈ N, so by Lemma 14 φ i = φ j =: φ for all i, j ∈ N, and this is obviously unique such that R = !φ . □

Uniformity and being finitary are obviously preserved by substitution and composition, and are stable under renaming equivalence. Therefore, we may define a 2-operad Λ ∞fu a /≈ which is a suboperad of Λ ∞ a /≈ in which we only consider finitary uniform ideals. This is exactly linear logic:

Theorem 16 (Girard's approximation theorem, computational version)

There is an isomorphism of 2-operads

Λ ∞fu a /≈ ∼ = Λ ! .
Proof. We have basically already defined a morphism

-: Λ ! -→ Λ ∞fu a /≈ .
Its behavior on colors has been specified implicitly: l := l and c := a. The fact that this is indeed a morphism into Λ ∞fu a /≈ follows from Lemma 14. That such a morphism is invertible is a consequence of Lemma 15. □ So a λ-term is an equivalence class of uniform infinitary affine terms. The idea of uniformity is far from new: it is a staple of the denotational semantics of linear logic, especially games semantics [START_REF] Girard | Locus solum[END_REF][START_REF] Melliès | Asynchronous games 1: A grouptheoretic formulation of uniformity[END_REF].

In [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF], some applications of Theorem 16 to the theory of the λ-calculus are explored, most notably a proof of confluence via strong confluence of Λ p a and a simple proof by "passage to the limit" of Wadsworth's result that head reduction terminates for solvable terms [START_REF] Wadsworth | Semantics and Pragmatics of the Lambda Calculus[END_REF].

We also observe that, if we drop the constraint on height, equivalence classes of uniform ideals correspond to terms of an infinitary calculus in which !(-) is coinductive, i.e., terms satisfying equations such as T = I!T are allowed. The infinitary λ-calculus Λ 001 of Kennaway et al. [START_REF] Kennaway | Infinitary lambda calculus[END_REF] may be embedded in such an infinitary version of linear logic, allowing one to recover their whole theory on an affine basis.

For us, the most noteworthy consequence of Theorem 16 is that it gives rise to a notion of affine approximation for (reduction) terms of Λ ! and, therefore, of the λ-calculus (via Girard's embeddings). In fact, such a notion of approximation makes sense in all polyadic calculi, not just the affine one. We give it in Fig. 1.11, where the relation is defined by means of judgments of the form

Ξ ⊢ ρ ⊏ φ,
where:

• ρ is a reduction term of Λ p p (with p ∈ {l, a, r, c});

• φ is a reduction term of Λ ! ;
• Ξ is a sequence (permutable at will) of pairs y ⊏ x, with y a variable of type p of Λ p p and x a cartesian variable of Λ ! , such that y ⊏ x, y ′ ⊏ x ′ in Ξ implies y ̸ = y ′ ; instead, x = x ′ is allowed, it means that both y and y ′ approximate x.

In the following chapters we will explore some interesting applications of these polyadic approximations.

⊢ a ⊏ a lvar y ⊏ x ⊢ y ⊏ x cvar Ξ ⊢ ρ ⊏ φ Ξ ⊢ λa.ρ ⊏ λa.φ lam Ξ ⊢ ρ ⊏ φ Υ ⊢ τ ⊏ ψ Ξ, Υ ⊢ ρτ ⊏ φψ app Ξ 1 ⊢ ρ 1 ⊏ φ . . . Ξ n ⊢ ρ n ⊏ φ Ξ 1 , . . . , Ξ n ⊢ ⟨ρ 1 , . . . , ρ n ⟩ ⊏ !φ box Υ ⊢ τ ⊏ ψ Ξ, y 1 ⊏ x, . . . , y n ⊏ x ⊢ ρ ⊏ φ Ξ, Υ ⊢ ρ[⟨y 1 , . . . , y n ⟩ := τ] ⊏ φ[!x := ψ] let x ̸ ∈ Ξ Ξ ⊢ (λa.t)[-] ′ u ⊏ (λa.T)[-]U Ξ ⊢ t a ← u [-] ′ ⊏ T a ← U [-] beta Ξ ⊢ t[⟨y 1 , . . . , y m ⟩ := ⟨u 1 , . . . , u n ⟩[-] ′] ⊏ T[!x := !U[-]] Ξ ⊢ t y 1 , . . . , y m ← u 1 , . . . , u n [-] ′ ⊏ T x ← U [-] theta (*) Ξ ⊢ ρ ⊏ φ Υ ⊢ τ ⊏ ψ Ξ, Υ ⊢ ρ; τ ⊏ φ; ψ comp Ξ ⊢ ρ ⊏ φ Ξ, y ⊏ x ⊢ ρ ⊏ φ weak, p∈{a,c} Ξ, y ⊏ x, y ′ ⊏ x ⊢ ρ ⊏ φ Ξ, y ⊏ x ⊢ ρ{y/y ′ } ⊏ φ cntr, p∈{r,c}

Intersection Types 2.1 A Surprising Correspondence

Intersection types, originally introduced by Coppo and Dezani [START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF] with semantic motivations, are a well-known type-theoretic approach to expressing and capturing dynamic properties of programs. Through the years, the theory of intersection types has ramified along a host of different directions and taken a number of different forms. One of these is the so-called non-idempotent variant of intersection types. Intuitively, intersection is non-idempotent when A → A ∧ A does not hold. So, for instance, the typing judgment

f : A → A → B ⊢ λx. f xx : A → B
is not derivable with a non-idempotent intersection; instead

f : A → A → B ⊢ λx. f xx : A ∧ A → B is derivable.
The first (and simplest) example of non-idempotent intersection type system was introduced by Gardner [Gar94] and, independently and with a slightly different formulation, by de Carvalho [dC09]. Types are defined by

A ::= α Θ ⊸ A types, Θ ::= A 1 ∧ • • • ∧ A n intersections.
Nullary intersections are authorized and denoted by ⊤. Intersections should be seen as elements of the free monoid over types: Θ ∧ Θ ′ is defined by concatenation and ⊤ is the neutral element. Typing judgments are of the form Γ ⊢ M : A, where M is a pure λ-term, A a type and Γ a list (permutable at will) of type declarations of the form x : Θ. Gardner's version of the typing rules is recalled in Fig. 2.1. In rule app, the context Γ • ∆ 1 • • • ∆ n is obtained by concatenating the type declarations in Γ, ∆ i , assuming that each variable appearing in any of Γ, ∆ i actually appears in all of them, by adding the fictitious declaration x : ⊤ when it does not. The behavior of non-idempotent intersection of course hints to a connection with linear logic. Indeed, after Gardner, non-idempotent intersection

x : A ⊢ x : A var Γ, x : A 1 ∧ • • • ∧ A n ⊢ M : C Γ, x : A σ(1) ∧ • • • ∧ A σ(n) ⊢ M : C perm Γ ⊢ M : B Γ ⊢ λx.M : ⊤ ⊸ B lam 0 x ̸ ∈ Γ Γ, x : A 1 ∧ • • • ∧ A n ⊢ M : B Γ ⊢ λx.M : A 1 ∧ • • • ∧ A n ⊸ B lam Γ ⊢ M : A 1 ∧ • • • ∧ A n ⊸ B ∆ 1 ⊢ N : A 1 . . . ∆ n ⊢ N : A n Γ • ∆ 1 • • • ∆ n ⊢ MN : B app Figure 2
.1: Gardner/de Carvalho's non-idempotent intersection type system, as presented in [START_REF] Gardner | Discovering needed reductions using type theory[END_REF].

types were considered again by Carlier et al. [START_REF] Carlier | System E: expansion variables for flexible typing with linear and non-linear types and intersection types[END_REF] and their relationship with linear logic, and comparison with the idempotent case, expounded by Neergaard and Mairson [START_REF] Peter | Types, potency, and idempotency: why nonlinearity and amnesia make a type system work[END_REF]. In his independent work, de Carvalho unveiled the strong link between non-idempotent intersection types and the relational semantics of linear logic [dC09], a line of work which was subsequently extended by Bernadet and Lengrand [START_REF] Bernadet | Non-idempotent intersection types and strong normalisation[END_REF] and by de Carvalho himself with Pagani and Tortora [START_REF] Daniel De Carvalho | A semantic measure of the execution time in linear logic[END_REF]. We will see that there is an even tighter correspondence between intersection types and linear logic (in its polyadic form) which, in fact, goes well beyond the non-idempotent case.

Let us start by adapting the linear polyadic calculus to make it match more closely the pure λ-calculus. One way of doing this is to internalize Girard's translation in the calculus, obtaining the following terms and reduction rule (indeed, this is the syntax we used in [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF]): t, u ::= x λ⟨x 1 , . . . , x n ⟩.t t⟨u 1 , . . . , u n ⟩,

(λ⟨x 1 , . . . , x m ⟩.t)⟨u 1 , . . . , u n ⟩ → t{u i /x i },
where x ranges over polyadic linear variables (of color l) and the reduction rule requires m = n (otherwise the term is "stuck"). This, of course, is just a subcalculus of Λ p l : λ⟨x 1 , . . . , x n ⟩.t is merely syntactic sugar for λa.t[⟨x 1 , . . . , x n ⟩ := a], the term ⊥ is excluded, and the reduction rule is consistent with all this. We may therefore adapt the approximation relation (Fig. 1.11) to it, obtaining the following rules (we consider only terms):

x 0 ⊏ x ⊢ x 0 ⊏ x var Γ, x 1 ⊏ x, . . . , x n ⊏ x ⊢ t ⊏ M Γ ⊢ λ⟨x 1 , . . . , x n ⟩.t ⊏ λx.M lam Γ ⊢ t ⊏ M ∆ 1 ⊢ u 1 ⊏ N . . . ∆ n ⊢ u n ⊏ N Γ, ∆ 1 , . . . , ∆ n ⊢ t⟨u 1 , . . . , u n ⟩ ⊏ MN app
where, in rule lam, x does not appear in Γ.

We said that the above subcalculus of Λ p l was obtained by internalizing Girard's translation; of course, this is above all a logical translation (intuitionistic to linear), so it is valid at the level of types. In fact, the subcalculus results from considering the fragment of Poly l whose types are restricted to

A, B ::= α ⟨A 1 , . . . , A n ⟩ ⊸ B.
The induced typing rules (from those of Fig. 1.9) are the following:

x 0 : A ⊢ x 0 : A var Γ, x 1 : A 1 . . . x n : A n ⊢ t : B Γ ⊢ λ⟨x 1 , . . . , x n ⟩.t : ⟨A 1 , . . . , A n ⟩ ⊸ B lam Γ ⊢ t : ⟨A 1 , . . . , A n ⟩ ⊸ B ∆ 1 ⊢ u 1 : A 1 . . . ∆ n ⊢ u n : A n Γ, ∆ 1 , . . . , ∆ n ⊢ t⟨u 1 , . . . , u n ⟩ : B app
Now, the typing rules are so similar to the approximation rules that it is tempting to superpose them:

x 0 ⊏ x : A ⊢ x 0 ⊏ x : A var Γ, x 1 ⊏ x : A 1 , . . . , x n ⊏ x : A n ⊢ t ⊏ M : B Γ ⊢ λ⟨x 1 , . . . , x n ⟩.t ⊏ λx.M : ⟨A 1 , . . . , A n ⟩ ⊸ B lam Γ ⊢ t ⊏ M : ⟨A 1 , . . . , A n ⟩ ⊸ B ∆ 1 ⊢ u 1 ⊏ N : A 1 . . . ∆ n ⊢ u n ⊏ N : A n Γ, ∆ 1 , . . . , ∆ n ⊢ t⟨u 1 , . . . , u n ⟩ ⊏ MN : B app
where, in rule lam, x does not appear in Γ. If, in the above superposition, we keep only the types and the purple decorations, we obtain a type system for the λ-calculus, in which typing contexts may contain more than one declaration for each variable. If we adopt the following changes of notation

⟨A 1 , . . . , A n ⟩ ⇝ A 1 ∧ • • • ∧ A n Γ, x : A 1 , . . . , x : A n ⊢ M : B ⇝ Γ, x : A 1 ∧ • • • ∧ A n ⊢ M : B x ̸ ∈ Γ
we see that this is exactly Gardner's system:

• the rules var and app are identical; • Gardner's lam 0 rule is just the case n = 0 of our lam rule; • Gardner's perm rule is given by the (implicit) exchange rule on contexts of polyadic derivations.

If we repeat the above syntactic game with the other variants of our polyadic calculi, we find other intersection type systems. For instance, using affine approximations gives us a relaxation of Gardner's system with a form of subtyping (e.g., the identity may be given type A ∧ B → A); with cartesian approximation we obtain a reformulation of Coppo, Dezani and Venneri's system [START_REF] Coppo | Functional characters of solvable terms[END_REF] (which uses what are sometimes called "strict" intersection types [vB95], i.e., with intersections only on the left of arrows, as opposed to

Coppo and Dezani's original system [START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF]), in its incarnation characterizing solvability/head normalization, because of the unrestricted presence of the type Ω, represented here by the type ⟨⟩ (the "non-strict" version of such a system is what Krivine calls DΩ in [START_REF] Krivine | Lambda Calculus, Types and Models[END_REF]). We therefore have what seems to be a completely general correspondence between polyadic simple types and intersection types:

δ :: Γ ⊢ IT M : A iff δ -⊏ M.
That is, an intersection type derivation δ for M is isomorphic to a (Churchstyle) simply-typed polyadic term, such that the underlying pure term δ -is a polyadic approximation of M. More snappily: a λ-term is typable in intersection types iff it admits a simply-typable polyadic approximation. Such a sharp correspondence deserves to be treated more abstractly.

Fibrations

Type systems as morphisms of 2-operads

What is a type system? Melliès and Zeilberger [START_REF] Melliès | Functors are type refinement systems[END_REF] recently suggested an amazingly simple answer to this question: a type system is a functor, mapping a category D of derivations to a monoid C of programs. This is of course in the simple case in which programs are untyped; otherwise, C is also a category, and we speak more generally of a type refinement system. Melliès and Zeilberger's idea naturally applies to our operadic approach: for us, a type system is a morphism of 2-operads. Let us see how this works in the case of the simply-typed λ-calculus, whose operadic presentation we gave in Sect. 1.1.4.

Given a Church-style simply-typed λ-term δ, we denote by δ -its "erasure", i.e., the underlying pure λ-term with all typing annotations removed. Of course, a reduction sequence ρ : δ → * δ ′ in Λ ST induces a unique reduction sequence ρ -: δ -→ * δ ′-in Λ; moreover, (δ{ε/x}) -= δ -{ε -/x}, so we have a morphism of 2-operads, and thus a type system

Λ ST (•) - Λ
Although basic, this example showcases the essential idea behind Melliès and Zeilberger's view of type systems: Λ ST is a 2-operad of type derivations "over" the monochromatic 2-operad Λ; the object part of each forgetful functor (•) - Γ;A : Λ ST (Γ; A) → Λ(n) (where n is the length of Γ) takes a type derivation, i.e., a proof of a judgment of the form Γ ⊢ M : A, and gives its subject, i.e., M.

Note that, while Church-style typing is used in the definition of Λ ST , the type system (•) -expresses simple typing in Curry style: a pure λ-term M is simply-typable (rather than simply-typed) if it is in the image of (•) -. More conspicuously, consider the 2-operad NJ presenting propositional minimal natural deduction. In our language, the Curry-Howard correspondence reduces to the statement that there is an isomorphism of 2-operads CH : NJ ∼ = Λ ST , yielding NJ

(•) -•CH Λ
which is a reformulation of the above type system making no a priori use of Church-style typing.

Subject reduction/expansion and opfibrations/fibrations

It is a classical result that the (Curry-style) system of simple types for λ-terms enjoys subject reduction, i.e., typing is stable under reduction. Rephrased in the above language, this means that if there is δ ∈ Λ ST (Γ; A) such that δ -= M and a reduction ψ : M → * M ′ , then there exists

δ ′ ∈ Λ ST (Γ; A) such that δ ′-= M ′ .
Of course, nothing in the definition of morphism of 2operads forces this to hold. However, in the case of simple types, by inspecting the proof one notices that we actually have something stronger: there is a reduction τ : δ → * δ ′ such that τ -= ψ. Indeed, the typing derivation δ ′ is constructed from δ following the reduction sequence ψ. In categorical jargon, one says that the morphism (•) -enjoys a form of oplifting property. Dually, one may ask for a lifting property: if M = δ -and ψ : M ′ → * M, then there exists τ : δ ′ → * δ such that τ -= ψ. The reader will have recognized here what is usually called subject expansion. Although it fails in simple types, many intersection type systems do enjoy it.

Lifting (resp. oplifting) properties are at the heart of the categorical notion of fibration (resp. opfibration). However, one usually asks liftings and opliftings to be canonical in some sense, e.g. cartesian for Grothendieck (op)fibrations, or even unique for discrete (op)fibrations. In our case, type systems do not, except in extremely rare cases, ensure any form of canonicity. Therefore, to obtain the high level of generality we are aiming at, we are forced to consider a weaker notion of (op)fibration.

Naively, we would be led to ask mere existence of (op)liftings. For instance, we would define a weak fibration as a functor p : E → B such that, for all f : b → p(e ′) in B, there exists g : e → e ′ in E such that p(g) = f (in a discrete fibration, g is required to be unique; in a Grothendieck fibration, g is required to satisfy a minimality property). However, this naive approach appears to be inadequate. In fact, there does not seem to be a structure on the fibers p -1 (b) that encodes mere existence of liftings. For instance, if p : E → B is a discrete fibration, then the map

∂p : B → Set b → p -1 (b)
actually yields a contravariant functor (i.e., a presheaf). In the case of a Grothendieck fibration, the same map becomes a contravariant pseudofunctor in Cat. Mere existence of liftings does not seem to yield any structure of this sort. We do not claim that there is none; after all, plain functors, without any lifting property, do induce normal lax 2-functors in the category Dist of distributors (this is an old observation of Bénabou [START_REF] Bénabou | Distributors at work[END_REF]). So maybe there is some subcategory of Dist which corresponds to mere existence of liftings. . . we simply do not know. Luckily, there is an alternative approach offering a very robust solution.

Type systems as Niefield fibrations

There is a notion of functor which encompasses both fibrations and opfibrations: it is called a Conduché functor or, in the terminology of Johnstone [START_REF] Johnstone | A note on discrete conduché fibrations[END_REF], a Conduché fibration. These are functors enjoying a certain factorization lifting property, i.e., they lift compositions of arrows (and identities), rather than arrows themselves. Let us look at the discrete case, which was first studied by Johnstone [START_REF] Johnstone | A note on discrete conduché fibrations[END_REF].

A discrete Conduché fibration is a functor p : E → B such that, for every arrow k of E : identity lifting: if p(k) is an identity, then so is k;

factorization lifting: if p(k) = f ′ • f for some arrows f , f ′ of B, then there exists a unique pair g, g ′ of arrows of E such that k = g ′ • g, p(g) = f and p(g ′) = f ′ .
It is immediate to check that both discrete fibrations and discrete opfibrations are particular cases of discrete Conduché fibrations. It turns out that, when p is a discrete Conduché fibration, the fiber map ∂p has the structure of a pseudofunctor ∂p : B -→ DiscDist,

where DiscDist is the bicategory of sets and discrete distributors. A discrete distributor f : A -→ B is just a map assigning an arbitrary set f (a, b) to every pair (a, b)

∈ A × B. Composition of discrete distributors f : A -→ B, g : B -→ C is defined by (g • f)(a, c) := b∈B f (a, b) × g(b, c).
Because of the presence of the cartesian product, composition is only associative modulo a (natural) bijection, which is why DiscDist is a bicategory, not a plain category. There is a faithful embedding j : Set op → DiscDist (resp. i : Set → DiscDist) mapping every function to its opgraph (resp. graph).

It turns out that a discrete Conduché fibration p is a discrete (op)fibration precisely when ∂p factors through j (resp. i).1

What happens if we weaken the factorization lifting property to mere existence? It turns out that this has been studied by Niefield [START_REF] Niefield | Change of base for relational variable sets[END_REF], albeit in a slightly different context, and with a different focus, than the one concerning us: Niefield worked in a bicategorical framework and was interested in lax functors, whereas we will concentrate on plain functors. Nevertheless, there is a well-behaved notion of "weak discrete Conduché fibration", which we call more concisely Niefield fibration (even though the following definition is not explicitly given in [START_REF] Niefield | Change of base for relational variable sets[END_REF]): Definition 14 (Niefield fibration) Let B be a small category. A Niefield fibration on B is a functor p : E → B, with E an arbitrary small category, verifying: faithfulness: p is faithful; identity lifting: if p(k) is an identity, then so is k;

factorization lifting: if p(k) = f ′ • f for some arrows f , f ′ of B, then there exists a (not necessarily unique!) pair g, g ′ of arrows of E such that k = g ′ • g, p(g) = f and p(g ′) = f ′ .
Let p 1 : E 1 → B and p 2 : E 2 → B be Niefield fibrations. A relational morphism from p 1 to p 2 is a relation R ⊆ E 1 × E 2 on the objects of E 1 , E 2 such that:

• (e 1 , e 2) ∈ R implies p 1 (e 1) = p 2 (e 2);

• for every arrow f : b → b ′ of B and every e 1 ∈ E 1 such that p 1 (e 1) = b and e ′ 2 ∈ E 2 such that p 2 (e ′ 2) = b ′ , the following conditions are equivalent:

there exists g 2 : e 2 → e ′ 2 such that p 2 (g 2) = f and (e 1 , e 2) ∈ R; -there exists g 1 : e 1 → e ′ 1 such that p 1 (g 1) = f and (e ′ 1 , e ′ 2) ∈ R.

Note that discrete Conduché fibrations are necessarily faithful. Here, the lack of uniqueness forces us to require faithfulness explicitly. If p is a Niefield fibration on B, then the fiber map of p may be turned into a functor ∂p : B -→ Rel, where Rel is the category of sets and relations. It is important to stress that ∂p is a plain 1-functor, not a lax functor into Rel seen as a 2-poset, which is the situation considered more commonly in the literature, e.g. in [START_REF] Niefield | Change of base for relational variable sets[END_REF].

Niefield fibrations are a robust framework for speaking of mere existence of liftings and oplifitings. Consider the subcategory EntRel of Rel whose morphisms are entire relations, i.e., relations R ⊆ A × B such that, for all a ∈ A, there is b ∈ B such that (a, b) ∈ R. Then, (op)liftings exist (merely, not uniquely or in an otherwise canonical way) for a Niefield fibration p precisely when ∂p factors via the inclusion EntRel op → Rel (resp. EntRel → Rel).

Summing up, just as (discrete) fibrations are (discrete) Conduché fibrations satisfying a lifting property, the fibrations we were looking for, which we may call weak discrete fibrations, or wd-fibrations, are Niefield fibrations with an additional lifting property, except that, this time, nothing is asked of liftings other than their existence. Curiously, the lifting properties of (discrete) fibrations are so strong that they imply the factorization lifting property of (discrete) Conduché fibration, whereas mere existence is in some sense too weak to "have a life of its own", and must be asked together with a weak factorization lifting property (and faithfulness).

Although satisfactory (and the next section will give more reasons to be satisfied), the notion of Niefield fibration is of no use per se in our approach: for us, type systems are morphisms of 2-operads, not functors. So we need to boost everything up to the 2-operadic level, obtaining the formal definition of "type system" adopted in this thesis:

Definition 15 (type system) We say that a morphism of 2-operads p : E → B is a type system if, for all objects e 1 , . . . , e n , e of E , the functor p e 1 ,...,e n ;e is a Niefield fibration.

A relational morphism R between two type systems p 1 : E 1 → B and p 2 :

E 2 → B is • a relation R 0 ⊆ E 1 × E 2
between the objects of E 1 and the objects of E 2 ;

• for all objects Γ 1 = e 1 1 , . . . , e n 1 and e 1 of E 1 and for all objects Γ 2 = e 1 2 , . . . , e n 2 and e 2 of E 2 , such that for all 1 ≤ i ≤ n, (e i 1 , e i 2) ∈ R 0 and (e 1 , e 2) ∈ R 0 , a relational morphism R Γ 1 ;e 1 Γ 2 ;e 2 between the Niefield fibrations (p 1) Γ 1 ;e 1 and (p 2) Γ 2 ;e 2 . Type systems over a 2-operad B and relational morphisms between them form a category, which we denote TypeSys(B).

In terms of programming languages, faithfulness, identity lifting and factorization lifting correspond to the following properties:

• given a reduction ρ : M → * M ′ and type derivations δ of M and δ ′ of M ′ , there is at most one typed reduction ψ : δ → * δ ′ typing ρ (there may exist one such reduction for every couple of type derivations of M, M ′);

• empty reductions are never typed by non-empty reductions;

• reductions are typed "modularly": if a decomposable reduction is typed, then so are its components.

These seem to be reasonable requirements to ask of a type system. By the way, most common type systems do not even come with an explicit notion of "typing a reduction", so it does not make sense to ask whether they comply with the above restrictions. Before we move on, a side remark. The above notion of type system may look somehow wrong from the operadic viewpoint: it is a naive pointwise notion, the weak factorization lifting property is asked of horizontal composition of 2-arrows only, nothing is asked of operadic composition. There is a well-behaved (in the sense of the next section) notion of "operadic" Niefield fibration in which one also asks • the weak factorization lifting property for vertical (i.e. operadic) composition of 2-arrows;

• the unique factorization lifting property (i.e., that of discrete Conduché fibrations) for composition of multimorphisms.

However, this notion (which corresponds to asking that the morphism of Theorem 17 below be pseudo, rather than lax) turns out to be too strong for practical purposes: the factorization lifting property at the level of multimorphisms, be it unique or not, implies that every type derivation of t{u/x} decomposes (perhaps uniquely) in a type derivation for t and a type derivation for u; in particular, derivations necessarily type every subterm of their subject. While true in certain type systems (e.g. the systems of the λ-cube), this is definitely false in some intersection types systems, and for good reasons: in a "strict" (intersections only on the left of arrows) system characterizing head normalization, one must be able to type xΩ without typing Ω.

An operadic Grothendieck construction

We motivated our search for an adequate notion of fibration by claiming that any such notion should come with a way of endowing the fiber map with suitable structure. For instance, we said that a discrete fibration p on B induces a presheaf ∂p : B op → Set. Actually, we were telling only part of the story; the full story is that the correspondence should also go the other way around: any presheaf F : B op → Set induces a discrete fibration F : E (F) → B, where E (F) is the so-called category of elements of the presheaf F. This is known as (the discrete case of) the Grothendieck construction. Moreover, the two functors (-) and ∂(-) form an equivalence between the category of discrete fibrations on B (with suitable morphisms) and the presheaf category Set B op . When we said that the notion of Niefield fibration is robust, we meant in particular that a version of the Grothendieck construction is available for it: a Niefield fibration on B is the same thing as a presheaf B → Rel. We will present directly the construction at the 2-operadic level.

It is known that the equivalence between discrete fibrations and presheaves described above may be seen as a particular case of the "yoga" of classifying objects. In a given category C, one says that arrows of a certain kind K are classified by an object c endowed with a special arrow u : c * → c, if every arrow p : e → b of kind K arises as the pullback of u along an arrow f : b → c (usually referred to as "change of base"):

e G G p c * u b f G G c
Let us list a few examples:

• the most famous case is perhaps that of a subobject classifier, in which K is the class of monomorphisms. When C = Set, K becomes the class of injections, c = {0, 1} and u : { * } → {0, 1} is the map picking the truth value 1.

• If K = discrete fibrations, then C = Cat, c = Set op and u : Set op * → Set op is the forgetful functor from the category of pointed sets. In particular, given a presheaf f : B op → Set, the discrete Grothendieck construction builds a discrete fibration f simply by computing the pullback of u : Set op * → Set op along f op , so the category of elements of f is

E (f) = B f op × u Set op * .
• For K = Grothendieck fibrations, a similar picture holds with Cat in place of Set, and C is the category of 2-categories and pseudofunctors.

• In the case K = Niefield fibrations, we are back to C = Cat, the classifying object is Rel, and u : Rel * → Rel is the forgetful functor from pointed sets and pointed relations.

What we do below essentially amounts to finding the classifying object for type systems, which turns out to live in BiOp, the category of bioperads.

Let Rel be the following (large) bioperad:2

• objects are small categories;

• multimorphisms X 1 . . .

X n -→ Y are relational distributors, that is func- tors X 1 × • • • × X n × Y op → Rel.
• composition of multimorphisms is defined as the composition of distributors: given

G : Y 1 . . . Y m -→ Z and F : X 1 . . . X n -→ Y i , their composite G • i F is defined as the functor Y 1 × • • • × Y i-1 × (X 1 × • • • × X n) × Y i+1 × • • • × Y m × Z op → Rel
(y 1 , . . . , y i-1 , x 1 , . . . , x n , y i+1 , . . . , y m ; z) → y i ∈Y i G(y 1 , . . . , y i , . . . , y m ; z) × F(x 1 , . . . , x n ; y i)

where the integral sign is the standard notation for a coend (it has nothing to do with the Grothendieck construction). Composition in Rel is associative only modulo isomorphism.

• 2-arrows θ : F ⇒ G : X 1 . . . X n → Y are natural transformations of the underlying functors: a family of relations indexed by

X 1 × • • • × X n × Y op : ∀(x 1 , . . . , x n , y) ∈ X 1 × • • • × X n × Y op , θ x 1 ,...,x n ,y ⊆ F(x 1 , . . . , x n , y) × G(x 1 , . . . , x n , y).
satisfying naturality conditions.

Let now Rel * be the following (large) bioperad:

• objects are small pointed categories, that is couples (X, x) where X is a small category and x ∈ X;

• multimorphisms (X 1 , x 1) . . . (X n , x n) -→ (Y, y) are pointed relational distributors (F, f), that is functors

F : X 1 × • • • × X n × Y → Rel.
together with a point ξ ∈ F(x 1 , . . . , x n , y).

• composition of multimorphisms is defined as the composition of distributors: given

(G, υ) : (Y 1 , y 1) . . . (Y m , y m) -→ (Z, z), (F, ξ) : (X 1 , x 1) . . . (X n , x n) -→ (Y i , y i), the composite (G, υ) • i (F, ξ) is defined as the pair (G • i F, ζ)
, where ζ is the element of (G • i F)(y 1 , . . . , y i-1 , x 1 , . . . , x n , y i+1 , . . . , y m ; z) canonically corresponding to (υ, ξ);

• 2-arrows θ : (F, ξ) ⇒ (G, υ) : (X 1 , x 1) . . . (X n , x n) → (Y, y)
are natural transformations of the underlying functors such that, moreover,

(ξ, υ) ∈ θ x 1 ,...,x n ,y .
There is an obvious forgetful functor U : Rel * → Rel.

A lax natural transformation between two lax morphisms θ : F ⇒ G : B → Rel is defined as follows:

• for each b in B a distributor θ b : Fb -→ Gb;

• for each f : b 1 . . . b n → b in B, a 2-arrow θ f : G f • (θ b 1 , . . . , θ b n) ⇒ θ b • F f ,
that is a family of relations indexed by the objects of

Fb 1 × • • • × Fb n × Gb op , ∀(x 1 , . . . , x n , y) ∈ Fb 1 × • • • × Fb n × Gb op , (θ f) x 1 ,...,x n ,y ⊆ (G f • (θ b 1 , . . . , θ b n))(x 1 , . . . , x n ; y) × (θ b • F f)(x 1 , . . . , x n ; y),
that satisfy naturality conditions.

We say that a lax natural transformation is relational if, for every object b, the distributor θ b is a relation, that is, it is valued in a subsingleton.

Theorem 17 Let B be a small 2-operad. The category TypeSys(B) is equivalent to the category Rel B of lax morphisms B → Rel and relational lax natural transformations.

Proof. : Rel B → TypeSys(B) is defined by:

• given a lax functor F : B → Rel, F is the pullback of the forgetful functor U : Rel * → Rel along F. More explicitly, we denote by E (F) the pullback category:

the objects are pairs (b, x), where b is an object of B and x ∈ Fb;

-a multimorphism (b 1 , x 1) . . . (b n , x n) → (b ′ , x ′) is a pair (f , p) where f : b 1 . . . b n → b ′ is a multimorphism in B and p ∈ F f (x 1 , . . . , x n ; x ′); -given (g, q) : (b 1 , y 1) . . . (b m , y m) → (c, z), (f , p) : (a 1 , x 1) . . . (a n , x n) → (b i , y i), the composite (g, q) • i (f , p) is the pair (g • i f , (q, p)).
a 2-arrow θ :

(f , p) ⇒ (g, q) : (a 1 , x 1) . . . (a n , x n) → (b, y) is a family of relations indexed by Fa 1 × • • • × Fa n × Fb: ∀(α 1 , . . . , α n , β) ∈ Fa 1 × • • • × Fa n × Fb, θ α 1 ,...,α n ,β ⊆ F f (α 1 , . . . , α n , β) × Fg(α 1 , . . . , α n , β). such that (p, q) ∈ θ x 1 ,...,x n ,y .
F is just the first projection. It is not hard to check that it is a type system.

• Given a relational lax natural transformation θ : F ⇒ G, we define the relation θ from the objects of E (F) to the objects of E (G) by ((b, x), (b ′ , y)) ∈ θ iff b = b ′ and (x, y) ∈ θ b . For every list Γ = (a 1 , x 1), . . . , (a n , x n) of objects of E (F) and object (b, y) of E (F), and list ∀(e 1 , . . . , e n , e)

Γ ′ = (a ′ 1 , x ′ 1), . . . , (a ′ n , x ′ n) of objects of E (G) and object (b ′ , y ′) of E (G), the relation (θ) Γ;(b,y) Γ ′ ;(b ′ ,y ′) is empty unless a 1 = a ′ 1 , . . . , a ′ n = a n and b = b ′ , in which case, given (f , p) : (a 1 , x 1), . . . , (a n , x n) → (b, y) (g, q) : (a 1 , x ′ 1), . . . , (a n , x ′ n) → (b, y ′) we have ((f , p), (g, q)) ∈ (θ) Γ;(b,y) Γ ′ ;(b ′ ,y ′) just if (x 1 , x ′ 1) ∈ θ a 1 , . . . , (x n , x ′ n) ∈ θ a n , (y, y ′) ∈ θ b . One
∈ p -1 (b 1) × • • • × p -1 (b n) × p -1 (b) op ,
∂p(f)(e 1 , . . . , e n ; e) := {g : e 1 , . . . , e n → e | p(g) = f } and, for all 1 ≤ i ≤ n, given k i : e i → e ′ i arrows of p -1 (b i) and k : e ′ → e an arrow of p -1 (b), respectively,

∂p(f)(k 1 , . . . , k n ; k) := {(g, g ′) | g = k • g ′ • (k 1 , . . . , k n)}; -for θ : f ⇒ f ′ : b 1 . . . b n → b in B, ∂p(θ) e 1 ,.
..,e n ;e is the relation

{(g, g ′) ∈ ∂p(f)(e; e) × ∂p(f ′)(e; e) | ∃ρ : g ⇒ g ′ , p(ρ) = θ}.
This defines a lax functor ∂p : B → Rel.

• Given a relational morphism R between type systems p 1 : E 1 → B and

p 2 : E 2 → B, -for b an object of B, ∂R b is R restricted to p -1 1 (b) × p -1 2 (b), i.e., the relations R 0 and R e 1 ,e ′ 1 e 2 ,e ′ 2 (with e 1 , e ′ 1 ∈ p -1 1 (b) and e 2 , e ′ 2 ∈ p -1 2 (b)) in- duce a distributor ∂p 1 (b) -→ ∂p 2 (b) which is a relation (i.e.
, valued in a subsingleton), and we take this to be ∂R b .

with the above definition, given

f : b 1 , . . . , b n → b in B, we have ∂R b • ∂p 1 (f) ∼ = {g 1 : e 1 1 , . . . , e n 1 → e 1 | p 1 (g 1) = f }, ∂p 2 (f) • (∂R b 1 , . . . , ∂R b n) ∼ = {g ′ 2 : e 1 2 , . . . , e n 2 → e 2 | p 2 (g ′ 2) = f }.
The family of relations (∂R f) e 1 1 ,...,e n

1 ;e 2 is then defined to contain all pairs (g ′ 2 , g 1) such that there exists g ′ 1 and a 2-arrow g 1 ⇒ g ′ 1 such that (g ′ 1 , g ′ 2) ∈ R e 1 ;e 1 e 2 ,e 2 (which, by definition of relational morphism of Niefield fibrations, is equivalent to the existence of g 2 and a two arrow g 2 ⇒ g ′ 2 such that (g 1 , g 2) ∈ R e 1 ;e 1 e 2 ,e 2).

This defines ∂R as a relational lax natural transformation between ∂p 1 and ∂p 2 .

The fact that (-) and ∂(-) form an equivalence of categories follows from elementary calculations, applying the above definitions. □

Intersection Types from Polyadic Approximations 2.3.1 The approximation presheaf

Technicalities aside, Theorem 17 is important because it gives us an alternative viewpoint on what a type system is. Fix a monochromatic 2-operad L presenting an untyped programming language (the restriction to one color is not necessary, it is just a simplifying assumption). As long as we accept Definition 15, a type system on L is:

• a morphism p : E → L such that each functor p Γ;A is a Niefield fibration (this is Melliès and Zeilberger's original point of view);

• a lax morphism F : L → Rel.

The Grothendieck construction of Theorem 17 tells us that the two viewpoints are equivalent. The first viewpoint is the most natural:

• the types are the colors of E ;

• a subtyping relation A <: B holds if the identity program id * is in the image of p A;B ;

• given types Γ, A, the multimorphisms of E (Γ, A) are derivations of judgments of the form Γ ⊢ t : A, and the 2-arrows are typed computations relating them;

• p sends a derivation to its subject (t in the above notation) and a typed computation to the underlying computation;

• a program t is typable when it is in the image of p Γ;A for some types Γ, A;

• subject reduction/expansion is oplifting/lifting of computations.

By contrast, in the presheaf viewpoint:

• the types are the objects of F(*), where * is the only color of L;

• a subtyping relation A <: B holds if there is an arrow A → B in F(*);

• given a program t and types Γ, A, F(t)(Γ; A) is the set of derivations of Γ ⊢ t : A;

• given a computation ρ : t → * t ′ and types Γ, A, F(ρ) Γ;A ⊆ F(t)(Γ; A) × F(t ′)(Γ; A) relates derivations typing t with derivations typing t ′ along ρ, i.e., it tells all possible ways in which ρ acts on a derivation typing t to yield a derivation typing t ′ ;

• a program t is typable when F(t)(Γ; A) ̸ = ∅ for some types Γ, A;

• subject reduction (resp. expansion) corresponds to the fact that, for every computation ρ and types Γ, A, the relation F(ρ) Γ;A is entire (resp. opentire, i.e., surjective).

It is thanks to this alternative view of type systems as (operadic, relational, lax) presheaves that polyadic approximations come back to center stage.

In what follows, we fix an arbitrary suboperad D → Poly c , the 2-operad of simply-typed polyadic cartesian terms, introduced in Fig. 1.9.

Definition 16 (category of types)

We define the following sets, seen as discrete categories: T

T l [D] := {A | the polyadic type A is a color of D}; T c [D] := {⟨A 1 , . . . , A n ⟩ | A i ∈ T l [D]}.
c [D] m × T l [D] n × T s [D] op → Rel;
since the source categories are discrete, this is just a map assigning a set to each element of

T c [D] m × T l [D] n × T s [D]. Let Θ ∈ T c [D] m , i.e., Θ = ⟨B 1 1 , . . . , B 1 k 1 ⟩, . . . , ⟨B m 1 , . . . , B m k m ⟩;
we define Θ to be the polyadic context containing exactly the judgments x i j :

B i j for all 1 ≤ i ≤ m, 1 ≤ j ≤ k i . Then, for Γ ∈ T l [D] n and A ∈ T s [D], we set Apx[D](T)(Θ, Γ; A) := δ ∈ D(Θ, Γ; A) | Ξ ⊢ δ -⊏ T ,
where Ξ consists of exactly x i j ⊏ x i for all 1 ≤ i ≤ m, 1 ≤ j ≤ k i .

•

Apx[D](φ) Θ,Γ;A := (δ, δ ′) ∈ Apx[D](T)(Θ, Γ, A) × Apx[D](T ′)(Θ, Γ, A) | ∃τ : δ → * δ ′ in D(Θ, Γ; A) s.t. Ξ ⊢ τ -⊏ φ ,
with Θ and Ξ defined as above. So, (δ, δ ′) ∈ Apx[D](φ) Θ,Γ;A if these are related by a typed reduction approximating φ.

Observe that Apx[D] is only a lax morphism (not pseudo): consider a closed term !T : c and a term T ′ : l such that fv(T ′) = {x} (so T ′ • 1 !T = T ′ {!T/x}), and fix a type A. We have

Apx[D](T ′ • 1 T)(; A) = ε ∈ (; ⊢ D A) | ε -⊏ T ′ {!T/x} =: E,
whereas, once composition of distributors is spelled out, we have

Apx[D](T ′) • 1 Apx[D](T) (; A) = ⟨B⟩∈T c [D] D ′ B × D B =: E ′ ,
where

D ′ B := δ ′ ∈ (x : B; ⊢ D A) | x ⊏ x ⊢ δ ′-⊏ T ′ , D B := ⟨δ⟩ ∈ (; ⊢ D ⟨B⟩) | ⟨δ⟩ -⊏ !T . Now, for each (δ ′ , ⟨δ⟩) ∈ E ′ , we have δ ′ {⟨δ⟩/x} -= δ ′-{⟨δ⟩ -/x} ⊏ T ′ {!T/x}, so E ′ → E.
However, such an injection is not reversible in general because ε -⊏ T{!T ′ /x} does not always induce a typed approximation of !T: x may be in a box inside T ′ which is approximated by ⟨⟩, meaning that the typing derivation ε does not type T at all (think of T ′ = !(xI) and ε -= ⟨⟩).

Note however that the definition of Apx[D] does not exploit the full generality of Theorem 17: the categories of types (i.e., the images of the colors of Λ !) are always discrete. Introducing non-trivial arrows among polyadic types would lead to non-trivial subtyping relations on intersection types. We leave this possibility for future developments.

Nevertheless, the approximation presheaf is the cornerstone of a very general framework for constructing intersection types systems. Indeed, suppose we have a morphism of operads G : L → Λ ! , i.e., L is a programming language admitting a semantic-preserving embedding in intuitionistic linear logic. Then, we have a lax morphism

L G -→ Λ ! Apx[D]
-→ Rel to which we may apply the Grothendieck construction of Theorem 17, which gives a type system for L in the sense of Melliès and Zeilberger

E (Apx[D] • G) (Apx[D] • G) L
We claim that this is an intersection types system for L in the spirit of the correspondence of Sect. 2.1 (the attentive reader will have noticed that the approximation presheaf was defined exactly with that correspondence in mind).

The suboperad D must be seen as an operad of "valid" derivations, i.e., in certain intersection types systems we may want to exclude certain polyadic approximations (for instance the empty approximation ⟨⟩). It is a parameter of the construction, along with G. Actually, we will see later that Λ ! (and Poly c) is also, in a sense, a parameter, i.e., it is not the most general 2-operad for which polyadic approximation presheaves may be defined. By definition of the Grothendieck construction, we know this results from computing the following strict pullback in BiOp: (M, δ) must be seen as a derivation typing M, which consists of a "valid" polyadic simply-typed derivation of Γ ⊢ t : A such that t ⊏ G(M).

E [D, G] p[D,G] q G G Rel * U L G G G Λ ! Apx[D] G G Rel
• A similar analysis shows that, given types A, Γ as above and

(M, δ), (M ′ , δ ′) ∈ E [D, G](Γ; A), a 2-arrow (M, δ) → (M ′ , δ ′) is a pair (ψ, τ) such that ψ : M → * M ′ in L(n), τ : δ → * δ ′ in D(Γ; A) and τ -⊏ G(ψ), i.
e., M → * M ′ via ψ and there is a polyadic reduction approximating ψ which may be given a "valid" type as a reduction δ → * δ ′ .

In particular, M is (D, G)-typable iff there exists δ in D(Γ; A) such that δ -⊏ G(M), exactly as in the correspondence described at the end of Sect. 2.1.

Capturing dynamic properties

Most well known intersection type systems for the λ-calculus (or minor reformulations of them) arise from the above construction, i.e., they are isomorphic to p[D, G] for some choice of D and G. For instance, p[Poly l , G 0] (where Poly l are linear derivations and G 0 : Λ 0 → Λ ! is Girard's call-by-name encoding defined in Sect. 1.2.2) gives rise to Gardner's system [START_REF] Gardner | Discovering needed reductions using type theory[END_REF] as discussed in Sect. 2.1. Many more examples will be given in Sect. 2.4.2. What is more important, however, is that this abstract setting also allows us to prove a quite general theorem through which the usual properties of intersection type systems may be recovered. Intersection types are known for their ability to capture dynamic (or runtime) properties of programs, most notably various kinds of termination. We will start by giving a somewhat general definition of what a "dynamic property" may be in our context.

Definition 19 (dynamic property)

Let L be a 2-operad. A strong dynamic property for L is a set of 2-arrows of L. Given such a set R, we let S(R) be the set of all multimorphisms M of L such that there is no sequence (ψ i :

M i → * M i+1) i∈N of non-identity 2-arrows of R with M 0 = M.
A weak dynamic property of L consists of a triple (R, N , Ctxt) such that

• R is a set of 2-arrows of L;

• N is a set of multimorphisms of L;

• Ctxt is a set of functions on multimorphisms of L.

We write C{M} for the multimorphism of L resulting from the application of C ∈ Ctxt to a multimorphism M. Given such a triple, we let W (R, N , Ctxt) be the set of all multimorphisms M of L such that there exist C ∈ Ctxt, N ∈ N and ψ : C{M} → * N in R.

The intuition between strong and weak dynamic properties is that they express some kind of strong or weak normalization. For what concerns the first, this is clear from the definition: R represents a notion of reduction and S(R) is the set of strongly R-normalizing terms (seen as multimorphisms). For what concerns the latter, R is still a notion of reduction, N represents a notion of normal form and Ctxt a notion of "legal" contexts, so W (R, N , Ctxt) is the set of terms having a N -form reachable via a reduction in R, modulo an initial manipulation in Ctxt.

Definition 20 (faithful reduction, full expansion) Let D → Poly c and G : L → Λ ! . Let R be a strong dynamic property for L. We say that the pair (D, G) is faithfully reductive with respect to R if, for all ρ ∈ R and for all types Γ, A

subject reduction: (Apx[D] • G) (ρ) Γ;A is entire; equivalently, p[D, G] oplifts every 2-arrow of R; faithfulness: if (Apx[D] • G) (ρ) Γ;A ̸ = ∅
(Apx[D] • G)(ψ) Γ;A is entire, which implies the existence of δ ′ ∈ (Apx[D] • G)(M ′)(Γ; A)
such that there is τ : δ ⇒ δ ′ , giving an oplifting (ψ, τ) of ψ, but it is not the diagonal, which means that we may choose δ ′ ̸ = δ and, in particular, τ ̸ = id δ . □

Lemma 19 Let D → Poly c and G : L → Λ ! .

1. Let R be a strong dynamic property for L and suppose that (D, G) is faithfully reductive with respect to it. Then, for every multimorphism M of L, M (D, G)-typable implies M ∈ S(R).

2. Let (R, N , Ctxt) be a weak dynamic property for L and suppose that (D, G) is fully expansive with respect to it. Then, for every multimorphism M of L, M ∈ W (R, N , Ctxt) implies M (D, G)-typable.

Proof. Let us start with point 1. Let M be (D, G)-typable and suppose, for the sake of absurdity, that there is a sequence (ψ i :

M i ⇒ M i+1) i∈N of non-identity 2-arrows of R with M 0 = M. Since M is (D, G)-typable, there exist Γ, A and a derivation δ such that (M, δ) ∈ E [D, G](Γ; A).
In particular, M is the image of (M, δ) via p[D, G] Γ;A . Now, since ψ 0 ∈ R, this functor oplifts it by the subject reduction hypothesis, so there is (ψ 0 , τ 0

) : (M, δ) ⇒ (M 1 , δ 1) in E [D, G](Γ; A). In particular, M 1 too is in the image of p[D, G] Γ;A .
Furthermore, by Lemma 18, we may suppose τ 1 not to be an identity. We may now re-apply the reasoning to M 1 and ψ 1 , then to M 2 and ψ 2 , and so on, obtaining a sequence (τ i : δ i ⇒ δ i+1) i∈N of non-identity arrows in D(Γ; A), with δ 0 = δ. We have therefore shown that δ is not strongly normalizing, contradicting Proposition 5 (remember that D → Poly c).

For what concerns point 2, suppose M ∈ W (R, N , Ctxt), i.e., there exist C ∈ Ctxt, N ∈ N and ψ : C{M} ⇒ N in R. By fullness, there are types Γ, A and a derivation ε such that (N, ε) ∈ E [D, G](Γ; A). In particular, N is the image of (N, ε) via p[D, G] Γ;A . Now, since ψ ∈ R, this functor lifts it by the subject expansion hypothesis, so there is (ψ, τ) : (C{M}, δ) ⇒ (N, ε), showing in particular that C{M} is (D, G)-typable, so we conclude by fullness. □

Combined, the two parts of the above result immediately give what we may call "the fundamental theorem of intersection types":

Theorem 20 Let L be a 2-operad, let R and (R 0 , N , Ctxt) be a strong and a weak dynamic property for it such that S(R) ⊆ W (R 0 , N , Ctxt), and suppose that (D → Poly c , G : L → Λ !) is both faithfully reductive with respect to the former and fully expansive with respect to the latter. Then, for every multimorphism M of L, the following are equivalent:

1. M is (D, G)-typable; 2. M ∈ S(R); 3. M ∈ W (R 0 , N , Ctxt).
Observe that the proof of the implication (3)⇒(1) of Theorem 20, which is given by point 2 of Lemma 19, is completely standard: we apply subject expansion to typability of normal forms. On the other hand, the proof of (1)⇒(2), which is point 1 of Lemma 19, is an abstraction of an argument of Bucciarelli, Piperno and Salvo [START_REF] Bucciarelli | Intersection types and lambda-definability[END_REF], who reduced the soundness of Coppo, Dezani and Venneri's intersection types system [START_REF] Coppo | Functional characters of solvable terms[END_REF] to the strong normalization of the simply-typed λ-calculus. In Theorem 20, the soundness of every well-known system of intersection types is, essentially, reduced to the strong normalization of simply-typed polyadic calculi (Proposition 5) which, in turn, reduces to the strong normalization of propositional linear logic. This is interesting because it gives a simple, uniform proof, instead of plenty of ad hoc reducibility/logical relation arguments (such as those found in [START_REF] Krivine | Lambda Calculus, Types and Models[END_REF]) or, in the non-idempotent case, ad hoc combinatorial arguments (e.g. [Kfo00, BL13, KV16]).

Theorem 20 also tells us something interesting about intersection types disciplines: they always relate, albeit often in a hidden way, a dynamic property of "universal" flavor (strong normalization) with one of "existential" flavor (weak normalization).

Applications

A worked out example

We will now present a series of interesting instances of Theorem 20, starting from a detailed example. First, however, let us give a sufficient condition for faithfulness with respect to a strong dynamic property, which will turn out be quite useful:

Lemma 21 Let D → Poly c , G : L → Λ ! and let R be a strong dynamic property for L such that p[D, G] oplifts every 2-arrow of R. Suppose furthermore that, for all ψ ∈ R:

1. if G(ψ) is an identity, then so is ψ; 2. if δ is an identity 2-arrow of D such that δ -⊏ G(ψ), then G(ψ) is an identity.

Then, (D, G) is faithfully reductive with respect to R.

Proof. Subject reduction holds by hypothesis, so we need to prove faithfulness. Let ψ ∈ R, let Γ, A be types and suppose (Apx[D] • G)(ψ) Γ;A ̸ = ∅ and to be the diagonal. This means that there exists δ such that τ : δ → * δ and τ -⊏ G(ψ). Now, since polyadic simply-typed terms normalize (Proposition 5), we must have τ = δ (the identity), so G(ψ) is an identity by hypothesis 2, hence ψ is an identity by hypothesis 1, as desired. □

Let us discuss Lemma 21. Its hypothesis (1) says that the embedding G does not loose too much information, i.e., it does not map non-identity reductions of R to identity reductions. This is a very mild requirement: in fact, it is true in the most general way (i.e., with R = all 2-arrows) for all the embeddings we consider. This is because Λ ! is usually finer than L.

The interesting property is hypothesis (2): it says that we never type an "important" non-identity reduction (i.e., one of R) with the identity reduction. How can this happen? Suppose that ψ is not an identity (so, by (1), φ := G(ψ) is not an identity) and suppose that δ -⊏ φ, against hypothesis (2). By functoriality, t := δ -is also an identity. By inspecting Fig. 1.11, we see that the only way that t ⊏ φ may be derivable is by using the rules box and theta; more specifically, φ : T → * T ′ and the reduction happens "inside" a box of T which is approximated by ⟨⟩ in t. So, the intuition behind hypothesis (2) is that we must make sure that the typing derivations of D do not make "important" redexes disappear by abusing empty approximations.

The above discussion is interesting because it gives the intuition behind faithfulness: not only do we want subject reduction, we also want it to reflect the computation being performed. Indeed, subject reduction may hold because, when M → M ′ , the derivation δ typing M ′ is the same as that typing M. Typically, as explained above, this happens because the redex fired in M to obtain M ′ is not typed by δ, so the modifications induced by the reduction are invisible to the typing. While this is not forbidden in general, it must not happen for the reductions of which we are trying to capture termination (i.e., those in R).

Let us give an example, which we will work out in detail. Our goal is to show that the multimorphisms of E [Poly l , G 0] are isomorphic to the derivations of Gardner-de Carvalho's non-idempotent intersection type system [START_REF] Gardner | Discovering needed reductions using type theory[END_REF] (Fig. 2.1). Before we dive in, let us point out that, for all types Γ, A and for every reduction ψ of Λ k , (Apx[Poly l] • G 0)(ψ) Γ;A is bientire, which means that this system will satisfy both subject reduction and subject expansion with respect to every reduction. However, it is faithfully reductive only with respect to head reduction. For instance, let I := λy.y, M := x(I I) and M ′ := xI, and consider the (non-head) reduction ψ : M → M ′ . Let t := x⟨⟩ and let δ be the obvious linear derivation of x : ⟨⟩ ⊸ α; ⊢ t : α (referring to Fig. 1.9, δ is obtained by applying an app rule to the conclusions of a pvar rule and a nullary box rule). Note that t ⊏ G 0 (M), because ⟨⟩ ⊏ !T for every T. Now, G 0 (ψ) : x!(G 0 (I)!G 0 (I)) → * x!G 0 (I), i.e., the reduction happens inside a !(-). Using the box rule of Fig. 1.11, we get t ⊏ G 0 (ψ). Since δ -= t, we have (δ, δ) ∈ Apx[Poly l , G 0](ψ) ⟨⟩⊸α;α . In fact, δ is the only derivation with that type, so the above relation is a non-empty diagonal, giving the desired counterexample to faithfulness.

By contrast, head redexes never appear under a !(-) via G 0 , so they may never be "forgotten" by approximations. Hence, by Lemma 21, (Poly l , G 0) is faithfully reductive for R = head reductions (we are of course working with L = Λ k). Note that S(R) is the set of terms whose head reduction terminates (in fact, it is the of term whose head reduction strongly terminates, but that makes no difference because head reduction is deterministic).

Let now R 0 = all reductions, N = head normal forms, Ctxt = {id}.

We have that W (R 0 , N , Ctxt) is the set of terms having a head normal form.

It is straightforward to see that head normal forms are typable (just assign a type of shape ⟨⟩ ⊸ • • • ⊸ ⟨⟩ ⊸ α to the head variable), so (Poly l , G 0) is fully expansive. It is obviously the case that S(R) ⊆ W (R 0 , N , Ctxt) (if head reduction terminates for M, then M certainly has a head normal form). Therefore, by Theorem 20, (Poly l , G 0)-typability characterizes having a head normal form and, moreover, we get for free that having a head normal form is the same as saying that head reduction terminates. This latter fact is not immediate: syntactic proofs require a form of standardization. So, we know we have a type system characterizing head normalization, but what does it look like?3 Since no restrictions on Poly l are imposed, its set of types is equal to all polyadic simple types. Its derivations are pairs (M, δ) consisting of a λ-term M and a linear polyadic simply-typed derivation δ of Θ; ⊢ t : A such that t ⊏ G 0 (M). We know that the context Θ is entirely polyadic because λ-terms only have variables of type v, and G 0 (v) = c. Moreover, we know that t : l because we are considering the restriction of G 0 to Λ 0 , the subcategory of Λ k in which only terms of type t are considered, and G 0 (t) = l.

Let fv(M) ⊆ {x 1 , . . . , x n }. If we make explicit the approximation context, i.e., which free polyadic variables of t approximate which free variables of G 0 (M) (which coincide with those of M), we get

x 1 ⊏ x 1 , . . . , x n ⊏ x n ⊢ t ⊏ G 0 (M).
This also means that Θ = x 1 : C 1 , . . . , x n : C n . Superposing approximation judgments and typing judgments (as we did in Sect. 2.1), we get judgments of the form

x 1 ⊏ x 1 : C 1 , . . . , x n ⊏ x n : C n ⊢ t ⊏ G 0 (M) : A, where x i ⊏ x i : C i abbreviates x i 1 ⊏ x i : C i 1 , . . . , x i k i ⊏ x i : C i k i
. Now, by inspecting Fig. 1.11 and Fig. 1.9, we see that linear approximations and linear derivations are both syntax-directed. Therefore, the structure of M guides the structure of δ, and we have only three possibilities:

x 0 ⊏ x : A; ⊢ x 0 ⊏ G 0 (x) : A pvar ; a : ⃗ A ⊢ a : ⃗ A var Γ, x ⊏ x : A; ⊢ t ⊏ G 0 (M) : B Γ; a : ⃗ A ⊢ t[⟨x⟩ := a] ⊏ G 0 (M)[!x := a] : B let Γ; ⊢ λa.t[⟨x⟩ := a] ⊏ G 0 (λx.M) : ⃗ A ⊸ B lam Γ; ⊢ t ⊏ G 0 (M) : ⃗ A ⊸ B Γ 1 ; ⊢ u 1 ⊏ G 0 (N) : A 1 . . . Γ n ; ⊢ u n ⊏ G 0 (N) : A n Γ ′ 1 , . . . , Γ ′ n ; ⊢ ⟨u 1 , . . . , u n ⟩ ⊏ !G 0 (N) : ⃗ A box Γ, Γ ′ 1 , . . . , Γ ′ n ; ⊢ t⟨u 1 , . . . , u n ⟩ ⊏ G 0 (MN) : B app where ⃗ A = ⟨A 1 , . . . , A n ⟩.
If we only retain the purple decorations, forget the intermediate steps not typing terms of the form G 0 (-) and if, in the context, we write x : ⟨A 1 , . . . , A n ⟩ instead of x 1 ⊏ x : A 1 , . . . , x n ⊏ x : A n , we obtain precisely Gardner's system [START_REF] Gardner | Discovering needed reductions using type theory[END_REF]. Actually, we also have a fourth rule allowing to permute types in sequences in the context, resulting from the exchange rule on Poly l contexts (this is the perm rule of Fig. 2.1).

Other examples

Head normalization. It is easy to see that, more generally, (Poly p , G 0) for any p induces a type system characterizing head normalization. The most general, when p = c, is depicted in Fig. 2.2. This is just a (strict, in the sense of [vB95]) reformulation of the standard system called DΩ in [START_REF] Krivine | Lambda Calculus, Types and Models[END_REF], the variant with Ω of [START_REF] Coppo | Functional characters of solvable terms[END_REF]. The other systems are obtained by discarding one or both of the rules weak and cntr: the former enables basic subtyping (i.e., A ∧ B ≤ A) and makes the system non-relevant; the latter makes the system idempotent. The rule weak 0 cannot be discarded, it is necessary to make the system complete (e.g. it is needed to type λx.y).

Solvability.

The above systems actually characterize solvability. It is a classic result of Wadsworth [START_REF] Wadsworth | Semantics and Pragmatics of the Lambda Calculus[END_REF] that solvability and head normalization coincide, so this would be a trivial remark if it were not for the fact that we may prove it independently of Wadsworth's result, thus yielding an alternative, type-theoretic proof of his theorem. Indeed, let R be head reductions, as Types: A, B ::= α ⟨A 1 , . . . , A n ⟩ ⊸ B Rules:

x : ⟨A⟩ ⊢ x : A var Γ, x : ⃗ A ⊢ M : B Γ ⊢ λx.M : ⃗ A ⊸ B lam Γ ⊢ M : ⟨A 1 , . . . , A n ⟩ ⊸ B ∆ 1 ⊢ N : A 1 . . . ∆ n ⊢ N : A n Γ • ∆ 1 • • • ∆ n ⊢ MN : B app Γ, x : ⟨A 1 , . . . , A n ⟩ ⊢ M : C Γ, x : ⟨A σ(1) , . . . , A σ(n) ⟩ ⊢ M : C exch Γ ⊢ M : C Γ, x : ⟨⟩ ⊢ M : C weak 0 x ̸ ∈ Γ Γ, x : ⟨B 1 , . . . , B n ⟩ ⊢ M : C Γ, x : ⟨B 1 , . . . , B n , A⟩ ⊢ M : C weak Γ, x : ⟨B 1 , . . . , B n , A, A⟩ ⊢ M : C Γ, x : ⟨B 1 , . . . , B n , A⟩ ⊢ M : C cntr Figure 2
.2: Cartesian intersection type system characterizing head normalization. In the app rule, Γ • ∆ is concatenation as in Fig. 2.1. Non-idempotent or relevant variants are obtained by removing the rule cntr or weak, respectively (but not weak 0). Gardner's system (Fig. 2.1) is obtained by removing both.

above, so that S(R) is the set of all λ-terms having a head normal form, and let R 0 = all reductions, N = {I},

Ctxt = applicative contexts,
where I is the identity λ-term and applicative contexts are of the form {•}N 1 • • • N n . By definition, W (R 0 , N , Ctxt) is the set of solvable λ-terms. Now, it is immediate that S(R) ⊆ W (R 0 , N , Ctxt) (if a λ-term has a head normal form, it is solvable). We know that any of the systems of Fig. 2.2 is faithfully reductive with respect to R. It is easy to see that it is also fully expansive with respect to (R 0 , N , Ctxt): we know we have subject expansion, I is obviously typable and it is immediate to see that, if MN 1 • • • N n is typable, then so must be M. So Theorem 20 applies, and we have that a term is solvable iff it has a head normal form iff it is typable in one of the systems of Fig. 2.2. The possibility of using intersection type systems to give an alternative proof of Wadsworth's result was already pointed out by Bucciarelli, Kesner and Ronchi Della Rocca [START_REF] Bucciarelli | The inhabitation problem for non-idempotent intersection types[END_REF] (specifically, they used Gardner-de Carvalho's system).

Note that this particular application uses a non-trivial set of functions Ctxt. In the sequel, we will always use Ctxt = {id} (the identity function), so we will never specify it again, and we will write W (R, N) for W (R, N , {id}).

Strong normalization. Let now D ∈ {Poly c , Poly a } and let D sn be its full suboperad on the ⟨⟩-free types, i.e., the empty sequence ⟨⟩ is not allowed, and consider the pair (D sn , G 0). The resulting type system is obtained from Fig. 2.2 by disallowing the use of ⟨⟩ in types, which means that the weak 0 rule must be modified to derive Γ, x : ⟨A⟩ ⊢ M : C from Γ ⊢ M : C (also, in the affine case, the rule cntr must be dropped). The idempotent system (i.e., with contraction) is just a reformulation of the system originally introduced by Coppo, Dezani and Venneri [START_REF] Coppo | Functional characters of solvable terms[END_REF].

Since the type ⟨⟩ is the only way to type the term ⟨⟩, empty polyadic approximations are not allowed in D sn ; in particular, whenever t ⊏ G 0 (M) with t typable in D sn , no redex of M may be "forgotten" by t. This means that the identity reduction cannot approximate a non-identity reduction, ensuring faithfulness with respect to all reductions (subject reduction is easy to show).

It is also easy to show that all normal forms are typable. However, subject expansion fails in general (and for good reasons, see below); it only holds for non-erasing reductions. In the λ-calculus, a reduction step firing a redex

(λx.M)N is non-erasing if x ̸ ∈ fv(M) implies N normal.
Indeed, if (λx.M)N → M because x ̸ ∈ fv(M), and if t ⊏ M is a typable approximation, we cannot use the approximation (λa.t[⟨⟩ := a])⟨⟩ ⊏ G 0 ((λx.M)N) in order to expand, because this is not typable in D sn . However, we know that N is normal, hence typable, hence there exists u ⊏ N typable in D sn , so we may use the approximation (λa.t[⟨z⟩ := a])⟨u⟩, where z does not appear in t and may be given the type of u. This latter point shows the necessity of weakening.

So, if R denotes the set of all reductions, R 0 the set of non-erasing reductions and N the set of normal forms, we have that S(R) is the set of strongly normalizable λ-terms, whereas W (R 0 , N) is the set of λ-terms having a normal form via a non-erasing reduction. Since being strongly normalizable implies having a normal form under any kind of reduction, Theorem 20 applies and we have that a λ-term is strongly normalizable iff its normal form may be found by non-erasing reduction iff it is (D sn , G 0)-typable.

Note that R 0 may be restricted to any set of non-erasing reductions whose normal forms are the normal forms tout court. In particular, we may take R 0 to be what Barendregt calls the perpetual strategy [START_REF] Henk | The Lambda Calculus, Its Syntax and Semantics[END_REF], and obtain the result (shown therein) that the perpetual strategy terminates on M iff M is strongly normalizable.

Weak normalization. Let D wn be the suboperad of Poly p (for arbitrary p) in which typing judgments Θ; Γ ⊢ t : A are restricted so that A (resp. a type in Θ, Γ) may only contain occurrences of ⟨⟩ in negative (resp. positive) position, and consider the pair (D wn , G 0). The corresponding type systems are obtained from Fig. 2.2 in the obvious way (simply restrict typing judgments).

In this case, subject reduction and expansion are unproblematic for all reductions. It is also easy to show that all normal forms are typable, so the pair is fully expansive with respect to (R 0 , N) where R 0 is all reductions and N are the normal forms. Note that W (R 0 , N) is just the set of (weakly) normalizable λ-terms.

This time, what fails in general is faithfulness. Indeed, it holds for reductions which only fire redexes whose applicative depth is minimal among all redexes, the applicative depth of a subterm N of M being the number of times one must cross the argument position of an application to reach N from the root of the syntactic tree of M. Such reductions are called Böhm reductions, because they iterate head reduction and gradually reveal the Böhm tree of a term: the head redex is at minimum depth; once the head variable is found, one starts entering in its arguments, and so on.

The intuition behind faithfulness for Böhm reductions is the following. Let ψ : M → M ′ be a non-identity reduction such that Hψ is a Böhm reduction and suppose that h is a polyadic term typable in D wn such that h⟨⟩ ⊏ G 0 (Hψ), contradicting faithfulness. Since Hψ is a Böhm reduction, H must be of the form xN 1 • • • N k (if instead of x we had an abstraction, there would be a redex at strictly lower applicative depth). But then the type of x must be of the form

⃗ C 1 ⊸ • • • ⊸ ⃗ C k ⊸ ⟨⟩ ⊸ A with ⟨⟩ appearing negatively, which is not allowed in a context of D wn .
So, if we take R to be Böhm reductions, we have that S(R) is obviously contained in the set of normalizable terms, and Theorem 20 gives us that a term is (weakly) normalizable iff every Böhm reduction starting from it terminates iff it is (D wn , G 0)-typable.

With a little bit of work, one may repeat the above with R equal to the so-called leftmost strategy, which always reduces the leftmost redex. We thus obtain as an application of Theorem 20 that a term has a normal form iff the leftmost strategy terminates on it, a classical result whose syntactic proof requires a non-trivial standardization theorem [START_REF] Henk | The Lambda Calculus, Its Syntax and Semantics[END_REF].

Non-strict intersection types. So far we have always built systems in which intersections appear only to the left of arrows. As mentioned above, these are sometimes called "strict" intersection types and are a strict subset of the intersection types originally introduced by Coppo and Dezani [START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF], which allow intersections everywhere (e.g., A → A ∧ A is a valid intersection type).

As a matter of fact, this is a consequence of our choice of embedding of the λ-calculus in linear logic: we are using the morphism G 0 : Λ 0 → Λ ! , where Λ 0 is the sub-operad of Λ k restricted to terms of type t (cf. Sect. 1.2.2). Since variables only have type v, there is an input/output asymmetry which is reflected at the level of intersection types into the "strict" discipline. Indeed, none of the operads of derivations introduced above, which are all of the form E [D, G 0] for some D, is unital: this is visible in the var rule of Fig. 2.2, which is asymmetric.

Systems using "non-strict" intersection types may be obtained by considering the unrestricted encoding

G k : Λ k -→ Λ ! ,
which takes as source the full bichromatic presentation of the λ-calculus, with terms of type v as well. In this embedding, the image of a λ-term M seen as value is !G 0 (M), so its approximations will all be of the form ⟨t 1 , . . . , t 1 ⟩ with t i ⊏ G 0 (M). In other words, we have systems with the rules of Fig. 2.2 augmented with

x : A ⊢ x : A var Γ 1 , x : A 1 ⊢ N : B 1 . . . Γ n , x : A n ⊢ N : B n Γ 1 • • • Γ n ⊢ λx.N : ⟨A 1 ⊸ B 1 , . . . , A n ⊸ B n ⟩ lam Γ ⊢ M : ⟨A ⊸ B⟩ ∆ ⊢ N : A Γ • ∆ ⊢ MN : B app
Γ 1 ⊢ M : A 1 . . . Γ n ⊢ M : A n Γ 1 , . . . , Γ n ⊢ M : ⟨A 1 , . . . , A n ⟩ inter
In particular, the derivations of E [D sn , G k], with D sn as defined above (the cartesian version), are just a different presentation of Coppo and Dezani's original system [START_REF] Coppo | An extension of the basic functionality theory for the λ-calculus[END_REF].

The call-by-value λ-calculus. Our construction has two parameters: a suboperad D → Poly c and an embedding G : L → Λ ! of a calculus L in linear logic. The first wave of examples fixed G and showed several possibilities for D; the last example provided a different G, but the calculus was essentially the same. Let us give an instance of our framework with a somewhat different calculus. In Sect. 1.2.2, we recalled Girard's call-by-value embedding

G v : Λ v -→ Λ ! .
If R denotes head reduction in Λ v (also known as the weak call-by-value strategy, which is the standard evaluation strategy of many practical programming languages), and if R 0 denotes all reductions and N weak head normal forms (i.e., arbitrary abstractions or terms of the form xN 1 • • • N k with N i arbitrary), then the pair (Poly p , G v) for any p is faithfully reductive with respect to R and fully expansive with respect to (R 0 , N), so Theorem 20 proves that weak head normal forms are reachable with the weak call-by-value strategy iff they are reachable at all, and gives us intersection type systems characterizing weak call-by-value normalization.

The types for these systems are given by A, B ::

= ⟨A 1 ⊸ B 1 , . . . , A n ⊸ B n ⟩
(n = 0 is allowed, which gives the base case of the inductive definition). The shape of types is justified by observing that Girard's call-by-value translation is based on the recursive type D = !(D ⊸ D), and remembering that ⟨-⟩ approximates !(-). The rules are given in Fig. 2.3. As usual, one has four versions of the system, idempotent or not, relevant or not, by keeping or discarding weak and cntr.

The λµ-calculus. When we introduced the approximation presheaf (Sect. 2.3.1), we mentioned that Λ ! and the polyadic calculi that approximate it are not the most general for which one may formulate this construction. In fact, polyadic approximations exist in linear logic and this latter is broader than the intuitionistic fragment represented by Λ ! . It is possible to reformulate the whole theory of polyadic approximations (Chapter 1) using proof nets, which are the most general syntax for linear logic proofs, without intuitionistic restrictions. The details of this have been developed by Luc Pellissier in his forthcoming Ph.D. thesis. The development is based on cyclic 2-operads, of which the proof net syntax is a paradigmatic example. A cyclic operad is an operad in which inputs and outputs may be permuted at will, which corresponds to the behavior of classical negation. There is a cyclic 2-operad LL of untyped proof nets and cyclic 2-operads of (simply-typed) polyadic proof nets, on which a notion of approximation may be defined by straightforwardly extending Fig. 1.11.

The Grothendieck construction adapts without problems, too. For this, one considers the full sub-operad DiscRel (resp. DiscRel *) of Rel (resp. Rel *) whose objects are sets. This is a cyclic bioperad, and the Grothendieck construction is computed by pulling back along the forgetful functor U : DiscRel → DiscRel * . The approximation presheaf, for a choice of sub-operad D of simply-typed polyadic proof nets, becomes then a lax morphism Apx[D] : LL -→ DiscRel.

In fact, we have already observed that, even in the intuitionistic case, our definition of approximation presheaf actually always lands in DiscRel. It is interesting to remark that, in the classical case, we have no choice, because Rel does not have a cyclic structure. A suitable reformulation of Theorem 20 holds.

In this augmented set-up, we may consider Parigot's λµ-calculus [START_REF] Parigot | Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction[END_REF], a well-known extension of the λ-calculus capturing classical reasoning (and control operators). This admits a natural presentation as a cyclic 2-operad ΛM, which may be embedded in LL by means of Laurent's translation [START_REF] Laurent | Polarized proof-nets and lambda-mu-calculus[END_REF] L : ΛM -→ LL.

Then, for any choice D of simply-typed polyadic proof nets, the Grothendieck construction applied to Apx [D] • L gives us a type system for the λµ-calculus. Its types, ranged over by A, B, C, are as follows:

A, B, C ::= ⟨⟨P 1 , . . . , P n ⟩⟩,

P ::= Θ ⊸ B, Θ ::= ⟨A 1 , . . . , A n ⟩,
where ⟨⟨-⟩⟩ is the dual of ⟨-⟩, just like the modality ?(-) is dual to !(-) in classical linear logic. The shape of the types is immediately justified by noting that Laurent's translation uses the recursive type D = ?(!D ⊸ D), keeping in mind that ⟨-⟩ approximates !(-) and ⟨⟨-⟩⟩ approximates ?(-). In the literature on intersection types for the λµ-calculus, these latter are known as

x : ⟨A⟩ ⊢ x : A var Γ, x : Θ ⊢ M : B Γ ⊢ λx.M : ⟨⟨Θ ⊸ B⟩⟩ lam Γ, α : A, β : B ⊢ M : C Γ, α : C • A ⊢ µβ.⌈α⌉M : B name Γ ⊢ M : ⟨⟨Θ 1 ⊸ B 1 , . . . , Θ n ⊸ B n ⟩⟩ ∆ j i ⊢ N : Θ i (j) Γ • ∆ 1 1 • • • ∆ k 1 1 • • • ∆ 1 n • • • ∆ k n n ⊢ MN : ⟨⟨B 1 , . . . , B n ⟩⟩ app 1 ≤ i ≤ n 1 ≤ j ≤ k i Γ, ξ : [X 1 , . . . , X n] ⊢ M : C Γ, ξ : [X σ(1) , . . . , X σ(n)] ⊢ M : C exch Γ ⊢ M : C Γ, ξ : [] ⊢ M : C weak 0 ξ ̸ ∈ Γ Γ, x : ⟨B 1 , . . . , B n ⟩ ⊢ M : C Γ, x : ⟨B 1 , . . . , B n , A⟩ ⊢ M : C weak Γ, x : ⟨B 1 , . . . , B n , A, A⟩ ⊢ M : C Γ, x : ⟨B 1 , . . . , B n , A⟩ ⊢ M : C cntr Figure 2
.4: Intersection types for the λµ-calculus. The notation Γ • ∆ is concatenation as in Fig. 2.1, extended to sequences of the form ⟨⟨-⟩⟩ as well. In the exch and weak 0 rules, [-] stands for either ⟨-⟩ or ⟨⟨-⟩⟩.

union types [START_REF] Laurent | On the denotational semantics of the untyped lambda-mu calculus[END_REF]. Given a sequence Θ = ⟨A 1 , . . . , A n ⟩, we write Θ(i) for A i . Given two types A, B, which are always sequences, we write A • B for their concatenation. The typing judgments are of the form

x 1 : Θ 1 , . . . , x m : Θ m , α 1 : B 1 , . . . , α n : B n ⊢ M : A, where x i are λ-variables and α j are µ-variables. The typing rules are given in Fig. 2.4. One may check that the right conditions for applying (the augmented version of) Theorem 20 are met by this system with respect to head reduction of λµ-terms, which is therefore characterized by typability. Interestingly, the linear version of this system (without weak and cntr) turns out to coincide with a system for the λµ-calculus recently introduced by Kesner and Vial [START_REF] Kesner | Types as resources for classical natural deduction[END_REF].

Discussion and perspectives

It is has been known for a long time that intersection types and linear logic are related. Regnier (crediting Duquesne) started this line of investigation in his Ph.D. thesis [START_REF] Regnier | Lambda-calcul et réseaux[END_REF]; later on, Kfoury [START_REF] Assaf | A linearization of the lambda-calculus and consequences[END_REF] discovered an intriguing relationship between intersection types and a linearization of the λ-calculus. Retrospectively, his is a sort of an embryo of our linear polyadic calculus. In the meantime, as mentioned earlier, non-idempotent intersection types had been introduced by Gardner [Gar94] and investigated both syntactically [START_REF] Carlier | System E: expansion variables for flexible typing with linear and non-linear types and intersection types[END_REF][START_REF] Peter | Types, potency, and idempotency: why nonlinearity and amnesia make a type system work[END_REF] and semantically [dC09], revealing their ties with linear logic. More recently, other connections were drawn in the work of Pimentel et al. [START_REF] Pimentel | Intersection types from a proof-theoretic perspective[END_REF], who developed a proof-theoretic analysis of intersection types using ideas coming from linear logic. However, to the best of our knowledge none of this previous work described the correspondence between approximations and intersection types in the sharp, synthetic and broad framework we propose.

Concerning (linear) approximations, the idea that the exponential modality of linear logic is a limit of its multiplicative approximations is of course as old as linear logic itself, by analogy with classical constructions from linear algebra. In the logical context, the intuition has been formalized in several ways: as a Taylor expansion [ER08], as a categorical limit [MTT09] and as a topological limit [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF], of which we gave an order-theoretic reformulation in Chapter 1. It is also quite explicitly used in games semantic constructions [AJM00, HO00], especially in the AJM version.

Ehrhard and Regnier's approach [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambda-terms[END_REF] is very similar to ours: they too express Girard's approximations directly in a calculus containing terms of the form ⟨t 1 , . . . , t n ⟩, which morally correspond to the n-ary tensors of Girard's approximations. In their case, it is Boudol's resource λ-calculus [START_REF] Boudol | The lambda-calculus with multiplicities (abstract)[END_REF]; we favor polyadic calculi because they are syntactically simpler (there are no formal sums of terms) and more faithful to Girard's approximations (the tensor is not literally commutative, unlike in the resource λ-calculus). Nevertheless, the affinities between our approximations and the Taylor expansion of [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambda-terms[END_REF] are obvious and we believe that our work may be entirely reformulated in that context. As a starting point, it is immediate to define an embedding (-) • of Λ p l into the resource λ-calculus, and it is obvious that, for T in Λ ! and t linear, t ⊏ T iff t • ∈ Taylor(T), where Taylor(T) is the support of the Taylor expansion of T.

Moving on to other work concerning intersection types, we already mentioned Bucciarelli, Piperno and Salvo's paper [START_REF] Bucciarelli | Intersection types and lambda-definability[END_REF], in which they exhibit an encoding from intersection types derivations to simply-typed λ-terms and show the soundness (i.e., typable ⇒ SN) of Coppo, Dezani and Venneri's system [START_REF] Coppo | Functional characters of solvable terms[END_REF] using this encoding. As already noted, our work (vastly) generalizes this approach to proving soundness.

Finally, we can never put too much emphasis on the influence of Melliès and Zeilberger's paper [START_REF] Melliès | Functors are type refinement systems[END_REF], without which this work could not exist in its present form. It is worth mentioning that the fibrational perspective on type systems is already explored to some depth in [START_REF] Melliès | Functors are type refinement systems[END_REF]. In this respect, all we do is "taking it to dimension two", in the sense that we consider reduction sequences and see (op)fibrations as witnesses of the subject expansion (reduction) properties. Melliès and Zeilberger's work focuses on the Set-enriched case and therefore fibrations have a different meaning there.

The main message of this chapter is perhaps the following: as soon as a programming language may be meaningfully encoded in linear logic, there is an intersection type discipline for it. Of course, what this intersection type discipline may do depends on the encoding and its "meaningfulness". However, we hope that we have shown enough applications to justify the claim that our approach is rather broad.

Our framework also gives a systematic explanation to certain aspects of intersection types:

• non-idempotency and relevance are just reflections of the absence of structural rules (weakening and contraction, respectively) in polyadic systems;

• strictness of intersections arises from the asymmetric version of Girard's encoding;

• as mentioned above, soundness is ultimately a consequence of strong normalization of propositional linear logic.

We would also like to stress that our construction does not have only an "explanatory" power but also has a "predictive" value: the last two instances given in Sect. 2.4.2, albeit simple, exemplify how our framework may be used to almost automatically synthesize intersection type systems without necessarily knowing them in advance (the call-by-value system is possibly implicit in the semantic study of [START_REF] Pravato | The call-by-value lambda-calculus: a semantic investigation[END_REF], but we did not know of it; the system for λµ had been developed independently of our work). Another example, which we did not develop here, concerns calculi with explicit substitutions: these are well-known to be encodable in linear logic [KL07, AK12]; we therefore automatically get intersection type systems for such calculi, in the style of [START_REF] Kesner | Quantitative types for the linear substitution calculus[END_REF]. More interestingly, we are currently studying the possibility of applying our construction to Ehrhard and Laurent's encoding of the π-calculus in proof nets [START_REF] Ehrhard | Interpreting a Finitary Pi-Calculus in Differential Interaction Nets[END_REF], which would yield what is perhaps the first application of intersection types to concurrent calculi. An intriguing aspect of Theorem 20 is that it brings to light how, contrarily to common understanding, intersection types systems do not characterize dynamic properties per se but, rather, relate them to one another. That is, intersection types are actually a bridge between a "universal" property (strong normalization) and an "existential" property (weak normalization), and their apparent ability to characterize dynamic properties results from judiciously choosing such properties so that the "universal" implies the "existential". Admittedly, our current formulation of dynamic property (Definition 19) is quite naive and ad hoc, and was chosen only in view of making Theorem 20 applicable in the cases we know of. It would be interesting to pursue a more general approach in this direction.

In this respect, at some point above we observed how, in the case of the pair (D sn , G 0), one cannot expect subject expansion to hold for any reduction. Indeed, we have the following special case of Theorem 20:

Corollary 22 Let R be the set of all 2-arrows of a 2-operad L, and let N be the set of its normal forms. Suppose that (D, G : L → Λ !) is faithfully reductive and fully expansive with respect to R and (R, N). Then, strong normalization and weak normalization coincide in L.

So, since (D sn , G 0) is faithfully reductive everywhere, and since normal forms are typable, if it also enjoyed subject expansion everywhere, we would have that a λ-term is strongly normalizable iff it is weakly normalizable! While obviously false for pure λ-terms, this is true of many classes of typable λ-terms (those of the λ-cube, for instance). In fact, it is a conjecture of Barendregt, Geuvers and Klop that strong and weak normalization coincide in all so-called pure type systems [START_REF] Henk | Lambda calculi with types[END_REF]. It is unclear at present whether Corollary 22 is relevant to this conjecture.

As a last point, let us mention that intersection types are of course wellknown for being the basis of a host of denotational models of the λ-calculus (see [START_REF] Hendrik | Lambda Calculus with Types[END_REF] for a general account, and [START_REF] Paolini | Essential and relational models[END_REF] for an in-depth study of the relational case). We currently do not have a synthetic description of how to build denotational models of the λ-calculus from our framework. Hyland's operadic perspective [START_REF] Hyland | Classical lambda-calculus in modern dress[END_REF] will perhaps be of help here: in fact, Apx [D] • G ! is nothing but an algebra in Rel for the monochromatic 2-operad Λ, so the question becomes finding a way of turning this into a Set-algebra for the operad Λ/≃ β . Proof. Any λ-calculus computation ψ : M → * N is an ideal ψ of computations of Λ p a such that, in particular, the set of its targets is the ideal N . Therefore, given u ⊏ N, there is a computation ρ : t → * u in ψ and, by definition, t ⊏ M. (For simplicity, we are ignoring renaming equivalence and are transparently using Girard's embedding, i.e., writing t ⊏ M instead of t ⊏ G 0 (M)). □

In other words, if we want an approximation of the result of a λ-calculus computation, all we need is to perform a computation in Λ p a starting from an approximation of the initial term.

Suppose now that we are interested in computations ending with a Boolean value b, i.e., λx.λy.x or λx.λy.y (this is so that the size of the output is constant and we do not have to worry about it in the coming discussion). What can we say about the size of t as a function of l? Observe that this is roughly the same as asking an upper bound on the length of the reduction t → * b, because t is affine and its size bounds the length of any reduction starting from it.

The answer is that a relationship exists, but it is somewhat unreasonable: the size of t may be exponential in l. This is due to the uncontrolled behavior of duplication in the λ-calculus, which causes β-reduction to apparently perform an exponential amount of work in a linear number of steps, even under extremely minimalist reductions strategies, such as head reduction. A computationally uninteresting but straightforward example is Informally, we may call the relationship between the length of reductions and the size of affine approximations "modulus of continuity". Although technically wrong, this terminology is intuitively appropriate and useful.

So, why do we find it unreasonable that the λ-calculus has an exponential modulus of continuity? First of all because this seems to happen for wrong reasons: the fact that a β-reduction step M x ← N immediately dispatches a copy of N to all occurrences of x in M does not mean that those copies are actually needed right away, or needed at all. In fact, abstract machines and practical implementations of functional programming languages tell us that this is far from being the case.

Jokingly, we could say that a λ-term is a very inefficient representation of itself. More seriously, the intermediate λ-terms in a β-reduction sequence ψ : M → * b may be very inefficient representations of the states that a machine actually goes through when performing the computation expressed by ψ. If one thinks directly in terms of how λ-terms and β-reduction may be implemented on a machine, then it becomes possible to define reasonable cost semantics directly on λ-terms, both for runtime and space usage [START_REF] Blelloch | Parallelism in sequential functional languages[END_REF][START_REF] Spoonhower | Space profiling for parallel functional programs[END_REF].

Nevertheless, there are other reasons to be unhappy with an exponential modulus of continuity. These are related to computational complexity and motivate the search for a calculus with a polynomial modulus of continuity regardless of its machine implementations, as we are about to discuss.

Higher order circuits

It is well known that the runtime of a Turing machine is strongly related to the size of a Boolean circuit simulating it, where the size of a circuit is just the number of its gates. Given a family (C n) n∈N of Boolean circuits (on the standard fan-in 2 basis {¬, ∧, ∨}), such that C n has n inputs and 1 output, we say that it decides a language L ⊆ {0,

1} * if, for all x ∈ {0, 1} n , x ∈ L iff C |x| (x) = 1.
Theorem 24 Let M be a Turing machine deciding a language L in time f (n). Then, there is a family of circuits of size O(f (n) 2) deciding L.

This may be seen as a quantitative version, for Turing machines and Boolean circuits, of Proposition 23: it says that Turing machines have a polynomial modulus of continuity.1 By contrast, Proposition 23 only implies that a λ-term M deciding a language L in f (n) steps (of, say, head reduction) induces a family of affine polyadic terms deciding L of size O(2 f (n)), and we observed that the upper bound is tight.

The above theorem is a fundamental result of structural complexity theory and has important implications, most notably the Cook-Levin theorem (the statement that satisfiability of propositional formulas is NP-complete). It seems morally wrong that the λ-calculus should be so desperately inadequate to deal with such basic computational phenomena, even if one is willing to admit (as we are) that quantitative reasoning is inherently less evident with λ-terms then it is with Turing machines.

In fact, it is tempting to consider the following "equation" affine λ-terms λ-terms = Boolean circuits Turing machines (3.1)

and ask to what extent it may be taken as a guideline for importing quantitative concepts from the world of Turing machines to that of the λ-calculus. Equation 3.1 is supported by several analogies: like Boolean circuits, affine λ-terms may only compute finite functions (on Church binary strings); like Boolean circuits, the (sequential) runtime of an affine λ-term coincides with its size; finally, Boolean circuits may be seen as morphisms of a free symmetric monoidal category (in fact, a PROP), while (normal) affine λ-terms are morphisms in a free closed symmetric monoidal category (with terminal unit), and closure is exactly the difference between first-order computation (Turing machines) and higher-order computation. One way of looking at Theorem 24 is as a sort of "transform" taking from the domain of Turing machines, for which runtime analysis is highly nontrivial, to the domain of circuits, where runtime is completely evident (it is the size), in a way somewhat reminiscent of how the Fourier transform reveals the fundamental frequencies of a signal, which are otherwise hidden in its time development. So an exponential modulus of continuity sort of obfuscates this perspective and, on the contrary, a polynomial modulus of continuity for functional programs would be potentially interesting for quantitative static analysis.

Non-uniform computation

From the perspective of Equation 3.1, there is a third reason why an exponential modulus of continuity is inadequate, which is related to the notion of non-uniform computation, of central importance in complexity theory. Analyzing this issue will actually point us in the direction of what we call parsimony, a possible way of obtaining a calculus with a polynomial modulus of continuity.

The family of Boolean circuits (C n) n∈N given by Theorem 24 has the property of being uniform, i.e., there is an algorithm which, given n, outputs a description of C n . This is because all these circuits come from the same Turing machine. However, when considering circuit families as a model of computation of its own, it is more natural to disregard any uniformity requirement: (C n) n∈N is just a sequence of circuits, each C n having n inputs and 1 output, without any a priori relationship between them; the sequence may very well be uncomputable.

In such non-uniform models of computation, size becomes a fundamental parameter: if no restriction on the size of C n is imposed, then any language becomes decidable. In fact, any language L ⊆ {0, 1} * is decidable by a (nonuniform) family of size O(2 n): simply hard-wire in C n the characteristic function of the finite set L ∩ {0, 1} n . By contrast, circuit families of polynomial size are very important in complexity theory: Theorem 24 implies that they correspond to a complexity class called P/poly, which, albeit containing undecidable languages, is widely believed not to contain any NP-hard problem (this, of course, would imply P ̸ = NP, because P ⊂ P/poly).

The class P/poly is an instance of a so-called advice class: the usual, uniform model (in this case, deterministic polytime Turing machines, hence the letter P) is augmented with access to an advice string, which depends only on the length of the input (not on the input itself) and which is restricted to be of polynomial length (hence the poly). In the particular case of P/poly, one may equivalently think in terms of a deterministic polytime Turing machine augmented with an infinite, read-only tape containing arbitrary (but fixed) information. Since the machine is polytime, only an initial segment of polynomial length of this string will be accessible to the machine. The statement that P/poly does not contain any NP-hard problem is equivalent to P/poly ̸ = NP/poly. Although technically stronger that P ̸ = NP, the nonuniform version is currently believed not to be any harder to prove in practice, which explains the relevance of non-uniform computation to structural complexity. In fact, as curious as it may seem, no-one at present knows how to use uniformity in proving lower bounds; in other words, no-one sees how one could separate P from NP without actually separating P/poly from NP/poly. Now, an interesting aspect of the viewpoint brought forth in Chapter 1 is that it nicely unifies the "family approach" and the "advice approach" to non-uniform computation: in view of Equation 3.1, higher-order circuits are (polyadic) affine terms, and a circuit family should be seen as an ideal of such terms; but a (not necessarily uniform) ideal of polyadic affine terms is an infinite λ-term, i.e., a program which is allowed to contain an infinite string of advice as discussed above. Let us see how, in the context of the λ-calculus, untamed non-uniformity trivializes computation (every language becomes decidable), and how this is related to the modulus of continuity being exponential. We will use an infinitary syntax of polyadic affine terms as an informal means of representing ideals (in fact, as already noted above, such a syntax may be made formal [START_REF] Mazza | An infinitary affine lambda-calculus isomorphic to the full lambda-calculus[END_REF][START_REF] Mazza | Non-uniform polytime computation in the infinitary affine lambda-calculus[END_REF]).

We may represent binary strings with a suitable adaptation of the standard Church encoding; for instance, 0010 = λs 0 .λs 1 .λa.

x 0 0 (x 0 1 (x 1 2 (x 0 3 a)))[⟨x 1 ⟩ := s 1][⟨x 0 ⟩ := s 0],
where, in general, y stands for the infinite sequence y 0 , y 1 , y 2 , . . . of affine variables. Let w ∈ {0, 1} * , let #w be the non-negative integer whose dyadic representation is w, and let L ⊆ {0, 1} * . We may represent L as an infinite stream of Booleans M L := λw.y 1 [⟨y⟩ := w⟨even, even, even, . . .⟩⟨odd, odd, odd, . . .⟩T L].

T L := ⟨b 0 , b 1 , b 2 , . . .⟩ where b i is 1 just if i = #w
On input a binary string w (encoded as above), M L applies a number of times odd or even to T L according to the bits of w, resulting in the extraction of b i where i is the integer whose dyadic representation is w:

M L w → * b #w .
So M L decides L. Moreover, the length of the above reduction is O(n) where n is the length of w; and yet, since the bit b #w is exponentially "far down" in T L (i.e., at position Ω(2 n)), any approximation t ⊏ M L such that t w → * b #w will have to be of size Ω(2 n). So this is a computationally non-trivial example of exponential modulus of continuity.

It is interesting to observe that the terms even and odd result from contraction, which is the primitive behind indiscriminate duplication in the λ-calculus. Indeed, contraction may be represented by the infinitary term λa.⟨x 0 , x 1 , x 2 , . . .⟩ ⊗ ⟨x 1 , x 3 , x 5 , . . .⟩[⟨x⟩ := a] : !A ⊸ !A ⊗ !A (although we never formally introduced it, the tensor may be added to the syntax of all our calculi without problems). It is an instance of "Hilbert's hotel": an infinity (of type !A) is split into two infinities. The terms even and odd are obtained by splitting an infinity in two and then discarding one copy. This is the fundamental insight leading to parsimony: in the non-uniform setting, computation is not trivialized by the presence of infinite advice (like the term T L) but by the fact that one may access an exponential amount of such an advice. Since splitting an infinity in two seems to be the culprit, we are led to think that forbidding such a behavior will result in a calculus with a polynomial modulus of continuity. In the next section we will see that this intuition is, indeed, correct.

; a ▷ a avar Θ; Γ ▷ M Θ; Γ \ {a} ▷ λa.M lam Θ; Γ ▷ M Θ ′ ; Γ ′ ▷ N Θ, Θ ′ ; Γ, Γ ′ ▷ MN app Θ; Γ ▷ M Θ ′ ; Γ ′ ▷ N Θ, Θ ′ ; Γ, Γ ′ ▷ M ⊗ N tens Θ; Γ ▷ M Θ ′ ; Γ ′ ▷ N Θ, Θ ′ ; Γ \ {a, b}, Γ ′ ▷ M[a ⊗ b := N] let ⊗ x i ; ▷ x i evar Θ; Γ ▷ M Θ ′ ; Γ ′ ▷ N Θ \ {x}, Θ ′ ; Γ, Γ ′ ▷ M[!x := N] let ! Θ; ▷ M ↑Θ; ▷ !M box (*) Θ; Γ ▷ M Θ ′ ; Γ ′ ▷ N Θ, Θ ′ ; Γ, Γ ′ ▷ M :: N cons

The Parsimonious Lambda-Calculus

Terms and reduction

We let a, b (resp. x, y) range over a countably infinite set of affine (resp. exponential) variables. The use of affine variables rather than linear is not essential but simplifies programming. An occurrence of exponential variable is of the form x i , where i ∈ N. Occurrences of exponential variables are naturally ordered by x i ≤ y j whenever x = y and i ≤ j. Let Θ be a set of occurrences of exponential variables. We write ↑Θ for the upward closure of Θ. We denote by Θ \ {x} the set obtained from Θ by removing all occurrences of the form x i (if any).

Parsimonious terms are defined in Fig. 3.1. In Θ; Γ ▷ M, Γ is the set of free affine variables of M and Θ is the set of free virtual occurrences of exponential variables. This latter set may be infinite: the rule box causes this to happen. The notation Θ, Θ ′ (or Γ, Γ ′) denotes, as usual, the union of the two sets supposing that they are disjoint.

It is easy to see that a parsimonious term respects the following discipline (modulo Barendregt's convention):

• affine variables appear at most once;

• if x i , x j are different occurrences of the same exponential variable, then i ̸ = j;

• boxes (i.e., terms of the form !M) contain no free affine variable;

• an exponential variable occurs in at most one box, at most once therein and with the highest index with respect to the rest of the term.

(λa.M)[-]N → β M{N/a}[-] M[a ⊗ b := (N ⊗ P)[-]] → ⊗ M{N, P/a, b}[-] S * {x 0 }[!x := (N :: P)[-]] → :: S x-- * {N}[!x := P][-] S * {x 0 }[!x := (!N)[-]] → d S x-- * {N}[!x := !N ++][-] x∈fv(S * {x 0 }) S{!S ′ {x 0 }}[!x := (!N)[-]] → ! S{!S ′ {N}}[-] M[!x := (!N)[-]] → w M[-]
x̸ ∈fv(M)

Figure 3.2: Reduction rules for the parsimonious λ-calculus.

We denote by M +k the term obtained from M by replacing each free occurrence of any exponential variable x i with x i+k . We simply write M ++ for M +1 . Similarly, if x 0 does not occur free in M, we denote by M x--the term obtained from M by replacing each free occurrence x i of x (and of x only!) with x i-1 .

The intuition behind boxes is that they satisfy the equation

!M = M :: !(M ++).
For instance, !x 1 morally stands for the infinite term ⟨x 1 , x 2 , x 3 , . . .⟩. This is the reason behind the parsimonious discipline: without it, the above equation would violate affinity. Note that this corresponds to the intuition given in the previous section: it is impossible to write a parsimonious term corresponding to ⟨x 0 , x 2 , x 4 , . . .⟩. We now define reduction. As usual, we define substitution contexts by

[-] ::= {•} [-][p := N],
where p stands for a ⊗ b or !x. Shallow contexts, ranged over by S, are contexts in which the hole does not appear under a !(-). We write S * to denote a shallow context in which the hole may not appear at all (i.e., a shallow context or a term). The reduction rules are as in Fig. 3.2, and they are closed under shallow contexts (i.e., we do not reduce under a !(-)). We denote by pΛ the calculus thus obtained. Note that the three rules → d , → ! and → w are not in superposition: the latter applies only if x does not occur free at all; if x does occur, then one checks if the occurrence x 0 appears under a !(-); if it does, by parsimony it is the only occurrence of x and rule → ! is applied; otherwise, rule → d is applied, whether or not x 0 is present, and all the other occurrences are shifted down by 1.

Note how the syntax allows one to recover unambiguously whether a variable is affine or exponential. For this reason, we will occasionally use any letter to denote any kind of variable. It will also be convenient to use the abbreviations

λa ⊗ b.M := λc.M[a ⊗ b := c] λ!x.M := λa.M[!x := a],
as well as combinations such as λa

⊗ !x.M := λc.M[!x := d][a ⊗ d := c].
The parsimonious λ-calculus may be seen as a programming language with built-in manipulation of ultimately constant, affine streams. Exponential variables are stream variables; x i means that we are asking for the i-th element of the stream, which we may only extract once. If we want to use a whole stream as a parameter, we just write !x 0 , whereas !x 1 shifts a stream one position to the left and t :: !x 0 shifts it one position to the right, adding t on top.

It is easy to see that pΛ is Turing-complete. Indeed, one may define a linear fixpoint combinator

X := λ!x.λ! f . f 0 (x 0 !x 1 ! f 1) Y ℓ := X!X
and the reader may check that

Y ℓ !F → * F(Y ℓ !F ++).
This fixpoint combinator is linear because F must be of the form λa.F ′ , not λ!y.F ′ , otherwise reduction gets stuck. This means that F uses its argument once (it may use it zero times but it would be pointless). Anyhow, linear fixpoints are enough to define while loops (indeed, a while loop is a linear tail recursion), and while loops are enough to achieve Turing-completeness.

The reader may have noticed that, besides the situations in which a wouldbe redex is stuck because of an obvious type mismatch (e.g., M[!x := λa.N]), we have a well-typed redex (with respect to the types that we will introduce in the next section) S{!S ′ {x 0 }}[!x := (N ::

P)[-]]
for which there is no reduction rule defined in Fig. 3.2. Indeed, to reduce a term of the form M[!x := N :: P], we look for x 0 in M: if this does not appear or if it appears in shallow position (i.e., not in a box), then we apply the → :: rule; otherwise, the term is stuck, and the above redex is precisely this case. The missing reduction rule is

S{!S ′ {x 0 }}[!x := (N :: P)[-]] → a S{S ′ {N} :: !(S ′) ++ {x 0 }}[!x := P][-].
Since this rule is bit complex to write and is not needed for expressiveness, we decided not to include it in the "official" set of rules, but it is otherwise unproblematic to add it.

Affine approximations and quantitative continuity

The reader will have noticed that reduction in pΛ is more "atomic" than in Λ ! . In fact, it applies the decomposition of exponential reduction steps we mentioned in Sect. 1.2.1. As stated therein, such a decomposition could be applied to Λ ! as well, but in that context we preferred the more synthetic, global formulation. Here, the quantitative viewpoint pushes us to adopt the finer grained definition. The consequence is that the polyadic calculus Λ p a must also be slightly modified in order make its reduction semantics match that of pΛ. We give a quick overview of the syntax. The terms are given by t, u ::= a λa.

(λa.t)[-]u → β t{u/a}[-] t[a ⊗ b := (u ⊗ v)[-]] → ⊗ t{u, v/a, b}[-] C * {x 0 }[⟨x, x m ⟩ := (u :: v)[-]] → :: C x-- * {u}[⟨x⟩ := v][-] t[⟨⟩ := ⟨u⟩[-]] → w t[-]
t tu t ⊗ u t[a ⊗ b := u] x !⊥ t :: u t[⟨x⟩ := u]
For convenience, we suppose that, in t[⟨x⟩ := u], the binder is always of the form x = x 0 , x 1 , . . . , x m-1 , so we may have an exact correspondence with the occurrences of exponential variables in pΛ. The constructor t :: u too is introduced to match that of pΛ. The usual notation for polyadic boxes becomes syntactic sugar:

⟨t 1 , . . . , t n ⟩ := t 1 :: • • • :: t n :: !⊥ = t 1 :: (• • • :: (t n :: !⊥)).
Another difference, of course, is that the linear variables (those ranged over by a, b . . .) are replaced by affine ones.

The modified reduction rules are given in Fig. 3.3. The one-step reduction t[⟨x 0 , . . . , x k-1 ⟩ := ⟨u 1 , . . . , u n ⟩] → t{u i+1 /x i } of Λ p a is decomposed here into k + 1 steps. Observe that, since we are not considering the term ⊥, we must have n ≥ k, otherwise the term is "stuck". Also note that the "reindexing" performed in the → :: reduction is only needed to keep up with our naming conventions, so pΛ reduction may be matched with minimal fuss in the notations. Contrarily to pΛ, polyadic affine variables do not appear with any index in terms, i.e., the rule may actually be written

t[⟨x, y 1 , . . . , y m ⟩ := (u :: v)[-]] → :: t{u/x}[⟨y 1 , . . . , y m ⟩ := v][-].
This is relevant for complexity purposes: no reindexing is needed to implement reduction of affine polyadic terms; it is just plain, affine β-reduction.

It is straightforward to adapt Fig. 1.11 and define affine approximations for parsimonious λ-terms. This is done in Fig. 3.4. We dispose of approximation contexts by adopting the convention that x i ⊏ x i always, i.e., the evar rule actually derives y ⊏ x i ⊢ y ⊏ x i and we simply stipulate to denote y by x i . This is consistent with our convention on let binders. As usual, the approximation relation is extended to contexts by treating {•} as an affine variable.

We will now prove the result motivating parsimony: the parsimonious λ-calculus has a polynomial "modulus of continuity". First, a couple of technical definitions. □

a ⊏ a avar t ⊏ M λa.t ⊏ λa.M lam t ⊏ M u ⊏ N tu ⊏ MN app t ⊏ M u ⊏ N t ⊗ u ⊏ M ⊗ N tens t ⊏ M u ⊏ N t[a ⊗ b := u] ⊏ M[a ⊗ b := N] let ⊗ x i ⊏ x i evar t ⊏ M u ⊏ N t[⟨x⟩ := u] ⊏ M[!x := N] let ! !⊥ ⊏ !M empty t ⊏ M u ⊏ !M ++ t :: u ⊏ !M cons ! t ⊏ M u ⊏ N t :: u ⊏ M :: N cons
Proposition 26 (quantitative continuity) Let M ∈ pΛ and let M → N. Then, for all u ⊏ N there exists t ⊏ M such that t → * u. Moreover, rk(t) ≤ rk(u) + 1.

Proof. By definition, we have M = S{M 0 } and N = S{N 0 }, with S a shallow context and M 0 , N 0 matching the left and right hand side, respectively, of one of the rewriting rules of Fig. 3.2. The proof is by induction on S. The only interesting case is C = {•}, the rest is straightforward, using point 2 of Lemma 25.

We check the case of a rule → d ; the other cases are similar and, in fact, yield rk(t) = rk(u). We have

M 0 = S{x 0 }[!x := (!P)[-]] and u ⊏ S x--{P}[!x := !P ++][-]
. By definition of approximation and point 2 of Lemma 25, we have

u = S 0 {v}[⟨x⟩ := w][-] ′ with S 0 ⊏ S x--, v ⊏ P, w ⊏ !P ++ and [-] ′ ⊏ [-]. Now, by point 1 of Lemma 25, S x++ 0 ⊏ S, so S x++ 0 {x 0 } ⊏ S{x 0 } by point 2 of Lemma 25. Then, if we let t := S x++ 0 {x 0 }[!x := (v 0 :: w)[-] ′], we have t ⊏ M 0 , t → :: u and rk(t) = rk(u) + 1, as desired. □ Lemma 27 (size bound) t ⊏ M implies |t| ≤ |M|(rk(t) + 1) d(M) .
Proof. By induction on M. We only check the case M = !N, the rest is straightforward. We claim that t ⊏ !N implies t = ⟨u 0 , . . . , u n-1 ⟩ with u i ⊏ N +i for all 0 ≤ i < n, which is itself easily shown by induction (on the derivation of t ⊏ !N). Using the induction hypothesis, the fact that rk(t) bounds n as well as all rk(u i), and that |M| = |N| + 1 and d(M) = d(N) + 1, we have

|t| = 1 + n-1 ∑ i=0 |u i | ≤ 1 + n-1 ∑ i=0 |N|(rk(u i) + 1) d(N) ≤ 1 + |N|(rk(t) + 1) d(N)+1 ≤ |M|(rk(t) + 1) d(M) ,
as desired. □

The above results are already enough to prove that pΛ has a polynomial modulus of continuity: if (M i) i∈I is a family of terms of exponential depth bounded by d and M i → * b i of length l(i) and with b i a Boolean, Proposi- tion 26 gives us a family

(t i) i∈I such that t i ⊏ M i , t i → * b i and rk(t i) ≤ l(i), so Lemma 27 gives us |t i | = O(|M i |l(i) d).
Although meaningful in the context of non-uniform computation, such a result is not very useful when we care about uniformity, because it says nothing about the family (t i) i∈I . For this, we need a slightly stronger version.

Definition 22 (homogeneous approximations) Given k ∈ N and M ∈ pΛ, the homogeneous approximation of M of rank k of M, denoted by ⌊M⌋ k , is defined by induction on M, as follows:

⌊a⌋ k := a; ⌊λa.N⌋ k := λa.⌊N⌋ k ; ⌊NP⌋ k := ⌊N⌋ k ⌊P⌋ k ; ⌊N ⊗ P⌋ k := ⌊N⌋ k ⊗ ⌊P⌋ k ⌊N[a ⊗ b := P]⌋ k := ⌊N⌋ k [a ⊗ b := ⌊P⌋ k] ⌊x i ⌋ k := x i ; ⌊!N⌋ k := ⟨⌊N⌋ k , . . . , ⌊N +(k-1) ⌋ k ⟩; ⌊N[!x := P]⌋ k := ⌊N⌋ k [⟨x⟩ := ⌊P⌋ k]; ⌊N :: P⌋ k := ⌊N⌋ k :: ⌊P⌋ k .
Lemma 28 For all M ∈ pΛ and t ⊏ M, t ⊑ ⌊M⌋ k for all k ≥ rk(t).

Proof. A straightforward induction on M. □ Theorem 29 (polynomial "modulus of continuity") Let (M i) i∈I be a family of parsimonious terms of exponential depth bounded by d, and let M i → * b i in l(i) steps and with b i a Boolean. Then, there exists a family of polyadic affine terms (t i) i∈I such that, for all i ∈ I, t i ⊏ M i , t i → * b i and

⊢ A ⊥ , A ⊢ Γ, A ⊢ ∆, A ⊥ ⊢ Γ, ∆ ⊢ Γ, A, B ⊢ Γ, A `B ⊢ Γ, A ⊢ ∆, B ⊢ Γ, ∆, A ⊗ B ⊢ Γ • , A ⊢ Γ • , A • ⊢ Γ, A ⊢ Γ, A • ⊢ Γ ⊢ Γ, A • ⊢ Γ, A ⊢ ?Γ, !A ⊢ Γ, A • ⊢ ∆, !A ⊢ Γ, ∆, !A ⊢ Γ, A • , ?A ⊢ Γ, ?A ⊢ Γ ⊢ Γ, ?A
|t i | = O(|M i |l(i) d).
Moreover, we may take t i := ⌊M i ⌋ l(i) .

Proof. The first part is immediate from Proposition 26, Lemma 27. The "moreover" part follows from Lemma 28 and monotonicity of reduction: if t i → * b i , then ⌊M i ⌋ l(i) → * b i as well because we know that rk(t i) ≤ l(i) and so t i ⊑ ⌊M⌋ l(i) . □

Parsimonious logic

The parsimonious λ-calculus is not just an artificial language which happens to have a nice quantitative property. It is the term calculus corresponding, via Curry-Howard, to a well behaved logical system, a variant of linear logic which we call parsimonious logic. Let us introduce its propositional fragment (quantifiers of any order may be added using the standard rules). The formulas are those of multiplicative exponential linear logic, plus two extra modalities:

A, B ::= α α ⊥ A ⊗ B A `B !A ?A A • A • .
The dual of a formula A, denoted by A ⊥ , is defined by De Morgan duality, as usual, with the addition that (-

) • is dual to (-) • .
The rules of parsimonious sequent calculus are given in Fig. 3.5. The connectives `and ⊗ behave just as in linear logic. The modality (-) • is a "weakening modality", i.e., it behaves similarly to the modality !(-) of linear logic, but allows only weakening and not contraction. The parsimonious exponentials are quite different from those of linear logic. There is a "functorial promotion" rule, a weakening rule for ?(-), a sort of asymmetric contraction, which is also known as absorption in linear logic, and a dual co-absorption rule for !(-).

All of the rules of Fig. 3.5 are derivable in linear logic with the definition A • := A & 1 (and A • = A ⊕ ⊥). However, to see the true nature of parsimonious logic one has to look at the cut-elimination rules. The most important one is

⊢ Γ, A • ⊢ ∆, !A ⊢ Γ, ∆, !A ⊢ Σ, A ⊥ • , ?A ⊥ ⊢ Σ, ?A ⊥ ⊢ Γ, ∆, Σ → ⊢ Γ, A • ⊢ ∆, !A ⊢ Σ, A ⊥ • , ?A ⊥ ∆, Σ, A ⊥ • ⊢ Γ, ∆, Σ
Thanks to this rule, one may prove the isomorphism

!A ∼ = A • ⊗ !A,
meaning that there are proofs of

⊢ ?A ⊥ , A • ⊗ !A and ⊢ A ⊥ • `?A, !A
which, when cut against each other, normalize to an axiom (modulo ηexpansion). We call the above isomorphism Milner's law because of the similarity with the π-calculus law !P ≡ P | !P. Milner's law is not valid in linear logic, which is why parsimonious logic cannot be seen as a subsystem of linear logic, merely a variant of it. What makes parsimonious logic diverge from linear logic is the co-absorption rule: without it, the system we obtain is a subsystem of linear logic. Speaking of co-absorption, the acquainted reader will have noticed a similarity with differential linear logic [START_REF] Ehrhard | Differential interaction nets[END_REF], in which the rule

⊢ Γ, A ⊢ ∆, !A ⊢ Γ, ∆, !A
is cut-free derivable and represents the derivative (the operation which, from a smooth map f : A ⇒ B, produces a map D f : A ⇒ (A ⊸ B) yielding, for every vector a ∈ A, the best linear approximation D f (a) of f around a). Albeit formally similar, this is not the same as co-absorption and Milner's law is not valid in differential linear logic either. Although we will not do it here, one may of course define proof nets for parsimonious logic and prove cut-elimination using them, which is much nicer than sequent calculus. At the level of correctness criteria, the coabsorption rule behaves as a tensor and the absorption rule as a par. The promotion rule for (-) • and the functorial promotion rule for !(-) use boxes. For the rest, nothing new happens. In particular, all of the annoying troubles concerning weakenings (and the lack of connectedness it generates) remain.

One may of course consider intuitionistic parsimonious logic, which is where pΛ comes from. In fact, pΛ corresponds to intuitionistic affine parsimonious logic, in which weakening is allowed on all formulas and we may therefore discard the (-) • modality. Milner's law then becomes

!A ∼ = A ⊗ !A,
which renders the similarity with the π-calculus even more apparent. Via Curry-Howard, propositional intuitionistic affine parsimonious logic induces a discipline of simple types for pΛ. The simple types are the formulas of intuitionistic propositional linear logic, generated by

; a : A ⊢ a : A var Θ; Γ, a : A ⊢ t : B Θ; Γ ⊢ λa.t : A ⊸ B ⊸I Θ; Γ ⊢ M : A ⊸ B Θ ′ ; Γ ′ ⊢ N : A Θ, Θ ′ ; Γ, Γ ′ ⊢ MN : B ⊸E Θ; Γ ⊢ M : A Θ ′ ; Γ ′ ⊢ N : B Θ, Θ ′ ; Γ, Γ ′ ⊢ M ⊗ N : A ⊗ B ⊗I Θ ′ ; Γ ′ ⊢ N : A ⊗ B Θ; Γ, a : A, b : B ⊢ M : C Θ, Θ ′ ; Γ, Γ ′ ⊢ M[a ⊗ b := N] : C ⊗E Θ; Γ ⊢ M : C Θ; Γ, a : A ⊢ M : C weak Θ; Γ ⊢ M : C Θ, x : A; Γ ⊢ M : C !weak ; a : Γ ⊢ M : A x : Γ; ⊢ !M{x 0 /a} : !A !I Θ ′ ; Γ ′ ⊢ N : !A Θ, x : A; Γ ⊢ M : C Θ, Θ ′ ; Γ, Γ ′ ⊢ M[!x := N] : C !E Θ, x : A; Γ, a : A ⊢ M : C Θ, x : A; Γ ⊢ M x++ {x 0 /a} : C abs Θ; Γ ⊢ M : A Θ ′ ; Γ ′ ⊢ N : !A Θ, Θ ′ ; Γ, Γ ′ ⊢ M :: N : !A coabs
A, B ::= α A ⊸ B A ⊗ B !A.
The typing rules are given in Fig. 3.6. As usual, typing judgments are of the form Θ; Γ ⊢ M : A where Θ (resp. Γ) gathers all exponential (resp. affine) variables. For this reason, it would be superfluous to write the !(-) modalities in front of every type of Θ, so we omit them.

If we forget the term annotations, we get a natural deduction system for intuitionistic affine parsimonious logic. Milner's law is realized by the terms

λ!x.x 0 ⊗ !x 1 : !A ⊸ A ⊗ !A λa ⊗ !x.a :: !x 0 : A ⊗ !A ⊸ !A,
which use absorption and co-absorption, respectively. The first splits a stream into head and tail; the second takes an element a, a stream x and pushes a on top of x. The fact that these two terms induce an isomorphism is why we speak of streams and not merely lists: the empty list would break the isomorphism.

From the viewpoint of categorical logic, parsimonious logic corresponds to an extremely simple structure: a category C with • a * -autonomous structure (⊗, 1, (-) ⊥);

• free co-pointed objects, denoted by A • ;

• a lax monoidal endofunctor !(-) with a natural isomorphism

!A ∼ = A • ⊗ !A.
The intuitionistic affine case is even simpler: a symmetric monoidal closed category with terminal unit and a lax monoidal endofunctor !(-) satisfying Milner's law !A ∼ = A ⊗ !A. In comparison, the categorical axiomatization of (intuitionistic affine) multiplicative exponential linear logic is fairly imposing [START_REF] Benton | A term calculus for intuitionistic linear logic[END_REF][START_REF] Melliès | Categorical semantics of linear logic[END_REF].

The relationship between the categorical semantics and the parsimonious λ-calculus is more easily seen if we use a different syntax, in which only affine variables appear and there are explicit constructs for functorial promotion and absorption (we also add the unit for completeness; we omitted it in the above formulation because we never use it):

M, N ::= a λa.M MN M ⊗ N M[a ⊗ b := N] * M[* := N] !M[a 1 := N 1 , . . . , a n := N n] M :: N M[a :: b := N]
with the constraint that, modulo Barendregt's convention, variables appear at most once. Furthermore, in !M[a 1 := N 1 , . . . , a n := N n], which we also abbreviate as !M[a := N], we must have fv(M) ⊆ {a 1 , . . . , a n }, and all these variables become bound.

The first line of the above grammar corresponds to the symmetric monoidal closed structure (the fact that the unit is terminal is reflected in the affinity of variables, which would otherwise be strictly linear). The constructs in the second line correspond, from left to right, to the monoidal endofunctor and the two directions of the natural isomorphism given by Milner's law (which we called co-absorption and absorption above).

The computational rules induced by the symmetric monoidal closed structure are obvious. The other rules are:

M[a :: b := (N :: P)[-]] → M{N, P/a, b}[-] !M[a := (!N[b := P])[-], c := Q] → (!M{N/a}[b := P, c := Q])[-] M[a :: b := (!N[c := P])[-]] → (M{N, !N[c := c ′]/a, b})[c :: c ′ := P][-] !M[a := (N :: P)[-], b := Q] → (M{b ′ /b}{N/a} :: !M[a := P, b := b ′′])[b ′ :: b ′′ := Q][-].
The first comes from Milner's law; the second from the functoriality of !(-); the last two come from the naturality of Milner's law. It is not too hard to translate from the syntax of pΛ to the "categorical" syntax, and back. The categorical syntax shows that the use of indexed exponential variables in pΛ is just a notational convention and is by no means intrinsic to parsimony. The rewriting rules in categorical syntax, which are not particularly readable (especially the last, which corresponds to the rule we omitted from pΛ, cf. the very end of Sect. 3.2.1), show on the other hand the usefulness of indexed variables and motivate our presentation of pΛ.

The type Nat supports iteration It(n, step, base) := n !(step ′) base, typed as:

; ∆ ⊢ step : A ⊸ A Γ; Σ ⊢ base : A Γ, ∆ ′ ; Σ, n : Nat[A] ⊢ It(n, step ′ , base) : A
where ∆ ′ and step ′ are the results of systematically replacing linear variables by exponential ones. Note that the type of step must be flat.

Unary successor and predecessor are implemented as in Fig. 3.7. Since their types are flat, they may be iterated to obtain addition and subtraction, of type Nat[] ⊸ Nat ⊸ Nat. This is again flat with respect to the second argument, so a further iteration on addition leads to multiplication, of type Nat[] ⊸ Nat[] ⊸ Nat. Unary integers are duplicable and storable as shown in Fig. 3.7. Using addition, multiplication, subtraction and duplication we may represent any polynomial with integer coefficients as a closed term of type Nat[] ⊸ Nat.

These constructions can all be extended to the type Str, which also supports iteration, flat successors and predecessor, concatenation, and is duplicable and storable.

For the Booleans, we adopt the multiplicative type Bool used in [START_REF] Terui | Proof nets and boolean circuits[END_REF]. This type too is duplicable and storable. An advantage of multiplicative Booleans is that they support flat exclusive-or in addition to flat negation (see Fig. In the sequel we will abusively use affine variables of duplicable types nonlinearly, e.g., if n :

Nat[] we write n ⊗ n meaning n ′ ⊗ n ′′ [n ′ ⊗ n ′′ := dup[n]].
Similarly, if a term step contains a free affine variable a of storable type A, we will abusively consider the result of its iteration to still have a free variable a : A[] (instead of an exponential variable of type !A), by implicitly composing with store.

It will be useful to consider for loops, derived from iteration. Given

step[i] :

A ⊸ A containing a free affine variable i : Nat[], we define

step + := λ!j ⊗ a.!(succ j 1) ⊗ (step[j 0 /i] a) : !Nat[] ⊗ A ⊸ !Nat[] ⊗ A
and, given base : A, we set for i < n from base do step := It(n, step + , !0 ⊗ base).

Expressing logspace computation

We will now see how pΛ ST is able to express logarithmic space computation. More precisely, we will show that, for every L ∈ L, where L is the class of problems solvable by deterministic Turing machines with a logarithmically bounded work tape, there exists in pΛ ST which decides L. In order to do this, we will use a nice presentation of L in terms of descriptive complexity, due to Immerman [START_REF] Immerman | Descriptive complexity[END_REF]: it corresponds to first-order logic over totally ordered finite structures with the addition of a deterministic transitive closure operator. This may be equivalently presented in recursion-theoretic terms, as we do below.

Let B := {0, 1} and W := B * . We consider the following set of basic functions:

• the constant 0 ∈ N;

• negation not : B → B and conjunction and : B 2 → B;

• the predicates leq : N 2 → B, sum, mul : N 3 → B corresponding to the integer relations m ≤ n, m + n = k and m • n = k;

• the function len : W → N returning the length of a string;

• the predicate isOne : W × N → B such that isOne(w, i) = 1 iff the i-th bit of w is 1. Now call L the smallest set of functions containing the above basic functions and closed by composition and the following schemata:

• universal quantification: if R : Γ × N 2 → B ∈ L, then ∀R : Γ × N → B mapping (γ, m) → 1 iff R(γ, m, i) = 1 for all i < m is also in L; • deterministic transitive closure: let R : Γ × N 2k+1 → B ∈ L. This induces a partial map R * : Γ × N k+1 → N k mapping (γ, m, n) → n ′ if n ′ is unique s.t. R(γ, m, n, n ′) = 1, or undefined otherwise. Then, L also contains DTC(R) : Γ × N 2k+1 → B mapping (γ, m, n, n ′) → 1 iff there exist n 0 , . . . , n l ∈ N k , with n 0 = n, n l = n ′ and n i ∈ {0, . . . , m -1} k for all 0 < i ≤ l, such that R * (γ, m, n i) = n i+1 for all 0 ≤ i < l.
The class L corresponds exactly to the predicates W → B in L.

The basic functions are easily representable in pΛ ST : some are already in Fig. 3.7 and what was not covered by the previous section may be found in Fig. 3.8. The universal quantification scheme is represented by the higher order term Univ defined in Fig. 3.9. The idea is the following: given R : N 2 → B and m ∈ N, we use iteration to build a stream of Booleans whose first m bits contains exactly one bit set to 1, so at most one of x 0 , x 1 will be 1 and exclusiveor is equivalent to disjunction. We cannot use disjunction because it is not flat.

mkDep R := if (R m i j) then λb ⊗ !x ⊗ !y.(xor b x 0) ⊗ !x 1 ⊗ 0 :: !y 0 else λb ⊗ !x ⊗ !y.b ⊗ !x 1 ⊗ x 0 :: !y 0 : (Bool ⊗ !Bool ⊗ !Bool) ⊸ (Bool ⊗ !Bool ⊗ !Bool) rev := λs.s ′ [s ′ ⊗ _ := It(m, λ!x ⊗ !y.(y 0 :: !x 0) ⊗ !y 1 , !0 ⊗ s)] : !Bool ⊸ !Bool mkFun R := λs.let s ′ ⊗ _ := for j < m from !0 ⊗ s do λp ⊗ q.let b ⊗ _ ⊗ q ′ := for i < m from (0 ⊗ q ⊗ !0) do mkDep R [m, i, j]) in (b :: p) ⊗ (rev q ′) in rev s ′ : !Bool ⊸ !Bool DTC R := λm.λn.λn ′ .for k < m from 0 do let !x := It(n ′ , shift, It(k, mkFun R [m], It(n, λp.0 :: p, 1 :: !0))) in if x 0 then λb.1 else λb.b : Nat[] ⊸ Nat[] ⊸ Nat[] ⊸ Bool
Observe by the way that the simultaneous presence of flat disjunction and flat duplication (i.e., if dup had type Bool ⊸ Bool ⊗ Bool instead of its present type Bool[Bool ⊗ Bool] ⊸ Bool ⊗ Bool) would allow this solution to work for arbitrary relations (i.e., graphs of arbitrary out-degree) and we would be able to compute arbitrary transitive closures, which, by the forthcoming results, is impossible unless L = NL (non-deterministic logspace).

The tricky task now is to compute φ from R. This is realized by mkFun R , which operates by manipulating two streams p and q, the latter being initialized as the input stream s. For each j ∈ [m], we determine its dependencies, i.e., those i ∈ [m] s.t. R(m, i, j) = 1. This is done by iterating over all i ∈ [m] the term mkDep R : if R(m, i, j) = 0, the i-th element is saved in an auxiliary stream (it may contain the token, so we must preserve it); otherwise, we xor the current result with the i-th element and set this element to 0, so that it won't be considered later (if the token was there, it has now moved). This yields the determinization of R we defined above. At the end of this, the result is pushed to p and we start over with the (possibly) modified q (q also needs to be reversed because traversing it and pushing its elements into an auxiliary stream reversed their order). When we exit the outer loop, p contains the desired stream (but, again, in reverse order).

Finally, the term DTC R does nothing but looping through all 0 ≤ k < m to determine whether, after k iterations of mkFun R , the token has moved from n to n ′ .

Linear polymorphism and polytime computation

Polymorphism may be added to pΛ ST in the standard way, thus obtain what we may call "parsimonious system F". We will be particularly interested in a limited form of polymorphism: in logical terms, we restrict the comprehension scheme to linear types, i.e., types not containing !(-).

The obvious typing rules for linear polymorphism, to be added to those of Fig. 3.6, are given in Fig. 3.11. We call this augment system pΛ ℓ∀ . In this more powerful type system, the term and of Fig. 3.7 may be given a flat type:

and : Bool ⊸ Bool ⊸ Bool.
Since negation is already flat, disjunction may also be given a flat type. The same is true of Boolean duplication:

dup := λb.if b then 1 ⊗ 1 else 0 ⊗ 0 : Bool ⊸ Bool ⊗ Bool.
This means that we may encode a Boolean circuit with n inputs and m outputs as a term of type Bool ⊗n ⊸ Bool ⊗m . From this, it is not too hard to encode the transition function of an arbitrary Turing machine M by means of a term trans M : !Bool ⊸ !Bool (this is actually the main observation behind the standard proof of Theorem 24). Since we may compute polynomials, and since trans M is flat, we may iterate trans M a polynomial number of times (in the size of the input) starting from the initial configuration (of type !Bool, which may easily be built from an input of type Str using toStrm), thus simulating any deterministic Turing machine whose running time is bounded by a polynomial.

We have thus proved that, for any L ∈ P (the class of problems solvable in polynomial time by a deterministic Turing machine), there exists a term M L : Str[] ⊸ Bool deciding L typable in pΛ ℓ∀ . In Sect. 3.3.6 we will show that the converse is true. The following result will be instrumental in the proof:

Proposition 30 Let M : Bool be typable in pΛ ℓ∀ . Then, M normalizes in a number of steps bounded by |M| k , where k depends on the exponential depth of M (Defini-tion 21) and the exponential height of M, which is the maximum nesting level of !(-) modalities in the types appearing in the derivation of M : Bool.

Proof. The proof is essentially a careful cut-elimination theorem. The key technical point is that neither the exponential depth nor the exponential height may increase under reduction: the first because of parsimony (for the reader familiar with linear logic slang, parsimonious logic does not have "digging"), the second because polymorphism is restricted to linear types, whose exponential height is zero: the exponential height of A{B/α} is the same as that of A if B is !-free. The requirement that M be of type Bool, which may actually be replaced by any !-free type, is so that the set of rules of Fig. 3.2 is enough to reach the normal form (i.e., we do not need the reduction rule mentioned at the end of Sect. 3.2.1). The details are a bit too technical and not interesting enough to be included here; the curious reader may find them in the version of [START_REF] Mazza | Parsimonious types and non-uniform computation[END_REF] available on the author's web page. □

Polyadic geometry of interaction

The name "geometry of interaction", or GoI, originally designated a research program initiated by Girard [Gir89b] which aimed at interpreting cutelimination as the inversion of a certain operator in a suitable algebra: from C * -algebras [START_REF] Girard | Geometry of interaction I: Interpretation of system F[END_REF] to von Neumann algebras [START_REF] Girard | Geometry of interaction V: logic in the hyperfinite factor[END_REF]. Over time, Girard's results were reformulated in different settings, from more concrete (token machines) to more abstract (traced monoidal categories). Today, the term GoI encompasses a diverse body of techniques whose only common ground is, perhaps, that they describe the execution of a program under a radically different form than the one adopted by more traditional operational semantics, be it "big step", "small step" or environment-based abstract machines.

In particular, and this is the main reason behind our interest in it, the GoI allows one to execute a program without rewriting it and without explicitly computing closures, i.e., associating values to variables. This turns out to be fundamental if one wants to develop a meaningful complexity theory of space, in particular because neither rewriting nor environments are suitable for dealing with sublinear bounds, a fundamental case in space complexity:

• rewriting is obviously out of the question (how do we not count the size of the initial term?);

• explicitly computing the value of variables is also problematic: even if done with pointers (to subterms of the initial term), the number of variables is still linear in the size of the program under execution.

The GoI offers a scalable, general solution to the above issues. This was perhaps first understood by Schöpp [START_REF] Schöpp | Space-efficient computation by interaction[END_REF][START_REF] Schöpp | Stratified bounded affine logic for logarithmic space[END_REF] and later fully developed by Dal Lago and Schöpp [START_REF] Dal | Functional programming in sublinear space[END_REF], as well as Terui, who lectured several times on the subject (but never published any related work as far as we know). The approach we follow here is to see the GoI semantics as a token machine, in the style of the interaction abstract machine originally introduced by

▲ a C{λa.C ′ } S ⇝ ▼ λa.C ′ {a} C p • S ▼ t C{λa.{•}} S ⇝ ▼ λa.t C q • S ▼ u C{t{•}} S ⇝ ▲ t C{{•}u} p • S ▲ tu C S ⇝ ▲ t C{{•}u} q • S ▼ t C{{•} ⊗ u} S ⇝ ▼ t ⊗ u C p • S ▼ u C{t ⊗ {•}} S ⇝ ▼ t ⊗ u C q • S ▲ a C[a⊗b:=u] S ⇝ ▲ u C{a}[a⊗b:={•}] p • S ▲ b C[a⊗b:=u] S ⇝ ▲ u C{b}[a⊗b:={•}] q • S ▼ t C{{•} :: u} S ⇝ ▼ t :: u C 0 • S ▼ u C{t :: {•}} i • S ⇝ ▼ t :: u C (i + 1) • S ▲ x i C[⟨x⟩ := u] S ⇝ ▲ u C{x i }[⟨x⟩:={•}] i • S ▼ t C{{•}[p:=u]} S ⇝ ▼ t[p := u] C S Figure 3
.12: The transitions of the interaction abstract machine (IAM). In the second to last last row, x = x 0 , . . . , x m with m ≥ i. In the last row, p stands for either a ⊗ b or x.

Danos and Regnier [START_REF] Danos | Reversible, irreversible and optimal lambda-machines[END_REF]. Danos and Regnier's definition, as well as the ones that followed it (including very recent developments extending it in all sorts of directions [START_REF] Dal Lago | The geometry of parallelism: classical, probabilistic, and quantum effects[END_REF]), use proof nets. Here, we formulate the machine directly on terms, drawing inspiration from an unpublished note of Accattoli and Dal Lago. The machine will execute affine polyadic terms, in the modified syntax of Sect. 3.2.2.

Definition 23 (polyadic interaction abstract machine)

The polyadic interaction abstract machine, or pIAM, is a machine whose states are tuples of the form

d | t | C | S
where

• d ∈ {▲, ▼} is a direction;
• t is a closed affine polyadic term;

• C is an affine polyadic context;

• S is a stack, which is a finite string over {p, q} ∪ N. We write ε for the empty stack and s • S for a stack whose first symbol is s.

The transitions of the pIAM are given in Fig. 3.12. In addition, for each transition

d | t | C | S ⇝ d ′ | t ′ | C ′ | S ′
therein, there is a transition

d ′ | t ′ | C ′ | S ′ ⇝ d | t | C | S,
where ▲ := ▼ and ▼ := ▲.

For a closed term t and stack S, we let

init(t, S) := ▲ | t | {•} | S, fin(t, S) := ▼ | t | {•} | S.
The former are called initial states, the latter final states. Given a term t, we define a binary relation on stacks by

S t ↭ S ′ just if init(t, S) ⇝ * fin(t, S ′).
Why is the pIAM a "token machine"? The intuition is that the pIAM has a read-only memory in which the term-graph of a fixed closed affine polyadic term is stored, and at any given time a token is placed on a node of this termgraph. The token carries information consisting of one bit and a stack (as defined above). A state d | t | C | S represents the machine with its memory containing C{t} and the token placed at the root of the subterm t, carrying the information (d, S). Depending on the current position of the token and its current information, the transitions move the token on an adjacent node of the term-graph and update the information. As a consistency check, we invite the reader to verify that

d | t | C | S ⇝ d ′ | t ′ | C ′ | S ′ implies C{t} = C ′ {t ′ }.
Observe that the pIAM is bideterministic: given a state, there is at most one future state and at most one past state. This makes the relation t ↭ symmetric. In Girard's original viewpoint [START_REF] Girard | Geometry of interaction I: Interpretation of system F[END_REF], it corresponds to the fact that proofs/programs are hermitian operators.

Proposition 31 (soundness of the pIAM) Let t be a closed affine polyadic term. Then,

t → t ′ implies t ↭ = t ′ ↭ .
Proof. This is "the" standard result for GoI token machines. In this case, it holds without restrictions because we are considering closed affine terms (no exponential boxes). An equivalent result, stated for parsimonious proof nets, may be found in [START_REF] Mazza | Simple parsimonious types and logarithmic space[END_REF]. The proof in this context is morally identical and consists of a case analysis of Fig. 3.12 (which is modeled on proof nets). □

The return of intersection types

The ideas of Chapter 2 turn out to be useful also in the context of space bounds. The lesson we learned in there is that an intersection types discipline arises as soon as we have a well-behaved notion of approximation. The parsimonious λ-calculus fits the bill, and we may build an intersection type system for it by applying the Grothendieck construction to a suitable approximation presheaf pApx : pΛ -→ Rel based on Fig. variables matching the types and its 2-arrows reductions modulo permutation equivalence.

α ⊏ α A ⊏ σ B ⊏ τ A ⊸ B ⊏ σ ⊸ τ A 1 ⊏ σ . . . A n ⊏ σ ⟨A 1 , . . . , A n ⟩ ⊏ !σ ⟨A⟩ ⊏ !σ ⟨A⟩ p ⊏ #σ
In reality, since we are interested in the simply-typed parsimonious λ-calculus, we need something slightly different, namely a presheaf pApx ST : pΛ ST -→ Rel, where pΛ ST is the 2-operad of (Church-style) simply-typed parsimonious terms. We will denote simple types by σ, τ to avoid confusion with polyadic simple types (which the construction "turns" into intersection types), for which we use A, B. Let us recall them: σ, τ ::= α σ ⊸ τ σ ⊗ τ !σ, A, B ::= α A ⊸ B A ⊗ B ⟨A 1 , . . . , A n ⟩.

In the sequel, for the sake of brevity we will ignore tensors, their treatment being unproblematic and in all respects similar to that of the linear arrow.

The 2-operad pΛ ST has as colors the simple types σ (refining the color a of pΛ), plus colors of the form #σ with σ a simple type (refining the color e of pΛ). Its multimorphisms and 2-arrows are (Church-style) terms and reductions, as usual.

Since we are using a slightly different syntax for polyadic terms than the one introduced in Sect. 1.2.3 (in order to match parsimonious terms more closely, we have the term !⊥ and the construct :: instead of just one construct ⟨. . .⟩, cf. Sect. 3.2.2), we need to adapt the typing rules of Fig. 1.9 to this syntax. The typing rules for polyadic simple types are as in Fig. 1.9, except that:

• the box rule is removed and replaced with the rules given in Fig. 3.13;

• of course, we have the weak rule but not the cntr rule. Now, the approximation relation between polyadic simple types and simple types is presented in Fig. 3.14, and the approximation presheaf is defined as follows:

Θ; Γ, a σ : A ⊢ a : A avar Θ; Γ, a σ : A ⊢ M : B Θ; Γ ⊢ λa σ .M : A ⊸ B lam Θ; Γ ⊢ M : A ⊸ B Θ; Γ ′ ⊢ N : A Θ; Γ, Γ ′ ⊢ MN : B app m ≥ i Θ, x σ : ⟨A 0 , . . . , A m ⟩; Γ ⊢ x i : A i evar !M{x φ } : !σ x φ : Θ; Γ ⊢ !M : ⟨⟩ empty Θ; Γ ⊢ M : A Θ; Γ ′ ⊢ !M ++ : ⟨B⟩ Θ; Γ, Γ ′ ⊢ !M : ⟨A, B⟩ cons ! Θ; Γ ⊢ M : A Θ; Γ ′ ⊢ N : ⟨B⟩ Θ; Γ, Γ ′ ⊢ M :: N : ⟨A, B⟩ cons Θ; Γ ′ ⊢ N : ⟨A⟩ Θ, x σ : ⟨A⟩; Γ ⊢ M : C Θ; Γ, Γ ′ ⊢ M[!x σ := N] : C let ! Figure 3
.15: Intersection types for simply-typed parsimonious terms.

• on colors, pApx ST (σ) := {A | A ⊏ σ};

• on multimorphisms, pApx ST (M)(Θ, Γ; A) := {δ derivation of Θ; Γ ⊢ t :

A | t ⊏ M},
where the approximation relation is that of Fig. 3.4 and derivations are taken to be those of Fig. 1.9 amended as described above (with the rules of Fig. 3.13);

• on 2-arrows, the definition is similar, using the obvious approximation relation for reduction terms which may be inferred from Fig. 3.4.

The Grothendieck construction applied to pApx ST yields the type system shown in Fig. 3.15, let us call it ITpΛ ST . Typing judgments are of the form Θ; Γ ⊢ M : A, where • Θ is composed of statements of the form x φ : ⟨B 1 , . . . , B k ⟩ such that, for all 1 ≤ i ≤ k, B i ⊏ φ;

• Γ is composed of statements of the form a τ : C such that C ⊏ τ;

• M is a (Church-style) simply-typed parsimonious term.

One may check that, if M : σ and the above judgment is derivable, then A ⊏ σ. This is the reason behind the premise of the empty rule, which means that !M is a term of type !σ with free variables x = x 1 , . . . , x n of respective types φ = φ 1 , . . . , φ n . By removing the simple-type decorations (i.e., σ, τ, etc.) and by discarding the hypothesis of rule empty (which becomes nullary), we obtain from Fig. 3.15 the intersection type system for pΛ (i.e., pure parsimonious terms) mentioned above, resulting from the Grothendieck construction applied to pApx. Let us call this system ITpΛ. It is easy to see, using the techniques of Chapter 2, that typability in ITpΛ characterizes head-normalizable parsimonious terms. Since simply-typed parsimonious terms (strongly) normalize, they are all typable; moreover, they are actually typable in ITpΛ ST . This remark will be useful later.

As introduced in the previous subsection, the pIAM executes untyped terms. However, if fed a simply-typable term, it behaves consistently with the type information. Albeit not so surprising (Girard originally conceived the GoI in a typed context), this property will give intersection types a key role in dealing with space complexity in the parsimonious λ-calculus.

Definition 24 (stack matching a type; well-typed state) A stack S of the pIAM matches a simple polyadic type A if:

• S = ε and A is atomic;

• S = p • S ′ , A = A ′ ⊸ B or A = A ′ ⊗ B and S ′ matches A ′ ; • S = q • S ′ , A = B ⊸ A ′ or A = B ⊗ A ′ and S ′ matches A ′ ; • S = i • S ′ , A = ⟨A 0 , . . . , A n ⟩, 0 ≤ i ≤ n and S ′ matches A i .
Let δ be a closed simply-typed affine polyadic term and let d | t | C | S be a state of the pIAM such that C{t} = δ -. We say that such a state is well-typed if S matches the type of t within δ.

Lemma 32

The transitions of the pIAM preserve well-typedness.

Proof. A case-by-case inspection of Fig. 3.12. □

Implicit and explicit complexity via parsimony

Deterministic polynomial time (P) and deterministic logarithmic space (L) are quite important classes in computational complexity theory because they are taken to embody the concept of "feasible computation" with respect to running time and memory usage, respectively. These classes are also very robust, in that they admit a host of alternative characterizations by means of a variety of models of computation. In particular, both classes may be seen as the "uniformization" of a non-uniform model of computation restricted to families of polynomial size: Theorem 33 We have:

1. P = POLYSIZE unif ; 2. L = POLYBP unif .
In point 1, POLYSIZE unif is the class of problems decided by uniform polysize families of Boolean circuits. We will not enter into the the details of what "uniform" means; it suffices to think of it in the terms described in Sect. 3.1, i.e., as the fact that there is a (very efficient) algorithm computing the description of the n-th circuit of the family from n ∈ N. The key technical part is proving Theorem 24 mentioned in Sect. 3.1. The reader may find the details in any computational complexity textbook, e.g. [START_REF] Papadimitriou | Computational complexity[END_REF].

In point 2, one considers the non-uniform model of branching programs. These may be intuitively described as "decision trees with sharing", and POLYBP unif is the class of languages decided by uniform families of polysize branching programs. We will not need a formal definition, which the reader may find e.g. in [START_REF] Vollmer | Introduction to circuit complexity -a uniform approach[END_REF], together with the proof that such a class equals L.

As mentioned in Sect. 3.1, results like Theorem 33 may be seen as "unraveling" the complexity analysis of a program, a highly non-trivial task, into a family of "micro-programs" for which the complexity analysis is trivial (it is given by their size). This is important because it opens the way to study computational complexity from the non-uniform viewpoint, which is the predominant one in structural complexity theory. That is, once Theorem 33 is established, one may forget about uniformity and try to prove lower bounds directly on POLYSIZE and POLYBP, which are of purely combinatorial nature. Although still formidably difficult, this approach is at present the only one for which any viable technique has been developed.

In this section we will see how parsimony allows us to establish a similar framework in a higher-order setting. In particular, we will prove results similar to Theorem 33, stating the equality of fours kinds of classes: implicit = explicit = non-uniform = traditional, where:

• by "traditional" we mean a complexity class in the usual definition, i.e., one of P or L.

• By "explicit" we mean the higher-order equivalent of the "traditional" complexity class, i.e., the one we would define if we did not know Turing machines and had to resort to notions which are purely internal to the λ-calculus. This is especially tricky for space complexity and we will see that our solution uses intersection types in a crucial way.

• By "non-uniform" we mean the higher-order equivalent of classes defined in therms of non-uniform models (circuits, branching programs).

In our case, we will use families of affine polyadic terms, which are "higher-order circuits" according to our Equation 3.1 (Sect. 3.1).

• By "implicit" we mean a class defined without any explicit reference to complexity bounds, of any sort. In our case, these classes will be defined by means of standard type disciplines.

There are two novel aspects that the higher-order setting offers with respect to the "traditional", first-order setting. The first, of course, is the implicit characterization. Much has already been said about that in the literature, we will not insist any more here. The second aspect is more interesting. The characterization in terms of the non-uniform model must necessarily employ some uniformity condition; in the traditional case, we skipped the details but we mentioned that uniformity is an algorithmic notion, i.e., it is about the existence of an algorithm generating the members of the family of "microprograms" of the non-uniform model (circuits, branching programs. . .). In our setting, it turns out that uniformity has a more algebraic flavor: a family (t n) n∈N of affine polyadic terms (i.e., of "higher order circuits") is uniform just if there is a parsimonious term M such that t n ⊏ M for all n ∈ N (Definition 27). From Chapter 1, we know that, intuitively, this means that all t n follow the same "shape". In other words, uniformity may be reformulated as a coherence relation between pairs of "microprograms", rather than an algorithm generating such "microprograms". Such a coherence relation is explicitly defined, in the context of resource λ-terms, by Ehrhard and Regnier [START_REF] Ehrhard | Uniformity and the Taylor expansion of ordinary lambda-terms[END_REF]. It is nice to see it resurface here; its role in computational complexity is still to be clarified, but it seems worth further investigation in the future.

Let us implement the framework sketched above. We start with the definition of "explicit" complexity classes. In the following, we refer to the encoding of Booleans and binary strings described in Fig. 3.7, which is of course available also in the untyped setting. We say that a closed term M ∈ pΛ decides a language L if, for all w ∈ {0, 1} * , we have ψ w : M w → * b w with b w a Boolean and b w = 1 iff w ∈ L. We need to define how much time and how much space M takes in deciding L. For what concerns time, the length of reductions to normal form is the obvious choice. We will adopt an equivalent but more sophisticated definition, which will give us the possibility of dealing with space too.

Note that, for all w ∈ {0, 1} * , we obviously have that ; ⊢ b w : Bool is derivable in the system of intersection types ITpΛ. By subject expansion along ψ w , we have a derivation of ; ⊢ M w : Bool, from which we deduce the existence of a family of derivations (δ w) w∈{0,1} * of ; ⊢ M : A w ⊸ Bool, for some types (A w) w∈{0,1} * such that ; ⊢ w : A w is derivable. Observe that the family δ w depends on ψ w , so it is not uniquely defined in general. For our purposes, we will take ψ w to be a head reduction, which is unique and always guaranteed to lead to b w . Other choices are possible if one wishes to. This detail having been fixed, there is a unique family (δ w) w∈{0,1} * associated with a term M deciding a language, constructed as above. We call such a family the execution envelope of M, and denote it by env(M), so that, if w ∈ {0, 1} * , env(M) w = δ w .

Definition 25 (type depth) Let δ be a Church-style simply-typed affine polyadic term. The type depth of δ, denoted by td(δ), is the maximum depth of the types (as syntactic trees) appearing in it. Note that this definition also applies to intersection types derivations of ITpΛ and ITpΛ ST , because by definition these are isomorphic to Church-style simply-typed affine polyadic terms.

Recall that, given a Church-style simply-typed affine polyadic term, δ -is the underlying pure polyadic term, without type annotations.

Definition 26 (complexity classes in pΛ) Let M ∈ pΛ decide a language. We define:

• the running time of M to be the function n → max We then define:

• pλP to be the class of languages decided by closed parsimonious terms in polynomial running time;

• pλL to be the class of languages decided by closed parsimonious terms in logarithmic execution space.

Some comments are in order. For what concerns running time, the above definition is actually unsurprising: in view of the polynomial modulus of continuity, and of the fact that a derivation of ITpΛ is just an approximation, modulo a polynomial (which is negligible in time complexity) bounding the size is exactly the same as bounding the length of reductions to normal form.

The definition of execution space is justified by Lemma 36 below. Underlying it, there is the assumption that the GoI is a space-efficient execution mechanism for λ-terms.

Let us move on to our non-uniform model. Observe that, for all w ∈ {0, 1} * , w has no boxes, so ⌊w⌋ k = ⌊w⌋ 0 for all k ∈ N. Because of this, in the sequel we are going to abusively write w both for the parsimonious term representing w and the affine polyadic term ⌊w⌋ 0 .

Definition 27 (higher order affine circuit classes) Let (t n) n∈N be a family of affine polyadic terms. We say that such a family decides a language L if, for all n ∈ N and w ∈ {0, 1} n , t n w → * b w with b w a Boolean and b w = 1 iff w ∈ L. We say that a family (t n) n∈N is uniform if there exists M ∈ pΛ such that t n ⊏ M for all n ∈ N.

We denote by

• HOPOLYSIZE (HOPOLYSIZE unif) the class of languages decided by (uniform) families of affine polyadic terms of polynomial size;

• HOAC 0 (HOAC 0 unif) the class of languages decided by (uniform) families of simply-typable affine polyadic terms of polynomial size and bounded type depth.

We may now prove the results announced above.

Lemma 34

The normal form of an affine polyadic term t may be computed in deterministic time O(|t| k), with k constant.

Proof. Let m := |t|. We know that m bounds the length of any reduction sequence starting from t, so there is a naive quadratic deterministic algorithm for finding the normal form: scan for a redex (e.g. from the left); halt if none is found, otherwise reduce it; start over. This terminates in at most m rounds, and the size of the terms shrinks at each round, so each round takes time O(m), hence the quadratic bound. the exponential depth of M w is equal to the exponential depth of M, because the exponential depth of w is zero;

since env(M) - w is typable, then so is t n , so we conclude by Lemma 28 and monotonicity.

• HOAC 0 unif ⊆ L: we are given a typable family (t n) n∈N of bounded type depth and polynomial size such that there exists a parsimonious term M such that t n ⊏ M for all n ∈ N. As in the proof of Theorem 35, we may replace it with (⌊M⌋ r(n)) n∈N for a suitable polynomial r. Observe now that, for fixed M (as in our case), ⌊M⌋ k may be computed in logspace in k. Indeed, in order to determine a given node in the syntactic tree of ⌊M⌋ k(n) (or the absence of such), all we need is a pointer to the syntactic tree of M and an integer counter bounded by k + m, where m is the maximum index of exponential occurrences in M (a constant). Storing this counter in binary only occupies logarithmic space in k. So we compose this algorithm with the one given by Lemma 36, and conclude.

• L ⊆ C(pApx ST): this was shown in Sect. 3.3.2.

The proof is thus complete. □

Further results and perspectives

Non-uniform complexity

So far we only dealt with uniform complexity classes. And yet, in Sect. 3.1.3, we motivated parsimony by an analysis of non-uniform computation in infinitary affine terms. In fact, by nature, the parsimonious λ-calculus admits a non-uniform extension which is, in a sense, the λ-calculus equivalent of Turing machines with advice. We will now make a brief survey of it. The non-uniform parsimonious λ-calculus, or nupΛ, is defined similarly to pΛ, except that boxes (i.e., terms of the form !M) are replaced by !⟨M 1 , . . . , M k ⟩ f where f : N → {1, . . . , k} is arbitrary. This means of course that the syntax of nupΛ is infinitary, which is to be expected if one has to somehow introduce non-uniformity. The above is called a non-uniform box (or just box) and the terms M i are its components. The parsimonious requirements are always the same: only free exponential variables are allowed in a box and, modulo Barendregt's convention, each exponential variable in a term appears in at most one component of at most one box, with the highest index with respect to other occurrences of the same variable in the term.

The intuitive meaning of non-uniform boxes is

!⟨M 1 , . . . , M k ⟩ f = M f (0) :: M ++ f (1) :: M +2 f (2) :: M +3 f (3) :: • • • ,
that is, a non-uniform box is an arbitrary stream on the finite "alphabet" M 1 , . . . , M k . The reduction rules of nupΛ may be obtained from those of pΛ in an obvious way by keeping in mind the above semantics. Of course, uniform boxes !M are the special case in which k = 1, but now the infinite sequences of Booleans mentioned in Sect. 3.1.3 become available as well. Because of this, every language is decidable in nupΛ. The above fact does not prevent us from, on the one hand, restating Definition 26 and Definition 27 in terms of nupΛ instead of pΛ, and, on the other hand, to endow nupΛ with a discipline of simple types, with or without linear polymorphism, like we did for pΛ. For the former, we obtain two classes that we denote by nupλP and nupλL. For the latter, the typing rule for non-uniform boxes is a straightforward generalization of the uniform case:

; a 1 Γ 1 ⊢ M 1 : A . . . ; a k : Γ k ⊢ M k : A x 1 : Γ 1 , . . . , x k : Γ k ; ⊢ !⟨M 1 {x 1 0 /a 1 }, . . . , M k {x k 0 /a k }⟩ f : !A
We denote by nupΛ ST (nupΛ ∀ℓ) the simply-typed (with linear polymorphism) non-uniform parsimonious λ-calculus.

Every result of Sect. 3.3 smoothly extends to the non-uniform case. In fact, the proofs are sometimes easier because we do not have to deal with uniformity. We therefore have:

□

To our knowledge, the above theorem is the first of its kind in implicit computational complexity: non-uniform complexity classes were considered previously (e.g. [START_REF] Terui | Proof nets and boolean circuits[END_REF]) but no implicit characterizations in logical terms were given. This shows the fruitfulness of the parsimonious approach to implicit complexity. Indeed, we want to stress that the best-known linear-logical approach to implicit complexity, namely Girard's light linear logic [START_REF] Girard | Light linear logic[END_REF], is inadequate to deal with non-uniform computation, because it includes contraction. In other words, if one took the infinitary affine λ-calculus Λ ∞ a and imposed on it the constraints of light linear logic (which is possible!), one would still obtain a calculus in which every language is decidable. It is not clear whether Lafont's alternative approach [START_REF] Lafont | Soft linear logic and polynomial time[END_REF] suffers from this problem and we do not know whether one can develop all of the above results in it.

The equality HOAC 0 = L/poly is interesting in its own right, for two reasons. The first is that it clarifies Terui's above mentioned result [START_REF] Terui | Proof nets and boolean circuits[END_REF], stating that the class of languages decidable by bounded-depth, polysize families of so-called Boolean proof nets, let us denote it by BPN 0 , is equal to AC 0 [ustcon 2], i.e., the class of languages decidable by bounded-depth, polysize families of Boolean circuits with unbounded fan-in gates and the addition of a certain kind of reachability gates (ustcon 2).

These extra gates are quite ad hoc and their computational meaning rather technical: a ustcon 2 gate of order n has n(n + 1)/2 inputs, which are interpreted as the adjacency matrix of an undirected graph on the nodes {1, . . . , n}; assuming that such a graph has degree at most 2 (i.e., at most two incident edges on each node), the gate outputs 1 iff the nodes 1 and n are in the same connected component (if the input graph has degree greater than 2, the output of the gate is arbitrary). Now, it is very easy to see that BPN 0 = HOAC 0 , so Theorem 38 immediately implies BPN 0 = L/poly, showing, on the one hand, that Terui's original characterization was not optimal, and, on the other hand, that bounded-depth, polysize Boolean proof nets correspond to a very well known and robust complexity class, instead of a non-standard and rather ad hoc class. 3The second reason is more abstract: the fact that HOAC 0 = L/poly tells us that the presence of higher-order makes a huge difference in the world of small complexity classes. Indeed, one of the very few unconditional lower bounds known in complexity theory states that parity ̸ ∈ AC 0 [Ajt83,[START_REF] Merrick | Parity, circuits, and the polynomial-time hierarchy[END_REF], where AC 0 is the class of languages decidable by bounded-depth, polysize families of Boolean circuits with unbounded fan-in gates and parity is the following problem: on input a binary string, tell whether it contains an even number of 1's. Now, not only is parity extremely easy to implement with higher order primitives,4 but bounded-depth higher-order circuits go well beyond that: they decide, for instance, majority (given a binary string, tell if it contains strictly more 1's than 0's) and all the way up to the quintessential logspace problem, i.e., reachability for directed forests, which we met under the disguise of deterministic transitive closure in Sect. 3.3.2.

So there is a fairly big gap between AC 0 and HOAC 0 , and it is unclear how one may deal with complexities below logarithmic space in a λ-calculus setting. By contrast, first-order "catches up" with higher-order as soon as we allow the depth to be unbounded: if POLYSIZE denotes the class of languages decidable by polysize families of Boolean circuits, then Theorem 38 tells us that POLYSIZE = HOPOLYSIZE because it is well-known that POLYSIZE = P/poly (this is Theorem 24 mentioned in Sect. 3.1).

The "logic of while loops"?

Implicit characterizations of L abound: of recursive-theoretic nature [START_REF] Møller | A functional language for logarithmic space[END_REF][START_REF] Kristiansen | Neat function algebraic characterizations of logspace and linspace[END_REF], using imperative languages [Jon99, Bon06] and higher-order languages [START_REF] Schöpp | Space-efficient computation by interaction[END_REF][START_REF] Schöpp | Stratified bounded affine logic for logarithmic space[END_REF][START_REF] Dal | Functional programming in sublinear space[END_REF]. Of these, only the latter are immediately comparable to our work. Another paper explicitly relating streams and logarithmic space is [START_REF] Ramyaa | Ramified corecurrence and logspace[END_REF], which however does not have much of a connection with our work: the authors consider there corecursive definitions, i.e., algorithms on infinite streams (as opposed to finite strings) and the space complexity they refer to is not the usual decision problem complexity.

The GoI plays a key role in both [START_REF] Schöpp | Stratified bounded affine logic for logarithmic space[END_REF][START_REF] Dal | Functional programming in sublinear space[END_REF]. The difference here is not so much in the use of the GoI, which is quite similar, but in the underlying programming language: in that work, the author(s) take the standpoint that the fundamental primitive of sublinear space computation is interaction (a point of view already taken in [START_REF] Schöpp | Space-efficient computation by interaction[END_REF]) and forge their programming language around this. This leads, for instance, to the use of non-standard types for encoding strings, namely Nat ⊸ Three (a binary string x is seen as a function mapping i to x i ∈ {0, 1} or to ⊥ if i ≥ |x|), whereas the language of [START_REF] Schöpp | Space-efficient computation by interaction[END_REF] has an explicit list type.

With respect to the above, we believe that the highlight of our characterization is that it is closer to the original spirit of applying linear logic to implicit complexity [START_REF] Girard | Light linear logic[END_REF]: it is purely logical (there is no primitive datatype) and employs standard types. Our characterization also improves on previous ones in terms of simplicity: the types of [START_REF] Schöpp | Stratified bounded affine logic for logarithmic space[END_REF] include full polymorphism and indexed exponential modalities, whereas the categorical construction of [START_REF] Dal | Functional programming in sublinear space[END_REF], while elegant, also yields a sort of indexed exponential modality in types, making type inference not straightforward (see [START_REF] Dal | Type inference for sublinear space functional programming[END_REF]). By contrast, our calculus is simply-typed, has only 11 typing rules (Fig. 3.6) which are essentially syntax-directed, so type inference is easier. Programming is of course restricted but, as hopefully showcased by Sect. 3.3.2, quite reasonably so if we consider that all programs must run in logarithmic space.

We also want to stress (again) that parsimony offers a truly novel approach to applying linear logic to implicit complexity, which is not just a variant of existing "light logics" (such as bounded, light or soft linear logic) or of systems such as those of [START_REF] Hofmann | A mixed modal/linear lambda calculus with applications to bellantoni-cook safe recursion[END_REF][START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF]. The most prominent difference with respect to "light logics" is the absence of stratification or other structural principles enforcing bounded-time cut-elimination: as mentioned above, the untyped parsimonious λ-calculus is Turing-complete, whereas light λ-calculi normalize with the same runtime independently of types. This is because parsimony is not about the global complexity of normalization but the local complexity of single reduction steps, via the notion of continuous linear approximations.

• an integer n, which represents a question of the form "how much is fib(n)?";

• an integer m, which is an answer to a question as above;

• a bit d telling us which between the question and the answer is currently meaningful: 1 indicates that we are asking for the value of fib(n), -1 that we are returning the answer m;

• a list s which represents the call stack, made of pairs of integers (a,m) where a is a question and m an answer, or -1 if we do not yet have an answer (because we are in between two recursive calls, i.e., we computed fib(a-1) but are waiting for fib(a-2)).

We may call parsimonious programming "higher-order imperative programming": as in usual functional programming, higher-order functions are basic primitives but, unlike functional programming, recursive calls are restricted to being while loops. Retrospectively, this also justifies the nice behavior of the parsimonious λ-calculus in terms of complexity: the size-explosion problem is solved by forcing recursion to be linear.

Such a hybrid programming style may perhaps be of interest as a kind of intermediate language in a compilation process. In this respect, while we do think that the transformation leading from fib to fib_lin shown above may be automatized, we do not know whether it corresponds to a canonical semantic construction. Oddly, we have not been able to find anything in the existing literature mentioning a systematic study of linearization of recursive calls, at least not in the context of full-fledged functional programming.

• the length of witnesses for instances of size n is always exactly q(n).

To simplify the construction, some authors (e.g. [START_REF] Arora | Computational Complexity -A Modern Approach[END_REF]) make the further assumption that M is oblivious, i.e., that also the position of the head at step i does not depend on the input but only on its length. Of course, the proof that all these assumptions may be made "for free", albeit unproblematic, must be taken into account in the global complexity of the proof of the Cook-Levin theorem.

The point, of course, is not that some important insight is lurking in the missing details or, worse, that some mistake may be hiding in them. No-one doubts the correctness of the above proof and no-one claims that some deep technique must be developed in order to fill in the details. However, this may leave us wondering:

1. if the low-level details are so unimportant, maybe it is because there is a proof in which those details are simply not needed? Or maybe the details are still there, but under a form which is more easily amenable to formalization?

2. Ignoring the details, the essence of the Cook-Levin theorem emerges as being the idea that "computation is local". This is an informal statement; can it be given a more mathematically precise meaning?

It turns out that the techniques developed in Chapters 2 and 3 are also useful to address the above two questions. In [START_REF] Mazza | Church meets Cook and Levin[END_REF] we gave a proof of the Cook-Levin theorem taking the parsimonious λ-calculus, instead of Turing machines, as the underlying model of computation. The key points are:

• the "locality" of computation becomes the quantitative continuity property expressed by Proposition 26: if M → l N and u ⊏ N, there exists t ⊏ M such that t → * u and rk(t) ≤ rk(u) + l.

• The "higher-order" version of the Cook-Levin theorem is then implied by Theorem 35: a language in P admits a polystep parsimonious term M deciding it, which in turn yields a family of affine polyadic terms, or "higher-order circuits". This family is uniform, which means that one may build a Karp reduction from it.

• In this way, one obtains the NP-completeness of a higher-order version of circuit sat, let us call it ho circuit sat: given an affine polyadic term t : Bool ⊗n ⊸ Bool, determine whether there exist inputs b

1 , . . . , b n ∈ {0, 1} such that t(b 1 ⊗ • • • ⊗ b n) → * 1.
To complete the proof, one must then show that ho circuit sat ≤ K circuit sat. In [START_REF] Mazza | Church meets Cook and Levin[END_REF], this is done via proof nets: using ideas similar to those of [START_REF] Terui | Proof nets and boolean circuits[END_REF], one "compiles" a proof net into an equivalent Boolean circuit.

The proof presented in [START_REF] Mazza | Church meets Cook and Levin[END_REF] is already of significance with respect to question (2) above: compared to the original proof, it certainly gives a more satisfactory meaning to the "locality of computation". However, it falls short of addressing question (1): the compilation of higher-order circuits in firstorder circuits is still full of technical details of the same nature as those of the original proof.

The latter reason pushes us to develop here a different proof, which does not take the "higher-order route": we work directly with a first-order programming language, with basically nothing more than while loops, which plays the role of Turing machines; then, we apply our techniques to such a language, using directly Boolean circuits to approximate programs and thus avoiding the higher-order-to-first-order compilation. This also offers us a further example of how far the abstract construction of Chapter 2 can go: thanks to it, we will be able to see a Boolean circuit (in the literal sense!) as an intersection types derivation for a language which, after all, is not too far from Turing machines.

The resulting proof is not bureaucracy-free: there are still plenty of technical, uninteresting details which are swept under the rag of lemmas proved by "a straightforward induction".2 However, we point out that these technical details now concern term syntaxes and type systems which are much more amenable to formalization (for instance, in a proof assistant) than those of the Turing-machine-based proof. In this sense, we are dealing with question (1) in a much more satisfactory way than before. At the same time, we stress that ours is not really a "new" proof of the Cook-Levin theorem: it is merely a different presentation of the original one, giving a (hopefully) mathematically clearer meaning to its essence and making the details less low-level.

A final note: although the influence of the techniques developed in the previous chapter is obvious (and will be explicitly pointed out at times), in the following presentation we refrain from explicitly using any "advanced" notion, and try to present the proof so that an undergraduate student with basic knowledge in programming languages and type systems should be able to follow it.

A minimalist programming language

In Fig. 4.2 we introduce the programming language that we will use to play the role of Turing machines. We call it Mowl, for "monoidal while language". Indeed, it should be seen as the presentation of a symmetric monoidal category with a Boolean object, a binary string object, and the ability to write recursive programs. Since we do not need multiple outputs, we present it in operadic style, although we do not introduce reduction terms explicitly (for the sake of maintaining an introductory level, as mentioned above).

The other significant change with respect to a monoidal framework is that the operad is actually cartesian. This is because, even in a strictly monoidal a MntDblPos-operad, to which the ideal completion of Sect. 1.3.3 may be applied. Here, we will content ourselves whit the following key result:

x ⊑ x var • ⊑ • t bot t ⊑ u t ⊑ • u • t ⊑ t ′ u ⊑ • u ′ t[x ← u] ⊑ t ′ [x ← u ′] share t 1 ⊑ t ′ 1 . . . t n ⊑ t ′ n ⟨t 1 , . . . , t n ⟩ ⊑ ⟨t ′ 1 , . . . , t ′ m ⟩ box m≥n t ⊑ t ′ u ⊑ u ′ t[⟨x 1 , . . . , x n ⟩ := u] ⊑ t ′ [⟨x 1 , . . . , x m ⟩ := u ′] let m≥n, x n+1 ,...,x m ̸ ∈fv(t) b ⊑ b bool b∈{0,1} p ⊑ p ′ t ⊑ • t ′ u ⊑ • u ′ if p then t else u ⊑ if p ′ then t ′ else u ′ if then else
Lemma 40 (monotonicity) If t → u and t ⊑ t ′ , then t ′ → u ′ such that u ⊑ u ′ .
Proof. A straightforward induction on t. □

The next result is not needed for the Cook-Levin theorem but we mention it anyway because it may be used to give a simple, conceptual proof of the classic Theorem 24 (Sect. 3.1.2).

Lemma 41 (compatible suprema) Let t, t ′ ⊑ u. Then their supremum t ⊔ t ′ exists.

Proof. One defines t ⊔ t ′ (as well as t ⊔ • t ′) by induction on u, in the obvious way, and checks that it is indeed the least upper bound. □

Intersection types, again

We now introduce the main technical tool for the proof of the Cook-Levin theorem. We already mentioned that Lemma 40 is actually the shadow of a stronger result stating that the DblPos-operad of Boolean circuits is monotonic. At this point, the reader will have guessed that the 2-operad presenting Mowl embeds in the ideal completion of Boolean circuits much in the same way as linear logic embeds in the ideal completion of the affine polyadic calculus.

From the above-mentioned embedding, one may infer an approximation relation t ⊏ M between Boolean circuits and Mowl programs (actually, between reductions of the former and reductions of the latter). On types, we have the approximation relations where Str n := Bool ⊗(2n) , n ≥ 1. The reason why Str n is defined in this way will be explained momentarily. At this point, we switch on the machinery of Chapter 2: we define an approximation presheaf, we apply the Grothendieck construction, and we get an intersection types system for Mowl programs, whose proofs are isomorphic to Boolean circuits.

Bool ⊏ Bool Str n ⊏ Str m ≥ n Γ, x : Str m ⊢ ⟨x⟩ x : Str n var Γ ⊢ u N : Str n Γ, x : Str n ⊢ t M : A Γ ⊢ t[x⇐u] M[x ← N] : A share Γ ⊢ ⟨0,0,...,0,0⟩ ε : Str n empty Γ ⊢ t M : Str n Γ ⊢ ⟨1,b,x⟩[⟨x⟩:=t] bM : Str n+1 succ b∈{0,1} Γ ⊢ q Q : Str n+1 [Γ ⊢ t M : A] Γ, x : Str n ⊢ u N : A Γ, x : Str n ⊢ p P : A Γ ⊢ if x ′ 0 then (if x 0 then p else u) else t case Q of ε.M | 0x.N | 1x.P : A case . . . Γ, x : A i , y : B i+1 ⊢ p i P : B i Γ, x : A j-1 ⊢ t i M : A j . . . Γ ⊢ u N : A 0 Γ ⊢ w while y.P do M to x := N : B 0 while 0≤i≤k, 0<j≤k where w = p 0 [y ⇐ p 1 [y ⇐ . . . p k [y ⇐ •][x ⇐ t k] . . .][x ⇐ t 1]][x ⇐ u]
The type system in question is show in Fig. 4.7, ignoring the gray annotations, whose meaning will be explained shortly. For brevity, we only show it for the fragment of Mowl restricted to Str. As observed above, the language keeps being meaningful and Turing-complete with this restriction, so this is the non-trivial part of the type system. Indeed, Bool is approximated by itself and the typing rules for the Boolean constructs of Mowl for intersection types are identical to those for the "simple types" of Fig. 4.2.

It is important to observe that, strictly speaking, our proof of the Cook-Levin theorem does not need the machinery of Chapter 2, in the sense that it does not directly invoke any of the theorems shown therein. For the sake of the proof, the type system of Fig. 4.7 "fell from the sky" and its properties are proved independently of the results of Chapter 2.

Let us explain the meaning of the approximation Bool ⊗(2n) ⊏ Str. This is where we subtly insert the low-level coding required for circuits to simulate programs (in some sense, the coding necessary for the definition of the circuit C M of Fig. 4.1). In the limit, a binary string w (of type Str in Mowl) of arbitrary length is encoded by an infinite stream of Booleans. However, since strings are finite, we need to know where the string actually ends, which is why we use two bits to encode one bit:

w ′ 1 , w 1 , w ′ 2 , w 2 , w ′ 3 , w 3 , . . . If w ′ i = 1,
then w i is meaningful and contains the value of the i-th bit of w; otherwise, it marks the end of the string, regardless of what comes next. The finite approximations of type Str n = Bool ⊗(2n) are therefore able to encode strings of length at most n -1, which is why we require n ≥ 1 (we always need at least one pair containing the end-of-string marker).

In the above perspective, for facilitating the correspondence between derivations in intersection types and Boolean circuits, we associate with each variable x : Str of Mowl a fixed sequence of Boolean variables x ′ 0 , x 0 , x ′ 1 , x 1 , x ′ 2 , x 2 , Such a sequence, or a suitable initial prefix of it (the length of which will be explicitly given if not clear from the context) will be denoted by x (this is similar to the notion of "supervariable" of Sect. 1.2.3).

In the following, we use the notation

t[x ⇐ u] := t[x ← y][⟨y⟩ := u] if u ̸ = • t[x ← •] otherwise where by t[x ← v] we mean t[x ′ 0 ← v ′ 0][x 0 ← v 0] . . . [x ′ n ← v ′ n][x n ← v n].
Definition 31 (underlying approximation) We associate with each derivation δ of the system of Fig. 4.7 a Boolean circuit, denoted by δ -, which is defined inductively. The definition is given in Fig. 4.7 itself, as the gray annotation t in the judgment Γ ⊢ t M : A, with the following indications:

• in the var, share and succ rule, x is of length 2n;

• in the empty rule, there are 2n occurrences of 0;

• in the while rule, the lengths of the various occurrences of x and y are determined in each case by the various types A i and B i .

Of course, the above definition would be automatic (and pointless) if we had introduced the approximation relation t ⊏ M and presented the type system directly in terms of the Grothendieck construction. With our current approach, it becomes necessary to give it explicitly.

We now show the main properties of the type system. The first is a quantitative form of subject expansion, which is the type-theoretic version of quantitative continuity.

Definition 32 (rank and width) Let δ be an intersection types derivation. Its rank, denoted by rk(δ), is the maximum k such that a while rule with arity 2k + 2 appears in δ. Its type width, denoted by tw(δ), is the maximum m such that the type Str m appears in δ.

Lemma 42 (quantitative subject expansion) Let δ be an intersection types derivation of Γ ⊢ M : A and let M ′ → M.

Then, there exists a derivation δ ′ of Γ ⊢ M ′ : A such that (δ ′) -→ * δ -.

Moreover, rk(δ ′) ≤ rk(δ) + 1 and tw(δ ′) ≤ tw(δ) + 1.

Proof. The proof follows a rather classic pattern. One first proves the following auxiliary claim: for all Γ, A, N and w ∈ {0, 1} * , if Γ ⊢ N{w/x} : A is derivable, then there exists B such that Γ ⊢ w : B and Γ, x : B ⊢ N : A are derivable, with rank and width bounded by those of the original derivation. This is shown by induction on N.

The proof then proceeds by induction on the context C such that M ′ = C{M ′ 0 } and M = C{M 0 } with M ′ 0 → M 0 and M ′ 0 a redex. The only really interesting case is C = {•}, in which there are three subcases, corresponding to the possible redexes. The verification, although somewhat lengthy, is completely unproblematic. The above claim is used in every case; subtyping (i.e., the fact that a declaration x : Str n in a typing context may always be replaced with x : Str m for any m ≥ n, without affecting derivability) is used in the while case. For what concerns the quantitative part, the rank increases in the case of while reductions, whereas the width increases for case reductions. □

The second main property concerns the existence of uniform derivations, which may be efficiently computed. These are to our proof what the circuits C t,s M are to the original proof of the Cook-Levin theorem. It is very important to observe the following: the above definition, which works for all k and sufficiently large m, tells us that every Mowl program is typable in intersection types. This should sound as extremely troublesome to the reader acquainted with intersection types, because usually typability implies normalization, and obviously not every Mowl program terminates. Luckily, something goes wrong here in the usual soundness proof: the intersection types system of Fig. 4.7 does not verify subject reduction; therefore, the fact that every Mowl program is typable has no consequence concerning termination.

Lemma 43 For a fixed Mowl program M, the Boolean circuit (⌊M⌋ Γ k,m) -may be computed in polynomial time in k and m.

Proof. First of all, one proves by induction on M that, if d is the number of nested while constructs found in M, then the size of (⌊M⌋ Γ k,m) -is bounded by |M|(2m(k + 1)) d . Then, we observe that the circuit in question is built from a linear exploration of M, so the size of the circuit bounds the running time.

Since |M| and d are both O(1) with respect to k and m, the result follows. □ Lemma 44 Let δ be an intersection types derivation of the judgment Γ ⊢ M : A, with M containing c binary successors. Then, for all k ≥ rk(δ) and m ≥ tw(δ) + c, we have δ -⊑ (⌊M⌋ Γ ′ k,m) -, where Γ ′ is Γ in which every type is replaced by Str m .

Proof. A straightforward induction on δ. □

The proof

We already mentioned that there is a well-known Karp reduction from circuit sat to sat (see for instance [START_REF] Papadimitriou | Computational complexity[END_REF]), so the Cook-Levin theorem reduces to proving the NP-completeness of circuit sat. Such a proof should start with showing that circuit sat ∈ NP. As obvious as it may be, a formal proof of this fact would require us to write a program for circuit sat, prove it correct and prove that it has the right complexity properties. In this respect, using Mowl as programming language is a minuscule improvement over Turing machines, so we leave this to the reader's intuition and concentrate on hardness. Besides, formal program verification and automatic inference of complexity bounds have been and are mainstream research topics in the theory of programming languages, so we are confident that this part of the proof too may be fully "absorbed" into our paradigm. We are now ready do define our reduction. For n ∈ N, let r 1 (n) := r(n, q(n)), s 1 (n) := s(n, q(n)).

Note that both r 1 (n) and s 1 (n) are O(p(n + q(n))), i.e., they may be replaced by two polynomials r 1 and s 1 which bound them from above for all n ≥ k for some fixed k ∈ N. Moreover, r, s and k depend only on M, so we may consider them hard-wired, together with M itself, in our reduction, which is defined follows. On input w ∈ {0, 1} Having reproved the Cook-Levin theorem with logic-related tools might be seen, in itself, as a quite amusing but otherwise futile exercise, at least from the standpoint of complexity theory. As a matter of fact, seeing this new proof will hardly have any impact on one's understanding of NP-completeness, and for a good reason: as we already pointed out, this "new" proof is really the usual one presented in a different language, so there is nothing in it that a complexity theorist did not already know. Of course, one may object that it is always good in principle to look at well-known matters from a new vantage point, as significant insights may come from the least expected direction. But what are we looking for? Structural complexity theorists are looking for lower bounds. They want to be able to prove results of the form: in the model of computation X, problem L needs at least R(n) computational resources to be solved, where n is the size of the problem instance. Some strong results are known when X is a restricted model of computation (e.g. decision trees), but as soon as X has a minimum of expressiveness, the question becomes so hard that it is generally considered hopeless. For instance, when X = deterministic Turing machines and L = sat, proving a superlinear time lower bound would already be considered a huge breakthrough (yes, superlinear, not superpolynomial!).

In this respect, logical approaches have proved to be of no use so far. Descriptive complexity [START_REF] Immerman | Descriptive complexity[END_REF], based on finite model theory, has been quite successful at characterizing nearly every well-known complexity class. However, it has provided no workable ideas concerning lower bounds. Implicit computational complexity, which is one of the topics we touched upon in this thesis, is situated at the other end of the logical spectrum, at the interface between recursion theory, type theory and the theory of programming languages. This approach too seems to be worthless when it comes to lower bound techniques.

Logical approaches to computational complexity usually focus on capturing complexity classes: the classic result in these fields is that a language belongs to a complexity class C if, and only if, it may be decided by a program of a given form or expressed by a formula of a certain sort. The non-triviality of such results resides in the fact that, of course, neither the program nor the formula make any reference to the complexity bounds defining the class C. Moreover, since the algorithms for solving the problems of C are "normalized" to a given form which is usually of logical nature, one may hope that a new arsenal of tools becomes available for studying C.

However, by inspecting more closely the characterization results described above, one realizes that they are composed of two parts bearing little relevance with the question of lower bounds: a completeness part, which is generally a programming exercise of limited theoretical interest; and a soundness part, which is a global upper bound result, i.e., a statement saying that all programs of the given form may be evaluated within the resources allotted by the definition of C. Now, if the question is showing that H ̸ ∈ C for some purportedly hard problem H, we see that such a characterization leaves us completely clueless. If anything, it is the far-reaching conjectures of structural complexity theory that tell us something about these characterizations, not the other way around. For instance, we may safely conjecture that there is no simply-typed parsimonious λ-term of type Str[] ⊸ Bool deciding sat on no further ground than the widespread belief that there is no logspace algorithm for sat, and not because we have any deep intuition about the limits of what simply-typed parsimonious λ-terms may do.

To make things worse, not only do we not gain any intuition on the limits of computation with bounded resources but, more often than not, we actually lose the ability to prove that such limits exist! For instance, it is a consequence of the well-known space hierarchy theorem that L ⊊ PSPACE; and yet, if we had to show that the quantified Boolean formula problem (the prototypical PSPACE-complete problem) is not decidable by any simply-typed parsimonious term of type Str[] ⊸ Bool, we would have absolutely no clue on how to proceed by logical means. Note that we are not trying to follow some "purity of methods" craze here; we are saying that, if the definition of the class L were "the problems solvable by simply-typed parsimonious terms of type Str[] ⊸ Bool", we would have to resort to a characterization using deterministic logspace-bounded Turing machines in order to infer any non-trivial separation concerning L, while our hope with implicit computational complexity was that such transfers of results would go in the opposite direction.

We must be realistic and admit that, for the time being, there is no hope of making progress in structural complexity theory by use of tools from logic and programming languages theory. This is particularly frustrating because such tools, like types, categories and rewriting, seem to be at least as good as the combinatorial ones in describing computation as a dynamic phenomenon. If anything, having re-proved the Cook-Levin theorem in type-theoretic language serves as an additional witness to this fact. This motivates us to keep investigating the world of computational complexity with a logical eye, with the goal of finding out whether the logical approach may indeed bear fruits, or gain a clear understanding of why it cannot. In the meantime, we are confident that the technical challenges we will encounter will spur the development of finer tools for the quantitative study of programming languages, which is a field of interest in its own right. The key point is to go beyond the idea of using logic and programming languages solely as a means of characterizing complexity classes. Below we describe a possible research path in this direction.

Projections and the non-uniform perspective

One might say that the Cook-Levin theorem is the mother of all completeness results: after showing the relevance of NP-completeness, and opening the door to the wave of NP-complete problems that were found soon after [START_REF] Karp | Reducibility among combinatorial problems[END_REF], it also set the stage for investigating the notion of C-completeness for an arbitrary complexity class C, and today we know the existence of non-artificial complete problems for just about any standard complexity class that is known where ¬0 = 1 and ¬1 = 0.

A projective reduction of degree k ∈ N is a sequence (p n) n∈N such that, for all n ∈ N, p n is a projection of type n → n k .

A projection of type n → m is in fact nothing but an extremely spartan Boolean circuit of depth 1, with n inputs and m outputs: each output is either a copy of one of the inputs, or the negation of such, or a constant. A projective reduction is just a polysize family of such circuits, one for each input length. Note that projective reductions are non-uniform: the family is allowed to be arbitrary, including uncomputable, as long as the size is polynomiallybounded.

Quantifier-free projections are "very uniform" projective reductions, i.e., the structure of the various p n is described by a single propositional formula, parametric in n, in a certain language containing basic arithmetic primitives. Such a language is so simple that quantifier-free projections are computable within any resource bound defining any complexity class of interest, including the smallest ones like AC 0 (which is much smaller than L).

What is remarkable about this empirical phenomenon is not so much that there is a sort of "smallest" notion of reduction which seems to fit all classes, but that such a notion is computationally trivial. In fact, these reductions are almost void of computational content: they merely copy the bits of their input, perhaps flip some of them, and return them, perhaps mixed with some constant bits. In comparison, a Karp reduction is capable of mind-bogglingly sophisticated manipulations!

We are tempted to say that projections reveal the true nature of completeness: it is not an algorithmic notion but an algebraic notion. This is especially evident with the projective reductions of Definition 34, in which even the faint algorithmic content hidden in the uniformity condition disappears. Adopting the non-uniform approach to complexity, which we first mentioned in Sect. 3.1.3, we may state the following: Proposition 46 P/poly = NP/poly iff there is a projective reduction from circuit sat to circuit value.

In the above, circuit value is the problem of deciding whether a circuit with no free input (i.e., in which all inputs have been assigned a value) evaluates to 1. This is the prototypical P-complete problem. In fact, P/poly = NP/poly iff there exists a projective reduction from some NP-complete problem to some problem in P, but picking two specific problems makes the statement more concrete: it tells us that the answer to one of the deepest open problems of computer science depends on whether or not the instances of circuit sat may be transformed to equivalent instances of circuit value via a manipulation that has basically zero algorithmic content. This is probably the best way To try and formalize the intuition of "gadget reduction", it is tempting to consider problem instances as being the elements of some free algebra on the basic elements e 1 , e 2 , e 3 , . . ., so that a gadget reduction becomes just a homomorphism. Interestingly, this seems to work seamlessly on all examples we have have tried. Let us apply it to the above reduction.

The instances of circuit sat may be naturally presented as endomorphisms of the unit object of the free PRO (strict monoidal category whose objects are all tensor powers of a single generating object) generated by

¬ ∨ δ out 0 in
(We use string diagram notations to make the presentation more intuitive).

We denote such a category by Circ. The generator 0 represents the Boolean constant "false"; the generators in and out represent an input and an output gate, respectively; the other generators are hopefully self-explanatory. An instance of circuit sat is a morphism in Circ(1, 1) (i.e., a string diagram with no pending wires) containing one occurrence of out.

For 3sat, we may see its instances as endomorphisms of the unit object of the following free strict symmetric monoidal category 3CNF. Its objects are generated by p and n. Its morphisms are generated by The generator atom stands for an atom, with p (resp. n) representing its positive (resp. negative) form. The generators cl represent clauses with k ≤ 3 literals, with x 1 , . . . , x k ∈ {p, n} depending on whether a literal occurs positively or negatively. Of course, we may define atoms with an arbitrary number of positive and negative occurrences by using trees of δ generators: This hopefully gives the idea of how r is defined following the definition of the "gadget reduction" introduced above.

The fact that the instances of a problem live in a monoidal category is justified by the well-known observation, originally made in the context of descriptive complexity, that "everything is a graph" (see Exercise 3.7 of [START_REF] Immerman | Descriptive complexity[END_REF]). In other words, all computational structures may be seen, more or less naturally, as graphs, which are two-dimensional objects corresponding to morphisms of monoidal categories.

In this viewpoint, a decision problem on a type of instances C (a strict monoidal category) is just a strict monoidal functor

L : C -→ Rel.
This is because instances are endomorphisms in C(1, 1) and the unit object of Rel has only two endomorphisms (it acts as a classifier). For instance, It is not hard to see that, as a function r : {0, 1} * → {0, 1} * , the gadget reduction from circuit sat to 3sat introduced above is actually projective. In fact, projective reductions may be considered as very restrictive forms of gadget reductions. So one is naturally led to wonder whether, from the above perspective, strict monoidal functors correspond to projective reductions. The goal would be to reformulate Proposition 46 roughly as follows: the instances of circuit value are obviously a subset of those of circuit sat (they have no input), corresponding to the subcategory Circ 0 of Circ without the in generator; then, one could hope that P/poly = NP/poly iff there is a strict monoidal functor r : Circ → Circ 0 together with a monoidal natural transformation θ : circuit sat ⇒ circuit value • r holds. This hope is misguided: while the backward implication certainly holds, it seems quite plausible that the right hand side is false, without this having any bearing on the fact that P/poly ̸ = NP/poly, as widely believed.

So the general picture, whatever it is, must be less naive. In particular:

• on the one hand, we cannot restrict to monoidal categories with a finite number of generating objects, like Circ or CNF. Indeed, for the forward implication of the above reformulation of Proposition 46 to hold, every projective reduction must induce a strict monoidal functor, and this cannot be the case if we have only finitely many generating objects.

• On the other hand, if our monoidal categories must have infinitely many generating objects, then strict monoidal functors will be too broad to match projective reductions; we must impose a size restriction corresponding to that of projective reductions.

We are currently working on a framework that seems to be able to yield the expected property, i.e., that P/poly = NP/poly iff there is no structure-preserving functor from a certain category to another. This framework requires moving to autonomous categories and makes, again, use of fibrations along similar lines as Chapter 2. It is however too soon to present it here.

At any rate, we want to stress that such a framework would not provide any new lower bound technique in itself. Just as for the Cook-Levin theorem, it would merely be a translation of, in this case, basic complexity-theoretic definitions in a new language, closer to the one we use in logic, type theory and the theory of programming languages. It is impossible to say whether this new language will inspire new ideas, but such ideas will certainly not magically sprout from the translation.

The important point is that, compared with the logical routes followed so far (descriptive complexity, implicit computational complexity) this approach does not try to translate the definition of a complexity class, but the definition of decision problem itself, i.e., it is at a fundamentally deeper level, which is precisely the spirit the we intend to follow.

α 1 :

 1 Figure 1.1: Source and target for reduction terms. ρ : M → * N τ : N → * P φ : P → * Q (ρ; τ); φ ≡ ρ; (τ; φ) assoc

•Lemma 1

 1 M{τ ′ ; τ ′′ /x} := M{τ ′ /x}; M{τ ′′ /x}. Then, we define ρ{τ/x} := ρ{N/x}; M ′ {τ/x}. Substitution behaves in the expected way with respect to sources and targets: If ρ : M → * M ′ and τ : N → * N ′ , then ρ{τ/x} : M{N/x} → * M ′ {N ′ /x}. Proof. A straightforward induction. □ Definition 2 (permutation equivalence) We define a relation ∼, called permutation equivalence, on pairs of coinitial and cofinal reduction terms, as the least congruence containing structural equivalence (Fig. 1.2) and the equations of Fig. 1.3, where α, β are basic steps and, in the par rule, C is a two-hole context. Lemma 1 guarantees that the reduction terms related by Fig. 1.3 are indeed coinitial and cofi-

(

 Now we may prove why T wo is not representable: if it were, T wo(a, b; a) would have to be isomorphic to T wo(c; a) for some c; since T wo(a, b; a) = ∅ and T wo(a; a) ̸ = ∅, we must have c = b; but then T wo(a, b; b) ∼ = T wo(b; b), which is false).

Figure 1 . 4 :

 14 Figure 1.4: The term calculus Λ ! for intuitionistic linear logic.

Figure 1 . 5 :

 15 Figure 1.5: Term assignment for intuitionistic linear logic.

 /y} : C cntr Basic steps: as in the usual λ-calculus.

Figure 1 . 6 :

 16 Figure 1.6: Bichromatic presentation of the (call-by-name) λ-calculus Λ k .

Figure 1 . 8 :

 18 Figure 1.8: Polyadic calculi Λ p p .

Figure 1 . 9 :

 19 Figure 1.9: The 2-operad Poly p of simply-typed polyadic terms.

Figure 1 .

 1 Figure 1.10: Approximation order on affine polyadic reductions.

 t m,n := ⟨ m I, . . . , I, n I I, . . . , I I⟩, ρ m,n := ⟨ m I, . . . , I, x x ← I , n I I, . . . , I I⟩ : t m,n+1 → t m+1,n .

 Now, we want to define a (monotonic) composition function c : P -→ Ide(D 1) making diagram 1.1 commute. The obvious definition is

Figure 1 .

 1 Figure 1.11: Polyadic approximations. The side condition (*) in the theta rule is that, if p ∈ {l, r}, then m ≥ n.

 may check that θ is a relational morphism. ∂ : TypeSys(B) → Rel B is defined by: • given a type system p : E → B, we set, for b an object of B, -∂p(b) := p -1 (b), i.e., the subcategory of E 1 whose objects are sent to b and whose morphisms are sent to id b ; -for f : b 1 . . . b n → b in B, ∂p(f) is the distributor defined by:

Definition 17 (

 17 approximation presheaf) We define a lax morphism of bioperads Apx[D] : Λ ! -→ Rel as follows: • on objects, Apx[D](l) := T l [D] and Apx[D](c) := T c [D];• given T ∈ Λ ! (c m , l n ; s) with s ∈ {l, c}, we must define a functor Apx[D](T) :

 given T, T ′ ∈ Λ ! (c m , l n ; s) with s ∈ {l, c} and φ : T → * T ′ , Apx[D](φ) must be a natural transformation from Apx[D](T) to Apx[D](T ′); again, since the source categories of these distributors are discrete, this is just a family of relations indexed by T c [D] m × T l [D] n × T s [D]; we define it as follows:

Definition 18 (

 18 (D, G)-type system) Let D → Poly c and G : L → Λ ! . We define the abbreviations p[D, G] := (Apx[D] • G), E [D, G] := E (Apx[D] • G), and say that a multimorphism M of L is (D, G)-typable if it is in the image of p[D, G] or, equivalently, there are Γ, A such that (Apx[D] • G)(M)(Γ; A) ̸ = ∅. Let us give an idea of what the 2-operad E [D, G] looks like when L is a monochromatic 2-operad of terms of an untyped calculus (e.g. L = Λ).

 Strict pullbacks in BiOp are computed much in the same way as in Set, i.e., the objects, multimorphisms and 2-arrows of E [D, G] are pairs of objects, multimorphisms and 2-arrows of L × Rel * which are equalized by the above diagram, where p[D, G] and q are just the projections. Therefore:• an object of E [D, G] is a pair (a, b) with a ∈ L and b ∈ Rel * , such that Apx[D](G(a)) = U(b). Since L is monochromatic, a = * .On the other hand, by definition, b = (X, A) where X is a set and A ∈ X. By the pullback condition, we must have X = U(b) = Apx[D](G(*)) = T[D], where T[D] is one of T l [D] or T c [D], according to whether G(*) is l or c. Summing up, an object of E [D, G] has the form (* , (T[D], A)), of which only the type A ∈ T[D] is non-constant, so we conclude that the set of objects of E [D, G] is isomorphic to T[D], i.e., the set of polyadic simple types declared "valid" by D. • Given types A, Γ = C 1 , . . . , C n , a multimorphism of E [D, G](Γ; A) is a pair (M, g) of a term M ∈ L(n) and a multimorphism g ∈ Rel * ((T[D], C 1), . . . , (T[D], C n); (T[D], A)), such that Apx[D](G(M)) = U(g). By definition (cf. Sect. 2.2.4), g = (F, δ), with F : T[D] n × T[D] → Rel a functor and δ ∈ F(Γ, A). By the pullback condition, F = U(g) = Apx[D](G(M)), which means that δ ∈ D(Γ; A) such that δ -⊏ G(M). Since F is constant, the multimorphisms of E [D, G](Γ; A) are actually pairs (M, δ) such that δ -⊏ G(M); since p[D, G](M, δ) = M, the pair

Figure 2 . 3 :

 23 Figure 2.3: Intersection types for the call-by-value λ-calculus. The are also rules exch, weak 0 , weak and cntr, not shown because identical to Fig. 2.2.

 "modulus of continuity"An immediate consequence of the computational version of Girard's Approximation Theorem (Theorem 16) is a form of (Scott-)continuity of computation in the λ-calculus: Proposition 23 (continuity) Suppose that M → * N in the λ-calculus. Then, for all u in Λ p a such that u ⊏ N, there exists t ⊏ M such that t → * u.

 Suppose that the computation M → * b takes l steps. Since G 0 (b) does not contain boxes (it is of the form λa.λb.z[!y := b][!x := a] with z ∈ {x, y}), it admits "itself" as approximation, i.e., the term λa.λb.z[⟨y⟩ := b][⟨x⟩ := a], which we still abusively denote by b. Applying Proposition 23, we obtain t ⊏ M such that t → * b.

XXI

 →→ XX(I I) →→ XX(I I(I I)) →→ XX(I I(I I)(I I(I I))) → * • • • with X := λx.λa.xx(aa).

 and w ∈ L. Consider now even := λs.⟨x 0 , x 2 , x 4 , . . .⟩[⟨x⟩ := s], odd := λs.⟨x 1 , x 3 , x 5 , . . .⟩[⟨x⟩ := s],

Figure 3

 3 Figure 3.1: Parsimonious terms. In rule bang, condition (*) is that every exponential variable has at most one occurrence in Θ.

Figure 3 . 3 :

 33 Figure 3.3: Reduction rules for the modified polyadic affine calculus. The hole may not appear in C * (in which case u is discarded).

Figure 3 . 4 :

 34 Figure 3.4: The approximation relation for pΛ.

Figure 3 . 5 :

 35 Figure 3.5: Parsimonious logic.

Figure 3 . 6 :

 36 Figure 3.6: The simply typed parsimonious calculus.

 3.7). On the other hand, conjunction (and disjunction) has one non-flat argument (see again Fig. 3.7). This would be the case of exclusive-or too if we had chosen the traditional Boolean type o ⊸ o ⊸ o. We write if b then t else u for c[c ⊗ _ := b (t ⊗ u)], which has type A if t, u : A and b : Bool[A].

 Figure 3.8: Other basic logspace functions.

Figure 3 .

 3 Figure 3.10: Deterministic transitive closure.

Θ

 Figure 3.11: Typing rules for linear polymorphism.

Figure 3 .

 3 Figure 3.14: Approximation relation for parsimonious types.

•

 the execution space of M to be the function n → max |w|=n (td(env(M) w) + 1) • log |env(M) - w | .

□

 Theorem 35 Let C(pΛ ℓ∀) be the class of languages decided by terms of type Str[] ⊸ Bool in pΛ ℓ∀ (i.e., parsimonious with linear polymorphism). Then, C(pΛ ℓ∀) = pλP = HOPOLYSIZE unif = P. Proof. We show the cycle of four inclusions: • C(pΛ ℓ∀) ⊆ pλP: let M : Str[] ⊸ Bool in pΛ ℓ∀ and let L be the language it decides. We know that, for all w ∈ {0, 1} * , M w → l(w) b w , where b w is a Boolean and l : {0, 1} * → N is the number of reduction steps. By Proposition 30, we know that l(w) ≤ |M w| k . Now, |M w| = O(|w|).For what concerns k, we have that:

Figure 4

 4 Figure 4.6: Approximation order on Boolean circuits.

Figure 4 . 7 :

 47 Figure 4.7: Intersection types for Mowl. In the case rule, the premises in brackets are not required to be present.

Definition 33 (

 33 uniform typings) Let M be a Mowl program, let Γ = x 1 : Str n 1 , . . . , x p : Str n p be a context such that fv(M) ⊆ {x 1 , . . . , x p } and let k, m ∈ N with m at least equal to the number of binary successors in M (i.e., the number of succ rules in its typing derivation, Fig.4.2). The uniform typing of M in context Γ of rank k and width m, denoted by ⌊M⌋ Γ k,m , is an intersection types derivation of the judgment Γ ⊢ M : Str m defined inductively as follows:• ⌊x⌋ Γ,x:Str n k,m : Γ, x : Str n ⊢ x : Str m var • ⌊M[x ← N]⌋ Γ k,m : ⌊N⌋ Γ m,k Γ ⊢ N : Str m ⌊M⌋ Γ,x:Str m m,k Γ, x : Str m ⊢ M : Str m Γ ⊢ M[x ← N] : Str m share • ⌊ε⌋ Γ k,m : Γ ⊢ ε : Str m empty • ⌊bM⌋ Γ k,m : ⌊M⌋ Γ k,m-1 Γ ⊢ M : Str m-1 Γ ⊢ bM : Str m succ • ⌊case Q of ε.M | 0x.N | 1x.P⌋ Γ k,m : ⌊Q⌋ Γ k,m+1 Γ ⊢ Q : Str m+1 ⌊M⌋ Γ k,m Γ ⊢ M : Str m ⌊N⌋ Γ,x:Strm k,m Γ, x : Str m ⊢ N : Str m ⌊P⌋ Γ,x:Strm k,m Γ, x : Str m ⊢ P : Str m Γ ⊢ case Q of ε.M | 0x.N | 1x.P : Str m case • ⌊while P do M to x := N⌋ Γ k,m :. . . . ⌊P⌋ Γ,x:Strm,y:Strm k,m Γ, x : Str m , y : Str m ⊢ P : Str m ⌊M⌋ Γ,x:Strm k,m Γ, x : Str m ⊢ M : Str m ⌊N⌋ Γ k,m Γ ⊢ N : Str m Γ ⊢ while P do M to x := N : Str m while with k + 1 premises typing P and k typing M. The uniformity is in the fact these premises all come from the same two derivations, ⌊P⌋ Γ,x:Str m ,y:Str m k

Theorem 45 (

 45 Cook-Levin) circuit sat is NP-hard.Proof. Let L ∈ NP; we must build a Karp reduction from L to circuit sat. By definition, there are two polynomials p, q and a Mowl programx : Str, y : Str ⊢ M : Bool such that, for all w, w ′ ∈ {0, 1} * , M[x ← w][y ← w ′] → l(w,w ′) b w,w ′ with l(w, w ′) ≤ p(|w| + |w ′ |) and, moreover, w ∈ L iff there exists w ′ ∈ {0, 1} m with m ≤ q(|w|) such that b w,w ′ = 1. Obviously, ⊢ b w,w ′ : Bool is derivable in intersection types.By quantitative subject expansion (Lemma 42), we have, for all w, w ′ ∈ {0, 1} * , a derivation. . . . ε w,w ′ ⊢ M[x ← w][y ← w ′] : Booland rk(ε w,w ′), tw(ε w,w ′) are both bounded by l(w, w ′). The intersection types system is syntax directed, so from ε w,w ′ we infer the existence of derivations δ w,w ′ x : A w , y : B w ′ ⊢ M : Bool ω w ⊢ w : A w ω ′ w ′ ⊢ w ′ : B w ′ with rank and width still bounded by l(w, w ′). Let c be the number of binary successors in M, which is O(1) with respect to w and w ′ . For n, m ∈ N, let r(n, m) := max |w|=n,|w ′ |=m rk(δ w,w ′), s(n, m) := max |w|=n,|w ′ |=m tw(δ w,w ′) + c. With Γ n,m := x : Str r(n,m) , y : Str s(n,m) , let φ n,m := ⌊M⌋ Γ n,m r(n,m),s(n,m) .Note that this induces a Boolean circuit 2r(n,m) . . . x ′ i : Bool, x i : Bool, . .., 2s(n,m). . . , y ′ j : Bool, y j : Bool, . . . ⊢ φ - n,m : Bool.By Lemma 44, δ - w,w ′ ⊑ φ - |w|,|w ′ | for all w, w ′ ∈ {0, 1} * . Now, remember that Lemma 42 also tells us thatδ - w,w ′ [x ⇐ ω - w][y ⇐ (ω ′ w ′) -] → * b w,w ′ ,(applying (•) -to a derivation typing a Boolean constant gives us that same constant). Hence, by Lemma 40, we also haveφ - |w|,|w ′ | [x ← u w][y ← u w ′] → * b w,w ′ ,with ⟨u w ⟩ : Bool 2r(n,m) and ⟨u w ′ ⟩ : Bool 2s(n,m) bit representations of w and w ′ .

 w 1 • • • w n ∈ {0, 1} n and 1 ≤ j ≤ m, p(w) m :=    w p m if p m ∈ [n] ¬w p m if p m ∈ [n] b if p m = k b

 It is now fairly straightforward to implement the reduction r described above as a strict monoidal functor r : Circ -→ 3CNF.On objects, if we call * the generating object of Circ, we define r(*) := n ⊗ p.On morphisms, it is of course enough to define r on the generators; without being too verbose, let us give a few examples:

 circuit sat : Circ -→ Rel maps * to the set {0, 1} and maps the generators to the following relations:0 → {(* , 0)}, in → {(* , 0), (* , 1)}, out → {(1, *)}, ¬ → {(0, 1), (1, 0)}, ∨ → {((b 1 , b 2), b 1 ∨ b 2) | b 1 , b 2 ∈ {0, 1}}, δ → {(0, (0, 0)), (1, (1, 1))}, exch → {((b 1 , b 2), (b 2 , b 1)) | b 1 , b 2 ∈ {0, 1}},where * denotes the only element of the monoidal unit 1 = { * } of Rel. The reader can check that, if C is a circuit seen as a morphism of Circ(1, 1), C is satisfiable iff circuit sat(C) = {(* , *)} = id 1 (otherwise, circuit sat(C) = ∅, the only other endomorphism of 1 in Rel).For what concerns 3sat : 3CNF -→ Rel, it maps both p and n to {0, 1} and atom → {(* , (0, 1)), (* , (1, 0))},cl → {((b 1 , . . . , b k), *) | b 1 , . . . , b k ∈ {0, 1}, b i = 1}.and δ is as for circuit sat. Again, we invite the reader to check that, if φ ∈ 3CNF(1, 1), then 3sat(φ) = id 1 iff φ represents a satisfiable 3CNF. The above functor r : Circ → 3CNF is a reduction because there is a monoidal natural transformation Circ that θ * = {(0, (1, 0)), (1, (0, 1))}, that is, the truth value b ∈ {0, 1} is mapped to (¬b, b) ∈ {0, 1} 2 . Thanks to this, we have, for every circuit C, circuit sat(C) = 3sat(r(C)), as desired.

 Quantitative Look at Approximations 3.1.1 The "modulus of continuity" 3.1.2 Higher order circuits . 3.1.3 Non-uniform computation 3.2 The Parsimonious Lambda-Calculus 3.2.1 Terms and reduction . 3.2.2 Affine approximations and quantitative continuity . . . 3.2.3 Parsimonious logic . 3.3 Parsimony and Computational Complexity 3.3.1 Simply-typed parsimonious programming 3.3.2 Expressing logspace computation 3.3.3 Linear polymorphism and polytime computation 3.3.4 Polyadic geometry of interaction 3.3.5 The return of intersection types 3.3.6 Implicit and explicit complexity via parsimony 3.4 Further results and perspectives

	3 Parsimony
	3.1 A
	Villetaneuse, 12 October 2023
	iii

3.4.1 Non-uniform complexity 3.4.2 The "logic of while loops"?

 we have M{τ/x}; ρ{N ′ /x} ∼ ρ{N/x}; M ′ {τ/x}.

Proof. By diagram chasing (technically, a double induction on ρ and τ). □

Proposition 3 (interchange law) For all ρ : M → * M ′ , φ :

M ′ → * M ′′ , τ : N ′ → * N ′ and ψ : N ′ → * N ′′ ,

we have ρ{τ/x}; φ{ψ/x} ∼ (ρ; φ){τ; ψ/x}. Proof. We have ρ{τ/x}; φ{ψ/x} = ρ{N/x}; M ′ {τ/x}; φ{N ′ /x}; M ′′ {ψ/x} (def.) ∼ ρ{N/x}; φ{N/x}; M ′′ {τ/x}; M ′′ {ψ/x} (Lemma 2) = (ρ; φ){N/x}; M ′′ {τ/x}; M ′′ {ψ/x} (def.) = (ρ; φ){N/x}; M ′′ {τ; ψ/x} (def.) = (ρ; φ){τ; ψ/x}, (def.) as claimed.

 The usual β-reduction step (λx.M)N → M{N/x} is obtained fromβ M • n+1 id N .

	Compatibility of the adjunction with operadic composition ensures, for in-
	stance, that (λx.M){N/y} = λx.M{N/y}.
	The adjunction forces the 2-arrows

Mx → η (λx.Mx)x → β Mx and λx.M → η λx.(λx.M)x → β λx.M to be identities. Albeit natural, this does not seem anodyne from a purely syntactic standpoint. Of course, one usually does not even want to deal with η-expansion; this is possible by stipulating that F and G form, instead of an adjunction, a lax retraction, with the same naturality and compatibility properties.

 : p ⊢ x : l

	var	Γ, a : l ⊢ t : l Γ ⊢ λa.t : l	lam	Γ ⊢ t ∆ ⊢ u : l Γ, ∆ ⊢ tu : l	app
	x 1 : p ⊢ t 1 : l . . . x n : p ⊢ t n : l x 1 : p, . . . , x n : p ⊢ ⟨t 1 , . . . , t n ⟩ : p	box	Γ ⊢ t : p Γ ⊢ t : l	lin
	∆ ⊢ u : l Γ, x 1 : p, . . . , x n : p ⊢ t : l Γ, ∆ ⊢ t[⟨x 1 , . . . , x n ⟩ := u] : l	let	⊢ ⊥ : l	undef
	Γ ⊢ t : C Γ, x : p ⊢ t : C	weak, p∈{a,c}	Γ, x : p, y : p ⊢ t : C Γ, x : p ⊢ t{x/y} : C	cntr, p∈{r,c}
	Basic steps:				

 atomic reduction. Let us deal with each one of them:

	1. we know that t 1 ⊑ α ′′ 1 , so we apply the induction hypothesis, which gives us ρ ′ 1 such that t 1 ⊏ ∼ ρ ′ 1 and t ′ 1 ; ρ ′ 1 ⊏ ∼ α ′′ 1 ; we let the reader check that ρ ′ := ⟨ρ ′ 1 , t ′ 2 ⟩ satisfies the desired properties;
	2. we know that t ′ 2 ⊑ t ′′ 2 , the latter term being the source of α ′′ 2 . There are
	two possibilities:
	• α ′′

2 reduces a redex not present in t ′ 2 ; in that case, letting ρ ′ := ⟨t ′ 1 , t ′ 2 ⟩ meets the requirements;

• α ′′ 2 reduces a redex which is also in t ′ 2 ; in that case, we have a reduction α ′ 2 : t ′ 2 → * u ′ 2 reducing that redex, so that α ′ 2 ⊑ α ′′ 2 , and we conclude by letting ρ ′

 Lemma 18 Let D → Poly c and G : L → Λ ! and let R be a strong dynamic property for L with respect to which (D, G) is faithfully reductive. Then, if ψ ∈ R

and is the identity (i.e., the diagonal relation), then ρ is an identity.

Let (R, N , Ctxt) be a weak dynamic property for L. We say that the pair (D, G) is fully expansive if, for all ρ ∈ R and for all types Γ, A

subject expansion: (Apx[D] • G) (ρ) Γ;A is op-entire (i.

e., surjective); equivalently, p[D, G] lifts every arrow of R;

fullness: for all u ∈ N , u is (D, G)-typable and, for all C ∈ Ctxt, if t is (D, G)typable, then so is C{t}. is not an identity, there is at least one oplifting (ψ, τ) of ψ with respect to p[D, G] such that τ is not an identity. Proof. Let ψ : M ⇒ M ′ ∈ R be a non-identity arrow with M in the image of p[D, G], i.e., there exist Γ, A and δ ∈ D(Γ; A) such that (M, δ) ∈ E [D, G](Γ; A), which means that δ ∈ (Apx[D] • G)(M)(Γ; A). Now, by hypothesis, not only

 3.4. The 2-operad pΛ should be obvious: its colors are a and e (for affine and exponential variables), its multimorphisms terms with free⊢ p !⊥ : ⟨⟩ empty Θ; ⊢ t : A 0 Θ ′ ⊢ p u : ⟨A 1 , . . . , A n ⟩ Θ, Θ ′ ⊢ p t :: u : ⟨A 0 , A 1 , . . . , A n ⟩ ⊢ t : A 0 Θ ′ ; Γ ′ ⊢ u : ⟨A 1 , . . . , A n ⟩ Θ, Θ ′ ; Γ, Γ ′ ⊢ t :: u : ⟨A 0 , A 1 , . . . , A n ⟩

	cons !
	Θ; Γ cons
	Figure 3.13: Modified typing rules for polyadic simple types.

 Theorem 38 Let C(nupΛ ST) (resp. C(nupΛ ∀ℓ)) be the class of languages decided by terms of type Str[Proof. The inclusions C(nupΛ ∀ℓ) ⊆ nupλP ⊆ HOPOLYSIZE ⊆ P/poly and C(nupΛ ST) ⊆ nupλL ⊆ HOAC 0 ⊆ L/poly are proved much in the same way as those of Theorem 35 and Theorem 37, respectively. The key technical points are the polynomial modulus of continuity (i.e., Theorem 29), which of course is enjoyed also by nupΛ, and the non-uniform version of Proposition 30, which is the one originally proved in [MT15]. The only notable difference is in the inclusions P/poly ⊆ C(nupΛ ∀ℓ) and L/poly ⊆ C(nupΛ ST): the former has been hinted at in Sect. 3.3.3 (Boolean circuits may be encoded in nupΛ ∀ℓ); the latter is proved by encoding polysize families of branching programs, as detailed in [MT15].

] ⊸ Bool in nupΛ ST (resp. nupΛ ∀ℓ). Then: 1. C(nupΛ ∀ℓ) = nupλP = HOPOLYSIZE = P/poly; 2. C(nupΛ ST) = nupλL = HOAC 0 = L/poly.

 , it outputs the description ofφ - r(|w|), s(|w|) [x ← u w]which may be done in polynomial time in |w| by Lemma 43. This is a Boolean circuit which, by definition, is satisfiable if and only if w ∈ L.

	4.2 A Glimpse Beyond
	4.2.1 What now?
	□

*

The quote marks in "Lemma" are Seely's. What he meant is probably that, with more precise definitions than those he considers in his extended abstract, such as the ones we gave here, his definition should really be a lemma, indeed our Lemma

We only need small operads for managing the syntax. We will occasionally use large operads, silently glossing over size issues.

This is another reason why our use of the terminology "operad" is a bit at odds with tradition; but we already explained that it is a choice dictated mostly by conciseness.

A lucky coincidence of notations! It would have been unfortunate if the unit of the adjunction, usually denoted by η, turned out to correspond to β-reduction. . .

The reason behind the notation Hor is that this is a special case of the so-called horizontal edge category of a double category.

Note that this is unrelated to the notion of fibrant double category[START_REF] Shulman | Constructing symmetric monoidal bicategories[END_REF], which is also known as a framed bicategory[START_REF] Shulman | Framed bicategories and monoidal fibrations[END_REF] and is essentially the same a proarrow equipment on a bicategory.

A similar situation holds for Grothendieck fibrations, replacing Set and DiscDist with Cat and Dist, respectively.

Warning: this definition of Rel (and Rel *) is wrong, and Theorem 17 is false as stated. Please see the Preface of this document for the correct definition and further comments about this issue.

This is a curious consequence of abstraction: we have shown a non-trivial property concerning head reduction without even having seen the type system characterizing it!

The quadratic bound may actually be improved to f (n) log f (n), but this is irrelevant for the discussion.

The curious reader may find an encoding of Cantor's bijective pairing in the appendix of the version of[START_REF] Mazza | Simple parsimonious types and logarithmic space[END_REF] available on the author's web page. It involves programming division by two and square root.

Incidentally, we must note that, a few years after Terui's characterization of[START_REF] Terui | Proof nets and boolean circuits[END_REF], Allender et al. [ABC + 09] proved that the problem ustcon 2 described above is L-complete under AC 0 reductions, which immediately implies AC 0 [ustcon 2] = L/poly. We learned of this result only after proving Theorem 38 in our joint work with Terui[START_REF] Mazza | Parsimonious types and non-uniform computation[END_REF]. In fact, our theorem gives an independent proof of the L-completeness of ustcon 2 .

With the Church encoding of binary strings, parity is decidable by the simply-typed program λw.w I not 1 : Str[Bool] ⊸ Bool as soon as negation is available with "flat" type not : Bool ⊸ Bool.One must obviously do something tricky, with the calculus and/or with the definition of Booleans, for this not to be the case.

We may have overused the word "straightforward" in this document, but we never abused its meaning: it is usually understood that a proof by induction is straightforward when it unravels without any unexpected complication and the "obvious" way of doing things is the way that works.

In [AAI + 01], an artificially constructed NP-complete problem under Karp reductions (actually, under uniform ACC 0 reductions) is shown not to be NP-complete under non-uniform AC 0 reductions.

Acknowledgments

Parsimony and Computational Complexity

Simply-typed parsimonious programming

We will now give some examples of how basic datatypes and operations may be represented in the simply-typed parsimonious λ-calculus, which we call pΛ ST for short. We will use only one atom, o, and, if A, B are simple types, we will denote by A[B] the type A{B/o}. We will also use the notation A[] to mean that some B which we do not want to specify is substituted to o in A. If D and E are datatypes, we will represent a function D → E by means of a term of type D[] ⊸ E, as is customary with simple types. Representations of type D ⊸ E (without type expansion), as well as the type itself, will be called flat. Note that arbitrary type expansions do not affect composition: it is immediate to check that, if ; a : A ⊢ M : B, then ; a :

The types Nat, Bool and Str of unary integers, Booleans and binary strings, respectively, are defined in Fig. 3.7, together with the encoding of integers and Booleans. For binary strings, the encoding is similar: if w = w 1 • • • w n ∈ W, we have w := λ!s 0 .λ!s 1 .λz.s w 1 0 (. . . s w n i z . . .), where the j-th occurrence of s 0 from the left has index j -1, and similarly for s 1 . For instance, 001 = λ!s 0 .λ!s 1 .λz.s 0 0 (s 0 1 (s 1 0 z)).

strmToW := λ!x.λm.m !(if x 0 then succ 1 else succ 0 contain R(m, 0), . . . , R(m, m -1); then, we use strmToW to convert this into a string and we check with forall that it consists entirely of ones. Note that the variable !R representing the relation on which universal quantification is applied is exponential because it appears free in the subterm λs.(R m k) :: s, which is iterated. This means that, when we want to apply universal quantification to t : Γ ⊸ Nat[] ⊸ Nat[] ⊸ Bool representing a function in L, we will first have to convert it to a term of type !Γ ⊸ !(Nat[] ⊸ Nat[] ⊸ Bool) and then apply Univ to obtain a term of type !Γ ⊸ Nat[] ⊸ Bool. The extra modalities in !Γ may then be removed because all types in Γ are storable (they are either Nat, Bool or Str). The same remark tacitly applies below.

Let us turn to representing DTC(R) with R : Γ → N 2k+1 → B. First of all, we will restrict to the case k = 1. The general case may be treated by encoding a pairing function, which we omit here for briefness. 2 Second, we observe that the particular determinization R * of R used in the definition of DTC is inessential: we may as well define R * (γ, m, i) to be the smallest j such that R(γ, m, i, j) = 1, or undefined otherwise. Indeed, the important case is when R is already deterministic (i.e., a partial function), in which the determinization is irrelevant. We will adopt the second definition here; it is possible to deal with the first at the expense of a more complex encoding.

The representation of deterministic transitive closure is given in Fig. 3.10, which we now explain (in that figure, for aesthetic reasons we use the notation let p := N in M instead of M[p := N]). If R : N 3 → B, computing DTC(R)(m, n, n ′) amounts to determining whether there is a path from n to n ′ in a graph G whose nodes are [m] := {0, . . . , m -1} and s.t. there is an edge (n, n ′) iff R * (m, n) = n ′ , so the out-degree of G is at most 1 (i.e., it is a forest). To do this, we imagine a token traveling in G, its position being represented by a stream of type !Bool which is 0 everywhere except where the token is. The edges of G may now be seen as a stream transformation φ : !Bool ⊸ !Bool. Initially, the stream is 1 at position n; applying φ will make the token move, and we may determine the existence of a path by checking the value at position n ′ after at most m applications of φ.

The idea behind the definition of φ is best explained with an example. Suppose that m = 4 and that the edges of G are {(0, 1), (1, 1), (3, 2)}. Then, φ = λ!x.0 :: (xor x 0 x 1) :: x 3 :: 0 :: !x 4 . This works because the input stream !x -the exponential height of M w is equal to the exponential height of M, because the simple typing w : Str[] may be derived using only subtypes of Str[].

Therefore, relative to w, k = O(1). So l(w) is polynomial in |w| and we conclude L ∈ pλP by the polynomial modulus of continuity (more precisely, Proposition 26 and Lemma 27).

• pλP ⊆ HOPOLYSIZE unif : let M ∈ pΛ decide L ∈ pλP and let, for n ∈ N, Observe that init(t, pp) is well-typed, so by Lemma 32 every state encountered during the execution of the pIAM will also be well-typed, which means that the stack will always match the types of δ. Therefore, the length of the stack will not exceed d. As for its elements, these are either bits or integers bounded by |t|, hence the stated bound. □

Theorem 37 Let C(pΛ ST) be the class of languages decided by terms of type

Str[] ⊸ Bool in pΛ ST (i.e., parsimonious simple types). Then,

Proof. We show the cycle of four inclusions: • pλL

So we actually already have a polysize, type-depth-bounded and uniform family of affine polyadic terms; the only problem is that such a family is indexed by {0, 1} * and not N. This is easily amended: we let, for n ∈ N,

and we define t n := ⌊M⌋ r(n) . One may check that, for all w ∈ {0, 1} n , This allows dealing with non-uniform computation, a perspective not offered by previous work on implicit complexity.

An interesting research direction is to consider second-order quantification, i.e., parsimonious system F. It is easy to encode primitive recursive functions as terms of type Nat ⊗n ⊸ Nat in such a system; however, all the usual ways of encoding the Ackermann function fail. In fact, we conjecture that parsimonious system F captures exactly primitive recursion, although at present we do not even have a proof strategy for showing this. Apart from our failed attempts at coding non-primitive recursive functions, our reason for believing in such a conjecture is that we think parsimonious logic to be, in a certain sense, the "logic of while loops". We believe that system F forces every while loop to terminate in a hereditary way which, in the end, is equivalent to having only for loops.

The reason why we think of parsimonious logic as the "logic of while loops" becomes clear if we extend simple parsimonious types along a different direction, that of "parsimonious PCF". The most peculiar feature of this calculus is that recursive definitions are restricted to be linear, as described in Sect. 3.2.1. In other words, we may only use recursive definitions that coincide with a slightly liberalized form of while loops, where the unique recursive call is not required to be in tail position.

For instance, a "parsimonious OCaml" programmer would be allowed to write let rec fun x = <BODY> ;; only if <BODY> contains exactly one occurrence of fun in every execution branch (e.g., fun may actually appear twice, once in each branch of an if then else statement). Typically, let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2);; would be rejected. Instead, one would have to resort (for example) to the following solution:

) then (a-2,0,1,(a,m)::r) else (0,m+b,-1,r) in fib_aux(n',m',d',s');; let fib_lin n = fib_aux(n,0,1,[]);;

The above code has been obtained, essentially, by linearizing the tree of the recursive calls that fib generates. The function fib_aux, which is linear tail recursive, manipulates the following arguments:

Chapter 4

Church Meets Cook and Levin

The Cook-Levin Theorem

Motivation

The Cook-Levin theorem [START_REF] Cook | The complexity of theorem proving procedures[END_REF][START_REF] Levin | Universal search problems[END_REF] is a central result of structural complexity theory. It states that sat, i.e., the problem of deciding whether a given propositional formula is satisfiable, is NP-complete. It is actually easy to show the existence of artificially constructed NP-complete problems, i.e., problems built with the sole purpose of being complete. However, the fact that there are natural NP-complete problems, i.e., problems that have a practical interest like sat, is far from immediate and is what makes the Cook-Levin theorem valuable.

Let us give a quick review of the meaning of NP-completeness. First of all, we recall that the class NP, although traditionally defined in terms of non-deterministic Turing machines, is well-known to admit the following alternative definition: Definition 28 (the class NP) A problem L is in NP just if there exists another problem L wit ∈ P and a polynomial q such that, for all w ∈ {0, 1} * , w ∈ L iff there is m ≤ q(|w|) and w ′ ∈ {0, 1} m such that (w, w ′) ∈ L wit .

The string w ′ is called a witness, or membership certificate of w to L; so NP is the class of problems admitting "short" and "quickly verifiable" membership certificates, where "short" and "quick" both mean polynomially long in the size of the instance. This brings to light the importance of NP in everyday life: there are literally hundreds of naturally occurring search problems such that, for a fixed instance w, the number of possible solutions is exponential in |w| (i.e., possible solutions are "short" compared to w) and, given a purported solution, it is easy (i.e., "quick") to check whether this is indeed a solution or not.

The idea of completeness is based on the notion of many-one reduction from a decision problem L to a decision problem L ′ (which, we remind, are both subsets of {0, 1} *). This is a total recursive function r : {0, 1} * → {0, 1} * such that, for all w ∈ {0, 1} * , w ∈ L iff r(w) ∈ L ′ . Therefore, modulo r, solving L reduces to solving L ′ . In the context of complexity theory, where one is interested not only in solving a problem but also in doing it with some degree of efficiency, the nature of r must be restricted further. For NP-completeness, a natural choice is requiring r to be polynomial-time computable, yielding so-called Karp reductions [START_REF] Karp | Reducibility among combinatorial problems[END_REF].

Definition 29 (NP-completeness) We write L ≤ K L ′ if there exists a Karp reduction from L to L ′ and we denote by L↓ K the principal ideal of L with respect to

In other words, L 0 ∈ NP and, for all L ∈ NP, L ≤ K L 0 .

In case NP ⊆ L 0 ↓ K , i.e., if L ≤ K L 0 for all L ∈ NP, we say that L 0 is NP-hard.

The path that modern textbooks (e.g. [Pap94, Gol08, AB09]) take to prove the Cook-Levin theorem passes through Boolean circuits. Indeed, it is fairly easy to show that circuit sat ≤ K sat, where circuit sat is the following problem (which is obviously in NP, just as it is obvious that sat ∈ NP): given a Boolean circuit C with n inputs and one output, decide whether there exist b 1 , . . . , b n ∈ {0, 1} such that C(b 1 , . . . , b n) = 1; the size of the instance is the number of gates of C. Essentially, a Boolean circuit with one output is a propositional formula which allows "sharing" of subformulas, so it is a generalization of sat. The above-mentioned reduction shows that, with respect to complexity, the generalization is only apparent.

At this point, the heart of the Cook-Levin theorem is showing that all NP problems reduce to circuit sat. The intuition is the following. Let L ∈ NP and let L wit be its associated witness language, with q the polynomial bounding the length of witnesses. We know that there is a deterministic Turing machine M running in polynomial time p such that, for all w ∈ {0, 1} * and w ′ ∈ {0, 1} q(|w|) , M(w, w ′) = 1 iff w ′ is a membership certificate of w to L. Now, for a fixed pair of inputs (w, w ′), if the running time of M is t(w, w ′) and the space used is s(w, w ′), the whole execution of M on input (w, w ′) may be represented by a t(w, w ′) × s(w, w ′) matrix δ w,w ′ such that δ w,w ′ (i, j) = (s, q) where s is the symbol contained at position j at the i-th step and q is the state of the machine at step i if the head was at position j at that time, or ⊥ otherwise. In other words, δ w,w ′ is the "space-time" of the execution of M on (w, w ′). 1 The fundamental observation now is that, for all i, j, δ w,w ′ (i + 1, j) only depends on δ w,w ′ (i, j -1), δ w,w ′ (i, j) and δ w,w ′ (i, j + 1), i.e., if Σ is the alphabet 1 Observe that our execution envelope of Sect. 3.3.6 is meant to be the corresponding notion, for a higher-order program, of this idea of "space-time" of a Turing machine.

123 of M and Q its set of states (assumed not to include ⊥), there is a function

In other words, as complexity theorists often say, "computation is local". Furthermore, the function f M itself does not depend on any of w, w ′ , i, j, but only on the transition table of M, i.e., we might add that "computation is isotropic". Therefore, if c is the least integer such that 2 c ≥ |Σ|(|Q| + 1), the function f may be encoded by a constant (i.e., depending only on M) Boolean circuit C M with 3c inputs and c outputs (see Fig. 4.1).

By the above discussion, one step of M on a tape of length s may be implemented by a constant-depth circuit C s M consisting of s copies of C M , side by side (with adjacent copies sharing some inputs), and a t-step computation of M may be simulated by a circuit C t,s M composed of t copies of C s M stacked one on top of the other. The size of C t,s M is thus k • t • s, where k is the size of C M . We may therefore define a reduction from L to circuit sat as follows: on input w ∈ {0, 1}, let m := p(|w| + q(|w|)) and:

2. fix its inputs so that they represent the initial configuration with w on the tape, leaving only q(|w|) inputs where w ′ would be plugged in;

3. compose the obtained circuit with a circuit with m inputs and one output which extracts the answer of M from the output of C m,m M .

By construction, the resulting circuit is satisfiable iff w ∈ L. Moreover, such a circuit may obviously be computed in polynomial time in |w|, because C m,m M is a polynomially big (more precisely, of size O(p(|w| + q(|w|)) 2)) repetition of a constant circuit, and the procedures (2) and (3) are obviously linear in m.

Although intuitively clear, the above proof sketch hides a host of technical details: how is C M defined? How are the circuits at steps (2) and (3) of the reduction defined? In the definition of C s M , what happens at the "edges" of the array? Then, of course, several standardization assumptions on M must be made in order for the idea to work at all, the most important ones being that:

• the running time of M does not depend on the input but only on its size; Types: σ, τ ::= Bool Str Terms: It is more or less obvious that Mowl is Turing-complete and, more importantly, that its evaluation rules may simulate and may be simulated by Turing machines with a polynomial slowdown: Proposition 39 NP is the class of decision problems L ⊆ {0, 1} * such that there exists a Mowl program x : Str, y : Str ⊢ M : Bool

Values: v ::= 0 1 ε 0v 1v.

For w ∈ {0, 1} * , we write w for the obvious value of type Str representing w.

Substitution contexts: [-]

Evaluation rules: and two polynomials p, q such that, for all w, w ′ ∈ {0,

with l(w, w ′) ≤ p(|w| + |w ′ |) and, moreover, there exists m ≤ q(|w|) and w ′ ∈ {0, 1} m such that b w,w ′ = 1 iff w ∈ L.

In the sequel, we will take Proposition 39 as our definition of NP.

Boolean circuits

The most common definition of Boolean circuit in the setting of complexity theory uses the binary and and or gates and the (unary) not gate. There would be no problem in adopting that definition in our setting, but we prefer to use if then else as a primitive because it is closer to the spirit of programming languages and it is more minimalist. Of course, this changes nothing from the point of view of complexity: one may translate between our circuits and circuits on the basis {∧ 2 , ∨ 2 , ¬} with a constant overhead in size.

Our formal definition of Boolean circuits is given in Fig. 4.4. For the same reasons mentioned in the case of Mowl, we adopt a cartesian syntax, although circuits really form what some would call a PROP (a symmetric monoidal category in which every object is a tensor power of a single generating object, Bool in our case). Of course, we include a sharing construct, which is fundamental in circuits. Contrarily to Mowl, we do need circuits with more than one output, which is why we include n-ary tensors ⟨t 1 , . . . , t n ⟩ and their associated destructor t[⟨x 1 , . . . , x n ⟩ := u], in perfect analogy with polyadic calculi.

The syntax also includes a special symbol •, which may only appear in Types: A, B ::= Bool n n ∈ N Terms: Substitution contexts: [-]

Evaluation rules: certain places, namely in sharing constructs t[x ← •] and as a branch of an if then else statement. This symbol may be treated as a free variable impervious to substitution; it is necessary in the definition of approximation order (to be given below), but may otherwise be ignored. The evaluation rules for Boolean circuits are given in Fig. 4.5 and are completely standard. The only non-standard point is the symbol •, whose presence blocks evaluation. Indeed, as the next definition will show, • stands for an unknown circuit. Now we start preparing in view of the Cook-Levin theorem.

Definition 30 (approximation order) The approximation order on Boolean circuits, denoted by ⊑, is defined by the rules of Fig. 4.6.

Although we chose to keep advanced notions out of the presentation, the reader who remembers Chapter 1 will read in Figures 4.4 and 4.5 the presentation of a 2-operad. In this viewpoint, the above definition should be given at the level of 2-arrows, so that one obtains a DblPos-operad and, in fact, to have complete problems at all. Investigating this general notion of completeness seems like a natural direction to follow.

A somewhat annoying aspect of completeness is that it is not a fixed notion, independent of complexity classes: for a given complexity class C, we have a possibly quite large number of legitimate notions of many-one reduction to be used in the definition of C-completeness. Basically, any monoid of functions on {0, 1} * which does not use more resources than those defining C and which does not trivially give the full power of C itself will do.

For instance, NP-completeness was originally defined in terms of Karp reductions (i.e., polytime computable functions), but it may also be considered relative to logspace computable functions. For P-completeness, the latter are a common choice, while the former are of little interest because any non-trivial problem in P is P-complete under Karp reductions. The same issue appears with logspace reductions if we wish to define L-completeness, for which an even stricter notion of reduction must be used. There would be no problem if these different notions of completeness coincided (e.g., NP-completeness under Karp or logspace reductions), but it is of course wide open whether this is the case or not, except in some limited cases. 3 This lack of canonicity does not diminish the relevance of completeness: as long as a notion of reduction R is legitimate for a class C which admits a complete problem L 0 relative to R, then, in presence of an inclusion B ⊆ C in which B is closed under R-reductions:

• if one believes that B = C, one may concentrate on showing L 0 ∈ B, which suffices to prove equality;

• if one believes that B ̸ = C, then one may concentrate on proving lower bounds for L 0 , which is the "hardest" problem in C, in the sense that it is the least likely to be in B (for the above reason).

So the non-canonicity may even be advantageous, in that it is a source of flexibility.

Nevertheless, in all this arbitrariness there is a remarkable empirical phenomenon: every known "natural" complete problem for every "natural" complexity class is actually complete under an extremely weak form of reduction, known as quantifier-free projection [START_REF] Immerman | Descriptive complexity[END_REF]. This is a uniform version of a notion of reduction originally introduced by Valiant [START_REF] Valiant | Reducibility by algebraic projections[END_REF], which we will call projective reduction here: Definition 34 (projective reduction) In the following, if n ∈ N, we let [n] := {1, . . . , n} and [n] := {1, . . . , n}. A projection of type n → m is a tuple

This induces a function p : {0, 1} n → {0, 1} m defined as follows: given w = of showing why, since the early days of complexity (essentially the mid-70s), people found the non-uniform perspective attractive: it shifts the focus from computation to algebra and combinatorics.

Reductions as monoidal functors

Complexity theorists often speak of "gadget reductions". This is an informal notion which roughly corresponds to the following situation. The instances of a problem are usually composed of basic elements: the nodes and arcs of a graph, the gates of a circuit, the clauses of a CNF formula, etc. We write informally w = [e 1 , . . . , e n] to express that the instance w is composed of the basic elements e 1 , . . . , e n . When reducing a problem L to a problem L ′ , it often happens that each basic element e forming an instance of L is mapped to a fixed configuration r(e) of basic elements of instances of L ′ ; such fixed configurations are called "gadgets". So an instance w = [e 1 , . . . , e n] of L is reduced to an instance r(w) = [r(e 1), . . . , r(e n)] of L ′ by "implementing" its basic elements with gadgets, and then assembling them together. Let us give an example. We saw that a key step in our proof of the Cook-Levin theorem is exhibiting a Karp reduction from circuit sat to sat. In fact, one may easily reduce circuit sat to 3sat, which is the satisfiability problem restricted to formulas in conjunctive normal form (CNF), i.e., of the form

(where α i j is either an atom or the negation of such) in which, additionally, we require k i ≤ 3 for all 1 ≤ i ≤ n. A disjunction of the form

above is called a clause and its atomic components α i j are called literals, so a 3CNF is just a CNF in which all clauses have at most three literals.

The reduction r from circuit sat to 3sat is defined as follows. Let C be a Boolean circuit. If C is a circuit with inputs x 1 , . . . , x n , whose gates are g 1 , . . . , g m , our 3CNF formula r(C) will be over the atoms x 1 , . . . , x n , g 1 , . . . , g m . We assign to each gate g a "gadget" r(g), which will be a set of clauses made of at most three literals, depending on the type of g:

• g is an input gate associated with the variable x: r(g) := {(¬g ∨ x), (g ∨ ¬x)} (corresponding to g ⇔ x);

• g is a constant 0 gate: r(g) := {(¬g)} (corresponding to g ⇔ 0);

• g is a not gate whose input is the output of the gate h: r(g) := {(¬g ∨ ¬h), (g ∨ h)} (corresponding to g ⇔ ¬h);

• g is an or gate whose inputs are the outputs of the gates h and h ′ : r(g) := {(¬h ∨ g), (¬h ′ ∨ g), (h ∨ h ′ ∨ ¬g)} (corresponding to g ⇔ (h ∨ h ′)).

In case g is also the output gate, we add the clause (g) to r(g). (For brevity, we omit and and constant 1 gates, which may anyway be defined from or, not and 0). It is immediate to see that C is satisfiable iff the 3CNF formed of all the clauses r(g 1), . . . , r(g m) is satisfiable. It is also fairly obvious that r is polynomial-time computable in m (the size of C).