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Abstract

The Internet of Things (IoT) is generally defined as a global infrastructure that enables advanced services

by interconnecting physical and virtual things based on interoperable network technologies. It provides

access to a wide range of applications, such as smart cities, smart agriculture, and asset tracking. The increase

in the number and diversity of network technologies brings new challenges to IoT architects, who are in

charge of the design and deployment of IoT solutions. Indeed, the selection and configuration of network

technologies are crucial to ensure the good behavior of IoT applications. In this thesis, we address this issue

through the development of a set of methods and associated tools that help IoT architects in their process of

designing and deploying IoT solutions. First, we propose a generic framework for the performance evaluation

of an IoT network technology given a specific application context. Second, we introduce a new algorithm

relying on multi-criteria optimization methods that enables the automatic selection of the most adapted

network technology for a given application context. Then, we address two limits of our method which are

cost (in terms of time) and accuracy. For cost, we propose a solution for accelerating the design decision using

simulation models and regression methods, with an application on the configuration optimization of IoT

network technologies. For accuracy, we explore the possibility of calibrating simulation models with data

collected from a real deployment using a small-scale Proof of Concept (PoC). Finally, we implemented these

methods in a no-code tool, integrated into the Stackilab platform, relying on simulation and aiming to help

IoT architects easily future-proof an IoT solution.
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1.1 Context

There are many definitions for the Internet of Things (IoT). The In-

ternational Telecommunications Union (ITU) defines it as "a global

infrastructure for the information society, enabling advanced services

by interconnecting (physical and virtual) things based on existing and

evolving interoperable information and network technologies" [1]. Ac-

cording to Wikipedia
*
, it is a concept that describes "physical objects (or

groups of such objects) with sensors, processing ability, software and

other technologies that connect and exchange data with other devices

and systems over the Internet or other communications networks.". Em-

bedded in various industries, organizations, homes, etc., IoT has become

an indispensable and seamless part of our modern existence. IoT devices

are omnipresent, serving diverse purposes. For instance, asset trackers

provide real-time location updates and notify us about potential delivery

delays, while smart meters monitor energy usage. Sensors detect water

leaks and air pollution, and remote control systems automate manufac-

turing processes. These devices enable the development of innovative

applications and services that leverage real-time data and remote control

capabilities. This convergence of the physical and virtual realms has the

potential to enhance operational efficiency, promote sustainability, and

safeguard the well-being of individuals and the environment.

In order to meet the diverse requirements of the use-cases, IoT solu-

tions are deployed in different sectors. An IoT solution refers to a set of

hardware, software and network technologies to enable the connection

of physical devices (sensors, actuators, etc.) to the Internet. We distin-

guish two types of IoT solutions: (i) Pre-packaged and (ii) tailored. A

pre-packaged IoT solution typically includes pre-configured sensors or

devices, connectivity modules, data management and analytics software,

etc. These solutions are developed by IoT vendors or providers who

package the necessary components and capabilities into a single solu-

tion, reducing the complexity and time involved in building a custom

IoT system from scratch. A tailored IoT solution refers to a customized

implementation of IoT technologies and components to meet the spe-

cific requirements of an organization or industry. Unlike pre-packaged

solutions, which offer a standardized set of components, a tailored IoT

solution is designed and developed specifically for a particular use-case

or business need.

A wide range of technologies are readily available for the implementation

of end-to-end IoT solutions. Network technologies play a crucial role

in connecting the various subsystems that constitute the complete IoT

communication system, following the ISO/OSI model. At the interface

of this interconnection, the physical IoT network serves as a critical

subsystem, facilitating the connectivity of IoT devices to the Internet.

Moreover, network technologies may determine the viability of an IoT

* https://en.wikipedia.org/wiki/Internet_of_things

https://en.wikipedia.org/wiki/Internet_of_things
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[2]: Lantronix Inc. (2020), ‘Product Life

Cycle in the Age of IoT’

[3]: Badnakhe (2022), ‘A Blueprint on IoT

Solutions Development’

solution, in terms of Quality of Service (QoS), but also in terms of

economic profit. IoT end-devices are known to be small components that

are supposed to have long lifetimes. Ensuring a low energy consumption

at the network level is therefore a priority. From relatively old and

established network technologies (such as Wi-Fi or Bluetooth) to much

more recent ones (LoRaWAN, 5G, etc.), the technological offer in terms of

data communication through the use of the radio spectrum has increased

considerably, both in quantity and in quality. It is this diversification, as

well as the improvement in performance that has accompanied it, that

has propelled IoT to the forefront in terms of research and development,

making it almost impossible today to find a sector that has not been

impacted in some way by the IoT.

The lifecycle of an IoT solution consists of five phases [2]: (i) Design,

which consists of the design of the system and the service components,

(ii) Development, which involves developing software and hardware

components, (iii) deployment, where the devices are deployed and their

services (data collection, etc.) installed, (iv) operations, where the services

are started and ready to be used and (v) decommissioning, where the

service is decommissioned and the solution terminated. Tailored and pre-

packaged IoT solutions have distinct lifecycles. Tailored solutions involve

extensive customization to meet specific project requirements, requiring

design and development from scratch. This induces longer development

time and higher complexity. On the other hand, pre-packaged solutions

are ready-made, commercially available options with predefined features.

They can be implemented quickly with simplified deployment and lower

complexity.

In addition, according to [3], the lifecycle of an IoT solution requires

the presence of several stakeholders, such as (i) IoT architects, (ii) IoT

developers, (iii) data analysts and (iv) security architects. In order to

understand the role of each stakeholder, let us use a smart building

example. We consider the case of the instrumentation of a commercial

building already equipped with a Building Management System (BMS)

in charge of the remote control of Heating, ventilation and air conditiong

(HVAC) systems as well as water and energy regulation. The facility

manager wants to add a tailored smart solution to finely monitor the

building, gain better visibility on its real usage and to better adapt the

building services. For this, the facility manager would like to deploy a

range of sensors: Entrance detectors, occupancy monitors, air quality

sensors, temperature sensors, smart lighting and other end-devices.

During the design phase, IoT architects are responsible for designing

the overall architecture of the IoT solution, including the hardware and

software components, as well as the communication protocols used

to connect the devices. IoT developers are responsible for developing

the software applications and firmware for the IoT end-devices that

will be deployed within the smart building. Then, the data analysts are

responsible for analyzing the data collected by the IoT end-devices to

identify patterns and trends that can be used to optimize the smart

building. The security architects are here to ensure that the IoT solution is

secure and protected against unauthorized access. During the operations

phase, the different stakeholders make sure that the solution is behaving

correctly: IoT architects monitor the performance of the system to see if the

desired objectives of performance are attained (they can trigger changes
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in the architecture in deemed necessary), IoT developers maintain and

update the firmware of the end-devices if needed, data analysts collect

and identify patterns and anomalies in the data and security architects

ensure that the system is still secure through conducting regular security

audits. Finally, the solution is terminated with the decommissioning

phase.

IoT solutions can be deployed in countless domains, featuring a multitude

of use-cases (or applications): Radiation monitoring, where sensors

are used to measure the level of radiation in a nuclear facility, video-

surveillance, where video streams are used to monitor an event, or smart

home, where we can have near-real-time monitoring of the temperature

or brightness of the rooms in a house, are just some examples. IoT use-

cases/applications are mainly characterized by their traffic workload

(message size and period, etc.). One of their specifics is that the majority of

IoT use-cases and applications evolve over time [4]. The traffic workload

often evolves with time, for instance, an increase in message frequency.

These evolutions typically trigger adaptations in the IoT solution during

the operations phase of its lifecycle.

IoT Economic Impact

The deployment of IoT solutions in different domains is highly driven by

its economic impact. According to McKinsey
†
, IoT solutions will have

a total economic impact of 3.9 trillion USD to 11.1 trillion USD per year

in 2025. Accenture [5] states that the Industrial IoT has the potential to

add 14.2 trillion to the global economy by 2030, with manufacturing

and healthcare being the two industries with the largest potential values.

Moreover, tens of new connected products and pre-packaged or tailored

solutions are launched every day. Analysts predict that by 2030, the IoT

could enable from 5.5 to 12.6 trillion dollars in value globally, including

the value captured by consumers and customers of IoT products and

services [6]. For example, shipments of asset trackers will grow by more

than 50 percent annually through 2024 [7].

This economic impact can be explained by the potential of IoT for cost

savings through improved efficiency. For example, smart sensors can be

used to monitor energy consumption, water usage, and other resources

in real-time, allowing companies to optimize their operations and reduce

waste. Also, the ability to automate processes can lead to increased

productivity. Moreover, new businesses are emerging thanks to IoT. For

instance, companies can offer new services based on data collected from

connected devices, or use IoT to develop new products and services

that meet emerging customer needs. Finally, existing businesses can

be enhanced with measured user data. As an illustration, IoT sensors

can be used to collect data on customer behavior, such as how they

interact with products and services. This information can be used to

customize marketing messages and improve customer engagement. All

these facets can be the reason for an improved Return on Investment

(ROI) of businesses relying on IoT.

† https://www.mckinsey.com/mgi/overview/in-the-news/
by-2025-internet-of-things-applications-could-have-11-trillion-impact

https://www.mckinsey.com/mgi/overview/in-the-news/by-2025-internet-of-things-applications-could-have-11-trillion-impact
https://www.mckinsey.com/mgi/overview/in-the-news/by-2025-internet-of-things-applications-could-have-11-trillion-impact
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IoT Development Obstacles

These potential economic advances have encouraged an impressive

amount of effort toward the improvement of IoT solutions, at all lev-

els. Usually, an IoT solution is divided into three major components

[8]: (i) Physical devices, (ii) network technologies and (iii) high-level

applications. Every component within an IoT solution has the potential

for improvement through the application of scientific approaches. For

instance, building less energy-intensive devices is an important possible

improvement. Also, proposing and optimizing wireless network tech-

nologies to allow more efficient communication can be of great interest.

Finally, innovations must also step in at the application layer. Indeed,

it is necessary to propose new schemes for data management and data

mining, as, on the one hand, more storage is needed to deal with the

heterogeneous nature and important volume of personal and enterprise

data, and on the other hand, traditional data mining techniques are not

directly applicable to unstructured images and video data [9].

According to [10], the networking component of IoT is the layer that

attracted the most interest among researchers from 2010 to 2020. However,

an important issue is that the widespread use of network technologies,

particularly on an industrial scale, despite all its advantages in terms of

offer, is generating new problems of interoperability. In fact, the more

widespread the use of these IoT network technologies becomes, the

more numerous and diverse the parameters to be taken into account.

In addition, this also causes new issues at stake, including the need to

adapt the network technologies chosen or the architectures selected not

only to a globally constrained environment but also to specific needs in a

particular application domain. Since there are several applications that

can be targeted in IoT, we believe that it will soon no longer be appropriate

for IoT researchers to propose methods and solutions dedicated to a

given network technology or for a specific application context. There is a

crucial need of bringing more abstract solutions that can be generalized

to any context and adapted to other solutions.

Besides that, traditionally, research conducted in the IoT domains targets

too much an improvement in raw performance (data rate, accuracy, etc.)

while neglecting the potential negative impact of such improvements

[11]. Indeed, the quest for only more performance is no longer affordable

in the current climate context: Environmental impact must be carefully

considered when proposing improvements to IoT network technologies.

This need is even more tangible when the yielded performance improve-

ment is not absolutely mandatory. The current environmental challenge

humanity is facing makes us sincerely think that we need to question

our relationship to science and that more performance at any cost is

not an option, although this can seem paradoxical since we also believe

that the sake of humanity resides in science. To put it in a few words,

we believe that for researchers in any domain, and most particularly in

IoT, the environmental impact must be incorporated in every solution or

method they propose.
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IoT Adoption Obstacles

Beyond the fact of providing users with a diverse and varied technological

offer, the multiplication of network technologies leads to the problem

of choosing one (or several) network technology(ies) among all those

that could potentially meet the need while being adapted to the targeted

application domain. Indeed, it is agreed that there is no one-fits-all

solution [12]. Therefore, obtaining the best compromise in terms of

performance and energy consumption, while taking into account costs

and execution times is an absolute necessity. Without forgetting the need

to guarantee interoperability between technologies with different designs

and objectives, which must sometimes coexist in the development of the

solution to a specific need. Finally, the selection of a network technology

must also be motivated by the scalability of the solution, i.e., its ability

to support changes in the application workload or even in the number

of nodes. It is absolutely necessary that the deployed IoT solution can

scale, otherwise, it would lead to a disastrous waste of time, money and

energy.

In addition to that, the complexity of evaluating the relevance of an IoT

network technology for a given application is a real challenge for IoT

architects. Indeed, as observed by the community of researchers, the link

between the performance of an IoT network technology and the targeted

application may yield the need for a holistic approach to the evaluation.

In other words, the evaluation must take into account the different

parameters that can affect the performance of an IoT network technology,

as well as their interdependencies. To perform this evaluation, there is

the need to model the targeted IoT application in a way that includes very

varied aspects, whether they are topological aspects (number of nodes,

positions, etc.), aspects related to traffic (size and periodicity of data

transmission), related to the radio environment (presence of interference,

etc.) or other parameters. One of the major obstacles faced is precisely the

multiplicity of these aspects, each of which can be more or less decisive,

depending on the actual case of the study.

This complexity may confuse IoT architects. Making decisions in such

a context can be complex and risky, with potentially far-reaching con-

sequences for the success of the IoT solution. Choosing an unadapted

network technology for an IoT solution is not a viable option due to

budget, capacity, and performance constraints. Gaining visibility into all

the factors impacting the performance and energy consumption of an IoT

solution can be very challenging, and making accurate forecasts can be

difficult, time-consuming, and prone to error if not performed carefully.

In addition, IoT architects often do not have the time nor the networking

skills to perform thorough testing. The concepts of performance evalua-

tion of IoT network technologies may therefore be inaccessible to some

of them, which can slow down the deployment of their solution. There is

therefore a need to "democratize" the rigorous analysis of IoT network

technologies, in the sense of offering them the means to carry out such

evaluations, in particular by providing them with analysis tools, so that

they can take advantage of them without increasing the complexity of

their task.
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1: This parameter determines the speed

at which the signal frequency changes

across the bandwidth of a channel.

2: An indication of how much of the data

stream is actually being used to transmit

user data.

3: Determines whether the data is sent

with or without an acknowledge.

1.2 Research Issues

In this thesis, we propose to address the two following issues:

Selecting an IoT Network Technology

The first issue deals with the choice of an IoT network technology for a pre-

packaged or a tailored IoT solution, according to the application domain

and based on the technical characteristics that must be taken into account

as well as the application requirements. These considerations illustrate the

need to solve a problem that can be considered as transversal, regardless of

the network technology(ies) considered, the chosen application domain

and the specific requirements of the user application. The question

is: How to make comparisons between different potential network

technologies in order to allow the selection of the one(s) that will best

meet the requirements? This necessarily requires being able to evaluate

each of the applicable network technologies, while taking into account

its characteristics, and considering specific needs in a particular field

of application, i.e., Quality of Service (QoS). This process of selection is

crucial since it takes place during the design phase of an IoT solution

lifecycle, and can therefore lead to dramatic effects if not done carefully.

Indeed, such a selection must incorporate the fact that the evaluation of

an IoT network technology will not always focus on the same parameters

and may vary greatly depending on the application. For example, for a

radiation monitoring application, it is critical that the measured level

of radiation is received correctly (i.e., avoiding major losses), in order

to take appropriate decisions about isolating the irradiated area. In this

case, only minimal data losses could be acceptable in the sense that they

would not necessarily compromise the validity of the results in terms of

usability in decision-making, while the time packets take to be received is

not a problem. In comparison, in the case of video-surveillance, it might

be acceptable for some video frames to be lost, which might deteriorate

the quality of the video, but not its usefulness, while it will be essential

that the video streams are imperatively received in a very short time, in

order to allow for real-time decision-making in case of emergency.

Configuring an IoT Network Technology

The second issue is about the configuration of a given network technology.

Indeed, each IoT network technology can be configured differently,

according to many configuration parameters (e.g., spreading factor
1
,

coding rate
2

or type of traffic
3

for LoRa). These parameters can take

several values, with a potentially significant impact on the performance

obtained. It is crucial that the configuration decision is carefully made.

Indeed, it can strongly impact the solution’s performance during the

operations phase. Moreover, a re-configuration can be triggered during

that phase if deemed necessary e.g., the application characteristics evolve

over time, it can cause a waste of time and money. In addition to this

considerable space of possible configurations, the performance will

strongly depend on the targeted application, as the same configuration

can be efficient for one application and much less efficient for another.

This motivates the interest in relying on the finest characteristics of the
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application, and of the configuration parameters considered here, in order

to anticipate and guide the choice of such or such other configuration.

This choice should be made according to the desired application, in view

of the important improvements (or deterioration) that it can generate in

the performances.

To address the selection and configuration issues, two aspects appear to

be essential to be considered: First, the type of approach implemented

for the performance evaluation, and second, the evaluation metrics to

take into account.

Performance Evaluation Approaches: Regarding the performance evalu-

ation, it can be done in three different ways:

▶ Experimentation, which consists in conducting real experiments

using real material/devices using "hardware probes and software

probes. Hardware probes are entities that are connected to the

hardware devices being measured. " [13],

▶ Analytical models, which are "mathematical models used to answer

a specific question or make a specific design decision, and which

must be expressed with sufficient precision that they can be formally

analyzed, which is typically by a computer" [14],

▶ Simulation, which is the "process of designing a model of a real sys-

tem and conducting experiments with this model for the purpose

either of understanding the behavior of the system or of evaluating

various strategies for the operation of the system" [15].

Each of these methods has its own advantages and disadvantages:

Experimentation may allow to have precise and grounded results, but at

a high cost because of the necessity of using the physical object. On the

other hand, modeling can be done at a lower cost but can lack precision

in its predictions of the behavior given the absence of the physical object.

Simulation seems to be a good compromise between cost and accuracy,

because it allows us to have a good overview of the performances while

offering an easy configurability, and at a lower cost since there is no

need to have the real hardware. However, simulation can also carry some

burdens in terms of execution time or reliability.

As a side note, for the execution time, it would be interesting to explore if

the outcome of previously executed simulations can be reused to predict

the outcome of future ones. Machine Learning methods, which are known

to quickly identify trends and patterns by simultaneously analyzing a

large volume of data [16], seem to be relevant for this kind of problem. It

would therefore be scientifically interesting to explore how simulation

can be coupled with Machine Learning to deal with the execution time

problem. Regarding the problem of reliability, one potential way of

relieving it would be to combine simulation and experimentation to feed

the simulator with real data and see whether it can allow the production

of more grounded data. Thus, exploring the merits of coupling simulation

and experimentation can be worth it.

Performance Metrics: Turning now to performance metrics, it seems

natural enough that each application domain may have one metric

that is more important than others. However, this does not negate the

potential impact of these other metrics on the performance achieved. For

example, optimizing energy consumption would be a top priority for any
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IoT architect deploying a battery-powered sensor-based solution, since

they are very constrained devices. Nonetheless, it does not mean that

optimizing this metric alone and ignoring other parameters would be

the best solution. It is therefore more judicious to examine the possible

relationships between different metrics to an optimal compromise.

The problem of selecting the most relevant network technology and its

configuration is a multi-criteria optimization problem. To tackle it, it

seems possible to reduce its level of complexity, starting with the exam-

ination of the inter-dependencies that may exist between performance

metrics, and ensuring that they are compatible with the objectives that

one wishes to achieve. It is unlikely, for example, to consider maximiz-

ing the amount of transmitted data without consuming more energy.

Moreover, it is necessary to ensure that the methods implemented for

the multi-criteria optimization will be adapted, by offering the capacity

to take the probable non-convexity of the function to be optimized into

account. Knowing that the cost of an IoT solution is determined by several

parameters such as the equipment prices, the spectrum subscription

fees, etc., it would be also interesting to examine its inter-dependency

with the performance metrics as well as the energy consumption. Better

performances don’t necessarily come with higher costs. Moreover, it must

be kept in mind that the energy consumption of an end-device impacts

its battery lifetime, which in its turn determines how many times the

battery should be replaced (maximal number of cycles), which finally

causes additional costs.

1.3 Objectives

The main objective of this thesis is to explore possible solutions that

allow IoT architects to make informed decisions in terms of IoT network

technology to be deployed but also in terms of its configuration. Ideally,

this would be through interactive and accessible tools allowing them

to have all the necessary elements for decision-making, based on the

appropriate performance evaluation metrics. We examine the possibility

of coupling different evaluation tools (experimentation and simulation)

to calibrate the simulation models to make them more realistic. More

concretely, the global objective of this work consists in examining the

possibility of achieving, through modeling and simulation, an analysis

of the adequation of a technological configuration of the IoT network for

a given application context.

1.4 Thesis Organization

This thesis is organized into eight chapters. Chapter 1 defines the context

the objectives, and the underlying issues that we propose to address in

this thesis. Then, we present in Chapter 2 a background with the main

concepts related to our work. We present a brief history of the IoT as

well as the scientific motivations behind the considerable growth of this

discipline in recent years. We then focus on the main existing application

domains of IoT. Then, we describe in a more formalized way IoT solutions

and their architectures. After that, we give an overview of the different
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existing network technologies in the market. Finally, we present the

various performance metrics used as a basis for the evaluation of IoT

network technologies.

Chapter 3 is a state-of-the-art on the evaluation, selection, configuration

and simulation of IoT network technologies. First, we provide a brief

overview of the field approaches that IoT architects usually refer to for

the evaluation of network technologies before moving to the deployment.

Then, we present the scientific approaches that researchers have been

working on so far. In that context, we present the different evaluation

approaches that exist, before presenting some related work for the

evaluation, the selection and the configuration of network technologies.

In Chapter 4, we present the first scientific contribution aiming to answer

the following questions: What are the main aspects to be considered

for analyzing the adequacy of an IoT network technology with a

given application? How can we propose an abstract evaluation process,

applicable regardless of the network technology, the application, the

metrics or the evaluation tool? We propose a framework that consists of

modeling IoT applications and network technologies in order to evaluate

the relevance of an IoT network technology for a given application,

according to different evaluation metrics and using any evaluation tool,

with an emphasis at this stage on energy consumption.

Chapter 5 focuses on the following question: How can we automate the

process of the selection of the best network technology to consider

for a given application context along with the potential scalability?

We propose a methodology for selecting the most efficient IoT network

technology for an IoT application, based on the requirements of the

targeted application domain. Our solution is based on a Multi Attibute

Decision Making (MADM) approach, in which we take into account the

impact of the topology on the performance as well as the scalability of

the solution.

We focus on Chapter 6 on addressing two limitations of simulation for

the proposed selection methodology presented in Chapter 5, which are

cost and reliability. We focus on the two following questions: How can we

accelerate the methodology to propose an optimized configuration? and

How can we use enhance the reliability and the accuracy of simulation

models? For the first question, we propose a generic method based on

Machine Learning (regression methods) to optimize the configuration of

a given network technology for a given application. For the second one,

we propose a method for calibrating the simulation models from data

gathered from real experimentation to have more reliable results, with a

focus on energy consumption.

Finally, in Chapter 7, we tackle another limitation of simulation, which is

accessibility. The question we propose to explore is How can we allow IoT

architects, which are not necessarily network experts nor programmers,

to benefit from rigorous analysis for the selection of the best network

technology during the design phase of their solution? We propose a

decision support tool, intended for IoT architects and capable of assisting

them during the lifecycle of the solutions they plan to implement. Beyond

the provided answer in terms of technological and/or configuration

choices, the main interest of this tool lies in the fact that it allows any

architect to have direct access to the network simulation without having
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Figure 1.1: Thesis Contributions and Out-

line.
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to resort to any programming activity, or even to have deep expertise in

networks.

The conclusion is provided in the last chapter of this thesis.

Figure 1.1 depicts the contributions as well as the outline of this thesis.

As we can see, the contributions of Chapter 4 are the basis for the

contributions of Chapters 5, 6 and 7. Chapter 5 is the central contribution

of the thesis, while Chapter 6 is addressing some of its limitations. Finally,

the contributions of Chapter 7 represent the interface between all the

remaining contributions and the IoT architect, to allow IoT architects to

benefit from them in a seamless way.
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We present in this chapter a global overview of IoT, its evolution and

history, before introducing the trendiest IoT applications. Then, we

present some of the most famous IoT network technologies available in

the market. We then examine different metrics used for the evaluation of

IoT network technologies.

2.1 IoT Overview

This section aims at giving a first description of IoT domain. In particular,

we provide a brief description of evolution and history of IoT, and discuss

its functional and practical architectures.

2.1.1 IoT Evolution

Nowadays, networks can connect a huge variety of devices. From the most

common ones, such as computers or smartphones, to devices like printers,

video projectors, etc. The connectivity can be done through cables or

wireless signals (such as radio) to allow fast transfer of information. A

few decades after its appearance as the interconnection of a massive

number of networks, the Internet has been transformed with the help

of recent technological advancements into a network where daily used

objects can be connected to the network, and recognized and controlled

through sensors, smartphones, and so on.

This network of physical objects that can sense, communicate, and be

accessed through the Internet is known as the Internet of Things (IoT),

which includes devices embedded with electronics, software, sensors,

actuators, and network connectivity. The IoT enables the collection and

exchange of data using various protocols, offering connectivity that

brought several social and industrial sectors into a whole different level

of performance, in addition to the emergence of new sectors of activity.

For illustration, IoT Analytics
1
states that the number of connected devices

worldwide has known an increasing by 1000% (see Figure 2.1) between

2010 and 2020.

Figure 2.1: Number of Connected De-

vices Evolution [24].

iot-analytics.com
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2.1.2 History

According to [25], the IoT origin goes back up to 1969, since the first

version of the actual Internet appeared that year. The initial objective of

Advanced Research Project Agency Network (ARPANET), conducted

by Defense Advanced Research Projects Agency (DARPA) was to share

research work and to link computers to many general-purpose computing

centers of the Defense Department of the United States. A few years after,

1973 was the year of one of the main events in IoT history, through the

emergence of an essential technology in IoT, with the first patent of Radio-

Frequency Identification (RFID), just before embedded computer systems

came into existence in 1974 [26]. Early use of IoT properly speaking and

as we know it today (but without being denominated), goes back up

to 1984 at Carnegie Melon University, with a coke machine that was

connected to the Internet to report the availability and temperature of the

drink and even today, these systems are implemented using single board

computers and micro-controllers, which are in their turn extremely used

in the IoT.

The idea of the "Internet of Things" was first introduced with the example

of a coffee vending machine in the 1980s, but the term was officially

coined by Kevin Ashton, Executive Director of Auto-ID Labs at MIT in

1999 [27]. The concept of IoT gained popularity with the establishment

of the Auto-ID Center in 2003 and became a focus of market analysts’

publications. From the early days of IoT, various objects were connected

to the internet for different applications using a range of technologies,

depending on the object and its intended use for the convenience and

comfort of humans [28].

Since the 2000s, digitalization has made Internet connectivity a stan-

dard for numerous applications, and businesses and products are now

expected to have an online presence and provide information online.

Despite this and for various reasons, most devices that require human

interaction and monitoring through interfaces and applications remain

passive entities on the Internet, while most research in IoT is nowa-

days focused on the miniaturization, the power efficiency and the radio

spectrum management of IoT objects and technologies [25].

2.2 IoT Applications

Obviously, the increasing variety of available technologies and devices

followed to the appearance of multiple application domains for IoT

networks. Some of the notable applications of IoT are described below:

2.2.1 Smart Cities

The use of the IoT domain in the context of Smart Cities has become

of interest. The objective of a smart city is to improve the utilization of

public resources, particularly in lighting, transportation, and parking,

while simultaneously limiting the operational expenses of public admin-

istration. Smart city applications can also enhance public safety through

surveillance and streamline waste management while providing citizens
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with better services. Furthermore, data collected from these initiatives

can inform citizens about their city’s status. However, due to several

technical and logistical difficulties, the smart city market has not gained

substantial momentum, despite its numerous potential benefits.

According to [29], the major services that can be deployed in a smart

city are: (i) Smart metering, (ii) Heating, ventilation and air conditiong

(HVAC), (iii) Smart grid and (iv) Environmental monitoring.

The usage of IoT in the context of Smart Cities has been extensively studied

in the community. [30] analyzes the scalability of Low Power Wide Area

Network (LPWAN) for the required mobility in some applications of

smart cities (e.g., traffic regulation). In [31], the authors introduce a

smart city testing facility located in Antwerp, Belgium, designed to

facilitate experimentation at both the technology and user levels in

order to address key questions about smart city implementation. The

platform offers a multi-wireless technology network infrastructure that

enables researchers to easily conduct data experiments and validate their

results using a living lab approach. [32] introduces a new communication

architecture that is both ubiquitous and resilient. Inspired by the human

nervous system, the architecture is designed to be flexible and able to

accommodate growth, while still maintaining a high level of performance

and reliability. [33] introduces a new security scheme for efficient and

secure media packet routing in IoT networks, as well as an algorithm

for Media-based Surveillance Systems in IoT networks in the context of

Smart Cities.

2.2.2 Medical and Healthcare

Wireless Sensor Network (WSN) have attracted significant attention due

to their important roles in healthcare and medical applications. These

networks enable real-time remote monitoring of patients, as well as

improving the quality of life for the elderly through smart environ-

ments. They also contribute to facilitating drug and medical database

management and preventing critical patient situations.

In [34], the authors propose a review of the current state of the integration

of remote health monitoring into clinical practice. They state that IoT-

enabled wearable sensors provide a promising solution for observing

and collecting data in home and work environments over extended

periods, surpassing the limited duration of office and laboratory visits.

The resulting wealth of data can then be analyzed and presented in

intuitive visualizations to doctors. However, there are several obstacles

to overcome in terms of sensing, analytics, and visualization before

seamless integration into clinical practice can be achieved. [35] focuses on

Anomaly Detection in Healthcare and IoT systems. The authors propose

a methodology using smartphones for proactive healthcare analytics in

preventing cardiac disease. In [36], a proposal was made to use RFID-

based applications in body-centric systems to collect information on

human behavior while adhering to power and sanitation regulations. [37]

proposes an IoT architecture that integrates a Machine Learning (ML)

algorithm to detect heart diseases at an early stage. This solution employs

a three-tier framework that collects sensor data from wearable devices,
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stores the information in the cloud, and employs a regression-based

prediction model to identify heart disease.

2.2.3 Smart Agriculture

Smart Agriculture aims at transforming traditional agricultural practices

into modern methods adapted to the realities of climate change. The

main objective of Smart Agriculture systems is to keep surveillance on

factors that can impact crops (soil moisture, temperature change, etc.),

through the deployment of different kinds of sensors [38]. These sensors

can measure barometric pressure, luminosity, humidity level, etc.

[39] proposes a framework that combines Remote Monitoring Systems

with Internet and wireless communications, providing automatic control

of the environmental temperature, and humidity factors, through a

friendly interface offering the real-time environmental factors in the

greenhouse. [40] presents a crop monitoring system based on a wireless

sensor network, where sensors gather data related to temperature and

humidity within the testbed. The proposed platform also provides a

system for taking periodic crop growth images. In [41], they present an

"Intelligent Agriculture Management Information" whose objective is

to analyze the features of Agricultural data. The framework is divided

into three major steps which are: (i) Data acquisition where crop growth

and storage are measured, (ii) data transmission which makes sure the

data is transferred to the Internet to be usable by other entities and (iii)

information analysis where data mining processes are executed to analyze

measured data. [42] provides a review of the potential WSN applications

and the specific issues and challenges associated with deploying WSNs

for improved farming.

2.2.4 Smart Home/Building

A Smart Home or Building is characterized by the integration of electronic

devices such as heating, lighting, and more. These systems typically

consist of sensors and gateways that facilitate communication with a

central station. The central station can be controlled through a user

interface installed on a mobile phone, tablet, or computer, all of which

are managed by IoT technology [43]. In recent years, the concept of Smart

Homes/Buildings has evolved, incorporating a range of devices into the

IoT.

[44] presents a smart home system including voice activation for switch-

ing functions, and a range of devices like light switches, temperature,

intrusion detection, smoke/gas sensors, and sirens have been incorpo-

rated to demonstrate the practicality and effectiveness of the proposed

system. [45] proposes an IoT Smart Home System that allows remote con-

trol of household appliances through a mobile device, IR remote control,

or PC/Laptop. The system is designed using a WiFi-based microcon-

troller and includes a temperature sensor to monitor room temperature.

[46] describes Frugal Labs IoT Platform (FLIP), which is designed to build

Smart Homes that are enabled with IoT technology. Additionally, the

paper presents a proposed system that utilizes FLIP to implement Smart
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Home services. The proposed system is primarily used for monitoring

and controlling the Smart Home environment.

2.2.5 Smart Manufacturing

The contemporary manufacturing sector is adopting novel technologies

such as IoT, big data analytics, cloud computing, and cybersecurity to

manage system complexity, enhance information transparency and boost

production efficiency. These innovations are facilitating the emergence of

a new era of intelligent manufacturing, characterized by a cyber-physical

system that closely integrates physical manufacturing enterprises with

virtual ones in cyberspace [47].

The authors of [48] have developed a system utilizing IoT to supervise

and evaluate energy usage during selective laser sintering
2
. Additionally,

a control mechanism was established to enhance efficiency and reduce

the overall energy consumption of the process. [49] presents a software

application designed for real-time monitoring of energy efficiency on

manufacturing shop floors. This software employs data envelopment

analysis to identify irregular energy consumption patterns and quantify

discrepancies in energy efficiency while monitoring the energy efficiency

in real-time. [50] presents an IoT framework that enables the acquisition

and integration of real-time data to enhance information visibility across

the enterprise, workshop floor, and machine layers. The framework aims

to facilitate better decision-making in manufacturing execution.

2.3 IoT Solutions

These different applications and services are rapidly being implemented

across various industries and are poised to become commonplace in

the near future. To enable and support these services, IoT solutions

(or systems) are being developed and deployed. These solutions build

upon the Internet protocol stack and inherit the Internet infrastructure’s

robustness, scalability, and widespread availability. They also possess

the potential for network effects, similar to the Internet, where the value

and benefits of the IoT ecosystem increase as more devices and services

become interconnected. The TENPA (Things, Edge, Network, Platform

and Application) model is presented in [51] to represent the end-to-end

architecture of an IoT solution. This model is decomposed into five tiers

or zones: (i) Things tier, (ii) Edge tier, (iii) Network tier, (iv) Platform tier

and (v) Application tier.

The Thing tier consists of end-devices which are physical objects con-

nected to the Internet and used to collect information from the envi-

ronment and transmit them. They are equipped with sensors, actuators

and other types of hardware to make them able to interact with the

physical world. They are also equipped with radio chips to allow them

to send/receive information to/from the Internet. To provide intelli-

gence and connectivity to end-devices, the latter are equipped with

micro-controllers. Micro-controllers are integrated circuits containing

processing units, memory, input/output peripherals, radio units, etc.

They can be programmed with firmware to perform specific tasks.
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Firmware Operating Systems: Firmware is run in the micro-controllers

to control their components. They can be implemented using diverse

operating systems. Due to the energy- and space constraints, these

operating systems must be minimalist. Some of them are also referred to

as Real-Time Operating System (RTOS) [52]. We present in what follows

some well-known operating systems for IoT:

▶ RIOT: RIOT [53] is an open-source operating system specifically

designed for IoT. It takes into account the limitations of devices with

minimal resources while facilitating development across a wide

range of IoT devices. Its design objectives include energy efficiency,

reliability, real-time capabilities, a small memory footprint, and

modularity, independent of the underlying hardware.

▶ Contiki: Contiki [54] is an open-source operating system designed

for IoT devices. Its focus is on reliable and secure low-power commu-

nication. This operating system is accompanied by comprehensive

documentation and is widely used in the IoT community. Note that

Contiki is not, stricto sensu, an RTOS. Indeed, The Contiki program-

ming model is based on protothreads [55], which are lightweight

threads providing a blocking context on top of an event-driven

system, while typical RTOSs employ preemptive scheduling, where

higher-priority tasks can interrupt lower-priority ones.

▶ FreeRTOS: FreeRTOS [56] is a minimalistic and straightforward

operating system designed to be compact in size. It is primarily

coded in C programming language to simplify its portability and

maintenance. However, some assembly language functions are also

incorporated, primarily in architecture-specific scheduler routines.

▶ Zephyr: Zephyr [57] is an RTOS dedicated to connected, resource-

constrained and embedded devices (with an emphasis on micro-

controllers), supporting multiple architectures. It contains a kernel,

and all components and libraries, device drivers, protocol stacks

and firmware updates, needed to develop full application software.

The Edge tier refers to the interface between physical devices and the

wider IoT network. It encompasses the functionalities of protocol adapta-

tion, data filtering, data collection, pre-processing, and providing internet

connectivity to enhance the capabilities of IoT devices.

The Network tier is composed of gateways that are devices serving

as bridges between end-devices and the Cloud. It is responsible for

facilitating the transportation of IoT data over long distances and through

Internet connections to centralized data centers or Cloud platforms.

The Platform tier serves as a hub for connection aggregation, security

functions, and data management tasks such as data exchange, processing,

and storage.

The Application tier is composed of applications/services and cloud

servers which are designed and implemented principally for data storage

and further functionalities, such as web monitoring and mobile applica-

tions. It can be the entry point of an end-user to monitor the state of the

network or to execute commands in the end-devices.

Still according to [51], the Things and Application tiers are mandatory.

The network tier makes this system an Internet-based system, while the
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Figure 2.2: Star Topology.

Figure 2.3: Mesh Topology.
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Edge and Platform tiers’ role is to enhance the overall performance and

usability of the IoT system.

The way to arrange end-devices and gateways is known as the topology.

We distinguish two major topologies in IoT:

Star: Every node (end-device) is attached to a node that is central in a star

topology and is connected to the Internet. The central node is typically

called the gateway. It is responsible for receiving (respectively sending)

data from sensors (respectively to actuators), as well as processing data.

Figure 2.2 displays a star topology, where the central node acts as a

gateway and all other nodes attached to this node are the end-devices.

Mesh: It allows nodes to connect to many other nodes so that the Internet

gateway can be one or more nodes. Figure 2.3 depicts a mesh topology

where all nodes are interconnected. Although simple in real life, designing

a mesh network can be challenging and may result in longer intervals

for messages to travel between distant nodes in comparison to a star

topology. There are also routing issues that may appear when using a

mesh topology.

2.4 IoT Network Technologies

As mentioned in the previous section, the goal of IoT network technologies

is to establish a connection between the physical world (the "things") and

the virtual world (the applications or end-user services). An IoT network

technology is a wireless technology typically defined by the two lower

layers of the Open Systems Interconnection (OSI) model [58] (Physical

and Data Link). They are by definition dependent on the communication

medium used, and must therefore take into account the specificities of

the latter. Since the communication medium is air which is shared by

all nodes, wireless technologies have important differences from wired

technologies (which benefit from isolated communication in independent

cables).

IoT network technologies are characterized by features, which are inherent

characteristics, regardless of the targeted application. Some of them are

presented in the following:

▶ Data rate: It is the theoretical maximal amount of data that can be

sent per unit of time.

▶ Range: Range refers to the theoretical maximal distance that a

packet can cross over the air with enough power to be decoded by

the receiver. This value can be affected by the radio conditions and

environment. For instance, packets can typically traverse longer

distances in a rural environment than in an urban one, due to the

fewer interferences and obstacles.

▶ Security: Since the IoT is an open ecosystem in which all devices are

interconnected, these devices are vulnerable to malicious attacks.

Due to this risk, several research efforts have focused on mecha-

nisms to achieve reliable, at the same time, lightweight IoT security

and privacy. The robustness of the used encryption algorithm to

cipher the transmitted data is often used to determine the security

of an IoT network technology [59–61].
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▶ Cost: Cost is a complex aspect to model in IoT. It generally englobes

the fees induced by deployment (spectrum cost in case of licensed

bands, price of end-devices and gateways, etc.) and maintenance

(battery replacements, etc.). We can see that although some aspects

are inherent in the network technology, it is greatly dependent on

the application.

Some technologies provide coverage in tens of meters, and they are

named short-range technologies, while others can provide coverage up

to tens of kilometers, and they are called long-range technologies. A

description of both types of network technologies is provided in the

following:

2.4.1 Short-Range Technologies

Wireless Personal Area Network (WPAN) provide coverage that does not

exceed hundreds of meters. They are designed for relatively proximity

communication between devices. These technologies are typically used

for IoT applications that operate within a limited range, such as within a

room or a building. Additionally, short-range technologies often allow

higher data rates than long-range ones. Some common short-range

technologies used in IoT include:

▶ Wi-Fi
Wi-Fi is a WLAN technology that is based on the IEEE 802.11

standard. It is widely used. As of 2019, over 3.05 billion Wi-Fi-

enabled devices are shipped globally each year [62].

Wi-Fi can operate on several frequency bands: 900 MHz, 2.4 GHz,

3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz and 60 GHz. It uses

the listen-before-talk mechanism Carrier Sense Multiple Access

(CSMA) which checks before sending a frame that the medium is

idle. Wi-Fi stations and their access points (gateways) typically have

a wireless communication range of about 30 meters indoors. Wi-Fi

data rate depends on the amendment. For example, for 802.11a,

b, g, n, ac and ax, data rates can be up to 54 Mbps, 11, 54, 150,

866.7 Mbps and 7 Gbps, respectively [63]. Several parameters affect

Wi-Fi connection, like the Modulation and Coding Scheme (MCS).

The latter refers to the combination of modulation and coding to

achieve different data rates and levels of robustness in the presence

of noise and interference. Typically, higher MCS will lead to a

higher data rate, but also a higher sensitivity from the transmission

to noise and interference.

Wi-Fi generally has a star topology, even though it also allows

Point to Point (P2P) communications (ad-hoc) between end-devices

[64]. Energy consumption was not a real concern when Wi-Fi was

developed and it was not initially developed for IoT purposes, since

it was designed to provide broadband wireless internet access for

a small number of plugged-in stations. However, an amendment to

the Wi-Fi standard IEEE 802.11ah (also known as Wi-Fi HaLow) has

been developed to make Wi-Fi more adapted for IoT, by increasing

the coverage of access points up to 1 km and, making them able to

handle up to 8,000 stations. To date, 802.11ah is the only Wi-Fi ver-

sion that supports low-energy communications of a high number
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of IoT stations placed in a large area [65]. Despite its introduction to

the community in 2017, Wi-Fi HaLow has not been widely adopted,

and there are currently only a limited number of implementations

available. Further details about Wi-Fi can be found in [66].

▶ BLE
Bluetooth Low Energy (BLE) is a low-power wireless technology

developed for short-range control and monitoring applications. In

2020, the market volume of BLE-enabled devices has been estimated

to be 8 billion units
*
. BLE operates in the 2.4 GHz Industrial,

Scientific and Medical (ISM) band and defines 40 Radio Frequency

(RF) channels with 2 MHz channel spacing. All physical channels

use a Gaussian Frequency Shift Keying (GFSK) modulation.

Bluetooth-based networks can be deployed in a P2P or in a star

topology [64]. It uses a Time Division Multiple Access (TDMA)

schemes, where the central station determines the instants in which

other stations are required to listen, and thus coordinates the

medium access [67]. It can reach data rates up to 1 Mbps, and a

range of up to 100 meters [64].

In contrast with the previous Bluetooth version, BLE has been

designed as a low-power solution for control and monitoring ap-

plications.

▶ 802.15.4
The IEEE 802.15.4 [68] is a technical standard that defines the phys-

ical and mac layers of low-rate Low Rate Wireless Personal Area

Network (LR-WPAN). It can operate on the 868 MHz, 915 MHz

and 2.4 GHz frequency bands, with Direct Sequence Spread Spec-

trum (DSSS) modulation. It provides wireless data transmission,

intending to let stations communicate over small ranges [60].

ZigBee is a short-range technology based on IEEE 802.15.4. An

estimation stated that by 2023, there will be 4.5 billion 802.15.4

mesh devices sold worldwide, most of which will use Zigbee
†
.

It supports star and mesh topologies [64]. Like Wi-Fi, it uses the

CSMA mechanism for controlling the medium access. Its data rate

can go up to 250 Kbps and its range varies between 10 and 100

meters [64].

The IPv6 over Low-Power Wireless Personal Area Networks (6LoW-

PAN) [69] is a communication protocol designed to enable the

transmission of IPv6 packets over LR-WPAN networks. It is based

on the IEEE 802.15.4 norm, and it defines the mechanisms for

compressing IPv6 packets, fragmenting and reassembling them to

fit within the limited payload size of 802.15.4 frames and handling

the addressing and routing of packets in a 6LoWPAN network.

The IPv6 over the Time Slotted Channel Hopping
3

(TSCH) mode

of IEEE 802.15.4e (6TiSCH)[70] proposes a protocol stack rooted

in the mode of the IEEE 802.15.4, supports multi-hop topologies

with the IPv6 Routing Protocol for Low-Power and Lossy Networks

(RPL) routing protocol, and is IPv6-ready through 6LoWPAN.

▶ RFID
* https://statista.com/statistics/750569/worldwide-bluetooth-low-energy-device-market-volume/
† https://zigbeealliance.org/news_and_articles/
zigbee-leads-the-wireless-mesh-sensor-network-market/

https://statista.com/statistics/750569/worldwide-bluetooth-low-energy-device-market-volume/
https://zigbeealliance.org/news_and_articles/zigbee-leads-the-wireless-mesh-sensor-network-market/
https://zigbeealliance.org/news_and_articles/zigbee-leads-the-wireless-mesh-sensor-network-market/
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4: It refers to the change in wave fre-

quency during the relative motion be-

tween a wave source and its observer.

Radio-Frequency Identification (RFID) is a wireless system com-

prised of two components: tags and readers. The reader is a device

that has one or more antennas that emit radio waves and receive

signals back from the RFID tag. It has two different versions. Low

Frequency (LF) RFID operates at a frequency of 125-134 kHz which

provides a short read range of 10 cm. So-called Long-range RFID,

also known as RAIN RFID, operates on the Ultra High Frequency

(UHF) band and offers fast recognition speed, with the ability to

read tags up to 15 meters. On the other hand, so-called low-range

RFID uses the High Frequency (HF) band, which has a lower tag

recognition range (up to 1.2 meters) [71]. Finally, Microwave Fre-

quency (MW) RFID operates at a frequency range of 2.45-5.8 GHz

and has a range of under 2 meters [72].

2.4.2 Long-Range Technologies

Long-Range network technologies offer radio coverage over a large area

by way of base stations (gateways). [73] classifies them according to the

type of frequency bands they operate on: (i) ISM band-based and (ii)

Mobile band-based. Both are described in the following:

ISM band-based

Contrary to mobile IoT network technologies, the ISM-based LPWAN

technologies use unlicensed bands in the spectrum. These bands can

be used by anyone without having to possess an authorization, which

naturally augments the contention on the medium.

▶ LoRaWAN
Over 1.2 million gateways and 180 million devices using LoRa are

deployed all around the world today
‡
. It utilizes a combination

of Chirp Spread Spectrum (CSS) modulation at the physical layer

[74] and LoRaWAN at the MAC layer. CSS modulation is based on

frequency ramps with cyclic shifts, which can encode information

using a variable Spreading Factor (SF). The latter represents the

amount of spreading code applied to the original data signal. LoRa

modulation has a total of six spreading factors (SF7 to SF12). The

larger the used spreading factor, the farther the signal will be able

to travel and still be received without errors by the receiver. This

parameter affects the communication range, the time that a packet

takes to arrive and the data rate. This modulation scheme is highly

resilient against interference and the Doppler effect
4
, allowing it

to achieve long-range transmissions.

LoRa technology operates in unlicensed ISM bands, initially in

the EU863-870 MHz and the EU433 MHz Sub-GHz bands in

Europe, as well as in some countries in Africa and the Middle East.

Recently, it has expanded its operations to include the 2.4 GHz

band. LoRaWAN does not use any listen-before-talk mechanism,

since it uses pure ALOHA access method. It enables low power

operations (around 10 years of battery lifetime), offering low data

‡ https://www.semtech.com/lora

https://www.semtech.com/lora
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rate and long communication range (2-5 km in urban areas and 15

km in suburban areas) [75].

Although LoRaWAN does not use any listen-before-talk mechanism

before sending packets, it undergoes restriction and a key limiting

factor, which is the duty-cycle regulations in the ISM bands: In

Europe, the maximum duty-cycle of the EU 868 ISM band is 1%,

which means that if a packet takes a time 𝑡 to arrive, the sending

device must observe a waiting time equal to 100 ∗ 𝑡 before sending

another packet.

LoRaWAN has a star topology network composed of end-devices

and gateways connected through the Internet to a network server.

There are three classes of end-devices in LoRaWAN: (i) Class A,

where devices can send a packet and receive only in an interval

after its emission, (ii) Class B which is the same as class A but

devices of class B can receive at regular intervals, (iii) Class C where

devices can continuously receive message. Naturally, Class A is

the class of LoRaWAN devices with the lowest power consumption.

▶ Sigfox
Sigfox is an LPWAN network operator that offers an end-to-end IoT

connectivity solution based on its patented technologies. It uses a

Binary Phase Shift Keying (BPSK) modulation in an Ultra Narrow

Band (UNB) of 100 Hz.

Just like LoRaWAN, Sigfox operates on the EU863-870 MHz and

the EU433 MHz Sub-GHz bands in Europe. The used mechanism

for accessing the medium is also ALOHA. By employing the ultra-

narrow band, Sigfox can ensure very low power consumption, high

receiver sensitivity, and low-cost antenna design at the expense of

a maximum throughput of only 100 bps. Its range can however go

up to 10 km (urban) and 40 km (rural) [59].

In the uplink direction, the packet size is restricted to a maximum

of 12 bytes. Additionally, Sigfox applies the 1% duty cycle for

ISM bands in Europe. To improve reliability, the system employs

redundant transmissions and time-frequency diversity, which in-

volves transmitting multiple times over randomly selected channels.

However, acknowledgments are not supported by the system.

Sigfox is also characterized as a network with a star topology.

Figure 2.4
§

displays this classification, showing the trade-off between the

range and the data rate. Note that cellular networks are the only exception

to this trade-off. Also note that the cost reflects a global overview of the

cost of using a network technology (including the licensed bands and

equipment price, etc.).

Mobile band-based

Mobile technologies are extremely used over the world nowadays. They

operate on a licensed spectrum. Due to their impressive coverage, they

may well be the widest wireless networks deployed to provide Internet

access. A recent interest of the 3rd Generation Partnership Project (3GPP)

consortium, is to allow the exploitation of IoT applications using mobile

§ https://embeddedams.nl/

https://embeddedams.nl/
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Figure 2.4: IoT Network

Technologies Classification
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communications, with respect to IoT special constraints, mainly in terms

of computation power and energy restriction. We present in what follows

some well-known mobile network technologies specially designed for

the IoT:

▶ NB-IoT
Narrowband-IoT (NB-IoT) has been defined by 3GPP based on the

characteristics of Long Term Evolution (LTE) to enable its rapid

adoption and seamless integration into existing LTE networks, with

simple modifications considering the use cases of IoT, particularly

related to extended coverage and low power consumption. NB-IoT

incorporates a substantial portion of the LTE design. This includes

the use of downlink Orthogonal Frequency-Division Multiple Ac-

cess (OFDMA), uplink Single-Carrier Frequency-Division Multiple

Access (SC-FDMA), channel coding, rate matching, and interleav-

ing [76]. It uses Gaussian Minimum Shift Keying (GMSK) for the

modulation.

Unlike LoRaWAN and Sigfox, NB-IoT uses the SC-FDMA mech-

anism, where multiple access among users is made possible by

assigning to different users different sets of non-overlapping sub-

carriers. NB-IoT range can go up to 1 km (urban) and 10 km (rural)

and can ensure data rates up to 200 kbps [59].

NB-IoT also supports star topology. NB-IoT is kept as simple as

possible to reduce device costs and minimize battery consumption,

and thus it removes many features of LTE, including handover,

measurements to monitor the channel quality, carrier aggregation,

and dual connectivity [77].

▶ LTE-M
LTE-M is a machine-focused variant of the 3GPP LTE standard,

which is designed to meet the high-coverage, low-cost, and low-

power consumption requirements of the IoT. It is already deployed

in numerous countries worldwide. It also uses the OFDMA mecha-

nism in the MAC layer. Its range can go up to 11 km and its data

rate can go up to 1 Mbps [73]. It uses the Quadrature Phase Shift

Keying (QPSK) modulation scheme.

https://embeddedams.nl/
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▶ 5G
The widespread of the fifth generation of mobile networks (5G)

began in 2019, and 5G networks are predicted to have more than

1.7 billion subscribers worldwide by 2025
¶
. 5G utilizes multi-layer

spectrum through the use of large-scale antennas, with sub 1 GHz

for low-band spectrum, 1 GHz and 6 GHz for mid-band spectrum,

and 24-40 GHz for high-band spectrum Millimeter Wave (mmWave).

It uses the Orthogonal Frequency-Division Multiplexing (OFDM)

for the modulation.

5G uses the OFDMA mechanisms for medium access by assigning

subsets of subcarriers to individual users. With 5G, up to 1 mil-

lion devices can be connected per square km, with the ability to

communicate at speeds of up to 500 km/h. This technology also

supports uplink speeds of at least 10 Gbps and downlink speeds

of up to 20 Gbps, with download speeds of 100 Mbps and upload

speeds of 50 Mbps per user. The latency resulting from the use of

5G technology should be around 1 ms [78].

5G can support star and mesh topologies. Although mobile tech-

nologies have recently been a great part of our lives, previous

mobile generations like 3G or 4G were not considered facilitators

for IoT, unlike 5G. Indeed, a huge improvement in network scala-

bility, connectivity and energy efficiency, and a range of about a

couple of kilometers, have made that technology a key enabler for

many IoT services [79].

▶ 6G
Even though 5G has brought wireless systems to a different level

in terms of QoS, it will presumably be insufficient for supporting

the unprecedented increase in the number of connected devices

and traffic volume demand [80]. In this context, 6G, which is the

sixth generation of wireless technology, is expected to introduce

innovative wireless technologies and networking infrastructures

that can meet the demanding requirements of a wide range of

new IoT applications. Moreover, it is expected that it satisfies these

requirements in a more comprehensive manner than the current

5G technology, which is expected to lead to significant disruptions

in the IoT ecosystem [81].

Although it is still in the research and development phase, 6G is

supposed to allow faster communications, lower latency, higher

capacity, and improved reliability compared to 5G. Indeed, 6G

shall provide data rates up to 1 Tbps, latency under 1 ms and will be

able to support up to 10 million devices per 𝑘𝑚2
[82, 83]. It is also

likely to enable new use-cases and applications such as advanced

virtual and augmented reality, and more advanced automation and

robotics. Its deployment is planned to be starting in 2030.

6G is envisioned to revolutionize customer services and applica-

tions via IoT, towards a future of fully intelligent and autonomous

systems. Therefore, one of the major goals of 6G is to build less

energy-intensive systems. Indeed, typical wireless cellular network

¶ https://www.forest-interactive.com/insights/
5g-connections-post-covid-19-global-forecast/

https://www.forest-interactive.com/insights/5g-connections-post-covid-19-global-forecast/
https://www.forest-interactive.com/insights/5g-connections-post-covid-19-global-forecast/
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base stations consume a considerable amount of power [84]. This

indicates that the deployment of large-scale 6G-IoT networks com-

prising thousands of such stations can result in a significant amount

of energy consumption, leading to an increase in carbon emissions.

Therefore, in the current context of climate change, developing

energy-efficient communication protocols through optimization

techniques is an absolute necessity to establish eco-friendly 6G-IoT

networks. For that sake, a huge research effort is made toward the

development of less consuming mechanisms for 6G [85–87]. More-

over, energy harvesting techniques to exploit renewable energy

resources will be very useful to build green 6G-IoT systems [88].

Others

Several proprietary network technologies have emerged in the industry.

Ingenu [89] is a proprietary LPWAN technology that uses the 2.4 GHz

ISM band (which is already being used by other technologies such as

Wi-Fi) instead of sub-GHz ISM bands. The advantage of using this band is

that it is not subject to heavy-duty cycle restrictions as the sub-GHz bands

are. Ingenu uses a proprietary physical technology called Random Phase

Multiple Access (RPMA), which is a variation of Code Division Multiple

Access (CDMA). Ingenu states that their technology outperforms most

other LPWAN technologies, particularly in terms of range and data

rate, with an up-link rate of 78 kbps and a downlink rate of 19.5 kbps

[89]. However, [73] states that there is no scientific study available to

validate this claim. Weightless [90] is a set of standards (W, P and N)

developed by the Weightless Special Interest Group (Weightless-SIG).

Weightless-P uses sub-GHz frequencies and offers a data rate of up to

100 kbps with a range of up to 10 km. Weightless-N is a narrow-band

IoT technology that uses sub-GHz frequencies and offers a data rate of

up to 100 kbps with a range of up to 2 km. Weightless-N is based on

Ultra Narrow Band (UNB) for upward-only communications, using the

ISM sub-GHz bands. Weightless-P is the latest Weightless standard. It

offers bidirectional connectivity based on the ISM sub-GHz bands as

well, using channels 12.5 kHz wide which results in a data rate between

0.2 kbps and 100 kbps. GMSK and QPSK modulations are used [73]. The

DASH7 Alliance [91] is an industry consortium that proposes a complete

stack protocol called DASH7 Alliance Protocol (D7AP), which is based on

narrow-band modulation in the ISM sub-GHz bands. D7AP comprises a

complex network stack and includes features like periodic wake-up of the

nodes, leading to reduced latency in communication, but also increasing

power consumption. The protocol offers a data rate ranging from 9.6

to 166.7 kbps [73]. DECT NR+ is a standard developed by European

Telecommunications Standards Institute (ETSI), operating in the 1.9 GHz

band, designed to create a decentralized mesh network independent of

wireless operators. It offers high data rates (from 3 to 80 Mbps), and is the

first non-cellular 5G standard, particularly suited for Massive Machine

Type Communications (mMTC). DECT NR+ employs OFDM with Turbo

channel coding and adaptive modulation, allowing the creation of private

wireless networks without the need for existing cellular infrastructure.

Recent analyses have shown DECT 2020 NR software, when applied to

Bluetooth silicon, to be 24 times more efficient than Narrowband Internet
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Table 2.1: IoT Technologies Features.

Technology

Feature Data Rate Range Security Cost

(Encryption) (Spectrum)

Wi-Fi [54 Mbps - 7 Gbps] 100 m WPA-TKIP Unlicensed

BLE 1 Mbps 50 m SAFER+ Unlicensed

Zigbee 250 Kbps 100 m AES 128 b Unlicensed

LoRaWAN [3 Kpbs - 50 Kbps] Urban: 5 km AES 128 b Unlicensed

Rural: 20 km

Sigfox Uplink: 100 bps Urban: 10 km No encryption Unlicensed

Donwlink: 600 bps Rural: 40 km

NB-IoT Uplink: 158.5 Kbps Urban: 1 km LTE encryption Licensed

Donwlink: 106 Kbps Rural: 10 km

5G Uplink: 10 Gbps Low bands: 10 km 128-bit encryption Licensed

Downlink: 20 Gbps High bands: 1 km

[92]: Shay (2020), ‘DECT 2020 NR : Sus-

tainability and Scale for the IoT (White

Paper)’

[93]: Lucero (2020), ‘Satellite IoT Market

Report 2020’

[94]: Centenaro et al. (2021), ‘A Survey

on Technologies, Standards and Open

Challenges in Satellite IoT’

[95]: Ahad et al. (2020), ‘Technologies

Trend towards 5G Network for Smart

Health-Care using IoT: A Review’

of Things (NB-IoT), and when applied to cellular chips, it exhibited a 2.4

times improvement in power efficiency over NB-IoT devices [92].

Besides that, considering that IoT is supposed, in some cases, to cover a

large geographical area or a region not reached by terrestrial network

connection, the usage of satellites for IoT might be of great interest for

extending the coverage and the connectivity in a flexible and affordable

manner. According to [93], the revenues generated by the global satellite

IoT connectivity industry will more than double from 233 million USD in

2019 to 554 million USD in 2025. Furthermore, the number of cumulative

satellite connections is expected to increase fourfold, reaching over 10

million by the year 2025. In this perspective, traditional communication

service providers and vendors spare no expense on exploiting the existing

terrestrial wireless long-range technologies as ground-to-satellite link

enabler [94]. The architecture of a Satellite IoT system comprises the

following components:

▶ The end-devices, also referred to as Machine Type Devices (MTD)s

diposed in the terrestrial environment,

▶ IoT-support satellites, which can be seen as gateways for satellites,

▶ IoT gateways (for the terrestrial MTD),

▶ Ground stations, which gather and transfer data from IoT-support

satellites to MTD,

▶ IoT services, providing core network functionalities to perform as

well as external cloud applications for user-plane data management.

Table 2.1 (inspired from [95]) gives a summary about some IoT technolo-

gies and their respective features.
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2.5 Conclusion

Our aim through this chapter was to provide a global overview of the

different concepts of IoT used in the remainder of this thesis. After a

brief description of the history of IoT and why is it that it became so

omnipresent in our daily lives, we presented some of the major IoT

applications that are witnessing active interest from the community as

well as some recent research works that have been conducted in the

context of each application. Then, we described the architecture of IoT

solutions, before moving to the description of some of the most employed

network technologies in the industry and precising for each one of them

some of its characteristics in terms of range and data rate as well as the

mechanisms it uses on the Physical (PHY) and MAC layers.



[10]: Kassab et al. (2020), ‘A–Z survey of

Internet of Things: Architectures, Proto-

cols, Applications, Recent Advances, Fu-

ture Directions and Recommendations’

[96]: Kaňuch et al. (2020), ‘Survey: Classi-

fication of the IoT Technologies for Better

Selection to Real Use’

[59]: Mekki et al. (2018), ‘Overview of

Cellular LPWAN Technologies for IoT

Deployment: Sigfox, LoRaWAN, and NB-

IoT’

[77]: Sinha et al. (2017), ‘A Survey on

LPWA Technology: LoRa and NB-IoT’

[97]: Ikpehai et al. (2018), ‘Low-power

Wide Area Network Technologies for

Internet-of-Things: A Comparative Re-

view’

[98]: K. Mekki, E. Bajic, F. Chaxel, and

F. Meyer (2019), ‘A Comparative Study

of LPWAN Technologies for Large-scale

IoT Deployment’

State of the Art 3

3.1 Field Approaches . . . . . 29

3.2 Scientific Approaches . . 30

3.3 Conclusion . . . . . . . . . 43

We present in this chapter an overview of the different approaches for

evaluating, selecting and configuring IoT network technologies for a

given application. First, we present the classical field approaches that IoT

architects usually rely on. Then, we present the scientific approaches that

have been proposed in the literature by the research community.

3.1 Field Approaches

Before implementing a full-scale IoT solution, IoT architects usually refer

to two field approaches: (i) Proof of Concept (PoC) and (ii) pilot projects.

PoC test consists of designing and executing small-scale tests to validate

the feasibility and effectiveness of the solution in real-world scenarios.

These tests help assess the solution’s performance, reliability, and ability

to meet the organization’s specific requirements. IoT architects analyze

the results of PoC tests and provide recommendations based on their

findings.

Pilot projects involve deploying and testing IoT solutions in real-world

environments on a larger scale than PoC. They allow for practical eval-

uation of the solution’s performance, functionality, and usability. Pilot

projects provide valuable insights into how the solution operates in spe-

cific contexts and help identify any challenges or areas for improvement.

Typically, pilot projects allow the evaluation and calibration of various

hardware and physical parameters to achieve optimal adjustments. How-

ever, they provide only a limited and incomplete representation of the

future reality, as they usually involve a small number of devices and a

restricted scope.

Although PoC and pilot projects can be useful tools for IoT architects, a

broader and long-term perspective during the design phase would be of

interest. Unfortunately, conducting large-scale and long-term experiments

is complex due to cost, time, and complexity. Moreover, the constantly

evolving landscape of IoT network technologies and architectures, such

as 5G, satellite, and edge settings, further adds to the complexity and

confusion. Undeniably, testing sensing and network technologies through

real-world deployments is essential for assessing functional feasibility. It

is crucial to verify the compatibility of sensors with the chosen network

technology and validate the quality of collected and transmitted data.

Understanding the impact of the connected solution on existing human

processes is also vital.

When the choice for the most adequate network technology must be

made for a forthcoming IoT solution, IoT architects also refer to IoT

surveys. Indeed, they can be a valuable source of information regarding

the modulations in use, the channel bandwidth, the maximum payload

sizes, and the authentication and encryption support. Surveys cover

IoT communication in general (e.g., [10, 96]), or are more specifically

devoted to LPWAN technologies (e.g., [59, 77, 97, 98]). Either way, these
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surveys have limitations: They provide coarse-grained information for

networking performance metrics, often limited to best and worst-case

values, independent of the targeted IoT applications. Yet, in IoT, the

choice of the right network technology is strongly tied to the specific

requirements of the application, the network topology, the environment

as well as the resources embedded within end-devices. For instance,

the theoretical capacity of network technologies can be misleading

as in practice, this value will often not be reached because of (i) the

channel errors and/or interference, and (ii) the contention resulting

from end-devices attempting to access the radio channel at the same

time. Also, surveys can be rapidly outdated (there is a constant need

for a fresh and up-to-date view in such a prolific and dynamic domain).

More importantly, their technical description is often too general and

impractical to IoT architects looking for a precise answer to the specific

needs of their application.

3.2 Scientific Approaches

In contrast with the field approaches, scientific approaches for IoT so-

lutions design decision-making have emerged. First, we present the

evaluation tools that the scientific community relies on for the rigorous

evaluation of network technologies. Then, we present a state-of-the-art

of scientific methods that have been proposed in the literature.

3.2.1 IoT Network Evaluation Tools

Different evaluation tools have been introduced and can be used for

assessing the performance of a given IoT network technology. The follow-

ing are presented as the principal tools for the evaluation of IoT network

technologies.

Testbeds

Testbeds are platforms used for conducting experiments and testing

protocols, solutions, etc. Some well-known testbeds in IoT are presented

in what follows:

FIT IoT-LAB FIT IoT-Lab [99] is a large-scale open-access testbed located

in France across 6 different sites (Grenoble, Strasbourg, Lille, Paris, Saclay

and Lyon). It provides access to more than 2,300 sensor nodes available

to users for experiments in embedded wireless communications. It offers

different experimentation boards, different radio technologies, namely

802.15.4 and LoRa, and multi-Operating System (OS).

Smart Santander SmartSantander [100] is a city-scale testbed mostly

dedicated to experimenting IoT services targeted at smart cities. It is

operating in 4 different countries (Spain, Serbia, Germany and the United

Kingdom). It includes a high range of heterogeneous sets of sensors

comprising 802.15.4 sensor nodes, parking sensors, RFID, etc.

w-iLab.t w-iLab.t [101] is an open-source testbed deployed in Ghent, Bel-

gium. It supports large-scale sensor deployments, Wi-Fi-based mesh and
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Table 3.1: Comparative Table of IoT Testbeds.

Testbed Scale Environment Node Mobility Built-in IoT Target

type Heterogeneity standards domain

FIT IoT- Medium Laboratory-like Yes Yes (robot- 802.15.4 Protocol and

LAB [99] (>2,700 environment driven) LoRaWAN algorithm

sensors) BLE performance

UWB analysis

Smart Large Real city Yes Yes (vehicle- 802.15.4 Smart city

Santander [100] (≈ 20,000 based) RFID IoT service

sensors) development

https://my.visualstudio.com/ProductKeys

w-iLab.t [101] Small Laboratory-like Yes Yes 802.15.4 Protocol and

(< 100 environment 802.15.4g algorithm

sensors) LTE performance

802.11a/b/g/n/ac analysis

Bluetooth

[102]: Chernyshev et al. (2017), ‘Inter-

net of Things (IoT): Research, Simulators,

and Testbeds’

[103]: Teranishi et al. (2016), ‘JOSE: An

Open Testbed for Field Trials of Large-

scale IoT Services’

[31]: Latre et al. (2016), ‘City of Things: An

Integrated and Multi-technology Testbed

for IoT Smart City Experiments’

[104]: Chatzigiannakis et al. (2010),

‘WISEBED: An Open Large-scale Wire-

less Sensor Network Testbed’

[105]: Munoz et al. (2019), ‘OpenTestBed:

Poor Man’s IoT Testbed’

ad hoc tests, and mixed sensor/Wi-Fi experiments, and is, therefore, able

to analyze the behavior of future heterogeneous network deployments.

Table 3.1 compares the presented IoT testbed (inspired from [102]). The

scale refers to the number of end-devices deployed in the testbed, while

the environment type defines the practical applicability. The ability to

support different types of nodes and protocols is defined by Heterogeneity.

Mobility indicates the support of mobile end-devices. Concurrency is the

ability to support multiple distinct parallel evaluations at the same time.

The list of supported IoT network technologies is given in the Built-in IoT

standards. Finally, the Target domain is the primary use-case targeted by

the testbed.

Several other testbeds that support fewer network technologies have

been developed for IoT purposes. The JOSE [103] testbed, situated in

Japan, utilizes the Infrastructure as a Service (IaaS) model for evaluating

IoT services. The testbed supports the simultaneous operation of several

IoT services, with each service having its own physical sensor network

and virtual cloud infrastructure at the application layer. It supports

the IEEE 802.11 and LTE protocols for communication. The City of

Things platform [31] is a testbed platform dedicated to Smart City

experiments deployed in the city of Antwerp, Belgium. It allows the

enforcement of city trials involving evaluating both the technological

and user aspects. It comprises a complex wireless network infrastructure,

enabling communications using heterogeneous IoT technologies: IEEE

802.1ac on 2.4 and 5 Ghz, DASH7 on 433 and 868 Mhz, BLE, IEEE

802.15.4, IEEE 802.15.4g and LoRa. The WISEBED [104] is a testbed for

conducting WSN experiments. It includes a large, heterogeneous testbed,

consisting of at least 9 geographically disparate networks that include

both sensor and actuator nodes, and scaling in the order of thousands. It

supports IEEE 802.11b/g and IEEE 802.15.4. Smaller testbed initiatives

have also emerged, such as the OpenTestBed [105] which can be seen as a

minimalistic testbed that can be easily and cheaply deployed for any IoT

solution. It is a completely open-source hardware project, which, due to

its simplicity, has been adopted by various institutions. A deployment of

it with 80 motes (nodes) has been deployed in Paris, France with a total

cost of less than 10.000 euros.

Summary: IoT testbeds are useful tools when it comes to the evaluation
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of IoT network technologies. They provide real-world environments for

testing and validation, allowing researchers to evaluate the performance

and behavior of IoT systems in authentic conditions. Testbeds offer

opportunities for real-time monitoring and data collection, providing

valuable insights into system behavior. However, they can be expensive

to set up and maintain, limiting their accessibility. It is worth noting that

the use of an IoT testbed implies constraints on the considered topology

and scale. This may pertain to the distance between end-devices and

their gateway, the maximum number of available IoT devices, and the

environment which is typically indoors and not under the control of

the researchers performing experiments. Testbeds may also have limited

scalability compared to simulators, making it challenging to simulate

large-scale deployments.

Simulators

Simulators are tools that aim at reproducing a physical system in a

virtual environment. They are widely used in several domains, due to

their ability to replicate physical processes without carrying the burden of

deploying real material. In computer networks, discrete event simulators

are extremely popular. A description of this paradigm is provided in the

follows:

Discrete Event Paradigm: A Discrete Event system is a system where

state changes (events) happen at discrete instances in time, and events

are instantaneous (take zero time to happen). We assume that no other

event happens between two consecutive events, i.e., no changes occur in

the system state [106]. In a network simulator, typical events can be the

start or the end of a packet transmission, the expiry of a retransmission

timer, etc.

We focus in what follows on two important aspects of discrete event simu-

lators: The modeling of packet transmission and the energy consumption

calculation.

(1) Packet Transmission Modeling: Let us suppose that node A sends

a packet to node B through wireless network technology. When packet

transmission occurs, the simulator calculates the time it will take to

transmit the packet from A to B based on the available bandwidth, packet

size, and other network parameters. The transmission is then scheduled

by adding a new event to the event queue that represents the packet’s

arrival at the destination node. Then, to determine whether node B can

receive the information without any bit errors, the simulator needs to

compute the signal strength of the wireless transmission at node B. This

is done through Propagation Loss models (also called path loss model).

Propagation loss models calculate the Rx (received) signal power ac-

cording to the Tx (transmitter) signal power and the mutual Rx and Tx

antennas positions, i.e., the nodes positions. We present in what follows

some of the most famous used propagation loss models:

▶ LogDistance: The log distance path loss model [107] assumes an

exponential path loss over the distance from sender to receiver. It

is designed for suburban scenarios.
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▶ Friis: The propagation model proposed by Harald T. Friis [108]

calculates quadratic path loss as it occurs in free space.

▶ COST-Hata: A model based on various experiments used to predict

path loss in urban areas [109].

▶ OkumuraHata: The model presents path loss factors in Urban,

Sub-Urban and open areas. It omits obstructions loss in the city

environment [110].

▶ TwoRayGround: This model was initially developed by Rappaport

[111]. It assumes a radio propagation via two paths: One ray is

received directly while the other one reflects on the ground.

Note that in some simulators, different propagation loss models can be

used in chains. The final Rx power takes into account all the chained

models. It is also worth noting that propagation loss models are also often

used in analytical models, to replicate the radio conditions of wireless

channels.

(2) Energy Consumption Calculation: In most of the simulators, energy

consumption is calculated using state machines, where the states are the

different physical modes that a node can be on (sending Tx, receiving

Rx, Idle, etc.). Each state is associated with a current consumption (in

Amperes). Then, energy is calculated as follows:

𝐸 =
∑
𝑖∈𝑆
(𝛼𝑖 × 𝑡𝑖) ×𝑉 (3.1)

where:

▶ 𝐸: Energy consumption in Joules,

▶ 𝑆: Set of different physical states,

▶ 𝛼𝑖 : Current consumption of state 𝑖 in Amperes,

▶ 𝑡𝑖 : Total time passed a state 𝑖 in Seconds,

▶ 𝑉 : Voltage in Volts.

It is worth noting that according to this modeling, simulators calculate

only the energy induced by the transmission module. Other energy-

intensive aspects such as sensing and processing [112] are not consid-

ered.

We present in the following some of the most known discrete event

network simulators in the community.

NS-3: The network simulator 3 [113], commonly called ns-3, is a C++-based

discrete-event simulator that has been developed to provide an open

and extensible network simulation platform for networking research and

education. Due to its highly available documentation and the important

set of network technologies it supports, it has become, along with ns-3,

one of the most used simulators in the network community

OMNet++ OMNet++ [106] is a discrete event network simulator devel-

oped using C++ language by OpenSim company. It allows academic,

educational and research-oriented commercial institutions to simulate

computer networks and distributed systems. Due to the high range

of Graphical User Interface (GUI) libraries for tracing and animating

network scenarios, it has become one of the most used simulators in the

networking community.

CupCarbon: CupCarbon [114] is a Smart City and IoT WSN simulator. It
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Table 3.2: Comparative Table of IoT Simulators.

Simulator Scope Last Type Language Evaluated Build-in IoT Mobility Target

update Scale standards domain

NS-3 [113] Network 2023 Discrete-event C++ Large scale 802.15.4 Yes Generic

LoRaWAN

OMNet++ [106] Network 2022 Discrete-event C++ Large scale Manual Yes Generic

extension

CupCarbon [114] Network 2022 Agent based and Java Large scale 802.15.4 Yes Smart city

discrete-event /Custom LoRaWAN

Scripting

Cooja [116] Network 2023 Discrete-event C/Java Large scale All protocols Yes Generic

supported by with focus

Contiki on low-power

sensors

1: Agent-based models are models de-

signed on a microscopic scale that sim-

ulate the simultaneous operations and

interactions of several agents to recreate

and predict the appearance of complex

phenomena [115].

[116]: Osterlind et al. (2006), ‘Cross-level

Sensor Network Simulation with Cooja’

[54]: Dunkels et al. (2004), ‘Contiki-a

Lightweight and Flexible Operating Sys-

tem for Tiny Networked Sensors’

[10]: Kassab et al. (2020), ‘A–Z survey of

Internet of Things: Architectures, Proto-

cols, Applications, Recent Advances, Fu-

ture Directions and Recommendations’

[117]: Dinesh et al. (2014), ‘Qualnet Simu-

lator’

[118]: Matlab (2012), ‘Matlab’

can be considered both as a discrete event or an agent-based simulator
1
.

It consists in a graphical tool that focuses on visualizing and designing

algorithms that are required for monitoring and collecting environmental

data. It allows two simulation environments: (i) one for the generation

of natural events like fires and gas and (ii) one for the design of discrete

event scenarios of WSNs. However, even though it is assumed possible

to simulate 802.15.4 and LoRaWAN in the simulator, there is no reliable

implementation of these communication protocols.

Cooja: Cooja [116] is a discrete-event simulator written in Java language,

and which runs over the Contiki [54] OS. It is known for its high flexibility

since it allows it to extend or replace some of its functions with new

functionalities such as Operating Systems, sensor node platforms, radio

transmission models, etc.

Table 3.2 is a comparative table between the presented network simulators,

inspired from [10]. Note that the column denoted ’Evaluated Scale’

refers to the scale at which evaluations using that simulator have been

performed in the literature.

Some network simulators which are less used for IoT are available in

the market. QualNet [117] is a discrete-event simulator that can support

accurate simulations of large-scale networks involving diverse network

components. It comprises application, routing, MAC, and physical layers

in its network architecture. It supports 802.15.4 networks such as Zigbee.

The well-known MATLAB [118] simulator is an efficient tool meant for

designing and simulating dynamic and embedded systems
*
. It has the

capability of modeling, simulating, and analyzing processes. It provides

tools for modeling different network layers (physical, data link protocols,

etc.). It can also help to solve optimization problems.

Summary: Network simulators offer several advantages in IoT research

and development, including the ability to simulate large-scale deploy-

ments and complex network conditions and cost-effectiveness. They

also provide flexibility in parameter modification and detailed perfor-

mance analysis. However, they have limitations, such as the challenge of

achieving full realism and accuracy compared to real-world networks.

* https://www.mathworks.com/products/matlab.html

https://www.mathworks.com/products/matlab.html
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Simulators also require careful consideration of model accuracy and as-

sumptions. Despite their drawbacks, network simulators remain valuable

tools in IoT network evaluation.

Analytical Models

Analytical models are mathematical representations of an object or a

system to predict its behavior. In the context of performance evaluation

in IoT networks, analytical models are often used to model Key Perfor-

mance Indicators (KPI)s according to the configuration parameters of IoT

technologies and the workload. We present in what follows the KPIs we

will focus on through this thesis, as well as some analytical models for

each one:

1. Throughput: Attained throughput represents the overall speed of

the network at conveying data or the data rate delivered to each

IoT device. Ensuring high throughput is critical in applications

involving the transmission of large amounts of data, such as video-

surveillance. Different analytical models have been proposed in

the literature for the throughput. We present some of them in what

follows:

[119] gives an analytical expression of packet throughput for 802.11b

(Wi-Fi) networks with 𝑁 end-devices of different bit rates compet-

ing for the radio channel. The resulting formula for the throughput

𝑋 𝑓 experienced by each end-device, in a network, the end-devices

generate a connectionless UDP stream to a host behind the access

point, is the following:

𝑋 𝑓 =
𝑇𝑠

(𝑁 − 1) × 𝑇𝑓 + 𝑇𝑠 + 𝑃𝑐(𝑁) × 𝑡 𝑗𝑎𝑚 × 𝑁
(3.2)

where:

▶ 𝑇𝑓 : Transmission time of a "fast" host transmitting at a rate 𝑅,

▶ 𝑇𝑠 : Transmission time of a "slow" host transmitting at a rate 𝑟,

▶ 𝑃𝑐(𝑁): Proportion of collisions experiences for each packet

successfully acknowledged,

▶ 𝑡 𝑗𝑎𝑚 : Average time spent in collisions,

▶ 𝑁 : Number of competing end-devices,

In some cases, instead of modeling the performance of a whole

network, some efforts have been done to model the underlying

mechanisms of IoT network technologies. For instance, Random

Access (RA) procedure is a technique implemented in the MAC

layer in NB-IoT to resolve the channel contention conflict among

multiple user equipment (or end-devices)
2
. Thus, the procedure

can affect the behavior of the whole network. [120] calculates the

system throughput for the random access procedure in an NB-

IoT network, according to the number of end-devices, the packet

generation rate, the transmission number and the length of end-

devices buffers. Considering all these aspects, they end up with

the following equation for the throughput 𝜏:

𝜏 =
𝜏′

𝑇
(3.3)
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standard that operated on the unlicensed

5 GHz frequency band.

with:

𝜏′ =

(
𝑁

1

)
(1−𝑃𝑒)𝑃𝑁−1+

𝑁∑
𝑛=2

[(
𝑁

𝑛

)
(1 − 𝑃𝑒)𝑛𝑃𝑁−𝑛𝑒

]
.

[
𝑊∑
𝜔=1

(
𝑛

1

)
1

𝑊

(
𝑊 − 𝜔
𝑊

)𝑛−1

]
(3.4)

where:

▶ 𝑇: Cycle time,

▶ 𝑁 : Number of end-devices,

▶ 𝑊 : Number of delay parameters in backoff mechanism,

▶ 𝑃𝑒 : Probability that a queue is empty,

According to its constructor (Semtech) in [121], the theoretical

throughput 𝑇 of LoRa networks can be modeled as the following

formula:

𝑇 = 𝑆𝐹
𝐵𝑊

2
𝑆𝐹𝐶𝑅

(3.5)

where:

▶ 𝑆𝐹: Spreading Factor,

▶ 𝐵𝑊 : Bandwidth,

▶ 𝐶𝑅: Coding Rate

[122] analyzes also the measured throughput in practice for LoRa,

and notice a difference between the throughput at the radio and

application level, due to protocol and application overheads that

augment packet transmission time.

In some cases, it is necessary to model throughput (and more

generally KPIs) in networks where different network technologies

coexist. For instance, [123] studies the coexistence of Wi-Fi and

LTE-Licensed Assisted Access (LTE-LAA)
3

in unlicensed bands

(particularly 5 GHz). They propose an analytical model to estimate

the throughput in such networks. The formula for the throughput

𝑇𝑤 is the following:

𝑇𝑤 =
𝑃𝑡𝑟𝑤𝑃𝑠𝑤(1 − 𝑃𝑡𝑟𝑙)𝑃𝑠𝑖𝑧𝑒

𝑇𝐸
𝑟𝑤 (3.6)

where:

▶ 𝑃𝑡𝑟𝑤 : Transmission probability,

▶ 𝑃𝑠𝑤 : Success transmission duration,

▶ 𝑃𝑡𝑟𝑙 : LTE transmission probability,

▶ 𝑃𝑠𝑖𝑧𝑒 : Data portion duration,

▶ 𝑇𝐸: Total average time,

▶ 𝑟𝑤 : Wi-fi data rate.

We have seen that several parameters can affect the throughput in a

network. Some of them are generic, such as the density (number of

nodes), the data rate, etc. while others are more specific to network

technologies. Indeed, for instance for LoRa, physical parameters

such as the SF or the bandwidth can strongly affect the through-

put. However, accurately calculating the throughput in a network

requires considering additional factors, such as the radio environ-

ment (including factors like signal propagation, interference, and
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fading) or the nodes’ positions.

2. End-to-end Reliability: The end-to-end reliability (a.k.a. success

rate) is the ratio of the packets successfully received from all the

sent packets. In applications where data is critical, such as alarms

in a monitoring system, it is absolutely primordial to ensure a high

packet delivery. Note that the packet delivery can be derived from

the throughput and the initial application data rate.

3. Packet Latency: Latency is the time that a packet takes to transit

from its source to its destination. High latency can be disastrous in

real-time critical applications, such as controlling a drone for an

emergency situation (natural disaster, etc.). Some models for the

packet latency are presented in what follows:

[124] models the uplink latency in LoRaWAN networks, taking into

account sub-band selection and the case of sub-band combining.

The formula for the transmission time is, assuming that propagation

and processing are negligible:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑡𝑥 + 𝑇𝑤 (3.7)

𝑇𝑡𝑥 is the time needed to transmit LoRa symbols (or data), and

which is in the function of SF, Coding Rate, etc. (see [125] for

more details). 𝑇𝑤 represents the waiting time, due to regulatory

duty-cycling. It is calculated using a 𝑀/𝑀/𝑐 queue. This gives the

following formula for the waiting time in sub-band 𝑖:

𝑇𝑤𝑖 =
𝑝𝑏𝑢𝑠𝑦,𝑎𝑙𝑙

2

(∑𝑐
𝑖=1

𝜇𝑖 + 𝜆
) (3.8)

where:

▶ 𝑝𝑏𝑢𝑠𝑦,𝑎𝑙𝑙 : Erlang-C probability that all servers are busy,

▶ 𝜇𝑖 : Service rate of queue 𝑖,

▶ 𝜆: Arrival rate.

For NB-IoT, [126] model the data transmission delay per end-device

for both downlink and uplink transmissions. The formula is the

following:

𝐷𝑒𝑙𝑎𝑦 𝑖
𝐸𝐷

= 𝑇𝐿𝑖 ×
[

𝐷𝑎𝑡𝑎𝐿𝑒𝑛

𝑇𝐵𝑆(𝑀𝐶𝑆, 𝑅𝐵𝑈)

]
, 𝑖 ∈ {𝐷𝐿,𝑈𝐿}, 𝑤𝑖𝑡ℎ :

𝑇𝐿𝐷𝐿 = 𝑅𝐿𝐷𝐶 × 𝑡𝑃𝐷𝐶𝐶𝐻 + 𝑡𝐷 + 𝑅𝐿𝑆𝐷 × 𝑡𝑃𝐷𝑆𝐶𝐻 + 𝑡𝐷𝑈𝑆 + 𝑅𝐿𝑈𝐶 × 𝑡𝑈𝐿𝐴𝐶𝐾 ,
𝑇𝐿𝐷𝐿 = 𝑅𝐿𝐷𝐶 × 𝑡𝑃𝐷𝐶𝐶𝐻 + 𝑡𝐷𝑈𝑆 + 𝑅𝐿𝑈𝑆 × 𝑡𝑃𝑈𝑆𝐶𝐻 + 𝑡𝑈𝐷𝑆 + 𝑅𝐿𝐷𝐶 × 𝑡𝐷𝐿𝐴𝐶𝐾 ,

(3.9)

where:

▶ 𝑅𝐿𝐷𝐶: Number of repetitions of the physical downlink con-

trol channel (PDCCH),

▶ 𝑅𝐿𝐷𝑆: Number of repetitions of the data on the physical

downlink channel (PDCCH),

▶ 𝑅𝐿𝑈𝑆: Number of repetitions of the data on the physical

uplink channel (PDSCH),

▶ 𝑡𝑃𝐷𝐶𝐶𝐻 : Transmission time needed needed to transmit the

control information on the PDCCH,
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▶ 𝑡𝑃𝐷𝑆𝐶𝐻 : Transmission time needed needed to transmit one

transport block on PDSCH,

▶ 𝑡𝑃𝑈𝑆𝐶𝐻 : Transmission time needed needed to transmit one

transport block on PUSCH,

▶ 𝑡𝐷 : Cross subframe delay,

▶ 𝑡𝐷𝑈𝑆 : Radio frequency tuning delay for switching from DL to

UL,

▶ 𝑡𝐷𝑈𝑆 : Radio frequency tuning delay for switching from UL to

DL,

▶ 𝐷𝑎𝑡𝑎𝐿𝑒𝑛: Data size per user,

▶ 𝑇𝐵𝑆: Transport block size,

▶ 𝑀𝐶𝑆: Modulation and coding scheme,

▶ 𝑅𝐵𝑈 : Allocated resource block per user

As we have seen in the presented models, similarly to throughput,

several parameters can affect packet latency. These parameters can

be categorized into generic factors and technology-specific factors.

Generic parameters that impact packet latency include contention

and collisions. When multiple end-devices contend for the same

channel resources, there is a higher likelihood of collisions, which

can introduce latency. The level of contention and collisions in a

network is influenced by factors such as the number of competing

devices, the traffic load, and the access method employed. In addi-

tion to these generic parameters, the specific network technology

being utilized can introduce additional factors that affect packet

latency. Each network technology has its own set of low-level pa-

rameters that impact latency. For instance for LoRa, parameters

such as the SF or channel bandwidth can influence the latency

experienced by packets. It is important to consider both the generic

and technology-specific parameters when analyzing packet latency

in a network.

4. Energy Consumption: Energy is highly important in the IoT in-

dustry where end-devices often have limited power supply and are

equipped with a battery. A related considered metric is power con-

sumption, which represents the rate at which energy is consumed

over a period of time. As mentioned before, energy (and power)

consumption must be an obsession for every application featuring

battery-powered end-devices. Due to its tremendous importance,

modeling energy consumption in IoT networks has been the subject

of substantial efforts from the community:

[112] proposes a generic model for energy consumption in IoT

networks. It presents a comprehensive model for the power con-

sumption of wireless sensor nodes that takes into consideration

the classical tasks of an IoT network: Communications, acquisition

and processing. The model is only based on parameters that can be

empirically quantified, once the platform (i.e., technology) and the

application (i.e., operation conditions) are defined. The equation of

the total current drained 𝐼𝐷𝐸𝑉 in Ampere is the following:

𝐼𝐷𝐸𝑉 =
𝛼𝑁𝑆

𝑇𝑅𝐶𝐷︸︷︷︸
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔

+ 𝛽𝜏(𝑁𝑃)
𝑇𝑅𝐶𝐷︸   ︷︷   ︸

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛

+ 𝛾𝐻(𝑁𝐴)
𝑇𝑀𝑆𝐺︸    ︷︷    ︸

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

+𝛿 (3.10)
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where:

▶ 𝛼: Charge per acquired sample,

▶ 𝑁𝑆: Number of acquired samples,

▶ 𝑇𝑅𝐶𝐷 : Sampling period,

▶ 𝛽: Charge per instruction processing,

▶ 𝜏: Complexity of processing function,

▶ 𝑁𝑃 : Number of processed samples,

▶ 𝛾: Charge per message transmission,

▶ 𝑁𝐴: Any radio-related parameter, for instance the number of

retransmissions,

▶ 𝐻: Function of 𝑁𝐴, for instance 𝐻(𝑁𝐴) = 𝑁𝐴 in case samples

are sent in a unique message 𝑁𝑅 times,

▶ 𝑇𝑀𝑆𝐺: Transmission period,

▶ 𝛿: System activity current,

The current drained can then be used to determine the power

consumption of the network, using the following equation: 𝑃𝐷𝐸𝑉 =

𝐼𝐷𝐸𝑉 ×𝑉𝐵𝑈𝐹 , where 𝑃𝐷𝐸𝑉 is the power consumption of the device

and 𝑉𝐵𝑈𝐹 the voltage in its terminals. Then, the power consump-

tion can finally be used to determine the battery lifetime of the

end-devices, following the equation 𝐿 =
𝑉𝐵𝐴𝑇×𝐶𝐵𝐴𝑇

𝑃𝐷𝐸𝑉
where 𝐿 is the

battery lifetime in hours, 𝑉𝐵𝐴𝑇 is the battery voltage in Volts, 𝐶𝐵𝐴𝑇
is the battery capacity in Amp.hours (assuming a 100% efficiency

between the battery and the appliance).

[127] presents a model to estimate the dissipated energy for WSNs

in general. They affirm that of all the sensor node components, the

most energy-consuming part is the RF module. They use a state ma-

chine to calculate the energy associated with the communication,

where each physical state of the RF module (transmitting, receiving,

idle and sleeping) is associated with current consumption. Not

surprisingly, the conclusion of the paper is that the RF module and

the controller should be in idle state as long as possible when they

are not active.

The same approach is followed in [128], but specifically for Lo-

RaWAN end-devices. Moreover, they distinguish between acknowl-

edged and unacknowledged transmission. They consider the fol-

lowing states related to transmission activities:

▶ 𝑇𝑤𝑢 : Wake up,

▶ 𝑇𝑝𝑟𝑒 : Radio preparation,

▶ 𝑇𝑡𝑥 : Transmission,

▶ 𝑇𝑤1𝑤 : Wait 1st window,

▶ 𝑇𝑟𝑥1𝑤 : 1st receive window,

▶ 𝑇𝑤2𝑤 : Wait 2nd window,

▶ 𝑇𝑟𝑥2𝑤 : 2nd receive window,

▶ 𝑇𝑜 𝑓 𝑓 : Radio off,

▶ 𝑇𝑝𝑜𝑠𝑡 : Turn off sequence,

▶ 𝑇𝑠𝑒𝑞 : Sleep.

[129] exhibits a Markov chain-based model for the energy consump-

tion of NB-IoT networks. The model is used to estimate the energy

consumption of an NB-IoT device sending periodic uplink reports

using the control plane procedure. The model has been validated
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Figure 3.1: Markovian Chain for NB-IoT

Energy Consumption Modeling [129].

[130]: Serrano et al. (2014), ‘Per-frame En-
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its Implication on Modeling and Design’

using a base station emulator.

[130] gives a model of the power consumption of a given list of

802.11 (Wi-Fi) devices by experimentation, with a highlight on the

influence of parameters like MCS, frame size and generation rate on

the energy consumption. They introduce the notion of cross-factor,
which refers to the cost of the data frame crossing the protocol

stack (OS, driver and Network Interface Card (NIC)) and which is

independent of the frame size. The power consumed by an 802.11

device is given by the following equation:

𝑃 = 𝜌𝑖𝑑 + 𝜌𝑡𝑥𝜏𝑡𝑥 + 𝜌𝑟𝑥𝜏𝑟𝑥 + 𝜌𝑥𝑔𝜆𝑔 + 𝜌𝑥𝑟𝜆𝑟 (3.11)

where:

▶ 𝜌𝑖𝑑: System activity in Idle state,

▶ 𝜌𝑡𝑥 : Consumed energy while sending,

▶ 𝜏𝑡𝑥 : Time on Air percentage while sending,

▶ 𝜌𝑟𝑥 : Consumed energy while receiving,

▶ 𝜏𝑟𝑥 : Time on Air percentage while receiving,

▶ 𝜌𝑥𝑔 : Cross-factor for sending,

▶ 𝜆𝑔 : Sending frame rate,

▶ 𝜌𝑥𝑟 : Cross-factor for receiving,

▶ 𝜆𝑟 : Receiving frame rate,

We have seen different models for energy consumption in networks.

From more generic ones that can be applied to any network technol-

ogy and that try to capture the energy consumed by the different

tasks of IoT (communication, sensing, processing, etc.), to more spe-

cific ones that can be applied to precise network technologies, the

purpose is the same: Evaluating the energy consumption induced

in a whole network. Note that, when coming to the selection of an

IoT network technology, we tend to neglect the energy consumption

induced by sensing and processing, since they can be considered

regardless of the network technology. Thus, in this thesis, we focus

only on the energy consumption induced by transmissions.

Summary: As we have seen in this subsection, using mathematical models

for calculating KPIs can be very challenging. It is indeed complex to

mathematically capture and consider all the parameters that can affect a

given KPI. In addition, each KPI would typically need a specific model,

with often restrictive hypotheses about the considered network. These

reasons may lead researchers to use real experiments with testbeds but

at a higher cost, or simulators in a cheaper way. Indeed, many simulators

aim at reproducing the different layers of a network, they can thus

be able to capture parameters easier than mathematical models, and

with less restrictive hypotheses than analytical models. Indeed, most of

the presented models assumed specific transport protocols (e.g., UDP),

traffic behaviors (different rates for the end-devices) or even coexistence
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Table 3.3: Summary of Testbeds, Simulators and Analytical Models.

Evaluation Tools KPIs

Packet Throughput Packet Latency Energy Consumption

Testbeds

FIT IoT-Lab ✓ ✓ ✓
Smart Santander ✓ ✓ ✓

w-iLab.t ✓ ✓ ✓

Simulators

NS-3 ✓ ✓ ✓
OMNeT++ ✓ ✓ ✓
CupCarbon ✓ ✓ ✓

Cooja ✓ ✓ ✓

Analytical Models

(Heusse et al., 2003) [119] ✓ - -

(Sun et al., 2017) [120] ✓ - -

(LoRa Alliance, 2017) [121] ✓ - -

(Yousouf et al., 2018) [122] ✓ - -

(Mehrnoush et al., 2018) [123] ✓ - -

(Sorensen et al., 2017) [124] - ✓ -

(Semtech Corp., 2013)[125] - ✓ -

(El Soussi et al., 2018) [126] - ✓ -

(Martinez et al., 2015) [112] - - ✓
(Srbinovska et al., 2017) [127] - - ✓

(Casals et al., 2017) [128] - - ✓
(Andres-Maldonado et al., 2019) [129] - - ✓

(Serrano et al., 2014) [130] - - ✓

between several network technologies. A generalization to other transport

protocols, traffic workloads or network technologies would typically

require to design new models.

Table 3.3 provides a summary of the testbeds, simulators, and analytical

models discussed, highlighting the specific KPIs they target. Notably,

both testbeds and simulators offer the advantage of not being limited

to a single KPI, unlike analytical models. While this may sacrifice some

precision, it enables researchers to conduct more comprehensive analyses

more easily compared to modeling each individual KPI separately.

Conclusion

By employing testbeds, simulators and analytical models, stakeholders

can now make informed and objective choices based on specific criteria

and objectives. These approaches enable the evaluation and comparison

of network technologies, considering factors such as performance, cost,

energy consumption, etc. As a result, several scientific works for the

evaluation, selection, comparison and configuration of IoT networks have

emerged in the literature. We present some of them in the following.

3.2.2 IoT Network Technologies Comparison Studies

A number of works have conducted performance studies in a bid to

compare the efficiency of two or more network technologies in supporting

an IoT application. Typically, they consider a specific scenario and evaluate

the associated performance using simulations or real experiments. In [131]

the authors assess the relative merits of NB-IoT, SigFox, and LoRaWAN in

covering the needs of smart water grids using the simulator ns-3. While

they conclude own the superiority of NB-IoT, their study does not take into

account major KPIs such as latency, cost, range, and energy consumption.

[132] compares Wi-Fi HaLow, LoRaWAN and NB-IoT for smart city



42 3 State of the Art

[12]: Vannieuwenborg et al. (2018),

‘Choosing IoT-connectivity? A guiding

Methodology based on Functional Char-

acteristics and Economic Considerations’

[134]: Bari et al. (2007), ‘Multi-Attribute

Network Selection by Iterative TOPSIS

for Heterogeneous Wireless Access’

[135]: Bari et al. (2007), ‘Automated Net-

work Selection in a Heterogeneous Wire-

less Network Environment’

[136]: Senouci et al. (2016), ‘TOPSIS-

based Dynamic Approach for Mobile

Network Interface Selection’

[137]: Tzeng et al. (2011), Multiple At-
tribute Decision Making: Methods and Ap-
plications
[138]: Gazis, Vangelis, et al. (2005), ‘To-

ward a Generic" Always Best Connected"

Capability in Integrated WLAN/UMTS

Cellular Mobile Networks (and Beyond)’

[139]: Wang et al. (2009), ‘Best Permuta-

tion: A Novel Network Selection Scheme

in Heterogeneous Wireless Networks’

[140]: Hou et al. (2006), ‘Vertical

Handover-Decision-Making Algorithm

using Fuzzy Logic for the Integrated

Radio-and-OW System’

[141]: Zhang (2004), ‘Handover Decision

using Fuzzy MADM in Heterogeneous

Networks’

[142]: Stevens-Navarro, Enrique, et al.

(2008), ‘An MDP-based Vertical Handoff

Decision Algorithm for Heterogeneous

Wireless Networks’

[143]: Ning, Zhaolong, et al. (2014),

‘Markov-based Vertical Handoff Decision

Algorithms in Heterogeneous Wireless

Networks’

[144]: Cesana et al. (2008), ‘Game Theo-

retic Analysis of Wireless Access Net-

work Selection: Models, Inefficiency

Bounds, and Algorithms’

[145]: Liu, Bin, et al. (2014), ‘AHP and

Game Theory based Approach for Net-

work Selection in Heterogeneous Wire-

less Networks’

[146]: Gai et al. (2012), ‘Combinatorial

Network Optimization with Unknown

Variables: Multi-Armed Bandits with Lin-

ear Rewards and Individual Observa-

tions’

[147]: Henri, Sébastien, et al. (2018),

‘Multi-Armed Bandit in Action: Optimiz-

ing Performance in Dynamic Hybrid Net-

works’

applications, using simulation. In [133], the authors use simulations to

compare the coverage and capacity of SigFox, LoRaWAN and NB-IoT at

meeting the needs of a large-scale IoT deployment. While all technologies

were found able to cover most of the needs in terms of coverage for outdoor

communications, their results show that NB-IoT, and to a lesser extent

Sigfox, outperform the others for indoor communication. However, their

results do not consider energy- and delay-related KPIs. All these works

do not provide any generic tool for the selection of network technologies.

To fulfill this gap, we think that additional steps are required, such as the

modeling of the targeted IoT application and the network alternatives,

the application of an evaluation framework to evaluate the KPI values

obtained with the network alternatives, and the use of a comparison

method to rank the different network alternatives and to identify the

best one. In [12], the authors propose a 2-step methodology to guide

IoT users to choose the appropriate network technology for their needs.

First, they use a questionnaire to eliminate network technologies based

on the mismatch between the application requirements and the network

technology characteristics. Then, they propose an evaluation of the

main cost components to find the most economical network technology.

Overall, their solution can be viewed as a solid step towards an automatic

selection method for the choice of an IoT network technology. However,

the considered values for KPIs are constant (when they should vary with

the scenario under consideration) and the relative merits of IoT network

technologies are compared only through their financial cost.

In terms of decision support, studies have mostly focused on the dynamic

interface selection, a.k.a. Vertical Handoff (VHO) with the goal of favoring

the performance of end-users [134–136]. These studies naturally lead

to dynamic multi-criteria decision problems where a utility function

must be cautiously devised using algorithms such as Simple Additive

Weighting (SAW), Weighted Product Methods (WPM), and Technique

for Order Preference Similarity to Ideal Solution (TOPSIS) [137]. To

handle the exploration-exploitation dilemma inherent to the dynamic

selection of interfaces, researchers have resorted to various mathematical

approaches such as combinatorial optimization [138, 139], fuzzy logic

[140, 141], Markov Decision Process (MDP) [142, 143], game theory [144,

145], and ML techniques such as the multi-armed bandit framework [146,

147]. All these works suppose that a heterogeneous wireless network has

been put in place and configured so that probing tests can be performed

before selecting the most adequate network interface for each end-device.

This is in contrast with the fact that for the static selection of the network

technology during the design phase, the network has not been yet

deployed, nullifying the possibility of collecting performance probing.

We observe that, despite the abundance of IoT network research, there

is a relative lack for developing a reproducible and robust approach

to systematically analyze the matching between an application and

a network solution and its scalability. Most papers are indeed either

restricted to the study of a single communication technology or alternately,

to only one application. Moreover, unlike fields like linear algebra and

image processing, the IoT community lacks a reproducible approach to

assess the performance of an IoT network technology in a well-defined

usage context.
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3.2.3 IoT Network Technologies Configuration Studies

The MAC parameters of the 802.15.4 standard are often the ones that we

try to optimize. For example, the authors of [148] propose to use a neural

network to find the optimal values of these MAC parameters to maximize

throughput and minimize latency. [149] propose a solution based on a

supervised learning algorithm to estimate the optimal of IEEE 802.15.4

MAC parameters using simulation to predict the optimal parameters

that improve best the end-to-end transmission delay.

Regarding Wi-Fi, an important number of parameters can be considered

for optimization. In [150], the authors propose an online-learning-based

solution based on network load and channel conditions to achieve high

throughput in Wi-Fi-based topologies. The considered parameters are

the channel bandwidth, the MCS values and the number of Multiple

Input Multiple Output (MIMO) antennas. [151] employ a deep learning

approach to search for optimal configuration of contention window for

improving the throughput, the transmission delay and packet retransmis-

sion rate. They use simulation to generate data for several applications

with different numbers of nodes, short interframe space, data transmis-

sion rates, etc. In [152], they provide an algorithm to adapt the amount of

802.11n aggregation by Wi-Fi stations according to the level of congestion

in the network, with the objective of optimizing the QoS and the energy

efficiency.

As we can see, most of these methods rely on analytical models, which

may induce restrictive assumptions on the studied network. Also, they

are restricted to a very network technology and for specific KPIs. There

is a need for a generic method that can be applied for any network

technology, for any application, and according to any KPIs. To do so,

relying on simulation may be an interesting solution since it provides

abstraction and allows the calculation of several KPIs.

3.3 Conclusion

We have presented in this chapter a state of the art of evaluation of IoT

network technologies. We began by presenting field approaches that IoT

architects usually refer to before the deployment of their IoT solutions.

Then, we presented the different scientific approaches for the evaluation of

IoT network technologies, which are experimentation, analytical models

and simulation. Then, we provided an overview of the related work of

the selection and configuration of IoT network technologies.

As we have seen, the issues of evaluating, selecting and configuring

IoT network technologies have been subject to important effort among

the research community. The proposed approaches rely on different

evaluation approaches, namely experimentation, analytical models and

simulation. However, there is no generic framework or method that aims

at supporting IoT architects during the deployment phase of their IoT

solution. Indeed, most of the presented methods are either dedicated to

a given application or to a given network technology. Furthermore, the

proposed approaches require some expertise in networking or program-

ming. Thus, they may be inaccessible for IoT architects who may lack this

expertise.
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We present in the next chapter the first contribution of this thesis, which

is a generic framework for evaluating the performance of an IoT network

technology for a given application, according to different KPIs.
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4.1 Introduction

New network technologies have emerged and continue to evolve to

accommodate the specific needs of IoT traffic. Solutions for long-range

low-power communications include LoRaWAN, Sigfox, Wi-Fi HaLow,

and NB-IoT, while short or medium-range communication technologies

comprise Zigbee and Wi-Fi. The profusion and diversity of these net-

work technologies which are regularly evolving can be confusing and

disorienting to IoT users but also to IoT architects in charge of selecting

and configuring them. In such a context, making decisions about the

selection of network technology can be a complex and risky task. These

decisions can affect the entire initiative, both for the achievement of

the objectives set and for its future. Choosing the wrong IoT network is

often not an option as budget, capacity and performance can be highly

constrained. Ultimately, the decision generally comes down to the best

trade-off between cost, range, throughput and battery lifetime for the

targeted IoT application. These decisions need visibility and forecasts

that are difficult, time-consuming and error-prone if done by hand.

Moreover, it is often a difficult task to model an IoT application and a

network technology. This is due, on the one hand, to the diversity of

parameters that can be considered in this regard. On the other hand, it is

challenging to capture the IoT architect’s needs when modeling an IoT

application. For instance, when deploying an IoT solution, some architects

may be more inclined to focus on the radio conditions of the environment,

while others will aim attention to the number of end-devices and their

positions.

In this chapter, we focus on the modeling and evaluation of IoT network

technologies for a given application. We propose a framework consisting

of modeling and associated tools to assist IoT architects in the evaluation

of the ability of a network technology to meet the specific needs brought

by a real-life IoT application. This framework abstracts the communication

requirements of any IoT application and captures the specificity of any

IoT network technology. It also defines and computes network- and

energy-related Key Performance Indicators (KPI) that are used to assess

the performance of a setting for a given topology and workload. To show

the relevance of the method, we present the results of its application to

three case studies inspired by IoT real-life. Finally, we discuss how IoT

architects can exploit the outcome of this evaluation framework.

The remainder of the chapter is organized as follows. In Section 4.2,

we formalize the problem of evaluating the performance of a network

technology and its configuration for a given application. Section 4.3

describes the proposed application-driven evaluation framework. We

explore three real-life inspired case studies to showcase the potential of

our framework in Section 4.4. A discussion on the obtained results and

guidelines on how they can be used are provided in Section 4.5. Finally,
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[153]: Rozanski et al. (2011), Software Sys-
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Figure 4.1: Overview of the Evaluation

Framework Building Blocks.

Section 4.6 concludes this chapter and gives some potential perspectives.

4.2 Problem Formulation

In general, systems stakeholders have non-functional requirements such

as performance, security, or scalability [153] which have to be taken

into account and implemented as properties when designing systems.

Here, we focus on the performance and scalability of the physical IoT

network, which denotes the ability of the system to support the required

performance profile and to handle increased processing volumes in the

future if required.

We formulate the evaluation problem of an IoT network technology for a

given application as follows. Let us consider:

▶ An IoT application 𝐴, with its set 𝑅 of characteristics and commu-

nication requirements,

▶ a network technology 𝑇,

▶ a network configuration 𝐶 for 𝑇,

▶ an evaluation tool 𝐸,

▶ a set 𝐾 of key performance indicators or KPI that characterize

the behavior of an application 𝐴 on the network technology 𝑇

configured according to 𝐶,

The evaluation problem consists in determining the values of 𝐾, resulting

from the evaluation of the the network technology 𝑇 and its associated

configuration 𝐶 on the application 𝐴, using the evaluation tool 𝐸. To

address this problem, we present our modeling and evaluation framework

in the next section.

4.3 Modeling & Evaluation Framework

In this section, we describe our application-based IoT network perfor-

mance evaluation framework. It consists of two types of inputs, a tool

and a set of outputs. These four building blocks are: (i) An application

scenario specification (input), (ii) network setup characteristics (input),

(iii) an evaluation tool and (iv) a set of key performance indicators

(output) to assess the performance of the IoT network technology on

the selected scenario. Figure 4.1 gives an overview of our evaluation

framework, highlighting its inputs and outputs. We detail each of these

components in the sections below.

4.3.1 Application Modeling

The principle of the application modeling and abstraction consists in

characterizing the load imposed on the network by the application

scenario over time. This load is a function of the number of end-devices

and the individual traffic they are going to exchange. To study the

evolutivity and scalability of the solution, the minimal and maximal

values expected for the different selected parameters have to be specified.
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[154]: Stoffers et al. (2012), ‘Comparing

the ns-3 Propagation Models’

Then the factors that characterize the environmental conditions which

also impact wireless communications performance are added. The specific

communication requirements of an IoT application are defined by the

end-devices that are communicating, by the workload they impose on the

network and their physical environment as defined below. Concerning

the end-devices, we focus on:

(i) The number of end-devices that will be connected,

(ii) The maximal numbers of end-devices that could be ultimately

connected,

(iii) The battery capacity of the end-devices.

For the workload we have:

(iv) The traffic direction (downstream and/or upstream traffic),

(v) The message size,

(vi) The message frequency,

(vii) The maximal message frequency, that could be ultimately submit-

ted.

We propose to classify the IoT traffic types by: (i) Their direction, which

can be upstream (from end-devices to gateways or the cloud) or down-

stream (from the cloud or gateways to end-devices) and (ii) their profile:

Periodic or stochastic (for sporadic or bursty traffic). The periodic traffic

corresponds to a fixed data rate, while the stochastic traffic has a variable

rate. Although some applications have bidirectional traffic, we observe

that a majority of IoT applications have unidirectional data flows. Table

4.1 categorizes the different IoT traffic types.

Traffic Traffic Traffic Examples

type profile direction

1 Periodic Upstream Telemetry,

Geolocation...

2 Periodic Downstream Webcast,

Virtual Reality...

3 Stochastic Upstream Video-surveillance,

Cloud gaming...

4 Stochastic Downstream Notifications,

Alerts, Remote commands...

Table 4.1: Traffic Types Characteristics.

We model the type of physical environment and deployment characteris-

tics as follows:

(viii) The deployment scope, which is represented by the maximum

distance expected between two end-devices,

(ix) The environment, which defines the radio conditions in which the

IoT application is deployed,

(x) The expected lifetime of the deployed IoT solution must also be

defined.

For the environment, we consider two cases: Indoor or outdoor, where

the latter can be either (a) rural, (b) suburban or (c) urban. Inspired by

[154], we propose to associate a propagation (path loss) model to each
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environment type to characterize this environment as shown in Table

4.2.

Table 4.2: Environments and their Prop-

agation Model.
Environment Type Propagation Model [154]

Indoor HybridBuildings

Outdoor Rural OkumuraHata

Outdoor Urban COSTHata

Outdoor Suburban LogDistance

We consider that the knowledge of the ten parameters (i) to (x) is

sufficient to characterize the targeted application scenario in the case of

static end-devices for the network decision process. In the case of mobile

end-devices, the mobility model will have to be specified. We do not

consider this type of scenario in this thesis. Figure 4.2 illustrates the set

of parameters considered to model and capture the main characteristics

of an IoT application deployed in a rural environment.

Figure 4.2: Abstraction of IoT Application whose characterizing parameters are: (i) Min. number of end-devices, (ii) Max. number of

end-devices, (iii) End-device battery capacity, (iv) Traffic direction, (v) Message size, (vi) Min. message frequency, (vii) Max. message

frequency, (viii) Deployment scope, (ix) Radio environment and (x) Expected lifetime.

4.3.2 Network Setup

For each network technology, we identify generic and specific parameters.

Generic parameters, such as the maximum data rate (or bandwidth),

the frequency band, and the topology type characterize any network

technology. Specific parameters are dependent on each network tech-

nology. For instance, in the case of LoRaWAN, the specific parameters

include the Spreading Factor (SF), the coding rate and the type of traffic

(unconfirmed or confirmed). We note that some parameters are easily

configurable by architects or by software (e.g., SF for LoRaWAN) while

others tend to be less tunable or simply out of reach for the architects

(e.g., the transmission power for LoRaWAN or Modulation and Coding

Scheme (MCS) in Wi-Fi).

The generic parameters which are common to all the network technologies

are: (i) The data rate, which is the theoretical maximal amount of data

that can be sent per unit of time, (i) the frequency band, which is the

frequency where the radio waves operate on and (iii) the topology type,

which can be star or mesh.
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We describe in what follows some of the specific parameters of LoRaWAN,

Wi-Fi (802.11ac), 802.15.4 (6LoWPAN), Wi-Fi HaLoW (802.11ah) and 5G

mmWave.

▶ LoRaWAN:

• Spreading Factor (SF): Determines the speed at which the

signal frequency changes across the bandwidth of a channel.

The higher the spreading factor the lower the data rate.

• Coding Rate (CR): An indication of how much of the data

stream is actually being used to transmit usable data.

• Cyclic Redundancy Check (CRC) An error-detecting code

commonly used in networks to detect accidental changes in

the transmitted data.

• Type of traffic: Determines whether the data is sent with or

without an acknowledgement. It can therefore be confirmed

or unconfirmed, respectively.

▶ Wi-Fi (802.11ac):

• Number of spatial streams: Determines the number of streams

where coded data signals can be sent and received indepen-

dently.

• Packet aggregation: Determines whether packet aggregation,

which is the process of joining multiple packets together into

a single transmission unit, is enabled or disabled.

• Guard Interval: Is the space between symbols (characters)

being transmitted. It can either be short (0.4 µS) or long (0.8

µS).

• Modulation and Coding Scheme (MCS): An index based on

several parameters of a Wi-Fi connection between two stations.

Namely, for 802.11ac, it depends on the modulation type, the

coding rate, the number of spatial streams, the channel width,

and the guard interval.

▶ 802.15.4 (6LoWPAN):

• Number of frame retries: It is the number of the retransmis-

sions limit when there is no acknowledgement received before

dropping the packet.

• Carrier Sense Multiple Access (CSMA) backoff: The num-

ber of times that the node stays in the backoff stage after

unsuccessful channel sensing.

• Maximal backoff exponent: Maximal random interval before

sensing the channel.

• Minimal backoff exponent: Minimal random interval before

sensing the channel.

▶ Wi-Fi HaLow (802.11ah):

• Guard Interval: Same for Wi-Fi.

• Beacon interval: Interval of time at which the access point

(gateway) broadcasts its beacon frames (used for controlling,

etc.).

• Number of Random Access Window (RAW) groups: Number

of groups at which the stations are split on. Each group has

one or more slots over which the stations belonging to that

group are evenly split. During a RAW slot, only the stations

that belong to that slot are allowed to access the channel.
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▶ 5G mmWave

• Numerology: It refers to the subcarrier spacing and the length

of the time interval used for transmitting data. The higher the

numerology, the higher the number of slots per subframe, i.e.,
the more data can be sent during that subframe.

• Hybrid Automatic Request (HARQ): When active, it allows

the detection of error in transmission, and the receiver sends

a retransmission request to the sender when needed.

• Radio Ling Control Acknowledged Mode (RLC-AM): When

active, the receiver acknowledges the correct reception of the

packet by sending an Acknowledge (ACK) message to the

sender for every successfully received data packet.

A summary of this modeling is presented in Table 4.3.

Table 4.3: Specific Parameters of some

Network Technologies models.
Network technology List of specific parameters

LoRaWAN

• SF ∈ [7; 12]
• CR ∈ [1; 4]
• CRC ∈ {0, 1}
• Type of traffic ∈ {unconfirmed, confirmed}

5G mmWave

• Numerology ∈ [1; 5]
• HARQ ∈ {0, 1}
• RLC-AM ∈ {0, 1}

Wi-Fi HaLow

• MCS ∈ [0; 9]
• Spatial streams ∈ [1; 3]

Wi-Fi

• MCS ∈ [0; 9]
• Spatial streams ∈ [1; 3]
• Packet aggregation ∈ {0, 1}

802.15.4

• Min. Backoff exponent ∈ [0; 7]
• Min. Backoff exponent ∈ [3; 8]
• Max. CSMA backoff ∈ [0; 5]
• Max. frame retries ∈ [0; 7]

4.3.3 Evaluation Approach

As stated in Chapter 1, the performance evaluation could be realized

through different approaches: Experimentation, simulation or analytical

modeling. These approaches have their own advantages and drawbacks.

Depending on their requirements, users can choose between one or

several of these evaluation approaches. If real performance results are

expected, experimentation will be preferred. For example, the architects

will run a real test if they need to precisely estimate the battery power

consumption under a given workload. If a scalability analysis is consid-

ered, analytical modeling or simulation is very likely more appropriate.

IoT architects will often conduct studies combining several evaluation

approaches to get precise at-scale results.
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4.3.4 IoT-relevant KPIs

Now, we propose to focus here on the following KPIs as evaluation

outputs: (i) Attained throughput, (ii) message latency, (iii) reliability, (iv)

power consumption, (v) energy efficiency ratio, (vi) battery lifetime, (vii)

scalability index and (viii) cost.

As a recall, attained throughput, message latency and reliability are

classical networking performance parameters. Attained throughput rep-

resents the overall speed of the network at conveying data or the data rate

delivered to each IoT device. message latency is the time that a packet

takes to transit from its source to its destination. The reliability (a.k.a.

success rate) is the ratio of the packets successfully received from all the

sent packets. Note that from the IoT application perspective, a message

is the fundamental data unit while the packet is the classical network

data unit. There may be several packets in one application message. But

for the sake of simplicity and without loss of generality we assume a

message corresponds to one packet here.

Energy is highly important in the IoT industry where end-devices often

have limited power supply and are equipped with a battery. Power

consumption represents the rate at which energy is consumed over a

period of time. It can be measured on the overall network or on each

IoT end-device. In this work, we define the energy efficiency ratio as

the number of bytes that each transmitter can successfully transmit to

the receiver using a single joule of energy. The higher this quantity, the

more energy efficient the IoT technology is. The battery lifetime gives an

indication of the IoT system’s lifetime without recharging batteries. Note

that we focus here only on energy consumption due to the transmission

costs. Sensing/actuating energy consumption is not considered.

We call the "scalability index" the maximum number of devices that can

be connected to a single gateway without deteriorating the performance

in terms of IoT metrics. Cost represents the financial cost for deploying

and maintaining the considered network technology given a selected

number of gateways and network configurations for the lifetime of the

project.

Note that other KPIs such as security or environmental impact can also be

included if the case study of interest requires it. For security, a common

way is to consider the robustness of the employed encryption algorithm.

Regarding the environmental impact, one way of evaluating that involves

analyzing the environmental impacts at each stage of the end-devices’

lifecycle, including raw material extraction, manufacturing, use phase,

and end-of-life disposal. This would naturally induce much more effort

as it would need to clearly specify the type of end-device as well.

4.4 Examples of Application

In this section, we apply our framework to two different use cases:

Telemetry and video-surveillance. We evaluate the adequacy and the

performance of the Wi-Fi and LoRaWAN network technologies, for

these use cases. We use simulation in the Network Simulator 3 (ns-3)

environment as the evaluation tool. We used the release 3.33 of ns-3 for
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Wi-Fi, and a code patch not integrated into the official version of Network

Simulator 3 but widely used by the research community to evaluate

LoRaWAN [155].

First, we consider the following telemetry use-case: An IoT architect has

to design a WSN-based service to count passengers in urban trains, where

sensors are placed over each door. The counting service will operate in

real-time to optimize the passenger flows. A typical train will have up

to twenty wagons and a length going up to 1000m. In this case, the key

questions the IoT architect would have is how many gateways should be

installed as well as how frequently messages can be exchanged with 99%

reliability.

The second use case is related to video-surveillance. We consider a large

event gathering a large crowd (Olympic games, trade fairs, concerts,

etc.) where a camera-based surveillance system is needed. For mobility,

installation time and logistic reasons, the only possible solution is to adopt

a wireless connectivity. This means that cameras have to be placed at

specific locations while being self-powered with batteries. Video frames

will then be transmitted to a server through a wireless network. A crucial

challenge for IoT architects is to know how long will the batteries last,

depending on the number of cameras and the video quality. Moreover,

it would be interesting for them to know how many cameras should

be placed, and at what distance from each other to avoid collisions.

The energy efficiency ratio is also studied as it represents the energy

consumption behavior in an interesting way.

All these answers have a critical impact, especially from the financial

viewpoint, since they may give the maximum number of gateways,

sensors or cameras that can be installed, they can also inform on how

often the batteries will have to be changed, etc. We explore these questions

in the following, using our framework to analyze costs and scalability. In

order to provide actionable results, we vary parameters that are critical

from the application perspective (message size, message period, etc.), as

well as the number of end-devices.

Note that in what follows, the modeling of the IoT applications does not

include the expected lifetime (the whole deployment time) of the IoT

solution, as we do not compare several network technologies. We also

do not consider the cost KPI, since we only consider scenarios with one

gateway.

4.4.1 Case study A: Telemetry on LoRaWAN

This example is devoted to the case of a telemetry application deployed

over LoRaWAN. The sensors collect data before exchanging them to the

gateway for further processing.

The application scenario is defined as the following: We let the number

of sensors vary from 1 to 15,000 with a deployment scope of 3,000

meters from the gateway. Each sensor is equipped with a battery of 2,400

mAh capacity powered by 3.3 V (such a battery is used in [128]). The

traffic type corresponds to type 1 (periodic and upstream) of Table 4.1.

Regarding the workload, the size of packets (a.k.a. payload) is set to 23

bytes unless specified otherwise, and we consider three possible periods
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Application Parameters Case A

modeling

End-devices

• Minimal number 1

• Maximal number 15,000

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 23

• Minimal frequency 0.001

(packets/second)

• Maximal frequency 0.003

(packets/second)

Environment

• Type Suburban

• Scope (meters) 3000

• Expected lifetime N/A

(days)

Table 4.4: Application Modeling of Case

A.

[155]: Magrin et al. (2017), ‘Performance

Evaluation of LoRa Networks in a Smart

City Scenario’

State Drawn current

value (mA)

Tx 77

Rx 28

Idle 1

Sleep 0.015

Table 4.5: Drawn current values for each

state of the machine state used in ns-

3 simulations to evaluate the power

consumption of LoRaWAN communi-

cations.

for the rate at which sensors generate their packets: 300, 600, and 900

seconds. We consider a sub-urban radio environment. These parameters

can be found in Table 4.4. For the network setup, we consider that the

sensors communicate using LoRaWAN, on the 868 MHz frequency band

with a bandwidth of 125 KHz. To evaluate the influence of the SF over

the KPIs, we consider two of its value: 7 and 9. The network has a star

topology with one gateway. As mentioned before, we used simulation as

the evaluation tool.

To evaluate the performance parameters for this example, we run sim-

ulations of 3600 seconds using ns-3. Although the official release of

ns-3 does not include methods to estimate the energy costs incurred by

LoRaWAN communications, Magrin et al. provide an ns-3 module [155]

to do so. The power consumption of the NIC is obtained thanks to a

state machine whose states and associated drawn currents are given in

Appendix (Table 4.5). Having set this module, we are then able to obtain

the KPIs for this network technology.

Figure 4.3 shows the results provided by our framework for case study
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Figure 4.3: Case study A: KPIs for Telemetry on LoRaWAN.
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A, while Figure 4.4 represents an illustration of our framework on the

Case Study A, with an instantiation of the four building blocks.

Figure 4.4: Illustration of the Evaluation Framework for Case Study A.

As shown by Figure 4.3a, the reliability remains relatively high until a

couple of thousands of sensors regardless of the specific configurations

in use for the SF and the packet generation periods. More precisely, we

observe that the reliability tends to drop faster when the periods between

successive packets are short and when the SF is large (i.e., when sparser

modulations, which keep the radio channel busy for a longer time, are

in use). Note that we did not represent the packet message latency as

the latter does not depend on the number of concurrent sensors. Indeed,

unlike Wi-Fi, LoRaWAN does not belong to the listen-before-talking

protocols and does not include packet retransmissions so the message

latency is not workload-dependent. For an SF of 7 and 9 and a packet

of 23 bytes, the message latency is equal to 72 and 230 ms, respectively.

These values are typically compliant with the performance requirements

of telemetry systems. Figure 4.3b represents the energy efficiency ratio

for LoRaWAN in our example of telemetry for a reliability larger than

50%. We notice that the energy efficiency ratio tends to deteriorate with

the number of concurrent sensors due to the increasing probability of

collisions that reduce the number of bytes successfully conveyed. We can

also note the Spreading Factor has a stronger impact on this metric than

the period. The use of a small SF is more energy efficient than using a

higher SF.

Table 4.6 reports the energy consumption by each sensor over the 3600

seconds of simulation as well as the corresponding lifetime of their

battery given their capacity. As expected, we observe that using a smaller

SF (i.e., more robust modulation) for the packet transmission results in

a longer battery lifetime. The table also shows that depending on the

selected period between packet generations, battery lifetime may range

from a decade to several tens of years.

We conclude this case study by observing that the scalability index is
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Energy consumption Battery lifetime

(mJ) (Years)

Period (s)

SF

7 9 7 9

300 250 442 13 7

600 134 229 25 14

900 94 158 36 21

Table 4.6: Case study A: Energy con-

sumption per device over 3600 seconds

and battery lifetime for LoRaWAN simu-

lations.

[156]: Wu et al. (2012), ‘An Energy Frame-

work for the Network Simulator 3 (ns-3)’

[130]: Serrano et al. (2014), ‘Per-frame En-

ergy Consumption in 802.11 Devices and

its Implication on Modeling and Design’

more impacted by the Spreading Factor than by the packet generation

period. Still, a LoRaWAN based telemetry system can handle between

3,000 and 15,000 stations.

4.4.2 Case study B: Telemetry on Wi-Fi

In our second example, we consider a telemetry system in which Wi-Fi is

used to send data from the sensors (end-devices) up to the access point

(gateway).

For the application scenario, the sensors are located in the vicinity of the

gateway (deployment scope of 20 meters), and their number can vary

from 1 to 60. We consider that their batteries have a capacity of 5,200 mAh

powered by 12 V. The traffic originating from the sensors also matches

type 1 of Table 4.1. For the workload, we assume two possible sizes for

the packets: 23 and 1,000 bytes as well as 3 possible periods for the rate

at which packets are generated by each sensor: 6, 60, and 360 seconds.

We also assume a sub-urban radio environment (path loss model to

represent the radio propagation model). The application modeling of

this case study can be found in Table 4.7. For the network setup, we

consider that cameras will use the 802.11ac amendment of the IEEE 802.11

standard on the 5 GHz with a channel width of 80MHz, a single spatial

stream, without frame aggregation and long guard intervals. We set

the MCS value to a value of 9. The network also has a star topology

with one gateway. We also use ns-3 to evaluate the performance of

the considered network. Performance parameters such as the attained

throughput, message latency, and reliability are rather straightforward

to obtain from the simulator execution.

To estimate the energy cost of communications, we use the ns-3 module

that was developed based on the energy model of Wu et al. [156]. The

power consumption of Wi-Fi communications is also estimated thanks to

a state machine, which maps values of drawn current to each possible

state of the Wi-Fi NIC. We calibrated the drawn current parameters of

each state using the experiments provided by Serrano et al. in [130].

The associated drawn currents are provided in Table 4.8. Through this

model, which is embedded within ns-3, we are able to compute the power

consumption of any sensor resulting from its Wi-Fi communications. We

can also easily obtain the energy efficiency ratio as well as the expected

battery lifetime.
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Table 4.7: Application Modeling of Case

B.
Application Parameters Case B

modeling

End-devices

• Minimal number 1

• Maximal number 60

• Battery capacity 5.2

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) {23,1000}

• Minimal frequency 0.002

(packets/second)

• Maximal frequency 0.16

(packets/second)

Environment

• Type Suburban

• Scope (meters) 20

• Expected lifetime N/A

(days)

State Drawn current

value (mA)

Tx 107

Rx 40

CCA Busy 1

Idle 1

Table 4.8: Drawn current values for each

state of the machine state used in ns-3

simulations to evaluate the power con-

sumption of Wi-Fi communications.

For a total number of sensors between 1 and 60, the simulation results

show that the reliability for the packet transmission is kept to 100%

and that the message latency remains at its lowest level (below tens of

milliseconds and then much lower than the typical requirements for

telemetry). These results owe to a total workload having its maximal

value at 0.07 Mbps (with 60 sensors, packet size of 1,000 bytes and a

periodicity of 6 seconds) when the radio channel supports a data rate

of 50 Mbps. The power consumed by Wi-Fi for each sensor (due to the

exchange of communication with the access point) amounts to nearly 47 J

for a simulation time of 3600 sec regardless of the number of concurrent

sensors. Interestingly, this value also remains about the same for the

different combinations of packet sizes and periodicity. This underlines

the important energy overhead brought by Wi-Fi resulting from the lack

of sleep state in most 802.11 implementations (unlike LoRaWAN) and, to

a lesser extent, from the frequent receptions of beacons sent by the access

point every 100 ms. Having computed the consumed power resulting

from the Wi-Fi communications, we can derive the expected battery

lifetime, which we find to be approximately 200 days.

Given that we arguably tested what could be the upper bounds for the

packet size and periodicity for the purpose of telemetry applications, we

can conclude that Wi-Fi will do network-wise (provided that its radio

range is enough) but that the batteries of sensors will typically last less

than a year unless they have some form of self-harvesting capabilities or

are on electric supply.

Then, we compute the energy efficiency of Wi-Fi using packets of larger

sizes. Table 4.9 reports the energy efficiency ratios obtained for a packet

size of 23 bytes as well as those measured when the packet size is set to

1,000 bytes for three different rates of packet generation (i.e., periods of 6,

60 and 360 seconds). As expected, we observe that the energy efficiency

ratio grows significantly with the size of packets (and decreases with the

period between packet generations). Regardless of the considered period

for the time between packet generation, increasing the packet size by 43

fold (from 23 to 1,000 bytes) approximately results in a 30-fold increase

of the energy efficiency ratio.
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Interestingly, we observe that the values obtained here are worse than

those obtained for LoRaWAN with a packet size of 23 bytes but that they

somehow reach the same efficiency as Wi-Fi if the latter uses packets of

size 1,000 bytes with a period of 60 s.

Packet size (Bytes)

Period (sec)

6 60 360

23 0.44 0.04 0.007

1,000 13.67 1.36 0.21

Table 4.9: Case study B: Energy efficiency

ratio (kBytes/Joule) with Wi-Fi for dif-

ferent sizes of packets and packet gener-

ation rates.

4.4.3 Case study C: Video-surveillance on Wi-Fi

In this example, we study how Wi-Fi can be used to support the commu-

nication exchanges in a video-surveillance application. Such a scenario is

expected to be strongly supported by IoT networks [157]. Each camera

(end-device) generates a stream of video frames that are sent upwards to

the access point (gateway) and then transferred to a back-end server. We

do not explore this use case on LoRaWAN as the minimum bandwidth

requirement for video traffic (a minimum of 1Mbps) is not met with a low

power technology like LoRaWAN (providing a maximum of 27kbps).

The application scenario is defined as the following: Cameras are located

in the proximity of the gateway and their number varies from 1 to 60, with

the same batteries as for Case Study B and also with UDP as the transport

protocol. Note that this traffic corresponds to type 3 from Table 4.1. For the

workload, we consider three different rates for the application rate: 2, 5,

and 8 Mbps which can be viewed as three different codecs, corresponding

to real video traces [158] having frames of different sizes, with a fixed

FPS (Frames Per Second) of 30. The application modeling of this case

study can be found in Table 4.10. The same network setup parameters

are used as for Case Study B, with the only difference that the MCS takes

a value either of 6 or of 9. The former MCS represents a medium value

for the data rate of the radio channel while the latter represents a high

value. Simulation with ns-3 is also used as the evaluation tool.

We now turn to the simulation results summarized in Figure 4.5. First,

looking at Figure 4.5a, we observe that Wi-Fi can sustain up to 8 or 9

cameras when each of them generates a stream of 8 Mbps. Beyond 9

cameras, the reliability rapidly decreases with packets being dropped

as the radio channel activity increases. Using a lower video codec like 5

Mbps and 2 Mbps allows to expand the maximum number of supported

cameras to 15 and 30, respectively. Interestingly, we notice that the value

of MCS does not impact the results here. As expected, the message

latency increases with the number of cameras connected to the access

point (see Figure 4.5b). Although it rapidly increases with the number

of cameras, its absolute value remains relatively low and does not affect

the good behavior of the system even for a total of 40 cameras. Because a

video-surveillance system with a reliability below 60% can be considered

as a non-functional system, we limit our analysis in Figures 4.5c and

4.5d to cases where the number of cameras leads to a reliability larger

than 60%. Figure 4.5c indicates that the number of successfully delivered

bytes per joule over Wi-Fi mostly depends on the number of concurrent
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Table 4.10: Application Modeling of Case

C.
Application Parameters Case C

modeling

End-devices

• Minimal number 1

• Maximal number 60

• Battery capacity 5.2

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) [1000,5000]

• Minimal frequency 30 FPS

(packets/second)

• Maximal frequency 30 FPS

(packets/second)

Environment

• Type Suburban

• Scope (meters) 20

• Expected lifetime N/A

(days)

cameras as its value can decrease 10-fold, ranging from a bit more than

15 MBytes per joule when there is only one camera with MCS 9 and a

video rate of 8 Mbps up to less than 3 MBytes per joule for a total of 29

cameras with MCS 6 and a video rate of 2 Mbps. Finally, Figure 4.5d

represents the estimated lifetime of the battery. The results demonstrate

the importance of having a low video rate to improve the battery lifetime

especially if the number of cameras remains relatively low, say no more

than 10.

Overall, we observe with this case study that the scalability index (the

maximum number of cameras that can be connected to a gateway without

degrading the performance) strongly depends on the rate of the video

data stream and much less on the selected MCS. A Wi-Fi based video-

surveillance can handle between 5 and 20 cameras, which can live on

their battery for a month or two [159] depending on the used codecs.
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Figure 4.5: Case study C: KPIs for Video-surveillance on Wi-Fi.

4.5 Discussion

The results of the previous section regarding telemetry, have confirmed

the superiority of LoRaWAN setup in terms of scalability. Up to thousands

of sensors can be managed by a single gateway. Our results show that,

despite being almost an order of magnitude more energy-efficient (in

terms of Bytes successfully transmitted per joule) than LoRaWAN when

the end-devices have a lot of data to exchange, Wi-Fi is significantly

overpowered by LoRaWAN for the battery life of their end-devices (not

mentioning its shorter radio range) in the case of a telemetry application.

Then the key guidelines for deploying a train passengers metering system

using LoRaWAN would be:

▶ If the distance between the gateway and sensors is not very large,

lower than a thousand meters, then privileging lower SFs will

ensure more reliability and less energy consumption. This will be

for example the case for the train passengers metering solution.

▶ Message periodicity should be carefully set since it may strongly

influence the performance and longevity of the system. Charts

provided by the framework will be used to guide the decision.

Note that for both LoRaWAN and Wi-Fi, we can consider other kinds
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of radio channels (more noisy for example) by using different propa-

gation models [160]. This would be another round of experiments that

the architect would run to refine its configuration with respect to the

environmental context.

On an other side, an IoT architect looking for a network setup for a

video-surveillance application may select Wi-Fi for its strong reliability.

The following guidelines can be generated from the previous evaluation

results:

▶ One Wi-Fi access point can manage at least ten cameras.

▶ The greater the MCS, the better the performance will be.

▶ Favoring low mean data rates for the video streaming may strongly

influence the scalability and lifetime of the system, even though

the quality of the video may suffer from it.

▶ The architect will have to use the results to derive the best compro-

mise between the required video quality and battery lifetime.

4.6 Conclusion

We have presented a framework to evaluate the performance of the

network technologies for IoT applications where multiple end-devices

exchange data via gateways. The framework includes the definition of

a scenario and of its KPIs as well as their evaluation. We used two

typical use cases, inspired by real-life IoT applications, to illustrate the

applicability of our framework on different network technologies. At this

stage, we paid special attention to the energy efficiency as well as to the

ability of an IoT communication technology to properly scale up with

the number of end-devices. The provided application-based evaluation

results highlight the importance of having a holistic approach when

evaluating the good fit of a network technology in its field context. It

allows: (i) Users and researchers to rapidly evaluate the applicability of

a network technology to an IoT scenario and (ii) network technology or

service providers to present the effective KPIs of their product or service

in a standardized framework to accelerate comparison, qualification and

selection. The code repositories for our numerical results are available in

[161] and [162].

Regarding the limitations of this work, we can quote the following: First,

it considers a simple topology with a single gateway for each network

technology. This may reduce the scope of the possible IoT solutions to

be applied for. Also, it lacks an automatic selection process in case we

have competing candidates for a given network application (LoRaWAN

or Wi-Fi HaLow for instance).

We address these limitations in the next chapter. We extend our framework

using decision-making tools to automate the comparison of multiple

technologies (LoRaWAN, Wi-Fi HaLow, 802.15.4, 5G) and to select the

best alternative among them. We also analyze the impact of the topology

of the network in terms of gateways, and the trade-off between the yielded

performance improvement and the cost.
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5.1 Introduction

We have presented in the last chapter a framework for modeling IoT

applications and network setups and for assessing the performance of

a setting for a given IoT application and its workload. Now, there is

still the need for a decision-support methodology and an associated

tool to systematize the evaluation and comparison process. This would

enable to objectively compare technology candidates and to deliver KPI

to support decision-making at the IoT solution’s design and ongoing

management phases. The ultimate goal is to future-proof and select the

most appropriate network technology for new application development

or an adequate configuration for a new deployment of a pre-packaged

IoT solution. However, finding the right abstractions that lead to a good

balance between performance accuracy and computational complexity

when comparing networking options remains an open and challenging

issue.

Selecting the best network technology alongside its topology (number of

gateways) and configuration is critical for the success of an IoT solution.

Recent studies (e.g., [163, 164]) have shown that almost 75% of IoT

projects, be it in the US, UK, or India, were deemed failures and that 30%

of IoT projects failed to move beyond the proof-of-concept stage. While

customers see real value in deploying IoT, many industrial companies

and projects are lagging – for example up to 70 percent of industrial

companies’ projects end up in “pilot purgatory” [165]. The skills shortage

and the difficulties in navigating the technological ecosystem are part

of the barriers that explain these failures. The profusion of possibilities

often results in non-decision, non-optimal choices, the excessive total cost

of ownership and, ultimately, project failure. For instance, the success of

an IoT project can be jeopardized due to an insufficient budget or wrong

technological decisions such as an inadequate network technology.

In this chapter, we focus on the performance and scalability of IoT

network technologies that critically impact the ability of the IoT solution

to support the required profile and to handle increased processing

volumes in the future if required. We formalize and investigate the design

optimization problem for selecting and configuring the IoT network

technology of an application that can evolve over time. We leverage a fine

balance between performance accuracy and computational complexity to

provide a methodology, namely HINTS (metHodology for IoT Network

Technology Selection), that combines IoT application requirements, goals

formulation, IoT network modeling, discrete-event network simulation,

and a Multi Attibute Decision Making (MADM) method. The main

contribution of this chapter is to propose a formal approach and associated

algorithms to automatically optimize the selection of an IoT network

technology for a given application.

The remainder of the chapter is as follows: In Section 5.2 we formulate

the problem of IoT network technology design and configuration. In
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Section 5.3, we present our solution to the problem. Section 5.4 is devoted

to the illustration of the implementation of the methodology on three

use-cases. Finally, Section 5.5 concludes this chapter.

5.2 Problem Formulation

5.2.1 General Description

We formulate this design optimization problem for IoT network perfor-

mance and scalability that we are addressing as follows. Let us consider:

▶ An IoT application 𝐴, with its set 𝑅 of characteristics and commu-

nication requirements.

▶ A set 𝑇 of network technologies candidates.

▶ For each network technology 𝑇𝑖 in 𝑇, a set 𝐶𝑖 of possible network

configurations.

▶ A set 𝐾 of key performance metrics or KPIs that characterize the

behavior of an application 𝐴 on a network technology 𝑇𝑖 with 𝐶𝑖 .

▶ A set 𝐺 of performance goals, defined as thresholds targeted by

the application designer for each KPI.

The decision problem consists in finding the network technology 𝑇𝑑 in 𝑇

and the associated network configuration 𝐶𝑘
𝑑

(𝑘-th configuration of the

network technology 𝑇𝑑) that fit the application requirements 𝑅 and best

match the performance goals 𝐺 of the application 𝐴, in terms of KPI 𝐾.

The decision problems are formulated in detail in Problem Formulation

1. Note that we categorize the KPIs in two classes: (i) Without threshold

and (ii) with a threshold. The former class comprises KPIs for which

the goal is defined as "the more (or the less), the better". This can be

the case of the cost KPI for example. The second class includes KPIs for

which a goal can be quantified as a threshold. This means that there is

no need to go beyond (or below) a given threshold, as further discussed

in Section 5.3.6.

Also, the focus in this chapter is on network technologies based on a star

topology. Mesh networks as well as hierarchical network interconnections

leveraging routing protocols such as RPL [166], represent alternative

architectures for IoT connectivity. They raise interesting additional deci-

sion questions such as determining the most power-efficient routing and

load-balancing strategies that are not considered in this work.
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Problem Formulation 1: Problem Formulation for the IoT Network

Technology Selection Problem

1: Inputs:

▶ Application:

𝑅 = [𝑅1, . . . , 𝑅𝑘]; Application requirements (e.g., min and max

number of devices, size and frequency of messages, etc.).

▶ KPIs:

𝐾 = [𝐾1, . . . , 𝐾𝑛], KPIs (e.g., Reliability, Battery lifetime,

Message latency, Cost, etc.).

▶ KPIs performance goals:

𝐺 = [𝐺1, . . . , 𝐺𝑛], 𝐺𝑖 ∈ ℝ+; KPIs performance goals (or KPI

thresholds) (𝐺𝑖 < 0 means that the 𝑖-th KPI is without

threshold).

▶ KPIs weights:

𝑊 = [𝑊1, . . . ,𝑊𝑛],𝑊𝑖 ∈ ℝ+,

∑𝑛
𝑖=1

𝑊𝑖 = 1; Weights attributed

to each selected KPI.

▶ Set of network technologies candidates:

𝑇 = [𝑇1, . . . , 𝑇𝑚]; IoT network technologies (e.g., LoRaWAN,

LTE-M, Wi-Fi, etc.).

▶ Network configuration parameters:

𝐶 = [𝐶1, . . . , 𝐶𝑚]; Network configurations per network

technology (e.g., SF for LoRaWAN, MCS for Wi-Fi, etc.).

2: Outputs:

▶ Decision D1: Select the network technology 𝑇𝑑 that best

matches the KPIs goals.

▶ Decision D2: Select the network configuration 𝐶𝑘
𝑑

for the

chosen network technology 𝑇𝑑 which best matches the KPIs

goals.

▶ Decision D3: Select the minimal number of gateways 𝑔𝑑 for

the chosen network technology 𝑇𝑑 which best matches the

KPIs goals.

5.3 HINTS Description

5.3.1 Overview of the Methodology

The HINTS methodology targets simplicity, efficiency and risk limitation

to address the IoT network decision problem formulated in Algorithm

1. To attain these objectives, the HINTS methodology is divided into

two parts: (i) The network modeling part, which addresses the concern

related to network experts and (ii) the application-driven decision part,

which addresses the needs of application architects.

The network technology modeling part consists in abstracting and quan-

tifying the relevant parameters of network technologies. We use the

models provided in Section 4.3.2 of Chapter 4.

The application-driven decision part of HINTS, illustrated by Figure 5.1,

is divided into 5 steps as follows:

1. Application modeling, where the value of the application require-

ments, listed in Section 4.3.1, KPIs performance goals and weights

are defined.
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Figure 5.1: Overview of the HINTS Steps.
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2. Pre-selection, where network technologies candidates are filtered

based on their technical specifications and on the application

requirements.

3. Scenario design, where what-if scenarios, integrating the applica-

tion with remaining network technologies, are designed.

4. Evaluation, where the what-if scenarios are instantiated and exe-

cuted on an evaluation environment and the KPIs of each what-if

scenario are obtained.

5. Decision, where what-if scenarios are ranked and the best network

technology and its associated configuration are identified via a

multi-criteria decision-making approach.

5.3.2 Application Modeling

The application modeling step aims at:

▶ Quantifying the application requirements (an example for a smart

building use-case is given in Table 5.1).

▶ Specifying the targeted KPIs and defining their performance goals.

▶ Attributing weights to KPIs.

An example of the KPIs, thresholds and weights for a smart building

use-case is provided in Table 5.2. Recall that 𝐺𝑖 < 0 means that the 𝑖-th

KPI is without threshold.
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Application Parameters Value

abstraction

parts

End-devices

Minimal number 50

Maximal number 100

Battery capacity (Amperes.hour) 2.4

Workload

Traffic direction Upstream

Message size (bytes) 100

Minimal frequency (packets/second) 1

Maximal frequency (packets/second) 1

Environment

Type Indoor

Scope (meters) 100

Expected lifetime (days) 730

Table 5.1: Example of a Smart Building

Application Requirements.

KPI name Unit Goal Weight

Reliability Percentage (%) 90 0.25

Battery lifetime Days (d) 60 0.25

Message latency Miliseconds (ms) 10 0.25

Cost Dollars ($) -1 0.25

Table 5.2: Example of KPIs Goals and

Weights.

5.3.3 Pre-selection

The goal of the pre-selection step is to dismiss network technologies that

are obviously not meeting the application requirements. For example,

a network technology can be dismissed because its maximum data rate

does not support the expected workload, derived from the message

frequency and the message size. To do this, HINTS applies a filtering

process, which can be implemented as a decision tree. The application

requirements are compared to the maximum values of the message size

and data rate that a network technology can provide. For instance, an

application scenario with a traffic workload over 1 Mbps can never be

satisfied with LoRaWAN. Then, there is no need for further analysis.

The inappropriate network technologies are simply dismissed for the

following steps.

5.3.4 Scenario Design

After the pre-selection step, there is a need to explore in depth the

network technologies candidates with various network configurations in

order to compare them. The scenario design step consists in identifying

the different network settings for the network technology candidates.

Each setting represents a network technology candidate associated with

network configuration parameters to be evaluated and compared to the

others. This means that for a single network technology, there can be

various network configurations where each one represents a what-if

scenario (for instance, LoRaWAN with SF7 will be considered differently



66 5 IoT Network Technologies Selection

than LoRaWAN with SF12). Note that most of the considered network

configuration parameters are naturally bounded (e.g., SF, from 7 to 12).

Scalability and evolutivity assessment

Most IoT deployments are expected to evolve over time, for instance in

terms of network density (number of end-devices) or in terms of traffic

workload (message frequency and message size). The future behavior

of a network technology under these conditions must also be evaluated.

HINTS recommends designing scenarios with the maximum number

of end-devices and the heaviest traffic workloads. To this end, every

what-if scenario is composed of a minimal deployment (with the minimal

number of end-devices and the minimal message frequency), and a

maximal deployment (with the maximal number of end-devices and the

maximal message frequency). Recall that these parameters have been

defined in Section 4.3.1. This will provide insights into the scalability and

evolutivity of the different what-if scenarios.

5.3.5 Evaluation

The evaluation step consists in instantiating the what-if scenarios defined

at the scenario design step described above for calculating their respective

KPI values, for both the minimal and the maximal deployments. For

the evaluation, we rely on the framework presented in Chapter 4. We

categorize KPIs in two classes: (i) Without threshold and (ii) with a

threshold. The former class comprises KPIs for which the goal is defined

as "the more (or the less), the better". This can be the case of the cost

KPI for example. The second class includes KPIs for which a goal can be

quantified as a threshold. This means that there is no need to go beyond

(or below) a given threshold, as further discussed in Section 5.3.6.

Here also, real experimentation or simulation tools can be used as

evaluation tools. If experimentation is used, end-devices and monitoring

tools must be set up and activated to capture the traces. Then the traces

have to be analyzed and the KPIs computed. For small-scale projects

and a limited number of technologies and scenarios, this can be done

in labs and within a reasonable time. If the number of scenarios or end-

devices is important, the experimentation may be impossible to perform.

Moreover, experimenting with a variety of technologies requires rare

talents in all these network technologies. Simulation can be considered

as a better approach to get a decent evaluation of the KPIs. Even if the

simulation can be viewed as providing approximate results, it allows

relative scalability and reconfigurability, which are required to explore

different configurations for each network technology.

Topological considerations

As an extension to our evaluation framework, we propose to study here

the impact of the topology of the IoT network. Indeed, for a given network

technology with its configuration, the number of gateways deployed, 𝑔,

referred to as the topology throughout this chapter, can greatly impact

the application performance. Increasing the parameter 𝑔 may have three
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main implications on the network behavior and the performance of the

communications:

1. Reducing the workload per gateway: We assume that each gateway

has a dedicated channel so that the workload at each gateway

decreases proportionally with the total number of gateways. This

assumption is realistic for many technologies that have multiple

orthogonal channels (e.g., 64 in 868 MHz for LoRaWAN, 24 in 5

GHz for Wi-Fi).

2. Reducing the maximum distance between end-devices and their

associated gateway: In our application model, we consider that

the maximum distance between an end-device and its associated

gateway is:

𝑑 = 𝐷/(2 ∗ 𝑔) (5.1)

where 𝐷 is the deployment scope (the maximum distance between

two end-devices, see Sec. 4.3.1). This simple relation reflects that,

in general, the more gateways, the closer the end-devices are from

their gateway.

3. Increasing the cost of the solution: It can incur additional costs in

the purchase, but also in the deployment and the maintenance of

the gateways.

Therefore, the ideal topology (ideal number of gateways) has to be

determined for each what-if scenario. The HINTS approach is to evaluate

each what-if scenario with an increasing number of gateways, 𝑔, starting

at the minimal number (typically 1). The parameter 𝑔 is iteratively

increased by 1 until either KPIs goals of all the threshold-based KPIs

(namely, reliability, battery lifetime and message latency) are reached

(depending on the defined goals 𝐺), or the improvement on these

(threshold-based) KPIs is below a given value 𝜖. To include a safety

margin, the upper bound on 𝑔 is incremented by one. Overall, the

number of explored topologies for each what-if scenario is simply equal

to the maximal number of gateways that were iteratively tested. This

process is described in Algorithm 1. Throughout the chapter, we define

an alternative as a what-if scenario associated with a topology.

HINTS proposes the following formula to compute the cost KPI, including

the deployment (network modules of the end-devices, and gateways)

and the maintenance costs (i.e., battery change):

𝐶𝑜𝑠𝑡 = 𝑝𝑔𝑤 ∗ 𝑛𝑔𝑤 + 𝑝𝑒𝑑 ∗ 𝑛𝑒𝑑︸                    ︷︷                    ︸
𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

+ (𝑙/𝑏) ∗ 𝑝𝑏𝑟 ∗ 𝑛𝑒𝑑︸             ︷︷             ︸
𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

(5.2)

where each parameter is defined in Table 5.3. The ratio of 𝑙 (expected

application lifetime) on 𝑏 is used to calculate the number of times the

end-devices’ batteries will have to be replaced. Note that 𝑏 (battery

lifetime) is the only KPI whose value is derived from the simulation and

not obtained directly.

5.3.6 Decision

The goal of the decision step is to compare and rank the alternatives

evaluated in the evaluation step. The KPI values obtained in the evalu-
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Table 5.3: Cost Function Parameters.

Symbol Signification

𝑝𝑔𝑤 Price of a gateway

𝑛𝑔𝑤 Number of gateways

𝑝𝑒𝑑 Price of a network module for the end-device

𝑛𝑒𝑑 Number of end-devices

𝑙 Expected scenario lifetime

𝑏 Battery lifetime

𝑝𝑏𝑟 Cost of a battery replacement

[137]: Tzeng et al. (2011), Multiple At-
tribute Decision Making: Methods and Ap-
plications

ation step are stored in a matrix 𝑃. Depending on the class of the KPI

(see Section 5.2), its original value is kept or it is caped (or floored) by a

threshold, as shown in Algorithm 2. For the second class (threshold-based

KPIs), in the case of a minimum threshold (e.g., for reliability or battery

lifetime), we have:

𝑓 (𝑥, 𝛼) =
{
𝑥 if 𝑥 > 𝛼
0 otherwise

(5.3)

and for a maximum threshold (e.g., message latency), we have:

𝑓 (𝑥, 𝛼) =
{

𝛼 if 𝑥 < 𝛼
𝑥 otherwise

(5.4)

where 𝑥 denotes a KPI and 𝛼 its associated threshold.

Then, the KPIs values are normalized as shown in Algorithm 3:

The results are ranked according to a score, obtained through a method

derived from the TOPSIS MADM algorithm [137]. In HINTS, the ranking

leverages (i) KPIs weights and (ii) a scalability factor set by IoT archi-

tects, on the basis of their knowledge of the business context. The KPIs

weighting is done using a vector of preference, more commonly named

weights, in the form of 𝑊 = [𝑊1 , . . . ,𝑊𝑛] where 𝑊𝑗 ∈ ℝ,
∑𝑛
𝑗=1
𝑊𝑗 = 1.

The scalability factor, 𝛽 ∈ {0, 1, 2}, determines which one of the minimal

or the maximal deployment has more importance for decision making

(𝛽 = 0 or 𝛽 = 2, respectively), or if they have the same importance (𝛽 = 1)

according to the IoT architect. If the scalability of the solution in terms of

the number of end-devices or in workload intensity (maximal number of

end-devices and maximal message frequency, respectively) is critical, the

architect will give a high value, namely 2, to the scalability factor. The

weighted KPIs will then be multiplied by this scalability factor for the

"at scale" (aka the maximal deployment) evaluation of a scenario. This

process is detailed in Algorithm 4. Note that, for simplicity purposes, we

consider that the obtained KPIs of alternatives are organized as follows:

The first 𝑛 KPI values correspond to the minimal deployment, whereas

the 𝑛 remaining KPI values correspond to the maximal deployment, as

shown in Equation 5.5.

𝑝𝑖 = [𝑝𝑖1 , . . . , 𝑝𝑖𝑛 ,︸         ︷︷         ︸
𝑀𝑖𝑛.𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

𝑝𝑖(𝑛+1) , . . . , 𝑝𝑖2𝑛]︸              ︷︷              ︸
𝑀𝑎𝑥.𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡

(5.5)

HINTS calculates the positive ideal solution (best one) and the negative

ideal solution (worst one) based on the range of estimated KPIs values.
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Algorithm 1: Evaluation Process

1: Inputs:

𝑅 = [𝑅1, . . . , 𝑅𝑘]; Application requirements;

𝑇 = [𝑇1, . . . , 𝑇𝑚]; Pre-selected IoT network technologies;

𝐶 = [𝐶1, . . . , 𝐶𝑚]; Network configurations;

𝐺 = [𝐺1, . . . , 𝐺𝑛], 𝐺𝑖 ∈ ℝ; The KPIs performance goals (either a KPI

threshold, or 𝐺𝑖 < 0 means that the 𝑖-th KPI is without threshold);

𝜖 ∈ ℝ; Minimum improvement for KPIs;

Variables:

𝑞 ∈ ℕ; Number of evaluated alternatives;

𝑃 = (𝑝𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; KPI values of the alternatives;

Algorithm:

2: 𝑖𝑛𝑑 = 1;

3: for each 𝑖 in [1;𝑚] do

4: 𝑔 ← 1; 𝑙𝑖𝑚𝑖𝑡[𝑖] ← ∞; 𝑠𝑒𝑎𝑟𝑐ℎ ← 𝑇𝑟𝑢𝑒;
𝑝0 ← [0, . . . , 0]︸     ︷︷     ︸

𝑛

5: while 𝑔 ≤ 𝑙𝑖𝑚𝑖𝑡[𝑖] do

6: for each 𝑗 in [1;|𝐶 𝑖 |] do

7: 𝑝𝑖𝑛𝑑 ← Evaluation (𝑅, 𝐶
𝑗

𝑖
, 𝑔) // Evaluation returns the KPI

values for the network configuration 𝐶
𝑗

𝑖
, with 𝑔 gateways.

8: if (KPIs_Satisfied (𝑝𝑖𝑛𝑑 , 𝐺) or Improvement (𝑝𝑖𝑛𝑑 , 𝑝𝑖𝑛𝑑−1) ≤ 𝜖
and 𝑠𝑒𝑎𝑟𝑐ℎ = 𝑇𝑟𝑢𝑒 then

9: 𝑙𝑖𝑚𝑖𝑡[𝑖] ← 𝑔 + 1

10: 𝑠𝑒𝑎𝑟𝑐ℎ← 𝐹𝑎𝑙𝑠𝑒
11: end if

12: 𝑖𝑛𝑑← 𝑖𝑛𝑑 + 1;

13: end for

14: 𝑔 ← 𝑔 + 1

15: end while

16: end for

17: 𝑞 ← 𝑖𝑛𝑑

Algorithm 2: Applying Filters to KPIs

1: Inputs:

𝑞 ∈ ℕ; Number of evaluated alternatives;

𝐺 = [𝐺1, . . . , 𝐺𝑛], 𝐺𝑖 ∈ ℝ; The KPI performance goals (𝐺𝑖 < 0

means that the 𝑖-th KPI is without threshold);

𝑃 = (𝑝𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; KPI values of the alternatives;

Algorithm:

2: /* Applying KPI thresholds */

3: for each 𝑖 in [1, 𝑞] do

4: for each 𝑗 in [1, 2𝑛] do

5: if 𝐺 𝑗 ≥ 0 then

6: 𝑝𝑖 𝑗 ← 𝑓 (𝑝𝑖 𝑗 , 𝐺 𝑗) // KPI with threshold (see Eqs. 5.3 & 5.4)

7: end if

8: end for

9: end for
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Algorithm 3: Normalization Process

1: Inputs:

𝑃 = (𝑝𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; KPI values of the alternatives;

Variables:

𝑁 = (𝑛𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; Normalized KPIs;

Algorithm:

2: /* Normalization */

3: for each 𝑖 in [1, 𝑞] do

4: for each 𝑗 in [1, 2𝑛] do

5: 𝑛𝑖 𝑗 ←
𝑝𝑖 𝑗√∑𝑞

𝑖=1
(𝑝𝑖 𝑗)2

6: end for

7: end for

Algorithm 4: Weighting Process

1: Inputs:

𝑊 = [𝑊1, . . . ,𝑊𝑛],𝑊𝑖 ∈ ℝ+,

∑𝑛
𝑖=1

𝑊𝑖 = 1; KPIs weights;

𝑁 = (𝑛𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; Normalized KPIs;

𝛽 ∈ {0, 1, 2}; Scalability factor;

Variables:

𝑉 = (v𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; Weighted normalized KPIs;

Algorithm:

2: /* Weighting */

3: for each 𝑖 in [1, 𝑞] do

4: for each 𝑗 in [1, 2𝑛] do

5: 𝑣𝑖 𝑗 ←𝑊𝑗 × 𝑛𝑖 𝑗
6: end for

/* Apply the scalability factor to the KPIs obtained for the

maximal deployment*/

7: for each 𝑗 in [𝑛 + 1, 2𝑛] do

8: 𝑣𝑖 𝑗 ← 𝛽 × 𝑣𝑖 𝑗
9: end for

10: end for

Then, a score is given to each alternative depending on the Euclidean dis-

tances between the considered alternative and the positive and negative

ideal solutions. The way of calculating the positive and the negative ideal

solutions as well as the scores is described in Algorithm 5, and depicted

in Figure 5.2.

Finally, the output of the decision step is the alternative that obtains the

highest score, according to this ranking.

5.3.7 Summary of the Methodology

Using HINTS, IoT architects are able to leverage the network knowledge

previously encoded by network experts, and make wise decisions by:

1. Quantifying the application requirements, identifying the KPIs per-

formance goals and weighting them in the application modeling

step.

2. Quantifying the KPIs performance goals to allow the assessment

of the network configuration to the specific application context and
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Figure 5.2: Graphical Representation of

TOPSIS with Two Attributes [167].

its potential scale in the future in terms of number of devices as

well as message frequency, still in the application modeling step.

3. Dismissing network technologies that are obviously inappropriate

(do not meet the application requirements) via the pre-selection

step.

4. Specifying detailed what-if scenarios (with network configurations)

for the remaining network technologies candidates for in-depth

performance and scalability analysis with the scenario design step.

5. Evaluating these what-if scenarios with different topologies for the

minimal and the maximal number of end-devices and message

frequency, in the evaluation step.

6. Comparing the alternatives (with network configurations and

topologies) and selecting the best one with the decision step.
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Algorithm 5: Ranking Process

1: Inputs: 𝑉 = (v𝑖 𝑗) ∈ ℝ𝑞×2𝑛
; Weighted normalized KPIs

2: Variables:

𝑉+ = [𝑣+
1

, . . . , 𝑣+
2𝑛], 𝑣+

𝑖
∈ ℝ; Ideal positive solution;

𝑉− = [𝑣−
1

, . . . , 𝑣−
2𝑛], 𝑣−

𝑖
∈ ℝ; Ideal negative solution;

𝑆+ = [𝑠+
1

, . . . , 𝑠+𝑞 ], 𝑠+
𝑖
∈ ℝ; Positive distances;

𝑆− = [𝑠−
1

, . . . , 𝑠−𝑞 ], 𝑠−
𝑖
∈ ℝ; Negative distances;

Algorithm:

3: /* Ranking */

4: for each 𝑗 in [1, 2𝑛] do

5: 𝑣+
𝑗
← 𝐴𝑟𝑔𝑚𝑎𝑥{𝑣𝑖 𝑗 , 𝑖 = 1, . . . , 𝑞}

6: 𝑣−
𝑗
← 𝐴𝑟𝑔𝑚𝑖𝑛{𝑣𝑖 𝑗 , 𝑖 = 1, . . . , 𝑞}

7: end for

8: for each 𝑖 in [1, 𝑞] do

9: 𝑠+
𝑖
←

√∑
2𝑛
𝑗=1
(𝑣+
𝑗
− 𝑣−

𝑗
)2

10: 𝑠−
𝑖
←

√∑
2𝑛
𝑗=1
(𝑣−
𝑗
− 𝑣−

𝑗
)2

11: end for

12: for each 𝑖 in [1, 𝑞] do

13: 𝑆𝑖 ←
𝑠−
𝑖

𝑠−
𝑖
+ 𝑠+

𝑖
14: end for

5.4 Case Studies

In this section, we illustrate the implementation of HINTS methodology

and its application on three case studies derived from real-life examples:

Smart building, event video-surveillance and precision agriculture. We

illustrate how HINTS can be leveraged to support the following decisions

and context:

▶ Case A: Network technology and topology decision at the design

phase of a tailored smart building solution with a potentially

growing number of end-devices.

▶ Case B: Network technology and topology decision for the design

phase of a pre-packaged event video-surveillance solution with a

potentially growing traffic workload.

▶ Case C: Network configuration decision at the deployment phase

of a pre-packaged LoRaWAN-based precision agriculture solution.

The HINTS methodology implementation tool [168] provides the follow-

ing set of network technologies: (i) LoRaWAN, (ii) Wi-Fi HaLow (aka

IEEE 802.11ah on the 868 MHz frequency band), (iii) Wi-Fi (namely, IEEE

802.11ac on the 5 GHz frequency band), (iv) 802.15.4 (6LoWPAN) and (v)

Private 5G (mmWave on the 28 GHz frequency band). HINTS defines

their network configuration parameters as the ones specified in Table

4.3.

In the HINTS implementation, the pre-selection step is based on the

maximum data rate and the maximum message size for each considered

network technology. Table 5.4 enumerates the different "theoretical"

values proposed by HINTS for these parameters.
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Table 5.4: Numerical values for the maximal data rate and message size on the subset of network technologies, considered in the HINTS

implementation tool.

Features

Technology

LoRaWAN [75] Wi-Fi [169] HaLow [170] 802.15.4 [63] 5G mmWave [95]

Maximum 50 Kbps 3.4 Gbps 234 Mbps 250 Kbps 10 Gbps

data rate

Maximum 256 B 65535 B 65535 B 65535 B 65535 B

message size

[155]: Magrin et al. (2017), ‘Performance

Evaluation of LoRa Networks in a Smart

City Scenario’

[171]: Tian et al. (2016), ‘Implementation

and Validation of an IEEE 802.11 ah Mod-

ule for ns-3’

[172]: Mezzavilla et al. (2018), ‘End-to-

end Simulation of 5G mmWave Net-

works’

1: Note that other equipment can be

considered for each network technology,

therefore leading to other prices as well.

For the evaluation step, HINTS implementation uses the release 3.33

of ns-3 for Wi-Fi and 802.15.4 (6LoWPAN) and resorts to code patches

not integrated in the official version of Network Simulator 3 but widely

used by the research community to evaluate LoRaWAN [155] and Wi-Fi

HaLow [171], and the module developed in [172] for 5G mmWave. The

length of simulations is determined so that there are at least 200 packets

sent per end-device.

The improvement value, 𝜖, to determine the ideal topology is set to 5%

(recall that 𝜖 refers to the improvement threshold in the performance,

see Section 5.3.5). The prices of End-device (ED) and Gateway (GW)

used to compute the cost of an alternative are reported in Table 5.5
1
. The

maintenance cost corresponds to the battery replacement. In HINTS,

the price of a battery replacement (parameter 𝑝𝑏𝑐 in Equation 5.2 and

Table 5.5) depends on the application scenario environment. It is set

to 5 USD for indoor and urban environments, and 50 USD for rural

environments (see Table 5.3). Since the considered network technologies

operate on unlicensed frequency bands or private environments, there

are no additional band subscription fees.

Network technology ED Price (USD) GW Price (USD)

LoRaWAN [98] 5 1000

Wi-Fi HaLow [173] 15 1000

Wi-Fi [174] 10 100

802.15.4 30 200

5G mmWave 20 500

Table 5.5: Network equipment price for

some network technologies considered

for our case studies.

For all our case studies, the end-devices are expected to run on batteries.

Therefore we keep only the battery lifetime KPI as it is correlated to the

energy consumption.

In the decision step, and for the sake of simplicity, uniform weights are

used for every KPI, and a scalability factor of 1 is used as well, so that the

initial and the maximal deployments have the same importance.

5.4.1 Case A: Network Technology and Topology Decision

for a Smart Building Solution

This case study is devoted to the design of a tailored smart building

solution, where sensors will collect periodical measurements (room

temperature and occupancy sensors, air quality, etc.) to maintain safety

and comfort within the facility. The structure of the building is the
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Table 5.6: Application Modeling of Case

A.
Application Parameters Case A

modeling

End-devices

• Minimal number 50

• Maximal number 100

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 100

• Minimal frequency 1

(packets/second)

• Maximal frequency 1

(packets/second)

Environment

• Type Indoor

• Scope (meters) 50

• Expected lifetime 730

(days)

[175]: Jĳo et al. (2021), ‘A Comprehen-

sive Survey of 5G mm-wave Technology

Design Challenges’

following: We consider 20, 10 and 50 meters for its length, width and

height, respectively, with 16 floors of 6 rooms in each floor.

In the application modeling step of HINTS, the application scenario is

defined as follows: We consider 50 and 100 sensors for the minimal and

the maximal number of end-devices, respectively, equipped with 2,400

mAh capacity batteries (powered by 3 V). The sensors send 1 packet of

100 bytes every second to their gateway. The maximal message frequency

is equal to 1 message per second as well. The environment is indoor since

the application operates inside a building. The sensors are randomly

placed inside the building around a gateway, with a deployment scope

of 100 meters (which is approximately equal to the maximum distance

that could separate two points inside that building). For the KPIs goals,

this application scenario would require batteries to last at least 3 months,

a message latency below 100 ms and a reliability above 90%. For the cost

calculation, the parameter 𝑙 (expected scenario lifetime, see Section 5.3.5)

is set to 2 years. Table 5.6 summarizes these parameters.

At the pre-selection step, LoRaWAN is dismissed from the list of network

technologies candidates since the message frequency required for this

case study (1 packet per second) is too high for the maximum data rate

of LoRaWAN (see Table 5.4). 5G mmWave is also dismissed since these

frequency bands are not expected to be used in this kind of applica-

tion scenarios, due to their poor penetration capacity [175]. Hence, the

remaining network technologies are Wi-Fi, 802.15.4 and Wi-Fi HaLow.

At the scenario design step, we consider the following network con-

figurations for the remaining network technologies: For Wi-Fi, it is a

channel width of 80 MHz, one spatial stream, a long guard interval

and no frame aggregation. For Wi-Fi HaLow, it is a channel width of 2

MHz, a long guard interval, a beacon interval of 51200 ms and one RAW

group. For 802.15.4, it is a channel width of 5 MHz, a number of frame

retries of 4, a number of CSMA backoffs set to 5 and the maximum (resp.

minimum) backoff exponent set to 4 (resp. 3). Note that these values are

used as a default network configuration, and other parameters can be

considered for further study. The same remark applies to the remaining

case studies.



5.4 Case Studies 75

Table 5.7: Case A: Smart Building Results.

Network technology Minimal deployment (50 end-devices) Maximal deployment (100 end-devices)

Scalability factor: 1

Technology Nb. of GW Reliability Battery Message Cost Reliability Battery Message Cost Score

Lifetime Latency Lifetime Latency

Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1
Unit: % Unit: d Unit: ms Unit: $ Unit: % Unit: d Unit: ms Unit: $

Goal: >90 Goal: >80 Goal: <100 Goal: >90 Goal: >80 Goal: <100

Wi-Fi 1 42.0 61.72 0.05 3850 30.0 49.1 0.05 9100 0.02

Wi-Fi 2 80.0 66.28 0.05 3700 86.0 61.24 0.05 7700 0.07

Wi-Fi 3 87.5 66.45 0.05 3800 96.97 85.86 0.05 5800 0.32

Wi-Fi 4 100.0 89.09 0.05 3150 100.0 88.38 0.05 5900 0.46

Wi-Fi 5 100.0 89.27 0.05 3150 100.0 88.71 0.05 5900 0.46

HaLow 1 100.0 362.16 48.41 2250 100.0 277.78 57.28 3500 0.87

HaLow 2 100.0 421.69 48.9 3000 100.0 331.8 58.72 4500 0.93

802.15.4 1 54.31 91.76 29.62 3700 44.63 71.44 12.61 9700 0.12

802.15.4 2 94.46 125.07 12.38 3400 88.29 85.75 21.67 7400 0.36

802.15.4 3 98.09 142.95 16.47 3350 94.10 112.28 7.46 7100 0.49

The simulation time is set to 200 seconds in the evaluation step. We

present the results of the evaluation step in Table 5.7. In this step,

HINTS iterates to determine the ideal topology. In this example, the

KPIs performance goals are met for the threshold-based KPIs with one

gateway for Wi-Fi HaLow and two gateways for 802.15.4. For Wi-Fi, we

see that the goals are attained for reliability, message latency and battery

lifetime with 4 gateways. Therefore, an additional study for Wi-Fi with

5 gateways is considered. We observe that the number of alternatives

to consider differs for each network technology. We notice that, unlike

802.15.4 and Wi-Fi, Wi-Fi HaLow manages to keep the reliability at 100%

with one gateway, for both the minimal number of end-devices of 50 and

the maximal number of end-devices of 100. We also see that, despite being

the most performing in terms of battery lifetime and cost, Wi-Fi HaLow

is outperformed by Wi-Fi and 802.15.4 in terms of message latency.

Table 5.7 shows that the decision step determines Wi-Fi HaLow with two

gateways as being the best alternative among those considered. Figure

5.3 uses a radio chart to reflect the resulting KPIs after the application of

the function 𝑓 for the threshold-based KPIs (see Eqs. 5.3 and 5.4), the

normalization and the weighting processes. Then, each resulting KPI

value is divided by the maximum (for reliability and battery lifetime)

or minimum (for message latency or cost) value of that KPI among all

the alternatives. These values are finally plotted in the radio chart. Note

that for readability purposes, we display the cost efficiency and latency

efficiency, which are the inverse values of cost and message latency,

respectively. Also, the "Latency Efficiency" axis is displayed using a

logarithmic scale. We see that Wi-Fi HaLow, regardless of the number

of gateways, significantly outperforms the other alternatives in terms

of battery lifetime KPI. According to the calculated scores, the decision

step returns Wi-Fi HaLow with 2 gateways as the network technology

and topology to opt for the design phase of this application scenario.
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Figure 5.3: Case A: Smart Building Radio-

chart.

5.4.2 Case B: Network Technology and Topology Selection

for an Event Video-surveillance Application

We consider the design of a pre-packaged camera-based surveillance

solution for events gathering large crowds (e.g., trade fair, concert, etc.).

Short installation time and stringent logistic constraints impose wireless

connectivity with self-powered cameras placed at specific locations.

In the application modeling step, the application scenario is defined as

follows: This solution is sold for a minimal (and maximal) number of 30

cameras, each one equipped with 2.4 Ah capacity batteries (powered by 3

V). The cameras typically send 200 packets of 1500 bytes per second to their

gateway (leading to a workload of 2 Mbps). The application developers

of the solution want to be able to improve the precision of the images.

At maximal traffic workload, the cameras will be sending 300 packets

every second to the gateway. This will result in a higher bandwidth

requirement: A workload of 3 Mbps. The cameras are randomly placed

around a gateway and the deployment scope is about 60 meters, in

an outdoor urban environment. For the KPIs threshold, the architect

specifies a reliability above 95%, batteries to last at least a week, and a

message latency under 10 ms. The parameter 𝑙 (expected lifetime) is set

to two months, including the deployment and operations phases. The

application models of Case Study B are available in Table 5.8.

Due to the large expected workload (2 and 3 Mbps), the pre-selection

step dismisses LoRaWAN, Wi-Fi HaLow and 802.15.4 from the possible

network technologies candidates. Thus, only Wi-Fi and 5G mmWave

remain.

Regarding the scenario design step, the existing Wi-Fi configuration is

the same as for case A, whereas 5G mmWave uses a 5G NR numerology

of 2, disabled HARQ and RLC-AM.

At the evaluation step, the traffic workload defined in the application

modeling step leads to a simulation time of around 2.5 seconds. HINTS

iterates on the number of gateways. In this example, two gateways are
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Application Parameters Case B

modeling

End-devices

• Minimal number 30

• Maximal number 30

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 1500

• Minimal frequency 200

(packets/second)

• Maximal frequency 300

(packets/second)

Environment

• Type Urban

• Scope (meters) 30

• Expected lifetime 60

(days)

Table 5.8: Application Modeling of Case

B.

[176]: Mazaheri et al. (2019), ‘A millimeter

wave Network for Billions of Things’

enough for Wi-Fi to reach the KPIs goals of the threshold-based KPIs.

Thus, we consider three alternatives for Wi-Fi with a number of gateways

ranging from one to three. Regarding 5G mmWave, the improvement

obtained when augmenting the number of gateways from 1 to 2 does not

exceed 𝜖, therefore three gateways are sufficient for the study (taking

into account the safety margin). We present the results of the evaluation

step in Table 5.9. First, we see that the reliability attains 100.0% starting

from Wi-Fi with two gateways, while its value is around 55% for one

gateway, which means that one gateway is not enough to support the

whole traffic workload. It attains practically 100 % with one gateway

for 5G mmWave. Also, we notice a slight increase in battery lifetime

when the number of gateways is increased. Indeed, the more gateways,

the less contention, resulting in end-devices spending more time in

an idle state, which consumes less energy. The same remark cannot

be made for 5G mmWave: The battery lifetime is not impacted by the

number of gateways. Moreover, the obtained battery lifetime does not

even last 1 day, while it manages to go up to 13 days for Wi-Fi with two

gateways. The high energy consumption in 5G mmWave seems in line

with the work [176] in which the authors showed that the 5G mmWave

has substantial energy and computing power. In the same way, message

latency slightly decreases for the same reason (less contention) for both

network technologies. Regarding the cost, it tends to get lower with the

number of gateways for Wi-Fi, which is due to the associated decreasing

number of battery replacements, contrarily to 5G mmWave, where the

cost seems to increase.

Overall, Table 5.9 shows that the Wi-Fi alternative with 3 gateways

obtains the best score and outperforms the others. The trade-offs between

the different KPIs are captured in Figure 5.4 (computed as in Section

5.4.2) for the two best alternatives of each network technology. Figure 5.4

clearly shows that the Wi-Fi alternative with 3 gateways outperforms the

other alternatives in terms of battery lifetime and cost efficiency.
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Table 5.9: Case B: Event Video-surveillance Results.

Network technology Minimal deployment (2 Mbps) Maximal deployment (3 Mbps)

Scalability factor: 1

Technology Nb. of GW Reliability Battery Message Cost Reliability Battery Message Cost Score

Lifetime Latency Lifetime Latency

Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1
Unit: % Unit: d Unit: ms Unit: $ Unit: % Unit: d Unit: ms Unit: $

Goal: >95 Goal: >7 Goal: <10 Goal: >95 Goal: >7 Goal: <10

Wi-Fi 1 55.85 4.81 1.53 1050 22.23 4.21 2.86 1200 0.43

Wi-Fi 2 100.0 13.57 0.2 1100 99.99 9.7 0.22 1400 0.82

Wi-Fi 3 100.0 17.37 0.21 1050 100.0 15.61 0.25 1200 0.99

5G mmWave 1 99.96 0.14 1.01 64100 99.97 0.14 1.05 64100 0.35

5G mmWave 2 100 0.1 0.95 90100 100 0.1 0.97 90100 0.32

5G mmWave 3 100 0.13 1.0 68400 100 0.13 1.0 68400 0.34

Figure 5.4: Case B: Event Video-

surveillance Radio-chart.

5.4.3 Case C: Network Configuration Decision for a

Precision Agriculture Application

In this case study, we consider the deployment of a pre-packaged precision

agriculture solution in a given farm, using LoRaWAN. The solution

architect needs to adjust the network configuration parameters of this

solution taking into account the specificity of the deployment. The

precision agriculture system comprises humidity, temperature and PH

sensors, which measure these metrics before sending them to a LoRaWAN

gateway for further transmission and processing.

At the application modeling step, the application scenario is defined as

follows: The minimal number of sensors is 200, whereas the maximal

number of sensors is 300, each one equipped with the same batteries

as for Case A and B (2,400 mAh powered by 3 V). The sensors send

one packet of 30 bytes every 3 minutes to their gateway, in an outdoor

rural environment. The sensors are placed around the gateway and the

deployment scope is 3,000 meters. Regarding the KPIs, this solution

deployment typically requires a battery lifetime of 1 year, a message



5.4 Case Studies 79

Application Parameters Case C

modeling

End-devices

• Minimal number 200

• Maximal number 300

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 30

• Minimal frequency 0.005

(packets/second)

• Maximal frequency 0.005

(packets/second)

Environment

• Type Rural

• Scope (meters) 1500

• Expected lifetime 3650

(days)

Table 5.10: Application Modeling of Case

C.

2: A traffic type of 0 corresponds to an

unconfirmed traffic, while 1 corresponds

to a confirmed traffic.

latency lower than 1 second and a reliability of at most 90%. The value of

𝑙 is set to 10 years. These parameters are displayed in Table 5.10.

Since the network technology to be used has already been decided

(LoRaWAN), the pre-selection step is skipped.

In the scenario design step, the goal is to explore the various network

configurations for the LoRaWAN settings within the end-devices. The

goal is to determine which SF to select as well as which CR and type of

traffic (confirmed or unconfirmed) to use
2
. Several network configurations

are generated accordingly. We consider the minimal and the maximal

values for each parameter.

In the evaluation step, the traffic workload leads to 36,000 seconds of

simulation time to ensure a minimum of 200 packets sent by each sensor.

This pre-packaged solution supports a single gateway. Table 5.11 presents

the KPI values of the various LoRaWAN alternatives. First, we see that

the SF has a tremendous impact on the KPIs, where the less the better:

SF7 allows to ameliorate the performances almost by a factor of 2. Then,

the type of traffic strongly influences the battery lifetime: In case the

traffic is unconfirmed, it is around 8 times higher than with confirmed

traffic. This is due to the re-transmissions triggered following up the loss

of a packed when the traffic is confirmed.

In Table 5.11, the decision step elects LoRaWAN with a SF7, a 1 CR, with

an unconfirmed traffic as the best alternative. The differences between

the best alternatives’ performances are shown in Figure 5.5 (computed

as in Section 5.4.2).

Table 5.6 provides a summary of the application modeling for the case

studies A, B and C. An outline of the rest of the steps is given in Table

5.12.

5.4.4 Discussion

The computational complexity of HINTS implementation mostly resides

in the evaluation step, because running simulations (for example in
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Table 5.11: Case C: Precision Agriculture Results.

Configuration Minimal deployment (50 end-devices) Maximal deployment (100 end-devices)

Scalability factor: 1

SF Coding Traffic Reliability Battery Message Cost Reliability Battery Message Cost Score

Rate Type Lifetime Latency Lifetime Latency

Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1 Weight: 1
Unit: % Unit: d Unit: ms Unit: $ Unit: % Unit: d Unit: ms Unit: $

Goal: >90 Goal: >730 Goal: <1000 Goal: >90 Goal: >730 Goal: <1000

7 1 0 95.78 2560.7 82.17 12000 95.73 2560.7 82.17 17500 0.98

7 1 1 99.44 331.37 82.17 112000 99.19 332.6 82.176 167500 0.51

7 4 0 93.65 1819.54 82.17 22000 93.74 1819.54 82.176 17500 0.81

7 4 1 98.65 232.95 82.17 152000 97.83 234.18 82.176 227500 0.5

12 1 1 43.47 126.44 197.4 282000 31.97 114.1 197.4 467500 0.0

12 1 0 43.31 126.44 197.4 282000 31.78 112.7 197.4 482500 0.38

12 4 1 33.29 126.77 197.4 282000 22.33 232.95 197.4 422500 0.38

12 4 1 33.11 126.77 197.4 282000 22.13 232.95 197.4 422500 0.38

Figure 5.5: Case C: Precision Agriculture

Radio-chart.

Table 5.12: Case Studies Summary.

Case

Step Application modeling Pre-selection Scenario design Evaluation Decision

Goals Weights

A Reliability> 90% Reliability: 0.25 Wi-Fi Single network See Table 5.7 Wi-Fi HaLoW

Lifetime> 80 days Lifetime: 0.25 Wi-Fi HaLow configuration with 1 GW

Latency< 100 ms Latency: 0.25 802.15.4

Cost: 0.25

B Reliability> 95% Reliability: 0.25 Wi-Fi Single network See Table 5.9 Wi-Fi with

Lifetime> 7 days Lifetime: 0.25 5G mmWave configuration 4 GW

Latency< 10 ms Latency: 0.25

Cost: 0.25

C Reliability> 90% Reliability: 0.25 LoRaWAN SF ∈ {7, 12} See Table 5.11 SF=7

Lifetime> 365 days Lifetime: 0.25 CR ∈ {1, 4} CR=1

Latency< 1000 ms Latency: 0.25 Traffic type ∈ Traffic type=

Cost: 0.25 {Unconfirmed (0), Unconfirmed

Confirmed (1)}
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Table 5.13: Comparison of HINTS with the Related Work.

Reference Considered KPI Method Application Automatic

Reliability Message Energy Cost to evaluate driven Selection

latency consumption KPIs

Kanuch et al. (2020) [96] - - ✓ - N/A - -

Sinha et al. (2017) [77] - ✓ ✓ ✓ N/A - -

Ikpehai et al. (2018) [97] ✓ ✓ ✓ - N/A ✓ -

Mekki et al. (2018) [59] ✓ ✓ ✓ ✓ N/A - -

Mekki et al. (2019) [98] ✓ ✓ ✓ ✓ N/A - -

Vejlgaard et al. (2017) [133] ✓ - - - Simulation ✓ -

Lalle et al. (2019) [131] ✓ - - - Simulation ✓ -

Verhoeven et al. (2022) [132] ✓ ✓ - - Simulation ✓ -

Vannieuwenborg et al. (2018) [12] - - - ✓ N/A - ✓
Bari and Leung (2007) [134] ✓ ✓ - ✓ N/A - ✓
Bari and Leung (2007) [135] ✓ ✓ - ✓ N/A - ✓
Senouci et al. (2016) [136] ✓ ✓ - ✓ N/A - ✓
HINTS ✓ ✓ ✓ ✓ Simulation ✓ ✓

[177]: Foubert et al. (2021), ‘RODENT: A

Flexible TOPSIS based Routing Protocol

for Multi-technology Devices in Wireless

Sensor Networks’

[12]: Vannieuwenborg et al. (2018),

‘Choosing IoT-connectivity? A guiding

Methodology based on Functional Char-

acteristics and Economic Considerations’

Network Simulator 3) can be time-consuming depending on the density

of the simulated network and the simulation time. The decision step

includes some relatively lightweight computations relating to the nor-

malization, the weighting and the computing of the Euclidean distances

(which results in a complexity of 𝑂(𝑛 × 𝑞), with 𝑞 being the number of

evaluated alternatives and 𝑛 the number of KPIs). Overall, the decision

step time is considered negligible in comparison to the evaluation time.

As for the issue of ranking reversal that may emerge in MADM methods,

it does not apply in our case. Indeed, this classical problem refers to a

change in the ordering among the alternatives, after the addition or the

removal of an alternative from the group previously defined. For example,

in the case of dynamic selection of a wireless interface, this alteration can

affect the routing of packets [177]. Since HINTS targets static selection

and gives recommendations prior to the effective network deployment,

it is not subject to the ranking reversal problem. However, if we extend

HINTS to address the emerging problem of dynamic reconfiguration of

end-devices with multiple IoT networks, then we will have to deal with

this issue.

Table 5.13 shows that HINTS stands out from the other methods described

in Section 3.2.2 in Chapter 3 by being an application-aware method and

by providing an automatic selection mechanism at the same time. As for

the KPIs, HINTS deals with the same set as many other existing works.

This set includes the most important KPIs in the IoT networking field.

Regarding the evaluation method to obtain the KPIs, most existing works

([12, 59, 77, 96–98, 134–136]) do not detail their way of evaluating the

different network technologies. A number of works ([18, 131–133]) refer

to discrete-event simulation, as HINTS does.

To end this discussion, we compare HINTS with the work of [12] which

is the closest to our solution. Both methodologies help in modeling the

network technologies and the IoT application. [12] provides question-

naires to help IoT architects eliminate technology candidates based on

deployment constraints and on the evaluation of a single KPI, namely

financial cost, for decision-making. On the other hand, HINTS relies on

technical specification to eliminate network technology candidates but
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then resorts to an automated evaluation of KPIs (including the financial

cost and network performance metrics) resulting from discrete-event

simulation and decision algorithms to select the “right” network tech-

nology, its configuration and topology. We believe these two solutions

(HINTS and [12]) are complementary and could be nicely combined in

future works.

5.5 Conclusion

In this chapter, we have presented HINTS, a methodology enabling

IoT network technologies selection and configuration. HINTS relies on

the modeling of IoT network technologies on one side and a five steps

decision process on the other side. We have described the different steps

of this process, which include: (i) Application modeling, to abstract

the IoT application specificity, its requirements on a set of KPIs; (ii)

pre-selection, which dismisses the inappropriate network technologies;

(iii) scenario design, to configure the application with the appropriate

network technologies candidates, (iv) evaluation where the best-suited

topology is iteratively found and an instrument such as simulation is

used to estimate the KPIs on the targeted application scenario for each

alternative and (v) decision, which assigns scores to each alternative

using a MADM method, derived from TOPSIS. We have presented three

case studies inspired by real-life deployments to illustrate the application

of HINTS. The results have shown that HINTS enables a fair and insightful

comparison of IoT network technologies for a given application scenario.

Moreover, it permits to explore and determine network configuration

parameters and the number of gateways to deploy. This work highlights

the importance of the application context, the environment, and of the

scaling factor in the network selection process and expected performance.

For the sake of reproducibility, we made the source code available at

[168].

In addition to the restriction on the star topology, there are other lim-

itations for HINTS. First, the complexity of application and network

modeling is still tangible. Indeed, since the targeted audience of a

decision-support tool such as HINTS is primarily IoT architects, there is

a real need of endowing them with the capacity to use these tools in the

easiest way possible. This problem is tackled in Chapter 7. Then, since

HINTS leans on simulation, the results it provides during the evaluation

step require validation, to make sure that the simulator is grounded.

Finally, the configuration optimization process, as seen in case study

C, is still strongly tied to the generated scenarios for a given network

technology. This means that the solution can only propose configurations

that have been generated in the scenario design step. To have a more

comprehensive comparison, it would be required to consider all the

different possible configurations, which will naturally lead to an upsurge

in the simulation time. A compromise between the comprehensiveness

of the study and the execution time must be fined.

We address the last two limitations in the next chapter. First, we pro-

pose a method relying on Machine Learning (regression methods) to

accelerate the design process using simulation, and we show an applica-

tion for optimizing the configuration of IoT network technologies for a
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given application. Then, we propose a method to calibrate the energy

consumption models from real deployments.

5.6 Appendix

5.6.1 Notation Table

Table 5.14 details the used symbols used throughout the chapter.

Symbol Signification

𝑅 Application requirements

𝐾 KPIs

𝐺 KPIs performance goals

𝑊 KPIs weights

𝑇 Network technologies candidates

𝐶 Network configuration parameters

𝑃 KPIs values of the alternatives

𝑁 Normalized KPIs

𝑊 KPIs weights

𝑉 Weighted normalized KPIs

𝑉+ Ideal positive solutions

𝑉− Ideal negative solutions

𝑆+ Positive distances

𝑆− Negative distances

𝑞 Number of evaluated alternatives

𝜖 Minimum improvement for the KPIs

𝑛 Number of KPIs

𝛽 Scalability factor

Table 5.14: Table of Notations.
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6.1 Introduction

In the last chapter, we have proposed HINTS, a methodology to enable

IoT network technologies selection and configuration. Since HINTS relies

on simulation, it can lead to the same inconvenience and even aggravate

them. These burdens are: Cost (in terms of time), accuracy, complexity

and accessibility. We explore ways of addressing the first two limitations

in this chapter, while complexity and accuracy are tackled in Chapter

7.

When considering the cost aspect, utilizing HINTS can enable one

to make informed configuration decisions for example. However, this

benefit comes with the trade-off of increased time required for decision-

making processes. Indeed, the number of possible configurations for a

network technology can be very important. For instance, SF for LoRa,

which has a great impact on the performance, can take integer values

between 7 and 12. Add to that the other configuration parameters of

LoRa and their possible values, and the set of combinations becomes

very quickly unmanageable. Yet, determining the appropriate values

to use is a key issue for IoT architects when deploying their solution,

especially since several KPIs can be considered (energy, throughput,

latency, etc.). Even though simulation offers relative scalability, testing all

the configuration combinations could become costly in terms of time and

energy consumption. There is a need to reduce the number of simulations

to reduce these two factors.

Regarding accuracy, NS carries the need for validation and calibration

to make sure that it returns accurate results [178]. For instance, energy

efficiency is a critical aspect of IoT network technologies, as many devices

operate on limited battery power or in energy-constrained environments.

The simulation models can yield unreliable results. Accurate energy

consumption models ensure that the simulated results align closely with

the actual energy usage of the deployed IoT devices and networks. Thus,

this will make the simulation more trustworthy for IoT architects.

In this chapter, we propose two methods to address the limitations

mentioned above. First, to reduce simulation time, we propose COSIMIA

(COmbining SIMulatIon and mAchine learning), which relies on machine

learning to exploit only a part of the exploration space for the design

decision process. As an example of application, we show how combining

simulation and Machine Learning (ML) can help to optimize the configu-

ration of a network technology for a given IoT scenario, with a reduced

number of simulations. Then, we propose a calibration process that can be

applied to improve the accuracy of simulation results, regarding energy

consumption. We demonstrate the feasibility of calibrating simulation

energy models using linear regression based on real measurements with

a Proof of Concept (PoC), highlighting its effectiveness in improving the

accuracy of the simulation models.
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The remainder of this chapter is divided in two parts: Part 6.2 is about the

reduction of simulation time for the design decision, with an application

on configuration optimization. In this part, Subsection 6.2.1 provides

a formulation of the tackled problem, while the proposed method is

described in Subsection 6.2.2. Examples of application are presented in

Subsection 6.2.3.

Part 6.3 concerns the simulation accuracy. The problem is formulated

in Subsection 6.3.1. We describe our solution in Subsection 6.3.2 and we

show an example of application using ns-3 and the FIT IoT-Lab testbed

in Subsection 6.3.3. Related works on energy calibration in simulation

are presented in Subsection 6.3.4.

The conclusion of the whole chapter is provided in Section 6.4.

6.2 Simulation Time

6.2.1 Problem Formulation

We formulate the design decision acceleration process problem like the

following. We have the following parameters as inputs:

▶ An IoT application 𝐴, with its set 𝑅 of characteristics and commu-

nication requirements.

▶ A network technology 𝑇.

▶ A set 𝐶 of possible parameter combinations.

▶ A set 𝐾 of key performance metrics or KPIs that characterize the

behavior of an application 𝐴 on a network technology 𝑇 with 𝐶.

The decision problem consists in finding the parameters 𝐶𝑑 in 𝐶 of the

network technology𝑇 that fit the application requirements 𝑅 and provide

the best performances for the application 𝐴, in terms of KPIs 𝐾.

6.2.2 Proposed Solution

As we have seen in the previous chapter, HINTS can help solve this

problem. However, in its initial version, it would need a high number

of simulations. Indeed, the number of possible parameter combinations

for network settings (including generic and specific parameters) can be

important. If we consider that there are 𝑛 different parameters, where

each one can take 𝑚 different values, a comprehensive research would

lead to𝑚𝑛
simulations. Added to that the time that each simulation takes,

this can quickly become overwhelming.

Thus, the idea of COSIMIA is to generate a reduced sample of the

exploration space (the whole set of possible combinations), calculate a

score for each one and use regression models to learn the scoring of

each combination. Finally, instead of using real simulation, we make a

comprehensive inference using the trained regression models to find the

best combination. These steps are depicted in Figure 6.1, and we detail

them in what follows:

Data generation: This step consists in generating a sample of parameter

combinations, and run simulation to calculate the resulting KPIs for each
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Figure 6.1: COSIMIA functioning.

1: Regression is a technique for investi-

gating the relationship between indepen-

dent features and a dependent outcome.

It is a branch of machine learning, where

algorithms are used to predict continu-

ous outcomes from given input features.

combination. The sampling is done as the following: For each parameter,

we consider the minimal, middle and maximal values (e.g., the values 7,

10 and 12 for SF).

Then, these different parameter combinations are tested using simulation,

using ns-3 in our case. The resulting KPIs are then gathered from the

simulation. Finally, a score is assigned to each parameter combination,

representing the relevance of the parameter combination, using MADM

methods [179] (as done in HINTS, Section 5.3.6 of Chapter 5). This

way, and compared to a comprehensive research, still considering 𝑛

parameters with 𝑚 possible values for each one, this step requires at

most 3
𝑛

simulations.

At the end of this step, we obtain a dataset composed by different

parameter combinations, where each one has a score based on the its

resulting KPIs.

Learning: The second step consists in applying regression models
1

to

predict the score of a given parameter combination, without using simula-

tion. This is done by feeding the generated dataset of samples to different

regression models, where the input variables are the network parameter

combinations, and where the output is the score. Thus, we train models

to learn to predict the correct score of a given parameter combination.

Figure 6.2 shows an example of a generated dataset, highlighting the

inputs and the output of the regression models.

Inference: Once the models have been trained, a comprehensive inference

is conducted for all the possible parameter combinations. For each one,

instead of running the simulation, we use the trained models to calculate

the score. Note that the comprehensive inference is made possible because

the prediction of the score is fast, compared to the actual simulation.

Decison: The decision step consists in comparing the different parameter

combinations according to their score. The parameter combination which

returns the best score is the one retained.
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Figure 6.2: Regression Models Input and

Output.

2: This value is arbitrary and could be

differently set.

Application on Configuration Optimization

In the following, we will focus on configuration parameters of network

technologies (e.g., SF for LoRa or Modulation and Coding Scheme (MCS)

for Wi-Fi). The objective is to be able to provide a decision for the

configuration of an IoT network technology by reducing the number of

simulations, i.e., without making a comprehensive simulation for all the

different configuration parameter combinations. We detail in what follows

the used concepts by COSIMIA for the configuration optimization:

Application modeling: We make the choice in our study to model the ap-

plication by the following parameters (based of the application modeling

provided in 4.3.1):

(i) Number of end-devices.

(ii) Message size, in bytes.

(iii) Message period, which is the interval of time between each message

transmission, in seconds.

(iv) Deployment scope, which represents the maximal distance between

two end-devices.

(v) Radio environment, which expresses the radio conditions where

the IoT application is deployed. It can be rural, urban, suburban or

indoor.

We consider that these five parameters are sufficient in our study to have

a primary characterization of an IoT application.

Network technology configuration: As mentioned in Section 6.1, each

IoT technology is characterized by a set of parameters that are often

unique to each IoT technology. In addition, we consider the number

of gateways as a common parameter for all technologies (with a star

topology) that needs to be optimized. We define a network configuration

by a combination of these parameters (including the number of gateways).

Note that regarding the number of gateways, the sampling is done by

iterating it from 1 to a maximal value that we set to the number of

end-devices divided by 5
2
, with a step of 3.

KPIs: From the KPIs presented in Section 4.3.4, we consider:

▶ Reliability, which represents the amount of correctly received

packets among all the sent ones.

▶ Energy consumption, which is the amount of energy consumed

by the end-devices during the network deployment.



6.2 Simulation Time 89

[180]: Seber et al. (2003), Linear Regression
Analysis

[181]: Friedman (2001), ‘Greedy Function

Approximation: A Gradient Boosting Ma-

chine’

[182]: Breiman (2001), ‘Random Forests’

[183]: Geurts et al. (2006), ‘Extremely

Randomized Trees’

[184]: Peterson (2009), ‘K-Nearest Neigh-

bor’

[185]: Smola et al. (2004), ‘A Tutorial on

Support Vector Regression’

▶ Packet latency, which is the average time that packets take to flow

from the end-device to the gateway.

▶ Cost, which is an estimation of the cost of deployment of the

network. It represents in our case the purchase cost of the gateways.

Note that any other KPI, such as security or environmental impact, can be

considered. If it is a network-related KPI (e.g., jitter), the only condition is

that the used network simulator allows to compute it.

Score computing: A score is used to evaluate each network configuration,

based on its obtained KPIs through the simulation. Finding the best

network configuration amounts to finding the one with the highest score.

As for HINTS, we use Technique for Order Preference Similarity to Ideal

Solution (TOPSIS) to compute the score. Only, in this case, the alternatives

are the network configurations, while the attributes are the considered

KPIs.

Regression models: Several models have been proposed in the literature

for tackling the regression problem. We use the following regression

models, which are extensively used by the community :

▶ Linear Regression: It is an approach for predicting a quantitative

response 𝑌 on the basis of input variables. It assumes that there is

approximately a linear relationship between the input variable and

the output 𝑌 [180].

▶ Gradient Boosting: It builds a set of prediction models in a sequen-

tial manner. It combines these models to create a more efficient

predictive model than the initial ones. The technique works by

fitting the models to the residuals or errors of the previous mod-

els, with each subsequent model focusing on reducing the errors

made by the previous models. The final prediction is made by

aggregating the predictions of all the models [181].

▶ Random Forests: It works by constructing a set of decision trees

using random subsets of the training data and random subsets of

the features. Each decision tree in the set independently predicts

the target variable, and the final prediction is made by aggregating

the predictions of all the trees [182].

▶ Extra Trees: It builds multiple decision trees using random subsets

of the training data and features. However, unlike random forests,

Extra Trees further randomizes the splitting process by considering

random thresholds for each feature instead of searching for the

best split point [183].

▶ K-nearest Neighbors: In k-NN, the prediction for a new data point

is based on the majority vote or averaging of the k nearest neighbors

in the training data. The distance metric, such as Euclidean distance,

is used to measure the similarity between data points [184].

▶ Support Vector Regression: SVR aims to find a hyperplane in a

high-dimensional feature space that has the maximum margin

from the training data points. The algorithm tries to minimize the

error between the predicted and actual values while allowing a

certain degree of tolerance [185].

An algorithm of COSIMIA for the configuration optimization is given in

Algorithm 6.
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Algorithm 6: COSIMIA Algorithm

1: Inputs:

𝑅 = [𝑅1 , . . . , 𝑅𝑘]; Application requirements;

𝑇: IoT network technology;

𝐶 = [𝑐1 , . . . , 𝑐𝑛]; 𝑐𝑖 ∈ [𝑎𝑖 , . . . , 𝑏𝑖]; 𝑐𝑖 , 𝑎𝑖 , 𝑏𝑖 ∈ ℝ; Configuration

parameters;

𝑁𝐸𝐷 ∈ ℕ; Number of end-devices;

𝑁𝐺𝑊 ∈ ℕ; Number of gateways;

𝑁𝑆: Network Simulator;

𝐾 = [𝐾1 , . . . , 𝐾𝑚], 𝐾𝑖 ∈ ℝ; KPI values;

𝑆: Scoring function; 𝑆 : ℝ𝑛 → ℝ;

𝑀: Regression model;

𝐷: Configuration samples dataset;

Algorithm:

/* Initialization */

2: 𝐷 ← ∅
/* Sampling */

3: for 𝑁𝐺𝑊 in [1,
𝑁𝐸𝐷

5
, 2] do

4: for 𝑐1 in {𝑎1,
𝑏1+𝑎1

2
, 𝑏1} do

5: ...

6: for 𝑐𝑛 in {𝑎𝑛 ,
𝑏𝑛+𝑎𝑛

2
, 𝑏𝑛} do

7: 𝐾 ← 𝑁𝑠(𝑅, 𝑇, 𝐶)
8: 𝐷.𝑖𝑛𝑠𝑒𝑟𝑡(𝐶, 𝐾)
9: end for

10: ...

11: end for

12: end for

/* Scoring */

13: for (𝐶, 𝐾) in 𝐷 do

14: (𝐶, 𝐾) ← (𝐶, 𝐾, 𝑆(𝐾, 𝐷))
15: end for

/* Learning */

16: 𝑀.𝑙𝑒𝑎𝑟𝑛(𝐶, 𝑆(𝐾))

/* Inference */

17: 𝑏𝑒𝑠𝑡𝑐𝑜𝑛 𝑓 𝑖𝑔 ← [𝑐1 , . . . , 𝑐𝑛]
18: 𝑏𝑒𝑠𝑡𝑠𝑐𝑜𝑟𝑒 ← 0

19: for 𝑁𝐺𝑊 in [1,
𝑁𝐸𝐷

5
] do

20: for 𝑐1 in [𝑎1 , 𝑏1] do

21: ...

22: for 𝑐𝑛 in [𝑎𝑛 , 𝑏𝑛] do

23: if 𝑀.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐶) > 𝑏𝑒𝑠𝑡𝑠𝑐𝑜𝑟𝑒 then

24: 𝑏𝑒𝑠𝑡𝑐𝑜𝑛 𝑓 𝑖𝑔 ← 𝐶
25: 𝑏𝑒𝑠𝑡𝑠𝑐𝑜𝑟𝑒 ← 𝑀.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐶)
26: end if

27: end for

28: ...

29: end for

30: end for

31: return 𝑏𝑒𝑠𝑡𝑐𝑜𝑛 𝑓 𝑖𝑔
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Application Parameters Case A

modeling

End-devices

• Minimal number 200

• Maximal number 200

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 50

• Minimal frequency 0.001

(packets/second)

• Maximal frequency 0.001

(packets/second)

Environment

• Type Rural

• Scope (meters) 8000

• Expected lifetime N/A

(days)

Table 6.1: Application Modeling of Case

A.

3: Note that for the considered case stud-

ies, although it takes considerable time,

it is still possible to execute the simula-

tions for all the different combinations.

The comprehensive simulation is con-

ducted to validate the regression model

outcome

6.2.3 Examples of Application

In this section, we show the application of COSIMIA for the configuration

optimization with three network technologies: LoRa, Wi-Fi (802.11ac)

and 802.15.4 (6LoWPAN).

Case Study A: Smart Agriculture using LoRa

Based on Section 4.3.2, the considered parameters for LoRa are:

▶ SF: Determines the speed at which the signal frequency changes

across the bandwidth of a channel. The higher the spreading factor

the lower the data rate.

▶ CR: An indication of how much of the data stream is actually being

used to transmit usable data.

▶ CRC: An error-detecting code commonly used in networks to detect

accidental changes in the transmitted data.

▶ Type of traffic: Determines whether the data is sent with or with-

out an acknowledgement. It can therefore be confirmed (1) or

unconfirmed (0), respectively.

The implemented IoT application can be assimilated into a smart agricul-

ture solution, defined as follows: 200 sensors send 50 bytes packets every

600 seconds (10 minutes) to the gateways. The sensors are separated by a

distance (deployment scope) of 8000 meters and are deployed in a rural

environment. These parameters are summarized in Table 6.1.

Table 6.2 shows the results obtained for this first case study. The compre-

hensive simulation shows that the optimal solution is to use 5 gateways,

a SF of 8, unconfirmed traffic, a CR of 1 and a CRC of 0. Determining this

solution required no less than 441 minutes and 3840 simulations, while

COSIMIA required 70 minutes and 480 simulations. This is equivalent

to a reduction in simulation time by a factor of 6. As for the proximity

of the regression models, it is defined by the ratio of the score of the

solution returned by each model to the optimal solution (returned by the

comprehensive simulation)
3
. We find that most of the models reach 99%
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Table 6.2: Results for Case Study A. The format of the solutions is the following: [NGW,SF,Traffic-Type,CR,CRC].

Model Solution KPIs Data generation Proximity

Reliability Energy Latency Cost Time Number of

(%) consumption (ms) ($) (minutes) simulations

(Mili-Watts)

Comprehensive [5,8,0,1,0] 99 0.082 195 5000 441 3840 N/A

simulation

Gradient boosting [5,7,0,1,1] 89.5 0.093 112 500 70 480 0.99

Extra trees [5,7,0,1,0] 89.5 0.048 107 5000 0.99

Random forest [5,7,0,1,1] 89.5 0.05 112 5000 0.99

KNN [5,8,0,2,1] 99 0.082 195 5000 0.997

SVR [10,7,0,1,1] 100 0.048 107 10000 0.94

Linear regression [1,7,0,1,0] 4.45 0.047 107 1000 0.81

of proximity. However, the linear regression struggles to exceed 85% of

proximity, which corroborates the fact that the problem is not linear.

Case Study B: Video-surveillance using Wi-Fi

Still based on Section 4.3.2, the considered parameters for Wi-Fi are:

▶ Number of spatial streams (SI): Determines the number of streams

where coded data signals can be sent and received independently.

▶ Packet aggregation (PA): Determines whether packet aggregation,

which is the process of joining multiple packets together into a

single transmission unit, is enabled or disabled.

▶ Short Guard Interval (SGI): Is the space between symbols (charac-

ters) being transmitted. It can either be short (0.4 µS) or long (0.8

µS).

▶ MCS: An index based on several parameters of a Wi-Fi connection

between two stations. Namely, for 802.11ac, it depends on the

modulation type, the CR, the number of spatial streams, the channel

width, and the guard interval.

We consider in this case an event video-surveillance use-case, where 30

cameras send 2000 bytes packets every 5 milliseconds (which leads to

a data rate of 3 Mbps) to the gateways. The cameras are deployed in

the vicinity of the gateways, with deployment scope of 30 meters, in a

suburban environment. Table 6.3 summarizes these parameters.

We see in Table 6.4 that the simulation time is reduced from 450 to 55

minutes, with ten times fewer needed simulations (720 vs. 72). Most

regression models are able to propose configurations that are at 95 %

proximate from the optimal solution returned by the comprehensive

simulation. Once again, the linear regression model has difficulty re-

turning an interesting configuration in terms of proximity from the

optimal. Indeed, the returned solution is only at 80% proximate from the

optimal.

Case Study C: Telemetry using 802.15.4

As presented in Section 4.3.2, the considered parameters for 802.15.4

(6LoWPAN) are:
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Application Parameters Case B

modeling

End-devices

• Minimal number 30

• Maximal number 30

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 2000

• Minimal frequency 200

(packets/second)

• Maximal frequency 200

(packets/second)

Environment

• Type Suburban

• Scope (meters) 30

• Expected lifetime N/A

(days)

Table 6.3: Application Modeling of Case

B.

Table 6.4: Results for Case Study B. The format of the solutions is the following: [NGW,MCS,PA,SI,SGI].

Model Solution KPIs Data generation Proximity

Reliability Energy Latency Cost Time Number of

(%) consumption (ms) ($) (minutes) simulations

(Watts)

Comprehensive [2,0,0,2,1] 100 0.03 0.09 200 450 720 N/A

simulation

Gradient boosting [3,1,0,3,0] 100 0.02 0.06 300 55 72 0.95

Extra trees [3,1,0,3,0] 100 0.02 0.06 300 0.95

Random forest [3,1,0,3,0] 100 0.02 0.06 300 0.95

KNN [3,7,0,3,0] 100 0.02 0.06 300 0.95

SVR [5,1,1,2,0] 100 0.02 0.12 500 0.83

Linear regression [6,9,1,1,1] 100 0.02 0.12 600 0.8

▶ Number of frame retries (FR): It is the number of the retransmis-

sions limit when there is no acknowledgement received before

dropping the packet.

▶ CSMA backoff (BE): The number of times that the node stays in

the backoff stage after unsuccessful channel sensing.

▶ Maximal backoff exponent (MinBE): Maximal random interval

before sensing the channel.

▶ Minimal backoff exponent (MaxBE): Minimal random interval

before sensing the channel.

In this case, we consider a telemetry use-case, where 50 sensors send 100

bytes packets every second to the gateways. The sensors are separated by

a distance of 200 meters in a suburban environment. Table 6.5 summarizes

these parameters.

Table 6.6 shows that the improvement in execution time is much larger for

this case study. Indeed, we go from 1367 minutes for the comprehensive

simulation to 26 minutes for the data generation, which is equivalent

to an improvement of a factor of 60. This is due to the fact that the

configuration parameters specific to 802.15.4 have on average higher

cardinalities than the configuration parameters specific to LoRa. Still, the

proximity is also on the order of 99% for most of the models, while the

linear regression model is still underperforming.
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Table 6.5: Application Modeling of Case

C.
Application Parameters Case C

modeling

End-devices

• Minimal number 50

• Maximal number 50

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 100

• Minimal frequency 1

(packets/second)

• Maximal frequency 1

(packets/second)

Environment

• Type Suburban

• Scope (meters) 200

• Expected lifetime N/A

(days)

Table 6.6: Results for Case Study C. The format of the solutions is the following: [NGW,MaxBE,MinBE,CB,FR].

Model Solution KPIs Data generation Proximity

Reliability Energy Latency Cost Time Number of

(%) consumption (ms) ($) (minutes) simulations

(Watts)

Comprehensive [3,4,3,4,0] 92 0.03 5.56 300 1367 23040 N/A

simulation

Gradient boosting [3,5,3,5,3] 99.37 0.032 5.58 300 26 405 0.99

Extra trees [3,6,0,0,4] 93.75 0.031 3.91 300 0.99

Random forest [3,8,7,5,3] 100 0.033 31.16 300 0.98

KNN [3,8,7,5,6] 100 0.033 31.16 300 0.98

SVR [5,7,7,5,6] 100 0.03 30.15 500 0.94

Linear regression [10,8,7,5,7] 100 0.02 26.02 1000 0.79

4: Note that "Comp-Sim" corresponds to

the comprehensive simulation done to

all the possible configurations.

As we have seen for use-cases A, B and C with three different applications

and featuring three different network technologies, COSIMIA has been

able to return optimized configurations which are close from the optimal

one returned by a comprehensive simulation. Moreover, this has been

possible through a clear reduction of the simulation time, with factors of

6, 10 and 60 for use-cases A, B and C, respectively.

Impact of the sampling granularity: In the following, we investigate the

impact of the sampling granularity on the performance of the method.

The average proximity is the mean of the proximities of all the tested

regression models.

Figure 6.3
4

shows that the finer the granularity (in other words, the

more points are taken for sampling) the longer the execution time. This

is of course due to the fact that the generation of the data requires

more simulations, which are themselves time-consuming. Regarding the

proximity of the returned solution, it is around 80% when choosing only

two points for the sampling (minimum and maximum values for each

parameter). From granularity 3 (minimum, intermediate and maximum

values as we recommend in COSIMIA) the average precision reaches

95% and remains fixed at this value for the higher values.
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Figure 6.4: Wi-Fi NIC Physical State Ma-

chine in ns-3.

[156]: Wu et al. (2012), ‘An Energy Frame-
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ergy Consumption in 802.11 Devices and

its Implication on Modeling and Design’

6.3 Simulation Accuracy

6.3.1 Problem Formulation

Calibration can be seen as a refining of the simulation models in order

to produce more realistic simulations. The only KPI on which we focus

here is the energy consumption. The energy consumption is highly tied

not only to the used network technology but also to the very deployment.

Indeed, the radio conditions, the nodes positions and the application

workload can strongly influence the energy consumption, as we have

seen through the models presented in Section 4 in Chapter 3. For this

reason, the energy calibration can be done in case we have a small scale

Proof of Concept (PoC) with real devices. As a recall (see Section 3.2.1 in

Chapter 3), energy consumption in discrete-event network simulators is

modeled as follows:

𝐸 =
∑
𝑖∈𝑆
(𝛼𝑖 × 𝑡𝑖) ×𝑉 (6.1)

where:

▶ 𝐸: Energy consumption in Joules,

▶ 𝑆: Set of different physical states,

▶ 𝛼𝑖 : Current consumption of state 𝑖 in Amperes,

▶ 𝑡𝑖 : Total time passed a state 𝑖 in Seconds,

▶ 𝑉 : Voltage in Volts.

As examples, Figure 6.4 depicts the physical states of Wi-Fi NIC in ns-3,

and the possible transitions between them (Further details about this

model can be found in [156]), while Table 6.7 indicates the numerical

values we used throughout the thesis to compute the energy consumption

of the Wi-Fi, LoRaWAN, Wi-Fi HaLow and 802.15.4 NIC. The values for

Wi-Fi were selected by calibrating the state machine against the measure-

ments provided by Serrano et al. in [130]. The values for LoRaWAN are
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those given by default in the ns-3 module for the LoRaWAN consumption

by Magrin et al. [155]. For 5G mmWave, the values are derived from

[186]. For all these different network technologies, we did not take into

account the type of the used end-devices (camera, sensor, etc.). For this

reason, the obtained results for energy consumption may be relatively

unreliable.

Table 6.7: Drawn current values (in mA)

for each state of the machine state used

in ns-3 simulations to evaluate the power

consumption of LoRa, 5G mmWave, Wi-

Fi HaLow, Wi-Fi and 802.15.4 communi-

cations.

State

Technology LoRaWAN 5G Wi-Fi 802.15.4 Wi-Fi

mmWave HaLow

Tx 77 350 7.2 7 107

Rx 28 350 4.4 1.5 40

Idle 1 / 1 / 1

Sleep 0.015 45 / / /

CCA Busy / 1 / / /

Switch / / / 0.5 /

The major problem with the modeling of Equation 6.1 is that, in reality,

the current consumption 𝛼𝑖 of each state 𝑖 is strongly tied to the type

of equipment. Indeed, although several works associate network tech-

nologies to current consumption values (e.g., [77], [64]), it is possible to

find different equipment featuring the same network technology with

different current consumption values (e.g., in [187], [128]).

6.3.2 Proposed Solution

Since we consider that we have a small scale PoC of the deployment to

make our calibration, we suppose that we have access to the sensors

energy consumption. Thus, we propose to used real measures to calibrate

the 𝛼𝑖 values, as follows, and as depicted in Figure 6.5:

Figure 6.5: Calibration Method function-

ing.
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5: The integral can be calculated using

Thomas Simpson’s method.

6: Since the coefficients must be positive,

we use the least square method for the

linear regression.

[53]: Baccelli et al. (2013), ‘RIOT OS: To-

wards an OS for the Internet of Things’

1. Take periodic measurements of the power consumption at a regular

pace.

2. For fixed periods, calculate the energy consumed. To do so, one

can use the integral of the power per time (seconds)
5
. Generate a

dataset 𝐷1.

3. For the same considered period, generate a trace of all the crossed

states in the simulator (Tx, Rx, etc.) and the corresponding times

passed in each state. Generate a dataset 𝐷2.

4. Merge 𝐷1 and 𝐷2, so that we have for each period the amount

of time passed in each state in the simulator, and the consumed

energy in the physical network.

5. Apply a linear regression to infer the coefficients by which the

times passed in the different states must be multiplied to get the

real energy consumed (after multiplying with the voltage that we

consider fixed). These coefficients correspond to the calibrated 𝛼𝑖6.

The pseudo-algorithm of the solution is presented in Algorithm 7.

6.3.3 Example of Application

Use-case Description

Let us consider the case of IoT devices placed in manufacturing facili-

ties that transmit sensor data, in order to monitor critical variables like

temperature, pressure, or machine vibrations. The objective is to enable

real-time monitoring of production processes, early detection of equip-

ment failures or abnormalities, and proactive maintenance to prevent

downtime and optimize operational efficiency. We suppose that the

end-devices are connected to a measuring platform capable of measuring

the energy consumption of each node.

Before deploying this solution, IoT architects would like to have a small-

scale PoC of the deployment to be able to conduct what-if analysis

and scenario simulations during the design phase. This would allow

them to assess the performance of different configurations to select the

most relevant one. This helps in evaluating the effectiveness of potential

improvements before implementing them in a real-world environment.

Besides that, the IoT architects are concerned about the relevance of

the simulation models of the small scale PoC. They would like to be

sure that the provided results are grounded and close to reality. For this

reason, during the ongoing management phase of their IoT solution, they

would also like to use real measures of energy in order to calibrate the

simulation models of the PoC.

We consider that there are 50 sensors sending 100 bytes packets every

second to a gateway. The sensors are separated by a distance of 200

meters. These parameters are available in Table 6.8. The communication

are made through IEEE 802.15.4 network technology.

To illustrate the application of our method, we use the FIT IoT-Lab

and ns-3 as the real deployment platform and the network simulator,

respectively. For the end-devices, we use the M3-board micro-controllers

(see Figure 6.6), and we implement the firmware using RIOT [53] (See

Section 2.3 in Chapter 2).
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Algorithm 7: Energy Consumption Calibration Algorithm

1: Inputs:

𝑅 = [𝑅1 , . . . , 𝑅𝑘]; Application requirements;

𝑇: IoT network technology;

𝑇𝑖𝑚𝑒: Deployment time;

𝑃(𝑡): Mesured power consumption at instant 𝑡;
𝑝𝑒𝑟𝑖𝑜𝑑: Power consumption measurement period;

𝛿: Energy consumption calculation period;

𝑁𝑆: Network Simulator;

𝑃: Power consumption dataset;

𝐷1: Energy consumption dataset;

𝐷2: Physical states times dataset;

𝐷: Final dataset;

Algorithm:

/* Initialization */

2: 𝐷 ← ∅
/* Measurement */

3: while 𝑡 ≤ 𝑇𝑖𝑚𝑒 do

4: 𝑃.𝑖𝑛𝑠𝑒𝑟𝑡(𝑡 , 𝑃(𝑡))
5: 𝑡 ← 𝑡 + 𝑝𝑒𝑟𝑖𝑜𝑑
6: end while

/* Energy Calculation */

7: 𝑡 ← 0

8: while 𝑡 ≤ 𝑇𝑖𝑚𝑒 do

9: 𝐸←
∫ 𝑡+𝛿
𝑡

𝑀(𝑡) 𝑑𝑡 /* Consumed energy between 𝑡 and 𝑡 + 𝛿 */

10: 𝐷1.𝑖𝑛𝑠𝑒𝑟𝑡(𝐸)
11: 𝑡 ← 𝑡 + 𝛿
12: end while

/* Physical State Times in Simulation */

13: 𝑙𝑜𝑔𝑠 ← 𝑆(𝑅, 𝑇, 𝑁𝑆).𝑙𝑜𝑔𝑠 /* Logs of the simulated deployment

(containing physical states and corresponding times) */

14: 𝑡 ← 0

15: while 𝑡 ≤ 𝑇𝑖𝑚𝑒 do

16: 𝑡𝑖𝑚𝑒𝑠 ← 𝑙𝑜𝑔𝑠[𝑡 , 𝑡 + 𝛿] /* Physical state times between 𝑡 and 𝑡 + 𝛿
*/

17: 𝐷2.𝑖𝑛𝑠𝑒𝑟𝑡(𝑡𝑖𝑚𝑒𝑠)
18: 𝑡 ← 𝑡 + 𝛿
19: end while

/* Regression */

20: 𝐷 ← 𝑚𝑒𝑟𝑔𝑒(𝐷1 , 𝐷2)
21: 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔(𝑡𝑖𝑚𝑒𝑠, 𝐸)

22: return 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔.𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡𝑠
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Application Parameters Case Study

modeling

End-devices

• Minimal number 40

• Maximal number 60

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) 100

• Minimal frequency 1

(packets/second)

• Maximal frequency 2

(packets/second)

Environment

• Type Suburban

• Scope (meters) N/A

• Expected lifetime N/A

(days)

Table 6.8: Application Modeling of the

Case Study.

Figure 6.6: M3-board Micro-Controller Components [99].

7: Note that other units can induce ad-

ditional energy consumption, such as

gyroscopes, accelerometers, etc.

Results

Table 6.9 shows the drawn current values of the simulation models before

and after the calibration. As we can see, the values are clearly different

for most of the NIC physical states.

To highlight this difference, Figure 6.8 displays the power consumption (in

milliwatts) measured for one device on the real deployment (FIT IoT-Lab),

through the calibrated simulation models and the default simulation

models of ns-3. As we can see, the calibrated models manage to reproduce

in a very accurate way the power consumption measured on the real

deployment. It is also interesting to see that the power consumption

measured through default models is tremendously far from reality. As

we said before, it is mainly due to the fact that default simulation models

consider only the energy induced by transmission modules, and make

abstraction of the energy consumption induced by the microcontroller

processing unit and the firmware. For instance, it is worth noting that the

used M3 board microcontroller consumes 14 mA at full power, to which

we must add the radio chip which consumes 14 mA when transmitting

and 12 mA when receiving, and other energy-consuming hardware as

well
*
. Figure 6.7 illustrates the main energy-consuming units of a smart

sensor
7
.

* https://www.iot-lab.info/docs/boards/iot-lab-m3/

https://www.iot-lab.info/docs/boards/iot-lab-m3/
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Table 6.9: Default and Calibrated Drawn

current values for each state of the ma-

chine state used in ns-3 simulations

to evaluate the power consumption of

802.15.4 communications.

State Default Drawn Current Calibrated Drawn Current

value (mA) value (mA)

Tx 7 83

Rx 0.5 46

Tx-Busy 7 14

Rx-Busy 1.5 49

Trx-Switch 0.5 0.01

Trx-off 5 ×10
−7

5 ×10
−7

      Microcontroller
      Processing Unit

      Sensing Unit

     Radio Unit

Energy Source
(Battery)

Smart Sensor

Figure 6.7: Smart Sensor Energy Con-

suming Units.

[188]: Hurni et al. (2009), ‘Calibrating

Wireless Sensor Network Simulation

Models with Real-world Experiments’

In order to see whether the calibrated models can be used as a baseline for

the prediction of future deployments, we test the same calibrated models

for a different use-case as the one used for the calibration. We consider

this time that we have 60 end-devices (instead of 40), sending 2 packets

(instead of 1) every second, and we calculate the energy consumption

without running again our calibration. As we can see in the figure, it is still

close to the reality. However, the power consumption remains practically

the same when we increase the density and the traffic workload the way

we did it. This may explain why the calibrated models still perform well.

However, we argue that this increase is realistic in this kind of small

deployment with less than 100 end-devices. Still, it would be interesting

to analyze the relevance of our calibration for deployments featuring for

instance more intensive traffic (e.g., 200 Kbps).

As a side note, we would like to mention that the reliability observed in

the simulation was also far from the real one. This suggests that, despite

our efforts to replicate the deployment accurately in terms of the number

and positions of the end-devices, the simulated radio environment

differed significantly from the actual one. One possible explanation for

this discrepancy is the presence of other active nodes in the FIT IoT-Lab

platform that were in proximity to our deployed nodes. As a result, the

interference caused by these additional nodes was not accounted for

in the simulation, leading to differences in the reliability between the

simulated and real environments.

Figure 6.8: Energy Simulation Models

Calibration Results.
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6.3.4 Related Work

We provide here a brief overview of the related work of the energy

consumption calibration. The authors of [188] provide a study of the

energy-efficiency of a MAC protocol for Wireless Sensor Network (WSN)
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[189]: Chen et al. (2009), ‘An Energy

Model for Simulation Studies of Wire-

less Sensor Networks using OMNeT++’

[190]: Stetsko et al. (2011), ‘Calibrating

and Comparing Simulators for Wireless

Sensors Networks’

[191]: Koch (2021), ‘An Approach for Au-

tomating the Calibration of Simulations

of Parallel and Distributed Computing

Systems’

in simulation, and or real hardware testbed. They propose a method

for cross-comparing simulation results with real-world experiments,

and they show how it can reduce the gap between both. [189] propose a

model for measuring the energy consumption using OMNeT++, that they

calibrate using datasheets of a IEEE 802.15.4. In [190], the authors make

a comparison between WSN simulators in terms of radio propagation

and energy consumption. Then, they propose a calibration for the energy

consumption models but with the classical approach, i.e. by measuring

the current consumption for the sending and receiving. In more recent

works such as [191], the authors focus on calibrating simulators in the

large-scale computing platforms for Parallel and Distributed Computing

(PDC) applications. They propose several accuracy metrics as well as

different calibration algorithms for accuracy maximization. To the best of

our knowledge, there is no work focusing on calibrating state machine

models of simulation, for any network deployment, regardless of the

network technology or the application.

6.4 Conclusion

In this chapter, we have tackled two limitations of HINTS, regarding

simulation: Cost and accuracy. First, we have presented COSIMIA, a

method based on simulation and machine learning to accelerate HINTS

and reduce the number of simulations. The method consists of four steps:

(i) Data generation using sampling, simulation and a scoring function, (ii)

learning, where regression models are trained to predict the score based

on the parameter combination, (iii) an inference step based on the score

returned by the trained regression models and (iv) a decision step where

parameter combination with the best score is retained. Regarding the

learning step, according to the results of our case studies, we recommend

avoiding using a linear regression model, but rather using KNN or

gradient boosting. We have shown its application in the configuration

optimization of an IoT technology in a given context. We tested it in three

case studies including different applications and IoT technologies. Our

results show that COSIMIA is able to deliver solutions close to 99% of

the optimal solution, with a considerable decrease in execution time.

The method has been able to propose a very good configuration (1%

close to the optimal one) approximately 50 times faster than simulating

all the different combinations. The main advantage of COSIMIA is that

it is generic, it can be applied for any network technology, for any

configuration parameters and according to any KPIs and using any

simulator, as long as these aspects are available in the simulation.

Then, we have proposed a method relying on real measurements and

linear regression to enhance the accuracy of the simulation models,

regarding energy consumption. Our method consists of calibrating values

of state machines of simulation models so that the simulated energy

consumption is closer to the real one. We have validated our method

using a real testbed (FIT IoT-Lab), and we saw that the default simulation

models were far from the real values and that our method managed to

considerably reduce this gap. Moreover, we showed that the calibrated

models are able to reproduce in an accurate way a different deployment

than the initial one.
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In the next and final chapter, we tackle the problem of simulation com-

plexity for IoT architects. We propose a no-code platform incorporating

decision-support tools (such as HINTS) to make them accessible to IoT ar-

chitects who do not necessarily have time or a deep expertise in networks

and programming.



1: It is a concept that allows users to

develop software and solutions without

having to write any code.

2: They are defined as virtual represen-

tations of physical objects or processes

capable of collecting information from

the real environment to represent, val-

idate and simulate the physical twin’s

present and future behavior [192].
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7.1 Introduction

As presented in Chapter 5, when it comes to the development of a

tailored or a pre-packaged IoT solution and its deployment in a real

environment, having a long-term and large-scale perspective is often

critical to making the right decisions. To address the need for in-depth

evaluation, network simulation appears as a key enabler. Indeed, it

can provide good insights about the performance of a technology and

permits to test what-if scenarios at scale to trade-off cost, QoS and energy

efficiency. Network simulation complements small scale Proof of Concept

(PoC) for large scale assessment and is cost efficient since there is no need

to massively deploy real IoT equipment. It can be an efficient tool to help

IoT solution architects evaluate the fit and future-proof the technology

before setting it up in real-life scenarios. Moreover, each time the context

or application is changed in production, one will have to challenge the

initial assumptions and verify the actual validity of the infrastructure

settings. For this, simulation is of great help all along the application

lifecycle.

However, simulators like ns-3 require network expertise and knowledge

in C++ programming to design experiments, to run them but also to

analyze and exploit the results. Network simulators have been designed

by network experts targeting network researchers and programmers, not

product managers, industrial teams or even IoT architects, who do not

have the time and skill to perform sophisticated simulations.

In this chapter, we present our contribution to make the network sim-

ulation power accessible and at the service of IoT teams. We propose

an online no-code
1
, namely StackNet, to "democratize" the use of sim-

ulation and reach a community of non-network-experts, in order to let

them explore different alternatives and choices in depth. We address

IoT architects to let them seamlessly benefit from network simulation

via an interactive tool, for what-if scenarios creation and comparison.

This enables them to future-proof the infrastructure when developing

IoT applications or to test a configuration adaption during operations.

This opens a path towards the incremental realization and adoption of

Network Digital Twin (NDT)
2

in IoT solution design and management.

For this, we have developed a model-based approach and its associated

intuitive interface for setting up, running and analyzing simulations

without writing a single script. Moreover, such a no-code approach for

using network simulation would be an efficient way of reaching a large

community of IoT researchers and professionals but also edge comput-

ing specialists and make them able to benefit from network simulation

features. We believe that such a tool, potentially integrated within an

NDT toolbox, can help accelerate the standardization of IoT practice to

boost industry digitization and encourage contributions to open source

IoT network simulators, like ns-3 towards further inclusion of more IoT

network technologies.
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The remainder of this chapter is organized as follows: Problem statement

is presented in Section 7.2. An overview of our approach is given in

Section 7.3. Section 7.4 illustrates how our proposal can be leveraged to

answer typical IoT network questions around a smart building use-case.

Conclusion and future works are given in Section 7.5.

7.2 Problem Statement

The major issues that StackNet tries to solve are: (i) Evaluation an IoT

network technology at scale, (ii) coding a simulation and (iii) dealing

with simulation complexity. We describe each of them below:

7.2.1 Evaluating an IoT Network Technology at Scale

Selecting and configuring the network that best fits the needs of an

envisioned smart application is one important and complex problem the

IoT architects faces. To examine this issue, let us use a smart building

example. We consider the case of the instrumentation of a commercial

building already equipped with a Building Management System (BMS)

in charge of the remote control of Heating, ventilation and air conditiong

(HVAC) systems as well as water and energy regulation. The facility

manager wants to add a smart solution to finely monitor the building, to

gain better visibility on its real usage and to better adapt the building

services. For this, the facility manager would like to deploy a range of

sensors: Entrance detectors, occupancy monitors, air quality sensors,

temperature sensors, smart lighting and other end-devices. This cus-

tomer is working with IoT architects, who are proposing several sensors

supporting various communication technologies. To demonstrate the

feasibility of the project and to qualify the sensors for the solution, the

solution architect has developed a PoC of the smart solution that shows

how sensors collect data and how the prototype application exploits and

visualizes them.

Asking the Right Questions

After having convinced the customer, the architects have to select and

define the detailed configuration of the network together with the sensors

for the targeted deployment, and integrate the final solution. They have

several options for the network, typically LoRaWAN, Wi-Fi, Wi-Fi HaLow

and 802.15.4 and a range of questions that the small PoC has not truly

answered:

▶ How would LoRaWAN and Wi-Fi capacities compare for this

application?

▶ How long will the battery last for this traffic workload?

▶ What are the best settings for maximizing the solution quality in

this specific commercial building?

▶ How many devices would one gateway support?
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Analyzing the Network Behavior Under Application Workload

To answer these questions, network experts would typically simulate the

behavior of network candidates under application workload, considering

the environmental conditions and the application traffic and topology

(number of sensors, their location, etc.). They will evaluate if the traffic

sent by all devices will be properly supported by the network, then

estimate what percentage of packets will be successfully transmitted and

how much energy will be consumed in different scenarios.

To analyze their smart building scenario in depth and at scale, the IoT

architects would have to adopt the same approach: Define the application

requirements as well as the network setup to be tested using a network

simulator, then run a first simulation to establish the base-line and

validate the parameter assumptions with one technology and a basic

application scenario. Then, they would have to proceed with what-if

scenarios comparison. This process requires specific skills as we detail

below.

7.2.2 Coding a Simulation

Network experts generally code network experiments into the appropri-

ated language for their simulator, for example, in C++ for ns-3. This code

globally works as follows: (i) It takes input parameters, (ii) creates and

executes the corresponding network nodes and traffic, (iii) calculates the

KPIs obtained from the simulation.

Technology Comparison

After the base-lining step, one has to conduct technology scenario com-

parisons. This step consists in setting up and running a set of simulations

for: (i) Various network technologies to select the best of them and (ii)

different network configurations to select the best network settings for

the selected network technology. The large number of technology choices

and configuration parameters available could lead to the evaluation and

comparison of a large set of alternatives. Having a systematic and deeper

understanding of their respective behavior in terms of transmission relia-

bility, latency or energy consumption helps to identify the weaknesses

and strengths of each one for the targeted application. Network experts

generally leverage their knowledge and experience to focus on the best

candidates and refine gradually the analysis.

Analyzing the Scalability

After the network technology choice has been established, the scalability

analysis consists in systematically stressing the selected one by the

application workload to understand how an increase in load in terms

of number of devices or/and traffic intensity affects the performance.

The scalability generally matches the incremental way IoT deployments

are made. The initial settings cover the needs for the beginning of the

project. The applications and device deployments supported by the

connectivity infrastructure are supposed to evolve and grow over time.
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[165]: Aramayo-Prudencio et al. (2018),

‘Digital Manufacturing–Escaping Pilot

Purgatory’

3: SIFRAN (https://sifran.labs.
stackeo.io/) is exclusively dedi-

cated to the performance evaluation of

IoT networks, and no decision support is

included.

For example in the smart building case, the number of sensors is expected

to increase and the topology design to change when various levels of

the building will be deployed. It is then necessary to test the capacities

of the network technology and each KPI under higher density or larger

coverage constraints. These analyses also help to define the ideal number

of gateways required to support a given load. Estimating, in advance, the

KPIs for a deployment at scale or at the limits of the system capacities will

ensure that the choice of the technology will survive, to some extent, the

solution’s scaling and the cost will not explode. Indeed, the initial design

of an IoT connectivity should not limit the evolution of the applications

it will support in the future. The architects should be able to deliver

new services and provide enhanced performance in different ways in

the coming years. Of course this flexibility has cost and interoperability

requirement counterparts that simulation helps to consider very early in

the project. In the case of pre-package IoT solutions, the scalability study

enables vendors to adapt the technical characteristics of the solution to

the needs of their market.

7.2.3 Dealing with Simulation Complexity

As we can see, this simulation workflow is far from the reach of IoT

architects, who are not necessarily network experts. Consequently, they

naturally tend to overlook the systematic analysis of the technology they

deploy (resp. sell). This often leads to project (resp. business) failure at

short, mid or long term [165].

To change this, we propose to abstract as much as possible the complex-

ity of the simulation process and guide IoT architects in the in-depth

performance evaluation of IoT network technologies for ensuring their

IoT solutions design and evolution.

7.3 Proposed Solution

In this section we explain how we transform the complex simulation

process detailed above and encapsulate the simulation and analysis

code described in a no-code automated network simulation software

named StackNet. This software relies on the SIFRAN
3

tool, which works

as a translator from ns-3 templates to forms that are executed in the

background in ns-3 software. The architecture of SIFRAN is depicted in

Figure 7.1.

7.3.1 Principles

The principle of our approach is to guide the user in the methodological

evaluation via a friendly user interface and to automate the coding part.

This leads to the following requirements:

▶ Simplifying and structuring the network performance evaluation

process,

▶ Letting the user make assumptions for the various application

parameters,

https://sifran.labs.stackeo.io/)
https://sifran.labs.stackeo.io/)
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Figure 7.1: SIFRAN Architecture.

▶ Proposing pre-defined settings for network parameters,

▶ Coding automatically simulation scripts to get the KPIs evaluation

via a selected simulator,

▶ Deploying the simulator underneath to give online access to it,

▶ Enabling interactive experiments,

▶ Gathering the results and creating easy-to-read charts,

▶ Making simulation data speaks for the decision-makers.

7.3.2 Methodology

To analyze the performance and the scalability of various network options

with StackNet framework, IoT architects will perform the tasks listed

below:

1. Identify key questions to answer for correctly supporting the

targeted application.

2. Describe the application by initializing its important parameters.

3. Define a set of simulation scenarios to compare various networking

alternatives.

4. Define a set of simulations to analyze the impact of the potential

increase of fleet size or of workload in the future.

To get all these results, IoT architects define and run systematic ex-

periments, changing one network parameter at a time for impact and

sensibility analysis. At the end, they will be able to demonstrate the

results of the integrated solution to the IoT teams, the end-customer and

sales representatives. Figure 7.2 below details the steps of a comparative

simulation workflow.

7.3.3 Modeling

To run each individual scenario, one has to provide the input parameters

that define a scenario, and to gather the output metrics for evaluating the
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Figure 7.2: Comparative simulation

Workflow with 3 Considered Scenarios.

performance. The no-code simulator abstracts what is an IoT scenario in

order to be able to capture any IoT use-case and “code” it automatically

in the simulator (for example ns-3) language. For this, we segregate the

description of an IoT scenario in two parts: The application section and

the network section. Indeed, application parameters can be easily defined

by the application developer while the network settings are the difficult

aspects of the simulation. The application model can be mutualized for

several scenarios. We also have to propose a comprehensible way of

defining the targeted output metrics (KPIs) that enable a user to analyze

and compare various IoT connectivity infrastructure scenarios easily.

▶ Application modeling: For the application modeling, we rely on

the framework described in Section 4.3.1.

▶ Network modeling: The specification of an IoT network simulation

scenario needs a network model defined by a list of parameters

representing the network technology and topology, as described in

Section 4.3.2. In StackNet, pre-built network models are made avail-

able to the IoT architects, so they can integrate them in simulation

scenario without network expertise.

7.3.4 Designing the No-code Interface

A simulation scenario is defined by the application model, which is set

once for several experiments, and the network model and settings on the

other side. Various network settings can be selected to compare what-if

scenarios. To automatically generate the scripts for running a simulation,

our framework provides a dynamic interface to initialize the values of

the application model’s parameters and the selected network settings of

a scenario, as illustrated in the left column of the StackNet’s interface of

Figure 7.3. Pre-defined network settings with default values are proposed
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Figure 7.3: Dynamic Interface for Setting and Analyzing a Scenario.

Figure 7.4: Studio of the Stackeo IoT

Solution Digital Twin platform (www.
stackeo.io)

4: https://www.stackeo.io/

for each supported technology. These pre-defined settings can be easily

uploaded then adjusted manually. The interface enables to create and

save multiple scenarios.

To simplify the architecture and topology design, a diagramming interface

is also proposed by the Stackeo’s
4

studio as illustrated in Figure 7.4. The

figure represents an example for the aforementioned smart building

solution, comprising: Five sensors deployed in a level and a parking, two

LoRaWAN gateways, an IoT hub, a database, an analytics pipeline and

finally a smart building application.

Once the application model and the network settings are initialized, the

simulator is invoked. The simulation script is automatically generated

(like described in Section 4), the simulation executed, and the resulting

output metrics (KPIs) interactively visualized in scenario dashboards. To

permit users to analyze and explain one particular scenario in context,

they can open the input parameters panels together with the results

dashboard (see Figure 7.3).

www.stackeo.io
www.stackeo.io
 https://www.stackeo.io/
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[193]: Rakhmatov et al. (2001), ‘An Ana-

lytical High-level Battery Model for Use

in Energy Management of Portable Elec-

tronic Systems’

Simulation Script Generation

The steps for coding an IoT simulation scenario in an ns-3 script are

described in the following:

1. Input parameters definition: This part of the code is where all the

application and network parameters are set. These include both

traffic and low-level parameters. Clearly, the considered parameters

differ depending on the implemented IoT network technology.

2. Nodes placement: This code section creates all the nodes (end-

devices and gateways) and places them in three dimensional space.

3. Layers configuration: The network technology is defined here by

setting its physical, mac and network layers.

4. Low-level parameters configuration: The low-level parameters

which have been declared such as the spreading factor for Lo-

RaWAN are instantiated and set at the nodes level here.

5. IP address configuration: In case the IP addresses are supported

in the nodes, we configure them in this part in order to make the

nodes accessible to each other.

6. Application traffic specification: This part is where the traffic

definition is made. Depending on the traffic type, applications

specification (packet size, etc.) are defined and installed in the

nodes, with fixing the destination address.

7. Energy configuration: To keep trace of the consumed energy

during the simulation, an energy source and a draining model

are configured on nodes. The energy source can either be linear

or nonlinear. The latter considers the inherent battery discharge

and recharge [193]. The energy consumption models are based on

state-machines, which assign to each physical state a current draw

consumption in milliamperes.

8. Trace files generation: There is the possibility in ns-3 of generating

Packet Capture (pcap) and tracing files which contain all the packets

that have flowed through the network. It is worth noting that pcap

files can be opened with software like Wireshark, while the trace

files can be read using any text editor.

9. KPIs calculation: At the end of the template, all the targeted KPIs

(packet throughput, packet latency, reliability, energy consumption

and battery lifetime) extracted from simulation are gathered.

The results dashboard gathers and highlights the KPIs related to the IoT

connectivity solution under study in the specified application context as

illustrated in the Figure 7.4. The network performance evaluation focuses

on five KPIs. These KPIs are: (i) Goodput (or throughput), (ii) reliability,

(iii) packet latency, (iv) energy consumption and (v) battery lifetime. We

consider that, together, these metrics provide a fair representation of the

performance of an IoT network technology for a given scenario.

If the application requires high quality data, like for precision air quality

monitoring in the operating room of a hospital, then, estimating the

reliability is of utmost importance. For a use-case like real-time equipment

location application, packet latency is what matters the most. If the

deployment of sensors and the battery change are difficult, energy

consumption and battery life time have critical importance.
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Figure 7.5: Illustration of the No-code Workflow and its Mapping to Expert simulation for IoT Scenarios Analysis.

As the IoT architects are looking for scenario comparison, a dedicated and

intuitive dashboard (e.g., Figure 7.7) is proposed to display comparative

results and charts, and to let the best technology and configuration

immediately stand out.

The evaluation methodology has been seamlessly integrated within the

interactive front-end while the programming and networking expertise

have been encoded and hidden within the back-end. This makes the

simulation experience smooth and quick, allowing the IoT architects to

focus on the data and decision process rather than bothering them with

programming and results collection complexity. Figure 7.5 illustrates

the no-code workflow for creating and setting various scenarios for

comparison, and the corresponding mapping to the simulation workflow

activated underneath.

7.4 Use-case Example

This section details how IoT architects would use StackNet for the

aforementioned smart building use-case. The application model is defined

by the following: 100 end-devices are placed in a building. They are

separated by a distance of around 200 meters. They send one packet

of 100 bytes every 2 minutes. For the scalability analysis, the network

density is scaled (up to 600 end-devices) and the traffic workload is

increased (one packet of 110 bytes is sent every 90 seconds). The IoT

architects introduce the application model inputs, which can be found in

Table 7.1. Figure 7.6a displays the Application model inputs as entered in

the online tool.

Then, IoT architects create various scenarios for different network tech-

nologies, typically Wi-Fi, 802.15.4, 802.11ah and LoRaWAN. Figure 7.6b



112 7 IoT Network Technologies No-Code Simulation

Table 7.1: Application Modeling of Case

Study.
Application Parameters Case Study

modeling

End-devices

• Minimal number 100

• Maximal number 600

• Battery capacity 2.4

(Amperes.hour)

Workload

• Traffic direction Upstream

• Message size (bytes) {100, 110}

• Minimal frequency 0.016

(packets/second)

• Maximal frequency 0.032

(packets/second)

Environment

• Type Indoor

• Scope (meters) 200

• Expected lifetime N/A

(days)

gives the inputs for a LoRaWAN scenario generation.

Let us consider how IoT architects can leverage the network simulation

service to easily answer the questions asked in Section 7.2:

1) How would LoRaWAN and Wi-Fi capacities compare for this smart
building application? Figure 7.7 displays the performance summary of

the different technologies explored. We can easily observe that all the

technologies perform the same in terms of goodput and reliability, i.e. all

the packets are correctly received. However, LoRaWAN clearly outclasses

the other technologies, including Wi-Fi, in terms of battery lifetime (up

to 700 days). Therefore, we can say that LoRaWAN is more relevant than

Wi-Fi in the basic version of this use-case.

2) How long will the battery last? The battery lifetime of Wi-Fi can last

approximately 3 months (90 days) while 802.15.4 can go up to 5 months

(150 days). The difference is not that big, but it shows that 802.15.4 is better

designed and suited for this IoT applications than Wi-Fi. For LoRaWAN,

it can go up to approximately 2 years.

3) What are the best settings with the LoRaWAN technology (spreading
factor) to maximize the solution quality in this specific commercial
building? Figure 7.8 shows how the IoT architects can further explore

some configurations of LoRaWAN with different spreading factors (7,

8 and 9) to determine the impact of this parameter on the performance.

Except covering longer distances, we observe that higher Spreading Factor

(SF) is less interesting in terms of all the considered Key Performance

Indicators (KPI). Packet latency is increased, which makes collisions more

likely, and therefore lessens reliability. Additionally, end-devices spend

more time to send a packet, and thus consume more energy, leading to

lower battery lifetime. We see that a lower SF results in lower message

latency, better reliability and longer battery lifetime. In this case SF of 7

is the best setting.

4) How many devices would one gateway support? Figures 7.9a and

7.9b highlight the various network technologies’ performance in terms

of reliability and packet latency for the scaled settings. We see that Wi-Fi

HaLow, 802.15.4 and Wi-Fi behave well in terms of reliability. However,
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(a) Interface for Modeling the Application. (b) Interface for Network Settings.
Figure 7.6: Application Model and Net-

work Settings Abstraction.

it drops faster for LoRaWAN (down to 60% for 600 end-devices). The

scalability study shows that one LoRaWAN gateway can handle up to 200

sensors before deteriorating the performances, while one Wi-Fi HaLow

gateway can handle 400 sensors without noticing any degradation in

the performances. The node’s placement and the radio environment in

this use-case make it impossible to use only one gateway for Wi-Fi and

802.15.4.
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Figure 7.7: Results for the Network Tech-

nologies Comparison (Q1 & Q2).

Figure 7.8: Results for the LoRaWAN

Configuration (Q3).

Figure 7.9: Results for the Scalability

Study (Q4).

(a) Reliability.

(b) Packet Latency.
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5: https://stackeo.io/

7.5 Conclusion

In this chapter, we have presented StackNet, a no-code framework to

ease and automate IoT network simulation and its integration in a SaaS

(Software as a Service) platform. This approach enables IoT architects

to test and compare IoT network technologies without learning and

deploying any network simulator nor coding any script. We began by

identifying the network evaluation problems that IoT architects face on

their journey, and the difficulty of running network simulations. We

described our approach by highlighting the salient aspects that need to

be taken into consideration for hiding the complexity of IoT simulation

while empowering architect with an intuitive solution to design and

compare alternative scenarios.

An application of our methodology and tool on a smart building use-case

has been presented. We put the emphasis on the ease of simulation

initialization, on results visualization, on what-if scenarios comparison.

We show how the no-code framework helps IoT architects ask and answer

their own design questions. The tool currently supports simulations

with Wi-Fi, LoRaWAN, Wi-Fi HaLow, 802.15.4 and 5G mmWave, but is

limited by the availability of network technologies in ns-3. As the no-code

and as a service approach can democratize the usage of cost-effective

evaluation methods like simulation in IoT, we hope that our no-code tool

dedicated to the simulation of IoT network technologies will encourage

the systematic development of ns-3 simulation modules for other IoT

network technologies. StackNet can be freely accessed via the Stackeo

digital twin platform here https://app.stackeo.io/. We believe

that such a tool, potentially integrated within a network digital twin

toolbox, can help accelerate the standardization of IoT practice to boost

industry digitization and encourage contributions to open source IoT

network simulators.

This study was conducted in collaboration with Stackeo
5
, a company

that provides collaborative software and consulting services to support

businesses and integrators in planning, scaling, and optimizing smart

connected solutions efficiently and quickly. Stackeo enhances IoT teams

by incorporating Modeling, Simulation, and Digital Twin Network tech-

nology, enabling accelerated progress and ensuring the profitability,

reliability, and sustainability of strategic projects.

https://stackeo.io/
https://app.stackeo.io/
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The main goal of this thesis was to propose solutions that allow IoT

architects to make informed decisions during the design and ongoing

management phases of their IoT solution lifecycle. In particular, we

were interested in the problems of the selection and configuration of

IoT network technologies for a given IoT solution. In this chapter, we

provide a summary of the major contributions of this thesis. Then, we

give their major limitations and we finally give some perspectives and

future works.

8.1 Contributions

8.1.1 Modeling and Evaluation

We have introduced a framework that assesses the performance of

network technologies in IoT applications, where multiple end-devices

communicate through gateways. The framework includes defining a

scenario and its key performance indicators (KPIs) for evaluation. To

demonstrate its applicability, we applied the framework to two use

cases inspired by real-life IoT applications, examining different network

technologies. We particularly focused on energy efficiency and scalability

with increasing end-devices. The evaluation results, based on the specific

applications, emphasize the significance of considering a comprehensive

approach to evaluate the suitability of communication technologies in

their specific contexts.

8.1.2 Selection

We have presented HINTS, a methodology designed to support the

selection and configuration of IoT network technologies. HINTS utilizes

a combination of IoT network technology modeling and a five-step de-

cision process. The chapter outlines each step of the process, which

includes: (i) Application modeling, where the IoT application’s specific

requirements and key performance indicators (KPIs) are abstracted; (ii)

Pre-selection, which eliminates unsuitable network technologies from

consideration; (iii) Scenario design, where the application is configured

with potential network technology candidates; (iv) Evaluation, involving

iterative identification of the best-suited topology using techniques such

as simulation to estimate KPIs in the targeted application scenario; and

(v) Decision-making, where scores are assigned to each alternative using

a Multi Attibute Decision Making (MADM) method derived from Tech-

nique for Order Preference Similarity to Ideal Solution (TOPSIS). The

results demonstrated that HINTS enables a comprehensive and informa-

tive comparison of IoT network technologies within a given application

scenario. Additionally, it facilitates the exploration and determination of

network configuration parameters and the number of gateways required

for deployment. The study emphasizes the significance of considering
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the application context, environment, and scaling factor in the network

selection process and expected performance.

8.1.3 Limits of Simulation

Simulation Time

We have introduced COSIMIA, a methodology combining simulation

and machine learning that accelerates the design decision of HINTS

by reducing the number of simulations. We showed an application on

network configuration optimization. COSIMIA consists of three main

steps: (i) data generation, which involves sampling, simulation, and

a scoring function to generate data points for training; (ii) learning,

where regression models are trained to predict scores based on the

network configuration; and (iii) inference step, which utilizes the trained

regression models to search for the optimal configuration based on

the predicted scores. The results indicated that COSIMIA could obtain

promising results on a couple of different examples, featuring different

IoT applications with different network technologies.

Simulation Reliability

We explored how experimentation can be coupled with simulation to

make the latter more grounded. Precisely, we proposed a method to

calibrate the energy consumption of the models used by the simulation

to make them closer to reality. We introduced a method that utilizes

linear regression to calibrate the current consumption values of state

machines in order to make the simulated energy consumption more

accurate. We conducted experiments using a real testbed (FIT IoT-Lab)

and observed significant discrepancies between the default models and

the actual values. Our proposed method successfully reduced this gap,

improving the realism of the simulation. We showed how our method

could be used with a small scale Proof of Concept (PoC) during the

design phase, where there is access to energy measures.

8.1.4 No-code Simulation

We presented StackNet, a framework designed to simplify and automate

IoT network simulation and its integration into a Software as a Service

(SaaS) platform, without requiring users to learn complex network

simulators or write code. We address the challenges faced by IoT architects

in evaluating IoT network technologies and the difficulties associated with

running network simulations. Our approach focused on providing an

intuitive solution that allows architects to design and compare alternative

scenarios while hiding the complexity of IoT simulation. We outline the

key aspects of our methodology, which aims to empower architects by

facilitating simulation initialization, results visualization, and comparison

of what-if scenarios. The application of StackNet emphasized the ease

of use in simulation initialization, visualizing results, and comparing

different scenarios.
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[194]: Naeem et al. (2022), ‘A Sigfox Mod-

ule for the Network Simulator 3’

1: It is possible to simulate mobile end-

devices in ns-3 using different Mobility

Models. Details can be found here:

https://www.nsnam.org/docs/
models/html/mobility.html.

8.2 Limitations & Perspectives

8.2.1 Modeling and Evaluation

First, one of the main limitations of our framework is that the considered

energy consumption is only limited to transmission. Sensing and process-

ing may induce additional energy consumption that is not captured by

this framework. Also, the environmental impact should be considered by

taking into account all the chain (creation of end-devices, recycling, etc.).

Then, since our framework mainly relies on simulation, it is highly tied

to the availability of the network technologies in the used simulator. Due

to the requirements of abstraction and generalization of the study, we

saw simulation as a natural choice, and indeed it allowed us to make the

comparison of several network technologies using the same tool, namely

ns-3. However, it was a complex task to integrate network technologies

and their energy models that were not part of the official release of ns-3

but distributed through various unofficial patches. We believe that having

a unified framework for simulating different network technologies on

the same simulator can be of great interest to the research community.

Moreover, Low Power Wide Area Network (LPWAN) technologies like

NB-IoT, LTE-M, Sigfox, or even satellite communication still have to be

included in our framework (a recent work [194] has proposed a module

for simulating Sigfox networks in ns-3). In this context, heterogeneous

networks, which involve the integration and interconnection of different

network technologies within a single IoT deployment, become particularly

relevant. They enable the seamless coexistence and interaction of various

communication technologies, such as cellular networks, Wi-Fi, Bluetooth,

Zigbee, and satellite communication, among others. The inclusion of

heterogeneous networks in our framework could allow us to address the

challenges and opportunities associated with diverse technologies, such

as the dynamic network selection during the operation phase of the IoT

solution.

Another major limitation of our work is that our modeling does not

consider mobile use-cases. Applications like asset tracking, fleet man-

agement, location-based services and diverse smart city applications are

gaining a lot of interest. It would be interesting to explore how simulation

can be used to help in the design of this kind of application. In fact, we

have tested some mobile use-cases with Wi-Fi HaLow and LoRaWAN in

ns-3
1
, but it resulted in strange results where the end-to-end reliability

was extremely low. It would be interesting to investigate this issue and

see how it can be solved. Finally, mesh networks and hierarchical network

interconnections, utilizing routing protocols like Routing Protocol for

Low-Power and Lossy Networks (RPL), offer alternative architectures

for IoT deployments that were not investigated in this thesis. These

alternative architectures introduce additional decision considerations,

such as optimizing power-efficient routing and load-balancing strate-

gies. While these aspects are not addressed in this thesis, they present

interesting avenues for further exploration in the realm of IoT network

design and optimization. Finally, it is worth recalling that this thesis

only tackles issues related to the PHY and MAC of IoT solutions. The

upper layers of the IoT architecture, including the application and service

layers, face several challenges. These challenges, which include efficient

https://www.nsnam.org/docs/models/html/mobility.html
https://www.nsnam.org/docs/models/html/mobility.html
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[195]: Paria et al. (2020), ‘A Flexible

Framework for Multi-objective Bayesian

Optimization using Random Scalariza-

tions’

2: It is a concept used in multi-objective

optimization to describe the set of so-

lutions that cannot be improved in one

objective without worsening at least one

of the other objectives [196].

3: It is called Online Learning, since the

learning process is done gradually and

not on an established dataset, as it is the

case for other learning algorithms.

data management and processing, interoperability and standardization,

security and privacy concerns, also need a thorough investigation.

8.2.2 Selection

The major limitation of HINTS concerns the subjectivity in the use of

TOPSIS (and MADM methods in general). On the one hand, we need to

keep in mind that MADM methods are just a way of scoring alternatives

according to given criteria: The scores they provide are absolutely not

to be considered as ground truth for the performance comparison. On

the other hand, other more sophisticated methods for the multi-criteria

optimization can be considered, such as [195] where one can choose to

explore different regions of Pareto front
2
. This means that some criteria

may be favored compared to others in a more subtle way than just using

multiplicative weights, as done in MADM methods.

8.2.3 Limits of Simulation

Simulation Time

A natural limitation of COSIMIA is that it works like a heuristic. Indeed,

even though it seems to work well on the presented use-cases, there is no

guarantee that the method will manage to find a solution near the optimal.

Moreover, the proposed sampling (min-mid-max) for the data generation

step may let us think that the method works on parameters that have a

monotone influence on the score provided by TOPSIS. If it were not the

case, the sampling would miss some important values and thus would

probably generate worse results that the presented ones. For that sake,

we have initiated work with a colleague where we propose a method

for optimizing the network configuration using Bayesian optimization,

which allows a more robust way of exploring the data to find the optimal

configuration. Bayesian learning or optimization is a type of statistical

learning that uses Bayesian probability theory to make predictions and

decisions based on acquired data
3
. Maintaining a probability distribution

over the solution space enables systematic exploration of different regions

while exploiting areas that are likely to yield better solutions. Indeed,

the obtained results are very promising, and the solution is able to find

optimized configurations in even less time than COSIMIA.

Simulation Reliability

The main limiting factor of the presented calibration method is the fact

that it only works for a given deployment. Indeed, energy consump-

tion is strongly tied to the type of the end-device, and affected by the

deployment, the radio conditions, etc. Thus, the calibrated simulation

models are not intended to be used on other deployments with other

end-devices. Moreover, our method assumes the availability of periodic

energy consumption measures from the PoC. This assumption may be

relatively strong and restrictive. It is indeed challenging to offer a measur-

ing platform for the energy consumption of the end-devices. This would

mean that there are typically watt meters connected to the end-devices. It
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can be very complicated to provide such a measuring platform. One way

of avoiding these restrictive assumptions would be to have benchmarks

of energy consumption of different application models (as defined in

Chapter 4), classified according to their characteristics (density, workload,

etc.). Then, to calibrate a simulated deployment with a given application,

one could use data from an application of the same class. As a perspective,

it would be interesting to see how our method can enhance classical

Network Digital Twin (NDT) architectures, which hold a permanent

connection between the virtual and the physical twin, i.e., the physical

network, along the whole solution lifecycle. This way, a calibration can

be triggered every time the deployment changes (in terms of density or

traffic workload). However, it would be of interest to analyze the cost of

such a permanent connection and its advantages for the design process,

compared to a small-scale PoC during the design phase only, as we did.

Moreover, it would be interesting to see if we can calibrate other KPIs

such as the radio link quality for instance. To accurately reproduce a real

radio environment in simulation is still an open challenge.

8.2.4 No-code Simulation

Regarding the limitations of StackNet, as the user interface is simulator-

agnostic, we plan to adapt the back-end to support other simulators like

OMNeT++ and even experimental test-beds to leverage the same user-

friendly tool for technology and configuration comparison. In terms of

future works, we will also extend StackNet with a decision support engine

to generate recommendations for network selection and configuration.

We will also combine network simulation with holistic and global IoT

solution monitoring for precise estimation of the financial cost and the

environmental impact analysis.
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8.3 Concluding Remarks

All these different perspectives show that the contributions of this thesis

still have a large room for improvement, and there is still a lot to do.

However, we believe that the results obtained through this work confirm

the significance of this research area, and we hope that they will serve

the community of researchers and of IoT architects, fostering stronger

relationships and collaboration between them. By sharing a common

objective of enhancing connectivity and services for a wide user base,

this collaboration can lead to meaningful advancements and better meet

the needs of the IoT ecosystem.

From a personal perspective, this research work has made me realize the

complexity and challenges of the IoT field, such as network simulation,

mastering network technologies, or even abstraction, formalization and

generalization of IoT applications. Network simulation, in particular, can

be a daunting task, requiring a deep understanding of various simulation

tools, models, and protocols. The process of mastering network technolo-

gies is equally complex. Furthermore, formalizing IoT applications poses

its own set of difficulties, as it demands a comprehensive understanding

of real-world scenarios and the ability to capture user needs in a formal

framework.

Despite the inherent challenges, my conviction is that the perspectives

are very promising. Delving into these areas was an exciting experience

that I have greatly appreciated. Navigating through the intricacies of

network simulation and mastering network technologies has allowed me

to significantly expand my knowledge and skills, and has provided me

with valuable insights into the inner workings of networking systems.

Finally, I hope that the results presented in this thesis may be reused in

further research work, enabling me to contribute to the advancement of

the field.
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