
HAL Id: tel-04238062
https://hal.science/tel-04238062

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Facing and Exploiting the Quantum Wave in
Computing: New Security Definitions and

Cryptographic Constructions
Quoc-Huy Vu

To cite this version:
Quoc-Huy Vu. Facing and Exploiting the Quantum Wave in Computing: New Security Definitions
and Cryptographic Constructions. Computer Science [cs]. Université Paris - Panthéon - Assas, 2023.
English. �NNT : �. �tel-04238062�

https://hal.science/tel-04238062
https://hal.archives-ouvertes.fr

T
hè

se
de

do
ct

or
at

Fé
vr

ie
r/

20
23

Université Paris - Panthéon - Assas
Ecole doctorale d’Économie, Gestion, Information et Communication

Thèse de doctorat en Informatique

Préparée à l’École normale supérieure

Soutenue le 01 Février 2023

Facing and Exploiting the Quantum Wave in Computing:
New Security Definitions and Cryptographic Constructions

Quoc-Huy VU

Sous la direction de Céline Chevalier

Membres du jury :
Céline Chevalier Directeur de thèse

Université Panthéon-Assas
Gorjan Alagic Rapporteur

University of Maryland
Prabhanjan Ananth Rapporteur

University of California, Santa Barbara
Anne Broadbent Examinateur

University of Ottawa
Elham Kashefi Examinateur

Sorbonne Université
Hieu Phan Examinateur

Télécom Paris
Olivier Blazy Examinateur

École Polytechnique
David Pointcheval Examinateur

École Normale Supérieure

Avertissement
L’université n’entend donner aucune approbation ni improbation aux opinions émises
dans cette thèse ; ces opinions doivent être considérées comme propres à leur auteur.

Résumé

La cryptographie moderne a un ennemi de taille à l’horizon : la montée inévitable des
ordinateurs quantiques. Cependant, cette même puissance de calcul permettrait égale-
ment de trouver des solutions sur des tâches cryptographiques qui sont tout simplement
impossibles à réaliser avec la technologie actuelle. Dans cette thèse, nous mettons les
pieds dans un univers où le quantique est omniprésent en y présentant notamment deux
principales contributions.

Nous mettons en avant à la fois des nouveaux modèles et de nouvelles analyses
de sécurité pour deux primitives cryptographiques : les chiffrements et les preuves à
divulgation nulle de connaissance non interactives. Les définitions usuelles de sécurité
de ces primitives requièrent intrinsèquement la capacité d’enregistrer et de comparer
des chaînes classiques. Cependant, les tâches d’enregistrement et de comparaison sont
extrêmement difficiles dans le monde quantique en raison du principe d’incertitude. Nous
proposons deux alternatives afin de surmonter cette barrière. De plus, nos notions de
sécurité sont les premières à prendre pleinement en compte les attaques quantiques dans
lesquelles les attaquants peuvent interagir avec les utilisateurs finaux sur des canaux
quantiques.

D’autre part, nous montrons que la disponibilité des ordinateurs quantiques se
révèle être également à l’avantage des cryptographes, même lorsque les utilisateurs
finaux n’utilisent que des communications classiques. En particulier, nous présentons
un protocole interactif entre une Alice classique et un Bob quantique. Ce dispositif
permet à Alice d’envoyer un état quantique caché non clonable à Bob par des canaux
classiques. En outre, cet état quantique non clonable établit une forte propriété dite de
monogamie de l’intrication, qui décrit les limites de la force des corrélations multipartites
quantiques. Enfin, nous appliquons notre protocole et nous donnons les premiers schémas
semi-quantiques de protection contre la copie.

Mots clés : Cryptographie quantique, Modèles de sécurité, Chiffrement, Preuves à
divulgation nulle de connaissance, Cryptographie non clonable.

Abstract

Modern cryptography has a major foe on the horizon: the inevitable rise of quantum
computers. However, the same computing power will also unlock solutions to crypto-
graphic tasks that are simply impossible to achieve with the current technology. This
thesis sets foot in a ubiquitous quantum world, where everyone will be running quantum
computers, with two main contributions.

Firstly, we put forth new security models and security analyses for two cryptographic
primitives: encryption and non-interactive zero- knowledge proofs. Classical security
definitions of these primitives inherently require the ability to record and compare
classical strings. However, the tasks of recording and comparing are highly non-trivial
in the quantum setting, due to the quantum uncertainty principle. We propose two
different ways to overcome this recording barrier. Our security notions are the first to
fully capture quantum attacks in which the codebreakers can interact with the end-users
over quantum channels.

Secondly, we show that the availability of quantum computers turns out to be also
the advantage of codemakers, even when the end- users only use classical communication.
In particular, we exhibit an interactive protocol between a classical Alice and a quantum
Bob which allows Alice to send a hidden unclonable quantum state to Bob through
classical channels. Furthermore, the constructed unclonable quantum state establishes
a strong monogamy-of-entanglement property, which describes the limitations on the
strength of quantum multipartite correlations. We further apply our protocol to quantum
copy-protection and give the first semi-quantum copy-protection schemes.

Keywords: Quantum Cryptography, Security Models, Encryption, Zero-Knowledge
Proofs, Unclonable Cryptography.

Contents

Résumé iii

Abstract iv

1 Introduction 1
1.1 History of Quantum Computing . 1
1.2 Cryptography Meets Quantum Computers 2

1.2.1 Quantum Security of Classical Cryptosystems 2
1.2.2 Unclonable Cryptography . 4

1.3 Contributions of the Thesis . 5

2 Preliminaries 9
2.1 Notation . 9
2.2 Quantum Information and Computation 10

2.2.1 Quantum Computation . 10
2.2.2 Efficiency in the Quantum Setting 12
2.2.3 Distance Measures . 12
2.2.4 Quantum Random Oracle Model 15
2.2.5 Sampling in a Quantum Population 16

2.3 Cryptographic Primitives . 18
2.3.1 Puncturable Pseudorandom Function 18
2.3.2 Symmetric-key Encryption . 20
2.3.3 Public-key Encryption . 22
2.3.4 One-time Signatures . 24
2.3.5 Non-interactive Zero-knowledge Proof Systems 24
2.3.6 Indistinguishability Obfuscation 26
2.3.7 Leveled Hybrid Quantum Fully Homomorphic Encryption 27
2.3.8 Extended Trapdoor Claw-free Functions 28
2.3.9 Copy-Protection . 32

I Quantum Security 34

3 Quantum Security for Classical Encryption 35
3.1 Defining Security for Encryption Against Quantum Adversaries 36

3.1.1 Our Approach . 37
3.1.2 Discussion . 38

3.2 How to Record Encryption Queries in the Random World? 41
3.2.1 Ciphertext Decomposition . 41

vi

3.2.2 Oracle Variations . 41
3.2.3 Recording Queries in the Random World 43
3.2.4 A Technical Observation . 46
3.2.5 How to Answer Decryption Queries? 47
3.2.6 Notation . 49

3.3 Quantum-Secure Symmetric Encryption 49
3.3.1 Definitions of Security . 49
3.3.2 A Separation Example . 51
3.3.3 Feasibility of Quantum CCA2 Security 53

3.4 Quantum-Secure Public-key Encryption 58
3.4.1 Definitions of Security . 58
3.4.2 Relating Indistinguishability and Non-Malleability 62
3.4.3 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2 67

3.5 Bit Encryption Is Complete . 69
3.5.1 Bit-by-bit Encryption Is Insecure 69
3.5.2 Completeness of Bit-Encryption 70

4 Quantum Simulation-Sound Non-Interactive Zero-Knowledge 72
4.1 Quantum Zero-Knowledge . 72

4.1.1 Definition . 72
4.1.2 Construction . 73

4.2 Quantum Simulation-Soundness . 74
4.3 Separation Between Post-Quantum and Quantum Security 76

4.3.1 Preliminaries: Interactive Proof of Quantumness 77
4.3.2 Quantum Advantage with Quantum Query Algorithms 79
4.3.3 Separation for QSS-NIZK . 82

4.4 Constructions of QSS-NIZK . 84
4.4.1 Construction in the Common Reference String Model 84
4.4.2 Construction in the Quantum Random Oracle Model 91

4.5 Application to the Naor-Yung Construction with Quantum CCA Security 95
4.5.1 Quantum-Secure Invertible Pseudorandom Functions 95
4.5.2 Construction of Our Quantum CCA Encryption Scheme 96

II Quantum Cryptography 101

5 Semi-Quantum Copy-Protection 102
5.1 Introduction . 103

5.1.1 Quantum Cryptography From Coset States 103
5.1.2 (Semi-)Quantum Cryptography From BB84 States 103
5.1.3 Application-specific Approaches for Semi-Quantum Protocols . . 104

5.2 Technical Overview . 105
5.2.1 Our Semi-Quantum Copy Protection Protocol 105
5.2.2 Soundness Proof . 108

5.3 Coset States . 112
5.3.1 Strong Monogamy-of-Entanglement Property 112

5.4 Semi-Quantum Copy-Protection . 113
5.4.1 Construction . 113

vii

5.4.2 Proof of Completeness . 117
5.5 Proof of Soundness . 120

5.5.1 Self-Testing Protocol Soundness 120
5.5.2 Soundness of Protocol 5.5 . 133

5.6 Copy-Protection of Point Functions . 138
5.6.1 Anti-Piracy Security Definition 138
5.6.2 Construction . 138
5.6.3 Single-Decryptors . 141
5.6.4 Proof of Anti-Piracy Security of Construction 5.1 144

A Tokenized Digital Signatures 149
A.1 Preliminaries: Tokenized Digital Signature 150
A.2 Direct Product Hardness . 152

A.2.1 Information-Theoretic Direct Product Hardness - A Variant . . . 152
A.2.2 Computational Direct Product Hardness - A Variant 153
A.2.3 Proof of Lemma A.1 . 155

A.3 Strongly Unforgeable Tokenized Digital Signatures 161

B Password-Authenticated Quantum Key Exchange 163
B.1 Security Models . 164

B.1.1 The Simulation-based Paradigm 164
B.1.2 Universal Composability . 164

B.2 Reduction from PAKE to EQUALITY 166
B.3 On the Impossibility of Securely Realizing PAKE 169

B.3.1 Implicit or Explicit Authentication 170
B.3.2 Impossibility in the Simulation-Based Model 170
B.3.3 Impossibility in the Universally Composability Model 171

Bibliography 173

Chapter

1
Introduction

Chapter content
1.1 History of Quantum Computing . 1

1.2 Cryptography Meets Quantum Computers 2

1.2.1 Quantum Security of Classical Cryptosystems 2

1.2.2 Unclonable Cryptography . 4

1.3 Contributions of the Thesis . 5

Cryptography, the science dedicated to studying the protection of information,
has become prevalent within a few decades. Protection has multiple meanings, in which
the most basic protection mechanism is achieved by means of encryption. Encryption
schemes are further divided into two categories: symmetric encryption and public-key
encryption. The latter concept was originally put forth by Diffie and Hellman [DH76], and
since then, has become ubiquitous. In practice, for example, with the Transport Layer
Security (TLS) protocol, which has widespread use on the Internet, hybrid approaches are
used, with public-key cryptography establishing a shared secret key to be used to encrypt
the messages with a symmetric encryption. Beyond these basic notions, many other
advanced cryptographic primitives have also been proposed to address more complex
requirements of protection. Unfortunately, the security of all currently widely-used
cryptosystems is threatened by the potential advent of full-scaled quantum computers.

1.1 History of Quantum Computing

The field of quantum computing originated in the 1980s as a subfield of quantum physics.
Some physicists and mathematicians, including notably Richard Feynman [Fey82] and
Yuri Manin [Man80], had remarked that the task of simulating quantum mechanical
systems would pose a challenge to classical computers, and proposed the idea of quantum
models of computation. In 1985, David Deutsch formalized this idea under the notion of
universal quantum Turing machine [Deu85], and raised the question whether quantum
computers might have a strict advantage over classical computers at solving problems. A
few early quantum algorithms were developed: for example, Deutsch-Jozsa’s [DJ92], and
the theory of quantum complexity appeared [BV93]. Soon after, David Simon showed
that a quantum computer could achieve an exponential speedup in solving an idealized
version of the problem of finding the period of function [Sim94]. Though Simon’s problem
had no obvious applications, it inspired Peter Shor [Sho99] who formulated an efficient
quantum algorithm for computing discrete logarithms and factoring large numbers.
This breakthrough did not only challenge the strong Church-Turing thesis, but also the
widely-used cryptosystems based on these (classically) difficult problems.

Cryptography Meets Quantum Computers 2

1.2 Cryptography Meets Quantum Computers

On the one hand, Shor’s discovery, and its obvious implications for cryptanalysis, caused
interest in quantum computing to skyrocket. (Post-)Quantum security of classical
cryptosystems was born with the prospect of finding the strengths and weaknesses of
this new attacker, thereby finding new secure designs for an era of quantum computers.

On the other hand, quantum information can arguably be used as an advantage
for designing cryptosystems. If we go back a bit further, the relationship between
quantum information and cryptography is almost half-a-century old: in a remarkable
1968 manuscript that first pioneered the idea of conjugate coding [Wie83], Stephen
Wiesner also proposed a scheme for quantum money, a cryptographic primitive that
would be unimaginable without quantum mechanics. Indeed, this paper is “arguably the
foundational document of the entire field of quantum information science”.1 Wiesner’s
ideas have led to the first scheme for quantum key distribution [BB84] – what we now
call BB84, and created a new branch of cryptography: quantum cryptography (also
called unclonable cryptography). These bewildering possibilities in the quantum world
are only possible thanks to one simple but deep difference between classical and quantum
information, that is, classical information can in principle always be copied and quantum
information cannot. This principle is called the quantum no-cloning theorem [WZ82],
formulated as:

There is no procedure |ψ⟩ 7→ |ψ⟩ ⊗ |ψ⟩, for an arbitrary quantum state |ψ⟩.

In short, while quantum information opens up the cryptographic landscape to allow
functionalities that do not exist classically, the availability of quantum computing to
cryptography also hands us unique challenges and limitations, some of them are seemingly
trivial in the classical setting.2 In a few decades, quantum information and quantum
computation have both become: (i) a bogeyman of classical cryptography; and (ii) a
friend of quantum cryptography. These two directions of studying quantum security
and quantum cryptography are therefore the main motivation of our work.3

1.2.1 Quantum Security of Classical Cryptosystems

As a starting point, let us exemplify classical security notions for encryption. The
security of encryption schemes is defined formally as a game between an adversary that
tries to win, that is, to trigger a particular event, or learn some particular information
(for instance, the adversary wins if it can recover the encrypted message only knowing
the public information), and a challenger that interacts with the adversary. The game
specifies which messages are sent by the challenger depending on the adversary’s behavior,
and the winning condition for the adversary. The security game is defined in such a way
that the adversary’s capabilities encompass all possible attacks that could reasonably
occur in a real-life scenario.

Defining security is a challenging task that has prompted fundamental research papers,
such as [GM84], which defined the notions of semantic security and indistinguishability-
based security for encryption. Before the age of quantum computers, many fundamental

1Famously, this paper was so far ahead of its time, before quantum information became an area of
study. It was rejected once and took nearly 15 years to get published [Aar].

2Examples include copying and comparing data.
3This explains the title of our manuscript.

Cryptography Meets Quantum Computers 3

results were proven secure in a model where attackers are limited to efficient classical
computation. In the age of quantum computers, the security model changes dramatically:
the adversary can always perform local quantum computations, but the way it accesses
the data plays an important role, leading to the following scenarios:

• Post-Quantum Security. This security level is against an adversary who wants to
attack a classical cryptosystem by using a quantum computer they have in their
basement, that is, the adversary can perform offline quantum computations, but
it can only access the private oracles (e.g., decryption, authentication) through
classical queries. For instance, in the security game for encryption, it means
that the communication between the adversary and the challenger is completely
classical.

The prototypical example is simply downloading a public key for RSA off the
Internet and then running Shor’s algorithm on it to recover the secret key. Another
example is the security of schemes requiring the use of public hash functions, which
is usually captured in the quantum random oracle model [BDFL+11].

This attack setting is certainly the most meaningful. It will be applicable to all
classical cryptosystems once a scalable quantum architecture is built, but it also
concerns today’s encrypted traffic, if an attacker can record it and wait patiently
for a quantum computer to appear.

• Quantum Security. This second category is very different from the first. In this
setting, the adversary is significantly stronger: besides having a quantum computer
in their basement, they also have the ability to interface quantumly with portions
of the cryptosystem that involve our private key. For instance, in the security game
for encryption, the adversary can ask for encryption of messages, or decryption of
ciphertexts of its choice in superposition. This corresponds to the quantum query
model in the literature on provable quantum security, for instance in [Zha12a;
BZ13a; BZ13b; DFNS14; KLLN16a].

Unlike the case of public hash functions, there is no clear generic mechanism for
how an adversary could gain this kind of access. While it is not yet clear whether
there are settings in which this model is directly, practically relevant, there is
arguably no question about the desirability of quantum security for several reasons:

– Theoretical interest. The quantum security of cryptographic primitives (be-
yond random oracles) is an active area of research with many exciting re-
sults, such as quantum secure pseudorandom functions [Zha12a], digital
signatures [BZ13a; BZ13b; AMRS20], encryption schemes [BZ13b; GHS16],
zero-knowledge proofs [BKS21]. These primitives have also led to unexpected
applications, such as pseudorandom quantum states [JLS18; AQY22; MY22].

– Composability. This security model ensures that classical cryptosystems retain
their security even if executed on a quantum computer, possibly in complex
environments or protocols where composition should be taken into account.

– Security proof concerns. Security reductions might require more that just post-
quantum security of underlying primitives. An example is the need of quantum-
secure pseudorandom functions in order to simulate a quantum random oracle.
Another example is the case of code obfuscation (see [SW14]), in which the

Cryptography Meets Quantum Computers 4

obfuscated program will be run on the adversary’s quantum computers. For
example if the adversary is given a public encryption key which is generated
by hardcoding a symmetric key into an obfuscated encryption program, in
which the adversary has access to a full description of the oracle with a secret
key and can implement a quantum embedding of it.

– Device-independent security. This model ensures security in a world where even
end-users are using quantum devices, and hence can potentially interact
with the adversary using quantum communication. Even if the end-users
are not running full-fledged quantum computers, their devices may exhibit
some quantum effects. For example, modern processors have reached the
point where quantum tunneling is an important consideration [Zha15]. Other
settings include the case where a quantum computer is used to run a classical
algorithm, but an adversary manages to have control over the measurement
devices of the victim. In this setting, classicalization is burden on hardware
designers, and it mounts to a hardware assumption, which, from the security
point of view, is undesirable.

– Security in the worst-case. In this model, we achieve security in the worst-
case scenario where the adversary is controlling the hardware. So it can
be thought of as a more conservative security notion, since proving security
of a construction with respect to a stronger security notion will give more
confidence in using it.

Thus, an important goal towards understanding whether cryptographic protocols will
resist quantum attacks is

Question 1: Upgrade security models for classical cryptosystems
to handle quantum attackers.

Terminology. These two security models are also referred to as the Q1 (for post-
quantum security), and Q2 (for quantum security) models in literature ([KLLN16a;
KLLN16b; HS18a; HS18b]).

1.2.2 Unclonable Cryptography

On the other hand, properties of quantum mechanics have enabled the emergence of
quantum cryptographic protocols achieving important goals which are proven to be
impossible classically, with credits given to the no-cloning principle. Looking beyond
the notion of quantum money [Wie83], quantum encoding can further achieve richer
levels of applicability, which defines a hierarchy of “unclonable” objects corresponding to
different variants of the no-cloning principle [AGKZ20; BJLP+21].

Wiesner’s quantum money [Wie83] is a direct application of the no-cloning principle
in cryptography, where the adversary obtains truly unknown quantum states. Public-key
quantum money [AC12] can be seen as a strengthening, where no-cloning still holds even
for parties that have the ability to verify the state. Quantum lightning [Zha19b] is then
a further strengthening, where no-cloning holds even for parties that devised the original
state themselves. Tamper-evident encryption [Got03], unclonable encryption [BL20] and
certified deletion [BI20; HMNY21; HMNY22] apply no-cloning to information, meaning

Contributions of the Thesis 5

that there is some underlying data that can be decoded, but there are limitations on the
possibility of copying this data while it is encoded. And yet another extremely strong
variant of the no-cloning principle is where the unclonable state has been endowed with
some functionality. The functionality level of this hierarchy was first discussed in terms
of quantum copy-protection by Aaronson [Aar09]: here, a quantum encoding allows the
evaluation of a function on a chosen input, but in a way that the number of simultaneous
evaluations is limited. A related concept to quantum copy-protection is the notion of
secure software leasing [AL21; BJLP+21; KNY21]: where the unclonable state allows
evaluation of a circuit, while also enabling the originator to verify that the software is
returned. There are several other application-specific notions, also at the functionality
level of the hierarchy, including: single-decryptor encryption [CLLZ21], which can be
seen as quantum copy-protection of the decryption algorithm, and tokenized digital
signatures [BS17; AGKZ20], which is a quantum one-time program [BGS13] for digital
signatures.

By standard definition, these quantum primitives can be seen as a two-party protocol
requiring quantum communication to transfer the quantumly encoded program between
parties, and of course, local quantum computation from both parties. Ideally, for both
theoretical and practical reasons, we might want to minimize the required model and
use local quantum computation and only classical communication. With only classical
communication, however, these notions become unusable. This then leads to the following
natural question

Question 2: Achieve quantum unclonable functionalities
with classical communication.

Terminology. In this thesis, we will use the term quantum protocols to mean cryp-
tographic protocols requiring quantum computation and quantum communication,
and semi-quantum protocols to mean cryptographic protocols requiring quantum
computation and classical communication.a

aThis is called hybrid quantum cryptography in [AGKZ20].

1.3 Contributions of the Thesis

Part I Quantum Security. There has been towards this goal extensive research works
that consider this scenario of quantum superposition attacks for different classical
cryptographic constructions such as random oracles [BDFL+11], pseudorandom func-
tions [Zha12a], encryption [BZ13b; GHS16] and signatures [BZ13a; AMRS20] and give
corresponding new security definitions. With this wide program, in this thesis, we focus,
in particular, on two basic cryptographic primitives: encryption and non-interactive
zero-knowledge.

On Security Notions for Encryption in a Quantum World [CEV20].
The results of this paper are presented in Chapter 3. Indistinguishability against
adaptive chosen-ciphertext attacks (IND-CCA2) is usually considered the most
desirable security notion for classical encryption. The security of quantum-secure
classical encryption has first been studied by Boneh and Zhandry [BZ13b], but they

Contributions of the Thesis 6

restricted the adversary to classical challenge queries, which makes the indistin-
guishability only hold for classical messages (denoted as IND-qCCA2). We extend
their work by giving the first security notions for fully quantum indistinguishability
under quantum adaptive chosen-ciphertext attacks, where the indistinguishability
holds for superposition of plaintexts (denoted as qIND-qCCA2). We then show
that our notions are strictly stronger than previous notions with classical challenge
queries, and achieve composability as the classical definitions. We also provide
constructions satisfying these security notions. For the symmetric-key setting,
our construction follows the classical Encrypt-then-MAC paradigm, in which we
use a pseudorandom function in the role of the MAC scheme. For the public-key
setting, we propose a compiler that unconditionally lifts any secure encryption
scheme in the sense of [BZ13b] to an encryption scheme secure in the sense of our
notions. In fact, our feasibility results show that quantum security can be achieved
for free, without any new assumptions rather than ones needed for post-quantum
security. Finally, we show that in the quantum setting, one-bit encryption schemes
are necessary and sufficient to build many-bit encryption schemes, similar to the
classical setting [Ms09].

This paper has been presented at QCrypt in 2020, and published in the proceedings
of the conference INDOCRYPT in 2022.

Quantum-Simulation-Sound Non-Interactive Zero-Knowledge: Definitions, Constructions and
Applications [ACEM+22].
The results of this paper are presented in Chapter 4. Non-interactive zero-knowledge
(NIZK) proof systems have very numerous applications in modern cryptographic
protocols. We say that a NIZK proof system is simulation-sound (SS) if an adversary
cannot provide a convincing proof for a false statement, even after receiving a
polynomial number of simulated proofs of (possibly false) statements. In this paper,
we present a quantum simulation-soundness definition that allows superposition
access to the simulator. We give a separation result between post-quantum
and quantum security of SSNIZK, and prove that both Sahai’s construction for
SSNIZK [DDOP+01; Sah01] (in the common reference string model) and the
Fiat-Shamir transformation [FS87] (in the quantum random oracle model) can
be made quantumly-simulation-sound. As an application, this allows us to prove
quantum security of the Naor-Yung construction for achieving CCA encryption
schemes from CPA encryption scheme and simulation-sound NIZKs. As a side
result, we introduce a new notion of quantum-query advantage functions, which
could be used as a general framework to show classical/quantum security separation
for other cryptographic primitives.

Part II Quantum Cryptography. Quantum cryptography is known for enabling functionali-
ties that are unattainable using classical information alone. Perhaps the most striking
example of quantum primitives is the notion of quantum copy-protection, introduced
by Aaronson [Aar09]. Informally, quantum copy-protection allows for a program to be
encoded in a quantum state in such a way that the program can be evaluated, but not
copied. Unfortunately, this usually comes at the cost of needing quantum power from
every party in the protocol, while arguably a more realistic scenario would be a network
of classical clients, classically interacting with a quantum server. An emerging field of
“dequantizing” quantum cryptographic protocols has shown that it is possible to use local

Contributions of the Thesis 7

quantum computation and classical communication to obtain cryptographic construc-
tions which are otherwise classically impossible [BCMV+18; Mah18b; AGKZ20; RS20;
HMNY21; KNY21; GMP22; Shm22a; Shm22b]. We continue this research direction in
the second part of the thesis.

Semi-Quantum Copy-Protection and More [CHV22].
The results of this paper are presented in Chapter 5. In this paper, we focus
on copy-protection, which is a quantum primitive that allows a program to be
evaluated, but not copied, and has shown interest especially due to its links to
other unclonable cryptographic primitives. Our main contribution is to show how
to dequantize existing quantum copy-protection from hidden coset states: we give a
construction for classically-instructed remote state preparation for coset states,
based on the existence of indistinguishability obfuscation for classical circuits and
the Learning With Errors [Reg05] problem. Our protocol is a multi-round protocol
between classical Alice and quantum polynomial-time Bob that allows Alice to
delegate the construction of hidden coset states to Bob. Furthermore, Alice knows
the description of the constructed coset states (which reside on Bob’s device),
while Bob himself does not, and no-cloning also applies to these states. Hence, the
situation at the end of this protocol is equivalent to one where Alice sent hidden
coset states to Bob, allowing us to dequantize existing quantum copy-protection
from coset states in a generic and modular way. To broaden the applicability of
our semi-quantum protocol, we also present in this work a copy-protection for
point functions in the plain model, to which our dequantizer could be applied.
In fact, our copy-protection scheme is almost identical to that for pseudorandom
functions given in [CLLZ21]. We observe that by making few modifications to their
proof, we obtain a copy-protection scheme for point functions with a non-trivial
challenge distribution in the security definition. We note that before this paper,
no copy-protection scheme for point functions in the plain model with negligible
security was known.

Other contributions. The recent NIST call for post-quantum encryption and signature
schemes has revived the interest for designing post-quantum advanced cryptographic
protocols such as oblivious transfer and non-interactive zero-knowledge proof systems.
We give below a brief description of our contributions in this direction, which are not
included in this manuscript.

Post-Quantum UC-Secure Oblivious Transfer in the Standard Model with Adaptive Corrup-
tions [BCV19].
We describe in this paper an oblivious transfer (OT) scheme which is post-quantum,
universal-composability-secure, and deals with adaptive corruptions assuming re-
liable erasures. Since the seminal result of Kilian [Kil88], oblivious transfer has
proven to be a fundamental primitive in cryptography. In such a scheme, a user is
able to gain access to an element owned by a server, without learning more than
this single element, and without the server learning which element the user has
accessed. This primitive has received a lot of study in the literature, among which
very few schemes are based on lattices. To the best of our knowledge, this is the
first post-quantum OT scheme with such a high level of security. Our methodology
relies on the generic construction of [BC15]. In order to instantiate the necessary

Contributions of the Thesis 8

building blocks, we replace the use of the smooth projective hash functions (SPHFs)
construction of [KV09] by a chameleon hash function, an IND-CCA2 encryption
scheme and an SPHF construction from [BBDQ18]. This allows us to give an SPHF-
friendly commitment scheme based on the Learning with Errors problem [Reg05],
which can be seen as a side contribution of the paper. Furthermore, we propose
concrete parameters and an implementation of our scheme.

This paper has been published in the proceedings of the conference ARES in 2019.

zkSNARKs from Codes with Rank Metrics [DMV22].
Zero-knowledge succinct arguments of knowledge (zkSNARKs) are non-interactive
proof systems enabling efficient privacy-preserving proofs of membership for NP
languages. A large body of work has studied candidate constructions that are
secure against quantum attackers, which are based on either lattice assumptions,
or post-quantum collision-resistant hash functions. In this paper, we propose
a code-based zkSNARK scheme, whose security is based on the Rank Support
Learning (RSL) problem, a variant of the random linear code decoding problem
in the rank metric. Our construction follows the general framework of Gennaro
et al. [GMNO18], which is based on Square Span Programs (SSPs). Due to the
fundamental differences between the hardness assumptions, our proof of security
cannot apply the techniques from the lattice-based constructions, and indeed, it
distinguishes itself by the use of techniques from coding theory. We also provide
the scheme with a set of concrete parameters.

Road-map. The rest of this thesis is organized as follows. In Chapter 2, we introduce
the notation, the relevant background on quantum information and computation, as
well as notions of cryptographic primitives that will be used throughout this thesis.
In Chapter 3, we present our definitions of quantum indistinguishability for encryption.
Then, in Chapter 4, we present our notions of quantum simulation-sound non-interactive
zero-knowledge. Finally, in Chapter 5, we exhibit our work on copy-protection. We
also give in the appendices several additional results about tokenized digital signatures
(Appendix A) and password-based key exchange protocols (Appendix B) which have
been done during the preparation of this thesis.

Chapter

2
Preliminaries

This preliminary chapter aims to fix the notations and to recall the notions we will use
throughout this thesis.

Chapter content
2.1 Notation . 9

2.2 Quantum Information and Computation . 10

2.2.1 Quantum Computation . 10

2.2.2 Efficiency in the Quantum Setting 12

2.2.3 Distance Measures . 12

2.2.4 Quantum Random Oracle Model 15

2.2.5 Sampling in a Quantum Population 16

2.3 Cryptographic Primitives . 18

2.3.1 Puncturable Pseudorandom Function 18

2.3.2 Symmetric-key Encryption . 20

2.3.3 Public-key Encryption . 22

2.3.4 One-time Signatures . 24

2.3.5 Non-interactive Zero-knowledge Proof Systems 24

2.3.6 Indistinguishability Obfuscation 26

2.3.7 Leveled Hybrid Quantum Fully Homomorphic Encryption . . . 27

2.3.8 Extended Trapdoor Claw-free Functions 28

2.3.9 Copy-Protection . 32

2.1 Notation

Throughout this thesis, λ denotes the security parameter. The notation negl(λ) denotes
any function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such that
f(λ) = O(λc) for some c > 0. Ω denotes some fixed finite alphabet with 0 ∈ Ω, we
usually think of Ω as {0, 1}. For a, b ∈ R, [a, b] := {x ∈ R | a ≤ x ≤ b } and Ja, bK :=
{x ∈ Z | a ≤ x ≤ b } will denote the closed real and integer intervals with endpoints a
and b. With an abuse of notation, we will write JnK as shorthand for J0, n− 1K. For a
string q := q1 . . . qn ∈ Ωn of arbitrary length n ≥ 0, the Hamming weight of q is defined
as the number of non-zero entries in q: wt(q) := |{ i ∈ J1, nK | qi ̸= 0 }|. We also use the

Quantum Information and Computation 10

notion of the relative Hamming weight of q, defined as ω(q) := wt(q)/n. By convention,
the relative Hamming weight of the empty string ⊥ is set to ω(⊥) := 0. For a set
I = {i1, . . . , iℓ} ⊆ J1, nK and a n-bit string x ∈ Ωn, we write x|I := xi1 · · ·xiℓ, and I as
the complement I := J1, nK \ I of I.

When sampling uniformly at random a value a from a set U , we employ the notation
a

$← U . When sampling a value a from a probabilistic algorithm A, we employ the
notation a← A. Let |·| denote either the length of a string, or the cardinal of a finite
set, or the absolute value. By PPT we mean a polynomial-time non-uniform family of
probabilistic circuits, and by QPT we mean a polynomial-time family of quantum circuits.
For a probabilistic algorithm f , we write f(x; r) to denote the computation of f on input x
with randomness r drawn uniformly at random. We sometimes omit the randomness
and just write f(x). Finally, let δx,x′ denote the Kronecker delta function of x and x′.

Sub-exponential Security. A system is sub-exponentially secure if there is an adversary
of (quantum) polynomial size that breaks the system with sub-exponentially small
probability. Typically, this probability is upper bounded by 2−λε, for some constant
0 < ε < 1.

2.2 Quantum Information and Computation

We use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to
differentiate between distinct spaces. We let |ϕ⟩ denote an arbitrary pure quantum state,
and |x⟩ denote an element in the standard (computational) basis. A mixed state will be
denoted by lowercase Greek letters, e.g., ρ. The map Tr : L(H)→ C denotes the trace,
and TrB : L(HA ⊗HB)→ L(HA) is the partial trace over subsystem B. Pos(H) denotes
the set of positive semidefinite operators on H, and D(H) := {A ∈ Pos(H) | Tr[A] = 1}
is the set of density matrices on H.

The single qubit Pauli operators are σX := (0 1
1 0) and σZ := (1 0

0 −1). The Hadamard
basis states are written as |(−)b⟩ := 1√

2(|0⟩+ (−1)b |1⟩). We also sometimes write |+⟩ for
|(−)0⟩ and |−⟩ for |(−)1⟩.

A pure state |ϕ⟩ can be manipulated by performing a unitary transformation U
to the state |ϕ⟩, which we denote U |ϕ⟩. The identity on a n-bit quantum system is
denoted In. Given two quantum systems A,B, with corresponding Hilbert spacesHA,HB,
let |ϕ⟩ := |ϕ0, ϕ1⟩ be a state of the joint system. We write UA |ϕ⟩ to denote that we act
with U on register A, and with identity I on register B, and we write UAB to denote
that we act with U on both registers A,B simultaneously, that is UAB = UA ⊗ UB.

An observable on H is a Hermitian linear operator on H. A binary observable is an
observable that only has eigenvalues in {−1, 1}. For a binary observable O and b ∈ {0, 1},
we denote by O(b) the projector onto the (−1)b-eigenspace of O. For any procedure which
takes a quantum state as input and produces a bit (or more generally an integer) as
output, e.g., by measuring the input state, we denote the probability distribution over
outputs b on input state ψ by Pr [b |ψ].

2.2.1 Quantum Computation

Quantum gates. We refer to the following well-known unitary gates:

Quantum Information and Computation 11

• Pauli gates: X : |a⟩ 7→ |1− a⟩, Z : |a⟩ 7→ (−1)a |a⟩ and Y := iXZ, for each a ∈ {0, 1}.

• Hadamard gate: H : |a⟩ 7→ 1√
2 |0⟩+ (−1)a

√
2 |1⟩, for each a ∈ {0, 1}.

• Rotation gates: Rϕ : |a⟩ 7→ eiaϕ |a⟩, for each a ∈ {0, 1}. We obtain the T gate
where ϕ = π

4 , the phase gate P where ϕ = π
2 .

• Controlled gates: for any k-qubit unitary quantum gate U, we define the controlled-U
as: Ctrl-U : |a⟩ |x⟩ 7→ |a⟩Ua |x⟩, for each a ∈ {0, 1} and x ∈ {0, 1}k. In particular,
we write the controlled-NOT gate as CNOT : |a⟩ |b⟩ 7→ |a⟩ |b⊕ a⟩.

• Toffoli gates: CCNOT : |a, b, c⟩ 7→ |a, b, c⊕ (a · b)⟩ for each (a, b, c) ∈ {0, 1}3.

Quantum Fourier transform. Let Q be a n-bit quantum system over Zq for some integer q.
The Quantum Fourier transform QFT performs the following operation efficiently:

QFT |x⟩ := 1√
qn

∑
y∈{0,1}n

ωx·yq |y⟩ ,

where ωq := exp(2πi
q

), and x · y denotes the dot product. In this thesis, we usually
consider q = 2, so that ωq = (−1).

Oracle access to an interactive quantum machine. We say that a quantum algorithm A has
oracle access to an interactive quantum machine M (and we write this as AM if A can
only make classical queries to M , or A|M⟩ to emphasize that M is a quantum machine
and that oracle access includes the ability to make queries in superposition and apply
the inverse of M) to mean the following. Besides the security parameter and its own
classical input x, we allow A to execute the quantum circuit U specifying M , and its
inverse (recall that these act on the internal register and on the network register of M).
Moreover, we allow A to provide and read messages from M (formally, we allow A to
act freely on the network register). We do not allow A to act on the internal register
of M , except via U or its inverse.

Given a function f : X → Y, we model a quantum-accessible oracle O for f as a
unitary transformation Of as follows.

• The standard oracle model: Of acts on three registers X, Y, Z with the property
that Of : |x, y, 0⟩ 7→ |x, y ⊕ f(x), 0⟩, where ⊕ is some involutive group operation.

• The minimal oracle model: Of acts on two registers X, Y with the property
that Of : |x, 0⟩ 7→ |f(x), 0⟩. This model is implementable if and only if f is a
bijective function.

Randomness. If an oracle O implements a classical randomized algorithm, there are
several choices for how the randomness is used in each query if the oracle is queried
in superposition. One option is to choose fresh randomness for each message in the
superposition. Another option is to choose a single randomness value for each query,
and generate output in the superposition with that randomness. We note that there is
a simple transformation that converts an oracle requiring independent randomness for
every message into a scheme that is secure when a single randomness value is used for an

Quantum Information and Computation 12

entire query: for each query, choose a fresh random key k for a quantum pseudorandom
function (QPRF) (see Definition 2.7). This will be the single per-query randomness
value. Each message m in the superposition will be answered using randomness obtained
by applying the QPRF to m using the key k. From the adversary’s point of view, this
is indistinguishable from choosing independent randomness for each message. Indeed,
Zhandry [Zha12b] shows that we can replace the QPRF with a function drawn from a
pairwise independent function family, which allows us to achieve perfect simulability.
For this reason, requiring global randomness per query does not change the oracle from
the adversary’s point of view, but greatly simplifies its implementation. In this work,
we choose the second approach and all randomized oracles are implemented this way.

2.2.2 Efficiency in the Quantum Setting

Definition 2.1 — Efficiency

Efficient unitaries: a family of unitaries {Uλ ∈ U(Hλ)}λ∈N is efficient if there exists
a (classical) polynomial-time Turing machine M that, on input 1λ, outputs a
description of a circuit (with a fixed gate set) that implements the unitary.

Efficient isometries: a family of isometries {Vλ : HAλ
→ HBλ

}λ∈N is efficient if
there exists an efficient family of unitaries {Uλ ∈ U(HBλ

)}λ∈N such that
Vλ = Uλ(IAλ

⊗ |0k(λ)⟩), where k(λ) = dim(HBλ
)− dim(HAλ

).

Efficient observables: a family of binary observables {Zλ : Herm(HAλ
)}λ∈N is efficient

if there exists a family of Hilbert spaces HBλ
with dim(HBλ

) = poly(λ), and
a family of efficient unitaries {Uλ ∈ U(HAλ

⊗ HBλ
)}λ∈N such that for any

|ψ⟩A ∈ HA:
U †(σZ ⊗ I)Uλ(|ψ⟩A |0⟩B) = (Zλ |ψ⟩A)⊗ |0⟩B . (2.1)

Efficient measurements: a family of measurements {Mλ = {M (i)
λ ∈ L(HAλ

)}i∈A}λ∈N
is efficient if the isometry

|ψ⟩ 7→
∑
i∈A
|i⟩ ⊗M (i)

λ |ψ⟩ (2.2)

is efficient.

2.2.3 Distance Measures

Definition 2.2 — Norms
Let A ∈ L(H) with singular values λ1, . . . , λn ≥ 0. Then, the trace norm is
defined as

∥A∥1 :=
∑
i

λi .

Quantum Information and Computation 13

Definition 2.3 — Trace Distance
For two quantum states ρ, σ ∈ Pos(H), the trace distance between them is

∆ (ρ, σ) := 1
2∥ρ− σ∥1.

Definition 2.4 — Approximate Equality, [MV21, Definition 2.8 and Definition 2.14]
We overload the symbol “≈” in the following ways (leaving the dependence on the
security parameter implicit in the quantities on the left):

Complex numbers: For a, b ∈ C we define:

a ≈ε b ⇐⇒ |a− b| = O(ε) + negl(λ) .

Operators: For A,B ∈ L(H), we define:

A ≈ε B ⇐⇒ ∥A−B∥2
1 = O(ε) + negl(λ) .

(We will most frequently use this for (possibly subnormalised) quantum states
A,B ∈ Pos(H).)

Operators on a state: For A,B ∈ L(H) and ψ ∈ Pos(H), we define:

A ≈ε,ψ B ⇐⇒ Tr
[
(A−B)†(A−B)ψ

]
= O(ε) + negl(λ) .

Computationally indistinguishable states: For two (families of not necessarily nor-
malised) states ψ, ψ′ ∈ Pos(H) which are computationally indistinguishable
up to δ (i.e., no QPT distinguisher has advantage exceeding δ in distinguish-
ing ψ from ψ′a), we write:

ψ
c≈δ ψ′ .

We can also define computational indistinguishability with respect
to non-uniform QPT algorithms with quantum advice, denoted by
A := {Aλ, ϕλ}λ∈N, where each Aλ is the classical description of a poly(λ)-
size quantum circuit, and ϕλ is some (not necessarily efficiently computable)
non-uniform poly(λ)-qubit quantum advice. In this thesis, we implicitly
consider computational indistinguishability with respect to non-uniform QPT
adversaries with quantum advice, unless stated explicitly otherwise.

If we write ≈0, we mean that the quantities are negligibly close. All asymptotic
statements are understood to be in the limits ε→ 0 and λ→∞.

aA distinguisher D is a completely positive and trace-preserving map from the input state to
a classical single-qubit state (i.e. a distribution over {0, 1}). The distinguishability is the trace
distance between D(ψ) and D(ψ′).

We include a copy of some technical lemmas on state-dependent operator relations
using computational indistinguishability from [MV21] below for the reader’s convenience.

Quantum Information and Computation 14

Properties of the State-Dependent Distance

A feature of the state-dependent distance is that if two operators are close in the state-
dependent distance, we can replace one operator by the other acting on either side of
the state.

Lemma 2.1 (Replacement lemma [MV21, Lemma 2.21]). Let ψ ∈ Pos(H), and A,B,C ∈
L(H). If A ≈ε,ψ B and ∥C∥∞ = O(1), then

Tr[CAψ] ≈ε1/2 Tr[CBψ] , (2.3)

Tr[ACψ] ≈ε1/2 Tr[BCψ] . (2.4)

Lemma 2.2 ([MV21, Lemma 2.22]). Let A,B ∈ L(H) be linear operators, C ∈ L(H) a
linear operator with constant operator norm, and ψ ∈ Pos(H) with Tr[ψ] ≤ 1. Then,
the following holds:

A ≈ε,ψ B =⇒ AψC ≈ε B ψC and C ψA† ≈ε C ψB† . (2.5)

The following lemma allows us to replace computationally indistinguishable states
with one another in the state-dependent distance. This means that if two states are
computationally indistinguishable and a state-dependent operator relation holds for one
of the states, we can “lift” this relation to the other state, provided the operators are
efficient.

Lemma 2.3 (Lifting lemma [MV21, Lemma 2.25]). LetH,H′ Hilbert spaces with dim(H′) ≥
dim(H). Let ψ, ψ′ ∈ D(H′) such that ψ

c≈δ ψ′. Let A be an efficient binary observable
on H, B an efficient binary observable on H′, and V : H → H′ an efficient isometry.
Then:

V AV † ≈ε, ψ B =⇒ V AV † ≈ε1/4+δ,ψ′ B . (2.6)

Finally, we recall some further miscellaneous properties of the state-dependent
distance.

Lemma 2.4 ([MV21, Lemma 2.18]). Let ψi ∈ Pos(H) for i ∈ {1, . . . , n} with constant n,
and A,B ∈ L(H). Define ψ = ∑

i ψi. Then:

∀i ∈ J1, nK : A ≈ε,ψi
B iff A ≈ε,ψ B (2.7)

Lemma 2.5 ([MV21, Lemma 2.24]). Let H1,H2 be Hilbert spaces with dim(H1) ≤ dim(H2)
and V : H1 → H2 an isometry. Let A and B be binary observables on H1 and H2,
respectively, ψ ∈ Pos(H1), and ε ≥ 0. Then for any b ∈ {0, 1}:

V †BV ≈ε,ψ A =⇒ V †B(b)V ≈ε,ψ A(b) , (2.8)

B ≈ε,V ψV † V AV † =⇒ B(b) ≈ε,V ψV † V A(b)V † . (2.9)

Quantum Information and Computation 15

2.2.4 Quantum Random Oracle Model

A random oracle is a function H : {0, 1}m → {0, 1}n sampled from Funcs[m,n], the
uniform distribution over functions from {0, 1}m to {0, 1}n. The standard method to
encode a random function H as a quantum operation is the unitary matrix OH , which
acts as |x, y⟩ 7→ |x, y ⊕H(x)⟩. Another way to do it is to use the compressed random
oracle CStO formalism of Zhandry [Zha19a].

For more details on the description of the compressed random oracle, we refer the
reader to [Zha19a; DFMS22]. For the purposes of this thesis, we will only use the fact
that the compressed random oracle CStO is a certain unitary matrix, indistinguishable
from a real random oracle. We give here some technical lemmas that are used later.

We denote D = ⊗x∈XDx be the compressed random oracle registers, which corre-
sponds to its database (denoted as D). The state space of Dx is generated with vectors |y⟩
for y ∈ Y ∪ {⊥}. The initial state of the register D is ⊗x∈X |⊥⟩. For a fixed relation
R ⊂ X × Y, ΓR is the maximum number of y’s that fulfill the relation R where the
maximum is taken over all x ∈ X :

ΓR = max
x∈X
|{y ∈ Y|(x, y) ∈ R}|.

We define a projector Πx
Dx

that checks if the register Dx contains a value y ̸=⊥ such that
(x, y) ∈ R:

Πx
Dx

:=
∑

y:(x,y)∈R
|y⟩⟨y|Dx

.

Let Π̄x
Dx

= IDx − Πx
Dx

. We define the measurement M to be the set of projectors
{Σx}x∈X∪{⊥} where

Σx :=
⊗
x′<x

Π̄x′

Dx′ ⊗ Πx
Dx

for x ∈ X and Σ⊥ := I −
∑
x

Σx. (2.10)

Informally, the measurement M checks for the smallest x for which Dx contains a value
y ̸=⊥ such that (x, y) ∈ R. If no register Dx contains a value y ̸=⊥ such that (x, y) ∈ R,
the outcome of M is ⊥. We define a purified measurement MDP corresponding to M
that XORs the outcome of the measurement to an ancillary register:

MDP |ϕ, z⟩DP →
∑

x∈X∪{⊥}
Σx |ϕ⟩D |z ⊕ x⟩P .

The following lemma states that the compressed random oracle and MDP almost commute
if ΓR is small proportional to the size of Y.

Lemma 2.6 ([DFMS22, Theorem 3.1]). For any relation R and ΓR defined above, the
commutator [CStO,MDP] is bounded as follows:

∥[CStO,MDP]∥ ≤ 8 · 2−n/2
√

2ΓR.

The following lemma says that the output of the adversary when making queries to
a random oracle is identical to the one obtained by measuring the compressed database,
except with negligible probability.

Quantum Information and Computation 16

Lemma 2.7 ([Zha19a, Lemma 5]). Let p be the probability that an adversary making
queries to a random oracle H : {0, 1}m → {0, 1}n and outputting a tuple (⃗a, b⃗, c) such
that |⃗a| =

∣∣∣⃗b∣∣∣ = k and H(ai) = bi for each i ∈ JkK. Let R be a collection of such tuples.
Now consider running the adversary with the compressed oracle, and we measure
the database D after the adversary procedures its output. Let p′ be the probability
that there exists a tuple (⃗a′, b⃗′, c′) ∈ R such that D(a′i) = b′i for each i ∈ JkK. Then
√
p ≤
√
p′ +

√
k/2n.

2.2.5 Sampling in a Quantum Population

In this section, we describe a generic framework presented in [BF10] for analyzing
cut-and-choose strategies applied to quantum states.

Classical Sampling Stratiegies

Let q := (q1, . . . , qn) ∈ Ωn be a string of length n. We consider the problem of estimating
the relative Hamming weight of a substring ω(q|t) by only looking at the substring q|t of
q, for a subset t ⊂ J1, nK. We consider sampling strategies Ψ := (PT , PS, f), where PT
is an (independently sampled) distribution over subsets t ⊆ J1, nK, PS is a distribution
over seeds s ∈ S, and f : {(t, v) : t ⊂ J1, nK, v ∈ Ωt} × S → R is a function that takes
the subset t, the substring v, and a seed s, and outputs an estimate for the relative
Hamming weight of the remaining string. For a fixed subset t, seed s, and a parameter
δ, define Bδ

t,s(Ψ) ⊆ Ωn as

Bδ
t,s := {b ∈ Ωn : |ω(b|t)− f(t, b|t, s)| < δ}.

Then we define the classical error probability of strategy Ψ as follows.

Definition 2.5 — Classical Error Probability
The classical error probability of a sampling strategy Ψ := (PT , PS, f) is defined as
the following value, parameterized by 0 < δ < 1:

εδclassical(Ψ) := max
q∈Ωn

Pr
t←PT ,s←PS

[
q /∈ Bδ

t,s(Ψ)
]
.

Quantum Sampling Strategies

Now, let A := A1, . . . , An be an n-partite quantum system where the state space of
each system Ai equals HAi

= Cd with d = |Ω|, and let {|a⟩}a∈Ω be a fixed orthonormal
basis of Cd. A may be entangled with another system E, and we write the purified
state on A and E as |ψ⟩AE. We consider the problem of testing whether the state on
A is close to the all-zero reference state |0⟩A1

. . . |0⟩An
. There is a natural way to apply

any sampling strategy Ψ = (PT , PS, f) to this setting: sample t, s according to PT , PS,
measure subsystems Ai for i ∈ J1, tK in basis {|a⟩}a to observe q|t ∈ Ω|t|, and compute
an estimate f(t, q|t, s).

In order to analyze the effect of this strategy, we first consider the mixed state on
registers T (holding the subset t), S (holding the seed s), and A,E that results from

Quantum Information and Computation 17

sampling t and s according to PTS := PTPS

ρTSAE :=
∑
t,s

PTS(t, s) |t, s⟩ ⟨t, s|TS ⊗ |ψ⟩ ⟨ψ|AE .

Next, we compare this state to an ideal state, parameterized by 0 < δ < 1, of the form

ρ̃TSAE :=
∑
t,s

PTS(t, s) |t, s⟩ ⟨t, s|TS ⊗ |ψ̃
ts⟩ ⟨ψ̃ts|AE with |ψts⟩AE ∈ span

(
Bδ
t,s

)
⊗HE,

where

span
(
Bδ
t,s

)
:= span

(
{|b⟩ : b ∈ Bδ

t,s}
)

= span ({|b⟩ : |ω(b|t)− f(t, b|t, s)| < δ}) .

That is, ρ̃TSAE is a state such that it holds with certainty that the state on registers
A|tE, after having measured A|t and observing q|t, is in a superposition of states with
relative Hamming weight δ-close to f(t, q|t, s). This leads us to the definition of the
quantum error probability of strategy Ψ.

Definition 2.6 — Quantum Error Probability
The quantum error probability of a sampling strategy Ψ := (PT , PS, f) is defined
as the following value, parameterized by 0 < δ < 1:

εδquantum(Ψ) := max
HE

max
|ψ⟩AE

min
ρ̃T SAE

∆ (ρTSAE, ρ̃TSAE) ,

where the first max is over all finite-dimensional registers E, the second max is
over all state |ψ⟩AE and the min is over all ideal state ρ̃TSAE of the form described
above.

Finally, we relate the classical and quantum error probabilities.

Theorem 2.1 ([BF10]). For any sampling strategy Ψ and δ > 0,

εδquantum(Ψ) ≤
√
εδclassical(Ψ).

Remark 2.1. The results presented here immediately generalize from the all-zero reference
state |0⟩ . . . |0⟩ to an arbitrary reference state |φ⟩A of the form |φ⟩A = U1 |0⟩ . . . Un |0⟩
for unitary operators Ui acting on Cd. Indeed, the generalization follows simply by a
suitable change of basis, defined by the Ui’s.

In this work, we will only need to analyze one simple sample-and-estimate strategy
Ψuniform := (PT , PS, f), where PT is the uniform distribution over subsets t ⊆ J1, nK, PS is
empty and f(t, q|t) = ω(q|t). That is, f receives a uniformly random subset q|t of q, and
outputs the relative Hamming weight of q|t as its guess for the relative Hamming weight
of q|t. The classical error probability of this strategy can be bound using Hoeffding
inequalities, which is done in [BF10, Appendix B.3], where it is shown to be bounded
by 4 exp(−nδ2

32) for parameter δ. Thus, we have the following corollary of Theorem 2.1.

Corollary 2.1. The quantum error probability of Ψuniform with parameter δ is

εδquantum(Ψuniform) ≤ 2 exp(−nδ
2

64).

Cryptographic Primitives 18

2.3 Cryptographic Primitives

In this section, we give formal definitions of cryptosystems and their security notions
that will be used in subsequent chapters. By default, the security of these notions are
defined with respect to QPT adversaries (if we are in the computational setting).

2.3.1 Puncturable Pseudorandom Function

A pseudorandom function (PRF) system [GGM84] consists of a keyed function F and a
set of keys K such that for a randomly chosen key k ∈ K, the output of the function F (k, x)
for any input x in the input space X “looks” random to a QPT adversary, even when
given polynomially many evaluations of F (k, ·). Puncturable PRFs have an additional
property that some keys can be generated punctured at some point, so that they allow
to evaluate the PRF at all points except for the punctured points. Furthermore, even
with the punctured key, the PRF evaluation at a punctured point still looks random.

Punctured PRFs are originally introduced in [BW13; KPTZ13; BGI14], who observed
that it is possible to construct such puncturable PRFs for the construction from [GGM84],
which can be based on any one-way function [HILL99].

Definition 2.7 — Puncturable Pseudorandom Function
A pseudorandom function PRF : K × X → Y is a puncturable pseudorandom
function if there is an additional key space Kp and three PPT algorithms pPRF :=
⟨KeyGen,Puncture,Eval⟩ such that:

k← KeyGen(1λ). The key generation algorithm KeyGen takes the security parame-
ter 1λ as input and outputs a random key k ∈ K.

k{x} ← Puncture(k, x). The puncturing algorithm Puncture takes as input a PRF
key k ∈ K and x ∈ X , and outputs a key k{x} ∈ Kp.

y ← Eval(k{x}, x′). The evaluation algorithm takes as input a (possibly punctured)
key k{x} ∈ Kp and x′ ∈ X , and outputs a classical string y ∈ Y.

We require the following properties of pPRF.

Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr

∀x′ ∈ X \ {x} : Eval(k{x}, x′) = Eval(k, x′)

∣∣∣∣∣∣ k $← KeyGen(1λ)
k{x} $← Puncture(k, x)

 = 1.

Pseudorandomness at punctured points. For every QPT adversary A := (A1,A2), and

Cryptographic Primitives 19

every λ ∈ N, the following holds:∣∣∣∣∣∣∣∣∣∣∣
Pr

 1← A2(k{x∗}, y, τ)

∣∣∣∣∣∣∣∣∣∣∣

(x∗, τ)← A1(1λ, τ)
k $← KeyGen(1λ)

k{x∗} $← Puncture(k, x∗)
y ← Eval(k, x∗)



−Pr

 1← A2(k{x∗}, y, τ)

∣∣∣∣∣∣∣∣∣∣∣

(x∗, τ)← A1(1λ, τ)
k $← KeyGen(1λ)

k{x∗} $← Puncture(k, x∗)
y

$← Y



∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the probability is taken over the randomness of KeyGen, Puncture,
and A1.

Denote the above probability as AdvpPRF(λ,A). We further say that pPRF is
δ-secure, for some concrete negligible function δ(λ), if for all QPT adversaries A,
the advantage AdvpPRF(λ,A) is smaller than δ(λ)Ω(1).

We also consider several variants as follows.

Definition 2.8 — Invertible Pseudorandom Functions
An invertible pseudorandom function (IPRF) with key-space K, domain X , and
range Y consists of two functions iPRF : K×X → Y and iPRF−1 : K×Y → X ∪{⊥}.
An IPRF can also include a setup algorithm iPRF.Setup(1λ) that on input the
security parameter λ, outputs a key k ∈ K. The functions iPRF and iPRF−1 satisfy
the following properties:

• Both iPRF and iPRF−1 can be computed by deterministic polynomial-time
algorithms.

• For all security parameters λ and all keys k output by iPRF.Setup(1λ), the
function iPRF(k, ·) is an injective function from X to Y. Moreover, the
function iPRF−1(k, ·) is the (generalized) inverse of iPRF(k, ·).

• (Weak) Quantum Pseudorandomness. An IPRF iPRF : K ×X → Y is secure if
for all QPT adversaries A,∣∣∣∣∣∣ Pr
k $←iPRF.Setup(1λ)

[
A|iPRF(k,·)⟩(1λ) = 1

]
− Pr

R
$←InjFuncs[X ,Y]

[
A|R(·)⟩(1λ) = 1

]∣∣∣∣∣∣ ≤ negl(λ),

where InjFuncs[X ,Y] is the set of all injective functions from X to Y.

Cryptographic Primitives 20

Definition 2.9 — Statistically Injective Pseudorandom Functions
A statistically injective (puncturable) PRF family with (negligible) failure proba-
bility ε(·) is a (puncturable) PRF family PRF such that with probability 1− ε(λ)
over the random choice of key k← KeyGen(1λ), we have that PRF(k, ·) is injective.

Definition 2.10 — Extracting Pseudorandom Functions
An extracting (puncturable) PRF with error ε(·) for min-entropy k(·) is a (punc-
turable) PRF PRF mapping n(λ) bits to m(λ) bits such that for all λ, if X is any
distribution over n(λ) bits with min-entropy greater than k(λ), then the statisti-
cal distance between (k,PRF(k, X)) and (k, r $← {0, 1}m(λ)) is at most ε(·), where
k← KeyGen(1λ).

2.3.2 Symmetric-key Encryption

Definition 2.11 — Symmetric-key Encryption
A symmetric-key cryptosystem SE := ⟨K, SymEnc, SymDec⟩ consists of three PPT
algorithms.

K(1λ) is a probabilistic key generation algorithm which takes as input a security
parameter λ and outputs a secret key k.

SymEnc(k, x; r) is a probabilistic encryption algorithm which takes as input a secret
key k, a plaintext x ∈ X (where X is some fixed message space), a random
coin r ∈ R (where R is the randomness space), and outputs a ciphertext y.

SymDec(k, y) is a deterministic decryption algorithm which takes as input a secret
key k and a ciphertext y, and outputs a message x ∈ X ∪ {⊥}, where ⊥ is a
distinguished symbol indicating decryption failure.

The standard correctness requirement is that for all λ ∈ N, for any key k← K(1λ),
any random coin r of SymEnc and any x ∈ X , we have SymDec(k, SymEnc(k, x; r)) = x.

Security Definitions. For completeness, we give here a modified version of the Real-or-
Random security definition in the classical setting. In this notion, the security game
starts with a first learning phase, followed by a challenge phase where A sends a challenge
query (a message x to encrypt) and receives a challenge ciphertext, which is encryption
of either x if b = 1 or some random message x′ if b = 0. Note that encrypting a random
message x′ is equivalent to applying a random function h to x and then encrypting h(x).
Afterwards, a second learning phase follows, and finally, A outputs a solution (its guess
for the bit b).

In the standard IND-CCA2 security definition, the decryption oracle in the second
learning phase would return ⊥ if the query is a challenge ciphertext (in both games).
However, this is completely equivalent to returning the original plaintext (which was sent
to the challenge oracle by the adversary) in both games. We note that the challenger
could do that in the classical setting, as it could keep both the challenge plaintext and
the challenge ciphertext. We formalize this modified notion below.

Cryptographic Primitives 21

We let the string atk be instantiated by any of the formal symbols cpa, cca1, cca2,
while atk is the corresponding formal symbol from CPA,CCA1,CCA2. When we say
Oi := ∅ where i ∈ {1, 2}, we mean Oi is the function which, on any input, returns ⊥.
For a random function h, h0 is identity, and h1 := h.

Definition 2.12 — Real-or-Random IND-CPA, IND-CCA1, IND-CCA2
Let SE := ⟨K, SymEnc, SymDec⟩ be a symmetric-key encryption scheme and let
A := (A1,A2) be a classical adversary. Let F be the family of all functions over X .
For atk ∈ [cpa, cca1, cca2], we define the following game, where the oracles O1,O2

are defined according to atk:

Experiment Exptind-atk−b
SE (λ,A):

1 : k $← K(1λ)

2 : (x, state)← AOSymEnc(k,·),O1
1 (1λ)

3 : h
$← F

4 : y∗ ← SymEnc(k, h1−b(x))

5 : b′ ← AOSymEnc(k,·),O2
2 (y∗, state)

6 : return b′

atk

cpa

cca1
cca2

Oracle O1

∅
SymDec(k, ·)
SymDec(k, ·)

Oracle O2

∅
∅
SymDec∗(k, ·)

Here, SymDec∗(k, y) returns x if y = y∗, otherwise it decrypts normally.
We define A’s advantage by

Advind-atk
A,SE (λ) :=

∣∣∣Pr
[
Exptind-atk−1

SE (λ,A) = 1
]
− Pr

[
Exptind-atk−0

SE (λ,A) = 1
]∣∣∣.

We say SE is secure in the sense of IND-atk ifA being PPT implies that Advind-atk
A,SE (λ)

is negligible.

Next, we give the definition (in the Find-then-Guess style) in the quantum setting,
proposed by Boneh and Zhandry [BZ13b]. In the following, we let the string qatk
be instantiated by any of the formal symbols qcpa, qcca1, qcca2, while qatk is the
corresponding formal symbol from qCPA, qCCA1, qCCA2.

Definition 2.13 — IND-qCPA, IND-qCCA1, IND-qCCA2 [BZ13b]
Let SE := ⟨K, SymEnc, SymDec⟩ be a symmetric-key encryption scheme and let
A := (A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define
the following game, where the oracles O1,O2 are defined according to qatk:

Cryptographic Primitives 22

Experiment Exptind-qatk−b
SE (λ,A):

1 : k $← K(1λ)

2 : |x0, x1⟩ |ϕ⟩ ← A
|OSymEnc(k,·)⟩,|O1⟩
1 (1λ)

3 : if |x0| ≠ |x1| then return 0
4 : y∗ ← SymEnc(k, xb)

5 : b′ ← A|OSymEnc(k,·)⟩,|O2⟩
2 (|y∗⟩ |ϕ⟩)

6 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
SymDec(k, ·)
SymDec(k, ·)

Oracle O2

∅
∅
SymDec∗(k, ·)

Here, SymDec∗(k, y) returns ⊥ if y = y∗, otherwise it decrypts normally.
We define A’s advantage by

Advind-qatk
A,SE (λ) :=

∣∣∣Pr
[
Exptind-qatk−1

SE (λ,A) = 1
]
− Pr

[
Exptind-qatk−0

SE (λ,A) = 1
]∣∣∣.

We say SE is secure in the sense of IND-qatk if A being QPT implies that
Advind-qatk

A,SE (λ) is negligible.

2.3.3 Public-key Encryption

Definition 2.14 — Public-key Encryption
A public-key cryptosystem E := ⟨KeyGen,Enc,Dec⟩ consists of three PPT algo-
rithms.

KeyGen(1λ) is a probabilistic key generation algorithm which takes as input the
security parameter λ and outputs a pair (pk, sk) of matching public and secret
keys.

Enc(pk, x; r) is a probabilistic encryption algorithm which takes as input a public
key pk, a plaintext x ∈ X (where X is some fixed message space), a random
coin r ∈ R (where R is the randomness space), and outputs a ciphertext y.

Dec(sk, y) is a deterministic decryption algorithm which takes as input a secret
key sk and a ciphertext y, and outputs a message x ∈ X ∪ {⊥}, where ⊥ is a
distinguished symbol indicating decryption failure.

The following correctness definition is taken from [HHK17]. We call a public-key
encryption scheme E δ-correct if

E
[
max
x∈X

Pr
r∈R

[Dec(sk,Enc(pk, x; r)) ̸= x]
]
≤ δ,

where the expectation is taken over (pk, sk)← KeyGen(1λ).

Security Definitions. Similar to the symmetric setting, we first give a Real-or-Random
security definition for public-key encryption in the classical setting, then Boneh-Zhandry’s
definitions [BZ13b].

Cryptographic Primitives 23

Definition 2.15 — Real-or-Random IND-CPA, IND-CCA1, IND-CCA2
Let E := ⟨KeyGen,Enc,Dec⟩ be a public-key encryption scheme and letA := (A1,A2)
be a classical adversary. Let F be the family of all functions over X . For atk ∈
[cpa, cca1, cca2], we define the following game, where the oracles O1,O2 are defined
according to atk:

Experiment Exptind-atk−b
E (λ,A):

1 : (pk, sk)← KeyGen(1λ)

2 : (x, state)← AOEnc(pk,·),O1
1 (pk)

3 : h
$← F

4 : y∗ ← Enc(pk, h1−b(x))

5 : b′ ← AOEnc(pk,·),O2
2 (y∗, state)

6 : return b′

atk

cpa

cca1
cca2

Oracle O1

∅
Dec(sk, ·)
Dec(sk, ·)

Oracle O2

∅
∅
Dec∗(sk, ·)

Here, Dec∗(sk, y) returns x if y = y∗, otherwise it decrypts normally.
We define A’s advantage by

Advind-atk
A,E (λ) :=

∣∣∣Pr
[
Exptind-atk−1

E (λ,A) = 1
]
− Pr

[
Exptind-atk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of IND-atk if A being PPT implies that Advind-atk
A,E (λ)

is negligible.

Definition 2.16 — IND-qCPA, IND-qCCA1, IND-qCCA2 [BZ13b]
Let E := ⟨KeyGen,Enc,Dec⟩ be a public-key encryption scheme and letA := (A1,A2)
be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the following
game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(1λ)

2 : |x0, x1⟩ |ϕ⟩ ← A|O1⟩
1 (pk)

3 : if |x0| ≠ |x1| then return 0
4 : y∗ ← Enc(pk, xb)

5 : b′ ← A|O2⟩
2 (|y∗⟩ |ϕ⟩)

6 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
Dec(sk, ·)
Dec(sk, ·)

Oracle O2

∅
∅
Dec∗(sk, ·)

Here, Dec∗(sk, y) returns ⊥ if y = y∗, otherwise it decrypts normally.
We define A’s advantage by

Advind-qatk
A,E (λ) :=

∣∣∣Pr
[
Exptind-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptind-qatk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of IND-qatk if A being QPT implies that
Advind-qatk

A,E (λ) is negligible.

Cryptographic Primitives 24

2.3.4 One-time Signatures

Definition 2.17 — Digital Signatures
A signature scheme Sig := ⟨KeyGen, Sign,Verif⟩ consists of three PPT algorithms .

(pk, sk)← KeyGen(1λ) is a randomized procedure that takes as input the security
parameter λ and produces a secret key and public key pair (pk, sk).

σ ← Sign(sk,m) takes as input the secret key and a message m ∈ X (where X is
some fixed message space), and produces a signature σ.

b← Verif(pk,m, σ) is a deterministic decryption algorithm which takes as input a
public key pk, a message m, and a supposed signature σ on m, and outputs
a bit b.

A signature scheme is correct if Verif accepts signatures outputted by Sign such that

Pr
[

Verif(pk,m, σ) = 1
∣∣∣∣∣ (sk, pk)← KeyGen(1λ)

σ ← Sign(sk,m)

]
≥ 1− negl(λ).

For security, we will for simplicity only consider one-time signature schemes where the
adversary only receives a single superposition of messages. Furthermore, for simplicity
we assume that the signing function is a deterministic function of the secret key and
message; this can be made without loss of generality by using a pseudorandom function
to generate the randomness.

Boneh-Zhandry security. Boneh and Zhandry [BZ13b] give the following definition of
security for signatures in the presence of quantum adversaries.

Definition 2.18 — (n+1)-Unforgeability [BZ13b]
Let A be a quantum adversary, and consider the following experiment between A
and a challenger:

• The challenger runs (sk, pk)← KeyGen(1λ), and gives pk to A.

• Amakes a quantum superposition query to the function Sign(sk, ·) as |m,u⟩ 7→
|m,u⊕ Sign(sk,m)⟩.

• A outputs two classical message/signature pairs ((m0, σ0), (m1, σ1)).

• The challenger accepts and outputs 1 if and only if (1) m0 ̸= m1, and (2)
Verif(pk,mb, σb) for both b ∈ {0, 1}. Denote this output by W-BZ-Exp(λ,A).

A signature scheme is one-time weakly BZ-secure if, for any quantum polynomial
time adversary A, W-BZ-Exp(λ,A) is negligible.

2.3.5 Non-interactive Zero-knowledge Proof Systems

For a NP relation R ⊆ X ×W, we let L(R) := {x : ∃w, (x,w) ∈ R}.

Cryptographic Primitives 25

Definition 2.19 — Non-interactive Zero-knowledge Proof Systems
A non-interactive zero-knowledge (NIZK) proof system for an NP relation R
in the common reference string (CRS) model consists of three PPT algorithms
NIZK := ⟨Setup,P ,V⟩:

crs← Setup(1n, 1λ). On input a statement of length n and the security parameter λ,
the setup algorithm Setup outputs a common reference string crs.

π ← P(crs, x, w). On input the common reference string crs, an instance x and a
witness w such that (x,w) ∈ R, the proving algorithm P outputs a proof π.

b← V(crs, x, π). On input the common reference string crs, an instance x and a
proof π, the verification algorithm V outputs a bit b ∈ {0, 1}. If b = 1, we
say that V accepts, otherwise we say that V rejects.

The proof system NIZK must satisfy the following requirements for all λ ∈ N.

Completeness. For every (x,w) ∈ R, we have that

Pr
[
V(crs, x,P(crs, x, w)) = 1 | crs← Setup(1|x|, 1λ)

]
= 1,

where the probability is taken over the randomness of Setup and P.

Statistical soundness. There exists a negligible function negl(λ) such that for any
n ∈ N,

Pr
crs←Setup(1n,1λ)

[∃(x, π∗) s.t. V(crs, x, π∗) = 1 ∧ x /∈ L] ≤ negl(λ).

(Adaptive) post-quantum computational zero-knowledge. There exists a QPT simulator
S := (S1,S2) such that for any QPT malicious verifier V∗ := (V∗1 ,V∗2), for
any n ∈ N,∣∣∣∣∣∣∣∣Pr

 V∗2 (crs, x, π, ζ) = 1 ∧ x ∈ L

∣∣∣∣∣∣∣∣
crs← Setup(1n, 1λ)
(x,w, ζ)← V∗1 (crs)
π ← P(crs, x, w)



−Pr

 V∗2 (crs, x, π, ζ) = 1 ∧ x ∈ L

∣∣∣∣∣∣∣∣
(crs, td)← S1(1λ)

(x,w, ζ)← V∗1 (crs)
π ← S2(td, x)


∣∣∣∣∣∣∣∣ ≤ negl(λ).

Definition 2.20 — Unbounded Simulation-Soundness
A zero-knowledge proof system is said to be (unbounded) simulation-sound if it
has the property that an adversary cannot provide a convincing proof for any false
statement, even if it has seen simulated proofs of arbitrary statements (including
false statements). More precisely, an NIZK proof is simulation sound if for all QPT

Cryptographic Primitives 26

adversaries A, we have:

Pr
[

(xi, πi) ̸∈ Q ∧ x ̸∈ L
∧ V(crs, x, π) = 1

∣∣∣∣∣ (crs, td)← S1(1λ)
(x, π)← AS2(td,·)(crs)

]
≤ negl(λ),

where Q is the list of simulation queries and responses (xi, πi).

Definition 2.21 — NIZKs in the (quantum) random oracle model
A definition for NIZK proof systems in the (quantum) random oracle model can
be defined similarly as in Definition 2.19, except that the setup algorithm Setup
outputs an empty string, and all parties have (quantum) access to a random oracle
OH . Completeness, soundness, zero-knowledge and simulation-soundness can be
defined similarly with respect to this change in the model.

2.3.6 Indistinguishability Obfuscation

Definition 2.22 — Indistinguishability Obfuscator [BGIR+01]
A uniform PPT machine iO is called an indistinguishability obfuscator for a classical
circuit class {Cλ} if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all input x, we have
that

Pr[C ′(x) = C(x) | C ′ ← iO(λ,C)] = 1.

• For any (not necessarily uniform) QPT distinguisher D, for all security param-
eters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then

AdviO(λ,A) := |Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ negl(λ).

We further say that iO is δ-secure, for some concrete negligible function δ(λ), if
for all QPT adversaries A, the advantage AdviO(λ,A) is smaller than δ(λ)Ω(1).

Quantum-secure instantiations. There has been recent progress in constructing quantum-
secure indistinguishability obfuscation schemes [BDGM20; GP20] from cryptographic
assumptions that conjecturally hold against quantum adversaries.

In [Zha19b; Shm22a], it is shown that indistinguishability obfuscation schemes have
the property of subspace hiding.

Lemma 2.8 ([Zha19b; Shm22a]). Let iO an indistinguishability obfuscation scheme,
and assume that injective one-way functions exist. Let S := {Sλ}λ∈N a subspace
S ⊆ Fλ2 . For a subspace S ′, denote by CS′ a classical circuit that checks membership
in S ′. Then, for every constant δ ∈ (0, 1] we have the following indistinguishability:

{iO(CSλ
)}λ∈N

c≈0 {iO(CT) | T $← SSλ
}λ∈N,

where SSλ
is the set of all subspaces of dimension λ− λδ that contain Sλ.

Cryptographic Primitives 27

2.3.7 Leveled Hybrid Quantum Fully Homomorphic Encryption

We give a definition of quantum fully homomorphic encryption of a specific structure,
which was defined in [Shm22a].

Definition 2.23 — Leveled Hybrid Quantum Fully Homomorphic Encryption
A hybrid leveled quantum fully homomorphic encryption scheme is given by
QFHE := ⟨KeyGen,Encrypt,QOTP,Eval,Decrypt⟩ with the following syntax:

(pk, sk)← KeyGen(1λ, 1ℓ). A PPT algorithm that given a security parameter λ ∈ N
and target circuit bound ℓ ∈ N, outputs a classical key pair (pk, sk).

|ψ⟩(x,z) ← QOTP((x, z), |ψ⟩). A QPT algorithm that takes as input an n-qubit
quantum state |ψ⟩ and classical strings as quantum one-time pads (QOTPs)
x, z ∈ {0, 1}n and outputs its QOTP transformation |ψ⟩(x,z) := (⊗i∈JnKZzi) ·
(⊗i∈JnKXxi) |ψ⟩. We often call these one-time pads (x, z) the Pauli keys.
Furthermore, if |ψ⟩ is a classical string m, we ignore the Pauli key z and
write QOTP(x,m) whose output is x⊕m.

ct← Encrypt(pk, x). A PPT algorithm that takes as input a classical string
x ∈ {0, 1}∗ and the public key pk and outputs a classical ciphertext ct.

x← Decrypt(sk, ct). A PPT algorithm that takes as input a classical ciphertext ct
and the secret key sk and outputs a classical string x.

(|ϕ⟩(x
′,z′) , ctx′,z′)← Eval(pk, (|ψ⟩(x,z) , ctx,z), C). A QPT algorithm that takes as in-
put a general quantum circuit C, a quantum one-time pad encrypted
state |ψ⟩(x,z) and a classical ciphertext ctx,z of the pads. The evaluation
outputs a QOTP encryption of some quantum state |ϕ⟩ encrypted under new
keys (x′, z′) and a classical ciphertext ctx′,z′.

The scheme satisfies the following properties.

Semantic Security. For every polynomials m(·), ℓ(·), and QPT algorithm
A := {Aλ, ρλ}λ∈N there exists a negligible function negl(·) such that∣∣∣∣∣∣∣∣∣∣∣
Pr

 1← A2(m0 ⊕ x, ctx)

∣∣∣∣∣∣∣∣∣∣∣

(m0,m1)← A1(1λ)
(pk, sk) $← KeyGen(1λ, 1ℓ(λ))

x
$← {0, 1}m(λ)

ctx ← Encrypt(pk, x)



−Pr

 1← A2(m1 ⊕ x, ctx)

∣∣∣∣∣∣∣∣∣∣∣

(m0,m1)← A1(1λ)
(pk, sk) $← KeyGen(1λ, 1ℓ(λ))

x
$← {0, 1}m(λ)

ctx ← Encrypt(pk, x)



∣∣∣∣∣∣∣∣∣∣∣
≤ 1

2 + negl(λ),

where λ ∈ N and m0,m1 ∈ {0, 1}m(λ).

Cryptographic Primitives 28

Denote the above probability as AdvQFHE(λ,A). We further say that QFHE
is δ-secure, for some concrete negligible function δ(λ), if for all QPT adver-
saries A, the advantage AdvQFHE(λ,A) is smaller than δ(λ)Ω(1).

Homomorphism. For every polynomial ℓ := ℓ(λ) there is a negligible function negl(·)
such that the following holds. Let (pk, sk) ← KeyGen(1λ, 1ℓ), let x, z equal-
length strings, let ctx,z ← Encrypt(pk, (x, z)), let C a quantum circuit of
size ≤ ℓ, let |ψ⟩ a |x|-qubit state input for C. Then, ∆ (D0, D1) ≤ negl(λ),
where D0, D1 are defined as follows.

• D0: The output state is |ϕ⟩ ← C(|ψ⟩).

• D1: The output state generated by first evaluating

(|ϕ⟩(x
′,z′) , ctx′,z′)← Eval

(
pk, (|ψ⟩(x,z) , ctx,z), C

)
,

and then decrypting

(x′, z′)← Decrypt(sk, ctx′,z′), and |ϕ⟩ ← QOTP
(
(x′, z′), |ϕ⟩(x

′,z′)
)
.

Quantum-secure instantiations. Quantum leveled fully-homomorphic encryption with the
hybrid structure follows from the work of Mahadev [Mah18a] and Brakerski [Bra18], and
can be based on the quantum hardness of Learning with Errors [Reg05]. Consequently,
constructing QFHE that has hybrid structure, leveled, and has sub-exponential advantage
security can be based on assuming LWE with sub-exponential indistinguishability.

2.3.8 Extended Trapdoor Claw-free Functions

In this section, we recall the definition of extended noisy trapdoor claw-free function
family (ENTCF family), which was introduced in [Mah18b]. An ENTCF family consists
of two families F and G of function pairs. A function pair (fk,0, fk,1) ∈ F is called a
claw-free pair and is indexed by a public key k. Similarly, an injective pair is a pair of
functions (fk,0, fk,1) ∈ G, also indexed by a public key k. Informally, the most important
properties are the following:

1. For fixed k ∈ K1, fk,0 and fk,1 are bijections with the same image, i.e., for every y
in their image there exists a unique pair (x0, x1), called a claw, such that fk,0(x0) =
fk,1(x1) = y.

2. Given a key k ∈ K1 for a claw-free pair, it is quantum-computationally intractable
(without access to trapdoor information) to compute both a preimage xi and a
single generalized bit of x0 ⊕ x1 (i.e., d · (x0 ⊕ x1) for any non-trivial bit string d),
where (x0, x1) forms a valid claw. This is called the adaptive hardcore bit property.

3. For fixed k ∈ K0, fk,0 and fk,1 are injective functions with disjoint images.

4. Given a key k ∈ K1 ∪ K0, it is quantum-computationally hard (without access to
trapdoor information) to determine the “function type”, i.e., to decide whether k
is a key for a claw-free or an injective pair. This is called injective invariance.

Cryptographic Primitives 29

5. For every key k ∈ K1 ∪ K0, there exists a trapdoor tk, which can be sampled
together with k and with which (ii) and (iv) are computationally easy.

A formal definition follows.

Definition 2.24 — Noisy Trapdoor Claw-Free Functions
Let λ be a security parameter. Let X and Y be finite sets. Let K1 be a finite set
of keys. A family of functions

F :=
{
fk,b : X → DY

}
k∈K1,b∈{0,1}

is called a noisy trapdoor claw-free (NTCF) family if the following conditions
hold:

Efficient Function Generation. There exists an efficient probabilistic algorithm GenF
which generates a key k ∈ K1 together with a trapdoor tk:

(k, tk)← GenF(1λ) .

Trapdoor Injective Pair. For all keys k ∈ K1 the following conditions hold.

1. Trapdoor : For all b ∈ {0, 1} and x ̸= x′ ∈ X , Supp(fk,b(x)) ∩
Supp(fk,b(x′)) = ∅. Moreover, there exists an efficient deterministic
algorithm InvF such that for all b ∈ {0, 1}, x ∈ X and y ∈ Supp(fk,b(x)),
InvF(tk, b, y) = x.

2. Injective pair : There exists a perfect matching Rk ⊆ X × X such that
fk,0(x0) = fk,1(x1) if and only if (x0, x1) ∈ Rk.

Efficient Range Superposition. For all keys k ∈ K1 and b ∈ {0, 1} there exists a
function f ′k,b : X 7→ DY such that

1. For all (x0, x1) ∈ Rk and y ∈ Supp
(
f ′k,b(xb)

)
, InvF(tk, b, y) = xb and

InvF(tk, b⊕ 1, y) = xb⊕1.

2. There exists an efficient deterministic procedure ChkF that, on input k,
b ∈ {0, 1}, x ∈ X and y ∈ Y, returns 1 if y ∈ Supp

(
f ′k,b(x)

)
and 0

otherwise. Note that ChkF is not provided the trapdoor tk.

3. For every k and b ∈ {0, 1},

E
x

$←X

[
H2(fk,b(x), f ′k,b(x))

]
≤ µ(λ) ,

for some negligible function µ(·). Here H2 is the Hellinger distance
defined between two densities f1 and f2 over the same finite domain X
as:

H2(f1, f2) := 1−
∑
x∈X

√
f1(x)f2(x).

Cryptographic Primitives 30

Moreover, there exists an efficient procedure SampF that on input k and
b ∈ {0, 1} prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x⟩ |y⟩ . (2.11)

Adaptive Hardcore Bit. For all keys k ∈ K1 the following conditions hold, for some
integer w that is a polynomially bounded function of λ.

1. For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such
that Pr

d
$←{0,1}w

[d /∈ Gk,b,x] is negligible, and moreover there exists an
efficient algorithm that checks for membership in Gk,b,x given k, b, x and
the trapdoor tk.

2. There is an efficiently computable injection J : X → {0, 1}w, such that
J can be inverted efficiently on its range, and such that the following
holds. If

Hk :=
{
(b, xb, d, d · (J(x0)⊕ J(x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk,

d ∈ Gk,0,x0 ∩Gk,1,x1

}
,

Hk := {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk

}
,

then for any quantum polynomial-time procedure A there exists a
negligible function µ(·) such that∣∣∣∣ Pr

(k,tk)←GenF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GenF (1λ)
[A(k) ∈ Hk]

∣∣∣∣ ≤ µ(λ) . (2.12)

Definition 2.25 — Trapdoor Injective Function Family
Let λ be a security parameter. Let X and Y be finite sets. Let K0 be a finite set
of keys. A family of functions

G :=
{
gk,b : X → DY

}
b∈{0,1},k∈K0

is called a trapdoor injective family if the following conditions hold:

Efficient Function Generation. There exists an efficient probabilistic algorithm GenG
which generates a key k ∈ K0 together with a trapdoor tk:

(k, tk)← GenG(1λ) .

Disjoint Trapdoor Injective Pair. For all keys k ∈ K0, for all b, b′ ∈ {0, 1} and x, x′ ∈ X ,
if (b, x) ̸= (b′, x′), Supp(gk,b(x)) ∩ Supp(gk,b′(x′)) = ∅. Moreover, there exists
an efficient deterministic algorithm InvF such that for all b ∈ {0, 1}, x ∈ X
and y ∈ Supp(gk,b(x)), InvG(tk, y) = (b, x).

Cryptographic Primitives 31

Efficient Range Superposition. For all keys k ∈ K0 and b ∈ {0, 1}

1. There exists an efficient deterministic procedure ChkG that, on input
k, b ∈ {0, 1}, x ∈ X and y ∈ Y, outputs 1 if y ∈ Supp(gk,b(x)) and 0
otherwise. Note that ChkG is not provided the trapdoor tk.

2. There exists an efficient procedure SampG that on input k and b ∈ {0, 1}
returns the state

1√
|X |

∑
x∈X ,y∈Y

√
(gk,b(x))(y) |x⟩ |y⟩ . (2.13)

Definition 2.26 — Injective Invariance
A noisy trapdoor claw-free family F is injective invariant if there exists a trapdoor
injective family G such that:

1. The algorithms ChkF and SampF are the same as the algorithms ChkG and
SampG.

2. For all quantum polynomial-time procedures A, there exists a negligible
function µ(·) such that∣∣∣∣ Pr

(k,tk)←GenF (1λ)
[A(k) = 0]− Pr

(k,tk)←GenG(1λ)
[A(k) = 0]

∣∣∣∣ ≤ µ(λ) (2.14)

Definition 2.27 — Extended Trapdoor Claw-Free Family
A noisy trapdoor claw-free family F is an extended trapdoor claw-free family if:

1. It is injective invariant.

2. For all k ∈ K1 and d ∈ {0, 1}w, let:

H ′k,d = {d · (J(x0)⊕ J(x1))|(x0, x1) ∈ Rk} (2.15)

For all quantum polynomial-time procedures A, there exists a negligible
function µ(·) and a string d ∈ {0, 1}w such that∣∣∣∣ Pr

(k,tk)←GenF (1λ)
[A(k) ∈ H ′k,d]−

1
2

∣∣∣∣ ≤ µ(λ) (2.16)

In addition, we also define the following functions for convenience:

Definition 2.28 — Decoding Maps

1. For a key k ∈ K0 and a y ∈ Y, we define b̂(k, y) by the condition
y ∈ ∪x Supp

(
fk,b̂(k,y)(x)

)
. (This is well-defined because fk,0 and fk,1 form

an injective pair.)

Cryptographic Primitives 32

2. For a key k ∈ K0 ∪ K1 and a y ∈ Y, we define x̂b(k, y) by the condition
y ∈ Supp(fk,b(x̂b(k, y))), and x̂b(k, y) = ⊥ if y /∈ ∪x Supp(fk,b(x)). For k ∈ K0,
we also use the shorthand x̂(k, y) := x̂b̂(k,y)(k, y).

3. For a key k ∈ K1, a y ∈ Y, and a d ∈ {0, 1}w, we define û(k, y, d) by the
condition d · (x̂0(k, y)⊕ x̂1(k, y)) = û(k, y, d).

The above decoding maps applied to vector inputs are understood to act in an
element-wise fashion. For example, for k⃗ ∈ K×n1 , y⃗ ∈ Y×n, and d⃗ ∈ {0, 1}w×n, we denote
by û(k⃗, y⃗, d⃗) ∈ {0, 1}n the string defined by

(
û(k⃗, y⃗, d⃗)

)
i

:= û(ki, yi, di).

2.3.9 Copy-Protection

In the following, we assume that F is a family of functions such that each function f
in the family has the same domain X and the same codomain Y and has a classical
description df (of size polynomial in λ) that allows for an efficient computation of f .

Definition 2.29 — Copy-Protection Scheme of a Family F
A copy-protection scheme is a tuple of algorithms ⟨Protect,Eval⟩ with the following
properties:

ρf ← Protect(1λ, df). On input the description df of a function f ∈ F , the quantum
protection algorithm outputs a quantum state ρf .

y ← Eval(1λ, ρf , x). On input a quantum state ρf and an input x ∈ X , the quantum
evaluation algorithm outputs an image y ∈ Y.

We ask a copy-protection scheme to have correctness and anti-piracy security.
A copy-protection scheme has correctness if the quantum protection of a function

f computes f on every x with overwhelming probability, that is for any λ ∈ N, for all
f ∈ F and for all x ∈ X , the following holds:

Pr
[
Eval(1λ, ρf , x) = f(x) | ρf ← Protect(1λ, df)

]
≥ 1− negl(λ).

Definition 2.30 — Anti-Piracy Game for Copy-Protection
In order to define anti-piracy security, we define a piracy game for copy-protection
of a family F with respect to distributions Df and {Xf}f∈F . This game is be-
tween a challenger and an adversary represented by three algorithms (A0,A1,A2),
where A1 and A2 cannot communicate during the game. It is parameterized by
a distribution Df over {df : f ∈ F} and a family of distributions {Xf}f∈F over
X × X .
The challenger and the adversary proceed in the following way:

(1) Setup phase. The challenger samples df ← Df and sends ρf ← Protect(1λ, df)
to A0.

(2) Splitting phase. A0 prepares a bipartite quantum state σ12, and sends σ1 to A1

and σ2 to A2.

Cryptographic Primitives 33

(3) Challenge phase. The challenger samples (x1, x2) ← Xf and sends x1 to A1

and x2 to A2.

(4) Answer phase. A1 returns y1 and A2 returns y2.

The adversary wins the game if y1 = f(x1) and y2 = f(x2).
We denote the random variable that indicates whether an adversary (A0,A1,A2)
wins the game or not as APGameProtect,Eval

Df ,{Xf}f∈F
(1λ, (A0,A1,A2)).

As noted in [CMP20] and [AKLL+22], an adversary can always win the game with
a trivial probability (that we define formally next) by applying the following strategy:
A0 forwards the quantum protection state to eitherA1 orA2 and nothing to the other one.
The one who receives the state can answer the challenge with probability close to 1 using
the Eval algorithm, and the other one returns the optimal answer given their challenge.

Thus, given a family F , and distributions Df and {Xf}f∈F , we define the trivial
probability of winning the piracy game as

ptrivialDf ,{Xf}f∈F
:= max

i∈{1,2}
E

df∈Df

max
y∈Y

Pr[y | xi]

Definition 2.31 — δ-Anti-Piracy Security of a Copy-Protection Scheme
A copy-protection scheme of a family F has δ-anti-piracy security with respect
to the distributions Df and {Xf}f∈F if no QPT adversary (A0,A1,A2) can win
the piracy game for F with respect to the distributions Df and {Xf}f∈F with a
probability significantly greater than 1− δ(λ).
More precisely, for any QPT adversary (A0,A1,A2)

Pr
[
APGameProtect,Eval

Df ,{Xf}f∈F
(1λ, (A0,A1,A2)) = 1

]
≤ 1− δ(λ) + negl(λ)

When δ(λ) = 1− ptrivialDf ,{Xf}f∈F
, we simply say that the copy-protection scheme has

anti-piracy security.

For ease of notations, we will use f and df indifferently, and we will not write the
dependence on λ in the following when clear from the context.

Part I

Quantum Security

Chapter

3
Quantum Security for Classical
Encryption

In this chapter, we present quantum security definitions for classical encryption schemes
in both symmetric-key and public-key settings, as well as their characterizations. These
notions were introduced in [CEV20], and are the first quantum chosen-ciphertext security
notions for classical encryption with quantum challenge queries.

Chapter content
3.1 Defining Security for Encryption Against Quantum Adversaries 36

3.1.1 Our Approach . 37

3.1.2 Discussion . 38

3.2 How to Record Encryption Queries in the Random World? 41

3.2.1 Ciphertext Decomposition . 41

3.2.2 Oracle Variations . 41

3.2.3 Recording Queries in the Random World 43

3.2.4 A Technical Observation . 46

3.2.5 How to Answer Decryption Queries? 47

3.2.6 Notation . 49

3.3 Quantum-Secure Symmetric Encryption . 49

3.3.1 Definitions of Security . 49

3.3.2 A Separation Example . 51

3.3.3 Feasibility of Quantum CCA2 Security 53

3.4 Quantum-Secure Public-key Encryption . 58

3.4.1 Definitions of Security . 58

3.4.2 Relating Indistinguishability and Non-Malleability 62

3.4.3 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2 67

3.5 Bit Encryption Is Complete . 69

3.5.1 Bit-by-bit Encryption Is Insecure 69

3.5.2 Completeness of Bit-Encryption 70

Defining Security for Encryption Against Quantum Adversaries 36

3.1 Defining Security for Encryption Against Quantum Adversaries

Classical Security Notions

Indistinguishability-based security definitions are modeled as a game between a challenger
and an adversary A. In the Find-Then-Guess style, the game starts with a first learning
phase (with access to some oracles), followed by a challenge phase where A sends a
challenge query (two messages x0 and x1 to be encrypted) and receives a challenge
ciphertext (encryption of xb). Afterwards, a second learning phase follows, and finally, A
outputs a solution (its guess for the bit b). The security reduction consists in constructing
a new adversary which simulates A and solves some hard underlying problem. The
learning phases define the type of attacks: chosen-plaintext attacks (CPA) if the adversary
has access to an encryption oracle in both learning phases, and chosen-ciphertext attacks
(CCA) in case it also has access to a decryption oracle in the learning phases (non-
adaptive or CCA1 if it is restricted to the first learning phase, and adaptive or CCA2
otherwise).

Indistinguishability against adaptive chosen-ciphertext attack (IND-CCA2) is usually
considered the most desirable security notion for encryption. In the CCA2 games, the
adversary is restricted not to ask for decryption of the challenge ciphertext, otherwise,
this would lead to a trivial guess of the bit b. It is the role of the challenger to ensure
that the adversary obeys this rule, which intrinsically requires the ability to copy, store
and compare classical strings.

Boneh-Zhandry’s Security Notions [BZ13b]

Boneh and Zhandry propose the first definition of IND-CCA for both symmetric and
public-key encryption schemes against quantum adversaries allowed to make quantum
encryption and decryption queries. But they show that the natural translation of the
classical Find-then-Guess paradigm to the quantum setting is unachievable, even for
IND-CPA security. To overcome this impossibility, they resort to considering quantum
queries during the learning phases only, and classical queries during the challenge phase.
In addition to looking artificial, this inconsistency between the learning phases and the
challenge phase may lead to a cryptographic construction that fulfills this security notion
(IND-qCPA or IND-qCCA) while being subject to an attack.

For instance, in [ATTU16], the authors verify IND-qCPA security of XTS mode of
operation (with quantum learning queries and classical challenge queries). They design
a block cipher such that an encryption scheme in XTS mode, instantiated with that
block cipher, can be attacked during the learning phase using quantum learning queries.
However, this attack cannot be used to violate the IND-qCPA security definition. The
explanation for this inconsistency is that this attack cannot be implemented in the
challenge phase due to the classical restriction imposed on the adversary. This example
supports our claim that the inconsistency between the learning phases and the challenge
phase can be problematic and should be overcome.

Quantum IND-CCA2 Security Notions

To date, defining the CCA2 security with quantum challenge queries remains unsolved.
In [GHS16], the authors address the inconsistency described above for the case of

Defining Security for Encryption Against Quantum Adversaries 37

symmetric encryption, but only for IND-CPA, and leave as an open problem the IND-
CCA definitions.

The main obstacle is to define how the challenger should reply to the quantum
decryption queries after the adversary has made the quantum challenge queries. When
the challenge queries are classical, they can be stored and later the challenger can return
⊥ if the adversary submits one of them as a decryption query. Although it is trivial and
inherent to store the challenge ciphertext in the classical setting, it is highly non-trivial
to store ciphertexts in the quantum world, due to a number of technical obstacles, all of
which can be traced to quantum no-cloning [WZ82] and the destructiveness of quantum
measurements [FP96].

3.1.1 Our Approach

Towards resolution, we start from a recent groundbreaking technique that allows for
on-the-fly simulation of random oracles in the quantum setting: Zhandry’s compressed
oracles [Zha19a]. The goal of his work is to overcome the recording barrier, by allowing
the reduction to record information about the adversary’s queries, which is a key feature
of many classical ROM proofs.

Zhandry’s key observations are threefold. First, instead of considering a random
function h being chosen beforehand, one can purify the adversary’s mixed state by
putting h in uniform superposition

∑
h |h⟩. This observation is a technicality that allows

us to fulfill the two next points. Then, the next observation is that, by doing the queries
in the Fourier basis, the data will be written to the oracle’s registers instead of writing
to the opposite direction. This enables the simulator to get some information about the
adversary’s queries. Finally, the last and most important one is that the simulator needs
to be ready to forget some point it simulated previously, by performing a particular
test on the database after answering the query. In particular, Zhandry defines a test
computation that maps |+⟩ 7→ |+⟩ |1⟩ and |ϕ⟩ 7→ |ϕ⟩ |0⟩ for any |ϕ⟩ orthogonal to |+⟩,
where |+⟩ = ∑

x |x⟩ is the uniform superposition state. The “test-and-forget” procedure
can be implemented by first performing the query in the Fourier basis and then doing the
test operation on the output registers (of the simulator). This test determines whether
the adversary has any information from the oracle at some input. If not, that pair will
be removed from the database so that the adversary cannot detect that it is interacting
with a simulated oracle.

This technique has been extended from random oracles to lazy-sampling of non-
uniform random functions in [CMSZ19]. The intuition is almost the same, except that
now one starts from the all-zero state, performs an efficient sampling operation that
computes the function f(x) according to some non-uniform distribution – it is the
quantum Fourier transform (QFT) operation in the uniform setting. One then performs
the query in the Fourier basis, transforms back to the computational basis and applies
the “test-and-forget” operation (which is defined similarly as in the uniform setting). For
this to work, the two important requirements are that: i) the sampling operation must
be efficient; ii) the function distribution must be independent for every input.

To define security for encryption, we choose the real-or-random paradigm to work
with. This is because partially, the real-or-random paradigm does not suffer from Boneh-
Zhandry’s impossibility (discussion below). Furthermore, it is actually possible to define
quantum chosen-ciphertext security for this paradigm using the quantum lazy-sampling
technique we just described. In what follows, let us focus on the random world of the

Defining Security for Encryption Against Quantum Adversaries 38

paradigm. For each challenge query in the random world, the challenger applies a random
function to the plaintext registers before encrypting, all aforementioned requirements
are met: the encryption of each submitted plaintext is actually an encryption of another
uniformly random plaintext, and since the encryption algorithm is efficient, the sampling
operation can also be efficiently constructed.

The above idea gives us a reasonable way to define adaptive chosen ciphertext security
against quantum challenge queries: by instantiating the encryption oracle with this lazy-
sampling technique, we are able to keep track of the information needed to formulate the
CCA2 notions, namely the challenge queries the adversary has made, and the challenge
ciphertexts it has received. However, applying Zhandry’s framework directly to our
setting does not work, and more efforts are needed. For example, one main difference
is that in our setting, when making queries to the random oracle, there is no response
register (from the adversary). In Zhandry’s framework, this response register is essential
for the technique, as the “test-and-forget” procedure works based on the value of this
register. Another problem is how to implement the oracle with an one-shot call to the
encryption algorithm: this is necessary when defining “one-time” security, or when doing
security reductions. We refer the reader to Section 3.2 for technical details.

3.1.2 Discussion

This line of work on defining security for encryption in the quantum world started
by Boneh and Zhandry in [BZ13b]. They show that quantizing the notion of classical
“left-or-right” indistinguishability is unachievable, even for chosen-plaintext security. In
more details, the adversary sends two input-message registers for the challenge phase:∑

x0,x1,y

αx0,x1,y |x0, x1, y⟩ 7→
∑

x0,x1,y

αx0,x1,y |x0, x1, y ⊕ Encrypt(xb)⟩ . (3.1)

For any classical encryption scheme, the adversary can perform an efficient attack which
allows it to get the bit b with overwhelming probability. Follow-up works [GHS16; MS16;
GKS21] manage to bypass this impossibility and give security definitions that allow the
adversary to send quantum challenge queries. These works use different approaches, we
give a discussion on these approaches and relate them to ours below.

On the query models. In [CETU21], all possible qIND-qCPA security notions for symmetric-
key encryption have been studied. It was proven that “real-or-random” in the standard
oracle model and “left-or-right” in the minimal oracle model are among the strongest ones
we could achieve, and at the same time, the two notions are provably incomparable45.
We believe that the standard oracle model is a more realistic query model, and thus
security notions defined in this model might be a better one, for several reasons:

• In the symmetric-key setting, [GHS16] shows that with the decryption oracle,
minimal oracles can be efficiently simulated by standard oracles. However, we
stress that in general, unlike the symmetric setting, in the public-key setting, the

4Recall that in the standard oracle model, the query is implemented as |x, y⟩ 7→ |x, y ⊕ f(x)⟩. In the
minimal oracle model, the query is implemented as |x⟩ 7→ |f(x)⟩.

5We note that in [CETU21], instead of “real-or-random” (as we are considering here), they consider
“real-or-permuted” notion. However, their results translate directly to “real-or-random” notions, and also
to the public-key setting (using the hybrid encryption approach).

Defining Security for Encryption Against Quantum Adversaries 39

requirement of having the decryption key simultaneously with the public key is
unrealistic in most of the cases. The encryption machine should not hold the
secret key for practical use. Thus, defining security for public-key encryption in
the minimal oracle model is not possible in general.

• Implementing queries in the minimal oracle model is only applicable to injective
functions, which definitely does not include decryption. Thus, one still needs the
standard oracle model to define chosen-ciphertext security: the minimal oracle
model for encryption queries, and the standard oracle model for the decryption
queries. This type of notions is not consistent in our opinion.

• The standard oracle model captures the quantum fault attacks while the minimal
oracle model does not (see [GHS16]).

• Oracles implemented in the minimal oracle model require extra quantum compu-
tation. That is, the challenger has to use its secret information/randomness twice
in the computation (once for encryption and once for recovering the message).
In the standard oracle model, the second computation is not needed. (We note
that in our notion, in the real game, the challenger implements the encryption
oracle straightforwardly in the standard oracle model and does not need any extra
computation.) This might limit some quantum attacks. For example, consider
the smartcard frozen attacks [GHS16], here if the adversary wants to make an
encryption query in superposition, it is arguably better to “use” the standard oracle
model, as the minimal oracle model requires a longer coherent time of the device,
otherwise, the attacks might not work at all.

One might also ask whether the adversary can only prepare one message register per
challenge query in the “real-or-random” notion is somehow limiting. [CETU21] shows
that the currently known way to have 2 message registers per challenge query (as in the
“left-or-right” paradigm) seems to be to consider the minimal oracle model if one wants
to achieve a strong notion. Combining with Boneh-Zhandry’s impossibility on defining
“left-or-right” security in the standard model [BZ13b], our notions might be the best we
can hope for.

Semantic Security in the Quantum World. In the classical setting, semantic security [GM84],
the computational complexity analogue to perfect security, is considered as the strongest
possible security notion and is shown to be equivalent to all indistinguishability notion.
Semantic security formulates that whatever can be efficiently computed (represented
by a target function ftarget(·)) from the ciphertext and additional partial information
about the plaintext (represented by a function faux(·)) can be efficiently computed given
only the length of the plaintext and the same partial information. Quantum semantic
security was first studied in [GHS16]. Albeit with some restrictions on the adversary, this
notion is equivalent to the “left-or-right” indistinguishability notion in the minimal oracle
model. However, we note that this equivalence does not imply that this “left-or-right”
indistinguishability notion in the minimal oracle model is the strongest one, as we
explained above (essentially, this follows from the results given in [CETU21]).

In the following, we show that a natural translation of semantic security to the
quantum setting in the standard oracle model is unachievable. The impossibility follows
essentially from the nature of the standard oracle model, in which each query is modeled

Defining Security for Encryption Against Quantum Adversaries 40

as |x, y⟩ 7→ |x, y ⊕ f(x)⟩. The crucial point here is that the adversary receives in the
challenge phase not only the ciphertext but also the plaintext, that is (a superposition
of) |x, y ⊕ Encrypt(x)⟩. This allows the adversary to output any value ftarget(x) for some
target function ftarget(·). In the simulation, the simulator receives no encryption, but
only the auxiliary state α on |x, y⟩, computed by some quantum circuit Caux on the
plaintext state. We note that since the quantum circuit Caux is given by the adversary,
Caux does not necessarily preserve the input registers |x⟩ (for example, take Caux a
quantum circuit tracing out the input registers and outputting a constant). As such,
the simulator has no information on the plaintext, while the adversary does. Thus there
is no simulator that can simulate the adversary efficiently. This gives us some hints that
defining a generic quantum semantic security might not be possible.

Quantum Encryption Approaches [AGM18]. Since we now consider the adversary’s challenge
queries as quantum states, it may be tempting to think that the approaches from the
literature on quantum encryption (that is, the problem of encrypting quantum data)
would work here. The notorious “recording barrier” that we face in this work has
arisen previously in the literature on quantum encryption. In particular, devising the
notions of quantum ciphertext indistinguishability under adaptive chosen-ciphertext
attack and quantum authenticated encryption [AGM18] requires circumventing similar
obstacles. However, [AGM18] defines IND-CCA2 security for quantum encryption,
which inherently requires the users to have quantum computers, while in this work,
we focus on classical encryption that can be implemented on classical computers and
only needs to be secure against quantum adversaries. We show below that indeed the
approach of [AGM18] would not help.

On a high level, an adversary A has negligible probability in distinguishing between
two experiments: in the real one, it has access to encryption and decryption oracles with
no restrictions, whereas in the random one, the challenge encryption oracle replaces
A’s queried plaintexts by random ones (half of a maximally-entangled state), and the
decryption oracle answers with the originally queried plaintexts if the adversary asked
for decryption of a challenge ciphertext (which can be done by first decrypting the
ciphertext and applying a measurement on the entangled state), otherwise it answers
normally. It is tempting to say that this approach resolves the problem of defining
chosen-ciphertext security for the symmetric-key setting in the minimal oracle model.
However, as explained above, the minimal oracle model does not support decryption
queries, and it is not clear if this approach is compatible with the standard oracle model.
In the context of standard oracles, this approach does not work unfortunately. The
adversary can then use the same strategy to detect the random experiment’s simulation:
it prepares a maximally-entangled state |ϕ+⟩XX′ and uses half of it (the registers X)
as the challenge plaintext, and keeps X ′. After receiving the challenge ciphertext, it
measures the plaintext registers and X ′, and trivially distinguishes whether it is in the
random experiment. We note that this attack cannot be performed without relaying,
that is the plaintext registers X need to be available to A after the challenge encryption.
However, non-relaying is indistinguishable from being traced out the plaintext registers
(from A’s perspective). This inherently reduces to a definition with classical challenge
queries, which defeats our goals.

How to Record Encryption Queries in the Random World? 41

3.2 How to Record Encryption Queries in the Random World?

The starting point towards our goal of defining indistinguishability-based security notions
for encryption is to explain how the challenger should reply to quantum decryption
queries in the second learning phase after the adversary has made the quantum encryption
queries in the challenge phase. This implies explaining how it could record these quantum
challenge queries. In this section, we show how this can be done in the random world.

3.2.1 Ciphertext Decomposition

For simplicity, let we denote the encryption algorithm as a function f that takes as
input a plaintext x ∈ X , a randomness r ∈ R and outputs a ciphertext y ← f(x; r) ∈ Y .
We also assume that the domain of f is X = {0, 1}m, its range is Y = {0, 1}n, and the
randomness space R = {0, 1}ℓ. We make a convention that f(⊥) = 0, where ⊥ denotes
some symbol outside the domain X and the range Y . We define ciphertext decomposition
as follows.

Definition 3.1 — Ciphertext Decomposition
For a function f , for all messages x ∈ X , we write y := (y1∥y2) ← f(x; r) and
define:

Message-independent: y1 is message-independent if for all randomness r, there exists
a function g such that y1 := g(r). In other words, the message-independent
component of the ciphertext can be computed solely from the randomness r,
independent of the message x. Furthermore, we require that 0 ≤ |y1| ≤ |y|.

Message-dependent: y2 is message-dependent if for all randomness r, there exists
no function g such that y2 := g(r). In other words, the message-dependent
component of the ciphertext can not be computed solely from the randomness
r. Furthermore, we require that 1 ≤ |y2| ≤ |y|.

We will also write f := f2 ◦ f1, where f1 acts only on the randomness, and f2 acts
on both the randomness and the plaintext.

Remark 3.1. Our definition above can be defined for any encryption scheme, without
losing of generality. Furthermore, it also does not exclude some artificial encryption
scheme such that the encryption is deterministic when the plaintext x is some special
value (for example, the secret key), that is, there exists a function g such that y2 := g(x).

Remark 3.2. The definition of ciphertext decomposition is merely served as a technical
step towards constructing the compressed encryption oracle in the random world in
subsequent sections. We note that in an actual proof of security of an encryption scheme,
one usually needs not to pay attention to this decomposition definition.

3.2.2 Oracle Variations

Here, we describe some oracle variations which will be used later in subsequent sections,
the so-called standard oracle and Fourier oracle. These oracles and their equivalence

How to Record Encryption Queries in the Random World? 42

are proven in much of literature on quantum-accessible oracles (e.g., see [KKVB02;
CMSZ19; Zha19a]).

Standard oracles. For any function f with domain X = {0, 1}m and range Y = {0, 1}n,
the standard oracle for f is a unitary defined as

StdOf

∑
x,y

αx,y |x, y⟩XY 7→
∑
x,y

αx,y |x, y ⊕ f(x)⟩XY . (3.2)

The standard oracle can also be implemented in the truth table form: for each query,
the oracle’s internal state consists of n2m-qubit F registers containing the truth table of
the function. For short, we write |f(0)∥ . . . ∥f(2m − 1)⟩ as |D⟩. Then, StdOf performs
the following map (on the adversary’s basis states):

StdOf |x, y⟩XY ⊗ |D⟩F 7→ |x, y ⊕D(x)⟩XY |D⟩F
= |x, y ⊕ f(x)⟩XY |D⟩F (3.3)

The equivalence of these two oracle variations follows directly from the fact that for
each query, if we trace out the oracle’s internal registers, the mixed state of the adversary
in both cases will be identical.

Fourier oracles. The Fourier oracle model FourierOf , while technically provides a different
interface to the adversary, can be mapped to the standard oracle by QFT operations.
The initial state of FourierOf is

QFTF |D⟩F = 1√
2n2m

∑
E

(−1)E·F |E⟩F . (3.4)

On the basis states, the Fourier oracle FourierOf is defined as follows.

FourierOf |x, z⟩XY ⊗
1√

2n2m

∑
E

(−1)E·D |E⟩F

7→ 1√
2n2m

∑
E

(−1)E·D |x, z⟩XY |E ⊕ Px,z⟩F . (3.5)

where Px,z is the point function that outputs z on x and 0 everywhere else. Intuitively,
with the Fourier oracle, instead of adding data from the oracle’s registers to the adversary’s
registers, it adds in the opposite direction.

Lemma 3.1 ([KKVB02; Zha19a]). For any adversary A making queries to StdOf , let B
be the adversary that is identical to A, except it performs the Fourier transformation
to the response registers before and after each query. Then Pr

[
AStdOf () = 1

]
=

Pr
[
BFourierOf () = 1

]
.

Proof. Each oracle can be constructed by an f -independent quantum circuit containing
just one copy of the other, that is

QFTY F ◦ StdOf ◦ QFT†Y F = FourierOf , (3.6)

QFT†Y F ◦ FourierOf ◦ QFTY F = StdOf . (3.7)

How to Record Encryption Queries in the Random World? 43

3.2.3 Recording Queries in the Random World

As we have explained in Section 3.1, to define chosen-ciphertext security, we follow the
real-or-random paradigm. In this section, we show how to process queries and record
them in the random world, in which before applying the encryption algorithm f , the
challenger chooses a random function h and applies it to the plaintext registers. As such,
we also denote the encryption procedure in the random world as f ◦ h. In what follows,
we abuse the notation and write f ◦ h in the subscript of the oracle’s notation with this
meaning: for each query, a random function h is chosen uniformly by the oracle, so that
h is not a pre-defined function. We note that the function f is known to the adversary
though.

Single-query setting. We first start describing the oracle operations handling a single
query and describe the general case later.

Without loss of generality, we assume that the query’s response register Y can be
decomposed into two parts Y1, Y2, in which the first part corresponds to the message-
independent component, and the second part corresponds to the message-dependent
component. Let |Y1| := n1 and |Y2| := n2 where n1 + n2 = n.

In the standard oracle model, the encryption oracle is implemented by first sampling
a randomness r, a function h : X → X uniformly at random, and then applying the
encryption algorithm f on the input (h(x); r). From the adversary’s point of view, this
is equivalent to h being in uniform superposition

∑
h |h⟩ and performing the following

map:
|x, y⟩XY ⊗ |r⟩R

∑
h

|h⟩H 7→
∑
h

|x, y ⊕ f((h(x)); r)⟩XY |r⟩R |h⟩H . (3.8)

Augmenting the joint system with a uniform superposition register H is a purification of
the adversary’s mixed state, and tracing out H (i.e., projecting onto the one-dimensional
subspace spanned by |h⟩) recovers the original mixed state. Moreover, this projection,
which is outside of the adversary’s view, is undetectable by any adversary A.

Using ciphertext decomposition definition, we can write Equation (3.8) as follows.

|x, y1∥y2⟩XY1Y2
⊗ |r⟩R

∑
h

|h⟩H 7→
∑
h

|x, (y1∥y2)⊕ f(h(x); r)⟩XY1Y2
⊗ |r⟩R |h⟩H

=
∑
h

|x, y1 ⊕ f1(r), y2 ⊕ f2(h(x); r)⟩XY1Y2
⊗ |r⟩R |h⟩H .

(3.9)

We further note that, since the same randomness r is used for all “slots” in superposition,
f1(r) is also the same for all “slots”. In other words, f1(r) is just a classical value,
which can be computed independently of the adversary’s query. As a result, only the
message-dependent registers are needed for recording queries. From now on to the
rest of this section, we only consider the message-dependent parts in the adversary’s
response registers as well as the oracle’s registers. These parts are denoted with index 2
in subscript (e.g., y2, z2, f2, . . .).

Now we describe our compressed encryption oracles. We first introduce some local
procedures acting on the oracle’s side, possibly controlled by the adversary’s registers.
Let Decompx be the identity operator except for

Decompx

|r⟩ |x⟩ 1√
2m

∑
u∈{0,1}m

|u⟩ 1√
2n2

∑
v

(−1)f2(u;r)·v |v⟩

 = |r⟩ |⊥⟩ |0⟩ |0⟩ , (3.10)

How to Record Encryption Queries in the Random World? 44

and

Decompx (|r⟩ |⊥⟩ |0⟩ |0⟩) = |r⟩ |x⟩ 1√
2m

∑
u∈{0,1}m

|u⟩ 1√
2n2

∑
v

(−1)f2(u;r)·v |v⟩ . (3.11)

It is clear that Decompx is a unitary operator. Furthermore, applying it twice results in
the identity, thus Decompx is an involution.

Using the notion similar to the description of Zhandry’s compressed random oracle
in [Zha19a], we introduce the notion of a database D that is maintained by the oracle
as follows. A database D will be a collection of tuples (x, (x′, y)), where (x, (x′, y)) ∈ D
corresponds to D(x) = (x′, y). We say D(x) = ⊥ if there is no such pair for an input x.
For a database D with D(x) ̸= ⊥, we also write D = {x, u, v} ∪D′ where D′(x) = ⊥. D
consists of all the oracle’s registers, except the randomness registers R. Decomp is then
defined as the related unitary acting on the joint quantum system as follows.

Decomp |x, z2⟩ ⊗ |r⟩ |D⟩ = |x, z2⟩ ⊗ Decompx |r⟩ |D⟩ . (3.12)

Let Init be the procedure that samples a random r uniformly and initializes a new
register |r⟩ |⊥, 0, 0⟩. Let FourierO′ be unitary defined on the adversary’s basis states as:

FourierO′ |x, z2⟩ ⊗ |r⟩ |D⟩

= FourierO′ |x, z2⟩ ⊗ |r⟩
1√
2m

1√
2n2

∑
u,v

(−1)v·f2(u;r) |{x, u, v} ∪D′⟩

= |x, z2⟩ ⊗ |r⟩
1√
2m

1√
2n2

∑
u,v

(−1)v·f2(u;r) |{x, u, v ⊕ z2} ∪D′⟩ . (3.13)

Finally, we define the CFourierOf2◦h oracle6:

CFourierOf2◦h := Decomp ◦ FourierO′ ◦ Decomp ◦ Init. (3.14)

We state the following lemma:

Lemma 3.2. In the single-query setting, the compressed Fourier oracle CFourierOf2◦h
acts on a basis state |x, z2⟩ where x ∈ X and z2 ∈ {0, 1}n2, as follows.

• If z2 = 0, then CFourierOf2◦h |x, z2⟩ 7→ |x, z2⟩ ⊗ |r⟩ |⊥, 0, 0⟩.

• If z2 ̸= 0, then CFourierOf2◦h |x, z2⟩ 7→ |x, z2⟩ ⊗ |ϕx,z2⟩, where

|ϕx,z2⟩ := |r⟩ 1√
2m+n2

∑
u

∑
v

(−1)f2(u;r)·v |x, u, v ⊕ z2⟩ .

Furthermore, for any adversary A making a single query to StdOf2◦h, let B be the
adversary that is identical to A, except it performs the Hadamard transformation
H⊗n to the response registers before and after the query. Then Pr

[
AStdOf2◦h() = 1

]
=

Pr
[
BCFourierOf2◦h() = 1

]
.

6For notation consistency, we use the same subscript in compressed oracles as for standard oracles.
However, we note that there is no real function h in the implementation of CFourierO and its variants.

How to Record Encryption Queries in the Random World? 45

Proof. To prove the lemma, it is enough to show that CFourierOf2◦h and FourierOf2◦h are
perfectly indistinguishable.

We prove this through a sequence of games. In what follows, we ambiguously denote
QFT |f2(x; r)⟩ by |ηx⟩ for each x ∈ {0, 1}m. We will also take y⊕⊥ = y, y · ⊥ = 0. When
the adversary’s response register is |+⟩ (which corresponds to |0⟩ in the Fourier basis),
we can write, on the truth table of the oracle (for both FourierOf2◦h and StdOf2◦h), the
column with index x where x is the query’s input as ⊥.

Game G0: In this game, the adversary interacts with the Fourier oracle FourierOf2◦h,
whose initial state is |r⟩ 1√

2m2m

∑
h |(h(0), ηh(0))∥ · · · ∥(h(2m−1), ηh(2m−1))⟩.

Game G1: In this game, we represent the oracle in the form:

|r⟩ 1√
2m2m

∑
h

|(0, h(0), ηh(0))∥ · · · ∥(2m − 1, h(2m−1), ηh(2m−1))⟩ .

The update procedure for a query is then simply FourierO′. G1 is identical to G0, since we
have inserted the input points 0, . . . , 2m − 1 into the oracle’s state, which is independent
of the adversary’s state.

Game G2: In this game, the oracle starts out as the “zero” database:

|r⟩ |(⊥, 0, 0)∥ · · · ∥(⊥, 0, 0)⟩ .

Then a query is implemented as Decomp′† ◦ FourierO′ ◦ Decomp′, where Decomp′ :=⊗2m−1
i=0 Decompi. At the beginning, Decomp′ is applied to the “zero” database, which maps

it to the complete database

|r⟩ 1√
2m2m

∑
h

|(0, h(0), ηh(0))∥ · · · ∥(2m − 1, h(2m−1), ηh(2m−1))⟩ .

Then FourierO′ is applied and the output state of G2 in this stage will be exactly the
output state of G1. Since Decomp′† is a unitary that only operates on the oracle’s register,
its applications is undetectable to the adversary. So G2 is perfectly indistinguishable
from G1.

Game G3: In this final game, we use the compressed oracle CFourierOf2◦h. Let x be the
query’s input. We note that FourierO′ and Decompx′ commute for any x′ ̸= x. Thus,
we can move the computation of Decompx′ to come after FourierO′, consequently, its
applications cancel out. We then have:

Decomp′† ◦ FourierO′ ◦ Decomp′(|x, z⟩ ⊗ |r⟩ |D⟩)
= Decomp†x ◦ FourierO′ ◦ Decompx(|x, z⟩ ⊗ |r⟩ |D⟩)
= Decomp† ◦ FourierO′ ◦ Decomp(|x, z⟩ ⊗ |r⟩ |D⟩).

We are left with a database D whose support has at most 1 defined point after the
query in G2. The remaining ≥ 2m − 1 points are all (⊥, 0, 0). So we may end up with
a superposition of databases that have at most one defined point. We then can move
this defined point in the database to the first register (this is a unitary operator and
is undetectable to the adversary) and obtain a superposition of databases that have a
defined point only in the first register. Therefore we can discard all but the first register,
without affecting the adversary’s state. This shows that G3 and G2 are identical.

How to Record Encryption Queries in the Random World? 46

The compressed Fourier encryption oracle in the random world CFourierOf◦h is
straightforwardly obtained by running the message-independent function f1 on the ran-
domness r, transforming it to the Fourier basis and then composing it with CFourierOf2◦h.
Formally, CFourierOf◦h := (QFTF1UR

f1) ◦ CFourierOf2◦h. We then have

Lemma 3.3. For any adversary A making a single query to StdOf◦h, let B be the
adversary that is identical to A, except it performs the Hadamard transformation
H⊗n to the response registers before and after the query. Then Pr

[
AStdOf◦h() = 1

]
=

Pr
[
BCFourierOf◦h() = 1

]
.

Compressed standard encryption oracles. By applying Hadamard to the adversary’s response
registers before and after the query, and to the oracle’s register F after the query, we
also obtain the compressed standard encryption oracle CStOf◦h. The oracle’s state
after the query is (in superposition of) |r, x, u, f(u; r)⟩. Formally, CStOf◦h := QFTY F ◦
CFourierOf◦h ◦ QFTY . By applying the same argument as in Lemma 3.1 to CFourierOf◦h
and CStOf◦h, and combining with Lemma 3.3, the following lemma follows:

Lemma 3.4. CStOf◦h and StdOf◦h are perfectly indistinguishable. That is, for any
adversary A, we have that Pr

[
AStdOf◦h() = 1

]
= Pr

[
ACStOf◦h() = 1

]
.

Many-query setting. We denote CStOf◦H as the following oracle: for each query, CStOf◦H
invokes a new instance of CStOf◦h with uniformly and independently randomness r.
Similarly, StdOf◦H denote the following oracle: for each query, StdOf◦H samples uniformly
and independently a randomness r and a random function h, and then answers that
query using StdOf◦h. By the standard hybrid argument, it is easy to verify that:

Lemma 3.5. CStOf◦H and StdOf◦H are perfectly indistinguishable, in the many-query
setting.

For each i-th query, its oracle’s database is |Di⟩ := |xi, ui, f(ui; ri)⟩. Overall, the
oracle’s database D will be a collection of many tuples (x, (x′, y)) where (x, (x′, y)) ∈ D
means f(x′; r) = y and h(x) = x′ for different random functions h.

3.2.4 A Technical Observation

Notice that from the proof of Lemma 3.2 above, we implement this compressed encryption
oracle with at least two computations of f2 (and so f) via two applications of Decomp.
However, as we will see in later sections, it is crucial for our security reductions to
simulate CFourierOf◦h with only one computation of f , which allows us to “outsource”
f computations to other oracles. We now give an intuition why we can reduce many
computations of f to one computation. Let’s consider the following cases.

• The z2 registers are all-zero. Note that since the initial state of the oracle database
D is also all-zero, applying the first Decomp and then XORing the adversary’s
registers to the oracle’s (i.e., the application of FourierO′) does not change the
database’s state. Finally, the second application of Decomp brings it back to all-zero
state, which can be discarded. At the end of this step, D is empty. In this case, we
see that we can skip FourierO′, and two applications of Decomp cancel out, leaving
us no applications of f .

How to Record Encryption Queries in the Random World? 47

• The z2 registers are not zero. By a similar argument, we have that the second
application of Decomp has no effects on the joint system, leaving us only one
application of f in the first application of Decomp.

We describe a quantum circuit in Figure 3.1, which applies a single computation of f2
(denoted as a unitary Uf2), implementing our compressed encryption oracle in the random
world. Let Test be the unitary defined as Test |0⟩ |b⟩ 7→ |0⟩ |b⟩ and Test |ϕ⟩ |b⟩ 7→ |ϕ⟩ |b⊕ 1⟩
for any |ϕ⟩ orthogonal to |0n2⟩ and b ∈ {0, 1}. One can easily verify that this circuit
outputs the same quantum state as stated in Lemma 3.2.

|x⟩
|z2⟩ Test TestO

racle’s
registers

|0⟩
|⊥⟩
|0⟩ QFT

Uf2|r⟩
|0⟩ QFT

Figure 3.1: A quantum circuit implementing our CFourierOf2◦h oracle. Depending on the
control bit b which is the output of Test, if b = 1, we apply Uf2 , otherwise, we apply the
identity. The bit b will be discarded after the computation.

3.2.5 How to Answer Decryption Queries?

We now describe how to answer decryption queries in the random world using the
database constructed above. Generally, we will consider any δ-correct encryption scheme
(see Definition in Section 2.3.3).

We will start with a technical lemma, in which the decryption will answer “naively”,
that is if the ciphertext is f(x′; r) for some x′, the decryption oracle is expected to
return x′, even if x′ was the output of a random function. (Roughly speaking, this
decryption oracle mimics a standard decryption oracle with no restrictions on the
adversary.) We call this decryption oracle the naive decryption oracle.

In the following, we abuse the notation and denote f−1 as the decryption algo-
rithm. We then give the adversary access to a new oracle denoted CInvOf−1 (this is
our naive decryption oracle) which acts on the database, instead of StdOf−1. Given
access to CInvOf−1, the bound on the distinguishing probability of the adversary when
interacting with the compressed oracle CStOf◦H is stated in Lemma 3.6.

We define a classical procedure FindImage′ which takes as input a ciphertext y ∈ Y,
and a database D. Then, it looks for a tuple (x, (x′, y)) ∈ D. If found, it outputs
(b = 1, w = x′), otherwise, it outputs (b = 0, w = 0). Notice that there may be many
tuples with the same y in D, but since an encryption scheme must be injective (for
decryption to work), these pairs must have the same x′.

We define the unitary operation CInvOf−1 for the inverse queries which maps the

How to Record Encryption Queries in the Random World? 48

basis state |y, z⟩ ⊗ |D⟩ to:Uf−1 |y, z⟩ ⊗ |D⟩ = |y, z ⊕ f−1(y)⟩ ⊗ |D⟩ if FindImage′(y,D) = (0, 0),
|y, z ⊕ w⟩ ⊗ |D⟩ if FindImage′(y,D) = (1, w).

This unitary is implemented by a single call to f−1, controlled by the output bit b of
FindImage′ recorded in some ancilla registers.7

Lemma 3.6. For any (unbounded) oracle algorithm A, and any δ-correct encryption
scheme:∣∣∣Pr

[
AStdOf◦H ,StdOf−1 () = 1

]
− Pr

[
ACStOf◦H ,CInvOf−1 () = 1

]∣∣∣ ≤ O(qi · δ), (3.15)

where qi is the number of inverse queries.

Proof. We prove this lemma through a sequence of games.

Game G0: This is the game where A interacts with the standard oracles StdOf◦H and
StdOf−1.

Game G1: This is identical to G0, except that now the oracle StdOf◦H is simulated using
the compressed oracle CStOf◦H . Notice that StdOf−1 operation does not touch the
database registers, thus it commutes with any CStOf◦h operation. Since CStOf◦H is
equivalent to the standard oracle StdOf◦H , A cannot distinguish G1 and G0.

Game G2: This is identical to G1, except that now the oracle StdOf−1 is replaced by the
oracle CInvOf−1 .

Let |Ψ⟩ be the joint system state of the adversary and the oracle before making any
inverse query. Denote ∆ := StdOf−1 − CInvOf−1. For each query |y, z⟩ to the inverse
oracle, we consider the registers y, z,D. We now examine three cases.

(a) Let D be such that y /∈ D, that is, FindImage(y,D) = (0, 0). Let P1 be the projection
onto the registers y,D such that y /∈ D. In this case, the inverse oracle in both
games applies the unitary mapping |y, z⟩ ⊗ |D⟩ 7→ |y, z ⊕ f−1(y)⟩ ⊗ |D⟩. Thus,
∆P1 |Ψ⟩ = 0.

(b) LetD be such that y ∈ D, that is, FindImage(y,D) = (1, w). Let P2 be the projection
onto the registers y,D such that y ∈ D and f−1(y) = w. In this case, we also have
∆P2 |Ψ⟩ = 0.

(c) Let D be such that y ∈ D. Let P3 be the projection onto the registers y,D such
that y ∈ D but f−1(y) ̸= w. Thus ∥P3 |Ψ⟩∥2 is the probability of measuring y,D
and get y ∈ D such that f−1(y = f(x)) ̸= x for some pre-image x of y. In this case,
we have ∥∆P3 |Ψ⟩∥2 ≤ δ, by the definition that the encryption scheme is δ-correct.

Notice that P1 + P2 + P3 = I. Therefore, we have

∥∆ |Ψ⟩∥2 =
∥∥∥∥∥

3∑
i=1

∆Pi |Ψ⟩
∥∥∥∥∥

2 (∗)
≤

3∑
i=1
∥∆Pi |Ψ⟩∥2 ≤ δ, (3.16)

7The oracle first computes FindImage′, records the output in some ancilla register, performs the CNOT
operation controlled on the output and finally un-compute FindImage′.

Quantum-Secure Symmetric Encryption 49

where (∗) uses triangle inequality. Then the same holds true for any mixed state since
any mixed state is in the convex hull of pure states. If A makes at most qi inverse queries,
the trace distance of the mixed state of the adversary in games G2 and G1 is at most
O(qi · δ). This completes the proof.

Now we describe our actual decryption oracle in the random world. Instead of using
FindImage′ which returns (1, x′), we use an identical FindImage except that it returns
(b = 1, w = x) when (x, (x′, y)) ∈ D. The oracle CInvOf−1 is redefined using FindImage as
follows. It maps the basis state |y, z⟩ ⊗ |D⟩ to:Uf−1 |y, z⟩ ⊗ |D⟩ = |y, z ⊕ f−1(y)⟩ ⊗ |D⟩ if FindImage(y,D) = (0, 0),

|y, z ⊕ w⟩ ⊗ |D⟩ if FindImage(y,D) = (1, w).

3.2.6 Notation

From now on to the rest of this chapter, we will use the following notation:

• O to denote the standard encryption and decryption oracles StdO (which are
distinguished by subscript, e.g., OSymEnc for encryption and OSymDec for decryption)
in the real world.

• R to denote the compressed encryption and decryption oracles (which are distin-
guished by subscript, e.g., RSymEnc for encryption and RSymDec for decryption) in
the random world. In particular, the encryption one will be implemented using
CStO, and the decryption one using CInvO.

3.3 Quantum-Secure Symmetric Encryption

3.3.1 Definitions of Security

In this section, we use the compressed oracle technique defined above to define quantum
real-or-random indistinguishability security notions.

High-level view. During the learning phases, A has access to the encryption standard
oracle OSymEnc(k,·). In the CCA case, it also has access to OSymDec(k,·) in the first learning
phase. We describe informally how we handle the challenge phase and the decryption
queries in the second learning phase. The goal is to mimic the (purely) classical CCA
security game in which: A gives a challenge plaintext and receives either encryption of
it or encryption of a random message; during the second learning phase, if A makes a
decryption query on the challenge ciphertext, it is given back the challenge plaintext in
both games.

In the real-world (b = 1), the adversary has no restrictions on the use of the decryption
oracle (in particular, A can freely decrypt the challenge ciphertext – getting back the
challenge plaintext, as in the classical case), so that the encryption oracle is simply
implemented as the standard encryption oracle OSymEnc(k,·) and the decryption oracle as
the standard decryption oracle OSymDec(k,·).

In the random-world (b = 0), the challenger implements the challenge encryption
oracle using a compressed encryption oracle RSymEnc(k,·), and the decryption oracle in

Quantum-Secure Symmetric Encryption 50

the second phase RSymDec(k,·) as described in Section 3.2.5. As in the real-world, this
decryption oracle always returns the original plaintext (x) if the query is a challenge
one, using the database. Otherwise, it just decrypts normally.

Formal definitions. Formally, denote A = (A1,A2). In both games, A1 outputs an internal
state |Φ⟩ after the first phase (i.e., the first learning phase), which will be given to A2 in
the second phase (including the challenge and the second learning phase). We define
a “real-or-random” oracle RR allowing A2 to make quantum challenge queries. For
learning queries, A2 has access to OSymEnc(k,·) and potentially a decryption oracle DEC
defined as follows.

RR(b) =

OSymEnc(k,·) if b = 1
RSymEnc(k,·) if b = 0

, and DEC(b) =

OSymDec(k,·) if b = 1
RSymDec(k,·) if b = 0

.

Definition 3.2 — Quantum Indistinguishability for Symmetric Encryption
Let SE := ⟨K, SymEnc, SymDec⟩ be a symmetric encryption scheme and let
A := (A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we de-
fine the following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
SE (λ,A):

1 : k $← K(1λ)

2 : |Φ⟩ ← A|OSymEnc(k,·)⟩,|O1⟩
1 (1λ)

3 : b′ ← A|RR(b)⟩,|OSymEnc(k,·)⟩,|O2⟩
2 (|Φ⟩)

4 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
OSymDec(k,·)

OSymDec(k,·)

Oracle O2

∅
∅
DEC(b)

We define A’s advantage by

Advqind-qatk
A,SE (λ) :=

∣∣∣Pr
[
Exptqind-qatk−1

SE (λ,A) = 1
]
− Pr

[
Exptqind-qatk−0

SE (λ,A) = 1
]∣∣∣.

We say SE is secure in the sense of qIND-qatk if A being QPT implies that
Advqind-qatk

A,SE (λ) is negligible.

Equivalence with Boneh-Zhandry’s notions. To justify our notions, we show that when
restricting our definitions to classical challenge queries, they are equivalent to Boneh-
Zhandry’s notions (IND-qatk). If we denote our restricted notions by IND-qatk′, a
scheme SE is IND-qatk′ secure iff it is IND-qatk secure.

Indeed, because the challenge queries are classical, the simulator can store the
challenge plaintexts and the challenge ciphertexts. Any simulator that returns ⊥ if the
adversary submits a challenge ciphertext in the sense of IND-qatk can be turned to a
simulator that returns the original plaintext x in the sense of IND-qatk′, and vice versa.
More precisely, we have that:

Advind-qatk
A,SE (λ) ≤ 2 · Advind-qatk′

A,SE (λ), and Advind-qatk′

A,SE (λ) ≤ Advind-qatk
A,SE (λ). (3.17)

This follows from the standard argument (see [BDJR97]).

Quantum-Secure Symmetric Encryption 51

Single-message versus many-message security. We have presented definitions which allow
the adversary to make q(λ)-many challenge queries to the real-or-random oracle. A
scheme satisfying the definitions in the case when q(λ) = 1 is said to be single-message
secure. The question of whether single-message security implies many-message security
is the question of composability of the definitions, which is answered affirmatively below.

Theorem 3.1. A symmetric encryption scheme SE is many-message qIND-qatk secure
iff it is single-message qIND-qatk secure.

Proof. The forward implication follows directly.
For the reverse direction, we use the standard hybrid argument that uses an adversary

A = (A1,A2) with advantage ε to construct a new adversary B = (B1,B2) which breaks
the single-message security with advantage ε/q2.

Define a sequence of games G0, . . . , Gq in which B runs A and returns A’s output as
follows: For any game Gi,

1. B1 simulates A’s i − 1 first challenge queries as learning queries, that is, B just
forwards A’s directly to its encryption oracle.

2. B uses A’s i-th challenge query as its challenge query.

3. For all A’s other challenge queries, B2 treats them as encryption queries in the
random world. In particular, it implements the encryption oracle for A using the
compressed oracle RSymEnc, except that it queries to its own encryption oracle as a
learning query during the oracle implementation. We note that this is possible as
explained in Section 3.2.3.

In the case of CCA2 security, B2 needs to be able to record A’s (i + 1, . . . , q)-th
challenge queries, since it needs to simulate the decryption correctly. This is done by
using our recording technique as described. B2 also uses a slightly different decryption
oracle in the random world in the second phase as follows. Let R′SymDec be the decryption
oracle of B2 in the random world in the second phase, D be its database for the challenge
query, and RSymDec be B2 simulated decryption oracle for A. Then

RSymDec |y, z⟩ |D⟩ =

R
′
SymDec |y, z⟩ |D⟩ if FindImage(y,D) = (0, 0m),
|y, z ⊕ w⟩ |D⟩ if FindImage(y,D) = (1, w).

This oracle can be implemented identically as described in Section 3.2.5, except that
instead of applying f−1, it sends a decryption query on the y, z registers to R′SymDec.

Note that G0 = Exptqind-qatk−1
SE (λ,A) and Gq = Exptqind-qatk−0

SE (λ,A). Because A is able
to distinguish Exptqind-qatk−1

SE from Exptqind-qatk−0
SE , there exists some g ∈ J1, qK such that

A distinguishes Gg from Gg+1 with advantage at least ε/q. B can guess g correctly
with probability 1/q, thus B’s overall advantage in breaking the single-message security
is ε/q2.

3.3.2 A Separation Example

We show that upgrading from classical challenge queries to quantum challenge queries
gives the adversary more power. In particular, we show that the IND-qCCA2 secure
symmetric encryption scheme given by Boneh and Zhandry [BZ13b] is insecure once

Quantum-Secure Symmetric Encryption 52

the adversary can make even a single quantum challenge query in the sense of chosen
plaintext security (qIND-qCPA). Our attack can be considered as an impossibility to
achieve quantum indistinguishability for encryption schemes which follow the stream
cipher-like paradigm (such as stream ciphers, block cipher modes of operation including
CFB, OFB, CTR, or even some most widely used modes like GCM for authenticated
encryptions).

Theorem 3.2. Under the assumption that quantum-secure pseudorandom functions
exist, there is an encryption scheme SE which is IND-qCCA2 secure, but qIND-qCPA
insecure.

Proof. We recall Boneh-Zhandry construction as follows.

Construction 3.1 — Boneh-Zhandry’s construction [BZ13b]
Let F and G be quantum-secure pseudorandom functions. We construct the
following encryption SE := ⟨K, SymEnc, SymDec⟩ where:

K(1λ) :
1 : k1

$← {0, 1}λ

2 : k2
$← {0, 1}λ

3 : return k1∥k2

SymEnc(k1∥k2, x) :
1 : r

$← {0, 1}λ

2 : c1 ← F (k1, r)⊕ x
3 : c2 ← G(k2, (r, x))
4 : return r∥c1∥c2

SymDec(k1∥k2, r∥c1∥c2) :
1 : x← c1 ⊕ F (k1, r)
2 : c′2 ← G(k2, (r, x))
3 : if c2 ̸= c′2 then
4 : return ⊥
5 : return x

Lemma 3.7 ([BZ13b, Theorem 4.10]). The encryption scheme SE in Construction 3.1
is IND-qCCA2 secure.

To show the qIND-qCPA insecurity of this scheme, we establish the following quantum
computation. Let UOTP be the unitary implementing the one-time pad encryption,
but using the same classical randomness r (which is uniformly chosen beforehand) in
superposition. For fixed x0, x1 ∈ {0, 1}m, we prepare the following state:

|ψ1⟩ := 1√
2

(|x0⟩+ |x1⟩) |0m⟩ . (3.18)

Applying UOTP yields:

|ψ2⟩ := 1√
2

∑
b∈{0,1}

|xb, xb ⊕ r⟩ . (3.19)

Then we apply a Hadamard transform to 2m qubits in all the registers. This yields the
state:

|ψ3⟩ := 2−
2m+1

2
∑
b

∑
u∈{0,1}m

(−1)xb·u |u⟩
∑

v∈{0,1}m

(−1)(xb⊕r)·v |v⟩

= 2−
2m−1

2
∑
u,v

δu·(x0⊕x1),v·(x0⊕x1)(−1)x0·u⊕(x0⊕r)·v |u, v⟩ . (3.20)

If we measure |ψ3⟩, with probability 1, we get a random pair (u, v) such that

u · (x0 ⊕ x1) = v · (x0 ⊕ x1). (3.21)

Quantum-Secure Symmetric Encryption 53

If we apply a random function h to the first registers xb of |ψ1⟩ before applying UOTP
and then un-compute it, we get the following state:

|ψ′2⟩ := 1√
2

∑
b∈{0,1}

|xb, h(xb)⊕ r⟩ . (3.22)

Continue with the Hadamard transform as above yields:

|ψ3⟩ := 2− 2m−1
2

∑
u,v

δu·(x0⊕x1),v·(h(x0)⊕h(x1))(−1)x0·u⊕(h(x0)⊕r)·v |u, v⟩ . (3.23)

Measuring |ψ′3⟩ yields a random pair (u, v) such that u · (x0 ⊕ x1) = v · (h(x0)⊕ h(x1))
where h(xb) are random m-bit strings. Thus, Equation (3.21) satisfies with probability
at most 1

2 . It is now easy to see that:

Lemma 3.8. SE is qIND-qCPA insecure.

Proof. In the challenge phase, the adversary A chooses two fixed messages x0, x1, and
prepares the following state as its challenge:

|ψ⟩ := 1√
2

∑
b

|xb⟩ |0⟩R |0⟩F |+⟩G . (3.24)

The challenge ciphertext state will be:

|ψ0⟩ = 1√
2

∑
b

|xb⟩ |r⟩F |xb ⊕ F (k1, r)⟩F |+⟩G if b = 0, (3.25)

or
|ψ1⟩ = 1√

2
∑
b

|xb⟩ |r⟩R |h(xb)⊕ F (k1, r)⟩F |+⟩G if b = 1. (3.26)

Since r is a classical value, A can discard two registers R and G, which are sepa-
rate from the others. A then applies the Fourier sampling (i.e., Hadamard transform
followed by a measurement as described above), and outputs 1 if Equation (3.21)
is satisfied, otherwise it outputs 0. We have Pr

[
Exptqind-qcpa−1

SE (λ,A) = 1
]

= 1 and

Pr
[
Exptqind-qcpa−0

SE (λ,A) = 1
]
≤ 1

2 , thus Advqind-qcpa
A,SE (λ) ≥ 1

2 , which is certainly not negligi-
ble.

3.3.3 Feasibility of Quantum CCA2 Security

The classical Encrypt-then-MAC paradigm [BN08] shows that an IND-CPA secure sym-
metric encryption scheme can be made IND-CCA2 secure if combined with an EUF-CMA
MAC scheme. However, it is not obvious how to prove security in the quantum setting,
as the reduction algorithm has no way to tell which ciphertexts the adversary received
as the result of an encryption query in the learning phases, and no way to decrypt the
ciphertexts if it has received them. To remedy these problems, we choose a specific type
of MAC scheme in the construction (that is, any quantum-secure PRF) and leave the
general security proof as an open question. The encryption scheme can be instantiated
with any qIND-qCPA encryption scheme. In the proof, we simulate the MAC with
random oracle and use Zhandry’s compressed oracles technique to efficiently check if
the adversary has seen a particular ciphertext as a result of an encryption query, and to
decrypt in this case.

Quantum-Secure Symmetric Encryption 54

Construction 3.2 — Encrypt-then-MAC
Let SE := ⟨K, SymEnc, SymDec⟩ be a symmetric encryption scheme and qPRF be a
family of quantum-secure pseudorandom functions. A composition of base schemes
SE and qPRF is the symmetric encryption scheme SE ′ := ⟨K′, SymEnc′, SymDec′⟩
whose constituent algorithms are defined as follows.

K′(1λ) :
1 : k1

$← K(1λ)

2 : k2
$← {0, 1}λ

3 : return k1 ∥ k2

SymEnc′(k1 ∥ k2, x) :
1 : c← SymEnc(k1, x)
2 : τ ← qPRF(k2, c∥x)
3 : return c ∥ τ

SymDec′(k1 ∥ k2, c ∥ τ) :
1 : x← SymDec(k1, c)
2 : if qPRF(k2, c∥x) ̸= τ then
3 : return ⊥
4 : return x

Theorem 3.3. Let SE be a qIND-qCPA secure symmetric encryption scheme. Let qPRF
be a family of quantum-secure pseudorandom functions. Then the encryption
scheme SE ′ defined in Construction 3.2 is qIND-qCCA2 secure.

Remark 3.3. As shown in [Zha12a], quantum-secure PRFs can be constructed from
quantum-secure one-way functions. In addition, [GHS16; CETU21] shows how to
construct qIND-qCPA secure encryption schemes from quantum-secure pseudorandom
permutations.

Proof. We proceed using hybrid games. Let A be a QPT adversary. For any game Gindex,
we denote by Pr[Gindex] := |Pr[Gindex(A) = 1 | b = 1]− Pr[Gindex(A) = 1 | b = 0]|. Also,
by event Gindex(A), we mean the output of the experiments (defined as in Definition 3.2)
in game Gindex when interacting with A.

Game G0: This is the standard attack game. In what follows, let k := k1∥k2 ← K′().

Game G1: This is identical to G0, except that we use, in the role of qPRF, a random
function H. (Imagine that the reduction has oracle access to H and uses it in the role of
qPRF, notice that the key k2 is chosen uniformly at random and hidden from A.) By
security of qPRF, we have that |Pr[G1]− Pr[G0]| ≤ negl(λ).

Game G2: This is identical to G1, except that now we consider H as being implemented
in Zhandry’s compressed standard random oracle.

We give a description of how this compressed random oracle is implemented. A query
to the compressed random oracle is in (superposition of) the form |c∥x⟩ |y2⟩ where the
second register is the second part of the adversary’s response registers. Furthermore,
since the compressed oracle for the encryption makes only one black-box call to the
unitary implementing the encryption algorithm for each challenge query, there is also
only a single call to the compressed random oracle for each challenge query.

Let E denote the database of this compressed random oracle. In more details, E will
be a collection of (c∥x, τ) pairs. For a pair (c, τ) such that there is a pair (c∥x, τ) ∈ E,
we call w = x an associated input of (c, τ).

Since the compressed random oracle is equivalent to the standard random oracle,
this does not affect the adversary’s success probability. We have that Pr[G2] = Pr[G1].

Quantum-Secure Symmetric Encryption 55

Game G3: This is identical to G2, except now we make the following modification to the
decryption oracle in the random world.

In the following, we take the notation as in Lemma 2.6. We define the relation RH
c to

be the set of all (x, τ) such that x = SymDec(c)∧H(c∥x) = τ . Since SymEnc has perfect
correctness, for each c there is only one decryption x, and thus ΓRH

c
= 1. Given the

relation RH
c , the projectors Σx

c for x ∈ X and Σ⊥c are defined as in Lemma 2.6. Now the
measurement M := {Σx

c}x∈X∪{⊥} checks whether there exists a pair in the database E
satisfying the relation RH

c or not. (Note that there is at most one pair satisfying the
relation for each c.) Let Mc

E,P be the following purified measurement corresponding to
M:

Mc
E,P |y, z⟩ →

∑
x∈X∪{⊥}

Σx
c |y⟩E |z ⊕ x⟩P ,

where E is the registers of the database E and P is some ancilla registers. We define
the unitary ME,P that operates on the ciphertext, the registers E and P as:

ME,P |c∥τ⟩ |y, z⟩E,P → |c∥τ⟩ ⊗Mc
E,P |y, z⟩E,P .

Note that ME,P is an evolution.

The modification is as follows. For each decryption query, if FindImageD returns (0, 0)
the decryption oracle in the random world R3

SymDec′(k,·) first applies the unitary ME,P

with the ancilla register P initialized to 0. Then it executes SymDec′(k, ·). Finally it
applies ME,P again.

R3
SymDec′(k,·) |y, z⟩ |D⟩ |E⟩ :=

ME,P ◦ SymDec′ ◦ME,P |y, z⟩ |D⟩ |E⟩ if FindImageD(y,D) = (0, 0),
|y, z ⊕ w⟩ |D⟩ |E⟩ if FindImageD(y,D) = (1, w),

By Lemma 2.6, we have that ME,P and SymDec′ almost commute: their commutator
is bounded by 8

√
2 · 2− ℓ

2 , where ℓ is the output’s length of qPRF, which is polynomial in
the security parameter. Hence, we can swap ME,P and SymDec′ in the implementation of
R3

SymDec′(k,·) and recover R2
SymDec′(k,·) (note that ME,P is an evolution). The distinguishing

probability of this modification is exactly the commutator’s bound, and thus the two
hybrids are distinguishable to the adversary with probability at most 8

√
2 · 2− ℓ

2 . This
shows that |Pr[G3]− Pr[G2]| ≤ negl(λ).

Game G4: This is identical to G3, except we change how decryption queries are answered
in the random world when FindImageD returns (0, 0). In this case, the oracle first applies
ME,P with the register P initialized to 0. Then, it XORs the value of P to the response
register. It finally applies ME,P again.

R4
SymDec′(k,·) |y, z⟩ |D⟩ |E⟩ :=

ME,PUkME,P |y, z⟩ |D⟩ |E⟩ if FindImageD(y,D) = (0, 0),
|y, z ⊕ w⟩ |D⟩ |E⟩ if FindImageD(y,D) = (1, w),

where Uk is defined as

Uk |y, z⟩ |D⟩ |E⟩E |x⟩P :=

|y, z ⊕⊥⟩ |D⟩ |E⟩E |x⟩P if x = ⊥,
|y, z ⊕ x⟩ |D⟩ |E⟩E |x⟩P if x ̸= ⊥.

Quantum-Secure Symmetric Encryption 56

The only difference between G4 and G3 is the definition of RSymDec′(k,·), and that the
adversary can distinguish between the two hybrids if and only if it sends a query in
which y ∈ E \D or y /∈ D ∪E with non-negligible weight. This is because if y ∈ D then
in both hybrids, the original plaintext x was returned.

(i) We first consider the case in which y ∈ E \D. First, we notice that for challenge
queries, the challenger only queries the compressed random oracle H if it can record
the query (see Figure 3.1). Thus, if y ∈ E \D, in G3, SymDec′ is used to answer
the queries, while in G4, ME,P is used to answer the queries. However, SymDec′
and ME,P return the same output in this case.

(ii) Consider the case in which y /∈ D ∪ E. The query is answered with ⊥ in G4
and using SymDec′ in G3. If SymDec′ returns x ̸= ⊥, then the two hybrids are
distinguishable. However, this means that the adversary must be able to procedure a
ciphertext c∥τ ̸∈ E such that SymDec′(k, c∥τ) ̸= ⊥. Since the underlying encryption
scheme SE never outputs ⊥, it means that the adversary was able to produce a pair
(c̃∥x̃, τ̃) ̸∈ E such that H(c̃∥x̃) = τ̃ . Let Forge be the event that at least one of the
decryption queries in the random world contains some pairs (ỹ = c̃∥τ̃) with overall
non-negligible weight such that H(c̃∥x̃) = τ̃ /∈ E. A could distinguish the two games
if and only if Pr[Forge] is non-negligible. We construct a QPT adversary C from A
that breaks Lemma 2.7 if Forge happens with non-negligible probability. Assume
that the adversary A makes at most q queries to the random oracle (by making
queries to the encryption and decryption oracle). C runs A as its subroutine, and
randomly measures one of A’s decryption queries in the second phase. C would
then obtain a pair that is not in E with probability p in Lemma 2.7 such that
p = Pr[Forge]

q
. Since the obtained pair is not in E, the probability p′ is 0. If Pr[Forge] is

non-negligible, p is also non-negligible. This breaks the bound given in Lemma 2.7.

Overall, the two hybrids are identical except for the last case in which y /∈ D∪E. However,
in this case, the two hybrids are distinguishable with at most negligible probability. This
shows that: |Pr[G4]− Pr[G3]| ≤ negl(λ).

Game G5: We define a procedure FindImageE over the database E similar to the one
defined over D, except that it takes as input a pair ((c, τ), E), searches over the database
E and returns (1, w) where w is the associated input of (c, τ) if τ ∈ E and (0, 0) otherwise.
This hybrid is identical to G4, except that in the random world, the decryption oracle
in the second phase RSymDec′(k,·) is implemented as follows.

R5
SymDec′(k,·) |y, z⟩ |D⟩ |E⟩ :=



|y, z ⊕ w⟩ |D⟩ |E⟩ if FindImageD(y,D) = (1, w),
|y, z ⊕⊥⟩ |D⟩ |E⟩ if FindImageD(y,D) = (0, 0)

∧ FindImageE(y, E) = (0, 0),
|y, z ⊕ w′⟩ |D⟩ |E⟩ if FindImageD(y,D) = (0, 0)

∧ FindImageE(y, E) = (1, w′).

By the correctness of SE ′, it must be the case that if FindImageE returns (1, w′), ME,P

should have the same w′ in the register P . Similarly, if FindImageE returns (0, 0), ME,P

should have ⊥ in P . Therefore, these two hybrids are identical, that is Pr[G5] = Pr[G4].

Quantum-Secure Symmetric Encryption 57

Game G6: This is identical to G5, except that in the real world, the decryption oracle in
the second phase OSymDec′(k,·) is implemented as follows.

O6
SymDec′(k,·) |y, z⟩ |E⟩ :=

|y, z ⊕⊥⟩ |E⟩ if FindImageE(y, E) = (0, 0),
|y, z ⊕ w⟩ |E⟩ if FindImageE(y, E) = (1, w).

We can consider intermediate hybrids that make similar changes as in G3−6 for the
real world. By the same argument (except that now we do not have the database
D in the real world, hence the arguments in G4 is simplified), we also have that
|Pr[G6]− Pr[G5]| ≤ negl(λ).

Note that from this hybrid, the decryption algorithm SymDec′ is no longer needed.

Game G7: This is identical to G6, except that in the random world, for each challenge en-
cryption query, instead of applying the random oracleH on c∥x′ (where c = SymEnc(k1, x

′)
for some random x′ ∈ X), we apply H on c∥x, where x is the original plaintext. Formally,
the challenge encryption oracle RSymEnc′ implements the following mapping:

|x, y1∥y2⟩ 7→ |x, (y1 ⊕ c)∥(y2 ⊕H(c∥x))⟩ ⊗ |x, x′, c∥H(c∥x)⟩D ,

where c = SymEnc(k1, x
′) for some random x′ ∈ X .

We note that the implementation of this oracle is similar to its implementation in G6
(as described in Figure 3.1), except that the unitary Uf2 (corresponding to the unitary of
the encryption procedure) acts on four registers (including the original plaintext register):
instead of using c∥x′ (for some random x′ where c = SymEnc(k1, x

′)) as the input to the
compressed random oracle H, we use c∥x (where x comes from the adversary’s input
registers).

Precisely, the function f2 in Figure 3.1 (which denotes the encryption algorithm) is
implemented (privately in the oracle’s side) as follows.

Uf2 |x⟩ |x′⟩ |r⟩ |0⟩ 7→ |x⟩ |x′⟩ |r⟩ |c∥H(c∥x′)⟩ for c = SymEnc(k1, x
′; r) in G6,

and

Uf2 |x⟩ |x′⟩ |r⟩ |0⟩ 7→ |x⟩ |x′⟩ |r⟩ |c∥H(c∥x)⟩ for c = SymEnc(k1, x
′; r) in G7.

The difference between G6 and G7 is that in G6, the adversary receives H(c∥x′) for some
random x′ while in G7, the adversary receives H(c∥x) where x is its input and c is an
encryption of some random plaintext. Since H is a random oracle, the two distributions
are perfectly indistinguishable. Thus Pr[G7] = Pr[G6].

Game G8: This is identical to G7, except that we remove the uses of the database D in
the decryption oracle in the random world. In particular, the decryption oracle in the
random world RSymDec′ is implemented as follows:

R8
SymDec′(k,·) |y, z⟩ |E⟩ :=

|y, z ⊕⊥⟩ |E⟩ if FindImageE(y, E) = (0, 0),
|y, z ⊕ w⟩ |E⟩ if FindImageE(y, E) = (1, w).

The adversary can distinguish between the two hybrids if and only if it sends a query in
which y ∈ D \ E with non-negligible weight. This is because if y ∈ D ∩ E then in both

Quantum-Secure Public-key Encryption 58

hybrids, the original plaintext x was returned. In the case of y ∈ D \ E, the query is
answered with ⊥ in G8 and x ̸= ⊥ in G7. However if the adversary can obtain x ̸= ⊥
in G7 for this case, it means that it has obtained a pair (c̃, τ̃) such that τ̃ /∈ E and
H(c̃∥x̃) = τ̃ for some x̃.

By a similar argument as in Item (ii), any distinguisher for these two hybrids can be
used to construct an adversary breaking the bound given in Lemma 2.7. Thus, we also
have that |Pr[G8]− Pr[G7]| ≤ negl(λ).

We note that in this final hybrid, the database D is no longer needed. Furthermore,
the advantage of A in this hybrid can be reduced to its advantage against SE . To see
that, we construct a QPT adversary B from A as follows: B runs A as its subroutine.
For each encryption or challenge query, B implements the compressed random oracle
for the MAC. It first sends the plaintext registers to its challenger and receives back
a ciphertext, it then tags the received ciphertext and the plaintext registers with the
MAC using its compressed random oracle and forwards them to A.

Notice in this hybrid, B can always answer decryption queries, without needing to
query to SE decryption oracle, by using its own compressed random oracle’s database.
The advantage of B against SE is exactly the advantage of A in this hybrid, showing
that Pr[G8] ≤ Advqind-qcpa

A,SE (λ). Putting everything together, we finish the proof of the
theorem.

3.4 Quantum-Secure Public-key Encryption

3.4.1 Definitions of Security

Indistinguishability Security

The indistinguishability notions can be defined analogously to the ones given in Sec-
tion 3.3. We define a real-or-random oracle allowing quantum queries and the decryption
oracle in the second learning phase as follows.

RR(b) =

OEnc(pk,·) if b = 1
REnc(pk,·) if b = 0

, and DEC(b) =

ODec(sk,·) if b = 1
RDec(sk,·) if b = 0

.

Definition 3.3 — Quantum Indistinguishability for Public-key Encryption
Let E := ⟨KeyGen,Enc,Dec⟩ be a public-key encryption scheme and letA := (A1,A2)
be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the following
game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(1λ)

2 : |Φ⟩ ← A|O1⟩
1 (pk)

3 : b′ ← A|RR(b)⟩,|O2⟩
2 (|Φ⟩)

4 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
ODec(sk,·)

ODec(sk,·)

Oracle O2

∅
∅
DEC(b)

Quantum-Secure Public-key Encryption 59

We define A’s advantage by

Advqind-qatk
A,E (λ) :=

∣∣∣Pr
[
Exptqind-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptqind-qatk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of qIND-qatk if A being QPT implies that
Advqind-qatk

A,E (λ) is negligible.

Similarly as in Section 3.3, our definitions, restricted to classical challenge queries, are
equivalent to Boneh-Zhandry’s notions (IND-qatk). Furthermore, the following theorem
shows that our notions are closed under composition.

Theorem 3.4. An encryption scheme E is many-message qIND-qatk secure iff it is
single-message qIND-qatk secure.

Proof. The forward implication follows directly. For the reverse direction, we use the
standard hybrid argument that uses an adversary A := (A1,A2) with advantage ε to
construct a new adversary B := (B1,B2) which breaks the single-message security with
advantage ε/q2.

Define a sequence of games G0, . . . , Gq in which B runs A and returns A’s output as
follows: For any game Gi,

1. B1 simulates A’s i − 1 first challenge queries on its own, as in the experiment
Exptqind-qatk−1

E .

2. B uses A’s i-th challenge query as its challenge query.

3. B2 simulates all A’s other challenge queries on its own using the compressed
encryption oracle, as in the experiment Exptqind-qatk−0

E , obtaining a database D.

In the case of CCA2 security, B2 uses a slightly different decryption oracle in the second
phase as follows. Let R′Dec(sk,·) be the decryption oracle of B2 and RDec be B2 simulated
decryption oracle for A. Then

RDec |y, z⟩ |D⟩ =

(R′Dec(sk,·) |y, z⟩) |D⟩ if FindImage(y,D) = (0, 0m),
|y, z ⊕ w⟩ |D⟩ if FindImage(y,D) = (1, w).

Note that G0 = Exptqind-qatk−1
E (λ,A) and Gq = Exptqind-qatk−0

E (λ,A). Because A is able
to distinguish Exptqind-qatk−1

E from Exptqind-qatk−0
E , there exists some g ∈ J1, qK such that

A distinguishes Gg from Gg+1 with advantage at least ε/q. B can guess g correctly
with probability 1/q, thus B’s overall advantage in breaking the single-message security
is ε/q2.

We also give a separation construction showing that our notions are strictly stronger
than Boneh-Zhandry’s notions. The idea is to install a backdoor that only a quantum
adversary can use, by doing some quantum computation. We need to ensure that the
backdoor is useless even if the adversary has quantum access to the decryption oracle in
the learning phases. Our construction follows the hybrid encryption paradigm combining
a CCA2-secure public-key encryption and a one-time CCA2-secure symmetric encryption.
The attack is similar in spirit to that for symmetric encryption.

Quantum-Secure Public-key Encryption 60

Theorem 3.5. If there exists an encryption scheme E which is IND-qCCA2 secure
against QPT adversaries, then there exists an encryption scheme E ′ which is also
IND-qCCA2 secure, but qIND-qCPA insecure.

Proof. Assume there exists some IND-qCCA2 secure encryption scheme E := ⟨KeyGen,Enc,
Dec⟩. Let H := {hk}k be a family of pairwise independent hash functions with the key
space K. The new encryption scheme E ′ := ⟨KeyGen′,Enc′,Dec′⟩ is defined as follows.

KeyGen′(1λ) :
1 : (pk, sk) $← KeyGen

(
1λ

)
2 : return (pk, sk)

Enc′(pk, x) :
1 : r

$← X , k $← K
2 : c1 ← Enc(pk, r∥k)
3 : c2 ← x⊕ r
4 : σ ← hk(c2)
5 : return c1∥c2∥σ

Dec′(sk, c1∥c2∥σ) :
1 : r∥k ← Dec(sk, c1)
2 : if hk(c2) ̸= σ then
3 : return ⊥
4 : x← c2 ⊕ r
5 : return x

The proof is completed by establishing that E ′ is IND-qCCA2 secure but vulnerable
to a qIND-qCPA attack.

Lemma 3.9. E ′ is IND-qCCA2 secure.

Proof. Fix the adversary A and λ. For the purpose of this separation, it is sufficient
to assume that E is perfectly correct. We prove security through a sequence of games.
Let Pr[Gi] be the probability the adversary wins game Gi.

Game G0: This is the standard attack game. Let the challenge ciphertext be (c∗1, c∗2, σ∗),
and K∗ = (r∗, k∗) be the randomness used during the encryption process. Then,
the decryption oracle in the second phase can be written as Dec′∗(sk, ·) which rejects
decryption when the ciphertext is (c∗1, c∗2, σ∗). We denote the set of ciphertexts that will
be rejected by Dec′∗ is D0. In this game, D0 = {(c∗1, c∗2, σ∗)}.

Game G1: This is identical to G0, except that whenever a ciphertext (c∗1, ·, ·) ∈ D0 is
submitted to the decryption oracle in the second phase, the decryption oracle does
not apply Dec(sk, c∗1), but instead uses K∗ produced in the challenge phase to perform
steps 2− 5.

This change is just conceptual, since we assume that E is perfectly correct. Thus,
Pr[G1] = Pr[G0].

Game G2: This is identical to G1, but now the challenger computes c∗1 by encrypting a
completely random value K+ = (r+, k+) instead of K∗. That is, c∗1 = Enc(pk, r+∥k+),
but c∗2 = x⊕ r∗ and σ∗ = hk∗(c∗2).

Notice that in gamesG1 andG2, the ciphertext c∗1 need not be submitted for decryption.
We show how to turn any distinguisher A of games G1 and G2 into an adversary A′
against the security of the underlying scheme E : A′ runs A using its oracles to answer A,
outputs (K∗, K+) as its challenge pair. Finally, A′ outputs whatever A outputs. It is
easy to see that we have:

|Pr[G2]− Pr[G1]| ≤ Advind-qcca2
A′,E (λ).

Quantum-Secure Public-key Encryption 61

Game G3: We further modify G2 and now change the set D0 to be D0 := {(c∗1, ·, ·)}.
In other words, it rejects any ciphertext (c1, c2, σ) such that c1 = c∗1.

Let Forge be the event that some ciphertext is rejected in game G3, but would not
have been rejected in the game G2. Since games G2 and G3 are identical until event Forge,
we have |Pr[G3]− Pr[G2]| ≤ Pr[Forge].

Notice that in the construction of E ′, the use of pairwise independent hash functions
acts as a one-time secure message authentication code, thus Pr[Forge] = 0.

In this final game, the component c∗2 is one-time padded of the message x∗b using a
random string r∗ chosen uniformly and independently of all other variables, including b.
Thus, Pr[G3] = 0.

By the security of the underlying building blocks, we have the security of E ′.

Lemma 3.10. E ′ is qIND-qCPA insecure.

Proof. In the challenge phase, the adversary A chooses two fixed messages x0, x1, and
prepares the following state as its challenge:

|ψ⟩ := 1√
2

∑
b

|xb⟩ |+⟩ |0⟩ |+⟩ .

The challenge ciphertext state will be:

|ψ0⟩ = 1√
2

∑
b

|xb⟩ |+⟩ |xb ⊕ r⟩ |+⟩ if b = 0,

or
|ψ1⟩ = 1√

2
∑
b

|xb⟩ |+⟩ |h(xb)⊕ r⟩ |+⟩ if b = 1.

A then applies the Fourier sampling (as described in Section 3.3.2) and breaks the
security of E ′ with non-negligible probability.

Non-Malleability Security

Intuitively, the classical definitions [BDPR98; BS06] involve having an adversary play a
challenge-response game. In the challenge phase, the adversary is given an encryption y
of a message x it produced itself. It must then output a vector of ciphertexts y⃗ (whose
components can be y - in this case, the decryption returns ⊥) called adversarial
ciphertexts, together with an arbitrary string. The security definitions require that
the distribution of the adversary’s output and the decryptions of the adversarial
ciphertexts is indistinguishable from the distribution when the adversary receives an
encryption of some random message x̃ instead of x. The non-malleability property can
be established by saying that when an encryption of x given to the adversary is replaced
with an encryption of a random x̃, even the contents of encryption messages that the
adversary sends cannot change in any computationally noticeable way.

A closer look at the adversarial ciphertexts distribution gives us different classical
definitions, which leads to different composability properties. As pointed out by Pass,
shelat and Vaikuntanathan [PsV07], indistinguishability-based definitions of encryption

Quantum-Secure Public-key Encryption 62

may or may not compose in the context of non-malleability, depending on how we
treat an “invalid adversary” that outputs invalid ciphertexts as part of its adversarial
output. In the quantum setting, the adversary can output a superposition of adversarial
ciphertexts, which might include invalid ciphertexts, even if it is “hard” to generate
invalid ciphertexts. This leaves us no choice but to incorporate invalid adversaries
into the definitions. The definitions given here are syntactically close to the classical
definitions of [BS06, Definition 4.1].

Definition 3.4 — Quantum Non-Malleability for Public-key Encryption
Let E := ⟨KeyGen,Enc,Dec⟩ be a public-key encryption scheme and let
A := (A1,A2,A3) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2] and
r ∈ N, we define the following game, where the oracles O1,O2 are defined according
to qatk:

Experiment Exptqnme-qatk−bE (λ,A):
1 : (pk, sk)← KeyGen(1λ)

2 : |Ψ1⟩ ← A|O1⟩
1 (pk)

3 : |Ψ2⟩ :=
∑
y⃗,z⃗αy⃗,z⃗ |y⃗, z⃗⟩ |ϕy⃗,z⃗⟩ ← A

|RR(b)⟩,|O2⟩
2 (|Ψ1⟩)

where |y⃗| = |z⃗| = r

4 : |Ψ3⟩ ← RDec(sk,·) |Ψ2⟩

5 : b′ ← A|O2⟩
3 (|Ψ3⟩)

6 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
ODec(sk,·)

ODec(sk,·)

Oracle O2

∅
∅
DEC(b)

We define A’s advantage by

Advqnme-qatkA,E (λ) :=
∣∣∣Pr

[
Exptqnme-qatk−1

E (λ,A) = 1
]
− Pr

[
Exptqnme-qatk−0

E (λ,A) = 1
]∣∣∣.

We say E is secure in the sense of qNME-qatk if A being QPT implies that
Advqnme-qatkA,E (λ) is negligible.

The following theorem shows that our notions are closed under composition.

Theorem 3.6. An encryption scheme E is many-message qNME-qatk secure iff it is
single-message qNME-qatk secure.

The proof is similar to that of Theorem 3.4; we omit the details.

3.4.2 Relating Indistinguishability and Non-Malleability

A full characterization of fully-quantum indistinguishability and non-malleability notions
is summarized in Figure 3.2. These results are identical as in the classical setting
[BDPR98]. We use slightly modified constructions of [BDPR98]: the attacks carry in the
classical manner, only the security proofs need to be adapted, which are given below.

Theorem 3.7 (qIND-qCCA1 ⇏ qNME-qCPA). If there exists an encryption scheme E that
is qIND-qCCA1 secure, then there exists an encryption scheme E ′ that is qIND-qCCA1
secure but qNME-qCPA insecure.

Quantum-Secure Public-key Encryption 63

⃝

⃝

⃝

⃝

⃝

⃝

qCPA qCCA1 qCCA2

qIND

qNME

Figure 3.2: An arrow is an implication. There is a path from A to B if and only if A
implies B. The bold arrows represent non-trivial separations we actually prove in this
section.

Proof. Assume there exists some qIND-qCCA1 secure encryption scheme E := ⟨KeyGen,
Enc,Dec⟩. The new encryption scheme E ′ := ⟨KeyGen′,Enc′,Dec′⟩ is defined as follows.

KeyGen′(1λ) :
1 : (pk, sk) $← KeyGen

(
1λ

)
2 : return (pk, sk)

Enc′(pk, x) :
1 : b

$← {0, 1}
2 : y ← Enc(pk, x)
3 : return y∥b

Dec′(sk, y∥b) :
1 : x← Dec(sk, y)
2 : return x

Claim 3.1. E ′ is qNME-qCPA insecure.

Proof Sketch. The scheme is malleable because given a ciphertext y∥b of a plaintext x,
it is trivial to create another ciphertext of x by just outputting y∥b.

Claim 3.2. E ′ is qIND-qCCA1 secure.

Proof Sketch. It is easy to see that any adversary A against E ′ can be used to construct
an adversary B that attacks E as follows. B runs A using its own oracle O1, and uses A’s
challenge queries as its own challenge queries. Whenever B receives a challenge ciphertext,
it samples a random bit b and appends it to the challenge ciphertext before forwarding
it to A. B outputs whatever A outputs. One can verify that AdvB,E(λ) = AdvA,E ′(λ).
Thus, the security of E ′ follows from the security of E .

Theorem 3.8 (qNME-qCPA ⇏ qIND-qCCA1). If there exists an encryption scheme E that
is qNME-qCPA secure, then there exists an encryption scheme E ′ that is qNME-qCPA
secure but qIND-qCCA1 insecure.

Proof. Assume there exists some qNME-qCPA secure encryption scheme E := ⟨KeyGen,
Enc,Dec⟩. Fix a family qPRF := {qPRF : {0, 1}ℓ → {0, 1}ℓ} of quantum-secure pseudo-
random functions. The new encryption scheme E ′ := ⟨KeyGen′,Enc′,Dec′⟩ is defined as
follows.

KeyGen′(1λ) :
1 : (pk, sk) $← KeyGen

(
1λ

)
2 : k $← {0, 1}λ

3 : sk′ ← sk∥k
4 : return (pk, sk′)

Enc′(pk, x) :
1 : y ← Enc(pk, x)
2 : return 0∥y

Dec′(sk∥k, b∥y) :
1 : if b = 0 :
2 : return Dec(sk, y)
3 : else if y = qPRF(k, 0) :
4 : return sk
5 : else return qPRF(k, y)

Quantum-Secure Public-key Encryption 64

Claim 3.3. E ′ is qIND-qCCA1 insecure.

Proof Sketch. The adversary queries Dec′(sk∥k, ·) at 1∥0 to get v = qPRF(k, 0), and then
queries it at the point 1∥v to get sk. At this point, the adversary can obviously break
the security of E ′.

Claim 3.4. E ′ is qNME-qCPA secure.

Proof. Fix A and λ. We prove security through a sequence of games.

Game G0: This is the standard attack game.

Game G1: Replace qPRF with a truly random function H.

Since qPRF is a quantum-secure pseudorandom function, A cannot distinguish G1
from G0, except with negligible probability.

Game G2: This is identical to G1. The only change is to the decryption algorithm, in
which instead of returning sk when y = H(0), it returns H(H(0)) which is a random
value independent of the secret key sk.

Games G1 and G2 proceed identically unless A successfully outputs H(H(0)) with a
single query. To bound the distinguishing probability, we invoke the following lemma.

Lemma 3.11 ([Unr14, Theorem 6.6]). Let A be any quantum oracle algorithm making
a single query to a random function H, with r inputs in the query. Then

Pr
[
x = H(H(0)) : H $← ({0, 1}ℓ → {0, 1}ℓ), x← AH()

]
≤ 2−Ω(ℓ)O(r).

This probability is negligible for polynomially-bounded r (number of inputs per query,
which corresponds to the number of adversarial ciphertexts in a qNME security game).

Finally, we design an adversary B := (B1,B2,B3) attacking E in the qNME-qCPA
sense from the adversary A := (A1,A2,A3) in this last game. B runs A as its subroutine
and simulates a random oracle H itself. B1 and B3 output whatever A1 and A3 output,
respectively. The algorithm B2 is defined as follows. B2 receives a vector (in superposition)
of adversarial ciphertexts from A2.

• If the basis state is |1∥y, z, ϕy,z⟩, then it maps this basis state to |Enc(H(y)), z, 1∥ϕ′y,z⟩
by allocating new ancilla registers (with proper padding), computing Enc(H(y)) and
then swapping these newly created registers with the y registers. The y registers
are now included in the auxiliary registers |ϕ′y,z⟩.

• Otherwise, it keeps the basis state the same, re-organizes the state to |y, z⟩ |0∥ϕy,z⟩.

B2 then outputs the resulting state as its adversarial ciphertexts.

Let D be the database of B’s challenge queries. Consider B2’s adversarial ciphertexts
state, let Dup be the event that this state has a non-negligible weight on ciphertexts
Enc(H(y)) such that Enc(H(y)) ∈ D. The simulation is indistinguishable if this happens
with negligible probability. To see that, imagine that in the real-world experiment, A3
would receive exactly H(y). The only difference is in the random-world experiment:
Enc(H(y)) ∈ D means that H(y) is a random message obtained by apply a random
function h. A3 would receive a pre-image of h(H(y)) (by the definition of the qNME

Quantum-Secure Public-key Encryption 65

decryption oracle), which is different from H(y) with overwhelming probability. This is
only detectable if Dup happens with non-negligible probability.

Indeed, we show that Pr[Dup] must be negligible, otherwise it would violate the
security of E even in the qIND-qCPA. This is a standard argument, we omit the details.
The security of E ′ now follows by the security of E .

Theorem 3.9 (qNME-qCCA1 ⇏ qNME-qCCA2). If there exists an encryption scheme
E that is qNME-qCCA1 secure, then there exists an encryption scheme E ′ that is
qNME-qCCA1 secure but qNME-qCCA2 insecure.

Proof. Assume there exists some qNME-qCCA1 secure encryption scheme E := ⟨KeyGen,
Enc,Dec⟩. Fix a family qPRF of quantum-secure pseudorandom functions. The new
encryption scheme E ′ := ⟨KeyGen′,Enc′,Dec′⟩ is defined as follows.

KeyGen′(λ) :
1 : (pk, sk) $← KeyGen (λ)

2 : k $← {0, 1}λ

3 : sk′ ← sk∥k
4 : return (pk, sk′)

Enc′(pk, x) :
1 : y ← Enc(pk, x)
2 : return 0∥y∥0

Dec′(sk∥k, b∥y∥z) :
1 : if b = 0 ∧ z = 0 :
2 : return Dec(sk, y)
3 : else if b = 1 :
4 : return qPRF(k, y)
5 : else if b = 2 ∧ z = qPRF(k, y) :
6 : return Dec(sk, y)
7 : else return ⊥

Claim 3.5. E ′ is qNME-qCCA2 insecure.

Proof Sketch. Let 0∥y∥0 be the classical challenge ciphertext. The adversary first queries
Dec′(sk∥k, ·) at 1∥y∥0 (which is not the challenge ciphertext) to get v = qPRF(k, y),
and then queries it at the point 2∥y∥v to get the decryption of y, which is exactly
the decryption of the challenge ciphertext. This helps the adversary to break the
indistinguishability in the sense of qNME-qCCA2.

Claim 3.6. E ′ is qNME-qCCA1 secure.

Proof. The proof is similar to that of Claim 3.4: first the pseudorandom function qPRF
is replaced by a truly random function H, and for any decryption query of the form
2∥y∥z, we return ⊥ where y is the challenge ciphertext.

The extra step is that we need to consider the case in which the adversary happens
to query to the random function involving the challenge ciphertext. However, such
event is unlikely since otherwise the scheme E would not be secure even in the sense of
qIND-qCCA1. We formally prove the security through a sequence of games. Fix A and λ.

Game G0: This is the standard attack game.

Game G1: Replace qPRF with a truly random function H.

Since qPRF is a quantum-secure pseudorandom function, A cannot distinguish G1
from G0, except with negligible probability.

Quantum-Secure Public-key Encryption 66

Game G2: This is identical to G1, except that now we will consider the encryption oracle
and the decryption oracle where the random function H is involved as being implemented
in the compressed oracle. Since these are equivalent to the standard oracles, these changes
do not affect the adversary’s success probability. We have Pr[G2] = Pr[G1].

Game G3: This is identical to G2. Let D be the database of the challenge queries. The
only change is to the decryption algorithm which is used in the last phase after the
adversary has output its adversarial ciphertexts: if the ciphertext is 2∥y∥H(y) where
y ∈ D (in the form of 0∥y∥0), then it returns ⊥.

The intuition is that the adversary cannot make such a query (i.e., to put a non-
negligible weight on inputs 2∥y∥H(y) where y ∈ D), except with negligible probability.
Thus, the change is undetectable by the adversary. We formally bound the distinguishing
probability between G2 and G3 by considering the two following events.

• Let ForgeOffline be the event that A1 (in the first phase) has a non-negligible query
weight on inputs containing some y ∈ D in its queries to H. Lemma 2.7 shows that
the success probability of a quantum adversary in a standard oracle game is close
to its success probability in the corresponding compressed oracle game. We now
show that if ForgeOffline happens with non-negligible probability, we could design
an adversary B that break E in the sense of qIND-qCCA1.

– In the first stage, B implements a compressed random oracle and provides a
simulation of the decryption oracle of A using its decryption oracle. Let DH is
the database kept by B.

– When A outputs its challenge, B measures its database DH and gets many
pairs DH = {(y,H(y))}. B then submits these y values to its decryption oracle,
which are legitimately counted as decryption in the first phase, and gets back
their plaintexts x. Only at this point, B outputs A’s challenge as its challenge.
After receiving back the challenge ciphertexts, B measures its challenge query,
and checks if there is any value in DH . If it does then it outputs a bit b
depending on whether their plaintexts are the same, otherwise it decides by
flipping a coin. Observe that the success of B is exponentially close to one half
the probability of ForgeOffline (by Lemma 2.7 and the standard argument).

Thus, we have Pr[ForgeOffline] must be negligible.

• Let ForgeOnline be the event that the adversary correctly computes H(H(y)) for
some y ∈ D using only a single query to H in the last phase. By a similar argument
to Lemma 3.11, we have that Pr[ForgeOnline] is negligible.

Therefore, we have that

|Pr[G3]− Pr[G2]| ≤ Pr[ForgeOffline] + Pr[ForgeOnline],

which is negligible.

Finally, we construct an adversary B = (B1,B2,B3) that attacks E in the sense of
qNME-qCCA1 from any adversary A = (A1,A2,A3) of this last game. This can be argued
analogously to the argument in Claim 3.4. We omit the details.

Quantum-Secure Public-key Encryption 67

3.4.3 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2

We present a compiler transforming IND-qatk security to qIND-qatk security. Our
compiler follows the classical hybrid encryption paradigm. The message is encrypted
under a random symmetric key each time, and the key is encrypted by the public-key
encryption scheme. Since the same randomness is used for each query in superposition,
we can use the same random symmetric key in superposition each time. This means that
the adversary never has quantum access to the encryption algorithm of the public-key
scheme, only the symmetric encryption needs to be secure against quantum queries,
which we know how to construct from one-way functions (Theorem 3.3).

Construction 3.3 — qIND-qatk Secure Encryption Scheme
Let E := ⟨KeyGen,Enc,Dec⟩ be a public-key encryption scheme which is IND-qatk
secure and δ-correct. Let SE := ⟨K, SymEnc, SymDec⟩ be a one-time qIND-qatk
secure symmetric-key encryption scheme. We construct a new public-key encryption
scheme E ′ := ⟨KeyGen′,Enc′,Dec′⟩ as follows.

KeyGen′(1λ) :
1 : (pk, sk) $← KeyGen

(
1λ

)
2 : return (pk, sk)

Enc′(pk, x) :
1 : k $← K(1λ)
2 : c1 ← Enc(pk, k)
3 : c2 ← SymEnc(k, x)
4 : return c1∥c2

Dec′(sk, c1∥c2) :
1 : k← Dec(sk, c1)
2 : x← SymDec(k, c2)
3 : return x

Remark 3.4. In this construction, we make no extra assumptions. We know that the
existence of IND-qatk secure encryption implies the existence of quantum-secure one-
way functions. IND-qatk secure public-key encryption can be constructed based on
quantum-resistant assumptions (e.g., Learning With Errors) [BZ13b].

We give the security proof for adaptive chosen-ciphertext security below, the other
cases can be treated similarly.

Theorem 3.10. The encryption scheme E ′ defined in Construction 3.3 is qIND-qCCA2
secure, if E is IND-qCCA2 secure, and SE is one-time qIND-qCCA2 secure. In
particular, for any QPT adversary A, there exist QPT adversaries B, C such that

Advqind-qcca2
A,E ′ (λ) ≤ O(qd · δ) + 2 · Advind-qcca2

B,E (λ) + Advqind-qcca2
C,SE (λ),

where qd is the number of decryption queries in the second phase.

Proof. We prove this theorem using hybrid games. Since our definitions are closed under
composition, it is sufficient to prove for the single-message security.

Let A be a QPT adversary. For any game Gindex, we denote by

Pr[Gindex] := |Pr[Gindex(A) = 1 | b = 1]− Pr[Gindex(A) = 1 | b = 0]|.

Also, by event Gindex(A), we mean the output of the experiments (defined as in Defini-
tion 3.3) in game Gindex when interacting with A.

Game G0: This is the standard attack game. Let k∗ denote the symmetric key used
during the encryption process within the oracle.

Quantum-Secure Public-key Encryption 68

Game G1: Notice that the same symmetric key k∗ sampled during the encryption process
within the challenger’s oracle is used for all classical states of the superposition, the
ciphertext state of the challenge query would be:∑

x,y

αx,y |x, y⟩ → |Enc(pk, k∗)⟩
∑
x,y

αx,y |x, y ⊕ SymEnc(k∗, xb)⟩ ,

where xb denotes the actual encrypted plaintext, depending on whether it is the real-
world (b = 1) or the random-world (b = 0) (but the key k∗ is independent of b). Notice
that the first component c1 of the ciphertext is a classical value.

This game is identical to G0, except that now the real-or-random oracle RR(b) will
store the first component c1 of the challenge ciphertext in its local database D′. Since c1
is classical, this action is undetectable. Thus, we have:

Pr[G0] = Pr[G1].

Game G2: We define FindImage′ that takes as input a tuple ((c1, ·), D′) and returns 1 if
c1 ∈ D′ and 0 otherwise. This is identical to G1, except that in the real world we change
the decryption oracle ODec′ in the second phase to

O2
Dec′ |y, z⟩ |D′⟩ =

|y, z ⊕ Dec′(sk, y)⟩ |D′⟩ if FindImage′(y,D′) = 0,
|y, z ⊕ SymDec(k∗, c2)⟩ |D′⟩ if FindImage′(y,D′) = 1,

where FindImage′ parses its input component y as y = (c1, c2).
Essentially, in the second phase of this game, the decryption oracle in the real world

does not apply algorithm Dec′ to obtain the symmetric key, but instead just uses the
key k∗ produced by the challenge encryption oracle, if the query contains c1 ∈ D′. (Notice
that the database D′ is classical.)

This change is slightly more than just conceptual, since KeyGen′ may generate a
bad key pair. Let DecFail be the event that Dec′(sk,Enc′(pk, x)) = x′ ̸= x. This event
happens if and only if Dec(sk,Enc(pk, k∗)) ̸= k∗. Unless this event occurs, G2 and G1
proceed identically. Since SE is perfectly correct (by definition), any decryption failure
of E ′ is a decryption failure of E . Thus E ′ is also δ-correct. We thus have

|Pr[G2]− Pr[G1]| ≤ Pr[DecFail] ≤ O(qd · δ),

where the last inequality follows from the definition of correctness.

Game G3: This is identical to G2, except that in the real-or-random oracle, we encrypt
a complete random value k+ in place of the symmetric key k∗, that is we compute
c1 = Enc(pk, k+), but we still use k∗ for symmetric encryption and decryption.

It is straightforward to see that any adversary A that distinguishes games G3 from G2
can be turned to an adversary B attacking the underlying scheme E , whose running time
is essentially the same as that of A. To be more precise, we can define two intermediate
hybrids G3.0 and G3.1 = G3, in which this change is applied to the real world in G3.0
and then to the random world in G3.1. In each hybrid, the adversary B just runs the
adversary A, and uses (k∗, k+) as its challenge pair. Note that in two consecutive hybrids
(G2 and G3.0, G3.0 and G3.1), the challenge ciphertext of B is c1, which is classical,

Bit Encryption Is Complete 69

as argued above, and that B never query to the decryption oracle on the challenge
ciphertext, but instead uses k∗ to answer the query (if it is simulating the game in the
real world), and its compressed encryption oracle’s database (if it is simulating the game
in the random world). We have

|Pr[G3]− Pr[G2]| ≤ 2 · Advind-qcca2
B,E (λ).

Furthermore, notice the fact that in this final game, k+ is independent of the
adversary’s view and b, we now turn any distinguisher A of this game to an adversary C
that breaks the one-time security of SE . C runs A, when it receives the challenge query
from A, it first generates a random string k+ and encrypt it with the public key pk
to get c1, and sends A’s challenge query directly to its challenger. After receiving the
answer back, C appends |c1⟩ to the result and forwards it to A. In the second phase, for
any decryption query, C removes the first component from the ciphertext and forwards
the query to its challenger.

By the security of SE we have |Pr[G3]− Pr[G2]| ≤ Advqind-qcca2
C,SE (λ).

Putting everything together, by the security of the underlying building blocks, we
have the security of E ′.

3.5 Bit Encryption Is Complete

In this section, we summarize our result for a fundamental question:

Is bit encryption in the quantum world complete as in the classical world?

We will show that the answer is affirmative, and give a construction for string encryption
from bit encryption.

3.5.1 Bit-by-bit Encryption Is Insecure

We note that the question above is not trivial even for simpler cases of CPA and
CCA1 security. In the classical setting, under CPA and CCA1 attacks, a secure bit
encryption scheme can be applied bit-by-bit to construct a secure many-bit encryption
scheme. However, the same construction fails in the quantum setting. This result for the
symmetric-key setting was observed in [BBCL+21; CETU21]. Indeed, the same attack
is also applicable to the public-key setting.

We will denote the encryption function as f , since the attack applies to both the
symmetric-key and the public-key setting. Furthermore, we will show a stronger version
of the result, which is bit-by-bit encryption of a qIND-qCCA2-secure scheme is insecure
even in the sense of qIND-qCPA.

Theorem 3.11 ([BBCL+21; CETU21]). Bit-by-bit encryption of a qIND-qCCA2 scheme
is qIND-qCPA insecure. It holds in both symmetric-key and public-key settings.

Proof. It is sufficient to show the attack for 2-bit encryption. The adversary A sends
the following query as its challenge:

|ϕ⟩ = |0∥+⟩X |0∥+⟩Y .

Bit Encryption Is Complete 70

Informally, the adversary inserts 0 to the first input register (the first qubit), and |+⟩ to
the second input register (the second qubit), and sets the response registers to be |0∥+⟩.
The challenge ciphertext state will be:

|ϕ0⟩ = |0∥+⟩X |f(0)∥+⟩Y if b = 0,

and
|ϕ1⟩ =

∑
x,y∈{0,1}

|0∥x⟩X |
(
0∥y

)
⊕

(
f(h(0∥x)|0)∥f(h(0∥x)|1)

)
⟩ if b = 1,

where h : {0, 1}2 → {0, 1}2 is a random function, and we write h(z)|0 to denote its first
output bit, and h(z)|1 to denote its last output bit.

Measuring the second input register in the Hadamard basis in the case b = 0 returns 0
with probability 1, while in the case b = 1, this register will be entangled with the
response registers with high probability due to the application of h. Thus measuring
the second input register in the Hadamard basis in the case b = 1 returns 0 with small
probability only.

3.5.2 Completeness of Bit-Encryption

We answer the aforementioned question using our Theorem 3.3 and Theorem 3.10. In
particular, we show the following theorem:

Theorem 3.12. Many-bit qIND-{qCPA, qCCA1, qCCA2}-secure encryption schemes exist
if and only if 1-bit qIND-{qCPA, qCCA1, qCCA2}-secure encryption scheme exists.

Proof (Sketch). We give a sketch of the proof for the claim below.

For the symmetric-key encryption. From our Theorem 3.3, we conclude that if we can
construct many-bit qCPA-secure encryption from 1-bit qCPA-secure encryption, then we
are done. The steps to achieve this goal are as follows.

• Many-bit qCPA-secure encryption can be constructed from quantum-secure pseu-
dorandom permutations (qPRPs) [CETU21, Theorem 44]. We note that the
construction given in [CETU21, Theorem 44] is proven to be secure with respect
to real-or-permuted security, but the proof also holds for real-or-random security
which is used in our notions.

• qPRPs can be constructed from quantum-secure pseudorandom functions qPRFs [Zha16]
(which uses function to permutation converters), or [HI19] (which uses the four-
round Luby-Rackoff construction).

• qPRFs with one input bit implies qPRFs with many input bit (for example, via the
GGM construction [Zha12a]).

• The existence of one input bit qPRFs is implied by our assumptions that 1-bit
encryption scheme exists: the existence of encryption implies the existence of
quantum-secure one-way functions, and quantum-secure one-way functions implies
quantum-secure pseudorandom number generators [HILL99], which in turn gives
us one input bit qPRFs [Zha12a].

Bit Encryption Is Complete 71

For the public-key encryption. From our lifting theorem Theorem 3.10, we know that if we
can construct many-bit encryption from 1-bit encryption for public-key schemes which
only need to be secure against classical challenge queries, armed with the results in
the symmetric-key setting, we are also done. For IND-qCPA, IND-qCCA1 security (with
classical challenge queries), this follows directly from the bit-by-bit construction. For
IND-qCCA2 security, it is not difficult to adapt the classical security proof of [HLW12]
to the quantum setting. In particular, the construction and proof in [HLW12] involve
defining detectable-CCA2 security and some “bad events” when the adversary submits
a decryption query. Fortunately, all these notions are defined relatively to the adver-
sary’s challenge queries which are classical. Thus they can be defined similarly for the
IND-qCCA2 security and the proof carries through.

Chapter

4
Quantum Simulation-Sound
Non-Interactive Zero-Knowledge

In this chapter, continuing the line of work on defining quantum security for classical
cryptographic primitives, we describe quantum security notions for non-interactive
zero-knowledge systems in which the adversary can make quantum queries to the zero-
knowledge simulator. We then use these new notions to prove quantum chosen-ciphertext
security (as defined previously in Chapter 3) of (a variant of) the classical Naor-Yung
encryption scheme.

Chapter content
4.1 Quantum Zero-Knowledge . 72

4.1.1 Definition . 72

4.1.2 Construction . 73

4.2 Quantum Simulation-Soundness . 74

4.3 Separation Between Post-Quantum and Quantum Security 76

4.3.1 Preliminaries: Interactive Proof of Quantumness 77

4.3.2 Quantum Advantage with Quantum Query Algorithms 79

4.3.3 Separation for QSS-NIZK . 82

4.4 Constructions of QSS-NIZK . 84

4.4.1 Construction in the Common Reference String Model 84

4.4.2 Construction in the Quantum Random Oracle Model 91

4.5 Application to the Naor-Yung Construction with Quantum CCA Security . . . 95

4.5.1 Quantum-Secure Invertible Pseudorandom Functions 95

4.5.2 Construction of Our Quantum CCA Encryption Scheme 96

4.1 Quantum Zero-Knowledge

4.1.1 Definition

We give below the definition for quantum zero-knowledge in both the common reference
string model and the quantum random oracle model. Our definition is a quantum coun-
terpart of the classical definition for post-quantum zero-knowledge: the only difference
is that now the adversary can query the simulator in superposition.

Quantum Zero-Knowledge 73

Definition 4.1 — Quantum Zero-Knowledge
Let L be a language in NP. A proof system NIZK := ⟨Setup,P ,V⟩ for L is (adaptive)
quantum zero-knowledge if there exists a QPT simulator S = (S1,S2) such that
for all QPT distinguisher D∗ = {D∗λ, ρλ}λ∈N, for every n ∈ N, and for every λ ∈ N:∣∣∣Pr

[
D∗λ(ρλ, param)|PO(param,·,·)⟩,|O⟩ = 1

∣∣∣ param← Setup(1n, 1λ)
]

−Pr
[
D∗λ(ρλ, param)|S2(td,·)⟩ = 1

∣∣∣ (param, td)← S1(1λ)
]∣∣∣ ≤ negl(λ),

where

− D∗ can make quantum queries to the oracles.

− param is an empty string if we consider NIZK in the quantum random oracle
model, or crs in the common reference string model.

− O is an empty oracle if we consider NIZK in the common reference string
model, or a random oracle OH in the quantum random oracle model.

− P(param, ·, ·) is the prover algorithm and S2(td, ·) only acts on its private
trapdoor td, the input statement x ∈ Lyes ∩ {0, 1}n and its private random
tape.

4.1.2 Construction

We note that any perfect adaptive post-quantum zero-knowledge proof system is also
(perfect) quantum zero-knowledge proof system. Therefore, in this section, we consider
the notion of quantumly computational zero-knowledge. We will briefly show that some
known non-interactive zero-knowledge proof systems in literature, in particular the one
given by Bitansky and Paneth in [BP15], satisfy this notion. At a high-level overview, the
Bitansky-Paneth construction is a concrete instantiation of the Goldwasser-Ostrovsky
transformation [GO93] which gives NIZKs from invariant signatures.

Informally, invariant signatures are digital signatures where all valid signatures of
any message are either identical, or share a common property. Concretely, we say
that a signature scheme is invariant if there is some efficiently computable property
P of signatures such that for any message m∗ and any verification key vk there is a
unique value Pvk(m∗) such that P (σ) = Pvk(m∗) for any valid signature σ with respect
to vk. Furthermore, it is required that for every message m∗, for an honestly generated
verification key (sampled independently of m∗), the property value Pvk(m∗) is pseudo-
random, even given the verification key and a signature oracle on messages m ̸= m∗. We
can also consider a relaxed notion of invariant signatures in the common random string
model (CRS).

The Goldwasser-Ostrovsky transformation is based on the construction of Feige,
Lapidot and Shamir [FLS90] of NIZKs in the hidden-bits model. In this model, a
random hidden string is available to the prover but is hidden from the verifier. The
prover can reveal to the verifier specific bits of the hidden string in the locations of its
choice, but it cannot change the value of these bits. Very briefly, the transformation is as
follows: we interpret the CRS (available to both prover and verifier) as containing a CRS

Quantum Simulation-Soundness 74

for the invariant signature, as well as a sequence of messages {mi} and one-time pad
bits {si} where every (mi, si) will be used to obtain a single hidden bit bi. The prover
will sample keys (vk, sk) for the invariant signature and send the verification key vk to
the verifier as part of the proof. The hidden bit bi is then defined as the bit Pvk(mi), the
property value of the message mi, XORed with the one-time pad bit si. To reveal the
bit bi, the prover sends to the verifier a signature σi on mi. The verifier can compute bi
by computing P (σ) = Pvk(mi).

The simulator can be defined based on this strategy, where first we run the simulator
of the proof system in the hidden model to obtain a proof π and a set of revealing
bits {bi}. The CRS will be generated exactly as in the real execution, except that the
one-time pad bits {si} are computed as Pvk(mi)⊕ bi.

The proof of zero-knowledge is essentially based on pseudo-randomness property of the
signature, so that each hidden bit in the simulation is computationally indistinguishable
from a uniformly random bit as in the real execution.

There are two important points that make the proof also works in the quantum
setting:

• A NIZK proof system in the hidden-bit model can achieve both perfect soundness
and perfect zero-knowledge [HU19].

• The computational indistinguishability only appears in the proof of the CRS gener-
ation in the real execution and the simulation, which is classical and independent
of the adversary’s queries.

Since perfect zero-knowledge implies quantum zero-knowledge, the classical proof also
carries to the quantum setting, when the building blocks are post-quantumly secure.
For more details, we refer the reader to the (classical) proof given in [BP15].

4.2 Quantum Simulation-Soundness

Informally, a zero-knowledge proof system is said to be simulation-sound if it has the
property that an adversary cannot provide a convincing proof for any false statement,
even if it has seen simulated proofs of arbitrary statements (including false statements).
In the classical setting, simulation-soundness is defined with respect to a zero-knowledge
simulator. The simulator would keep a list of statements and simulated proofs, and
the adversary is asked to output a new pair of statement and proof that is outside
of the list. The classical definition for simulation-soundness thus inherently implies
recording and comparison of queries. Translating this definition into the quantum setting
can be tricky, mainly because of quantum measurement and the no-cloning theorem,
which prevent the simulator to keep such a list when the adversary can make queries
quantumly. The same barrier also appears in different context of defining quantum
indistinguishability for encryption (see Chapter 3), or defining quantum unforgeability
for digital signatures [BZ13b; AMRS20].

To define quantum-simulation-soundness, we take advantage of the fact that the
randomness to compute a proof is chosen by the simulator and can be classical, and we
assume that the simulator picks a fresh randomness for each query. For each query, we
thus ask the simulator to record the randomness used to respond the query in a list R.
At the end, the adversary returns two pairs (x1, π1), (x2, π2) and wins if either of the
two following statements is true:

Quantum Simulation-Soundness 75

1. None of the randomnesses in R matches with one of the pairs (x1, π1), (x2, π2) with
x1 or x2 being a false statement.

2. There exists a randomness r ∈ R that matches with these two pairs and one of the
statements x1 or x2 is a false statement.

We note that restricting to classical queries, this definition is stronger than the
classical simulation-sound definition. An adversary that breaks the classical definition
outputs a new pair (x, π) where x is a false statement. If x has not been queried before,
the adversary can break one of the two cases above. If x has been queried before but
π is a new proof, the randomness to generate π should not be in R and the adversary
breaks case 1.

The formal definition follows.

Definition 4.2 — Quantum-Simulation-Soundness (QSS-NIZK)
Let L be a language in NP. Consider a proof system ⟨Setup,P ,V⟩ for L with
zero-knowledge simulator S := (S1,S2). In each query, S2 stores the randomness
used to answer the query in a list R. A QPT adversary A after making polynomial
numbers of quantum queries to S2 outputs two pairs {(xi, πi)}2

i=1. The adversary
A wins if either of the following two cases hold:

1. There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and
V(crs, xi, πi) = 1.

2. There exists a randomness r ∈ R such that S2(x1, r) = π1 and S2(x2, r) = π2

and at least one of x1 or x2 is not in L.

Formally, we say an NIZK proof is quantum-simulation-sound if for all λ ∈ N,
for all QPT adversaries A, i, j ∈ J1, 2K we have:

Pr



V(crs, xi, πi) = 1 ∀ i ∧(
∃ i : xi /∈ L

)
∧(

(S2(td, xi, r) ̸= πi ∀ r ∈ R)∨

(∃ r ∈ R : S2(td, xj, r) = πj ∀ j)
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(crs, td)← S1(1λ)

{(xi, πi)}2
i=1 ← A|S2(td,·)⟩(crs)

 ≤ negl(λ).

Some Technical Discussions

We now remark on a few details on the notion of quantum-simulation-soundness. First, it
might seem that our definition does not capture all possible quantum attacks. Consider
the following adversary A. A makes a quantum query to the simulator and obtains
a superposition of statements and proofs as

∑
x ̸=x0,y αx,y |x, y ⊕ π⟩, where x0 /∈ L. We

assume that the simulator answered the query with a classical randomness r, that
is hidden from A. (Note that, if r is not hidden, there is a trivial attack.) A then
performs some quantum computation to come up with a proof for x0, with the same
randomness r, and during the process, A also destroys the original state, thus A cannot
procedure two pairs of {(xi, πi)}2

i=1 that are computed using the same randomness.
Essentially, the adversary makes one or more quantum queries but then must consume

Separation Between Post-Quantum and Quantum Security 76

the post-query states completely in order to make a single, but convincing, forgery.
Obviously, if such an adversary A exists, this might consider a quantum attack against
quantum-simulation-soundness, but Definition 4.2 does not capture this. However, this
so-called attack is inherited from the nature of quantum queries and can be applied in
similar scenarios, for instance, the (n+ 1)-definition proposed in [BZ13a; BZ13b] or the
blind-unforgeability proposed in [AMRS20] for classical digital signatures. The second
condition in Definition 4.2 is thus used to capture classical attacks rather than quantum
attacks. We leave this as an open problem, either to find a concrete example for this
type of attack, or to show that (in most of the cases) this is not possible.

Secondly, our definition also captures some “malleability” attack that is not captured
by the classical definition. In particular, imagine that if the adversary makes a query
to the simulator for a statement x1 /∈ L, and outputs a proof for a statement x2 ∈ L
with the same randomness used by the simulator. This attack does not violate the
classical simulation-soundness, but it is captured by our definition. This is because it is
not possible in general to distinguish which statement was queried by the adversary in
the quantum setting. We note that the “inverse” case (that is, x1 ∈ L and x2 /∈ L) is
obviously an attack and it is captured in both classical and quantum notions.

4.3 Separation Between Post-Quantum and Quantum Security

In this section, we introduce a new notion of quantum-query advantage functions,
which are functions that can be used to demonstrate advantages of quantum queries
over classical queries. Our definition and construction of quantum-query advantage
functions follows those of quantum advantage functions given in [LMQW22]. The
main difference between the two objects is that:

• Quantum advantage functions in [LMQW22] demonstrate a quantum advantage
with only classical queries, showing separations between classical security and
post-quantum security.

• Our quantum-query advantage functions demonstrate a quantum advantage with
quantum queries, showing separations between post-quantum security and quan-
tum security.

We give the definition and construction for quantum-query advantage functions
in Section 4.3.2 and use it to show a separation between quantum simulation-sound
NIZKs and classical simulation-sound NIZKs in Section 4.3.3.

Remark 4.1. Our quantum-query advantage functions can be constructed trivially from
periodic pseudorandom functions (which was used to show separation between quantum-
query security and classical-query security for digital signatures and chosen-ciphertext
security in [BZ13b]). Informally, for appropriate parameters, the period finding algorithm
of Boneh and Lipton [BL95] allows to recover the secret period of the pseudorandom
function with a single quantum query, but the function is computationally indistin-
guishable from a random function if the adversary only has classical access. In this
thesis, we present another construction based on recent interactive proofs of quantum-
ness [BCMV+18]. The advantage of our approach is that it allows us to define more
properties for the quantum-query advantage function, which we believe to be useful to
show separations in other settings.

Separation Between Post-Quantum and Quantum Security 77

4.3.1 Preliminaries: Interactive Proof of Quantumness

We first recall the definition of interactive proof of quantumness protocols with 4 messages
in total, which corresponds to the best round complexity known for interactive proofs of
quantumness in the plain model [BCMV+18].

Definition 4.3 — Interactive Proof of Quantumness
An interactive proof of quantumness is an interactive protocol Πipq between a
prover P and a verifier V using classical communication, with the following prop-
erties:

Quantum completeness: there exists a QPT quantum prover P such that for all
λ ∈ N:

Pr
[
(P ,V)(1λ) = 1

]
≥ 1− negl(λ).

Classical soundness: for any PPT classical prover P∗, for all λ ∈ N:

Pr[(P∗,V) = 1] ≤ negl(λ).

In a 4-round interactive proof of quantumness protocol, the first message is sent by
the verifier to the prover. Let v1, v2 (resp. p1, p2) denote the messages sent by the verifier
(resp. the prover) during the execution of an interactive proof of quantumness Πipq. An
interactive proof of quantumness Πipq can furthermore satisfy the following optional
property:

Public-coin second verifier message: the second verifier message v2 consists of uni-
formly and independently sampled random coins.

Semi-quantum soundness: for any QPT quantum prover P∗, for all λ ∈ N:

Pr
[
(P∗,Vsemi)(1λ)

]
≤ negl(λ),

where the verifier Vsemi is defined as follows.

• Let P denote the efficient quantum prover for Πipq such that

Pr
[
(P ,V)(1λ)

]
≥ 1− negl(λ).

• Vsemi runs V to obtain the first verifier message v1.

• Whenever Vsemi receives a classical message x from P∗, it runs P on
(v1, x) and obtains a classical message p1.

• P∗ is allowed to send a classical message x to Vsemi and receive back a
tuple of classical message (p1, v2) where v2 is the second verifier message.
Then it outputs a classical message p2.

• Vsemi outputs the output of V on (v1, p1, v2, p2).

Intuitively, semi-quantum soundness guarantees that no efficient quantum
prover can cheat when the first prover message is generated by a classical
prover.

Separation Between Post-Quantum and Quantum Security 78

The Quantum Certification Protocol from [BCMV+18]

This protocol relies on a post-quantum secure trapdoor claw-free (TCF) family of
functions with adaptive hard-core bit property f0, f1 : {0, 1}n → {0, 1}m. A TCF pair is
a pair of functions which are injective, with the same image, and satisfy the following
property. With knowledge of a secret trapdoor it is possible to efficiently (classically)
compute the two pre-images x0 and x1 of a given y (f0(x0) = f1(x1) = y), but without
the trapdoor, there is no efficient quantum algorithm that can compute such a triple
(x0, x1, y), referred to as a claw, for any y. The adaptive hardcore bit property states that
it is also hard to hold both a single pre-image xb, as well as a string d ∈ {0, 1}b \ {0b}
and a bit c such that c = d · (x0 ⊕ x1).

We note that while the quantum device cannot compute a claw or break the adaptive
hard-core bit property, nevertheless it can simultaneously hold an image y as well as a
superposition 1√

2(|0, x0⟩+ |1, x1⟩) over the two pre-images of y, simply by evaluating f
on a uniform superposition over all inputs and measuring the image register y. Then by
either measuring the state in the computational basis or the Hadamard basis, the device
can obtain either a random pre-image xb of y, or a pair (c, d) such that c = d · (x0 ⊕ x1).

A high-level description of the [BCMV+18] protocol is given below.

Protocol 4.1: 4-round Interactive Proof of Quantumness by [BCMV+18]
1. The verifier generates a TCF pair, along with a trapdoor, and sends just the

function pair to the prover.

2. The prover returns an image y of the TCF pair.

3. The verifier challenges the prover by randomly asking for either a pre-image
of y, or a bit c and an n-bit string d such that d · (x0 ⊕ x1) = c.

4. The prover measures in the computational or Hadamard basis to return the
requested output and the verifier checks the validity by using the trapdoor
to compute the two pre-images x0, x1 of y.

Based on this protocol, we obtain the following lemma.

Lemma 4.1. Under the LWE assumption, there exists a 4-message interactive proof
of quantumness protocol satisfying: (1) public-coin second verifier message and
(2) semi-quantum soundness.

Proof. The protocol we use in the proof is the n-fold parallel repetition of Protocol 4.1.
Protocol 4.1 has soundness error 1/2, and parallel repetition amplifies the soundness of
this protocol, which has been shown in [RS20].

By inspecting Protocol 4.1, we note that the verifier’s second message is public coin.
What remains is to argue that the protocol is also semi-quantum sound: in Protocol 4.1,
the crucial point is that the prover can compute a quantum state to obtain its first
message p1 on its own, and later this quantum state will be either measured in the
computational basis or the Hadamard basis to answer the challenge from the verifier. Now
consider the security game of semi-quantum soundness: the prover can only compute p1
via sending a classical query to Vsemi. Furthermore, this computation of y1 is done
by Vsemi, which acts exactly as a honest prover in Protocol 4.1 (except that the prover
is now classical). Since this is a classical query, no efficient quantum prover can give a

Separation Between Post-Quantum and Quantum Security 79

valid answer in the Hadamard basis for a fixed pair (v1, p1). Formally, we can construct
a simulator S which simulates the malicious semi-quantum prover P∗ and plays the
role of the prover in Protocol 4.1. S makes a copy of (v1, x, p1) (where x is the input of
P∗’s query) and later sends (v1, p1, v2) to P∗. Finally S outputs whatever P∗ outputs.
One can see that now if P∗ breaks the semi-quantum soundness, S breaks the “adaptive
hard-core bit” property of Protocol 4.1.

4.3.2 Quantum Advantage with Quantum Query Algorithms

Definition 4.4 — Quantum-Query Advantage Functions
A quantum-query advantage function is a pair of PPT algorithms ⟨Setup,QAF⟩
with the following properties:

(pp, sk)← Setup(1λ). On input a security parameter λ, the setup algorithm Setup
outputs a public parameter pp and a secret key sk. Without loss of generality,
we will consider that the secret key sk includes the public parameter pp.

QAF(sk, x). On input a secret key sk and a message x, the (randomized) evaluation
algorithm QAF outputs either a message y, or a special “accept” symbol
denoted accept, or a special “reject” symbol denoted reject. For our applications
later, we require that by default QAF(sk, ·) is stateless.

We additionally require the following properties:

q-Quantum-query easiness. For any λ ∈ N, there exists a QPT oracle algorithm
A|QAF(sk,·)⟩(pp) such that:

Pr
[
QAF(sk, x) = accept | x← A|QAF(sk,·)⟩(pp)

]
= 1− negl(λ),

where A|QAF(sk,·)⟩ makes q quantum queries in total to QAF(sk, ·) before
outputting x, and the probability is taken over (pp, sk)← Setup(1λ).

Classical-query hardness. For any λ ∈ N, for all QPT oracle algorithm AQAF(sk,·)(pp)
such that:

Pr
[
QAF(sk, x) = accept | x← AQAF(sk,·)(pp)

]
≤ negl(λ),

over (pp, sk)← Setup(1λ).

Construction. Let Πipq be a 4-message interactive proof of quantumness, in the form
of Definition 4.3 in Section 4.3.1 with public-coin second verifier message and semi-
quantum soundness properties. We define our quantum-query advantage function as
follows.

Separation Between Post-Quantum and Quantum Security 80

Construction 4.1 — A quantum-query advantage function from interactive proof of quantumness

Setup(1λ):

• Run the first verifier message for Πipq to obtain (v1, r), where v1 is the
first verifier message and r is the private coin of the verifier of Πipq.

• Sample a uniformly random string v2
$← {0, 1}∗ as the second verifier

message for Πipq.

• Set pp as an empty string and sk := (pp, k, v1, v2, r) and output (pp, sk).

QAF(sk, ·): on input a message x, we consider several distinguished cases (all cases
are considered with appropriate input length):

• If x is of the form (0∥u): compute the semi-quantum verifier message
for Πipq on (v1, u) and obtain (v1, p1, v2). Output (p1, v2).

• If x is of the form (1∥p1∥p2): if the verifier of Πipq accepts the transcript
(v1, p1, v2, p2) with the secret state r, output accept, otherwise output
reject.

• Otherwise output ⊥.

Theorem 4.1. Let Πipq be a 4-message interactive proof of quantumness satisfying
the properties specified in Lemma 4.1: public-coin second verifier message and
semi-quantum soundness. Then there exists a quantum-query advantage function
satisfying 2-quantum-query easiness (Definition 4.4).

Combined with Lemma 4.1, we obtain the following:

Corollary 4.1. Assuming the (classical) hardness of LWE, there exists a quantum
advantage function satisfying 2-quantum easiness (Definition 4.4).

The proof of Theorem 4.1 follows from Lemma 4.2 and Lemma 4.3 stated below.

Lemma 4.2 (Quantum-query easiness). Suppose Πipq satisfies quantum completeness
(Definition 4.3). Then Construction 4.1 satisfies quantum-query easiness.

Proof. Let P denote the efficient quantum prover for Πipq such that

Pr
[

(P ,V)(1λ) = 1
]
≥ 1− negl(λ).

Define the following QPT algorithm P:

• Make a (quantum) query
∑
x |0∥x, 0⟩ to QAF(sk, ·).

• Measure the response register to get a classical string p1.

• Run P on p1, v2 and the post-measurement state to obtain p2.

• Output p1∥p2.

By the completeness of Πipq, QAF(sk, ·) outputs accept with probability 1− negl(λ).

Separation Between Post-Quantum and Quantum Security 81

Lemma 4.3 (Classical-query hardness). Suppose Πipq has public-coin second verifier
messages and has semi-quantum soundness (Lemma 4.1). Then Construction 4.1
satisfies classical hardness.

Proof. Let A(pp) denote a QPT adversary with classical oracle access to QAF(sk, ·).
Without loss of generality, we assume that A queries its output x∗ to QAF(sk, ·) before
halting, and that A outputs the first x∗ it queries such that QAF(sk, x∗) = accept, if
such a query exists. Let Q denote the number of oracle queries A makes. We define the
following hybrid experiments, where we change the input-output behavior of QAF(sk, ·):

Game G0: This is the classical-query hardness experiment (Definition 4.4) where A has
classical oracle access to O0(sk, ·) := QAF(sk, ·), where (pp, sk)← Setup(1λ). We say that
the adversary wins the experiment if it outputs x∗ such that O0(sk, x∗) = accept.

Game G1: We do not change the behavior of the oracle (i.e., O1 := O0), but we change
the winning condition of the experiment. We now guess a uniformly random index
j ∈ JQK. We now say that A wins if and only if the following conditions hold:

(a) the j-th oracle query from A, on input xj is of the form 1∥p1∥p2;

(b) O1(sk, xj) = accept, and for all prior oracle queries x, O1(sk, x) ̸= accept.

Game G2: We change how oracle queries are handled and define O2(sk, ·) as follows. On
any query i ̸= j of the form xi = 1∥p1∥p2, O2 rejects.

Claim 4.1. For all classical-query QPT adversaries A:

Pr
[
AO1(sk,·)(pp) = 1

]
= 1
Q

Pr
[
AO0(sk,·)(pp) = 1

]
.

Proof. For any execution of the experiment in G0 such that A(pp) outputs x∗ = 1∥p∗1∥p∗2
such that O0(sk, x∗) = accept, recall that we assume without loss of generality that A
queries the oracle on x∗, and that x∗ corresponds to the first query from A such that
O0(sk, x∗) = accept. Let j∗ denote the index corresponding to the first query A makes
on x∗. Since j is chosen uniformly at random from JQK, the probability of A winning in
G1 is the probability that j = j∗, which is 1

Q
. The claim follows.

Claim 4.2. For all classical-query QPT adversaries A:

Pr
[
AO2(sk,·)(pp) = 1

]
= Pr

[
AO1(sk,·)(pp) = 1

]
.

Proof. By definition of the winning condition in G1, A loses in the experiment if its
i-th oracle query on input xi satisfies i < j and O1(sk, xi) = accept. Furthermore, the
queries made by A after querying its first accepting input x∗, if such an x∗ exists, do
not affect its output (as we assume A would then output x∗). Therefore the winning
probability of A in both G1 and G2 are exactly identical.

Claim 4.3. For all classical-query QPT adversaries A:

Pr
[
AO2(sk,·)(pp) wins in G2

]
≤ negl(λ).

Proof. Let A be a classical-query QPT algorithm such that A wins with probability ε in
G2. We build a prover P∗ that breaks semi-quantum soundness of Πipq with probability
ε as follows:

Separation Between Post-Quantum and Quantum Security 82

1. Make a guess j $← JQK. Run A.

2. To answer the i-th query, if xi is of the form 0∥u, send u to the verifier to obtain
(p(i)

1 , v
(i)
2). Store the pair (p(i)

1 , v
(i)
2) in a list R. Otherwise parse xi = 1∥p1∥p2 and

respond to the query according to the following cases:

• If i = j, check that p1 = pj1, set pj2 := p2 and send pj2 as the second prover
message in Πipq.

• Otherwise, response to the query from A with reject.

Our reduction perfectly simulates the view of A in G2, and if A wins G2, we have
that the pair (pj1, pj2) is an accepting input for Πipq in the semi-quantum soundness
experiment.

Overall these claims show that the probability of A winning in G0 is negligible, and
finishes the proof of Lemma 4.3.

4.3.3 Separation for QSS-NIZK

In this section, we use our quantum-query advantage functions to give an example of a
NIZK proof system that is classically simulation-sound but not quantumly simulation-
sound. Our separation is constructed by carefully embedding instances of interactive
quantum-query advantage into the simulator of the NIZK system. The key conceptual
insight is that although we are considering non-interactive proof systems, the security
game for simulation-soundness is interactive, allowing us to use a quantum adversary
that makes the quantum-query advantage function accept to also break the simulation-
soundness: an efficient quantum adversary given classical oracle access to QAF cannot
cause it to ever output accept, while it can do so by only making 2 quantum queries.

Construction 4.2 — Separation for QSS-NIZK
Let L′ be a language in NP, with the associated relation R′. Let L denote
the NP language defined in Equation (4.1). Let Π = ⟨Setup,P ,V⟩ be a post-
quantum simulation-sound non-interactive zero-knowledge proof system for L, and
⟨Setup,QAF⟩ be a quantum-query advantage function. We define the following
NIZK proof system Π = ⟨Setup,P ,V⟩ for L as follows.

Setup(1λ): Output pp← Π.Setup(1λ). (We note that pp = crs in the CRS model,
and pp is a token that allow the parties to make quantum queries to the
random oracle in the QROM.)

P(pp, x, w): Compute (pp′, sk) ← Setup(1λ). Compute y ← QAF(sk, x). Generate
a proof π using Π for the statement (x, y) ∈ L. Output (y∥π).

V(pp, x, π): Parse (y∥π)← π. Output V(pp, (x, y), π).

We define the following augmented language L of R′:

L := {(x, y) : ∃ (sk, r, w) : R′(x,w) = 1 ∧ (y = reject ∨ y = QAF(sk, x; r))}. (4.1)

It is easy to see that completeness and soundness of Π follow directly from those of Π.

Separation Between Post-Quantum and Quantum Security 83

We now construct a simulator S for zero-knowledge property of Π, which is later on
also used in the proofs of simulation-soundness. Let S := (S1,S2) be a zero-knowledge
simulator of Π. The simulator S := (S1,S2) works as follows.

• S1 : Output S1.

• S2 : Initialize an empty list Q. On the input a statement x,

– For each pair (pp′i, ski) ∈ Q, compute yi ← QAF(ski, x).
∗ If yi = reject ∀ i, set y = reject.
∗ If there exists an index i such that yi = accept, set y = accept.
∗ Otherwise, compute (pp′, sk)← Setup(1λ), store (pp′, sk) in Q and compute
y ← QAF(sk, x).

– Run S2 on input (x, y) to obtain a simulated proof π.

– If y = accept, generate a simulated proof π′ for a random false statement
x′ ∈ L (by sampling x′ ∈ {0, 1}n uniformly at random, where n is the length
of a statement in L) and output (π, (x′, π′)). Otherwise, output (y∥π).

Claim 4.4. Assume that ⟨Setup,QAF⟩ satisfies classical-query hardness (Definition 4.4),
then Π is zero-knowledge.

Proof. We define the following hybrid experiment:

Game G1: We modify the behavior of the simulator S2. It computes y and π as normal.
However, if y = accept, it aborts. Otherwise, it outputs y∥π.

For any classical-query QPT adversary P∗, the probability of P∗ making a query with
some input x that makes the simulator S2 abort in G1 is negligible by classical-query
hardness of ⟨Setup,QAF⟩. Therefore the output of the simulator for Π is indistinguishable
from its output in G1. Now the zero-knowledge property in G1 follows directly from
the zero-knowledge property of Π, where the reduction samples (pp, sk) ← Setup(1λ),
computes y ← QAF(sk, x) on its own and efficiently generates a proof π for the statement
(x, y) for each query.

Using the simulation S, we show that our definition is strictly stronger than the
classical one below.

Claim 4.5. Assume that ⟨Setup,QAF⟩ satisfies quantum-query easiness (Definition 4.4),
then Π is not quantum-secure simulation-sound.

Proof. Let A be the QPT algorithm associated to the quantum-query easiness of
⟨Setup,QAF⟩. Define P∗ as follows.

1. Run A by first making a query to S2. Note that the response registers of the query
have two component: one to record the output of QAF, the other to record the
output of S2. The first component is initialized as the all-zero string |0⟩, while the
second component is initialized as the uniform superposition state |+⟩ to remove
the entanglement between the two registers so that after the query, the second
response register can be discarded.

Constructions of QSS-NIZK 84

2. Continue the execution of A (with an input x) and obtain a triple (π, (x′, π′)).
Output two pairs (x, π) and (x′, π′).

By definition of S2 and the quantum-query easiness of ⟨Setup,QAF⟩, both two pairs
output by P∗ are valid, and furthermore x′ is a false statement, showing that Π is not
quantum-simulation-sound.

Claim 4.6. Assume that ⟨Setup,QAF⟩ satisfies classical-query hardness (Definition 4.4),
then Π is classically simulation-sound.

Proof. The proof of this claim follows in an almost identical manner as that of Claim 4.4.

4.4 Constructions of QSS-NIZK

We devote this section to show that

• In the common reference string model, Sahai’s construction of unbounded simulation-
sound NIZK [DDOP+01; Sah01], when instantiating with quantum-secure one-
time signature scheme (Definition 2.18), is also quantumly simulation-sound (Sec-
tion 4.4.1).

• In the quantum random oracle model, the Fiat-Shamir transformation [DFMS19;
LZ19] is quantumly simulation-sound, if the underlying Sigma protocol satisfies a
strong property that we call randomness collision-resistance (Section 4.4.2).

4.4.1 Construction in the Common Reference String Model

The Naor commitment scheme. We first recall the bit commitment protocol of Naor [Nao90]
based on pseudorandom generators, which will be used later in the construction. Let
PRG be a pseudorandom generator stretching λ bits to 3λ bits. The Naor commitment
procedure commits to a bit b as follows, using randomness r ∈ {0, 1}3λ and s ∈ {0, 1}λ.

Commit(b; (r, s)) =

(r,PRG(s)) if b = 0,
(r,PRG(s)⊕ r) if b = 1.

We note that if PRG is post-quantumly secure (against QPT adversaries with classical
access to PRG) then the Naor commitment scheme is also post-quantumly computationally
hiding and statistically binding.

Sahai’s construction. Let PRF be a family of pseudorandom functions mapping {0, 1}∗ to
{0, 1}λ. Let Sig := ⟨KeyGen, Sign,Verif⟩ be a one-time signature scheme. Finally, let Π′
be a single-theorem adaptive NIZK systems for a language L′ described below, associated
with a QPT simulator S ′ := (S ′1,S ′2). The construction for a simulation-sound NIZK
system Π for some NP language L is given in Construction 4.3.

Constructions of QSS-NIZK 85

Construction 4.3 — QSS-NIZK in the CRS Model [DDOP+01]

Common random string. The random reference string consists of three parts crs1, crs2

and crs3.

• crs1 is of length 6λ2, and breaks up into λ pairs (r1, c1), . . . , (rλ, cλ).

• crs2 is of length 3λ.

• crs3 is a common random string of Π′.

Prover. We define the language L′ to be the set of tuples (x, u, v, crs1, crs2) such
that at least one of the following three conditions hold:

• x ∈ L

• crs1 consists of commitments to the bits of the λ bit string s: formally,
there exists s = s1 · · · sλ with si ∈ {0, 1} for all i ∈ J1, λK, and there exists
a1, . . . , aλ ∈ {0, 1}λ such that (ri, ci) = Commit(si; ri, ai). Furthermore,
u = PRF(s, v).

• There exists d ∈ {0, 1}λ such that crs2 = PRG(d).

On input a statement x, a witness ω and the common random string CRS :=
(crs1, crs2, crs3), the prover P does the following:

1. Generate a key pair for the one-time signature scheme: (sk, vk) ←
Sig.KeyGen(1λ).

2. Sample a uniformly random u
$← {0, 1}λ.

3. Using crs3 as the common random string and ω as the witness, run the
prover of Π′ to generate a proof that (x, u, v, crs1, crs2) ∈ L′. Denote this
proof by π′.

4. Output π := (vk, x, u, π′, Sig.Sign(sk, (x, u, π′))).

Verifier. The verification procedure, on input the instance x, and a proof π :=
(vk, x, u, π′, σ), with respect to CRS := (crs1, crs2, crs3) does the following:

1. Verify the validity of the one-time signature: Sig.Verif(vk, (x, u, π′), σ) =
1.

2. Verify that π′ is a valid proof that (x, u, vk, crs1, crs2) ∈ L′.

Simulator. We now describe the two phases of the simulator S := (S1,S2) in Fig-
ure 4.1. S1 outputs a reference string crs along with some trapdoor information
td. S2 takes as input this trapdoor information, the reference string, and an
instance x, and outputs a simulated proof for x.

We note that quantum-secure PRFs and the Naor commitment scheme is post-
quantumly-secure if quantum-secure one-way functions exist [Zha12a].

Constructions of QSS-NIZK 86

S1(1λ)

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(si; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← {0, 1}3λ

crs3 ← Π′.Setup(1λ)

crs := (crs1, crs2, crs3)

td := (s, a1, · · · , aλ)

return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)

u← PRF(s, vk)

π′ ← Π′.S ′2
(
crs3, (x, u, vk, crs1, crs2),

(s, a1, · · · , aλ)
)

σ ← Sig.Sign(sk, x, u, π′)

return (vk, x, u, π′, σ)

Figure 4.1: The simulator of Π.

Theorem 4.2. If Π′ is a single-theorem quantum NIZK proof system for L′, Sig is a
quantum-secure one-time signature scheme and quantum-secure one-way functions
exist, the proof system Π described above is an unbounded quantum-simulation-
sound NIZK proof system for L.

Proof. Completeness follows by inspection. Soundness follows by the fact that if crs
is chosen uniformly at random, then the probability that crs1 can be interpreted as a
commitment to any string is exponentially small, and likewise the probability that crs2
is in the image of the pseudorandom generator PRG is exponentially small.

For the proof of adaptive unbounded zero-knowledge, we note that the only difference
in the common random string crs between the real protocol and the simulation is
crs1. However, by post-quantum security of the commitment scheme, the two are
computationally indistinguishable. (We note that the commitments are classical.) Thus,
since the simulator for Π uses only a different witness to prove the same statement, the
view of the adversary in the simulator experiment is computationally indistinguishable
from the view of the adversary in the modified prover experiment. Thus, adaptive
unbounded zero-knowledge follows.

Quantum simulation-soundness proof. The proof of simulation-soundness follows almost
identical as the one in the classical setting [Sah01], except for some small modifications
on the reductions to quantum security of building blocks. We give the full proof as
follows.

Let A be a QPT adversary. The proof proceeds by a sequence of games where G0 is
defined in which A can make quantum queries to S2 (defined in Figure 4.1), and the
winning condition is defined as in Definition 4.2. For any game Gi, we denote by Advi(A)
the advantage of A in Gi, that is, Pr

[
Gi(1λ,A) = 1

]
, where the probability is taken over

the random coins of Gi and A.

Game G0: This is the actual adversary experiment, in which A can make quantum queries

Constructions of QSS-NIZK 87

to the simulator S2 and outputs two pairs {(xi, πi)}2
i=1. Let R be the list of all classical

randomness S2 used to answer each adversarial query during the experiment. We say A
wins if either of the following holds:

(a) There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and
V(crs, xi, πi) = 1.

(b) There exists a randomness r ∈ R such that S2(x1, r) = π1 and S2(x2, r) = π2 and at
least one of x1 or x2 is not in L.

Game G1: In this game, we change the winning condition. The winning condition is now
defined as:

(a) There exists i ∈ J1, 2K such that xi /∈ L, for all r ∈ R, S2(xi, r) ̸= πi and
V(crs, xi, πi) = 1.

Claim 4.7. For any QPT adversary A, |Adv0(A)− Adv1(A)| ≤ negl(λ).

Proof. We show that the probability that the adversary wins by the second condition is
negligible, otherwise it must be able to break the unforgeability of the one-time signature.
Assume that A wins by the second condition with non-negligible probability ε.

Let T be the list of verification keys output by the simulator. We note that since
verification keys (as well as signing keys) are classically and independently of the
adversary’s queries, T is well-defined as a list of classical strings. Furthermore, with all
but exponentially small probability, these verification keys will all be distinct. First, we
note that if the output of the adversary can be computed from the same randomness
r ∈ R, it means that the verification keys vk1 and vk2 (as parts of the proofs) output
by the adversary also in T , and furthermore it must be the case that vk1 = vk2, and at
least one of the two proofs is a forgery of the signature scheme. Denote this verification
key as vk∗, and the forge as (m, t).

We show how to use A to break the (weak) unforgeability of Sig (the security game
W-BZ-Exp as defined in Definition 2.18). Specifically, assume that the adversary A
makes at most q queries to the simulator. The reduction algorithm picks a random index
i ∈ J1, qK and uses A’s i-th query in the game W-BZ-Exp. With probability 1/q, this
verification key returned by the challenger in the game W-BZ-Exp is vk∗. In this case,
the reduction just returns A’s output pairs {(xi, πi = (vk∗, xi, ui, π′i, σi))}2

i=1. If follows
that with probability ε/q, {((xi, ui, π′i), σi)}2

i=1 are valid forges of Sig (with respect to
vk∗). We note that x1 ̸= x2 by the assumption. This probability is non-negligible if ε is
non-negligible. The proof of the claim follows.

Game G2: In this game, we continue changing the winning condition, as follows:

(a) There exists i ∈ J1, 2K such that for all r ∈ R, S2(xi, r) ̸= πi and V(crs, xi, πi) = 1
and u = PRF(s, vk) where (u, vk) is parts of the output of the proof πi and s is a
part of the trapdoor information td.

We note that now this game can be implemented in quantum-polynomial-time.

Claim 4.8. For any QPT adversary A, |Adv1(A)− Adv2(A)| ≤ negl(λ).

Constructions of QSS-NIZK 88

Proof. Since crs2 is a uniformly random string, there is a string d such that crs2 = PRG(d)
with only negligible probability. By the definition of the language L′ and the fact that
Π′ is a proof system for L′, we conclude that if x /∈ L, the only way the adversary’s proof
can be accepted is if PRF(s, vk) = u with overwhelming probability. This is because the
adversary never sees a valid proof for a false statement of L′ (the simulator is generating
the simulated proofs using the commitment witness), thus any adversary that outputs a
valid proof for a false statement of L′ (which means x /∈ L∧PRF(s, vk) ̸= u) would break
the soundness of Π′. Therefore, the winning conditions in G1 and G2 are exponentially
close.

Game G3: In this game, we make crs2 to be pseudorandom. That is, instead of sampling
crs2 uniformly at random, we compute crs2 by using a pseudorandom generator PRG.
The change is described in Figure 4.2.

S1(1λ)

d
$← {0, 1}λ

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(si; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)

crs := (crs1, crs2, crs3)

td := (s, a1, · · · , aλ)

return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)

u← PRF(s, vk)

π′ ← Π′.S ′2
(
crs3, (x, u, vk, crs1, crs2),

(s, a1, · · · , aλ)
)

σ ← Sig.Sign(sk, x, u, π′)

return (vk, x, u, π′, σ)

Figure 4.2: The simulator of game G3.

Claim 4.9. For any QPT adversary A, |Adv2(A)− Adv3(A)| ≤ negl(λ).

Proof. The indistinguishability between G2 and G3 follows directly from post-quantum
security of PRG.

Game G4: In this game, the trapdoor information also includes the seed d of PRG.
Furthermore, the simulator S ′2, instead of using the witness of the commitments (that is,
(s, a1, · · · , aλ)), uses the seed d for crs2 to generate the proof π′. The change is described
in Figure 4.3.

Claim 4.10. For any QPT adversary A, |Adv3(A)− Adv4(A)| ≤ negl(λ).

Constructions of QSS-NIZK 89

S1(1λ)

d
$← {0, 1}λ

s
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(si; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)

crs := (crs1, crs2, crs3)

td := (s, a1, · · · , aλ, d)

return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)

u← PRF(s, vk)

π′ ← Π′.S ′2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)

return (vk, x, u, π′, σ)

Figure 4.3: The simulator of game G4.

Proof. The indistinguishability between G3 and G4 follows the quantum zero-knowledge
property (Definition 4.1) of Π′ (which implies witness-indistinguishability): instead of
using witness (s, a1, · · · , aλ), we now use witness d to generate the proof.

Game G5: In this game, we make crs1 independent of s: we choose two independent
uniformly random strings s, s′ and make crs1 into a commitment to s′ rather than s. The
change is described in Figure 4.4.

Claim 4.11. For any QPT adversary A, |Adv4(A)− Adv5(A)| ≤ negl(λ).

Proof. The indistinguishability between G4 and G5 follows the computational hiding
property of the Naor’s commitment scheme.

Game G6: In this game, we replace PRF with a truly random function H (lazy-sampling).
The change is described in Figure 4.5.

Claim 4.12. For any QPT adversary A, |Adv5(A)− Adv6(A)| ≤ negl(λ).

Proof. The indistinguishability between G5 and G6 follows pseudorandomnesss of PRF.
Note that here since vk is classical, we only need classical pseudorandomess of PRF
against quantum adversaries.

Claim 4.13. For any adversary A, Adv6(A) ≤ 2−λ.

Proof. Since we only consider the case where vk∗ /∈ T , for any vk∗ output by A, H(vk∗)
will be a uniformly selected value that is totally independent of everything the adversary
sees. Denote this value as u′. Then the probability that the proof output by A having
u = u′ is exactly 2−λ. The claim follows.

Overall, we conclude the proof of the theorem.

Constructions of QSS-NIZK 90

S1(1λ)

d
$← {0, 1}λ

s, s′
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(s′i ; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)

crs := (crs1, crs2, crs3)

td := (s, a1, · · · , aλ, d)

return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)

u← PRF(s, vk)

π′ ← Π′.S ′2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)

return (vk, x, u, π′, σ)

Figure 4.4: The simulator of game G5.

S1(1λ)

d
$← {0, 1}λ

s, s′
$← {0, 1}λ

ri
$← {0, 1}3λ, ai

$← {0, 1}λ for i ∈ J1, λK

gi ← Commit(s′i; ri, ai) for i ∈ J1, λK

crs1 := {g1, · · · , gλ}

crs2
$← PRG(d)

crs3 ← Π′.Setup(1λ)

crs := (crs1, crs2, crs3)

td := (s, a1, · · · , aλ, d)

return (crs, td)

S2(crs, td, x)

(vk, sk)← Sig.KeyGen(1λ)

u
$← {0, 1}λ

π′ ← Π′.S ′2
(
crs3, (x, u, vk, crs1, crs2),

(d)
)

σ ← Sig.Sign(sk, x, u, π′)

return (vk, x, u, π′, σ)

Figure 4.5: The simulator of game G6.

Constructions of QSS-NIZK 91

4.4.2 Construction in the Quantum Random Oracle Model

Interactive Proof Systems

In this section, we are mainly interested in a specific class of public-coin interactive proof
systems for NP languages, called Σ-protocols. Σ-protocols have a 3-move shape where
the first message α, called commitment, is sent by the prover and then, alternatively,
the parties exchange the other messages β and γ, called (respectively) challenge and
response. Furthermore, the challenge β is public-coin. A formal definition is given
below.

Definition 4.5 — Σ-protocols
A Σ-protocol Σ = (P ,V) for an NP language L is a three-round public-coin
interactive proof system where P = (P0,P1) and V = (V0,V1) are PPT algorithms,
with the following additional properties:

Completeness. If x ∈ L, any proper execution of the protocol between P and V
ends with the verifier accepting P’s proof.

Honest-verifier zero knowledge (HVZK). There exists a QPT algorithm S, called zero-
knowledge simulator, such that for any QPT distinguisher D = (D0,D1) and
for any (x,w) ∈ RL, the view of the following two experiments, real and
simulated, are computationally indistinguishable:

Expt0
Σ(1λ,D)

(x,w, state)← D0(1λ)

π ← ⟨P(1λ, x, w),V(1λ, x)⟩

b← D1(π, state)

Expt1
Σ(1λ,D)

(x,w, state)← D0(1λ)

π ← S(1λ, x)

b← D1(π, state)

where ⟨P(x,w),V(x)⟩ denotes the verdict returned at the end of the interac-
tion between P and V on common input x and private input w.

Soundness. If x /∈ L then any malicious (even unbounded) prover P∗ is accepted
only with negligible probability.

We say (P ,V) is non-trivial if the first message α is computationally indistinguishable
from a uniformly random string [FKMV12].

In this section, we also consider a non-standard property of Σ-protocols that we call
randomness collision-resistance property, which requires that a QPT adversary A who
runs the simulator S in superposition, cannot extract two pairs of {(xi, πi)}2

i=1 such that
they are both computed using the same randomness from the simulator. The definition
is formally given as follows.

Constructions of QSS-NIZK 92

Definition 4.6 — Randomness collision-resistance
In the following, for each query, the simulator S stores the (classical) randomness
used to answer the query in a list R. For any QPT adversary A, we require that:

Pr
[

∃ r ∈ R :
S(1λ, xi; r) = πi ∀ i ∈ J1, 2K

∣∣∣∣∣ {(xi, πi)}2
i=1 ← A|S(1λ,·)⟩(1λ)

]
≤ negl(λ).

Remark 4.2. If the zero-knowledge property of the Σ-protocol requires its simulator to
use independent randomness for every statement, there is a simple transformation that
converts that simulator into another simulator that is secure when a single randomness
value is used for an entire query: for each query, choose a fresh random key k for a quantum
pseudorandom function (PRF). This will be the single per-query randomness value. To
answer a query in superposition, answer each statement x in the superposition using
randomness obtained by applying the PRF to x using the key k. From the adversary’s
point of view, this is indistinguishable from choosing independent randomness for each
statement.

Removing Interaction

The Fiat-Shamir paradigm [FS87] applies to any Σ-protocol (and more generally to any
three-round public-coin proof system): we start from an interactive protocol (P ,V) and
remove the interaction between P and V by replacing the challenge, chosen at random
by the verifier, with a hash value H(α, x) computed by the prover, where H is a hash
function modeled as a random oracle, and α is the prover’s first message. Thus, the
interactive protocol (P ,V) is turned into a non-interactive one: The resulting protocol,
denoted (PH ,VH), is called Fiat-Shamir proof system.

In this section, we will assume the existence of Σ-protocols with randomness collision-
resistance, and prove that the corresponding Fiat-Shamir proof system is quantum
simulation-sound. The construction of Σ-protocols with randomness collision-resistance
is given in Section 4.4.2.

We note that the security of the Fiat-Shamir transformation in the quantum random
oracle model has been proven in [DFMS19; LZ19]. We refer the reader to [DFMS19]
for the description of the Fiat-Shamir simulator, for now let us call this simulator the
canonical simulator.

Notation. Let H : X ′ → C is a hash function with a domain X ′ that contains all pairs
(x, α) with x ∈ {0, 1}n and α produced by P, and the range C is the challenge space of
the Σ-protocol. A proof of a Fiat-Shamir system for a statement x ∈ L is of the form
π := (α,H(x, α), γ).

Theorem 4.3 (Quantum simulation soundness of the Fiat-Shamir transform). Consider
a non-trivial three-round public-coin HVZK interactive proof system (P ,V) for
a language L ∈ NP, with randomness collision-resistance property and super-
polynomially sized challenge space. In the quantum random oracle model, the proof
system (PH ,VH) derived from (P ,V) via the Fiat-Shamir transform is a quantum
simulation-sound NIZK (as defined in Definition 4.2) with respect to its canonical
simulator S.

Constructions of QSS-NIZK 93

Proof. Completeness, soundness and post-quantum zero-knowledge of the Fiat-Shamir
transformation in the quantum random oracle have been proven in [DFMS19; LZ19].

Here, we prove the quantum simulation-soundness. We first recall the measure-and-
reprogram in the quantum random oracle lemma introduced in [DFMS19].

Lemma 4.4 ([DFMS19, Theorem 2]). Let X ,Y be finite non-empty sets. There exists
a black-box quantum polynomial-time two-stage quantum algorithm S with the
following property. Let A be an arbitrary oracle quantum algorithm that makes
q queries to a uniformly random H : X → Y and that outputs some x ∈ X and
a (possibly quantum) output z. Then, the two-stage algorithm SA outputs some
x ∈ X in the first stage and, upon a random Θ ∈ Y as input to the second stage, a
(possibly quantum) output z, so that for any x⋆ ∈ X and any predicate V :

Pr
Θ

[
x = x⋆ ∧ V (x,Θ, z) = 1 | (x, z)← ⟨SA,Θ⟩

]
≥ 1
O(q2) Pr

H

[
x = x⋆ ∧ V (x,H(x), z) = 1 | (x, z)← AH

]
− εx⋆ ,

where the additive error term εx⋆ is equal to 1
2q|Y| when summed over all x⋆.

Suppose there exists a QPT adversary A that breaks the quantum simulation-
soundness of the non-interactive protocol with non-negligible probability ε. Let {(xi, πi)}2

i=1
be the output pairs of A. For simplicity, we denote the canonical simulator S as (S1,S2),
in which S1 simulates answers to the random oracle H, and S2 generates simulated
proofs. Let q be the number of queries that A makes to S1. Without loss of generality,
we assume that whenever A succeeds and outputs two accepting proofs {(αi, γi)}2

i=1, it
has previously queried the oracle S1 on input (xi, αi). The argument for this is that it is
straightforward to transform any adversary that violates this condition into an adversary
that makes two additional classical queries to S1 and wins with the same probability.

Recall that A wins if its output satisfies either one of the two conditions defined
in Definition 4.2. If A wins by the first condition, we denote this event as con1, and
similarly the second by the event con2. Apparently, we have that ε := Pr [A wins] =
Pr [A wins ∧ con1] + Pr [A wins ∧ con2].

When con1 happens. This is the case where at least one of the output of A is computed
from a fresh new randomness that were not used by the simulator S2. Denote this pair as
(x⋆, π⋆). We will use this adversary A to build an adversary that breaks the soundness
of the underlying Σ protocol.

We fix a family H of 2(q + 2)-wise independent hash functions and let S1 simulates
the random oracle by choosing a random function H ∈ H. Furthermore, we observe
that, for any fixed xo, the family {H ∗Θxo | H ∈ H,Θ ∈ C}, is a family of 2(q + 2)-wise
independent hash functions as well, where H ∗Θxo denotes the following function:

(H ∗Θxo)(x) =

H(x) if x ̸= xo,

Θ if x = xo.

We will use the fact that (even computationally unbounded) q-query adversary A cannot
distinguish a random function H ∗ Θxo in that family from a truly random function
H [Zha12a].

Constructions of QSS-NIZK 94

Now, we can apply Lemma 4.4 and make a reduction to the standard definition of
soundness of the underlying Σ protocol. Formally, recall that (x⋆, π⋆ = (α⋆, γ⋆)) such
that V(x⋆, H(x⋆, α⋆), γ⋆) = 1. We will use (x⋆, α⋆) in the execution with the verifier V
of the Σ-protocol. In order to do that, we apply Lemma 4.4, with (x⋆, α⋆) playing the
role of what is referred to as x in the lemma statement, the verifier V is as the predicate
V , to obtain the existence of a simulator SA that produces (x⋆, α⋆) in a first stage, and
upon receiving a random challenge β⋆ (from the verifier V of the Σ-protocol) produces
γ⋆, such that:

Pr
β⋆

[
x = x⋆ ∧ V(x, α⋆, β⋆, γ⋆) = 1 | (x, α⋆, β⋆, γ⋆)← ⟨SA, β⋆⟩

]
≥ 1
O(q2) Pr

H

[
x = x⋆ ∧ V(x, α⋆, H(x, α⋆), γ⋆) = 1 | (x, α⋆, γ⋆)← AH

]
− εx⋆ .

This can be written as

Pr
[
x = x⋆ ∧ v = accept | (x, v)← ⟨SA,V⟩

]
≥ 1
O(q2) Pr

H

[
x = x⋆ ∧ VH(x, π⋆) = 1 | (x, π⋆)← AH

]
− εx⋆ , (4.2)

where v denote the verifier’s output.
We build a reduction P∗ breaking the soundness of the underlying interactive scheme

as follows. P∗ uses SA (which uses A as a black-box) to simulate S1. Whenever A makes
queries to S2, P∗ runs the HVZK simulator of the interactive protocol (in superposition).
It is easy to see that P∗ perfectly simulates the canonical simulator S. Finally, P∗
outputs whatever SA outputs.

We note that by the assumption that the Σ-protocol is non-trivial, the probability
that in when simulating S2, the probability that P∗ returns (x⋆, α⋆, ·) to A is negligible.
(Note that this is true even when x⋆ is the input of the query sent by A.) This means
that (x⋆, π⋆) must have been computed using a fresh randomness which was not used by
P∗. From Equation (4.2), it thus follows that Pr [A wins ∧ con1] is negligible.

When con2 happens. This is the case where both pairs are computed by the same
randomness that were used by the simulator S2. We will reduce this case to the
randomness collision-resistance property of the underlying Σ protocol. Specifically,
consider a QPT algorithm P∗ which runs A internally as a black-box. The description
of P∗ is as follows.

• P∗ answers the queries to S1 using a random 2(q + 2)-wise independent hash
function H.

• P∗ keeps a list R of all randomness used to answer queries to S2. Note that except
with exponentially small probability, all the randomess will be distinct.

• Whenever A outputs fake proofs {(xi, πi = (αi, γi))}2
i=1, P∗ checks if there exists

a randomness r ∈ R such that S2(xi, r) = π2 for i ∈ J1, 2K. It then computes
βi = H(xi, αi).

• P∗ outputs {xi, (αi, βi, γi)}2
i=1.

Application to the Naor-Yung Construction with Quantum CCA Security 95

Observe that P∗ perfectly simulates A, and thus P∗ breaks the randomness collision-
resistance property of the Σ protocol with the same probability that con2 happens.
We obtain Pr [A wins ∧ con2] ≤ negl(λ). Overall we have shown that ε is negligible,
completing the proof.

Randomness Collision-resistance Σ-protocols

In this section, we give a compiler that transform any Σ-protocol into a randomness
collision-resistance Σ-protocol. Our compiler makes use of quantum-secure one-time
signature schemes and is very simple. In the first prover message, the prover also
generates a key pair of the signature scheme, and in last message, the prover uses the
signing key and signs all the messages that have been exchanged so far (including the
one from the original protocol in the last round). The proof of the compiler is almost
identical to that of Claim 4.7, we omit the details.

4.5 Application to the Naor-Yung Construction with Quantum CCA
Security

In this section, we present and prove quantum security of a simple modification of the
classical Naor-Yung scheme [NY90; Sah99]. That is, we show how to construct quantum
chosen-ciphertext secure encryption schemes from quantum chosen-plaintext secure
schemes and quantum-simulation-sound NIZK proof systems.

4.5.1 Quantum-Secure Invertible Pseudorandom Functions

We first show a construction for invertible pseudorandom functions from standard
pseudorandom functions, which will be used later as a building block for our quantum
CCA encryption scheme. The construction is the one given in [BKW17].

Construction 4.4 — Invertible Pseudorandom Functions
Let PRF1 : K1 ×X → Y and PRF2 : K2 × Y → X be two pseudorandom functions.
Define the following invertible iPRF on domain X using a key k := (k1, k2) ∈ K1×K2:

iPRF((k1, k2), x)

y1 ← PRF1(k1, x)

y2 ← PRF2(k2, y1)⊕ x

return (y1, y2)

iPRF−1((k1, k2), (y1, y2))

x← PRF2(k2, y1)⊕ y2

if y1 ̸= PRF1(k1, x)

return ⊥

else return x

Theorem 4.4. Assume that PRF1,PRF2 are quantum-secure (according to Defini-
tion 2.7), then iPRF in Construction 4.4 is weakly quantum-secure (according
to Definition 2.8).

Proof. We note that in the weak pseudorandom security, the adversary has only quantum
access to an evaluation oracle iPRF, and not an inversion oracle iPRF−1. The proof of

Application to the Naor-Yung Construction with Quantum CCA Security 96

the theorem follows from the standard hybrid argument, where we first replace PRF1
with a truly random function, and then we replace PRF2 with another truly random
function. We omit the details.

4.5.2 Construction of Our Quantum CCA Encryption Scheme

Our construction uses the following ingredients:

• Let E = ⟨KeyGen,Encrypt,Decrypt⟩ be a qIND-qCPA encryption scheme.

• Let E ′ = ⟨KeyGen,Encrypt,Decrypt⟩ be an IND-qCPA encryption scheme.

• Let iPRF be a family of invertible pseudorandom functions.

• Let Π = ⟨Setup,P ,V ,S = (S1,S2)⟩ be a quantum-simulation-sound NIZK proof
system for the language L of consistent pairs of encryptions, defined formally
in Equation (4.3).

L := {(pk0, pk1, y0, y1, y2) : ∃ (x, k, r0, r1) : (4.3)

y0 = E .Encrypt(pk0, x; r0)
∧ y1 = E ′.Encrypt(pk1, k; r1) ∧ y2 = iPRF(k, x)}.

We construct a new encryption scheme E as follows.

Construction 4.5 — Our Quantum CCA Encryption Scheme

KeyGen(1λ) :
1 : crs← Π.Setup(1λ)

2 : (pk0, sk0) $← E .KeyGen(1λ)

3 : (pk1, sk1) $← E ′.KeyGen(1λ)
4 : pk = (crs, pk0, pk1)
5 : sk = (crs, sk0, sk1)
6 : return (pk, sk)

Encrypt(pk, x) :
1 : k← iPRF.Setup(1λ)
2 : y0 ← E .Encrypt(pk0, x; r0)
3 : y1 ← E ′.Encrypt(pk1, k; r1)
4 : y2 ← iPRF(k1, x)
5 : π ← Π.P(crs, (y0, y1, y2), (x, k, r0, r1))
6 : return (y0, y1, y2, π)

Decrypt(sk, (y0, y1, y2, π)) :
1 : b← Π.V(crs, (y0, y1, y2), π)
2 : if b = 0 then
3 : return ⊥
4 : return E .Decrypt(sk0, y0)

Theorem 4.5. The encryption E described in Construction 4.5 above is qIND-qCCA2
secure.

Proof. Let A be a QPT adversary. For any game Gi, we denote by Advi(A) the advantage
of A in Gi, that is, Pr

[
Gi(1λ,A) = 1

]
, where the probability is taken over the random

coins of Gi and A. The changes in each game are depicted in Figure 4.6.

Application to the Naor-Yung Construction with Quantum CCA Security 97

Game G0: This is the real-world experiment. In particular, the challenge encryption
oracle and the decryption oracle are implemented as follows.

RREncrypt(pk,·) |x, y⟩ 7→ |x, y ⊕ Encrypt(pk, x)⟩ ,

and
ODecrypt(sk,·) |y, x⟩ 7→ |z, x⊕ Decrypt(sk, y)⟩ .

Game G1: This is identical to G0, except that now in the decryption oracle, instead of
using sk0, we use sk1, combining with the fact that iPRF is invertible for the decryption.

Claim 4.14. For any adversary A, Adv1(A) = Adv0(A).

Proof. The proof of the claim follows directly from the correctness of encryption schemes
E , E ′ and the fact that iPRF is invertible.

Game G2: This is identical to G1, except that now in the challenge encryption oracle,
we use the simulator S of Π to generate the proof instead of using the real prover P.

Claim 4.15. For any QPT adversary A, |Adv2(A)− Adv1(A)| ≤ negl(λ).

Proof. The indistinguishability between G1 and G2 follows from zero-knowledge property
of Π.

Game G3: This is identical to G2, except now in the challenge encryption oracle, instead
of encrypting using the actual encryption algorithm E .Encrypt, we use the encryption
oracle in the random world of E . Denote this oracle as REncrypt(pk0,·).

Claim 4.16. For any QPT adversary A, |Adv3(A)− Adv2(A)| ≤ negl(λ).

Proof. We note that in G2 and G3, the secret key sk0 is not used at all. The indis-
tinguishability between G2 and G3 follows immediately from qIND-qCPA security of
E .

We note that starting from G3, the challenge encryption oracle can be implemented as
a compressed encryption oracle (sine we are now in the random world of E). Concretely,
the challenge encryption oracle implements the following map:∑
x,y

αx,y |x, y⟩ 7→
∑
x,y

∑
u

αx,y |x, E .Encrypt(pk0, u)∥E ′.Encrypt(pk1, k)∥iPRF(k, x)∥π⟩ ⊗ |D⟩

where D is the database of the compressed random encryption oracle for E . In particular,
D will be in superposition of tuples (x, u, y0) (if D(x) ̸= ⊥). Furthermore, we note that if
D(x) ̸= ⊥, we can re-compute (y1, y2, π) and also store these values in the corresponding
slot in D. The reason is that from x ∈ D, these values can be computed with the
classical randomness used in the challenge encryption oracle of E .

Game G4: This is identical to G3, except that now instead of using sk1 in the decryption
oracle, we use sk0 and D.

Application to the Naor-Yung Construction with Quantum CCA Security 98

Claim 4.17. For any QPT adversary A, |Adv4(A)− Adv3(A)| ≤ negl(λ).

Proof. We show that if A can distinguish the two games G3 and G4 with non-negligible
probability ε, then we can construct a QPT adversary B that runs A internally as
a black-box and breaks the quantum simulation-soundness of Π with non-negligible
probability. Notice that the only way A can distinguish G3 and G4 is to submit an
“invalid” decryption query in which the proof π if of a false statement but the verification
passes.

Formally, B runs A and randomly measure one of A’s decryption queries to obtain a
tuple y∗ = (y∗0, y∗1, y∗2, π∗). If A makes at most q decryption queries, then with probability
at least ε/q, y∗ will be a pair of statement and proof such that the statement is a false
statement but π∗ passes the verification of Π. Then B measure its own database D
to obtain another tuple y = (y0, y1, y2, π) which is supposed to be generated by the
simulator of Π. By the definition of Decrypt5, we have that y ̸= y∗. Thus by outputting
(y, y∗), B breaks the quantum simulation-soundness of Π with probability ε/q, which
completes the proof of the claim.

We note that from starting from this game, the secret key sk1 is not used anymore.

Game G5: This is identical to G4, except that now in the challenge encryption oracle,
we change the encryption E ′.Encrypt(pk1, k) for some random key k by an encryption
E ′.Encrypt(pk1, 0).

Claim 4.18. For any QPT adversary A, |Adv5(A)− Adv4(A)| ≤ negl(λ).

Proof. The indistinguishability between G4 and G5 follows immediately from IND-qCPA
security of E ′. Note that since here the encryption is a classical encryption of a classical
random key k (which is independent of A’s query), we only need qCPA security against
classical challenge query of E ′.

Game G6: This is identical to G5, except that now in the challenge encryption oracle,
instead of computing y2 as iPRF(k, x), we compute y2 ← iPRF(k, u) where u is extracted
from the database D (note that u ∈ D(x)). We abuse the notation and write D(x) = u.
Furthermore, for consistency, we also allow E ’s encryption algorithm to take as input
the database D.

Claim 4.19. For any QPT adversary A, |Adv6(A)− Adv5(A)| ≤ negl(λ).

Proof. The indistinguishability between G5 and G6 follows immediately from (weak)
quantum-pseudorandomness of iPRF. We note that here we only need weak security
notion, since iPRF−1 is never invoked in the decryption oracle.

Game G7: This is identical to G6, except that now in the challenge encryption oracle,
instead of computing y1 as an encryption of 0, we change it back to encryption of a
random key k, that is y1 ← E ′.Encrypt(pk1, k).

Claim 4.20. For any QPT adversary A, |Adv7(A)− Adv6(A)| ≤ negl(λ).

Application to the Naor-Yung Construction with Quantum CCA Security 99

Proof. The indistinguishability between G6 and G7 follows immediately from IND-qCPA
security of E ′.

Game G8: This is identical to G7, except that now in the challenge encryption oracle,
we use the real prover P of Π to generate the proof instead of using the simulator.

Claim 4.21. For any QPT adversary A, |Adv8(A)− Adv7(A)| ≤ negl(λ).

Proof. The indistinguishability between G7 and G8 follows from zero-knowledge property
of Π.

In this final game G8, we have the challenge encryption oracle implements exactly as
the one in the random-world of E . Overall, we complete the proof of the theorem.

Application to the Naor-Yung Construction with Quantum CCA Security 100

G1 : Decrypt(sk, (y0, y1, y2, π))

b← Π.V(crs, (y0, y1, y2), π)

if b = 0 then return ⊥

k← E ′.Decrypt(sk1, y1)

return iPRF−1(k, y2)

G2 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)

y0 ← E .Encrypt(pk0, x; r0)

y1 ← E ′.Encrypt(pk1, k; r1)

y2 ← iPRF(k, x)

π ← Π.S(crs, (y0, y1, y2))

return (y0, y1, y2, π)

G3 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)

y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, k; r1)

y2 ← iPRF(k, x)

π ← Π.S(crs, (y0, y1, y2))

return (y0, y1, y2, π)

G4 : Decrypt(sk, (y0, y1, y2, π), D)

b← Π.V(crs, (y0, y1, y2), π)

if b = 0 then return ⊥

if ∃(x, (y0, y1, y2, π)) ∈ D then

return x

return E .Decrypt(sk0, y0)

G5 : Encrypt(pk, x)

k $← iPRF.Setup(1λ)

y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, 0; r1)

y2 ← iPRF(k, x)

π ← Π.S(crs, (y0, y1, y2))

return (y0, y1, y2, π)

G6 : Encrypt(pk, x,D)

u← D(x)

k $← iPRF.Setup(1λ)

y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, 0; r1)

y2 ← iPRF(k, u)

π ← Π.S(crs, (y0, y1, y2))

return (y0, y1, y2, π)

G7 : Encrypt(pk, x,D)

u← D(x)

k $← iPRF.Setup(1λ)

y0 ← REncrypt(pk0,·)(x)

y1 ← E ′.Encrypt(pk1, k; r1)

y2 ← iPRF(k, u)

π ← Π.S(crs, (y0, y1, y2))

return (y0, y1, y2, π)

G8 : Encrypt(pk, x,D)

u← D(x)

k $← iPRF.Setup(1λ)

y0 ← REncrypt(pk0,·)(x; r0)

y1 ← E ′.Encrypt(pk1, k; r1)

y2 ← iPRF(k, u)

π ← Π.P(crs, (y0, y1, y2), (x, r0, r1))

return (y0, y1, y2, π)

Figure 4.6: Description of the changes in games Gi for i ∈ J1, 8K. In each program, the
changes relative to the previous program are highlighted in light gray.

Part II

Quantum Cryptography

Chapter

5
Semi-Quantum Copy-Protection

“When it’s classically impossible, that really just
means it’s quantumly interesting. ”

In this chapter, we present a generic compiler that translates many known construc-
tions of quantum copy-protection to semi-quantum copy-protection. This particularly
allows us to obtain (the first) semi-quantum copy-protection for digital signatures,
public-key decryption, pseudorandom functions and point functions.

Chapter content
5.1 Introduction . 103

5.1.1 Quantum Cryptography From Coset States 103

5.1.2 (Semi-)Quantum Cryptography From BB84 States 103

5.1.3 Application-specific Approaches for Semi-Quantum Protocols . 104

5.2 Technical Overview . 105

5.2.1 Our Semi-Quantum Copy Protection Protocol 105

5.2.2 Soundness Proof . 108

5.3 Coset States . 112

5.3.1 Strong Monogamy-of-Entanglement Property 112

5.4 Semi-Quantum Copy-Protection . 113

5.4.1 Construction . 113

5.4.2 Proof of Completeness . 117

5.5 Proof of Soundness . 120

5.5.1 Self-Testing Protocol Soundness 120

5.5.2 Soundness of Protocol 5.5 . 133

5.6 Copy-Protection of Point Functions . 138

5.6.1 Anti-Piracy Security Definition 138

5.6.2 Construction . 138

5.6.3 Single-Decryptors . 141

5.6.4 Proof of Anti-Piracy Security of Construction 5.1 144

Introduction 103

5.1 Introduction

5.1.1 Quantum Cryptography From Coset States

Given a subspace A ⊆ Fn2 , the corresponding subspace state is defined as a uniform
superposition over all vectors in the subspace A, i.e., |A⟩ := 1√

|A|

∑
v∈A |v⟩. The idea of

using hidden subspace state to construct quantum cryptographic primitives was first
proposed by Aaronson and Christiano in [AC12] in the oracle model where the parties
have access to some membership checking oracles. This idea was realized subsequently
in the plain model using indistinguishability obfuscation by Zhandry [Zha19b]. The
subspace state idea was later generalized to coset states in [CLLZ21; VZ21], which
can be seen as quantum one-time pad encrypted subspace states. Formally, for a
subspace A ⊆ Fn2 and two vectors s, s′ ∈ Fn2 , the corresponding coset state is defined
as |As,s′⟩ := 1√

|A|

∑
x∈A(−1)⟨x,s′⟩ |x+ s⟩. The coset state idea has shown a broad range

of applications to signature tokens, unclonable decryptors, copy-protection [CLLZ21],
classical proof of quantum knowledge [VZ21], public semi-quantum money [Shm22a], semi-
quantum signature tokens [Shm22b], and unclonable encryption [AKLL+22]. Indeed,
to the best of our knowledge, all known provably secure copy-protection schemes with
standard malicious security are based on hidden coset states [CLLZ21; AKLL+22]. In
these protocols, the basic ground is to encode the program into random hidden coset
states and send these states as copy-protection of the program to the receiver.

5.1.2 (Semi-)Quantum Cryptography From BB84 States

In a breakthrough result [Mah18b], Mahadev introduced a protocol that allows a classical
verifier to verifiably delegate a quantum computation to an untrusted quantum prover.
The key ingredient of Mahadev’s protocol is a measurement protocol, which allows the
client to delegate single-qubit measurements in the standard or Hadamard basis to a
quantum prover, and be able to efficiently verify the measurement outcome, assuming
that the prover cannot break certain cryptographic assumptions.8 This yields the first kind
of semi-quantum protocols, so-called prepare-and-measure protocols. These protocols
involve a quantum prover preparing and sending a quantum state to the verifier and
the verifier performing single-qubit measurements on this state. One can use Mahadev’s
measurement protocol to delegate these quantum measurements to the prover itself.
This is in contrast to the other type of quantum protocols: prepare-and-send protocols,
in which the verifier prepares and sends quantum states to the prover.

It turns out that replacing the quantum communication of prepare-and-send protocols
is significantly harder than doing so for prepare-and-measure protocols. At a high level,
the main difference is the following: Mahadev’s measurement protocol shows that there
exists a quantum state that is consistent with the distribution of measurement outcomes
reported by the prover. (One can think about this similarly as the proof of membership
in an interactive proof system.) In contrast, if we want to replace the step of the verifier
sending a physical quantum state to the prover, we need to show that the prover has
actually constructed a certain quantum state, not just that such a quantum state exists.
This is done by establishing a rigidity argument. The idea of rigidity, first formally

8These cryptographic assumptions can be based on the quantum hardness of the Learning with Errors
problem [Reg05].

Introduction 104

introduced by Mayers and Yao [MY04], is that certain games can be used to “self-test”
quantum states: if such a game is won with high enough probability, then the self-test
property tells us that the players must hold some quantum state, up to local isometry.
In our context, a game is a model of the protocol under consideration, and the game is
won if the prover passes the client’s verification.

Lying strictly between the two notions of “there exists” and “actually constructed”
is the notion of classical proof of quantum knowledge formalized in [VZ21]. They
also show that indeed Mahadev’s measurement protocol achieves this stronger notion
of proof of knowledge, in the sense that the prover “knows” the state it is measuring,
not just that it exists mathematically. The same property also holds for a coset states
prepare-and-send protocol: if the verifier sends a hidden coset state to the prover, later
on the prover can prove that it “knows” the received coset state. Although this setting
seems close to our protocol, we note that the proof given in [VZ21] does not directly carry
to our setting, where we replace quantum communication by classical communication.9

The first semi-quantum protocol that provably forces a quantum prover to prepare a
certain quantum state is the single-qubit remote state preparation protocol of [GV19] (see
also [CCKW19] for a related result). [MV21] gives a protocol that allows a classical verifier
to certify that a quantum prover must have prepared and measured a Bell state, i.e.,
an entangled 2-qubit quantum state. Finally, [GMP22], by developing new techniques
to show a n-fold parallel rigidity proof, gives the first parallel remote BB84 state
preparation protocol. Recall that BB84 states are the four states: {|0⟩ , |1⟩ , |+⟩ , |−⟩}
where |±⟩ := 1√

2(|0⟩± |1⟩). Their proof technique is the backbone of our soundness proof
presented later in Section 5.5. The most interesting point of the [GMP22] protocol is
that it allows us to dequantize a number of BB84 states-based quantum cryptographic
primitives, yielding a generic and modular way of translating these protocols to a setting
where only classical communication is used. The downside of the [GMP22] protocol is
that it only achieves inverse polynomial soundness, which means that their dequantized
protocols can only achieve inverse polynomial security at most, even if the original
quantum protocols have negligible security.

We remark that the main distinction between random BB84 states and coset states is
the (un)learnability with verification oracles: when the verification oracles are accessible,
the former is learnable while the latter is unlearnable. This explains why coset states
have more applications, mostly in the public-key setting.

5.1.3 Application-specific Approaches for Semi-Quantum Protocols

In addition to this line of work focused on rigidity statements, application-specific semi-
quantum protocols were considered for private-key quantum money [RS20], certifiable
deletion of quantum encryption [HMNY21], secure software leasing [KNY21], public-key
quantum money [Shm22a] and tokenized signature [Shm22b]. The common points
of these protocols are that (i) their approaches are less generic and modular than
the [GMP22] protocol and the protocol we presented in this thesis; (ii) new analysis
are required for each application. However, we note that all these application-specific
semi-quantum protocols achieve negligible security, as they do not prove that the prover
in their protocol behave in a certain way, but only that the output of the prover at the
end satisfies certain properties.

9Even if we can prove security for the dequantized protocol, it is not clear if it is applicable (with little
efforts) to other cryptographic constructions of interest.

Technical Overview 105

5.2 Technical Overview

5.2.1 Our Semi-Quantum Copy Protection Protocol

Security Requirements. We first start with security analysis of known coset states-based
quantum protocols. In particular, we focus on the copy-protection point pseudorandom
functions scheme in the plain model and the single-decryptor scheme in the plain model
presented in [CLLZ21]. The security of these constructions reduce to a monogamy of
entanglement property of coset states [CLLZ21; CV22]. Informally, this property states
that for a triple of quantum algorithms Alice, Bob and Charlie cannot cooperatively
win the following monogamy game with a challenger, except with negligible probability.
The challenger first prepares a uniformly random coset state |As,s′⟩ and gives the state
to Alice. Alice outputs two (possibly entangled) quantum states and sends them to
Bob and Charlie respectively. No communication is allowed between Bob and Charlie.
Finally, Bob and Charlie both get the description of the subspace A. The game is won if
Bob outputs a vector in A+ s and Charlie outputs a vector in A⊥+ s′, where A⊥ denote
the dual subspace of A.

If our goal is to design a semi-quantum protocol for preparing coset states such that
it can be used in a plug-and-play manner for the aforementioned protocols, our protocol
needs to have the following properties:

• Completeness . If the prover is honest, at the end of the protocol execution, the
prover must have a hidden coset state |As,s′⟩ in its registers.

• Soundness . Any (computationally bounded) prover after interacting with the
classical verifier in the protocol, cannot win the monogamy of entanglement game
described above (with a single modification in the first step of the game: instead of
sending the coset state to the prover, we run the protocol). For a formal definition
of the soundness, see Definition 5.12. We note that the soundness property also
implies the blindness property: a untrusted prover cannot know the description of
A and s, s′ through the interaction.

The first attempt. Having described all requirements needed, we now turn into our
protocol construction. Our starting point is the recent public semi-quantum money
in the plain model introduced by Shmueli in [Shm22a], which uses hybrid quantum
homomorphic encryption (QFHE)10 and indistinguishability obfuscation (iO) as the
building blocks. The scheme is as follows.

1. The classical verifier V samples a random λ
2 -dimensional subspace A ⊆ Fλ2 (repre-

sented by a matrix MA ∈ {0, 1}
λ
2×λ), and sends to the prover P (Mpx

A , ctpx), an
encryption of the matrix MA under QFHE.

2. P homomorphically evaluates the circuit C, which is a quantum circuit that gets
as input the classical description of a subspace A ⊆ Fλ2 and generates a uniform
superposition over A. P obtains a homomorphically evaluated ciphertext

(|Ax,z⟩ , ctx,z)← QFHE.Eval
(
pk, (Mpx

A , ctpx), C
)
,

10Recall that a hybrid QFHE scheme is one where every encryption of a quantum state |ψ⟩ consists of
a quantum one-time pad encryption of |ψ⟩ with Pauli keys (x, z) ∈ {0, 1}∗, and ctx,z which is a classical
FHE encryption of the Pauli keys.

Technical Overview 106

and sends the classical part ctx,z to V.

3. V decrypts (x, z) ← QFHE.Decrypt(sk, ctx,z) and sends obfuscated membership
check programs iO(A+ x), iO(A⊥ + z) to P.

Unfortunately, there is an efficient “splitting” attack that breaks the monogamy game
described above (even if the adversary does not receive the description ofA in the question
phase) (see [Shm22b] for the description of the attack). Indeed, in the construction
of semi-quantum tokenized signatures [Shm22b], which also based on the [Shm22a]
construction above, the author also needs to overcome this problem by carefully changing
the security property required for the signature setting. We forego the details of his
approach, but we note that his approach is unlikely to be applicable in our setting. The
main difference is that in our setting, there are two simultaneous non-communicating
adversaries that also receive the description of A in the monogamy game.

The second attempt: running self-testing protocol under QFHE. We make an important
observation: in the semi-quantum protocol for preparing BB84 states (also called a
self-testing protocol) of [GMP22], instead of asking the prover P to prepare his own
states (which are polynomially many |+⟩ states if P is honest), the verifier V can send the
input to P using QFHE. In particular, V sends encryption of M0, which is the all-zero
matrix. P homomorphic evaluates a quantum circuit C on the received ciphertext such
that if the input matrix is all-zero, C evaluates to a uniform superposition over Fλ2 ,
which is exactly product of |+⟩ states. Under QFHE encryption, the quantum part
of the evaluated ciphertext is product of random |±⟩ states. P then uses this in the
[GMP22] self-testing protocol. We will see that an honest prover P using product of |+⟩
states as in the [GMP22] protocol or P using product of |±⟩ states does not change the
completeness of the protocol, while its soundness is maintained (since the soundness
does not depend on which input the prover has been used in the protocol execution).

We now briefly give a description of the [GMP22] protocol, and refer the reader
to their paper and Section 5.4.1 for more details. The verifier first runs a number of
test rounds, where the prover is asked to measure its entire quantum state. These
test rounds are used by the verifier to check whether the prover behaves as intended.
Once the verifier is convinced of this, the verifier runs a preparation round. Test and
preparation rounds are indistinguishable from the point of view of the prover, except
that unlike in a test round, in a preparation the prover is not asked to measure its
final state. Essentially, the [GMP22] protocol can be seen as a 1-over-n cut-and-choose
protocol, in which the verifier run n rounds of testing, and 1 round of preparation from
n + 1 indistinguishable instances. The soundness statement for the test rounds is a
self-testing statement, which characterizes which states and measurements the prover
used in the protocol. The soundness of the [GMP22] protocol follows from that of the
test rounds via a statistical cut-and-choose argument. In the following, we focus on the
test sub-protocol.

The main cryptographic primitive underlying the [GMP22] protocol (as well as other
self-testing protocols [GV19; MV21]) is the so-called extended noisy trapdoor claw-free
function (ENTCF) family, which can be constructed assuming the quantum hardness of
LWE [Mah18b]. Recall that an ENTCF family is a family of functions indexed by a set
of keys K0 ∪ K1. K0 and K1 are disjoint sets of keys with the property that the two sets
are computationally indistinguishable.

Technical Overview 107

We first describe the single-qubit remote preparation protocol from [GV19], as the
[GMP22] test protocol is a n-fold parallel of [GV19].

1. For a given basis choice θ ∈ {0, 1} (where “0” corresponds to the computational
and “1” to the Hadamard basis), the verifier V samples a key k ∈ Kθ, alongside
some trapdoor information t. V sends k to the prover P and keeps t private.

2. The verifier and prover then interact classically.

3. For us, the most relevant part is the last round of the protocol, i.e., the last message
from the verifier to the prover and back. Before the last round, the remaining
quantum state of an honest prover is the single-qubit state |v⟩θ for v ∈ {0, 1},
where |v⟩θ is a conjugate encoding of v in the basis θ: if θ = 0, |v⟩θ = |v⟩, otherwise
|v⟩θ = 1√

2(|0⟩+ (−1)v |1⟩). From the transcript and the trapdoor information, the
verifier can compute v; in contrast, the prover, who does not know the trapdoor,
cannot efficiently compute θ or v. In the last round, the verifier sends θ to the
prover, who returns v′ ∈ {0, 1}; the verifier then checks whether v′ = v. The honest
prover would generate v′ by measuring its remaining qubit |v⟩θ in the basis θ and
therefore always pass the verifier’s check.

In the [GMP22] test protocol, V runs n independent copies of [GV19] in parallel, except
that the basis choice θi is the same for each copy. Next, from the [GMP22] protocol, we
describe a self-testing protocol for coset states.

Assume that now the verifier has private input which is a description of a coset
state (A, x, z). We modify the verification procedure of the [GMP22] test protocol in the
last round as follows. Let v⃗ be the last message sent by P to V in the protocol above.
If θ = 0 (note that the basis choice is the same for n copies), V checks if v⃗ ∈ A + x,
otherwise, it decodes11 v⃗ to get a vector v⃗′ and checks if v⃗′ ∈ A⊥ + z. An honest prover
would use the coset state |Ax,z⟩, which it obtains after running the [Shm22a] protocol
described above, as the input to this self-testing protocol. The honest prover would
have measured its state in the computational basis when θ = 0, and in the Hadamard
basis when θ = 1. Thus, any honest prover would pass this self-testing protocol for coset
states with probability 1.

The crucial point is that, since the prover’s input in both the [GMP22] self-testing
protocol and the self-testing protocol for coset states described above is encrypted under
QFHE, and the fact that the two protocols are identical from the prover point’s of
view (except the last verification procedure, which is hidden from the prover), the two
protocols are computationally indistinguishable. In other words, any computationally
bounded prover cannot distinguish if it is playing in the [GMP22] self-testing protocol
or the coset-state self-testing protocol. This allows us to carry the rigidity argument of
the [GMP22] protocol to our setting. We elaborate more on this later in Section 5.2.2.
For time being, let’s say we have showed that if the prover P passes the verification,
it must have “used” a coset state in the self-testing protocol (with inverse polynomial
soundness).

However, our ultimate goal is to perform a remote state preparation protocol (and
not just self-testing). Our final step would be to run this coset-state self-testing protocol
in the n-over-2n cut-and-choose fashion: the verifier first sends 2n encrypted coset

11We omit the details of this decoding procedure, and refer the reader to Section 5.4.1. We note that
with the trapdoor t, this procedure can be implemented efficiently by the verifier.

Technical Overview 108

states and |+⟩ to the prover, and it picks n instances uniformly at random for the
self-testing protocol. The remaining n instances are used as the output of the final
protocol. Building on the simple but powerful “quantum cut-and-choose” formalism of
Bouman and Fehr [BF10], we can show that if the prover passes all the test instances,
it must have at least 1 coset state in its registers at the end of the protocol (with
inverse polynomial soundness). Notably, we will show that even if we only obtain
inverse polynomial soundness at this step, our final protocol still achieves negligible
security for a monogamy of entanglement game, which is the main property used in
many copy-protection schemes.

Our final protocol. Our final protocol (Protocol 5.5) works as follows:

(1) The verifier first sends homomorphic encryption that allows the prover to either
construct coset states or BB84 states.

(2) The prover is asked to homomorphically evaluate the instructed circuits and return
classical encryption of the one-time pads of the homomorphic encryption, and keep the
quantum parts.

(3) Next, the prover and the verifier run a number of self-testing rounds (Protocol 5.3),
in which each test round consists of testing either BB84 states (Protocol 5.1) or coset
states (Protocol 5.2), forming several test blocks. (In particular, a test block consists of a
number of BB84 states testing rounds, and one coset states testing round.) All the BB84
states are consumed after this step, while only half of the coset states are consumed.

(4) Once the verifier is convinced, the verifier runs the coset states generation round
on the remaining half of the coset states, in which the verifier sends back to the prover
obfuscation of the membership checking programs. The final state of the prover can
then be used in coset states based constructions. To be more precise, the output state
of a single run of our protocol would satisfies the monogamy of entanglement property
that we described above. If a quantum copy-protection scheme requires n random coset
states, we can simply run our protocol n times (with independent randomness for each
instance).

5.2.2 Soundness Proof

We now give a brief intuition for the soundness of the protocol.

Rigidity argument for the [GMP22] self-testing protocol. Since the soundness proof uses
the rigidity argument of the [GMP22] protocol as the backbone, we first give a short
sketch of it. Recall that the [GMP22] protocol is a n-fold parallel of [GV19]. The main
technical challenge and the bulk of [GMP22] work is to establish that the prover must
treat all the parallel copies of the protocol independently, that is, to show that its (a
priori uncharacterized) Hilbert space can be partitioned into n identical subspaces, one
for each copy of the protocol.

Consider the last round of the [GMP22] self-testing protocol: at the start, the prover
has a state σ(θ,v⃗), which it produced as a result of the previous rounds of the protocol.
Upon receiving θ ∈ {0, 1} the prover measures a binary observable Zi (if θ = 0) or Xi (if
θ = 1) and returns the outcome v′i, one for each copy. Let Z (⃗a) := Za1

1 · · ·Zan
n , similarly

for X (⃗b). The main goal of the [GMP22] soundness proof is to show that when acting

Technical Overview 109

on the prover’s (unknown) state σ(θ) (where σ(θ) is like σ(θ,v⃗), but averaged over all v⃗),
the operators {Z (⃗a)X (⃗b)} behave essentially like Pauli operators. Formally, this means
showing that on average over a⃗, b⃗ ∈ {0, 1}n,

Tr
[
Z (⃗a)X (⃗b)Z (⃗a)X (⃗b)σ(θ)

]
≈ (−1)a⃗·⃗b . (5.1)

This is done through the following steps12:

(1) Defining inefficient observables X̃i = (−1)viXi, where vi is the i-th bit of the verifier’s
string v⃗ (Definition 5.8). This observable depends on vi, which requires the trapdoor
information to be computed efficiently. Intuitively, while Xi describes the prover’s
answer, X̃i describes whether that answer is accepted by the verifier. Later in the proof,
we will show Equation (5.1) with X̃ instead of X. We note that the Z observable can be
efficiently implemented without the trapdoor, and the verifier can also use Z to verify
the answer of the prover.

(2) Extending the family of states {σ(θ)}θ∈{0,1} to a larger family of “counterfactual
states” {σ(θ⃗)}θ⃗∈{0,1}n, which are defined as the states the prover would have prepared if
the verifier had sent keys ki ∈ Kθi

for different θi. The key point here is that the states
{σ(θ⃗)}θ⃗ are computationally indistinguishable by the properties of ENTCF families.

(3) Showing various commutation and anti-commutation relations for the observables
Z (⃗a) and X̃ (⃗b) using the counterfactual states σ(θ⃗). For example, to show that Zi and
X̃j commute, we would choose a θ⃗ with θi = 0 and θj = 1 since the verifier can check
the outcomes of “Z-type observables” for θ = 0 and “X-type observables” for θ = 1.
Then, we can relate these statements back to the prover’s actual states σ(θ) using the
computational indistinguishability of {σ(θ⃗)}.
(4) Combining the commutation and anti-commutation statements from the previous
step to show that the observables {Z (⃗a)X̃ (⃗b)} behave like Pauli observables on σ(θ=1)

(Lemma 5.4).

(5) Explicitly defining an isometry Ṽ which can be shown to map {Z (⃗a)X̃ (⃗b)} to the
corresponding Pauli observables (Definition 5.10). Furthermore, by using this Ṽ , we can
also define a modified isometry V that maps the efficient observables {Z (⃗a)X (⃗b)} to the
corresponding Pauli observables (Lemma 5.5). This proves Equation (5.1) and finishes
the proof.

Rigidity argument for our coset-state self-testing protocol. Using the [GMP22] rigidity
argument, we now turn into our coset-state self-testing protocol. Crucially, since the two
protocols are identical from the prover’s point of view, and the fact that the input of the
prover is encrypted, Equation (5.1) also carries to the coset-state self-testing. Specifically,
it means that under the isometry V , the prover’s observables in the coset-state self-testing
protocol also behave like Pauli observables (Lemma 5.8). Roughly speaking, the isometry
“teleport” the prover’s state into a “concrete” state by means of EPR pairs. In our case,
the concrete state would be (close to) a mixed state of a vector v ∈ A+ x if θ = 0, or
a vector v′ ∈ A⊥ + z if θ = 1 (up to some classical post-processing), for a coset state
instance (A, x, z) (Lemma 5.10).

12This sketch is described in [GMP22], we briefly recall it here, and refer the reader to that paper for
more details.

Technical Overview 110

This means that we can fix a prover P and consider a “hypothetical” quantum
verifier, which run the protocol in superposition with P, that is, we do not measure to
get the prover’s classical message as in the original protocol, but only do a projective
measurement at the end for the verification. Then under the isometry V , if θ = 0,
we should obtain a state that is close to |A+ x⟩, and if θ = 1, a state that is close to
|A⊥ + z⟩. In other words, consider that we run P with θ = 0 in superposition, check the
obtained state is |A+ z⟩, then undo the prover computation (described by a unitary),
then run P with θ = 1 in superposition, check the obtained state is |A⊥ + x⟩. If both
checks passed, it is easy to see that the prover must have a coset state |Az,x⟩ in its
registers.

Note that this does not constitute a classical verification of QFHE. What it says is
that after the evaluation and if P passes verification with overwhelming probability it is
necessary that it must have a coset state in its register up to an isometry.

We stress that the above rigidity statement has 1/poly(n) closeness, due to the
1/poly(n) closeness in the rigidity argument of the [GMP22] protocol.

Going from self-testing to remote state preparation. We then simply run the self-testing
protocol sequentially in the cut-and-choose style. Say we have 2N coset state instances,
and we run the self-testing protocol over N instances, chosen uniformly at random. The
remaining N instances are the output of the protocol. By a particular “quantum sample-
and-estimate” strategy defined in [BF10], it means that after running the self-testing
rounds, the prover has at least one coset state |Ax,z⟩ among N remaining coset state
instances in its registers, with inverse polynomial closeness. We can write the prover’s
state at this step as (inverse polynomially δ-close to) |Ax,z⟩ ⊗ ρ, where ρ can depend on
the protocol’s transcript and the encryption of (A, x, z) (Proposition 5.2).

Establishing a monogamy of entanglement property. In this final step, we want to show that
now if the prover involves in a monogamy of entanglement game, it would have negligible
probability of winning. The security game is defined as follows (Definition 5.12).

1. The prover and the verifier jointly execute our semi-quantum protocol to obtain
(supposedly) N coset states, which are hidden but kept by the prover.

2. The prover and the verifier play the monogamy game using the output of the
semi-quantum protocol:

(a) The prover splits its state into a bipartite state and sends each part to Bob
and Charlie, respectively. No communication is allowed between Bob and
Charlie.

(b) The verifier sends the description of the subspace to both Bob and Charlie.
(c) Bob and Charlie are asked to output N vectors belonging to N cosets (for

Bob), and N dual cosets (for Charlie).

However, our current situation is different from the standard monogamy game setting
in which the prover only has the coset state, while here the prover also have an auxiliary
state that depends on the coset state description. (Even worse, it might be possible
that the prover can have two copies of the coset state after the interactive protocol.)
The proof of the standard monogamy game does not carry over directly. Hence, for our
monogamy of entanglement proof, new ideas are needed.

Technical Overview 111

Injecting quantumness into the reduction. Our idea is to consider an intermediate game as
follows.

1. The prover and the verifier jointly execute our semi-quantum protocol.

2. After finishing the protocol execution, the verifier asks the prover to send it a coset
state among the remaining coset state instances uniformly at random.

3. Upon receiving a quantum state from the prover, the verifier verifies whether the
received state is indeed the expected coset state, then it sends it back unmodified
to the prover.

4. The prover and the verifier play the monogamy game.

Here we make few notes. First, with probability 1
N

the coset state instance that the
verifier asked is (A, x, z). It is easy to see that with probability (1−δ)

N
, which is non-

negligible, any adversary for the original security experiment can be turned into an
adversary for this experiment with identical winning probability. Secondly, defining this
intermediate game is possible because of our rigidity argument above. Indeed, only in
this step we inject quantumness into the reduction and make it a quantum verifier.

The proof continues with the following steps (which are formally described as a series
of hybrids in the proof Theorem 5.2).

• We make another important observation is that now when considering only the
coset instance (A, x, z), it is exactly the same as the public-key semi-quantum
protocol introduced by Shmueli in [Shm22a]. We then follow proof strategies in
previous works and carefully modify the experiment to remove the QFHE secret
key (corresponding to this coset instance (A, x, z)) from the reduction. This is
essentially done by changing the obfuscated membership checking programs sent
to the prover in the last step of the protocol, using the following two techniques:
subspace-hiding obfuscation [Zha19b], and complexity leveraging to blindly sample
the obfuscations [Shm22a]. To use Shmueli’s complexity leveraging technique, we
will need sub-exponential security of the building blocks (which include the QFHE
and the indistinguishability obfuscation).

• Then we make a final change in the reduction: upon receiving the coset state
from the prover and if the check is passed, the verifier keeps the received coset
state in its internal memory, and send back to the prover another random coset
state |A′x′,z′⟩. In the monogamy game, instead of sending a description of A (as a
basis matrix), the verifier sends a description of A′. Note that now the winning
condition is also changed subject to this change in the challenge coset. We can
think of |A′x′,z′⟩ as the challenge of the original monogamy of entanglement game
(with quantum communication).

• In this final experiment, if the prover managed to win the monogamy game, it
means that Bob has successfully output a vector v ∈ A′ + x′, and Charlie has
successfully output a vector w ∈ A′⊥ + z′. The verifier then outputs v, w and wins
the monogamy game with quantum communication. We conclude that no efficient
prover can win this experiment except with negligible probability.

Coset States 112

• The last part of the proof is to show that this final experiment is computationally
indistinguishable from the previous experiment (in which the QFHE secret key
was removed). We do this by invoking the security of the QFHE. However, there
is a subtlety that needs to be taken care of. That is, even if we do not use
the QFHE secret key in the reduction at this step, the adversary still receives
predicate programs on the ciphertext, which are the obfuscated membership
checking programs. Thus, we cannot simply send a uniformly random coset state
|A′x′,z′⟩ to the prover. In the protocol, we change the obfuscation programs so
that both |Ax,z⟩ and |A′x′,z′⟩ make the programs accept. We refer to the formal
construction and proof for the description of how these obfuscation programs are
generated. Once this is shown, we can complete the proof.

5.3 Coset States

For any subspace A ⊆ Fn2 , its complement is A⊥ := {b ∈ Fn2 | ⟨a, b⟩ = 0,∀a ∈ A}. We have
that dim(A) + dim(A⊥) = n. We also let |A| := 2dim(A) denote the size of the subspace A.

Definition 5.1 — Subspace States
For any subspace A ⊆ Fn2 , the subspace state |A⟩ is defined as

|A⟩ := 1√
|A|

∑
a∈A
|a⟩ .

Note that given A, the subspace state |A⟩ can be constructed efficiently.

Definition 5.2 — Coset States
For any subspace A ⊆ Fn2 , vectors s, s′ ∈ Fn2 , the coset state |As,s′⟩ is defined as

|As,s′⟩ := 1√
|A|

∑
a∈A

(−1)⟨a,s′⟩ |a+ s⟩ .

Note that given |A⟩ and s, s′, the coset state |As,s′⟩ can be constructed efficiently.
Furthermore, for a subspace A and vectors s, s′, we define A+ s := {v + s | v ∈ A},

and A⊥ + s′ := {w + s′ | w ∈ A⊥}.
When it is clear from the context, for ease of notation, we will write A+s to mean the

program that checks membership in A+ s. For example, we will often write iO(A+ s)
to mean an indistinguishability obfuscation of the program that checks membership in
A+ s.

5.3.1 Strong Monogamy-of-Entanglement Property

Coset states satisfy the following strong monogamy-of-entanglement property, which
will be used as the main tool in our construction for copy-protection.

Semi-Quantum Copy-Protection 113

Definition 5.3 — Coset-Monogamy Game [CLLZ21; CV22]
The coset monogamy game between a challenger and a QPT adversary (A0,A1,A2)
is defined as follows.

(1) Preparation. The challenger picks a uniformly random subspace A ⊆ Fλ2 of
dimension λ

2 , and two uniformly random vectors s, s′ ∈ Fn2 . It sends
|A, s, s′⟩ , iO(A+ s), iO(A⊥ + s′) to the adversary A0.

(2) Splitting. The adversary applies a quantum channel: Φ : HA → HB ⊗ HC

where HA = (C2)⊗λ and HB,HC are arbitrary. It then computes ρBC :=
Φ(|As,s′⟩⟨As,s′| ⊗ |iO(A+ s), iO(A⊥ + s′)⟩⟨iO(A+ s), iO(A⊥ + s′)|). It sends
registers B to A1 and C to A2, respectively.

(3) Question. The challenger sends the description of A, in the form of a basis for
it, to both A1 and A2.

(4) Answer. A1 returns s1 ∈ Fn2 and A2 returns s2 ∈ Fn2 .

The adversary (A0,A1,A2) wins if and only if s1 ∈ A + s and s2 ∈ A⊥ + s′. Let
CosetMonogamy((A0,A1,A2), λ) be a random variable which takes the value 1 if
the game above is won by adversary (A0,A1,A2), and takes the value 0 otherwise.

Theorem 5.1 ([CLLZ21, Theorem 4.18]). Assuming the existence of post-quantum
indistinguishability obfuscation and one-way functions, then there exists a negligible
function negl(·), for any QPT adversary (A0,A1,A2),

Pr [CosetMonogamy((A0,A1,A2), λ)] ≤ negl(λ).

5.4 Semi-Quantum Copy-Protection

In this section, we introduce our protocol for semi-quantum copy-protection from hidden
coset states in Section 5.4.1, followed by proof of correctness in Section 5.4.2 and proof
of soundness in Section 5.5.

5.4.1 Construction

Notation. Our Protocol 5.1 and Protocol 5.2 will be (almost) a parallel repetition of a
sub-protocol. We make use of vector notation to denote tuples of items corresponding
to the different copies of the sub-protocol. For example, if each of the n parallel sub-
protocols requires a key ki, we denote k⃗ = (k1, . . . , kn). A function that takes as input a
single value can be extended to input vectors in the obvious way: for example, if f takes
as input a single key k, then we write f(k⃗) for the vector (f(k1), . . . , f(kn)). We will also
use 0⃗ and 1⃗ for the bit strings consisting only of 0 and 1, respectively (and whose length
will be clear from the context), and 1⃗i ∈ {0, 1}n for the bit string whose i-th bit is 1 and
whose remaining bits are 0. Let n the length of a vector in a coset state (i.e., if v ∈ A
then |v| = n). In our constructions below, we set n := 2λ.

Semi-Quantum Copy-Protection 114

Ingredients. Our constructions use the following building blocks:

• A quantum hybrid fully homomorphic encryption scheme QFHE := ⟨KeyGen,QOTP,
Encrypt,Eval,Decrypt⟩, with sub-exponential advantage security.

• A post-quantum secure indistinguishability obfuscation scheme iO.

• A post-quantum secure extended noisy trapdoor claw-free function (ENTCF) family
(F ,G).

Our main protocol’s construction is given in Protocol 5.5. The protocol involves
two parties: a QPT prover (or receiver, denoted as P), and a PPT verifier (or sender,
denoted as V).

Protocol 5.1: Semi-Quantum Copy Protection: BB84 Test Round
Input. The verifier initially receives Pauli keys (α, β) with α, β ∈ {0, 1}n as private
inputs.

1. The verifier selects a uniformly random basis θ $← {0, 1}, where 0 corresponds
to the computational and 1 to the Hadamard basis.

2. The verifier samples keys and trapdoors {(ki, ti)}ni=1 by computing (ki, ti)←
GenKθ

(1λ). The verifier then sends {ki}ni=1 to the prover (but keeps the
trapdoors {ti}ni=1 private).

3. The verifier receives {yi}ni=1 where yi ∈ Y from the prover.

4. The verifier selects a round type ∈ {pre-image round,Hadamard round} uni-
formly at random and sends the round type to the prover.

(a) For a pre-image round : the verifier receives {(bi, xi)}ni=1 from the prover,
with bi ∈ {0, 1}, and xi ∈ X . The verifier sets flagbb84 ← flagPre and
aborts if Chk(ki, ti, bi, xi) = 0 for any i ∈ J1, nK.

(b) For a Hadamard round : the verifier receives {di}ni=1 from the prover
with di ∈ {0, 1}w (for some w depends on the security parameter λ).
The verifier sends q = θ to the prover, and receives answers {vi}ni=1 with
vi ∈ {0, 1}. The verifier performs the following:

• If q = θ = 0, set flagbb84 ← flagHad and abort if b̂(ki, yi) ̸= vi for
some i ∈ J1, nK.

• If q = θ = 1, set flagbb84 ← flagHad and abort if û(ki, yi, di) ̸= vi⊕βi
for some i ∈ J1, nK.

Protocol 5.2: Semi-Quantum Copy Protection: Coset-state Test Round
Input. The verifier initially receives a subspace A ⊆ Fn2 and Pauli keys (α, β) with
α, β ∈ {0, 1}n as private inputs.

1. The verifier selects a uniformly random basis θ $← {0, 1}, where 0 corresponds
to the computational and 1 to the Hadamard basis.

Semi-Quantum Copy-Protection 115

2. The verifier samples keys and trapdoors {(ki, ti)}ni=1 by computing (ki, ti)←
GenKθ

(1λ). The verifier then sends {ki}ni=1 to the prover (but keeps the
trapdoors {ti}ni=1 private).

3. The verifier receives {yi}ni=1 where yi ∈ Y from the prover.

4. The verifier sends “Hadamard round” as the round type to the prover.

5. The verifier receives {di}ni=1 from the prover with di ∈ {0, 1}w (for some w
depends on the security parameter λ). The verifier sends q = θ to the prover,
and receives answers {vi}ni=1 with vi ∈ {0, 1}.

The verifier performs the following:

• If q = θ = 0, let v⃗ := v1 . . . vn. Set flagcoset ← flagHad and abort if
v⃗ /∈ A+ α.

• If q = θ = 1, let si ← vi ⊕ û(ki, yi, di) and let s := s1 . . . sn. Set
flagcoset ← flagHad and abort if s⃗ /∈ A⊥ + β.

Protocol 5.3: Semi-Quantum Copy Protection: Self-Testing
Let M2 the maximum number of test rounds (for M ∈ N).
Input. The verifier initially receives a subspace A ⊆ Fn2 and Pauli keys (α′, β′)
and {(αi, βi)}M

2
i=1 with α′, β′, αi, βi ∈ {0, 1}n as private inputs. Note that (A,α′, β′)

corresponds to one coset-state instance, and {(αi, βi)}M
2

i=1 corresponds to M2 BB84
instances.

1. The verifier privately samples B $← J1,M − 1K (this determines the number
of BB84 test rounds that will be performed).

2. The verifier performs BM executions of Protocol 5.1 (with corresponding
private inputs {(αi, βi)}) with the prover. The verifier aborts if Protocol 5.1
aborts for some execution.

3. The verifier privately samples R $← J1,MK and executes Protocol 5.1 with the
prover R− 1 times (with corresponding private inputs {(αi, βi)}). Then the
verifier executes Protocol 5.2 with the prover (with private inputs (A,α′, β′))
and aborts if Protocol 5.2 aborts.

Protocol 5.4: Semi-Quantum Copy Protection: Self-Testing (with Soundness Amplification)
Let N := λ the number of iterations.
Input. The verifier initially receives {(Ai, α′i, β′i)}Ni=1 and {(αi, βi)}NM

2
i=1 as private

inputs. Each tuple in the first set corresponds to a coset-state instance, and each
tuple in the second set corresponds to a BB84 instance.
The verifier and the prover sequentially run Protocol 5.3 N times as follows.

1. For each run, the verifier and the prover interactively run Protocol 5.3 with
one coset state instance (Ai, α′i, β′i) and M2 BB84 instances {(αi, βi)}M

2
i=1, each

Semi-Quantum Copy-Protection 116

is picked uniformly at random from the input sets. (If some instance has
been picked before, it will be excluded).

2. The verifier aborts unless Protocol 5.3 does not abort in all N iterations.

Protocol 5.5: Semi-Quantum Copy Protection: Main Protocol
Verifier’s preparation.

1. Coset-state instances. For each i ∈ J1, 2NK, the verifier samples a random
n
2 -dimensional subspace Si ⊆ Fn2 , described by a matrix MSi

∈ {0, 1}n
2×n.

Samples Pauli keys pαi

$← {0, 1}n2
2 to encrypt Mpαi

Si
← QFHE.QOTP(pαi

,MSi
),

and then (pki, ski)← QFHE.KeyGen(1λ, 1ℓ(λ)) for some polynomial ℓ(·), cti ←
QFHE.Encrypt(pki, pαi

).

2. n-qubit BB84 instances. For each i ∈ J1, NM2K, the verifier samples Pauli keys
pαi

$← {0, 1}n2
2 to encrypt Mpαi

0 ← QFHE.QOTP(pαi
,M0) (here, M0 is the

all-zero vector of length n2

2), and then (pki, ski) ← QFHE.KeyGen(1λ, 1ℓ(λ)),
cti ← QFHE.Encrypt(pki, pαi

).

3. For each index i ∈ J1, 2N + NM2K, the verifier picks uniformly at random
one instance from either the set of (encrypted) coset states or the set of
(encrypted) n-qubit BB84 states prepared above. For each index i, denote
the i-th instance as (pki,Mpαi , cti) with secrets (ski, Si). (If this instance is
from the set of n-qubit BB84 states, we understand that Si = M0.)

4. The verifier sends {pki,Mpαi , cti}2N+NM2

i=1 to the prover.

Prover’s homomorphic evaluation.

5. Let C the quantum circuit that for an input matrix M ∈ {0, 1}n
2×n, outputs

a uniform superposition of its row span, except that if M = M0, it outputs
a uniform superposition of all vectors in the space Fn2 . The prover homo-
morphically evaluates C for each i ∈ J1, 2N + NM2K: (|Si,αi,βi

⟩ , cti,αi,βi
) ←

QFHE.Eval
(
pki, (Mpαi , cti), C

)
, saves the quantum part |Si,αi,βi

⟩ and sends
the classical part cti,αi,βi

to the verifier.

Self-testing for the prover.

6. For each i ∈ J1, 2N + NM2K, the verifier decrypts (αi, βi) ←
QFHE.Decrypt(ski, cti,αi,βi

). For all coset-state instances, if αi ∈ Si, the proto-
col is terminated.

7. The verifier then runs Protocol 5.4 with these NM2 prepared BB84 instances
and N coset-state instances, where each coset-state instance is picked uni-
formly at random among 2N prepared instances. (If some instance has been
picked before, it will be excluded). It aborts if Protocol 5.4 aborts.

Semi-Quantum Copy-Protection 117

Coset-state generation.

8. The verifier samples a random n
2 -dimensional coset (Ŝ, α̂, β̂) ⊆ Fn2 indepen-

dently.a Let MŜ,MŜ⊥ ∈ {0, 1}
n
2×n bases for Ŝ and Ŝ⊥, respectively.

9. Let T the set of indexes of the remaining N instances of the coset-states
which have not been used in the self-testing protocol above. For each i ∈ T ,
the verifier does the following:

(a) Let MS⊥
i
∈ {0, 1}n

2×n a basis for S⊥i (as a matrix). Compute indis-
tinguishability obfuscations P0,i ← iO (iO(MSi

+ αi) ∨ iO(MŜ + α̂))
and P1,i ← iO

(
iO(MS⊥

i
+ βi) ∨ iO(MŜ⊥ + β̂)

)
, all with appropriate

padding.b

(b) Record {(αi, βi, Si)}i∈T .

(c) Send T and {P0,i, P1,i}i∈T to the prover.

The output of the prover is {P0,i, P1,i, |Si,αi,βi
⟩}i∈T where |T | = N .

aThis step is merely an artifact that we will need later for the security proof.
bHere, we understand that for any two programs C,C ′ with binary output, iO(C ∨ C ′)(x)

outputs C(x) ∨ C ′(x).

Notation. For each execution of Protocol 5.5, we abuse the notation and denote
(|As,s′⟩ ,R0,R1) the state obtained by the receiver, where Rb the obfuscated membership
checking programs, computed by concatenating all the obfuscated programs Pb,i in Pro-
tocol 5.5, and (A, s, s′) the “coset” (which in fact consists of polynomial many different
real cosets) obtained by the sender. That is, we consider the whole output state of the
protocol as a single unclonable state (which we also call “coset state”). This notation
will only be used later when we describe the applications of our protocol in the context
of semi-quantum copy-protection.13

5.4.2 Proof of Completeness

Proposition 5.1. There exists a QPT prover that is accepted in Protocol 5.5 with
probability negligibly close to 1 in the security parameter λ. Furthermore, the final
quantum state of such a prover at the end of Protocol 5.5 is (negligibly close to) a
product of N hidden coset states: ⊗

i∈T
|Si,αi,βi

⟩ , (5.2)

where {(Si, αi, βi)}i∈T are recorded by the verifier at the end of Protocol 5.5.

Proof. The proof of correctness includes three steps: (1) If the prover ran honestly then
its output after the homomorphic evaluation step has negligible trace distance to (QOTP
encrypted of) BB84 states and coset states; (2) The self-test protocol passes (that is,

13We thank an anonymous reviewer for pointing out this approach, so that our protocol is indeed
applicable to copy-protection in a plug-and-play manner.

Semi-Quantum Copy-Protection 118

the protocol does not terminate at this step) with probability negligibly close to 1; (3)
In the last step of coset-state generation, after discarding all BB84 states, the output of
the prover at the end of Protocol 5.5 has negligible trace distance to the state described
in Equation (5.2).

We describe the honest strategy. By the statistical correctness of the homomorphic
encryption, at the end of step 5 of Protocol 5.5, the i-th quantum state that an honest
prover holds in its quantum-evaluated registers has negligible trace distance to either⊗n

j=1 |(−1)βi,j⟩ (if the corresponding instance is a n-qubit BB84 state) or |Si,αi,βi
⟩ (if the

corresponding instance is a coset state). That is, this negligible distance holds with
probability 1 over the previous messages of the protocol.

For each coset-state instance i, we claim that the probability for such honest prover
to have αi ∈ Si is negligible. It follows from the fact that if αi ∈ Si, we have that
|Si,αi,βi

⟩ = |Si,0,βi
⟩. By just measuring this state in the computational basis, we get

a non-zero vector s ∈ Si with overwhelming probability, even without knowing Si or
the QFHE secret key. This violates the semantic security of the QFHE, because Si
is a subspace of dimension n

2 chosen uniformly at random, for any vector s ∈ Fn2 , the
probability that s ∈ Si is negligible. It means that Protocol 5.5 terminates at step 6
with negligible probability.

Next, we show that an honest prover succeeds in the self-test rounds of Protocol 5.5
with probability negligibly close to 1. An honest prover behaves the same way in each
execution of Protocol 5.1 and Protocol 5.2. Hence, to show that an honest prover
succeeds in Protocol 5.3 with probability negligibly close to 1, it suffices to describe
honest strategies for Protocol 5.1 and Protocol 5.2 that succeed with probability negligibly
close to 1. We note that Protocol 5.4 is N sequential repetition of Protocol 5.3, and thus
the completeness of Protocol 5.4 is also negligibly close to 1.

Claim 5.1. There exists a QPT prover that is accepted in Protocol 5.1 with probability
negligibly close to 1.

Proof. In Protocol 5.1, the prover receives n keys k1, . . . , kn and returns answers for
each key kj individually. Since the verifier’s checks are independent for each j, we only
need to describe an honest procedure for one key kj that succeeds in the verifier’s checks
for that j with probability negligibly close to 1. The honest strategy for a single key kj
is adapted from the one in [GV19; MV21; GMP22]. We spell out the details below.

From now on, for simplicity, we drop the subscript i and understand that we are
considering the i-th instance. First, note that at the beginning of Protocol 5.1, for a
given key kj ∈ Kθ, the prover is having the state |(−)βj⟩ = Zβj |(−)0⟩ in his quantum
registers. The prover then adjoins a uniform superposition over all x ∈ X , evaluate fkj

in superposition to obtain the following state:

1√
2 |X |

∑
b∈{0,1}

∑
x∈X ,y∈Y

√
fkj ,b(x)(y)Zβj |b⟩ |x⟩ |y⟩

Preparing this state can be efficiently done (up to negligible error) using the Samp
procedure from the definition of ENTCF families ([BCMV+18, Definition 3.1] and
[Mah18b, Definition 4.2]). The prover then measures the “image register” (i.e., the
register that stores y) to obtain an image yj ∈ Y and sends this back to the verifier. The

Semi-Quantum Copy-Protection 119

post-measurement state for each j is|b̂(kj, yj)⟩ |x̂(kj, yj)⟩ if kj ∈ K0,
1√
2

(
|0⟩ |x̂0(kj, yj)⟩+ (−1)βj |1⟩ |x̂1(kj, yj)⟩

)
if kj ∈ K1.

(5.3)

If the verifier selects a “pre-image round”, the prover measures both registers in the
computational basis and returns the result. From the states in Equation (5.3) it is clear
that the prover succeeds with probability negligibly close to 1 in the pre-image round.

If the verifier selects a “Hadamard round”, the prover measures the “x-register” in
the Hadamard basis to obtain dj and returns this to the verifier. We introduce the
shorthand bj := b̂(kj, yj) and uj := û(kj, yj, dj). At this point, the prover’s state for each
j is (up to a global phase): |bj⟩ if kj ∈ K0,

|(−)uj⊕βj⟩ if kj ∈ K1.
(5.4)

The prover now receives a question q = θ and measures the remaining qubit in the
computational basis if q = 0 and in the Hadamard basis if q = 1. Then it is clear from
the expression for the prover’s remaining qubit in Equation (5.4) that the prover will
pass the verifier’s check.

Claim 5.2. There exists a QPT prover that is accepted in Protocol 5.2 with probability
negligibly close to 1.

Proof. At the beginning of each instance of Protocol 5.2, the prover is having the state
|Aα,β⟩ with α, β ∈ {0, 1}n. The honest strategy for the prover in Protocol 5.2 is similar to
the honest strategy for Protocol 5.1 described in Claim 5.1: the prover uses the ENTCF
family to commits to each qubit of the state |Aα,β⟩ using the corresponding function
key. A formal description of the commitment process is given in [Mah18b, Section 5.1].
In the last round, if q = θ = 0, the prover measures each qubit in the computational
basis and in the Hadamard basis if q = θ = 1. It equivalents to either measure the state
|Aα,β⟩ in the computational basis if q = 0 and in the Hadamard basis if q = 1.

Since the prover applies the same strategy for each qubit in the state, here we describe
the state commitment process for the j-th qubit of the state |Aα,β⟩. For a given key
kj ∈ Kθ, we can write the prover’s coset state as∑

bj∈{0,1}
γbj
|bj⟩ |ψbj

⟩

The prover then adjoins a uniform superposition over all x ∈ X , evaluate fkj
in superpo-

sition to obtain

1√
|X |

∑
bj∈{0,1}

∑
x∈X ,y∈Y

γbj

√
fkj ,bj

(x)(y) |bj⟩ |ψbj
⟩ |x⟩ |y⟩ (5.5)

The prover then measures the “y-register” to obtain an image yj ∈ Y and sends this
back to the verifier. The post-measurement state for each j is|b̂(kj, yj)⟩ |ψbj

⟩ |x̂(kj, yj)⟩ if kj ∈ K0,∑
bj∈{0,1} γbj

|bj⟩ |ψbj
⟩ |x̂bj

(kj, yj)⟩ if kj ∈ K1.
(5.6)

Proof of Soundness 120

We note that the verifier always sends “Hadamard round” as the round type in Protocol 5.2.
The prover measures the “x-register” in the Hadamard basis to obtain dj and returns
this to the verifier. The prover now receives a question q = θ and measures the j-th
qubit in the computational basis if q = 0 and in the Hadamard basis if q = 1. Recall that
we denote uj := û(kj, yj, dj). At this point, the prover’s state (before the measurement)
is (up to a global phase): |bj⟩ |ψbj

⟩ if kj ∈ K0,

(Xuj H⊗ I) |bj⟩ |ψbj
⟩ if kj ∈ K1.

(5.7)

The prover measures the j-th qubit and returns a bit vj to the verifier. It is clear
from Equation (5.7) that: (1) if the coset state is measured in the computational basis
(corresponding to the case q = 0), the verifier obtains a vector v ∈ A + α; or (2) the
coset state is measured in the Hadamard basis (corresponding to the case q = 1), the
verifier obtains a vector s ∈ A⊥ + β. This concludes the proof of the claim.

Having described the honest behavior for the self-test step, we finish the proof of
completeness.

5.5 Proof of Soundness

In this section, we prove soundness of Protocol 5.5, following the steps outlined in Sec-
tion 5.2.2:

1. First, we show a ridigity argument (with inverse polynomial soundness) for our
self-testing protocol (Protocol 5.3) in Section 5.5.1.

2. We show that any malicious prover in our remote state preparation protocol must
have also constructed a hidden random coset state up to some inverse polynomial
error. This final step reduces to a particular “quantum sample-and-estimate
strategy”, which is a quantum counterpart of the classical “cut-and-choose” as
defined by Bouman and Fehr [BF10].

3. We then show the soundness of our final protocol (Protocol 5.5), which is stated as
a monogamy of entanglement game, in Section 5.5.2. Notably, even if our rigidity
statement achieves only inverse polynomial soundness, we show that our protocol
achieves negligible security in this monogamy game.

Informally, a prover that succeeds in Protocol 5.5 has negligible probability of winning a
monogamy of entanglement game for coset states, which is formally stated as Theorem 5.2.
This means that if we consider the output of our final protocol as a single unclonable
state, the situation at the end of Protocol 5.5 is essentially identical to one in which the
verifier has sent a hidden coset state to the prover via a quantum channel, whose security
is based on the monogamy of entanglement of coset states defined in Definition 5.3.

5.5.1 Self-Testing Protocol Soundness

We denote this section to prove the following proposition, whose proof is given at the
end of this section.

Proof of Soundness 121

Proposition 5.2. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ)
such that if the verifier executes Protocol 5.5 with an efficient quantum prover
whose success probability is lower-bounded by an inverse polynomial, the following
holds. We denote by ϕTSV P the verifier and prover’s joint final state at the end
of Protocol 5.5, where T is the set of coset states obtained by the verifier, S is
set to |⊥⟩⟨⊥| by the verifier if the protocol aborts and |⊤⟩⟨⊤| otherwise, V is the
register in which the verifier records the set T , and P is the prover’s registers.
Then, denoting the probability of success as Pr[⊤], and writing

ϕTSV P = Pr[⊤]|⊤⟩⟨⊤|S ⊗ ϕ
T
V P |⊤ + (1− Pr[⊤])|⊥⟩⟨⊥| ⊗ ϕTV P |⊥.

Then there exists a coset instance (A,α, β) in T such that the state ϕTV P |⊤ conditioned
on acceptance satisfies:

ϕTV P |⊤
c≈1/poly(λ) |T ⟩⟨T |V ⊗ |Aα,β⟩⟨Aα,β| ⊗ ρ, (5.8)

for some auxiliary state ρ.

In order to prove Proposition 5.2, we first show a rigidity argument for our self-testing
protocol (Protocol 5.3). The rigidity argument we establish in this section for Protocol 5.3
will be based on the n-fold parallel rigidity proof from [GMP22]. We will make frequent
use of some technical lemmas from the proof of that paper.

Devices

We model the actions of a general prover by a “device”. This formalizes all possible actions
that can be taken by the prover to compute his answers to the verifier in Protocol 5.1
and Protocol 5.2. By Naimark’s theorem, up to adding dimensions to the prover’s
Hilbert space, we can assume without loss of generality that the prover only performs
projective measurements (instead of more general POVMs).

Definition 5.4 (Devices [GMP22]). A device D := (S,Π,M, P) is specified by the follow-
ing:

1. A set S = {ψ(θ⃗)}θ⃗∈{0,1}n of states ψ(θ⃗) ∈ D(HD ⊗ HY), where dim(HY) = |Y|n
and the states are classical on HY :

ψ(θ⃗) =
∑
y⃗∈Yn

ψ
(θ⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y . (5.9)

In the context of Protocol 5.1 and Protocol 5.2, ψ(θ⃗) is the prover’s state after
returning y⃗ for the case where the verifier makes basis choices θ⃗.14 Each ψ(θ⃗)

also implicitly depends on the specific keys chosen by the verifier (not just the
basis choice θ⃗); all the statements we make hold on average over key choices
(for a fixed basis choice θ⃗). Furthermore, since Protocol 5.1 and Protocol 5.2

14In Protocol 5.1, the only two basis choices are θ⃗ = 0⃗ and θ⃗ = 1⃗. However, ψ(θ⃗) is still well-defined as
the state that the prover (who is defined in terms of the quantum circuits he runs on a given input) would
prepare if given keys of basis choice θ⃗, even though this never occurs in Protocol 5.1. This is different
from Protocol 5.2, as it is crucial for the verifier’s procedure in Protocol 5.2 to use only 0⃗ or 1⃗ as the basis
choice. Otherwise the protocol would be “undefined”.

Proof of Soundness 122

are actually used as sub-protocols in a bigger protocol (Protocol 5.5), ψ(θ⃗)

also depends on all messages exchanged (before the executions of these sub-
protocols) in Protocol 5.5; for clarity we suppress this dependence from the
notation, as we will see later these dependencies do not affect the rigidity
proofs of these sub-protocols.

2. In the case of Protocol 5.1, a projective measurement Π on HD ⊗HY :

Π =

Π(⃗b,x⃗) =
∑
y⃗

Π(⃗b,x⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y


b⃗∈{0,1}n; x⃗∈Xn

. (5.10)

This is the measurement used by the prover to compute his answer (⃗b, x⃗) in
the pre-image challenge.

3. In the case of Protocol 5.2, Π is the identity operator I on HD ⊗HY . This is
because in Protocol 5.2, there is no pre-image challenge.

4. A projective measurement M on HD ⊗HY :

M =

M (d⃗) =
∑
y⃗

M
(d⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y


d⃗∈{0,1}w×n

. (5.11)

This is the measurement used by the prover to compute his answer d⃗ in the
Hadamard challenge. We use an additional Hilbert spaces HR to record the
outcomes of measuring M and write the post-measurement state after applying
M to ψ(θ⃗) as

σ(θ⃗) :=
∑
y⃗,d⃗

M
(d⃗)
y⃗ ψ

(θ⃗)
y⃗ M

(d⃗)
y⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R . (5.12)

5. A set P = {Pq}, where for each q ∈ {0, 1}, Pq is a projective measurement on
HD ⊗HY ⊗HR:

Pq =

P (v⃗)
q =

∑
y⃗,d⃗

P
(v⃗)
q,y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R


v⃗∈{0,1}n

. (5.13)

In the context of Protocol 5.1 and Protocol 5.2, given question q, the prover
will measure {P (v⃗)

q } and return the outcome v⃗ as his answer.

Definition 5.5 (Efficient devices). A device is called efficient if the states ψ(θ⃗) can be
prepared efficiently and the measurements Π, M , and Pq can be performed efficiently
(in the sense of Definition 2.1).

Success Probabilities of a Device

During the self-testing protocol (Protocol 5.3), the verifier applies certain checks to the
answers given by the prover. If the prover fails these checks, the verifier sets a flag to
flagPre or flagHad then aborts. Here, we define the probabilities that the prover passes
these checks and relate these probabilities in both protocols Protocol 5.1 and Protocol 5.2.

Proof of Soundness 123

Definition 5.6 (Success probabilities). For any device D := (S,Π,M, P) we define
γP (Dbb84) as the device’s failure probability in a pre-image round, γH(Dbb84) as the
failure probability in a Hadamard round in Protocol 5.1 and γH(Dcoset) as the failure
probability in a Hadamard round in Protocol 5.2:

γP (Dbb84) := Pr [flagbb84 = flagPre | round type = pre-image round] , (5.14)

γH(Dbb84) := Pr [flagbb84 = flagHad | round type = Hadamard round] , (5.15)

γH(Dcoset) := Pr [flagcoset = flagHad] . (5.16)

Next, we give the definition of a perfect prover in Protocol 5.1. Informally, a perfect
prover is accepted by the verifier in a pre-image round with probability negligibly close
to 1.

Definition 5.7 (Perfect device in Protocol 5.1). We call a device D perfect if γP (Dbb84) =
negl(λ).

The following lemma says that for any device in Protocol 5.1 that has a non-negligible
failure probability in the pre-image test, there is another perfect device that is “close”
to the original one in the sense that its measurements are the same as for the original
device and its states only differ by O(γP (D)). By using this lemma, for the rest of the
rigidity proof, it suffices to only consider perfect devices: for any arbitrary device, we
can first make a reduction to the corresponding perfect device at the cost of incurring
an approximation error of O(γP (D)), and then apply our soundness proof to the perfect
device.

Lemma 5.1 ([GMP22, Lemma 4.9]). Let D = (S,Π,M, P) be an efficient device in Pro-
tocol 5.1 with γP (Dbb84) < 1, where S =

{
ψ(θ⃗)

}
. Then there exists an efficient perfect

device D′ = (S ′,Π,M, P), which uses the same measurements Π,M, P and whose
states S ′ =

{
ψ′(θ⃗)

}
satisfy for any θ⃗ ∈ {0, 1}n:

ψ′(θ⃗) ≈γP (Dbb84) ψ
(θ⃗) . (5.17)

Proof. The proof of this lemma uses essentially the same technique to that of [MV21,
Lemma 4.13], which in turn based on [Mah18b, Claim 7.2]. We give a sketch of the proof
for completeness. A construction of D′ is as follows. D′ first prepares the states ψ(θ⃗) as
D does, then applies the efficient unitary UΠ associated with the measurement Π:

|0⟩⟨0|R ⊗ ψ
(θ⃗) UΠ7−→ |⃗b, x⃗⟩⟨⃗b, x⃗|R ⊗ Π(⃗b,x⃗)ψ(θ⃗)Π(⃗b,x⃗). (5.18)

NowD′ coherently evaluates the (efficient) Chk-function on the Y -register of Π(⃗b,x⃗)ψ(θ⃗)Π(⃗b,x⃗)

and the new register containing (bi, xi) for all i ∈ J1, nK. If Chk succeeds, D′ applies U †Π to
the state, traces out the ancillary register R, and uses this as ψ′(θ⃗). Otherwise, D′ repeats
the process up to polynomially (in the security parameter) many times, and aborts if the
Chk procedure never succeeds. Since γP (Dbb84) is defined as the maximum failure proba-
bility of the pre-image test, and the Chk procedure fails if the pre-image check fails on any
qubit, the probability of the Chk procedure failing is at most n ·γP (Dbb84) = O(γP (Dbb84))
by a union bound.

If 1−γP (Dbb84) is negligible, the trace distance bound between ψ(θ⃗) and ψ′(θ⃗) is trivially
satisfied. If 1− γP (Dbb84) is non-negligible, the probability that Chk fails polynomially

Proof of Soundness 124

many times is negligible. Furthermore, by definition of the ENTCF family, the Chk
procedure requires only the function key and not the trapdoor, which implies that it
can be computed efficiently by the prover D′. It means that D′ is efficient and perfect.

Fix θ⃗. By Definition 2.4, we need to show
∥∥∥ψ′(θ⃗) − ψ(θ⃗)

∥∥∥
1
≈γP (Dbb84)1/2 0. Since the

probability of the Chk to succeed is at least 1−O(γP (Dbb84)), by the gentle measurement
lemma ([Wil11]), the post-measurement state after Chk has succeeded is O(γP (Dbb84)1/2)-
close in trace distance to UΠ(|0⟩⟨0|R ⊗ ψ(θ⃗))U †Π. Because the trace distance is unitarily
invariant, this implies that the state ψ′(θ⃗) is also O(γP (Dbb84)1/2)-close in trace distance
to ψ(θ⃗).

Rigidity Proof of Protocol 5.1

The rigidity proof of Protocol 5.1 follows identically from that of [GMP22]. In this
section, we recall definitions and related technical lemmas from [GMP22] that are needed
for our proof later. The main difference lies in the last verification procedure, in which
our verification procedure also involves the Pauli keys from the QFHE. However, one
can easily inspect their proof and see that this difference does not change most part of
the proof. This essentially follows from the fact that the one-time pads (and generally,
the homomorphic enryption) are independent of all the messages and verifier’s secrets
in the execution of Protocol 5.1, it only is used in the verification of the verifier as its
secret input. When the difference appears, we will re-prove the lemma with respect to
our protocol.

Definition 5.8 (Observables). For a device D := (S,Π,M, P) with projective mea-
surements as in Definition 5.4 and β⃗ ∈ {0, 1}n, we define the following binary
observables:

Zi =
∑
v⃗

(−1)viP
(v⃗)
0 , (5.19)

Xi =
∑
v⃗

(−1)viP
(v⃗)
1 , (5.20)

X̃i =
∑
v⃗,y⃗,d⃗

(−1)βi⊕vi⊕û(ki,yi,di)P
(v⃗)
1,y⃗,d⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R . (5.21)

We further use the following notation for products of observables: for a⃗ ∈ {0, 1}n,
we define

Z (⃗a) := Za1
1 . . . Zan

n =
∑
v⃗

(−1)a⃗·v⃗P (v⃗)
0 , (5.22)

and likewise for X (⃗a) and X̃ (⃗a). It is easy to see that

X̃ (⃗a)y⃗,d⃗ = (−1)a⃗·(β⃗⊕û(k⃗,y⃗,d⃗))X (⃗a)y⃗,d⃗ . (5.23)

Remark 5.1. X̃i is not an observable that an efficient prover can implement because it
depends on û(k, y, d), which requires the trapdoor information to be computed efficiently,
and the Pauli key β, which the prover only has an encryption of it. Intuitively, while
Xi describes the prover’s answer, X̃i describes whether that answer is accepted by the
verifier.

Proof of Soundness 125

Definition 5.9 (Partial post-measurement states). For k ∈ K0 ∪ K1, v ∈ {0, 1} and
β ∈ {0, 1} define the set Vβ,k,v ⊆ Y × {0, 1}w by the following condition:

(y, d) ∈ Vβ,k,v iff

b̂(k, y) = v if k ∈ K0 ,

û(k, y, d) = v ⊕ β if k ∈ K1 .
(5.24)

Then for β⃗, k⃗, θ⃗, v⃗ we define

σ(β⃗,θ⃗,v⃗) =
∑

y1,d1∈Vβ1,k1,v1

· · ·
∑

yn,dn∈Vβn,kn,vn

σ
(θ⃗)
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (5.25)

Further for a⃗ ∈ {0, 1}n we define

σ(β⃗,θ⃗,v,⃗a) :=
∑

v⃗: v⃗·⃗a=v
σ(β⃗,θ⃗,v⃗) . (5.26)

Remark 5.2. In the following, once β⃗ is fixed, we can drop β⃗ from these notations and
simply write σ(θ⃗,v⃗) and σ(θ⃗,v,⃗a). The reason is that as we explained above, the involvement
of β⃗ is primarily a technicality needed because of our protocol construction, but does
not affect the modular proofs we present here. Another way to see it is to consider β⃗
as a part of the trapdoor information t⃗. Then we can write û′(k, y, d) := û(k, y, d)⊕ β
and define (y, d) ∈ Vk,v if û′(k, y, d) = v when k ∈ K1. For any statement involving these
states, we understand that there is some β⃗ known by the verifier and these states are
defined with respect to this β⃗.

Intuitively, when θ⃗ = 0⃗, then for any a⃗ ∈ {0, 1}n, σ(⃗0,v,⃗a) is that part of the state σ(⃗0)

for which the honest device would receive outcome v when measuring the observable
Z (⃗a). The following lemma shows what outcomes a successful device must produce when
measuring the observables from Definition 5.8 on the partial post-measurement states
from Definition 5.9.

Lemma 5.2 ([GMP22, Corollary 4.18]). Consider an efficient device D = (S,Π,M, P)
and a bit v ∈ {0, 1}.

1. For any θ⃗, a⃗ ∈ {0, 1}n such that θi = 0 if ai = 1, then:

Z (⃗a) ≈
γH(Dbb84),σ(θ⃗,v,⃗a) (−1)vI . (5.27)

2. For any θ⃗, a⃗ ∈ {0, 1}n such that θi = 1 if ai = 1, then:

X (⃗a) ≈
γH(Dbb84),σ(θ⃗,v,⃗a) (−1)vI . (5.28)

Next, we define isometries Ṽ , V which can be shown to map the prover’s observables
to the corresponding Pauli observables.

Definition 5.10 (Rounding isometries [GMP22]). For a device D with associated Hilbert
space HD and y⃗ ∈ Y×n, d ∈ {0, 1}w×n, we define the isometry Ṽy,d : HD → HD⊗HA⊗
HQ by the following action on an arbitrary state |φ⟩D:

Ṽy⃗,d⃗ |φ⟩D := E
a⃗,⃗b∈{0,1}n

((
X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
⊗

(
σX (⃗a)σZ (⃗b)

)
A

)
|φ⟩D ⊗

(
|Φ+⟩⊗n

)
AQ

, (5.29)

Proof of Soundness 126

where |Φ+⟩ = |00⟩+|11⟩√
2 denotes an EPR pair, and

(
|Φ+⟩⊗n

)
AQ

is distributed between
A and Q such that every EPR pair has one qubit in either system. We can combine
the different Vy,d into one isometry

Ṽ :=
∑
y⃗,d⃗

Ṽy⃗,d⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| : HD ⊗HY ⊗HR → HD ⊗HY ⊗HR ⊗HA ⊗HQ . (5.30)

We similarly define

Vy⃗,d⃗ |φ⟩D := E
a⃗,⃗b∈{0,1}n

((
X (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
⊗

(
σX (⃗a)σZ (⃗b)

)
A

)
|φ⟩D ⊗

(
|Φ+⟩⊗n

)
AQ

(5.31)

and

V :=
∑
y⃗,d⃗

Vy⃗,d⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (5.32)

The following lemma relates Ṽ and V .

Lemma 5.3. For any keys k⃗ ∈ Kn1 and β⃗ ∈ {0, 1}n:

Vy⃗,d⃗ = σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q
Ṽy⃗,d⃗ . (5.33)

Proof. For any state |φ⟩D, we have:

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q
Ṽy⃗,d⃗ |φ⟩D

= E
a,b∈{0,1}n

(
X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D⊗[(

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q

(
|Φ+⟩⊗n

)
AQ

]

Repeatedly using that (σZ)A |Φ+⟩AQ = (σZ)Q |Φ+⟩AQ:

= E
a,b∈{0,1}n

(
X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D⊗[(

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

))
A

(
|Φ+⟩⊗n

)
AQ

]

Since σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
= (−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)σX (⃗a)σZ (⃗b):

= E
a,b∈{0,1}n

(
(−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)X̃ (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D ⊗

[(
σX (⃗a)σZ (⃗b)

)
A

(
|Φ+⟩⊗n

)
AQ

]

Recalling from Definition 5.8 that (−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)X̃ (⃗a)y⃗,d⃗ = X (⃗a)y⃗,d⃗ :

= E
a,b∈{0,1}n

(
X (⃗a)y⃗,d⃗Z (⃗b)y⃗,d⃗

)
D
|φ⟩D ⊗

[(
σX (⃗a)σZ (⃗b)

)
A

(
|Φ+⟩⊗n

)
AQ

]
= V |φ⟩D .

We then show that the isometry Ṽ maps the observables X̃ (⃗a)Z (⃗b) to the correspond-
ing Pauli observables.

Proof of Soundness 127

Lemma 5.4 ([GMP22, Lemma 4.28]). For an efficient perfect device D = (S,Π,M, P)
and any a⃗, b⃗ ∈ {0, 1}n we have

Tr
[
Ṽ †

(
σX (⃗a)σZ (⃗b)

)†
Q
Ṽ X̃ (⃗a)DY RZ (⃗b)DY Rσ(⃗1)

DY R

]
≈n1/2γH(Dbb84)1/8 1 . (5.34)

By combining Lemma 5.3 and Lemma 5.4 we can show that the isometry V maps
the observables X (⃗a)Z (⃗b) to the corresponding Pauli observables.

Lemma 5.5 ([GMP22, Proposition 4.29]). For an efficient perfect device D = (S,Π,M, P)
and any a⃗, b⃗ ∈ {0, 1}n we have

V X (⃗a)Z (⃗b)V † ≈n1/2γH(Dbb84)1/8,V σ(⃗1)V †

(
σX (⃗a)σZ (⃗b)

)
Q
⊗ IY RDA . (5.35)

Rigidity Proof of Protocol 5.2

Having established a characterization of the prover’s observablesX (⃗a)Z (⃗b) in Protocol 5.1,
we now use this to characterize the prover’s behavior in Protocol 5.2.

Step 1: Modeling. First, we introduce the corresponding notion of post-measurement
states for an efficient device of Protocol 5.2. Note that the two protocols are identical
from the prover’s point of view when the round type is the Hadamard round, and the
marginal observables from Definition 5.8 are defined for Hadamard round. Thus we can
use the same notation of marginal observables from Definition 5.8 (in particular, we only
need the efficient observables X (⃗a) and Z (⃗b)) for an efficient device in Protocol 5.2.

Definition 5.11. For k⃗ ∈ (K0 ∪ K1)n, v⃗ ∈ {0, 1}n and A ⊆ Fn2 , α⃗, β⃗ ∈ {0, 1}n define the
set VA,α⃗,β⃗,⃗k,v⃗ ⊆ Yn × {0, 1}w×n by the following condition:

(y⃗, d⃗) ∈ VA,α⃗,β⃗,⃗k,v⃗ iff

b̂(k⃗, y⃗) = v⃗ ∈ A+ α⃗ if k⃗ ∈ Kn0 ,
û(k⃗, y⃗, d⃗)⊕ v⃗ ∈ A⊥ + β⃗ if k⃗ ∈ Kn1 .

(5.36)

Then for α⃗, β⃗, k⃗, θ⃗ ∈ {⃗0, 1⃗}, v⃗ we define

σ(A,α⃗,β⃗,θ⃗,v⃗) =
∑

y⃗,d⃗∈V
A,α⃗,β⃗,k⃗,v⃗

σ
(θ⃗)
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (5.37)

By the same argument as in Remark 5.2, we can write σ(θ⃗,v⃗) for simplicity.

We note that different from Definition 5.9, we only consider two basis choices θ⃗ = 0⃗
or θ⃗ = 1⃗, whereas the post-measurement states in Definition 5.9 can be defined with
respect to any basis choice. Similar to Lemma 5.2, we analyze what outcomes a successful
device must produce when measuring the observables from Definition 5.8 on the post-
measurement states from Definition 5.11.

Lemma 5.6. For any efficient device D = (S,Π,M, P), a coset state description
(A,α, β): ∑

v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≈γH(Dcoset) 1 , (5.38)

∑
v⃗∈S1

Tr
[
X

(vi)
i σ(⃗1,v⃗)

]
≈γH(Dcoset) 1 , (5.39)

where S0 := A+ α and S1 := A⊥ + β − û(k⃗, y⃗, d⃗).

Proof of Soundness 128

Proof. We first prove Equation (5.38). Since the case q = θ = 0 occurs with probability
1/2 in Protocol 5.2, the device’s failure probability in this case can be at most 2γH(Dcoset).
Furthermore, since the device only succeeds if vi = b̂(ki, yi) and v⃗ ∈ A+α for all i ∈ J1, nK
in the protocol, it means that the device succeeds with probability at least 1− 2γH(D).
Now comparing the definition of σ(⃗0,v⃗) with the verifier’s checks in the protocol, this
means that for all i ∈ J1, nK:∑

v∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≥ 1− 2γH(D) .

For the inequality in the other direction, we note that since Z(vi)
i is a projector, we

immediately have ∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≤

∑
v⃗∈S0

Tr
[
σ(⃗0,v⃗)

]
= Tr

[
σ(⃗0)

]
= 1,

finishing the proof of Equation (5.38).
The proof of Equation (5.39) is completely analogous, combining with the fact that

if v⃗ + û(k⃗, y⃗, d⃗) ∈ A⊥ + β iff v⃗ ∈ A⊥ + β − û(k⃗, y⃗, d⃗).

Step 2: Relating Protocol 5.1 and Protocol 5.2. We relate the prover’s operators and states
in Protocol 5.1 and Protocol 5.2 by the following lemmas.

Lemma 5.7. For any efficient devices D,D′ with the notation given in Definition 5.4.
Assume that D is a device of Protocol 5.1 with corresponding states (ψ(θ⃗), σ(θ⃗)) and
D′ is a device of Protocol 5.2 with corresponding states (ψ′(θ⃗′), σ′(θ⃗

′)). Then

ψ(θ⃗) c≈0 ψ
′(θ⃗′) , (5.40)

and
σ(θ⃗) c≈0 σ

(θ⃗′) . (5.41)

Proof. At the beginning of each protocol’s execution: in Protocol 5.1, the device’s state
is (encrypted) BB84 states, while in Protocol 5.2, the device’s state is (encrypted) coset
states. Furthermore, note that executing Protocol 5.1 or Protocol 5.2 does not require
the secret key of the QFHE encryption scheme. Equation (5.40) then follows directly
from semantic security of the QFHE encryption scheme.

In Protocol 5.2, the verifier never sends a “pre-image round” challenge. In Protocol 5.1,
the round type is chosen uniformly at random, so with probability 1

2 , the round type is
“Hadamard round”. In this case, the execution of two protocols are identical from the
prover’s point of view. Since the prover is efficient, Equation (5.41) also follows.

We then obtain the following relation between the success probabilities of devices
in Protocol 5.1 and Protocol 5.2.

Corollary 5.1. For any efficient device D := (S,Π,M, P):

γH(Dbb84)
c≈0 2γH(Dcoset). (5.42)

Remark 5.3. Due to the relation in Equation (5.42) and the definition of the “≈”-notation
(Definition 2.4), from now on, we drop the subscript and simply write γH(D) when it is
clear from the context.

Proof of Soundness 129

Combining Corollary 5.1 and Lemma 5.7, using the same isometry V defined in Defi-
nition 5.10, we can “lift” the approximate-equality relations described in Lemma 5.5 for
an efficient device in Protocol 5.1 to an efficient device in Protocol 5.2.

Lemma 5.8. For an efficient perfect device D = (S,Π,M, P) in Protocol 5.2 and any
a⃗, b⃗ ∈ {0, 1}n we have

V X (⃗a)Z (⃗b)V † ≈n1/8γH(D)1/32,V σ(⃗1)V †

(
σX (⃗a)σZ (⃗b)

)
Q
⊗ IY RDA . (5.43)

Proof. The lemma follows directly from the lifting lemma (Item 6 of Lemma 2.3) and
the fact that the isometry V and the operators X,Z are efficient. Using the notation
from Lemma 2.3, we have δ = 0, ε = n1/2γH(D)1/8, the isometry is V , the observable A
is X (⃗a)Z (⃗b), the observable B is σX (⃗a)σz (⃗b)⊗I. The two states are V σ′(⃗1)V † of a device
in Protocol 5.1 and V σ(⃗1)V † of a device in Protocol 5.2.

Step 3: Rigidity. We first prove the following technical lemma.

Lemma 5.9. For an efficient device D = (S,Π,M, P), a coset state description (A,α, β):∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗ (σ(vi)
Z,i)Q ≈ε,∑

v⃗′∈S0
|v⃗′⟩⟨v⃗′|⊗V σ0⃗,v⃗′V † I , (5.44)

∑
v⃗∈S1

|v⃗⟩⟨v⃗| ⊗ (σ(vi)
X,i)Q ≈ε,∑

v⃗′∈S1
|v⃗′⟩⟨v⃗′|⊗V σ1⃗,v⃗′V † I , (5.45)

where S0 = A + α, S1 = A⊥ + β − û(k⃗, y⃗, d⃗) and the approximation factor ε will be
clarified later in the proof.

Proof. We first prove the first statement. It is easy to check that
∑
v⃗∈V |v⃗⟩⟨v⃗| ⊗

(
σ

(vi)
Z,i

)
Q

is a projector, so we can expand the definition of the state-dependent distance and
compute:

Tr


 ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q
− I

† ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q
− I

 ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= Tr

I − ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q

 ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= 1−

∑
v⃗∈S0

Tr

(
|v⃗⟩⟨v⃗| ⊗

(
σ

(vi)
Z,i

)
Q

) ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= 1−

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,v⃗)V †

]
,

To show the first part of the lemma, we need to show that

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,v⃗)V †

]
≈ε 1 . (5.46)

For this, recall from Lemma 5.8 that we have

V ZiV
† ≈n1/8γH(D)1/32,V σ(⃗1)V † (σZ,i)Q ⊗ IY RDA . (5.47)

Proof of Soundness 130

For shorthand, write γ := n1/8γH(D)1/32. Since V and Zi are efficient, by the lifting
lemma (Lemma 2.3) and the fact that σ(⃗0) c≈0 σ

(⃗1), this implies that:

V ZiV
† ≈γ1/4,V σ(⃗0)V † (σZ,i)Q ⊗ IY RDA . (5.48)

Using Lemma 2.4 and Lemma 2.5, we get:∑
v⃗∈S0

V Z
(vi)
i V † ≈γ1/4,

∑
v⃗∈S0

V σ(⃗0,v⃗)V †

∑
v⃗∈S0

(
σ

(vi)
Z,i

)
Q
⊗ IY RDA . (5.49)

Using the replacement lemma (Lemma 2.1), we obtain

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,vi ,⃗1i)V †

]
≈γ1/8

∑
v⃗∈S0

Tr
[
V Z

(vi)
i V †V σ(⃗0,v⃗)V †

]
(5.50)

=
∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
(5.51)

≈γH(D) 1 , (5.52)

where the last line follows from Equation (5.38). Set ε := γ1/8, this finishes the proof of
the first statement.

For the second statement, we can perform the same calculation, but use Equa-
tion (5.39).

Lemma 5.10. For an efficient perfect device D = (S,Π,M, P), a coset state description
(A,α, β) and θ⃗ ∈ {⃗0, 1⃗}, there exists a set of subnormalized states {ρ(θ⃗,v⃗)

i }v⃗∈Si
where

Si for i ∈ {0, 1} are defined as in Lemma 5.9 such that

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V † ≈2nε
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗ ρ(θ⃗,v⃗)

i , (5.53)

where i = 0 if θ⃗ = 0⃗ and i = 1 if θ⃗ = 1⃗.

Proof. We define the shorthand

M(θ) =

Z if θ = 0 ,

X if θ = 1 .

Applying Lemma 5.9 and Lemma 2.2 to get∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

≈ε

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q


We repeat this for the remaining indices j = 2, . . . , n. Since there are in total n steps,

Proof of Soundness 131

the total approximation error will be nε. We then have∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

≈nε

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 . . .

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(vn)
M(θn),n

)
Q

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 . . .

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(vn)
M(θn),n

)
Q


=

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗

∏
j

σ
(vj)
M(θj),j


Q

V σ(θ⃗,v⃗)V †

∏
j

σ
(vj)
M(θj),j


Q

.

Now noting that
∏
j σ

(vj)
M(θj),j = (H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i, we obtain

=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗

(
⟨v| (H⊗n)i

)
Q
V σ(θ⃗,v⃗)V †

(
(H⊗n)i |v⟩

)
Q

=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q

⊗ TrQ
[(

(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i
)
Q
V σ(θ⃗,v⃗)V †

(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q

]

Analogously to how we added the factors
∏
j σ

(vj)
M(θj),j in a previous step, we can now

replace the factors ((H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i)Q inside the partial trace by identity, resulting in

≈2nε
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗ TrQ

[
V σ(θ⃗,v⃗)V †

]
.

We then obtain the desired statement by defining

ρ
(θ⃗,v⃗)
i := TrQ

[
V σ(θ⃗,v⃗)V †

]
, (5.54)

with i = 0 if θ⃗ = 0⃗ and i = 1 if θ⃗ = 1⃗.

What Lemma 5.10 says is that up to an isometry, with inverse polynomial error,
the device’s state must be (information-theoretically) close to a mixed state of vectors
in Si, tensored with an auxiliary state ρ(θ⃗,v⃗)

i . We note that it is not hard to show that
ρ

(⃗0,v⃗)
0

c≈0 ρ
(⃗1,v⃗)
1 . (Though it is not necessary for our soundness proof.)

Furthermore, from the statement of Lemma 5.10, for a fixed efficient device D, if we
run Protocol 5.2 “coherently” in superposition, then

(i) when θ⃗ = 0⃗, the device’s state must be in superposition of all vectors in S0, that is
|A+ α⟩,

(ii) when θ⃗ = 0⃗, the device’s state must be in superposition of all vectors in S1. By
applying a correction (XOR-ing the register Q with û(k⃗, y⃗, d⃗)), the state would be
|A⊥ + β⟩.

Proof of Soundness 132

Thus, with the verifier in Protocol 5.2, we obtain efficient projective measurements
to characterize the prover’s initial state. Formally, let O0 be the following process:
run Protocol 5.2 in superposition (without measuring any intermediate messages such as
y, d, v) with the basis choice θ⃗ = 1⃗ and check if the register Q at the end of the protocol
is |A+ α⟩. O1 is defined analogously for θ⃗ = 1⃗, and it applies a correction by XORing
the register Q with û(k⃗, y⃗, d⃗) and check if the register Q at the end is |A⊥ + β⟩. We
obtain the main technical lemma.

Lemma 5.11. For any efficient device D, the initial state of the device ψ must be
close to (up to some inverse polynomial error) |Aα,β⟩ ⊗ ρ:

ψ ≈4nε |Aα,β⟩ ⊗ ρ. (5.55)

Proof. Let U0 and U1 be the efficient unitaries corresponding to operators O0 and O1
defined above. Fix a device D. We first apply U0ψ and record the output to an ancilla
register. If the output is 1, apply the inverse U †0 to obtain ψ′. Finally apply U1ψ

′. If
the output is 1, by the definition of Ui (and Oi), the lemma follows. Note that for each
application of Ui, the approximation error is 2nε which comes from Lemma 5.10.

Rigidity Proof of Protocol 5.3

We are now ready to prove the rigidity of Protocol 5.3, namely that any efficient quantum
prover that does not cause the protocol to abort must have the initial state close to a
hidden coset state.

Lemma 5.12. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such
that if the verifier executes Protocol 5.3 with an efficient quantum prover whose
success probability is lower-bounded by an inverse polynomial, the following holds.
Let (A,α, β) the private input of the verifier for the coset instance. Denoting the
probability that the protocol does not abort as Pr [⊤], and let ψ the initial state of
the prover. Then, with probability Pr [⊤], we have

ψ
c≈ε |Aα,β⟩ ⊗ ρ, (5.56)

for some auxiliary state ρ, and the approximation error ε is inverse polynomial on
the security parameter λ.

Proof. Essentially, we can see Protocol 5.3 as a cut-and-choose protocol in which the
number of evaluation instances is 1 and the number of check instances is M2 − 1. We
then can reduce this lemma to Lemma 5.11 using the same argument as in [GMP22,
Theorem 4.33]. We omit the details.

Remark 5.4. We make few comments on the inverse polynomial soundness.15 First of
all, what the soundness lemma (Lemma 5.12) says is effectively the same as a typical
self-testing statement, which is that: if the prover succeeds with probability 1− ε in the
protocol, the state it used in the protocol must be, up to an isometry, poly(ε)-close to
ideal (in our setting, the closeness is measured by computational distinguishability rather
than trace distance, as in typical self-testing settings). Now, in practice, we would have

15We thank Alexandru Gheorghiu for providing us this insightful comments.

Proof of Soundness 133

to estimate ε by doing many runs of the protocol. In particular, we would need about
1/ε2 repetitions to have high (that is, 1− negl(λ)) confidence that the prover’s success
probability is 1− ε. This implies that if we want ε to be negligible, we would have to
do superpolynomial-many repetitions of the protocol and since this is not efficient, we
are limited to ε = 1/poly(λ). It is from doing this 1/ε2 repetitions that we go from the
original self-testing statement (Lemma 5.11) to the statement that characterizes the
prover’s state in the actual protocol.

We now finish this section with the proof of Proposition 5.2.

Proof of Proposition 5.2. Since in the final protocol (Protocol 5.5), we run N instances
over 2N possible instances of the self-testing protocol (Protocol 5.3) (in the cut-and-
choose fashion), we can invoke techniques developed in [BF10] to relate quantum sampling
to classical sampling and conclude Proposition 5.2.

In particular, consider the following interaction between a quantum prover P and a
challenger V.

1. P and V jointly execute Protocol 5.5. Let T be the set ofN indices chosen uniformly
at random by V in N runs of the self-testing protocol.

2. Let Xi be the outcome of each of N runs of the self-testing protocol. V verifies
that Xi = accept for all i ∈ T , and aborts otherwise.

This is a natural quantum analogue of the following classical sampling experiment
([BF10, Example 1]) on a length-2N bitstring X to test if X is close to the all-zero
string:

1. randomly select a size-N subset T ⊂ J1, 2NK,

2. compute ω(X|T), and accept if the estimate vanishes and else reject.

Noting that this sample-and-estimate strategy is exactly the Ψuniform strategy described
at the end of Section 2.2.5, we have by Corollary 2.1 that the quantum error probability
of this strategy is bounded by 2 exp(−nδ2

64), for δ = 1/2. By the definition of quantum
error probability (Definition 2.6), this means that, with overwhelming probability over
T , the state of the prover P in the remaining set T also satisfies Equation (5.55). Indeed,
by changing of basis, this reduces to the question of testing if the state of the prover
before running the self-testing protocol is close to the all-zero state. Then the quantum
sample-and-estimate technique tells us that the state of the prover must be supported
on vectors with relative Hamming distance < 1/2, and it means there must be at least 1
bit in string which is 0. If this is the case, it corresponds (up to some inverse polynomial
error) to the coset state |Aα,β⟩ in Equation (5.55). This completes the proof of the
proposition.

5.5.2 Soundness of Protocol 5.5

We now formally define the notion of soundness for our protocol, which is described as a
coset monogamy game similar to Definition 5.3.

Proof of Soundness 134

Definition 5.12 — Soundness
For any QPT prover P = {Pλ, ρλ}λ∈N interacting with a PPT verifier V in Pro-
tocol 5.5, after which V outputs {Si, αi, βi}i∈T and P outputs a state ψ, let
({Si, αi, βi}i∈T , ψ) ← ⟨Pλ(ρλ),V(1λ)⟩ denote this interaction. The prover (now
modeled as a triple algorithm (P ,B, C)) then interacts with the verifier in the
following monogamy game.

(1) Splitting. The prover applies a CPTP map to split ψ into a bipartite state ψBC ;
it sends the register B to B and the register C to C. No communication is
allowed between B and C after this phase.

(2) Question. The verifier sends the description of {Si}i∈T , to both B and C.

(3) Answer. B returns s(i)
1 ∈ Fn2 and C returns s(i)

2 ∈ Fn2 for all i ∈ T .

The prover (P ,B, C) wins if and only if s(i)
1 ∈ Si +αi and s(i)

2 ∈ S⊥i +βi for all i ∈ T .
Let SMCosetMonogamy(P , λ) be a random variable which takes the value 1 if the
game above is won by the prover (P ,B, C), and takes the value 0 otherwise.
The protocol is secure if the winning probability of any QPT adversary is negligible.
Formally, for any QPT malicious prover, the protocol is computationally sound if
we have

Pr[SMCosetMonogamy(P , λ) = 1] ≤ negl(λ).

Theorem 5.2. Protocol 5.5 is computationally sound, according to Definition 5.12.

Proof. Let P = {Pλ, ρλ}λ∈N a quantum polynomial time adversary that succeeds in
the game SMCosetMonogamy with some non-negligible probability ε = {ελ}λ∈N. Let
({Si, αi, βi}i∈T , ψ) ← ⟨Pλ(ρλ),V(1λ)⟩. This means that P = (P ,B, C) is able to output
a pair (s(i)

1 , s
(i)
2) ∈ (Si + αi) × (S⊥i + βi) for all i ∈ T in the monogamy game defined

in Definition 5.12.
Let δ′ ∈ (0, 1] the sub-exponential security level of the QFHE (that is, any QPT

adversary cannot break the semantic security of the QFHE with advantage bigger than
2λδ′

), and denote δ := δ′

2 .
We next describe a sequence of hybrid experiments.16

Game G0: This is the original experiment.

We define G0 as the original attack, where P interacts with the verifier in Proto-
col 5.5 and wins the monogamy game SMCosetMonogamy. We say G0 is successful if
SMCosetMonogamy(P , λ) = 1. The experiment G0 is thus successful with probability ε.

Game G1: Changing the success definition of the experiment.

Pick a random index i ∈ T , for shorthand, denote this coset instance as (S, α, β), and
the adversary’s corresponding output in the monogamy game is (s1, s2). In the current
hybrid, the experiment is defined to be successful if s1 ∈ S + α and s2 ∈ S⊥ + β. In
particular, in the current hybrid, we only consider the monogamy game for a random
instance among |T | coset instances. (The other instances are not considered). Apparently,

16Some hybrids follow from the proof given in [Shm22a].

Proof of Soundness 135

G1 is successful with probability at least ε. From now on, we only consider this coset
instance in later hybrids, and all the changes are only applied to this instance.

Game G2: Injecting quantum communication into the interaction between the prover
and the verifier.

This hybrid is identical to G1 except that now we consider the verifier as a QPT
algorithm instead of a PPT algorithm, and we make an additional round of interaction
using quantum communication in the protocol. (Think about the verifier now as a QPT
challenger of the experiment.) In particular, right after the last step of Protocol 5.5
(step 9c), we ask the prover to send the coset state |Sα,β⟩ to the verifier. Denote this
state as |$⟩. The verifier then does the following:

• Verify the received coset state:

(a) Checks that the output qubit of the computation iO(S + α)(|$⟩)17 is 1.
(b) Execute Hadamard transform H⊗λ on |$⟩ to obtain |$′⟩ and then check the

output qubit of the computation iO(S⊥ + β)(|$′⟩) is 1.

• If any of these checks returns 0, abort and declare the game as a failure.

• Execute H⊗λ again on |$′⟩ to obtain |$′′⟩ and send |$′′⟩ back to the prover.

From Proposition 5.2, it follows that with probability at least 1/ |T |, the adversary’s
output state ϕ is inverse polynomially ϵ-close to |Sα,β⟩ ⊗ ρ for some auxiliary state ρ. It
means that when it is asked, the adversary can always send a state |$⟩ that is inverse
polynomially ϵ-close to |Sα,β⟩ to the challenger.

Note that the quantum verification described above executes only on the register
containing |$⟩ and thus commutes with any other quantum operation on a register
entangled with it at the point where P finishes executing the real protocol Protocol 5.5.
Thus after finishing the above additional interaction, the adversary’s state is unchanged,
if the verification passed.

The probability that the adversary does not fail in the experiment is 1 − ϵ. It is
then clear that, for any adversary that wins the G1 with probability ε, it wins G2 with
probability at least ε′ := ε(1− ϵ)/ |T |. Thus, the success probability of G2 is ε′ for some
non-negligible ε′.

Game G3: Removing subspace information from obfuscated circuits.

This hybrid is identical to G2, with the only difference is that when the verifier returns
the obfuscations P0, P1 in the last step of Protocol 5.5 (Step 9c), the obfuscations are
changed: We sample two random (λ− λδ)-dimensional subspaces T0, T1 ⊆ Fλ2 subjected
to T⊥1 ⊆ S ⊆ T0. The verifier uses iO(T0 + α) instead of iO(S + α), and iO(T1 + β)
instead of iO(S⊥ + β).

It is easy to see that any QPT distinguisher between G2 and G3 can be transformed
into a QPT distinguisher between obfuscations of the original functions S+α, S⊥+β and
obfuscations of T0 + α, T1 + β. By the subspace hiding property of indistinguishability
obfuscators (Lemma 2.8), the success probabilities of G2 and G3 are thus negligibly close.
Thus the successful probability of G3 is at least ε′ − negl(λ).

17We are running a classical function on a quantum input, which can be interpreted as running a
classical function in superposition.

Proof of Soundness 136

Game G4: Lowering the need to fully know α, β in order to compute the obfuscations.

This hybrid is identical to G3, with a modification in the way we check membership in
each of the cosets: Let B0 a basis for T0, and B1 a basis for T⊥1 , and let yα, yβ ∈ {0, 1}λ−λ

δ

defined as yα := B0 · α and yβ := B1 · β. iO(T0 + α) is changed to be an obfuscation of a
circuit that for an input u ∈ {0, 1}λ checks whether B0 · u = yα. iO(T1 + β) is changed
to be an obfuscation of a circuit that for an input u ∈ {0, 1}λ checks whether B1 · u = yβ.

One can verify that the functionality of the obfuscated circuits iO(T0 +α), iO(T1 +β)
did not change, and thus by the security of the indistinguishability obfuscation schemes,
the distributions are indistinguishable and the success probability of G4 is ε′ − negl(λ).

Game G5: Changing the order of sampling the subspaces S, T0, T1.

This hybrid is identical to G4, except that we change the order of the subspaces
sampling process. In the previous hybrid, we sample a random λ

2 -dimensional subspace
S ⊆ Fλ2 then two random (λ−λδ)-dimensional subspaces T0, T1 subjected to T⊥1 ⊆ S ⊆ T0.
In the current hybrid, we first sample two random (λ − λδ)-dimensional subspaces
T0, T1 ⊆ Fn2 subjected to T⊥1 ⊆ T0, then sample a random λ

2 -dimensional subspace S ⊆ Fn2
subjected to T⊥1 ⊆ S ⊆ T0.

Since the distribution of (S, T0, T1) in both hybrids are identical, the success proba-
bility of G5 is ε′ − negl(λ).

Game G6: Fixing the subspace T0, T1.

In the subspace sampling process described in the previous hybrid, T0 and T1 are
sampled before everything else. Thus we can perform an averaging argument on the
sampling of T0, T1 to take the samples that maximize the success probability of the
previous hybrid. Fix these samples of T0, T1 and define G6 with respect to these samples.
It is clear that the success probability of G6 is ε′ − negl(λ).

Game G7: Losing the QFHE secret key.

This hybrid is identical to G6 with one change: In step 6, when the verifier decrypts
the QFHE classical part to get the Pauli keys α, β, the current hybrid does not decrypt
to get α, β and instead it samples uniformly random α′, β′ ∈ {0, 1}λ and computes
y′α := B0 ·α′, y′β := B1 ·β′. The verifier then use these strings as yα, yβ in the construction
of the obfuscations iO(T0 + α), iO(T1 + β), respectively.

We note that this change is only done for the specific coset instance under the
consideration, for the other instances, the verifier still decrypts normally using the
corresponding QFHE secret key.

Since α′, β′ are chosen uniformly at random, for fixed bases B0, B1, y′α, y′β are also
uniformly random. Observe that conditioned on the probabilistic event y′α = yα and
y′β = yβ (for which to happen, the probability is exactly 2−2λδ), the current and previous
hybrids distribute identically. It follows that the success probability in G7 is at least
2−2λδ · (ε′ − negl(λ)) > 2−3λδ .

Game G8: Clearing all given knowledge on S and reducing to the original monogamy of
entanglement game defined in Definition 5.3.

This hybrid is identical to G7, except that we make two additional changes as follows.

Proof of Soundness 137

− In the additional quantum communication round that we added after the end
of Protocol 5.5 (see hybrid G2), instead of sending back the original state |$⟩, the
verifier send |Ŝα̂,β̂⟩. Recall that the coset (Ŝ, α̂, β̂) is the one the verifier sampled
independently in step 8.

− In the step 2 in the monogamy game (Definition 5.12), when the challenger (i.e.,
the verifier) sends the description of the subspace S to both adversaries B, C, it
sends Ŝ instead.

− Consequently, the winning condition is changed to be that B outputs a vector in
Ŝ + α̂ and C outputs a vector in Ŝ⊥ + β̂.

We make few observations on the distribution in the current hybrid. First, in order to
execute G8, there is no need to know the secret key (corresponding to the coset instance
under the consideration) of the QFHE scheme. However, one needs to care when invoking
the semantic security of the QFHE, because even there is no need for the secret key, the
adversary is still given a “predicate” check on the ciphertext, that is the obfuscation.
Thus, to use the security of the QFHE, it is necessary to use two plaintexts such that
the obfuscation evaluation on the ciphertext of these two plaintexts are identical. Our
obfuscations (P0,i, P1,i) were generated so that this condition is satisfied.

Secondly, the obfuscation distribution does not change from the description above,
and we can see that in the previous hybrid, the adversary obtains a quantum one-time
pad encryption of |S⟩, while in the current hybrid, the adversary obtains a quantum
one-time pad of |Ŝ⟩. More precisely, the adversary in the current hybrid receives an
encryption of |Ŝ⟩ that is |Ŝα̂,β̂⟩ and an encryption of some Pauli keys (α, β) that are
different from (α̂, β̂) with overwhelming probability. But because of the semantic security
of QFHE.Encrypt (see Definition 2.23), this is indistinguishable from having |Ŝα̂,β̂⟩ and
an actual encryption of (α̂, β̂).

From these observations, it follows that we can invoke the security of the QFHE
to argue the indistinguishability of the current and previous hybrids, and in particular
the indistinguishability between their success probabilities. Using the sub-exponential-
advantage security of the QFHE, we have the success probability ofG8 is> 2−3λδ−2−2λδ′

>
2−3λδ−1.

At this point of the proof, we can reduce the success probability of an adversary in
G8 to the monogamy of entanglement game defined in Definition 5.3. We note that the
coset game in Definition 5.3 can achieve sub-exponentially negligible security, say 2−4λδ ,
if we assume sub-exponential security of the building blocks (i.e., the indistinguishability
obfuscation scheme). Now, any QPT adversary of G8 can be used to construct a QPT
adversary for the coset game defined in Definition 5.3 as follows. Specifically, the
reduction receives a challenge coset state |Ŝα̂,β̂⟩ and the obfuscated membership checking
programs iO(Ŝ + α̂), iO(Ŝ⊥ + β̂) from its challenger in the coset game in Definition 5.3.
The reduction runs Protocol 5.5 with the adversary. Note that the reduction (playing
the role of the verifier in Protocol 5.5) only needs iO(Ŝ+ α̂) and iO(Ŝ⊥+ β̂) to perfectly
simulate the protocol with the adversary. Furthermore, it uses |Ŝα̂,β̂⟩ in the experiment
described above instead of generating the state on its own, when it needs to send a coset
state back to the adversary. When the reduction receives Ŝ from its challenger, it sends
Ŝ to B, C, and finally the reduction outputs whatever B and C output. (Formally, the
reduction now consists of two non-communicating reductions, each interacts with B and

Copy-Protection of Point Functions 138

C respectively.) This is exactly in contradiction to strong monogamy of entanglement
security as we presented above.

5.6 Copy-Protection of Point Functions

In this section, we present a construction of (semi-quantum) copy-protection for point
functions, as an example for demonstrating our semi-quantum copy-protection protocol
(Protocol 5.5).

5.6.1 Anti-Piracy Security Definition

Recall that a point functions family {PFy}y∈X is indexed by points y ∈ X and a point
function PFy returns 1 on input y and 0 on any other input.

Following [CMP20], we give a security definition for copy-protection for point functions
by instantiating the general definition of copy-protection (see Section 2.3.9) with the
following challenge distribution. We set Df as the uniform distribution over {0, 1}n and,
for each function f = PFy, we set Xf as the distribution that returns:

• (x, y) with probability 1
3 ;

• (y, x) with probability 1
3 ;

• (x, x′) with probability 1
3 ;

where x, x′ are sampled uniformly at random.
These distributions yield ptrivialDf ,{Xf}f∈F

= 2/3. For a clarity purpose, we will use the
notations Dy instead of Df and Xy instead of Xf .

5.6.2 Construction

Let {PFy}y∈{0,1}n be the family to be copy-protected, where n := n(λ) is a polynomial in
λ. We define ℓ0, ℓ1, ℓ2 such that n = ℓ0 + ℓ1 + ℓ2 and ℓ2 − ℓ0 ≥ is large enough. For this
construction, we need three pseudorandom functions (PRFs):

• A puncturable extracting PRF (Definition 2.10) PRF1 : K1 × {0, 1}n → {0, 1}m
with error 2−λ−1, where m is a polynomial in λ and n ≥ m+ 2λ+ 4;

• A puncturable injective PRF (Definition 2.9) PRF2 : K2 × {0, 1}ℓ2 → {0, 1}ℓ1 with
failure probability 2−λ;

• A puncturable PRF PRF3 : K3 × {0, 1}ℓ1 → {0, 1}ℓ2.

Construction 5.1 — Copy-Protection of Point Functions

ρy ← PF.Protect(y):

• Sample
(
{Ai, si, s′i}i∈J1,ℓ0K, {|Ai,si,s′

i
⟩}i∈J1,ℓ0K, {(R0

i ,R1
i)}i∈J1,ℓ0K

)
←

SampleCoset(1λ), where SampleCoset is described in Figure 5.1.

• Sample PRF keys ki for PRFi with i ∈ {1, 2, 3}.
• Prepare the program P̂← iO(P), where P is described in Figure 5.2.

Copy-Protection of Point Functions 139

• Compute z := PRF1(k1, y).

• Return ρy :=
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
.

m← PF.Eval(ρy, x):

• Parse ρy =
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
.

• Parse x as x := x0∥x1∥x2.

• For each i ∈ J1, ℓ0K, if x0,i = 1, apply H⊗n to |Ai,ui,u′
i
⟩; if x0,i = 0, leave the

state unchanged.

• Let σ be the resulting state (which can be interpreted as a superposition
over tuples of ℓ0 vectors). Run P̂ coherently on input x and σ, and measure
the final output register to obtain z′.

• Return 1 if z′ = z, otherwise return 0.

The semi-quantum copy-protection scheme for point functions is presented in Con-
struction 5.2.

Construction 5.2 — Semi-Quantum Copy-Protection of Point Functions

PF.Protect(y): PF.Protect(y) is now an interactive protocol between a sender and
a receiver. The sender does the following:

• Run Protocol 5.5 ℓ0 times with the receiver to obtain(
{Ai, si, s′i}i∈J1,ℓ0K, {(R0

i ,R1
i)}i∈J1,ℓ0K

)
. The receiver obtains the corresponding

{|Ai,si,s′
i
⟩}i∈J1,ℓ0K.

• Sample PRF keys ki for PRFi with i ∈ {1, 2, 3}.

• Prepare the program P̂← iO(P), where P is described in Figure 5.2.

• Compute z := PRF1(k1, y).

• Send
(
P̂, z

)
to the receiver.

m← PF.Eval(ρy, x):

• Parse ρy =
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
.

• Parse x as x := x0∥x1∥x2.

• For each i ∈ J1, ℓ0K, if x0,i = 1, apply H⊗n to |Ai,ui,u′
i
⟩; if x0,i = 0, leave the

state unchanged.

• Let σ be the resulting state (which can be interpreted as a superposition
over tuples of ℓ0 vectors). Run P̂ coherently on input x and σ, and measure
the final output register to obtain z′.

• Return 1 if z′ = z, otherwise return 0.

Theorem 5.3. Assuming the existence of post-quantum indistinguishability obfusca-

Copy-Protection of Point Functions 140

• Sample ℓ0 subspaces of Fn2 of dimension n/2 {Ai}i∈J1,ℓ0K.

• For each coset Ai, sample two vectors si, s′i ← {0, 1}n.

• Prepare the ℓ0 coset states {|Ai,si,s′
i
⟩}i∈J1,ℓ0K.

• For each coset state |Ai,si,s′
i
⟩, prepare the obfuscated membership

programs R0
i = iO(Ai + si) and R1

i = iO(A⊥i + s′i).

• Return
(
{Ai, si, s′i}i∈J1,ℓ0K, {|Ai,si,s′

i
⟩}i∈J1,ℓ0K, {(R0

i ,R1
i)}i∈J1,ℓ0K

)
.

Figure 5.1: SampleCoset procedure.

Hardcoded: Keys (k1, k2, k3) ∈ K1 × K2 × K3, programs R0
i ,R1

i for all
i ∈ J1, ℓ0K.
On input x = x0∥x1∥x2 and vectors v0, v1, · · · , vℓ0 where each vi ∈ Fn2 ,
do the following:

1. (Hidden Trigger Mode) If PRF3(k3, x1) ⊕ x2 = x0∥Q′ and x1 =
PRF2(k2, x0∥Q′): treat Q′ as a classical circuit and output
Q′(v1, · · · , vℓ0).

2. (Normal Mode) If for all i ∈ J1, ℓ0K, Rxi
i (vi) = 1, then output

PRF1(k1, x). Otherwise, output ⊥.

Figure 5.2: Program P.

Copy-Protection of Point Functions 141

tion, one-way functions, and compute-and-compare obfuscation for the class of
unpredictable distributions, the scheme of Construction 5.1 and Construction 5.2
have correctness and anti-piracy security.

The correctness of our protocols follows directly from the correctness of the copy-
protection of PRF’s construction of [CLLZ21, Lemma 7.13].

The security of our protocols rely on a new security notion for single-decryptors, which
is a cryptographic primitive first defined in [CLLZ21]. We recall the definition of single-
decryptors and introduce this new security notion, which we call Real-or-Random CPA
anti-piracy in Section 5.6.3. We show that the [CLLZ21]’s single-decryptor’s construction
also achieves this new security definition. The security proof of our constructions
then follow the same strategy as that of copy-protection for PRFs given in [CLLZ21],
except that we reduce security to our new single-decryptor definitions. We refer the
reader to Section 5.6.4 for a detailed proof. Indeed, the reductions of security from our
constructions (Construction 5.1 and Construction 5.2) are identical, except that the
latter reduces to a semi-quantum version of the single-decryptor scheme that we present
in Section 5.6.3. Thus we only include the proof for Construction 5.1 in Section 5.6.4.

5.6.3 Single-Decryptors

In this section, we present the definition of single-decryptors, as defined in [CLLZ21].
We also introduce a new security property for single-decryptors, namely anti-piracy
security of single-decryptors in the real-or-random style. A variant of semi-quantum
single-decryptors will be also introduced.

Definition

Definition 5.13 — Single-Decryptor Encryption Scheme [CLLZ21]
A single-decryptor encryption scheme is a tuple of algorithms E =
⟨Setup,QKeyGen,Encrypt,Decrypt⟩ with the following properties:

(sk, pk)← Setup(1λ). On input a security parameter λ, the classical setup algorithm
Setup outputs a classical secret key sk and a public key pk.

(ρsk)← QKeyGen(sk). On input a classical secret key sk, the quantum key genera-
tion algorithm QKeyGen outputs a quantum secret key ρsk.

y ← Encrypt(pk, x). On input a public key pk, a message x in the message space
M, the classical encryption algorithm Encrypt outputs a classical ciphertext
y.

x/⊥ ← Decrypt(ρsk, y). On input a quantum secret key ρsk, a classical ciphertext
y, the quantum decryption algorithm Decrypt outputs a classical message x
or a decryption failure symbol ⊥.

Copy-Protection of Point Functions 142

Correctness. There exists a negligible function negl(·), such that for all λ ∈ N, for all
x ∈M, the following holds:

Pr

 Decrypt(ρsk, y) = x

∣∣∣∣∣∣∣∣
(sk, pk)← Setup(1λ)
ρsk ← QKeyGen(sk)
y ← Encrypt(pk, x)

 ≥ 1− negl(λ).

Note that correctness implies that a honestly generated quantum decryption key can
be used to decrypt correctly polynomially many times, from the gentle measurement
lemma [Wil11].

Anti-Piracy Game of Single-Decryptor (Real-or-Random Style)

We present below an anti-piracy game of single-decryptors in the real-or-random CPA
style, parameterized by a single-decryptor scheme E = ⟨Setup,QKeyGen,Encrypt,Decrypt⟩,
a security parameter λ. This game is between a challenger and an adversary represented
by three QPT algorithms (A0,A1,A2).

• Setup phase:

– The challenger samples (sk, pk)← Setup(1λ).
– The challenger samples ρsk ← QKeyGen(sk).
– The challenger sends (pk, ρsk) to A0.

• Splitting phase:

– A0 prepares a bipartite quantum state σ12.
– A0 sends σ1 to A1 and σ2 to A2.
– A0 sends a challenge message m to the challenger.

• Challenge phase:

– The challenger samples two uniformly random messages (m′,m′′).
– The challenger then generates ciphertexts c1, c2 as follows.

∗ c1 = Encrypt(pk, z) and c2 = Encrypt(pk, z′) with probability 1/3. Set
b1 = 0 and b2 = 1.

∗ c1 = Encrypt(pk, z′) and c2 = Encrypt(pk, z) with probability 1/3. Set
b1 = 1 and b2 = 0.

∗ c1 = Encrypt(pk, z′) and c2 = Encrypt(pk, z′′) with probability 1/3. Set
b1 = 1 and b2 = 1.

– The challenger sends c1 to A1 and c2 to A2.

• Answer phase:

– For i ∈ {1, 2}: Ai outputs a bit b′i.

The adversary wins the game if A1 and A2 both make a correct guess, that is b′i = bi for
i ∈ {1, 2}.

We denote the random variable that indicates whether an adversary (A0,A1,A2)
wins the game or not as SD-AP-RoRED(1λ, (A0,A1,A2)).

Copy-Protection of Point Functions 143

Definition 5.14 — Anti-Piracy Security, Real-or-Random style
A single-decryptor scheme has anti-piracy security (real-or-random style) if no
QPT adversary (A0,A1,A2) can win the anti-piracy game (real-or-random style)
with a probability significantly greater than 1/2. More precisely, for any QPT
adversary (A0,A1,A2)

Pr
[
SD-AP-RoRED(1λ, (A0,A1,A2)) = 1

]
≤ 1/2 + negl(λ).

We observe that the construction of single-decryptor given in [CLLZ21] also satisfies
our definition of anti-piracy in the real-or-random style. For completeness, we recall
their construction below.

Construction 5.3 — [CLLZ21]’s Single-Decryptor Scheme
Given a security parameter λ, let n = λ and κ be polynomial in λ.

(sk, pk)← Setup(1λ):

• Sample coset spaces {Ai, si, s′i}i∈J1,κK where each Ai is of dimension n/2;

• Construct the membership programs for each coset {R0
i ,R1

i }i∈J1,κK;

• Return
(
sk := {Ai, si, s′i}i∈J1,κK, pk := {R0

i ,R1
i }i∈J1,κK

)
.

ρsk ← QKeyGen(sk):

• Parse sk← {Ai, si, s′i}i∈J1,κK;

• Return {|Ai,si,s′
i
⟩}i∈J1,κK.

c← Encrypt(pk,m):

• Parse pk← {R0
i ,R1

i }i∈J1,κK;

• Sample r $← {0, 1}κ;

• Generate an obfuscated program iO(Qm,r) of program Qm,r described
in Section 5.6.3.

• Return c := (r, iO(Qm,r)).

m/⊥ ← Decrypt(ρsk, c):

• Parse ρsk ← {|Ai,si,s′
i
⟩}i∈J1,κK and c← (r, iO(Qm,r));

• For all i ∈ J1, κK, if ri = 1, apply H⊗n to |Ai,si,s′
i
⟩;

• Let ρ′sk be the resulting state, run iO(Qm,r) coherently on ρ′k and measure
the final register to get m;

• Return m.

Copy-Protection of Point Functions 144

Hardcoded: Keys k1, k2, k3, programs R0
i ,R1

i for all i ∈ J1, κK.
On input vectors u1, u2, . . . , uκ, do the following:

1. If for all i ∈ J1, κK, Rri
i (ui) = 1, then output m.

2. Otherwise, output ⊥.

Figure 5.3: Program Qm,r.

Semi-Quantum Single-Decryptor

Alternatively, in the definition of single-decryptors above, we can combine the Setup and
QKeyGen algorithms to be a single interactive protocol with classical communication.
The security definition is defined analogously, in which the setup phase is now an
interactive setup phase where the challenger obtains the the secret key and the adversary
obtains the quantum unclonable secret key. This defines a notion of semi-quantum
single-decryptors.

Remark 5.5. Of course, now if the sender wants to generate a new quantum secret key,
it needs to run the interactive protocol again, which effectively also generates a new
classical secret key sk and a new classical public key pk. To recover the original setting
where there are only one classical secret/public key pair and possibly many quantum
secret keys, the sender can use any post-quantum semantic-secure public-key encryption
scheme to encrypt the new classical secret key sk generated by the semi-quantum protocol,
and send this encryption of sk to the receiver. This encryption of sk will also be included
in the ciphertext, which the sender can decrypt using its “master” secret key and perform
the original decryption algorithm. We note that for our construction of semi-quantum
copy-protection, this is not necessary though.

A construction of semi-quantum single-decryptors is identical to Construction 5.3,
except now we replace the Setup and QKeyGen algorithms by polynomially many runs
of Protocol 5.5. Security proof of Construction 5.3 also carries over this semi-quantum
setting directly, with only a small change as follows. In the reduction showing that
an adversary A that breaks the anti-piracy game of single-decryptors can be used
to construct an adversary A′ breaking the monogamy of entanglement game (defined
in Definition 5.12), A′ simulates the security game for A (in which A′ runs polynomially
many executions of Protocol 5.5 with A), A′ then picks one execution uniformly at
random and lets A runs the protocol with A′’s challenger. The rest of the reduction is
identical as the one given in [CLLZ21], we omit the full details here.

5.6.4 Proof of Anti-Piracy Security of Construction 5.1

We now prove the anti-piracy security of our copy-protection of points functions scheme.
For easy of reading, we present here the proof for the quantum protocol, but we note
that the same proof can be used for the semi-quantum protocol.

We first define the GenTrigger procedure (see Figure 5.4) which, given an input’s
prefix x0 and a PRF image y returns a so-called trigger input x′ that: passes the "Hidden
Trigger" condition of the program P. The following lemma follows from [CLLZ21].

Copy-Protection of Point Functions 145

Given as input x0 ∈ {0, 1}ℓ0, z ∈ {0, 1}m, k2, k3 ∈ K2 ×K3 and cosets
{Ai, si, s′i}i∈J1,ℓ0K:

• Let Q be the program which, given v0, . . . , vℓ0, returns z if
R
x0,i

i (vi) = 1 for all i or ⊥ otherwise.

• x′1 ← PRF2(k2, x0∥Q);

• x′2 ← PRF3(k3, x
′
1)⊕ (x0∥Q);

• Return x0∥x′1∥x′2.

Figure 5.4: GenTrigger procedure.

Lemma 5.13 ([CLLZ21, Lemma 7.17]). Assuming post-quantum iO and one-way func-
tions, any efficient QPT algorithm A cannot win the following game with non-
negligible advantage:

• A challenger samples k1 ← Setup(1λ) and prepares a quantum key ρk :=
({|Ai,si,s′

i
⟩}i∈J1,l0K, iO(P)) (recall that P has keys k1, k2, k3 hardcoded).

• The challenger then samples a random input x← {0, 1}n. Let z ← PRF1(k1, x).

• The challenger samples challenges x1, x2 according to the following distribu-
tion:

– x1 := x and x2
$← {0, 1}n with probability 1/3;

– x1
$← {0, 1}n and x2 := x with probability 1/3;

– x1, x2
$← {0, 1}n with probability 1/3;

• The challenger parses the inputs xi as xi := xi,0||xi,1||xi,2 for i ∈ {1, 2}. Let
x′i ← GenTrigger(xi,0, z1, k2, k3, {Aj, sj, s′j}j∈J1,ℓ0K) for i ∈ {1, 2}.

• The challenger flips a coin b, and sends either x1, x2 or x′1, x′2 to respectively
Bob and Charlie, depending on the value of the coin. A wins if it guesses b.

We are now ready to prove the anti-piracy security of our Construction 5.1. We
proceed with the proof via a sequence of hybrids. For any pair of hybrids (Gi, Gj), we
say that Gi is negligibly close to Gj if for every QPT adversary A = (A0,A1,A2), the
probability that A wins in Gi is negligibly close to the probability that it wins in Gj.
For the sake of simplicity, we denote the uniform distribution over {(0, 1), (1, 0), (1, 1)}
as D1/3.

Game G0: This is the original anti-piracy game of our copy-protection scheme.

(a) Setup phase

• The challenger samples
(
{Ai, si, s′i}i∈J1,ℓ0K, {|Ai,si,s′

i
⟩}i∈J1,ℓ0K, {(R0

i ,R1
i)}i∈J1,ℓ0K

)
←

SampleCoset(1λ).
• The challenger samples ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.

Copy-Protection of Point Functions 146

• The challenger prepares the program P̂← iO(P).
• The challenger samples a random point y ∈ {0, 1}n.
• The challenger computes z := PRF1(k1, y).
• The challenger sends ρy :=

(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

(b) Splitting phase

• A0 prepares a (possibly entangled) bipartite state σ12 and sends σ1 to A1 and
σ2 to A2.

(c) Challenge phase

• The challenger samples (b1, b2) $← D1/3.
• For i ∈ {1, 2}:

– If bi = 0: the challenger sets xi := y.
– Otherwise, the challenger samples xi ← {0, 1}n.

• The challenge sends x1 to A1 and x2 to A2.

(d) Answer phase

• A1 returns b′1 and A2 returns b′2.
• The adversary wins if b′1 = b1 and b′2 = b2.

Game G1: In this game, we replace x1, x2 by trigger inputs. The trigger’s inputs lemma
(Lemma 5.13) implies that G1 is negligibly close to G0.

(a) Setup phase

• The challenger samples
(
{Ai, si, s′i}i∈J1,ℓ0K, {|Ai,si,s′

i
⟩}i∈J1,ℓ0K, {(R0

i ,R1
i)}i∈J1,ℓ0K

)
←

SampleCoset(1λ).
• The challenger samples ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
• The challenger prepares the program P̂← iO(P).
• The challenger samples a random point y ∈ {0, 1}n.
• The challenger computes z := PRF1(k1, y).
• The challenger sends ρy :=

(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

(b) Splitting phase

• A0 prepares a (possibly entangled) bipartite state σ12 and sends σ1 to A1 and
σ2 to A2.

(c) Challenge phase

• The challenger samples (b1, b2) $← D1/3.
• For i ∈ {1, 2}:

– If bi = 0: the challenger sets xi := y and zi := z.
– Otherwise, the challenger samples xi ← {0, 1}n and zi ← {0, 1}m.
– In both case, the challenger computes x′i ← GenTrigger(xi,0, zi, k2, k3, {Ai,si,s′

i
}i∈J1,ℓ0K).

• The challenge sends x′1 to A1 and x′2 to A2.

(d) Answer phase

• A1 returns b′1 and A2 returns b′2.

Copy-Protection of Point Functions 147

• The adversary wins if b′1 = b1 and b′2 = b2.

Game G2: In this game, we replace z by a random string and change the challenges
accordingly. Because PRF1 is extracting, G2 is negligibly close to G1.

(a) Setup phase

• The challenger samples
(
{Ai, si, s′i}i∈J1,ℓ0K, {|Ai,si,s′

i
⟩}i∈J1,ℓ0K, {(R0

i ,R1
i)}i∈J1,ℓ0K

)
←

SampleCoset(1λ).
• The challenger samples ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
• The challenger prepares the program P̂← iO(P).
• The challenger samples a random point y ∈ {0, 1}n.
• The challenger samples z ← {0, 1}m.
• The challenger sends ρ :=

(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

(b) Splitting phase

• A0 prepares a (possibly entangled) bipartite state σ12 and sends σ1 to A1 and
σ2 to A2.

(c) Challenge phase

• The challenger samples (b1, b2) $← D1/3.
• For i ∈ {1, 2}:

– If bi = 0: the challenger sets xi := y and zi := z.
– Otherwise, the challenger samples xi ← {0, 1}n and zi ← {0, 1}m.
– In both case, the challenger computes x′i ← GenTrigger(xi,0, zi, k2, k3, {Ai,si,s′

i
}i∈J1,ℓ0K).

• The challenge sends x′1 to A1 and x′2 to A2.

(d) Answer phase

• A1 returns b′1 and A2 returns b′2.
• The adversary wins if b′1 = b1 and b′2 = b2.

Game G3: In this game, we recast the experiment using the notation of single-decryptor.
The probability of winning this game is the same as for the previous one.

(a) Setup phase

• The challenger samples
(
{Ai,si,s′

i
}i∈J1,ℓ0K, ρsk, pk

)
← SampleCoset(1λ).

• The challenger samples ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
• The challenger prepares the program P̂← iO(P).
• The challenger samples a random point y ∈ {0, 1}n.
• The challenger samples z ← {0, 1}m.
• The challenger sends ρ :=

(
ρsk, P̂, z

)
to A0.

(b) Splitting phase

• A0 prepares a (possibly entangled) bipartite state σ12 and sends σ1 to A1 and
σ2 to A2.

(c) Challenge phase

Copy-Protection of Point Functions 148

• The challenger samples (b1, b2) $← D1/3.
• For i ∈ {1, 2}:

– If bi = 0: the challenger sets zi := z.
– Otherwise, the challenger samples zi ← {0, 1}m.
– In both case, the challenger computes (xi, Q)← SD.Encrypt(pk, zi).
– Finally, the challenger computes x′i as in GenTrigger using xi,0 and Q.

• The challenge sends x′1 to A1 and x′2 to A2.
(d) Answer phase

• A1 returns b′1 and A2 returns b′2.
• The adversary wins if b′1 = b1 and b′2 = b2.

Reduction to Single-Decryptor’s Anti-Piracy Game. Assume that there exists a QPT adver-
sary (A0,A1,A2) who wins G3 with advantage δ. We construct an adversary (B0,B1,B2)
who wins the anti-piracy game, real-or-random style, of the single-decryptor scheme
with the same advantage δ.

1. Setup phase

• The challenger samples (sk, pk)← Setup(1λ).
• The challenger prepares ρsk ← SD.QKeyGen(sk).
• The challenger sends (pk, ρsk) to B0.

2. Splitting phase

• B0 samples three keys k1, k2, k3 and an image z ← {0, 1}m.
• B0 constructs the program P (based on k1, k2, k3, pk) as in Protect and sets

P̂← iO(P).
• B0 sends (ρsk, P̂, z) to A0 to get σ12.
• B0 sends σ′1 := (σ1, k2, k3) to B1, σ′2 := (σ2, k2, k3) to B2 and z as the challenge

message to the challenger.

3. Challenge phase:

• The challenger samples two uniformly random messages (z′, z′′) and two
ciphertexts (c1, c2) as follows.

– c1 = Encrypt(pk, z) and c2 = Encrypt(pk, z′) with probability 1/3.
– c1 = Encrypt(pk, z′) and c2 = Encrypt(pk, z) with probability 1/3.
– c1 = Encrypt(pk, z′) and c2 = Encrypt(pk, z′′) with probability 1/3.

• The challenger sends c1 to B1 and c2 to B2.

4. Answer phase

• For i ∈ {1, 2}:
– Bi, given (σ′i, ci), parse ci as (x0, Q), then prepares x′ = (x0||x′1||x′2) as in

GenTrigger: x′1 := PRF2(k2, x0||Q) and x′2 := PRF3(k3, x
′
1)⊕ (x0||Q).

– Bi runs Ai on (σi, x′i) and returns the outcome b′i.

The adversary (B) perfectly simulates A, and thus B breaks the anti-piracy security of
the single-decryptor scheme with the same probability δ, which completes the proof.

Appendix

A
Tokenized Digital Signatures

We report in this chapter a construction of tokenized digital signatures with strong
unforgeability security. The notion of quantum tokens for digital signatures was initiated
by Ben-David and Sattath [BS17]. In a tokenized digital signature scheme, a signer who
gets one copy of the signing token sig can sign a single bit b using a QPT algorithm
Sign(b, sig) whose output is a classical signature. The correctness guarantees that the
verification will accept the result as a signature on b. We note that the signing algorithm
is a unitary and will produce a superposition of all valid signatures of b; to obtain a
classical signature, a destructive measurement to the state is necessary which leads to a
collapse of the token state. Thus, a signing token sig can only be used to produce one
classical signature of a single bit and any attempt to produce a classical signature of the
other bit would fail.

Ben-David and Sattath [BS17] show how to construct a strongly unforgeable tokenized
digital signature scheme relative to a classical oracle (a subspace membership oracle).
This construction is then successfully instantiated in the plain model due to Coladangelo
et al. in [CLLZ21], albeit their construction is only weakly unforgeable. In this chapter,
we improve [CLLZ21]’s results and show that their construction is indeed strongly
unforgeable. [CLLZ21] construction is based on hidden coset states, whose security
is reduced to a computational direct product hardness of coset states. We then show
another version of the direct product hardness of coset states, which allows us to show
strong unforgeability for [CLLZ21]’s construction. Our contribution is thus the proof,
not the construction. This is a joint work with Thomas Vidick in 2021, in a failed
attempt to construct non-interactive zero-knowledge proof systems for any language
in QMA, the quantum analog of the class NP.

Before going into details, we give some intuition behind the construction of weakly
unforgeable tokenized digital signatures in [CLLZ21], which our construction is based
on. [CLLZ21] establishes the following computational direct product theorem for coset
states: a computationally bounded adversary who receives |As,s′⟩ and programs iO(PA+s),
iO(PA⊥+s′) for uniformly random A, s, s′, cannot produce a pair (v, w) such that v ∈ A+s
and w ∈ A⊥ + s′, except with negligible probability. From this computational direct
product problem, they give the first instantiation of (weakly unforgeable) tokenized
digital signatures based on classical cryptographic assumptions. Very roughly, the
signing token is |As,s′⟩, one can measure the state in the computational basis to obtain a
signature for 0, and measure the state in the Hadamard basis to obtain a signature for 1.

To prove this computational direct product theorem, the authors invoke the notion
of subspace-hiding obfuscators, introduced by Zhandry in [Zha19b]. A subspace hiding
obfuscator shO has the property that any computationally bounded adversary who
chooses a subspace A cannot distinguish between shO(PA) and shO(PB) for a uniformly
random superspace B of A (of not too large dimension). Zhandry further shows that

Preliminaries: Tokenized Digital Signature 150

indistinguishability obfuscation implies subspace-hiding obfuscation. The proof of the
computational direct product problem is done in the following way. We assume that
A ⊆ Fn2 has dimension n

2 .

• Replace iO(PA+s) by iO(PB+s) for a uniformly random superspace B of A, where
dim(B) = 3n

4 . Similarly, replace iO(PA⊥+s′) by iO(PC⊥+s′) for a uniformly random
superspace C⊥ of A⊥, where dim(C⊥) = 3n

4 .

• Argue that the task of finding a pair of vectors in (A + s) × (A⊥ + s′) given
|As,s′⟩ , B, C for a uniformly random subspace C ⊆ A ⊆ B is as hard as the task of
finding a pair of vectors in (Ã+z)×(Ã+z′) given |Ãz,z′⟩ for some uniformly random
subspace Ã of dimension n

4 . The crucial observation is that, since B+ s = B+ s+ t
for any vector t ∈ B, the programs PB+s and PB+s+t are functionally equivalent.
So, an adversary who receives iO(PB+s) cannot distinguish this from iO(PB+s+t)
for any t. We can think of t as a randomizing masking of s, which removes the
adversary’s knowledge about the membership programs.

• The latter task of finding such a pair of vectors corresponding to Ã, z, z′ is
information-theoretically hard (it would even be hard with black-box access
to the membership checking oracles for Ã+ z and Ã⊥ + z′).

To construct strongly unforgeable tokenized digital signatures, we would need a
stronger version of the computational direct product theorem, where the task is now to
find a pair of vectors (v, w) ∈ (A+ s)× (A+ s) or (v, w) ∈ (A⊥+ s′)× (A⊥+ s′) such that
v ̸= w. Applying the same reduction above allows us to reduce this task to the task of
finding a pair of different vectors v, w ∈ A+ s given |As,s′⟩ , B, C such that C ⊆ A ⊆ B.
Unfortunately, we cannot directly reduce this task to the information-theoretic direct
product theorem. The reason is that the adversary can just measure the state in the
computational basis (or in the Hadamard basis if the task is to find a pair of different
vectors in A⊥ + s′) to obtain a random vector v ∈ A + s, sample a non-zero vector
c ∈ C and output (v, c+ v). Since c ∈ C ⊆ A, we have that c+ v is also in A+ s. This
shows that the adversary can win the game without violating any complexity-theoretic
arguments. Overcoming this technical hurdle requires a more involved analysis. We refer
to subsequent sections for a formal description and proofs.

The outline of this section is as follows. We first recall some required definitions
in Appendix A.1. A variant of the computational direct product theorem is given
in Appendix A.2. The construction of strongly unforgeable tokenized digital signatures
based on this variant and its proof of security are given in Appendix A.3.

A.1 Preliminaries: Tokenized Digital Signature

A formal definition of tokenized digital signature is given below.

Definition A.1 — Tokenized Digital Signature [BS17]
A tokenized digital signature scheme consists of four QPT algorithms TDS :=
⟨KeyGen,TokenGen, Sign,TokenVerif,Verif⟩ with the following properties:

(vk, sk)← KeyGen(1λ). On input the security parameter λ, the key generation
algorithm KeyGen outputs a classical verification key vk and a secret key sk.

Preliminaries: Tokenized Digital Signature 151

sig← TokenGen(sk). On input the secret key sk, the token generation algorithm
TokenGen outputs a signing token sig. We emphasize that if TokenGen is called
ℓ times, it outputs different states sig1, . . . , sig

ℓ
.

σ ← Sign(m, sig). On input a message m ∈ {0, 1}∗ and a signing token sig, the
signing algorithm Sign outputs a classical signature σ ∈ {0, 1}p(λ).

(b, sig′)← TokenVerif(vk, sig). On input the verification key vk, and a signing to-
ken sig, the token verification TokenVerif outputs a single bit b ∈ {0, 1}, and
a post-verified token sig′.

b← Verif(vk,m, σ). On input the verification key vk, a message m and a classical
signature σ, the verification algorithm outputs a bit b ∈ {0, 1}.

A tokenized digital signature scheme TDS must satisfy the following requirements
for all λ ∈ N.

Correctness. For every message m ∈ {0, 1}∗, we have that

Pr
[
Verif(vk, Sign(m, sig)) = 1 | (vk, sk)← KeyGen(1λ); sig← TokenGen(sk)

]
= 1,

where the probability is taken over randomness of KeyGen and TokenGen.

(Strong) Unforgeability. We introduce the algorithm Verifk which takes as input the
verification key vk and k pairs (m1, σ1), . . . , (mk, σk) and returns 1 if and only
if: (1) all the messages are distinct, that is, mi ̸= mj for all 1 ≤ i ̸= j ≤ k;
and (2) all the pairs pass the verification, that is, Verif(vk,mi, σi) = 1 for
all i ∈ J1, kK. For every ℓ ∈ N, no QPT adversary A can sign ℓ+ 1 different
messages by using the verification key and ℓ signing tokens, except with
negligible probability:

AdvTDS(λ,A) := Pr
[
Verifℓ+1(vk,A(vk, sig1 ⊗ · · · ⊗ sig

ℓ
))

]
≤ negl(λ).

We also say that TDS is strongly unforgeable if we only require that k
pairs of message/signature are distinct, that is (mi, σi) ̸= (mj, σj) for all
1 ≤ i ̸= j ≤ k. We further say that TDS is δ-secure, for some concrete negli-
gible function δ(λ), if for all QPT adversaries A, the advantage AdvTDS(λ,A)
is smaller than δ(λ)Ω(1).

Testability. The token testing algorithm TokenVerif, unlike the signing algorithm,
does not consume the signing token. If a signing token passes this test, the
post-verified token also passes the test, and it can be used to sign a document.
That is,

Pr
[
TokenVerif(sig) = (1, sig) | (vk, sk) $← KeyGen(1λ); sig $← TokenGen(sk)

]
= 1.

Direct Product Hardness 152

Furthermore, for any QPT adversary A with access to a verification key vk
and polynomially many signing tokens, which generates a message m and a
state s̃ig, we have that:

Pr
[
Verif(vk,m, Sign(m, s̃ig

′)) = 1 | (1, s̃ig
′)← TokenVerif(s̃ig)

]
≥ 1− negl(λ),

Pr
[
TokenVerif(vk, s̃ig

′) = 1 | (1, s̃ig
′)← TokenVerif(s̃ig)

]
≥ 1− negl(λ).

A.2 Direct Product Hardness

Informally, the computational direct product hardness [CLLZ21] states that given |As,s′⟩
and programs iO(PA+s) and iO(PA⊥+s′) for uniformly random A ⊆ Fn2 , s, s′ ∈ Fn2 , no
QPT adversary can produce a pair (v, w) ∈ (A+ s)× (A⊥ + s′), except with negligible
probability in n, where PA+s and PA⊥+s′ are programs that check membership in the
cosets A+ s and A⊥ + s′, respectively. We refer the reader to [CLLZ21] for more details.

In the following, we introduce a variant of the direct product problem, which very
roughly states that it is also hard to produce a pair (v, w) ∈ (A + s) × (A + s) or
(v, w) ∈ (A⊥ + s′)× (A⊥ + s′) such that v ̸= w.

A.2.1 Information-Theoretic Direct Product Hardness - A Variant

Theorem A.1. Let A ⊆ Fn2 be a uniformly random subspace of dimension n/2, and
s, s′ be uniformly random in Fn2 . Let ε > 0 such that 1/ε = o

(
2n/2

)
. Let

Λ(A, s) := (A+ s)× (A+ s),

and
Λ(A⊥, s′) := (A⊥ + s′)× (A⊥ + s′).

Given one copy of |As,s′⟩ and quantum membership oracles for A+ s and A⊥ + s′,
an adversary needs Ω

(√
ε2n/2

)
queries to output a pair (v, w) such that v ̸= w and

(v, w) ∈ Λ(A, s) with probability at least ε.
The same number of queries is also required to output a pair (v, w) ∈ Λ(A⊥, s′)

satisfying v ̸= w with probability at least ε.

The proof of this theorem is similar to the proof of the original information-theoretic
direct-product hardness [CLLZ21], which is a random self-reduction to the statement
from Ben-David and Sattath [BS17]. We first present the theorem from [BS17].

Theorem A.2 ([BS17, Theorem 28]). Let A ⊆ Fn2 be a uniformly random subspace
of dimension n/2, and let ε > 0 such that 1/ε = o

(
2n/2

)
. Given one copy of |A⟩

and quantum membership oracles for A and A⊥ an adversary needs Ω
(√

ε2n/2
)

queries to output a pair (v, w) such that v ̸= w and (v, w) ∈ (A \ {0})× (A \ {0}) with
probability at least ε.

The same number of queries is also required to output a pair (v, w) ∈ (A⊥ \
{0})× (A⊥ \ {0}) satisfying v ̸= w with probability at least ε.

Direct Product Hardness 153

Proof of Theorem A.1. We note that finding such a pair of elements in A and finding
such a pair in A⊥ are essentially the same task; thus it suffices to prove the result for a
pair in A \ {0}, and the result for the other case will follow by symmetry.

Let A be an adversary for Theorem A.1 who suceeds with probability p, we construct
an adversary B for Theorem A.2 with almost the same success probability making the
same number of queries. B proceeds as follows.

• B receives |A⟩ for some A ⊆ Fn2 . Sample s, s′ ∈ Fn2 uniformly at random, and create
the state |As,s′⟩.

• B gives |As,s′⟩ as input to A. B simulates the membership oracles A+s and A⊥+s′

as follows. If it is a query to the oracle A + s, B receives v from A, and sends a
query as v − s to its membership oracle for A. It forwards the answer to A. The
other case is handled similarly, using its membership oracle for A⊥ and s′.

• Finally, B receives (v, w) in return from A. B then outputs (v − s, w − s).

With probability p, A outputs (v, w) ∈ Λ(A, s) such that v ̸= w. Thus the output of B
is (v− s, w− s) such that (v− s, w− s) ∈ A×A and v− s ̸= w− s. Next, we argue that
with overwhelming probability, we have that v− s ̸= 0 and w− s ̸= 0. This is equivalent
to show that the probability that v − s = 0 or w − s = 0 is negligible. Note that there
are 2n/2 values of s̃ such that |As̃,s′⟩ = |As,s′⟩, since translating s by an element s̃ of A
does not affect the state. Since s is sampled uniformly at random, the probability that
v − s = 0 or w − s = 0 is equal to the probability that v − s̃ = 0 or w − s̃ = 0. This
probability is 2 · 1

2n/2 , which is negligible.

A.2.2 Computational Direct Product Hardness - A Variant

In this section, we prove a computational version of the direct product problem, in which
the adversary is given obfuscations of the subspace membership checking programs, but
is restricted to be computationally bounded. Our computational version extends the
original statement given in [CLLZ21, Theorem 4.6] to include the computational version
of Theorem A.1.

Theorem A.3. Assume the existence of quantum-secure indistinguishability obfuscation
and quantum-secure injective one-way functions. Let A ⊆ Fn2 be a uniformly random
subspace of dimension n/2, and s, s′ be uniformly random in Fn2 . Given one copy
of |As,s′⟩, iO(PA+s) and iO(PA⊥+s′), any QPT adversary outputs a pair (v, w) such
that either

(i) (v, w) ∈ Λ(A, s) and v ̸= w;

(ii) or (v, w) ∈ Λ(A⊥, s′) and v ̸= w;

(iii) or (v, w) ∈ (A+ s)× (A⊥ + s′);

with negligible probability.

We first state the two lemmas required to prove Theorem A.3, and then assume
correctness of these lemmas to prove Theorem A.3. In the subsequent section, we prove
the required lemmas.

Direct Product Hardness 154

The first required lemma (proven in Appendix A.2.3) shows that the first and the
second requirement (i)–(ii) are provably satisfied, except that we strengthen these
requirements to require that the output vectors differ in the last 7n/8 positions.

Lemma A.1. Let T := Jn8 , n− 1K. Under the same assumptions as Theorem A.3, given
one copy of |As,s′⟩, iO(PA+s) and iO(PA⊥+s′) any QPT adversary outputs a pair (v, w)
such that either

(i) (v, w) ∈ Λ(A, s) and v|T ̸= w|T ;

(ii) or (v, w) ∈ Λ(A⊥, s′) and v|T ̸= w|T ;

with negligible probability.

The second required lemma is identical to the first lemma, except that now we require
the output vectors to be different in the first 7n/8 positions. The proof of this lemma is
trivially adapted from that one of Lemma A.1.

Lemma A.2. Let T := J0, 7n
8 −1K. Under the same assumptions as Theorem A.3, given

one copy of |As,s′⟩, iO(PA+s) and iO(PA⊥+s′), any QPT adversary outputs a pair
(v, w) such that either

(i) (v, w) ∈ Λ(A, s) and v|T ̸= w|T ;

(ii) or (v, w) ∈ Λ(A⊥, s′) and v|T ̸= w|T ;

with negligible probability.

We also recall the original computational direct product hardness stated in [CLLZ21]
for completeness.

Theorem A.4 ([CLLZ21, Theorem 4.6]). Assume the existence of quantum-secure
indistinguishability obfuscation and injective one-way functions. Let A ⊆ Fn2 be a
uniformly random subspace of dimension n/2, and s, s′ be uniformly random in Fn2 .
Given one copy of |As,s′⟩, iO(PA+s) and iO(PA⊥+s′), any QPT adversary outputs a
pair v, w such that v ∈ A+ s and w ∈ A⊥ + s′ with negligible probability.

Assuming Lemma A.1 and Lemma A.2, we prove Theorem A.3 as follows.

Proof of Theorem A.3. We note that the third item (iii) is proven by Theorem A.4,
and that finding such a different pair of vectors in Λ(A, s) and finding such a pair in
Λ(A⊥, s′) are essentially the same task. Thus, it suffices to prove the first item (i), and
the second item (ii) will follow by symmetry.

We prove item (i) by contrapositive. Suppose it is false. Then there exists a QPT
adversary A that given |As,s′⟩ , iO(PA+s) and iO(PA⊥+s′) for a uniformly random A ⊆ Fn2
and uniformly random vectors s, s′ ∈ Fn2 , returns (v, w) ∈ Λ(A, s) such that v ̸= w with
non-negligible probability ϵ.

Let T1 := J0, 7n
8 − 1K and T2 := Jn8 , n − 1K. For any pair v ̸= w, it must be the case

that v|T1 ̸= w|T1 or v|T2 ̸= w|T2 . Let p1 be the probability that A returns (v, w) such that
v|T1 ̸= w|T1, and p2 be the probability that A A returns (v, w) such that v|T2 ̸= w|T2.
(These probabilities are taken over everything: the randomness of the challenger and
of the adversary.) Then, by the union bound, we have that p1 + p2 ≥ ϵ. Since ϵ is
non-negligible, at least one of p1 or p2 must be non-negligible. If p2 is non-negligible,
then the adversary A contradicts Lemma A.1. Similarly, if p1 is non-negligible, A
contradicts Lemma A.2.

Direct Product Hardness 155

A.2.3 Proof of Lemma A.1

Before presenting the proof of Lemma A.1, we recall below the notion of subspace hiding
obfuscation for the reader’s convenience.

Subspace Hiding Obfuscation

Subspace-hiding obfuscation was introduced by Zhandry [Zha19b] as a key component
in constructing public-key quantum money. This notion requires that the obfuscation
of a circuit that computes membership in a subspace A is indistinguishable from the
obfuscation of a circuit that computes membership in a uniformly random superspace
of A (of dimension sufficiently far from the full dimension). The formal definition is as
follows.

Definition A.2 — Subspace Hiding Obfuscation [Zha19b]
A subspace hiding obfuscator for a field F and dimensions d0, d1 is a PPT algorithm
shO such that:

Input. shO takes as input the description of a linear subspace S ⊆ Fn of dimension
d ∈ {d0, d1}. For concreteness, we will assume S is given as a matrix whose
rows form a basis for S.

Output. shO outputs a circuit Ŝ that computes membership in S. Precisely, let S(x)
be the function that decides membership in S. Then

Pr
[
Ŝ(x) = S(x) ∀ x | Ŝ ← shO(S)

]
≥ 1− negl(λ).

In the following, we will write shOA as shorthand for shO(A).

Security. For security, consider the following game between an adversary and a
challenger.

• The adversary submits to the challenger a subspace S0 of dimension d0.

• The challenger samples a uniformly random subspace S1 ⊆ Fn of dimen-
sion d1 such that S0 ⊆ S1. It then runs Ŝ ← shO(Sb), and gives Ŝ to the
adversary.

• The adversary makes a guess b′ for b.

shO is secure if all QPT adversaries have negligible advantage in this game.
We will represent the advantage of the adversary in this game by AdvshO(λ,A).

Zhandry [Zha19b] gives a construction of a subspace hiding obfuscator based on
one-way functions and indistinguishability obfuscation.

Theorem A.5 ([Zha19b, Theorem 6.3]). If injective one-way functions exist, then any
indistinguishability obfuscator, appropriately padded, is also a subspace hiding
obfuscator for field F and dimensions d0, d1 as long as |F|n−d1 is exponential.

Direct Product Hardness 156

Proof of Lemma A.1

Proof. We note that finding such a pair of elements in Λ(A, s) and finding such a pair
in Λ(A⊥, s′) are essentially the same task; thus it suffices to prove the result for a pair in
Λ(A, s), and the result for the other case will follow by symmetry.

Let A be a QPT adversary for the direct product game of Lemma A.1. The proof of
the lemma proceeds by a sequence of hybrids. For any hybrid Gi, we denote by Advi(A)
the advantage of A in Gi, where the probability is taken over the random coins of Gi

and A.

Game G0: This is the direct product game of Lemma A.1.

Game G1: This is identical to G0, except that now the obfuscation iO(PA+s) is replaced
by iO(iO(PA)(· − s)). For simplicity, in the following, we abuse the notation and write
iO(iO(PA)(· − s)) as iO(PA(· − s)).

Claim A.1 (From G0 to G1). For any QPT adversary A, we have that

|Adv0(A)− Adv1(A)| ≤ AdviO(λ,A).

Proof. We note that both PA+s and PA(· − s) compute the same functionality, since
any vector v ∈ A + s if and only if v − s ∈ A. By security of iO, the two games are
computationally indistinguishable.

Game G2: This is identical to G1, except that now the challenger samples uniformly
at random a superspace B of A of dimension 7n

8 , and the obfuscation iO(PA(· − s)) is
replaced by iO(PB(· − s)).

Claim A.2 (From G1 to G2). For any QPT adversary A, we have that

|Adv1(A)− Adv2(A)| ≤ AdviO(λ,A).

Proof. Since B is a superspace of A of dimension 7n
8 , by the subspace hiding property

of iO (Lemma 2.8), the two games are computationally indistinguishable.

Game G3: This is identical to G2, except that now the challenger samples uniformly
at random an element wB from B, and the obfuscation iO(PB(· − s) is replaced by
iO(PB(· − t)), where t = s+ wB.

Claim A.3 (From G2 to G3). For any QPT adversary A, we have that

|Adv2(A)− Adv3(A)| ≤ AdviO(λ,A).

Proof. We note that both PB(· − t) and PB(· − s) compute the same functionality, since
for any vector wB ∈ B, we have B + wB is the same as B. By security of iO, the two
games are computationally indistinguishable.

Game G4: This is identical to G3, except that now the obfuscation iO(PA⊥+s′) is replaced
by iO(PA⊥(· − s′)).

Direct Product Hardness 157

Claim A.4 (From G3 to G4). For any QPT adversary A, we have that

|Adv3(A)− Adv4(A)| ≤ AdviO(λ,A).

Proof. We note that both PA⊥+s′ and PA⊥(· − s′) compute the same functionality, since
any vector v ∈ A⊥ + s′ if and only if v − s′ ∈ A⊥. By security of iO, the two games are
computationally indistinguishable.

Game G5: This is identical to G4, except that now the challenger samples uniformly at
random a superspace C⊥ of A⊥ of dimension 7n

8 , and the obfuscation iO(PA⊥(· − s′)) is
replaced by iO(PC⊥(· − s′)).

Claim A.5 (From G4 to G5). For any QPT adversary A, we have that

|Adv4(A)− Adv5(A)| ≤ AdviO(λ,A).

Proof. Since C⊥ is a superspace of A⊥ of dimension 7n
8 , by security of subspace hiding

obfuscation, the two games are computationally indistinguishable.

Game G6: This is identical to G5, except that now the challenger samples uniformly at
random an element wC⊥ from C⊥, and the obfuscation iO(PC⊥(· − s′) is replaced by
iO(PC⊥(· − t′)), where t′ = s′ + wC⊥ .

Claim A.6 (From G5 to G6). For any QPT adversary A, we have that

|Adv5(A)− Adv6(A)| ≤ AdviO(λ,A).

Proof. We note that both PC⊥(· − t′) and PC⊥(· − s′) compute the same functionality,
since for any vector wC⊥ ∈ C⊥, we have C⊥ +wC⊥ is the same as C⊥. By security of iO,
the two games are computationally indistinguishable.

Game G7: This is identical to G6, except that now we change the winning condition of
the hybrid: instead of asking the adversary to output two vectors v, w ∈ Λ(A, s) such
that v|T ̸= w|T , we ask the adversary to output two vectors v, w ∈ Λ(A, s) such that
v|T ̸= w|T and v − w ∈ (A \ C), where C, the dual subspace of C⊥, is of dimension n

8 .

Claim A.7 (From G6 to G7). For any QPT adversary A, if Adv6(A) is non-negligible,
then there exists a non-negligible function ε = ε(λ) such that

Adv7(A) ≥ ε.

Proof. Due to our choice of dimension of subspaces B,C, we can apply the anti-
concentration of the subspace obfuscator to prove the claim. Formally, we invoke
the following lemma from [Shm22b], which states that any adversary, given an obfusca-
tion iO(PC⊥) where C⊥ is a random high-dimensional superspace of A⊥ and outputting
a vector in A, has to accidentally hit the subspace A \ C with a noticeable probability.

Direct Product Hardness 158

Lemma A.3 ([Shm22b, Lemma 5.1]). Let S = {Sλ}λ∈N a subspace Sλ ⊆ Fλ2 of dimension
d = {dλ}λ∈N. Let t = {tλ}λ∈N such that there is some constant δ ∈ (0, 1) with
∀λ ∈ N : tλ ≥ λδ and λ−dλ−2·tλ ≥ Ω(λ). Let iO a quantum-secure indistinguishability
obfuscation scheme for classical circuits and assume that post-quantum injective
one-way functions exist. Then, there is no quantum polynomial-time algorithm
A = {Aλ,ρλ

}λ∈N, a negligible function negl and a non-negligible function η such that

Pr
[
Aλ(ρλ, iO(PT)) ∈ T⊥ | T $← S⊆λ−t

]
≥ η(λ),

and
Pr

[
Aλ(ρλ, iO(PT)) ∈ (S⊥ \ T⊥) | T $← S⊆λ−t

]
≤ negl(λ),

where {S⊆λ−t}λ∈N is the uniform distribution over subspaces of dimension λ− tλ that
contain S.

By applying the anti-concentration lemma above with λ = n, t = n
8 and d = n

2 , we
have that if Adv6(A) is non-negligible, then the probability that v − w ∈ (A \ C) is at
least Adv6(A)− negl(λ), concluding the claim.

Game G8: This is identical to G7, except that now instead of sending obfuscations of
membership checking programs, the challenger sends B,C, t, t′ in clear to A.

Claim A.8 (From G7 to G8). For any QPT adversary A for G7, there exists an adversary
B for G8 such that

Adv7(A) ≤ Adv8(B).

Proof. This is immediate.

Claim A.9. For any (possibly unbounded) adversary A, we have that

Adv8(A) ≤ negl(λ).

Proof. We will follow the proof of [CLLZ21, Lemma 4.13]. Suppose there exists a QPT
adversary A for G8 that wins with probability p.

We first show that, without loss of generality, one can take B to be the subspace of
vectors such that the last n/8 entries are zero (and the rest are free), and one can take
C to be such that the last 7n/8 entries are zero (and the rest are free). We construct the
following adversary B for the game where B and C have the special form above with
trailing zeros, call these B∗ and C∗, from an adversary A for the game of G8.

• B receives a state |As,s′⟩ together with t, t′, for some C∗ ⊆ A ⊆ B∗, where t = s+wB∗

for wB∗
$← B∗, and t′ = s′ + wC⊥

∗
for wC⊥

∗

$← C⊥∗ .

• B picks uniformly at random subspaces B and C of dimension 7n/8 and n/8
respectively, such that C ⊆ B. B also picks a uniformly random isomorphism
T mapping C∗ to C and B∗ to B. B applies to |As,s′⟩ the unitary UT which
acts as T on the standard basis elements. B gives UT |As,s′⟩ to A together with
B,C, T (t), (T −1)T (t′).

• B receives (v, w) from A, and outputs (T −1(v), T −1(w))).

Direct Product Hardness 159

First, notice that

UT |As,s′⟩ = UT
∑
v∈A

(−1)⟨v,s′⟩ |v + s⟩

=
∑
v∈A

(−1)⟨v,s′⟩ |T (v) + T (s)⟩

=
∑

w∈T (A)
(−1)⟨T −1(w),s′⟩ |w + T (s)⟩

=
∑

w∈T (A)
(−1)⟨w,(T −1)T (s′)⟩ |w + T (s)⟩

= |T (A)z,z′⟩ ,

where z = T (s) and z′ = (T −1)T (s′).
Furthermore, notice that T (A) is a uniformly random subspace between C and B,

and that z and z′ are uniformly random vectors in Fn2 . We argue that:

(i) T (t) is distributed as a uniformly random element of B + z.

(ii) (T −1)T (t′) is distributed as a uniformly random element of C⊥ + z′.

For (i), notice that

T (t) = T (s+ wB∗) = T (s) + T (wB∗) = z + T (wB∗),

where wB∗ is uniformly random in B∗. Since T is an isomorphism with T (B∗) = B,
T (wB∗) is uniformly random in B. Thus, T (t) is distributed as a uniformly random
element in B + z.

For (ii), notice that

(T −1)T (t′) = (T −1)T (s′ + wC⊥
∗

) = (T −1)T (s′) + (T −1)T (wC⊥
∗

)
= z′ + (T −1)T (wC⊥

∗
),

where wC⊥
∗

is uniformly random in C⊥∗ . Let x ∈ C, then

⟨(T −1)T (wC⊥
∗

), x⟩ = ⟨wC⊥
∗
, T −1(x)⟩ = 0,

where the last equality follows because wC⊥
∗
∈ C⊥∗ and T −1(C) = C∗. Thus (T −1)T (wC⊥

∗
)

belongs to C⊥. Since (T −1)T is a bijection, (T −1)T (wC⊥
∗

) is uniformly random in C⊥. It
follows that (T −1)T (t′) is distributed as a uniformly random element in C⊥ + z′.

Hence, A receives the correct distribution, and thus, with probability p, A returns a
pair (v, w) ∈ Λ(T (A), z) satisfying v|T ̸= w|T and v − w ∈ (T (A) \ C).

Notice that:

• If v ∈ T (A) + z, where z = T (s), then T −1(v) ∈ A+ s.

• If v − w ∈ (T (A) \ C), then v − w /∈ C. Thus, we have T −1(v) − T −1(w) =
T −1(v − w) /∈ T −1(C) = C∗. Since C∗ is the subspace of vectors such that the last
7n/8 entries are zero, we also have that T −1(v)|T ̸= T −1(w)|T .

Direct Product Hardness 160

Thus, with the same probability p, B returns a pair (v′, w′) ∈ Λ(A, s) such that
v′|T ̸= w′|T and v′ − w′ ∈ (A \ C∗), as desired.

So, we can now assume that B is the space of vectors such that the last n
8 entries

are zero, and C is the space of vectors such that the last 7n
8 entries are zero. Then, the

sampled subspace A is a uniformly random subspace subject to the last n
8 entries being

zero, and the first n
8 entries being free. From an adversary A for G8 with such B and C,

we will construct an adversary B for the information-theoretic direct product problem
described in Theorem A.1, where the ambient subspace is Fm2 where m = 3n

4 . B works
as follows.

• B receives |As,s′⟩ for uniformly random A ⊆ Fm2 of dimension m
2 and uniformly

random s, s′ ∈ Fm2 . B samples s̃, s̃′, ŝ, ŝ′ $← F
n
8
2 .

Let |ϕ⟩ = 1
2n/16

∑
x∈{0,1}n/8(−1)⟨x,s̃′⟩ |x+ s̃⟩. B creates the state

|W ⟩ = |ϕ⟩ ⊗ |As,s′⟩ ⊗ |ŝ⟩ .

B gives to A as input the state |W ⟩, together with t = 07n/8∥ŝ+ wB for wB
$← B,

and t′ = ŝ′∥07n/8 + wC⊥ , for wC⊥
$← C⊥.

• A returns a pair (v, w) ∈ Fn2 × Fn2 . Let v′ = v|J n
8 ,

7n
8 −1K ∈ Fm2 be the “middle” 3n

4
entries of v. Let w′ = w|J n

8 ,
7n
8 −1K. B outputs (v′, w′).

Notice that

|W ⟩ = |ϕ⟩ ⊗ |As,s′⟩ ⊗ |ŝ⟩
=

∑
x∈{0,1}n/8,v∈A

(−1)⟨x,s̃′⟩(−1)⟨v,s′⟩ |(x+ s̃)∥(v + s)∥ŝ⟩

=
∑

x∈{0,1}n/8,v∈A
(−1)⟨(x∥v∥0n/8),(s̃′∥s′∥ŝ′)⟩

∣∣∣(x∥v∥0n/8 + s̃∥s∥ŝ)
〉

=
∑
w∈Ã

(−1)⟨w,z′⟩ |w + z⟩ = |Ãz,z′⟩ ,

where z = s̃∥s∥ŝ, z′ = s̃′∥s′∥ŝ′, and Ã is the subspace in which the first n/8 entries are
free, the middle 3n/4 entries belong to the subspace A, and the last n/8 entries are zero.

Notice that the subspace Ã, when averaging over the choice of A, is distributed
precisely as in the game G8 (with B and C of special form with trailing zeros); z, z′ are
uniformly random in Fn2 ; t is uniformly random from B + z and t′ is uniformly random
from C⊥ + z′. Thus, with probability p, A returns to B a pair (v, w) ∈ Λ(Ã, z) such that
v|T ̸= w|T and v−w ∈ Ã \C. Furthermore, we note that if (v, w) ∈ Λ(Ã, z), the last n/8
entries of both v and w must be ŝ. It follows that, if v|T ̸= w|T , we have that v′ ̸= w′.
Overall, we have that with probability p, the answer (v′, w′) returned by B is such that
(v′, w′) ∈ Λ(A, s) satisfying v′ ̸= w′.

By Theorem A.1, we deduce that p must be negligible.

Therefore we show that the advantage of distinguishing G0 and G6 is negligible, and
the success probability in G7 is at most the success probability in G8, which is negligible.
We finish the proof by invoking Claim A.7, which concludes that the success probability
in G6 must also be negligible.

Strongly Unforgeable Tokenized Digital Signatures 161

A.3 Strongly Unforgeable Tokenized Digital Signatures

In this section, we show how to construct strongly unforgeable tokenized digital signa-
tures from indistinguishability obfuscation.

Following [BS17], we first define a notion of one-bit one-time strongly unforgeable
tokenized digital signatures. Then, using the construction given in [BS17], one can obtain
a full-fledged strongly unforgeable scheme by combining a one-bit one-time strongly
unforgeable scheme with any classical strongly unforgeable digital signature scheme
against quantum attacks.

Definition A.3 — One-bit One-time Strongly Unforgeable Tokenized Digital Signatures
A tokenized digital signature scheme TDS is one-bit one-time strongly unforgeable
if for every λ, for every QPT adversary A, we have that

Pr


m0,m1 ∈ {0, 1}

∧ Verif2(vk,m0, σ0,m1, σ1) = 1
∧ (m0, σ0) ̸= (m1, σ1)

∣∣∣∣∣∣∣∣
(vk, sk) $← KeyGen(1λ)

sig $← TokenGen(sk)
(m0, σ0,m1, σ1)← A(vk, sig)

 ≤ negl(λ).

Furthermore, let Adv1−TDS(λ,A) denote the above probability. We say that TDS is
δ-strongly unforgeable, for some concrete negligible function δ(λ), if for all QPT
adversary A, the advantage Adv1−TDS(λ,A) is smaller than δ(λ)Ω(1).

The following theorem, whose proof is given in [BS17], says that one-bit one-time
strong unforgeability is sufficient to achieve a full-fledged strong unforgeability.

Theorem A.6 (Adapted from [BS17, Theorem 13]18). A one-bit one-time strongly
unforgeable tokenized digital signature scheme implies a full-fledged strongly un-
forgeable tokenized digital signature scheme, assuming the existence of a strongly
unforgeable quantum-secure digital signature scheme.

Construction. Next, we give a construction of one-bit one-time strongly unforgeable
digital signatures from hidden coset states in Figure A.1. This construction is identical
to the one for weak unforgeability in [CLLZ21].

Theorem A.7. Assuming the existence of quantum-secure indistinguishability obfus-
cation and quantum-secure injective one-way functions, the scheme given in Fig-
ure A.1 is a one-bit one-time strongly unforgeable tokenized digital signature
scheme.

Proof. The proof of this theorem follows immediately from Theorem A.3.

Since one-way functions imply digital signatures, we have the following corollary:

Corollary A.1. Assuming the existence of quantum-secure indistinguishability obfus-
cation and quantum-secure injective one-way functions, there exists a strongly
unforgeable tokenized digital signature scheme.

Proof. This follows immediately from Theorem A.6 and Theorem A.7.

18While the statement of [BS17, Theorem 13] only applies to weak unforgeability, the same proof extends
to strong unforgeability.

Strongly Unforgeable Tokenized Digital Signatures 162

KeyGen(1λ) : Set n = poly(λ).

• Sample uniformly A ⊆ Fn2 of dimension n
2 .

• Sample s, s′ $← Fn2 .

• Output sk := (A, s, s′) (where by A we mean a description of the sub-
space A), and vk := (iO(PA+s), iO(PA⊥+s′)).

TokenGen(sk) : Take as input sk of the form (A, s, s′).

• Output sig := |As,s′⟩.

Sign(m, sig) : Take as input m ∈ {0, 1}, and a state sig on n qubits.

• Compute H⊗nsig if m = 1, otherwise do nothing to the quantum state.

• Measure the state in the computational basis. Let σ be the outcome.

• Output (m,σ).

Verif(vk, (m,σ)) : Parse vk as (C0, C1) where C0 and C1 are circuits.

• Output Cm(σ).

TokenVerif(vk, sig) : Parse vk as (C0, C1) where C0 and C1 are circuits.

• Let Vi be the unitary implementing the following operation:

Vi |v, z⟩ 7→ |v, z ⊕ Ci(v)⟩ .

Compute sig′ := (H⊗n ⊗ I)V1(H⊗n ⊗ I)V0sig⊗ |0⟩.

• Measure the last register in the computational basis.

• If the outcome is 1, return (0, sig′). Otherwise, return (1, sig′).

Figure A.1: A one-bit one-time strongly unforgeable scheme from hidden coset states.

Appendix

B
Password-Authenticated Quantum Key
Exchange

In their 1984 seminal paper [BB84], Bennett and Brassard gave the first proof that the
laws of quantum mechanics could lead to an achievement of unconditional security
for classical cryptographic tasks. Their celebrated Quantum Key Distribution protocol
(so-called QKD) allows two parties to agree on a common secret key which is information-
theoretic secret, assuming a quantum channel and an authenticated (but not secret)
classical channel. Even though this protocol is a conceptual milestone in the quantum
cryptography field, the need for an information-theoretically authenticated classical
communication channel leads to a bootstrapping problem. In practice, implementations
of unconditionally secure QKD leave no choice but requiring Alice and Bob to use a
pre-shared short random secret key (to authenticate the messages with authentication
codes constructed from universal hashing) in order to obtain a larger random secret key.
Another unavoidable problem is that the authentication keys can be run out, because
either the adversary makes the execution fail (denial-of-service attack) or due to technical
problems (the parties cannot exclude that an eavesdropper was in fact present). Moreover,
when considering large scale quantum networks, in which secure communication should
be possible between any pair of nodes, the requirement for pre-shared randomness does
not scale well: each node would have to store a number of keys, which is linear in the
size of the network, let alone the problem of key management.

On the contrary, in so-called authenticated key exchange, the two parties are able to
generate a shared cryptographic secret key, to be later used with symmetric primitives
in order to protect communications, while interacting over an insecure network under
the control of an adversary. Various authentication means have been introduced for
classical networks. The most practical ones are certainly based on either Public Key
Infrastructures (PKI) or human-memorable passwords. The latter leads to PAKE,
standing for Password-Authenticated Key Exchange. PAKE protocols allow users to
securely establish a common cryptographic key over an insecure and unauthenticated
channel only using a low-entropy, human-memorable secret key called a password. The
advantage of a PAKE, in sharp contrast to all QKD-like schemes, is that no authenticated
channel is needed. In the classical setting, PAKE has been extensively studied, resulting
in various secure and efficient protocols. However, classical PAKE protocols can only
achieve computational security, where the adversary’s power is computationally limited.
Thus, it is natural to ask if we can achieve a provably stronger security notion for
password-based key exchange protocols using quantum communication.

Unfortunately, even if QKD raised a lot of hope on unconditional security using
quantum mechanics, a series of no-go theorems showed that the dream of unconditional
security brought by quantum communication will never be a reality for many crypto-

Security Models 164

graphic tasks. For instance, several attempts have been made to achieve unconditionally
secure quantum bit-commitments, until Mayers and Lo and Chau independently showed
that statistically hiding and binding quantum commitments are impossible [LC97;
May97]. The impossibility of quantum cryptography was further extended to oblivious
transfer (OT) by Lo [Lo97], and finally extended to non-trivial two-party computation
protocols by Salvail et al. and Buhrman et al. [SSS09; BCS12]. Intuitively, the inse-
curity of two-party quantum protocols follows from the fact that the protocol itself
allows parties to input a superposed state rather than a classical one, and perform an
appropriate measurement on the outcome state. At the end of the protocol, one party
can always gain more information on the input of the other than that gained using any
honest strategy.

In this appendix, we study the security of password-based key exchange protocols
with quantum communication and establish several impossibilities in different security
models. This is a joint work with Céline Chevalier and Marc Kaplan in 2018.

B.1 Security Models

We provide a brief overview of security models for multi-party computation (MPC),
in which n players interact in order to compute securely a given function of their
inputs. Formally, consider n players Pi, each owning an input xi, and a classical n-input
function f . The goal is to compute (y1, . . . , yn) = f (x1, . . . , xn) such that each player Pi
learns yi, and cheating players cannot change the outcome of the computation (apart
by choosing a different input) and do not learn more about the input (and possibly
the output) of honest players than what can be derived from their own input and their
output of the function evaluation.

B.1.1 The Simulation-based Paradigm

The first step towards the solution for this security definition is the simulation-based
paradigm. Instead of introducing different notions for each security property, we consider
for each protocol, the “ideal behavior” it should have. Intuitively, we introduce the
notion of “ideal world” where there is a trusted party who collects the inputs from
all players, computes the output and distributes the output to the players. A real
protocol is compared to an ideal protocol, and the real protocol is said to be at least
as secure as the ideal protocol if the real protocol and the ideal protocol have an
indistinguishable input-output behavior. The level of security reached thus also depends
on the specification of the ideal protocol.

B.1.2 Universal Composability

However, as being pointed out in the literature, the simulation-based paradigm does
not play well with composition and in fact, it only achieves Sequential Composition,
i.e., a protocol that is secure under sequential composition maintains its security when
run multiple times, as long as the executions are run sequentially (meaning that each
execution concludes before the next execution begins). In the case of Concurrent
Composition in which many instances of the same protocol with correlated inputs
are run concurrently, some problems may occur. For example, the messages from one

Security Models 165

protocol could be fed into another, or a message from one sub-protocol of a larger
application is fed into another sub-protocol and the overall application becomes insecure.
In order to solve this inherent problem, the so-called UC (for Universal Composability)
framework was introduced. We give a high-level overview of the model below and
refer the reader to [Can01] for more details on the classical version and [Unr10] for the
quantum version.

Ideal World and Real World. We define in the ideal world an entity that one can never
corrupt, called the ideal functionality and usually denoted as F. The players privately
send their inputs to this entity, and receive their corresponding output the same way.
There is no communication between the different players. F is assumed to behave in a
perfectly correct way, without revealing information other than required, and without
being possibly corrupted by an adversary. Once F is defined, the goal of a protocol π,
executed in a real world in the presence of an adversary, is then to create a situation
equivalent to that obtained with F.

Protocol, Adversary, and Environment. Apart from the protocol participants which are
specified by the protocol, there are two more machines taking part in the protocol
execution. The adversary A (or S in the ideal model) is the machine coordinating
all corrupted participants analogous to the simulation-based model. The environment
machine Z, playing the role of the distinguisher, models “everything that is outside the
protocol being executed”. It chooses the inputs, sees the outputs, and may communicate
with the adversary at any time. The adversary has access to the communication between
players, but not to the inputs and outputs of the honest players (it completely controls
the dishonest or corrupted players). On the contrary, the environment has access to the
inputs and outputs of all players, but not to their communication, nor to the inputs and
outputs of the subroutines they can invoke.

A protocol π securely realizes a functionality F if for every real-world adversary A
there exists an ideal-world adversary S, called the simulator, such that no environment can
distinguish whether it is witnessing the real-world execution with adversaryA or the ideal-
world execution with simulator S, with a non-negligible advantage. Depending on the
assumed computing power of the adversary and the environment we distinguish between
computational security, where they are all considered to be polynomially bounded
machines, and statistical security, where they are assumed to be computationally
unbounded. Furthermore, in [Unr13], Unruh introduces the notion of everlasting
security, where the adversary is considered to be a polynomial-time machine but the
environment is assumed to have unbounded computational power.

In addition, the notion of “hybrid models” is also introduced to model the concept
of set-up assumptions. A protocol π is said to be realized “in the F-hybrid model”
if π can invoke the ideal functionality F as a subroutine multiple times. We note that
the environment can never interact directly with F, and thus, F is usually never invoked
at all in the ideal world, and the implementation of F is simulated solely by the ideal
adversary S. The model with no trusted set-up is called plain model.

Ideal Functionalities. We denote FCRS the common reference string functionality and FOT
the oblivious transfer functionality. The definitions of these functionalities are given as
follows.

Reduction from PAKE to EQUALITY 166

The common reference string (CRS) model is modeled by the functionality FDCRS,
which was presented in [BCNP04]. At each call of FDCRS, it sends back the same reference
string, chosen by itself, following a known public distribution D. We recall it here in
Figure B.1.

Functionality FDCRS
The functionality FDCRS is parameterized by a distribution D. It interacts with a set of
players and an adversary in the following way:

• Choose a value r $← D.

• Upon receiving a value (CRS, sid) from a player, send (CRS, sid, r) to this player.

Figure B.1: The functionality FDCRS.

Oblivious Transfer (OT) is a very powerful tool and is sufficient to realize any secure
computation functionality [Kil88]. Informally, OT is a two-party functionality, involving
a sender S with input x0, x1 and a receiver R with an input σ ∈ {0, 1}. The receiver R
learns xσ (and nothing else), and the sender learns nothing at all. These requirements
are captured by the specification of the OT functionality FOT from [CLOS02], given in
Figure B.2.

Functionality FOT

The functionality FOT interacts with a sender S, a receiver R and an adversary S.

• Upon receiving a message (sender, sid, x0, x1) from S, where each xi ∈ {0, 1}ℓ,
store (x0, x1). (The length ℓ of the strings is fixed and known to all parties).

• Upon receiving a message (receiver, sid, σ) from R, check if a sender message was
previously sent. If yes, send (sid, xσ) to R and sid to the adversary S and halt.
If not, send nothing to R (but continue running).

Figure B.2: The oblivious transfer functionality FOT.

B.2 Reduction from PAKE to EQUALITY

We show our impossibilities by reducing the problem of constructing a scheme for the
PAKE functionality to the problem of constructing a scheme for an equality-testing
functionality. In particular, we consider an explicit mutual authentication PAKE func-
tionality Fe-pwKE whose description is given in Figure B.3. The description of the
functionality is a modified version of the description in [ACCP09; CDVW12].

We then define an equality-testing functionality FEQ (Figure B.4) that, roughly
speaking, takes inputs from two parties and does the following:

• if the inputs are equal, outputs the value 1 to both parties; moreover, if either
party is corrupted, the adversary is allowed to set the output.

Reduction from PAKE to EQUALITY 167

The functionality Fe-pwKE

The functionality Fe-pwKE is parameterized by a security parameter λ and a “dictionary”
D. It interacts with an adversary A and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj, π) from party Pi:

Send (NewSession, sid, Pi, Pj) to A. In addition, if this is the first NewSession
query, or if this is the second NewSession query and there is a record
(sid, Pj, Pi, π′), then record (sid, Pi, Pj, π) and mark this record fresh. In the
latter case, also record (sid, ready), and send it to A.

Upon receiving a query (TestPwd, sid, P, π′) from A:

If P ∈ {Pi, Pj}, and there is a record of the form (sid, P, ∗, π) which is fresh,
then do: If π = π′, mark the record compromised and reply to A with “correct
guess”. If π ̸= π′, mark the record interrupted and reply to A with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, Pj, sk) from A, where |sk| = λ :

If there is a record (sid, ready), and there is a record of the form (sid, P, ∗, π)
where P ∈ {Pi, Pj} then:

• If this record is fresh, and there is a record (sid, ∗, P, π′) marked fresh with
π = π′, pick a new random key sk′ of length λ and set out = sk′.
• If this record is compromised, or either Pi or Pj is corrupted, then set out = sk.
• In any other case, set out =⊥.

Either way, mark both record (sid, P, ∗, π) and (sid, ∗, P, π′) as completed.

Upon receiving a query (Deliver, sid, P) from A:

If P ∈ {Pi, Pj}, and there is a record of the form (sid, P, ∗, π) which is completed,
then send (deliver, sid, out) to P . Ignore all subsequent (Deliver, P) queries for
the same player P .

Figure B.3: The password-based key-exchange functionality Fe-pwKE with explicit mutual
authentication.

Reduction from PAKE to EQUALITY 168

• if the inputs are unequal, send both parties the special symbol ⊥.

The functionality FEQ

The functionality FEQ is parameterized by a security parameter λ and a “dictionary”
D. It interacts with two parties Pi, Pj, and an adversary A via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj, π) from party Pi:

Send (NewSession, sid, Pi, Pj) to A. In addition, do the following:

• If this is the first NewSession query, then record (sid, Pi, Pj, π) and mark this
record fresh.
• If this is the second NewSession query and there is a record (sid, Pj, Pi, π′)

which is fresh, then do: if π = π′, then set out = 1, otherwise, set out =⊥.
Mark both records completed.

Upon receiving a query (Test, sid, P, π′), P ∈ {Pi, Pj} from A :

If there is a record of the form (sid, P, ∗, π) which is fresh, then do: If π = π′,
mark the record compromised and reply to A with “correct guess”. If π ̸= π′,
mark the record interrupted and reply to A with “wrong guess”.

Upon receiving a query (Output, sid, γ), γ ∈ {1,⊥} from A :

If there is a record of the form (sid, ∗, ∗, π) which is compromised, or one of the
parties is corrupted, then set out = γ. If this record is interrupted, then set
out =⊥. Otherwise, do nothing.

Upon receiving a query (Deliver, sid, P), P ∈ {Pi, Pj} from A :

If there is a record of the form (sid, P, ∗, π) which is completed, send
(deliver, sid, out) to the player P . Ignore all subsequent (Deliver, P) queries
for the same player P .

Figure B.4: The equality-testing functionality FEQ.

More precisely, FEQ captures a protocol between two parties Pi, Pj started by having
the two parties sending messages to the functionality with their secret strings πi, πj. If
the inputs match, the functionality assigns the output to be 1, otherwise it sets the
output to be ⊥. Finally, the adversary A instructs the functionality when to send the
output to both parties. Thus, this definition corresponds to achieving explicit mutual
authentication. We also allow the adversary three special powers. First, we allow him to
set the output if one of the parties is corrupted and both the parties have the same input.
Furthermore, he controls the delivery of messages to the parties. This is an ability that
he inevitably has in the real world. Finally, as in the case of PAKE, the low entropy of
the messages in the dictionary D makes online dictionary attacks unavoidable, which is
captured by the Test query given to the adversary. The following lemma shows that the

On the Impossibility of Securely Realizing PAKE 169

Fe-pwKE functionality already implements the FEQ. Though this seems to be folklore, we
also give a proof of this lemma for completeness.

Lemma B.1. There is a protocol that perfectly implements the FEQ functionality in
the Fe-pwKE hybrid model, tolerating adaptive corruptions and without assuming
authenticated channels.

Proof. The protocol that implements FEQ simply forwards the parties’ messages to the
Fe-pwKE functionality. In particular, on input (sid, πi) from the environment, the party Pi
sends a message (NewSession, sid, Pi, Pj, π) to Fe-pwKE. When Pi receives a message
(deliver, sid, out) back from Fe-pwKE, if out ̸=⊥, Pi outputs 1, otherwise, it outputs ⊥ and
terminates. Similarly, Pj does the same.

We simply show how to simulate the adversary A′s messages.

Simulating a (Test, sid, P, π) query from A: If A already sent a (Deliver, P) query be-
fore, ignore this query. Otherwise, send a query (TestPwd, sid, P, π) to Fe-pwKE, and
record the response from Fe-pwKE (either “correct guess” or “wrong guess”).

Simulating a (Output, sid, γ) query from A: If A already sent a (Deliver, P) query be-
fore, ignore this query. Otherwise, send a query (NewKey, sid, Pi, Pj, γ) to Fe-pwKE.

Simulating a (Deliver, sid, P) query from A: If A already sent a (Deliver, P) query be-
fore, ignore this query. Otherwise, send a query (Deliver, sid, P) to Fe-pwKE.

It is easy to see that the simulation is perfect, and the view of the environment is
identical in the real execution of A in the protocol (in the Fe-pwKE-hybrid model) and
the simulated ideal-model execution with FEQ.

B.3 On the Impossibility of Securely Realizing PAKE

In this section, we show negative results on the achievable security of Password-based
Key Exchange protocols when allowed to use quantum communication. We focus on
two composability settings: Either a “minimal” simulation-based security following a
real world-ideal world paradigm, as defined in [Can00; FS09], or the full universally
composable security [Can01; Unr10].

Following the literature, we call plain model the setting in which there are no
setup assumptions (such as public-key infrastructure (PKI), common reference string
(CRS), random oracles (ROM), etc). Following for instance [KLR06], in which the
authors study the connections between information-theoretic security and security under
composition, we consider here the information-theoretic setting, in which the adversary is
polynomially unbounded. Informally, the output of a real execution of the protocol with
a real adversary must be (perfectly or statistically) the same as the output of an ideal
execution with a trusted party and an ideal-world adversary/simulator. On the contrary,
in the computational setting, we focus on the notion of everlasting security [MU07;
Unr13], which informally means that the adversary is polynomially bounded during
the execution of the protocol, and unbounded afterwards. This models an adversary
possibly saving transcripts today, in order to potentially use them at the time a quantum
computer is built.

On the Impossibility of Securely Realizing PAKE 170

B.3.1 Implicit or Explicit Authentication

We recall an important property of a PAKE protocol: it guarantees that if the same
password was entered, the generated session key is the same for both parties, but they
might not know at the end of the protocol whether it is so. This property is known
as implicit authentication, as opposed to explicit authentication, in which the parties
know whether they share the same session key at the end of the protocol. In both cases,
the protocol should guarantee that if the passwords were different, the session keys are
independent and random.

The line of work for impossibility results that we continue here focuses on non-trivial
protocols19 with explicit authentication. It is known at least since [BPR00, Section
5] that explicit authentication can be added at no security cost to any protocol with
implicit authentication, using a key confirmation technique. The obtained key K would
be used as the key for a PRF secure for 3 queries, one of the players would send PRFK(1)
to the other, the other would send PRKK(2) to the first one, and both would end up
using PRFK(0) as the final session key20. This implies that the following results also
hold for protocols with implicit authentication.

B.3.2 Impossibility in the Simulation-Based Model

Theorem B.1. There is no statistically simulation-based secure PAKE protocol with
explicit authentication in the plain model.

Proof. To prove the theorem, we employ a general result which proves that for the class
of deterministic, two-sided functionalities including the equality-testing function, the
security for one party implies complete insecurity for the other in the simulation-based
model.

Lemma B.2 ([BCS12, Theorem 2]). If a protocol π for the evaluation of a deterministic
two-sided function F is ε-correct and ε-secure against Bob, then there is a cheating
strategy for Alice (where she uses input u0 and Bob has input v) which gives
her ṽ distributed according to some distribution Q(ṽ|u0, v) such that for all u:
Pr [ṽ ← Q : F (u, v) = F (u, ṽ)] ≥ 1− 28ε.

First we note that the reduction from FEQ to Fe-pwKE in Lemma B.1 holds uncondi-
tionally in the UC model, which implies perfect security in the simulation-based model.
We then prove by contradiction, if there is a statistically secure PAKE protocol in the
plain model, then by Lemma B.1, that protocol is also a statistically secure protocol
for FEQ in the plain model, which violates Lemma B.2.

19As explained for instance in [CHKL+05, Section 7], the results are only interesting for what they call
non-trivial protocols, in which two parties agree on a shared secret key at the end of the execution of
the protocol (except perhaps with negligible probability), if 1) they use the same password and 2) the
adversary passes all messages between the parties without modifying them or inserting any messages of
its own. This is required since otherwise the empty protocol in which parties do nothing would securely
realize any PAKE functionality.

20A trivial construction of such a (perfect) PRF would be to split the key into three parts, use the two
first parts as key confirmations and the last one as the real session key.

On the Impossibility of Securely Realizing PAKE 171

B.3.3 Impossibility in the Universally Composability Model

As in the classical case (Canetti et al. prove in [CHKL+05] the impossibility of universally
composable PAKE in the plain model), the (im)possibility of PAKE depends on the
existence of some setup assumption. As shown by Unruh in [Unr13], the classical notion
of passive adversaries (which copy all data) does not make sense in the quantum case.
He thus considers only unitary protocols, which perform no measurements (any protocol
can be transformed into such a protocol using additional quantum memory). Unruh then
defines a functionality F to be quantum-passively-realizable it there exists a unitary
protocol that realizes F with respect to passive unlimited adversaries (that follow the
protocol exactly and do not even copy information). The following lemma gives examples
of quantum-passively-realizable functionalities.

Lemma B.3 ([Unr13, Lemma 8]). The following functionalities are quantum-passively-
realizable: FCT (coin-toss), FCRS (common reference string), FEPR (predistributed
EPR pair), FPKI (public key infrastructure; assuming that the secret key is uniquely
determined by the public key).

We state the following impossibility theorem for PAKE in the UC model.

Theorem B.2. There is no statistically or everlastingly quantum-UC-secure PAKE
protocol with explicit authentication which only uses quantum-passively-realizable
functionalities as trusted setup assumptions.

Proof. First note that according to the following lemma, the impossibility of everlasting
quantum-UC security implies the impossibility of statistical quantum-UC security.

Lemma B.4 ([Unr13, Lemma 1]). Let π and ρ be protocols. If π statistically quantum-
UC-emulates ρ, then π everlastingly quantum-UC-emulates ρ.

In the following, we thus focus on the proof for the everlasting security.
Assuming some trusted setup, the following lemma states the impossibility of ever-

lastingly realizing FEQ using only quantum-passively-realizable functionalities.

Lemma B.5. There is no statistically or everlastingly quantum-UC-secure protocol
that realizes FEQ which only uses quantum-passively-realizable functionalities as
trusted setup assumptions.

Before proving Lemma B.5, we recall the impossibility of achieving everlastingly
quantum-UC-secure oblivious transfer.

Lemma B.6 ([Unr13, Theorem 5]). There is no statistically or everlastingly quantum-
UC-secure OT protocol which only uses quantum-passively-realizable functionalities
as trusted setup assumptions.

We use the notion of reductions between MPC functionalities, that allows us to form
“classes” of functionalities with similar cryptographic complexity: Following [MPR10],
a functionality is said trivial or feasible if it can be realized in the UC framework in
the plain model (with no setup assumptions), and it is said complete if it is sufficient
for computing arbitrary other functions, under appropriate complexity assumptions,
when used as trusted setups. We recall the following results that are proven in [Unr10;
FKSZ+13].

On the Impossibility of Securely Realizing PAKE 172

Lemma B.7 ([Unr10, Theorem 15] and [FKSZ+13, Theorem 2]). The following statements
hold:

1. If a protocol π statistically UC-realizes a functionality F, then π statistically
quantum-UC-realizes the functionality F (Quantum lifting theorem).

2. Feasibility in the quantum world is equivalent to classical feasibility, in both
the computational and statistical setting.

To show a reduction from FEQ to FOT, we employ the following intermediate results.

Definition B.1 (OT-cores). Let F be a deterministic two-party function, ΓA, ΓB be the
input alphabet of two parties, ΩA, ΩB be the output distribution of two parties, and
fA, fB be the output values of the two parties. A quadruple (x, x′, y, y′) ∈ Γ2

A × Γ2
B is

an OT-core of F , if the following three conditions are met:

1. fA(x, y) = fA(x, y′).

2. fB(x, y) = fB(x′, y).

3. fA(x′, y) ̸= fA(x′, y′) or fB(x, y′) ̸= fB(x′, y′) (or both).

In [KM11] the so-called Classification theorem was proven, which shows a necessary
and sufficient condition to have a reduction protocol from an ideal functionality F
to FOT.

Theorem B.3 (The Classification Theorem [KM11]). There exists an OT protocol that is
statistically secure against passive adversaries in the F-hybrid model, for some F,
if and only if F has an OT-core.

Proof of Lemma B.5. We first show that the equality-testing function FEQ admits an
OT-core. Consider FEQ := (ΓA,ΓB,ΩA, ΩB, fA, fB), without loss of generality, assume
ΓA = ΓB = Γ. Let c ∈ Γ be a random value drawn from the input distribution, then a
quadruple (c, c+ 1, c− 1, c+ 1) is an OT-core of FEQ because:

fA(c, c− 1) = fA(c, c+ 1) = 0
fB(c, c− 1) = fB(c+ 1, c− 1) = 0

0 = fA(c+ 1, c− 1) ̸= fA(c+ 1, c+ 1) = 1

Then the classification theorem (Theorem B.3) tells us that there exists an OT
protocol that is statistically secure against passive adversaries in the FEQ-hybrid model.
Using the lifting theorem (Lemma B.7), that protocol is also statistically secure against
quantum-passive adversaries in the FEQ-hybrid model.

We now prove the lemma by contradiction. Assume that there exists an everlast-
ing quantum-UC-secure protocol π realizing FEQ which only uses quantum-passively-
realizable functionalities. Let ρ be the protocol resulting from π by replacing invocations
to FEQ by invocations to the subprotocol π. Then ρ is an everlasting quantum-UC-
secure protocol realizing FOT which only uses quantum-passively-realizable functionalities
against quantum-passive adversaries. This contradicts Lemma B.6.

Because of Lemma B.4, the impossibility of statistical security follows immediately
from the impossibility of everlasting security.

The proof of Theorem B.2 then follows directly from Lemma B.1 and Lemma B.5.

Bibliography

[Aar09] Scott Aaronson: Quantum copy-protection and quantum money. In: 2009
24th Annual IEEE Conference on Computational Complexity. IEEE.
2009, pp. 229–242 (cited on pages 5–6).

[Aar] Scott Aaronson: Stephen Wiesner (1942-2021). https://scottaaronson.
blog/?p=5730. Accessed: 2022-10-08 (cited on page 2).

[AC12] Scott Aaronson and Paul Christiano: Quantum money from hidden
subspaces. In: 44th Annual ACM Symposium on Theory of Computing.
Ed. by Howard J. Karloff and Toniann Pitassi. ACM Press, May
2012, pp. 41–60. doi: 10.1145/2213977.2213983 (cited on pages 4, 103).

[ACCP09] Michel Abdalla, Dario Catalano, Céline Chevalier, and David
Pointcheval: Password-Authenticated Group Key Agreement with Adaptive
Security and Contributiveness. In: AFRICACRYPT 09: 2nd International
Conference on Cryptology in Africa. Ed. by Bart Preneel. Vol. 5580.
Lecture Notes in Computer Science. Springer, Heidelberg, June 2009,
pp. 254–271 (cited on page 166).

[ACEM+22] Behzad Abdolmaleki, Céline Chevalier, Ehsan Ebrahimi, Giulio
Malavolta, and Quoc-Huy Vu: Quantum-Secure Simulation-Sound Non-
Interactive Zero-Knowledge: Definitions, Constructions and Applications. 2022
(cited on page 6).

[AGM18] Gorjan Alagic, Tommaso Gagliardoni, and Christian Majenz:
Unforgeable Quantum Encryption. In: Advances in Cryptology – EURO-
CRYPT 2018, Part III. Ed. by Jesper Buus Nielsen and Vincent
Rijmen. Vol. 10822. Lecture Notes in Computer Science. Springer,
Heidelberg, Apr. 2018, pp. 489–519. doi: 10.1007/978-3-319-78372-7_16
(cited on page 40).

[AMRS20] Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang
Song: Quantum-Access-Secure Message Authentication via Blind-Unforgeability.
In: Advances in Cryptology – EUROCRYPT 2020, Part III. Ed. by
Anne Canteaut and Yuval Ishai. Vol. 12107. Lecture Notes in
Computer Science. Springer, Heidelberg, May 2020, pp. 788–817. doi:
10.1007/978-3-030-45727-3_27 (cited on pages 3, 5, 74, 76).

https://scottaaronson.blog/?p=5730
https://scottaaronson.blog/?p=5730
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1007/978-3-319-78372-7_16
https://doi.org/10.1007/978-3-030-45727-3_27

BIBLIOGRAPHY 174

[AGKZ20] Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry:
One-shot signatures and applications to hybrid quantum/classical authentication.
In: 52nd Annual ACM Symposium on Theory of Computing. Ed. by
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy. ACM Press, June 2020, pp. 255–
268. doi: 10.1145/3357713.3384304 (cited on pages 4–5, 7).

[ATTU16] Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo
Noel Tabia, and Dominique Unruh: Post-Quantum Security of the
CBC, CFB, OFB, CTR, and XTS Modes of Operation. In: Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016. Ed.
by Tsuyoshi Takagi. Springer, Heidelberg, 2016, pp. 44–63. doi:
10.1007/978-3-319-29360-8_4 (cited on page 36).

[AKLL+22] Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu,
and Mark Zhandry: On the Feasibility of Unclonable Encryption, and
More. In: Advances in Cryptology – CRYPTO 2022, Part II. Ed. by
Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 2022, pp. 212–241. doi:
10.1007/978-3-031-15979-4_8 (cited on pages 33, 103).

[AL21] Prabhanjan Ananth and Rolando L. La Placa: Secure Software
Leasing. In: Advances in Cryptology – EUROCRYPT 2021, Part II.
Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12697.
Lecture Notes in Computer Science. Springer, Heidelberg, Oct. 2021,
pp. 501–530. doi: 10.1007/978-3-030-77886-6_17 (cited on page 5).

[AQY22] Prabhanjan Ananth, Luowen Qian, and Henry Yuen: Cryptogra-
phy from Pseudorandom Quantum States. In: Advances in Cryptology
– CRYPTO 2022, Part I. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13507. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2022, pp. 208–236. doi: 10.1007/978-3-031-15802-5_8
(cited on page 3).

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass:
Universally Composable Protocols with Relaxed Set-Up Assumptions. In: 45th
Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Oct. 2004, pp. 186–195. doi: 10.1109/FOCS.
2004.71 (cited on page 166).

[BGIR+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven
Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang: On the
(Im)possibility of Obfuscating Programs. In: Advances in Cryptology –
CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2001, pp. 1–18. doi:
10.1007/3-540-44647-8_1 (cited on page 26).

https://doi.org/10.1145/3357713.3384304
https://doi.org/10.1007/978-3-319-29360-8_4
https://doi.org/10.1007/978-3-031-15979-4_8
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-031-15802-5_8
https://doi.org/10.1109/FOCS.2004.71
https://doi.org/10.1109/FOCS.2004.71
https://doi.org/10.1007/3-540-44647-8_1

BIBLIOGRAPHY 175

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway:
A Concrete Security Treatment of Symmetric Encryption. In: 38th Annual
Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Oct. 1997, pp. 394–403. doi: 10.1109/SFCS.1997.646128
(cited on page 50).

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip
Rogaway: Relations Among Notions of Security for Public-Key Encryption
Schemes. In: Advances in Cryptology – CRYPTO’98. Ed. by Hugo
Krawczyk. Vol. 1462. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 1998, pp. 26–45. doi: 10.1007/BFb0055718 (cited on
pages 61–62).

[BN08] Mihir Bellare and Chanathip Namprempre: Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition Paradigm. In:
Journal of Cryptology , 21:4 (Oct. 2008), pp. 469–491. doi: 10.1007/
s00145-008-9026-x (cited on page 53).

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway: Authen-
ticated Key Exchange Secure against Dictionary Attacks. In: Advances in
Cryptology – EUROCRYPT 2000. Ed. by Bart Preneel. Vol. 1807.
Lecture Notes in Computer Science. Springer, Heidelberg, May 2000,
pp. 139–155. doi: 10.1007/3-540-45539-6_11 (cited on page 170).

[BS06] Mihir Bellare and Amit Sahai: Non-Malleable Encryption: Equivalence
between Two Notions, and an Indistinguishability-based Characterization. Cryp-
tology ePrint Archive, Report 2006/228. https://eprint.iacr.org/2006/228.
2006 (cited on pages 61–62).

[BS17] Shalev Ben-David and Or Sattath: Quantum Tokens for Digital Signa-
tures. Cryptology ePrint Archive, Report 2017/094. https://eprint.iacr.
org/2017/094. 2017 (cited on pages 5, 149–150, 152, 161).

[BBDQ18] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach:
Hash Proof Systems over Lattices Revisited. In: PKC 2018: 21st Interna-
tional Conference on Theory and Practice of Public Key Cryptography,
Part II. Ed. by Michel Abdalla and Ricardo Dahab. Vol. 10770.
Lecture Notes in Computer Science. Springer, Heidelberg, Mar. 2018,
pp. 644–674. doi: 10.1007/978-3-319-76581-5_22 (cited on page 8).

[BB84] C. H. Bennett and G. Brassard: Quantum cryptography: Public key
distribution and coin tossing. In: Proceedings of IEEE International
Conference on Computers, Systems, and Signal Processing. Bangalore,
1984, p. 175 (cited on pages 2, 163).

[BV93] Ethan Bernstein and Umesh V. Vazirani: Quantum complexity theory.
In: 25th Annual ACM Symposium on Theory of Computing. ACM
Press, May 1993, pp. 11–20. doi: 10.1145/167088.167097 (cited on
page 1).

https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/3-540-45539-6_11
https://eprint.iacr.org/2006/228
https://eprint.iacr.org/2017/094
https://eprint.iacr.org/2017/094
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1145/167088.167097

BIBLIOGRAPHY 176

[BBCL+21] Ritam Bhaumik, Xavier Bonnetain, André Chailloux, Gaëtan
Leurent, María Naya-Plasencia, André Schrottenloher, and
Yannick Seurin: QCB: Efficient Quantum-Secure Authenticated Encryption.
In: Advances in Cryptology – ASIACRYPT 2021, Part I. Ed. by
Mehdi Tibouchi and Huaxiong Wang. Vol. 13090. Lecture Notes in
Computer Science. Springer, Heidelberg, Dec. 2021, pp. 668–698. doi:
10.1007/978-3-030-92062-3_23 (cited on page 69).

[BKS21] Nir Bitansky, Michael Kellner, and Omri Shmueli: Post-quantum
Resettably-Sound Zero Knowledge. In: TCC 2021: 19th Theory of Cryp-
tography Conference, Part I. Ed. by Kobbi Nissim and Brent Waters.
Vol. 13042. Lecture Notes in Computer Science. Springer, Heidelberg,
Nov. 2021, pp. 62–89. doi: 10.1007/978-3-030-90459-3_3 (cited on
page 3).

[BP15] Nir Bitansky and Omer Paneth: ZAPs and Non-Interactive Witness
Indistinguishability from Indistinguishability Obfuscation. In: TCC 2015: 12th
Theory of Cryptography Conference, Part II. Ed. by Yevgeniy Dodis
and Jesper Buus Nielsen. Vol. 9015. Lecture Notes in Computer
Science. Springer, Heidelberg, Mar. 2015, pp. 401–427. doi: 10.1007/978-
3-662-46497-7_16 (cited on pages 73–74).

[BC15] Olivier Blazy and Céline Chevalier: Generic Construction of UC-Secure
Oblivious Transfer. In: ACNS 15: 13th International Conference on
Applied Cryptography and Network Security. Ed. by Tal Malkin,
Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Poly-
chronakis. Vol. 9092. Lecture Notes in Computer Science. Springer,
Heidelberg, June 2015, pp. 65–86. doi: 10.1007/978-3-319-28166-7_4
(cited on page 7).

[BCV19] Olivier Blazy, Céline Chevalier, and Quoc Huy Vu: Post-quantum
UC-secure oblivious transfer in the standard model with adaptive corruptions.
In: Proceedings of the 14th International Conference on Availability,
Reliability and Security. 2019, pp. 1–6 (cited on page 7).

[BDFL+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann,
Christian Schaffner, and Mark Zhandry: Random Oracles in a
Quantum World. In: Advances in Cryptology – ASIACRYPT 2011.
Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes
in Computer Science. Springer, Heidelberg, Dec. 2011, pp. 41–69. doi:
10.1007/978-3-642-25385-0_3 (cited on pages 3, 5).

[BKW17] Dan Boneh, Sam Kim, and David J. Wu: Constrained Keys for Invertible
Pseudorandom Functions. In: TCC 2017: 15th Theory of Cryptography
Conference, Part I. Ed. by Yael Kalai and Leonid Reyzin. Vol. 10677.
Lecture Notes in Computer Science. Springer, Heidelberg, Nov. 2017,
pp. 237–263. doi: 10.1007/978-3-319-70500-2_9 (cited on page 95).

https://doi.org/10.1007/978-3-030-92062-3_23
https://doi.org/10.1007/978-3-030-90459-3_3
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-319-28166-7_4
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-70500-2_9

BIBLIOGRAPHY 177

[BL95] Dan Boneh and Richard J. Lipton: Quantum Cryptanalysis of Hidden
Linear Functions (Extended Abstract). In: Advances in Cryptology –
CRYPTO’95. Ed. by Don Coppersmith. Vol. 963. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 1995, pp. 424–437. doi:
10.1007/3-540-44750-4_34 (cited on page 76).

[BW13] Dan Boneh and Brent Waters: Constrained Pseudorandom Functions and
Their Applications. In: Advances in Cryptology – ASIACRYPT 2013,
Part II. Ed. by Kazue Sako and Palash Sarkar. Vol. 8270. Lecture
Notes in Computer Science. Springer, Heidelberg, Dec. 2013, pp. 280–300.
doi: 10.1007/978-3-642-42045-0_15 (cited on page 18).

[BZ13a] Dan Boneh and Mark Zhandry: Quantum-Secure Message Authentication
Codes. In: Advances in Cryptology – EUROCRYPT 2013. Ed. by
Thomas Johansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes
in Computer Science. Springer, Heidelberg, May 2013, pp. 592–608. doi:
10.1007/978-3-642-38348-9_35 (cited on pages 3, 5, 76).

[BZ13b] Dan Boneh and Mark Zhandry: Secure Signatures and Chosen Ciphertext
Security in a Quantum Computing World. In: Advances in Cryptology –
CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8043. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2013, pp. 361–379. doi: 10.1007/978-3-642-40084-1_21 (cited on
pages 3, 5–6, 21–24, 36, 38–39, 51–52, 67, 74, 76).

[BF10] Niek J. Bouman and Serge Fehr: Sampling in a Quantum Population,
and Applications. In: Advances in Cryptology – CRYPTO 2010. Ed. by
Tal Rabin. Vol. 6223. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2010, pp. 724–741. doi: 10.1007/978-3-642-14623-7_39
(cited on pages 16–17, 108, 110, 120, 133).

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan: Functional Sig-
natures and Pseudorandom Functions. In: PKC 2014: 17th International
Conference on Theory and Practice of Public Key Cryptography. Ed.
by Hugo Krawczyk. Vol. 8383. Lecture Notes in Computer Science.
Springer, Heidelberg, Mar. 2014, pp. 501–519. doi: 10.1007/978-3-642-
54631-0_29 (cited on page 18).

[Bra18] Zvika Brakerski: Quantum FHE (Almost) As Secure As Classical. In:
Advances in Cryptology – CRYPTO 2018, Part III. Ed. by Hovav
Shacham and Alexandra Boldyreva. Vol. 10993. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2018, pp. 67–95. doi:
10.1007/978-3-319-96878-0_3 (cited on page 28).

[BCMV+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V.
Vazirani, and Thomas Vidick: A Cryptographic Test of Quantumness and
Certifiable Randomness from a Single Quantum Device. In: 59th Annual
Symposium on Foundations of Computer Science. Ed. by Mikkel

https://doi.org/10.1007/3-540-44750-4_34
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-38348-9_35
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-14623-7_39
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-319-96878-0_3

BIBLIOGRAPHY 178

Thorup. IEEE Computer Society Press, Oct. 2018, pp. 320–331. doi:
10.1109/FOCS.2018.00038 (cited on pages 7, 76–78, 118).

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Mala-
volta: Factoring and Pairings are not Necessary for iO: Circular-Secure
LWE Suffices. Cryptology ePrint Archive, Report 2020/1024. https :
//eprint.iacr.org/2020/1024. 2020 (cited on page 26).

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila: Quantum
One-Time Programs - (Extended Abstract). In: Advances in Cryptology –
CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8043. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2013, pp. 344–360. doi: 10.1007/978-3-642-40084-1_20 (cited on
page 5).

[BI20] Anne Broadbent and Rabib Islam: Quantum Encryption with Certified
Deletion. In: TCC 2020: 18th Theory of Cryptography Conference,
Part III. Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12552.
Lecture Notes in Computer Science. Springer, Heidelberg, Nov. 2020,
pp. 92–122. doi: 10.1007/978-3-030-64381-2_4 (cited on page 4).

[BJLP+21] Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Pod-
der, and Aarthi Sundaram: Secure Software Leasing Without Assumptions.
In: TCC 2021: 19th Theory of Cryptography Conference, Part I.
Ed. by Kobbi Nissim and Brent Waters. Vol. 13042. Lecture Notes
in Computer Science. Springer, Heidelberg, Nov. 2021, pp. 90–120. doi:
10.1007/978-3-030-90459-3_4 (cited on pages 4–5).

[BL20] Anne Broadbent and Sébastien Lord: Uncloneable Quantum Encryption
via Oracles. In: Leibniz International Proceedings in Informatics (LIPIcs)
158: (2020). Ed. by Steven T. Flammia, 4:1–4:22 (cited on page 4).

[BCS12] Harry Buhrman, Matthias Christandl, and Christian Schaffner:
Complete insecurity of quantum protocols for classical two-party computation.
In: Physical review letters , 109:16 (2012), p. 160501 (cited on pages 164,
170).

[Can00] Ran Canetti: Security and Composition of Multiparty Cryptographic Protocols.
In: Journal of Cryptology , 13:1 (Jan. 2000), pp. 143–202. doi: 10.1007/
s001459910006 (cited on page 169).

[Can01] Ran Canetti: Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In: 42nd Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press, Oct. 2001, pp. 136–
145. doi: 10.1109/SFCS.2001.959888 (cited on pages 165, 169).

https://doi.org/10.1109/FOCS.2018.00038
https://eprint.iacr.org/2020/1024
https://eprint.iacr.org/2020/1024
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007/978-3-030-90459-3_4
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1109/SFCS.2001.959888

BIBLIOGRAPHY 179

[CDVW12] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and
Hoeteck Wee: Efficient Password Authenticated Key Exchange via Oblivious
Transfer. In: PKC 2012: 15th International Conference on Theory
and Practice of Public Key Cryptography. Ed. by Marc Fischlin,
Johannes Buchmann, and Mark Manulis. Vol. 7293. Lecture Notes
in Computer Science. Springer, Heidelberg, May 2012, pp. 449–466. doi:
10.1007/978-3-642-30057-8_27 (cited on page 166).

[CHKL+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and
Philip D. MacKenzie: Universally Composable Password-Based Key Ex-
change. In: Advances in Cryptology – EUROCRYPT 2005. Ed. by
Ronald Cramer. Vol. 3494. Lecture Notes in Computer Science.
Springer, Heidelberg, May 2005, pp. 404–421. doi: 10.1007/11426639_24
(cited on pages 170–171).

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai:
Universally composable two-party and multi-party secure computation. In: 34th
Annual ACM Symposium on Theory of Computing. ACM Press, May
2002, pp. 494–503. doi: 10.1145/509907.509980 (cited on page 166).

[CETU21] Tore Vincent Carstens, Ehsan Ebrahimi, Gelo Noel Tabia, and
Dominique Unruh: Relationships Between Quantum IND-CPA Notions. In:
TCC 2021: 19th Theory of Cryptography Conference, Part I. Ed. by
Kobbi Nissim and Brent Waters. Vol. 13042. Lecture Notes in
Computer Science. Springer, Heidelberg, Nov. 2021, pp. 240–272. doi:
10.1007/978-3-030-90459-3_9 (cited on pages 38–39, 54, 69–70).

[CEV20] Céline Chevalier, Ehsan Ebrahimi, and Quoc-Huy Vu: On Security
Notions for Encryption in a Quantum World. Cryptology ePrint Archive,
Report 2020/237. https://eprint.iacr.org/2020/237. 2020 (cited on
pages 5, 35).

[CHV22] Céline Chevalier, Paul Hermouet, and Quoc-Huy Vu: Semi-
Quantum Copy-Protection and More. 2022 (cited on page 7).

[CCKW19] Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros
Wallden: QFactory: Classically-Instructed Remote Secret Qubits Preparation.
In: Advances in Cryptology – ASIACRYPT 2019, Part I. Ed. by
Steven D. Galbraith and Shiho Moriai. Vol. 11921. Lecture Notes
in Computer Science. Springer, Heidelberg, Dec. 2019, pp. 615–645. doi:
10.1007/978-3-030-34578-5_22 (cited on page 104).

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry:
Hidden Cosets and Applications to Unclonable Cryptography. In: Advances
in Cryptology – CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. Lecture Notes in Computer Science.
Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 556–584. doi:
10.1007/978-3-030-84242-0_20 (cited on pages 5, 7, 103, 105, 113, 141,
143–145, 149, 152–154, 158, 161).

https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/11426639_24
https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-030-90459-3_9
https://eprint.iacr.org/2020/237
https://doi.org/10.1007/978-3-030-34578-5_22
https://doi.org/10.1007/978-3-030-84242-0_20

BIBLIOGRAPHY 180

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba:
Quantum copy-protection of compute-and-compare programs in the quantum
random oracle model. Cryptology ePrint Archive, Report 2020/1194.
https://eprint.iacr.org/2020/1194. 2020 (cited on pages 33, 138).

[CV22] Eric Culf and Thomas Vidick: A monogamy-of-entanglement game for
subspace coset states. In: Quantum , 6: (2022), p. 791 (cited on pages 105,
113).

[CMSZ19] Jan Czajkowski, Christian Majenz, Christian Schaffner, and
Sebastian Zur: Quantum Lazy Sampling and Game-Playing Proofs for
Quantum Indifferentiability. Cryptology ePrint Archive, Report 2019/428.
https://eprint.iacr.org/2019/428. 2019 (cited on pages 37, 42).

[DFNS14] Ivan Damgård, Jakob Funder, Jesper Buus Nielsen, and Louis
Salvail: Superposition Attacks on Cryptographic Protocols. In: ICITS
13: 7th International Conference on Information Theoretic Security.
Ed. by Carles Padró. Vol. 8317. Lecture Notes in Computer Science.
Springer, Heidelberg, 2014, pp. 142–161. doi: 10.1007/978-3-319-04268-
8_9 (cited on page 3).

[DDOP+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky,
Giuseppe Persiano, and Amit Sahai: Robust Non-interactive Zero Knowl-
edge. In: Advances in Cryptology – CRYPTO 2001. Ed. by Joe
Kilian. Vol. 2139. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2001, pp. 566–598. doi: 10.1007/3-540-44647-8_33
(cited on pages 6, 84–85).

[Deu85] David Deutsch: Quantum theory, the Church–Turing principle and the
universal quantum computer. In: Proceedings of the Royal Society of
London. A. Mathematical and Physical Sciences , 400:1818 (1985),
pp. 97–117 (cited on page 1).

[DJ92] David Deutsch and Richard Jozsa: Rapid solution of problems by quantum
computation. In: Proceedings of the Royal Society of London. Series
A: Mathematical and Physical Sciences , 439:1907 (1992), pp. 553–558
(cited on page 1).

[DH76] Whitfield Diffie and Martin E. Hellman: New Directions in Cryp-
tography. In: IEEE Transactions on Information Theory , 22:6 (1976),
pp. 644–654 (cited on page 1).

[DMV22] Xuan-Thanh Do, Dang-Truong Mac, and Quoc-Huy Vu: zkSNARKs
from Codes with Rank Metrics. 2022 (cited on page 8).

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner:
Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model.
In: Advances in Cryptology – CRYPTO 2019, Part II. Ed. by Alexan-
dra Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes

https://eprint.iacr.org/2020/1194
https://eprint.iacr.org/2019/428
https://doi.org/10.1007/978-3-319-04268-8_9
https://doi.org/10.1007/978-3-319-04268-8_9
https://doi.org/10.1007/3-540-44647-8_33

BIBLIOGRAPHY 181

in Computer Science. Springer, Heidelberg, Aug. 2019, pp. 356–383. doi:
10.1007/978-3-030-26951-7_13 (cited on pages 84, 92–93).

[DFMS22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner:
Online-Extractability in the Quantum Random-Oracle Model. In: Advances in
Cryptology – EUROCRYPT 2022, Part III. Ed. by Orr Dunkelman
and Stefan Dziembowski. Vol. 13277. Lecture Notes in Computer
Science. Springer, Heidelberg, May 2022, pp. 677–706. doi: 10.1007/978-
3-031-07082-2_24 (cited on page 15).

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson,
and Daniele Venturi: On the Non-malleability of the Fiat-Shamir Transform.
In: Progress in Cryptology - INDOCRYPT 2012: 13th International
Conference in Cryptology in India. Ed. by Steven D. Galbraith and
Mridul Nandi. Vol. 7668. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2012, pp. 60–79. doi: 10.1007/978-3-642-34931-7_5
(cited on page 91).

[FKSZ+13] Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and
Vassilis Zikas: Feasibility and Completeness of Cryptographic Tasks in the
Quantum World. In: TCC 2013: 10th Theory of Cryptography Con-
ference. Ed. by Amit Sahai. Vol. 7785. Lecture Notes in Computer
Science. Springer, Heidelberg, Mar. 2013, pp. 281–296. doi: 10.1007/978-
3-642-36594-2_16 (cited on pages 171–172).

[FS09] Serge Fehr and Christian Schaffner: Composing Quantum Protocols
in a Classical Environment. In: TCC 2009: 6th Theory of Cryptography
Conference. Ed. by Omer Reingold. Vol. 5444. Lecture Notes in
Computer Science. Springer, Heidelberg, Mar. 2009, pp. 350–367. doi:
10.1007/978-3-642-00457-5_21 (cited on page 169).

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir: Multiple Non-Interactive
Zero Knowledge Proofs Based on a Single Random String (Extended Abstract).
In: 31st Annual Symposium on Foundations of Computer Science.
IEEE Computer Society Press, Oct. 1990, pp. 308–317. doi: 10.1109/
FSCS.1990.89549 (cited on page 73).

[Fey82] Richard P Feynman: Simulating physics with computers. In: International
journal of theoretical physics , 21:6/7 (1982), pp. 467–488 (cited on
page 1).

[FS87] Amos Fiat and Adi Shamir: How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In: Advances in Cryptology –
CRYPTO’86. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 1987, pp. 186–194. doi:
10.1007/3-540-47721-7_12 (cited on pages 6, 92).

https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-031-07082-2_24
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-36594-2_16
https://doi.org/10.1007/978-3-642-36594-2_16
https://doi.org/10.1007/978-3-642-00457-5_21
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1007/3-540-47721-7_12

BIBLIOGRAPHY 182

[FP96] Christopher A Fuchs and Asher Peres: Quantum-state disturbance
versus information gain: Uncertainty relations for quantum information. In:
Physical Review A, 53:4 (1996), p. 2038 (cited on page 37).

[GHS16] Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner:
Semantic Security and Indistinguishability in the Quantum World. In: Advances
in Cryptology – CRYPTO 2016, Part III. Ed. by Matthew Robshaw
and Jonathan Katz. Vol. 9816. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2016, pp. 60–89. doi: 10.1007/978-3-662-
53015-3_3 (cited on pages 3, 5, 36, 38–39, 54).

[GKS21] Tommaso Gagliardoni, Juliane Krämer, and Patrick Struck:
Quantum Indistinguishability for Public Key Encryption. In: Post-Quantum
Cryptography - 12th International Workshop, PQCrypto 2021. Ed. by
Jung Hee Cheon and Jean-Pierre Tillich. Springer, Heidelberg,
2021, pp. 463–482. doi: 10.1007/978- 3- 030- 81293- 5_24 (cited on
page 38).

[GP20] Romain Gay and Rafael Pass: Indistinguishability Obfuscation from Circular
Security. Cryptology ePrint Archive, Report 2020/1010. https://eprint.
iacr.org/2020/1010. 2020 (cited on page 26).

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele
Orrù: Lattice-Based zk-SNARKs from Square Span Programs. In: ACM
CCS 2018: 25th Conference on Computer and Communications
Security. Ed. by David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang. ACM Press, Oct. 2018, pp. 556–573. doi:
10.1145/3243734.3243845 (cited on page 8).

[GMP22] Alexandru Gheorghiu, Tony Metger, and Alexander Poremba:
Quantum cryptography with classical communication: parallel remote state prepa-
ration for copy-protection, verification, and more. Cryptology ePrint Archive,
Report 2022/122. https://eprint.iacr.org/2022/122. 2022 (cited on
pages 7, 104, 106–110, 118, 121, 123–125, 127, 132).

[GV19] Alexandru Gheorghiu and Thomas Vidick: Computationally-Secure
and Composable Remote State Preparation. In: 60th Annual Symposium on
Foundations of Computer Science. Ed. by David Zuckerman. IEEE
Computer Society Press, Nov. 2019, pp. 1024–1033. doi: 10.1109/FOCS.
2019.00066 (cited on pages 104, 106–108, 118).

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali: How to
Construct Random Functions (Extended Abstract). In: 25th Annual Sympo-
sium on Foundations of Computer Science. IEEE Computer Society
Press, Oct. 1984, pp. 464–479. doi: 10.1109/SFCS.1984.715949 (cited on
page 18).

https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-662-53015-3_3
https://doi.org/10.1007/978-3-030-81293-5_24
https://eprint.iacr.org/2020/1010
https://eprint.iacr.org/2020/1010
https://doi.org/10.1145/3243734.3243845
https://eprint.iacr.org/2022/122
https://doi.org/10.1109/FOCS.2019.00066
https://doi.org/10.1109/FOCS.2019.00066
https://doi.org/10.1109/SFCS.1984.715949

BIBLIOGRAPHY 183

[GM84] Shafi Goldwasser and Silvio Micali: Probabilistic Encryption. In:
Journal of Computer and System Sciences , 28:2 (1984), pp. 270–299
(cited on pages 2, 39).

[GO93] Shafi Goldwasser and Rafail Ostrovsky: Invariant Signatures and
Non-Interactive Zero-Knowledge Proofs are Equivalent (Extended Abstract). In:
Advances in Cryptology – CRYPTO’92. Ed. by Ernest F. Brickell.
Vol. 740. Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
1993, pp. 228–245. doi: 10.1007/3-540-48071-4_16 (cited on page 73).

[Got03] Daniel Gottesman: Uncloneable Encryption. In: Quantum Info. Com-
put., 3:6 (Oct. 2003), pp. 581–602 (cited on page 4).

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby: A Pseudorandom Generator from any One-way Function. In: SIAM
Journal on Computing , 28:4 (1999), pp. 1364–1396 (cited on pages 18,
70).

[HMNY21] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi
Yamakawa: Quantum Encryption with Certified Deletion, Revisited: Public Key,
Attribute-Based, and Classical Communication. In: Advances in Cryptology
– ASIACRYPT 2021, Part I. Ed. by Mehdi Tibouchi and Huaxiong
Wang. Vol. 13090. Lecture Notes in Computer Science. Springer,
Heidelberg, Dec. 2021, pp. 606–636. doi: 10.1007/978-3-030-92062-3_21
(cited on pages 4, 7, 104).

[HMNY22] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi
Yamakawa: Certified Everlasting Zero-Knowledge Proof for QMA. In: Ad-
vances in Cryptology – CRYPTO 2022, Part I. Ed. by Yevgeniy
Dodis and Thomas Shrimpton. Vol. 13507. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Aug. 2022, pp. 239–268. doi:
10.1007/978-3-031-15802-5_9 (cited on page 4).

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz: A Modular
Analysis of the Fujisaki-Okamoto Transformation. In: TCC 2017: 15th
Theory of Cryptography Conference, Part I. Ed. by Yael Kalai
and Leonid Reyzin. Vol. 10677. Lecture Notes in Computer Science.
Springer, Heidelberg, Nov. 2017, pp. 341–371. doi: 10.1007/978-3-319-
70500-2_12 (cited on page 22).

[HU19] Dennis Hofheinz and Bogdan Ursu: Dual-Mode NIZKs from Obfuscation.
In: Advances in Cryptology – ASIACRYPT 2019, Part I. Ed. by
Steven D. Galbraith and Shiho Moriai. Vol. 11921. Lecture Notes
in Computer Science. Springer, Heidelberg, Dec. 2019, pp. 311–341. doi:
10.1007/978-3-030-34578-5_12 (cited on page 74).

https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/978-3-030-92062-3_21
https://doi.org/10.1007/978-3-031-15802-5_9
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-34578-5_12

BIBLIOGRAPHY 184

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters: De-
tecting Dangerous Queries: A New Approach for Chosen Ciphertext Security.
In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Vol. 7237. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2012, pp. 663–681. doi:
10.1007/978-3-642-29011-4_39 (cited on page 71).

[HI19] Akinori Hosoyamada and Tetsu Iwata: 4-Round Luby-Rackoff Con-
struction is a qPRP. In: Advances in Cryptology – ASIACRYPT 2019,
Part I. Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11921.
Lecture Notes in Computer Science. Springer, Heidelberg, Dec. 2019,
pp. 145–174. doi: 10.1007/978-3-030-34578-5_6 (cited on page 70).

[HS18a] Akinori Hosoyamada and Yu Sasaki: Cryptanalysis Against Symmetric-
Key Schemes with Online Classical Queries and Offline Quantum Computations.
In: Topics in Cryptology – CT-RSA 2018. Ed. by Nigel P. Smart.
Vol. 10808. Lecture Notes in Computer Science. Springer, Heidelberg,
Apr. 2018, pp. 198–218. doi: 10.1007/978-3-319-76953-0_11 (cited on
page 4).

[HS18b] Akinori Hosoyamada and Yu Sasaki: Quantum Demiric-Selçuk Meet-in-
the-Middle Attacks: Applications to 6-Round Generic Feistel Constructions. In:
SCN 18: 11th International Conference on Security in Communi-
cation Networks. Ed. by Dario Catalano and Roberto De Prisco.
Vol. 11035. Lecture Notes in Computer Science. Springer, Heidelberg,
Sept. 2018, pp. 386–403. doi: 10.1007/978-3-319-98113-0_21 (cited on
page 4).

[JLS18] Zhengfeng Ji, Yi-Kai Liu, and Fang Song: Pseudorandom Quantum
States. In: Advances in Cryptology – CRYPTO 2018, Part III. Ed. by
Hovav Shacham and Alexandra Boldyreva. Vol. 10993. Lecture
Notes in Computer Science. Springer, Heidelberg, Aug. 2018, pp. 126–152.
doi: 10.1007/978-3-319-96878-0_5 (cited on page 3).

[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María
Naya-Plasencia: Breaking Symmetric Cryptosystems Using Quantum Period
Finding. In: Advances in Cryptology – CRYPTO 2016, Part II. Ed. by
Matthew Robshaw and Jonathan Katz. Vol. 9815. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2016, pp. 207–237. doi:
10.1007/978-3-662-53008-5_8 (cited on pages 3–4).

[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María
Naya-Plasencia: Quantum Differential and Linear Cryptanalysis. In: IACR
Transactions on Symmetric Cryptology , 2016:1 (2016). https://tosc.
iacr.org/index.php/ToSC/article/view/536, pp. 71–94. doi: 10.13154/tosc.
v2016.i1.71-94 (cited on page 4).

https://doi.org/10.1007/978-3-642-29011-4_39
https://doi.org/10.1007/978-3-030-34578-5_6
https://doi.org/10.1007/978-3-319-76953-0_11
https://doi.org/10.1007/978-3-319-98113-0_21
https://doi.org/10.1007/978-3-319-96878-0_5
https://doi.org/10.1007/978-3-662-53008-5_8
https://tosc.iacr.org/index.php/ToSC/article/view/536
https://tosc.iacr.org/index.php/ToSC/article/view/536
https://doi.org/10.13154/tosc.v2016.i1.71-94
https://doi.org/10.13154/tosc.v2016.i1.71-94

BIBLIOGRAPHY 185

[KKVB02] Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad Ba-
naszek: Comparison of quantum oracles. In: Physical Review A, 65:5
(2002), p. 050304 (cited on page 42).

[KV09] Jonathan Katz and Vinod Vaikuntanathan: Smooth Projective Hash-
ing and Password-Based Authenticated Key Exchange from Lattices. In: Ad-
vances in Cryptology – ASIACRYPT 2009. Ed. by Mitsuru Matsui.
Vol. 5912. Lecture Notes in Computer Science. Springer, Heidelberg, Dec.
2009, pp. 636–652. doi: 10.1007/978-3-642-10366-7_37 (cited on page 8).

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos,
and Thomas Zacharias: Delegatable pseudorandom functions and appli-
cations. In: ACM CCS 2013: 20th Conference on Computer and
Communications Security. Ed. by Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung. ACM Press, Nov. 2013, pp. 669–684. doi:
10.1145/2508859.2516668 (cited on page 18).

[Kil88] Joe Kilian: Founding Cryptography on Oblivious Transfer. In: 20th Annual
ACM Symposium on Theory of Computing. ACM Press, May 1988,
pp. 20–31. doi: 10.1145/62212.62215 (cited on pages 7, 166).

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa: Secure
Software Leasing from Standard Assumptions. In: TCC 2021: 19th Theory
of Cryptography Conference, Part I. Ed. by Kobbi Nissim and Brent
Waters. Vol. 13042. Lecture Notes in Computer Science. Springer,
Heidelberg, Nov. 2021, pp. 31–61. doi: 10.1007/978-3-030-90459-3_2
(cited on pages 5, 7, 104).

[KM11] Daniel Kraschewski and Jörn Müller-Quade: Completeness Theo-
rems with Constructive Proofs for Finite Deterministic 2-Party Functions. In:
TCC 2011: 8th Theory of Cryptography Conference. Ed. by Yu-
val Ishai. Vol. 6597. Lecture Notes in Computer Science. Springer,
Heidelberg, Mar. 2011, pp. 364–381. doi: 10.1007/978-3-642-19571-6_22
(cited on page 172).

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin: Information-
theoretically secure protocols and security under composition. In: 38th Annual
ACM Symposium on Theory of Computing. Ed. by Jon M. Kleinberg.
ACM Press, May 2006, pp. 109–118. doi: 10.1145/1132516.1132532 (cited
on page 169).

[LZ19] Qipeng Liu and Mark Zhandry: Revisiting Post-quantum Fiat-Shamir. In:
Advances in Cryptology – CRYPTO 2019, Part II. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Vol. 11693. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2019, pp. 326–355. doi:
10.1007/978-3-030-26951-7_12 (cited on pages 84, 92–93).

[Lo97] Hoi-Kwong Lo: Insecurity of quantum secure computations. In: Physical
Review A, 56:2 (1997), p. 1154 (cited on page 164).

https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-030-90459-3_2
https://doi.org/10.1007/978-3-642-19571-6_22
https://doi.org/10.1145/1132516.1132532
https://doi.org/10.1007/978-3-030-26951-7_12

BIBLIOGRAPHY 186

[LC97] Hoi-Kwong Lo and Hoi Fung Chau: Is quantum bit commitment really
possible? In: Physical Review Letters , 78:17 (1997), p. 3410 (cited on
page 164).

[LMQW22] Alex Lombardi, Ethan Mook, Willy Quach, and Daniel Wichs:
Post-Quantum Insecurity from LWE. Cryptology ePrint Archive, Report
2022/869. https://eprint.iacr.org/2022/869. 2022 (cited on page 76).

[Mah18a] Urmila Mahadev: Classical Homomorphic Encryption for Quantum Circuits.
In: 59th Annual Symposium on Foundations of Computer Science.
Ed. by Mikkel Thorup. IEEE Computer Society Press, Oct. 2018,
pp. 332–338. doi: 10.1109/FOCS.2018.00039 (cited on page 28).

[Mah18b] Urmila Mahadev: Classical Verification of Quantum Computations. In: 59th
Annual Symposium on Foundations of Computer Science. Ed. by
Mikkel Thorup. IEEE Computer Society Press, Oct. 2018, pp. 259–267.
doi: 10.1109/FOCS.2018.00033 (cited on pages 7, 28, 103, 106, 118–119,
123).

[MPR10] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek: A
Zero-One Law for Cryptographic Complexity with Respect to Computational
UC Security. In: Advances in Cryptology – CRYPTO 2010. Ed. by
Tal Rabin. Vol. 6223. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2010, pp. 595–612. doi: 10.1007/978-3-642-14623-7_32
(cited on page 171).

[Man80] Yuri Manin: Computable and Uncomputable. In: Sovetskoye Radio,
Moscow , 128: (1980) (cited on page 1).

[May97] Dominic Mayers: Unconditionally secure quantum bit commitment is im-
possible. In: Physical review letters , 78:17 (1997), p. 3414 (cited on
page 164).

[MY04] Dominic Mayers and Andrew Yao: Self Testing Quantum Apparatus.
In: Quantum Info. Comput., 4:4 (July 2004), pp. 273–286 (cited on
page 104).

[MV21] Tony Metger and Thomas Vidick: Self-Testing of a Single Quantum
Device Under Computational Assumptions. In: ITCS 2021: 12th Innovations
in Theoretical Computer Science Conference. Ed. by James R. Lee.
Vol. 185. LIPIcs, Jan. 2021, 19:1–19:12. doi: 10.4230/LIPIcs.ITCS.2021.19
(cited on pages 13–14, 104, 106, 118, 123).

[MY22] Tomoyuki Morimae and Takashi Yamakawa: Quantum Commitments
and Signatures Without One-Way Functions. In: Advances in Cryptology
– CRYPTO 2022, Part I. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13507. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2022, pp. 269–295. doi: 10.1007/978-3-031-15802-5_10
(cited on page 3).

https://eprint.iacr.org/2022/869
https://doi.org/10.1109/FOCS.2018.00039
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1007/978-3-642-14623-7_32
https://doi.org/10.4230/LIPIcs.ITCS.2021.19
https://doi.org/10.1007/978-3-031-15802-5_10

BIBLIOGRAPHY 187

[MS16] Shahram Mossayebi and Rüdiger Schack: Concrete Security Against
Adversaries with Quantum Superposition Access to Encryption and Decryption
Oracles. In: arXiv preprint arXiv:1609.03780 , (2016) (cited on page 38).

[MU07] Jörn Müller-Quade and Dominique Unruh: Long-Term Security and
Universal Composability. In: TCC 2007: 4th Theory of Cryptography
Conference. Ed. by Salil P. Vadhan. Vol. 4392. Lecture Notes in
Computer Science. Springer, Heidelberg, Feb. 2007, pp. 41–60. doi:
10.1007/978-3-540-70936-7_3 (cited on page 169).

[Ms09] Steven Myers and abhi shelat: Bit Encryption Is Complete. In: 50th
Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Oct. 2009, pp. 607–616. doi: 10.1109/FOCS.
2009.65 (cited on page 6).

[Nao90] Moni Naor: Bit Commitment Using Pseudo-Randomness. In: Advances
in Cryptology – CRYPTO’89. Ed. by Gilles Brassard. Vol. 435.
Lecture Notes in Computer Science. Springer, Heidelberg, Aug. 1990,
pp. 128–136. doi: 10.1007/0-387-34805-0_13 (cited on page 84).

[NY90] Moni Naor and Moti Yung: Public-key Cryptosystems Provably Secure
against Chosen Ciphertext Attacks. In: 22nd Annual ACM Symposium
on Theory of Computing. ACM Press, May 1990, pp. 427–437. doi:
10.1145/100216.100273 (cited on page 95).

[PsV07] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan: Relations
Among Notions of Non-malleability for Encryption. In: Advances in Cryp-
tology – ASIACRYPT 2007. Ed. by Kaoru Kurosawa. Vol. 4833.
Lecture Notes in Computer Science. Springer, Heidelberg, Dec. 2007,
pp. 519–535. doi: 10.1007/978-3-540-76900-2_32 (cited on page 61).

[RS20] Roy Radian and Or Sattath: Semi-Quantum Money. Cryptology ePrint
Archive, Report 2020/414. https://eprint.iacr.org/2020/414. 2020 (cited
on pages 7, 78, 104).

[Reg05] Oded Regev: On lattices, learning with errors, random linear codes, and cryp-
tography. In: 37th Annual ACM Symposium on Theory of Computing.
Ed. by Harold N. Gabow and Ronald Fagin. ACM Press, May 2005,
pp. 84–93. doi: 10.1145/1060590.1060603 (cited on pages 7–8, 28, 103).

[Sah99] Amit Sahai: Non-Malleable Non-Interactive Zero Knowledge and Adaptive
Chosen-Ciphertext Security. In: 40th Annual Symposium on Foundations
of Computer Science. IEEE Computer Society Press, Oct. 1999, pp. 543–
553. doi: 10.1109/SFFCS.1999.814628 (cited on page 95).

[Sah01] Amit Sahai: Simulation-Sound Non-Interactive Zero Knowledge. In: (2001)
(cited on pages 6, 84, 86).

https://doi.org/10.1007/978-3-540-70936-7_3
https://doi.org/10.1109/FOCS.2009.65
https://doi.org/10.1109/FOCS.2009.65
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/978-3-540-76900-2_32
https://eprint.iacr.org/2020/414
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/SFFCS.1999.814628

BIBLIOGRAPHY 188

[SW14] Amit Sahai and Brent Waters: How to use indistinguishability obfuscation:
deniable encryption, and more. In: 46th Annual ACM Symposium on
Theory of Computing. Ed. by David B. Shmoys. ACM Press, May
2014, pp. 475–484. doi: 10.1145/2591796.2591825 (cited on page 3).

[SSS09] Louis Salvail, Christian Schaffner, and Miroslava Sotáková: On
the Power of Two-Party Quantum Cryptography. In: Advances in Cryptology
– ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. Lecture
Notes in Computer Science. Springer, Heidelberg, Dec. 2009, pp. 70–87.
doi: 10.1007/978-3-642-10366-7_5 (cited on page 164).

[Shm22a] Omri Shmueli: Public-key quantum money with a classical bank. In:
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing. 2022, pp. 790–803 (cited on pages 7, 26–27, 103–107,
111, 134).

[Shm22b] Omri Shmueli: Semi-quantum Tokenized Signatures. In: Advances in
Cryptology – CRYPTO 2022, Part I. Ed. by Yevgeniy Dodis and
Thomas Shrimpton. Vol. 13507. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2022, pp. 296–319. doi: 10.1007/978-3-031-
15802-5_11 (cited on pages 7, 103–104, 106, 157–158).

[Sho99] Peter W Shor: Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. In: SIAM review , 41:2 (1999),
pp. 303–332 (cited on page 1).

[Sim94] Daniel R. Simon: On the Power of Quantum Computation. In: 35th Annual
Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Nov. 1994, pp. 116–123. doi: 10.1109/SFCS.1994.365701
(cited on page 1).

[Unr10] Dominique Unruh: Universally Composable Quantum Multi-party Computa-
tion. In: Advances in Cryptology – EUROCRYPT 2010. Ed. by Henri
Gilbert. Vol. 6110. Lecture Notes in Computer Science. Springer,
Heidelberg, May 2010, pp. 486–505. doi: 10.1007/978-3-642-13190-5_25
(cited on pages 165, 169, 171–172).

[Unr13] Dominique Unruh: Everlasting Multi-party Computation. In: Advances in
Cryptology – CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan
A. Garay. Vol. 8043. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2013, pp. 380–397. doi: 10.1007/978-3-642-40084-1_22
(cited on pages 165, 169, 171).

[Unr14] Dominique Unruh: Revocable Quantum Timed-Release Encryption. In:
Advances in Cryptology – EUROCRYPT 2014. Ed. by Phong Q.
Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer
Science. Springer, Heidelberg, May 2014, pp. 129–146. doi: 10.1007/978-
3-642-55220-5_8 (cited on page 64).

https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1007/978-3-642-10366-7_5
https://doi.org/10.1007/978-3-031-15802-5_11
https://doi.org/10.1007/978-3-031-15802-5_11
https://doi.org/10.1109/SFCS.1994.365701
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8

BIBLIOGRAPHY 189

[VZ21] Thomas Vidick and Tina Zhang: Classical Proofs of Quantum Knowledge.
In: Advances in Cryptology – EUROCRYPT 2021, Part II. Ed.
by Anne Canteaut and François-Xavier Standaert. Vol. 12697.
Lecture Notes in Computer Science. Springer, Heidelberg, Oct. 2021,
pp. 630–660. doi: 10.1007/978-3-030-77886-6_22 (cited on pages 103–
104).

[Wie83] Stephen Wiesner: Conjugate coding. In: ACM Sigact News , 15:1
(1983), pp. 78–88 (cited on pages 2, 4).

[Wil11] Mark M Wilde: From classical to quantum Shannon theory. In: arXiv
preprint arXiv:1106.1445 , (2011) (cited on pages 124, 142).

[WZ82] William K Wootters and Wojciech H Zurek: A single quantum
cannot be cloned. In: Nature , 299:5886 (1982), pp. 802–803 (cited on
pages 2, 37).

[Zha12a] Mark Zhandry: How to Construct Quantum Random Functions. In: 53rd
Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Oct. 2012, pp. 679–687. doi: 10.1109/FOCS.
2012.37 (cited on pages 3, 5, 54, 70, 85, 93).

[Zha12b] Mark Zhandry: Secure Identity-Based Encryption in the Quantum Random
Oracle Model. In: Advances in Cryptology – CRYPTO 2012. Ed. by
Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2012, pp. 758–775. doi:
10.1007/978-3-642-32009-5_44 (cited on page 12).

[Zha15] Mark Zhandry: Cryptography in the Age of Quantum Computers. PhD
thesis. Stanford University, 2015 (cited on page 4).

[Zha16] Mark Zhandry: A Note on Quantum-Secure PRPs. Cryptology ePrint
Archive, Report 2016/1076. https://eprint.iacr.org/2016/1076. 2016
(cited on page 70).

[Zha19a] Mark Zhandry: How to Record Quantum Queries, and Applications to
Quantum Indifferentiability. In: Advances in Cryptology – CRYPTO 2019,
Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio.
Vol. 11693. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2019, pp. 239–268. doi: 10.1007/978-3-030-26951-7_9 (cited on
pages 15–16, 37, 42, 44).

[Zha19b] Mark Zhandry: Quantum Lightning Never Strikes the Same State Twice.
In: Advances in Cryptology – EUROCRYPT 2019, Part III. Ed. by
Yuval Ishai and Vincent Rijmen. Vol. 11478. Lecture Notes in
Computer Science. Springer, Heidelberg, May 2019, pp. 408–438. doi:
10.1007/978-3-030-17659-4_14 (cited on pages 4, 26, 103, 111, 149, 155).

https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1109/FOCS.2012.37
https://doi.org/10.1007/978-3-642-32009-5_44
https://eprint.iacr.org/2016/1076
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-17659-4_14

Résumé : La cryptographie moderne a un ennemi de taille à l’horizon : la montée inévitable des ordinateurs
quantiques. Cependant, cette même puissance de calcul permettrait également de trouver des solutions sur des
tâches cryptographiques qui sont tout simplement impossibles à réaliser avec la technologie actuelle. Dans cette
thèse, nous mettons les pieds dans un univers où le quantique est omniprésent en y présentant notamment
deux principales contributions.

Nous mettons en avant à la fois des nouveaux modèles et de nouvelles analyses de sécurité pour deux
primitives cryptographiques : les chiffrements et les preuves à divulgation nulle de connaissance non interactives.
Les définitions usuelles de sécurité de ces primitives requièrent intrinsèquement la capacité d’enregistrer et de
comparer des chaînes classiques. Cependant, les tâches d’enregistrement et de comparaison sont extrêmement
difficiles dans le monde quantique en raison du principe d’incertitude. Nous proposons deux alternatives afin de
surmonter cette barrière. De plus, nos notions de sécurité sont les premières à prendre pleinement en compte les
attaques quantiques dans lesquelles les attaquants peuvent interagir avec les utilisateurs finaux sur des canaux
quantiques.

D’autre part, nous montrons que la disponibilité des ordinateurs quantiques se révèle être également à
l’avantage des cryptographes, même lorsque les utilisateurs finaux n’utilisent que des communications classiques.
En particulier, nous présentons un protocole interactif entre une Alice classique et un Bob quantique. Ce
dispositif permet à Alice d’envoyer un état quantique caché non clonable à Bob par des canaux classiques. En
outre, cet état quantique non clonable établit une forte propriété dite de monogamie de l’intrication, qui décrit
les limites de la force des corrélations multipartites quantiques. Enfin, nous appliquons notre protocole et nous
donnons les premiers schémas semi-quantiques de protection contre la copie.

Descripteurs : Cryptographie quantique, Modèles de sécurité, Chiffrement, Preuves à divulgation nulle de
connaissance, Cryptographie non clonable.

Abstract: Modern cryptography has a major foe on the horizon: the inevitable rise of quantum computers.
However, the same computing power will also unlock solutions to cryptographic tasks that are simply impossible
to achieve with the current technology. This thesis sets foot in a ubiquitous quantum world, where everyone
will be running quantum computers, with two main contributions.

Firstly, we put forth new security models and security analyses for two cryptographic primitives: encryption
and non-interactive zero- knowledge proofs. Classical security definitions of these primitives inherently require
the ability to record and compare classical strings. However, the tasks of recording and comparing are highly
non-trivial in the quantum setting, due to the quantum uncertainty principle. We propose two different ways
to overcome this recording barrier. Our security notions are the first to fully capture quantum attacks in which
the codebreakers can interact with the end-users over quantum channels.

Secondly, we show that the availability of quantum computers turns out to be also the advantage of
codemakers, even when the end- users only use classical communication. In particular, we exhibit an interactive
protocol between a classical Alice and a quantum Bob which allows Alice to send a hidden unclonable quantum
state to Bob through classical channels. Furthermore, the constructed unclonable quantum state establishes
a strong monogamy-of-entanglement property, which describes the limitations on the strength of quantum
multipartite correlations. We further apply our protocol to quantum copy-protection and give the first
semi-quantum copy-protection schemes.

Keywords: Quantum Cryptography, Security Models, Encryption, Zero-Knowledge Proofs, Unclonable
Cryptography.

Nota : cette page, dernière de couverture, sera retournée avant reliure.

	Résumé
	Abstract
	Introduction
	History of Quantum Computing
	Cryptography Meets Quantum Computers
	Quantum Security of Classical Cryptosystems
	Unclonable Cryptography

	Contributions of the Thesis

	Preliminaries
	Notation
	Quantum Information and Computation
	Quantum Computation
	Efficiency in the Quantum Setting
	Distance Measures
	Quantum Random Oracle Model
	Sampling in a Quantum Population

	Cryptographic Primitives
	Puncturable Pseudorandom Function
	Symmetric-key Encryption
	Public-key Encryption
	One-time Signatures
	Non-interactive Zero-knowledge Proof Systems
	Indistinguishability Obfuscation
	Leveled Hybrid Quantum Fully Homomorphic Encryption
	Extended Trapdoor Claw-free Functions
	Copy-Protection

	I Quantum Security
	Quantum Security for Classical Encryption
	Defining Security for Encryption Against Quantum Adversaries
	Our Approach
	Discussion

	How to Record Encryption Queries in the Random World?
	Ciphertext Decomposition
	Oracle Variations
	Recording Queries in the Random World
	A Technical Observation
	How to Answer Decryption Queries?
	Notation

	Quantum-Secure Symmetric Encryption
	Definitions of Security
	A Separation Example
	Feasibility of Quantum CCA2 Security

	Quantum-Secure Public-key Encryption
	Definitions of Security
	Relating Indistinguishability and Non-Malleability
	A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2

	Bit Encryption Is Complete
	Bit-by-bit Encryption Is Insecure
	Completeness of Bit-Encryption

	Quantum Simulation-Sound Non-Interactive Zero-Knowledge
	Quantum Zero-Knowledge
	Definition
	Construction

	Quantum Simulation-Soundness
	Separation Between Post-Quantum and Quantum Security
	Preliminaries: Interactive Proof of Quantumness
	Quantum Advantage with Quantum Query Algorithms
	Separation for QSS-NIZK

	Constructions of QSS-NIZK
	Construction in the Common Reference String Model
	Construction in the Quantum Random Oracle Model

	Application to the Naor-Yung Construction with Quantum CCA Security
	Quantum-Secure Invertible Pseudorandom Functions
	Construction of Our Quantum CCA Encryption Scheme

	II Quantum Cryptography
	Semi-Quantum Copy-Protection
	Introduction
	Quantum Cryptography From Coset States
	(Semi-)Quantum Cryptography From BB84 States
	Application-specific Approaches for Semi-Quantum Protocols

	Technical Overview
	Our Semi-Quantum Copy Protection Protocol
	Soundness Proof

	Coset States
	Strong Monogamy-of-Entanglement Property

	Semi-Quantum Copy-Protection
	Construction
	Proof of Completeness

	Proof of Soundness
	Self-Testing Protocol Soundness
	Soundness of protocol:coset-main

	Copy-Protection of Point Functions
	Anti-Piracy Security Definition
	Construction
	Single-Decryptors
	Proof of Anti-Piracy Security of constr:cp-cc-from-cp-prf

	Tokenized Digital Signatures
	Preliminaries: Tokenized Digital Signature
	Direct Product Hardness
	Information-Theoretic Direct Product Hardness - A Variant
	Computational Direct Product Hardness - A Variant
	Proof of lemma:comp-direct-product-1

	Strongly Unforgeable Tokenized Digital Signatures

	Password-Authenticated Quantum Key Exchange
	Security Models
	The Simulation-based Paradigm
	Universal Composability

	Reduction from PAKE to EQUALITY
	On the Impossibility of Securely Realizing PAKE
	Implicit or Explicit Authentication
	Impossibility in the Simulation-Based Model
	Impossibility in the Universally Composability Model

	Bibliography

