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SHARP RESTRICTION THEORY

DIOGO OLIVEIRA E SILVA

Abstract. These are detailed notes for a lecture on “Sharp restriction theory” which I
presented as part of my Agregação em Matemática in Instituto Superior Técnico, Lisboa,
Portugal (9–10 February, 2023).
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1. Introduction

It has long been known that certain geometric properties related to curvature originate
decay of the Fourier transform, and this phenomenon is explained by the behavior of
oscillatory integrals. Given the long history of the subject, it is perhaps surprising that the
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SHARP RESTRICTION THEORY 3

possibility of restricting the Fourier transform to curved submanifolds of euclidean space
was not observed until the late 1960s.

A consequence of the classical Hausdorff–Young inequality in Rd,

(1) ∥f̂∥
Lp′ (Rd)

≲d,p ∥f∥Lp(Rd), if 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1,

is that the Fourier transform of an Lp-function is defined almost everywhere in Rd if 1 ≤
p ≤ 2. It is a striking observation of Stein from 1967 [124] that, for a special range of

p’s, the function f̂ can be meaningfully defined on curved submanifolds of euclidean space.
The primordial example of such a manifold is the unit sphere Sd = {ω ∈ Rd+1 : |ω| = 1},
which serves as a model for quite general smooth compact submanifolds of nonvanishing
(gaussian) curvature. The simple yet fundamental observation that curvature causes the
Fourier transform to decay links geometry to analysis, and lies at the core of restriction
theory. The celebrated restriction conjecture [123, Problem 2] predicts that

∥f̂∥
Lp′ (Sd) ≲d,p,q ∥f∥Lq′ (Rd+1)

, if 2
q′ >

d+2
d+1 and d+2

q′ + d
p′ ≥ d+ 2,(2)

and is remarkable in its numerous connections and applications. It exhibits deep links to
Bochner–Riesz summation methods [59, 132] and to decoupling phenomena for the Fourier
transform [25], which in turn underpin Bourgain–Demeter–Guth’s breakthrough solution
of the main conjecture in Vinogradov’s mean value theorem [26]. The restriction conjecture
is also known to imply the Kakeya conjecture [24] from geometric measure theory which,
in simplest form, predicts that any compact subset of Rd containing a unit line segment in
each direction must have Hausdorff dimension d. Despite the great deal of attention that
this circle of questions has received during the past half-century, the restriction conjecture
remains an open problem in dimensions d ≥ 2. Illuminating accounts of the restriction
problem can be found in Tao’s lecture notes [135] and Stovall’s recent survey [129].

By duality, estimate (2) is equivalent to the adjoint restriction, or extension, inequality

(3)

∫
Rd+1

|f̂σ(x)|qdx ≲d,p,q ∥f∥qLp(Sd).

A complete answer for p = 2 is given by the celebrated Stein–Tomas inequality [139, 125],
which establishes the restriction inequality (2) in the sharp range q ≥ 2 + 4

d . Stein–Tomas
is very much related to Strichartz estimates for linear PDE of dispersion type. Let us
illustrate this point in one particular instance, that of solutions u(t, x) with (t, x) ∈ R1+d

to the Schrödinger equation

(4) iut +∆u = 0

with prescribed initial data. Strichartz [131] proved that

(5) ∥u∥
L2+ 4

d (R1+d)
≲d ∥f∥L2(Rd),

if u is the solution of (4) satisfying u(0, ·) = f . It turns out that Strichartz estimates for the
Schrödinger equation correspond to extension estimates on the paraboloid, an unbounded
manifold which exhibits certain scale invariance properties that allow the reduction to the
compact setup of the Stein–Tomas inequality.
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This lecture focuses on maximizers and optimal constants for sharp forms of restriction
and Strichartz-type inequalities. There are at least three reasons why sharp inequalities are
worthy of investigation: they typically emerge from deep and beautiful proofs that reveal
hidden structure and expose the main obstructions; they can be used to refine existing
inequalities and lead to stable versions thereof; and they have striking applications to
unexpected fields of mathematics, such as number theory [142], differential geometry [28],
and additive combinatorics [77]. The following are natural questions, which can be posed
in the particular case of restriction inequalities:

• What is the value of the optimal constant?
• Do maximizers exist?

– If so, are they unique, possibly after applying the symmetries of the problem?
– If not, what is the mechanism responsible for this lack of compactness?

• How do maximizing sequences behave?
• What are some qualitative properties of maximizers?
• What are necessary and sufficient conditions for a function to be a maximizer?

Questions of this kind have been asked in a variety of situations, and in the context of
classical inequalities from euclidean harmonic analysis they go back at least to the early
work of Beckner [4] on the sharp Hausdorff–Young inequality, see §2, and of Lieb [92] on the
sharp Hardy–Littlewood–Sobolev inequality. In comparison, sharp restriction inequalities
have a relatively short history, with the first works on the subject going back to Ozawa–
Tsutsumi [114], Kunze [90], Hundertmark–Zharnitsky [82], and Foschi [63]. These works
concern the sharp form of (5) in the lower dimensional cases d ∈ {1, 2}. Being cases for
which the Strichartz exponent 2 + 4

d is an even integer, one can rewrite the left-hand side

of (5) as an L2-norm and invoke Plancherel in order to reduce the problem to a multilinear
convolution estimate.

Sharp restriction theory is becoming increasingly more popular, as shown by the large
body of work that appeared in the last decade, and in particular in the last few years.
We mention a few interesting works that deal with sharp restriction theory on conics (see
Figure 1), namely spheres [3, 7, 46, 47, 64, 67, 110, 122], paraboloids [8, 10, 36, 45, 70, 71,
73, 130, 137, 138, 144], cones [17, 18, 33, 116, 119], and hyperboloids [39, 52, 88, 112, 117].
Perturbations of these manifolds have been considered in [20, 57, 84, 85, 102, 104]. Sharp
bilinear restriction theory is the subject of [13, 16, 83, 113], whereas other instances of
sharp Strichartz inequalities [12, 54], sharp Sobolev–Strichartz inequalities [15, 58, 78] and
sharp Airy–Strichartz inequalities [68, 81, 120] have been considered as well. Finally, we
mention recent [66, 103] and very recent [101] surveys on sharp restriction theory which
may be consulted for information complementary to that on this Introduction, and further
references.

And so we begin.
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τ

ξ′

ξ1q10p

Cone: τ = |ξ|

Hyperboloid: ξ1 = 1, τ2 − |ξ′|2 = 1

Hyperboloid: |ξ − q| − |ξ| = |q| − 2

Paraboloid: 4ξ1 = 4− |ξ′|2
Ellipsoid: |ξ − p|+ |ξ| = |p|+ 2

Sphere: |ξ| = 1

Figure 1. Spheres (§5), paraboloids (§6.2), cones (§6.3), and hyperboloids
(§7) can all be obtained as conic sections.

2. Hausdorff–Young, sharp and sharpened

The symmetries of the Hausdorff–Young inequality (1) form the full affine group Aff(d).
For an inequality to have such a high degree of symmetry is quite rare,1 and this is tied to
the fact that refinements of (1) tend to constitute formidable problems in mathematical
analysis. Beckner’s landmark sharp Hausdorff–Young inequality [4] from 1975 states that

(1) holds with optimal constant of the form Bd
p, where Bp = p1/2pq−1/2q and q = p′ ≥ 2,

and is saturated by gaussians. Fifteen years later, Lieb [93] went farther, proving that
all maximizers are in fact gaussians. Much more recently, in 2014, Christ [44] obtained a
stabler form of uniqueness of maximizers, and a sharper inequality: If 1 < p < 2 and d ≥ 1,

1For instance, the Sobolev inequality ∥f∥2∗ ≲d ∥∇f∥2, where 2∗ = 2d
d−2

, and the closely related isoperi-

metric inequality both remain invariant if f is replaced by f ◦ ϕ where ϕ(x) = rR(x) + a for some
(R, r) ∈ SO(d) × (R \ {0}), but this is not the case for general ϕ ∈ Aff(d) if d > 1.
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then there exists c = c(p, d) > 0 such that, for any nonzero f ∈ Lp,

(6) ∥f̂∥
Lp′ (Rd)

≤

[
Bd

p − c

(
distp(f,G)

∥f∥p

)2
]
∥f∥Lp(Rd), where distp(f,G) := inf

G∈G
∥f −G∥p.

Here G denotes the set of gaussians G(x) = a exp(−Q(x)+x·v), with (a, v) ∈ C×Cd and Q
a positive definite real quadratic form. Christ’s analysis [44] proceeds by contradiction, and
its key step is a non-quantitative concentration-compactness result which relies on inverse
theorems of Balog–Szemerédi and Frĕıman from additive combinatorics. Consequently, the
stability constant c in (6) is not obtained in explicit form, nor is it quantified in any way.
It would be desirable to obtain some quantitative control over the stability constant in
(6). Figalli’s 2014 ICM address [61] highlights the subtlety of constructive stability in an
array of positive problems, including the Sobolev, isoperimetric, Gagliardo–Nirenberg, and
Brunn–Minkowski inequalities; see also [22, 60]. In settings where symmetrization methods
are unavailable, the difficulty in obtaining effective stability constants is illustrated in [53].
The Hausdorff–Young inequality often serves as a good toy model for the more sophisticated
restriction inequalities which we consider in this lecture. Further model examples will be
discussed in §4.

3. Restriction theory

The connection between the geometric notion of curvature and the analytic notion of
Fourier decay has been a powerful driving force for the development of euclidean harmonic
analysis in the last several decades. To further illustrate this point, let us consider the
following three apparently unrelated questions.

Question 1. In what sense do Fourier series and Fourier integrals converge? This is a
very classical question that lies at the heart of harmonic analysis. When considering the
higher dimensional problem, one is naturally led to the analysis of the family of multipliers

Ŝδ
R(f) = Sδ

Rf̂ ,

where Sδ
R(ξ) :=

(
1− |ξ|2

R2

)δ
+
and x+ = max{x, 0} denotes the positive part of x.

Question 2. For which sets Σ ⊂ Rd+1 and exponents p can the Fourier transform of a
rough function f ∈ Lp(Rd+1) be meaningfully restricted to Σ? Asking this question for the
unit sphere Σ = Sd, one is naturally led to consider the operator

(7) R(f) := f̂ |Sd .

Question 3. What is the smallest area needed to rotate a unit line segment by 180 degrees
in the plane? In pursuing higher dimensional analogues of this question, one is naturally
led to define the maximal function f∗δ : Sd → R,

(8) f∗δ (ω) := sup
a∈Rd+1

1

|T δ
ω(a)|

∫
Rd+1

|f |.
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Here, δ > 0, ω ∈ Sd−1, a ∈ Rd, and T δ
ω(a) denotes the δ-neighborhood of the unit line

segment in the direction of ω centered at a.

These questions immediately prompt the following natural problems.

Problem 4. For which p and δ > 0 does the following inequality hold?

(9) ∥Sδ
1(f)∥Lp(Rd+1) ≲d,p,δ ∥f∥Lp(Rd+1)

Problem 5. For which p, q does the following inequality hold?

(10) ∥R(f)∥Lq(Sd) ≲d,p,q ∥f∥Lp(Rd+1)

Problem 6. For which p does the following inequality hold?

(11) ∀ε > 0 ∃Cε <∞ : ∥f∗δ ∥Lp(Sd) ≲d,p Cεδ
−ε∥f∥Lp(Rd+1)

Problem 4 is known as the Bochner–Riesz problem. By scale invariance, it is equivalent
to the following question: For which exponents p and parameters δ > 0 do the means
Sδ
Rf converge to f in the Lp norm as R → ∞, for every f ∈ Lp(Rd+1)? As δ → 0+,

the multiplier Sδ
R approaches the ball multiplier 1B(0,R), for which similar questions can

be posed. In this case, a complete answer is known. In fact, Fefferman [59] famously
disproved the ball multiplier conjecture. Both the nonvanishing curvature of the boundary
of the ball, and elementary properties of Kakeya sets as described below, played a crucial
role in Fefferman’s proof. If δ > 0, then the multiplier is smoother at the boundary of
the ball. If δ < 0, then the multiplier has an unbounded symbol, and in particular fails
to preserve any Lp-space. Therefore a necessary condition for (9) to hold is that δ > 0.
Another necessary condition is

(12) (d+ 1)
∣∣∣1
2
− 1

p

∣∣∣− 1

2
< δ,

as follows from considering the stationary phase asymptotics of the convolution kernel
Kδ = ((1 − | · |2)δ+)∨ of Sδ

1 , which belongs to Lp(Rd+1) only if condition (12) is satisfied.
For more information on the Bochner–Riesz problem, see [125] and [135, Lecture 5].

Problem 5 is known as the restriction problem. The Fourier transform of an L1-function
is uniformly continuous, and can therefore be restricted to any subset of Rd+1. On the other
hand, the Fourier transform of an L2-function is again in L2, and in view of Plancherel
no better properties can be expected. The interesting question is then what happens for
intermediate values of 1 < p < 2. Necessary conditions for (10) turn out to be

(13) 1 ≤ p < 2
d+ 1

d+ 2
and q ≤ dp′

d+ 2
.

We will come back to this later on in the lecture.
Problem 6 is known as the maximal Kakeya problem. The name derives from its connec-

tion to the Kakeya problem, which we now briefly describe. A Kakeya set is a compact set
K ⊂ Rd+1 which contains a unit line segment in every direction. It has long been known
that, perhaps unintuitively, there exist Kakeya sets in Rd+1 with zero Lebesgue measure,
as long as d ≥ 1. In particular, given any ε > 0, there exists a planar set of area at most
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ε within which a unit line segment can be continuously rotated. A more refined question
is whether the Hausdorff dimension of a Kakeya set in Rd+1 must necessarily equal d+ 1.
This is known to be true if d = 1 [50], and is an open problem if d ≥ 2. An affirmative
answer would follow from appropriate bounds for the Kakeya maximal function (8). From
this definition, it is clear that (11) holds if p = ∞. If p <∞, then there can be no bound of
the form ∥f∗δ ∥Lq ≲ ∥f∥Lp with a constant independent of δ, as can be seen by considering
the indicator function of a δ-neighborhood of a zero measure Kakeya set. Moreover, (11)
cannot hold for any p < d+ 1, as can easily be seen by considering the indicator function
of the ball centered at the origin of radius δ. Further information on the Kakeya problem
and its maximal functional variant can be found in [147, §10–§11].

The following conjectures summarize the expected answers to the problems we just
discussed.

Conjecture 7 (Bochner–Riesz). Necessary and sufficient conditions for (9) are

δ > 0 and (d+ 1)
∣∣∣1
2
− 1

p

∣∣∣− 1

2
< δ.

Conjecture 8 (Restriction). Necessary and sufficient conditions for (10) are

1 ≤ p < 2
d+ 1

d+ 2
and q ≤ dp′

d+ 2
.

Conjecture 9 (Maximal Kakeya). Inequality (11) holds if p = d+ 1.

All three conjectures have been given affirmative answers in the lowest dimensional case
d = 1 a long time ago; see [35] (Bochner–Riesz), [148] (restriction), and [48] (maximal
Kakeya). Despite tremendous effort, and very substantial partial progress, they are still
open in dimensions d ≥ 2. These conjectures are not unrelated. In fact, Conjecture 7 im-
plies Conjecture 8, which in turn implies Conjecture 9. The first implication is the content
of [132]. For a short proof of the second implication, see [147, §10]. Significant progress in
this circle of problems has been accomplished by realizing that under appropriate conditions
these implications can be partially reversed. For instance:

• restriction implies Bochner–Riesz for paraboloids [34];
• the bush [24] and hairbrush [145] constructions (which respectively imply lower
bounds of d+2

2 and d+3
2 for the Hausdorff dimension of a Kakeya set in Rd+1) were

used to break the Stein–Tomas [125, 139] barrier of restriction exponents;
• elaborate versions of the polynomial method (originally used to settle the finite field
Kakeya conjecture [55]) were recently employed in order to establish the current
world record for restriction and Kakeya exponents in all remaining dimensions; see
[74, 75, 79, 80, 143].

For further discussion of the deep connections between Conjectures 7, 8, 9, we refer the
reader to the survey [133].

Before introducing the main topic of this lecture, let us consider the restriction problem
in more detail. Historically, its starting point goes back to unpublished work of Stein in the
late 1960s, see [125, p. 432], which culminated in the celebrated Stein–Tomas inequality:
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Theorem 10 ([125, 139]). Estimate (10) holds for q = 2 and 1 ≤ p ≤ 2d+2
d+4 .

A few comments are in order. Firstly, the range of exponents is best possible in L2, as there
can be no Lp → L2(σ) restriction estimates on the sphere if p > 2d+2

d+4 . This is shown via

the so-called Knapp construction, which amounts to testing the inequality dual to (10) on
the indicator function of a small spherical cap. Secondly, the sphere Sd can be replaced by
any smooth compact hypersurface in Rd+1, as long as its gaussian curvature never vanishes.
Some degree of curvature is essential, since a function supported on a hyperplane exhibits
no Fourier decay in the orthogonal direction. However, nonvanishing gaussian curvature is
a strong assumption that can be replaced by the nonvanishing of some principal curvatures,
at the expense of decreasing the range of admissible exponents p.

Several routes towards Theorem 10 exist. If R denotes the restriction operator defined

in (7), then its adjoint R∗, known as the extension operator, is given by R∗(f) = f̂σ, where
the Fourier transform of the measure fσ is defined as

(14) f̂σ(x) =

∫
Sd
f(ω)e−ix·ωdσ(ω). (x ∈ Rd+1).

The endpoint Stein–Tomas inequality corresponding to (p, q) = (2d+2
d+4 , 2) is equivalent to

the extension estimate

(15) ∥f̂σ∥
L2+ 4

d (Rd+1)
≲ ∥f∥L2(Sd).

If f ∈ L2(Sd), then the composition (R∗ ◦ R)(f) is well-defined, and given by

(16) (R∗ ◦ R)(f) = f ∗ σ̂.
Since the operator norms satisfy ∥R∥2 = ∥R∗∥2 = ∥R∗◦R∥, the boundedness of these three
operators is equivalent, and we may focus on R∗◦R. In view of (16), boundedness of R∗◦R
is only ensured if the Fourier transform σ̂(x) exhibits some decay, as |x| → ∞. In turn, this
follows from the principle of stationary phase, since the nonvanishing gaussian curvature of
the sphere translates into a nondegenerate Hessian for the phase function of the oscillatory
integral given by (14) when f ≡ 1. This is the starting point for the original argument of
Tomas [139], which worked only in the non-endpoint setting but was quickly extended to the
endpoint 2+ 4

d by embeddingR∗◦R into an analytic family of operators and invoking Stein’s
complex interpolation theorem [125]. A second method to prove Stein–Tomas restriction-
type estimates goes back to Ginibre–Velo [69]. It consists of introducing a time parameter
and treating the extension operator as an evolution operator. Two key ingredients for this
approach are the Hausdorff–Young inequality (1) and fractional integration in the form
of the Hardy–Littlewood–Sobolev inequality.2 These methods are more amenable to the
needs of the PDE community, and allow to further treat the case of mixed norm spaces;
see §4.2 below. In the rare cases in which the dual exponent is an even integer, one can
devise yet another proof of Stein–Tomas that comes from the world of bilinear estimates;
see e.g. [65, 89]. One rewrites the left-hand side of (15) as an L2-norm, and appeals to

2Interestingly, the restriction conjecture on R2 can be proved via a combination of Hausdorff–Young and
Hardy–Littlewood–Sobolev; see [125, pp. 412–414].
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Plancherel’s theorem in order to reduce the problem to a multilinear convolution estimate.
This simple strategy will be key to sharpening a number of restriction-type estimates, and
we shall give several examples in the course of this lecture.

It has long been known that Stein–Tomas restriction-type estimates are related to
Strichartz estimates for linear PDE of dispersive type. We illustrate this connection in
the context of the Schrödinger equation. The multiplier operator eit∆ is defined as

(17) êit∆f(ξ) = e−it|ξ|2 f̂(ξ),

for every Schwartz function f ∈ S(Rd). It is easily seen that eit∆f(x) solves the Schrödinger
equation iut + ∆u = 0 with initial datum u(0, ·) = f . The Schrödinger propagator eit∆

extends to a bounded operator from L2(Rd) to Lp
tL

q
x(R × Rd) if and only if the triplet

(d, p, q) is Schrödinger-admissible. This is the content of the following result.

Theorem 11 ([86, 131]). There exists C = Cd,p,q <∞ for which

(18) ∥eit∆f∥Lp
tL

q
x(R×Rd) ≤ C∥f∥L2(Rd),

for every f ∈ L2(Rd), if and only if

(19) p, q ≥ 2, (d, p, q) ̸= (2, 2,∞),
2

p
+
d

q
=
d

2
.

The diagonal case p = q = 2 + 4
d is due to Strichartz [131], who followed the original

arguments of Tomas and Stein, whereas the case p ̸= q is fully treated in Keel–Tao [86].
A hint that the diagonal case of Theorem 11 might be related to Theorem 10 comes from
the numerology of the exponents: The Strichartz exponent 2 + 4

d coincides with the dual
endpoint Stein–Tomas exponent. It turns out that Strichartz estimates for the Schrödinger
equation correspond to extension estimates on the paraboloid (which is not a compact
hypersurface, but by scale invariance it can be treated as such).

The question of what happens to (10) for q < 2 is the starting point of the Restriction
Conjecture 8, which we have already briefly addressed. The necessity of conditions (13)
follows from dimensional analysis and Knapp-type examples. Note that the endpoints of
this relation are the trivial case (p, q) = (1,∞), and the case in which p, q → 2d+1

d+2 , as
depicted in Figure 2 below.

Tools that have led to progress on the restriction conjecture include, in addition to the
previously mentioned ones, local restriction estimates, wave packet decompositions, and
induction-on-scale arguments. These methods played a prominent role in the proof of
Tao’s sharp bilinear restriction estimate for paraboloids [134], a deep result which in turn
implied further progress on the linear restriction problem. Bennett–Carbery–Tao [14] then
established almost sharp multilinear restriction estimates together with their multilinear
Kakeya counterparts. Surprisingly, at a higher level of multilinearity they turn out to
be basically equivalent. Multilinear restriction estimates allowed Bourgain–Guth [27] to
make further progress on the restriction problem, and played a prominent role in the
seminal work of Bourgain–Demeter [25] on ℓ2 decoupling, ultimately leading to Bourgain–
Demeter–Guth’s breakthrough solution of the main conjecture in Vinogradov’s mean value
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1
p

1
q

1

0 1d+2
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d+4
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1
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Stein–Tomas

Restriction
Conjecture

Figure 2. Lp–Lq(σ) boundedness of the restriction operator to Sd.

theorem [26]. Guth [74, 75] applied these multilinear tools together with the polynomial
method to get some further progress on the restriction problem; see [79, 143] for the latest
developments along these lines, together with Guth’s 2022 plenary ICM address [76].

Inequalities like (10), (15), (18) can be sharpened in a number of ways. In order to
clarify what sharp means for the purpose of our discussion, we focus on the restriction
inequality (10), the adaptation to other cases being straightforward. This inequality can
be rewritten as

(20) ∥Rf∥Lq(Sd) ≤ Cd,p,q∥f∥Lp(Rd+1),

with Cd,p,q being the optimal – or best – constant, defined as

Cd,p,q = sup
0̸=f∈Lp

∥Rf∥Lq(Sd)

∥f∥Lp(Rd+1)

.

A maximizer for inequality (20) is a nonzero function f ∈ Lp(Rd+1) which satisfies

∥Rf∥Lq(Sd) = Cd,p,q∥f∥Lp(Rd+1).

Amaximizing sequence for inequality (20) is a sequence {fn} ⊂ Lp(Rd+1) satisfying ∥fn∥p ≤
1, such that

∥Rfn∥Lq(Sd) → Cd,p,q, as n→ ∞.
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Several natural questions which fall under the category of sharp restriction theory, and
which we will address in this lecture, include: What is the value of the optimal constant?
Is it attained? If so, what is an example of a maximizer? If not, what is the mechanism
responsible for this lack of compactness? In either case, how do maximizing sequences
behave? If maximizers exist, are they unique modulo the symmetries of the problem?

An ideal setting to explore these questions is that of the Stein–Tomas inequality in low
dimensions d ∈ {1, 2}, and its Strichartz counterpart. The endpoint exponent 2 + 4

d is
then an even integer, and the aforementioned convolution trick transforms the original
oscillatory problem into a question of geometric integration over a concrete manifold. We
will see several illustrative examples in the remainder of this lecture, which is organized as
follows (see also Figure 3):

• In §4, we present two simple inequalities for the spherical extension operator which
we have recently put in sharp/sharpened form [41, 99];

• In §5, we consider spherical Stein–Tomas, and discuss some of our results related
to existence [96] and characterization [101, 107, 108] of maximizers, also in the
recently introduced weighted setting [38];

• In §6, we focus on paraboloids and cones. In §6.1, we discuss sharp Strichartz
inequalities for the Schrödinger and wave equations. In §6.2, we describe our work
[30, 106] leading to a powerful geometric comparison principle for convolution mea-
sures which culminated in the resolution of a dichotomy of Jiang–Pausader–Shao
[84]. In §6.3, we present some current ongoing work [100] which in particular es-
tablishes the conic analogue of Christ–Quilodrán [45].

• In §7, we discuss hyperboloic sharp restriction in the low [42] and higher [43] dimen-
sional settings. We conclude with some recent progress on the restriction conjecture
for the hyperboloic hyperboloid [32].

Along the way we will single out several challenging open problems and comment on pos-
sible directions of future research.

4. The inequalities of Agmon–Hörmander and Vega

In this section, we consider two simple estimates for the spherical extension operator
which, in non-sharp form, were first established by Agmon–Hörmander [1] and Vega [141]
in 1976 and 1988, respectively.

4.1. Agmon–Hörmander. We describe a simple estimate for the extension operator on
Sd which, perhaps surprisingly, is not always maximized by constants. For simplicity we
restrict attention to the circle S1, even though we have recently proved analogous results
in all dimensions d ≥ 1; see [99].

Our starting point is the Agmon–Hörmander estimate on the circle,

(21)
1

R

∫
BR

|f̂σ(x)|2 dx

(2π)2
≤ AR

∫
S1
|f(ω)|2dσ(ω),
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Figure 3. On the horizontal axis, dimension d of Sd. On the vertical
axis, Lebesgue exponent p of the L2(σ) − Lp extension inequality. Circles
(◦) correspond to endpoint Stein–Tomas for spheres and Stein–Tomas for
paraboloids, while crosses (×) correspond to Stein–Tomas for cones. The
shaded region between the two dashed curves correspond to hyperboloids.
For spheres, black entries correspond to inequalities which are maximized
by constants, while red entries correspond to inequalities which are conjec-
turally maximized by constants; orange entries correspond to situations in
which Stein–Tomas does not hold, but other replacement inequalities such
as Agmon–Hörmander may be available.

where BR ⊂ R2 denotes a ball of arbitrary radius R > 0 centered at the origin and σ stands
for the usual arclength measure on S1. Agmon–Hörmander [1] observed that estimate (21)
holds with a constant AR that approaches 1

π , as R→ ∞, but did not investigate its optimal
value. The latter is described in terms of the auxiliary quantities

(22) Λk
R :=

R

2
J2
k (R)−

R

2
Jk−1(R)Jk+1(R)

in Theorem 12 below, where Jn denotes the usual Bessel function. The following result on
the optimal constant and the maximizers of (21) holds; see also Figure 4.

Theorem 12 ([99]). For each R > 0,

AR =

{
Λ0
R if (J0J1)(R) ≥ 0

Λ1
R if (J0J1)(R) ≤ 0
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The corresponding space of maximizers is given by

MR =


H0 if (J0J1)(R) > 0
H1 if (J0J1)(R) < 0
H0 ⊕H1 if J0(R) = 0
H0 ⊕H1 ⊕H2 if J1(R) = 0

where Hk ⊂ L2(S1) denotes the vector space of degree k circular harmonics.

One remarkable feature of Theorem 12 is that constants are seen to not always be
maximizers, even though they are the unique functions which are invariant under the
full rotational symmetry group of (21). In this way Theorem 12 identifies an instance of
symmetry breaking, which to the best of our knowledge had not yet been observed for an
estimate involving the spherical extension operator.

The next natural question concerns the stability of inequality (21), which can be phrased
in terms of lower bounds for the following deficit functional:

δR[f ] := AR∥f∥2L2(S1) −
1

R

∫
BR

|f̂σ(x)|2 dx

(2π)2
.

Clearly, δR[f ] ≥ 0 for every f ∈ L2(S1) but, in the spirit of Bianchi–Egnell [21], more can
be said; see also Figure 4, and recall that the space MR has been defined in Theorem 12.

Theorem 13 ([99]). The following sharp two-sided inequality holds:

(23) SR dist2(f,MR) ≤ δR[f ] ≤ AR dist2(f,MR)

Equality occurs in the right-hand side inequality of (23) if and only if f ∈ MR. Equality
occurs in the left-hand side inequality of (23) if and only if f ∈ MR ⊕ ER, where:

SR = ER = if and
Λ0
R − Λ1

R H1 (J1J2)(R) > 0
= H1 ⊕H2 ⊕H3 (J0J1)(R) > 0 (J1J2)(R) = 0

Λ0
R − Λ2

R H2 (J1J2)(R) < 0
Λ1
R − Λ0

R H0 (J0J1 + J1J2 + J2J3)(R) > 0
= H0 ⊕H3 (J0J1)(R) < 0 (J0J1 + J1J2 + J2J3)(R) = 0

Λ1
R − Λ3

R H3 (J0J1 + J1J2 + J2J3)(R) < 0
Λ0
R − Λ2

R H2 J0(R) = 0 (J2J3)(R) > 0
Λ0
R − Λ3

R H3 (J2J3)(R) < 0
Λ0
R − Λ3

R H3 J1(R) = 0 (J3J4)(R) > 0
Λ0
R − Λ4

R H4 (J3J4)(R) < 0

The proofs of Theorems 12 and 13 rely on two observations. Firstly, by orthogonality of
the circular harmonic decomposition f =

∑
k≥0 Yk, we have that

1

R

∫
BR

|f̂σ(x)|2 dx

(2π)2
=
∑
k≥0

Λk
R∥Yk∥2L2 ,
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Figure 4. Optimal constant AR (blue) and stability constant SR (red) for
the Agmon–Hörmander estimate on the circle when 0 < R < 10.

where the Λk
R have been defined in (22). Secondly, AR = supk≥0 Λ

k
R, where f attains the

supremum if and only if f =
∑
Ykj , for some kj ∈ {k ≥ 0 : Λk

R = suph Λ
h
R}; see also [19].

In our case of interest, we can conveniently rewrite the Λk
R in integral form,

Λk
R =

1

R

∫ R

0
J2
k (r)rdr,

and invoke certain well-known Bessel recursions to start gaining control on both extremal
problems corresponding to Theorems 12 and 13.

The above explicit expressions for the optimal constant AR and the stability constant
SR lead to the following loss-of-regularity statements, which have been recently observed
in the related setting of the Brascamp–Lieb inequalities [9, 11]. Firstly, AR is not a
differentiable function of R at each positive zero of J0J1; it defines a Lipschitz function
on (0,∞) which is real-analytic between any two consecutive zeros of J0J1. Secondly, SR

has a jump discontinuity at each positive zero of J0J1; it defines a piecewise real-analytic
function of R between any two consecutive zeros of J0J1 which fails to be differentiable at
each positive zero of J2; see [99, Cor. 3].

4.2. Vega. If we merely require f̂σ ∈ L6
radL

2
ang(R2) (weakening the assumption on the

target space in (15)), we obtain the following sharp inequality, first noticed in [66, §3.2]:

(24) ∥f̂σ∥L6
radL

2
ang(R2) ≤

(∫ ∞

0
J6
0 (r)rdr

) 1
6

∥f∥L2(S1).



16 DIOGO OLIVEIRA E SILVA

By contrast to §4.1, constants are the unique nonnegative maximizers of (24). We repro-
duce the short proof here. The starting point is the well-known formula

(25) Ŷkσ(x) = ikJ d−2
2

+k(|x|)|x|
2−d
2 Yk

( x
|x|

)
, (x ∈ Rd)

which provides a connection between spherical harmonics and Bessel functions in all di-
mensions. It can be proved by applying the Funk–Hecke formula together with Rodrigues
formula for Gegenbauer polynomials; see [127]. Given f ∈ L2(S1), we Fourier expand it,
f =

∑
k≥0 akYk, with each ∥Yk∥L2 = 1. Appealing to identity (25) and to orthogonality of

the {Yk}k≥0, ∫
S1
|f̂σ(rω)|2dσ(ω) =

∑
k≥0

|ak|2J2
k (r)r.

The left-hand side of inequality (24) is thus equal to

(26)

∫ ∞

0

(∑
k≥0

|ak|2J2
k (r)

)3
rdr,

which can be rewritten as∑
k,ℓ,m≥0

|ak|2|aℓ|2|am|2I(k, ℓ,m), with I(k, ℓ,m) :=

∫ ∞

0
J2
k (r)J

2
ℓ (r)J

2
m(r)rdr.

The integrals I(k, ℓ,m) satisfy a crucial monotonicity property,

(27) I(k, ℓ,m) ≤ I(0, 0, 0),

with equality if and only if k = ℓ = m = 0. To check this, note that

I(k, ℓ,m) =

∫
R2

êkσêkσêℓσêℓσêmσêmσdx =

∫
(S1)6

(ω1ω2)
k(ω3ω4)

ℓ(ω5ω6)
mdΣ(ω⃗),

where the function en : S1 → C is defined via en(ω) = ωn, and the measure Σ is given by

(28) dΣ(ω⃗) = δ
(∑6

j=1 ωj

) 6∏
j=1

dσ(ωj).

The triangle inequality immediately implies I(k, ℓ,m) ≤ I(0, 0, 0), with equality if and only

(ω1ω2)
k(ω3ω4)

ℓ(ω5ω6)
m = 1,

for every ω1, . . . , ω6 ∈ S1 for which
∑6

j=1 ωj = 0. It follows that k = ℓ = m = 0, and the

proof of (27) is complete. As a consequence, we obtain the sharp inequality (24) at once:

∥f̂σ∥6
L6
radL

2
ang(R2)

=
∑

k,ℓ,m≥0

|ak|2|aℓ|2|am|2I(k, ℓ,m)

≤ I(0, 0, 0)
∑

k,ℓ,m≥0

|ak|2|aℓ|2|am|2 = I(0, 0, 0)∥f∥6
L2(S1).

The characterization of maximizers is now straightforward.
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The simple argument presented above admits a vast generalization which we developed
in [41]. Let d ≥ 2 be an integer and let 2d/(d − 1) < q ≤ ∞. In his doctoral thesis, Vega
[141] proved the following inequality:

(29)
∥∥f̂σ∥∥

Lq
radL

2
ang(Rd)

:=

(∫ ∞

0

(∫
Sd−1

∣∣f̂σ(rω)∣∣2dσ(ω)) q
2

rd−1 dr

) 1
q

≤ Vd,q ∥f∥L2(Sd−1).

The example f ≡ 1 shows that the requirement q > 2d/(d − 1) is necessary for this
mixed norm extension inequality to hold. An alternative proof of (29) was recently given
by Córdoba [49]. With a view towards putting (29) in sharp form, we define, for each
k ∈ {0, 1, 2, . . .}, the Bessel integral

(30) Λd,q(k) :=

(∫ ∞

0

∣∣r1− d
2 J d

2
−1+k(r)

∣∣q rd−1 dr

) 1
q

.

Theorem 14 ([41]). Let d ≥ 2 and 2d/(d− 1) < q ≤ ∞. The following statements hold.

(i) The sequence {Λd,q(k)}k≥0 satisfies limk→∞ Λd,q(k) = 0 and we have

Vd,q = (2π)d/2max
k≥0

Λd,q(k).

Moreover, f is a maximizer of (29) if and only if f ∈ Hd
ℓ , where ℓ is such that

Λd,q(ℓ) = max
k≥0

Λd,q(k).

(ii) If q is an even integer or q = ∞, then

Vd,q = (2π)d/2Λd,q(0),

and the constant functions are the unique maximizers of (29).

(iii) For a fixed d, the set Ad = {q ∈ (2d/(d− 1),∞] : Λd,q(0) > Λd,q(k) for all k ≥ 1},
for which the constant functions are the unique maximizers of (29), is an open set
in the extended topology.

From Theorem 14 it is clear that, as in §4.1, the crux of the matter boils down to a hierarchy
between the Bessel integrals (30), a nontrivial question of independent interest in the theory
of special functions. Numerical simulations indicate that Λd,q(0) is a good candidate to
be the largest, and we were able to prove this for all even q. An interesting feature of
our proof for q ∈ 2N is that it takes a detour from the Bessel world [109], rewriting these
integrals using spherical harmonics and relying on a decisive application of delta calculus3

and the theory of orthogonal polynomials. On the other hand, Theorem 14 (iii) implies
the existence of a neighborhood of exponents around each even integer for which constants
continue to be global maximizers. This breaks for the first time the even integer barrier
in sharp restriction theory. Moreover, Ad contains a neighborhood of the point at infinity
which, in particular, leads us to define

(31) q0(d) := inf{r : 2d/(d− 1) < r <∞ and (r,∞] ⊂ Ad}.
3See [66, Appendix A] for a short introduction to delta calculus.
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In [41, Theorem 3] we proved that

(32) q0(d) ≤
(
1
2 + o(1)

)
d log d.

In low dimensions we have the following explicit bounds

q0(2)≤ 6.76 ; q0(3) ≤ 5.45 ; q0(4) ≤ 5.53 ; q0(5) ≤ 6.07 ; q0(6) ≤ 6.82 ;

q0(7)≤ 7.70 ; q0(8) ≤ 8.69 ; q0(9) ≤ 9.78 ; q0(10) ≤ 10.95.

It remains an interesting open problem to find a quantitative improvement for (32).

5. Sphere

In this section, we discuss a number of our recent results in sharp spherical restric-
tion. In §5.1, we explain our path towards the unconditional existence of endpoint Stein–
Tomas maximizers when additional symmetries are present; in §5.2, we revist Foschi’s
argument [64] for the sharp endpoint Stein–Tomas inequality on S2; in §5.3–§5.5, we de-
scribe a bootstrapping procedure in order to fully characterize the real-valued maximizers
of L2(σ) → L2k extension inequalities on Sd, 2 ≤ d ≤ 6, k ≥ 3; in §5.6, we address
complex-valued maximizers for the same inequalities; in §5.7, we present a sharp extension
inequality on S7.

5.1. Existence. Maximizers for the Stein–Tomas inequality on Sd,

(33) ∥f̂σ∥Lq(Rd+1) ≤ Td,q∥f∥L2(Sd), if q ≥ 2 + 4
d ; Td,q := sup

0̸=f∈L2

∥f̂σ∥Lq(Rd+1)

∥f∥L2(Sd)
,

are known to exist in the following cases:

• non-endpoint q > 2 + 4/d [57];
• endpoint (d, q) = (2, 4) [46] and (d, q) = (1, 6) [122];
• endpoint (d, 2 + 4/d), d ≥ 3, conditionally on Lieb’s Conjecture 25 [67].

In the non L2-setting, we refer to the very recent [62] for further existence results.
In [96], we prove new restriction estimates to Sd on the class of O(d − k + 1) × O(k)-

symmetric functions, for every d ≥ 3 and 2 ≤ k ≤ d − 1, and consequently establish the
unconditional existence of maximizers for the endpoint Stein–Tomas inequality within that
class. We also construct examples showing that the range of Lebesgue exponents in our
estimates is sharp. Let us make this more precise.

Given a subgroup G ⊂ O(d + 1) of the orthogonal group, a function f : Rd+1 → C
is said to be G-symmetric in Rd+1 if f ◦ A = f holds for every A ∈ G. An especially
interesting situation arises when considering the subgroup Gk := O(d− k + 1)× O(k) for
some k ∈ {0, 1, . . . , d+ 1}. We are interested in restriction estimates to the unit sphere,

(34)

(∫
Sd

|f̂(ω)|q dσ(ω)
) 1

q

≤ C(k, d, p, q)∥f∥Lp(Rd+1),

which hold in the class of Gk-symmetric functions, and are led to define the Banach space

Lp
k(R

d+1) := {f ∈ Lp(Rd+1) : f is Gk-symmetric}.
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The cases k ∈ {0, d + 1} correspond to radial functions on Rd+1. If f ∈ Lp(Rd+1) is

radial, then f̂ is continuous on Rd+1 \ {0} whenever 1 ≤ p < 2d+1
d+2 ; see [126, Prop. 5.1]. In

particular, inequality (34) holds for radial functions provided 1 ≤ p < 2d+1
d+2 and 1 ≤ q ≤ ∞,

and this range is optimal. Thus the Lp–Lq mapping properties of the restriction operator
in the radial cases k ∈ {0, d + 1} are completely understood. The cases k ∈ {1, d} are
likewise special. Since Knapp’s construction in Rd+1 is rotationally invariant with respect
to d variables, Gk-symmetry does not allow for a larger range of Lebesgue exponents on
which restriction estimates can hold when k ∈ {1, d}. For this reason, we focus on the
situation when k ∈ {2, 3, . . . , d− 1} and present the following main result; see also Figure
5, which should be compared with Figure 2.

Theorem 15 ([96]). Let d ≥ 3, k ∈ {2, 3, . . . , d− 1}, and m := min{d− k + 1, k}. Then

(35)

(∫
Sd

|f̂(ω)|2 dσ(ω)
) 1

2

≤ C(k, d, p)∥f∥Lp(Rd+1)

holds for every Gk-symmetric function f : Rd+1 → C if 1 ≤ p ≤ 2d+m+1
d+m+3 .

Given that 2d+m+1
d+m+3 is strictly larger than the Stein–Tomas exponent 2d+2

d+4 , Theorem 15

improves upon (33). This result is new whenever d ≥ 3, and leads to the precompactness
of maximizing sequences for the constrained optimization problem

Td,k(p) := sup
0̸=f∈Lp

k(Rd+1)

(∫
Sd |f̂(ω)|

2dσ(ω)
) 1

2

∥f∥Lp(Rd+1)

,

and consequently to the unconditional existence of maximizers for Td,k(p).

Theorem 16 ([96]). Let d ≥ 3, k ∈ {2, 3, . . . , d − 1}, m := min{d − k + 1, k}, and 1 ≤
p < 2d+m+1

d+m+3 . Maximizing sequences for Td,k(p), normalized in Lp(Rd+1), are precompact

in Lp
k(R

d+1). In particular, maximizers for Td,k(p) exist.

The set of all maximizers for Td,k(p) is itself compact as long as 1 ≤ p < 2d+m+1
d+m+3 . Theo-

rem 16 thus implies the unconditional existence of maximizers for the classical Stein–Tomas
inequality within the class of Gk-symmetric functions. In contrast to the conclusion of [67,
Theorem 1.1], precompactness of complex-valued maximizing sequences is not expected to
hold modulo symmetries only, since Gk-symmetry eliminates the loss of compactness due to
translations. There is still the danger that a maximizing sequence might converge weakly
to zero. To show that this is not the case, the proof of Theorem 16 makes use of a decay
property of the Fourier transform which is only available in the Gk-symmetric setting for
2 ≤ k ≤ d− 1; see [96, Prop. 2.4 and Cor. 2.5]. The endpoint case of Theorem 16 remains
an interesting open question.

We now come to the key question of what the maximizers actually look like. Despite
the partial progress past the even integer barrier which we reported in §4.2, the following
fundamental problem remains open in its full generality.

Conjecture 17 (Stein). Constants maximize the endpoint inequality (33), for every d ≥ 1.
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Conjecture 17 is a central and elusive question that has attracted attention from the com-
munity since Stein formulated the restriction conjecture in the 1970s. A breakthrough of
Foschi [64] established the case of S2 via a remarkable geometric argument; see §5.2. Even
though connections with Conjecture 25 exist, significant additional challenges are present.
Contrary to the paraboloid, the sphere possesses no exact scaling symmetries. Further-
more, the existence of antipodal pairs on the sphere complicates the picture, and gives rise
to non-local phenomena which are absent in the Strichartz setting.

1
p

1
q

1

0 1

m−1
2m

d+2
2(d+1)

d+4
2(d+2)

m+1
2m

1
2

d+2
2(d+1)

Stein–Tomas

Theorem 15

[96, Theorem 1.4]

d+m+3
2(d+m+1)

Restriction
Conjecture

Figure 5. Riesz diagram for the Gk-symmetric restriction problem to Sd.
Estimates in the orange region follow from the Stein–Tomas inequality (33),
estimates in the yellow region follow from our results [96], and no estimates
within the grey region are possible. The possibility of estimates in the red
region remains an open problem.

5.2. S2. We recall Foschi’s argument [64] in a form reflecting more recent insights, devel-
oped with G. Negro and C. Thiele while writing the survey [101]. We aim to show

(36) ∥f̂σ∥44 ≤ ∥σ̂∥44
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for all f that have the same L2(σ) norm as the constant function 1. Basic steps that are
recalled in §5.4.2 allow us to restrict attention to f that are real and antipodally symmetric,

so that also u := f̂σ is real and even. As û is supported on the unit sphere, u satisfies the
Helmholtz equation,

u+∆u = 0.

This equation is used in the first key step that is sometimes referred to as the magic
identity. It expresses the left-hand side of (36) in a way that later mollifies a singularity of
σ ∗ σ at the origin. The derivation of the magic identity uses partial integration, which is
justified because u and all its derivatives are in L4; see [38, Prop. 6]. Replacing one factor
of u with Helmholtz, we obtain for the left-hand side of (36)

−
∫
R3

(∆u)u3 =

∫
R3

∇u · ∇(u3) = 3

∫
R3

|∇u|2u2 = 3

4

∫
R3

|∇u2|2 = −3

4

∫
(∆u2)u2.

Expressing this again in terms of f , and doing analoguously for the constant function, we
reduce (36) to

Λ(f, f, f, f) ≤ Λ(1, 1, 1, 1)

with the 4-linear form Λ is defined by

Λ(f1, f2, f3, f4) =

∫
(R3)4

|x1 + x2|2 δ
(∑4

k=1 xk
) 4∏
j=1

fjσ(xj)dxj .

The second key step is a positivity argument reminiscent of the Cauchy–Schwarz inequality.
We use the inequality

(37) 2ab ≤ a2 + b2

for real numbers a and b chosen to be f(x1)f(x2) and f(x3)f(x4) at every point x1, x2, x3, x4
and obtain by positivity of the integral kernel

(38) 2Λ(f, f, f, f) ≤ Λ(f2, f2, 1, 1) + Λ(1, 1, f2, f2).

Using symmetry of Λ thanks to |x1 + x2| = |x3 + x4|, we are reduced to showing

Λ(f2, f2, 1, 1) ≤ Λ(1, 1, 1, 1).

We write f2 = 1+ g, where gσ has integral zero. In the integral expression for Λ(1, 1, 1, g),
the measure gσ is integrated against a radially symmetric function and thus this integral
is zero. Using expansion and symmetry of Λ again, we are reduced to showing the third
key step, which is the inequality

(39) Λ(g, g, 1, 1) ≤ 0.

This relies on the important calculation, see e.g. [107] and Lemma 20 below, that σ ∗ σ(x)
is a positive scalar multiple of

|x|−11|x|≤2.
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This convolution appears in the expression for Λ(g, g, 1, 1) by integrating out the last two
variables. Thanks to the support of the remaining functions, we may omit the indicator
1|x|≤2 and reduce (39) to

(40)

∫
(R3)2

|x1 + x2|2

|x1 + x2|
gσ(x1)gσ(x2)dx1dx2 ≤ 0.

It is here that as a result of the magic identity the singularity at |x1+x2| = 0 is cancelled.
Define the analytic family hs of tempered distributions on R3 by

(41) hs(ϕ) = Γ((s+ 3)/2)−1

∫
R3

|x|sϕ(x)dx.

The integral (41) is well-defined for ℜ(s) > −3 and positive if ϕ is a gaussian. The
inequality (40) is then equivalent to

(42) h1(gσ ∗ gσ) ≤ 0.

The distribution hs is rotationally symmetric and homogeneous of degree s, and it is up to
positive scalar uniquely determined by these symmetries and positivity on the gaussian. As

the Fourier transform ĥs also has rotational symmetry and dilation symmetry with degree
of homogeneity −3− s, we have for −3 < ℜ(s) < 0

(43) aĥs = h−3−s,

for some positive constant a. Analytic continuation with (41) and (43) allows to define hs
for all complex numbers s. By unique continuation, hs(ϕ) is expressed by (41) whenever ϕ
vanishes of sufficiently high order at 0 so that the integral is absolutely integrable.

By Plancherel, we reduce (42) to

(44) h−4((ĝσ)
2) ≤ 0.

As (ĝσ)2 vanishes of second order at the origin, the pairing with h−4 is given by the
expression (41). Inequality (44) follows, because (ĝσ)2 is nonnegative and Γ(−1/2) < 0.
This concludes our discussion of sharp endpoint Stein–Tomas inequality on S2.

5.3. Sd. In this section, we consider spheres Sd ⊂ Rd+1 equipped with the usual surface
measure σ. The five black L2−L4 entries on Figure 3 correspond to cases for which constants
are global maximizers; see [40]. Above them lie infinitely many L2 − L2k estimates which
we have recently put in sharp form. Defining the functional

Φd,p[f ] = ∥f̂σ∥pp∥f∥
−p

L2(Sd),

the following is the main result in [107, 108].

Theorem 18 ([107, 108]). Let d ∈ {2, 3, 4, 5, 6} and p ≥ 6 be an even integer. Then
constant functions are the unique real-valued maximizers of the functional Φd,p. The same
conclusion holds for d = 1 and even p > 6 if constants maximize Φ1,6.
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For the remainder of this section, our goal is four-fold. Firstly, we briefly discuss the proof
of Theorem 18 in the particular but representative case when (d, p) = (2, 6). Secondly, we
describe the extra ingredients which are needed in order to obtain sharp L2−L2k estimates
for higher k ≥ 4. Thirdly, we fully characterize the complex-valued maximizers of Φd,p, for
d, p in the range of Theorem 18. Finally, we present a sharp extension inequality on S7,
which is the lowest dimension to which Theorem 18 does not apply.

5.4. (d, p) = (2, 6). We abbreviate notation by writing Φp := Φ2,p and

Tp := sup{Φp[f ]
1/p : 0 ̸= f ∈ L2(S2)}.

The proof naturally splits into five steps, which use tools from the calculus of variations,
symmetrization, operator theory, Lie theory, and probability. We present them next, and
then see how they all come together nicely in the end.

5.4.1. Calculus of variations. The existence of maximizers for Φ6 is ensured by [57]. Let
f be one such maximizer, normalized so that ∥f∥L2 = 1. Consider the extension operator

E(f) := f̂σ with adjoint given by E∗(g) := g∨|S2 . Then the operator norm can be estimated
as follows:

∥E∥6
L2→L6= ∥E(f)∥6

L6(R3)
= ⟨|E(f)|4E(f), E(f)⟩= ⟨E∗(|E(f)|4E(f)), f⟩L2(S2)

≤ ∥E∗(|E(f)|4E(f))∥L2(S2)≤ ∥E∗∥L6/5→L2∥|E(f)|4E(f)∥L6/5(R3)

= ∥E∗∥L6/5→L2∥E(f)∥5L6(R3)
= ∥E∥6

L2→L6 .

Thus all inequalities are equalities, and in particular equality in the Cauchy–Schwarz step
above yields the Euler–Lagrange equation,

(|f̂σ|4f̂σ)∨|S2 = λf,

which, in convolution form, reads as follows:

(45) (fσ ∗ f⋆σ ∗ fσ ∗ f⋆σ ∗ fσ)|S2 = (2π)−3λf ;

here f⋆ := f(−·). A bootstrapping procedure can then be used to show that f , and indeed
any L2-solution of (45), is C∞-smooth. We omit the details and refer the interested reader
to [108], which extends the main result of [47] to the higher dimensional setting of even
exponents.

5.4.2. Symmetrization. Since p = 6 is an even integer, the problem is inherently positive,
in the sense that nonnegative maximizers exist. In fact,

∥fσ ∗ fσ ∗ fσ∥L2(R3) ≤ ∥|f |σ ∗ |f |σ ∗ |f |σ∥L2(R3).

Defining f♯ :=

√
|f |2+|f⋆|2

2 , we also have the following monotonicity under antipodal sym-

metrization which can be readily verified via a creative application of the Cauchy–Schwarz
inequality in the spirit of (38):

(46) ∥fσ ∗ fσ ∗ fσ∥L2(R3) ≤ ∥f♯σ ∗ f♯σ ∗ f♯σ∥L2(R3).
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Interestingly, this inequality has a variant in the non-algebraic case when p /∈ 2N; see [30,
Prop. 6.7] and our discussion in §6.2. We conclude that

T6 = max{Φ6[f ]
1/6 : 0 ̸= f ∈ C∞(S2), f is nonnegative and even},

an important simplification which will be crucial in the sequel.

5.4.3. Operator Theory. We now explore some of the compactness inherent to the problem.
Given f ∈ L2(S2), consider the integral operator Tf : L2(S2) → L2(S2) defined by

(47) Tf (g)(ω) := (g ∗Kf )(ω) =

∫
S2
g(ν)Kf (ω − ν)dσ(ν),

which acts on functions g ∈ L2(S2) by convolution with the kernel

Kf (ξ) := (|f̂σ|4)∨(ξ) = (2π)3(fσ ∗ f⋆σ ∗ fσ ∗ f⋆σ)(ξ).

The relevance of the operator Tf becomes apparent once one realizes that the Euler–
Lagrange equation (45) boils down to the eigenfunction equation Tf (f) = λf . The kernel

Kf defines a bounded, continuous function on R3 which satisfies Kf (ξ) = Kf (−ξ), for all ξ,
and crucially Kf (0) = ∥f̂σ∥44. Correspondingly, the operator Tf is self-adjoint and positive
definite. In fact, one can check that Tf is trace-class and that its trace is given by

(48) tr(Tf ) = 4π∥f̂σ∥44.

This is a consequence of Mercer’s theorem, which is the infinite-dimensional analogue of
the well-known statement that any positive semidefinite matrix is the Gram matrix of a
certain set of vectors.

5.4.4. Lie Theory. We proceed to discuss the symmetries of the problem. The set of
3× 3 orthogonal matrices with unit determinant form the special orthogonal group SO(3),
with Lie algebra so(3). As a preliminary observation, we note that the exponential map
exp : so(3) → SO(3), A 7→ eA, is surjective onto SO(3), and that the functional Φ6 is
rotation- and modulation-invariant. In other words,

Φ6[f ◦ etA] = Φ6[f ] = Φ6[e
iξ·f ],

for all (t, A) ∈ R × so(3) and ξ ∈ R3. As we shall now see, these symmetries give rise
to new eigenfunctions for the operator Tf defined in (47) in a natural way. Consider the
vector field ∂A acting on sufficiently smooth functions f : S2 → C via

∂Af :=
∂

∂t

∣∣∣
t=0

(f ◦ etA).

We have the following key lemma, where we write ω = (ω1, ω2, ω3) ∈ S2, and by ωjf we
mean the function defined via (ωjf)(ω) = ωjf(ω).
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Lemma 19 ([107]). Let f : S2 → R be non-constant, such that f⋆ = f ∈ C1(S2) and
∥f∥L2 = 1. Assume Tf (f) = λf . Then

Tf (∂Af) =
λ
5∂Af, for every A ∈ so(3);

Tf (ωjf) =
λ
5ωjf, for every j ∈ {1, 2, 3}.

Moreover, there exist A,B ∈ so(3), such that the set {∂Af, ∂Bf, ω1f, ω2f, ω3f} is linearly
independent over C.

The proof of Lemma 19 hinges on the fact that the codimension of a proper, nontrivial
subalgebra of so(3) equals 2. The linear independence of the set {∂Af, ∂Bf, ω1f, ω2f, ω3f}
follows from the fact that ∂Af, ∂Bf are real even functions, whereas ω1f, ω2f, ω3f are real
odd functions.

5.4.5. Uniform random walks in R3. We will need explicit expressions for various convo-
lution measures σ∗k. These can be interpreted in terms of random walks, and as such
are sometimes available in the probability theory literature. More precisely, consider
i.i.d. random variables X1, X2, X3, taking values on S2 with uniform distribution. Then
Y3 = X1 +X2 +X3 is the uniform 3-step random walk in R3. If p3 denotes the probabil-
ity density of |Y3|, then a straightforward computation in polar coordinates reveals that
(σ ∗σ ∗σ)(r) = σ(S2)2p3(r)r−2. Such considerations quickly lead to the following formulae
for spherical convolutions.

Lemma 20 ([107]). The following identities hold:

(49) (σ ∗ σ)(ξ) = 2π

|ξ|
, if |ξ| ≤ 2,

(50) (σ ∗ σ ∗ σ)(ξ) =

{
8π2, if |ξ| ≤ 1,

4π2
(

3
|ξ| − 1

)
, if 1 ≤ |ξ| ≤ 3.

Corollary 21. Φ6[1] = 2πΦ4[1].

Indeed, from Lemma 20 we have that

Φ4[1] = (2π)3∥1∥−4
L2(S2)∥σ ∗ σ∥22 = 16π4, and

Φ6[1] = (2π)3∥1∥−6
L2(S2)∥σ ∗ σ ∗ σ∥22 = 32π5.

5.4.6. End of proof of Theorem 18 when (d, p) = (2, 6). By §5.4.1, it suffices to check that
any non-constant critical point (i.e. an L2-solution of the Euler–Lagrange equation (45))
f : S2 → C ∈ C1(S2) of Φ6 satisfies Φ6[f ] < Φ6[1]. By §5.4.2, we may further assume that
f⋆ = f is real-valued, and that ∥f∥L2 = 1. From Tf (f) = λf , one checks that λ = Φ6[f ].
Thus, by §5.4.3–§5.4.4,

(51) Φ6[f ] = λ = 1
2(λ+ 5× λ

5 ) <
1

2
tr(Tf ) = 2π∥f̂σ∥44,
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where the strict inequality is a consequence of Lemma 19 together with the fact that all
eigenvalues of Tf are strictly positive, and the last identity has been observed in (48). But

(52) 2π∥f̂σ∥44 = 2πΦ4[f ] ≤ 2πΦ4[1] = Φ6[1]

where the inequality follows from the result (36) of Foschi [64] reviewed in §5.2, and the
last identity is Corollary 21. From (51) and (52) it follows that Φ6[f ] < Φ6[1], and this
concludes the sketch of the proof of the case (d, p) = (2, 6) of Theorem 18.

5.5. Higher dimensions and exponents. The special case (d, p) = (2, 6) of Theorem 18
discussed in §5.4, while illustrative of the general scheme, relies on several crucial simplifi-
cations which made the proof sketch fit in just a few pages. In order to deal with general
even exponents and different dimensions, further ideas and techniques are needed. These
turn out to be broadly connected with the following areas:

• Non-commutative algebra. When trying to generalize Lemma 19 to higher dimen-
sions, one is naturally led to the following question: What is the minimal codi-
mension of a proper subalgebra of so(d)? The answer is known and reveals an
interesting difference that occurs in the four-dimensional case: the minimal codi-
mension of a proper subalgebra of so(d) equals d − 1 if d ≥ 3, d ̸= 4, but equals 2
if d = 4. In group theoretical terms, the group SO(4)/{±I} is not simple, whereas
all other groups SO(d) are simple (after modding out by {±I} if d is even).

• Combinatorial geometry. When trying to extend the relevant estimates from Corol-
lary 21 to the multilinear setting of (p/2)-fold spherical convolutions, one faces
certain variants of the cube slicing problem: Given 0 < k < d, what is the maximal
volume of the intersection of the unit cube [−1

2 ,
1
2 ]

d with a k-dimensional subspace

of Rd? The cube slicing problem has been intensely studied, but a complete solu-
tion remains out of reach. Fortunately, the methods that have been developed for
this problem can be adapted to fulfil our needs.

• Analytic number theory. The rather direct approach we took in §5.4.5 needs to
be refined in order to tackle other dimensions. Uniform random walks in Rd are
lurking in the background and, despite being a classic topic in probability theory, a
complete answer in even dimensions remains a fascinating, largely unsolved prob-
lem, which via the theory of hypergeometric functions and modular forms exhibits
some deep connections to analytic number theory [23]. In view of this, we combine
known formulae for uniform random walks with rigorous numerical integration and
asymptotic analysis for a certain family of weighted integrals in order to complete
our task.

5.6. Complex-valued maximizers. Once real-valued maximizers have been identified,
one can proceed to characterize all complex-valued maximizers.

Theorem 22 ([107]). Let d ≥ 1 and p ≥ 2 + 4
d be an even integer. Then each complex-

valued maximizer of the functional Φd,p is of the form

ceiξ·ωF (ω),
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for some ξ ∈ Rd+1, some c ∈ C\{0}, and some nonnegative maximizer F of Φd,p satisfying

F (ω) = F (−ω), for every ω ∈ Sd.

Our next result is an immediate consequence of Theorems 18, 22 and [40, 64].

Corollary 23. Let d ∈ {2, 3, 4, 5, 6} and p ≥ 4 be an even integer. Then all complex-valued
maximizers of the functional Φd,p are given by

f(ω) = ceiξ·ω,

for some ξ ∈ Rd+1 and c ∈ C\{0}. The same conclusion holds for d = 1 and even integers
p ≥ 8, provided that constants maximize Φ1,6.

5.7. A sharp extension inequality on S7. The study of sharp weighted spherical ex-
tension estimates is naturally linked to the question of stability of such estimates, and was
very recently inaugurated in [38]. In particular, the sharp weighted extension inequality
from [38, Theorem 1] leads to the following result, which is the first instance of a sharp
extension inequality on S7.

Theorem 24 ([38]). For every a > 225π2

527211
, the following sharp inequality holds:

(53)

∫
R8

|f̂σ(x)|4 dx+ a

∣∣∣∣∫
S7
f(ω) dσ(ω)

∣∣∣∣4 ≤ Pa

(∫
S7
|f(ω)|2 dσ(ω)

)2

with optimal constant given by

Pa =

∫
R8

σ̂(x)4
dx

σ(S7)2
+ aσ(S7)2

Equality in (53) occurs if and only if f is constant on S7.

We emphasize that constants are the unique complex-valuedmaximizers for (53), in contrast
to the situation considered in §5.6. An interesting problem is whether the value of the

threshold 225π2

527211
can be lowered, hopefully all the way down to 0.

6. Paraboloid and Cone

The Schrödinger equation describes the evolution of a physical system in which quantum
effects, such as wave-particle duality, are significant. Given its dispersive nature (i.e.,
different frequencies propagate at different velocities), certain estimates quantifying the
size of the solutions of the Schrödinger equation in terms of the size of the initial datum are
a direct manifestation of restriction theory, and play a key role in quantum mechanics. To
make this more precise, consider the initial-value problem ut = i∆u, u(0, ·) = f ∈ L2(Rd),
whose solution is given in terms of the Fourier transform by

(54) eit∆f(x) :=

∫
Rd

exp(it|ξ|2 + ix · ξ)f̂(ξ) dξ, or ũ(τ, ξ) = δ
(
τ − |ξ|2

)
f̂(ξ).

Here, ũ stands for the space-time Fourier transform of u, and δ denotes the Dirac delta
distribution on the real line. From representation (54), it follows that all the action in
frequency space takes place on the paraboloid {(τ, ξ) ∈ R1+d : τ = |ξ|2} – a non-compact,
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homogeneous hypersurface with nonvanishing gaussian curvature – which is thus referred
to as the associated manifold to the Schrödinger equation. Even though the mass is con-
served, i.e., ∥eit∆f∥2 = ∥f∥2 for all t, solutions decay in time due to spreading in different
directions. This is yet another manifestation of the destructive interference, cancellation,
and decay phenomena described in connection to (15). Strichartz [131] observed in 1977
that the scale invariance of the endpoint Stein–Tomas argument leads to the following
estimate for the solution of the Schrödinger equation:

(55) ∥eit∆f∥
L2+ 4

d (R1+d)
≤ Sd∥f∥L2(Rd); here, Sd := sup

0̸=f∈L2

∥eit∆f∥
L2+ 4

d (R1+d)

∥f∥L2(Rd)

.

The wave equation describes the propagation of light in a vacuum, and constitutes the sim-
plest and most fundamental model for waves and vibrations in arbitrary dimensions. The
wave equation is only partly dispersive: the frequency of a wave determines the direction of
propagation, but all frequencies move with the same speed. The solution of the initial-value
problem with initial Sobolev data, utt = ∆u, (u, ut)(0, ·) = (f, g) ∈ Ḣ1/2 × Ḣ−1/2(R2d), is

S(f, g)(t, x) := cos(t
√
−∆)f(x) + sin(t

√
−∆)√

−∆
g(x),

or equivalently

ũ(τ, ξ) = δ
(
|τ | − |ξ|

)(
1
2 f̂(ξ) +

sgn(τ)
2i|ξ| ĝ(ξ)

)
.

Thus the light-cone {(τ, ξ) ∈ R1+d : τ2 = |ξ|2} is the associated manifold to the wave
equation. This is a non-compact, homogeneous hypersurface whose gaussian curvature
vanishes identically, which in principle could be problematic from the restriction point of
view. However, all but one principal curvatures of the light-cone are nonzero, and the
endpoint Stein–Tomas argument can be rescued. Strichartz [131] thus obtained

(56) ∥S(f, g)∥
L
2 d+1
d−1 (R1+d)

≤ Wd∥(f, g)∥H 1
2
,

where Wd denotes the optimal constant, and

(57) ∥(f, g)∥2Hs :=

∫
Rd

(
|ξ|2s|f̂(ξ)|2 + |ξ|2(s−1)|ĝ(ξ)|2

)
dξ.

The norm ∥S(f, g)(t, ·)∥Hs = ∥(f, g)∥Hs is conserved for all s, the case s = 1/2 from (57)
corresponding to the relativistic kinetic energy.
Symmetries are key to a deeper understanding of the Strichartz estimates for the Schrödinger
and the wave equations, which share a number of geometric invariance properties: space-
time translations, dilations, scaling, space rotations, phase shifts. Additionally, inequality
(55) remains invariant under Galilean transformations, whereas (56) does not change un-
der the action of Lorentz transformations. The groups of symmetries of the Strichartz
estimates for the Schrödinger and wave equations are the so-called Galilean and Poincaré
groups, respectively. Mixed-norm Strichartz variants of (55) have been intensely investi-
gated; see (58) below, and [136, §2.3]. Even though various (Hs → Lr

tL
q
x) estimates for the

solution of the wave equation have been established, only (56), corresponding to s = 1/2
and q = r = 2d+1

d−1 , is conformally invariant (i.e., invariant under the full Poincaré group).
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6.1. Sharp Strichartz inequalities. What about maximizers and optimal constants? In
contrast to the sphere (§5.1), the unconditional existence of maximizers has been settled
for both the paraboloid [6] and the light-cone [119] in all dimensions. It is their shape
that has been the subject of the most remarkable contributions, of which we highlight
the following. Firstly, gaussians are known to maximize the mixed-norm partner of the
Strichartz inequality (55) guaranteed by Theorem 11,4

∥eit∆f(x)∥Lr
t (R;L

q
x(Rd)) ≤ Sq,r∥f∥L2(Rd), if q, r ≥ 2 and d

q + 2
r = d

2 ,(58)

provided (d, q, r) ∈ {(1, 6, 6), (1, 4, 8), (2, 4, 4)}; see [36, 63, 114]. All maximizers are in fact
given by initial data corresponding to the orbit of the Schrödinger propagator of the stan-
dard gaussian exp(−|· |2) under the Galilean group of symmetries. Secondly, the Strichartz

inequality for the wave equation (56) is saturated by the pair (f⋆ := (1 + | · |2)(1−d)/2,0) if
d = 3; see [63]. All maximizers are then obtained by letting the Poincaré group act on the
wave propagator of (f⋆,0). Different proofs of these facts relying on heat flow monotonicity
[8], orthogonal polynomials [70], and representation formulae [82] are available, but they
all ultimately hinge on the Lebesgue exponents in question being even integers. In this case,
one can invoke Plancherel’s identity in order to reduce the problem to a simpler multilinear
convolution estimate. On the other hand, the following fundamental problems remain open
in their full generality.

Conjecture 25 (Lieb). Gaussians maximize (58) for all admissible q, r, d.

Conjecture 26 (Foschi). The pair ((1 + | · |2)
1−d
2 ,0) maximizes (56) for every d ≥ 2.

The diagonal case q = r = 2 + 4
d of Conjecture 25 has been implicitly raised in the 1977

seminal work of Strichartz [131]. It was precisely formulated by Lieb [93] in 1990, and
has appeared in several papers since then; see e.g. [8, 82], and [70] for the general form
of this longstanding conjecture. Despite considerable effort and promising partial progress
(in particular during the last decade), the problem remains open in arbitrary dimensions.
Conjecture 25 has generated a great deal of interest since its first appearance, for a number
of reasons. Firstly, it is a very natural question. Gaussians are known to maximize (58)
in the lower dimensional cases d ∈ {1, 2}, provided q is an even integer dividing r. Is this
an isolated fact? Or does it hint at some deeper truth? A historically similar situation
surrounded the epic breakthroughs of Beckner [4] and Lieb [92] for non-even instances
of the sharp Hausdorff–Young and Hardy–Littlewood–Sobolev inequalities, respectively.
Moreover, if gaussians were known to maximize (58), then the unconditional existence of
maximizers for the endpoint Stein–Tomas inequality (33) would follow; see [67].
Foschi’s conjecture, first formulated in [63, Conj. 1.11], can be viewed as a hybrid be-
tween the conjectures of Stein and Lieb. In fact, the light-cone and the paraboloid are
both homogeneous hypersurfaces, which implies an exact scale invariance that is a mere
approximate symmetry in the case of the sphere; on the other hand, the existence of pairs
of antipodal points on the light-cone – as in the sphere – complicates the picture, and
gives rise to non-local phenomena which are absent in the Strichartz–Schrödinger setting.

4As in the statement of Theorem 11, the endpoint case (d, p, q) = (2, 2,∞) should be excluded.
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Thus Conjecture 26 is a privileged testing ground for several ideas which may prove use-
ful to tackle Conjectures 17 and 25. My former postdoc G. Negro – now a researcher at
CAMGSD – disproved Conjecture 26 whenever d ≥ 2 is even [97]. Strikingly, he discovered
that in that case the pair (f⋆,0) is not even a critical point of the functional associated to
inequality (56). Nevertheless, (f⋆,0) turned out to locally maximize (56) whenever d ≥ 3
is odd [72]. Both proofs rely on the Penrose transform, a well-known conformal map of
Minkowski spacetime R1+d which is a powerful tool to investigate subtle local properties
of the solution map to the wave equation; see §6.3.

6.2. Perturbed paraboloid. Given a sufficiently nice function ϕ : Rd → R, consider the
hypersurface in Rd+1

(59) Σϕ = {(|y|2 + ϕ(y), y) : y ∈ Rd},

equipped with projection measure dν(s, y) = δ
(
s− |y|2 − ϕ(y)

)
dsdy. The following geo-

metric comparison principle is the main result from [106]. It holds in all dimensions d ≥ 1,
and generalizes [105, Theorem 1.3] to n-fold convolutions.

Theorem 27 ([106]). For d ≥ 1, let ϕ : Rd → R be a nonnegative, continuously differen-
tiable, strictly convex function, let ψ = | · |2+ϕ, and let ν0, ν denote the projection measures
on the hypersurfaces Σ0,Σϕ, respectively. Then, for any integer n ≥ 2,

(60) ν∗n(τ, ξ) ≤ ν∗n0 (τ − nϕ(ξ/n), ξ),

for every ξ ∈ Rd and τ > nψ(ξ/n). Moreover, this inequality is strict at every point in the
interior of the support of the measure ν∗n.

Under the assumptions of the theorem, the support of the convolution measure ν∗n is
contained in that of ν∗n0 . Moreover, both measures define continuous functions inside
their supports and, as τ → nψ(ξ/n)+, the left- and right-hand sides of (60) approach the
boundary values of ν∗n and ν∗n0 , respectively; see [106, Prop. 2.1]. We emphasize that, at
least when (d, n) ̸= (1, 2), inequality (60) is stronger than the mere claim

ν∗n(τ, ξ) ≤ ν∗n0 (τ, ξ), for every ξ ∈ Rd and τ > nψ(ξ/n)

since the function τ 7→ ν∗n0 (τ, ξ) is non-decreasing; see [106, Remark 2.2].
The geometric comparison principle encoded in Theorem 27 has immediate implications

towards sharp restriction theory and sharp Strichartz estimates. We present three of the
more recent applications from [30], and refer to [103] for a survey of the original motivation.
Firstly, we resolve the dichotomy from [84] concerning the existence of maximizers for the
Strichartz inequality for the fourth order Schrödinger equation in one spatial dimension.
This is related to the extension problem on the planar curve s = y4. Secondly, we study
similar questions in the more general setting of the extension problem on the curve s = |y|α,
for arbitrary α > 1. We also consider odd curves s = y|y|α−1, α > 1, the case α = 3
relating to the Airy–Strichartz inequality [68, 120]. Thirdly, we study super-exponential
decay and analyticity of the corresponding extremizers and their Fourier transform via a
bootstrapping procedure. We now turn to the details.

https://camgsd.tecnico.ulisboa.pt
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Jiang–Pausader–Shao [84] considered the fourth order Schrödinger equation

(61)

{
iut − µuxx + uxxxx = 0, (t, x) ∈ R× R,
u(0, ·) = f ∈ L2

x(R),

where u : R×R → C, and µ ∈ {0, 1}. The solution of the Cauchy problem (61) is given by

u(t, x) = eit(∂
4
x−µ∂2

x)f(x) =
1

2π

∫
R
eixξeit(ξ

4+µξ2)f̂(ξ)dξ,

which disperses as |t| → ∞. Consequently, the following Strichartz inequality due to
Kenig–Ponce–Vega [87, Theorem 2.1] holds:

(62) ∥D
1
3
µ e

it(∂4
x−µ∂2

x)f∥L6
t,x(R1+1) ≲ ∥f∥L2(R).

The main result of [84] is a linear profile decomposition for (61), which uses a refinement of
the Strichartz inequality (62) in the scale of Besov spaces, together with improved localized
restriction estimates. As a consequence, the authors of [84] establish a dichotomy result
for the existence of maximizers for (62) when µ = 0, which can be summarized as follows.
Consider the sharp inequality in multiplier form

(63) ∥D
1
3
0 e

it∂4
xf∥L6

t,x(R1+1) ≤ M∥f∥L2(R),

with optimal constant given by

(64) M := sup
0̸=f∈L2

∥D
1
3
0 e

it∂4
xf∥L6

t,x(R1+1)

∥f∥L2(R)
.

Then [84, Theorem 1.8] states that either a maximizer for (63) exists, or there exist a
sequence {an} ⊂ R satisfying |an| → ∞, as n→ ∞, and a function f ∈ L2, such that

M = lim
n→∞

∥D
1
3
0 e

it∂4
x(eianxf)∥L6

t,x(R1+1)

∥f∥L2(R)
.

In the latter case, one necessarily has M = S1, where S1 denotes the optimal constant
defined in (55). The first main result from [30] resolves this dichotomy.

Theorem 28 ([30]). Maximizers for (63) exist.

Theorem 28 follows from a more general result which we now introduce. As noted in [87,

§2], the operator D
1/3
0 eit∂

4
x is nothing but a constant multiple of the Fourier transform of

the singular measure

(65) dσ4(s, y) = δ
(
s− y4

)
|y|

1
3dsdy

at the point (−t,−x) ∈ R2. As in [105, §6.4], one is naturally led to consider generic power
curves s = |y|α. The corresponding inequality is then

(66) ∥Mα(f)∥L6
t,x(R1+1) ≤ Mα∥f∥L2(R),
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where the multiplier operator Mα is defined as Mα(f)(t, x) = D
α−2
6

0 eit|∂x|
α
f(x). Inequality

(66) can be equivalently restated as the extension inequality

(67) ∥Eα(f)∥L6(R2) ≤ Eα∥f∥L2(R),

or in convolution form as

(68) ∥fσα ∗ fσα ∗ fσα∥L2(R2) ≤ C3
α∥f∥3L2(R).

Here, the singular measure σα is defined in accordance with (65) by

(69) dσα(s, y) = δ
(
s− |y|α

)
|y|

α−2
6 dsdy,

and the extension operator Eα(f) = f̂σα(−·) is given by

(70) Eα(f)(t, x) =
∫
R
eixyeit|y|

α |y|
α−2
6 f(y)dy,

so that 6
α−2
12 Eα(f̂) = 2πMα(f). If f maximizes (67), then f likewise maximizes (68), and

f∨ maximizes (66). Thus these three existence problems are essentially equivalent. The
convolution form (68) implies that the search for maximizers can be restricted to the class
of nonnegative functions. An application of Plancherel further shows that

E6
α = (2π)2C6

α = (2π)361−
α
2 M6

α.

The next result extends the dichotomy proved in [84, Theorem 1.8] to the case of arbitrary
exponents α > 1. It states that one of two possible scenarios occurs, compactness or
concentration at a point. We make the latter notion precise.

Definition 29. A sequence of functions {fn} ⊂ L2(R) concentrates at a point y0 ∈ R if,
for every ε, ρ > 0, there exists N ∈ N such that, for every n ≥ N ,∫

|y−y0|≥ρ
|fn(y)|2dy < ε∥fn∥2L2(R).

We phrase the second main result from [30] in terms of (68) because (71) has a simple geo-
metric meaning in terms of the boundary value of the relevant 3-fold convolution measure.

Theorem 30 ([30]). Let α > 1. If

(71) C6
α >

2π√
3α(α− 1)

,

then any maximizing sequence of nonnegative functions in L2(R) for (68) is precompact,
after normalization and scaling. In this case, maximizers for (68) exist. If instead equality
holds in (71) then, given any y0 ∈ R, there exists a maximizing sequence for (68) which
concentrates at y0.

A few remarks may help. Firstly, if α = 1, then the curve s = |y| has no curvature,
and no non-trivial extension estimate can hold. Secondly, if equality holds in (71), then
Theorem 30 does not guarantee that maximizers do not exist. Indeed, C6

2 = π/
√
3, and

gaussians are known to maximize (68) when α = 2; recall our discussion in §6.1. Various
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results of a similar flavour to that of Theorem 30 have appeared in the recent literature.
They are typically derived from concentration-compactness techniques [46, 122], a full
profile decomposition [51, 84, 85, 121], or the “missing mass method” [67, 68]. In [30] we
introduced a new variant which follows the spirit of the celebrated works of Lieb [29, 92] and
Lions [94, 95], but seems more elementary and may be easier to adapt to other manifolds.
The proof of Theorem 30 involves a variant of Lions’ concentration-compactness lemma [94],
a variant of the corollary of the Brézis–Lieb lemma from [57], bilinear extension estimates,
and a refinement of (67) over a suitable cap space. In a range of exponents that includes
the case α = 4, we were then able to resolve the dichotomy posed by Theorem 30.

Theorem 31 ([30]). There exists α0 > 4 such that, for every α ∈ (1, α0) \ {2}, the strict
inequality (71) holds. In particular, if α ∈ (1, α0), then there exists a maximizer for (68).

Our method yields α0 ≈ 4.803 with 3 decimal places, and effectively computes arbitrarily
good lower bounds for the ratio of L2-norms in (68) via expansions of suitable trial functions
in the orthogonal basis of Legendre polynomials. We remark that the value α0 ≈ 4.803 is
suboptimal, in the sense that a natural refinement of our argument allows to increase this
value to α0 ≈ 5.485; see [30, §4C].

Once the existence of maximizers has been established, certain qualitative properties can
often be deduced from the associated Euler–Lagrange equation; recall §5.4.1. Following this
paradigm, we proved that any maximizer of (67) decays super-exponentially in L2, which
reflects the analiticity of its Fourier transform. This is the content of the next result.

Theorem 32 ([30]). Let α > 1. If f maximizes (67), then there exists µ0 > 0, such that

x 7→ eµ0|x|αf(x) ∈ L2(R).

In particular, its Fourier transform f̂ can be extended to an entire function on C.

Note that the exponent µ0 necessarily depends on the maximizer itself; see [47, p. 964]. The
proof relies on a bootstrapping argument that found similar applications in [47, 56, 81, 122].

Our methods are able to partially handle the case of the planar odd curves s = y|y|α−1, α >
1. Defining the singular measure

(72) dµα(s, y) = δ
(
s− y|y|α−1

)
|y|

α−2
6 dsdy,

the associated extension operator Sα(f) = f̂µα(−·) satisfies the estimate ∥Sα(f)∥L6 ≲
∥f∥L2 . In sharp convolution form, this can be rewritten as

(73) ∥fµα ∗ fµα ∗ fµα∥L2(R2) ≤ Q3
α∥f∥3L2(R),

where Qα denotes the optimal constant. Odd curves are of independent interest, in par-
ticular because a new phenomenon emerges: caps centered around points with parallel
tangents interact strongly, regardless of separation between the points. This mechanism
was discovered in [46], and further explored in [37, 64, 67, 68, 122]. Some of these works
include a symmetrization step which relies on the convolution structure of the underlying
inequality. In the present case, we were able to show that the search for maximizers can be
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further restricted to the class of even functions, but interestingly our symmetrization ar-
gument does not depend on the convolution structure. This may be of independent interest
since it applies to other extension inequalities where some additional symmetry is present;
see [30, §6A]. The following versions of Theorems 30 and 31 hold for odd curves.

Theorem 33 ([30]). Let α > 1. If

(74) Q6
α >

5π√
3α(α− 1)

,

then any maximizing sequence of nonnegative even functions in L2(R) for (73) is precom-
pact, after normalization and scaling. In this case, maximizers for (73) exist. If instead
equality holds in (74) then, given any y0 ∈ R, there exists a maximizing sequence for (73)
which concentrates at the pair {−y0, y0}.

The case α = 3 of Theorem 33 coincides with a special case of [68, Theorem 1], which was
obtained by different methods.

Theorem 34 ([30]). If α ∈ (1, 2), then the strict inequality (74) holds and, in particular,
there exists a maximizer for (73).

We believe that maximizers do not exist if α ≥ 2; see [30, Conj. 6.6].

6.3. Cone. The restriction conjecture for the (one-sheeted) cone in R1+d, d ≥ 2, which
should be compared to Conjecture 8 on Sd, predicts that

(75) ∥ĝµ∥Lq(R1+d) ≲p,q ∥g∥Lp(dµ)

if and only if q > 2d
d−1 and d+1

q = d−1
p′ ; here, dµ(τ, ξ) = δ

(
τ − |ξ|

)
|ξ|−1dτdξ. Letting

(76) ĝµ = eit
√
−∆f, f(x) = Fξ→x

(
g(|ξ|, ξ)

|ξ|

)
,

so that f is now a function on Rd, estimate (75) reads as follows:

(77) ∥eit
√
−∆f∥Lq(R1+d) ≲p,q ∥f̂∥Lp(Rd,|ξ|p−1 dξ).

The choice (p, q) = (2, 2d+1
d−1) yields the conformal (i.e., Stein–Tomas) estimate

∥eit
√
−∆f∥

L
2 d+1
d−1 (R1+d)

≲d ∥f∥Ḣ1/2(Rd).

Very recently, we proved in [100] that maximizers for (75) exist in the full range of
exponents for which the estimate does hold; however, if p ̸= 2, then they are not what
one would näıvely expect from Conjecture 26. In order to make this precise, consider the
extension operator associated to the one-sheeted cone in R1+d, d ≥ 2,

Eg(t, x) :=
∫
Rd

ei(t,x)·(|ξ|,ξ)g(ξ) dξ
|ξ| ,
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initially defined on smooth functions with compact support in Rd \ {0}. It is conjectured
that E extends as a bounded linear functional from Lp(|ξ|−1dξ) to Lq(R1+d) for q = d+1

d−1p
′ =:

q(p), for all 1 ≤ p < 2d
d−1 < q ≤ ∞. In other words,

(78) ∥Eg∥Lq(R1+d) ≲p,q ∥g∥Lp(|ξ|−1dξ),

which is just a restatement of (75) with slightly different notation. The case (p, q) = (1,∞)
is elementary, the case d = 2 is due to Barcelo [2], the case d = 3 is due to Wolff [146], the
case d = 4 is due to Ou–Wang [111], and the the question is open in all higher dimensions,
with the current world record due to Ou–Wang [111].

We assume a priori that E extends as a bounded linear operator from Lp̃(|ξ|−1dξ) to

Lq(p̃)(R1+d) for all p̃ in some neighborhood of p. We let Cp,q denote the operator norm
∥E∥Lp(|ξ|−1dξ)→Lq , that is, the smallest constant for which (78) holds.

Theorem 35 ([100]). Let d ≥ 2, let 1 < p < 2d/(d − 1), and assume that E extends as

a bounded linear operator from Lp̃(|ξ|−1dξ) to Lq(p̃)(R1+d), for all p̃ in some neighborhood
of p. Then there exist nonzero functions f ∈ Lp(|ξ|−1dξ) such that ∥Ef∥q = Cp,q∥f∥p.
Furthermore, if {fn} ⊆ Lp(|ξ|−1dξ) is any norm-one sequence with limn→∞ ∥Efn∥q = Cp,q,
then a subsequence of {fn} converges modulo symmetries to a maximizer of E.

Theorem 35 results from ensuring that, after passing to a subsequence and applying the
symmetries of the operator, any maximizing sequence for (78) has a subsequence with
good frequency and space localization properties. We postpone a more detailed discussion
of possible concentration mechanisms in the related context of the one-sheeted hyperboloid
to §7.1, and proceed to discuss the second main result of [100].

Theorem 36 ([100]). Let d ≥ 2, let 1 < p < 2d/(d− 1), and set q = q(p). Foschians are
critical points for the Lp → Lq extension inequality (77) if and only if p = 2.

The analogue of Theorem 36 for paraboloids5 is due to Christ–Quilodrán [45], but their
methods are complex analytic and tied to the fact that gaussians define holomorphic func-
tions. Foschians, defined in (80) below, do not. Our approach towards Theorem 36 makes
use of the Penrose transform, whose relevance was realized in [72, 97, 98]. The Euler–
Lagrange equation for (77) is satisfied by some function f⋆ if and only if

(79) ℜ
∫
R1+d

|eit
√
−∆f⋆(x)|q−2eit

√
−∆f⋆(x)e

it
√
−∆f(x) dtdx

= λpqℜ
∫
Rd

|f̂⋆(ξ)|p−2f̂⋆(ξ)f̂(ξ)|ξ|p−1 dξ,

with λpq independent of the arbitrary test function f . Considering the Foschian given by

(80) f̂⋆(ξ) = |ξ|−1e−|ξ|,

we then have f⋆ = (1 + |·|2)
1−d
2 ; recall Conjecture 26. The fact that estimate (77) is

conformal if and only if p = 2 lies at the heart of our approach towards Theorem 36.

5For spheres, the situation is different, as one easily checks that constants are always critical points.
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The Penrose transform [115] is a conformal map P : R1+d → S1 × Sd which compactifies
spacetime, and on the initial time slice {t = 0} coincides with the usual stereographic
projection. It further maps a solution u = u(t, x) of the wave equation utt = ∆u into a
solution U = U(T,X) of the hyperbolic equation

UTT −∆SdU + (d−1
2 )2U = 0 on the Penrose diagram P(R1+d) ⊊ S1 × Sd.(81)

Crucially, the Penrose transform maps (f⋆ = (1+ | · |2)
1−d
2 ,0) on Rd into the constant data

(1,0) on Sd. This enables the exact computation of the relevant first and second variations,
and leads to the proof of Theorem 36.

Surprisingly, for the two-sheeted cone, {(τ, ξ) ∈ R1+d : τ2 = |ξ|2}, the effectiveness
of the Penrose transform is affected by dimension parity. If d is odd, then there is a
hidden symmetry: the solution U to (81) satisfies U(T + π,−X) = U(T,X), for every
(T,X) ∈ S1 × Sd. This turns estimate (56) into one where the left-hand integration is over
the whole Cartesian product S1×Sd, instead of the less symmetric and somewhat awkward
Penrose diagram P(R1+d). If d is even, then this simplification is unavailable, and the
lack of a hidden symmetry is ultimately responsible for (f⋆,0) not being a maximizer [97].
It would be interesting to establish analogues of Theorems 35 and 36 for the two-sheeted
cone.

7. Hyperboloid

Hyperboloids locally look like paraboloids, with largest curvature at the origin, and
globally resemble cones. As such, sharp restriction theory on hyperboloids shares features
from both paraboloids and cones and serves as a natural bridge between them. On the
other hand, genuinely new phenomena emerge, as we shall see.

7.1. Two-sheeted hyperboloid. Consider the upper sheet of the two-sheeted hyper-
boloid, Hd = {(τ, ξ) ∈ R1+d : τ = ⟨ξ⟩}, ⟨ξ⟩ :=

√
1 + |ξ|2, and equip it with the Lorentz

invariant measure

(82) dσ(τ, ξ) = δ
(
τ − ⟨ξ⟩

)
⟨ξ⟩−1dτdξ.

The extension operator on Hd is given by

Ef(t, x) =
∫
Rd

ei(t,x)·(⟨ξ⟩,ξ)f(ξ)
dξ

⟨ξ⟩
,

and since the 1977 work of Strichartz [131] it is known that6

∥Ef∥Lp(Rd+1) ≤ Hd,p∥f∥L2(Hd);(83)

2 +
4

d
≤ p ≤ 2 +

4

d− 1
if d ≥ 1.(84)

Note that the endpoints in the latter range correspond to Stein–Tomas exponents for the
paraboloid and cone, respectively; recall Figure 3. Hd,p denotes the optimal constant in

inequality (83) and, in light of (82), ∥f∥2
L2(Hd)

=
∫
Rd |f(ξ)|2 dξ

⟨ξ⟩ .

6With the caveat that the endpoint case p = ∞ has to be excluded when d = 1.
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The extension operator on Hd naturally relates to the Klein–Gordon equation, utt =
∆u− u. This connection comes via the Klein–Gordon propagator,

eit
√
1−∆g(x) =

1

(2π)d

∫
Rd

ei(t,x)·(⟨ξ⟩,ξ)ĝ(ξ)dξ,

together with the observation that Ef(t, x) = (2π)deit
√
1−∆g(x) as long as ĝ(ξ) = ⟨ξ⟩−1f̂(ξ).

This relation implies that (83) can be equivalently rewritten as

∥eit
√
1−∆g∥Lp

t,x(R×Rd) ≤ (2π)−dHd,p∥g∥H1/2(Rd)

where ∥ · ∥H1/2(Rd) denotes the usual nonhomogeneous Sobolev norm.

Quilodrán [117] investigated some sharp instances of inequality (83), all corresponding
to algebraic endpoints of the range (84), and proved that

H2,4 = 2
3
4π, H2,6 = (2π)

5
2 , H3,4 = (2π)

5
4 ,

even though maximizers do not exist. He also asked about the value of H1,6, which cor-
responds to the last algebraic endpoint question, and whether maximizers exist in the
non-endpoint case in all dimensions.7 In [42, 43] we answered both of these questions.

Theorem 37 ([42]). H1,6 = 3−
1
12 (2π)

1
2 . Maximizers for (83) do not exist if (d, p) = (1, 6).

Theorem 38 ([42, 43]). Maximizers for (83) exist when 6 < p <∞ if d = 1 and 2 + 4
d <

p < 2 + 4
d−1 if d ≥ 2. In fact, given any maximizing sequence {fn}, there exist symmetries

Sn such that {Snfn} converges in L2(Hd) to a maximizer f , after passing to a subsequence.

The proof of Theorem 37 relies on two ingredients. Firstly, by Lorentz invariance it suffices
to study the convolution measure (σ ∗ σ ∗ σ)(τ, ξ) along the axis ξ = 0. We verify that
τ 7→ (σ ∗ σ ∗ σ)(τ, 0) defines a continuous function on the half-line τ > 3, which extends
continuously to the boundary of its support, so that

(85) sup
τ>3

(σ ∗ σ ∗ σ)(τ, 0) = (σ ∗ σ ∗ σ)(3, 0) = 2π√
3
,

and that this global maximum is strict. By an application of the Cauchy–Schwarz inequal-
ity, which is similar but simpler than the one for the sphere discussed in §5.2, it follows
that H1,6 ≤ 3−1/12(2π)1/2. For the reverse inequality, one checks that fn = exp(−n⟨·⟩)
forms a maximizing sequence for (83), in the sense that

lim
n→∞

∥fnσ ∗ fnσ ∗ fnσ∥2L2(R2)

∥fn∥6L2(H1)

=
2π√
3
.

This crucially relies on the fact that the strict global maximum of σ ∗ σ ∗ σ occurs at the
boundary of the support of the convolution; recall (85). For higher-order convolutions σ∗k,
k ≥ 4, the global maximum occurs in the interior of the support, and this provided the
initial hint towards Theorem 38. The proof of the latter is more involved, and crucially

7The methods of [58] do not apply directly due to the lack of exact scaling invariance.
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Figure 6. The one-dimensional cap movement: a carefully chosen Lorentz
boost Lt : (τ, ξ) 7→ (1− t2)−1/2(τ + tξ, ξ + tτ) interchanges the caps. Here,
Lt(C−2) = C0 for t = tanh(2).

relies on a sharpened Strichartz estimate. If d ∈ {1, 2}, corresponding to ranges whose
endpoints are even integers, then this can be obtained via elementary methods, such as
the Hausdorff–Young and Hardy–Littlewood–Sobolev inequalities. For instance, on H1 we
proved in [42, Cor. 13], for each 6 ≤ p <∞, the existence of Cp <∞ for which

(86) ∥Ef∥Lp(R2) ≤ Cp sup
k∈Z

∥fk∥
1/3

L2(H1)
∥f∥2/3

L2(H1)
.

The decomposition f =
∑

k∈Z fk is such that fk = f1Ck , where the family of hyperbolic

caps {Ck}k∈Z ⊂ H1 is given by

Ck := {(τ, ξ) ∈ H1 : sinh(k − 1
2) ≤ ξ ≤ sinh(k + 1

2)}.

Inequality (86) allows us to start gaining control over arbitrary maximizing sequences. In
particular, it can be used to show the existence of a distinguished cap which contains a
positive proportion of the total mass; possibly after a Lorentz boost, the distinguished
cap can be assumed to coincide with C0; see Figure 6. This rules out the possibility of
mass concentration at infinity, which had been previously identified in [117] as the main
obstruction to the precompactness of maximizing sequences modulo symmetries. If d ≥ 3,
then the sharpened Strichartz estimate follows from bilinear restriction theory; see [43,
Theorem 5.1]. We omit the technical details, and refer the interested reader to [43, §5].

It would be interesting to understand whether the two-sheeted hyperboloid shares similar
features to the ones of the two-sheeted cone; see the end of §6.3.

Quilodrán [118] recently showed that maximizers exist for the endpoint L2 → L4 ex-
tension inequality on the one-sheeted hyperboloid in R1+3. In the final §7.2, we turn our
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attention to the current status of the restriction conjecture to the one-sheeted hyperboloid
in R1+2.

7.2. One-sheeted hyperboloid. Sharpened Strichartz estimates, bilinear restriction the-
ory and decoupling tools led to some recent progress on the restriction conjecture for the
one-sheeted hyperboloid. We shall finish this lecture by summarizing our results from [32]
on the boundedness of the restriction operator associated to the one-sheeted hyperboloid
in R1+2,

Γ := {(τ, ξ) ∈ R1+2 : 1 + τ2 = |ξ|2}.
This surface is invariant under the Lorentz transformations

(87) Lν : (τ, ξ) 7→ (⟨ν⟩τ − ν · ξ, ξ⊥ + ⟨ν⟩ξ∥ − ντ), ν ∈ R2,

where ξ⊥, ξ∥ are the perpendicular and parallel components of ξ with respect to ν. We
endow the surface with the unique (up to scalar multiples) Lorentz-invariant measure σ,
which coincides with what is known as the affine surface measure,∫

Γ
f dσ =

∫
{|ξ|>1}

(f(−⟨⟨ξ⟩⟩, ξ) + f(⟨⟨ξ⟩⟩, ξ)) dξ
⟨⟨ξ⟩⟩ , where ⟨⟨ξ⟩⟩ :=

√
|ξ|2 − 1, |ξ| ≥ 1.

Various geometric features of Γ make it potentially interesting from the perspective of
restriction theory. Even though the gaussian curvature is nonvanishing, the principal cur-
vatures have different signs, which presents challenges at all scales because the restriction
theory for hyperbolic surfaces is much less well-developed than that for elliptic surfaces.
One of our main contributions was an adaptation of the techniques of [91, 128, 140] to
establish unconditional, global restriction inequalities in the bilinear range. In particular,
we established the first extension inequalities on the parabolic scaling line q = 2p′ beyond
the Stein–Tomas range (i.e. with p > 2) for any negatively curved surface that is not the
hyperbolic paraboloid; see [128]. The above-mentioned techniques are directly applicable
in the low frequency region {|ξ| ≲ 1}, but at high frequencies, the surface is asymptotic to
the cone, presenting some additional complications. In this region, we used conic decou-
pling and interpolation with bilinear inequalities to prove a conditional result that boosts
local restriction inequalities on the low frequency region to global ones in a range that is
non-optimal but, nevertheless, offers the possibility of improvement over that obtainable
directly from bilinear restriction. Our explorations of the conic region also suggest possi-
ble future applications of some – surprisingly, still open – questions about the restriction
operator associated to the cone in R1+2.

We turn now to statements of our main results, given in terms of the extension operator

Ef := f̂dσ, and its local version E0f := E(1{|ξ|≲1}f). We say that R∗(p→ q) holds if there

exists a universal constant C <∞ such that ∥Ef∥Lq(R3) ≤ C∥f∥Lp(Γ), for all f ∈ C∞
0 (R3);

we say that R∗
0(p→ q) holds when the analogous statement holds with E0 in place of E .

Theorem 39 ([32]). For (p, q) ̸= (4, 4) obeying 2p′ ≤ q ≤ 3p′, q ≥ p, and q > 10
3 ,

R∗(p → q) holds. Moreover, for 3 < q0 <
10
3 , R

∗
0((

q0
2 )

′ → q0) implies R∗(p → q) for all
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1
p

1
q

3
10

1

(14 ,
1
4)

( 7
22 ,

7
22)

(13 ,
1
3)
( 5
14 ,

9
28)

Figure 7. By Theorem 39, the full restriction conjecture for the low fre-
quency region would imply global restriction estimates for exponent pairs
(p−1, q−1) within the red quadrilateral. Unconditional estimates hold in the
bilinear range q > 10

3 .

exponent pairs obeying q0 < q ≤ 10
3 , (

q
2)

′ ≤ p ≤ q, and

1

p
>

2

5
· 1/q − 3/10

1/q0 − 3/10
+

1

10
.

It was proved in [31] that R∗
0((

q0
2 )

′ → q0) holds for q0 > 3.25, and so our conditional result

implies that R∗(p→ q) holds for q ≤ 10
3 , (

q
2)

′ ≤ p ≤ q, and

1

p
>

52

q
− 31

2
.

(The upper line segment of this region has endpoints (1p ,
1
q ) = ( 31

102 ,
31
102) and ( 7

18 ,
11
36).) Be-

cause of the loss in the range of q, we expect the conditionality in Theorem 39 not to be
optimal. However, improvements to the range of Lp × Lp → Lq bilinear extension inequal-
ities for the cone in R3 may suggest a means of improving the range in our conditional
result. By contrast with Theorem 39, we note the following negative result.

Theorem 40 ([32]). For (p, q) ∈ {(3, 3), (4, 4)} and for (p−1, q−1) lying outside of the
triangle

{(p−1, q−1) : 2p′ ≤ q ≤ 3p′, q ≥ p},
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R∗(p→ q) fails.

Even though the argument is fairly simple, we had not expected to find any exponent
pairs along the diagonal q = p at which R∗(p → q) holds; see Figure 7. The Kakeya-like
example of [5] rules out even a restricted weak-type inequality at the endpoint (3, 3), but
we were not able to exclude the possibility that some weaker inequality might be valid at
the endpoint (4, 4). In fact, the analogous question for the extension operator associated
to the cone also seems to be open.
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[1] S. Agmon, L. Hörmander, Asymptotic properties of solutions of differential equations with simple char-
acteristics. J. Analyse Math. 30 (1976), 1–38.

[2] B. Barcelo. On the restriction of the Fourier transform to a conical surface. Trans. Amer. Math. Soc.
292 (1985), no. 1, 321–333.

[3] J. Barker, C. Thiele, P. Zorin-Kranich, Band-limited maximizers for a Fourier extension inequality on
the circle, II. Exp. Math. 32 (2023), no. 2, 280–293.

[4] W. Beckner, Inequalities in Fourier analysis. Ann. of Math. (2) 102 (1975), no. 1, 159–182.
[5] W. Beckner, A. Carbery, S. Semmes, F. Soria, A note on restriction of the Fourier transform to spheres.

Bull. London Math. Soc. 21 (1989), no. 4, 394–398.
[6] P. Bégout, A. Vargas, Mass concentration phenomena for the L2-critical nonlinear Schrödinger equa-

tion. Trans. Amer. Math. Soc. 359 (2007), no.11, 5257–5282.
[7] D. Beltran, L. Vega, Bilinear identities involving the k-plane transform and Fourier extension operators.

Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 6, 3349–3377.
[8] J. Bennett, N. Bez, A. Carbery, D. Hundertmark, Heat-flow monotonicity of Strichartz norms. Anal.

PDE 2 (2009), no. 2, 147–158.
[9] J. Bennett, N. Bez, M. Cowling, T. Flock, Behaviour of the Brascamp–Lieb constant. Bull. Lond. Math.

Soc. 49 (2017), no. 3, 512–518.
[10] J. Bennett, N. Bez, T. Flock, S. Gutiérrez, M. Iliopoulou, A sharp k-plane Strichartz inequality for the

Schrödinger equation. Trans. Amer. Math. Soc. 370 (2018), no. 8, 5617–5633.
[11] J. Bennett, N. Bez, T. Flock, S. Lee, Stability of the Brascamp–Lieb constant and applications. Amer.

J. Math. 140 (2018), no. 2, 543–569.
[12] J. Bennett, N. Bez, M. Iliopoulou, Flow monotonicity and Strichartz inequalities. Int. Math. Res. Not.

IMRN (2015), no. 19, 9415–9437.
[13] J. Bennett, N. Bez, C. Jeavons, N. Pattakos, On sharp bilinear Strichartz estimates of Ozawa–Tsutsumi

type. J. Math. Soc. Japan 69 (2017), no. 2, 459–476.



42 DIOGO OLIVEIRA E SILVA

[14] J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures. Acta Math.
196 (2006), no. 2, 261–302.

[15] N. Bez, C. Jeavons, A sharp Sobolev–Strichartz estimate for the wave equation. Electron. Res. Announc.
Math. Sci. 22 (2015), 46–54.

[16] N. Bez, C. Jeavons, T. Ozawa, Some sharp bilinear space-time estimates for the wave equation. Math-
ematika 62, 719–737 (2016).

[17] N. Bez, C. Jeavons, T. Ozawa, H. Saito, A conjecture regarding optimal Strichartz estimates for the
wave equation. New trends in analysis and interdisciplinary applications, 293–299, Trends Math. Res.
Perspect. (2017).

[18] N. Bez, K. Rogers, A sharp Strichartz estimate for the wave equation with data in the energy space. J.
Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 805–823.

[19] N. Bez, M. Sugimoto, Optimal constants and extremisers for some smoothing estimates. J. Anal. Math.
131 (2017), 159–187.

[20] C. Biswas, B. Stovall, Existence of extremizers for Fourier restriction to the moment curve. Trans.
Amer. Math. Soc. 376 (2023), no. 5, 3473–3492.

[21] G. Bianchi, H. Egnell, A note on the Sobolev inequality. J. Funct. Anal. 100 (1991), no. 1, 18–24.
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[61] A. Figalli, Quantitative stability results for the Brunn–Minkowski inequality. Proceedings of the Inter-

national Congress of Mathematicians–Seoul 2014. Vol. III, 237–256, Kyung Moon Sa, Seoul, 2014.
[62] T. Flock, B. Stovall, On extremizing sequences for adjoint Fourier restriction to the sphere.

arXiv:2204.10361.
[63] D. Foschi, Maximizers for the Strichartz inequality. J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 739–774.
[64] D. Foschi, Global maximizers for the sphere adjoint Fourier restriction inequality. J. Funct. Anal. 268

(2015), 690–702.
[65] D. Foschi, S. Klainerman, Bilinear space-time estimates for homogeneous wave equations. Ann. Sci.
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