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Resumé

Dans cette these, nous considérons 'approximation de la solution de I'équation différentielle stochas-
tique avec des sauts et nous nous concentrons sur la convergence en distance de la variation totale.
La principale méthode que nous utilisons est la technique d’intégration par parties dans le calcul de
Malliavin. Cette thése contient trois parties. Dans la premiére partie, nous voulons obtenir un schéma
d’approximation précis pour '’équation de saut. Suivant l'idée de [1], nous remplacons les "petits sauts"
par un mouvement brownien. Nous prouvons que pour chaque temps fixé ¢, la variable aléatoire approchée
X converge vers la variable aléatoire originale X, en distance de variation totale et nous estimons 'erreur.
Nous donnons également une estimation de la distance entre les densités des lois des deux variables aléa-
toires.

Dans la seconde partie, nous traitons des équations a sauts de type Mckean-Vlasov et Boltzmann. Cela
signifie que les coefficients de I'équation dépendent de la loi de la solution et que I'équation est dirigée
par une mesure ponctuelle de Poisson avec une mesure d’intensité qui dépend également de la loi de la
solution. Dans [2], Alfonsi et Bally ont prouvé que sous certaines conditions convenables, la solution X;
d’une telle équation existe et est unique. Ils prouvent également que X, est I'interprétation probabiliste
d’une équation faible analytique. De plus, étant donné une partition P de I'intervalle de temps, ils définis-
sent X comme étant le schéma d’Euler associé a P, et prouvent que X, converge vers X, en distance de
Wasserstein. Dans cette thése, sous des hypothéses plus restreintes, nous montrons que le schéma d’Euler
XF converge vers X; en distance de variation totale et X; a une densité "smooth" (qui est une fonction
solution de ’équation faible analytique). D’autre part, en vue de la simulation, nous utilisons un schéma
d’Euler tronqué X" qui a un nombre fini de sauts dans tout intervalle compact. Nous prouvons que
X7M converge également vers X, en distance de variation totale. Enfin, nous donnons un algorithme
basé sur un systéme de particules associé a XZ) M afin d’approximer la densité de la loi de X;. Des esti-
mations complétes de I'erreur sont obtenues.

Dans la troisiéme partie, nous établissons un cadre abstrait pour 'approximation de la mesure de prob-
abilité invariante d’'un semi-groupe de Markov. Suivant I'approche de [4], nous utilisons le schéma d’Euler
avec étapes décroissantes (qui est appelé 'algorithme de Langevin non-ajusté dans les littératures de Monte
Carlo) pour faire la simulation. Sous certaines "propriétés de Lipschitz exponentielle" et propriétés de
régularisation, nous donnons une estimation de I'erreur en distance de la variation totale. Les principaux
résultats dans [4] et [3] sont des cas particuliers de notre cadre. Nous appliquons également ce cadre aux
processus de saut et obtenons une estimation de I'approximation de la mesure de probabilité invariante
en distance de variation totale.



Mots clés: Equations différentielles stochastiques avec sauts, Calcul de Malliavin, Intégration par par-
ties, Distance de la variation totale, Distance de Wasserstein, Equation de Mckean-Vlasov, Equation de
Boltzmann, Systéme de particules, Mesure de probabilité invariante
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Approximation of the stochastic differential equation with
jumps and convergence in total variation distance

Abstract

In this thesis, we consider the approximation of the solution of the stochastic differential equation with
jumps and we focus on the convergence in total variation distance. The main method we use is the in-
tegration by parts technique in Malliavin calculus. This thesis contains three parts. In the first part, we
want to obtain an accurate approximation scheme for the jump equation. Following the idea of [1], we
replace the "small jumps" by a Brownian motion. We prove that for every fixed time ¢, the approximate
random variable X{ converges to the original random variable X, in total variation distance and we es-
timate the error. We also give an estimate of the distance between the densities of the laws of the two
random variables.

In the second part, we deal with Mckean-Vlasov and Boltzmann type jump equations. This means
that the coefficients of the equation depend on the law of the solution, and the equation is driven by a
Poisson point measure with intensity measure which depends on the law of the solution as well. In [2],
Alfonsi and Bally have proved that under some suitable conditions, the solution X; of such equation exists
and is unique. They also prove that X; is the probabilistic interpretation of an analytical weak equation.
Moreover, given a partition P of the time interval, they define X/ to be the Euler scheme associated
to P, and prove that X converges to X; in Wasserstein distance. In this thesis, under more restricted
assumptions, we show that the Euler scheme X converges to X; in total variation distance and X, has
a smooth density (which is a function solution of the analytical weak equation). On the other hand, in
view of simulation, we use a truncated Euler scheme Xf M which has a finite numbers of jumps in any
compact interval. We prove that X, also converges to X in total variation distance. Finally, we give an
algorithm based on a particle system associated to X, ** in order to approximate the density of the law
of X,. Complete estimates of the error are obtained.

In the third part, we establish an abstract framework for the approximation for the invariant proba-
bility measure of a Markov semigroup. Following the approach from [4], we use the Euler scheme with
decreasing steps (which is called the unadjusted Langevin algorithm in the Monte Carlo literature) to do
the simulation. Under some "exponential Lipschitz property" and regularization properties, we give an
estimate of the error in total variation distance. The main results in [4] and [3] are particular cases of our
framework. We also apply this framework to jump processes and obtain an estimate of the approximation
for the invariant probability measure in total variation distance.

Key words: Stochastic differential equations with jumps, Malliavin calculus, Integration by parts, Total

variation distance, Wasserstein distance, Mckean-Vlasov equation, Boltzmann equation, Particle system,
Invariant probability measure
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Résultats de la Partie I

Le premier chapitre concerne 'approximation d’équations différentielles a sauts de type

t
(1) Xi=x+ / / c(s, 2, Xs—)N,(ds, dz),
0 J(0,1]

ou x est la valeur initiale, avec T' > 0 I’horizon de temps, p est une mesure o-finie a support (0, 1],
N,, est une mesure ponctuelle de Poisson sur (0,1] dont le compensateur est p(dz)ds et ¢ est un
coefficient qui vérifiera des hypotheses de régularité. Les sauts de faible amplitude sont agrégés dans
un drift b.(s,z) = f(o,a] c(s,z,x)p(dz) et un terme diffusif gouverné par un mouvement Brownien
W,, espace-temps :

t
(2) X[ = z+ / c(s, 2, X;_)N,(ds,dz)
0 J{z>e}
t

t
—I-/ bJs,XE)ds—i—// (s, z, X)W, (ds, dz).
0 0 J(0,]

Nous nous concentrons sur ’estimation de 'erreur comimise en distance de la variation totale dpy .
Le résultat principal que nous mettons en évidence est que, pour tout parametre de temps fixé ¢,
la variable aléatoire approximante X; converge vers la variable aléatoire d’origine X;, que cette
convergence a lieu en variation totale et, résultat quantitatif fondamental, nous sommes en mesure
de fournir une estimation de ’erreur commise. En plus, nous obtenons une estimation de la distance
entre les densités des lois associées aux variables aléatoires susmentionnées.

Nous commencerons par une courte liste de notations.

e T > 0 est I’horizon de temps ;

C! (R) est l'espace des fonctions dérivable [-fois et dont les dérivées sont bornées ; la norme
associée est || f|l; o, == D i< Hf(z)Hoo;

e (7 seral'espace des fonctions réguliéres présentant, avec leur dérivées, une croissance polynomiale

)

P, et P; dénotent les semi-groups de X et X¢, tandis que les générateur infinitésimaux sont
Lta L%v

dry est la distance en variation totale regardée comme cas particulier de

A(F,G) = sup{[E(f(F) ~E(F(@)]: Y 9] <1}

o0

lorsque F, G sont des v.a. réelle sur €.

Les résultats classiques de type Trotter-Kato conduisent a

(3) sup [|(P; = FY) flloe < C|If]
s<T

o /( 16 ),

)

avec ¢(z) := supsup |e(s, z,x)|. Nous améliorons ceci afin d’étre en mesure d’appliquer la distance
s<T zeR
pour des fonctions f ayant une moindre régularité.

Les étapes de notre travail sont :




1. Nous présentons un cadre abstrait d’intégration par parties dans Section 3, Partie I. Notre
cadre unifié inclut, au dela du calcul de Malliavin standard, de différentes autres versions, entre
autres le calcul basée sur la méthode < splitting > utilisée dans [3] [4] [5], le T'-calcul de [2], etc.
Ce cadre Malliavin-Sobolev nous permet d’obtenir Lemma 3.4, Partie I : pour tout § > 0, on
a

(4) i) dpy(F,G) < C x d.(F,G)'°.
Lorsque les v.a. F,G ont des densités régulieres pr, pg, pour I € N, on a

(5) i) |lpr — pellice < C X dp(F,G)' 7.

2. Une raison de technique nous emmene a effectuer le changement de variable z — % Soit
0 :(0,1] — [1,00) une fonction telle que #(z) = 1. Nous travaillons avec une équation régie par
une mesure finie

t
XM = z +/ / (s, 2, XM)N, (ds,dz)
0 J[1,M)

t N t N
(6) +/ bar(s, XM)ds +/ / (s, 2, XMYW,, (ds, dz),

0 0 J{z>M}
ot M =1, v(dz) = pob71(dz), &(s,z,2) = c(s, 1, ),
(7) bat(s, ) = / s, 2 2)0(dz).

{z=M}

3. Une hypothese sectorielle nous permet de travailler avec une représentation via un processus de
Poisson composé localisé sur z € I}, := [k, k + 1)

M—1 JF
XMoo= 2+ > AT ZF X0 )
k=1 i=1

t t
+/ bM(S,XéV[)dS—f—/ / (s, 2, XMYW,, (ds, dz).
0 0 J{z>M}

Ici, Tf sont les temps des sauts du processus de Poisson J* de parametre v(I;) et Zf sont des
variables aléatoires indépendantes de loi 1j, ZE?:; et indépendantes aussi de J*. Les techniques
de type Malliavin concerneront a la fois W et Z et sont expliquées dans la Section 4 de la

Partie 1.

4. Avec ces outils, la contribution principale de cette partie est de montrer que, pour tout § > 0,
on a

8) drv(X, X5) < Cs /( | P a2

En plus, lorsque X; et X ont de densités pi(x,y)dy, respectivement p°(z,y)dy suffisamment
régulieres en y, on a

9) H@’jm — O

L=Cka( [ R ae)

pour tout k£ € N et tout d > 0.



Concernant la stratégie de preuve et les hypotheses nécessaires, mentionnons les aspects suivants.

1. Nous demandons une régularité du coefficient ¢ et de ses dérivées jusqu’a un ordre ¢* € N dans
Hypothesis 2.1, Partie I ainsi que 'ellipticité Hypothesis 2.3, Partie I ;

2. Comme nous travaillerons avec des représentations de type processus de Poisson composé, nous
avons besoin d’une hypothese sectorielle Hypothesis 2.4, Partie I ;

3. Une difficulté supplémentaire concerne la loi des Zik (voir ci-dessus) supposée a densité dont le
logarithme est régulier. Afin d’arriver a maitriser ces lois, nous utilisons une hypothese de type
Doeblin et la méthode dite du ”splitting” (voir Section 4.1 dans la Partie I).

Résultats de la Partie 11

Le deuxieme chapitre se penche sur des équations a sauts avec des composantes McKean-Vlasov ou
dans D'esprit de I’équation de Boltzmann. En d’autres termes, nous considérons des équations dont
les coefficients dépendent de la loi méme de la solution cherchée. Ces équations sont régies par des
mesures aléatoires ponctuelles de Poisson dont l'intensité a une forme de dépendance trajectorielle
de la solution. Notre point de départ est I'article [1] dans lequel les auteurs prouvent un résultat
d’existence et unicité de telles solutions (notées X; de maniere générique & ce niveau). Cette
solution fournit une interprétation probabiliste de la solution a une équation analytique faiblement
posée. Sous des hypotheéses plus fortes que celle d’origine, nous prouvons que le schéma d’Euler
(notée X7 associée a la solution converge en variation totale vers la solution initiale laquelle possede
une densité réguliere. D’autre part, nous considérons une deuxieéme approximation X7*™ obtenue
en introduisant la finitude de sauts dans les intervalles compacts. Cette deuxieme approximation
converge elle-méme vers la solution initiale et toujours en variation totale. Nous présentons un
algorithme de type particules permettant a approcher la densité de la loi de la solution initiale et
nous proposons une analyse de l’erreur.

Nous commencerons par une courte liste de notations

T > 0 est 'horizon de temps ;
e lorsque [ est un multi-indice, sa longueur est notée par |3] ;

. Cll) (]Rd) est I'espace des fonctions dérivable [-fois et dont les dérivées sont bornées ; la norme
associée est | fll;, o == D15« HaﬂfHoo ;

o P (]Rd) est 'espace des mesures de probabilités ayant un moment d’ordre [ fini ; la distance de
Wasserstein pour [ = 1 est notée par W ; cette distance sera écrite sur des v.a. F,G € L'(Q) en
ayant en téte les lois L(F') and L(G);

e P={0=r9g<r; <---<rp_1 <1y =T} est une partition de l'intervalle de temps [0, 7] et on
définit 7(r) = r, quand r € [rg, TE41).

L’équation qui fera I'objet de notre travail est

t t
(10) X; = X0+/ b(T,XT,pr)dT—i-// c(r,v, 2, Xo—, pr—)N,,_(dv,dz, dr),
0 0 JRAxRI

ol pe(dv) = P(X; € dv) et N, est une mesure ponctuelle de Poisson dont I'intensité est p;(dv)u(dz)dr.
La mesure j est positive, o-finie sur R%. b et ¢ sont des fonctions qui vérifient certaines conditions



de régularité et d’ellipticité (voir Hypothéses 2.1~2.4 dans la Section 2.2, Partie II). En partic-
ulier, on suppose que pour tout multi-indices 1, 2, il existe une fonction positive ¢ : R — R tel
que pour chaque z € R%, on a

sup sup  sup (le(r,v, 2,2, p)| + 1020 e(r, v, 2,2, p)|) < E(2),
r€[0,T] v,z€R? peP1(R?)

avec [pa|6(2)[Pp(dz) < oo, Vp > 1. De plus, on suppose qu’il existe une fonction positive c : R —
R, telle que pour tout 7 € [0,T],v,x € R4, z € R% p € P1(RY),( € R on a

S (0syelrv,2,2,0), 0% 2 ()G

Jj=1

Les étapes de notre travail sont :

1. Le premier pas

(a) remplacer ¢ avec une mesure cys localisée sur By := {z eR? : |z| <M } ;

(b) les sauts |z| > M seront remplacés par une v.a. Gaussienne et aura une contribution

MA = A\/Tf| s c(2)p(d2) ;
t
xM = Xo+a¥A+/ b(r(r), X0 ol dr
0
t
(11) + // enr(r(r),0,2, X200 pL )N i (dv, dz, dr),
Rd xR4 ™(r)—

ot pl M(dv) = P(XM € dv).

(c) dans Theorem 2.2, Partie II, le schéma résultant (dont la solution est notée par XZD ’M)
converge vers X; en dry, i.e. , pour tout € > 0, il existe une constante C' > 0 telle que

(12) drv (XM, X)) < C(Vew + [P =0,

lorsque (|P|, M) — (0,00). La quantité ey, est donnée explicitement par

(13) fwim [ Jela)uldz) + | o(2)(dz) 2
{lz|>M} {]z|>M}

2. Le deuxieme pas : fournir un schéma pour p”M

(a) Ce pas est basé sur un systeme classique de particules XZ) Mt

empirique p pour remplacer p ;

et I'utilisation de la moyenne

(b) comme dans la premiere partie, le schéma est complété par l'utilisation d’un processus de
Poisson composé adéquate.

3. Régularité et approximation

(a) Théoréme 2.1, Partie II donne l'existence de la densité p;(z) de la loi de X; ;
(b) Théoréme 2.3, Partie IT donne des résultats d’approximation de ladite densité pour
1 1
€ {(|P| + vem) 2, (IP] + vem) d+5} et N suffisamment grand. Dans le premier cas on
obtient

N
(1) pu(e) = = 3 Eos(XPM — 1) + O((1P| + VEr) 7).

=1



Dans le deuxieme cas, on obtient

N N
(@) = 7 D_Besya(X M =) = 5 3 Eps(XM —2) + O((PI +vEa) 7).
=1 =1

Les quantités ¢ et @5 correspondent au noyau Gaussien standard en dimension d, respective-
ment une modification avec d-échelle. La deuxiéme approximation est basée sur la méthode
de Romberg. Comme toujours, nous avons le phénomene dit ”curse of dimensionality”.

4. Lorsque I’on considére une perturbation avec une v.a. Gaussienne d-dimensionnelle supplémentaire
A, nous obtenons, pour £ > 0

N
1) [ e@mes = 5 BTN+ 65) + ] x OUPI+ Va0,

=1

loq__e
pour toute fonction mesurable bornée f. Le parametre § peut étre choisi comme § = (|P| + \/2ar) 2 (1=2%)

et le résultat est valable pour N assez grand.

Concernant la stratégie de preuve et les hypotheéses nécessaires, mentionnons les aspects suivants.

1. Afin d’utiliser une méthode d’intégration par parties, nous avons besoin (voir Hypothesis 2.4,
Partie IT) que u est absolument continue par rapport a la mesure de Lebesgue, que la dérivée de
Radon-Nikodym est infiniment dérivable et que son logarithme ’est aussi et possede des dérivées
bornées.

2. Nous employons des techniques de couplage adéquate pour la distance Wa ., , avec €, > 0
suffisamment petit. Des résultats de représentabilité sont fournis dans Lemme 2.5, Partie II
et employés dans les arguments.

3. Section 3 de la Partie II décrit les techniques d’intégration par parties de type Malliavin
afin d’obtenir les résultats pour la distance en variation totale dpy. Par rapport a la Partie I,
la non-dégénérescence de la covariance de Malliavin n’est pas garantie pour les deux v.a. Nous
proposons une extension dans la Proposition 3.6.1 de la Partie I1.

4. La régularisation nécessaire pour proposer l'algorithme de type particules conduit aux résultats
dans Lemme 3.5 et Corolaire 3.5.1, Partie II.

Résultats de la Partie III

La troisieme et derniere contribution vise a établir, dans un cadre relativement général et abstrait,
une méthode d’approximation de la loi invariante d’un processus. Cette contribution se base sur
le schéma d’Euler a pas décroissant (algorithme de type Langevin non-ajusté dans la littérature
de type méthodes de Monte-Carlo). Sous une condition de Lipschitz exponentielle et sous condi-
tion de propriété de régularisation, nous obtenons une estimation de I'erreur en variation totale.
Ceci généralise les articles [7] et [6]. La méthode trouve ses applications aux processus & sauts
avec, comme but, d’obtenir I'approximation de la mesure invariante et quantifier la précision de
I’approximation en variation totale.

Nous nous proposons de fournir un cadre abstrait pour 'approximation de la mesure de probabilité
invariante.

Nous commencerons par une courte liste de notations.

e lorsque (3 est un multi-indice, sa longueur est notée par || ;



° Cé (]Rd) est I'espace des fonctions dérivable [-fois et dont les dérivées sont bornées ; la norme
associée est ||f||l7OO = ng H@ﬂfHOO :

e sur l'espace de fonctions mesurables bornées My (Rd), nous considérons un semi-groupe F;
possédant (au moins) une mesure de probabilité invariante v ;

e ¢ sera un noyau régularisant dans I’espace de Schwartz tel que
Jo@ds =1, [ oty =0 pour |52 1, [ y"0%6(w)ldy < o pour m € N, [Ba] 1
R R R

et, pour 0 > 0, ¢s(-) := 5%(;3 (3) et la convolution f5 := f * @s.

Les étapes de notre travail sont :

1. Nous considérons un schéma de type Euler a pas décroissant. Pour cela, on considere une famille
décroissante ver 0 notée par (y,),>; et I'y = > i1 - On fait Phypothese

oo
T D wi= lim T, = o0
=1

et notons par {I'} = {I';, : n € N}. Pour s,t € {I'}, le schéma d’Euler est

N(t)—1

(16) P‘Svt = H F’Y’L?

i=N(s)
ot P,y : Cf° — Cp° est une opérateur tel que ||Py¢|oso < [|¢]loo qui approxime P dans le sens
a7) Allo, @) [[(Py =Pl < Cio IVl 00+
Ici, >0, kg e N ;

2. Le résultat principal de la partie Proposition 2.1.1 dans la Partie III est valide sous
I'hypotheése que pour tous ¢, x € N il existe une constante C ) telle que

R5(p, B) Hﬁt—l,tpt,rf - Pt—l,tpt,’r’f(sHoo + Hﬁt—l,tﬁt,rf - Ft—LtﬁtmféHoo
04 _
< Cq,f@vp X ”f”oo (@ + n p,Y]pifﬂ(t) + 771{)7

pour tous 9,1 > 0, tous 1 < t <r < t+ 2 et toute fonction f € M, (]Rd).

Si P, satisfait une hypothese de type Lipschitz exponentiel, une hypothese de régelarité et possede
une mesure invariante v et si (Rf(p, B)) est valable, alors v est unique et, pour tout € > 0 et
pour tout z € Rd, nous avons

(18) drv (Por, (@,).) £ C.O % 4 [ o ylavlg)e ™).
Rd
3. Dans la Section 4 de la Partie III, les résultats abstraits sont appliqués pour I’équation

(19) X, = a:+/0tb(XT)dr—|—/0t/Rd c(z, X,_ )N (dz, dr).

(a) Pour une partition P ={0=Tg< T} <--- <I',_1 <T), <---} apasde temps décroissant
nous considérons le schéma d’Euler

t t
X = $+/ b(Xf(T))dT-l-// c(z,Xf(r)_)N(dz,dr),
0 0 Jrd

avec 7(r) = I'y quand r € [T, Tr11).



(b) Pour tout vy > 0, on définit la fonction de troncature M(v) € N telle que £y(,) < 7* avec
lerreur ¢, le méme comme (13). Pour I'), < ¢t < T',,11, on note Mp(t) = (Fn+1 ).
Nous réduisons 'argument au cas tronqué sur By, := {z € RY : |z| < Mp(2)

(20) xPMe - x—l—/ b(xN7) dr—i—/ / 2 XAP )N (dz, dr).
By

Cette équation peut étre représentée par un processus de Poisson composé.

(c) Le résultat théorique conduit au Théoréme 4.1, Partie III donnant la distance suivante
M — _9
Ay (EOE™)0) < b+ [ o=yl dul)e i),
R

avec v, = ', —T',,_1. Ce résultat est & mettre en rapport avec [6] présentant la méme vitesse
mais une distance de Wasserstein, tandis que nous obtenons une distance en variation totale.

Concernant la stratégie de preuve et les hypotheses nécessaires, mentionnons les aspects suivants.

1.

Afin d’utiliser une méthode d’intégration par parties, nous avons besoin (voir Hypothesis 2.4,
Partie III) que p est absolument continue par rapport a la mesure de Lebesgue, que la dérivée
de Radon-Nikodym est infiniment dérivable et que son logarithme l’est aussi et possede des
dérivées bornées.

. Des hypotheses de régularité et non-dégénérescence déja mentionnées sont demandées dans Hy-

pothesis 2.1~2.3 Partie I1II.

. Nous travaillons sous une hypothese de type Lyapunov LV < 3 — aV, pour &;3 > 0 pour le

générateur infinitésimal de I’équation ainsi qu’une hypothese coercitive relativement classique
pour les coefficients (voir Hypothesis 2.5 de la Partie III). Ceci garantit U'existence de la
mesure invariante v.

References

1]

2]

A. Alfonsi, V. Bally : Construction of Boltzmann and McKean Vlasov type flows (the sewing
lemma approach). arXiv:2105.12677 [math.PR](2021).

D. Bakry, 1. Gentil, M. Ledoux: Analysis and geometry of Markov diffusion operators.
Grundlehren der Mathematischen Wissenschaften 348, Springer, MR-3155209 (2014).

V. Bally and L. Caramellino: On the distances between probability density functions. Electron.
J. Probab. 19, no. 110, 1-33. MR-3296526 (2014).

V. Bally and L. Caramellino: Asymptotic development for the CLT in total variation distance.
Bernoulli 22, 2442-2485. MR-3498034 (2016).

V. Bally, L. Caramellino, G. Poly: Non universality for the variance of the number of real roots
of random trigonometric polynomials. Probab. Th. Rel. Fields. 174, 887-927. MR-3980307
(2019).

P. Chen, C. Deng, René L. Schilling, et. al.: Approximation of the invariant measure of stable
SDEs by an Euler-Maruyama scheme. arXiv:2205.01342v2 [math.PR] (2023).

G. Pages, F. Panloup: Unadjusted Langevin algorithm with multiplicative noise: Total varia-
tion and Wasserstein bounds. (hal-03082311v3) (2022).



Contents

1

Introduction 1
1.1 Partl. . . . e e e e e e e e e e e e e e 1
1.2 PartIl . . . e e e e e e e e e e e e e e e e 6
1.3 PartIIl . . . . . o e e e e e e e e e e e e e e e e e 14

Part I: Total variation distance between a jump-equation and its Gaussian approximation 23

Part II: Approximation schemes for McKean-Vlasov and Boltzmann type equations (error anal-
ysis in total variation distance) 59

Part III: Approximation for the invariant measure with applications for jump processes (con-
vergence in total variation distance) 111



1 Introduction

In this thesis, we consider the approximation of the solution of the stochastic differential equation with
jumps and we focus on the convergence in total variation distance. The main method we use is the
integration by parts technique in Malliavin calculus. This thesis contains three parts. In the following, we
give an introduction of each of these three parts.

1.1 Partl

In the first part, we consider the one dimensional stochastic differential equation with jumps

¢
X ==z +/ / c(s,z, Xs—)N,(ds, dz) ey
0 J(0,1]

where z € R is the initial value, ¢ € [0, T| with T the time horizon, x is a o—finite measure on (0, 1], N,
is a Poisson point measure on (0, 1] with compensator p(dz)ds and c is a coefficient which verifies strong
regularity hypotheses (see Hypotheses 2.1-2.4 in Section 2.1 of Part I). We mention that we assume

/ sup sup|c(s, z, z)|p(dz) < oo,
R4 s€[0,T] z€R

so we are in the finite variation case. The typical example that we have in mind is

dz
pldz) = 5 lzeo0)

with p € [0, 1), so this is a truncated stable process - however, throughout the paper, we keep the general
framework in which p is a measure which has infinite mass around zero. Our aim is to replace the "small
jumps" (on the set {z < e}) by a stochastic integral with respect to a space-time Brownian motion: for any
small € > 0, we construct

t
X; = 33—|—// c(s, 2, X;_)Ny(ds,dz) 2)
0 J{z>e}

t t
+/ bs(s,Xg)ds+/ / c(s,z, XJ)W,(ds, dz),
0 0 J(0,]

where W, (ds, dz) is a space-time Brownian motion (in the sense of Walsh [21]) with covariance measure
u(dz)ds, and the coefficient b, is defined by

be(s,x) = /(0’6] c(s, z,x)u(dz).

The interest of such approximation appears in various frameworks.

Our main motivation comes from numerical computations. If u(F) < oo, then there are a finite number
of jumps in any compact interval of time, so X; may be represented by means of a compound Poisson
process which may be explicitly simulated. But if u(E) = oo, this is not possible anymore (except in very
particular situations - see Talay and Protter [19] for example), and the "small jumps" should be truncated
to revert to the case of a finite measure. This procedure is rather rough and gives large errors. In order
to improve the approximation scheme, one may replace the "small jumps", namely those smaller than
e, by a stochastic integral with respect to W), (ds,dz). Note that the Poisson point measure dN,, is not
compensated, which is why the drift corresponding to b. appears. This idea goes back to Asmussen and
Rosinski [3]. In the case of stochastic differential equations driven by a Lévy process, Fournier [12] gives a
precise estimate of the error and compares the approximation obtained just by truncating the small jumps



to the one obtained by adding a Gaussian noise as in (2). An enlightening discussion on the complexity of
the two methods is also given. However, in that paper, the strong error is considered, while in our paper
we discuss the weak error.

A second motivation comes from modelization problems in chemistry and biology. We are concerned by
reactions which are naturally modelled by means of jump processes containing two regimes: one is very
rapid but the jumps are small, and another is much slower and the jumps are larger — see for example [1],
[2], [4], [10], [16], [17]. In this case, the regime corresponding to the rapid scale with small jumps may be
modelled by a stochastic integral with respect to a Gaussian process and the slow regime with large jumps
by a compound Poisson process. It may also be reasonable to consider an intermediary regime and this
would be modelled by a drift term. This kind of model is exactly the equation (2).

A third motivation is given by a class of statistical problems (see [9], [11] and references therein), where
a stochastic process is observed at various times and it should be decided whether its increments are due
to small jumps or to a Gaussian component. In this framework, it is important to estimate the error in the
sense of total variation distance. The authors explain that, if the error in total variation distance between
the laws of X; and of X} goes to zero, then there is no way to construct a statistical hypothesis test which
decides if the noise comes from small jumps or from the Brownian motion. So, asymptotically, the two
models contain the same information. This is a significant reason why we deal with the total variation
distance.

Let us now discuss briefly our results and the relation to previously available estimates. If L; (respectively
L) represents the infinitesimal operator of X; (respectively of X¢), then a development in Taylor series
of order two gives

(2= 201 € C e [P () ®
where ¢é(z) = supsup|e(s,z,z)| and || f], .. == . [|f?||ec. Then a Trotter-Kato type argument (or
s<T z€R ’ 0<i<l
Lindeberg method) yields
sup [[(Py = P5)fll <C ||f\|37oo/ (=) u(dz) C))
s<T (0,¢]

where P, (respectively of Pf) represents the semigroup of X; (respectively of X7).

The drawback of the above estimate is that the bound on the error involves || f|[; ., so it only applies
to smooth test functions. The main contribution of our paper is to replace || f||; .. by || f|[.., so as to prove
the convergence in total variation distance: for any ¢ > 0, we have

dry (X0, X7) < O /( 160" =), ®)
0,e

where dry denotes the total variation distance between two random variables F, G : Q — R:

dry (F,G) = sup{[E(f(F)) = E(f(G)] : [[[lloc <1}

Moreover, under these hypotheses, we prove that P(X;(x) € dy) = p:(z,y)dy and P(X{(z) € dy) =
o5 (x,y)dy with smooth densities y — p;(z,y) and y — p§(z,y). And, for every k and every 6 > 0, we
obtain

1-96
195p: = 33l < Ck,a(/(o | o) udz)) ©)

This proves that p¢ converges to p; in distribution norms as ¢ — 0. We stress that all these estimates are
non asymptotic (hold for every fixed ¢ > 0). We also mention that the estimation technique that we use
has a drawback: we loose systematically some ¢ > 0 in the speed of convergence.



One may also consider an approximate equation obtained just by discarding the small jumps:
—_ t —_—
X¢ :x—i—/ / c(s,z, XE_)Nu(ds,dz). )
0 J{z>e}

Then ||(L; — ff)f”oo < |1fll1,00 f(o . |é(2)| p(dz), where IZE is the infinitesimal operator of )A(;E So the
Trotter-Kato method gives

IPef— BEf]l < C Il o / 1602) ). ®

0,e
The gain in (5) is that we have f(o g |é(2)]? pu(dz) instead of f(o . |é(2)| n(dz) in (8), which means that we
have a faster speed of convergence. So (2) is a better approximation scheme than (7).

We provide an example to illustrate our results. For ¢ € [0,7T], we consider the following stochastic
differential equation driven by a Lévy process:

t
X, =z +/ o(X,_)dZ,, ©))
0

where (Z;);c[0,r] is a pure jump Lévy process with intensity measure

dz
p(dz) = ]1(0,1](2)ﬁ7 0<p<lL

We approximate (9) by

t t t
X§=x+/ J(X;l)deer(s)/ a(Xg)ds+c(g)/ o(X?)dB,,
0 0 0

where (Zf)c[o,) is a pure jump Lévy process with intensity measure 1. 1j(2)u(dz), (B¢)tejo,] is a stan-
dard Brownian motion independent of (Z; ).c[o, 1}, and

ble) = /(0 ]z,u(dz), cle) = /(0 ]ZQ/L(dZ).

We denote Cp°(R) to be the space of smooth functions with bounded derivatives of any order. We assume
that 0 € Cy°(R), in%a(x) > 0 and inﬂfQ o'(xz) > —1, where o’ is the differential of ¢ in z. Then for any
TE xe

d > 0, there is a constant C' > 0 such that for any ¢ € [0, T,
drv (X, X{) < O30,

Moreover, the laws of X; and X have smooth densities px, (z) and px: (=) respectively. And for any index
[ and any ¢ > 0, there exists a constant C' > 0 such that

Ipx, — pxzlli00 < C37P70

Now we explain the method we use in order to obtain our main results (5) and (6). Our approach uses
a strategy based on the integration by parts technique (an abstract Malliavin calculus) developed in [6].
We introduce an abstract integration by parts framework (in Section 3 of Part I) built on a particular case
of the Dirichlet form theory (see [65] and [6]). This technique is very similar to the standard Malliavin
calculus but is presented in a more general framework which goes far beyond the sole case of the Wiener
space. In particular, we aim at providing a minimalist setting leading to our estimates in total variation
distance. Our unified framework includes the standard Malliavin calculus and different known versions:
the calculus based on the splitting method developed and used in [66], [67], [68] as well as the I'—calculus
in [65]. We also mention that our approach applies in the case of the Malliavin calculus for jump processes



as settled by Bichteler, Gravereaux, Jacod [8] and in the "lent particle" approach for Poisson point measures
developed by [69].

One main consequence of the abstract integration by parts technique is as follows. We define the dis-
tances between random variables F, G : Q — R:

A (F,G) = sup{|E(f(F)) —E(F(@)]: Y |9

0<i<k

<1}

o0

For k = 1, this is the Fortet Mourier distance (which is a variant of the Wasserstein distance), while for
k = 0, this is the total variation distance and we denote it by dry. We use Malliavin calculus for some
random variables F" and Gi. We denote C;°(R?) to be the space of smooth functions which, together with
all the derivatives, have polynomial growth. We associate a derivative operator D with value in a Hilbert
space H satisfying the chain rule: for every ¢ € C;° (R%) and F = (Fy,- - , Fy), we have

d
D¢(F) =Y 0i¢(F)DF;.
i=1
And we associate an Ornstein-Uhlenbeck operator L verifying the duality formula:
E(DF, DG)y = E[FL(G)] = E[GL(F)). (10)

We define by iteration the derivative operators of higher orders D? and we define the Malliavin-Sobolev
norms by

l

|Fl, = [F|+ Y ID'Flyea, FllL,, = EIFDY?+ E[ILF[,)P. an
q=1
For F = (F',---  F?) we denote the Malliavin covariance matrix op = (03/); =1,.. a4 With o/ =

(DF;, DF;)3. And we denote
S, (F) = E(1/ det op)P. (12)

We say that F' is non-degenerated if ¥,(F") < oo, Vp > 1. Now we suppose that the Malliavin-Sobolev
norms of ' and G are bounded (i.e. [|F[,, , + G|, < oo, Vl,p > 1), and the Malliavin covariance
matrix of F' and G are non-degenerated (i.e. ¥,(F) + X,(G) < oo, Vp > 1). We state in Lemma 3.4 of
Part I the followings. We take some r € N. For any § > 0, we have

i) dry(F,G) < C xd.(F,G)'~°. (13)
Moreover, the law of F' (resp. GG) has a smooth density pr(x) (resp. pg(x)), and for any I € N we have

ii) |pr = pelie < Cxdi(F,G)'°. (14

This is the key step in order to obtain our main results (5) and (6). The significance is the following.
Suppose that one has already obtained an estimate of a "smooth" distance d,. between two random vectors
F and G (in our case r = 3 in (4)). But we would like to control the total variation distance between them
(to obtain (5) in our case). In order to do this, one can employ (13) and (14) and conclude the following.
We need to assume that the Malliavin-Sobolev norms of F and G are bounded (|| F| ; , + |G|l ; , < o),
and the Malliavin covariance matrix of F' and G are non-degenerated (X,(F) + £,(G) < c0). Then (13)
asserts that one may control dry by d,., and the control is quasi optimal: we loose just a power § > 0
which we may take as small as we want. And (14) says that we may also control the distance between the
derivatives of density functions by d,..

Now we need to apply (13) and (14) to jump processes so that we can obtain (5) and (6). So we will use
Malliavin calculus for jump processes and define the operators D and L. For some technical reasons, we



make the change of variable z — 1. Let 6 : (0,1] — [1, 00) be a function such that 6(z) = 1. By a change
of variables, instead of dealing with equation (2), it is equivalent to consider the following equation.

AtM = er// (s, 2, XM)N, (ds, dz)
1,M)
/ bar(s, XM) ds+/ / (s, 2, XYW, (ds, dz), (15)
0 {z>M}
where M =1, v(dz) = po671(dz), &(s, z,x) = c(s, 1, z),
o) = [ alszmawde) a6)
{z>M}
N, is a Poisson point measure with intensity measure v(dz)ds and W, is the space-time Brownian motion
with covariance measure v(dz)ds. One can check that X¥ has the same law as X;. We notice that
in (15) the intensity measure is 1[; a7 (2)v(dz)ds and this is a finite measure. Then the corresponding

Poisson Point measure /N, may be represented by means of a compound Poisson process. We produce the
representation on each set {z € I;, = [k, k + 1)}, k € N, so the equation (15) reads

)?tM = as—|—/ / SZX )N, (ds,dz)
0 {zel}

/ bar(s, XM) ds+/ / (s, 2, XYW, (ds, dz)
0 {z>M}

t]\/[ 1

M-1 Jf
~/mk k vM
= x+§ E C(Tini7XT,’<_)
i
k=1 i=1

Jr/ bar(s, XM d5+// (s, 2, XYW, (ds, dz).
{z>M}

Here TF, k,i € N are the jump times of the Poisson process (J{);c[0,7] of parameter v(I},), and ZF, k,i € N

are independent random variables of law 1, (z) VE?Z) which are independent of J% as well. We remark that

we produce the representation by compound Poisson process on each set [}, instead of on the whole interval
[1, M). This is necessary in order to give an accurate representation of the intensity measure v(dz). And
this is important in order to prove that we have sufficient noise which gives the non-degeneracy condition
of the Malliavin covariance matrix (see Section 5.2 of Part I for details).

We will work conditionally to the jump times TF k,i € N, so the randomness in the system comes
from W, on one hand and from Z¥, k,i € N on the other hand. Concerning W, we will use the standard
Malliavin calculus (which fits in the abstract framework presented in Section 3 of Part I). But we will also
use this integration by parts calculus with respect to the amplitude of the jumps given by Z¥, k,i € N. We
present this kind of calculus now. Suppose for a moment (just for simplicity) the law of Z¥ is absolutely
continuous with respect to the Lebesgue measure and has a smooth density hj(z) which has compact
support. We also assume that the logarithm of the density In h; is a smooth function. Then we look to
X M as to a functional F(Z;, ... Z M=1y and we define the derivative operator

0 _
DZ.F = WF(Z%,...,Z% h
and the Ornstein-Uhlenbeck operator
L?F = =) D{,D{,;F + D{,;F x 0. Inhy(Z])
ki

which verify the duality formula (10). Since we want to use integration by parts with respect to both W,
and ZF, k,i € N, we will consider the derivative operator D = (D", D?) and the operator L = (L', L%)



where D and LW are the derivative and Ornstein Uhlenbeck operators from the standard Malliavin
calculus for Gaussian random variables (see [18]). With these operators at hand, we are able to apply (13)
and (14) with the Sobolev norms associated to the operators D = (DW, D?) and L = (LW, L?) and the
covariance matrix associated to the operator D = (DV, D?).

Roughly speaking this is our strategy. But there is one more point: the hypotheses we raise for the law
of ZF that it has a smooth density with compact support and has a smooth logarithm density, is rather
strong and we want to weaken it. This is the aim of the "splitting method" that we present now. The law of

ZF, which is 17, (2) ZE?S , could be very irregular and it is not possible to make integration by parts based

on it. In order to overcome this difficulty, we suppose that the law of Z¥ is lower bounded by the Lebesgue
measure (the Doeblin condition): for every k € N, there exists ¢, > 0 such that

]llk (Z)

We denote C'°(R) the space of smooth functions with compact support. We define a regularization func-

tion ¢ € C°(R) with support included in [—%, 2] such that the logarithm of ¢ is also smooth, and we

202
denote m(z)) = f_IﬁQ ¥ (y)dy. We choose ¢, < 1/m(3)) so that 1 — epm(z)) > 0. Then we produce three

independent random variables V;*, UF and ¢F such that ZF has the same law as ¢FVE + (1 — ¢5)UF:

ZF ~ VE+ (1= HUf

7

where ¢F is a Bernoulli random variable with law
P =1) = epm(y),  P(& =0) = 1= exm(y),
V¥ is a random variable with law

1 1
Ww(z —(k+ 5))‘12

which has good regularization properties, and UF is a random variable with law

P(VF € dz) =

1

(P(ZF € dz) — exp(z — (k + %))dz).

So we split ZF into two parts, V;* and UF. We notice that we do it in such a way that the law of V}*
has a smooth density with compact support and has a smooth logarithm density. Then we perform the
Malliavin calculus with respect to V/* instead of ZF and we work conditionally to ¥ and U} which appear
as constants. This is the so-called splitting method. We refer to Section 4.1 of Part I for more details.

The splitting method presented here is analogous to the one in [8]. Therein, Bichteler, Gravereau and
Jacod deal with 2 kinds of independent Poisson point measures. One is very regular, and smooth enough
to make Malliavin calculus on it (in our paper, V;* play the same role). The other one can be arbitrary, and
it may be very irregular (in our paper, it corresponds to UF). But the difference is that instead of splitting
the Poisson point measure, we split the random variables, and so this method can also be applied in a large
class of different problems. For example, Bally, Caramellino and Poly use the splitting method to show the
convergence in total variation distance in the central limit theorem in [5]. Other possible approaches to
the Malliavin calculus for jump processes are given in the papers [7], [14], [15], [20], [22] and the book [13]
for example.

1.2 PartlIl

In the second part, we deal with the Mckean-Vlasov and Boltzmann jump equation. To begin, we intro-
duce some notations. We give a time horizon 7" > 0 and let 0 < ¢ < T'. For a multi-index 3, we denote



|3| to be the length of 3. We denote C}(R?) the space of [—times differential and bounded functions on
R¢ with bounded derivatives up to order /, and denote the norm | f||, ., := > [|9°f|_, for a function
’ |B1<t

f € CL(R?). We also denote P;(R?) the space of all probability measures on R¢ with finite /—moment. For
p1,p2 € P1(R?), we define the Wasserstein distance (of order 1) W; by

Witerp) = sup | [ fahpr(a)~ [ fpatds)] a7
Lip(f)<1 Jre R4
with Lip(f) := sup % the Lipschitz constant of f, and we define the total variation distance dry
T#Y
by
drv(prps) = sw | [ j@pid) - [ f@patis)]
lfllee <1 JRE R

For F,G € L'(Q), we also denote W1 (F,G) = W1 (L(F), L(G)) and dry (F,G) = dry (L(F), L(G)), with
L(F)(respectively £(G)) the law of the random variable F'(respectively G).
We consider a d—dimensional Mckean-Vlasov and Boltzmann type jump equation as follows.

t t
X, = X0+/ b(r,XT,pT)dr—i—// c(r,v, 2, Xo—, pr— )N, _(dv,dz,dr), (18)
0 0 JRIxRA

where
pe(dv) =P(X; € dv)

is the law of X;, N, is a Poisson point measure on the state space R? x R¢ with intensity measure

pildv)p(dz)dr,

4 is a positive o-finite measure on R¢, X, is the initial random variable independent of the Poisson point
measure N,,, and b, c are functions which verify some regularity and ellipticity conditions (see Hypotheses
2.1~2.4 in Section 2.2 of Part II for precise statements). In particular, we assume that for every multi-
indices /31, 32, there exists a non-negative function ¢ : R? — R such that for every z € R¢, we have

sup sup sup (le(r,v, 2,2, p)| + |00207 c(r, v, 2,2, p)|) < &(2),
rel0,T] v,xeR? pePq(RE)

with [, |e(2)[Pu(dz) < oo, ¥p > 1. We also assume that for any r € [0,7],v1,v2, 2 € R%, z € R%, py, py €
P1(R%), we have the following Lipschitz property:

‘C(T’, U1, %, T, pl) - C(Tv V2, 2,, pQ)‘ < E(Z)(|U1 - U2| + Wl(p17p2))' (19)

Moreover, we suppose that there exists a non-negative function ¢ : R? — R. such that for every r €
[0,T],v,2 € RY 2 € R p € P1(R?), ¢ € R?, we have

(0,¢(r,v, 2,2, p),C)? > c(2)|¢ %

d
=1

J

We remark that we use the notations from [43] and we refer to [28], [34], [43], [49], [50], [56] and [57]
for the basic theory of the classical jump equations. We stress that our equation is a more general kind of
jump equation (than the classical one which appears in (1) of Part I for example) in the following sense.
The coefficients b and ¢ depend on the law of the solution, so our equation is of Mckean-Vlasov type. One
can see for example [41] for a mathematical approach to this kind of equation and see [27], [31], [40], [42],
[54], [55] and [59] for the approximation schemes of a Mckean-Vlasov equation. Moreover, the intensity
of the Poisson point measure N, depends on the law of the solution as well, so our equation is also of
Boltzmann type. The probabilistic approach to the Boltzmann equation is initiated by Tanaka in [60], [61],



and followed by many others in [29], [35], [36], [37], [51], [53] and [58] for example. One can also see [24]
and [62] for the analytical Boltzmann equation and [33] for the physical background. Recently, there is
also some work on inhomogeneous Boltzmann equations (see for instance [23], [38] and [39]). We have
to mention however that our equation (18) does not cover the general physical Boltzmann equation for
the following reason. In that equation, the intensity of the jumps u(dz) is replaced by ~(z, z)u(dz) which
depends on the position z = X,._ of the solution of the equation. At least at this time, we are not able
to include this case in our study. The simplified model that we treat in our paper corresponds to Maxwell
molecules (see [36] for example).

Now we construct the Euler scheme. For any partition ? = {0 =79 <1 < --- <rp_1 <71, =T} of the
time interval [0, T'], we define 7(r) = r;, when r € [rg, rr+1), and we consider the equation

t
Xt = X0+/ b(7(r), X (rys Py )T

P
/ /Rded U, 2 XT(T) ’PT(T)—)pr(T)_(dv,dz,dr), (20)

where p[ is the law of X, and N, 7 (dv,dz,dr) is a Poisson point measure with intensity p, P (dv)p(dz)dr,
independent of X,. We remark that for the c1a551cal jump equations (the coefficients and the Poisson point
measures do not depend on the law of the solution), there is a huge amount of work on the convergence
of the Euler scheme. One can see for example [30], [26], [44], [45], [46], [47], [48], [19] and the refer-
ences therein. We denote C} (R?) to be the space of differentiable and bounded functions with bounded
derivatives. For the equation (18), Alfonsi and Bally [25] have proved recently that under some regularity
conditions on the coefficients b and ¢, the solution of the equation (18) exists and is unique, and X, is the
probabilistic interpretation of the following analytical weak equation.

Vo € Cyp(RY),

[ otomido) = [ s+ [ [ 0reip0, Vo(eor(dr)ar
—I—/O /Rded pr(dz)pr(dv) /Rd(cé(x +c(r,v, 2,2, pp)) — ¢(x))pu(dz)dr. @21

Moreover, [25] has proved that the Euler scheme X/ (see (20)) converges to X, in Wasserstein distance
(of order 1) Wy:

Wi(XTP, X,) < C|P| — 0,

as |P| — 0, with

Pl = a — .
Pli= e max (e =)

In our paper, under supplementary hypotheses, we prove a stronger result. We prove (see Theorem 2.1
of Part IT) that the Euler scheme X/ converges to X, in total variation distance: for any £ > 0, there exists
a constant C such that

drv(XT, X;) < C|PI*=¢ =0, (22)

as |P| — 0. We also show that the law of X, has a smooth density p,(z), which is a function solution of
the analytical weak equation (21).

Since we have infinite numbers of jumps (due to Hypothesis 2.4 in Section 2.2 of Part II), we have
w(R?) = oo. In view of simulation, we need to work with a truncated Poisson point measure, which has a
finite number of jumps in any compact time interval. For M € N, we denote By; = {z € R? : |2| < M} and
we assume that u(Bjs) < oo, VM > 1. In some concrete example, the mass of x may be infinite around
z = 0: p(|z] < €) = oo, Ve > 0. In this case, one has to make a change of variable of type |z| — 1/|z]| to
come back in our framework (as it is done in Part I). For M € N, we denote

CM(ra v, 2,T, P) = C(’I’7’(), Z7x7p)]]-BM (Z)



and

CZM = C\Z Z).
T \/T /{ o)

Now we discard the jumps of size |z| > M and we replace them by a Gaussian random variable:

t
XPM = Koraf At [ e XTL T ar

7'(’7‘ —

t
/ /d dCM(T(T X73(];4 ,/)T(T) )N pour (dv,dz,dr), (23)
R4 xR

where pI’ " is the law of X", N 7. (dv,dz,dr) is a Poisson point measure independent of X, with
t
intensity p; "™ (dv)u(dz)dr, A is a d—dimensional standard Gaussian random variable independent of X
and of NpP,Iw . We prove (see Theorem 2.2 of Part IT) that X tP M converges to X, in total variation distance:
t
for any ¢ > 0, there exists a constant C' such that

drv (XM, Xy) < C(Vea + [P])F =0, (24)

as |P| — 0 and M — oo, with

enr = / &) 2udz) + | e(2)(dz)
{lz|>M}

{lz|>M}

Moreover, the law of X" has a smooth density. We mention that the result (24) is non asymptotic: it

holds for every partition P and every M. We stress that there is an analogy between the construction of

(15) in Part I and the construction of the equation (23) here: in both cases, we cancel the "big jumps" (of

infinite mass) and we replace them by a Gaussian random variable. And in both cases, this is important

in order to obtain the non degeneracy of the Malliavin covariance matrix. But in Part I, this also gives

an improvement on the speed of convergence up to f{IZ\> Ay SUP |é(s, z, z)|3v(dz) while here we keep
S,x

(f{|2|>M} |e(2)|?u(dz) + |f{|Z|>M} &(z)u(dz)[?)=. This is because here, the framework is more complex
and we are not able to do the detailed analysis based on the Taylor expansion as in (3) and (4).

In order to construct an approximation scheme which is appropriate for simulation, we need to compute
pf’M as well, so we use the following particle system. We fix N (the number of particles) and we take
an initial vector (X¢,---, X{V) with components which are independent and identically distributed with
common law p, (which is the law of X), and (A!,---, AY) which is a N x d—dimensional standard

Gaussian random variable independent of (X¢,- -+, X{V). Then we construct the particle system X M _
(XPML [ xPMNY.
t ’ e .

‘ t
XZ?,]W,Z _ XO+aT Al 4 /0 b(r(r), XP(Mz A?f(jx)f

XPAE P ) N dv,dz,dr), i=1,--- N, (25
+ /(; /}%dX]Rd C]\/[ Uy 2, T(T)—’ T(r)— )) ﬁ(}f(lgl )( v, az, T)a ? ) s 4V ( )

where

N
HRPMY () = % S xp (o)

is the empirical measure of Xk P-M- (with 6, (dv) denoting the Dirac measure), N’ SR (dv,dz,dr), i =

1,---, N are Poisson point measures that are independent each other condltlonally to } P-M and inde-
pendent of (X¢g, -+, XY, AL, .-+ AN) with intensity p(}t )(dv)u(dz)dr.



Then we represent the jump’s parts of the equation (25) by compound Poisson processes in order to
give an explicit scheme of simulation. We denote I; = B, I), = Bi\By-1 for kK > 2 and we will pro-
duce the representation on each I. For: = 1,--- | N, k € N, we take (th”)te[o’T] a Poisson process of

intensity u(Ix). We denote by (le’i)leN the jump times of (J, k’i)te[oﬂ and we consider some sequences

of independent random variables Z* ~ 1y, ()% E?Z) and U}’ uniformly distributed on {1,--- , N'}, for all

i=1,---,N, k,l € N. Moreover, (th’i)te[o;p], l’“, U;“,A’,Xé, i=1,---,N, k,I € N are taken to be
independent. Then we write

t
P,M,i i P.Mi ~FP,M
X/ = Xi+aMA4 /O b(r(r), XEAM (X P
M oI
kz P.M,U} ki P,M,i P,M
t ZZC (7 XT(T}"vi)l 4 X (T - } (T -
k=11=1

It is clear that now X P-M is simulated in an explicit way. We also remark that we construct the repre-
sentation by compound Poisson process on each set I;, instead of on the entire ball B, in order to give
an accurate description of the noise produced by Zl’”. This is necessary in order to have sufficient noise
which gives the non-degeneracy condition of the Malliavin covariance matrix (see Section 4.2 of Part II for
details).

Given the dimension d, we denote

Vi i=1q=1 N7 + 1g—oN "7 log(1 + N) + 145N~ 7,
and we consider the following d—dimensional regularization kernels

1 _l=z? 1 T
p(r) = We =, ps(r) = 571%0(5)’ 0<6< 1. (26)

We have proved in Theorem 2.1 of Part II that the law of X, has a density function p;(x). Now we obtain
in Theorem 2.3 of Part II the following results concerning the approximation of the density p;(z). We
take

= (|P| + /ea1) ™5, and take N such that Vy < |P|+ /a1

Then we have
1 & : 2
pi(@) = 5 D Eps (XM —2) + O((|P] + vaar) 759), (27)
=1

where O(e) is the big O notation (i.e. for a strictly positive function g defined on Ry, 3C > 0, s.t.
|0(g9(y))| < Cyg(y)). If we take

= (|P| + /ea1) ™5, and take N such that Vy < |P|+ 21,

then we get moreover by Romberg method that

N N

2 1 1 [ 4

pu(@) = 55 D Beoys (XM ) = 53 Bes(XDM — )+ O((1P] + vEw) ™
=1 =1

5). (28)

It is clear that the approximation scheme based on Romberg method gives a better accuracy: we have

the power 1z > 2%=. So we are able to simulate the density function of X; in an explicit way, with

4 .
error O((|P] + \/ear) @5 ). We notice however, that the speed of convergence of the error depends on the
dimension d, so it converges slowly when d is large. In Theorem 2.4 of Part II, we prove an alternative
approximation result. We give up the approximation of the density, and we focus on the approximation in

10



total variation distance. We take supplementally A a d—dimensional standard Gaussian random variable
independent of X P-M_For any ¢ > 0, we take

§=(|P|+ea)2)  and take N such that Vy < (|P| + 5M)#(1*5”),

withe' = 55~ and ¢” = %. For every measurable and bounded function f, we prove that
N
1 i ~ e
[ i@m@de = 5 STBAOTN 4 68) |l < O(P]+VED' ™). (29

i=1

We stress that the speed of convergence in (29) (which is 1 — ) no longer depends on the dimension d,
so it still behaves well for large dimension. However, the number of particles N depends on d because
Vy < (IP| + en) = (==") so that 1/N ~ (|P| +ex)® when d is large. We also notice that the speed of
convergence in (29) is the same as in (24) for the truncated Euler scheme. Moreover, for any € > 0, we
take

§=(|P|+en)i~%) and take N such that Vy < (|P| +6M)%(1*€”),

with &, = % and ¢, = %. Then for every measurable and bounded function f, we get by
Romberg method that
2 0~ 1Y .
/Rd f@p()de = S OEF(XPM 4 \*@A) N S EFXTMT 4 6A) + (| fllse x O(IP] + vEar)' ™). (30)
i=1 i=1

We remark that (30) is even a better simulation scheme than (29) in the sense that the numbers of particles
N is smaller than the one in (29) and ¢ is larger than the one in (29).

We give now a general view on the strategy used in Part II. Notice that the Poisson process which appears
in the equation (18) has intensity u(dz) which is an infinite measure. It is convenient, from the point of
view of Malliavin calculus, to introduce an intermediary equation driven by a Poison point measure with
intensity 1).|<as}u(dz) which is a finite measure. We will use an intermediary equation. We denote by
XM the solution of this equation:

t
XM = Xoraf At [ o XM o
0

¢
+ // 1g,, (2)c(r,v, 2, XM, p,_)N,, (dv,dz,dr), (€39)]
0 JR4xR4

where p, is the law of X, (not of X) and N,,(dv,dz,dr) is a Poisson point measure with intensity
measure p;(dv)u(dz)dr as in (18). Since XM depends only on a finite number of jumps in any compact
time interval, we can use Malliavin calculus for the amplitudes of jumps. We also replace the jumps larger
then M (which have been canceled) by a Gaussian noise as in (23) - this is necessary in order to obtain
the non degeneracy for X¥. Moreover, in order to be able to establish integration by parts formulas, we
assume (see Hypothesis 2.4 b) of Part II) that the measure p is absolutely continuous with respect to the
Lebesgue measure: pu(dz) = h(z)dz, where h is infinitely differentiable and In ~ has bounded derivatives
of any order. We first check that the Malliavin-Sobolev norms of X are bounded uniformly with respect
to M. Using the convergence X — X, in L', we are able to prove that X, is smooth in the sense of
Malliavin calculus for jump processes and has bounded Malliavin-Sobolev norms. We use this calculus in
order to prove that the law of X; is absolutely continuous with respect to the Lebesgue measure, with
smooth density p;(dz).

Moreover, we construct an explicit algorithm which allows us to use Monte Carlo simulation in order to
approximate the law of X; and the density p,. To do it, we consider the truncated Euler scheme X" (see

11



(23)) and we focus on three equations (18), (31) and (23) with solutions X;, X and XZD M respectively.

There is a supplementary difficulty which appears here: the Poisson point measures which govern the
equations (31) and (23) have an intensity which depends on the law of the solution of each of these
equations - so they are on different probability spaces. It is convenient to use similar equations driven by
the same Poisson point measure (common to the three equations) such that we can use an L? calculus. This
is obtained by a coupling procedure: we construct z;, M and 27" which have the same law as X,, X}
and X ZJ M but are defined on the same probability space and verify equations driven by the same Poisson
point measure. The coupling procedure is as follows. We notice that our basic distance is the Wasserstein
distance (of order 1) W, (see (19)), however we need the distance W5, ., (defined immediately below)
for some small ¢, > 0 because we need L? estimate later in (37) and we have to use the Hélder inequality
with conjugates 1 + 5 and 2?* So now we take ¢, > 0 which is small enough. For p;, p2 € Pay., (RY),
we denote the Wassersteln distance of order 2 + ¢, by

Ware.(pr.p2) = inf {(/ & — y[2+5 n(de, dy)) 7 ),
m€Il(p1,p2) Rd xRe

where TI(py, p2) is the set of probability measures on R? x R¢ with marginals p; and p,. Some basic
properties of W,,p > 1 can be found in [52] and [63] for example, and we mention that Wi (p1, p2) <

Waie, (p1, p2)-

Now we construct the optimal coupling in W5, ., distance between X P( tj)u and X;_. We recall that

P( tz)u is the law of X 7)( tj)u and p,_ is the law of X, . Then we take II."" (dv;, dv,) to be the optimal

W4, —coupling of p (dvl) and p;_ (dv2). So we have

(Wae, (pf(g[—?pt*))z-i_e* - /]Rd R4 o — v2|2+6*Hf7M(dU1adU2)~
X

We will need the representation of 117" (dv;, dv,) by means of the Lebesgue measure dw on [0, 1]. This
will be done by using the following lemma.

Lemma 1.1. There exists a measurable map ® : [0,1) x P;(RY) — R? such that for any p € P1(R%), any
bounded and measurable function ¢ : R — R, we have

Rd

/0 o(®(w, p))dw = | o(x)pl(dz).

This result is stated in [32] and is useful when we estimate the L? distance. We construct (n; (w), n?(w))
which represents I17 " in the sense of Lemma 1.1, this means

[ oot nde = [ s o),
R4 xR4
In particular, this gives for any measurable and bounded function f : R — R,

fo (i (w))dw = [z f( T(t) 5L (dvy), fo (nf (w))dw = [fpa f(v2)pr—(dv2),
fol 0t (w) — 0 (w)[*Tedw = fRded o1 — U2|2+E*Hf’M(dU17dU2) = (W2+e*(PT(’t)_a pr—))*Te. (32)

Now we construct a Poisson point measure N (dw,dz,dr) on the state space [0,1] x R? with intensity
measure dwy(dz)dr. Then we consider the equations

t t
n o= Xo+ / b(r, 2y, pr ) + / / (r P (W), 2,20 pr N (dw, dzdr),  (33)
0 [0,1] R4
t t
A= Xowa s [ttt [Cf ezl o N v, i), 69
0 0,1]x
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¢
M = Xg 4+ d¥ A+/ b(t (r),xf(’f)l, f(g[)d

//0 xRS P (), 2w P N (dw, dz, dr). (35)

One can check by It6 formula that x?M has the same law as ti M (solution of (23)), M has the same
law as XM (solution of (31)) and z; has the same law as X; (solution of (18)). Then

(Waye, (0L pe)2HE0 = (Wore (L(XT0), LG = (Ware (L(li0), L(ze)))?

Ela )l — 2 [P (36)

IN

We notice that now z;,  and ! are defined on the same probability space and verify equations driven
by the same Poisson point measure N (dw, dz, dr). Meanwhile, we are able to compare them by using a
L?*¢- calculus. So all our computations below (in Part IT) concern the equations (33), (34) and (35) (and
not the equations (18), (31), (23)).

In order to obtain estimates of the total variation distance between these processes, we will use Malliavin
integration by parts techniques (which are presented in Section 3 of Part II) together with some results
from [6] which allows us to pass from estimates in Wassestein distance to estimates in total variation
distance. In the following, we define the distances between random variables F, G : Q — R¢:

d.(F,G) =sup{|E(f(F)) — E(f(G))| : Z ||aﬁf"oo <1}

1Bl<r

We recall in Part I that if we suppose that the Malliavin-Sobolev norms (see the definition in (11)) of F’
and G are bounded (i.e. | F||, , , + G|, ;, < oo) and the Malliavin covariance matrix (see the definition
in (12)) of F' and G are non-degenerated (i.e. ¥,(F) + X,(G) < o0), then we are able to control the total
variation distance between F' and G by d,. distance-so (13) holds. However sometimes the condition that
the Malliavin covariance matrices of both F and G are non-degenerated is too strong and we are not able to
prove it. Actually this is our case in Part II. We are not able to prove that the Malliavin covariance matrix of
xf’M is non-degenerated since the tangent flow of the Euler scheme is not invertible (the inverse tangent
flow plays a crucial role in our proof). So we need the following variant of (13). We still assume that the
Malliavin-Sobolev norms of F' and G are bounded. If we only assume the non-degeneracy condition on F’
but no non-degeneracy condition for G, then we have the following (see Proposition 3.6.1 of Part II). We
take some r € N. For any ¢ > 0, there exists a constant C' > 0 such that

dry(F,G) < C(d,(F.G) + | DF — DG|[3a00))" . (37)

We remark that in this case, if we want to control the total variation distance between F' and G, then
we not only need to control the d, distance between them but also control the distance between the
Malliavin derivatives of F' and G. We then apply (37) forr = 1to F' = z; and G = xf M (solutions
of the equations (33) and (35)). Fortunately, we are able to estimate ||Dz, — Dz] M| L2(0;3) Since x;
and x]"* are defined by the same Poisson point measure. Meanwhile, we notice that dl(:chxf My <
Wi (zg, 2] ™M) < Woye (2, 27™) and that we have (36), so we can estimate d, (2,2, ™) by a L2+<+
calculus. We recall that x; has the same law of X, (solution of (18)) and a:t P:M has the same law as XZ) M
(solution of (23)). Consequently, we are able to prove that XtP M X, in total variation distance and
we obtain (24). In a similar way, we can also prove that the Euler scheme X/ — X; in total variation
distance and obtain (22). We stress that these are non asymptotic bounds.

Finally, we explain the main strategy in order to obtam (27), (28), (29) and (30), which provide some

algorithms based on the particle system X" i = 1,... | N to compute the density function p,(z) of
the law of X;. We will apply the estimate (4. 6) in Theorem 4.1 of [25] which gives a basic estimation
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concerning the particle system X+ i = 1,... | N. Besides, we need the regularization lemma given
below. We recall the regularization kernel (s given in (26) and we denote

fola) = Fxosta) = | Fu)osta =)y

Then we have the following regularization lemma (see Lemma 3.5 and Corollary 3.5.1 of Part II for
precise statement).

Lemma 1.2. (A) Suppose that the Malliavin-Sobolev norms of F' are bounded and the Malliavin covariance
matrix of F' is non-degenerated. Then the law of F' has a smooth density pr(z) and there exists a constant C
such that for every x, we have

pr(z) — E(ps(F —2))| < C x &2 (38)

Using Romberg method, we have
pr(x) +E(ps(F — x)) = 2E(ps, 5(F — x))| < C x & (39)

(B) We suppose that the Malliavin-Sobolev norms of F' are bounded. We take some p > 1 and suppose that
there is another random variable G such that E|DG|Y,, Vp > 1 are bounded and X,(G) < co. For any ¢y > 0,
we denote ¢ = 2/(1 + €y). Then there exists a constant C' such that for any nn > 0 and § > 0, for any function
f € Cg°(RY), we have

52
[E(f(F)) —E(fs(F)] < Cfll x (? + (7| DF = DGl p20:0))" + ). (40)

Using moreover Romberg method, we have

4
E(f(F) + E(fs(F)) — 2E(f5,2(F))| < Cllfll * (% + (7 HIDF — DGl 2 +0°). (4D

We remark that in (A), we assume the non-degeneracy condition for F, then we can approximate the
density of F by E(ps(F — z)) with error §2 (see (38)). Moreover, applying Romberg method, we have
(39) which gives a faster speed of convergence than (38). While in (B), we do not assume the non-
degeneracy condition for F', but we need to assume that we have another random variable G such that
¥,(G) < oo. Then we obtain (40) and (41). We have to mention that (40) and (41) are slightly different
from the regularization lemma in [6]. The kernel considered in [6] is the super kernel, but we are not
able to simulate the super kernel. So here we consider the Gaussian kernel @5 which allows us to do the
simulation. In conclusion, we apply (38) and (39) for F' = z; so as to obtain (27) and (28) respectively,
and apply (40) and (41) for F = xf’M and G = x4 so as to obtain (29) and (30) respectively. We refer to
Section 3.3 of Part II for details.

1.3 Part III

There has been a long history of research on invariant probability measures. One can see for example
[73],[75],[77] for the existence of an invariant probability measure for a general Markov process. These
are some classical results. We refer to [80], [81] for some basic computation of the invariant probability
measure for a Lévy process.

In this paper, we concern the approximation of the invariant probability measure for a Markov process.
Following the idea from Pages and Panloup [79], we construct an Euler scheme with decreasing time steps
which is called the unadjusted Langevin algorithm in the Monte Carlo literature. This has been studied in
depth in [82],]72], [71]. One can see also [76] for more discussions on the unadjusted Langevin algorithm
and [51], [78] for the Monte Carlo method.

As far as we know, here are the newest results concerning the approximation of the invariant probability
measure recently. In [79], the authors use unadjusted Langevin algorithm to approximate the invariant
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probability measure of a diffusion process driven by a Brownian motion and study the Wasserstein and
total variation distance between them. In [70], the authors approximate the invariant probability measure
of a Lévy process but only study the Wasserstein distance. Some other related results can also be found
in [64] for example. In our paper, we aim at giving an abstract framework of the approximation for the
invariant probability measure, which includes the case of diffusion process in [79] and Lévy process in
[70]. We also apply this framework to jump processes to illustrate our results and study the total variation
distance, which gives stronger results than [70]. We describe our ideas more precisely in the following.

We give in Section 2 of Part III an abstract framework of the approximation for the invariant probability
measure. We denote C} (R?) the space of [—times differential and bounded functions on R¢ with bounded
derivatives up to order [. We consider a semigroup P;,t > 0 on the space M;(R?) of the bounded mea-
surable functions on R and assume that there exists at least one invariant probability measure v for the
semigroup P;,t > 0. We assume moreover the "exponential Lipschitz property": there exists two constants
Cp > 1 and p > 0 such that for every ¢ > 0 and every ¢ € CL(R?)

(Lo) VPl < ColVellooe .

We notice that (see Proposition 2.0.1 of Part III) the existence of an invariant probability measure v
together with the "exponential Lipschitz property" implies that the invariant probability measure v is
unique.

In order to approximate the invariant measure v, we introduce an Euler scheme with decreasing time
steps (unadjusted Langevin algorithm). For every v > 0 we give an operator P, : C;° — C;° such that
|Py¢lls < |l¢]lo and which approximates our semigroup in the following sense: for every v > 0

A(ko, @) [|(Py = Po)e|| o < Cho IVl 00 7' (42)
Here o > 0 is a given number, ko € Nand [[¢[[,, ., = > [|0%¢|,, . We consider a decreasing sequence
T lal<ko

of time steps v,, | 0 and define the time grid ', = > ;. We assume that
=1

(M Z% = nlggo I, = co.
i=1

We also introduce

© = @((T)nen) = Tm I <o,

n—00 ’Yn-i-l
The typical example is 7, = 1 and then @ = 1. In the following we denote {I'} = {I',,n € N}. And, for
I'; <t < Ty wedenote N(t) = ¢ and 7(t) = T';. Then, for s € {T'} and ¢ € {I'} we define the Euler

scheme
N(t)—1

PS,t = H ﬁ'yia (43)
i=N(s)

the product being understood in the sense of composition. This means that we travel from 7(s) to 7(t) by
using the Euler scheme associated to the one step Euler scheme P.,,.

So now we use the Euler scheme with decreasing time steps Py 1, (given in (43)) to approximate the
invariant probability measure v. Our aim is to estimate the total variation distance between them. To do
so, we need some regularization properties. First we give the regularization hypothesis concerning the
semigroup P;:

A

Rp(k)  swp |Ppll < Cullpl. and
1<t<2
Rp(k) - swp VPl o < CLIVEL:
1<t<2

We also introduce the following variant of the Lipschitz property:

zk ”VPt(ka,oo < Ck ||v<¢0Hk,oo ) 1 >t> 0.
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We give now the regularization properties for the Euler scheme P, ;. To begin, we introduce some
notations. We recall that a super kernel ¢ : R? — R is a function which belongs to the Schwartz space
and such that for every multi-indexes $; and 35, one has

, p(r)dr =1, / Yy o(y)dy =0 for [By] > 1, /d ly|™0%2p(y)|dy < oo for meN. (44)
R R4 R

We fix a super kernel ¢. For § € (0, 1], we denote

85() = =0(2) (45)

and fs the regularization by convolution with a super kernel:

fsla) = £+ 0s(@) = [ f@)s(o =)y, (46)

with x denoting convolution. For § > 0,7 > 0, and ¢, x, p € N we denote

5a
d, _ - K
At o(h) = o +n PRP + 0%, h>0.
Let 3 > 0 and p > 1 be fixed and we assume the following regularization property for the Euler scheme
P, ;: we assume that for every ¢, x € N there exists a constant C' = C,, . ,, such that for every § > 0,7 > 0,
every 1 <t < r < t+ 2 and every bounded measurable function f

Rz(p, B) ||Ft71,tpt,rf - thl,tpt,rfcsnoo + ||Pt71,t?t,rf - ?tfl,t?t,rdeoo
< Camp X AT (V) 1l -

So now we can give our main result (see Proposition 2.1.1 of Part III). We assume that an invariant
probability measure v exists for the semigroup P;,t > 0. We construct an Euler scheme with decreasing
time steps P, by (43). Suppose that (Ly) holds for some p, A(kg, ) holds for some ko, with p >
aw, Rp(k), Rp(k) and L; hold for every k, and Rz(p, 8) holds true for some p, 3. Then the invariant
probability measure v is unique and for any ¢ > 0, for every € R? and n large enough,

dry (Por, (x,.),v) < Co(yPAN)— 4 /d |z —y| dv(y)e rm). 47)
R

We remark that we get the same speed of convergence as in [79] and [70], but in a more general framework.

We notice that we need some regularization properties (see Rp(k), R»(k) and R5(p,5)). In order to
obtain these properties, we use some integration by parts techniques as in Part I and Part II. We give now
a regularization lemma which plays a crucial role in our paper. We recall the super kernel given in (44),
(45) and (46). Then we have the following regularization lemma (see Lemma 3.5 of Part III for precise
statement) which is originally from the paper [6].

Lemma 1.3. We fix some x > 1. We consider a random variable F' and suppose that the Malliavin-Sobolev
norms of F' (see (11)) are bounded. We also consider an auxiliary random variable () such that ¥,.,(Q) < oc.
Then there exists a constant C such that forany ¢ € N, p > 1,7 > 0 and § > 0, for any function f € C{°(R?),
we have

E(F(F)) — E(fs(F))| < C | fll. ¥ <j— + 7 PE(|det o — detog[?) + 7). (48)

Remark. We remark that we do not assume the non-degeneracy condition for F', but we need to assume
that we have another random variable ) which is non-degenerated such that det o, is close to det . The
regularization lemma here is a variant of Lemma 1.2 (B). In Lemma 1.2 (B), we consider the Gaussian
kernel (26) since we need to simulate the kernel in (29) and (30). However in (47) we do not need to
simulate the kernel itself, so we consider the super kernel (44) in Lemma 1.3 which is not able to be
simulated but can give faster speed of convergence by optimization on gq.
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In Section 4 of Part III, we apply the result (47) in the abstract framework for jump processes. So we
consider the d—dimensional stochastic differential equation with jumps as follows:

¢ ¢
X, = er/ b(Xr)err// c(z, X,—)N(dz,dr), (49)
0 0 Jre

where N(dz,dr) is a Poisson point measure on the state space R¢ with intensity measure N (dz,dr) =
u(dz)dr, x is the initial value, y is a positive o-finite measure on R?, and b : R? — R?, ¢ : R? x R? — R9,

We need to give sufficient conditions to ensure the existence of an invariant probability measure for
the jump equation (49). We recall by [73] the classical results of the existence of an invariant probability
measure for a general Markov process. Recently, [74] gives some specific criterias for the existence of an
invariant probability measure of a jump process and also discuss some ergodicity properties. Here we
suppose that (see Hypothesis 2.5 of Part III)

i) (@ —y,b(x) - by))
i) |e(z,x) — c(z,y)|

< —blr—yl?
< ez2) | -yl

and
iii)  2b— / (2¢(2) + & (2))u(dz) == 0 > 0.
R4

Our conditions are based on [73] and are essentially the same as the conditions in [74]. Indeed, the
conditions above implies that for some 3, @ > 0 and a Lyapunov function V (z) = |z|*, we have

(Lyapunov mean reverting condition) LV < B —aV,

with L denoting the infinitesimal operator of (49). This guarantees the existence of an invariant probability
measure v.

Moreover, in order to apply the Malliavin integration by parts framework and obtain regularization
properties, we assume (see Hypothesis 2.4 b) of Part III) that the measure y is absolutely continuous with
respect to the Lebesgue measure: u(dz) = h(z)dz, where h is infinitely differentiable and In & has bounded
derivatives of any order. We also need some regularity and ellipticity conditions on the coefficients (see
Hypothesis 2.1~2.3 of Part III for details). We mention that for every multi-indices 1, 32, we assume
that there exists a non-negative function ¢ : R? — R such that

le(z, )| + 102207 (2, )| < &(2),

with [, ]¢(2)|Pu(dz) < oo, ¥p > 1. We also assume that there exists a non-negative function ¢ : R* — R

such that for every ¢ € RY,
d

D (0:¢(z,2),0)% = cl2)[¢ .

j=1

Now we construct the Euler scheme. We take a partition with decreasing time steps
P={0=To<Ti<- - <Tph1 <y <---}

with the time steps v, =T';, — I',_1, n € N verifying some suitable conditions (see Section 4.3 of Part III
for details). For I';, <t < I';,;1 we denote 7(¢) = I';,. We consider the Euler scheme:

t t
X = 2 +/0 b(Xf(T))dr +/0 /Rd c(z,Xﬁr)f)N(dz,dr).
Since u(R?) = oo (which is a consequence of Hypothesis 2.4 a) of Part III), we have infinitely many

jumps. So we construct the truncated Euler scheme in order to have finite numbers of jumps for the sake
of simulation and Malliavin calculus. For m € N, we denote B,, = {z € R?: |z| < m}and denote

m = é(2)|?u(dz () u(d2)|?.
: /{m}() pa) 41 [ eutas)
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For every v > 0, we define the truncation function M (~) € N such that

emm <7

ForT',, < t < T'y41, we denote Mp(t) = M(yn4+1). Now we cancel the "big jumps" (the jumps of size
|2 > Mp(1)):

t
XPMe gy / b(XP M7 )+ / / e(z. XTpMP )N (dz dr). (50)
0 B

Mp ()

The advantage of considering X, **'* is that we may represent it by means of compound Poisson pro-

cesses. For k € N, we denote Iy = Bj, I, = Bp\By-1 for k > 2 and take (J; )t>0 a Poisson process
of intensity p(I;). We denote by (TF);en the Jump times of (Jf);>o and we con31der a sequences of in-

dependent random variables ZF ~ 1;, (z ) k,i € N. Moreover, ((JF):>0,(ZF)k.ien) are taken to be
keN

M(I ) ’
independent. Then we represent (50) by compound Poisson process on each set I;,. We write

oo Jf
PMp P ky (kP M
Xt r = Tt A X'r(’”) i dT‘ + Z Z ]13M (T") Z/ (ZL ’X"'(Ti,k‘;pf)
k=1i=1
. o JE N

_ P.M ky .7k v P.M

= [ U S5 A XT)
k=1 i=1 n=0

Notice that Z € By, ,) is equivalent to k < M (yy41). It follows that
) M(vny1) JF
Y T IS0 3 3l ST S
n=0 k=1 =

Now (51) can be constructed in an explicit way. We remark that rather than being a constant, the trunca-
tion rule Mp(t) may change on different time intervals. We have to take the truncation like this in order
to verify the condition (42).

Then we apply (47) in the abstract framework for X|. 7-M7 and obtain the following error estimate (see
Theorem 4.1 of Part III): An invariant probability measure v of the jump equation (49) exists and is
unique, and for any ¢ > 0, there exists a constant C. such that for every x € R% and n large enough, we
have

dry (L(XEM7),v) < Ce(my™° + / o= yldvye i),
R,

with £(X) denoting the law of a random variable X. We notice that we obtain the same speed of con-
vergence as in [79] but [79] concerns the diffusion process while here we consider the jump process.
Comparing with the results in [70], we also obtain the same speed of convergence but [70] only deals with
the Wasserstein distance while in our paper, we deal with the total variation distance, which gives stronger
results.
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Abstract
We deal with stochastic differential equations with jumps. In order to obtain an accurate approximation

scheme, it is usual to replace the "small jumps" by a Brownian motion. In this paper, we prove that for
every fixed time ¢, the approximate random variable X; converges to the original random variable X; in
total variation distance and we estimate the error. We also give an estimate of the distance between the
densities of the laws of the two random variables. These are done by using some integration by parts
techniques in Malliavin calculus.

Gaussian approximation
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1 Introduction

In this paper we consider the stochastic differential equation with jumps

¢
Xt:er/ / c(s,z, Xs— )N, (ds, dz)
0 Jo,1]

where N, is a Poisson random measure on (0, 1] with compensator p(dz)ds and c is a coefficient which
verifies strong regularity hypotheses (see Hypotheses 2.1-2.4 in Section 2.1). The typical example that
we have in mind is u(dz) = %1{ze(o,1]}, with p € [0, 1), so this is a truncated stable process - however,
throughout the paper, we keep the general framework in which yp is a measure which has infinite mass
around zero. Our aim is to replace the "small jumps" by a space-time Brownian motion:

X; = er// c(s,z, X_)N,(ds,dz) ey
{z>¢e}

+/0b(sX ds+//06] c(s, 2, X5)Wy(ds, dz),

where W, (ds, dz) is a space-time Brownian motion (in the sense of Walsh [36]) with covariance ;(dz)ds,
x € R, and the coefficient b, is defined by

be(s,x) = /(O,s] c(s, z,x)u(dz).

The interest of such approximations appears in various frameworks.

Our main motivation comes from numerical computations. If ;(E) < co then there are a finite number
of jumps in any compact interval of time, so X; may be represented by means of a compound Poisson
process which may be explicitly simulated. But if x(F) = oo this is not possible anymore (except in very
particular situations - see Talay and Protter [34] for example), and the "small jumps" should be truncated
to revert to the case of a finite measure. This procedure is rather rough and gives large errors. In order to
improve the approximation scheme, one may replace the "small jumps", namely those smaller than ¢, by
a stochastic integral with respect to W, (ds, dz). Note that the Poisson measure dV,, is not compensated,
which is why the drift corresponding to b. appears. This idea goes back to Asmussen and Rosinski [3].
In the case of SDE’s driven by a Lévy process, Fournier [16] gives a precise estimate of the error and
compares the approximation obtained just by truncating the small jumps to the one obtained by adding a
Gaussian noise as in (1). An enlightening discussion on the complexity of the two methods is also given.
However, in that paper, the strong error is considered, while in our paper we discuss the weak error.

A second motivation comes from modelization problems in chemistry and biology: we are concerned by
reactions which are naturally modelled by means of jump processes containing two regimes: one is very
rapid but the jumps are small, and another is much slower and the jumps are larger — see for example
(1], [2], [4], [13], [28], [29]. In this case the regime corresponding to the rapid scale may be modelled by a
stochastic integral with respect to a Gaussian process and the slow regime by a compound Poisson process.
It may also be reasonable to consider an intermediary regime and this would be modelled by a drift term.

A third motivation is given by a class of statistical problems (see [11], [15] and references therein), where
a stochastic process is observed at various times and it should be decided whether its increments are due
to small jumps or to a Gaussian component. In this framework it is important to estimate the error in total
variation sense. The authors explain that, if the error in total variation between the laws of X; and of X7
goes to zero, then there is no way to construct a test which decides if the noise comes from small jumps
or from the Brownian motion. So, asymptotically, the two models contain the same information.

Let us now discuss briefly our results and the relation to previously available estimates. If L, (respectively
L) represents the infinitesimal operator of X; (respectively of X¢) then a development in Taylor series of
order two gives

N(Le — Z)flle < C 11l /( 16 ),
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where é(z) == supsup |c(s, z,7)| and || f|l; .. == > [If?|oo. Then a Trotter-Kato type argument yields
s<T z€R ’ 0<i<3

sup (P — PE)fllos < C s /( 1602) i)

s<T

where P, (respectively of Pf) represents the semigroup of X; (respectively of X7).

The drawback of the above estimate is that the bound on the error involves || f|; ., so it only applies
to smooth test functions. The main contribution of our paper is to replace || f||; ., by || f|[.., so as to prove
convergence in total variation distance. This is done under non-degeneracy and regularity assumptions
on the coefficient c¢. Moreover, under these hypotheses, we prove that P(X,(z) € dy) = pi(x,y)dy and
P(X;(x) € dy) = pf(x,y)dy with smooth densities y — p;(x,y) and y — p;(z,y). And, for every k and
every 0 > 0, we obtain

1-6
lokp — 0w | < Crs( /( e i)

This proves that p; converges to p; in distribution norms as ¢ — 0.

Our approach uses a strategy based on integration by parts (an abstract Malliavin calculus) developed
in [6].

The paper is organized as follows. In Section 2, we give the main results and in Section 3, we recall
the integration by parts technique introduced in [6] and used here. In Section 4, we use these results
in the framework of stochastic equations with jumps and we prove the main result (Theorem 2.2). The
Appendix contains technical estimates concerning Sobolev norms in Malliavin sense.

2 Main results

2.1 The basic equation and the hypotheses

A time horizon 7" > 0 will be fixed throughout the paper. As already mentioned, we deal with the
one-dimensional jump equation

t
X; :x—|—/ / c(s,z, Xs—)Ny(ds,dz), 2)
0 J(0,1]

where N, is a Poisson point measure with intensity ]V;(ds, dz) = p(dz)ds, and p is a positive o-finite
measure on (0,1], ¢ € [0, T7.

For technical reasons which will be discussed in Section 4, we introduce the following change of vari-
ables. Let 6 : (0,1] — [1,00) be the function defined by §(z) = %, and let v(dz) := p o §~'(dz). Then
v is a positive o-finite measure on [1,00). Consider a Poisson point measure N, (ds,dz) with intensity

N, (ds,dz) = v(dz)ds. One may then check that for every ¢t € [0,7T], X; has the same law as X, with
(X¢)tepo,r) the solution of

¢
X, :x—i—/ / c(s,z, Xs— )N, (ds, dz), 3)
0 J[1,00)

where ¢(s, z,2) := c(s, L, z).
Since this paper deals with the laws of the solution to (2),it is equivalent to consider the equation (3).
We formulate our hypotheses in terms of ¢ and v (instead of ¢ and ).

Hypothesis 2.1 (Regularity with parameter ¢*) The map (s, z) — ¢(s, z,x) is continuous, and there
exists a non-negative and decreasing function ¢ : [1,00) — R and a constant ¢* € N such that for every
indices 31, 82, with 8; < ¢* and B3 < ¢*, we have

sup_sup(|c(s, z, )| + (05207 e(s, 2,2)|) < &(2), ¥z € [L,00),
s€[0,T] zeR
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with
/ |e(2)|Pv(dz) =: ¢, < o0, Vp>1. 4)
[1,00)

Remark. We will use several times the following consequence of (4) and of Burkholder’s inequality (see for
example the Theorem 2.11 in [26]): We assume that ®(s, z,w) and ¢ (s, w) are two non-negative functions
such that

[B(s, 2,0)| < &(=)p(s,0)-

Then for any p > 2,

T T
IE‘/O /1 )@(s,z,w)Nl,(ds,dz) : <Cx CpE/O lp(s,w)|Pds, 5)

where C, = maz{(¢2)%,¢,, (¢1)?} and C is a constant depending on p and 7.

Proof. By compensating NN,,, using Burkholder’s inequality and (4), we have

E|/ / (s,2,w) (dsdz|p<C'E|/ / (s,2,w) dsdz \p—HE\/ / (s, z,w)r(dz)ds|?)
[1,00) [1,00) 1,00)

<CE / (/ |®(s, z,w)|*v(dz)) 2d5+E/ / (s,z,w)Pr(dz) ds+]E/ / (s, z,w)r(dz)|Pds)
0 [1,00) 1,00) 1,00)

<C x CPE/ lp(s,w)|Pds.
0
O

Hypothesis 2.2 There exists a non-negative function ¢ : [1,00) — R such that f[l.oo) |¢(2)|Pr(dz) =: ¢, <
oo, Vp>1,and
0:¢(8, 2, x)
1+ 0.¢(s, 2, )

To avoid overburdening notation, since both hypotheses 2.1 and 2.2 apply, we will take é(z) = &(2).

<é(z), Vsel0,T],z€eR,z e[l 00).

Hypothesis 2.3 (Ellipticity) There exists a non-negative function ¢ : [1,00) — R such that for every
s€[0,T),x e R,z € [1,00),

10.¢(s,z,x)]> > c(z) and [&(s,z x)]> > c(2).

Hypothesis 2.4 (Sector condition) This is a supplementary hypothesis concerning the measure v. Two
version of this hypothesis will be used; we state them separately below. Let I;, = [k,k + 1),k € N and
my = v(Ij).

(a) Strong sector condition: We say that the strong sector condition is satisfied if there exist constants
g+ > 0and a; > o > as > 0, such that

wd) c

I].]k (Z) . = ]]'Ik (Z)Zl—ia]dz for all & € N, (6)
c(z) > e *7 for all z > 1 and,

x| p

/ @dz < o0 forall p > 1. 7
TR

Notice that if (6) is true for some a1, then it is also true for any a < a;. So (6) also implies
v(dz) . Ex
17,(2) . > 1y, (2)erdz, with e = ra
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for any o < a.
(b) Weak sector condition: We say that the weak sector condition holds if there exist constants ¢, > 0
and « > 0, such that for every k € N, we have

1,029 s 3, ()%d: forallkeN, ®)
mg z
c(z) > = for all z > 1 and,
Z@
|5 p
/ @dz < 0 for all p > 1. ()]
1

We notice that (8) also implies 1;, (z)%:) > 1y, (2)exdz with g, = ,:_;1.

Remark. Notice that hypotheses 2.1, 2.2 and 2.3 are analogous to those in [10] (2 — 7,2 — 26,2 — 24).
Henceforth, we will suppose that hypotheses 2.1-2.3 hold, as well as either 2.4(a) or 2.4(b).

2.2 Approximation

We come back now to equation (2). The goal of this paper is to replace the small jumps in (2) by a drift
and a Brownian motion. In equation (2), the Poisson point measure NN, is not compensated, so the first
step is to introduce a drift (see b. below) which represents the compensator. Afterwards, we introduce a
space-time Brownian motion W, in order to replace the "compensated small jumps":

¢
X; = er// c(s,z,X;_)N,(ds,dz)
0 J{z>e}

t t
+/ bs(s,Xj)ds—f—// c(s,z, XJ)W,(dz, ds), (10)
0 0 J(0,
where
be(s, x) :/ c(s, z,x)p(dz)
(0,¢]

and W, is a space-time Brownian motion with covariance measure y(dz)ds, which is independent of N,,.

Let us discuss this equation. We notice that we keep the "big jumps" with z > ¢ but we eliminate the
"small jumps" with z < . We replace the "small jumps" by the drift with coefficient . and by the stochastic
integral with coefficient c. This stochastic integral is driven by the so called space-time Brownian motion
W, as introduced by Walsh in [36]. The existence and uniqueness of the solution to this equation (10) are
also given by Kunita (see [26], [27]).

We recall that we work on a fixed interval of time [0, T']. We now precise the filtration that we consider.
Let

FIV = o(Wu(ely) : ¢ € L2((0,1] x [0, 77, o x Leb)),
FN =o(Nu(plpy) : ¢ € L'(0,1] x [0,T], u x Leb)),
Fe=FV N FN, (11)

where Leb denotes the Lebesgue measure and

W) = / ' /( P Waldsn ), () = / ' /( | £ INa(ds,2),

So, X¢ is F;—measurable and X; is F}¥ —measurable.
We denote

L*(W)={F e F}V :E|F|? <0}, L*(N)={G¢eFN:E|G|? < oc}. (12)
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Remark. Let ® be an adapted and piecewise constant process, that is

m

(D(Sv 2, w) = Z Z (I)id' (w)]l[si,si+1) (S)]lBj (Z)7

i=1 j=1
where 0 < s; < --- < sp,4=1,---,n, B; € B((0,1]),j = 1,--- ,m, are disjoint sets. Suppose that ®; ;

are 7,V —measurable for all j = 1,--- ,m, and sup E|®; ;|> < co. Then for every G € L?*(N), we have
2%}

T
E[Gx// B(s, z,w) W, (ds, dz)] = 0. (13)
0 (0,1]

Proof. Since W, ([si, si+1) x Bj) is centered and independent of ®; ; and of G, foralli = 1,--- ,n, j =
1,---,m, it follows that E[G®; ;W,([si, si+1) x B;)] = 0. Then it extends by linearity, and so (13) is
true. O

Now we write the infinitesimal operator of X, and X¢, respectively: For ¢ € C3(R) (the space of
functions with continuous and bounded derivatives up to order 3),

Lep(z) = /(01]<¢<x+c<s,z,x>>¢<x>>u<dz> and
Libz) = /{ (60 el ,2) ~ 6EDHA) + 0@l ) + 36 @acla ), ()

where

= CSZZL'2 Z).
%(s?x)_/mﬁ” (5, 2 ) 2u(dz)

Using Taylor’s formula of order 2, we find

Lsg(z) = /{ N }(¢(x +e(s,2,2)) = ¢(@)u(dz) + ¢ (2)be (s, 2) + 50" (w)ac (s, x) + Rs(x),

where
[Ro(@)] < §ll9lls.00 /(O ] (s, 2, 2) [ u(dz),
with |8, ., = > |6 ]|o0, the sum of all the uniform norms of the derivatives of function ¢ up to
0<i<l
order [. In conclusion, we find
I(Ls = LISl oo = [ Rslloo < 5 161l3,00 13(2), (15)

with

&)= [ /aPudn = [ @l v, px (16

(0,¢] [e=1,00)

Then, we can give an estimate of the distance between the semigroups. We use the standard semigroup
notation, which we remind below. Let [X,(s, z)];>s and [X{ (s, z)];>s be the solutions to (2) and (10), re-
spectively, starting at time s from point z. Denote by Ps ;¢(z) = E¢(X(s, z)) and PS5 ,é(z) = E¢(Xj (s, 7)).
Also, set P, := Py and Py := P .

Lemma 2.1. There exists a constant C depending on T such that for ¢ € C3(R) and 0 < t < T, we have

1P = P dlloo < Cll0ll5,00 m3(€)- 17)
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Proof. Step 1 Trotter-Kato method: We know from Kunita [27] (Theorem 4.5.1) that we have the Kol-
mogorov forward and backward equations:

atps,t¢(x) = Ps,tLt¢(x)7 atP€t¢(I) = PsetL€¢( ) (18)
asPs,t(b(x) = —LsPs1p(x), Os 37t¢(1‘) = _L6P€t¢( )- (19)

Then using Newton-Leibniz’s formula and (18), (19),
t
Pi6(a) - P(a / (5 Pun)ol@)ds = [ (5 (L5 = L)Pu)ola)ds.
0

It follows that

t
|Pp— Figl, < / 1PE (L2 — Lo)Poso|_ds

< /HLE L)Paid

< lia(e) / 1Py il ds. 20)
0

Step 2 (propagation of regularity) In [27], Kunita has shown in Theorem 3.4.1 and Theorem 3.4.2
the regularity of the flow associated with the jump-diffusion. So in our case, we have

1Pse0ll3 o < Sgﬁ(Elfﬁ(Xt(s, )| + El0:6(Xe(s,2))| + E|026(Xe (s, 2))| + E[076( X (s, 2))])

IN

1911300 SUDE[1 + 3105 X (s, )] + 3107 X (s, 2)| + 03X (s, 2)[| < O]l - D)
zTE

Substituting (21) into (20), we obtain (17). O

Remark. A similar result has been obtained in [21] (Theorem 4.7). Besides, one may also consider an
approximate equation obtained just by discarding the small jumps:

—_— t —_—
Xe=z +/ / c(s,z, X:_)N,(ds,dz).
0 J{z>e}

Then, if f% is the infinitesimal operator of )A(T’;‘, we have ||(Ly — E)(b”w < ||1¢ll1,00m(€). So the same
reasoning as above gives

|1Pio — Peo||.. < Cllgll, o % m(e) = 0. (22)

The gain in (17) is that we have n3(¢) instead of 7 (¢) in (22), which means that we have a faster speed
of convergence.

2.3 The main theorem

We are finally ready to state the main results of this paper. Denote by dry (F, G) the total variation
distance between the laws of two random variables F' and G.

Theorem 2.2. Assume that Hypotheses 2.1, 2.2. and 2.3 hold with ¢* > % + 1 for some 6 > 0.

(@) If in addition we assume Hypothesis 2.4 (a), then there exists a constant C depending on ¢ and T such
that

dry (Xe, XF) < Cns(e)' 2. (23)

Under the above hypotheses, the laws of X; and X{ are absolutely continuous with respect to the Lebesgue
measure, with smooth densities px, (x) and px: (z). Moreover, if | is an index such that ¢* > 3 + 1, then
there exists a constant C' depending on 0, T and [ such that

Ipx, — Px:llio0 < Cns(e)'~°. (24
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(b) If in addition we assume Hypothesis 2.4 (b), then there exists a constant C' depending on § and T such

that for every t € [0, T) with t > %*_1) (with e, and « given in Hypothesis 2.4 (b)), we have

dpy (Xy, X7) < Cns(e)' 2. (25)

For any index [ and for ¢ > %i”), both the laws of X; and X have I-times differentiable densities px, ()
and px: (). Assume moreover that q* > % + 1. Then there exists a constant C depending on § ,T and [
such that for t > max{%* (3 — 1), %ﬁm)}’ we have

Ipx, = pxz o < Cns(e)'°. (26)

The proof of this theorem is left to Section 4.4.

Remark. Some recent results concerning the weak approximation of the SDE with jumps are also given in
[14],[22], [23] for example. But they do not concern the convergence in total variation distance.

2.4 A typical example

For ¢ € [0, T], we consider the following SDE driven by a Lévy process:
t
X, =z +/ o(X,_)dZs, (27)
0

where (Z;),e(0.7 is a Lévy process of Lévy triplet (0,0, 1), with pi(dz) = L(o1)(2) %, 0 < p < 1.
We approximate (27) by

t t t
X =gt / o(XE_)dZE + b(e) / o (X3)ds + c(e) / o(X%)dB,, 28)
0 0 0

where (Z7):cjo,1) is a Lévy process of Lévy triplet (0,0, 1;.~.yu(dz)), (Bt)iepo,) is @ standard Brownian
motion independent of (Z})co,7], and

ble) = /(0 }z,u(dz), cle) = /(0 ]zQM(dz).

Then we have the following theorem.

Theorem 2.3. We assume that 0 € C;°(R), 0 < g <o(z) <gand -1 <a <o'(z) <7, Yz € R, for some
universal constants &, o, a, where o’ is the differential of o in . Then for any § > 0, there is a constant C > 0
such that for any t € (0,71,

drv(Xe, X§) < O30

Moreover, the laws of X; and X; have smooth densities px,(x) and px: (x) respectively. And for any index
and any 6 > 0, there exists a constant C' > 0 such that

Ipx, = px¢ oo < CE*7P70

¢
Zt:// zN,(ds,dz),
0 J(0,1]

where N, is a Poisson point measure with intensity ;(dz)ds. Then (27) coincides with (2) with ¢(s, z, ) =
o(x)z, and (28) coincides with (10) with c(s, z, z) = o(x)z, be(s,z) = b(e)o(x), and f{z<€} W, (ds,dz) =
c(e)dBs. -

Proof. We notice that
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Let 6 : (0,1] — [1, 00) be a function defined by 6(z) = L. By a change of variables,

~ 1 1 _ dz
(s, z,x) = c(s, ;,x) =o(x) x = v(dz) =pof " (dz) = ]l[l’oo)(z)zli—/"
One can easily check that Hypothesis 2.1 is verified (for every ¢* € N) with &(z) =& x < and

o0 gee 5_p
N _
/1 |e(2)|Pv(dz) = /1 7Zp+1_pdz < oo, Vp>1.
We recall that I, = [k, k + 1),k € N and my, = v(I}). Then for sufficiently large z, we have
min{|0.¢(s, z,2)|%, [¢(s, 2, 2)[*} > a? x

with some 0 < oy < 1. We also have

1 dz
2 zl-ao’

v(dz)

]]‘Ik (Z) ™

1
> 1y, (z)gdz > 1y, (2)

with some oy € (a2, 1). Moreover, since for any p > 1, p+ 1 — a9 > 1, we have

o0 | = P o0 1
/ ‘CI(ZN dz = 6/ ————dz < o0.
1 zl—ao 1 Zpt+l—ag

So Hypothesis 2.3 and Hypothesis 2.4 (a) are satisfied. Finally,

| 0:¢(8,2z,x) ’ gx L

14+ 9.¢(s, 2, )

< { ! 1}><’><1
ma; -
%_ X1+a’ 7 2’

T 1+ax

so Hypothesis 2.2 is satisfied as well. Then we can apply Theorem 2.2(a) for the equation (27) and (28).

Since
6-3

-3 .3
ns(e :/ g° X 2°u(dz) =

we obtain the estimates from Theorem 2.3. O

3 Abstract integration by parts framework

In order to obtain the main theorem (Theorem 2.2), we will apply some techniques of Malliavin calcu-
lus. So firstly, we give the abstract integration by parts framework introduced in [6]. This is a variant of
the integration by parts framework given in [10].

We consider a probability space (Q2,.F,P), and a subset S C [ LP(€; R) such that for every ¢ € C;°(R)

p=1
and every ' € 8%, we have ¢(F) € S (with C;¢ the space of smooth functions which, together with all
the derivatives, have polynomial growth). A typical example of S is the space of simple functionals, as in
the standard Malliavin calculus. Another example is the space of "Malliavin smooth functionals".

Given a separable Hilbert space H, we assume that we have a derivative operator D : S — (| LP(;H)

p=1
which is a linear application which satisfies

a)
DwF :=(DF,h)y €8, forany h € H, (29)

b) Chain Rule: For every ¢ € C3°(R?) and F = (F,--- , Fy) € 8, we have
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d
D¢(F) = 0i¢(F)DF;, (30)
=1

(oo}
Since D, F' € S, we may define by iteration the derivative operator of higher order D? : S — (| LP(2; H®9)
p=1
which verifies (D?F, ®_, h;)y@a = Dp,Dh,_, - -- Dy, F. We also denote Dgl’.__ ’th = Dp,Dh,_, -+ Dn, F.

Then, Df , F=D,,Di " , F(g>2),
For F = (Fy,--- ,F;) € 8%, we define o = (o)
oy = (DF;, DF};)3 and we denote

ijet,. d 1O be the Malliavin covariance matrix with

5, (F) = E(1/ det o )P. (31)

For d = 1, which is the case that we discuss in this paper, detop = o = (DF, DF)3,. We say that F is
non-degenerated if 3,(F) < oo, Vp > 1.

We also assume that we have an Ornstein-Uhlenbeck operator L : S — S which is a linear operator
satisfying the following duality formula:
Duality: For every F,G € S,

E(DF, DG)y = E(FLG) = E(GLF). (32)
As an immediate consequence of the duality formula, we know that L : S ¢ L?(Q2) — L?(9Q) is closable.

Definition 3.1. If D7 : S C L*(Q) — L?(Q;H®9), Vg > 1, are closable, then the triplet (S, D, L) will be
called an IbP (Integration by Parts) framework.

Now, we introduce the Sobolev norms. For any !l > 1, F € S,

!
\Fly, = Z |DIF o0, |Fl = |F|+[F[y,;. (33)

g=1

We remark that |F|o = |F| and |F|,; = 0 for [ = 0. For F = (F},--- , Fy) € 8%, we set

d d
|F|1,z = Z|Fi|1,l7 ‘F‘l = Z|Fl|l
i=1 i=1

Moreover, we associate the following norms. For any [,p > 1,
1Fl,, = EIFDY?, |IF], = EF")"?,
1N L0 W+ ILE s, - (34)

We denote by D;,, the closure of S with respect to the norm |[of|, ,

th — EHOHL,l,p’ (35)
and o -
Dy = n ﬂ Dip, Hi=Dips.
l=1p=1

For an IbP framework (S, D, L), we now extend the operators from S to D.. For F' € D, p > 2, there

exists a sequence F,, € Ssuchthat|[F — F,|, = 0, ||[F}, — Fy||,,, » 0and [|[LF,, — LF,||,_, , — 0. Since
D? and L are closable, we can define
DIF = lim DF, in LP(Q;H®?), LF= lim LF, in LP(Q). (36)

n— oo n— oo

We still associate the same norms introduced above for F' € D.
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Lemma 3.1. The triplet (Do, D, L) is an IbP framework.

Proof. Here we just show that D verifies (29): For F' € D, and h € H, we have (DF, h)y € Dwo.
In fact, for any k > 1,p > 2, any F' € D1, there is a sequence F,, € S such that ||F,, — F||g41,, — 0.
Then for any uy,--- ,ux € LP(Q;H),h € H, any n,m € N,

p

ya
E(D*({DFm, h)3 — (DFp, h)3),u1 @ -+ @ k)30 = E[Duy Duy_, -+ Dayy (D(Frp = Fr), h) 3|2
=E[Dy, Dy,,_, - Duy Di(Fy — Fn)‘g = E|<Dk+1(Fm —F),h@u @ - ® uk>?—[®<k+1>|%

< Il:5|Dk+1(Fm - Fn)|7§.[®<k+1> h@ui®: - ® uk|7§.¢®(k+1) =0,

which yields that E|D*((DF,,, h)# — (DF,, h)%) % er — 0. Therefore, (DF, h)# € Dy and (29) is veri-

fied. O
The following lemma is useful in order to control the Sobolev norms || F[ , .
Lemma 3.2. We fixp > 2,1 > 2. Let F € L*(Q) and let F,, € S,n € N such that

i) E|F,—-F] — 0,
i) sup||Fullp,, < Kip<oo.

Then for every 1 < p < p, we have F' € D, ; and ”F”L,l,;‘) <K5.
Proof. The Hilbert space H; = D, » equipped with the scalar product

l
U V)1 = D E(DW,DWV)ye. +EUV]
q=1
-2
+ Y E(DILU,DLV)3eq + E|LU x LV|

q=1

is the space of the functionals which are /—times differentiable in L? sense. By ii), for p > 2, || F,,|| 12 <
|Fully,, < Kip. Then, applying Banach Alaoglu’s theorem, there exists a functional G € H; and a
subsequence (we still denote it by n), such that F;, — G weakly in the Hilbert space #;. This means
that for every Q € H;, (F,,,Q)r.12 = (G, Q)L 1,2 Therefore, by Mazur’s theorem, we can construct some

convex combination
Mn

Gn=) MxFeS

i=n

Moy
with A\ > 0,i=mn,....,m, and >, A" = 1, such that

1=n
G — Gl 0 — 0.

In particular we have
E|Gn — G| <||Gn =Gl — 0.

Also, we notice that by i),

E|G, —F| <> A xE|F, — F| - 0.

1=n

So we conclude that F' = G € H,. Thus, we have

2 2 2
E(|Gy — FI}) + E(ILGy — LF|;_y) < |Gn — F|7, ;2 — 0.
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By passing to a subsequence, we have |G, — F|, + |LG, — LF|,_, — 0 almost surely. Now, for every
p € [1,p), we denote Y,, := |G,|] + |LG,|;_, and Y := |F|7 + |LF|]_,. Then, ¥,, — Y almost surely, and
for any g € [p, p,

Mp, q Mn
ElGall +EILGul{y < [Gulfg= D N xFll < QoA x |IFllp0)
i=n L, i=n
My ~ ~
< (Bl x DN = s IF, 4 < Kilg.
7 1

So (Y, )nen is uniformly integrable, and we have

1%

=E(F|}) +E(LF|]_y) =E(Y) = lim E(Y,) < K}

D’
n—00 p

3.1 Main consequences: Convergence in total variation distance

We will use the abstract framework in [6] for the IbP framework (D, D, L), with D and L defined in
(36). Using Malliavin type arguments, [6] proves the following results. The first result, concerning the
density; is classical:

Lemma 3.3. Let F' € Dy If Sgpra(F) < 00, then the law of random variable F' has a density pr(z) which
is p—times differentiable.

In the following, we define the distances between random variables F, G : Q — R:

<1}

o0

A (F,G) = sup{[E(f(F) = E(f(@G)]: > |9

0<i<k

For k = 1, this is the Fortet Mourier distance (which is a variant of the Wasserstein distance), while for
k = 0, this is the total variation distance and we denote it by dry. Now we present the second result
concerning the total variation distance:

Lemma 3.4. We fix some index I, some r € N and some § > 0. We define py = 2(r(5 — 1) +2), po =
max{6l+4,2(“H —r+2)}, 1 >7(5—1)+4, o > " —r+4. Let F,G € Du. Then one may find C € R,
, p € N (depending on r and ¢) such that

0) drv(F,G) < CL+ 2, (F) 4 3, (G) + 1Pl g, + 1G]l 1, ) % dr(F.G), (37)

»41,P

and

i) |lpr = pelliee < C(L+ Bp, (F) + p (G) + 1| g, + Gl g, ) X de(E,G)0, (38)

where pr(x) and pg(x) denote the density functions of F' and G respectively.

Comment The significance of this lemma is the following. Suppose that one has already obtained an
estimate of a "smooth" distance d,, between two random vectors I’ and G (in our case r = 3 in (17)).
But we would like to control the total variation distance between them. In order to do this, one employs
some integration by parts techniques which are developed in [6] and conclude the following. We need
to assume that both /" and G are "smooth" in the sense that ||F'||, + ||Gll,, < oo for sufficiently
large ¢, p. Moreover, we need some non degeneracy condition: both /' and G are non-degenerated, that
is ¥, (F) + X,(G) < oo, with p large enough. Then (37) asserts that one may control dry by d,., and the
control is quasi optimal: we loose just a power § > 0 which we may take as small as we want. And (38)
says that we may also control the distance between the derivatives of density functions by d,..

Then we can get the following corollary.
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Corollary 3.4.1. We fix some index [, some r € N and some § > 0. We define p1, p2, q1, q2 as in Lemma 3.4.
Let Fy € Do, M € N such that for every p > 1,

S}\J/IP(HFM”L,ql,p + Xp, (Fm)) < Qgyppr < 00,

with Qq, p.p, aconstant not dependent on M. Consider moreover some random variable F such that d,(F, Fa) —
0. Then there exists a constant C' > 0 such that

i) dry(F,Fy) < Cd,(F, Fpp)' 0.

Moreover, if sup(||Fa| 1, g, p + Zps (FM)) < Qo p,p, < 00, the law of F is absolutely continuous with smooth
Iy 42,

density pr and one has
i) |Ipr = Prally e < Cdy(F, Far)' .

Proof. We take C to be a constant depending on p,p1, ¢, and § which can change from one line to
another. By Lemma 3.4, for every M < M’, one has

drv (Far, Far) < Cdy(Far, Fap ) ™% < Cldy(Far, F)' ™ + d,.(F, Fa)' 0. (39)

So (Fy)men is a Cauchy sequence in dry . It follows that it has a limit G. But since d,.(Fy, F) — 0, it
follows that F' = G. Passing to the limit M’ — oo in (39), we get

dry (Far, F) < Cdyp(Far, F)' 0.

The proof of ii) is analogous. O

4 Malliavin calculus and stochastic differential equations with jumps

In this section we present the integration by parts framework that will be used in the following. To
begin we give a quick informal presentation of our strategy. We will work with the solution of the equation
(10), but, for technical reasons, we make the change of variable z % so the equation of interest is now
the equation (49). We use the notation from that section. The intensity measure for our random measure
is 1[1,ar)(2)v(dz)ds and this is a finite measure. Then the corresponding Poisson Point measure N, may
be represented by means of a compound Poisson process. For some technical reasons, we produce the
representation on each set {z € I;, = [k, k + 1)}, k € N, so the equation (49) reads

)?tM = x+/
0

+ bM(s,)A(;V[)dS—F// E(s,z,)?y)Wl,(ds,dz)
0 0 J{z>M}

M—1 JF

= x—I—ZZchZkX )

k=1 i=1

tMl

/ (s, 2z XM) L (ds, dz)
{z€Ix}

t
b (s, X ds+/ / (s, z XM) (ds, dz).
0 {z>M}

Here TF, k,i € N are the jump times of the Poisson process (J{);c[o,7] of parameter v(I},), and ZF, k,i € N

are independent random variables of law 1, (=) E‘;Z) , which are independent of J* as well. We will work

conditionally to T, k,i € N, so the randomness in the system comes from W, on one hand and from
ZF k,i € N on the other hand. Concerning W, we will use the standard Malliavin calculus (which fits in
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the framework presented in Section 3). But we will also use this integration by parts calculus with respect
to the amplitude of the jumps given by Z* k,i € N. We present this kind of calculus now.

Suppose for a moment (just for simplicity) the law of ZF is absolutely continuous with respect to the
Lebesgue measure and has a smooth density hy(z) which has compact support. We also assume that the
logarithm of the density In A, is smooth. Then we look to )A(tM as to a functional F(Z}, ..., Z %‘1) and we

define the derivative operators

o _
DZ.F = @F(zi Z% b,

and
L?F ==Y " D{,Df;F + D{,F x 9. Inhi(Z).
ki

And we check that these operators verify the conditions in Section 3. Since we want to use integration by
parts with respect to both W, and ZF, k,i € N, we will consider the derivative operator D = (D, D%)
and the operator L = (LW, L#) where D" and LW are the derivative and Ornstein Uhlenbeck operators
from the standard Malliavin calculus for Gaussian random variables. With these operators at hand we
check the hypotheses of Lemma 3.4 and of Corollary 3.4.1, and these are the results which allow as to
prove our Theorem 2.2.

Roughly speaking this is our strategy. But there is one more point: the hypotheses we raise for the law
of ZF that it has a smooth density with compact support and has a smooth logarithm density, is rather
strong and we want to weaken it. This is the aim of the "splitting method". This amounts to produce three
independent random variables V;*, UF and ¢F such that ZF has the same law as ¢FV* + (1 — ¢F)UF with ¢F
a Bernoulli random variable and V;* a random variable with good properties. So we split Z¥ in two parts,
V¥ and UF. We may do it in such a way that V}* has the law v (v)dv with ¢, € C2°(R) (see Section 4.1
for the precise procedure). And we perform the Malliavin calculus with respect to V;* instead of ZF (we
work conditionally to ¥ and U} which appear as constants).

4.1 The splitting method

We consider a Poisson point measure N, (ds, dz) with compensator Ny(ds, dz) = v(dz)ds on the state
space [1,00). We will make use of the noise z € [1,00) in order to apply the results from the previous
section. We recall that I, = [k, k + 1) and m;, = v(I}), and we suppose that for every k, there exists
er > 0, such that

1 ()29 5 1, (e x de. (40)
my,
Remark. Under Hypothesis 2.4 (a), the splitting condition (40) is satisfied with ¢;, = (Hiﬁ, for any

a < ;. If instead we assume Hypothesis 2.4 (b), (40) is also satisfied, with ¢;, = kET1
When (40) is satisfied, we are able to use the "splitting method" as follows. To begin we define the
functions
1
= 1 e ———

D) = Ly + ooy (42)

11
272

for yeli ) (41)

We notice that ¢ € C'S°(R) and that its support is included in | ]. We also notice that for every ¢,p € N

the function y — [a(? (y)[P¢(y) is continuous and has support included in [—2, 1], so it is bounded: one
may find C, , such that
(W) P(y) < Cop Yy ER. (43)
We denote
Ur(y) = vy — (k+3)),  Ok(y) =0y Invu(y). (49
By (43) (which is uniform with respect to ), we have
sup | (I 4) @ () "V (y) < Cop Yy € R (45)
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We denote
1/2

m(y) = Y(y)dy. (46)

—1/2

We consider a sequence of independent random variables Z* such that
ZF ~ 1 (z)iy(dz)

This is the sequence of random variables which are involved in the representation of the measure N, (ds, dz)
as long as z € [1,00) is concerned. We notice that, according to our hypothesis (40),

P(Z* € dz) = nlk(z)ﬁ:)

> ]].]k (Z)Ek X dz.

Then we construct some independent random variables V* U* ¢* with laws

P(VF edz) = ﬁw(z —(k+ %))dz
P(U* € dz) = m(ﬁv(zk c€dz) —epp(z — (k+ ))dz) 47)

PEF=1) = em(@), PE =0)=1-em(y).

We choose ¢, < 1/m(1)) so that 1 — g;m(t) > 0. Using (40), one may check that P(U* € dz) is a positive
measure and has mass one. So it is a probability measure. And finally one can easily check the identity of
laws:
ZF ~ P VE (1 - €R)U*. (48)
In the following, we will work directly with Z* = ¢*V* 4 (1 — ¢*)U*. This is possible because all the
results that we discuss here concern the law of the random variables, and the law remains unchanged.

The Poisson point measure N,, can be written as the following sum:
L (ds, dz) Z 17, (2)N, (ds,dz) = > N, (ds, dz),
k=1

where vy (dz) = 1y, (2)v(dz) and N,, is a Poisson point measure with intensity v (dz)ds.
The Poisson point measure N,, can be represented by means of compound Poisson processes as follows.
For each k € N, we denote by T},i € N the jump times of a Poisson process (J{);c(o,r) of parameter

mg, and we consider a sequence of independent random variables ZF ~ 1, (2)% v(d ) ,i E N, which are

mpg

independent of J* as well. Then, for any ¢t > 0 and A € B([k,k + 1)), N, ([0,t] x A) = Z 14(ZF). And
i=1

for each k,i € N, we will split ZF as ZF = ¢FVF + (1 — ¢F)UF.

Remark. The law of ZF could be very irregular and it is not possible to make integration by parts based
on it. So we construct the V¥, which has all the good regularity properties in order to make Malliavin
calculus. This is the idea of the splitting method. The splitting method presented here is analogous to
the one in [10]. Therein, Bichteler, Gravereau and Jacod deal with 2 kinds of independent Poisson point
measures. One is very regular, and smooth enough to make Malliavin calculus on it (in our paper, V}* play
the same role). The other one can be arbitrary, and it may be very irregular (in our paper, it corresponds
to UF). But the difference is that instead of splitting the Poisson point measure, we split the random
variables, and so this method can also be applied in a large class of different problems. For example, Bally,
Caramellino and Poly use the splitting method to show the convergence in total variation distance in the
central limit theorem in [5]. Other possible approaches to the Malliavin calculus for jump processes are
given in the papers [24], [25], [35], [37] and the book [19] for example.
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4.2 Malliavin calculus for Poisson point measures and space-time Brownian mo-
tions

In this section we present the IbP framework on a space where we have the Poisson point measure
N, presented in the previous section and moreover we have a space-time Brownian motion W, (ds, dz)
with covariance measure v(dz)ds, which is independent of N,. We recall that in Section 2.2 we have
introduced the random variables W, (¢), N, (¢) and the filtrations (F}" )icp0.77, (F2 )tejo,r), and we de-
note F; = F}V'\/ F¥. We present now the Malliavin calculus. We recall the random variables 7%, and

= ¢FVF + (1 — €F)UF introduced in the previous section and we take G = o(UF, &8, TF : ki €
N) to be the o—algebra associated to the noise from UF,&¥ TF, k,i € N. These are the noises Wthh
will not be involved in the Malliavin calculus. We denote by Cg , the space of the functions f : Q x
R™ *m % R™ — R such that f is Fp—measurable, and for each w, the function (V] ey O Wy, W)
flw,vi, ... vm/7w17~ -, wy) belongs to C°(R™ *™ x R™), and for each (v}, ..., v, w1, - ,w,), the func-
tion w — f(w, v}, ..., o™ wq,- - ,w,) is G-measurable. Then we define the space of simple functionals

9 Ym’

§= {F = f(w’ (Vik)lgigm’7 (WV(LPJ’));‘L:Q 1 fe Cg’p,301, T, Pn € LQ([LOO)X[(LTL VXLeb)7m/7m’n € N}'

1<k<m
On the space S we define the derivative operators

of

7/08]90

(w a(Vik)gigm’v(Wu(‘Pj))?:l)v ko,i0 € N

1<k<m

D(Zkovio)F Liko<my Lig<m: }g

D F Z B, w, (V)

We regard DZF as an element of the Hilbert space I» (the space of the sequences h = (h¥)y ;e with
L[} =300, 3002, |hEF[? < 00) and D' F as an element of the Hilbert space L([1,00) x [0,T],v x Leb).
Then

<m (WV(QDj));L:l)QOT(SaZ)a (572) € [O7T] X [I,OO)

<i
<k<m

1
1

DF := (D?F,DV F) € Iy ® L*([1,00) x [0,T],v x Leb).
We also denote DWW F = DF and H = Iy ® L?([1,00) x [0,T],v x Leb). And we have

(DF,DG),, = Z ZD(k oF x D, G +/ DY F x DI G v(dz)ds
k=11i=1 [0,T]x[1,00)
Moreover, we define the derivatives of order ¢ € N recursively:
Z,W,q zZW zZW A
(Froin)Crasia (1,200 E = Dibigiiaarea) D Eamssia-)s(satizan) ™ Plkasin) (1,20 5
and we denote DIF = D%W:4F, We also denote D%? (respectively D"'9) as the derivative DZ (respec-
tively D) of order q.
We recall the function 6, defined in (44) and we define the Ornstein-Uhlenbeck operators LZ, L' and
L = L? + L (which verify the duality relation), with

L?F = *i

M=

(DG iy DGy F + &8 DG o F < 0(VF)),

k=1 1=1
LVF = Za (W, (V) 1<icm's Wu(0)) 1) Wo (er)
— YWr 1<k<m
N O Vs (W)t o)
e Dupdw, i Rt AL LA (Lo < (0. et

One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3. The
proof is left to Appendix 5.3.

In the following, we will close the operator D? and L, so we will use the IbP framework (D, D, L)
associated to (S, D, L) in Lemma 3.1.
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4.3 Malliavin calculus applied to stochastic differential equations with jumps

Now we will use the IbP framework presented in Section 4.2 for the equation (10).
Let 6 : (0,1] — [1,00) be a function such that §(z) = 1. By a change of variables, instead of dealing
with equation (10), it is equivalent to consider the following equation.

t
XM = x—!—// (s, 2, XM )N, (ds, dz)
[1,M)
Jr/ b (s, X d5+/ / (s, z, X YW, (ds,dz), (49)
{z>M}

where M =1, v(dz) = po671(d2), &(s, z,x) = c(s, 1, z),

bar(s,x) = / (s, z,x)v(dz), (50)
{z>M}

and W, is the space-time Brownian motion with covariance measure v(dz)ds. One can check that )A(tM has
the same law as X;.

Here we give two lemmas, concerning the Malliavin-Sobolev norms and the Malliavin covariance. We
recall that e, and « are introduced in Hypothesis 2.4 (b), and ¢* is introduced in Hypothesis 2.1.

Lemma 4.1. Assuming Hypothesis 2.1 with ¢* > 2 and Hypothesis 2.4 (either 2.4(@) or 2.4(b)), we have
XM € Do, and for all p > 1,2 < | < ¢*, there exists a constant C; ,(T') depending on [, p,xz and T, such

that sup IXM|20p < Crp(T).

Lemma 4.2. Assume that Hypothesis 2.1 with ¢* > 1 and Hypothesis 2.2, 2.3 hold true.
a) If we also assume Hypothesis 2.4 (@), then for every p > 1, t € [0, T}, we have

supE(1/ogm)? < Oy, (51D
M t

with C), a constant only depending on p and T.

b) If we assume Hypothesis 2.4 (b), then for every p > 1, t € [0,T] such that t > %“, we have
supE(1/o¢m)? < Cp.
M t

The proofs of these lemmas are rather technical and are postponed for the Appendix (Section 5.1 and
5.2).

4.4 Proof of the main result (Theorem 2.2)

Proof. (a) By Lemma 4.1 and Lemma 4.2 a), we know that for any é > 0, for any p,p1 > 1,2 < ¢ < ¢,
with ¢* > 2 + 1, there exists a constant Cy;, ., (T) such that for any M > 1, t € [0, T], we have

Sy (X)) + IX M 200 < Coppn (T)-
By Lemma 2.1, we know that

ds(Xe, X)) = ds( Xy, X7) < Cns ().
Then applying Corollary 3.4.1 i) for r = 3, we have

dpy (X, X5) = dpy (X, XM) < Cds(Xp, XM)'0 < Csnale) 2.
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So we obtain (23). The proof of (24) is obtained by Corollary 3.4.1 ii), since ¢* > 3T+l + 1.

(b) The proof is almost the same. If t > = ) then by Lemma 4.2 b), 2y, (XM) < oo for pp = 2(2 - 1).
So Corollary 3.4.1 i) still holds, and we can obtaln (25). For

- X{gﬁ(3;z 1)7804(381+2)

2

by Lemma 4.2 b), £, (XM) < oo for p» = max{2(2t —1),6 +4}. So Corollary 3.4.1 ii) still holds, and
we obtain (26). O

5 Appendix

5.1 Proof of Lemma 4.1

In the followmg, we will only work with the measure v supported on [1,00) and with the processes
(Xt)te[o 71 and (XM);e0,r). So in order to simplify the notation, from now on we denote X, = X, and

XM = XM, We remark that M = 1 is generally not an integer, but for simplicity, we assume in the
following that M is an integer.

Here is the idea of the proof. Since X is not a simple functional, we construct first the Euler scheme
(X))o, in subsection 5.1.1 and check that X;"" — XM in L' when n — co. We will prove that

E|X;""|? and E|LX;""|" are bounded (uniformly in n, M) in subsection 5.1.3. Then based on Lemma
3.2, we obtain that X € D, and the norms || X||,, are bounded (uniformly in M).
5.1.1 Construction of the Euler scheme

We take a time-partition Pj* = {r; = L it j=0,---,n} and a space-partition 75}&1 ={z =M+ ,%,j =
0,1,---}. We denote 7,,(r) = r; when r € [rj,rﬁl), and denote v, (z) = z; when z € [2;,2;11). Let

xmM = x—l—// ATa(r X"](V[) YN, (dr, dz)
[1,M)

+/ bar (T (r), X1 ](‘f) d?“—i—/ / 1 (1), 1 (2), X:’](VT[))W,,(dr,dz). (52)
0 {z>M}

Then we can obtain the following lemma.

Lemma 5.1. Assume that the Hypothesis 2.1 holds true with ¢* > 1. Then for any p > 1, M > 1, we have
E[X;"M — XM|P — 0asn — oo
Proof. We first notice that since ¢(z) (in Hypothesis 2.1) is decreasing, sup ¢(7,(z)) < é(71(2)). So

neN

oo

/1 " sup [ (2))Poldz) < / el (2))Prdz) < e(VPr[1.2] + / &(=)Pr(dz) < C < 0. (53)

neN 1

Then by the Lebesgue dominated convergence theorem, (53) implies that

T
lim sup/ / [6(s, 2, 2) — &(Tn(8), Y (2), 2)[*v(dz)ds = 0, (54)
n—=X 4cR Jo 1,00)
and
T
sup sup/ / [6(70(8), Y (2), ) Pv(dz)ds < C. (55)
neNzeR JO 1,00)
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In the following proof, C,(T") will be a constant depending on p and T which may be changed from line
to line. For p > 2, we write ]E|Xt"’M — XM|P < C,(T)(Ey + E2 + E3), where

E, = E| (7 (r X" ?f) ) — E(r,z,X%)N,,(dr, dz)|P,
[1,M)

t
E2 :]E‘/ bM(Tn(T),X:_:](\:{))_bI\/[(Tva)dr‘pv
0

t
Ba=Bl [ [ am(r)on(a) X0~ Elr 5 XYW, d)P.
{z>M} "

Then, compensating N, and using Burkholder’s inequality (see for example the Theorem 2.11 in [26]),

£y

with

IN

+

+

<

R

Cp(T>[IE/ (/1 » [T (r), 2, X200 1) = &(r, 2, X)) Pu(dz)) 2 dr
/ / (n(r), 2 X: ](\:{) ) — E(T,Z7XT{V£)‘pV(dZ)dT
M)
/ / (1n(r X:I(LTI) ) —&(r, 2z, XM v (dz)|Pdr]
1,M)

CoTIRL +(@)5 +6,+ @) | B — XM par),

t
. / </ (1), 2, XM ) — &, 2, XM Pu(d2)) Edr
0 J[1,M)

t
+ E/ / |E(Tn(r)7z,X%) —E(r,z7XTA/£)|pV(dz)dr
o J[,M)

+

t
E/ |/ c(mn(r), 2, Xﬁ) —¢(r, z,X,{Vf)V(dz)\pdr.
0o J[1,M)

Since [¢(7(r), 2, XM) — &(r, 2, XM)|P < |2¢(2)|P € LY x [1,00) x [0,T],P x v x Leb), we apply the
Lebesgue’s dominated convergence theorem and we obtain that B! — 0. Next,

with

Ey

IN

/ / (rn(r),z, X7 ?;I)) &(ry 2, XM (dz) [Pdr
{z>M}

Cp(T)[R2 + ()7 /0 BIX[M) - XM prar],

IA

/ ‘/{z>M} Ta(r), 2 X;1) = &r 2, X p(dz)Pdr — 0.

Finally, using Burkholder’s inequality,

Es

IN

IA

E|// & (1), 7 (2), XT) — &2, X2 Po(dz) B
{z>M} "

Co(T) (RS + ()% / EIXTY - XM [Par],
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where (by (54)),
t
_ E|/ / (6 (1), 4 (2), XM) — &, 2, X M) Pu(dz) B — 0.
{z>M)}

Therefore, B[ X;"" — XM [P < C,(T)[R,, + [y EIX["(1) — XM|dr], with R, = R} + R2 + RS — 0 as

n — oco. One can easily check that E| X" — Xf% [P — 0. Also there exists a constant C,(T") depending
on p and T such that for any n,M € N and any ¢ € [0,T], E|X;""[? < C,(T) (see (71) for details).
Then, by the dominated convergence theorem, these yield fot E|X»M — X:%Pdr — 0. So we have
E|XM — XM < C,(T)[R, + [TEIXPM — XMPdr], with R,, — 0 as n — oo. We conclude by using
Gronwall’s lemma. O

Remark. Some results on the convergence of the Euler scheme of a jump-diffusion can be found for example
in [32], [34]. The special thing in our paper is that we deal with the space-time Brownian motion instead
of the classical Brownian motion, and this is why we need to assume (54).

Now we represent the jump’s part of (X" )tejo,7) by means of compound Poisson processes. We recall
that for each k € N, we denote by 7}, € N the jump times of a Poisson process (J{);c[0,7] of parameter

my, and we consider a sequence of independent random variables ZF ~ 1j,(z) VSS) ,i € N, which are
independent of J* as well. Then we write

tM 1
XpM = oy / / ema(r). 2. X7 4 N, (dr. dz)
0 {z€l}
+ bM(Tn( (r) d’l"—|—/ / A7), (2 ),X:;?:))WV(dT, dz)
0 0 J{z>Mm}
M-1 Jf
= LE-"-ZZCTn Zan%,k )
k=1 i=1

t

[ B, X2 v+ / / (), 32, XMW, (drydz). (56)
0 {z>M} "
So for every t € [0,7], X;"" is a simple functional.

5.1.2 Preliminary estimates

In order to estimate the Sobolev norms of the Euler scheme, we need the following preliminary lemmas.

Lemma 5.2. We fix M > 1. Let y : Q x [0,T] x [M, 00) — R be a function which is piecewise constant with
respect to both t and z. We assume that y.(z) is progressively measurable with respect to F; (defined in (11)),
yi(2) € S, and E(J, Jiosany e (2)|* v(d2)dr) < oc. We denote I(y =/ Jizsary yr(2)Wo(dr,dz). Then
forany !l > 1,p > 2, there exists a constant C; ,(T') such that

o) BRI < Cup(TE | ( /{ e

b) EILL(y)? < Cop(T)[E / ( /{ Ly, (2)[2v(d2)) bdr + E / ( /{ o (2) B (d=)) E ],

z>M} z>M}

Proof. Proof of a): Let C; ,(T') be a constant depending on [, p and 7' which may change from one line to
another. For any [ > 1, we take Iy > 0 and Iz > O such that 0 < Iy + 1z <.
It is easy to check that

t
Z,1 - A
Dt 00 = [ [ DBl 9ol ),
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And by recurrence, one can show that

D(VZ{Z,‘Z) (s1yy» le) t(y) _/ /{>M} V:ll;vl yyr(2)W, (dr, dz) JrZDWlW w1 Ys; (25) s, <,

(81,21
wWTtW (85,%;
j=1 7173

with
Iy -1

(s5,25) = (s1,21) - (85-1, 2-1) (8415 2 1) - (St 2y )-

We denote
_ ) . Z,l .
O P P D(]flvzll) (kzz,ZlZ)yr( z), yiz (2) = DZJZ:UT(Z) € léglz'

Then DZ’ZZIt(y) = It(glz)’ and

Wil A B P _ . ,
D(s1,‘;vl)-<-(slw,ZLW)D(kl,Zil)---(klZ,ilZ)It(y) - / /{Z>M} 517‘:1) ~(le,le)yT(Z)(k17lla T 7klzv7'lz)Wu(dTa dZ)
+ Z rv/lzliv s, (25) (Rasins oo kg in, ) s <e
=1 55:%5)

Let Hy, 1.7 = 1817 @ L2([0,T] x [M, 00), Leb x v)®7 . We have

DWW DRIz ()3~ /[m /[M o DI oy g B o) v s
s w oo)'w 2

t t
<o [ [ D ndf, w2 [ D, e,
0 J{z>M} zwe 0 J{z>M} Zrwes

Using Burkholder’s inequality for Hilbert-space-valued martingales (see [30] for example), we have

v(dz))%dr

Aw T

t
E[DWw DAL )y, . < Cip(DE / (/ |DWw DAz, (2)],
z:lw 0 J{z>M} z

t
Wilw—1 17,1 2 2
+ E/O(/{Z>M}|D wADEy (E ()i (57)

We recall that for F € Do, we have [DW'!W DZ12 |y,
Then (57) gives

< |F|i 41y, (see the definition in (33)).

Jdw T

t
ElL(y)F, < Cip(T) Y EIDW'WDZ(y Wiy, 1y r < Cip(TE /0(/{ >M}\yr(z)|?v(dz))§dr- (58)

lz+lw <l

Finally, using Burkholder’s inequality, we have

EL(y)P < Cip(T)E / ( /{ eGPV (59

So a) is proved.

Proof of b): We first show that
LI(y) = Li(Ly) + L:(y)- (60)

We denote

t S1 Sk—1
Ilz(fk):k'/ / / / fk(sla"' 3 SkyR1y 0 ,Zk)Wl,(dSk;,de)'"Wy(dShle)
0 JO 0 [M,+o00)k
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the multiple stochastic integral for a deterministic function fj, which is square integrable with respect to
(v(dz)ds)®* and is symmetric with respect to the time variation (s, , s;) for each fixed (z1,--- , z).

Notice that LZ1}(fi) = 0 and LW IL(fy) = kI}(fx). So, LIL(fx) = kIL(fx). Then by the duality relation
(32),

E(LL(fi) L(11(9))) = E(Li(y) x LIi(fi)) = KE(L(y) < T (k). (61)

On the other hand, using the isometry property and the duality relation,
t
BUL(R) x BLo) =kE [ [ I (Al ) Ly e)otde)dr
{z>M}
t
~ | / Blun(2) % L0y (el Maz)ar = ke 08 [ [ I Gl )i
{z>M} {Z>M}

(k- / /{2>M} I (Fu(r, 2, )W (dr, d2)
= (k= DE(L(y) x Ii.(fx))

Combining this with (61), we get
E(IL (fo) (1 (y) + 1(Ly))) = KE(L(fr) Ie(y)) = E[L(fr) x LI(y)]. (62)

Since every element in L2(W) (defined by (12)) can be represented as the direct sum of multiple stochas-
tic integrals, we have for any F' € L?(W),

E[FLI(y)] = E[F(L(Ly) + L(y))]- (63)
For G € L?(N), one has LW G = 0 and L?G € L?*(N). Then by using duality and (13),
E[GLI(y)] = E[l:(y) LG] = E[L,(y) L?G] = 0,

and by (13),
E[G(I:(Ly) + I:(y))] = 0.
So,

E[GLI(y)] = E[G(I:(Ly) + Lt(y))]- (64)

Combining (63) and (64), for any G € L?(W)® L?(N), we have E[GLI,(y)] = E[G(I;(Ly)+I;(y))], which
proves (60).
Then, by Lemma 5.2 a),

t
BLLWE < 2@ [ [ LEWdndlf +E / / (dr, d2)[})
0 J{z>M} {z>M}

Cip(T)[E / ( /{ NG CIER / ( /{ g @) B,

IN

O

We will also need the following lemma from [7] (Lemma 8 and Lemma 10), which is a consequence of
the chain rule for D? and L.

Lemma 5.3. Let F € S% Foreveryl € N, if ¢ : R? — R is a C'(R?) function (I—times differentiable
function), then

a) [¢(F)11 < [VO(F)||Fl1+Cr sup [0°6(F)||F|i, ;.
2<|8|<t
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If ¢ € C'T2(R?), then

b) |Lo(F)|i < [VO(F)||ILF|,+C;  sup  [0°¢(F)|(1+|F|23)(1 + |LF|i-1).
2<|BI<1+2

For | = 0, we have

) [Lo(F)| < [Ve( )HLF|+‘SL|1p 7 (IF ;-

We finish this section with a first estimate concerning the operator L.

Lemma 5.4. Under the Hypothesis 2.4 (either 2.4(@) or 2.4(b)), for every p > 2,p > 1,1 > 0, there exists a
constant C ,, 5(T) such that

M—1 J
up B S EZELZE]) < CiplT). (65)
MeN =1 i=1

Proof. We notice that (with v, given in (44)), LZF = ¢F(Inyy, )" (VF) and DW'LZF = 0. Moreover,

l
D(Z7"11Z,M1)"'(TL,7nl)LZik = H(5Tjk67’lgi)§z]'€(lnl/}k)(lJrl) (‘/ik)a

j=1
with ¢, the Kronecker delta, so that
LZE=€f 3 |(nw) O VE)], (66)
0<i<l

It follows that

M—1 Jf i M—1 JF )

E(Y D aAZOILZERP < Cipp Y B D e ZH)Er (I YED (v Py,
k=1 i=1 OSZSI k=1 i=1

Since ¢(ZF)¢F = ¢(VF)¢k, we may replace ZF by V¥ in the right hand side of the above estimate. This
gives

M—-1

'M*
Eal

(VR ) D (VI P = Crpp 3 / /1M) /01} V)€l @)D (o) PA(ds, e, dv)

1 0<i<i

S[S k=1 i

where 9 (v) := Z 17, (v)¥(v—(k+ 3)) and A is a Poisson point measure on {0, 1} x [1, co) with compen-

sator

~ = —(k+3))
A(ds,d¢, dv) = Y [—n-22
2w

with b(v, d¢) the Bernoulli probability measure on {0,1} with parameter e;m(¢), if v € I;. Then by
compensating A and using Burkholder’s inequality (the same proof as for (5)),

(l+1 pA
CZWZM//IM)/{M} 0)E| (I )T (o) [PA(ds, d, dv) P

0<I<i

1z, (v)dv x b(v,d€)]ds

n ) ()|2PA (ds v))?
< Clps) Y | //wx{m o(0) 261 (10 5) D (o) PR (ds, €, dv))

0<i<l

t . R t _ s o~
+ / / |c(0)[P€](In )+ (v)|PPA(ds, d€, dv) + | / / e(0)¢|(In ) D (0)|PA(ds, dE, dv)|?]. (67)
0 J[1,M)x{0,1} 0 J[1,M)x{0,1}
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We notice that by (45),

M—-1

t c(v)P n_([ 1) A V) = m ?|(In (I+1) ppwk(’l)) v
L PR 00 =3 [ cumtu im0 0

m(1)
M-—1
(1) ,; - /1 e

Similar upper bounds hold for the two other terms in the right hanf side of (67), so (67) is upper bounded
by

Crpp(T Z €k v)[2dv)% + Z ek/ |e(v)[Pdv + ( Z €k v)|dv)P]. (68)

If we assume the Hypothesis 2.4 (a), then we have ¢, = ¢, /(k + 1)!~%, with oy given in (7). So the
above term is less than

CuaaI [~ Syt 4 [T gy [T L

which is upper bounded by a constant C;, 5(7") thanks to (7). On the other hand, if we assume the
Hypothesis 2.4 (b), then ¢, = ¢../(k + 1). So (68) is upper bounded by a constant C; , 5(T') thanks to
9).

s

O

5.1.3 Estimations of | X;""| 1,

In this section, our aim is to prove the following lemma.

Lemma 5.5. Under the Hypothesis 2.1 with ¢* > 2 and Hypothesis 2.4 (either 2.4(a) or 2.4(b)), for all
p > 2,0 <1 < g* there exists a constant C; ,(T") depending on I, p, x and T, such that

a) SupSJl\;pE|X?’M\f < Cip(T), (69)
n

and for 0 <1< g* — 2,
b) supsupE|LX]"M P < C),(T). (70)
n M

Proof. In the following proof, C; ,(T") will be a constant which depends on [/, p,« and T', and which may
change from a line to another. ¢* > 2 is fixed throughout the proof.

a) We prove (69) for 0 <1 < ¢* by recurrence on I.
Step 1 For | = 0, using Burkholder’s inequality, Hypothesis 2.1 and (55),

t t
EIXMP < Cop(T)[zP + E| / bM(Tn(r),Xg;Qf))dmu]E\ / / E(Tn(r),%(z),XQ;%))Wy(dr,dz)|P
0 {z>M}

t
v E / / &), XM )N, (dr, d2))7]
[1,M) "

Co (T —HE/ / 1n(r), 2 X"J(VZ)) v(dz)|Pdr
{z>M}

IN

c| M y12 Sdr t c(p(r), z, 2u(d2)) 2 dr
" E/(/{M} ()70 (2), X2 2w(dz)) B d +E/O</DM)| (ral1), 2 X1 ) 2u(dz))

- // Amalr), 2, X200 ) Pr(dz2) dr+]E/ / Ara(r), 2, X1y v(dz)|Pdr]
1,M) 1,M)
Cop(T

IN

(71)
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Step 2 Now we assume that (69) holds for [ — 1, with [ > 1 and for every p > 2, and we prove that it
holds for [ and for every p > 2. We write E|X;"™|? < C;,(T)(A; + Ay + As), with

A = ]E|/ b (T (r), X200 Yer|?,

t
Ay = | / / (), 3 (2), XM YW, (dr, )12,
{z>M}

Az = IE\// Amalr), 2, X200 N (dr, d2) 7
[1,M)

We notice that by Hypothesis 2.1, ||bas||;,cc < ¢. Then using Lemma 5.3 «) and the recurrence hy-
pothesis, we get

Ay

IN

Cip(T /|bM Ta(r), X120 [P r

IN

Cip(T)((@)" +E / Obar (7 (), X220 P XM 2

t
b B[ sup (02 () XA P ]
0 2<|BI<I " "

< O / E| XM [P dr). (72)

Next, we estimate A,. By Hypothesis 2.1, for every n, ||¢(7,(7), vn(2), ) |l1.c0 < |€(n(2))|. Then using
Lemma 5.2 a), Lemma 5.3 a), (53) and the recurrence hypothesis, we get

A € C(T / ([ el n(a), X0t utde) ar
{z>M}
< CDE / (] 102l () X PR (o) B
0 {z>M}

t
+ B[ /{ sup 1072 (1), 3 (2), X2 M) 21X 2 w(dz)) B dr

z>M} 2<|B|<I

t
L E / ( /{ oy O30, X0 Ptz
< DN / E|X7M [2dr). 73)

Finally we estimate A3;. We notice that DZ . m) Z’“ = 86,1 0mis DE’KZ)Z{“ =0, and for[ > 2,
DZW! ZF = 0. So we have |Zf|}, = [¢f|P < 1. By Lemma 5.3 a) for d = 2,

(ri,ma)-(re,ma),(s1,21) - (81,21) 74

Hypothesis 2.1, for any k,: € N,

e(mn(TF), 27, X ?ﬁw Ol < Je(zF))

02T, ZE XM |4 10,8 (T, ZE X0 D2+ XM 1)

+C1p(T)  sup  (|02200'¢(r(TF), ZF X"A?k INAZE oy + |X"M b))
2<| B +Ba| <l (T~

< Cup(TY(ZE) (1 + X0 M i XM ),
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It follows that

k

M-1 Jf M—1 J;
n,M n, n,M
Ay S BOY D [el(TE), 26 X0 P < ClpMBCY. S ez + Kby o+ X0t I
k=1 i=1 k=1 i=1
= C,(T // 2)(1+ [ X200 i+ X000 _li-1) Ny (dr, dz))P
1M) "
<

Cup(T)[1 + / E|X 0 Fr],
0

where the last inequality is obtained by using (5) and recurrence hypothesis. Then combining (72),(73)
and (74),

t
EIX]MP < C(T)1+ / E|X2M [Pdr). 75)

So ]E|ij(vt[|p < Crp(M[1+ fT" E[X™M Pdr] < Cp,p(T)[1 + fo ]E|X”M |V dr]. We denote temporarily

T (r) Tn (1)

g(t) = IE\XZM then we have g(t) < Cj ,( 1—|—f0 dr ByGronwall’s lemma, g(t) < Cy,(T)eTCrr(T),

2 (t) 12
which means that

E|X” [P < Oy p(T)eT e,

()1
Substituting into (75), we conclude that

sup E|X,;"M|P < O, (T). (76)

As a summary of the recurrence argument, we remark that the uniform bound in n, M of the operator
D for [ = 0 is due to the Hypothesis 2.1, and it propagates to larger [ thanks to Lemma 5.3 a).

b) Now we prove (70) for 0 < < ¢* — 2, by recurrence on I.

Step 1 One has to check that (70) holds for | = 0. The proof is analogous to that in the following Step
2, but simpler. It is done by using Lemma 5.3 ¢), (60), Burkholder’s inequality, Hypothesis 2.1,2.4, (53),
(69) and Gronwall’s lemma. So we skip it.

Step 2 Now we assume that (70) holds for [ — 1, with [ > 1 and for any p > 2 and we prove that it holds
for [ and for any p > 2. We write E[LX;"™[? < C, ,(T)(By + By + Bs), with

t
]E\L/ bag (7o (r), X200 Yr 7,
By = E|L/ / A7 (1), vn (2 ),XT"(T))Wl,(dr,dz)\lp,
{z>M}
By = E|L / / (), XM )N, (dr,d2)]].
0o J[1,M) "
Using Lemma 5.3 b), Hypothesis 2.1, the recurrence hypothesis and (69), we get
t
B, < Cl,p(T)E/ | Loar (r (r), X120 )P dr
< (T / Db (7 (r), X220 PILX T Py

LR / sup 108 (7 (1), XM )P (L XM |22y (1 LM e Y]
0 2<Z|B|<I+2

IN

t
Co (D) + / EILX™ ], 77)
0
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Then by Lemma 5.2 b), we get
t
Be < CLE [ ([ (Lol () X0 uld) ar
0 {z>M}

+ B[ /{ oy 020020, X =) S
= Cl,p(T) [Bg,l + B272].

As a consequence of Lemma 5.3 b), we have
t
Byy < Cip(DE [ ( 10527 (), 1 (2), X2 (0 PILX 00 [F(d2)) 2 dr
, D o n(7) Tn(T)
{z>M}
t
~ 2(1+2 n z
w B[ s (02 ) (e X P X R LX)
{z>M} 2<|B|<I+2

And using Lemma 5.3 a),
t
Baa < Cpl®E [ ([ [elra(r)n(@) X240 Putde)) b
0 J{z>M}
t
+ B[ 10uem( X P () Far
0 J{z>M} " "
t
+ E/(/{ sup 1052 (1), 7 (2), XM RIXEM 21, (dz) E ).

=>M} 2<|B|<!

Then by Hypothesis 2.1, (53), (69) and the recurrence hypothesis,

t
By < Cp,(T)[1 +/ EILX 00 [Pdr]. (78)
0

Now we estimate B;. By Lemma 5.3 b) for d = 2, Hypothesis 2.1, for any k,i € N,
(L (TF), 28, X0 ) < (037 (TH), 2, X100 )]+ [0u2(r (TF), 2, X200 D(LZE+ LX)
TCp(T)  sup  (|0P0R(m (TE), ZE XM, )
2<|B1+B2| <I+2 it

X (Ut |ZEE + X0 ) L2 + (LX)

< Cup(T)(ZE) 1+ ILZH + X oo XM 2 X0 2 s (L2 + LX) (o).
Then
M—1 Jf
n,M
B3 < ]E Z Z|LC Tn Zk X n(Tk )|l)p
k=1 i=1
M—1 Jf
< Cip(T)E| Y Y &ZE) A+ [LZE| + |LX (e o+ X0 1131
k=1 =1
XTI (L2 + LX)

< Ci1p(T)(Bs1+ B3+ Bs3),

where
M—1 Jf

Boy —B(Y S e(ZBILXIM, 7,

k=1 =1
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1 Jf
Bia=B) S S AZE(LZH + XN, < (LZN )P,

k=1 =1
M—1 Jf
B3,3 = E| Z Z Zk 1 + |Xn (Tk |§i? + |Xn (Tk)_‘éi? ‘LXn’(Tk ‘171)‘?
k=1 i=1
By (5),
t
Bs; = E\/ / E(z)|LXf’J(VZ)_|lNV(dr, dz)P
1,M) "
t
< Ciyp(T) / E|LX] () _[Fdr. (79)
0
Using Schwartz’s inequality, (5) and (69), we have
M—1 Jf
E(Y > eZ)IXT iy 147 % [LZE i)
k=1 i=1
M-1 Jf M—1 J}
_ n, 2(1+2 1 1
SECY D aZHIX 2t BT < B Do aZhILzE )7
k=1 i=1 k=1 i=1
t M—1 Jf
= UEI/ / )X PPN, (dr,dz)P)E < BCY DS ez nzk )
0 J[1,M) k=1 i=1
M-1 Jf
1
< Cip(DIEY Y eZH)LZE[E 1))
k=1 =1
Then applying Lemma 5.4, we get
Bs o < Cp,(T). (80)
By (5), (69) and recurrence hypothesis, we have
M n,M
mo = [ /1 o I X 2 X0 )
< Cl,p (81)
So by (79),(80) and (81),
Bs < Cpp(T)[1 + / E|LX"t_|Pdr). (82)

Then combining (77),(78) and (82),

t
IE\LXt"’Mﬁ’ < (M1 —|—/ IE|LX" %V’dr], (83)
0
Using Gronwall’s lemma for (83) as for (75), we conclude that
sup E|LX;M P < €y, (T). (84)

n,M

As a summary of the recurrence argument, we remark that the uniform bound in n, M of the operator
L for | = 0 is due to the Hypothesis 2.1,2.4 and Lemma 5.3 ¢), and it propagates to larger [ thanks to

Lemma 5.3 b). O
Proof of Lemma 4.1.
By Lemma 5.1 and Lemma 5.5, as a consequence of Lemma 3.2, we have X¥ € D, , and sup || XM ||, 1, <
M
Cip(T). O
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5.2 Proof of Lemma 4.2

In the following, we turn to the non-degeneracy of X¥. We consider the approximate equation (49)

t t t
M _ 4 / / &(r, 2, XM )N, (dr,dz) + / bas(r, XM dr + / / &(r, 2, XM YW, (dr, dz).
0 J[1,M) 0 0 J{z>M}

We can calculate the Malliavin derivatives of the Euler scheme and then by passing to the limit, we have
Do X = Lian1y Licamy EF0-0(TF, 25, X7H) +/Ttk /1 . 0u(r, 2, X} )Df, s X} N, (dr, dz)
/ Oub (r, XD, Z)XMerr/ / Ouc(r, 2, XM)DE, o XMW, (dr, dz). (85)
T* J{z>M}
D XM = / /1 o o(r, 2, XM )DL XM N, (dr, dz) / Bubr (r, XM )DL\ XM dr

F 1 s<ty Lizo >y €8, 20, X / / c(r, z XM)DE’;/ZO)XyWV(dr, dz). (86)
{z>M}

We obtain now some explicit expressions for the Malliavin derivatives. We consider the tangent flow
(YM);e10,7) which is the solution of the linear equation

t t t
M1 / / Oy, 2, XMYYMN, (dr, dz)+ / ubar(r, XYY Mdr+ / / Ouc(r, 2, XMY MW, (dr, dz).
1,M) 0 {z>M}

And using It&'s formula, Y, = 1/Y, verifies the equation

_1—// L2(r, 2, XM (1 4+ 0,8(r, 2, X M) VLN, (dr, dz) — /8bMTX ¥, dr
1,M)

/ / Oxc(r, 2 XM)Y W, (dr,dz) + / / |0,¢(r, 2, XM))? Y V(dz)d
{z>M} {z>M}

Applying Hypothesis 2.1 with ¢* > 1 and Hypothesis 2.2, with K, a constant only depending on p,
one also has (the proof is standard)

E(sup(|YM|” + )Y ) ) < K, < cc. 87)

s<t

Remark. Due to (4), we have

max{/[1 ) E(Z)py(dz),/[M - |E(z)|Py(dz)} < /[1 . &(2)|Pr(dz) = &,

so the constant in (87) is uniform with respect to M.

Then using the uniqueness of solution to the equation (85) and (86), one obtains
—M ~
D(Zk i)Xt]VI = lgam-13lg< ]’“}gkY]wYT.’“_azC(Tikv zk, X%c,),
D{{ ZO)XtM = Iyl Y (s, 20, XM). (88)
And the Malliavin covariance of XM is

M—1 Jf

oxm = (DXM DXM). =" |DG XM+ / / DY XM Pv(dz)ds. (89)

k=1 =1
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In the following, we denote AM = o x. So the aim is to prove that for every p > 1,

E(IAM]7P) < C,. (90)
We proceed in 5 steps.
Step 1 We notice that by (88) and (89)
M1 T —M b oM
NI = 30 SRV Plo.a(rt ZE XY )R + v [T /{ [ X Pt
k=1 i=1 =

We recall the ellipticity hypothesis (Hypothesis 2.3): There exists a function ¢(z) such that
10,8(s, z,2)|* > ¢(z) and |&(s,z,2)]> > ¢(z).

In particular

(s, z,2)Pv(dz) > c(z)v(dz),
/{ZZM}I( ) 2u(dz) /{ZZM} (2)0(dz)

so that
M-1 Jf
A >Q x (D) eke(z)) +1 / c(2)v(dz)) with Q, = inf [YMY).
k=1 i=1 {z>M} s<t
We denote
M-1 th oo Jf'
Pl = 37 S bz pl = 3 Yoee(zl), oM = [ clawla),
k=1 i=1 k=M i=1 {z>M}
—M 4p
By (87), (Esup |[YMY, ’ )1/2 < C < 0, so that
s<t
E(AM|P) < C(E(|p}! + ta™|727))3. (1)

Step 2 Let I'(p) = fooo sP~le~%ds. By a change of variables, we have the numerical equality

1 1 > 1 —g(pM M
— P 1le s(py” +ta )ds
(Pt +ta)r T(p) Jo

which, by taking expectation, gives

1 1
P i) )

(oo}
E( / sPIE (e 5P+ ™)) g, (92)
0

Step 3 (splitting). In order to compute E(e*S(Pf IHO‘M)) we have to interpret p} in terms of Poisson
measures. We recall that we suppose the "splitting hypothesis" (40):
v(dz)

II‘Ik (Z) ™

> 1y, (2)erdz,

with I}, = [k, k + 1), my = v(I;). We also have the function ¢ and m(¢) = [ ¥(t)dt. And we use the
basic decomposition

Zi =gV + (1= HUp

where VF Uk ¢k ki € N are some independent random variables with laws given in (47).
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For every k we consider a Poisson point measure Ny (ds,d¢, dv,du) with € € {0,1},v,u € [1,00),s €
[0, T'] with compensator

Ni(ds, d¢, dv,du) = My(d€, dv, du) x ds
— 1 1
ith My (d¢,dv,du) = bp(df) x 1 —— (v —(k+ =))d
wi k(dE, dv, du) k(dE€) X Ik(v)mw)ib(v (k+5))dv
1 . 1
Here by (d¢€) is the Bernoulli law of parameter £, m(¢). The intervals Iy, k € N are disjoint so the Poisson
point measures Ny, k = 1,--- , M — 1 are independent. Then

JE gk )
) = £ —&€Uf) = — &)u) Ny (ds, d¢, dv, du).
;gzg( z) ;gzg(gl‘/z +(1 gl)U'L) /O'/{O,l}/[l’ooygc(gv‘F(l g)u) k( s, é" v, U)

In order to get compact notation, we put together all the measures N,k < M — 1. Since they are inde-
pendent we get a new Poisson point measure that we denote by ©. And we have

M—1 Jf ‘
o = S ezl = [ [ [ eteor (10— gvieds.de.dv,du).
b1 im1 0 J{0,1} J[1,00)2
Step 4 Using It&’s formula,
M t M M~
E(e™®rt) = 1+IE/ / / (e~ slPr—FEel&v+(1=8)v)) _ =5\ Q(drr, dE, dv, du)
0 J{0,1} J[1,00)2
t o M-l
= 1—/ E(e—spr—)dr/ / (1 — e7sCelevt =) N My (d€, dv, du).

0 {0,1} J[1,00)2 Pt

Solving the above equation we obtain

M—1
E(e*spff) = exp(—t Z /{0 N ‘/[1 )2(1 _ e*S£§(§U+(17§)u))J/w\k(d£7 dv, du)).
k=1 2 0

We compute

1

. k+1
/ (1 — e Ty g, o) = () [ (1= 7=0) (o (k)i
{0.1}x[1,00)? K m(i)) 2
Since ¢ > 0 and (z) = 1 if |z| < 1 it follows that the above term is larger than
k+%
ak/ (1 — ey,
k+g
Finally this gives
M MY kt+g
E(e™® ) < exp(—t Z 5k/ (1 — %)) dv)
k=1 ktg
M
— exp(—t / (1 = =@ )n(dv)),
1
with
(oo}
m(dv) = Zekl(k+%7k+%)(v)dv. (93)
k=1
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In the same way, we get

[ee]

E(e—7") < exp(—t /M (1 — e )m(dw)).

Notice that ta™ > E(pM). Then using Jensen’s inequality for the convex function f(z) = e=%%, s,z > 0,
we have
este™ < omsER < E(e‘sﬁiw) < exp(—t/ (1 — e*<)m(dv)).
M

So for every M € N, we get

E(efs(,oi”qttaM)) — efston ~ E(efspi”)
00 M
< exp(—t/ (1 — e )m(dv)) x exp(—t/ (1 — e=*<))ym(dw))
M 1
= exp(—t / (1 — e=*<)m(dv)), (94)
1

and the last term does not depend on M.

Now we will use the Lemma 14 from [7], which states the following.

Lemma 5.6. We consider an abstract measurable space F, a o-finite measure n on this space and a non-
negative measurable function f : E — R, such that [, fdn < co.Fort > 0 and p > 1, we note

as(t) = / (1 — e ¥ @Yy(da) and IP(f) = / sP=le—tos(s) gg.
E 0
We suppose that for some t > 0 and p > 1,

) > p/t, (95)

S

then IY(f) < .

We will use the above lemma for n = m and f = ¢. So if we have

lim im(g > l) = 00, (96)

el I T T u

then for every p > 1,t > 0, M > 1, (92),(94) and Lemma 5.6 give

]. ]. > M M
B(——  \2p _ 7/ $2P— 1R 678(’0" +ta™) ds 97
(pi” Tl T'(2p) Jo ( ) @7
1 /OO 9p—1 /OO B
< — sP™ exp(—t 1 — e *<")m(dv))ds < .
o | (] (i)

Finally using (91), we conclude that if (96) holds, then

supE(AM) 7P < oo (98)
M

Step 5 Now the only problem left is to compute m(c > 1). It seems difficult to discuss this in a completely
abstract framework. So we suppose Hypothesis 2.4 (a): There exists a constant ¢, > 0 and there are some
a1 > ag > 0 such that for every k € N,

v(dz)

. Ex
]]-Ik(z)mik: Z I]‘Ik (Z)Ekdz with L = W,

for any a € (az,a1], and ¢(z) > e,
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Then {z : ¢(z) > 1} D {z : (Inw)'/*2 > z}. In particular, for k < |[(Inw)'/2] — 1 := k(u), one has
I, C {z:¢(2) > 1}. Then for u large enough, we compute
k(u) k(u) k(u) (Inw)l/ o2
1 1 1 1 1
mie> =) = Zm(fk)ZQZeka*ZWZQS*/Q sl
k=1 k=1 k=1
Ex

= SH{(nwer - 27,

Since a > g, (96) is verified and we obtain (98).

Now we consider Hypothesis 2.4 (b): We suppose that there exists a constant £, > 0 and there are
some « > 0 such that for every k € N,

v(dz) ) Ex 1
> — = > .
my 2 11, (2)erdz  with ey 1 and ¢(z) > o

Now {z:¢(2) > 1} D {z:2< u!/*}. Then for u large enough,

1, (Z)

1 1 1 1 v dz 1 1
> ) > e, > e, = Ze.(=lnu—1n2).
me= ) 2 5¢ ; k+1_2€/2 , ~ao(gu—in2)
And consequently
1 >y &
1171 — -—
TuTeo] €= 7 %
Using Lemma 5.6, this gives: if
2p ey 4dpa
— &S >
t 2a Ex
then )
sup E P < o0,
and we have sup E(AM) =P < oo. O

M

5.3 Some proofs concerning Section 4.2

We will prove that the triplet (S, D, L) defined in Section 4.2 is an IbP framework. Here, we only show
that D1 is closable and L verifies the duality formula (32). To do so, we introduce the divergence operator
0. We denote the space of simple processes by

1<i<m Zuﬂpr ¥ u. €8, 0, € L*(Ry x Ry, v x Leb),m’,m,n € N}.
lgkgm r=1

For u = ((4F)1<icm’» >on_y Urpr) € P, we denote u? = (uf);,<, and ¥ = 3" u,¢,, so that
1<k<m 1§k_§7

u=(u?,u").

We notice that P is dense in L?(Q; H), with H = lo ® L*(R4 x R4, v x Leb).

Then we define the divergence operator 6 : P — S by

S(u) = 6% (u?) + 5W(uW)

with ZZ Dl ol + &kl x 0,(VF))
k=11i=1
=Y w,Wo(r) = > (DY, 0r) L2, xRy wxLeb)-
r=1 r=1
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We will show that ¢ satisfies the following duality formula: For every F' € S,u € P,

E(DF,u)3 = EFd(u). (99)
In fact, if we denote V;*(z) the sequence (Vzoo)léz‘ko §<m/ after replacing V;* by , then for any m’,m € N,
1<ko<m
E(D?F,u?), EZZDZ,Hqu
k=1 1=1
= Z ZEfka kf ‘/;];0)1<10<m ) (WV(@j))?:l)af(wa (Vilzo)lgiogm’a (Wu(%))] 1)
1 im1 <ko<m 1<Zko<m
=SS [ 0 e V) (Walo)j) x (. V). (Walioy)s) 2
k=1i=1 7R m(y)
= - ZE/éff(w,V;k(fE%(Wu(%)) ) % [Dyraf (w, VI (@), (Wo(5))j=1)
k=1 1i=1
_k Nk n  Ocr (), Yr(z)
+uz (w7 [ (‘T)7 (WV(QOJ)) ) ¢k($) ]m(¢) dx

==Y Y EF[D{, ,yuf + &Fuko.(Inyp(VF))] = E(F6” (u”)).

On the other hand, since L?(R, x R, ,v x Leb) is a separable Hilbert space, we can assume without loss
of generality that, in the definition of simple functionals, (1, - ,¢m, ) is the orthogonal basis of the
space L?(R, x Ry, v x Leb).

Thenwith p, = [ ., ¥7(s,2)v(dz)ds, forany n € N,

E(DY F,u™) 12 (m, xry wxLeb) = ]E/ D{{ . F x Zurw s,2) v(dz)ds
]R+><R+

s (Wo@3)j=)ur (@, (V)i <icms, (Wo(0)=1)pr

1<i<m’»
r=1 1<k<m 1<k<m
=> E /R B, (W, (VF) 1 cicms W l01), -, Wolr—1) 4, Wol@rg1), -+ Wa(0m))
r=1 1<k<m

_vr
XU (w, (V;k)lgigm’v Wo(o1), - s Wolor—1), 4, Wol@ri1), -, Wi(en)) e Zrrdy X py
1<k<m 27D,

n

= - ZE/ f(wv (‘/ik)lgigm’a WV(@l)v T ;Wu(@rfl)vya WV(SDT+1)7 T 7Wu(‘pn))

r—1 R 1<k<m
X[awruT(w’ (Vvik)lgigm’vwl/(@l)a e 7WV(<)07‘—1)7y7WU(()07‘+1)7 e 7WV(%0TL))
1<E<m

Yy k 1 _
- Up\W, V; % m/ku 7"'7Wl/ r—1), 7Wu r 7"'»Wu n 27 r

ol (w, ( )Eém (1) (pr—1), 4, Wo(or41) (¢ ))]\/me y X p
= EF(Z ur W, Z D Upy Pr L2(R+><]R+,y><Leb)) (F(SW(UW))

r=1 r=1

Then (99) is proved. Using this duality formula recursively, we can show the closability of D?. If there exists
u € L?(Q;H®?) such that F,, — 0in L?(2) and DF,, — u in L*(Q; H®9), then for any hy,--- ,h, € P,
E(u,hy ® -+ ® hg)poa = li_>m E(DF,,h1 @ -+ ® hg)yoa = li_>m EF,,0(h16(h2(---0(hy)))) = 0. Since

P©4 is dense in L*(Q); H®?), we conclude that « = 0. This implies that D? is closable.
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We notice that from the definition of 6 and L, we get immediately that LF' = §(DF), VF € S. And if
we replace u by DG in (99) for G € S, we get the duality formula of L (32).

Data avaibility statement. Data sharing is not applicable to this article as no datasets were generated
or analyzed during the current study.
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Abstract We deal with Mckean-Vlasov and Boltzmann type jump equations. This means that the co-
efficients of the stochastic equation depend on the law of the solution, and the equation is driven by a
Poisson point measure with intensity measure which depends on the law of the solution as well. In [3],
Alfonsi and Bally have proved that under some suitable conditions, the solution X; of such equation exists
and is unique. One also proves that X; is the probabilistic interpretation of an analytical weak equation.
Moreover, the Euler scheme X/ of this equation converges to X; in Wasserstein distance. In this paper,
under more restricted assumptions, we show that the Euler scheme X/ converges to X, in total variation
distance and X; has a smooth density (which is a function solution of the analytical weak equation). On
the other hand, in view of simulation, we use a truncated Euler scheme X Z) M \which has a finite numbers
of jumps in any compact interval. We prove that ti M also converges to X; in total variation distance.
Finally, we give an algorithm based on a particle system associated to XZ) M in order to approximate the
density of the law of X;. Complete estimates of the error are obtained.

Key words: Mckean-Vlasov equation, Boltzmann equation, Malliavin calculus, Total variation distance,
Wasserstein distance, Particle system
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1 Introduction

In this paper, we consider a d—dimensional Mckean-Vlasov and Boltzmann type jump equation as fol-
lows.

t t
X, = Xo+ / b(r. X, py)dr + / / e(ryv,2 Xoe s o )N, (dv, dz, dr), S
JO 0 R4 xR

where p;(dv) = P(X; € dv) is the law of X;, ¢t € [0,T], N,, is a Poisson point measure on the state space
R? x R? with intensity measure p;(dv)u(dz)dr, u is a positive o-finite measure on R¢, X, is the initial
random variable independent of the Poisson point measure N, and b, ¢ are functions which verify some
regularity and ellipticity conditions (see Hypotheses 2.1~2.4 in Section 2.2 for precise statements). In
particular, we assume that for every multi-indices 31, 32, there exists a non-negative function ¢ : R — R,
such that

le(r, v, 2,2, p)| + 07205 ¢(r, v, 2, x, p)| < &(2),

with [, ]¢(2)|Pu(dz) < oo, ¥p > 1. We also assume that there exists a non-negative function ¢ : R* — R
such that for every ¢ € Rd,

d
S0 el v, 2,2,0),0) = cl2)[¢P-

Jj=1

We remark that we use the notations from [25] and we refer to [6], [16], [25], [34], [35], [43] and [44] for
the basic theory of the classical jump equations. We stress that our equation is a more general kind of
jump equation (than the classical one) in the following sense. The coefficients b and ¢ depend on the law
of the solution, so our equation is of Mckean-Vlasov type. One can see for example [23] for a mathematical
approach to this kind of equation and see [5], [12], [22], [24], [39], [40] and [47] for the approximation
schemes of a Mckean-Vlasov equation. Moreover, the intensity of the Poisson point measure N,, depends
on the law of the solution as well, so our equation is also of Boltzmann type. The probabilistic approach to
the Boltzmann equation is initiated by Tanaka in [48], [49], and followed by many others in [9], [17], [18],
[19], [36], [38] and [46] for example. One can also see [2] and [50] for the analytical Boltzmann equation
and [15] for the physical background. Recently, there is also some work on inhomogeneous Boltzmann
equations (see for instance [1], [20] and [21]). We have to mention however that our equation (1) does not
cover the general physical Boltzmann equation for the following reason. In that equation, the intensity of
the jumps p(dz) is replaced by ~(r, v, z, x, p)u(dz) which depends on the position 2z = X,._ of the solution
of the equation. At least at this time, we are not able to include this case in our study. The simplified model
that we treat in our paper corresponds to Maxwell molecules (see [18] for example).

Now we construct the Euler scheme. For any partition P = {0 =ro <71 < -+ < rp_1 < 1, = T} of the
time interval [0, T, we define 7(r) = r; when r € [ry, 7,+1), and we consider the equation

t
xXr = X0+/ b(r(r), XT ., pEiy)dr

/ / 7U,Z,X7_(r) apT(r) )N P(ﬂ_(dl},dZ,dT’), (2)
]Rd><]R<d

where p[ is the law of X, and N, 7 (dv,dz, dr) is a Poisson point measure with intensity p, P (dv)p(dz)dr,
independent of X,. We remark that for the c1a551cal jump equations (the coefficients and the Poisson point
measures do not depend on the law of the solution), there is a huge amount of work on the convergence of
the Euler scheme. One can see for example [4], [27], [28], [29], [30], [31], [42] and the references therein.
For the equation (1), [3] has proved recently that under some regularity conditions on the coefficients b
and ¢, the solution of the equation (1) exists and is unique, and X, is the probabilistic interpretation of
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the following analytical weak equation.

Vo € CLH(RY)(the space of dif ferentiable and bounded functions with bounded derivatives),

/]Rd o(w)pi(dr) = /Rd ¢(z)po(dz) + /Ot /]Rd b(r, z, pr), Vo (z)) py (dz)dr

+/0 /Rded pr(d:v)Pr(dv)/ (o(z + c(r,v, 2,2, pr)) — O(2))pu(dz)dr. (3)

Rd

Moreover, [3] has proved that the Euler scheme X[ converges to X; in Wasserstein distance (of order 1)
Wi. In our paper, under supplementary hypotheses, we prove a stronger result. We prove (see Theorem
2.1) that the Euler scheme X/ converges to X; in total variation distance: for any ¢ > 0, there exists a
constant C such that

drv (X[, X;) < C[P|'~= = 0, 4)

as |[P| — 0, with |P| := i {Omax 1}(rk+1 —11). We also show that the law of X, has a smooth density
€{0,--- ,n—

p+(x), which is a function solution of the analytical weak equation (3).

Since we have infinite numbers of jumps (due to Hypothesis 2.4 in Section 2.2), we have (R?) = oo. In
view of simulation, we need to work with a truncated Poisson point measure, which has a finite number of
jumps in any compact time interval. For M € N, we denote By = {z € R? : |z| < M}, epr(r,v, 2,2, p) i=

c(r,v, 2,2, p)1p,,(2) and a¥! := \/T f{|Z|>M} c(z)p(dz). Now we cancel the jumps of size |z| > M and we

replace them by a Gaussian random variable.

XPM = X+ adA+ / b(r(r), X7, o7
/ / 2 XA pZ NN o (dv, dz, dr), (5)
]Rdx]Rd Pr(n-

where pf’M is the law of XZ) M N p.m (dv,dz,dr) is a Poisson point measure independent of X, with
t

intensity p; "™ (dv)u(dz)dr, A is a d—dimensional standard Gaussian random variable independent of X

and of NpP,Iw. We prove (see Theorem 2.2) that ti M converges to X; in total variation distance: for
t

any ¢ > 0, there exists a constant C such that

drv (XM, X,) < C(Verr + P = 0, (6)

as [P| = 0and M — oo, with eas == [(, o0y le(2)?p(dz) + | Jejesany ¢(2)u(dz)|?. Moreover, the law of

XM has a smooth density.

In order to construct an approximation scheme which is appropriate for simulation, we need to com-
pute p! "M as well, so we use the following particle system. We take an initial vector (X, , X)) with
components which are independent and identically distributed with common law py (which is the law of
Xo), and (Al,--- AN) which is a N x d—dimensional standard Gaussian random variable independent

of (X¢, -+, X{). Then we construct the particle system Xf’M = (XML L x PN,

XPMS = Xt a [ XIS AR ar

t
+ / / em(T(r),v, 2 Xf(rjyl A}f(,f\f ) i}P.M (dv,dz,dr), i=1,--- N, (7)
0 JRIxRd PXiyo)
where

XPM (dv)

XPMz dv

HMZ
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is the empirical measure of } P.M- (with 6, (dv) the Dirac measure), N’ SRPM (dv,dz,dr), i =1,--- N

are Poisson point measures that are independent each other condltlonally to } P-M and independent of

(X3¢, X, AL ... ) AN) with intensity p( }P M) (dv)p(dz)dr. It is clear that }p M may be simulated
in an explicit way (see (31).
We denote

Vi o= 1g=1 N7 + 1g—oN "2 log(1+ N) + 145N~ 7,
and we consider the following d—dimensional regularization kernels

1 _l=? 1 =z
p(z) = We =, ps(x) = (Tdsa(g), 0<6<1.

We have proved in Theorem 2.1 that the law of X; has a density function p;(z). Now we obtain in
Theorem 2.3 the following results concerning the approximation of the density p;(x). We take

= (|P| + \/e21) ™3, and take N such that Vy < |P|+ /za1.

Then we have
N 2
Z s(XPM —2) + O((|P| + vemr) T3), 8)

where O(e) is the big O notation (i.e. for a strictly positive function g defined on R;, 3C' > 0, s.t.
[O(g(y))| < Cg(y)). If we take

=(|P|+ \/5M)ﬁ, and take N such that Vy < |P|+ Ve,

then we get moreover by Romberg method that

N N
2 7 1 i _4_
pu(@) = 55D By (X0 ) = 53 Bes(XDM — )+ O((1PI + vEw) ™). ©
=1 =1

Itis clear that the approximation scheme based on Romberg method gives a better accuracy: we have the
power o= +5 > o5 +3 So we are able to simulate the density function of X, in an explicit way, with error

O((|P|+/em) @+ T4 ). We notice however, that the speed of convergence of the error depends on the dimen-
sion d, so it converges slowly when d is large. In Theorem 2.4, we prove an alternative approximation
result. We give up the approximation of the density, and we focus on the approximation in total variation
distance. We take supplementally A a d—dimensional standard Gaussian random variable independent of

XzPM For any ¢ > 0, we take

= (IP| +en)2~%)  and take N such that Vy < (|P|+ ) Eaai)

withe’ = 55~ and ¢” = % For every measurable and bounded function f, we prove that
. XN o
Jf@p@)de =+ S EFX]MT 4 5A) + [ flloo x O((P] + vEm)' ). (10)
R i=1

We notice that the speed of convergence in (10) no longer depends on the dimension d, so it still behaves
well for large dimension. We also stress that the speed of convergence in (10) is the same as in (6) for the
truncated Euler scheme. Moreover, for any € > 0, we take

= (IP| +ea)3~%)  and take N such that Vi < (|P|+en)F =),
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8e4(d—3)e?

@i @-oy- Then for every measurable and bounded function f, we get by

. 2
Wlth e = Q‘ie and ey =

Romberg method that

)

N N
[ A = 3B 58 < SR 68 ¢ e x O V) -

V2

We remark that (11) is even a better simulation scheme than (10) in the sense that the numbers of particles
N is smaller than the one in (10) and ¢ is larger than the one in (10).

We give now a general view on the strategy used in the paper. Notice that the Poisson process which
appears in the equation (1) has intensity u(dz) which is an infinite measure. As we mentioned before,
it is convenient, both from the point of view of Malliavin calculus and for simulation, to introduce an
intermediary equation driven by a Poison point measure with intensity 1y.|<as}/(dz) which is a finite
measure. We denote by XM the solution of this equation (which is a truncated version of (1), see (38) for
precise expression). Since X depends only on a finite number of jumps in any compact time interval,
this will be a "simple functional" in the Malliavin calculus with respect to the amplitudes of the jumps. We
also replace the jumps larger then M (which have been canceled) by a Gaussian noise - this is necessary
in order to obtain the non degeneracy for X}¥. Moreover, in order to be able to establish integration
by parts formulas, we assume (see Hypothesis 2.4 b)) that the measure y is absolutely continuous with
respect to the Lebesgue measure: u(dz) = h(z)dz, where h is infinitely differentiable and In & has bounded
derivatives of any order. Using the convergence X — X, we are able to prove that X; is smooth in the
sense of Malliavin calculus for jump processes. We use this calculus in order to prove that the law of X, is
absolutely continuous with respect to the Lebesgue measure, with smooth density p;(dx).

Moreover, we construct an explicit algorithm which allows us to use Monte Carlo simulation in order
to approximate X; and p;. To do it, we consider the Euler scheme X} and the truncated Euler scheme
XZD M (see (2) and (5)). Now we focus on three equations with solutions X;, X} and XZ) M There is a
supplementary difficulty which appears here: the Poisson point measures which govern these equations
have an intensity which depends on the law of the solution of each of these equations. It is convenient to
use similar equations driven by the same Poisson point measure. This is obtained by a coupling procedure:
we construct z, M and z] " which have the same law as X;, X and X" but are defined on the same
probability space and verify equations driven by the same Poisson point measure (this is done in Section
2.7). This allows us to compare them by using an L' calculus. This is why all our computations will
concern these last equations.

In [3], one obtains estimates of the Wasserstein distance between these processes. In order to estimate
the total variation distance between them, we will use Malliavin integration by parts techniques (which
are presented in Section 3) together with some results from [7] which allows us to pass from estimates
in Wassestein distance to estimates in total variation distance. Consequently a large part of the technical
effort in the paper will concern estimates of the Malliavin-Sobolev norms of z, 2™ and z]"* as well as
the proof of the non-degeneracy of these random variables (see Section 4).

Our paper is organized in the following way. In Section 2, we state our problems and give the hypotheses.
We define the main equation X;, the Euler scheme X/, the truncated Euler scheme X tP M and the particle
system XZ) M ’i, i =1,---,N. Then we state our main results: Theorem 2.1, 2.2 (see (4) and (6)) and
Theorem 2.3, 2.4 (see (8), (9), (10) and (11)). We also give some typical examples to apply our main
results. At the end of this section, we make a coupling argument to construct z, xf’M and z;. In Section
3, we give an abstract integration by parts framework (of Malliavin type) and then apply these abstract
results to the solutions of our equations. There are two types of results that we have to prove in order
to make the integration by parts machinery works. First, we prove that the Malliavin-Sobolev norms of
oM 27 and z, are bounded, uniformly with respect to P and M (see Lemma 3.7). Moreover we have
to check the non-degeneracy condition for the Malliavin covariance matrix. This is done in Lemma 3.8.
Both these two lemmas are rather technical so we leave the proofs for Section 4. Once these lemmas are
proved, Proposition 3.6.1 allows us to conclude that X”** — X, in total variation distance. We also
prove that the Euler scheme X — X, in total variation distance in a similar way. Furthermore, we obtain
an algorithm based on the particle system X, ", i = 1,... | N in order to compute the density function
pt(x) of the law of X;, and we estimate the error.
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2 Main results

2.1 Basic notations and the main equation

We give a time horizon 7' > 0 and let 0 < ¢ < T. To begin, we introduce some notations which will
be used through our paper. For a multi-index 3, we denote |3] to be the length of 3. We denote C}(R?)
the space of [—times differential and bounded functions on R? with bounded derivatives up to order ,
and || f[|, o := > [|07f||, for a function f € C{(R?). We also denote P;(R?) the space of all probability

|BI<i

measures on R? with finite [—~moment. For py, p; € P;(R?), we define the Wasserstein distance W; by

Wilorpa) = s | [ @)~ [ f@)patan)], (12

with Lip(f) := sup W the Lipschitz constant of f, and we define the total variation distance dry
TFY
by

drv(prpa) = s | [ f@ntdn) = [ ra)patin)] (13)
[flle<1 JRY R4
For F,G € L'(Q), we also denote W1 (F,G) = W1 (L(F), L(G)) and dry (F,G) = dry (L(F), L(G)), with
L(F)(respectively £(G)) the law of the random variable F'(respectively ). In addition, along the paper,
C will be a constant which may change from a line to another. It may depend on some parameters and
sometimes the dependence is precised in the notation (ex. C; is a constant depending on ).
In this paper, we consider the d—dimensional stochastic differential equation with jumps

t t
X = Xy Jr/ b(r, X,,,pr)dqu/ / e(r,v, 2, Xr—, pr—)N,,_(dv,dz,dr), (14)
0 0 JRIxRE

where p;(dv) = P(X; € dv) is the law of X;, N,, is a Poisson point measure on the state space R? x R?
with intensity measure N,,(dv,dz,dr) = pi(dv)u(dz)dr, X, is the initial random variable with law p,
independent of the Poisson point measure N,,, j is a positive o-finite measure on R¢, and b : [0, T] x R x
P1(RY) — R ¢:[0,T] x R x RE x R x Py (RY) — R,

Remark. We remark that we will assume in the following that [,, sup sup  sup |e(r,v, 2,2, p)|p(dz) <

re[0,T] v,z€R peP; (RY)

00, so we are in the finite variation case. The integral with respect to the Poisson point measure is not
compensated.

2.2 Hypotheses

Here we give our hypotheses.

Hypothesis 2.1 (Regularity) We assume that the function « — b(r,z, p) is infinitely differentiable
with bounded derivatives of any orders, and that p, € ﬂ;il P,(R?). We also assume that the function
(z,2) — c(r,v,z,z,p) is infinitely differentiable and for every multi-indices /1, 2, there exists a non-
negative function ¢ : R? — R, depending on 3, B, such that we have

sup sup sup (|e(r,v,z,x,p)| + 107202 ¢(r,v, 2,2, p)|) < &(2), VzeRY
r€[0,T] v,ze€RL pePy (R?)

with / |e(2)|Pu(dz) :==¢, < o0, Vp>1. (15)
R4

Moreover, there exists a constant L; > 0 such that for any 71,7 € [0, T],v1,v2,2 € RY, 2 € R py, py €
P1(RY),

[b(r1, 2, p1) — b(ra, z, p2)| < Lyp(|r1 — 2| + Wilp1, p2)),
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and |C(T’1,’U1,Z,.’£,,01) *C(T‘Q,’UQ,Z,LL‘,pQN
+|VZC(T1,’U1,Z,$,01) - VZC(TQ,UQ,Z7Z',[)2)| + |ch(7“1,111,z,x,p1) - V£C(T2,U27Z,I‘,p2)|
< e(2)(Ir1 = 72| + |v1 — v2| + Wi(p1, p2)).

Remark. We will use several times the following consequence of (15) and of Burkholder inequality (see for
example the Theorem 2.11 in [34], see also in [35]): Let ®(r, v, 2, w, p) : [0, T] xRIxR¥x O x P (R?) — R,
and ¢(r,v,w, p) : [0,T] x R? x Q x P;(R?) — R, be two functions such that

|®(r,v, 2,w, p)| < [e(2)lle(r, v, w, p)].
Then for any p > 2, p € P1(R9),

t t
E‘/ / <I>(r7v7z,w,p)Np(dv,dz,dr)‘p < CIE/ / lo(r, v, w, p)|P p(dv)dr, (16)
0 R4 xRd 0 Rd

where C is a constant depending on p, ¢, €2, ¢, and 7.

Proof. By compensating N, and using Burkholder inequality and (15), we have

¢
]E|/ / O(r,v, z,w, p)N,(dv, dz, dr)[?
R x R4

< C[E // ®(r, v, z,w, p)>p(dv)u(dz)dr)® + // D(r,v, z,w, p)|Pp(dv)u(dz)dr
]Rded ]Rded

+E| / / 1B(r,v, 2w, p)|p(dv)u(dz)dr[?] 17)
0 R4 xR

t
<cs [ [ ot ol pd)ir
0 R4

O

For the sake of simplicity of notations, in the following, for a constant C, we do not precise the depen-
dence on the regularity constants of the function b and ¢ (such as ||V,b||~, Ly and ¢,).

Hypothesis 2.2 We assume that there exists a non-negative function ¢ : R — R, such that [5, [¢(2)[Pp(dz) :=
ép < 00, Vp > 1, and

vac(?", U, %, T, p)(Id + VIC(T’, v, 2,7, p))il || S é(z)v Vr e [07 T]v ISURS Rda z € Rda P € Pl(Rd)a
with I; the d—dimensional identity matrix. To avoid overburdening notation, since both hypotheses 2.1
and 2.2 apply, we take ¢(z) = ¢(z) and ¢, = ¢,.

Remark. We need this hypothesis to prove the regularity of the inverse tangent flow (see Section 4.2
(131)).

Hypothesis 2.3 (Ellipticity) There exists a non-negative function ¢ : R¢ — R such that for every
r€[0,T),v,x € R z € RY p e Py (RY), ¢ € RY, we have

d
Z(asz(T,v,z,x,p) > ZQ( )|C|2
j=1
Remark. We notice that together with Hypothesis 2.1, we have c(z) < |¢(2)[?, Vz € R%.

Hypothesis 2.4

We give some supplementary hypotheses concerning the function ¢ and the measure p.
a) We assume that there exists a > 0 such that

1 1
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with -
v(dz) = 3 Lps oo s (1ZDnld2).
k=1

This means that ¢ could not be too small so that we could have enough noises to deduce the non-degeneracy
of the Malliavin covariance matrix (see Section 4.2 (138)).

Remark. If u(R?) < oo, then § = 0. So (18) implies that u(R?) = oo.

b) We assume that p is absolutely continuous with respect to the Lebesgue measure: pu(dz) = h(z)dz,
where h is infinitely differentiable and In ~ has bounded derivatives of any order.

Remark. We need this hypothesis to construct the integration by parts framework for the jump equations.

2.3 The Euler scheme

Now we construct the Euler scheme. For any partition P = {0 =ro <71 < -+ < rp_1 < 1, = T} of the
interval [0, T, we define 7(r) = r;, when r € [ry, 7t+1), and we consider the equation

t
Xr = Xo +/0 b(r(r), XT (1, Pr(ry)dr
t
+ C(T(T),’U,Z,XP( . _,pp(. _IN,»  (dv,dz,dr), 19)
0 JRIxRY (M= Pr() =" e -

where p/ is the law of X/ and NV, o7 (dv,dz, dr) is a Poisson point measure with intensity measure of (dv)p(dz)dr,
independent of Xj.

In [3](Theorem 3.5, 3.7, 3.8, Proposition 3.9), Alfonsi and Bally have proved that under some suitable
regularity conditions on the coefficients b and ¢ (which are some conditions weaker than the Hypothe-
sis 2.1 in this paper), the strong solution of the equation (14) exists and is unique, and the following
statements are true.

a) There exists a constant C' depending on T such that for every 0 < ¢t < T and every partition P of
[07 T]>

Wi(XP, X)) <CIP|, with |P|:= max (rps1—7)- (20)
ke{0,--- ,n—1}

b) The solution of the following weak equation exists.
t
vweGh®), [ swntn) = [ @+ [ [ b0, V@) daar
‘ 0

[ et [ (0t etz ) - s @D

And the solution of the equation (14) is the probabilistic interpretation of (21) in the sense that p, = £(X})
(the law of X;) solves (21).
We recall the notation § in Hypothesis 2.4. One aim of this paper is to prove the following error estimate.

Theorem 2.1. Under the Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4, we have
a) Forany 0 <t <T, when t > %fd), the law of X, has a [—times differentiable density p;:

P(X; € dx) = p(dz) = pi(x)dez, (22)

and the density p; is a function solution of the equation (21).
b) For any € > 0, there exists a constant C' depending on ¢, d and T such that for every partition P of [0, T)]
with [P| < 1, when t > 84(2 4+ 1),

drv(XF, X,) < C|P|*=. (23)
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Remark. In the case § = oo, the results in Theorem 2.1 hold for every 0 < ¢t < T.

The proof of this theorem will be given in Section 3.3. The main methods we will use in the proofs are
the Malliavin calculus techniques introduced in [7]. We will discuss them in Section 3.

2.4 The truncated Euler scheme

Since we have M(Rd) = oo (which is a consequence of (18)), we have infinitely many jumps. We use a
truncation argument in order to have finite numbers of jumps and obtain a representation by means of a
compound Poisson process. This is necessary in order to obtain a scheme which may be simulated. For
M € N, we denote By = {z € R%: 2| < M}, ep(r,v, 2,7, p) := c(r,v, 2,2, p)1p,,(2), and

aT. \// wu(dz). 24)
{l= \>M}

This is a deterministic sequence such that a?/ — 0 as M — oco. We also denote A = (Aq,---,A,) to be
a d—dimensional standard Gaussian random variable independent of X, and N,. Now we cancel the "big
jumps" (the jumps of size |z| > M) and replace them by a Gaussian random variable a}/ A.

t
XPM = X4 alA+ / b(r(r), X7, oM
0

t
/ / en(r(r),0,2, XEN pLN N e (dv, dz, dr), (25)
R4 x R4

Pr(ry—

where p!" is the law of X", and N . (dv,dz, dr) is a Poisson point measure with intensity measure
t

o ™M (dv)pu(dz)dr, independent of X, and of A. We remark that A is necessary in order to obtain the
non -degeneracy of the Malliavin covariance matrix, which will be discussed in detail in Section 4.2.
The advantage of considering X, " is that we may represent it by means of compound Poisson pro-
cesses. For k € N, we denote I = By, Iy, = Bi\Bi—1 for k > 2 and take (J; )te[O 1) @ Poisson process of
intensity (). We denote by (T});cy the jump times of (JF),c(o.7] and we consider some sequences

(dv), k,i € N. Moreover,

of independent random variables ZF ~ 1, (z )ZECIIS, and V,Zi.M pT(Tk)_

((Jf)te[o,T]v (Z{‘"‘)k,ieN, (VkZ’M)k,Z—GM X, A) are taken to be independent. Then in order to do the sim-
ulationk,evlﬁle represent the jump’s parts of the equation (25) by compound Poisson processes:
t M JE
XPM = XA [ o) XE T ar+ 22 JVEM 28 XEN P ),
k=1 06

Notice that the solution of the equation (26) may be constructed in an explicit way (except for pf(’i\)l and

pf(’%)_ which will be discussed in detail in Section 2.5).

We denote
fi= [ e Pa(dz) + () n(d) P, 27)
{lz|>M} {lz|>M}

and recall the notation ¢ in Hypothesis 2.4. We obtain the following error estimate for X, /.

Theorem 2.2. Under the Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4, we have
a) For any 0 < t < T, the law of Xf’M has a smooth density pf’M
b) For any € > 0, there exists a constant C' depending on ¢, d and T such that for every partition P of [0, T)]
with [P| < 1, every M € Nwith ey < 1and |6(2)[*1y>ary < 1, whent > 82(2 + 1),

dry (XM X)) < C(Ver + [P (28)
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Remark. In the case § = oo, the results in Theorem 2.2 hold for every 0 < ¢t < T.

The proof of this theorem will be given in Section 3.3 by using some Malliavin integration by parts
techniques.

2.5 The particle system

We notice that we still cannot compute pf(’rh)f and pf(’%c)_

ticle system as follows in order to obtain an explicit scheme of simulation. For a random vector X =

directly in (26), so we construct the par-

(XL, XNM), X* eRY i =1,---, N with a fixed dimension N, we associate the (random) empirical
measure
| X
-+ Z 29
where 6, (dv) is the Dirac measure. Now we consider an initial vector (X§,---, X{) with components
which are independent and identically distributed with common law pg (we recall that pg is the law of X
in (14)), and we consider (A!,--- , AY) which is a N x d—dimensional standard Gaussian random variable
independent of (X¢,---, X{). Then we construct the particle system }P M _ (xR x AN,
P.Mi i P.Mji ~~P,M
X] — X{+al A+ / b(r(r), XTA 5K P M) dr
XPAMi GPM )i dv,dz,dr), i=1,--- N, (30
/ /Rdxw 02 Xy 5 PR () NN (v, dz,dr), @ (30)
where N* SRy (dv,dz,dr),i=1,---, N are Poisson point measures that are independent each other con-

dltlonally to ?P M and independent of (X¢,--- , X, AL, ... AN) with intensity ﬁ(}f’M)(dv)u(dz)dr.
We give now the representation of the above equation in terms of compound Poisson processes. This is nec-
essary in order to obtain an explicit simulation algorithm. We recall that we denote Iy = By, I, = Bi\Bi_1
fork > 2. Nowfori=1,--- ,N, k € N, we take (th’i)te[o,T] a Poisson process of intensity u(Ix). We de-
note by (7} T ") e the jump times of (J] k ’i)te[o 71 and we consider some sequences of independent random

variables Z]C ¢ 17, (2 )”Edz) and Uk * uniformly distributed on {1,---,N},foralli =1,--- ,N, k,l € N.

Moreover, (JF )te[o,Tle ot Ulk ‘A XS i=1,---,N, k1 e N are taken to be independent. Then we
represent the jump’s parts of the equation (30) by compound Poisson processes to give an explicit scheme
of simulation.

P.Mi M A P.M,i ~~P,M
XPME = Xl 4 all AT 4 /b r), XEM G P M) g
M oI
kv vP-MUPY ki P M PM
OISl @ X 2 XE X ). (31

k=1

~

1

So now the solution of the equation (31) is constructed in an explicit way.
We denote

Viv i= 1ot N 7% + Ly p N~ 2 log(1 + N) + Lgz3N 74, (32)
and we consider the d—dimensional regularization kernels

1 _lz? 1 =z
p(r) = We =, ps(r) = (Td%”(g)’ 0<o6< 1. (33)

We recall the notations ¢;; in (27) and 6 in Hypothesis 2.4. In Theorem 2.1, we proved that under
appropriate hypotheses, £(X;)(dz) = p;(x)dz. We give now some approximation results for p;(z).
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Theorem 2.3. Under the Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4, for every
partition P of [0,T] and every M € N with |P| + \/ear < 1, we have the following:
1) We take
§ = (IP| + vear)™3, and take N such that Vy < |P| + v/ar.

When t > 31(2 + d),

1 & : 2
pe(@) = 5 D Bes (XM — ) + O((IP| + vaa) ™), (34)

i=1
where O(e) is the big O notation (i.e. for a strictly positive function g defined on Ry, 3C > 0, s.t. |O(g(y))| <

Cy(y)).
i) (Romberg) We take

5 = (|P| + vea) 75, and take N such that Vi < |P| + vzur.
When t > (4 + d),

N N
2 i 1 i 4
(@) = = By s (XD = 2) = =3 s (XM — ) + O((P] + vEW)TE). @39
=1 =1
Theorem 2.4. We suppose Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4 hold true.
We take supplementally A to be a d—dimensional standard Gaussian random variable independent of X P
Let P be a partition of [0, T] with |P| < 1, and let M € N with e); < 1 and |&(2)|*1(,>ay < 1. For any
e > 0, for every measurable and bounded function f, when t > %(16—6 + 1), we have the followings.
i) We take

5= (IP|+ea)2 =) and take N such that Vi < (|P|+ea) s 1<)
(Pl +em) N <] M) ;
with e’ = 55 and ¢ = %. Then
1 I
/ S@p@)de = LD TEFXTM 4 68) + || flloe x O((P]+ vEM)' ™). (36)
R i=1

i1) (Romberg) We take
5= (|P|+ea)i%) and take N such that Vy < (|P|+en) s A=),

with e, = g and g, = mi(?—)zj' Then

72 X L 1Y i~ .
| f@p@)de = N;EﬂXZ’fM’ +%A>—N;Ef<XZ”M’ + 08) + [|flloe x O((IP] + vEar)'~%)-(37)

Remark. In the case 6 = oo, the results in Theorem 2.3 and Theorem 2.4 hold for every 0 < ¢ < T.

Remark. We remark that we have determined ¢, N, and we obtain an explicit formula to simulate the
density function p,(x), which is a function solution of the analytical equation (21). We also give the error
of this simulation scheme explicitly. We notice that (35), the scheme based on Romberg method, gives a
faster speed of convergence than (34): we have the power ﬁ > ﬁ.

Remark. We mention that we obtain the results of Theorem 2.3 directly without using the previous es-
timates (Theorem 2.2), but the speed of convergence depends on the dimension d. So when d is large,
the speed of convergence is very slow. However for Theorem 2.4, we need to use the previous estimates
Theorem 2.2 to obtain (36). The advantage of considering (36) is that the speed of convergence no longer
depends on the dimension d. So we keep the speed of convergence even for large dimension. Finally, (37)
is a better simulation scheme in the sense that the numbers of particles NV we need is smaller than the one
in (36) and ¢ is larger than the one in (36). We also stress that the speed of convergence in (36) and (37)
is (|P| 4+ /2a)' ¢, the same as in Theorem 2.2 (28) for the truncated Euler scheme.
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The proof of this theorem will be given in Section 3.3 by using Malliavin integration by parts techniques.

2.6 Some examples

We give some typical examples to illustrate our main results.

Example 1 We take h = 1 so the measure 1 is the Lebesgue measure. We consider two types of behaviour
for c.

i) Exponential decay We assume that |¢(z)|? = e~®/?l” and ¢(2) = e~2|*I" with some constants 0 <
a1 < ag, p > 0. We only check Hypothesis 2.4 here. We have

1 Inwu, 1 rqe In(u—1). 4a
—l = pl > (—~ 7 )p
ve> o) = vl < (P} 2 B,
with r4 the volume of the unit ball in R¢, so that
d
1 1 rq (In(u—1))»
_ 1> .
lnuy{g - u} - d

2(ag)® Inu

We notice that = 0 when p > d; # = co when 0 < p < d; and 6 = 2% when p = d. Therefore, when
p > d, we can say nothing in Theorem 2.1 and Theorem 2.2; when 0 < p < d, all the results in Theorem
2.1 and Theorem 2.2 are true for every 0 < ¢ < T'; and when p = d, (22) holds true for ¢ > Sd(glrif)‘”,
(23) and (28) hold true for ¢ > %(% +1).

ii) Polynomial decay We assume that |¢(z)|* =

and p > d. Then

and ¢(z) = for some constants 0 < as < a3

a1 _as
T+ T+

vle> 1} =vlle] < (au - 14} > 2artu—1) - 1)F,

so that .
1 1 rq (az(u—1) = 1)»

_ 1> @ .

lnuy{g> u} - 2 Inwu

We notice that in this case, § = oo. Thus, all the results in Theorem 2.1 and Theorem 2.2 holds for every
0<t<T.

Example 2 We consider the (1—dimensional) truncated a—stable process: X; = Xy + fg o(X,-)dU,.
Here (Uy):>0 is a (pure jump) Lévy process with intensity measure

~ 1

We assume that 0 € C3°(R), 0 < ¢ < o(z) < g and —1 < a < o'(z) < 7, Vo € R, for some universal

constants 7,0, a, where ¢’ is the differential of ¢ in x. Then by a change of variable z %, we come

back to the setting of this paper with ¢(r, v, z,z, p) = o(z) x % and p(dz) = 1. 51 |Zl%dz. In this case,
1

c(z) =0 x B then

3

1
1 1 1 ety (c(u—1))% —1
- s o dy — &
lnuy{g> u} - 1nu/1 |z|t—e ? alnu

so that 6 = oo. Thus, all the results in Theorem 2.1 and Theorem 2.2 hold for every 0 < ¢ < 7.
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2.7 Preliminaries: coupling

Before moving on to the next section, we make some preliminary computations here. For some technical
reasons, besides the truncated Euler scheme (25), we also consider the truncation of the original equation
(14) as follows (with aé‘ff , A and ¢, defined in Section 2.4).

t
xM = X0+aMA+/ b(r, XM, p,)dr

/ /d € (r,v,2, XM, p, )N, _(dv,dz,dr). (38)
R xR

We notice that we keep p,. (the law of X,.) instead of taking p (the law of X ) to simplify the calculation
below, so the equation (38) is just an intermediate equation (which is not used for simulation).

We notice that the jump’s parts of XZD M and XM solutions of (25), (38) are defined with respect to
different Poisson point measures (on different probability spaces), so it is not possible to estimate the L>
distance between them directly (we need to estimate the L? distance later in the proof of Lemma 3.9).
To overcome this difficulty, we use similar equations driven by the same Poisson point measure This is
done by a coupling procedure. In this section, we make a coupling argument to construct z, 27 and /"
which have the same law as X;, X/ and XZD M but are defined on the same probability space and verify
equations driven by the same Poisson point measure.

We remark that the basic distance which appears in our framework is W; (see (12)). However for
technical reasons, we need to estimate the distance W5, ., (defined immediately below) for some small
e, > 0. This is because we need L? estimate in Lemma 3.9 and we have to use the Hélder inequality with
conjugates 1 + < and 2+5* . So now we take £, > 0 which is small enough. For p1, ps € Payc, (R?), we
denote the Wasserstem dlstance of order 2 + ¢, by

Wose.(prp2) = inf {(/ & — g m(da, dy)) 7 ),
m€ll(p1,p2) Ré xRd

where II(p1, p2) is the set of probability measures on R? x R¢ with marginals p; and p,. Some basic
properties of W,,p > 1 can be found in [37] and [51] for example, and we mention that Wi (p1, p2) <
Waie, (p1, p2)-

Now we make the optimal coupling in W5, ., distance between X 7)( t])w and X;_. We recall that p o t)
is the law of X P( B and p;_ is the law of X;_. For every partition P, M € N and time 0 < ¢ < T, one can
easily check that Py t)[_ and p;_ both belong to P, .. (R%). This is a consequence of Hypothesis 2.1 and
of (16) with

(I)(T7U7Zawap) = C]\,{(T( ) U z X-,7-)(7) ’pp(]\)/[ )
and with
D(r, v, z,w, p) = c(r,v, 2, Xp—, pr—).

Then we take 117" (dvy, dvs) to be the optimal W5, . —coupling of p (dvl) and p;— (dvs). So we have

P,M . «TTP-M
(W2+a*(PT(i)_,Pt—))2+E = /d , lvg — 112|2+‘S 11} (dvy, dvs).
R4 xR

We will need the representation of 117" (dv;, dv;) by means of the Lebesgue measure dw on [0, 1]. This
will be done by using the following lemma.

Lemma 2.5. There exists a measurable map ® : [0,1) x P;(R?) — R? such that for any p € P1(R%), any
bounded and measurable function ¢ : R* — R, we have

/0 o(®(w, p))dw = | o(x)pldz).

Rd
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This result is stated in [14] and is useful when we estimate the L? distance. We construct (n; (w), n?(w))

which represents II " in the sense of Lemma 2.5, this means

1
| ottt yde = [ ofon el (don,des).
0 R? xRe
In particular, this gives for any measurable and bounded function f : R¢ — R,

fo (ni (w )dw = [pa f( T(t) (dvl) fo (n2( w))dw = [5q f(v2)pe—(dvg),
fol Int(w) — nZ(w)**edw = f]Rdx]Rd v — v2|2+5*Hf’M(dv1,dU2) = (W2+s*(,07(’t)_7 Pt)f))2+6*. (39

Now we construct a Poisson point measure A (dw,dz,dr) on the state space [0,1] x R? with intensity
measure dwu(dz)dr. Then we consider the equations

t ¢
ry = X0—|—/ b(r,xr,pr)dr—i—//[ dc(r,nf(w),z,xr_,pT_)N(dw,dz,dr), (40)
0 0,1] xR
¢ ¢
A= Xow e [ttt [Cf ezl o N v, de ), (41
0 0,1]x

t
oM = Xo—l-aTA—i-/ b(r(r),z P(]L)I7p7_(r) )dr
01]de

One can check by It formula that 7" has the same law as X, (solution of (25)), z} has the same
law as X (solution of (38)) and z; has the same law as X, (solution of (19)). Then

(Wape. (0T 00 )2 = (Wore (EXEN0) LX) = (Wape (LDi00), L))o

Bl ;) =z [P (43)

IN

Remark. We also have the following consequence of Burkholder inequality (as a variant of (16) and (17)):
Let ®(r,w, z,w, p) : [0, T]x[0, 1] x RIxQx Py (R?) — Ry and ¢(r, w,w, p) : [0,T]x[0,1]xQ2xP;(R?) — Ry
be two non-negative functions.

a) Then for any p > 2,

t
E‘// @(r,w,z,w,p)]\/'(dmdz,dr)’p
[0,1] x R4
t 1 B t 1 B
< CE / / 1B(r,w, 2w, p)Pu(de)dwodr + E / / 180w, 2,0, p)la(dz) [Pdwdr
0 0 R4 0 0 Rd
t 1
R / / | / 1B(r,w, 2w, p)P1a(dz) | ¥ duwdr ), 44)
0 0 R4

where C is a constant depending on p, T'.
b) If we have B
[©(r, w, 2,w, p)| < |e(2)]|p(r, w,w, ),
then for any p > 2,

t t el
IE’/ / é(r,w,z,w,p)./\/’(dw,dz,dr)‘p < CIE/ / |&(r, w,w, p)|Pdwdr. (45)
[0,1] xRd o Jo
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Then we obtain the following consequence. We recall by (27) that epy = [ (21> M} le(2) Pu(dz) +
|f{|z|>M} E(z),u(dz)|2).

Lemma 2.6. Assume that the Hypothesis 2.1 holds true. Then there exists a constant C' dependent on T and
e, for every M such that ey < 1 and |¢(2)|* 1. j>my < 1, we have

i) Elz} —z[*** < Cey — 0.
And for every partition P with |P| < 1, we have
i) Elaf M — 2P < O(IP] +em),
i) Elef M = 2,25 < (1P| +em),
i) Ware, (27, 2,) < O(IP| +ear) 7o

Proof. We only prove 4) and i7), since i) is a direct consequence of i) and ¢i¢), and 4v) is an immediate
consequence of 7i7).
Proof of i): We write E|zM — x,]2T¢* < Ey + E; + Ea, where Ey = |a}!|?*5-E|A]2*2 < Ceyy, and

t
E, =E| / (b(r, 2 pr) — b(r 20, pr))dr >,
0

t
Be = B[ [ (eulrnt @)zl pro) = clrEw) e pr W (o, dadr)H
0,1] xR
Firstly, by Hypothesis 2.1,
t
B, < C/ E|lzM — z,|>Tedr. (46)
0

Then by Hypothesis 2.1, (44) with
O(r,w, z,w, p) = lear (1,07 (w), 2, 20—, pr) = c(r, 7 (w), 2,20, pr)|
and by (45) with
®(r,w, 2,w, p) = lear (1,17 (w), 2,270 pr) = et (777 (w), 2,20, pr- ),

we have

Ey

IN

t
E| / / (eat(r, 2(w), 2, 2 o) — clrs (W), 20 20—, o) )N (duo, dz, dr) 2+
[0,1] xR

L E / / (ear(r,2w), 2, 2™ L py_) — ext (r 2 (w), 2, 2o pr )N (du, dz, dr) P
[0,1] xR

24-€. dz (2 dz 24-€4 &(2 2 d 2-;.25*
off  EOREaa [ ol [ e )

¢
+ /E\xT—xM\%E*dr]
0

IN

t
< Clew + / Elz, — oM 2+ dr]. 47)
0
Combining (46) and (47), we have

t
E|xiM—xt|2+E* < C[EM-i-/ E|xi\/l—xr|2+6*dr]_
0
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So we conclude by Gronwall lemma.

Proof of iii) We write E|z] " — 2,2t < C[Ky + K, + K>, with K = [a} |2+ E|A|2+e+ < Ceypy, and

Kl E|/ 7 f;vap‘r(r)) b(T7£L'T,pr)d7"|2+E*,

K, = E / / enr(r () b ),z 2T o) el w), 2 e e N (s, dz, dr)
0,1]xR

Using Hypothesis 2.1,
K1 < CO[pPre +/Otn<:|xf(»r”{xr|2+€*dr+/0t(wl( )P ]
< ClPPre + /0 tlE|xi’gi§f — &, [ dr). 48)
By Hypothesis 2.1, (45) with
O(r,w, 2,0, p) = |e(r(r),np(w), 2,2 N pL ) = elrmf(w), 2,0, )|
and by (44) with
B(r,w, 2,0, p) = lear(r(r), nh(w), 2,2l M TN ) — e(r(r), b (w), 22D M),

we have

Ky

IN

CIE / / Pt ), 2T pTA) = el 2 (w), 2,0 pr )N (A, dz,dr) P
01]><]Rd

" E|// (ear (7 (), (w), 2,7 o7 )
0 J[0,1]xR2
= elr(r) (), 2 P PP N (dw, dz, dr) P

t 1
< cppes [ b -t dvdr [ EaT —apredr [ GRG0
0 0
— €u P Eu = 2t
+ / e(2) P75 pu(dz) + | c(2)pu(dz) e + | |e(2)u(dz)| 7]
{lz|>M} {lz|>M} {lz|>M}
< [Pt + / Bl — 0, [P dr + ey, (49)

where the last inequality is obtained by (39), (43), and the fact that W, distance is upper bounded by
Wo, ., distance, and so upper bounded by the L?*¢- distance.
We notice that by (45) with

B(r,w, 2w, p) = enr (T(r), mi(w), 2,32 N pZN ),

we have

E|z” M2+e < C|P). (50)

7(t)

Combining (48), (49) and (50),
t
Elal M — 2,>T5 < C[Ko + K1 + K3] < C[|P| + / ElzPM — 2,2t dr + e ).
0

So finally, we conclude by Gronwall lemma. O
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We remark that we may represent the jump’s parts of the equations (41) and (42) by means of compound
Poisson processes. With all the random variables ((J; )te[o 11, (ZF)kien, Xo, A) constructed in Section 2.4,
eN

we take moreover (W}),. ;e a sequence of independent random variables which are uniformly distributed
on [0, 1] and independent of ((JF):c(0,7], (ZF)k,ien, Xo,A). Then we have

keN
M J
M = Xo+aTA+/ b(r,zM, p,) dr—f—zz i,nTk Wk, z x%’f,mekf), (51)
k=1 i=1
t
P X0+aqﬂm+/o b(r (), a7 P dr—i—z )b (WE). ZE.aTM T ),
k=11i=1

(52)

We recall that the laws of z, and X, coincide, =] has the same law as X, and 2™ has the same
law as X . The advantage of considering z;, z} and 2" is that the jump’s parts of them are all defined
with respect to the same Poisson point measure, which means that we are able to overcome the problems
caused by the "Boltzmann term" (the Poisson point measure depends on the law of the solution). So in
the following, instead of dealing with X,, X and X" solutions of (14), (38) and (25), we deal with
x4, M and x] ™ solutions of (40), (51) and (52).

3 Malliavin calculus

3.1 Abstract integration by parts framework

Here we recall the abstract integration by parts framework in [7].
We denote Cp° to be the space of smooth functions which, together with all the derivatives, have poly-
nomial growth. We also denote C} to be the space of ¢—times differentiable functions which, together

with all the derivatives, have polynomial growth.
o0
We consider a probability space (2,F,P), and a subset S C (] LP(€2;R) such that for every ¢ € Cp° (R%)
p=1
and every F' € 8%, we have ¢(F) € S. A typical example of S is the space of simple functionals, as in the
standard Malliavin calculus. Another example is the space of "Malliavin smooth functionals".

Given a separable Hilbert space H, we assume that we have a derivative operator D : S — () LP(; H)

p=1
which is a linear application which satisfies
a)
DyF = (DF,h)y €S, for any h € H, (53)
b) Chain Rule: For every ¢ € C1(R?) and F = (F},--- , F;) € 8%, we have
d
=Y 9:¢(F)DF, (54)
i=1

Since D, F' € S, we may define by iteration the derivative operator of higher order D9 : S — (| LP(2; H®Y)
p=1
which verifies (DYF, ®]_, hi)3@a = Dy, Dp,_, - -+ Dy, F. We also denote DZ1 o F = (DIF, @ h;)yoq,

for any hy,---,hy € H. Then, D}, F =Dy, Di"" , F(g>?2).
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We notice that since 7 is separable, there exists a countable orthonormal base (e;);cn. We denote

DiF = DeiF = <DF, €i>7.[.

Then -
DF =) D;Fxe; and D'F= Y Dj . ;Fxe_e.
i=1 i1, i
For F = (F,--- ,F;) € 8, we associate the Malliavin covariance matrix
or = (0%)ij=1...a, With o% = (DF;, DF})y. (55)
And we denote
Y, (F)=E(/detop)P. (56)

We say that F' is non-degenerated if 3, (F) < oo, Vp > 1.

We also assume that we have an Ornstein-Uhlenbeck (divergence) operator L : S — S which is a linear
operator satisfying

a) Duality: For every F,G € S,

E(DF,DG)y = E(FLG) = E(GLF), (57)

b) Chain Rule: For every ¢ € C2(R?) and F = (F},--- , Fy) € 8%, we have

d d d
Lo(F) =Y 0;¢(F)LF; =Y " 0,0;¢(F){DF;, DF;)y.
i=1

i=1 j=1
As an immediate consequence of the duality formula, we know that L : S ¢ L?(Q2) — L?(9Q) is closable.

Definition 3.1. If D : S C L*(Q) — L?(Q; H®9), Vq > 1, are closable, then the triplet (S, D, L) is called
an IbP (Integration by Parts) framework.

Now, we introduce the Sobolev norms. For any ! > 1, F € S,

l
|F|1,l = Z|DQF|H®Q, |Fl, = [F| + |F|1,lv (58)

q=1

We put |F|o = |F|, |F|; =0forl <0, and |F|;; =0 for [ <0. For F = (Fy,--- ,Fy) € 8%, we set

d d
|F|1,l = Z|Fi|1,za ‘F‘z = Z|Fi|lv
i=1 i=1

Moreover, we associate the following norms. For any [ > 0,p > 1,

£,
1E L1

With these notations, we have the following lemma from [8] (lemma 8 and lemma 10), which is a
consequence of the chain rule.

EIFID)Y?, IIFl, = EIFP)Y?,
1EMp + IEF g - (59)
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Lemma 3.1. Let F € 8% Foreveryl € N, if ¢ : R — R is a C'(R?) function (I—times differentiable
function), then there is a constant C; dependent on [ such that

a) |¢(F)1s < [VO(F)||Flri+Cr sup [0°¢(F)||F|5,_;.
2<|Bl<t

If ¢ € C'T2(R?), then

b) |LO(F) < |Vo(F)||LE|;+C; sup  |9°¢(F)|(1+ |FIIE2)(1+ |LF|i—1).
2<|BI<i+2

For | = 0, we have
¢) |Lo(F)| < |Vo(F)||LF|+ \Z?PZ 0°(F)||IFI3 1

We denote by Dy, the closure of S with respect to the norm |[[o]| ;

Dy, = EHOHL,Z,p’ (60)

and o -
Doo = () () Prp» Hi=Dio. (61)

I=1p=1

For an IbP framework (S, D, L), we now extend the operators from S to D.. For F' € D, p > 2, there

exists a sequence F,, € Ssuchthat|[F — F,|, — 0, [|[F, — F||,,, — 0and || LF,, — LF,||,_, , — 0. Since
DY and L are closable, we can define

DF = lim D'F, in LP(QH®%), LF= lim LF, in L"(Q). (62)
We still associate the same norms and covariance matrix introduced above for F' € D..
Lemma 3.2. The triplet (Do, D, L) is an IbP framework.
Proof. The proof is standard and we refer to the lemma 3.1 in [10] for details. O

The following lemma is useful in order to control the Sobolev norms and covariance matrices when
passing to the limit.

Lemma 3.3. (A) Wefixp >2,01> 2. Let F € L*(Q) and let F,, € 8%, n € N such that

i) E|F,—F — o0,
i1) SUPHFnHLJ@ < Ky < oo.

Then for every 1 < p < p, we have F' € Dcfﬁ and ||F|| 1, < K, - Moreover, there exists a convex combination

My

G, = Zw x F; e 8¢,

My,
with 4" > 0,i = n,....,my and > v =1, such that

i=n
1Gn = Fllg 2 —0.

(B) For F € D, we denote
A(F) = inf (op(, ()
I¢l=1
the lowest eigenvalue of the covariance matrix op. We consider some F' and F,, which verify i), i) in (A). We

also suppose that
iii) (DF,)nen is a Cauchy sequence in L (C; H),
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and for every p > 1,

iv) supE(A(F,)) P < Q) < oco. (63)

Then we have
ENF)™?P<Q,<o0, Vp>1

(C) We suppose that we have (F, ') and (F,,, F,,) which verify the hypotheses of (A). If we also have

v)  sup||DF, — DF,||2(n) <&, 64)

then B
|DF — DF|r203) < €

Proof. Proof of (A) For the sake of the simplicity of notations, we only prove for the one dimensional case.
The Hilbert space H; = D; 2 equipped with the scalar product

l
UV)p1o = > E(DW,DWV)yes +EUV)
qg=1
-2
+ Y _E(DILU, DLV )yseq + E(LU x LV)

g=1

is the space of the functionals which are /—times differentiable in L? sense. By ii), for p > 2, || F},|| Li2 <
| Fully, ., < Kip- Then, applying Banach Alaoglu theorem, there exists G € H, and a subsequence (we
still denote it by n), such that F;, — G weakly in the Hilbert space H;. This means that for every Q € H,,
(Fr, Q)12 = (G, Q) p1,2. Therefore, by Mazur theorem, we can construct some convex combination

Mnp

Gn=)Y WxFeS

i=n

My
with v > 0,i =n,....,m, and > 4" = 1, such that

i=n
”Gn - GHL,l,2 — 0.

In particular we have
E|Gn, — G| <||Gn =Gl — 0.

Also, we notice that by i),

My,
E|Gn—F| <> 4" xE|F; - F| = 0.

So we conclude that F' = G € H,. Thus, we have
2 2 2
E(|Gn — F|;) + E(|LGyn — LF|_5) < [|Gn = Fl|7, ;0 — 0.

By passing to a subsequence, we have |G, — F|, + |LG, — LF|,_, — 0 almost surely. Now, for every
p € [1,p), we denote Y,, := |G, |V + |LG,|]_, and Y := |F|} + |[LF|]_,. Then, Y,, — Y almost surely, and
for any g € [p, ],

Mn q Mn
ElGall +BILGall, < |Galll =D X xF| < QA x|IFillL.0)°
i=n L,l.q i=n
My B ~
< (sup||Fllp,0x Y AT =sup||Fi||], ; < K.
7 1

i=n
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So (Y, )nen is uniformly integrable, and we have

IFII, 5 = E(FI) +E(LFI]_,) = E(Y) = lim E(Y,) < K7,

n—r oo

Proof of (B) We consider for a moment some general I, G € D . Notice that

(o(F)¢,C) = (DF, ¢) I3,

SO

ME) = inf [(DF.Of3

Now we check that

IWVAEF) = VAG)| < |D(F = G)|x. (65)

Indeed, |(DF,()|n < (DG, )|n + |D(F — G)|x|(C|, so that by taking the infimum, we get \/A(F) <
VAG) + |D(F — G)|%. And in a similar way, we have the inverse inequality, so (65) is proved. We now

mMn
come back to our framework. Recalling that G,, = > 77 x F;, we observe that

i=n

DG — DFnHH(Q;H) < Z'Y:LHDFl - DFn||L2(Q;H) — 0.

i=n

Here we use the fact that (DF},),cy is a Cauchy sequence in L?(£2; ). Meanwhile, we know from (A)
that
||DGn — DFHL2(SZ;’H) — 0.

So we conclude that |[DF — DF,| r2u) — 0. Thus, by (65), E[\/A(F) — /A(F,)| — 0. This gives
that there exists a subsequence (also denote by n) such that \/\(F;,) converges to \/A(F') almost surely,
and consequently |A(F},)|~P converges to |A(F')| P almost surely. Since we have (63), (|A(F,.)|™P)nen is
uniformly integrable. It follows that

E(AE)™?) = Tim E([A(F)|77) < Qp.

n—oo

Proof of (C) Since the couples (F, ') and (F,,, F},) verify the hypotheses of (A), we know by the results
of (A) that we may find a convex combination such that

iy ool Y A7 (DFi, DF;) = (DF, DF)| 200 = 0.

=n

Then it follows by (64) that

im0 || Z%H(DFi — DF)||2(0:m)

|IDF = DF||20m) <
i=n
< mn—><>o Z’anHDF? - DFi||L2(Q;H)
< E&.
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3.1.1 Main consequences

We will use the abstract framework presented above for the IbP framework (D, D, L), with D and L
defined in (62). We recall the notations || F||1,,, in (59), ¥,(F) in (56) and o in (55). For any n > 0,
we take Y, (x) : (0,00) — R to be a smooth function such that

Lz 00) < Ty < 100

We remark that o is invertible on the set {Y, (detop) > 0}. We first establish an integration by parts
formula.

Lemma 3.4. (A) Let F = (Fy,---,Fy) € D%. We suppose that the Malliavin covariance matrix o is
invertible. We denote N
FF = (F‘};’vl)j7i:1,...,d = 0';1.

We also assume that det o is almost surely invertible and (det o)~ € Dy. Then for every f € C(R?) and
G € D,
E(0:f(F)G) = E(f(F)H(F,G)),

with

d d
ZG (T4'LF; — (DT%', DF}) ZI‘ (DG, DF})
j=1 j=1

Moreover, iterating this relation, for every multi-index 3 and every f € Czlf | (R%), we get
E(9sf(F)G) = E(f(F)Hp(F,G)), (66)

where Hg(F,G) is obtained by iterations: for 3 = (B1, -+ ,Bm) € {1,--- ,d}™ and B = (B1,"+ Bm—1), we
define Hg(F,G) = Hg,, (F, H3(f,G)).
(B) Let F = (Fy,--- ,F;) € DL. For any j,i = 1,--- ,d we define

Fg,zn = (a}l)j’iTU(det OF).
Then for every f € C}(R%) and G € D,
E(0:f(F)GYy(detop)) = E(f(F)H,i(F,G)),
with
H,;(F,G) =Y GI%'LF; — (DI}, DF;)y) — > T% (DG, DF;)y
j=1 j=1
Moreover, iterating this relation, for every multi-index 8 and every f € CLQ | (R%), we get
E(9sf(F)GTy(detor)) = E(f(F)Hy 3(F,G)), (67)

where H, 5(F,G) is obtained by iterations: for B = (81, -+, Bm) € {1,--- ,d}™ and B = (B1, -+ Bm—1), we
deﬁne HW B(F G) ﬁﬁm (F Hn ﬂ(fv ))

Remark. In (A), we assume the non-degeneracy condition for F, so we have the standard integration by
parts formula. However in (B), we do not assume any non-degeneracy condition of F', and we obtain a
localized form of integration by parts formula.

Proof. The proof of this lemma is standard, and we refer to [7]. O

As a consequence of the integration by parts formula, we obtain the following proposition based on
some estimations of the weights E|Hg(F,1)| and E|H,, 5(F,1)|.

80



Proposition 3.4.1. Let F = (Fy,--- ,Fy) € D4.. We fix g € N.
(A) Suppose that there exists a constant C,, (dependent on g) such that || F||, g+2,8dg + Z4q(F) < Cq. Then
for any multi-index 8 with |3| = q and any function f € C{(R?),

(By) [E@°F(F)| < Cyllflloes VIBl = a.
(B) Suppose that there exists a constant Cj, (dependent on q) such that ||F||1 412, (4a+1)q < C4- Then for
any n > 0, any multi-index 8 with |3| = q and any function f € C{(R?),

1

(By) [EQ7f(F)Yy(detop))| < Cgll flloo x perg MEI

Remark. In (A), we assume the non-degeneracy condition for F, so we can control the weight Hgz in the
standard integration by parts formula (66). In (B), we no longer suppose non-degeneracy condition for
F, so we apply (67) and obtain a localized form of estimate.

As an immediate application of Proposition 3.4.1, we have the regularity of the density.

Corollary 3.4.1. We fix p € N. Let F = (Fy,--- ,F;) € DL. We assume that ||F||f, ptat2,sdp+d) +
Yu(p+d)(F) < oo. Then, the law of random variable F is absolutely continuous with respect to the Lebesgue
measure and has a density pr(xz) which is p—times differentiable. And one has

d
pF((E) :E(aﬁH]]-[OOO)(F] —1']‘)), B: (L 7d)a (68)
j=1

with x = (21, ,24) € R%

Proof. Proposition 3.4.1 is proved in [7] and Corollary 3.4.1 follows by standard regularization argu-
ments. =

We consider the d—dimensional regularization kernels

1 _lz)? 1 =z
p(z) = Gmaet T ps(r) = s50(5), 0<d<1,

and we denote
fila) = Fxosta) = | F)esta =
Then we have the following regularization lemma.

Lemma 3.5. (A) i) For a multi index 3, we suppose that F satisfies (Bzg|). Then for any function f €
02+|ﬂ| Rd
b ( ),
[E(° f(F)) = E(0 f5(F))| < dCays |1 fl x 6. (69)

ii) (Romberg) For a multi-index /3, we suppose that I satisfies (B, ). Then for any function f C{f +1] (R9),
[B(0° F(F)) + B0 f5(F)) = 2B(9° 5 5(F))| < 642Cuy oy |l % 6" (70)

(B) iii) We suppose that F satisfies (BS). We fix p > 0 and we take some G € D% such that for any p € N,
IFllip + 1Gllip + X,(G) < oo. For any gy > 0, we denote ¢ = 2/(1 + ). Then there exists a constant C
depending on p,q, p and d such that for any n > 0 and § > 0, for any function f € CZ(R%),

2
E(F(F)) — E(fs(F))| < C[1fll % (% (M IDF — DGl 2" + 1), 71)

iv) (Romberg) We suppose that F satisfies (B}). Under the same hypotheses as iii), for any function f €
C}(R?), we have

4
E(f(F) + E(fs(F)) = 2E(f5,2(F))| < C ]l * (% + (07 HIDF — DGl 2 +0°). (72)
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Remark. We remark that in (A), we assume the non-degeneracy condition for F', and we have the standard
regularization lemma (69). While in (B), we do not assume the non-degeneracy condition for F', but we
need to assume that we have another random variable G which is non-degenerated (such that DG is
close to DF). Then we obtain a variant form of regularization lemma (71). Moreover, applying Romberg
method, we have (70) and (72). We also remark that the regularization lemma here is slightly different
from the one in [7]. The kernel considered in [7] is the super kernel, but we are not able to simulate the
super kernel. So in our paper, we consider the Gaussian kernel s which allows us to do the simulation.

Proof. Through all this proof we use the notation g = 9 f.
Proof of (A) ¢) : We denote

Ryo.a) == 37 [ axa=x7 [ auesuysrorote+ )

la|=¢

with y® =[], Ya, for a = (a1, ..., o). Notice that if F satisfies (B,) then (recall that 9%g = 9*9” f)

IE(Ry(8, F))| < Copi 1 fll o /Rd dyes(y) ly|* = Cq+|/3|/ e(y) [yl dy |1l 07 (73)

Rd

We use a development in Taylor series of order two in order to get
0 f(@) - Pfsa) = [ duste )@ 1) - 0°F(1)
Rd'
= [ dweste = w)lata)  ato)
= RQ((S, .23)
Here we use the fact that fRd yjs(y)dy = 0. This, together with (73) yields (69).

Proof of (A) i) : Using a development in Taylor series of order 4

2

07 ()~ 07 i) = 5 Vg(e) + Ra(6,2).

Here we have used the fact that the third moments of the normal distribution are null and [, yj2 ws(y)dy =
§2. We fix a € (0,1) and we use the above equality for ad :

L g5 L g5 R 1

ga f(z) — ?8 fas(x) = EV g(z) + §R4(a5, x).
Subtracting the equality for ¢ and for ad, we obtain

1 1 1
(53 = DO F(2) = (550° Fusl) = 0 [5(2) = — Ra(ad,) — Ra(3,2).
Taking a = 1/+/2 we get
0° f(w) = 20° f5, s5(x) — 0° f5(x) + 2R4(6/V2, ) — Ra(6, 7).

And using (73) we get (70) (we have also used fRd o(y) |y|4 dy < 3d?).

Proof of (B) iii) : We take |3] = 0. Notice that if F' satisfies (B;), then

q

)
[ tvestilol” =4 [ et asiil S 09

s
[B(R,(6, F)T, (detor)] < ;1
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We use a development in Taylor series of order two in order to get

E(f(F)Y,(detop)) —E(fs(F)Y,(detop)) = /dy%F Y (F) = f(y)Ty(detor))
= E(Ru(5, F)Y,(det op)).

Here we use the fact that [, y;¢5(y)dy = 0. Using (74) for ¢ = 2, we have
/ 2 6
[B(R(6 )Y (detor) < C [ ol ol dy 1.0 T
So
52
|E(f(F)Y,(detop)) — E(fs(F)Y,(detor))| < C | fllo e (75)
On the other hand, we make a small computational trick as follows which is originally from [11] p14. This
trick allows us to obtain a better result. We denote

R— detap — detch
o det og

This is well-defined since G is non-degenerated. For an arbitrary n, we write

1 1
P(detor <n) < P(detop <1, |R| < ) +P(|R| > ) (76)

When |R| < 1, |detop — detog| < 1detog. This implies that detop > 3 det 0. Recalling that G is

non-degenerated and using Markov mequahty, for every p € N, it follows that
1
P(detop < n,|R| < Z) < P(detog < 2n) < 2°9°E|det og| ™" < CnP. 77)

For any n > 0, p € N, with ¢ = 2/(1 + ¢¢), we write

1 1
P(|R| > Z) = P(|detor —detog| > Zdet lofe)
1
< P(detog <n)+P(|detop — det og| > Zn)
< C(n? +n E|detop — det og|?)
< CO"+(IDF = DG 2(00)"); (78)

where in the last two steps, we have used the fact that G is non-degenerated, and ||F||1, + ||G|l1,, <
o0, Vp > 1, and Holder inequality with conjugates 1 + ¢ and 1:% Putting together (76), (77) and (78),
we obtain
P(detor <n) < C°+ (0 '|DF — DG||r2:))?)- (79)
Then we have
[E((1 = Ty (det 7)) f(F))| < || flocP(det o < 1) < C|lflloc(n” + (0™ |DF = DG 2(:3))).  (80)
Similarly, we also have
[E((1 = Ty(det or)) f5(F))| < Cllflloc(n” + (" IDF = DGl 2(020))7)- (81)

We conclude by combining (75), (80) and (81).
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Proof of (B) iv) : The proof is analogous to the proof of ii). Using a development in Taylor series of
order 4

52
f(@) = fs(@) = TV (@) + Ra(5.2).
We use the above equality for § and %, then by subtracting them, we get
F(@) =2f5,5(2) = f5(x) + 2Ra(8/V2, 2) — Ra(6, ).
So by (74),
E(f(F)Ty(detor)) + E(fs(F)T,(det o)) — 2E(f5,,5(F)Ty(det or))
< 2E(R4(6/V2, )Y, (det o)) — B(R4(8, )T, (det o))

64
SCHJCHOOE (82)

We conclude together with (80) and (81).
O

The regularization lemma (Lemma 3.5) implies the following result concerning the approximation of
the density function.

Corollary 3.5.1. i) Suppose that F satisfies (B2tq). Then, for every x,
Ipr(2) — E(ps(F — 2))| < dCayq x 62 (83)
i1) (Romberg) Suppose that F satisfies (B44.q). Then
pr(x) +E(ps(F — 2)) — 2B, 5(F — x))‘ < 6d2Clypq x 0. (84)

Proof. We take a multi-index 8 = (1,--- ,d) and

d
fly) = H H(y;), (85)

where H(y) = 1jp,)(y) is the Heaviside function. So by (68),

pr(z) = E(0° f(F — x)).
Notice that

d
0% fs(F — ) = [ [ H5(Fy — 23)) = ps(F — ),
=1

<

so that (69) gives

pr(z) = E(gs(F —2)] = [EQ@°f(F —2)) = E(" fs(F — )|
d02+d x 62,

IN

In a similar way (70) gives (84). O

In the following, we define the distances between random variables F, G :  — R%:
d,(F,G) = sup{[E(f(F)) —E(f(@)] : Y |9°f] . <1}
|B]=r

For r = 1, this is the Wasserstein distance W, while for r = 0, this is the total variation distance dry .
Using the Malliavin integration by parts formula (Lemma 3.4), one proves in [7] (lemma 3.9) the fol-
lowing results.
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Lemma 3.6. We fix some index [, some r € N and some ¢ > 0. We define p; = 2(r(X — 1) +2), py =

€

max{4(l + al),Q(TT'H —r+2)} >l —1)+4, ¢ > max{l+d+2, %—s-l —7r+4}. Let F,G € D,. One

may find p € N, C € R, (depending on r,l and ¢) such that
i) drv(F,G) < C(1+ 5y, (F) + 5, (G) + IFllp g, , + [Gllp g, ) % dr(F,G)' 75, (86)

and

oo < CU+ S (F) + 5 (G) + IFl gy + Gl ) X e(FG)5, (87)

i) |pr —pc
where pr(x) and pg(x) denote the density functions of F' and G respectively.

Remark. We explain about the significance of this lemma. If we have already obtained an estimate of a
"smooth" distance d,. between two random vectors I’ and G but we would like to control the total variation
distance between them, then we employ some integration by parts techniques which are developed in
[BCP] and conclude the following. If both F' and G are "smooth" in the sense that || F||, .+ G|l ,, < o0
for sufficiently large ¢, p; and both F and G are non-degenerated in the sense that ¥,(F) + £,(G) < oo,
with p large enough, then (86) asserts that one may control dry by d,., and the control is quasi optimal:
we loose just a power ¢ > 0 which we may take as small as we want. And (87) says that we may also
control the distance between the derivatives of density functions by d,..

If we only assume the non-degeneracy condition on F' but no non-degeneracy condition for G, then we
have a variant of the previous lemma (see [7] proposition 3.11 and remark 3.14).

Proposition 3.6.1. We fix some r € Nand some e > 0. We define p; = 2(2+2), ¢; > 82 +4. Let F,G € DZ,.
One may find p € N, C € R, (depending on r and €) such that

dry (F,G) < C(1+ 3y, (F) + [ Fllp g, + Gl g, ) % (dr(F.G) + |DF = DG[72(3,)) = (88)

»41,P

Remark. The result in Proposition 3.6.1 is better than proposition 3.11 and remark 3.14 in [7]. We get
|DF — DG||2L2(Q.H) instead of || DF — DG||12(q;n)- This is because rather than the estimate (3.29) with

p’ = 1in [7], we use a sharper estimate (79) with ¢ = ﬁ and g¢ = 579z The idea of (79) comes from

the paper [11] p14. We benefit a lot from this improvement in the paper. It guarantees that we are able to
keep the speed of convergence 1 — ¢ (instead of % — ¢) in the final results Theorem 2.1~2.4.

3.2 Malliavin calculus for the jump equations

In this section, we present the integration by parts framework which will be used when we deal with
the jump equations (51), (52) and (40). There are several approaches given in [13], [26], [32], [33], [41],
[45] and [52] for example. Here we give a framework analogous to [8].

To begin we define a regularization function.

1
= 1- — 11
a(y) 17(4y71)2 fO’I" ye [4’2)’ (89)
Y = Lgyen + lgamene ™ (90)
We notice that 1) € C3°(R) and that its support is included in [—£, 3]. We denote
Wi(y) = v(lyl = (k= 3)), vk e N. (1)

Then for any [ € N, there exists a constant C; such that

sup ||V |l1,00 < Cp < 00. (92)
keN

We focus on xf’M and zM (solutions of the equations (52) and (51)) which are functions of random

variables T, W}, Z¥, A and X, (see Section 2.7). Now we introduce the space of simple functionals S. We
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take G = o(TF, Wk, Xy : k,i € N) to be the oc—algebra associated to the noises which will not be involved
in our calculus. In the following, we will do the calculus based on Z} = (Zf,,---,ZF,), k,i € N and
A= (Ay,---,Ay). We denote by Cg,, the space of the functions f : 2 x Rmxm'xd+d _y R such that for
each w, the function (21 ;, ..., 2" m O, 04) flw, 2, ,_,74}7’(17517 .-+, 64) belongs to Cgo(Rme’xd-i-d)
(the space of smooth functions Wthh, together with all the derlvatlves have polynomial growth), and for
each (z1 Lsees 2o d,51, -+« ,0q), the function w — f(w,zil,. 01, ,04) is G-measurable. And we
consider the weights

amda

& = Vi(Zf).
Then we define the space of simple functionals

S={F = f(w,(ZF)1<crem D) : f € Cgp,m,m' € N}.

1<i<m

Remark. The simple functional F' is actually a function of (7 ")k EN, (W’“) k. 2€N7 (Z; )k e, A and Xy. By

taking m = JF and m’ = M, we notice that for any 0 < ¢t < T, :Jc73 M and zM (solutions of the equations
(52) and (51)) both belong to S¢.

On the space S we define the derivative operator DF = (D?F, DA F), where
o5
k

D(Zk ’L])F = f 9 k ( 7(sz)1§k§m’7A)7 E eN .7 € {1 d}a (93)
1<i<m
9 -
DjAF = a(sji (w7(sz)1§k§m’7A)’ J € {17 ad}
7 1<i<m

We regard D? F' as an element of the Hilbert space I, (the space of the sequences u = (uy,i ; )k, ien,je{1, - .d}
with [uf} =372 3%, Z?Zl luk,i,;|* < 00) and DF as an element of I x R?, so we have

d © oo d

(DF,DG),,  za = ZD]AF x DG + Z Z Z D(Zk,iyj)F X D(ka)G. (94)

j=1 k=11i=1 j=1

We also denote D'F = DF, and we define the derivatives of order q € N recursively: DIF := DDI~1F.
And we denote D% (respectively D*9) as the derivative DZ (respectively D) of order q.

We recall the function i given in Hypothesis 2.4 b). We also define the Ornstein-Uhlenbeck operator
LF = L?F + L~F with

m' m d
LPF = =% 3% (0 (&D{ipyF) + DfiijyF x D 5y h(Z]))]), (95)
k=11i=1 j=1
d d
LAF = Y D{FxA;—Y DFDRF.
j=1 j=1

One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3.1. In
particular the duality formula (57) holds true. We refer to [10](Appendix 5.3). We say that F is a "Malliavin
smooth functional" if F' € D, (with the definition given in (61)).

We will use the IbP framework defined here for z;, ¥ and zf’M (solutions of equations (40),(41) and
(42)). We recall that they are obtained in Section 2.7 by optimal coupling in Ws, ., distance between

X P( t])” and X;_. Here we give two lemmas, concerning the Sobolev norms and the covariance matrices of
zs, oM and :1:7) M
Lemma 3.7. Assuming Hypothesis 2.1 and Hypothesis 2.4 b), for all p > 1,1 > 0, there exists a constant
C),p depending on I, p,d and T, such that for any 0 < t < T,

i) SUPSUP(||33t ||L Lp+ ||37t4HL l7p) < Clp.
P M

Moreover, x; belongs to D and
ip < Clp.

i)
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Lemma 3.8. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true. Then for every p > 1, 0 < t < T such

that t > % (with 60 defined in (18)), we have (recalling by (55) that o denotes the covariance matrix of F)

i) supE(1/deto,m)? < Cp, (96)
M
it) E(1/detoy,)? < Cp, 97)

with C,, a constant depending on p,d,T.

Remark. In the case 6 = oo, the results in Lemma 3.8 hold for every 0 < ¢t < T.
Remark. We are not able to prove that supsupE(1/det o ».a )P < Cp, since the tangent flow of the Euler
P M ¢

scheme is not invertible (see (130), the inverse tangent flow plays an important role in our proof). This
is why we need Proposition 3.6.1 instead of Lemma 3.6. Fortunately, thanks to (79) (inspired from [11]
pl4), we are able to keep the same speed of convergence 1 — ¢ as if the tangent flow of the Euler scheme
were invertible.

The proofs of these two lemmas are rather technical and are postponed to Section 4.1 and 4.2.
Before we end this section, we establish an auxiliary result. We recall by (27) thate,, = || (21> M) le(2) 2 p(dz2)+

| f{|z|>M} e(2)u(dz)?).

Lemma 3.9. We assume that Hypothesis 2.1 and Hypothesis 2.4 b) hold true. Then for any ¢, > 0,
there exists a constant C dependent on T,d, e, such that for every |P| < 1, every M with ¢y < 1 and

le(z) P>y < 1,
. 1
i) ||D90f’M - DﬁCiM||L2(sz;12xJRd) < Clem +|P])77=~,
ii) || Dx}" — Dyl p2 i, xray < Clen) 7,
iii) ||Dx]M — Dyl g2y xrey < Clenr + [P]) 7.

The proof is also technical and we put it in the Appendix.

3.3 Proofs of Theorem 2.1~2.4

Before the proofs of Theorem 2.1~2.4, we first give the following lemma. We recall X;** in (25) and
X in (14).
Lemma 3.10. Assume that the Hypothesis 2.1 holds true. Then there exists a constant C' dependent on T'
such that for every partition P and M € N we have

Wl(XZD’AI,Xt) < C(|,P‘ + \/€M).

Proof. We make a coupling argument similar to Section 2.7. We will do optimal coupling between Xf(f)\{
and X,;_ in W, distance. This is the same strategy as the optimal coupling between Xf("t])\{ and X;_ in
Wo.e, distance in Section 2.7. We take ﬁf’M(d%, dvg) to be the optimal W; —coupling of pf(’tj;{ (dvs) and
pi—(dvg), that is

Wl(ﬂf{f)wuﬂtf) = /Rded [vs — ve|TI, ™ (dvs, dug).

Then we construct (7} (w), n (w)) which represents II** in the sense of Lemma 2.5. So we have

/ S} (w), i (w))deo = / (05, v6) T (dvs, du).
0

Ra x R4

We consider the equations (with A/ (dw, dz,dr) the Poisson point measure on the state space [0,1] x R?
with intensity measure dwu(dz)dr defined in Section 2.7):

¢ t
Ty = X0—|—/ b(r,%r,pT)dr—i—// c(r,nb(w), 2, Zr_, pr_ )N (dw, dz, dr), (98)
0 0 J[0,1]xRd
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t
M~ X, 4 A+/ DT (1) T5y Py

//0 xRS r) (W), 2 FL 0N oy N (dw, dz, dr), (99)

with pt M the law of X73 M (see (25)) and pt the law of X (see (14)). One can check that z; and a:P M
have the same law as x; and X, P.M respectively. We remark that 7;, and 7 :ct P.M are different from z;, and

M- (see (40) and (42)) since we take different couplings and 7} (w) # 1°(w), n2(w) # n®(w). Then we
have

Wi (XM, X)) = W@ @) <Ela) M - 5| < C(IP)+ Vew),
where the last inequality is obtained in a standard way (see the proof of Lemma 2.6). O

Proofs of Theorem 2.1 and Theorem 2.2:

Proof. We first prove (28). We recall that by the discussion in Section 2.7, 2 " has the same law as X,/
and x; has the same law as X;. Thanks to Lemma 3.7 and Lemma 3.8, using Proposition 3.6.1, for any
partition P of the interval [0, 7] with [P| < 1, every M € N with e); < 1 and |¢(2)]*1q,>ay < 1, for
e >0, whent > 8¢(2 4 1) (with ¢ defined in (18)),

dry(XPM X)) = dpy(el ™ a)

< el M, zy) + | Da] M — DfEtH%z(sz;bed)]l*E

So

For any & > 0, we take ¢,¢, > O such thate, = =z and ¢ =
3.9 and Lemma 3.10, when ¢ > 8¢(2 + 1), we have

.80 52—(1 —¢) = 1 — & Then by Lemma

drv (XPM X)) = on(xPM, X)) + DM - D72, xmay)]'

CIIPI+ ver + (en + [P =]
Clvem +[P' 5 =0,

with C a constant depending on £,d and T So (28) is proved.

On the other hand, by Lemma 3.8 and Corollary 3.4.1, when ¢ > , the law of X; has a [—times
differentiable density p; and the density p, is a function solution of the equanon (21). So (22) is proved.
We notice that (S, D?, L) is also an IbP framework. If we only make Malliavin integration by parts on the
Gaussian random variable A, then standard arguments give that the law of X, ** has a smooth density

P, M
Pt .

<
<

8d(I+d)

Now only (23) is left to be proved. The proof is analogous to the proof of (28). The main strategy is
as follows (this is similar to Section 2.7 and Section 3.2). We define an intermediate equation )_(ZD M (see
(100) in the following). There is a difficulty appears here: the equations (14) and (19); (38) and (100) are
defined with respect to different Poisson point measures (on different probability spaces). To overcome
this difficulty, it is convenient to use similar equatlons driven by the same Poisson point measure. We
make a coupling argument to construct ¥, z7, azf and z; (see (103), (102), (104) and (101) below)
which have the same law as XM, X7, X, PM and X (see (38), (19), (100) and (14)) respectively but are
defined on the same probability space and verify equations driven by the same Poisson point measure. So
to estimate the total variation distance between X and X t, it is equivalent to estimate the total variation
distance between a;t and z;. We will see that :c T and 3: I are simple functionals (belong to 8% in the
sense of Section 3.2. We prove below in Lemma 3.12 that the Malliavin- Sobolev norms of zM and z " are
bounded (uniformly in M, P) and that the Malliavin covariance matrix of z is non-degenerate (unlformly
in M). Passing to the limit M — oo, we give below in Lemma 3.11 that 7 ‘P M _, zP and zM — 7, in L'
distance. Then by using Lemma 3.3, z; and z] are "Malliavin smooth functlonals” (belong to D2), and

88



we prove below in Lemma 3.13 that the Malliavin-Sobolev norms of z; and z] are bounded (uniformly
in P) and that the Malliavin covariance matrix of z; is non-degenerate. So applying Proposition 3.6.1,
the Euler scheme X/ converges to X; in total variation distance.

Now we give the proof of (23). We first introduce an intermediate equation.

v P,M P,M
Xt = XO + ar A + / b XT(T) 7p7'(7"))d

en(r(r), 0,2, XA P )N, (dv,dz,dr). (100)
R xR (=2 )= P -

We notice that we take pf(r) (the law of Xf(r)) instead of pf(’ﬁ;[ (the law of X7 - My in the above equation,

so (100) a variant of (25).
Now we make a coupling argument similar to Section 2.7. We will do optimal coupling between Xf(t)_

(tl)w and X;_ in
Wo, ., distance in Section 2.7. For a small ¢, > 0, we take 17 (dvs, dv,) to be the optimal W5, .. —coupling

of pZ;)_(dvs) and p;—(dvs), that is

and X;_ in Wo, ., distance. This is the same strategy as the optimal coupling between X

Waeo (B P75 = [ o =TI ey, o)
X

Then we construct (73 (w), n{(w)) which represents 117 in the sense of Lemma 2.5. So we have

/ B (w), it (w))dw = / &(vs, va) TP (dus, dus).
0 R4 xRd

We consider some auxiliary equations (with A/ (dw, dz, dr) the Poisson point measure on the state space
[0,1] x RY with intensity measure dwu(dz)dr defined in Section 2.7):

¢ t
z = X —|—/ b(r, Ty, pr)dr + / / c(r,nt(w), 2, Zr_, pr— )N (dw, dz, dr), (101)
0 [0,1] xRd

t
= Kot [ Wrl).a o)

/ / | Rd r( ) 2, jf(r)—a Pf(r)—)/\/(dwa dZ, d?“) (102)
0,1]x

M X0+aTA+/ b(r. 7, py) dr+// we (it (w), 2,3 pp N (dw, dz, dr)(103)
[01de

t
/ / nr( ),z 773(]\)/[ ’p'r(r) JN (dw, dz, dr). (104)
0 1]><]Rd

One can check that z,, z7, z, and z/ " have the same law as X, XZ’ , XM and XM (solutions of the
equatlons (14), (19), (38) and (100)) respectively. We stress that z, a:t , and xp M are different from T,
M, and 27 (see (40), (41) and (42)). This is because we take different couplings so 7 (w) # n?(w)

and n2(w) # n*(w). We also remark that we take p, instead of p in (103) and take p” instead of p! "
in (104), so that we can obtain the following lemma.
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Lemma 3.11. Assume that the Hypothesis 2.1 holds true. Then

i) supElz] M —zF| — 0,
P

i) ElzM -z, — 0,

as M — oo.

Proof. These results are obtained in a standard way (see the proof of Lemma 2.6). O

We notice that ET’M and zM are simple functionals (belong to S 4y in the sense of Section 3.2. Then we
have

Lemma 3.12. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true.
a) For any p > 1,1 > 0, there exists a constant C; , depending on [, p, d and T such that for every 0 < ¢t < T,

supsup([|Z; || .15 + 12" | £,1) < Crp.
P M

b) For any p > 1,0 < t < T such that t > %, there exists a constant C, depending on p,d, T such that

sup(E(1/ det oz)") < C),.
M ’

c) For any ¢, > 0, there exists a constant C,, depending on €., d, T such that for every |P| < 1, we have
. _P,M —M i
i) 1Dz = Dy || L2, xrey < OP|7F=+,

ZZ) ||D(Zi\/[ — D:z'tHLZ(Q;lzx]Rd) —0, as M — oc.

Proof. We get a) by an analogous argument to the proof of Lemma 3.7 7). We have b) in a similar way to

the proof of Lemma 3.8 7). we obtain ¢) ¢) and ii) by some analogous arguments to the proofs of Lemma
3.9 i) and i4) respectively. O

Then applying Lemma 3.3, by passing to the limit M/ — oo, we obtain the following consequence.

Lemma 3.13. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true.

a) zJ and %, both belong to DL.. For any p > 1,1 > 0, there exists a constant C,, depending on , p,d and
T such that for every 0 <t < T,

S;ljp(l\fcfllw,p el ep) < Crp-

b) For any p > 1,0 < t < T such that t > %, there exists a constant C,, depending on p, d, T such that
E(1/detoz,)? < Cp.
c) For any e, > 0, there exists a constant C,, depending on €., d, T such that for every |P| < 1, we have
1
| Dz} — Dz p2 (01, xre) < C|P|ZFex.

Proof. Proof of a): We apply Lemma 3.3 (A) with Fy; = (z. ™, zM) and F = (z7,z,). By Lemma 3.11
1), ¢i) and Lemma 3.12 a), we obtain our results.

Proof of b): We apply Lemma 3.3 (B) with F; = zM and F = z;. By Lemma 3.12 b) and Lemma
3.12 c ii), it follows that E(1/det 0z,)P < C,.

Proof of ¢): We apply Lemma 3.3 (C) with (Fy, Fyy) = (), zM) and (F, F) = (z7, %;). By Lemma
3.12 ¢) i), we have || Dz} — D || 12 (1, xzey < C|P|TFe . O
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Finally, we can give the proof of (23). We recall that z; and z/ have the same law as X; and X/
respectively. For any & > 0, we take ¢,e, > O such thate, = =z ande = 5. So z2-(1—¢) = 1 — &
Thanks to Lemma 3.13 a),b), using Proposition 3.6.1, there exists a constant C' dependent on &,d, T

such that for any partition P of the interval [0, 7] with [P| < 1, when t > 3¢(8 + 1), we have

drv(X7,Xy) = drv(a], %)
< CWi(E],20) + | DZ] = DEil 72 (0, xpay]'°
= COWi(X],X:) +||Dzf - D72y, xray)]'
< O[P|+[P|==]'*
< CIPI*f =0,
where the second last inequality is obtained by Lemma 3.13 ¢) and (20). So (23) is proved. O

Proofs of Theorem 2.3 and Theorem 2.4:

Proof. Proof of Theorem 2.3 i): We recall in Section 2.7 that z; (solution of (40)) has the same law as
X, (solution of (14)) and by Theorem 2.1 a), L£(z;)(dz) = L(X;)(dz) = p;(z)dz. When t > 2¢(2 + d),
Lemma 3.7 ii) and Lemma 3.8 i7) give that ||2¢(| 1 444,8d(2+d) + X a(244) (2¢) < oo (with the notation ¥, (F)
given in (56)). Then we apply Corollary 3.5.1 i) and obtain that

[pe(2) = E(ps(Xe — 2))| = [pe(@) — Eps(a — 2))] < C8?, (105)

where C is a constant dependent on d.
We recall by (12) the definition of the Wasserstein distance of order 1. Noticing || Vis|loc < 577, We

get
1

[E(ps(X; — 7)) = E(es (X7 = 2))| < Wi (XM, X0) sy

So together with Lemma 3.10, there exists a constant C' dependent on d and 7" such that
1
E(ps(X: — ) — E(ps (XM —2))| < C(IP| + Vem) sag- (106)

Finally, applying the estimate (4.6) in Theorem 4.1 of [3] with X = x/" 07, (p)(dz) = pr M (dz)
and f(z) = s (), we get

N
, 1 ) 1
E(ps (XM — ) — N ZE(%(XZD’M’ —z))| < CVN@- (107)
=1

Combining (105), (106) and (107),

N
1 ; 1 1
Ipe() =~ D Elps(XTM = )| < CUIPI+ VER) g7 + Viv s +0°)
1=1

Then we optimize over § and N. We choose

5= ([P + vea) s

such that .
(IPl+ @)W =%
So
1 N M.i 2 d+1
Ipe(2) — > E(ps(X] M —2))| < CUIPI+ VEm) 7 + V([P + Vaar) ™ @3],

i=1
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And we choose N such that
Vv <|P| + Ve,
o)

(1P| + Ve T > V(| + Vear) ™45

Hence, eventually we have (34).

Proof of Theorem 2.3 ii): (35) is obtained in a similar way by using Corollary 3.5.1 ii).

Proof of Theorem 2.4 i): We take f € Cg°(RY).

Step 1: We recall in Section 2.7 that xf’M (solution of (42)) has the same law as XZ) M (solution of
(25)) and x; (solution of (40)) has the same law as X; (solution of (14)). We notice by Theorem 2.2 that
for any £ > 0, there exists a constant C' dependent on ¢, d, T' such that when ¢ > %(g +1),

[ s@ntdn) = [ @) )| < il x (P vE) 108)

with p; the law of z; (also of X;) and ,o7> M the law of 3: M (also of X, PMy
Step 2: We apply the regularization lemma Lemma 3.5 (B) #i¢) with F' = mt M and G = z;. For any
g > 0, we take ¢, e,,e9 > 0 such that

€o = and ¢, = d €= =
0T 22 1o T
So 5
l—-¢)=1-¢
24 e, (1=2) c
. . 41— )
Recalling in Lemma 3.5 (B) iii) that ¢ = 7 fEO = =5—, we have
PM 52 q
| [ 1@ ) = [ @ )] < Ol x (47 (PL+ )7 49, 109)
R
Here we have used the non-degenerated condition of z; and the fact that the Sobolev norms of z! ' and

x+ are bounded (uniformly in P, M). We have also taken advantage of Lemma 3.9 iii).
Then we optimize over §, 7 and p. In order to keep the notations clear, we denote temporary that

£ =(IP| +eum) 7.

We take
n=E7 and §=VE
such that
62 — 1— 5
=7 (IEQ =&
7t
We take moreover
41 —¢)
p =
€
such that
n’ = EE.
So (109) becomes
[ 1@ ) = [ @ )] < Ol x €75 = Clfll x (Pl +2) ™5, (110
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with C a constant depending on &, d, T and

—£
—&

= (|P|+em)ms = (|P| +ep)? 0779, (111)

Step 3: We apply the estimate (4.6) in Theorem 4.1 of [3]. We notice that ||V fs|loc < C||flloc X 5r-
Then we obtain

1 : 1
| [ I o) = 5 SUBUSXT )] < CllllcVi ¢ 5 (112
1=1

Now we optimize over N. We take N such that

(1—2)(d+3—¢) (d+5)57252)

Vn < (Pl +em) 2% = (|P|+em) T - Eo@), (113)
SO
VN 6d+1_(‘P|+5M
Then we have
| [ ) o ——ZE F5(XPM)| < Clfloe % (1P + a)' (114)

Combining (108), (110) and (114), for all f € C’{,’O(Rd), with 6 and N given in (111) and (113), when
t> 84(18 4 1), we have

N
[ 1@edn) = 5 SSBGSTM) + 1 x OUPI+ VEmD)' ™)
1 1; . i
= NZEAdf(Xf’M’Z+y)¢5(y)dy+ 1 £lloe x O(IP| + vEa)' )

N
= %ZEf(XZ*M” +0A) + || floe x O((|P| + VEar)—9), (115)

i=1

where A is a d—dimensional standard Gaussian random variable independent of X" i = 1
and O(e) is the Big O notation.
Since Cg°(RY) is dense in C,(R?), (115) holds for f € C,(R?). Finally, by Lusin theorem, (115) also

holds for any measurable and bounded function f.

a"'>N7

Proof of Theorem 2.4 ii): (37) is obtained in the same way as Theorem 2.4 i) by using Lemma 3.5
(B) iv) in Step 2.
O

4 Proofs

4.1 Sobolev norms

In this section, we give the proof of Lemma 3.7. We explain our strategy of the proof. We will first
prove that sup sup [|z] | r1,p < Clp, then by an analogous argument, we also have sup M Lip < Cilp
P M

M and

Afterwards, recalling E|z — 2;| — 0 in Lemma 2.6 i), and applying Lemma 3.3 w1th Fy =
F = z;, we get that z; belongs to DL and ||z¢|| 1,1, < Cip-

So now we only need to prove the following lemma.
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Lemma 4.1. Under the Hypothesis 2.1 and Hypothesis 2.4 b), for all p > 2,1 > 0, there exists a constant
C),p depending on l,p,d and T, such that

a) supsupE sup |xf’M|§’§Cl,p, (116)
P M 0<t<T
and
b) supsupE sup |Lz] M[P < O, 117)
P M  0<t<T

Before we prove this lemma, we give some pre-estimations concerning the Sobolev norms of ZF.

Lemma 4.2. Under the Hypothesis 2.4 b), for every | > 0, there exists a constant C; dependent on [, d such
that

i) sup |ZF, < C, (118)
k,ieN

it) sup |[LZf|, < C). (119)
k,ieN

Proof. i) We notice by the definition (93) that Df; , Zf, = &F, DG, in2F; =0, for k' # k, i’ # i or

i’ #j, D2ZF =0. We recall that ¢&¥ = U, (ZF) in Section 3.2. We observe that using Lemma 3.1 a), for
any k,i € N we have

1ZF 1 < 18T = [WR(Z) e < 1+ Cl1ZF [aaa + 1 ZF 1)

Since |ZF|11 = |€F| < 1, there is a constant C; such that |ZF|,; < C.
1) We notice by the definition (95) that

LZE, = 0.4 (€57 - €5DF, Wih(Zb).

We observe that [¢¥| < 1, and we have |0, (£F)?| = 20, (Z2F)d,r U1 (ZF) is bounded by a universal
constant (see (92)). These lead to

|LZik,j|l <1+ |D(Zk,i,j) In[h(Z)]|0).

We recall by Hypothesis 2.4 b) that h is infinitely differentiable and In 4 has bounded derivatives of any
order. Applying Lemma 3.1 «) and using (118),

1Dy mlR(ZE)]l < [nfh(ZF)][i41
< G+ |VIh(Z)IZf i +C sup |07 Inh(Z))||ZF |1
2<|BI<I+1
< (.
Then for any k,i € N, we obtain that |LZF|, < C;. O

Now we give the proof of Lemma 4.1.

Proof. Proof of a): We first prove (116). We will prove by recurrence on [. One can easily check by (45)
with
®(r,w, z,w,p) = enr (7(r), mp(w), 2, XT3 pZ )

and by Hypothesis 2.1 that for [ = 0, E sup |ch)’M|1’J < Cy,p- Then we assume that (116) holds for

0<t<T
Il —1with! > 1 and for every p > 2. We will show that (116) also holds for I and for every p > 2.
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We notice by the definitions (93) that DJAA = e;, where e; = (0,---,0,1,0,---,0) with value 1 at
the j—th component, D?A4A = 0 with ¢ > 2 and DZA = 0. Recalling the equation (52), we write

Eoilp \xt ‘]13,1 < Cpp(1+ A + As), with

T
A = E/O |b(T(T)a Z—D(vap(]\)/[) ;llj,ld,r7

M JT

P]W P,M
ZZ|C Tk 77Tk Wk) T(T’” 7p7.(Tik)_)‘1~,l)p‘
k=11i=1

Using Lemma 3.1 a), Hypothesis 2.1 and the recurrence hypothesis,
g PM
A < Cl,p[]E/O [Veb(7(r), 2 T (ry vPT(r) )|p‘$7(r) 7 dr

T
+ B[ sw 00r(r). T on P

2<|8|<I

T

< cl,p[/o B ML, dr+/ Bl M1,y dr]

< Gl + / ElzZ N[} dr). (120)
0

Next, we estimate A,. By Lemma 3.1 a), Hypothesis 2.1 and Lemma 4.2, for any k,: € N,

‘C(T(TLk)an’}’k(Wk)aZk l‘f(%) 7p.,_(7]l{c) )|1l

< (Ve (TF), npe W), ZF iy s oLy N+ Vel (TF) e (WE), ZE, a7 7 ey )

x(1Zf |10 + ‘xT(Tik)_ll,l)

PM P.M P.M
KO sup (1050 (TE), e W), ZE, 2L P ) x (2 P )
2<|B1+p2|<I ‘ ‘

< Ce(ZB + 27N

P,.M l
(Tlc T(Ti’“)—|1’l*1)'
Hence, using (45) with
i)(r,w, va’p) = E(Z)(l + |x77—)(77{\)4_|1,l + |z-,7—)(’1£\)4_|l1,l—1)7

Hypothesis 2.1 and the recurrence hypothesis, it follows that

M JE
A2 S Cl,pE|ZZ Zk 1+|$ |1l+|mT(Tk) |1l 1)|p
k=11i=1
<

Cz,pEI/ / A+ 2+ a0 5N (dw, dz, dr)|P
[0,1] ><]Rd

< Cl,p[l—k/o E\xf(’ﬁ\){ ’ildr—#/ E|xT(T lf,’l_ldr]
r M
< Cl,p[1+/0 Elzley |7 dr]. (121)
Combining (120) and (121), one has

E sup |z] ™M[P 1< Cl7p[1+/ E\xff)/[ 1.
0<t<T
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So we conclude by Gronwall lemma that

sup E sup |nc7> M b < Crp. (122)
P.M  0<t<T

Proof of b): Now we pass to the proof of (117). We also prove it by recurrence on (.
Step 1: We take first | = 0. We notice by the definition (95) that LA = A. So having in mind

that A has finite moments of any order, and recalling the equation (52), we write E sup |La’ M [P <
0<t<T
Co,p(l + S + Sg), with
T
S1 :]E/ |Lb(7'(r), T ,pT () )\ dr,
0
M JT
ZZ |LC Tk nTk (Wk) Zk ( ) apf(’;\wz{c),”)p'
k=11=1
Using Lemma 3.1 ¢), Hypothesis 2.1 and (116),
T
Si < B[ Vbl o P par
0
T
+ E [ sup [00b(r(r),al N p L N Plal N [T dr
P 10z 7(r) * Pr(r) 1%y 111
0 [B]=2
T
< Copll + / E|Lz |Pdr]. (123)
0

For S5, we observe that using Lemma 3.1 ¢), Lemma 4.2, and Hypothesis 2.1, for any k,i € N,

|Le(r(T), nge (W), Z xP(M) mfgli) )

< (\Vaelr(TE), e W), ZE 2 gy o 07 iy I+ Vel (TF) e W), ZE, 270007 1)
X(ILZF| + [La e 1)
+ o (0202 (TE), iy (WE), 2o ) % (28 + oy [f.)

_ . P,M
< Ce(Zb) (1 + LT |+ 10T ).

Therefore, using (45) with
(i)(raw,zava) = E(Z)(]- + |L$73 A | + ‘ ( ﬁ,l)v

T(r)—

using Hypothesis 2.1 and (116), it follows that

M JT
Sy < CopE( ZZ Zk 1+|L$ (TF)— |+|x (TF)— ‘11))
k=1 1i=1
= COsPEl/ / 1+|Lfl; ‘+| 77';(7];1 |1’1)N(dw,d27dr)|p
[0, 1]><]Rd
< Copll+ / E|LaT [Py, (124)

Combining (123) and (124), one has

E sup \sz’M|p§Co7p[1+/ IE|L:U \”d’r]
0<t<T
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Applying Gronwall lemma, we obtain

sup E sup |Lzl™M|P < Cp,p.

P.M  0<t<T
Step 2: Now we assume that (117) holds for [ — 1 with [ > 1 and for every p > 2. We will show that (117)
also holds for [ and for every p > 2. We recall the equation (52) and that LA = A, DJ-AA = e;, where
e; = (0,---,0,1,0,---,0) with value 1 at the j—th component, D?9A = 0 with ¢ > 2 and DA = 0.
Having in mind that A has finite moments of any order, we write E sup |Lz, ™|V < C,,(1 + By + Ba),

0<t<T
with
T P, M
B, =E / Lb(r(r), M o e dr,
M JE
P.M

B D Le(r(TF)mpe (WE), ZEs gy s o7 gy )"
k=11:=1

Using Lemma 3.1 b), Hypothesis 2.1, (116) and the recurrence hypothesis,

By

IN

T
PM  PM
CilE /O IVab(r(r), a7, o7 Pl LT M Py

T
+ E / sup  [00b(r(r), a N p AP+ [N AP (U [La N P ]
0 2<|B<i+2

IN

T
Crp[1 + / E|Lal [V dr). (125)
0

Next, we estimate B,. We observe that using Lemma 3.1 b), Lemma 4.2, and Hypothesis 2.1, for any
k,i €N,

LT (TF), g (W), ZE 2 iy o
< (Vo (TF) g W), Z5 2 gy 0 gy N+ Vaelr(TE), s (WE), ZE, 2707 D)
X(ILZE + | Ll 1)

+Csup (0010 e(r(T) e WE), ZE el iy )
rcip D g 102 Oa AT, iy ()= Pr(T) -

X (U4 |ZH2 + 127 ()04 | L2 + 1 LB i)

< Clc( )(1 + |L:ET(TI€) |l + (1 + |xp(7]1\i!€)_‘§i?)(l + ‘L:C (TF)— |l 1))
Hence, using (45) with
(i)(rawvszap) = ( )(1+|pr M ‘l+(1+|xPM ‘éi?)( +‘Lx7—(r) |l 1))7

using Hypothesis 2.1, (116), and the recurrence hypothesis, it follows that

s

M JE
P, M
By < CpE ZZ Zk (1+ |L5C (TF)— i+ (1+ |x ﬁ?)(l“‘ ‘Lx (TF)— li-1)))*
k=11i=1
P.M P.M P.M
< Ol,pE|/ /[0 . de YA+ [La oy [+ (1 + \xT(r)_ﬁﬁ)(l + [Laz(y_li-1))N (dw, dz, dr)[?
< Cpll+ / E|Lzl [Pdr]. (126)
0
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Combining (125) and (126), one has

T
B sup [Lallf < Ciylt+ [ BILaT Y far),
0<t<T 0

Then we conclude by Gronwall lemma that

sup E sup |fo’M|f < Cip. (127)
P.M  0<t<T

O

So now Lemma 4.1 is proved. Then by an analogous argument, we also have sup ||z, < Cip.
M

M and

Finally, recalling that E|zM — z;| — 0 in Lemma 2.6 i), and applying Lemma 3.3 with Fy; = «
F = z,;, we get that x, belongs to D% and ||z||1, < Cip-

4.2 Covariance matrices

In this section, we give the proof of Lemma 3.8.
Proof of i): We proceed in 4 steps.
Step 1 We notice by the definitions (93) and the equation (51) that for any M € N, any kg,790 € N,j €
{1a R d}:
t

D(Zkoyio»j)xiw = Tko Vmb(r’ xf"\/[’pT)D(Zkoyio-j)xiwdr

I;[rk k
{0<Tk0<t}]1{1<k0<1\/[}510 aZJC( 0 ’77 "0( O) Zloo’ Tko _ ’pT]:JO*>
7.0 2

+Z Z vzc(ﬂkang“ik(wik)aZikvxj]\“/}fvaff)D(Zko,io,j)x%cf’ (128)
k=1pko cpk<y
0 i —

M Jf
Dijt =ayle; + / Vb(r, z, ,pT)DA Mdr+22V o -,nTk(Wk) szka s PTk )D ka , (129)
k=11i=1
where e; = (0,---,0,1,0,---,0) with value 1 at the j—th component.

Now we introduce (Y;*);c[o 7 (this is a variant of the tangent flow and for simplicity of the expression,
we still call it the tangent flow) which is the matrix solution of the linear equation

M Jf
YM =1, /v b(r,zl, pr) Y, Mdr +> 3 " Vel .,nTk(Wk) Z“ka cprs )Y

k=11i=1

And using It&’s formula, the inverse matrix Y; = (Y;™)~! verifies the equation

k
7 /YMV b(r, ", pr dr—ZZ ¢ Vac(la+ Vo) N T 0 (W), ZE a7, pric_). (130)
k=11i=1

Applying Hypothesis 2.1 and Hypothesis 2.2, with C,, a constant not dependent on )M, one also has

E( sup (VM| + HYQMHP)) <G, < oo, (131)
0<t<T
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Then using the uniqueness of solution to the equation (128) and (129), one obtains
DG, i’ = 1{0<Tik§t}]1{1§k§M}€fYt 3 Le(Tf TITk (W), zf 7%% s PTE_), (132)

and Dz} = afYMe;
In the followmg, we denote the lowest eigenvalue of the Malliavin covariance matrix o, by AM . Then
we have (recalling the definitions (55) and (94)) '

d
MM = inf (o, m¢,¢) > inf ZZZ D(k”)xt ,O)% 4+ inf (Dfxiw, )2,
I¢l=1 K=t = i 1 I¢l=14—
=1 j= J
By (132),
M Jf
)\I{M = ‘l?f ZZZ|£]€|2 ZJ ‘anTk(Wk) xé»"?_7pTik—)?(}/tMY + lnf Z|CL eJ’ YM) C> 9
T k=1i=1 j=1

where Y* denotes the transposition of a matrix Y.
We recall the ellipticity hypothesis (Hypothesis 2.3): there exists a non-negative function ¢(z) such that

j=1
So we deduce that
M JE
MM > inf EFPe(ZB) (VMY + a2 inf |(YM)*¢|?
¢ ICHZ:;\ )I | IHfl( )¢
M Jf
> ZZIfEfIQQ(Zf)HYtMH‘2||Yf¥f||‘2+|a¥}4\2|\YtMll‘2
k=1 1i=1
M Jf
= mf HYMII 2IVMIEHO 0D T IEFPe(ZE) + o' ).
k=11=1
We denote
M JF
=" ek Pe(zh). (133)
k=1 11=1

By (131), (E sup ||Y;M|[*|y;M |4dr)/2 < Oy, < oo, so that using Schwartz inequality, we have
0<t<T

1
E| P <E(AY|%) < CE(x + [af | 72%))%. (134)
et o, m
Step 2 Since it is not easy to compute E(|xM + |aM 1|~ 2dp)) directly, we make the following argument
where the idea comes originally from [13]. Let T'(p fo ~le=3ds be the Gamma function. By a change
of variables, we have the numerical equality
1 1 > 2dp 1 _ (X +‘a1\l‘2)
= (Xt T )d
T + [ PP r(zdp>/ ’ "

which, by taking expectation, gives

1 - 1
X!+ lag! 224" T(2dp)

E( /°° 2P (O Hod 7)) g (135)
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Step 3 Now we compute E(e —s(x¢" +la7' I?) )) for any s > 0. We recall that I, = By, I, = By — Bj_1,k > 2
(given in Section 2.4), and & = W, (ZF) (given in Section 3.2). We take A (dz,dr) to be a Poisson point

measure with intensity R
Ag(dz,dr) := 15, (2)p(dz)dr.

Since for different k € N, I}, are disjoint, the Poisson point measures Ay, k¥ € N are independent. And we

M
put Oy (dz,dr) = > Ap(dz,dr). Then
k=1

Z/ |0 (2)%c(2)Ax(dz, dr) / /BM 2)Onr(dz, dr),

with U(z) = > |Wi(2)[*1y, (2). Using It formula,
k=1
E(e™') = 1 +1E/ / e LAV _ =)@ (dz, dr)
BM
— 1—/ E(e*Xr )dr/ (1—e v Z]llk
0 Bum

Solving the above equation we obtain

E(efsxff) _ exp(ft/ (1 75\11(262 Z]]‘Ik
Bm
M 2
= exp(_tZ/ (1 — e sI¥e=Pe)y y(dz))
k=17 1k
M L
exp(~tY [ (1= et b )
k=1"1x

M
= et [ 1=y (D)
k=1v"Fk

IN

= ep(t [ (=t (az)

with
o0

v(dz) =D Tpes ey (12D p(d2).

k=1

//F ©(dz,dr),

where B, denote the complementary set of By, and © is a Poisson point measure with intensity u(dz)dr.
Then in the same way,

On the other hand, we denote

e ) Sep(t [ (- wtas)

We recall by (24) that ¥ = \/T Jepepoary €2)uldz) = / ExM. Notice that using Jensen inequality for

the convex function f(z) = e, s,z > 0, we have

eslar' P < o=sEx < ]E(e_s’zy) < exp(—t/ (1 —e™*p(dz)).
B

c
M
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So for every M € N, we deduce that

E(e~*0¢" Hat 1)) = Ee=sxt") x eslor'I”

< exp(—t /B (1 — e (dz)) x exp(—t / (1 — e *Nu(dz))

c
M

= exp(—t / (1 — e *u(dz)), (136)
R4
and the last term does not depend on M.

Step 4 Now we use the Lemma 14 from [8], which states the following.

Lemma 4.3. We consider an abstract measurable space B, a o-finite measure M on this space and a non-
negative measurable function f : B — Ry such that [, fdM < co. For t > 0 and p > 1, we note

Br(s) = /B(l — e EYM(dz) and IP(f) = /OOO P Le—tBr(s) gg.

We suppose that for some t > 0 and p > 1,

lim i/\/l(f >

T 0na -

S

) > % (137)

then I?(f) < .

We will use the above lemma for M(dz) = v(dz), f(z) = ¢(z) and B = R¢. Thanks to (18) in Hypothesis

2.4,

lim c> 1) =6>0. (138)

7u—>oomy(f U

Then for every p > 1,0 < t < T, when 6 > % G.e. t > %), we deduce from (134),(135),(136) and
Lemma 4.3 that

|I)

IN

supE
Mp |det oM

SupE(AM| ) < Csup(E(|x} + |} | 72))

1 o0 M M2 1
C / s PR (e 0 Hler ) gg) 2
(F(de) 0 ( Jds)
1 i 1
C / §2IP—1 ox ft/ 1— e )y (dz)ds)? < oo. (139)
(3 | (-t ] v (dz)ds)

Proof of ii): We recall in Lemma 2.6 i) that E|z}/ — z;| — 0, and in Lemma 3.7 that ||z} | ,, < C} .
Moreover, by Lemma 3.9 i), we know that (Dz),/cy is a Cauchy sequence in L?(€;1? x R?). Then
applying Lemma 3.3 (B) with F; = 2 and F = x,, by (96), we obtain (97).

O

5 Appendix

In the Appendix, we give the proof of Lemma 3.9.
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Proof. Proof of i): We notice by the definitions (93) and the equations (52), (51) that for any partition
P:{OZTO<T’1 <o < Tp-1 <rn:T},M€N,anyk0,z'0EN,je{1,~-~ d}

t
Dfiaat™ = [ Vablrlr)aZil o7

P.M
) 2P Do) e () A
P.M P,M
+1{O<T;‘;}°gt}]l{lﬁkoSM}gi’zO@zjc(T(T )nTko(WkO) ZOO,/ITP( o) P o )
M Iy
P.M PM
+ZZVIC (T}) "Tk(Wk) zt,al. TP(Tk) » Pop (i) — )D(ko,zo,y)xr(Tk) ’ (140)
k=11=1
M ¢ M P.M M
D :“é‘”leﬁ/o Vab(r(r) 270y oy ) DS dr
M Jf
. P.M P,M P,M
+ZZV c\T nT’C(Wk) Z57IT?(Tk) ?p P(Tk) )DA (Tk) bl (141)
k=11i=1
where e; = (0,---,0,1,0,---,0) with value 1 at the j—th component. And
t
z M M z M
Dlkoio )T :/0 Vab(r, 2355 pr) Diyg g 5% dr
1{0<T;%U§t}]l{likOSM}gﬁjoazjc(Tko’nTkO(Wko) Zfof’,xf oPrio_)
M Jf
+ZZV ¢ 4’7]T" Wk) Zl "TT" ) Pk — )D(koﬂod)x% ’ (142)
k=11=1
M Jf
D2zM = alle; + / Vab(r,z), pr) DS dr + > " Ve (TF, 0 (W), ZF 2l prx)Dfapi . (143)
k=11i=1
co oo d
For u € Iy, we will use the notation |u|?, = |t(e,0,0)|7, = 2 Z z |u(ri g |*. We write E[D7, oo)mf M _
D(Z.7O,O)$é\4|l22 S C[Hl + H2 —+ Hg}, Wlth

t
HlZE‘/ Vzb(T(’l" P,M 'PM) A P,M
0

M g2
YT () 2 Pr(r) VD{00,0)Tr(r) A1 — /V b(r 27", pr) Dy o 02y dr i
Hy = ]E|]]-{O<Tg§t}]]-{ISOSM}((?ZOC(T(T;)’n%"g(wo.) Z3,x fplgp.) 7PP7>]E4T.) )
azoC(To.vn%o‘(Wo.)aZc?vxjj\{‘fapTo’*))hiv
M Jf
Hy = E|Y Y Vot (T, npu(WE), 2 250 05wy ) Do o)Toiriey
k=1 i=1
M Jf
ZZV c 4777Tk (W, Z x%,_,pTik_)D(Z.’o&)x%_|l22.
k=11i=1
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We take a small e, > 0. We recall ¢, in (27). Firstly, using Hypothesis 2.1, we get

t
0 < OB [ Vb)) ofl) = Vbt el o) LD oy
t

+ E 0 |vzb(7( )7 f(i\fapPM)‘ ID(ooo)xT(r) D(ooo M| ]

IN

CIE / (P2 + 27 — a2 4 (Wa(oT, 0)?IIDE o o2 [ dr

b [ BT Dl ]

Then by Lemma 3.7, using Holder inequality with conjugates 1 + 5 and 2? , by Lemma 2.6 and (50),
we have

t t
mo< OIPE+ [(@TY —al ey i [ Wape 7Y o) ar
t
P,M
+ /0 E|Doo<>)‘r (r) _D(Zo,o,o)xyllgzdr}
t
2
< ClPI+ew) ™= + [ BIDE o oal) = Df el o) (144)

Secondly, using Hypothesis 2.1 and the isometry of the Poisson point measure A/, we get

M J
H2 = EZZZ|82J Tk nTk(Wk) sz7 fpjypk) vpfplé/gﬂk) )*3z,~C(T¢k7772Tf(Wik)y I%c apT’C )|2

k=11=1 j=1
M Jf

< CEY. D IeZOPITP(TE) = TH + ks (VF) — g OVE)| + o750y, = |+ WaloTitly,  prs P
k=11i=1

< CE// P77 ) = o2 + (o) — )P

01]de
T =P VT o )Nz, dr)

= CE// Rl7P () = 72 + [0 (w) — 2(w)
o J[o 1]de
+ \xfp](bf)_—x%| +(Wl(pZ;]{{_)_,p,,))Q]dwu(dz)dr.

Then by (39), (43), Lemma 2.6, (50), and Hélder inequality with conjugates 1 + 5+ and 2? , we have

Hy

IN

t
C[IIP‘Q /(E|x ) —x7.|2+€*)ﬁdr+/ (E|x (r) xi\/[|2+€*)md7“—|—/ (W2+5*(Pf7;%)7/)7'))2dr}
0

C(P| +en) 7. (145)

IN

Thirdly, we write H3 < C[Hs 1 + Hs 3], where

M Jf
77 M P,M
H3,1 = ZZ |vxc Tk 77Tk (Wk) Zk P (T k) apTP(Tlc) )
k=11i=1
- V’»KC(Tik7 77%& (Wzk)v Zf? x%c_’ pTi’“—)||D(Zo,o,<>)x1]\"{k_|lz)27
M Jf
P.M LPM
H372 = E(Z Z |V$C(T(T’zk)7njl“bk (Wk) sz7 T7’(Tk) 5p,,-7>(Tk )||D(o7o7<> T(Ti(c), - D(Zo,o,o)x’lj\%_hz)?

k=1 1i=1
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Using Hypothesis 2.1 and (45) with

(i)(rawvzawap):|VIC(T(T)7n'}(w>7Z7mf7;JE{«) apf’l’lé/{a) )_vwc(rang(w)7Z7$i\4—apr—)||D(Z.)o)<>)x7]‘w—|lza
we get
' PM  PM
iy < B([ [ [Vaetr) o) el T )
[0,1] xRd
- V CT 777"( ) var sy Pr— )||D(.o<> M|l2 (dw dZ dT))
< CE// 177 ) = 2+ bk a) = n20)
[0,1]
+ |x7-7’(r) el +(W1( TP(T)  Pr—)) ]|D.Oo)xr_|l22dwdr.

Then using (39), (43), Lemma 3.7, and Holder inequality with conjugates 1 + < and 2? , we have

t
Hyy < C[|73|2+/ (Bla? = oy 2oy dr

t

¥ / (BT — el ey e [ (Wase (004 pon)Par
0

< C(P|+en) ™=,

where the last inequality is a consequence of Lemma 2.6 and (50).
Using Hypothesis 2.1, (45) with

= .M P,.M P,M
(b(’l", w, z,w, p) = |Vwc(7'(7‘), 7771(71))7 2, xTP(T)fﬁ p‘,—P(r)f)HD(Zo’o,o)xT(r)— - D(Zo,o,o)xrj\{|127

we have
t
Mo < B([ / 1 0,2 0T TR DI 2T Dt N )
X
P.M
< / IE|DQO<>):C (r)— D(ooo)zr—‘lgdr
Therefore,

t
Hs < C[Hz,+ Hss) < C[(|P] +enr) = +/ EID{, o oyw i = Dfa o oyrt!fdr].  (146)
0
Combining (144), (145) and (146),
P,M zZ M2 52— ! zZ M
E‘D (o,0 o)‘rt D(o,o,o)xt |l2 < C[(|P| +€M)2+E* +/0 ElD(o,O,O T(’I”) D(o 0,0) | ]

In a similar way, we notice by (116), the isometry of the Poisson point measure N, and (45) with
B(r, w, 2w, p) = Vaelr(r), nh(w), 2,220 oL VDG 0 el
that
E|‘D(oo<>)xp(];/[ DZooo)xt | < C|P" (147)

SO

t
E|DZ , 11 ™ — DE o2t 2, < CU(IP| +en) ™= + / E|DZ, , ool ™ — D, a2 dr).
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We conclude by Gronwall lemma that E|D7, O)mp M - D{,. o) o7, < C(P| + en) e . Finally, by a

similar argument, E|D, z, P — Diya e < C(IP| +en) = ==, and we obtain what we need.

Proof of ii): We only need to prove that for any M, M, € Nwith e, ang, < 1and [6(2) 2Lz ann) <
1, we have

_1
HDxiwl - Dxi\bHL?(Q;l?x]Rd) < (e, +Em,) T (148)

In fact, if (DxM)yen is a Cauchy sequence in L2(Q;1? x RY), then it has a limit Y in L2(Q;/? x R9).
But when we apply Lemma 3.3 (A) with F; = XM and F = X;, we know that there exists a convex

map ;. mar
combination Y. M, x FM  with 4}, >0,M’' = M,....myr and >, ~Y, =1, such that

M'=M M'=M
Z vt x Dz} — Day — 0,
L2(9;12 xR4)
as M — oo. Meanwhile, we have
mm mwm
M M’ M ’
Y M xDFM -y < S a4 ’Dxt —Y’ _
— — L2(12 xR4)
M'=M L2(;12 xRD) M'=M

So Y = Dz, and we conclude by passing to the limit M5 — oo in (148).
Now we prove (148). We recall the equation (142) and we write ]E\D (0.0,0)F Ml D(Z. 0,0) Tt |12 <
C[Ol + Oy + 03} with

t t
0, = IE|/ V.:b(r, xyl,pT)D(Z.,o7o)xyldr —/ V.:b(r, a:yQ,pT)D(Z.p.o)asdeﬂlQZ,
0 0 '

02 = E|]]'{O<T'<t}(]]'{l<o<M1}8Zo ( ovnT’(W.) IJI\:['I—HDT' )

- 1{1<0<M2}82<> ( oanT'(W.> x’ZI\"/Igf’pT;*))hz’

My JE
03 = E|ZZV$C ‘,T]Tk Wk) z’ Tk 7pT1.’C )D(ooo) ]VII
k=11:1=1
My JY
Mo M
— ZZV C A’T]Tk Wk) sz; T" 7pTik7)D(Zo’o’<>) 2 ‘lz
k=11i=1

Firstly, using Hypothesis 2.1, we have
01 < CE / 920,220, ) — Vb2, ) Dfe ooyt [F,dr
b B [ Vablr 2 ) FIDG g~ Dyt ]
< / [} — 22 P|DE, oyt |l2d7"+/0tE|D(Z.,o,o)$£Ml D, o oy |7, dr].
Then by Lemma 3.7, Holder inequality with conjugates 1 + 5 and 2;%, and Lemma 2.6, we obtain

O1

IN

t
C[/O (E|zMr — xf,\42|2+5*)ﬁdr +/ ]E|D(. R O)le — Di7070)xM2|2 dr]

IN

i
Cllea, + )7 + /0 E[D{, o020 = Dy o 0yt |1, dr). (149
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Secondly, using Hypothesis 2.1, the isometry of the Poisson point measure N, we have

M, JE

Ezzz‘azjc '777Tk Wk) ) T’” 7ka )_a (TanTk(Wk) ’ Tk aka )|2

k=11i=1 j=1

0o

IN

MyV Mo t/

+ E Z ZZlazJ ”77T’C Wk) xij\% Prk— )|2}

k=MiAMs i=1 j=1

M JE MiVM, Jf
< CEYL S [ZPlll —a FE Y Yz
k=1 i=1 ‘ k=M AM, i=1
t
< m/”/ () Pl — MPNdezm*+E/u/ / &(2) [N (dw, dz, dr)]
0 [0,1] xR4 [0,1] J{|= |>M1/\M2}

¢
= C’[E// \E(z)ﬂz%fxf/[_z|2dwu(dz)dr+E// / &(2) | dwu(dz)dr].
0 J[0,1]xRe 0 J[0,1] J{|z|>MiAM:}

Then by Holder inequality with conjugates 1 + 5 and 2;“%, Hypothesis 2.1 and Lemma 2.6,

O, < C[/Ot(IExiwl — zfnwz|2+€*)ﬁdr+€MlAM2]
< Clea +en) ™5 (150)
Thirdly, we write O3 < C[O31 + O3 2 + O3 3], where
MiV Mo t

O3, = Z ZW ¢ ivnTk Wk) 27 ];ZQVMaPT;u)HD(.oo)fCMIVM2|l2)2v
k=M AM; i=1

M1A1v12 JE
03,2 = Z Z|V c i’nTk Wk) > % aka )
-V C(TzkanTk(Wk) 17 évﬂjk ) PTk — )HD(Zo,o,o)xq]\{lg_hz)Qa
Ml/\Mz tk
03,3_ Z Z|V$C ‘,77Tk Wk) xfzj\il ?ka )||D(oo<> Ml D(ooo) 7]\’4;62_|12)2'

Using Hypothesis 2.1, Lemma 3.7, (44) with

B(r,w,7,w.p) = [Vaelr, 2 (w), 2, 22V, )||DZ, | M0V,
we get
t
Os1 < K / /M /{ e [Tl ) 2 1D N )
>MyiANMo
<

C[(/{Z>M1/\M2} E(Z)M(dz))Q + /{|Z|>M1/\M2} |E<Z)|2M(dz)]

= CepmaM,-

Using Hypothesis 2.1, Lemma 3.7, (45) with

‘i)(r7waz7w7p) = |V$C(T7 nz(w)vz7m7]—v£l7p7'—) - ch(r, nz(w)’z7x£/£27p7" )||D e 0 O)x ‘l27
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, we have

. . . . . Ex 2 Ex
by Lemma 2.6, and Holder inequality with conjugates 1 + - and j

03,2 S / /[0 1] ]Rd|v;cc'r 777( )7 2, r—apT )_vxc(rvnz(w)vZaxﬂ/izvpr—)HD(oo<> |52 (dw,dz,dr))2
X
< C]E/ / 2 — 22 2| D, oy 22|, dwdr
[0,1]
< C/ (Bl — af2[+=) = dr
< Clens, +em,) T,

Using Hypothesis 2.1, (45) with

(I)(Tawvzava) = |va(T,T]?(W),Z,I7{VE,pT )||D(ooo)x D(ooo)x |lz’

we have
t
0373 < E(/ / - |V$C(T’ n?(w)a 2 xi\{l’pr )”D ,0 o)xi\{l l)(Zo,o,o)xi\{2 |12N(dw7 dz, dr))z
0,1] xR
< C/ E|D(oo<> oo)xr— |l2dr
Therefore,

t
O3 < ClO37+ 032+ 033 < Cllem, +em,) e + / E|D{, , ozt dr — D, @2 |7,dr]. (151)
Combining (149), (150) and (151),

(®,0,0) ,0,0) i\/[2|122d7“].

t
2
E|D{, o oyt = Dl ooyt 2lf, < Cllen, + ) 75 + / E|D{ o0 = DG,

So we conclude by Gronwall lemma that E|D(. R O)xt D(. o O)a:t

l2 < C(ajvjl =+ 5]%2) 2+£* .
Finally, we recall by (24) that a}/ \/ T | (21> € )u(dz) and by Hypothesis 2.3 that ¢(z) < |¢(2)|?.
We notice that

I[-3|aJTM1 es — aT e<>|]Rd < C’E|a - a¥2|2 <C c(2)p(dz) < epyans,-
{|z|>M1AMs2}

Then by a similar argument as above, ]E|D(A<> — D¢ O)xi‘b 2. < Clem, +e Mz)ﬁ , and we obtain (148).

Proof of iii): iii) is an immediate consequence of 7) and 7).
O
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Abstract In this paper, we establish an abstract framework for the approximation of the invariant prob-
ability measure for a Markov semigroup. Following Pagés and Panloup [40] we use an Euler scheme with
decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate
and some regularization properties, we give an estimate of the error in total variation distance. This
abstract framework covers the main results in [40] and [14]. As a specific application we study the con-
vergence in total variation distance to the invariant measure for jump type equations. The main technical
difficulty consists in proving the regularzation properties - this is done under an ellipticity condition, using
Malliavin calculus for jump processes.
Key words: Invariant measure, Unadjusted Langevin algorithm, Euler scheme with decreasing steps,
Total variation distance, Malliavin calculus, Regularization lemma, Jump process
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1 Introduction

The aim of this paper is to study the convergence to the invariant measure of a Markov process. We refer
to [18], [35], [38] for the existence of an invariant probability measure for a general Markov process and to
[41], [42] for some basic computation of the invariant probability measure for a Lévy process. Following
the ideas from Pages and Panloup [40] (see also Lamberton and Pages [30] [31]) we use an Euler scheme
with decreasing step (known in the literature as the unadjusted Langevin algorithm) in order to construct
our algorithm (this has been studied in depth in [45]).

Our paper has two parts. In the first part we construct an abstract framework which is appropriate
in order to state and discuss our approximation problem. We focus on the estimate of the error in total
variation distance. And the main achievement is to give some sufficient regularization properties for the
semigroup and for the Euler scheme, which allow to treat bounded and measurable test functions. Fur-
thermore, in order to check such regularization properties, one has to use integration by parts techniques
inspired from Malliavin calculus. We give a regularization lemma based on such arguments, which is the
crucial step in our approach (it has its own interest, beyond the application in this particular framework).
Let us mention that the abstract framework settled in our paper encompass the following recent results:
in [40], the authors use unadjusted Langevin algorithm to approximate the invariant probability measure
of a diffusion process and study the Wasserstein and total variation distance between them. In [14], the
authors approximate the invariant probability measure of a Lévy process but only study the Wasserstein
distance.

In the second part of the paper we illustrate our results in the case of jump type SDE’s. In order to
do it we recall the Malliavin calculus for jump processes and prove estimates of the Sobolev norms and of
the Malliavin covariance matrix for the solution of such equations. These estimates are rather long and
technical, but at a certain extend they come back on results already obtained in [44]. Once these estimates
are proved, we apply the abstract results from the first part and obtain the estimate of the error in total
variation distance.

Let us present in more detail our results. We give in Section 2 the abstract framework of the approx-
imation for the invariant probability measure. We denote C}(R?) the space of [—times differential and
bounded functions on R¢ with bounded derivatives up to order [. We consider a semigroup P,,t > 0
on the space M;(R?) of the bounded measurable functions on R? and assume that there exists at least
one invariant probability measure v for the semigroup P;,¢ > 0. We assume moreover the "exponential
Lipschitz property": there exists two constants Cy > 1 and p > 0 such that for every ¢ > 0 and every
p € Gy (RY)

(Lo) VPl < CollVell o e
This immediately implies that v is unique.

In order to approximate the invariant measure v, we introduce an Euler scheme with decreasing time
steps (unadjusted Langevin algorithm). For every v > 0 we give an operator P, : Cg° — C° such that
|P,¢llso < |l¢]loo and which approximates our semigroup in the following sense: for every v > 0

Alko, @) [|(Py = Po)¢ ]l < Cro [Vl 007+

Here o > 0 is a given number, ko € Nand [|¢[[,, ., = >_ [|0%¢|,, . We consider a decreasing sequence
7 la| <ko

n
of time steps v, | 0 and define the time grid ', = > ;. We assume that

=1
oo
(M Z;% = nl;rrgo I, =0
i—
We also introduce
% = @(()nen) = Tim 2T o oo
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The typical example is 7, = 1 and then @ = 1. In the following we denote {I'} = {I',,n € N}. And, for
I' <t < T;y1 wedenote N(¢t) = ¢ and 7(¢t) = I';. Then, for s € {I'} and ¢ € {I'} we define the Euler

scheme
N(t)—1

Ps,t = H ﬁ'yla 1)

i=N(s)

the product being understood in the sense of composition. This means that we travel from 7(s) to 7(¢) by
using the Euler scheme associated to the one step Euler scheme P.,,.

So now we use the Euler scheme with decreasing time steps Py, (given in (1)) to approximate the
invariant probability measure v. Our aim is to estimate the total variation distance between them. To do
so, we need some regularization properties. First we give the regularization hypothesis concerning the
semigroup P;:

IA

Rp(k)  sup [VPl)_1 Cr el and
1<t<2

Rip (k) 1§I§E2IIVPtsDIIk71,OO < GVl -

We also introduce the following variant of the Lipschitz property:

Zk ||VPtg0Hk,oo S Ck ||V<}9Hk,oo ) 1 2 t> 0.
We give now the regularization properties for the Euler scheme P, ;. To begin, we introduce some
notations. We fix a super kernel ¢ (see (18) for the precise definition), and, for 6 € (0,1] we denote
ds(y) = 5%(;5(%). Moreover, for a function ¢ we denote s the regularization by convolution with the
super kernel: @5 = ¢ * ¢5, with x denoting convolution. For 6 > 0,7 > 0, and ¢, x, p € N we denote

54
5, _ — K
Aq,ﬁ,p(h) = ﬁ + n PhP + n, h > 0.
Let 3 > 0 and p > 1 be fixed and we assume the following regularization property for the Euler scheme
P, ;: we assume that for every ¢, x € N there exists a constant C' = C,, . ,, such that for every § > 0,1 > 0,
every 1 <t < r < t+ 2 and every bounded measurable function ¢

Rﬁ(?a B) Hptfl,tpt,r@ - ?tfl,tptm@duoo + Hptfl,t?t,rso - Ptfl,tpt,rSO(SHOO
< G X AP (V) I0loc -

Now we can give our main result (see Proposition 2.1.1). We assume that an invariant probability
measure v exists for the semigroup P;,t > 0. We construct an Euler scheme with decreasing time steps
P, by (1). Suppose that (Lg) holds for some p, A(kq, @) holds for some ko, o with p > aw, Rp(k), R (k)
and Ly, hold for every k, and Rz(p, 8) holds true for some p, 5. Then the invariant probability measure v
is unique and for any ¢ > 0, for every 2 € R? and n large enough,

oy (Por, (2,)0) < C.OI % 4 [ o= yldvg)e ™)
R L

We remark that we get the same speed of convergence as in [40] and [14], but in a more general framework.

We notice that we need some regularization properties (see Rp(k), R(k) and R5(p,5)). In order to
obtain these properties, we introduce in Section 3 an abstract framework built on a particular case of the
Dirichlet form theory (see [4] and [7]) in which such a property may be obtained by using some integration
by parts techniques. Those techniques are very similar to the standard Malliavin calculus but are presented
in a more general framework which goes beyond the sole case of the Wiener space. In particular, we aim
at providing a minimalist setting leading to our regularization lemma. Our unified framework includes
the standard Malliavin calculus and different known versions: the calculus based on the splitting method
developed and used in [5], [6],[8] as well as the I'—calculus in [4]. We also mention that our approach
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applies in the case of the Malliavin calculus for jump type processes as settled by [12] and in the "lent
particle" approach for Poisson point measures developed by [13].

In Section 4, we apply the results in Section 2 for jump processes. So we consider the d—dimensional
stochastic differential equation with jumps as follows:

X, = x—l—/b dr+// (2, X,—)N(dz,dr), (2)
Rd

where N(dz,dr) is a Poisson point measure on the state space R? with intensity measure N (dz,dr) =
p(dz)dr, z is the initial value, y is a positive o-finite measure on R?, and b : R? — R%, ¢ : R? x R — R4,
Some basic background of jump processes can be found in [15], [19], [46], [47] and [3].

We need to give sufficient conditions to ensure the existence of an invariant probability measure for
the jump equation (2). We recall by [18] the classical results of the existence of an invariant probability
measure for a general Markov process. Recently, [33] gives some specific criterias for the existence of an
invariant probability measure of a jump process and also discuss some ergodicity properties. Here we
suppose that (Hypothesis 2.5)

T 2
bl -yl

i) {x—y,b(x) —b(y))
| c(2) [z -yl

<
i) Jez) - czy) <

and
i) 2 — / (26(2) + 2(2)(dz) == 0> 0.
Rd

Our conditions are based on [18] and are essentially the same as the conditions in [33]. Indeed, the
conditions above implies that for some 3, > 0 and a Lyapunov function V(z) = |z|°, we have LV <
3 — aV,with L denoting the infinitesimal operator of (2). This guarantees the existence of an invariant
probability measure v.

Moreover, in order to apply the Malliavin framework in Section 3 and obtain regularization proper-
ties, we assume (see Hypothesis 2.4 b)) that the measure y is absolutely continuous with respect to the
Lebesgue measure: p(dz) = h(z)dz, where h is infinitely differentiable and In i has bounded derivatives
of any order. We also need some regularity and ellipticity conditions on the coefficients (see Hypothe-
sis 2.1~2.3 for details). We mention that for every multi-indices §;, 32, we assume that there exists a
non-negative function ¢ : R¢ — R, such that

le(z, )| + 102207 (2, )| < &(2),

with [, ]¢(2)|Pu(dz) < oo, ¥p > 1. We also assume that there exists a non-negative function ¢ : R* — R,

such that for every ¢ € RY,
d

D (0:,¢(2,2),0)* = c(2)[¢.
j=1
Now we construct the Euler scheme. We take a partition with decreasing time steps P = {0 = Iy <
rh <---<I'y-1 <I, < .-} with the time steps v, = I, — I';,_1, n € N verifying some suitable
conditions (see Section 4.3 for details). For I';, < ¢ < I';,4; we denote 7(t) = I',,. We consider the Euler

scheme:
t t
X7 = x+/0 b(Xf(T))dr—k/O /Rdc(z,Xf(r)f)N(dz,dr).

Some results concerning the convergence of the Euler scheme of a jump equation can be found for example
in [43],[22], [24], [23], [21], [25] and [2].

Since p(R?) = co (which is a consequence of Hypothesis 2.4 a)), we have infinitely many jumps. So we
construct the truncated Euler scheme in order to have finite numbers of jumps for the sake of simulation
and Malliavin calculus. For m € N, we denote B, = {z € R?: |z| < m} and denote

m = é(2)2uldz é(2)u(d2)|?.
e Al el [ el
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For every v > 0, we define the truncation function M (+) € N to be the smallest integer such that

EM(y) S 72

ForT',, < t < T'»41, we denote Mp(t) = M(yn4+1). Now we cancel the "big jumps" (the jumps of size
2 > Mp(1)):

xXPMr = g +/ b(x PP dr—i—/ / o(z, X AP IN(dz, dr). (3)
B

7(r)
Mp(r)

We remark that the solution of the equation (3) can be constructed in an explicit way.

Then we apply the abstract framework in Section 2 for X 7-M7 and obtain the following main result (see
Theorem 4.1): An invariant probability measure v of the j Jump equation (2) exists and is unique, and for
any ¢ > 0, there exists a constant C. such that for every z € R? and n large enough, we have

dry (L(XEM7),v) < Celmy™° + / o = yldvy)etT),
R,

with £(X) denoting the law of a random variable X. We notice that we obtain the same speed of conver-
gence as in [40] but [40] concern the diffusion process driven by a Brownian motion while here we consider
the jump process. Comparing with the results in [14], we also obtain the same speed of convergence but
[14] only deals with the Wasserstein distance while in our paper, we deal with the total variation distance.

2 Approximation of the invariant measure: Abstract framework

2.1 The semigroup and the invariant measure

We consider a semigroup P;, ¢ > 0 on the space M, (R?) of the bounded measurable functions on R, We
denote C}(R?) the space of —times differential and bounded functions on R? with bounded derivatives
up to order [. We will use the following two hypotheses:

(1) We assume that there exists at least one invariant distribution for the semigroup F;, ¢ > 0.

Moreover we assume the following "exponential Lipschitz property": we assume that there exists two
constants Cy > 1 and p > 0 such that for every ¢ > 0 and every p € CL(R?)

(Lo) VPl < Col[Vell e ™. 4)

We also denote by P; the space of the probability measures on R¢ which have finite moment of order
one [, |x|v(dz) < co. This is a Banach space under the Wasserstein distance 1;:

Wi(v, 1) —sup{‘/ pd(v — p ‘ Vel < 13

Proposition 2.0.1. Suppose that the semigroup P;,t > 0 has at least an invariant probability measure v and
that (4) holds true. Then the invariant probability measure is unique and moreover, for every x € R

Wi(v, Py(z,-)) < C’/ |z — y|v(dy) x e P*. (5
R4

Proof. Step 1 We will prove that for sufficiently large ¢, the application v — v P; is a strict contraction
on the Wassertein space: using (4),

[ e~ uryas)

/ Pap(@)d(v(z) — ()

IV Pl o Wi(v, 1)
Co IVl o e P Wi (v, ).

IAIA
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This means that, for large ¢
1
Wl (VPt7 /LPt) < COe_ptWI (Va M) < §W1 (Va ,U/)

and this guarantees the uniqueness of the invariant measure.
Step 2 Since v is an invariant measure

/Rd p(2)v(dz) = /Rd /Rd P,(z, dy)(y)v(dz)

which gives, for every fixed x € R? (v is a probability)

/ p(dz) — | P, dy)e() / /<Pt<z,dy>—Pt<x,dy>>so<y>u<dz> ©
R4 R4 R4 JRd

[, (Piol) = Peglautaz)

so that

IN

/Rd p(2)v(dz) — /Rd Pt(:c,dy)gp(y)‘ VPl /Rd |z — 2| v(dz)

IN

Coe Vil [ o= 2lv(d)

which yields (5). O

2.2 The Euler scheme

We introduce now an Euler scheme with decreasing steps. First, for every v > 0 we give an operator
P, : Cp° — Cp° such that |[Py¢||s < ||¢|l and which approximates our semigroup in the following
sense: for every v > 0

A(ko, ) [[(Py = Py)¢|| o, < Ci [Vl 007 )

Here o > 0 is a given number, ky € N and

lly oo = D 10l -

|| <ko

Moreover, we consider a decreasing sequence of time steps v, | 0 and define the time gridI',, = """, 7;.
We assume that

(T) ;7 = lim T, = co. (8)
We also introduce
© = ((T)nen) = Tm I <o,
n—0oo ’Yn-i-l

The typical example is 7, = 1 and then @ = 1. In the following we denote {I'} = {I',,n € N}. And, for
I'; <t < Ty, we denote
N(t)=1i and 7(t)=T;.

In particular, for t = T'; € {T'} we have N(t) = i such that t = T'y(,. Then, for s € {I'} and ¢t € {T'} we

define the Euler scheme
1

— N(t) J—
Ps,t = H P’yi (9)
i=N(s)
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the product being understood in sense of composition. This means that we travel from 7(s) to 7(¢) by
using the Euler scheme associated to the one step Euler scheme P,. In the appendix 7.1 we will prove
the following lemma (which is a slight generalisation of the lemma given by Pages and Panloup [40]): for
every p > ow, there exists n, and C,, such that for n > n,

n

Z'y}“"e_p(r”_r") < Cp%(f- (10)

i=1
Moreover, there exists n, such that, forn, <i<n
v < el (11)

Notice that P;,¢ > 0 is a homogeneous semigroup, and we may define P; ; = P,_; = Py ;_,. In contrast,
Psy,s < t, is not homogeneous: we do not have P,; = Pg;_,. This is due to the fact that the greed
I';,4 € N is not uniform.

Finally we assume the following stronger variant of the Lipschitz property Lo:

(ko) IVP&lliy o0 < Cho IVl 1y,00 €~ (12)

where ky is the one from A(k, «).

Proposition 2.0.2. Suppose that (7) and (12) hold true with p > aw. Then for N(t) > n, + 1, we have

[(Ps.t = Pst)e|l o < Cro VOl 00 Yo (1)- (13)

Proof We use (7) first and (12) then

N(t)—1
H(Ps’t o Psvt)s"Hoo < Z HPS’Fiﬂ(P% - P‘/i>PFi,t‘PHoo
i=N(s)
N(t)—1
< Z H<Pw _Pw)PFi,ﬂPHOO
i=N(s)
N(t)—1
< Cro Y IVPreplly o0 ™

i=N(s)
N(t)—1

< Cllco Z Hv(p”kmoo,yl_lJrae—p(FN(t)—qu)
i=N(s)

< Gy IVOllkg 00 TR0t

For the last inequality we have used (10). OJ

Remark. Suppose that (7) and (12) hold with &k, = 0. We also suppose that an invariant probability mea-
sure v of the semigroup P;, ¢ > 0 exists and that (4) holds true. Then Proposition 2.0.1 and Proposition
2.0.2 give that for every z € R%, we have

Wi (v, Poy(z,-)) < Clyve + /d |z — y|v(dy) x e P").
R

For this result, we do not need any regularization properties. In order to obtain the result for the total
variation distance, we give some regularization properties in the next subsection.
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2.3 Regularization properties

In this section we will assume that the semigroup and the Euler scheme have some regularization prop-
erties which allow to obtain convergence in total variation distance.
First we give the regularization hypothesis concerning the semigroup:

Rp(k)  suwp VPl 1o < Cillgls. and (14)
1<t<2

Rip(k) S VPl 00 < Cr Vel » (15)

Such a regularization property is proved using the integration by parts formula in Malliavin calculus.
Moreover, we suppose that we have the following variant of the Lipschitz property:

L i) VPl < CelVellge™, t2>1, (16)
i) VPollo < CrllVeolya, 12t>0.

Notice that Ly, i) is weaker then L, (see (4)) because we have IVelly o instead of [[Vel| . However, if
the regularization property R’ (k) holds then Ly, i) implies Lo (for ¢t > 1). Indeed, Ly, gives

VPl o

IV(Pi-1Pro)|l o < CIIVPiolly, o e P(t=1)
ClIVell. e Pt=1)

IN

the last inequality being the consequence of R’,(k). In particular, if an invariant probability measure v
exists, then it is unique and we have (5).

Remark. We also notice that R/, (k + 1) and Ly, imply Ly. Indeed, for t < 1, Ly, ii) gives
VPl 0o < Cr IVl 00 < €Cr [Vllg 0o €7
and fort > 1

IVPeloo = VPPl < C VP10 o
C IVl o0 ™.

IN

Moreover, for t > 1, L;, and Rp(k + 1) give

drv (P, ),v) < ([ o=yl duly))e™, an
R
where d7y denotes the total variation distance:
drv(uv) = swp | [ fautdn) - [ faw(ao).
Ifllc<1 JRE R4

Indeed,

|Prp(x) — Pro(y)] |Pi—1Pro(x) — Pi1Pro(y)|
Cr [I[VP1oll e 7Y |z — g

CrCrrre” [l e |z —yl .

A

IN

Then we come back to (6) and we obtain

[ otewaa) - Pt<x,dy>w<y>]sc||sanw | e le—iuan)
Rd Rd Rd
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so (17) is proved. [J

We give now the regularization properties for the Euler scheme; this is a more delicate subject, because
we have some difficulties in order to use directly the Malliavin calculus for the Euler scheme (the reason
is that the decomposition using the inverse of the tangent flow does not work, and so the proof of the non
degeneracy property is more difficult) .

We introduce some notations. We recall that a super kernel ¢ : R? — R is a function which belongs to
the Schwartz space and such that for every multi-indexes 5; and 2, one has

o(z)dr =1, / v o(y)dy =0 for |B1]>1, / [yl |0s,0(y)|dy < oo for meN. (18)
R4 R4 Rd

We fix a super kernel ¢. For § € (0, 1], we denote ¢5(y) = 5:¢(¥%) and 5 the regularization by convolution
with a super kernel:
05 = P * @5, (19)
with * denoting convolution.
As usual, for a multi-index 8; = (31, ,87") € {1,--- ,d}™, one denotes |3;| = mand y** =[", Ygi-
For § > 0,7 > 0, and ¢, x,p € N we denote

q

6 — K
Al (h) = g TRt >0,

Then we assume the following:
Let 8 > 0 and p > 1 be fixed. We assume that for every ¢, x € N there exists a constant C' = C; ,, ,, such
that for every § > 0,1 > 0, every 1 < t < r < ¢t + 2 and every bounded measurable function ¢

R5(p, B) |Pr-1,4Prrp — Pr14Pirs|| o+ || Pi-14Prre — Pi14Prrps|| (20)
< Comp X AV (V1) 19l -

This represents the "regularization property for P;_; ;”. In order to prove it, one employs Lemma 3.5
(see (38)) in Section 3.1.

As a consequence of these properties, we obtain the following lemma. We recall n, and n. in (10) and
11).

Lemma 2.1. We fix § > 0 and p > 1.Suppose that (7) (12) hold with p > aw, and Ry (p, 3) Gee (20))
holds. Then, for every ¢ > 0 there exists a constant C. > 1 such that forevery s <t —1 <t <r < t+ 2 with
N(r) >n,+1and N(t — 1) > n,, and for every bounded measurable function ¢

Pt (Prr = P, < Celloll s e 1)

Proof We use (20) and (11) in order to get

|PeiPrr— Pl < |Pro1s(Prr— Pra)el|
< Compllelloo X 4G, (Vre—r)) + b5
< Comp 19l X AN, (Virry) + b5
with
bs = ||Pio1t(Prr— Prr)es| ., < ||(Per— Pro)es|| <

IN

{7 C (0%
ClIV@sliy . Ty = G 191 Teey:

Here we used (13) and vy () < vn (). We conclude that

o 1
HPS,t(Pt,r - Pt,T)‘PHOO < Cyrp ”50”00 X (Ag’,z,p(%%(t)) + W’YN(Q)'
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Optimization For some fixed «, 3, p, ko, €, we optimize over ¢,7, x,q. Let A = 'yf,( 0" First we choose
n= A% so that n~PAP = p*. Then

04 pr
s, B _ P
qul’p( N(t)) == + 2A P+,

Take now ¢ = NG so that
Ag,n,p(VN(t)) ApFs + 2APFE,
With this choice

TN _pa_ o _spOtk)
Ag’zp( N( )) + 51+k0 Arte + PYANCERS + A Ptk PyN(t)

PaB prB _3p(1+kg)B
p+r

TN T2 T Ive T X W

We need
3p(l+k
) p(1 + ko)B P
p+K
i) > 1«
p+K
q
i) > l-¢
pP+K

We first choose k(¢) such that ¢) and i7) hold true. Then we choose ¢(¢) such that pj(,f()g) > 1—e. With
this choice we have

_ . — 3p(ltko)p
HPs,t(Ptm - Pm)‘PHOO < Cgp “PH (Aq K, p(’YN(t)) + ’YN(t) o '(t))
1—
< Choymiern 19lloe X (52 +750)
< ((pB)AQ)—E

Cq(f)m(e),p el x IN@) )

with & = pBe vVe. O
We give now the main result. We recall n, and n, in (10) and (11).

Proposition 2.1.1. Let 5 > 0 and p > 1 be fixed. Suppose that (7) holds for some «, ko, (14),(15),(16) hold
for every k and some p with p > aw, and R5(p, 3) (see (20)) holds. For every ¢ > 0 and every measurable
and bounded function ¢, for n large enough such that N(I',, — 3) > n, and N(T',, — 2) > n, + 1, we have

I(Por, = Por )¢l < Ce el "% 22)

Moreover, if an invariant probability measure v exists, then the invariant probability measure v is unique and
for every x € R, we have

oy (Pox, (2,0) < COWP % 4 [ o= yldvg)e ™) (23)
R

Proof We fixi < nsuchthat1 <T';andI'; +1 <T,, <T; + 2 and we write

|(Por, = Por,)e|..
< ||Por,Pr,r, — Por.Prir,)?| . + |Por,Pror, — Por.Prir,)?|
= : A + B.

oo

First, since I'; > 1, using (21) with s = 0,¢ =T'; and r = T';,, we obtain

A< Cellplloo x 177 < Cellpllyg x AP,
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where in the last inequality, we have used (11).
Moreover, we recall that (15) and (16) imply (12). So using (13) and the regularization property (14)
(notice that I',, — I'; > 1) we obtain

B<CVFPr,r, ¢l 07 S Cllelor < Cllelle s

the last inequality being obtained by (11) (because I',, — I'; < 2).
Finally, in order to obtain (23) we use (17). The uniqueness of the invariant probability measure v
comes directly from Proposition 2.0.1. [J

3 Abstract integration by parts framework

Here we recall the abstract integration by parts framework in [7].
We denote C5°(R?) to be the space of smooth functions which, together with all the derivatives, have

polynomial growth. We also denote CZ‘{(Rd) to be the space of g—times differentiable functions which,
together with all the derivatives, have polynomial growth.

We consider a probability space (€,F,P), and a linear subset S C ﬂ LP(Q;R) such that for every

¢ € C*(RY) and every F € S, we have ¢(F) € S. A typical example of S is the space of simple
functionals, as in the standard Malliavin calculus. Another example is the space of "Malliavin smooth
functionals", usually denoted by D, (see [37]).

Given a separable Hilbert space H, we assume that we have a derivative operator D : S — () LP(2;H)

p=1
which is a linear application which satisfies
a)
DpF := (DF,h)y €S, foranyh € H, 249
b) Chain Rule: For every ¢ € C1(R%) and F = (F},--- , F;) € 8%, we have
d
=Y 0:¢(F)DF, (25)
i=1
Since D, F € S, we may define by iteration the derivative operator of higher order D9 : S — () LP(Q2; H®9)
p=1
which verifies (DqF ®¢_ hi)yee = D, Dy, _, --- D, F. We also denote Dgh_“?th = (D1F, ®@_ h;)yq,

for any hy,--- ,hy € H. Then, D}, F = Dh Di~ n Fla>2).
We notice that since H is separable there exists a countable orthonormal base (e;);cn. We denote

D;F =D, F = (DF,e;)n

Then
DF = ZD F xe; and DIF = Z Dy, ... i,F x @7_j¢;
i=1 i1, ig
For F = (Fy,- -+, F;) € 8% we associate the Malliavin covariance matrix
or = (09)ij=1...a, With o% = (DF;, DF})3. (26)
And we denote
Y,(F)=E(1/detop)P. 27
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We say that the covariance matrix of F' is non-degenerated if ¥,(F') < oo, Vp > 1.

We also assume that we have an Ornstein-Uhlenbeck operator L : § — S which is a linear operator
satisfying

a) Duality: For every F,G € S,

E(DF, DG)y = E(FLG) = E(GLF), (28)

b) Chain Rule: For every ¢ € C2(R?) and F = (F},--- , Fy) € 8%, we have

d d d
LO(F) = > 0;6(F)LF; = > > 8;0;¢(F)(DF;, DF})3.
i=1 i=1j=1

As an immediate consequence of the duality formula (28), we know that L : & C L?(Q) — L2*(Q) is
closable. But it is not clear that D is also closable. We have to assume this and to check it for each
particular example.

Definition 3.1. If D?: S C L?(Q) — L?(Q; H®Y), Vq > 1, are closable, then the triplet (S, D, L) is called
an IbP (Integration by Parts) framework.

Remark. The bilinear forms I'(F, G) = (DF, DG)y is called "carré du champ" operator in the theory of
Dirichlet form. And £(F, G) = E(T'(F, G)) is the Dirichlet form associated to I'. So our Integration by Parts
framework appears as a particular case of the I"'—calculus, presented in [4] and [7].

Now, we introduce the Sobolev norms. Forany !> 1, F € S,

l
Fly, = Y ID"Flyed, |Fl, =IF|+I|Fl,, (29)
qg=1

We put |F|o = |F|, |[F|; =0forl <0, and |F|;; =0 for! <0. For F = (F1,---, Fy) € 8%, we set

d d

|F|1,l = Z|Fi|1)la ‘F‘l = Z|Fi|l7

i=1 =1

Moreover, we associate the following norms. For any ! > 0,p > 1,

112,
1E L1

With these notations, we have the following lemma from [9] (lemma 8 and lemma 10), which is a
consequence of the chain rule.

EIFI)Y?, IIFI, = EIFP)Y?,
IEp + IEEF g - (30)

Lemma 3.1. Let F € 8% Foreveryl € N, if ¢ : R — R is a C'(R?) function (I—times differentiable
function), then there is a constant C; dependent on [ such that

a) [$(F)11 < [VO(F)||Fl1+Cr sup [0°6(F)||F|i,_s.
2<|8|<t

If ¢ € C'F2(R?), then

b) |Lo(F)|; < |[VO(F)||LF|;+C;  sup  |0°¢(F)|(L+ |F|ji7)(1+|LF|;—1).
2<|B|<i+2

For | = 0, we have

) |Lo(F)| < |Vo(F)||LF|+ sup, P (E)IFIE 1.
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We denote by Dy, the closure of S with respect to the norm |[[o]| ;

Dl,p _ gHOHL.z,p7 (31)
and o =
Doo =) () Prp» Hi=Dio. (32)
l=1p=1
For an IbP framework (S, D, L), we now extend the operators from S to D.. For F' € D, p > 2, there
exists a sequence [, € S such that |F' — F, ||, = 0, [ — Fyl|, , — 0and |[LFy, — LE,[|,_, , — 0. Since
DY and L are closable, we can define
DF = lim DF, in LP(Q;H®%), LF = lim LF, in LF(Q). (33)
n—oo n—oo
We still associate the same norms and covariance matrix introduced above for F' € D..
Lemma 3.2. The triplet (Do, D, L) is an IbP framework.
Proof. The proof is standard and we refer to the lemma 3.1 in [10] for details. O

The following lemma is useful in order to control the Sobolev norms and covariance matrices when
passing to the limit.

Lemma 3.3. (A) Wefixp >2,1>2. Let F € L'(;R?) and let F,, € S%,n € N such that

i) E|F,-F] — 0,
i) sup||Full,, < Kip<oo.
n

Then forevery 1 < p < p,we have F' € Dld_p and || F||;,, » < Ki,5 - Moreover, there exists a convex combination

aniw x F; € 8%,

with 4 > 0,i = n, ..., m, and i I =1, such that

1Gn = Fllg ;2 —0.
(B) For F € D, we denote

AF) = inf (71¢.C)

the lowest eigenvalue of the covariance matrix op. We consider some F' and F,, which verify i), i) in (A). We
also suppose that
iii) (DFy,)nen is a Cauchy sequence in L (Q; H),

and for every p > 1,

iv) supE\NTP(F,)) <Qp, < . (34

Then we have
ENP(F) <Qp<oo, Vp>1

(C) We suppose that we have (F, F') and (F,,, F,,) which verify the hypotheses of (A). If we also have

v) sup||DF, — DFnHLQ(Q;H) <§g, (35)

then B
|DF = DF||r2(m) < €.
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Proof. Proof of (A) For the sake of the simplicity of notations, we only prove for the one dimensional case.
We recall the notations in Section 3. The Hilbert space H; = D; » equipped with the scalar product

l
U V)pio = > E(DW,DYWV)yes +EUV)
g=1
-2
+ Y E(DILU,D'LV)ysa + E(LU x LV)

q=1

is the space of the functionals which are /—times differentiable in L sense. By ii), for p > 2, |||, , <
| Fully, ., < Ki,p- Then, applying Banach Alaoglu theorem, there exists G € H, and a subsequence (we
still denote it by n), such that F;,, — G weakly in the Hilbert space H,;. This means that for every Q € H,,
(Fn, Q)12 = (G,Q)L,12. Therefore, by Mazur theorem, we can construct some convex combination

aniﬁleieS

i=n

Mn
with 4 > 0,i =n,....,m, and > v = 1, such that

i=n

1Gn —Gllp ;2 — 0.
In particular we have
E|Gn, — G| <||Gn =Gl 2 — 0.

Also, we notice that by i),

E|G, —F| <> 4" xE|F; - F| = 0.

i=n

So we conclude that F' = G € H,;. We also have

my,
1Gnllzp < Z’anHFz‘ Lip < Kip.
i=n
Then a standard argument gives, for every p € [1,p),
HFHL,l,ﬁ < Kip.

Proof of (B) We consider for a moment some general F, G € D% . Notice that (¢(F)(,¢) = [(DF, ()|3,.
0 A(F) = inf|¢|=1 [(DF, ¢)|3,. It is easy to check that

WVAE) = VAG)| < |D(F = G)| - (36)

My
We now come back to our framework. Recalling that G,, = > 4 x F;, we observe that

i=n

DG, — DFnHH(Q;H) < Z'Y;LHDFi - DFn||L2(Q;H) — 0.

i=n

Here we use the fact that (DF,),cy is a Cauchy sequence in L?(Q;H). Meanwhile, we know from (A)
that || DG,, — DF||12(q;%) — 0. So we conclude that | DF — DF,||12(q;%) — 0. Thus, by (36), E|[\/A(F) —

VA(F,)| — 0. This gives that there exists a subsequence (also denote by n) such that \/A(F,,) converges
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to /A(F) almost surely, and consequently |A(F;,)| P converges to |A(F')|~P almost surely. Since we have
(34), (|A(Fy)| ?)nen is uniformly integrable. It follows that

E(AE)T?) = lim E([A(F)|7P) < Q.

n—oo

Proof of (C) Since the couples (F, F) and (F,, Fn) verify the hypotheses of (A), we know by (A) that
we may find a convex combination such that

iy ool Y A7 (DFi, DF;) = (DF, DF)| 200 = 0.

Then it follows by (35) that

Mn

IDF = DF|| 2y < IiMpoeol Y A1 (DF; — DE)|| 20
< limpse Z%‘"HDE‘ — DF|| 203
i=n
< E.

3.1 Main consequences

We will use the abstract framework presented above for the IbP framework (D, D, L), with D and L
defined in (33). We recall the notations || F||z,, in (30), X,(F) in (27) and o in (26). For any n > 0,
we take Y, (x) : (0,00) — R to be a function of class C° such that

L2 00) < Ty < 1p,00)-

We remark that o is invertible on the set { Y, (det o) > 0}. We give the following lemma, which is stated
in lemma 2.4 of [7] and is proved in the Appendix of [6], based on some integration by parts formula.

Lemma 3.4. Let F = (I, -+, F;) € DL and G € D... We fix g € N.
(A) Suppose that there exists a constant C, (dependent on g, d) such that | F|| 1, ,q+2,8dq +Zaq(F) +[|Gllg.4 <
Cy. Then for any multi-index 3 with || = q and any function f € Cj(R?),

(By) [E@°F(F)G)| < Cyllfllss VBl =1q. (37)

(B) Suppose that there exists a constant C;, (dependent on q,d) such that || F|| g2, (4d+1)q + [|Gllg.a < Cy
Then for any n > 0, any multi-index 8 with |3| = q and any function f € C{(R?),

(B]) [E©@° F(F)T,(detor)G)| < Cflloo X —. VIB] =4.

U
Remark. In (A), we assume the non-degeneracy condition for F', so we can give the estimate based on the
standard integration by parts formula. In (B), we no longer suppose non-degeneracy condition for F, so
we can only obtain an estimate based on a localized form of integration by parts formula.

Remark. If the property (B,) (respectively (B;)) holds for a random variable F', then it also holds for
F + z for every x in R, with the same constant C,, (respectively C;). In order to see this, given a test
function f, one defines f,(y) = f(z + y) so that f(F' + z) = f,(F'). And one notice that the infinite norm
of f, is the same as the infinite norm of f.
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We give now a regularization lemma which plays a crucial role in our paper. We consider the d—dimensional
super kernel ¢s in (18) and (19) and we denote

f5(@) = f x os(a /f Jés(z — y)dy

Then we have the following regularization lemma.

Lemma 3.5. We fix some q,d € N and r,p > 1. We suppose that F € D such that ||F||1, g42 (1d+1)q < 00
We also consider an auxiliary random variable ) € D, such that 3,.(Q) < oo. Then there exists a constant
C depending on p, g, x and d (but not on Q) such that for any n > 0 and § > 0, for any function f € C}(R%),

we have

[E(f(F)) = E(fs(F))| < C[lfll x (% +1 PE(|det op — det oq[") + n"E(] det og| ). (38)

Remark. We remark that we do not assume the non-degeneracy condition for F’, but we need to assume

that we have another random variable ) which is non-degenerated such that det o is close to detop.
Then we obtain the regularization lemma (38). The regularization lemma here is originally from the

paper [7].
Remark. If the property (38) holds for a random variable F, then it also holds for F + z for every z in R¢,

with the same constant C.

Proof. We denote

007 = Z / dA(1 =X q/Rd dyos(y)y“0°f(z + \y)

la|=q

with y* = [, ya, for @ = (o, ..., a,). Notice that if F' satisfies (B],) with G = 1, then

[l 94
R P Tyfdet o) < U [ ayos) i =, [ o)l dylfl 3 @9)
n R Rd n
We use a development in Taylor series of order ¢ in order to get

B/ (F)Y,(det o)) ~ E(fs(P)Yy(detar)) = B(| dyds(u)(F(F+9) = F() 0y (detor)
= E(R,(5, F)T,(detop)).

Here we have used the property of a super kernel: [, yPé(y)dy = 0, V|B| < ¢. Using (39), we have

54
[E(f(F)Ty(detor)) — E(fs(F)Ty(det o)) < C|fllo 55 oyl (40)

Following the idea from [11] p14, we denote

R detop —detog
det 0Q
For an arbitrary n, we write
1

P(detop < n) < P(detop < n,|R| < )+IP>(\R| > ) (41)

When |R| < 1, |detop — detog| < 1detoq. This implies that detop > 1 detog. Recalling that @ is
non-degenerated and using Markov 1nequahty, for every k € N, it follows that

1
P(detop < n,|R| < Z) < P(detog < 2n) < 2°n°E(|detog|™ ™). (42)
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For any n > 0, k € N, we write

P(|R| > i) — P(|det oy — detog| > idet 00)
< P(detog <n)+P(|detop — detog| > in)
< C("E(|detog|™) + n PE(|detop — det og|?)). (43)
So we conclude that
P(detor <n) < COFE(|detog|™™) +n PE(|detop — det ogl?)). 44)

Then we have
[E((1 = Ty(detop)) f(F))] < [[fllocP(det or < n) < Cllflloc(n"E(| det oq|™") + 7 PE(| det o — det og|”)). (45)
Similarly, we also have
[E((1 =Ty (detop)) f5(F))| < C|[flloc(n"E(| det o[ ~") +n PE(|det op — det og[?)). (46)
We conclude by combining (40), (45) and (46). O

4 Application for jump equations

4.1 Basic notations and the main equation

To begin, we introduce some notations which will be used in the following sections. For a multi-index
3, we denote |3| to be the length of 3. We denote C}(R?) the space of /—times differential and bounded
functions on R* with bounded derivatives up to order I, and | |, ., :== > ||9°f|| for a function f €

’ |8I<1

C!(R?). We also denote P;(R?) the space of all probability measures on R¢ with finite /—moment. For
p1, p2 € P1(R?), we define the Wasserstein distance W, by

Wilprpn) = s | [ f@otin) = [ r@pstao), @)

Lip(f)<1 JRd

with Lip(f) := sup w the Lipschitz constant of f, and we define the total variation distance dry
TFy

|z
by

v = sw | [ f@pn) = [ o). (49)

o<1
For F,G € L'(Q), we also denote W1 (F,G) = W1 (L(F), L(G)) and dry (F,G) = dry (L(F), L(G)), with
L(F)(respectively £(G)) the law of the random variable F'(respectively G). We refer to [49] and [34] the
basic properties of these distances. In addition, along the paper, C' will be a constant which may change
from a line to another. It may depend on some parameters and sometimes the dependence is precised in
the notation (ex. C; is a constant depending on [).
In this paper, we consider the d—dimensional stochastic differential equation with jumps

it t
X; = x+/ b(Xr)err// c(z, X,—)N(dz,dr), (49)
0 0 JR4

where N(dz,dr) is a Poisson point measure on the state space R¢ with intensity measure N (dz,dr) =
w(dz)dr, z is the initial value, y is a positive o-finite measure on R, and b : R? — R%, ¢ : R x R? — R4,
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4.2 Hypotheses

Here we give our hypotheses.

Hypothesis 2.1 (Regularity) We assume that the function « — b(x) is infinitely differentiable with
bounded derivatives of any orders. We also assume that the function (z,z) — ¢(z,z) is infinitely differ-
entiable and for every multi-indices 3;, 32, there exists a function ¢ : R¢ — R, depending on (31, 3, such
that we have

sup (|e(z,2)| + 102297 e(z,2)|) < &(2), ¥z € R, (50)
z€R4
with / |e(2)|Pu(dz) ==¢, < oo, Vp>1. (5D
Rd

Remark. We will use several times the following consequence of (51) and of Burkholder inequality (see
for example the Theorem 2.11 in [28], see also [29]): Let ®(s, z,w) : [0,T] x R? x Q — R, and ¢(s,w) :
[0,7] x 2 — R, be two non-negative functions. The Burkholder inequality states that for any p > 2, we

have
E|/o /Rd O(s,z,w)N(dz,ds)|?
< CIE (/ | (s, 2,w)|*u(dz)ds) 2 + /0 y |D(s, z,w)|Pu(dz)ds

+IE|/ / |D(s, z,w)|pu(dz)ds|P]. (52)

If we have
|®(s, 2, w)| < [e(2)[[e(s, )],
then for any p > 2,

t t
]E‘/o /Rd <I>(s7z,w)N(dz,ds)‘p < CE/O lo(s, w)|Pds, (53)

where C' is a constant depending on p, ¢, é2, ¢, and T'.

Proof. By compensating N and using Burkholder inequality and (51), we have

E|/t /Rd O(s,z,w)N(dz,ds)|?

< C[E / |®(s, z,w)|?pu(dz)ds)® + / |®(s, z,w)[Pu(dz)ds
Rd Rd
+]E|/ / |®(s, z,w)|u(dz)ds|?]

< CIE/ lo(s,w)|Pds.
0
O

For the sake of simplicity of notations, in the following, for a constant C, we do not precise the depen-
dence on the regularity constants of the function b and ¢ (such as ||V ,b||, Ly and ¢,).

Hypothesis 2.2 We assume that there exists a non-negative function ¢ : R — R, such that [5, [¢(2)[Pp(dz) :=
ép < 00, Vp > 1, and

|Vac(z, 2)(Ia + Vac(z,2) Y| < &), Vo € R,z € RY,

with I; the d—dimensional identity matrix. To avoid overburdening notation, since both hypotheses 2.1
and 2.2 apply, we take ¢(z) = ¢(z) and ¢, = ¢,.
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Remark. We need this hypothesis to prove the regularity of the inverse tangent flow (see Section 5.2).

Hypothesis 2.3 (Ellipticity) There exists a non-negative function ¢ : R — R such that for every

z e R% 2z € RY ¢ € RY, we have
d

> (0s,¢(z,2),¢)* = c(2) ¢

j=1
Remark. We notice that together with Hypothesis 2.1, we have ¢(z) < |¢(2)[?, Vz € R%.

Hypothesis 2.4
We give some supplementary hypotheses concerning the function ¢ and the measure p.
a) We assume that

. 1 _ 1

with -
A(dz) = Z Lz g 1y(lz)p(dz).
k=1

This means that ¢ could not be too small so that we could have enough noises to deduce the non-degeneracy
of the Malliavin covariance matrix (see Section 5.2).

Remark. If u(R?) < oo, then lim,,_,, .- 7{c > 1} = 0. So (54) implies that (R?) = ococ.

b) We assume that p is absolutely continuous with respect to the Lebesgue measure: pu(dz) = h(z)dz,
where h is infinitely differentiable and In ~ has bounded derivatives of any order.

Remark. We need this hypothesis to construct the integration by parts framework for the jump equations.

Hypothesis 2.5

We give some conditions which ensure the existence and uniqueness of the invariant measure and the
"exponential Lipschitz property" (4).

Suppose that

i) (z—ybx)—bly) < —blz—yl
i) le(z,a) —c(zy)| < &2)|e—yl (55)
and

iii)  2b— /Rd(QE(Z) + & (2))u(dz) :== 0 > 0. (56)

Hypothesis 2.6
We assume that P is a partition with decreasing time steps: P = {0 =Ty <1 <--- <T,,_; <T,, <
.-+ }. We denote v, =T';, — I';,_1, n € N and assume that ,, | 0. We also introduce

— —— Vn — Vn+1
w= lim —_—,
n—oo Yo

and assume that @ < £, with 6 given in (56).

Remark. A typical example is v, = = and so w = 1.
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4.3 The truncated Euler scheme

Now we construct the Euler scheme. For some technical reasons, we take a general partition P = {0 =
I'p <T'y < <Ty1 <T,, < ---} (without assuming Hypothesis 2.6 at this moment). We denote
Yn =T —T'y—1, n € N and denote |P| := maéc(l“nﬂ —T,,). We assume that |P| < 1, and

ne

oo
Z’yi = lim I',, = 0
n— oo

i=1

ForT',, <t < T,11 we denote N(t) = n and 7(t) = I',,. We consider the Euler scheme:

Z) = $+/ b T(T) dT+/ /d C\Z XT(T) (dZ,dT) (57)
R

Since we have ;(R%) = oo (which is a consequence of (54)), we have infinitely many jumps. We use a
truncation argument in order to have finite numbers of jumps and obtain a representation by means of a
compound Poisson process. This is necessary in order to obtain a scheme which may be simulated. We
construct the truncated Euler scheme as below. To begin, we give some notations.

We denote

- / 16(2) Pau(dz) + | d()u(dz)?, ¥m e N. (58)
{lz|>m} {|z|>m}

For every v > 0, we define the truncation function M () € N to be the smallest integer such that
emey) <% (59

For m € N, we denote B,, = {z € R? : |z| < m}. ForT',,_; <t < T, we denote Mp(t) = M(v,).
We remark that we have lirrb M(vy) = o0 and for I',,_; < t < T, we have Mp(t) = M(v,) > M(|P|) —
v

o0, as |P| — 0. Now we discard the "big jumps" (the jumps of size |z| > Mp(t)):
xPMe +/ b(Xf(TA)4p )dr + / / ,Xf(rj;h) (dz,dr). (60)
0]

The advantage of considering X;*"'* is that we may represent it by means of compound Poisson pro-
cesses. For k € N, we denote I} = By, I}, = By \By_1 for k > 2 and take (J);>( a Poisson process of
intensity u(Ix). We denote by (T}¥);cy the jump times of (JF);>o and we consider a sequences of inde-
pendent random variables ZF ~ 1, (2 )#EI ;,k i € N. Moreover, (JF);>o and (ZF). ey are taken to be

keN
independent. Then we represent the jump’s part of the equation (60) by compound Poisson processes. We

write

oo Jf
P,M P,M PM
xPMe ;H/O DXTNT)dr+ DD s, i (ZE)e(ZE X )
k=11i=1
o JE N()
’PM P.M
- / DT+ 33T (2R ZE XT ),
k=11i=1 n=0
Since ZF € By,\By,_1, it follows that ZF € Byy(,,.,,) is equivalent to k < M (v,1). Then
t) M(Ynt1) Jf
P, P,M P,M
xPMr H/o b(xXA7) dr+z Z Zl{r crrer, (28 Xng ). (61)

We remark that the solution of the equation (61) can be constructed in an explicit way.
We recall the notation # in Hypothesis 2.5. We also recall n, = n g in (10) (with p = g in our case)

and n, in (11). We obtain the following error estimate for XZD ’MP, which represents the main result in
our paper.
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Theorem 4.1. Assume that Hypothesis 2.1~2.5 hold and the partition P satisfies Hypothesis 2.6. Then
an invariant probability measure v exists and is unique, and for n > max{n 9 + 3, + 3}, forany e > 0
there exists a constant C. such that

dpy (L(XEMP) 1) < Cu(rd / & — y| du(y)e 4. 62)

The proof of this theorem will be given in Section 6 by using some Malliavin integration by parts tech-
niques introduced in Section 5.

In order to apply the Malliavin framework which will be presented in Section 5, we introduce addition-
ally an auxiliary equation as follows (see (64) below).

For T, <t <T,41, we define

aP /‘ u(dz) + (¢ rm/ o(=)n(d=)*, ©63)
{lz \>M(%)} {12|>M (yn+1)}

1<z<n

where ¢ is given in Hypothesis 2.3. We notice that |a]’| < |/t X ea(p)) < VI ¥ |P].
Now we cancel the big jumps in equation (49) and replace them by a (d—dimensional) Gaussian random
variable A which is independent of the Poisson point measure N(dz,ds):

xMr o = ;U—l—atA-i-/ b(XMP ds—l—/ / c(z, XMP)N (dz, ds). (64)
B

Mp(s)

We remark that A is necessary in order to obtain the non degeneracy of the covariance matrix (see Section
5.2 for details).

Following the same idea as above, we represent the jump’s parts of the equation (64) by compound
Poisson processes:

]\/[ ’Yn+1 ‘t‘
XtIV[P = z+4ad A+/ XJWP ds + Z Z Z {F,L<T1’”§F,L+1/\t}c(zlk’Xé\“/.’[“i)' (65)
n=0 = =

We sometimes write X, "7 () (resp. XM7 (z), X;(z)) instead of X M7 (resp. X7, X,) to stress the
dependence on the initial value .

4.4 Some examples

We give some typical examples to illustrate our main results.

Example 1 We take h = 1 so the measure p is the Lebesgue measure. We consider two types of behaviour
for c.

i) Exponential decay We assume that |¢(z)|? = e~®/*l” and ¢(z) = e~2/*I" with some constants 0 <
a1 < ag, p > 0. We only check Hypothesis 2.4 here. We have

B 1, _ rg In(u—1) 4
ple> 1} =l < (o)) = =),
with r4 the volume of the unit ball in R¢, so that
d
1 1 —1))»
1 M{c> }> rdi(n(u ))
nu 2(ag)? Inu

We notice that lim,,_,, . —7i{c > 2} = co when 0 < p < d. Therefore, when p > d, we can say nothing;
when 0 < p < d, the results in Theorem 4.1 are true.
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ii) Polynomial decay We assume that |¢(z)|? = e and ¢(z) = for some constants 0 < az < ay

and p > d. Then

az
1+|z|P

1 1 r d
ffe> —} = a{lzl < (azu —1)7} = F(az(u—1) = 1)7,
so that .,
1 _ 1 rq (az(u—1) —1)»
_ il U .
lnuﬂ{g> u}* 2 Inu

We notice that in this case, lim,, _, , . —7%i{c > 2} = co. Thus, the results in Theorem 4.1 hold true.

Example 2 We consider the (1—dimensional) truncated a—stable process: X; = Xy + fot o(X,-)dU,.
Here (U;);>0 is a (pure jump) Lévy process with intensity measure

1
l{msumdz, 0<a<l.

We assume that 0 € C3°(R), 0 < ¢ < o(z) < g and -1 < a < ¢'(z) < 7, Vz € R, for some universal
constants &, o, a, where ¢’ is the differential of ¢ in 2. Then by a change of variable z — %, we come back
to the setting of this paper with c(r,v, z,z,p) = o(z) x ; and u(dz) = L{j.|>1) zji==d2. We only check

Hypothesis 2.4 here. In this case, ¢(z) = g x #, then

1

1
—u 21>
lnuu{g > u} -

Y

1 /(o(ul))4 1 p (clu—1))% —1
1

Inu |z|1—« B alnu

: 1
so that lim,, ,, -~

{c> %} = oo. Thus we can apply Theorem 4.1.

5 Malliavin framework for jump equations

We take time ¢ € [0, 3] throughout this section and we use the notations from Section 4. We recall
(Xt)tepo.3 in (49), (X7M7)ic03) in (60) and (X7 )iepo.z) in (64), where P = {0 =Tg < Iy < --- <
I'n(3y < 3} is a general partition (which is not supposed to verify Hypothesis 2.6).

Lemma 5.1. Suppose that Hypothesis 2.1 holds true. Then we have the followings.
i) For every t € [0, 3], we have
EIX7M — X, =0, as [P| = 0;

i1) For every fixed t € [0, 3] and every p > 2, we have
E| XM — X;|P =0, as |P| — 0;
i1i) For every fixed t € [0, 3] and every multi-index (3, we have
E|02XMP — 98 X,| — 0, as |P| — 0.

Proof. The proof of this lemma is standard and straightforward by Gronwall lemma and Buckholder in-
equality. So we leave it out. O

Now we use Malliavin calculus for X,”*” XM” and X,. There are several approaches given in [12],
[20], [26], [27], [37], [48] and [50] for example. Here we give a framework analogous to [9].
To begin we define a regularization function.
1
aly) = 1- T (- 1) for yelg,3) (66)

vl = 1{|9|S%}+1{%<\y\§%}ea(‘y‘)~ 67)
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We notice that 1) € C3°(R) and that its support is included in [—1, 1]. We denote

Ui(y) =(lyl — (k= 3)), Yk € N. (68)

Then for any [ € N, there exists a constant C; such that

sup [|[¥l1,00 < C1 < 00. (69)
keN

We focus on X7 () and X7 (z) (solutions of (61) and (65)) which are functions of random vari-
ables TF, ZF and A .

Now we introduce the space of simple functionals S. We take G = o(TF : k,i € N) to be the o—algebra
associated to the noises which will not be involved in our calculus. In the following, we will do the
calculus based on Z} = (ZF,,---,Z},;),k,i € Nand A = (Ay,---,A4). We denote by Cg,p the space

of the functions [ Q x Rmxm'>xd+d _, R such that for each w, the function (211,002 Zom, oS, 04)
flw, 21, 20 d, 01, ,04) belongs to C° (Rm*mxd+d) (the space of smooth functions which, together
with all the derivatives, have polynomial growth), and for each (z},l, - z:’nljd, 01, ,04), the function
w = flw, 2], z:{j:d, 01, ,0q) is G-measurable. And we consider the weights

& =wi(Z)). (70)

Then we define the space of simple functionals

- {F f( ( )1<k<m/>A) f € ngpama m' e N}

1<i<m

Remark. Take m' = max Mp(t) and m = max JF. Then X7 (z) (solution of (65)) is a function of TF,

ZF and of A, with k < m/ and i < m. So it is a simple functional (the same for XtP’MP (z) (solution of
(61))).
On the space S, for t > 1, we define the derivative operator DF = (D?F, D~ F), where

pOf

D(Z];‘E&)F - 6 8 k ( 7(sz)1§k§'m/7A)’ E7;€Na§ € {17 7d}’ (71)
’ 1<i<m
0 ~
D}AF = 8§~ (w7(sz)1§k§m/7A)a J € {17 ’d}
7 1<i<m

We regard D? F' as an element of the Hilbert space I, (the space of the sequences u = (u;;)k,ieN,je{1, - d}

. 2 d
Wlth ‘U|l2 = Zl:il Zzoil Zj:l |uk,i,j 2

< 00) and DF as an element of [, x R%, so we have

d oo oo d
(DF,DG),, s =Y DSF x DRG + Z SN DE.FxDE, /G (72)
k=11:=1 5=1

Jj=1

We also denote D'F = DF, and we define the derivatives of order q € N recursively: DYF := DD~ F.
And we denote D% (respectively D*9) as the derivative DZ (respectively D) of order q.

We recall that p(dz) = h(z)dz with h € C=(R?) (see Hypothesis 2.4 b)). We define the Ornstein-
Uhlenbeck operator LF = L F + LAF with

m' m d
L7F = =3 % % (0 (€DGi yF) + DG jyF x DG i jy nlh(Z)), (73)
k=11:=1 j=1
d d
LAF = Y D{FxA;—» DFDRF.
j=1 j=1
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One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3.1. In
particular the duality formula (28) holds true. We refer to [10](Appendix 5.3). We say that F is a "Malliavin
smooth functional" if F' € D, (with the definition given in (32)).

We recall X7 (z) in (61), X7 (z) in (65) and X,(z) in (49). We denote
EPMP () = XPMP(2) — 2, FMP () = XMP (2) — 2 and Fy(2) = X, (z) — (74)

In the following subsections, we will give some lemmas concerning the Sobolev norms and the covariance
matrices. We recall (see (26)) that o denotes the covariance matrix of I, and recall the Sobolev norms
defined in (29) and (30).

5.1 Sobolev norms
We recall the notations F)""” (), FM7 (z) and F;(z) in (74).

Lemma 5.2. Assuming Hypothesis 2.1 and Hypothesis 2.4 b), for all p > 1,1 > 0, there exists a constant
C),p depending on I, p, d, such that for any t € [0, 3],

. P,M ,
0 supsup((lF T (@)l + IEM (@)]205) < Crp.
x

Moreover, Fy(x) belongs to D%, and

ii)  sup [|[Fy(2)|L1p < Clp-
T

For all p,q > 1,1 > 0, there exists a constant C; p, , depending on ,p, q,d, such that for every multi-index
with |3| = g, we also have
iit) - sup |07 (X (@)lp < Crpg-
x

Remark. Since Dz = 0, Yz € R?, we also have

supsup(ELX] M (@) + B (@)l + ELX (@) ) < Clp
T

Proof. We first notice that for any I, p, supsup(||F,”""" ()| n.1p + | FM7 (2)||£.1.p) < Cip This is a slight
P =z

variant of the proof of Lemma 3.7 ¢) in [44]. The difference in that the truncation function M is constant
in [44] while here it depends on the time. But this does not change anything. In a similar way, for every
multi-index 3 with || = ¢, we have sup sup [|02 (X" (2))||ip < Clp.q-

Afterwards, we consider an increasi;:g sgquence of partition P,,, n € N, (P,, C Pp+1), such that|P,| ] 0.
In particular, V¢, Mp, (t) T co. Noticing by Lemma 5.1 ) that ]E|FtM7’” — F| — 0asn — 0, and applying
Lemma 3.3 (A) with F,, = FtM”" and F = F;, we get that F; belongs to DL and sup ||Fy(z)| 11,p < Cip-

Furthermore, noticing by Lemma 5.1 iii) that E|0? th\4 Pr— 98 X,| — 0asn — 0, and applying Lemma
3.3 (A) with F, = 92X,"'"" and F = 9% X,, we obtain that 9° X, belongs to D% and sup ||02(X,(z))||1, <

Cipq-
O
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5.2 Covariance matrix

Lemma 5.3. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true. We denote the lowest eigenvalue of

the Malliavin covariance matrix o xMP by /\im’ . Then for every p > 1, 1 <t < 3, we have

i) supsupE(1/det O xMp ))p < supsup E(|]\M7 =) < O,
P =z e ¥ P =z

it) supE(1/detox, )’ < Cp,
T

with C,, a constant depending on p, d.

Remark. We recall the notations FM” (z) = X7 (x) — x and Fy(x) = X,(z) — z. Since Dz = 0, Yz € RY,
the above results are equivalent to

i) supsupE(1/det o nmp (x))p < supsup E(|]\7|~9) < C,,
P =z t P =z

it) supE(1/detop, ()" < Cp.

Proof of i) We proceed in 4 steps.
Step 1 We notice by the definition (71) that for any kg, i0 € N,j € {1,--- ,d},

t

Z Mp __ M- Z M
Dikoion X" = | 1y Vab( X )Dli i Xp 7

N(¢)
k k. M
+ Z IL{Fn<T7%0SFn_H/\t}l{lkaSM(’Yn+l)}giooazfg,jc(zioo’XT’J(: )

i0

n=0
N(t) M(yny1) JE
E yM Z M
+ Z Z Z l{rani"(’Jﬂ <Tf§1“n+1At}vxC(Zi ’XTfi)D(ko,ioaj)XTff’ (75)
n=0 k=1 i=1

t N(t) M(nt1) J¥
Df‘XtM” = afej +/ Vwb(X,MP)DjAX,M”dT + Z Z Z ]1{1“"<T}=§1“n+mt}vwc(zf7X%Ji)DjAX%P—’
0 n=0 k=1 i=1 ‘ ‘

(76)
where e; = (0,---,0,1,0,---,0) with value 1 at the j—th component.
Now we introduce (Y;"/7),>¢ (this is so-called the tangent flow) which is the matrix solution of the linear
equation
t N(t) M(vnt1) Jf
RN AL TR DD D DL TS v
0 n=0 k=1 =1 T ' '
And using Ité’s formula, the inverse matrix ;7 = (v;/7)~1 verifies the equation
_ t N(t) M(yntr) J¢ _
YtMP =Is — / }/TMPVwb(XyP)dT o Z Z Z H{Fn<TikSFn+1/\t}Y7]“\.’/€[7iVIC(Id + VIC)_l(Zik,X%{]i).
0 n=0 k=1 i=1 ‘ ‘
77)

Remark. We notice that Y;''» = V(X7 (x)). If instead we consider the gradient of the Euler scheme
y,PMP = v, (X7 (2)), the matrix ;""" is not invertible, and this is a specific difficulty when we deal
with the Euler scheme. This is why we have to work with X* only.
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Applying Hypothesis 2.1 and Hypothesis 2.2, one also has

E( sup ( HYMPH YM”

0<t<2

)) < Cp < 0. (78)

The proof of (78) is straightforward and we leave it out.
Then using the uniqueness of solution to the equation (75) and (76), one obtains

N(t)
D(Zk,z',j)XtMp = Z ]l{Fn<Ti’“§Fn+1At}1{1§kSM('yn+1)}fmePYT]:gpazﬁjC(Zik»X%c?_)v (79)
n=0

and DAXMP = al Y]'7e;.
We recall that we denote the lowest eigenvalue of the Malliavin covariance matrix o
we have (recalling the definitions (26) and (72))

Mp DY AM7  Then

N(t) M(Ynt1) JF
M —ll?f (o7 C,C) > inf > Z Zn{r <TKF”+1M}Z DGy X170+ inf Y (DPXMP ()2

s

I<l= ln 0 = i= ‘Cl:ljzl
By (79),
N(t) M(Yng1) JE _
YRS ol ol w SIS RO R AN o

inf a, e,YMP*Q,
||_Z‘ 5 ()7¢)

where Y* denotes the transposition of a matrix Y.
We recall the ellipticity hypothesis (Hypothesis 2.3): there exists a non-negative function ¢(z) such that

d
D (0:,e(z,2),¢)? = el2)IC

j=1
So we deduce that

N(t) M(ynt1) JI¢

Az (30 ST Y i crtar, g EEPAZDIMT T YR + I nt 177G
n=0 k=1 =1 -

For every invertible matrix A and every vector y, one has |Ay| > ﬁ |y, so that

]W 'Yn+1) tk
S > 3 birucrrer,na € PUZONIT VR 17 + laf T2
n=0 k=1 i=
N(t) M(yng1) JF
M M
> (mf N S (O Z]l{r <rt<ro &P E(Z0) + [al’ 7).
n=0 k=1 i=1
We denote

N(t) M(vng1) JE

M’“Z Z Zﬂ{p crrer, o EEPe(ZE). (80)
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By (78), (E sup ||Y;M7 |4 ||y, M ||4dp)1/2 < ¢, < oo, so that using Schwartz inequality, we have
0<t<2

1

T [P SEATT) < CE(XGT™ + |a] P|727)) 2. 81)
et O'XM,,

E|

|P

Step 2 Since it is not easy to compute E(|x? + lal ||~ 2dp)) directly, we make the following argument

where the idea comes originally from [12]. Let I'(p) = [;* sP~'e~*ds be the Gamma function. By a change
of variables, we have the numerical equality
1 L[ pdp1=s(d P aP )
= s e fWXe 41 ds,
IXt'? + |aF|2|2dr  T'(2dp) /

which, by taking expectation, gives

1 1 oo Mp || P2
E / $2dr—1R S*S(Xt +la, %) ds. (82)
T T 0 P T T | !

Step 3 Now we compute E(e —s(x," P Hlal |? )) for any s > 0. Werecall that I, = By, I, = Bp—Bj_1,k > 2
(given in Section 4.3), and ¢F = W, (ZF) (see (70)). Then

N(t) M(vn+1)

e Z Z /"“M/Ikm:k(z)ﬁc( N(dz,dr) //BMM N(dz,dr),

with

Zm P15 (2) > 3 Ly s o1 (12D15 (2).

k=1
Using It6 formula,
E(e—sxtM”) — 1+E/ / s P U (2)e(z) —exfﬂ”)j\}(d%d?ﬁ)
BMP(T)
N@#) DAt A M (Yn+1)
_ - Z(/ Be="")dr Y / (1 — eI 1y d2)).
n=0 /I k=1 “Ix
Solving the above equation we obtain
Mp N(t) M(Yn+1) R
E(e™X¢ ") = exp(—Z(((Fn+1At Z / eIV (2)] 9(2))u(dz)))

n=0 Ty
X W"“) (12De(z)

< o= 2 (@ n0 =T 3 [ =t )
n=0 Ik
N(t) M(%+ )

= exp(— 2}(((Fn+1 At)—T,) kz /Ik(l — e N1y sy (|2)u(d2)))
n= =1
N(t)

= (- Y (@A) -T) [ (1= plaz),
n=0 BM('M+1>

with

dz) = Z ﬂ[kfg,kfi](|z|)u(d2)-
k=1
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On the other hand, we denote
xMP — / / 2)N (dz, dr),
Biip )

where B¢

m

denote the complementary set of B,,,. Then in the same way,

_Mp Ne)
Blet7) Sep(- Y (@i n)=Ta) [ (1= e =C)p(az).

.
n=0 Bt (vmg1)

We recall by (63) that forT',, <t <T'41,

/ Ju(dz) + (t —T) / c(2)pu(dz))?.
(esMO0) {1212M(n11)}

7> \EX'”.

Using Jensen inequality for the convex function f(x) = e~%%, s,z > 0, we have

1<'L<n

Then

N(t)
e=slar 7P < e sEx T < E(e‘siiwp) < exp(— Z(((F”‘H At) — Fn)/ (1 — e *CN(dz))).
n=0 Bzcu(»y”+1)

So we deduce that

E(e—s0a T Ha ")) — ge=oxi ) x e=slal I’
N(t)

Sexp(- D (Cwn A ~T) [ (e m(ae))

B

n=0 M (vp41)
N(t)
xexp(—= Y (Tns1 At)—T) (1 —e*<)m(dz)))
n=0 BICVI('m+1 )
— exp(—t / (1 — e~ )7(d2)), 83)
Rd

and the last term does not depend on Mp(¢).

Step 4 Now we use the Lemma 14 from [9], which states the following.

Lemma 5.4. We consider an abstract measurable space B, a o-finite measure M on this space and a non-
negative measurable function f : B — Ry such that [, fdM < co. For t > 0 and p > 1, we note

By(s) = / (1—esI@Y\M(dx) and IP(f) = / sP—1e—tB1(9) g
B 0
We suppose that for some t > 0 and p > 1,

lim, .o ——M(f >

U—r OO ln u -

S

) > % (84)

then IY(f) < .

We will use the above lemma for M(dz) = fi(dz), f(z) = c¢(z) and B = R%. Thanks to (54) in Hypoth-
esis 2.4,

) = o0o. (85)
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Then for every p > 1,1 < ¢ < 3, we deduce from (81),(82),(83) and Lemma 5.4 that

E 1 ’ |
|d7 et : <_ (‘)\i\/l ‘ ) < C(E(‘Xﬁw” + |atF ‘2|—2dp))%
O—X;WP
1 Mp P2 N
< C 7/ 32d:0 IE —s(x; [aP|?) 5)3
(I (de) 0 ( )d )
1 1
< C /00 sgdpfl X t/ ) . o)1 e | ( )
( (de) 0 ( Rd( )u(dz)d) oo 86

Proof of ii) We consider an increasing sequence of partition P,, n € N, (P, C Pp+1), such that
|Py| 4 0. In particular, V¢, Mp, (t) 1 oco.

We recall the notations F}'* (z) = XM”(x) — 2 and F,(z) = X;(x) — z. We notice by Lemma 5.1 i)
that E|F}"*" — F,| — 0 as n — oo, and by Lemma 5.2 that supsup || F}"™" (2)]| 1.1, < Cip-

Moreover, by Lemma 5.5 i) (given immediately below), we know that (DFtM”"')neN is a Cauchy se-
quence in L2(€;12 x RY). Then applying Lemma 3.3 (B) with F, = F*" and F = F,, Lemma 5.3 1)
implies Lemma 5.3 i1).

O

5.3 Auxiliary results

Besides the lemmas concerning the Sobolev norms and covariance matrices, we establish an auxiliary
result. We recall ¢,,, given in (58).

Lemma 5.5. We assume that Hypothesis 2.1 and Hypothesis 2.4 b) hold true.
i) Then for any e > 0, there exists a constant C dependent on d, e, such that for every t € [0, 3] and every
stating point x € R, we have

2 P, M % 2
E| det O’Xf,Mp — det X, | +eo < CHDXt P DXtH;g(&;bed) < C(|P| + 61\/[(‘7;|)) (2+e0)(1+e0) |

1) We consider an increasing sequence of partition P,, n € N, (P, C Pn41), such that |P,| | 0. In
particular, ¥t, Mp, (t) 1 co. We denote

Fu(w) = X" ().

Then for each = € RY, the sequence DF,,(z), n € Nis Cauchy in L?(; 1o x R?), uniformly with respect to x :

sup | DF,(z) — DFyp(2) || 2 (0415 xrey — 0, as n,m — o0.
xT

Proof. Proof of i)
By Lemma 5.2, we know that HDXZDMPHLz(Q;lﬂRd) and || DX¢| 12(y1, xrey are bounded, uniformly
with respect to x. Then using Holder’s inequality with conjugates 1 + ¢ and 1;”%, we get

2
E(|det oy — det ox,|7%) < CIDXTM? — DX[|7E0 00 - (87)

Now we only need to prove that

DXPMP _ px||Ti <c(p =) (i) (88)
H t - t||L2(Q;l2><Rd) = (| |+51W(\73\)) 0 0.

The proof of (88) is a slight variant of the proof of Lemma 3.9 ¢i7) in the paper [44]. The difference in that
the truncation function M is constant in [44] while here it may vary on different time intervals. We do not
discuss in detail here. So we conclude that Lemma 5.5 7) holds.
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Proof of i)
We consider an increasing sequence of partition P,,, n € N, (P, C P,41), such that |P,| | 0. In
particular, V¢, Mp, (t) 1 co. We need to prove that

DX} — DX || L2 (g ety — 0, @8 n,m — 00, (89)

The proof of (89) is a slight variant of the proof of (148) p.47-49 in [44], so we omit it.

6 Proof of Theorem 4.1

In this section, we give the proof of Theorem 4.1. We apply Proposition 2.1.1 in Section 2. For a
measurable function f, we denote P, f(z) = Ef(X] "7 (2)) and P,f(z) = Ef(X.(z)). In the following
subsections, we will check the conditions of Proposition 2.1.1.

6.1 Euler: condition (7)
For every v > 0, we recall in (59) that we define M(y) € N such that
eme <7

We recall the basic equation X; (see (49)). We denote by f(tMP the one step truncated Euler scheme:

XMP(2) =2+ /Ot /BMW) c(z,z)dN(z,s) + /Otb(x)ds.

Then,
- Y Y
EXMr - X,| < E/ / (2, X,)[dN (2, 5) +IE/ / (2, 7) — e(z, X3)|dN (=, 5)
0 J{lz[zM(v)} 0 JBu(y
.
+ E/ Ib() — b(X,)|ds
0
Y
< 7/ E(z),u(dz)—f—C/ Elz — X,|ds
{lz|>M(7)} 0
< yEme) +Cx ¥ <Cxy?
So

Wi(XMP X)) <E[XM - X,| < C x A~
So we conclude that (7) holds for o = 1 and kg = 0.

6.2 Lipschitz: condition (4) and the existence of an invariant measure
We recall that X is the solution of the equation (49).

Lemma 6.1. Suppose that Hypothesis 2.5 (see (55) and (56)) holds.
a) Then, for a Lipschitz continuous function f

E(f(X:(x)) — E(f(Xi(y))| < Lye™ 5 |z — ],

with Ly the Lipschitz constant of f.
b) Moreover, there exists at least one invariant probability.
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Proof a) We fix 2,y € R? and we construct on the same probability space, with the same Poisson point
measure N the solution X (y) which starts from y. Then we denote

Vi = Xi(z) - Xu(y),
Af(2) c(z, Xo— (7)) — ez, Xs— ()
A7 = (X (2) — b(Xs-(y))

and we have . .
Yi=z—-y+ / AS(z)dN(z,s) + / Abds.
0 JRrd 0

Using It&’s formula for ®(¢, u) = ¢ |u|® we obtain
t t
(Y, = |lz—y+ )\/ d(s,Y,)ds + / 2e (Ys, Ab) ds
0 0
t
b [ @ Yo+ A5 - B YN )
0 JR4
t t
= |lz—y*+ )\/ ®(s,Y,)ds + / 2e (Y,, AL) ds
0 0
t
WMt [ (@Y 4 ALE) - B Yo dul)ds
0 JR4
with M; a martingale. Taking the expectation we get
t
eﬂmmﬁgu—yf+/ewE@g@
0
with
Vo = AWMLV AY+ [ Y AL - Yl ()
Rd
= AW 20V A+ [ (A5, 2V, + AL (),
Rd

We need to prove that E(U,) < 0. We recall that we assume Hypothesis 2.5 i)ii) (see (55)). We also have
[(AL(2),2Y, + AS(2))] < (26(2) + &%(2)) |Ys]?,
so that

U, <|Y[* (A +/ (26(2) + & (2))u(dz) — 2b).
Rd

Thanks to Hypothesis 2.5 iii) (see (56)), taking A < 6, we have
t
NEN <fo -yl + [ MW < oy
0

so that
2 —ot 2
E|X¢(x) — Xe(y)|" < e |z —yl”.

Then, for a Lipschitz continuous function f,
_6
[E(f(Xe(2)) — E(f(Xe(y))| < LyE | Xi(z) — Xe(y)| < Lye 2" o —y].
b) We denote L to be the infinitesimal operator of (49). We take V (z) = |«|* and we will prove that

LV <B—aV
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for some 3,a > 0 (the Lyapunov mean reverting condition). This implies LV < C and lim LV (z) =

|z|—o00
—o0. Then we use Theorem 9.3 and Lemma 9.7 from [18] (with ¢ = V and ¢» = LV ) which guarantees
existence of an invariant distribution. We have

LV(z) = 2(z,b(x)) +/W(V(x+0(zax)) = V(2))u(dz)

IN

“2blal? + [ (2{oclea)) + fez, ) ()
“2blal? + (o +1) [ e@ntd)+ [ ot

Rd

/ () + &(2))uldz) — (25 - / e(2)u(d2) |af?
Rd Rd

IN

6.3 Regularity: conditions (14), (15), (16) and (20)

Firstly, we deal with (14). Let ¢ € [1, 2]. For any k and any multi-index /5, with |5,| = k, we write

07 Prp(x) = E[07° (p(X = Y E[0°¢)(Xi(2))Pa, (@),

|| <[Bol

with P, (x) a polynomial of 92* X, (x), |a1| < |Bol-

In the following, we use the results from Section 5. In Lemma 5.2, we prove that the Sobolev norms of
each 991 X (z) are bounded, uniformly with respect to z. It follows that this is also true for P, (z).

We denote that Fi(z) = X:(z) — . In Lemma 5.2, we have proved that the Sobolev norms of each
Fy(x) are bounded, uniformly with respect to . Moreover, in Lemma 5.3, we prove that F;(z) is non-
degenerated, uniformly with respect to z, that is 3, (F;(x)) < oo for each p (see (26)).

Then we use Lemma 3.4 (A) which asserts that (Bjy,) is true for F = Fy(z) and G = P,,(x). By the
remark of Lemma 3.4, (By,) is also true for F' = X;(x) = Fi(z) +  and G = P, (z). This reads

[E[(0%° @) (X¢(2))Pay (2)]| < Clj@]loo,

which gives (14).

In a similar way, we can obtain (15).

For (16), i) is a direct consequence of (4) which has been proved in Section 6.2. For (16) i), we take
t € (0,1]. For any k and any multi-index S, with |3y| = k, we notice that

|02V Pip()| = [E[0° (Vo(Xi(@))]| = | D E[0°Ve)(Xi(#)Pa (@) < [Velroo Y ElPa, (@),

[ao|<[Bol [ao|<]Bol

with P, (x) a polynomial of 0 X,(x), |aa| < |So|. In [29], Kunita has shown in Theorem 3.4.1 and
Theorem 3.4.2 the regularity of the flow associated with the jump-diffusion. So in our case, we have
E|P,,(z)| < oo and thus (16) 4:) holds true.

Now we prove (20). In order to prove (20), we need to represent P; () and Ps ;p(z). So we consider
the following equations.
We denote X Z?t’MP and X, the solutions of the following equations respectively:

X2 g / (XP0)dr + / / 2 XD N (dz, dr); (90)
BMP(T
t t
X, = x—l—/b(Xs}T)dr—i—// o(2, Xsr-)N(dz, dr). ©1)
S S R4
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We sometimes write X55A4P () (and X, (x)) instead of X;’?gMP (and X ) to stress the dependence on

the initial value . And we denote P, ;¢ (z) = Ep(X] ;M7 (2)) and P; 1(2) = Ep(X, 4()).
Letl<t<r<t+2 Werecalthat P={0=To <1 < - <1<y <---},vw=T;—T_; and
forT'; <t <Tj41, N(t) = . We denote

FZD—%E (r) = Xy 0 XZ)_’%P () —zand Fr_yy1(z) = Xy p 0o Xym14(2) — 2 = Xyoq o (x) — (92)
We also denote |P!=1t| .=  max, ((Ty41 At) — (T V (t —1))). Before we give the proof of (20), we
€N s

Fl+1>t714,1.—‘l<t
state the following lemma concerning Fﬁ’?ﬁ (z) and F,_;4+1(z) given in (92).

Lemma 6.2. Under the Hypothesis 2.1~2.4, we have these results.
i) Forallp > 1,q > 0, there exists a constant C, , depending on g, p, d, such that Fﬁ%j (x) and Fy_y11(x)
belong to D¢, and

P.M
sup sup 15200 (@) + Fr i1 (2) | 2,g.p < Cyp-
xT

i1) For every p > 1, we have

supsupE(1/detop, _, ()" < Cyp,
P x

with C, a constant depending on p, d.
iii) For any e > 0, there exists a constant C dependent on d, e, such that

. Sy t—1,t| ZFegi(iTeg)
blipE| det TR () ~ detop, ., m|™0 <CIP | o) 0,
Proof. Firstly, we will construct an approximation scheme for X, , o X,Zi’%” (z). We take an integer Ny

such that 53> < |P|. For n > Ny, we take a "mixed partition"

Pp={t=1<Tng-1q1 < <Tnyp <t
1 2 l
27(r—t)<t+27(r—t)<~-~<t+27(r—t)<t+
={t—1=50<81 < <S8y, =7}

<t+ (r—t)<---<r}

We remark that we take the partition {I';} on [t — 1,t] and take the partition {55} on [t,r]. We denote

|Pr| := {max }sk — Sg—1. We construct Mp_ (t) = M(s;+1 — s;) when s; < t < s;11 with the truncation
ke{l,--- ,ng

function M (e) given in (59). And we denote 77~ (t) = s; when s; < t < s;.1. Then we consider the
truncated Euler scheme based on P,,, Mp, :

T T
ti_nlafypn = x4+ / b(inff—j;;:(S))dS + / / C(z7 ij—nl,fg:(s)—)N(dz’ dS).
t—1 t=1J By (s)
We denote
P, M P, Mp,
E T () = Xy P (x) — . (93)

We notice that we can apply the results from Section 5 for Fz’”tﬁ”" (z), in\ﬁ (z) and F,_;41(x) defined

in (92) and (93).
Since r — ¢t + 1 < 3, by Lemma 5.2 7), the Sobolev norms of Ffj‘t’ﬁp" (z) and F,_;1(x) are bounded,

uniformly with respect to z. One can check that Ffft’ﬁp" (x) = Fz%j (x) in LY(9), as n — oo (which is
a variant of Lemma 5.1 ¢)). So we can apply Lemma 3.3 (A) for I, = Ffj’t’ﬁ”” (z)and F' = Ff;?fi (z) in

order to get that Ff_%j (r) € DL, and sup sup HFZ)_%F’; (2)||n,q,p < Cyp- Hence, Lemma 6.2 ¢) is proved.
z P
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Moreover, since 7 — ¢ + 1 > 1, using Lemma 5.3 7i) we have supsup E(1/det o5
P T r—t+1

@) < Gy SO

Lemma 6.2 ;) is proved.
Finally, by Lemma 5.5 7) and recalling by (59) that &,;(,) < ~?, we have

2
||DF;P_nt7i/Il7’n (.’L‘) — DFT*tJrl(x)Hz;E?);lzx]Rd) < C(‘Pn‘ + EM(|Pn|)) (2+60)24(1+50) < C|7)t—17t| (2+50)?(1+50) ,

where the last equality is true since 5~ < |P'~1*| for every n > Ny. Then we can apply Lemma 3.3 (C)
for (F, F) = (F5207 (2), Fr—p1(2)) and (F, F) = (F22)7 (2), Fy—41(2)). So supE|det o pp.vir

et (2) B

= < P, Mp T < t-1t|@F=)%e0) and 6
@[T < CHDFT,H,l(x)_DFT*tﬂLl(x)H[ﬂ(Q;bed) < O|pthtEFeoaFe and Lemma 6.2

i11) is proved. O

deto F,

Then we can prove (20). By Lemma 6.2 i), the Sobolev norms of Fz’t]‘ﬁ (z) are bounded, uniformly
with respect to x. Using Lemma 6.2 ii), the covariance matrix of F,_;,1(x) is non-degenerated. Then we
are able to apply Lemma 3.5 for F' = Fﬁﬁﬁ () and Q@ = F,._;y1(x) so (38) holds for F' = Fﬁ’%j (2)

and Q = F,_;41(z). Thanks to the remark of Lemma 3.5, (38) also holds for F' = X, , o XZD_’%Z’ (x) =

EPYn () + 2, Q=X 0 Xy 4(2) = Fr_yy1(z) + = and get

E(f(Xe,r 0 XD (2))) — E(f5(Xew 0 X107 (2)))
67 _ K
<C|fllo (@ 0 PEldetoy, | yrarp ) —detox, ox, @] +0%), (94)

where we have also used the fact that supsup E(1/det oy, ox, , ()" < Cx from Lemma 6.2 ii).
whsu RIS RE"

We take p = ﬁ for any small . Thanks to Lemma 6.2 iii),

2 2 2
0 — < t—1,t < c
st;pE| det o, detox, ox, 1 (z)|7750 = Sl;p]E| det o »ap @) detop, . (|70 < C|P GFeo)(Te0) ,

r—t+1

o X1P (@)
This implies that
supEfdet oy o xrar ) = detox, ox i) < Cuygy) ™
Substituting into (94), we obtain
o4 a2
P, M P, M — c0)(1+e K
up [B(7(Xe,r 0 XP17 (2))) = BUs(X1r 0 XD )] € Cll Sl % (g 17 TG0+,

By a similar argument, we have

N(t—1)

01 2 et
P.M P.M P.M P.M E 5 K
sup |[E(f(X;, "7 o X; 277 (%)) — E(fs(X; ;7" o X, 20 (%‘)))‘ <C \IfllooX(@Jrn Ty ).

So (20) holds for p = —2— and 8 =

_1
1+4+eo 24¢e0”

Finally, we can apply Proposition 2.1.1 for XZ)D’FJ?’ and Xop, witha=1, kg =0, p= ﬁ’ 8= ﬁ

(for any small ,), and obtain the following result: for every e > 0, there exists a constant C such that

€

2 B
dTV(ngAfp,XO,Fn) < C%(Lz+m)<1+so) _ C’Y,ll_s, (95)
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R 2—e(24-¢0)(14€0)
with e=1-— W

And moreover, we have
drv (L)) < COL [ o=yl dvty)e i),
R

where v is the unique invariant probability measure.

7 Appendix

7.1 The numerical lemma
In Section 2, we need to use the following numerical lemma.

Lemma 7.1. (A) Take an integer n.. Let (7, )nen be a non-increasing positive sequence such that for n > n.,

we have
Yn — TYn+1

5 < 2. (96)
’yn—&-l

We denote T",, = 2?21 ~;. Then for every n, < i <n, we have
v < XUl sy 97)

(B) We assume that (v, )nen i a non-increasing positive sequence verifying

% <e, < B. (98)
’ynJrl «
We denote I',, = Y7, ;. Then
Uy 1= Z%Hae_p(r"_m) < Cro. 99)
i=1

Proof of (A) Notice that (96) implies

Tn
’Yn-&- 1

<1+ 2Ty41 < 2@+t

Then

n—1

n—1
H Tk < H e29(Vk+1) < 2@ —=T4)
Yn ki Yk+1 hei

Proof of (B) Notice that (98) implies

Vi

Tn
Yn —+1

<1+ Caypgr < e Tntt,

Then we define v, = u,, /7S and we have the recurrence relation

«

v
Un4+1 = ann + Yn+1, 9n = 1

— X e_l)’)’n+1.
feY
7n+1

Using the previous inequality we obtain

Upy1 < O TP by Ly
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and further

elp—ac)Tni1 e(ﬂ—ac*)FnU” + elp—ac)lnin

Un+1 S Yn+1
< elPmaedlay, 4 Clelomacluy, )

with ¢/ = sup e(P~@¢) 7 = elP=ac)1 We use recursively this inequality and we obtain

k>1

n

e(P—aC*)Fnﬂanrl < e(P—ac*)Flvl +C § e(p_ac*)r"%wrl
i=1

ry
< e(p—ac*)[‘l v + Cl/ e(p—ac*)sds
0
< elpmacluy, o / elp—ac)lni1
- P — QCy
That is , ,
Upt1 S 1+ <m+
p — acy P — acy
which finally gives
/
Unt1 < (11 + m)%ofﬂ-

O
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