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Foreword

What is (and what is not) this memoir.

This memoir is a professorial thesis in mathematics. As such, it presents the results obtained in my mathematical career after my PhD thesis (all of them either published or in the submission/referee process). But this memoir does not only contain my mathematical achievements. It also tries to display my personal eye on the research in mathematics. And, of course, it contains lots of notations, definitions, equations and theorems! Despite this, I tried to make this memoir not just a list of theorems. Indeed, while part of my research is of the "problem solving" type, some contributions are more of the "building" type ( building tools, building bridges between theories, ...). Therefore, while it states some theorems, it also introduces many definitions, and presents personal comments on my own understanding of the notions and problems at stake. Also, while it is largely devoted to my personal achievements (with or without co-authors), it also contains either seminal results I used thoroughly in my research, or recent progress on a close topic by others mathematicians. When citing such results, I will add a * after the reference\ Theorem 1 .

Finally, this memoir tries not to be a simple enumeration of articles and the results therein. While some sections indeed refer to a single article, I also tried to combine the results of different articles and take a step back whenever it was possible, to propose a more global, accurate and up-to-date presentation of certain notions. I also chose to leave aside certain results, generally because they were too technical and specific to be presented shortly and simply. However, all main results are presented.

Which themes are discussed?

While I worked during my PhD thesis at the interplay between statistical learning theory and functional analysis, my research since then is very far away from this starting point. Indeed, it now takes place in the field of non-commutative algebra, and 1 For instance: [166, Theorem 3] * ii iii deals both with properties of elements in algebraic structures such as semigroups and rings (but also unary semigroups, S-acts and modules), and properties of these algebraic structures themselves.

Within this very general field, there are several guidelines that inspired my research. First come generalized inverses, that inspired me in the first place and enlighten the path to more general semigroup theory and ring theory. Then among these generalized inverses, and apart the new inverse along an element that I introduced in [START_REF] Mary | On generalized inverses and Green's relations[END_REF], I study particularly the special case of group inverses, which are commuting reflexive inverses, but can also be seen as genuine inverses of units in a local submonoid eSe, where e ∈ E(S) is an idempotent, inner inverses along an idempotent or "idempotents modulo Green's relation H". Naturally, (genuine) idempotents play an important part of my studies, as well as the relation of association between them and the natural partial order on them (and more generally, the natural partial order on arbitrary elements). And finally, most of my research uses Green's relations and their extensions. But these are rather general subjects, on none of these alone subsumes my research.

If I had to single out a few themes that embraces (nearly) all my work, one would be Miller and Clifford's trace product theorem ([166, Theorem 3] * , Theorem 1.1.1 in the present memoir). It serves as a basis for many results and many theorems (some about generalized inverses, some on pure semigroup theory and others on chains of idempotents in rings) can be derived from an extension of their theorem to products of the form azb ∈ R a ∩ L b (see Section 5.2 and in particular Theorem 5.2.1 therein). Another one would be Green's relation H, with a particular emphasis on the "equation" dad H d (a special case of the above equation, since R d ∩L d = H d by definition). Indeed, this equation characterizes the existence of the inverse of a along d [START_REF] Mary | On generalized inverses and Green's relations[END_REF], but also, taking a = 1 (or d), we get that d is group invertible and, finally, for d fixed, the equation dad H d corresponds to a being an inner inverse of d modulo H [START_REF] Mary | Generalized inverses modulo H in semigroups and rings[END_REF]. I also studied semigroups where H is a congruence (cryptic semigroups) in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF], or H-commutation properties in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] and [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF]. And extensions of Green's relations (notably H) were used in [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]. Another theme is the study of semigroups (or semigroup biacts) whose structure resembles that of completely simple, completely regular or inverse semigroup ( [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF], [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF], [START_REF] Mary | A local structure theorem for stable[END_REF]). And a last one the interplay between direct summands of modules and idempotents and generalized inverses in the monoid part of the endomorphism ring of that module [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF], [141], [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF].

At a more conceptual level, I have been searching for connections between elementwise and global properties of semigroups and rings, and even more fundamentally, I have been looking for some generality behind specificities.

Hopefully did I managed to reach some of these goals in my work, as this memoir will try to show.

Which themes are not discussed?

As us usual for a professorial thesis, this memoir does not discuss the results obtained during my PhD thesis. Neither does it present some more recent results obtained at the interplay between statistics, probability and linear algebra in my study of determinantal sampling designs [START_REF] Bardenet | On a few statistical applications of determinantal point processes[END_REF], [START_REF] Chambaz | Targeted learning using adaptive survey sampling[END_REF], [START_REF] Loonis | Determinantal sampling designs[END_REF]. While of independent interest, they clearly do not belong to same field as the other articles discussed here.

How is the memoir divided?

The memoir is divided into five parts, each one (except the first -introductory-one) focusing on a a particular domain of my research, and a specific area of mathematics. To summarize, Part II and Part III deal with generalized inverses, Part IV with the structure of semigroups and Part V with ring and module theory. I chose to make these four last parts self-contained, in order to be readable on their own by those specialists of a specific domain, and thus without any knowledge of the other parts. This inescapably implies some repetitions (for those brave enough to read the memoir entirely!) since these domains are yet interrelated.

Part I is dedicated first to the necessary definitions and notations. It presents notably Green's relations, regularity, generalized inverses, and perspectivity of direct summands of a module. In a second time, it presents the (successful and well-known) theory of group invertible elements, completely regular semigroups and strongly regular rings. This is the occasion to investigate on an accomplished theory the connections between the different notions addressed in this memoir, and more generally in my research. Also, this very beautiful and complete theory can be seen in some way as the mathematical guidance for my research in semigroup and ring theory by using generalized inverses and/or Green's relations.

In Part II I present the notion of inverse along an element that was introduced in 2011 [START_REF] Mary | On generalized inverses and Green's relations[END_REF], after my two first encounters with generalized inverses [START_REF] Mary | Moore-Penrose inverse in Kre ȋn spaces[END_REF], [START_REF] Mary | On the converse of a theorem of Harte and Mbekhta: Erratum to "on generalized inverses in C * -algebras[END_REF]. This is certainly my major contribution to the field of generalized inverses, for it led to many subsequent work (7 of my articles deal directly with this notion, but, more generally, one can now find more than 70 articles citing [START_REF] Mary | On generalized inverses and Green's relations[END_REF], according to MathSciNet). General results as well as inverses along specific elements are studied both in the semigroup and ring context. Other questions widely studied in the generalized inverse communitysuch as reverse order laws, Cline's formula or Jacobson lemma -are also studied for this inverse along an element (notably in case this element is a commuting or bicommuting idempotent).

In Part III, I gather my results that deal specifically with the group inverse. The group inverse actually shows up in most of my articles, and the first chapter of the part (Chapter 8) gathers various existence criteria obtained in the course of my research. In the three next chapters I focus mainly on three papers. The first one [START_REF] Mary | The group inverse of a product[END_REF] studies the group inverse of a product ab in a ring, where the elements a and b are merely assumed regular (Chapter 9). The second one [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF], whose results are presented in Chapter 10, also studies the group inverse of a product, but in another perspective. It combines semigroup and ring theory, and answers the question of the reverse order law for the group inverse. The third paper [START_REF] Mary | Group-regular rings[END_REF] is of different flavor. It compares different extensions of unit-regularity in non-unital rings, some of which based on the group inverse. Such extensions are discussed in Chapter 11. Finally, in the last chapter of the part (Chapter 12), connections between group inverses and special clean elements v of a ring are also discussed.

Part IV exposes my contribution to the theory of the algebraic structure of semigroups, notably through the presentation of four articles [START_REF] Guterman | On hartwig-nambooripad orders[END_REF], [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF], [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF], [START_REF] Mary | A local structure theorem for stable[END_REF]. One common feature of these works is the major use of Green's relations (another one is that all four articles have been published in Semigroup Forum!). Two chapters of Part IV are not of this kind. Chapter 13 presents the main results regarding the inverse along an element from a semigroup point of view, while Chapter 16 gathers some semigroup results originally obtained in the study of perspective modules and rings.

Finally, Part V presents some recent module and ring theoretical results ( [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF], [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF],

[140], [141], [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF], [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF], [START_REF] Mary | Group-regular rings[END_REF], [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]), that share in common the use of generalized inverses to study apparently purely additive notions such as clean elements (in rings) and perspectivity of direct summands (in modules). In this part, and thanks to the contribution of D. Khurana and P.P. Nielsen, we will also encounter some results in number theory! As this memoir is dedicated to a audience of mathematicians in various fields and of different interest, I suggest the following choices of lectures depending on the interest of the reader (apart Part I, dedicated to all of them):

For those specialist of generalized inverses, I suggest the reading of Parts II and III (in particular Chapters 8, 9 and 10 in Part III); For researchers in semigroup theory, I suggest to read Part IV. Chapters 8, 10 and 11 (in Part III) may also be of interest. Finally, for those working interested in modules and rings, I suggest to read primarily Part V. In a second time, they might also find some interest in Chapter 9, Chapter 11 (in particular Section 11.4) and Chapter 12 within Part III.

Special thanks

I wish to express my deepest gratitude to all my co-authors, from whom I learned a lot on many subjects, from matrix theory to Morita context or number theory. I also thank them for the very stimulating conversations we had during our collaboration, and their kindness in all domains. Besides, I express my gratitude to P. Patricio, V. Gould and A. Leroy (in order of appearance in my scientific life) for introducing me into their respective community; researchers in the field of generalized inverses, semigroup theorists and ring theorists respectively. This is especially important for me in regards of the lesser visibility of these themes in the French mathematical community than in some other countries.

V. Gould and A. Leroy, rejoined by D. Mosic, also kindly accepted the ungrateful task of reporting this memoir. Let me again gratefully thank them! Finally, I thank my beloved wife and children for their patience and support not only during the redaction of this memoir, but also during all these times when difficult (at least for me) mathematical issues kept me busy and away from them probably more than it should have been.

Contents List of publications x

List of symbols xiii I The basics... and some inspiration ≤ L , ≤ R , ≤ J and ≤ H Green's preorders 

≤ L E , ≤ R E , ≤ H E Green'

Definitions and notations

In this memoir, S is a semigroup and S 1 denotes the monoid generated by S. By E(S) we denote the set of idempotents, and by Z(E(S)) = {x ∈ S|xe = ex (∀e ∈ E(S))} its centralizer. More generally, the commutant of a set A ∈ P(S) will be denoted by Z(A), or more often A ′ . The bicommutant (also called double commutant) of A will always be denoted by A ′′ . Monoids will be denoted by M and their group of units by U(M) or M -1 , whereas M will denote a right k-module, with k a given ring the will depend on the context (in general, k will remain unspecified). Rings are associative, non-commutative and unital unless otherwise stated, and denoted by R.

To any module M is attached its endomorphism ring End(M ), and conversely any ring R defines a right module R R and a left module R R over k = R. When R is unital, R and End(R R ) are isomorphic. Endomorphisms will be written on the left, so that the image of a ∈ End(M ) is im(a) = aM and its kernel is ker(a) = {x ∈ M |ax = 0}. The corresponding notions for elements of a ring are the right principal ideal generated by a aR and the right annihilator of a r R (a) = {x ∈ R|ax = 0}. A ring with or without an identity will be called a general ring, and denoted by ℜ. Attention to general rings has grown up lately, and (probably due to my semigroup-oriented mind), I tried in my research to extend notions à priori defined only in unital rings to general rings when possible. All semigroup definitions and results apply to any unital (resp. general) ring R by considering its monoid (resp. semigroup) part M(R) (resp. S(R)). In this case, we will however denote more simply its set of idempotents by E(R) or idem(R), and its group of units by U(R) or R -1 .

We assume the reader familiar with the fundamentals of semigroup theory, as found for instance in [98] * , and module and ring theory, as found in [127] * and [128] * .

However, since they are a crucial part of my research, I recall below some specific notions: Green's relations and generalized inverses (semigroup theory), and internal cancellation and perspective modules (module theory).

) Green's relations -Generalized inverses (Semigroup Theory)

Most of my research makes use of the Green's preorders and the Green's relations in a semigroup [73] * . For elements a and b of S, Green's preorders ≤ L , ≤ R , ≤ J and ≤ H are defined by

a ≤ L b ⇐⇒ S 1 a ⊆ S 1 b ⇐⇒ ∃x ∈ S 1 , a = xb; a ≤ R b ⇐⇒ aS 1 ⊆ bS 1 ⇐⇒ ∃x ∈ S 1 , a = bx; a ≤ J b ⇐⇒ S 1 aS 1 ⊆ S 1 bS 1 ⇐⇒ ∃x, y ∈ S 1 , a = xby; a ≤ H b ⇐⇒ (a ≤ L b and a ≤ R b) .
If ≤ K is one of these preorders, then a K b ⇐⇒ {a ≤ K b and b ≤ K a}, and K a = {b ∈ S, a R b} denotes the K-class of a. Finally, we define the relative product D = L • R.

As the relations L and R commute, then D = R • L = L ∨ R and it is an equivalence relation. In any semigroup, D ⊆ J , but equality will hold in the interesting class of stable semigroups. Among the main properties of the preorder ≤ L are right congruence ((∀x ∈ S) a ≤ L b ⇒ ax ≤ L bx) and right cancellation ((∀x, y ∈ S 1 ) a ≤ L b ∧ bx = by ⇒ ax = ay). Dually for ≤ R . It follows that L is a right congruence, and R is a let congruence. Relation H is not a congruence in general.

Of crucial importance in my research is the following result due to Miller and Clifford [166, Theorem 3] * (see also [START_REF] Mackintosh | Fundamentals of semigroup theory[END_REF]Proposition 2.3.7] * ), that relates Green's relations and existence/location of idempotents. (This idempotent, if it exists, is unique, for a H-class contains at most one idempotent). Whenever, ab ∈ R a ∩ L b , we say that ab is a trace product (for they are the non-zero products in the trace of the semigroup, see [166] * ).

Moreover, Green's relations take an interesting form when applied to idempotents (the first occurrence is probably [40] * , and the restrictions of Green's preorders to idempotents are notably a primitive notion regarding biordered sets ([60] * , [177] * , [178] * , [188] * ). For any two idempotents e, f ∈ E(S), e ≤ L f iff ef = e and dually e ≤ R f iff f e = e. The intersection ≤ H of these two preorders, when restricted to idempotents, is actually a partial order (any two H-related idempotents are equal) called the natural partial order, and denoted by ≤ afterward. Thus for any two idempotents e, f ∈ E(S), e ≤ H f ⇐⇒ e ≤ f ⇐⇒ e = ef = f e. It holds that S 1 e = S 1 f iff e L f iff ef = e, f e = f , and the relation does not depend on the ambient semigroup. We say that e and f are left associates in this case, and we write e ∼ ℓ f . Dually, we write e ∼ r f to denote that e and f are right associates. Finally, e and f are D-related iff eS 1 ≃ f S 1 (as S-sets, and e, f are termed isomorphic), iff e = ab and f = ba for some a, b ∈ S (that we can choose to form a regular pair, see below).

Miller and Clifford's theorem on trace products admits the following interpretation when applied to isomorphic idempotents that will prove very useful in many articles. Through probably folklore, I could not find any reference in the literature.

Theorem 1.1.2 ([156, Proposition 2.2]). Let S be a semigroup and e, f ∈ E(S) be D-related idempotents with e = ab, f = ba for some a, b ∈ S. Then eae is invertible in eSe (equiv. f af is invertible in f Sf ) iff there exists h ∈ E(S) such that e ∼ r h ∼ ℓ f .

We now define regularity and generalized inverses. Regularity was first defined and studied by John Von Neumann in the context of rings, in relation with his axiomatisation/coordinatization of continuous geometries via lattices [179] * ; indeed, he proved that every complemented modular lattice (with a homogeneous basis of at least four elements) is isomorphic to the lattice L of finitely-generated submodules of the left Rmodule R n , for some regular ring R (and conversely any such lattice is completemented modular). In the context of semigroups, it was soon recognize that the abundance of idempotents in regular semigroups made their study easier, and most of the first results in semigroup theory dealt only with regular semigroups.

We say a is (von Neumann) regular in S if a ∈ aSa. The set of regular elements of S will be denoted by reg(S). A particular solution to axa = a is called an inner inverse, or associate, of a. A solution to xax = a is called an outer inverse (or weak inverse). Finally, an element that satisfies axa = a and xax = x is called a reflexive inverse of a. The set of all inner (resp. outer, resp. reflexive) inverses of a is denoted by I(a) (or A(a)) (resp. W (a) , resp. V (a) ). If b ∈ V (a), we also say that (a, b) is a regular pair. If b ∈ I(a), then (a, bab) is always a regular pair. The study of specific inner/outer/reflexive inverses via equations is the realm of generalized inverse theory. Note the conceptual distinction between the two notions; whereas regularity deals with elements in specific locations (a ∈ aSa, a ∈ R e for some idempotent e ∈ E(S),...), generalized inverses deal with the solutions x ∈ S to equations of the form axa = a, xax = x, ... for some given a ∈ S. Observe also the apparition of idempotents by computing (ab) 2 = ab = e, (ba) 2 = ba = f when aba = a or bab = b. Actually, regularity admits a description in terms of Green's relations and idempotents: a is regular iff a R e (equiv. a L f ) for some idempotent e ∈ E(S) (equiv. f ∈ E(S)); the semigroup S itself is regular iff each D-class contains an idempotent.

In the presence of a identity (monoid M, in particular the monoid part of a ring), we will be interested in unit-regular elements, those regular elements a ∈ M that admit a unit (a.k.a. invertible) inner inverse u ∈ V (a) ∩ U(M). By ureg(M) we denote the set of unit-regular elements of M.

A regular element a ∈ S is completely regular if a lies in a subgroup of S, or equivalently (see Chapter 2) if there exists an inner inverse x of a that commutes with a. In this case, b = xax ∈ V (a) and commutes with a. A commuting reflexive inverse, if it exists, is unique and denoted by a # . It is usually called the group inverse of a, and completely regular elements are also called group invertible elements. In the following, H(S) will denote the set of completely regular (group invertible) elements (also denoted by S # in some papers).

There are two more very classical generalized inverses. The first one is the Moore-Penrose inverse [173] * , [189] * , which is defined in any * -semigroup (semigroup with involution). The Moore-Penrose inverse of a ∈ S, if it exists, is (the only) reflexive inverse x of a such that additionally the associated idempotents ax and xa are projections: (ax) = (ax) * and (xa) * = xa. It is denoted by a † . The second one is the Drazin inverse [50] * . The Drazin inverse of a ∈ S, denoted by a D (if it exists) is the only outer inverse x of a that commutes with a and satisfies a n+1 x = a n for some n ∈ N. The smallest such n is called the Drazin index. An element a ∈ S is then group invertible iff it is Drazin invertible with index 0 or 1. In this case a # = a D . If a is Drazin invertible then one also says that a is completely π-regular (for this happens iff some power of a is completely regular).

) Internal cancellation -Perspectivity (Module Theory)

Regarding modules, apart the general theory, two less known notions will be important: Internal Cancellation, and Perspectivity. 

Informally, cancellation of modules asks the following question

: if A ⊕ B ≃ A ⊕ C, does B ≃ C?
M = A ⊕ B = A ′ ⊕ B ′ , then A ≃ A ′ implies B ≃ B ′ .
Another property is perspectivity. Two direct summands A, A ′ ⊆ ⊕ M of a module M are perspective (denoted by A ∼ ⊕ A ′ ) if they have a common complementary summand in M : Thus direct summands and their complementary summands, idempotents, and regular elements and their reflexive inverses may be seen as different models of the same abstract notion. Chapter 24 is an exposure of the work of my co-authors and myself based on this simple consideration. 2] without any knowledge of semigroups theory nor of Green's relations. Indeed, at this very moment I had been working on the functional analysis background of statistical theory (PhD Thesis and subsequent work [START_REF] Rakotomamonjy | Wavelet kernel and rkhs[END_REF], [START_REF] Mary | Sous-dualités et noyaux (reproduisants) associés[END_REF], [142], [START_REF] Ong | Learning with non-positive kernels[END_REF], [START_REF] Rakotomamonjy | Non-parametric regression with wavelet kernels[END_REF], [143], [START_REF] Canu | Splines with non positive kernels[END_REF]), and just slightly moved from function spaces to operator and C * -algebras. Forgetting all the topological and functional properties, and keeping only the necessary and sufficient -as it happened algebraic-conditions was the starting point of my research in generalized inverses, semigroup theory and non-commutative algebra in general. (2) Assume (a, a ′ ) be a regular pair. Then aa ′ = a ′ a if and only if a H a ′ .

A ⊕ B = A ′ ⊕ B = M for some B ⊆ ⊕ M . A module M is perspective if any two isomorphic direct
(

) If H is a H-class of S, then either H 2 ∩ H = ∅ or H 2 = H and H is a subgroup of S. 3 
(The last statement is usually known as Green's Theorem).

In particular, the maximal subgroups of S coincide with the H-classes of idempotents, which are pairwise disjoint. An element is then completely regular iff it belongs to some subgroup of the semigroup (the maximal subgroup with this property being H a = H e , H-class of a, with identity e = aa # = a # a ∈ E(S)). This is the reason why completely regular elements are also called group invertible elements (or sometimes simply group elements), and the commuting reflexive inverse the group inverse. Also, a is completely regular iff it is invertible in some local submonoid eSe.

Consider now the case of a unital ring. First, we deduce directly that elements with a commuting reflexive inverse coincide with the strongly regular elements of ring theory (where a ∈ R is strongly regular if a ∈ a 2 R ∩ Ra 2 ), or with elements invertible in some corner ring eRe, e ∈ E(R). Second, in this case, we can characterize them by means of units: a ∈ R is strongly regular iff u = 1 + a -aa ′ is a unit, for some (all) inner inverse of a. And third, assume that R = End(M ) is the endomorphism ring of some (right k-)module M = M k . Then φ ∈ End(M ) is strongly regular iff ran(φ) ⊕ ker(φ) = M .

Finally, starting from a simple commutation property for reflexive inverses, we made connections with:

(1) equality of left/right ideals generated by a and a 2 , or a and an idempotent;

(2) maximal subgroups;

(3) invertible elements in local submonoids (or corner rings);

(4) units (in ring theory);

(5) direct sum decompositions (in module theory).

Understanding notions in different ways, as in this example, serves as a strong guideline for my research.

) Structure theorems

Even more interesting are the global results. By definition, a semigroup (resp. ring) is completely regular (resp. strongly regular) if all its elements are completely regular (resp. strongly regular).

CHAPTER 2. COMPLETE REGULARITY

From Theorem 2.1.1, we deduce that a semigroup S is completely regular iff it is a (disjoint) union of groups (its H-classes). However, a more interesting decomposition holds. If S is completely regular, then Green's relation J is a semilattice congruence (S\J is a semilattice), J = D and each J -class is a completely simple semigroup.

Thus S is a semilattice of completely simple semigroups, whose structure is well-known thanks to Rees Theorem: a semigroup is completely simple iff it is (isomorphic to) a Rees matrix semigroup over a group.

If we consider the case of rings (which are much more rigid than semigroups), then the situation changes drastically. In this case, each element has a unique reflexive element (we say that the ring is inverse), idempotents of the ring are central and the (monoid part of the) ring is a semilattice of groups. Also, this happens iff the ring is regular and a subdirect product of division rings. Moreover, it was proved by Arens and Kaplansky that this is equivalent with the one-sided property a ∈ a 2 R (∀a ∈ R). Precisely, the following are equivalent:

Theorem 2.2.1 ( * ). Let M be a module, R = End(M ) its endomorphism ring and MR the monoid part of R. The the following statements are equivalent:

(1) (∀a ∈ R) a ∈ a 2 R (this is the original definition of a strongly regular ring);

(2) R is regular and for any a ∈ R and some (every) regular pair (a, a ′ ) then 1 + a -aa ′ is a unit; (3) R is regular and reduced (the set of nilpotent elements reduces to 0, N (R) = 0); (4) R is regular and a subdirect product of division rings; (The last result is [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]Corollary 4.8]).

Theorems of this kind, that relate properties of regular elements, idempotents, principal ideals, units (in the case of rings), direct summands (in the case of modules) and global structures are one of the ultimate goals of my research.

II

The inverse along an element Part II -The inverse along an element

The inverse along an element was defined in [START_REF] Mary | On generalized inverses and Green's relations[END_REF], and, since then, it has been thoroughly studied by many scholars. In this part, we first introduce this notion and study its very general properties (in Chapter 3). Its relation to more common generalized inverses (group, Drazin or Moore-Penrose inverses) is exposed in Chapter 4. In this chapter, we also explore inverses along centralizers and idempotents, with a particular emphasis on commuting and bicommuting idempotents. Cline's formula for such inverses is also discussed at the end of the chapter. Then, the link with the the (b, c)inverse of Drazin [51] * is studied in Chapter 5, through a categorical interpretation of the inverse along an element. Reverse order laws are also studied in this manner. In Chapter 6, we study partial orders based on the inverse along an element and finally, Chapter 7 presents the additional properties of the inverse along an element specific to the ring case.

Chapter 3

The inverse along an element

When I first learn about generalized inverses, they were different competitive notions such as the group inverse, the Drazin inverse or the Moore-Penrose inverse (and later other notions such as the core or dual core inverse [197] * also appeared). And each of these inverses had its specific features and studies. However, I noticed in my early papers on the subject [START_REF] Mary | On the converse of a theorem of Harte and Mbekhta: Erratum to "on generalized inverses in C * -algebras[END_REF] and [START_REF] Mary | Moore-Penrose inverse in Kre ȋn spaces[END_REF], that some of their properties shared certain similarities. Also, while these two first papers dealt with operator algebras, I noticed that the functional and topological assumptions played essentially no role (except for certain existence criteria), and most of the properties could be expressed algebraically by using the product operation only. This aroused my curiosity and ultimately, lead to the introduction of the inverse along an element in a semigroup [START_REF] Mary | On generalized inverses and Green's relations[END_REF], that encompass all the previous notions and allow for a unified treatment of some of their main properties. As we will see shortly, this inverse along an element makes great use of Green's relations.

Since 2011, this notion has further been developed and studied by the present author and his coauthors [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF], [START_REF] Mary | The inverse along a lower triangular matrix[END_REF], [START_REF] Mary | Generalized inverses modulo H in semigroups and rings[END_REF], [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], [START_REF] Zhu | Centralizer's applications to the inverse along an element[END_REF], [START_REF] Guterman | Partial orders based on inverses along elements[END_REF], [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF], [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF] as well as by many others mathematicians, in various settings such as semigroups [223] [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF], [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF], or directly Chapter 5 in the present memoir). However, this equivalence seems unknown by many scholars, thus leading to the duplication of many results. This is one of the reason of the redaction of [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF]. The notation a ∥d was suggested by R. Hartwig and used in my first papers on the subject [START_REF] Mary | On generalized inverses and Green's relations[END_REF], [START_REF] Mary | The inverse along a lower triangular matrix[END_REF], [START_REF] Mary | Generalized inverses modulo H in semigroups and rings[END_REF], [START_REF] Zhu | Centralizer's applications to the inverse along an element[END_REF]. Then, it was suggested by a referee to use the notation a -d (see explanation below in section 4.1), a notation that I found actually more convenient and tried to use ever since. However, some other authors still use the former notation a ∥d . In some papers, the inverse along an element is also called Mary inverse (along an element).

It follows from the definition that the inverse along an element may be seen as a parametrized outer inverse. This is used notably in relation with partial orders in [START_REF] Guterman | Partial orders based on inverses along elements[END_REF] and [77] * . Observe also that the parameter d must be regular in order that the inverse along d exists.

It is of crucial importance to observe that, while the first characterization of Lemma 3.1.1 : bad = d = dab and b ≤ H d makes a full use of the element d, the second characterization: bab = b and bHd states exactly that a -d is the unique outer inverse of a in the H-class H d of d. Thus, the inverse along an element is actually more an inverse along an H-class (for an implication of this result, see Section 4.2). This is for instance stated explicitly in [START_REF] Mary | Generalized inverses modulo H in semigroups and rings[END_REF]. Since an H-class is by definition the intersection of a R-class and a L-class, it follows that the inverse along d may be defined using the R-class and the L-class of two elements b, c ∈ S such that d ∈ R b ∩ L c . What we obtain is precisely the (b, c)-inverse of Drazin [51] * (see Section 5.1).

) General properties

Despite its very general definition, the inverse along an element still has many very interesting properties.

First, there are existence results, and characterizations. We make some observations:

if a is invertible along d, then d is L-related to an idempotent (the identity of H ad ). Thus d is regular, so that I(dad) is not empty (equivalently, the equation dad H d characterizes a as a kind of "inner inverse of d modulo H", a statement we took literally and studied carefully in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] (see Chapter 14). Equivalently, d may be interpreted as an "outer inverse of a modulo H", a direction followed by Fan et al. Second, we can characterize when a -d ∈ V (a) (that is, when a -d is an inner of a, since it is always an outer inverse of a). This is a direct consequence of Miller and Clifford's theorem 1.1.1. And third, there are commutation properties. The original proof uses directly the definition of the inverse along an element, but an alternative proof is possible by using the bicommuting property of the group inverse. Indeed, let a, c, d ∈ S with a invertible along d and c ∈ {a, d} ′ (the commutant of {a, d}). Then c commutes with ad hence with (ad) # , and a -d c = d(ad) # c = dc(ad) # = cd(ad) # = ca -d . The second statement does not appear directly in [START_REF] Mary | On generalized inverses and Green's relations[END_REF], but can be obtained by similar arguments. However, it has been obtained by Drazin [54] * in the context of the (b, c)-inverse.

d = dab = d a(da) # d).

) Extensions and complements

The one-sided inverse along an element is defined in [ And finally, many scholars gave other characterizations and properties, or studied generalizations/specialization of the inverse along an element. Among all the results obtained, we may single out the following ones (in semigroups).

Regarding the one-sided inverse along an element, it is notably proved that in a * -semigroup, a is left invertible along a * iff it is right invertible along a * iff a is Moore-Penrose invertible [223] * . The one-sided inverse along an element is more thoroughly studied in [37] * . The right core inverse studied in [209] * is an instance of such one-sided inverse along an element;

The complete inverse along an element [210] * , is defined as the unique solution (if it exists) to the system axd = d = dxa, x ≤ H d. In [210] * , they proved that this is equivalent with a being invertible along d together with a -d a = aa -d , and that this notably implies that d ∈ S # (commutation properties of the inverse along an element had already been studied by Benitez and Boasso [11] * , but in the context of rings).

The inverse along an element has also been used as a tool to investigate some concepts usually based on some specific generalized inverses.

In [77] * , Marki, Guterman and Shteyner introduce a general notion of quotient ring based on inverses along an element (but their construction is also valid at the level of semigroups). As the classical generalized inverses are special cases of the inverse along an element, the new quotient rings encompass the classical quotient rings constructed using various generalized inverses. Secondly, these new quotient rings can also be viewed as Fountain-Gould quotient rings with respect to appropriate subsets (as inverses along an element can be expressed in terms of group inverses by Theorem 3.2.1).

In (1) a is invertible if and only if it is invertible along 1. In this case the inverse along 1 is inner and coincides with the (genuine) inverse. (2) a is group invertible if and only if it is invertible along a. In this case the inverse along a is inner and coincides with the group inverse. (3) a is Drazin invertible if and only if it is invertible along some a m , m ∈ N, and in this case the two inverses coincide. (4) a is Moore-Penrose invertible if and only if it is invertible along a * . In this case the inverse along a * is inner and coincides with the Moore-Penrose inverse.

In other words:

a -1 = a ∥1 , a ♯ = a -a , a D = a -a m for some integer m, a † = a -a * .
The first equality explains the choice of the notation a -d as a replacement of a ∥d .

It is also proved that the core inverse and dual core inverse, defined in any * -semigroup as the solutions to the systems of equations axa = a, xS 1 = aS 1 , S 1 x = S 1 a * and axa = a, xS 1 = a * S 1 , S 1 x = S 1 a respectively, are inverses along an element (along aa * and a * a respectively [START_REF] Rakić | Group, Moore-Penrose, core and dual core inverse in rings with involution[END_REF]Theorem 4.3] * ).

One of the main interest of the concept is that, thanks to Theorem 4.1.1, any property of the inverse along an element (as given in Chapter 3.2) then leads to a specific property for the previous inverses for free. For instance, the core inverse of a exists iff aa * a 2 a * Haa * by Theorem 3.2.1 (this statement can be refined under additional assumptions such as * -cancellation, the Gelfand-Naimark property or more generally in C * -algebras). And if it exists, it commutes with any element that commutes with both a and aa * thanks to Theorem 13.1.3.

) Inverses along centralizers

A left centralizer (also called a left translation) on S is a map σ : S → S that satisfies σ(ab) = σ(a)b. Right centralizers are defined dually, and a centralizer is both a left and right centralizer.

In [START_REF] Zhu | Centralizer's applications to the inverse along an element[END_REF], H. Zhu, J. 

) Inverses along ((bi)commuting) idempotents

In this section, we will see that idempotents appear naturally when it comes to commutation properties, a statement that will be made precise below. But inverses along non-commuting idempotents proved also very interesting.

) Notations and first results

The first occurrence of an inverse along an idempotent appears actually implicitly in [START_REF] Mary | On generalized inverses and Green's relations[END_REF], where it said: "We remark that if da = ad, the two results i) a -d ∈ {a, d} ′′ and ii) ad L d, da R d and H ad , H da are groups, then give that b = a -d commutes with a and d and that H d = H ad is a group." Since H d is a group, it contains an idempotent e ∈ S (the identity of the group) and since the inverse along d depends only on its H-class, we obtain that under ad = da, then a -d = a -e for some e ∈ E(S), and a -e commutes with a.

We will see (Theorem 4.3.3) that commuting and bicommuting outer inverses are all special cases of inverses along idempotents (equiv. outer inverses in group H-classes).

For the moment, we note that the group inverse and the Drazin inverse are inverses along the idempotents e = aa # and f = aa D respectively.

The following lemma regarding inverses along an idempotent is straightforward yet crucial.

Lemma 4.3.1 ([147, Lemma 4]). Let S be a semigroup, a ∈ S and e ∈ E(S). Then a is invertible along e iff eae is a unit in the local submonoid eSe, in which case

a -e = e(ae) # = (ea) # e = (eae) # = (eae) -1 [eSe] .
As such, the Bott-Duffin inverse of a relative to the idempotent f of Khurana et.al.

[113, Definition 2.12] is just the same as the inverse of a along f .

As an application consider the reverse order law for the inverse along an element, as studied in (2) dHe for some e ∈ E(S) and eabe = eaebe.

In the general case, if a and b are invertible along e ∈ E(S) then b -e a -e = (aeb) -e ([224, Corollary 2.21] * or [154, Theorem 3.9 (v)]). More general reverse order laws have been studied in [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF], see also Section 5.3.

To study precisely inverses along idempotents, I found convenient to introduce the following sets, for any a ∈ S. The first three were introduced in [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF], whereas the latter four were introduced in [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF] -with two very distinct objectives: [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] ) to semigroups and consider this extension in rings, while the purpose of [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF] was to study Cline's formula and Jacobson's lemma for inverses along (bi)commuting idempotents. Cline's formula for the generalized Drazin inverse has been studied in [174] * . 

Σ 0 (a) = {e ∈ E(S)|eaeHe}, Σ 1 (a) = {a} ′ ∩ Σ 0 (a), Σ 2 (a) = {a} ′′ ∩ Σ 0 (a), Σ R (a) = {e ∈ E(S)|e ∈ aeS ∩ Sae, eae = ae}, Σ L (a) = {e ∈ E(S)|e ∈ eaS ∩ Sea, eae = ea}, Σ # (a) = {e ∈ E(S)|e ∈ eaeS ∩ Seae}, Σ ( 
Σ 1 (a) = {a} ′ ∩ Σ(a) = {a} ′ ∩ Σ # (a) = Σ R (a) ∩ Σ L (a).
As any set of idempotents, all these sets are partially ordered by the natural partial order: e ≤ f ⇐⇒ e = ef = f e. And more specifically, (Σ 2 (a), ≤) is a semilattice (commutative band) with e ∧ f = ef (product in S) by [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF]Proposition 2] (and we will also denote it by (Σ 2 (a), ∧) or (Σ 2 (a), .) to emphasize either on the min operation or on the product operation rather than on the partial order).

Recall that W (a) is the set of outer (or weak) inverses of a. Following [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], we say that x ∈ S is a right (resp. left) outer inverse of a if it satisfies ax 2 = x (resp. x 2 a = x), and we denote the set of right (resp. left) outer inverses of a by R(a) (resp. L(a)). We also define

R # (a) = S # ∩ R(a), L # (a) = S # ∩ L(a), W 0 (a) = W # (a) = S # ∩ W (a), W 1 (a) = {a} ′ ∩ W (a) and W 2 (a) = {a} ′′ ∩ W (a).
Next theorem proves that there is a bijective correspondence between completely regular (resp. commuting, resp. bicommuting) outer inverses and (resp. commuting, resp. bicommuting) idempotents below a for the ≤ H preorder, and that it extends to an isomorphisms of posets (resp. semilattices) if one consider W (a) as the set of idempotents of the variant semigroup (S, . a ) with product x. a y = xay (so that (∀x, y ∈ W (a)) x ≤ a y ⇐⇒ x = xay = yax). (Actually, the results of [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] and [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF] do not cover the case j = 0 totally, but it can be proved by the same arguments as the proofs therein).

Define function

τ : S # -→ E(S) x -→ xx #
In summary, function τ j a is an isomorphism of posets from (W j (a), ≤ a ) onto (Σ j (a), ≤) for j = 0, 1, 2.

) Application 1: the natural generalized inverse

Let a ∈ S be completely regular. Then not only aa # ∈ Σ 2 (a), but e = aa # is actually the greatest element of Σ 2 (a) with respect to the natural partial order (and this remains true for the completely π-regular elements, see Theorem 4.3.6 below).

Consequently, I proposed in [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] the following definitions. Definition 4.3.4 ([147, Definition 2]). Let S be a semigroup, a ∈ S.

1. Let j = 0, 1, 2. The element a is j-maximally invertible if the set Σ j (a) admits maximal elements for the natural partial order. Elements a -e where e is maximal are then called j-maximal generalized inverses of a. 2. If there exists a greatest element M ∈ Σ j (a), then we say that a is j-naturally invertible, and b = a -M is called the j-natural generalized inverse of a. 3. Finally, if a is 2-naturally invertible, the element aM = aba is called the core of a.

The 2-natural generalized inverse we will also be simply referred to as the natural inverse. The two main properties of the natural inverse are the following: We first study this map regarding the sets of right weak inverses:

if Σ 2 (a)
R(ab) = {x ∈ S|abx 2 = x} and R(ba) = {x ∈ S|bax 2 = x}.
or equivalently inverses along an idempotent in Σ R (ab) and Σ R (ba). We deduce the following Cline's formula for inverses along an idempotent in Σ R . We can now interpret these results in terms of commuting (resp. bicommuting) outer inverses, or equivalently inverses along commuting (resp. bicommuting) idempotents by Theorem 4.3.3. In this case, the map restricts to an isomorphism of posets. Then the following posets j = 1 (resp. semilattices j = 2) are isomorphic (with their respective structure): Observe that, more generally, x → bx 2 a sends the j-natural generalized inverse of ab (if it exists) to the j-natural generalized inverse of ba (j = 1, 2) since the previous isomorphisms preserve the partial order.

W j (u) ≃ Σ j (u)∩ ≃ Σ j (v) ≃ W j (v).
Chapter 5

A categorical interpretation of the inverse along an element and the (b, c)-inverse, and Reverse Order Laws A (b, c)-inverse, if it exists, is unique and an outer inverse of a ([51, Theorem 2.1] * ). We will denote the (b, c)-inverse by a -(b,c) in the sequel.

In [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF]Proposition 1.4] and [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF]Theorem 2.4], it is proved that these notions are actually equivalent. Consequently, we see that the requirements in the definition of the (b, c)-inverse can be relaxed, and that this gives a very simple existence criterion.

Corollary 5.1.3 ([154, Corollary 2.5. and Theorem 2.6. (or 2.7.)]). Let S be a semigroup and a, b, c, x ∈ S. The following statements are equivalent:

(1) x is the (b, c)-inverse of a;

(2

) xab = b, cax = c, x ≤ R b and x ≤ L c; (3) xax = x and x ∈ R b ∩ L c . This happens iff cab ∈ R c ∩ L b .
As a consequence of Corollary 5.1.3, let bc be a trace product (bc ∈ R b ∩ L c ). Then a is (b, c)-invertible iff a is invertible along bc, in which case a -(b,c) = a -bc . As another application, assume that a is invertible along d and recall the following equality a While I mainly use the inverse along an element in my research, at some places it has been useful to consider the (b, c)-inverse (or more precisely the (e, f )-inverse, e, f ∈ E(S)), such as in [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF] and [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF].

) Miller and Clifford's theorem revisited

Recall that Miller and Clifford's theorem [166, Theorem 3] (Theorem 1.1.1) states that ab is a trace product (ab ∈ R a ∩L b ) iff the H-class H = L a ∩R b contains an idempotent. We extend this result, and provide applications to the inverse along an element, the (b, c) inverse and the Bott-Duffin inverse. (1) ⇒ (2) Assume that azb ∈ R a ∩ L b . As azbRa then by left congruence xazbRxa and czcvRc so that czcRc. Dually, czcLc.

(2) ⇒ (3) Assume that czcHc. Then c = czct for some t ∈ S 1 . Thus a = uc = uczct = azct and aRazc. Also as cLa then by right congruence czcLazc and finally aLcLczcLazc. Thus aHazc.

(3) ⇒ (2) Assume that azcHa. Then a = azct for some t ∈ S 1 . Thus c = xa = xazct = czct and cRczc. Also as cLa then by right congruence czcLazc and finally cLaLazcLczc. Thus cHczc.

(2) ⇒ (4) Assume that czcHc. Then by Theorem 3.2.1 (cz) # exists and czRcRb. As cLa by right congruence czLaz and H cz = L cz ∩R cz = L az ∩R b is a group (equivalently contains an idempotent). Finally as a = uc then by left congruence, az = uczRuc = a. 

Special cases:

(1) Letting z = 1 is the classical theorem;

(2) Letting a = b = d, and z = a in Theorem 5.2.1 we recover that dadHd iff adRd and H ad contains an idempotent (Theorem 3.2.1). Moreover, letting c = a -d we recover that if a is invertible along d then dadHd (since cHd and cac = c);

(3) Letting z = a and a = c we obtain existence criteria for the (b, c)-inverse;

(4) Letting a = f and b = e be idempotents, and z = a, we obtain that a is (e, f )invertible iff f ac = f acf is a unit in the local monoid f Sf for some c ∈ L f ∩ R e , iff cae = ecae is a unit in the local monoid eSe for some c ∈ L f ∩ R e ;

(5) In particular, a is invertible along e iff eae ∈ U(eSe) (this is Lemma 4.3.1).
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) The categorical point of view and Reverse Order Laws

A very interesting feature of the (b, c)-inverse is that it can be understand as a genuine inverse of morphism, in a suitable category. This category is the Schützenberger category D(S) of the semigroup S, as defined by A. 

, c)-invertible iff c cab -→ b is an isomorphism of D(S) (cab ∈ R c ∩ L b ), in which case its inverse morphism is b a -(b,c) -→ c.
Not only does this theorem provide a graphical interpretation of the (b, c)-inverse (hence also of the inverse along an element), but it also opens the path to categorical proofs using composition properties. For instance, [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF]Corollary 2.8] produces the equality b

a -(b,c) -→ c = b b -→ cab c -→ c.
Also, we recover that a -e = (eae) -1 eSe , inverse of eae in the local submonoid eSe, and that a -(e,f ) is the unique element x ∈ eSf such that x(f ae) = e, (f ae)x = f . This was put to a certain extent in [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF] to study reverse order laws (can we compute the inverse of a product by using the product of the inverses?). We refer to [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF] for the statements of the various ROLs therein. We only give one result here, to catch a glimpse of the type of results obtained.

Theorem 5.3.2 ([154, Theorem 2.7]). Let S be a semigroup and a, w, b, s, t, c ∈ S be such that a -(t,c) and w -(b,s) exist. Then (aw) -(b,c) exists and equals w -(b,s) a -(t,c) iff there exists e ∈ E(S) such that:

(1) t e -→ s is an invertible morphism;

(2) caewb = cawb. In this case, st is a trace product (and e is the identity of the group R t ∩ L s ).

In case the equality caewb = cawb does not hold but st is still a trace product with e ∈ R t ∩ L s , then the ROL becomes (aew) -(b,c) = w -(b,s) a -(t,c) whenever a -(t,c) and w -(b,s) exist.

Chapter 6 Outer inverses, inverses along an element and partial orders

Partial orders on semigroups or more stringent structures (such as rings or matrices over fields) have a long history, and have been studied by many scholars. In [START_REF] Guterman | Partial orders based on inverses along elements[END_REF] and [START_REF] Guterman | On hartwig-nambooripad orders[END_REF] we compare with A. Guterman and P. Shteyner certain of these classical partial orders to new ones based on outer inverses (see also Chapter 18). In this chapter, I only present those results based on the inverse along an element. But before, we need some prerequisites on partial order on semigroups. More generic results on partial orders on arbitrary semigroups will be presented in Chapter 18.

) The natural partial order on regular and arbitrary semigroups

The natural partial order on inverse semigroups was defined by Vagner in 1952 [205] * as an extension of the natural partial order on idempotents, and extended to the case of regular semigroups in 1980 independently by Hartwig [85] * and Nambooripad [178] * . Hartwig partial order (also called the minus partial order) is defined by a < -b ⇐⇒ a ′ a = a ′ b and aa ′ = ba ′ for some a ′ ∈ V (a) (equiv. a ′ ∈ I(a)) and Nambooripad partial order is defined by: a = eb and aS ⊆ bS for some idempotent e ∈ E(S) such that aRe (aS 1 = eS 1 ), or equivalently (for regular elements) a = axb = bxa, a = axa for some x ∈ S, that we by denote a < N b. This order was later extended by Mitsch to non-regular semigroups [171] * : a < M b ⇐⇒ a = xb = by, xa = a for some x, y ∈ S 1 . Mitsch partial order is sometimes also called the natural partial order, and denoted by ≤. Relations < -and < N make sense on arbitrary semigroups, and still coincide in this case ([79, Proposition 1]) * , but are then distinct from < M . Restricted to regular elements, all three relations coincide [171, Lemma 1] * and are also equivalent with a = eb = bf for some e, f ∈ E(S). Restricted to idempotents, they reduce to the natural partial order (e ≤ f ⇐⇒ ef = f e = e).

The minus partial order (and others) have particularly been studied in the context of matrices of the real or complex field [8] * , [76] * , [167] * , [169] * . Due to the the existing involution on the ring of real or complex matrices, it has then been compared with the star order and dagger order (also called Drazin partial order) [7] * , [89] * , where A < * B whenever A * A = A * B and AA * = BA * and A < † B whenever A † A = A † B and AA † = BA † (A † is the Moore-Penrose inverse of A); if the Moore-Penrose exists for all elements, as it is the case for complex matrices, the two orders coincide (as seen for instance by cancellation properties). It has also been compared to the sharp order [168] * obtained by replacing the Moore-Penrose inverse with the group inverse (A < # B whenever

A # A = A # B and AA # = BA # ).
As in the non regular case relation < -=< N fails to be reflexive, we adopted in the papers [START_REF] Guterman | Partial orders based on inverses along elements[END_REF] and [START_REF] Guterman | On hartwig-nambooripad orders[END_REF] the convention that a partial order is an antisymmetric and transitive relation only. We do so in this section.

As one can see from the definitions, the partial orders make great use of reflexive inverses (or inner inverses). On the other hand, the study of partial orders based on outer inverses is less common [170] * , [30] * , [196] * .

) Partial orders based on outer inverses

In [170] * , Mitra and Hartwig defined a relation < Θ as follows. Let Θ : S → P(S) be a multi-valued function that sends an element to a subset of its outer inverses: Θ(a) ∈ W (a) for any a ∈ S. Then a < Θ b if there exists some outer inverse x ∈ Θ(b) such that a = bxb.

They notably proved [170, Lemma 6] * that on regular semigroups, any partial order finer than the minus partial order is of this form for a specific choice of the function Θ. The two drawbacks of this definition are as follows:

if a < -Θ b, then a is regular, whence the relation is not suitable for comparing nonregular elements;

< -Θ is not a partial order in general.
The main contribution of [START_REF] Guterman | Partial orders based on inverses along elements[END_REF] is to define new relations based on outer inverses, some of them allowing to compare non-trivially non-regular elements and study some of their properties. In particular, by working with specific subsets of outer inverses defined by means of the inverse along an element, transitivity issues were considered. Below, I present these new relations, and some of their properties (notably the transitivity results). I also present the relation between the sharp partial order (a

< # b if aa # = ba # = a # b)
, and partial orders based on inverses along elements in the (bi)commutant (centralizer and double centralizer). 

It happens that Γ

Θ = Γ Θ l ∩ Γ Θ r [78, Lemma 3.7], and that < Θ N ⊆ Γ P ⊆ Γ. Also, if Θ(s) = W (s), then < Θ N =< N =< Θ (
an it is a partial order).

) The inverse along an element comes into play

We now make the connection with the inverse along an element. For any ∆ :

S → P (S) we let Θ ∆ : b → {b -d |d ∈ ∆(b)}, that is, we only consider outer inverses of b of the form b -d with d ∈ ∆(b).
We make the following observation: any multi-valued map Θ is actually of this form, for Θ Θ = Θ ([78, Lemma 3.10]). The associated relation < Θ ∆ will simply be denoted by < -∆ (and similarly for < Θ N etc...) Recall that the starting point of our investigation of new relations based on outer inverses was the fact that < Θ was not transitive (hence not a partial order) in general. Next two results investigate transitivity of < Θ N , Γ Θ and < -∆ . Proposition 6.3.1 ([78, Proposition 3.15]). For any Θ, < Θ N , Γ Θ r , Γ Θ l , Γ Θ , Γ Θ P are partial orders. Proposition 6.3.2 (from [78, Corollary 3.22 and Lemmas 3.23 and 3.24]). Let ∆ : S → P(S). In the following cases, < -∆ is a partial order:

(1) ∆ : s → {δ 0 } is a constant singleton (in which case a < -∆ b < -∆ c implies a = b); (2) ∆ : s → s (in which case a < -∆ b iff a = bb # b = b); (3) ∆ : s → {s n , n ∈ N} (in which case a < -∆ b iff a = bb D b and a < -∆ b < -∆ c implies a = b); (4) ∆(s) is a right or left ideal, for all s ∈ S;
(5) ∆ is constant and a R, L or H-class. Proposition 6.3.2 is actually more precise in the fourth case than the results in [START_REF] Guterman | Partial orders based on inverses along elements[END_REF], where ∆ is constant and the ideals are principal. However, the proof is essentially the same. We write it down below not only to be thorough, but also to show the reader how this partial order works precisely. Recall that a <

-∆ b if a = bb -d b for some d ∈ ∆(b).
Proof. Assume that ∆(s) is a right ideal, for all s ∈ S, and let a, b, c ∈ S be such that a

< -∆ b < -∆ c. Then a = bb -d b for some d ∈ ∆(b) and b = cc -δ c for some δ ∈ ∆(c). Let x = c -δ cb -d cc -δ .
Then cxc = a and x = xcx, so that a = cc -x c. As ∆(c) is a right ideal, and as x = c -δ cb -d cc -δ = δ (cδ) # cb -d cc -δ , and δ ∈ ∆(c), then x ∈ ∆(c) (by the right ideal property). As also x = a -x , this ends the proof.

Two other interesting properties of the partial order < Θ N are given by [78, Corollary 3.40] and [START_REF] Guterman | Partial orders based on inverses along elements[END_REF]Lemma 3.47]:

(1) for any Θ, any invertible a ∈ S is maximal with respect to < Θ N ;

(2) a < Θ N e a ∈ S, e ∈ E(S) iff a ∈ E(S) and a ≤ e (for the natural partial order). Finally, we consider the relations < -∆ and < -∆ N for three specific functions ∆, and compare them to the sharp partial order < # and the Drazin partial order < † : (1)

∆ = C : s → C(s) = {s} ′ , commutant (or centralizer) of s; ∆ = CC : s → CC(s) = {s} ′′ ,
< -C , < -C N , < -CC and < -CC N are partial orders; (2) < -CC ⊆< -C =< # ⊆< -C
N (and the two inclusions can be strict);

(3) For any a, b ∈ S, a < -C b iff a < # b iff a < -b in the semigroup C(b) = {b} ′ ; (4) For any a, b ∈ S, a < -CC b iff a < # b in the commutative semigroup CC(b) = {b} ′′ iff a < -b in CC(b) = {b} ′′ .
Proposition 6.3.4 ([78, Proposition 3.37]). Let S be a * -semigroup. Then

< -∆ * =< † ⊆< -∆ * N
(and the inclusion can be strict).

To conclude, let me add some words on the relations with other works.

We have seen that in [77] * , Marki, Guterman and Shteyner introduce a general notion of quotient ring based on inverses along an element. In [77] * , they also compare some partial orders (notably the minus and the sharp partial orders) on the base ring and on the quotient ring.

In [228] * , Zhu and Patricio consider partial orders based on the core and dual core inverse, which are special cases of inverses along an element.

Chapter 7

The ring case

In the ring case, all the previous results remain valid, but the additional sum operation brings both new methods and new questions. The ring theoretical methods used in my research are of four types, which are described below. I take advantage of the opportunity to express my deeepest gratitude to P. Patricio, who brought the first three methods to my attention, and from whom I learned a lot.

Creation of units, and Jacobson's lemma;

Use of matrix theory by embedding R → M 2 (R); in particular, use of the Schur complement;

Use of matrix theory by using Peirce decompositions (or more generally Morita

contexts) R ≃ eRe eR(1 -e) (1 -e)Re (1 -e)R(1 -e)
, where e ∈ E(R);

use of module endomorphisms by identifying R ≃ End(R R ).
Another notion that is widely used in ring theory, notably as a replacement of principal ideals, is the notion of annihilator. The left annihilator of a ∈ R is the left ideal {x ∈ R|xa = 0}. In the field of generalized inverses, this leads to the notions of hybrid generalized inverses and annihilator generalized inverses [51] * , [56] * , that allow to invert along non-regular elements (for regular elements, aR = bR iff R l(a) = Rl(b), so that these new generalized inverses are classical inverses along an element in this case).

Also, the ring case brings new questions. As we have seen with the reverse order law, questions about generalized inverses are usually instantiations of properties of the genuine inverse to other generalized inverses. More precisely, let i : a → i(a) be a generalized inverse, and i 0 be the genuine inverse. The process is the following: if some formula P (a, b, i 0 ) is valid, does it remains valid if one replaces the genuine inverse by a generalized inverse of a certain type? Otherly stated, is P (a, b, i) valid? For instance, for the ROL P (a, b, i 0 ) : (ab) -1 = b -1 a -1 whenever a and b are invertible, and for Cline's formula P (a, b, i 0 ) : (ba) -1 = b(ab) -2 a whenever ab and ba are invertible (when applied to generalized inverses, one usually gets generalized invertibility of ba from that of ab for free). Passing from semigroups to rings allows to consider formulas involving sums. In my research, I have been considering this problem for Jacobson's lemma and the Absorption law:

Jacobson's lemma -P (a, b, i 0 ) : (1 -ba) -1 = b(1 -ab) -1 a whenever (1 -ab) is invertible; Absorption law -P (a, b, i 0 ) : a -1 + b -1 = a -1 (a + b)b -1
whenever a and b are invertible.

We will deal with these two questions in Sections 7.4 and 7.5.

) Creation of units

It has long been known that strongly regular elements are related to certain units, precisely a ∈ R is strongly regular iff u = 1 + a -aa ′ is a unit for some (every) inner (reflexive) inverse of a. In that case, a # = u -2 a. Regarding inverses along an element, we proved with P. Patricio the following result. Recall that if a -d exists, then d is regular. (1) a is invertible along d;

(2

) u = 1 + da -dd ′ is a unit; (3) v = 1 + ad -d ′ d is a unit. In this case, a -d = u -1 d = dv -1 .
For instance a is group invertible iff a -a exists iff 1 -a exists iff 1 + a 2 -aa ′ is invertible for some (all) a ′ ∈ I(a) iff 1 + a -aa ′ is invertible for some (all) a ′ ∈ I(a).

If a is invertible along d, then -a is also invertible along d (and a is also invertible along -d) since -dHd. We obtain that a is invertible along

d iff -w = 1 -da -dd ′ is a unit in which case a -d = w -1 d.
This expresses da as a clean element (sum of an idempotent and a unit), da = (1 -dd ′ ) + w, an expression one can find in [227, Proposition 2.3] * . Moreover, this decomposition is special clean since (1-dd ′ )R∩daR = 0 (or equivalently, as we will see in part V, since da = (da)w -1 (da)), and satisfies the additional condition (1 -dd ′ )d = 0.

In [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF]Theorem 5.1] (see also Chapter 12), I relate strong regularity with cleanness as follows. An element a ∈ R is strongly regular iff it is clean with clean decomposition a = e + u (e ∈ E(R), u ∈ R -1 ) such that ae = 0 (or dually such that ea = 0).

Combining the previous results we deduce the following result.

Theorem 7.1.2 (unpublished). Let a, d ∈ R. Then the following statements are equivalent:

(1) a is invertible along d;

(2) da is clean with clean decomposition da = e + u (e ∈ E(R), u ∈ R -1 ), eda = 0 and daRd;

(3) da is clean with clean decomposition da = e + u and ed = 0; In this case, the decomposition are special clean and a -d = u -1 d.

As it is often the case, duality eases life. Here, dual statements (statements in the opposite ring) to ( 2) and ( 3) are also equivalent to (1) since this first statement is self-dual.

Proof. That 1 ⇒ 2 follows from Theorem 3.2.1 and the previous arguments. The implication (2) ⇒ (3) follows from cancellation.

First, we prove that the decomposition is special clean. So assume that da is clean with clean decomposition da = e + u, and that eda = 0 (let alone ed = 0). Let x ∈ eR ∩ daR. Then x = ex and x = day for some y ∈ R. It follows that x = eday = 0 and the decomposition is special clean.

Second, we prove that (3) ⇒ (1). As ed = 0 then dad = ed+ud = ud and (u

-1 d)(ad) = d. Also 0 = eda = ee+ew = e+ew so that eu = -e = eu -1 . Hence dau -1 = eu -1 +1 = 1 -e, and dau -1 d = d. Let b = u -1 d. Then bad = d = dab and b ≤ L d. It remains to prove that b ≤ R d. We compute dau -2 d = (1 -e)u -1 d = b + ed = b. This ends the proof that a is invertible along d with inverse a -1 = u -1 d.
As we have seen, the inverses along ((bi)commuting) idempotents play a special role in the theory. In the case of invertibility along an idempotent, the following result holds. (2

) u = 1 + ea -e is a unit; (3) v = 1 + ae -e is a unit. In this case, a -e = u -1 e = ev -1 = eu -1 e = ev -1 e.
And finally, we present a result involving bijective centralizer. 

; (2) u = 1 + σ(da) -dd ′ is a unit; (3) v = 1 + σ(ad) -d ′ d is a unit. In this case, a -d = σ(u -1 )d = dσ(v -1 ).
Note also that such characterizations of inverses along an element by means of units were also found for the one-sided inverse along an element [223, Corollaries 3.3 and 3.5] * , [37] * (u and v are then solely left and right invertible respectively).

) Inverse along a triangular matrix

In [START_REF] Mary | The inverse along a lower triangular matrix[END_REF], we study with P. Patricio the inverse of matrices (triangular or not) along triangular matrices over an arbitrary ring. The results therein exhibit four interesting global features (that appear naturally in any study on generalized inverses of matrices): Dedekind-finiteness of the ring R, use of units (as created in the previous section) and of zero products of the form (1 -e)x(1 -f ), where e, f ∈ E(R), and use of Schur complement. Recall that a ring is Dedekind-finite if (∀a, b ∈ R) ab = 1 ⇒ ba = 1. In the context of matrices, this is equivalent to saying invertible lower triangular matrices are exactly the matrices whose diagonal elements are ring units, and in this case the matrix inverse is again lower triangular.

Results of [START_REF] Mary | The inverse along a lower triangular matrix[END_REF] are of two kinds; first we provide necessary and sufficient existence conditions, and second formulas for the inverse. And they are given first for triangular matrices A, and then arbitrary matrices A (but D is always assumed triangular). 

d 3 d + 3 )d 2 (1 -d + 1 d 1 ) = 0 for some (all) d + 1 ∈ V (d 1 ), d + 3 ∈ V (d 3 ). In this case, A -D = a -d 1 0 v -1 d 2 (1 -d + 1 )a -d 1 + d ∥d 3 (b + d + 3 d 2 d + 1 )a ∥d 1 + v -1 d 2 d -d 3 , with v = d 3 d + 1 -d 3 d - 3 (for some (all) d - 3 ∈ I(d 3 )).
In particular, by induction we obtain that given a Dedekind-finite regular ring R, if A -D exists for two lower triangular matrices then all a

-d i,i i,i exist and A -D is again lower triangular [157, Theorem 2.3].
Without, Dedekind-finiteness, a similar result holds, but we need to assume that a -d 1 or d -d-2 exists (as just seen, the existence of A -D in a Dedekind-finite ring implies the existence of both a -d 1 and d -d-2 ). 

d 3 d + 3 )d 2 (1 -d + 1 d 1 ) = 0 for some (all) d + 1 ∈ V (d 1 ), d + 3 ∈ V (d 3 ). In this case, A -D is lower triangular with A -D = a ∥d 1 0 v -1 d 2 (1 -d + 1 )a ∥d 1 + d ∥d 3 (b + d + 3 d 2 d + 1 )a ∥d 1 + v -1 d 2 d ∥d 3 , with v = d 3 d + 1 -d 3 d - 3 (for some (all) d - 3 ∈ I(d 3 )). Corollary 7.2.3 ([157, Corollary 3.4]). Let A = a 0 b d , D = d 1 0 d 2 d 3 with D, d 1 , d 3 
regular, and suppose d ∥d 3 exists. Then A -D exists iff a ∥d 1 exists and (1 -

d 3 d + 3 )d 2 (1 -d + 1 d 1 ) = 0 for some (all) d + 1 ∈ V (d 1 ), d + 3 ∈ V (d 3 ). In this case, A -D is lower triangular, with A -D = a ∥d 1 0 v -1 d 2 (1 -d + 1 )a ∥d 1 + d ∥d 3 (b + d + 3 d 2 d + 1 )a ∥d 1 + v -1 d 2 d ∥d 3 , with v = d 3 d + 1 -d 3 d - 3 .
The previous two corollaries are actually special instances of next two theorems, where the matrix A is an arbitrary matrix (but D is still lower triangular). The results are however more intricate in these two general cases.

Theorem 7.2.4 ([157, Theorem 3.1]). Let A = a c b d and D = d 1 0 d 2 d 3 be such that a ∥d 1 exists. Then A -D exists iff ζ = β -αa ∥d 1 c is a ring unit, where d + 1 ∈ V (d 1 ), d + 3 ∈ V (d 3 ) and w = (1 -d 3 d + 3 )d 2 (1 -d + 1 d 1 ) w -∈ I(w) α = d 2 a + d 3 b -(1 -ww -)(1 -d 3 d + 3 )d 2 d + 1 β = d 2 c + d 3 d + 1 -d 3 d + 3 -ww -(1 -d 3 d + 3 ).
In this case,

A -D = a ∥d 1 -a ∥d 1 cζ -1 d 3 -ζ -1 αa ∥d 1 + ζ -1 d 2 ζ -1 d 3 . Theorem 7.2.5 ([157, Theorem 3.3]). Let A = a c b d and D = d 1 0 d 2 d 3 be such that d ∥d 3 exists. Then A -D exists iff ξ = γ -cd ∥d 3 η is a ring unit, where d + 1 ∈ V (d 1 ), d + 3 ∈ V (d 3 ) and w = (1 -d 3 d + 3 )d 2 (1 -d + 1 d 1 ) w -∈ I(w) γ = ad 1 + 1 -d + 1 d 1 -(1 -d + 1 d 1 )w -(1 -d 3 d + 3 )d 2 (1 -d + 1 d 1 ) η = bd 1 + dd 2 -d + 3 d 2 (1 -d + 1 d 1 ) + d + 3 d 2 (1 -d + 1 d 1 )w -(1 -d 3 d + 3 )d 2 (1 -d + 1 d 1 )
In this case,

A -D = DV -1 = d 1 ξ -1 -d 1 ξ -1 cd ∥d 3 d 2 ξ -1 -d ∥d 3 ηξ -1 -d 2 ξ -1 cd ∥d 3 + d ∥d 3 ηξ -1 cd ∥d 3 + d ∥d 3 .

) Natural inverse and generalized Drazin inverse

In the previous sections, we have defined (Definition 4.3.4) the j-maximal generalized inverses (resp. j-natural generalized inverse) of a j = 0, 1, 2, as a -M for a maximal (resp. the greatest element) M ∈ Σ j (a) (if it exists). And we have seen that: if Σ 2 (a) is distributive, maximal implies natural (Proposition 4.3.5); the natural inverse generalizes the group and Drazin inverse (Theorem 4.3.6).

It happens that on any ring R, Σ 2 (a) is distributive semi-lattice (for any a ∈ R), so that we can focus only on natural inverses.

Using the additive operation, I proved in [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] that natural inverses have a "generalized" core-nilpotent decomposition (analogous to the Jordan-Chevalley decomposition that expresses linear operators as the sum of their commuting semi-simple part and their nilpotent part). The unique decomposition a = x + y = aM + (a -aM ) = aba + (a -aba) of this theorem is called the natural core decomposition of a.

Second, I make the link with Koliha-Drazin invertible (generalized Drazin invertible, quasi-polar) elements. First, let me recall some definitions. Let R be a ring.

An element q ∈ R is quasinilpotent if ∀x ∈ {q} ′ , 1 + xq ∈ R -1 , and quasi- quasinilpotent if ∀x ∈ {q} ′′ , 1 + xq ∈ R -1 ;
An element a ∈ R is quasipolar (resp. quasi-quasipolar ) if there exists a idempotent (called spectral idempotent) p in {a} ′′ such that ap is quasinilpotent (resp. quasi-quasinilpotent) and a + p ∈ R Next theorem proves that the natural inverse generalizes not only the Drazin inverse, but also the Koliha-Drazin inverse in a ring. Theorem 7.3.2 ([147, Theorem 8]). Let R be a unital ring, and a ∈ R be (quasi-)quasipolar with spectral idempotent p and (quasi-)generalized Drazin invertible b. Then a is naturally invertible, M = 1 -p is the greatest element of Σ 2 (a) and the (quasi-)generalized Drazin inverse b is equal to a -M , the natural generalized inverse of a.

The converse statement does not appear in [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF], but is straightforward. If a is naturally invertible with natural core decomposition a = x + y, then a is (quasi-)quasipolar iff y is (quasi-)quasinilpotent.

) Jacobson's lemma

As Cline's formula (studied in Section 4.3), Jacobson's lemma is a property invariant by primarily conjugation, that relates invertibility of 1 -ab with that of 1

-ba. It reads (1 -ba) -1 = 1 + b(1 -ab) -1 a.
In [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], we study Jacobson's lemma in the context of general (non-unital) rings, and then apply the results to the case of unital rings. In this section, since we present the results without proofs, we work the other way round. First, we present the (simpler) results in the classical unital case. Second, we give some insights on the general ring case (where it is a priori non-obvious what exactly could be Jacobson's lemma in lack of identity). As for Cline's formula, there will be one-sided and two-sided theorems.

Recall the following notations (for any a ∈ R):

Σ 0 (a) = {e ∈ E(S)|eaeHe}, Σ 1 (a) = {a} ′ ∩ Σ 0 (a), Σ 2 (a) = {a} ′′ ∩ Σ 0 (a), Σ R (a) = {e ∈ E(S)|e ∈ aeS ∩ Sae, eae = ae}, Σ L (a) = {e ∈ E(S)|e ∈ eaS ∩ Sea, eae = ea}.
7.4.1 ) Jacobson's lemma in unital rings -Jacobson's lemma for one-sided inverses in unital rings -

Corollary 7.4.1 ([151, Corollary 4.3]). Let e ∈ Σ L (ab) ∩ (1 -Σ R (1 -ab)). Then f = b(ab) -e a ∈ Σ L (ba) ∩ (1 -Σ R (1 -ba)), and 
(1 -ba) -(1-f ) = 1 + b (1 -ab) -(1-e) a 1 -b (ab) -e a = 1 + b (1 -ab) -(1-e) -(1 -ab) -(1-e) (ab) (ab) -e -(ab) -e a.
The assumption e ∈ Σ L (ab) 

∩ (1 -Σ R (1 -ab)) also reads e ∈ Σ L (ab) and ē = (1 -e) ∈ Σ R (1 -ab).
(1 -ba) -(1-f ) = 1 + b(1 -ab) -(1-e) a -f = 1 + b (1 -ab) -(1-e) -(ab) -e a.
We have already seen that the spectral projection p of a generalized Drazin invertible element 1 -ab satisfies that 1 -p is the greatest element of Σ 2 (1 -ab) (Theorem 7.3.2 or [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF]Theorem 8]). Actually, it is proved in [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF]Example 4.2] that it also holds that p ∈ Σ 2 (ab). Thus y = 1 + b (1 -ab) -(1-p) -(ab) -p a seems a perfect candidate for the generalized Drazin inverse of ba. Actually, by the semillatices isomorphism properties, we already now that this is the natural inverse of (1 -ba), and we have only to check that (1 -ba) 

1 -ba) gD = 1 + b (1 -ab) gD -(ab) -p a,
where p is the spectral idempotent of (1 -ab). Also, the spectral idempotent of (1

-ba) is q = b(ab) -p a = b [p(1 -p(1 -ab)) -1 ] a.

) Jacobson's lemma in general rings

In order to deal with general rings, it has long been noticed that a interesting tool is the so-called circle operation x • y = x + y -xy. Indeed, it was first observed by Jacobson that this operation is associative, and that if R is a unital ring, then x → 1 -x is an involutive isomorphism of monoids from (R, .) onto (R, •). (In some subsequent works on general rings, another operation has also been used, the adjoint operation x * y = x + y + xy; in this case x → 1 + x is an involutive isomorphism of monoids from (R, .) onto (R, * ).)

Let ℜ = (ℜ, +, .) be a general ring. As 0 acts as an identity on (ℜ, •) then (ℜ, •) is a monoid, usually called the adjoint semigroup with circle operation, or circle semigroup of the general ring.

For practical reason, we will denote the circle semigroup as We can now state our versions of Jacobson's lemma in general rings.

ℜ • = (ℜ, •). Let a, b ∈ ℜ. By Σ • R ( 
-Jacobson's lemma for one-sided inverses in general rings - 

Theorem 7.4.3 ([151, Theorem 4.1]). Let e ∈ Σ L (ab) ∩ Σ • R (ab). Pose f = b(ab) -e a. Then f ∈ Σ L (ba) ∩ Σ • R ( 

) Absorption law

The absorption law claims that in a ring R, for any two invertible elements

a, b ∈ R -1 , a -1 + b -1 = a -1 (a + b)b -1 .
In [START_REF] Zhu | Centralizer's applications to the inverse along an element[END_REF], we prove (with H. Zhu, J. Chen and P. Patrício) that the absorption law is still valid for the (one-sided) inverses along a single element d. 

a -d l + b -d r = a -d l (a + b)b -d r .
In particular, for the (two-sided) inverse along d we obtain [START_REF] Zhu | Centralizer's applications to the inverse along an element[END_REF]Corollary 2.4]:

a -d + b -d = a -d (a + b)b -d .
Recall that, if σ : R → R is a bijective centralizer, then dHσ(d) [START_REF] Zhu | Centralizer's applications to the inverse along an element[END_REF]Proposition 3.5]. Thus we derive the following results. 

a -σ(d) + b -d = a -σ(d) (a + b)b -d .
The interest lies in the study of specific inverses, such as the group, Drazin or Moore-Penrose inverse. (

) if a # , b # exist and a = σ(b) then a # + b # = a # (a + b)b # ; (2) if a D , b D exist with the same index n and a n = σ(b n ) then a D + b D = a D (a + b)b D ; (3) (R is a ring with involution) if a † , b † exist and a * = σ(b * ) then a † + b † = a † (a + b)b † ; (4) (R is a ring with involution) if a # , b † exist and a = σ(b * ) then a # +b † = a # (a+b)b † . 1 

) Miscellaneous of other results

In [11, theorem 5.1] * , the authors give the following formula, where R -d denotes the set of elements of the ring R invertible along d ∈ R:

R -d = d -(dd -Rdd -) -1 + (1 -d -d)Rdd -⊕ R(1 -dd -).
In the particular case of inverses along an idempotent e ∈ E(R), this reads:

R -e = (eRe) -1 ⊕ eR(1 -e) ⊕ (1 -e)Re ⊕ (1 -e)R(1 -e)
and we recover the result of Lemma 4.3.1. In the same article, the authors also provide the reader with many representations of the inverse along an element in rings with involution.

To close this part, let me add a few words on applications to other settings, such as C * -algebras or operators on Hilbert/Banach/Kre ȋn spaces.

In [START_REF] Mary | Moore-Penrose inverse in Kre ȋn spaces[END_REF], I study the Moore-Penrose in Kre ȋn spaces for both bounded and unbounded operators. Recall that a Kre ȋn space K is a vector space endowed with an indefinite bilinear form of a certain kind (informally, K is a direct difference of two Hilbert spaces). As such, the algebra of bounded operators B(K) is not a C * -algebra and classical results about the Moore-Penrose inverse do not hold. Theorems therein were then mostly of algebraic nature, leading to the study of generalized inverses in the simplest and most general setting possible, semigroups.

In [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF], the natural generalized inverse is also studied in Banach algebras, or for bounded operators on Banach spaces, using (local) spectral theory;

[12] * expresses the inverse along an element as different kind of limits (series, integrals,...) in Banach and C * -algebras, and more generally considers continuity issues.

Conclusion, open problems and future work

The inverse along an element, and its companion the (b, c)-inverse, have now reached a mature form, and are commonly used in works regarding generalized inverses. However, there are still interesting new properties to be discovered, even in the most general setting of semigroups, as the very recent article [210] * shows. I can see at least three (very broad) promising directions of future research regarding the inverse along an element, and future results will probably been obtained at the intersection of those roads:

(1) first, the study of the inverse along an element in some specific settings, such as C * -algebras, or tensors, can surely be further developed;

(2) second, we should carry on the study of inverses along a specific element in such settings, for instance through spectral properties. I have particularly in mind inverses along (commuting) idempotents and the natural inverse;

(3) third, one should seek applications of the inverse along an element to study of other notions, such as partial orders, quotient rings (or semigroups of quotients), linear preservers,... Regarding these three topics, I would be especially interested in the study of those elements (in a ring) such that a is invertible along e and 1 -a is invertible along 1 -e (as requested for Jacobson Lemma to hold). Once again, the special case of Banach or C * -algebras may bring interesting results (in link with spectral properties). And if there is a greatest idempotent e such that a is invertible along e and 1 -a is invertible along 1 -e bicommuting with a, what would be the properties of such a binatural inverse in these cases? As we have seen, any a group, Drazin or generalized Drazin invertible is binaturally invertible in this sense.

It may also be interesting to study quotient rings/semigroups of quotients with respect to inverses along ((bi)-commuting) idempotents.

III

The group inverse

Part III -The group inverse

In this part, I collect different results I obtained along my research in link with a specific inverse, the group inverse. Chapter 8 provides the reader with new existence criteria for the group inverse in a semigroup. Then, Chapter 9 gives necessary and sufficient conditions for the existence of the group inverse of a product of regular elements in rings, under a simple extra assumption of regularity only. Formulas for the group inverse of such product are also provided. In Chapter 10, we consider the longstanding problem of the reverse order law for the group inverse: that is, when does the formula (ab) # = b # a # hold. We solve the problem completely in stable semigroups and Dedekind-finite rings. In the general case, we only solve the two-sided reverse order law: (ab) # = b # a # and (ba) # = a # b # . Chapter 11 considers an extension of unit-regularity by using group invertible elements of the semigroup instead of units (that may even not exist). Finally, we expose the link between special clean elements and group invertible elements of ring in Chapter 12 (special clean elements are the reflexive inverses of group elements).

Chapter 8

New existence criteria for the group inverse in a semigroup 8.1 ) Group inverse and units in a local subsemigroup

The following result proved very useful in the study of chains of associate idempotents.

As it is stated under a different form, but relates to the group inverse, I state here the group inverse version (with a short proof -distinct from that in [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF] 

f = ba iff eae = a 2 b ∈ U(eSe) iff a H a 2 iff f af = ba 2 ∈ U(f Sf ).
Proof. Let a ∈ S. We have only to prove the equivalence a H a 2 (a is group invertible) iff f af = ba 2 ∈ U(f Sf ). By duality (working in the opposite semigroup Let also e = ab, f = ba. Then the following statements are equivalent:

S op = (S, ×)) in Proposition 8.1.1, a is group invertible in S op iff a × a × b ∈ U(a × b × S × a × b) iff f af = ba 2 ∈ U(baSba) = U(f Sf ). But
(1) a is group invertible;

(2

) eae = a 2 b is a unit in eSe; (2 ′ ) f af = ba 2 is a unit in f Sf ; (3) a is invertible along e = ab; (3 ′ ) a is invertible along f = ba; (4) e = ab ∼ rℓ f = ba; (5) f e = ba 2 b ∈ R f ∩ L e (f e is a trace product); (6) ba 2 bHb.
We finally state a more general result that may be understood as a generalization of Miller and Clifford's theorem (the previous case is z = 1).

Proposition 8.1.4 (unpublished). Let S be a semigroup, e, f ∈ E(S) be isomorphic idempotents, z ∈ S 1 and a ∈ R e ∩ L f . Then the following statements are equivalent:

(1)

f ze ∈ R f ∩ L e ;
(2) eazeHe (eaze belongs to the group of units of eSe); (An even more general result is given in Theorem 5.2.1.)

(2 ′ ) f zaf Hf . Proof. As a ∈ R e ∩ L f then there exists b ∈ R f ∩ L e such that (

) Other characterizations of the group inverse in a semigroup

In [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF]Theorem 5.1], I proved that in a ring R, a = a 2 x, x = x 2 a for some x ∈ V (a) iff a ∈ R is group invertible iff ae = a, e ∈ eaR ∩ Rea for some idempotent e ∈ E(R).

While the proof of the first equivalence was done only using the multiplicative structure of the ring, the proof of the second one used additive decompositions. It happens that it remains true in the context of semigroups.

Corollary 8.2.1 (from [153, Theorem 5.1]). let S be a semigroup. Then a = a 2 x, x = x 2 a for some x ∈ V (a) iff a ∈ S is group invertible iff ae = a, e ∈ eaS ∩ Sea for some idempotent e ∈ E(S).

Proof. Assume that ae = a, e ∈ eaS ∩ Sea for some idempotent e ∈ E(S), and let x, y ∈ S be such that e = eax = yea. Since ae = a then e = (eae)(exe) = (eye)(eae) and eae is both left and right invertible hence invertible in eSe. Also, e L a since ae = a and e = yea. By the dual of Proposition 8.1.1 a is group invertible. Conversely, assume that a is group invertible. Then e = aa # satisfies that ae = a, e ∈ eaS ∩ Sea.

After publication of the article [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF], I actually found that first the equivalence had already been proved in the context of semigroups by M. Petrich [191, Lemma 3.3] * . This also relates to the following global statement [45, Theorem 2] * (see also [194, Theorem IV. 1.6] * or [97, Theorem 2] * ): A regular semigroup S that is also left regular (a ∈ Sa 2 for any a ∈ S) is completely regular.

Chapter 9

The group inverse of a product in rings

Let a, b ∈ R be any two regular elements of a ring R. In this section, we follow [START_REF] Mary | The group inverse of a product[END_REF] and find necessary and sufficient conditions for the existence of the group inverse of the product ab under a simple extra regularity condition. Moreover we obtain a formula for this inverse.

I will first present the results P. Patricio and myself obtained in [START_REF] Mary | The group inverse of a product[END_REF], and then dive more precisely into the methodology of the paper (that completely disappears in the statements of the results) to understand where the various quantities come from and what mathematical arguments hide behind the results.

Throughout this chapter, R is unital ring.

9.1 ) Existence and characterization of (ab) # Theorem 9.1.1 ([159, Theorem 2.2]). Let a, b be regular elements in R with reflexive inverses a + and b + , respectively. Assume, also, that w = (1

-bb + )(1 -a + a) is regular. Then (ab) # exists if and only if z = 1 -a + a + ba + (1 -ww -)(1 -bb +
) is a unit for some inner inverse w -of w. In this case,

(ab) # = az -2 b.
By duality, we deduce the following corollary.

Corollary 9.1.2. Let a, b be regular elements in R with reflexive inverses a + and b + , respectively. Assume, also, that w = (1

-bb + )(1 -a + a) is regular. Then (ab) # exists if and only if t = 1 -bb + + ba + (1 -ww -)(1 -bb +
) is a unit for some inner inverse w - of w. In this case, (ab

) # = at -2 b.
It is actually proved in [START_REF] Mary | The group inverse of a product[END_REF] that such formulas extend to positive and negative powers of ab (precisely, the subgroups generated by z (equiv. For n = -2 we recover that (ab) # = az -2 b = at -2 b, and for n = -1 we obtain the identity e = az -1 b = at -1 b = (ab)(ab) # of the group.

) The methodology

Perhaps surprisingly, it happens that the main tool of the paper is matrix theory.

Consider the matrix M = ab a

0 1 = AQ with A = a 0 1 -b , Q = b 1 1 0 .
It is known that M # exists iff (ab) # exists (see for instance Corollary 7.2.3 or Proposition 8.1.1). Furthermore, the (1,1) entry of M # equals (ab) # . Thus we have to compute this entry.

As Q is invertible then the group inverse of

M = AQ exists iff U = AQ + I - (AQ)(Q -1 A -
) is a unit for some (all) inner inverse A -of A (1 is invertible along M = AQ and creation of units -Theorem 7.1.1), in which case M # = U -2 M . By carefully choosing A -, the expression of G = U K becomes tractable for some invertible lower triangular matrix K. It remains to characterize when

G = U K = 1 a α 2 -bb + -ww -(1 -bb + )
, is invertible, where

α = (1 -ww -)(1 -bb + )a + + 2 -bb + -ww -(1 -bb + ) (a + -b) = a + -b + 2(1 -ww -)(1 -bb + )a + ,
and compute its inverse. This can be done by using Schur complement of the (1,1)entry, a very useful replacement of the determinant criterion of linear algebra valid for matrices over arbitrary rings, and more generally Morita contexts (see [START_REF] Mary | The group inverse of a product[END_REF]Lemma 2.1] for a precise statement of the criterion). But this Schur complement is precisely We conclude with some comments.

G/I = 1 -a + a + ba + (1 -ww -)(1 -bb + ),
The proof of [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF]Theorem 3.16] uses Peirce matrix rings. Precisely, for a group invertible and e = aa # , we decompose the ring R as

R = eRe ⊕ eR(1 -e) ⊕ (1 -e)Re ⊕ (1 -e)R(1 -e) (in matrix form R = eRe eR(1 -e) (1 -e)Re (1 -e)R(1 -e)
). Then we embed R in M 2 (R) and use that in Dedekind-finite rings, group inverses of upper triangular matrices are upper triangular;

Obviously, the dual conditions M R and right stability also work;

By [START_REF] Clifford | The algebraic theory of semigroups[END_REF]Lemma 6.41] * left stability is equivalent to Munn's condition M * L [176] * , a weaker condition than M L . For a modern presentation of the topic, see [61] * ; The minimal condition M L is equivalent to left DCCP : every strictly descending chain of principal left ideals of S breaks off after a finite number of terms. In case of a ring R, this is also equivalent to the ring being right perfect (a ring R is right perfect if left R-modules have a projective cover). Such rings are automatically Dedekind-finite; Recently, it has been proved that regular Dedekind-finite ring are completely semisimple [123] * . It follows that regular Dedekind-finite rings are (left and right) stable.

Chapter 11

Group-regular and group-dominated elements in semigroups and rings

) Position of the problem

Among the various specializations of regularity, unit-regularity (aua = a for some unit u) plays a prominent role. This is especially the case in the context of rings where unit-regular rings are largely studied [ * . Unit-regular monoids are also sometimes termed factorisable monoids. Indeed, it is well known that unit-regular elements of a monoid M can be characterized as elements of the form a = eu (resp. a = ue) with e ∈ E(M) and u ∈ M -1 . In particular, a unit-regular monoid M satisfies

M = E(M)H 1 = H 1 E(M)
, where H 1 = M -1 is the group of units of the monoid (see [46] * for a more general definition of factorisable semigroups, and the equivalence between the two notions for monoids).

The aim of this section is to expose the development of a concept close to unit-regularity using maximal subgroups of a semigroup instead of solely the group of units. This idea appears (in a different context) notably in the work of Fountain, Petrich, Gould and others on orders on semigroup (equivalently semigroups of quotients) [67] * , [71] * . As noted by V. Gould in [72] * : "Their aim was to develop concepts that reflect the equal importance of all subgroups of a semigroup, not only the group of units, which of course may not even exist.".

While it is then tempting to replace directly the group of units by the union of the maximal subgroups H(S) = S # , that is replace units by local units (group invertible elements) (this is done in [START_REF] Mary | Group-regular rings[END_REF] in the context of rings), doing uniquely this may not be sufficient in the context of semigroups, notably to get structure theorems. Indeed, a crucial property of units in a monoid is that they are majorants for the preorder ≤ H and maximal for the ≤ preorder (Mitch's extension of the natural partial order on idempotents [171] * ). Indeed, for any a ∈ S and u ∈ S -1 , a = au -1 u = uu -1 a and a≤ H u. Also, if u ≤ a, u ∈ S -1 , then ∃e, f ∈ E(S), u = ea = af. It follows that eu = u hence e = euu -1 = 1, a = u and f = 1. As second feature is that the identity is a central idempotent. Recall that a regular semigroup with central (resp. commuting) idempotents is a Clifford (resp. inverse) semigroup.

In In the particular case T = S # is the set of group invertible elements, this leads to the following instantiation (in general, we will only assume that T ⊆ S # and T = T # ).

Definition 11.1.2 ([160, Definition 2.1]). Let S be a semigroup and a ∈ S. We say that:

(1) a is group-regular if a = axa for some x ∈ S # ;

(2) a is intra group-regular if there exists x ∈ S # such that axa = a and a 2 = axx # a;

(3) a is group-dominated if a ≤ x # for some x ∈ S # . S is group-regular (resp. intra group-regular, group-dominated) if every element of S is group-regular.

) General results in the semigroup case

Next lemma presents some link between the previous notions in the most general context of semigroups. 

) a = x # f for some f ∈ E(S) such that f ≤ xx # . 6 
In particular, group-dominated implies intra group-regular implies group-regular.

The equivalence between (1) and ( 4) states that group-domination is equivalent to a localized version of unit-regularity (a is group-dominated iff it is locally unit-regular), while (1) ⇐⇒ (5) ⇐⇒ (6) implies the following factorization property: if S is group-dominated then S = E(S)S # = S # E(S). More generally, if S is T -dominated for some T ⊆ S # such that T # = T then S = E(S)T = T E(S).

Also, we may note that if a = axa for some

x ∈ S # such that xx # ∈ Z(S) (xx # is central) then a ≤ x # .
11.

3 ) The case of completely E-simple, completely (E, H E )-abundant and E-Clifford restriction semigroups

In [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF], I studied the structure of completely E-simple, completely (E, H E )-abundant and E-Clifford restriction semigroups (where E is a specific subset of idempotents) which are also T -dominated or T -regular, for T = e∈E H e . The results are highly technical and need too much definitions to be exposed in this section (for the reader interested in the details, I refer to Chapter 15 or directly to [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]). However, we may summarize the results therein as follows:

In this specific case, T -regularity and T -domination are equivalent concepts;

The structure of such semigroups is well-known, and based on factorisable (a.k.a. unit-regular) monoids (rather than mere monoids in the general case);

In case E is central, T is a Clifford semigroup and the semigroup S is a strong semilattice of factorisable monoids; The converse also holds.

) The ring case

In the ring case, many simplifications occur. We first consider the case of a unital ring. In this specific case, it happens that group-regularity boils down to unit-regularity.

Corollary 11.4.1 ([160, Corollary 2.5]). Let a ∈ R unital ring. Then the following statements are equivalent:

(1) a is unit-regular;

(2) a is group-dominated (locally unit-regular);

(3) a is intra group-regular;

(4) a is group-regular.

In fact, as observed by Professor T.Y. Lam, more is true. T.Y. Lam and D. Khurana proved some years ago (private communication, to appear in [126] * , see also [START_REF] Khurana | Special clean elements in rings[END_REF]Theorem 2.17] * ) that an element a ∈ R is unit-regular iff it has a unit-regular inner inverse. We can also deduce it from the previous corollary and the well-known fact that a regular product of two idempotents admits a idempotent reflexive inverse [65] * .

Corollary 11.4.2 (unpublished). Let a ∈ R unital ring. Then the following statements are equivalent:

(1) a is unit-regular;

(2) a has a unit-regular reflexive inverse;

(3) a has a unit-regular inner inverse.

Proof.

(1) ⇒ (2) Let a ∈ R be unit-regular with unit-inverse

u -1 ∈ U(R). Then b = u -1 au -1 ∈ V (a) and bub = u -1 au -1 uu -1 au -1 = u -1 (au -1 a)u -1 = u -1 au -1 = b, so that b is unit-regular.
(2) ⇒ (3) this is a tautology. Finally, au has an idempotent inner inverse. As idempotent are group invertible, then au is group-regular hence unit-regular by Corollary 11.4.1. Let v -1 ∈ U(R) be a unit-inverse of au. Then a = auu -1 = auv -1 auu -1 = a(uv -1 )a and a is unit-regular.

This exhibits the set of unit-regular elements of a ring as a fixed point of the map V : P(R) → P(R) (resp. I : P(R) → P(R)) that maps any subset X ⊆ R to its set of reflexive (resp. inner) inverses.

Also (and anticipating slightly on the results of next section) we can strengthen the previous corollaries in the case of unit-regular rings to the following one (proved independently by Khurana (1) ℜ is group-dominated (∀a ∈ ℜ, a is group-dominated);

(2) ℜ is group-regular (∀a ∈ ℜ, a is group-regular).

Obviously, this is also equivalent with being an intra-group-regular ring by Lemma 11.2.1. A closer study of group-regular rings will be pursued in Section 22.1.

Chapter 12

Group invertible and (special) clean elements (in rings)

) A new characterization of strongly regular elements via clean decompositions

Let R be a ring. It is well known that strongly regular but also strongly π-regular elements are strongly clean, where a ∈ R is strongly clean iff a = ē + u for some e ∈ E(R) and u ∈ R -1 such that ae = ea. In [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF], I proved the following equivalences.

Theorem 12.1.1 ([153, Theorem 5.1]). Let a ∈ R. then the following statements are equivalent:

(1) ae = a, e ∈ eaR ∩ Rea for some idempotent e ∈ E(R);

(2) a = ē + u, aē = 0 for some e ∈ E(R), u ∈ R -1 ;

(3) There exists x ∈ R such that axa = a = a 2 x, xax = x = x 2 a;

(4) a is strongly regular (a.k.a. group invertible);

(5) a = ē + u, aē = ēa = 0 for some e ∈ E(R), u ∈ R -1 .

That (1) ⇐⇒ (3) ⇐⇒ (4) also holds in semigroups was discussed in Section 8.2.

The equivalence (4) ⇐⇒ (5) was already known [47, Proposition 2.5] * , see also [84] * . The implication (2) ⇒ (5) claims that in the definition of simple polarity (that is equivalent with ( 5)), the commutativity assumption is not needed. One must however be cautious with this implication. Indeed, we did not claim that a = e + u for some e ∈ E(R), u ∈ R -1 such that aē = 0 implies ēa = 0, but only that there exists a second idempotent f and a second unit v such that a = f + v with a f = f a = 0. Since the spectral idempotent in strongly regular decompositions is unique ([121, Proposition 2.6] * or [47, Proposition 2.6] * ), this second idempotent is f = ueu -1 . And f ̸ = e unless eu = ue. A direct and more visual proof of the implication (2) ⇒ (5) can be done using the Peirce decomposition R = eRe ⊕ eRē ⊕ ēRe ⊕ ēRē.

) Characterization of special clean elements by group invertible ones

Recall that an element a ∈ R is special clean (see [1] * , [26] * ) if it admits a clean decomposition a = ē + u for some e ∈ E(R), u ∈ U(R) that satisfies the additional requirement aR ∩ ēR = {0}.

These special clean elements appear in almost all my publications in the realm of ring theory, for the following reason: they can be described entirely multiplicatively by means of strongly regular elements. Precisely, I proved the following equivalences. (1) u = a -ē ∈ U(R) and aR ∩ ēR = 0 (a is special clean); A very different (and probably more visual) proof of the equivalence (1) ⇐⇒ (6) is given in [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Theorem 6.1]. It relies on Peirce decomposition and the following trivial fact: a group invertible element z ∈ R # is always a unit in eRe for e = zz # , and conversely any element z ∈ U(eRe), e ∈ E(R) is always group invertible (as an element of R).

(1 ′ ) u = a -ē ∈ U (R) and Ra ∩ Rē = 0; (2) u = a -ē ∈ U (R) and aR ⊕ ēR = R; (2 ′ ) u = a -ē ∈ U (R) and Ra ⊕ Rē = R; (3 
Theorem 12.2.2 ([161, Theorem 6.1]). Let R be a ring and a ∈ R, e ∈ E(R). Then the following statement are equivalent:

(1) There exists z ∈ U(eRe) such that aza = a, zaz = z;

(2) The Peirce decomposition of a relative to the idempotent e is of the form A = a 1 a 2 a 3 a 4 with a 1 ∈ U(eRe) with inverse z ∈ U(eRe) and a 4 = a 3 za 2 ;

(3) u = a -ē ∈ U (R) and au -1 a = a (a is special clean).

Consequently, we can actually prove that the special clean decompositions are in bijective correspondence with completely regular reflexive inverses.

Corollary 12.2.3 ([161, Corollary 6.2]). Let R be a ring and a ∈ R be a special clean element. Then there is a bijective correspondence between special clean decompositions and strongly regular reflexive inverses given by (e, u) → z = u -1 au -1 with reciprocal z → (e = zz # , u = a -ē), where a = ē + u = au -1 a denotes the special clean decomposition.

In particular a is uniquely special clean if and only if it admits a unique reflexive inverse which is also strongly regular.

Another consequence obtained in [START_REF] Mary | Characterizations of special clean elements and applications[END_REF] is that if eR(1 -e) ∈ J(R) for all e ∈ E(R) (equivalently, idempotents are central modulo the Jacobson radical J(R)) then regular elements of R are strongly regular [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Theorem 6.3]. This result was refined to an equivalence by D. Khurana 

Conclusion, open problems and future work

The results of this part on the group inverse prove at least two facts. First, group invertible elements and group inverses are ubiquitous when generalized inverses or idempotents come into play. And among the numerous generalized inverses, they play a very special role. Second, new interesting properties relative to the group inverse are probably still be discovered.

Regarding possible future research inspired by this chapter, I consider the three following ones as promising:

(1) the methodology described in Chapter 9 and used in [START_REF] Mary | The group inverse of a product[END_REF] is not specific to the group inverse, and could probably be applied to the study of the inverse of a product ab along an element in rings (by using the results of [START_REF] Mary | The inverse along a lower triangular matrix[END_REF], see Section 7.2). Or, it could be used to study the inverse along a product;

(2) group-domination has shown a very promising notion to study general (non-unital) rings, and some very special classes of semigroups. It could be interesting to try to perform a generic study of group-domination in the semigroup case;

(3) in Chapter 10, and following the results of [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF], we proved that H-commutation (equivalently commutation "modulo H") is a crucial property for the reverse order law of the group inverse. As a is invertible along d may be understood as "a is an inverse of d modulo H" ( [START_REF] Mary | Generalized inverses modulo H in semigroups and rings[END_REF], [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF], see Chapter 3 and Chapter 14), it comes into our mind than H-commutativity of certain inverses along an element should be explored;

(4) finally, in Chapter 12 we observe that in the ring case, strongly regular element have a specific additive decomposition; and so do their reflexive inverses, which are exactly the special clean elements. Thus, we can wonder whether one reflexive inverses of special clean elements can be characterized additively (and so on...). For the moment, I have however no idea of what such a characterization would be (the reflexive inverse of a special clean element may not even be clean...)

Part IV -Algebraic theory of semigroups and structure theorems

This part gathers my contribution to the algebraic study of semigroups (or semigroup (bi)acts). This is mainly obtained by exhibiting some special classes of semigroups, and producing (if possible) structure theorems. More precisely, Chapter 14 defines and studies analogs of known classes of semigroups, but modulo Green's relation H, as suggested by my previous work on the inverse along an element. In Chapter 15, we use extensions of the classical Green's relations to provide structure theorems for some classes of semigroups. Their study as varieties of unary semigroups (in the spirit of universal algebra) is also discussed. In Chapter 16, I explore the ring theoretical notion of perspectivity from a semigroup point of view through the use of chains of associate idempotents. Chapter 17 is of slightly different flavor, since it focuses on the structure of certain monoid biacts (the stable, J -simple monoid biacts). Finally, at the beginning and the end of the part, I focus on other type of results that structure theorems. The part starts with some words on the inverse along an element in semigroups (Chapter 13). And it ends with the study of new partial orders on arbitrary (non regular) semigroups (Chapter 18).

Chapter 13

The inverse along an element in semigroups

Since the beginning of the algebraic study of semigroups, regular semigroups have been recognized as one of the most manageable class of semigroups, due to the abundance of idempotents in such semigroups. And, as soon as they have been introduced, Green's relations have been used to study regularity (hence inner and reflexive inverses). In [START_REF] Mary | On generalized inverses and Green's relations[END_REF] I followed the same path and used Green's relations to study some inverses but instead of inner or reflexive inverses, I studied the outer inverse in a given H-class.

Part II of this memoir is devoted entirely to this notion. In this chapter, I recall the main properties of the inverse along an element in the semigroup case.

) Definition and first properties

The following definitions and results appear in [START_REF] Mary | On generalized inverses and Green's relations[END_REF] and mary2013generalized. Let S be a semigroup and a, d ∈ S. The inverse a -d of a along d, if it exists, is the only outer inverse of a in H d , the H-class of d. For the inverse of a along d to exist, d must then be regular (for its H-class contains the regular element a -d ). If we allow d to vary, then the inverse of a along d may be understood as a parametrization of the outer inverses of a.

Next theorem provides the reader with some necessary and sufficient conditions for a to be invertible along d, as well as different formulas for the inverse a -d of a along d.
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element, see [START_REF] Mary | On generalized inverses and Green's relations[END_REF]Theorem 11] and more generally Section 4.1). It is also well known that the group inverse a # of a not only commutes but also bicommutes with a. This extends to the inverse along d as follows.

Theorem 13.1.3 ([146, Theorem 10]). Let S be a semigroup and a, d ∈ S. Then (1) a -d ∈ {a, d} ′′ (bicommutant of {a, d});

(2) aa -d ∈ {ad} ′′ and a -d a ∈ {da} ′′ .

) Inverses along (commuting or bicommuting) idempotents

In this section, we will see that idempotents appear naturally when it comes to commutation properties, a statement that will be made precise below. But inverses along non-commuting idempotents proved also very interesting. The results of this section are also exposed in details in Section 4.3.

Idempotents play a crucial role in semigroup theory. It thus comes to no surprise that inverses along idempotents have interesting properties.

The following lemma (Lemma 4.3.1) regarding inverses along an idempotent is straightforward yet crucial. To study precisely inverses along idempotents, I found convenient to introduce the following sets, for any a ∈ S ([147], [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF]). Next theorem proves that there is a bijective correspondence between completely regular (resp. commuting, resp. bicommuting) outer inverses and (resp. commuting, resp. bicommuting) idempotents below a for the ≤ H preorder, and that it extends to an isomorphisms of posets (resp. semilattices) if one consider W (a) as the set of idempotents of the variant semigroup (S, . In summary, τ j a is an isomorphism of posets from (W j (a), ≤ a ) onto (Σ j (a), ≤) for j = ♯, 1, 2.

Σ(a) = {e ∈ E(S)|e ≤ H a}, Σ # (a) = {e ∈ E(S)|eaeHe}, Σ 1 (a) = {a} ′ ∩ Σ # (a),
In case there exists a greatest element M ∈ Σ j (a), then we say that a is j-naturally invertible, and b = a -M is called the j-natural generalized inverse of a. Such inverses are introduced and studied in [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF], and have been further studied by Kantún-Montiel in [103] * but in the ring and operator algebra context only. In [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF], it is notably proved that the natural inverse coincide with the group (or Drazin) inverse if it exists.

Another consequence of this isomorphism is the existence of some "Cline's formula" for commuting outer inverses, relating the commuting outer inverses of a product ab with those of ba.

In the following, we fix a, b ∈ S and define the function on S ϕ b,a : x → bx 2 a, and dually ϕ a,b . It is straightforward that ϕ b,a maps {ab} ′ on {ba} ′ and that ϕ b,a : ({ab} ′′ , . ab ) → (S, . ba ) is a morphism. As for any s ∈ S, W j (s) and Σ j (s) are always isomorphic posets (by Theorem 13.2.2), we thus deduce the following Corollary.

Corollary 13.2.4 ([151, Corollary 3.4]). Then the following posets j = 1 (resp. semilattices j = 2) are isomorphic (with their respective structure):

W j (ab) ≃ Σ j (ab)∩ ≃ Σ j (ba) ≃ W j (ba). 

GENERALIZED INVERSES AND CATEGORY THEORY

-→ c = b b -→ cab c -→ c.
Also, we recover that a -e = (eae) -1 eSe , inverse of eae in the local submonoid eSe, and that a -(e,f ) is the unique element x ∈ eSf such that x(f ae) = e, (f ae)x = f . This was put to a certain extent in [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF] to study reverse order laws (can we compute the inverse of a product by using the product of the inverses?).

We refer to [START_REF] Mary | b, c)-inverse, inverse along and element, and the Schützenberger category of a semigroup[END_REF] for the statements of the various reverse order laws therein. We only give one result here, to catch a glimpse of the type of results obtained.

Theorem 13.3.2 ([154, Theorem 2.7]). Let a, w, b, s, t, c ∈ S be such that a -(t,c) and w -(b,s) exist. Then (aw) -(b,c) exists and equals w -(b,s) a -(t,c) iff there exists e ∈ E(S) such that:

(1) t e -→ s is an invertible morphism;

(2) caewb = cawb. In this case, st is a trace product (and e is the identity of the group R t ∩ L s ).

In case the equality caewb = cawb does not hold but st is still a trace product with e ∈ R t ∩ L s , then the reverse order law becomes (aew) -(b,c) = w -(b,s) a -(t,c) whenever a -(t,c) and w -(b,s) exist.

) Miller and Clifford's theorem revisited

Recall that Miller and Clifford's theorem [166, Theorem 3] (Theorem 1.1.1) states that ab is a trace product (ab ∈ R a ∩L b ) iff the H-class H = L a ∩R b contains an idempotent. We extend this result, and provide applications to the inverse along an element, the (b, c) inverse and the Bott-Duffin inverse. (1) ⇒ (2) Assume that azb ∈ R a ∩ L b . As azbRa then by left congruence xazbRxa and czcvRc so that czcRc. Dually, czcLc.

(2) ⇒ (3) Assume that czcHc. Then c = czct for some t ∈ S 1 . Thus a = uc = uczct = azct and aRazc. Also as cLa then by right congruence czcLazc and finally aLcLczcLazc. Thus aHazc.

(3) ⇒ (2) Assume that azcHa. Then a = azct for some t ∈ S 1 . Thus c = xa = xazct = czct and cRczc. Also as cLa then by right congruence czcLazc and finally cLaLazcLczc. Thus cHczc.

( 

Special cases:

(1) Letting z = 1 is the classical theorem;

(2) Letting a = b = d, and z = a in Theorem 13.4.1 we recover that dadHd iff adRd and H ad contains an idempotent (Theorem 13.1.1). Moreover, letting c = a -d we recover that if a is invertible along d then dadHd (since cHd and cac = c);

(3) Letting z = a and a = c we obtain existence criteria for the (b, c)-inverse;

(4) Letting a = f and b = e be idempotents, and z = a, we obtain that a is (e, f )invertible iff f ac = f acf is a unit in the local monoid f Sf for some c ∈ L f ∩ R e , iff cae = ecae is a unit in the local monoid eSe for some c ∈ L f ∩ R e ;

(5) In particular, a is invertible along e iff eae ∈ U(eSe) (this is Lemma 13.2.1); ( 6) Let e = ab, f = ba be isomorphic idempotents with (a, b) a regular pair. Then a ∈ R e ∩L f . Thus

f ze ∈ R f ∩L e iff eza = ezae ∈ U(eSe) iff azf = f azf ∈ U(f Sf ).
In particular, letting z = 1, and as 

H a = R e ∩ L f then H a is a group iff f e is a trace product iff eae = a 2 b ∈ U(eSe) iff f af = ba 2 ∈ U(f Sf ) (

Chapter 14

Classes of semigroups modulo Green's relation H

The study of special classes of semigroups relies in many cases on properties of the set of idempotents, or of regular pairs of elements. Moreover, regarding regular semigroups, the two approaches are usually complementary. For instance, inverse semigroups may either be defined as regular semigroups whose idempotents commute, or as semigroups where every element has a unique reflexive inverse. On the other hand, among the regular elements of a semigroup, a special attention as been paid to completely regular elements, and the class of completely regular semigroups is one of the most important class of regular semigroups, as explained in Chapter 2.

Two main ideas have driven my study in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF]:

First, a completely regular element is known from [73] * to satisfy a H a 2 (this is Theorem 2.1.1), where H is Green's relation. Hence, it may be seen as an "idempotent modulo H";

Second, invertibility along an element can be interpreted as a kind of "regularity modulo H" by [158, Theorem 2.2] (see Chapter 3), since x is invertible along a iff axaHa.

The question of the link between the two notions, completely regular elements and invertibility modulo H, is then natural. It was the purpose of [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] to show that a correspondence exists.

Specifically, [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] introduces inverses modulo Green's relations H, and associated classes of semigroups. We follow here the conventions of the memoir rather than those of the article, and use the term "inner inverse" rather than "associate". 

. a ′ , a ′′ ∈ V (a) ⇒ a ′ = a ′′ ; 2. a ′ , a ′′ ∈ V (a)[H] ⇒ a ′ Ha ′′ .
Two other results of [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] of independent interest are the following ones, that study H-commutation. Recall that by H(S), we denote the union of group H-classes (a.k.a. the set of of completely regular/group invertible elements): Equivalently, the semigroup in Lemma 14.1.4 is such that "idempotents modulo H commute modulo H."

H(S) =
At the level of (completely regular) elements, H-commutation has the following consequence.

Theorem 14.1.5 ([148, Theorem 4.12 and Lemma 4.14]). Let S be a semigroup and a, b ∈ H(S). The following statements are equivalent.

(1) baHab;

(2) ab, ba ∈ H(S) and (ab

) # = b # a # , (ba) # = a # b # .
An more thorough study of the element-wise connections between H-commutation and these reverse order laws has been conducted in [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF].

) Completely inverse, H-orthodox, group-closed and E-solid semigroups

Among the classical classes of regular semigroups, the main simple ones are probably bands (all elements are idempotents) and semilattices (commutative bands), completely simple and completely regular semigroups, inverse semigroups (each element has a unique reflexive inverse, equiv. the semigroup is regular and idempotents commute), Clifford semigroups (completely regular and inverse, equiv. the semigroup is regular and idempotents are central) and orthodox semigroups (the semigroup is regular and idempotents form a subsemigroup). All of them admit characterizations in terms of idempotents or inner or reflexive inverses, and sometimes distinct but equivalent ones. The main contribution of [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] is to define their analogs modulo H for all equivalent characterizations, check whether they remain equivalent or not, and more generally study more closely their connections with existing classes of semigroups. In this memoir, we complete a little bit [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] by adding results for bands, semilattices and completely regular semigroups modulo

H. A subset A of a semi- group S is H-commutative if (∀a, b ∈ A), abHba. Finally, a semigroup is E-solid if if (∀e, f, g ∈ E(S)) f R e L g ⇒ (∃h ∈ E(S)) f L h R g [80]
* , iff the subsemigroup generated by its idempotents is completely regular (a union of groups) [80, Theorem 3] * .

Next table subsumes the definitions and results of [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] (explanations are given below).

Characterization Name Char. modulo H Name (∀a ∈ S) a ∈ E(S) band (∀a ∈ S) a ∈ H(S) completely regular (∀a ∈ S) a ∈ E(S), E(S) commutative semilattice (∀a ∈ S) a ∈ H(S), H(S) H-commutative Clifford (∀a ∈ S) V (a) ∩ {a} ′ ̸ = ∅ completely regular (∀a ∈ S) V (a)[H] ∩ {a} ′ [H] ̸ = ∅ completely regular E(S)E(S) ⊆ E(S) orthodox H(S)H(S) ⊆ H(S) H-orthodox (∀a ∈ S) V (a) is a singleton inverse (∀a ∈ S) V (a)[H] is a single H-class inverse E(S) is commutative inverse H(S) is H-commutative completely inverse (∀a, b ∈ S) I(b)I(a) ⊆ I(ab) orthodox (∀a, b ∈ S) I(b)[H]I(a)[H] ⊆ I(ab)[H] H-orthodox (∀a, b ∈ S) V (b)V (a) ⊆ V (ab) orthodox (∀a, b ∈ S) V (b)[H]V (a)[H] ⊆ V (ab)[H] H-orthodox (∀e ∈ E(S)) V (e) ⊆ E orthodox (∀h ∈ H(S)) V (h)[H] ⊆ H(S) E-solid
Bands modulo H correspond to completely regular semigroups by Green's theorem 2. 

) Quasivarieties

Regarding universal algebra, it is shown in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] that the class of completely inverse semigroups is not a variety of (2, 1)-algebras (algebras with the two operations of multiplication and inversion). Indeed, if we take X an inverse not completely inverse semigroup, and let S = (FX, f ) be the free inverse semigroup on X, then FX is combinatorial hence completely inverse, whereas its homomorphic image X is not. The class of completely inverse semigroups is however a pseudoelementary class of type (2, 1) closed under subalgebras (inverse subsemigroups) and direct products and, as such, a quasivariety of type (2, 1). Indeed, it may be simply defined by adding to the identities defining the variety of inverse semigroups the quasi-identity

xx -1 = x -1 x ⇒ xyy -1 = yy -1 x
(Completely regular elements commute with idempotents).

) Regular semigroups

We have the following implications between the different types of regular semigroups studied in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] (a semigroup is quasi-orthodox [220] * iff it is regular and E-solid [81] * ). 

Completely Regular

Completely Inverse

' / n v Cryptic + Inverse + 3 k s H -Orthodox ( 0 H -Orthodox + Inverse K S Inverse Quasi-orthodox Orthodox k s

) Non-regular semigroups

The same kind of implications exist for non-regular semigroups, where:

(1) S is an E-semigroup if E(S) is a subsemigroup;

(2) 

S is E-commutative if E(S) is commutative; (3) S is group-closed [5] * if H(S) is a subsemigroup; (4) S is H-commutative if (∀a, b ∈ S) abHba; (5) S is H-Cliffordian if H(S) is H-commutative.
H -commutative t | H -Cliffordian ' / k s + 3 p x H(S) Clifford semigroup Group-closed ' / Group-closed + E-commutative K S E-commutative E-solid E-semigroup k s
Chapter 15

Completely (E, H E )-abundant semigroups

In this chapter, we continue our study of certain special classes of semigroups. However, contrary to Chapter 14 (and [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF]), where the main characters were generalized inverses or/and idempotents, our main tool here will be Green's (extended) relations.

Precisely, I will present the results of [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF], that studies analogs to completely regular, completely simple and Clifford semigroups, but defined in terms of a distinguished subset of idempotents E (whose elements act as minimal left and right identities) and its associated Green's extended relations K E . Also, it will give the opportunity to introduce a new point of view, that of universal algebra. Indeed, we will see that instead of working with plain semigroups and consider certain -Green's relations based-properties, it may be convenient to consider them as unary semigroups (algebras of type (2, 1)). We will then be able to prove that all classes studied are varieties (of unary semigroups) and consider their defining equations.

) Green's extended relations K E

Let S be a semigroup. For any equivalence relation σ on S, A ⊆ S is σ-saturated (or saturated by σ) if A is a union of σ-classes, or equivalently, (a, b) ∈ σ and a ∈ A ⇒ b ∈ A. The semigroup S is σ-abundant ((E, σ)-abundant) if every σ-class contains idempotents of S (contains elements of E).

We will make use of the Green's extended preorders and relations in a semigroup. If ≤ K is a preorder, then a R b ⇐⇒ {a ≤ K b and b ≤ K a}, and K(a) = {b ∈ S, bKa} denotes the K-class of a (this notation is preferred to the most classical K a in this chapter to avoid multiple subscripts).

For elements a and b of S, ≤ L E and ≤ R E are defined (see for instance [72] * , [132] * ) by

a ≤ L E b ⇐⇒ {(∀e ∈ E) be = b ⇒ ae = a}; a ≤ R E b ⇐⇒ {(∀e ∈ E) eb = b ⇒ ea = a}.
(For E = E(S) we forget the subscript.)

As Regarding these results, it happens that the hypothesis involved in both the semilattice decomposition theorem and the semilattice composition theorem are rather strong and difficult to handle. First, they rely on the intricate condition J E . And second, the congruence condition has to be checked. In [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF], I was able to improve the previous results by using bisimplicity ( D E -simplicity) instead of simplicity ( J E -simplicity), and a simple property (Π):

(Π)(∀a ∈ S, ∀e, f, g ∈ E) eaf ∈ M g ⇒ egf = g.
where M g will be a specific monoid that depends on the context. 

(Π)(∀a γ ∈ S γ , ∀e α , f β , g αγβ ∈ E) e α a γ f β ∈ H E αγβ (g αγβ ) ⇒ e α g αγβ f β = g αγβ .
Then, in [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF] 

) Completely E-simple semigroups

We say that e ∈ E is primitive (within

E) if (∀f ∈ E) ef = f = f e ⇒ e =
f (e is primitive if it is a minimal element of E with respect to the natural partial order).

Primitive idempotents play a special in the theory of completely simple semigroups: a semigroup is completely simple iff it is completely regular with some (all) idempotents primitive.

A similar result holds for completely E-simple semigroups.

Theorem 15.2.4 ([150, Theorem 3.8]). Let S be a (E, H E )-abundant semigroup. Then it is (E, D E )-simple iff some (all) idempotent(s) of E is (are) primitive.

In [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]Theorem 3.8], only the "all" case is stated and proved. But the proof works without change in the "some" case (all idempotents are D E related to that fixed primitive e ∈ E in that case).

As a consequence, we obtain that being completely E-simple is an intrinsic property of S. Indeed, the only possible set E is then E = M ax, set of maximal idempotents of E(S) (with respect to the natural partial order), as proved in [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]Corollary 3.10].

Another characterization of completely simple semigroups is as regular semigroups that are disjoint union of their local submonoids. This extends to completely E-simple semigroups.

Corollary 15.2.5 ([150, Corollary 3.12]). Let S be a semigroup, and E a distinguished set of idempotents such that S = ˙ e∈E eSe. Assume moreover that E is such that

(Π ′′ )(∀e, f ∈ E) f ef = f e ⇒ f e ∈ E and f ef = ef ⇒ ef ∈ E.
Then S is completely E-simple. Conversely, every completely E-simple semigroup is the disjoint union of its local submonoids eSe, e ∈ E, and satisfies 

(Π ′ )(∀e, f ∈ E) f ef = f e ⇒ f e

) Union of monoids

The general case of ( 

) Varieties of unary semigroups

Semigroups are a particular type of (2)-algebras (sets endowed with a binary operation), those whose operation is associative. In this section, we will consider (E, H E )-abundant semigroups as unary semigroups, that is (2, 1)-algebras endowed with an associative binary operation and a unary operation. Given a (E, H E )-abundant semigroup S, the unary operation associates to any x ∈ S the unique idempotent x + = e ∈ E such that x H E e. For any unary semigroup S, we also pose S + = {x + |x ∈ S} and σ + = {(x, y) ∈ S × S|x + = y + }. For any set of identities {1, . . . , n}, V(i 1 , . . . , i k ) denotes the variety of unary semigroups that satisfy the identities (i 1 , ...i k ).

For instance, the variety of left restriction semigroups has attracted lots of interest (see [96] * for a very interesting survey on the topic). A unary semigroup (S, ., + ) is a left restriction semigroup if its unary operation satisfies the identities

x + x = x, x + y + = y + x + , (x + y) + = x + y + , xy + = (xy) + x.

Right restriction semigroups are defined dually, and a bi-unary semigroup (S, ., + , * ) with (S, ., + ) (resp. (S, ., * ) a left (resp. right) restriction semigroup is a restriction semigroup. It is proved in [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF] that E-Clifford restriction semigroups are indeed (left) restriction semigroups. Moreover, [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]Theorem 5.3] proves that (S, ., + , + ) is a restriction semigroup iff (S, ., + ) is a left restriction semigroup such that its set of projection S + = E is a semilattice of central idempotents (in S).

We consider the following identities on a unary semigroup (S, ., + ): The main result of [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF] regarding universal algebra is that not only E-Clifford restriction semigroups but all classes previously studied form varieties of unary semigroups.

x + x = x ( 15 
In particular, as any variety of (2, 1)-algebras, these classes are stable under direct product, homomorphic images and subalgebras by Birkoff theorem. Consequently, we deduced [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]Corollary 5.6] that a unary semigroup is a Clifford restriction semigroup iff it is a subdirect product of restriction monoids and restriction monoids with a zero added. Observe that such a result fails for plain E-Clifford restriction semigroups. Indeed [START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF]Example 5.7] provides an example of a subdirect product of monoids and monoids with a zero added that is not completely (E, H E )-abundant (let alone an E-Clifford restriction semigroup). 

Chapter 16

Chains of associate idempotents and chained semigroups

In [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF], [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], [141] and [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF] (see also [112] The number n is the length of the chain. Right n-chains are defined dually. When n is small, such as n = 2 or n = 3, we will write e ∼ ℓr f , respectively e ∼ ℓrℓ f , and more generally, we will write e ∼ (ℓr) p f (resp. e ∼ (ℓr) p ℓ f or e ∼ ℓ(rℓ) p f ) to denote that e and f are connected by a left chain of length 2p (resp. 2p + 1). We define right n-chains dually and write e ≈ f to denote that e and f are connected by some (left or right) association chain. Relation ≈ is nothing but the transitive closure of the union of ∼ ℓ and ∼ r (and as such an equivalence relation).

Following [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF], [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF] and [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF], and still using the terminology of [116] * , we also define the following properties:

(1) S is left n-chained if any two isomorphic idempotents are connected by a left nchain. In this case we also say that S satisfies P ℓ (n). Property P r (n) is defined dually;

(2) S is (strongly) n-chained if any two isomorphic idempotents are connected by both a left and a right n-chain;

(3) S is weakly n-chained if any two isomorphic idempotents are connected by either a left and a right association chain of length n;

(4) S is π-chained (or ≈-chained) if any two isomorphic idempotents are connected by some (left or right) association chain.

By definition, n-chaining is a local property that depends on the regular D-classes only.

We can use association chains to refine the notion of regularity as follows [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]. We say that a ∈ S is n-chained regular if it is regular and for all b ∈ V (a), ab and ba are right n-chained. It is n-anti-chained regular if it is regular and for all b ∈ V (a) , ab and ba are left n-chained. The terminology comes from the following fact: for any b ∈ V (a), abS = aS so that starting forward in the chain, it makes sense to consider first equality of right principal ideals, whereas Sba = Sa so that starting backward in the chain, it makes sense to consider first equality of left principal ideals. By [139, Proposition 2.2], a semigroup is right (resp. left) n-chained iff regular elements are n-chained regular (resp. n-anti-chained regular).

If n = 2p is even, then any two idempotents e, f ∈ E(S) satisfy e ∼ p rℓ f iff f ∼ p ℓr e so that left and right 2p-chained semigroups coincide. This is not the case for left/right 2p + 1-chained semigroups in general.

Example 16.1.1 ([139,Example 2.4] ). Let S be a left zero semigroup (∀a, b ∈ S, ab = a) with at least two distinct elements e, f . Then any two elements are idempotents and left associates and S is left 1-chained. But e, f are isomorphic (ef = e, f e = f ) and not right associates (otherwise they would be equal), and S is not right 1-chained. Also, e is 1-anti-chained regular but not 1-chained regular.

Corollary 16.2.2 ([139, Proposition 4.2]

). A semigroup S is left (resp. right, resp. both) 1-chained iff isomorphic idempotents are ∼ ℓ -related (resp. ∼ r -related, resp. equal) iff reg(S) = S # and for all a ∈ reg(S) and any b ∈ V (a), ab = aa # (resp. ba = a # a, resp. b = a # ). In particular, 1-chained semigroups and 0-chained semigroups coincide.

The case of weakly 1-chained semigroup does not appear in [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], but it is not difficult to prove that such semigroups have D-classes either left or right 1-chained.

In case of a regular semigroup, we deduce directly that a semigroup S is regular and (left and right) 1-chained iff it is completely regular and inverse iff it is regular semigroup with central idempotents (a Clifford semigroup) iff it is a semilattice of groups. However, without regularity, a (left and right) 1-chained semigroup need not have central idempotents. On the other hand, consider the bicyclic semigroup M = {< p, q > /pq = 1}. It is bisimple (it has a single D-class) and inverse (M is regular and idempotents commute). However, pq = 1 and qp are D-related hence isomorphic but neither left nor right associates. (More generally, any n-chained monoid M is Dedekind-finite: (∀p, q ∈ M) pq = 1 ⇒ qp = 1).

The conclusion is much more stronger for rings, for with or without regularity, idempotents are central. In fact, a ring R is 1-chained iff R is an abelian ring (idempotents are central) [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]Theorem 4.4].

Going back to the semigroup case, it happens that a general structure theorem still holds under replacement of regularity by π-regularity (a semigroup S is (completely) π-regular if each element of S has a power which is (completely) regular). In [20] * , Bogdanović et al. study uniformly-π-inverse semigroups, that are π-regular semigroups with the additional assumption that axa = a implies ax = xa, and prove that their structure is perfectly known [20, Theorem 5.10] * . By Corollary 16.2.2, these semigroups are precisely the π-regular 1-chained semigroups. We need some terminology: a semigroup S is Archimedean (resp. t-Archimedean) if for any a, b ∈ S, there exists n ∈ N such that a n ∈ S 1 bS 1 (resp. a n ∈ S 1 b ∩ bS 1 ). S is completely Archimedean if it is Archimedean and completely π-regular.

Corollary 16.2.3 (from [20, Theorem 5.10] * ). Let S be a semigroup. Then the following statements are equivalent:

(1) S is π-regular and 1-chained;

(2) S is uniformly-π-inverse;

(3) S is π-regular and a semilattice of t-Archimedean semigroups; (4) S is a semilattice of nil-extensions of groups.

) 2-chains

From Proposition 16.1.2, a is 2-chained regular iff it is completely regular. And by exchanging the role of the idempotents in the definition of left 2-chained semigroups, left and right 2-chained semigroups coincide. Thus [139, Corollary 4.10] a semigroup is left (equiv. right, equiv. both) 2-chained iff regular elements are completely regular (in particular, the regular and 2-chained semigroups are the completely regular ones, whose structure is well-known, see Chapter 2). At the present time, there are to my knowledge no structure theorems for non-regular 2-chained semigroups in full generality. On the other hand, as for 1-chained semigroups much can be said under the additional assumption that semigroup S is also π-regular. Indeed, [20] * is precisely a survey article (with many references therein) on uniformly π-regular rings (the uniformly-π-inverse rings being just a special case), which are explicitly defined as π-regular rings in which every regular element is strongly regular (and as such they are in particular strongly π-regular rings), and the semigroup case is also studied. Corollary 16.2.4 (From [20, Theorem 5.7] * ). Let S a semigroup. Then the following statements are equivalent:

(1) S is π-regular and 2-chained;

(2) S is uniformly π-regular (S is π-regular and every regular element is completely regular); (3) S is completely π-regular and a semilattice of Archimedean semigroups; (4) S is a semilattice of completely Archimedean semigroups.

Once again the case of rings is very specific. From [115, Theorem 3.13] * , a ring R is 2-chained iff its is weakly 2-chained iff idempotents are central modulo the Jacobson radical.

As explained, for the moment, the structure of non-regular 2-chained semigroups (let alone weakly 2-chained semigroups and 3-chained semigroups) is unknown. This seems a very challenging task, as may be the study of weakly 2-chained semigroups or 3chained semigroups under regularity or π-regularity assumptions.

Chapter 17

Semigroup biacts

In [START_REF] Mary | A local structure theorem for stable[END_REF], we describe a class of semigroup biacts that is analogous to the class of completely simple semigroups, and provide the reader with structure theorems for those biacts that is analogous to the Rees-Sushkevitch Theorem. These theorems describe stable, J -simple biacts in terms of wreath products, translations of completely simple semigroups, biacts over endomorphism monoids of free G-acts, tensor products and matrix biacts. Applications to coproducts and left acts are also given.

Since most of the constructions of the paper are rather technical, we refer to [START_REF] Mary | A local structure theorem for stable[END_REF] for the precise definitions and statements. Still, many new notions have to be defined. In this memoir, we first present semigroup biacts and their associated category, and Green's relations upon them. Then we discuss some of the principal results, under their simplest form.

) Prerequisites on semigroup biacts

We will need some definitions and notations. In this chapter, in order to distinguish between a semigroup S and its underlying set, we will denote the latter by S (so that formally S = (S, .)).

) Semigroup biacts, and their category

A right semigroup act is a triple X = (X, S, β) where X is a set, S is a semigroup, and β : X × S → X is a semigroup action, that is, a function such that for all s, s ′ ∈ S and x ∈ X β(x, ss ′ ) = β(β(x, s), s ′ ). Left semigroup acts are defined dually.

By a semigroup biact, we mean a 5-tuple X = (T, X, S, α, β) where (T, X, α) and (X, S, β) are left and right semigroup acts and the following compatibility condition holds:

(∀t ∈ T, ∀x ∈ X, ∀s ∈ S) α(t, β(x, s)) = β(α(t, x), s).

For any t ∈ T, x ∈ X and s ∈ S, when no confusion is possible, we will simply denote α(t, x) by tx (or t • x) and β(x, s) by xs (or x ⊙ s) and simply refer to the biact as the triple X = (T, X, S). The compatibility condition then reads (∀t ∈ T, ∀x ∈ X, ∀s ∈ S) t(xs) = (tx)s and the expression txs = t(xs) = (tx)s is unambiguous. Semigroup biacts for a category SemBiact where:

Objects are semigroups biacts X = (T, X, S);

Morphisms (T, X, S) → (T ′ , X ′ , S ′ ) are triples Φ = (ϕ, f, ψ) where f : X → X ′ is a function, ϕ : T → T ′ and ψ : S → S ′ are semigroup morphisms and

(∀t ∈ T, ∀s ∈ S, ∀x ∈ X) f (tx) = ϕ(t)f (x), f (xs) = f (x)ψ(s).
The categories LeftSemAct and RightSemAct are defined accordingly. Isomorphisms and embeddings in our forthcoming structure theorems are understood in these categories.

The preference of semigroup biacts over semigroup acts is for reasons of symmetry and duality, that will become more obvious in the study of Green's relations on biacts.

We now provide the reader with three examples of monoid biacts that will prove useful in some of our structure theorems. (1) Let S be a semigroup. Then (S, S, S) is a semigroup biact.

(2) Let S be a semigroup and e, f two idempotents of S. Then (eSe, eSf, f Sf ) is a semigroup (actually a monoid) biact.

(3) The formal construction (2) specializes to the construction of certain matrix biacts.

Let R be a ring. If we set S = M p+q,p+q (R), e = I p 0 0 0 , f = 0 0 0 I q , then we can identify M p,p (R), M q,q (R) (as monoids) and M p,q (R) (as a set) with the upper left corner eSe = M p,p (R) 0 0 0 , down right corner f Sf = 0 0 0 M q,q (R) and upper right corner eSf = 0 M p,q (R) 0 0 respectively. We obtain a semigroup biact of matrices: R p,q = (M p,p (R), M p,q (R), M q,q (R))

with biaction the matrix product.

) The regular representation, fatihful biacts, endomorphims

Let X be a set, T (X) be the set of transformation on X and T be a subsemigroup of T (X). Then T acts on X on the left by evaluation, so that any transformation semigroup defines a left semigroup act. Conversely, a classical argument associates to any left act (T, X) a subsemigroup of T (X) that is a homomorphic image of T . The morphism ϕ : T → T (X) is defined by ϕ(t) = δ t for all t ∈ T , where δ t : x → tx is the left translation on X induced by t. This construction extends to biacts as follows.

Two subsemigroups T ⊴ T (X) and S ⊴ T op (X) are compatible if they commute as functions from X to X, that is for any x ∈ X, f ∈ T and g ∈ S we have that (f (x)) g = f ((x)g). If this is the case, they define a semigroup biact (T, X, S).

Conversely, let X = (T, X, S) be an object in SemBiact. For any t ∈ T one can define the left translation δ t ∈ T (X) by δ t : x → tx (resp. for any s ∈ S, the right translation τ s ∈ T op (X) by τ s : x → xs). Then ϕ : T → T (X), t → δ t is a semigroup homomorphism from T to T (X) and dually, ψ : S → T op (X), s → τ s is a semigroup homomorphism from S to T op (X), such that ϕ(T ) and ψ(S) are compatible. Putting RegT = ϕ(T ) and Reg(S) = ψ(S) we have the biact RegX = (RegT, X, RegS) is the regular representation of X = (T, X, S).

If Φ = (ϕ, id X , ψ) is an isomorphism then we say that T and S act faithfully on X, or that X = (T, X, S) is a faithful biact.

This representation by functions is very close to the classical case, but it can in certain cases be interestingly replaced by the following one. Let (T, X, S) be a semigroup biact. It makes sense to define T -endomorphisms and the endomorphism monoid End op (T, X). Dually, we can also define End (X, S). As (tx)s = t(xs) for all t ∈ T, s ∈ S, x ∈ X then the right translation τ s actually defines an element of End op (T, X), and the left translation δ t actually defines an element of End (X, S).

We therefore mostly consider RegT as a submonoid of End ((X, S)) and RegS as a submonoid of End op ((T, X)) rather as submonoids of functions.

In particular, the following construction (inspired by the construction of the dual vector space in functional analysis) proved very useful: Let (T, X) be a left semigroup act. Then End op (T, X) is a monoid, that acts on X on the right by point evaluation:

x ⊙ g = [x]g x ∈ X, g ∈ End op ((T, X)), such that (T, X, End op (T, X)) is a semigroup biact.
The dual construction holds.

Lemma 17.1.1 ([152, Lemma 2.5]). Let (T, X, S) be a faithful biact. Then (T, X) embeds in the left act (End (X, S) , X), and dually.

) stable, J -simple biacts

Analogously to Green's relations, we can define the following relations on the biact X = (T, X, S). These relations are defined in [118] * , but only few results are derived from these definitions. As usual S 1 (resp. T 1 ) denotes the monoid generated by S (resp. T ). Let x, y ∈ X.

(1) x R y ⇐⇒ (∃s, s ′ ∈ S 1 ) xs = y and ys

′ = x ⇐⇒ xS 1 = yS 1 (2) x L y ⇐⇒ (∃t, t ′ ∈ T 1 ) tx = y and t ′ y = x ⇐⇒ T 1 x = T 1 y (3) H = R ∧ L (4) D = R ∨ L (5) x J y ⇐⇒ (∃t, t ′ ∈ T 1 , ∃s, s ′ ∈ S 1 ) txs = y and t ′ ys ′ = x ⇐⇒ T 1 xS 1 = T 1 yS 1
It happens that these relations behave almost completely as their classical counterpart.

In particular, they are equivalence relations on X; relation R (resp. L) is a left (resp. right) congruence, and R and L commute so that

D = R • L = L • R is also an equivalence relation.
Most importantly for our purpose, Green's lemma holds for these relations.

Lemma 17.1.2 ([152, Lemma 3.5]). Let x, y ∈ X and s, s ′ ∈ S 1 such that xs = y and ys ′ = x (x R y). Then the right translation τ s : z → zs is a bijection from L x to L y with inverse τ s ′ , that preserves R-classes. In particular it sends H-classes to H-classes.

Let K denote any of these relations. Then the semigroup biact X = (T, X, S) is K-simple if X consists of a single K-class.

Definition 17.1.3 ([152, Definition 3.10]). A semigroup biact X = (T, X, S) is left stable (resp. right stable, stable) if x J tx ⇐⇒ x L tx for any x ∈ X, t ∈ T (resp.

x J xs ⇐⇒ x R xs for any x ∈ X, s ∈ S, resp. both).

It is completely left stable (resp. completely right stable, completely stable) if x L tx for any x ∈ X, t ∈ T (resp. x R xs for any x ∈ X, s ∈ S, resp. both).

It is proved ([152, Lemmas 3.14, 3.15, 3.17]) that finite biacts are stable, that J = D on stable biacts and that stable, J -simple biacts are completely stable.

Also, it is proved [START_REF] Mary | A local structure theorem for stable[END_REF]Example 3.11] that given a semigroup S, the biact (S, S, S) is completely stable iff S is completely simple.

In [START_REF] Mary | A local structure theorem for stable[END_REF], I also describe the construction of Schützenberger groups of H-classes (group of left/right translations induced by the left/right stabilizer of a H-class H) and provides the reader with their main properties. I also prove the existence of a coherent cross-section of a D-class [152, Theorem 3.23], as done by Grillet [74] * in the case of semigroups. These are actually the main technical tools needed to derive the structure of faithful, stable, J -simple biacts.

) Structure of faithful, stable, J -simple biacts

The structure theorems of [START_REF] Mary | A local structure theorem for stable[END_REF] exhibit stable, J -simple biacts as (isomorphic to) certain subacts of a larger biact, whose structure is perfectly known, and defined in terms of two sets (the set I of R-classes and the set Λ of L-classes) and a group G (the Schützenberger group of any H-class). This larger biact may be described (up to isomorphy) by different means detailed in [START_REF] Mary | A local structure theorem for stable[END_REF]:

(1) wreath products [152, Theorem 4.14];

(2) translations of completely simple semigroups [152, Corollary 4.15];

(3) biacts over endomorphism monoids of free G-acts [152, Corollary 4.17];

(4) tensor products;

(5) matrix biacts [START_REF] Mary | A local structure theorem for stable[END_REF]Corollary 4.19].

We only describe the simplest ones here, namely translations of completely simple semigroups and matrix biacts (as in Example 17.1.1). For the other constructions, we refer to [START_REF] Mary | A local structure theorem for stable[END_REF].

Corollary

). Let X = (T, X, S) be a faithful, stable, J -simple semigroup biact. Then there exists a completely simple semigroup C, and subsemigroups T L of L(C), S R of R(C) (where L(C) and R(C) are the semigroups of left and right translations on C respectively) such that:

(1) (∀x, y ∈ C) x L y in C iff x L y in (T L , C); (2) (∀x, y ∈ C) x R y in C iff x R y in (C, R S ); (3) (T, X, S) ≃ (T L , C, S R ).
Conversely, any semigroup biact of this form is faithful, stable, and J -simple.

Before stating the matrix biact version, we need some definitions and notations. Let I, Λ be sets and G be a group. We define M c I,I (G) as the I ×I matrices with coefficients in the monoid with zero G {⋆} (with ⋆ the zero of the monoid) such that each column contains exactly one coefficient in G, and the others ⋆. Such matrices are sometimes called column-monomial matrices (over G). We define a partial sum on G ∪ {⋆} by ⋆ + ⋆ = ⋆ and ⋆ + g = g for any g ∈ G, and the product on M I,I (G) by the classical product matrix formula

A × B(i, j) = k∈I A(i, k)B(k, j).
Dually, we can define M r Λ,Λ (G) (each row contains exactly one coefficient in G i.e. row-monomial matrices). And finally we define M s I,Λ (G) as the I × Λ matrices with coefficients in G ∪ {⋆} such that exactly one coefficient is in G. Matrix multiplication (on the left and on the right) define a monoid biact

M(I, G, Λ) = (M c I,I (G), M I,Λ (G), M r Λ,Λ (G)).
Corollary 17.2.2 ([152, Corollary 4.19]). Let I, Λ be two sets and G a group. Let

T I ⊴ M c I,I (G) (resp. S Λ ⊴ M r Λ,Λ (G)
) be a subsemigroup of the monoid of matrices over G ∪ {⋆} such that for all i, j ∈ I and all g ∈ G, there exists M ∈ T I , M (i, j) = g and dually for all λ, µ ∈ Λ and all g ∈ G, there exists M ∈ S Λ , M (λ, µ) = g. Then the biact (T I , M s I,Λ (G), S Λ ) is faithful, stable and J -simple. Conversely, any faithful, stable, J -simple semigroup biact is isomorphic to a biact of this form.

) Applications

It is worth to mention that the structure theorems obtained for faithful, stable, Jsimple semigroup biacts carry to completely stable semigroup biacts [152, Corollaries 4.23 and 4.24], completely stable left semigroup acts [152, Corollary 5.10], and faithful, L-simple left semigroup acts [START_REF] Mary | A local structure theorem for stable[END_REF]Corollaries 5.2 and 5.3]. In this case we recover Oehmke's main Theorem [186] * and Steinberg's version [START_REF] Steinberg | A theory of transformation monoids: combinatorics and representation theory[END_REF]Corollary 3.17] * of the Kaloujnine-Krasner Theorem [122] * . In the particular case of a faithful, L-simple semigroup left act (T, X) with X finite, we obtain in [START_REF] Mary | A local structure theorem for stable[END_REF]Corollary 5.7] an embedding of (T, X) in an iterated wreath product of the form (T p , X p )

≀ (G p , G p ) ≀ (G p-1 , G p-1 ) ≀ . . . ≀ (G 1 , G 1 ) (
where the G i are groups, and (T p , X p ) is a L-simple left act such that its automorphism group Aut(T p , X p ) (equiv. endomorphism monoid End(T p , X p )) is trivial).

Chapter 18

Partial Orders on arbitrary (non regular) semigroups

) Preliminaries on partial orders on semigroups

The first partial order on semigroups was defined on inverse semigroups by Vagner in 1952 [205] * , as the abstract counterpart of the inclusion of partial transformations in the case of the symmetric inverse semigroup. Recall that a semigroup S is an inverse semigroup if any element admits a unique reflexive inverse a -1 ∈ V (a).

For a, b ∈ S, with S an inverse semigroup, Vagner defined the partial order ω by aωb if a -1 a = a -1 b. Its restriction to the commutative subsemigroup of idempotents leads to the identification of commutative bands with semilattices. Actually, in this case ω restricts to the natural partial order ≤ on the set E(S) of idempotents of S (for e, f ∈ E(S), e ≤ f ⇐⇒ ef = f e = e), and was therefore also called the natural partial order (on inverse semigroups).

The natural partial order on inverse semigroups was extended to to the case of regular semigroups independently by Hartwig [85] * and Nambooripad [178] * in 1980. At this time, regular semigroups occupied already a prominent place within semigroup theory. This order was later extended by Mitsch to non-regular semigroups [171] * . Restricted to idempotents, the defined relation once again reduces to the natural partial order.

In [171] * , it is proved that the three relations indeed coincide on a regular semigroups.

99

Lemma 18.1.1 ([171, Lemma 1] * ). For a regular semigroup S, the following conditions are equivalent:

(1) a = eb = bf for some e, f ∈ E(S);

(2) a = aa ′ b = ba ′′ a for some a ′ , a ′′ ∈ V (a) (equiv. a ′ ∈ I(a)); These statements define relations on any (non necessarily regular) semigroup, but they may then fail to be equivalent. Also, in the non regular case these relations may fail to be reflexive. Therefore, as done in [START_REF] Guterman | Partial orders based on inverses along elements[END_REF] and [START_REF] Guterman | On hartwig-nambooripad orders[END_REF], we adopt in this chapter the convention that a partial order is an antisymmetric and transitive relation only (no reflexivity required).

Relations ( 4) and ( 6) are equivalent on any semigroup [79, Lemma 1]. They are called the Hartwig-Nambooripad order afterward, and denoted by < N . By < M and < HL we denote relations ( 9) and [START_REF] Ben | Generalized inverses: theory and applications[END_REF]. We let also P be the relation aPb ⇐⇒ a = pa = pb = bp = ap for some p ∈ S 1 . On arbitrary semigroups, < M and P are reflexive and transitive whereas < N is transitive but fails to be reflexive on non-regular semigroups.

The purpose of [START_REF] Guterman | On hartwig-nambooripad orders[END_REF] was threefold: first, to provide equivalent characterizations for the Hartwig-Nambooripad order based on outer inverses; second to define new partial orders on arbitrary semigroups; and third to consider them in the particular case of epigroups (or group-bound, any element admits a power that is group invertible).

) Use of outer inverses, and new partial orders

In [START_REF] Guterman | Partial orders based on inverses along elements[END_REF] and [START_REF] Guterman | On hartwig-nambooripad orders[END_REF], we prove that the Hartwig-Nambooripad order can be defined by means of outer inverses. As by definition, for any a, b ∈ S, a < N b implies that a is regular, relation < N is not well suited to compare non-regular elements. Therefore, we propose in [START_REF] Guterman | On hartwig-nambooripad orders[END_REF] the following definition, that extends the one in [START_REF] Guterman | Partial orders based on inverses along elements[END_REF]. And in case b is regular, we proved that [79, Lemma 4 and Corollary 1]:

aΓ l b ⇐⇒ aΓ r b ⇐⇒ aΓb ⇐⇒ aΓ P b ⇐⇒ a < N b
and this is also equivalent with

a = ab ′ b = bb ′ a = ab ′ a for some b ′ ∈ V (b).
In particular, on regular semigroups all four relations Γ, Γ r , Γ l and Γ P of Definition 18.2.2 coincide with Mitsch partial order < M .

The main property of these relations is that they all remain partial orders on arbitrary semigroups, and so is < HL .

Lemma 18.2.4 ([79, Lemmas 6 and 7 and Corollary 3]). Γ, Γ r , Γ l , Γ P and < HL are partial orders.

Also, [START_REF] Guterman | On hartwig-nambooripad orders[END_REF] provides examples that these relations are distinct, and also distinct from P and < M in general.

To conclude this section, we consider characterizations of these new partial orders in terms of outer inverses. This is the content of next two results. The first one -Corollary 18.2.5-considers aΓb with a regular, whereas in the second one -Proposition 18.2.6-a is arbitrary, but the semigroup S is group-bound (or an epigroup: any element has a power completely regular, or equivalently admits a Drazin inverse). 

Conclusion, open problems and future work

The previous chapters illustrate my contribution to the general algebraic theory of semigroups, notably through the use of generalized inverses and (extended) Green's relations. The spectrum covered is very large, but my contribution is very small compared to the new questions that arise. Here is a selection of a few problems I would like to address in the future:

(1) The Schützenberger category of a semigroup is a very nice tool to study a specific semigroup. I am currently trying to use them globally to study the category of semigroups itself, notably in order to interpret Morita equivalence of semigroups;

(2) Many scholars have studied the lattice of subvarieties of the variety CR of completely regular (unary) semigroups (see [193] * and the references therein). This should serve as an inspiration for a global study of the lattice of varieties of (completely) S + , H S + -abundant semigroups;

(3) On the same topic, but regarding these semigroups as plain semigroups, one may ask the following question: given a semigroup S, is there a distinguished set E of idempotents for which S is completely E, H E -abundant? If moreover we are given some semilattice decomposition (for instance the greatest one), then by Theorem 15.2.4 the set E is necessarily the union of the maximal idempotents in each class, and we have to check that each class is completely E-simple, and a type Π property (given by Theorem 15.2.2);

(4) Another very interesting challenge is the study of chained semigroups: non-regular (strongly or weakly) 2-chained semigroups, weakly 2-chained regular (or π-regular) semigroups, strongly 3-chained (non-regular, regular or π-regular) semigroups... For the moment, only local theorems (on the structure of J -classes) seem to be attainable. Also, 3-chained rings are endomorphism rings of perspective modules (isomorphic direct summands always have of common complementary summand). Is there a similar theory involving S-acts, their endomorphism monoid and properties of certain subacts?

(5) The structure of semigroup acts/biacts is little developed. It would be very stimulating to find other interesting classes of biacts that admit nice structure theorems.

Part V -Applications of generalized inverses and idempotents to ring and module theory

In this part, I present the results of my research specific to ring and module theory. They are of different flavor, depending on their topic (some works mixing different topics). However, some general scheme of research can be given.

I usually prefer to start my studies at the level of the elements of the ring. Then, but only in a second time, would I use this element-wise approach to obtain global results at the level of the ring. In a third time, this sometimes leads to module-theoretical results by considering the ring of endomorphisms of the module; I try to avoid the use of an identity (when possible), so that the results would also apply to general rings; I try to use the additive structure scarcely, making semigroup proofs (notably proofs based on generalized inverses) when possible.

The subjects studied are:

1. The characterization of specific elements of a ring (such as clean or exchange elements) by generalized inverses, in particular the group inverse, the inverse along an element and the (b, c)-inverse (Chapter 20);

2. The study of formulas (Reverse order law, Cline's formula, Jacobson lemma) for these generalized inverses (Section 21);

Chapter 19

Prerequisites and known results

Let R be a ring. As usual we denote by E(R) (or idem(R)) its set of idempotents and by R -1 (or U(R)) its set of units (invertible elements). We let also N (R) denote its set of nilpotent elements and J(R) denote its Jacobson radical. For any idempotent e ∈ E(R), ē = 1-e ∈ E(R) denotes its complementary idempotent. In case of a general (a.k.a. possibly non-unital) ring, we will preferably use the notation ℜ to denote this general ring.

In this part, the inverse along an element and the (b, c)-inverse appear only with respect to idempotents. For the readers that do not want to dwell into the whole theory, as exposed in part II, one can take the following equalities as defining notations. Let a ∈ R and e, f ∈ E(R).

the inverse of a along e is the genuine inverse (eae) -1 of eae in the corner ring eRe, that is a -e = (eae) -1 eRe (if it exists). It is called the Bott-Duffin inverse of a relative to the idempotent e by Khurana et.al. [START_REF] Khurana | Special clean elements in rings[END_REF]Definition 2.12]; the (e, f )-inverse of a is the unique element x ∈ eRf such that x(f ae) = e, (f ae)x = f (if it exists).

Due to their ubiquity in mathematics, some a posteriori equivalent notions studied in this part have been studied under different names and with a priori distinct definitions depending on the context (ring theory, semigroup theory, functional analysis,...) In this first section, I recall the principal notions and their equivalences.

An element a ∈ R is:

1. regular (resp. unit regular) if a ∈ aRa (resp. a ∈ aR -1 a); 2. strongly regular if a ∈ a 2 R ∩ Ra 2 ; 3. strongly π-regular if a n ∈ a n+1 R ∩ Ra n+1 for some integer n; 1. a is unit-regular ⇔ a = eu for some idempotent e ∈ E(R) and u ∈ R -1 ; 2. a is strongly regular ⇔ a is simply polar ⇔ a is group invertible ⇔ a = eu for some e ∈ E(R), u ∈ R -1 such that eu = ue; 3. a is strongly π-regular ⇔ a is polar ⇔ a is Drazin invertible; 4. a is strongly nil-clean ⇔ a is strongly Drazin invertible ⇒ a is Drazin invertible ⇒ a is strongly clean; 5. a is left suitable iff a is right suitable iff there exists e ∈ E(R) such that e ∈ Ra, 1 -e ∈ (1 -a)R; 6. a is clean ⇒ a is exchange; 7. a is strongly exchange ⇔ a is strongly clean. Also, in the special case ϕ ∈ R = End(M ) where M is a right module over a ring it holds that:

(1)

M = A ⊕ B = C ⊕ D such that ϕ(A) ⊆ C, (1 -ϕ)(B) ⊆ D and ϕ A : A → C, (1 -ϕ) B : B → D are isomorphisms. (2) ϕ is strongly clean ⇔ M = A ⊕ B, ϕ = ϕ A + ϕ B , with ϕ A , 1 B -ϕ B isomorphisms;
(3) ϕ is strongly π-regular (resp. strongly regular) ⇔ M = A ⊕ B, ϕ = ϕ A + ϕ B with ϕ A an isomorphism and ϕ B nilpotent (resp. 0); (4) ϕ is strongly nil-clean ⇔ M = A⊕B, ϕ = ϕ A +ϕ B , with 1 A -ϕ A , ϕ B both nilpotent. (In the three latter cases, ϕ(A) ⊆ A, ϕ(B) ⊆ B and by ϕ A , ϕ B we mean ϕ A : A → A, ϕ B : B → B). Finally, if T ∈ R = L(X) space of bounded linear operators on a Banach space X then T is polar (resp. simply polar) with p ̸ = 0 ⇔ 0 is a pole (resp. simple pole) of the resolvent (and in this case p is the spectral projection on the spectral set {0}) ⇔ X is a topological direct sum X = M ⊕ N with M ̸ = 0, T M : M → M nilpotent (resp. 0) and T N : N → N invertible.

Chapter 20 Exchange elements, (special) clean elements and generalized inverses

In order to to study refinements of direct sum decompositions (as does Schreier's theorem for groups), Crawley and Jònsson [44] * introduced the exchange property (an analog of Steinitz' Exchange Lemma for vector spaces). Based on that property, Warfield [214] * studied "Krull-Schmidt decomposition theorems". Two direct decompositions A = M ⊕ N = i∈I A i of a module A can be exchanged at M if we can refine the direct summands A i to submodules

A ′ i ⊆ A i , i ∈ I such that A = M ⊕ i∈I A ′ i
. The module M is said to have the n-exchange property (with n a cardinal) if any pair of decompositions A = M ′ ⊕ N = i∈I A i with M ≃ M ′ can be exchanged at M ′ for any card(I) ≤ n. The (finite) exchange property is the n-exchange property for all (finite) cardinals n. For a modern presentation on this topic, see [64] * . It was later observed by Warfield [213] * that the exchange property is an "ER"-property (endomorphism ring property as coined by T-Y. Lam), in that it depends only on the endomorphism ring R = End(M ) of the module. In [181] * , Nicholson defined an element-wise analog of an exchange ring. An element is left suitable (or left exchange) if there exists e ∈ E(R) such that e ∈ Ra, 1 -e ∈ (1 -a)R. Then he proved that a ring is exchange iff all its elements are left (equiv. right) suitable.

The clean property was first defined by Nicholson [180] * as a refinement of the exchange property. Indeed, he observed that most exchange rings shared this stronger property, which was nicer to handle. As precisely defined in [182] * , an element a ∈ R is clean if a = e + u for some e ∈ E(R) and u ∈ R -1 .

Apparently, the use of the additive law in both definitions of exchange and clean elements divert us from the purely multiplicative world of generalized inverses, but a study of exchange and clean properties via generalized inverses is still possible, as proved in [141], [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF] and [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]. To my opinion, this offers at least three main advantages: it makes clearer certain implications/set inclusions, in particular the following ones: special clean elements are unit-regular, strongly regular elements are 109 strongly clean, clean elements are exchange; characterizations in terms of inverses along a commuting idempotent offers the possibility to derive Cline's formula and Jacobson lemma; it opens the possibility to work with general rings.

) Exchange (or suitable) elements by outer inverses

The fact that exchange elements can be characterized by outer inverses seems to be folklore, but the only reference I found in the literature is the slightly different (moduletheoretic) in [172, Theorem 1] * . Therefore I stated the following result with a proof in [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF]. Proof.

(1) ⇒ (2) Assume that there exists x, y ∈ R that satisfy (1) and pose e = ax. Then e ∈ aR and 1 -e ∈ R(1 -a). We compute e -e 2 = ax(1 -ax) = axy(1 -a) = 0, so that e ∈ E(R) and a is exchange.

( 

= f v(1 -a) f v = f 3 v = y. Also y(1 -a) = f v(1 -a) = f 2 = f = 1 -f = 1 -ax.

) Clean elements by generalized (outer) inverses

In the rest of the part, we will preferably express the clean decomposition as a = ē + u (e ∈ E(R), u ∈ R -1 ).

The main theorem of [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF] expresses cleanness in terms of (e, f )-inverses, with e, f idempotents (Bott-Duffin (e, f )-inverses). Obviously, we can carry a dual construction (and get a second idempotent g = u -1 eu). Equivalently, we can work with principal ideals. ). Let R be a ring and a ∈ R be a special clean element. Then there is a bijective correspondence between special clean decompositions and strongly regular reflexive inverses given by (e, u) → z = u -1 au -1 with reciprocal z → (e = zz # , u = a -ē), where a = ē + u = au -1 a denotes the special clean decomposition. In particular a is uniquely special clean if and only if it admits a unique reflexive inverse which is also strongly regular. 

au -1 a = a a -(e,f ) -(1 -a) -(ē, f ) a = aa -(e,f ) a -a(1 -a) -(ē, f ) a = f a = a.
This proves that a is special clean.

Chapter 21

Reverse order law, Cline's formula and Jacobson's lemma in unital rings

In [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF], the two-sided reverse order law (ROL) for the group inverse is studied in the general case of semigroups. Then it is proved that in a ring, it is equivalent with the one-sided ROL under Dedekind-finiteness. Precise statements are exposed in Section 21.1 (and even more precise statements including the semigroup ones in Chapter 10).

In [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], I proposed to study Cline's formula and Jacobson's lemma for weak inverses, in particular (bi)commuting ones. While Cline's formula was mostly studied in semigroups in this paper, I also proved some additional results in the ring context (independently of the existence of an identity). It it those results that are presented in the next section. Therefore, we will only deal with the two-sided results corresponding to bicommuting weak inverses. For the readers interested in the other cases, I refer to Section 4.3, or directly to [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF].

Regarding Jacobson's lemma, the unital and general case differ. The study of Jacobson's lemma in general rings is thus postponed to the specific section about general rings. To be coherent with the Cline's formula case, I also present uniquely the bicommuting (hence two-sided) case, and once again refer to Section 7.4 or [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF] for more general results.

) Reverse order law for the group inverse in Dedekind-finite rings

Let R be a semigroup. The one-sided ROL for the group inverse is the equality (ab) # = b # a # , and the two-sided ROL the previous equality and its dual (ba) # = a # b # . These equalities are known to be false in general. Below, we first provide element-wise conditions on a and b for the two-sided ROL to hold. Second, we add an additional global finiteness condition on the ring for the one-sided ROL to hold. (3) abHba.

The following example shows that the one-sided ROL does not imply the two-sided ROL in general. Obviously, the ring has to be non-Dedekind finite. 

) Cline's formula via lattice isomorphisms in unital rings

In this section, R is a unital ring. We are going to describe some lattices isomorphims between lattices associated to primarily conjugate elements in R (u, v ∈ R are primarily conjugate if u = ab, v = ba for some a, b ∈ R). As a consequence, we will derive Cline's formula for bicommuting weak inverses. In a second phase, we will extend the previous isomorphims by working on the circle ring R • of R.

Recall For any a ∈ R, we define the following sets: From the two previous results, we deduce that there is not only a bijective correspondence but a lattice isomorphism between the bicommuting weak inverses of ab and the bicommuting weak inverses of ba. We thus deduce -CLine's formula for bicommuting weak inverses/ inverses along bicommuting idempotents -

W 2 (a) = {x ∈ R|xax = x, ca = ac ⇒ cx = xc(∀c ∈ R)} = W (a) ∩ {a} ′′ , Σ(a) = {e ∈ E(S)|e ∈ aR ∩ Ra}, Σ 2 (a) = Σ(a) ∩ {a} ′′ , Σ • (a) = {e ∈ E(S)|e ∈ a • R ∩ R • a}, Σ • 2 (a) = Σ • (a) ∩ {a} ′′ .
ab is invertible along e ∈ Σ 2 (ab) (resp. e ∈ Σ 2 (ab) ∩ Σ • 2 (ab)) iff ba is is invertible along f = b(ab) -e a ∈ Σ 2 (ab) (resp. f ∈ Σ 2 (ab) ∩ Σ • 2 (ab)), in which case (ba) -f = b (ab) -e 2 a.
We now push further the study in the case of rings by using twice the circle operation, and exhibit isomorphisms for a much larger class than primarily conjugate elements. The main idea is to consider the circle ring R • = (R, ⊕, •) with additive operation x ⊕ y = x + y -1. All the previous results then apply to R • and involve the ring (R • ) • . But (R, ⊕, •) is actually isomorphic to (R, +, .) via the involutive map x → 1 -x, so that (R 

• ) • = R. Also, we deduce from this isomorphism that e ∈ Σ • 2 (a) ⇐⇒ 1 -e ∈ Σ 2 (1 -a) ⇐⇒ e ∈ 1 -Σ 2 (1 -a).
(R) e → bu -e a is a lattice isomorphism from (Σ 2 (u) ∩ Σ • 2 (u), ., •) onto (Σ 2 (w) ∩ Σ • 2 (w), ., •); (R • ) e → c • w ⊖e • d is a lattice isomorphism from (Σ • 2 (w) ∩ Σ 2 (w), •, .) onto (Σ • 2 (v) ∩ Σ 2 (v), •, .).
As the opposite lattice of (Σ 

• 2 (w)∩Σ 2 (w), •, .) is (Σ • 2 (w)∩Σ 2 (w), ., •) we obtain that e → c • w ⊖(bu -e a) • d is a lattice isomorphism from (Σ 2 (u) ∩ Σ • 2 (u), ., •) to (Σ 2 (v) ∩ Σ • 2 (v), . , 
Σ 2 (u) ∩ Σ • 2 (u), ., •) and (Σ 2 (v) ∩ Σ • 2 (v), ., •) are isomorphic.
It may be interesting to consider properties invariant by primarily equivalence rather than primarily conjugation. In this (purely ring) case, instead of the natural inverse, that corresponds to a -M with M greatest element in Σ 2 (a), it seems indicated to consider instead a binatural inverse a -M , with M greatest element in Σ 2 (a) ∩ Σ (

1 -ba) -(1-f ) = 1 + b(1 -ab) -(1-e) a -f = 1 + b (1 -ab) -(1-e) -(ab) -e a.
We have already seen that the spectral projection p of a generalized Drazin invertible element 1 -ab satisfies that 1 -p is the greatest element of Σ (

-ba) gD = 1 + b (1 -ab) gD -(ab) -p a, 1 
where p is the spectral idempotent if (1 -ab). Also, the spectral idempotent of (1

-ba) is q = b(ab) -p a = b [p(1 -p(1 -ab)) -1 ] a.
We also applied Cline's formula and Jacobson's lemma 21. It has not been done in [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], but as for Cline's formula the previous results can be understood in terms of primarily conjugate idempotents, and then extended to primary equivalent idempotents.

Corollary 21.3.3 (unpublished). Let u, v ∈ R be primary equivalent idempotents. Then there is a bijective correspondence between the bicommuting outer inverses of 1 -u of the form (1 -u) 1-e , e ∈ Σ 2 (u) ∩ Σ • 2 (u) and the bicommuting outer inverses of

1 -v of the form (1 -v) 1-f , f ∈ Σ 2 (v) ∩ Σ • 2 (v).

Chapter 22

From unital to general rings The group of invertible elements in the monoid (ℜ, •) is exactly the set Q(ℜ) = {q ∈ ℜ|∃q ′ ∈ ℜ, q + q ′ -qq ′ = q + q ′ -q ′ q = 0} of quasi-regular elements on the ring ℜ.

Observe also that commutation in ℜ is commutation in ℜ • and that E(ℜ) = E(ℜ • ). Another (equivalent) operation can also be used, the adjoint operation x * y = x+y+xy (this is the one used primary by Jacobson [100] * ). The semigroup ℜ * = (ℜ, * ) is also monoid with Q(ℜ) its group of units. The map x → -x is an isomorphism from ℜ • onto ℜ * . For more on the adjoint and circle semigroup of a ring, notably their history, see [59] * , [90] * , [91] * , [92] * . In [START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF], I observed that statements involving the inverse of 1 -a along an element 1 -d (in a unital ring R) could be rewritten as statements involving the inverse of a along an element d in (R, •). This will be put to an end throughout this section.

Another way of dealing with general rings is through unitization. Let ℜ be a general ring. Then a unitization of ℜ is a unital ring T = R such that ℜ embeds in T as a two-sided ideal. The standard unitization (sometimes called the Dorroh extension, even if this concept may be more general) of ℜ is the ring Z ⊕ ℜ with multiplication (m, r)(n, s) = (mn, rs + nr + ms).

As observed for instance by L. Vas [206] * , the identity of Z ⊕ ℜ is (1, 0) and the set of units of

Z ⊕ ℜ is U(Z ⊕ ℜ) = ± (1, U(ℜ * )) = ± (1, U(ℜ • )) .
Another way to state this result is the following (unpublished). It does not appeal to unitization (except for its proof) but on the circle operation only. Let e ∈ E(ℜ) and a, b ∈ Z ⊕ ℜ such that 1 -e = (1 -a)(1 -b). Then a is necessarily of the form a = (0, a ′ ) with a ′ ∈ ℜ (and then so is b), or the form a = (2, a ′ ) (and so is b). In the first case, 1

-e = (1 -a ′ )(1 -b ′ ) so that e = a ′ • b ′ . In the second case, (1, -e) = (-1, -a ′ )(-1, -b ′ ) = (1, a ′ +b ′ +a ′ b ′ ) so that e = -a ′ -b ′ -a ′ b ′ = (-a ′ )•(-b ′ ).
From this, we deduce another equivalence.

Theorem 22.1.3 (unpublished). Let ℜ be a general ring. Then ℜ is Q-unit-regular iff for all e, f ∈ E(ℜ), if e ≃ f in ℜ then e ≃ f in ℜ • .

From the above, it may be tempting to think that Q-unit-regular rings are exactly ideals of unit-regular (unital) rings, or equivalently that Q-unit-regular rings always have a unit-regular unitization. This is not the case, as we will see shortly. First, we need some terminology and results. (2) ℜ admits a unit-regular unitization.

(3) ℜ has stable range one.

In [START_REF] Mary | Group-regular rings[END_REF], we proposed the following example. ). Let T 0 be a regular non unit-regular unital ring. Define iteratively T n+1 = M 2 (T n ) for all n ∈ N, and embed each T n , n ∈ N as the 1 -1 corner of T n+1 . Then define ℜ = lim → T n , direct limit of T n . We claim that ℜ is Q-unit-regular, but has not stable range one. Indeed, we first deduce by induction that each T n , n ∈ N is regular since matrix rings over regular rings are regular (Theorem 24 in [106]). Also ℜ has not stable range one since some corner rings are not unit-regular: for instance, T 0 is a non unit-regular corner ring by assumption. Let now a ∈ ℜ. Then a ∈ T n for some n ∈ N, and as T n is regular then there exists b ∈ T n such that Consequently Q-unit-regular rings may not have a unit-regular unitization. Equivalently, contrary to the unital case, Q-unit-regularity does not pass to corner rings, and does not imply stable range one. On the other hand, the converse hold by [206, Proposition 1] * : a regular general ring with stable range one is Q-unit-regular.

aba = a. Pose B = b b -1 1 1 ∈ T n+1 . Then B is group-invertible in R with group inverse B # = 1 1 -b -1 b ∈ T n+1 and a 0 0 0 B a 0 0 0 = a 0 0 0 . It

) Exchange, cleanness and special cleanness in general rings

In seminal papers, P. Ara [4] * and W.K. Nicholson [183] * used the previously defined adjoint semigroups of a general ring to extend respectively the exchange property and the cleanness property. We follow the convention of [47] * and say that an element a ∈ ℜ is clean general (see also [183] * ) if a = e + q * for some e ∈ E(ℜ) and q * ∈ Q * (ℜ)(or equivalently if a = e -q • for some e ∈ E(ℜ) and q 

• ∈ Q • (ℜ)
. xax = x (x is an outer inverse of a in (ℜ, .)); 2. z • a • z = z (z is an outer inverse of a in (ℜ, •)); 3. a • z = ax; 4. x + z ∈ Q • (ℜ).
If we also ask that ax = xa and a • z = z • a then we say that a is strongly g-clean.

Another characterization of strongly g-clean elements is as follows. As in unital rings, we can use idempotents and principal ideals (or (e, f )-inverses). It may not be clear that such an element is g-clean. We provide a short proof below.

Proposition 22.2.7 (unpublished). In a general ring, g-special clean elements are g-clean.

Proof. Let ℜ be a general ring and R be a unitization of ℜ. Let a ∈ ℜ be g-special clean, with reflexive group invertible inverse z ∈ ℜ ⊆ R. Let e = zz # Then by [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF]Theorem 6.1], a = ē + u with u ∈ U( R). Morevoer, from the proof therein, u -1 can be written in Peirce matrix form relative to the idempotent e in the form

U -1 = z -za 2 a 3 z za 2 a 3 z -1 (with A = a 1 a 2 a 3 a 3 za 2
). Let q = 1 + u = a + e and q ′ = 1 + u -1 . Then q, q ′ ∈ ℜ (q = a + e and q ′ = (e + z(a -ae)(a -ea)z) + z(a -ae) + (a -ea)z) and as (-u)(-u -1 ) = 1 and x → 1 -x is an isomorphism from R to R• , then q

• q ′ = (1 + u) • (1 + u -1 ) = 1 -(-u)(-u -1 ) = 1 -1 = 0 so that q is a unit in ℜ • .
It follows that -a = e -q is clean general, and by [153, Corollary 3.2] a is g-clean.

The following result does not appear in my publications as well. However, it also combines different results and, as such, deserved to be present here. T n is the direct limit of T n , where the T n are defined iteratively with T 0 a regular non unit-regular unital ring, and T n+1 = M 2 (T n ) for all n ∈ N (and we embed each T n , n ∈ N as the 1 -1 corner of T n+1 ). Let a ∈ ℜ. Then a ∈ T n for some n ∈ N, and we have seen that a is unit-regular in T n+1 . From [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Lemma 7.4] (or [113, Theorem 7.13] * ), the matrix

A = a 0 0 0 ∈ T n+2 = M 2 (T n+1
) is then special clean, and a has a reflexive inverse z ∈ T n+2 that is group-invertible. This z is then group invertible in ℜ, and a is g-special clean in ℜ. Finally the whole ring ℜ is g-special clean (in particular g-clean (equiv. clean general) by Proposition 22.2.7).

) Cline's formula and Jacobson's lemma in general rings

We conclude this section regarding general rings by some words on Cline's formula and Jacobson's lemma. Since Cline's formula is valid in the general setting of semigroups, it works verbatim in the case of general rings. Regarding Jacobson's lemma, there must obviously be some change in the formula compare to the unital case (also stated as Theorem 7. 

Chapter 23

Special clean elements and perspective elements -Equational characterization

) Special clean elements

We present in this section some further study of special clean elements, where we focus on a very specific problem: given an element a of a ring R, is there a simple criterion to decide whether this element is special clean or not? Together with P. Patricio, we found a simple criterion based on the existence of solutions of a certain equation in a corner ring. In Chapter 24, another equation will be given, coming from a very different method.

Our method is based on the "unit-regular" characterization of special clean elements There are at least two ways to search for such elements. A first one is to search, among the idempotents, those e such that u = a -ē is invertible and a = au -1 a. A second one is to search, among the units, the inner inverses u -1 of a such that a -u is an idempotent. It is this second method we choose to pursue, thanks to a parametrization of the set of unit-inverse due to Hartwig and Luh [86] * . This method has the defect that we must know an unit inverse v -1 of a to write the equation. Using chains of idempotents (Chapter 24) will pally this defect. 

M/a is d -ca -1 b ∈ D. The matrix M is invertible iff M/a ∈ U(D), in which case the inverse is a -1 + a -1 b(M/a) -1 ca -1 -a -1 b(M/a) -1 -(M/a) -1 ca -1 (M/a) -1 .
Following this method, we obtained an equational characterization of special clean elements. 

: f Rf × f R f → f R f by φ : (y, x) → yv 1 x + yv 2 + v 3 x + v 4 = (y + f )v(x + f ) where v has Peirce decomposition V = v 1 v 2 v 3 v 4 (in f Rf ⊕ f R f ⊕ f Rf ⊕ f R f ).
Then the set of special clean decompositions of a is in one-to-one correspondence with the solution set for φ(y, x) ∈ U ( f R f ).

Precisely, any invertible u such that a -u is idempotent and au -1 a = a has Peirce decomposition

U -1 = V -1 1 -x -y -φ(y, x) + yx = V -1 1 0 y 1 1 0 0 φ(y, x) 1 x 0 1
with φ(y, x) ∈ U ( f R f ). And conversely, any u ∈ R of this form is invertible and satisfies that a -u is idempotent and au -1 a = a. In this case, the idempotent ē = a -u has the form

Ē = 0 x 0 1 0 0 0 φ(y, x) -1 0 0 y 1 V.
Using results of [141] we obtain another equation based on the unit v -1 rather than v, and the corner ring f Rf . We let the Peirce decomposition of v -1 be V 

-1 = µ 1 µ 2 µ 3 µ 4 (in f Rf ⊕ f R f ⊕ f Rf ⊕ f R f ).
f = av -1 . Define ψ : f R f × f Rf → f Rf by ψ : (x, y) → µ 1 + µ 2 y + xµ 3 + xµ 4 y = (x + f )v -1 (y + f ).
Then the element a is special clean iff ψ(x, y)

= µ 1 + µ 2 y + xµ 3 + xµ 4 y = (x + f )v -1 (y + f ) ∈ U (f Rf ) for some x ∈ f R f , and y ∈ f Rf .
In [START_REF] Mary | Characterizations of special clean elements and applications[END_REF], we consider some special cases where the equations always have a solution (so that a is special clean in this cases). By sr l (x) = 1 we denote that x has left stable range one: if sx + ty = 1 for some s, t, y then x + uy is a unit for some u (and dually for right stable range one). Then under the following conditions (and with the previous notations), a unit-regular is special clean:

(1) sr l (v 4 ) = 1 in f R f (in particular, this holds if v 4 is unit-regular in f R f ) [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Corollary 3.3];

(2) sr r (µ 1 ) = 1 in f Rf (in particular, this holds if µ 1 is unit-regular in f Rf ) [161, Corollary 3.4];

(3) v 1 is unit-regular in f Rf (in this case, a 2 is also special clean, see also [ The special cleanness conclusion of all these premises will be further improved to perspectivity in the next section.

From these results, we recover by an element-wise manner some classical theorems: that a ring is unit-regular iff it is special clean [26, Theorem 1] * (since unit-regular ring have stable range one [70, Proposition 4.12] * ), and that an exchange ring has stable range one iff its regular elements are unit-regular [28, Theorem 3] * iff its regular elements are special clean [33, Theorem 2.1] * .

We also deduce that a ring is uniquely special clean iff it is a strongly regular ring [161, Corollary 5.2], and that in a ring such that all skew corner rings eR(1 -e), e ∈ E(R) are contained in J(R) (equivalently, idempotents are central modulo J(R)), then an element is regular iff it is strongly regular [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Theorem 6.3]. This improves a result of [130] * stating that in a ring R such that R/J(R) is abelian and exchange, then a is regular iff it is strongly regular, by removing the unnecessary exchange assumption. In [115, Theorem 3.13] * , it is proved that the converse also holds, and other characterizations of such rings based on chains of idempotents are provided.

By solving the equation "φ(y, x) is a unit", we proved that any unit-regular and clean 

) Perspective elements

In [141], we define a new class of elements of a ring R (in link with the notion of perspectivity of direct summands), that we call perspective elements. For this section we take as a definition the following characterization [141, Theorem 3.3]: a is perspective iff it is regular and for all f ∈ E(R) such that Ra = Rf there exists a special clean decomposition a = ē + u = au -1 a with u ∈ U (R), e ∈ E(R) and eR = f R (this property is actually left-right symmetric [141, Theorem 3.4]).

From the equational characterization of special clean elements in Theorem 23.1.1, we derive the corresponding result for perspective elements. The following statements are equivalent:

(1) The element a is perspective;

(2) For all x ∈ f R f , there exists y ∈ f Rf such that φ(y, x) ∈ U ( f R f );

(3) For all y ∈ f Rf , there exists x ∈ f R f such that φ(y, x) ∈ U ( f R f ). Then the following statements are equivalent:

(1) a is perspective;

(2) For all x ∈ f R f , there exists y ∈ f Rf such that ψ(x, y) ∈ U (f Rf );

(3) For all y ∈ f Rf , there exists x ∈ f R f such that ψ(x, y) ∈ U (f Rf ).

In Corollary 23.2.1, we characterize perspectivity of a unit-regular element in terms of a specific unit inner inverse. In the following corollary, we instead allow the unit inner inverse to vary, which gives more freedom choosing an x such that φ(y, x) is a unit (in a corner ring). Bys solving such equations, we were able to prove that regular elements squaring to 0 are perspective (they were previously known to be special clean by [ ). Let a ∈ ureg(R) with unit inner inverse v -1 and let f = av -1 . Under any of the following conditions, a is perspective:

(1) sr( f R f ) = 1;

(2) sr(f Rf ) = 1;

(3) f Rf R f ∈ J(R). For instance, the matrix A = 2 3 0 0 is unit-regular and clean in M 2 (Z) hence special clean in M 2 (Z), but not perspective.

Chapter 24

Generalized inverses, chains of idempotents and n/2-perspectivity Behind all the properties studied in the previous sections of the present part lie at some points questions about cancellation of modules: either the exchange property, internal cancellation, or perspectivity of direct summands. Regarding this last property, I proved that it relates to chains of associate idempotents in [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF] and [141]. Independently, D. Khuruna, T.Y. Lam and P. Nielsen observed the same relationship [112] * , [115] * , [116] * . This led to a fruitful collaboration with D. Khuruna and P. Nielsen [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF], [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF]. In the sequel I will present the relation between chains of idempotents and other diverse concepts such as Bass's stable range one condition, quasi-continuous modules, special clean elements, strongly IC rings, (generalizations of) perspectivity or bounded generation of SL2 by elementary matrices. But before presenting these results we need as usual some definitions. In the sequel, R will be a unital ring (with in mind R = End(M ), the endomorphism ring of a module M ).

24.1 ) Some old definitions, and some new ones We call the number n the length of the chain. Right n-chains are defined dually. When n is small, such as n = 2 or n = 3, we will write e ∼ ℓr f , respectively e ∼ ℓrℓ f , and more generally, we will write e ∼ (ℓr) p f (resp. e ∼ (ℓr) p ℓ f or e ∼ ℓ(rℓ) p f ) to denote that e and f are connected by a left chain of length 2p (resp. 2p + 1). We define right n-chains dually and write e ≈ f to denote that e and f are connected by some (left or right) association chain. Relation ≈ is nothing but the transitive closure of the union of ∼ ℓ and ∼ r (and as such an equivalence relation).

Let n ∈ N. Following [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF] and [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF], and using the terminology of [116] * , we define the following properties:

(1) R is (strongly) n-chained if any two isomorphic idempotents are connected by both a left and a right n-chain (equivalently, by considering the complementary idempotents, any two isomorphic idempotents are connected by a left (equiv. right) association chain of length n only). In this case we also say that R satisfies P(n);

(2) R satisfies D(n) if any two conjugate idempotents are connected by a left and a right (equiv. only a left) association chain of length n;

(3) R satisfies P(n) (resp. D(n)) weakly (or is weakly n-chained ) if any two isomorphic (resp. conjugate) idempotents are connected by either a left and a right association chain of length n.

(observe that P(n) makes sense in any semigroup or general ring; to insist on its multiplicative form, we will sometimes apply the property to MR = (R, .), the monoid part of the ring R).

In [140], we use the strong and weak terminology element-wise: e and f are weakly (resp. strongly) n-chained if they are connected by either a left or a right (resp. both a left and a right) n-chain, and we note e ∼ w n f (resp. e ∼ s n f ) if they are weakly (resp. strongly) n-chained.

Chained and anti-chained regular elements

In [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], we use association chains to refine the notion of regularity as follows. We say that a ∈ R is n-chained regular if it is regular and for all b ∈ V (a), ab and ba are right n-chained. It is n-anti-chained regular if it is regular and for all b ∈ V (a) , ab and ba are left n-chained.

Extensions of perspectivity

We finally consider the notion of perspectivity and some extensions. Perspectivity is Proposition 24.6.3 ([69, Theorem 4.2] * , [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]Proposition 4.19], [141, Theorem 3.4] and [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF]Corollary 3.11]). Let M be a module, R = End(M = and MR = (R, .). Then M is perspective iff R R is perspective (R is perspective) iff regular elements of R are perspective iff the monoid MR satisfies P(3) iff it satisfies P(3) weakly.

We now give some further results regarding perspective elements. First, strongly regular elements (in particular, idempotents and units) are perspective in any ring [141, Lemma 3.6]. I also proved [141, Corollary 3.10] that perspective elements are uniquely special clean iff V (a) is a singleton iff a is strongly regular and aa # is central. And finally, I relate perspective elements to a certain "stable range" property. Indeed, it is known [110, Theorem 3.5] * that a regular element of a ring has left (equiv. right) stable range one iff it is unit-regular. In rings with stable range one (in particular unit-regular rings) regular elements have right and left idempotent stable range one, where a ∈ R has right idempotent stable range one if for all b ∈ R, ax + by ∈ U(R) for some x, y ∈ R implies that a + be ∈ U(R) for some e ∈ E(R). We prove that perspective elements are precisely regular elements with outer inverse right stable range 1, where a ∈ R has outer inverse right stable range one if aR + bR = R for some b ∈ R implies that a + bx ∈ U (R) for some outer inverse x ∈ R of b. By left right-symmetry of perspective elements, outer inverse stable range one is a left-right symmetric notion for regular elements, that is the following statements are equivalent for any a ∈ reg(R): Recall that by definition, a module M is 3/2-perspective if for any two isomorphic direct summand A, A ′ ⊆ ⊕ M , any complementary summand of A is perspective to some complementary summand of A ′ . Collecting all our knowledge regarding the various characterizations of special clean elements, we obtain Proposition 24.7.1. The equivalences reg(R) = sp. cl(R) ⇐⇒ MR satisfies P(4) and ( 1) ⇐⇒ (4) therein were also obtained independently by D. Khuruna and P.P. Nielsen [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF]Proposition 3.19 and Theorem 4.1] * , where kernel 3/2-perspective endomorphisms are termed pc-regular (and they say that im(a) and ker(a) are perspective in complement).

Proposition 24.7.1 ([139, Theorem 2.5], [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]Proposition 4.20]). Let M be a module, and a ∈ R = End(M ). Let also MR = (R, .). Then the following statements are equivalent:

(1) a is image (equiv. kernel) 3/2-perspective;

(2) a is 4-chained regular;

(3) aR and bR are perspective, for some b ∈ V (a); (4) a has a completely regular reflexive inverse (as an element of MR);

(5) a is special clean (as an element of the ring R). Also M is 3/2-perspective iff R R is 3/2-perspective iff reg(R) = V (R # ) = sp. cl(R) iff MR satisfies P(4).

In connection with this proposition, let me mention some close results where the authors consider conjugate rather than isomorphic idempotents, or equivalently unit-regular rather than regular elements. By [115, 

) More equations for chains, and consequences

The following criterion characterizes when isomorphic idempotents are association chained. It has a nice interpretation in the corresponding Peirce decomposition. and AB = 1 0 0 0 , a 1 = 1 + X and a 2 = X 2 . We compute the Euclidean algorithm: a 2 = X 2 = Xa 1 -X and a 1 = 1 + X = (-1)(-X) + 1. Thus 1 = a 1 + 1(-X) = a 1 +1(-Xa 1 +a 2 ). Thus a 1 +(a 1 z 2 +a 2 )z 1 = 1 ∈ U(F (X)) for z 1 = 1, z 2 = -1 ∈ F (X). It follows from Corollary 24.8.2 that A is special clean.

More generally, if i is odd (resp. even), then in Peirce matrix form 1 + z i = 1 0 z i 0 (resp. 1 + z i = 1 z i 1 0 . This also allows to identify association chains with certain (standard) division chains, and thus to relate some of our results to number theory. The non-commutative case needs some additional work, but in the commutative case division chains arise as in the classical Euclidean algorithm illustrated above. The general theory is presented in [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF].

Recall that given a ring S, a pair (a, b) ∈ S 2 is right unimodular if aS + bS = S. Left unimodular pairs are defined dually, and the definition extends to n-uples in a straightforward manner. (2) perspectivity is transitive;

(3) R is not a perspective ring.

From Corollary 24.8.5 ([117, Corollary 3.5]) we also know that S = M 2 (T ) satisfies P(5), and P(4) under GRH. A simple application of Theorem 24.8.1 and use of Dirichlet's theorem on primes in arithmetic progressions (as in [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF], but twice) prove that this is indeed the case. And the same matrices as in [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF] prove that S does not satisfies P(3). Also, the right S module S S is not quasi-continuous.

24.8.4 ) Bounded generation of SL 2 (S), and length of associations chains

The generation of SL 2 (S) by (products of) elementary matrices is a long-standing question in ring theory, as is the search of universal bounds for the size of the products.

It is known that any universal bound on the lengths of division chains, for unimodular pairs over a commutative ring S, gives a bound on the number of elementary matrices needed to generate SL 2 (S). Indeed, by [102, Theorem 3.6] * the latter bound is at most 4 greater. On the other hand, we have seen that for S a projective-free ring, the division chains have ordered termination length at most n + 1 iff R satisfies P(n + 2). Thus for a commutative ring S a universal bound on association chains gives a universal bound on the number of elementary matrices needed to generate SL2(S) (at most 3 greater).

It is also well known that if S has n in its stable range (every (right) unimodular row of size n + 1 is reducible), and m ≫ n, then SL m (S) is generated by a bounded number of elementary matrices.

Next theorem proves that if S has n ≥ 2 in its stable range, most matrix rings over S satisfy P(4).

Theorem 24.8.14 [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF]Theorem 4.3]). Let n ≥ 2 be an integer, and assume that S is a projective-free ring with n in its stable range. If m ≥ 4n -5, then R = M m (S) satisfies P(4). If S does not have 1 in its stable range, then P(3) fails (i.e., R is not a perspective ring).

As 

Conclusion, open problems and future work

In this chapter, we have seen that, as is the case for semigroups, generalized inverses and idempotents are of great use to study ring elements and special classes of rings (even properties involving the sum operation). And that in many cases, this allows to work with non-unital rings. On the other hand, thanks to some new tool brought by unital ring theory (Peirce decomposition, use of modules, creation of units,...), we are able to push further the study and prove new results.

While some questions were solved in this chapter, many new questions emerged. Below are some lines of future research:

(1) the characterization of clean elements by Bott-Duffin inverses, and the study of Jacobson's lemma for outer inverses suggest a further study of a new class of elements: those a ∈ R such that a is invertible along e and 1 -a is invertible along 1 -e for some idempotent e. We have seen that they form a proper subset of the clean elements, that contains the strongly clean elements and the strongly regular elements. Second, for a given a ∈ R in this class, among the possible idempotents bicommuting with a, is there a maximal one M ? The inverse a -M would then be a binatural inverse of a, whose properties are worth to study. The class of such binaturally invertible a is quite large: any group or (generalized) Drazin invertible elements is binaturally invertible;

(2) we have seen that group-regular general rings act as a good replacement for unitregular (unital) rings. And as is well-known unit-regular rings have stable range one, hence are perspective and special clean. Also, we have seen that all these three properties having non-unital analogs (the last two by using chains of idempotents). But group-regular general rings may not have stable range one. Thus it is an open question whether group-regular general rings are 3-chained (a replacement for perspectivity), or 4-chained (equiv. all elements have a group-invertible reflexive inverse, a replacement for special cleanness). These questions may be very challenging, for the following two reasons: first, we cannot use consider a general ring R as the endomorphism ring of some module, and therefore cannot use perspectivity of submodules. Second, our studies of chains of idempotents make great use of complementary idempotents (in particular through Peirce decompositions);
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Theorem 1 . 1 . 1 ([ 166 ,

 111166 Theorem 3] * ). Let a, b ∈ S. Then ab ∈ R a ∩ L b iff L a ∩ R b contains an idempotent. If this be the case thenaH b = H a b = H a H b = H ab = R a ∩ L b .

  summands of M are perspective. Perspectivity is actually a more general notion and can be defined in any complemented lattice. Its use in module theory traces back to J. Von Neumann in the 40's (he worked on the modular lattice of principal ideals of a regular ring). It has then been reconsidered in the 60's and 70's by L. Fuchs [68] * and D. Handelman [82] * , in link with cancellation and substitution properties. The study of perspective modules in full generality is much more recent, and due to Garg et al. in 2014 [69] * . Apparently, these notions are far from the considerations of the previous section, that dealt with regularity and generalized inverses. Next result, which appears in [141], explicits the link between complementary summands and reflexive inverses. It is a variation on the following (folklore) result: direct sum decompositions A ⊕ A ′ = M are in bijective correspondence with idempotents of R = End(M ), where the idempotent is the projection on A parallel to A ′ . Lemma 1.2.1 ([141]). Let A in M be a direct summand. Then A = aM for some regular element a ∈ R = End(M ). Moreover, any complementary summand of A = aM is of the form (1 -ab)M = r M (b) for some b ∈ V (a) (where r M (b) = {x ∈ M |bx = 0} is the right annihilator of b).

( 5 )

 5 Every principal left ideal of MR is generated by a central idempotent; (6) MR is completely regular and inverse; (7) MR is regular and idempotents are central; (8) MR is a semilattice of groups; (9) (∀φ ∈ End(M )), ran(φ) ⊕ ker(φ) = M ; (10) R = End(M ) is regular and direct summands of R are uniquely complemented; (11) R = End(M ) is regular and direct summands of R are fully invariant (if N is a direct summand, then φ(N ) ⊆ N (∀φ ∈ End(M ))).

13 3. 1 )

 131 Definition and characterizations Lemma 3.1.1 ([146, Lemma 3 and Theorem 6]). Let a, b, d ∈ S. Then the following statements are equivalent: 1. bad = d = dab and b ≤ H d. 2. bab = b and bHd. Moreover, if such a b exists, it is unique. Definition 3.1.2 ([146, Definition 4]). Let S be a semigroup and a, d ∈ S. We say that b ∈ S is the inverse of a along d, denoted by a -d (or a ∥d ) if it satisfies one of the equivalent statements of Lemma 3.1.1. If it satisfies additionally that aba = a then it is the inner inverse of a along d.

Theorem 3 . 2 . 1 (

 321 [START_REF] Mary | On generalized inverses and Green's relations[END_REF] Lemma 3 and Theorems 6,7],[158, Theorem 2.2 and Corollary 2.5], [11, Theorem 8.4] * ). Let S be a semigroup and a, d ∈ S. Then the following statements are equivalent: (1) bab = b for some b ∈ H d (a is invertible along d); (2) bad = d = dab for some b ≤ H d; (3) ad L d and H ad is a group; (4) da R d and H da is a group; (5) dad H d; (6) H d aH d = H d . In this case, a -d = b = d(ad) # = (da) # d = d(dad) -d for any dad -∈ I(dad).

  [217] * ; The equality H d aH d = H d claims that G = H d is a maximal subgroup of the variant semigroup S a = (S, . a ) with multiplication x. a y = xay. Conversely, we can prove that any maximal subgroup G of S a is of the form H d , for some d such that a is invertible along d (and the identity of G is a -d ). By [103, Theorem 3] * , the inverse along an element can also be characterized as an outer inverse with prescribed idempotents (in the following sense): b = a -d iff b ∈ W (a) and ab = td, ba = dt for some t ∈ I(d).

Theorem 3 . 2 . 2 ([ 146 ,

 322146 Corollary 9]). Let S be a semigroup and a, d ∈ S. Then the following statements are equivalent: (1) a is invertible along d and a -d ∈ V (a) (equiv. a -d ∈ I(a)); (2) a is invertible along d and d is invertible along a; (3) ad and da are trace products (ad ∈ R a ∩ L d and da ∈ R d ∩ L a ).

  223] * : an element a ∈ S is left invertible along d ∈ S if bad = d, b ≤ L d for some b ∈ S (called a left inverse along d and denote by a -d l ) and dually for right invertibility along d. Left and right inverses along d need not be unique. With H. Zhu, J. Chen and P. Patricio, we proved the following result, that generalizes the case of left and right genuine inverses. Proposition 3.3.1 ([225, Proposition 2.3]). Let S be a semigroup and let a, d ∈ S be such that a ∈ S is left and right invertible along d ∈ S. Then a is invertible along d. Moreover any left and right inverses of a along d a -d l and a -d r satisfy a -d l = a -d = a -d r .

[ 22 ] 4 Inverses along specific elements in semigroups 4 . 1 )

 22441 * , Burgos et al. study linear preservers of inverses along an element (linear maps ϕ such that a invertible along d implies φ(a) invertible along d). Linear preservers problems are traditionally studied for the genuine inverse, the group inverse or the Drazin inverse (or the whole set of inner or outer inverses).Chapter Recovering classical inversesLet S be a semigroup. We already recalled the definition of the group inverse of a ∈ S, as the unique solution (if it exists) to the three equations axa = a, xax = x and ax = xa. In the first part, we also defined the Drazin inverse and the Moore-Penrose inverse. Let us recall these two fundamental notions. To study non-regular elements of S, Drazin[50] * introduced another commuting generalized inverse, which is not inner in general. An element a ∈ S is Drazin invertible if the set of equations 1. ax = xa; 2. a m = a m+1 x; 3. x = x 2 a. admit a solution b ∈ S for some m ∈ N. The solution is unique if it exists usually denoted by a D .Finally, when S is a endowed with an involution * that makes it an involutive semigroup (or * -semigroup), i.e. the involution satisfies (a * ) * = a and (ab) * = b * a * , Moore[173] * and Penrose[189] * studied reflexive inverses x of a with the additional property that (ax) * = ax and (xa) * = xa. Once again this inverse, if it exists, is unique. It is usually called the Moore-Penrose inverse (or pseudo-inverse) of a and denoted by a † . As proved in[START_REF] Mary | On generalized inverses and Green's relations[END_REF], these classical generalized inverses are actually inverses along a specific element.

Theorem 4 . 1 . 1 ([ 146 ,

 411146 Theorem 11]). Let S be a semigroup (resp. a monoid in (1), resp. a * -semigroup in (4)) and a ∈ S.

  Chen, P. Patrício and myself study the relation between a -d , a -σ(d) and (σ(a)) -d , and observe that when σ is a bijective centralizer, then σ(d)Hd. Thus [225, Proposition 3.5], a is invertible along d iff it is invertible along σ(d), and a -d = a -σ(d) (for the inverse along an element depends only on its H-class). Still [225, Proposition 3.5], this is also equivalent with σ(a) being invertible along d, in which case (σ(a)) -d = σ -1 a -d . Some additional results in the ring case are presented in Section 7.1. Similar results were obtained by Xu et al. for (b, c)-inverses in [219] * .

[ 224 ]

 224 * , and let a, b, d ∈ S such that a, b and ab are invertible along d with (ab) -d = b -d a -d . Let also H = H d . Then H 2 ∩ H ̸ = ∅ hence by Green's theorem H is a group. Working in the group H = H e , e ∈ E(S), group of units of the local submonoid eSe and passing to the inverse in the above equation we obtain that (ab) -e = b -e a -e iff eabe = eae.ebe = eaebe. We just proved the following.

Lemma 4 . 3 . 2 (

 432 unpublished). Let S be a semigroup and a, b, d ∈ S such that a, b are invertible along d. Then the following statements are equivalent: (1) ab is invertible along d and (ab) -d = b -d a -d ;

  a) = {e ∈ E(S)|e ∈ aS ∩ Sa}. Obviously Σ 0 (a) = Σ # (a) and by Theorem 3.2.1, e ∈ Σ # (a) iff a is invertible along e.By[START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] Lemma 3] and[START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF] Lemma 3.4] 

Theorem 4 . 3 . 3 ([ 147 ,

 433147 Theorem 3], [151, Lemma 3.1], [151, Corollary 3.1]). Function τ restricts to: (1) a bijection τ R a from R # (a) onto Σ R (a); (2) a bijection τ L a from L # (a) onto Σ L (a); (3) an isomorphism τ 0 a of posets from (W 0 (a), ≤ a ) onto (Σ 0 (a), ≤); (4) an isomorphism τ 1 a of posets from (W 1 (a), ≤ a ) onto (Σ 1 (a), ≤); (5) an isomorphism τ 2 a of of semilattices from (W 2 (a), . a ) onto (Σ 2 (a), .). Their reciprocal associate e to a -e . Also, τ R a (x) = xx # = ax, τ L a (x) = xx # = xa and τ 1 a (x) = xx # = ax = xa.

Lemma 4 . 3 . 7 ([ 151 ,

 437151 Lemma 2.1]). Function ϕ b,a maps R(ab) on R(ba) and R(ab) ∩ S # on R(ba) ∩ S # .

Corollary 4 . 3 . 8 ([ 151 ,

 438151 Corollaries 3.2 and 3.3]). If e ∈ Σ R (ab) then f = b(ab) -e a ∈ Σ R (ba) with (ba) -f = b (ab) -e 2 a a(ba) -f = (ab) -e a af = ea The idempotents e and f of Corollary 4.3.8 are isomorphic as with the previous notations, e = a (b(ab) -e ) and f = (b(ab) -e ) a.

Figure 4 .

 4 Figure 4.1 illustrates Corollary 4.3.10 with commutative diagrams for u = ab and v = ba. Each map is an isomorphism of the respective structures (j = 1, 2).

Figure 4 . 1 :

 41 Figure 4.1: Isomorphims of Corollary 4.3.10

Corollary 4 . 3 . 11 .

 4311 Let e ∈ Σ j (ab), j = 1, 2. Then f = b(ab) -e a ∈ Σ j (ba) with (ba) -f = b (ab) -e 2 a a(ba) -f = (ab) -e a af = ea Second, assume that ab is Drazin invertible with index n ∈ N. Then by Theorem 4.3.6, (ab) D is the natural inverse of ab, that is (ab) D = (ab) -M with M greatest element of Σ 2 (ab). Thus f = b(ab) -M a = b(ab) D a is the greatest element of Σ 2 (ba), and (ba) is naturally invertible with natural inverse y = b (ab) D 2 a. By definition it (bi)commutes with ba, is an outer inverse and finally y(ba) n+2 = b (ab) D 2 a(ba) n+2 = b (ab) D (ab) n+1 a = b(ab) n a = (ba) n+1 . Thus ba is Drazin invertible with Drazin inverse b (ab) D 2 a.

5. 1 )

 1 The (b, c)-inverse vs. the inverse along an element About the same time of the appearance of the inverse along an element in[START_REF] Mary | On generalized inverses and Green's relations[END_REF], M. P. Drazin defined[51] * the (b, c)-inverse, that can be seen as an extension of the Bott-Duffin (e, f )-inverse (which is recovered by letting b = e and c = f be idempotents), and that generalizes the classical generalized inverses (group inverse, Moore-Penrose inverse, Drazin inverse). Definition 5.1.1 ([51] * ). Let S be a semigroup and a, b, c, x ∈ S. Then x is a (b, c)inverse of a if (1) x ∈ (bSx) ∩ (xSc); (2) xab = b, cax = c.

Theorem 5 . 1 . 2 ([ 154 ,

 512154 Theorem 2.4]). Let S be a semigroup. (1) Let a, b, c, x ∈ S. If a is (b, c)-invertible with inverse x, then bDc and for all d ∈ R b ∩ L c , a is invertible along d with inverse x. (2) Let a, d ∈ S. If a is invertible along d, then for all b ∈ R d and c ∈ L d , a is (b, c)-invertible and a -(b,c) = a -d . (3) In particular, if a, d ∈ S are such that a is invertible along d, then e = a -d a and f = aa -d are idempotents such that e ≤ R d and f ≤ L d. But also ed = d and df = f by definition of the inverse along d, and e ∈ R d , f ∈ L d . Finally a is Bott-Duffin (e, f )-invertible and a -(e,f ) = a -d by (2).

  -d = d(dad) -d due to [11, Theorem 8.4] * . Let b, c such that d ∈ R b ∩ L c , d = bx = yc for some x, y ∈ S 1 . Then by cancellation properties, as dad(dad) -(dad) = dad then cad(dad) -dab = cab = cab (x(dad) -y) cab and (cab) -= (x(dad) -y) is an inner inverse of cab. Finally a -(b,c) = a -d = d(dad) -d = b x(dad) -y c = b(cab) -c.

CHAPTER 5 .

 5 CATEGORIES, INVERSES AND ROLS Theorem 5.2.1 (unpublished). Let S be a semigroup, a, b ∈ S and z ∈ S 1 . Let also c ∈ L a ∩ R b . Then the following statements are equivalent: (1) azb ∈ R a ∩ L b ; (2) czcHc; (3) azcHa; (3 ′ ) czbHb; (4) azRa and L az ∩ R b contains an idempotent; (4 ′ ) zbLb and L a ∩ R zb contains an idempotent. Proof. Exchanging the roles of a and b, (1) and (2) are self-dual whereas (3) and (3 ′ ) (resp. (4) and (4 ′ )) are dual statements. We prove that (1) ⇒ (2) ⇔ (3) and that (2) ⇒ (4) ⇒ (1). As c ∈ L a ∩ R b then c = xa = by and a = uc, b = cv for some x, y, u, v ∈ S 1 .

( 4 ) ⇒ ( 1 )

 41 Assume that azRa and (L az ∩ R b ) contains an idempotent e. As azLe and eRb then aze = e and eb = b. It follows that azbLeb = b by right congruence and az = azeRazb by left congruence. Finally aRazbLb.

  Costa and B. Steinberg in [43] * . It has for objects the elements of S, and morphisms are triples f = (a, x, b) with x ∈ aS 1 ∩ S 1 b. The domain of f is a, its codomain is b and we use the notation f = a x -→ b. If x = au = vb and g = (b, y, c) = b y -→ c is a morphism with y = bw = rc, then the composition is g • f = a x -→ b y -→ c = a vy=xw -→ c. Among all the morphisms from b to c are the trivial morphims, of the form f = c x=bac -→ c. Next theorem claims that the (b, c)-inverses "are" the inverses of the trivial isomorphisms from b to c (hence the inverses along d are the inverses of the trivial isomorphisms in Hom(d, d)). Theorem 5.3.1 ([154, Theorem 2.7]). Let S be a semigroup and a, b, c ∈ S. Then a is (b

CHAPTER 6 .

 6 OUTER INVERSES AND PARTIAL ORDERS Definition 6.2.1 ([78, Definitions 3.5 and 3.6]). Let Θ be a multi-valued function with values Θ(s) ⊆ W (s), for all s ∈ S. For any a, b ∈ S: (1) a < Θ N b if there exists x ∈ Θ(b) such that a = axa = axb = bxa; (2) aΓ Θ b if there exist x ∈ Θ(b) such that a = axb = bya and b{1} ⊆ a{1} (3) If b is not regular, then aΓ Θ l b (resp. aΓ Θ r b, aΓ Θ P b) if there exists x ∈ Θ(b) such that a = axb (resp. there exists y ∈ Θ(b) such that a = bya, there exist x ∈ Θ(b) such that a = axb = bxa); (4) If b is regular, then aΓ Θ l b (resp. aΓ Θ r b, aΓ Θ P b) if there exist x, y ∈ Θ(b), such that a = axa = axb = bya (resp. there exist x, y ∈ Θ(b), such that a = aya = axb = bya, there exists x ∈ Θ(b), such that a = axa = axb = bxa).

  bicommutant (or double centralizer) of s; ∆ * : s → {x ∈ S|sx = (sx) * and xs = (xs) * } (in any * -semigroup). Proposition 6.3.3 ([78, Corollaries 3.26 and 3.32 and Propositions 3.29 and 3.35]).

Theorem 7 . 1 . 1 ([ 158 ,

 711158 Theorem 3.2]). Let a, d ∈ R with d regular and let d ′ be any inner (equiv. reflexive) inverse of d. Then the following statements are equivalent:

Corollary 7 . 1 . 3 (

 713 [START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] Corollary 2]). Let a ∈ R and e ∈ E(R). Then the following statements are equivalent:(1) a is invertible along e;

Theorem 7 . 1 . 4 ([ 225 ,

 714225 Theorem 3.7]). Let a, d ∈ R with d regular and let d ′ be any inner (equiv. reflexive) inverse of d. Let also σ : R → R be a bijective centralizer. Then the following statements are equivalent:(1) a is invertible along d

Theorem 7 . 2 . 1 (0 b d and D = d 1 0 d 2 d 3

 7213 [START_REF] Mary | The inverse along a lower triangular matrix[END_REF] Theorem 2.2]). Suppose that R is Dedekind-finite and let A = a be two matrices in M 2 (R). Then A -D exists iff a -d 1 and d -d 3 exist and (1 -

Corollary 7 . 2 . 2 (= a 0 b d , D = d 1 0 d 2 d 3

 7223 [START_REF] Mary | The inverse along a lower triangular matrix[END_REF] Corollary 3.2]). Let A with D, d 1 , d 3 regular, and suppose a ∥d 1 exists. Then A -D exists iff d ∥d 3 exists and (1 -

Theorem 7 .

 7 3.1 ([147, Theorem 6]). Let a ∈ R. Then the following are equivalent: 1. a is naturally invertible with inverse a -M ; 2. There exists b ∈ {a} ′′ such that bab = b and Σ 2 (a -aba) = {0}; 3. a = x + y for some x, y ∈ R such that x ∈ {a} ′′ , x # exists, xy = 0(= yx) and Σ 2 (y) = {0}. In this case, a -M = b = x # .

- 1 ;

 1 An element a ∈ R is generalized Drazin invertible (resp. quasi-generalized Drazin invertible) if there exists b in {a} ′′ such that bab = b and a 2 b -a is quasinilpotent (resp. quasi-quasinilpotent). It was proved by J. Koliha and P. Patricio ([121, Theorem 4.2] * ) that quasipolar elements are exactly the generalized Drazin invertible elements (also called Koliha-Drazin invertible elements).

-

  Jacobson's lemma in unital rings -Corollary 7.4.2 ([151, Corollary 4.5]). Let e ∈ Σ j (ab)∩(1-Σ j (1-ab)), j = 1, 2. Then f = b(ab) -e a ∈ Σ j (ba)∩(1-Σ j (1-ba)) and

  2 y -(1 -ba) is quasinilpotent. This is done in [151, Example 4.3] and we recover Zhuang formula [229, Theorem 2.3] * (x gD denotes the generalized Drazin inverse of x ∈ R).

(

  

  a), ... we then mean the previous notions for the circle operation. If e • a • e is invertible in e • ℜ • e, then we will denote by a ⊖e this inverse, a ⊖e • (e • a • e) = e = (e • a • e) • a ⊖e (in unital rings, it then holds that 1 -a ⊖e = (1 -a) -(1-e) ).

  ba) and (ba) ⊖f = b(ab) ⊖e a -ba • f. -Jacobson's lemma in general rings -Theorem 7.4.4 ([151, Theorem 4.2]). Let e ∈ Σ j (ab) ∩ Σ • j (ab), j = 1, 2. Then f = b(ab) -e a ∈ Σ j (ba) ∩ Σ • j (ba) and (ba) ⊖f = b (ab) ⊖e a -ba • b (ab) -e a = b(ab) ⊖e a -ba + b(ab) -e a.

Proposition 7 .

 7 5.1 ([225, Proposition 2.2]). Let a, b, d ∈ R such that a is left invertible along d and b is right invertible along d. Let also a -d l (resp. b -d r ) be any left inverse of a (resp. right inverse of b) along d. Then

Corollary 7 .

 7 5.2 ([225, Theorem 2.7]). Let σ : R → R be a bijective centralizer and let a, b, d ∈ R be such that a is invertible along σ(d) and b is invertible along d. Then

Corollary 7 .

 7 5.3 ([225, Corollary 2.9]). Let σ : R → R be a bijective centralizer and let a, b ∈ R.

Proof.

  Let b ′ be such that ab ′ = e and let b = b ′ ab ′ . As aRe then ea = ab ′ a = a, so that b ′ ∈ I(a) and b ∈ V (a) with ab = e. Also, by Green's theorem a is group invertible iff a H a 2 , and eae ∈ U (eSe) iff eaeHe iff a 2 b H ab. So assume first that a H a 2 . By right congruence ab L a 2 b. And as a R a 2 = a 2 ba then a = a 2 bax for some x ∈ S 1 , so that ab = a 2 baxb and ab R a 2 b. Finally ab H a 2 b or equivalently, eae ∈ U(eSe). Conversely, assume that eae ∈ U(eSe). Then ab H a 2 b and by right congruence, a = aba L a 2 ba = a 2 . By left congruence, b = bab R ba 2 b. Thus b = ba 2 bx for some x ∈ S 1 , and a = aba = aba 2 bxa = a 2 xa, so that a R a 2 . Finally a H a 2 . Consequently, using Lemma 4.3.1, a is group invertible iff it is invertible along some e ∈ E(S) ∩ R a , in which case a # = (a -e ) 2 a and a -e = ea # e(= (ea) # e = e(ae) # ). Under the previous notations, letting f = ba be the isomorphic idempotent, we recover [156, Proposition 2.2] thanks to Theorem 2.1.1 (since a ∈ R e ∩ L f ): e = ab ∼ rℓ f = ba (equivalently, f e is a trace product by Theorem 1.1.1) iff eae = a 2 b ∈ U(eSe). This actually happens to be also equivalent to f af = ba 2 ∈ U(f Sf ), by duality arguments (exposed below). Proposition 8.1.2 (unpublished). Let S be a semigroup and (a, b) be a regular pair. Let also e = ab, f = ba. Then e = ab ∼ rℓ

  a, b) is a regular pair with ab = e, ba = f . (1) ⇒ (2) Assume that f ze ∈ R f ∩L e .Then baze R ba and by left congruence eaze = abaze R aba = a R e. Second, as f ze = baze L e then eaze = aze L e. Finally eaze H e.

( 2 )

 2 ⇒ (1) Assume that eaze H e. As ea = a = af then af ze = aze L e and f ze L e. Second, as aze = eaze R e then by left congruence baze R bab = b R f .

  t) and ab -G z and G ab -are 51 CHAPTER 9. THE GROUP INVERSE OF A PRODUCT IN RINGS isomorphic via the isomorphism ϕ : z k → az k-1 b). This gives the formula (∀n ∈ Z) (ab) n+1 = az n b = at n b.

  giving the existence criterion. Then we compute the inverse of G, and finally obtain the (1,1)-entry of M # . Theorem 10.1.3 ([149, Theorem 2.4]). Let S be a semigroup and a, b ∈ S be group elements. Let a 0 = aa # , b 0 = bb # . Then the following statements are equivalent: (1) ab and ba are group invertible with (ab) # = b # a # , (ba) # = a # b # ; (2) abHba;(3) (∃x, y ∈ S 1 ) ab = bxa and ba = ayb (ab ∈ bS 1 a and ba ∈ aS 1 b);(4) ab ∈ L ≤a ∩ R ≤b and ba ∈ L ≤b ∩ R ≤a ; (5) ab, ba ∈ H ≤a ∩ H ≤b ; (6) a 0 ∈ {b} ′ and b 0 ∈ {a} ′ ; (7) a 0 , b 0 ∈ {a, a # , a 0 , b, b # , b 0 } ′ ; (8) The subsemigroup C of S generated by {a, a # , b, b # } is a Clifford semigroup.A global version of this element-wise theorem follows. Theorem 10.1.4 ([149, Theorem 2.7]). Let S be semigroup. Then the following statements are equivalent: (1) S is completely regular and (∀a, b ∈ S) (ab) # = b # a # ; (2) S is regular and (∀a, b ∈ S) abHba; (3) S is regular and (∀a, b ∈ S) ab ∈ L ≤a ∩ R ≤b ; (4) S is a Clifford semigroup.10.2 ) The one-sided ROL under finiteness conditions [149, Example 3.1] (in semigroups) and [149, Example 3.9] (in rings) show that in general, the one-sided ROL does not imply the two-sided one (equiv. abHba). However, I was able to prove that this is the case under local [149, Theorem 3.3] or global finiteness conditions [149, Theorem 3.10], [149, Theorem 3.16]. These conditions are: (1) Drazin index i(ba) ≤ 1; that is ba is group invertible [149, Theorem 3.3]; (2) Minimal condition on principal left ideals M L : every set of principal left (resp. right) ideals of S contains a minimal member with respect to inclusion; (3) Left stability: S is left stable if (∀a, b ∈ S) ab J b ⇒ ab L b [149, Theorem 3.10]; (4) Dedekind-finiteness for rings (ab = 1 ⇒ ba = 1) [149, Theorem 3.16].

  my work, I proposed the following definitions. Recall (Chapter 6) that for any two elements a, b ∈ S, a ≤ b iff a = xb = by, xa = a for some x, y ∈ S 1 , and that for regular elements this is equivalent to a = eb = bf for some e, f ∈ E(S). Definition 11.1.1 ([150, Definition 6.1]). Let S be a semigroup, T a subset of S. An element a ∈ S is T -regular (resp. T -dominated ) if it admits an inner inverse (resp. a majorant for the natural partial order) x ∈ T . S is T -regular (resp. T -dominated) if each element is T -regular (resp. T -dominated).

( 1 )

 1 ⇒ (2) Let a ∈ R have a unit-regular inner inverse b, with bu -1 b = b for some u ∈ U(R). Then au = (ab)(u -1 bau) with ab, ba ∈ E(R). By similarity, u -1 bau is also idempotent, and au is a product of idempotents. But au is regular (with inner inverse u -1 b). Let e = (u -1 bau)(u -1 b)(ab) = u -1 bab. As aue = ab then aueau = au (e ∈ I(au)) and e 2 = u -1 babu -1 bab = u -1 bab = e so that e ∈ E(R).

  ) aR ⊕ ēR = R and Ra ⊕ Rē = R; (4) aR ⊕ ēR = R and bR ⊕ ēR = R, for some b ∈ V (a);(5) u = a -ē ∈ U (R) and a = au -1 a; (6) u = a -ē ∈ U (R), z = u -1 au -1 ∈ V (a) ∩ R # (zis a reflexive inverse of a which is strongly regular) and zz # = e; (7) aza = a, zaz = z and zz # = e for some z ∈ R # .Observe that the equivalence (1) ⇐⇒ (3) (for instance) proves the left-right symmetry of the concept of special clean element. While direct sums of right modules have been extensively studied, mixed-type decompositions (involving both right and left modules) have attracted less attention. Condition (3) claims that the direct sums conditions in (2) and (2 ′ ) together actually imply invertibility of u (hence that a is special clean). The equivalence (1) ⇐⇒ (4) claims that a is special clean iff aR and bR are perspective (share a common complementary summand) for some b ∈ V (a). The left-right symmetry, as well as the equivalences (1) ⇐⇒ (5) ⇐⇒ (7) were also proven independently by D. Khurana, T.Y. Lam, P.P. Nielsen and J. Šter about the same time [113, Theorem 2.13] * , and are now well-known and widely used.

  and P.P. Nielsen in [115, Theorem 3.13] * .In[141] I study a subclass of the class of special clean elements, which I call perspective elements. These perspective elements can also be characterized in terms of group invertible elements as follows: a ∈ R is (right) perspective iff a is regular and for all b ∈ V (a), there exists z ∈ V (a)∩R # such that zR = bR. Quite surprisingly, it happens that this notion is left-right symmetric as well [141,Theorem 3.4].

Lemma 13 . 2 . 1 ([ 147 ,

 1321147 Lemma 4]). Let a ∈ S and e ∈ E(S). Then a is invertible along e iff eae is a unit in the local submonoid eSe, in which case a -e = e(ae) # = (ea) # e = (eae) # = (eae) -1[eSe] .In particular, if a and b are invertible along e ∈ E(S) then b -e a -e = (aeb) -e ([224, Corollary 2.21] * or [154, Theorem 3.9 (v)]).

Σ 2 (

 2 a) = {a} ′′ ∩ Σ # (a). By Theorem 13.1.1, e ∈ Σ # (a) iff a is invertible along e and by [147, Lemma 3] Σ 1 (a) = {a} ′ ∩ Σ(a), Σ 2 (a) = {a} ′′ ∩ Σ(a).As any set of idempotents, all these sets are partially ordered by e ≤ f ⇐⇒ e = ef = f e. And more specifically, (Σ 2 (a), ≤) is a semilattice (commutative band) with e ∧ f = ef (product in S) by [147,Proposition 2] (that may thus also denote (Σ 2 (a), ∧) or (Σ 2 (a), .) to emphasize on the min operation rather than on the partial order).Recall that W (a) is the set of outer (or weak) inverses of a. We let W 1 (a) = {a} ′ ∩W (a), W 2 (a) = {a} ′′ ∩ W (a) and W # (a) = S # ∩ W (a).

  a ) with product x. a y = xay. Define function τ : S # -→ E(S) x -→ xx # . Theorem 13.2.2 ([147, Theorem 3], [151, Lemma 3.1], [151, Corollary 3.1]). Function τ restricts to: (1) an isomorphism τ # a of posets from (W # (a), ≤ a ) onto (Σ # (a), ≤); (2) an isomorphism τ 1 a of posets from (W 1 (a), ≤ a ) onto (Σ 1 (a), ≤); (3) an isomorphism τ 2 a of of semilattices from (W 2 (a), . a ) onto (Σ 2 (a), .). Their reciprocal associate e to a -e . Also τ j a (x) = xx # = ax = xa (j = 1, 2).

Theorem 13 . 2 . 3 ([ 151 ,

 1323151 Theorem 2.1 and Corollary 2.2]). Function ϕ b,a restricts to an isomorphism of posets j = 1 (resp. semilattices j = 2) from (W j (ab), ≤ ab ) onto (W j (ba), ≤ ba ), with reciprocal ϕ a,b .

Figure 4 . 1 illustratesFigure 13 . 1 :Corollary 13 . 2 . 5 .(

 411311325 Figure 4.1 illustrates Corollary 13.2.4 with commutative diagrams. Each map is an isomorphism of the respective structures (j = 1, 2).

Theorem 13 . 4 . 1

 1341 (unpublished). Let S be a semigroup, a, b ∈ S and z ∈ S 1 . Let also c ∈ L a ∩ R b . Then the following statements are equivalent: (1) azb ∈ R a ∩ L b ; (2) czcHc; (3) azcHa; (3 ′ ) czbHb; (4) azRa and L az ∩ R b contains an idempotent; (4 ′ ) zbLb and L a ∩ R zb contains an idempotent. Proof. Exchanging the roles of a and b, (1) and (2) are self-dual whereas (3) and (3 ′ ) (resp. (4) and (4 ′ )) are dual statements. We prove that (1) ⇒ (2) ⇔ (3) and that (2) ⇒ (4) ⇒ (1). As c ∈ L a ∩ R b then c = xa = by and a = uc, b = cv for some x, y, u, v ∈ S 1 .

) ⇒ ( 4 )( 4 ) ⇒ ( 1 )

 441 Assume that czcHc. Then by Theorem 13.1.1 (cz) # exists and czRcRb. As cLa by right congruence czLaz and H cz = L cz ∩R cz = L az ∩R b is a group (equivalently contains an idempotent). Finally as a = uc then by left congruence, az = uczRuc = a. Assume that azRa and (L az ∩ R b ) contains an idempotent e. As azLe and eRb then aze = e and eb = b. It follows that azbLeb = b by right congruence and az = azeRazb by left congruence. Finally aRazbLb.

e∈E(S) H e = S # . Lemma 14 . 1 . 4 ([ 148 ,

 1414148 Lemma 3.1]). Let S be a semigroup such that (∀a, b ∈ S) a, b ∈ H(S) ⇒ abHba. Then E(S) is commutative.

Figure 1 :

 1 Figure 1: Regular semigroups.

Figure 2 :

 2 Figure 2: Non-regular semigroups.

  = f and f ef = ef ⇒ ef = f. In a completely E-simple semigroup, each local submonoid eSe, e ∈ E coincide with the H E -class H E (e). Also, products are trace products (with respect to the extended Green's relations: (∀a, b ∈ S) ab ∈ R E (a) ∩ L E (b)) and H E is a congruence [150, Corollary 3.14]. And finally, there is a Rees matrix representation theorem [150, Corollary 3.16]. For regular semigroups we recover (quite unexpectedly) some results of Hickey on regularitypreserving elements [93, Theorems 5.2 and 5.5] * .

Proposition 15 . 3 . 1 ([ 150 ,

 1531150 Propositions 5.1 and 5.2]). Let S be an E-Clifford restriction semigroup. For any x ∈ S, let x + = e be the unique idempotent e ∈ E such that x H E e. Then (S, ., + ) is a left and right restriction semigroup such that its set of projection S + = E is a semilattice of central idempotents (in S); In particular, (S, ., + , + ) is a restriction semigroup. Conversely, any left (equiv. right) restriction semigroup such that its set of projection S + = E is a semilattice of central idempotents (in S) is an E-Clifford restriction semigroup with E = S + .

Theorem 15 . 3 . 2 ([ 150 ,

 1532150 Theorem 3.2, Propositions 5.1]).(1) S + A = V(1, 2, 3, 4) = V(5, 6, 7) = V(1, 2, 8, 9) is the variety of unary (S + , H S + )abundant semigroups; (2) CS + A = V(1, 2, 3, 4, 10, 11) = V(1, 2, 9, 12, 13) is the subvariety of unary completely (S + , H S + )-abundant semigroups; (3) S + CG = V(1, 2, 3, 4, 14) is the subvariety of unary completely (S + , H S + )-abundant, H S + -congruent semigroups (S + -cryptogroups); (4) CS + S = V(1, 2, 15, 16, 17, 18) = V(1, 2, 9, 15, 16) is the subvariety of unary completely S + -simple semigroups; (5) S + ClR = V(1, 19, 20) is the subvariety of S + -Clifford restriction semigroups. Moreover, CS + S ⊂ S + CG ⊂ CS + A ⊂ S + A, and S + ClR ⊂ S + CG.

Finally, by [ 150 ,

 150 Proposition 4.11] these semigroups can be partially ordered by (∀a, b ∈ S) aσb ⇐⇒ a = a + b = ba + .

16. 1 )

 1 Associate idempotents and n-chained semigroupsLet S be a semigroup and e, f ∈ E(S). Then e, f are left (resp right) associates if ef = e and f e = f (resp. ef = f, f e = e) and we write e ∼ ℓ f (resp. e ∼ r f ). This notion appears in the early fifties[40] * , and the preorders induced by left/right association of idempotents (eω ℓ f if ef = e and eω r f if f e = e) are notably a primitive notion regarding biordered sets ([60] * , [177] * , [178] * , [188] * ). Left (resp. right) association ∼ ℓ (resp. ∼ r ) was for instance denoted by l ≈ (resp. r ≈) in [177] * and by / / o o (resp. ↔) in [60] * . It was rediscovered by Nielsen et. al. in the context of rings in [184] * . Association of idempotents is closely linked with Green's relations. For any two idempotents e, f ∈ E(S), it holds that e L f ⇐⇒ e ∼ ℓ f , e R f ⇐⇒ e ∼ r f , e H f ⇐⇒ e = f and eDf ⇐⇒ eS ≃ f S (as right S-acts, and we say that e, f are isomorphic, denoted by e ≃ f ). Alternatively, e ≃ f iff e = ab and f = ba for some a, b ∈ S (and we can always choose a, b to be reflexive inverses). Let n ∈ N; following [115] * and [116] * we define a left n-chain from e to f as a sequence of n + 1 idempotents e 0 ; e 1 ; . . . ; e n ∈ E(S) such that e = e 0 ∼ ℓ e 1 ∼ r e 2 ∼ ℓ • • • e n = f.

  Example 16.2.1 ([139, Example 4.3]). Let S = ⟨e, a|e 2 = e⟩, quotient of the free semigroup with two generators e, a by the relation e 2 = e. Then e is the only idempotent hence S is 1-chained. But ea ̸ = ae.

Example 17 . 1 . 1 ([ 152 ,

 1711152 Example 3.11, Examples 2.1 and 2.2]).

  a = aa ′ b = ba ′ a for some a ′ ∈ V (a) (equiv. a ′ ∈ I(a)); (4) a ′ a = a ′ b and aa ′ = ba ′ for some a ′ ∈ V (a) (equiv. a ′ ∈ I(a)) (Hartwig [85] * ); (5) a = ab ′ b = bb ′ a, a = ab ′ a for some b ′ ∈ V (b); (6) a = axb = bxa, a = axa for some x ∈ S; (7) a = axb = bxa, a = axa, b = bxb for some x ∈ S; (8) a = eb for some idempotent e ∈ R a and aS ⊆ bS (Nambooripad [178] * ); (9) a = xb = by, xa = a for some x, y ∈ S 1 (Mitsch [171] * ); (10) a = bzb for some z ∈ S 1 and I(b) ⊆ I(a) (Hartwig and Luh, see [167] * ).

Proposition 18 . 2 . 1 ([ 78 ,

 182178 Lemma 3.2] and [79, Proposition 1]). Let a, b ∈ S. Then the following statements are equivalent: 1. a = bxb for some x ∈ W (b); 2. a = axa = axb = bxa for some x ∈ W (b); 3. a = axa = axb = bya for some x, y ∈ W (b); 4. a = axa = axb = bya for some x, y ∈ S; 5. a < N b (a = axa = axb = bxa for some x ∈ S).

Definition 18 . 2 . 2 ([ 79 ,

 182279 Definitions 6 and 7]). For any a, b ∈ S, let:(1) aΓb if there exist x, y ∈ S 1 such that a = axb = bya and I(b) ⊆ I(a);(2) If b is not regular, then aΓ l b (resp. aΓ r b, aΓ P b) iff there exists x ∈ S 1 such that a = axb (resp. there exists y ∈ S 1 such that a = bya, there exist x ∈ S 1 such that a = axb = bxa); (3) If b is regular, then aΓ l b (resp. aΓ r b, aΓ P b) iff there exist x, y ∈ S 1 , such that a = axa = axb = bya (resp. there exist x, y ∈ S 1 , such that a = aya = axb = bya, there exists x ∈ S 1 , such that a = axa = axb = bxa). Lemma 18.2.3 ([79, Lemma 4 and Corollary 1]). (1) Γ = Γ r ∩ Γ l ⊆< HL ; (2) for any a, b, ∈ S, aΓ P b iff a = axb = bxa for some x ∈ S 1 and I(b) ⊆ I(a).

Corollary 18 . 2 . 5 ([ 79 ,

 182579 Corollary 5]). Let a, b ∈ S such that a is regular. Then the following statements are equivalent. 1. a < HL b; 2. a = axb = bya for some x, y ∈ W (b); 3. aΓb. If b is regular, this is moreover equivalent to a = axa = axb = bxa for some x ∈ W (b). A one-sided version (for Γ r and Γ l ) exists [79, Proposition 2]. In the case of an epigroup, the characterization (2) of relation Γ remains valid [79, Proposition 3]. Proposition 18.2.6 (protect[79, Proposition 3]). Let S be an epigroup, and a, b ∈ S. Then the following statements are equivalent. 1. aΓb; 2. a = axb = bya for some x, y ∈ W (b).

4 .

 4 simply polar if ap = pa = 0, a + p ∈ R -1 for some p ∈ E(R) (p is called the spectral idempotent or spectral projection of a); 106 CHAPTER 19. PREREQUISITES AND KNOWN RESULTS Proposition 19.0.1. Let a ∈ R. It holds that:

  Proposition 20.1.1 ([153, Proposition 2.2]). Let a ∈ R. Then the following statements are equivalent: (1) there exists x, y ∈ R such that: (a) xy = xay; (b) (1 -a)y = 1 -ax. (2) a is exchange; (3) there exists x, y ∈ R such that: (a) xax = x; (b) y(1 -a)y = y; (c) (1 -a)y = 1 -ax; Note that a couple (x, y) solution to (1) : xy = xay and (1 -a)y = 1 -ax needs not also solve y(1 -a)y = y. Take for instance a = x = 1 and any y ̸ = 0. Note also that a couple (x, y) solution to (3) satisfies yax = 0, a condition that can replace (1.a) : xy = xay in the proposition. And finally a dual characterization (with y(1-a) = 1-xa instead of (1 -a)y = 1 -ax) also holds. Using [111, Theorem 3.2] * , we can actually prove a slightly different result. Proposition 20.1.2 (unpublished). Let a ∈ R. Then the following statements are equivalent: 1. there exists x, y ∈ R such that: (a) xy = 0; (b) y(1 -a) = 1 -ax. 2. a is exchange; 3. there exists x, y ∈ R such that: (a) xax = x; (b) y(1 -a)y = y; (c) y(1 -a) = 1 -ax.

) ⇒ ( 3 )

 3 Assume that a is exchange, with e ∈ E(R)∩aR, 1-e ∈ R(1-a) (by [111, Theorem 3.2] * ). Then there exists u, v ∈ R such that f = au, f = 1 -f = v(1 -a). Pose x = uf, y = f v. Then xax = uf auf = uf 3 = uf = x, and symmetrically y(1 -a)y

( 3 )

 3 ⇒ (1) As x = xax, y(1 -a)y = y and y(1 -a) = 1 -ax then xy(1 -a) = x -xax = 0 so that xy = xy(1 -a)y = 0.

Theorem 20 . 2 . 1 ([ 153 ,

 2021153 Theorem 2.1]). Let a ∈ R. Then a is clean if and only if exist idempotents e, f ∈ E(R) such that:1. f ae = 0 (f ae = ae) and f (1-a)ē = 0 ( f (1 -a)ē = (1 -a)ē);2. a has a (e, f )-inverse and 1 -a has a (ē, f )-inverse. In this case a = ē + u with u -1 = a -(e,f ) -(1 -a) -(ē, f ) , and e, f are similar with f = ueu -1 .

Corollary 20 . 2 . 2 (

 2022 [START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF] Corollary 2.1]). Let a ∈ R. Then a is clean if and only if exist idempotents e, f ∈ E(R) such that:1.Re = Rae, f R = aeR; 2. Rē = R(1 -a)ē, f R = (1 -a)ēR. In this case a -ē is invertible.Or we can restate Theorem 20.2.1 in terms of outer inverses only.

Corollary 20 . 4 . 3 (

 2043 [START_REF] Mary | Characterizations of special clean elements and applications[END_REF] Corollary 6.2]

⇐

  To conclude this section, we present a last (unpublished) characterization of special clean elements. It expresses special clean elements in terms of Bott-Duffin (e, f )inverses in the spirit of Theorem 20.2.1.Theorem 20.4.4 (unpublished). Let a ∈ R. Then a is special clean if and only if exist idempotents e, f ∈ E(R) such that:1. f a = a and f ē = aē; 2. a has a (e, f )-inverse and 1 -a has a (ē, f )-inverse. In this case a = ē + u = au -1 a with u -1 = a -(e,f ) -(1 -a) -(ē, f ) , and e, f are similar with f = ueu -1 .Proof. ⇒ Assume that a is special clean with decomposition a = ē + u = au -1 a for some e ∈ E(R) and u ∈ R -1 . Then by Theorem 20.2.1 f = ueu -1 satisfies that f ae = ae, f (1 -a)ē = 0, a has a (e, f )-inverse and 1 -a has a (ē, f )-inverse. Asf = ueu -1 = 1 -uau -1 + u and au -1 a = a then f a = a -ua + ua = a. Then also (f -a)ē = f (1 -a)ē = 0. Assume that f a = a (equiv. f a = 0), f ē = aē,a has a (e, f )-inverse and 1 -a has a (ē, f )-inverse for some idempotents e, f E(R). Then f ae = ae, f (1 -a)ē = 0 so that by Theorem 20.2.1, u = a -ē is invertible with inverse u -1 = a -(e,f ) -(1 -a) -(ē, f ) . By definition of the Bott-Duffin inverse, aa -(e,f ) = f aa -(e,f ) = f and (1 -a) -(ē, f ) ∈ ēR f , so that (1 -a) -(ē, f ) a = (1 -a) -(ē, f ) f a = 0. Finally

Theorem 21 . 1 . 1 ([ 149 ,

 2111149 Theorem 2.4]). Let R be a semigroup and a, b ∈ R be group elements. Let a 0 = aa # , b 0 = bb # . Then the following statements are equivalent: (1) ab and ba are group invertible with (ab) # = b # a # , (ba) # = a # b # ; (2) abHba;(3) (∃x, y ∈ R) ab = bxa and ba = ayb (ab ∈ bRa and ba ∈ aRb);(4) a 0 ∈ {b} ′ and b 0 ∈ {a} ′ ; (5) a 0 , b 0 ∈ {a, a # , a 0 , b, b # , b 0 } ′ .Recall that a ring R is Dedekind-finite if for any a, b ∈ R, ab = 1 implies ba = 1. By using Peirce decompositions and properties of the group inverse of triangular matrices in Dedekind-finite rings, I proved the following result. Theorem 21.1.2 ([149, Theorem 3.16 and Corollary 3.17]). Let R be a Dedekind finite ring and a, b ∈ R be such that a and b are group invertible. Then the following statements are equivalent: (1) ab is group invertible with (ab) # = b # a # ; (1 ′ ) ba is group invertible with (ba) # = a # b # ; (2) ab and ba are group invertible with (ab) # = b # a # , (ba) # = a # b # ;

Example 21 . 1 . 1 ([ 149 ,

 2111149 Example 3.19]). Let R be a non-Dedekind finite ring, and let u, v ∈ R such that uv = 1 ̸ = vu. Then (vu)2 = vu. Pose w = 1 -vu. Then uw = wv = 0. The ring of 3 × 3 matrices over R M 3 (R) is obviously not Dedekind finite. Consider the two following matrices of M 3 (R) It follows that ab = b # a # is idempotent and the reverse order law holds for ab, (ab) # = b # a # . However ba(a # b # ) ̸ = (a # b # )ba and the reverse order law does not hold for ba.21.2. CLINE'S FORMULA VIA LATTICE ISOMORPHISMS IN UNITAL RINGS119

  that E(R) is partially ordered by e ≤ f ⇐⇒ ef = f e = e. Let C be any commutative subset of E(R). Then C becomes a lattice under the two operations e ∧ f = ef and e ∨ f = e + f -ef . Moreover, this lattice is distributive. Define the circle operation on R as x•y = x+y -xy. Then R • = (R, •) is a monoid (with identity 0), and for any two idempotents e, f ∈ C, e ∨ f = e • f .

Lemma 21 . 2 . 1 ([ 151 ,

 2121151 Lemma 4.7]). (Σ 2 (a), ., •) (resp. (Σ 2 (a) ∩ Σ • 2 (a), ., •)) is a distributive lattice. Define an operation ⊙ a on R by x ⊙ a y = x + y -xay. Then Corollary 21.2.2 ([151, Corollary 4.6]). Function x → xx # = ax is an isomorphism of lattices from (W (a) ∩ {a} ′′ , . a , ⊙ a ) onto (Σ(a) ∩ {a} ′′ , ., •)). Its reciprocal maps e to a -e .And regarding conjugate idempotents we obtain:Theorem 21.2.3 ([151, Theorem 4.4]). Let u, v ∈ R be primarily conjugate elements. The lattices Σ 2 (u) (resp. Σ 2 (u)∩Σ • 2 (u)) and Σ 2 (v) (resp. Σ 2 (v)∩Σ • 2 (v)) are isomorphic. If u = ab, v = bathen the isomorphism is given by e → b(ab) -e a.

  Before stating the main result, let us consider a simple case. Let u, w be primarily conjugate in R and w, v be primarily conjugate in R • , that is u = ab, w = ba = d • c and v = c • d for some a, b, c, d ∈ R. We consider Theorem 21.2.3 for both R and R • (a precise statement for R • is [151, Corollary 4.7]), and denote by a ⊖e = 1 -(1 -a) -(1-e) the inverse of a along e in R • .

•) [ 151 ,

 151 Corollary 4.10]. Let ∼ = denote primarily conjugation in R and ∼ = • denote primarily conjugation in R • . Denote their transitive closure by ≡ and call it primarily equivalence. By induction on the previous arguments we obtain that primarily equivalent elements have isomorphic lattices. Corollary 21.2.4 ([151, Corollary 4.9]). Let u, v ∈ R be primarily equivalent (u ≡ v). Then the lattices (

21. 3 )

 3 Jacobson's lemma in unital rings -Jacobson's lemma in unital rings -Corollary 21.3.1 ([151, Corollary 4.5]). Let e ∈ Σ 2 (ab) ∩ Σ • 2 (ab). Then f = b(ab) -e a ∈ Σ 2 (ba) ∩ Σ • 2 (ba) and

3 . 1

 31 to strongly clean and strongly nil-clean elements (a.k.a. strongly Drazin invertible elements) thanks to their characterization by means of inverses along an idempotent [153, Corollary 5.1]. Corollary 21.3.2 ([153, Corollaries 5.2 and 5.3]). Let a, b ∈ R. (1) If ab is strongly clean so is ba. Moreover, if ab = ē+u (e ∈ E(R), u ∈ R -1 , eu = ue) is a strongly clean decomposition of ab, then ba-f is invertible with f = b(ab) -e a ∈ E(R). (2) If ab is strongly nil-clean so is ba. Moreover, if ab = e + n (e ∈ E(R), n ∈ N (R), en = ne) is a strongly nil-clean decomposition of ab, then ba -f is nilpotent with f = b(ab) -e a ∈ E(R).

A

  unital ring R has stable range one if for all a, b ∈ R, aR+ bR = R implies that (a + bc)R = R for some c ∈ R (equivalently, a + bc ∈ U (R) by [207, Theorem 2.6] * ). A (general) ring ℜ has stable range one if for all a ∈ ℜ, b ∈ R, (1 + a) R + b R = R implies that (1 + a + bc) R = Rfor some c ∈ R and some (all by [207, Theorem 3.6] * ) unitization R of ℜ. As is well-known, corner rings of a unit-regular ring are unit-regular ([63] * , [82] * , [87] * , [131] * ) and unital rings are unit-regular iff they are regular with stable range one (Fuchs and Kaplansky [70, Proposition 4.12] * ). Regarding general rings, the following equivalences hold. Lemma 22.1.4 ([165, Lemma 1.4] * , [32, Lemma 1] * ). Let ℜ be a regular ring. Then the following are equivalent: (1) For each idempotent e ∈ E(ℜ) the corner ring eℜe is unit-regular.

  Example 22.1.1 ([160, Example 4.3]

Lemma 22 . 2 . 3 ([ 153 ,

 2223153 Lemma 3.1]). Let a ∈ ℜ be g-clean with z and g as in the definition. Then a is strongly clean iff z • a = xa.In unital rings, clean and g-clean elements coincide. Theorem 22.2.4 ([153, Theorem 3.1]). Let a ∈ R unital ring. Then a is clean iff it is g-clean.

  4.4 in part II). It involves the circle operation. For any general ring ℜ and any a ∈ ℜ, we use the following notationΣ 2 (a) = {a} ′′ ∩ {e ∈ E(ℜ)|e ∈ aℜ ∩ ℜa}.By Σ •2 (a) we thus denote the set Σ 2 in the circle ringℜ • = (ℜ, ⊕, •), that is Σ • 2 (a) = {a} ′′ ∩ {e ∈ E(ℜ)|e ∈ a • ℜ ∩ ℜ • a}(since a and e bicommute for the circle operation iff they bicommute for the original product). By [147, Lemma 3], [151, Lemma 3.4] and Theorem 3.2.1, e ∈ Σ 2 (a) iff a is invertible along e and e bicommutes with a, and dually e ∈ Σ • 2 (a) iff a is invertible along e in R • and e bicommutes with a in R • . Let ℜ be a general ring and a, b ∈ R. We can state: -Jacobson's lemma in general rings -Theorem 22.3.1 ([151, Theorem 4.2]). Let e ∈ Σ 2 (ab) ∩ Σ • 2 (ab). Then f = b(ab) -e a ∈ Σ 2 (ba) ∩ Σ • 2 (ba) and (ba) ⊖f = b (ab) ⊖e a -ba • b (ab) -e a = b(ab) ⊖e a -ba + b(ab) -e a.

[ 153 ,

 153 Theorem 4.1], [161, Theorem 6.1], [141, Lemma 2.2]: a ∈ R is special clean iff there exists e ∈ E(R), u ∈ U(R) such that a = ē + u = au -1 a.

Theorem 23 . 1 . 1 ([ 161 ,

 2311161 Theorem 2.1]). Let a ∈ ureg(R) with unit inner inverse v -1 . Let f = av -1 and define a function φ

Corollary 23 . 1 . 2 (

 2312 [141, Corollary 4.5]). Let a ∈ ureg(R) with unit inner inverse v -1 and let

  185, Theorem 3.14] * ) [161, Corollary 3.6]; (4) sr( f R f ) = 1; or sr(f Rf ) = 1; or f R f ⊆ J(R); f Rf ⊆ J(R) [161, Corollaries 4.1 and 4.4].

matrix A ∈ M 2 (

 2 Z) of the form A = a b 0 0 is special clean [161, Lemma 7.3], and that for any ring R and a ∈ R, the matrix A = a 0 0 0 ∈ M 2 (R) is special clean iff a ∈ ureg(R) [161, Lemma 7.4]. This last result was obtained by very different means in [113, Theorem 7.13] * .

Corollary 23 . 2 . 1 (

 2321 [141,Corollary 4.2]). Let a ∈ ureg(R) with unit inner inverse v -1 and let f = av -1 . Define as above φ :f Rf × f R f → f R f by φ : (y, x) → yv 1 x + yv 2 + v 3 x + v 4 = (y + f )v(x + f ).

Corollary 23 . 2 . 2 (

 2322 [141,Corollary 4.4]). Let a ∈ ureg(R) with unit inner inverse v -1 and let f = av -1 . Define as aboveψ : f R f × f Rf → f Rf by ψ : (x, y) → µ 1 + µ 2 y + xµ 3 + xµ 4 y = (x + f )v -1 (y + f ).

Corollary 23 . 2 . 3 (

 2323 [141, Corollary 4.3]). Let a ∈ R be unit-regular. The element a is perspective iff for each decomposition of the form a= f v with f ∈ E(R) and v ∈ U (R), there exists y ∈ f Rf such that φ(y, 0) = (y + f )v f ∈ U ( f R f ).

Finally, consider a

  matrix A ∈ M 2 (Z) of the form A = a b 0 0 . We have seen that such a matrix is special clean iff it is unit-regular and clean [161, Lemma 7.3]. By contrast, it is perspective iff a = ±1 or (a = 0 and b ∈ {-1, 0, 1}) [141, Example 6.1].

Association chains of idempotents

  Recall that two idempotents e, f ∈ E(R) are isomorphic (denoted by e ≃ f ) if eR and f R are isomorphic submodules of R R , iff e = ab, f = ba for some a, b ∈ R. Moreover, we can always choose such (a, b) to form a regular pair (a and b are reflexive inverses of one another). A stronger condition is that of similarity (or conjugation): e and f are similar (or conjugate) if f = ueu -1 for some unit u ∈ U(R). Finally e and f are left (resp. right) associates, and we write e ∼ ℓ f (resp. e ∼ r f ) if Re = Rf or equivalently ef = e and f e = f (resp. eR = f R or equivalently ef = f and f e = e). Relation ∼ ℓ is nothing but the restriction of Green's relation L to the subset E(S) of idempotents of the ring. Of particular importance is the following fact [112] * , [115] * , [117], [156]: e ∼ ℓ f iff there exists some (unique) unit u ∈ 1 + (1 -e)Re ⊆ U(R) such that f = ue. Thus the set (1 -e)Re parameterizes the left associates of e. As also eu -1 = e in this case , f = ueu -1 is similar to e, an important fact in consideration of the invariance of relations of left and right association under similarity [156, Lemma 2.1]. Therefore, we have the following implications: associate ⇒ similar ⇒ isomorphic. Let n ∈ N; a left n-chain from e to f consists of a sequence of n + 1 idempotents e 0 ; e 1 ; . . . ; e n ∈ E(R) such that e = e 0 ∼ ℓ e 1 ∼ r e 2 ∼ ℓ • • • e n = f.

( 1 )( 2 )

 12 If aR + bR = R for some b ∈ R then a + bx ∈ U (R) for some outer inverse x ∈ R of b; If Ra + Rb = R for some b ∈ R then a + xb ∈ U (R) for some outer inverse x ∈ R of b. Proposition 24.6.4 ([141, Proposition 5.5]). Let R be a ring and a ∈ reg(R). Then the following statements are equivalent: (1) a is perspective; (2) If aR + bR = R for some b ∈ R then a admits a special clean decomposition a = ē + u = au -1 a for some e ∈ E(R), u ∈ U (R) such that ēR ⊆ bR ; (3) If aR + bR = R for some b ∈ R then a + bx ∈ U (R) for some outer inverse x ∈ R of b (xbx = x) such that aR ∩ bxR = 0; (4) If aR + bR = R for some b ∈ R then a + bx ∈ U (R) for some outer inverse x ∈ R of b (a has outer inverse right stable range one); (5) If aR + bR = R for some b ∈ reg(R) then a + bx ∈ U (R) for some outer inverse x ∈ R of b; (6) If aR + f R = R for some f ∈ E(R) then a admits a clean decomposition a = ē + ufor some e ∈ E(R), u ∈ U (R) such that ēR ⊆ f R. Dual statements hold.

24. 7 )

 7 4-chains, 3/2-perspective modules and special clean elements

  Corollary 4.5] * , a right self-injective ring R satisfies D(4) (conjugate idempotents are connected by a left and right association chain of length 4), or equivalently ureg(R) = sp. cl(R). And by [115, Theorem 4.11] * , for any quasi-continuous M , its endomorphism ring R = End(M ) satisfies D(4), or equivalently ureg(R) = sp. cl(R).

Theorem 24 . 8 . 1 ([ 156 ,

 2481156 Theorem 2.5] and[START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF] Theorem 3.1]). Let R be a ring, n ∈ N and let a, b ∈ R be a pair of reflexive inverses. Setting e = ab and f = ba, then there is a left n + 2-chain from f to e iff there exist z 1 , z 2 , . . . , z n withz i ∈ (1 -e)Re if i is odd eR(1 -e) if i is even such that ea(1 + z n )(1 + z n-1 ) . . . (1 + z 2 )(1 + z 1 )e ∈ U(eRe).Consider the cases n = 0, 1, 2. With the above notations, a and b can be written in Peirce matrix form A = a 1 a 2 0 0 and B = b 1 0 b 3 0 with a 1 b 1 + a 2 b 3 = 1 eRe .

  Theorem 24.8.3 ([117, Theorem 3.2]). Let n ∈ N, and let S be a Dedekind-finite ring such that every nontrivial idempotent in R = M 2 (S) is isomorphic to 1 right unimodular pair from S has a division chain of ordered termination length at most n + 1 iff R satisfies P(n + 2).Corollary 24.8.4 ([117,Corollary 3.3]). Let K be a number field, let X be a finite set of valuations on K including the archimedean valuations, and letO X = {x ∈ K|x = 0 or ν(x) ≥ 0 for all ν /∈ X} be the ring of X-integers in K. If O X has infinitely many units, then the ring R = M 2 (O X ) satisfies P(9), and under a generalized Riemann hypothesis (GRH) it satisfies P(6).Corollary 24.8.5 ([117, Corollary 3.5]). Let S be a nontrivial localization of Z. Then R = M 2 (S) satisfies P(5), and it satisfies P(4) under GRH.24.8.1 ) From weakly-chained rings to strongly-chained ringsTheorem 24.8.1 has another very interesting consequence. It is a key ingredient of next lemma, which in turn allows to move from weakly 3-chained rings to strongly 3-chained rings and to prove the left-right symmetry of the notion of perspective elements. Lemma 24.8.6 ([117, Lemma 3.7]). Let a, b ∈ R be reflexive inverses, and put e = ab, f = ba ∈ E(R). There exists an element a ′ ∈ eR such that a ′ b = e with the property that if e ∼ ℓrℓ g = ba ′ then e ∼ rℓr f .

Z has stable range 2 ,

 2 then all regular elements in M m (Z) are special clean for any m ≥ 3 [117, Corollary 4.4], while M m (Z) is never perspective. On the other hand, there is no finite bound on association chains in M 2 (Z)[48] * .

  Theorem 3.2.3 ([146, Theorem 10]). Let S be a semigroup and a, d ∈ S. Then (1) a -d ∈ {a, d} ′′ (bicommutant of {a, d});(2) aa -d ∈ {ad} ′′ and a -d a ∈ {da} ′′ .

  was aimed to extend the Koliha-Drazin inverse (a.k.a. generalized Drazin inverse [49] * , [119] * , [136] *

  is distributive, maximal implies natural; the natural inverse generalizes the group and Drazin inverse.Recall that a semilattice is distributive if e ∧ f ≤ x implies the existence of e ′ , f ′ such that e ≤ e ′ , f ≤ f ′ and x = e ′ ∧ f ′ . Theorem 4.3.6 ([147, Theorem 3]). Assume a ∈ S is Drazin invertible with inverse a D . Then a is 1 and 2-naturally invertible with inverse a -M = a D . We say that two elements u, v of a semigroup S are primarily conjugate if u = ab, v = ba for some a, b ∈ S [125] * . If u = e and v = f are idempotents, one also says that the idempotents are isomorphic (or Kaplansly equivalent) since this happens iff eS 1 ≃ f S 1 (as right S-acts). In this case one can moreover choose (a, b) a regular pair.Cline's formula relates to the very general family of properties P (or subsets P of elements that satisfy P ) invariant by primarily conjugation: if u satisfies P (u ∈ P) and v is primarily conjugate to u, then v also satisfy P (v ∈ P). Indeed, it was observed by Cline in his study of generalized inverses of matrices[42] * ,[10] * that ab is Drazin invertible iff ba is Drazin invertible, the relation between the two inverses being (ba) D = b[(ab) D ] 2 a (and dually). The use of the Drazin inverse is crucial since for the genuine (resp. group) inverse, ab invertible (resp. group invertible) does not imply ba invertible (resp. group invertible).

	Proposition 4.3.5 ([147, Proposition 2]). Let a ∈ S. If the semilattice Σ 2 (a) is
	distributive, then any 2-maximally invertible element is naturally invertible.
	The natural generalized inverse has been further studied by Kantún-Montiel in [103] * .
	4.3.3 ) Application 2: Cline's formula for commuting outer
	inverses
	In the following, we fix a, b ∈ S and define the function on S ϕ b,a : x → bx 2 a, and dually ϕ a,b . It is straightforward to observe that ϕ b,a maps {ab} ′ on {ba} ′ and that
	ϕ b,a : ({ab}

′′ , . ab ) → (S, . ba ) is a morphism.

  a is group invertible in S op iff it is group invertible in S, which concludes the proof.

	Finally, we obtain the following equivalences ((2) ⇐⇒ (4) is Theorem 1.1.2 and

(4) ⇐⇒ (5) is Theorem 1.1.1): Corollary 8.1.3 (unpublished). Let S be a semigroup and (a, b) be a regular pair.

  Lemma 11.2.1 ([150, Lemma 6.2], [160, Proposition 2.2 and Corollary 2.3]). Let a ∈ S, x ∈ S # . Then the following statements are equivalent: (1) a ≤ x # ; (2) a ≤ H x # and axa = a; (3) a ≤ H x and axa = a; (4) a is unit-regular in the local submonoid xx # Sxx # with inverse x; (5) a = ex # for some e ∈ E(S) such that e ≤ xx # ; (

  This is based on the following observation. If an element is group-regular in a corner ring, then it is actually unit-regular in this corner ring hence group-dominated in the whole ring. This happens for instance if any finite set of elements of the ring lies in a corner ring. Such rings are usually called rings with "local units" ([3, Definition 1] * ), but the terminology may however have other meanings. As Von Neumann regular general rings have local units we obtain the following theorem. Theorem 11.4.4. Let ℜ be a general ring. Then the following statements are equivalent:

	This result is not valid element-wise for there exist unit-regular elements with no group
	invertible reflexive inverse.
	However, in lack of identity, a group-regular element needs not be group-dominated,
	as proven by [160, Example 2.4].
	Surprisingly, while distinct element-wise, the two concepts (of group-domination and

et.al.

[START_REF] Khurana | Special clean elements in rings[END_REF] Theorem 2

.17] * ).

Corollary 11.4.3 ([153, Corollary 4.2]

). Let R be a unital ring. The the following statements are equivalent:

(1) R is unit-regular;

(2) Any element of R has an inner inverse that is group invertible (R is group-regular);

(3) Any element of R has a reflexive inverse that is group invertible (R is special clean). group-regularity) become equivalent if considered globally, even in non-unital rings. That is group-regular (general) rings and group-dominated (general) rings are the same.

  see Corollary 8.1.3, or more generally Section 8.1).

  Some of the results and proofs of the paper are rather technical, but other are more elementary. I present below these latter results, that hopefully will help the reader to fully understand what is meant by "working modulo H". ′ ) -a exists and is a reflexive inverse of a ′ ((a ′ ) -a ∈ V (a ′ ));(3) aa ′ and a ′ a are trace product.This happens iff H a H a ′ H a = H a and H a ′ H a H a ′ = H a

	14.1 ) Element-wise results
	Corollary 14.1.1 ([146, Corollary 9]). Let a, a ′ be elements of a semigroup S. The
	following statements are equivalent:
	(1) (a, a ′ ) is a regular pair modulo H;
	(2) (a

Definition 14.0.1 ([148,

Definition 1.4]

). We call a particular solution x to axaHa an inner inverse of a modulo H. If also xaxHa, then x is called a reflexive inverse of a modulo H, and (a, x) is a regular pair modulo H. Finally, we denote the set of all inner inverses of a modulo H by I(a)[H] , and the set of reflexive inverses of a modulo H by V (a)[H]. ′ . While reflexive invertibility modulo H passes to H-classes, this is not the case for inner invertibility modulo H in general [148, Example 2.6] (recall that H is not a congruence in general). For inner invertibility, one has only aa ′ aHa ⇐⇒ H a a ′ H a = H a [158, Corollary 2.5].

However, the classical properties of inner inverses remain true when working modulo H. Recall that for a ′ , a ′′ ∈ I(a), then a ′ a, aa ′ ∈ E(S) and a ′ aa ′′ ∈ V (a). Also, if a ′ ∈ V (a) then a ′ a = aa ′ ⇐⇒ a ′ Ha.

Proposition 14.1.2 ([148, Proposition 2.9]). Let a, a ′ , a ′′ be elements of a semigroup S. Assume that a ′ , a

′′ ∈ I(a)[H]. Then a ′ a, aa ′ ∈ E(S)[H] and a ′ aa ′′ ∈ V (a)[H]. If moreover, a ′ ∈ V (a)[H], then a ′ aHaa ′ ⇐⇒ a ′ Ha.

In particular regularity and regularity modulo H represent the same notion

[START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF] Lemma 2.10]

. A similar fact happens for inverse and inverse modulo H semigroups if one uses the "unique reflexive inverse" definition due to the following proposition.

Proposition 14.

1.3 ([148, Proposition 2.11]

). let S be a semigroup and a ∈ S be a regular element. The following statements are equivalent: 1

  is well known, L ⊆ L ⊆ L E[96, lemma 4.1] * and L = L(= L E(S) ) on regular semigroups[96, lemma 4.14] * . Contrary to L (resp. R), L (resp. R) is not a right (resp. left) congruence in general. In particular, L E ( R E ) needs not to be a right (left) congruence. If this is the case, we will say that S is L E -(resp. R E -) congruent, or, following Fountain et al.[66] * , that S satisfies (CL) (resp. (CR)). A semigroup which satisfies conditions (CL) and (CR) is also said to satisfy the congruence conditions[133] * .The intersection of preorders (resp. equivalence relations) ≤ L E and ≤ R E is also a preorder (resp. equivalence relation), denoted by ≤ H E (resp. H E ). Recall that relations L and R commute, so that their joinD = L ∨ R is just R • L = L • R.The extended relations D and D E are defined analogously as the join of the extended relations, but not as their product since L E and R E do not commute in general. Finally, there is a last relation J E (see[221] , on such semigroups J E = D E and is a semilattice congruence, so that there is a semilattice decomposition with each component J α completely (E α , H Eα )-abundant and J Eα -simple. Moreover, these components are Rees matrix semigroups[137] * . And finally, one can construct a completely (E, H E )abundant semigroup from a given semilattice Y and a family J α , α ∈ Y of completely (E, H E )-abundant, J Eα -simple semigroups[221] 

* ) based on saturated ideals in replacement of the classical relation J (equality of principal ideals).

15.2 ) (E, H E )-abundant semigroups

Let S be a semigroup, and E ⊆ E(S) a distinguished subset of idempotents. We say that S is (E, H E )-abundant if any element of S is H E -related to an element of E. These semigroups (with E = U ) were formerly named weakly U -superabundant semigroups. S is completely (E, H E )-abundant if moreover L E and R E are right and left congruences respectively.

15.2.1 ) Completely (E, H E )-abundant semigroups

We first present some existing results regarding completely (E, H E )-abundant semigroups. These results show that, to some extent, completely (E, H E )-abundant semigroups behave like their classical counterpart (completely regular semigroups). By [200, Lemma 2.1 and Theorem 2.2] * * .

  Theorem 15.2.1 ([150, Theorem 2.6]). Let S be a (E, H E )-abundant semigroup. Then the following statements are equivalent: (1) The relations R E and L E are right and left congruences; (2) The relation D E is a semilattice congruence; (3) The relation D E is a congruence.The main consequence of this theorem is that a (E, H E )-abundant, D E -simple semigroup is automatically completely (E, H E )-abundant. Consequently, we chose in[START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF] to name them simply completely E-simple semigroups. As J E = D E on such semigroups, they are precisely the completely (E, H E )-abundant, J E -simple semigroups. We will see in next section that given a semigroup S, it can be completely E-simple for at most one choice of idempotents E [150, Corollary 3.10].

We now give a new version of the semilattice decomposition. Theorem 15.2.2 ([150, Theorem 2.6]). A semigroup S is completely (E, H E )abundant if and only if it is a semilattice Y of (E α , H Eα )-abundant, D Eα -simple semigroups with Π:

  E, H E )-abundant semigroups such that each (E, H E )-class is a monoid is also of interest. By definition such semigroups are union of monoids, but the converse needs not be true[START_REF] Mary | On (E, H E )-abundant semigroups and their subclasses[END_REF] Example 3.3] (contrary to the classical case, where completely regular semigroups are exactly unions of groups). Once again, a type Π condition appears in order to get a converse statement. Theorem 15.2.6 ([150, Theorem 3.2]). Let S = e∈E M e be a disjoint union of monoids M e with identity e such that (Π)(∀a ∈ S, ∀e, f, g ∈ E) eaf ∈ M g ⇒ egf = g.

	Then S is (E, H E )-abundant. Conversely, any (E, H E )-abundant semigroup such that
	each (E, H E )-class is a monoid is a union of monoids with (Π).
	In case of union of groups, the extra (Π) condition is always fulfilled: if eaf ∈ H(g)
	then g = eaf (eaf ) # = egf .
	15.2.4 ) E-Clifford restriction semigroups

Finally, recall that a Clifford semigroup can be characterized as either a completely regular semigroup whose idempotents commute (equiv. form a semilattice), or as an inverse semigroup with central idempotents, and that on such semigroups relation H is a congruence. Define an E-Clifford restriction semigroup as a semigroup S with distinguished subset of idempotents E ⊆ E(S) such that: (1) Elements of E are central idempotents; (2) Every H E -class H E (a) contains a (necessarily unique) idempotent; (3) The relation H E is a congruence. Corollary 15.2.7 ([150, Corollary 5.5 and Theorem 5.8]). Let S be a semigroup, and E ⊆ E(S) be a set of idempotents. Then the following statements are equivalent: (1) S is an E-Clifford restriction semigroup; (2) S is completely (E, H E )-abundant and E is a semilattice; (3) S is completely (E, H E )-abundant and idempotents of E commute; (4) S is a strong semilattice E of monoids M e , e ∈ E, with identities e; (5) S is a semilattice E of monoids M e , e ∈ E, with identities e.

  + zy + ) + y + = (x + zy + ) +

		.1)
	xx + = x	(15.2)
	(xy + ) + y + = (xy + ) +	(15.3)
	y + (y + x) + = (y + x) +	(15.4)
	x + x + = x +	(15.5)
	x + xx + = x	(15.6)
	x + (x (15.7)
	x ++ = x +	(15.8)
	x + (xy) + y + = (xy) +	(15.9)
	(x + y)(xy) + = x + y	(15.10)
	(yx) + (yx + ) = yx +	(15.11)
	(xy) + = (x + y) +	(15.12)
	(yx) + = (yx + ) +	(15.13)
	(xy) + = (x + y + ) +	(15.14)
	x + (yx) + = x +	(15.15)
	(xy) + x + = x +	(15.16)
	y + (yx) + = (yx) +	(15.17)
	(xy) + y + = (xy) +	(15.18)
	x + y = yx +	(15.19)
	(xy)	

++ 

= x + y + (15.20)

  -(1-e) is a unit and u is clean. Thus, Corollary 21.2.4 considers non-empty lattices only for a subclass of strongly clean elements.

	• 2 (a).
	Corollary 21.2.4 then claims that binatural invertibility is invariant under primarily
	equivalence. By [147, Theorem 8] and [151, Example 4.2], if the generalized Drazin
	inverse exists, then the binatural inverse exists and they coincide.
	Also, by [153, Theorem 2.9], if Σ 2 (u) ∩ Σ • 2 (u) contains an idempotent e then u -e -(1 -
	u)

  2 (1 -ab) (Theorem 7.3.2 or[START_REF] Mary | Natural generalized inverse and core of an element in semigroups, rings and Banach and operator algebras[END_REF] Theorem 8]). Actually, it is proved in[START_REF] Mary | Weak inverses of products -Cline's formula meets Jacobson lemma[END_REF] Example 4.2] that it also holds that p ∈ Σ 2 (ab). Thus y = 1 + b (1 -ab) -(1-p) -(ab) -p a seems a perfect candidate for the generalized Drazin inverse of 1 -ba. Actually, by the semilattices isomorphism properties, we already now that this is the natural inverse of (1 -ba), and we have only to check that (1 -ba) 2 y -(1 -ba) is quasinilpotent. This is done in [151, Example 4.3] and we recover Zhuang[229, Theorem 2.3] 

* formula (x gD denotes the generalized Drazin inverse of x ∈ R).

  In order to deal with general rings, it has long been noticed that a interesting tool is the so-called circle operation x • y = x + y -xy[4] 

* ,

[95] 

* ,

[101] 

* ,

[124] 

* ,

[134] 

* . This operation is associative, and that if R is a unital ring, then x → 1 -x is an involutive isomorphism of monoids from (R, .) onto (R, •). In the case of a general ring ℜ = (ℜ, +, .) ℜ • = (ℜ, •) is still a monoid (with identity 0), usually called the adjoint semigroup with circle operation, or circle semigroup of the general ring. The circle semigroup traces back to the origins of the Jacobson radical, for a general ring ℜ is a Jacobson radical ring (J(ℜ) = ℜ) if and only if its circle semigroup is a group.

  ). As noted by Diesl[47, Proposition 3] 

* as Q * (ℜ) ⊇ N (ℜ) then nil-clean elements are clean general. If R is unital, then a is clean general if and only if a + 1 is clean if and only if -a is clean. A element a ∈ ℜ is exchange general (or simply exchange [4] * ) if there exists an idempotent e ∈ E(ℜ) and r, s ∈ ℜ such that e = ar = a•s (equivalently, e ∈ aℜ∩a•ℜ). As proved by P. Ara in

[4] 

* , this property is left-right symmetric (as in the unital case).

In

[START_REF] Mary | Characterizations of clean elements by means of outer inverses in rings and applications[END_REF] 

I characterized exchange general elements by outer inverses. Proposition 22.2.1 ([153, Proposition 3.2]). Let a ∈ ℜ general ring. Then a is exchange general iff there exists x, z ∈ ℜ such that: 1. xax = x; 2. z • a • z = z; 3. a • z = ax. I also used outer inverses to define a second version of cleanness in general rings. Definition 22.2.2 ([153, Definition 3.1]). Let a ∈ ℜ. Then a is g-clean iff there exists x, z ∈ ℜ such that: 1

  Proposition 22.2.5 ([153, Proposition 3.1]). Let a ∈ ℜ general ring. Then a is g-clean iff there exist idempotents e, f ∈ E(ℜ) such that: 1. f ae = ae and f • a • e = a • e; 2. e ∈ ℜf ae, f ∈ f aeℜ (a has a (e, f )-inverse in (ℜ, .)); 3. e ∈ ℜ • f • a • e, f ∈ f • a • e • ℜ (a has a (e, f )-inverse in (ℜ, •)).

	We directly deduce from Proposition 22.2.1 that a g-clean element is an exchange
	general element with the additional property that x + z ∈ Q • (ℜ), so that g-clean are
	exchange general [153, Corollary 3.1]. I also proved [153, Corollary 3.2] that a ∈ ℜ is
	g-clean if and only if -a is clean general.
	Finally, the equivalence (1) ⇐⇒ (6) in Theorem 20.4.1 ([153, Theorem 4.1], [141,
	Lemma 2.2 and Theorem 2.4]) characterizes special clean elements as regular elements
	with a reflexive group invertible inverse, a characterization also valid in general rings.
	Thus, for ℜ a general ring, we can use this characterization as a definition of special
	cleanness.

Definition 22.2.6. Let ℜ be a general ring. An element a ∈ ℜ is g-special clean if V (a) ∩ ℜ # is not empty.

  It relates to special cleanness of Q-unit-regular rings. As is well-known, unit-regular rings are special clean. An open question is whether this remains true for non-unital rings. I do not have an answer yet, but I provide below a proof that the Q-unit-regular ring of Example 22.1.1 is special clean. It particular, by the above results it is clean general and exchange general. However, it does not have stable range one.

Example 22.2.1 (unpublished). Recall that ℜ = lim →

  The principal tool is the use of Peirce decomposition and Schur complement. The Peirce decomposition of a ring R expresses R as a Morita context and conversely, any Morita context arises in this way. Precisely, given a ring R and an idempotent e ∈ E(R) the Peirce decomposition exhibits R as the Morita context ring given by the two corner rings eRe and ēRē, the bimodules eRē and ēRe, and multiplication as bimodule homomorphisms. The Peirce decomposition (or Peirce isomorphism) sends an element (We will use upper letters for images under the isomorphism, a.k.a elements written in matrix form). The Schur complement acts for a replacement of the determinant for matrices over non-commutative rings or Morita context to prove or disprove invertibility and compute the inverse, when the coefficient in the upper left (or lower right) corner is invertible. Let M =

						a b c d	be a
	matrix in a Morita context (A, B, C, D). Assume that a is invertible in the unital ring
	A. Then the Schur complement		
	a = eae a 1	+ eaē a 2	+ ēae a 3	+ ēaē a 4	to A =	a 1 a 2 a 3 a 4

  185, Theorem 3.14] * and [113] * ). Proposition 23.2.4 ([141, Proposition 4.6]). Let R be a ring, and a ∈ reg(R). If a 2 = 0, then a is perspective. Also, we were able to improve most of the previous results regarding special cleanness to perspectivity. Corollary 23.2.5 ([141, Corollaries 5.1, 5.2, 5.3]

The extension of the previous notions to general (non-unital) rings (Chapter 22);

The study of chains of associated idempotents, and their relation to perspectivity of submodules, group invertible elements, special clean elements, but also arithmetic and "Euclid's algorithm" (Chapter 24).

Chapter 10

The "Reverse Order Law" for the group inverse in semigroups and rings

In this section, we continue our study of group inverses of products, but we now also assume that a and b are group invertible. Our ultimate goal is to provide necessary and sufficient conditions for the one-sided reverse order law (ROL) to hold:

To achieve this goal, we first study the two-sided ROL for the group inverse:

(ab) # = b # a # and (ba) # = a # b # , in semigroups and rings. Second, we prove that under finiteness conditions, the two sided ROL is actually equivalent with the one-sided ROL.

) The two-sided ROL and H-commutation

The main contribution of [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF] is to relate the ROL for the group inverse to Green's preorders. In the sequel, K ≤a = {x ∈ S|x ≤ K a} for K = L, R, H.

First, certain "inequalities" imply the two-sided ROL. Second, the equality (ba) # = a # b # relates to Green's preorder ≤ H .

Lemma 10.1.2 ([149, Lemma 2.3]). Let S be a semigroup and a, b ∈ S be group elements such that ab is group invertible and (ab) # = b # a # . Then ab ≤ H ba.

Combining these lemmas, and using knowledge on H-commutation as studied in [2] * , we derive the main theorem of [START_REF] Mary | Reverse order law for the group inverse in semigroups and rings[END_REF]. We make some observations:

if a is in invertible along d, then d is L-related to an idempotent (the identity of H ad ). Thus d is regular, so that I(dad) is not empty (equivalently, d = dab = d a(da) # d). The equality a -d = d(dad) -d was proved by Benitez and Boasso [11,Theorem 8.4] * , in the context of rings. But their result carries out straightforwardly to semigroups;

(3) is [103, Theorem 3] * . It claims that the inverse along an element can be characterized as an outer inverse with prescribed idempotents. characterizations ( 4) and (5) show that group inverses are ubiquitous with regard to generalized inverses. In [START_REF] Guterman | Ordering orders and quotient rings. Semigroups, Categories, and Partial Algebras: ICSAA 2019[END_REF]Theorem 5.17] * , the authors make use of these characterizations to prove that quotient rings along a function are Fountain-Gould quotient rings;

The equation dad H d characterizes a as a kind of "inner inverse of d modulo H", a statement we took literally and studied carefully in [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF]. Equivalently, d may be interpreted as an "outer inverse of a modulo H", a direction followed for instance by Fan et al. [217] * ;

The equality H d aH d = H d claims that G = H d is a maximal subgroup of the variant semigroup S a = (S, . a ) with multiplication x. a y = xay. Conversely, we can prove that any maximal subgroup G of S a is of the form H d , for some d such that a is invertible along d (and the identity of G is a -d ).

Interestingly, the case a -d ∈ V (a) relates to trace products, a direct consequence of Miller and Clifford's theorem 1.1.1. From the equivalence (2) ⇐⇒ (3) in the theorem, we deduce that a -a exists iff a H a 2 , that is a is group invertible. Actually, a -a = a # in this case [START_REF] Mary | On generalized inverses and Green's relations[END_REF]Theorem 11] (and many more generalized inverses can be characterized as inverses along a specific (5) S is a Clifford semigroup.

To my very surprise, I just discovered very recently an article due to M. Petrich and also published in 2014 (as [START_REF] Mary | Classes of semigroups modulo green's relation H[END_REF]) in which some previous equivalences involving cryptic inverse semigroups were also proved [START_REF] Petrich | Characterizing pure, cryptic and clifford inverse semigroups[END_REF]Theorem 4.1 and Corollary 4.3] * . The motivation and approach of [192] * is however very different in nature.

A cornerstone of the next results is the relationship between chains of different length between product of reflexive inverses. In particular, for any p ≥ 0, if any b ∈ V (a) is 2p-chained regular then a is 2p-antichained regular and the converse is true for p ≥ 1 [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]Corollary 2.6]. In order to better understand these chained and anti-chained regular elements, we define inductively, for any semigroup S and any set Λ ⊆ S, V 0 (Λ) = Λ and

(In case of a single element, we write V p (a) instead of V p ({a})). By induction, the following equality also holds:

We now characterize 2p + 2-chained regular elements in terms of V p (S # ). Proposition 16.1.2 ([139, Proposition 2.7]). Let S be a semigroup, a ∈ reg(S) and p ∈ N. Then the following statements are equivalent:

(1) a is 2p + 2-chained regular (for all b ∈ V (a), ab ∼ p+1 rℓ ba);

In particular, S is 2p + 2-chained iff reg(S) = V p (S # ).

In the particular case p = 0, this allows to identify 2-chained regular elements with completely regular (equiv. group invertible) elements. [START_REF] Blyth | Rp-dominated regular semigroups[END_REF].2 ) Some special cases: 1 and 2-chains 1.

x -y ∈ R -1 ; 2. there exists e ∈ E(R), eR = xR and ēR = yR. In this case, e is unique and satisfies ē = a -(x -y) -1 .

In the particular case of an endomorphisms ring R = End(M ), where M is a (right) module (over a given ring k) then Theorem 20. 

In all the previous results, the idempotents e and f are distinct in general. We finally focus on the case e = f . Theorem 20.2.6 ([153, Theorem 2.2]). Let a ∈ R and assume that a is invertible along e, 1 -a is invertible along ē = 1 -e for some idempotent e ∈ E(R). Then :

1. a -e -(1 -a) -ē is invertible; 2. a is clean.

Thus the set {a ∈ R|a -e and (1 -a) -ē exist for some e ∈ E(R)} defines a subset of the set of clean elements. By [153, Lemma 2.1, Theorem 5.1 and Corollary 5.1] it contains both the strongly regular and the strongly clean elements (see next section). This set will appear in our study of Cline's formula and Jacobson lemma (Chapter 21). One must keep in mind that under the previous assumptions, even if aa is clean, a -ē is not a unit in general (unless for instance eaē = 0 or ēae = 0).

STRONGLY CLEAN ELEMENTS BY GENERALIZED (OUTER) INVERSES113

) Strongly clean elements by generalized (outer) inverses

Recall that a ∈ R is strongly clean if we can find a clean decomposition a = ē + u, e ∈ E(R) and u ∈ R -1 such that additionally, two of the three elements commute (in which case all three elements commute). Strongly clean elements are actually those clean elements for which e = f in Theorem 20.2.1, for then eae = ae and e(1 -a)ē = 0, that also reads eae = ea.

In other words, a is strongly clean iff there exists and idempotent e commuting with a such that a is invertible along e (eae is a unit in eRe) and 1 -a is invertible along ē (ē(1 -a)ē is a unit in ēRē).

In terms of outer inverses only we deduce the following corollary, where the additional invertibility assumption is automatic. 

As noted in [51] * , in this case (1

, which we can also recover from Corollary 20.2.3.

From the above results we get another characterization of strongly clean elements by outer inverses where:

1. the commutation is only implicit; 2. y is not assumed to be a outer inverse of (1 -a). Indeed, only z = y(1 -a)y is in general (also, z = (1 -a) -(1-e) with e = ax in this case). Using this methodology, we recover that strongly regular elements are (strongly) clean elements with an additional property (see also Section 12.1 and the commentaries of Theorem 12.1.1).

Theorem 20.3.5 ([153, Theorem 5.1]). Let a ∈ R. then the following statements are equivalent:

1. a is strongly regular; 2. There exist a clean decomposition a = ē + u with e ∈ E(R), u ∈ R -1 such that aē = 0; 3. There exist a strongly clean decomposition a = ē + u with e ∈ E(R), u ∈ R -1

such that aē = 0 = ēa.

) Special clean elements by generalized (outer) inverses

Most of the results presented in this section have been previously given in Section 12.2.

As explained in the foreword, they are given there a second time in order to make the part regarding ring theory self-contained.

Recall that an element a ∈ R is special clean (see [1], [START_REF] Camillo | A characterization of unit regular rings[END_REF]) if it admits a clean decomposition a = ē + u for some e ∈ E(R), u ∈ U(R) that satisfies the additional requirement aR ∩ ēR = {0}. The set of special clean elements of R will be denoted by sp. cl(R).

There are thee main results. (1) u = a -ē ∈ U(R) and aR ∩ ēR = 0 (a is special clean);

is a reflexive inverse of a which is strongly regular) and zz # = e; (7) aza = a, zaz = z and zz # = e for some z ∈ R # .

Observe that the equivalence (1) ⇐⇒ (3) (for instance) proves the left-right symmetry of the concept of special clean element. While direct sums of right modules have been extensively studied, mixed-type decompositions (involving both right and left modules) have attracted less attention. Condition (3) claims that the direct sums conditions in (2) and (2 ′ ) together actually imply invertibility of u (hence that a is special clean). The equivalence (1) ⇐⇒ (4) claims that a is special clean iff aR and bR are perspective (share a common complementary summand) for some b ∈ V (a). The left-right symmetry, as well as the equivalences (1) ⇐⇒ (5) ⇐⇒ (7) were also proven independently by D. Khurana, T.Y. Lam, P.P. Nielsen and J. Šter about the same time [113, Theorem 2.13] * , and are now well-known and widely used.

A very different (and probably more visual) proof of the equivalence (1) ⇐⇒ (6) is given in [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Theorem 6.1] . It relies on Peirce decomposition and the following trivial fact: a group invertible element z ∈ R # is always a unit in eRe for e = zz # , and conversely a unit z in some corner ring eRe, e ∈ E(R) is always group invertible (in R).

Theorem 20.4.2 ([161, Theorem 6.1]). Let R be a ring and a ∈ R, e ∈ E(R). Then the following statement are equivalent:

1. There exists z ∈ U(eRe) such that aza = a, zaz = z; 2. The Peirce decomposition of a relative to the idempotent e is of the form A = a 1 a 2 a 3 a 4 with a 1 ∈ U(eRe) with inverse z ∈ U(eRe) and a 4 = a 3 za 2 ;

3. u = a -ē ∈ U (R) and au -1 a = a (a is special clean). Let R be a ring, M be a (right) module and A, A ′ ⊆ ⊕ M be direct summands. By Ā and Ā′ we denote any two complementary summands of A and A ′ . We first recall the classical definitions involving perspectivity.

(1) the two direct summands A and A ′ are perspective (and we note A ∼ ⊕ A ′ ) if they share a common complementary summand (A

(2) The module M is perspective if any two isomorphic direct summands are perspective (for any two

Following [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], we introduce some more definitions (the notion of 2-perspectivity already appears in [82] * ), and let a be an endomorphism of M .

(1) The direct summands A, A ′ ⊆ ⊕ M are 0-perspective if A = A ′ , and we also write A ∼ 0 ⊕ A ′ . Then, for any p ∈ N, A, A ′ are p + 1-perspective and we write (2) The module M is p-perspective, p ∈ N if any two isomorphic direct summands are p-perspective;

(3) The module We will also write (2p + 1)/2-perspective instead of p + 1/2-perspective, so that we have a notion of n/2-perspective endomorphisms or modules, for any n ∈ N. The ring

Supporting all the results of this section are the following "equivalences": direct sum decomposition correspond to idempotents, and direct summands correspond to images of regular endomorphisms. Each choice of a complementary summand corresponds to a specific reflexive inverse. All these statements are recalled precisely in [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF] and [141], and can be thought as the realization of the general equivalence between add(M ), the category of direct summands of finite direct sums of M , and the category of finitely generated projective modules over End(M ) [57] * .

) A uniform theorem

A cornerstone of the next results is the relationship between chains of different length between product of reflexive inverses. It is valid in the general setting of semigroups. In order to better understand these chained and anti-chained regular elements, we define inductively, for any semigroup S and any set Λ ⊆ S, V 0 (Λ) = Λ and

(In case of a single element, we write V p (a) instead of V p ({a})). By induction, the following equality also holds:

We now characterize 2p + 2-chained regular elements in terms of V p (S # ).

Proposition 24.2.2 ([139, Proposition 2.7]). Let S be a semigroup, a ∈ reg(S) and p ∈ N. Then the following statements are equivalent:

(1) a is 2p + 2-chained regular (for all b ∈ V (a), ab ∼ p+1 rℓ ba);

In particular, S is 2p + 2-chained iff reg(S) = V p (S # ).

In the particular case p = 0, this allows to identify 2-chained regular elements with completely regular (or strongly regular, or group invertible) elements.

We turn back to the case of rings and give two uniform theorems, one element-wise and the second one global. It is crucial at this point to observe that for n odd, image n/2-perspectivity and kernel n/2-perspectivity coincide, and correspond to n+2-chained regularity. However, this does not relate a priori to anti-chained regularity. Also, for n even, image n/2perspectivity and kernel n/2-perspectivity (equivalently, n + 1-chained regularity and n + 1-anti-chained regularity) are a priori distinct notions.

Theorem 24.2.4 ([139, Theorem 3.5]). Let M be a module, R = End(M ), MR = (R, .) and n ∈ N. Then the following statements are equivalent:

(1) M is n/2-perspective;

(2) the right module R R (equiv. the left module R R) is n/2-perspective (R is n/2perspective); (3) regular endomorphisms of M are image (equiv. kernel) n/2-perspective; (4) regular elements of MR are n + 1-chained regular (equiv. n + 1-anti-chained regular); (5) The monoid MR satisfies P(n + 1). Therefore, n/2-perspectivity is an "endomorphism ring property" (ER-property [129] * ), in that it depend only of the endomorphism ring of the module. But even more precisely, it is a "monoid ring property", for it depends only on the monoid part of the endomorphism ring.

) n/2-perspectivity, standard constructions and lifting hypothesis

It is known [69] * (resp. [110] * , [129] * ) that a subring, a factor ring or a matrix ring over a perspective (resp. IC) ring may not be perspective, but that direct summands of perspective (resp. IC) modules are perspective (resp. IC) and corner rings of perspective (resp. IC) rings are perspective (resp. IC). Also, factoring by an ideal in the Jacobson radical preserves perspectivity (resp. IC). We consider these statements for n/2 perspectivity, n ∈ N.

The following lemma generalize [69, Proposition 5.4 and Corollary 5.5] * (case n = 2, M is perspective) to smaller values of n.

Lemma 24.3.1 ([139, Lemma 5.1 and Corollary 5.2]). Let n ≤ 2 and M (resp. R) be a n/2-perspective module (resp. ring). Let also N (resp. eRe, e ∈ E(R)) be a direct summand of M (resp. corner ring). Then N (resp. eRe)is n/2-perspective.

We now know that this property is no longer valid for 3/2-perspective rings. Indeed, from, [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF]Corollary 4.4], the module Z 3 and its endomorphism ring M 3 (Z) are 3/2perspective (or equivalently, isomorphic idempotents of M 3 (Z) are 4-chained, P(4) holds). However, its direct summand Z 2 and the associated corner ring M 2 (Z) are known to admit chains of any length [48] * . Proposition 24.3.2 ([139, Proposition 5.8]). Let n ∈ N and R be a n/2-perspective ring. Let also S a subring and J and ideal such that R = S ⊕ J. Then S is n/2perspective. Some authors have studied lifting of associated idempotents [112] * , [162] * . Building upon their results, I proved the following facts about factor rings.

Proposition 24.3.3 ([139, Proposition 5.9]). Let R be a ring, J an ideal and n ∈ N.

(As shown in [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], (1) fails for n = 0.)

As a consequence of Proposition 24.3.3, we get that N R rings (a ring is N R if Nil(R)set of nilpotent elements of the ring-is a subring of R) are 1/2-perspective. This applies notably to N I rings (Nil(R) is an ideal) and U U rings (all units are unipotent).

Proposition 24.3.4 ([139, Proposition 5.11]). Let R be a N R ring. Then R is 1/2perspective.

Our final result considers specific constructions.

Proposition 24.3.5 ([139, Proposition 5.9]). Let n ∈ N and R be a ring.

( As Z is 0-perspective but U 2 (Z) is not abelian, (2) fails for n = 0. Also, the converse of (4) fails in general [69] * .

In the next sections, I will relate n-chains (equiv. (n -1)/2-perspectivity) to known concepts for n small (n = 1, 2, 3, 4).

) 1-chains and endoabelian modules

Let R be a ring and M a module. An element a ∈ R is right (resp. left) subcommutative if Ra ⊆ aR (resp. aR ⊆ Ra). A submodule A of M is fully invariant if for any b ∈ End(M ), bA ⊆ A. Right (resp. left) subcommutative elements of a ring are also called right (resp. left) duo-elements, and a right (resp. left) subcommutative idempotent e ∈ R is also called left (resp. right) semicentral (for Re ⊆ eR ⇐⇒ Re = eRe).

Next result provides a list of equivalent characterizations of kernel 0-perspective endomorphisms. The connection with semicentral idempotents was also observed in [ We can easily add another characterization by considering conjugate idempotents or idempotents in the same ≈-class instead of isomorphic ones. Indeed, let R be a ring such that idempotents in the same ≈-class are right associates. Then they are weakly 2chained and the ring is (strongly) 2-chained by [115, Theorem 3.13] * , so that isomorphic idempotents are 2-chained hence in the same ≈-class. Thus they are right associate by hypothesis hence R is abelian.

Corollary 24.4.3 (unpublished). Let R be a ring. The following statements are equivalent:

(1) R is abelian ;

(2) isomorphic idempotents of MR are right associates;

(3) idempotents in the same ≈-class are right associates.

In particular, D(1) ⇒ P(1).

) 2-chains and strongly regular elements

We continue our study and investigate 2-chains. This relates to strong regularity. Recall that a module M is 1/2-perspective if whenever M = A ⊕ Ā and A ≃ A ′ then M = A ′ ⊕ Ā′ . In [115] * , the authors describe this property in the following clever and informative form: "isomorphic direct summands share all their complements", and obtain the last equivalence of Corollary 24.5.1 ([115, Theorem 3.18] * ).

Corollary 24.5.1 ([139, Corollary 4.10]). Let M be a module (resp. R a ring).

(1)

perspective iff regular endomorphisms are strongly regular (resp. reg(R) = R # ).

In [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], I also discussed the semigroup case, notably when the semigroup is π-regular. (2) a is regular and, for all b ∈ V (a), ab -ba ∈ J(R);

(3) a is 2-chained regular (strongly regular) and 2-anti-chained regular.

By [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF]Example 4.5], there exist 2-chained regular elements that are not 2-antichained regular. This element-wise result has the following global consequence.

Corollary 24.5.3 ([139, Corollary 4.17]). R is 1/2-perspective iff isomorphic idempotents of R are equal modulo the Jacobson radical.

It happens that, concomitantly and independently to the redaction of [START_REF] Mary | n-chained semigroups and n/2-perspective modules and rings[END_REF], D. Khurana and P.P. Nielsen proved an even more precise result.

Theorem 24.5.4 ([115, Theorem 3.13] * ). For a ring R, the following are equivalent:

(1) Any two isomorphic idempotents are strongly 2-chained;

(2) reg(R) = sreg(R); In particular, D(2) (weakly) ⇒ P(2). In [140] (see Section 24.8.2), we add another characterization based on transitivity of weak/strong 2-chaining.

) Perspective rings, 3-chains and perspective elements

Perspective modules and rings have been studied thoroughly in [69] * . One of their main result is that a ring R has stable range one iff the ring M 2 (R) is perspective.

In [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF]Proposition 4.1], we provide a very short proof of this result using association chains. In [141], we propose an element-wise study of such rings, via the introduction of perspective elements. Right (resp. left) perspective elements of a ring are shown to correspond to 3-chained-regular and 3-anti-chained-regular elements respectively, and right (resp. left) perspective elements an endomorphism ring are shown to correspond to image (resp. kernel) 1-perspective endomorphisms. But more importantly we prove that the notion is left-right symmetric [141, Theorem 3.4], making great use of [START_REF] Khurana | Idempotent chains and bounded generation of SL 2[END_REF]Lemma 3.7].

We recall the definition of perspective elements and its various characterizations below, making use of the left-right symmetry of the notion.

Definition 24.6.1 ([141, Definition 3.2]). Let R be a ring, and a ∈ R. We say that a is perspective if it is regular and any complementary summand of r R (a) is perspective with aR.

The set of perspective elements of R will be denoted by per(R).

The next theorem characterizes perspective elements in terms of clean and special clean decompositions, reflexive inverses, idempotents and direct summands. (1) a is perspective iff for all z 2 ∈ eR(1 -e), a 1 + (a 1 z 2 + a 2 )z 1 is a unit in eRe for some z 1 ∈ (1 -e)Re; (2) a is special clean iff a 1 + (a 1 z 2 + a 2 )z 1 is a unit in eRe for some z 1 ∈ (1 -e)Re and z 2 ∈ eR(1 -e).

To compare properly with Theorem 23. (5) Weak 2-chaining is transitive in R (equiv. in each ≈-class).

) Transitivity of perspectivity and IC

In [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF], we consider the following question. If an IC ring has perspectivity transitive, is it perspective? This question is motivated as follows. For a regular ring R, the following conditions are well known to be equivalent:

(1) The ring R is unit-regular.

(2) The ring R is IC.

(3) The ring R is perspective ring (4) The ring M 2 (R) has transitivity of perspectivity.

(5) The ring R has stable range one.

They are not equivalent in the non-regular case, but still some implications hold:

M 2 (R) has transitive perspectivity iff R has stable range one [116, Theorem 2.5] * , in which case R is perspective;

If R is perspective then R has transitive perspectivity and R is an IC ring.

Also, IC rings are very close to unit-regular rings; actually, a ring R is IC iff reg(R) = ureg(R). This raises the tantalizing possibility that any IC ring with transitive perspectivity must be perspective. In [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF], we construct a counterexample, thus proving the following result.

Theorem 24.8.13 ([156, Theorem 1.1]). There exists an IC ring with transitive perspectivity that is not a perspective ring. Now, I present this counterexample.

Let D be the subset of Z -{0} consisting of those integers whose prime factors are all congruent to ±1 (mod 8). Note that D is a multiplicatively closed subset of Z, and fix T = D -1 Z, which is a subring of Q. It makes sense to talk about congruence modulo 8 in T ; also note that any element of T that is not congruent to ±1 (mod 8) is not a unit.

Fix R = T 4T 4T T , which is a subring of S = M 2 (T ). In [START_REF] Mary | IC rings and transitivity of perspectivity[END_REF], we prove that (1) R is an IC ring;