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Spécialité / discipline de doctorat : Informatique
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Abstract

The last decade has witnessed a huge growth in the development of deep neural
network-based techniques for graphs and Graph Neural Networks (GNNs) have proven
to be the most effective for many graph machine learning problems. These powerful
models are based on node representation learning which avoids the tedious and time-
consuming task of hand-crafted feature engineering. However, the internal working of
GNN models remains opaque which is the major obstacle to their deployment, raising
some issues on societal acceptability and trustworthiness, requirements which enjoin
making explicit the internal functioning of such models.

In this thesis, we study the problem of GNN explainability. Our main contribution,
INSIDE-GNN, aims at mining activation rules in the hidden layers to understand how
the GNNs perceive the world. The problem is not to discover activation rules that are
individually highly discriminating for an output of the model. Instead, the challenge
is to provide a small set of rules that cover all input graphs. We introduce a subjective
activation pattern domain to solve this task. INSIDE-GNN is thus an effective and principled
algorithm to enumerate activation rules in each hidden layer. The proposed approach for
quantifying the interest of these rules is rooted in information theory and can account for
background knowledge on the input graph data. Activation rules can subsequently be
used for explaining GNN decisions. Experiments on both synthetic and real-life datasets
show highly competitive performance, with up to 200% improvement in fidelity on
explaining graph classification model over the state-of-the art methods.

Activation rules are not interpretable by themselves since they only define internal
representations having a strong impact on the classification process. They are not suffi-
cient to examine what the GNN actually captures and shed light on the hidden features
built by the GNN. We propose to interpret these rules by identifying a graph that is fully
embedded in the related subspace identified by the rule. The devised method, named
DISCERN, is based on a Monte Carlo Tree Search controlled by a proximity measure be-
tween the graph embedding and the internal representation of the rule, as well as a
realism factor that constrains the distribution of the labels of the graph to be similar to
that observed on the dataset. The obtained graphs are realistic and fully understandable
by the end user.
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Résumé

La dernière décennie a vu une énorme croissance dans le développement de techniques
basées sur les réseaux de neurones profonds pour les graphes. Les réseaux de neu-
rones sur graphes (GNNs) se sont avérés les plus efficaces pour de nombreux problèmes
d’apprentissage automatique de graphes. Ces modèles puissants sont basés sur l’apprentis-
sage de la représentation des nœuds, ce qui évite la tâche fastidieuse de construction arti-
sanale de descripteurs de graphes. Cependant, le fonctionnement interne des modèles GNN
reste opaque, ce qui constitue un obstacle majeur à leur déploiement, soulevant des questions
d’acceptabilité sociale et de fiabilité, limites qui peuvent être surmontées par l’explication
du fonctionnement interne de tels modèles.

Dans cette thèse, nous étudions le problème de l’explicabilité des GNNs. Notre con-
tribution principale, INSIDE-GNN, vise à extraire les règles d’activation dans les couches
cachées du modèle pour comprendre quels descripteurs et caractéristiques de graphes
ont été automatiquement extraits des graphes. Le problème n’est pas de découvrir des
règles d’activation individuellement très discriminantes pour une classe du modèle, mais le
défi consiste à fournir un petit ensemble de règles qui couvrent tous les graphes d’entrée.
Nous proposons un domaine de motifs subjectif pour résoudre cette tâche. Nous pro-
posons l’algorithme INSIDE-GNN qui est efficace pour énumérer les règles d’activation dans
chaque couche cachée. L’approche proposée pour quantifier l’intérêt de ces règles repose
sur la théorie de l’information pour construire un modèle des connaissances apportées par
l’ensemble des règles. Les règles d’activation peuvent ensuite être utilisées pour expliquer
les décisions du GNN. Les expériences sur des ensembles de données synthétiques et réels
montrent des performances très compétitives, avec jusqu’à 200 % d’amélioration de la fidélité
sur l’explication du modèle de classification des graphes par rapport aux méthodes de l’état
de l’art.

Cependant, les règles d’activation ne sont pas interprétables en elles-mêmes puisqu’elles
reposent sur les représentations internes du GNN qui ont un fort impact dans le processus de
classification. Elles ne permettent pas d’examiner ce que le GNN capture réellement et à faire
la lumière sur les descripteurs cachés construits par le GNN. Nous proposons d’interpréter
ces règles en identifiant un graphe entièrement plongé dans le sous-espace associé à chaque
règle. La méthode DISCERN que nous avons mise mise au point est basée sur une recherche
arborescente de type Monte Carlo dirigée par une mesure de proximité entre le plongement
du graphe et la représentation interne de la règle. Les graphes ainsi obtenus sont réalistes et
pleinement compréhensibles par l’utilisateur final.



Chapter 1

Introduction

1.1 Context

This thesis has been implemented in the Data Mining and Machine Learning (DM2L) group
thanks to a Phd grant from the IDEX project ”mAChine LeArning & Data sciEnce for coMplex
and dynamICal modelS” (ACADEMICS). This collaborative project aims to combine data
science and machine learning, two areas of excellence for the involved laboratories (Lab-
oratoire de Physique (LP) and Laboratoire Informatique du Parallélisme (LIP) both from
ENS Lyon, Laboratoire Hubert Curien (LabHC) from Université Jean Monnet, Laboratoire
d’InfoRmatique en Images et Systèmes d’information (LIRIS)). The challenge is to jointly
develop formal frameworks and learning algorithms adapted to difficult scientific contexts
involving heterogeneous, irregular, dynamic and complex data, particularly in the form of
graphs and networks.

The DM2L group has a strong and long time expertise in Data Mining (Calders et al.,
2006), an interdisciplinary subfield of computer science and statistics whose main goal is
to extract relevant information from data. Especially, DM2L members have devised many
generic algorithms to discover patterns from datasets with a particular attention to the
consideration of the prior knowledge, the expressive power and the actionability of the
patterns.

Most of this research – and more generally, research in pattern mining – can be easily
summarized from an Inductive Database perspective (Imielinski and Mannila, 1996) as the
computation of a theory Th defined as:

ThpL,D,Cq “ tψ P L | Cpψ,Dq is trueu.

Given a pattern languageL, some constraintsC and a databaseD, a pattern mining algorithm
aims at enumerating the elements of the language that fulfill the constraints within the data.
In practice, the users define their interests in a declarative way and do not specify how to
compute the solution. This is an elegant way to define pattern mining. Notice that this is
not just a theoretical abstraction and that there have been Inductive Database prototypes
proposed in the literature, e.g., the mining view system (Blockeel et al., 2012).

Obviously, many variants are possible. For instance, the pattern mining algorithms can
be required to be complete (as in the above formalization) or they can look for a subset of all
the patterns (top-k, representative samples) for which the constraints hold. Similarly, on the

3
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constraint part, the users are supposed to express their interests in term of constraints (max-
imal patterns, threshold-based constraints) so that the pattern mining task is a satisfaction
problem. Expressing an interest with constraints is difficult for the users, but alternatively
they can emit explicit preferences or have implicit preferences that have to be acquired within
the mining process. In this case, the pattern mining task turns out to be an optimization
problem.

Based on the inductive database formalization, we can easily summarize via two adjec-
tives the challenges researchers in data mining aim to tackle: better and faster. Indeed, data
mining is always guided by the search for patterns of better quality while taking into account
scalability issues.

The major added value of pattern mining is the interpretability of the results, which
is a highly demanded feature in Machine Learning, especially since the advent of neural
networks.

1.2 Problems addressed in this thesis

In this thesis, we are interested in the explainability of machine learning on graphs meth-
ods. Traditional machine learning methods for graphs do not suffer from explainability
issues since they require handcrafted features based on graph statistics that are inherently
interpretable. Explainability issues have actually appeared with the advent of Graph Neu-
ral Networks (GNNs) which have proven to be the most effective for many graph machine
learning problems. These powerful models are based on node representation learning which
avoids the tedious and time-consuming task of hand-crafted feature engineering. However,
the internal working of GNN models remains opaque which is the major obstacle to the
deployment of GNNs, raising some issues on societal acceptability and trustworthiness,
properties which require making explicit the internal functioning of such models.

The last five years have witnessed a huge growth in the definition of techniques for
explaining deep neural networks (Burkart and Huber, 2021, Molnar, 2020), especially for
image and text data. However, these methods cannot be directly used for explaining GNN
due to the none grid-like format of graphs (Yuan et al., 2020b). Nevertheless, a few proposals
have been made to explain GNNs according to two distinct approaches and have gained
visibility:

Instance-level methods. These approaches aim to learn a mask seen as an explanation of
the model decision for a graph instance (Baldassarre and Azizpour, 2019, Duval and
Malliaros, 2021, Luo et al., 2020, Pope et al., 2019, Schnake et al., 2020, Ying et al., 2019).
These methods provide input-dependent explanations specific to an input graph by
identifying its important characteristics on which the model builds its prediction. We
can identify four different families of methods.

The gradient/feature-based methods (Baldassarre and Azizpour, 2019, Pope et al., 2019) –
directly adapted from dedicated image and text solutions – use the gradients or hidden
feature map values to compute the importance of the input features.

The perturbation-based methods (Luo et al., 2020, Ying et al., 2019) aim at learning a graph
mask by studying the prediction changes when perturbing the input graphs.
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The surrogate methods (Huang et al., 2020, Vu and Thai, 2020) explain an input graph
by sampling its neighborhood and learning an interpretable model.

The decomposition-based methods (Pope et al., 2019, Schnake et al., 2020) start by de-
composing the prediction score to the neurons in the last hidden layer. Then, they
back-propagate these scores layer by layer until reaching the input space.

On top of that, GraphSVX (Duval and Malliaros, 2021) falls into these four categories
by learning a surrogate explanation model on a perturbed dataset that decomposes the
explained prediction among input nodes and features based on their contribution.

These methods perform well on metrics evaluating the relationships between expla-
nations and model decisions (i.e., fidelity and infidelity metrics). However, it appears
that these masks can lead to unreliable explanations, and most importantly, can lead
to misleading interpretations for the end-user. One can be tempted to interpret all
the nodes or features of the mask as responsible for the prediction leading to wrong
assumptions. For instance, a node feature may be perceived as important for the GNN
prediction, whereas there is no difference between its distribution within and outside
the graphs validating the mask.

Model-level methods. The only existing model-level method is XGNN (Yuan et al., 2020a)
which aims at training a graph generator to maximize the predicted probability for a
class and uses such graphs to explain this class. However, it is based on the strong
assumption that each class can be explained by a single graph, which is unrealistic
when considering complex phenomena.

Most of the aforementioned methods aim at either explaining the final decision of a GNN
or generating a representative graph for a given decision. We believe that focusing only on
the model decision does not allow to fully understand how the model behaves and builds
its decision. One can provide additional insights about the GNN by not only looking at the
output of the model, but also by trying to characterize some representation subspaces that
the model has built in the different layers.

Imagine you are a scientist who has a GNN that accurately predicts the graphs you are
studying. This means that the GNN is able to capture interesting features and combine them.
Therefore, understanding how the GNN constructs its internal representation would shed
new light on your field of research. This is our goal and this is why we introduce, in this
thesis, new knowledge discovery from GNN models.

1.3 Contributions

This thesis addresses the problem of explaining GNNs from the perspective of knowledge
discovery from models. It requires the definition of new pattern domains adapted to the inner
representation of the GNNs. Furthermore, the discovered patterns must be interpretable by
a human user which demands the redescription of the patterns discovered in the hidden
layers with an interpretable language.

The proposed approaches can be structured in two contributions:

Mining activation rule sets in GNNs: Problem and method. We introduce the novel prob-
lem of mining activation rule sets in GNNs. We consider GNNs for graph binary
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classification. We introduce a new method, called INSIDE, that aims at discovering
activation rules in each hidden layer of the GNN. An activation rule captures a specific
configuration in the embedding space of a given layer that is considered important
in the GNN decision, i.e., discriminant for an output label. The problem is therefore
not only to discover highly discriminant activation rules but also to provide a pattern
set that covers all GNN decisions on the input graphs. To this end, we define a mea-
sure, rooted in the FORSIED framework (De Bie, 2011) to quantify the information
provided by a rule relative to that supplied by the rules already extracted. We devise a
branch-and-bound algorithm that exploits upper-bound-based pruning properties to
discover such rules. We report an empirical evaluation which studies the performance
and the potential of the proposed approach for providing instance-level explanations
or insights about the model. INSIDE is compared against SOTA explanation methods
and outperforms them by up to 200%. We also study the characterization of activation
rules thanks to interpretable pattern languages. We demonstrate that this allows to
obtain good summaries of the hidden features captured by the GNN. Based on this,
we eventually compare our approach against a model-level explanation method.

Characterizing activation rules with representative graphs. We introduce the novel prob-
lem of characterizing internal representations of GNNs as well as our method DISCERN
to generate realistic graphs that are representative of the activation rules. This method
is based on a Monte Carlo Tree Search which relies on a proximity measure between a
graph and an activation rule. There are different ways to construct such measures and
we propose three different ones. We report an empirical evaluation on several real-
world datasets where we study the ability of DISCERN to provide good explanations
with realistic graphs and compare the three metrics we introduce. DISCERN is also
compared to six state of the art baselines. These experiments demonstrate that our
method provides better and more realistic explanations.

1.4 Structure of the thesis

This thesis is organized as follows. Chapter 2 presents the state-of-the-art on the related
topics: (1) Graph Machine Learning, (2) explainable AI and (3) explaining GNNs. This
chapter also discusses the limitations we propose to address in this thesis. We then present
our first contribution in Chapter 3. We define the activation rules in the hidden layers of the
GNN as well as an algorithm, INSIDE, to mine a relevant set of activation rules. In Chapter
4, we introduce DISCERN, a method to generate an interpretable redescription of activation
rules under the form of graphs. We conclude and discuss the future directions in Chapter 5.

1.5 List of publications

Peer-reviewed French national conferences with proceedings:

• Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline Robardet:
Qu’est-ce que mon GNN capture vraiment ? Exploration des représentations internes
d’un GNN. EGC 2022: 159-170 (best paper award).
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International journals:
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Chapter 2

State of the art

Graphs are ubiquitous and natural data structures for representing interactions in social
science, electronics, communication, biology, transport, chemistry, linguistics. They are a
convenient way to represent all kinds of data. Such structures are studied since Leonhard
Euler in 1736. The number of problems considered on graphs is very large and covers classical
algorithmic questions, such as the computation of shortest paths or maximum flows, but
also supervised and unsupervised classification problems (prediction of graph properties,
discovery of communities). Due to the success of numerical approaches on complex data
such as texts or images, an approach that is currently widely studied for machine learning on
graphs is embedding, a method used to represent discrete variables as continuous vectors.
Once the graph represented in a Euclidean space, standard methods can then be used. This
numerically very powerful approach, however, loses one of the essential qualities of graphs,
which is to be understandable by the end-user. Methods for explaining machine learning
models are then developed in order to meet this need for interpretation and validation of
methods.

2.1 Graphs

A graph is set of objects (nodes), some of which are interconnected (edges). The nodes can
store different kind of information: simply an index, a single value, categorical information
or a data structure. Similarly, the edges can be directed or un-directed and depict complex
interactions with additional information. Some examples of graphs are given below:

• A road graph has nodes that represent road intersections and directed edges stand for
streets with a value for the length of the road.

• A molecule is depicted by a graph whose nodes are associated to labels and act for the
atoms, and labeled edges represent typed bounds.

• A social network can be seen as a graph whose nodes represent individuals connected
by different types of edges, such as friendship (undirected) or following (directed).

• A relational database can also be seen as a graph, with nodes as entities and edges as
relations.

9
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More formally, a graph is described as a pair G “ pV,Eq with V the set of nodes and
E the set of edges seen as pairs of nodes. There are two main ways to represent a graph:
adjacency matrices and adjacency lists. With the adjacency matrix, the edges are described
by a matrix A P R|V|ˆ|V| where Ai, j “ 1 if the edge pi, jq P E and Ai, j “ 0 otherwise. In the
case of undirected graph, the matrix A is symmetric, and when the edges are weighted, it is
common to store the weights directly in the matrix. Adjacency lists Npuq, u P V are lists of
nodes v such that pu, vq P E: Npuq “ tv PV such that pu, vq P Eu.

2.2 Machine learning on graphs

As previously mentioned, a lot of data can be naturally expressed as graphs or can be enriched
with relational information. If we want to perform classification tasks on this type of data,
it is important to define appropriate machine learning models. The main difficulty is the
intrinsically discrete nature of these data even though the most powerful machine learning
methods require numerical representations. As we have seen, graphs are defined by two
sets on which there is no natural order. Thus, we can have two different representations
of the same graph just by swapping the indices of the nodes. Testing whether two graph
representations correspond to the same graph, named graph isomorphism test, is not known
to be solvable in polynomial time1. This is also the case for most problems derived from the
isomorphism test, such as:

• Sub-graph isomorphism test: Given two graphs G and H, test if G contains a sub-graph
isomorphic to H.

• Graph Edit Distance (GED): given G and H, compute the smallest number of modifi-
cations to do to transform G into H. The elementary modifications are node or edge
addition, suppression or substitution. The GED is probably the most natural and
general distance notion between graphs.

Graph mining techniques based on the search for isomorphic subgraphs, such as gSpan (Yan
and Han, 2002), have been proposed to identify the frequent subgraphs of a graph. By
representing graphs by binary vectors indicating the presence or absence of such subgraphs,
classical machine learning models were used 15 years ago to solve classification problems
(Borgwardt et al., 2008, Deshpande et al., 2005). More recently, following the path paved
by the successes of neural networks to perform classification tasks on complex objects such
as texts or images, neural networks dedicated to the classification of graphs have been
proposed. As for images and texts, they use convolution mechanisms to directly identify
features allowing to discriminate graphs with respect to the considered classification task.
The peculiarity here is that the convolution must be independent of a predefined order.

2.2.1 Machine learning tasks

We are interested in machine learning techniques for classifying data in a supervised way. We
can distinguish the tasks of regression, where the variable to be predicted is numeric, from

1Babai (2016) proposes an algorithm to solve graph isomorphism problem in quasipolynomial
pexppplog nqOp1qqq time.
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that of classification, where we seek to predict categories. On complex data, more specific
tasks are considered. For example, on images, classic tasks are object detection, description of
images called transcription, or the synthesis of new images. On text data, question answering
applications, sentiment analysis, or translation have been considered (LeCun et al., 2015).

In machine learning on graphs, there is a specific set of tasks that encompass link pre-
diction (predicting the existence of an edge between two arbitrary nodes in a graph), node
classification (predicting the category of a node in a graph), and graph classification (predict-
ing the category of a graph in a set of graphs) (Xia et al., 2021). Due to the discrete structure
and the large dimension of the graphs, these tasks are now carried out using the construction
of numerical vectors which embed the graphs (see Figure 2.1) or the nodes (see Figure 2.2)
in a lower dimensional and denser Euclidean space. These vectors are built in such a way
that the distances between them express the topological proximities observed on the graphs.
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Figure 2.1: Construction of graph embeddings that numerically express the topological
structure of the graphs into a low-dimensional space. Distances between vectors represent
the topological proximities between graphs.

Link prediction

Link prediction consists of predicting the existence of an edge between two nodes. In the
typical use case, we consider a large graph in which we want to discover new relationships
between nodes. For example, in biochemical applications where the nodes in the graph
represent a set of drugs and the links describe known interferences when used together, the
machine learning task is to predict new, yet untested side effects (Zitnik et al., 2018). We can
also consider regression tasks, such as for example to predict the electrical flow on a line of
an electrical network (Tschora et al., 2022). In many cases, this task is semi-supervised: We
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Figure 2.2: Construction of node embeddings that numerically express the topological
structure of the node neighborhoods into a low-dimensional space. Distances between
nodes represent the topological proximities between the vicinity of the nodes.

know the presence of some edges, the absence of others and we have some pairs of nodes for
which we do not know if they are connected by an edge or not. The underlying assumption
is that the presence or absence of edges in the graph is not independent and identically
distributed on the graph but depends on topological structures in the neighborhood of the
nodes adjacent to the edges.

Node classification

Node classification tasks take place on large graphs for which we want to predict the category
of a node. For some nodes this target property is known and for others it is not. For example,
considering Wikipedia seen as a set of linked web pages, the objective is to predict the topics
of the pages (de Melo, 2017). On the IMDb data (Internet Movie Database), we can consider
the graph where the nodes are the movies linked by the actors, directors or producers they
share. The goal is to predict the movie genre (Yanardag and Vishwanathan, 2015).

Graph classification

The graph classification task requires having a set of graphs for which we want to predict a
category. Several applications are in biochemistry, for example the prediction of the toxicity
of a molecule or other properties such as mutagenicity (Borgwardt et al., 2005, Dobson and
Doig, 2003, Errica et al., 2019, Morris et al., 2020, Wu et al., 2017).

These are the three main tasks of machine learning on graphs. The most recent techniques
are based on the computation of an embedding of the nodes or the graphs that can then be
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used for downstream processes using other machine learning techniques. In the next section,
we review several methods to produce such an embedding.

2.2.2 From graph to vectors

Data analysis methods generally deal with tabular and numerical data. Many studies have
thus aimed at associating graphs with numerical vectors. For example, Deshpande et al.
(2005) propose a classification algorithm based on identifying frequent subgraphs with
gSpan, constructing Boolean vectors expressing the presence or absence of such subgraphs,
and then learning a classical classification model from these vectors. Other works, such
as (Prado et al., 2013), have focused on the description of each node of a graph using
topological properties. They describe the direct neighborhood of a node using measures
such as degree, clustering coefficient or number of quasi-cliques (Liu and Wong, 2008) that
involve the node. They also consider other properties to characterize a node while taking into
account its connectivity to all other nodes of the graph, by computing graph communities
and associating to each node the size of its community, by evaluating its closeness centrality,
that is to say the inverse of the average distances between the node and all other nodes
reachable from it, by measuring the betweenness centrality equal to the number of times
a vertex appears on a shortest path in the graph, by calculating the eigenvector centrality
measure, that favors vertices connected to nodes with high eigenvector centrality, or by
estimating the Page rank index (Brin and Page, 1998). Graphlets, small networks of size up
to 5 or 6, have also been used to exhibit fine-grained structural properties that make graphs
similar (Charbey and Prieur, 2018).

The problem with such methods is that the properties used to describe the graphs or nodes
are determined a priori using human expertise. Moreover, the calculation of some of these
properties requires enumeration methods which are costly in terms of computational time.
These pitfalls can be avoided by the use of algorithms which automatically construct graph
descriptors, either explicitly with embedding methods, or implicitly with graph kernels
based methods.

2.2.3 Computing distances between graphs

Many machine learning methods use numerical representations of data to calculate distances.
However, distances between graphs can also be computed directly, using kernel methods.
The kernel corresponds to a dot product in a high-dimensional feature space. Thus, in this
space, estimation methods are linear as long as the computation can be formulated in terms
of kernel evaluations, and thus the computation is not done in the high-dimensional space
which remains implicit (Hofmann et al., 2008).

Kernel methods are a family of symmetric positive definite functions such as

Kpg1, g2q “ xϕpg1q, ϕpg2qy

with ϕ a feature map from graph space to Rd and x¨, ¨y the inner product in a Hilbert space.
The goal of kernel methods is to find a kernel function K that does not require to explicitly
define the feature map ϕ to compute the similarity between two graphs. They make possible
the use of many machine learning techniques such as support vector machines, k-means,
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kernel-PCA. Here are some examples of kernels used in graph machine learning (Borgwardt
et al., 2020):

• The random walk kernel KRWpg1, g2q is based on the count of the number of common
walks between the graphs g1 and g2. From the product graph gˆ whose nodes pu, vq

are such that v has the same label as a node of g1 and v has the same label as a node of
g2, there is an edge between pu, vq and pw, zq if u and w are connected by an edge in g1
and that v and z are also connected by an edge in g2 (the two edges having the same
labels if the graphs have labels on the edges). Paths in graph gˆ are common paths of
g1 and g2:

KRWpg1, g2q “
ÿ

pi, jqPgˆ

p

8
ÿ

l

λlAl
ˆqi, j “ eTpI ´ λAˆq´1e

with Aˆ the adjacency matrix of gˆ, λ ă 1
dmax

(dmax the maximum degree of gˆ), I the
identity matrix and e the all-ones vector. However, this method has a high compu-
tational cost Opn6q. Some techniques reduce it to Opn3q (Vishwanathan et al., 2010).
Several biases may occur on such a kernel such as the so-called tottering bias (Mahé
et al., 2004) which is the fact that some paths can visit the same vertices indefinitely,
inflating the similarity measure. Moreover, the λ parameter can lead to only consider
paths of length 1.

• The shortest path kernel compares distances between pairs of nodes in both graphs:

KSPpg1, g2q “
ÿ

ePES
1

ÿ

e1PES
2

Kpathpe, e1q

where Sg “ pVs,Esq is the shortest path graph of g. The nodesVs are the same as those
of g and each edge between two nodes u, v is weighted by wuv, the length of the shortest
path between them. This graph can be obtained via Floyd Warshall’s algorithm. Kpath
is a kernel over paths which can be a dirac function taking the value 1 if the paths have
the same length. It can also compare the endpoint labels of paths, or be built on other
sub-kernels on edges.

• The Weisfeiler-Lehman kernel is based on the Weisfeiler-Lehman algorithm (Weis-
feiler and Leman, 1968) designed in the late 60’s to approximate isomorphism tests.
Its key idea is to assign to each node a tuple with node’s old compressed label and
a multiset of the node’s neighbors’ compressed labels. The resultant tuple is then
compressed into a new short label. This relabeling procedure is then repeated until
reaching a fix-point:

1. To begin, C0
u is initialized with the node type for each node u.

2. At iteration i, for each node u, we set Li
u to be a tuple containing the node’s old

label Ci´1
u and the multiset of compressed node labels from the previous iteration

of all neighboring nodes of u: tCi´1
v , v P Npuqu.

3. Then, Ci
u is set to the hash of Li

u “

´

Ci´1
u , tCi´1

v , v P Npuqu

¯

. Any two nodes with
the same label get the same compressed label.
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4. Partition the nodes in the graph by their compressed label. Repeat 2 and 3 until
reaching a fix-point.

This method is applied in parallel to the two graphs. The algorithm may be terminated
early if the sizes of node’s partition diverges between the two graphs. In this case, the
graphs are not isomorphic. But it may happen that non isomorphic graphs appear as
isomorphic.

The final value Ci
u can be used as graph kernel (Shervashidze et al., 2011). We can

also go further and build the Weisfeiler-Lehman-Subtree kernel (Shervashidze and
Borgwardt, 2009) by seeing each Ci

u value as defining a graphlet. We then construct a
vector vg such that pvgqk represents the number of nodes having the kth value in the set
tCi

u, u PVu. Kernel KTree is then defined by:

KTreepg1, g2q “ xvg1 , vg2y

This method makes it possible the rapid computation of kernels on a set of graphs. It
offers a good compromise to graphlet method by considering only a subset of graphlets,
while being fast to compute. One of the main disadvantages here is that we have no
connection between the different computed labels, some coming from similar sub-trees
may not be taken into account.

Even if it is possible to calculate high-quality distances between graphs, which makes it
possible to use classic machine learning techniques, the resulting data has as many dimen-
sions as there are graphs in the dataset and the representation space is not compact. One
way to represent graphs in a compact numerical space is to use deep learning methods that
provide embeddings, a representation of discrete data as continuous vectors. An embedding
is a low-dimensional representation of high-dimensional data. Typically, an embedding does
not capture all of the information contained in the original data, but a sufficient part to solve
the problem at hand. Deep learning models for graphs are called Graph Neural Networks.

2.2.4 Graph Neural Networks

Graph neural networks are a family of machine learning algorithms that aim to embed nodes
or graphs in Euclidean space. Tasks such as graph classification, node classification, link
prediction are based on these embeddings like any standard deep learning tasks. The main
idea of GNN is to apply the framework of neural networks on graphs and to take advantage of
all the theories and methods of this field. However, some specificity of graphs complicates the
use of neural networks. On data with a given vicinity such as texts, images or sequences, the
use of convolution or recurrent networks has shown very high efficiency. These techniques
require aggregating neighborhood data. However, in graphs, the neighborhood of a node is
a set whose size varies from one node to another and which has no intrinsic order relation.
Thus, the convolution operation must be redefined so as to be invariant of the neighborhood
order and size. An option could be to use the hash function defined by the Weisfeiler-Lehman
algorithm because it respects such conditions. However, this operation is not differentiable
and therefore prevents optimization by gradient descent.

GNNs are designed to embed each node of the graph in Euclidean space Rd, d being an
hyper-parameter. They operate layer by layer by aggregating the previous layer embedding
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Figure 2.3: GNN embedding process: each hidden vector associated with a node is up-
dated based on the vectors of its neighbors. The node embedded vector can then be
directly used for node classification. Otherwise, for graph classification, all the vectors
associated to the nodes of the graph are aggregated before the classification step.

vectors of neighboring nodes. GNNs work in such a way that their k-th layer maps the k-hop
neighborhood of each node u, also called ego-network of u of diameter k, to a vector hk

u (see
Figure 2.3). The GraphSAGE GNN model alternates three operations (Hamilton et al., 2017):

• Message passing or aggregation is the function that combines neighbor vectors. This
function maps a set of vectors in Rd to a single vector in Rd such that the new vector
is invariant to the order of the input vectors and that it can take a variable number of
inputs. The sum function is often a good candidate. The aggregate function is defined
by:

hpk`1q

Npuq
“ AGGREGATE

´

thpkq
v ,@v P Npuqu

¯

• The linear application is the application of the parameters of the machine learning
model on the result of the aggregation function concatenated to the vector hpkq

u associ-
ated to u at the previous layer. It generates a vector of dimension d:

mpk`1q
u “ Wpk`1q ¨ CONCAT

´

hpk`1q

Npuq
, hpkq

u

¯

with W the weight matrix of dimension pd ˆ 2dq.

• The non linear activation function applies a nonlinear transformation to the node
representations. Generally, the Rectified Linear Units (ReLU) is used as it speed up
training:

hpk`1q
u “ σ

´

mpk`1q
u

¯

with σpxq “ maxp0, xq, the ReLU function.

The combination of these operations corresponds to the following matrix calculation, adding
a self-loop in the adjacency matrix and using a weight matrix of dimension pd ˆ dq with the
sum as the aggregation function:

Hpk`1q “ σ
´

A HpkqWpk`1q
¯
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Choice of aggregation function

The choice of aggregation function is quite crucial in GNN. Generally, we choose an aggre-
gation function that is invariant to the permutation of neighbors. But it is possible to use a
function that does not satisfy this property, like LSTM (Hamilton et al., 2017) – that processes
the inputs in a sequential manner – by simply applying the LSTMs to a random permutation
of the node’s neighbors.

In addition, each aggregation may lead to symmetries or undesirable side effects. For
example, in a graph containing nodes with high degree and others with low degree, the
former may become too important while the latter become insignificant. We can contain
this bias by introducing degree normalization in the mean function, or using a pooling
aggregation function. Other biases may appear (Xu et al., 2019).

Stacking layers

Layers are stacked either recursively or convolutionally. The recursive way (Gallicchio and
Micheli, 2010, Scarselli et al., 2009) consists to apply the same weight matrix for each layer:

Hpk`1q “ σ
´

A HpkqW
¯

Banach’s theorem states that when σ
´

A Hpk´1qW
¯

is contractible then the above equation
reaches a fixed point. This recurrent approach is historical but has severe drawbacks such as
its expressiveness which is limited and its computational cost that is high. Moreover, even
if Banach’s theorem applies individually for each vector, all vectors may also converge all
together towards a common fixed point.

In Graph convolutional Networks (GCNs) (Kipf and Welling, 2017), vectors are aggre-
gated using convolution that differ from one layer to another (and therefore for each size
of ego-networks). This is done at the cost of additional weights to be estimated, but with a
well-defined inference calculation time. In GCN, hpk`1q

u is defined as

hpk`1q
u “ σ

¨

˝Wpk`1q
ÿ

vPNpuq

hpk´1q
v

a

|du||dv|

˛

‚

with |du| the degree of u. This convolution allows an explicit matrix formulation as well:

Hpk`1q “ D
1
2 ÂD

1
2 HpkqWpk`1q

with D the diagonal degree matrix and Â “ A` I the adjacency matrix with self loops added.
With this architecture, the embeddings of each layer are clearly linked to the corresponding
ego-networks.

After several layers of this architecture, around three in general, we have for each node
an embedding which corresponds either to the last hidden vector, or to the concatenation of
all the hidden vectors. The vectors associated with the nodes are used as input to a decoder,
a multilayer perceptron (MLP), which makes it possible to perform the task of classifying
nodes, graphs, or predicting edges.
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Node classification

For the classification of nodes, the GNN is followed by a simple decoder, a Multi Layer
Perception (MLP), which takes the embedding vector of the node built by the GNN and
associates a vector corresponding to the classes to be learned. This step can be formalized
by:

zu “ MLPphK
u q

with hK
u the node embedding produced by the GNN on the last layer. The parameters of the

MLP are adjusted using the following loss function on the training setVtrain:

L “
ÿ

uPVtrain

´ logpso f tmaxpzu, yuqq

with yu the ground truth class scalar value of node u, and softmax defined by

so f tmaxpz, cq “
epzcq

ř|z|

i“0 epziq

where all the zi values are the elements of the input vector and can take any real value.
The term on the bottom of the formula is the normalization term which ensures that all the
output values of the function will sum to 1.

Graph classification

When GNNs are used for graph classification, an aggregation step is needed to go from a set
of node representations to a graph embedding. The function described above can be used.
Other strategies exist such as the combination of max or mean pooling, or also clustering
pooling (Ying et al., 2018) where nodes are clustered to form a smaller graph on which new
embeddings are learned until the entire graph is reduced to a single node (Zhang et al., 2018).

A decoder of the same type as the one used for node classification is then used, taking as
input the vector representing the graph and producing a vector indicating the predicted class.
Other machine learning techniques can be applied directly from the vectors representing the
graphs.

2.2.5 Connections with Weisfeiler-Lehman algorithm

Graph Neural Networks and the Weisfeiler-Lehman algorithm (WL-algorithm) are simi-
lar (Balcilar et al., 2021), and it has been proven that a GNN is no more expressive than
WL-algorithm: by considering each layer of the GNN as a hash function, we obtain the same
algorithm. However, for the GNN, this function is not necessarily injective depending on
the aggregation function used. This has multiple consequences:

• The GNN are computationally less expressive than WL-algorithm, but the theoretical
framework holds.

• Different input graphs may have the same embedding through the GNN, that can be
due to equivalent classes described in WL-algorithm, or due to some loss of information
in the aggregation. If such a GNN-isomorphic graph occurs in real life, it may be a
limitation in the use of GNN and WL-algorithm.
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• Due to the Neural network architecture, GNN can take continuous data as input
features whereas WL-algorithm can only have discrete node attributes.

GNN cannot be more expressive than WL-algorithm, nevertheless they are similar machines.
GNNs are much more convenient for learning on a specific task and benefits from all the
neural network framework and tools. WL-algorithm cannot work on subgraphs that have
not been seen before: if a new ego graph is considered, a new symbol has to be created and
the kernel has to be rebuilt. On the other hand, a GNN will build a new embedding, close to
the similar ego graphs previously found.

GNN has been a popular model for machine learning on graphs for a few years, providing
state-of-the-art results in many tasks. They bring neural networks to graph machine learning
tasks, with its advantages – efficiency, performance, research framework – but also its pitfalls:
such models are mostly black boxes that are un-interpretable. Older kernel methods are much
more interpretable because their inner workings come from common graph operations such
as shortest path computation or subtree decomposition.

The need for explainability for graph machine learning tasks also comes from the use
cases. For example, in drug discovery, explaining why two molecules interact is even more
important than predicting it. GNNs are also used in flow problems such as power grid
calculation, and guarantees are needed for this kind of applications. Also, in social media,
the detection of fake accounts can benefit from explanations in order to support the decisions.

2.3 Explaining machine learning models

Although Graph Neural Networks achieve state-of-the-art performance in many tasks, this
new deep learning approach relies on complex data transformation flows that involve new
questions not yet considered by other explainability methods for learning algorithms. Ex-
amples of such questions are: Is the structure of the graph responsible for the decision? Or
is it the attributes of the nodes which are preponderant in the classification process? Before
considering the related work specific to the explanation of GNNs, we consider more generic
methods that aim to explain machine learning models.

2.3.1 Why do we need explainable artificial intelligence?

Explainable AI is a broad, cross-cutting subfield of machine learning that has grown in
popularity with the emergence in recent years of deep models. Deep neural networks
are inherently opaque models and explainability methods aim to give more confidence to
the model beyond empirical risk. Older machine learning models, such as derision trees,
linear regressions, K-Nearest Neighbors, or rule-based learner are transparent models by
design. They require little or no work to understand. Most new models are much harder to
understand and are considered black box models: we cannot directly understand their inner
workings.

Black box models

When we try to explain a black box model, we only look at the input and output of the model,
refraining from working on the internal algebra and operation of the model. However, we
gain in generalization, since such a method can be applied to any model.



20 Chapter 2. State of the art

Several families of machine learning algorithms are widely recognized as being black
boxes (Burkart and Huber, 2021):

• Perceptron: Whereas perceptrons composed of a single layer are transparent models,
with multiple stacked layers they become black boxes as their inner workings become
much harder to understand. Multilayer neural networks, deep convolutional and
recurrent neural networks are considered black boxes as well.

• Tree ensembles, and generally boosting techniques, tend to transform white box algo-
rithms (as decision trees) into black box ones.

• Kernel methods, even applied to a transparent model such as k-nearest-neighbors, can
be opaque especially when some learned parameters are involved.

A black box model is generally chosen for its better prediction performance. So, in the case
of a real application, we might face a trade-off between better performance or transparent
design. Would you let an AI model decide on a patient’s prescription, even knowing it would
be the correct one 99.99% of the time? Would you let an AI system manage the shunting of
trains with only 0.0001% risk of having trains collide2? Or managing the power grid where
one mistake can lead to blackouts across much of the country, with dire safety and economic
consequences. We need to know more about these models than empirical risk.

Explainable AI provides taxonomies of tools, definitions, and ultimately algorithms to
dig deeper and better understand how machine learning models work. The approaches differ
according to the issues addressed: What is the use case? What do we want to know and
when? Is this in a production environment or only in the development phase for debugging?
Do we just want to check the overall behavior of the model? Who do we want to bring this
knowledge to, doctors, expert engineers, the general public or data scientists? Second, what
properties of our model do we want to verify by our approach? Do we just want to get
confidence of our model or do we want to know more about the causalities between input
and output? Do we want to ensure fairness when it comes to data bias? Thus, one can choose
a model and a post hoc explainer or directly use a transparent model. Some adaptations
may also be necessary, or in some cases come up with a new method from scratch.

Use cases

The need for explainability differs between use cases. If the model is built for a domain
expert such as a doctor, an engineer, a bank advisor, then the machine learning model can be
used as a decision aid. Even though the model is better and faster than the human decision,
the decision cannot be taken on an oracle. We need evidence, explanatory elements of the
decision. The experts in the loop can bring their knowledge of the domain. An explainable
system should provide to the experts the important elements and leave them responsible for
the decision.

In other cases, we want to design a machine learning model that ensures certain properties
defined by an expert. It is therefore necessary to create models that can integrate specific
knowledge. The type of properties may vary from one application to another.

2This would lead to 1 collision every two months in France.
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Next to domain experts providing knowledge, we have statisticians and machine learning
experts in general, who might need tools to debug or validate their models, while having
little external knowledge. These experts should be more familiar with mathematics, statistics,
algorithms, or bias (Tversky and Kahneman, 2008).

Then, the general public has now a right to explainability of processing and decisions
with the GDPR. It requires that any automated decision-making about personal data be
explained, based on machine learning or not. End users need explanations that they can
understand, regardless of their education and social background. Explainability is also
important for users to accept decisions. For example, an electric car can advise the user
to recharge the battery at a certain time and provide information that it has learned user’s
driving habits and taken into account the price of electricity throughout the road.

Regulatory entities may also impose explanatory requirements. It can be the law as in
the GDPR, but also an ISO standard to follow. The aim is to certify the conformity of the
model to the law or to a standard. For example, an AI-enhanced flight assistant pilot must
maintain the aircraft within the flight envelope to be validated by the FAA3. In such cases, the
explainability system must provide strong evidence about the system and not just sufficient
confidence.

Finally, there are derivative uses of the methods of explanation, which apply explainabil-
ity methods for different purposes. For example, single instance explanations applied on
image models can be used as object detection, especially if they are computationally inex-
pensive. A global explainer can also be used by scientists to learn patterns on a research task.
Black box explanation methods can be used to learn and simulate a hidden model for reverse
engineering purposes. In this case, we take advantage of the links between explainability
and transfer learning, learning a surrogate model being a kind of transfer learning.

Identifying the users of the explainability system, their needs and constraints, and the
type of expected result is the first step in an XAI process. The second step is to find the
desired properties of the explanations.

Expected properties

The various works of XAI have shown that several different objectives can be achieved
for different purposes, approaches and target audiences. In general, we want to provide
additional guarantees beyond the statistical risk. We can define a set of desired qualities that
we want to achieve from the machine learning workflow with the explainability methods.

• Trust: This is perhaps the most general goal of XAI. It represents the confidence we
can have in the model to perform the task. This quality identifies the conditions under
which the model is strong or weak.

• Causality: Most machine learning algorithms look for correlations but not causalities.
Can the model express some causality between input and output, taking into account
prior knowledge about the problem? For example, given the number of persons
on a train platform and the presence of a train, one might conclude that the more
people there are on the platform, the higher the likelihood that a train will arrive. But
from common knowledge, we know that the reality is different. For testing causality

3Federal Aviation Administration – Agence européenne de la sécurité aérienne.
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relationships, we either want to be able to highlight certain causal relations identified
by the model and to confront them with prior knowledge, or to test or apply some
known causal relations on the model.

• Transferability: This property evaluates a model’s ability to generalize its learning,
its ability to handle more recent data when deployed in production. This property is
sought by any model designer, even without considering the problem of explainability.
A common problem in the industry is that the machine learning algorithm is learned
on local data. Then, when deployed in production, the environment differs and there
is a loss of performance. Having a better knowledge of the domain learned helps
transferability by giving, for example, bounds on the input data.

• Fairness: The data is often biased or unbalanced, a property that transfers to the model.
We want to highlight and visualize these biases in the model or in the data, and be
able to correct them based on prior knowledge or a target goal. This can be very
important when making decisions about people in order to ensure ethical and fair use
of algorithm outputs.

• Informativeness: The method should give information about the task because the use
case of the model can be broader than that considered during the training. The goal is
therefore to extract more information about the problem and the internal relationship
of the data inside the model, and to give the user a broader representation of the
problem.

• Privacy: While the previous qualities tend to give insight into the inner workings of the
model, in many critical applications, such as for medical data, we don’t want to provide
personal information while still providing enough evidence about the behavior of the
model. Moreover, while guaranteeing the GDPR, we might have to give indications of
the decision of the models, without disclosing too much information about the model
in order to keep the trade secret.

While other qualities of XAI methods have been considered, we focus here on the most
important ones. When designing an XAI method, we need to be aware of these qualities and
assess how well we fulfill them.

Type of methods

Once the need for explainability is known as well as the desired properties, we can choose
an explainability method. Several families of methods have been designed for different pur-
poses and use cases. There are single instance explainer or model explainer methods, ad-hoc
and post-hoc explainers, as well as model-specific or model-agnostic methods. Visualization
techniques can also be used for this purpose.

• Transparent models: Some models are inherently interpretable (Freitas, 2013), such
as decision trees, linear models, rule-based systems or Bayesian networks (Charniak,
1991). Their interpretability is based on their size and the simplicity of understanding
their inner workings. However, the interpretability of these models is guaranteed only
under certain conditions of their learning procedure. Some learned models will be
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easier to interpret than others. It can then be necessary to add external knowledge to
such models, in particular for decision trees or rule-based models, to obtain guarantees
on their behavior. Unfortunately, transparent models are often outperformed by the
deep neural networks, especially for image and text classification. Transparent models
are of interest in critical applications, such as medicine or civil engineering, where life
is at risk.

• Global model explanations: Explaining a global model consists in considering the
already trained black box model, and aim to analyze its behavior over the entire input
space. Several strategies have emerged for this task with different goals in mind, but the
main objective is to build a simpler and more interpretable model that approximates
the output of the first model. This second model should perform better than if it
was built using the target variable, otherwise we would have to directly learn the
interpretable model on the dataset. As a by-product, it should behave like the original
model also in its errors. The construction of the explanatory model can be done in two
ways, first by rewriting the model in the formalism of the other, in the same way that
a compiler would do it (Andrews et al., 1995, Craven and Shavlik, 1994). The main
disadvantage is that these methods are very specific to the type of model considered.
Other methods train the interpretable model by sampling data in the input space (Frosst
and Hinton, 2017), either from labeled or unlabeled data, or using data generated by
a GAN or other technical (Goodfellow et al., 2014, Hinton et al., 2015). In such cases,
the surrogate model is meant to be used in production, its decision may look like
the black box model, the decision process is on another paradigm, so the explanation
would not make the same sense. In many cases, constructing a surrogate model is
not really possible. For example, the search for structured patterns, as performed by
convolutional neural networks, cannot be emulated by a small set of rules or a decision
tree that sees a complex piece of data as a set of independent data.

• Local explanations: Global model explanation may be a problem too difficult to solve,
either because surrogate models are not expressive enough for the task, or because
they are too model-specific. Of course, the global explanation allows a fortiori an
explanation for a single instance, but it can be imprecise. Single instance explanations
seek to produce an explanation specific to an input example. Several paradigms offer
different types of explanations and approaches.

– Gradient and backpropagation methods are based on computing the gradient of the
model on the input example. Such methods require the model to be differentiable.
Fortunately, this is often the case. Such methods give insights into how the model
behaves locally, but still require some work to be truly usable: Many input features
have little impact and should be ignored. Non-convexity of models, such as deep
neural networks, can cause them to fail (Selvaraju et al., 2017, Simonyan et al.,
2014, Zhang et al., 2016). Other methods such as DEEPLift (Shrikumar et al.,
2017) and LPR (Bach et al., 2015) are similar in that they use backpropagation,
but differ in that they do not use the gradient but the difference with a reference
input.

– Surrogate methods build a model that approximate the original model in the vicinity
of the example. The model is easier to fit locally and can provide much detailed
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explanations specific to the instance. To build the surrogate model, a new dataset
is required. First, some instances are selected in the dataset such that they are close
to the instance to be explained. However this sub-dataset might be too small or
cover a too small subspace of the data to build a high quality model. Such dataset
can thus be augmented with new examples generated by adding noise (Ribeiro
et al., 2016).

– Feature mask methods determine how much each input feature contributes to the
model’s output decision. We can also know if this contribution is positive or nega-
tive. The most successful method in this respect are the Shapley values (Lundberg
and Lee, 2017, Shapley, 1953). It is a tool built on the framework of game theory
which allows to decompose the contributions of the input characteristics. The
L2X method (Chen et al., 2018b) proposes to build a mask on the input which
optimizes the mutual information between the original input and the masked in-
put. Moreover it proposes to learn a neural network which allows to reconstruct
a mask because the sampling process can be expansive. In this case, the neural
network is trained on the model but is only useful for explaining the instance.

Single instance explanations can be more precise than global model explanation. How-
ever, this usually has a higher computational cost, as producing a single explanation
can be relatively expensive. For example, LIME needs to draw a dataset and learn a
model on it. The cost of gradient back-propagation is always higher than looking at
a decision tree. But in many use cases, these costs will still be negligible compared to
the cost of the human looking at them. Different methods will cover different needs.
Gradient-based methods are likely to be very good at finding a counterfactual of an
input – a close input that is classified differently – and will be relatively fast. However,
this entry might not be realistic. Other methods have been devised to achieve this
goal (Dandl et al., 2020, Mothilal et al., 2020). The LIME explainer will be useful to
give a local view of the model, helping to see the limit of the model’s decision. The
L2X method will provide sets of features that act together to achieve a decision.

Model-agnostic versus black-box models explanation methods

In the field of explainability of machine learning models, we generally distinguish between
explanation methods for black box models and so-called agnostic explanation methods,
which can be applied to any model. The black box concept refers to the internal complexity
of the model, which obscures the decision-making mechanisms. The need for explainability
comes from the non-understanding of these internal mechanics. On this type of models, we
can obviously use agnostic methods, which only use the output of the model to construct
the explanations. There are also methods that use internal mechanics, such as computing
the gradient (Selvaraju et al., 2017) to produce explanations. The notion of agnosticity of the
method of explanation with respect to the machine learning model can be seen as a gradual
scale, which encompasses more or less models. For example, requiring the model to be
differentiable encompasses many models. The requirement to be able to perform gradient
descent restricts the application to neural networks.
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2.3.2 Evaluate an explanation method

How to evaluate an explainer? Should an explainer be trusted (Camburu et al., 2019)?
Ensuring the interest of an explainer depends on qualitative and subjective arguments. We
discuss in this subsection on what points an explainer can be evaluated and what criteria
ensure that a new explainer is better than another.

For any explainability task, there is no definite optimal solution: different elements can
explain a model. There is no fundamental truth. For example, for a model trained to
recognize a cat in a photo, the expected result of an explainer should not be the area where
the cat is located, because this is not an invariant of the photos. The model is expected to
have identified the cat’s ears, paws or fur. But what should the explainer show when there
is no cat in the picture? A model explainer could identify features that the model identifies
as belonging to a cat and not show any of them, when the image does not contain a cat.

Most explainability methods seek to define a metric to be optimized and provide qual-
itative arguments to assess that the metric provides good explanations. They also show
experimentally that the optimization scheme is efficient. For example LIME (Ribeiro et al.,
2016) defines a lasso model whose optimization provides a local approximation of the model
around the instance to be explained. The weights of the lasso model are used as an expla-
nation. For a single instance explanation, this schema is one of the most used (Chen et al.,
2018b, Lundberg and Lee, 2017, Ribeiro et al., 2018, Shrikumar et al., 2017, Zhang et al., 2016).
This is the minimal explanation format we can work on: a weight associated with each input
feature. However, for different methods these weights can mean different things. Sometimes
they are independent probabilities – each weight is an independent measure with a value
between 0 and 1 – or they form an overall probability distribution where all the weights
sum up to 1. Sometimes they are considered as weights in a local model. To compare these
different approaches, there is unfortunately no universal measure.

Comparison of explanations with ground truth

Some datasets come with a selection of features that can be considered as ground truth
(Debnath et al., 1991). Others are synthetically generated to hide a ground truth (Ying
et al., 2019). In such dataset, explaining why an instance is in class A rather than class B
is known. However, this is an explanation of class membership and not an explanation of
why the model made this decision. Sometimes, in a synthetic dataset, the way of generating
the examples induces a certain bias which can be identified by the model and also by the
explainer. Synthetic datasets are usually too simple and do not correspond to real use cases.

Experimental validation by crowdsourcing

Explainability is about providing information to humans. Therefore, crowdsourcing val-
idation is a good way to gauge an explainer’s interest. Even though this is a subjective
assessment, a large number of responses from different people tends to minimize the subjec-
tivity of such a validation scheme. However, this approach has several pitfalls (Fürnkranz
et al., 2020). It measures how well a human will accept the explanation, not directly the
performance of the explanation. It is necessary to design experiments such that these two
objectives have the maximum common points. Variations in results with different use cases
and audiences can be investigated. For example, on molecular data, biochemists will be



26 Chapter 2. State of the art

much more demanding than ordinary people. Finally, these experiments are relatively ex-
pensive, and can be used to validate a method. However, it is less straightforward to compare
different methods with this approach.

Fidelity, Infidelity and Sparsity metrics

The most common way to evaluate an explainer is a set of specific metrics that measure the
impact of features/areas identified by the explainer from just the original model and input.
There are three main metrics, named Fidelity, Infidelity and Sparsity, to assess the quality of
an explantation. Fidelity assesses how the model changes its prediction when we remove
the features identified as explaining the decision. Infidelity assesses whether the instance,
reduced to the characteristics identified as explaining the decision, is classified in the same
way as the original example by the machine learning model. The Sparsity measure assesses
the relative size of the explanation to the original input:

• Fidelity measures the variation in the output value of the machine learning model
when removing the features identified as explaining the decision. A high fidelity value
means that removing the features explaining the decision changes the prediction, and
thus these features are important for the model. However, considering only Fidelity
without taking into account the Sparsity can be misleading: removing all features can
lead to change the decision without providing any explanation.

• Infidelity measures the variation in the output value of the machine learning model
by considering only the features identified as explaining the decision as input to the
classifier. Having a low value in Infidelity ensures that the explanation is relevant. For
example, for the prediction of a disease, if the explanation contains only the age of the
patient, it can have a high score in fidelity but a bad score in infidelity, as age alone not
being decisive in predicting the disease.

• Sparsity: When evaluating two explainers, it is important to verify that they have
similar sparsity values. It can even be used as a parameter, especially when binarizing
continuous masks. Sparsity can help adjusting masks for a fair comparison.

2.4 Explaining Graph Neural Networks

Explaining graph neural networks presents multiple challenges. The most important one is
probably to consider both node information and structural information. For example, the
gradient method tends to confuse this information. Another challenge is to have methods
capable to handle multiple types of graph data and classification tasks.

We can classify GNN explanation methods according to the classification task for which
they were designed. Indeed, some methods are designed for the classification of nodes,
edges or graphs. But, in most cases, the GNN consists of a node encoder followed by a
pooling layer or a decoder, depending on the classification task. Thus, a large part of the
models are common to all GNNs. Yuan et al. (2020b) suggest classifying explainable methods
as follows. They first consider whether the method is designed to explain a single instance
or a model. Next, they consider the type of explanation produced: Gradient Methods,
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Perturbation-Based, Surrogate models or Decomposition approaches. In most cases, state-
of-the-art methods for explaining GNNs are adaptations of existing work dedicated to the
analysis of neural network models for complex data such as images or texts.

What differs between instant-level methods is the family of questions answered by the
explainer. Gradient-based methods identify which part of the examples can profoundly
influence the decision. Perturbation-based methods aim to find the parts of the examples
that are classified as the original input. Surrogate methods attempt to express the model in a
classifier that is more interpretable than the original model in the vicinity of a given example.
Decomposition methods seek to quantify the contribution of each input feature. Since there
are very few model-level explanatory methods, no further subdivisions are relevant yet.

2.4.1 Gradient-based methods

Gradient-based methods can be used for explaining any differentiable model. They consist
in understanding the behavior of the classifier by looking at the input gradient which is
the derivative of the output with respect to the inputs. This means that for any small
change in the input, the gradient tells us how the output would change. If the gradient is
large, a small change in input dimension has a large effect on the output. If the gradient
is small, the effect is small. In the case of linear classifiers, the gradient corresponds to
the feature weights. These methods are popular for analyzing image classifiers, offering
easy-to-understand explanations. The main difference between the methods in this category
lies in the way the gradient is back-propagated. The main interest of such methods is
their simplicity to implement and understand, especially for people with scientific and
mathematical background.

Some works have directly reused methods developed for the analysis of image classifiers
on GNNs using the conceptual proximity between CNN and graph convolutions. Pope et al.
(2019) propose to compare several methods such as GRAD, GRAD-CAM and Excitation Back-
Propagation (Selvaraju et al., 2017, Zhang et al., 2016, Zhou et al., 2016). These methods create
heatmaps on the input features and visualize the importance of the features when classifying
the input example. Heatmaps can be thought of as continuous masks. The methods are used
with little or no adaptations from the original articles. Fidelity, contrastivity and sparsity
are used as evaluation measures. The contrastivity is specific to this type of methods and
measures the difference between the masks.

This work provides a good basis for GNN explanatory work. The methods are neverthe-
less quite naive and have several limitations:

• The main weakness of CAM and GRAD-CAM is the necessity to use an average pooling
layer after the convolutional layer for node embedding, designed with a fixed graph
structure.

• Even if experiments show good contrastivity results, demonstrating the identification
of distinct components, the fidelity and sparsity are low. This is partly due to several
choices in the experimental setup.

• There is no consideration of the structural information of graphs as the gradient only
considers the features associated to nodes. The end-user may guess the structural
influence on the decision.
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• There is no experiment with node classification tasks, while in such cases the pooling
layer become trivial.

Gradient-based methods are a very economical way to produce explanations. However,
these explanations are more appropriated to generate adversarial perturbations. Indeed,
the gradient gives the minimum modification on the input which leads to the maximum
modification of the classification (Ancona et al., 2018, Szegedy et al., 2014). These methods
were also used for global-model explanation in order to evaluate the marginal influence of
individual characteristics in the classification. However, in the experiments, no feature was
found to influence the classification. This can be due to the fact that these methods cannot
see the structure of the graph. This is a major limit in the interest of these methods for GNN
explanation (Simonyan et al., 2014).

2.4.2 Perturbation-based methods

Perturbation-based methods work the opposite of previous methods by finding areas where
the prediction does not change. Such methods typically work top-down by learning a mask
generator to select important features for the decision. For example, Chen et al. (2018b)
optimize the mutual information between input and output features. The search space for
maximizing this function is exponentially large and smart heuristics are needed to get good
performance in an acceptable time. Several works have been done in that direction (Luo
et al., 2020, Schlichtkrull et al., 2021), the most popular explainability method for GNNs
being probably GNNExplainer (Ying et al., 2019).

GNNExplainer

GNNExplainer (Ying et al., 2019) is one of the main works for explaining GNNs. It is based
on the model explanation principle developed by (Chen et al., 2018b), but adapted to the
architecture of a GNN in order to produce single instance explanations. It uses mutual
information as main optimization metric. GNNExplainer generates a mask on edges and
nodes features.

Considering G the input graph and X the associated features, the objective is to identify
a subgraph Gs Ď G and a subset of features Xs which are important for the GNN decision Y.
Let denote by Φ the GNN model that learns the conditional distribution PΦpY|G,Xq.

First, Gs has to be found, and for that the mutual information measure is used:

max
Gs,Xs

MIpY, pGs,Xsqq “ HpYq ´ HpY|G “ Gs,X “ Xsq

with HpXq “ ´Erlog PΦpXqs the entropy measure. MI quantifies the change in the probability
of prediction Ŷ “ ΦpG,Xq when the graph is limited to the explanation subgraph GS and the
node features are limited to XS. We can observe that HpYq is a constant becauseΦ is fixed for
a trained GNN. Therefore maximizing the Mutual Information is equivalent to minimizing

´EY|GsXsrlog PΦpY|G “ Gs,X “ Xsqs

As we might expect, finding the best Gs,Xs for MI is not tractable in general. GNNExplainer
finds an approximation of this optimal by a continuous relaxation of the problem for the
adjacency matrix: As P r0, 1snˆn instead ofBnˆn and enforce Asr j, ks ď Ar j, ks. It is considered
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as a random graph that follows a multivariate Bernoulli distribution PGpGsq “
ś

j,kPG Asr j, ks.
Thus, GNNExplainer optimizes the following objective using gradient descent:

min
M

´

C
ÿ

c“1

1ry “ cs log PΦpY “ y|G “ A d σpMq,X “ XSq

where A d σpMq represents the masking of the computed graph of adjacency matrix, with
M P Rnˆn, d denotes element-wise multiplication, and σ denotes the sigmoid that maps the
mask to r0, 1snˆn.

The method adds several constraints such as a limit on the number of edges and features
selected and also constrains the explanation graph to be connected.

The experiments first show good results on synthetic datasets for the explanation of
nodes and graphs, outperforming naive methods like attention methods (Velickovic et al.,
2018) and a simple gradient-based method. Then two real datasets are considered: Mutag
(Debnath et al., 1991) and reddit-Binary (Yanardag and Vishwanathan, 2015).

However, this method has several limitations. Like most optimization methods in Deep
Neural Networks, the convexity assumption is violated, leading to a lower bound on the
performance explanation, and results in local optima in the explanations. For example,
explanations should be connected and not too large, these constraints may be fine for node
classification tasks, but for graph classification, several disconnected parts of the graph may
constitute a good explanation. Also, continuous masks can lead the GNN to unexplored
areas during training. This unstable behavior is especially true when labels and features are
discrete on graph nodes.

It is regrettable that the authors did not show a useful use case for feature selection. The
experiments deal with molecular data where the nodes are atoms whose type is encoded by
a one-hot vector, so that the feature selector retains only the component corresponding to the
atoms found in the explained molecule. More experiments with richer feature vectors might
yield more insight into the performance of the feature selector. The explanation language is
only made of masks and only handles the absence of elements.

PGExplainer

PGExplainer (Luo et al., 2020) is quite similar to GNNExplainer but offers some improve-
ments and changes. First, it does not consider node feature information arguing that there
are many methods on this type of tabular data that should be used. They seek to optimize
the same mutual information function. Let G be the original input graph and PGExplainer
looks for the following decomposition G “ GS ` ∆G where GS it the subgraph explaining
the decision and ∆G be the remaining task-irrelevant edges of G.

max
GS

MIpY,GSq “ HpYq ´ HpY|G “ GSq

PGExplainer uses a multi-layered perceptron to construct its explanations. This perceptron
takes the node embedding generated by the hidden layer of the GNN from both ends of each
edge and generates a weight wi, j. This makes possible to learn the parameters on the whole
dataset and not just on single instances. Let Z “ pz1, . . . , znq be the hidden embedding of the
input graph produced by the GNN. The weight associated with the edge pi, jq is calculated
by MLPΨpzi, z jq “ ωi, j. The explanatory graph is then drawn randomly from the weights ωi, j
which make it possible to sample a graph and then evaluate it with the mutual information.
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Continuous relaxation is done using the Gumbel softmax trick (Jang et al., 2017, Maddison
et al., 2017) to learn MLPΨ. Then edges are drawn proportionally to

ei, j „ σpplog ϵ´ logp1 ´ ϵq ` ωi, jq{τq

where ϵ is a uniform random variable in r0, 1s, σ is a the sigmoid function, ωi, j the learned
parameters and τ a temperature parameter. When τ Ñ 0, ei, j acts as a Bernoulli random
variable while having a well defined gradient. The authors also propose to use some
constraints as a limit size and to be connected for the explanation graph GS to be a satisfactory
explanation.

In experiments, the authors show that PGExplainer outperforms GNNExplainer on most
datasets and is faster. The pre-learned MLP helps a lot in this regard. However, some
strange behavior may occur on particular graphs. For example, when the best explanation is
a subgraph that appears multiple times in the graph, MLP tends to give high weights to the
edges of these subgraphs. But if they are the same, the weights will be the same, and in the
end, if selected, the budget and connectivity constraints will give a low score to the edges of
this subgraph. In fact, GNNExplainer can work around this problem and find at least one of
the subgraphs. In general, graphs with multiple symmetries or isomorphic subgraphs will
not perform well in PGExplanier. Also, as in GNNExplainer, the authors test their method
only on a single real dataset and compare their results to the ground truth values and not to
the model output.
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Figure 2.4: PGExlpainer uses the GNN to construct edge embedding obtained by concate-
nating the embeddings of the two end-nodes of the edge. Then an MPL learns the edge
weights used to randomly draw a graph that maximizes the mutual information between
the sampled graph and the original graph.

SubgraphX

The SubgraphX method (Yuan et al., 2021) offers to find interesting subgraphs using Monte
Carlo Tree search and Shapley Values (see GraphSVX presentation in Section 2.4.3 for more
details). The MCTS algorithm is a well-known reinforcement learning algorithm that struc-
tures the search space into a tree. Here, the root of the tree is the graph to explain G
and the children of each node are the graphs obtained by pruning a single node. At each
step, the search tree is expanded following the upper confidence bound. At MCTS node st
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representing the graph Gi we use :

a˚ “ argmaxaQpst, aq `Npst, aq

Upst, aq “ λRpst, aq

a

ř

k Cpst, aq

1 ` Cpst, aq

• Qpst, aq is the mean reward from node t.

• Rpst, aq is the instantaneous reward.

• Cpst, aq is the number of times we selected action a from st.

• Wpst, aq is the sum off reward from all pst, aq visits.

The reward could simply be the call to Φ to evaluate Gi but to have a more consistent value,
the authors use Shapley values. Let V “ tv1, . . . , vnu be the nodes of G, V “ tv1, . . . , vku the
nodes ofGi and tvk`1, . . . , vnu the nodes inGzGi. The players in the game are tGi, vk`1, . . . , vnu.
As calculating the Shapley can be expensive, the authors propose several optimizations, such
as restricting the nodes to the L-hop neighborhood of the deleted node, corresponding to the
depth of the GNN.

The authors test this model on MUTAG, BBBP, BA-2 and BA datasets, on various GNN
models (GC, GAT, GIN) and compare their results to GNNExplainer, PGExplainer and
MCTS GNN (a variant of their algorithm which does not use Shapley values). They show
that the fidelity/sparsity trade-off outperforms the other methods on most experiments, to the
detriment of computation time: on BBBP the method is 5 times slower than GNNExplainer
and 4000 times slower than PGExplainer, while having a fidelity of 0.55 over 0.19 and
0.18 respectively. In many use cases, especially when the human is involved, the time
to produce an explanation is not the most important but here, more than a minute per
explanation can make it unusable. In fact, the use of Shapley values and MCTS as two
expensive algorithms. Unfortunately, the authors have not shown the timing performance
of MCTS GNN for comparison. The calculation of Shapley values may have redundant
information between nodes of the same neighborhood, but this information is not reused to
speed up the algorithm. The usage of an MCTS to search graphs can lead to isomorphisms
and ultimately search through a lattice, making the search intractable. SubgraphX proposes
to use a pruning strategy on the edge degree. However on graph data some other strategies
can be implemented to reduce the size of the search space.

2.4.3 Decomposition-based methods

Decomposition methods aim to assign an importance score to individual features of the input
space. In most cases, these methods examine the hidden parameters to decompose the input
features. What are considered input features may vary between different methods as well
as how to combine the importance of these different types of information between features,
nodes and edges (Baldassarre and Azizpour, 2019, Duval and Malliaros, 2021, Lundberg and
Lee, 2017, Pope et al., 2019, Schwarzenberg et al., 2019).
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GNN-LRP

The Layer-wise Relevance Propagation (LRP) method aims to propagate the output to the
input layer. This method showed better results than gradient methods, especially in deep
models. Instead of using gradient calculation as a measure of importance, LRP methods use
a different equation. For a standard neural network, the relevance of a layer’s neuron j is
calculated from the relevance of neurons from the previous layers:

R j “
ÿ

k

a jw jk
ř

i aiwik
Rk

with ai the activation value of the neuron i and wik the weight of the connection between i and
j. This equation is based on the first order Taylor expansion. With the conservative property
ř

j R j “
ř

k Rk “ f pXq, the sum of values of the relevance matrix of a layer should be the
same as that of the relevance matrix of the following layer and the output of the original
input.

One could use the LRP method for GNN by simply rewriting the above equation for the
aggregation layer. But as with the gradient methods, it wouldn’t help to get the structural
information captured by the GNN. GNN-LRP (Schwarzenberg et al., 2019) provides a walk-
based procedure for obtaining structural information. Walks are common in learning graph
representations. The relevance score of neuron j at step K of the walk is defined by:

R jKL... “
ÿ

kPK

eJKh jw˚
jk

ř

J
ř

jPJ eJKh jw˚
jk

RkL...

w˚
jk “ w jk ` γmaxp0,w jkq is the weight component of the matrix W at coordinates jk and γ

an hyperparameter described in (Bach et al., 2015).
It is then possible to rewrite R jKL... “ h jc jKL..., with pk “

ř

J
ř

jPJ eJKh jw jk, c jKL... can be
formulated :

c jKL... “
ÿ

kPK

eJKw˚
jk

hk

pk
c jL... “

ÿ

kPK

Bpk

Bh j

hk

pk
c jL...

This allows using the automatic differentiation algorithm of any deep learning library to
calculate the relevance score of a R jKL... walk. In the end, we can see this as a Taylor
expansion of the same order as the number of layers of the GNN.

The authors propose a wide range of experiments, ranging from the syntactic tree,
molecules, synthetic graphs and even to the image Convolutional network with VGG-16 (Si-
monyan and Zisserman, 2015), seen as a particular graph neural network. Experiments
show a better but close performance of GNNExplainer.

GNN-LRP provides an importance score on paths, so post-processing is required to
provide usable output. This is also a strong point in favor of this method: it is possible to
adapt certain prior knowledge to the explanation. For example, this allows certain paths or
nodes to be deleted. However the calculation of the paths can be expensive: if each node
is connected to two nodes (no isolated node and no automatic loop is authorized) there are
more than n ˚ 2T paths with n the number of nodes and T the depth of the GNN. Hopefully
GNNs in general have 3 or 4 layers, but on large and dense graphs this can be a serious
limitation. Unfortunately, the authors give no computation time to produce an explanation.

As gradient methods, this method does not work on any type of models. Although this
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should work on any locally differentiable function, rewriting the propagation equation on
other GNN models is necessary.

Graph-SVX

Graph-SVX (Duval and Malliaros, 2021) is another approach to explain GNNs by weighting
the importance of elements in the graph using Shapley’s value. Shapley’s values come from
game theory: In a collaborative environment, there are multiple players with a common goal.
The game can be played multiple times with different subsets of players. The algorithm
breaks down the output score into each player’s individual contributions. The Shapley
value are obtained by the average marginal contribution of each player participating in each
possible coalition (Shapley, 1953, Strumbelj and Kononenko, 2010).

This method uses additive feature attribution by creating a linear approximation function
around the explained point. In the GNN environment, the players of the game are the nodes,
edges and features of the input graph (denoted X) and the method evaluates the average
marginal contribution of each of them. Let X be the player set with M “ |X|. Let S be a subset
of players and Φ : X Ñ R be the function we want to explain by decomposing its value in a
vector of values corresponding to the players individual contributions: αpΦq “ pα1, . . . , αMq.
Under the following axioms, the solution α is unique.

• Efficiency: the sum of the contributions
řM

i“0 αi must match the difference between the
model prediction (ΦpXq) on X and the average prediction α0:

ΦpXq “ α0 `

M
ÿ

i“0

αi, α0 “ ErΦs

• Symmetry: the contribution of two players is equivalent if they contribute equally to
each possible coalition:

@S Ď X, and j, k < S, if ΦpS Y tkuq “ ΦpS Y tkuq then αk “ α j

• Dummy: a player that does not influence the predicted value has a contribution of 0:

@S Ď X, an j < S, if ΦpS Y tkuq “ ΦpSq then α j “ 0

• Additivity: for every pair of games Φ1 and Φ2

αpΦ2 `Φ2q “ αpΦ2q ` αpΦ2q where pΦ2 `Φ2qpSq “ Φ2pSq `Φ2pSq

This axiom constraints the values to be consistent along the space of predictions.

There exists a unique solution α that satisfies the above constraints: It is the Shapley values:

Sh jpΦq “
ÿ

SĎXzt ju

|S|!pM ´ |S| ´ 1q!
M!

rΦpS Y t juq ´ΦpSqs

In practice, the sum becomes impossible to compute because the number of possible coali-
tions (2M´1) increases exponentially by adding more features. Shapley values can thus be
approximated using sampling. To find the values α, pairs of coalition and prediction are
generated: D “ pz,Φpz1qq where z1 is the graph generated from the mask. The equation
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α “ arg minLΦpgq is solved using a weighted linear regression model:

LΦ,πpgq “
ÿ

z
pΦpz1q ´ pα0 `

ÿ

jPz

α jq
2πz

where πz “ expp´Dpx, zq2{σ2q be an exponential kernel defined on some distance function
D (e.g. cosine distance for text, L2 distance for images) with width σ. πz is a kernel that
assigns weights to masks of small or large dimensions around the explained point x.

The authors propose a method to produce masks for the graph by adding specific con-
straints for the masks. For example, in node classification, a mask with a node w disconnected
to the center v makes no sense so they add the shortest path from w to v while removing
information from characteristics of intermediate nodes by assigning them a random vector
of characteristics.

In terms of taxonomy, Graph-SVX fits in several categories. It is a decomposition-based
method as it tries to associate each input feature with a contributing score. The score adds
up to the final prediction and the outcome of the method is of the same type as the other
decomposition models. But in its process, it is also a perturbation-based method as it runs
the model multiple times around the original input. Also, the output is clearly a linear
approximation of the original model and can be considered a surrogate method.

2.4.4 Surrogate methods

Surrogate methods find a simpler and more explainable model to approximate the original
model in the vicinity of the instance to be explained. Such methods assume a simpler behav-
ior on a bounded subspace, for example a linear approximation. In most cases, surrogate
methods generate a dataset of instances around the example to explain, and then build the
surrogate model on the generated data. Again the difficulty lies in the structural genera-
tion. Here, the work focuses on the choice of the surrogate model and the characteristics
considered by this model. When considering other DNN models than GNN, LIME (Ribeiro
et al., 2016) is probably the best known method. Any interpretable model can be used as
a surrogate method, however the problem is building a model that works on graphs and a
direct lime implementation would not work and some adaptations are needed (Huang et al.,
2020). Surrogate models can also be used as a model-level explanation, again the lack of
interpretable models for the graph data is the limitation.

PGM-Explainer

PGM-Explainer (Vu and Thai, 2020) proposes to use Probabilistic Graphical Models (PGM)
Jordan (2004) to construct explanations of the GNN. The principle is to determine the depen-
dencies between the nodes of the graph with respect to the decision. It first builds a dataset
of graphs by perturbing the nodes and storing them whenever this perturbation changes the
decision. Then it builds a probabilistic graphical model by selecting top dependent variables
to reduce the size of the local dataset via the Grow-Shrink algorithm (Gámez et al., 2011,
Margaritis and Thrun, 1999). Finally, the Bayesian network is fit to the local dataset and used
to explain the predictions of the original GNN model.

In experiments, PGM-Explainer is compared to SHAP (Lundberg and Lee, 2017) and
GNNExplainer on several datasets (synthetic datasets, bitcoin-OTC (Kumar et al., 2016),
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Mnist superPixel-Graph (Wang and Vinel, 2021)). This model only builds its interpretation
on node features and looks vaguely at structure, whereas most competitors work equally or
exclusively on edges. The authors compare this method to other methods such as GNNEx-
plainer, however some adaptations are necessary: GNNExplainer builds the explanation
on the edges and not on the nodes, this means that the comparison is not necessary just.
Moreover the proposed experiment does not show any real dataset where GNNExplanier
was initially tested. The real-world datasets used rely weakly on structural information. But,
on the positive side, this is one of the few articles that uses crowd sourcing as a validation
tool and offers an interesting reflection on this subject.
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Figure 2.5: PGM-Explainer builds a dataset by modifying the node features and feeds this
dataset to the GNN. Then, it removes the least important node features and learns a prob-
abilistic graphical model that expresses the dependencies between the nodes of the input
graph.

2.4.5 Global model explanation methods

Model explanation techniques try to find an explanation for the model rather than single
instances. When considering graphs, the main difficulty is probably to explore the search
space. For single-instance explanation methods, subgraphs are considered as explainable
domain. This is still a vast search space but, with smart heuristic algorithms, it is possible
to find explanations in limited time. It is also easier to provide meaningful subgraphs. For
model explanation tasks, the search starts with a blank page and must come up with a graph,
or set of graphs. This approach is more difficult. The realism of the explanations must be
taken into account. For example, a random graph is hardly similar to a real molecule. For
some data, domain knowledge can be introduced.

XGNN

XGNN (Yuan et al., 2020a) is the first work that considers the model explanation problem. It
relies on a generative model based on reinforcement learning to produce graphs that activate
one of the output classes. The generative model works iteratively. it takes a graph G and
proposes the next edge to add, either between two existing nodes, or between an existing
node and a node of the candidate set C. The generative model starts by computing the
embedding of each node of G and of candidate nodes with a GCN. The embedding matrix
is denoted X̂. Then, with two MLPs (MLPs, MLPe), it chooses the next edge to add to G.
The first neural network MLPs : emb Ñ R generates a weight for each embedded node and
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selects the best node to start an edge. Technically, two values are calculated at this step: the
probability of choosing each node as the starting node, and the starting node sampled from
it,

pt,start “ So f tmaxpMLPspX̂qq

at,start „ pt,start ¨ mt,start

with mt,start a binary mask that removes the candidates nodes. The starting node have to be
in G.

The selection of the end node is done similarity but, knowing the starting node, the second
neural network takes as input the embedding matrix and the starting node’s embedding
(MLPe : emb ˆ emb Ñ R):

pt,end “ So f tmaxpMLPepX̂, x̂startqq

at,end „ pt,end ¨ mt,end

where mt,end masks the starting node. This generative model is used in a reinforcement
framework. The model starts with an initial graph G1, generally made of a single node. At
each step t, the generative model builds the graph Gt`1 by adding an edge to Gt. Then Gt`1
is evaluated to calculate the reward Rt. If Rt ă 0, Gt`1 is rolled-back to Gt. This process is
iterated until the end condition is satisfied, usually a combination of a maximal number of
steps, and a size limit on G in number of edges or nodes. The evaluation of Gt is constructed
as follows:

RpGtq “ RcpGtq ` λ

ř

m RcpRolloutpGtqqq

M
RcpGtq “ ppΦpGtq “ cq ´ 1{2

The reward RpGtq is used in the loss function used to learn the MLPs:

Lg “ ´RpGtqpLCEppt,start, at,start `LCEppt,end, at,endqq

where LCE is the cross entropy loss. XGNN also offers a graph rules mechanism to disallow
an edge between two existing nodes, or limit the number of nodes. This is done by adding
a penalty on the reward when the proposed graph does not respect the rules of the graph.

Due to the nature of the task, XGNN is assessed using new measures that assess the
quality of explanations. XGNN assumes that there is only one phenomenon involved in
a class. This may be true in synthetic datasets (where, for example, graphs contain one
cycle), but is likely false in Mutag dataset (where the graphs may have multiple mutagenic
elements). XGNN can probably find a structure responsible for the target property, but no
guarantee is given on how the model can find the other structures.

The graph generator is size invariant (this is usually an interesting property in graph
generation), but this implies that the way the first edge is selected is the same as the last
edge. There is therefore no apparent structure in the generation of the graph. We can
see that the reward function is quite rich but is transmitted as a single weight to the loss.
This consists of passing very little information through back-propagation. In the end, the
learning is unidirectional and does not separate the predictive part from the roll-out part
and the graph rule part.

Finally, graph rules are underdeveloped. Assessing realism is necessary at some point,
otherwise the graph search space is too large and XGNN would only generate completely
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irrelevant contradictory graphs. In this algorithm, the graph rules are a binary function
giving almost no clue to why the proposed edge is wrong. With roll-out, it becomes very
difficult to obtain a valid graph, and it is very difficult for the model to have an informative
roll-out: when the rules of the graph are not respected, a roll-out penalty is applied. In fact,
in our tests, the generative model has great difficulty to learn how to create a valid graph
and tends to generate adversarial graph rather than a global explanation.
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Figure 2.6: XGNN attempts to replicate a specific output class by generating graphs. If a
generated graph follows a set of specific rules and if the GNN classifies the graph in the
target class, then a reward helps the generator to learn how to generate subsequent graphs.
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Figure 2.7: XGNN Graph Generator: The graph generator takes a graph as input and
chooses an edge to add. The GNN is used to create node embeddings. A first MLP is used
to choose the first node of the new edge. With this information, the second MLP uses the
embedding of the candidate node to choose the termination node of the edge.

ProtGNN

ProtGNN (Zhang et al., 2022) is a transparently designed GNN that aims to learn representa-
tive subgraphs based on a prototypical vector for each instance. It provides a self-explanatory
GNN. Its result consists of the prediction and a set of sub-graphs supporting the prediction.
Like the previous methods, ProtGNN is inspired by other methods on other types of neural
networks such as ProSeNet (Ming et al., 2019) and ProtoPNet (Chen et al., 2019).

ProtGNN uses a GNN as node graph encoder, named embp¨q. gp is the component that
learns a set of typical graph embedding vectors, ppkqkď2m, with m prototypes for the positive
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class and m prototypes for the negative class. It calculates a similarity sim between the

embedding of an input graph h “ embpgq and a prototype: simppk, hq “ logp
||pk´h||22`1
||pk´h||22`ϵ

q and ϵ

is a small value to avoid 0 division. The Conditional Subgraph Sampling module generates
for an instance a set of graphs that correspond to the embeddings of the prototypes.

The conditional subgraph sampling module is designed to transform uninterpretable
prototype vectors into subgraphs of the input graph to provide instance-level interpretation.
This sub-graph is generated by pruning the input graph via a Monte Carlo Tree search which
aims to minimize the similarity between the embedding of the graphs generated by the GNN
and the embedding of the target prototype. This MCTS algorithm is used repeatedly for
each prototype.

To learn the model, the authors use cross-entropy as the main loss, but the model also
needs another mechanism to force properties of interest into prototypes, and enforced them
to be sufficiently different to bring informativeness:

• Each graph embedding should be close to at least one prototype of the same class, Pyi .
This enforce specific prototypes

Clst “
1
n

n
ÿ

i“1

min
p jPPyi

||embpxiq ´ p j||
2
2

• The embedding should be as far as possible to the prototypes of the other class

Sep “ ´
1
n

n
ÿ

i“1

min
p j<Pyi

||embpxiq ´ p j||
2
2

• The embeddings should be diverse:

Div “

C
ÿ

k“1

ÿ

i, j
pi,p jPPk

maxp0, cosppi, p jq ´ smaxq

with smax the cosine threshold.

The global loss is thus:

loss “
1
n

n
ÿ

i“1

CrsEntpc ˝ gp ˝ embpxiq, yiq ` λ1Clst ` λ2Sep ` λ3Div

with c the fully connected layer used for the final decision.
Moreover, at each stage, ProtGNN uses MCTS to generate new prototypes. The prototype

vector is replaced by the closest embedding generated by the MCTS. This helps make the
prototype vectors realistic by coming from subgraph of the dataset rather than just an average
value in a cluster:

p j Ð arg min
hPMCTSpp jq

||h ´ p j||
2
2

In such an architecture, the MCTS is the slowest part. So the authors proposed another
approach for this section: Use an MLP to generate graph prototypes similar to PGExplainer
(Luo et al., 2020). An MLP is learned to predict the edge weights of a random Gilbert graph.
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ei, j “ σpMLPθpzi, z j, pkqq where zi and z j are the nodes integrated from the GNN encoder.
This MLP is trained to minimize the similarity of the generated graph and the prototype
vector. MLP is used in training.
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Figure 2.8: For classification, ProtGNN uses a GNN to construct a graph embedding. Then,
this vector is compared to each of the prototype vectors pi to construct the similarity vector.
An MLP is used as a decoder for classification tasks. For the sake of explanation and for
each prototype vector pi, the conditional sampling module constructs a sub-graph whose
embedding is close to the prototype vector pi.

ProtGNN is transparent by design and can be used as an instance-level explainer in
the same way as other post-hoc explainers. However, the authors offer only a superficial
comparison of ProtGNN with GNNExplainer and PGExplainer. The choice of MLP changes
the pruning paradigm: MCTS was about pruning nodes (with adjacent edges) while MLP
only prunes edges. Such changes should have an impact on the prototypes. Finally, the
optimization path goes in several directions: the prototypes are optimized according to the
classification error and the other prototypes. The subgraph generator is also used to optimize
prototypes. Finally, the GNN encoder must be learned. Such a complex optimization path
may raise questions about the reproducibility and convergence of such a model.
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2.5 Discussion

Explainability methods for Graph Neural Networks is a very active field as we have just
seen. Several additional methods have been proposed with more or less success (Funke
et al., 2021, Huang et al., 2020, Schlichtkrull et al., 2021, Wang et al., 2021) in the last two or
three years. Most of the methods work on single instance explanations and provide a mask
or are compatible with masks. This notion of mask comes from explainability tasks in image
or text neural networks. However, if the masks are a good support of explanation, they have
weaknesses in their expressiveness.

2.5.1 Using masks as GNN explanations

In graph domain, a mask is a subset of edges, nodes, and node features. Some methods
focus only on edges while others also consider node features. Hiding nodes with a discrete
mask also hides their adjacent edges. The same goes for the edge mask: if a node is isolated,
we need to mask it too. One of the main advantages of such masks is that it can be lattice-
structured with the original input at the top and the empty graph at the bottom, even though
the number of elements in such a lattice is exponential in size of the considered graph. Sparse
masks and nearly full masks are more tractable. These masks are the most interesting ones.
A sparse mask can be an explanation on which part is important for the decision: removing
it changes the decision. A nearly full mask will only select a portion of the input that is
largely correlated with the output. The first type of mask is interesting and perform well on
fidelity measure, the latter on the infidelity measure.

However, this explanation language excludes the addition of nodes or edges. Satisfactory
explanations could be obtained by adding nodes or edges to the graph. It would also be
interesting to explain the absence of a pattern: proving a pattern that is not present in an
input requires considering all the possibilities and in graph this is equivalent to a subgraph
inclusion test. Probably the best way to explain that a pattern is not present is to present
a minimal set of edits (additions) to make the pattern appear. Adding nodes and edges to
provide an explanation can be interesting, but it is also a very expensive procedure, especially
when the input graph is sparse. We must consider the validity of the explanation provided.
For example, in the molecule we have the limitation of the number of edges, but the graph
must also be able to fit in space with specific rules for the distance between nodes and the
angle between edges. Deleting elements can also break the validity of the graph. However,
it is much easier to understand it as a subgraph of one or more valid graphs.

The choice in the domain of explanation, the types of explanation provided, is limited
by the combinatorics and the methods chosen: most of the methods we have seen cannot
have the additions of edges and nodes in their search space in a way efficient. For gradient
methods, we need to test each edit to see if it’s relevant with the gradient, and the same goes
for GNNExplainer. Graph-SVX cannot calculate the contribution to a non-existing edge or
node. This language limitation is more of a limitation of the single instance explanation
process than other types of methods.
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2.5.2 Further explanation needs at the model-level

Model-level approaches can overcome these limitations. Global approaches seek to identify
the most important patterns. The transparent model by design ProtGNN creates prototypes
that can help to have a more global view of what’s going on. However, GNNs are relatively
new as machine learning tasks and it is highly likely that efficient architectures will continue
to evolve. This method takes some freedom from standard GNN structures. On the other
hand, XGNN offers a fully model independent method. However, generative approaches
have several limitations in application. While it can help find a few typical instances of
a class, it can’t find them all. It can behave more like an adversarial generator that finds
examples that maximize the output value and not directly what the model has identified.
Global explanability tasks are in a more daunting task. Therefore, it is a much less studied
topic in graph work on global explainability. On other data types, like tabular data, a
human can infer how a model works overall and its limitations by several well-selected
single instance explanations. With graphs, the structural aspect is much more difficult to
navigate in, and the space explored by single-instance explanation methods is too limited in
that regard.

Graph Neural Networks construct a local embedding of each node of the graphs. Even
for the classification of graphs, there is the number of nodes multiplied by the number
of layers as data points that represent structural information. For the Aids dataset, this
represents 120,000 data points that carry the structures identified by the GNN. In case we
are able to identify features in the embedding, we do not know how they relate to graph
structures. The GNN is a one-way application of the graph to embedding, the other way is
much more difficult. There are many difficulties in this task. The first GNNs are surjective
functions. Second, it is not about finding a specific embedding and inverse image, but
finding a subgraph with an integration that matches the highlighted part of the integration.
Few very recent approaches (Duval and Malliaros, 2021, Zhang et al., 2022) have considered
this problem, just as we do in this thesis.





Chapter 3

Mining activation rules in the hidden
layers of GNNs

3.1 Inside GNN motivations and desirata

As the literature review shows, there is a lack of methods to explain GNN models. Most
existing techniques focus on single explanations that are easier to create and understand.
However, they provide a limited understanding of what is really going on. They make
possible to understand specific instances and also to approximate the global behavior of the
GNN based on multiple instances. But, such approaches have low evidentiary value. The
global understanding of GNNs is much more interesting and only a few methods have tried
to solve this problem.

The main leverage we will use is that in a GNN classification task we have many more
data points to work with than other models. The GNN is an embedding machine. When
running it on a full dataset, we have as many embeds as there are nodes in the graph.
Considering the multiple layers, we can multiply this number by the number of layers. Each
node embedding is a characteristic vector of an ego-graph of fixed diameter. It contains
structural and nodal information of this ego-graph. A GNN extracts information locally. To
understand its behavior, we focus on local models. The developed method (Veyrin-Forrer
et al., 2022) works in two main steps: Identifying patterns that are associated with a GNN
class and finding prototype graphs that embed themselves in such patterns.

In the following work, we want to be as time resistant as possible. We are working
on Graph Neural Networks, but this computational model is quite new and constantly
evolving. We want the developed algorithm to be always valid with new versions of GNNs.
We want to take the best position in the compromise between building a general agnostic
algorithm and a sufficiently specific method that takes advantage of the GNN architecture
and specificity.

3.2 Graph Neural Network setup

We now need to more formally define the type of GNN we are working on. In all our
experimental setup, we use Graph Convolutional Networks (GCN), but any type of Graph
Neural Network with a fixed number of layers can be explained with our method. On the

43
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contrary, the recurring architecture should require adaptations and new experiments. We
consider a set of graphs Gwith labels on nodes: G “ pV,E,Lq with V a set of nodes, E a set of
edges in VˆV, and L a mapping between the nodes and the labels, L Ď VˆT, with T the set of
labels. The graphs of G are classified in two categories tc0, c1u by a GNN: GNN :GÑ tc0, c1u.
The GNN takes decisions at graph level. More precisely, we consider Graph Convolutional
Networks (GCN) (Kipf and Welling, 2017) with L layers. GCNs compute vectors hℓv, l “ 1 . . . L
of dimension K, an hyperparameter of the method. hℓv represents the ego-graph centered at
node v with radius ℓ. This ego-graph is induced by the nodes that are less than a distance
ℓ (in number of edges) from v. Such vectors are recursively computed by the following
formula:

hℓv “ ReLU

¨

˝Wℓ ¨
ÿ

wPNpvq

ew,v
a

dvdw
hℓ´1

v

˛

‚, with dv “
ÿ

wPNpvq

ev,w.

ev,w is the weight of the edge between nodes v and w, Npvq is the set of neighboring nodes
of v including v, ReLU is the rectified linear activation function, and Wℓ are the parameters
learned during the model training phase. Finally, h0

v is the initial vector for node v with the
one-hot encoding of its labels from set T.

Each vector is of size K “ 20 and ℓ ranges from 0 to L “ 3 the number of layers in
the GNN, two hyperparameters of the GNN, ℓ “ 0 refers to the input layer1. Considering
graph classification task, we concatenate the embedding of each layer for each node : embv “

ph1
v, h2

vh3
vq then we aggregate all nodes embedding pembvqvPV with a max and a mean pool.

The decision is taken using a single decoder layer to a binary output. For a trained GNN,
the vectors hℓv capture the key characteristics of the corresponding ego-graphs on which the
classification is made. When one of the vector components is of high value, it plays a role
in the decision process, actually it is the combination of multiple values in the embedding
vector that is determinant for the decision process, and even early in the inference process
important patterns,seen as a subgraph or a family of subgraph that are similar, are identified
by the GNN and are useful for the classification. An identified pattern is either specific to
one or the other class, otherwise no learning stress is put to the GNN to keep track of such
pattern. We want to identify such structures through the hidden vector.

3.3 Activation matrix and activation rules

A hidden vector hk
v is the embedding of the ego network of radius k rooted in node v. We

want to build a family of functions raphq : RK Ñ t0, 1u that output 1 if the embedding h of
an ego-graph activates the pattern a. This family of functions are called activation rules and
we want to build them to be fast to compute so that we can compute paq patterns in tractable
time. For this, we build a set of positive rules, associated with patterns belonging to the
positive class and with negative rules for the negative class, or class 0:

raphq “
ź

iPa

1phi ą 0q

with a a subset of indices. The rule is activated if all component with indices in a have a
value over 0. This means that the component was on the right side of the ReLu function and

1There is no W0.
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we consider the component as activated. We can see a as a binary vector A where Ai :“ 1 if
i P a,Ai “ 0 . In order to search through the space of activation rules, we consider a binarized
version of the hidden vectors. For the next step, we pre-compute all hidden vectors, layer
by layer and build the activation matrix as defined below.

Definition 1 (Activation matrix). The activation matrix xHℓ has dimensions pn ˆ Kq, with n “
ř

giPG
|Vi|.

xHℓrv, ks “

"

1 if phℓvqk ą 0
0 otherwise

For a given layer ℓ, the activated components of hℓv correspond to the part of the ego-
graph centered at v and of radius ℓ that triggers the decision. With this representation, the
activation rule test is done through a scalar product hi ¨ A ą 0.

Other languages can be used to define activation rules. For example, we could use non-
zero numeric triggers, or linear relationships. In the next step, we see a way to leverage
activation rules with other languages. The search space then becomes much larger and even
more intractable. On the other hand, the rule with the threshold 0 stated above corresponds
to a computational reality.

3.4 Activation rules discovery

We want two sets of activation rules: one that identifies embeddings of the positive class c1

and another that identifies embeddings of the negative class. We use a subgroup discovery
approach to identify sets of vector components that are mostly activated in graphs having the
same GNN decision to construct our rules. In the activation matrix, each line corresponding
to an embedding node of a graph G is associated with the decision of the GNN on this
embedding in order to define the support of the rule:

Definition 2 (Activation rule and support). An activation rule Aℓ Ñ c is composed of a binary
vector Aℓ of size K and c P tc0, c1u a decision class of the GNN. A graph gi “ pVi,Ei,Liq P G

activates the rule if there is a node v in Vi such that xHℓrv, ks “ pAℓqk, @k “ 1 ¨ ¨ ¨ K. It is denoted
ActivatepAℓ Ñ c, vq. The activated graphs with GNN decision c form the support of the rule:

SupppAℓ Ñ c,Gq “ tgi P G | Dv P Vi, ActivatepAℓ Ñ c, vq and GNNpgiq “ cu

Thus, the activated rules are more interesting if their supports are largely homogeneous
in terms of GNN decisions, i.e. the graphs of the support are mainly classified either in the
class c0, or in the class c1. Most rules have support in both classes in terms of GNN decision,
and to be more precise, it is possible to have strictly identical embeddings of nodes which
belong to differently classified graphs. This phenomenon is more common in the lower
layers where the embedded ego-networks are small. Using the GNN decision instead of
the real class is motivated by the same argument in Section 2.3.2. We want to explain the
decision of the GNN and explain why it made a certain decision regarding its internal state
and not try to explain why an instance is of a certain class. Regarding the internal state, it
does not change anything when the GNN has correctly predicted the class. But when the
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4 0.0 0.1 0.0 0.0 0.0 0.1
5 0.0 0.0 0.1 0.0 0.2 0.0
6 0.0 0.2 0.0 0.0 0.0 0.0

Figure 3.1: Toy example: The internal GNN representation of 4 graphs on the third layer
with K “ 6. Non-null components (grey cells) are considered as activated and encoded by a
’1’ value in the binary activation matrix xH3. The pattern A3 “ p1, 0, 0, 0, 0, 1q is activated by
nodes 1 and 3 of G1 and node 2 of G2. Thus, ActivatepA3 Ñ 1, v1q “ True, ActivatepA3 Ñ

1, v3q “ True for G1 and ActivatepA3 Ñ 1, v2q “ True for G2. SupppA3 Ñ 1,Gq “ tG1,G2u.

GNN has misclassified an instance, we keep the correlation between the internal state and
the output.

The support is the first measure to evaluate the interest of an activation rule. It is useful
to build a first rule. However, given that we have found the most interesting rule for a given
target class, what is the use of the second most interesting rule if it shares 90% of the support?
We want to increasingly cover our activation matrix with the following rules. The goal here
is to add a priori knowledge about the interest of our activation rules in order to be able to
build them iteratively and build the next activation rule knowing the previous ones.
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3.4.1 Measuring the interest of an activation rule

The question now is how to evaluate the interest of the activation rules so as to obtain a set
of non-redundant rules. One way to achieve this is to model the knowledge extracted from
the activation matrix into a background model and to evaluate the interest of a rule by the
knowledge it brings in relation to it. This is what the FORSIED framework (De Bie, 2011)
does. It proposes an operational way to define the background model and to evaluate the
subjective 2

We consider the discrete random variable Hℓrv, ks associated to the activation matrix
xHℓrv, ks3, and we model the background knowledge by the probability PpHℓrv, ks “ 1q.
Intuitively, the information content (IC) of an activation rule should increase when its com-
ponents are unusually activated for the nodes in the graphs of its support, it is unlikely that
these components are activated when considering a random node, while this probability
increases when considering graphs supporting the pattern).

Thus, given the probabilities PpHℓrv, ks “ 1q and with the assumption that all Hℓrv, ks

are independent of each other, we can evaluate the interest of a rule by the product of
PpHℓrv, ks “ 1q for v activated by the rule and k such that pAℓqk “ 1. Equivalently, we use the
negative log-probability.

The more probable the pattern – and therefore the less interesting – the smaller this value.
As there may exist several nodes activated in a single graph, we choose the one maximizing
the measure.

Definition 3 (Rule information content). Given a probabilistic background model P, the informa-
tion provided by a rule R “ Aℓ Ñ c to characterize a set of graphs G is measured by

ICpR,Gq “
ÿ

giPSupppR,Gq

max
v P Vi and

ActivatepR, vq

´
ÿ

k s.t. pAℓqk“1

logpPpHℓrv, ks “ 1qq

Example 1. Considering the example of Fig. 3.1 and the rule A3 Ð 1 with A3 “ p1, 0, 0, 0, 0, 1q

and the probabilistic background model P given in Table 3.1, ICpA3 Ñ 1,Gq “ ´ logp0.72q ´

logp0.34q ´ logp0.99q ´ logp0.47q “ 3.13.

The measure of a pattern’s intersestingness is founded on several choices and mainly
the questions around do we count a rule activated on multiple nodes on a graph ? Here the
max limits this to only one node maximum per graph, and avoid larger graph in the datasets
or frequent but not very specific patterns to have a too high IC. We have a preference here
toward patterns that appears once on graphs. Also this policy helps to avoid the mining
of a rule that capture multiple patterns : if we replace the max by a

ř

and if multiple ego
network happens to have embedding with the same activated components the IC of a rule
targeting such component could be high while not capturing only one phenomenon. This
choice leads to sparser explanations with less nodes and edges, that are easier to understand
and to justify for the user.

The IC alone is not enough, but it may be more difficult for the user to assimilate it,
especially when its description is complex. To avoid this drawback, the IC value is contrasted

2Subjective means that the measure of pattern interest is relative to the background knowledge model. It
uses information theory to quantify both its informativeness and complexity.

3We use hats to signify the empirical values.
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by its description length which measures the complexity of communicating the pattern to
the user. The higher the number of components in Aℓ, the more difficult to communicate it
to the user.

Definition 4 (Description length of a rule). The description length of a rule is evaluated by

DLpAℓ Ñ cq “ αp|Aℓ|q ` β

with |Aℓ| the L1 norm of Aℓ, α the cost for the user to assimilate each component and β a fixed cost
for the pattern. We set β “ 1 and α “ 0.6, as the constant parameter β does not influence the relative
ranking of the patterns, and with a value of 1, it ensures that the DL value is greater than 1. With
α “ 0.6, we express a slight preference toward shorter patterns.

Example 2. DLpA3 Ñ 1q “ 2α` β “ 2.2.

The subjective interestingness measure is defined as the trade-off between IC and DL.

Definition 5 (Subjective interestingness of a rule). The subjective interestingness of a rule on the
whole set of graphs G is defined by

SIpAℓ Ñ c,Gq “
ICpAℓ Ñ c,Gq

DLpAℓ Ñ cq

Up to this point we can find interesting subset of components, however they are not yet
linked to a specific class, we want to find interesting patterns for each of the classes. So we
split the subjective interestingness for the different class. With a negative argument for the
activated node on the other class.

Definition 6 (Differential measure of subjective interest). If we denote by G0 (resp. G1) the
graphs gi P G such that GNNpgiq “ c0 (resp. GNNpgiq “ c1), the subjective interest of the rule
Aℓ Ñ c with respect to the classes is evaluated by

SI SGpAℓ Ñ cq “ ωc SIpAℓ Ñ c,Gcq ´ ω1´c SIpAℓ Ñ c,G1´cq.

The weights ω0 and ω1 are used to counterbalance the measure in unbalanced decision
problems. The rational is to reduce the SI values of the majority class.

Example 3. SI SGpA3 Ñ 1q “ SIpA3 Ñ 1,G1q ´ SIpA3 Ñ 1,G0q “
ICpA3Ñ1,G1q

DLpA3Ñ1q
´

ICpA3Ñ1,G0q

DLpA3Ñ1q
“

3.13
2.2 ´ 0.

We set ω0 “ maxp1, |G1|

|G0|
q and ω1 “ maxp1, |G0|

|G1|
q. The choice of weights is important when

the dataset is unbalanced, and can be used to leverage

Example 4. Let see what happens if a rule activates the same number of graphs in both
classes. Is such rule interesting? If we have a ratio of 70 ´ 30 positive over negative
graphs, and a rule A with the same support for the positive in both classes, and making
the assumption that the SI is the same, we will have ω0 “ 2.33 and ω1 “ 1 leading to a
SI SGpAℓ Ñ c0q “ 1.33SI and SI SGpAℓ Ñ c1q “ ´0.66SI. Here the number of activated
graphs impacts linearly the interstingness of the rule.
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Or if the percentage p of coverage is the same on each class, with once again a similar
interest per graph, we have SIpAℓ Ñ c0,G0q “ 0.3pα and SIpAℓ Ñ c1,G1q “ 0.7pα. In the
end, we have SI SGpAℓ Ñ c0q “ 7

3 ¨ 0.3pα ´ 0.7pα “ 0 “ SI SGpAℓ Ñ c1q. A rule activating
the same proportion of graphs among both classes is as uninteresting for both classes.

3.4.2 Computing the background model

The background model P is initialized with basic assumptions about the activation matrix
and updated as rules are extracted.

Definition 7 (Initial background model). Some components can be activated more than others on
all the graphs, or some nodes can activate a variable number of components. We assume that this
information is known and use it to constrain the initial background distribution P:

ÿ

v
PpHℓrv, ks “ 1q “

ÿ

v
PpxHℓrv, ks “ 1q,

ÿ

k

PpHℓrv, ks “ 1q “
ÿ

k

PpxHℓrv, ks “ 1q.

However, these constraints do not completely specify the probability matrix. Among all the probability
distributions satisfying these constraints, we choose the one with the maximum entropy. Indeed, any
distribution P with an entropy lower than the maximum entropy distribution effectively injects addi-
tional knowledge, reducing uncertainty unduly. The explicit mathematical MaxEnt model solution
can be found in (De Bie, 2009).

The corresponding initial background model of example of Fig. 3.1 is given in Table 3.1.
Once a rule Aℓ Ñ c has been extracted, it brings some information about the activation

matrix that can be integrated into P. The model must integrate the knowledge carried by
this rule, that is to say that all the components with value 1 of Aℓ are activated by the vertices
activating the rule.

Definition 8 (Updating the background model). The model P integrates the rule Aℓ Ñ c as
follows: @k such that pAℓqk “ 1 and v such that xHℓrv, ks “ pAℓqk, PpHℓrv, ks “ 1q is set to 1.

3.4.3 Iterative extraction of subjective activation subgroups

We propose to compute the subjective activation rules with an enumerate-and-rank ap-
proach. It consists to compute the rule Aℓ Ñ c with the largest SI SG value and to integrate it
in the background distribution P to take into account this newly learnt piece of information.

Algorithm 1 sketches the method. First, it sets the output set equal to the empty set (line
1) and the minSI value to the smallest value (line 2). A stack of size K is initialized line
3. The first considered rule Aℓ is initialized as a bit-vector of size K containing only 0’s. It
corresponds to the rule with no activated components. It has an associate attribute Pot that
encodes the components that could still be activated for Aℓ, as it leads a yet unconsidered
combination of activated components. Rule Aℓ is then staked in Stack (lines 4 to 6). Line 7, it
computes the background model P from the activation matrix xHℓ as defined in Definition 7.
Then, in a loop (lines 8 to 11), it computes iteratively the rule Aℓ Ñ c having the best
SI SGpAℓ Ñ cq value. Then, this best rule is used to update the model P (line 11). Indeed,
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G1

1 0.729 0.556 0.556 0.507 0.346 0.346
2 0.729 0.556 0.556 0.507 0.346 0.346
3 0.729 0.556 0.556 0.507 0.346 0.346
4 0.527 0.402 0.402 0.366 0.250 0.250
5 0.527 0.402 0.402 0.366 0.250 0.250

G2

1 0.999 0.762 0.762 0.695 0.474 0.474
2 0.999 0.762 0.762 0.695 0.474 0.474
3 0.999 0.762 0.762 0.695 0.474 0.474
4 0.527 0.402 0.402 0.366 0.250 0.251
5 0.729 0.556 0.556 0.507 0.346 0.346

G3

1 0.256 0.195 0.195 0.178 0.122 0.122
2 0.999 0.762 0.762 0.695 0.474 0.474
3 0.527 0.402 0.402 0.366 0.250 0.250
4 0.374 0.285 0.285 0.259 0.177 0.177
5 0.730 0.556 0.556 0.507 0.346 0.346

G4

1 0.527 0.402 0.402 0.366 0.250 0.250
2 0.729 0.556 0.556 0.507 0.346 0.346
3 0.527 0.402 0.402 0.366 0.250 0.250
4 0.527 0.402 0.402 0.366 0.250 0.250
5 0.527 0.402 0.402 0.366 0.250 0.250
6 0.374 0.285 0.285 0.259 0.177 0.177

Table 3.1: Initial background model PpHℓrv, ks “ 1q of example of Fig. 3.1.

once the rule Aℓ is known, its subjective interest falls down to 0. This consists in setting the
corresponding probabilities to 1.

Algorithm 2 presents INSIDE-SI that computes the best rule with as activated components
the one’s values of the vector stored in Stackrdepths, and even more, depending on the
recursive process. It considers a pattern A stored in the stack at depth depth. A has 5
attributes:

• A.Pot, a vector whose one’s values represent the activated components that can be
further added to A during the enumeration process,

• A.Gc (resp. A.G1´c) the set of graphs from Gc (resp. G1´c) that support A,

• and A.TGc (resp. A.TG1´c) the set of graphs that are supporting A and all its descen-
dants in the enumeration process (there is a node in these graphs that activates all the
components of A and A.Pot).
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Algorithm 1 INSIDE-GNN(xHℓ, c, nbPatt)

Require: xHℓ the activation matrix (see Definition 1), c the class to be characterized and nbPatt the number of
patterns.

Ensure: output, the up to nbPatt best activation rules Aℓ Ñ c w.r.t. SI SG.
output Ð H

1: minSI Ð ´8

2: Stack.maxsize Ð K
3: Aℓ Ð a size K bit-vector initialized at 0
4: Aℓ.Pot Ð a size K bit-vector full of 1’s
5: Stackr0s Ð Aℓ

6: P Ð Compute ModelpxHℓq

7:
8: while ((|output| ă nbPattq and (minSI ą 0)) do Aℓ,minSI Ð INSIDE-SI(Stack, P, c, minSI, 0)
9: output Ð output Y Aℓ

10: Update ModelpP,Aℓq

11: end while

Algorithm 2 INSIDE-SI(Stack, P, c, minSI, depth)

Require: Stack a stack of recursively enumerated patterns at depth depth, P the background distribu-
tion, c the class to be characterized, minSI a dynamic threshold on SI SGpAℓ Ñ cq.

Ensure: Best, the best rule w.r.t. SI SG.
A Ð Stackrdepths

1:
2: if (pϕpAq “ Falseq or pUB SIpA,P, cq ă minSIq then return
3: end if
4: if (A.Pot “ H) then
5: if (SI SGpA Ñ cq ą SI SGpBest Ñ cq) then Best Ð A
6: minSI Ð SI SGpBest Ñ cq

7:
8: end if
9: elsex Ð first bit of A.Pot set to 1

10: A.Potrxs Ð 0
11: Arxs Ð 1
12: Stackrdepth ` 1s Ð A
13: INSIDE-SI(Stack, P, c, minSI, depth+1)
14: Arxs Ð 0
15: Stackrdepth ` 1s Ð A
16: INSIDE-SI(Stack, P, c, minSI, depth+1)
17:
18: end ifreturn Best, minSI

The algorithm computes the closure of A using the functionϕ. It consists in adding activated
components to A (set some components of A to 1) as long as the set A.Gc of supporting graphs
stays unchanged. Furthermore, if a component has been removed from A (on line 14) but
can be added later to A (i.e. ϕpAq&A.pot , A with & the bitwise and operation), A is not
closed, the function returns False and the recursion stops.

Line 2, a second criterion based on an upper bound UB SI makes the recursion stop if its
value is less that the one of the current best found rule. It relies on the following property.
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Property 1. Let A and B be two binary vectors of size K. The components that are activated
for A are also activated for B (i.e., A&B “ A, with & the bitwise and operation). We can
upper bound the value SI SGpB Ñ cq and have

SI SGpB Ñ cq ď UB SIpA,P, cq with

UB SIpA,P, cq “ wc

ř

gPA.Gc maxvPVg ´
ř

k s.t. pA&A.Potqk“1 logpPpHℓrv, ks “ 1qq

αp|A|q ` β

´w1´c

ř

gPA.TG1´c maxvPVg ´
ř

k s.t. pAqk“1 logpPpHℓrv, ks “ 1qq

αp|A&A.Pot|q ` β

with |A| the L1 norm of A.

Proof. To upper bound the measure SI SGpB Ñ cq, we follow the strategy explained in (Cerf
et al., 2009). Let

SI SGpB Ñ cq “ wc
X
Y1

´ w1´c
Z
Y2

with

X “ ICpB,Gcq “
ÿ

giPSupppB,Gcq

max
vPVi

´
ÿ

k s.t. pBqk“1

logpPpHℓrv, ks “ 1qq

Z “ ICpB,G1´cq “
ÿ

giPSupppB,G1´cq

max
vPVi

´
ÿ

k s.t. pBqk“1

logpPpHℓrv, ks “ 1qq

Y1 “ Y2 “ DLpBq “ αp|B|q ` β

Similarly, we denote the upper bound function by

UB SGpA,P, cq “ wc
γ

δ
´ w1´c

ϵ
η
.

Therefore, the largest value of SI SGpB Ñ cq is obtained if:

• X has the maximal possible value, that is to say B “ A&A.Pot and all the graphs of Gc

that support A, also support A&A.Pot. In that case, we have

γ “
ÿ

gPA.Gc

max
vPVg

´
ÿ

k s.t. pA&A.Potqk“1

logpPpHℓrv, ks “ 1qq

• Y1 has the smallest possible value αp|A|q ` β (more elements in B will decrease the
value of the fraction)

δ “ αp|A|q ` β

• Z has the smallest possible value and is computed over A, and on the graphs from Gc

that support A and all its descendants (A.TG1´c)

ϵ “
ÿ

gPA.TG1´c

max
vPVg

´
ÿ

k s.t. pAqk“1

logpPpHℓrv, ks “ 1qq
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• Y2 has the value αp|A&A.Pot|q ` β (less elements in B will decrease the value of the
function)

η “ αp|A&A.Pot|q ` β

It results in the upper bound definition. □

Line 4 of Algorithm 2, Best is updated as well as minSI if there are no more component
to enumerate, and if the SI SG value of the current rule is better than the one already found.
Otherwise (lines 9 to 16), the enumeration continues either 1) by adding a component from
A.Pot to A (lines 9-12) and recursively call the function (line 13), or 2) by not adding the
component while still removing form A.Pot (line 14) and recursively continue the process
(line 16).

3.5 Characterization of activation rules with subgroups

Once the activation patterns are found, we aim to describe them in an intelligible and
accurate way. We believe that each activation pattern can be linked to hidden features of
the graphs, that are captured by the model as being related to the class to be predicted. The
objective here is to make these features explicit. For this, we seek to characterize the nodes
that support the activation pattern, and more precisely to describe the singular elements
of their neighborhoods. Many pattern domains can be used to that end. In the following,
we consider two of them: one based on numerical descriptions and the other one based
on common subgraphs. In order to characterize the subgraphs centered on the nodes of
the activation pattern support (called ego-graphs) in a discriminating way compared to the
other subgraphs, we extend the well-known gSpan algorithm (Yan and Han, 2002) so that it
takes into account subgroup discovery quality measure.

3.5.1 Numerical subgroups

In this approach, we propose to describe each node that supports a given activation pattern
by some topological properties4. We choose to consider its degree, its betweenness cen-
trality value, its clustering-coefficient measure, and the number of triangles it is involved
in, as characteristic features. These properties can be extended to the whole ego-graph by
aggregating the values of the neighbors. We consider two aggregation functions: the sum
and the mean. Thanks to these properties, we make a propositionalization of the nodes of
the graphs and we consider as target value the fact that the node belongs to the support of
the activation rule (labeled as a positive example) or not (labeled as a negative example).
Therefore, we have a matrixDwhose rows denote graph nodes and columns correspond to
numerical attrbutes describing the position of the node in its graph: Drvs P Rp, with p the
number of attributes. D is split in two partsD0 andD1 with v P Dc iff ActivatepAℓ Ñ c, vq.

To identify the specific descriptions of the support nodes, we propose to use a subgroup
discovery method in numerical data. It makes it possible to find restrictions on numerical
attributes (less or greater than a numerical value) that characterize the presence of a node

4These attributes are computed with Networkx Python Library https://networkx.org/.

https://networkx.org/
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within the support of the activation rule. A numerical pattern has the form
Śp

i“1rai, bis (i.e.
the pattern language) and a graph node supports the pattern if @i “ 1 . . . p, ai ď Drv, is ď bi.

To discover such subgroups, we use the pysubgroup library (Lemmerich and Becker,
2018).

3.5.2 Graph subgroups

Another approach consists to characterize activation rules by subgraphs that are common
among positive examples in contrast to the negative ones. To this end, we consider as
positive examples the ego-graphs (with a radius equal to the layer) of nodes that support the
activation pattern of interest. By taking the radius into account, we are not going beyond
what the model can actually capture at this layer. The negative examples are the graphs in
G for which none of their vertices support the activation pattern. Hence,D is a set of graph
nodes v associated to ego-graphs Eg “ pVg,Eg,Lgq. D is split intoD0 andD1 with v P Dc iff
ActivatepAℓ Ñ c, vq.

A graph pattern has the form G “ pV,E,Lq (i.e. the pattern language) and a graph node
supports the pattern if there exists a graph isomophism between Eg “ pVg,Eg,Lgq and its
ego-graph Eg “ pVg,Eg,Lgq.

3.5.3 Quality measure and algorithms

As for the identification of activation patterns, we could have used subjective interestingness
measure to characterize the supporting ego-graphs of the activation patterns. However, we
opt for a more usual measure, the Weighted Relative Accuracy (Lavrač et al., 1999). Given a
pattern P of a given language, a dataset D split into D0 and D1 and a SupppP,Dq measure
that gives all the graph nodes supporting the pattern P in the dataD, the WRAcc measure

WRAccpP, cq “
|SupppP,Dq|

|D|

ˆ

|SupppP,Dcq|

|SupppP,Dq|
´

|Dc|

|D|

˙

gives high values to patterns that are mainly supported by nodes of Dc compared to the
whole datasetD. Then, we use off-the-shelf algorithms to discover the best subgroups. We
compute patterns P such that

WRAccpP, cq ě min WRAcc and |SupppP,Dq| ě min sup(3.1)

or just the subgroup with the highest WRAcc value.
For the numerical subgroups, we use Pysubgroup library (Lemmerich and Becker, 2018).

For graph subgroup dicovery, we integrate the WRAcc measure into the gSpan algorithm
(Yan and Han, 2002). As WRAcc measure is not anti-monotone, we use the following upper-
bound instead of the WRAcc for pruning:

UBpP, cq “
|SupppP,Dq|

|D|

ˆ

1 ´
max pmin sup, |Dc|q

|D|

˙

If min sup ă |Dc|, then we have UBpP, cq “
|SupppP,Dq|

|D|

´

1 ´
|Dc|

|D|

¯

. Since |SupppP,Dcq|

|SupppP,Dq|
ď 1,
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WRAccpP, cq ď UBpP, cq. In the other case, we have:

|SupppP,Dcq|

|SupppP,Dq|
´

|Dc|

D
ď

|SupppP,Dq|

|SupppP,Dq|
´

min sup
|D|

ô

min sup
|D|

´
|Dc|

|D|
ď

|SupppP,Dq|

|SupppP,Dq|
´

|SupppP,Dcq|

|SupppP,Dq|
ô

1
|D|

pmin sup ´ |Dc|q ď
1

|SupppP,Dq|
p|SupppP,Dq| ´ |SupppP,Dcq|q

The last inequality holds since 1
|D|

ď 1
|SupppP,Dq|

, min sup ď |SupppP,Dq|, and finally |Dc| ě

|SupppP,Dcq|.
Since UB is not dependent to the SupppP,Dcq, when |Dc| is much lower than the |D|, this

upper bound is not tight. We can use another upper bound which is dependent to the |Dc|.
Let us call this upper bound UB2:

UB2pP, cq “
|SupppP,Dcq|

|D|
´

min sup
|D|

ˆ
|Dc|

|D|

Since except SupppP,Dcq everything is constant, and SupppP,Dcq is anti-monotone, UB2 is
anti-monotone too. To show that UB2 is an upper bound for WRAcc, note that min sup

|D|
ˆ

|Dc|

|D|
ď

|SupppP,Dq|

|D|
ˆ

|Dc|

|D|
and the first terms of WRAcc and UB2 are equal. In our algorithm we use

UB3pP, cq “ mintUB2pP, cq,UBpP, cqu as upper bound for the WRAcc.

3.6 GNN explanations with activation rules

INSIDE-GNN builds a set of activation rules. Each rule describes a subset of node embedding
and is associated with one or the other class of the GNN, and this for each GNN’s layer. These
rules have been mined iteratively to describe the activation matrix obtained by running the
GNN on the graphs. Now, for an new input we can easily know the activated rules and
which nodes trigger them. Is this information enough to produce any kind of explanation?
Or how should it be refined to be presented to an human?

An activation rule has a support made of nodes associated to the target class or the other
class. The activation rule itself is made of components whose activation is correlated with
the target output, meaning that something has been captured by the part of the embedding
vector corresponding to the rule. The layer of the GNN that computed the rule-based
embedding indicates the radius of the ego-network to consider. The information not yet
available is: Does all nodes and edges of this ego network are important for the decision?
Also smaller phenomenons should be identified in rules that occur in the first layer. For
instance the presence of a certain label on a node can be related to a certain output. And the
opposite is also possible in the later layers: Some rules can be the union of multiple patterns.
In this case the neighborhood identification is still valid but a user might see two radically
different ego-networks that activate the same rule, and lead to confusion.

The rules are mined iteratively in order to each rule bring new information. The question
posed by this statement is: should explanations take into account the order in which the rules
are extracted? The best option is to use rules support, which is much easier to understand.
Considering activation rules as a set rather than a sequence is a better level of abstraction.
The method generates a set of rules, each is given with metadata: target class, SI SG, positive
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support, negative support allowing us to create a quick single instance explanation by calling
the GNN and seeing which embedded nodes are activated. However, post-processing is
needed to produce a solid explanation. Do we want to show every activated node? In
the end, we prefer to produce a mask: a sub-graph which is important. This way, another
abstraction is made between the rules and the output. We also want to express the locality
properties of an embedding: a rule is not only a description of a node but a description of
an ego-network. We will see later several policies to implement this question.

3.7 Experimental study

In this section, we evaluate INSIDE-GNN through several experiments in order to verify its
interest and validate its performance against other methods. We first see synthetic and
real-world datasets and the experimental setup. Then a quantitative study of the patterns
provided by INSIDE-GNN. Next, we show the experimental results on explanations of graph
classification against several state of the art methods. Finally, we report results on the
characterization of activation rules by human understandable descriptions of what GNN
models capture.

INSIDE-GNN has been implemented in Python and the experiments have been performed
on a machine equipped with 8 Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz cores 126GB main
memory, running Debian GNU/Linux. The code and the data are available5.

3.7.1 Datasets and experimental setup

Experiments are performed on six graph classification datasets whose main characteristics
are given in Table 3.2. BA2 (Ying et al., 2019) is a synthetic dataset, the other datasets
(Aids (Morris et al., 2020), BBBP (Wu et al., 2017), Mutagenicity (Morris et al., 2020), DD
(Dobson and Doig, 2003), Proteins (Borgwardt et al., 2005)) depict real molecules and the
class identifies important properties in Chemistry or Drug Discovery (i.e., possible activity
against HIV, permeability and mutagenicity).

BA2

BA2 is a synthetic dataset. Each graph is generated from a Barabasi-Albert model, and a
substructure is added: if the structure is a 5 node cycle, the graph belong to the negative class,
if the structure is a small house the graph belongs to the positive class. Each graph contains
25 nodes and each node feature vector is of size 10 and each of its component contain the
value 0.1, Finally this dataset is perfectly balanced with 500 graphs for each class.

The main interest of a synthetic dataset such as BA-2 is to control graph parameters such
as the degree distribution. And only one phenomenon is involved in the difference between
the two classes, On a well trained GNN, a good explainer should provide easy interpretable
outputs. We see that the main drawback of this dataset is that only two patterns exist for
the model to identify the classes. Actually a simple graph search algorithm can differentiate
both classes and machine learning is not necessary for this problem. The test result for this
dataset should be taken with care and be used as simple debugging tool.

5https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0

https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0
https://www.dropbox.com/sh/jsri7jbhmkw6c8h/AACKHwcM3GmaPC8iBPMiFehCa?dl=0
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AIDS

AIDS (Riesen and Bunke, 2008) is a real-world dataset extracted form drug discovery prob-
lems. On this problem we want to predict if a molecule has inhibited the replication of HIV.
Be able to predict if a molecule might have an impact on a disease can save a lot of time and
money in research and testing. Each graph represents a molecule, a node represents an atom
identified by a one hot vector whose components correspond to a certain atom. The edges
represent the atomic bounds there the type of bound is not used. This dataset is not well
balanced with 80% of positive instances. AIDS is a quite popular dataset on which GNNs
perform well.

BBBP

BBBP, for Blood Brain Barrier Penetration, is also a drug discovery dataset but this time to
predict if a molecule can reach the brain. For most vertebrate, the brain is a vital organ.
The brain is separated for the rest of the body by a membrane which blocks the passage of
blood. This membrane makes possible the transport of some elements such as nutriments
and oxygen, and block components such as drugs. The challenge is to find drugs that can
get through this membrane to cure different brain diseases. The structure of this dataset is
similar to the previous one, with each example representing a molecule.

Mutagenicity

The mutagenicity dataset (Kazius et al., 2005, Riesen and Bunke, 2008) is an undesired
property of a drug that must be avoided. This sub-task is described in this dataset, and each
molecule is described like in the above datasets. AIDS, BBBP, and Mutagenicity correspond
to problems of increasing complexity.

DD

DD (Dobson and Doig, 2003) does not stand for Dungeons and Dragons but for the name
of their authors Dobson and Doig. This dataset is not a molecular dataset but a protein
one. The proteins are not represented in their molecular form because the way a protein is
wrapped is a key component difficult to represent by molecular form. Also, each protein
would be too large to handle. Here the protein is represented by a graph where each amino
acid is a node and two nodes are connected when they are less than 6 Ångstroms apart. The
goal is do predict if a protein is an enzyme or not. Proteins are key component in living
beings, some carry information, other energy, or help with the structure of the cell. There
are also enzymes that help chemical reactions to happen by catalysis and lowering reaction
temperature.

Proteins

Proteins (Borgwardt et al., 2005)) correspond to real molecules, and the class identifies
important properties in Chemistry or Drug Discovery (i.e., possible activity against HIV,
permeability and mutagenicity).
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These datasets describe molecular data, which is a quite narrow subset of the graph
problem spectrum. Such graphs have several common properties. Molecules are almost
planar graphs, with a similar distribution in node labels: mostly Carbon, then Hydrogen,
Oxygen, Nitrogen. Also we do not consider the bound type of edges. The use of such
datasets is motivated by their accessibility. A lot of graph Datasets are designed for node
classification. We discuss later on how to work with node classification problems. The main
difficulty with adding a dataset type is the code overhead that needs to be created. For
example some have values on the nodes and not a label, some have different types of nodes.
Each different case must be dealt with several times throughout the process. Finally, the
selected datasets are among the most used in the literature on GNN explainability.

A 3-convolutional layer GNN (with K “ 20) is trained on each dataset using 80% of the
data (train set). The hyperparameters are chosen using a grid-search on other 10% of the data
(validation set). The learned GNN are tested on the remaining 10% of the data (test set). The
corresponding accuracy values are reported in Table 3.2. INSIDE-GNN mines the corresponding
GNN activation matrices to discover subjective activation pattern set. We extracted at most
ten patterns per layer and for each output value, with a SI SG value greater than 10.

Table 3.2: Main characteristics of the datasets.

Dataset #Graphs (#neg,#pos)
Avg.
Nodes

Avg.
Edges

Acc.
(train)

Acc.
(test)

Acc.
(val)

BA2(syn) 1000 (500, 500) 25 25.46 0.995 0.97 1.0
Aids 2000 (400, 1600) 15.69 16.2 0.989 0.99 0.975
BBBP 1640 (389, 1251) 24.08 25.98 0.855 0.787 0.848
Mutagenicity 4337 (2401, 1936) 30.32 30.32 0.815 0.786 0.804
DD 1168 (681, 487) 268 715.7 0.932 0.692 0.760
Proteins 1113 (663, 450) 39 72.82 0.754 0.768 0.784

3.7.2 Quantitative study of activation rules

Table 3.3 reports general indicators about the discovery of activation rules by INSIDE-GNN. The
execution time ranges from few minutes for simple task (i.e., synthetic graphs) to two days
for more complex ones (i.e., DD). It shows the feasibility of the proposed method. Notice
that this process is performed only once for each model.

To assess whether the set of extracted rules represent the GNN well and in its entirety,
we used the rules to describe the input graphs (i.e. the graphs (in row) are described by the
rules (in columns) and the data matrix contains the number of graph nodes supporting the
corresponding rule). We then learned the simple and interpretable model that is the decision
tree. Thus, from only the knowledge of the number of nodes of a graph supporting each
of the rules, we can see, in Table 3.3 last column, that the decision tree can mimic the GNN
decision output with high accuracy. Obviously, we do not provide an interpretable model
yet, since the decision tree is based on the patterns that capture sets of activated components
of the GNN. Nevertheless, the results demonstrate that the pattern set returned by INSIDE-GNN

captures the inner workings of GNNs well.
The general characteristics of the activation rules for each dataset are provided in

Figs. 3.2–3.5. One can observe – in Fig. 3.2 – that a rule is usually supported by more
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Table 3.3: Execution time, number of discovered patterns by INSIDE-GNN and the ability of
the pattern set to mimic GNN: the accuracy of a decision tree with activation rules as fea-
tures and measured on a test set of 20% of the data. The class variable is the GNN output
yi. The closer AccpDTP, yiq to 1, the better the mimicry.

Dataset Time (s) # Act. Rules AccpDTP, yiq

BA2(syn) 180 20 0.98
Aids 5160 60 0.96
BBBP 6000 60 0.89
Mutagen 41940 60 0.87
DD 212400 47 0.86
Proteins 8220 29 0.87

BA2 Aids BBBP

Mutagen DD Proteins

Figure 3.2: Boxplot of the number of supporting vertices per graph for layers 1, 2 and 3.

than one node within a graph. Rules from the first layer of the GNN tend to involve a
higher number of vertices than those in the following layers. It may be due to the fact that
the first layer captures some hidden common features about the direct neighborhood of the
vertices. The features captured by the GNN become more discriminant with layer indexes,
as evidenced by the increasing SI SG score with layers in Fig. 3.4. For some datasets (e.g.,
BA2, AIDS, DD, Proteins), some rules have high discriminative power for the positive class
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BA2 Aids BBBP

Mutagen DD Proteins

Figure 3.3: Boxplot of the number of components per pattern for layers 1, 2 and 3.

(bottom right corner in Fig. 3.5) or the negative class (top left corner). Their discriminative
power is less effective for Mutagen and BBBP datasets. The most discriminant rules come
from the last layer of the GNN. Some rules are not discriminant (i.e., around the diagonal)
but remains subjectively interesting. These rules uncover activated components that capture
general properties of the studied graphs. It is important to note that we study here the
discriminative power of a rule according to its presence in graphs. These rules can be more
discriminant if we take into account the number of occurrences of the rules in the graphs.
For instance, a rule that is not discriminant can becomes highly discriminant if we add a
condition on its number of occurrences in graph, as we did when learning the decision trees
in Table 3.3.

3.7.3 Comparison with competitors for explainability of GNN output

We now assess the ability of activation rules to provide good explanations for the GNN
decisions. According to the literature, the best competitors are GNNExplainer (Ying et al.,
2019), PGExplainer (Luo et al., 2020) and PGM-Explainer (Vu and Thai, 2020). We consider all
of them as baseline methods. Furthermore, we also consider a gradient-based method (Pope
et al., 2019), denoted Grad, even if it has been shown that such method is outperformed by the
three others. Therefore, we compare INSIDE-GNN against these 4 single-instance-explanation
methods in our experiments.
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BA2 Aids BBBP

Mutagen DD Proteins

Figure 3.4: Boxplot of the SI SG score of patterns for layers 1, 2 and 3.

Evaluating the reliability of an explanation is not trivial due to the lack of ground truths.
In our case, only BA2 is provided with ground truths by construction. When we have ground
truths, we expect a good explanation to match it perfectly, but sometimes the model captures
a different explanation that is just as discriminating. Moreover, if fully present, ground truths
contain only simple relationships (e.g., BA2) which are not sufficient for a full assessment.
Therefore, to be able to consider synthetic and real-world datasets, we consider a ground
truth free metric. We opt for Fidelity (Pope et al., 2019) which is defined as the difference of
accuracy (or predicted probability) between the predictions on the original graph and the
one obtained when masking part of the graph based on the explanations:

Fidacc “
1
N

ˆ

N
ÿ

i“1

p1 ´ δ
pŷgizmi

i “yiq
q,

where yi is the original prediction of graph gi, mi is the mask and gizmi is the complementary
mask, ŷgizmi

i is the prediction for the complementary mask and δ
pŷgizmi

i “yiq
equals 1 if both

predictions are equal.

The fidelity can also be measured by studying the raw probability score given by the
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BA2 Aids BBBP

Mutagen DD Proteins

Figure 3.5: Coverage of positive and negative classes, coloured according to the layers.
A “perfect” discriminating pattern for the positive class (resp. negative class) would be
projected to the lower right corner (resp. upper left corner).

model for each class instead of the accuracy:

Fidprob “
1
N

ˆ

N
ÿ

i“1

p f pgiqyi ´ f pgizmiqyiq,

with f pgqyi is the prediction score for class yi.

Similarly, we can study the prediction change by keeping important features (i.e., the
mask) and removing the others as Infidelity measures do:

Infidacc
“

1
N

ˆ

N
ÿ

i“1

p1 ´ δ
pŷmi

i “yiq
q

Infidprob
“

1
N

ˆ

N
ÿ

i“1

p f pgiqyi ´ f pmiqyiq.

The higher the fidelity, the lower the infidelity, the better the explainer.

Obviously, masking all the input graph would have important impact to the model
prediction. Therefore, the former measures should not be studied without considering the
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Sparsity metric that aims to measure the fraction of graph selected as mask by the explainer:

Sparsity “
1
N

N
ÿ

i“1

ˆ

1 ´
|mi|

|gi|

˙

,

where |mi| denotes the size of the mask mi and |gi| is the size of gi (the size includes the
number of nodes, of edges and the attributes associated to them). Based on these measures,
a better explainability method achieves higher fidelity, lower infidelity while keeping a
sparsity close to 1.

We devise four policies to build a mask from an activation rules:

(1) node: the simplest policy which takes only the nodes that are covered by the activation
rule and the edges adjacent to these nodes.

(2) ego: the ego-graphs of radius ℓ centered on activated nodes, with ℓ the layer associated
to the pattern.

(3) decay: a continuous mask with a weight associated to the edges that depends on the
distance of its end-points to the activated nodes:

wv “
ÿ

aPVA

1
21`dpv,aq

if dpv, aq ď ℓ, 0 otherwise

with VA the set of activated nodes, dpv, aq the geodesic distance between nodes v and
a and wpu,vq “ wu ` wv.

(4) top k: a discrete mask containing only the k edges from decay mask with the highest
weights (k “ 5 or k “ 10 in our experiments).

For each policy, we select the mask (and the related pattern) that maximises the fidelity. As
GNNExplainer and PGExplainer provide continuous masks, we report, for fair comparisons,
the performance with both continuous and discrete masks built with the k best edges. Note
that the average time to provide an explanation ranges from 8ms to 84ms for INSIDE-GNN. This
is faster than PGM-Explainer (about 5s), GNNExplainer (80ms to 240ms) and Grad (300ms).
It remains slightly slower than PGExplainer (6ms to 20ms). Table 3.4(a) summarises the
performance of the explainers based on the Fidelity measures. Results show that INSIDE-GNN

outperforms the baselines regardless of policy. On average, the gain of our method against
the best baseline is 231% for Fidprob and 207% for Fidacc. These results must be analysed
while considering the sparsity (see Table 3.4(c)). In most of the cases, INSIDE-GNN provides
sparser explanation than the baselines. Furthermore, at equal sparsity (top k), INSIDE-GNN

obtains higher fidelity values than both competitors. Notice that PGM-Explainer fails on
BA2 because this dataset does not have labeled nodes and this method investigate only the
nodes of the graphs.

We provide additional information on the Fidelity in Table 3.5. The Fidelity aims to
measure the percentage of times that a model decision is changed when the input graphs
is obfuscated by the mask m. In Table 3.5, we report a polarized version of the Fidelity for
which we count the number of changes between the two possible decisions of the model. For
instance, F0Ñ1 measures the percentage of graphs initially classified as ‘false’ by the model
that become classified as ’true’ when obfuscating the graph with a mask. We can observe a
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dissymmetry between the class changes. As an example, INSIDE-GNN has a perfect fidelity on
BA2 and DD when considering only the positive examples, i.e., the mask provided by INSIDE-

GNN makes the model change its decision. When dealing with the negative examples, we
obtain much lower score. Intuitively, some class changes cannot be done by only removing
some vertices or edges. Regarding BA2, it is impossible to obtain a house motif from a cycle
without adding an edge to form a triangle.

The quality of the explanations are also assessed with the Infidelity metrics in Table 3.4(b).
INSIDE-GNN achieves excellent performance on BA2. On the other datasets, INSIDE-GNN is out-
performed by GNNExplainer. INSIDE-GNN obtain similar scores or outperforms the other com-
petitors (i.e., PGExplainer, PGM-Explainer, Grad) at equal sparsity on most of the datasets.
Notice that, in these experiments, we made the choice to build mask based on a single acti-
vation rule which is not enough to obtain fully discriminant mask for complex datasets. This
is in agreement with what we observed in Fig. 3.5. We have no fully discriminant activation
rule for the positive and negative classes. Hence, it would be necessary to combine activation
rules to build a more discriminant mask and thus better optimise the Infidelity.

3.7.4 Model insights via the (re)description of activation patterns

We argue that activation rules also help provide insight into the model, especially what the
GNN model captures. As discussed in Section 3.5, this requires characterizing the nodes
(and their neighborhood) that support a given activation rule. In this experimental study,
we investigate the obtained numerical subgroups for BA2 and the subgraph characterizing
the activation rules retrieved for Mutagen, BBBP and Aids datasets.

Numerical subgroups

Each node can be easily described with some topological properties (e.g., its degree, the num-
ber of triangles it is involved in). Similarly, we can describe its neighborhood by aggregating
the values of the neighbors. Thanks to such properties, we make a propositionalization of
the nodes of the graphs. Considering the two most discriminant activation rules6, we use a
subgroup discovery algorithm to find the discriminating conditions of the nodes supporting
these two patterns. Fig. 3.6 reports a visualisation of two graphs with activated nodes in
red. The best description based on WRAcc measure of pattern p1 (Fig. 3.6 left) and p0 (Fig.
3.6 right) are given below.

For the House motif (positive class of BA2), the nodes that support activation rules are
almost perfectly described (the WRacc equals to 0.24 while maximum value is 0.25) with the
following conditions: Nodes connected to two neighbors (degree=2) that are not connected between
them (clustering coefficient=0), not involved in a triangle and one of its neighbors is involved in a
triangle (triangle2=1). In other words, the activation rule captures one node of the floor of
the “house motif”. We have similar conditions to identify some nodes of the 5-node cycle
(negative class of BA2): nodes without triangle in their direct neighborhood (clustering2=0) and
whose sum of neighbors’ degree (including itself) equal 7 (degree2 P[7:8[).

6p1 “ ta3, a6, a7, a9, a10, a15u (where ai are the activated components of the rule and p is the set rep-
resentation of the bitset Aℓ of Definition 2), |Supppp1,G1q| “ 474, |Supppp1,G0q| “ 16 and p0 “

ta0, a1, a2, a4, a5, a8, a11, a17, a18, a19u, |Supppp0,G1q| “ 137, |Supppp0,G0q| “ 506.
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clustering=0.0 AND degree=2 clustering2=0.0 AND degree2: [7:8[

AND triangle2=1 AND triangle=0 WRAcc=0.12

WRAcc=0.24

Figure 3.6: Nodes (in red) in the support of two activation rules that are discriminant for
p1 support, related to the positive target (left), and for p0 support, related to the negative
target (right).

We report the description in terms of numerical subgroups of the activation rules in
Table 3.6. It is important to note that even if some activation rules were found as subjectively
interesting according to a specific output of the model, they may capture some general
properties of the BA2 graph that are not so specific of one of the classes. For instance, the
second subgroup is related to the positive class (i.e., house motif) but what it captured is not
specific to house motif (degree=2, absence of triangle).

Graph subgroups

Similarly, we can characterize activation rules with graph subgroups. We investigate the
interest of such pattern language for three datasets: Aids, BBBP and Mutagen. For each
activation rule, we compute the graph that has the maximum WRAcc value, using min sup “

10 (see Equation 3.1). In other words, this graph has an important number of isomorphisms
with ego-graphs that support the rule and that correspond to the class of the target of the rule.
In Fig. 3.7, we report the WRAcc values of the discovered graphs that aim to characterize
the activation rules. We can observe that the WRAcc values are rather high (the WRAcc
belongs to r´1, 0.25s) which demonstrates that these graphs well describe the parts of the
GNN identified by the activation rules.

The subgraphs obtained for Mutagen dataset are summarised in Fig. 3.8. For each layer
and decision, we display the subgraphs whose WRAcc is greater than 0.1 layer by layer. The
negative class is related to mutagenic molecules. Several things can be observed from this
figure. First, some subgraphs are known as toxicophores or fragment of toxicophores in the
literature (Kazius et al., 2005). For instance, the subgraph with two hydrogen and one azote
atoms is a part of an aromatic amine. Similarly, the subgraph with one azote and two oxygen
atoms is an aromatic nitro. The subgraph involving 6 carbon atoms is a fragment of a bay
region or a k-region. Second, some subgraphs appear several times. It means that several
activation rules are described with the same subgraphs. This can be explained in several
ways. Neural networks are known to have a lot of redundant information, as evidenced by
the numerous papers in the domain that aim to compress or simplify deep neural networks
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Aids

BBBP

Mutagen

Figure 3.7: Boxplot of the WRAcc values of graph subgroups related to activation rules by
layer (left column) or by both layer and model decision (right column) for Aids (first row),
BBBP (second row) and Mutagen (third row).

(Chen et al., 2018a, Pan et al., 2016, Pasandi et al., 2020, Xu et al., 2018). Accordingly, this
is not surprising to have several parts of the GNN that are similar and described by the
same subgraphs. Notice that this problem could be an interesting perspective for our work.
Another explanation is that the subgraphs well describe the hidden features captured by the
GNN but from different perspective, i.e., the center is different. For instance, for a simple
chemical bond C-N, one may have the same graph with one centered in C and the other
in N. A last explanation could be that the subgraph language is not enough powerful to
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capture the subtle differences between the activation rules. Once again, the definition of
more sophisticated and appropriate languages to describe the hidden features captured by
the GNN is a promising perspective of research.
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Figure 3.8: Characterization of activation rules for Mutagen with discriminant subgraphs.
We retain only the subgraphs with a WRAcc value greater than 0.1. Mutagenic chemicals
are classified as False.

These latter experiments show that INSIDE-GNN represents a valuable alternative to GNN
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explainability methods. In addition to providing single instance explanations, INSIDE-GNN can
provide insights about what the GNN perceives. Especially, it allows to build a summary
of the hidden features captured by the model (e.g., Fig. 3.8). In relation to this, our method
is quite analogous to model explanation methods such as XGNN (Yuan et al., 2020a). This
deserves a discussion and a comparison with XGNN.

Comparison to XGNN

XGNN (Yuan et al., 2020a) is a method rooted in reinforcement learning that generates graphs
that maximise the model decision for a given class. For Mutagen, we generate 20 graphs for
each class with a maximum size equal to 6. Considering the 40 generated graphs, we observe
that only one of them is a subgraph of at least one graph of the dataset. The other graphs
have on average 60% of partial inclusion: the maximum common subgraph with molecules
from Mutagen uncovers 60% of a generated graph. Therefore, we can conclude that XGNN
generates graphs that are not enough realistic. The only graph that appears within the
dataset involves a carbon atom bonded to 2 others carbon atoms and one hydrogen atom.
With INSIDE-GNN, we obtained two subgraphs characterizing some activation rules that are
super-graphs of this one (see Fig. 3.8). Notice that, we also found this subgraph for some
activation rules. We did not report it in Fig. 3.8 because its WRAcc value is lower than 0.1.
Nevertheless, this graph appears in 21100 ego-graphs in the dataset. It describes a fragment
of molecule that is very common. One can wonder if such a fragment can be mutagenic or if
XGNN has just captured it a biased of the GNN. Furthermore, XGNN has generated graphs
that are not planar, which is not common in Chemistry. Based on these evidences, we argue
that XGNN does not return realistic graphs while our approach – by construction – provides
subgraphs from the dataset.

We search for each pattern produced by INSIDE-GNN the closest pattern in XGNN according
to the Graph Edit Distance (GED) and vice versa. We note that the previously described
prototype graph (i.e., 3 carbons and 1 hydrogen) is found in most of the cases as being the
closest to the patterns produced by INSIDE-GNN. In average, the distance between each XGNN
prototype and the closest pattern of INSIDE-GNN is 4.6 while the mean distance between INSIDE-

GNN subgraphs and the closest from XGNN is 3.7. This is rather important since the graphs
provided by XGNN have at most 6 nodes.

We believe that a model decision for a class cannot be summarized into a single prototype.
Several different phenomena can lead to the same class. Furthermore, as we observed, this
can lead to unrealistic prototype even if domain knowledge is integrated within the graph
generation. INSIDE-GNN allows to have deeper insights from the GNN by considering each
hidden feature separately.

3.8 Discussion and conclusion

We have introduced a novel method for the explainability of GNNs. INSIDE-GNN is based on
the discovery of relevant activation rules in each hidden layer of the GNN. Prior beliefs are
used to assess how contrastive a rule is. We have proposed an algorithm that efficiently and
iteratively builds a set of activation rules, limiting the redundancy between them. Extensive
empirical results on several real-world datasets confirm that the activation rules capture
interesting insights about how the internal representations are built by the GNN. Based
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on these rules, INSIDE-GNN outperforms the SOTA methods for GNN explainability when
considering Fidelity metric. Furthermore, the consideration of pattern languages involving
interpretable features (e.g., numerical subgroups on node topological properties, graph
subgroups) is promising since it makes possible to summarize the hidden features built by
the GNN through its different layers.

We believe that such method can support knowledge discovery from powerful GNNs and
provide insights on object of study for scientists or more generally for any user. However,
a number of potential limitations need to be considered for future research to make this
knowledge discovery from GNNs effective in practice.

First, assessing explanations without ground truth is not trivial. Our experimental
evaluation relies on Fidelity, Infidelity and Sparsity metrics. Fidelity assumes that the GNN
decision would change if key part of the graphs are removed. However, it is not always
the case in practice. For instance, it is difficult to obtain a toxic molecule from a non-
toxic one by only removing some atoms. That would be interesting to investigate other
evaluation measures that take into account the negation (i.e., absence of important features)
and evaluation measures based on the addition of subgraphs.

In this section, we have devised an exhaustive algorithm for discovering the activation
rules. Even if pruning based on upper bound is featured, the execution time remains a
problem. It ranges from few minutes to two days. This shows only the feasibility of the
proposed method, not its practical application. To overcome this limitation, the completeness
must be relaxed and some heuristic-based algorithms have to be defined. Beam-search or
Monte-Carlo Tree Search-based algorithms are good alternatives to the one we propose to
speed up this process with a minimal quality penality.

Activation rule patterns are the simplest pattern language to deal with activation matrices
since such patterns involve only conjunction of activated components. Even simple, these
activation rules are able to capture the hidden features built by the GNN as witnessed by
the experiments. We believe that more sophisticated pattern languages are possible for
GNNs. For instance, we observed that taking into account the number of occurrences within
a graph leads to better characterisations. This can be integrated to the pattern language.
Considering the negation (i.e., the absence of activations) is also promising and would offer
a deeper description of the internal mechanism of the GNNs. But such changes increase the
computation time of INSIDE-GNN.

With INSIDE-GNN, the activation rules are mined for each layer independently. As a
consequence, the relations between layers are not taken into account in the discovery of
activation rules. This may lead to redundant results when considering all the layers. To
avoid such redundancy, it is necessary to take into account as prior knowledge the previous
layers of a given layer.

Finally, activation rules capture specific configurations in the embedding space of a given
layer that is discriminant for the GNN decision. Experiments demonstrate that these rules
can be directly used to support instance-level model explanation. However, activation rules
cannot be easily interpreted by human beings because of the pattern language itself (i.e.,
conjunction of activated components of the hidden layers). The consideration of pattern
languages with interpretable features makes it possible to characterize them. However, this
second step can be improved by query the model itself. Indeed, the current characterization
methods investigate a dataset generated from the support of the activation rules. The
model should be considered in this step to have guarantee that the interpretable pattern that
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describes a rule well embeds in the subspace related to this rule.
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Table 3.4: Assessing the explanations with Fidelity, Infidelity and Sparsity metrics.
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Table 3.5: Polarized fidelity.
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Table 3.6: Characterization of activation rules with numerical subgroups on BA2. We only
report the subgroup whose WRAcc value is greater than 0.1.

Layer Class Description WRAcc
2 0 degree=3 0.2475
2 1 clustering2=0 AND degree=2 AND

triangle2 avg=0

0.207

2 1 betweenness: [0.0:0.00[ AND

clustering2=0.0

0.127

3 0 clustering2=0.0 AND degree2: [7:8[ AND

degree2 avg: [3.50:3.57[

0.114

3 0 clustering2=0.0 AND degree=2 AND

triangle2=0

0.101

3 0 betweenness2: [0.37:0.38[ AND

betweenness2 avg: [0.19:0.20[ AND

clustering2=0.0

0.202

3 0 betweenness2: [0.37:0.39[ AND

betweenness2 avg: [0.19:0.21[ AND

betweenness=0.07608695652173914

0.209

3 0 betweenness: [0.29:0.30[ AND

clustering2=0.0 AND degree==3

0.147

3 0 betweenness: [0.0:0.00[ AND

clustering2=0.0 AND degree2 avg:

[4.0:4.17[

0.162

3 1 clustering=0.0 AND degree=2 AND

triangle2 avg=0.5

0.227

3 1 degree2: [7:8[ AND degree2 avg:

[3.50:3.60[ AND degree=2 AND triangle=0

0.224

3 1 degree=2 AND triangle2=1 0.238
3 1 clustering==0.0 AND degree==2 AND

triangle2==1 AND triangle==0

0.240

3 1 degree=2 0.125
3 1 clustering=0.0 AND degree=2 AND

triangle2=1 AND triangle2 avg=0.5

0.232





Chapter 4

Characterizing activation rules with
representative graphs

Activation rules, as defined, implemented and studied in the previous chapter, are not
sufficient to fully explain Graph Neural Networks (GNNs). Even if unlike existing methods,
these rules are not simply linked to the decision of the model but capture and shed light on the
hidden features built by the GNN, they do not constitute an explanation understandable by a
human being. To achieve this goal, we seek to identify the closest subgraph to an activation
rule. That is, we are looking for the most specific graph that triggers the rule without
triggering another one. The graph search is based on a Monte Carlo Tree Search directed
by a proximity measure between the graph embedding and the internal representation of
the rule, as well as a realism factor that constrains the distribution of the labels of the graph
to be similar to that observed on the dataset. Experiments demonstrate that our method
DISCERN generates realistic graphs of high quality which allows providing new insights into
the respective GNN models (Veyrin-Forrer et al., 2022a,b,c).

4.1 Problem definition and desiderata

For each layer of the GNN we have a set of activation rules generated with the method
INSIDE-GNN. Each of them comes with statistics from the dataset. But we do not know what
information is captured by each of them. Extracting a graph or a small set of graphs that
exhibit the typical structure captured by the rule would be of interest. In this process the
first question to ask is what is the best language able to express this type of explanations.

The smallest representation space is probably that of the subgraphs of the dataset. We
want to find the best subgraph of data instances to explain a rule. This space is finite
and with other constraints such as connectedness, or taking ego-graphs, it becomes easily
controllable. Moreover, all the graphs in this space come from a real example and do not
contain unrealistic examples that are irrelevant in our use case. For example, an explanation
in the form of a dense graph in a family of mainly planar graphs, such as a molecular graph,
is useless in our case. The major problem with this space is that it is perhaps a bit too limited
and might not show the generalizability of GNN.

We can then search in the same graph space as the input graph space. In this case, we
should need a good heuristic to access the realism of the graph to limit the search space. We

75
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will focus on this type of search space.
Representation spaces like PGMExplainer’s probabilistic graphs (Vu and Thai, 2020) can

also be used. They have increased expressive power because they are primarily weighted
directed graphs. We also want the graph produced to be a relevant structure of what is
captured by the activation rule. This can mean several things. This may be the typical
structure captured by the GNN. But also, it can be the ability of the GNN to resist data
attacks. The metrics and method selected will impact the question to be answered. We later
propose several metrics evaluating the similarities between graphs and rules.

4.2 Characterizing activation rules with subgraphs

Activation rules correspond to a part of the GNN (i.e. part of the matrix xHℓ) specifically
activated for a given decision (for the graphs g such that GNNpgq “ c). However, these rules
are not intelligible, and do not allow highlighting the parts of the graphs which are used
for the classification. To make the rule humanly understandable, we propose to associate to
each rule a subgraph. To that end, we are looking for a subgraph whose GNN embedding
in layer ℓ is as close as possible to a given activation rule. This requires defining a measure
of proximity between embedding and activation rule, ensuring that the graphs are realistic
and defining a procedure to determine the subgraph that maximizes the proximity measure
while being realistic.

4.2.1 Measuring the proximity between a graph and an activation rule

To measure the proximity between a graph and a rule, we compute the embedding of
the graph by the GNN and then we compare the embedding with the rule. We propose
three different measures to evaluate the proximity between a graph embedding, centered
at node v, hℓv and an activation rule Aℓ Ñ c, with Aℓ “ ta1, . . . , aKu, ai P t0, 1u. These
measures use Eg “ tϵ1, . . . , ϵKu the ego-graph embedding truncated to fit the interval r0, 1s:

ϵk “ min
´

maxp0, phℓvqkq, 1
¯

. The truncation avoids distorting our measurements by extreme
values.

The first measure is the cosine similarity measure:

CosinepEg,Aℓq “
Eg .Aℓ

∥ Eg ∥ ∥ Aℓ
∥

“

ř

aiϵi
b

ř

a2
i

b

ř

ϵ2
i

(4.1)

It is defined to equal the cosine of the angle between the two vectors, or identically be the
inner product of the vectors normalized to length 1.

We can also consider to use the cross-entropy measure (equivalently the log-likelihood):

Cross-entropypEg,Aℓq “
ÿ

ai logpϵiq(4.2)

that increases with the number of components that have large values in the embedding of
the ego-graph for the components activated in the activation rule.

We can also consider a set of activation rules R and search for an ego-graph that specif-
ically activates a rule Aℓ but not the other rules, i.e. this ego-graph activates components
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outside the rule only if it does not trigger another rule. We propose the following expression
to measure this:

Relative-CEpEg,Aℓ,Rq “ Cross-entropypEg,Aℓq ´ max
rPR

Cross-entropypEg, rq(4.3)

4.2.2 Realism factor

Graphs can have an embedding close to an activation rule without being realistic and be
very different from graphs in the dataset. To avoid this, we associate a realism score with
each graph. This factor depends both on the probability that two vertices are connected
according to their type, and on the degree distribution for each vertex type.

Let Pi, j be the probability of having an edge with endpoints of type i and j (i, j P T). Let
Pdegpk|iq be the probability for a node of type i of being of degree k. As we are considering
subgraphs of the graphs of the dataset, we do not want to penalize graphs whose degree is

smaller than expected. Thus, we propose to use the value dk|i “ Pdegpk|iq `
ř

xąk
Pdegpx|iq

2k to
increase the value with the probabilities associated with higher degrees. We transform this

value in a probability measure with Dk|i “
dk|i

ř

x dx|i
. Thus, the realism score is calculated by

Realismpg “ pV,E,Lqq “

ř

pu,vqPE log
`

PLpuq,Lpvq

˘

#E
`

ř

uPV logpDdu|Lpuqq

#V
(4.4)

with Lpuq the type of node u and du its degree. This realism value is added to the similarity
measure between the activation rule and the graph embedding to form the score used to
evaluate a graph quality:

Scorepg,Aℓ,Rq “ βˆ mpEg,Aℓ,Rq ` p1 ´ βq ˆ Realismpgq(4.5)

with β a hyperparameter whose value is fixed empirically (see Section 4.4) and m one of the
tree measures defined by equations (1)–(3).

4.3 DISCERN method

We propose to use Monte Carlo Tree Search (MCTS) to find a realistic subgraph whose
embedding is similar to an activation rule. The objective is to generate an ego-graph gt
that maximizes ScorepEt,Aℓ,Rq. Each node t of the search tree represents an ego-graph gt
centered at vt whose GNN embedding is Et. A value Mt is also associated to t: it is the sum
of ScorepEt,Aℓ,Rq values evaluated on the terminal nodes of the subtree rooted in t.

Each node of the tree is obtained by adding an edge to the graph of its parent node. This
process stops when a terminal condition is satisfied. In our algorithm, we consider three
terminal conditions:

1. The diameter of the graph is greater than ℓ,

2. The number of edges is greater than min-edges,

3. The number of vertices is greater than min-vertices.
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If one of the three conditions mentioned above is satisfied, the graph is considered terminal
(see method isTerminal in function findChild line 3, and in Function rollout line 2).

The tree is partially explored favoring the parts most likely to lead to high-scoring
graphs. From an intern node t, terminal nodes (satisfying one of the terminal conditions) are
randomly generated in order to be able to evaluate their score. This process is called rollout.
The obtained score is then back-propagated to all ancestors of t in their variable Mt. The
rational behind the value Mt is to estimate the quality of the descendants of t explored so
far. This value is then adjusted to trade-off exploitation of the current examined graphs, and
exploration of new ones. We use the classical the Upper Confidence Bound UCB1 to guide
the selection of the tree node to be expanded: We select the one that maximizes UCB1.

UCB1ptq “
Mt

nt
` c

d

logpNptqq

nt
,

where c is a constant number, Mt is the sum of the values Score for all terminal nodes
descendant of t that have been explored so far, nt is the number of terminal nodes expanded
from node t during previous iterations of the algorithm, and Nptq is the number of times
the parent of t has been visited so far. It should be mentioned that the constant c in UCB1
plays an important role to make a balance between exploration and exploitation. If c is too
large, the algorithm acts like a pure random algorithm (i.e. more exploration) and if c is too
small, then exploitation rate will be increased and may get stuck in local maxima. In our
experiments, c is set to 0.5.

Algorithm 3 DISCERN

Require: N: Number of epochs, Score (.,Aℓ, R): the measure to maximize, T: the set of node labels.
Ensure: best graph the graph that maximizes ScorepEg,Aℓ,Rq among all explored graphs.

1: root.lea f Ð True
2: root.visit Ð 0
3: root.value Ð 0
4: best value Ð ´8

5: for epoch = 1 to N do
6: t Ð exploreChild(root)
7: if (t.lea f = True) then
8: if (t.visit = 0) then
9: rvalue, explored graphs Ð rollout(t)

10: backPropagate(t,value)
11: else
12: first child Ð generateChildren(t)
13: rvalue, explored graphs Ð rollout(first child)
14: backPropagate(first child, value)
15: end if
16: end if
17: if (value ą best value) then
18: best value Ð value
19: best graph Ð explored graph
20: end if
21: end for
22: return best graph

Let’s consider how DISCERN works in detail. Algorithm 3 starts by building the tree root
node, that is a leaf, its number of visits nt equals 0 as well as its value Mt. DISCERN consists
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Algorithm 4 exploreChild(t)

1: if (t.lea f = False) then
2: best child Ð findChild(t)
3: if (best child , None) then
4: exploreChild(best child)
5: else
6: exploreChild(t.parent) Ź the subtree rooted in t has been completely explored
7: end if
8: else
9: return t

10: end if

Algorithm 5 findChild(t)

1: best child Ð None
2: for s P childrenptq do
3: if (isTerminal(s.g) = False) then
4: if UCB1pbest childq ď UCB1psq then
5: best child Ð s
6: end if
7: end if
8: end for
9: return best child

of some iterations (epochs) whose number is an input parameter N (line 6 to 16 of DISCERN).
Each iteration starts by calling the method ExploreChild (line 5 of DISCERN) on the root node.
This method returns the next tree node that had to be explored, that is to say the one 1)
whose path from root is made of nodes with maximal UCB1 values among their brothers,
2) that is a leaf and 3) that has still to be explored (it is not a terminal node). If the current
node is not a leaf (line 1 of exploreChild), findChild is called to take among the children
that are not terminal, the one with the best UCB1 value. If such a node exists, exploreChild
is recursively called on it (line 4). Otherwise, the subree has completely been explored and
the exploration goes up to the parent node to examine another branch (line 6).

Then, DISCERN explores the identified node. If the node has never being expanded (t.visit
= 0 at line 8), then a rollout is performed and the obtained value is back-propagated to the
tree root. Otherwise, the node is expanded with children and a rollout is performed on the
first whose value is back-propagated to the root. These three functions (generateChildren,
rollout, backPropagate) are as follows. generateChildren creates as many children then
there are possible graphs with one edge in addition to the current graph. Those edges can
be between two nodes of the graph (v P V line 6) or between a node of the graph and a new
node with on e of the possible labels from T (v P W line 6). These edges have to be valid (see
Figure 4.1 and explanation below). The (arbitrary) first child is return by the function. The
function rollout simulates a new graph created by taking repeatedly uniformly at random a
valid edges and adding to the current graph until the graph is terminal. It returns the graph
and its score. If the score is better than the one encountered so far, the best graph is updated
(see lines 17 to 20 of DISCERN). Finally, backPropagate updates the Mt and nt values of the
tree nodes (t.value and t.visit) until reaching the tree root.

Only valid edges can be added to a current graph g centered in node v with radius r.
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Algorithm 6 Additional sub-functions
generateChildren(t):

1: first child Ð None
2: g Ð the graph associated to t
3: V Ð the vertices of the graph g
4: W Ð a set of new vertices with label in T
5: for u P V do
6: for v P V Y W do
7: if (isValid(u,v)) then
8: g1 is the graph g with edge pu, vq

9: t1 Ð t.add child(g1)
10: t1.lea f Ð True, t.value Ð 0, t.visit Ð 0
11: if (first child = None) then
12: first child Ð t1

13: end if
14: end if
15: end for
16: end for
17: return first child

rollout(t):
1: g, g2 Ð the graph associated to t
2: while (isTerminal(g) “ False) do
3: g2 Ð g
4: Take a random edge e among the valid edges that can be added to g
5: g Ð Simulate a new graph g with edge e added
6: end while
7: return rScorepEg,Aℓ,Rq, g2s

backPropagate(t,value):
1: while (t , None) do
2: t.visit Ð t.visit ` 1
3: t.value Ð t.value ` value
4: t Ð t.parent
5: end while

An edge is valid (see isValid method in rollout and generateChildren) if adding it does not
change the graph embedding in layer r ´ 1. That is to say, for each node x P g, distpv, xq does
not change when adding the edge. To that end, three conditions have to be met:

• Adding an edge cannot reduce the shortest distance of a node to v. The counter
example (a) in Figure 4.1 illustrates this condition.

• An edge can be added between two nodes of g, if their distance to v is greater or equal
to radius ´ 1. The counter example (b) in Figure 4.1 illustrates this condition as well as
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examples (2) and (3).

• An edge between a node x of the graph and a new node can be added only if distpv, xq ě

radius ´ 1. The counter example (c) in Figure 4.1 illustrates this condition, as well as
examples (1) and (4).

b

a
c

3

2

4

1

Figure 4.1: Considering a graph (solid lines), some edges can be added (dark dot lines),
while other cannot (light gray lines). Examples – (1) and (4): edge with a new node and a
node at distance from center ě radius ´ 1; (2) edge between two nodes at a distance to the
center equal to the radius of the graph; (3) edge between a node at distance radius to the
center, and a node at distance radius ´ 1. Counter examples – (a): a new edge cannot create
a shortcut between existing nodes; (b): no edge can be added between nodes that both are
at a distance ă radius from the center of the graph; (c): a new node cannot be connected to a
node at distance ă radius ´ 1.

4.4 Experiments

In this section, we evaluate DISCERN through several experiments. We first describe synthetic
and real-world datasets and the experimental setup. Then, we discuss some examples of
subgraphs generated by our method and the baselines. Eventually, we present a quantitative
study of our method as well as some comparisons against several baselines. DISCERN has
been implemented in Python and the experiments have been done on a machine equipped
with 8 Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz cores 126GB main memory, running Debian
GNU/Linux. The code and the data are available 1.

1https://doi.org/10.5281/zenodo.7208320

https://doi.org/10.5281/zenodo.7208320
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4.4.1 Datasets and experimental setup

Experiments are performed on six graph classification datasets whose main characteristics
are given in Table 4.1. BA2 (Ying et al., 2019) is a synthetic dataset generated with Barabasi-
Albert graphs and hiding either a 5-cycle (negative class) or a “house” pattern (positive
class). The other datasets (Aids (Morris et al., 2020), BBBP(Wu et al., 2017), Mutagen (Morris
et al., 2020), DD (Dobson and Doig, 2003), Proteins (Borgwardt et al., 2005)) correspond to
real molecules, and the class identifies important properties in Chemistry or Drug Discovery
(i.e., possible activity against HIV, permeability and mutagenicity). Table 4.1 shows that the
datasets are diverse, each having its own specificity. BA2 is synthetic and simple to interpret.
BBBP and Aids are very unbalanced. DD has a large number of node attributes and is made
of large graphs. Mutagen and Proteins are similar datasets, with Proteins graphs denser
than Mutagen ones. All these characteristics witness that the benchmarks we consider are
diverse. This supports thorough and systematic experimental study.

A 3-convolutional layer GNN (with K “ 20) is trained on each dataset. Accuracy mea-
sures obtained on test sets are given in Table 4.1 column Acc. We use the method INSIDE-GNN
to mine the GNN activation vectors hℓv to discover the activation rules Aℓ. We extract at
most ten rules per layer and for each class t0, 1u as explained in Veyrin-Forrer et al. (2022).
On some datasets, less than 10 rules per layer and per class are needed to describe the inner
workings of a GNN (see Table 4.1 column #Rules). Our goal is to provide a representative
graph for each rule with DISCERN. We generate graphs with labels appearing in at least 100
nodes in the dataset (see Table 4.1 column #Freq T).

Table 4.1: Main characteristics of the datasets.

Dataset #G (# 0,#1) #T V E Acc. #Rules #Freq T
DD 1168 (681, 487) 90 268 1352 0.692 47 21
Aids 2000 (400, 1600) 38 15.69 32.39 0.99 60 7
Mutagen 4337 (2401, 1936) 14 30.32 61.54 0.786 60 10
BBBP 1640 (389, 1251) 13 24.08 51.96 0.787 60 6
Proteins 1113 (663, 450) 3 39 145 0.768 29 3
BA2(syn) 1000 (500, 500) - 25 50.92 0.97 20 -

This experimental study aims to answer the following questions:

• How does DISCERN behave?

• Are the activation rules good?

• Are the generated graphs representative and realistic?

• Which is the best metric?

• How does DISCERN behave against baselines?

To that end, especially the latter question, we compare our method against to both
instance-level and model-level explanation methods. For instance-level methods, we con-
sider four state of the art methods: GNNExplainer (Ying et al., 2019), PGExplainer (Luo
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et al., 2020), PGM-Explainer (Vu and Thai, 2020), and GraphSVX Duval and Malliaros
(2021).

We also examine 3 model-level baselines:

• Random generates graphs randomly by calling the Roll-out function 250x.

• XGNN++ is an extension of XGNN (Yuan et al., 2020a) to our problem. We integrate
Cos, CE and Relative-CE metrics as function optimized by XGNN. We set a budget
that corresponds to 5000 calls to the GNN to do a fair comparison with DISCERN so that
both methods do exactly the same number of calls to the GNN.

• DISC-GSPAN is a sound and complete method that aims at discovering discriminant
subgraphs within a collection based on GSPAN enumeration (Yan and Han, 2002) while
exploiting some tight upper bounds on the WRAcc measure Lavrac et al. (2004). The
input dataset contains the set of ego-network of nodes that support the activation rule
as the “positive class” and the ego-network of nodes not involved in the support of
the rule as the negative class. Then, DISC-GSPAN consists in computing the top-k
subgraphs that are discriminant for the positive class.

By default, we empirically set min-edges=10 and min-vertices=6 as terminal conditions for
DISCERN in the following experiments. We also empirically set the hyper-parameter β to 0.5
(see Figure 4.4).

4.4.2 Studying DISCERN behavior

For an activation rule, DISCERN takes between 20 and 50 seconds for 5000 epochs. The deeper
the GNN layer, the larger the ego-graph to be investigated, the higher the execution time.

Quality with respect to the number of epochs

Figure 4.2 (a–c) shows the maximum value of measure m (Cosine, Cross-entropy and
Relative-CE) obtained on the graphs generated by DISCERN for each dataset with respect
to the number of epochs. The value on the y-axis is the maximum value of the measure
m evaluated on the explored graphs in the MCTS (explored graph lines 9 and 13 in DISCERN

function) at the corresponding x-axis epoch. For each dataset, the values are aggregated over
all activation rules. The graphs show an asymptotic convergence for all the curves. Yet, the
convergence is faster for some combinations of metric and dataset (e.g., Cosine on Mutagen)
than others (e.g., Cosine on DD). This experiment demonstrates that DISCERN correctly learns
which parts of the MCTS search space hold promise for generating high value graphs.

Are the results actually good?

We observe in the latter experiment that the graphs generated by DISCERN become better
when increasing the number of epochs. However, one can wonder if the obtained graphs
gmcts are actually good compared to the ego-graphs gsupport that support the activation rules.
Especially, we want to answer the following question:

Are the obtained scores higher than those of the ego-graph taken randomly in the dataset?
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(a) (b)

(c)

Figure 4.2: Maximum m values on the graphs generated by DISCERN for the metrics m (a)
Cosine, (b) Cross-entropy, (c) Relative-CE on each dataset when varying the number of
epochs.

To this end, we consider a sample of nodes known to be embedded in the targeted
subspace as they support the activation rules. Similarly, we take a sample of random nodes.
For both samples respectively denoted Egsample and Egrand. , we consider the ego-graphs whose
size equals the layer of the corresponding activation rule. For each sample, we compute the
score values for each quartile (Q1, Q2, Q3) that partition the sample ordered by values into
4 subsets of equal sizes. We also consider the maximal value Qmax. We report in Table 4.2
the improvement factor of the graphs produced by DISCERN compared to each quartile, i.e.
the ratio Score pEgmcts ,Aℓ,Rq{Qx. Results are aggregated over all activation rules for each
dataset.

Interestingly, we observe that, in most of the cases we obtain values greater than 1,
even when we compare the generated graphs to Qmax (i.e., max value of the sample). This
demonstrates the high quality of the graphs generated by DISCERN. Having values greater than
1 for Qmax of the supporting node sample means that the graphs we generate embed well in
the targeted subspace, with less activated components outside this space than for supporting
nodes. Indeed, the metrics we consider penalize activated components of the ego-graph that
are not activated in the activation rules. Obviously, the improvement factor is always better
when considering the random sample than the node support sample. Nevertheless, this
gives interesting insights showing the ability of metrics to separate support nodes from
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random nodes well. It is important to notice that the difference between improvement
factors between the samples Egsample and Egrand. is much larger for Cosine and Cross-Entropy
than Relative-CE, especially for Q3 and Qmax. Based on these observations, we can conclude
that Cosine and Cross-Entropy metrics has a better ability to separate better than Relative-
CE.

Table 4.2: Avg. improvement factor of the score provided by DISCERN against the score of
the quartiles of two distributions: (1) nodes from rule support (supp) and (2) some random
nodes (rand).

Dataset Measure Samp. Q1 Q2 Q3 Qmax

DD

Cosine supp 1.19 ˆ 108 2.72 1.56 1.28
Cosine rand 8.12 ˆ 109 5.04 ˆ 109 2.83 ˆ 109 1.03 ˆ 109

Cross-Entropy supp 1.26 1.16 1.14 1.12
Cross-Entropy rand 9.57 ˆ 1011 4.21 ˆ 1011 2.33 ˆ 1011 1.09 ˆ 1011

Relative-CE supp 1.35 1.05 0.96 0.89
Relative-CE rand 3.79 ˆ 1011 3.14 2.37 1.68

Aids

Cosine supp 1 ˆ 108 1.94 1.63 1.46
Cosine rand 7.34 ˆ 109 1.52 ˆ 109 7.50 ˆ 108 2.30 ˆ 108

Cross-Entropy supp 1.25 1.17 1.15 1.14
Cross-Entropy rand 9.48 ˆ 1011 1.44 ˆ 1011 6.42 ˆ 1010 7.82 ˆ 109

Relative-CE supp 1.35 1.10 1.04 0.99
Relative-CE rand 4.02 ˆ 1011 3.66 2.37 1.74

Mutagen

Cosine supp 12.59 2.69 2.14 1.66
Cosine rand 7.33 ˆ 109 1.42 ˆ 109 1.01 ˆ 109 3.84 ˆ 108

Cross-Entropy supp 1.22 1.16 1.15 1.13
Cross-Entropy rand 1.02 ˆ 1012 1.28 ˆ 1011 1.01 ˆ 1011 3.51 ˆ 1010

Relative-CE supp 1.32 1.17 1.12 1.06
Relative-CE rand 4.38 ˆ 1011 6.71 3.76 2.17

BBBP

Cosine supp 5.27 2.31 1.78 1.58
Cosine rand 7.61 ˆ 109 1.16 ˆ 109 5.19 ˆ 108 1.37 ˆ 108

Cross-Entropy supp 1.21 1.15 1.14 1.13
Cross-Entropy rand 9.86 ˆ 1011 1.16 ˆ 1011 6.22 ˆ 1010 1.17 ˆ 1010

Relative-CE supp 1.27 1.09 1.03 0.99
Relative-CE rand 4.20 ˆ 1011 11.33 2.18 1.61

Proteins

Cosine supp 4.49 1.67 1.45 1.29
Cosine rand 5.61 ˆ 109 3.1 ˆ 108 3.80 1.71
Cross-Entropy supp 1.32 1.22 1.20 1.19
Cross-Entropy rand 1.01 ˆ 1012 1.68 ˆ 1010 10.72 3.82
Relative-CE supp 1.31 1.06 1.00 0.96
Relative-CE rand 3.72 ˆ 1011 5.16 2.11 1.44

BA2

Cosine supp 1.84 ˆ 107 4.54 2.82 1.78
Cosine rand 7.25 ˆ 109 1.77 ˆ 109 7.71 ˆ 108 43.69
Cross-Entropy supp 5.01 ˆ 109 2.48 2.02 1.75
Cross-Entropy rand 1.29 ˆ 1012 1.23 ˆ 1011 8.59 ˆ 1010 1.26 ˆ 1010

Relative-CE supp 1.24 1.00 0.98 0.99
Relative-CE rand 5.69 ˆ 1011 3.74 ˆ 105 2.74 1.63
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Which is the best metric?

To deeper investigate the quality of the generated graph, we now study in Figure 4.3 the
L2 norm between Egmcts and, Egsample or Egrand. . We observe that both CE and Relative-CE
tend to provide graphs whose embeddings are more similar of the support sample than
Cosine. Cosine reports greater L2 norm to Egrand. than the two other measures but this is not
significant.

Similarly, we investigate the distances between the graphs generated by DISCERN with the
three metrics, the graphs from the support sample and the ones form the random sample,
for each activation rule and dataset. We consider the graph edit distance Gao et al. (2010), an
error tolerant matching technique between graphs that is computed directly from the graphs
and not their embedding. Results are reported in Table 4.3. We consider, for each rule and
each measure, the set Gm of graphs produced by 10 runs of DISCERN, or a subset of 10 graphs
from the support or the random samples. For set m1 in row and set m2 in column, we report
the value meangPGm1 maxhPGm2

GEDpg,hq

#Vg`#Eg
, with GED, the graph edit distance. Results are similar

to what we observe when studying the L2 norm between vectors: Graphs from the support
sample are closer to graphs generated by DISCERN with Cross-Entropy than those generated
with Relative-CE and Cosine metrics (see supp related rows in Table 4.3). Furthermore,
graphs generated by DISCERN– particularly with Cross-Entropy metric – are far away from
the graphs of the random samples (see rand related rows in Table 4.3).

Table 4.3: Graph edit distances on Aids, Mutagen and BBBP. Distances are normalized by
(#vertices + #edges) of the row graphs.

Aids Cosine Cross-Entropy Relative-CE supp rand
Cosine 0. 0.751 0.755 0.582 0.647
Cross-Ent. 0.746 0. 0.643 0.499 0.654
Relative-CE 0.749 0.658 0. 0.517 0.661
Supp. 0.747 0.725 0.724 0. 0.526
Rand. 0.753 0.758 0.734 0.391 0.
Mutagen Cosine Cross-Ent. Rel.-CE Supp. Rand.
Cosine 0. 0.755 0.712 0.653 0.66
Cross-Ent. 0.73 0. 0.622 0.61 0.678
Relative-CE 0.726 0.683 0. 0.599 0.672
Supp. 0.696 0.654 0.643 0. 0.419
Rand. 0.731 0.712 0.689 0.376 0.
BBBP Cosine Cross-Ent. Rel.-CE Supp. Rand.
Cosine 0. 0.701 0.713 0.609 0.633
Cross-Ent. 0.689 0. 0.630 0.559 0.625
Relative-CE 0.718 0.657 0. 0.559 0.622
Supp. 0.694 0.645 0.636 0. 0.4
Rand. 0.716 0.685 0.663 0.352 0.

These experiments demonstrate that the ability of DISCERN to generate representative
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Figure 4.3: Average L2 norm between the generated graphs and support (red) and random
(cyan) nodes for all activation rules. Dataset are (from top to bottom): DD, Aids, Mutagen,
BBBP, Proteins, BA2. Left, middle and right columns depict Cosine, Cross-Entropy and
Relative-CE measures. The lower the red histogram, the higher the cyan one, the better.
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graphs for the activation rules regardless of the three measures Cosine, Cross-Entropy, and
Relative-CE. These experiments suggest that Cross-Entropy is slightly better than the two
other measures. Nevertheless, the difference are not significant.

4.4.3 Comparison to instance-level methods

We consider a ground-truth free metric to compare the methods. We opt for the Fidelity
(Pope et al., 2019) which is defined as the difference of predicted probability between the
predictions on the original graph and the one obtained when masking part of the graph
based on the explanations:

Fidelity “
1
N

ˆ

N
ÿ

i“1

`

f pgiqyi ´ f pgizmiqyi

˘

where mi is the mask, gizmi is the complementary mask and f pgqyi is the prediction score for
class yi. Similarly, we can study the prediction change by keeping important features (i.e.,
the mask) and removing the others as Infidelity measure does:

Infidelity “
1
N

ˆ

N
ÿ

i“1

`

f pgiqyi ´ f pmiqyi

˘

The higher the fidelity, the lower the infidelity, the better the explanation.
Obviously, masking all the input graph would have important impact to the model

prediction. Therefore, the former measures should not be studied without considering the
Sparsity metric that aims to measure the fraction of graph selected as mask by the explainer:

Sparsity “
1
N

N
ÿ

i“1

ˆ

1 ´
|mi|

|gi|

˙

,

where |mi| denotes the size of the mask mi and |gi| is the size of gi (the size includes the
number of nodes, of edges and the attributes associated to them). Based on these measures,
a better explainability method achieves higher fidelity, lower infidelity while keeping a
sparsity close to 1.

Several policies to build a mask directly from an activation rule are possible. We opt
for the simplest policy AR(node) which takes as a mask only the nodes that are covered
by the activation rule and the edges adjacent to these nodes. This policy allows assessing
how relevant are the activation rules. We also consider the graphs generated by DISCERN as
masks.To this end, for an instance graph, we select among all the rules that are activated, the
related generated graph that maximizes the trade-off between Fidelity and Infidelity. The
selected subgraph is then used as a mask for explanation.

The average time to provide an explanation ranges from 8ms to 30ms for AR(node). This
is faster than PGM-Explainer (about 5s), GNNExplainer (80ms to 240ms) and SVXexplainer
(40ms to 60ms). It remains slightly slower than PGExplainer (6ms to 20ms). DISCERN is
slower than AR(node) (about 1s). Even if the graph is already built for each activation rule,
it requires several graph inclusion computations to provide a mask for an instance.

Table 4.4(a) outlines the performance of the explainers based on the Fidelity measure.
Results show that AR(node) outperforms the baselines. These results must be analysed
while considering the sparsity (see Table 4.4(c)). Except for Proteins and BA2, AR(node)
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Table 4.4: Assessing the explanations with several metrics. A better explainer achieves
higher fidelity, lower infidelity while keeping a sparsity close to 1.

ModelsDatasets DD Aids Mutagen BBBP Proteins BA2
(a) Fidelity

AR(node) 0.490 0.175 0.582 0.362 0.359 0.342
DISCERN(Cosine) 0.124 0.031 0.319 0.172 0.086 0.471
DISCERN(Cross-Entropy) 0.130 0.026 0.360 0.188 0.072 0.460
DISCERN(Relative-CE) 0.113 0.054 0.366 0.198 0.070 0.446
GnnExplainer 0.077 0.036 0.177 0.100 0.021 0.093
PGExplainer 0.070 0.032 0.157 0.098 0.019 0.004
PGM-Explainer 0.059 0.080 0.123 0.212 0.073 0.222
SVXexplainer 0.010 0.003 0.039 0.008 0.006 0.004

(b) Infidelity
AR(node) 0.133 0.767 0.237 0.374 0.160 0.000
DISCERN(Cosine) 0.239 0.119 0.290 0.193 0.069 0.149
DISCERN(Cross-Entropy) 0.228 0.125 0.196 0.411 0.056 0.124
DISCERN(Relative-CE) 0.271 0.039 0.195 0.134 0.076 0.246
GnnExplainer 0.075 0.036 0.140 0.099 0.021 0.223
PGExplainer 0.082 0.038 0.157 0.098 0.024 0.353
PGM-Explainer 0.343 0.766 0.347 0.482 0.324 0.296
SVXexplainer 0.343 0.771 0.356 0.489 0.292 0.341

(c) Sparsity
AR(node) 0.769 0.897 0.731 0.870 0.249 0.002
DISCERN(Cosine) 0.983 0.664 0.741 0.630 0.649 0.641
DISCERN(Cross-Entropy) 0.977 0.721 0.742 0.623 0.645 0.674
DISCERN(Relative-CE) 0.979 0.478 0.195 0.707 0.669 0.676
GnnExplainer 0.502 0.501 0.505 0.501 0.986 0.804
PGExplainer 0.529 0.547 0.515 0.534 0.545 0.955
PGM-Explainer 0.976 0.862 0.900 0.973 0.957 0.746
SVXexplainer 0.965 0.988 0.931 0.940 0.991 0.943

provides explanations which have a comparable sparsity to the baselines. The quality of
the explanations are also assessed with the Infidelity metrics in Table 4.4(b). AR(node) is
outperformed by GnnExplainer and PGExplainer. This suggests that a rule taken in isolation
does not allow a correct classification of a graph. It is undoubtedly necessary to consider
combinations of graphs to explain a decision. Interestingly, DISCERN that builds on activation
rules often provides better results in term of Indfidelity than AR(node), achieving score that
are similar to the state of the art methods while having better fidelity and sparsity scores
than these methods in most of the cases. Finally, the generated graph brings further inter-
pretability on activation rules without altering too much the performance of the explainer
directly built from these rules. All together, these results suggest that the activation rules
allow identifying relevant representation space within the GNNs.
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4.4.4 Comparison to model-level baselines

We now assess DISCERN against model-level explanation baselines. Notice that Random and
DISC-GSPAN are not directed by the measures we introduce. On the contrary, XGNN++ op-
timizes either Cosine, Cross-Entropy or Relative-CE measures. We compare these baselines
against DISCERN with a similar experimental protocol as in Section 4.4.2. For each activation
rule, we study the L2 norm between the best graph generated by each method and the
activation rule Aℓ. We assume that each rule is represented by a vector whose values equal
to 1 for components inside the rule, 0 otherwise. Results are reported in Table 4.5. Note
that DISC-GSPAN fails for BA2 and Proteins because of the small number or the absence
of labels on nodes, which makes extraction impossible. For all measures, DISCERN provides
graphs that are better embedded within the target space than any other method. On average,
DISCERNCos outperforms the best solution based on either XGNN or DISC-GSPAN of about
12%.

Table 4.5: Average L2 norm between the graphs provided by each method aggregated over
all activation rules. The lower the value, the better.

DD Aids Mutagen BBBP Proteins BA2
Random 4.18 4.12 4.63 4.34 5.32 6.59
DISC-GSPAN 3.52 3.62 3.90 3.47 ‚ ‚

XGNN++(Cosine) 4.19 4.04 4.61 4.26 5.39 5.58
XGNN++(Cross-Entropy) 4.09 3.97 4.46 4.15 5.23 6.57
XGNN++(Relative-CE) 4.16 4.01 4.50 4.22 5.15 6.56
DISCERNCosine 3.11 3.18 3.47 3.15 4.42 4.61
DISCERNCross´Entropy 3.16 3.47 3.76 3.45 4.54 4.64
DISCERNRelative-CE 3.34 3.47 3.75 3.48 4.55 4.59

We study the importance of hyperparameter β (see section 4.2.2) for generating realistic
graphs. To this end, we assess how realistic the generated graphs are compared to those
from the related dataset. We compute the maximum common subgraph (MCSG) between
the graph returned by DISCERN and each graph from the dataset. In Fig 4.4, we report the size
of the MCSG normalized by the size of the generated graph when β varies. When this value
reaches one, it means that the generated graph is a subgraph of a graph from the dataset.
Therefore, the closer the value is to 1, the more realistic the generated graphs are. We observe
that the graphs generated by DISCERN become more realistic when the hyperparameter β
increases. Interestingly, Cross-Entropy and Relative-CE metrics allow obtaining a more
realistic graph than Cosine metric for the same value of β. For information, the realism factor
is also reported for the three baselines. By definition, DISC-GSPAN provides more realistic
graphs since it mines frequent subgraphs. Hence, the realism factor is equal to 1. XGNN++
fails to generate realistic graphs whatever the metrics with a value ranging between 0.5 and
0.7 which still remains better than random.
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DD Aids

Mutagen BBBP

Proteins

Figure 4.4: Normalized maximum common subgraph (MCSG) between DISCERN and gener-
ated graphs (y-axis) with respect to β for all datasets except BA2. The closer to 1, the more
realistic the graph.

4.4.5 Examples

We report in Figure 4.5 the best graphs provided by each method for two activation rules
on Mutagen. These rules are highly correlated to the decision “Mutagenicity”. For the
first rule (top row), DISC-GSPAN and DISCERN identify parts of toxycophores (Bay-region,
K-region) (Kazius et al., 2005). XGNN++ provides either unrealistic (i.e., Cosine) or too
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Figure 4.5: Graphs generated by each method for two activation rules (rows) that are highly
correlated to mutagenicity. Red cross highlights unrealistic bonds or molecules. Red nodes
are those that activate the rule.

general graphs (i.e., only one carbon). Note that the graph generated by DISCERN for both
Cross-Entropy and Relative-CE is not entirely realistic since a hydrogen atom cannot have
two bonds. Nevertheless, duplicating this atom and binding it to another carbon (dashed
node and edge) leads to a similar representation which is realistic.

For the second activation rule (bottom), both DISC-GSPAN and DISCERNCross´Entropy depict
a part of amine group (NH2) while DISCERNRelative´CE outputs Ammonia. These molecules are
known to be toxicophore. DISCERNCosine generates a Vinylidene group also known to be toxic.
It is interesting to note that the center nodes (red filled nodes) do not depict the same atom.
Once again, graphs generated by XGNN++ are either unrealistic or too general (carbon
atom). Graphs generated by Random are not shown as they are too unrealistic as shown in
Figure 4.4.

4.4.6 Discussion

We state here the main conclusion we can draw from these experiments. Our method
DISCERN makes it possible to generate representative graphs considering three metrics (i.e.,
Cross-Entropy, Cosine and Relative-CE). Experiments give evidence that these three metrics
are well optimized through the MCTS-based generation. The quality of the representative
graphs is statistically significant as reported in Table 4.2. Results suggest that Cross-Entropy
is slightly better than two others but this is not significant. Experiments demonstrate that
interest of activation rules. Building mask directly from activation rules allows us out-
performing the state of the art instance-level explainers. Nevertheless, such rules are not
interpretable. This motivates DISCERN whose instance explanation performance is compara-
ble to competitors. The second series of experiments demonstrates that DISCERN outperforms
the baselines by providing more realistic graphs. Nevertheless, we do not have theoretical
guarantee of generating fully realistic graphs and DISCERN can generate graph with unrealistic
configuration as shown in Figure 4.5.
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4.5 Conclusion

We have tackled the problem of explaining GNNs with an original angle of attack. Instead
of just assessing the importance of some input graph feature to the model decision, our goal
is to study the GNN internal representation, i.e., to identify and highlight the features the
GNN built through its different layers. To this end, we have introduced a novel method for
explaining internal representations of GNNs. Given some activation rules that define internal
representations having a strong impact on the classification process, DISCERN generates, with
a MCTS approach, realistic graphs that fully embed in the related subspace identified by the
rules. Our method relies on a proximity measure between a graph and an activation rule
to assess how the generated graph embeds in the subspace defined by the activation rule.
There are different ways to construct such a measure and we have proposed three different
ones. We have reported an extensive empirical study on six real-world datasets. We have
obtained comprehensive results proving that the activation rules allow identifying relevant
representation spaces built by the GNN. Masks directly built from the activation rules allow
obtaining a instance-level model explanation method that outperforms four state of the
art methods while explanations directly based on the graph generated by DISCERN achieve
performance comparable to state of the art methods. In terms of combinatorics we only
need a subset of ego graphs to support any single instance explanation, while othe methods
need the full expressivity of masks. With the added benefit of having coherent explanations
through the dataset, for instance GNN explanier provide indepenant explanations for each
instance. We have provided further evidence that DISCERN characterizes well each rule with
realistic graphs. This makes it possible to capture interesting insights about how the internal
representations are built by the GNN.

We believe that such method can support knowledge discovery from powerful GNNs and
provide insights on object of study for scientists. Finally, a number of potential limitations
need to be considered for future research to make this knowledge discovery from GNNs
effective in practice. First, due to its intrinsic nature, the generated graphs pay attention to
the graph structure. As a consequence, some findings may be over-specified especially in
the case where the GNN builds only-content-related features. To overcome this limitation,
we need to provide some additional assessment and/or to introduce a “wild-card label”.
Second, the relations between layers are not taken into account in the discovery of activation
rules. This may lead to redundant results when considering all the layers. To avoid such
redundancy, it is necessary to take into account as prior knowledge the previous layers of a
given layer.

The present study has only investigated the discovery of activation rules and then their
characterization based on a representative generated graph. We believe that this allows to
identify hidden features built by the GNN. However, the current study does not take into
account how these features are combined to lead to the model decision. A next step toward
interpretability is the investigation of how the model combine these features.





Chapter 5

Conclusion and Future Directions

We first summarize the contributions developed in this manuscript before discussing their
perspectives.

5.1 Conclusion

In this thesis, we have tackled the problem of explaining GNNs with an original angle of
attack. Instead of just assessing the importance of some input graph feature to the model
decision, we have endeavored to study the GNN internal representation, i.e., to identify and
highlight the features the GNN builds through its different layers.

To this end, we have introduced a novel method rooted in subgroup discovery for the
explainability of GNNs in Chapter 3. The so-called INSIDE-GNN is based on the discovery of
relevant activation rules in each hidden layer of the GNN. Activation rules aim at depicting
set of components that are commonly activated together for a given model decision. The
interestingness of the rules is defined through the subjective interestingness framework:
prior beliefs are used to assess how constrastive a rule is. We have devised an algorithm
that efficiently and iteratively builds a set of activation rules. At each iteration, updating the
model with the chosen rule allows to discard candidates rules that are too similar to those
in the set. Therefore, this allows to reduce the redundancy of the set of activation rules.
An experimental study confirms that activation rules capture interesting insights about
how the internal representations are built by the GNN. It is possible to design an instance-
level explainer based on these rules, which outperforms the state-of-the-art methods when
considering fidelity metric. The main limitation of the proposed method is that activation
rules are not interpretable themselves. They require the consideration of ad-hoc advanced
treatments to depict them in an human interpretable way.

In Chapter 4, we have tackled the previous limitation. We have introduced a novel
method for explaining internal representations of GNNs. Given some activation rules that
define internal representations having a strong impact on the classification process, we have
introduced a novel method called DISCERN that generates representative graph for each rule.
With a MCTS approach, DISCERN generated realistic graphs that fully embed in the related
subspace identified by the rules. Our method relies on a proximity measure between a
graph and an activation rule to assess how the generated graph embeds in the subspace
defined by the activation rule. There are different ways to construct such a measure and we
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have proposed three different ones. Through an extensive empirical study on six real-world
datasets, we have made the following observations. We have obtained comprehensive results
proving that the activation rules allow identifying relevant representation spaces built by the
GNN. Explanations directly based on the generated graph achieves performance comparable
to state of the art methods. We have provided further evidence that DISCERN characterizes
well each rule with realistic graphs. This makes it possible to capture interesting insights
about how the internal representations are built by the GNN.

5.2 Perspectives

The modular aspect of this work makes it possible to improve each part independently. First
of all, the computation of the activation rules is a slow process especially because each layer
is considered independently, whereas the activation rules of later layers are correlated to the
previous ones. This information could be used to speed up the search processes and increase
the quality of the generated subgraphs, by adding multiple rules in the objective of the
MCTS. Such improvements will require the definition of a metalanguage on the rules with
conjunction, disjunction and negations of components and an algorithm to extract them.
The FORSIED framework allows the production of high quality rules, but with a significant
computational cost which could be reduced by using another algorithm and add different
heuristics.

Regarding the association of a graph with an activation rule, the use of MCTS is mainly
motivated by its stability and ability to give successful result much more important than
the one of XGNN-like approaches. First, we can think of using Generative Adversarial
Networks Degardin et al. (2021), Goodfellow et al. (2014) with an encoder that builds an ego
network that triggers a rule, and a discriminator that learns to differentiate generated ego
networks from real ego networks that activate the rule. Variational Auto-Encoders Bengio
(2009), Kingma and Welling (2014), Kipf and Welling (2016), Vercheval et al. (2020) could also
be used to reconstruct ego networks from embedding. Several works have already started
to work on such Neural Network architecture with GNN. If such methods are successful
the main benefit they provide over an MCTS is that they do not need a cumbersome realism
check. One can also simply improve the MCTS: the search space is a directed acyclic graph
whose order can be modified when certain edges are added. The MCTS algorithm can be
adapted with the upper confidence limit for DAG Saffidine et al. (2012) instead of UCT.
This approach requires graph isomorphism checking and is not compatible with the layered
construction of ego networks. On the other hand, we could follow the decomposition of
the Weisfeiler-Lehman tree which could build more mathematically understandable results
because it would follow the computational flow of the GNN and build an entire equivalence
class instead of a single graph. It would allow easier canonical ordering among graphs, but
at the expense of realism checking. As we observe an equivalence class, most realism checks
are not feasible, and reconstructing graphs from a Weisfeiler-Lehman-Tree is NP-hard. Such
structural changes represent different compromises that are not worth it as they are. The
second area of improvement comes from objective functions, that is to say realism and the
rule activation objectives.

The class of models considered so far is limited: no experimentation has been done
to support node classification explanations. The method could work perfectly fine as the
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algorithm is defined, however there is one conceptual problem . Let us consider a rule on
the first layer. The structure responsible for this activation rule should not mean the same if
it is at distance 2 or 3 from the node we want to predict. The first adaptation is to separate
the activation matrices into layer and respective distance from the central node, multiplying
the computation time of the activation rules. A modification of the rule extraction algorithm
could consider this information. Edge prediction and regression are not tested either and
the addition of node attribute, especially numerical ones, requires some modification in the
MCTS search at it would have to guess the numerical value of the node when it is added.
The General approach is general to GNN with local message passing but not k-hop message
passing without significant improvements. Deeper GNN, even if they are not common, are
problematic as the rule extraction would take longer time as well as the MCTS search.

INSIDE-GNN and DISCERN extracts a set of 60 rules with associated subgraphs that is able
to explain a GNN model in general. Our explainer is able to decompose the model into
elementary bricks. With the hypothesis that the original model has good performance, the
explanations can be used to extract knowledge on the task itself rather than the model, and
even build science from it. In several tasks human can classify the data but scientists do
not fully understand a natural phenomenon. GNN learning has its own limitation: the
data structure of the graph which is a simplification of the real phenomenon and seen by
an algorithm equivalent to WL. As a user, we need to be careful not to add bias to our
conclusions, but the layered breakdown of each step should help in this regard. Apart from
the extraction of scientific knowledge and if we move away from GNNs strictly, the explainer
can be used in the extraction of multi-agent strategy (reinforcement learning). Depending on
the configuration, several agents following the same strategy and communicating can define
a graph, and if we record either an internal state of each agent, or the explicit communications,
literally message passing, as a hidden feature vector, the whole system can be considered
equivalent to a GNN. The explanations on such a system is a local strategy: ”as a node ,
if my neighbors are in the state x and y and the local structure is z I should act as D”. On
an existing multi-agent setup, it would probably be possible to get some interesting results,
however, if we train a GNN as multi-agent reinforcement learning, a reinforcement learning
environment extracts a strategy for an application of the real world such as the IoT, where
more explicit strategies than a neural network are required for security reasons for instance.
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T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M. Emmerich, and H. Trautmann,
editors, Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN
2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I, volume 12269 of Lecture
Notes in Computer Science, pages 448–469. Springer, 2020.

https://hal.archives-ouvertes.fr/hal-01764253


Bibliography 101

T. De Bie. Finding interesting itemsets using a probabilistic model for binary databases.
Technical report, University of Bristol, 2009.

T. De Bie. An information theoretic framework for data mining. In C. Apté, J. Ghosh, and
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