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RÉSUMÉ

Les circuits supraconducteurs sont une plateforme de choix pour l’étude

de l’interaction entre lumière et matière à l’échelle quantique. Lorsqu’un

photon logé dans un oscillateur supraconducteur intéragit avec un système

hybride tel qu’un mode mécanique, un ensemble de spins ou une boîte quan-

tique, l’intensité de leur couplage dépend des fluctuations de point zéro de

l’oscillateur. Le contrôle quantique du système hybride par les photons né-

cessite un couplage fort, c’est-à-dire un taux d’interaction supérieur aux taux

de relaxations individuels. Ainsi, l’oscillateur doit être conçu de manière à

maximiser les fluctuations du champ. Alors que certains systèmes prospèrent

dans le régime de couplage fort, d’autres sont toujours en quête d’interactions

croissantes.

À ce titre, il a récemment été proposé d’utiliser un oscillateur non-linéaire

forcé par une excitation paramétrique hors-résonante. L’oscillateur de Bo-

goliubov (OB) qui en résulte apparait comme un oscillateur harmonique,

dont les états propres sont des états de Fock comprimés. Lorsqu’il est couplé

à un bit quantique, les fluctuations accrues des états propres de l’OB sont

censées augmenter leur taux d’interaction. Cette thèse présente la première

démonstration du couplage d’un OB électromagnétique à un bit quantique

supraconducteur. L’OB est implémenté dans un résonateur supraconducteur

intégrant des jonctions Josephson, et le bit quantique est de type transmon.

Dans le régime dispersif, nous démontrons que la force d’interaction est mul-

tipliée par deux à 5,5 dB de compression. En outre, cette thèse présente une

autre propriété intrigante des OB, à savoir leur capacité à amplifier des sig-

naux sans être limités par le produit gain-bande passante, caractéristique très

souhaitable pour les amplificateurs limités quantiquement. Enfin, le porte-

échantillon JAWS est présenté, un élément clé d’ingénierie micro-ondes

développé au LPENS.

En raison de l’omniprésence des forces électromagnétiques, cette thèse

ouvre la voie au couplage des OB à une large gamme de systèmes hybrides.

Elle met également en lumière les propriétés fascinantes de ces oscillateurs

de photons comprimés, avec des applications allant de l’amplification limitée

quantiquement à l’étude des transitions de phase quantiques.
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ABSTRACT

Superconducting circuits are a prominent tool for the exploration of

the interaction between light and matter in the quantum regime. Photons

hosted in superconducting oscillators can be coupled to various hybrid

systems such as mechanical vibrations, spin ensembles or quantum dots.

Their interaction is mediated by electromagnetic forces, whose strength

grows with the vacuum-field fluctuations of the oscillator. Quantum control

of the hybrid system through the photons requires strong coupling, meaning

an energy exchange rate greater than their individual relaxation rates. Thus,

the oscillator ought to be designed as to maximize field fluctuations. While

some hybrid systems are comfortably installed in the strong-coupling regime,

some others are still seeking stronger interactions.

In that respect, it was recently proposed to use a nonlinear oscillator

forced by a detuned parametric drive. The resulting Bogoliubov oscillator

(BO) is effectively a harmonic oscillator, whose eigenstates are squeezed

Fock states. When coupled to a qubit, the enhanced fluctuations of the

BO eigenstates are expected to boost their interaction strength. This thesis

presents the first demonstration of the squeezing-enhanced coupling of an

electromagnetic BO to a superconducting qubit. The BO is emulated by a

driven superconducting resonator enhanced by Josephson junctions, and the

qubit is of the transmon design. In the dispersive regime, we demonstrate a

two-fold increase of their interaction strength at 5.5 dB of squeezing. In ad-

dition, this thesis introduces another intriguing property of BOs, specifically,

the ability to deliver amplification not constrained by the gain-bandwidth

product. This is a highly desirable feature for quantum limited amplifiers,

crucial for the operation of superconducting circuits. Finally, the JAWS

sample-holder is presented, a key piece of engineering for microwave exper-

iments designed at LPENS.

Owing to the ubiquity of electromagnetic forces, this thesis opens the

way for the integration of BOs with a wide range of hybrid systems. It also

sheds light on the fascinating properties of these oscillators of squeezed

photons, applicable from quantum-limited amplification to the study of

quantum phase-transitions.
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1
INTRODUCTION

1.1 When the Rabi Hamiltonian meets the tank circuit

As elegantly demonstrated by Haroche and Raimond [Haroche and Rai-

mond 2006], the quantum world can be very fruitfully described in terms of

spins and springs (Fig. 1.1). On the one hand, a spin – understood to be a

spin-1/2 – has only two possible configurations. It is the most nonlinear sys-

tem imaginable, as the presence of a single excitation precludes the addition

of another one. The Hilbert space of a spin-1/2 being limited to the span of

two states, it is also refered to as a two-level system (TLS). While it is the

rigorous description for the spin state of particles that actually posess a spin

with value 1/2, any nonlinear system can be mapped onto an effective TLS,

as soon as only two of its energy levels need consideration. For instance, the

complex energy spectrum of an atom irradiated by a laser can be restricted

to a pair of levels as soon the laser frequency is close from a single transition.

Similarly, the vast stability diagram of a double quantum dot emulates a

TLS under the appropriate biasing conditions [Petersson 2012]. On the other

hand, a spring – meaning a quantum harmonic oscillator – is a linear system

which can store an infinite number of excitations with the same quantum of

energy. This powerful model maps to any quantum system slightly deviating

from a stable equilibrium point, to lowest order in the deviation.

The modes of the electromagnetic field in free space can be quantized

as harmonic oscillators. Yet, the harmonic approximation still holds in the

presence of moving charges, in the limit where the mode wavelengths are

large compared to the charge spatial extent [Cohen-Tannoudji 2001]. While

the description of light involves linear degrees of freedom, the various forces

holding matter together are the bedrock of nonlinearity. Thus, one of the

most elementary modeling of the interaction between light and matter at

the quantum level consists in a harmonic oscillator coupled to a TLS. The

associated Hamiltonian was named after Rabi, and reads:

H{~ “ ωa

ˆ

a:a `
1
2

˙

` ωq
σz

2 ` g
`

σ` ` σ-
˘`

a ` a:
˘

. (1.1)

The light part consists of a harmonic oscillator mode with frequency ωa,

1



2 Chapter 1. Introduction

Figure 1.1 Coupling spins and springs. Spin-like degrees of free-

dom are systems nonlinear enough that only a couple of energy levels

(labeled |gy and |ey) are relevant to describe the physical process at
stake. Among them we notably find atoms, Josephson circuits and

spins. Spring-like degrees of freedom are linear systems that can

be mapped to harmonic oscillators. Among them we notably find

optical cavities, microwave oscillators and mechanical resonators.

The Rabi Hamiltonian describes the coupled evolution of two such

systems.

depicted by the bosonic annihilation operator a, following the commutation

relation
“

a, a:
‰

“ 1. The quantity ~ωa, with ~ “ h{2π the reduced Planck

constant, gives the energy of the light quanta, namely, the photons. As

for the matter part, it is reduced to a TLS with ground and excited levels

|gy and |ey, conveniently depicted in terms of Pauli raising and lowering
operatorsσ` “ |ey xg| andσ- “ |gy xe|, withσz “

“

σ`, σ-
‰

. The associated

frequency ωq yields the energy difference ~ωq between the two states, akin

to the Bohr frequency of an atomic transition. Finally, the interaction part

consists in the simplest bilinear combination of creation and annihilation

operators. The interaction rate g characterizes the susceptibility of the TLS
transition to the light field. Owing to the duality of the electromagnetic field,

the interaction process can be of electric or magnetic origin.

In addition to its exquisite simple formulation, the range of systems

described by this Hamiltonian is unprecedented. While this description falls

naturally at the heart of cavity-QED [Haroche and Raimond 2006], a wealth

of inspired subfields has flourished over the past 20 years. Each of them
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deals with the interaction of light-like modes with matter-like modes. Among

them we find solid-state cavity-QED in semiconducting heterostructures

[İmamoğlu 1999], circuit-QED (cQED) where light and matter are emulated

by collective excitations of superconductors at microwave frequencies [Blais

2021], cavity-optomechanics and cavity-electromechanics where radiation

eitheir at optical or microwave frequency interacts with micromechanical

resonators1 [Aspelmeyer 2014], cavity-magnonics where microwave radi-

ation interacts with spin-waves in ferromagnets [Lachance-Quirion 2019],

hybrid-cQED with spins hosted either on quantum dots or in paramagnetic

impurities [Clerk 2020], or even mesoscopic-cQED that focuses specifically

on the coupling of superconducting circuits to fermionic degrees of freedom

[Cottet 2017]. Finally, a TLS is the quantum equivalent of a classical bit –

also called a quantum bit (qubit) – that is to say the simplest system able to

store and process information. Thus, not only does Hamiltonian 1.1 give a

very fundamental description of the interaction between light and matter,

but it is also an elementary model for the treatment of quantum information.

The Rabi Hamiltonian can be derived from first principles in a variety of

physical platforms. As it involves a single mode of light, most of its imple-

mentations rely on the confinement of a cavity. Like a particle trapped in a

square potential [Basdevant and Dalibard 2002], light confined in a cavity

unfolds in isolated modes. If the cavity finesse (or quality) is high enough,

meaning if the modes are well separated, a single mode can be adressed

consistently. Here we focus on a specific implementation of such a cavity,

using superconducting circuits in a cQED architecture [Blais 2021]. Natu-

rally endowed with small dissipation and high nonlinearity, superconducting

circuits have benefited from a continuous improvement of nanofabrication

techniques over the past 30 years to become a workhorse for experimental

quantum physics. Using only three basic electrical components: the capacitor,

the inductor, and the Josephson junction, cQED has succeeded in engineer-

1 Mechanical systems are a special case. Apart from extreme structures such as carbon-

nanotubes, their nonlinear response is usually accompanied by a breakdown of elasticity.

Thus, they are mostly operated as linear systems, depicted by a bosonic operator b. Then

why do they appear in this listing? Their interaction with light is typically mediated by

a radiation-pressure coupling, of nonlinear nature. Under driven evolution, this coupling

yields a beam-splitter interaction [Regal 2008], whose Hamiltonian maps onto Eq. 1.1 by

replacing σ- by b [Clerk 2020]. Thus in the following of this introductory chapter, the fate

of mechanical modes will be no different than the one of actual TLSs. In addition, one

should notice a recent effort to use mechanics as a linear mode coupled to a superconducting

qubit [Viennot 2018].
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Figure 1.2 The Rabi Hamiltonian in cQED. A LC tank circuit

(blue) is described in terms of the conjugate variables Φ and Q.
The interaction with an electric dipole ~d is maximized when the

electric field ~E is concentrated in a small capacitor (left). Conversely,

the interaction with a magnetic dipole ~m is maximized when the

magnetic field ~B is concentrated in a small inductor (right).

ing a wide class of Hamiltonians on chip, borrowed from quantum-optics to

condensed-matter [Carusotto 2020]. In addition, owing to their great integra-

bility, superconducting circuits are a prominent tool for the study of hybrid

systems [Xiang 2013; Clerk 2020]. In this context, their simple operation and

high sensitivity are leveraged to study faint signals emanating from complex

media. While the naming found in the litterature is somewhat inconsistant,

in this thesis we will refer to hybrid-cQED as the global effort to couple

superconducting circuits to other types of systems.

The simplest linear superconducting circuit is the LC tank circuit, com-

posed of an inductor L in parallel with a capacitor C (Fig. 1.2). It is a

harmonic oscillator with frequency ωa “ 1{
?

LC, and when in contact with

a bath of temperature T much less than TQ “ ~ωa{kB with kB the Boltz-

mann constant, it behaves quantum mechanically. There, it is conveniently

described in terms of the flux Φ threading the inductor, and the charge Q
accumulated on the capacitor. These are the conjugate coordinates of the sys-

tem, akin to the position and momentum of a mechanical oscillator, obeying

the commutation relation
“

Φ, Q
‰

“ i~ [Vool and M. Devoret 2017]. One

can resort to the quantum harmonic oscillator description by introducing:

a “
1
2

ˆ

Φ
Φzpf

` i
Q

Qzpf

˙

Φzpf “

c

~Z0

2 Qzpf “

c

~
2Z0

(1.2)
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whereZ0 “
a

L{C is the impedance of the circuit. Note that for amicrowave

oscillator with ωa{2π “ 10GHz we find TQ “ 480mK. Hence, at the lowest
temperature stage of a dilution refrigerator (T « 10 mK), such circuits can
be safely considered to be in there ground state. Note that this LC model is

not limited to lumped-element circuits, but it is also a faithful representation

of distributed-element oscillators [Pozar 2011]. The interaction of a LC

circuit with a foreign TLS is mediated either by the electric field ~E stored in

the capacitor, or by the magnetic field ~B stored in the inductor (Fig. 1.2). In

the first case, introducing the transition electric dipole moment deg between

the two states of the TLS, the coupling strength to the tank circuit reads:

g “
deg ˆ Ezpf

~
Ezpf „

Vzpf
3

?
vE

Vzpf “
Qzpf

C
“ ωa

c

~Z0

2 (1.3)

where Ezpf are the zero-point fluctuations of the electric field, and vE is

the electric mode volume giving the typical scale over which the electric

energy is stored. In the second case, introducing the transition magnetic

dipole moment meg between the two states of the TLS, the couping strength

to the tank circuit reads:

g “
meg ˆ Bzpf

~
Bzpf „

Izpf
3

?
vB

Izpf “
Φzpf

L
“ ωa

c

~
2Z0

(1.4)

where Bzpf are the zero-point fluctuations of the magnetic fiel, and vB is the

magnetic mode volume giving the typical scale over which the magnetic en-

ergy is stored. Overall, the contribution of the bare oscillator to the coupling

is set by the magnitude of its field fluctuations, ultimately set by the mode

volume and its impedance.

So far, the nature of the TLS was left unspecified. Indeed, owing to the

great integrability of superconducting circuits, the coupled system can be

many things: as similar as another superconducting circuit [Blais 2021], or

as different as a mechanical mode2, an atom, a spin, or a fermionic reservoir

[Xiang 2013; Clerk 2020]. Yet, as the difference between the coupled system

and a superconducting circuit grows – meaning their sizes, energy scales,

susceptibilities – their coupling is likely to diminish. Then, one may wonder

how efficient a superconducting circuit can be in reading out the state of a

system of a different kind, that we refer to as a hybrid system.

2 Mechanical modes are usually very linear, see footnote 1 for details.
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1.2 Strong coupling in hybrid circuit-QED

In an effort to explore the behaviour of hybrid systems using supercon-

ducting circuits, the LC oscillator presented earlier is typically used as a

readout mode. It is coupled to a feedline at a rate κ, used by an observer
to acquire information about the state of the coupled hybrid system. The

latter can exchange energy with the oscillator at a rate g, but may also relax
through internal channels at a rate γ. When the energy exchange rate between

the oscillator and the hybrid part exceeds their individual relaxation rates

(g " κ, γ), coupling can no longer be treated as a perturbation, and the
system enters the strong-coupling regime. Only there can a full quantum

control of the hybrid system be implemented through the oscillator.

Following the landmark experiment by the Yale group, that demonstrated

strong coupling between a single photon in a microwave cavity and a super-

conducting qubit [A. Wallraff 2004], a quest started to reach a similar regime

with hybrid systems. Notably, strong coupling was achieved with an acoustic

mode [O’Connell 2010], with a paramagnetic spin ensemble [Kubo 2010;

Schuster 2010], with the flexural mode of a mechanical resonator [Teufel

2011], with magnons [Huebl 2013], with Andreev bound states in an atomic

contact [Janvier 2015], with the charge of a double quantum dot [Mi 2017;

Stockklauser 2017], and with an electron spin trapped on a double quantum

dot [Landig 2018; Mi 2018; Samkharadze 2018]. All these breakthrough

were made possible by an optimization of the system parameters according

to Eqs. (1.3, 1.4). Specifically, there are three strategies to increase g{ωa.

The first one relies on tweaking the hybrid part to increase its transition

dipole element (deg ormeg). Note that this strategy has been decisive in going

from cavity-QED to cQED, where the dipole moment of artificial atoms

emulated by superconducting circuits can be tuned at will, as opposed to real

atoms [Blais 2004]. For instance in cavity-electromechanics, mechanical

structures are routinely capacitively coupled to superconducting oscilla-

tors. While initial experiments used thin cantilevers embedded in capacitive

elements, the shift to large mechanical membranes greatly increased the

loaded charge of the mechanics, and in turn their electric dipole moment

[Teufel 2011] (Fig. 1.3 a). For hybrid-cQED with actual spins, the size

of an individual dipole cannot be tuned. Then, one can resort to a magni-

fied dipole moment using collective excitations [Kubo 2010; Schuster 2010]

(Fig. 1.3 c). Yet, this approach sacrificies the coherence properties of a single

dipole. Thus, when collective effects are not an option, changing the nature

of the dipole can be advantageous. This is the trick played by quasi-spin
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qubits, which rely on a combination of spin-orbit and large orbital-oscillator

couplings to couple single spins to photons via charge degrees of freedom

[Landig 2018; Mi 2018; Samkharadze 2018] (Fig. 1.3 d). In the same spirit,

electromechanical flux coupling has recently been demonstrated, moving

away from the paradigmatic charge coupling of a moving capacitor plate

(Fig. 1.3 b).

Figure 1.3 Quest for strong coupling: tweaking the dipole. (a) Vac-

uum gap capacitor of a LC resonator featuring a suspended microme-

chanical membrane [Teufel 2011]. (b) A nano-cantilever (orange)

is flux coupled to an oscillator while embedded in a SQUID loop

[Rodrigues 2019]. (c) Diamond crystal glued on top of a microwave

oscillator [Kubo 2010]. (d) A quasi-spin qubit leverages the different

magnetic environments (blue magnets) of the two localizations of an

electron (green probabilities) to couple its spin to photons (orange

arrow) [Viennot 2015].

The second one relies on minimizing the oscillator mode volume (vE or

vB), concentrating the field lines around the hybrid system. Again this strat-

egy was decisive for the advent of cQED, which benefited from a drastically

reduced mode volume as compared to cavity-QED [Blais 2004]. Nowa-

days, field concentration remains a crucial parameter in the detection of

paramagnetic spin impurities. Recently, a record detection volume of a few

fL was reported in a LC oscillator featuring a nano-inductor, pushing the

spin-photon coupling in the kHz range [Ranjan 2020] (Fig. 1.4 a). Yet, this

strategy can only be implemented when the hybrid system is not dissipative,
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and concentrating field lines in its close neighboorhood does not degrade

the oscillator quality.

Finally the third one relies on the oscillator impedance. It can be tuned

geometrically by shaping the oscillator according to the coupling scheme.

For instance, using large interdigitated capacitances lowers the oscillator

impedance, and maximizes the coupling to magnetic dipoles (Fig. 1.4 a).

Conversely, using very thin center conductors for distributed-element oscil-

lators increases the mode impedance, and maximizes the coupling to eletric

dipoles (Fig. 1.4 b). Next, the oscillator impedance can be increased beyond

the vacuum impedance (Zvac “
a

µ0{ε0 « 377 Ω) using high kinetic induc-
tance materials [Landig 2018; Samkharadze 2018], or Josephson junction

chains [Stockklauser 2017]. Yet, no such trick can be played to lower the

impedance, since materials with large relative permittivity are usually very

lossy, incompatible with superconducting circuits.

Figure 1.4 Quest for strong coupling: mode volume and impedance

tuning. (a) An oscillator featuring a large interdigitated capacitance

and a nano-inductor is patterned on top of a substrate implanted

with spin impurities [Ranjan 2020]. It minimizes the magnetic mode

volume, and the mode impedance (Z0 « 15 Ω). (b) A high aspect-

ratio CPW oscillator in NbTiN (red, Z0 « 3 kΩ) is charge-coupled to
quantum dots on both ends [Harvey-Collard 2020]. Note the multiple

control lines for the quantum dots (gold).

While these three strategies succeeded in bringing many hybrid systems

into strong coupling with microwave photons, some others remain noto-

riously difficult to couple to. Leading this way are mesoscopic systems,

as shown by the late demonstration of strong coupling in these platforms.

Indeed, mesoscopic degrees of freedom behave quantum mechanically under
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strong confinement, so that their dipole cannot be easily enlarged. In addi-

tion, mesoscopic systems are usually dissipative and connected to multiple

control lines (Fig. 1.4 b). Thus, reducing the mode volume comes at the risk

of a degradation of the oscillator quality. Finally, impedance engineering

appears like the last available trick, though it suffers from an unfavorable

square-root power law (Eqs. 1.3, 1.4). Even though a charge qubit hosted on

a double-dot was recently coupled to a Josephson junction-chain oscillator

with g{ωa “ 0.11 [Scarlino 2022], high impedances remain very challenging
to fabricate. Thus, another approach to consistently increase light-matter

coupling is sought after.

1.3 Dynamical enhancement of light-matter interactions

In 2018, Leroux and co-authors presented a method where [Leroux 2018]:

... parametric (two-photon) driving of a cavity is used to

exponentially enhance the light-matter coupling in a generic

cavity-QED setup...

While applicable to all the subfields of cavity-QED, this proposal was sup-

plemented with a possible implementation in cQED. At the same time, Qin

and co-authors presented a similar method that [Qin 2018]:

... exploits optical parametric amplification to exponentially

enhance the atom-cavity interaction [in a cavity-QED setup].

While mesoscopic systems were previously struggling with a square-root

power-law for increased coupling through impendance engineering, the

promise of an exponential enhancement is enticing.

Specifically, these proposals offer to replace the linear oscillator pre-

sented in section 1.1 by a nonlinear one, forced by a detuned parametric drive.

Parametric driving is commonly known for producing squeezed states out

of nonlinear oscillators [G. Milburn and D. F. Walls 1981]. These squeezed

states display enhanced fluctuations, exponential in a parameter r refered to
as the squeezing parameter [D. F. Walls 1983]. The trick of the proposed

method lies in the detuning of the parametric drive [Carmichael 1984]. There,

not only the output of the oscillator yields squeezed states, but the eigen-

states of the oscillator themselves are squeezed (Fig. 1.5). Given that the

coupling strength of an oscillator to a TLS is set by the magnitude of its field

fluctuations (Eqs. 1.3, 1.4), squeezing of the eigenstates yields a coupling
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Figure 1.5 Squeezing-enhanced qubit-photon interactions. A cav-

ity oscillator (blue mirrors) dissipating at a rate κ (blue arrow) is

coupled to a TLS (red levels) at a rate g (blue exchange arrows).

Driving the cavity with a two-photon pump with amplitude λ and

detuning δa (gold double arrow) squeezes its eigenstates (blue lev-

els), that consist of squeezed Fock states |nsy (right insets: Wigners

at S “ e2r “ 6 dB). This results in an enhanced coupling g cosh r
(gold exchange arrows). Simultaneously the drive brings an effective

thermal population n̄th “ sinh2 r in the oscillator (full circles) which
induces TLS dephasing (gold fuzz).

boost exponential in r. Crucially, these enhanced fluctuations are not tied
to either the electric or the magnetic component of the field, and cannot

be recast into a modification of the mode impedance. As a consequence,

the method proposed by these two references offers a fourth strategy for

increased couplings. While the first three were associated with hardware

design, this new one is the product of an external drive. Thus, it offers the

possibility to dynamically control light-matter interactions.

In a typical hybrid-cQED setup, the oscillator is coupled to the hybrid

system of interest on one hand, and decays into a feedline used for readout

on the other hand. Thus, not only the squeezing is expected to boost the

oscillator coupling to the TLS, but also to its feedline.

Increased coupling of the oscillator to a targeted TLS is a valuable

ressource in all the subfields of cavity-QED [Zeytinoğlu 2017]. One can

imagine using this scheme for improved read-out, fast gates [Burd 2021],

quantum transduction [Zhong 2022], or even the study of quantum phase-
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Figure 1.6 Main results of this thesis. Left: dispersive coupling

strength (y-axis) of a qubit to an oscillator under detuned parametric

driving, versus the oscillator squeezing (x-axis). The measured en-

hancement (squares) is well captured by the analytical model with no

fit parameters (line). Right: gain response of a parametric amplifier

in the presence of finite (brown) or vanishing (green) detuning. The

amplification bandwidth in the detuned case is more than 3 times

wider.

transitions [Zhu 2020; Chen 2021; Shen 2022] . There exists a wealth of

theoretical proposals leveraging oscillator squeezing in cavity-QED [Qin

2018], cQED [Leroux 2018] and optomechanics [Lü 2015; Lemonde 2016].

Yet, to date, such schemes have only been demonstrated in two experiments.

The first one is a trapped-ion experiment. There, multiple-qubit gates are

routinely implemented using the motional states of the ions. In that context,

detuned parametric driving of a phononic mode was demonstrated to speed

up aMølmer-Sørensen two-qubit gate [Burd 2021]. The second one is a NMR

experiment. There, sequences of microwave pulses applied on molecules

are used to simulate various dynamics. Indeed, making the most of the

Holstein-Primakoff transformation, a collection of spins can be mapped

onto bosons. In that context, an oscillator mode emulated by three nuclear

spins showed increased interactions to a fourth spin upon squeezing [Chen

2021]. In turn, this thesis presents the first demonstration of the squeezing-

enhanced coupling of an electromagnetic oscillator to a superconducting

qubit (Fig. 1.6 left). This oscillator consists in a superconducting resonator

enhanced by Josephson junctions, as routinely employed in cQED, and

the coupled system is operated in the dispersive regime [Blais 2021]. This

experiment could be easily generalized to all sorts of interacting modes, and
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bring squeezing as a useful ressource for hybrid systems seeking stronger

interactions.

Increased coupling of the oscillator to its feedline may – in the context

of hybrid-cQED – be understood as a detrimental effect. As we will later

demonstrate, the enhanced coupling to the bath triggered by detuned para-

metric driving translates into a thermal population of the squeezed oscillator.

The spread of the eigenstate population – following a Boltzmann distribution

(Fig. 1.5) – dephases the coupeld TLS [Blais 2004]. While initially predicted

by Shani and co-authors [Shani 2022], this thesis presents a complete exper-

imental characterization of this induced dephasing mechanism in a cQED

experiment.

Meanwhile, this enhanced dissipation can be leveraged away from a

hybrid system, regarding the detuned DPO alone, as a quantum amplifier.

Indeed, the primary effect of parametric driving is the production of gain at

the output of the oscillator. This observation still holds for detuned parametric

driving. However, the amplification bandwidth of the resulting amplifier

strongly depends on the presence of the detuning. Specifically, conventional

parametric amplifiers have an operational bandwidth limited by the output

gain. Instead, the bandwidth of detuned parametric amplifiers is not limited

by their gain (Fig. 1.6 right) [Metelmann 2022]. Finally, this thesis presents

the impact of the detuning on a parametric amplifier both theoretically and

experimentally.

1.4 Thesis outline

This thesis is organized as follows. In chapter 1, the nonlinear oscillator

forced by a detuned parametric drive, a.k.a. the Bogoliubov oscillator, will

be introduced. Following some general considerations, an implementation

with superconducting circuits will be presented. In chapter 2, the coupling

of such a Bogoliubov oscillator with a qubit will be envisioned. A short

dataset in the resonant regime will be presented, as well as an extensive

dataset in the dispersive regime. Both endeavors will be supported by original

numerical simulations or analytical expressions. These first two chapters

contain not only all the materials presented in [Villiers 2023], but also

some exclusive contents, that one may find useful for the design of future

Bogoliubov oscillators. Chapter 3 will be devoted to a short story on the

operation of cQED experiments. There, the JAWS microwave package will

be introduced. Finally, this typescript will end with some conclusive remarks

on the future of Bogoliubov oscillators in cQED.



2
THE BOGOLIUBOV

OSCILLATOR

2.1 The degenerate parametric oscillator

2.1.1 Model

The degenerate parametric oscillator (DPO) is a quantum optics model

whose history is closely related to the quest for squeezed state generation

[D. F. Walls 1983]. While the Heisenberg uncertainty principle sets a lower

bound on the product of the measurement precisions on two conjugate vari-

ables, it does not limit the precision of an individual measurement. Specif-

ically, building on the description of the harmonic oscillator presented in

section 1.1, we introduce X “ Φ{2Φzpf and P “ Q{2Qzpf the real and

imaginary parts of the mode operator a. They are the normalized quadratures

of the field, obeying the commutation relation
“

X, P
‰

“ i{2. If x∆X2y and

x∆P 2y are the variances associated to the measurements of each quadrature,

their conjugacy imposes x∆X2y x∆P 2y ě
ˇ

ˇ

“

X, P
‰ˇ

ˇ

2
{4 “ 1{16. Among

the states allowed by quantum mechanics we find symmetric states such that

x∆X2y “ x∆P 2y, the simplest one being the vacuum which displays half

a quantum of noise in each quadrature
a

x∆X2yvac “
a

x∆P 2yvac “ 1{2
(input state on Fig. 2.1). Squeezed states, on the other hand, display squeezed

(reduced) flucations in one quadrature, at the expense of anti-squeezed (am-

plified) fluctuations in the conjugate quadrature (output state on Fig. 2.1).

Crucialy these reduced fluctuations can be made smaller than the ones of

vacuum, thus drawing a lot of attention to these states for precision mea-

surement limited by quantum fluctuations [Caves 1981]. Squeezed states

of light were first reported at the output of optical oscillators including a

nonlinear element, such as an atomic cloud [Slusher 1985] or a nonlinear

crystal [Wu 1986]. Shortly after, the nonlinearity of a Josephson junction

was leveraged to prepare similar states at microwave frequencies [Yurke

1989]. In the optical domain, a continuous effort in developing squeezed-

light sources reached its climax with their implementation in the detection

13
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Figure 2.1 Squeezed state generation via parametric amplification.

An oscillator with bare frequency ωa is pumped at a frequency ω2,n

(gold arrow) through a (n+1)-wave mixing process (triangle). The

input field originally in vacuum (left Wigner) yields an output field

squeezed (anti-squeezed) along theP (X) quadrature (rightWigner),

as evidenced by the line cuts for the input (blue dashed line) and

output field (gold solid line).

of gravitational waves [LIGO 2013], as initially proposed by Caves. As for

the microwave domain, at first not much research spawned from the seminal

experiment by Yurke. Yet more than 15 years later, squeezing microwave

fields gained a renewed interest in the context of quantum-limited amplifica-

tion in cQED [Castellanos-Beltran 2008]. Since then, parametric amplifiers

based on Josephson junctions became a cornerstone of the characterization

of quantum circuits [Murch 2013b], as well as a prominent tool for the search

of dark matter axions [Malnou 2019].

At the heart of the DPO model lies a quantum harmonic oscillator aug-

mented by a nonlinear element. By applying a strong drive on the oscillator

nonlinearity – or in analogy with the stick-man going up and down on his

swing, by pumping the nonlinearity – one of the defining parameters of the

oscillator can be modulated, and in turn its resonant frequency. For instance,

given a nonlinear crystal in an optical cavity, a strong electric field can

modify the crystal refractive index, hence the cavity resonant frequency

[Boyd 2008]. Alternatively, given a Josephson junction in a tank circuit,

a strong current can modify the junction equivalent inductance, hence the

resonant frequency of the circuit (section 2.2.1). When the frequency of

this modulation approaches a parametric resonance ω2,n “ 2ωa
n´1 with n and

integer strictly greater to 1, parametric amplification occurs as a consequence
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of the pump injecting pairs of photons in the oscillator (Fig. 2.1). At this

stage, it is worth pointing out that squeezed states are even coherent states.

As detailed by Walls [D. F. Walls 1983], the prototype Hamiltonian for this

interaction reads:

Hpnq{~ “ ωaa
:a `

`

χpnq˚
pεqa2

` χpnq
pεqa:2˘ , (2.1)

where χpnqpεq is the nth order nonlinear susceptibility of the dressed oscil-

lator, and ε is the time-dependent pump amplitude. In this framework the
pump field has been treated classicaly. Depending on the system, a specific

order of the susceptibility will be responsible for parametric amplification:

χp2q
pεq “ εχp2q

“

3-wave mixing
‰

,

χp3q
pεq “ ε2χp3q

“

4-wave mixing
‰

, (2.2)

...

χpnq
pεq “ εn´1χpnq

“

pn ` 1q-wave mixing
‰

.

What is the dominant nonlinear process? In a perturbative approach, the

amplitudes χpnqpεq decrease with the order of the nonlinearity, pointing

towards 3-wave mixing as the dominant process. However, symmetries

of the nonlinear medium can inhibit specific orders. As such, inversion

symmetry prohibits even terms χp2nq, and in particular 3-wave mixing [Boyd

2008]. For instance, nonlinear crystals belonging to a centrosymmetric point

group possess inversion symmetry1. Similarly, the energy-phase relation of

a SQUID being even, 3-wave mixing cannot be triggered through current

pumping. Notably, it was only a few years ago that a superconducting dipole

element natively lacking inversion symmetry was implemented [Frattini

2017] (section 2.2.1). Next, having identified the lowest-order non-vanishing

process, its activation requires the interaction term to be nearly resonant. In

the case of a monochromatic pumping scheme, where the time-dependent

pump field can be written as ε “ εpeiωpt, the nth order parametric interaction

is resonant when pn ´ 1q ˆ ωp “ 2ωa, that is to say ωp “ ω2,n. Thus

it is instructive to look at Hamiltonian 2.1 in a frame rotating at n´1
2 ωp

(appendix B.1.3), such that its interaction part is steady:

Hω
pnq{~ “ δpnqa

:a ` Λ˚
pnqa

2
` Λpnqa

:2 , (2.3)

1 Which is indeed not the case of MgO:LiNbO3 used in the first demonstration of squeezed
state generation through 3-wave mixing [Wu 1986].
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where δpnq “ ωa ´ n´1
2 ωp quantifies the pump frequency mismatch with

the parametric resonance, and Λpnq “ εn´1
p χpnq quantifies the two-photon

injection rate. This is the DPO Hamiltonian, emanating from a pn ` 1q-wave

mixing process. Not only this prototype Hamiltonian captures nonlinear

processes of arbitrary orders, but it can also faithfully represents driven

dynamics of various complexity. Indeed, polychromatic pumping schemes

can be implemented, and for n ą 2 the various frequencies will get mixed
through the nonlinearity. For instance, the 4-wavemixing process of a Joseph-

son parametric amplifier can be triggered by a bichromatic pump [Boutin

2017]. Finally, this model can be generalized to higher-order parametric

resonances ωk,n “ kωa
n´1 , that inject k-photons in the oscillator [Braunstein

and McLachlan 1987]. While recently demonstrated in a supercondcuting

circuit for k “ 3 [Chang 2020], the states produced by such parametric

processes are of great interest for quantum computation with continuous

variables [Gottesman 2001; Hillmann 2020].

Since the parametric process requires a pump field to interact with the

oscillator, a faithful description of the DPO has to account for external

degrees of freedom, that consitute the bath of mode a. In the following,

we focus on a single-sided oscillator (meaning with a single bath channel),

augmented by a 3-wave mixing process (n “ 2). The DPO model is a

combination of a photon Hamiltonian and Lindblad loss operator:

Hph{~ “ δaa
:a ´

λ

2
`

a2
` a:2˘ , Lph “

?
κa , (2.4)

where δa is the detuning between the oscillator and half the pump frequency,

λ is the amplitude of the two-photon pump, and κ is the coupling to the

bath (assumed to be in vacuum). In this picture, the bath is a source of

dissipation for the oscillator mode. Without loss of generality, λ is taken real

and positive. So far the pump field has been treated classicaly, as motivated

by its very high intensity in typical applications. Yet, following Walls and

Milburn [Walls and Milburn 2008] a careful analysis of a fully quantum

DPO would reveal a dynamical instability as λ ě λcrit where:

λcrit ”

c

κ2

4 ` δ2
a . (2.5)

This critical value of the two-photon pump marks the onset of parametric

oscillations, for which the oscillator field acquires a finite amplitude. The

crossing of this threshold corresponds to a second-order quantum phase
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transition, with the steady-state oscillator field xay
8
as an order parameter.

It is not surprising that a full quantum treatment of the fields is required to

account for this instability, as the transition is driven by the very quantum

fluctuations of these fields. That being said, even with the classical treatment

of the pump followed in this thesis, λcrit will play an essential role in the

characterization of the oscillator field moments (section 2.1.2). Note that in

the remainder of this thesis, we will focus on the regime below threshold

λ ă λcrit.

2.1.2 Squeezing and squeezing

The DPO has been introduced as a minimal model to account for the

generation of squeezed radiations. Historically, a lot of attention was dedi-

cated to the characterization of the squeezing of the oscillator output field,

as it is the only accessible ressource in quantum optics experiment. Yet,

not only the output field is in a squeezed state, but also the intra-oscillator

field. With the advent of cavity-QED and later on cQED, the introduction of

quantum detectors – namely spins (section 1.1) – at the heart of oscillators

renewed the interest for intra-oscillator squeezing characterization. In the

following, we will start by describing the squeezing of the steady-state field

in the oscillator. Then, we will introduce another type of squeezing, relevant

to the description of DPOs with δa ‰ 0.

Steady-state squeezing Introducing the density matrix of the system ρ,
the evolution of the state of the DPO in contact with its environment is

governed by the Lindblad master equation:

Btρptq “ ´
i

~
rHph, ρptqs ` DrLphsρptq , (2.6)

where the dissipation superoperator reads Dr‚sρ “ ‚ρ ‚
: ´ 1

2

 

‚
:

‚, ρ
(

. The

mean-value of an arbitrary operator in the Heisenberg picture Optq can be

written in terms of the time-dependent density matrix xOyt “ TrpOρptqq,

where O is the operator at a past reference time. It evolves in time following

the equation:

Bt xOyt “
i

~
xrHph, Osyt ` xL:

phOLphy
t

´
1
2 x

!

L:

phLph, O
)

y
t

, (2.7)

which is an extension of the Ehrenfest theorem to include dissipation. Since

the squeezing is related to the field fluctuations, we seek second-order mo-

ments of the operator a. Owing to the quadratic nature of the master equation,
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the differential system governing their evolution can be recast in a closed

form. Introducing the vector Ψ such that ΨT “ pa:a, a2, a:2, a, a:,1q, we

find Bt xΨyt “ M xΨyt where:

M “

»

—

—

—

—

—

—

–

´κ ´iλ `iλ 0 0 0
2iλ ´2iδa ´ κ 0 0 0 iλ

´2iλ 0 2iδa ´ κ 0 0 ´iλ
0 0 0 ´iδa ´ κ{2 iλ 0
0 0 0 ´iλ iδa ´ κ{2 0
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

(2.8)

Solving this differential system in the steady-state yields:

xa:ay
8

“
1
2

λ2

λ2
crit ´ λ2 , xa2

y
8

“
λ

2
δa ` iκ{2
λ2

crit ´ λ2 , xay
8

“ 0 , (2.9)

from which we also deduce: xaa:y
8

“ 1 ` xa:ay
8
, and xa:2y

8
“ xa2y

˚

8
. In

the remainder of this manuscript, steady-state observables will be denoted

as xOy
8

“ TrpOρ8q where Btρ8 “ 0.
The amplification process is readily observable in the occupation of the

oscillator xa:ay
8
. With the pump off (λ “ 0), the oscillator is empty. As

the pump is turned on, a finite occupation emerges, until it diverges as λ
approaches the critical value. Further defining the tilted oscillator quadratures

as:

Xθ “
ae´iθ ` a:eiθ

2 and Pθ “
ae´iθ ´ a:eiθ

2i
, (2.10)

we find:

xX2
θy

8
“

1
4

λ2
crit ` λ pδa cos 2θ ` pκ{2q sin 2θq

λ2
crit ´ λ2 , (2.11a)

xP 2
θ y

8
“

1
4

λ2
crit ´ λ pδa cos 2θ ` pκ{2q sin 2θq

λ2
crit ´ λ2 , (2.11b)

On Fig. 2.2 we plot Wigner representations of the intra-oscillator field for

various parameters. When λ “ 0, the DPO is in vacuum and its steady-state

field fluctuations are isotropic: @θ, xX2
θy

8
“ xX2yvac “ 1{4. For λ ą 0,

the steady-state is squeezed along Pθ8
and anti-squeezed along Xθ8

, where

θ8 is such that:

tan 2θ8 “
κ

2δa
. (2.12)
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Figure 2.2 Wigner representations of the steady-state of a DPO

with the pump off (left), 6 dB of resonant squeezing (center), and

6 dB of detuned squeezing (right). Even though it is not obvious at

first sight, center and right pictures are equivalent through a mere

rotation.

When δa “ 0, the squeezing is said to be resonant, and we recover θ8 “

π{4 (Fig. 2.2 center)2. When δa ‰ 0, the squeezing is said to be detuned,
which tilts the previous picture. Maintaining the ratio λ{λcrit preserves the

anisotropy (Fig. 2.2 right). Notably for strongly-detuned squeezing, meaning

|δa| " κ{2, we find θ8 « 0.
We define the steady-state squeezing and anti-squeezing amplitudes as3:

S8 ”
xP 2

θ8
y

8

xP 2yvac
“

λcrit

λcrit ` λ
, qS8 ”

xX2
θ8

y
8

xX2yvac
“

λcrit

λcrit ´ λ
. (2.13)

As the two-photon pump amplitude approaches its critical value, the steady-

state anti-squeezing grows indefinitely, while the squeezing saturates to 1/2.

This is the well-known 3 dB-limit on intra-cavity squeezing, which applies

to the DPO whether the squeezing is resonant or detuned [Carmichael 1984].

This limit is evidenced on Fig. 2.2 by a contrast reduction at the center of the

blobs, necessary to ensure the normalization of the Wigner representation

at squeezings above 3 dB. Yet the presence of a detuning deeply alters the

physical process responsible for the dynamical convergence of the system. In

2 An alternative definition of the squeezing term ´i λ
2 pa2 ´ a:2q would yield θ8 “ 0 in the

resonant case [Eddins 2019].

3 When numerical values of the (anti-)squeezing are quoted, we use the logarithmic scale

S rdBs “ 10 log10 S. As a rule of thumb, for λ{λcrit “ 0.75, 0.9, 0.99, the steady-state
anti-squeezing equals respectively qS8 “ 6, 10, 20 dB.
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the resonant case we find λcrit “ κ{2, as a signature of the DPO stabilization

being mediated by dissipation only. Indeed, the dynamical system desribed

by Eqs 2.4 with δa “ 0 would be unstable if it were not for dissipation. On
the contrary, in the strongly-detuned case we find λcrit « |δa|, showing that

the pump frequency mismatch alone is sufficient to stabilize the system.

Eigenstate squeezing The presence of a non-vanishing detuning between

the oscillator resonance and half the pump frequency calls for another layer

of analysis. Indeed, in the detuned-squeezing regime, the Hamiltonian is

diagonalizable by means of a Bogliubov transformation using the canonical

basis:

α “ a cosh r ´ a: sinh r (2.14)

where the squeezing parameter r is defined as:

tanh 2r “
λ

|δa|
. (2.15)

This approach is equivalent to transforming the Hamiltonian through the

squeezing unitary Us “ er{2pa2´a:2q by noting that α “ U :
saUs. In the

following we will say that given an arbitrary operator O, then UsOU :
s is

the squeezed version of O, while U :
sOUs is its anti-squeezed version. In

this new basis, Hamiltonian 2.4 reads:

Hph{~ “ Ωarrsα:α , (2.16)

where Ωarrs “ δa{ cosh 2r. When λ “ 0, the Hamiltonian Hph is that

of a simple harmonic oscillator, and its eigenstates are Fock states t|nyu

with eigenenergies nδa, where n are integers. Instead, when a detuned two-

photon pump is applied, the DPO enters the Bogoliubov oscillator (BO)

regime where its eigenstates are squeezed Fock states t|nys “ U :
s |nyu with

eigenenergies nΩarrs (Fig. 2.3). When it comes to eigenstate squeezing, the

enhanced fluctuations in one quadrature are accompanied by conversely

reduced fluctuations in the other quadrature, with no saturation. Hence there

is no need to distinguish squeezing from anti-squeezing, and we relate the

anisotropy of the eigenstates to a single parameter denoted the squeezing

amplitude4:

S ” sxn|X2
0 |nys

xn| X2
0 |ny

“ e2r . (2.17)

To avoid confusion, the eigenstate squeezing will be simply denoted squeez-

4 Using the same notation as for steady-state squeezing, we would find qS “ S´1.
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Figure 2.3 The Bogoliubov oscillator. A cavity oscillator (blue

mirrors) is driven by a two-photon pump with amplitude λ and

detuning δa (gold double arrow) while dissipating at rate κ (blue

arrow). Its eigenstates (blue levels), that are effectively thermally

occupied (full circles), consist of squeezed Fock states |nsy (right

insets: Wigners at S “ e2r “ 6 dB).

ing, while the steady-state squeezingwill always be recalled as such. Making

the most of the hyperbolic-trygonometry table (appendix A), we point out

the useful formulas5:

Ωarrs “
a

δ2
a ´ λ2 and S “

c

δa ` λ

δa ´ λ
. (2.18)

The diagonalization of the Hamiltonian comes at the expense of a con-

voluted expression for the Lindblad loss operator in the Bogoliubov basis:

Lph “
?

κ
`

α cosh r ` α: sinh rq . (2.19)

Indeed, the appropriate basis to account for the squeezing of the oscillator

is the one of Bogoliubov excitations, which is an anti-squeezed version of

the original one. Then, the single-photon loss channel of the bare mode

translates into a squeezed-photon loss for the Bogoliubov mode. When

entering the master equation 2.6, this squeezed bath operator will contribute

to the evolution of the density matrix through:

DrLphsρ “ κp1 ` sinh2 rqDrαsρ ` κ sinh2 rDrα:
sρ

` κ
sinh 2r

2
`

Grαsρ ` Grα:
sρ
˘

,
(2.20)

5 Orders of magnitude: λ{δa “ 0.9, 0.98, 0.9998 leads to S “ 6.4, 10, 20 dB.
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Figure 2.4 Condition for an effective thermal bath. The squeezed

bath amounts to a thermal bath when pκ{2q sinh 2r ă 2|Ωarrs|, that

is to say κ sinh 4r{8δa ă 1 [region (i)]. In the opposite case [region
(ii)], the anomalous dissipator of Eq. 2.20 cannot be averaged out.

The black line marks the separator between the two regions.

where the anomalous dissipator superoperator reads: Gr‚sρ “ ‚ρ ‚ ´1
2 t‚

2, ρu.

Owing to the harmonic evolution of the α mode, it is instructive to look at

the master equation in a frame rotating at Ωarrs (appendix B.1.3). There, the

two terms of the first line of Eq. 2.20 will appear steady, while the ones of the

second line will appear rotating at frequency 2|Ωarrs|. In the limit where their

amplitude is smaller than their rotating frequency, averaging theorems apply,

and we can neglect the contribution of the second line (section B.1.3). Thus,

provided κ sinh 2r
2 ! 2|Ωarrs|, the Lindblad loss operator in the Bogoliubov

basis resembles a thermal bath with mean-occupancy sinh2 r. This inequality
translates into an lower bound on the ratio 2|δa|{κ for the bath to be simply

considered thermal: 2|δa|{κ " sinh 4r{4 (knowing that r ą 0). On Fig. 2.4
we plot the evolution of this bound for various squeezing amplitudes. For

instance, when δa “ 5κ (meaning 2|δa|{κ “ 10), the inequality is saturated
for 10 dB of squeezing. In this limit, and assuming an oscillator initially in

vacuum, once in the BO regime the steady-state will appear as a thermal

state with Boltzmann weights pn, such that pn{pn´1 “ tanh2 r (see golden
circles on Fig. 2.3 showing the Boltzmann weights referenced to the unit

circle in blue).
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Figure 2.5 DPO Squeezing: steady-state anti-squeezing (color)

versus two-photon pump amplitude (y-axis) and detuning (x-axis)

both scaled by κ{2. When λ ą λcrit (white region, frontier as a black

line), the system is dynamically unstable. The region (i) is typical

for parametric amplification and squeezing generation, while the

region (ii) marks the BO regime. The black dashed line marks the

frontier of coalescence (Eq. 2.34). Eigenstate squeezing amplitude

(in decibels) is overlaid as white-level lines (1 to 6 dB shown, this

quantity diverges when λ “ |δa| on the first bisector)

DPO juice While the presence of a finite detuning in the DPO model

preserves its steady-state squeezing properties, provided a mere redefini-

tion of λcrit, it also profoundly changes the nature of its eigenspectrum.

Indeed, in the resonant case the DPO Hamiltonian can be recast in terms

of the normalized quadratures as Hph “ ~λpP 2 ´ X2q. It corresponds to

an oscillator with an inverted potential, unbounded from the bottom. This

potential being unconfining, the Hamiltonian spectrum is continuous, with

non-normalizable eigenstates akin to the position operator in real space.

Ultimately, its dynamics would be unstable in the absence of dissipation.

In the detuned case, the DPO features a discrete set of energy levels, with

eigenstates which are squeezed Fock states. While there is no simple con-

nection between steady-state squeezing and eigenstate squeezing (Fig. 2.5),
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in the strongly detuned regime |δa| " κ{2, we find:

qS8 „
λÑ|δa|

S2

2 , (2.21)

which reads in logarithmic scale: qS8rdBs „ 2SrdBs ´ 3. The definition of
the Bogoliubov basis appears to be the right analytical tool to describe a

detuned DPO. Yet, does the eigenstate squeezing lead to measurable effects

in the oscillator output field?

2.1.3 Gain response and coalescence

Having previously characterized the inner squeezing properties of a

DPO, we now turn to the description of its output field. In an experiment

driven approach, instead of computing the squeezing properties of the field,

we will focus on the gain response of the DPO. Indeed, this quantity is

straightforward to measure in a spectroscopy experiment, as opposed to

squeezing. While the computation of the gain reponse of a DPO can be

found in numerous references [Frattini 2018; Planat 2019], little attention

has been devoted to commenting the impact of the detuning δa. After a

standard derivation of the DPO response in the bare basis, we will shed light

on this result by reproducing the calculation in the Bogoliubov basis. Finally,

we will introduce the concept of coalescence, that reconciles detuned and

resonant DPOs at high squeezing.

Bare basis computation First we perform the calculation using the basis

of the bare oscillator mode. We use the input-output formalism to describe

the evolution of the oscillator field in contact with its bath [Steck 2007]

(appendix B.2). The oscillator Heisenberg operator obeys the Quantum

Langevin equation (QLE):

Btaptq “
i

~
rHph, aptqs ´

κ

2aptq `
?

κainptq , (2.22)

where ainptq is the input field, a noisy quantum operator representing the

fluctuations of the environment impinging on the DPO. This operator has

0-mean, obeys the commutation relations
“

ainptq, a:

inpt1q
‰

“ δpt´t1q and
“

ainptq, ainpt1q
‰

“ 0, and follows the statistics:

xa
:

inptq, ainpt1
qy “ n̄thδpt ´ t1

q , (2.23a)

xainptq, a:

inpt1
qy “ p1 ` n̄thqδpt ´ t1

q , (2.23b)

xainptq, ainpt1
qy “ 0 , (2.23c)
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where n̄th is the thermal occupancy of the bath. For an oscillator probed

in reflection – a necessary evil for a single-sided DPO – the input-output

relation reads6:

aoutptq ` ainptq “
?

κaptq , (2.24)

where aoutptq is the output field, with similar properties as the input one.

The QLE is most conveniently solved in Fourier space defined through the

transformation:

arωs “

ż

dteiωtaptq . (2.25)

Details on the reverse transformation and the normalization convention can

be found in appendix A. Most notably the Fourier transforms of the adjoint

excitations are related to Fourier modes at negative frequencies:

ar-ωs
:

“

ż

dteiωta:
ptq . (2.26)

Note that this computation is carried out in the rotating frame, hence ω is

the deviation from half the pump frequency.

As a consequence of energy conservation during the parametric process,

the two-photon pump induces correlations between excitations living at

mirror frequencies with respect to ωp{2, that is to say ˘ω. In addition, the
Fourier transformation 2.26 relates the excitations at ´ω to the adjoint

operator a:ptq. Thus, in order to solve for the DPO response, we write the

Fourier transforms of both the QLE and the adjoint QLE:

#

´iωarωs “ ´
`

κ{2 ` iδa
˘

arωs ` iλar-ωs
:

`
?

κainrωs

´iωar-ωs
:

“ ´
`

κ{2 ´ iδa
˘

ar-ωs
:

´ iλarωs `
?

κainr-ωs
:

. (2.27)

Solving this system yields the Fourier modes of the intra-cavity field:

arωs “

?
κpκ{2 ´ ipω ` δaqq

κ2{4 ` δ2
a ´ λ2 ´ ω2 ´ iκω

ainrωs

`
iλ

?
κ

κ2{4 ` δ2
a ´ λ2 ´ ω2 ´ iκω

ainr-ωs
: .

(2.28)

The second term proportional to λ clearly evidences the mixing of excita-

tions at ˘ω mediated by the two-photon pump. Continuing with the closure

relation 2.24, the output field of the DPO can be written as aoutrωs “

6 An alternative sign convention writes the QLE: Btaptq “ i
~ rHph, aptqs´ κ

2 aptq´
?

κainptq,

and the input-output relation: aoutptq ´ ainptq “
?

κaptq.
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Γarωsainrωs ` Γirωsainr-ωs
:
, where Γarωs is the complex signal gain, and

Γirωs is the complex idler gain. We find:

Γarωs “
κ2{4 ´ δ2

a ` λ2 ` ω2 ´ iκδa

κ2{4 ` δ2
a ´ λ2 ´ ω2 ´ iκω

, (2.29a)

Γirωs “
iλκ

κ2{4 ` δ2
a ´ λ2 ´ ω2 ´ iκω

. (2.29b)

Given an input at a frequency ωp{2 ` ω (in the laboratory frame), the signal

gain is the quantity probed in a homodyne measurement, with an output

detected at the same frequency. Conversely the idler gain, also known as

intermodulation gain, is related to a heterodyne measurement, where the

output is detected at the mirror frequency ωp{2 ´ ω. For the record, in the
presence of an extra internal-loss channel coupled to the DPO at a rate κi,

the complex gains read:

Γarωs “
pκ2 ´ κ2

i q{4 ´ δ2
a ` λ2 ` ω2 ´ iκδa ` iκiω

pκ ` κiq
2{4 ` δ2

a ´ λ2 ´ ω2 ´ ipκ ` κiqω
, (2.30a)

Γirωs “
iλκ

pκ ` κiq
2{4 ` δ2

a ´ λ2 ´ ω2 ´ ipκ ` κiqω
. (2.30b)

In the remainder of this section, we will neglect internal relaxation.

We plot on Fig. 2.6 (top) complex signal gains for increasing steady-state

squeezing in the resonant regime δa “ 0. With the pump off, the signal is

a unit circle in the complex plane, as expected in the absence of internal

dissipation. When the two-photon pump is added, the circle grows as a

signature of signal amplification. One can also notice on the phase profile a

sharpening of the lineshape, showing that amplification occurs at the expense

of a reduced bandwidth.

Bogoliubov basis computation Second, we perform the same computation

in the Bogoliubov basis. It is then restricted to the case δa ‰ 0, and in the
limit λ ă |δa|. There, one can show that the QLE and the input-output

relation read (appendix B.2):

Btαptq “
i

~
rHph, αptqs ´

κ

2αptq `
?

κ
`

ainptq cosh r ´ a
:

inptq sinh r
˘

aoutptq ` ainptq “
?

κ
`

αptq cosh r ` α:
ptq sinh r

˘

(2.31)
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Figure 2.6 Signal gain of a DPO. (Top) Signal gain of a DPO for

δa “ 0 and qS8 P t0, 6, 10u dB (red, blue, gold) in the complex plane

(left), in amplitude (center), and in phase (right). (Bottom) Same as

top for δa “ 5κ. Note the different frequency spans.

This result can be understood as follows7. As the Bogoliubov basis is an

anti-squeezed version of the bare one, the QLE for the Bogoliubov mode

features a coupling to an anti-squeezed version of the bath. Conversely, the

closure relation for the input and output fields – written in terms of the bare

mode – features scattering of squeezed Bogoliubov excitations. One must

point out that the decay rate of the Bogoliubov excitations simply reads κ,
which is not a trivial result. Following the same procedure as in the bare

basis we find:

Γarωs “ Γ`rωs cosh2 r ´ Γ´rωs sinh2 r , (2.32a)

Γirωs “
sinh 2r

2 pΓ´rωs ´ Γ`rωsq , (2.32b)

7 As a reminder, the wording convention introduced in section 2.1.2 denotes:

UsOU:
s “ O cosh r ` O: sinh r : the squeezed version of O ,

U:
sOUs “ O cosh r ´ O: sinh r : the anti-squeezed version of O .
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where Γ˘rωs is the complex gain response of a linear cavity measured in

reflection, resonant at ˘Ωarrs with linewidth κ:

Γ˘rωs “
κ{2 ` ipω ¯ Ωarrsq

κ{2 ´ ipω ¯ Ωarrsq
. (2.33)

One can check that in the domain of validity of the Bogoliubov transforma-

tion, Eqs. 2.32 map to Eqs. 2.29.

We plot on Fig. 2.6 (bottom) complex signal gains for increasing steady-

state squeezing in the detuned regime δa “ 5κ. When the two-photon pump

is added, the circle not only grows in the same direction as before, but

a protrusion emerges on the opposite side. The signal gain features two

spectroscopic lines located near ˘Ωarrs, as one could have guessed by

inspecting Eq. 2.32a. In the limit where 2|Ωarrs| ą κ, these two features are
distinct, and the BO is said to be resolved. In the opposite case, the lines

merge into a single peak, and the BO is said to be in the coalescent regime.

The frontier of coalescence is defined through the parameter λco such that:

2|Ωarrs| ă κ ðñ λ ą λco ”

c

δ2
a ´

κ2

4 . (2.34)

It is only visible in the case where the pump is initally sufficiently detuned

from the oscillator frequency |δa| ą κ{2, for which λco can be defined as a

real parameter (Fig. 2.5). Notably the coalescent regime extends beyond the

domain of definition of the Bogliubov oscillator, up to the critical point of

the DPO (Fig. 2.7).

Figure 2.7 Resolving coalescence. A detuned DPO such that |δa| ą

κ{2 can be in the resolved BO regime, the coalescent BO regime, or

simply the coalescent regime.
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Amplifier mode As a matter of fact, a detuned DPO in the coalescent

regime bears strong resemblance with a resonant DPO. We illustrate this

thought using the signal power gain |Γarωs|2, the quantity of interest when

operating the DPO as a parametric amplifier. Starting from Eq. 2.29a, we

find:

|Γarωs|
2

“ 1 `
κ2λ2

pω2 ` λ2 ´ λ2
critq

2
` κ2ω2

(2.35)

Defining the maximum gain of the amplifier as G “ maxω |Γarωs|2, we find

two regimes depending on the variations of the signal power gain function.

For nearly resonant squeezing (|δa| ă κ{2) or in the coalescent regime
(|δa| ą κ{2 and λ ą λco), the signal power gain features one maximum

when ω “ ω0 such that:

ω0 “ 0 and G0 “ 1 `
κ2λ2

pλ2
crit ´ λ2q2 . (2.36)

It is quite remarkable that these two dissimilar regimes of operation share a

common definition of the maximum gain, upon a mere redefinition of λcrit.

Yet, this strong resemblance is not surprising. Indeed, they both operate

in close proximity to a dynamical instability, which appears to fuel the

amplification process.

On the contrary, for detuned squeezing before coalescence (|δa| ą κ{2
and λ ă λco), the signal power gain features two maxima when ω “ ω˘

such that:

ω˘ “ ˘
a

Ω2
arrs ´ κ2{4

˘
a

λ2
co ´ λ2

and G˘ “
δ2

a
δ2

a ´ λ2 “ cosh2 2r . (2.37)

The absence of λcrit in the previous formula reveals the peculiarity of the

resolved Bogoliubov regime, which delivers substancial gain while operat-

ing far from any dynamical instability [Metelmann 2022]. It is also quite

intriguing to see the maximum gain output by the amplifier solely defined by

the fluctuations of the eigenstates. Finally, the absence of κ in the previous

formula points towards another key property of the resolved BO: it is not

constrained by the gain-bandwidth product.
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2.1.4 Gain-bandwidth products

The gain-bandwidth product is a defining relation for many amplifier

designs, that sets at a constant value the product of the signal gain to the

amplification bandwidth. As a consequence, the bigger the gain, the smaller

the bandwidth, which comes as a drastic limitation for wideband ampli-

fication purposes. In this part, we start by presenting the gain-bandwidth

product for a DPO with resonant squeezing. Then we show that a DPO with

detuned squeezing escapes this constraint, and even widen its bandwidth at

the onset of coalescence. Finally we propose an extension of the definition

of coalescence.

Resonant case For resonant squeezing (δa “ 0), the signal power gain
can be rewritten as:

|Γarωs|
2

“ 1 `
G0 ´ 1

1 ` 2ω2 G0

κ2{4 ` λ2

ˆ

1 `
ω2

2pκ2{4 ` λ2q

˙ . (2.38)

Hence, around resonance ω “ ω0 ` ∆ω with ω0 “ 0 and ∆ω ! κ{2, the
signal power gain follows a Lorentzian lineshape:

|Γar∆ωs|
2

«
∆ω!κ{2

1 `
G0 ´ 1

1 ` p2∆ω{∆3dBq
2 , (2.39)

characterized by a 3 dB amplification bandwidth in the large gain limit:

∆3dB „
λÑκ{2

“
κ

?
G0

. (2.40)

Hence the so-called gain-bandwidth product ∆3dB
?

G0 which is constrained

by κ. In practice, it means that at 20 dB of output gain, the amplification

bandwidth is one tenth of the initial one. Not only does this reduce the

frequency multiplexing capabilities of the amplifier, but it also increases its

sensitivity to spurious effects such as Kerr nonlinearity [Planat 2019].

Resolved BO regime In the resolved BO regime (|δa| ą 0 and λ ă λco),

it is instructive to rewrite Eq. 2.35 using the squeezing parameter:

|Γarωs|
2

“
λă|δa|

1 `
κ2Ω2

arrs sinh2 2r

pω2 ` κ2{4 ´ Ω2
arrsq

2
` κ2Ω2

arrs
(2.41)
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It is then straightforward to show that around resonance ω “ ω˘ ` ∆ω with

∆ω ! κ{2, the signal power gain follows a Lorentzian linehsape:

|Γarω˘ ` ∆ωs|
2

«
∆ω!κ{2

1 `
G˘ ´ 1

1 ` p2∆ω{κq2 , (2.42)

where the 3 dB linewdith in the large gain limit is simply given by κ.

Coalescent regime Next we turn to the description of the coalescent regime

(|δa| ą κ{2 and λco ď λ ă λcrit). There, the signal power gain reads:

|Γarωs|
2

“ 1 `
G0 ´ 1

1 ` 2ω2 λ2 ´ λ2
co

pλ2
crit ´ λ2q2 `

ω4

pλ2
crit ´ λ2q2

(2.43)

On the coalescent line λ “ λco, the gain profile takes the exact form of a

fourth-order Bell shaped function:

|Γar∆ωs|
2

“ 1 `
G0 ´ 1

1 ` p2ω{∆3dBq4 , (2.44)

where ∆3dB “
?

2κ. In addition to its enhanced bandwidth as compared to
the bare oscillator, operating on the coalescent line offers a gain profile with

a flat top which minimizes distorsion [Metelmann 2022].

Finally deep in the coalescent regime, it is instructive to introduce the

small parameter δλ such that:

λ2
“ λ2

crit ´ δλ2
ðñ δλ2

“
κλ

?
G0 ´ 1

(2.45)

While the gain profile deep into coalescence does not assume a simple analyti-

cal form, we can still define a 3 dB bandwidth∆3dB as |Γar1
2∆3dBs|2 “ G0{2.

It obeys the quartic equation:

∆2
3dB
4

ˆ

κ2
´ 2δλ2

`
∆2

3dB
4

˙

“
G0

G0 ´ 2δλ4 (2.46)

Near criticality, that is to say in the large gain limit, we find:

∆3dB „
λÑλcrit

2λcrit
?

G0
, (2.47)

As the detuned DPO falls deep into coalescence, we witness a resurgence

of the gain-bandwidth constraint, as a signature of the proximity of the

dynamical instability. The scaling of the amplification bandwidth with gain

is identical to the resonant case for which λcrit “ κ{2 (Eq. 2.40).
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Figure 2.8 Gain-bandwidth products. (a) The DPO parameter space

is split into 3 regions: the white region λ ě λcrit is unstable, the

red region Repλcoq ď λ ă λcrit is contrained by the gain-bandwidth

product, and the blue region λ ă Repλcoq is not. The gold coalescent

line λ “ λco separates the two stable regions. (b) Signal power gain

profiles for a resonant DPO (left), an ever-coalescent DPO (center),

and a detuned DPO (right), for λ{λcrit P t0.5, 0.8, 0.9, 0.98u (color

of increasing lightness). (c) 3 dB amplification bandwidth scaled

by the bare linewidth of the oscillator versus maximum gain, for

the three regimes of operation depicted in (a,b). As a detuned DPO

crosses the coalescent line, it goes from the blue to the red region.
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DPO summary The frontier of coalescence is not visible in the small

detuning limit |δa| ă κ{2. Yet, we can give a unified description of the DPOs
at all detunings by resorting to the real value of the parameter λco (Table 2.1).

In the region where λ ď Repλcoq (blue on Fig. 2.8), the DPO is sufficiently

remote from the dynamical instability, and has the ability to deliver gain

with a constant bandwidth. In this limit the gain is a direct manifestation of

the eigenstate squeezing. In the region where Repλcoq ă λ ă λcrit (red on

Fig. 2.8), the DPO approaches the critical point, and an increasing gain is

delivered at the expense of a reduced bandwidth. To some extent, a nearly-

resonant DPO is always coalescent. As a conclusion, one can say that a BO

unveils its true potential only in the resolved regime.

Resolved BO Coalescence Unstable

Two-photon

pump
λ ď Repλcoq Repλcoq ă λ ă λcrit λ ě λcrit

Max. gain G˘ “
δ2

a
δ2

a ´ λ2 G0 “ 1 `
κλ

pλ2
crit ´ λ2q

–

Max. gain

frequency
ω˘ “ ˘

a

λ2
co ´ λ2 ω0 “ 0 –

Bandwidth ∆3dB “ κ ∆3dB “
2λcrit
?

G0
–

Table 2.1 DPO summary. A DPO with detuning δa and bare

linewdith κ such that: λcrit “
a

δ2
a ` κ2{4 and λco “

a

δ2
a ´ κ2{4.
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2.2 A superconducting degenerate parametric oscillator

2.2.1 Josephson engineering

Circuit-QED relies on the flexibility of electrical circuits to study quan-

tum phenomenas.While classical electronics uses dissipative elements to pro-

vide the nonlinearity necesseray to any non-trivial operation (like a diode or

a transistor), quantum circuits can only feature lossless elements to preserve

quantum coherence [Devoret and Martinis 2004]. In that respect, supercon-

ducting circuits consist in assembling three lossless elementary components

to build arbitrarily complex systems: the linear capacitor, the linear inductor,

and the Josephson junction (JJ). In this section we present the nonlinearity

of the JJ, and how Josephson circuits are leveraged to engineer complex

Hamiltonians. Finally we conlude with the presentation of two Josephson

elements used for parametric amplification.

The Josephson effect When two pieces of superconductor are brought

in close proximity, albeit separated by a non-superconducting barrier, the

coherent tunneling of Cooper-pairs from one piece to the other leads to the

Josephson effect. It is captured by two constituve relations. The first one

relates the current flowing through the barrier (the JJ), to the superconducting

phase difference ϕ between the two pieces of superconductor:

I “ Ic sin ϕ , (2.48)

where Ic is the junction critical current. The second one relates the super-

conducting phase difference to the generalized flux coordinate:

ϕptq “
2π

Φ0
Φptq where Φptq “

ż t

´8

dτV pτq , (2.49)

and V ptq is the voltage drop accross the junction. The flux coordiante Φptq
is generalized in a sense that it reproduces the constitutive relation of a linear

inductor V ptq “ 9Φptq, while not being limited to the magnetic flux stored
in a winded piece of conductor. Indeed, a JJ is so small that it does not

store much energy in the magnetic field induced by the moving charges:

it has a negligible geometric inductance. Rather, its energy is mostly as-

sociated to the kinetic energy of the charges moving accross the barrier:

its inductance is kinetic. The equivalent junction inducance is defined as

LJpϕq “ V ptq{ 9Iptq “ LJ0{ cos ϕ where LJ0 “ Φ0{2πIc.

As customary for inductive elements, the junction energy reads UJpϕq “
şΦ

0 IpΦ1qdΦ1 “ EJp1 ´ cos ϕq, with EJ “ pΦ0{2πq2{LJ0 the Josephson
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energy. When embedded in a superconducting circuit, a JJ will contribute

to the inductive energy by UJpϕq, just like a linear inductor L contributes

by UL “ Φ2{2L. Considering flux as a position-like degree of freedom,
inductive terms constitute the potential energy of the circuit.

Hamiltonian engineering Circuit quantization aims at giving a quantum

mechanical description of the low-energy physics of a circuit, around a min-

imum of its potential energy. For a LC oscillator such as the one described

in section 1.1, the confining potential is harmonic, and the mode linear: its

Hamiltonian simply reads Ha,0 “ ~ωaa
:a. The addition of a Josephson ele-

ment to an otherwise linear circuit mode can be accounted for perturbatively,

assuming its participation ϕnl
zpf in the total mode inductance is small [Nigg

2012; Minev 2021]. For such a weakly nonlinear system, corrections to the

bare Hamiltonian stem from the expansion of the nonlinear potential around

its minimum. They typically read Ha,nl “
ř

m cm

`

a ` a:
˘m
, where the co-

efficients cm „ pϕnl
zpfq

m reflect the symmetries of the potential energy. The

nonlinear part of the Hamiltonian presents two types of term. The resonant

ones feature an equal number of a’s and a:’s, while the off-resonant ones do

not. In the limit of weak nonlinearity, ωa is the dominant energy scale and

the off-resonant terms can be averaged out (section B.1.3). We are then left

with resonant terms of Kerr type 9 a:2a2. These contributions renormalize

the frequency of the bare oscillator every time an excitation is added, as if

photons were interacting with each other.

If it were just for Kerr interactions, the applicability of Josephson circuits

would be quite limited. However, activation of any other nonlinearity can be

enforced using pumps. A pump is a microwave signal, typically off-resonant

with the oscillator and of large amplitude. It is not meant to directly drive

the system, but rather to trigger some nonlinearity. In the following, we

focus on the two-photon injection process described in section 2.1.1. As we

will justify in the next section, pumping the mode at a frequency ωp can be

accounted for at the level of Hnl by replacing a by a ` ξe´iωpt, with ξ P C.
Then, in a rotating frame at ωa, one is left to check in the successive orders

of the nonlinear Hamiltonian where resonant conditions are hidden:

m “ 3 :
`

at ` a
:
t ` ξt ` ξ˚

t

˘3
“ 3

`

at ` a
:
t

˘2`
ξt ` ξ˚

t

˘

` . . . (2.50a)

m “ 4 :
`

at ` a
:
t ` ξt ` ξ˚

t

˘4
“ 6

`

at ` a
:
t

˘2`
ξt ` ξ˚

t

˘2
` . . . (2.50b)

m “ 5 :
`

at ` a
:
t ` ξt ` ξ˚

t

˘5
“ 30

`

at ` a
:
t

˘2`
ξt ` ξ˚

t

˘

(2.50c)

` 20
`

at ` a
:
t

˘2`
ξt ` ξ˚

t

˘3
` . . .
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Figure 2.9 SQUID (left) vs SNAIL (right).

where we used the shortcut notation at “ ae´iωat and ξt “ ξe´iωpt. We

see that the injection of pairs of photons in mode a can be mediated by a

3-wave mixing term (ωp “ 2ωa) at third and fifth order, by a 4-wave mixing

term (ωp “ ωa) at fourth order, by a 5-wave mixing term (ωp “ 2ωa{3) at
fifth order, and so on. Notably, parametric processes mixing an odd number

of waves can only by mediated by odd order terms of the potential energy.

Since the energy of a single junction UJpϕq is an even function, symmetric

about its minimum, it cannot mediate 3-wave mixing. But then, who can?

A story of mollusks In the following, we will consider two special ar-

rangements of JJs. The first one, the superconducting quantum interference

device (SQUID), is a ubiquitous element of the physics of superconductivity

[Tinkham 1996]. Here we focus on its implementation in the context of

parametric amplification [Boutin 2017; Planat 2019]. It consists in a parallel

assembly of a junction with Josephson energies EJ , and a smaller
8 one with

energy αEJ (0 ă α ď 1) (Fig. 2.9). Ensuring flux quantization within
the loop lets us write its equivalent Josephson energy (discarding constant

terms):

USQUIDpϕq “ ´EJ cospϕa ´ ϕq ´ αEJ cos ϕ , (2.51)

where Φa “ ϕaΦ0{2π is the magnetic flux threaded through the loop. Since

the SQUID potential energy is a sum of two cosine functions with same

periodicity, it is symmetric about its minimum9 (Fig. 2.10). When embedded

in an oscillator, the lowest-order process for which a SQUID can mediate

two-photon injection is then 4-wave mixing. Unfortunately, the same or-

8 Smaller in energy ô smaller in size ô bigger in inductance.

9 One can check that U
p2m`1q

SQUID pϕq “ p´1qmU 1
SQUIDpϕq, so that at the equilibrium point

U 1
SQUIDpϕeqq “ 0, all odd derivatives vanish.
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Figure 2.10 SQUID vs SNAIL potentials. Potential landscape of

a SQUID with α “ 0.5 (left) and a SNAIL with α “ 0.29 (right)
versus the superconducting phase accross the element (x-axis) and

for varying external flux threaded through the loop (color). External

fluxes of 0 (green), 0.375 (blue) and 0.5 (purple) times Φ0 are high-

lighted. The SQUID potential is symmetric about its minimum for

all external fluxes. The SNAIL potential is not symmetric about its

minimum for intermediate fluxes, as depicted by the blue curve.

der induces Kerr effect in the oscillator, commonly known for degrading

amplifier performances such as the 1 dB compression point [Frattini 2018].

The second one, the superconducting nonlinear asymmetric inductive

element (SNAIL), consists in a parallel assembly of three junctions with

energy EJ , and a smaller one αEJ (Fig. 2.9). The equivalent Josephson

energy reads:

USNAILpϕq “ ´3EJ cos ϕa ´ ϕ

3 ´ αEJ cos ϕ . (2.52)

Notably, away from ϕa ” 0 mod π the potential is not symmetric about its

minimum (Fig. 2.10), which justifies its denomination as a 3-wave mixing

Josephson dipole element [Frattini 2017]. Since it was first proposed, the

SNAIL quickly established as a very useful tool for circuit-QED, from

resonant [Sivak 2019] to travelling amplification [Ranadive 2022], or the

stabilization of Kerr cats [Grimm 2020]. Indeed, the nonlinearity powering

the amplification is of a lowest order than Kerr effect, limiting its spurious

impact. In addition, the SNAIL possesses a flux point where the amplitude of

the Kerr term vanishes, a key requirement to implement the DPOmodel (2.4)

with minimal parasitic terms.
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2.2.2 SNAIL-resonator

We emulate the DPO model in a quarter-wavelength resonator enhanced

by a SNAIL (Fig. 2.11). In the following, we motivate this design choice.

Figure 2.11 Superconducting circuit layout with a diagonal break

for compactness. A quarter wavelength coplanar waveguide res-

onator (blue) implements the oscillator. The reflection spectrum Γa
is measured through an inductive coupler (optical micrograph in blue

inset), that also channels the pump signal and a DC current for flux

biasing of the SNAIL loop (scanning electron microscope image

in green inset rotated by 90°). The resonator is weakly capacitively

coupled to a transmon qubit (bordeaux), which is overcoupled to a

transmission line for direct reflection spectroscopy Γq. A DC line

threads flux through its SQUID loop (optical micrograph in bordeaux

inset).

Bare oscillator design The oscillator mode with frequency ωa is the fun-

damental mode of a quarter-wavelength superconducting resonator, in a

coplanar-waveguide architecture. This choice of geometry is essential to

implement a strongly-detuned DPO. Indeed, given a distributed-element

resonator with fundamental frequency ωa, a half-wavelength implementaion

would find its first harmonic in the vicinity of 2ωa. On the contrary, the

first harmonic of a quarter-wavelength resonator lies near 3ωa. Thus, such
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a geometry could potentially emulate DPOs with detunings δa of the order

of ωa. The resonator is inductively coupled to a transmission line used to

channel read-out and pump signals. The SNAIL is embedded at the tip of the

inductive coupler [Bothner 2013; Besedin and Menushenkov 2018]. Owing

to its asymmetric geometry, flowing a DC current from the inner conductor

of the transmission line to ground will result in unequal intensities running

on either side of the SNAIL. Thus, a finite offset flux can be threaded in

its loop. This 3-in-1 coupler (signal, pump, DC) is another key element of

this design, giving full control over the resonator and its nonlinearity with

a single access port, thus limiting the introduction of extra radiative loss

channels.

Nonlinear tuning Following [Frattini 2017], a SNAIL-resonator is most

generally described by the Hamiltonian:

Ha{~ “ ωapΦaqa:a `
ÿ

mě3
gmpΦaq

`

a ` a:
˘m

, (2.53)

where gmpΦaq is the mth-order nonlinearity inherited from the SNAIL po-

tential energy (Eq. 2.52), depending on the flux Φa threading its loop. As

detailed ealier, the fourth-order term of this expansion contributes to the Kerr

nonlinearity of the oscillator. Owing to the specific choice of SNAIL param-

eters (Table 4.1), the Kerr amplitude vanishes at a given flux point [Frattini

2018]. We identify this specific flux point by performing a Kerr spectroscopy

of the oscillator (Fig. 2.12). At each flux bias, we set a microwave drive 300

MHz above resonance populating the oscillator with increasing photon num-

ber n̄d, and acquire its reflection spectrum. The resonance frequency shift

∆ωa “ χaan̄d is a direct measure of the Kerr amplitude χaa. As depicted in

the insets of Fig. 2.12, its value can be positive, negative, and set close to zero.

In the dataset of Fig. 2.12 we find a Kerr-free point at ω0
a{2π “ 7.015 GHz.

Later in the cooldown, this operation point drifted to ω0
a{2π “ 6.940 GHz

which is used in the rest of the thesis. The Kerr and resonance frequency

versus flux pin down the non-linear resonator circuit parameters. From these

parameters, we estimate a three-wave mixing amplitude at the Kerr-free

point g3{2π “ 18 MHz.

DPO driven-emulator At the Kerr-free flux point, the SNAIL-resonator

can be minimally described by an anharmonic oscillator with bare frequency

ωa, dressed by a third-order nonlinearity g3. It is then an ideal platform

for the emulation of the DPO model via 3-wave mixing. Activation of the
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Figure 2.12 Kerr spectroscopy of the oscillator. Top: measured

resonant frequency (left axis) and Kerr nonlinearity (right axis) of

the oscillator versus flux threaded through the SNAIL loop (x-axis),

in units of flux quantum Φ0 “ h{2e. Fitting the data (open circles)
to the theory extracted from Hamiltonian diagonalization (full lines)

sets all oscillator circuit parameters. Bottom: phase response (y-axis)

of the oscillator to a weak probe of variable frequency (x-axis) when

populated by a +300 MHz detuned drive with increasing power

(bottom to top, curves offset for clarity) in units of circulating photon

number n̄d indicated on the right. Each panel corresponds to a flux

point where the Kerr non-linearity is negative (I), close to zero (II)

and positive (III). Fitted response (full lines) are overlaid to the data

(open circles).
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parametric process is accounted for at the Hamiltonian level by a pump with

frequency ωp and amplitude εp such that:

Ha{~ “ ωaa
:a ` g3

`

a ` a:
˘3

` εp cos ωpt
`

a ` a:
˘

. (2.54)

Note that we use a different sign convention as opposed to [Villiers 2023].

As customary for driven systems, we displace operator a by its mean value

a Ñ a ` ξptq, where ξ is a complex time-dependent parameter verifying
9ξ “ ´iωaξ ´ pκ{2qξ ` iεp cospωptq (Appendix B.1.2). At times t " 1{κ,
and in the regime where κ ! |ωa ˘ ωp|:

ξptq «
εp{2

ωp ´ ωa
e´iωpt

´
εp{2

ωp ` ωa
eiωpt . (2.55)

Further going to a frame rotating at half the pump frequency, resulting in

a Ñ ae´iωpt{2, the transformed Hamiltonian exactly writes:

Hξ,ω
a {~ “ δaa

:a` g3

´

ae´iωpt{2
` a:eiωpt{2

` Πe´iωpt
` Πeiωpt

¯3
, (2.56)

where δa “ ωa ´ ωp{2. We place ourselves in the regime where |δa| ! ωa,

hence Π « εp{3ωa. We next perform the rotating wave approximation

(RWA), and define the time-averaged photon Hamiltonian as Hph ” Hξ,ω
a

[Mirrahimi and Rouchon 2015]. We find:

Hph{~ “ δaa
:a ´

λ

2
`

a2
` a:2˘ , (2.57)

where λ « ´2g3εp{ωa is the two-photon pump amplitude. Thus a SNAIL-

resonator pumped near the parametric resonance 2ωa emulates a degenerate

parametric oscillator (DPO) [Carmichael 1984]. The validity of the RWA is

granted by g3Π ! ωp.

2.2.3 Resonant squeezing

First we look at the DPO gain response in the presence of resonant

squeezing, setting the pump frequency to ωp “ 2ωa. The pump power Pp
applied on the system is calibrated at room temperature, so that the ratio

between εp and
a

Pp – related to the attenuation of the microwave lines –

is not precisely known (section 4.1.1). In the same spirit, our measurement

setup does not access the signal gain directly, but rather the signal gain times

an unknown transfer function. In order to reconstruct Γarωs, we acquire
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two spectra. The first one probes the resonator under the specified pumping

conditions. The second one probes the same frequency window, with the

pump off and after flux tuning the resonator out of the frequency window.

It corresponds to a calibration of the transfer function. We divide the first

trace by the second one to recover Γarωs. For varying pump powers, we fit

every spectrum using Eq. 2.29a with the two-photon pump amplitude λ as

the only free parameter, unveiling the mapping between
a

Pp and λ.

As the pump power increases, the DPO displays a growing signal power

gain, centered at ωa “ ωp{2 with a maximum reaching up to nearly 20 dB

(Fig. 2.13a). For low to intermediate pump powers, the fitted response

accurately represents the data (Fig. 2.13c,d), and the fitted parameter λ grows

quadratically with the pump power (Fig. 2.13e). This low-power region

is referred to as the linear regime. For larger pump powers, we witness a

saturation of the gain accommpanied by a pinching of its frequency response,

which the analytical model fails to reproduce (top region of Fig. 2.13a,b).

This large-power region corresponds to the departure of the fitted parameter

λ from its quadratic trend, and is referred to as the saturation regime. The

onset of saturation is defined through the power Pp,sat for which the fitted

parameter λ differs in more than 5% from the linear extrapolation inferred

from the fitted values deep in the linear regime. We find Pp,sat « 9 µW, and

the associated critical gain and steady-state antisqueezing: Gsat “ 14 dB
and qS8,sat “ 7.3 dB.

The saturation of the DPO signal gain may be explained by two distinct

mechanisms. The first one relies on a residual Kerr effect. As the gain

increases, so does the mean occupation of the oscillator, and hence the mag-

nitude of the Kerr-induced frequency shifts. When such shifts become com-

parable with the bandwidth of the amplifier ∆3dB “ κ{
?

G (section 2.1.4),

the pump frequency is no longer matching the parametric resonance, and

the amplification process is weakened. The second one relies on the pump

depletion mechanism. When the power output by the amplifier becomes

comparable with the one input by the pump, the pump can no longer be

considered stiff, meaning one needs to account for its finite power-delivery

capacity. What is the dominant mechanism responsible for saturation in our

setup?

We start with an estimation of the pump stiffness at the saturation point.

While Pp,sat « 9 µW, the power of the probe-tone used for spectroscopy

is Pprobe « 2 nW. Both values are given at the input of the fridge at 300K.

Both the pump and the probe tones travel down the sample through the same
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Figure 2.13 Microwave response of the DPO under resonant

squeezing. (a) Reflection gain (color) versus probe frequency (x-

axis) and the square root of the pump power at 300 K (y-axis). (b)

Fitted reflection gain with λ as the only free parameter. Colorbar

common with (a). (c) Line-cuts of the measured (open cicles) and

fitted (solid lines) complex signal for increasing steady-state anti-

squeezing (color). (d) Same as (c), in power units. The dashed line

marks half the pump frequency. Colored dots and segments in (a,b)

indicate the location of the line-cuts. (e) Two-photon pump amplitude

resulting from fits of Eq. 2.29a (y-axis, left), and maximum power

reflection gain (y-axis, right) versus the square root of the microwave

pump power at 300 K (x-axis). The steady-state squeezing (color) is

deduced from Eq. 2.13. Colorbar common with (a,b,c,d). The dashed

line is a linear extrapolation of the fit before saturation. The full

dots mark the powers used in (c,d). The colored arrow indicates the

maximum steady-state anti-squeezing in decibels before saturation.

The shaded area marks the instability region where λ ą κ{2.
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microwave lines. Calibration of the lines at cryogenic temperatures lets us

estimate the insertion losses10 at both the frequencies of the oscillator ILa,

and the pump ILp. This quantity is defined such that the pump power reaching

the sample at saturation is P 10mK
p,sat “ IL´1

p Pp,sat, and similarly for the probe

P 10mK
probe “ IL´1

a Pprobe. The power output by the amplifier at the onset of

saturation reads P 10mK
out “ GsatP

10mK
probe . In practice, we find ILp “ 4 ˆ ILa

(6 dB more losses at the pump frequency), and Gsat “ 25 (in linear units),
so that P 10mK

out « P 10mK
p,sat {45. This difference of 16 dB between the output

signal power and the input pump power, already at the onset of saturation, is

not sufficient to consider the pump stiff. A separation of 20 dB is typically

required to ensure that the pump is not significantly depleted by the output

signal.

We continue with an estimation of the residual Kerr at the saturation point.

Further calibrations presented in section 3.2.3 reveal that the probe tone

injects n̄d “ 0.25 photons in the DPO. These injected photons are amplified
into Gsat ˆ n̄d « 6 circulating photons. At the same time, the amplification
bandwidth at the saturation point is ∆3dB,sat « 1.7 MHz. Thus, it would

take a residual Kerr of at least ˘200 kHz to significantly shift the resonance.
Yet the calibration of the Kerr-free flux points sets |χaa| ă 100 kHz. As a
conclusion, pump depletion is the most likely dominant source of saturation

in our device.

2.2.4 Detuned squeezing

Second we enter the BO regime by detuning the pump away from the

parametric resonanceωp “ 2ωa´2δa, where the detuning verifies |δa| " κ{2.
In the following we present results for |δa|{2π “ 30 MHz (Fig. 2.14), but

the data for |δa|{2π P t20, 40u MHz display similar features. When δa ą 0,
as we increase the pump power the oscillator resonance shifts down from ωa
to ωp{2, following the theoretical prediction ωp{2 ` Ωarrs (section 2.1.2).

Moreover, this resonator of squeezed photons responds to regular plane

waves at a mirror frequency ωp{2 ´ Ωarrs . This idler peak merges into the

signal peak in the coalescent regime. Both signal and idler peaks display

gain, in equal amount. Symmetrically, for δa ă 0, the oscillator resonance
shifts up from ωa to ωp{2. This symmetric behavior differs from the response

of a Kerr oscillator to a detuned pump, where the sign of the Kerr sets the

10 As defined by Pozar [Pozar 2011], the insertion loss IL is the transmission coefficient

between two points of a circuit. As a rule of thumb, the insertion loss of the stainless-steel

coaxial cables used as descent lines increases by 10 dB every 10 GHz.
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Figure 2.14 Microwave response of the Bogoliubov oscillator.

(δa ą 0) The pump detuning is set to δa{2π “ `30 MHz. Top:

Reflection gain [left] and phase [right] (color) versus probe fre-

quency (x-axis) and the square root of the pump power at 300 K

(y-axis). The colorbars (in decibels and radians) are indicated in the

bottom panels. Bottom: fitted reflection gain [left] and phase [right]

from input-output theory applied to Eq. 2.29a, with λ as the only

free parameter. Middle: line-cuts of the measured (open circles) and

fitted (solid lines) gain [left] and phase [right] (y-axis) versus probe

frequency (x-axis). Colored dots and segments in the top and bottom

panels indicate the location of the line-cuts. The vertical dashed line

marks half the pump frequency. (δa ă 0) Same with a pump detuning
set to δa{2π “ ´30 MHz. The data for δa{2π “ ˘20, ˘40 MHz

(not represented) display the same features.
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Figure 2.15 Calibration of the two-photon pump in the BO regime.

Two-photon pump amplitude (y-axis) as fitted from the complex

response (Eq. 2.29a) versus the square root of the microwave pump

power at 300 K (x-axis) applied through the high-power port, for

|δa|{2π P t20, 30, 40u MHz (color) and δa ą 0 (empty circles) or
δa ă 0 (full circles). Colored solid lines are linear extrapolations of
the fit trends before saturation. Colored arrows indicate the maximum

squeezing in decibels before saturation. Colored dashed lines mark

the onset of the unstable region λ “ |δa|.

direction of the shift, independently of the pump frequency. The results of

Fig. 2.14 demonstrate that λ – the only fit parameter relating data and theory

– is reliably identified at every pump power, thereby fully characterizing the

BO.

Similarly to the resonant squeezing case, we observe a saturation of the

fitted two-photon pump amplitude (Fig. 2.15). The onset of saturation is again

defined based on the deviation of the fitted parameter λ from a quadratic trend

with respect to the pump power. Interestingly, saturation occurs regardless

of the ratio δa{κ at a similar squeezing value of 7 dB. This invariance can

be traced down to the fact that in the BO regime, the gain of the DPO is a

function of the eigenstate squeezing only (section 2.1.3).

Finally, we devote some time to the calibration of the operating point of

the DPO in the BO regime. There, the notion of residual Kerr effect unfolds

differently. For strongly detuned squeezing, the two-photon pump not only
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triggers gain in the system, but also shifts its resonant frequency. Even though

a precise flux point has been calibrated as free of Kerr in an experiment

akin to Fig. 2.12, the Kerr effect is dressed when the detuned squeezing is

activated. In Fig. 2.16 we detail the procedure of adjusting the flux in order

to reduce this dynamical Kerr effect. We display the phase response of the

oscillator in the presence of an increasing pump power at ωp “ 2ω0
a ´ 2δa

for |δa|{2π “ 30 MHz. Whether δa is negative or positive, the critical value

λcrit is not reached for the same critical power Pp,crit. Indeed, when δa ą 0, a
positive dynamical Kerr accelerates the collapse of the oscillator signal and

idler peaks. Conversely when δa ă 0, it slows down this process. The critical
values λcrit for each sign of the detuning only match when this spurious

dynamical Kerr effect becomes negligible. When |δa|{2π “ 30 MHz and the

oscillator initially sits at the Kerr-free flux point, the dynamical Kerr χdyn
aa is

found to be positive (Fig. 2.16 top panels). Tweaking the flux bias towards

higher frequencies, the two pictures can be symmetrized (middle panels),

or bent in the other direction (bottom panels). All the data presented in this

paper always uses the dynamical Kerr-free point associated with each value

of |δa|, as recorded on Table 2.2.

δa{2π [MHz] 0 ˘20 ˘30 ˘40

ω˚
a {2π [GHz] 6.940 6.951 6.948 6.938

Table 2.2 Dynamical Kerr-free pointsω˚
a for all the pump detunings

used in this report. As an order of magnitude, given the flux tunability

of the device, a frequency shift of 10 MHz corresponds to 6 mΦ0.

As a conclusion, we demonstrated that a SNAIL-resonator could be oper-

ated as a BO, with squeezings as high as 7 dB in the linear regime. In this

implementation, the constituve ratio 2|δa|{κ was limited to 10. Indeed, for

higher values of the detuning, no flux point could provide a fair calibration

of the dynamical Kerr-free point. In that sense, residual Kerr is most likely

the dominant source of saturation for the BO mode of operation.
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Figure 2.16 Calibration of the dynamical Kerr-free point Φ˚
a when

|δa|{2π “ 30MHz. From bottom to top the flux threading the SNAIL

loop is increased, setting the bare oscillator frequency to 6.963 GHz

(bottom), 6.949 GHz (middle) and 6.941 GHz (top). Left column:

reflection phase response (color) versus input signal frequency (x-

axis) and applied pump power at 300 K (y-axis) when the detuning

between the bare cavity and half the pump frequency is δa{2π “

´30 MHz. Center column: same as left for δa{2π “ `30 MHz. The

colorbar (in radians) is indicated in the bottom panel. Right column:

Two-photon pump amplitude (y-axis) fitted at each pump power (x-

axis) when the detuning is negative (full dots) or positive (open dots).

The right and center plots of the middle panels are nearly symmetric,

as demonstrated by the matching of the two types of fit on the right

plot: this defines the dynamical Kerr-free point.
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2.2.5 Beating the gain-bandwidth constraint

In the resonant regime δa “ 0, the 3 dB amplification bandwidth ∆3dB

reduces with gain G according to the gain-bandwidth product constraint

∆3dB
?

G “ κ (solid line on Fig. 2.17 right). In contrast, in the detuned

regime, following either the signal or idler peak we observe a constant ampli-

fication bandwidth, independently of the gain (dashed line). This amplifier,

praised for evading the fundamental gain-bandwidth constraint, has been

coined the Bogoliubov amplifier [Metelmann 2022].

As the BO enters coalescence, the two peaks merge and the amplification

bandwidth more than doubles. This increase is larger than the theoretical

value
?

2 (section 2.1.4). This difference must not be interpreted as an in-
consistency of the theory, but rather an experimental challenge of precisely

identifying the onset of coalescence. Indeed in our implementation, coales-

cence belongs entirely to the saturation regime (Fig. 2.15), where the BO

response is not canonical. Allowing for some ripples at the top of the gain

profile lead us to call for coalescence prematurely, thus overestimating the

amplification bandwidth. Future realizations of Bogoliubov amplifiers could

benefit from the diluted nonlinearity of SNAIL chains to minimize spurious

Kerr, and hopefully increase their dynamical range.
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Figure 2.17 TheBogoliubov amplifier. Left: reflection gain (y-axis)

versus input signal frequency (x-axis). For a similar maximum gain

of about 9 dB, the amplification bandwidth for δa{2π “ `30 MHz

(brown) is much larger than for δa “ 0 (green). Right: 3 dB amplifi-

cation bandwidth (y-axis) versus maximum gain(x-axis).



3
INTERACTION OF A

DEGENERATE PARAMETRIC

OSCILLATOR WITH A QUBIT

In the previous chapter, the stability diagram of a DPO was described.

It unveiled two stable regions, resulting from the interplay between pump

detuning and dissipation. Whether the induced squeezing is resonant or

detuned, the intra-oscillator field always converges to a squeezed steady-

state. However, only in the BO regime are the oscillator eigenstates identified

with squeezed Fock states. We now turn to the coupling of a DPO to a qubit.

This chapter aims at demonstrating that the peculiar eigenstructure of the

BO is the root cause for enhanced interactions. After a set of preliminary

remarks, the dispersive interaction of a DPO to a qubit will be characterized,

from the linear regime (pump off) to the nonlinear regimes of resonant and

detuned squeezing.

3.1 Preliminary remarks

3.1.1 The proposals and beyond

The proposals [Leroux 2018; Qin 2018] consider the coupling of a qubit

to a DPO, operated in the BO regime. As presented in section 2.1, the DPO

models a certain class of nonlinear oscillators under driven evolution. In

the original frame, the interaction between the qubit dipole moment and

the oscillator field translates into a Rabi coupling (Eq. 1.1). Meanwhile,

in the frame rotating a half the pump frequency necessary to capture the

DPO model out of the driven oscillator, the interaction takes the form of a

Jaynes-Cummings coupling g
`

aσ` ` a:σ-
˘

(Appendix B.1.3) [Jaynes and

Cummings 1963]. Overall, the DPO-qubit Hamiltonian reads:

Hδa,λ{~ “ δaa
:a ´

λ

2
`

a2
` a:2˘

` δq
σz

2 ` g
`

aσ` ` a:σ-
˘

, (3.1)

50
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Figure 3.1 Coupling a Bogoliubov oscillator to a qubit. Building

on Fig. 2.3, a qubit (red levels) is introduced, coupled at a rate g

(blue arrows) to the bare oscillator. In the BO regime, not only the

coupling is enhanced by cosh r (golden arrows), but the qubit is also
dephased (gold fuzz) by the finite BO population.

where δq “ ωq ´ ωp{2 is the qubit detuning. The Lindblad operators

associated to the qubit relaxation and dephasing are L´ “
?

γ1σ- and

Lφ “
a

γφ{2σz. The interaction of a TLS with a DPO has already been im-

plemented experimentally in the resonant case δa “ 0, either in the dispersive
limit [Eddins 2019], or on resonance [Vine2022]. There, the steady-state

squeezing of the DPO was leveraged to increase the SNR of the TLS readout

implemented by the oscillator.

Instead, we focus on the strongly-detuned regime |δa| " κ{2. There, the
system is suitably described in the Bogoliubov basis:

Hδa,λ{~ “ Ωarrsα:α ` δq
σz

2 ` g cosh r
`

ασ` ` α:σ-
˘

` g sinh r
`

ασ- ` α:σ`

˘

. (3.2)

The enhanced interaction strength is immediately visible in Eq. 3.2 where g
is multiplied by cosh r [resp: sinh r] for the excitation-number conserving
[resp: non-conserving] terms. This observation is at the heart of proposals

[Leroux 2018; Qin 2018], which offer to use the enhanced fluctuations of

the BO to boost its coupling to a qubit. In addition, provided |δq ` Ωarrs| "

g sinh r, averaging theorems apply and the interaction reduces to an enhanced
Jaynes-Cummings coupling (Appendix B.1.3):

Hδa,λ{~ « Ωarrsα:α ` δq
σz

2 ` g cosh r
`

ασ` ` α:σ-
˘

. (3.3)
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This excitation-number conserving interaction has the advantage of unveil-

ing strong resonant-coupling through a clear and simple signature, namely,

vacuum-Rabi splitting [A. Wallraff 2004]. In this limit, the effect of squeez-

ing could be unambiguously revealed through an increased splitting. Nat-

urally, the curiosity of a physicist does not stop where excitation-number

non-conserving terms start to matter [Frisk Kockum 2019]. However, cou-

pled systems in the ultra-strong coupling regime being notoriously difficult

to analyse, the Jaynes-Cummings regime is the perfect test bench for the

demonstration of squeezing-enhanced couplings.

Still, this simple picture is blurred by the squeezed bath that populates

higher BO energy levels, and precludes the observation of a simple vacuum-

Rabi splitting. Indeed, owing to the nonlinearity of the Jaynes-Cummings

ladder, the resonant interaction of a qubit with an oscillator held away

from vacuum leads to exotic spectroscopic signatures [Fink 2008; Bishop

2009; Fink 2010; Bonsen 2022]. Moreover, as highlighted by Shani and

co-authros [Shani 2022] this finite population is expected to broaden the

qubit spectral line. For a weakly coupled system, the latter effect may hinder

the observation of an increased splitting. The proposals [Leroux 2018; Qin

2018] circumvent this problem by injecting orthogonally squeezed vacuum,

so that the bath viewed by the BO remains in vacuum. While possible in

principle, injecting squeezed vacuum in cQED is easily contaminated by

damping in transmission lines and cavity internal losses, thereby remaining

a technical challenge [Murch 2013a; Bienfait 2017; Eddins 2018].

In addition, in an effort to witness a simple signature of these enhanced

interactions, a fundamental complexity arises due to the presence of the

excitation non-conserving terms in Eq. 3.2. In the resonant case δq “ Ωarrs,

averaging of this term requires that the bare coupling g remains smaller than
g���RWA such that:

2|Ωarrs| " g sinh r ô g ! g���RWA ”
2δa

cosh 2r sinh r
. (3.4)

While [Leroux 2018] proposes to use a gigantic detuning to accomodate

large squeezing amplitudes, specifically δa “ 2000κ in their superconducting
circuit implementation, this solution does not come free of charge. Indeed, as

compared to a resonant-DPO, approaching criticality in such a detuned-DPO

would require a two-photon pump amplitude 4000 times more intense. In

practice, this would mean a microwave pump carrying 72dB more power.

Not only the cryostat may dangerously heat up before reaching the desired

pumping amplitude, but spurious nonlinearites such as residual Kerr are very
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likely to become significant on theway. As a practical tool, we plot on Fig. 3.2

themaximumbare coupling before the averaging approximation breaks down

gRWA “ g���RWA {10, as a function of DPO detuning and squeezing. The BO

implementation detailed in the previous section demonstrated squeezings as

high as 7 dB for 2δa{κ as high as 10 (Fig. 2.15). For such values, we find

that the maximum bare g the system can support to remain in the Jaynes-

Cummings limit is around κ{2. There, we may expect an increase in g by
a factor 1.34. This analysis lets us design the right bare qubit-oscillator

coupling, in order to get a chance to witness an increased Rabi-splitting with

realistic exprimental parameters. Finally, it is also worth pointing out the

overall modest increase factor that one can expect from this scheme (see top

axis of Fig. 3.2).
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Figure 3.2 Critical bare coupling for enhanced vacuum-Rabi split-

tin (color) versus DPO detuning (y-axis) and squeezing (x-axis, bot-

tom). Both frequencies are scaled in unit of κ{2. The squeezing is
converted into a coupling enhancement factor (x-axis, top). One can

read this figure as follows: given a system with 2g{κ “ 10, increas-
ing g by a factor 3 requires 15.3 dB of squeezing, which falls under

inequality 3.4 only if 2|δa|{κ ą 2.5.103. Alternatively, for a system

with 2|δa|{κ “ 10 and 2g{κ “ 1, inequality 3.4 requires S ď 7 dB.
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3.1.2 Transmon characterization

The experimental implementation of the proposals presented in this

thesis uses a transmon as a qubit. We begin this part with a short descrip-

tion of this superconducting design, which does not aim exhaustivity, but

rather the introduction of three key properties. Then, we present spectro-

scopic characterization of the transmon from which we extract its defining

parameters.

Transmon 101 The transmon is a superconducting qubit design introduced

as a variation of the Cooper-pair box (CPB) [Nakamura 1999]. They both

consist in a Josephson junction with energy EJ , shunted by a capacitor with

energy EC “ e2{2C, thus delimiting an isolated superconducting island
with offset charge Qg. In this description, the shunt capacitance includes

the self-capacitance of the junction. Both designs are desribed by the same

Hamiltonian:

HCPB “

`

Q ´ Qg

˘2

2C
´ EJ cos 2π

Φ
Φ0

. (3.5)

The CPB operates in a regime where the charging energy is the dominant

scale EJ ă EC , so that the two levels of the qubit are approximately charge

states, coupled by the tunneling of a Cooper-pair through the junction. The

frequency of this qubit is very sensitive to charge fluctuations on the island

– charge noise – drastically limiting its coherence. The transmon operates

in the opposite regime EJ " EC , for which the eigenstates display large

charge fluctuations. Thus, the first key property of this design consists in its

insensitivity to charge noise [Koch 2007].

In the transmon regime, the wide charge fluctuations are accompanied by

reduced fluctuations in the conjugate quadrature, the flux. This observation

motivates a Taylor expansion of the cosine term of Eq. 3.5, so that the

transmon Hamiltonian reads to lowest order:

Ht “ 4ECN 2
`

1
2EJϕ2

´
1
4!EJϕ4 (3.6)

where we introduced the Cooper-pair number operator N “ Q{2e, and the
reduced flux ϕ “ 2πΦ{Φ0, obeying

“

ϕ, N
‰

“ i. We also discarded the

offset charge, to which the transmon is insensitive. Next we introduce the

annihilation operator b that diagonalizes the quadratic part of Eq. 3.6:

b “
1
2

ˆ

ϕ

ϕzpf
` i

N

Nzpf

˙

ϕzpf “
4

c

2EC

EJ

Nzpf “
1
2

4

c

EJ

2EC

, (3.7)
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Figure 3.3 The transmon is a single-mode circuit featuring a Joseph-

son junction shunted by a large capacitor, and described by the re-

duced flux variable ϕ. Its potential energy is cosinusoidal (dark
red), yet weakly deviating from a parabola (light red) in the limit

EJ " EC . Figure freely inspired from [Blais 2021].

and obeys the commutation relation
“

b,b:
‰

“ 1. Using this bosonic repre-

sentation, the transmon Hamiltonian reads:

Ht “
a

8EJECb
:b ´

EC

12
`

b ` b:
˘4

« ~ωq `
~χq

2 b:2b2 , (3.8)

where ωq “ 1
~

`?
8EJEC ´ EC

˘

is the qubit transition frequency, and

χq « ´EC{~ is the anharmonicity. Since |χq| ! ωq in the transmon limit,

we discarded excitation-number non-conserving terms in a final approxi-

mation akin to a RWA [Blais 2021]. The transmon appears to be a weakly

anharmonic oscillator, which is the second key property of this design. In

the limit where the linewdith of the first transition is much less than the

anharmonicity, the two lowest-energy states can be adressed independently,

and the transmon can effectively be considered as a qubit. The bosonic

representation 3.8 will prove useful for input-output calculations. In this

representation, Lindblad operators read: L´ “
?

γ1b and Lφ “
?2γφb

:b.

Finally, the large shunting capacitance gives a large electric dipole mo-

ment to the transmon, facilitating its coupling to the electric field stored

in an oscillator. Yet, it appears that selection rules in the EJ " EC limit

forbid charge transitions between non-neighboring eigenstates. Thus as a

first approximation, a single transmon state outside the qubit manifold is

necessary to capture its dynamics when charge-coupled to an oscillator. This

third key property leads to the description of the transmon as a three-level
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system with Hamiltonian:

Ht{~ “
ÿ

kPtg,e,fu

ωk |ky xk| , (3.9)

where |gy, |ey, |fy denote its three lowest-energy states. The |gy and |ey states
define the qubit states, with transition frequency ωge “ ωe ´ωg “ ωq. Single-

photon excitations to the |fy state are detuned from the qubit transition by

the anharmonicity such that: ωef “ ωq ` χq.

Single-tone spectroscopy In the present experiment, the transmon Joseph-

son element is a SQUID (Fig. 2.11). Controlling the flux Φq threading the

SQUID loop lets us tune its equivalent Josephson energy, hence the trans-

mon resonant frequency [Koch 2007]. Moreover, the transmon is strongly

coupled to a microwave feedline, such that photon leakage through this port

dominates over every other relaxation channel. This feature was chosen

to mimick the small coherence times of typical mesoscopic qubits [Cottet

2017], and also to let us record the reflection spectrum of the transmon di-

rectly, without relying on an extra readout mode. On the top panel of Fig. 3.4

is plotted the transmon spectroscopy versus flux, displaying a tunability

range greater than 2.5 GHz. This uncommonly wide range is the result of

fabrication constraints on the SQUID loop, whose junctions could not be

made sufficiently asymmetric to limit flux dispersion (section 4.3).

Next we turn to the description of the direct readout scheme. We record

the reflection spectrum of a weak signal on the transmon port. This mi-

crowave probe with frequency ωprobe and amplitude εprobe is accounted for

at the Hamiltonian level through: Hdptq “ ´iεprobe cos ωprobet
`

b ´ b:
˘

(section B.1.1). If the probe is such that the transmon population remains

much less than 1 photon, we can leave aside the quartic term of Eq. 3.8. Then,

the driven transmon Hamiltonian simply reads Ht+dptq “ ~ωqb
:b ` Hdptq.

In a frame rotating at the probe frequency and under the RWA (section B.1.3),

it is approximated by:

Hω
t+d{~ “

`

ωq ´ ωprobe
˘

b:b ` i
εprobe

2 ´ i
ε˚

probe

2 . (3.10)

Using Eq. 2.7, we can write the mean-value of b in the steady state:

xby
8

“
´ε˚

probe{2
γ1{2 ` γφ ´ ipωprobe ´ ωqq

. (3.11)

Since the port used for readout dominates over every other relaxation chan-

nels, the input-output relation reads: boutrωs ` binrωs “
?

γ1brωs, where
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Figure 3.4 Transmon spectroscopy versus flux. Top: Amplitude

|Γq| of a weak reflected signal on the transmon port (color) ver-

sus the frequency of the probe tone (y-axis) and the flux threading

the SQUID loop (x-axis) in unit of the flux quantum Φ0 “ h{2e.
The detection bandwidth is interrupted by the TWPA dispersive

feature around 6 GHz, and cropped by the amplifier roll-off above

8.2 GHz. Bottom: Cut of the previous map along the blue line, where

ωq{2π “ 6.837 GHz. Left: Complex amplitude of the reflected sig-
nal. The data is normalized to a reference background so that the

accumulation point Γ8 is located at coordinates (-1,0). Right: Am-

plitude of the reflected signal referenced to the accumulation point.

Fitted response (line) is overlaid to the data (circles). Light blue lines

on the left plot show the symmetric axis of the circular trajectory,

and its perpendicular at the accumulation point, obviously tilted in

the complex frame.
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the input and output fields are defined similarly as Eqs. 2.23. The microwave

probe acts as a displacement of the input field at the probe frequency:

xbiny
8

“ ´ε˚
probe{2?

γ1. Thus, the output field at the probe frequency reads

xbouty8
“ Γqrωprobes xbiny

8
where:

Γqrωprobes “ ´1 `
γ1

γt{2 ´ ipωprobe ´ ωqq
, (3.12)

and γt “ γ1 ` 2γφ is the total linewidth of the transmon spectral line.

The latter equation describes a circular trajectory in the complex plane,

symmetric about the real axis, with an accumulation point1 Γ8 “ ´1. In
principle, the reflection spectroscopy of such a system can distinguish the

coupling rate to its feedline (here, γ1) from the other contributions to the

total linewidth (here, 2γφ). Using Eq. (3.12) to fit the data presented in

Fig. 3.4 (bottom panels, fit not shown) would yield γ1{2π “ 5.0 MHz and

γφ{2π “ 2.2 MHz, thus placing the system near critical coupling γ1 “ γt{2.
However, in this very regime, fitting both rates is prone to errors due to

imperfections of the experimental setup [Rieger 2022]. These imperfections

can lead to deviations from the canonical spectroscopic response, such as

tilted circles in the complex plane. It turns out that such tilts are present in

the data. As a consequence, we renounce on fitting γ1 and γφ separately.

Rather, we employ a fit function representing circles with any orientation

in the complex plane, thus sensitive to γt only (see Fig. 3.4 bottom panels,

blue lines). This procedure lets us fit the total linewidth of the transmon line

reliably and accurately.

Two-tone spectroscopy So far, the anharmonicity of the transmon has

been disregarded. Unlike the previous discussion, driving the transmon with

higher powers unravels its multi-level structure. We reveal transmon states

beyond the qubit manifold by performing a two-tone spectroscopy, saturating

the g-e transition with a resonant microwave drive, and then probing the
transmon with a weak tone (see Fig. 3.5). Due to the finite occupation of the

|ey state provided by the saturation drive, the e-f transition can be revealed
by the weak tone. Note that the spectroscopic tone is about 5000 times less

powerful than the saturation one. We repeat the experiment at multiple flux

1 In practice we record the transmon reflection spectrum in a similar way as the oscillator

(section 2.2.3): we reconstruct Γqrωs by acquiring two spectra. The first one probes the

transmon under the specified experimental conditions. The second one probes the same

frequency window after flux tuning the transmon out of it. It corresponds to a calibration of

the transfer function of the detection setup. We divide the first trace by the second one to

recover Γqrωs.
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points, thus varying the qubit frequency. The fitted anharmonicty fluctuates

around ´100 MHz, the value predicted by electromagnetic simulations of

the transmon design.
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Figure 3.5 Transmon two-tone spectroscopy. Top: (Left) Ampli-

tude Γq (color) of a weak reflected signal with frequency ωprobe on the

transmon port , while the transmon is driven on resonance at ωq with

a microwave tone of power Pq at 300 K (x-axis). (Right) Average

signal over all powers Pq. The distance between the g-e transition
peak at resonance and the emerging e-f transition peak yields the an-
harmonicity χq. Bottom: Anharmonicity versus resonant frequency

of the transmon, as extracted by repeating the experiment shown in

the top panels at mutliple flux points Φq.
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3.1.3 The resonant case

Making the most of the wide tunability range of the transmon, we char-

acterize its interaction with the DPO in the resonant regime. First we will

present the calibration of the coupling strength in the linear case, with no

pump on the DPO. Second, we will look into the reponse of the coupled

system in the BO regime with δa{2π “ ´30 MHz. There, the calibrated

parameters are such that 2δa{κ “ 7 and 2g{κ “ 1.4. Then, for moderate
squeezing amplitudes below 5 dB, the system is supposed to be in a safe

regime regarding both the thermal bath approximation (Fig. 2.4) and the

Jaynes-Cummings simplification (Fig. 3.2). Will it be sufficient to witness a

clear signature of the expected coupling boost?

Linear regime Setting the oscillator to its Kerr-free flux point, we record

its reflection spectrum as the transmon frequency is swept accross (Fig. 3.6).

From input-output theory and following the same line of reasoning that lead

to Eqs. 2.35 and 3.12, we expect the following response:

Γarωprobe, ωqs “ ´1`
κ

κ

2 ´ ipωprobe ´ ωaq `
g2

γt

2 ´ ipωprobe ´ ωqq

. (3.13)

Having previously calibrated the decay rates of the oscillator (κ{2π “

8.7 MHz) and the transmon (γt{2π “ 8.0 MHz at the frequency of the

oscillator Kerr-free point), the recorded map can be fitted using the coupling

strength g as the only fitting parameter. When the transmon and the oscillator

are on resonance, the oscillator spectrum displays a partially resolved split-

ting. Indeed, the coupling amplitude g{2π “ 6.1 MHz is smaller than the

decay rates of both modes, thus placing the system just below the resonant

strong-coupling regime. Interestingly in this weak coupling regime, analysis

of Eq. 3.13 reveals that two spectroscopic features translate the value of the

coupling strength. First, the distance between the two peaks, which scales

like 2g. Second, the depth of the gap between the two peaks at resonance,
which scales like 4g2{κγt.
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Figure 3.6 Transmon-oscillator resonant coupling in the linear

regime. Left: Amplitude Γa (color) of a weak reflected signal with

frequency ωprobe on the oscillator port (y-axis), versus the qubit fre-

quency (x-axis), referenced to the oscillator frequency at the Kerr-

free point. Center: amplitude of the fitted response with the coupling

rate g as the only fitting parameter. Right: line-cut of the measured
spectrum (open circles) and the fitted response (solid line) at reso-

nance as indicated by the dotted (full) line in the left (middle) plot.

BOregime Next, we look into the resonant interaction of the transmonwith

a DPO in the BO regime. We set the pump detuning to δa{2π “ ´30 MHz,

and adjust the DPO frequency so that it sits at its dynamical Kerr-free point

(Fig. 2.16). For increasing two-photon pump amplitudes squeezing the BO

up to S “ 3 dB, we sweep the transmon frequency accross the BO signal

line, and record the full 2d maps akin to Fig. 3.6. Then we fit all the maps

with Eq. 3.13 using g as the only fitting parameter. The splitting curves

at resonance and the extracted coupling are reported on Fig. 3.7. As the

squeezing increases, the center of the anticrossing shifts up in frequency,

following the BO signal line (section 2.2.4). In addition, the fitted value for

g significantly drops, clearly contradicting the expected cosh r trend (dashed
line).
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Figure 3.7 Transmon-BO resonant coupling, the experiment. The

DPO detuning is set to δa{2π “ ´30 MHz. Left: DPO amplitude

reflection spectrum (y-axis) while at resonance with the transmon

for increasing squeezing (color, scale on x-axis of right plot) (offset

for clarity), versus detuning between the probe and half the pump

frequency (x-axis). The data (open circles) is fitted (lines) using

Eq. 3.13. The vertical dashed line marks the resonant frequency of

the bare system (pump off). Right: resonant coupling strength (y-axis)

vs DPO squeezing (x-axis) as fitted from experimental anticrossings

(colored circles) or from simulated anticrossings (black circle-line,

see details on Fig. 3.8). The expected boosted coupling g cosh r is
also plotted (dashed line).

Simulations At the same time we can reproduce numerically the previous

spectroscopic data. Using the Quantum Toolbox in Python QuTiP [Johansson
2012], we implement an experiment-driven algorithm in order to compute

the emission spectrum of the oscillator. It follows the protocol of a time-

resolved spectroscopy experiment. The oscillator, initially in vacuum, is

first excited by a weak microwave drive, that will displace its state. Second,

as the drive stops, the oscillator releases photons through its feedline. A

spectroscopic experiment reveals the absorption properties of the oscillator

by collecting these photons. Given a dynamical system with Lindbladian L,

we translate this protocol numerically into:
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1. Solving for the steady-state density matrix ρ8 such that Lρ8 “ 0.
2. Solving for the time evolution of the system Btρptq “ Lρptq, using as

an initial condition ρ0 “ U ερ8 whereU ε is the displacement operator

of the mode a by the complex quantity ε (section B.1.2). For a small
displacement |ε| ! 1, this step simulates the ring-down of the system
after a long microwave pulse of small amplitude on the oscillator.

3. Computing the absorption spectrum as: Srωs “
ş

dτe-iωτ xayτ . During

the ring-down, we use xayτ as a proxy for the output field since in

the absence of excitation the input-output relation reads on average:

xaoutyτ “
?

κ xayτ .

Since time-resolved and continuous wave spectroscopy yield similar results,

this algorithm is well adapted to reproduce our experimental data acquired

with a PNA (section 4.1.1). This algorithm reproduces the quantum regres-

sion theorem [Steck 2007] which was used in the proposal [Leroux 2018]

for the computation of the qubit spectrum.

We begin with a simulation of the full {DPO+transmon} model, whose

Lindbladian2 is given by the following Hamiltonian and Lindblad oeprators:

Squeezed Jaynes-Cummings in a vacuum bath (SJCVB)

H{~ “ δaa
:a ´

λ

2
`

a2
` a:2˘

` δqb
:b `

χq

2 b:2b2
` gpab:

` a:bq

L P
 ?

κ a,
?

γ1 b,
a

2γφ b
:b
(

All the parameters used in the simulations are deduced from previous calibra-

tions. The oscillator Fock space is truncated to 40 states, and the transmon

one to 3. By repeating the simulation as δq is swept accross the BO signal

frequency, we reconstruct full anticrossings akin to Fig. 3.6. We then iden-

tify the symmetrical points δq “ Ωarrs, and plot the resonant spectra on

Fig. 3.8 (top). The obvious difference between experimental and simulated

lineshapes is a mere visualization artefact, as the complex spectra measured

experimentally and simulated numerically are not referenced to the same

accumulation point. As the squeezing increases, we witness two effects. First,

the gap in between the two peaks fills up. Second, the splitting becomes

asymmetric, a signature typically associated with the onset of a full Rabi cou-

pling where excitation-number non-conserving terms cannot be neglected.

Using Eq. 3.13 we fit the spectra with g as only fitting parameter, and plot
the results on Fig. 3.7 to compare with the data. Experiment and numerics

agree on the decreasing trend with squeezing, and we find a quantitative

2 In the presence of multiple Lindlbad operators we find: L “ ´ i
~
“

H, ‚

‰

`
ř

L DrLs‚
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Figure 3.8 Transmon-BO resonant coupling, the simulation. (a)

Top [Bottom]: simulated DPO emission spectrum (y-axis) while at

resonance with the transmon for increasing squeezing (color, scale

on x-axis right plot), versus detuning between the probe and the

resonance frequency (x-axis, moving with squeezing amplitude) for

the SJCVB [BJCHB] model. (b) Resonant coupling strength (y-axis)

vs DPO squeezing (x-axis) as fitted from simulated anticrossings on

the SJCVB model (line and circles) or the BJCHB model (line and

crosses). Fitting error bars lie within the marker size.

agreement up to S “ 2 dB. How can we explain this drastic difference with

the expected cosh r trend?

In order to disentangle the coupling boost – potentially beyond the Jaynes-

Cummings approximation – from the squeezed bath – potentially beyond

the thermal approximation – we proceed with the simulation of another

model. Specifically, we consider a simplified Lindbladian keeping only the

well-controlled features of the complete one. Using a fictious squeezing

parameter r, this model features a boosted excitation-number preserving
coupling g cosh r, and a thermal bath sinh2 r. The so-called Boosted Jaynes-
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Cummings in a hot bath model reads:

Boosted Jaynes-Cummings in a hot bath (BJCHB)

H{~ “ δaa
:a ` δqb

:b `
χq

2 b:2b2
` g cosh rpab:

` a:bq

L P
 ?

κ cosh r a,
?

κ sinh r a:,
?

γ1 b,
a

2γφ b
:b
(

We compute the resonant spectra for increasing squeezing parameter r,
and plot the results on Fig. 3.8 (bottom). Even though the gap between

the two peaks also fills up, albeit in a slower fashion, the figure remains

symmetric for all squeezing amplitudes. Finally we fit the coupling rate g,
which displays a similar decreasing trend, yet less pronounced. We know

for sure that the increased coupling of this second model must contribute

to an enhanced splitting. It is then clear that the hot bath leads to a filling

of the split lineshape, which spoils the fitting of the coupling rate. Indeed,

Eq. 3.13 used to fit the data does not account for finite temperatures3.

While the squeezed Jaynes-Cummings model fell short of demonstrating

a clear enhanced Rabi splitting, it turns out that even a boosted Jaynes-

Cummings Hamiltonian in contact with a hot bath cannot produce such

a simple signature. This limitation is the product of the squeezed bath,

effectively hot. At the onset of strong-coupling, this modified bath leads

to the same spectral feature as a decreasing coupling strength. One could

obviously adjust Eq. 3.13 to account for a finite bath occupation. Yet, it

seems unwise to rely on the same spectral feature – that is the depth of the gap

– to fit both the coupling and the bath occupation. We are thus looking for

another regime to characterize the effect of squeezing on the qubit-oscillator

coupling.

3 The spectral response of a linear oscillator is ignorant of the bath temperature. One can

check that Eq. 2.33 is left unchanged in the presence of a bath with occupation n̄th. Indeed,
the susceptibility of a linear mode is independent of its temperature, or in other words, a

linear mode cannot be used as a thermometer. However, coupling a linear oscillator with a

transmon brings the nonlinearity necessary to count bath excitations.
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3.2 Linear weak-dispersive regime

The dispersive regime is well adapted to characterizing qubit-oscillator

interactions even in the presence of non-vanishing bath occupation [Schuster

2007; Ong 2013; Viennot 2018; Dassonneville 2021]. It is thus the perfect

test-bench for the study of the coupling between a qubit and a BO. We begin

with the linear regime (pump off), before moving on with the addition of

DPO squeezing, either resonant (section 3.3) or detuned (section 3.4). Each

section will follow the same progression, starting with a definition of the ap-

propriate dispersive transformation, continuing with measurement-induced

dephasing theory and finishing with experimental results. The discussion

will be limited to the weak-dispersive regime, where the renormalization of

the mode dynamical properties can be treated perturbatively.

3.2.1 Dispersive transformation

When no pump is applied on the DPO, the system is most conveniently

described in a frame rotating at the oscillator frequency for both the oscillator

and the qubit (section B.1.3):

H0,0{~ “ ∆σz

2 ` g
`

aσ` ` a:σ-
˘

, (3.14)

where ∆ “ ωq ´ ωa is the qubit-oscillator detuning. It turns out that this

Hamiltonian, which is nothing but the Jaynes-Cummings Hamiltonian in a

rotating frame, is diagonalizable exactly [Boissonneault 2009; Blais 2021]4.

Yet, anticipating on the added complexity of the two-photon pump, we

present an approximation method based on second-order non-degenerate

perturbation theory. As justified in the following section, the discussion will

be limited to the regime:

Linear dispersive limit: |∆| " g, κ, γ1, γφ

First, we will present the approximation method for the Hamiltonian of the

system. Second, we will detail its implications on the Lindblad operators.

Finally, we will extend these results to a DPO coupled to a multi-level

system, like a transmon.

4 At this stage, it is worth pointing out that the Rabi model has also been solved exactly

[Braak 2011].
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Figure 3.9 Jaynes-Cummings spectrum in the dispersive limit. For

the sake of clarity we plot the frequency spectrum of the Hamiltonian

in the laboratory frame:HJC “ ωaa
:a`

ωq

2 σz`g
`

aσ` `a:σ-
˘

. The

full lines represent the energy levels of the unperturbed Hamiltonian

(g “ 0). The dashed lines show the energy levels in the dispersive

limit. Vertical arrows mark frequency shifts in units of g2{∆.

Transformed Hamiltonian The eigenstates of the unperturbed (g “ 0)
Hamiltonian are the states |n, σy “ |ny b |σy, where |ny is the nth Fock

state of the oscillator, and |σy represents the state of the qubit, either ground

(σ “ g) or excited (σ “ e) (full lines on Fig. 3.9). The Jaynes-Cummings
Hamiltonian commutes with the operator N “ a:a ` pσz ` 1q{2 giving the
total number of excitations in the system. The spectrum of N is made of

non-negative integers n P N. Thus, the Hilbert space decomposes into an
infinite sum of invariant manifolds Vn, formed by the states sharing the same

quantum number. They can be written in terms of the unperturbed states

Vn “ span
 

|n, gy , |n ´ 1, ey
(

for n ě 1, leaving aside the 0-excitation
singleton V0 “ t|0, gyu. In the dispersive limit, specifying ∆ ą 0 without
loss of generality, the spectrum of the restriction of Hamiltonian 3.14 to Vn

decomposes into a low-energy subspace t|n, gyu, and a high-energy subspace

t|n ´ 1, eyu. When g “ 0 the spectrum is gapped by ∆. The perturbation

couples this two subspaces at a rate g
?

n, shifting the bare eigenvalues by at
most g

?
n. Hence, provided 2g

?
n ă ∆, the spectrum remains gapped in
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the presence of the perturbation, and one can find a unitary transformation

that decouples the two subspaces at a given order in g
?

n{∆: this unitary is

called a Schrieffer-Wolff (SW) transformation USW [Bravyi 2011].

Specifically, introducing η “ g{∆, we expect the single-excitation

manifold to be transformed at first order in η according to:

Ć|1, gy “ USW |1, gy “ |1, gy ` η |0, ey ` Opη2
q , (3.15a)

Ć|0, ey “ USW |0, ey “ |0, ey ´ η |1, gy ` Opη2
q , (3.15b)

and Ćx0, e|Ć|1, gy “ 0. This is the essence of the SW technique: redefine the

bare eigenbasis to incorporate the effect of the perturbation at a given order.

Extending this line of thought for the entire Fock basis, all n-excitation

manifolds can be diagonalized simultaneously – here at first order in η –

through the SW transformation USW “ eS0,0 where:

S0,0 “ ηaσ` ´ h.c. (3.16)

A technique to find analytically this generator is presented in Appendix B.1.4.

In the transformed frame, the single-excitation operators are dressed at first

order in η according to:

eS0,0ae´S0,0 “ a ` ησ- ` Opη2
q , (3.17a)

eS0,0σ-e
´S0,0 “ σ- ` ηaσz ` Opη2

q . (3.17b)

As usual in perturbation theory, in order to consistently account for a dressing

of the states at first-order, one needs to account for a renormalization of

the energies at second-order. Thus, up to irrelevant constant terms, the

transformed Hamiltonian reads:

eS0,0H0,0e´S0,0 “ ∆
`

1 ` η2˘ σz

2 ` η2∆a:aσz ` Opη3
q . (3.18)

Note that the generator of the SW transformation was chosen to cancel the

coupling within the n-excitation manifolds at first order only. Rewriting the

SW generator in order to cancel the coupling at order k in η would yield

corrections at order k ` 1 in the previous Hamiltonian. Moreover, as the

coupling within the n-excitation manifold goes like g
?

n, one should adjust
the approximation bound with the Fock state number. This moving bound is

understood as a critical photon number for the oscillator, whose occupancy

needs to remain below ncrit “ ∆2{4g2 for the approximation to be valid.
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Finally, in the transformed basis a Ñ e´S0,0aeS0,0 and σz Ñ e´S0,0σze
S0,0 ,

the qubit-photon Hamiltonian reads:

H0,0 “

„

∆ ` χ0

ˆ

a:a `
1
2

˙

σz

2 , (3.19)

where χ0 “ 2g2{∆ is the dispersive coupling strength. In the dispersive

limit, the first-order excitation-swapping coupling term of Hamiltonian 3.14

does not lead to actual transitions between the unperturbed eigenstates of the

system. Instead, the coupled system experiences virtual transitions, whose

effect is well captured by the second-order energy-renormalizing coupling

term of Hamiltonian 3.19.

Transformed Lindblad operators In the new basis the qubit is said to be

dressed by the oscillator field. In particular, the decoherence mechanisms

imparting the bare oscillator will act on the dressed qubit, and vice-versa. A

thorough description of these processes requires to perform the SW trans-

formation at the level of the system-bath Hamiltonian (Appendix B), and

leads to a redefinition of the decoherence rates [Boissonneault 2008; Bois-

sonneault 2009; Blais 2021]. Yet, a mere transformation of the Lindblad

operators is sufficient to introduce the concepct of dressed decoherence. In

the transfomed basis, the Lindblad operators take the form of composite

channels:

Lph “
?

κ
´

a `
g

∆σ-

¯

, (3.20a)

L´ “
?

γ1

´

σ- `
g

∆aσz

¯

, (3.20b)

Lφ “

c

γφ

2

ˆ

σz ´
2g

∆ aσ` ´
2g

∆ a:σ-

˙

, (3.20c)

which correlate decoherence in both modes. When entering the Lindblad

master equation5, the mixed contributions of these composite loss operators

will lead to rotating terms at a frequency ∆. Introducing the dimensionless

parameter η such that: g, κ, γ1, γφ ă η ˆ ∆, and in the limit η ! 1, these fast
rotating terms will have negligible amplitudes compared to their oscillating

5 For instance the contribution of Lph to the master equation reads:

DrLphsρ “ κDrasρ ` κ g2

∆2 Drσ-sρ ` κ g
∆
`

aρσ` ` σ-ρa
: ´ 1

2 ta:σ- ` σ`a, ρu
˘

so that in a frame rotating at each mode frequency, the first two terms are steady while the

last part rotates at ∆, with amplitude κg{∆ „ ∆ ˆ η2.
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frequencies. They can be averaged out up to second order in η, giving rise
to the independent loss channels:

Lph “
?

κa L´
ph “

?
γκσ- , (3.21a)

L´ “
?

γ1σ- Lph
´ “

?
κγσza , (3.21b)

Lφ “

c

γφ

2 σz L`
φ “

?
γ∆aσ` L´

φ “
?

γ∆aσ- . (3.21c)

Among them we find the Purcell loss rate induced by the oscillator on the

qubit, γκ “ pg{∆q2κ, which depicts the fraction of the bare qubit energy
stored in the oscillator that can leak through it. The converse effect arises with

the Purcell loss rate induced by the qubit on the oscillator: κγ “ pg{∆q2γ1.

Also the dressed dephasing processes with rate γ∆ “ p2g{∆q2γφ, which

lead to spurious qubit transitions when the oscillator is populated, fuelled

by the bare qubit dephasing. Finally, it is worth mentionning that all these

dressed decoherence mechanisms are of order 3 in η, so that at the order of
approximation that lead to Hamitlonian (3.19) they need not be considered.

Beyond the TLS approximation Finally we extend the previous treatment

to account for the multi-level structure of the transmon (section 3.1.2). Fol-

lowing [Koch 2007], the transmon-oscillator Hamiltonian reads in a frame

rotating at the oscillator frequency:

Ht:0,0{~ “
ÿ

k

∆k |ky xk| `
ÿ

k

gk,k`1 pa |k ` 1y xk| ` h.c.q (3.22)

where ∆k “ ωk ´ k ˆ ωa and gk,k`1 « g
?

k ` 1. Thanks to the transmon
selection rules, we omit multi-photon transitions (section 3.1.2). Moving on

with the dispersive transformation, the generator of the SW unitary reads:

S t:0,0 “
ÿ

k

gk,k`1

∆k,k`1
pa |k ` 1y xk| ´ h.c.q (3.23)

where ∆k,k`1 “ ∆k`1 ´ ∆k. We introduce a dimensionless parameter η
such that: @k, gk,k`1 ă η ˆ minp|∆k,k`1|q. This dispersive transforma-

tion requires that all the allowed transmon transitions are detuned from the

bare oscillator frequency. In the transformed basis a Ñ e´St:0,0aeSt:0,0 , and

@k, |ky Ñ e´St:0,0 |ky, the restriction of Hamiltonian (3.22) to the two lowest

energy transmon levels reads at second-order in η [Blais 2021]:

Ht:0,0{~ “
χt:0 ´ χ0

2 a:a `

”

∆ `
χ0

2 ` χt:0 a
:a

ı σz

2 , (3.24)
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where we introduced the qubit-manifold spin operator σz “ |ey xe| ´ |gy xg|,

and:

χt:0 “
2g2

∆
χq

χq ` ∆ . (3.25)

The dispersive interaction strength of the qubit transition (g-e) is dressed by
the second excited level of the transmon. It is singular when χq ` ∆ “ 0,
that is to say when the oscillator is resonant with the transmon e-f transition.
Notably the qubit Lamb shift g2{∆ is no longer equal to half the dispersive

interaction strength, and the oscillator inherits a finite frequency shift. Yet,

one can check that in the TLS limit |χq| " |∆|, Hamiltonian 3.24 maps to

Hamiltonian 3.19.

3.2.2 Measurement induced dephasing

In the dispersive limit, the interaction process is captured by a qubit-

frequency shift conditioned on the occupation of the oscillator (Eq. 3.19).

Conversely, the oscillator frequency is expected to move depending on the

qubit state, a phenomenon at the heart of the dispersive readout protocol

[Blais 2021]. In practice, probing the oscillator involves driving it with

coherent signals. Together with thermal noise and quantum noise, these

drives populate the oscillator with a mean-photon number n̄a, fluctuating by

δnaptq. Computing the impact of this finite population on the qubit spectral
properties is the topic of this part [Blais 2004; Gambetta 2006]. Specifically,

we will limit the discussion to the weak-dispersive regime where |χ0| ! κ.

Gaussian approximation A qubit initialized in a coherent superposition

of its basis states at a time t0 will pickup a relative phase according to its

dispersive interaction with the oscillator (Eq. 3.19). After an interaction time

t, we write this phase: ϕptq ” ϕ̄ ` δϕptq. The mean part reads:

ϕ̄ “

´

∆ `
χ0

2 ` χ0n̄a

¯

pt ´ t0q , (3.26)

which displays the Lamb-shifted qubit detuning ∆ ` χ0{2, and the AC-
Stark contribution χ0n̄a, with n̄a the mean-occupation of the oscillator. The

fluctuating part reads:

δϕptq “ χ0

ż t0`t

t0

dτδnapτq , (3.27)

and its randomness is at the heart of the dephasing mechanism. As the

oscillator excitations are short-lived compared to the typical qubit-oscillator
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interaction time (κ " |χ0| in the weak-dispersive limit), δϕ can be thought of

as a sum of independent random variables. Hence the central limit theorem

applies, and δϕ follows a Gaussian distribution. Since δna has zero mean,

so does δϕ. The induced dephasing by the oscillator on the qubit ∆γφ is

commonly defined as e´∆γφt ” xxeiδϕyy, where xx¨yy refers to the average

over multiple noise realizations (statistical ensemble average). Owing to the

previously detailed statistics of δϕ, we find that xxeiδϕyy “ e´ 1
2 xxδϕ2yy, so

that the induced dephasing reads:

∆γφ “
χ2

0
2t

t0`t
ĳ

t0

dt1dt2Cpt1, t2q , (3.28)

where the fluctuation-fluctuation correlation function reads:

Cpt1, t2q ” xδnapt2qδnapt1qy “ xpnapt2q ´ n̄aqpnapt1q ´ n̄aqy , (3.29)

and naptq “ a:ptqaptq. To lowest order in χ0{κ, the average x¨y denotes the

expectation value of the uncoupled system. Elucidating the dispersive and

dissipative effects of the oscillator on the qubit amounts to computing the

mean-photon number at long times n̄a “ xa:ay, and the correlation function

Cpt1, t2q “ xnapt2qnapt1qy ´ n̄2
a.

Oscillator statistics A monochromatic drive of amplitude εd, resonant

with the oscillator, can be accounted for at the level of Hamiltonian 3.14

through the contribution Hd{~ “ pεd{2qa` pε˚
d{2qa: (Appendix B.1). Thus,

the QLE for the a mode simply reads:

Btaptq “ ´i
ε˚

d

2 ´
κ

2aptq `
?

κainptq . (3.30)

It is most conveniently solved in a displaced frame. Specifically we write

aptq “ aptq ` dptq, where aptq solves the classical part of Eq. 3.30, and
dptq its quantum part. The displaced oscillator operator d follows the same

commutation relations as the original one. We find:

aptq “ apt0qe´pκ{2qpt´t0q
´ i

ε˚
d

κ

`

1 ´ e´pκ{2qpt´t0q
˘

, (3.31a)

dptq “ dpt0qe´pκ{2qpt´t0q
`

?
κ

ż t

t0

dτainpτqe´pκ{2qpt´τq . (3.31b)

The mean-photon number can be readily computed as n̄a “ |aptq|2 `

xd:ptqdptqy. Moreover, owing to the quadratic nature of the system-bath
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Hamiltonian, we can use Wick’s theorem [Molinari 2017] to compute the

correlation function:

Cpt1, t2q “ xd:
2d:

1y xd2d1y ` xd:
2d1y xd2d:

1y

` a˚
2a˚

1 xd2d1y ` a2a1 xd:
2d:

1y (3.32)

` a2a˚
1 xd:

2d1y ` a˚
2a1 xd2d:

1y ,

where di “ dptiq and ai “ aptiq. We then focus at the long time limit

t ě t0 " κ´1 for which the oscillator converges to a limit cycle with

amplitude:

aptq “ ´iε˚
d{κ . (3.33)

This finite amplitude contributes to a coherent population n̄d “ |εd|2{κ2.

Next we turn to the statistical properties of the quantum part in the long time

limit t1, t2 ě t0 " κ´1. We find:

xd:
2d1y “ n̄the´κ|t2´t1|{2 , (3.34a)

xd2d:
1y “ p1 ` n̄thq e´κ|t2´t1|{2 , (3.34b)

xd2d1y “ 0 . (3.34c)

Overall, the mean-photon number reads n̄a “ n̄d ` n̄th. We also deduce the

correlation function at long times:

Cpt1, t2|n̄thq “ n̄th
`

1 ` n̄th
˘

e´κ|t2´t1|
` n̄d

`

1 ` 2n̄th
˘

e´κ|t2´t1|{2 . (3.35)

Qubit response Finally the qubit frequency shift and linewidth broadening

induced by the oscillator read:

∆ωq “ χ0

ˆ

1
2 ` n̄th ` n̄d

˙

, (3.36a)

∆γφ “
2χ2

0
κ

n̄d
`

1 ` 2n̄th
˘

`
χ2

0
κ

n̄th
`

1 ` n̄th
˘

. (3.36b)

From left to right, the first contribution to Eq. 3.36a comes from vacuum

fluctuations of the oscillator field, and is commonly known as the Lamb shift.

The two following terms, related to the thermal and coherent occupation of

the oscillator, contribute on an equal footing to the qubit frequency shift. The

coherent one is known as the AC-Stark shift. As for Eq. 3.36b, the first term

corresponds to the measurement-induced dephasing exerted by the coherent

population of the cavity [Gambetta 2006], renormalized by the finite thermal

population. The second one is related to the thermal population alone, and

differs notably from the coherent contribution [Bertet 2005; Rigetti 2012].

It is worth pointing out that the contribution mixing coherent and thermal

populations is not a standard result.



74 Chapter 3. Interaction of a DPO with a qubit

Beyond the TLS approximation We extend the previous result to the

qubit transition of a transmon. While the Lamb shift is proportional to

the pure TLS dispersive interaction χ0, all the other processes involve the

coefficient renormalized by the transmon |fy state:

∆ωq “
χ0

2 ` χt:0
`

n̄th ` n̄d
˘

, (3.37a)

∆γφ “
2χ2

t:0
κ

n̄d
`

1 ` 2n̄th
˘

`
χ2

t:0
κ

n̄th
`

1 ` n̄th
˘

. (3.37b)

3.2.3 Experiment

The dispersive interaction strength can be revealed through a measure-

ment of the transmon suscpetibility to a coherent drive on the oscillator.

Specifically, for a resonant drive with power Pdrive, and in the limit of negli-

gible thermal population, the AC-Stark shift and induced dephasing of the

transmon read:

∆ωqrn̄ds “ χt:0n̄d , ∆γφrn̄ds “
2χ2

t:0
κ

n̄d , n̄d “
Pdrive

P0
, (3.38)

where P0 is the drive power maintaining one photon in the oscillator. Follow-

ing [Schuster 2005], both the dispersive coupling χt:0 and the photon-number

calibration P0 can be extracted from the joint fitting of the AC-Stark shift

and induced dephasing with the applied drive power.

We implement this procedure for multiple transmon-oscillator detunings,

by setting the oscillator to its Kerr-free point and sweeping the qubit fre-

quency. Top panels of Fig. 3.10 (a) display the amplitude reflection spectrum

of the transmon for detunings of ´84 MHz (left, triangles), ´26 MHz (cen-

ter, circles) and 61 MHz (right, squares). For each microwave drive power

(according to the color code referenced to the x-axis of the bottom panels),

the AC-Stark shift∆ωqrn̄ds and induced dephasing∆γφrn̄ds are extracted by

fitting the complex data (open symbols) to circles in the complex plane (solid

lines) (section 3.1.2). Middle panels of Fig. 3.10 (a) display the transmon

frequence shift versus the applied drive power on the oscillator at 300 K.

Similarly, the bottom panels of Fig. 3.10 (a) display the linewdith broad-

ening. While in principle the photon number calibration and the dispersive

interaction strenght could be fitted independently at every detuning, the

small amplitude of the measured signals leads to large fitting uncertain-

ties. However, since the oscillator frequency is kept the same for the whole

dataset, so does the photon number calibration. Thus we fit the entire dataset
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Figure 3.10 Linear dispersive interaction: straddling regime. See

description main text.
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to Eqs. 3.38 keeping as free parameters: χt:0 at every detuning, and a single

power calibration P0. The linear interpolations of the AC-Stark shift and

induced dephasing are plotted as black lines on Fig. 3.10 (a), and the fitted

values of χt:0 are presented on Fig. 3.10 (b). We find P0 “ 8.1 ˘ 0.3 nW.

The evolution of χt:0 with qubit-oscillator detuning clearly displays the

straddling regime: when the oscillator frequency lies between the g-e and e-f
transitions, virtual transitions to the |fy state strongly affects the dispersive
interaction strength [Koch 2007]. We fit the extracted χt:0 versus detunings

to the analytical result accounting for the transmon |fy state (Eq. 3.25).
Keeping as free parameters g and χq, we find g{2π “ 4.9 MHz and EC{h “

´χq{2π “ 114 MHz, which are close to the values extracted from the

anti-crossing and two-tone spectroscopy described in section 3.1.

3.3 Nonlinear weak-dispersive regime: resonant squeezing

Building on the characterization of the dispersive interaction in the linear

regime of the oscillator, we continue with the nonlinear case of resonant

squeezing (section 2.1.2). The dispersive coupling of a resonant DPO to

a qubit has already been envisioned [Eddins 2019]. There, emphasis was

made on the enhanced signal-to-noise ratio of the qubit-readout provided by

the gain output by the DPO. Instead, in this part, we focus on the impact of

steady-state squeezing on the dispersive interaction strength.

3.3.1 Dispersive transformation

When the DPO undergoes resonant squeezing, the system is most con-

veniently described in a frame rotating at half the pump frequency for both

the oscillator and the qubit:

H0,λ{~ “ ´
λ

2
`

a2
` a:2˘

` δq
σz

2 ` g
`

aσ` ` a:σ-
˘

. (3.39)

In that case, since ωa “ ωp{2, the qubit detuning δq “ ωq ´ ωp{2 is equal to
the qubit-oscillator detuning (labeled ∆ in section 3.2). The eigenspectrum

of a resonant DPO is continuous (section 2.1.2). Thus, we cannot follow

the line of reasoning of the previous section, based on the gapped nature of

the eigenspectrum. However, we can still find a transformation that leaves

invariant the uncoupled part of the Hamiltonian, and trades the first-order

excitation-swapping coupling term, for a second-order energy-renormalizing
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one (Appendix B.1.4). Its generator reads6:

S0,λ “
gδq

δ2
q ´ λ2aσ` `

gλ

δ2
q ´ λ2aσ- ´ h.c. . (3.41)

Since the dynamical stability of the resonant DPO requires λ ă λcrit “ κ{2,
the parameter regime of interest remains unchanged:

Nonlinear dispersive limit δa“0 : |∆| " g, κ, γ1, γφ .

Introducing the dimensionless parameter η such that: g, κ, γ1, γφ ă η ˆ

|δq|, and under the assumption that η ! 1, Hamiltonian 3.39 reads in the
transformed basis a Ñ e´S0,λaeS0,λ ,σz Ñ e´S0,λσze

S0,λ up to second order

in η:

H0,λ{~ “ ´
λ

2
`

a2
` a:2˘

`

„

δq ` χ0

ˆ

a:a `
1
2

˙

σz

2 , (3.42)

where χ0 “ 2g2{δq is the bare dispersive interaction parameter. Correc-

tions to χ0 occur at order four in η. In addition, Lindblad operators are
not modified up to order 3 in η. While the analytical derivation leading to

Hamiltonian 3.42 is flawless, its physical motivation remains quite obscure

due to the peculiarity of the bare DPO eigenspectrum. Fortunately, the SW

procedure presented in section 3.2.1 can be generalized to dissipative sys-

tems [Kessler 2012]. There, the eigenvalues of the Liouvillian operator are

partitioned in the complex plane, in order to write an effective dynamics for

a subset of the Hilbert space. As a conclusion, it appears that steady-state

squeezing does not change the strength of the coupling between the oscillator

and the qubit.

Beyond the TLS approximation The addition of a pump resonant with

2ωa does not change the set of spurious resonances between the oscillator

and the transmon higher transitions. In the following, we will merely adjust

6 Note that in the presence of a finite detuning δa, the generator reads:

Sδa,λ “
gpδq ` δaq

δ2
q ´ δ2

a ´ λ2 aσ` `
gλ

δ2
q ´ δ2

a ´ λ2 aσ- ´ h.c. (3.40)

For nearly resonant squeezing |δa| ă κ{2, and within the second order approximation, the
Hamiltonian in the transformed basis amounts to Eq. 3.42 plus the oscillator contribution

δaa
:a. However, for detuned squeezing in the BO regime κ{2 ! λ ă |δa|, a non-negligible

anomalous dispersive term arises, as presented by [Shani 2022].
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Hamiltonian 3.42 in a similar fashion as in the linear case (section 3.2) in

order to account for the transmon |fy state:

Ht:0,λ{~ “ ´
λ

2
`

a2
` a:2˘

`

”

δq `
χ0

2 ` χt:0 a
:a

ı σz

2 . (3.43)

3.3.2 Measurement-induced dephasing

Following the derivation of section 3.2.2, the dressing of the qubit spec-

tral features are deduced from the statistical properties of the oscillator at

long times. The QLE for the driven resonant-DPO reads:

Btaptq “ iλa:
ptq ´ i

ε˚
d

2 ´
κ

2aptq `
?

κainptq . (3.44)

Since δa “ 0, the drive frequency is commensurate with the pump frequency,
and their relative phase is expected to modify the system response [Eddins

2019]. The drive complex amplitude is defined as εd “ |εd|eipθ´π{4q, so that

when θ “ 0 the in-phase component of the drive lies along the squeezed
quadrature of the oscillator (section 2.1.2). While the induced dephasing

of a driven resonant-DPO coupled to a qubit has been covered in [Eddins

2019], here we focus on the AC-Stark shift contribution in the absence of

thermal excitations n̄th “ 0. Thus, we are left with solving the classical part
of Eq. 3.44, which yields at long times:

aptq “ ´i
ε˚

d

κ

κ2{4
κ2{4 ´ λ2 ´

εd

κ

λκ{2
κ2{4 ´ λ2 (3.45)

The AC-Stark shift simply reads ∆ωqrλ, n̄ds “ χ0|aptq|2, and we find:

∆ωqrλ, n̄ds “
κ2

4
κ2{4 ` λ2 ´ λκ cos 2θ

pκ2{4 ´ λ2q2 n̄dχ0 , (3.46)

where n̄d “ |εd|2{κ2 is the mean photon number injected by the coherent

drive with the pump off. Together with the phase dependent induced dephas-

ing (see Eq. (4) of [Eddins 2019]), we can infer the dispersive interaction

strength from a joint fitting of the qubit spectral features versus the drive

phase, at a fixed drive amplitude.

Beyond the TLS approximation The previous result can be trivially

extended to a transmon by replacing χ0 by χt:0 in Eq. 3.46.
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Figure 3.11 Nonlinear dispersive interaction: resonant squeezing.

See description main text.

3.3.3 Experiment

This procedure is presented in Fig. 3.11 with a transmon-oscillator de-

tuning of pδq ´ δaq{2π “ ´100 MHz, thus placing the system in the weak

dispersive regime χt:0{2π “ ´250 kHz. For various resonant two-photon
pump amplitudes generating up to 10 dB of gain at the output of the DPO,

we drive the oscillator with a resonant tone, and roll the phase between the

two commensurate frequencies. The resonant drive is calibrated as to inject

n̄d “ 0.8 photons, and every measured gain is converted into a steady-state
anti-squeezing amplitude (section 2.1). For every relative phase, we record

a transmon reflection spectrum (akin to Fig. 3.10), and fit the AC-Stark
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shift ∆ωqrλ, n̄ds and induced dephasing ∆γφrλ, n̄ds. On Fig. 3.11(a), we

plot both quantites referenced to the undriven case (but with the pump on).

Solid lines are fit to Eq. 3.46 and Eq. (4) of [Eddins 2019], yielding χt:0
– the only fitting parameter – for each steady-state anti-squeezing value.

We find a dispersive interaction strength independent of the steady-state

anti-squeezing over the whole measurement range.

3.4 Nonlinear weak-dispersive regime: detuned squeezing

Finally, we turn to the characterization of the dispersive interaction of a

qubit to a detuned DPO, in the BO regime.

3.4.1 Dispersive transformation

When the DPO undergoes detuned squeezing – in the BO regime – the

system is most conveniently described in a frame rotating at half the pump

frequency for both the oscillator and the qubit, and in the Bogoliubov basis

for the oscillator:

Hδa,λ{~ “ Ωarrsα:α ` δq
σz

2 ` g cosh r
`

ασ` ` α:σ-
˘

` g sinh r
`

ασ- ` α:σ`

˘

. (3.47)

The appearance of the excitation-number non-conserving term breaks the

symmetry of the Jaynes-Cummings model. Again, we can write a SW trans-

formation that leaves invariant the uncoupled part of the Hamiltonian, and

absorbs both the excitation-number conserving and non-conserving terms.

Its generator reads:

Sδa,λ “
g cosh r

∆rrs
ασ` ´

g sinh r

Σrrs
ασ- ´ h.c. , (3.48)

where:

∆rrs “ δq ´ Ωrrs , and Σrrs “ δq ` Ωrrs . (3.49)

While∆rrs is the detuning between the qubit and the renormalized frequency

of the BO, Σrrs is the detuning between the qubit and the BO idler photons.

Thus the dispersive interaction to a BO is restricted to the regime where:

Nonlinear dispersive limit δa ‰ 0 :

#

|∆rrs| " ger, κ, γ1, γφ

|Σrrs| " ger, κ, γ1, γφ

.
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It is quite remarkable that the idler peak, resulting from the convertion

of signal photons by the pump, comes not only as a clear spectroscopic

feature of the BO (section 2.2.4), but also as a key ingredient of its inter-

action with a qubit. Introducing the dimensionless parameter η such that:

ger, κ, γ1, γφ ă η ˆ minp|∆rrs|, |Σrrs|q, and under the assumption that

η ! 1, Hamiltonian 3.39 reads in the transformed basis a Ñ e´Sδa,λaeSδa,λ ,

σz Ñ e´Sδa,λσze
Sδa,λ up to second order in η:

Hδa,λ{~ “ Ωarrsα:α ` δq
σz

2 ` χrrs

ˆ

α:α `
1
2

˙

σz

2
` χarrs

`

α2
` α:2˘ σz

2 , (3.50)

where the dispersive interaction strength and its anomalous counterpart write:

χrrs “
2g2 cosh2 r

δq ´ Ωarrs
`

2g2 sinh2 r

δq ` Ωarrs
, (3.51a)

χarrs “
g2 sinh 2r

δq

δ2
q

δ2
q ´ Ω2

arrs
. (3.51b)

In addition, Lindblad operators are not modified up to order 3 in η.
It appears that eigenstate squeezing profoundly changes the nature of

the coupling between the oscillator and the qubit. Not only the dispersive

interaction strength increases with squeezing – one can check that |χrrs| is

a strictly increasing function or r – but an anomalous dispersive channel
based on Bogoliubov excitation squeezing arises. Note that the magnitude of

the anomalous dispersive interaction term is of the same order as the usual

one. That being said, in the limit |χarrs| ! |2Ωarrs|, Hamiltonian 3.50 can

be approximated by its secular part7:

Hδa,λ{~ « Ωarrsα:α `

„

δq ` χrrs

ˆ

α:α `
1
2

˙

σz

2 . (3.52)

Finally it is instructive to look at the dispersive interaction strength in the limit

|δq| " |δa|. In this regime, the renormalization of the oscillator frequency

is negligible when compared to the qubit-oscillator detuning, such that

∆rrs « Σrrs « δq. Thus, the enhanced dispersive interaction strength

simply reads χrrs « χ0 cosh 2r.

7 This approximation amounts to going to the interaction picture, then performing a RWA,

and resorting to the original frame.
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Beyond the TLS approximation We extend the previous result to the

higher energy levels of the transmon, beyond the qubit manifold. Following

section 3.2.1, the transmon-BO Hamiltonian reads in the Bogoliubov basis

and under the RWA:

Ht:δa,λ{~ “ Ωarrsα:α `
ÿ

k

δk |ky xk|

`
ÿ

k

gk,k`1 cosh r pα |k ` 1y xk| ` h.c.q

`
ÿ

k

gk,k`1 sinh r pα |ky xk ` 1| ` h.c.q

(3.53)

where δk “ ωk ´ k ˆ
ωp

2 . Moving on with the dispersive transformation, the

generator of the SW unitary reads:

S t:δa,λ “
ÿ

k

gk,k`1 cosh r

δk,k`1 ´ Ωarrs
pα |k ` 1y xk| ´ h.c.q

´
ÿ

k

gk,k`1 sinh r

δk,k`1 ` Ωarrs
pα |ky xk ` 1| ´ h.c.q

(3.54)

where δk,k`1 “ δk`1 ´ δk. We introduce a dimensionless parameter η such
that: @k, gk,k`1e

r ă η ˆ minp|δk,k`1 ˘ Ωarrs|q. This dispersive trans-

formation requires that all the allowed transmon transitions are detuned

from the BO signal and idler frequencies. This regime is safely maintained

in our experiment. In the transformed basis α Ñ e´St:δa,λαeSt:δa,λ , and

@k, |ky Ñ e´St:δa,λ |ky, the secular restriction of Hamiltonian (3.53) to the

two lowest energy transmon levels reads at second-order in η:

Ht:δa,λ{~ “
`

Ωarrs ` Ωp2q
a rrs

˘

α:α:
`
“

δq ` δp2q
q rrs ` χtrrsα:α

‰ σz

2 ,

(3.55)

where σz is the Pauli Z operator of the transmon qubit-manifold, and:

Ωp2q
a rrs “ ´

g2 cosh2 r

∆rrs
´

g2 sinh2 r

Σrrs
, (3.56a)

δp2q
q rrs “

g2 cosh2 r

∆rrs
`

g2 sinh2 r

Σrrs

χq ´ Σrrs

χq ` Σrrs
, (3.56b)

χtrrs “
2g2

∆rrs

χq

χq ` ∆rrs
cosh2 r `

2g2

Σrrs

χq

χq ` Σrrs
sinh2 r . (3.56c)

These coefficients were computed using Mathematica code with the invalu-

able help of Alexandru Petrescu. Finally, one can check that in the limit

|χq| " |∆rrs|, |Σrrs| we recover δp2q
q rrs « χtrrs{2, as customary for a

dispersively coupled qubit.
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3.4.2 Measurement-induced dephasing

Following the derivation of section 3.2.2, the dressing of the qubit spec-

tral features are deduced from the statistical properties of the oscillator at

long times. We consider a BO continuously squeezed, and coherently driven

at its renormalized frequency. At long times, the occupation of the BO

converges towards a mean-occupation n̄α, and fluctuates by δnαptq. The
statistical properties of the BO occupancy reflect both the effects of the

squeezing and the coherent drive. Using Eq. 2.31 and Appendix B we write

the QLE for the driven Bogoliubov mode:

Btαptq “ ´ iΩaαptq ´ i
ε˚

d cosh r

2 e´iΩat
´ i

εd sinh r

2 eiΩat

´
κ

2αptq `
?

κ
`

ainptq cosh r ´ a
:

inptq sinh r
˘

. (3.57)

It is most conveniently solved in a displaced frame. Specifically we write

αptq “ αptq`dptq, whereαptq solves the classical part of Eq. 3.57, and dptq

its quantum part. The displaced BO operator follows the same commutation

relations as the original one. We find:

αptq “ αpt0qe´piΩa`κ{2qpt´t0q (3.58a)

´ i

ż t

t0

dτ

"

ε˚
d

2 e´iΩaτ cosh r `
εd

2 eiΩaτ sinh r

*

e´piΩa`κ{2qpt´τq ,

dptq “ dpt0qe´piΩa`κ{2qpt´t0q (3.58b)

`
?

κ

ż t

t0

dτ
!

ainpτ q cosh r ´ a:

inpτ q sinh r
)

e´piΩa`κ{2qpt´τq .

The mean Bogoliubov-excitation number can be readily computed as n̄α “

|αptq|2 ` xd:ptqdptqy. Then we focus at the long time limit t ě t0 " κ´1

for which the BO converges to a limit cycle with amplitude:

αptq “ ´i
ε˚

d cosh r

κ
e´iΩat

´ i
εd sinh r

κ ` 4iΩa
eiΩat . (3.59)

Far from coalescence (meaning |Ωarrs| " κ{2, see section 2.1.3), the clas-
sical part of the Bogoliubov mode reduces to an amplified coherent sig-

nal αptq « ´ie´iΩatpε˚
d{κq cosh r. Indeed, in that regime, the BO induces

negligible mixing between the signal and idler components of the drive.

This finite amplitude contributes to a coherent population of the mode

|αptq|2 “ n̄d cosh2 r, where n̄d “ |εd|2{κ2 is the number of circulating
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photons that the coherent drive would maintain in the oscillator in the ab-

sence of squeezing. Next we turn to the statistical properties of the quantum

part in the long time limit t1, t2 ě t0 " κ´1. We find:

xd:
1d1y “

`

sinh2 r ` n̄th ` 2n̄th sinh2 r
˘

,

xd:
2d1y “ xd:

1d1y eiΩapt2´t1qe´κ|t2´t1|{2 , (3.60a)

xd1d:
1y “

`

1 ` sinh2 r ` n̄th ` 2n̄th sinh2 r
˘

,

xd2d:
1y “ xd1d:

1y e´iΩapt2´t1qe´κ|t2´t1|{2 , (3.60b)

xd1d1y “
i

2
κ

2Ωa

sinh 2r

1 ´ iκ{2Ωa
p1 ` 2n̄thq ,

xd2d1y “ xd1d1y e´piΩa`κ{2q|t2´t1| . (3.60c)

Note that when r “ 0, we recover Eqs. 3.34. Also as pointed out on

Figure 2.4, at zeroth order in η “ κ sinh 2r{2|Ωarrs|, the anomalous correla-

tor (3.60c) vanishes, and the displaced Bogoliubov mode d resembles a ther-

mal field [Lemonde 2016]. In the following, we focus on the situation where

the environment is held in vacuum n̄th “ 0, so that the mean-occupancy of
this pseudo-thermal field simply reads: xd:

1d1y “ sinh2 r.
At first order in η we find n̄α « n̄d cosh2 r ` sinh2 r. Far from coales-

cence, the mean occupation of the BO results from the sum of the amplified

drive and the effective thermal population. In addition, at the same order the

correlation function reads:

Cpt1, t2|rq « sinh2 r
`

1 ` sinh2 r
˘

e´κ|t2´t1|

` n̄d cosh2 r
`

1 ` 2 sinh2 r
˘

e´κ|t2´t1|{2 . (3.61)

Note that it also features oscillatory terms proportional toRe
`

ηe2iΩat1´κ|t2´t1|{2˘

that we omitted here, anticipating on the averaging performed when com-

puting the induced dephasing. Comparing Eqs. (3.61) and (3.35) lets us

confirm the resemblance of a BO with a hot oscillator with thermal occu-

pancy sinh2 r.
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Qubit response Finally, we can write the frequency shift of a qubit dis-

persively coupled to a driven BO far from coalescence as ∆ωq “ ∆ωqrrs `

∆ωqrr, n̄ds where:

∆ωqrrs “ χrrs

´1
2 ` sinh2 r

¯

´
1
2χ0 , (3.62a)

∆ωqrr, n̄ds “ χrrsn̄d cosh2 r . (3.62b)

The first contribution amounts to a modified Lamb shift accounting for

the equivalent thermal occupation of the BO. The term χ0{2 is subtracted
since we reference the frequency shift to the absence of pump (r “ 0). The
second contribution is an AC-Stark shift accounting for the amplification of

the input drive by the BO anti-squeezing. Similarly the induced dephasing

reads ∆γφ “ ∆γφrrs ` ∆γφrr, n̄ds where:

∆γφrrs “
χ2rrs

κ
sinh2 r

`

1 ` sinh2 r
˘

, (3.63a)

∆γφrr, n̄ds “
2χ2rrs

κ

`

1 ` 2 sinh2 r
˘

n̄d cosh2 r . (3.63b)

We can map the first term to the characteristic dephasing of a qubit disper-

sively coupled to a hot oscillator [Bertet 2005; Rigetti 2012]. This reveals that

the qubit experiences the squeezed bath populating higher Bogoliubov en-

ergy levels, as a thermal bath. In principle, this induced decoherence, flagged

by [Shani 2022], could be cancelled by injecting conversely squeezed radia-

tion while preserving the interaction enhancement [Leroux 2018; Qin 2018].

The second term features the induced dephasing of a qubit measured by an

amplified coherent drive on the oscillator, plus a cross term related to the

equivalent BO thermal population.

Beyond the TLS approximation We extend the previous result to the

qubit transition of a transmon:

∆ωqrrs “ δp2q
q rrs ` χt:0rrs sinh2 r ´

1
2χ0 , (3.64a)

∆ωqrr, n̄ds “ χt:0rrsn̄d cosh2 r , (3.64b)

and:

∆γφrrs “
χ2

t:0rrs

κ
sinh2 r

`

1 ` sinh2 r
˘

, (3.65a)

∆γφrr, n̄ds “
2χ2

t:0rrs

κ

`

1 ` 2 sinh2 r
˘

n̄d cosh2 r . (3.65b)
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3.4.3 Qubit spectroscopy in the presence of squeezed photons

Even in the absence of a measurement drive on the BO, its squeezing is

expected to affect the qubit spectral properties (Eqs. 3.62a and 3.63a). In

the following, we show experimental evidence of this effect, by probing

a transmon while continuously squeezing a BO. We use a qubit-oscillator

detuning of pδq ´ δaq{2π “ ´100 MHz, thus placing the system in the weak

dispersive regime χtrr = 0s{2π “ ´250 kHz.

The pump detuning is set to δa{2π “ 30 MHz. For increasing two-photon

pump amplitudes inducing up to 8 dB of squeezing, we acquire the qubit

reflection spectrum through its dedicated port. On Fig. 3.12a we plot the

transmon response in the complex plane (top) and its modulus (bottom).

As the power increases (according to the color code referenced to the x-

axis of panel b) we witness two effects. First, the amplitude response shifts

(see inset of bottom panel), as a consequence of the transmon resonant

frequency moving. Second, the complex response circle shrinks and the

amplitude response broadens, as a consequence of the induced dephasing

on the transmon. The data (open circles) is fitted to circles in the complex

plane (solid lines) (section 3.1.2). We extract the magntiude of the qubit

frequency shift and linewidth broadening at every pump power, and plot

them on Fig. 3.12b, referenced to S “ 0 dB (pump off). While the transmon

frequency shift displays a clear trend, the induced dephasing signal only

takes out from the noise at high squeezing amplitudes. Indeed, the bare

linewdith of the transmopn being γt{2π “ 9.4 MHz, broadenings of less

than 0.5 MHz cannot be consistently resolved. Finally we plot the expected

trend as solid lines using Eqs. 3.64a and 3.65a with no fit parameter. It shows

a qualitative agreement with the data.

We reproduce the same experiment for various pump detunings δa{2π P

t0, ˘20, ˘30, ˘40u MHz. For δa “ 0 (Fig. 3.13 left) we reproduce the

data of Fig. 3.11. There, the balance of resonant two-photon pumping and

dissipation stabilizes a squeezed steady-state. At maximal steady-state anti-

squeezing, the oscillator mean occupancy is found to be of less than 2

photons8. Hence, the variations of ∆ωq and ∆γφ are consistent with a con-

stant dispersive interaction strength. This is in stark contrast with the case

|δa| " κ{2, where the two-photon pump is balanced, not by dissipation, but
by the detuning δa. Three notable features are visible in Fig. 3.13 right. First,

8 Using formulas of section 2.1, one can show that when δa “ 0 then xa:ay “ p
?

G ´ 1q{4.
At maximal steady-state anti-squeezing, G ă 18 dB so that xa:ay ă 1.75.
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Figure 3.12 Spectral response of a qubit interaction with squeezed

photons at δa{2π “ 30 MHz. See description main text.

for each detuning, as the pump amplitude approaches the instability point

λ “ |δa| where the squeezing parameter r “ 1
2 tanh´1 λ{|δa| diverges, we

observe rapidly increasing frequency shifts and line broadenings, as detailed

in Fig. 3.12. Second, the symmetry between positive and negative detunings

is broken. Indeed, the BO frequency shifts towards the qubit for δa ą 0 and
away from the qubit for δa ă 0. Interestingly, despite this asymmetry, the
qubit frequency shifts down with increasing λ, regardless of the sign of δa,

showing that the dominant effect at play is the BO enhanced fluctuations, and

not a trivial modulation of the BO-qubit detuning. Finally, the magnitudes

of the qubit spectral shift and broadening are large. At maximal squeezing,

the qubit frequency shifts by at least 4 times the bare qubit-BO dispersive

coupling. Such large shifts cannot be explained by an unchanged interaction

strength and a simple increase in the BO population. Indeed, we estimate

sinh2 r ď 1.2 over this entire data-set, thus hinting towards a significant
enhancement of the qubit-BO interaction strength.
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Figure 3.13 Spectral response of a qubit interacting with a DPO.

Left: The pump frequency is set to ωp “ 2ωa. Top (Bottom): qubit

frequency shift (induced dephasing) versus pump amplitude (x-axis).

The data (stars) are fitted with analytical expressions (solid lines)

adapted from [Eddins 2019] (section 3.3). The shaded area marks the

instability region. Right: same as left panels with the pump frequency

set to ωp “ 2ωa ´ 2δa, where δa{2π P t˘20, ˘30, ˘40u MHz. The

solid lines correspond to Eqs. 3.64a and 3.65a with not fit parameter.

A common colormap for the left and right panels maps the pump

amplitude to an equivalent squeezing (steady-state anti-squeezing)

for δa ‰ 0 (δa “ 0) in decibels.
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3.4.4 Enhancing the dispersive interaction via anti-squeezing

Finally, using Eqs. 3.64b and 3.65b together with the photon-number cali-

bration P0, we extract the dispersive interaction strength from the suscpetibil-

ity of the transmon to a coherent drive resonant with the BO.

First we detail this procedure for δa{2π “ 20 MHz on Fig. 3.14. For in-

creasing two-photon pump power, triggering up to 5.8 dB of squeezing, we

record the transmon relfection spectrum in the presence of an increasing res-

onant drive power on the BO. Top panels of Fig. 3.14a display the amplitude

response for S “ 1.9, 2.9, 5.3 dB (left, center, right). The color represents

the number of injected photons by the resonant drive n̄d “
a

Pdrive{P0, as

indicated on the x-axis of the bottom panels. The data (open circles) is fitted

to circles in the complex plane (solid lines) (section 3.1.2), and the insets

zoom-in on the peaks demonstrating the fit accuracy. The fitted values of the

frequency shift and linewidth broadening referenced to the undriven case

(but with the pump on),∆ωqrr, n̄ds and∆γφrr, n̄ds, are plotted on the middle

and bottom panels of Fig. 3.14 a. Using Eqs. 3.64b and 3.65b, we reconstruct

the dispersive interaction strenght, and plot it on Fig. 3.14 b left. The full

data record of 72 measurement runs (grey square) is coarse-grained (black

squares), and compared with the analytical expression for the dispersive

interaction with a transmon (Eq. 3.56c).

We reproduce the same experiment for various pump detunings δa{2π P

t0, ˘20, ˘30, ˘40u MHz. The left panel reproduces the data of Fig. 3.11

when δa “ 0, that shows no enhancement in χ as expected by theory. The

right panel displays χ versus λ in the BO regime |δa| " κ{2. As previously
observed in Fig. 3.13, the symmetry between positive and negative detunings

is broken. This is expected since two different effects contribute to the

variation of χt with squeezing. First, the enhanced fluctuations of the BO

result in an enhanced interaction strength, revealed by the cosh2 r, sinh2 r
factors in Eq 3.56c . This effect is independent of the sign of δa. Second,

as the BO is squeezed, its frequency Ωarrs varies thus modifying the qubit-

BO detuning. It is this effect that depends on the sign of δa. For positive

pump detunings (empty symbols), the BO shifts towards the qubit so the

two contributions add, resulting in a significant increase in χt. We measure

up to a two-fold increase in χt for δa{2π “ `20 MHz, from χt{2π “

´250 kHz to χt{2π “ ´510 kHz at λ{2π “ 17 MHz corresponding to S “

5.5 dB of squeezing. Only 15% of this increase is attributed to the reduced

qubit-BO detuning. The converse is true for negative pump detunings (full

symbols): the BO moves away from the qubit. Remarkably, the effect of
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Figure 3.14 Dispersive interaction of a qubit with squeezed photons

at δa{2π “ 20 MHz. See description main text.
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enhanced fluctuations outweighs the effect of increased detuning, resulting

in a measurable, yet modest, increase in χt even for negative detunings. The

matching of theory to data noticeably degrades at large `|δa|, possibly due

to the narrowing proximity of the idler peak to the qubit.

Out of the maximum two-fold increase of the dispersive interaction

strength, 85% can be attributed to the squeezing. Neglecting the idler con-

tribution proportional to sinh r in Eq. 3.51a would translate into a 1.3-time
enhancement of the coupling strength g. This modest increase comes as a
proof of concept of the potential of BOs in cQED.
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Figure 3.15 Dispersive interaction of a qubit with a DPO. Left:

the pump frequency is set to ωp “ 2ωa. The dispersive interac-

tion strength (y-axis) does not increase with the two-photon pump

amplitude (x-axis). The solid line marks the bare dispersive cou-

pling. Right: same as left panel for δa{2π P t˘20, ˘30, ˘40u MHz,

where families of same |δa| (squares, triangles, circles) are offset

by t0.2, 0.1, 0u MHz for clarity (empty symbols for δa ą 0, full
symbols for δa ă 0). Solid lines correspond to Eq. 3.56c. A common

colormap for the left and right panels maps the pump amplitude to

an equivalent squeezing (steady-state anti-squeezing) for δa ‰ 0
(δa “ 0) in decibels.



4
OPERATING CIRCUIT-QED

SYSTEMS

Quantum systems are fragile by nature. In the wake of the research

surrounding quantum information technologies, there has been a growing

interest in all topics related to their shielding from spurious noise sources.

The target is a bit paradoxical. On the one hand, we wish to create highly

coherent quantum systems to store and process information. But on the other

hand, we seek a high level of control which requires the introduction of

many connections to the outside world, and as many channels of decoherence

[Devoret and Schoelkopf 2013]. Among all the competing platforms for

quantum information processing, superconducting circuits offer a high level

of controllability. The prime reason is their completely artifical nature, which

enables tuning of each of their constituing parameters. They also benefit from

the inherent versatility of electrical circuits, which are meant to combine core

elements in bigger modules of higher complexity. This modular approach

lead to the successful integration of arrays of hundred(s) of qubits on a single

processor [Ball 2021]. There, the redundancy of large arrays is expected to

protect information on timescales greater than the ones of individual qubits.

Bringing so many quantum systems on a single processor, maintaining their

indiviual coherence properties, is an outstanding achievement. Yet so far,

the benefits of redundancy did not quite meet the price paid for complexity

[Krinner 2022; Google Quantum AI 2023].

Alongside the quest for the integration of large qubit-arrays, the ver-

satility and high sensitivity of superconducting circuits is also leveraged

to study hybrid systems (section 1.2). Electromagnetic (EM) forces are

ubiquitous from atomic to macroscopic scales, so that the range of systems

coupling to superconducting EM oscillators is unprecedented. Since all these

hybrid-cQED experiments share a common tool, they also require common

hardware for their operation. This chapter presents some of the challenges

faced by the integration of superconducting circuits in an experiment.

92
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4.1 Preliminary remarks

4.1.1 Architecture overview

All the flavors of cQED share a few key elements required for the

operation of superconducting circuits. In the following, we will focus on

2-dimensional architectures in coplanar-waveguide (CPW) geometry. There,

the circuit modes are delimited by superconducting thin films deposited

on top of a flat substrate, constituing the sample. The sample needs to

be operated at cryogenic temperatures, typically in a dilution refrigerator

(T ď 20 mK). Mounting the sample in the cryostat requires a microwave-

package. It features the following elements:

• The interposer hosts the sample. It typically consists of a printed

circuit board (PCB), wirebonded to the sample on its inner side and

connectorized on its outter side. It conveys electrical signals between

microscopic circuit features and macroscopic lines. For a CPW sample,

the PCB is usually also CPW, or CPW with ground [Pozar 2011].

• The sample-holder hosts the interposer. It takes the form of a metallic

casing, well-anchored to the lowest temperature stage of the cryostat.

An extensive discussion on microwave-package design will be presented in

section 4.2. As for the sample, a standard fabrication recipe will be detailed

in section 4.3.

Next, the microwave-package is connected to signal lines, such that:

• On the descent path, filters are inserted to prevent noisy signals from

reaching the circuit.

• On the ascent path, amplifiers are inserted to make the most of the

tiny signals output by the circuit.

The design and typical performances of a quantum-limited parametric am-

plifier will be discussed in section 4.4.

As for the rest of the wiring diagram, it is detailed on Figure 4.1. We

use the four channels of a Keysight PNA N5222A to measure the reflection

spectra of the resonator and transmon ports, denoted Γa and Γq respectively.

Two DC current sources Yokogawa GS200 are used to bias the flux loops

of the SNAIL and the SQUID with fluxes Φa and Φq. The Traveling Wave

Parametric Amplifier (TWPA) provided by the group ofW. Oliver at Lincoln

Labs is powered by a R&S SGS100A. It amplifies the transmon signal by

about 20 dB away from its dispersive feature at 6.0 GHz. The tone that

pumps the SNAIL is provided by an Agilent Technologies E8257D and

travels to the sample either through the resonator PNA drive line, or through
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Figure 4.1 Experimental wiring
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Figure 4.2 Experimental wiring - legend

a distinct one. In order to maximize the amount of pump power reaching

the sample around the parametric resonance ωp{2π « 14 GHz, without

giving up on line attenuation at the resonance frequency ωa{2π « 7 GHz,
we designed a dedicated microwave line for the pump. It includes a smaller

amount of flat attenuation than the drive line, but features a high-rejection

high-pass filter, with a pass-band from 11 GHz to 24 GHz. This pump line
displays around 26 dB less attenuation than the drive line above 11 GHz,

while maintaining sufficient attenuation around the oscillator frequency.

These two orders of magnitude were crucial to approach instability in the

BO regime λ „ |δa| " κ{2, without heating up the cryostat. Finally a R&S
SMB100A provides the coherent drive on the resonator injecting photons to

calibrate the dispersive interaction strength. All instruments are referenced

to a Stanford Research Systems FS725 Rubidium clock.
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4.1.2 Noise sources

What is so scary in the environment that we need to shield our dear

superconducting circuit from? This part aims at giving a brief overview of

the noise sources detrimental to the operation of superconducting circuits.We

will define these sources, give their origins and introduce possible mitigation

strategies.

Resonant noise EM fields oscillating near the characteristic frequencies

of the circuit can induce spurious transitions. The potentially resonant fre-

quencies range from 10MHz (transition frequency of a low-frequency qubit)

to 20GHz (typical plasma frequency of an Aluminium Josephson junction),

defining the operating bandwidth of the circuit. Since telecommunication

frequencies belong to this bandwidth, it is maximally polluted. Resonant

noise can access the sample either through the control lines, or as direct

radiations impinging on the substrate.

Ñ Introducing attenuation in the control lines reduces the noise amplitude

reaching the sample. As for direct radiations, they can be absorbed by a good

conductor. In a metallic layer, EM radiations decay exponentially on a scale

given by the skin depth δs “
a

2{ωµσ, where ω is the angular frequency

of the noisy signal, and µ, σ are the permeability and conductivity of the

medium [Pozar 2011]. For high purity copper1, typically used as a mechani-

cal support, we find δsr10 MHzs “ 2.3 µm and δsr20 GHzs “ 50 nm.

High-frequency noise The superconducting material delimiting the circuit

modes has an intrisic energy scale ∆, giving the pairing energy of a Cooper

pair2. Any EM radiation above this frequency is likely to break Cooper pairs

in the metallic film, hence creating quasiparticles that could be detrimental

to the coherence of the circuit modes [Wang 2014; Wilen 2021]. While the

quasiparticle density in superconducting circuits is known to exceed the

theoretically expected value by orders of magnitude [Visser 2011], their

dominant generation mechanism is still under debate.

Ñ Dedicated infrared filters based on dielectric absorbents can be used

to damp high-frequency noise propagating along the control lines [Serniak

2019; Danilin 2022]. As for direct radiations, a thin layer of a good conductor

can again absorb these noisy fields. But one needs to be very careful with the

1 With a residual-resistance ratio (RRR) of about a hundred: σ100
Cu r0Ks “ 5.109S.m´1

2 ∆ is the pairing energy, or half the superconducting gap width:∆Al{h « 40GHz,∆Ta{h «

170GHz, ∆Nb{h « 370GHz
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overall light-thightness of the conductive enclosure: any seam or opening

will let radiations with a shorter wavelength go through [Connolly 2023].

Coating metallic shields with absorbing materials has also been tested to

limit exposure to infrared radiations [Kitzman 2022].

Stray electric fields Any isolated metallic island can acquire a DC offset

charge, fluctuating over time. For multiple disjoint islands, the independent

offset charges translate into noisy differential potentials. If the circuit mode

of interest participates into several islands, these noisy potentials may affect

its dynamical properties. This mechanism is called charge noise.

Ñ Regardless of the structure of the circuit mode – which can be engineered

to eradicate the influence of charge noise [Koch 2007; Yan 2016] – it is

essential to provide a stable charge reference for the circuit. Through the

interposer, the circuit-ground is typically connected to the fridge skeleton

which has a gigantic capacitance.

Stray magnetic fields Similarly to the charge noise argument, if the circuit

mode of interest participates into a metallic loop, it will be imparted by noisy

stray magnetic fields. This mechanism is called flux noise. The presence

of macroscopic stray magnetic fields – such as the ones emanating from a

nearby ferrite circulator, or the subway going under the laboratory building

– obviously contributes to flux noise. In addition it is also the product of

microscopic mechanisms, whose understanding is a longstanding goal of

the field [Wellstood 1987].

Ñ In order to limit the amplitude of macroscopic stray fields, magnetic

shields can be placed around or within the sample holder. They typically

include a layer of a high-µ material surrounded by a thick type-I supercon-

ductor3. Also, the use of magnetic materials in the vicinity of the sample

must be avoided. Thus, hybrid systems whose operation requires magnetic

fields such as spin qubits hardly lives with flux-tunable devices.

Material sources The dominant source of decoherence for superconduct-

ing circuits lies in in their constituing materials, and consists in any degree

of freedom with a finite suscpetibility to EM fields. Dielectric residues such

as organic contaminant or oxyde layers accelerate energy relaxation [Woods

2019]. Similarly, gaseous adsorbents in the vicinity of superconducting loops

may be responsible for flux noise [Kumar 2016; Aquino 2023].

3 Note that the high-µ material needs to be inside the superconductor, and not the opposite

[Krieger 2015].
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Ñ Mitigation of material sources of decoherence can primarily be addressed

through the optimization of the fabrication process [Woods 2019]. It includes

various cleaning steps, before and after metallic deposition. It also consists

in finding the materials which naturally grow with fewer deffects, such as

recently introduced Tantalum whose oxyde is of higher quality than Niobium

[Place 2021]. Finally, vacuum-tight packages have also been tested to limit

gaseous contamination [Mergenthaler 2021].

Many tricks can be played to isolate the circuit from spurious noise sources.

From the previous listing it is clear that a good Faraday cage – good meaning

thick enough, seamless and well grounded – will prevent most of the EM

spectrum to interact with the system. If no global magnetic field is required

to adress the experiment, magnetic protection can also be advantageous.

While the sample-holder and extra shields can readily address these issues,

how must we design these parts to avoid adding extra decoherence channels?

4.2 Packaging free of package modes

The sample-holder is the mechanical support of the microwave-package

assembly, tightly anchored to the cryostat base plate. It is metallic, typically

made ouf ot high-purity copper, acting both as a Faraday cage, and a cold

source for the interposer. It is also the closest mechanical structure from the

sample, thus the one that needs to be designed with the greatest care.

As we are building a tight conductive enclosure around the sample, we

are also shaping the density of states of its environment, singling out a few

modes. These so-called package modes can interact with the sample circuit

modes, and limit their coherence. This part is dedicated to the description of

these package modes, and the demonstration of their detrimental effect on

the system. Finally, we will present the Joint Assembly for the Wiring of

Superconducting circuits (JAWS), a microwave-package design developped

over the course of this thesis.
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4.2.1 Package modes: where are they?

The CPW architecture features a top ground plane, delimiting the circuit

modes of interest. There exists two types of package modes: the ones living

in the substrate below the ground plane, dubbed chip modes, and the ones

living in vacuum above the ground plane, dubbed box modes. Depending on

the structure of the interposer, the chip modes can also extend away from

the substrate.

Figure 4.3 Sample-holder first guess and package modes. The

sample (blue) sits in a pocket dug in the interposer (yellow), held by

the sample holder (red). The interposer is connectorized with coaxial

launchers on its outter rim (yellow), and wirebonded to the sample

on its inner side (black). All the conductive parts are marked in black

(either full lines, or dashes or stripes). The chip (box) modes live in

the blue (red) shaded region.

As a concrete example, we consider the package design sketched on

Fig. 4.3. If features a hollow sample-holder, holding an interposer in a

CPW with ground geometry. It is also pierced with conductive vias. The

sample is glued in a metallized pocket dug in the interposer dielectric. As

a consequence, the chip modes are confined to the substrate only, and the

box modes extend to the entire empty part of the package. This design first-

guess is not irrational. Placing the interposer in a hollow sample-holder is

mechanically reliable and easy to implement. Piercing the interposer with

conductive vias is very standard for isolation of the signal lines. Finally,

metallizing the back of the sample pocket is a fair choice: it ensures a

wide surface contact between the sample and the interposer, which ought

to be beneficial for thermalization purposes4. Yet so far, the location of the

package modes – both in space and frequency – has not been taken into

account.

4 While the question of the sample thermalization will not be addressed in this thesis, we

report the interested reader to [Swartz and Pohl 1989] for a historical review on thermal

boundary resistance.
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4.2.2 Package modes: who are they?

In this configuration, the chip and box modes resemble the ones of a

rectangular dielectric cavity, coated in metal. In the following we present

analytical results for such a cavity, that will let us estimate the package mode

properties.

Following [Pozar 2011], the modes of a rectangular cavity with dimen-

sions Lx, Ly, Lz are defined by three integers pm, n, lq. Their resonant fre-
quencies read:

ωm,n,l “
c

?
µrεr

d

ˆ

πm

Lx

˙2

`

ˆ

πn

Ly

˙2

`

ˆ

πl

Lz

˙2

, (4.1)

where c is the speed of light in vacuum and εr (µr) is the relative permittivity

(permeability) of the cavity. In the absence of magnetic materials, dissipation

of the EM field is mediated either by dielectric or conductive effects. The

total quality factor reads:

1
Qm,n,l

tot
“

1
Qm,n,l

diel
`

1
Qm,n,l

cond
, (4.2)

where Qm,n,l
diel and Qm,n,l

cond are the dielectric and conductive quality factors.

The dielectric quality factor reads:

Qm,n,l
diel “ Qdiel “

1
tan δ

. (4.3)

Notably for a rectangular cavity, this contribution does not depend on the

mode geometry. It defines the inverse of the tan δ parameter. As for con-
ductive losses, they read:

Qm,n,l
cond “ 2π

Vm,n,l

λ3
m,n,l

Z0

Rs

c

µr

εr

, (4.4)

where Z0 “
a

µ0{ε0 is the impedance of vacuum, Rs “ pσδsq´1 is the sur-

face resistivity of the metallic coating, λm,n,l “ 2πc{ωm,n,l is the mode

wavelength, and Vm,n,l the effective mode volume. For a flat substrate

(Lx, Ly " Lz), the lowest frequency modes are of the form p1, n, 0q and

pm, 1, 0q. The wavelengths and mode volumes for p1, n, 0q read:

λ1,n,0 “
2LxLy

a

nL2
x ` L2

y

, V1,n,0 «
2LxLyLz

n2Lx{Ly ` Ly{Lx

.

Formulas for pm, 1, 0q are the same upon exchange of n by m and Lx by Ly.

Specifically when Lx “ Ly, we find λ1,1,0 “
?

2Lx and V1,1,0 « L2
xLz.
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The substrate is covered in superconducting material on its top part, and

rests on the metallized interposer pocket. Then, the chip modes are confined

to the substrate (neglecting their extension in the volume of interposer before

the first line of vias). For a silicon slab (εr “ 11.9 and µr “ 1) of size
Lx ˆ Ly ˆ Lz “ 11 ˆ 10 ˆ 0.3 mm 3, the fundamental mode resonates

at ω110{2π “ 5.9GHz. It falls exactly within the operating bandwidth of
superconducting circuits. Conductive losses for the chip modes occur mostly

in the metallic coating of the interposer pocket. For an interposer covered in

electrodeposited gold5, we find at the fundamental frequency Rs « 8 mΩ,
so that Q110

cond « 3.103. In addition, high-resistivity silicon typically has

tan δ « 3.10´7, so that Qdiel « 3.106. Thus the overall quality factor of

the fundamental mode is dominated by the conductive losses at the PCB

interface, and its linewidth is κ110{2π « 2 MHz.

As for the box modes, their properties strongly depend on the inner shape

of the sample-holder cover. Yet, we can expect to find them in the same

frequency range, and with similar coherences as the chip modes.

4.2.3 The risk of uncontrolled package modes

Let us imagine that we succeeded in fabricating a state-of-the-art qubit on

the sample, with a coherence time exceeding 100 µs. What is the influence

of a parasitic mode, for instance one of the package modes, on its coherence

properties?

We use the Jaynes-Cummings model to estimate the impact of the para-

sitic mode – playing the role of the oscillator a – on the qubit (section 3.2.1).

We denote ∆ the detuning between both modes, and g their resonant cou-
pling strength. As the fundamental chip mode frequency lies in the middle

of the operating bandwidth of the circuit, it is credible – yet unlucky – that

both modes are on resonance. If not, the detuning can be as high as a few

GHz. Experiments have shown that the coupling strength can be as high as

10 MHz [Huang 2021]. In addition, as cQED experiments typically feature a

collection of coherent tones applied on the system, the probability of driving

a package mode is non-negligible. In that case, it would be populated with a

finite number of coherent photons n̄d. Finally, we denote n̄th the parasitic

mode thermal population.

First, the qubit will be affected by dressed decoherence mechanisms.

As introduced in section 3.2.1, in the dispersive limit g ! ∆, the qubit

5 Electrodeposited gold typically has RRR=10, so that σ10
Aur0Ks “ 4.108 S.m´1 [Bernat

2007]
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Figure 4.4 Coherence limitation inherited from parasitic modes.

Purcell relaxation time (left) and induced dephasing time (right) ver-

sus the detuning between the qubit and the parasitic mode, for g{2π P

t0.1, 1, 10u MHz (red, blue, yellow), and κ{2π P t0.1, 0.3, 1u MHz

(dark to light colors) for n̄d “ 1 and n̄th “ 0. Notably the Purcell
relaxation time decreases with κ, while the induced dephasing time
increases with κ.

relaxation rate is enhanced by the so-called Purcell contribution. This result

can actually be extended to the weak-resonant limit ∆ ! g ! κ. There, the
Purcell decay rate induced by the parasitic mode on the qubit reads [Bienfait

2016]:

γκ “
g2κ

∆2 ` κ2{4 . (4.5)

Note that for stronger couplings, hybridization of the modes at resonance

leads to a non-perturbative redefinition of their spectral properties (sec-

tion 3.1.3). Second, a finite population in the parastic mode will dephase

the qubit. Given the moderate reported couplings to package modes, we

limit the discussion to the weak-dispersive limit χ0 “ g2{∆ ! κ. There, the
measurement-induced dephasing rate reads:

γφ “
2χ2

0
κ

n̄d `
χ2

0
κ

n̄thpn̄th ` 1q . (4.6)

On Fig. 4.4 we plot the Purcell-limited relaxation times γ´1
κ , and induced-

dephasing times γ´1
φ of the qubit coupled to a parasitic mode. As expected,

these spurious effects are less a limitation for the qubit as g decreases, or ∆
increases. That being said, for typical spurious coupling values, while the
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induced relaxation is only stringent in a narrow frequency span around reso-

nance, the induced dephasing is significant up to large detunings. In addition,

the two effects follow inverse trends with κ. Indeed, while dressed deco-
herence is hindered by a parasitic mode with high coherence, measurement-

induced dephasing is enhanced when the parasitic excitations are long-lived.

As a conclusion, the sample-holder design must be driven by a careful

shaping of the package-mode distribution, both in space – to reduce their

coupling to the circuit modes – and in frequency – to push them as far as

possible from the operating bandwidth.

4.2.4 Package mode engineering and lightening effect

Earlier we made a first-guess for the sample-holder design, that lead to

the proliferation of parasitic modes in the operating bandwidth of the circuit.

How can we engineer these package modes so that they do not limit the

performance of the circuit modes?

Figure 4.5 Sample-holder educated guess and lightening effect

(same coloring as Fig. 4.3). Opening a vacuum gap below the chip

draws the chip modes (shaded blue) away from the circuit, while

lightening them. Constraining the volume above the chip to its bare

minimum increases the box mode (shaded red) frequencies.

The answer is two-fold: the substrate needs to be suspended above

vacuum [Lienhard 2019], and the sample-holder cover adjusted to fit the

chip footprint (Fig. 4.5). As the conductive layer at the back of the substrate

is removed, the chip modes are free to extend in the volume below. If on top

of that this volume is free of PCB dielectric – in other words, the substrate is

suspended – then the effective permittivity seen by the modes is significantly

lessened. As a consequence, we expect the chip mode frequencies to increase

as the volume of vacuum below the substrate gets bigger. This effect, that

we refer to as lightening effect, is rather conterintuitive in the first place:

increasing one’s mode volume to increase one’s frequency? Indeed, given

that the substrate is flat (Lx, Ly " Lz), the lowest frequency modes have
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Figure 4.6 The suspended chip, geometry and field distribution.

Top: geometry used for simulations. The substrate (green) is a flat

silicon slab. A perfect conductor boundary condition is imposed on its

top face to mimick CPW geometry. It is surrounded by vacuum from

the top (grey) and the bottom (blue). Middle: (110) mode electric

field profile, in a dimetric projection with a cut 1 mm below the

substrate (left), and in a side-view in the yz-plane (right). Bottom:
same for (120) mode. The colorscale displays the electric field from

blue (low intensity) to red (high intensity) and is common to all plots.

no deformation in the z-direction. Thus changing the Lz dimension has no

geometric impact on their frequencies (see Eq. 4.1), and the dominant effect

is the mode lightening.

We check this assertion through EM finite-element simulations of an ideal

geometry, namely, the suspended chip (Fig. 4.6 top). It features a flat slab of
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silicon (εr “ 11.9) with dimensions Lx ˆ Ly ˆ Lz “ 11 ˆ 10 ˆ 0.3 mm3,

surrounded by vacuum from above and below, both with the same depth

Lvac. In order to mimick the CPW geometry, a perfect-conductor boundary

condition is imposed on the top surface of the dielectric. First, computing

the eigenmodes of this structure reveals the full spatial extent of the chip

modes (Fig. 4.6 middle and bottom). In the presence of a vacuum pocket

below the substrate, the electric field of the chip modes appears to be much

more intense in the pocket than in the substrate (right panels). Second, as

Lvac is increased from 0.1 mm to 3 mm, the frequencies of the first three

chip modes increase significantly, freeing the operating range (Fig. 4.7).

The fundamental box mode frequency is not imparted by the depth of the

vacuum pocket. Indeed, as it lives completely in vacuum, it is not prone

to the lightening effect. Finally, increasing Lvac beyond 3 mm does not

significantly change the spectrum, up to Lvac “ 10 mm where the chip and

box modes (011) and (101) come into play (not shown).

The coupling strength g between circuit and parasitic modes strongly
depends on the geometry of the former. Yet, in a CPW architecture, the

circuit modes extend primarily in a close neighboorhood of the substrate

surface. Putting aside the symmetries of the modes, their coupling strength

grows when their field distributions overlap. Thus, the greater the parasitic

modes participate into the substrate, the more likely they are to couple

to circuit modes. In order to gauge this overlap, we introduce the energy

participation ratio of a mode pm, n, lq into a volume Vk of the system:

pk
m,n,l “

ş

Vk
εk

r |Em,n,lprq|2d3r
ř

i

ş

Vi
εi

r|Em,n,lprq|2d3r
, (4.7)

where k P tsubstrate, bottom pocket, top pocketu, εk
r is the realtive permit-

tivity of the volume Vk (assumed to be homogeneous), and Em,n,lprq is the

electric field distribution of the mode pm, n, lq. We plot this quantity for the

fundamental chip mode in Fig. 4.7 right. As the depth of the vacuum pocket

is increased, the energy stored in the fundamental chip mode is displaced

from the substrate to the bottom pocket, which confirms the observation of

Fig. 4.6 (middle and bottom right).

As a conclusion, opening a vacuum pocket underneath the substrate not

only increases the chip mode frequencies, but also displaces their field lines

away from the circuit. Even though the circuit modes are also imparted by

this suspended architecture, the CPW geometry being self-sustaining, their

geometry is marginally modified. In the end, suspending the chip appears to
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Figure 4.7 The suspended chip, frequency and participation. Left:

parasitic mode frequencies (y-axis) versus vacuum depth below and

above the substrate (x-axis). Right: participation ratio of the funda-

mental chip mode (y-axis) in every element of the system (color)

versus vacuum depth.

be a winning strategy to free the operating region from spurious modes, and

limit their coupling to the circuit modes.

4.2.5 Joint assembly for the wiring of superconducting circuits

The joint assembly for the wiring of superconducting circuits (JAWS)6

is a microwave-package that was designed with two constraints:

(i) Eradicate spurious modes in the operating bandwidth of the circuit.

(ii) Make a robust package that could be reused from sample to sample,

with minimal cycling maintenance.

Following the spurious-mode analysis of the previous sections, fullfilling

(i) requires the substrate to be suspended in a tight enclosure. As for (ii), it

requires the outter connectors to be mechanically attached to the sample-

holder. Indeed, many package designs rely on connectors solely soldered to

the interposer. There, after a few cycles, the solder joints are likely to break.

At this stage, it is worth mentioning that ignoring (ii) leads quite naturally

to the design developped by Will Oliver’s group at MIT [Huang 2021].

6 Full credit for Clarke Smith on this one.
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What about the shark thing? Before turning to a detailed description

of the package geometry, let us take a glance at the design. It features a

gold plated copper box, with 6 SMA connectors for microwave signals, and

a microD 9-pin connector (aka D-Sub) for DC signals (Fig. 4.8 left). The

SMAs are threaded in the outter part of the metallic casing, and the D-Sub

is attached by screws. DC signals are routed through wires coming out of

the D-Sub, and soldered to the PCB. Microwave signals are routed through

glass bead connectors, soldered in stepped-drilled pockets in the box walls.

Each glass bead pin sticks out of the inner walls (Fig. 4.8 inset), where they

are soldered to the PCB signal lines (soldered not shown on the close up).

For each line, two solder joints are also used to ensure ground continuation

at the interface. Since it is very hard to solder directly on a bulky piece of

metal, two shark fins are extruded out of the inner package walls. Their small

volume („ 0.5 mm3) eases the soldering process to the PCB ground plane.

They also gave its name to the microwave-package: JAWS.

Figure 4.8 JAWS. Left: picture of the JAWS package, without its

cover (picture courtesy of Samuel Deleglise). The black bar scales

10 mm. Red inset: close up on the box-to-PCB interface before

soldering. The glass bead pin is aligned with the PCB signal line.

The left shark fin is highlighted. A metallic rod is placed near the

right one, ready for soldering. The black bar scales 2 mm. Bottom

right: Roger Kastel’s design of JAWS cover, the novel by Peter

Benchley (1974) adapted on screen by Steven Spielberg (1975).
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Assembly The sample-holder is a 3-story box featuring a top and a bot-

tom part sandwiching a ring (Fig. 4.10). The ring is pierced with holes for

DC and microwave connectors. The top and bottom parts are carved as to

accomodate 5 mm deep rectangular cavities implementing the lightening

effect (section 4.2.4). The PCB is attached to the bottom part with screws,

and soldered to the ring through the glass bead pins and the shark fins. This

over-constrained design7 is a necessary evil for the integration of shark fins,

which improve impedance matching at the box-to-PCB interface. The PCB

is 1.52 mm thick, and is made out of 5 layers of ROGERS 4350B covered

in 17 µm of electrodeposited copper with EPIG finish (nickel free). This

multi-layer stack is used to distribute DC and microwave signals all around

the sample (Fig. 4.9). The PCB is pierced with conductive vias ensuring iso-

lations of the signal lines. The sample sits in a 0.4 mm deep and 11ˆ10mm2

wide pocket, milled away everywhere but on 4 rectangular posts.

Figure 4.9 JAWS electrical layout. Left: PCB layout of the map-

ping between outter connectors and inner signal pads, for the mi-

crowave (RF) signals in blue, and DC signals in red (picture courtesy

of Alex May). Note that the blue arrows do not represent the actual

signal paths. Right: chip layout (distances in millimeters).

7 The bottom part is screwed to the ring, the ring is soldered to the PCB, the PCB is screwed

to the bottom part. Yet, there is no such thing as all-to-all connectivity in tight mechanical

assemblies! One link has to be loose.
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Figure 4.10 JAWS mechanical parts. Top: top part of the box.

Middle: ring of the box and PCB. Bottom: bottom part of the box.
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Lightening in JAWS The substrate is supsended on 4 dielectric posts, and

it is surrounded by a 5 mm deep hollow cavity from the top, and similarly

from the bottom. For the environment density of state to be effectively

shaped, these two hollow cavities need to be merged into a unique one,

through galvanical connection in the chip plane. This connection is ensured

by the conductive vias regularly spaced around the sample, shorting the

top and bottom planes of the PCB. Thus, one only needs to enforce contact

between the PCB and the top part (since the PCB is already attached with

screws to the bottom part). To this end, the box dimensions are adjusted so

that when it is closed, the top part rests on the PCB surface, as demonstrated

by the gap between the top part and the ring (Fig. 4.11).

Figure 4.11 JAWS gap. Box closed with PCB inside: the gap be-

tween the top part and the ring is a signature of the contact between

the top part and the PCB.

We reproduce the simulations of section 4.2.4 with a JAWS-like ge-

ometry. Specifically, we add a 1.52 mm thick volume of PCB dielectric

(ROGERS 4350B, εr “ 3.66) around the substrate. We use a square ring

geometry in order to mimick the presence of conductive vias 1 mm away

from the pocket edges (Fig. 4.12 top). We impose a perfect conuductor

boundary condition on the top face of the PCB, and we consider a tight

fit between the PCB and the substrate. Thus, the chip and box modes are

still decoupled. Even though the eigenmodes of the suspended geometry

(Fig.4.6) are dressed by the presence of the PCB, we recover the lightening

effect freeing the operation bandwidth up to 16 GHz (Fig. 4.13).
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Figure 4.12 JAWS lightening effect, geometry and field distribu-

tion. Top: geometry used for simulations. The substrate (green, same

as in Fig. 4.6), is surrounded by the PCB (orange). A perfect con-

ductor boundary condition is also imposed on the PCB top face to

mimick CPW geometry. Middle: (110) mode electric field profile, in

a dimetric projection with a cut 1 mm below the substrate (left), and

in a side-view in the yz-plane (right). Bottom: same for (120) mode.
The colorbar displays the electric field from blue (low intensity) to

red (high intensity) and is common to all plots.
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Figure 4.13 JAWS lightening effect, frequency and participation.

Left: parasitic mode frequencies (y-axis) versus vacuum depth below

and above the substrate (x-axis). Right: participation ratio of the

fundamental chip mode (y-axis) in every element of the system

(color) versus vacuum depth.

Performances The performances of the JAWS package were tested in-

directly, through the measurement of actual samples. The argument is the

following: if a sample is measured with a certain level of coherence, it means

that the package does not limit it up to that level.

In the following, we present the results of the tests carried out by Em-

manuel Flurin with a transmon8 fabricated at CEA (Saclay). This device, mea-

sured in a JAWS package, displays an average relaxation time T1 “ 170 µs
(Fig. 4.14a). This state-of-art lifetime is the result of a careful optimization

of the fabrication recipe. On top of that, it shows that JAWS can sustain

long-lived mode on the order of 200 µs. Next, we perfom a Ramsey spec-

troscopy of the parasitic modes [Huang 2021]. It consists in repeating a

Ramsey experiment on the qubit, while sweeping the frequency of another

microwave tone applied on the same port. This extra drive probes the envi-

ronment. When it hits a mode coupled to the device, the induced parasitic

population dephases the qubit (Eq. 4.6), which limits the Ramsey coherence

time T2R (Fig. 4.14b). This protocol identifies three parasitic modes coupled

to the transmon, at 15.4, 18.7, and 19.3 GHz. The lowest detected mode

8 The substrate is in Sapphire, and the transmon pads are made out of sputtered Tantalum.

The qubit frequency is ωq{2π “ 6.13 GHz.
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Figure 4.14 JAWS performances. (a) Left: histogram of relaxation

times (y-axis) of a highly coherent transmon in a JAWS package,

measured over 12 hours. Right: best T1 experiment, demonstrating a

relaxation time in excess of 200 µs. (b) Ramsey fringe decay time (y-
axis) versus frequency of a drive probing the environment (x-axis).

could be either the chip (110) mode, or the box (110) mode, as predicted by

simulations (Fig. 4.13). Yet it is impossible to precisely identify modes with

a single experiment. Also, the circuit patterned on the chip and the presence

of wirebonds at the surface are likely to dress the parasitic modes, and shift

their frequencies. While this experiment would need to be repeated with

qubits located all around the chip to rule out the presence of other parasitic

modes, this first result is very promising. It demonstrates the potential of the

JAWS package in freeing experiments of spurious modes up to 15 GHz.
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Credits The JAWS package is the product of a joint effort at Laboratoire

de Physique de l’École Normale Supérieure, orchestrated by the author of

this thesis since late 2018. Zaki Leghtas and Clarke Smith took part in the

inital design discussions. Then, Pascal Morfin and Anne Denis designed the

mechanical parts and the PCB respectively. Not only did they translate those

ideas on CAD files, but they also polished them, bridging the gap between

physics and engineering. Finally, even though these shark fins are not deadly

as the original JAWS ones, they proved difficult to machine. Matthieu Sardin

has all the credit for crafting the first boxes in the laboratory machine shop.

Since then, the JAWS package has switched to medium-scale production.

Around 50 boxes have been delivered to mulitple research groups, including:

• Laboratoire de Physique ENS Paris - Quantic Team,

• CEA Saclay - Quantronics,

• LKB - Optomechanics and Quantum Measurements Group,

• Alice & Bob,

• Laboratoire de Physique ENS Lyon - Quantum Circuit Group,

• Laboratoire de Physique de l’École Polytechnique,

• Thales - unité mixte CNRS,

• ESPCI - Laboratoire de Physique et d’Étude des Matériaux.

The experiments carried out cover many flavours of cQED, demonstrating

the great versatility of this package. Finally, we conclude with a list of

publications that use the JAWS package:

• E. Albertinale, et al. ”Detecting spins by their fluorescence with a

microwave photon counter” - Nature 600 434–438 (2021),

• W. C. Smith, et al. ”Magnifying Quantum Phase Fluctuations with

Cooper-Pair Pairing” - Phys. Rev. X 12, 021002 (2022),

• C. Berdou, et al. ”One hundred second bit-flip time in a two-photon

dissipative oscillator” - Phys. Rev. X Quantum 4 020350 (2023),

• E. Billaud, et al. ”Microwave fluorescence detection of spin echoes” -

arXiv:2208.13586 (2022),

• M. Villiers, et al. ”Dynamically enhancing qubit-photon interactions

with anti-squeezing” - arXiv:2212.04991 (2022),

• Z. Wang, L. Balembois et al. ”Single electron-spin-resonance detec-

tion by microwave photon counting” - Nature 619 276-281 (2023),

• Léo Balembois, et al. ”Practical Single Microwave Photon Counter

with 1022 W/
?

Hz sensitivity” - arXiv:2307.03614 (2023),
• B.-L. Najera-Santos, et al. ”High-sensitivity AC-charge detection with

a MHz-frequency fluxonium qubit” - arXiv:2307.14329 (2023).
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4.3 Sample fabrication

In this section we give the recipe of the sample measured in chapter 2 & 3.

It is made out of a 280 µm thick intrinsic silicon chip, sputtered with 100 nm

of niobium. A first laser lithography step patterns the large features of the

circuit on S1805 resist. It is revealed inMF319, and subsequently etched with

SF6. The Al/AlOx/Al Josephson junctions are fabricated during a second

step of electronic lithography, using a Dolan bridge technique on a bilayer

of MMA/MAA and PMMA. After reveal in a 1:3 H2O/IPA solution at 6˝C

for 90 s followed by 10 s in IPA, the chip is loaded in a Plassys evaporator.

A 2 min argon milling cleaning is implemented to ensure good electrical

contact between the two metallic layers. Then the chip is evaporated with a

35 nm thick layer of Aluminium with an angle of -30˝, followed by 5 min

of oxydation in 5 mbar of pure oxygen, and the evaporation of 100 nm of

Aluminium with a +30˝ angle. After lift-off, the chip is baked at 200˝C for

1 h.

The resulting junctions are of three types as summarized in table 4.1.

The SQUID embedded in the transmon features a big junction in parallel

with a tiny one, while the SNAIL embedded in the resonator features three

big junctions in parallel with a small one (see Fig. 2.11). Notably the big

junction is 26 times bigger than the tiny one. Without relying on advance

exposure optimization during electronic lithography, this is the maximum

unbalance the fabrication process could support.

Junction type Big Small Tiny

Surface [µm2] 2.10 0.14 0.08

Inductance [nH] 0.19 2.57 4.48

Table 4.1 Characteristics of the three junction types, as measured

on test structures fabricated on the same chip.
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4.4 Amplification

Finally, we conclude this chapter with another aspect of the operation

of cQED experiments: the amplification of microwave signals. While the

measurement setup described in Fig. 4.1 features a TWPA as a first stage of

amplification [Macklin 2015], this part can also be assumed by a resonant

parametric amplifier. In this section, we present a design for such an amplifier,

that was used in a cat-qubit experiment realized in the team [Lescanne 2020].

The device consists in a superconducting CPW half-wavelength resonator,

augmented in its center by a chain of 20 SNAILs (Fig. 4.15). Dubbed the

SNAIL parametric amplifier (SPA) [Frattini 2018; Sivak 2019], it is de-

signed to emulate the DPO model 2.4, for the sake of gain production only.

Thus, it is operated in the resonant regime, where the conversion efficieny

from input pump power to output signal gain is the highest (Eq. 2.5). The

concatenation of multiple Josephson elements is a typical trick in amplifier

design. Indeed, in replacing a single Josephson element by a chain of M
elements with the same total linear inductance, the amplitude of the fourth

harmonic of the resulting potential is reduced, hence the Kerr (section 2.2.1).

The reduction scales like M2 [Eichler and Andreas Wallraff 2014], or M

Figure 4.15 SNAIL parametric amplifier: layout. Superconducting

circuit layout of the amplifier: antennas and SNAIL chain of the SPA

(green), input line (light green) and flux bias line (red). The inset

shows an optical micrograph of 5 SNAILs with junctions highlighted

in green (mind the inverted colors, scale bar is 20 µm). Pumping the
SPA (gold double arrow) induces gain for reflected signals (green

arrow).
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[Planat 2019], depending if the fabrication process of the chain is modified,

or not, as opposed to a single element9. Either way, mitigation of the Kerr

nonlinearity is crucial for amplifiers based on Josesphson junctions. Indeed,

this spurious interaction comes as an important limitation of their dynamical

range (section 2.2.3).

Even though they consist in different designs, the operation mode of the

SPA is excatly similar to the system presented in chapter 2. Using a DC

current ISPA to control the flux threading the SNAIL loopsΦSPA, the resonant

frequency of the SPA mode can be tuned over nearly 3 GHz (Fig. 4.16a).

It is overcoupled to its feedline at a rate κSPA{2π “ 100 MHz. Driving the

amplifier with a strong pump, at twice the natural frequency of the SPA

mode, amplifies signals reflected on its input port (Fig. 4.16b). In order to

overcome the noise added by the following amplifier in the chain – a HEMT

located at 4 K – the SPA is typically operated at 20 dB of gain10. There, the

dynamical range of the SPA is characterized by the 1 dB compression point

of the amplifier. It is defined as the input signal gain for which the output

gain decreases by 1 dB. In our device we find P1dB “ ´111 dBm, in line
with parametric amplifiers of the same complexity [Frattini 2018]. Finally,

the added noise of this amplifier was estimated with a Noise Visibility Ratio

experiment [Frattini 2017]. This last test (not shown) revealed that our design

has the potential to operate as a quantum limited amplifier.

9 The junctions at the heart of the SPA are the product of a different fabrication recipe as

the one presented in section 4.3. Notably, the oxydation pressure was set to 200 mbar for

10 min, yielding junctions with a higher critical current. The equivalent inductance of the

chain of 20 SNAILs is 2.5 nH.

10 These 20 dB match the two orders of magnitude in temperature – hence noise – separating

the SPA (T “ 20 mK) from the HEMT (T “ 4 mK).
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Figure 4.16 SNAIL parametric amplifier: performances. (a) Phase

response (color) of a weak reflected signal ωprobe on the SPA port (y-

axis) versus the flux threaded through the SNAIL loops (x-axis). (b)

Gain profile (y-axis) versus probe frequency (x-axis) for increasing

pump power (color) applied at twice the bare oscillator frequency

(here, ωa{2π « 7.95 GHz). (c) Maximum gain (y-axis) output by

the amplifier under pumping conditions akin to brown curve on (b),

with increasing input power (x-axis). We find P1dB “ ´111 dBm.
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CONCLUSION

5.1 Summary

5.1.1 Spinning the springs

The spin and the spring are two limit cases of the quantum world (sec-

tion 1.1). In between, there exists a continuous spectrum of linear systems

dressed by some amount of nonlinearity. The beauty of Josephson circuits, at

the heart of cQED, lies in the high level of control they offer in tailoring non-

linearities (section 2.2). On one end of the spectrumwe find spin-like circuits,

where the nonlinearity is sufficiently large for these systems to be operated

as qubits [Clarke and Wilhelm 2008; Gyenis 2021]. While coupling a pure

spring to a qubit is a staple process of cQED (section 3.2), there have been

numerous demonstrations of the coupling of anharmonic springs to qubits

– putting aside the case of flux-tunable oscillators, where nonlinearity is

reduced to its static contribution. For instance, many experiments leveraged

the bistability of Kerr oscillators for improved qubit readout [Siddiqi 2006;

Lupaşcu 2007; Mallet 2009; Ong 2011]. Yet, the advent of the transmon

design and the progress of quantum limited amplifiers quickly overcame the

benefits of these nonlinear readout schemes [Murch 2013b]. Alternatively, a

degenerate parametric oscillator (DPO) was coupled to a superconducting

qubit [Eddins 2019], or an ensemble of spins [Vine2022]. There, resonant

squeezing of the oscillator was leveraged for improving the TLS readout,

once again.

This thesis presented another realization of the coupling of an anhar-

monic oscillator to a qubit, this time using a DPO undergoing detuned

squeezing (section 2.1). This new regime of operation goes well beyond

readout optimization. Indeed, Leroux, Quin an co-authors predicted that

detuned squeezing of an oscillator could dynamically enhance its coupling

to a qubit [Leroux 2018; Qin 2018]. This thesis gave the first demonstration

of these enhanced interactions using an electromagnetic oscillator.
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5.1.2 An electromagnetic Bogoliubov oscillator

While a DPO operated in the resonant regime features a continuous

spectrum with non-normalizable eigenstates, a detuned DPO has distinct

energy levels associated to squeezed Fock states (section 2.1). This results

from the mismatch between the pump frequency and the oscillator parametric

resonance, which brings the system away from a parametric instability.

There, it is refered to as a Bogoliubov oscillator (BO). Even though this

denomination is strictly valid as soon as δa ‰ 0, the presence of the detuning
significantly alters the DPO response only in the limit |δa| " κ{2 (Table 2.1).
The amplified fluctuations of the BO eigenstates are the root cause for its

enhanced interactions with any coupled system (section 3.1.1).

This assertion was tested in a cQED architecture, by coupling a SNAIL-

resonator implementing a BO (section 2.2.2), to a transmon (section 3.1.2).

Squeezing the BO eigenstates by 5.5 dB resulted in a two-fold increase

of the dispersive interaction strength (section 3.4.4). This experiment was

conducted in the weak-dispersive regime, where a perturbative analysis let

us write analytical expressions accounting for this evolution (section 3.4.1).

A test of squeezing-enhanced interactions was also performed in the resonant

case, at the onset of strong-coupling (section 3.1.3). But there, the potential

coupling boost was hindered by another consequence of squeezing, namely,

the appearance of an effective thermal population in the BO.

Indeed, the Bogoliubov excitations being the anti-squeezed version of the

original ones, the single-photon loss of the detuned DPO appears squeezed

for the BO. In the limit |δa| " κ{2, this squeezed-photon loss channel turns
into an effective thermal bath (section 2.1.2). This hot bath increases the fluc-

tuations of the BO population, which in turn accelerates the qubit dephasing

(section 3.4.2). In theory, nothing prevents the coupling enhancement to be

revealed in the resonant regime. Yet, at the onset of strong coupling, the

spectral response of the coupled system appeared to be more sensitive to the

thermal bath than to a renormalization of the coupling strength. This moti-

vated the exploration of the joint signatures of squeezed bath and enhanced

coupling in the dispersive limit (section 3.4.3).

Last but not least, the peculiar eigenstructure of the BO was revealed

through gain spectroscopy of the oscillator alone (section 2.2.4). Ruling out

the interplay between dissipation and detuning, the coalescence frontier was

introduced (section 2.1.4). Finally, the possibility of amplification evading

the gain-bandwidth product constraint was demonstrated (section 2.2.5).
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5.2 Outlook

5.2.1 Ready for use

Our experiment opens the door to a realm of applications for BOs, includ-

ing fast two-qubit gates [Burd 2021], enhanced interactions to weakly cou-

pled systems [Lü 2015; Xie 2020; Lü 2022], quantum transduction [Zhong

2022], and squeezing induced quantum phase transitions [Zhu 2020; Chen

2021; Shen 2022]. Yet, there is some room for optimization of the current

design.

As suggested in section 2.1.4, the BO thrives in the resolved regime,

where it can bear high squeezings while staying at a good distance from

the DPO instability (Fig. 2.5). The potential to operate the system in this

specific regime is ultimately set by the ratio 2|δa|{κ. The electromagnetic BO
presented in this thesis was implemented using a superconducting resonator

augmented by a single SNAIL. There, this constitutive ratio was limited to

10, due to spurious Kerr effect (section 2.2.4). As customary in amplifier

design, the Kerr nonlinearity might be mitigated by resorting to a chain

of SNAILs of smaller inductance (section 4.4). Therefore, the BO would

support pumps of higher intensity, opening the way for the exploration of

higher values of 2|δa|{κ. Recently, a high-kinetic inductance resonator –
commonly known for bearing small residual Kerr – implemented a BO with

2|δa|{κ “ 16 [Vine 2023].

The regime of qubit-BO interactions presented in this thesis was limited to

weak-couplings, either resonant or dispersive. One could naturally envision

to increase the bare coupling strength, so that the system is initially strongly

coupled. In the resonant case, excitation-number non-preserving interaction

terms will quickly become non-negligible (Fig. 3.2). There, the qubit-BO

system would be an interesting simulator for ultra-strong coupling physics

[Marković 2018; Frisk Kockum 2019]. In the dispersive case, one could

imagine using the qubit as a precise thermometer of the BO squeezed bath

[Ong 2013; Dassonneville 2021]. There, a joint analytical effort would be

necessary to account for the renormalization of the qubit lineshape beyond

the Gaussian approximation [Gambetta 2008].

Continuing with theoretical endeavors, another question arises in the

context of qubit readout: can a detuned DPO outperform a resonant DPO?

Indeed, Eddins and co-authors described a qubit readout enhanced by the gain

of a resonant DPO [Eddins 2019]. Then, it seems like a detuned DPO would

not only benefit from wideband gain, but also from enhanced interactions.
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5.2.2 Squeezed vacuum injection

The initial proposals had foreseen the non-trivial impact of the bath on

the BO. They acutally offered to cancel the effects of the squeezed bath, by

injecting conversely squeezed vacuum on the system. As a first step, we can

look at the BO dynamics with an anti-squeezed Lindblad loss operator:

L1
ph “ U :

sLphUs “
?

κ
`

a cosh r ´ a: sinh r
˘

, (5.1)

so that the dissipator for the BO reads:

DrL1
phsρ “ κDrαsρ . (5.2)

With such a cancellation bath, the BO is expected to behave as a linear

oscillator in contact with vacuum (no more gain, no more idler, no more

finite population), except for enhanced interactions to the qubit. We test this

assertion by simulating the full tDPO-transmonu model in the presence of

anti-squeezed vacuum on the oscillator:

Squeezed Jaynes-Cummings in anti-squeezed bath (SJCaSB)

H{~ “ δaa
:a ´

λ

2
`

a2
` a:2˘

` δqb
:b `

χq

2 b:2b2
` gpab:

` a:bq

L P
 ?

κ
`

a cosh r ´ a: sinh r
˘

,
?

γ1 b,
a

2γφ b
:b
(

We use the same parameters as in section 3.1.3. The oscillator Hilbert space

is now truncated to 100 states, enabling the exploration of higher squeezing

amplitudes. We plot the simulated oscillator absorption spectra (Fig. 5.1),

as well as the fitted values for g (using Eq. 3.13). In the presence of the

cancellation bath, the gap in the splitting figure does not fill up, as a sign of

the coupled system staying in contact with a cold bath. At first, the fitted value

for g increases significantly, closely following the expected cosh r trend.
Then, a saturation occurs, together with the emergence of some asymmetry

in the absorption spectra, which is a signature of the renewed significance

of the full Rabi coupling.

Injecting squeezed radiation in cQED is notoriously hard, as every bit

of loss between the injector and the main system degrades the purity of the

squeezed state [Murch 2013a; Bienfait 2017]. Yet, the implementation of

bath cancellation for a BO faces another set of challenges, related to the

peculiar nature of the BO squeezing. How must the injected squeezed state

be generated? Does it need to be provided by a replica of the main BO?

Would a resonant DPO matching the frequency of the BO be sufficient?

So many questions that require a thorough analysis of the casacade of two

DPOs.
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Figure 5.1 Transmon-BO coupling with anti-squeezed vacuum

injection. (a) Same as Fig. 3.8, except for the bottom plot which

corresponds to the SJCaSB model. (b) Results of the fitted value

for the coupling strength g. The black dashed line shows the cosh r
trend.

5.2.3 Coupling to hybrid systems

Finally, we envision the coupling of a BO to a hybrid system. In order

to limit the complexity of the resulting experiment, we do not consider the

injection of conversely squeezed vacuum. As a consequence, the coupled

TLS will be suffering from BO-induced dephasing. Yet, the coherence of

hybrid systems is typically not limited by radiation through the oscillator.

For instance, spin ensembles are subjected to inhomogenous broadening, and

quantum dots are very sensitive to charge noise [Cottet 2017]. In those cases,

one could benefit from the enhanced coupling provided by the BO, while not

being limited by the impact of its squeezed bath [Vine 2023]. Alternatively,

one could leverage the eigenstate squeezing of the BO beyond enhanced

couplings, for the study of the interaction between non-classical states of

light and quantum matter [Souquet 2014].
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In that respect, carbon-nanotubes (CNTs) hold great promises1. Single-

walled CNTs are made out of a rolled-up graphene sheet with aspect ratios2

in excess of 10, 000 : 1. Depending on the folding of the graphene lattice,
they can be insulating, metallic, or semi-conducting, with solely 4 conduction

channels. Through electrostatic gating, they can host quantum dots which

were successfully coupled to microwave photons [Delbecq 2011]. In addi-

tion, they can be proximitized by either superconducting [Herrmann 2010;

Bruhat 2018] or ferromagnetic materials [Cottet and Kontos 2010; Viennot

2015]. As a consequence, CNTs are a versatile platform for the observation

of exotic phases of matter [Desjardins 2017; Desjardins 2019; Contamin

2022; Contamin 2023]. The following paragraphs will be dedicated to the

presentation of a paradigmatic realization of hybrid-cQED pursued during

my PhD, with a device integrating a Josephson circuit coupled to a CNT.

Coupling a CNT to a superconducting circuit is a difficult task. First,

both systems operate on drastically different scales. Microwave resonators

in cQED are typically millimeter long and a few tens of micrometer wide,

while CNTs are tens of micrometer long and 2 nm wide. Second, CNT

control requires a handful of electrical lines. They are either galvanically

connected to the CNT, thus coined contacts, or capacitively coupled gates.

When brought in close proximity with the superconducting resonator, these

lines can degrade its quality. Finally, CNTs are commonly fabricated using

chemical vapor deposition, a process incompatible with most metallic thin

films used for superconducting circuits. Those challenges can be reconcilied

using a flip chip process called stapling [Cubaynes 2020]. It involves pat-

terning the microwave resonator and the CNT control lines on a main chip,

and growing CNTs in between the teeth of on a auxilliary chip shaped like

a comb. In a final stapling process, a single CNT can be transfered on the

main chip (Figure 5.2a,e).

On Figure 5.2 we show a possible design for the main chip (b). It is pat-

terned with a coplanar waveguide resonator (red), coupled to a transmission

line (orange) through an inductive coupler (c). On one end, the resonator

is shunted to ground through a SQUID (inset of c). On the other end it

narrows down towards the control-piano (e, f), where it capacitively couples

to the CNT. Besides the resonator microwave gate (red), the control-piano

features DC gates (light blue) and galvanic contacts (navy blue) (see the

cross-section sketched in a, not to scale) (CNT as a black wiggly line in

1 The list of references presented in this paragraph is intentionally biased towards works

realized at LPENS.

2 Think about a pencil the size of the Eiffel tower.
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Figure 5.2 Hybrid-cQED with carbon-nanotubes. See description

main text. Scale bars in micrometers. A fake CNT is drawn for

concreteness on pictures (e) and (f).
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b,e). These DC controls are routed out of the chip through LC filters (d),

designed to preserve the resonator quality. Note that the main chip is dug

with trenches around the control-piano (yellow in a, b, f), as required by the

stapling process.

Over the course of my PhD, I fabricated dozens of samples like the one

presented in Fig. 5.2, and conducted nearly as many stapling processes. Yet,

only one CNT could be measured down to cryogenic temperatures (Fig. 5.2),

and in transport only, as it showed no coupling to the superconducting

resonator. All the other attempts fell short of demonstrating electrical contact

at low temperatures, as required for tuning up of the device. High contact

resistances is a common challenge with CNTs, that can be traced down to

the presence of contaminants at the device surface, or material disorder.

Figure 5.3 Coulomb diamonds in a CNT quantum dot. The color

maps the current flowing through the dot, from positive (red) to

negative (blue) values, as a fonction of the potential maintained

between the two contacts (y-axis) and the dot gate voltage (x-axis).

In the end, the failure of the carbon-nanotube aspect of the experiment

lead to the extensive characterization of the Bogoliubov oscillator presented

in this thesis. Which in itself is, a short story of experimental physics.
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MATHEMATICAL

CONVENTIONS

Fourier transformation The temporal Fourier transform used in this

thesis follows the convention:

f rωs “ Frf srωs “

ż

dteiωtfptq , (A.1a)

fptq “ F´1
rf sptq “

ż dω

2π
e´iωtf rωs . (A.1b)

It is associtaed with the following Dirac distribution identities1:

ż

dωe´iωt
“ 2πδptq (A.2a)

ż

dteiωt
“ 2πδrωs (A.2b)

1 We recall the technique to find the Fourier transform of the Dirac distribution δ, what-
ever the normalization convention is. As a reminder, δ is the singular distribution such
that xδpx0q, fpxqy “ fpx ´ x0q. The Fourier transform of a distribution is defined im-

plicitely through the Fourier transform of the function that the distribution takes as an input:

xFrδs, fy “ xδ, Frf sy . Thus in the forward case:

xFrδs, fy “ xδ,

ż

dteiωtfptqy “

ż

dtfptq .

Where the last integral can be thought of as the regular distribution associated to the unit

function: x1, fy “
ş

dtfptq. Thus we find Frδs “ 1. Application of the backward Fourier
transformation yields the first Dirac identity. Conversely for the backward case:

xF´1rδs, fy “ xδ,

ż dω

2π
e´iωtf rωsy “

ż dω

2π
f rωs .

So that we find F´1rδs “ 1{2π. Application of the forward Fourier transformation yields
the second Dirac identity.

127



128 Appendix A. Mathematical conventions

Hyperbolic tigonometry The hyperbolic functions cosh, sinh and tanh
are defined as:

@x P R , cosh x “
ex ` e´x

2 (A.3a)

sinh x “
ex ´ e´x

2 (A.3b)

tanh x “
ex ´ e´x

ex ` e´x
(A.3c)

We deduce the following identities:

cosh2 x ´ sinh2 x “ 1 (A.4)

cosh 2x “ cosh2 x ` sinh2 x (A.5a)

sinh 2x “ 2 cosh x sinh x (A.5b)

cosh2 x “
1
2
`

cosh 2x ` 1
˘

(A.6a)

sinh2 x “
1
2
`

cosh 2x ´ 1
˘

(A.6b)

Finally we introduce the logarithmic form of the inverse tanh function:

@x P p´1, 1q , tanh´1 x “
1
2 ln 1 ` x

1 ´ x
. (A.7)



B
SURVEY OF ANALYTICAL

TECHNIQUES

The parametric process responsible for the injection of pairs of pho-

tons in the SNAIL-resonator is triggered by driving the resonator with an

external pump field. Similarly, the spectroscopy of both the qubit and the

resonator are realized using drives. Thus, a complete description of the

system tSNAIL-resonator ` transmonu has to account for external degrees

of freedom – consituing the bath – supporting these drives. Crucially, the

system can also relax energy through these bath modes. This appendix aims

at presenting the various analytical techniques used to analyze the system in

contact with its bath.

The Hamiltonian of the system tSNAIL-resonator ` transmonu reads:

Htot “ Hsyst ` Hbath ` Hint . (B.1)

First we will present the system Hamiltonian Hsyst in the laboratory frame,

and detail the transformations implemented to reach Eq. 3.1. The bath and

interaction Hamiltonians Hbath and Hint will be subsequently introduced.

As customary for open quantum systems, we will eliminate the bath modes in

writing equations of motion for the system modes accounting for their finite

relaxation. This final part will closely follow the derivation of input-output

theory given by Steck [Steck 2007].

B.1 Transformations of the system Hamiltonian

B.1.1 The system Hamiltonian

The system is composed of a SNAIL-resonator coupled to a transmon,

driven at three distinct frequencies. The total Hamiltonian reads:

Hsystptq “ Ha ` Hq ` V ` Hpptq ` Hd, aptq ` Hd,qptq . (B.2)

Since the resonator is operated at its Kerr-free flux point, it is minimally

described by a harmonic oscillator with frequency ωa dressed by a third
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order nonlinearity g3. Its Hamiltonian reads Ha “ Ha,0 ` Ha,nl where:

Ha,0{~ “ ωaa
:a , (B.3a)

Ha,nl{~ “ g3
`

a ` a:
˘3

. (B.3b)

The transmon is an anharmonic oscillator with frequency ωq and Kerr-

nonlinearity χq so that:

Hq{~ “ ωqb
:b `

χq

2 b:2b2 (B.4)

The coupling between the resonator and the transmon is capacitive, mediated

by the charge degree of freedom of both modes. Thus the coupling term

reads:

V{~ “ ´g
`

a ´ a:
˘`

b ´ b:
˘

(B.5)

Finally the system features three time-dependent excitation terms. The res-

onator is driven inductively with two tones. The first is weak with amplitude

εd,a, and near resonance with frequency ωa,d. The second one is strong with

amplitude εp, and near the parametric resonance with frequency ωp. Since the

parametric resonance is very far from the bare resonance, the second drive

is called a pump. As for the transmon, it is driven capacitively and weakly

near resonance, with amplitude εd,q and frequency ωd,q. The Hamiltonian

drive terms read:

Hd, aptq{~ “ εd,a cospωd,atq
`

a ` a:
˘

(B.6a)

Hpptq{~ “ εp cospωptq
`

a ` a:
˘

(B.6b)

Hd,qptq{~ “ ´iεd,q cospωd,qtq
`

b ´ b:
˘

(B.6c)

The presence of external drives on a system relies intrisically on a non-

vanishing system-bath coupling. While a complete treatment of this coupling

will be presented in the Heisenberg picture in section B.2, here we introduce

an alternate formulation in the Schrödinger picture. It relies on the Lindblad

master equation for the system density matrix:

Btρptq “ ´
i

~
rHsystptq, ρptqs `

ÿ

L

DrLsρptq , (B.7)

where L P t
?

κa,
?

γ1b,
?2γφb

:bu are the Lindblad operators associated to

single-photon loss in the resonator, single-photon loss in the transmon, and

transmon dephasing respectively.
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B.1.2 Displacement transformation

In the presence of the intense pump tone, the resonator field acquires

a finite mean-value. Its dynamics is conveniently described in a displaced

frame, looking only at deviations around its mean amplitude. We seek the

right displacement transformation, so that the dynamics of the unpumped

oscillator in the displaced frame maps the one of the pumped oscillator in the

original frame. We will first look for this transformation on the linear part of

the oscillator only. In a second step, we will transform the total Hamiltonian

according to the displacement transformation.

Specifically, we are looking for the complex function ξptq such that the
displaced density matrix ρξ “ U ξρU :

ξ where U ξ “ exp
 

ξ˚ptqa ´ ξptqa:
(

follows the master equation:

Btρ
ξ
ptq “ ´i

“

ωaa
:a, ρξ

ptq
‰

` κDrasρξ
ptq . (B.8)

First, we expand the time derivative of the displaced density matrix, and

find:

Btρ
ξ
ptq “ ´

i

~

”

U ξ pHa,0 ` Hpptqq U :

ξ ´ i~U ξ
9U

:

ξ, ρξ
ptq

ı

`κDra ` ξptqsρξ
ptq .

(B.9)

Second, making use of the following relations1:

U ξa
:aU :

ξ “ a:a ` ξptqa:
` ξ˚

ptqa ` |ξptq|
2 (B.10a)

Dra ` ξsρξ
ptq “ Drasρξ

ptq `
1
2
“

ξ˚
ptqa ´ ξptqa:, ρξ

ptq
‰

(B.10b)

U ξ
9U

:

ξ “ 9ξptqa:
´ 9ξ˚

ptqa (B.10c)

we find that for Eq. B.9 to map on Eq. B.8, the complex function ξptq needs
to satisfy:

εp cospωptq
`

a ` a:
` ξptq ` ξ˚

ptq
˘

“ i
`

9ξptqa:
´ 9ξ˚

ptqa
˘

(B.11)

´ ωa
`

ξptqa:
` ξ˚

ptqa ` |ξptq|
2˘

´ i
κ

2
`

ξ˚
ptqa ´ ξptqa:

˘

.

1 While the first two relations are trivially deduced from the definition of the displacement

operator Uξ, the third one requires a bit more work.
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Projecting this equation on x1| ‚ |0y we find:

9ξptq “ ´iωaξptq ´
κ

2 ξptq ´ iεp cospωptq , (B.12)

whose solution reads at times t " 1{κ:

ξptq “
´iεp{2

κ{2 ` ipωa ´ ωpq
e´iωpt

´
iεp{2

κ{2 ` ipωa ` ωpq
eiωpt (B.13)

Since the pump tone is very off-resonant, the second term (counter-propagating)

is not negligible with respect to the first one. Moreover, in the regime where

κ ! |ωa ˘ ωp| we find:

ξptq «
εp{2

ωp ´ ωa
e´iωpt

´
εp{2

ωp ` ωa
eiωpt . (B.14)

We define the real quantityΠ such that ξptq`ξ˚ptq “ Πpe´iωpt`eiωptq. In the

limit |δa| ! ωa we find Π « εp{3ωa, and ξptq ´ ξ˚ptq “ 2Πpe´iωpt ´ eiωptq.

Next, restoring the other contributions to the system Hamiltonian, we find

in the displaced frame:

Btρ
ξ
ptq “ ´

i

~

”

Hξ
systptq, ρξ

ptq

ı

`
ÿ

L

DrLsρξ
ptq (B.15)

where:

Hξ
systptq “ Ha,0 ` Hξ

a,nlptq ` Hq ` Vξ
ptq ` Hξ

d, aptq ` Hd,qptq (B.16)

and:

Hξ
a,nlptq{~ “ g3

`

a ` a:
` Πe´iωpt

` Πeiωpt
˘3

(B.17a)

Vξ
ptq{~ “ ´g

`

a ´ a:
` 2Πe´iωpt

´ 2Πeiωpt
˘`

b ´ b:
˘

(B.17b)

Hξ
d, aptq{~ “ εd,a cospωd,atq

`

a ` a:
` Πe´iωpt

` Πeiωpt
˘

(B.17c)

B.1.3 Rotating-wave approximation

In the displaced frame, time dependence has spread though the entire

Hamiltonian. Yet, given the natural frequencies of the system (ωa, ωq, ωp),

there exist rotating frames in which some of the interaction processes are

resonant. Then a natural question arises: to what extent can we neglect the

other non-resonant processes?
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In an attempt to make the parametric processes induced by the pump

stand out, we move to a frame rotating at half the pump frequency for both

modes. In this new frame, the system density matrix reads ρξ,ω “ UωρξU :
ω

where Uω “ exp
!

iωpt
2

`

a:a ` b:b
˘

)

, and it follows the master equation:

Btρ
ξ,ω

ptq “ ´
i

~

”

Hξ,ω
systptq, ρξ,ω

ptq

ı

`
ÿ

L

DrLsρξ,ω
ptq , (B.18)

whereHξ,ω
systptq “ UωHξ

systptqU :
ω´i~Uω

9U
:

ω is the transformedHamiltonian.

Specifically we find:

Hξ,ω
systptq “ Hω

a,0 ` Hξ,ω
a,nlptq ` Hω

q ` Vξ,ω
ptq ` Hξ,ω

d, aptq ` Hω
d,qptq (B.19)

where:

Hω
a,0{~ “ pωa ´ ωp{2qa:a (B.20a)

Hξ,ω
a,nlptq{~ “ g3

`

ae´iωpt{2
` a:eiωpt{2

` Πe´iωpt
` Πeiωpt

˘3
(B.20b)

Hω
q {~ “ pωq ´ ωp{2qb:b `

χq

2 b:2b2 (B.20c)

Vξ,ω
ptq{~ “ ´g

`

ae´iωpt{2
´ a:eiωpt{2˘`be´iωpt{2

´ b:eiωpt{2˘

´ g
`

2Πe´iωpt
´ 2Πeiωpt

˘`

be´iωpt{2
` b:eiωpt{2˘ (B.20d)

Hξ,ω
d, aptq{~ “

εd,a

2
`

e´iωd,at
` eiωd,at

˘`

ae´iωpt{2
` a:eiωpt{2˘ (B.20e)

Hω
d,qptq{~ “ ´i

εd,q

2
`

e´iωd,qt
` eiωd,qt

˘`

be´iωpt{2
´ b:eiωpt{2˘ (B.20f)

In this rotating frame, the system Hamiltonian features two types of terms:

some are steady, and some are rotating at frequencies ωd,a ˘ ωp{2, ωd,q ˘

ωp{2, ωp, 3
2ωp, 3ωp. The oscillating terms have amplitudes of the order of

εd,a, εd,q, g3Π2, g3Π3, g, gΠ, which appear to be all much smaller than the
associated oscillating frequencies. The rotating-wave approximation (RWA)

states that the solutions of Eq. B.18 are well approximated at long times by

the solutions of a similar equation, where the Hamiltonian is replaced by its

steady part [Mirrahimi and Rouchon 2015]:

Hξ,ω
syst “ δaa

:a ` 3g3Πa2
` 3g3Πa:2

`δqb
:b `

χq

2 b:2b2
` g

`

ab:
` a:b

˘

.
(B.21)
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where δa “ ωa ´ ωp{2 and δq “ ωq ´ ωp{2. Yet, given the scale separation
between all the oscillatory terms:

ωd,a ´ ωp{2
ωd,q ´ ωp{2
looooomooooon

Slow oscillating

!

ωd,a ` ωp{2
ωd,q ` ωp{2

ωp

! 3ωp{2 ! 3ωp

looooooooooooooooooooooomooooooooooooooooooooooon

Fast oscillating

(B.22)

one can include the slow contributions from the drive terms in the approxi-

mate dynamics2. Overall, the system Hamiltonian reads:

H̃systptq “ δaa
:a ´

λ

2
`

a2
` a:2˘

` δqb
:b `

χq

2 b:2b2
` g

`

ab:
` a:b

˘

`
εd,a

2
`

aeiδd,at
` a:e´iδd,at

˘

´ i
εd,q

2
`

beiδd,qt
´ b:e´iδd,qt

˘

, (B.23)

where λ “ ´2g3εpωa is the two-photon pump amplitude, and the drive

detunings are δd,a “ ωd,a ´ ωp{2 and δd,q “ ωd,q ´ ωp{2. Finally in the
Bogoliubov basis we find:

H̃systptq “ Ωaα:α ` δqb
:b `

χq

2 b:2b2

` g cosh r
`

αb:
` α:b

˘

` g sinh r
`

αb ` α:b:
˘

`
εd,a

2 cosh r
`

αeiδd,at
` α:e´iδd,at

˘

(B.24)

`
εd,a

2 sinh r
`

α:eiδd,at
` αe´iδd,at

˘

´ i
εd,q

2
`

beiδd,qt
´ b:e´iδd,qt

˘

.

Having applied the RWA to the Hamiltonian part of the master equation,

we turn to another situation, where it is used for the dissipative contributions.

As mentioned in section 2.1.2, the single-photon loss for the oscillator reads

in the Bogoliubov basis:

DrLphsρ “ κp1 ` sinh2 rqDrαsρ ` κ sinh2 rDrα:
sρ

` κ
sinh 2r

2
`

Grαsρ ` Grα:
sρ
˘

,
(B.25)

where the anomalous dissipator superoperator reads: Gr‚sρ “ ‚ρ ‚ ´1
2 t‚

2, ρu.

Looking at the master equation B.18 in a frame rotating at Ωarrs for the

2 See exercice 1 part 2.1.3 in [Mirrahimi and Rouchon 2015].



B.1. Transformations of the system Hamiltonian 135

Bogoliubov mode, the anomalous dissipator Grαs will lead to contribu-

tions rotating at 2Ωarrs with amplitude κ sinh 2r
2 . The RWA states that if the

amplitude of the rotating terms is small compared to their oscillating fre-

quency, the solutions of the master equation without these terms are a good

approximation of the complete one.

B.1.4 Schrieffer-Wolff transformation

Finally we skecth the Schrieffer-Wolff transformation at the heart of the

perturbative analysis followed in chapter 3. Looking at the undriven part of

Eq. B.23, we find:

H̃syst “ δaa
:a ´

λ

2
`

a2
` a:2˘

` δq
σz

2
loooooooooooooooomoooooooooooooooon

H̃0

` g
`

aσ- ` a:σ`

˘

looooooomooooooon

Ṽ

, (B.26)

and we define the parameter η such that ||Ṽ || “ η||H̃0||, where || ‚ || is any

norm for operators. Depending on the regime of parameters, the dispersive

limits presented in chapter 3 ensure that Ṽ can be treated as a perturbation to

H̃0. Using the Baker-Campbell-Hausdorff formula, we write a perturbative

expansion of the system Hamiltonian:

eSH̃syste
-S

“ H̃0 ` Ṽ `
ÿ

ną0

1
n!

”

S, . . .
“

S,
loooomoooon

n times

H̃0 ` Ṽ
‰

ı

, (B.27)

whereS is the generator of the Schrieffer-Wolff (SW) transformationUSW “

eS . Assuming for the moment that ||S|| “ Opηq, we can reorganize this

expansion into groups of successive orders of η:

eSH̃syste
-S

“ H̃0 Op1q

` Ṽ `
“

S, H̃0
‰

Opηq

`
“

S, Ṽ
‰

`
1
2!

”

S,
“

S, H̃0
‰

ı

Opη2
q

` . . . (B.28)

Then, we can find the SW generator that will cancel the perturbation to H̃0
up to any order. Specifically, cancellation of the 1st order terms requires
“

S, H̃0
‰

“ ´Ṽ , so that the approximate Hamiltonian reads:

eSH̃syste
-S

“ H̃0 `
1
2
“

S, Ṽ
‰

` Opη3
q . (B.29)
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If the equation
“

S, H̃0
‰

“ ´Ṽ does not find a solution for ||S|| “ Opηq,

one can rewrite the perturbative expansion for ||S|| “ Opη2q and look

iteratively for solutions.

B.2 Input-output theory for squeezed photons

The resonator drives (pump and probe) are applied through an inductively

coupled feedline hosting a continuum of modes tcpωquω, which will ulti-

mately interact with mode a. Similarly, the transmon drive is applied through

a capacitevely coupled feedline hosting a continuum of modes tdpωquω,

which will ultimately interact with mode b. They can be thought of as set of

harmonic oscillators at all possible frequencies ω P r0, `8q described by

the Hamiltonian:

Hbath{~ “

ż 8

0
dω1ω1cpω1

q
:cpω1

q `

ż 8

0
dω1ω1dpω1

q
:dpωq . (B.30)

This bath Hamiltonian can be derived from first principles by analyzing the

structure of the transmission lines [Blais 2021]. The bath operators follow

the commutation relations:

“

cpωq, cpω1
q

:
‰

“ δpω´ω1
q ,

“

dpωq, dpω1
q

:
‰

“ δpω´ω1
q , (B.31)

such that they are homogeneous to rω´1{2s. The resonator (transmon) is

inductively (capacitevely) coupled to its feedline at a rate κ (γ1), so that the

interaction Hamiltonian reads:

Hint{~ “

c

κ

2π

ż 8

0
dω1

`

a ` a:
˘“

cpω1
q ` cpω1

q
:
‰

´

c

γ1

2π

ż 8

0
dω1

`

b ´ b:
˘“

dpω1
q ´ dpω1

q
:
‰

(B.32)

The latter expression assumes the Markov approximation which neglects the

frequency dependence of the coupling constants: κpωq « κ and γ1pωq « γ1.

This approximation is well verified in our experiment since the impedance

of the transmission line is almost flat over the frequency windows sampled

by the resonator and the transmon. As of now we extend the lower integra-

tion limit from 0 to ´8. While mathematically convenient, this will not

change the result as only a small frequency window around the bare mode

frequencies will significantly couple to the system.
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We follow the same treatment for the total Hamiltonian as in the previ-

ous subsection. While the bath part is trivially modified, the transformed

interaction part writes in the Bogoliubov basis:

Hξ,ω
int {~ “

c

κ

2π

ż 8

-8
dω1

!

cosh r
”

αcpω1
q

:
` α:cpω1

q

ı

` sinh r
”

αcpω1
q ` α:cpω1

q
:
ı )

(B.33)

`

c

γ1

2π

ż 8

-8
dω1

!

bdpω1
q

:
` b:dpω1

q

)

.

At this stage the RWA is valid as long as κer{2 ! ωp and γ1 ! ωp, a regime

safely maintained for all squeezing values. In the following we set g “ 0 to
keep the notations short, as it will trivially modify the results. We write the

equations of motion for the Heisenberg operators BtOptq “ i
~

“

Htot, Optq
‰

such that:

Btαptq “ ´ iΩarrsαptq ´ i
εd,a cosh r

2 e´iδd,at
´ i

εd,a sinh r

2 eiδd,at

´ i

c

κ

2π

ż 8

-8
dω1

!

cpω1
q cosh r ` cpω1

q
: sinh r

)

, (B.34a)

Btcpω1
q “ ´ iω1cpω1

q ´ i

c

κ

2π

´

αptq cosh r ` αptq
: sinh r

¯

, (B.34b)

Btbptq “ ´ iδqbptq ´
εd,q

2 e´iδd,qt
´ i

c

γ1

2π

ż 8

-8
dω1dpω1

q , (B.34c)

Btdpω1
q “ ´ iω1dpω1

q ´ i

c

γ1

2π
bptq , (B.34d)

where the explicit time-dependence of the operators cpωqptq anddpωqptq has

been omitted. Next we integrate Eqs. B.34band B.34d from a past reference

time t0 until the experiment time t, and define the input field operators:

ainptq “
´i

?
2π

ż 8

-8
dω1cpω1

qpt0qe´iω1pt´t0q (B.35a)

binptq “
´i

?
2π

ż 8

-8
dω1dpω1

qpt0qe´iω1pt´t0q (B.35b)
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so that Eqs. B.34aand B.34c can be rewritten as3:

Btαptq “ ´ iΩarrsαptq ´ i
εd,a cosh r

2 e´iδd,at
´ i

εd,a sinh r

2 eiδd,at

´
κ

2αptq `
?

κ
´

ainptq cosh r ´ ainptq
: sinh r

¯

(B.37a)

Btbptq “ ´ iδqbptq ´
εd,q

2 e´iδd,qt
´

γ1

2 bptq `
?

γ1binptq (B.37b)

These are the quantum Langevin equations (QLE) for the BO and trans-

mon modes, where the input fields amount to noisy contributions with zero

mean. They obey the commutation relations:
“

ainptq, ainpt1q
:
‰

“ δpt´t1q,
“

ainptq, ainpt1q
‰

“ 0 (same for binptq). The temperature of the oscillator

environment is defined through the thermal occupancy n̄th such that:

xainptq
:ainpt1

qy “ n̄thδpt´t1
q , (B.38a)

xainptqainpt1
q

:
y “

`

1 ` n̄th
˘

δpt´t1
q , (B.38b)

and similarly for the transmon. Interestingly the drive on the resonator could

have been omitted in the Hamiltonian, and included directly at the level of

the QLE by replacing ainptq by ainptq ´ ipεd,a{2
?

κqe´iδd,at (similarly for

the transmon). Indeed, a drive propagating through the feedline is nothing

but a displacement of the bath field by a classical amplitude.

In addition, Eqs. B.34b and B.34d could have also been integrated from a

future time t1 until the experiment time t, defining the output filed operators:

aoutptq “
i

?
2π

ż 8

-8
dω1cpω1

qpt1qe´iω1pt´t1q , (B.39a)

boutptq “
i

?
2π

ż 8

-8
dω1dpω1

qpt1qe´iω1pt´t1q . (B.39b)

3 Specifically, integration of Eq. B.34d from a past reference time t0 yields:

dpω1qptq “ dpω1qpt0qe´iω1
pt´t0q ´ i

c

γ1

2π

ż t

t0

dτbpτ qe´iω1
pt´τq , (B.36)

So that the last term of Eq. B.34c reads:

´i

c

γ1

2π

ż 8

-8

dω1dpω1q “
?

γ1binptq ´ γ1

ż t

t0

dτbpτ qδpt ´ τq ,

where we exchanged time and frequency integrals, and used the identity A.2. Finally, the

dirac distribution splits on the border of the integral:
şt

t0
dτbpτ qδpt ´ τq “ bptq{2 so that

one recovers Eq. B.37b. A similar line of reasoning holds for the α mode.
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The output fields follow similar properties as the input fields. Finally they

satisfy the closure relations4:

aoutptq ` ainptq “
?

κ
`

αptq cosh r ` αptq
: sinh r

˘

, (B.41a)

boutptq ` binptq “
?

γ1bptq . (B.41b)

Together, the QLE B.37a and the input-output relation B.41a fully capture

the dynamics of the squeezed photons in contact with their environment. It

is here described in terms of the incoming and outcoming fields of the bare

mode a, which correspond to the physical port used to drive and read-out

the BO.

4 Integrating Eq. B.34d from a future reference time t1 yields:

dpω1qptq “ dpω1qpt1qe´iω1
pt´t1q ` i

c

γ1

2π

ż t1

t

dτbpτ qe´iω1
pt´τq , (B.40)

Further integrating the previous equation, and Eq. B.36 over all frequencies yields:

ż 8

-8

dω1dpω1qptq “ i
?

2πbinptq ´ i

c

πγ1

2 bptq ,

ż 8

-8

dω1dpω1qptq “ ´i
?

2πboutptq ` i

c

πγ1

2 bptq ,

where we used again the splitting of the dirac distribution. From the last two equations we

deduce the input-output relation for mode b, and we can proceed similarly for mode α.
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