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Abstract

The work carried out in this thesis focused on the optimization of the energy
consumption of connected devices and specifically on their radiofrequency part. The
main objective is to propose standby modes with zero energy consumption. More
precisely, it is to propose standby modes which are independent on the main energy
souce (battery). The work focused amongst others in energy saving mechanisms
such as wake-up radio on the one hand, and on the other hand in radio frequency
energy harvesting circuits designed to make them autonomous.

To achieve this objective, an exhaustive state of the art of wake-up radio receivers
is provided, highlighting their operating frequencies, modulation types, power con-
sumption together with their RF architectures and an assessment of the relation-
ships between these parameters. It is then highlighted some applications ranging
from aeronautics to human body communication, including agriculture, security,
smart metering, wildlife monitoring, localization and tracking, etc...

A new wake-up radio that was developed at the CITI Laboratory of INSA Lyon
is introduced, then by using the block by block analysis technique of a system, we
contributed to the improvement of the existing circuit, by changing the matching
network with rectifier; thereby increased the gain by about 11 % for all cases of

identifiers considered. This gain then allows an improvement in the communication



vi

range of the system by about 13 meters for the 2.45 GHz frequency.

In other places, the radio frequency energy harvesting circuits was investigated as
a solution to bring the wake up radio circuit independent on the connected object’s
main energy source. It is firstly considered the analysis of the main diodes used in
these circuits. This diodes include the HSMS 2850, HSMS 2860 and SMS 7630. Here
also there is the consideration of all the topologies of the harvesting circuits, and the
efficiency domains of each circuit through parametric simulation and determination
of the best performing circuits is investigated. This allowed us to establish with
precision the circuit that corresponds to our specific application. This was followed
by a comparative analysis using classical analysis tools to determine the influence
of the frequency on energy harvesting; with the conclusion that the higher the
frequency, the less energy is harvested. Finally, an implementation of the energy
harvesting circuit was made and we obtained for the input powers 0 dBm and 15
dBm, respectively 8.3 uW and 138.68 uW. These power levels are more than enough
to supply any type of WuRx.

Keywords : Wake-up radio; Energy Harvesting; Wireless Power; In-

ternet of Things; Wireless Sensor Nodes.

vi
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Chapter 1

General Introduction

1.1 Introduction

Since the beginning of the Industrial Revolution in the late 18" and early 19"
century, the global demand in energy consumption rose exponentially. In the 20"
century, this demand further emphasized with the development of mass production
of consumer goods, cement factories, metallurgy, the explosion of the automotive
industry ...

Briefly all sectors of human activity consume directly or indirectly energy. This
growth was supported essentially by the use of non-renewable energy sources. Be-
cause of a political crisis between the Western countries and Arab states, an oil
embargo has caused energy crisis in the 1970°%, with very huge impact on economic
and social live of western countries. Because of that crisis, and constantly increas-
ing demand, the researchers focused on the question of energy. It was matter to
first develop renewable energy sources, and second to develop ways of effective and

efficient use of energy. This research goal is still a topical issue, and the subject of
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intense activities in research laboratories.

Over the last 20 years, digital technologies have undergone tremendous
growth, resulting in the development of the concept of the digital economy, which
today overlaps extraordinarily with almost all areas of human activity. One of the
new pillars of the digital economy is undeniably the IoT (Internet of Things). In re-
cent years, it has experienced a spectacular boom, and its use today makes everyday
life easier in several aspects. Thus, [oT applies to health, agriculture, transport in
all forms, industry, business, smart cities and everything else that can be imagined
as human activities.

This impressive development of the IoT has taken place in complementarity with
the evolution of mobile communication technologies, which has gone from the first
generation (1G) towards the end of the last century to the fifth generation (5G)
nowadays. This development implies great changes both from the user point of
view and from the point of view of the telecommunications operators; since these
changes take place through obvious transformations on the communications speed,
the network access methods, the types of modulation, the applications developed
around them, etc., these changes have a significant impact on the quality of the
services offered by the IoTs.

Considering all these changes both in the communication networks that sustain
the IoT, and in the development of the IoT itself, it becomes immediately apparent
that this implies a large number of challenges that scientists are working and collab-
orating on in dynamic ways to address. Among these many challenges is the energy
consumption of connected devices, now numbering in the tens of billions; but also

the issue of pollution resulting from the use of batteries to supply these connected
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devices.

The management of energy resources is nowadays more than ever a priority, es-
pecially in view of the predictions made concerning climate change. This energetic
issue, which at once arose for heavy industry, has spread to almost all economic and
human activities. The development of information technology has enabled the de-
velopment of the digital economy, which today has transformed the way we produce,
exchange and consume. Its applications can be found in tourism, transportation,
education, health, agriculture, etc.

From the point of view of scientific and technical research and innovation, the
digital economy is based on artificial intelligence, digital processing and transmis-
sion of information (telecommunications), and most recently the Internet of Things
(IoT). Nevertheless, the field of telecommunications (IT in general), has become
more and more polluting, especially if we take into account the use of batteries
which ensure continuity of service in the case of an interruption of the electricity
network. However, with the COVID-19 crisis, considering the service provided by
telecommunications, we can globally recognize a reduction in energy usage. With the
lockdowns that have led to a reduction in transportation and human displacements
in general, the use of telecommunication supports have allowed a wide development
of teleconferences, teleworking, tele-education...

The definition of IoT is evolutionary and depends on paradigm and vision. It
has evolved a lot since its inception. It refers to a set of homogeneous things (which
can be used in thier environment for sensing and / or actuating) such that one can
move from one to another and uniquely addressable, communicating together in

a dynamic worldwide network [1]. In this definition, Thing refers to any physical
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object (such as Radio-Frequency [Dentification (RFID) tags, sensors, actuators, mo-
bile phones, smart items etc.), but also virtual uniquely addressable entity that can
moves in space and time. In the early 2000s, an MIT working group defined IoT as:
“an intelligent infrastructure linking objects, information and people
through the computer networks, and where the RFID technology found
the basis for its realization” [2]. The International Telecommunication Union
(ITU) published for the first time in 2005 a report on [oT, which expressed a vision
of its omnipresence in Information and Communication Technologies in these terms:
“a new dimension has been added to the world of information and com-
munication technologies (ICTs): from anytime, anyplace connectivity
for anyone, we will now have connectivity for anything. Connections
will multiply and create an entirely new dynamic network of networks
— an Internet of Things” [3]. In 2009 Cluster of European Research projects on
the Internet of Things (CERP-IoT) proposed the definition of IoT as “a dynamic
global network infrastructure with self-capabilities based on standard
and interoperable communication protocols where physical and virtual
“things” have identities, physical attributes, virtual personalities and
use intelligent interfaces, and are seamlessly integrated into the infor-
mation network” [4]. The extension of the latest definition which underlines the
interaction between Things and users, is found in [5], and expressed another vision of
[oT as: “Internet of Things links uniquely identifiable things to their vir-
tual representations in the Internet containing or linking to additional
information on their identity, status, location or any other business,

soctal or privately relevant information at a financial or non-financial
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pay-off that exceeds the efforts of information provisioning and offers
information access to non-predefined participants. The provided accu-
rate and appropriate information may be accessed in the right quantity
and condition, at the right time and place at the right price. The Inter-
net of Things is not synonymous with ubiquitous/pervasive computing,
the Internet Protocol (IP), communication technology, embedded de-
vices, its applications, the Internet of People or the Intranet/Extranet
of Things, yet it combines aspects and technologies of all of these ap-
proaches”. The dynamics of the [oT’s evolving definition also reflects its impact
on the digital and global economy.

The study presented in [6], which is recent and relevant today, showed that
there are many applications of IoT in various fields. In that work, it is shown an
exponential growth of connected devices. According to the data contained in that
paper, the number of connected objects will increase from 20 billion in 2015 to 80
billion in 2030 (cf. Figure 1.1). In other words, a fourfold increase in a 15-year
period. It also shows that for the same period, the average number of connected
objects per person will rise from 6.4 to 20.4. This ultra-fast growth reflects not
only a great interest in the IoT, but also its multiple applications which can be
grouped into 5 main areas presented in Figure 1.2: Smart Cities, Smart Homes,

Smart Transportation, E-Health and Smart Factories.
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Figure 1.2: Applications of 5G ToT [6]

1.2 Main objective

The SOCRATE team of the CITI laboratory has proposed a new wake-up radio
architecture based on the principle of using an identifier integrated to the OFDM
(Orthogonal Frequency Division Multiplexing) signal. That wake-up radio (WuRx)
device consists in a quasi-passive circuit which is thoroughly explained in the fol-
lowing chapters. The aim of the thesis is to propose a "wake-up' radio receiver
architecture which is completely autonomous in terms of energy, i.e. which harvests

radio-frequency energy to compensate for the requirement of the WuRx.
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Several theoretical as well as technological obstacles will have to be overcome. On
the system part, we are going to make a theoretical study. This study will then take
into account the technological constraints on the radio-frequency part of the wake-
up receiver. On the circuit aspects, it will be necessary to review the impedance
matching system of the RF/DC converter block, in order to improve the sensitivity
of the receiver. In addition, compared to the first proposed architecture, an energy
harvesting system will be added, making the system completely autonomous. The
pathway highlighted is the design and use of an ambient or transmitted RF energy
harvesting system. Finally, a study of the consumption will allow to evaluate the
best approach between permanently maintaining the power supply to the active
circuits of the main radio interface or activating them at the appropriate time.

Several application frameworks could be envisaged, from the most practical such
as information collection systems or vehicular networks to a higher level of abstrac-
tion: wireless sensor networks in the broadest sense. It will indeed be particularly
interesting from a scientific point of view to define a general theoretical boundary

for energy autonomy, the maximum range of such a system.

1.3 Background of the study

1.3.1 Origin of the problem and context

The growth of the number of connected objects invites two main challenges on
the things themselves that are, longevity and energy efficiency. These objects are
essentially Sensor Network (WSN) nodes. Sensor nodes have several applications

ranging from smart cities [7], to the military domain for tracking enemy positions
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[8], through health domain [9], the environment monitoring [10], as well as industrial
applications [11], [12]. For all these applications, each node needs a battery for its
power supply. However, the small size of some nodes and the accessibility due to a
harsh environment at times, does not allow these batteries to be replaced or their
replacement is very time and resources consuming. As a result, some nodes are
deployed only once and their lifetime depends on the depletion of the battery that
supplies them. A node that stops running is said to be dead. If the number of dead
nodes increases beyond a certain amount, the network becomes inoperative since the
information collected does not reflect the full state of the operating environment.

The most energy consuming part of the connected devices is the radio part. It has
been demonstrated that the radio consumes 90% of the energy in standby mode [13].
Therefore, it is necessary to find a way to limit this energy waste so that they have a
battery that lasts a longtime to increase the lifetime of a connected device. The low
energy consumption systems follow some constraints according to the application
and the scenario of usage. So we have the constraint of size which requires objects
to have small sizes; the constraint of sensitivity (which is the ability of a radio
receiver to provide a signal of acceptable strength and quality at the output with
the lowest level input signal), energy consumption, the robustness which is directly
linked to the longevity of the object and data rate.

The power efficiency and reliability of communications are often contradictory
requirements in WSNs and IoT. It is in this context that was born the development
of communicating systems with very low energy consumption. Initially researchers

have developed duty cycle systems and subsequently wake-up radio systems.
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1.3.2 Duty cycle receiver

Duty cycle based protocol is a technique widely applied to wireless sensor nodes to
save energy consumption. It has been shown that a typical node communicates very
rarely, and spends most of its time monitoring the channel [14]; which implies that,
the main radio remains active and consume a lot of power for nothing. The channel
monitoring activity for a node is almost as energy consuming as the communication
activity of the node under consideration. In this scenario, a cycling strategy directly
reduces energy consumption.

A cycling strategy consists in that the radio interface is active during one cycle,
and is switched off during the next cycle while the rest of the system is in standby
to resume the active cycle. In order to properly characterize this cycling strategy,
it is necessary to take into account the energy consumed by the transmitter that
transmits the synchronization signal to initiate communication between the node
and the device that gathers the information to be sensed.

Figure 1.3 shows the time diagram of the duty cycling protocol. In this
figure, three different periods can be observed. The active period (Tyetive), the

standby period (Tep) and the transition period from standby to active mode (Ta,).

Tactive

P

T T
Rx Rx -t sep 22 - Rx

Figure 1.3: Timing sequence of the protocol based duty-cycling [15]

Considering here an ideal operation, i.e. there is no packet collision and in

the absence of any interference, the synchronization packets are considered to be
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successfully transmitted. The following analysis can be made: in a node based
on a duty cycle operation protocol, when a node that is most frequently in sleep
mode receives a wake-up message during the active period, it switches to the active
state. Thus the data transmission and reception begins. Otherwise, it continues to
transmit the synchronization packets until it receives a data packet, or until the time
for the connection establishment attempt expires if there is no data. If this happens
successfully, the information is transmitted until the end and the node switches to
the standby mode. The average power consumed by the node is evaluated by the

following equations:

Ts?a
Tsleep + Te?a + Tactive

Tsleep
Teleep + T@Qa + Tactive

Pa'z)g,Rz = nPRT + ( )Psleep + ( )PSQ(z <11)

Tac ive
‘ (1.2)
Tsleep + Ts?a + Tactive

’[7:

where 7 is the duty-cycle and Pgr, , Pyjeep and Py, are amounts of power consumption
respectively in active mode, sleep mode and sleep to active mode respectively. In
general, since Pjeep is much smaller than Pgr, and Ty, is much longer than T,,
the first term in equation (1.1) denominates the average power consumption. The
minimum 7gerpe is limited by the wake-up packet size, and hence Ty, can be
increased to reduce the average power consumption.

Figure 1.4 illustrates the two extreme scenarios when this strategy is used [15].
The first scenario in Figure 1.4 (a) is the case where the synchronization packet
arrives at the moment of the transition of the node from standby to active mode.

This is the ideal case and the latency here is only the one related to the sending of

10
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the acknowledgment and the start of the data transfer. This minimum latency case
also corresponds to the minimum power consumption by the node, which is parallel
to the minimum power consumption by the transmitter. In contrast to this ideal
case, Figure 1.4 (b) shows the longest latency. The synchronization message arrives
just slightly behind schedule to be ignored. In this case, the power consumption
is maximum at the device initiating the communication (generally the gateway) as

well as at the connected device. Latency is maximum and the communication is

delayed.
—> Tc <
Tsft
Rx IACK | > Rx(Data)
—> Tc <
Tsft
Tx Rx [€ > Tx(Data)
—| Tsft |[=e—
(a)
Tact
Rx — —
Rx|  Tsleep | Ts2a ACK Tsft Rx (Data)
; Te [<—
X Tsft
Tx Rx - - Tx Rx Tx K’H Tx (Data)
Tsf't
(b)

Figure 1.4: Timing sequence of the (a) minimum and (b) maximum sequence of
wake-up latency in duty cycling scheme [15]

The following equations are used to determine the average energy consumption

11
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(Eqvg) and the average latency (Lg,y) for the transmitter and the receiver.

1 1
Eavg,Rx = 5 (ERa:,ma:p + ER:r,min) = 5 (TslpPslp + TsZaPSQa + TactPRz + TCPRz)

(1.3)
1 1

E(wg,Tx - 9 (ETw,maa‘, + ET:c,min) - § (Tslp + T‘:Qa + Tact + TC) PTJ: (14)
1 1

Lavg = 5 (Lmaac + Lmzn) == 5 (Tslp + TsQa + Tact + TC) (15)

1.3.3 Wake-up Radio Receiver

Wake-up mechanism enables the main radio to go to deep sleep as long as there
is no transmission intended for it. It is an on-demand approach where the connected
device of interest is woken up by a radio signal, namely wake-up signal (WuS). A
WusS triggers a node to wake up from the sleep mode to active (reception) mode. This
eliminates idle listening and achieves more energy saving, while accelerating packet
forwarding by eliminating waiting time at each hop. Furthermore, this alternative
is asynchronous and does not require time synchronization. Moreover, overhearing
is reduced, and even eliminated with the addressing capability of current wake-up
radio systems where only nodes concerned by the communication are awaken.

The use of a wake-up radio reduces collisions between data and wake-up messages
and allows simultaneous exchange of these messages (since they are transmitted in

different channels). Wake-up radio principle is illustrated in Figure 1.5.

Wake-up radio (WuRx) is a very low power consumption secondary radio, whose
unique role is to turn on a primary radio on demand to perform data transfer. In
that scheme, the WuRx has a very low energy consumption (10% to 10° lower than

12
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Figure 1.5: Wake-up radio principle

the energy consumption of a typical radio front end), the sum of which preferably
ranges from a few nanowatts to a few microwatts. In this type of secondary radio,
there is always a trade-off between the sensitivity of the receiver, on which the
communication distance depends, and the energy consumption. Figure 1.5 shows
the operating principle of WuRx. In that figure, this principle has been illustrated

in four steps:

o In the first step, the wake-up transmitter (WuTx) sends a wake-up signal to
the wake-up receiver. If the WuS corresponds to the identifier of the node or
is simply the appropriate signal, the next step is taken. Otherwise the signal

is ignored and nothing happens.

o When the ID signal is the appropriate signal, WuRx radio turns on the main

radio and the system moves on to the next step.

e« When the main radio is switched on, an ACK message is sent and a data

exchange follows.

¢ At the end of the transmission, the main radio is switched off and the rest of

13
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the system is on standby to await any further transmission. Meanwhile, the
secondary wake-up radio remains active for channel monitoring and reactiva-

tion of the main radio front-end if the event occurs.

A more complete study of WuRx, which is an important aspect of this thesis,

can be found in the next chapter.

1.4 Plan of the manuscript

The writing of this thesis is organised in four chapters. In the first chapter,
we situate the thesis project in its context, which allows us to come back on the
methods formerly employed to save the energy of the connected devices; then we
define the WuRx and its operating principle before identifying the problem to be
solved by this thesis.

In chapter 2, we make a deeper review of wake-up radio receivers. In the first
articulation, we define their specifications; then we make a classification according
to their energy consumption, their architecture, their implementation technology
and their identification mode. This is followed by a statistical analysis and finally
we present some well-known applications of these wake-up receivers.

Chapter 3 is dedicated to the improvement of quasi-passive radio wake-up; here,
the study of each block leads us to improve the RE/DC converter block and subse-
quently the range of the wake-up radio itself.

In chapter 4, we make a quick study of the RF energy harvesting systems, then
we make a description of the analysis methods as well as the tools that will allow us
to analyse our circuit. Finally, we design and implement the circuitry that will allow
to obtain the WuRx as a battery less system. At this stage, we go to the conclusion

14
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to describe the different perspectives that are offered to this work.

15



Chapter 2

State of the art of Wake-Up

Radios

2.1 Introduction

The Internet of Things (IoT) vision aims to develop smart objects which are
not only manageable via the Internet but can also provide information on demand
about the environment in which they operate. This information may be used for
purposes, including control and supervision, but also for weather forecasting.

The information being the key element of IoT, to be collected, things embedded
sensors, which in practice are unfolded like sensor nodes. The IoT as it stands
today has a wide range of applications from the field of health care to agriculture,
through smart cities, the control of telecommunications facilities as well as nuclear
and many others installations, home automation and largely industries field. For use
in a particular field such as aeronautics, more than 1000 sensors nodes are deployed

[16).

16
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IoT can be made possible in most cases if and only if operating with low power
devices that have the capabilities of actuating and sensing. These objects, in the
classical scenario are equipped with a battery; their usage sometimes makes them
inaccessible for a battery replacement. In [17] we have some use cases of IoT in health
that present intra-body and extra-body communication. An example of device usage
inside human body is a pacemaker. This type of application obviously does not
allow easy battery replacement. It becomes mandatory for such applications to
find a battery of very large capacity and reasonable size, which will not be possible
to implant in the human body because of the size or to find a way to use energy
efficiently. To achieve this goal, duty-cycling was used with the limitations that
we presented in the previous chapter. To correct these limitations a novel concept
of Wake-Up Radio (WuRx) has been developed and its implementation gives wide
satisfaction in terms of energy consumption, which for some cases is around just a
few tens to few hundreds of nanowatts [18], [19].

The research advancement in CMOS technology has contributed greatly to the
energy consumption performance of wake-up receivers, which take in addition the
advantage of integration. The rest of this chapter is organized as follows: Sec-
tion 2.2 describes requirements and taxonomy, Section 2.3 discusses classifications,
Section 2.4 shows statistical analysis of low-power receivers, some applications are

depicted in Section 2.5 and conclusion is in Section 2.6.

2.2 Requirements and Taxonomy

The concept of Wake-Up Radio receivers has very large numbers of requirements

that are mostly dependable on the application targeted by specific device. Depend-

17
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ing on the operating environment, WuRx must fulfills some design constraints:

 (a) Energy consumption: Energy consumption of Wake-Up receivers is one of
the key characteristics of the design of low-power devices. This energy should
always be much less (few hundred nanowatts to few microwatts) than the con-
sumption of the main radio. In literature, we have passive and active Wake-Up
Radios. Passive WuRs are those that rely only on Wake-up signal (WuS) to
supply themselves. In this case, there is no use of classical source of energy
(battery). For instance, in [20], a battery-less totally passive Wake-Up Radio
is designed and implemented in CMOS technology, working in 915 MHz ISM
band for a biomedical implant, takes the advantage of On-Off Keying (OOK)
Wake-Up Signal for itself supply. Moreover, another example of fully passive
WuRx is described in [21], operating in 2.4 GHz band. Active WuRs as far
as they are concerned use battery for their supply. Some practical designs of
active WuR are presented in [18],[22], they have advantages of better perfor-
mance (high robustness, sensitivity, communication range etc.) as compared

to passive radios.

« (b) Sensitivity: The sensitivity of a radio receiver is in dBm the lowest power
level of information that can be received and interpreted. The lower this
quantity, the more sensitive the receiver. In general, high sensitive receivers
need high power consumption to operate. Some of the high sensitive low-power
receivers can be found in [23], [24], [25] where we have a sensitivity of — 87 dBm
for power consumption of 320 uW, — 92.5 dBm sensitivity for 470 W power
consumption and very high sensitivity of — 97 dBm for power consumption of

40 pW respectively.

18
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+ (c¢) Communication range: The range in radio communication is directly linked
with the receiver’s sensitivity. The design range of WuRx mostly depends
on the targeted application and implicitly on the propagation environments.
Generally, those distances vary from few centimeters for Body Area Network

(BAN) to a few tens of meters for industrial applications as depicted in [16].

o (d) Wake-Up delay: WuR should have low latency so that the global time
response of the sensor node should be reduced. Moreover, some application
in industry are time critical and require the Wake-Up receiver to act with
minimum delay tolerance. H. Milosiu et al. presented in [26] design of a
very low-latency system of 60 milliseconds, which can be suitable for many

applications in 868 MHz ISM band.

o (e) Frequency: The designers have work on a large range of frequencies in
the design of low-power receivers depending on the applications and frequency
regulation in corresponding countries. The US Federal Communications Com-
mission (FCC) defined the ISM bands around 915 MHz and 2.45 GHz, while in
European Union low-power wireless devices are generally referred to as short-
range communication devices (SRD); Electronic Communications Commission
(ECC) recommends bands around 433 MHz, 868 MHz and 2450 MHz as ISM
bands. Fig 2.11 and Table 2.1 present some designs with their frequency. Many
WuRx are principally designed in Industrial Scientific and Medical bands. In
Africa and especially in Cameroon, the European standards apply in telecom-

munications.

» (f) Robustness: The robustness of Wake-Up Receivers is a part of their saving

energy strategy. It is defined as the ability to prevent false wake-up. False
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wake-up happens when the Wake-Up Transmitter (WuTx) tries to enable spe-
cific node and hazardous enables another one instead or many ones. This
causes a lot of energy loss resulting in discharging the battery. False wake-up
also happens when the addressing scheme is not well designed: the simple
presence of signal in the corresponding band in this case can cause it. To solve
this problem of robustness, WuRx often uses a coding strategy that attributes
a specific code to each node. This may add complexity to the system with the
consequence of increased energy consumption [27]. Modulation techniques can
also help to prevent false wake-up. When complex modulation schemes are
employed, the WuRx architecture complexity increases but on the contrary
reduce the false wake-up. Simple modulation technique like On-Off Keying
(OOK) that is largely used in WuRx is subject to sensitive wake-up. It is im-
portant to specify that the latter type of modulation is used because it causes

a very low energy consumption compared to the others.

e (g) Cost and size: WuRx should be cost-effective since sometimes thousands
of sensor nodes integrating WuR are used for a given system. In addition, it
is obvious that the size should be as small as possible especially those used

inside the human body.

2.3 Wake-Up Radio classifications

There are many bases on which WuRs can be classified. In this part, we will
classify according to their energy supply, implementation architectures, identifica-

tion methods and implementation technologies.

20
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2.3.1 Classification based on energy supply

According to such a classification, they are Active WuRs, Passive WuRs and
Semi-active WuRs.

Passive wake-up radios (PWUR) are those build around passive components and
does not require any power source. In other cases of PWUR, although it is battery
free, use the wake-up signal (WuS) as a source of energy which activates main radio
generally by triggering from a standby state to an active state. PWUR technology
is developed in [21], [28] and the architecture generally deployed is presented in
Figure 2.1. It is based on simple envelope detector generally made of series diode
with parallel capacitor. In spite of the fact that this completely passive technology
is the goal for wake-up receivers, the fact remains that current implementations
have a great limitation in sensitivity and consequently in terms of the range of

communication.

N\
N RF-to-DC
Converter

T/ T +
00K

A, [ DC Supply

Figure 2.1: Passive Wake-up Radio architecture

[iC Comparator

Some designs resort to energy harvesting to covert the need of WuRx [29] in
terms of power supply. Active WuRs use the battery of communication devices for
their supply. The majority of WuRx are actives and are continuously supply.

Semi Passive Wake-Up Radio some components of the device are supplied with

the continuous source while the front end remains passive like those in [30], [31].
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2.3.2 Classification based on radio architectures

Low-power receivers are implemented using many architectures such as super-
heterodyne, injection-locked local oscillator, super-regenerative and non coherent

receiver.

a) Super-heterodyne Wake-up Receiver

Reginald Fessenden invented the heterodyning in 1901, which consists in ap-
plying a frequency created locally by an oscillator to one of the mixer input and
RF frequency to the other input, the mixing of the two frequencies results in the
extraction of the modulated signal. The system created in 1901 finds its most im-
portant application in super-heterodyne receiver (Figure 2.2) invented in 1918 by
E. H. Amstrong. The idea behind super-heterodyne is to filter mixed frequency so
that the noise is reduced and the selectivity of the system is increased. The filtered
signal is easier to obtain in super-heterodyne receiver. This principle is used in [32]
for ultra-low-power receiver (7 W), high sensitivity (-80 dBm) and low latency (30

ms) duty cycled receiver.

X

Desired signal Mixer Filter IF signal

RF Amplifier { i% } \ IF Amplifier Demodulator

|

Local Oscillator

Figure 2.2: Principle of super-heterodyne receiver
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b) Injection-locked Local Oscillator (ILO) receiver

This injection circuit is used to provide an external periodic locking signal to
the oscillator (injection signal). Under some conditions, the oscillator locks on the
injection signal so that the oscillation frequency becomes dependent on frequency
of the injected signal. ILOs have properties to lock on one of the fundamental
harmonics, or sub-harmonics of the injection signal. A simple representation of the

injection oscillator principle is given in Figure 2.3 and Figure 2.4.

Power supply

Figure 2.4: Locking range

—‘7 =
@ "
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= range _
=
=
]
£
' >
1
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Figure 2.3: Injection-Locked Local os-
cillator principle.

Locking range is a couple of parameters (power level of injection signal, and
frequency of injection signal) that guarantees the oscillator’s locking. It is the sen-
sitivity of oscillator, also called locking range with the example of Figure 2.4. The
curve in Figure 2.5 shows that for high power, we have a large locking range.

Locking highlights the fact that the oscillator deviates from the free oscillation
frequency to oscillate on a nearby frequency, which is the resultant of the free oscil-
lation frequency and the frequency of the injected signal. It is also important to say

that oscillator has the property to lock on the multiple or submultiple of the funda-
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mental frequency. Under the injection locking conditions, the frequency of injected
signal is closed to the resonance of an LC tank. Assuming that the amplitude of the
injected voltage V,; is much lower than the amplitude of the free-running oscillator
voltage V., the locking range can be given by equation 2.1 [28]. The concept ILO

is used for the design in [33], [34], and [35] for low-power receiver.

_ ﬂv;n]
2Q Vige

wr (2.1)

Were wy, is the locking bandwidth around the operating frequency wy. Q the
quality factor Vj,; is the peak voltage of the injected signal V. is the peak voltage
of oscillation output signal

The ILO is used for low power receiver as a Frequency Shift Keying (FSK) to
On-Off Keying (OOK) converter [36]. The conversion is based on the fact that
the input FSK signal presented at the ILO’s output can be differentiated by the
amplitude variation of the ILO’s output, which leads to the frequency-to-amplitude
conversion. The conceptual diagram of ILO with LC tank that oscillates at wy and

presents a quality factor of Q is shown in Figure 2.5.

A

F/'a
2

Figure 2.5: Frequency-to-amplitude conversion of ILO based on tank [37]
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‘/Out ~ ‘/osc COs (winj + 9) (22)

The output voltage of ILO is given by equation 2.2 [37]. It shows that, the
frequency of the output voltage is related to the frequency of injected signal and the
proper use of ILO by playing with the locking range of equation 2.1, allows to get a

conversion with an envelope detection demodulation as the representation given in

Figure 2.6.
avaivs
M L
@_» a
Lo Envelope detector Buffer

Figure 2.6: FSK envelope detector design

c) Super-Regenerative receiver

A super-regenerative principle is used in the receiver for low power solution based
on super-regenerative oscillator (SRO). E.H. Armstrong invented the first Super-
regenerative receiver (SRR) in 1922. The works based on the start-up transient
characteristic of an oscillator, which is used to achieve filtering and amplification.

In SRR the oscillator is controlled by the quench generator that generates low
frequency periodic signal, causes the RF oscillations to rise from starting transient

close to the stable point and die out time after time. The RF oscillator can be
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modelled as a frequency selective network fed back through a variable gain amplifier.
This gain is modified by the damping oscillator, making the closed-loop alternatively
unstable and stable. In this way, the signal generated in the oscillator is composed
of a series of RF pulses separated by the quench period T, and the periodic build-up
of the oscillations is determined by the input signal v(t) (see Figure 2.7 and Figure

2.8) [38].

Superregenerative
oscillator

Envelope Ve Lowpass Vr

detector filter

Selective
netwaork

Quench
oscillator

Figure 2.7: Detailed block diagram of the super-regenerative receiver [38]
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Figure 2.8: Input signal and output voltage of SRR
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d) Envelope detector receiver

Envelope detector architecture is suitable for passive Wake-Up Radio as mention

earlier. This structure is developed and commented in section (2.3.1).

2.3.3 Classification based on implementation technology

All the designed (see Table 2.1) Wake-Up Receivers known are using mainly four
technologies for their implementation. The review of literature informs that those
technologies are namely CMOS, Bi-CMOS, BCD, and usage of discrete components.

The CMOS technology takes the advantages of very low-power consumption and
high capacity of integration, making small size devices which are the target for many
applications.

Bi-CMOS is the combination of two transistor technologies in a single integrated
circuit, which are Bipolar and CMOS. This combination brings together the advan-
tages of both technologies. Bipolar junction transistor offers high gain, high speed
and low output resistance whereas CMOS offers high input resistance and low power
consumption. The drawbacks of the Bi-CMOS integrated circuit are relatively high
global power consumption and high complexity procedure of fabrication.

BCD stands for Bipolar-CMOS-DMOS (Double Diffused Metal Oxide Semicon-
ductor): it merges the three technologies and their advantages onto a single IC,
resulting in improvement of reliability, robustness to electromagnetic interference,
and surface area of devices. BCD technology offers a very high density integration

of many complex functions on a same chip and guarantees high reliability to all
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applications built on the chip. The representation of BCD technology is shown in

Figure 2.9.

Merged in one process platform

Figure 2.9: Representation of BCD technology

RFID stands for Radio Frequency Identification, which are wireless devices that
can be used for identification. RFID system is made up of passive transponder call
tag and its reader; the principle is shown in Figure 2.10. In specific case of Wake-Up
Radio used, the tag aimed to be attached to a sensor node, with the advantage of
identifying uniquely the concerned node. A designed case of WuR using RFID is
simulated in [39]; RFID Impulse that is low-power Wake-Up radio for sensor nodes
uses an RFID reader as Wake-Up Radio transmitter and a tag as the trigger to
enable the node, achieving a distance of 30 meters for a power consumption of 80
uW. The tag of the RFID technology which is here the wake-up radio is made up

of chip based on transistors.
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Figure 2.10: RFID Wake-Up Radio based prototype [45]

2.3.4 Classification based on Identification Methods

This classification focuses on the way that the wake-up signal (WuS) is formed.
The classification is based on the frequency on which the ID is transmitted and the

number of WuRx which are addressed.

a) ID-based receiver:

This type of system has a specific address to wake-up only a unique node. In
this case, there is avoidance of false wake-up and overall waste of energy (at WSN
level). This technique adds more complexity to the system with the advantage of

more precision but has high energy consumption.

b) Broadcasting based receiver:

In this case, the WuS enables all nodes in its neighborhood. This implementation
is relatively easier than the ID-based one. The main drawback is that a given node
can wake-up when there is no need and, in this case, there is some useless energy

consumption.
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2.4 Statistical analysis of low power system re-

ceivers

A review of Wake-Up Radio Receivers leads us to a listing provided in Table 2.1.
As it will be shown, there are many correlations between characteristics of WuRs.
The choice of those characteristics for a WuR to be designed will be directly linked
to the requirements of the targeted application. In this part, we are analysing
and comparing different features of wake-up devices regarding their communication

range, sensitivity, power consumption, modulation scheme and frequency.

2.4.1 Modulation Technique vs. Power consumption

In Table 2.1, the state of the art of Wake-Up Radio Receivers is summarized,
where we make an inventory of 31 designs of the most representative among the
available works on the topic; although they are other inventories. From there, we
can deduce that the majority of WuRs uses the OOK modulation scheme.

The choice of OOK is directly linked to the power consumption. The implemen-
tation of OOK non-coherent receiver is less complex than any other demodulation
scheme in receiver design. It requires passive rectifier architectures based on diodes
and capacitors as in [20]. We can find from the state of the art that, apart from
the case in [19] using PWM, all the other WuRs with less than 1 W use OOK
modulation [18, 20, 21, 40, 41, 42]. Although the OOK modulation scheme provides
good power consumption, it is sensitive to interference. Other modulation schemes
require sometime more complexity with the consequence of more power consump-

tion like in [35] and [43] that use respectively Binary Phase Shift Keying (BPSK)
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and Frequency Shift Keying (FSK). The latter two types of modulation transmit
information by modifying the frequency of the carrier signal, so the modulation is
robust to additive noise (amplitude noise).

In Figure 2.11, we have the representation of Wake-Up Radio Receivers of Ta-
ble 2.1, with their modulation scheme and power consumption. As already men-
tioned, the OOK modulation scheme is the one that dominates in it number, that
scheme has been in used so far and continue to be the most present for the re-

cent designs. Each point of the figure matched with the corresponding reference

publication.
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Figure 2.11: Power Consumption of state-of-the-art of WuRs
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Table 2.1: Characteristics of available designed Wake-up Receivers
Ref. | Year | Frequency | Mod. | Pwr. Sensitivity | Architec. | Techno. Impl.
supply
[44] | 2007 | 915 MHz | OOK |20 uW | — 69 dBm | ED Discrete | Prototype
[35] | 2010 | 300 MHz | BPSK | 120 uW | — 34 dBm | ILO CMOS | Prototype
[19] | 2011 | 433 MHz | PWM | 278 nW | — 51 dBm | ED CMOS | Prototype
[26] | 2011 | 868 MHz | OOK | 7.2 uW | — 60 dBm | — CMOS | Prototype
[34] | 2011 | 44.5 MHz | FSK | 120 u4W | — 90 dBm | ILO CMOS | Prototype
[32] | 2012 | 915 MHz | OOK | 121 uW | — 83 dBm | ED CMOS | Prototype
[33] | 2013 | 60 GHz OOK | 9 uW — 68 dBm | ED CMOS | Prototype
[45] | 2013 | 900 MHz | ASK | 0 — 80 dBm | RFID RFID Prototype
tag
[41] | 2014 | 868 MHz | OOK | 196 nW | — 55 dBm | ED Discrete | Prototype
[36] | 2014 | 902 — 928 | OOK | 250 uW | — 63 dBm | ILO CMOS | Simulation
MHz /
FSK
[28] | 2014 | 868 MHz | OOK | 0 — 33 dBm | ED CMOS | Simulation
[46] | 2014 | 2.4 GHz | OOK | 8.25 — 44 dBm | Sup.het. | Bi-CMOS | Prototype
mW
[22] | 2015 | 24 GHz | OOK | 7 uW — 80 dBm | Sup.het. CMOS | Prototype
[20] | 2015 | 915 MHz | OOK |0 — 43 dBm | ED CMOS | Prototype
21] | 2015 | 2.4 GHz | OOK | 0 — 19 dBm | ED CMOS | Prototype
[30] | 2015 | 2.4 GHz | OOK |99 uW | — 97 dBm | Het. CMOS | Prototype
[47] | 2015 | 900 MHz | — 0 — 86 dBm | RFID RFID Prototype
tag
[48] | 2016 | 433 MHz | OOK | 54 uW | — 80 dBm | ILO CMOS | Prototype
FSK — 78 dBm
PSK — 77 dBm
[23] | 2016 | 900 MHz | OOK | 320 uW | — 87 dBm | SRR CMOS | Prototype
[25] | 2016 | 28 MHz OOK |40 uW | —97dBm | SRR Discrete | Prototype
[31] | 2016 | 868 MHz | OOK | 400 nW | — 35dBm | ED Discrete | Prototype
[42] | 2016 | 50 MHz OOK | 11.5 — 60 dBm | ED CMOS Simulation
nW
[40] | 2017 | 550 MHz | OOK | 222 nW | — 56.4 dBm | Sup.het CMOS | Prototype
[43] | 2017 | 868 MHz | FSK | 70.2 — 61 dBm | ED Discrete | Prototype
nW
[49] | 2017 | 41 kHz OOK |1 uW - SRR CMOS Prototype
[18] | 2018 | 868 MHz | OOK | 13 nW — 54 dBm | ED BCD Prototype
[24] | 2018 | 5.8 GHz | OOK/ | 470 uW | — 92.5 dBm | Sup.het. CMOS | Prototype
FSK
[50] | 2018 | 433 MHz | OOK/| 1.7 uW | — 49.5 dBm | ED Discrete | Prototype
ASK
[51] | 2018 | 900 MHz | OOK |1 W | — 58 dBm | ED CMOS | Prototype
[52] | 2018 | 2.4 GHz | OOK | 95 uW — 72dBm |- CMOS | Prototype
[53] | 2018 | 433 MHz | OOK | 7.4nW | — 71 dBm | ED CMOS | Prototype

ED = Envelope Detector; Impl = implementation; Techo = technology; Pwr =

power; Mod = modulation
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2.4.2 Sensitivity Vs Power Consumption

Sensitivity and power consumption are two key parameters of a WuRx. In
classical receivers, the sensitivity is measured at bit error rate (BER) 1073 that is
the acceptable level of error for a good channel in communication system. BER is
the number of error bits over an amount of transmitted bits, 10~ BER means that
over transmitted one thousand bits, we have one bit error; with this level of error
rate, the probability of making an error in transmission is very low.

Since the Wake-Up Radio is not fundamental for data exchange, the only re-
quirement is to get enough power level at the wake-up antenna to trigger the main
radio.

There is always a trade-off between power consumption and sensitivity in the
sense that high sensitivity requires high power consumption and subsequently, the
two parameters are proportional. A design in [32] is a typical case to understand the
link between the two parameters; we have for that circuit, a sensitivity of —56 dBm
for power consumption of 63.5 W while the increase in power to 121 uW provides
the sensitivity of —83 dBm.

Figure 2.12 shows a graphical representation of state-of-art in Table 2.1 by con-
sidering their power consumption and sensitivity. As can be seen, no one Wake-up
Radio out performs all the other in terms of power consumption and sensitivity. We
can realize from the figure that, the majority of WuRs have their sensitivity lying
between -70 dBm and -50 dBm, and their power consumption less than 100 uW.
Some specific cases that drew our attention and we circle them in red. The references
labelled (1) and (2) shown the very low power consumption in the circumstances

13 nW, 11.5 nW and 7.4 nW for the corresponding sensitivity of -54 dBm, -60 dBm
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and -72 dBm respectively; which are very good performance on the Wake-Up Radio
topic and can be exploited for the applications requiring very low power and high
sensitivity. Circle (3) is for [24] and [34] with corresponding sensitivity of -92.5 dBm
and -90 dBm respectively; these two cases correspond to high sensitivity WuRs with
the power consumption relatively high, notably 470 pW and 120 pW. The cases of
highest sensitivity are [25] and [30] with sensitivity of -97 dBm each; [25] operates
with the carrier frequency of 28 MHz while [30] works in radiofrequency specifically

2.4 GHz; their power consumptions are 40 pW for [25] and 99 uW for [30].
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Figure 2.12: Power Consumption vs. Sensitivity

2.4.3 Power Consumption and Technology

In Figure 2.13, we represent the power consumption in function of sensitivity
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Table 2.2: Technology of WuR and Power consumption

Porer. Co Technology | oy | oo Bi-CMOS | Discrete | RFID
Power. < 10 uW [18] | [19], 20, 21, 31], [41], | [45], [47]
22], [26], [28], [50]
[33], [40], [42],
[51], [49]
10 puW < Power. < 100 W [30], [48], [52] [25], [43],
[44]
Power > 100 gW 23], [24], [36], [46]
[34], [35]

but taking into account the technologies. We realized that those parameters are not
related even if it is admitted that CMOS integrated circuit is low power consump-
tion technology with the counterpart of relatively high latency. Nevertheless, if we
consider the data in Table 2.2, we can have the following discussions.

The single case working with BCD technology uses less than 10 pW; CMOS
technology is the one that offers possibility to work with any range of power lev-
els. The advantage of using CMOS integrated circuit comes from the fact that it
generally has very low supply voltage and satisfies the condition of small size device
that is very important in some cases (see section 2.2). The receiver in [46] which is
implemented with Bi-CMOS technology works with 120 W power. Discrete com-
ponent technology implements low and medium power devices. Designs using RFID
technology are very low-power since the tag are generally passive.

The choice of technology that will be used to implement a device can influence
the selection of frequency and vice versa; for example, discrete components cannot be
used to implement very high frequency circuits (above GHz), due to their radiation
properties at high frequencies. The majority of WuRx are designed to work in ISM
band either in Europe or in America and Japan; as mentioned elsewhere, Africa and

specifically Cameroon follows Western European norms in telecommunications.
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Figure 2.13: Power Consumption and Technology of WuR

In Table 2.3, we have different technologies with the frequency corresponding
to each design. A double line divides the table into two-parts with the first one
corresponding to sub GHz part and the second part in which there are devices
operating above 1 GHz.

CMOS integrated circuit is used to implement WuR from ultra-low frequencies
[34], [49] up to 60 GHz [33]. It is the only technology from the state-of-the-art that
covers all range of frequency in the implementation of prototype. The single BCD
implementation [18] that we have is working with 868 MHz ISM frequency. In [46]
we find an implementation at 2.4 GHz, working in Bi-CMOS technology. All the
implementation with discrete off-the-shelf components are working under 1 GHz;

this is due to de dispersive nature of discrete components. If the frequency used in
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Table 2.3: Technology of WuR and Frequencies
Technology . .
BCD| CMOS Bi-CMOS | Discrete RFID
Frequency
41 kHz [49]
28 MHz [25]
44.5 MHz [34]
50 MHz [42]
300 MHz [35]
433 MHz [19], [48],[53] [50]
550 MHz [40]
868 MHz [18] | [26], [28] [31], [43],
41
900 MHz [20], [23], [36], [44] [45], [47]
51]
2.4 GHz [21], [22], [30], [46]
52)
5.8 GHz [24]
60 GHz [33]

discrete component prototypes goes far beyond one gigahertz, the components will

have a behavior different from the nominal one, thus causing operation failure by

radiating and creating electromagnetic interference in the environment which leads

to some power loss in the system.

It should be noted that the power consumption of system globally increases with

the frequency, since the path loss increases with the frequency according to Friis

formula. Moreover, the study presented in [54] shows that, for the same power

consumption of 1.276 uW, a WuR design to work in dual frequency of 868 MHz and

2.45 GHz gives — 53 dBm and — 45 dBm sensitivity respectively, corresponding to a

margin of 8 dB due to the circuit and systems behavior at different frequencies.

2.5 Applications of Wake-Up Radios

WuRs are used in very wide range of applications depending on their require-
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ments, which are among others, the battery lifetime, wake-up range, wake-up la-
tency, the size of devices and channel characteristics. Wake-Up Radios are devices
generally designed for Wireless Sensor Networks (WSN), in order to activate main
radio of nodes that will receive and transfer data before being switching off for next
wake-up. The downside of WuR is that it adds the complexity to node because of
additional secondary radio to be integrated; however, it is very helpful to reduce the
overall energy consumption.

Many applications of WuRs are now registered in very large number of fields such
as aeronautics, wireless body area network (WBAN), smart metering, industrial
applications, smart city, wildlife monitoring, security and surveillance of systems,
indoor localisation, asset tracking, smart grid and wearables. In this section, we are

going to present some typically known cases of usage among the listed fields.

2.5.1 Wireless Body Area Network

WBAN communications are governed by IEEE 802.15.6 HBC PHY standard,
which normalized the communication in the vicinity and into the human body, for
medical and non-medical applications. IEEE 802.15.6 defines different layers which
are Human Body Communications (HBC), Ultra-wideband (UWB) and Physical
(PHY) layers as shown in Figure 2.14. [55]; Figure 2.15 presents different frequen-
cies of that standard which are namely, for Medical Implant Communication Service
(MICS), Wireless Medical Telemetry Services (WMTSs), Industrial Scientific and
Medical (ISM) and Ultra-wideband (UWB) which can support high data rate ap-
plications.

WBAN is used to monitor body parameters like glucose level, heartbeat and
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UWB PHY

© HBG PHY

Figure 2.14: TEEE 802.15.6 MAC and PHY layers

body temperature, it requires around 20 to 50 sensor nodes. WuR in WBAN can
be used as a trigger to activate high data rates node or as low power consumption,
low data rate radio.

The WuR design in [25] is an example applicable for HBC, the use of 28 MHz
frequency in that specific case causes the low free space loss (26 dB at 40 cm and 40
dB at 1 m). Since many applications in WBAN are in the vicinity of human body,
the applicable WuR will require low sensitivity with the consequence of very low
power consumption. It is reported in [56] that the receiver with a sensitivity of — 40
dBm is capable to receive the signal transmitted with 0 dBm power in WBAN.

According to the state-of-the-art, if we are to consider WuRs that can be matched
with sensitivity requirement and power consumption below 10 W, as recommended
in [13], if additionally, we consider size constraint, we will be able to say that WuRs

in [18, 19, 20, 21, 22, 26, 33, 40, 42, 51, 49] match with WBAN applications.
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Figure 2.15: Frequency bands in IEEE 802.15.6 standard [55]
2.5.2 Smart metering

Smart metering offers the possibility to read a measurement from distance on
home meter that can be gas, water or electricity meter. In Cameroon, for example, a
technician is on the field every month to read water and electricity meter, it happens
that sometimes there is no access to the meter since people are not always in their
house. Smart metering allows reading meter without necessity to access meter; the
typical distance is 15 meters. The used WuR on the smart meter will reduce the
power consumption of transmitter that sends the value appearing on meter.

The pathloss for smart metering was measured at 15 meters to be 100 dB, the
similar value was obtained for multiple floor scenario at distance 10 meters as in-
dicated in [16]. The standard IEEE 802.15.4g that govern globally Smart Utility
Network (SUN) in which smart metering belong specifically, restricts the maximum
power radiated at 25 dBm in European band 868 MHz, therefore, this application
will require very high sensitivity to compensate cover need due to high demand of
path loss. In this context the minimum required sensitivity is — 75 dBm. An out
of band WuR is designed and implemented in [57], working at 868 MHz frequency,

with current consumption of 2.8 pA. By using a CR2032 coin cell with 230 mAh as
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supply, the estimated lifetime of the battery was found to be 7 years.
From the state-of-the-art, the solutions proposed in [25] and [48] that are all with
power consumption less than 55 W and sensitivity better than — 75 dBm, matched

with the smart metering application.

2.5.3 Wildlife monitoring

The global vision of IoT has permit to derive other aspects of specified applica-
tions which is wildlife monitoring, such as Internet-of-Birds. In [58], an example of
wildlife monitoring is presented using four larger flamingos (Phoenicopterus roseus),
which are tracked with attached devices. In the corresponding study, the system
deployed for monitoring should follow some size and weight constraints. For the
specific case of birds, the device should be a maximum of 5 % the total weight of
bird, and the shape should be optimized to reduce impact on its movement. For
that bird species weighing between 0.6 — 1 kg, a device of about 31 g was designed,
working under 500 mAh and 3.7 V lithium polymer battery. The energy efficiency of
the system was measured and yielding a performance of 540 days by considering no
battery self-discharge, or 397 days with consideration of 2 % battery self-discharge.
This specific application on birds can be extended to other wildlife monitoring;
WildScope [59] project used the same process to attach sensor nodes on deers and
foxes for the tracking purpose and study of their behaviour and interactions.

The used of WuR for wildlife monitoring aims to make use of energy efficiency
in order to enhance the battery lifetime of device and avoid capturing the animal
for battery exchange. By following the reference study in [27] that specifies the

range for wildlife monitoring above 30 meters and low consumption requirement,
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the WuRs that matched with the corresponding applications from state-of-the-art

are [22], [25], [48] and [44].

2.5.4 Security and surveillance

The security of people and facilities often relies on surveillance systems generally
use camera for recording and sending data. The used of smart system based on
WuR embedded on wireless sensor node, minimize the energy depletion in such a
system. The typical case in [60] presents the used of pyroelectric infrared (PIR)
sensors, to detect human motion and send the WuS to activate camera. If there is
no event in the coverage area, camera nodes will be in sleep mode. The PIRs are
deployed in dense area with overlapping in coverage so that, there is redundancy in
case of breakdown of node camera. That study shows for some cases, the used of
duty-cycling MAC takes advantage in terms of power consumption on WuR without
addressing, but could not out perform addressing based WuR.

Depending on the coverage area involved in the security and surveillance appli-
cation, the same WuRs performance working for wildlife monitoring matched with
this application, but they should also include addressing capability like in [61]. This
application can also be extended to smart cities application using Wake-up Radio

receivers for energy breakdown in smart systems.

2.5.5 Indoor localisation and asset tracking

Indoor localization is the process of locating a person or an object in an indoor
environment. This technique is generally used in commercial businesses or shop-

ping malls. It is special since the GPS signal cannot be received. Sometime this
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application must rely on wireless sensor nodes. An application example is found in
[62], implementing a sub 10 yW WuR for asset tracking, operating at 434 MHz and
battery intended to last for years (20 years in some cases). From the state-of-the-
art, all the WuRs with power consumption lower than 10 yW matched with this

application.

2.5.6 Wearables

Wearable devices such as smart bracelet, smart clothes, and equipment for fit-
ness and health tracking are also subject of battery lifetime challenge. The WuR
mechanism was proposed in the case study [31] for wearables to optimize the energy
depletion of battery. In that particular case, the performance obtained for Wake-Up
Radio consuming only 400 nW power with — 35 dBm sensitivity is satisfactory for

such an application.

2.5.7 Other possible applications of Wake-Up Radio

The challenge of reducing power consumption in many applications is still pend-
ing. The WuR solution will be a great opportunity to reduce the power consumption
for those applications. In aeronautic for example, the used of thousands Wireless
Sensor Nodes [16], [63] will benefit from the power efficiency due to WuR attached
to each node; the currently known system in used in aeronautic, work with ultra-
low-power receiver, but there is still to implement wake-up systems.

They are many applications in which the WuR device will decrease drastically
their energy consumption such as smart grid, smart lighting, automation of applica-

tion, etc. We cannot surely give an exhaustive list of applications that may require
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WuR, but its use will in every case increase potentially the lifetime of systems.

In order to make it possible, there is still a great deal of work on standardization
of the WuRx. This work, which is still in its very early stages, particularly with the
802.11ba standard as presented in the work presented in [64], still has to overcome
certain limits. In that standard, the target power consumption is 1 mW with a
complex access and identification method that will necessarily require the use of a
microcontroller. This order of power consumption remains high compared to WuRx

that do not require a microcontroller.

2.6 Conclusion

This chapter is dedicated to the state-of-the-art of WuRs, we presented an
overview on requirements and characteristics of wake-up devices, we then made
their classifications based on different parameters like their energy supply source,
architectures, implementation technologies and identification methods. In the rest
of this chapter, we analyse different parameters, then we present non-exhaustive
state of the art of the applications that can be implemented with WuR.

We can immediately say from state-of-the-art that many applications are still
working under duty cycle strategy for power efficiency, instead of WuR which of-
fers the advantages of low latency and avoidance of useless overhearing of channel.
Furthermore, some scarce cases of WuR utilisation implemented are still prototypes
and are still to become commercial device available on the market. For this reason,
the most implemented prototype was for experimental purposes. The future scope
of research on Wake-Up Radio receivers should focus on boarding those systems on

wireless sensor nodes that are widely used in a very large scope of applications.
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Chapter 3

Contribution to the improvement

of quasi-passive Wake-Up Radio

3.1 Introduction

One of the challenges of this thesis is to improve the WuRx system. In the
previous chapter, important parameters of Wake-Up Radio are defined, and among
others we have the sensitivity on which we will focus in this chapter. The sensitivity
is the lowest signal level which may be received properly by the radio receiver.

For the purpose of increasing sensitivity, the hierarchical method which consists
in dividing the system into functional blocks in order to better define the possibilities
of improvement have been chosen. Analysis has shown that the detector block
defines the sensitivity of the proposed WuRx, and its improvement will surely impact
the global sensitivity. The approach here is to analyze the behavior of the detector
in order to find out margins of improvement.

The work done so far on the detector’s design was essentially based on the
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use of HSMS diode family and lumped elements L matching circuits, what limits
them to operate on a narrow frequency band. The choice of a RF diode here will
be determined by methodological analysis of large range of RF components. The
solution proposed in this chapter is to use a wideband, high efficiency rectifier in
order to increase the communication range of such quasi-passive WuRx compared to
the initial architecture [65]. Theoretically, the use of matching network with three
degrees of freedom (in Pi or in T), allows obtaining a wider bandwidth.

The rest of this chapter is organized as follows: section 3.2 describes the con-
cerned quasi-passive wake-up radio identified the means of a frequency imprint. Sec-
tion 3.3 discusses the sensitivity of the overall system, based on the improvement of
the detection circuit, the performance improvement is demonstrated by the means
of circuit-system co-simulations performed by using Keysight’s ADS Software. The

conclusion is given in section 3.4.

3.2 Quasi-passive wake-up radio

As stated earlier, the Wake-Up radio is a very low power secondary radio that is
attached to the main radio receiver. The principal radio is powered off when there is
no information to be transferred, and enables only if the wake-up signal announces
the availability of data to be sent. The main objective of WuRx is the mitigation of
power consumption of radio frontend during the listening mode.

The peculiarities of the studied of quasi-passive WuRx are on the one hand, its
ability to associate the wake-up radio function to its addressing capability, and on
the other hand the use of a multicarrier OFDM signal as WuS which is indepen-

dent of any baseband processing. It was firstly developed in CITI Laboratory as
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presented in [65] to tackle principally the idle power consumption issues in Wireless
Sensor networks (WSNs), that find their applications in: environmental monitoring
[66], [67], home appliances automation and monitoring [68], [69], industrial process
monitoring and actuation [70], security and surveillance [71], agriculture [72], health
care [73], etc. But with today rapid development of Internet of Things, such a WuRx
can be embedded in any connectable object for the energy consumption reduction.
In this section a general description of quasi-passive WuRx is given with simulation

results.

3.2.1 Description

The majority of WuRx as we have shown in previous chapter, does not have
addressing capability. Figure 3.1 shows the possible usage of this specific WuRx. If
at a given time, the transmitter which is represented here as the gateway, wants to
collect any information from the node numbered j (j is an integer number chosen be-
tween 1 and N) | it sends the WuS corresponding with the jth identification number.
All nodes will receive the WuS signal, but only the node with the corresponding ID
should wake-up by switching on its frontend for the beginning of data exchanges. At
the end of communication, the node goes back off and waits for the next matching
wake-up signal. During the idle time of node, only WuRx is on.

The block diagram of quasi-passive WuRx is presented in Figure 3.2. The re-
ceived wake-up signal from the antenna is divided into two equal parts by means
of a passive power divider. The two parts are then filtered by the direct and com-
plementary bank of filters. The filter bank on the direct path has the same exact

frequency shape as the identifier, then its path will allows signal ID to pass. The
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Figure 3.1: ID based wake-up mechanism

filter bank on the complementary path, a complementary shape (a pass-band filter
on the complementary path where there is a stop band filter on the direct path and
vice versa). Obviously, after filtering, the power level of the signal at the output
of the direct path is higher than the power level of the signal at the output of the
complementary path when the identifier is received. At the output of each bank
of filters, there is an envelope detector that will transform the RF signals (Vrm
and Vgps) into a proportional DC voltage (Vper and Vpeo). The subtractor which
is conceived base on active circuitry, and also plays the role of a voltage amplifier,
collects at its input the voltages from the detectors. The subtractor’s output voltage
is compared to a threshold voltage by using a Schmitt trigger. The reference level

Vikreshota 18 tuned in such a way that, if the identifier is received, the voltage Vi
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at the output of the subtractor becomes superior to Vipreshoia and Veooas drives the

main receiver’s power supply to ON.

LIy Direct path

Veou

=
Complementary path

l Main RX

Figure 3.2: Block diagram of CITILab WuRx [65]

The identifier to address this wake-up receiver is formed based on an OFDM
signal. The total number of subcarriers in the OFDM signal is divided into N
groups. The pattern of the sub-bands of direct path filter bank is the same as that
of the identifier signal. If a given sub-band of a direct filter is associated to a logical
"1" and is a pass-band, its complementary sub-band will be associated to logical "0"
and will be a stop-band.

The bank of filters on the direct and complementary path is represented in
Figure 3.3. They are 0 dB filters each with bandwidth of %, with BW the total
bandwidth of the OFDM signal and N the number of sub-bands; the output rejection
is considered as — 50 dB. The central frequency of i*® filter is given by the following
equation:

\BW, (3.1)
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with i=(1,2,...,N), and fj the central frequency (2.45 GHz) of the channel.

Inpuz

Fz
e ? Chutput

i +—s

Figure 3.3: Block diagram of bank of filters

The direct path filter (Dg) , the complementary path (Ck) and the identifier

(Ix) are modeled as followed :

I € (In...dy...11); with I € (0,1);Vk € (1--- N)

Dk € (Dy...Dy...Dy); with Dy € (0,1);Vk € (1---N) (3:2)

Ck € (Cy...Cy...C4); with Cy € (0,1);VE € (1---N)

The number N is chosen by respecting technological constraints, notably taking
into account the feasibility of filters’ quality factors. It is important to mention
that, not all the 2¥ — 2 combinations can be used as identifiers (here the first
identifier in the range is represented by 000...0 and the last by 111...1 are not
taken into account). To avoid a false wake-up and decrease energy consumption of
the overall system, three conditions must be fulfilled when choosing the identifiers.
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Firstly, an identifier should provide an energy level on the direct path higher than
the one provided at the complementary path. The second condition is that the
eventual surrounding signals (such as WiF1i signals that have the same band as the
identifier) should not be able to provide enough energy to activate the WuRx. The
last condition is that only the assigned identifier is able to activate the WuRx. The

conditions are summarized in the following three equations:

Z]val Dk Ikr — ZL Crr-Ixr >0
Zg:1 Dy - 11— Z]L\Izl Ckr-1I1<0 (3.3)

SN Dy -Irgp — SN Crr Irp <0,VTe(1---2V —2)

Where IT is an OFDM signal with the same bandwidth as the one of the identifier.
If we are in case where N = 4, II will be 1111.

In Figure 3.4, we have an example of signal identifier for the case of filters with
fourth sub-bands. If random data is sent on a subgroup of sub-carriers, the power
level on the sub-band is greater with respect to the noise level which corresponds to
a logical “1”. When no data is sent, on a subgroup of sub-carrier, the power level
is near the noise floor and this codes a logical “0”. Since the total bandwidth is 20
MHz, each sub-band occupies a space of 5 MHz.

Considering the condition of equations (3.3) that helps to avoid a false wake-up.
It comes that, out of 2 — 2 = 14 (with N = 4) possible identifiers, only six of them
are fulfilling all the requirements of a robust receiver not liable to false wake-up.

Those identifiers are presented in Table 3.1.
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Pin (dBm)
©
o

-100
-110
-120

244 2.445 2.450 2.455 2.4601

Frequency (GHz)

Figure 3.4: An Example of identifier (1001)

Table 3.1: Identifier, direct path and complementary path
filter

Identifier Direct path Complementary path

0011 0011 1100
0101 0101 1010
0110 0110 1001
1001 1001 0110
1010 1010 0101
1100 1100 0011

3.2.2 Simulation

Figure 3.5 represents a global architecture of the quasi-passive Wake-Up Radio
as it is figured in the simulator. Keysight’s Advanced Design System (ADS) software
is used to perform all the simulations in this section.

The identifiers are created by modifying the base-band part of an 802.11 g emit-
ter, and emitting the resulting signal around a carrier frequency of 2.45 GHz and

bandwidth of 20 MHz. The total 64 sub-carriers are used, corresponding to spacing
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Figure 3.5: Global simulation of the quasi passive WuRx

of 312.5 kHz. The emitted signal is also known as Wi-Fi signal, that uses OFDM
modulation.

To deliver the maximum power from the filters to the envelope detectors, an
impedance matching network must be calculated. In Figure 3.6, the matching net-
work and detector are characterized at central frequency of 2.45 GHz, yielding the
responsivity and reflection coefficient in Figure 3.7 (a) and (b), for power sweeping
range of — 50 dBm to — 10 dBm.

In Figure 3.8, the part circled in global simulation as “matching network, detec-
tor, subtractor and trigger” is represented. The impedance matching circuits have
been designed to provide the best matching at low power levels at the 2.45 GHz
working frequency. It can be observed that the one detector is for the direct path

and the other for complementary path. The detector behaviour for this simulation
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Figure 3.7: (a) responsivity and (b) reflection coefficient of detector
is as depicted in Figure 3.7. When the simulation is carried out with all parts, the
output of detectors on direct and complementary path for correct identifier and in-
put power of — 25 dBm is showed in Figure 3.9. When the identifier is sent during
500 us, the voltage output of direct path is always above the voltage of the comple-
mentary path. The direct path voltage is applied to the positive input of subtractor
while the complementary path is applied to the negative input of subtractor. The
difference of two voltages is amplified by the gain given by the following equation
(3.7).

The amplified output of the subtractor is displayed in Figure 3.10. It represents
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Figure 3.8: The matching network, detectors, subtractor and trigger

the mathematical value of equation (3.4), given by:

Vsub = Zgzl DK,L'IK,L — Z]LV:1 CK,L~IK,L (34)

Av is the voltage amplification of the difference between the direct path and com-

plementary path obtained by the computation of subtractor done in the following

equations:
Vbei/Rs — RiVpca
Vi =3 i (3.5)
B TR MU
and
Vsub Vbca
2oub _|_ YDC2
V.= Ri+jl (3.6)
Ri " R

If at this stage we consider R1 = R3 and R2 = R4, then if we equate the two

equations, we obtain:

RoVper RaVpeoa Av(Vper — Vi)
- 1~ 2

Vs =
Sub R R

55



3.3. HIGH-EFFICIENCY RECTIFIER FOR SENSITIVITY IMPROVEMENT56

500
400
S 4
2 300
@
E —
S 200
= J
£ 100
= 1 VDC_direct_path
D_
] VDC_complementary_path
-100 I 1 | T 1 |

0 50 100 150 200 250 300 350 400 450 500

time, usec

Figure 3.9: The envelope detectors output

with Ay = %

If the amplified difference Ay (Vpe1 — Vpea) < Vies , the main radio will remain
off; and when it becomes greater than the reference meaning Ay (Vpor — Vpez) >
Vies, the Schmidt trigger switches on the main radio and communication start. At
this stage, the output of the trigger is given in Figure 3.10, while the evolution of
subtractor’s output as function of input power is given by Figure 3.11.

In the case of the circuits we are considering here, the sensitivity of the receiver
is defined by that of the rectifier circuit (envelope detector) and it is highly desirable

to increase this sensitivity.

3.3 High-efficiency rectifier for sensitivity im-
provement

The sensitivity or the capability of receiving low power signal in most receivers and

in particular the wake-up receiver types, in the absence of a low noise amplifier,
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Figure 3.10: The output signal of Schmidt Trigger when Ay (Vper - Voo )>Vier

depends on the sensitivity of the detection diodes when its used diodes. To choose
these diodes, one must make a study on the sensitivities of the diodes, but also on
their conversion efficiency for input signal having low power levels. In this section,
we present the technique used to improve the range of WuRx, which consists on
the one hand in the choice of the diodes and on the other hand the choice of the
impedance matching design method.

The work done so far on the rectifier’s design was essentially based on the use
of L matching circuits, which limits them to operate on a narrow frequency band.
The solution proposed in this section is to use a wideband, high efficiency rectifier in
order to increase the communication range of such quasi-passive WuRx compared to
the initial architecture [65]. Theoretically, the use of matching network with three
degrees of freedom (in Pi or in T), allows obtaining a wider bandwidth. Moreover,
the butterfly stub in microstrip technology allows obtaining a robust rectifier, having

low variation of the electrical characteristics (central frequency and bandwidth) with
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Figure 3.11: The variation of subtractor output voltage

respect to the technology dispersion.

3.3.1 HSMS 2850 vs SMS7630

Sensitivity is one of the most important parameters that characterize receivers.
It depends in almost all receivers’ cases, either on a low noise amplifier (LNA) placed
at the input of the receiver, or on the detection diodes. In the cases using LNA,
very low power RF signals above the noise floor with acceptable signal-to-noise-ratio
is received and amplified. The detection diodes have capability to sense very weak
power RF signals and output a power that can be processed by the receiver.

The WuRx considered here works with detection diodes system, and was origi-
nally build to operate with HSMS 2850 Schottky diode. The later component was
originally used to build the quasi-passive Wake-up Radio, because of its availability
off-the-shelf, but also because it presents an advantage in terms of responsivity [73]

on the similar components operating in RF on low power ranges.
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The choice of the diode is guided mainly by the consideration of two characteristic
parameters, that are the sensitivity and the conversion efficiency. The spindiode
presented in [74], of which we have retrieved the characteristics (Figure 3.12) in
order to evaluate performance in WuRx, is a very highly sensitive diode but with
drawback of having very low power conversion efficiency of less than 1% [75] in the

range of low power input.

10.0k= : 0+ e
1.00k— ! -1000-
0 | i ) 1
= 100 - ' S -2000-]
: | &
10.0 4 ! -3000
1.00 E T I 1 I I : -4000 T T T I I
100.k 1.00M 10.0M 100.M 1.00G 10.0G 100.G 100k 1.00M 10.0M 100.M 1.00G 10.0G 100.G
Frequency (Hz) Frequency (Hz)

Figure 3.12: ITmpedance simulation (Real part and Imaginary part) of spindiode [74]

Besides a study in [73] that proved HSMS2850 to be better than HSMS2820.
Here the challenge is to find a diode of better sensitivity than the later ones. Some
characterization work was done on those components to provide the results presented
in figures below.

Figure 3.13 shows the conversion efficiency as a function of the input RF signal
strength for the HSMS2850 and SMS7630 diodes in a configuration which is matched
in impedance at - 25 dB. For the input RF power ranging from - 50 dBm to - 10
dBm, we obtain an increasing conversion efficiency from 0% to a slightly less than
30% and from 0% to a slightly less than 60% respectively for HSMS2850 diodes and
SMST7630.

Figure 3.14 shows the value of the output voltage as a function of the RF input
power. For RF input power ranging from - 50 dBm to - 10 dBm, the DC output
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Figure 3.13:  Comparison of conversion efficiency of
HSMS2850 diode and SMS7630, for input RF power vary-
ing from - 50 dBm to -10 dBm

voltages vary from 0 to 300 mV and from 200 £V to 400 mV for the HSMS2850 and
SMS7630 diodes respectively. From the point of view of very low RF power rectify-
ing, this difference is significant and cannot be neglected under any circumstances.

In both cases, it may be observed the advantage of the SMS7630 diode on the
HSMS2850 diode which is the one which was originally used in the quasi-passive
WuRx. From this simulation results, it may be observed that the use of the Skyworks
Schottky SMS7630 diode will produce better results and undoubtedly improved the
overall sensitivity of the system.

Following what we have demonstrated the advantage of the SMS diode over the
HSMS diode, it is now important to determine for which values of the load resistor
the conversion is optimal. To do this, we have first, by using only the SMS7630
diode, varied the load resistance by measuring the efficiency for a fixed power of -

30 dBm (1xW) as shown in Figure 3.15. Then we varied the RF input powers of the
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Figure 3.14: DC output voltage of SMS7630 and HSMS2850
according to input RF power.

rectifier circuit for two resistance values notably 1 K and 5 K2 while measuring the
output voltages as shown in Figure 3.16. Indeed, as can be seen from Figure 3.15,
the conversion efficiency of the SMS7630 based rectifiers at — 30 dBm input power
is maximum for a 5 K2 resistor. Moreover, one can remark that for various load
resistance values, the rectifier based on the SMS7630 diode has better conversion
efficiency compared to the rectifier based on HSMS2850, initially presented in [65].
Indeed, this conversion efficiency is 12.7 % at maximum compared to 2 % of the
rectifier based on the HSMS2850. In Figure 3.16, we can see that, for two resistance
values, 5 KQ and 1 Kf, using the SMS7630 diode, the variation of the output
voltage is more important at the optimal load resistance compared to 1 K. We

have respectively the variations 200 pV at 400 mV and 0 ¢V at 200 mV.
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Figure 3.15: Conversion efficiency of SMS7630 and HSMS2850
when input power is 0 dBm, with varying load from 1 Ohm
to 10 KQ

3.3.2 Sensitivity Improvement

Sensitivity being defined as the smallest power value that a receiver can detect,
and give an interpretation or make the difference with a noise, its improvement for a
specific system requires a careful choice of components as well as a perfect adaptation
of the different stages. An impedance matching network is used for optimum power
transfer from one stage of a circuit to another. By definition, it is a device that will
perform an impedance transformation between two RF blocks, in order to optimize
the energy transfer. The common and efficient way to achieve this function is by
combining passive elements, such as inductors, capacitors and transmission lines.
Depending on the way these elements are layouted, a specific impedance transfor-

mation can be achieved. The choice of the most appropriate matching network
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Figure 3.16: DC output voltages as function of RF input pow-
ers for load resistances 1 k Ohm and 5 k Ohm, using only
SMS7630 diode

topology depends crucially on its application, the existing technology and several
criteria, such as quality factor, insertion loss and space requirements. Impedance
matching topologies are presented in [76], and further special arrangements are
shown in Figure 3.17. Thus, we have the L topology as used in the initial circuit
and presented in Figure 3.6, 2L, PI and T.

The study we did in subsection 3.3.1 allowed us to replace the HSMS2850 diode
structure with an SMS7630 diode structure. While taking into consideration the
bandwidth required so that the identifier signal would not be attenuated in the
band, the targeted matching bandwidth is 20 MHz, corresponding to the bandwidth
of the wake-up signal presented in Figure 3.4. Given the need for a wide adaptation
band, we have used the II topology, which we discuss in more details in the next
chapter. As it can be seen in Figure 3.18, the rectifier is well matched from 2435 MHz

to 2465 MHz, on required bandwidth (20 MHz around 2.45 GHz). Furthermore, one
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Figure 3.17: Matching Network topologies, L, T, Pi and 2L. In these topologies, Zn
(with n € a,b,c,d, e, f,g,h,i) represents reactive elements

can remark that the in-band ripple of the reflection coefficient is higher in the case
of the SMS7630 based rectifier. However, this ripple (which create 4 dB variation
between S11 min and S11 max) does not affect the wake-up radio’s sensitivity.
Using the six viable identifiers in Table 3.1, we repeated under ADS the simula-
tions of the original system, as well as the new system, which uses a new impedance
matching network that covers the necessary bandwidth (20 MHz) at central fre-
quency of 2.45 GHz, as well as the more sensitive SMS7630 diode. We obtained a
gain around 5 dB for each of the identifiers as shown in Figures 3.19, 3.20, 3.21,
3.22, 3.23, 3.24. These gains for each of the identifiers induce an increase in the
range, i.e. the distance between the transmitter sending a wake-up signal and the

WuRx receiver. The transmitter power used for the experimental validation [77]
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Figure 3.18: Reflection coefficient S11(dB) at the rectifier’s
input for HSMS2850 and SMS7630

was 20 dBm, for an initial sensitivity of -45 dBm. These two parameters enable
to determine the distance between the transmitter and the receiver if a free space
propagation scenario is taken into account, considering the carrier center frequency
of 2.45 Ghz. The following equations are then used. These two parameters enable
to determine the distance between the transmitter and the receiver in free space
propagation, considering the carrier center frequency of 2.45 GHz. The following

equations are then used:

SR:PE—a (38)

where Sg is the sensitivity of receiver
Pr : The power of the emitted signal

«: The attenuation due to propagation in free space.

a = 20logy,(4mdf /) = 201ogy (47 f /) + 201og,(d) (3.9)
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Since the carrier frequency is f = 2.45 GHz, ¢ = 3x10® m/s, and d the distance

between emitter and receiver. We can express the attenuation as in equation (3.10).

a = 201log;o (471 x 2.45x10”/3x10%) + 201og,o(d) = 40.225 + 201log,o(d)  (3.10)

By subtituting equation (3.10) in equation (3.8) and replacing the power of emitter

by its value, we get :

Sp = 20dBm — 40.225dB — 20log,,(d) = —20.225dBm — 20log;o(d)  (3.11)

Considering the sensitivity value of - 45 dBm, we determine from equation (3.11)
the distance 17.328 meters, which is the original distance [65]. If we now consider
the gain obtained for each of the viable identifiers, equation (3.8) arises in a new

term which is as follows:

Sp=Pz—a+G, (3.12)

G, corresponds to the gain obtained for each of the identifiers and it is summarized
in Table 3.2, as well as the distance margins obtained, using equations (3.8) - (3.12)

for the calculations.
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Figure 3.19: Variation of the original output voltage and the
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Figure 3.20: Variation of the original output voltage and the
new output voltage of substractor for identifier 1010
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Figure 3.21: Variation of the original output voltage and the
new output voltage of substractor for identifier 0101
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Figure 3.22: Variation of the original output voltage and the
new output voltage of substractor for identifier 0110
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Figure 3.23: Variation of the original output voltage and the
new output voltage of substractor for identifier 1100
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Figure 3.24: Variation of the original output voltage and the
new output voltage of substractor for identifier 0011
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Table 3.2: Sensitivity and communication range increase for
the six viable identifiers

Identifier Gain (G,) [dB] Total distance [m] Increase in distance [m]

1001 4.71 29.802 12.47
1010 4.63 29.529 12.20
0110 4.53 29.191 11.86
0101 4.86 30.321 12.99
1100 4.45 28.923 11.59
0011 4.51 29.123 11.79
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3.4 Conclusion

This chapter allowed us to present the quasi-passive WuRx as originally con-
ceived. It is a peculiar energy saving system, which aims at an integration with
wireless sensor networks as well as with the Internet of Things more widely. For
most of the components in this circuit, RF identification is used instead of the
microcontroller-based identification found in the literature.

Moreover, this chapter, we applied a rigorous simulation technique that allowed
us to select from among the low-power RF diodes the one that offered an advantage
in terms of conversion efficiency but also the determination of the optimal load. We
also used a Pi impedance matching network that enables to cover a large bandwidth
by minimizing power loss over this band. We have thus achieved a wideband high-
efficiency rectifier to improve the communication range of a quasi-passive wake-up
radio receiver. Enhancements to the rectifier have resulted in a gain of approximately
5 dB for each of the viable identifiers, which corresponds to an improvement in
communication range of an average of 12 meters.

Despite the architecture that allows identification in RF (and not with a mi-
crocontroller), there are still passive circuits that must be supplied. These circuits
consume little energy and it is possible, under certain conditions, to power them
from the energy harvested through the ambient electromagnetic field. Thus, we will
have a WuRx autonomous from the supply source of the communicating device that

contains it.
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Chapter 4

Design of energy harvesting circuit

for autonomous wake-up radio

4.1 Introduction

The radio interface of a connected device is the part that consumes a lot of
energy, even in the absence of information to be transmitted (standby mode). This
causes a great waste of energy especially when there is no data exchange. It then
becomes necessary to improve the efficiency of these interfaces or to find ways to
put the radio front-end into a standby mode.

Ideally, the standby mode should be zero energy consumption, more precisely,
exempted from the main energy source of the connected device. Since the WuRx
is a very low-power consumption device, the solution of power supplying it from
an energy harvesting circuit is feasible; the harvested energy in this case should be
equal or greater than the required energy by WuRx for its supply. Depending on the

application, several sources of energy may be considered in order to be harvested
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Table 4.1: Summary of London’s underground RF energy har-
vesting measurement campaign [pinuelal3]

Bands Frequencies Average Maximum power

(MHz) power density  Spa (nW/em?)

DTV 470 — 610 0.89 460
GSM900 (MTx*) 880 — 915 0.45 39
GSM900 (BTx**) 925 — 960 36 1.93
GSMI1800 (MTx) 1710 — 1785 0.5 20
GSM1800 (BTx) 1805 — 1880 84 6.39
3G (MTx) 1920 — 1980 0.46 66
3G (BTx) 2110 — 2170 12 240
WiFi 2400 — 2500 0.18 6

* BTX = base station transceiver; ** M'TX = mobile transceiver

such as piezoelectric energy [78], wind [79], hydroelectric [80] and solar energy [81].
Moreover, from our perspective, the RF energy harvesting [82, 83] draws a particular
attention.

There are several sources of ambient RF energy that may be harvested [83],
namely Digital Television Broadcasting (DTV), cellular networks, or wireless local
area networks (WLAN) access points. Depending on whether one is in a rural, urban
or semi-urban environment, one of the sources can be dominant over the others [83].
Similarly, proximity or distance from transmitters will make a significant difference
on the availability of energy of the considered source.

In Cameroon, as in other developing countries, the increasing number of

mobile phone users over the last two decades has made possible the installa-
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tion of a very large number of base stations, transmitting signals power on
850/900/1800/2100/2600 MHz frequencies. The power potential on some of these
frequencies measured elsewhere is available in Table 4.1. This cause the omnipres-
ence of ambient RF energy to be harvested in those frequencies.

In [84], energy harvester circuit has been designed, operating at 900 MHz. Be-
cause of the input power of 0 dBm, 450 W power was recovered with the conversion
efficiency of 45%. On another note, the experiment in [85] proves the RF efficient
energy harvesting from a DTV-UHF tower situated at 4.1 km away, with the re-
ported harvested power of 60 pW. The Effective Radiated Power (ERP) is of 960
kW, the tower operates at frequencies 674 to 680 MHz. The receiver is equipped
with a 5 dBi gain antenna. The harvested power is sufficient to supply continuously
a commercial thermometer/hygrometer. Another implementation [86] of DTV EH
from a tower situated at 6.6 km results in the harvesting of an average 20 pW power.
These examples can be extended to GSM 1800 MHz and even 3G mobile networks
by considering that, the installation of the base station for mobile communication
follows the same rule as for GSM network, thus leading to similar considerations.

Moreover, WLAN has become an omnipresent network in almost all working
environments, thus giving the possibility to harvest RF energy. Authors in [87]
shows that it is possible to harvest energy from Wi-Fi sources operating at 2.4 /
5 GHz to supply a large number of devices like low-power cameras, temperature
sensors, etc. A most demonstrative implementation [88], has proved the highest
conversion efficiency of 33.7 % when placed at 40 cm distance from the source,
yielding to power of 76.3 uW at the output. In Table 4.2, we have gathered the

operating frequency bands of RF signal sources.
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Table 4.2: Some RF sources signal and frequency bands

Frequency band Frequency range (MHz)

VHF 30 — 300

FM 87.5 — 108

UHF 300 — 3000

TV 470 — 862

GSMS800 UL 824.2 — 848.8 DL 869.2
— 893.8

GSM900 UL 890 — 915 DL 935 — 960

GSM1800 UL 1710 — 1785 DL 1805 —
1880

UMTS UL 1920 — 1980 DL 2110 —
2170

LTE UL 791 — 821, 880 — 915,
1710 — 1785, 1920 — 1980,
2500 — 2570 DL 832 — 862,
925 — 960, 1805 — 1880,
2110 — 2170, 2620 — 2690

WiFi 2400 — 2483, 5150 — 5875

ISM 433, 915, 2450, 5800

Despite its low conversion efficiency, compared to other sources of energy
(whether solar or wind which availability can be conditioned by other parameters
like weather); RF energy is permanently available. It is in fact the most suitable
source of energy for the applications that requires continuously supply. The aim
of this work is to couple two techniques that are Wake-up Radio (WuRx)
and EH in order to optimize the energy consumption of the connected
devices. More precisely, the approach proposed here is to power supply the wake

up radio by the energy collected from RF energy harvesting. For this reason, the
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object to be supply has a standby mode that is independent from its main energy
source. This is particularly efficient for low power devices and applications.

In some other scenarios, especially those in which the connected device is far away
from the energy source, the energy collected by the harvesting circuit is not sufficient.
In these particular cases, wireless power transfer solutions may be employed [89].

On the one hand, we are assisting to a decrease in terms of energy consumption
of the WuRx and on the other hand to an increase in the energy harvesting circuits’
efficiency. It becomes obvious that the combination of the two approaches may
bring a zero-energy consumption standby mode. This work aims to use RF energy
harvesting for the supply of WuRx. The coupling of Wake-up Radio and Energy
Harvesting will help to make “deploy and forget” device as far as energy supply
is concerned. Indeed, the energy consumption of the battery of the device will be
only in the active state. Its implementation will be of great importance for Wireless
Sensor Networks (WSN) and Internet of Things.

The rest of this chapter is organized as follows: Section 4.2 briefly describes
the quasi-passive WuRx to be power supplied by an energy harvesting circuit. Sec-
tion 4.3 presents the general considerations of the energy harvester circuits. The
proposed circuit with performance improvement is presented in section 4.4. The
circuit-system simulation results together with the obtained results after implemen-
tation are presented in section 4.5. Section 4.6 gives the conclusion and draws the

perspectives of this work.
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4.2 Quasi-passive wake-up radio power supplied

by Energy Harvesting circuit

The Quasi-passive Wake-Up Radio to be power supplied is an ID-based WuRx
that uses wideband multicarrier signals as the identifiers. Its architecture described
in [65] includes, on one hand, the passive part made up of power divider, envelope
detectors together with their impedance matching circuits and two banks of filters
of which, one for the direct path and the other for the complementary path. On
the other hand, the active part is composed of a voltage subtractor and a Schmidt
trigger. Therefore, the energy that should be harvested will be used for the supply of
the active components. An experimental validation of this WuRx was presented in
[77]; the only components that require to be power supplied are the subtractor and
the Schmidt trigger. Due to their low-power demands, the off-the-shelf components
[SL28194 and TLV3691 were chosen to implement the wake-up radio’s active part.
Their respective consumption is given to be 1.65 yW and 375 nW, thus, the in-
stantaneous consumption is 2.025 yW. Figure 4.1 is our proposition for autonomous

WuRx.

4.3 Energy Harvesters: An overview and investi-

gation

In RF energy harvesting, Schottky diodes are used rather than any other type
of diodes. They have a considerable advantage over PN junction diodes in terms

of switching speed. If the semiconductor is of the N-type, the dominant charges
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1 _ I

1 1 | 1

 Passive part + | Active part | \
| | —

RF Energy Harvester

Figure 4.1: The proposed autonomous wake up radio. The active part of the wake
up radio is power supplied by an RF energy harvesting circuit. The wake-up radio
drives the power supply of the main radio
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(electrons) are rapidly injected into the conduction band of the metal contact and
become free electrons. There is no slow recombination process of the n- and p+
charge carriers, as in the case of PN diodes, which results in a reduced switching
time. This time is essentially dependent on the junction capacitance. It is of the
order of a few hundred picoseconds for small signal diodes [74], compared to a few
hundred nanoseconds for PN diodes. This makes Schottky diodes ubiquitous in RF
detectors as well as in mixers, where they can operate at frequencies up to several
tenths of GHz.

At the same time, Schottky diodes have very low series resistance compared to
that of the PN ones, offering the advantage of lower threshold voltages than their
PN counterparts. These features are advantages in power rectification applications
because the losses in the diodes will be reduced.

The diode threshold voltage plays an important role in RF-DC conversion effi-
ciency because the amplitude of the incident signal is often lower than the diode
threshold voltage. High operating frequencies require fast rectification devices. The
characteristics of the Schottky diodes are the ones recommended for use in RF-DC

rectification circuits.

4.3.1 State of the art of the RF harvesting circuit

In this subsection, some of the most recent and important related works will be
presented on the subject with their characteristics; we must not lose sight of the fact
that the ultimate aim of these circuits is to harvest radio energy for a contribution
to the energy consumption of various systems. To the best of our knowledge, the

harvesting of radio energy as it stands today really began in 2005 with the work
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presented in [90]. In this pioneering work, a series of 4 passive antennas made of
transmission lines (Engraved on the FR4 PCB) interlaced in a square spiral was used.
Each of the antenna was matched in impedance with a rectifier using a dual-diode
bridge HSMS2820. The interlacing of antennas in that work aimed at collecting the
maximum of energy on a physical surface different from the effective surface of an
antenna at the considered frequency (915 MHz). The result obtained was a power
of 80 milliwatts harvested at a distance from 20 cm from a 5 W emission.

The most commonly used radio frequency energy harvesting circuits are essen-
tially the one listed in Table 4.3. These are the series, shunt, voltage doubler,
Dickson, Greinacher and Cockeroft-Walton topologies. These different topologies
are employed in the design of rectifiers that operate in several frequency bands as
can be seen in Table 4.3. These topologies that are represented in the following
section and will be used later as case studies for the demonstration. The Cockeroft-
Walton topology is not used in the next steps and will not be depicted since it is a
multiple diode version of the voltage doubler topology. It is clear that most of the
works presented here are recent and use almost the same diodes as those we have

chosen for our study.

4.3.2 Parameters of RF/DC converter
a. Overview of small-signal diode parameters

The block diagram of a common RF energy harvester is presented in Figure 4.2.
It is made up of an antenna, an input HF filter which is used for impedance matching
between the antenna and the rectifier, the rectifier’s diode plus parallel capacitor,

the storage unit to store the harvested energy and load to be supplied. Depending
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Table 4.3: Characteristics of some recent energy harvesting circuits
Reference Year | Frequency | Max.  eff. | Topology | Diode Subtrate | Load
(GHz) (%] / Inp. (kOhm)

Pwr.[dBm]

[91] 2020 | 2.2 50% / 0 | Series SMS7621 RO5880 | 0.2
dBm

[92] 2020 | 0.9/1.8/ | 52%, 50%, | Series HSMS2852 | FR4 3.8

2.45 46.5% / 0

dBm

[93] 2020 | 24 69.3% / 5.5 | Voltage SMS7630 RO4003C | 2
dBm doubler

[94] 2020 |24 /52 63.38%, Series HSMS2860 | FR4 0.15
65.4% / 13
dBm

[95] 2020 | 5.8 81% / 15 | Shunt HSMS286F | RO4350B | 0.45
dBm

[96] 2019 | 5.8 66% / 20 | Shunt HSMS2860 | F4B 0.12
dBm

[97] 2019 |14 74.8% / 10 | Voltage SMS7630 FR4 1
dBm doubler

[98] 2019 |24 /58 63%, 54.8% | Series HSMS2860 | FR4 0.6
/ 12.3 dBm

[99] 2019 | 09/18 57.5%, Series HSMS2850 | RO5880 7
52.6% / —
5 dBm

[100] 2019 | 0.920 24% / — 4 | Dickson SMS7630 FR4 0.050
dBm

[101] 2018 | 2.45 17% / 0| Greinacher| HSMS2862 | Textile 10
dBm

[102] 2018 | 1.1 —-1.35|63% / 10 | Voltage SMS7630 FR4 2
dBm doubler

[103] 2018 | 2.45 68% / 5 | Cockcroft- | HSMS2850 | FR4 5
dBm Walton

[104] 2018 | 2.5 69 % / 3.5 | Voltage HSMS2850 | RO3003 1
dBm doubler

[105] 2018 | 2.45 27 % / 10 | Shunt HSMS2850 | RO350B | 0.68
dBm

[106] 2018 | 0.9/18 |20.2%, Greinacher| — CMOS 70
92.59% | —
11.8 dBm

[107] 2017 | 0.93 12.6 % / — | Dickson — CMOS 0.50
15.4 dBm

[108] 2017 | 245 /58 | 57.1 %, | Voltage SMS7630 RO5880 5
39.2% / — | doubler
0 dBm

[109] 2017 | 2.45 57 % / 0 | Shunt SMS7630 R0O3203 2.47
dBm

[110] 2017 | 2.45 37 % / 0| Voltage SMS7630 FR4 24
dBm doubler
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N/

Matching RF/DC Load /
Network Converter Storage Unit

Figure 4.2: Block diagram of an RF energy harvester

on the application, the storage unit may be a battery or a super-capacitor.

In general, the energy harvester has the role of transforming the power contained
in electromagnetic waves available at its input, into a DC voltage susceptible to
energize the load (the WuRx’s active part in our case). It is mainly characterized

by its conversion efficiency 7 given by the following expression:

P
(%) = % - 100 (4.1)

where Ppc is the DC power at the output of the storage unit and Pgp is the
instantaneous power at the input of the matching circuit.

In RF energy harvesting, Schottky diodes are used rather than any other types
of diode. The small-signal model is presented in Figure 4.3 and the electrical pa-

rameters of some common Schottky diodes are listed in Table 4.4.

Table 4.4: Parameters of some commonly used Schottky diodes

Diodes HSMS2820 HSMS2850 HSMS2860 SMST7630

Rs () 6 25 6 20
Cio (pF) 0.7 0.18 0.18 0.14
Vi (V) 0.65 0.35 0.65 0.34
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Rs c. !

—\\N— Vj —

Figure 4.3: Small signal model of Schottky diode

In the equivalent model depicted in Figure 4.3, Rg represents the series resis-
tance, C; and R; are respectively the junction capacitance and the junction resis-
tance. The junction capacitance Cj is given by:

Vs

e S S R
Cs C”(w+%@

(4.2)

where C} is zero bias diode’s junction capacitance, Vp¢ is the output voltage
across the load resistance and Vj is the voltage across the semi-conductor metal
junction.

The junction resistance R; is variable and depends on the externally applied bias
current [, on the saturation current [, on the ideality factor n, and on temperature

T. It is expressed as:

P _ 833 10° 0. T
I b+ Is

(4.3)

These parameters are impacting the rectifier’s overall efficiency. More globally,
the overall efficiency depends on the amount of RF power at the diode level and the

amount of power delivered to the load (4.1).
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b. The efficiency of circuit

As explained in [74], the global efficiency of the circuit takes into account the
matching efficiency 7,7, the conversion efficiency ngrr_pc and transfer efficiency from

the diode’s output to the load npo_roaq- It can be express as:

1 = 1M * MRF—DC * 1DC—Load (4.4)

The matching efficiency 7, depends on the reflection coefficient ( 4.5). Minimizing
this reflection coefficient, especially at low power levels, leads to an increase in

matching efficiency.

_ Zp—Zs

r,= 2P~ 25
0 Zp+ Zs

(4.5)

here Zg is the source internal impedance. In our case, it corresponds to the rectifier’s
antenna impedance. Zp is the RF/DC’s impedance at the considered frequency.
Depending on the internal parameters of diodes presented in Figure 4.3, we can give

the following expression [105]:

[R; + (Rs — 50) (R3C%w? + 1)]” + RIC2w?
2
[R; + (Rs +50) (R2C2w? + 1)] + RIC2w?

T2 = (4.6)

Some practical considerations are done to simplify the previous equation. Since
the frequency is high (2.4 GHz in this case), here we consider w = 27 f = oo. This
lead to the approximation of reflection coefficient to:

R; + (Rs — 50)
R; + (RS + 50)

|F0| = (4-7)

Having the reflection coefficient defined in equation (4.7), the matching efficiency
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will be given by:

= (1—[Tol) (4.8)

As shown in [111] that the RF/DC’s conversion efficiency nrr_pc is defined by :

NRF-DC = 1+A—iB+C’ (4.9)
Ry Vi \? 1
a2 (10 2 o1 gt ) - i)
o RSR;TC?wQ (1 N szc) <:OS—2Z +tan9> (4.10)
C= 75;5 (1+ V‘;) (V‘;)(mne—e)

where 0 is a dynamic variable which depends on the input RF power, also called
forward bias turn-on angle. The resistance R; models the rectifier’s load. It cor-
responds to the input impedance of the storage unit. The DC power transfer to

storage unit efficiency, from rectifier circuit npc_roqq is expressed as :

1
1+ Lz

RLOad

NDC—Load = (411)

Where Ry is the Thevenin equivalent resistance seen by the load.

The rectifier’s antenna surface plays an important role in the amount of power
collected by the energy harvester. Indeed, one simple model is to consider the free
space transmission. In this case, the RF power received by the antenna may be

expressed by:

PG Ay

— (4.12)

Prr =
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Figure 4.4: Diagram of a two port network

Where: Prp: RF power level at the antenna’s input
P;: power radiated by the transmitter
Gy: gain of transmitting antenna
Acpy: antenna’s effective aperture
r: distance between the transmitting and the receiving antennas
The effective area of the antenna can be computed if the typical case [89] of 4
dBi gain and a frequency of 2.45 GHz are considered:

G)?

S (4.13)

Acpr =

Where A: is the wavelength (m), G is the linear gain of the antenna.

c. S-Parameters

Most of the microwave circuits deal with power quantities rather than current
and voltage quantities; the reasons are that circuits in high frequencies is generally
based on power transfer from one stage to the next one, and the current and volt-
age measurement are proving very difficult in RF whereas that of power is easier
[112]. Consequently, microwave theory models devices, circuits and systems through
parameters that can be obtained through quantities of power.

In the case of linear circuit elements or elements that are non-linear but operate
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with small signals in such a way that they can be considered linear, a system or
network can be characterized only through parameters measured at the input and
output ports of the system, without having to bother about the exact content of
the system. Once these parameters have been determined, it is possible to predict
the exact behaviour of this system at any external stimulation, once more, without
having to know its structure.

S-parameter simulation is a small-signal simulation most often used to charac-
terize passive RF' components or to determine the small signal characteristics of a
device in precise polarization or temperature conditions. The non-linear components
are therefore linearized around of the operating point. The resulting linear circuit
is analyzed as a multi-port network. Each port is sequentially stimulated by small
signals and the response is measured and transformed into S-parameters. Figure 4.4
shows the representation of different power waves getting in or coming out from a

quadripole, with:

ay : power wave entering Port 1;
b1 : power wave leaving Port 1;
as : power wave entering Port 2;

by : power wave out of Port 2.

The S parameter element’s for such a system are related to power wave as:

b1 = a,15’11 + (12512 (414)

by = a1521 + asSz» (4.15)

In these relationships, the S;; terms represent :
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S11 @ reflection coefficient of Port 1;
Soy : reflection coefficient of Port 2;
So1 : transmission coefficient from 1 to 2;

S}9 : transmission coefficient from 2 to 1.

The S parameters are defined with respect to a characteristic impedance which

is usually 50€2. They are given by:

by

S11 = —|an= 4.16

1 a1| 2=0 (4.16)
b

S1a = a0 (4.17)
a2
b

S = =2 az=0 (4.18)
ay
b

Sag = £|a1:0 (4.19)
a2

When a, = 0, the quadripole is said to be matched at the output; if a; = 0, then
the quadripole is matched at the input. Each of the S-parameters are computing

while the quadripole is matched either at the input or at the output.

4.3.3 RF energy harvesting circuit topologies

Radio frequency energy harvesting circuits are usually designed around four
functional blocks. The antenna, which represents the source to be placed at the
input of the circuit, the impedance matching network that allows the source to
transmit the maximum power to the next block, the rectifier block which is the
rectification block in the strict sense, and then the load. The rectifier includes a

capacitor and is followed by the last block which is the load for which the DC power
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from the rectifier is intended.
Figure 4.4 presents the various topologies of circuits used for radio frequency

energy harvesting.

4.3.4 Survey of energy harvesting topologies and data anal-
ysis

This survey is conducted by simulation where a feasible impedance matching of
S11 = —25dB at an input power of - 30 dBm was chosen as shown in Figure 4.5.
For all the five structures submitted to study, the matching network is just after
the source for both families of HSMS and SMS diodes. The choice of the HSMS
2850 diode is guided by a study carried out in [73], which shows that it offers an
advantage over many other RF diodes and is commonly used for RF applications.
The SMS 7630 diode is chosen because it is almost ubiquitous in rectifiers, as shown
in the study we present in the Table 4.3. Furthermore, in [113], it was shown that
for the specific case of the rectifier using the diode in series, the SMS 7630 diode
was better than the HSMS 2850 diode. For these reasons, three diodes that are
HSMS2850, HSMS2860 and SMS7630 will be used for the survey study.

In Figure 4.5 simulation results of the conversion efficiency of the five topolo-
gies mentioned above are presented. In order to achieve this, each topology was
constructed using the three most commonly used diode types mentioned above.

As can be seen, this study was carried out on the power band from — 30 dBm to
30 dBm, corresponding to the power range from 1 microwatt to 1 Watt. This power
band is the same one in which can be found the radiated energy in the case of wireless

power transfer, and the ambient RF Energy. The result obtained on each graph was
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Figure 4.4: Topologies of circuits used for radio frequency energy harvesting

done by optimizing the load resistance (Figure 4.5) using the "Optimization tool"

of the Keysight’s ADS software. In the above cases, the working frequency is 2.45

GHz and all the results are summarized in Table 4.5. In the same table, a summary
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Reflection coeff S11 (dB)

Frequency (GHz)

Figure 4.5: Reflection coefficient of all the rectifier topologies in simulation at fre-
quency 2.45 GHz with input power - 30 dBm

of the simulation results of the different topologies with the optimized load values
for each case is also presented. By varying the input power from — 30 dBm to 30
dBm, we determine the power of maximum efficiency.

A simple analysis shows that Dickson diode structure HSMS2860 which has an
efficiency of 85.71 % at 25 dBm input power is the best structure for RF energy
harvesting. If, on the contrary, we are in an environment where the power that
arrives at the antenna is very low, around - 4 dBm, then the SMS7630 diode series
topology, which reaches its maximum efficiency at 66.66 %, is the best. At this
power (— 4 dBm), the Dickson topology has an efficiency of only 34 %.

As shown in this same Table 4.5, there is a wide range of loads to be placed at
the output of the rectifier circuit to achieve maximum efficiency. These loads are

varying depending on the topology and the diode used, from a few tens of ohms to
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(b) Greinacher topology
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(d) Shunt topology

a few tens of kilo ohms.

It should be noted that during the simulation, whatever the value of the load
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(e) Voltage doubler topology

Figure 4.5: Rectification efficiency simulation survey of different topologies (Dickson,
Greinacher, Series, Shunt and voltage doubler) using diodes HSMS2850, HSMS2860
and SMS7630. Here the simulations are done at frequency 2.45 GHz; for each
topology, the color code are red for HSMS2850, blue for HSMS2860 and black for
SMS7630

resistance, it does not have a significant influence the reflection coefficient (S11)
that is used for impedance matching. This is due to the fact that S11 is and RF
parameter and the load is in the DC part. However, this value of the load resistance
has a great influence on the efficiency of the system. Therefore, to determine the
optimum load, it must be varied by measuring the efficiency of the system.

From the discussion above, it can be deduced that the choice of topology and
diode of the energy harvesting circuit to achieve maximum efficiency must depend
on the input power available to be captured. If, for example, 0 dBm of power is
to be harvested in the 2.45 GHz band, it can be seen from graphical analysis that

we have an efficiency of 60 % for the shunt topology with HSMS2860 diode and
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HSMS2850 diode series topology. For the same power, the Dickson topology with
the SMS7630 diode has an efficiency of 63 %. These last three circuits are therefore
the ones to be considered since they have the highest efficiencies at 0 dBm input
power.

With this obtained result, it can be said that the choice of diode for an energy
harvesting circuit depends on the power source available and the related topology to
be considered. This means that one diode is only better than the other if a specific

situation is considered.

4.3.5 Energy harvesting topologies and frequency impact
investigation

To evaluate the influence of frequency on the radio frequency energy harvest-
ing circuits, the five previous topologies have been taken again and matched in
impedance at 5.7 GHz frequency, with a realizable reflection coefficient Sy, of — 25
dB, as in the previous cases. The reflection coefficient plots can be seen in Figure 4.6
where graphs represent the impedance matching for all the five topologies with the
three most commonly used diode types highlighted. In this Figure 4.6 there are 15
plots, some of which overlap with the others and make them invisible.

This frequency is chosen for the same reason as 2.45 GHz, that is Wireless Local
Area Network (WLAN) frequency band most often used for Wi-Fi and likely to have
radio frequency energy.

In the following, we present in Figure 4.6, the curves corresponding to the simu-
lation of the above studied topologies at the 5.7 GHz frequency band. In Figure 4.6,

as in the case of Figure 4.5, there are 15 graphs, which represent the five topologies,
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Table 4.5: Simulation of efficiency at frequency 2.45 GHz

Topology Diode Type Max  Pwr of max. Pwr of 10% Load
Eff.(%) Eff.(dBm)  Eff.(dBm) Res.(kQ?)

HSMS2850  71.13 17 —12 7
Dickson HSMS2860  85.71 25 - 17 30
SMS7630 71.56 5 - 23 20
HSMS2850 70.1 12 - 16 2
Grein- HSMS2860 84.2 16 - 22 15
acher SMS7630 6.15 23 — 0.1
HSMS2850  63.97 7 - 20 2
Series HSMS2860  81.03 16 - 22 3
SMS7630 66.66 —4 - 30 2
HSMS2850  65.36 6 - 20 2
Shunt HSMS2860  82.09 16 - 23 4
SMS7630 65.46 -5 -31 5
HSMS2850  71.20 11 - 17 3.3
Voltage doubler HSMS2860  84.58 20 - 22 15
SMS7630 56.78 -5 — 28 5
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Figure 4.6: Reflection coefficient of all the rectifier topologies in simulation at fre-
quency 5.7 GHz with input power - 30 dBm

each of which uses the 3 identified diodes.

The results shown in Figure 4.6 are summarized in Table 4.6. From these re-
sults, in addition to the general observations already made in the case of 2.45 GHz
frequency, it can be said that whatever the topology and diode used for RF energy
harvesting, better results are obtained at 2.45 GHz band than at 5.7 GHz band. It is
important to mention that the considered diodes are working on the frequency bands
considered and above. This leads to the conclusion that the higher the frequency,
the lower the energy harvested with these known circuits. This overall drop in con-
version efficiency is not subject to a general rule of proportionality; for example,
the conversion efficiency of the voltage doubler topology with the HSMS2860 diode
drops from 84.58 % to 72.88 %, which is a relative loss of 11.7 % when moving from
2.45 GHz to 5.7 GHz bands, whereas this relative loss is 35.61 % for the Dickson

98
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(d) Shunt topology

topology with the HSMS2860 diode in both bands.

Furthermore, it is observed that the input power at which the maximum conver-
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(e) Voltage doubler topology

Figure 4.6: Rectification efficiency simulation survey of different topologies (Dickson,
Greinacher, Series, Shunt and voltage doubler) using diodes HSMS2850, HSMS2860
and SMS7630. Here the simulations are performed at 5.7 GHz; for each topology,
the color code are red for HSMS2850, blue for HSMS2860 and black for SMS7630

sion efficiency is achieved can change in some cases from one frequency band to the

other.

4.4 Tools for circuit analysis and design

4.4.1 Simulation tools

The choice of working environment was conditioned not only by the RF frequen-
cies range around which our circuits operate, but also by its availability and the
flexibility it offers in terms of simulation tools. For these reasons, we chose ADS

(Advanced Design System) working environment from Keysight Technologies, which
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Table 4.6: Simulation of efficiency at 5.7 GHz

Topology Diode Type Max  Pwr of max. Pwrof 10%  Load
Eff.(%) Eff.(dBm) Eff.(dBm) Res.(kQ)

HSMS2850  41.73 17 0 1.5
Dickson HSMS2860  50.10 24 -7 30
SMS7630 57.28 9 - 14 10
HSMS2850  41.58 12 -5 0.5
Grein- HSMS2860 0.25 30 — 0.5
acher SMS7630 6.08 16 — 0.3
HSMS2850  47.16 9 -9 0.7
Series HSMS2860  71.98 16 - 15 1
SMS7630 52.23 0 -21 0.9
HSMS2850  50.88 9 -9 0.6
Shunt HSMS2860  75.12 17 - 16 1.5
SMS7630 55.07 0 -21 0.8
HSMS2850  42.30 12 -5 0.6
Voltage doubler HSMS2860  72.88 19 - 10 1
SMS7630 41.73 -1 -15 1

was available at the CITT laboratory, but which also provides a large number of tools
dedicated to the design of RF circuits. ADS provides a library with a large variety of
components (active and passive); on the one hand it enables to perform time anal-
yses (transient), and frequency analyses (S Parameters, Harmonic Balance, Large

Signal S Parameter) with optimization possibilities, and on the other hand it offers
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the possibilities to simulate electromagnetic (momentum) and SPICE (Simulation

Program with Integrated Circuit Emphasis) circuits.

a. Time domain (transient) simulation

Simulation is of paramount importance in that it allows to verify the circuit
theory before any implementation. This verification in the time domain is done
either at the macro or behavioural level, taking into account the whole circuit, or
at the components level.

The behavioural model analyses the mathematical relationship that describes
the circuit. The construction of behavioural blocks is easily achievable, and their
simulations are hundreds or thousands of times faster compared to macro level
simulations. The macro model analyses the blocks of each circuit using equivalent
models. This model can involve both real and ideal components.

Component-level simulation is the simulation of all the interconnected elements
of the circuit as represented in circuit theory. This level of simulation provides the
highest accuracy, although it generally requires more simulation time than other
types of simulation [114].

Figure 4.7 is a representation of the iterative algorithm for the operation of the
SPICE time domain simulation program.

A transient simulation like SPICE operates exclusively in the time domain. The
dependence of currents and voltages is summarized here in a set of integro-differential
equations of the circuit under analysis, which are then solved by the simulator. This
results in a time non-linear analysis. The transient analysis is performed fully in the
time domain and consequently cannot take into account the frequency-dependent
behaviour of distributed elements such as microstrip elements, S-parameter ele-
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Figure 4.7: SPICE solution algorithm
[114]
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ments, etc. Accordingly, in a transient analysis, these elements must be expressed
in simplified, frequency-independent models such as lumped equivalent components,
constant loss and dispersion-free transmission lines, short circuits, open circuits, etc.

For this time domain simulation case, the frequency behaviour of distributed
elements such as microstrip elements, S-parameter elements, cannot be taken into
consideration. Such assumptions and simplifications are generally quite acceptable

for low frequencies [103].

b. S-Parameters simulation

S-Parameters simulation allows the linearization of the components of a linear
or non-linear circuit at high frequencies around an operating point characterized by
its optimal frequency. The circuit thus characterized, its behaviour can be predicted
for any known input signal. These parameters do not take into account the content
of the network, and are as easy to measure and use in RF, as any other parameters.
They are conceptually simple, analytically convenient, and capable of providing a

great insight into a measurement or design problem [115].

c. Harmonic Balance simulation

Harmonic Balance (HB) simulation is a non-linear circuit analysis that proceeds
simultaneously in the time and frequency domain. This simulation method was first
discussed in 1937, but the modern version applicable to simulators appeared in 1976
[116].

This basic choice as a method of circuit analysis consists in decomposing cir-
cuits into linear and nonlinear subsystems, having the same number of ports. This

decomposition reduces the number of variables to be optimized.
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Linear sub-entities are analysed in the frequency domain by conventional multi-
port techniques, while non-linear sub-entities are analysed in the time domain by
appropriate equations.

The conversion from the time domain to the frequency domain is done by the
Fast Fourier Transform (FET). The technique used is particularly suitable, and calls
for the mathematical formalization of the problem, as a non-linear algebraic system
is in the form F(X) = 0. This formulation is based on the Kirchhoff Current Law
which sum all the currents to each node at zero. E is a vector of the HB error to be
evaluated numerically, and X is a set of harmonic state variables. The strategy for
solving this equation is chosen from a wide range of algorithms. Newton’s strategy,
which is iterative, has overall very good performance in the resolution of the equa-
tion, but may still fail to converge if the chosen starting point is not close enough
to the solution, specifically in the case of highly non-linear systems. There is very
low probability to obtain the result on the first iteration.

A trade-off is found between Newton’s iterative algorithm and other methods in
order to improve convergence when needed [117]. An algorithm based on the update
of the Hessian formula is first used for the simulation, then the Newton’s iterative
algorithm is used to improve the result. Harmonic Balance simulation is a digital
solution technique for analogue circuits that operate in steady-state, quasi-periodic
and periodic regimes.

The simulation process is summarized in the block diagram in Figure 4.8. This
type of analysis is convenient for the study of circuits such as amplifiers, mixers,
oscillators, multipliers that operate in wide signal mode.

HB analysis has advantages over time simulation, especially in the case of high-
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Figure 4.8: Overview of Harmonic Balance simulation [118]

frequency circuits [118]:

o The steady-state behaviour of a system is generally the one of interest to
circuit’s designers. The time constants to reach this steady state are often
logged with respect to the operating frequency of the circuit, what would
result in considerable simulation time. HB simulation provides the steady

state directly.

o HB simulation is faster in solving typical high-frequency problems than time
algorithms. The harmonics generated in a non-linear circuit are often of a
much higher order than the fundamental. This would make time simulations

much slower because the simulation step depends on the smallest period.

e The high-frequency behaviour of many linear models is better represented in

the frequency domain. Their use in the time domain would lead to problems
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of accuracy, causality or stability.

d. Large Signal S-Parameters (LSSP) simulation

Compared to S-Parameter simulations which are based on the linearized small-
signal circuit, LSSP simulation are based on the simulation of a full large signal
non-linear circuit with harmonic balance method. The solution of harmonic balance
simulation involves nonlinear effects such as compression since it is a large signal
simulation technique. The large-signal S-parameters can therefore vary along with
the power levels. Like the S-parameters being small signals, the large-signal S-

parameters are defined as the ratio between reflected and incident waves:

B
S == 4.20
J Aj ( )
We defined the incident and the reflected waves as:
+ Zoils =25
A,:w B _Vi— 4yl (4.21)

’ 21/R0j 7 i 2\/ ROi

where:

Vi, V; are Fourrier coefficients of the voltages at ports i and j at the fundamental
frequency

I;, I, are Fourier coefficients of the currents at ports i and j at the fundamental
frequency

Zoi , Zo; characteristic impedances at ports i and j

Roi , Ry; real parts of Z; and Zy; [119].

The determination of the 'large signal' S-parameters of a two-port system is
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carried out as described below:

e Port 2 is loaded with an impedance equal to its complex conjugate impedance.

o A signal of power P; set by the user is applied to port 1 through a source

having an impedance equal to the complex conjugate impedance of this port.

o Using a Harmonic Balance simulation, the currents and voltages at ports 1

and 2 are calculated.
These information are used to compute the parameters Si; and Sa;.

o Port 1 is loaded with an impedance equal to its complex conjugate impedance.

o A signal of power P, = |Sy|?P; is applied to port 2 through a source having

an impedance is equal to the complex conjugate impedance of this port.

o Using a Harmonic Balance simulation, the currents and voltages at ports 1

and 2 are computed.

This information is used to calculate the parameters S7; and Sa;. For comparison
with the S-parameter simulation, the LSSP simulation takes into account non-linear
behaviour, such as gain compression or variations in incident power. It is therefore
to be preferred for the simulation of non-linear circuits with highly dependent level

behaviour of incidental power, as in the case of the rectennas [120].

e. Momentum simulation

Momentum electromagnetic simulation engine is a planar simulation tool used for
the analysis of passive micro-strip circuits. It uses the Momentum Method (MoM)
to simulate complex electromagnetic effects including interconnections, couplings
and parasitic elements.
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The Moment Method is a numerical method for solving linear partial differen-
tial equations formulated in integral form [121]. As this method only requires the
calculation of values at the edges rather than in the whole space, it is much more
efficient in terms of calculation time than 3D numerical methods. The principle is

to create a mesh of the characterised surface.

4.4.2 Analysis tools

In the previous chapter, we have shown that the elements of the impedance
matching network of energy harvesting systems, i.e. the LC components, are dis-
posed in L, PI and T shapes. In this section, we will present the techniques for
transforming these LC component networks into transmission lines of known elec-
trical length and characteristic impedance. The aim of this transformation is the
optimization of the circuit, thus making it possible to limit the radiation due to the

discrete components in a circuit operating at radio frequencies.

a. Open and short-circuit stubs from lumped components

In general, inductors and capacitors are available and work well at low frequencies
meanwhile this is not true at radiofrequencies. It is then convenient to find the
equivalences of those components at high frequencies. Richard’s transformation and
Kudora’s identities are consequently used to achieve this goal. The application of

these two techniques allows to perform any of the following operations:

e The transformation of capacitors and inductors into open circuit and short

circuit transmission line stubs

o The physical separation of transmission line stubs
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Figure 4.9: Electric model equivalent to: (a) an open stub. (b) a short circuit stub
[122]

¢ The transformation of shunt stubs into series stubs and vice-versa

o The change of impractical characteristic impedances into more realisable values

[122).

A lossless open stub microstrip line is equivalent to a parallel-connected capaci-
tor. Similarly, a short-circuit stub is equivalent to a parallel inductor as shown in
Figure 4.9.

In this transformation, the phase constant is given by 5 = Vip , where w is the an-
gular frequency and V), the phase velocity. Z¢ represent the characteristic impedance
of the stub line and the electric length is given by 6 = %l with [ representing the
stub length.

The input impedance of a lossless short-circuit stub is given by [123]:

2
Zoo = j 7o tan <;z> (4.22)
g

with:
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Ag: guided wavelength ;

Zy: characteristic impedance;

I: length of the stub.

This means that if the value of tan (i—’;l) is positive, the stub will behave like an
inductance, whereas if this value is negative, it will behave like a capacitance. For
l < %‘7, the stub will behave like an inductance. The length [ required for a short-
circuit stub to behave as an inductance of value L is given by :

L
[ = Y [mr + arctan (%) } (4.23)

2T 0

For a lossless open circuit stub, the input impedance is given by :

P
Zoo = —j.Z. cot <;z) (4.24)
g

Consequently, if the value of cot (%l) is positive, the stub will behave as a capacitor,
while if it is negative, it will behave as an inductance. For [ < %, the stub will
behave like an inductance. The length [ required for a short-circuit stub to behave

as a capacitor of value C is given by :

Ag 1
[ = o [mr + arccot (wCZO) ] (4.25)

Stubs in microstrip technology can also take a radial shape, as in Figure 4.10 The
input impedance of such a stub connected in shunt to a transmission line is given
by [124]:

Zradial = —j.ZO.M cot (k.ry, k.rg) (4.26)

r;. \/a

112



4.4. TOOLS FOR CIRCUIT ANALYSIS AND DESIGN 113

W
el

Figure 4.10: Radial stub in microstrip technology [124]

with:
h: substrate thickness;
€, : relative permittivity of the substrate.

The function cot (k.r;, k.rg) is defined with first and second degree Bessel functions

[124].

b. Equivalent model of transmission line

There is a good way to modify the structure of transmission lines so that it can
operate on a given frequency. First of all, a microstrip transmission line of char-
acteristic impedance Zp and electrical length 90deg (A/4) can be represented by
an equivalent model as shown in Figure 4.11. The proposed equivalent model con-
sists of a transmission line with impedance Z4 and electrical length 8, to which two
transmission lines with admittances denoted by jY are connected in parallel. Using
the equations that link the different parameters of a transmission line and that are
illustrated in the tables in Appendix 1, we can write the decomposed ABCD matrix

of the equivalent model as:
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Figure 4.11: Equivalent model of line
1 0 cos  jZasinf| |1 0
(4.27)
7Y 1| |jZasinf®  cosf JjY 1
After rearrangement, we get
cost — Z,Y sinf jZasinf
(4.28)
JY sinf(1 — Z3Y? + 2Z,Y cot ) cosf — Z,Y sinf
Using equality, we write:
cot 6
Y = 4.29
. (4.29)
Zasind = +Zrp (4.30)
Equation 4.28 can be rewritten as:
0 jZsinf 0 +jZr
= (4.31)
jZA line 0 ijIZT

It should be noted that the matrix expression in equation (4.31) corresponds
to the ABCD matrix of the transmission line with characteristic impedance Zr and

electrical length +90 deg in Figure 4.9. Assuming the transmission line in Figure 4.11
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Figure 4.12: Open transmission line and equivalent circuit [djoumessil0]
to be lossless and according to the equations developed in Appendix 1, we obtain
the expression of the input admittance Yin of the small portion of open transmission

line by [125]:
1 2m
Ymn=j=]t —I 4.32
n j<Zo> an(}\g) (4.32)

with A, being the guided wavelength evaluated at fj, and | representing the physical
length of the small portion of line. We observe from equation (4.32) that, for a line
length [ < A, /4, the input admittance Y;, represents that of a capacitance of the

form j X, with X = wC,,. Accordingly, we can pose the equality :

(1 2
J <Zo> tan ()\gl> = wC, (4.33)

where w = 27 fy is the angular frequency. On the other hand, we can also express
the total physical length \,/4, corresponding to the electric length 6, = 7/2, in

Figure 4.12.
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Ag/4 =1+ lom (4.34)

where [, is the new physical length associated with the electrical length 6,,,. At
substituting equation (4.32) in equation (4.34), we obtain the expression of the
length I,,, equal to:

Ag

)\g
Ly = i (27r> arctan(ZowC,) (4.35)

In this paragraph, we briefly illustrated how the microwave transmission line
concept can be used to modify the structure of a circuit with inductors or capacitors.
The telegrapher’s equations used in the book [122], show that any lossless microstrip
transmission line can be modeled by an infinitesimal succession of LC localized
element circuits. C and L represent an equivalent parallel capacitance and series
inductance per unit line length. In the same work, it is well demonstrated that
the characteristic impedance and guided wavelength of a lossless transmission line,

which we denote by Z¢ and A;, can be expressed as a function of C and L as:

Ze =\/L/C (4.36)

Ay = (4.37)

We observe from these equations that, when L and C increase with the same ratio
so as to keeping an impedance Z¢ constant, the guided wavelength A, proportional
to the physical length of the transmission line decreases.

The techniques of transformation and analysis tools of this section are applied

in the following section to design and implement the energy harvesting circuit ap-
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Figure 4.13: Proposed high-efficiency rectifier with a butterfly stub matching circuit
and based on SMS7630 diode

plicable to the WuRx.

4.5 Proposed energy harvesting circuit and mea-

surements

Figure 4.13 presents the layout of the proposed harvester based on SMS7630
diode and made up using printed circuit board technology. This technology is used
in order to design the impedance matching circuit and is preferred as compared to
lumped components because it is less dispersive at high frequency.

The harvesting circuit is made up of butterfly radial stub for large bandwidth
providing good impedance matching around the carrier frequency of 2.45 GHz as
shown in Figure 4.14.

The rectifier’s central frequency was optimized at 2.45 GHz but, due to fabrica-

tion constraints, the measured central frequency is shifted down to 2.1 GHz. For

117

A



4.5. PROPOSED ENERGY HARVESTING CIRCUIT AND MEASUREMENTH

input power levels of -50 dBm, -25 dBm, 0 dBm, the simulated reflection coefficient

is presented in Figure 4.14.

—Pin= 0dBm

g —Pin=-25dBm
B —Pin=-50 dBm
~-20-
2
-30
.4[] | 1
24 241 242 243 244 245 246 247 248 249 25

Frequency (GHz)

Figure 4.14: S11 (dB) at the input of the circuit for different power levels

At the input power level of -40 dBm the reflection coefficient was measured on
the fabricated prototype at a level of — 14 dB as presented in Figure 4.15. The
measurements of Sy; were carried out with a vector network analyzer (VNA) from
Rohde and Schwarz.

The capacitor at the output of the rectifier was implemented with a 0.1 nF
capacitor in parallel with a 5 k() resistor. These specific values have been chosen
because they are maximizing the rectifier’s efficiency and consequently maximizing
the output DC voltage.

Figure 4.16 presents the implementation of proposed high-efficiency harvester
optimized and print on a Rogers Duroid (RO4350B) substrate. This hydrocarbon
ceramic laminate has a superior high-frequency performance. The dielectric constant
is 3.606, it has a dissipation factor of 0.0031, the substrate thickness is 0.51 mm, and
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Figure 4.15: Measured reflection coefficient S11(dB) at the rectifier’s input

the conductor thickness is 17.5 pm.

Figure 4.16: Implemented circuit of the energy harvester

In Figure 4.17, the simulated and measured output voltage are presented. From
the result, it can be seen that the power harvested is closed to the simulated values.
For the specific case of quasi-passive Wake-Up Radio that it’s aimed to supply
with this circuit, the 2.025 yW, power corresponding to the output voltage of 3.2
mV for the existing load resistance of 5.1 kOhms. This output voltage is obtained

with the input power lower than — 20 dBm according to the measurement.
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Figure 4.17: The simulated and measured output voltage of the RF energy harvester

Furthermore, if we are to consider two power levels that are 0 dBm and 15 dBm,
for which the output voltages are 206.1 mV and 841 mV respectively, the harvested
power will then be obtained as 8.3 uW and 138.68 yW. The surveys of WuRx in
[27] which one of the most thorough on the subject listed 85 designs, with only
9 designs with power consumption greater than 138.68 yW harvested by this RF
energy harvesting circuit. It is important to mention here, that the design did not
take into account the storage component which in principle plays the role of energy

buffer. We considered that the harvested energy is consumed directly or lost.

4.6 Conclusion

The work presented in this chapter covers RF energy harvesting circuits, more
exactly the most employed circuit topologies and three of the main employed diodes
in the energy harvesting circuits. After a work done on the state of the art, we

proceeded to simulations which allow to establish that the choice of the circuit
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as well as the diode to be used depends mainly on the available input power as
well as on the topology. We also observe that better results are obtained with one
diode compared to the other only for particular power and topology circumstances.
In addition, we established that the higher the frequency, the lower the energy
harvested. The design and implementation of RF energy harvesting circuit, which
is designed to power a wake-up radio and makes it autonomous. Such a combination
of the WuRx and the energy harvesting system, as well as the technique used for
the implementation, made it possible to harvest a sufficient amount of energy for
its supply. The future work should be to focusing on the reduction of the power of
WuRx and improvement of RF energy harvesting circuit, by increasing the efficiency,
reducing the size of devices and implementation in working environment. It will also
be an option to cascade the energy harvesting circuits to maximize the amount of

energy to be harvested at the output to meet the demand of any other WuRx.
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Chapter 5

General Conclusion

5.1 Conclusion

The main objective of this thesis was to reduce the energy consumption of ra-
dio frontends, notably with the duty cycle technique and later with the WuRx.
Furthermore, the study was intended to be applied to connected objects.

We stated the operating principle of wake-up radios and showed their advan-
tage over conventional energy saving schemes. We then carried out a taxonomy
study of these objects and classified them according to their energy consumption,
architecture, implementation technology and identification methods. In addition,
a statistical study was carried out to link consumption, technology, sensitivity and
communication range.

Based on the study of an existing system developed by the CITI laboratory; an
analysis and simulation of each functional block allowed an improvement of the
sensitivity and consequently the communication range of the system. For each

identifier, we had theoretically an additional gain of about 5 dB, which could improve
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the range by approximately 13 meters in free space.

An investigation was done on radio frequency energy harvesting circuits with
the aim of making our WuRx autonomous. A state-of-the-art allowed to survey
the most recent and important works on the subject. Then, using the hypothesis of
influence of the frequency, we validated through the analysis tools that the frequency
affects the energy harvesting. For the same architecture, less energy is harvested
at higher frequencies. At the same time, this study allowed to identify the circuit
corresponding to our case of application. An implementation of this circuit made it
possible to harvest the necessary and sufficient energy to power any wake-up radio.
We subsequently developed an energy harvesting system capable of supporting its
need for electrical energy for operation.

In addition to integrating an energy-saving mechanism, the connected devices of
the present and future generations of network must also include a self-powering tech-
nique, in other words a remote power supply. For these systems, this will mean both
implementing the wake-up radio system for energy saving and also implementing a
system for harvesting ambient energy or for reception of the transmitted energy for
the purpose of self-supply. It is in this spirit that research must now be carried out
to make all the connected devices completely autonomous in terms of energy, as they
sometimes require little communication time to share basic information and spend
most of their time listening to the radio channel. This represents an enormous waste

of energy during the listening periods, in proportion to the energy required.
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5.2 Perspectives

For the continuation of this work, we suggest studies to enable an improvement
of the wake-up radio with the aim of increasing the range further, but also an
incorporation of the energy recovery system to make the two systems one. This will
require overcoming the technological difficulties associated with, for instance, the
use of different design platforms, as well as the technologies that may be different
for the two systems.

In addition, it will be necessary to work on the miniaturization of the resulting
system, which may require expertise in the calculation of microstrip lines and the
transformation of these lines in the case of the energy harvesting circuit.

Standardization of all forms of future stand-alone WuRx could also be consid-
ered, to allow interoperability between products brought to the market by several
manufacturers. As it can be reading in chapter 2, WuRx use several architectures
and technologies for their implementation. A research effort could be considered to

determine a flexible, scalable and low-cost architecture for end-users.
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Appendix 1: Transmission and

transformation matrices

The S, Y and Z parameters are used to characterise microwave networks regardless
of their number of ports. But generally, we have to face systems with two ports

cascaded as shown in the figure below.

5 1
—_— —_—
Port ¥ I 4 B ¥ j, Port
1 - ¢ D — "2
(a)
I 1, I
- —_— —_—
S N— o A
+ il" |:..r'.|1] B_:| + . |:_":[: B]:| - :
1 g £
- G Iy - ¢ D, .
(b)

Figure 1: (a) A two-port network; (b) a cascade connection of two-port networks

(a) A two-port network; (b) a cascade connection of two-port networks Tables
illustrating the relationships between the different parameters of a transmission line
transmission line.
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Table 1: S parameters in terms of ABCD, Y, and Z parameters

ABCD Y Y/
B
S A+27070Z07D (Yo—Y11)(Yo+Y22)+Y12Y21 (Z11—20)(Zo2+Z0)—Z12 221
11 A+Z£0+CZO+D (Yo+Y11)(Yo+Y22)—Y12Y21 | (Z11+20)(Z22+Z0)—Z12Z21
S Q(ADfBC) 72Y12Y0 *2212Z0
12 A+%+CZO+D (Yo+Y11)(Yo+Ya2)—Yi2Y21 (Z11+2Z0)(Z22+2Z0)—Z12Z21
S. 2 —2Y21Yp —272179
21 A+%+CZ0+D (Yo+Y11)(Yo+Y22)—Y12Ya1 | (Z11+Z0)(Z22+Z0)—Z12Z21
B
IS 7A+ZT)7020+D (Yo+Y11)(Yo—Ya22)+Y12Yo1 | (Z11—20)(Z22+Z0)—Z12Z21
22 A+%+CZ0+D (Yo+Y11)(Yo+Y22)—Y12Yo1 | (Z114+Z0)(Z22+Z0)—Z12Z21

Table 2: S parameters in terms of ABCD, Y, and Z parameters

S Y Z
A (14S11)(1—-S22)+S12521 _ Yoo _ Zu
2521 Y21 Za1

(14S11)(1+S22)—S12521 _ 1 Z11Z22—Z12791

B Zo 2821 Y21 Z21
C 1 (1-511)(1—=522)—S12521 | _ Y11Y22—Yi2Yas __1
Zo 2591 Ya1 Z21
D (1=511)(14+S522)+S12521 _ Y Zaa
2591 Y21 Za1

Two port network showing the variables of the network

Since Vo = —I5Zy , the input impedance at port 1 of the above two-port network
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I L
P ¢
ZOl
14 Two port Network v, |::| 7
02
Eq Y Y
Figure 2: Two port Network
is given by :
7, =V _ Zed+B
! I ZpC+D

Substituting the ABCD parameters for a transmission line network, we obtain the

expression :

Zoo + Z¢c tanh ~l
Z¢c + Zys tanh vl

Zinl = ZC

with :

Zo: characteristic impedance

~ : complex propagation constant

[ : electrical length of the transmission line

The propagation constant of a lossless transmission line is given by v = j3 , we can

thus rewrite the previous expression as :

Zoo + jZ¢ tan Gl
Zinl = ZC .
Zo + jZos tan 5l

When an open or short circuit is imposed on one of the ports of the transmission
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line network, the above equation becomes for open-circuit :

© jtanpl

inl

and for short-circuit

Zin1 = jZc tan Sl
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